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1 Introduction 

1.1 Novel approaches for cancer treatment 

Cancer is a heterogeneous disease which is caused by genetic errors in the cell’s 

genome due to alterations, loss or multiplication of certain genes. The incidence of 

cancer is still rising and malignant diseases are one of the most prevalent causes of 

death. Standard treatment for solid cancer is still surgery, followed by radiation and/or 

chemotherapy. However, these regimes are not always successfully applicable, 

either due to the tumor being unresectable or already metastasized. Another 

hindrance for successful treatment of cancer by classical radiation or chemotherapy 

is the occurrence of resistance towards treatment regimes. Therefore it is important 

to develop new strategies in tumor therapy, especially for progressed tumors that are 

withdrawn from classical treatment regimes. 

1.1.1 Antiangiogenic therapy 

Vasculogenesis and angiogenesis are the fundamental processes by which new 

blood vessels are formed (1). The growth of new blood vessels, angiogenesis, is a 

critical step in developing clinical relevant cancer (FIG 2-1). 

 

 

Fig.: 1-1 Stages in tumor development leading to vascularisation: After the angiogenic switch, induced 
by certain growth factors, initially dormant tumors become angiogenic, blood supply is established and 
tumors begin to grow. 

 

The hypothesis that tumor growth and also tumor spreading is angiogenesis 

dependent was first proposed in 1971 (2). Meanwhile this hypothesis has been 

proven by several experiments and is now widely accepted. In the absence of blood 

supply, tumor growth is restricted to a microscopic size and the tumor is not able to 

spread via the vascular system to form haematogenic metastases because tumor 

angiogenic 

switch 
neoangiogenesis tumor 

neovascularisation 
tumor 

growth 
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VEGF 
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cells are not shed into circulation (3). In these non-angiogenic tumors cell 

proliferation and apoptosis are balanced (4). 

The angiogenic switch could be driven by several factors; e.g. angiogenic 

oncogenes, upregulation of proangiogenic factors, produced by tumor cells and/or 

the tumor stroma or down regulation of antiangiogenic factors. With the access to 

blood supply, oxygen, nutrients and growth factors are not a limiting factor for tumor 

growth anymore and exponential proliferation of the tumor mass occurs (5). Clinical 

studies have shown a direct correlation between the density of tumor vessels and an 

adverse prognosis in patients with various solid tumors regarding tumor growth and 

metastatic potential (6). 

As tumor growth critically depends on a functional blood vessel network and a large 

number of neoplastic cells depend on the supply of a relatively small number of 

endothelial cells, tumor vessels are an attractive target in fighting against cancer (7). 

1.1.1.1 The angiogenic process and antiangiogenic approaches 

The physiological formation of new blood vessels in humans mainly takes place at 

wound healing and in the course of female menstruation cycle. Angiogenesis exhibits 

a central role in different pathological processes including malignant diseases (8). 

Therefore new therapeutic strategies for cancer treatment involve antiangiogenic 

approaches. The possible starting points are multifaceted and result from the 

complex process of tumor angiogenesis. 

Malignant cells can be present over years in a dormant status (tumor dormancy); 

oxygen and nutrients are obtained form the established blood vessel network of the 

healthy tissue and reaches the tumor by diffusion (2). The reason for switching to an 

angiogenic, active stadium is currently not clarified secludingly. The activation of 

endothelial cells, however, is the crucial step in switching to an angiogenic tumor 

stadium (5). 

The activated endothelial cells change their gene expression pattern. The secretion 

of proteolytic enzymes like metalloproteases (MMP-2) aerates the surrounding matrix 

and enables migration (9). Further on, activated endothelial cells enter the cell cycle 

and start to proliferate (2). Expression of cell surface aminopeptidases further 

enhance the process of matrix remodeling (10). Adhesion molecules like integrins 

enable migration of endothelial cells (11) and modulate survival (12) and cell cycle 

(13). Immature endothelial cells migrate in the direction of the angiogenic stimulus by 

forming sprouts. In the course of further differentiation these sprouts form lumen and 
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a new basal lamina is established (14). This results in the forming of a three 

dimensional blood vessel network supplying the tumor with oxygen and nutrients. 

The complex process of tumor angiogenesis offers multiple options in interfering in 

terms of antiangiogenic therapy. Current approaches are based on the inhibition of 

one or more of the crucial steps in the angiogenic process (15). Recently, an 

antagonist of the angiogenic growth factor VEGF (AvastinR) was approved by the 

EMEA (European Medicines Agency) for progressed colon carcinoma (16). Several 

other drugs are in clinical trials.  

 

Fig.: 1-2 The complex process of angiogenesis offers several potential points of attacking the tumor 
driven establishing of a functional blood vessel network. Interference with the angiogenic process can 
be based on disturbance regarding to cytokine signaling or direct interaction with endothelial cells. The 
relevant key steps are suitable for analyzing antiangiogenic activity of drugs to evaluate their potential 
in disrupting the angiogenic process. 

1.1.1.2 Metronomically scheduled chemotherapy 

Conventional chemotherapeutics affect not only proliferating tumor cells and various 

types of healthy cells e.g. bone marrow cells, they also interfere with the endothelium 

of growing tumor vessels (17). This results in an antiangiogenic effect, when 

conventional chemotherapeutics are optimized in terms of dose and frequency of 

application. Usually anticancer drugs are scheduled at low doses and continuous 

application (metronomic schedule) in order to target preferential angiogenic active 

blood vessels (18), whereas bolus high dose chemotherapy is directed predominately 

against fast dividing tumor cells. 

For example, CPA (cyclophosphamide) was shown to exhibit potent anticancer 

activity when it was applied in a low dose antiangiogenic schedule. Metronomically 

scheduled CPA therapy led to decreased angiogenesis in matrigel plug studies (19) 

migration 

proliferation 

differentiation 

angiogenic stimulus 
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and increased apoptosis of proliferating endothelial cells in the tumor bed. Further in 

vitro evaluation showed decreased proliferation and migration capability of cultured 

endothelial cells in the presence of activated CPA (20). Recent studies implied an 

additional effect beside direct affection of tumor vessel endothelium. Changes in the 

expression of antiangiogenic cytokines were observed. Thrombospondin-1 was 

identified as a potential mediator of the effects of metronomic scheduled CPA (21). 

Low dosed CPA treatment of cultured endothelial cells caused marked increase of 

thrombospondin-1 mRNA and thrombospondin-1 upregulation was detected in CPA 

treated experimental tumors (22). 

However, despite intensive investigation of metronomic CPA therapy the role of 

single CPA metabolites, which may mediate antiangiogenic effects, has not been 

clarified. 

Due to the fact that antiangiogenic strategies target preferentially genetically stable 

endothelial cells, resistance of tumors against treatment should be overcome (23). 

However, recent studies and our own results indicate the development of 

mechanisms that revoke tumors from metronomic scheduled chemotherapy (24). 

1.1.2 Gene therapy 

Gene therapy is part of a growing field of molecular medicine that will gain 

importance in the treatment of human malignant diseases. Until now, almost two third 

of all clinical trials performed in gene therapy are directed against cancer (25). As 

solid tumors exceeding a certain size rely on blood supply, the administration of 

particulate gene delivery vectors via the bloodstream is a promising concept. For 

systemic application, these delivery systems have to fulfill certain conditions like 

adequate circulation time and low immunogenicity (26). 

1.1.2.1 Therapeutic concepts for cancer gene therapy 

Gene therapeutic approaches for cancer treatment have the advantage of being 

potentially highly selective. Most approaches combine gene therapy with 

chemotherapeutic drugs, radiation or other treatments to achieve optimal effects. 

Several approaches based on gene therapy were investigated in terms of cancer 

treatment. Replacement and overexpression strategies of proapoptotic or tumor 

suppressor genes e.g. p53 were the prime fields of gene therapy (27). In the recent 

years also approaches based on the delivery of genes to modulate host immune 

response have been investigated (28). 
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The approach to combine gene delivery with the consecutive application of chosen 

small molecular drugs was investigated in this thesis. Within the GDEPT (gene 

directed enzyme prodrug therapy) concept an inactive prodrug is converted into the 

active, cytotoxic drug by conversion through a specific enzyme, which is 

overexpressed as a transgene at the tumor site. This concept results in high local 

concentrations of cytotoxic drugs within the tumor tissue due to selective expression 

of the relevant enzyme at the tumor site; the systemic burden of toxic metabolites is 

therefore lower compared to conventional chemotherapy (29). Often, prodrugs are 

used that are already in clinical use, making it easier for the concept to be approved 

by regulatory authorities. A major advantage for GDEPT is the bystander effect. 

Different from strategies to deliver proapoptotic or tumor suppressor genes which 

affect only the transfected cells, the GDEPT approach aims to affect also non 

transfected cells in the near vicinity of cells expressing the transgene. Enzymatic 

activation of anticancer prodrugs by successfully transduced cells also affects the 

surrounding tissue by diffusion of toxic metabolites. This bystander effect amplifies 

antitumoral activity (30). It is adequate to deliver the therapeutic gene only to a part of 

the target cell population which is a more reachable goal with available gene delivery 

systems. Several therapeutic gene/prodrug combinations were investigated (31). 

Approaches with encapsulated cells, stably expressing CYP2B1, are already in 

clinical trials (32). In this thesis, gene transfer of rat CYP2B1 combined with 

cyclophosphamide (CPA) was evaluated. 

1.1.2.2 CYP450/CPA combination 

The anticancer drug cyclophosphamide (CPA) is widely used for different forms of 

cancer. However CPA can be highly toxic due to non specific side effects, and host 

toxicity is the crucial limiting factor in conventional tumor therapy with CPA (33-35). 

