
GRAPH KERNELS

Karsten Michael Borgwardt

München 2007

GRAPH KERNELS

Karsten Michael Borgwardt

Dissertation

an der Fakultät für Mathematik, Informatik und Statistik

der Ludwig–Maximilians–Universität

München

vorgelegt von

Karsten Michael Borgwardt

aus Kaiserslautern

München, den 22.05.2007

Erstgutachter: Prof. Dr. Hans-Peter Kriegel

Zweitgutachter: Prof. Dr. Bernhard Schölkopf

Tag der mündlichen Prüfung: 05.07.2007

Contents

Acknowledgments 1

Zusammenfassung 3

Abstract 7

1 Introduction: Why Graph Kernels? 9
1.1 Motivation . 9

1.1.1 Graph Models in Applications . 10
1.1.2 Bridging Statistical and Structural Pattern Recognition 12

1.2 Primer on Graph Theory . 12
1.2.1 Directed, Undirected and Labeled Graphs 12
1.2.2 Neighborship in a Graph . 13
1.2.3 Graph Isomorphism and Subgraph Isomorphism 14

1.3 Review on Alternative Approaches to Graph Comparison 16
1.3.1 Similarity Measures based on Graph Isomorphism 16
1.3.2 Inexact Matching Algorithms . 19
1.3.3 Similarity Measures based on Topological Descriptors 20
1.3.4 Recent Trends in Graph Comparison 21

1.4 Review on Graph Kernels . 21
1.4.1 Primer on Kernels . 21
1.4.2 Primer on Graph Kernels . 28

1.5 Contributions of this Thesis . 36
1.5.1 Fast Graph Kernels . 37
1.5.2 Two-Sample Test on Graphs . 37
1.5.3 Efficient Feature Selection on Graphs 38
1.5.4 Applications in Data Mining and Bioinformatics 38

2 Fast Graph Kernel Functions 41
2.1 Fast Computation of Random Walk Graph Kernels 42

2.1.1 Extending Linear Algebra to RKHS 42
2.1.2 Random Walk Kernels . 43
2.1.3 Efficient Computation . 46
2.1.4 Experiments . 49

vi CONTENTS

2.1.5 Summary . 54
2.2 Graph Kernels based on Shortest Path Distances 56

2.2.1 Graph Kernels on All Paths . 56
2.2.2 Graphs Kernels on Shortest Paths 57
2.2.3 Graphs Kernels on Shortest Path Distances 57
2.2.4 Link to Wiener Index . 61
2.2.5 Experiments . 62
2.2.6 Summary . 66

2.3 Graphlet Kernels for Large Graph Comparison 68
2.3.1 Graph Reconstruction . 68
2.3.2 Graph Kernels based on Graph Reconstruction 70
2.3.3 Efficiently Checking Graph Isomorphism 72
2.3.4 Sampling from Graphs . 75
2.3.5 Experiments . 77
2.3.6 Summary . 79

3 Two-Sample Tests on Graphs 81
3.1 Maximum Mean Discrepancy . 82

3.1.1 The Two-Sample-Problem . 83
3.1.2 Background Material . 86
3.1.3 A Test based on Uniform Convergence Bounds 87
3.1.4 An Unbiased Test Based on the Asymptotic Distribution of the U-

Statistic . 89
3.1.5 Experiments . 91
3.1.6 Summary . 93

3.2 Graph Similarity via Maximum Mean Discrepancy 94
3.2.1 Two-Sample Test on Sets of Graphs 94
3.2.2 Two-Sample Test on Pairs of Graphs 97
3.2.3 Experiments . 98
3.2.4 Summary . 99

4 Feature Selection on Graphs 101
4.1 A Dependence based Approach to Feature Selection 103

4.1.1 The Problem of Feature Selection 103
4.1.2 Measures of Dependence . 104
4.1.3 Feature Selection via HSIC . 108
4.1.4 Connections to Other Approaches 109
4.1.5 Variants of BAHSIC . 110
4.1.6 Experiments . 110
4.1.7 Summary . 114

4.2 Feature Selection among Frequent Subgraphs 115
4.2.1 Preliminaries . 117
4.2.2 Backward Feature Elimination via HSIC 119

Contents vii

4.2.3 Forward Feature Selection via HSIX 121
4.2.4 Experiments . 127
4.2.5 Summary . 130

5 Summary and Outlook: Applications in Bioinformatics 133
5.1 Summary . 133
5.2 Graph Kernels in Bioinformatics . 135

5.2.1 Protein Function Prediction . 135
5.2.2 Biological Network Comparison . 135
5.2.3 Subgraph Sampling on Biological Networks 136

5.3 Applications of Maximum Mean Discrepancy 137
5.3.1 Data Integration in Bioinformatics 137
5.3.2 Sample Bias Correction . 137

5.4 Applications of the Hilbert-Schmidt Independence Criterion 138
5.4.1 Gene Selection via the BAHSIC Family of Algorithms 138
5.4.2 Dependence Maximization View of Clustering 138

A Mathematical Background 139
A.1 Primer on Functional Analysis . 139
A.2 Primer on Probability Theory and Statistics 141

B Proofs on Maximum Mean Discrepancy 147

List of Figures 153

List of Tables 155

Bibliography 170

viii Contents

Acknowledgments

Many individuals and institutions contributed in many different ways to the completion
of this thesis. I am deeply grateful for their support, and thankful for the unique chances
this support offered me.

Prof. Hans-Peter Kriegel financed my research assistant position and my numerous trips
to conferences. He also encouraged me to give a lecture on kernels in the second year of
my PhD studies. With his decades of experience, he has been a guide and helpful source
of advice during this time. I am greatly thankful for all that, and for his wise support over
the last 2 years.

Alexander Smola and SVN ”Vishy” Vishwanthan, although located at the other end
of the world, were teachers of mine during this time. It has been a unique chance for me
to learn from their scientific experience, their vast knowledge base and their never-ending
pursuit of scientific discovery. Special thanks to Alex and NICTA for funding my trip to
Australia in September 2006.

My research has profited a lot from interacting with some of the best researchers in
my field. I am thankful to all of them: Arthur Gretton, Hans-Peter Kriegel, Quoc V. Le,
Cheng Soon Ong, Gunnar Rätsch, Bernhard Schölkopf, Alexander Smola, Le Song, Xifeng
Yan and SVN Vishwanathan. Prof. Bernhard Schölkopf also kindly agreed to act as second
examiner of this thesis.

I will remember the good collaboration with my colleagues, both in teaching and re-
search: Elke Achtert, Johannes Aßfalg, Stefan Brecheisen, Peer Kröger, Peter Kunath,
Christian Mahrt, Alexey Pryakhin, Matthias Renz, Matthias Schubert, Steffi Wanka,
Arthur Zimek, and Prof. Christian Böhm. I would also like to thank our chair secre-
tary, Susanne Grienberger, and our technician, Franz Krojer, for keeping our group and
our hardware equipment organized and running during my PhD studies.

I enjoyed the enthusiasm for science shown by the students I directly supervised during
my PhD. I am proud of Sebastian Böttger, Christian Hübler, Nina Meyer, Tobias Petri,
Marisa Thoma, Bianca and Peter Wackersreuther who all managed to produce publication-
quality level results in their student projects and theses. I am happy to have supervised
these dedicated students.

Apart from individuals, I would also like to thank two institutions for their support:
the Stiftung Maximilianeum that offered me board and lodging during my undergraduate
studies, and the Studienstiftung des deutschen Volkes that accepted me both during my
undergraduate and my PhD studies as its scholar.

I am grateful to SVN ”Vishy” Vishwanathan and Quoc V. Le for proofreading parts of

2 Acknowledgments

this manuscript.
More than to anyone else, I owe to the love and support of my family: My mother

Doris, my father Karl Heinz, my brother Steffen, my grandparents, and my girlfriend
Ruth. Despite all graph kernels, you are the best part of my life.

Zusammenfassung

Data Mining und Maschinelles Lernen befinden sich inmitten einer ”strukturierten Rev-
olution”. Nach Jahrzehnten, in denen unabhängige und gleichverteilte Daten im Zentrum
des Interesses standen, wenden sich viele Forscher nun Problemen zu, in denen Daten
Sammlungen von Objekten darstellen, die miteinander in Beziehungen stehen, oder durch
einen komplexen Graphen miteinander verbunden sind. [Übersetzt aus dem Englischen,
aus dem Call for Papers der Tagung Mining and Learning on Graphs (MLG’07)]

Da ständig neue Daten in Form von Graphen erzeugt werden, sind Lernen und Data
Mining auf Graphen zu einer wichtigen Herausforderung in Anwendungsgebieten wie der
Molekularbiologie, dem Telekommunikationswesen, der Chemoinformatik und der Analyse
sozialer Netzwerke geworden. Die zentrale algorithmische Frage in diesen Bereichen, der
Vergleich von Graphen, hat daher in der jüngsten Vergangenheit viel Interesse auf sich
gezogen. Bedauerlicherweise sind die vorhandenen Verfahren langsam, ignorieren wichtige
topologische Informationen, oder sind schwer zu parametrisieren.

Graph-Kerne wurden als ein theoretisch-fundierter und vielversprechender neuer Ansatz
zum Vergleich von Graphen vorgeschlagen. Ihre Attraktivität liegt darin begründet, dass
durch das Definieren eines Kerns auf Graphen eine ganze Familie von Lern- und Mining-
Algorithmen auf Graphen anwendbar wird. Diese Graph-Kerne müssen sowohl die Topolo-
gie als auch die Attribute der Knoten und Kanten der Graphen berücksichtigen, und gleich-
zeitig sollen sie effizient zu berechnen sein. Die vorhandenen Graph-Kerne werden diesen
Anforderungen keineswegs gerecht: sie vernachlässigen wichtige Teile der Struktur der
Graphen, leiden unter Laufzeitproblemen und können nicht auf große Graphen angewen-
det werden. Das vorrangige Ziel dieser Arbeit war es daher, effizientes Lernen und Data
Mining mittels Graph-Kernen zu ermöglichen.

In der ersten Hälfte dieser Arbeit untersuchen wir die Nachteile moderner Graph-Kerne.
Anschließend schlagen wir Lösungen vor, um diese Schwächen zu überwinden. Höhepunkte
unserer Forschung sind

• die Beschleunigung des klassischen Graph-Kerns basierend auf Random-Walks, auf
theoretischer Ebene von O(n6) auf O(n3) (wobei n die Anzahl der Knoten im größeren
der beiden Graphen ist) und auf experimenteller Ebene um bis zu das Tausendfache,

• die Definition neuer Graph-Kerne basierend auf kürzesten Pfaden, die in unseren
Experimenten schneller als Random-Walk-Kerne sind und höhere Klassifikationsge-

4 Zusammenfassung

nauigkeiten erreichen,

• die Entwicklung von Graph-Kernen, die die Häufigkeit kleiner Subgraphen in einem
großen Graphen schätzen, und die auf Graphen arbeiten, die aufgrund ihrer Größe
bisher nicht von Graph-Kernen bearbeitet werden konnten.

In der zweiten Hälfte dieser Arbeit stellen wir algorithmische Lösungen für zwei neuar-
tige Probleme im Graph-Mining vor. Als Erstes definieren wir einen Zwei-Stichproben-Test
für Graphen. Wenn zwei Graphen gegeben sind, lässt uns dieser Test entscheiden, ob diese
Graphen mit hoher Wahrscheinlichkeit aus derselben zugrundeliegenden Verteilung her-
vorgegangen sind. Um dieses Zwei-Stichproben-Problem zu lösen, definieren wir einen
kern-basierten statistischen Test. Dieser führt in Verbindung mit Graph-Kernen zum er-
sten bekannten Zwei-Stichproben-Test auf Graphen.

Als Zweites schlagen wir einen theoretisch-fundierten Ansatz vor, um überwachte Fea-
ture-Selektion auf Graphen zu betreiben. Genau wie die Feature-Selektion auf Vektoren
zielt die Feature-Selektion auf Graphen darauf ab, Features zu finden, die mit der Klassen-
zugehörigkeit eines Graphen korrelieren. In einem ersten Schritt definieren wir eine Fam-
ilie von überwachten Feature-Selektions-Algorithmen, die auf Kernen und dem Hilbert-
Schmidt Unabhängigkeitskriterium beruhen. Dann zeigen wir, wie man dieses Prinzip der
Feature-Selektion auf Graphen erweitern kann, und wie man es mit gSpan, dem modern-
sten Verfahren zur Suche von häufigen Subgraphen, kombinieren kann. Auf mehreren
Vergleichsdatensätzen gelingt es unserem Verfahren, unter den Tausenden und Millio-
nen von Features, die gSpan findet, eine kleine informative Untermenge von Dutzenden
von Features auszuwählen. In unseren Experimenten werden mit diesen Features durch-
weg höhere Klassifikationsgenauigkeiten erreicht als mit Features, die andere Feature-
Selektions-Algorithmen auf denselben Datensätzen bevorzugen.

Im Rahmen der Entwicklung dieser Verfahren müssen wir mehrere Probleme lösen, die
für sich selbst genommen ebenfalls Beiträge dieser Arbeit darstellen:

• Wir vereinigen beide Varianten der Random-Walk-Graph-Kerne, die in der Literatur
beschrieben sind, in einer Formel.

• Wir zeigen den ersten theoretischen Zusammenhang zwischen Graph-Kernen und
topologischen Deskriptoren aus der Chemoinformatik auf.

• Wir bestimmen die Stichprobengröße, die erforderlich ist, um die Häufigkeit bes-
timmter Subgraphen innerhalb eines großen Graphen mit einem festgelegten Prä-
zisions- und Konfidenzlevel zu ermitteln. Dieses Verfahren kann zur Lösung von
wichtigen Problemen im Data Mining und in der Bioinformatik beitragen.

Drei Zweige der Informatik profitieren von unseren Ergebnissen: das Data Mining, das
Maschinelle Lernen und die Bioinformatik. Im Data Mining ermöglichen unsere effizienten
Graph-Kerne nun die Anwendung der großen Familie von Kern-Verfahren auf Probleme
im Graph-Mining. Dem Maschinellen Lernen bieten wir die Gelegenheit, fundierte theo-
retische Ergebnisse im Lernen auf Graphen in nützliche Anwendungen umzusetzen. Der

Zusammenfassung 5

Bioinformatik steht nun ein ganzes Arsenal an Kern-Verfahren und Kern-Funktionen auf
Graphen zur Verfügung, um biologische Netzwerke und Proteinstrukturen zu vergleichen.
Neben diesen können auch weitere Wissenschaftszweige Nutzen aus unseren Ergebnissen
ziehen, da unsere Verfahren allgemein einsetzbar und nicht auf eine spezielle Art von An-
wendung eingeschränkt sind.

6 Zusammenfassung

Abstract

Data Mining and Machine Learning are in the midst of a ”structured revolution”. After
many decades of focusing on independent and identically-distributed (iid) examples, many
researchers are now studying problems in which examples consist of collections of inter-
related entities or are linked together into complex graphs. [From Mining and Learning on
Graphs (MLG’07): Call for Papers]

As new graph structured data is constantly being generated, learning and data min-
ing on graphs have become a challenge in application areas such as molecular biology,
telecommunications, chemoinformatics, and social network analysis. The central algorith-
mic problem in these areas, measuring similarity of graphs, has therefore received extensive
attention in the recent past. Unfortunately, existing approaches are slow, lacking in ex-
pressivity, or hard to parameterize.

Graph kernels have recently been proposed as a theoretically sound and promising
approach to the problem of graph comparison. Their attractivity stems from the fact
that by defining a kernel on graphs, a whole family of data mining and machine learning
algorithms becomes applicable to graphs.

These kernels on graphs must respect both the information represented by the topology
and the node and edge labels of the graphs, while being efficient to compute. Existing meth-
ods fall woefully short; they miss out on important topological information, are plagued
by runtime issues, and do not scale to large graphs. Hence the primary goal of this thesis
is to make learning and data mining with graph kernels feasible.

In the first half of this thesis, we review and analyze the shortcomings of state-of-the-art
graph kernels. We then propose solutions to overcome these weaknesses. As highlights of
our research, we

• speed up the classic random walk graph kernel from O(n6) to O(n3), where n is the
number of nodes in the larger graph, and by a factor of up to 1,000 in CPU runtime,
by extending concepts from Linear Algebra to Reproducing Kernel Hilbert Spaces,

• define novel graph kernels based on shortest paths that avoid tottering and outper-
form random walk kernels in accuracy,

• define novel graph kernels that estimate the frequency of small subgraphs within a
large graph and that work on large graphs hitherto not handled by existing graph
kernels.

8 Abstract

In the second half of this thesis, we present algorithmic solutions to two novel problems
in graph mining. First, we define a two-sample test on graphs. Given two sets of graphs,
or a pair of graphs, this test lets us decide whether these graphs are likely to originate from
the same underlying distribution. To solve this so-called two-sample-problem, we define
the first kernel-based two-sample test. Combined with graph kernels, this results in the
first two-sample test on graphs described in the literature.

Second, we propose a principled approach to supervised feature selection on graphs.
As in feature selection on vectors, feature selection on graphs aims at finding features
that are correlated with the class membership of a graph. Towards this goal, we first
define a family of supervised feature selection algorithms based on kernels and the Hilbert-
Schmidt Independence Criterion. We then show how to extend this principle of feature
selection to graphs, and how to combine it with gSpan, the state-of-the-art method for
frequent subgraph mining. On several benchmark datasets, our novel procedure manages
to select a small subset of dozens of informative features among thousands and millions
of subgraphs detected by gSpan. In classification experiments, the features selected by
our method outperform those chosen by other feature selectors in terms of classification
accuracy.

Along the way, we also solve several problems that can be deemed contributions in their
own right:

• We define a unifying framework for describing both variants of random walk graph
kernels proposed in the literature.

• We present the first theoretical connection between graph kernels and molecular
descriptors from chemoinformatics.

• We show how to determine sample sizes for estimating the frequency of certain sub-
graphs within a large graph with a given precision and confidence, which promises to
be a key to the solution of important problems in data mining and bioinformatics.

Three branches of computer science immediately benefit from our findings: data mining,
machine learning, and bioinformatics. For data mining, our efficient graph kernels allow
us to bring to bear the large family of kernel methods to mining problems on real-world
graph data. For machine learning, we open the door to extend strong theoretical results
on learning on graphs into useful practical applications. For bioinformatics, we make a
number of principled kernel methods and efficient kernel functions available for biological
network comparison, and structural comparisons of proteins. Apart from these three areas,
other fields may also benefit from our findings, as our algorithms are general in nature and
not restricted to a particular type of application.

Chapter 1

Introduction: Why Graph Kernels?

1.1 Motivation

Graphs are universal data structures. This claim can be justified both from a philosophical
and an algorithmic point of view.

In general, a graph models a network of relationships between objects. This is inter-
esting for two reasons: First, from a system-wide perspective, a graph represents a system
and the interactions between its components. Second, from a component-centered point
of view, a graph describes all relationships that link this object to the rest of the system.
The philosophical relevance stems from the fact that one may argue that all real-world
objects may be described either as a network of interactions of its subcomponents, or as
components of a larger network. Interestingly, even philosophers argue that a graph is the
best way of describing the world as a mathematical structure [Dipert, 1997].

From an algorithmic perspective, graphs are the most general data structures, as all
common data types are simple instances of graphs. To name a few among many examples:
A scalar can be modeled as a graph with one single node labeled by the value of this scalar.
Vectors and matrices can be modeled as graphs, with one node per entry and edges between
consecutive components within a vector and matrix, respectively. A time series of vectors
can be represented as a graph that contains one node per time step, and consecutive steps
are linked by an edge. A string is a graph in which each node represents one character,
and consecutive characters are connected by an edge.

Given their generality, the natural question to ask is: Why have graphs not been
the common data structure in computer science for decades? The answer is simple: Their
comparison is computationally expensive. Graphs are prisoners of their own their flexibility.

On the one hand, graphs are very flexible, as they allow to compare objects of arbitrary
sizes to each other. Distance functions on feature vectors are more restrictive, as they
require two objects to be of equal dimension. On the other hand, for vectors, the Euclidean
metric serves as a gold standard among all distance functions, i.e., it is widely accepted and
used, and can be computed efficiently. But there is no such universally accepted metric on
graphs, which could be computed efficiently. The problem here is that in order to identify
common parts of two graphs, we have to consider all their subgraphs. Unfortunately, in
a graph with n nodes, there are always 2n possible subsets of nodes. Hence our search
space is exponential in the size of the graphs. In an excellent review, Bunke [Bunke, 2003]

10 1. Introduction: Why Graph Kernels?

summarizes this problem as follows: ’[...] computing the distances of a pair of objects[...]
is linear in the number of data items in the case of feature vectors, quadratic in case of
strings, and exponential for graphs”.

In order to overcome the curse of exponential search space, traditionally, data mining
and statistical machine learning have sacrificed the universality of graph models. Instead,
research in these areas concentrated on methods for feature vectors, as these can be dealt
with much more efficiently. Whenever possible, feature vector models were employed in-
stead of graph models, and even in application domains where graphs are the natural choice
of data structure, attempts were made to transform the graphs into feature vectors. As
a result, after initial enthusiasm induced by the apparent universality of graphs as data
structures, graphs have been practically left unused for a long period of time, due to the
expensiveness of their analysis [Conte et al., 2004].

1.1.1 Graph Models in Applications

Given the abundance of methods for feature vectors in data mining and the high computa-
tional cost of graph-based techniques, the natural question to ask is: Why is it necessary to
employ graph models at all? Are graph models merely of academic interest? In fact, graph
models are necessary and of general interest, as efficient feature vector representations
cannot preserve the rich topological information represented by a graph.

Despite all computational difficulties, two factors have turned the tide in favor of graph-
based data mining over recent years: First, new generations of computers are increasingly
able to deal with large graph problems. Second, over the last decade, graph-structured data
has increasingly started to emerge in various application areas, ranging from bioinformatics
to social network analysis, and fostered by the generation of data in biology, and the
enormous growth of the Internet. In these different domains, graphs are the natural data
structure to model networks, which represent systems and structures. We will provide a
short summary of these fields of application for graphs in the following.

Chemoinformatics Traditionally, graphs have been used to model molecular compounds
in chemistry [Gasteiger and Engel, 2003]. Chemoinformatics aims at predicting character-
istics of molecules from their graph structures, e.g. toxicity, or effectiveness as a drug.
Most traditional benchmark datasets for graph mining algorithms originate from this do-
main, including MUTAG [Debnath et al., 1991] and PTC [Toivonen et al., 2003]. We will
describe these datasets in more detail in Section 2.1.4.

Bioinformatics A major reason for the growing interest in graph-structured data is
the advent of large volumes of structured data in molecular biology. This structured
data comprises graph models of molecular structures, from RNA to proteins [Berman
et al., 2000], and of networks, which include protein-protein interaction networks [Xenarios
et al., 2002], metabolic networks [Kanehisa et al., 2004], regulatory networks [Davidson
et al., 2002], and phylogenetic networks [Huson and Bryant, 2006]. Bioinformatics seeks
to establish the functions of these networks and structures.

Currently, the most successful approach towards function prediction of structures is
based on similarity search among structures with known function. For instance, if we want

1.1 Motivation 11

to predict the function of a new protein structure, we compare its structure to a database
of functionally annotated protein structures. The protein is then predicted to exert the
function of the (group of) protein(s) which it is most similar to. This concept is supported
by models of evolution: Proteins that have similar topological structures are more likely
to share a common ancestor, and are hence more likely to carry out the same biochemical
function [Whisstock and Lesk, 2003].

Social Network Analysis Another important source of graph structured data is social
network analysis [Wasserman and Faust, 1995]. In social networks, nodes represent individ-
uals and edges represent interaction between them. The analysis of these networks is both
of scientific and commercial interest. On the one hand, psychologists want to study the
complex social dynamics between humans, and biologists want to uncover the social rules
in a group of animals. On the other hand, industries want to analyze these networks for
marketing purposes. Detecting influential individuals in a group of people, often referred
to as ’key-players’ or ’trend-setters’, is relevant for marketing, as companies could then
focus their advertising efforts on persons known to influence the behavior of a larger group
of people. In addition, telecommunication and Internet surfing logs provide a vast source
of social networks, which can be used for mining tasks ranging from telecommunication
network optimization to automated recommender systems.

Internet, HTML, XML A fourth application area for graph models is the Internet
which is a network and hence a graph itself. HTML documents are nodes in this net-
work, and hyperlinks connect these nodes. In fact, Google exploits this link structure of
the Internet in its famous PageRank algorithm [Page et al., 1998] for ranking websites.
Furthermore, semi-structured data in form of XML documents is becoming very popu-
lar in the database community and in industry. The natural mathematical structure to
describe semi-structured data is a graph. As the W3 Consortium puts it: ”The main
structure of an XML document is tree-like, and most of the lexical structure is devoted to
defining that tree, but there is also a way to make connections between arbitrary nodes
in a tree” [World Wide Web Consortium (W3C), 2005]. Consequently, XML documents
should be regarded as graphs. Various tasks of data manipulation and data analysis can
be performed on this graph representation, ranging from basic operations such as query-
ing [Deutsch et al., 1999] to advanced problems such as duplicate detection [Weis and
Naumann, 2005].

Benefits of Using Graphs Why is it necessary to represent objects as graphs in these
domains? Because all these domains describe systems that consist of interacting substruc-
tures. For instance, a social network is a group of interacting individuals. A protein
interaction network is a group of interacting molecules. A molecular structure is a group
of interacting atoms. The Internet is a network of interlinked websites.

By choosing a graph model, we can store each substructure and its interactions with
other substructures. Why is it not possible to represent the same information in a feature
vector model? One could think of two ways to do so: First, one could represent each node
in a graph as a feature vector that contains a list of its neighbors in the graph. What

12 1. Introduction: Why Graph Kernels?

Figure 1.1: Directed, undirected and labeled graphs. Left: Undirected graph. Center: Directed
graph. Right: Labeled (undirected) graph.

we would end up with is an adjacency list - which is one way of storing a graph. Second,
we could represent each node by a feature vector whose i-th component is 1 if the node is
connected to the i-th node in the graph, 0 otherwise. The set of these vectors would be
merely the set of columns of the adjacency matrix of a graph - which is another way of
storing a graph. As we can see from these two examples, representing a graph by feature
vectors that require less memory, but preserve the same topological information seems to
be a difficult task. In fact, this has been a central challenge in chemoinformatics over past
decades, and a general solution has not been achieved. This is reflected in the fact that the
handbook of molecular descriptors [Todeschini and Consonni, 2000] lists several hundreds
of feature vector descriptions of graphs.

1.1.2 Bridging Statistical and Structural Pattern Recognition

On a more abstract level, this feature vector representation problem from chemoinformatics
is also a major challenge for the field of pattern recognition, data mining and machine
learning. The question boils down to: How can we extend the arsenal of efficient mining
algorithms on feature vectors to graphs? How can we bridge the gap between statistical
pattern recognition on vectors and structural pattern recognition on graphs?

In this thesis, we will elucidate how graph kernels can help to solve this problem.

1.2 Primer on Graph Theory

1.2.1 Directed, Undirected and Labeled Graphs

To understand why graph kernels are important, and in which aspects they can be im-
proved, we will need a primer on graph theory. The purpose of this section is to define
terminology and notation for the remainder of this thesis, and to provide the definitions
from graph theory that are necessary to follow our line of reasoning [Diestel, 2006].

In its most general form, a graph is a set of nodes connected by edges.

Definition 1 (Graph) A graph is a pair G = (V,E) of sets of nodes (or vertices) V and
edges E, where each edge connects a pair of nodes, i.e., E ⊆ V × V . In general, V (G)
refers to the set of nodes of graph G, and E(G) refers to the edges of graph G.

If we assign labels to nodes and edges in a graph, we obtain a labeled graph.

1.2 Primer on Graph Theory 13

Definition 2 (Labeled Graph) A labeled graph is a triple G(V,E,L) where (V,E) is a
graph, and L : V ∪E → Z is a mapping from the set of nodes V and edges E to the set of
node and edge labels Z.

A graph with labels on its nodes is called node-labeled, a graph with labels on edges
is called edge-labeled. Sometimes attributes and attributed graph are used as synonyms
for labels and labeled graph, respectively. An example of a labeled graph is depicted in
Figure 1.1 (right).

Depending on whether we assign directions to edges, the resulting graph is directed or
undirected.

Definition 3 (Directed and Undirected Graph) Given a graph G = (V,E). If we
assign directions to edges such that edge (vi, vj) 6= edge (vj, vi) for vi, vj ∈ V , then G is
called a directed graph. G is an undirected graph if

∀vi, vj ∈ V : (vi, vj) ∈ E ⇔ (vj, vi) ∈ E (1.1)

Figure 1.1 (left) gives an example of an undirected graph, Figure 1.1 (Center) an exam-
ple of a directed graph. Throughout this thesis, we will assume that we are dealing with
undirected graphs. Our results can be directly extended to directed graphs though.

The number of nodes of a graph G = (V,E) is the graph size, written |V | or |V (G)|.
We will denote the graph size as n in this thesis. G is finite if its number of nodes is finite;
otherwise, it is infinite. Graphs considered in this thesis are finite. We call G′ smaller than
G if |V (G′)| < |V (G)|, and G′ larger than G if |V (G′)| > |V (G)|. The number of edges of
G is denoted by |E| or |E(G)|.
1.2.2 Neighborship in a Graph

Two nodes vi and vj in a graph G are adjacent, or neighbors, if (vi, vj) is an edge of G.
Two edges ei 6= ej are adjacent if they have a node in common. If all the nodes of G are
pairwise adjacent, then G is complete. This neighborship information on all pairs of nodes
in a graph is commonly represented by an adjacency matrix.

Definition 4 (Adjacency Matrix) The adjacency matrix A = (Aij)n×n of graph G =
(V,E) is defined by

Aij :=

{
1 if (vi, vj) ∈ E,
0 otherwise

(1.2)

where vi and vj are nodes from G.

The number of neighbors of a node is closely connected to its degree.

Definition 5 (Degree of a Node) The degree dG(vi) of a node vi in G = (V,E) is the
number of edges at vi:

dG(vi) := |{vj|(vi, vj) ∈ E}|

14 1. Introduction: Why Graph Kernels?

Figure 1.2: Self-loops and multiple edges. Left: Graph with multiple edges. Right: Graph with
self-loop.

In an undirected graph, this is equal to the number of neighbors of vi, where δ(vi) :=
{vj|(vi, vj) ∈ E} is the set of neighbors of node vi. A node without neighbors is isolated.
The number ∆min(G) := min{dG(v)|v ∈ V } is the minimum degree of G, the number
∆max(G) := max{dG(v)|v ∈ V } its maximum degree. If all the nodes of G have the same
degree k, then G is k-regular, or simply regular. The number

dG(G) :=
1

|V |
∑
v∈V

dG(v) (1.3)

is the average degree of G.
Pairwise non-adjacent pairs of nodes or edges are called independent. More formally,

a set of nodes or edges is independent if none of its elements are adjacent. A self-loop is
an edge (v, v) with two identical ends. A graph contains multiple edges if there may be
more than one edge between two nodes vi and vj. In Figure 1.2 (left), there are multiple
edges between nodes ”A” and ”B”. In Figure 1.2 (right), there is a self-loop at ”B”. In this
thesis, we are considering graphs without self-loops and multiple edges.

Definition 6 (Walk, Path, Cycle) A walk w (of length ` − 1) in a graph G is a non-
empty alternating sequence (v1, e1, v2, e2, . . . , e`−1, v`) of nodes and edges in G such that
ei = {vi, vi+1} for all 1 ≤ i ≤ `− 1. If v1 = v`, the walk is closed. If the nodes in w are all
distinct, it defines a path p in G, denoted (v1, v2, . . . , v`). If v1 = v`, then p is a cycle.

Note that in the literature, paths are sometimes referred to as simple or unique paths,
and walks are then called paths. A Hamilton path is a path that visits every node in a
graph exactly once. An Euler path is a path that visits every edge in a graph exactly once.
A graph G is called connected if any two of its nodes are linked by a path in G; otherwise
G is referred to as ’not connected’ or ’disconnected’.

1.2.3 Graph Isomorphism and Subgraph Isomorphism

To check if two graphs are identical, we cannot simply compare their adjacency matrices,
as the adjacency matrix changes when we reorder the nodes. Hence a concept of its own,
namely isomorphism, is required to define identity among graphs.

1.2 Primer on Graph Theory 15

Definition 7 (Isomorphism) Let G = (V,E) and G′ = (V ′, E ′) be two graphs. We call
G and G′ isomorphic, and write G ' G′, if there exists a bijection f : V → V ′ with
(v, v′) ∈ E ⇔ (f(v), f(v′)) ∈ E ′ for all v, v′ ∈ V . Such a map f is called an isomorphism.

The graph isomorphism problem is the problem of deciding whether two graphs are
isomorphic. An isomorphism of a graph with itself is called an automorphism.

In terms of set operations, isomorphism of graphs corresponds to equality of sets. To
define a concept analogous to the subset relation, we have to define the concept of a
subgraph first.

Definition 8 (Subgraph, Induced Subgraph, Clique) Graph G′ = (V ′, E ′) is a sub-
graph of graph G = (V,E) if V ′ ⊆ V and E ′ ⊆ ((V ′ × V ′) ∩ E), denoted by G′ v G. G
is then a supergraph of G′. If |V (G′)| < |V (G)| or |E(G′)| < |E(G)|, then G′ is a strict
subgraph of G, denoted G′ < G. If additionally E ′ = ((V ′ × V ′) ∩ E), then G′ is called an
induced subgraph of G. A complete subgraph is referred to as a clique.

Deciding whether a graph is isomorphic to a subgraph of another graph is the subgraph
isomorphism problem. To tackle such isomorphism problems, graphs are often transfered
into vectorial representations, called graph invariants.

Definition 9 (Graph Invariant) Let σ : G → Rd with d ≥ 1 be a mapping from the
space of graphs G to Rd. If G ' G′ ⇒ σ(G) = σ(G′), then σ is called a graph invariant.

For instance, graph size is a graph invariant. In this context, we are often interested in
subgraphs that are maximal or maximum with respect to such a graph invariant.

Definition 10 (Maximal and Maximum Subgraph) A subgraph G′ of G is maximal
with respect to a graph invariant ξ(G′) if there is no supergraph G′′ of G′ in G with ξ(G′′) >
ξ(G′) :

¬∃G′′ v G : (ξ(G′) < ξ(G′′) ∧G′ < G′′) (1.4)

A subgraph G′ of G is maximum with respect to a graph invariant ξ(G′) if there is no
subgraph G′′ of G with ξ(G′′) > ξ(G′) :

¬∃G′′ v G : ξ(G′) < ξ(G′′) (1.5)

We use this notation and terminology from graph theory throughout the remainder of
this thesis, unless explicitly stated otherwise.

Besides concepts from graph theory, we will use concepts from linear algebra, functional
analysis, probability theory and statistics in this thesis. We assume that the reader is
familiar with basic definitions from these domains. For readers who feel not familiar with
these domains, we have added primers on functional analysis, and probability theory and
statistics in Appendix A.1 and Appendix A.2.

16 1. Introduction: Why Graph Kernels?

1.3 Review on Alternative Approaches to Graph Comparison

The central problem we tackle in this thesis is to measure similarity between graphs. We
will refer to this problem as the graph comparison problem.

Definition 11 (Graph Comparison Problem) Given two graphs G and G′ from the
space of graphs G. The graph comparison problem is to find a function

s : G× G→ R (1.6)

such that s(G,G′) quantifies the similarity (or dissimilarity) of G and G′.

Note that in the literature, this problem is often referred to as graph matching. There is
a subtle difference though: While graph matching wants to identify corresponding regions in
two graphs, graph comparison aims at finding a score for the overall similarity of two graphs.
Graph matching algorithms often lend themselves easily towards defining an associated
similarity score, but graph comparison methods cannot necessarily be employed for graph
matching.

The problem of graph comparison has been the topic of numerous studies in computer
science [Bunke, 2000]. In this section, we will summarize and review the traditional algo-
rithmic approaches to graph comparison. This field of research can be divided into three
categories: similarity measures based on graph isomorphism, inexact matching algorithms,
and topological descriptors. We will review these three branches in the following, and focus
on their underlying theory. For an in-depth treatment of individual algorithms to graph
comparison, we refer the interested reader to [Conte et al., 2004].

1.3.1 Similarity Measures based on Graph Isomorphism

A large family of similarity measures on graphs have been defined based upon the concept
of graph isomorphism or variants thereof, which we will describe in the following.

Graph Isomorphism

An intuitive similarity measure on graphs is to check them for topological identity, i.e., for
isomorphism. This would give us a basic similarity measure, which is 1 for isomorphic, and
0 for non-isomorphic graphs. Unfortunately, no polynomial runtime algorithm is known
for this problem of graph isomorphism [Garey and Johnson, 1979]. Note as a side remark,
that graph isomorphism is obviously in NP, but has not yet been proved to either belong
to P or to be NP-complete. Intuitively, it is easy to see that when checking two graphs G
and G′ for isomorphism, one has to consider all permutations of nodes from G′ and check
if any of the permutations is identical to G.

All graph invariants of two graphs have to be identical in order for the two graphs to
be isomorphic. Therefore in practice, simple tests often suffice to establish that two graphs
are not isomorphic. For instance, if two graphs have different numbers of nodes or edges,
they cannot be isomorphic. But, if two graphs are of identical size, one has to resort to
graph invariants that are more expensive to compute, such as shortest path lengths which
requires runtime cubic in the number of nodes. In fact, the most efficient way to find

1.3 Review on Alternative Approaches to Graph Comparison 17

out quickly if two graphs are not isomorphic seems to be to compute a whole series of
graph invariants of increasing computational complexity: if the graphs differ in even one
invariant, they cannot be isomorphic any more. nauty [McKay, 1984], the world’s fastest
isomorphism testing program, is based on this approach. The problem remains, however,
that it is still very hard to decide isomorphism for two graphs that are very similar. On
these, the isomorphism problem can only be decided by invariants that are exponentially
expensive to compute.

Subgraph Isomorphism

If two graphs are of different sizes, they are obviously not isomorphic. But the smaller graph
G′ might still be similar to G if G′ is a subgraph of G. To uncover this relationship, we
have to solve the subgraph isomorphism problem. Unfortunately, this problem is known to
be NP-complete [Garey and Johnson, 1979], and is not practically feasible on large graphs.

Why is this problem harder than graph isomorphism? Because we not only have to
check which permutation of G′ is identical to G as before, but we have to find out if any
permutation of G′ is identical to any of the subgraphs of G. In short, for isomorphism
checking, we have to consider all permutations of G′, while for subgraph isomorphism
checking, we have to check all permutations of G′ and all subsets of G (of the size of G′).
Note that the isomorphism problem is one instance of the subgraph isomorphism problem,
where |V (G)| = |V (G′)| and |E(G)| = |E(G′)|.

A setback of both graph and subgraph isomorphism is that they do not care about
partial similarities of two graphs. Graphs must be topologically equivalent, or contained
in each other, to be deemed similar. This is a serious limitation of isomorphism-based
similarity measures of graphs.

Maximum Common Subgraph

A related measure of similarity deems two graphs similar if they share a large common
subgraph. This leads to the concept of a maximum common subgraph [Neuhaus, 2006]:

Definition 12 (Maximum Common Subgraph, mcs) Let G and G′ be graphs. A
graph Gsub is called a common subgraph of G and G′ if Gsub is a subgraph of G and of
G′. Gsub is a maximum common subgraph (mcs) if there exists no other common subgraph
of G and G′ with more nodes.

In general, the maximum common subgraph needs not be unique, i.e., there may be more
than one maximum common subgraphs of identical size.

Turning the idea of using the maximum common subgraph upside-down, one might also
think of the following measure of graph similarity: G and G′ are similar if they are both
subgraphs of a ”small” supergraph Gsuper. The smaller the size of Gsuper, the more similar
G and G′ are. This leads to the concept of a minimum common supergraph.

Definition 13 (Minimum Common Supergraph, MCS) Let G and G′ be graphs. A
graph Gsuper is called common supergraph of G and G′ if there exist subgraph isomorphisms
from G to Gsuper and from G′ to Gsuper. A common supergraph of G and G′ is called

18 1. Introduction: Why Graph Kernels?

minimum common supergraph (MCS) if there exists no other common supergraph of G and
G′ with fewer nodes than Gsuper.

The computation of the minimum common supergraph can be reduced to computing a
maximum common subgraph [Bunke et al., 2000]. While the size of the maximum common
subgraph and the minimum common supergraph represent a measure of similarity, they can
also be applied to define distances on graphs. For instance, Bunke and Shearer [Bunke and
Shearer, 1998] define a distance that is proportional to the size of the maximum common
subgraph compared to that of the larger of the two graphs:

d1(G,G
′) = 1− |mcs(G,G

′)|
max(|G|, |G′|)

(1.7)

In another approach, the difference of the sizes of the minimum common supergraph
and the maximum common subgraph is evaluated, resulting in a distance metric defined
as [Fernández and Valiente, 2001]:

d2(G,G
′) = |MCS(G,G′)| − |mcs(G,G′)| (1.8)

Maximal Common Subgraphs in Two Graphs

Even the maximum common subgraph is not necessarily a good measure of similarity.
There may be graphs that share many subgraphs that are rather small, but which do not
include even one large common subgraph. Such graphs would be deemed dissimilar by a
similarity measure based on the maximum common subgraph.

An approach that would account for such frequent local similarities is counting max-
imal common subgraphs. Obviously, this procedure is NP-hard, as it requires repeated
subgraph isomorphism checking. But, rather efficient algorithms have been proposed for
this task, which transform the problem of finding maximum common subgraphs into find-
ing all cliques in a product graph [Koch, 2001]. The classic branch-and-bound algorithm
by Bron and Kerbosch [Bron and Kerbosch, 1973] is then applied to enumerate all cliques
in this product graph.

While this is a widely used technique for graph comparison in bioinformatics [Liang
et al., 2006], it faces enormous runtime problems when the size of the product graph exceeds
more than several hundreds of nodes. For instance, suppose we want to compare two graphs
of size 24. This results in a product graph of roughly 600 nodes. Ina Koch [Koch, 2001]
reports that Bron-Kerbosch on a product graph of this size requires more than 3 hours.

Discussion

Graph isomorphism is rarely used in practice, because few graphs completely match in
real-world applications [Conte et al., 2004]. A major reason for this is experimental noise,
which in the case of graphs, may lead to extra or missing edges and nodes. In contrast,
subgraph isomorphism methods have been applied successfully in many contexts, despite
the fact that they are computationally more expensive than graph isomorphism. Maximum
common subgraph methods seem intuitively attractive and have received attention recently,
but are so far only applicable on graphs with very few nodes.

1.3 Review on Alternative Approaches to Graph Comparison 19

To summarize, the class of similarity measures based on graph isomorphism, subgraph
isomorphism and common subgraphs are the methods of choice when dealing with small
graphs with few nodes. As network size increases, the underlying exponential size of the
subgraph isomorphism problem renders the computation impractical.

1.3.2 Inexact Matching Algorithms

The second major family of graph similarity measures does not enforce strict matching of
graphs and their subgraphs. These inexact matching algorithms measure the discrepancy
of two graphs in terms of a cost function or edit distance to transform one graph into the
other.

From an application point of view, these error-tolerant matching algorithms seem at-
tractive, because real-world objects are often corrupted by noise. Therefore it is necessary
to integrate some degree of error tolerance into the graph matching process.

The most powerful concept within the category of error-tolerant graph matching is
graph edit distance [Bunke and Allermann, 1983, Bunke, 2003]. In its most general form,
a graph edit operation is either a deletion, insertion, or substitution (i.e., label change).
Edit operations can be applied to nodes as well as to edges. By means of edit operations
differences between two graphs are modeled. In order to enhance the modeling capabilities,
often a cost is assigned to each edit operation. The costs are real nonnegative numbers.
They have to be chosen based on domain knowledge. Typically, the more likely a certain
distortion is to occur the lower is its cost. The edit distance, d(G,G′), of two graphs is
defined to be the minimum cost c incurred over all sequences S of edit operations that
transform graph G into G′. Formally,

d(G,G′) = minS{c(S)|S is a sequence of edit operations that transform G into G′}
(1.9)

Obviously, if G = G′, then d(G,G′) = 0, and the more G and G′ differ, the larger is
d(G,G′).

Discussion Inexact matching algorithms in general, and edit distances in particular, are
very expressive measures of graph similarity. Differences between graphs can be penalized
on different levels (nodes, edges, labels) and with different weights. This leads to a powerful
measure of similarity that can be tailored to the needs of a specific application domain.

However, graph edit distances are plagued by a few problems. It is often difficult to
find the appropriate penalty costs for individual edit operations. In other words, graph
edit distances are hard to parameterize. Furthermore, finding the minimal edit distance is
NP-hard, as subgraph isomorphism and maximum common subgraph can be shown to be
instances of the edit distance problem [Bunke, 1999]. In short, while a powerful measure
of similarity, edit distances pose a major computational challenge. Ongoing research is
exploring various ways of making both parameterization and computation of edit distances
more efficient [Neuhaus, 2006, Riesen et al., 2006, Justice and Hero, 2006].

20 1. Introduction: Why Graph Kernels?

1.3.3 Similarity Measures based on Topological Descriptors

A major reason why graph comparison, learning on graphs, and graph mining are so
difficult and expensive is the complex structure of graphs which does not lend itself to a
simple feature vector representation. The third family of similarity measures for graph
comparison aims at finding feature vector representations of graphs that summarize graph
topology efficiently. These feature vector descriptions of graph topology are often referred
to as topological descriptors. The goal is to find vector-representations of graphs such that
comparing these vectors gives a good indication of graph similarity. One popular category
of these vector representations is based on spectral graph theory [Chung-Graham, 1997].

The roots of encoding graphs as scalars lie in the field of chemoinformatics. A long-
standing challenge in this area is to answer queries on large databases of molecular graphs.
For this purpose, hundreds and thousands of different molecular (topological) descriptors
were invented, as reflected by extensive handbooks on this topic [Todeschini and Consonni,
2000]. A prominent example is the Wiener Index [Wiener, 1947], defined as the sum over
all shortest paths in a graph.

Definition 14 (Wiener Index) Let G = (V,E) be a graph. Then the Wiener Index
W (G) of G is defined as

W (G) =
∑
vi∈G

∑
vj∈G

d(vi, vj), (1.10)

where d(vi, vj) is defined as the length of the shortest path between nodes vi and vj from G.

Clearly, this index is identical for isomorphic graphs. Hence the Wiener Index, and all
topological descriptors (that do not include node labels) represent graph invariants (see
Definition 9). The problem is that the reverse, identical topological descriptors imply
isomorphism, does not hold in general. If this is the case, then we call this topological
descriptor a complete graph invariant [Koebler and Verbitsky, 2006]. All known complete
graph invariants require exponential runtime though, as their computation is equivalent to
solving the graph isomorphism problem.

Discussion Topological descriptors do not remove the burden of runtime complexity
from graph comparison. While it seems easy and attractive to compare scalars to get a
measure of graph similarity, one should not forget that the computation of many of these
topological indices may require exponential runtime. Furthermore, the vast number of
topological descriptors that have been defined reflect both an advantage and a disadvantage
of this concept: On the one hand, this huge number of variants clearly indicates that
topological descriptors provide a good approximate measure of graph similarity. On the
other hand, this multitude of variations on the same topic also points at a major weakness
of topological descriptors. None of them is general enough to work well across all different
application tasks. It seems that every application requires its own topological descriptor to
achieve good results. Choosing the right one for the particular application at hand is the
major challenge in practice, and is similar to the problem of picking the right cost function
for edit distances, as outlined in Section 1.3.2.

