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Abstract 
 

The extraocular muscles in mammals, the effector organs of the oculomotor system, are 

fundamentally different from skeletal muscle. All extraocular muscles consist of two different 

layers, an orbital and a global layer. There are two basic categories of the muscle fibers: 

twitch or singly-innervated muscle fiber (SIF) and non-twitch or multiply-innervated muscle 

fiber (MIF). Previous studies in monkey revealed that SIF and MIF motoneurons are 

anatomically separated and have different premotor inputs. SIF and MIF motoneurons were 

identified by tracer injection into the belly, or the distal myotendinous junction, of the eye 

muscles. There are two groups of MIF motoneurons in the oculomotor nucleus, the C- and S-

group. The C-group motoneurons innervate the medial rectus (MR) and inferior rectus (IR), 

while S-group motoneurons innervate the superior rectus and inferior oblique muscles. The 

motoneurons of C-group are located around the periphery of the oculomotor nucleus. We 

investigated the location of MR and IR MIF motoneurons in C-group, and the dendritic spread 

of MR compared with IR MIF motoneurons. We found that the MR and IR MIF motoneurons 

are two different populations of neurons in C-group. They lie relatively separated. The MR 

MIF motoneurons are located more dorsomedially than IR MIF motoneurons. The pattern of 

dendritic spread of these two MIF motoneurons is also different. The dendrites of IR MIF 

motoneurons spread into the supraoculomotor area bilaterally, but do not approach the 

Edinger-Westphal nucleus, in contrast, the dendrites of MR MIF motoneurons extend into the 

supraoculomotor area and the Edinger-Westphal nucleus unilaterally. The function of 

Edinger-Westphal nucleus is associated with the “near response”. In conclusion, the different 

location and different dendritic trees suggest that MR and IR MIF motoneurons have different 

functions. The IR MIF motoneurons may help to stabilize the eye position along with MIF 

motoneurons from other eye muscles, while the MR MIF motoneurons might also participate 

the vergence eye movements. 
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Zusammenfassung 
 

Die Augenmuskeln der Säugetiere unterscheiden sich grundsätzlich von der 

Skelettmuskulatur. Sie bestehen aus zwei unterschiedlichen Schichten, der globalen und der 

orbitalen Schicht. Diese setzen sich aus zwei Hauptklassen von Muskelfasern zusammen: den 

einfach innervierten Fasern (SIF) und den multipel innervierten Fasern (MIF). 

Vorausgegangene Studien an Affen zeigten, dass SIF- und MIF-Motoneurone anatomisch 

getrennt liegen und unterschiedliche prämotorische Eingänge erhalten. SIF und MIF 

Motoneurone der Augenmuskeln konnten durch Tracer-Injektionen in den Muskelbauch oder 

den distalen Muskel-Sehnen-Übergang identifiziert werden. Im Nucleus oculomotorius 

existieren zwei Gruppen von MIF Motoneuronen, C- und S-Gruppe genannt. Motoneurone 

der C-Gruppe innervieren den Medialis Rectus (MR), sowie den Inferior Rectus (IR), 

während die Motoneurone der S-Gruppe den Superior Rectus und den Inferior obliquus 

Muskel innervieren. C-Gruppen Motoneurone sind in der Peripherie des Nucleus 

oculomotorius anzufinden. 

Unser Ziel war es herauszufinden, wie die MIF Motoneurone des MR und IR innerhalb der C-

Gruppe angeordnet sind und wohin deren Dendriten verlaufen. Unsere Ergebnisse zeigen, 

dass MR und IR MIF-Motoneurone zwei unterschiedliche Neuronenpopulationen in der C-

Gruppe bilden und zudem relativ getrennt voneinander angesiedelt sind. Die MIF-

Motoneurone des MR liegen weiter dorso-medial als die des IR. Auch die Verbreitungsmuster 

der Dendriten beider MIF-Motoneurone sind sehr unterschiedlich. Die Dendriten der MIF-

Motoneurone des IR ziehen bilateral in das periaquaeduktalen Höhlengrau oberhalb des 

Nucleus oculomotorius, nicht aber in den Edinger-Westphal Nucleus. Im Gegensatz dazu 

breiten sich die Dendriten der MR MIF-Motoneurone sowohl in das periaquaeduktale 

Höhlengrau oberhalb des Nucleus oculomotorius als auch in den Edinger-Westphal Nucleus 

unilateral aus.  

Zusammenfassend lässt sich sagen, dass die unterschiedliche Lokalisation und Ausbreitung 

der Dendriten eine divergierende Funktion der MIF Motoneurone von MR und IR vermuten 

lässt. Unsere jetzige Hypothese ist, dass die MIF-Motoneurone des Inferior Rectus helfen, in 

Zusammenarbeit mit den MIF Motoneuronen der anderen Augenmuskeln, die Position der 

Augen zu stabilisieren, während die MIF-Motoneurone des MR an den Vergenzbewegungen 

des Auges beteiligt sind.  
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Abbreviations 

AM                 anteromedian nucleus 

AChR              acetylcholine receptor  

ChAT              choline acetyltransferase  

COX               cytochrome oxidase 

CSPG              chondroitin sulphate proteoglycans  

CTB                 cholera toxin subunit B 

DAB               diaminobenzidine 

EOM               extraocular muscles 

EW                 Edinger-Westphal nucleus       

IO                    inferior oblique muscle 

IP                     posterior interposed nucleus   

IR                    inferior rectus muscle 

LP                   levator palpebrae superioris 

LR                   lateral rectus muscle 

Lvc                  lateral visceral cell column 

MIF                 multiply innervated fiber 

MLF                medial longitudinal fasciculus 

MR                  medial rectus muscle 

MRF                mesencephalic reticular formation 

MVNmag        medial vestibular nucleus pars magnocellular 

MVNp            medial vestibular nucleus pars parvocellular  

NIII                 oculomotor nucleus 

NIV                 trochlear nucleus 

NVI                 abducens nucleus 

NP-NF            non-phosphorylated neurofilament 

PBS                 phosphate buffer solution 

PPH                 nucleus prepositus hypoglossi 

PPRF               paramedian pontine reticular formation  

PON                pretectal olivary nucleus 

 PV                  parvalbumin 

SIF                  singly innervated fiber 

SO                   superior oblique muscle 

SOA                supraoculomotor area  
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SR                   superior rectus muscle 

TMB               tetramethylbenzidine 

VTA               ventral tegmental area 

VOR               vestibulo-ocular reflex 

WGA-HRP     wheat germ agglutinin conjugated to horseradish peroxidase  
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1 Introduction 

1.1 Extraocular muscles  

 

   The extraocular muscles (EOM) are the effector organs for voluntary and reflexive 

movement of the eyes. The presence of six extraocular muscles, four recti (superior, inferior, 

medial and lateral recti muscles) and two obliques (superior and inferior oblique muscles) is 

constant among all vertebrate classes, with only a minor variation in arrangement and 

innervation (Isomura, 1981) (Fig. 1). The four recti and the superior oblique muscle have their 

origin at the annulus of Zinn, a tendinous ring which surrounds the optic foramen, a portion of 

the superior orbital fissure, and envelops the optic nerve (Sevel, 1986). In contrast, the 

inferior oblique muscle arises from the maxillary bone in the medial wall of the orbit. The 

superior oblique muscle differs from all other extraocular muscles by passing through the 

trochlea, a tendinous ring attached to the medial orbit, before reaching the globe. Another 

extraocular muscles called levator palpebrae superioris (LP), which elevates the upper eyelid, 

is present only in mammals. The levator palpebrae superioris is not attached to the globe, but 

reachs into the upper lid. In addition to the principal extraocular muscles, many vertebrates 

possess accessory EOMs, such as the retractor bulbi muscles. The retractor bulbi muscles are 

correlated with the presence of a nictitating membrane and both structures act synergisticly in 

reflex retraction of the globe in response to the corneal stimulation. However these muscles 

are not well developed in primates. Up to now, electrophysiological studies have supported 

the theory that all extraocular muscles participate in all types of eye movements such as 

vergence, saccades, smooth pursuit, gaze-holding, vestibulo-ocular reflex (VOR), and the 

optokinetic reflex (Robinson, 1970; Mays and Porter, 1984) with the exception of the levator 

palpebrae superioris and the retractor bulbi muscle. In this study, we consider only the six 

extraocular muscles.  
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Fig. 1 Schematic drawing of a right human eyeball viewed from dorsally and laterally (Adapted from 

Lippincott Williams & Wilkins, Pathophysiology: Concept of Altered Health states, Seventh Edition, 

2005).  