CPA itself is a prodrug that is transformed by cytochrom P450 enzymes in the liver by 

hydroxylation. The activated metabolite hydroxycyclophosphamide (4-OH-CPA) 

undergoes spontaneous く-elimination to generate the compounds phosphoramid 

mustard and acrolein. 
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Fig.: 1-3 Simplified diagram of CPA metabolism. CPA is activated by hepatic CYP P450 isoforms (e.g. 
2B1 in rat, 2B6 in humans) to form hydroxycyclophosphamide (4-Hydroxy-CPA) which is delivered via 
the blood stream to the tumor site. 4-Hydroxy-CPA is in equilibrium with its tautomer 
aldophosphamide. Aldophosphamide can decompose by spontaneous く-elimination and form the 
alkylating compound phosphoramid mustard and the byproduct acrolein.  

 

These products are highly reactive species that alkylate DNA or proteins. In 

conventional chemotherapy activated metabolites are distributed systemically via 

blood stream, affecting cells at the tumor site but also in healthy tissues. Expression 

of CYP2B1 enzyme within the tumor site should activate CPA locally in order to 

achieve an adequate cytotoxic concentration range in the tumor area (36). Due to the 

local activation at the tumor site, applicated CPA doses should be lower at similar 

antitumoral efficiency, preventing the occurrence of side effects. 
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Fig.: 1-4 Comparison of conventional CPA antitumoral therapy and the GDEPT gene therapy 
approach. To reduce side effects and achieve higher local concentrations of cytotoxic 4-hydroxy-CPA 
a CPA activating CYP P450 isoform is delivered via gene transfer to the tumor site prior to CPA 
treatment to enable localized CPA bioactivation. 

1.1.2.3 Targeting strategies within the GDEPT concept 

Treatment of progressed malignant diseases is only effective if carried out via the 

systemic route. Systemic application of high dose chemotherapy is limited by side 

effects and toxicity in healthy tissue. Therapeutic concepts with higher specificity are 

therefore eligible. Gene therapy of already metastasized tumors is a promising 

approach to increase specificity and efficiency and may supplement already 

established treatment regimes. Both tumor cells and tumor vasculature are possible 

targets for the delivery of genes within the GDEPT concept (37). Approaches for the 

development of tumor- and tumor vasculature-targeted gene delivery systems are 

described in the annex. 

 A  B  C 

Fig.: 1-5 Different modes of action for the GDEPT bystander effect: A: Gene delivery to tumor cells 
affects transfected cells and surrounding tumor cells; B: Gene delivery to tumor cells in the vicinity of 
vessels affects transfected cells and endothelial cells in the near vicinity; C: direct targeting and 
transfection of endothelial cells can lead to an optimal bystander and antiangiogenic effect. Mode A is 
not working on chemoresistant tumors, mode B and C also affect angiogenic cells (yellow areas: 
transfected cells, Arrows: direction of bystander effect; stars: area of cytotoxic effect) 
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Tumor neoangiogenesis depends on different, complementary pathways and 

blocking a single pathway with conventional antiangiogenic therapy might be 

insufficient and compensated by another pathway (38). Further on, the expression 

pattern of neoangiogenic factors can differ between tumor types and even within the 

tumor; blocking a distinct factor can lead to the occurrence of compensation 

mechanisms. The GDEPT concept is not impaired by such compensation 

mechanisms, as the local activation of cytotoxic drugs mostly leads to DNA and/or 

protein damage of the affected cells. With the GDEPT approach the cytotoxic effect 

on the tumor endothelium is rather independent of tumor type and progression 

stadium and therefore exhibits a universal adaptive approach.  

1.1.2.4 PEI-polyplexes 

Polyethylenimine (PEI) is a polycation with a high density of positively charged amino 

groups. Therefore it interacts with negatively charged nucleic acid by electrostatic 

interaction. In 1995 it was first reported on the ability of PEI to deliver genes and 

oligonucleotides (39). PEI can be synthesized as a linear (Fig 1-6 A) as well as a 

branched (Fig 1-6 B) macromolecule in a wide range of molecular weight. The PEIs 

of different topology and molecular weights exhibit different binding affinities for DNA 

(40). Recently, difference in in vivo gene expression efficiencies were demonstrated 

for LPEI (linear PEI) and BPEI (branched PEI), whereas LPEI containing polyplexes 

resulted in significantly higher transfection efficiency than polyplexes with 

incorporated BPEI (41). 

By complexation with DNA, particles are formed (polyplexes) in which the condensed 

DNA is protected against physical and biochemical degradation. The particular 

polyplexes can enter the cells via endocytotic processes. PEI polyplexes mediate 

efficient gene delivery in vitro; however cellular uptake of plain PEI polyplexes is 

unspecific due to positive charge on the surface of the particles. Moreover, plain 

polyplexes tend to aggregate in salt containing biological fluids (42) and exhibit 

strong cellular and systemic toxicity in vivo (43). PEI can be covalently linked to 

different functional molecules such as hydrophilic polymers like polyethylene glycol 

(PEG) or functional peptides, in order to modify the surface of the polyplexes and 

reduce unspecific interactions, aggregation and induce specificity towards target cells 

(44). 
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Fig.: 1-6 Different Versions of Polyethylenimine (PEI): A) linear PEI (LPEI) B) branched PEI (BPEI) 

1.2 Tumor environment 

Solid tumors are characterized by several environmental properties that are different 

from healthy tissue. Blood vessel networks that are formed by tumor induced 

angiogenesis are poorly organized and exhibit in a heterogeneous distribution of 

blood flow. This results in hypoxic areas within the tumor tissue that are not 

sufficiently supplied with oxygen and nutrients (45;46). The propagation of hypoxic 

areas depends on tumor type and tumor stadium and can be characterized by 

measuring blood vessel density, intercapillary distance and the perivascular cuff (FIG 

1-7). 

 

Fig.: 1-7 Vertices of blood supply in tumor tissue. The microscopic picture (right) displays a functional 

blood vessel (blue staining: systemically applicated Hoechst33258 dye as a tracer; data source: 

current thesis). The distance between functional blood vessels is described as intercapillary distance 

(green arrow). The area around the blood vessels that is supplied by oxygen is called perivascular cuff 

(yellow arrow). 

 

Blood vessel

Tumor tissue
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Tumor hypoxia results in several effects in terms of resistance towards chemo- 

and/or radiotherapy, metastatic potential, angiogenesis and regulation of cell surface 

molecules (47-49). Moreover, tumor hypoxia may influence therapeutic approaches 

with delivered and expressed enzymes when the conversion of the prodrug is oxygen 

dependent. The activity of the CYP P450 2B1 enzyme (cytochrome P450 2B1), that 

was utilized in this thesis (GDEPT, gene delivered enzyme prodrug therapy) for CPA 

activation is strongly depending on sufficient oxygen supply (50). Therefore it was 

required to evaluate this gene therapy approach under tumor specific conditions 

including hypoxia and limited diffusion.  

1.3 Resistance to chemotherapy 

Despite advances in the treatment of progressed cancer via chemotherapeutic 

regimes, outcome is often unsatisfying. One obstacle in chemotherapy such as CPA 

treatment is the occurrence of resistance against the applied treatment regime (51). 

Resistance of tumors towards chemotherapeutic treatment are multifaceted (52;53) 

being primary (intrinsic) or secondary (acquired). In the case of intrinsic resistance, 

the tumor (and metastasis thereof) is not sensitive towards the treatment regime from 

the beginning of the treatment. Secondary resistance occurs as a consequence of 

adoption mechanisms of the tumor under treatment with chemotherapeutic drugs 

(54). Therefore primary and secondary resistance has to be further investigated and 

considered for choosing an adequate treatment regime. 

Evaluation of primary resistance towards chemotherapeutic treatment is difficult in 

conventional in vitro monolayer cell cultures because reasons for that kind of 

resistance are often based on multicellular community effects. Primary resistance can 

be mediated by interactions through cell-cell-contacts and/or by micro environmental 

properties. Therefore the phenomena of primary resistance is rather an effect of the 

collective of tumor cells than of the properties of individual cells (55;56). Therefore, 

tumor cells have to be cultured as multicellular spheroids to overcome the obstacles 

for investigation of primary resistance phenomena in vitro. Primary resistance was 

already described for tumor cells cultured as spheroid and treated with CPA (57).  

The reasons for secondary resistance are based either on properties of the individual 

tumor cells or may result out of changes in the interaction of tumor and tumor stroma 

cells in vivo. Classic secondary chemoresistance occurs due to adoption processes 

of individual tumor cells, and can be subdivided into typical multidrug resistance 

(MDR) and atypical resistance. In contrast to primary resistance phenomena, 
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classical secondary chemoresistance can be evaluated in standard monolayer 

cultures. Usually typical multidrug resistance results from effective efflux of the drug 

by overexpression of transporters of the unspecific ABC (ATP-binding cassette) 

transporter family (53). On the other hand, atypical secondary resistance of the 

individual tumor cells can be mediated by the expression of alternative ABC-

transporters, intracellular detoxication mechanisms, increased DNA repair, 

modification of drug target molecules or modulation of apoptotic and survival 

pathways (e.g. NF-遠B modulation) (54;58-60). More recently, a form of acquired drug 

resistance based on changes in the interplay of tumor and tumor stroma cells is 

discussed (61;62). Tumor therapy approaches that do not target tumor cells directly 

but modulate cytokine expression and/or are antiangiogenic strategies should be, in 

theory, independent of drug resistance, due to the genetic stability of the targeted 

cells. Interestingly, acquired resistance occurs towards treatment approaches that do 

not directly target tumor cells. Failure of antiangiogenic treatment regimes may be 

due to the forming of so called mosaic vessels. In this situation tumor cells take over 

the function of endothelial cells to ensure tumor blood supply despite ongoing 

antiangiogenic treatment (63;64). For investigation of the complex process leading to 

failure of antiangiogenic treatment in vivo studies have to be carried out. 