1.4 Review on Graph Kernels 21

1.3.4 Recent Trends in Graph Comparison

Due to the inherent problems in traditional approaches to graph comparison, machine
learning, pattern recognition and data mining have started to take new roads towards this
problem in the recent past. As we have mentioned in Section 1.3.2, one current focus in
pattern recognition is the automatic learning of edit distance parameters [Neuhaus and
Bunke, 2005, Neuhaus and Bunke, 2007]. Machine learning has begun to explore the
usage of graphical models for graph matching [Caelli and Caetano, 2005]. An alternative
strategy has been adopted in data mining: Efficient branch and bound algorithms have
been developed to enumerate frequent subgraphs in a set of graphs, and two graphs are
then deemed the more similar, the more of these frequent subgraphs they share [Kramer
et al., 2001, Deshpande et al., 2005, Cheng et al., 2007] (see Section 4.2).

While these new approaches show promising results in applications, none of these meth-
ods can avoid the same problems encountered in the classic approaches: either the runtime
degenerates for large graphs, or one has to resort to simplified representations of graphs
that ignore part of their topological information.

Graph kernels are one of the most recent approaches to graph comparison. Interestingly,
graph kernels employ concepts from all three traditional branches of graph comparison:
they measure similarity in terms of isomorphic substructures of graphs, they allow for
inexact matching of nodes, edges, and labels, and they treat graphs as vectors in a Hilbert
space of graph features. Graph kernels are the topic of this thesis, and we will review them
in detail in the following section.

1.4 Review on Graph Kernels

All major techniques for comparing graphs described in Section 1.3 suffer from exponen-
tial runtime in the worst case. The open question is whether there are fast polynomial
alternatives that still provide an expressive measure of similarity on graphs: We will show
next that graph kernels are an answer to this problem.

To understand the contribution of graph kernels to the field of graph comparison, we
first have to define what a kernel is. Afterwards, we will show how kernels can be defined
on structured data in general, and on graphs in particular.

1.4.1 Primer on Kernels

As a start, we will describe the historical development of kernels from ingredients of the
Support Vector Machine to the underlying principle of a large family of learning algorithms.
For a more extensive treatment we refer the reader to [Schölkopf and Smola, 2002], and
the references therein.

Kernels in Support Vector Machines

Traditionally, Support Vector Machines (SVMs) deal with the following binary classifica-
tion problem (although Multiclass-SVMs have been developed over recent years [Tsochan-
taridis et al., 2005]): Given a set of training objects associated with class labels {xi, yi}mi=1,
xi ∈ X = Rd with d ∈ N, yi ∈ Y = {±1}, the task is to learn a classifier f : X → Y that
predicts the labels of unclassified data objects.

22 1. Introduction: Why Graph Kernels?

Figure 1.3: Toy example: Binary classification problem with maximum margin hyperplane. Hy-
perplane (straight line) separating two classes of input data (dots and squares). Data points
located on the margin (dashed line) are support vectors.

Step 1: Maximizing the Margin

Large margin methods try to solve this question by introducing a hyperplane between class
y = 1 and class y = −1. Depending on the location of xi with respect to the hyperplane,
yi is predicted to be 1 or −1, respectively.

Let us first assume that such a hyperplane exists that correctly separates both classes.
Then infinitely many of these hyperplanes exist, parameterized by (w, b) with w ∈ Rd

and b ∈ R which can be written as 〈w,x〉 + b = 0, where 〈w,x〉 denotes the dot product
between vectors w and x. These hyperplanes satisfy

yi(〈w,xi〉+ b) > 0, ∀i ∈ {1, 2, . . . ,m}, (1.11)

and these hyperplanes correspond to decision functions

f(x) = sgn(〈w,x〉+ b), (1.12)

where f(x) is the (predicted) class label of data point x. Among these hyperplanes a
unique optimal hyperplane can be chosen which maximizes the margin (see Figure 1.3),
i.e., the minimum distance between the hyperplane and the nearest data points from both
classes [Vapnik and Lerner, 1963].

1.4 Review on Graph Kernels 23

Linear Hard-Margin Formulation An equivalent formulation of this optimization
problem is

minimize
w,b

1

2
‖w ‖2

subject to yi (〈w,xi〉+ b) ≥ 1 for all i ∈ {1, 2, . . . ,m}.
(1.13)

where 1
2
‖w ‖2 is referred to as the objective function.

The standard optimization technique for such problems is to formulate the Lagrangian
and to solve the resulting dual problem:

maximize
α

−1

2
α>Hα+

m∑
i=1

αi

subject to
m∑
i=1

αiyi = 0 and αi ≥ 0 for all i ∈ {1, 2, . . . ,m},
(1.14)

where H ∈ Rm×m with Hij := yiyj〈xi,xj〉, and

w =
m∑
i=1

αiyi xi (1.15)

Interestingly, the solution vector has an expansion in terms of the training examples.

Two observations in these equations are fundamental for Support Vector Machine clas-
sification. First, the dual problem involves the input data points purely in form of dot
products 〈xi,xj〉. Second, αi’s are non-zero exclusively for those data points xi that sat-
isfy the primal constraints yi(〈w,xi〉 + b) ≥ 1 with equality. These xi are the points on
the margin. The hyperplane is defined by these points, as their corresponding αi’s are
non-zero, i.e., only these xi’s are supporting the hyperplane; they are the support vectors,
from which the algorithm inherits its name.

Step 2: Allowing for Margin Errors

Soft Hard-Margin Formulation In most cases it is illusory to assume that there exists
a hyperplane in input space that correctly separates two classes. In fact, usually it is impos-
sible to find such a hyperplane because of noise that tends to occur close to the boundary
[Duda et al., 2001]. For this reason, soft-margin SVMs have been developed as an alterna-
tive to hard-margin SVMs. While hard-margin SVMs force the condition yi(〈w,xi〉+b) ≥ 1
to hold, the soft-margin SVMs allow for some misclassified training points. The goal is to
improve the generalization performance of the SVM, i.e., its performance on test samples
different from the training set.

C-Support Vector Machines The earliest version of soft-margin SVMs that allow
for some training errors are C-Support Vector Machines (C-SVM). They introduce non-
negative slack variables ξ [Bennett and Mangasarian, 1993, Cortes and Vapnik, 1995] and
a penalty factor C into the primal optimization problem (1.13).

24 1. Introduction: Why Graph Kernels?

The primal problem changes into

minimize
w,b,ξ

1

2
‖w ‖2 + C

m∑
i=1

ξi

subject to yi (〈w,xi〉+ b) ≥ 1− ξi for all i ∈ {1, 2, . . . ,m},
(1.16)

The slack variable ξi relaxes the condition yi(〈w,xi〉 + b) ≥ 1 at penalty C ∗ ξi. The
C-SVM hence allows for margin errors, penalizing them proportional to their violation of
the condition yi(〈w,xi〉+ b) ≥ 1. Margin errors are those training data points xi for which
yi(〈w,xi〉+ b) < 1, i.e., they are lying within the margin or are misclassified.

The dual to (1.16) is

maximize
α

−1

2
α>Hα+

m∑
i=1

αi

subject to
m∑
i=1

αiyi = 0 and C ≥ αi ≥ 0 for all i ∈ {1, 2, . . . ,m}.
(1.17)

Thus C determines the tradeoff between two competing goals: maximizing the margin
and minimizing the training error. While contributing to a better generalization perfor-
mance, the C-SVM have one practical disadvantage: C is a rather unintuitive parameter
and there is no a priori way to select it. For this reason, an alternative soft-margin SVM,
the so-called ν-SVM was proposed to overcome this problem [Schölkopf et al., 2000].

ν-Support Vector Machine Introducing the parameter ν, the soft margin optimization
problem is rewritten as:

minimize
w,b,ξ,ρ

1

2
‖w ‖2 − νρ+

1

m

m∑
i=1

ξi

subject to yi (〈w,xi〉+ b) ≥ ρ− ξi for all i ∈ {1, 2, . . . ,m}
and ξi ≥ 0, ρ ≥ 0.

(1.18)

This can be transfered into the corresponding dual:

maximize
α

−1

2
α>Hα

subject to
m∑
i=1

αiyi = 0

0 ≤ αi ≤
1

m
m∑
i=1

αi ≥ ν.

ν has a much more concrete interpretation than C, as can be seen from the following
lemma [Schölkopf et al., 2000].

1.4 Review on Graph Kernels 25

Theorem 15 Suppose we run ν-SVM on some data with the result that ρ > 0, then

• ν is an upper bound on the fraction of margin errors,

• ν is a lower bound on the fraction of support vectors.

Step 3: Moving the Problem to Feature Space

Kernel Trick Still, even soft-margin classifiers cannot solve every classification problem.
Just imagine the following 2-d example: All positive data points lie within a circle, all
negative data points outside (see Figure 1.4). How to introduce a hyperplane that shows
good generalization performance in this case?

Figure 1.4: Toy example illustrating kernel trick: Mapping a circle into feature space: data point
distribution in input space (Left) and feature space (Right). By transformation from input
space to feature space, dots and squares become linearly separable. In addition, all operations
in feature space can be performed by evaluating a kernel function on the data objects in input
space.

The trick to overcome these sorts of problems is to map the input points into a (usually
higher-dimensional) feature space H. The idea is to find a non-linear mapping φ : Rd → H,
such that in H, we can still use our previous SVM formulation, simply by replacing 〈xi,xj〉
with 〈φ(xi), φ(xj)〉. Recall what we said earlier: Data points in the dual hyperplane
optimization problems occur only within dot products; if we map xi and xj to φ(xi) and
φ(xj), respectively, then we just have to deal with 〈φ(xi), φ(xj)〉 instead. If we define a
kernel function k with the following property

k(x,x′) = 〈φ(x), φ(x′)〉, (1.19)

we obtain decision functions of the form

f(x) = sgn

(
m∑
i=1

yiαi〈φ(x), φ(xi)〉+ b

)
= sgn

(
m∑
i=1

yiαik(x,xi) + b

)
, (1.20)

26 1. Introduction: Why Graph Kernels?

and the following quadratic problem (for the hard-margin case):

maximize
α∈Rm

W (α) =
m∑
i=1

αi −
1

2

m∑
i,j=1

αiαjyiyjk(xi,xj)

subject to αi ≥ 0 for all i = 1, . . . ,m, and
m∑
i=1

αiyi = 0.

This means nothing less than that we move our classification problem into a higher-
dimensional space H and solve it even without explicitly computing the mapping φ to
H. This is commonly known as the famous kernel trick.

Kernel Functions

Positive Definiteness Which class of functions are eligible as kernel functions? To
answer this question in short, we have to clarify three definitions first [Schölkopf and
Smola, 2002]:

Definition 16 (Gram Matrix) Given a function k : X2 → K (where K = C or K = R)
and patterns x1, . . . ,xm ∈ X, the m×m matrix K with elements

Kij := k(xi,xj) (1.21)

is called the Gram matrix (or kernel matrix) of k with respect to x1, . . . ,xm.

Later on, we will refer to Gram matrices as kernel matrices.

Definition 17 (Positive Definite Matrix) A complex m×m matrix K satisfying

m∑
i,j=1

cic̄jKij ≥ 0 (1.22)

for all ci ∈ C is called positive definite1.
Similarly, a real symmetric m×m matrix K satisfying condition 1.22 for all ci ∈ R is

called positive definite.

Note that a symmetric matrix is positive definite if and only if all its eigenvalues are
nonnegative.

Definition 18 (Positive Definite Kernel) Let X be a nonempty set. A function k on
X × X which for all m ∈ N and all x1 . . . ,xm ∈ X gives rise to a positive definite Gram
matrix is called a positive definite kernel, or short kernel.

1In mathematics, this matrix is called a positive semidefinite matrix. In machine learning, the ”semi”
is usually omitted for brevity. In this thesis, we kept to this machine learning notation.

1.4 Review on Graph Kernels 27

Given these definitions, we can state the following about the choice of k: if k is a
positive definite kernel function, then we can construct a feature space in which k is the
dot product. More precisely, we can construct a Hilbert space H with

k(x,x′) = 〈φ(x), φ(x′)〉. (1.23)

A Hilbert space is a dot product space, which is also complete with respect to the corre-
sponding norm; that is, any Cauchy sequence of points converges to a point in the space
[Burges, 1998]. The Hilbert space associated with a kernel is referred to as a Reproducing
Kernel Hilbert Space (RKHS). It can be shown by means of functional analysis that every
kernel function is associated with a RKHS and that every RKHS is associated with a kernel
function.

Kernel Design The class of positive definite kernel functions has attractive closure
properties that ease the design of new kernel functions by combining known ones. Two
of the most prominent of these properties are that linear combinations and point-wise
products of kernels are themselves positive definite kernels:

• If k1 and k2 are kernels, and α1, α2 ≥ 0, then α1k1 + α2k2 is a kernel.

• If k1 and k2 are kernels, then k1k2, defined by (k1k2)(x,x
′) := k1(x,x

′)k2(x,x
′), is a

kernel.

These rules can be used to combine known kernels in order to create new kernel func-
tions. Among the most famous kernel functions are the
delta kernel

k(x,x′) =

{
1 if x = x′,
0 otherwise

the polynomial kernel

k(x,x′) = (〈x,x′〉+ c)〉d,

the Gaussian radial basis function (RBF) kernel

k(x,x′) = exp

(
−‖x−x′ ‖2

2 σ2

)
,

and the Brownian bridge kernel

k(x,x′) = max(0, c− k|x−x′ |).

with d ∈ N and c, k, σ ∈ R and x,x′ ∈ X ⊂ RN . For d = 1 and c = 0, the polyno-
mial kernel is also referred to as the linear kernel. Starting from this set and exploiting
the characteristics of positive definite kernels, a whole battery of kernel functions can be
developed.

28 1. Introduction: Why Graph Kernels?

Kernels Methods

A further key advantage of kernel methods is that they can be applied to non-vectorial
data, as first realized by [Schölkopf, 1997]. In contrast to our initial assumption that
X = Rd, X can also represent any structured domain, such as the space of strings or
graphs. In this case, all kernel methods remain applicable, as long as we can find a
mapping φ : X → H, where H is a RKHS. A thrilling consequence of the kernel trick is
that we do not even have to determine this mapping φ explicitly. Finding a kernel function
k(x,x′) = 〈φ(x), φ(x′)〉 on pairs of objects from X is completely sufficient. As a result, we
can compare structured data via kernels without even explicitly constructing the feature
space H. This finding has had a huge scientific impact over recent years, and defining
kernel functions for structured data has become a hot topic in machine learning [Gärtner,
2003], and in bioinformatics [Schölkopf et al., 2004].

1.4.2 Primer on Graph Kernels

Kernels on structured data almost exclusively belong to one single class of kernels: R-
convolution kernels as defined in a seminal paper by Haussler [Haussler, 1999].

R-Convolution Kernels R-convolution kernels provide a generic way to construct ker-
nels for discrete compound objects. Let x ∈ X be such an object, and x := (x1, x2, . . . , xD)
denote a decomposition of x, with each xi ∈ Xi. We can define a boolean predicate

R : X×X→ {True,False}, (1.24)

where X := X1× . . .×XD and R(x, x) is True whenever x is a valid decomposition of x.
This allows us to consider the set of all valid decompositions of an object:

R−1(x) := {x|R(x, x) = True}. (1.25)

Like [Haussler, 1999] we assume that R−1(x) is countable. We define the R-convolution ?
of the kernels κ1, κ2, . . . , κD with κi : Xi × Xi → R to be

k(x, x′) = κ1 ? κ2 ? . . . ? κD(x, x′) :=

:=
∑

x∈R−1(x)

x′∈R−1(x′)

µ(x,x′)
D∏
i=1

κi(xi, x
′
i), (1.26)

where µ is a finite measure on X×X which ensures that the above sum converges.2 [Haus-
sler, 1999] showed that k(x, x′) is positive semi-definite and hence admissible as a kernel
[Schölkopf and Smola, 2002], provided that all the individual κi are. The deliberate vague-
ness of this setup regard to the nature of the underlying decomposition leads to a rich
framework: Many different kernels can be obtained by simply changing the decomposition.

2 [Haussler, 1999] implicitly assumed this sum to be well-defined, and hence did not use a measure µ
in his definition.

1.4 Review on Graph Kernels 29

In this thesis, we are interested in kernels between two graphs. We will refer to those
as graph kernels. Note that in the literature, the term graph kernel is sometimes used to
describe kernels between two nodes in one single graph. Although we are exploring the
connection between these two concepts in ongoing research [Vishwanathan et al., 2007b],
in this thesis, we exclusively use the term graph kernel for kernel functions comparing two
graphs to each other.

The natural and most general R-convolution on graphs would decompose two each
graphs G and G′ into all of their subgraphs and compare them pairwise. This all-subgraphs
kernel is defined as

Definition 19 (All-Subgraphs Kernel) Let G and G′ be two graphs. Then the all-
subgraphs kernel on G and G′ is defined as

ksubgraph(G,G
′) =

∑
SvG

∑
S′vG′

kisomorphism(S, S ′), (1.27)

where

kisomorphism(S, S ′) =

1 if S ' S ′,

0 otherwise.
(1.28)

In an early paper on graph kernels, [Gärtner et al., 2003] show that the problem of com-
puting this all-subgraphs kernel based on all subgraphs is NP-hard. Their proof is founded
in the fact that computing the all-subgraphs kernel is as hard as deciding subgraph iso-
morphism. This can be easily seen as follows. Given a subgraph S from G. If there is a
subgraph S ′ from G′ such that kisomorphism(S, S ′) = 1, then S is a subgraph of G′. Hence
we have to solve subgraph isomorphism problems when computing kisomorphism, which are
known to be NP-hard.

Random Walk Kernels As an alternative to the all-subgraphs kernel, two types of
graph kernels based on walks have been defined in the literature: the product graph kernels
of [Gärtner et al., 2003], and the marginalized kernels on graphs of [Kashima et al., 2003].
We will review the definitions of these random walk kernels in the following. For the sake
of clearer presentation, we assume without loss of generality that all graphs have identical
size n in the following. The results clearly hold even when this condition is not met.

Product Graph Kernel [Gärtner et al., 2003] propose the a random walk kernel count-
ing common walks in two graphs. For this purpose, they employ a type of graph product,
the direct product graph, also referred to as tensor or categorical product [Imrich and
Klavzar, 2000].

Definition 20 The direct product of two graphs G = (V,E,L) and G′ = (V ′, E ′,L′)
shall be denoted as G× = G × G′. The node and edge set of the direct product graph are

30 1. Introduction: Why Graph Kernels?

respectively defined as:

V× ={(vi, v′i′) : vi ∈ V ∧ v′i′ ∈ V ′ ∧ L(vi) = L′(vi′)}
E× ={((vi, v′i′), (vj, v′j′)) ∈ V× × V× : (1.29)

(vi, vj) ∈ E ∧ (v′i′ , v
′
j′) ∈ E ′ ∧ (L(vi, vj) = L′(v′i′ , v

′
j′))}

Using this product graph, they define the random walk kernel as follows.

Definition 21 Let G and G′ be two graphs, let A× denote the adjacency matrix of their
product graph G×, and let V× denote the node set of the product graph G×. With a sequence
of weights λ = λ0, λ1, . . . (λi ∈ R;λi ≥ 0 for all i ∈ N) the product graph kernel is defined
as

k×(G,G′) =

|V×|∑
i,j=1

[
∞∑
k=0

λkA
k
×]ij (1.30)

if the limit exists.

The limit of k(G,G′) can be computed rather efficiently for two particular choices of λ:
the geometric series and the exponential series.

Setting λk = λk, i.e., to a geometric series, we obtain the geometric random walk kernel

k×(G,G′) =

|V×|∑
i,j=1

[
∞∑
k=0

λkAk×]ij =

|V×|∑
i,j=1

[(I − λA×)−1]ij (1.31)

if λ < 1
a
, where a ≥ ∆max(G×), the maximum degree of a node in the product graph.

Similarly, setting λk = βk

k!
, i.e., to an exponential series, we obtain the exponential

random walk kernel

k×(G,G′) =

|V×|∑
i,j=1

[
∞∑
k=0

(βA×)k

k!
]ij =

|V×|∑
i,j=1

[eβA×]ij (1.32)

Both these kernel require O(n6) runtime, which can be seen as follows: The geometric
random walk requires inversion of an n2 × n2 matrix (I − λA×). This is an effort cubic
in the size of the matrix, hence O(n6). For the exponential random walk kernel, matrix
diagonalization of the n2 × n2 matrix A× is necessary to compute eβA× , which is again an
operation with runtime cubic in the size of the matrix.

Marginalized Graph Kernels Though motivated differently, the marginalized graph
kernels of [Kashima et al., 2003] are closely related. Their kernel is defined as the expec-
tation of a kernel over all pairs of label sequences from two graphs

For extracting features from graphG = (V,E,L), a set of label sequences is produced by
performing a random walk. At the first step, v1 ∈ V is sampled from an initial probability

1.4 Review on Graph Kernels 31

distribution ps(v1) over all nodes in V . Subsequently, at the i-th step, the next node vi ∈ V
is sampled subject to a transition probability pt(vi|vi−1), or the random walk ends with
probability pq(vi−1):

|V |∑
vi=1

pt(vi|vi−1) + pq(vi−1) = 1 (1.33)

Each random walk generates a sequence of nodes w = (v1, v2, ..., v`), where ` is the
length of w (possibly infinite).

The probability for the walk w is described as

p(w|G) = ps(v1)
∏̀
i=2

pt(vi|vi−1)pq(v`). (1.34)

Associated with a walk w, we obtain a sequence of labels

hw = (L(v1),L(v1, v2),L(v2), . . . ,L(v`)) = (h1, h2, . . . , h2`−1), (1.35)

which is an alternating label sequence of node labels and edge labels from the space of
labels Z:

hw = (h1, h2, . . . , h2`−1) ∈ Z2`−1. (1.36)

The probability for the label sequence h is equal to the sum of the probabilities of all
walks w emitting a label sequence hw identical to h,

p(h|G) =
∑
w

δ(h = hw)

{
ps(v1)

∏̀
i=2

(pt(vi|vi−1)pq(vl))

}
(1.37)

where δ is a function that returns 1 if its argument holds, 0 otherwise.
[Kashima et al., 2003] then define a kernel kz between two label sequences h and h′.

Assuming that kv is a nonnegative kernel on nodes, and ke is a nonnegative kernel on
edges, then the kernel for label sequences is defined as the product of label kernels when
the lengths of two sequences are identical (` = `′):

kz(h, h
′) = kv(h1, h

′
1)
∏̀
i=2

ke(h2i−2, h
′
2i−2)kv(h2i−1, h

′
2i−1) (1.38)

The label sequence graph kernel is then defined as the expectation of kz over all possible
h and h′

k(G,G′) =
∑
h

∑
h′

kz(h, h
′)p(h|G)p(h′|G′). (1.39)

32 1. Introduction: Why Graph Kernels?

In terms of R-convolution, the decomposition corresponding to this graph kernel is the
set of all possible label sequences generated by a random walk.

The runtime of the marginalized graph kernel k(G,G′) is easiest to check if we transform
the above equations into matrix notation. For this purpose we define two matrices S and
Q of size n× n. Let S be defined as

Sij = ps(vi)p
′
s(v

′
j)kv(L(vi),L

′(v′j)). (1.40)

and Q as

Qij = pq(vi)p
′
q(v

′
j) (1.41)

.
Furthermore, let T be a n2 × n2 transition matrix:

T(i−1)∗n+j,(i′−1)∗n+j′ = pt(vj|vi)p′t(v′j′|v′i′)kv(L(vj),L
′(v′j′))ke(L(vi, vj),L

′(v′i′ , v
′
j′)); (1.42)

The matrix form of the kernel in terms of these three matrices is then [Kashima et al.,
2003]

k(G,G′) = ((I − T)−1 vec(Q))′ vec(S) = vec(Q)′(I − T)−1 vec(S) (1.43)

where the vec operator flattens an n× n matrix into an n2× 1 vector and I is the identity
matrix of size n2×n2. We observe that the computation of the marginalized kernel requires
an inversion of an n2 × n2 matrix. Like the random walk kernel, the runtime of the
marginalized kernel on graphs is hence in O(n6).

Note the similarity between equation (1.43) and equation (1.31), i.e., the definitions
of the random walk kernel and the marginalized kernel on graphs. This similarity is not
by chance. In Section 2.1, we will show that both these graph kernels are instances of a
common unifying framework for walk-based kernels on graphs.

Discussion Graph kernels based on random walks intuitively seem to be a good measure
of similarity on graphs, as they take the whole structure of the graph into account, but
require polynomial runtime only. However, these kernels suffer from several weaknesses,
which we will describe in the following.

Bad News: The Runtime Complexity Random walk kernels were developed as an
alternative to the NP-hard subgraph kernel. So do these O(n6) graph kernels save the day?
Unfortunately, although being polynomial, n6 is a huge computational effort. For small
graphs, n6 operations (neglecting constant factors) are even more than 2n operations, as
you can see from Figure 1.5. Hence for graphs with less than 30 nodes, n6 is slower than
2n. Interestingly, the average node number for typical benchmark datasets frequently used
in graph mining is less than 30 (MUTAG 17.7, PTC 26.7)!

This high computational runtime severely limits the applicability of random walk graph
kernels on real-world data. It is not efficient enough for dealing with large datasets of
graphs, and does not scale up to large graphs with many nodes. As our first contribution
in this thesis, we show how to speed up the random walk kernel to O(n3) in Section 2.1.

1.4 Review on Graph Kernels 33

0 5 10 15 20 25 30 35 40 45 50
10

0

10
2

10
4

10
6

10
8

10
10

10
12

10
14

10
16

GRAPH SIZE n

O
P

E
R

A
T

IO
N

S
 P

E
R

 C
O

M
P

A
R

IS
O

N

2n

n6

Figure 1.5: Runtime versus graph size n for two algorithms requiring n6 and 2n operations.

Tottering In addition to lack of efficiency, walk kernels suffer from a phenomenon called
tottering [Mahé et al., 2004]. Walks allow for repetitions of nodes and edges, which means
that the same node or edge is counted repeatedly in a similarity measure based on walks.
In an undirected graph, a random walk may even start tottering between the same two
nodes in the product graph, leading to an artificially high similarity score, which is caused
by one single common edge in two graphs. Furthermore, a random walk on any cycle in
the graph can in principle be infinitely long, and drastically increase the similarity score,
although the structural similarity between two graphs is minor.

Halting Walk kernels show a second weakness. The decaying factor λ down-weights
longer walks, which makes short walks dominate the similarity score. We describe this
problem — which we refer to as ”halting” — in more detail in Section 2.1.5. Approaches
to overcome both halting and tottering are the topic of Section 2.2 and Section 2.3.

Due to the shortcomings of random walk kernels, extensions of these and alternative
kernels have been defined in the literature. We will summarize these next.

Extensions of Marginalized Graph Kernels Mahe et al. [Mahé et al., 2004] designed
two extensions of marginalized kernels to overcome a) the problem of tottering and b)
their computational expensiveness. Both these extensions are particularly relevant for
chemoinformatics applications.

The first extension is to relabel each node automatically in order to insert information
about the neighborhood of each node in its label via the so-called Morgan Index. This has

34 1. Introduction: Why Graph Kernels?

both an effect in terms of feature relevance, because label paths contain information about
their neighborhood as well, and computation time, because the number of identically la-
beled paths significantly decreases. This speed-up effect is successfully shown on real-world
datasets. However, this node label enrichment could only slightly improve classification
accuracy.

Second, they show how to modify the random walk model in order to remove tottering
between 2 nodes (but not on cycles of longer length). This removal of length-2 tottering
did not improve classification performance uniformly.

Subtree-Pattern Kernels As an alternative to walk kernels on graphs, graph kernels
comparing subtree-patterns were defined in [Ramon and Gärtner, 2003]. Intuitively, this
kernel considers all pairs of nodes V from G and V ′ from G′ and iteratively compares their
neighborhoods. ’Subtree-pattern’ refers to the fact that this kernel counts subtree-like
structures in two graphs. In contrast to the strict definition of trees, subtree-patterns may
include several copies of the same node or edge. Hence they are not necessarily isomorphic
to subgraphs of G or G′, let alone subtrees of G and G′. To be able to regard these patterns
as trees, [Ramon and Gärtner, 2003] treat copies of identical nodes and edges as if they
were distinct nodes and edges.

More formally, let G(V,E) and G′(V ′, E ′) be two graphs. The idea of the subtree-
pattern kernel kv,v′,h is to count pairs of identical subtree-patterns in G and G′ with height
less than or equal to h, with the first one rooted at v ∈ V (G) and the second one rooted at
v′ ∈ V (G′). Now, if h = 1 and L(v) = L′(v′) we have kv,v′,h = 1. If h = 1 and L(v) 6= L′(v′)
we have kv,v′,h = 0. For h > 1, one can compute kv,v′,h as follows:

• Let Mv,v′ be the set of all matchings from the set δ(v) of neighbors of v to the set
δ(v′) of neighbors of v′, i.e.,

Mv,v′ = {R ⊆ δ(v)× δ(v′)|(∀(vi, v′i), (vj, v′j) ∈ R : vi = v′i ⇔ vj = v′j) (1.44)

∧(∀(vk, v′k) ∈ R : L(vk) = L′(v′k))}

• Compute

kv,v′,h = λvλv′
∑

R∈Mv,v′

∏
(v,v′)∈R

kv,v′,h−1 (1.45)

Here λv and λv′ are positive values smaller than 1 to cause higher trees to have a
smaller weight in the overall sum.

Given two graphs G(V,E), G′(V ′, E ′), then the subtree-pattern kernel of G and G′ is
given by

ktree,h(G,G
′) =

∑
v∈V

∑
v′∈V ′

kv,v′,h. (1.46)

As the walk kernel, the subtree pattern kernel suffers from tottering. Due to the more
complex patterns it examines, its runtime is even worse than that of the random walk
kernel. It grows exponentially with the height h of the subtree-patterns considered.

1.4 Review on Graph Kernels 35

Cyclic Pattern Kernels [Horvath et al., 2004] decompose a graph into cyclic patterns,
then count the number of common cyclic patterns which occur in both graphs. Their
kernel is plagued by computational issues; in fact they show that computing the cyclic
pattern kernel on a general graph is NP-hard. They consequently restrict their attention
to practical problem classes where the number of simple cycles is bounded.

Fingerprint and Depth First Search Kernels [Ralaivola et al., 2005] define graph
kernels based on molecular fingerprints and length-d paths from depth-first search. These
kernels are tailored for applications in chemical informatics, and exploit the small size and
low average degree of these molecular graphs.

Optimal Assignment Kernels In the aforementioned graph kernels, R-convolution
often boils down to an all-pairs comparison of substructures from two composite objects.
Intuitively, finding a best match, an optimal assignment between the substructures from
G and G′ would be more attractive than an all-pairs comparison. In this spirit, [Fröhlich
et al., 2005] define an optimal assignment kernel on composite objects that include graphs
as a special instance.

Definition 22 (Optimal Assignment Kernel) Let κ : X×X→ R be some non-negative,
symmetric and positive definite kernel. Assume that x and x′ are two composite objects that
have been decomposed into their parts x := (x1, x2, . . . , x|x|) and x′ := (x′1, x

′
2, . . . , x

′
|x′|).

Let Π(x) denote all possible permutations of x, and analogously Π(x′) all possible permu-
tations of x′.

Then kA : X× X→ R with

kA(x, x′) :=

{
maxπ∈Π(x′)

∑|x|
i=1 κ(xi, x

′
π(i)) if |x′| > |x|,

maxπ∈Π(x)

∑|x′|
j=1 κ(xπ(j), x

′
j) otherwise

(1.47)

is called an optimal assignment kernel.

While based on a nice idea, the optimal assignment kernel is unfortunately not positive
definite [Vishwanathan et al., 2007b], seriously limiting its use in SVMs and other kernel
methods.

Other Graph Kernels Two more types of graph kernels have been described in the
literature: Graph edit distance kernels that employ results of a graph edit distance to give
extra weight to matching vertices [Neuhaus, 2006], and weighted decomposition kernels
that decompose a graph into small subparts and reward similarity of these subparts with
different weights [Menchetti et al., 2005]. However, while the former fails to be positive
definite, the latter can only deal with highly simplified representations of graphs efficiently.

Quality Criteria in Graph Kernel Design From our review on the state-of-the-art
in graph kernels, it becomes apparent that all current graph kernels suffer from different
kinds of weaknesses. The open question remains: How to design a ’good’ graph kernel?
The definition of ’good’ is the key to answering this question. Here we try to define several
central requirements graph kernel design has to fulfill to yield a good graph kernel. A good

36 1. Introduction: Why Graph Kernels?

graph kernel that is theoretically sound and widely applicable should show the following
characteristics:

• positive definiteness. A valid kernel function guarantees a global optimal solution
when this graph kernel is employed within a convex optimization problem, as in
SVMs.

• not restricted to special class of graphs. While kernels that are specialized
to certain classes of graphs may be helpful in some applications, it is much more
attractive to define a graph kernel that is generally applicable. This way, one needs
not worry if the graph kernel is applicable to the particular problem at hand.

• efficient to compute. In practice it is not only desirable to theoretically define
a kernel on graphs, but also to guarantee that it is fast to compute and has a low
theoretical runtime complexity. A graph kernel needs to be efficient to compute,
because otherwise one may also employ one of the many expensive graph matching
and graph isomorphism approaches from Section 1.3, and then apply a kernel on the
similarity scores obtained by these approaches.

• expressive. A graph kernel has to represent an expressive, non-trivial measure of
similarity on graphs. It has to compare features or subgraphs of two graphs that
allow to really tell if the topology and/or node and edge labels of two graphs are
similar.

Some of these goals may be at loggerheads. Graph kernels for special classes of graphs,
for example trees, can be computed highly efficiently, requiring quadratic [Lodhi et al.,
2002] or with canonical ordering even linear runtime [Vishwanathan and Smola, 2004].
These kernels, however, cannot be applied to graphs in general. The graph kernels proposed
in [Neuhaus, 2006] are expressive measures of similarity on graphs, but they lack validity,
i.e., they are not positive definite. The all-subgraphs kernel [Gärtner et al., 2003] is
extremely expressive, as it considers all pairs of common subgraphs from two graphs, but
its computation is NP-hard.

For all these reasons, one central challenge in this thesis was the development of graph
kernels that overcome the limitations of current graph kernels.

1.5 Contributions of this Thesis

The goal of this thesis was to define fast graph kernel functions and novel kernel methods
for solving graph problems in data mining and bioinformatics.

Our interest in graph kernels derives from the vast number of applications in which
graph data started to emerge over recent years (see Section 1.1.1), and the fact that current
similarity measures on graphs are either NP-hard to compute, or resort to heuristics or
simplified representations of graphs (see Section 1.3). Furthermore, graph kernels benefit
extremely from two characteristics shared by all kernel functions:

1.5 Contributions of this Thesis 37

• First, we do not need to know the mapping φ to feature space explicitly. As a
consequence, we can compare graphs in feature spaces without explicitly computing
these graph features, unlike all approaches using topological descriptors which require
this explicit determination. Note that we can use this trick on different levels of a
graphs, i.e., on its topology, and on its node and edge labels.

• Second, graph kernels offer a powerful method to extend statistical machine learning
and data mining to graphs. By defining a kernel on graphs, a whole battery of kernel
methods and kernel-based algorithms becomes applicable to graphs. Hence graph
kernels could bridge the gap between statistical pattern recognition on vectors and
structural graph pattern recognition on graphs.

Still, as we have seen in Section 1.4.2, defining a ’good’ graph kernel is extremely
difficult. Known graph kernels are either not efficient to compute, restricted to a subclass
of graphs, not positive definite or not an expressive measure of similarity on graphs. None
of the existing graph kernel fulfills all our four quality criteria.

1.5.1 Fast Graph Kernels

Above all, efficiency is a major bottleneck of state-of-the-art graphs kernels. As mentioned
in Section 1.4.2, all-subgraphs kernels are NP-hard to compute, and classic random walk
kernels require a runtime of O(n6) where n is the number of nodes in the larger of the two
graphs. While polynomial, this runtime is too expensive even for large graphs and large
datasets of small graphs. In fact, instead of computing such an expensive graph kernel, one
could extract features from a graph to obtain a feature vector representation of this graph,
and to then apply known feature vector methods from pattern recognition to these vectors.
Hence the unique advantages of graph kernels, their ability to bridge feature vector and
graph-based learning, can only be exploited if they are efficient to compute.

In Section 2.1, we extend concepts from linear algebra to Reproducing Kernel Hilbert
Spaces, to speed up the computation of the classic geometric random walk kernel. The
speed-up reduces the computational effort to O(n3), and leads to a more than 1,000 times
lower CPU runtime on real-world datasets. In Section 2.2, we define a graph kernel based
on shortest paths which does not suffer from tottering. It is a positive definite and expres-
sive measure for graph similarity, which is computable in O(n4) and applicable to a large
class of graphs. In Section 2.3, we develop graph kernels for comparing large graphs with
hundreds and thousands of nodes. The underlying idea, motivated by the graph recon-
struction conjecture, is to sample small subgraphs from large graphs, and to approximate
the distribution of these small subgraphs within the large graph. In this manner, we are
able to compute graph kernels on graphs that are too large for state-of-the-art methods.

1.5.2 Two-Sample Test on Graphs

Besides the traditional learning tasks such as classification and clustering, there are other
learning problems that could not be solved on graphs so far, for instance, two-sample tests.
Two-sample tests try to answer the question whether two samples — in our case two sets of
graphs — are likely to originate from the same underlying distribution. This question is of

38 1. Introduction: Why Graph Kernels?

interest in data integration, especially when fusing graph data that originate from different
sources, e.g. different laboratories or databases. While two-sample tests for vectors have
been a research topic in statistics for decades, no such test has been developed for graphs.

In Chapter 3, we develop a two-sample test for graphs. We proceed in three steps. First,
we present the first two-sample test based on kernels in Section 3.1. Second, in Section 3.2.1
we show how this kernelized two-sample test based on a test statistic called Maximum
Mean Discrepancy can be applied to sets of graphs by employing a graph kernel. Third,
in Section 3.2.2, we extend the concept of Maximum Mean Discrepancy from comparing
sets of graphs to comparing pairs of graphs. This way, we yield the first statistical test of
graph similarity described in the literature.

1.5.3 Efficient Feature Selection on Graphs

In Chapter 4, we tackle the problem of feature selection on graphs. While constructing
an accurate classifier for assigning graphs to different categories is an interesting task, it
is equally relevant to understand which features of graphs are most correlated to its class
membership. No principled approach to this problem of feature selection on graphs has
been proposed so far.

In this chapter, we present an efficient procedure for feature selection on graphs. In
Section 4.1, we define a family of kernel-based feature selection algorithms. They employ
the Hilbert-Schmidt Independence Criterion (HSIC) [Gretton et al., 2005] for measuring
dependence between data objects and their class labels. In Section 4.2, we extend this
principle to feature selection on graphs. We show that for one particular choice of kernel,
HSIC-based feature selection can cope with the huge search space encountered in feature
selection on graphs. We successfully combine our feature selector with the state-of-the-art
method for frequent graph mining, gSpan [Yan and Han, 2002], and manage to select an
informative subset of a few dozens of features from the thousands and millions of features
found by gSpan.

1.5.4 Applications in Data Mining and Bioinformatics

All our findings have immediate applications in data mining and bioinformatics. These
reach from biological network comparison to efficient frequent subgraph mining. We have
already explored several of these:

• Protein function prediction via graph kernels [Borgwardt et al., 2005]

• Protein interaction network comparison via graph kernels [Borgwardt et al., 2007c]

• Integration of structured data and automatic ontology matching via Maximum Mean
Discrepancy [Borgwardt et al., 2006]

• Gene selection from microarray data via HSIC [Song et al., 2007a]

Apart from these, the new algorithmic and statistical concepts we define as part of our
novel graph kernels and kernel methods may contribute to the development of new machine
learning and data mining algorithms.

1.5 Contributions of this Thesis 39

Fast Graph Kernels
Shortest-Path Kernels ICDM 2005 [Borgwardt and Kriegel, 2005]
Fast Computation of Random Walk Kernels NIPS 2006 [Vishwanathan et al., 2007a],
Graphlet Kernels under preparation [Borgwardt et al., 2007a]
Kernel Methods for Novel Problems on Graphs
Kernel Method for Two-Sample Problem NIPS 2006 [Gretton et al., 2007a]
Feature Selection using HSIC ICML 2007 [Song et al., 2007c]
Feature Selection on Graphs under preparation [Borgwardt et al., 2007b]
Applications in Bioinformatics
Protein Function Prediction ISMB 2005 [Borgwardt et al., 2005]
Protein Interaction Network Comparison PSB 2007 [Borgwardt et al., 2007c]
Data Integration in Bioinformatics ISMB 2006 [Borgwardt et al., 2006]
Gene Selection from Microarray Data ISMB 2007 [Song et al., 2007a]

Table 1.1: Contributions of this thesis and accompanying publications.

In Chapter 5, we summarize both our work on applications in bioinformatics and give
an outlook to future challenges and chances for our graph kernels and kernel methods in
the field of algorithms and bioinformatics.

We summarize all our contributions with their accompanying publications in Table 1.1.

40 1. Introduction: Why Graph Kernels?

Chapter 2

Fast Graph Kernel Functions

As we have stressed before, the key challenge in graph kernel design is to define positive
definite kernels that are both an expressive measure of similarity for graphs and that are
efficient to compute, and not restricted to a subclass of graphs. We have also explained
that random walk kernels suffer from several shortcomings: above all high computational
runtime and tottering, limiting their efficiency, scalability and expressivity.

In this chapter, we overcome these limitations step by step. In Section 2.1, we employ
techniques from numerical algebra to speed up the classic random walk kernels [Gärtner
et al., 2003, Kashima et al., 2003] to O(n3) in theoretical runtime, and by up to a factor
of 1,000 in CPU runtime. In this manner, we make the classic random walk kernel more
efficient.

In Section 2.2, we define a novel graph kernel based on shortest path distances. It
outperforms the random walk kernel in experimental runtime and it avoids tottering, thus
improving upon the random walk kernel both in terms of efficiency and expressivity.

To scale graph kernels up to large graphs with hundreds and thousands of nodes, we
propose a second class of novel graph kernels in Section 2.3. These graphlet kernels count
common subgraphs with 4 nodes in two graphs, without tottering. We establish an efficient
sampling scheme for estimating the distribution of these small subgraphs within a given
graph. As a further improvement over the random walk kernel, these graphlet kernels are
efficient, expressive and even scalable to large graphs, and can tackle problems on graph
sizes that were beyond the scope of graph kernels so far.

42 2. Fast Graph Kernel Functions

2.1 Fast Computation of Random Walk Graph Kernels

In this section, we speed up the classic random walk kernel. Towards this end, we extend
common concepts from linear algebra to Reproducing Kernel Hilbert Spaces (RKHS), and
use these extensions to define a unifying framework for random walk kernels including
those of [Gärtner et al., 2003] and [Kashima et al., 2003]. We show that computing many
random walk graph kernels can be reduced to the problem of solving a large linear system,
which can then be solved efficiently by a variety of methods which exploit the structure
of the problem. In this fashion, we are able to speed up the computation of the classic
random walk kernel.

2.1.1 Extending Linear Algebra to RKHS

Let φ : X→ H denote the feature map from an input space X to the RKHS H associated
with the kernel κ(x, x′) = 〈φ(x), φ(x′)〉H. Given an n by m matrix X ∈ Xn×m of elements
Xij ∈X, we extend φ to matrix arguments by defining Φ : Xn×m→ Hn×m via [Φ(X)]ij :=
φ(Xij). We can now borrow concepts from tensor calculus to extend certain linear algebra
operations to H:

Definition 23 Let A ∈ Xn×m, B ∈ Xm×p, and C ∈ Rm×p. The matrix products Φ(A)Φ(B) ∈
Rn×p and Φ(A)C ∈ Hn×p are

[Φ(A)Φ(B)]ik :=
∑
j

〈φ(Aij), φ(Bjk)〉H and [Φ(A)C]ik :=
∑
j

φ(Aij)Cjk.

Given A ∈ Rn×m and B ∈ Rp×q the Kronecker product A⊗ B ∈ Rnp×mq and vec operator
are defined as

A⊗B :=

 A11B A12B . . . A1mB
...

...
...

...
An1B An2B . . . AnmB

 , vec(A) :=

 A∗1
...

A∗m

 , (2.1)

whereA∗j denotes the j-th column of A. They are linked by the well-known property [Golub
and Van Loan, 1996]:

vec(ABC) = (C>⊗ A) vec(B). (2.2)

Definition 24 Let A ∈ Xn×m and B ∈ Xp×q. The Kronecker product Φ(A) ⊗ Φ(B) ∈
Rnp×mq is

[Φ(A)⊗ Φ(B)](i−1)p+k,(j−1)q+l := 〈φ(Aij), φ(Bkl)〉H . (2.3)

It is easily shown that the above extensions to RKHS obey an analogue of (2.2):

Lemma 1 If A ∈ Xn×m, B ∈ Rm×p, and C ∈ Xp×q, then

vec(Φ(A)B Φ(C)) = (Φ(C)>⊗ Φ(A)) vec(B). (2.4)

2.1 Fast Computation of Random Walk Graph Kernels 43

If p = q = n = m, direct computation of the right hand side of (2.4) requires O(n4) kernel
evaluations. For an arbitrary kernel the left hand side also requires a similar effort. But, if
the RKHS H is isomorphic to Rr, in other words the feature map φ(·) ∈ Rr, the left hand
side of (2.4) is easily computed in O(n3r) operations. Our efficient computation schemes
described in Subsection 2.1.3 will exploit this observation.

2.1.2 Random Walk Kernels

As summarized in Section 1.4.2, random walk kernels on graphs are based on a simple
idea: Given a pair of graphs, perform a random walk on both of them and count the
number of matching walks [Gärtner et al., 2003, Kashima et al., 2003]. These kernels
mainly differ in the way the similarity between random walks is computed. For instance,
the product graph kernel by [Gärtner et al., 2003] counts the number of nodes in the
random walk which have the same label. They also include a decaying factor to ensure
convergence. The marginalized graph kernels by [Kashima et al., 2003] use a kernel defined
on nodes and edges in order to compute similarity between random walks, and define an
initial probability distribution over nodes in order to ensure convergence. In this section
we present a unifying framework which includes the above mentioned kernels as special
cases.

Notation

We need some additional notation to present our schemes for fast graph kernel computation.
We use ei to denote the i-th standard basis (i.e., a vector of all zeros with the i-th entry set
to one), 1 to denote a vector with all entries set to one, 0 to denote the vector of all zeros,
and I to denote the identity matrix. When it is clear from context we will not mention
the dimensions of these vectors and matrices.

Recall that the (unnormalized) adjacency matrix of a graph G = (V,E) is an n×n
real matrix A with Aij = 1 if (vi, vj) ∈ E, and 0 otherwise. If G is weighted then A can
contain non-negative entries other than zeros and ones, i.e., Aij ∈ (0,∞) if (vi, vj) ∈ E
and zero otherwise. Let D be an n×n diagonal matrix with entries Dii =

∑
j Aij. The

matrix P := AD−1 is then called the normalized adjacency matrix.

Recall from Definition 6 that a walk w in a graph G is a non-empty alternating sequence
(v1, e1, v2, e2, . . . , e`−1, v`) of nodes and edges in G such that ei = {vi, vi+1} for all 1 ≤ i ≤
` − 1. The length of a walk is equal to the number of edges encountered during the walk
(here: ` − 1). A random walk is a walk where P(wi+1|w1, . . . wi) = Pwi,wi+1

, i.e., the
probability at wi of picking wi+1 next is directly proportional to the weight of the edge
(vwi

, vwi+1
). The `-th power of the transition matrix P describes the probability of `-length

walks. In other words, [P `]ij denotes the probability of a transition from node vi to node
vj via a walk of length `. We use this intuition to define random walk kernels on graphs.

Let X ⊂ Z be a set of labels which includes the special label ε. Every edge-labeled
graph G is associated with a label matrix L ∈ Xn×n, such that Lij = ε iff (vi, vj) /∈ E,
in other words only those edges which are present in the graph get a non-ε label. Let H

be the RKHS endowed with the kernel κ : X × X → R, and let φ : X → H denote the
corresponding feature map which maps ε to the zero element of H. We use Φ(L) to denote

44 2. Fast Graph Kernel Functions

the feature matrix of G. For ease of exposition we do not consider labels on nodes here,
though our results hold for that case as well. In the remainder of this section, we use the
term labeled graph to denote an edge-labeled graph.