 

1.1.1 Structure of extraocular muscles  

 
    The extraocular eye muscles are unique striated muscles that differ in many respects from 

skeletal muscles. They consist of an outer orbital layer adjacent to the orbital bone, and an 

inner global layer adjacent to the eye globe. Sheep possess a distinct third muscle layer 

(Harker, 1972) which lies mainly distally in a C-shape around the outside of the orbital layer, 

the peripheral patch layer. There are also reports that a third layer outside the orbital layer in 

humans, called the marginal layer (Wasicky et al., 2000). In the recti muscles, the orbital layer 

is comprised of smaller diameter fibers and typically is C-shaped, encompassing the global 

layer except for a gap left adjacent to the optic nerve or globe. In the oblique muscles, the 

orbital layer often completely encircles the global layer. The global layer extends over the full 

muscle length from its origin at the annulus of Zinn to a well-defined tendon at the limbus of 

the globe (for review see: Porter et al., 1995; Spencer and Porter, 2006). In contrast the orbital 

layer ends before the muscle becomes tendinous (Oh et al., 2001), and is thought to insert on 

collagenous pulleys, around the equator of the eyeball, anatomically referred to as the Tenon’s 

capsule (Demer et al., 2000; Oh et al., 2001; Demer, 2002). In addition to the differences of 
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the myofibers diameter, the two EOM layers are distinguished by substantial morphologic and 

immunocytochemical differences. First, the orbital layer has a more developed mitochondrial 

content, oxidative enzyme activities and microvascular network, which all correlate with high 

fatigue resistance and continuous activation. Second, the orbital layer expresses traits usually 

associated with developing skeletal muscle. While traditional skeletal myofibers exhibit a 

developmental transition in expression of embryonic to neonatal to adult myosin heavy chain 

isoforms, the adult orbital layer myofibers retain the embryonic myosin heavy chain 

(Wieczorek et al., 1985; Jacoby et al., 1990). Neural cell adhesion molecule, a cell surface 

molecule normally downregulated during myogenesis, also persists on virtually all orbital, but 

only some global layer fibers (McLoon and Wirtschafter, 1996). A similar pattern is apparent 

for the embryonic acetylcholine receptor (AChR) subunit, which is present at all 

neuromuscular junctions of orbital layer myofibers, but only at those of some global layer 

myofibers (Kaminski et al., 1996). The orbital and global layers have differences in gene 

expression (Khanna et al., 2004). Several slow/cardiac muscle markers are preferentially 

expressed in the orbital layer. This suggests that the orbital layer may be functionally slower 

than the global layer (Spencer and Porter, 2006).  

 

1.1.2 Different types of extraocular muscles fibers  

 
     There are four basic skeletal muscle fiber types that differ on the basis of their biochemical 

(Moore and Schachat, 1985), histochemical (Brooke and Kaiser, 1970), immunohistochemical 

(Pierobon-Bormioli et al., 1981), ultrastructural (Schiaffino et al., 1970) and physiological 

(Burke, 1981) properties. They are slow twitch, fatigue-resistant; fast twitch, fatigue-resistant; 

fast twitch, fatiguable; fast twitch, intermediate. The myofibers in mammalian EOM are 

atypical of  the skeletal system. Six fiber types can be distinguished in extraocular muscles. 

All of these fibers can be divided into two basic categories: the twitch or singly-innervated 

muscle fiber (SIF) and non-twitch or multiply-innervated muscle fiber (MIF) (review: Mayr et 

al., 1975; Morgan and Proske 1984; Spencer and Porter, 1988) (Fig. 2). Siebeck and Krüger 

(1955) originally identified two basic extraocular muscle fiber types which are characterized 

as ‘‘Fibrillenstruktur’’ and ‘‘Felderstruktur’’ fibers, equivalent to the SIFs and MIFs, 

respectively.  The orbital layer contains two fiber types, one SIF and one MIF. And the global 

layer contains four fiber types, three SIFs and one MIF.  

   The twitch muscle fibers, or SIFs, are the type of muscle fibers that constitute all the 

skeletal muscles. They respond to the electrical stimulation with an ‘‘all-or-nothing’’ reaction 
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that propagates along the whole length of the fiber. The SIFs are innervated by relatively large 

nerves (7-11µm), which terminate as ‘‘en plaque’’ motor endplates in an endplate zone 

occupying the central third of the muscle(Büttner-Ennever, 2006).  

The non-twitch muscle fibers, or MIFs, occur more widely in reptilian and avian skeletal 

muscles, but in mammals they are found in the extraocular muscles. These fibers are fatigue 

resistant and respond to electrical stimulation with a slow tonic contraction, which is not 

propagated along the muscle fiber (Bondi and Chirandini, 1983). They are innervated by a 

myelinated nerve fiber, which is usually of small caliber (3-5µm), so the motor endplates are 

typically small and distributed all along the length of the fiber, but have a higher density in 

the distal half of the muscle. At the distal tip of the eye muscle, as it inserts into the tendon, 

the global layer MIFs are capped by a tangle of nerve terminals called palisade endings, or 

myotendinous cylinders (Dogiel, 1906; cat: Alvarado-Mallart and Pincon Taymond, 1979; 

monkey: Ruskell, 1978; human: Richmond et al., 1984; Lukas et al., 2000; Ruskell, 1999.). 

This characteristic is an exclusive property of the MIFs in the global layer, not possessed by 

the orbital MIFs or the SIFs. 

 

 

 

 
 

Fig. 2 Schematic drawing of orbital and global layers of monkey eye globe. The Singly innervated fiber 

(SIF) and multiply innervated fiber (MIF) are two basic fiber types in the extraocular muscles. At the 

distal tip of the eye muscles, multiply innervated fibers capped by palisade endings appear only in the 

global layer. 
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1.2 Motoneurons of extraocular muscles  

 
   The basic anatomical organization of the three extraocular motor nuclei controlling the six 

principal extraocular muscles shows a very constant pattern across various vertebrate classes 

(review, Büttner-Ennever, 2006). Motoneurons of the oculomotor nucleus (NIII) innervate the 

ipsilateral medial rectus (MR) and inferior rectus (IR), inferior oblique (IO) and contralateral 

superior rectus (SR) muscles. Motoneurons of the trochlear nucleus (NIV) control the 

contralateral superior oblique muscle (SO). The abducens nucleus (NVI) motoneurons drive 

the lateral rectus (LR) muscle. In addition to the motoneurons of LR, the NVI contains several 

other neuronal populations, such as abducens internuclear neurons, floccular-projecting 

neurons. The abducens internuclear neurons that project to the contralateral NIII providing the 

anatomical basis for conjugate horizontal eye movements (Büttner-Ennever and Akert, 1981; 

Büttner-Ennever, 2006). The subgroups of motoneuron in NIII are organized in the sequence 

of IR, MR, IO, SR (and LP) from rostral to caudal (Shaw and Alley, 1981) (Fig. 3). Büttner-

Ennever et al., (2001) identified the location of non-twitch motoneurons that innervate the 

MIFs in the extraocular muscles of the macaque monkey by retrograde labelling. Two 

anatomically separated sets of SIF and MIF motoneurons are located by tracer injection into 

the belly or the distal myotendinous junction of EOM. Injection in the belly traced all the MIF 

and SIF motoneurons. While injection in the distal tip of extraocular muscles only traced MIF 

motoneurons, which innervate the global layer by multiple ‘en grappe’ endings throughout 

their extent (Pachter, 1983; Pachter and Colbjornsen, 1983). The orbital MIFs do not insert 

into the distal tendon. Therefore these experiments predominantly labelled motoneurons of 

the global MIFs, which are assumed to be mainly global MIF motoneurons.  

   The SIF motoneurons are found only within the classical oculomotor nuclei. The MIF 

motoneurons are located around the periphery of the abducens, trochlear and oculomotor 

nucleus by the injection of retrograde tracers into the distal tips of the eye muscles, avoiding 

the central endplate zone (Fig. 3). In NIII, the MIF motoneurons of both IR and MR are 

grouped together mainly on the dorsomedial border and form the C-group (Büttner-Ennever 

and Akert, 1981; Büttner-Ennever et al., 2001; Spencer and Porter, 1981). In contrast, the 

MIF motoneurons of the SR and IO are predominantly located bilaterally around the midline, 

forming the S-group (Wasicky et al., 2004) (Fig. 3). The motoneurons of C-group can be 

identified in several species such as cat and lesser Galago (Clarke et al., 1987; Sun and May, 

1993; Shall et al., 2003). The C-group is clearly separate from the SIF motoneurons of the  
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Fig. 3 The MIF motoneurons which innervate mainly the global layer of EOM (black dot), lie around the 

periphery of NIII, NIV and NVI in a different pattern from the SIF motoneurons. The C-group contains 

MIF motoneurons from MR and IR; the S-group contains IO and SR MIF motoneurons. The ventral A-

group and dorsal B-group contain the MR SIF motoneurons (open circles) in NIII. (Adapted from 

Büttner-Ennever, Progress in Brain Research, 2006) 

 

oculomotor nucleus and lies close to the Edinger-Westphal nucleus (EW), which contains the 

preganglionic neurons for pupillary constriction and accommodation (Akert et al., 1980; 

Burde and Willams, 1989; Ishikawa et al., 1990). But large injection into the belly of the MR 

labelled both MIF and SIF motoneurons, in the C-group, A- and B-groups within or around 

the NIII. The A- and B-groups are almost entirely MR SIF motoneurons (Eberhorn et al., 

2005). The cell size of C-group MIF motoneurons is on average smaller than the A- and B-

groups SIF motoneurons. The MIF motoneurons of the SO lie in a compact cluster in the 

dorsal cap of the trochlear nucleus. The MIF motoneurons of the LR are arranged more 

loosely around the periphery of the abducens nucleus (Fig. 3), whereas the SIF motoneurons 

are scattered within the nucleus. The motoneurons of SIFs and MIFs lie separated from each 

other in NIII, NIV and NVI and have completely different organization of their subgroups 

(Büttner-Ennever et al., 2001).  