1.3.1.1 Multicellular tumor spheroids 

Conventional monolayer culture of tumor cells is not suitable to evaluate phenomena 

of primary drug resistance due to the fact that these are strongly connected with 

interactions of tumor cells via cell-cell contacts and micro environmental properties. 

Therefore, cell culture systems are required that allow three dimensional growth of 

tumor cells. Multicellular tumor spheroid cultures represent such a cell culture system 

that is closer to the situation of in vivo tumors regarding cell contacts and 

environment (65). Multicellular spheroids of tumor cells can be generated by 

distribution of a single cell suspension in a matrix forming preparation containing the 

cell culture medium. In this thesis a modified chondrocyte cell culture system was 

used in order to establish three dimensional tumor spheroids (66;67). 

1.3.1.2 NF-遠B 

NF-遠B is a crucial factor in angiogenesis of tumors and in mediating resistance 

towards chemotherapeutic treatment (68-71). Antitumoral effects of cytotoxic 

anticancer drugs are often mediated by apoptotic processes initialized through 
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damage of DNA or proteins in cancer cells. Chemotherapy resistance evoking 

changes in apoptotic pathways can occur upstream of caspase activation and may 

be regulated by stress response mechanisms. NF-遠B is one crucial stress responsive 

transcription factor controlling multiple pathways that are connected with apoptosis, 

cell survival and cytokine expression. Moreover, NF-遠B is involved in several 

pathways regarding to the expression of proangiogenic cytokines (72;73). In order to 

evaluate a potential role of NF-遠B in chemoresistance to CPA therapy, cancer cells 

were reisolated from in vivo tumors and monitored for NF-遠B activity levels. 
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1.4 Objectives of this thesis 

To overcome current obstacles of tumor therapy, new anticancer strategies regarding 

efficiency, reduced side effects and resistance have to be investigated. Therefore, 

low dose CPA therapy was combined with a gene therapy approach (GDEPT 

concept). In this context studies were performed to provide i) a suitable in vitro tumor 

mimicking cell culture model and evaluation of the GDEPT approach in vitro and in 

vivo, ii) to evaluate effects of the CPA metabolite acrolein on antiangiogenic activity 

and iii) to elucidate limitations regarding primary and secondary resistance.  

1. Evaluation of the GDEPT concept with P450 CYP2B1 as the therapeutic gene 

in combination with low dose CPA treatment. A starting point was to establish 

an appropriate cell culture model mimicking tumor environment. In situ 

activation of CPA, enzymatic activity of the expressed transgene and 

influences regarding limited diffusion were to be studied and compared with 

experiments performed with conventional cell culture technique. Further on, 

bystander activity that is one of the basic principals of GDEPT had to be 

investigated in the new cell culture system. In the context of bystander activity 

an additional focus was on antiangiogenic strategies. Moreover, targeting and 

therapeutic gene delivery was investigated on primary endothelial cells 

(compare Annex to the thesis). 

2. Metronomic scheduled CPA was shown in several studies to affect tumor 

induced angiogenesis. It was already shown that activated CPA inhibits 

proangiogenic properties of cultured endothelial cells. A potential 

antiangiogenic role of the metabolite acrolein in a metronomic scheduled CPA 

therapy was investigated in this thesis. One additional aim was the 

development of a reliable method for measuring antiangiogenic effects in 

experimental tumors. 

3. Elucidation and classification of primary and secondary resistance of tumors in 

vivo. Resistance phenomena that occurred during CPA therapy were 

evaluated with special attention to changes in tumor vessel markers. 
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2 Materials and methods 

2.1 Chemicals and reagents 

2.1.1 Polyethylenimine (PEI) 

Branched PEI with an average molecular weight of 25kDa (BPEI) and linear PEI with 

an average molecular weight of 22kDa (LPEI) were obtained from Sigma-Aldrich 

(Munich, Germany) and Euromedex (Exgen 500, Euromedex, Souffelweyersheim, 

France), respectively. 

Both were dissolved in water, neutralized with HCl and gel filtrated on a Sephadex G-

25 superfine column using 20mM HEPES, 0.25M NaCl, pH 7.4. For polyplex 

preparation, LPEI and BPEI were used as a 1mg/ml working solution. 

2.1.2 Plasmid DNA 

Plasmid pCMV-LUC (Photinus pyralis luciferase under control of the CMV 

promoter/enhancer) described in (74) was produced endotoxin-free by Elim 

Biopharmaceuticals (San Francisco, CA, USA) or Aldevron (Fargo, ND, USA) or 

PlasmidFactory (PlasmidFactory GmbH & Co. KG, Bielefeld, Germany) or was 

purified with the EndoFree Plasmid Kit from Quiagen GmbH (Hilden, Germany). 
 

Plasmid pEGFP-N1 (encoding enhanced green fluorescent protein (EGFP) under the 

control of the CMV promoter/enhancer were purchased from Clontech Laboratories, 

Inc. (Heidelberg, Germany) or Elim Biopharmaceuticals.  
 

pCMV-CYP2B1 (rat cytochrome P450 under the control of CMV promoter/enhancer) 

described in (75) was produced endotoxin-free by Elim Biopharmaceuticals (San 

Francisco, CA, USA). 
 

Hypoxia response element HRE–luciferase reporter constructs pHRE-LUC (firefly 

luciferase) were synthesized as described in (76). 

Renilla LUC-expressing plasmid pRL-SV40, utilized as an internal control, was 

obtained from Promega GmbH (Mannheim, Germany). Both plasmids constructs 

were provided by Dr. A. Kurosh. 
 

Plasmid pNF遠B-LUC (Luciferase under control of a NF-遠B level sensitive 

promoter/enhancer) was obtained from Clontech Laboratories, Inc. (CA, USA). 

Negative control plasmid pTAL-LUC was also obtained from Clontech Laboratories, 

Inc. (CA, USA). 
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2.1.3 Recombinant proteins 

Recombinant human FGF-basic growth factor was obtained from Peprotech, London 

UK and was added to M199 medium (Invitrogen) for the cultivation of HUVEC cells in 

a final concentration of 20ng/ml. Human recombinant TSP-1 was obtained from 

Immun Diagnostik, Bensheim, Germany. 

2.1.4 Other reagents 

Natriumthiosulfate, glycerine, natriumcarbonate, silvernitrate, 3-aminophenol, 

natriumchloride and DMSO for MTT assay, were obtained from Merck KGaA, 

Darmstadt, Germany. Acrolein and cyclophosphamide-monohydrate were obtained 

from FLUKA Chemika, Milwaukee, WI. Collagenase Type II was obtained from 

Biochrom AG, Berlin, Germany; Agarose Ultrapure and Geneticin G418 were 

obtained from Invitrogen, Oregon, USA. 4-Hydroperoxy-CPA was obtained from Dr. 

Ulf Niedermeyer (Tel. +49 01726611870 or +49 05212080977). All other reagents 

were obtained from Sigma-Aldrich, Taufkirchen, Germany. 

2.1.5 Software 

Evaluation of receptor status and analysis of polyplex cell association was carried out 

by using the WINMDI 2.8 software (Windows Multiple Document Interface for Flow 

Cytometry). The software is downloadable at http://facs.scripps.edu/software.html.  

The MIPAV application (Medical Image Processing, Analysis, and Visualization) was 

used for measuring Hoechst33258 fluorescence levels in CT26 tumor slides after 

systemically application. The software was downloaded from http://mipav.cit.nih.gov/.  

Axio vision and Axio vision LE (Carl Zeiss, Jena, Germany) was used for presenting 

immunohistochemical analysis and for measuring migration capability. 

Microsoft Excel and WinStat (R. Fitch software, Bad Krozingen, Germany) were used 

for generating diagrams and performing statistical analysis. 

2.1.6 Antibodies 

Primary antibodies 

Rabbit-anti-laminin antibody was obtained from Chemicon Europe, Hampshire, UK. 

The mouse-anti-human CD51/CD61 complex antibody, anti-human CD71 receptor 

antibody, mouse-anti human Epidermal growth factor receptor (EGF) clone H11 

antibody and IgG1, negative control antibody were obtained from Dako, 

Copenhagen, Denmark. 

The rat-anti-mouse CD31 antibody was obtained from CALTAG, Burlingame, USA;  
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PE rat IgG control antibody and PE rat anti-mouse antibody were both obtained from 

Pharmingen, BD Biosciences, Canada. The mouse-anti-ratCYP2B1 antibody was 

obtained from Oxfordbiomedical Research, Oxford, UK; rat-anti-mouse CD51 was 

obtained from Biolegend, Biozol, Eching, Germany; anti-acrolein-antibody ACR, 

monoclonal antibody was obtained from JaICA, Japane and the Mouse anti TSP-1 

Ab-4 (Clone A6.1) was obtained from Lab vision, Neomarkers, Westinghouse, CA.  
 

Secondary antibodies 
Texasred labelled goat-anti-rabbit antibody was obtained from Vector, Burlingame, 

UK. The ALEXA488 labelled goat-anti-rat antibody and the ALEXA488 labelled goat 

–anti-mouse antibody were obtained from Invitrogen, Oregon, USA. ALEXA467-anti-

rat antibody and the ALEXA488-anti-mouse were obtained from Invitrogen, Oregon, 

USA. The Cy5 labelled anti-mouse antibody was purchased from Jackson 

ImmunoResearch Laboratories, Inc., Newmarket, England. 

2.1.7 Measurement of protein concentration 

BIO-RAD protein assay (BIO-RAD, Munich, Germany) 

The concentration of protein containing samples was measured with the BIO-RAD 

protein assay (BIO-RAD, Munich, Germany) according to the manufactures 

instructions. BSA was used for the protein standard curve. 
 

BCA protein assay (Pierce, Rockford, IL) 

The concentration of protein containing samples was measure with the BCA protein 

assay (Pierce, Rockford, IL) in the case of the TSP-1 induction experiment according 

to the manufactures instructions. BSA was used for the protein standard curve. 