Product Graphs

Given two graphs G(V,E) of size n and G′(V ′, E ′) of size n′, the product graph G×(V×, E×)
is a graph with nn′ nodes, each representing a pair of nodes from G and G′, respectively
(see Definition 20). An edge exists in E× iff the corresponding nodes are adjacent in both
G and G′. Thus

V× = {(vi, v′i′) : vi ∈ V ∧ v′i′ ∈ V ′}, (2.5)

E× = {((vi,v′i′), (vj,v′j′)) : (vi, vj)∈E ∧ (v′i′, v
′
j′)∈E ′}. (2.6)

If A and A′ are the adjacency matrices of G and G′, respectively, the adjacency matrix of
the product graph G× is A× = A ⊗ A′. An edge exists in the product graph iff an edge
exits in both G and G′, therefore performing a simultaneous random walk on G and G′ is
equivalent to performing a random walk on the product graph [Harary, 1969].

Let p and p′ denote initial probability distributions over nodes of G and G′. Then the
initial probability distribution p× of the product graph is p× := p⊗ p′. Likewise, if q and
q′ denote stopping probabilities (i.e., the probability that a random walk ends at a given
node), the stopping probability q× of the product graph is q× := q ⊗ q′.

If G and G′ are edge-labeled, we can associate a weight matrix W× ∈ Rnn′×nn′ with
G×, using our Kronecker product in RKHS (Definition 24): W× = Φ(L) ⊗ Φ(L′). As a
consequence of the definition of Φ(L) and Φ(L′), the entries of W× are non-zero only if
the corresponding edge exists in the product graph. The weight matrix is closely related
to the adjacency matrix: assume that H = R endowed with the usual dot product, and
φ(Lij) = 1 if (vi, vj) ∈ E or zero otherwise. Then Φ(L) = A and Φ(L′) = A′, and
consequently W× = A×, i.e., the weight matrix is identical to the adjacency matrix of the
product graph.

To extend the above discussion, assume that H = Rd endowed with the usual dot
product, and that there are d distinct edge labels {1, 2, . . . , d}. For each edge (vi, vj) ∈ E
we have φ(Lij) = el if the edge (vi, vj) is labeled l. All other entries of Φ(L) are set to 0.
κ is therefore a delta kernel, i.e., its value between any two edges is one iff the labels on
the edges match, and zero otherwise. The weight matrix W× has a non-zero entry iff an
edge exists in the product graph and the corresponding edges in G and G′ have the same
label. Let lA denote the adjacency matrix of the graph filtered by the label l, i.e., lAij = Aij
if Lij = l and zero otherwise. Some simple algebra shows that the weight matrix of the
product graph can be written as

W× =
d∑
l=1

lA⊗ lA′. (2.7)

2.1 Fast Computation of Random Walk Graph Kernels 45

Kernel Definition

Performing a random walk on the product graph G× is equivalent to performing a simul-
taneous random walk on the graphs G and G′ [Harary, 1969]. Therefore, the ((i − 1)n +
j, (i′−1)n′+ j′)-th entry of Ak× represents the probability of simultaneous k length random
walks on G (starting from node vi and ending in node vj) and G′ (starting from node
v′i′ and ending in node v′j′). The entries of W× represent similarity between edges. The

((i− 1)n+ j, (i′− 1)n′ + j′)-th entry of W k
× represents the similarity between simultaneous

k length random walks on G and G′ measured via the kernel function κ.
Given the weight matrix W×, initial and stopping probability distributions p× and q×,

and an appropriately chosen discrete measure µ, we can define a random walk kernel on G
and G′ as

k(G,G′) :=
∞∑
k=0

µ(k) q>×W
k
×p×. (2.8)

In order to show that (2.8) is a valid Mercer kernel we need the following technical lemma.

Lemma 2 ∀ k ∈ N0 : W k
×p× = vec[Φ(L′)kp′ (Φ(L)kp)>].

Proof By induction over k. Base case: k = 0. Since Φ(L′)0 = Φ(L)0 = I, using (2.2) we
can write

W 0
×p× = p× = (p⊗ p′) vec(1) = vec(p′ 1 p>) = vec[Φ(L′)0p′ (Φ(L)0p)>].

Induction from k to k + 1: Using Lemma 1 we obtain

W k+1
× p× = W×W

k
×p× = (Φ(L)⊗ Φ(L′)) vec[Φ(L′)kp′ (Φ(L)kp)>]

= vec[Φ(L′)Φ(L′)kp′ (Φ(L)kp)>Φ(L)>] = vec[Φ(L′)k+1p′ (Φ(L)k+1p)>].

Lemma 3 If the measure µ(k) is such that (2.8) converges, then it defines a valid Mercer
kernel.

Proof Using Lemmas 1 and 2 we can write

q>×W
k
×p× = (q ⊗ q′) vec[Φ(L′)kp′ (Φ(L)kp)>] = vec[q′>Φ(L′)kp′ (Φ(L)kp)>q]

= (q>Φ(L)kp)>︸ ︷︷ ︸
ψk(G)>

(q′>Φ(L′)kp′)︸ ︷︷ ︸
ψk(G′)

.

Each individual term of (2.8) equals ψk(G)>ψk(G
′) for some function ψk, and is therefore

a valid kernel. The lemma follows since a convex combination of kernels is itself a valid
kernel, if we choose µ(k) to be nonnegative.

46 2. Fast Graph Kernel Functions

Special Cases

A popular choice to ensure convergence of (2.8) is to assume µ(k) = λk for some λ > 0. If
λ is sufficiently small1 then (2.8) is well defined, and we can write

k(G,G′) =
∞∑
k=0

λkq>×W
k
×p× = q>×(I − λW×)−1p×. (2.9)

Marginalized Graph Kernels As we have seen in Section 1.4, [Kashima et al., 2003]
use marginalization and probabilities of random walks to define kernels on graphs. Given
transition probability matrices P and P ′ associated with graphs G and G′ respectively,
their kernel can be written as (see Eq. 1.19, [Kashima et al., 2003])

k(G,G′) = q>×(I − T×)−1p×, (2.10)

where T× := (vec(P) vec(P ′)>)�(Φ(L)⊗Φ(L′)), using� to denote element-wise (Hadamard)
multiplication. The edge kernel κ̂(Lij, L

′
i′j′) := PijP

′
i′j′κ(Lij, L

′
i,j′) with λ = 1 recovers (2.9).

Product Graph Kernels [Gärtner et al., 2003] use the adjacency matrix of the product
graph to define the so-called geometric kernel

k(G,G′) =
n∑
i=1

n′∑
j=1

∞∑
k=0

λk[Ak×]ij. (2.11)

To recover their kernel in our framework, assume an uniform distribution over the nodes of
G and G′, i.e., set p = q = 1/n and p′ = q′ = 1/n′. The initial as well as final probability
distribution over nodes of G× is given by p× = q× = 1/(nn′). Setting Φ(L) := A, and
hence Φ(L′) = A′ and W× = A×, we can rewrite (2.8) to obtain

k(G,G′) =
∞∑
k=0

λkq>×A
k
×p× =

1

n2n′2

n∑
i=1

n′∑
j=1

∞∑
k=0

λk[Ak×]ij,

which recovers (2.11) to within a constant factor.

2.1.3 Efficient Computation

In this subsection we show that iterative methods, including those based on Sylvester
equations, conjugate gradients, and fixed-point iterations, can be used to greatly speed up
the computation of (2.9).

Sylvester Equation Methods

Consider the following equation, commonly known as the Sylvester or Lyapunov equation:

X = SXT +X0. (2.12)

1The values of λ which ensure convergence depends on the spectrum of W×.

2.1 Fast Computation of Random Walk Graph Kernels 47

Here, S, T,X0 ∈ Rn×n are given and we need for solve for X ∈ Rn×n. These equations
can be readily solved in O(n3) time with freely available code [Gardiner et al., 1992], e.g.
Matlab’s dlyap method. The generalized Sylvester equation

X =
d∑
i=1

SiXTi +X0 (2.13)

can also be solved efficiently, albeit at a slightly higher computational cost of O(dn3).
We now show that if the weight matrix W× can be written as (2.7) then the problem

of computing the graph kernel (2.9) can be reduced to the problem of solving the following
Sylvester equation:

X =
d∑
i=1

iA′λX iA> +X0, (2.14)

where vec(X0) = p×. We begin by flattening the above equation:

vec(X) = λ
d∑
i=1

vec(iA′X iA>) + p×. (2.15)

Using Lemma 1 we can rewrite (2.15) as

(I − λ
d∑
i=1

iA⊗ iA′) vec(X) = p×, (2.16)

use (2.7), and solve for vec(X):

vec(X) = (I − λW×)−1p×. (2.17)

Multiplying both sides by q>× yields

q>×vec(X) = q>×(I − λW×)−1p×. (2.18)

The right-hand side of (2.18) is the graph kernel (2.9). Given the solution X of the
Sylvester equation (2.14), the graph kernel can be obtained as q>×vec(X) in O(n2) time.
Since solving the generalized Sylvester equation takes O(dn3) time, computing the graph
kernel in this fashion is significantly faster than the O(n6) time required by the direct
approach.

Where the number of labels d is large, the computational cost may be reduced further
by computing matrices S and T such that W× ≈ S ⊗ T . We then simply solve the simple
Sylvester equation (2.12) involving these matrices. Finding the nearest Kronecker product
approximating a matrix such as W× is a well-studied problem in numerical linear algebra
and efficient algorithms which exploit sparsity of W× are readily available [Van Loan, 2000].

48 2. Fast Graph Kernel Functions

Conjugate Gradient Methods

Given a matrix M and a vector b, conjugate gradient (CG) methods solve the system
of equations Mx = b efficiently [Nocedal and Wright, 1999]. While they are designed
for symmetric positive semi-definite matrices, CG solvers can also be used to solve other
linear systems efficiently. They are particularly efficient if the matrix is rank deficient, or
has a small effective rank, i.e., number of distinct eigenvalues. Furthermore, if computing
matrix-vector products is cheap— because M is sparse, for instance—the CG solver can
be sped up significantly [Nocedal and Wright, 1999]. Specifically, if computing Mv for an
arbitrary vector v requires O(k) time, and the effective rank of the matrix is m, then a CG
solver requires only O(mk) time to solve Mx = b.

The graph kernel (2.9) can be computed by a two-step procedure: First we solve the
linear system

(I − λW×)x = p×, (2.19)

for x, then we compute q>×x. We now focus on efficient ways to solve (2.19) with a CG
solver. Recall that if G and G′ contain n nodes each then W× is a n2×n2 matrix. Directly
computing the matrix-vector product W×r, requires O(n4) time. Key to our speed-ups
is the ability to exploit Lemma 1 to compute this matrix-vector product more efficiently:
Recall that W× = Φ(L)⊗ Φ(L′). Letting r = vec(R), we can use Lemma 1 to write

W×r = (Φ(L)⊗ Φ(L′)) vec(R) = vec(Φ(L′)RΦ(L)>). (2.20)

If φ(·) ∈ Rs for some s, then the above matrix-vector product can be computed in O(n3s)
time. If Φ(L) and Φ(L′) are sparse, however, then Φ(L′)RΦ(L)> can be computed yet
more efficiently: if there are O(n) non-ε entries in Φ(L) and Φ(L′), then computing (2.20)
requires only O(n2) time.

Fixed-Point Iterations

Fixed-point methods begin by rewriting (2.19) as

x = p× + λW×x. (2.21)

Now, solving for x is equivalent to finding a fixed point of the above iteration [Nocedal
and Wright, 1999]. Letting xt denote the value of x at iteration t, we set x0 := p×, then
compute

xt+1 = p× + λW×xt (2.22)

repeatedly until ||xt+1 − xt|| < ε, where || · || denotes the Euclidean norm and ε some pre-
defined tolerance. This is guaranteed to converge if all eigenvalues of λW× lie inside the
unit disk; this can be ensured by setting λ < 1/ξmax, where ξmax is the largest-magnitude
eigenvalue of W×.

The above is closely related to the power method used to compute the largest eigen-
value of a matrix [Golub and Van Loan, 1996]; efficient preconditioners can also be used

2.1 Fast Computation of Random Walk Graph Kernels 49

to speed up convergence [Golub and Van Loan, 1996]. Since each iteration of (2.22) in-
volves computation of the matrix-vector product W×xt, all speed-ups for computing the
matrix-vector product as discussed for conjugate gradient methods are applicable here.
In particular, we exploit the fact that W× is a sum of Kronecker products to reduce the
worst-case time complexity to O(n3) in our experiments, in contrast to [Kashima et al.,
2003] who computed the matrix-vector product explicitly.

2.1.4 Experiments

We present two sets of experiments. First, we work with randomly generated graphs and
study the scaling behavior of our algorithms. Second, we assess the practical impact of our
algorithmic improvement by comparing the time taken to compute graph kernels on four
real-world datasets.

For all our experiments our baseline comparator is the direct approach of [Gärtner
et al., 2003]. All code was written in MATLAB Release 14, and experiments run on a
2.6GHz Intel Pentium 4 PC with 2GB of main memory running Suse Linux. The Matlab
function dlyap was used to solve the Sylvester equation.

By default, we used a value of λ = 0.001, and set the tolerance for both CG solver and
fixed-point iteration to 10−6 for all our experiments. We used Lemma 1 to speed up matrix-
vector multiplication for both CG and fixed-point methods (see Section 2.1.3). Since all
our methods are exact and produce the same kernel values (to numerical precision), we only
report their runtimes below. Classification accuracies on these datasets will be reported
in Sections 2.2 and 2.3, when we compare the performance of the random walk to that of
other graph kernels.

Synthetic Datasets

The aim here is to study the scaling behavior of our algorithms on graphs of different sizes
and different node degrees. We generated two sets of graphs: for the first set, SET-1, we
begin with an empty graph of size 2k, k = 1, 2, . . . , 10, and randomly insert edges until the
average degree of each node is at least 2. For each k we repeat the process 10 times and
generate 10 graphs of size 2k. The time required to compute the 10× 10 kernel matrix for
each value of k is depicted in Figure 2.1 (top). As expected, the direct approach scales as
O(n6), solving the Sylvester equation (SYLV) as O(n3), while the conjugate gradient (CG)
and fixed-point iteration (FP) approaches scale sub-cubically. Furthermore, note that the
direct approach could not handle graphs of size greater than 27 even after two days of
computation.

We also examined the impact of Lemma 1 on enhancing the runtime performance of
the fixed-point iteration approach as originally proposed by [Kashima et al., 2003]. For
this experiment, we again use graphs from SET-1 and computed the 10×10 kernel matrix,
once using the original fixed-point iteration, and once using fixed-point iteration enhanced
by Lemma 1. Results are illustrated in Figure 2.1 (bottom). As expected, our approach
is often 10 times or more faster than the original fixed-point iteration, especially on larger
graphs.

The second set of randomly generated graphs is called SET-2. Here, we fixed the size of

50 2. Fast Graph Kernel Functions

the graph at 210 = 1024, and randomly inserted edges until the average number of non-zero
entries in the adjacency matrix is at least x%, where x = 10, 20, . . . , 100. For each x, we
generate 10 such graphs and compute the 10× 10 kernel matrix. We employed the direct
approach, fixed-point iteration with vec-trick and without vec-trick, the conjugate gradient
(CG) and the Sylvester equation approach (SYLV). Both the direct approach and the fixed-
point iteration without vec-trick produced ”out-of-memory” errors in all repetitions of this
experiment. They cannot handle graphs of this size as they try to explicitly compute the
weight matrix W×. In contrast, our three approaches to fast graph kernel computation
enhanced by Lemma (1) can deal with graphs of this size. Results for these three methods
are shown in Figure 2.2. As can be seen, the runtime of fixed-point iteration and conjugate
gradient is filling-degree dependent, while that of the Sylvester equation is not. The reason
might be that the former are able to exploit sparsity of the weight matrix W×, while the
latter is not.

Real-World Datasets

We tested the practical feasibility of the presented techniques on four real-world datasets:
two datasets of molecular compounds (MUTAG and PTC), and two datasets with hun-
dreds of graphs describing protein tertiary structure (Protein and Enzyme). Graph kernels
provide useful measures of similarity for all these graphs. We provide more details on these
datasets and the associated learning task in the following.

Chemical Molecules Activity of chemical molecules can be predicted to some degree
by comparison of their three-dimensional structure. We employed graph kernels to mea-
sure similarity between molecules from the MUTAG [Debnath et al., 1991] and the PTC
dataset [Toivonen et al., 2003]. The average number of nodes per graph is 17.72 and 26.70,
respectively, and the average number of edges is 38.76 and 52.06, respectively.

The MUTAG dataset [Debnath et al., 1991] consists of 230 mutagenic aromatic and
heteroaromatic nitro compounds. Each of these molecules is known to possess a mutagenic
effect in gram-negative bacterium Salmonella typhimurium or not. The classification task
is to predict whether a given molecule exerts a mutagenic effect.

Each molecule is modeled as a graph, with the nodes representing atoms and the edges
representing bonds between the atoms. Furthermore, we label each node with its atom type.
A graph G = (V,E) is derived for each molecule by representing each atom as a node in
V . We assign the atom type as a non-unique label to each v ∈ V . An undirected edge is
inserted if a bond exists between two atoms thus yielding a 3D structural representation
of the molecule.

The Predictive Toxicology Challenge (PTC) dataset by [Toivonen et al., 2003] con-
tains 417 chemical compounds which are tested for cancerogenicity in mice and rats. The
classification task is to predict the cancerogenicity of compounds. As for MUTAG, each
compound is represented as a graph, whose nodes are atoms and whose edges are bonds.

Large Protein Graph Dataset A fundamental first step in protein function prediction
entails classifying proteins into enzymes and non-enzymes, then further assigning enzymes
to one of the six top-level classes of the EC (Enzyme Commission) hierarchy. Towards this

2.1 Fast Computation of Random Walk Graph Kernels 51

Figure 2.1: Time to compute a 10× 10 kernel matrix on SET-1 plotted as a function of the size
of graphs (# nodes). Top: We compare the Sylvester equation (Sylv), conjugate gradient (CG),
and fixed-point iteration (FP) approaches to the direct approach (direct). The dashed thin red
line indicates O(n6) scaling, while the dashed thin black line indicates O(n3) scaling. Bottom:
We compare the runtime of the original fixed-point iteration (original) and that of the fixed-point
iteration enhanced with Lemma 1 (vec-trick).

52 2. Fast Graph Kernel Functions

Figure 2.2: Time to compute a 10×10 kernel matrix on SET-2 with 1024 nodes vs. filling degree
of adjacency matrix. We compare the Sylvester equation (Sylv), conjugate gradient (CG), and
fixed-point iteration (FP) approaches.

end, [Borgwardt et al., 2005] modeled a dataset of 1128 proteins as graphs in which nodes
represent secondary structure elements, and edges neighborhood within the 3D structure
or along the amino acid chain. Comparing these graphs via a modified random walk kernel
and classifying them via a Support Vector Machine (SVM) led to function prediction
accuracies competitive with state-of-the-art approaches [Borgwardt et al., 2005].

We used [Borgwardt et al., 2005]’s data to test the efficacy of our methods on a large
dataset. The average number of nodes and edges per graph in this data is 38.57 and 143.75,
respectively. We used a single label on the edges, and the delta kernel to define similarity
between edges.

Large Enzyme Graph Dataset We repeated the above experiment on an enzyme graph
dataset also from [Borgwardt et al., 2005]. This dataset contains 600 graphs, containing
32.63 nodes and 124.27 edges on average. Graphs in this dataset represent enzymes from
the BRENDA enzyme database [Schomburg et al., 2004a]. The biological challenge on
this data is to correctly assign the enzymes to one of the EC top level classes.

Unlabeled Graphs

In a first series of experiments, we compared graph topology only on our 4 datasets, i.e.,
without considering node and edge labels. We report the time taken to compute the full
graph kernel matrix for various sizes (number of graphs) in Table 2.1.4 and show the results
for computing a 100× 100 sub-matrix in Figure 2.3 (left).

On unlabeled graphs, conjugate gradient and fixed-point iteration— sped up via our
Lemma 1— are consistently about two orders of magnitude faster than the conventional

2.1 Fast Computation of Random Walk Graph Kernels 53

Figure 2.3: Time (in seconds on a log-scale) to compute 100×100 kernel matrix for unlabeled
(Left) resp. labeled (Right) graphs from several datasets. Compare the conventional direct
method (black) to our fast Sylvester equation, conjugate gradient (CG), and fixed-point iteration
(FP) approaches.

dataset MUTAG PTC Enzyme Protein
nodes/graph 17.7 26.7 32.6 38.6
edges/node 2.2 1.9 3.8 3.7

#graphs 100 230 100 417 100 600 100 1128
Direct 18’09” 104’31” 142’53” 41h* 31h* 46.5d* 36d* 12.5y*

Sylvester 25.9” 2’16” 73.8” 19’30” 48.3” 36’43” 69’15” 6.1d*
Conjugate 42.1” 4’04” 58.4” 19’27” 44.6” 34’58” 55.3” 97’13”

Fixed-Point 12.3” 1’09” 32.4” 5’59” 13.6” 15’23” 31.1” 40’58”

Table 2.1: Time to compute random walk kernel matrix for given number of unlabeled graphs
from various datasets (∗: Extrapolated; run did not finish in time available.) .

direct method. The Sylvester approach is very competitive on smaller graphs (outperform-
ing CG on MUTAG) but slows down with increasing number of nodes per graph; this is
because we could not incorporate Lemma 1 into Matlab’s black-box dlyap solver. Even
so, the Sylvester approach still greatly outperforms the direct method.

Labeled Graphs

In a second series of experiments, we compared graphs with node and edge labels. On
our two protein datasets we employed a linear kernel to measure similarity between edge
labels representing distances (in Å) between secondary structure elements. On our two
chemical datasets we used a delta kernel to compare edge labels reflecting types of bonds
in molecules. We report results in Table 2.2 and Figure 2.3 (right).

On labeled graphs, our three methods outperform the direct approach by about a factor
of 1000 when using the linear kernel. In the experiments with the delta kernel, conjugate

54 2. Fast Graph Kernel Functions

kernel delta linear
dataset MUTAG PTC Enzyme Protein

#graphs 100 230 100 417 100 600 100 1128
Direct 7.2h 1.6d* 1.4d* 25d* 2.4d* 86d* 5.3d* 18y*

Sylvester 3.9d* 21d* 2.7d* 46d* 89.8” 53’55” 25’24” 2.3d*
Conjugate 2’35” 13’46” 3’20” 53’31” 124.4” 71’28” 3’01” 4.1h

Fixed-Point 1’05” 6’09” 1’31” 26’52” 50.1” 35’24” 1’47” 1.9h

Table 2.2: Time to compute random walk kernel matrix for given number of labeled graphs from
various datasets (∗: Extrapolated; run did not finish in time available).

gradient and fixed-point iteration are still at least two orders of magnitude faster. Since
we did not have access to a generalized Sylvester equation (2.13) solver, we had to use a
Kronecker product approximation [Van Loan, 2000] which dramatically slowed down the
Sylvester equation approach.

2.1.5 Summary

We have shown that computing random walk graph kernels is essentially equivalent to
solving a large linear system. We have extended a well-known identity for Kronecker
products which allows us to exploit the structure inherent in this problem. From this we
have derived three efficient techniques to solve the linear system, employing either Sylvester
equations, conjugate gradients, or fixed-point iterations. Experiments on synthetic and
real-world datasets have shown our methods to be scalable and fast, in some instances
outperforming the conventional approach by more than three orders of magnitude.

Even though the Sylvester equation method has a worst-case complexity of O(n3), the
conjugate gradient and fixed-point methods tend to be faster on all our datasets. This is
because computing matrix-vector products via Lemma 1 is quite efficient when the graphs
are sparse, so that the feature matrices Φ(L) and Φ(L′) contain only O(n) non-ε entries.
Matlab’s black-box dlyap solver is unable to exploit this sparsity.

In this section, we have overcome one limitation of graph kernels based on random
walks, the lack of efficiency. Two more weaknesses remain: Tottering and the impairing
influence of the decaying factor λ. While the former has been described in discussed in the
literature [Mahé et al., 2004], the second one has not received any attention yet.

This second weakness of random walks could be described as ”halting”: As walks allow
for repetitions of nodes, the number of walks in a graph is infinitely large. We need a
series of decaying factors λ0 > λ1 > λ2 > . . . that downweight longer walks, to make
the series

∑∞
k=0 λkA

k
× converge. For the geometric random walk kernels, λ has to be less

than ∆max(G×)−1. The effect of this decaying factor is that longer walks are completely
neglected compared to shorter walks. Even walks of length 1 get 1/λ1 more weight than
walks of length 2! The result is that the larger the maximum degree of a node in the product
graph, the more walks of length 1 dominate the walk kernel value, and the contributions
of longer walks tend towards zero. For graphs with large maximum degree, this means

2.1 Fast Computation of Random Walk Graph Kernels 55

that the random walk kernel converges to a graph kernel that compares length 1 walks
only - which is an all-edges-comparison between two graphs, which is a naive measure of
similarity. Note that the stronger the effect of halting, the weaker that of tottering, and
vice versa. The reason is that if we are not walking, there can be no tottering, and if we
are walking (or even tottering), there is no halting.

We will tackle both halting and tottering in the following sections by defining novel
classes of graph kernels. Towards this end, we will explore the usage of paths instead of
walks in graph kernels.

56 2. Fast Graph Kernel Functions

2.2 Graph Kernels based on Shortest Path Distances

Graph kernels using walks suffer from tottering and halting. Unlike walks, paths do not
allow for repetitions of nodes, and therefore there can be no tottering on paths. For the
same reason, paths cannot be of infinite length, and consequently we do not need a decaying
factor that could cause halting.

Hence if we restricted ourselves to paths instead of walks, and defined a kernel on graphs
that compares paths, we could avoid tottering and halting. Exactly this is the scope of
this section.

2.2.1 Graph Kernels on All Paths

We start by defining a kernel that compares all paths in two graphs.

Definition 4 (All-Paths Kernel) Given two graphs G and G′. Let P (G) and P (G′) be
the set of all paths in graph G and G′, respectively. Let kpath be a positive definite kernel
on two paths, defined as the product of kernels on edges and nodes along the paths. We
then define an all-paths kernel kall paths as

kall paths(G,G
′) =

∑
p∈P (G)

∑
p′∈P (G′)

kpath(p, p
′),

i.e., we define the all-paths kernel as the sum over all kernels on pairs of paths from G and
G′.

In the following lemma, we prove that the all-paths kernel is a valid kernel.

Lemma 5 The all-paths kernel is positive definite.

Proof We define a relation R(p,G \ {p}, G), where p is a path, G \ {p} is a set of edges
and nodes, and G is a graph. R(p,G \ {p}, G) = 1 iff G \ {p} is the set of nodes and edges
that remain when removing all edges and nodes in p from G.

R−1(G) is then the set of all possible decompositions of graph G via R into p and
G \ {p}. R is finite, as there is only a finite number of paths in a graph, since their length
is upper bounded by the number of edges. We define a kernel kpath on paths as a product of
kernels on nodes and edges in these paths; this is a positive definite tensor product kernel
[Schölkopf and Smola, 2002]. We also define a trivial set kernel kone = 1 for all pairs of
sets of nodes and edges.

We can then define an all-paths kernel as a positive definite R-convolution kernel [Haus-
sler, 1999]:

kall paths(G,G
′) =

∑
(p,G\{p})=R−1(G)

∑
(p′,G′\{p′})=R−1(G′)

kpath(p, p
′) ∗ kone(G \ {p}, G′ \ {p′}) =

=
∑

p∈P (G)

∑
p′∈P (G′)

kpath(p, p
′) (2.23)

with P (G) and P (G′) as the set of all paths in G and G′, respectively.

2.2 Graph Kernels based on Shortest Path Distances 57

The computation of this kernel, however, is NP-hard, as we will prove in the following.

Lemma 6 Computing the all-paths kernel is NP-hard.

Proof We show this result by proving that finding all paths in a graph is NP-hard. If
determining the set of all paths in a graph was not NP-hard, one could determine whether
a graph has a Hamilton path or not by checking whether a path exists with length n − 1.
This problem, however, is known to be NP-complete [Jungnickel, 1994]. Consequently,
determining the set of all paths is NP-hard and therefore the computation of the all-paths
kernel is NP-hard.

In [Gärtner et al., 2003] it is shown that computing kernels based on subgraphs is NP-
hard. Although we are restricting ourselves to a small subset of all subgraphs, namely to
paths, kernel computation is still NP-hard in our case.

2.2.2 Graphs Kernels on Shortest Paths

While determining all paths is NP-hard, finding special subsets of paths is not necessarily.
Determining longest paths in a graph is again NP-hard, as it would allow to decide whether
a graph contains a Hamilton path or not. Computing shortest paths in a graph, however,
is a problem solvable in polynomial time. Prominent algorithms such as Dijkstra (for
shortest paths from one source node) [Dijkstra, 1959] or Floyd-Warshall [Floyd, 1962,
Warshall, 1962] (for all pairs of nodes) allow to determine shortest distances in O(m+ n ∗
log n) [Fredman and Tarjan, 1987] and O(n3) time, respectively, where n is the number of
nodes and m the number of edges.

However, a potential problem lies in the fact that shortest paths are not unique. Obvi-
ously, there may be more than one shortest path between two nodes in a graph. Neverthe-
less, the shortest distance between those nodes is unique, as all shortest paths between two
nodes must be of identical length. If one of these paths were shorter than the others, the
other paths could not be ”truly shortest” paths. For this reason, we employ the 3 unique
characteristics of shortest paths to compute a kernel on them: the start node, the distance,
and the end node of the shortest path.

2.2.3 Graphs Kernels on Shortest Path Distances

In algorithmic graph theory, the information about the endnodes and the length of shortest
paths is commonly represented by a matrix called the shortest path distance matrix.

Definition 7 (Shortest Path Distance Matrix) Let G = (V,E) be a graph of size
|G| = n. Let d(vi, vj) be the length of the shortest path between vi and vj. The shortest
path matrix D of G is then a n× n matrix defined as

Dij =

{
d(vi, vj) if vi and vj are connected,
∞ otherwise

(2.24)

58 2. Fast Graph Kernel Functions

For defining a graph kernel comparing all pairs of shortest paths from two graphs G
and G′, we have to compare all pairs of entries from D and D′ that are finite (as only finite
entries in S and S ′ indicate the existence of shortest paths). This can be achieved most
easily if we think of D and D′ as adjacency matrices defining corresponding graphs, the
shortest-path graphs.

Definition 8 (Shortest-Path Graph) Let G = (V,E) be a graph, and let D be its short-
est path distance matrix. Then the shortest-path graph S of G has the same set of nodes
V as G, and its set of edges is defined via the adjacency matrix A(S)

A(S)ij =

{
1 if D(vi, vj) <∞,
0 otherwise

(2.25)

where D(vi, vj) is the edge label of edge (vi, vj) in S.

Hence a shortest-paths graph S contains the same set of nodes as the original graph G.
Unlike in the input graph, there exists an edge between all nodes in S which are connected
by a walk in G. Every edge in S between nodes vi and vj is labeled by the shortest distance
between these two nodes in G.

Based on this concept of a shortest-path graph, we are now in a position to present our
graph kernel on shortest-path distances. The essential first step in its computation is to
transform the original graphs into shortest-paths graphs. Any algorithm which solves the
all-pairs-shortest-paths problem can be applied to determine all shortest distances in G,
which then become edge labels in S. We propose to use Floyd’s algorithm (see Algorithm 1).
This algorithm has a runtime of O(n3), is applicable to graphs with negative edge weights,
but must not contain negative-weighted cycles. Furthermore, it is easy to implement. In
the following, we will refer to the process of transforming a graph G into S via Floyd’s
algorithm as Floyd-transformation.

After Floyd-transformation of our input graphs, we can now define a shortest-path
kernel.

Definition 9 (Shortest-path graph kernel) Let G and G′ be two graphs that are Floyd-
transformed into S and S ′. We can then define our shortest-path graph kernel on S = (V,E)
and S ′ = (V ′, E ′) as

kshortest paths(S, S
′) =

∑
e∈E

∑
e′∈E′

k1
walk(e, e

′), (2.26)

where k1
walk is a positive definite kernel walks of length 1, i.e., a kernel on edges.

In the following, we will prove the validity of our shortest-path kernel.

Lemma 10 The shortest-path graph kernel is positive definite.

2.2 Graph Kernels based on Shortest Path Distances 59

Algorithm 1 Pseudocode for Floyd-Warshall’s algorithm [Floyd, 1962] for determining
all-pairs shortest paths.

Input: Graph G with n nodes, adjacency matrix A, and edge weights w

for i := 1 to n
for j := 1 to n

if ((A[i, j] == 1) and i 6= j
D[i, j] = w[i, j];

else
if (i == j)
D[i, j] = 0;

else
D[i, j] =∞;

end
end

end
end
for k := 1 to n

for i := 1 to n
for j := 1 to n

if (D[i, k] + D[k, j] < D[i, j])
D[i, j] := D[i, k] +D[k, j];

end
end

end
end

Output: Shortest path distance matrix D

60 2. Fast Graph Kernel Functions

Proof The shortest-path kernel is simply a walk kernel run on a Floyd-transformed graph
considering walks of length 1 only. We follow the proofs in [Kashima et al., 2003] and
[Borgwardt et al., 2005]. First, we choose a positive definite kernel on nodes and a positive

definite kernel on edges. We then define a kernel on pairs of walks of length 1, k
(1)
walk, as the

product of kernels on nodes and edges encountered along the walk. As a tensor product
of node and edge kernels [Schölkopf and Smola, 2002], k

(1)
walk is positive definite. We then

zero-extend k
(1)
walk to the whole set of pairs of walks, setting kernel values for all walks with

length 6= 1 to zero. This zero-extension preserves positive definiteness [Haussler, 1999].
The positive definiteness of the shortest-path kernel follows directly from its definition as
a convolution kernel, proven to be positive definite by [Haussler, 1999].

Runtime Complexity The shortest-path kernel avoids tottering and halting, yet it
remains an interesting question how it compares to the known random walk kernels in
terms of runtime complexity.

The shortest-path kernel requires a Floyd-transformation which can be done in O(n3)
when using the Floyd-Warshall algorithm. The number of edges in the transformed graph is
n2, if the original graph is connected. Pairwise comparison of all edges in both transformed
graphs is then necessary to determine the kernel value. We have to consider n2 * n2 pairs
of edges, resulting in a total runtime of O(n4).

Equal Length Shortest-Path Kernel

Label enrichment — in the spirit of [Mahé et al., 2004] — can also be applied to our Floyd-
transformed graphs to speed up kernel computation. Both edges and nodes can be enriched
by additional attributes. When performing the Floyd-Warshall algorithm, one is usually
interested in the shortest distance between all nodes. However, if we store information
about the shortest paths, i.e., the number of edges or the average edge length in these
shortest paths, then we can exploit this extra information to reduce computational cost.
For instance, this can be achieved by setting kernels to zero for all pairs of shortest paths
whose number of edges is not identical, i.e.,

ksteps(p, p
′) =

{
1 if steps(p) = steps(p′),
0 otherwise

(2.27)

where p and p′ are shortest paths and steps(p) and steps(p′) are the number of edges in
path p and p′, respectively. If the steps kernel is zero for a pair of paths, we do not have
to evaluate the node and edge kernel.

Note again that shortest paths need not be unique. Thus some extra criterion might be
required to select one particular path out of a set of shortest paths. For instance, one could
decide only to consider the shortest paths with minimum number of edges for computing
ksteps.

k Shortest-Path Kernel

Even more valuable information for our kernel could be to know not just the shortest path
between two nodes, but the k shortest paths. For each of the k shortest paths, one edge

2.2 Graph Kernels based on Shortest Path Distances 61

could then be created in the Floyd-transformed graph. Note that in this case — unlike our
general convention in this thesis — we would be dealing with graphs with multiple edges,
i.e., several edges between the same pair of nodes.

Finding k shortest walks and paths in a graph is a well-studied topic in graph theory
and applied sciences [Yen, 1971, Lawler, 1972]. Many of the algorithms proposed for solving
this problem, however, determine k shortest walks, not k shortest paths. Applying these
algorithms would reintroduce the problem of tottering into our path-based kernel. It is
therefore essential to chose an algorithm for finding ”k loopless shortest paths” in a graph,
as this is the term commonly used in the literature. Such algorithms have been proposed
over 30 years ago [Yen, 1971, Lawler, 1972] and any of those can be run on our input
graphs, as long as there are no cycles in our graphs with negative weights. The setback
of this method is the increased runtime complexity for determining k shortest loopless
paths. Yen’s algorithm in [Yen, 1971] requires O(kn(m + n log n)) time complexity for
finding k shortest loopless paths between a pair of nodes, where n is the number of nodes
and m is the number of edges. Consequently, theoretical complexity would be O(kn5)
for determining k shortest loopless paths for all pairs of nodes in a fully connected graph
and pairwise comparison of all k shortest paths in two graphs would be of complexity
O((kn2) ∗ (kn2)) = O(k2n4). As a result, the preprocessing step has a higher runtime
complexity than the kernel computation in this case.

A simple way to determine k shortest disjunct paths between two nodes, where no
pair of paths shares any identical edge, is to iteratively apply Dijkstra’s algorithm to the
same graph and to remove all edges that belong to the currently shortest path. Still,
this procedure would be of runtime complexity O(n2k(m + n log n)), which could become
O(kn4) in a fully connected graph.

2.2.4 Link to Wiener Index

We have stressed before that graph kernels try to tackle the graph comparison problem that
has been in the focus of several fields of research for decades, most prominently chemoin-
formatics. Is there any link between the approaches described in the chemoinformatics
literature and the recent advances in graph kernels? For our novel shortest-path kernel, we
were able to establish the first connection between molecular descriptors and graph kernels.
As we will prove in the following, graph comparison via the Wiener Index [Wiener, 1947]
is an instance of the shortest-path kernel. In other terms, the shortest-path kernel is a
generalization of the Wiener Index.

Recall the definition of the Wiener Index as given in Section 1.3.3.

Definition 11 (Wiener Index) Let G = (V,E) be a graph. Then the Wiener Index
W (G) of G is defined as

W (G) =
∑
vi∈G

∑
vj∈G

d(vi, vj), (2.28)

where d(vi, vj) is defined as the length of the shortest path between nodes vi and vj from G.

62 2. Fast Graph Kernel Functions

Now assume that we are given two graphs G and G′. Then we compute the product of
their Wiener Indices W (G) and W (G′) as

W (G) ∗W (G′) = (
∑
vi∈G

∑
vj∈G

d(vi, vj))(
∑
v′k∈G′

∑
v′l∈G′

d(v′k, v
′
l)) =

=
∑
vi∈G

∑
vj∈G

∑
vk∈G′

∑
vl∈G′

d(vi, vj)d(v
′
k, v

′
l) =

=
∑

p∈P (G)

∑
p′∈P (G′)

l(p)l(p′)

=
∑

p∈P (G)

∑
p′∈P (G′)

klinear(l(p), l(p
′)) (2.29)

where P (G) and P (G′) is the set of shortest paths in G and G′, respectively, and l(p) and
l(p′) and are the lengths of shortest paths p and p′, respectively.

Equation 2.29 shows that the product of two Wiener Indices is the same as a shortest-
path kernel in which k

(1)
walk is a linear kernel on shortest path distances. By picking another

type of kernel for k
(1)
walk, the shortest-path kernel allows to design a similarity measure

different from the Wiener Index. Hence shortest-path kernels provide a rich family of
similarity measures on graphs that include similarity between Wiener Indices as one special
instance.

2.2.5 Experiments

We performed two sets of experiments to experimentally evaluate our novel class of graph
kernels. In the first experiment, we assessed the classification accuracy of several variants
of the shortest-path kernel and of random walk kernels that suffer from tottering. In the
second experiment, we assessed runtime and classification accuracy of the shortest-path
kernel and the fast random walk kernel from Section 2.1 on three graph classification
benchmarks.

Experiment 1: The Impact of Tottering on Classification Accuracy

To evaluate the practical performance of our shortest-path graph kernel, we chose a classi-
fication task from bioinformatics[Borgwardt et al., 2005]. 540 proteins, 90 per class, should
be classified into 6 distinct functional classes in 10-fold cross-validation, solely based on
protein structure information.

We obtained the protein structures from the Protein Data Bank [Berman et al., 2000]
and their corresponding enzyme class labels from the BRENDA enzyme database [Schom-
burg et al., 2004b]. We randomly choose 90 proteins from each of the 6 enzyme EC
hierarchy top level classes. We translated these protein structures into graph models in
which the secondary structure elements of a protein represent the nodes.

Every node is connected to its three nearest neighbors in space. As a simplification,
distances between secondary structure elements are calculated as distances between their
spatial centers. Edges are labeled by the distance they represent in Å. Nodes bear labels
representing their type, namely helix, sheet or loop, and their length in amino acids.

2.2 Graph Kernels based on Shortest Path Distances 63

On these graph models of proteins, we ran random walk kernels and shortest-path
kernels. As we wanted to check the impact of tottering on the performance of the random
walk kernels, we had to ensure by our choice of λ that walks of length > 1 and hence
tottering would be captured by the random walk kernel, and not be blurred by halting.
For this reason, we set λ = 1, but computed only walks up to a certain length k. We
performed tests for k in the range from 4 to 7. This way, longer and shorter walks receive
the same weight, and the random walk kernel cannot degenerate to an all-edges-comparison
due to halting. However, it might suffer from tottering, which is the phenomenon we are
interested in in this experiment.

We also employed our shortest-path kernel and the equal length shortest-path kernel on
the same data. Furthermore, we ran a 2 shortest-paths kernel determining the 2 shortest
disjunct paths between nodes via Dijkstra’s algorithm.

All graph kernels use the same set of node and edge kernels. Types of two nodes v and
v′ are compared via a delta kernel, i.e.,

ktype(v, v
′) =

{
1 if type(v) = type(v′),
0 otherwise

The length attribute of nodes are compared via a Brownian bridge kernel, i.e.,

klength(v, v
′) = max(0, c− |length(v)− length(v′)|).

The same Brownian bridge kernel is applied to edges to measure their difference in
length. c is set to 3 for nodes and to 2 for edges via cross-validation as in [Borgwardt
et al., 2005].

After calculating all graph kernel matrices mentioned above, we predicted enzyme class
membership in 10-fold cross-validation for 540 proteins. We performed “one-class vs. rest”
Support Vector Machine classification and repeated this for all six EC top level classes.
We report results as averages across all EC classes in Table 2.2

Results The shortest-path kernels outperform all walk kernels with an accuracy of at
least 93.33%. The accuracy level of the worst shortest-path kernel on 540 proteins is
statistically significantly higher than that of the best random walk kernel, which uses
walks of up to length 4 (one-sided Welch t-test with 95% confidence level). As a result,
considering shortest paths instead of walks increases classification accuracy significantly in
our first experiment.

Among the walk kernels, classification is decreasing with the length of the walks under
study. This is an indicator that the longer the walks are that we examine, the more
numerous walks created by tottering get. With an increasing number of tottering walks,
classification accuracy decreases. This is consistent with results reported by [Mahé et al.,
2004].

Among the shortest-path kernels, the 2 shortest-path kernels perform slightly better
than the equal length shortest-path kernel and the standard shortest-path kernel. However,

2Our graph kernel was implemented in MATLAB, release 13. We used a Linux Debian workstation
with 3 GHz Intel CPUs for our experiments. We employed the SVM package SVLAB.

64 2. Fast Graph Kernel Functions

kernel type accuracy
2 shortest paths 94.44 ± 0.80
e.l. shortest paths 93.52 ± 0.93
shortest paths 93.33 ± 1.02
walks up to length 4 89.63 ± 0.73
walks up to length 5 88.89 ± 0.63
walks up to length 6 88.15 ± 0.53
walks up to length 7 87.96 ± 0.56

Table 2.3: Walk kernel vs. shortest-path kernel. Prediction accuracy (± standard error) on 540
proteins from 6 EC classes in 10-fold cross-validation (st. dev. = standard deviation, e.l. = equal
length).

the differences in accuracy between the different types of shortest-path kernels are not
significant on our test set.

Experiment 2: Accuracy and Runtime on Benchmarks

In a second series of experiments, we compared our shortest-path kernel to the classic
random walk kernel in terms of runtime and classification accuracy. We employed 3 bench-
marks datasets: MUTAG, PTC, and Enzyme, as described in Section 2.1.4. Note that
only subsets of MUTAG and PTC are commonly used for classification benchmarking, and
we keep to this standard. For PTC, we used the cancerogenicity results from Male Rats
(MR). We summarize statistics of the three datasets in Table 2.4.

We ran a geometric random walk kernel with λ = 10−3, and an equal length shortest-
path kernel on these 3 classification tasks. To evaluate their performance, we tested their
prediction accuracy on independent evaluation sets which we obtained as follows. We split
the datasets into 10 folds of identical size. We then split 9 of these folds again into 10
parts, trained an C-SVM (implemented by LIBSVM [Chang and Lin, 2001]) on 9 parts,
and predicted on the 10th part. We repeated this training and prediction procedure for
C ∈ {10−7, 10−6, . . . , 107}, and determined the C reaching maximum prediction accuracy
on the 10th part. We then trained an SVM with this best C on all 9 folds (= 10 parts), and
predicted on the 10th fold, which acts as an independent evaluation set. We repeated the
whole procedure 10 times such that each fold acts as independent evaluation set exactly
once.

We repeated the whole experiment 10 times to avoid random effects resulting from
random splitting of the dataset into 10 folds. We ran the complete series of experiments
once ignoring node labels, once considering node labels. We report prediction accuracy for
labeled and unlabeled graphs in Table 2.5 and associated runtimes in Table 2.6.

Results The shortest-path kernel comprehensively outperforms the random walk kernel
in all our experiments on MUTAG and Enzyme. Differences in accuracy are large, ranging
from roughly 5% on MUTAG with node labels to ∼ 15% on Enzyme with node labels.

2.2 Graph Kernels based on Shortest Path Distances 65

dataset instances classes # nodes # edges # distinct node labels

MUTAG 188 2 (125 vs. 63) 17.7 38.9 7
PTC 344 2 (192 vs. 152) 26.7 50.7 22
Enzyme 600 6 (100 each) 32.6 124.3 3

Table 2.4: Statistics on classification benchmark datasets.

graphs unlabeled labeled
kernel RW SP RW SP

MUTAG 71.89 ± 0.66 81.28 ± 0.45 78.94 ± 0.65 83.94 ± 0.69
PTC 55.44 ± 0.15 55.44 ± 0.61 59.82 ± 0.74 59.09 ± 0.66
Enzyme 14.97 ± 0.28 27.53 ± 0.29 24.76 ± 0.38 40.19 ± 0.62

Table 2.5: Classification accuracy (± standard error) of random walk kernel (RW) and shortest-
path kernel (SP) on real world datasets with and without node labels (averaged over 10 repeti-
tions).

graphs unlabeled labeled
kernel RW SP RW SP

MUTAG 42.3” 23.2” 2’24” 2’12”
PTC 2’39” 2’35” 13’7” 14’53”
Enzyme 10’45” 6’1” 46’55” 30’8”

Table 2.6: Runtime of random walk kernel (RW) and shortest-path kernel (SP) on real world
datasets with and without node labels.

66 2. Fast Graph Kernel Functions

Note that we are using 1vs1 classification for the balanced 6-class problem on Enzyme.
A naive classifier that puts all enzymes into the same class would reach 16.67% accuracy
on this dataset.

On PTC, both approaches give rather bad results that do not differ significantly. This
is not very surprising, as PTC is known to be hard to separate[Toivonen et al., 2003].