Büttner-Ennever et al., (2001) suggest that all the data supports the idea that MIF and 

SIF motoneurons have different functions. This is further supported by later studies. A major 

input to the MIF motoneurons of the C- and S-groups is the pretectum (Büttner-Ennever et al., 

1996). Using the rabies virus transsynaptic tracing technique, premotor pathways to the 

abducens nucleus MIF motoneurons were selectively labelled (Ugolini et al., 2006). The 

premotor inputs to LR MIF motoneurons have been shown to arise from the supraoculomotor 

area (SOA) and mesencephalic reticular formation (MRF) adjacent to SOA, as well as the 

areas related with the neural integrator, nucleus prepositus hypoglossi (PPH) and the medial 
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vestibular nucleus pars parvocellular (MVNp) (Ugolini et al., 2006). But the MIFs do not 

receive direct input from the premotor saccadic regions such as the paramedian pontine 

reticular formation (PPRF).  

    The differences in connectivity of SIF and MIF motoneurons are paralleled by differences 

in their histochemical properties in monkey. Both motoneurons of SIFs and MIFs are shown 

to be cholinergic, but in monkey, the MIF motoneurons in the periphery of the motonuclei do 

not contain non-phosphorylated neurofilaments (NP-NF; labelling by SMI32) and lack the 

perineuronal nets. In contrast, SIF motoneurons express all markers at high intensity. So the 

absence of perineuronal nets and non-phosphorylated neurofilaments is a distinctive criterion 

to identify MIF and SIF motoneurons in other species, including human (Eberhorn et al., 

2005).  

 

1.3 Primary function of extraocular muscles and eye movement 

 
   The contributions of the four recti and two oblique eye muscles to eye movements depend 

on the point of rotation of the eye globe, the bony anatomy of the orbit, and the origin and 

insertion of each eye muscle. The lateral and medial muscles move the eye only in the 

horizontal plane. Four muscles (superior rectus, inferior rectus, superior oblique and inferior 

oblique) control the vertical and torsional motion (Fig. 4). The medial rectus and lateral rectus 

function relatively simply and act as antagonists: the medial rectus as the principal adductor, 

the lateral rectus as the principal abductor (Fig. 4). With the eyes in the primary position, the 

primate vertical recti insert on the globe at angle of 23° laterally to the visual axis, they have 

more or less secondary roles in adduction for both muscles and intorsion for SR and extorsion 

for the IR. The principal action of superior oblique and inferior oblique muscles is intorsion 

and extorsion, respectively. For SO and IO, they both have a secondary function: the SO 

additionally depresses and abducts the globe, the IO elevates and adducts. The primary 

actions of these six EOMs are similar in the lateral-eyed mammals, though their secondary 

functions in eye movements differ from those frontal-eyed mammals due to divergent 

insertion on the globe (Büttner-Ennever, 2006). The need for eye movement is to permit the 

clear vision of objects, bring the image on small fovea and creating the physiological basis for 

holding an image steady on the retina. The motoneurons generate motor responses, some with 

more tonic properties, others with more phasic properties, but all of the motoneurons respond 

with every type of eye movement (Keller and Robinson, 1972; Fuchs et al., 1985; Dean, 
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1996). But what is then the function of different types of MIF and SIF motoneurons? It was 

found that SIF and MIF motoneurons in NIII receive different afferent projections (Wasicky 

et al., 2004). The inputs to the MIF motoneurons arise from structures involved in more tonic 

functions, such as gaze-holding (parvocellular parts of medial vestibular nucleus) and areas 

associated with vergence or object fixation (pretectum). In contrast, the afferents to the SIF 

motoneurons arise from the area which is related to saccades (PPRF) or the vestibulo-ocular 

reflex (medial vestibular nucleus pars magnocellular, MVNmag)( Büttner-Ennever et al., 

1996; Ugolini et al., 2006). 

 

 

 

 

 

Fig. 4 The rotations of the six extraocular muscles with the eye in the primary position. The lateral and 

medial rectus muscles move the eye only in the horizontal plane. The rest four extraocular muscles control 

the eye in the vertical plane. (Adpated from Schünke M et al., 2006. Prometheus Lernatlas der Anatomie. 

P135) 
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1.4 Aim 

 

 Given that SIF and MIF motoneurons may have different functions, the following questions 

arise: 

1. Are the IR and MR MIF motoneurons two different populations in the C-group, or do they 

project to both recti? 

2. Are the IR and MR MIF motoneurons intermingled or topographically organized in the C-

group?  

3. What is the overall extent of IR and MR MIF motoneurons dendrites? Do they have the 

same morphological organization?  

In an attempt to answer these questions and understand the function of the C-group better, 

we labelled IR and MR MIF motoneurons simultaneously to check the location and their other 

properties.  
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2 Material and Methods 
 
    All experimental procedures conformed with the state and university regulations on 

Laboratory Animal Care, including the Principles of Laboratory Animal Care (NIH 

publication 85-23, Revised 1985), and were approved by the Animal Care Officer and 

Institutional Animal Care and Use Committee. 

 

2.1 Introduction of tract-tracing methods 

 

The purpose of neuronal tracing is to find out the anatomical connections within the 

nervous system. Tracers are used to ascertain the afferent and efferent of neurons in central 

nervous system by retrograde and anterograde axonal transport (Fig. 5). Retrograde axonal 

transport allows identification of the afferent nerve fibers to a particular target zone, while 

anterograde axonal transport enables the efferent of individual or groups of neurons to be 

charted within the central nervous system. So for retrograde transport, the tracer is applied to 

a fiber tract or a terminal target field of innervation, while the anterograde transport, the 

uptake area is neuron soma and/or its dendrites. Anterograde transport is used in the 

translocation of membranous organelles (e.g., mitochondria) and vesicles as well as of 

macromolecules, such as actin, myosin and some of the enzymes necessary for 

neurotransmitter synthesis at the axon terminals mediated by kinesin-family proteins. 

Anterograde axonal transport has been shown to have a major fast and a slow component. The 

slow component is divided into ‘‘slow component a’’ and ‘‘slow component b’’ at rates of 

approximately 0.1 and 6 mm/day respectively. But these slow components are not involved in 

the fast component for tracer studies. The protein building blocks of neurofilaments, subunits 

of microtubules, materials taken up by exdocytosis (e. g., viruses and toxins) returned to the 

cell body from the axon by retrograde transport mediated by dyneins (Fig. 6). The fast 

component of transport demonstrates distinct maximal rates for anterograde (200-400 mm/day) 

and retrograde (100-200mm/day) transport. In this study, the tracer wheat germ agglutinin 

conjugated to horseradish peroxidase (WGA-HRP) and cholera toxin subunit B (CTB) were 

injected into the eye muscles and retrogradely transported to the appropriate region of brain. 

But the tracer WGA-HRP and CTB have different sensitivity and staining method for the tract 

tracing. The labelled cells and terminals can be made visible by light microscopy technique, 

after histochemical processing. 
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Fig. 5 Schematic drawing of anterograde and retrograde tract-tracing methods of wheat germ agglutinin 

conjugated to horseradish peroxidase. 

 
 

Fig. 6 Schematic diagrams of the microtubule motor proteins cytoplasmic dynein and kinesin. 

Cytoplasmic dynein transports cargo in the retrograde direction toward the minus ends of microtubules 

whereas kinesin transports cargo in the anterograde direction toward the plus ends. (Adapted from 

Duncan JE and Goldstein LS. 2006. The genetics of axonal transport and anxonal transport disorders. 

PLos Genet. 2: e124.) 
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2.1.1 Tracer WGA-HRP 

 

     Horseradish peroxidase (HRP) is based on the retrograde transport of material from axon 

terminals to cell body. In the current tract-tracing studies, the lectin wheat germ agglutinin 

conjugated to the enzyme HRP was used. Lectins are naturally occurring proteins or 

glycoproteins that bind to cell membranes and stimulate micropinocytosis. The presence of 

WGA molecules greatly enhances HRP uptake by neurons, so that WGA-HRP is taken up by 

both cell body and axon terminal at the site of injection. This compound is widely used as 

both anterograde and retrograde tracer. 

 

2.1.2 Tracer cholera toxin subunit B 

 

      Cholera toxin subunit B (choleragenoid), the non-toxic component of cholera toxin, binds 

to GM1 gangliosides on neuronal cell surfaces. As a consequence of this phenomenon, 

cholera toxin B subunit undergoes internalization followed by retrograde axonal transport. 