 

2.2 Cell biological methods 

2.2.1 Cell culture 

Cell culture media, antibiotics, fetal bovine serum (FBS), G148 (geneticin) and 

trypsin/EDTA solution were purchased from Invitrogen GmbH (Karlsruhe, Germany). 

All cultured cells were grown at 37C in 5% CO2 humified atmosphere in incubators 

(Heracell) obtained from Kendro Laboratory products, Langenselbold. 

CT26/X39 cells were cultured in DMEM low glucose medium, supplemented with 

10% FBS, whereas X39 were established from the CT26 murine colon carcinoma 

cells (ATCC CRL-2638) by stable transfection with linearised pCMV-CYP2B1 plasmid 

DNA. Neuro2A murine neuroblastoma cells (ATCC Cl-131) were cultured in DMEM 



Materials and methods   22

low glucose medium, supplemented with 10% FBS. 9L and 9L-2DB1 were obtained 

from D. Waxman and were cultured in DMEM low glucose medium, supplemented 

with 10% FBS. 

HUH7 hepatocellular carcinoma (JCRB 0403; Tokyo, Japan) were grown in 

DMEM/F12 (1/1) with Glutamax I medium supplements with 10% FBS. PC3 human 

prostate carcinoma cells (CRL1435) were cultured in RPMI medium supplemented 

with 10% FBS. 

Endothelial cells HUVEC (pooled human umbilical vein endothelial cells) were 

obtained from ATCC (Manassas, Virginia) and PEC cells, which were provided by J. 

Pelisek were cultured on collagen G coated plates in M199 medium supplemented 

with 20ng/ml human bFGF and 10% FBS. Isolated primary fibroblasts from NF-mB-

luciferase-reporter mice, provided by C. Culmsee, were grown on collagen G coated 

plates in M199 medium supplemented with 10% FBS. 

For in vitro experiments, all cell lines and primary cells were grown in medium, 

supplemented with 100 U/ml penicillin and 100µg/ml streptomycin. 

2.2.2 Agarose overlay technique 

Cells were seeded either in 24-well (Hoechst 33258 diffusion experiment) or 48-well 

plates (all other assays) 24 h prior to addition of the agarose overlay. Culture medium 

was removed and replaced with 345 µl medium (24-well plates) or 200 µl medium 

(48-well plates) containing 0.5% (w/v) agarose. The agarose-containing medium was 

obtained by stepwise dilution of complete medium with melted agarose (10% agarose 

in PBS, w/v). Before applying the agarose-containing medium to the seeded cells, the 

medium was allowed to cool to 37°C. After solidification of the agarose, 1040 µl (24 

well-plate) or 600 µl (48-well plate) of complete culture medium without agarose (+/- 

CPA) was added to the cells. 

2.2.3 Multicellular spheroid culture (Agarose suspension culture) 

For generating agarose wrapped multicellular spheroids, a single cell suspension of 

the indicated tumor cells was mixed with 1% agarose (Ultrapure, Invitrogen) 

containing cell culture medium in a ratio of 1:1. 50µl of the obtained cell suspension 

was applied in an agarose coated 24 well plate (TPP, Switzerland). After solidification 

of the agarose, 500µl of the indicated standard cell culture medium was added to the 

well. Multicellular spheroids were cultured for several days, whereas replacement of 

cell culture medium was performed every third day. 
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2.2.4 Coculture in a transwell system 

Coculture experiments were partly performed by using a transwell system. Therefore 

target cells were seeded in a 24 well plate (TPP, Switzerland) and producer cells 

(X39 tumor cells) were seeded in a transwell insert with a pore size of 8µm (NUNC, 

Denmark) about 24h prior to the administration of CPA. For performing the coculture, 

the inserts were transferred to the 24 well plate with a sterile tweezers. 

2.2.5 Storage of isolated and other cells 

Cells were harvested with trypsin/EDTA, followed by removing supernatant by 

centrifugation for 5min at 150g (Haereus, Megafuge 1.0 R). Cells were resuspended 

in FBS containing 10% DMSO (Sigma) and freezing was carried out, whereas the 

temperature dropped 1°C per minute, until -80°C was reached. Frozen cells were 

then transferred to a nitrogen storage tank for long term storage. 

 

2.3 Molecular biological methods 

2.3.1 Restriction digestion of plasmid DNA 

pCMV-CYP2B1 plasmid DNA was incubated with restriction enzymes BamHI and 

XHO1 (Promega, Mannheim, Germany) for 2-3h. For digestion, 5 units of the desired 

restriction enzyme per µg DNA was used in the appropriate restriction enzyme buffer 

according to manufactures instructions. Success of digestion was tested by agarose 

gel electrophoresis.  

2.3.2 Linearizing of plasmid DNA 

Plasmid pCR3.1-CYP2B1 was linearized by digestion with XhoI, followed by agarose 

gel electrophoresis and Qiaprepł Spin MiniprepKit 250 (Qiagen) purification 

according to the manufacturer’s instructions. Plasmid DNA content was evaluated by 

UV absorption measurement at 260nm and 280nm respectively. 

2.3.3 Generation of stably transfected single cell clones 

CT26 and Neuro2A cells were seeded and transfected in 24-well plates. The 

transfection complex of linearized pCR3.1-CYP2B1 plasmid with PEI was generated 

at an N/P ratio (nitrogen in PEI/phosphate in DNA) of 6 in HBS (HEPES buffered 

saline: 20mM HEPES pH 7.1, 150mM NaCl) at a final DNA concentration of 20 

µg/ml. Forty eight h after transfection, cells were selected with 0.5 µg geneticin per ml 

culture medium. To obtain subclones, the surviving cells were re-seeded in a 96-well 

plate at 1 cell/well after 2 wk of geneticin selection. Subclones were analyzed and 
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characterized for CYP2B1 activity using 7-pentoxyresorufin as substrate. Clone X39 

gave the highest P450 activity and was used in all subsequent experiments. 

 

2.4 Polyplex formation and transfections 

In general, polyplexes were generated by condensing plasmid DNA encoding 

luciferase, EGFP-N1 or pCMV-CYP2B1 with LPEI at a molar ratio of PEI nitrogen to 

DNA phosphate (N/P) of 6. For this reason, plasmid DNA and PEI or PEI conjugates 

were each diluted in HBS (HEPES buffered saline, and rapidly mixed by pipetting up 

and down 10 to 20 times. DNA/PEI polyplexes were prepared at a final DNA 

concentration of 20µg/ml. Polyplexes were allowed to stand for at least 20min at 

room temperature before use. 

2.5 Gene expression assays 

2.5.1 Luciferase reporter gene expression in vitro experiments 

Cells were plated in the indicated densities either in 48 well- or in 24 well- plates 24h 

prior to transfection. In case of primary endothelial cells or fibroblasts well plates 

were coated with collagen G prior seeding. Transfection complexes with indicated 

amounts of plasmid DNA were added to the cells in 300µl of cell culture medium. 

Medium was replaced 4h after the transfection and gene expression was measured 

at the indicated time points (if not mentioned, measurement was performed 24h after 

transfection). Detection of luciferase activity  was carried out as described recently 

(77). Luciferase activity levels were expressed as relative light units (RLU) per 

seeded cells (mean ± SD from n=3, n=4 or n=6) or were normalized on activity levels 

of control cells. 2ng of recombinant luciferase (Promega, Mannheim, Germany) 

correspond to 107 relative light units (RLU).  

Detection of luciferase activity under the control of a NF-遠B sensitive promoter in 

primary fibroblasts was carried out with a prolonged signal measure time of 30s. 

In the case of hypoxia induction studies, cells were plated in the indicated density on 

6 well plates prior to transfection. Detection of luciferase activity was carried out at 

the indicated time points with the Promega Dual Luciferase kit according to 

manufactures instructions. 

2.5.2 EGFP reporter gene expression  

Indicated number of cells was seeded 24 h prior to transient transfection in a 48-well 

plate (NUNC). Cells were transfected with the indicated amount of pCMV-EGFP-N1 
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using linear PEI (N/P 6 in HBS). Medium was replaced 4h after transfection. Forty 

eight h after transfection, the cells were washed with PBS and harvested by trypsin 

treatment. For analysis of EGFP expression, the cells were analyzed as described 

(78) or by counting GFP positive cells by fluorescence microscopical analysis. 

2.5.3 CYP2B1 gene expression 

Indicated number of cells was seeded 24 h prior to transient transfection in a 48-well 

plate (NUNC). Cells were transfected with the indicated amount of pCMV-CYP2B1 

using linear PEI (N/P 6 in HBS). Medium was replaced 4h after transfection. Forty 

eight h after transfection, the cells were washed with PBS and harvested by trypsin 

treatment. For analysis of CYP2B1 expression, the cells were analyzed after 

antibody-staining by FACS analysis as described (79) or by counting positively 

stained cells by fluorescence microscopical analysis. 

2.5.3.1 CYP2B1 Transgene expression analysis after 

  transient transfection 

HUH7 cells were seeded 24 h prior to transient transfection in a 48-well plate. Cells 

were transfected with 100 ng pCMV-CYP2B1 or pCMV-EGFPN1 using linear PEI 

(N/P 6 in HBS). Forty eight h after transfection, the cells were washed with PBS and 

harvested by trypsin treatment. For analysis of EGFP expression, the cells were 

analyzed as described (80). For analysis of CYP2B1 expression, cells were fixed with 

2% paraformaldehyde in PBS, followed by permeabilization with 0.1% (w/v) Triton X-

100 in PBS. Cells in 5% FBS in PBS were incubated with mouse monoclonal anti-rat 

CYP2B1 (Oxford Biomedical Research, Oxford, MI, USA) or, as a control, with non-

specific mouse isotype control antibody. Alexa488-conjugated goat anti-mouse IgG 

(Molecular Probes) was used as second antibody. Cells were analyzed on a Cyan 

MLE flow cytometer (Dako Cytomation, Kopenhagen, Denmark). As an additional 

control, non-transfected cells were similarly stained and analyzed.   