In terms of runtime, the shortest-path kernel is faster than the random walk kernel in
5 out of 6 trials. On the largest dataset, Enzyme, the shortest-path kernel requires only
2/3 of the runtime of the random walk kernel. Only on PTC with labels, the random walk
is 2 minutes faster than the shortest-path kernel.

2.2.6 Summary

We have defined graph kernels based on shortest path distances, whose runtime is poly-
nomial in the size of the graphs and which are positive definite and retain expressivity
while avoiding the phenomena of ”tottering” and ”halting”. In experiments on benchmark
datasets, their prediction accuracy always improved upon that of random walk kernels.

The shortest-path kernels prevent tottering. It is not possible that the same edge
appears twice in the same shortest path, as this would violate the definition of a path.
Subsequently, artifically high similarity scores caused by repeated visiting of the same
cycle of nodes are prohibited in our graph kernel.

Our novel kernel also avoids ”halting”. We are looking at paths, which — in contrast
to walks — cannot be of infinite length. Hence we do not have to employ a decaying factor
that could cause halting. Even better, as we do not need a decaying factor, our graph
kernel on shortest path distances is parameter-free.

The shortest-path kernel as described in this section is applicable to all graphs on
which Floyd-Warshall can be performed. Floyd-Warshall requires that cycles with negative
weight do not exist. If edge labels represent distances, which is the case in most molecular
classification tasks, this condition generally holds.

As all and longest paths are NP-hard to compute, our graph kernel uses shortest paths.
As shown in our experiments, shortest distances between nodes are a characteristic of
graphs which is essential for graph classification in many applications such as chemoin-
formatics and bioinformatics. Problems could arise for the shortest-path kernel if paths
other than shortest are most important in a particular application domain, as it discards
all information represented by edges that are not part of a shortest path.

Concerning runtime, the shortest-path kernel is even faster than the sped-up random
walk graph kernel in 5 out of 6 runs, although its runtime is in O(n4), while the random walk
is in O(n3) . The reason might be that the shortest-path kernel requires the computation
of all shortest paths only once per graph. These shortest path lengths can then be reused
for each kernel computation (note that in this fashion, we are explicitly computing the
feature space). Furthermore, the O(n4) effort for comparing all pairs of shortest paths
includes only one pairwise comparison of all these distances, while the O(n3) random walk
requires a series of matrix multiplication that are all in O(n3). Hence lower constants in
the runtime of the shortest-path kernel are likely to be the reason for its superior runtime
performance.

2.2 Graph Kernels based on Shortest Path Distances 67

Still, there is one main concern regarding the shortest-path kernel when applied to
large graphs with hundreds and thousands of nodes: Large graphs are usually sparse, but
the shortest-path kernel will turn these sparse graphs into dense shortest-path graphs that
may lead to enormous memory and runtime problems. While the shortest-path kernel is
efficient (on the small and medium-size graphs in our experiments), avoids tottering and
halting, and is an expressive measure of graph similarity, it is probably not scalable to very
large graphs. Thus the goal of the next section will be to define a graph kernel that scales
up to very large graphs.

68 2. Fast Graph Kernel Functions

2.3 Graphlet Kernels for Large Graph Comparison

In Section 2.1 and Section 2.2, we have defined new approaches to graph kernel computation
that led to a significant gain in efficiency. While the traditional random walk required a
runtime of O(n6), our fast random walk kernels can be computed in O(n3) and our shortest-
path kernels in O(n4). In our experiments, the computation of both kernels was up to 1,000
times faster than that of previous state-of-the-art approaches.

Unfortunately, even the fastest among these efficient graph kernels have a theoretical
runtime of O(n3). While O(n3) might be a feasible and attractive runtime when dealing
with the standard benchmark datasets from graph mining with less than 30 nodes on
average, it is expensive when comparing large graphs with hundreds and thousands of
nodes. Such large graphs may represent large groups of people, a detailed atom-level
model of a protein, or an interaction network including all protein interactions in a species.
It is desirable to develop graph kernels that can cope with such huge graphs.

Apart from this scalability issue, and even apart from the four criteria for graph ker-
nel design defined earlier, graph kernels suffer from one common characteristic so far: The
choice of subgraphs is completely ad-hoc. The motivation why to pick random walks, cyclic
patterns or shortest paths originates mainly from runtime and expressiveness considera-
tions. However, there is no theoretical justification, let alone a proof why certain types of
substructures should reflect graph similarity better than others.

In this chapter, we tackle both problems aforementioned. Motivated by the matrix
reconstruction theorem and the graph reconstruction conjecture, we argue that comparing
subgraphs with 4 nodes provides an expressive measure of similarity on graphs. A graph
kernel based on comparing all size-4 subgraphs, however requires a runtime of O(n8) when
naively implemented. We therefore first design several algorithmic tricks to speed up
computation, and second we develop a sampling scheme that allows us to approximate the
distribution of size-4 subgraphs within a specified level of confidence and precision while
sampling a constant number of these size 4-subgraphs. Our novel graph kernel outperforms
existing ones, and is able to deal with graphs that were too large for graph kernels before.

2.3.1 Graph Reconstruction

We start our exposition by summarizing the graph reconstruction conjecture and the ma-
trix reconstruction theorem, and conclude this section by building a bridge between these
reconstruction ideas and graph kernels.

Reconstruction of Graphs

Graph reconstruction is a classic open problem in graph theory [Kelly, 1957, Hemminger,
1969]: Let G = (V,E) be a undirected graph of size n. For each v ∈ V , let Gv denote a
node-deleted subgraph of G, i.e., the graph obtained by deleting node v and all the edges
incident on it from G. Can G be reconstructed, up to an isomorphism, from its set of
node-deleted subgraphs {Gv}v∈V ? Intuitively, one asks: Given a graph G on n nodes, is G
determined uniquely up to an isomorphism by its subgraphs of size n− 1? Put differently,
are there two non-isomorphic graphs with identical n− 1 sized subgraphs?

Kelly [Kelly, 1957] proved the following theorem: Let G = (V,E) and G′ = (V ′, E ′) be

2.3 Graphlet Kernels for Large Graph Comparison 69

trees and g : V → V ′ be an isomorphism function such that Gv is isomorphic to G′
g(v) for

all v ∈ V , then G is isomorphic to G′. He conjectured that the following theorem is true
for arbitrary graphs:

Theorem 12 (Graph Reconstruction Conjecture) Let G and G′ be graphs of size
greater than 2 and g : V → V ′ be an isomorphism function such that Gv is isomorphic to
G′
g(v) for all v ∈ V . Then G is isomorphic to G′.

Kelly [Kelly, 1957] verified his conjecture by enumeration of all possible graphs for
2 < n ≤ 6, which was later extended to 2 < n ≤ 11 by [McKay, 1997]. Special classes
of graphs such as regular graphs, and disconnected graphs have also been shown to be
reconstructible [Kelly, 1957]. The general case, however, remains a conjecture. It is widely
believed though, that if a counterexample to the graph reconstruction problem exists, then
it will be of size n� 11 [McKay, 1997].

Reconstruction of Matrices

While graph reconstruction remains a conjecture for general graphs, reconstruction of
matrices has been resolved [Manvel and Stockmeyer, 1971]. We need some terminology to
make this result clearer. Let M be any n× n matrix. We call the submatrix obtained by
deletion of its k-th row and k-th column the k-th principal minor, and denote it as Mk.
The following theorem due to [Manvel and Stockmeyer, 1971] asserts that the principal
minors determine the matrix:

Theorem 13 Any n×n matrix M with n ≥ 5 can be reconstructed from its list of principal
minors {M1, . . . ,Mn}.

The adjacency matrix of a graph is not invariant to reordering of the nodes, but, if the
graph is node ordered then its adjacency matrix is unique. For such graphs, the following
corollary is particularly relevant:

Corollary 14 Any graph G = (V,E) of size n ≥ 5 whose nodes are ordered as v1, . . . , vn
can be reconstructed from its set of maximal subgraphs {Gv1 , . . . , Gvn}, if their nodes are
ordered in the same order as those of G.

The condition that the nodes of all node-deleted subgraphs of G have to be ordered
in the same way as those of G implies that the nodes of G must be sorted according to
a global canonical vertex ordering. We will explain what we mean by a global canonical
vertex ordering in the following. For this purpose, we first have to clarify two concepts:
complete graph invariant (see Section 1.3.3) and canonical form.

A function f of a graph is called a complete graph invariant if G ' G′ is equivalent to
f(G) = f(G′). If, in addition, f(G) is a graph isomorphic to G, then f is called a canonical
form for graphs [Koebler and Verbitsky, 2006, Gurevich, 2001]. [Gurevich, 2001] showed
that graphs have a polynomial-time computable canonical form if, and only if, they have
a polynomial-time computable complete invariant.

70 2. Fast Graph Kernel Functions

Recall that a vertex ordering π maps every node of a graph to a unique number in
{1, . . . , n}. If π is invariant to isomorphism, then it defines a complete graph invariant.
With some abuse of terminology, in the sequel, we will refer to such a vertex ordering as
canonical. This is justified because π can indeed be used to define a canonical form for
graphs. Every vertex ordering also induces a vertex ordering on the subgraphs. This is
because every subset of an ordered set is also ordered. We denote this induced ordering
by πG. Note that even if π is canonical, it does not guarantee that the induced vertex
orderings πG are canonical. If every induced vertex ordering of π is also canonical, then π
is said to be globally canonical.

Unfortunately, computing a global canonical vertex ordering is a NP-hard problem
because given a solution to this problem, one can solve subgraph isomorphism– a NP-
complete problem– in polynomial time [Garey and Johnson, 1979]. Nevertheless, for many
graphs of practical importance, it is easy to compute a global canonical vertex ordering,
especially in the field of databases. If we are dealing with a graph whose nodes are distinct
objects from the same database, then we can order the nodes in this graph according
to their keys in the database. Ordering via database keys obviously results in a global
canonical vertex ordering.

Graph Similarity via Graph Reconstruction

Why is the graph reconstruction conjecture interesting for graph kernels? Because it deals
with a question that is implicitly asked when designing graph kernels: Which substructures
of a graph determine a graph up to isomorphism? If the graph reconstruction conjecture
were true, this question could be answered: A graph is determined uniquely up to iso-
morphism by its size-(n − 1) subgraphs. Although the conjecture has not been proven in
general, it has been shown for certain classes of graphs, in particular for graphs with global
canonical vertex ordering. We will exploit these results to define novel graph kernels in the
following.

2.3.2 Graph Kernels based on Graph Reconstruction

In this section, we define graph kernels based on the idea of decomposing a graph of size
n recursively into its subgraphs of size k. We will refer to these subgraphs as k minors, as
formalized in the following definition.

Definition 15 (k Minors) Let M be a n×n matrix. The set of all size-k sub-matrices of
M obtained by deleting n− k rows and corresponding columns of M is called the k minors
of M . Analogously, given a graph G of size n, the set of all size-k graphs obtained by
deleting n− k nodes from G is called the k minors of G.

Definition 16 (Principal Minors) Let M be a n × n matrix. The set of all (n − 1)
minors of M is called the set of principal minors. Analogously, given a graph G of size n,
the set of all n− 1 minors is called the principal minors of G.

In the sequel we will be concerned with 4 minors. Therefore, we study some of their
properties now. For undirected graphs, the entries in the upper triangular submatrix

2.3 Graphlet Kernels for Large Graph Comparison 71

of the adjacency matrix completely determine the graph (Recall that we are considering
graphs without multiple edges and without self-loops). In the case of graphs of size 4,
this submatrix contains 6 entries, each of which could either be 0 or 1 depending on the
presence or absence of the corresponding edge. Therefore, there are 26 = 64 different types
of graphs of size 4. We refer to these 64 graphs as a graphlets [Przulj, 2007], and denote
them as G4 = {graphlet(1), . . . , graphlet(64)}. Corresponding to these 64 graphlets one
can also compute a matrix P ∈ {0, 1}64×64 whose entries are defined as:

Pij =

1 if graphlet(i) ' graphlet(j),

0 otherwise.
(2.30)

P precomputes the isomorphism relationship between graphlets.

Recursive Graph Comparison

Graph reconstruction tries to establish isomorphism between graphs by checking their
principal minors for isomorphism. Along the same lines, we define a graph kernel to
measure similarity between graphs by comparing their principal minors. Motivated by the
matrix reconstruction theorem, we recursively iterate this procedure down to subgraphs of
size 4, resulting in a graph kernel based on graphlets.

Definition 17 (Graphlet Kernel) Given two graphs G and G′ of size n ≥ 4, let M and
M′ denote the set of principal minors of G and G′ respectively. The recursive graph kernel,
kn, based on principal minors is defined as

kn(G,G
′) =

1
n2

∑
S∈M,S′∈M′ kn−1(S, S

′) if n > 4,

δ(G ' G′) if n = 4
(2.31)

where δ(G ' G′) is 1 if G and G′ are isomorphic, and 0 otherwise. Now the graphlet kernel
is defined as

k(G,G′) := kn(G,G
′). (2.32)

Lemma 18 The graphlet kernel is positive semi-definite.

Proof The proof is by induction. Clearly, k4(G,G
′) := δ(G ' G′) is a valid positive

semi-definite kernel [Schölkopf and Smola, 2002]. For any n ≥ j > 4 let kj−1(S, S
′) be

a valid kernel. Since the class of positive semi-definite kernels is closed under addition
and multiplication by a positive constant, it follows that kj(G,G

′) is a valid positive semi-
definite kernel.

It is easy to see that the above kernel simply compares the 4 minors in both G and G′,
and hence can be computed non-recursively. This intuition is formalized below.

72 2. Fast Graph Kernel Functions

Lemma 19 Let M4 and M′
4 denote the set of 4 minors of G and G′ respectively. The

graphlet kernel can be computed without recursion as

k(G,G′) = kn(G,G
′) =

∑
S∈M4

∑
S′∈M′

4

δ(S ' S ′). (2.33)

Equivalently,

k(G,G′) = kn(G,G
′) =

∑
S,S′∈G4

#(S v G) #(S ′ v G′) δ(S ' S ′), (2.34)

where #(S v G) is the number of occurrences of S in G, and #(S ′ v G′) the number of
occurrences of S ′ in G′.

Proof Clearly (2.33) is true for graphs of size 4. For n > 4 it follows by unrolling the
recursion and noting that there are n minors of size n− 1, n− 1 minors of size n− 2 and
so on.

To see (2.34) note that M4 and M′
4 are multisets of elements from the graphlet set G4,

with each graphlet S or S ′ occurring #(S v G) or #(S ′ v G′) times respectively.

Since there are
(
n
4

)
, i.e., O(n4) 4 minors in a graph, the following corollary is immediate.

Corollary 20 Let c denote the time required to perform an isomorphism check on two
graphs of size 4. While a naive, recursive implementation of the recursive graph kernel
requires O(n2nc) runtime, the runtime can be reduced to O(n8c) via the non-recursive for-
mula, (2.33).

While we reduce runtime from exponential to polynomial in the size of the graphs by
Corollary 20, the n8 factor still represents a major problem in real-world applications. The
expensive step is the pairwise comparison of the 4 minors of both graphs. Note however
that if one needs to compute the pairwise kernel on a database of m graphs, then the O(n4)
work per graph can be amortized by employing the following scheme: Precompute all the
4 minors of the graph, check for isomorphisms to any of the 64 graphlets, and store their
frequency of occurrence. Overall, this requires O(mn4c) effort. Modulo isomorphism, there
are only 11 distinct graphs of size 4. Therefore, computing each individual entry of the
kernel matrix requires O(1) effort. The total cost of computing the m ×m kernel matrix
therefore reduces from O(m2n8c) to O(mn4c +m2). Typically, m ≤ n4 and therefore the
overall time complexity is dominated by the mn4c term. In the following, we will first
describe an efficient scheme to perform the isomorphism checks efficiently, and then we
will show how to avoid the n4 term by an efficient sampling scheme that drastically speeds
up the preprocessing step.

2.3.3 Efficiently Checking Graph Isomorphism

In this section, we describe various tricks of trade that can be used to speed up isomorphism
checking on small graphs. Since we are dealing with small sized subgraphs we can determine
isomorphism classes among them, and explicitly precompute isomorphism relationships.

2.3 Graphlet Kernels for Large Graph Comparison 73

Unlabeled Graphs

Given a graph G we define a 64 dimensional vector fG whose i-th component corresponds
to the frequency of occurrence of graphlet(i) in graph G. By exploiting the matrix P and
frequency vector fG we can rewrite (2.34) as follows.

Definition 21 (Kernel from Frequency Vectors) Given two graphs G and G′, and
their frequency vectors fG and fG′, we can compute the graphlet kernel as

k(G,G′) = f>GPfG′ . (2.35)

In short, this means that we have to precompute the permutation matrix P in a one-
time-effort. To compute a graph kernel matrix on a set of graphs, we have to determine the
frequency vector of each graph by enumerating its graphlets. To obtain the graph kernel
value for two graphs, we multiply their frequency vectors to the permutation matrix.

Accounting for Differences in Graph Size In Equation (2.35), a weakness of R-
convolution kernels becomes apparent. R-convolution kernels compare all decompositions
of two objects pairwise. As the number of decompositions is usually directly proportional
to the size of the objects, graph kernel values increase for larger objects. In our setting, the
graph kernel value directly depends on the absolute graphlet frequencies in two graphs. As
a consequence, the larger the two graphs or one of the two graphs, the larger their kernel
value if they are similar. To compensate for this problem, we may work with relative
frequencies instead of absolute frequencies of 4 minors.

Definition 22 (Graphlet Distribution Vector) Given a graph G. We define the rela-
tive frequency vector or graphlet distribution vector D(G) as

D(G)i =
#occurrences of graphlet(i) in G

#all graphlets in G
(2.36)

where D(G)i is the i-th component of D(G), 1 ≤ i ≤ 64, and graphlet(i) is the i-th graphlet
class.

This leads directly to a kernel on relative graphlet frequencies, which reflect the distri-
bution of graphlets across the 64 graphlet classes.

Definition 23 (Kernel on Graphlet Distributions) Given two graphs G and G′, and
their graphlet distribution vectors D(G) and D(G′), we can compute the graphlet kernel k
as

k(G,G′) = D(G)>PD(G′). (2.37)

74 2. Fast Graph Kernel Functions

Labeled Graphs

If we are working with graphs with node labels, graph kernel computation becomes more
difficult, but can still be performed efficiently. The additional complexity derives from the
fact that two 4 minors need not only be isomorphic now, but their corresponding nodes
have to bear identical node labels as well. In terms of graph theory, we are now dealing
with isomorphisms that do preserve both topology and node labels of the graph.

As a consequence, we cannot use one single permutation matrix to get graph kernel
values as in Equation (2.35). In principle, we need one permutation matrix for each set of
node labels that a 4 minor could bear. Even if we assume that node labels are discrete and
elements of finite alphabet Σ of size |Σ|, we have to deal with |Σ|4 different sets of node
labels. This looks like a hopeless endeavor.

Still, we can reduce the computational burden if we exploit special ’structure’ within
the node labels of 4 minors. Our approach is to categorize sets of node labels into different
equivalence classes. Two node sets belong to the same equivalence class if they contain the
same number of distinct node labels and these node labels occur with the same frequency.
We will formalize this intuition in the following lemma.

Lemma 24 (Equivalence Classes of 4 Minor Labels) Let γ = (v1, v2, v3, v4) be a 4
minor with nodes v1, v2, v3 and v4. Let L(γ) = (L(v1),L(v2),L(v3),L(v4)) denote its set
of node labels, sorted according to some arbitrary order, such that nodes with identical label
appear in consecutive blocks. If we now count identical node labels and their frequencies
in L(γ), then L(γ) belongs to one of the following 8 equivalence classes (ECk with k ∈
{1, . . . , 8}) of 4 minor labels:

1. class (1-1-1-1), where L(v1),L(v2),L(v3),L(v4) are pairwise non-identical,

2. class (1-1-2), where L(v1),L(v2),L(v3) are pairwise non-identical, but L(v3) = L(v4),

3. class (1-2-1), where L(v1),L(v2),L(v4) are pairwise non-identical, but L(v2) = L(v3),

4. class (1-3), where L(v1),L(v2) are pairwise non-identical, but L(v2) = L(v3) = L(v4),

5. class (2-1-1), where L(v1),L(v3),L(v4) are pairwise non-identical, but L(v1) = L(v2),

6. class (2-2), where L(v1),L(v3) are pairwise non-identical, but L(v1) = L(v2) and
L(v3) = L(v4),

7. class (3-1), where L(v1),L(v4) are pairwise non-identical, but L(v1) = L(v2) = L(v3),

8. class (4), where L(v1),L(v2),L(v3),L(v4) are all pairwise identical.

For each of these equivalence classes ECk with k ∈ {1, . . . , 8}, we precompute one per-
mutation matrix Pk. To check isomorphism of two 4 minors γ and γ′, we sort them accord-
ing to the same order, determine their graphlet classes graphlet(γ) = i and graphlet(γ′) =
j, check their sets of node labels for identity, determine their equivalence class ECk, and
check isomorphism by looking up Pk(i,j). All these steps can be performed efficiently by
looking up precomputed hash tables or precomputed permutation matrices.

2.3 Graphlet Kernels for Large Graph Comparison 75

2.3.4 Sampling from Graphs

In order to compute our kernel exactly one needs to exhaustively enumerate all graphlets
of size 4 in the input graphs. Suppose a given graph has n nodes, then there are

(
n
4

)
or

equivalently O(n4) graphlets. If the graphs are small then this is feasible, but on large
graphs (with n of the order of hundreds or thousands or more) runtime will degenerate.
In this case one needs to resort to sampling. The idea is very simple: Randomly select
sets of 4 nodes from the graph and observe the empirical distribution of graphlets induced
by these nodes. The hope is that if sufficient number of random samples are drawn, then
the empirical distribution is sufficiently close to the actual distribution of graphlets in
the graph. The number of samples needed to achieve a given confidence with a small
probability of error is called the sample complexity.

This approach is not new; the problem of sampling subgraphs from graphs has been
widely studied in the bio-informatics literature [Przulj, 2007, Przulj et al., 2006, Kashtan
et al., 2004, Wernicke, 2005]. Unfortunately, the algorithms proposed there are rather
ad-hoc and do not provide any bounds on sample complexity. Recently, [Weissman et al.,
2003] proved distribution dependent bounds for the L1 deviation between the true and
the empirical distributions. We adapt their results and derive sample complexity bounds
which are much stronger than any previously known result for this problem.

Sample Complexity Bound

Let A = {1, 2, . . . , a} denote a finite set of elements. For two probability distributions P
and Q on A, the L1 distance between P and Q is defined as

||P −Q||1 :=
a∑
i=1

|P (i)−Q(i)|. (2.38)

Given a multiset X := {Xj}mj=1 of independent identically distributed (i.i.d.) random
variables Xj drawn from some distribution D (denoted as Xj ∼ D), the empirical estimate
of D is defined as

D̂m(i) =
1

m

m∑
j=1

δ(Xj = i), (2.39)

where δ(·) denotes the indicator function; δ(Xj = i) = 1 if Xj = i and zero otherwise. For
p ∈ [0, 1/2), define

ψ(p) =
1

1− 2p
log

1− p
p

, (2.40)

and set ψ(1/2) = 2. Note that ψ(p) ≥ 2 for all valid p. Furthermore, for a probability
distribution D on A define:

D(S) :=
∑
i∈S

D(i) for all S ⊆ A and (2.41)

πD := max
S⊆A

min{D(S), 1−D(S)}. (2.42)

76 2. Fast Graph Kernel Functions

Theorem 25 [Weissman et al., 2003] Let D be a probability distribution on the finite set
A = {1, . . . , a}. Let X := {Xj}mj=1, with Xj ∼ D. Then for all ε > 0

P
{
||D − D̂m||1 ≥ ε

}
≤ (2a − 2)e−mψ(πD)ε2/4. (2.43)

The following corollary is straightforward:

Corollary 26 Let D, A, and X as above. For a given ε > 0 and δ > 0, at least

m ≥
4
(
log 2 · a+ log

(
1
δ

))
ψ(πD)ε2

(2.44)

samples are required to ensure that P
{
||D − D̂m||1 ≥ ε

}
≤ δ.

By observing that ψ(πD) ≥ 2, one can eliminate the distribution dependent term in the
above corollary to obtain:

Corollary 27 Let D, A, and X as above. For a given ε > 0 and δ > 0, at least

m ≥
2
(
log 2 · a+ log

(
1
δ

))
ε2

(2.45)

samples are required to ensure that P
{
||D − D̂m||1 ≥ ε

}
≤ δ.

Implications of the Bound

In order to apply Corollary 27 to our problem we set A to be the set of all graphlets
of size 4 and assume that they are distributed according to a unknown distribution D.
Furthermore, let m be the number of graphlets randomly sampled from the graph. Then
(2.45) gives the number of samples needed to ensure that the empirical distribution D̂m is
at most ε distance away from the true distribution D with confidence 1− δ.

The bound has a number of desirable properties. First of all, notice that (2.44) is
independent of n, the size of the graph. What this means in practice is that our sampling
algorithm is highly scalable and works even for very large graphs. Secondly, notice that
our sample complexity bound only has an additive dependence on a, the size of the set
over which the distribution is defined.

When dealing with unlabeled graphs, there are a total of 64 possible graphlets of size
4. But, modulo isomorphism, there are only 11 distinct graphlets [Przulj, 2007]. Finally,
if we set ε = 0.05 and δ = 0.05, then our bound implies that we only need to sample 8, 497
graphlets from a graph. If we decrease ε to 0.01 and δ to 0.01, then this number increases
to 244, 596.

When considering labeled graphs, the total number of possible graphlets increases, as
graphlets are now defined both by their topology and their node labels. If labels are chosen
from an alphabet Σ with size |Σ|, then a >

(|Σ|
4

)
∗ 11, as we can clearly label each graphlet

2.3 Graphlet Kernels for Large Graph Comparison 77

with 4 (distinct) node labels from Σ. As a consequence, a is in O(|Σ|4) for labeled graphs.
Hence our sample size is still independent from graph size n, but growing with the size
of the node label alphabet Σ to the power of 4. Recalling that isomorphism checking on
labeled graphs is also much more involved than on unlabeled graphs, it becomes apparent
that both our speed up techniques are faster and easier to implement on unlabeled than on
labeled graphs, as labeled graphs require larger sample sizes and more involved isomorphism
checks. Speeding up the efficiency of our sampling scheme for labeled graphs is a topic of
ongoing research.

2.3.5 Experiments

In this section, we evaluate the performance of our novel graph kernel based on enumerating
or sampling graphlets. We are interested in how it compares to our fast random walk graph
kernel from Section 2.1, and the shortest-path kernel from Section 2.2 in terms of runtime
and classification accuracy.

For this purpose we evaluated the graphlet kernel on the same three datasets for which
we had previously established results for random walk and shortest-path kernels: MUTAG,
PTC and Enzyme. We represent the objects in these datasets as unlabeled graphs. Fur-
thermore, we employ graph kernels on a protein function prediction task from [Dobson and
Doig, 2003a], which we describe next.

Dobson and Doig 2003 (D & D)

This dataset comprises 1178 proteins, including 691 enzymes and 587 non-enzymes. The
classification task is to predict for each of the proteins whether it belongs to the class of
enzymes or not. We turn this problem into a graph classification problem by describing
the structure of each protein by a graph.

Nodes represent amino acids, and two nodes are linked by an edge if they are less than
6 Å apart. The average number of nodes per protein structure graph model is 284.4 and
the average edge number is 1921.6.

Applying graph kernels to such detailed models is particularly challenging. In 2005, we
concluded that state-of-the-art graph kernels could not tackle graph classification problems
with graphs of this size [Borgwardt et al., 2005]. It is of particular interest to us if our novel
graph kernels and sampling scheme allows to extend the applicability of graph kernels to
these detailed models.

Experimental Settings

We compute the graphlet kernel (GK) for different sample sizes corresponding to a pre-
specified level of confidence and precision. As there are only 11 distinct subgraphs of size
4 modulo isomorphism, a equals 11.

• GK 1986 sampling m = 1986 graphlets, which corresponds to a precision level of
ε = 0.1 and a confidence parameter of δ = 0.1,

• GK 2125 sampling m = 2125 graphlets, which corresponds to a precision level of
ε = 0.1 and a confidence parameter of δ = 0.05,

78 2. Fast Graph Kernel Functions

kernel MUTAG PTC Enzyme D & D

RW 71.89 ± 0.66 55.44 ± 0.15 14.97 ± 0.28 > 1 day

SP 81.28 ± 0.45 55.44 ± 0.61 27.53 ± 0.29 > 1 day

GK 1986 80.42 ± 0.23 59.09 ± 0.11 27.24 ± 0.17 74.51 ± 0.13
GK 2125 80.69 ± 0.31 58.86 ± 0.21 27.62 ± 0.42 74.55 ± 0.15
GK 7942 81.57 ± 0.41 59.06 ± 0.13 28.13 ± 0.24 74.67 ± 0.08
GK 8497 81.89 ± 0.23 59.38 ± 0.22 27.32 ± 0.17 74.46 ± 0.07
GK all 82.17 ± 0.58 59.65 ± 0.31 28.95 ± 0.50 > 1 day

Table 2.7: Classification accuracy on graph benchmark datasets (RW = random walk kernel,
SP = shortest-path kernel, GK m = graphlet kernel sampling m graphlets, ’> 1 day’ means
computation did not finish within 24 hours).

kernel MUTAG PTC Enzyme D & D

RW 42.3” 2’ 39” 10’ 45” > 1 day

SP 23.2” 2’ 35” 5’ 1” > 1 day

GK 1986 1’ 39” 3’ 2” 4’ 20” 11’ 35”
GK 2125 1’ 46” 3’ 16” 4’ 36” 12’ 21”
GK 7942 6’ 33” 12’ 3” 16’ 35” 42’ 45”
GK 8497 6’ 57” 12’ 49” 17’ 38” 45’ 36”
GK all 3’ 37” 2h 56’ 26” 4h 21’ 29” > 1 day

Table 2.8: Runtime for kernel matrix computation on graph benchmark datasets (RW = random
walk kernel, SP = shortest-path kernel, GK m = graphlet kernel sampling m graphlets, ’> 1 day’
means computation did not finish within 24 hours).

• GK 7942 sampling m = 7942 graphlets, which corresponds to a precision level of
ε = 0.05 and a confidence parameter of δ = 0.1,

• GK 8497 sampling m = 8497 graphlets, which corresponds to a precision level of
ε = 0.05 and a confidence parameter of δ = 0.05,

• GK all, meaning we enumerated all graphlets exhaustively.

As before, we use an independent evaluation scheme: Splitting the dataset into 10 folds,
optimizing parameters of an SVM on 9 folds, then predicting on the 10th fold which acts
as an independent evaluation set, and repeating the whole procedure until each fold has
been the independent evaluation set exactly once. We report classification accuracies for
our graphlet kernels in Table 2.7 and runtimes for kernel matrix computation in Table 2.8.
For comparison, we also list the results and runtimes for the random walk kernel and the
shortest-path kernel from Section 2.2, obtained on the same datasets and using the same
experimental protocol.

2.3 Graphlet Kernels for Large Graph Comparison 79

Results

On MUTAG, PTC and Enzyme, the graphlet kernel enumerating all graphlets (GK all)
reached the highest accuracy, even outperforming the shortest-path kernel. The GK kernels
based on sampling instead of enumeration yield similarly good results. The classification
accuracies they reach are only slightly worse than those of the exhaustive enumeration,
competitive with (MUTAG, Enzyme) or even better (PTC) than the shortest-path kernel,
and comprehensively better than those of the random walk kernel.

In terms of runtime, graphlet enumeration and graphlet sampling are expensive and
slower than the shortest-path and the random walk kernel on small datasets such as MU-
TAG and PTC. As graph size increases (Enzyme), graphlet sampling gets more competitive.
Sampling 1986 and 2125 graphlets on Enzyme is already faster than computing shortest-
path and random walk kernel. On D & D, none of the latter kernels finishes computation
within 24 hours, nor does the exhaustive enumeration of all graphlets. The 4 graphlet
kernels based on sampling manage to compute a kernel matrix on D & D in less than an
hour. GK 1986 even completes this task in 11 minutes and 35 seconds.

As an interesting aside, note that the classification accuracy that the graphlet kernels
reach on D & D is highly competitive with those known from the literature [Dobson and
Doig, 2003a, Borgwardt et al., 2005] which use heavily annotated vector or graph models of
proteins. In contrast, our graphlet kernels here operate on simple unlabeled graph models
of proteins.

2.3.6 Summary

In this section, motivated by the matrix reconstruction theorem and the graph recon-
struction conjecture, we have defined a graph kernel counting common size-4 subgraphs,
so-called graphlets, in two graphs. Kernel computation involves 2 expensive steps: enumer-
ation of all graphlets in each graph and pairwise isomorphism checks on these graphlets.
The latter step can be performed efficiently by exploiting the limited size of graphlets and
by precomputing isomorphism groups among them. We speed up the former step by an
efficient sampling scheme that allows us to estimate the distribution over graphlet isomor-
phism classes by sampling a constant number of graphlets. Both these methods allow us
to apply our novel kernel to graph sizes that no other graph kernel could handle so far.

In our experimental evaluation on unlabeled graphs, the novel graphlet kernel reached
excellent results, constantly reaching high levels of classification accuracy, and getting more
competitive in runtime performance as graph size increases. Future work will look into ways
of reducing the sample size required for labeled graphs, and on speeding up isomorphism
checks on labeled graphs.

To conclude, in this chapter, we have sped up the random walk graph kernel to O(n3),
defined a novel kernel on shortest paths that is efficient, avoids tottering and halting and
is an expressive measure of graph similarity. In the last section, we have defined a graph
kernel based on sampling small subgraphs from the input graphs that is also efficient,
avoids tottering and halting, an expressive measure of graph similarity, and in addition,
scales up to very large graphs hitherto not handled by graph kernels.

80 2. Fast Graph Kernel Functions

Chapter 3

Two-Sample Tests on Graphs

While we have enhanced the efficiency of graph kernels so far, we have not tackled another
problem: Graph kernel values per se are a rather unintuitive measure of similarity on
graphs. When comparing two graphs or when comparing two sets of graphs, the (average)
graph kernel value will be large, if the graphs or the sets of graphs are very similar, and
small otherwise. But how to judge what is small and what is large in terms of graph kernel
values?

Ideally, we would employ a statistical test to decide whether graph similarity is signifi-
cant. Little attention has been paid to the question if the similarity of graphs is statistically
significant. Even the question itself is problematic: What does it mean that the similarity
of two graphs is statistically significant?

For set of graphs, this question can be answered more easily than for pairs of graphs.
Given two sets of graphs, we can regard each of these sets as a sample from an underlying
distribution of graphs. We then have to define a statistical test to decide whether the
underlying distributions of two samples are identical; this is known as the two-sample-
problem, and an associated test is called a two-sample test. Unfortunately, no two-sample
test for graphs is known from the literature.

In this chapter, we define the first two-sample test that is applicable to sets of graphs, as
it is based on a test statistic whose empirical estimate can be expressed in terms of kernels.
In Section 3.1, we present this test statistic, the Maximum Mean Discrepancy (MMD) and
its associated two-sample tests, and evaluate its performance on classic feature vector data.
In Section 3.2.1 we explain how the two-sample tests based on MMD can be applied to sets
of graphs, and evaluate it on two datasets of protein structures represented as graphs. We
then show that MMD can even be applied to define a statistical test of graph similarity
on pairs of graph instances in Section 3.2.2, and employ it to measure similarity between
protein-protein-interaction networks of different species.

A note to the reader: Our presented method uses several concepts and results from
functional analysis and statistics. If you do not feel familiar with these domains, we
recommend to read the primers on these topics in Appendix A.1 and Appendix A.2 of this
thesis, before continuing with this chapter. To make the presentation easier to follow, we
have also moved three long proofs from this chapter to a separate Appendix B.

82 3. Two-Sample Tests on Graphs

3.1 Maximum Mean Discrepancy

In this section, we address the problem of comparing samples from two probability dis-
tributions, by proposing a statistical test of the hypothesis that these distributions are
different (this is called the two-sample or homogeneity problem). This test has application
in a variety of areas. In bioinformatics, it is of interest to compare microarray data from
different tissue types, either to determine whether two subtypes of cancer may be treated
as statistically indistinguishable from a diagnosis perspective, or to detect differences in
healthy and cancerous tissue. In database attribute matching, it is desirable to merge
databases containing multiple fields, where it is not known in advance which fields corre-
spond: the fields are matched by maximizing the similarity in the distributions of their
entries.

We propose to test whether distributions p and q are different on the basis of samples
drawn from each of them, by finding a smooth function which is large on the points drawn
from p, and small (as negative as possible) on the points from q. We use as our test statistic
the difference between the mean function values on the two samples; when this is large, the
samples are likely from different distributions. We call this statistic the Maximum Mean
Discrepancy (MMD).

Clearly the quality of MMD as a statistic depends heavily on the class F of smooth
functions that define it. On one hand, F must be “rich enough” so that the population
MMD vanishes if and only if p = q. On the other hand, for the test to be consistent, F

needs to be “restrictive” enough for the empirical estimate of MMD to converge quickly
to its expectation as the sample size increases. We shall use the unit balls in universal
Reproducing Kernel Hilbert Spaces [Steinwart, 2002] as our function class, since these will
be shown to satisfy both of the foregoing properties. On a more practical note, MMD is
cheap to compute: given m1 points sampled from p and m2 from q, the cost is O(m1 +m2)

2

time.

We define two non-parametric statistical tests based on MMD. The first, which uses
distribution-independent uniform convergence bounds, provides finite sample guarantees
of test performance, at the expense of being conservative in detecting differences between p
and q. The second test is based on the asymptotic distribution of MMD, and is in practice
more sensitive to differences in distribution at small sample sizes.

We begin our presentation in Section 3.1.1 with a formal definition of the MMD, and
a proof that the population MMD is zero if and only if p = q when F is the unit ball
of a universal RKHS. We also give an overview of hypothesis testing as it applies to the
two-sample-problem, and review previous approaches in Section 3.1.2. In Section 3.1.3,
we provide a bound on the deviation between the population and empirical MMD, as a
function of the Rademacher averages of F with respect to p and q. This leads to a first
hypothesis test. We take a different approach in Section 3.1.4, where we use the asymptotic
distribution of an unbiased estimate of the squared MMD as the basis for a second test.
Finally, in Section 3.1.5, we demonstrate the performance of our method on problems
from neuroscience, bioinformatics, and attribute matching using the Hungarian marriage
approach. Our approach performs well on high-dimensional data with low sample size. In

3.1 Maximum Mean Discrepancy 83

addition, we will show in Section 3.2 that we are able to successfully apply our test to
graph data, for which no alternative tests exist.

3.1.1 The Two-Sample-Problem

We present the two-sample-problem in Section 3.1.1, and introduce the MMD test statistic,
proving that it is zero only when the two distributions being tested are identical. In
Section 3.1.2, we give a brief background to statistical hypothesis testing, and describe
prior approaches to the two-sample-problem in the multivariate domain.

Maximum Mean Discrepancy

Our goal is to formulate a statistical test that answers the following question:

Problem 1 Let p and q be distributions defined on a domain X. Given observations
X := {x1, . . . , xm1} and Y := {y1, . . . , ym2}, drawn independently and identically dis-
tributed (i.i.d.) from p and q respectively, does p 6= q?

To start with, we wish to determine a criterion that, in the population setting, takes
on a unique and distinctive value only when p = q. It will be defined based on Lemma
9.3.2 of [Dudley, 2002].

Lemma 28 Let (X, d) be a separable metric space, and let p, q be two Borel probability
measures defined on X. Then p = q if and only if Ep[f(x)] = Eq[f(x)] for all f ∈ C(X),
where C(X) is the space of continuous bounded functions on X.

Although C(X) in principle allows us to identify p = q uniquely, it is not practical to work
with such a rich function class in the finite sample setting. We thus define a more general
class of statistic, for as yet unspecified function classes F, to measure the disparity between
p and q, as proposed by [Fortet and Mourier, 1953].

Definition 29 (Maximum Mean Discrepancy) Let F be a class of functions f : X→
R and let p, q,X, Y be defined as above. Then we define the Maximum Mean Discrepancy
(MMD) and its empirical estimate as

MMD(F, p, q) := sup
f∈F

(Ex∼p[f(x)]− Ey∼q[f(y)]) , (3.1)

MMD(F, X, Y) := sup
f∈F

(
1

m1

m1∑
i=1

f(xi)−
1

m2

m2∑
i=1

f(yi)

)
. (3.2)

We must now identify a function class that is rich enough to uniquely identify whether
p = q, yet restrictive enough to provide useful finite sample estimates (the latter property
will be established in subsequent sections).

We have a large degree of freedom in selecting F. The function class determines our
prior knowledge as to where we expect p and q to differ most. Also, F will be determined
by the problems we wish to solve given the datasets X and Y : for instance, if we are only

84 3. Two-Sample Tests on Graphs

interested in linear estimates of the data afterwards, it will suffice to ensure that X and Y
agree within the class of bounded linear functions.

A large class of functions used in Machine Learning can be described by Banach spaces
B. Consequently we will select F to be the unit ball in B, i.e., F = {f | ‖f‖B ≤ 1 and f ∈ B}.
If B is dense in C(X) we have the following theorem (proved in Appendix B):

Theorem 30 Denote by B a Banach space which is dense in C(X) and let F be a unit
ball in a B. Then MMD(F, p, q) = 0 if and only if p = q.

We next express the MMD in a more easily computable form. For this purpose denote
by B∗ the dual space of B, and let φ(x) be the evaluation functionals in B. They are defined
by f(x) =: 〈f, φ(x)〉. This allows us to find a more concise expression for MMD(F, p, q)
and MMD(F, X, Y).

Theorem 31 Let B be a Banach space of functions on X and denote by φ(x) ∈ B∗ the
evaluation functionals on B. Let F be the unit ball in B. Moreover, let

µ[p] := Ex∼p [φ(x)] and µ[X] :=
1

|X|
∑
x∈X

φ(x). (3.3)

Then MMD(F, p, q) = ‖µ[p]− µ[q]‖ and MMD(F, X, Y) = ‖µ[X]− µ[Y]‖.

Proof [Theorem 31] By construction we can express Ex∼p [f(x)] = Ex∼p [〈f, φ(x)〉] =
〈µ[p], f〉. Hence

MMD(F, p, q) = sup
‖f‖≤1

〈µ[p]− µ[q], f〉 = ‖µ[p]− µ[q]‖B∗ . (3.4)

The first equality follows from the linearity of the expectation, the second one follows from
the definition of the dual norm. An analogous derivation proves the second claim regarding
MMD(F, X, Y).

A sufficient condition for the existence of µ[p] is that ‖φ(x)‖ ≤ C for some C ∈ R and
for all x ∈ X. In other words, the evaluation operator needs to be bounded.

The next lemma will prove a result that is at the core of our novel approach. It
establishes that under certain conditions, we can establish a one-to-one correspondence
between a distribution p and its expectation in feature space µ[p].

Lemma 32 Denote by P(X) the set of distributions on X. The operator µ[p] is linear in p.
The set M := {µ[p] where p ∈ P(X)}, often referred to as the marginal polytope, is convex.
If B is dense in C(X) then µ : P(X)→M is bijective.

Proof [Lemma 32] The expectation is a linear operation in p, hence µ[p] is linear. Since
P(X) is convex, also its image M under µ must be convex. Finally, by construction µ :
P(X)→M is surjective.

3.1 Maximum Mean Discrepancy 85

What remains to show is injectivity for B dense in C(X): by Theorem 30 MMD(F, p, q)
only vanishes for p = q. By Theorem 31 we can express MMD in terms of the means µ[p]
and µ[q]. Hence µ[p] = µ[q] immediately implies p = q.

This means that MMD(F, p, q) defines a metric on the space of probability distributions,
induced by the Banach space B. As we shall see, it is often easier to compute distances in
this metric, as it will not require density estimation as an intermediate step.

Reproducing Kernel Hilbert Spaces

If B is a Reproducing Kernel Hilbert Space H many of the aforementioned quantities can
be computed very efficiently. We will henceforth use F only to denote unit balls in H.
Moreover, we will refer to H as universal, whenever H, defined on a compact metric space
X and with associated kernel k : X2 → R, is dense in C(X) with respect to the L∞ norm.
It is shown in [Steinwart, 2002] that Gaussian and Laplace kernels are universal. As a
specialization of Theorem 30 we immediately have the following result:

Theorem 33 Let F be a unit ball in a universal RKHS H, defined on the compact metric
space X, with associated kernel k(·, ·). Then MMD(F, p, q) = 0 if and only if p = q.

We obtain an improved condition for the existence of µ[p] via ‖µ[p]‖2 = Ex,x′∼p [k(x, x′)] <
∞. Here x, x′ are drawn independently from p. Exploiting Theorem 31 we are able to
obtain a more accessible formulation for MMD(F, p, q) and MMD(F, X, Y).

Theorem 34 Let F be a unit ball in a RKHS H with kernel k then MMD(F, p, q) and
MMD(F, X, Y) can be computed as follows:

MMD(F, p, q) = [Ex,x′∼p [k(x, x′)]− 2Ex∼p,x′∼q [k(x, x′)] + Ex,x′∼q [k(x, x′)]]
1
2 (3.5)

MMD(F, X, Y) =

[
1

m2
1

m1∑
i,j=1

k(xi, xj)−
2

m1m2

m1,m2∑
i,j=1

k(xi, yj) +
1

m2
2

m2∑
i,j=1

k(yi, yj)

] 1
2

(3.6)

Proof [Theorem 34] We only prove (3.5), as the proof of (3.6) is completely analogous.
By virtue of Theorem 31 we have

MMD(F, p, q)2 = ‖µ[p]− µ[q]‖2H
= 〈Ex∼p [φ(x)]− Ex∼q [φ(x)] ,Ex′∼p [φ(x′)]− Ex′∼q [φ(x′)]〉 (3.7)

In an RKHS we have 〈φ(x), φ(x′)〉 = k(x, x′). Plugging this into (3.7) and pulling the
expectations out of the inner product proves the claim.

Eq. (3.6) provides us with a test statistic for p = q. We shall see in Section 3.1.3
that this estimate is biased, although it is straightforward to upper bound the bias (we
give an unbiased estimate, and an associated test, in Section 3.1.4). Intuitively we expect
MMD(F, X, Y) to be small if p = q, and the quantity to be large if the distributions are

86 3. Two-Sample Tests on Graphs

far apart. Also, since MMD(F, X, Y) ≥ 0 we intuitively expect the discrepancy measure
to be positive, even when the underlying distributions p = q agree. Note that it costs
O((m1 +m2)

2) time to compute the statistic.

3.1.2 Background Material

Statistical Hypothesis Testing

We start by describing the framework of statistical hypothesis testing as it applies in the
present context, following [Casella and Berger, 2002, Chapter 8].

Definition 35 (Two-Sample Test) Given i.i.d. samples X ∼ p of size m1 and Y ∼ q of
size m2, the statistical test, D(X, Y) : Xm1 × Xm2 7→ {0, 1} is used to distinguish between
the null hypothesis H0 : p = q and the alternative hypothesis H1 : p 6= q.

This is achieved by comparing the test statistic, in our case MMD(F, X, Y), with a
particular threshold: if the threshold is exceeded, then the test rejects the null hypothesis
(bearing in mind that a zero population MMD indicates p = q). The acceptance region of
the test is thus defined as any real number below the threshold. Since the test is based on
finite samples, it is possible that an incorrect answer will be returned, a so-called Type I
error or Type II error.

Definition 36 (Type I and Type II errors) Let X, Y , p, q and D be defined as in
Definition 35. We define the Type I error of D as the probability of D rejecting the null
hypothesis p = q based on the observed samples X and Y , despite the null hypothesis having
generated the data. Conversely, the Type II error of D is the probability of accepting the
null hypothesis p = q despite the underlying distributions being different.