Unlabelled, this neuronal cell marker can be visualized using antibodies and classical 

immunocytochemical techniques. Its detection can be combined with other immunocyto-

chemical procedures, for instance that for neurotransmitter identification or neuropeptide 

detection. Irrespective of which detection system is employed, this tracer has proven to be a 

reliable maker in tracing strategies both in peripheral nervous structures and in central 

nervous systems. 

            

2.2 Injection of tracer 

 

   Macaque monkeys were anesthetized with sodium pentobarbital 30mg/kg. Under sterile 

conditions, the extraocular muscles were exposed by retracting the eyelid, making a 

conjunctival incision, and partially collapsing the eyeball. The neuron tracers cholera toxin 

subunit B (5 µl, 1%, from List Biological Laboratories, 703) and Wheat germ agglutinin 

conjugated to horseradish peroxidase (WGA-HRP, 5 µl, 2.5%, Sigma) were injected through 

a Hamilton syringe into the distal tip of the eye muscles (Fig. 7). In case MUS, CTB was 

injected into the distal tip of right MR, while WGA-HRP was injected into the distal tip of 

right IR. In case B55, CTB was only injected into the distal tip of IR (Table 1).    
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Fig. 7 The structure of an eye muscle, shows that the SIF with a central ''en plaque'' endplate zone, and 

MIF with ‘‘en grappe’’ terminals along the whole muscle. The tracer is injected into the distal tip of 

tendon, so only MIF motoneurons of the global layer will be labelled.  

 

 

 

 

Case               Muscle MR IR 

MUS 1% CTB 2.5% WGA-HRP 

B55 ----- 1% CTB 

 

Table 1. Two cases with different tracer injection. The tracers were injected into the distal tip of the right 

eye muscles. 
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2.3 Perfusion 

 

    After a survival time of 3 days, the animals were killed with an overdose of  Nembutal (80 

mg/kg body weight) and perfused with 0.9% saline (37ºC) to clean all the blood, then 

followed by 3 liters 4% paraformaldehyde in a 0.1M phosphate buffer solution (PBS; pH 7.4). 

The brains were removed from the skull. The brains were immersed in 10% sucrose in 

0.1M phosphate buffer (pH 7.4) and transferred to 30% sucrose for 4 days under 4ºC. The 

brains were cut at 40 µm on a freezing microtome in the transverse stereotaxic plane. 

 

2.4 Immmunocytochemical labelling 

2.4.1 WGA-HRP immunocytochemical labelling 

 

Free-floating brain sections of the WGA-HRP injection case (MUS) were reacted with 

0.05% diaminobenzidine (DAB) and Cobalt-Chlorid, which yield a black reaction product in 

retrogradely labelled motoneurons. These series underwent a second protocol for the detection 

of tracer CTB.  

 

2.4.2 Cholera toxin subunit B immunocytochemical labelling 

 

     After the DAB-Co reaction, the labelled sections were processed for the immunohisto-

chemical reaction of the tracer CTB. After blocking with 5% normal donkey serum in 0,1M 

PBS pH 7,4 containing 0,3% Triton for 1 hour, sections were incubated with goat anti-CTB 

(1:20,000) overnight, followed by the second antibody rabbit anti-goat (1:200) for 1hour in 

room temperature, then followed by Extravidin-Peroxidase (1:1000) for 1 hour. The CTB was 

visualized with a DAB-reaction, which yields a brown reaction product in retrogradely 

labelled motoneurons. The sections were counterstained by Nissl staining (with cresyl violet). 
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2.5 Photographic software and analysis of stained motoneurons 

 

    All slides were examined with a Leica microscope DMRB (Bensheim, Germany).  

Images of photographs were digitalized by using the 3-CCD video camera (Hamamatsu 

C5810; Hamamatsu, Herrsching, Germany) mounted on a Leica DMRB microscope. The 

images were captured on a computer with Adobe Photoshop 5 software. Sharpness, contrast, 

and brightness were adjusted to reflect the appearance of the labelling seen through the 

microscope. The pictures were arranged and labelled with drawing software (CorelDraw 8 

and 11). The labelled neurons and dendrites of a series of transverse sections through 

oculomotor nucleus were plotted on the pictures taken with the 3-CCD video camera and 

displayed on the computer screen with drawing software (CorelDraw 11).   
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3 Results  

3.1 Location of MR and IR MIF motoneuron in case MUS 

 
Tracer injection with CTB into the distal tip of right MR led to brown labelled MR MIF 

motoneurons in the C-group. While tracer WGA-HRP injection into the distal tip of right IR 

led to black labelled IR MIF motoneurons in the C-group. The tracer retrogradely labelled the 

ipsilateral MIF motoneurons of MR and IR, which lay dorsomedially to the oculomotor 

nucleus. All the retrogradely labelled neurons were plotted from rostral to caudal level of the 

oculomotor nucleus (Fig. 8-13). In the plotting figures, the dots represent the cell bodies of 

labelled IR (red) and MR (blue) MIF motoneurons. 

For the first question:  

The results showed clearly that there were no double-labelled MR and IR MIF 

motoneurons in the C-group. This means that no MIF motoneurons in C-group project to both 

MR and IR (Fig. 8c-13c). 

For the second question: 

The MR and IR MIF motoneurons did not intermingle together in the rostral two-thirds of 

NIII (Fig. 14). The MR and IR MIF motoneurons in the C-group lay relatively separated, with 

the MR cell bodies collecting more dorsomedially (Fig. 8c-13c). Generally, the IR MIF 

motoneurons lay close to the NIII, in contrast, the MR MIF motoneurons lay outside of IR 

MIF motoneurons group, close to the midline (Fig. 14). Interesting point is that, in the rostral 

level of sections, there were more labelled MR MIF motoneurons than IR MIF motoneurons 

(Fig. 14 A, B, C). A few of these labelled MR MIF motoneurons were very close association 

with EW and located even more dorsally than EW, close to the periaqueductal gray (Fig. 8; 

Fig.15a). But in the anteromedian nucleus (AM), there were no labelled neurons. 
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Fig. 8 Photographs and plot of MIF motoneurons of MR and IR labelled by injection the tracer CTB and 

WGA-HRP into the distal tip of right MR and right IR, respectively. In this section, there was no labelled 

IR MIF motoneuron. 8a shows the group of labelled MR MIF motoneurons, which lay around the 

periphery of NIII. Some of these labelled neurons were located even more rostrally than EW. 8b is the 

detail of the frame in 8a under x10 magnification, showing the labelled neurons. 8c is the plot of the 

labelled neurons in figure 8a. The blue dots represent the bodies of labelled MR MIF motoneurons. 
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Fig. 9 Photographs and plot of MIF motoneurons of MR and IR labelled by injection the tracer CTB and 

WGA-HRP into the distal tip of right MR and IR, respectively. 9a shows the group of labelled MR and IR 

MIF motoneurons, which lay around the periphery of rostral NIII. 9b is the detail of the frame in 9a 

under x20 magnification, showing the labelled neurons. 9c is the plot of the labelled neurons in figure 9a. 

The dots represent the bodies of labelled IR (red) and MR (blue) MIF motoneurons. 
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Fig. 10 Photographs and plot of MIF motoneurons of MR and IR labelled by injection the tracer CTB and 

WGA-HRP into the distal tip of right MR and IR, respectively. 10a shows the group of labelled MR and 

IR MIF motoneurons, which lay around the periphery of NIII. 10b is the detail of the frame in 10a under 

x20 magnification, showing the labelled neurons. 10c is the plot of the labelled neurons in figure 10a. The 

dots represent the bodies of labelled IR (red) and MR (blue) MIF motoneurons. 
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Fig. 11 Photographs and plot of MIF motoneurons of MR and IR labelled by injection the tracer CTB and 

WGA-HRP into the distal tip of right MR and IR, respectively. 11a shows the group of labelled MR and 

IR MIF motoneurons, which lay around the periphery of NIII. 11b is the detail of the frame in 11a under 

x20 magnification, showing the labelled neurons. 11c is the plot of the labelled neurons in figure 11a. The 

dots represent the bodies of labelled IR (red) and MR (blue) MIF motoneurons. The arrow in 11a, b shows 

the dendrites of IR MIF motoneurons crossing the midline. 
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Fig. 12 Photographs and plot of MIF motoneurons of MR and IR labelled by injection the tracer CTB and 

WGA-HRP into the distal tip of right MR and IR, respectively. 12a shows the group of labelled MR and 

IR MIF motoneurons, which lay around the periphery of caudal NIII. 12b is the detail of the frame in 12a 

under x20 magnification, showing the labelled neurons. 12c is the plot of the labelled neurons in figure 12a. 

The dots represent the bodies of labelled IR (red) and MR (blue) MIF motoneurons. 
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Fig. 13 Photographs and plot of MIF motoneurons of MR and IR labelled by injection the tracer CTB and 

WGA-HRP into the distal tip of right MR and IR, respectively. 13a shows the group of labelled MR and 

IR MIF motoneurons, which lay around the periphery of caudal NIII. 13b is the detail of the frame in 13a 

under x20 magnification, showing the labelled neurons. 13c is the plot of the labelled neurons in figure 13a. 