2.5.4 NF-遠B activity studies 

NF-遠B levels in primary endothelial cells 
Screening for NF-遠B activity levels of primary endothelial cells (HUVECs) were 

performed in the absence or in the presence of different concentrations of acrolein in 

the medium. Therefore HUVEC cells were seeded on collagen coated (Collagen G, 

Biochrom) 24 well plates in a density of 15000 cells/well prior to transfection. HUVEC 

cells were transfected with LPEI polyplexes (N/P 6, HBS, 300ng/well) containing 

either pNF遠B-LUC plasmid or pTAL-LUC plasmid DNA. Medium was replaced 4h 
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after transfection with 300µl of fresh medium and cells were cultivated for further 20h 

at standard conditions (37ºC, 5% CO2, 20.9 %oxygen). 24h after the transfection 

different amounts of acrolein (dissolved in PBS) were added to the cells. Control cells 

were vehicle treated (PBS). Cells were cultivated for further 24h and detection of 

luciferase activity was carried out as described in 3.5.1.1. NF-遠B induced luciferase 

expression was normalised on pTAL-LUC activity levels.  

 
NF-遠B levels in tumor cells (CT26) 
Screening for NF-遠B activity levels of CT26 tumor was performed in the absence or in 

the presence of different concentrations of Acrolein in the medium. Therefore CT26 

cells were seeded on 24 well plates in a density of 15000 cells/well prior to 

transfection. CT26 cells were transfected with LPEI polyplexes (N/P 6, HBS, 

400ng/well) containing either pNF遠B-LUC plasmid or pTAL-LUC plasmid DNA. 

Medium was replaced 4h after transfection with 300µl of fresh medium and cells were 

cultivated for further 20h at standard conditions (37ºC, 5% CO2, 20.9 %oxygen). 24h 

after the transfection different amounts of acrolein (dissolved in PBS) were added to 

the cells. Control cells were vehicle treated (PBS). Cells were cultivated for further 

24h and detection of luciferase activity was carried out as described in 3.5.1.1. NF-遠B 

induced luciferase expression was normalised on pTAL-LUC activity levels.  

 
NF-遠B levels in other tumor cells 
Screening for NF-遠B activity levels of PC3 and reisolated PC3ID3 and PC3ID4 as 

well as HUH7 and reisolated HUH7 REISO and Neuro2A and Neuro2A REISO cells 

was performed by transfection with a NF-遠B sensitive luciferase encoding plasmid. 

Therefore all mentioned parental and reisolated cells were seeded on 24 well plates 

in a density of 15000 cells/well 24h prior to transfection. Cells were transfected with 

LPEI polyplexes (N/P 6, HBS, 400ng/well) containing either pNF遠B-LUC plasmid or 

pTAL-LUC plasmid DNA. Medium was replaced 4h after transfection with 300µl of 

fresh medium and cells were cultivated for 44h at standard conditions (37ºC, 5% 

CO2, 20.9 %oxygen). Detection of luciferase activity was carried out as described in 

3.5.1.1. NF-遠B induced luciferase expression was normalised on pTAL-LUC activity 

levels.  

 
NF-遠B levels in primary fibroblasts 
Primary fibroblasts expressing luciferase under the control of a NFKB sensitive 

promoter were obtained from transgene animals (NFKB-LUC-Mice). Fibroblasts were 
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seeded on collagen coated (Collagen G, Biochrom) 24 well plates in a density of 

15000 cells/well. 24h after the seeding cells were treated with different 

concentrations of acrolein (dissolved in PBS). Control cells were vehicle treated 

(PBS).  

2.6 Assays for detection of CYP2B1 enzymatic activity 

2.6.1 Resorufin assay 

A modified form of a previously described assay (81) was used to assay CYP2B1 

enzymatic activity. Cells were incubated in 48-well plates with 200 µl Optimem I 

medium containing 1.7 µM 7-pentoxyresorufin and 100 µM 3,3´-methylene-bis(4-

hydroxycoumarin) (‘substrate solution’) for 20 to 120 min. Following incubation, the 

cells were subject to a freeze-thaw-cycle to stop the enzymatic reaction. The 

supernatant was transferred to a 1.5 ml reaction tube, centrifuged at 15,000 g for 10 

min and 150 µl of the clear liquid was assayed for fluorescence using a Cary Eclipse 

fluorimeter (Cary, Mulgrave, Australia) with excitation and emission wavelengths set 

to 562 and 585 nm, respectively. Measurements were performed in triplicate and 

enzyme activity was expressed as relative fluorescence units (RFU). 

When measuring CYP activity under the agarose layer 200µl substrate solution was 

injected between the adherent cells and the agarose layer after solidification of the 

agarose (200µl). After 40min of incubation at 37°C the agarose layer was removed 

and resorufin content quantified in the supernatant. In the “–gel” samples, 200µl 

substrate solution was added to the cells under standard conditions, incubated for 

40min at 37°C and resorufin content quantified thereafter. In the case of the “gel 

removed” samples, cells were overlaid with 200µl agarose for 1h. Thereafter the gel 

was removed, 200µl substrate solution added to the cells and after incubation at 

37°C for 40min resorufin was quantified in the supernatant. No significant amounts of 

resorufin were found in the agarose layer, indicating that the majority of resorufin is 

localized in the solution between the cells and the agarose overlay. 

 When performing the pentoxyresorufin assay in a hypoxia chamber, 100,000 X39 

cells were seeded in a 3.5 cm culture dish. Twenty four h after seeding, the cells 

were incubated in the hypoxia chamber for 40 min with 500 µl of the substrate 

solution either under normoxia (21% O2) or under various decreased O2 

concentrations, with O2 replaced by a mixture of N2 and CO2. Oxygen partial 

pressure was measured with a digital oxymeter (GMH 3690, Greisinger Electronic, 
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Germany). Relative humidity and temperature (37°C) were similar under all 

conditions. 

For validation recovery of resorufin in biological fluidics was investigated. Therefore 

different amounts of resorufin (solved in PBS) were added to the resorufin incubation 

solution. The detection of the added resorufin was performed by fluorescence 

measurement as described above. 

Thereby, concentrations of added resorufin were chosen in an interval that is relevant 

for in situ released resorufin by CYP2B1 enzymatic reaction. FIG 2-1 demonstrates 

that measured fluorescence signal of the recovered resorufin in the incubation 

solution depends on its concentration in a linear manner. 
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Fig.: 2-1 Validation of recovery of 
resorufin in biological fluidics. Different 
amounts of resorufin were added to the 
resorufin incubation solution in order to 
achieve cell culture medium with 
increasing concentrations of resorufin. 
Resorufin recovery was performed by 
fluorescence measurement 
(562nm/585nm). Values are means 
±SE of duplicates 

 

 

Further evaluation of the resorufin assay was performed on the X39 cell line because 

of the high CYP2B1 enzymatic activity of the cell line. 

The amount of in situ produced resorufin was proportional to the incubation time (FIG 

2-2 A) and proportional to cell count (FIG 2-2 B). 
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A         B 

Fig.: 2-2 Validation of the resorufin assay for detection of CYP2B1 activity in cultured cells. A) X39 
cells were cultured with resorufin assay incubation solution for different incubation times. Resorufin in 
the supernatant was determined by fluorescence measurement after a freeze-thaw-cycle. Values are 
means ± SD of triplicates. B) Different amounts of X39 cells were cultured with resorufin incubation 
solution for 60min. After a freeze-thaw cycle resorufin was determined in the supernatant by 
fluorescence measurement. Values are means ±SE of duplicates. 

 

2.6.2 Acrolein assay 

A modified form of an previously described assay (82-84) was used to measure 

CYP2B1 enzymatic activity in the context of CPA conversion. 

In contrast to the described assay, the cell incubation solution included 0.005M 

semicarbazide to reduce protein adduct forming in a FBS containing medium. After 

the incubation, cells were subjected to a freeze-thaw cycle, followed by removal of 

proteins by precipitation. Therefore, 500µl of the incubation solution was drugged 

with 200µl of a sated solution of barium hydroxide and 200µl of a sated solution of 

zinc chloride. After an centrifugation step, the acrolein in the supernatant was 

derivatized as described previously (85). Derivatised acrolein was detected by 

fluorescence measurement; measurements were performed by using a Cary Eclipse 

fluorimeter (Cary, Mulgrave, Australia) with excitation and emission wavelengths set 

to 350nm and 515nm, respectively. Measurements were performed in triplicate and 

enzymatic conversion capability was expressed as relative fluorescence units (RFU). 

 

For validation, recovery of acrolein in cell culture medium was investigated. Therefore 

indicated amounts of acrolein (solved in PBS) were added to the incubation solution. 

Protein precipitation, derivatising and the detection of added acrolein was performed 
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by fluorescence measurement as described above. Thereby, concentrations of added 

acrolein were chosen in an interval that is relevant for in situ released acrolein by 

CPA conversion. FIG 2-3 demonstrates that measured fluorescence signal of the 

recovered acrolein in the incubation solution depends on its concentration in a linear 

manner up to 30µM. 
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Fig.: 2-3 Validation of acrolein 
recovery in cell culture medium 
supplemented with 10% FBS. 
Different amounts of acrolein were 
added to cell culture medium 
(DMEM, low glucose, supplemented 
with 10% FBS) in order to achieve 
medium with increasing 
concentrations of acrolein. Acrolein 
recovery was performed with the 
acrolein assay described in 
materials and methods. Values are 
means ±SE of triplicates. 

 
 

2.7 Hypoxia induced HRE-responsible gene expression  

Control hypoxia induction studies were performed with CT26 and Neuro2A cells. 