The level α of a test is an upper bound on the Type I error: this is a design parameter
of the test, and is used to set the threshold to which we compare the test statistic (finding
the test threshold for a given α is the topic of Sections 3.1.3 and 3.1.4). A consistent test
achieves a level α, and a Type II error of zero, in the large sample limit. We will see that
both of the tests proposed in this section are consistent.

Two-Sample Tests on Multivariate Data

We next give a brief overview of previous approaches to the two sample problem for mul-
tivariate data.

Multivariate t-test Various empirical methods have been proposed to determine whether
two distributions are different. The first test we consider, and the simplest, is a multivariate
generalization of the t-test [Hotelling, 1951], which assumes both distributions are multi-
variate Gaussian with unknown, identical covariance structure. This test is not model-free
in the sense of MMD (and the tests described below) — indeed, it is easy to construct
examples in which it fails completely.

3.1 Maximum Mean Discrepancy 87

Friedman and Rafsky A generalisation of the Wald-Wolfowitz runs test to the mul-
tivariate domain was proposed and analysed in [Friedman and Rafsky, 1979, Henze and
Penrose, 1999], which involves counting the number of edges in the minimum spanning tree
over the aggregated data that connect points in X to points in Y . The resulting test relies
on the asymptotic normality of the test statistic, and this quantity is not distribution-free
under the null hypothesis for finite samples (it depends on p and q). The computational
cost of this method using Kruskal’s algorithm is O((m1 + m2)

2 log(m1 + m2)), although
more modern methods improve on the log(m1 +m2) term (see [Chazelle, 2000]; note also
that [Friedman and Rafsky, 1979] state that calculating the matrix of distances, which
costs O((m1 +m2)

2), dominates their computing time; this may not be the case for large
sample sizes, however). Two possible generalisations of the Kolmogorov-Smirnov test to
the multivariate case were studied in [Bickel, 1969, Friedman and Rafsky, 1979]. The ap-
proach of Friedman and Rafsky in this case again requires a minimal spanning tree, and
has a similar cost to their multivariate runs test.

Rosenbaum A more recent multivariate test was introduced by [Rosenbaum, 2005]. This
entails computing the minimum distance non-bipartite matching over the aggregate data,
and using the number of pairs containing a sample from both X and Y as a test statistic.
The resulting statistic is distribution-free under the null hypothesis at finite sample sizes,
in which respect it is superior to the Friedman-Rafsky test; on the other hand, it costs
O((m1 +m2)

3) to compute.

Hall and Tajvidi Another distribution-free test was proposed by [Hall and Tajvidi,
2002]: for each point from p, it requires computing the closest points in the aggregated
data, and counting how many of these are from q (the procedure is repeated for each point
from q with respect to points from p). As we shall see in our experimental comparisons,
the test statistic is costly to compute; [Hall and Tajvidi, 2002] consider only tens of points
in their experiments.

Biau and Gyorfi Yet another approach is to use some distance (e.g. L1 or L2) between
Parzen window estimates of the densities as a test statistic [Anderson et al., 1994, Biau
and Gyorfi, 2005], based on the asymptotic distribution of this distance given p = q. When
the L2 norm is used, the test statistic is related to those we present here, although it is
arrived at from a different perspective. The L1 approach of [Biau and Gyorfi, 2005] requires
the space to be partitioned into a grid of bins, which becomes difficult or impossible for
high-dimensional problems. Hence we use this test only for low-dimensional problems in
our experiments.

3.1.3 A Test based on Uniform Convergence Bounds

In this section, we establish two properties of the MMD. First, we show that regardless of
whether or not p = q, the empirical MMD converges in probability at rate 1/

√
m1 +m2 to

its population value. This establishes the consistency of statistical tests based on MMD.
Second, we give probabilistic bounds for large deviations of the empirical MMD in the case
p = q. These bounds lead directly to a threshold for our first hypothesis test.

We begin our discussion of the convergence of MMD(F, X, Y) to MMD(F, p, q). The

88 3. Two-Sample Tests on Graphs

following theorem is proved in Appendix B.

Theorem 37 Let p, q,X, Y be defined as in Problem 1, and assume |k(x, y)| ≤ K. Then

Pr
{
|MMD(F, X, Y)−MMD(F, p, q)| > 2

(
(K/m1)

1
2 + (K/m2)

1
2

)
+ ε
}
≤ 2 exp

(
−ε2m1m2

2K(m1+m2)

)
.

Our next goal is to refine this result in a way that allows us to define a test threshold
under the null hypothesis p = q. Under this circumstance, the constants in the exponent
are slightly improved.

Theorem 38 Under the conditions of Theorem 37 where additionally p = q and m =
m1 = m2,

MMD(F, X, Y) > m− 1
2

√
2Ep [k(x, x)− k(x, x′)]︸ ︷︷ ︸

B1(F,p)

+ ε > 2(K/m)1/2︸ ︷︷ ︸
B2(F,p)

+ ε,

both with probability less than exp
(
− ε2m

4K

)
(see Appendix B for the proof).

In this theorem, we illustrate two possible bounds B1(F, p) and B2(F, p) on the bias
in the empirical estimate (3.6). The first inequality is interesting inasmuch as it provides
a link between the bias bound B1(F, p) and kernel size (for instance, if we were to use a
Gaussian kernel with large σ, then k(x, x) and k(x, x′) would likely be close, and the bias
small). In the context of testing, however, we would need to provide an additional bound
to show convergence of an empirical estimate of B1(F, p) to its population equivalent.

Lemma 39 A hypothesis test of level α for the null hypothesis p = q (which is equivalent
to MMD(F, p, q) = 0) has the acceptance region

MMD(F, X, Y) < 2
√
K/m

(
1 +

√
logα−1

)
. (3.8)

We emphasize that Theorem 37 guarantees the consistency of the test, and that the
Type II error probability decreases to zero at rate 1/

√
m (assuming m = m1 = m2). To put

this convergence rate in perspective, consider a test of whether two normal distributions
have equal means, given they have unknown but equal variance [Casella and Berger, 2002,
Exercise 8.41]. In this case, the test statistic has a Student-t distribution with n +m− 2
degrees of freedom, and its error probability converges at the same rate as our test.

It is worth noting that it is possible to obtain bounds for the deviation between expec-
tations µ[p] and the empirical means µ[X] in a completely analogous fashion. In fact, the
proof requires symmetrization by means of a ghost sample, i.e., a second set of observations
drawn from the same distribution.

3.1 Maximum Mean Discrepancy 89

3.1.4 An Unbiased Test Based on the Asymptotic Distribution of the U-
Statistic

We now propose a second test, which is based on the asymptotic distribution of an unbiased
estimate of MMD2. We begin by defining this test statistic.

Lemma 40 Given x and x′ independent random variables with distribution p, and y and
y′ independent random variables with distribution q, the population MMD2 is

MMD2(F, p, q) = Ex,x′∼p [k(x, x′)]− 2Ex∼p,y∼q [k(x, y)] + Ey,y′∼q [k(y, y′)] (3.9)

Let Z := (z1, . . . , zm) be m i.i.d. random variables, where zi := (xi, yi) (i.e., we assume
m = m1 = m2). An unbiased empirical estimate of MMD2 is

MMD2
u(F, X, Y) =

1

(m)(m− 1)

m∑
i6=j

h(zi, zj), (3.10)

which is a one-sample U-statistic with h(zi, zj) := k(xi, xj)+k(yi, yj)−k(xi, yj)−k(xj, yi).

Proof [Lemma 40]
By Theorem 31 we know that MMD(F, p, q) is given by ‖µ[p]− µ[q]‖H. Exploiting the fact
that we are dealing with a Hilbert space yields:

‖µ[p]− µ[q]‖2H = 〈µ[p], µ[p]〉 − 2 〈µ[p], µ[q]〉+ 〈µ[q], µ[q]〉
= Ex,x′∼p 〈φ(x), φ(x′)〉 − 2Ex∼p,y∼q 〈φ(x), φ(y)〉+ Ey,y′∼q 〈φ(y), φ(y′)〉 .

To complete the proof we use that 〈φ(x), φ(x′)〉 = k(x, x′). This proves the first claim.
The second claim is completely analogous, i.e., MMD(F, X, Y) = ‖µ[X]− µ[Y]‖H, only
that now we need to replace expectations by empirical averages.

The empirical statistic is an unbiased estimate of MMD2, although it does not have
minimum variance [Serfling, 1980, Section 5.1.4].

The asymptotic distribution of this test statistic under H1 is given by [Serfling, 1980,
Section 5.5.1], and the distribution under H0 follows from [Serfling, 1980, Section 5.5.2]
and [Anderson et al., 1994, Appendix].

Theorem 41 We assume E (h2) < ∞. Under H1, MMD2
u converges in distribution (de-

fined e.g. by [Grimmet and Stirzaker, 2001, Section 7.2]) to a Gaussian according to

m
1
2

(
MMD2

u −MMD2(F, p, q)
) D→ N

(
0, σ2

u

)
,

where σ2
u = 4

(
Ez [(Ez′h(z, z

′))2]− [Ez,z′(h(z, z
′))]2

)
, uniformly at rate 1/

√
m [Serfling,

1980, Theorem B, p. 193]. Under H0, the U-statistic is degenerate, meaning Ez′h(z, z
′) =

0. In this case, MMD2
u converges in distribution according to

mMMD2
u

D→
∞∑
l=1

λl
[
z2
l − 2

]
, (3.11)

90 3. Two-Sample Tests on Graphs

Figure 3.1: Left: Empirical distribution of the MMD under H0, with p and q both Gaussians
with unit standard deviation, using 50 samples from each. Right: Empirical distribution of the
MMD under H1, with p a Laplace distribution with unit standard deviation, and q a Laplace
distribution with standard deviation 3

√
2, using 100 samples from each. In both cases, the

histograms were obtained by computing 2000 independent instances of the MMD.

where zl ∼ N(0, 2) i.i.d., λi are the solutions to the eigenvalue equation∫
X

k̃(x, x′)ψi(x)dp(x) = λiψi(x
′),

and k̃(xi, xj) := k(xi, xj) − Exk(xi, x) − Exk(x, xj) + Ex,x′k(x, x
′) is the centered RKHS

kernel.

We illustrate the MMD density under both the null and alternative hypotheses by approx-
imating it empirically for both p = q and p 6= q. Results are plotted in Figure 3.1.

Our goal is to determine whether the empirical test statistic MMD2
u is so large as to

be outside the 1−α quantile of the null distribution in (3.11) (consistency of the resulting
test is guaranteed by the form of the distribution under H1). One way to estimate this
quantile is using the bootstrap on the aggregated data, following [Arcones and Giné, 1992].

Alternatively, we may approximate the null distribution by fitting Pearson curves to its
first four moments [Johnson et al., 1994, Section 18.8]. Taking advantage of the degeneracy
of the U-statistic, we obtain [Gretton et al., 2007b]

E
([

MMD2
u

]2)
=

2

m(m− 1)
Ez,z′

[
h2(z, z′)

]
and

E
([

MMD2
u

]3)
=

8(m− 2)

m2(m− 1)2
Ez,z′ [h(z, z

′)Ez′′ (h(z, z
′′)h(z′, z′′))] +O(m−4). (3.12)

The fourth moment E
([

MMD2
u

]4)
is not computed, since it is both very small (O(m−4))

and expensive to calculate (O(m4)). Instead, we replace the kurtosis with its lower bound

kurt
(
MMD2

u

)
≥
(
skew

(
MMD2

u

))2
+ 1.

3.1 Maximum Mean Discrepancy 91

3.1.5 Experiments

We conducted distribution comparisons using our MMD-based tests on datasets from three
real-world domains: database applications, bioinformatics, and neurobiology. We investi-
gated the uniform convergence approach (MMD), the asymptotic approach with boot-
strap (MMD2

u B), and the asymptotic approach with moment matching to Pearson curves
(MMD2

u M). We also compared against several alternatives from the literature (where appli-
cable): the multivariate t-test, the Friedman-Rafsky Kolmogorov-Smirnov generalization
(Smir), the Friedman-Rafsky Wald-Wolfowitz generalization (Wolf), the Biau-Györfi test
(Biau), and the Hall-Tajvidi test (Hall). Note that we do not apply the Biau-Györfi test
to high-dimensional problems (see end of Section 3.1.1).

An important issue in the practical application of the MMD-based tests is the selection
of the kernel parameters. We illustrate this with a Gaussian RBF kernel, where we must
choose the kernel width σ. The empirical MMD is zero both for kernel size σ = 0 (where
the aggregate Gram matrix over X and Y is a unit matrix), and also approaches zero as
σ → ∞ (where the aggregate Gram matrix becomes uniformly constant). We set σ to
be the median distance between points in the aggregate sample, as a compromise between
these two extremes: this remains a heuristic, however, and the optimum choice of kernel
size is an ongoing area of research.

Data Integration As a first application of MMD, we performed distribution testing
for data integration: the objective is to aggregate two datasets into a single sample, with
the understanding that both original samples are generated from the same distribution.
Clearly, it is important to check this last condition before proceeding, or an analysis could
detect patterns in the new dataset that are caused by combining the two different source
distributions, and not by real-world phenomena. We chose several real-world settings to
perform this task: we compared microarray data from normal and tumor tissues (Health
status), microarray data from different subtypes of cancer (Subtype), and local field po-
tential (LFP) electrode recordings from the Macaque primary visual cortex (V1) with and
without spike events (Neural Data I and II). In all cases, the two data sets have different
statistical properties, but the detection of these differences is made difficult by the high
data dimensionality.

We applied our tests to these datasets in the following fashion. Given two datasets A
and B, we either chose one sample from A and the other from B (attributes = different); or
both samples from either A or B (attributes = same). We then repeated this process up to
1200 times. Results are reported in Table 3.1. Our asymptotic tests perform better than all
competitors besides Wolf: in the latter case, we have greater Type II error for one neural
dataset, lower Type II error on the Health Status data (which has very high dimension
and low sample size), and identical (error-free) performance on the remaining examples.
We note that the Type I error of the bootstrap test on the Subtype dataset is far from its
design value of 0.05, indicating that the Pearson curves provide a better threshold estimate
for these low sample sizes. For the remaining datasets, the Type I errors of the Pearson
and Bootstrap approximations are close. Thus, for larger datasets, the bootstrap is to be
preferred, since it costs O(m2), compared with a cost of O(m3) for Pearson (due to the

92 3. Two-Sample Tests on Graphs

cost of computing (3.12)). Finally, the uniform convergence-based test is too conservative,
finding differences in distribution only for the data with largest sample size.

Dataset Attr. MMD MMD2
u B MMD2

u M t-test Wolf Smir Hall
Neural Data I Same 100.0 96.5 96.5 100.0 97.0 95.0 96.0

Different 50.0 0.0 0.0 42.0 0.0 10.0 49.0
Neural Data II Same 100.0 94.6 95.2 100.0 95.0 94.5 96.0

Different 100.0 3.3 3.4 100.0 0.8 31.8 5.9
Health status Same 100.0 95.5 94.4 100.0 94.7 96.1 95.6

Different 100.0 1.0 0.8 100.0 2.8 44.0 35.7
Subtype Same 100.0 99.1 96.4 100.0 94.6 97.3 96.5

Different 100.0 0.0 0.0 100.0 0.0 28.4 0.2

Table 3.1: Distribution testing for data integration on multivariate data. Numbers indicate the
percentage of repetitions for which the null hypothesis (p=q) was accepted, given α = 0.05.
Sample size (dimension; repetitions of experiment): Neural I 4000 (63; 100) ; Neural II 1000
(100; 1200); Health Status 25 (12,600; 1000); Subtype 25 (2,118; 1000).

Attribute Matching Our second series of experiments addresses automatic attribute
matching. Given two databases, we want to detect corresponding attributes in the schemas
of these databases, based on their data-content (as a simple example, two databases might
have respective fields Wage and Salary, which are assumed to be observed via a subsampling
of a particular population, and we wish to automatically determine that both Wage and
Salary denote to the same underlying attribute). We use a two-sample test on pairs of
attributes from two databases to find corresponding pairs.1 This procedure is also called
table matching for tables from different databases. We performed attribute matching as
follows: first, the dataset D was split into two halves A and B. Each of the n attributes in
A (and B, resp.) was then represented by its instances in A (resp. B). We then tested all
pairs of attributes from A and from B against each other, to find the optimal assignment
of attributes A1, . . . , An from A to attributes B1, . . . , Bn from B. We assumed that A and
B contain the same number of attributes.

As a naive approach, one could assume that any possible pair of attributes might
correspond, and thus that every attribute of A needs to be tested against all the attributes
of B to find the optimal match. We report results for this naive approach, aggregated over
all pairs of possible attribute matches, in Table 3.2. We used three datasets: the census
income dataset from the UCI KDD archive (CNUM), the protein homology dataset from
the 2004 KDD Cup (BIO) [Caruana and Joachims, 2004], and the forest dataset from the
UCI ML archive [Blake and Merz, 1998]. For the final dataset, we performed univariate
matching of attributes (FOREST) and multivariate matching of tables (FOREST10D)
from two different databases, where each table represents one type of forest. Both our

1Note that corresponding attributes may have different distributions in real-world databases. Hence,
schema matching cannot solely rely on distribution testing. Advanced approaches to schema matching
using MMD as one key statistical test are a topic of ongoing research.

3.1 Maximum Mean Discrepancy 93

asymptotic MMD2
u-based tests perform as well as or better than the alternatives, notably

for CNUM, where the advantage of MMD2
u is large. Unlike in Table 3.1, the next best

alternatives are not consistently the same across all data: e.g. in BIO they are Wolf or
Hall, whereas in FOREST they are Smir, Biau, or the t-test. Thus, MMD2

u appears to
perform more consistently across the multiple datasets. The Friedman-Rafsky tests do not
always return a Type I error close to the design parameter: for instance, Wolf has a Type
I error of 9.7% on the BIO dataset (on these data, MMD2

u has the joint best Type II error
without compromising the designed Type I performance). Finally, our uniform convergence
approach performs much better than in Table 3.1, although surprisingly it fails to detect
differences in FOREST10D.

A more principled approach to attribute matching is also possible. Assume that φ(A) =
(φ1(A1), φ2(A2), ..., φn(An)): in other words, the kernel decomposes into kernels on the
individual attributes of A (and also decomposes this way on the attributes of B). In this
case, MMD2 can be written

∑n
i=1 ‖µi(Ai)−µi(Bi)‖2, where we sum over the MMD terms

on each of the attributes. Our goal of optimally assigning attributes from B to attributes
of A via MMD is equivalent to finding the optimal permutation π of attributes of B that
minimizes

∑n
i=1 ‖µi(Ai) − µi(Bπ(i))‖2. If we define Cij = ‖µi(Ai) − µi(Bj)‖2, then this is

the same as minimizing the sum over Ci,π(i). This is the linear assignment problem, which
costs O(n3) time using the Hungarian method [Kuhn, 1955].

Dataset Attr. MMD MMD2
u B MMD2

u M t-test Wolf Smir Hall Biau
BIO Same 100.0 93.8 94.8 95.2 90.3 95.8 95.3 99.3

Different 20.0 17.2 17.6 36.2 17.2 18.6 17.9 42.1
FOREST Same 100.0 96.4 96.0 97.4 94.6 99.8 95.5 100.0

Different 4.9 0.0 0.0 0.2 3.8 0.0 50.1 0.0
CNUM Same 100.0 94.5 93.8 94.0 98.4 97.5 91.2 98.5

Different 15.2 2.7 2.5 19.17 22.5 11.6 79.1 50.5
FOREST10D Same 100.0 94.0 94.0 100.0 93.5 96.5 97.0 100.0

Different 100.0 0.0 0.0 0.0 0.0 1.0 72.0 100.0

Table 3.2: Naive attribute matching on univariate (BIO, FOREST, CNUM) and multivariate
data (FOREST10D). Numbers indicate the percentage of accepted null hypothesis (p=q) pooled
over attributes. α = 0.05. Sample size (dimension; attributes; repetitions of experiment): BIO
377 (1; 6; 100); FOREST 538 (1; 10; 100); CNUM 386 (1; 13; 100); FOREST10D 1000 (10; 2;
100).

We tested this ’Hungarian approach’ to attribute matching via MMD2
u B on three

univariate datasets (BIO, CNUM, FOREST) and for table matching on a fourth (FOR-
EST10D). Results are shown in Table 3.3. Besides BIO, MMD2

u B reached at least 99.8%
accuracy on all datasets.

3.1.6 Summary

In this chapter, we have established three simple multivariate tests for comparing two dis-
tributions p and q, based on samples of size m1 and m2 from these respective distributions.

94 3. Two-Sample Tests on Graphs

Dataset Data type No. attributes Sample size Repetitions % correct matches

BIO univariate 6 377 100 90.0
CNUM univariate 13 386 100 99.8
FOREST univariate 10 538 100 100.0
FOREST10D multivariate 2 1000 100 100.0

Table 3.3: Hungarian Method for attribute matching via MMD2
u B on univariate (BIO, CNUM,

FOREST), multivariate (FOREST10D) (α = 0.05; ‘% correct matches’ is the percentage of the
correct attribute matches detected over all repetitions).

The test statistics are based on the maximum deviation of the expectation of a function
evaluated on each of the random variables, taken over a sufficiently rich function class,
which also allows us to express the empirical estimates of our test statistic in terms of
kernels. We do not require density estimates as an intermediate step. Two of our tests
provide error guarantees that are exact and distribution-free for finite sample sizes, as
with [Rosenbaum, 2005]. We also give a third test based on the asymptotic normality
of the associated test statistic (as in the tests of [Friedman and Rafsky, 1979, Anderson
et al., 1994]). All three tests can be computed in O((m1 +m2)

2), which is faster than the
approaches of [Rosenbaum, 2005, Friedman and Rafsky, 1979].

3.2 Graph Similarity via Maximum Mean Discrepancy

As the empirical estimate of MMD and the acceptance threshold for its associated two-
sample tests can be expressed in terms of kernels, we can combine both with a graph kernel
to obtain the first two-sample test for sets of graphs described in the literature. In this
section, we explore this application of our two-sample tests to sets of graphs, and extend
them to pairs of graphs.

3.2.1 Two-Sample Test on Sets of Graphs

Given two sets of graphs X and Y , each of size m (assuming m = m1 = m2), from
distributions p and q, and a universal graph kernel k, we can estimate MMD2

u via Lemma 40
and employ the asymptotic test from Section 3.1.4 in order to decide whether to reject the
null hypothesis p = q. As an alternative to the asymptotic test, we could employ the biased
estimate from Theorem 34, and the statistical test based on uniform convergence bounds
from Section 3.1.3.

However, there are two open questions in this context: Which of the existing graph
kernels is universal in the sense of [Steinwart, 2002]? If there are none, or none that are
efficient to compute, can we still employ MMD on sets of graphs using a non-universal
kernel? We will consider these two questions in the following.

Universal Kernels on Graphs

While many examples of universal kernels on compact subsets of Rd are known [Stein-
wart, 2002], little attention has been given to finite domains. It turns out that the issue
is considerably easier in this case: the weaker notion of strict positive definiteness (ker-
nels inducing nonsingular Gram matrices (Kij = k(xi, xj)) for arbitrary sets of distinct

3.2 Graph Similarity via Maximum Mean Discrepancy 95

points xi) ensures that every function on a discrete domain X = {x1, . . . , xm} lies in the
corresponding RKHS, and hence that the kernel is universal. To see this, let f ∈ Rm be
an arbitrary function on X. Then α = K−1f ensures that the function f =

∑
j αjk(., xj)

satisfies f(xi) = fi for all i.
While there are strictly positive definite kernels on strings [Borgwardt et al., 2006], for

graphs unfortunately no such strictly positive definite kernels exist which are efficiently
computable. Note first that it is necessary for strict positive definiteness that φ(x) be
injective, for otherwise we would have φ(x) = φ(x′) for some x 6= x′, implying that
the kernel matrix obtained from X = {x, x′} is singular. However, as [Gärtner et al.,
2003] show, an injective φ(x) allows one to match graphs by computing ‖φ(x)− φ(x′)‖2 =
k(x, x) + k(x′, x′) − 2k(x, x′). In Section 1.4, we have seen that the corresponding all-
subgraphs kernel is NP-hard to compute, and hence impractical in real-world applications.
Due to these efficiency problems, let us discuss the consequences of employing a non-
universal kernel with MMD next.

MMD and Non-Universal Kernels

So far, we have focused on the case of universal kernels, as MMD using universal kernels
is a test for identity of arbitrary Borel probability distributions.

However, note that for instance in pattern recognition, there might well be situations
where the best kernel for a given problem is not universal. In fact, the kernel corresponds
to the choice of a prior, and thus using a kernel which does not afford approximations of
arbitrary continuous functions can be very useful — provided that the functions it does
approximate are known to be solutions of the given problem.

The situation is similar for MMD. Consider the following example: suppose we knew
that the two distributions we are testing are both Gaussians (with unknown mean vectors
and covariance matrices). Since the empirical means of products of input variables up to
order two are sufficient statistics for the family of Gaussians, we should thus work in an
RKHS spanned by products of order up to two — any higher order products contain no
information about the underlying Gaussians and can therefore mislead us. It is straight-
forward to see that for c > 0, the polynomial kernel k(x, x′) = (〈x, x′〉 + c)2 does the job:
it equals

d∑
i,j=1

xixjx
′
ix
′
j + 2c

d∑
i=1

xix
′
i + c2 = 〈φ(x), φ(x′)〉 ,

where φ(x)=(c,
√

2cx1, . . . ,
√

2cxd, xixj|i, j = 1, . . . , d)>. If we want to test for differences
in higher order moments, we use a higher order kernel2 k(x, x′) = (〈x, x′〉 + c)p. To get a
test for comparing two arbitrary distributions, we need to compare all moments, which is
precisely what we do when we consider the infinite-dimensional RKHS associated with a
universal kernel.

Based on these considerations and to keep computation practical, we resort to our
graph kernels from Section 2 and from [Borgwardt et al., 2005] that are more efficient to

2Kernels with infinite-dimensional RKHS can be viewed as a nonparametric generalization where we
have infinitely many sufficient statistics.

96 3. Two-Sample Tests on Graphs

compute and provide useful measures of similarity on graphs, as demonstrated in several
experiments.

Combining MMD with graph kernels, we are now in a position to compare two sets
of graphs and to decide whether they are likely to originate from the same distribution
based on a significance level α. Recall that the design parameter α is the probability of
erroneously concluding that two sets of graphs follow different distributions, albeit they
are drawn from the same distribution.

Experiments

We can employ this type of statistical test for the similarity of sets of graphs to find
corresponding groups of graphs in two databases. Problems of this kind may arise in
data integration, when two collections of graph-structured data shall be matched. We
explore this application in our subsequent experimental evaluation. As we found the uni-
form convergence-based test to be very conservative in our experimental evaluation in
Section 3.1.5, we used the asymptotic test that showed superior performance on small
sample sizes for our experiments.

To evaluate MMD on graph data, we obtained two datasets of protein graphs (Protein
and Enzyme) and used the random walk graph kernel for proteins from [Borgwardt et al.,
2005] for table matching via the Hungarian method (the other tests were not applicable to
this graph data). The challenge here is to match tables representing one functional class
of proteins (or enzymes) from dataset A to the corresponding tables (functional classes) in
B.

Enzyme Graph Data

In more detail, we study the following scenario: Two researchers have each dealt with
300 enzyme protein structures. These two sets of 300 proteins are disjunct, i.e., there is
no protein studied by both researchers. They have assigned the proteins to six different
classes according to their enzyme activity. However, both have used different protein
function classification schemas for these classes and are not sure which of these classes
correspond to each other.

To find corresponding classes, MMD can be employed. We obtained 600 proteins mod-
eled as graphs from [Borgwardt et al., 2005], and randomly split these into two subsets
A and B of 300 proteins each, such that 50 enzymes in each subset belong to each of
the six EC top level classes (EC1 to EC6). We then computed MMD for all pairs of the
six EC classes from subset A and subset B to check if the null hypothesis is rejected or
accepted. To compute MMD, we employed the protein random walk kernel function for
protein graphs, following [Borgwardt et al., 2005]. This random walk kernel measures
similarity between two graphs by counting matching walks in two graphs.

We compared all pairs of classes via MMD2
u B, and repeated the experiment 100 times.

Note that a comparison to competing statistical tests is unnecessary, as — to the best of
our knowledge — no other distribution test for structured data exists.

We report results in Table 3.4. For a significance level of α = 0.05, MMD rejected the
null hypothesis that both samples are from the same distribution whenever enzymes from

3.2 Graph Similarity via Maximum Mean Discrepancy 97

two different EC classes were compared. When enzymes from the same EC classes were
compared, MMD accepted the null hypothesis. MMD thus achieves error-free data-based
schema matching here.

Protein Graph Data

We consider a second schema matching problem on complex data which is motivated by
bioinformatics: If two protein databases are merged, we want to automatically find out
which tables represent enzymes and which do not represent enzymes. We assume that
these molecules are represented as graphs in both databases.

We repeat the above experiments for graph representations of 1128 proteins, 665 of
which are enzymes and 463 of which are non-enzymes. This time we consider 200 graphs
per sample, i.e., two samples of 200 protein graphs are compared via the protein random
walk kernel from above. Again, we compare samples from the same class (both enzymes
or both non-enzymes), or samples from different classes (one enzymes, one non-enzymes)
via MMD.

As on the enzyme dataset, MMD2
u B made no errors. Results are shown in Table 3.4.

Dataset Data type No. attributes Sample size Repetitions % correct matches

Enzyme graph 6 50 50 100.0
Protein graph 2 200 50 100.0

Table 3.4: Matching database tables via MMD2
u B on graph data (Enzyme, Protein) (α = 0.05; ‘%

correct matches’ is the percentage of the correct attribute matches detected over all repetitions).

3.2.2 Two-Sample Test on Pairs of Graphs

After defining a statistical test for graph similarity on sets of graphs, one question remains
unanswered: Can we also employ MMD to define a two-sample test on pairs of graphs?
The answer is yes, and in this section we will show why.

In contrast to Section 3.2, we now define X and Y to represent two graphs G and G′,
not two sets of graphs. MMD requires X and Y to be i.i.d. samples from two underlying
distributions p and q. Hence the decisive question is: How to represent graphs as i.i.d.
samples?

Actually, we have already dealt with this problem: Recall our graphlet sampling
scheme from Section 2.3. There, each graph G is described by a sample of graphlets
X = {x1, . . . , xm1}. These are i.i.d. drawn from G. Analogously G′ is a graph and
Y = {y1, . . . , ym2} is a sample of graphlets from G′. In other terms, in the graphlet sam-
pling framework, each graph is a distribution of graphlets, and we sample graphlets from
that distribution. We can now apply MMD to samples X and Y of graphlets from two
graphs G and G′, and we can decide via MMD if these graphlet samples are likely to
originate from the same underlying graphlet distribution, which represents a graph in this
setting. The natural choice of kernel for this application of MMD to graphs is to employ
an isomorphism kernel on the graphlets. This isomorphism kernel is 1 if two graphlets are
isomorphic, zero otherwise (see Equation (1.28)).

98 3. Two-Sample Tests on Graphs

To summarize, we employ MMD on samples of graphlets to define a statistical test of
similarity for a pair of graphs. We choose graphlets and isomorphism kernel because of
their excellent experimental performance when comparing graph topologies in Section 2.3.5.
Note that we can also sample graph substructures other than graphlets and kernels other
than the isomorphism kernel of course, and apply the same scheme to them.

3.2.3 Experiments

species yeast fly human worm

yeast 0 10 10 3
fly — 0 10 10
human — — 0 10
worm — — — 0

Table 3.5: Two-sample tests via MMD on pairs of protein interaction networks. Number indicate
how often MMD rejected the null hypothesis (p = q) in 10 repetitions of each comparison.
Statistics on PPI networks: yeast (2401 nodes, 11000 edges), fly (4602 nodes, 4637 edges), human
(1753 nodes, 3113 edges), worm (1356 nodes, 1983 edges).

To test similarity of two graphs via MMD, we choose a task from bioinformatics. There,
several studies have dealt with the topic of finding so-called motifs, i.e. small frequent
subgraphs, within protein interaction network [Przulj, 2007]. Biologists are interested in
whether some of these motifs are more conserved than others, and if certain motifs are
more conserved in one species than another species [Shen-Orr et al., 2002, Wuchty et al.,
2003, Lee et al., 2006]. In our experiment, we wanted to find out if we can distinguish
samples if two sets of graphlets, i.e. motifs, have been drawn from the same or from
different species.

We obtained protein-protein interaction (PPI) networks of four different species from [Przulj,
2007]: worm (C. elegans) [Li et al., 2004], human (H. sapiens) [Zanzoni et al., 2002], fly
(D. melanogaster), [Giot et al., 2003], and yeast (S. cerevisiae) [von Mering et al., 2002].
Represented as unlabeled graphs, these 4 networks formed the dataset for our experiment.
We report sizes and number of edges of these graphs in Table 3.5.

Setting precision parameter ε = 0.1 and confidence parameter δ = 0.1, we sampled
m = 1847 graphlets from each graph, i.e., subgraphs with 4 nodes. We only considered
graphlets with at least 1 edge (a = 10). For each comparison of two PPIs, we sampled
1847 graphlets from each graph. We then compared all pairs of graphs via MMD. We
set α = 0.05 for these test runs and used bootstrapping for determining the threshold for
MMD2

u B. We repeated this whole experiment 10 times, resulting in 10 decisions per pair
of interaction networks.

We present results in Table 3.5. When samples were drawn from the same graph, MMD
made no Type I error in 40 decisions. When samples were drawn from different graphs,
MMD produced 7 Type II errors in 60 decisions.

3.2 Graph Similarity via Maximum Mean Discrepancy 99

MMD had no difficulties in distinguishing whether graphlets had been drawn from
yeast, fly or human, but it failed to tell apart samples that were originated from yeast and
worm in 7 out of 10 repetitions, indicating that the frequencies of graphlets in these species
are similar to each other.

3.2.4 Summary

In this chapter, we have — to the best of our knowledge — developed the first two-sample
test that is applicable to graphs. We proceeded in three steps: First, in Section 3.1, we
defined a test statistic called Maximum Mean Discrepancy and we developed associated
statistical tests for the two-sample problem. Second, in Section 3.2.1, we exploited the
fact that Maximum Mean Discrepancy can be expressed in terms of kernels, and applied
our statistical test to sets of graphs for matching tables from different databases. Third,
in Section 3.2.2, we extended our test to pairs of graphs, by representing each graph as a
sample of its subgraphs of limited size. We then applied our method to compare protein-
protein-interaction networks based on samples of motifs, i.e., small subgraphs from these
networks.

To summarize, Maximum Mean Discrepancy allows us to tackle two-sample problems
on graphs for which no alternative approach exists. Unfolding the full potential of our
novel two-sample tests in applications will be one topic of our future research.

100 3. Two-Sample Tests on Graphs

Chapter 4

Feature Selection on Graphs

Up to this point, our goal was to find out if two graphs are similar. The natural follow-on
question to ask is: Why are two graphs similar? This leads directly from the problem of
classification to the problem of feature selection.

Classification and feature selection are often accompanying tasks. On the one hand, one
wants to build a classifier that is able to correctly predict class memberships of unlabeled
data objects. On the other hand, one wants to select the features of an object that are
most correlated to its class membership.

A multitude of papers has dealt with feature selection from objects that are represented
by feature vectors [Guyon and Elisseeff, 2003]. Selecting features is equivalent to choosing
a set of components or dimensions from these vectors.

Feature selection on graphs, however, has received very little attention. The main reason
is that the number of features of a graph, namely its subgraphs, grows exponentially with
the number of its nodes. Hence it is computationally expensive to consider all features of
a graph and to then perform feature selection.

Subgraph selection has been tackled in a different branch of graph mining though,
in frequent subgraph mining. The task of frequent subgraph mining can be described as
follows: Given a database D of m graphs, determine all subgraphs S that have embeddings
in at least t of the m graphs in D. Hence in this definition, a graph is deemed frequent
if it is a subgraph of at least t of the graphs in D. Efficient algorithms exist for mining
all frequent subgraphs from a database of graphs [Yan and Han, 2002], but obviously the
problem is NP-hard, as one has to repeatedly perform subgraph isomorphism checks.

Recently, these frequent subgraph mining algorithms have been applied to graph clas-
sification tasks, i.e., to find frequent subgraphs in datasets consisting of different classes
of graphs. In this setting, the major drawback of these frequent subgraph tools is that
frequency alone is not a good measure of discriminative power. Both highly frequent and
very rare subgraphs may be rather useless for distinguishing different classes of graphs.
Setting the frequency threshold t very high may result in finding only high-frequency pat-
terns that are abundant in all classes. Choosing a low frequency threshold t will cause these
algorithms to enumerate thousands and millions of frequent subgraphs, without providing
information on the relevance of these frequent subgraphs for the class membership of a
graph: Hence frequent subgraph mining algorithms would benefit from a feature selector

102 4. Feature Selection on Graphs

that finds the most informative frequent subgraphs within their solution set.
In this chapter, we tackle the problem of defining a feature selector for frequent sub-

graph mining. Towards this end, we define a feature selection algorithm that is purely
based on kernels on both the data objects and their class labels (Section 4.1). Its core
idea is to measure dependence between data and class labels via the Hilbert-Schmidt In-
dependence Criterion (HSIC), and to greedily maximize this dependence for a subset of
features. We show that the backward feature selection variant of kernel-based feature
selector is competitive with state-of-the-art approaches on vectorial data in our first ex-
perimental evaluation. We then exploit the fact that kernel-based HSIC feature selection
can be directly transfered to feature selection on graphs (Section 4.2). Due to the compu-
tational expensiveness of considering all subgraphs, we focus on feature selection among
frequent subgraphs via HSIC, and propose an efficient forward feature selection algorithm
for this problem (Section 4.2.3). Our second experimental evaluation shows that our novel
approach to feature selection among frequent subgraphs selects fewer features than state-
of-the-art approaches, and at the same time, these features lead to higher accuracies in
classification experiments than those selected by competitor methods.

4.1 A Dependence based Approach to Feature Selection 103

4.1 A Dependence based Approach to Feature Selection

4.1.1 The Problem of Feature Selection

In supervised learning problems, we are typically given m data points x ∈ X and their
labels y ∈ Y. The task is to find a functional dependence between x and y, f : x 7−→ y,
subject to certain optimality conditions. Representative tasks include binary classification,
multi-class classification, regression and ranking. We often want to reduce the dimension
of the data (the number of features) before the actual learning [Guyon and Elisseeff, 2003];
a larger number of features can be associated with higher data collection cost, more diffi-
culty in model interpretation, higher computational cost for the classifier, and decreased
generalisation ability. It is therefore important to select an informative feature subset.

The problem of supervised feature selection can be cast as a combinatorial optimization
problem. We have a full set of features, denoted S (each element in S corresponds to one
dimension of the data). We use these features to predict a particular outcome, for instance
the presence of cancer: clearly, only a subset T of features will be relevant. Suppose the
relevance of a feature subset to the outcome is quantified by Q(T), and is computed by
restricting the data to the dimensions in T. Feature selection can then be formulated as

T0 = arg max
T⊆S

Q(T) subject to |T| ≤ θ, (4.1)

where | · | computes the cardinality of a set and θ upper bounds the number of selected
features. Two important aspects of problem (4.1) are the choice of the criterion Q(T) and
the selection algorithm.

Feature Selection Criterion. The choice of Q(T) should respect the underlying su-
pervised learning tasks — estimate function dependence f from training data and guarantee
f predicts well on test data. Therefore, good criteria should satisfy two conditions:

I: Q(T) is capable of detecting any prominent (nonlinear as well as linear) functional
dependence between the data and the labels.

II: Q(T) is concentrated with respect to the underlying measure. This guarantees with
high probability that the detected functional dependence is preserved in test data.

While many criteria have been explored, few take these two conditions explicitly into
account. Examples include the leave-one-out error bound of SVM [Weston et al., 2000] and
the mutual information [Koller and Sahami, 1996]. Although the latter has good theoretical
justification, it requires density estimation, which is problematic for high-dimensional and
continuous variables. We sidestep these problems by employing a mutual-information like
quantity — the Hilbert Schmidt Independence Criterion (HSIC) [Gretton et al., 2005].
HSIC uses kernels for measuring dependence, which makes it attractive for our ultimate
goal of feature selection on graphs (see Section 4.2). Furthermore, HSIC does not require
density estimation. HSIC also has good uniform convergence guarantees. As we show in
subsection 4.1.2, HSIC satisfies conditions I and II, required for Q(T).

Feature Selection Algorithm. Finding a global optimum for (4.1) is in general NP-
hard [Weston et al., 2003]. Many algorithms transform (4.1) into a continuous problem

104 4. Feature Selection on Graphs

by introducing weights on the dimensions [Weston et al., 2000, Bradley and Mangasarian,
1998, Weston et al., 2003]. These methods perform well for linearly separable problems.
For nonlinear problems, however, the optimization usually becomes non-convex and a local
optimum does not necessarily provide good features. Greedy approaches, forward selection
and backward elimination, are often used to tackle problem (4.1) directly. Forward selection
tries to increase Q(T) as much as possible for each inclusion of features, and backward
elimination tries to achieve this for each deletion of features [Guyon et al., 2002]. Although
forward selection is computationally more efficient, backward elimination provides better
features in general since the features are assessed within the context of all others.

BAHSIC. In principle, HSIC can be employed using either the forwards or backwards
strategy, or a mix of strategies. However, in this section, we will focus on a backward
elimination algorithm. Our initial experiments (not reported) showed that backward elim-
ination outperforms forward selection for HSIC on vectorial data, albeit being more runtime
intensive. Still, forward selection will be the focus of Section 4.2.3, when we tackle the
actual goal of feature selection on graphs, because its better runtime performance is a huge
advantage on graphs.

Backward elimination using HSIC (BAHSIC) is a filter method for feature selection. It
selects features independent of a particular classifier. Such decoupling not only facilitates
subsequent feature interpretation but also speeds up the computation over wrapper and
embedded methods.

Furthermore, BAHSIC is directly applicable to binary, multiclass, and regression prob-
lems. Most other feature selection methods are only formulated either for binary clas-
sification or regression. Multi-class extension of these methods is usually accomplished
using a one-versus-the-rest strategy. Still fewer methods handle classification and regres-
sion cases at the same time. BAHSIC, on the other hand, accommodates all these cases
in a principled way: by choosing different kernels, BAHSIC also subsumes many existing
methods as special cases. Such versatility of BAHSIC originates from the generality of
HSIC. Therefore, we begin our exposition with an introduction of HSIC.

4.1.2 Measures of Dependence

We define X and Y broadly as two domains from which we draw samples (x, y) ∼ Prxy:
these may be real valued, vector valued, class labels, strings, graphs, and so on. We define a
(possibly nonlinear) mapping φ(x) ∈ G from each x ∈ X to a feature space G, such that the
inner product between the features is given by a kernel function k(x, x′) := 〈φ(x), φ(x′)〉: G

is called a Reproducing Kernel Hilbert Space (RKHS). Likewise, let H be a second RKHS
on Y with kernel l(·, ·) and feature map ψ(y). We may now define a cross-covariance
operator between these feature maps, in accordance with [Baker, 1973, Fukumizu et al.,
2004]: this is a linear operator Cxy : H 7−→ G such that

Cxy = Exy[(φ(x)− µx)⊗ (ψ(y)− µy)], (4.2)

where ⊗ is the tensor product. The square of the Hilbert-Schmidt norm of the cross-
covariance operator (HSIC), ‖Cxy‖2HS, is then used as our feature selection criterion Q(T).

4.1 A Dependence based Approach to Feature Selection 105

[Gretton et al., 2005] show that HSIC can be expressed in terms of kernels as

HSIC(G,H,Prxy) = ‖Cxy ‖2H = (4.3)

= Exx′yy′ [k(x, x
′)l(y, y′)] + Exx′ [k(x, x

′)]Eyy′ [l(y, y
′)]− 2Exy[Ex′ [k(x, x

′)]Ey′ [l(y, y
′)]].

Previous work used HSIC to measure (in)dependence between two sets of random vari-
ables [Gretton et al., 2005]. Here we use it to select a subset T from the full set of random
variables S. We now describe further properties of HSIC which support its use as a feature
selection criterion.

Property (I) [Gretton et al., 2005, Theorem 4] show that whenever G,H are RKHSs
with universal kernels k, l on respective compact domains X and Y in the sense of [Steinwart,
2002] (see Section 3.1.1), then HSIC(G,H,Prxy) = 0 if and only if x and y are independent.
In terms of feature selection, a universal kernel such as the Gaussian RBF kernel or the
Laplace kernel permits HSIC to detect any dependence between X and Y. HSIC is zero only
if features and labels are independent. Clearly we want to reach the opposite result, namely
strong dependence between features and class labels. Hence we try to select features that
maximize HSIC.

In fact, non-universal kernels can also be used for HSIC, although they may not guar-
antee that all dependencies are detected. Different kernels incorporate distinctive prior
knowledge into the dependence estimation, and they focus HSIC on dependence of a cer-
tain type. For instance, a linear kernel requires HSIC to seek only second order dependence.
Clearly HSIC is capable of finding and exploiting dependence of a much more general na-
ture by kernels on strings, trees, dynamical systems, and — and most interesting to us —
graphs.

Property (II) Given a sample Z = {(x1, y1), . . . , (xm, ym)} of size m drawn from Prxy,
HSIC has an unbiased empirical estimate,

HSIC(G,H, Z) = 1
m(m−3)

[Tr(KL) + 1
(m−1)(m−2)

1TK11TL1− 2
m−2

1TKL1], (4.4)

where K and L are computed as Kij = (1− δij)k(xi, xj) and Lij = (1− δij)l(yi, yj). Note
that the diagonal entries of K and L are set to zero.

The following theorem formally states that the empirical HSIC is unbiased. This prop-
erty is by contrast with the mutual information, which requires sophisticated bias correction
strategies (e.g. [Nemenman et al., 2002]).

Theorem 42 (HSIC is Unbiased) Let EZ denote the expectation taken over m inde-
pendent observations (xi, yi) drawn from Prxy. Then

HSIC(G,H,Prxy) = EZ [HSIC(G,H, Z)] . (4.5)

Proof [Theorem 42] Recall that Kii = Lii = 0. We prove the claim by constructing
unbiased estimators for each term in (4.3). Note that we have three types of expectations,
namely ExyEx′y′ , a partially decoupled expectation ExyEx′Ey′ , and ExEyEx′Ey′ , which takes
all four expectations independently.

106 4. Feature Selection on Graphs

If we want to replace the expectations by empirical averages, we need to take care to
avoid using the same discrete indices more than once for independent random variables.
In other words, when taking expectations over n independent random variables, we need
n-tuples of indices where each index occurs exactly once. The sets imn satisfy this property,
where imn denotes the set of all n-tuples drawn without replacement from {1, . . . ,m}. Their
cardinalities are given by the Pochhammer coefficients (m)n = m!

(m−n)!
. Jointly drawn

random variables, on the other hand, share the same index. We have

ExyEx′y′ [k(x, x
′)l(y, y′)] =EZ

[
(m)−1

2

∑
(i,j)∈im2

KijLij

]
=EZ

[
(m)−1

2 TrKL
]
.

In the case of the expectation over three independent terms ExyEx′Ey′ we obtain

EZ
[
(m)−1

3

∑
(i,j,q)∈im3

KijLiq

]
= EZ

[
(m)−1

3 1>KL1− TrKL
]
.

For four independent random variables ExEyEx′Ey′ ,

EZ
[
(m)−1

4

∑
(i,j,q,r)∈im4

KijLqr

]
=EZ

[
(m)−1

4

(
1>K11>L1− 41>KL1 + 2TrKL

)]
.

To obtain an expression for HSIC we only need to take linear combinations using (4.3).
Collecting terms related to TrKL, 1>KL1, and 1>K11>L1 yields

HSIC(G,H,Prxy)

= 1
m(m−3)

EZ
[
TrKL + 1>K11>L1

(m−1)(m−2)
− 2

m−2
1>KL1

]
.