The dots represent the bodies of labelled IR (red) and MR (blue) MIF motoneurons. 
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Fig. 14 All the labelled motoneurons were plotted from rostral to caudal level of the oculomotor nucleus 

by a reference line, midline (the arrow in B). The dots represent the bodies of labelled IR (red) and MR 

(blue) MIF motoneurons. They both lay around the periphery of the oculomotor nucleus, but the MIF 

motoneurons of MR were more dorsomedial than IR MIF motoneurons. 
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3.2 Distribution of the dendrites of MR and IR MIF motoneurons 

3.2.1 Distribution of the dendrites of C-group motoneurons in case MUS 

 

Aside from the layered location of IR and MR MIF motoneurons, a different pattern of the 

dendritic trees was evident. The labelled dendrites were inspected and reconstructed. The 

black lines represent the dendrites of labelled MR MIF motoneurons. The red lines represent 

the dendrites of labelled IR MIF motoneurons. 

The dendrites of MR MIF motoneurons radiated over the supraoculomotor area and 

Edinger-Westphal nucleus, but they did not cross the midline, spread only unilaterally and 

laterally. The dendritic spread was shown in the reconstructed pictures (Fig.15c, 16c, 17c, 18c, 

19c, 20c, 21c). The dendrites of IR MIF motoneurons, which were labelled by the WGA-HRP 

were not so evident as the dendrites of MR MIF motoneurons that were labelled by CTB in 

this case MUS. Only the dendritic pattern of MIF motoneurons labelled by CTB was 

reconstructed. So we reconstructed the dendritic pattern of MR MIF motoneurons in Case 

MUS and IR MIF motoneurons in Case B55. 

 But in two sections, dendrites of IR MIF motoneurons clearly spread into the opposite side 

of injection (Fig. 11a, b; 18a, b, c marked by arrow). 

Some labelled neurons inside of the oculomotor nucleus were due to the tracer 

contamination of the inferior oblique muscle. The SIF and MIF motoneurons of IO were both 

labelled with the tracer WGA-HRP (arrow head, Fig. 17c-21c). The location of IO SIF and 

MIF motoneurons is different with the C-group motoneurons. The IO SIF motoneurons are 

located in the middle part of the oculomotor nucleus, while the IO MIF motoneurons are 

located in the S-group, which lay around the midline between the oculomotor nuclei. So the 

labelled IO MIF and SIF motoneurons did not affect the analysis of the C-group motoneurons. 
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Fig. 15 Photographs and drawings of MIF motoneurons of MR labelled by injection the tracer CTB into 

the distal tip of right MR. 15a shows the group of labelled MR MIF motoneurons which lie around the 

periphery of EW. 15b is the detail of the frame in 15a under x20 magnification, showing the labelled 

dendrites. 15c is the reconstructed figure of labelled neurons and dendrites. The blue parts represent the 

bodies of the labelled MR MIF motoneurons.  
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Fig. 16 Photographs and drawings of MIF motoneurons of MR labelled by injection the tracer CTB into 

the distal tip of right MR. 16a shows the group of labelled MR MIF motoneurons which lie around the 

periphery of rostral NIII. 16b is the detail of the frame in 16a under x20 magnification, showing the 

dendrites. 16c is the reconstructed figure of labelled neurons and dendrites. The blue parts represent the 

bodies of labelled MR MIF motoneurons. 
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Fig. 17 Photographs and drawings of MIF motoneurons of MR and IR labelled by injection the tracer 

CTB and WGA-HRP into the distal tip of right MR and IR, respectively.  17a shows the group of labelled 

MR and IR MIF motoneurons which lie around the periphery of NIII. 17b is the detail of the frame in 17a 

under x20 magnification, showing the dendrites. 17c is the reconstructed figure of labelled neurons and 

dendrites. The red and blue parts represent the bodies of labelled IR and MR MIF motoneurons. The 

arrow head shows that the labelled neurons were due to the tracer contamination of the IO. The SIF and 

MIF motoneurons of IO were both labelled with the tracer WGA-HRP. 
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Fig. 18 Photographs and drawings of MIF motoneurons of MR and IR labelled by injection the tracer 

CTB and WGA-HRP into the distal tip of right MR and IR, respectively.  18a shows the group of labelled 

MR and IR MIF motoneurons which lie around the periphery of NIII. 18b is the detail of the frame in 18a 

under x20 magnification, showing the dendrites. 18c is the reconstructed figure of labelled neurons and 

dendrites. The red and blue parts represent the bodies of labelled IR and MR MIF motoneurons. The 

arrow shows that the dendrites of IR MIF motoneurons crossed the midline. The arrow head shows that 

the labelled neurons were due to the tracer contamination of the IO. The SIF and MIF motoneurons of IO 

were both labelled with the tracer WGA-HRP. 
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Fig. 19 Photographs and drawings of MIF motoneurons of MR and IR labelled by injection the tracer 

CTB and WGA-HRP into the distal tip of right MR and IR, respectively. 19a shows the group of labelled 

MR and IR MIF motoneurons which lie around the periphery of NIII. 19b is the detail of the frame in 19c 

under x20 magnification, showing the dendrites, which are close to the aqueduct (see the pink arrow head). 

19c is the reconstructed figure of labelled neurons and dendrites. The red and blue parts represent the 

bodies of labelled IR and MR MIF motoneurons. The black arrow head shows that the labelled neurons 

were due to the tracer contamination of the IO. The SIF and MIF motoneurons of IO were both labelled 

with the tracer WGA-HRP. 
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Fig. 20 Photographs and drawings of MIF motoneurons of MR and IR labelled by injection the tracer 

CTB and WGA-HRP into the distal tip of right MR and IR, respectively. 20a shows the group of labelled 

MR and IR MIF motoneurons which lie around the periphery of NIII. 20b is the detail of the frame in 20a 

under x20 magnification, showing the dendrites. 20c is the reconstructed figure of labelled neurons and 

dendrites. The red and blue parts represent the bodies of labelled IR and MR MIF motoneurons. The 

arrow head shows that the labelled neurons were due to the tracer contamination of the IO. The SIF and 

MIF motoneurons of IO were both labelled with the tracer WGA-HRP. 
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Fig. 21 Photographs  and drawings of MIF motoneurons of MR and IR labelled by injection the tracer 

CTB and WGA-HRP into the distal tip of right MR and IR, respectively.  21a shows the group of labelled 

MR and IR MIF motoneurons which lie around the periphery of NIII. 21b is the detail of the frame in 21a 

under x20 magnification, showing the dendrites. 21c is the reconstructed figure of labelled neurons and 

dendrites. The red and blue parts represent the bodies of labelled IR and MR MIF motoneurons. The 

arrow head shows that the labelled neurons were due to the tracer contamination of the IO. The SIF and 

MIF motoneurons of IO were both labelled with the tracer WGA-HRP. 

 

 

 

 

 
 



36 

3.2.2 Distribution of the dendrites of IR MIF motoneurons in case B55 

 
   Since the dendritic pattern could be well demonstrated in CTB injection case, another case 

with a single CTB injection into IR was close to study. The tracer CTB injection into the 

distal tip of the right inferior rectus muscle resulted in the retrograde labelling of IR MIF 

motoneurons, non-twitch motoneurons, in the ipsilateral C-group, dorsomedial to the 

oculomotor nucleus (Fig. 22-25). The labelled neurons and dendrites were reconstructed (Fig. 

22c, 23c, 24c, 25c).   

   The cell bodies lay dorsomedially to the classical oculomotor nucleus. The SIF and MIF 

motoneurons of IR lay adjacent to each other, so the IR MIF motoneuron group is not so 

separate when both are retrogradely labelled. One or two labelled neurons appeared on the 

middle line of NIII (marked by arrow head, Fig. 22c, 23c). This was attributed to the leakage 

of tracer CTB into the inferior oblique muscle. 

   The dendrites of IR MIF motoneurons radiated over a large area above the NIII, into the 

supraoculomotor area, but did not approach at the EW. The dendrites crossed the midline and 

spread into the opposite side (Fig. 22c, 24c, 25c). Generally, the dendrites of IR MIF 

motoneurons extended dorsally and bilaterally into the supraoculomotor area.  
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Fig. 22 Photographs and drawings of IR MIF motoneurons labelled by injection the tracer CTB into the 

distal tip of right inferior rectus muscle. 22a shows the group of IR MIF motoneurons which lie around 

the periphery of NIII. 22b is the detail of the frame in 22a under x20 magnification, showing the dendrites. 