20.000 CT26 or Neuro2A cells were seeded in 6 well plates (NUNC). 24h after the 

seeding cells were transfected with LPEI polyplexes (N/P 6, HBS, 1000ng/well) 

containing pHRE-LUC and pRL-SV40 plasmid DNA (400:1 w/w). Medium was 

replaced 4h after transfection and cells were cultivated for 20h at standard conditions 

(37ºC, 5% CO2, 20.9 %oxygen). Cells were cultured for further 24h at 37ºC in 

humified atmosphere containing either air (20.9% oxygen; normoxia) or air sufficient 

to give 1% oxygen. 5% CO2 was used in all normoxic and hypoxic incubators, with 

the balance being nitrogen in the hypoxic incubation. Oxygen partial pressure was 

measured with a digital oxymeter (GMH 3690, Greisinger Electronic, Germany).  

Firefly and Renilla luciferase expression levels were determined by the Promega 

Dual Luciferase kit according to the manufactures instructions. 

For hypoxia induction studies referring to the agarose overlay technique 200.000 

CT26 or Neuro2A cells were seeded in 6 well plates (NUNC). 24h after the seeding 

cells were transfected with LPEI polyplexes (N/P 6, HBS, 1000ng/well) containing 

pHRE-LUC and pRL-SV40 plasmid DNA (400:1 w/w). Medium was replaced 4h after 
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transfection and cells were cultivated for 20h at standard conditions (37ºC, 5% CO2, 

20.9 %oxygen). 24h after the transfection agarose overlay was performed with 1.6ml 

agarose (0.5% w/w) containing medium. 5.2ml agarose free medium was added after 

solidification to the well plates. Cells were cultured for further 24h in a humified 

atmosphere at 37ºC, 5% CO2, 20.9 %oxygen. Afterwards, agarose overlay was 

removed and cells were analyzed for firefly and renilla luciferase activity by the 

Promega Dual Luciferase kit according to manufactures instructions. The Renilla 

LUC-expressing plasmid pRL SV40 (Promega) was included in each transfection, as 

an internal control to normalize LUC expression.  

 

2.8 Angiogenesis assays 

2.8.1 Migration assay wound healing (scratch wound assay) 

HUVEC and PEC cells were plated onto collagen G (Biochrom AG) coated chamber 

slides (IBIDI, Munich, Germany) or glass cover slips (15000 cells/well) 24h prior 

performing the scratch wound assay. When cells were confluent, the monolayer was 

scratched by a yellow pipette tip. Detached cells were rinsed away with PBS and the 

medium was changed. Digital image of cells was taken immediately after scratching 

(t=0) and after the incubation time. Cells were cultivated for further 24h in the 

presence of indicated concentrations of acrolein or in cocultivation with CYP2B1 

expressing X39 cells with or without CPA. The distance between cells in the 

scratched area was measured using the Axio vision LE software (Zeiss, Jena, 

Germany). Ten measurements were performed for each data point. The results were 

calculated in% rate of migration, whereas time point 0 was considered as the starting 

point and the 24h time point in the control experiments was considered as 100% cell 

migration. 

2.8.2 Tube formation assay 

Cooled matrigel (Sigma, Germany) 50µl was added to each well of a 96 well plate 

(300µl to a 24well plate) and incubated at 37°C for 30min to allow polymerisation. 

HUVEC cells were harvested at a density of about 70% confluency and the cell 

suspension was added to each well of the plate and incubated for 4h in the absence 

or in the presence of indicated concentrations of CPA or acrolein, respectively. Cells 

were fixed with 4% paraformaldehyde (in PBS) and analyzed via transmitted light 



Materials and methods   32

microscopy. Total amount of tube like structures were detected, whereas only 

complete tubes were counted. 

2.8.3 Staining for integrin v 3 

Cells were cultured as described on collagen IV coated Lab-Tek chambered #1.0 

Borosilicate cover glass system from NUNC. After treatment for 4h with indicated 

concentrations of acrolein the supernatant was removed and cells were washed with 

prewarmed PBS, followed by fixing with paraformaldehyde containing PBS (4% w/w) 

for 10min. In case of simultaneous staining of the F-actin cytoskeleton as well as 

integrin receptors the fixation was followed by a Triton-X 100 (0.1% in PBS) 

treatment for 5min. Thereafter, cells were washed two times with PBS containing 

0.5% FCS. After the second washing step, cells were incubated for 10min with the 

FBS containing PBS to mask unspecific recognition sequences.  

The supernatant was removed and replaced by 200µl of antibody containing (mouse-

anti-human CD51/61 ((Dako, Copenhagen, Denmark)) PBS solution containing 0.5% 

FBS. The working dilution of the antibody was 1:200. After incubation for 2h at room 

temperature cells were washed for 3 times with PBS containing 0.5% FBS to remove 

unbound antibody. For simultaneous visualisation of the F-actin cytoskeleton and 

integrin receptors, cells were incubated with a solution containing Cy5 labelled anti 

mouse antibody (1:200) (Jackson ImmunoResearch Laboratories, Inc.) and 

Phalloidin-FITC with an end concentration of 0,165µM; the incubation was performed 

at room temperature for 1h in a humified atmosphere. Afterwards cells were washed 

repeatedly with PBS containing 0.5% FBS. Immediately after the washing procedure 

cells were embedded with vector shield mounting medium (Vector Labs, Burlingame, 

CA, USA) to avoid drying and bleaching processes. Pictures were obtained by using 

a Zeiss Axiovert 200 microscope. FITC-fluorescence was excited using a 470±20 nm 

bandpass filter and emission was collected using a 540±25 nm bandpass filter, 

whereas ALEXA467 was excited using a 640±20 nm bandpass filter and emission 

was collected using a 735±35 nm bandpass filter. 

2.8.4 Staining for F-actin 

Cells were cultured as described above on collagen IV coated Lab-Tek chambered 

#1.0 Borosilicate cover glass system from NUNC. After treatment for 4h with 

indicated concentrations of acrolein the medium was removed. Cells were fixed with 

PBS containing 4% (w/w) paraformaldehyde for 10min after washing with prewarmed 
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PBS. The fixing solution was removed completely and the cells were washed with 

prewarmed PBS again followed by a treatment with 0.1% Triton X-100 in PBS. After 

5min of Triton X treatment, cells were washed two times with PBS containing 0.5% 

FCS. After the second washing step cells were incubated for 10min with PBS 

containing 0.5% FBS. Afterwards the supernatant solution was removed and 

replaced by 200µl of a 0,165µM phallotoxin-FITC (Sigma-Aldrich, Germany) 

containing PBS/FBS solution. After incubation for 30min at room temperature in the 

dark cells were washed again for 3 times with PBS containing 0.5% FBS to remove 

unbound phallotoxin-FITC. Immediately after the washing procedure cells were 

embedded with vector shield mounting medium (Vector Labs, Burlingame, CA, USA), 

to avoid drying and bleaching processes. Pictures were obtained by using a Zeiss 

Axiovert 200 microscope and using a 470±20 nm bandpass filter for excitation; 

emission was collected using a 540±25 nm bandpass filter. 

2.8.5 Thrombospondin Elisa 

HUVEC cells were seeded on collagen G (Biochrom AG) coated 24 well plates (TPP, 

Switzerland) in a density of 15000 cells per well. 24h after the seeding, cells were 

cultured with indicated concentrations of acrolein in the medium for further 24h. After 

the incubation, cells were washed with PBS followed by cell lyses with 100µl/well 

Millipore water and a freeze-thaw cycle. Subsequent centrifugation at 16,000g for 

60min (4ºC) allowed removal of cell debris. 25µl of the supernatant was diluted with 

Diluent #2 (ChemiKine, Human TSP-1 EIA KIT, Chemicon, USA) to 100µl diluted 

sample. The samples were analyzed for TSP-1 level by the ChemiKine Human TSP-

1 EIA KIT according to manufactures protocol. 

Data thus obtained were normalized on protein content, measured by the BCA 

protein content assay (BCA, Protein Assay KIT, Pierce, Rockford, IL) according to 

manufactures protocol.  

 

2.9 Proliferation and viability assays 

2.9.1 Hoechst33258 DNA content assay 

To assay for DNA content, culture medium and agarose layer were removed and 

cells were washed with PBS. After the washing procedure, cells were harvested with 

Trypsin-EDTA (100µl) and lysed with Millipore water (100µl) followed by freeze-thaw-

cycle. 200µl of cell lyses buffer (20mM Tris, 2mM EDTA 5M NaCl, pH 7.4) containing 
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0.2µg/ml Hoechst 33258 dye were applied to each well, followed by another freeze-

thaw-cycle. 200µl of the cell suspension were transferred to a black bottom 96 well 

plate (Greiner-Bio One, Frickenhausen, Germany). The DNA content was measured 

by quantifying fluorescence signal with a SPECTRAFluor Plus plate reader (Tecan, 

Grödig, Austria),using excitation and emission filters centered at 360nm (excitation) 

and 465nm (emission), respectively. 

For verifying the qualification of this assay increasing cell numbers were transferred 

to Eppendorf tubes and centrifuged at 1000rpm. The pellets were analyzed by the 

Hoechst33258 based DNA content assay as described in materials and methods. 

Linear correlation between cell number and fluorescence signal in the DNA content 

assay was found. The correlation was verified for the following cell lines: 9L, 9L-

D2B1, CT26, X39, Neuro2A and HUH7. 