This is the expected value of HSIC[G,H, Z].

U-Statistics. The estimator in (4.4) can be alternatively formulated using U-statistics

HSIC(G,H, Z) = (m)−1
4

m∑
(i,j,q,r)∈im4

h(i, j, q, r), (4.6)

where imr denotes the set of all r-tuples drawn without replacement from {1, . . . ,m}, and
(m)n are the Pochhammer coefficients.

4.1 A Dependence based Approach to Feature Selection 107

The kernel h of the U-statistic is defined by

h(i, j, q, r) =1
6
[Kij(Lij + Lqr) + Kjq(Ljq + Lir)

+ Kiq(Liq + Ljr) + Kir(Lir + Ljq)

+ Kjr(Ljr + Lqi) + Kqr(Lqr + Lij)]

− 1
12

(i,j,q,r)∑
(t,u,v)

Ktu[Ltv + Luv] (4.7)

Note that the sum in (4.7) represents all ordered triples (t, u, v) selected without replace-
ment from (i, j, q, r). This can be seen by direct calculation.

We now show that HSIC(G,H, Z) is concentrated. Furthermore, its convergence in
probability to HSIC(G,H,Prxy) occurs with rate 1/

√
m which is a slight improvement over

the convergence of the biased estimator by [Gretton et al., 2005].

Theorem 43 (HSIC is Concentrated) Assume k, l are bounded almost everywhere by
1, and are non-negative. Then for m > 1 and all δ > 0, with probability at least 1− δ for
all Prxy

|HSIC(G,H, Z)− HSIC(G,H,Prxy)| ≤ 4.72
√

log(2/δ)/m

By virtue of (4.6) we see immediately that HSIC is a U-statistic of order 4, where each
term is bounded in [−2/3, 8/3]. Applying Hoeffding’s bound as in [Gretton et al., 2005]
proves the result.

These two theorems imply the empirical HSIC closely reflects its population coun-
terpart. This means the same features should consistently be selected to achieve high
dependence if the data are repeatedly drawn from the same distribution.

Asymptotic Normality. It follows from [Serfling, 1980] that under the assumptions
E(h2) <∞ and that the data and labels are not independent, the empirical HSIC converges
in distribution to a Gaussian random variable with mean HSIC(G,H,Prxy) and variance

σ2
HSIC = 16

m

(
R− HSIC2

)
where (4.8)

R = 1
m

m∑
i=1

(
(m)−1

3

∑
(j,q,r)∈im3 \{i}

h(i, j, q, r)
)2

.

The asymptotic normality and the variance allow us to formulate statistics for a significance
test. This is useful because it may provide an assessment of the functional dependence
between the selected features and the labels.

Simple Computation. Note that HSIC(G,H, Z) is simple to compute, since only
the kernel matrices K and L are needed, and no density estimation is involved. For
feature selection, the kernel matrix on labels L is fixed through the whole process. It can
be precomputed and stored for speedup if needed. Note also that HSIC(G,H, Z) does
not need any explicit regularization parameter. This is encapsulated in the choice of the
kernels.

108 4. Feature Selection on Graphs

4.1.3 Feature Selection via HSIC

Having defined our feature selection criterion, we now describe an algorithm that conducts
feature selection on the basis of this dependence measure. The strategy is to greedily select
features that maximize HSIC, i.e., the dependence between features and labels.

Using HSIC, we can perform both backward (BAHSIC) and forward (FOHSIC) selection
of the features. In particular, when we use a linear kernel on the data (there is no such
requirement for the labels), forward selection and backward selection are equivalent: the
objective function decomposes into individual coordinates, and thus feature selection can
be done without recursion in one go. Although forward selection is computationally more
efficient, backward elimination in general yields better features, since the quality of the
features is assessed within the context of all other features. Hence we present the backward
elimination version of our algorithm here (a forward greedy feature selection algorithm
based on HSIC is presented in Section 4.2.3).

BAHSIC appends the features from S to the end of a list S† so that the elements
towards the end of S† have higher relevance to the learning task. The feature selection
problem in (4.1) can be solved by simply taking the last t elements from S†. Our algorithm
produces S† recursively, eliminating the least relevant features from S and adding them to
the end of S† at each iteration. For convenience, we also denote HSIC as HSIC(σ, S), where
S are the features used in computing the data kernel matrix K, and σ is the parameter
for the data kernel (for instance, this might be the width of a Gaussian kernel k(x, x′) =
exp(−σ ‖x− x′‖2)).

Algorithm 2 BAHSIC

Input: The full set of features S

1: S† ← ∅
2: repeat
3: σ ← Ξ
4: I← arg maxI

∑
j∈I HSIC(σ, S \{j}), I ⊂ S

5: S← S \ I

6: S† ← S† ∪ I

7: until S = ∅

Output: An ordered set of features S†

Step 3 of the algorithm denotes a policy for adapting the kernel parameters, e.g. by
optimizing over the possible parameter choices. In our experiments, we typically normalize
each feature separately to zero mean and unit variance, and adapt the parameter for a
Gaussian kernel by setting σ to 1/(2d), where d = | S | − 1. If we have prior knowledge
about the type of nonlinearity, we can use a kernel with fixed parameters for BAHSIC. In
this case, step 3 can be omitted.

Step 4 of the algorithm is concerned with the selection of a set I of features to eliminate.

4.1 A Dependence based Approach to Feature Selection 109

While one could choose a single element of S, this would be inefficient when there are a
large number of irrelevant features. On the other hand, removing too many features at
once risks the loss of relevant features. In our experiments, we found a good compromise
between speed and feature quality was to remove 10% of the current features at each
iteration.

4.1.4 Connections to Other Approaches

We now explore connections to other feature selectors. For binary classification, an alter-
native criterion for selecting features is to check whether the distributions Pr(x|y = 1) and
Pr(x|y = −1) differ. For this purpose one could use Maximum Mean Discrepancy (MMD),
as presented in Section 3.1.1 of this thesis. Likewise, one could use Kernel Target Align-
ment (KTA) [Cristianini et al., 2003] to test directly whether there exists any correlation
between data and labels.

Let us consider the output kernel l(y, y′) = ρ(y)ρ(y′), where ρ(1) = m−1
+ and ρ(−1) =

−m−1
− , and m+ and m− are the numbers of positive and negative samples, respectively.

With this kernel choice, we show that MMD and KTA are closely related to HSIC.
KTA has been used for feature selection. Formally it is defined as TrKL/‖K‖‖L‖. For

computational convenience the normalization is often omitted in practice [Neumann et al.,
2005], which leaves us with TrKL. We discuss this unnormalized variant below.

Theorem 44 (Connection to MMD and KTA) Given a sample
Z = {(x1, y1), . . . , (xm, ym)} of size m. Assume the kernel k(x, x′) for the data is bounded
and the kernel for the labels is l(y, y′) = ρ(y)ρ(y′). Then∣∣HSIC− (m− 1)−2MMD

∣∣ = O(m−1)∣∣HSIC− (m− 1)−2KTA
∣∣ = O(m−1).

Proof [Theorem 44] We first relate a biased estimator of HSIC to the biased estimator
of MMD. The former is given by

1
(m−1)2

TrKHLH where H = I−m−111>

and the bias is bounded by O(m−1), as shown by [Gretton et al., 2005]. An estimator of
MMD with bias O(m−1) is

MMD2(F, Z) =
1

m2
+

m+∑
i,j

k(xi,xj) +
1

m2
−

m−∑
i,j

k(xi,xj)−
2

m+m−

m+∑
i

m−∑
j

k(xi,xj) = TrKL

If we choose l(y, y′) = ρ(y)ρ(y′) with ρ(1) = m−1
+ and ρ(−1) = m−1

− , we can see that L1 = 0.
In this case TrKHLH = TrKL, which shows that the biased estimators of MMD and HSIC
are identical up to a constant factor. Since the bias of TrKHLH is O(m−1), this implies
the same bias for the MMD estimate. Note that Z has slightly different interpretations in
MMD and HSIC: MMD is treating the two classes in Z as distinct samples and computes
the discrepancy of their means in feature space. HSIC, however, measures dependence

110 4. Feature Selection on Graphs

between the features and their class labels, across classes and treating Z as one single
sample.

To see the same result for Kernel Target Alignment, note that for equal class size the
normalizations with regard to m+ and m− become irrelevant, which yields the correspond-
ing MMD term.

Theorem 44 means that HSIC converges to (m − 1)−2MMD and (m − 1)−2KTA with
rate O(m−1), hence in some cases in binary classification, selecting features that maximize
HSIC also maximizes MMD and KTA. Note that in general (multiclass, regression, or
generic binary classification) this connection does not hold.

4.1.5 Variants of BAHSIC

New variants can be readily derived from our framework by combining the two building
blocks of BAHSIC: a kernel on the data and another one on the labels. Here we provide
three examples using a Gaussian RBF kernel k(x, x′) = exp(−σ‖x − x′‖2) on the data,
while varying the kernels on the labels. This provides us with feature selectors for the
following problems:

Binary classification (BIN) We set m−1
+ as the label for positive class members, and

m−1
− for negative class members. We then apply a linear kernel.
Multiclass classification (MUL) We apply a linear kernel on the labels using the

label vectors below, as described in a 3-class example. Here mi is the number of samples
in class i and 1mi

denotes a vector of all ones with length mi.

Y =

1m1

m1

1m1

m2−m
1m1

m3−m
1m2

m1−m
1m2

m2

1m2

m3−m
1m3

m1−m
1m3

m2−m
1m3

m3

m×3

. (4.9)

Regression problem (REG) A Gaussian RBF kernel is also used on the labels. For
convenience the kernel width σ is fixed as the median distance between points in the sample
[Schölkopf and Smola, 2002].

For the above variants a further speedup of BAHSIC is possible by updating the entries
of the kernel matrix incrementally, since we are using an RBF kernel. We use the fact that
‖x − x′‖2 =

∑
j ‖xj − x′j‖2. Hence ‖x − x′‖2 needs to be computed only once. Subse-

quent updates are effected by subtracting ‖xi− x′i‖2 (Here subscript indices correspond to
dimensions).

4.1.6 Experiments

We conducted experiments on: (i) artificial datasets illustrating the properties of BAHSIC;
(ii) real-world datasets that compare BAHSIC with other methods.

Artificial Datasets

Comparison to Filter Methods We use 3 artificial datasets, as illustrated in Figure 4.1,
to compare BAHSIC with other filter methods:

4.1 A Dependence based Approach to Feature Selection 111

Figure 4.1: Artificial datasets and the performance of different methods when varying the num-
ber of observations. Left column, top to bottom: Binary, multiclass, and regression data.
Different classes are encoded with different colors. Right column: Median rank (y-axis) of the
two relevant features as a function of sample size (x-axis) for the corresponding datasets in the
left column (Pearson’s correlation (blue circle), RELIEF (green triangle), BAHSIC (red square).
Note that RELIEF only works for binary classification.).

112 4. Feature Selection on Graphs

• Binary XOR data, where samples belonging to the same class have multimodal dis-
tributions.

• Multiclass data, where there are 4 classes but 3 of them are collinear.

• Nonlinear regression data, where the label is related to the first 2 dimension of the
data by y = x1 exp(−x2

1 − x2
2) + ε. Here ε denotes additive normal noise.

Each dataset has 22 dimensions: the first two dimensions are nonlinearly interacting fea-
tures and the rest are just Gaussian noise.

We compare the three variants of BAHSIC (BIN, MUL and REG) to two other filter
methods, namely Pearson’s correlation and RELIEF [Kira and Rendell, 1992]. Note that
we will mainly focus on comparison with Pearson’s correlation, since it is applicable to
both classification and regression problems (the original RELIEF works only for binary
problem). We aim to show that when nonlinear dependencies exist in the data, BAHSIC
is very competent in finding them.

We instantiate the artificial datasets over a range of sample sizes (from 40 to 400), and
plot the median rank, produced by various methods, for the first two dimensions of the
data. All numbers in Figure 4.1 are averaged over 10 runs. In all cases, BAHSIC shows
good performance. More specifically, we observe that

• On the XOR problem, both BIN and RELIEF correctly select the first two dimensions
of the data even for small sample sizes. Pearson’s correlation, however, fails. This is
because the latter evaluates the goodness of each feature independently. Hence it is
unable to capture nonlinear interaction between features.

• In the multiclass problem, MUL selects the correct features irrespective of the size of
the samples. Pearson’s correlation only works for large sample size. The collinearity
of 3 classes provides linear correlation between the data and the labels, but due to the
interference of the fourth class such correlation is picked up by Pearson’s correlation
only for large sample size.

• For regression, the performance of Pearson’s correlation is just slightly better than
random. REG quickly converges to the correct answer as the sample size increases.

While this does not prove that BAHSIC is always better than other methods in practice,
it illustrates that when nonlinearity exists, BAHSIC is able to detect it. This is obviously
useful in a real-world situations. The second advantage of BAHSIC is that it is readily
applicable to both classification and regression problems, by simply choosing a different
kernel.

Embedded and Wrapper Methods In this experiment, we show that the perfor-
mance of BAHSIC can be comparable to embedded and wrapper methods. We use the
artificial data described by [Weston et al., 2000] to compare BAHSIC to 4 embedded
and wrapper feature selection methods implemented in the Spider1 Toolbox: namely FSV

1http://www.kyb.tuebingen.mpg.de/bs/people/spider

4.1 A Dependence based Approach to Feature Selection 113

Method BAHSIC FSV L0 R2W2 RFE
WL-3 0.0±0.0 2.0±2.0 0.0±0.0 0.0±0.0 0.0±0.0
WN-2 1.0±1.0 58.0±5.3 2.0±1.3 54.0±6.5 2.0±1.3

Table 4.1: Classification error (%) after selecting features using BAHSIC and other methods.

[Bradley and Mangasarian, 1998], L0-norm SVM [Weston et al., 2003], R2W2 [Weston
et al., 2000] and SVM-RFE [Guyon et al., 2002].

For the linear problem, 25 data points of 202 dimensions are generated for each class,
of which only the first six dimensions are relevant for classification (WL-3). Six features
are selected and classified using linear SVM. For the nonlinear problem, 50 data points of
52 dimensions are generated for each class, and only the first two dimensions are relevant
(WN-2). Two features are selected and an SVM with polynomial kernel of degree 2 is used
for the classification. All results presented in Table 4.1 are obtained using 10-fold cross-
validation. It can be seen that BAHSIC compares favourably to embedded and wrapper
methods in small sample size and nonlinear problems.

Method BAHSIC Pearson RELIEF FSV L0 R2W2 RFE
Covertype (b) 36.3±1.6 43.3±1.6 41.0±1.6 44.2±1.4 45.6±0.5 45.9±0.3 41.1±1.2
Ionosphere (b) 11.8±1.5 22.5±1.8 14.1±2.3 15.7±1.7 35.9±0.5∗ 12.8±1.4 30.0±1.0∗

Sonar (b) 28.2±2.9 26.9±2.4 22.7±2.7 28.8±1.9 40.4±1.8∗ 33.7±2.30 26.3±3.9
Satimage (m) 20.1±1.9 53.9±6.7 - - 25.0±1.0 - 22.6±1.2
Segment (m) 24.5±1.2 5.3±3.1 - - 71.2±6.7∗ - 31.2±0.6
Vehicle (m) 35.4±1.9 35.5±6.8 - - 44.2±1.7 - 42.8±1.7
Housing (r) 19.1±2.7 27.5±3.0 - - - - -
Bodyfat (r) 9.4±3.1 9.3±3.3 - - - - -
Abalone (r) 55.1±2.7 54.2±3.3 - - - - -

Table 4.2: Classification error (%) or percentage of variance not-explained (%). Best results are
shown in boldface, as long as the advantage is statistically significant (left-tailed t-test with level
0.05). b: binary problem; m: multiclass problem; r: regression problem. -: not applicable.

Real-World Datasets

We now discuss results on various real-world datasets taken from the UCI repository and
Statlib. We chose the covertype, ionosphere, and sonar datasets for binary classification;
satimage, segment, and vehicle for multiclass classification; and housing, bodyfat, and
abalone for regression. We reduced the size of some datasets to smaller than 1000 by
a balanced random sample of data. These reduced datasets enable us to compare with
wrapper and embedded methods in reasonable time.

We report the performance of an SVM using an RBF kernel on a feature subset of size 5
using 10-fold cross-validation. These 5 features were selected per fold using different meth-
ods. On classification datasets, we measured the performance using the balanced error-rate
metric, and on regression datasets we used the percentage of variance not-explained (also
known as 1− r2).

114 4. Feature Selection on Graphs

The results of the experiments are summarised in Table 4.1.6. Here we see that the
performance of BAHSIC competes favourably across all three types of problems. Note
these embedded and wrapper methods are not applicable for regression problems. Even
for classification, however, they generally do not perform as well as simple filter methods
such as BAHSIC or RELIEF (especially for the numbers marked with ∗). While Pearson’s
correlation also has broad applicability, it does not perform as well as BAHSIC in general.

4.1.7 Summary

In this section, we have proposed a backward elimination procedure for feature selection
using the Hilbert-Schmidt Independence Criterion (HSIC). The idea behind the resulting
algorithm, BAHSIC, is to choose the feature subset that maximizes the dependence between
the data and labels. With this interpretation, BAHSIC provides a unified feature selection
framework for any form of supervised learning. The absence of bias and good convergence
properties of the empirical HSIC estimate provide a strong theoretical justification for
using HSIC in this context. Although BAHSIC is a filter method, it still demonstrates
good performance compared with more specialised methods in both artificial and real-
world data.

4.2 Feature Selection among Frequent Subgraphs 115

4.2 Feature Selection among Frequent Subgraphs

BAHSIC offers us a theoretically justified and practically successful feature selection method
based on dependence maximization and kernels. The fact that BAHSIC is a kernel method
also means that we could directly extend it to graphs. However, there is a huge rub, the
large number of features included in a graph model. If we want to apply BAHSIC to graphs
we have to find the subgraph whose removal lowers dependence between graphs and their
class labels least in each iteration. However, even the effort of enumerating these subgraphs
is NP-hard. This also means that in each iteration we have to recompute a graph kernel
matrix exponentially often, once for each subgraph. Despite all advances in graph kernel
computation efficiency, this seems an rather hopeless endeavor concerning computational
runtime.

Feature Selection Needs Frequent Subgraph Mining However, the core of this
problem lies in the fact that we are enumerating all subgraphs. Is this really necessary? It
seems plausible to exclude certain subgraphs, e.g. those that appear only in a negligible
fraction of the graphs in the dataset. In other terms, to consider only subgraphs that
appear in at least t of the graphs in the dataset. This is exactly the definition of a frequent
subgraph in graph mining. Efficient algorithms have been developed for frequent subgraph
mining, most prominently gSpan [Yan and Han, 2002]. gSpan uses elegant data structures
and branch-and-bound search strategies to lower the computational burden (but of course,
it cannot avoid the problem of repeated isomorphism checking which is NP-hard). Hence
for feature selection on graphs, restricting ourselves to frequent subgraphs seems attractive.

Frequent Subgraph Mining Needs Feature Selection Still, frequent subgraphs
are not necessarily those that help to distinguish different classes of graphs. High-frequency
patterns may appear in all graphs and exert little discriminative power. That is the reason
why t is often set usually set very low in frequent subgraph mining for classification tasks.
The resulting low-frequency patterns, however, may be so rare that they do not help to tell
apart classes either, or they may even represent noise. Furthermore, for small choices of t,
frequent subgraph mining detects thousands and millions of subgraphs. The sheer amount
of these frequent subgraphs makes it difficult to identify the most informative ones for class
membership. Even worse, the frequent subgraphs are highly correlated, as they may be
subgraphs of each other. As a consequence, frequent subgraph mining would benefit from
an algorithm that allows efficient feature selection among its frequent subgraph patterns
and takes correlation between features into account.

In this section, we will a present an algorithm that uses BAHSIC-like feature selection on
frequent subgraphs detected by gSpan. It is the first principled feature selection technique
for graphs and an extension of gSpan that reduces gSpan’s vast solution set to a small set
of highly informative subgraph features.

Frequent Subgraph Selection for Graph Classification

In previous sections, we were designing graph kernels for tackling classification problems on
datasets of graphs. The graph kernels we considered so far compare graphs by a pairwise
comparison of all their substructures. The reasoning behind this approach is that by

116 4. Feature Selection on Graphs

looking at all substructures, we are more likely to find the features that are associated
with class membership.

However, considering all features, i.e., all subgraphs, in a graph is computationally
expensive, as enumeration of all subgraphs is NP-hard. Furthermore, their number grows
exponentially with the size of a graph and with the number of its edges. Researchers on
graph kernels and on frequent subgraph mining have taken two different roads to overcome
this problem: On the one hand, state-of-the-art graph kernels, as reviewed in Section 1.4
and defined in Section 2, restrict their comparison of graphs to substructures that can be
computed in polynomial time. On the other hand, frequent subgraph mining is considering
only those substructures that are frequent within a given dataset for comparison [Kramer
et al., 2001, Deshpande et al., 2005, Cheng et al., 2007]. 2

A major setback of these frequent subgraph based methods is that they tend to detect
vast numbers of frequent subgraphs, because the frequency threshold has to be set very
low to discover discriminative subgraphs. This vast number of features poses three new
challenges.

1. Redundancy: Most frequent substructures are only slightly different from each
other in structure and are highly correlated with the class labels.

2. Significance: While low-support features are not representative of the graphs, fre-
quent subgraphs are not necessarily useful for classification. Statistical significance
rather than frequency of the graph patterns should be used for evaluation of their
discriminative power.

3. Efficiency: Very frequent subgraphs are not useful since they are not discrimina-
tive between classes. Therefore, frequent subgraph based classification usually sets
up a pretty low frequency threshold, resulting in thousands or even millions of fea-
tures. Given such a tremendous number of features, a complicated feature selection
mechanism is likely to fail.

Consequently, we need an efficient algorithm to select informative, discriminative fea-
tures among a large number of frequent subgraphs. In earlier work [Cheng et al., 2007],
Cheng et al. adopted a heuristic approach to this problem and demonstrated that it could
outperform methods using low-frequency features.

In this section, we will define an efficient and principled approach to feature selection
among frequent subgraphs generated by gSpan [Yan and Han, 2002], a the state-of-the-art
tool for frequent subgraph mining. In order to select the subgraphs that are most discrimi-
native for classification, we will employ the kernel-based feature selection algorithms based
on the Hilbert-Schmidt Independence Criterion (HSIC), as presented in Section 4.1.

Unlike its predecessors which use ad-hoc strategies for feature selection, we define prin-
cipled backward and forward feature selection methods based on the Hilbert-Schmidt Inde-
pendence Criterion, and its associated kernel functions. Specifically, we show that forward

2Interestingly, even the latter could be deemed R-convolution kernels, and hence graph kernels. The
only difference to state-of-the-art graph kernels is that the decomposition R of these kernels would be
NP-hard to compute, as they are determining frequent subgraphs.

4.2 Feature Selection among Frequent Subgraphs 117

feature selection with one particular kernel leads to a feature selector that is efficient even
on vast numbers of subgraph features: it uses an intuitive selection criterion solely based
on the frequency of subgraphs in different classes. Furthermore, it achieves higher classifi-
cation accuracy than the competitors in our experimental evaluation.

4.2.1 Preliminaries

In the following we will first define some additional notation, then the optimization problem
we want to tackle and finally we will review gSpan, the frequent subgraph mining approach
our feature selector builds upon.

Notation We begin with some additional notation. We are given a dataset D =
{(G1, yi), . . . , (Gm, ym)} of graphs that each belong to one of two classes A and B: Gi ∈ A
if y = 1, or Gi ∈ B of y = −1. Let |A| = |B| = 1

2
m be of identical size. Our presentation

also applies to the unbalanced case (|A| 6= |B|), but for the sake of clarity of presentation,
we present the simple balanced case here, and summarize the general unbalanced case in
Section 4.2.3.

Given a graph database D, |DG| is the number of graphs in D where G is a subgraph.
|DG| is called the (absolute) support, denoted by support(G). A graph G is frequent if
its support is no less than a minimum support threshold, min sup. As one can see, the
frequent graph is a relative concept: whether a graph is frequent depends on the value of
min sup.

Combinatorial Optimization Problem

As feature selection in general (see Section 4.1.1), the problem of feature selection among
frequent subgraphs can be cast as a combinatorial optimization problem. We denote by S

the full set of features, which in our case corresponds to the frequent subgraphs generated
by gSpan. We use these features to predict class membership of individual graph instances:
clearly, only a subset T of features will be relevant. Supported by the statistical properties
of HSIC (see Section 4.1.2), we propose to quantify the relevance of a set of frequent
subgraphs for class membership by HSIC(T). By slight abuse of notation, we will use
(sets of) features as arguments of HSIC, not RKHSs and probability distributions as in
Section 4.1. This shall reflect the fact that HSIC is measuring the quality of features in
the current setting. HSIC(T) is computed by restricting the graphs to the features in T.
Feature selection can then be formulated as:

T0 = arg max
T⊆S

HSIC(T) s.t. |T| ≤ θ (4.10)

where | · | computes the cardinality of a set and θ upper bounds the number of selected
features. Unfortunately, solving this problem optimally requires us to search all possible
subsets of features (up to cardinality θ) exhaustively. Thus, we have to resort to greedy
alternatives, as in Section 4.1.

gSpan

As considering all subgraphs is prohibitively expensive, we focus on feature selection on
frequent subgraphs. However, before we can select these frequent subgraphs, we have to find

118 4. Feature Selection on Graphs

them. We employ gSpan for this purpose, the state-of-the-art tool for frequent subgraph
mining. We summarize gSpan’s main concepts in the following.

The discovery of frequent graphs usually consists of two steps. In the first step, we gen-
erate frequent subgraph candidates, while in the second step, we check the frequency of each
candidate. The second step involves a subgraph isomorphism test, which is NP-complete.
Fortunately, efficient isomorphism testing algorithms have been developed, making such
testing affordable in practice. Most studies of frequent subgraph discovery pay attention
to the first step; that is, how to generate as few frequent subgraph candidates as possible,
and as fast as possible.

The initial frequent graph mining algorithms, such as AGM [Inokuchi et al., 2000], FSG
[Kuramochi and Karypis, 2001] and the path-join algorithm [Vanetik et al., 2002], share
similar characteristics with the Apriori-based itemset mining [Agrawal and Srikant, 1994].
All of them require a join operation to merge two (or more) frequent substructures into one
larger substructure candidate. To avoid this overhead, non-Apriori-based algorithms such
as gSpan [Yan and Han, 2002], MoFa [Borgelt and Berthold, 2002], FFSM [Huan et al.,
2003], and Gaston [Nijssen and Kok, 2004] adopt the pattern-growth methodology, which
attempts to extend graphs from a single subgraph directly. For each discovered subgraph
S, these methods add new edges recursively until all the frequent supergraphs of S are
discovered. The recursion stops once no frequent graph can be generated any more.

v0
X

a

b

b

a
X

Z Y

v1

v2 v3

v0
X

a

b

b

a
X

Z Y

v1

v2 v3

backward extension

v0
X

a

b

b

a
X

Z Y

v1

v2 v3

forward extension

Figure 4.2: gSpan: Rightmost Extension.

gSpan introduced a sophisticated extension method, which is built on depth first search
(DFS) tree. Given a graph S and a DFS tree TR, we call the starting node in TR, v0,
the root, and the last visited node, vn, the rightmost node. The straight path from v0 to
vn is called the rightmost path. Figure 4.2 shows an example. The darkened edges form a
DFS tree. The nodes are discovered in the order v0, v1, v2, v3. The node v3 is the rightmost
node. The rightmost path is v0 ∼ v1 ∼ v3.

The new method, called rightmost extension, restricts the extension of new edges in a
graph as follows: Given a graph S and a DFS tree TR, a new edge e can be added between
the rightmost node and other nodes on the rightmost path (backward extension); or it can

4.2 Feature Selection among Frequent Subgraphs 119

introduce a new node and connect to nodes on the rightmost path (forward extension).
If we want to extend the graph in Figure 4.2, the backward extension candidate can be
(v3, v0). The forward extension candidates can be edges extending from v3, v1, or v0 with
a new node introduced. Since there could be multiple DFS trees for one graph, gSpan
establishes a set of rules to select one of them as representative so that the backward and
forward extensions will only take place on one DFS tree.

Overall, new edges are only added to the nodes along the rightmost path. With this
restricted extension, gSpan reduces the generation of the same graphs. However, it still
guarantees the completeness of enumerating all frequent subgraphs. For a detailed descrip-
tion of gSpan, see [Yan and Han, 2002]. Algorithm 3 outlines the pseudocode of gSpan.
S �r e means that an edge is extended from graph S using backward or forward extension.
S 6= dfs(S) check whether S has been discovered before, where dfs(S) is the canonical
form of graph S [Yan and Han, 2002].

Algorithm 3 gSpan(S, D, min sup, S)

Input: A feature subgraph S, a graph dataset D, and min sup.

1: if S 6= dfs(S), then
2: return;
3: insert S into S;
4: set C to ∅;
5: scan D once, find all the edges e such that S can be

rightmost extended to S �r e;
insert S �r e into C and count its frequency;

6: for each frequent S �r e in C do
7: Call gSpan(S �r e, D, min sup, S);
8: return;

Output: The frequent graph set S.

4.2.2 Backward Feature Elimination via HSIC

After summarizing essential prerequisites of our approach, we want to find a solution to the
optimization problem in (4.10) next. While exhaustive search over all subsets of S will give
us the optimal answer, this approach is not computationally feasible, as the search space
grows exponentially with the size of S. As before, we therefore consider two common greedy
approaches to feature selection instead: backward elimination and forward selection. In
the present section, we will show how to perform backward elimination using HSIC and
graph kernels, and analyze whether it is feasible in practice. In the next section, we design
a forward selection algorithm that works even more efficiently on large datasets.

A greedy approach to finding an approximate solution to problem (4.10) would be to
apply backward feature elimination to graphs: check for each subgraph S ∈ S whether its

120 4. Feature Selection on Graphs

removal from the dataset lowers the HSIC. If it lowers HSIC, then the dependence between
graphs and their class labels is lowered by the removal; hence this subgraph is informative
for classification. If HSIC stays roughly unchanged, this subgraph is rather uninformative
for distinguishing the two classes. BAHSIC iteratively removes the feature or set of features
whose removal reduces HSIC least.

The interesting question is: How to remove a feature, i.e., a subgraph, from a graph?
If you represent each graph as an indicator vector, in which the d-th component indicates
whether this graph contains the d-th frequent subgraph, then removing a feature is the
same as removing one component from all these indicator vectors. Then, however, you run
into a problem: by removing a subgraph feature S from a graph you also remove all its
subgraphs. If you only remove the component representing S from the indicator vectors,
but do not change those representing its subgraphs, then you ignore this relevant fact
completely.

Here we propose an approach to overcome this problem. Instead of representing each
graph by an indicator vector, we really represent it as a graph. If we want to remove a
subgraph S, we delete it from all graphs in which it occurs. This means that we delete
all edges in this subgraph S in all graph instances in D. In other terms, we only keep
the ”complement graphs of D” with respect to S. We will denote these by D \ S in the
following.

To compute HSIC on the graphs D \ S and on the class labels Y, we need a graph
kernel for the graphs, and a vector kernel for the class labels. The natural choice for the
class labels is to check them for identity. This can be achieved via a so-called delta kernel
l defined on a pair of graphs Gi and Gj:

l(Gi, Gj) =

{
1 if yi = yj ,
0 otherwise

where yi and yj are the class labels of graphs Gi and Gj, respectively.
For the graphs, we can pick any of the graph kernels defined in the literature, as reviewed

in Section 1.4, or as proposed in Section 2.1 of this thesis.
These will measure topological similarity between the graphs in D \ S; or more intu-

itively, how similar the graphs in D are if we ignore all subgraphs S. However, there is a
problem: assume we have | S | frequent subgraphs and m graphs. Then we have to compute
| S | graph kernel matrices for m graphs, because for each frequent subgraph S, the set of
complement graphs D \S changes. This procedure has to be repeated recursively, until we
only have a certain pre-determined number of subgraphs θ left.

This backward elimination causes huge runtime problems because graph kernels are not
fast enough for thousands of graphs. Assume that we are dealing with 10, 000 frequent
subgraphs on a dataset of 100 graphs. In the first iteration, we have to compute a kernel
matrix on D for all 10, 000 frequent subgraphs. Even our fast graph kernels take roughly
1 minute (see Section 2) for comparing 100 graphs. Hence computing one 100× 100 graph
kernel matrix for each of 10, 000 subgraphs will roughly require 10, 000 minutes - which
means we need one week for the first iteration of our backward elimination algorithm!
Hence we have to define a feature selection approach that avoids these costly computations.

4.2 Feature Selection among Frequent Subgraphs 121

We draw two conclusions from this observation: first, we have to avoid recomputing
graph kernel matrices for each of the numerous frequent subgraphs. Second, forward se-
lection might be more attractive than backward elimination in this setting, as the number
of features is very large in our problem.

4.2.3 Forward Feature Selection via HSIX

Since backward elimination and standard graph kernels are too expensive, we next define a
forward approach to frequent subgraph feature selection that uses a fast kernel on graphs.
We have two main goals: a) to design a kernel that can be evaluated extremely quickly,
b) to design a kernel such that HSIC combined with this kernel is an intuitive measure for
dependence between graphs and their class labels.

Challenges in Forward Selection

Forward selection starts by determining the frequent subgraph, i.e., the feature, with
maximum HSIC score.

max
S∈S

HSIC(S) (4.11)

where HSIC(S) denotes the HSIC value for subgraph S, which is computed as follows: As
shown in the section 4.1, an empirical estimate of HSIC can be computed in terms of a
kernel matrix on graphs K and a kernel matrix on class labels L. If we compute HSIC for
one subgraph S, then L remains unchanged. But for computing K on the graphs from D,
we now consider one single feature, namely only subgraph S and no other subgraph. As
usually in forward feature selection, in the first iteration, we evaluate our feature selection
criterion HSIC for each feature individually.

If objects are vectors, this means that we consider one component of the vectors only.
If objects are graphs and features are subgraphs, as in our case, then we represent each
graph by one subgraph feature S only. This means that we check for each graph in D if
it contains S. We remove all edges from each graph except for those that are part of a
subgraph isomorphic to S. After this ”reduction” of the dataset D, we have to compute
a graph kernel matrix on the remaining graphs. If we employ a graph kernel from the
literature for this task, we will run into runtime problems again: We have to compute one
graph kernel matrix for each subgraph feature S, which is beyond the scope of state-of-
the-art graph kernels when dealing with tens of thousands of subgraphs.

However, there is one particular kernel for comparing graphs, which is simple, yet
intuitive, and — combined with gSpan — efficient enough for HSIC computations even on
thousands and millions of subgraphs. We will define and describe this kernel in the next
section.

122 4. Feature Selection on Graphs

HSIC as a Frequency Criterion

A biased empirical estimator for HSIC in terms of two m×m kernel matrices K and L on
features and labels can be obtained as [Gretton et al., 2005]3

(m− 1)−2Tr(KHLH) = (m− 1)−2

m∑
i=1

m∑
j=1

Kij[HLH]ij,

where Hij = δij −m−1 centers the kernel matrices K and L, and Kij and [HLH]ij is the
entry in row i and column j in K and HLH, respectively.

The delta kernel matrix L on the class labels has to be evaluated only once, therefore
it is not that decisive for runtime. Hence we decide to employ the delta kernel l described
before, that checks class labels of two graphs Gi and Gj for identity.

l(Gi, Gj) =

{
1 if yi = yj .
0 otherwise

As H and L are fixed, we can precompute their product, which is also constant across
repeated evaluations of HSIC. Straightforward matrix multiplication then tells us that

HLHij =

{
0.5 if yi = yj ,
−0.5 otherwise

(4.12)

where yi and yj are the class labels of graphs Gi and Gj, respectively.
We have to be able to evaluate the kernel matrix K very efficiently, as we need HSIC

values for each of our vast amount of subgraph features. We have repeatedly stressed that
a graph kernel that operates on graph structures will be too slow for this task. For this
reason, we suggest to represent each graph by an indicator vector of length S:

Definition 45 (Indicator Vector) Given a graph G from a dataset D and a set of fre-
quent subgraph features S discovered by gSpan. We then define an indicator vector v(G)
as

v(G)d =

{
1 if Sd v G,
0 otherwise

(4.13)

where v(G)d is the d-th component of v(G) and Sd is the d-th subgraph feature in S. Alter-
natively, we will refer to v(G)d as vSd

(G).

To compare two graphs, we now employ a linear kernel d on their indicator vectors:

k(Gi, Gj) = 〈v(Gi), v(Gj)〉 (4.14)

3We will neglect the constant factor (m − 1)2 in HSIC in the rest of this section, as it does not affect
the solution.

4.2 Feature Selection among Frequent Subgraphs 123

Note that if gSpan would not precompute the indicator vectors for us, computing this
seemingly simple kernel would be extremely expensive, as the indicator vectors themselves
are NP-hard to compute.

In the first iteration of forward selection, we look at each subgraph feature Sd individ-
ually. Hence we only consider the d-th entry of the indicator vector, i.e., vSd

(G) for all
G ∈ D.

Then the linear kernel on these 1-dimensional vectors can then be written as:

k(vSd
(Gi), vSd

(Gj)) = vSd
(Gi) ∗ vSd

(Gj) =

=

{
1 if Sd v Gi and Sd v Gj,
0 otherwise

= kSd
(Gi, Gj), (4.15)

where the term in the last line is introduced for notational convenience.
Now we can obtain the HSIC for one single subgraph feature Sd, denoted HSIC(Sd), as

follows:

HSIC(Sd) = Tr(KHLH) = (4.16)

=
m∑
i=1

m∑
j=1

Kij[HLH]ij (4.17)

=
m∑
i=1

m∑
j=1

k(vSd
(Gi), vSd

(Gj))[HLH]ij (4.18)

=
m∑
i=1

m∑
j=1

kSd
(Gi, Gj)[HLH]ij (4.19)

where Gi and Gj are graphs from D. Due to Equations (4.12) and (4.19), we can now show
the following theorem:

Theorem 46 Let Sd, D, class A, and class B be defined as before. Let aSd
be the number

of graphs in class A that contain Sd as a subgraph. Let bSd
be the number of graphs in class

B that contain Sd as a subgraph. Then HSIC(Sd) can be computed as

HSIC(Sd) = 0.5a2
Sd

+ 0.5b2Sd
− aSd

bSd
(4.20)

= 0.5(aSd
− bSd

)2 (4.21)

Proof A summand kSd
(Gi, Gj)[HLH]ij from Equation 4.19 can only be 1 (and not 0), if

Gi and Gj both have Sd as a subgraph. There are (aSd
+bSd

)2 = a2
Sd

+2aSd
bSd

+b2Sd
pairs of

graphs that both contain Sd. Due to Equation (4.12), pairs of graphs from the same class
(either both A or both B) get a weight of 0.5, while pairs of graphs from different classes
get a weight of −0.5. It can thus be seen from Equation (4.19) that HSIC(Sd) sums up to
0.5a2

Sd
− aSd

bSd
+ 0.5b2Sd

= 0.5(aSd
− bSd

)2.

124 4. Feature Selection on Graphs

To summarize, by computing (aSd
− bSd

)2 (dropping the constant factor 0.5) we get the
HSIC value for one frequent subgraph S. Hence we have reached the two goals of this
section: First, our kernel can be computed efficiently, as it only checks for co-occurrence
of subgraphs in two graph instances. Second, HSIC combined with this kernel boils down
to a frequency-based criterion for subgraph feature selection.

HSIC-based Correlation Scores for Sets of Subgraphs

Now we know how to get one HSIC value per frequent subgraph efficiently. But how to
select an informative set of several subgraph features?

The top x % of individually highest scoring subgraphs is not necessarily a good choice
because

• they might occur in the same graphs from D,

• they might be subgraphs of each other,

and as a consequence, they might miss out on the same set of graphs. Hence the combi-
nation of two top-scoring subgraph features may not be more informative than the single
features. In other terms, the top scoring subgraphs might not ’complement’ each other
very well.

Unfortunately, HSIC with the linear kernel on indicator vector as defined above suffers
from these problems. Assume that we are trying to select pairs of subgraph features S and
S ′. Hence we are now looking at the pair of entries in the indicator vectors that represent
subgraph features S and S ′. We denote the linear kernel on these vectors of length 2 by
kS∨S′ .

Then HSIC for the combination of S ∨ S ′ is defined as:

HSIC(S ∨ S ′) =
m∑
i=1

m∑
j=1

kS∨S′(Gi, Gj)[HLH]ij (4.22)

=
m∑
i=1

m∑
j=1

(kS(Gi, Gj) + kS′(Gi, Gj))[HLH]ij (4.23)

= HSIC(S) + HSIC(S ′) (4.24)

The transition from (4.22) to (4.23) is simply a consequence of the fact that we are using
a linear kernel.

HSIC is hence additive for our particular choice of kernel. This, however, causes prob-
lems, as can be easily seen from a simple example. Assume that S and S ′ are frequent
subgraphs in D such that S v S ′ and S and S ′ occur in exactly the same instances of D.
Hence aS = aS′ and bS = bS′ , and thus HSIC(S) = HSIC(S ′). However, HSIC of S and
S ′ will be HSIC(S ∨ S ′) = HSIC(S) + HSIC(S ′) = 2HSIC(S). HSIC would deem S and
S ′ together twice as informative as each of them individually — although they occur in
exactly the same graph instances, and their union is not more helpful for discriminating
classes than each of them alone.

4.2 Feature Selection among Frequent Subgraphs 125

We avoid these problems by defining an HSIC-based correlation score (HSICCS, or
HSIX in short) for a union of two subgraph features S and S ′. The key idea is that their
common HSIX value should be larger, if they occur in different instances of D. HSIX uses
a combination of HSIC values to assess the informativeness of a subgraph, while not being
an instance of HSIC itself.

Let S and S ′ be two frequent subgraphs of graphs from D, i.e., two features in our
feature selection process. Our HSIC-based correlation score (HSIX) of the union of two
frequent subgraphs S and S ′ is then defined as

HSIX(S ∨ S ′) = HSIC(S) + HSIC(S ′)− HSIC(S ∧ S ′),

where HSIC(S) is defined as
HSIC(S) = (aS − bS)2,

where aS is the frequency of S in A, and bS is the frequency of S in B.
Analogously, HSIC(S ′) is defined as

HSIC(S ′) = (aS′ − bS′)2,

where aS′ is the frequency of S ′ in A, and bS′ is the frequency of S ′ in B.
HSIC(S ∧ S ′) is defined as

HSIC(S ∧ S ′) = (aS∧S′ − bS∧S′)2,

where aS∧S′ is the frequency of S and S ′ occurring simultaneously in the same graph in A,
and bS∧S′ is the frequency of S and S ′ occurring simultaneously in the same graph in B.
Note that HSIC(S ∧ S ′) could be written in terms of kernels on indicator vectors as

m∑
i=1

m∑
j=1

(kS(Gi, Gj)kS′(Gi, Gj))[HLH]ij (4.25)

Using the HSIX formula for the union of two subgraphs, we can discover pairs of
subgraphs that jointly lead to a high HSIX value. Note that obviously HSIX(S) =
HSIC(S) if we are looking at a single subgraph feature S.

For selecting more than 2 subgraphs, we can apply the above scheme iteratively. Assume
that T is the set of subgraph features that have been selected so far, and HSIX(T) the
associated HSIX value. Then the HSIX value of the union of T and another subgraph S is
defined as

HSIX(T ∨ S) = HSIX(T) + HSIC(S)− HSIC(T ∧ S) (4.26)

with

HSIC(T ∧ S) = (aT∧S − bT∧S)2

where aT∧S (and bT∧S) is the frequency of S and at least one of the elements from T

appearing in the same graph from A (or B, resp.).

126 4. Feature Selection on Graphs

Forward Selection Algorithm via HSIX

Now we have all ingredients for formulating a forward selection algorithm on frequent
subgraphs using HSIC (see Algorithm 4). First of all, we initialize the solution set T as
an empty set. In the next step, we compute HSIC for all subgraphs S selected by gSpan,
and pick the one with maximum HSIC value (=HSIX value) as our top selected feature S.
Afterwards, we repeat the following steps iteratively, as long as HSIX(T) < HSIX(T∨S).
We add S to the set of selected features T, and remove S from the set of frequent subgraphs
S. Then we search the next subgraph S that maximizes HSIX(T ∨ S). This procedure
is iterated until HSIX(T ∨ S) = HSIX(T). This means that adding the last subgraph S
does not increase HSIX, i.e., our selected set T does not get more informative by adding
S. Here the algorithm stops and T is the solution, the set of selected features.

Algorithm 4 Forward selection of frequent subgraphs using HSIX.

Input: frequent subgraphs S selected by gSpan

1: T := ∅
2: Find frequent subgraph S ∈ S maximizing HSIX(S)
3: while HSIX(T) < HSIX(T ∨ S) do
4: T := T ∪ {S};
5: S := S \{S};
6: Find S ∈ S maximizing HSIX(T ∨ S)
7: end while

Output: selected subgraph features T

Runtime Complexity

In worst case, our forward selection algorithm requires a runtime of O(| S ||T|) where S is
the set of subgraph features discovered by gSpan, and |T| is the number of features selected
by our algorithm until HSIX(T ∨ {S}) = HSIX(T) for any of the remaining subgraphs
S /∈ T.

Unbalanced Case

So far, we assumed that both classes A and B contained the same number of instances,
|A| = |B|. If we drop this condition, HSIX changes as follows. To account for the differences
in size between |A| and |B|, we have to modify the kernel matrix on the labels L.

We set yi = 1
|A| if graph Gi ∈ A and yi = − 1

|B| if graph Gi ∈ B. We then apply a linear
kernel to these labels to obtain L.

Straightforward matrix multiplication then tells us that for a subgraph S, HSIC(S)
changes into

HSIC(S) =
a2
S

|A|2
+

b2S
|B|2

− 2
aSbS
|A||B|

= (
aS
|A|
− bS
|B|

)2 (4.27)

4.2 Feature Selection among Frequent Subgraphs 127

Obviously, the difference between the balanced and the unbalanced case is minor. In-
stead of dealing with absolute frequencies of S, we are dealing with relative frequencies of
S in A and B.

4.2.4 Experiments

In this section, we conduct experiments to examine the efficiency and effectiveness of HSIX
in frequent subgraphs. Through our experiments, we illustrate that HSIX (1) is efficient
enough in comparison with feature generation, i.e., frequent graph mining in our problem
setting; and (2) has higher classification accuracy than other fast feature selection methods.

Datasets

To evaluate our algorithm, we employed experiments using two series of real-world data:

1. AIDS antiviral screen data: it contains the activity test information of 43, 905 chem-
ical compounds. Each chemical compound is labeled active (CA), moderately ac-
tive (CM), or inactive (CI) to HIV virus. Among these 43, 905 compounds, 423
of them belong to CA, 1081 are of CM, and the rest is in Class CI. This dataset
is available publicly on the website of the Developmental Therapeutics Program
(http://dtp.nci.nih.gov/docs/aids/aids screen.html). In this experiment, we use CA
vs. CI data.

2. Anti-cancer screen datasets: we collected 10 datasets from the PubChem website.
They are selected from the bioassay records for cancer cell lines. Each of the anti-
cancer screens forms a classification problem, where the class labels on these datasets
are either active or inactive as a screen for anti-cancer activity. The active class is
extremely rare compared with the inactive class. For a detailed description, please
refer to [Wale and Karypis, 2006] and the website, http://pubchem. ncbi.nlm.nih.gov.
Each dataset can be retrieved by submitting queries in the above website.

The AIDS antiviral screen dataset and some of the anti-cancer screen datasets are very
skewed. In order to have a fair comparison, we make each dataset balanced by removing
excessive instances from the larger class. We use 5-fold cross-validation. Each dataset is
partitioned into five parts evenly. Each time, one part is used for testing and the other
four are combined for frequent subgraph mining, feature selection and model learning. In
our current implementation, we use LIBSVM [Chang and Lin, 2001] to train the SVM
classifier based on the selected features.