22c is the reconstructed figure of labelled neurons and dendrites. The red parts represent the cell bodies of 

labelled IR MIF motoneurons. The arrow head shows that IO motoneurons were labelled by leakage of 

tracer into the inferior oblique muscle. 
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Fig. 23 Photographs and drawings of IR MIF motoneurons labelled by injection the tracer CTB into the 

distal tip of right inferior rectus muscle.  23a shows the group of labelled IR MIF motoneurons which lie 

around the periphery of NIII. 23b is the detail of the frame in 23a under x20 magnification, showing the 

dendrites (see the arrow). 23c is the reconstructed figure of labelled neurons and dendrites. The red parts 

represent the cell bodies of labelled IR MIF motoneurons. The arrow head shows that IO motoneurons 

were labelled by leakage of tracer into the inferior oblique muscle. 
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Fig. 24 Photographs and drawings of MIF motoneurons of IR labelled by injection the tracer CTB into the 

distal tip of right inferior rectus muscle. 24a shows the group of labelled IR MIF motoneurons which lie 

around the periphery of NIII. 24b is the detail of the frame in 24a under x20 magnification, showing the 

dendrites which extend into the opposite. 24c is the reconstructed figure of labelled neurons and dendrites. 

The red parts represent the cell bodies of labelled IR MIF motoneurons.  
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Fig. 25 Photographs and drawings of MIF motoneurons of IR labelled by injection the tracer CTB into the 

distal tip of right inferior rectus muscle. 25a shows the group of labelled IR MIF motoneurons which lie 

around the periphery of NIII. 25b is the detail of the frame in 25a under x20 magnification, showing the 

dendrites. 25c is the reconstructed figure of labelled neurons and dendrites. The red parts represent the 

cell bodies of labelled IR MIF motoneurons. 
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3.2.3 Comparison of MR and IR MIF motoneurons 

 
1. There are no double-labelled MR and IR MIF motoneurons in C-group. So MR and IR     

MIF motoneurons are two different populations of MIF motoneurons in C-group. 

2. From the result above, we found that the MIF motoneurons of MR and IR lay relatively 

separated to each other in the rostral two-thirds of NIII. The MR MIF motoneurons lay more 

dorsomedially, closer to midline than IR MIF motoneurons. There were more labelled MR 

MIF motoneurons than IR motoneurons in the rostral level of NIII. A few labelled neurons 

were close to the aqueduct in the rostral level of the oculomotor nucleus.  

3. The dendrites of MR MIF motoneurons extended to supraoculomotor area and penetrated 

into the Edinger-Westphal nucleus ipsilaterally. In contrast, the dendrites of IR MIF 

motoneurons spread bilaterally into the supraoculomotor area, but did not approach the 

Edinger-Westphal nucleus.  
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4  Discussion 

 
         Our results demonstrate the relative location of the MR and IR MIF motoneurons in C-

group simultaneously labelled by two retrograde tracers WGA-HRP and CTB. In summary, 

they showed that there are no double-labelled MR and IR MIF motoneurons in C-group. They 

lie relatively separated in the dorsomedial part of the oculomotor nucleus. The MR MIF 

motoneurons lie more dorsomedially than IR MIF motoneurons. The dendritic spread of MR 

and IR MIF motoneurons also differed. The dendrites of MR MIF motoneurons extend high 

into the SOA, involving the Edinger-Westphal nucleus, ipsilaterally. A few of these 

motoneurons even lie further dorsally than EW. In contrast to MR MIF motoneurons, the 

dendrites of IR MIF motoneurons spread into the surpraoculomotor area, not approach the 

EW, but bilaterally.  

     We will discuss the functional implications of these properties of the medial and inferior 

recti MIF motoneurons and the two tracers that were used in this study.  

4.1 Location of MIF motoneurons in the oculomotor nucleus 

 

        The results of these experiments are consistent with previous study (Büttner-Ennever et 

al., 2001). A distal tracer injection into the myotendinous junction of extraocular muscles, 

which targets primarily the global layer in primates (Demer et al., 2000; Oh et al., 2001), 

labels mainly the MIF motoneurons around the periphery of the classical oculomotor nucleus. 

However a few scattered neurons could often be found within the boundaries of the NIII as 

well. The motoneurons of SIFs and MIFs lie separated from each other in NIII and have a 

completely different organization of their subgroups, and different inputs (Büttner-Ennever 

and Akert, 1981; Wasicky et al., 2004). Our experiments show that MIF motoneurons of MR 

are located more dorsomedially, and closer to midline than IR MIF motoneurons, specially in 

the rostral level of oculomotor nucleus (Fig. 14). Eberhorn et al., (2005) showed that the 

complete population of motoneurons (including SIF and MIF motoneurons) in SOA and NIII 

can be visualized by ChAT-immunolabelling in monkey (Fig. 26). The C-group motoneurons 

extended dorsally deep into SOA. The total extent of C-group motoneurons is more than what 

we retrogradely labelled in this experiment, but the labelled neurons can qualitatively 

represent the general character of MIF motoneurons in the C-group. The dendrites of MR MIF 

motoneurons extend into SOA and EW ipsilaterally. While the IR MIF motoneurons dendrites 

spread bilaterally into SOA, but not approach at the EW. In general, the dendrites of MIF 
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motoneurons extend much further into the SOA than the dendrites of SIF motoneurons (see 

Fig. 26). A more accurate estimation could be made from an intracellular injection study. 

 

 

Fig. 26 Photograph of the complete population of motoneurons (SIF and MIF motoneurons) which were 

visualized by ChAT-immunolabelling in supraoculomotor area and NIII in Monkey. The drawings in the 

picture show the boundary of EW, C-group and NIII. The complete C-group motoneurons (pointed by 

arrow) occupied the space between the NIII and EW. The yellow arrow head show that the dendrites of C-

group non-twitch motoneurons extend into the SOA (Adapted from Eberhorn AC, et al., 2005). 
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4.2 Tracer properties  

    

      Cholera toxin subunit B is a well-known retrograde tracer in the central nervous system. It 

was retrogradely transported to the neuronal cell bodies and produced a Golgi like image of 

the labelled neurons, as CTB can be detected throughout the neuronal cytoplasm, in proximal 

dendrites and even in distal dendrites and axons (Ericson and Blomqvist, 1988; Llewellyn-

Smith et al., 1992). Several studies showed that CTB is a more sensitive retrograde tracer than 

WGA and WGA-HRP in the central nervous systems of cats and rats, but not in the peripheral 

nervous system (Luppi et al., 1990; Peyron et al., 1998). In addition, CTB is taken up and 

transported in damaged, but not in intact fibres passage, so spillage and uptake from 

surrounding area must be taken into account. CTB can be applied iontophoretically to study 

the afferents to small cell groups without any evidence of tissue necrosis in the injection sites 

and therefore very little artefactual labelling due to uptake by damaged fibers of passage 

(Luppi et al., 1990). In this study, SIF motoneurons of the injected muscle or other eye 

muscles of the same orbit may be involved (see Fig.22c, 23c). CTB is quite stable after it has 

reached the neuronal cell body and can be detected in neurons for several weeks after 

injection (Leman et al., 2000). Paraformaldehyde fixative is ideal for CTB. The labelled 

neurons can be well revealed by light microscopy as in our studies, but for the electron 

microscopy, caution must be taken because CTB is sensitive to the glutaraldehyde fixative 

(Llewellyn-Smith et al., 1992). CTB also can be used as an anterograde tracer with particular 

immunocytochemical procedures (Angelucci et al., 1996). In this study, we used CTB as the 

retrograde tracer, which was injected into the distal tip of eye muscles to trace the 

motoneurons that innervate the eye muscles. In case B55, tracer was taken up by the MIF 

motoneurons which innervate the inferior rectus, but also taken up by few motoneurons which 

innervate the inferior oblique muscle.  

WGA-HRP is the other tracer used in our experiments. It is a sensitive bi-directional tracer. 

It can be retrograde and anterograde transported, resulting in the anterograde labelling of axon 

terminals and retrograde labelling of cell bodies. Gonatas et al., (1979) first described that 

HRP conjugated with the lectin WGA as an axonal tracer can improve sensitivity 40 times 

greater than free HRP. So WGA-HRP has become the most widely used neuroanatomical 

tracers. It is not only used for studies of central nervous system connection at the light 

microscope level, but also in studies of ultrastructural detail (Teune et al., 1998). It has also 

proven to be an effective transneuronal tracer, permitting studies of multisynaptic pathways 

(Krug et al., 1998). The retrograde and anterograde transport rates WGA-HRP are quite 
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different. The anterograde transport rates are thought to exceed 300mm/day, while retrograde 

rates are in the order of 100mm/day (Mesulam, 1982; Gibson et al., 1984). The transport rate 

can be influenced heavily by other factors, including uptake time and choice of anaesthetic. It 

is known that pentobarbitone can inhibit the transport of HRP (Mesulam and Mufson, 1980). 