For safe cell count quantification at least 600 to 700 cells were required. (three fold 

fluorescence increase in comparison to signal to noise ratio) 

FIG 2-4 demonstrates that the Hoechst 33258 based proliferation assay is reliable for 

cell numbers ranging from 1x103 to 5x104. 
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Fig.: 2-4 Validation of the Hoechst33258 based proliferation assay. Neuro2A, CT26, X39, 9L, 9L-D2B1 
and HUH7 cells were harvested with trypsin/EDTA, followed by a freeze-thaw cycle. The assay was 
performed by incubating different cell numbers with TNE buffer containing Hoechst33258 in black 
bottom 96 well plates, fluorescence was determined at 465nm in a SPECTRAFluor Plus plate reader 
(excitation: 360nm). Values are means of duplicates. 
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Results obtained with the Hoechst33258 based DNA content assay correlate well 

with those of the MTT assay under normoxic conditions. However, cultivation of cells 

under long-term hypoxic conditions, results of the MTT assay were artificially low, 

indicating adaption mechanisms influencing metabolic activity in the MTT assay. 

2.9.2 MTT assay 

After removing the culture medium and, if applicable, the agarose layer, 300 µl of 

culture medium containing 0.25% MTT (w/v) was applied to each well after which the 

plates were incubated for 3 h at 37°C. MTT is converted to a colored, water insoluble 

formazan salt by the metabolic activity of viable cells. The culture medium was then 

removed and the cells were frozen at -80°C. After thawing the cells, 300 µl of DMSO 

was added to dissolve the insoluble formazan salt and absorbance at 590 nm was 

measured with a plate reader (Tecan, Grödig, Austria). A reference absorbance at 

630 nm was subtracted from the absorbance at 590 nm for each well. 

In order to verify the adequacy of this assay for the quantification of living cells 

different cell numbers were seeded and measured for metabolic activity by MTT 

assay as described above 24h after seeding. In a parallel experiment the seeded 

cells were harvested by treatment with trypsin/EDTA solution and cell number was 

determined by transmitted light microscopy. 

The reliability of the MTT assay was verified for CT26, Neuro2A, 9L and HUH7 cells. 

Linear correlation between cell number (living cells) and MTT absorbance was found 

in all assayed cell lines.  
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Fig.: 2-5 Validation of cell number (living cells) correlation with metabolic activity (MTT assay). Cell 

count of living cells was determined by transmitted light microscopy after addition of tryptan blue as a 

marker for viable cells. Values are means of duplicates. In a parallel performed MTT assay total 

metabolic activity of the cells was measured. Values are means of duplicates. 

 

2.10  Flow cytometric analysis and microscopy 

2.10.1 Flow cytometric analysis of EGF receptor 
 and CD71 on reisolated tumor cells 

Indicated reisolated tumor cells (PC3ID3, PC3ID4 and HUH7 REISO) and parental 

tumor cells (PC3 and HUH7) were seeded in 24 well plates (TPP, Switzerland) at a 

density of 40.000 cells per well 48h prior receptor status detection. Cells were 

washed with prewarmed PBS and harvested by treatment with trypsin/EDTA. The 

obtained cell suspensions were pooled and adjusted to 106 cells/ml with MACS buffer 

(PBS containing 2.5% FBS) after centrifugation for 5min at 150g (Haereus, Megafuge 

1.0 R). The cell suspension was divided up and exposed to the following antibodies 

at 4°C for 1h; mouse-anti-human-EGF antibody (Dako) and mouse-anti-human CD71 

antibody (Dako). Control staining was performed by using mouse IgG1, negative 

control antibody (Dako). All antibodies were applied at a total dilution of 1:200. 

After primary antibody exposition, cells were washed repeatedly with prewarmed 

MACS buffer (PBS containing 2.5% FBS) to remove unbound antibody. Secondary 

antibody staining was performed by exposing the cell suspension to ALEXA488 

labelled anti-mouse-antibody (Invitrogen), for 1h at 4°C. The secondary antibody was 

applied at a total dilution of 1:400. 

Reisolated Neuro2A tumor cells and parental Neuro2A tumor cells were seeded in 24 

well plates (TPP, Switzerland) at a density of 40.000 cells per well 48h prior receptor 

status detection. Harvesting and adjusting cell suspension to 106 cells/ml was 
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performed as described above. The cell suspension was divided up and exposed to 

the PE-labelled anti-mouse CD71 antibody (BD Pharmingen) at 4°C for 1h; control 

staining was performed by exposition to the corresponding PE-labelled rat-IgG-

control antibody (BD Pharmingen). Both antibodies were applied at a total dilution of 

1:200. 

Samples were kept on ice until analysis. Receptor status was assayed by flow 

cytometry using a CyanTM MLE flow cytometer (Dako). The fluorophore of ALEXA488 

labelled antibody was excited at 488nm and emission was detected by using a 

530/40nm bandpass filter, whereas PE was excited through a 750nm longpass filter 

and emission was detected using a 613/20 bandpass filter.  

To discriminate between viable and dead cells and to exclude doublets, cells were 

appropriately gated by forward/side scatter and pulse width. Antibody staining was 

evaluated via electronically analysis by using the WINMDI software.  

2.10.2 Flow cytometric analysis of integrin receptor 
  and aminopeptidase N on HUVEC cells 

Cells were seeded in collagen G (Biochrome AG, Germany) coated 24 well plates 

(TPP, Switzerland) at a density of 20.000 cells per well 48h prior receptor status 

detection. Cells were washed with prewarmed PBS and harvested by treatment with 

collagenase (Biochrom AG) (625 U/ml). The obtained cell suspensions were pooled 

and adjusted to 105 cells/ml with MACS buffer (PBS containing 2.5% FBS) after 

centrifugation for 5min at 150g (Haereus, Megafuge 1.0 R). The cell suspension was 

divided up and exposed to the following antibodies at 4°C for 1h; mouse-anti-human 

CD51/61 antibody (Dako) and mouse-anti-human aminopeptidase N (CD13) (Dako). 

Control staining was performed by using the mouse specific antibodies rat-anti-

mouse CD51 (Dako) and rat-anti-mouse CD13 (Biolegend). All antibodies were 

applied at a total dilution of 1:200. 

Afterwards, cells were washed repeatedly with prewarmed MACS buffer (PBS 

containing 2.5% FBS) to remove unbound antibody. Secondary antibody staining 

was performed by exposing the cell suspension to ALEXA488 labelled anti-mouse- or 

anti-rat-antibody (Invitrogen), respectively for 1h at 4°C. The secondary antibody was 

applied at a total dilution of 1:400. Receptor status was assayed as described in 

2.10.1. 
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2.10.3 Flow cytometric analysis of integrin receptor status 
  on CT26 tumor cells 

CT26 tumor cells were seeded in collagen G (Biochrome AG, Germany) coated 24 

well plates (TPP, Switzerland) at a density of 30000 cells per well 24h prior receptor 

status detection. Cells were washed with prewarmed PBS and harvested by 

treatment with collagenase (Biochrom AG) (625 U/ml). The obtained cell suspensions 

were pooled and adjusted to 106 cells/ml with MACS buffer (PBS containing 2.5% 

FBS) after centrifugation for 5min at 150g (Haereus, Megafuge 1.0 R). The cell 

suspension was divided up and exposed separately to the following antibodies at 4°C 

for 1h; mouse-anti-human CD51/61 antibody (Dako), rat-anti-mouse CD51 (Dako) 

and rat-anti-mouse CD13 (Biolegend). All antibodies were applied at a total dilution of 

1:200. Afterwards, cells were washed repeatedly with prewarmed MACS buffer (PBS 

containing 2.5% FBS) to remove unbound antibody. Secondary antibody staining 

was performed by exposing the cell suspension to ALEXA488 labelled anti-mouse- or 

anti-rat-antibody (Invitrogen), respectively for 1h at 4°C. The secondary antibody was 

applied at a total dilution of 1:400. Receptor status was assayed as described in 

2.10.1. 

2.10.4 Transmission light and epifluorescence microscopy 

Transmission light microscopy of living cells growing as monolayers or multicellular 

microspheroids wrapped in agarose was performed using an Axiovert 200 

microscope (Carl Zeiss, Jena, Germany) equipped with a Sony DSC-S75 digital 

camera (Sony Corporation, Tokyo, Japan). Light was collected through 5x0.12 NA, 

10x0.25NA or 32x0.40Na objectives (Carl Zeiss, Jena, Germany), and images were 

captured using phase contrast. 

Fluorescence microscopy of transiently EGFP expressing cells was carried out using 

an Axiovert fluorescence microscope (Carl Zeiss, Jena, Germany). CYP2B1 

expressing cells were stained with the mouse-anti-ratCYP2B1 antibody 

(Oxfordbiomedical Research, Oxford) followed by visualisation by the secondary 

ALEXA488 labelled goat-anti-mouse antibody (Invitrogen, Oregon, USA). EGFP and 

ALEXA488-fluorescence were excited using a 470±20 nm bandpass filter and 

emission was collected using a 540±25 nm bandpass filter. 

Fluorescence microscopy of stained cryosections was likewise carried out using an 

Axiovert 200 fluorescence microscope (Carl, Zeiss, Jena, Germany) equipped with a 

Zeiss Axiocam camera. Light was collected through a 20x0.4 NA or 63 x 1.4 oil 
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immersion objective (Zeiss). Hoechst33258 fluorescence was excited using a 365 nm 

bandpass filter and emission was collected using a 420 nm bandpass filter. ALEXA 

488 and FITC-fluorescence were excited using a 470±20 nm bandpass filter and 

emission was collected using a 540±25 nm bandpass filter, whereas ALEXA467 was 

excited using a 640±20 nm bandpass filter and emission was collected using a 

735±35 nm bandpass filter. Texas Red fluorescence was excited using a 530-585 nm 

bandpass filter and emission was collected by using a 615nm longpass filter. 

Cy3 fluorescence was excited using a 546 nm bandpass filter and emission was 

collected by using a 610±30 nm bandpass filter. Digital image recording and image 

analysis were performed with the Axiovision 3.1 software (Zeiss) or the Axiovision LE 

software (Zeiss), respectively.  