Experimental Setting

We compare HSIX with two existing methods that are appropriate for efficient feature
selection in thousands of frequent graph features: one is Pearson’s correlation (PC) [Ein-
Dor et al., 2006], the other is the sequential cover method (SC) proposed by Deshpande et
al. [Deshpande et al., 2005]. We present both comparison methods in details here.

Pearson’s correlation (PC) is commonly used in microarray data analysis [Ein-Dor
et al., 2006], where discriminative genes for phenotype prediction need to be selected from

128 4. Feature Selection on Graphs

thousands of uninformative ones. Formally, for one dimensional feature, it is defined as,

rxy =

∑m
i=1(xi − x̄)(yi − ȳ)

sxsy
, (4.28)

where xi is the feature value for sample i, and x̄ and sx computes sample mean and standard
deviation respectively. yi is the class label, and ȳ and sy are defined similarly for the labels.
Pearson’s correlation seeks linear relationship between two random variables. For Gaussian
random variables, the coefficient is zero if the two random variables are independent. In our
feature selection setting, we use the square, r2

xy, of the Pearson’s correlation to measure the
predictive power of the subgraphs for the labels. This method is fast: it examines a single
subgraph at a time and does not take into account the interaction between subgraphs. In
practice, it usually works well and serves as a baseline method for comparison.

Algorithm 5 outlines the sequential cover method (SC) [Cheng et al., 2007]. Frequent
graphs are first ranked according to their relevance measure such as information gain, fisher
score, or confidence. In this experiment, we use confidence as the relevance measure. If
a top-ranked frequent subgraph covers some of uncovered training instances, it will be
inserted into T and removed from the feature set S. The algorithm terminates if either all
instances are covered or S becomes empty. SC can be executed multiple times to make
several covers on the instances.

Algorithm 5 Comparison method: Sequential Cover (SC).

Input: A set of frequent subgraphs S, a training dataset D

1: Sort subgraphs in S in decreasing order of relevance measure;
2: Start with the first subgraph S in S;
3: while (true)
4: Find the next subgraph S;
5: If S covers at least one graph in D
6: T = T ∪ {S};
7: S = S− {S};
8: If a graph G in D is covered
9: D = D − {G};
10: If D = ∅ or S = ∅
11: break;
12: return T

Output: A selected set of subgraphs, T

We found SC, PC, and HSIX may select different numbers of features. For example,
PC requires the user to specify the number of features to select. HSIX often selects a 5-10
times smaller number of features than SC. In order to make the comparison fair, we take

4.2 Feature Selection among Frequent Subgraphs 129

the number of features that HSIX selects in one round as a cut-off and let PC and SC
generate the same number of features.

Results

We first check the runtime performance of these three algorithms. The time cost Ttotal of
training a classifier based on frequent subgraphs has three components: Tmining, Tselection,
and Tlearning. Tmining is the computation time for frequent subgraph mining; Tselection is
the feature selection time; and Tlearning is the classifier training time.

Ttotal = Tmining + Tselection + Tlearning.

As a rule of thumb, for feature selection, as long as Tselection does not dominate Ttotal, the
selection algorithm is efficient. Figures 4.3 and 4.4 show the runtime comparison between
the three algorithms: SC, PC, and HSIX by varying the minimum support threshold. We
also plot the mining time of gSpan for comparison.

0 5 10 15 20 25 30 35 40
10

−3

10
−2

10
−1

10
0

10
1

10
2

10
3

Minimum Support (%)

T
im

e
(s

ec
)

Mining
HSIX
SC
PC

Figure 4.3: Runtime on AIDS data for gSpan (Mining), HSIX, Sequential Cover (SC), and Pear-
son’s correlation (PC).

From Figures 4.3 and 4.4, we can see that, SC is the most efficient since it basically
performs a sequential scan of the features. HSIX is slightly slower than PC. This is because
HSIX not only considers the HSIC score, but also the correlation between features; while the
other two methods consider each feature individually. However, HSIX is still much faster
than gSpan, indicating that is can be used as an efficient component of a subgraph mining
framework. For the AIDS dataset, at 3% minimum support, gSpan generates 191, 328
frequent subgraphs, among which 23 are selected by HSIX. For the NCI83 dataset, there

130 4. Feature Selection on Graphs

0 5 10 15 20 25 30 35 40
10

−3

10
−2

10
−1

10
0

10
1

10
2

10
3

Minimum Support (%)

T
im

e
(s

ec
)

Mining
HSIX
SC
PC

Figure 4.4: Runtime on NCI83 for gSpan (Mining), HSIX, Sequential Cover (SC), and Pearson’s
correlation (PC).

are 50, 102 frequent subgraphs, among which 67 are selected. This demonstrates that HSIX
can really single out a compact feature set for classification.

In the next experiment, we test the classification accuracy of SC, PC, and HSIX on the
real datasets we discussed above. Since each dataset is balanced, we define accuracy as
of true positives + # of true negatives divided by # of instances. Table 4.3 shows the
number of selected features and the classification accuracy achieved by the three methods.
As observed in Table 4.3, HSIX achieved the best classification accuracy and PC comes
next, followed by SC. This result demonstrates that HSIX is effective at selecting a compact
set of high quality features for classification.

4.2.5 Summary

In this chapter, we have defined a novel class of feature selection algorithms for supervised
learning. They are based on maximizing the dependence between the features and the
class labels of data objects.

In this section, we have extended our method to feature selection among frequent sub-
graphs, where the huge number of features makes feature selection particularly challenging.
Our HSIC-based method extracts frequent subgraphs from the complete set of frequent
subgraphs S determined by gSpan. Unlike its predecessors which use ad-hoc strategies
for feature selection, our novel approach defines a whole class of principled and theoreti-
cally justified feature selection strategies in frequent subgraphs. One instance of this class
provides us with a frequency-based criterion for subgraph selection that can be evaluated
highly efficiently, is intuitive, and selects a compact set of features among the thousands

4.2 Feature Selection among Frequent Subgraphs 131

dataset # of features SC PC HSIX
NCI1 41 66.49 69.91 72.52

NCI109 53 65.27 70.51 73.22
NCI123 75 63.88 66.37 69.15
NCI145 60 66.44 70.70 74.59
NCI33 18 65.72 69.19 71.52
NCI330 20 71.23 68.64 73.22
NCI41 47 64.55 64.69 69.72
NCI47 42 66.72 68.17 72.85
NCI81 28 64.77 67.60 72.75
NCI83 57 64.08 67.03 68.49
AIDS 23 76.03 73.44 80.13

Table 4.3: Feature Selection among frequent subgraphs: Classification Accuracy.

and millions of frequent subgraphs gSpan detects. In our experimental evaluation, the
features selected by our method lead to higher classification accuracies than those select
by competing approaches.

132 4. Feature Selection on Graphs

Chapter 5

Summary and Outlook: Applications in Bioin-
formatics

In this chapter, we want to summarize our findings, and show that our efficient graph
kernels and novel kernel methods have several immediate applications in bioinformatics. In
addition, we will give an overview of the topics in bioinformatics we have already explored,
and of the problems we want to study in future research.

5.1 Summary

In this thesis, we have tackled the problem of graph comparison via graph kernels. This task
of measuring the similarity of two graphs is the fundamental algorithmic problem in graph
mining. As graph mining is gaining more and more attention due to the availability of
graph data in bioinformatics, social network analysis, and the Internet, graph comparison
is now more important than ever.

Although graph comparison has been a long standing research topic in computer science,
a general efficient solution to this problem has not been achieved. All principled approaches
to graph comparison, such as isomorphism and edit distances based techniques, suffer from
worst-case exponential runtime, as their search spaces are growing exponentially with the
size of the graphs. Heuristic alternatives, such as some topological descriptors, might
produce viable results on certain datasets in some applications, but do not grant a general
solution. In addition, some of these approaches are hard to parameterize, and produce
good results only after finding the right parameter setting.

In this thesis, we have taken a new road to the graph comparison problem. We have
focused on graph comparison via graph kernels. Graph kernels have two great advantages
over their competitors. First, as all kernel functions, they can compare graphs in a space
of graph features, without even explicitly computing this feature space. This applies to
all features of a graph: its topology, its edges, its nodes, its labels, and all other features
that can be derived from a graph. Second, graph kernels can be combined with any
kernel method, a huge family of machine learning algorithms for data mining and pattern
recognition. This modularity makes them particularly attractive for graph mining.

Despite these advantages, graph kernels suffer from several weaknesses. A good graph
kernel should provide an expressive measure of similarity on graphs, it should be efficient
to compute, positive definite and not restricted to certain classes of graphs. However, none

134 5. Summary and Outlook: Applications in Bioinformatics

of the state-of-the-art graph kernels meets all these requirements. This becomes most
apparent in the classic graph kernels that count common walks in two graphs [Gärtner
et al., 2003, Kashima et al., 2003]. Their runtime of O(n6) (n is the size of the larger of the
two input graphs), while polynomial, is too slow for real-world applications. Furthermore,
they suffer from a phenomenon called tottering. As walks allow for repetitions of nodes and
edges, a walk common to two graphs may repeatedly visit the same set of nodes and edges,
thereby creating an artificially high similarity score. Even worse, a second problem occurs
that we referred to as halting. As walks can be of infinite length, random walk kernels
employ a decaying factor to downweight longer walks. As we explain in this thesis, this
decaying factor has to be set to values so small that often all walks of length 2 and longer
hardly contribute anything to the similarity score. The random walk graph kernel then
degenerates to a naive similarity measure that compares all pairs of edges in two graphs.

In Chapter 2, we overcome these problems of state-of-the-art graph kernels. In Sec-
tion 2.1, we manage to speed up the random walk kernel to O(n3) and by a factor of more
than 1,000 in CPU runtime, by extending concepts from linear algebra to Reproducing
Kernel Hilbert Spaces. In Section 2.2, we define a graph kernel that compares shortest
path distances in two graphs. It avoids suffering and halting, is computable in O(n4), and
shows excellent performance in our experimental evaluation, both in terms of runtime and
classification accuracy. To be able to cope with large graphs with hundreds and thousands
of nodes, we present a graph kernel counting small common subgraphs in two graphs in
Section 2.3; we refer to these small common subgraphs as graphlets [Przulj, 2007]. Trans-
ferring results from [Weissman et al., 2003] to graphs, we propose a sampling scheme for
estimating graphlet distributions in graphs with a given level of confidence and precision.
This sampling scheme allows us to compute graph kernels on graphs that were too large
for graph kernels so far. In addition to convincing experimental results, this graphlet
estimation kernel is both efficient to compute and is not afflicted by tottering and halting.

While our novel graph kernels are fast and expressive, and open the door to data mining
and machine learning on large graphs, it sometimes seems difficult to interpret graph kernel
values. Ideally, one would like to employ a statistical test to measure the significance of
graph similarity. Unfortunately, no such test is described in the literature. In Chapter 3,
we propose such a statistical test for graph similarity. Towards this end, we first define
the first kernel-based two-sample test, based on a test statistic called Maximum Mean
Discrepancy (MMD). We then explain how these two-sample tests in conjunction with
graph kernels can measure similarity of two sets of graphs. Finally, we show that MMD
can be employed for measuring similarity between a pair of graphs, and for defining a
statistical test of graph similarity.

When we measure the similarity between two graphs in graph mining, the underlying
question is usually whether these two graphs belong to the same group or class of graphs.
Once we have established that they are indeed members of the same class, the natural
question to ask next is: Which of their features determine their class membership? This
problem is known as supervised feature selection. On graphs, it is equivalent to finding the
subgraphs of a set of graphs which correlate with the class membership of these graphs.
Only very few approaches to this problem exist, and they are all completely ad-hoc.

5.2 Graph Kernels in Bioinformatics 135

In Chapter 4, we develop a feature selection algorithm for graphs. We start by defining
a kernel-based family of forward and backward feature selection algorithms. These employ
the Hilbert-Schmidt Independence Criterion to select features that maximize dependence
between the features and the class labels of data objects. We then extend this concept to
feature selection on graphs, and apply it to the set of frequent subgraphs detected by gSpan,
the state-of-the-art tool for frequent subgraph mining. While gSpan produces thousands
and millions of frequent subgraphs in our experiments, our approach is able to identify a
few dozens of informative features that outperform those selected by other competitors in
our experimental evaluation on classification benchmarks.

Both our graph kernels and the novel kernel methods we have proposed have several
important applications in bioinformatics. We will summarize our previous work in this
area in the following sections, and give an outlook to future plans.

5.2 Graph Kernels in Bioinformatics

Graph kernels can be employed to measure similarity between graph-structured data, which
are common in molecular biology. Above all, molecular structures and biological networks
in bioinformatics can be represented as graphs.

5.2.1 Protein Function Prediction

In [Borgwardt et al., 2005], prior to this thesis, we have presented a graph kernel for protein
function prediction on distantly related proteins. This protein graph kernel measures simi-
larity of tertiary structures of proteins, enriched by additional information. This additional
information comprised sequence and physicochemical properties of these proteins. Similar-
ity between these graph models is measured in terms of a random walk kernel that compares
both edge and node labels. We employed Support Vector Machines in combination with
this graph kernel to predict whether proteins are enzymes or non-enzymes [Dobson and
Doig, 2003b].

In the outlook of [Borgwardt et al., 2005], we stated that we had to look at the tertiary
structure of proteins, because more detailed models using amino acids or even atoms would
not be feasible for state-of-the-art kernels. In the light of our novel graphlet kernels from
Section 2.3 that can deal with graphs with thousands of nodes, this statement is not true
any more, and we plan to examine high resolution models of proteins using these scalable
kernels. In our first experiment on such high-level resolution graph models of proteins in
Section 2.3.5, we already achieved highly promising results. The ultimate challenge would
be to define graph kernels that compare protein structures at the amino acid or even atomic
level and outperform state-of-the-art methods for structure comparison. We are positive
that these future studies will also benefit from the fact that our novel graph kernels do not
suffer from tottering and from overweighting of single edges any more.

5.2.2 Biological Network Comparison

Our efficient graph kernels allow us to measure similarity between large graphs, such
as protein-protein-interaction (PPI) networks [Borgwardt et al., 2007c] or metabolic net-
works [Oh et al., 2006].

136 5. Summary and Outlook: Applications in Bioinformatics

Currently, only very few interaction networks for very few species are available [Xenarios
et al., 2002]. This lack of data still limits the applicability of graph kernels in biological
network comparison. As network data will become more abundant over coming years,
graph kernels will then have the chance to reveal their full potential in large-scale biological
network comparison.

To demonstrate this potential, we have created co-integrated gene expression and pro-
tein interaction networks in [Borgwardt et al., 2007c]. The gene expression data were
obtained from two cancer studies by [Bullinger et al., 2004] and by [van’t Veer et al., 2002].
Each comprised two groups of patients, one with positive disease outcome, one with neg-
ative outcome. In addition, we obtained a recent PPI network for Homo sapiens [Rual
et al., 2005]. We integrated the expression data per patient and the PPI network into a
co-integrated graph model: Each gene and its corresponding protein represent one node in
that graph. Nodes are linked by an edge if

1. the corresponding genes are both up- or down-regulated with respect to a reference
measurement, and

2. the corresponding genes are known to interact according to [Rual et al., 2005].

We employ an enhanced random walk kernel on these co-integrated gene expression/PPI
networks in combination with SVM classifiers to predict disease outcome. The enhance-
ment consists in performing a random both on the product graph and its complement.
This way, missing edges are also taken into account. This enhanced graph kernel performs
better than random on the outcome prediction task, while the classic random walk cannot
reach results better than random. Furthermore, the problems inherent in the random walk
kernel that we analyzed in Section 1 and solved in Section 2 contributed to this failure.
These problems can be healed most easily by employing our novel graph kernels from
Section 2 in future studies. Most of all, better results are hindered by the simplicity of
the graph model employed, and the lack of reliability in both the gene expression and the
protein interaction data. If more PPI data and more reliable PPI data is generated over
coming years, these latter problems will also be solved.

5.2.3 Subgraph Sampling on Biological Networks

Besides applications of graph kernels for graph comparison, the sampling scheme we have
developed in Section 2.3 as part of our graphlet kernel may have immediate implications
for data mining and bioinformatics. In bioinformatics, there is huge interest in detecting
network motifs, i.e., small building blocks of networks that are frequent across species or
within a species [Kashtan et al., 2004, Wernicke, 2005, Lee et al., 2006](see Section 3.2.4).
To the best of our knowledge, none of these studies has provided a formula for determining
the sample size that is required to approximate the distribution of these subgraphs with
a given level of confidence and precision. In data mining, there are several studies on
finding frequent subgraphs in a large graph [Kuramochi and Karypis, 2004b, Kuramochi
and Karypis, 2004a], but none of these has made use of sampling techniques so far, let alone
established a formula for sample complexity. Hence our graphlet sampling scheme opens

5.3 Applications of Maximum Mean Discrepancy 137

the door to a novel approach to motif discovery in bioinformatics and frequent subgraph
mining in data mining.

5.3 Applications of Maximum Mean Discrepancy

Due to the modularity of kernel methods, our two novel kernel methods can — of course
— not only be applied to graphs, but also to vectorial, string and other types of data.
In fact, even on non-graph data, these kernel methods provide important contributions to
bioinformatics. Maximum Mean Discrepancy (MMD) lends itself to several problems in
data integration in bioinformatics, in which one has to determine whether two samples of
data originate from the same source.

5.3.1 Data Integration in Bioinformatics

In [Borgwardt et al., 2006], we have explored this topic of data integration in bioinformatics
on microarray data and protein structures. MMD is successful in telling apart microar-
ray data from different microarray platforms, and detecting that expression levels were
measured on the same platform. It is also successfully applied to confirm the existence of
subtypes of cancer, as it is able to distinguish samples from different subtypes, but not
within the same subtype. As shown in Section 3.2.1, it can also be used for automatic
schema matching by comparing protein structures from different databases. Apart from
distinguishing samples, MMD can be used as a pre-test for classification: if according to
MMD, two classes originate from the same underlying distribution, binary classification
might fail on this dataset.

For extending MMD to database applications in future, it has to be sped up. While
MMD’s quadratic runtime makes it the fastest two-sample test in the literature, database-
scale applications would benefit from an even lower runtime, ideally linear runtime. This
will be one focus of our future research.

5.3.2 Sample Bias Correction

Apart from two-sample problems, the idea to represent a distribution by its expectation
in feature space can be exploited for designing new algorithms for many open problems.

MMD’s underlying idea of representing samples by their means in feature space is a
promising concept in its own right. It can be applied to a variety of other tasks in machine
learning and data mining. In [Huang et al., 2007], we propose a solution to the sample
bias correction problem. This problem describes the fact that often, training set and test
set are drawn from different distributions. This is a major problem in classification, as
classification methods from machine learning and data mining generally assume both sets
to originate from the same distribution. To heal this problem, we propose to match the
means of training and test set in feature space. In several experiments, this approach of
Kernel Mean Matching is shown to outperform other approaches to sample bias correction.

In bioinformatics, sample bias often occurs in microarray analysis, where measurements
from different labs tend to differ significantly due to the usage of different protocols, plat-
forms and environmental conditions. Preliminary results on sample bias correction on
microarray data in [Huang et al., 2007] were already very promising. Consequently sample

138 5. Summary and Outlook: Applications in Bioinformatics

bias correction on microarrays and a comparison to the state-of-the-art techniques for this
problem will be another future project of ours.

5.4 Applications of the Hilbert-Schmidt Independence Criterion

The feature selection approach that we propose in Section 4.1 is built on a powerful con-
cept: Maximizing dependence between features and class labels. In fact, this principle
allows us to define a unifying framework that subsumes many known feature selection al-
gorithms. Furthermore, it can be transfered to other tasks in data mining and applications
in bioinformatics.

5.4.1 Gene Selection via the BAHSIC Family of Algorithms

In [Song et al., 2007a], we show that the BAHSIC family of feature selection algorithms
subsumes a whole battery of feature selectors known from the bioinformatics literature:
Pearson’s correlation coefficient [van’t Veer et al., 2002, Ein-Dor et al., 2006], t-test [Tusher
et al., 2001], signal-to-noise ratio [Golub et al., 1999], Centroid [Bedo et al., 2006, Hastie
et al., 2001], Shrunken Centroid [Tibshirani et al., 2002, Tibshirani et al., 2003] and ridge
regression [Li and Yang, 2005]. Due to the vast amount of different methods that have
been defined, such a unifying framework can help to reveal their theoretical connection.
Ultimately, by understanding the theoretical links between different feature selectors, we
hope to understand why different gene selectors prefer different genes, and to be able to
choose the best feature selector for a particular task based on theoretical considerations.

5.4.2 Dependence Maximization View of Clustering

The concept of maximizing dependence between features and class labels of data objects
can be extended to other tasks in data mining. In clustering, class labels are assigned to
data objects - such that dependence between their features and their labels is maximized!
This is a novel view of clustering that we have recently begun to explore [Song et al., 2007b].
The fact that we maximize dependence in terms of a kernel matrix on the features and
a kernel matrix on the labels creates a rich framework for expressing intra-dependencies
between features and labels. In this fashion, we can design novel principled clustering
algorithms. Clustering of microarray data is just one of the many potential applications of
this technique in bioinformatics.

To conclude, based on our findings, we believe that graph kernel functions and kernel
methods on graphs will be a key technique for exploiting the universality of graph models,
and will significantly contribute to the advance of research in several areas of science, and
in bioinformatics in particular.

Appendix A

Mathematical Background

A.1 Primer on Functional Analysis

Kernel methods borrow many concepts from Functional Analysis, as they compare objects
in Hilbert spaces. In this section, we will define what a Hilbert Space is, starting from
metric spaces and vector spaces, introducing norms, inner products, Banach spaces and
their properties along the way [Schölkopf and Smola, 2002, Garrett, 2004].

A metric space is a set imbued with a distance metric:

Definition 47 (Metric Space) A metric space M,d is a set M with a metric
d : M ×M → R such that for x, x′, x′′ ∈M the following conditions hold:

d(x, x′) ≥ 0 (A.1)

d(x, x′) = 0⇔ x = x′ (A.2)

d(x, x′) = d(x′, x) (A.3)

d(x, x′′) ≤ d(x, x′) + d(x′, x′′) (A.4)

A Cauchy sequence in a metric space M is a sequence x1, x2, . . . with the property
that for every ε > 0 there is an N ∈ N sufficiently large such that for i, j ≥ N we have
d(xi;xj) < ε. A point x ∈ M is a limit of that Cauchy sequence if for every ε > 0 there
is an N ∈ N sufficiently large such that for i ≥ N we have d(xi, x) < ε. A subset M ′ of a
metric space M is dense in M if every point in M is a limit of a Cauchy sequence in M ′.
A metric space M is complete if every Cauchy sequence has a limit in M . A metric space
M is bounded if there exists some number r, such that d(x, x′) < r for all x and x′ in M.
A metric space M is compact if every sequence in M has a subsequence converging to a
point in M . If a metric space has a countable dense subset, then it is called separable.
Note that every compact metric space is separable.

Definition 48 (Vector Space) A set X is called a vector space (or linear space) over R
if addition and scalar multiplication are defined, and satisfy (for all x, x′, x′′ ∈ X, and

140 A. Mathematical Background

c, c′ ∈ R)

x+ (x′ + x′′) = (x+ x′) + x′′, (A.5)

x+ x′ = x′ + x ∈ X, (A.6)

0 ∈ X, x+ 0 = x, (A.7)

cx ∈ X, (A.8)

1x = x, (A.9)

c(c′x) = (cc′)x, (A.10)

c(x+ x′) = cx+ cx′, (A.11)

(c+ c′)x = cx+ c′x. (A.12)

We restrict ourselves to vector spaces over R, as these are of interest to us (definitions on
C are analogous).

Definition 49 (Normed Space) A normed space is a vector space X with a non-
negative real-valued norm ‖ · ‖ : X → R+

0 with the following properties for x, x′, x′′ ∈ X
and c ∈ R:

‖x‖ ≥ 0 (A.13)

‖x‖ = 0⇔ x = 0. (A.14)

‖cx‖ = |c|‖x‖, (A.15)

‖x+ x′‖ ≤ ‖x‖+ ‖x′‖. (A.16)

When X has a norm ‖·‖, there is a metric naturally associated to it: d(x, x′) = ‖x−x′‖.
A normed space X which is complete with the associated metric is said to be a Banach
space.

To obtain a Hilbert space, we have to equip the vector space with an inner product.

Definition 50 (Inner Product) Let X be a vector space. A real-valued function 〈·, ·〉 :
X ×X → R of two variables on X is an inner product if

〈x, x′〉 = 〈x′, x〉 (A.17)

〈x+ x′′, x′〉 = 〈x, x′〉+ 〈x′′, x′〉 (A.18)

〈x, x′ + x′′〉 = 〈x, x′〉+ 〈x, x′′〉 (A.19)

〈x, x〉 ≥ 0 (and equality only for x = 0) (A.20)

〈cx, x′〉 = c〈x, x′〉 (A.21)

〈x, cx′〉 = c〈x, x′〉 (A.22)

where x, x′, x′′ ∈ X and c ∈ R.

An inner product defines a corresponding norm on X via

‖x‖ =
√
〈x, x〉

which in turn defines a metric d(x, x′) = ‖x− x′‖.

A.2 Primer on Probability Theory and Statistics 141

Definition 51 (Hilbert Space) A vector space X equipped with an inner product 〈·, ·〉
is a pre-Hilbert space. If a pre-Hilbert space is complete with respect to the metric arising
from its inner product (and norm), then it is called a Hilbert space.

Note that every Hilbert space is a Banach space, but not vice versa.
In addition to these definitions, we will operate on the dual space of Hilbert spaces and

Banach spaces in Section 3, which is defined as follows.

Definition 52 (Dual Space) A linear functional on a vector space X with norm ‖ · ‖X
is a mapping f : X → R satisfying

f(x+ x′) = f(x) + f(x′), (A.23)

f(cx) = cf(x). (A.24)

where x, x′ ∈ X and c ∈ R. The dual space X∗ is the set of all linear functionals on X.
The (dual) norm ‖ · ‖X∗ of a linear functional f on X is defined as

‖f‖X∗ = sup{f(x) : ‖x‖X ≤ 1} (A.25)

A.2 Primer on Probability Theory and Statistics

In the following, we summarize basic terminology and concepts from probability theory and
statistics [Casella and Berger, 2002, Dürr and Mayer, 2002]. In this thesis, we are dealing
both with concepts from univariate and multivariate statistics. Univariate statistics
describes a collection of procedures which involve observation and analysis of one statistical
variable at a time, while multivariate statistics describes the statistical analysis of more
than one statistical variable at a time.

σ-Algebra and Measures

To later define what a probability distribution and its expectation is, we first need the
concept of a σ-algebra and a measure.

Definition 53 (σ-Algebra) A collection of subsets of a set Ω is called a σ-algebra (or
Borel field), denoted by Σ, if it satisfies the following three properties:

• The empty set is an element of Σ.

• If A ∈ Σ, then Ac ∈ Σ (Σ is closed under complementation).

• If A1, A2 . . . ∈ Σ, then ∪∞i=1Ai ∈ Σ (Σ is closed under countable unions).

Definition 54 (Measure) A measure ρ is a function defined on a σ-Algebra Σ over a set
Ω and taking values in the extended interval [0,∞] such that the following properties are
satisfied:

• ρ(∅) = 0

142 A. Mathematical Background

• ρ (
⋃∞
i=1Ai) =

∑∞
i=1 ρ(Ai), if A1, A2, A3, ... is a countable sequence of pairwise disjoint

sets in Σ

The triple (Ω,Σ, ρ) is then called a measure space, and the members of Σ are called mea-
surable sets.

Note as an aside that one says that a property holds almost everywhere if the set of
elements for which the property does not hold is a null set, i.e. is a set with measure zero.

Random Variables and Probabilities

We will now state the definitions necessary to define random variables and probability
distributions.

Definition 55 (Sample Space) The set Ω of all possible outcomes of a particular exper-
iment is called the sample space of the experiment.

Definition 56 (Event) An event is any collection of possible outcomes of an experiment,
that is, any subset of Ω (including Ω itself).

Definition 57 (Random Variable) A random variable X is a function X : Ω→ S from
a sample space Ω into a state space S. If S = R, then X is a real-valued random variable.

Note that we concentrate on real-valued random variables in the following.
A probability measure P is a measure with total measure one (i.e., P (Ω) = 1). If Σ

is the Borel σ-algebra on a topological space, then a measure ρ : Σ→ R is said to be a Borel
probability measure (for more details, see [Dudley, 1989]). Probability distributions are
probability measures defined over the state space S of a random variable instead of the
sample space Ω.

Definition 58 (Probability Space) A probability space is a measure space (Ω,E, P),
where

• Ω is the sample space,

• E is a σ-algebra of subsets of Ω whose elements are called events,

• P is a probability measure mapping the elements of E to real numbers in the interval
[0, 1].

Definition 59 (Statistical Independence) Two events, A1 and A2 are statistically in-
dependent if

P (A1 ∩ A2) = P (A1)P (A2) (A.26)

Similarly, two random variables, X and Y , are said to be independent if any event defined
in terms of X is independent of any event defined in terms of Y . A sequence of random
variables is independent and identically distributed (i.i.d.) if each has the same
probability distribution as the others and all are mutually independent.

A.2 Primer on Probability Theory and Statistics 143

Definition 60 (Cumulative Distribution Function) The (cumulative) distribution func-
tion or cdf of a random variable X, denoted by FX(x), is defined by

FX(x) = P (X ≤ x), (A.27)

for all x.

Definition 61 (Continuous and Discrete Random Variables) A random variable X
is said to be continuous if it has a cumulative distribution function which is continuous. A
random variable X is said to be discrete if it has a cumulative distribution function which
is a step function.

Definition 62 (α-Quantile) The α-quantile of the distribution of a random variable X
is defined as the value(s) x such that:

P (X ≤ x) = α (A.28)

Definition 63 (Probability Density Function) The probability density function f(x)
describes the distribution of a continuous random variable X and has the following prop-
erties:

• f(x) ≥ 0

•
∫∞
−∞ f(x)dx = 1

• P (a ≤ X ≤ b) =
∫ b
a
f(x)dx for b ≥ a

Definition 64 (Probability Mass Function) Suppose that X is a discrete random vari-
able with values {x1, x2, x3, . . .}. Then the probability mass function f(x) describes the
distribution of X and is defined by

f(xi) = P (X = xi) (A.29)

Expectation and Central Moments

After clarifying essential prerequisites, we will now define the expectation of a random
variable and its central moments.

Definition 65 (Expectation) The expectation (expected value, mean) of a discrete ran-
dom variable X with values {x1, x2, x3, . . .} and the probability mass function f(x) is

E[X] =
∑
i

xif(xi) (A.30)

provided that the sum exists. The expectation of a continuous random variable X with
probability density function f(x) is

E[X] =

∫ ∞

−∞
xf(x)dx (A.31)

provided that the integral exists.

144 A. Mathematical Background

Definition 66 (Central Moments and Variance) The n-th central moment µn of a
random variable X is the quantity

E[(X − E[X])n] (A.32)

The second central moment is the variance.

The standard deviation σ is defined as the square root of the variance.

Definition 67 (Skewness and Kurtosis) Let µn denote the n-th central moment of a
random variable X. Two quantities of interest, in addition to the mean and variance are

α3 =
µ3

(µ2)3/2
(A.33)

and

α4 =
µ4

(µ2)2
(A.34)

The value α3 is called the skewness and α4 is called the kurtosis of X.

The following theorem will be helpful in a proof in Appendix B.

Theorem 68 (Jensen’s Inequality) Let X be some random variable, and let g(X) be a
convex function. Then the expected value of g(X) is at least the value of g at the mean of
X:

E[g(X)] ≥ g(E[X]). (A.35)

Estimator and Bias

Throughout this thesis, we define so-called estimators to estimate properties of underlying
probability distributions. An estimator is a rule that tells how to calculate an estimate
based on the measurements contained in a sample. For example, the sample mean average
is an estimator for the population mean. An estimator may be biased or unbiased, as
defined in the following.

Definition 69 (Bias) The bias of an estimator W of a parameter θ is the difference
between the expected value of W and θ; that is, BiasθW = EθW − θ. An estimator whose
bias is identically (in θ) equal to 0 is called unbiased and satisfies EθW = θ for all θ;
otherwise it is called a biased estimator.

Convergence in Distribution

In Section 3 we will repeatedly make use of two concepts, convergence in distribution and
asymptotic normality, which we define here.

A.2 Primer on Probability Theory and Statistics 145

Definition 70 (Convergence in Distribution) A sequence of random variables X1, X2, . . .

converges to the random variable X in distribution, denoted X1, X2, . . .
D→ X, if their re-

spective cumulative distribution functions F1, F2, . . . converge to the cumulative distribution
function F of X, wherever F is continuous.

Definition 71 (Asymptotic Normality) A sequence of random variables Xm is said to
be asymptotically normal with mean µ[Xm] and standard deviation σm if σm > 0 for m
sufficiently large and

(Xm − µ[Xm])/σm
D→ Z, where Z ∼ N(0, 1), (A.36)

where N(0, 1) is a normal distribution with zero mean and unit variance.

U-Statistics

Both novel kernel methods we define in this thesis employ U-statistics. Here we summarize
their main characteristics (following [Ferguson, 2003]).

Definition 72 (U-Statistics) For a real-valued measurable function, h(x1, ..., xn) and for
a sample, X1, ..., Xm, of size m ≥ n from a distribution P , a U-statistic with kernel h is
defined as

Um = Um(h) = (m)−1
n

∑
imn

h(Xi1 , . . . , Xin)

where the summation is over the set imn , which denotes the set of all n-tuples drawn without
replacement from {1, . . . ,m}, and (m)n is a Pochhammer coefficient, i.e., (m)n = m!

(m−n)!
.

When using U-statistics for testing hypotheses (see Section 3.1.2), it occasionally hap-
pens that at the null hypothesis, the asymptotic distribution of the U-statistics has variance
zero. This is a degenerate case. The general definition of degeneracy for a U-statistic of
order m and variances σ2

1 ≤ σ2
2 ≤ . . . ≤ σ2

m is as follows.

Definition 73 (Degeneracy of U-Statistics) A U-statistic has a degeneracy of order
k if σ2

1 = · · · = σ2
k = 0 and σ2

k+1 > 0.

146 A. Mathematical Background

Appendix B

Proofs on Maximum Mean Discrepancy

In this section, we provide proofs for three theorems from Section 3.1.

Proof of Theorem 30

Theorem 30 Denote by B a Banach space which is dense in C(X) and let F be a unit
ball in a B. Then MMD [F, p, q] = 0 if and only if p = q.

Proof [Theorem 30]
It is clear that MMD(F, p, q) is zero if p = q. We prove the converse by showing that
MMD [C(X), p, q] = D for some D > 0 implies MMD(F, p, q) > 0: this is equivalent to
MMD(F, p, q) = 0 implying MMD(C(X), p, q) = 0 (where this last result implies p = q by
Lemma 28, noting that compactness of the metric space X implies its separability). Let B

be a Banach space dense in C(X) in the L∞ norm. If MMD [C(X), p, q] = D, then there

exists some f̃ ∈ C(X) for which Ep

[
f̃
]
−Eq

[
f̃
]
≥ D/2. Exploiting the properties of B we

know that for all ε ∈ (0, D/8), we can find some f ∗ ∈ B satisfying
∥∥∥f ∗ − f̃∥∥∥

∞
< ε. Thus,

we obtain
∣∣∣Ep [f ∗]− Ep

[
f̃
]∣∣∣ < ε and consequently

|Ep [f ∗]− Eq [f ∗]| >
∣∣∣Ep

[
f̃
]
− Eq

[
f̃
]∣∣∣− 2ε > D

2
− 2D

8
= D

4
> 0.

Finally, using ‖f ∗‖B <∞, we have

[Ep [f ∗]− Eq [f ∗]] /‖f ∗‖B ≥ D/(4 ‖f ∗‖B) > 0,

and hence MMD(F, p, q) > 0.

Proof of Theorem 37

Theorem 37 Let p, q,X, Y be defined as in Problem 1, and assume |k(x, y)| ≤ K. Then

Pr
{
|MMD(F, X, Y)−MMD(F, p, q)| > 2

(
(K/m1)

1
2 + (K/m2)

1
2

)
+ ε
}
≤ 2 exp

(
−ε2m1m2

2K(m1+m2)

)
.

To prove this theorem, we need the following theorem, due to [McDiarmid, 1969].

148 B. Proofs on Maximum Mean Discrepancy

Theorem 74 (McDiarmid’s Inequality) Let f : Xm → R be a function such that for
all i ∈ {1, . . . ,m}, there exist ci <∞ for which

sup
X=(x1,...,xm)∈Xm,x̃∈X

|f(x1, . . . , xm)− f(x1, . . . xi−1, x̃, xi+1, . . . , xm)| ≤ ci.

Then for all probability measures p and every ε > 0,

pXm (f(X)− EXm(f(X)) > ε) < exp

(
− 2ε2∑m

i=1 c
2
i

)
.

We also define the Rademacher average of the function class F with respect to the
m-sample X.

Definition 75 (Rademacher Average of F on X) Let F be a universal RKHS on the
compact domain X, with kernel bounded by |k(x, y)| ≤ K. Let X be an i.i.d. sample of
size m drawn according to p, and let σi be i.i.d. and take values in {−1, 1} with equal
probability. We define the Rademacher average

Rm(F, X) := Eσ sup
f∈F

∣∣∣∣∣ 1

m

m∑
i=1

σif(xi)

∣∣∣∣∣ ≤ (K/m)1/2 ,

where the upper bound follows [Bartlett and Mendelson, 2002, Lemma 22].

We want to show that the absolute difference between MMD(F, p, q) and MMD(F, X, Y)
is close to its expected value, independent of the distributions p and q. To this end, we
prove three intermediate results, which we then combine. The first result we need is an
upper bound on the absolute difference between MMD(F, p, q) and MMD(F, X, Y). Given
that F is closed under negation, we have

|MMD(F, p, q)−MMD(F, X, Y)|

=

∣∣∣∣∣sup
f∈F

(Ep(f)− Eq(f))− sup
f∈F

(
1

m1

m1∑
i=1

f(xi)−
1

m2

m2∑
j=1

f(yj)

)∣∣∣∣∣
≤ sup

f∈F

∣∣∣∣∣Ep(f)− Eq(f)− 1

m1

m1∑
i=1

f(xi) +
1

m2

m2∑
j=1

f(yj)

∣∣∣∣∣︸ ︷︷ ︸
∆(p,q,X,Y)

(B.1)

Second, we provide an upper bound on the difference between ∆(p, q,X, Y) and its expec-
tation. Changing either of xi or yi in ∆(p, q,X, Y) results in a change of at most 2K1/2/m
or 2K1/2/n, respectively. We can then apply McDiarmid’s theorem, given a denominator
in the exponent of

m1

(
2K1/2/m1

)2
+m2

(
2K1/2/m2

)2
= 4K

(
1

m1

+
1

m2

)
= 4K

m1 +m2

m1m2

,

149

to obtain

Pr (∆(p, q,X, Y)− EX,Y [∆(p, q,X, Y)] > ε) ≤ exp

(
− ε2m1m2

2K(m1 +m2)

)
. (B.2)

For our final result, we exploit symmetrization, following e.g. [van der Vaart and Wellner,
1996][p. 108], to upper bound the expectation of ∆(p, q,X, Y). Denoting by X ′ an i.i.d
sample of size m1 drawn independently of X (and likewise for Y ′), we have

EX,Y [∆(p, q,X, Y)]

= EX,Y sup
f∈F

∣∣∣∣∣Ep(f)− 1

m1

m1∑
i=1

f(xi)− Eq(f) +
1

m2

m2∑
j=1

f(yj)

∣∣∣∣∣
= EX,Y sup

f∈F

∣∣∣∣∣EX′

(
1

m1

m1∑
i=1

f(x′i)

)
− 1

m1

m1∑
i=1

f(xi)− EY ′

(
1

m2

m2∑
j=1

f(y′j)

)
+

1

m2

m2∑
j=1

f(yj)

∣∣∣∣∣
≤
(a)

EX,Y,X′,Y ′ sup
f∈F

∣∣∣∣∣ 1

m1

m1∑
i=1

f(x′i)−
1

m1

m1∑
i=1

f(xi)−
1

m2

m2∑
j=1

f(y′j) +
1

m2

m2∑
j=1

f(yj)

∣∣∣∣∣
= EX,Y,X′,Y ′,σ,σ′ sup

f∈F

∣∣∣∣∣ 1

m1

m1∑
i=1

σi (f(x′i)− f(xi)) +
1

m2

m2∑
j=1

σ′j
(
f(y′j)− f(yj)

)∣∣∣∣∣
≤
(b)

EX,X′σ sup
f∈F

∣∣∣∣∣ 1

m1

m1∑
i=1

σi (f(x′i)− f(xi))

∣∣∣∣∣+ EY,Y ′σ sup
f∈F

∣∣∣∣∣ 1

m2

m2∑
j=1

σj
(
f(y′j)− f(yj)

)∣∣∣∣∣
≤
(c)

2 [Rm1(F, p) +Rm2(F, q)] .

≤
(d)

4 (K/m1)
1/2 , (B.3)

where (a) uses Jensen’s inequality, (b) uses the triangle inequality, (c) substitutes Definition
75 (the Rademacher average), and (d) bounds the Rademacher averages, also via Definition
75.

Having established our preliminary results, we proceed to the proof of Theorem 37.

Proof [Theorem 37] Combining equations (B.2) and (B.3), gives

Pr
{

∆(p, q,X, Y)− 4 (K/m)1/2 > ε
}
≤ exp

(
− ε2m1m2

2K(m1 +m2)

)
.

Substituting equation (B.1) yields the result.

150 B. Proofs on Maximum Mean Discrepancy

Proof of Theorem 38

Theorem 38 Under the conditions of Theorem 37 where additionally p = q and m =
m1 = m2,

MMD(F, X, Y) > m− 1
2

√
2Ep [k(x, x)− k(x, x′)]︸ ︷︷ ︸

B1(F,p)

+ ε > 2(K/m)1/2︸ ︷︷ ︸
B2(F,p)

+ ε,

both with probability less than exp
(
− ε2m

4K

)
.

Proof In the following we derive the Theorem 38 result, namely the large deviation
bound on the MMD when p = q and m = m1 = m2. Note that we consider only positive
deviations of MMD(F, X, Y) from MMD(F, p, q), since negative deviations are irrelevant
to our hypothesis test. The proof follows the same three steps as in the previous proof.
The first step in (B.1) becomes

MMD(F, X, Y)−MMD(F, p, q) = MMD(F, X,X ′)− 0

= sup
f∈F

(
1

m

m∑
i=1

(f(xi)− f(x′i))

)
. (B.4)

The McDiarmid bound on the difference between (B.4) and its expectation is now a function

of 2m observations in (B.4), and has a denominator in the exponent of 2m
(
2K1/2/m

)2
=

8K/m. We use a different strategy in obtaining an upper bound on the expected (B.4),
however: this is now

EX,X′

[
sup
f∈F

1

m

m∑
i=1

(f(xi)− f(x′i))

]

=
1

m
EX,X′

∥∥∥∥∥
m∑
i=1

(φ(xi)− φ(x′i))

∥∥∥∥∥
=

1

m
EX,X′

[
m∑
i=1

m∑
j=1

(
k(xi, xj) + k(x′i, x

′
j)− k(xi, x′j)− k(x′i, xj)

)] 1
2

≤ 1

m

[
2mExk(x, x) + 2m(m− 1)Ex,x′k(x, x

′)− 2m2Ex,x′k(x, x
′)
] 1

2

=

[
2

m
Ex,x′ (k(x, x)− k(x, x′))

] 1
2

(B.5)

≤ (2K/m)1/2 . (B.6)

We remark that both (B.5) and (B.6) are bounds the amount by which our biased estimate
of the population MMD exceeds zero under H0. Combining the three results, we find that

151

under H0,

Pr

{
MMD(F, X,X ′)−

[
2

m
Ex,x′∼p (k(x, x)− k(x, x′))

] 1
2

> ε

}
< exp

(
−ε2m
4K

)
and

Pr
{

MMD(F, X,X ′)− (2K/m)1/2 > ε
}

< exp

(
−ε2m
4K

)
.

152 B. Proofs on Maximum Mean Discrepancy

List of Figures

1.1 Directed, undirected and labeled graphs 12
1.2 Self-loops and multiple edges . 14
1.3 Toy example: Binary classification problem with maximum margin hyperplane 22
1.4 Toy example illustrating kernel trick . 25
1.5 n6 operations versus 2n operations . 33

2.1 Impact of graph size on kernel computation runtime 51
2.2 Impact of filling degree on kernel computation runtime 52
2.3 Runtime comparison for 4 approaches to random walk kernel computation 53

3.1 Empirical distribution of MMD under H0 and H1 90

4.1 BAHSIC and other methods on artificial datasets with varying number of
observations . 111

4.2 gSpan: Rightmost Extension . 118
4.3 Feature Selection among frequent subgraphs: Runtime on AIDS data. . . . 129
4.4 Feature Selection among frequent subgraphs: Runtime on NCI83 data. . . 130

154 List of Figures

List of Tables

1.1 Contributions of this thesis and accompanying publications. 39

2.1 Runtime of random walk kernel on datasets of unlabeled graphs 53
2.2 Runtime of random walk kernel on datasets of labeled graphs 54
2.3 Prediction accuracy of random walks and shortest paths on enzyme function

prediction . 64
2.4 Statistics on classification benchmark datasets. 65
2.5 Random walk vs. shortest-path kernel: Classification accuracy 65
2.6 Random walk vs. shortest-path kernel: Runtime for kernel matrix compu-

tation . 65
2.7 Graphlet kernel vs. state-of-the-art kernels: Classification accuracy 78
2.8 Graphlet kernel vs. state-of-the-art kernels: Runtime for kernel matrix com-

putation . 78

3.1 Distribution testing for data integration on multivariate data 92
3.2 Naive attribute matching on univariate and multivariate data 93
3.3 Hungarian Method for attribute matching via MMD2

u B 94
3.4 Matching database tables via MMD2

u B on graph data 97
3.5 Two-sample tests via MMD on pairs of protein interaction networks 98

4.1 Classification error after selecting features using BAHSIC and other methods113
4.2 Performance comparison of feature selectors: Classification error or percent-

age of variance not-explained . 113
4.3 Feature Selection among frequent subgraphs: Classification Accuracy. . . . 131

156 List of Tables

Bibliography

[Agrawal and Srikant, 1994] Agrawal, R. and Srikant, R. (1994). Fast algorithms for min-
ing association rules. In Proc. 1994 Int. Conf. Very Large Data Bases (VLDB’94), pages
487–499.

[Anderson et al., 1994] Anderson, N., Hall, P., and Titterington, D. (1994). Two-sample
test statistics for measuring discrepancies between two multivariate probability density
functions using kernel-based density estimates. Journal of Multivariate Analysis, 50:41–
54.

[Arcones and Giné, 1992] Arcones, M. and Giné, E. (1992). On the bootstrap of u and v
statistics. The Annals of Statistics, 20(2):655–674.

[Baker, 1973] Baker, C. (1973). Joint measures and cross-covariance operators. Transac-
tions of the American Mathematical Society, 186:273–289.

[Bartlett and Mendelson, 2002] Bartlett, P. L. and Mendelson, S. (2002). Rademacher
and gaussian complexities: Risk bounds and structural results. J. Mach. Learn. Res.,
3:463–482.

[Bedo et al., 2006] Bedo, J., Sanderson, C., and Kowalczyk, A. (2006). An efficient alter-
native to SVM based recursive feature elimination with applications in natural language
processing and bioinformatics. In Artificial Intelligence. to appear.

[Bennett and Mangasarian, 1993] Bennett, K. P. and Mangasarian, O. L. (1993). Multicat-
egory separation via linear programming. Optimization Methods and Software, 3:27–39.