Survival time also can affect the WGA-HRP labelling. Trott and Apps (1993) found that 

survival time of less than 2 days fails to produce any detectable retrograde labelling in the 

inferior olive after injection of WGA-HRP into the cerebellar cortex. By contrast, periods in 

excess of 5 days are considered likely to result in transneuronal labelling and an inaccurate 

estimation of the size of the effective injection site, as well as some decrease in labelling 

(Gibson et al., 1984; Mesulam, 1982).  In our studies, the survival time was 3 days which 

exclude any WGA-HRP transneuronal labelling. Unlike free HRP, WGA-HRP is not thought 

to be taken up by intact fibres passing through the injection site (Brodal et al., 1983). Using 

the highly sensitive chromogen Tetramethylbenzidine (TMB) (Mesulam, 1978) as a substrate 

for horseradish peroxidase histochemistry is a traditional neuronal tracing method. But the 

TMB method has a number of disadvantages. The duration of storage, the perfusion, 

composition of storage medium, the type of counterstaining and the dehydration process can 

affect the TMB reaction (Mesulam and Mufson, 1980). Overreaction with TMB can produce 

crystals that extend beyond the membranous boundaries of neurons (Gong and LeDoux, 2003). 

WGA-HRP is also highly diffusible neuronal tracer (Köbbert and Thanos, 2000). This is why 

we got leakage into the IO in the first case MUS (see arrow head Fig.17c, 18c, 2a, 5a, 6a). 

Traditional histochemical detection of wheat germ agglutinin-horseradish peroxidase can 

impose substantial technical limitations on studies requiring co-localization of 

neurotransmitters, receptors and other neural antigens. Recently anti-WGA, anti-HRP 

antibodies were used for detecting the WGA-HRP (Gong and LeDoux, 2003). Compared to 

the traditional histochemical detection methods, the immunohistochemical detection of WGA-

HRP has several advantages. For example, first, there is no special requirement for the tissue 

fixation. Second, unconjugated WGA can be used as the neuroanatomical tracer since WGA 

may be a more sensitive tracer than WGA-HRP (Ruda and Coulter, 1982; Horikawa and 

Powell, 1986).Third, a wide variety of detection methods can be used for the detection of 

WGA-HRP, so allowing for the co-localization of several other markers and increasing 

experimental flexibility when using multiple tracers in the same animal. After detection of 

WGA or HRP with unconjugated primary antibodies, tracer can then be visualized with 

biotin-, colloidal gold- or fluorochrome-tagged secondary antibodies. 
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In a comparison of CTB and WGA-HRP, Behzadi et al., (1990) reported that CTB 

recognized by immunohistochemistry is a much more sensitive tracer in the central nervous 

systems than WGA-HRP revealed by the TMB method. But WGA-HRP can be visualized by 

immunohistochemical technique which is much more sensitive than traditional TMB method 

(Gong and LeDoux, 2003). In this study, WGA-HRP was visualized by TMB method. The 

cell bodies are well labelled, but the dendrites are not so far or fully labelled as CTB staining. 

So we only compared the CTB labelled IR MIF motoneurons group in case B55 with CTB 

labelled MR MIF motoneurons in case MUS.  

 

4.3 The function of C-group motoneurons in vergence eye movements  

 

Supraoculomotor area is the part of the periaqueductal gray located immediately above the 

oculomotor nucleus. Laterally it is continuous with the mesencephalic reticular formation. 

The SOA receives projections from the superior colliculus (Edwards and Henkel, 1978), two 

deep cerebellar nuclei (the posterior interposed nucleus and the fastigial nucleus) (May et al., 

1992), the pretectum (Büttner-Ennever et al., 1996b), the accessory optic nuclei (Blanks et al., 

1995). Direct projections from the frontal and supplementary eye fields to the SOA have also 

been traced (Stanton et al., 1988; Shook et al., 1990), as well as two regions of the cerebral 

cortex where vergence responses have been recorded (Gamlin and Yoon, 2000; Fukushima et 

al., 2005). Several studies indicate that the connectivity of MLF and abducens internuclear 

neurons to MR and its neural activity do not play an important role in vergence eye 

movements. Internuclear ophthalmoplegia, characterized by damage of the medial 

longitudinal fasciculus (MLF) that interrupts the abducens internuclear neurons excitatory 

pathway shows loss of conjugate adduction on the side of lesion, but adduction for vergence 

is spared. In contrast, certain midbrain lesions cause vergence deficits, but sparse conjugate 

eye movement (reviewed by Leigh and Zee, 1999). In primates, both abducens motoneurons 

and internuclear neurons decrease their firing rate during convergence (Mays and Porter, 1984; 

Gamlin et al., 1989a). Miller et al., (2002) found LR force missing and MR co-contraction 

absent in ocular convergence. Therefore, there must be another powerful (excitatory) 

vergence input to MR motoneurons. It is possible that SOA might provide this excitatory 

signal (Mays and Porter, 1984).   

      Other experiments have shown that the SOA and the adjacent reticular formation around 

the oculomotor nucleus contain premotor neurons related to vergence eye movement in 
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monkeys (Mays and porter, 1984; Judge and Cumming, 1986; Zhang et al., 1992). Three main 

types of neurons can be found in the SOA: those that discharge in relation with vergence 

angle (vergence tonic cells), to vergence velocity (vergence burst cells), and both to vergence 

angle and velocity (vergence tonic-burst cells) (Leigh and Zee, 2006). Many of these cells 

also discharge with accommodation, but they carried a signal predominantly related to 

vergence. These neurons increase the firing rate for near viewing, but not during vertical or 

horizontal conjugate eye movement. Mays (1984) suggested that the output of midbrain near 

response cells might provide the vergence command needed by the medial rectus 

motoneurons. It has been proved that the medial rectus subdivision of the oculomotor nucleus 

get a direct projection from the neurons in the vicinity of the oculomotor nucleus by the 

antidromic microstimulation techniques in anesthetized, paralyzed cats (Nakao et al., 1986). 

Zhang et al., (1991) also has shown that numbers of near response cells can be antidromically 

activated by microstimulation of the ipsilateral medial rectus subdivision of the oculomotor 

nucleus, but in these experiments they failed to activate near response cells from the 

contralateral oculomotor nucleus. They suggested that vergence input to medial rectus 

motoneurons may be mainly ipsilateral. Our results show that the dendrites of MR MIF 

motoneurons spread only ipsilaterally into the SOA. Anatomically this supports the concept 

that the MR MIF motoneurons get vergence input ipsilaterally and may also participate 

vergence eye movements. Unfortunately until now, there have been no known recording from 

MIF motoneurons in the awake animal to identify their functional properties, apart from one 

study in the frog where the neuronal activity was tonic and correlated with intended eye 

position (Dieringer and Precht, 1986). Up to now, single-cell recordings from the behaving 

monkeys show that all extraocular motoneurons participate in all types of eye movement: 

vergence, saccade, smooth pursuit, vestibulo-ocular reflex and optokinetic nystagmus. 

However, it is not clear how much the MIF motoneurons contribute to the tension of eye 

movement, but experimentally exposing eye muscle to succinylcholine causes them to 

contract and the effect is caused by the depolarization of MIFs and not SIFs (Bach-y-Rita et 

al., 1977).  

4.4 Relationship of C-group motoneurons with Edinger-Westphal nucleus 

 

The Edinger-Westphal nucleus, anteromedian nucleus and adjacent neurons in the ventral 

tegmental area (VTA) are sources of preganglionic parasympathetic innervation of intraocular 

smooth muscle, including pupillary muscle, the ciliary body and blood vessels in mammals  
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Fig. 27 The schematic drawing of the supraoculomotor area from rostral to caudal in monkey. The 

supraoculomotor area contains three main groups: AM; Urocortin-area (supraoculomotor area 

containing urocortin-positive neurons) and EW. The AM contains preganglionic neurons. The EW in 

monkey, medial magnocellular group, contains the cholinergic preganglionic neurons. The Urocortin-area 

contains a large group of urocortin-positive neurons which lie ventrolaterally to the large cholinergic 

preganglionic neurons. The C-group is the MIF motoneurons which innervated the MR and IR global 

layer. The S-group is the MIF motoneurons which innervated the SR and IO global layer. Dl is 

dorsolateral area, Dm is dorsomedial area. (Adapted from Horn-Bochtler AK et al., 2006 Neuroscience 

meeting, poster 345. 9/S4)   

(Balaban, 2003). The parasympathetic preganglionic neurons project ipsilaterally via the 

oculomotor nerve to the ciliary ganglion, which innervates the sphincter pupillary muscle of 

the iris for pupillary constriction and ciliary body for lens accommodation (Narayanan and 

Narayanan, 1976; Lyman and Mugnaini, 1980). In birds, the neurons in the ciliary ganglion 

that innervate the iris sphincter muscle and the ciliary body receive input specifically from 

cells in the lateral EW, whereas those that innervate choroidal blood vessels receive input 

from cells in the medial EW (Reiner et al., 1983; Gamlin et al., 1984). Gamlin and Reiner 

(1991) have identified another two inputs to the avian EW, the medial mesencephalic reticular 

formation and rostral lateral mesencephalic reticular formation. In cats and rabbits, the 

preganglionic neurons are in a completely different location, neither in the EW, nor in AM. 