[Berman et al., 2000] Berman, H., Westbrook, J., Feng, Z., Gilliland, G., Bhat, T., Weis-
sig, H., Shindyalov, I., and Bourne, P. (2000). The protein data bank. Nucleic Acids
Research, 28:235–242.

[Biau and Gyorfi, 2005] Biau, G. and Gyorfi, L. (2005). On the asymptotic properties of
a nonparametric l1-test statistic of homogeneity. IEEE Transactions on Information
Theory, 51(11):3965–3973.

[Bickel, 1969] Bickel, P. (1969). A distribution free version of the Smirnov two sample test
in the p-variate case. The Annals of Mathematical Statistics, 40(1):1–23.

158 BIBLIOGRAPHY

[Blake and Merz, 1998] Blake, C. L. and Merz, C. J. (1998). UCI repository of machine
learning databases.

[Borgelt and Berthold, 2002] Borgelt, C. and Berthold, M. (2002). Mining molecular frag-
ments: Finding relevant substructures of molecules. In Proc. 2002 Int. Conf. on Data
Mining (ICDM’02), pages 211–218.

[Borgwardt et al., 2007a] Borgwardt, K., Petri, T., Vishwanathan, S., and Kriegel, H.-P.
(2007a). An efficient sampling scheme for comparison of large graphs. under preparation.

[Borgwardt et al., 2007b] Borgwardt, K., Yan, X., Cheng, H., Song, L., Gretton, A.,
Smola, A., Kriegel, H.-P., Han, J., and Yu, P. S. (2007b). Efficient feature selection
in frequent subgraphs. under preparation.

[Borgwardt et al., 2006] Borgwardt, K. M., Gretton, A., Rasch, M. J., Kriegel, H.-P.,
Schölkopf, B., and Smola, A. J. (2006). Integrating structured biological data by kernel
maximum mean discrepancy. Bioinformatics (ISMB), 22(14):e49–e57.

[Borgwardt and Kriegel, 2005] Borgwardt, K. M. and Kriegel, H.-P. (2005). Shortest-path
kernels on graphs. In Proc. Intl. Conf. Data Mining, pages 74–81.

[Borgwardt et al., 2007c] Borgwardt, K. M., Kriegel, H.-P., Vishwanathan, S. V. N., and
Schraudolph, N. (2007c). Graph kernels for disease outcome prediction from protein-
protein interaction networks. In Altman, R. B., Dunker, A. K., Hunter, L., Murray, T.,
and Klein, T. E., editors, Proceedings of the Pacific Symposium of Biocomputing 2007,
Maui Hawaii. World Scientific.

[Borgwardt et al., 2005] Borgwardt, K. M., Ong, C. S., Schönauer, S., Vishwanathan,
S. V. N., Smola, A. J., and Kriegel, H. P. (2005). Protein function prediction via
graph kernels. Bioinformatics, 21(Suppl 1):i47–i56.

[Bradley and Mangasarian, 1998] Bradley, P. S. and Mangasarian, O. L. (1998). Feature
selection via concave minimization and support vector machines. In Shavlik, J., editor,
Proc. Intl. Conf. Machine Learning, pages 82–90, San Francisco, California. Morgan
Kaufmann Publishers. ftp://ftp.cs.wisc.edu/math-prog/tech-reports/98-03.ps.Z.

[Bron and Kerbosch, 1973] Bron, C. and Kerbosch, J. (1973). Algorithm 457 - finding all
cliques of an undirected graph. Comm. ACM, 16:575–577.

[Bullinger et al., 2004] Bullinger, L., Dohner, K., Bair, E., Frohling, S., Schlenk, R. F.,
Tibshirani, R., Dohner, H., and Pollack, J. R. (2004). Use of gene-expression profiling
to identify prognostic subclasses in adult acute myeloid leukemia. New England Journal
of Medicine, 350(16):1605–1616.

[Bunke, 1999] Bunke, H. (1999). Error correcting graph matching: On the influence of the
underlying cost function. IEEE Trans. Pattern Anal. Mach. Intell., 21(9):917–922.

BIBLIOGRAPHY 159

[Bunke, 2000] Bunke, H. (2000). Recent developments in graph matching. In ICPR, pages
2117–2124.

[Bunke, 2003] Bunke, H. (2003). Graph-based tools for data mining and machine learning.
In MLDM, pages 7–19.

[Bunke and Allermann, 1983] Bunke, H. and Allermann, G. (1983). Inexact graph match-
ing for structural pattern recognition. Pattern Recognition Letters, 1:245–253.

[Bunke et al., 2000] Bunke, H., Jiang, X., and Kandel, A. (2000). On the minimum com-
mon supergraph of two graphs. Computing, 65(1):13–25.

[Bunke and Shearer, 1998] Bunke, H. and Shearer, K. (1998). A graph distance metric
based on the maximal common subgraph. Pattern Recognition Letters, 19(3-4):255–259.

[Burges, 1998] Burges, C. J. C. (1998). A tutorial on support vector machines for pattern
recognition. Data Min. and Knowl. Discov., 2(2):121–167.

[Caelli and Caetano, 2005] Caelli, T. and Caetano, T. S. (2005). Graphical models for
graph matching: Approximate models and optimal algorithms. Pattern Recognition
Letters, 26(3):339–346.

[Caruana and Joachims, 2004] Caruana, R. and Joachims, T. (2004). Kdd cup.
http://kodiak.cs.cornell.edu/kddcup/index.html.

[Casella and Berger, 2002] Casella, G. and Berger, R. (2002). Statistical Inference.
Duxbury, Pacific Grove, CA, 2nd edition.

[Chang and Lin, 2001] Chang, C.-C. and Lin, C.-J. (2001). LIBSVM: a library for support
vector machines. Software available at http://www.csie.ntu.edu.tw/∼cjlin/libsvm.

[Chazelle, 2000] Chazelle, B. (2000). A minimum spanning tree algorithm with inverse-
ackermann type complexity. Journal of the ACM, 47.

[Cheng et al., 2007] Cheng, H., Yan, X., Han, J., and Hsu, C. (2007). Discriminative
frequent pattern analysis for effective classification. In Proc. of ICDE, Istanbul, Turkey.

[Chung-Graham, 1997] Chung-Graham, F. (1997). Spectral Graph Theory. Number 92 in
CBMS Regional Conference Series in Mathematics. AMS.

[Conte et al., 2004] Conte, D., Foggia, P., Sansone, C., and Vento, M. (2004). Thirty years
of graph matching in pattern recognition. IJPRAI, 18(3):265–298.

[Cortes and Vapnik, 1995] Cortes, C. and Vapnik, V. (1995). Support vector networks.
Machine Learning, 20(3):273–297.

160 BIBLIOGRAPHY

[Cristianini et al., 2003] Cristianini, N., Kandola, J., Elisseeff, A., and Shawe-Taylor, J.
(2003). On optimizing kernel alignment. Technical report, UC Davis Department of
Statistics.

[Davidson et al., 2002] Davidson, E. H., Rast, J. P., Oliveri, P., Ransick, A., Calestani,
C., Yuh, C. H., Minokawa, T., Amore, G., Hinman, V., Arenas-Mena, C., Otim, O.,
Brown, C. T., Livi, C. B., Lee, P. Y., Revilla, R., Rust, A. G., Pan, Z., Schilstra,
M. J., Clarke, P. J., Arnone, M. I., Rowen, L., Cameron, R. A., McClay, D. R., Hood,
L., and Bolouri, H. (2002). A genomic regulatory network for development. Science,
295(5560):1669–1678.

[Debnath et al., 1991] Debnath, A. K., Lopez de Compadre, R. L., Debnath, G., Shuster-
man, A. J., and Hansch, C. (1991). Structure-activity relationship of mutagenic aro-
matic and heteroaromatic nitro compounds. correlation with molecular orbital energies
and hydrophobicity. J Med Chem, 34:786–797.

[Deshpande et al., 2005] Deshpande, M., Kuramochi, M., Wale, N., and Karypis, G.
(2005). Frequent substructure-based approaches for classifying chemical compounds.
IEEE Transactions on Knowledge and Data Engineering, 17(8):1036–1050.

[Deutsch et al., 1999] Deutsch, A., Fernandez, M. F., Florescu, D., Levy, A. Y., and Suciu,
D. (1999). A query language for XML. Computer Networks, 31(11-16):1155–1169.

[Diestel, 2006] Diestel, R. (2006). Graph Theory. Springer, 3rd edition.

[Dijkstra, 1959] Dijkstra, E. W. (1959). A note on two problems in connection with graphs.
Numerische Mathematics, 1:269–271.

[Dipert, 1997] Dipert, R. R. (1997). The mathematical structure of the world: The world
as graph. The Journal of Philosophy, 94(7):329–358.

[Dobson and Doig, 2003a] Dobson, P. D. and Doig, A. J. (2003a). Distinguishing enzyme
structures from non-enzymes without alignments. J Mol Biol, 330(4):771–783.

[Dobson and Doig, 2003b] Dobson, P. D. and Doig, A. J. (2003b). Distinguishing enzyme
structures from non-enzymes without alignments. J Mol Biol, 330(4):771–783.

[Duda et al., 2001] Duda, R. O., Hart, P. E., and Stork, D. G. (2001). Pattern Classifica-
tion and Scene Analysis. John Wiley and Sons, New York. Second edition.

[Dudley, 1989] Dudley, R. M. (1989). Real analysis and probability. Mathematics Series.
Wadsworth and Brooks/Cole, Pacific Grove, CA.

[Dudley, 2002] Dudley, R. M. (2002). Real analysis and probability. Cambridge University
Press, Cambridge, UK.

BIBLIOGRAPHY 161

[Dürr and Mayer, 2002] Dürr, W. and Mayer, H. (2002). Wahrscheinlichkeitsrechnung und
schließende Statistik. Hanser Fachbuch Verlag.

[Ein-Dor et al., 2006] Ein-Dor, L., Zuk, O., and Domany, E. (2006). Thousands of samples
are needed to generate a robust gene list for predicting outcome in cancer. Proc. Natl.
Acad. Sci. USA, 103(15):5923–5928.

[Ferguson, 2003] Ferguson, T. S. (2003). U-statistics. Notes for Statistics.

[Fernández and Valiente, 2001] Fernández, M.-L. and Valiente, G. (2001). A graph dis-
tance metric combining maximum common subgraph and minimum common supergraph.
Pattern Recognition Letters, 22(6/7):753–758.

[Floyd, 1962] Floyd, R. (1962). Algorithm 97, shortest path. Comm. ACM, 5:345.

[Fortet and Mourier, 1953] Fortet, R. and Mourier, E. (1953). Convergence de la
réparation empirique vers la réparation théorique. Ann. Scient. École Norm. Sup.,
70:266–285.

[Fredman and Tarjan, 1987] Fredman, M. L. and Tarjan, R. E. (1987). Fibonacci heaps
and their uses in improved network optimization algorithms. JACM, 34(3):596–615.

[Friedman and Rafsky, 1979] Friedman, J. and Rafsky, L. (1979). Multivariate generaliza-
tions of the Wald-Wolfowitz and Smirnov two-sample tests. The Annals of Statistics,
7(4):697–717.

[Fröhlich et al., 2005] Fröhlich, H., Wegner, J., Sieker, F., and Zell, A. (2005). Optimal
assignment kernels for attributed molecular graphs. In Proc. of ICML, pages 225–232,
Bonn, Germany.

[Fukumizu et al., 2004] Fukumizu, K., Bach, F. R., and Jordan, M. I. (2004). Dimension-
ality reduction for supervised learning with reproducing kernel hilbert spaces. Journal
of Machine Learning Research, 5:73–99.

[Gardiner et al., 1992] Gardiner, J. D., Laub, A. L., Amato, J. J., and Moler, C. B. (1992).
Solution of the Sylvester matrix equation AXB> +CXD> = E. ACM Transactions on
Mathematical Software, 18(2):223–231.

[Garey and Johnson, 1979] Garey, M. R. and Johnson, D. S. (1979). Computers and In-
tractability: A Guide to the Theory of NP-Completeness. Series of Books in Mathemat-
ical Sciences. W. H. Freeman.

[Garrett, 2004] Garrett, P. (2004). Lecture notes on functional analysis.
http://www.math.umn.edu/∼garrett/m/fun/.

[Gärtner, 2003] Gärtner, T. (2003). A survey of kernels for structured data. SIGKDD
Explorations, 5(1):49–58.

162 BIBLIOGRAPHY

[Gärtner et al., 2003] Gärtner, T., Flach, P., and Wrobel, S. (2003). On graph kernels:
Hardness results and efficient alternatives. In Schölkopf, B. and Warmuth, M. K., editors,
Proc. Annual Conf. Computational Learning Theory, pages 129–143. Springer.

[Gasteiger and Engel, 2003] Gasteiger, J. and Engel, T., editors (2003). Chemoinformat-
ics. A Textbook. Wiley-VCH.

[Giot et al., 2003] Giot, L., Bader, J. S., Brouwer, C., Chaudhuri, A., Kuang, B., Li,
Y., Hao, Y. L., Ooi, C. E., Godwin, B., Vitols, E., Vijayadamodar, G., Pochart, P.,
Machineni, H., Welsh, M., Kong, Y., Zerhusen, B., Malcolm, R., Varrone, Z., Collis, A.,
Minto, M., Burgess, S., McDaniel, L., Stimpson, E., Spriggs, F., Williams, J., Neurath,
K., Ioime, N., Agee, M., Voss, E., Furtak, K., Renzulli, R., Aanensen, N., Carrolla, S.,
Bickelhaupt, E., Lazovatsky, Y., DaSilva, A., Zhong, J., Stanyon, C. A., r. Finley RL,
J., White, K. P., Braverman, M., Jarvie, T., Gold, S., Leach, M., Knight, J., Shimkets,
R. A., McKenna, M. P., Chant, J., and Rothberg, J. M. (2003). A protein interaction
map of drosophila melanogaster. Science, 302(5651):1727–1736.

[Golub and Van Loan, 1996] Golub, G. H. and Van Loan, C. F. (1996). Matrix Computa-
tions. John Hopkins University Press, Baltimore, MD, 3rd edition.

[Golub et al., 1999] Golub, T. R., Slonim, D. K., Tamayo, P., Huard, C., Gaasenbeek, M.,
Mesirov, J. P., Coller, H., Loh, M. L., Downing, J. R., Caligiuri, M. A., Bloomfield,
C. D., and Lander, E. S. (1999). Molecular classification of cancer: Class discovery and
class prediction by gene expression monitoring. Science, 286(5439):531–537.

[Gretton et al., 2007a] Gretton, A., Borgwardt, K., Rasch, M., Schölkopf, B., and Smola,
A. (2007a). A kernel method for the two-sample-problem. In Advances in Neural Infor-
mation Processing Systems 19, Cambridge, MA. MIT Press.

[Gretton et al., 2007b] Gretton, A., Borgwardt, K., Rasch, M., Schölkopf, B., and Smola,
A. (2007b). A kernel method for the two-sample-problem. Technical report, MPI Tech-
nical Report 157.

[Gretton et al., 2005] Gretton, A., Bousquet, O., Smola, A., and Schölkopf, B. (2005).
Measuring statistical dependence with Hilbert-Schmidt norms. In Proc. Intl. Conf. on
Algorithmic Learning Theory, pages 63–78.

[Grimmet and Stirzaker, 2001] Grimmet, G. R. and Stirzaker, D. R. (2001). Probability
and Random Processes. Oxford University Press, Oxford, third edition.

[Gurevich, 2001] Gurevich, Y. (2001). From invariants to canonization, pages 327–331.
World Scientific Publishing Co., Inc., River Edge, NJ, USA.

[Guyon and Elisseeff, 2003] Guyon, I. and Elisseeff, A. (2003). An introduction to variable
and feature selection. Journal of Machine Learning Research, 3:1157–1182.

BIBLIOGRAPHY 163

[Guyon et al., 2002] Guyon, I., Weston, J., Barnhill, S., and Vapnik, V. (2002). Gene
selection for cancer classification using support vector machines. Machine Learning,
46:389–422.

[Hall and Tajvidi, 2002] Hall, P. and Tajvidi, N. (2002). Permutation tests for equality of
distributions in high-dimensional settings. Biometrika, 89(2):359–374.

[Harary, 1969] Harary, F. (1969). Graph Theory. Addison-Wesley, Reading, MA.

[Hastie et al., 2001] Hastie, T., Tibshirani, R., and Friedman, J. (2001). The Elements of
Statistical Learning. Springer, New York.

[Haussler, 1999] Haussler, D. (1999). Convolutional kernels on discrete structures. Tech-
nical Report UCSC-CRL-99-10, Computer Science Department, UC Santa Cruz.

[Hemminger, 1969] Hemminger, R. L. (1969). On reconstructing a graph. Proceedings of
the American Mathematical Society, 20(1):185–187.

[Henze and Penrose, 1999] Henze, N. and Penrose, M. (1999). On the multivariate runs
test. The Annals of Statistics, 27(1):290–298.

[Horvath et al., 2004] Horvath, T., Gärtner, T., and Wrobel, S. (2004). Cyclic pattern
kernels for predictive graph mining. In Proceedings of the International Conference on
Knowledge Discovery and Data Mining (KDD), pages 158–167.

[Hotelling, 1951] Hotelling, H. (1951). A generalized t test and measure of multivariate
dispersion. Proceedings of the Second Berkeley Symposium on Mathematical Statistics
and Probability, pages 23–41.

[Huan et al., 2003] Huan, J., Wang, W., and Prins, J. (2003). Efficient mining of fre-
quent subgraph in the presence of isomorphism. In Proc. 2003 Int. Conf. Data Mining
(ICDM’03), pages 549–552.

[Huang et al., 2007] Huang, J., Smola, A., Gretton, A., Borgwardt, K., and Schölkopf,
B. (2007). Correcting sample selection bias by unlabeled data. In Advances in Neural
Information Processing Systems 19, Cambridge, MA. MIT Press.

[Huson and Bryant, 2006] Huson, D. H. and Bryant, D. (2006). Application of phyloge-
netic networks in evolutionary studies. Mol Biol Evol, 23(2):254–267.

[Imrich and Klavzar, 2000] Imrich, W. and Klavzar, S. (2000). Product Graphs: Structure
and Recognition. Wiley Interscience Series in Discrete Mathematics). Wiley VCH.

[Inokuchi et al., 2000] Inokuchi, A., Washio, T., and Motoda, H. (2000). An apriori-based
algorithm for mining frequent substructures from graph data. In Proc. 2000 European
Symp. Principle of Data Mining and Knowledge Discovery (PKDD’00), pages 13–23.

164 BIBLIOGRAPHY

[Johnson et al., 1994] Johnson, N. L., Kotz, S., and Balakrishnan, N. (1994). Continuous
Univariate Distributions. Volume 1 (Second Edition). John Wiley and Sons.

[Jungnickel, 1994] Jungnickel, D. (1994). Graphen, Netzwerke und Algorithmen. BI-Wiss.-
Verlag, Mannheim, Germany.

[Justice and Hero, 2006] Justice, D. and Hero, A. (2006). A binary linear programming
formulation of the graph edit distance. IEEE Trans. on Pattern Analysis ans Machine
Intelligence, 28(8):1200–1214.

[Kanehisa et al., 2004] Kanehisa, M., Goto, S., Kawashima, S., Okuno, Y., and Hattori, M.
(2004). The kegg resource for deciphering the genome. Nucleic Acids Res, 32(Database
issue):D277–D280.

[Kashima et al., 2003] Kashima, H., Tsuda, K., and Inokuchi, A. (2003). Marginalized
kernels between labeled graphs. In Proc. Intl. Conf. Machine Learning, pages 321–328,
San Francisco, CA. Morgan Kaufmann.

[Kashtan et al., 2004] Kashtan, N., Itzkovitz, S., Milo, R., and Alon, U. (2004). Efficient
sampling algorithm for estimating subgraph concentrations and detecting network mo-
tifs. Bioinformatics, 20(11):1746–1758.

[Kelly, 1957] Kelly, P. (1957). A congruence theorem for trees. Pacific J. Math., 7(961-
968):MR 19:442.

[Kira and Rendell, 1992] Kira, K. and Rendell, L. (1992). A practical approach to feature
selection. In Proc. 9th Intl. Workshop on Machine Learning, pages 249–256.

[Koch, 2001] Koch, I. (2001). Enumerating all connected maximal common subgraphs in
two graphs. Theor. Comput. Sci., 250(1–2):1–30.

[Koebler and Verbitsky, 2006] Koebler, J. and Verbitsky, O. (2006). From invariants to
canonization in parallel.

[Koller and Sahami, 1996] Koller, D. and Sahami, M. (1996). Toward optimal feature
selection. In Proc. Intl. Conf. Machine Learning, pages 284–292. Morgan Kaufmann.

[Kramer et al., 2001] Kramer, S., Raedt, L., and Helma, C. (2001). Molecular feature
mining in hiv data. In Proc. of KDD, pages 136–143, San Francisco, CA.

[Kuhn, 1955] Kuhn, H. (1955). The Hungarian method for the assignment problem. Naval
Research Logistics Quarterly, 2:83–97.

[Kuramochi and Karypis, 2001] Kuramochi, M. and Karypis, G. (2001). Frequent sub-
graph discovery. In Proc. 2001 Int. Conf. Data Mining (ICDM’01), pages 313–320.

[Kuramochi and Karypis, 2004a] Kuramochi, M. and Karypis, G. (2004a). Finding fre-
quent patterns in a large sparse graph. In SDM.

BIBLIOGRAPHY 165

[Kuramochi and Karypis, 2004b] Kuramochi, M. and Karypis, G. (2004b). Grew-a scal-
able frequent subgraph discovery algorithm. In ICDM, pages 439–442.

[Lawler, 1972] Lawler, E. (1972). A procedure for computing the k best solutions to discrete
optimization problems and its application to the shortest path problem. Management
Science, 18:401–405.

[Lee et al., 2006] Lee, W. P., Jeng, B. C., Pai, T. W., Tsai, C. P., Yu, C. Y., and Tzou,
W. S. (2006). Differential evolutionary conservation of motif modes in the yeast protein
interaction network. BMC Genomics, 7:89.

[Li and Yang, 2005] Li, F. and Yang, Y. (2005). Analysis of recursive gene selection ap-
proaches from microarray data. Bioinformatics, 21(19):3741–3747.

[Li et al., 2004] Li, S., Armstrong, C. M., Bertin, N., Ge, H., Milstein, S., Boxem, M.,
Vidalain, P. O., Han, J. D., Chesneau, A., Hao, T., Goldberg, D. S., Li, N., Martinez,
M., Rual, J. F., Lamesch, P., Xu, L., Tewari, M., Wong, S. L., Zhang, L. V., Berriz,
G. F., Jacotot, L., Vaglio, P., Reboul, J., Hirozane-Kishikawa, T., Li, Q., Gabel, H. W.,
Elewa, A., Baumgartner, B., Rose, D. J., Yu, H., Bosak, S., Sequerra, R., Fraser, A.,
Mango, S. E., Saxton, W. M., Strome, S., Heuvel, S. V. D., Piano, F., Vandenhaute, J.,
Sardet, C., Gerstein, M., Doucette-Stamm, L., Gunsalus, K. C., Harper, J. W., Cusick,
M. E., Roth, F. P., Hill, D. E., and Vidal, M. (2004). A map of the interactome network
of the metazoan c. elegans. Science, 303(5657):540–543.

[Liang et al., 2006] Liang, Z., Xu, M., Teng, M., and Niu, L. (2006). Netalign: a web-based
tool for comparison of protein interaction networks. Bioinformatics, 22(17):2175–2177.

[Lodhi et al., 2002] Lodhi, H., Saunders, C., Shawe-Taylor, J., Cristianini, N., and
Watkins, C. (2002). Text classification using string kernels. Journal of Machine Learning
Research, 2:419–444.

[Mahé et al., 2004] Mahé, P., Ueda, N., Akutsu, T., Perret, J.-L., and Vert, J.-P. (2004).
Extensions of marginalized graph kernels. In Proceedings of the Twenty-First Interna-
tional Conference on Machine Learning, pages 552–559.

[Manvel and Stockmeyer, 1971] Manvel, B. and Stockmeyer, P. (1971). On reconstruction
of matrices. Mathematics Magazine, 44(4):218–221.

[McDiarmid, 1969] McDiarmid, C. (1969). On the method of bounded differences. Surveys
in Combinatorics, pages 148–188. Cambridge University Press.

[McKay, 1997] McKay, B. (1997). Small graphs are reconstructible. Australas. J. Combin.,
15:123–126.

[McKay, 1984] McKay, B. D. (1984). nauty user’s guide. Technical report, Dept. Computer
Science, Austral. Nat. Univ.

166 BIBLIOGRAPHY

[Menchetti et al., 2005] Menchetti, S., Costa, F., and Frasconi, P. (2005). Weighted de-
composition kernels. In ICML, pages 585–592.

[Nemenman et al., 2002] Nemenman, I., Shafee, F., and Bialek, W. (2002). Entropy and
inference, revisited. In Neural Information Processing Systems, volume 14, Cambridge,
MA. MIT Press.

[Neuhaus, 2006] Neuhaus, M. (2006). Bridging the gap between graph edit distances and
kernel machines. PhD thesis, Universität Bern.

[Neuhaus and Bunke, 2005] Neuhaus, M. and Bunke, H. (2005). Self-organizing maps for
learning the edit costs in graph matching. IEEE Transactions on Systems, Man, and
Cybernetics, Part B, 35(3):503–514.

[Neuhaus and Bunke, 2007] Neuhaus, M. and Bunke, H. (2007). Automatic learning of
cost functions for graph edit distance. Inf. Sci., 177(1):239–247.

[Neumann et al., 2005] Neumann, J., Schnörr, C., and Steidl, G. (2005). Combined SVM-
based feature selection and classification. Machine Learning, 61:129–150.

[Nijssen and Kok, 2004] Nijssen, S. and Kok, J. (2004). A quickstart in frequent structure
mining can make a difference. In Proc. 2004 ACM SIGKDD Int. Conf. Knowledge
Discovery in Databases (KDD’04), pages 647–652.

[Nocedal and Wright, 1999] Nocedal, J. and Wright, S. J. (1999). Numerical Optimization.
Springer Series in Operations Research. Springer.

[Oh et al., 2006] Oh, S. J., Joung, J. G., Chang, J. H., and Zhang, B. T. (2006). Construc-
tion of phylogenetic trees by kernel-based comparative analysis of metabolic networks.
BMC Bioinformatics, 7:284.

[Page et al., 1998] Page, L., Brin, S., Motwani, R., and Winograd, T. (1998). The pagerank
citation ranking: Bringing order to the web. Technical report, Stanford Digital Library
Technologies Project, Stanford University, Stanford, CA, USA.

[Przulj, 2007] Przulj, N. (2007). Biological network comparison using graphlet degree dis-
tribution. Bioinformatics, 23(2):e177–e183.

[Przulj et al., 2006] Przulj, N., Corneil, D. G., and Jurisica, I. (2006). Efficient estimation
of graphlet frequency distributions in protein-protein interaction networks. Bioinfor-
matics, 22(8):974–980.

[Ralaivola et al., 2005] Ralaivola, L., Swamidass, S. J., Saigo, H., and Baldi, P. (2005).
Graph kernels for chemical informatics. Neural Networks, 18(8):1093–1110.

[Ramon and Gärtner, 2003] Ramon, J. and Gärtner, T. (2003). Expressivity versus ef-
ficiency of graph kernels. Technical report, First International Workshop on Mining
Graphs, Trees and Sequences (held with ECML/PKDD’03).

BIBLIOGRAPHY 167

[Riesen et al., 2006] Riesen, K., Neuhaus, M., and Bunke, H. (2006). Bipartite graph
matching for computing the edit distance of graphs. Accepted for the 6th Int. Workshop
on Graph-Based Representations in Pattern Recognition.

[Rosenbaum, 2005] Rosenbaum, P. (2005). An exact distribution-free test comparing two
multivariate distributions based on adjacency. Journal of the Royal Statistical Society
B, 67(4):515–530.

[Rual et al., 2005] Rual, J. F., Venkatesan, K., Hao, T., Hirozane-Kishikawa, T., Dricot,
A., Li, N., et al. (2005). Towards a proteome-scale map of the human protein-protein
interaction network. Nature, 437(7062):1173–1178.

[Schölkopf, 1997] Schölkopf, B. (1997). Support Vector Learning. R. Oldenbourg Verlag,
Munich. Download: http://www.kernel-machines.org.

[Schölkopf and Smola, 2002] Schölkopf, B. and Smola, A. (2002). Learning with Kernels.
MIT Press, Cambridge, MA.

[Schölkopf et al., 2000] Schölkopf, B., Smola, A. J., Williamson, R. C., and Bartlett, P. L.
(2000). New support vector algorithms. Neural Computation, 12:1207–1245.

[Schölkopf et al., 2004] Schölkopf, B., Tsuda, K., and Vert, J.-P. (2004). Kernel Methods
in Computational Biology. MIT Press, Cambridge, Massachusetts.

[Schomburg et al., 2004a] Schomburg, I., Chang, A., Ebeling, C., Gremse, M., Heldt, C.,
Huhn, G., and Schomburg, D. (2004a). Brenda, the enzyme database: updates and
major new developments. Nucleic Acids Research, 32D:431–433.

[Schomburg et al., 2004b] Schomburg, I., Chang, A., Ebeling, C., Gremse, M., Heldt, C.,
Huhn, G., and Schomburg, D. (2004b). Brenda, the enzyme database: updates and
major new developments. Nucleic Acids Res, 32 Database issue:D431–D433.

[Serfling, 1980] Serfling, R. (1980). Approximation Theorems of Mathematical Statistics.
Wiley, New York.

[Shen-Orr et al., 2002] Shen-Orr, S. S., Milo, R., Mangan, S., and Alon, U. (2002). Net-
work motifs in the transcriptional regulation network of escherichia coli. Nat Genet,
31(1):64–68.

[Song et al., 2007a] Song, L., Bedo, J., Borgwardt, K., Gretton, A., and Smola, A. (2007a).
Gene selection via the BAHSIC family of algorithms. In Intelligent Systems in Molecular
Biology.

[Song et al., 2007b] Song, L., Gretton, A., Smola, A., and Borgwardt, K. (2007b). A
dependence maximization view of clustering. In International Conference on Machine
Learning.

168 BIBLIOGRAPHY

[Song et al., 2007c] Song, L., Smola, A., Gretton, A., Borgwardt, K., and Bedo, J. (2007c).
Supervised feature selection via dependence estimation. In International Conference on
Machine Learning.

[Steinwart, 2002] Steinwart, I. (2002). On the influence of the kernel on the consistency of
support vector machines. J. Mach. Learn. Res., 2:67–93.

[Tibshirani et al., 2002] Tibshirani, R., Hastie, T., Narasimhan, B., and Chu, G. (2002).
Diagnosis of multiple cancer types by shrunken centroids of gene expression. In National
Academy of Sciences, volume 99, pages 6567–6572.

[Tibshirani et al., 2003] Tibshirani, R., Hastie, T., Narasimhan, B., and Chu, G. (2003).
Class prediction by nearest shrunken centroids, with applicaitons to DNA microarrays.
Stat Sci, 18:104–117.

[Todeschini and Consonni, 2000] Todeschini, R. and Consonni, V. (2000). Handbook of
molecular descriptors. Wiley-VCH.

[Toivonen et al., 2003] Toivonen, H., Srinivasan, A., King, R. D., Kramer, S., and Helma,
C. (2003). Statistical evaluation of the predictive toxicology challenge 2000-2001. Bioin-
formatics, 19(10):1183–1193.

[Tsochantaridis et al., 2005] Tsochantaridis, I., Joachims, T., Hofmann, T., and Altun, Y.
(2005). Large margin methods for structured and interdependent output variables. J.
Mach. Learn. Res., 6:1453–1484.

[Tusher et al., 2001] Tusher, V. G., Tibshirani, R., and Chu, G. (2001). Significance anal-
ysis of microarrays applied to the ionizing radiation response. Proc. Natl. Acad. Sci.
USA, 98(9):5116–5121.

[van der Vaart and Wellner, 1996] van der Vaart, A. W. and Wellner, J. A. (1996). Weak
Convergence and Empirical Processes. Springer.

[Van Loan, 2000] Van Loan, C. F. (2000). The ubiquitous Kronecker product. Journal of
Computational and Applied Mathematics, 123(1–2):85–100.

[Vanetik et al., 2002] Vanetik, N., Gudes, E., and Shimony, S. E. (2002). Computing
frequent graph patterns from semistructured data. In Proc. 2002 Int. Conf. on Data
Mining (ICDM’02), pages 458–465.

[van’t Veer et al., 2002] van’t Veer, L. J., Dai, H., van de Vijver, M. J., He, Y. D., Hart,
A. A. M., et al. (2002). Gene expression profiling predicts clinical outcome of breast
cancer. Nature, 415:530–536.

[Vapnik and Lerner, 1963] Vapnik, V. and Lerner, A. (1963). Pattern recognition using
generalized portrait method. Autom. Remote Control, 24:774–780.

BIBLIOGRAPHY 169

[Vishwanathan et al., 2007a] Vishwanathan, S. V. N., Borgwardt, K., and Schraudolph,
N. N. (2007a). Fast computation of graph kernels. In Schölkopf, B., Platt, J., and Hof-
mann, T., editors, Advances in Neural Information Processing Systems 19, Cambridge
MA. MIT Press.

[Vishwanathan et al., 2007b] Vishwanathan, S. V. N., Borgwardt, K., Schraudolph, N. N.,
and Kondor, I. R. (2007b). On graph kernels. J. Mach. Learn. Res. under preparation.

[Vishwanathan and Smola, 2004] Vishwanathan, S. V. N. and Smola, A. J. (2004). Fast
kernels for string and tree matching. In Schölkopf, B., Tsuda, K., and Vert, J. P., editors,
Kernel Methods in Computational Biology, pages 113–130, Cambridge, MA. MIT Press.

[von Mering et al., 2002] von Mering, C., Krause, R., Snel, B., Cornell, M., Oliver, S. G.,
Fields, S., and Bork, P. (2002). Comparative assessment of large-scale data sets of
protein-protein interactions. Nature, 417(6887):399–403.

[Wale and Karypis, 2006] Wale, N. and Karypis, G. (2006). Comparison of descriptor
spaces for chemical compound retrieval and classification. In Proc. of ICDM, pages
678–689, Hong Kong.

[Warshall, 1962] Warshall, S. (1962). A theorem on boolean matrices. J. ACM, 9:11–12.

[Wasserman and Faust, 1995] Wasserman, S. and Faust, K. (1995). Social Network Anal-
ysis. Methods and Applications (Structural Analysis in the Social Sciences). Cambridge
University Press.

[Weis and Naumann, 2005] Weis, M. and Naumann, F. (2005). Dogmatix tracks down
duplicates in XML. In SIGMOD Conference, pages 431–442.

[Weissman et al., 2003] Weissman, T., Ordentlich, E., Seroussi, G., Verdu, S., and Wein-
berger, M. J. (2003). Inequalities for the l1 deviation of the empirical distribution.
Technical Report HPL-2003-97(R.1), HP Labs, HP Laboratories, Palo Alto.

[Wernicke, 2005] Wernicke, S. (2005). A faster algorithm for detecting network motifs. In
Casadio, R. and Myers, G., editors, WABI, volume 3692 of Lecture Notes in Computer
Science, pages 165–177. Springer.

[Weston et al., 2003] Weston, J., Elisseeff, A., Schölkopf, B., and Tipping, M. (2003). Use
of zero-norm with linear models and kernel methods. Journal of Machine Learning
Research, 3:1439–1461.

[Weston et al., 2000] Weston, J., Mukherjee, S., Chapelle, O., Pontil, M., Poggio, T., and
Vapnik, V. (2000). Feature selection for SVMs. In Advances in Neural Information
Processing Systems 13, pages 668–674.

[Whisstock and Lesk, 2003] Whisstock, J. C. and Lesk, A. M. (2003). Prediction of protein
function from protein sequence and structure. Q Rev Biophys, 36(3):307–340.

170 BIBLIOGRAPHY

[Wiener, 1947] Wiener, H. (1947). Structural determination of paraffin boiling points. J.
Am. Chem. Soc., 69(1):17–20.

[World Wide Web Consortium (W3C), 2005] World Wide Web Consortium (W3C)
(2005). The XML data model. http://www.w3.org/XML/Datamodel.html.

[Wuchty et al., 2003] Wuchty, S., Oltvai, Z. N., and Barabasi, A. L. (2003). Evolutionary
conservation of motif constituents in the yeast protein interaction network. Nat Genet,
35(2):176–179.

[Xenarios et al., 2002] Xenarios, I., Salwinski, L., Duan, X., Higney, P., Kim, S., and
Eisenberg, D. (2002). Dip, the database of interacting proteins: a research tool for
studying cellualr networks of protein interactions. NAR, 30:303–305.

[Yan and Han, 2002] Yan, X. and Han, J. (2002). gspan: Graph-based substructure pat-
tern mining. In ICDM, pages 721–724.

[Yen, 1971] Yen, J. Y. (1971). Finding the k shortest loopless paths in a network. Man-
agement Sciences, 17:712–716.

[Zanzoni et al., 2002] Zanzoni, A., Montecchi-Palazzi, L., Quondam, M., Ausiello, G.,
Helmer-Citterich, M., and Cesareni, G. (2002). Mint: a molecular interaction database.
FEBS Lett, 513(1):135–140.

Karsten M. Borgwardt

Chair Prof. Kriegel office: ++49 89 2180 9329
Ludwig-Maximilians-Universität München fax: ++49 89 2180 9192
Oettingenstr. 67
80538 München kb@dbs.ifi.lmu.de
Germany http://www.dbs.ifi.lmu.de/~borgward/

Education

Current status

Since Jan. 2005 PhD student in Computer Science
Ludwig-Maximilians-Universität, Munich, Germany
Advisor: Prof. Hans-Peter Kriegel

Degrees

Dec. 2004 Diplom (German M.Sc.) in Computer Science
Ludwig-Maximilians-Universität, Munich, Germany

Sep. 2003 M.Sc. in Biology
University of Oxford, United Kingdom

Studies abroad

Sep. to Oct. 2006 Visiting Academic at Statistical Machine Learning Group
and National ICT Australia (NICTA), Canberra, Australia
July to Dec. 2004 Advisor: Dr Alex Smola and Dr SVN Vishwanathan

Sep. 2002 to Sep. 2003 Master Student at University of Oxford
M.Sc. in Biology
Advisor: Dr Myles Axton and Dr Irmtraud Meyer

Awards and Honors

2007 German National Merit Scholarship
2006 Listed in Premier Edition of Marquis Who’s Who of Emerging Leaders
2002 German National Merit Scholarship
1999 Stiftung Maximilianeum
1999 Bavarian Scholarship for the Gifted
1999 Finished Gymnasium (German high school) in 8 instead of 9 years

1

http://www.dbs.ifi.lmu.de/
http://www.lmu.de
mailto:kb@dbs.ifi.lmu.de
http://www.dbs.ifi.lmu.de/~borgward/
http://www.ifi.lmu.de
http://www.lmu.de
http://www.ifi.lmu.de
http://www.lmu.de
http://www.zoo.ox.ac.uk/
http://www.ox.ac.uk/
http://sml.nicta.com.au
http://www.nicta.com.au
http://zoo.ox.ac.uk

Karsten M. Borgwardt Curriculum Vitae

Research

Research Focus and Interests

General: Intersection between machine learning, data mining and bioinformatics
Learning on structured data and mining of structured data

Specific: Graph mining
Graph kernels
Kernels for bioinformatics

Employment

2005– Research and teaching assistant, Chair for Database Systems
Ludwig-Maximilians-Universität, Munich, Germany

Teaching

Lecturer (developed and taught)

Summer 2006 Kernel Methods in Bioinformatics

Teaching Assistant

Summer 2007 Knowledge Discovery in Databases II
Winter 2007 Database Principles I
Winter 2006 Knowledge Discovery in Databases
Summer 2005 Efficient Algorithms
Winter 2005 Database Principles I

Student Tutor

Summer 2004 Database Principles II
Winter 2004 Database Principles I
Winter 2002 Introduction to Computer Science I

Professional Activities

Peer Review

• Program committee: ICML 2007, PKDD/ECML 2007, ICDM MGCS
2007.

• Reviewer for journals: Bioinformatics, Journal of Machine Learning Re-
search, ACM TKDD, ACM TCBB, Journal of Proteome Research, Journal
of Lipid Research

• Reviewer for workshops: NIPS Computational Biology Workshop 2005

• External reviewer: VLDB 2007, KDD 2007, SIGMOD 2007, VLDB 2006,
SIGMOD 2006, ICDE 2006

2

http://www.dbs.ifi.lmu.de/
http://www.lmu.de/
http://jmlr.org/
http://jmlr.org/

Publications Karsten M. Borgwardt

Publications

Also available at
http://www.dbs.ifi.lmu.de/~borgward/ and at
http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/b/Borgwardt:
Karsten_M=.html

Journal Articles

[1] L. Song, J. Bedo, K. M. Borgwardt, A. Gretton, and A.J. Smola. Gene
selection via the BAHSIC family of algorithms. In Intelligent Systems in
Molecular Biology, 2007.

[2] K. M. Borgwardt, A. Gretton, M. J. Rasch, H.-P. Kriegel, B. Schölkopf,
and A. J. Smola. Integrating structured biological data by kernel maximum
mean discrepancy. Bioinformatics (ISMB), 22(14):e49–e57, 2006.

[3] K. M. Borgwardt, C. S. Ong, S. Schönauer, S. V. N. Vishwanathan, A. J.
Smola, and H. P. Kriegel. Protein function prediction via graph kernels.
Bioinformatics, 21(Suppl 1):i47–i56, Jun 2005.

[4] S. V. N. Vishwanathan, K. M. Borgwardt, O. Guttman, and A. J. Smola.
Kernel extrapolation. Neurocomputing, 69(7-9):721–729, 2006.

Peer-Reviewed Conferences

[1] A. Gretton, K. M. Borgwardt, M. Rasch, B. Schölkopf, and A. Smola. A
kernel approach to comparing distributions. In AAAI, 2007. (Highlights
Track).

[2] L. Song, A. Gretton, A. Smola, and K. Borgwardt. A dependence maxi-
mization view of clustering. In ICML, 2007.

[3] L. Song, A. Smola, A. Gretton, K. Borgwardt, and J. Bedo. Supervised
feature selection via dependence estimation. In ICML, 2007.

[4] K. M. Borgwardt, H.-P. Kriegel, S. V. N. Vishwanathan, and N. Schrau-
dolph. Graph kernels for disease outcome prediction from protein-protein
interaction networks. In Russ B. Altman, A. Keith Dunker, Lawrence
Hunter, Tiffany Murray, and Teri E Klein, editors, Proceedings of the Pa-
cific Symposium of Biocomputing 2007, Maui Hawaii, January 2007. World
Scientific.

[5] S. V. N. Vishwanathan, K. Borgwardt, and N. N. Schraudolph. Fast compu-
tation of graph kernels. In B. Schölkopf, J. Platt, and T. Hofmann, editors,
Advances in Neural Information Processing Systems 19, Cambridge MA,
2007. MIT Press.

[6] J. Huang, A. Smola, A. Gretton, K. Borgwardt, and B. Schölkopf. Cor-
recting sample selection bias by unlabeled data. In Advances in Neural
Information Processing Systems 19, Cambridge, MA, 2007. MIT Press.

[7] A. Gretton, K. Borgwardt, M. Rasch, B. Schölkopf, and A. Smola. A kernel
method for the two-sample-problem. In Advances in Neural Information
Processing Systems 19, Cambridge, MA, 2007. MIT Press.

3

http://www.dbs.ifi.lmu.de/~borgward/
http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/b/Borgwardt:Karsten_M=.html
http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/b/Borgwardt:Karsten_M=.html

Karsten M. Borgwardt Publications

[8] K. M. Borgwardt, H.-P. Kriegel, and P. Wackersreuther. Pattern mining
in frequent dynamic subgraphs. In ICDM, pages 818–822, 2006.

[9] K. M. Borgwardt, S. V. N. Vishwanathan, and H.-P. Kriegel. Class pre-
diction from time series gene expression profiles using dynamical systems
kernels. In Russ B. Altman, A. Keith Dunker, Lawrence Hunter, Tiffany
Murray, and Teri E Klein, editors, Proceedings of the Pacific Symposium
of Biocomputing 2006, pages 547–558, Maui Hawaii, January 2006. World
Scientific.

[10] K. M. Borgwardt, O. Guttman, S. V. N. Vishwanathan, and A. J. Smola.
Joint regularization. In Proceedings of the European Symposium on Artifi-
cial Neural Networks (ESANN 2005), Brugge, Belgium, 2005.

[11] K. M. Borgwardt and H.-P. Kriegel. Shortest-path kernels on graphs. In
Proc. Intl. Conf. Data Mining, pages 74–81, 2005.

4

	diss.pdf
	Acknowledgments
	Zusammenfassung
	Abstract
	Introduction: Why Graph Kernels?
	Motivation
	Graph Models in Applications
	Bridging Statistical and Structural Pattern Recognition

	Primer on Graph Theory
	Directed, Undirected and Labeled Graphs
	Neighborship in a Graph
	Graph Isomorphism and Subgraph Isomorphism

	Review on Alternative Approaches to Graph Comparison
	Similarity Measures based on Graph Isomorphism
	Inexact Matching Algorithms
	Similarity Measures based on Topological Descriptors
	Recent Trends in Graph Comparison

	Review on Graph Kernels
	Primer on Kernels
	Primer on Graph Kernels

	Contributions of this Thesis
	Fast Graph Kernels
	Two-Sample Test on Graphs
	Efficient Feature Selection on Graphs
	Applications in Data Mining and Bioinformatics

	Fast Graph Kernel Functions
	Fast Computation of Random Walk Graph Kernels
	Extending Linear Algebra to RKHS
	Random Walk Kernels
	Efficient Computation
	Experiments
	Summary

	Graph Kernels based on Shortest Path Distances
	Graph Kernels on All Paths
	Graphs Kernels on Shortest Paths
	Graphs Kernels on Shortest Path Distances
	Link to Wiener Index
	Experiments
	Summary

	Graphlet Kernels for Large Graph Comparison
	Graph Reconstruction
	Graph Kernels based on Graph Reconstruction
	Efficiently Checking Graph Isomorphism
	Sampling from Graphs
	Experiments
	Summary

	Two-Sample Tests on Graphs
	Maximum Mean Discrepancy
	The Two-Sample-Problem
	Background Material
	A Test based on Uniform Convergence Bounds
	An Unbiased Test Based on the Asymptotic Distribution of the U-Statistic
	Experiments
	Summary

	Graph Similarity via Maximum Mean Discrepancy
	Two-Sample Test on Sets of Graphs
	Two-Sample Test on Pairs of Graphs
	Experiments
	Summary

	Feature Selection on Graphs
	A Dependence based Approach to Feature Selection
	The Problem of Feature Selection
	Measures of Dependence
	Feature Selection via HSIC
	Connections to Other Approaches
	Variants of BAHSIC
	Experiments
	Summary

	Feature Selection among Frequent Subgraphs
	Preliminaries
	Backward Feature Elimination via HSIC
	Forward Feature Selection via HSIX
	Experiments
	Summary

	Summary and Outlook: Applications in Bioinformatics
	Summary
	Graph Kernels in Bioinformatics
	Protein Function Prediction
	Biological Network Comparison
	Subgraph Sampling on Biological Networks

	Applications of Maximum Mean Discrepancy
	Data Integration in Bioinformatics
	Sample Bias Correction

	Applications of the Hilbert-Schmidt Independence Criterion
	Gene Selection via the BAHSIC Family of Algorithms
	Dependence Maximization View of Clustering

	Mathematical Background
	Primer on Functional Analysis
	Primer on Probability Theory and Statistics

	Proofs on Maximum Mean Discrepancy
	List of Figures
	List of Tables
	Bibliography

	KarstenBorgwardtcv.pdf