Instead the preganglionic neurons lie in the ipsilateral rostral periaqueductal region dorsal to 

the NIII, and the tegmentum ventral to the oculomotor complex (Loewy and Saper, 1978; 

Sugimoto et al., 1977; Strassman et al., 1987; Tozoshima et al., 1980; Maciewicz, 1983; 

Erichsen and May, 2002). The pupil-related preganglionic motoneurons are located rostrally, 

in and lateral to the anteromedian nucleus. In contrast, the lens-related preganglionic 

motoneurons are particularly prevalent caudally, both dorsal and ventral to the oculomotor 
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nucleus (Erichsen and May, 2002). In monkey, the preganglionic neurons are largely confined 

to EW and AM (Akert et al., 1980; Burde and Loewy, 1980; Ishikawa et al., 1990; May et al., 

1992; Sun and May, 1993), but some reports found cells lateral to EW in the lateral visceral 

cell columns (Lvc) of the ventrolateral periaqueductal gray (Burde and Williams, 1989) (Fig. 

27). Horn-Bochtler et al., (2006) investigated the histochemical properties of these groups in 

the monkey, and delineated the cholinergic EW proper, the anteromedian nucleus and MIF 

motoneurons of the oculomotor nucleus, along with adjacent non-cholinergic cell groups. The 

EW area is one of the major cellular urocortin expressing sites in the rat brain (Spina et al., 

2004). Urocortin-positive areas are thought to be involved in the acute stress and feeding 

behavior (Kozicz, 2003). But in monkey the urocortin expressing site lies ventrolaterally to 

the large cholinergic preganglionic neurons. The function of EW includes a control of the 

“near response” or “near triad” which comprises three elements: pupillary constriction and 

accommodation, vergence (Leigh and Zee, 1999).  The first two functions are controlled by 

EW neurons around the dorsomedial of the NIII, which is occupied by C-group MIF 

motoneurons (Fig. 27).  

     The EW nucleus get direct projections from only one retinorecipient pretectal nucleus, the 

pretectal olivary nucleus whose physiology is appropriate for mediating the pupillary light 

reflex (Gamlin and Clarke, 1995; Gamlin, 2005). Clarke et al., (2003) found that in marmoset, 

the pretectal olivary nucleus  connects with the preganglionic neurons in the EW nucleus as 

well as with the lateral terminal nucleus, which in turn also connects with the EW nucleus. A 

major input to the MIF motoneurons of the C- and S-groups is the pretectum (Büttner-

Ennever et al., 1996).  

May et al., (1992) found out that the midbrain near-response region has reciprocal anatomic 

connections with two deep cerebellar nuclei, the posterior interposed nucleus and the fastigial 

nucleus. The projection from two deep cerebellar nuclei is predominantly contralateral, 

whereas the projection to the deep nuclei predominantly is ipsilateral. Neurons in the posterior 

interposed nucleus projected to the SOA but not Edinger-Westphal nucleus. But fastigial 

nucleus neurons project to both the SOA and EW. The activity of neurons in the posterior 

interposed nucleus and fastigial nucleus is related to the “far-response” and “near-response” 

respectively (Zhang and Gamlin, 1998). Furthermore, some recent clinical findings reported 

that deficits in accommodation are associated with cerebellar lesion (Kawasaki et al., 1993). 

From our experiment, we can not prove that C-group MIF motoneurons contact the neurons in 

EW, but the dendrites of MR MIF motoneurons do extend into the EW and SOA. It has been 

proved that the smaller distal dendrites of C-group MIF motoneurons receive most of the 



50 

synaptic input (May et al., 2000). Much of these synaptic inputs to the C-group neurons is 

provided by inputs to EW suggests that these neurons may be driven by accommodation 

signals. There are a few labelled MIF motoneurons of C-group located around the EW, close 

to the periaqueductal gray. The C-group MIF motoneurons and EW both receive input from 

the pretectum. Lens accommodation ordinarily accompanies convergence. The model of 

vergence and accommodation are suggested to be cross-coupled (Zhang et al., 1992). These 

data all support the hypothesis that C-group motoneurons and EW receive a similar premotor 

input and all participate in the near response for vergence and accommodation. This result 

confirms Gamlin’s suggestion that both EW neurons and medical rectus motoneurons receive 

input from near-response neurons which are related with both vergence and accommodation. 

Microstimulation at the sites of EW neurons produced accommodation in the ipsilateral eye, 

but there are few neurons in EW which showed some activity related to vergence (Gamlin et 

al., 1994). The labelled MR MIF motoneurons which lie around the EW, and are close to the 

periaqueductal gray might explain why few neurons in EW showed some activity related to 

vergence. 
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5 Conclusions 
 

1. The present work demonstrates that MR and IR MIF motoneurons are two populations of 

neurons in C-group. There is no neuron in C-group projecting to both medial rectus and 

inferior rectus muscles. 

2. The MR and IR MIF motoneurons lie relatively separated in the rostral two-thirds of NIII. 

The MR MIF motoneurons lie more dorsomedially, closer to midline than IR MIF 

motoneurons. Some of the labelled MR MIF motoneurons are located around EW. This 

suggests that MR MIF motoneurons might receive the same input as EW which plays a role in 

the “near response”. 

3. The dendrites of MR MIF motoneurons spread into SOA and EW ipsilaterally, in contrast, 

IR MIF motoneurons’ dendrites ramified into SOA, bilaterally. This result qualitatively 

suggests that MR and IR MIF motoneurons might have different function in the eye 

movements. 

4. These results support the hypothesis that IR MIF motoneurons may contribute to the eye  

alignments, along with MIF motoneurons of other eye muscles. But MR MIF motoneurons 

appear to be different and may also participate the vergence eye movements.  
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7 Attachment 
WGA-HRP immunocytochemical labelling 

 

TMB-Reaction  

  

- washed the sections in cold 0.1M PBS, pH 7.4 

- washed the sections in cold aqua bidest, 3x1min 

- pretreated the sections with solution which contains solution A+B, 20min  

 solution A:  370 ml aqua bidest + 20 ml Na-Acetatbuffer pH 3.3 

                                   +400 mg Sodium-Nitroferroprussiat (Na-Nitroprusside dihydrate) 

 solution B:  10 ml, 100% Ethanol + 20 mg Tetramethylbenzidine staining 

- washed the sections in 50 ml Acetate buffer + 950 ml aqua bidest. , 2x5min  

- stabilized the section in 20 g Ammoniumheptamolybdat in 400 ml aqua bidest, 20min 

- washed the sections in 0,1M PBS, 30 sec 

- incubated the sections into the solution (120µl 30% H2O2 into DAB-Co-solution), 5-8   min 

            solution A:  200 mg Diaminobenzidine in 200 ml aqua bidest solution + 200 ml 

0.2M PBS, pH 7.4  

            solution B:  80 mg Co-Chlorid in 8 ml aqua. Bidest solution (1% solution) 

- washed the sections in 0.1M PBS, 3x 1min 

 

Cholera toxin subunit B immunocytochemical labelling 

 

- shortly washed the sections in 0.1M PBS, pH 7.4 

-  pretreated the sections with 10% methanol/3% H2O2 15 min to suppress endogenous 

peroxidase activity  

- washed the sections in 0.1M PBS, pH 7.4, 3x10 min  

- blocked with 5% normal rabbit serum in 0.1M PBS, pH 7.4 containing 0.3% Triton for   

1hour room temperature 

- incubated with goat choleragenoid antibody (1: 20,000) for 48 hours at 4ºC 

- washed the section in 0.1M PBS, pH 7.4, 3x10 min 

- incubated with second antibody rabbit anti-goat 1:200 (50µl in 10 ml PBS pH 7.4) 1hour 

room    temperature 

- washed the sections in 0.1M PBS, pH 7.4, 3x10 min 

- EAP Extravidin-Peroxidase 1:1000 (10µl in 10 ml) 1hour room temperature 
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- washed the sections in 0.1M PBS, pH 7.4, 2x10min 

- washed the sections in 0.1M TBS, pH 7.6, 1x10min 

- Diaminobenzidine reaction 10min 

   0.05% DAB +0.01% H2O2 in 0.05 M TBS, pH8  

- washed the sections in 0.1M PBS, pH 7.4, 3x10min 

- dried the section in room temperature and covered the slices 

 

Nissl staining 

 

Solution: 0.5g cresyl violet in 100ml distilled water 

- dehydrate:  

70% alcohol for 5 min  

90% alcohol for 5 min  

96% alcohol l for 5 min  

100% alcohol for 5 min  

Xylene for15 min  

Xylene for 15 min  

- rehydrate and stain:  

100% alcohol for 5 min  

96% alcohol for 5 min  

90% alcohol for 5 min  

70% alcohol for 5 min  

- distilled water 5 min 

- 0.5% cresyl violet solution for 5 min 

- shortly washed the sections in distilled Water 

- dehydrate:  

70% alcohol for 5 min  

90% alcohol for 5 min  

96% alcohol l for 5 min  

100% alcohol for 5 min  

Xylene for15 min  

Xylene for 15 min 

- coverslip  

- leave the slides at room temperature for drying. 
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