 

2.11 In vivo/ex vivo experiments 

2.11.1 Animals 

Mice were obtained either from breeders for lab animals (Harlan-Winkelmann, 

Borchen or Charles River, Sulzfeld) or own breeding. Up to 5 animals were kept in 

single individually ventilated cages (Type II, long, Techniplast ICV System, 

Buguggiate, Italy) under specified pathogen free conditions. Room temperature was 

21ºC, humidity was 60% and the night/day stages were 12h each. Food (Sniff) and 

water were autoclaved before use and were available for the mice ad libitum.  

The litter in the cages was saw mill waste (3/4 fiber, Abedd Koeflach, Austria); 

additionally cages were equipped with pulp, a red mouse house (Techniplast, Italy) 

and a tube of wood (Abedd, Koeflach, Austria). The cages were loaded with the 

equipment and autoclaved prior use. 

Mice obtained from breeders were kept at least one weak in the new environment for 

acclimatisation before admitting them to the experiments. 

The experiments with animals were approbated by the Bavarian government. All 

performed experiments were in line with the request for animal experiments 

“Gentherapeutische Behandlung von Tumoren im Tier-Model-System” (209.1/211-

2531-5/03, project leaders Prof. E. Wagner/Dr. M. Ogris and “Elektroporation zur 

Behandlung von Tumoren mit therapeutischen Nukleinsäuren“ (209.1/211-2531-

63/03) project leaders Dr. C. Culmsee/Dr. M. Ogris. 
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2.11.2 Providing tumor cells for in vivo implantation 

CT26 mouse colon carcinoma cells (ATCC CRL-2638), Neuro2A mouse 

neuroblastoma cells (ATCC CCl-131) and X39 CYP2B1 expressing CT26 cells were 

cultured as described above in DMEM low glucose supplemented with 10% FBS. 

HUH7-human hepatocellular carcinoma cells (JCRB 0403; Tokyo, Japan) were 

cultured in DMEM/F12 with Glutamax I medium supplemented with 10% FBS. 

PC3 human prostate carcinoma cells (CRL-1435) were cultured in RPMI medium 

supplemented with 10% FBS. 

All cell lines were cultured without antibiotics for at least 3-4 passages, before tumor 

implementation. Cells were harvested with trypsin/EDTA when confluency was about 

70%. 

2.11.3 Tumor cell implantation and tumor models 

The tumor cells were cultivated as described above. When a confluency of about 

70% was reached, medium was removed and cells were washed 2 times with 37C 

warm PBS, followed by harvesting with trypsin/EDTA (Invitrogen, Germany). 

The obtained cell suspension was mixed with medium containing 10% FBS in order 

to inactivate the present trypsin. Cells were counted by transmitted light microscopy 

with a Rosenberg count plate. Afterwards, the cell suspension was centrifuged 5min 

with 150g and resuspended in fresh PBS. This washing procedure was repeated 

before cells were suspended with PBS to the desired concentration. 

Mice were shorn before application of the tumor cell suspension with an electrical 

razor (Braun, Germany). 100µl of the tumor cell suspension was applicated 

subcutaneously with a 25G needle (Braun, Melsungen, Germany) into the flank of the 

animals.  

Animals were controlled regularly for tumor growth. When the tumor volume reached 

a size of at least 10mm3, tumor progression was monitored with a digital measuring 

slide (Digi-Met, Preisser, Gammertingen). For determination of tumor growth 3 

parameters (length, width and height) were measured and tumor volume was 

calculated via the following formula: a x b x c x 0.4 (whereas a, b and c are the 

measured parameters length, width and height). Accounting for measured thickness 

of the skin the correction factor 0.4 is required in order to calculate real tumor 

volume. 
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Syngeneic tumor models 

Neuro2A cells (1x106 tumor cells per animal) were applicated subcutaneously to 

about 8 to 9 weeks old A/J mice. The cells were suspended in PBS; total 

subcutaneous injection volume per animal was 100µl. 

  

Xenograft tumor models 

SCID mice were used for the CT26/X39, HUH7 and the PC3 tumor model due to 

disturbed function of the immune system (86). For establishing subcutaneous CT26, 

X39 and HUH7 tumors, male and female SCID mice were used when they were 

about 8 to 9 weeks old. 

For establishing the CT26/X39 tumor model 100 000 cells, for the HUH7 tumor model 

5x106 cells and for the PC3 tumor model 106 were applicated subcutaneously. The 

PC3 human prostate xenograft model was solely established on male SCID mice. All 

tumor cells were suspended in PBS. The total injected volume per animal was 100µl. 

2.11.4 Systemic application of Hoechst dye 33258 

For systemic application of the Hoechst33258 dye (2.5 mg/ml Hoechst33258 in PBS), 

as a marker for blood flow, procedure of injection was similar to the application of the 

polyplex formulations described above. After the injection mice were removed from 

the tube. 5min after the application of the Hoechst dye mice were sacrificed.  

2.11.5 Intraperitoneal application of CPA 

The chemotherapeutical drug CPA (Cyclophosphamide, Sigma, Taufkirchen) was 

solved in PBS at a concentration of 10mg/ml followed by steril filtration (0.22µm 

sterilfilter, Millex-GV, Millipore Carrigtwohill, Ireland). Application was performed 

intraperitoneally. Therefore mice were fixed by hand and turned in order to allow 

access to the ventral side. The CPA solution was administered with a 25G needle 

(Braun, Melsungen). The application of the CPA solution was carried out every 4th, 

6th or 7th day, respectively. The applicated volume was 80 to 350µl. The single dose 

of each application was based on animal body weight. Toleration of the treatment 

with CPA was monitored by regular measurement of body weight. 

2.11.6 Isolation of tumors/organs for histology 

For histological investigation of tumor and organs mice were sacrificed with CO2. 

Before organs were removed the vein to the liver was cut in order to reduce rest 

blood. After the removal, the organs were embedded in OCT Tissue Tek (Sakura, 
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USA) and frozen at -80C. In the case of fluorescence microscopic analysis of GFP 

expression tissue was fixed with 4% paraformaldehyde in PBS for 1 day prior to 

embedding in OTC medium and freezing. 

For immune histology, organs/tumor was cut into slides of 5 to 7µm thickness with a 

kryomicrotome (Leica CM 3050s) at -20C. For HE staining organs/tumor were cut 

into slides of 5 to 10µm thickness. Slides were transferred to a microscope slide and 

fixed with 4% paraformaldehyde (in PBS). Immune histological staining was 

performed as described. 

2.11.7 Haematoxilin/Eosin stain 

Cryosections of the tissue was fixed with 4% paraformaldehyde and stained with 

Haematoxilin (Sigma, St. Loius, USA) for 30 min. After a washing step with PBS and 

aqua dest., sections were incubated with a 1:100 dilution of Eosin (Sigma, St. Louis, 

USA) for 4 min. Afterwards, sections were washed with aqua dest., embedded with 

PBS and analyzed by transmission light microscopy. 

2.11.8 Vessel perfusion with fluorescent dye 

Hoechst 33258 was used as a marker for blood perfused areas in the tumor. After a 1 

min exposure to 200µl of 7.5mg Hoechst 33258 in PBS (given intravenously) the 

mice were sacrificed and the tumors were resected. Tumors were wrapped in OTC 

and immediately frozen. Frozen sections (10µm) were cut on a cryostat at three 

different levels between one pole and the equatorial plane. The slides were viewed in 

a light microscope under ultraviolet illumination. Blood perfusion was observed by 

Hoechst33258 stained nuclei and quantified by image-analysis. Nine sections per 

tumor were examined and 5 fields per section were randomly selected for image 

analysis. Fluorescence levels were analyzed with the MIPAV software. 

2.11.9 Antibody stain 

2.11.9.1 Staining for vascular markers 

Cryosections (5µm) were transferred to a microscope slide and fixed with 4% 

paraformaldehyde (in PBS) for 5min. Afterwards, tissue sections were rehydrated 

and washed with MACS buffer (PBS containing 5% FBS) prior to antibody incubation.  

 
Simultaneous staining for laminin and endothelial marker CD31 
Staining was performed with the rabbit-anti-laminin antibody (Chemicon Europe, 

Hampshire, UK) and simultaneous with the rat-anti-mouse CD31 (CALTAG, 
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Burlingame, USA) antibody; both antibodies were used in a 1:200 dilution (in MACS 

buffer). After an incubation time of 12h at 4ºC in a humified atmosphere sections 

were washed repeatedly with MACS buffer followed by secondary antibody staining. 

Therefore the sections were incubated with the Texasred labelled goat-anti-rabbit 

antibody (Vector, Burlingame, UK) and the ALEXA488 labelled goat-anti-rat antibody 

(Invitrogen, Oregon, USA); the staining was performed with a 1:200 dilution (in MACS 

buffer) of both antibodies for 2h at room temperature in a humified atmosphere.   

Before analysis by fluorescence microscopy, sections were washed with MACS 

buffer repeatedly. 

 

Simultaneous staining for laminin and CD13 

Staining was performed with the rabbit-anti-laminin antibody (Chemicon Europe, 

Hampshire, UK) and simultaneous with the rat-anti-mouse CD13 (Dako, 

Copenhagen, Denmark) antibody; both antibodies were used in a 1:200 dilution (in 

MACS buffer). After an incubation time of 12h at 4ºC in a humified atmosphere 

sections were washed repeatedly with MACS buffer followed by secondary antibody 

staining. Therefore the sections were incubated with the Texasred labelled goat-anti-

rabbit antibody (Vector, Burlingame, UK) and the ALEXA488 labelled goat-anti-rat 

antibody (Invitrogen, Oregon, USA); the staining was performed with a 1:200 dilution 

(in MACS buffer) of both antibodies for 2h at room temperature in a humified 

atmosphere.   

Before analysis by fluorescence microscopy, sections were washed with MACS 

buffer repeatedly. 

2.11.9.2 Staining for other epitopes 

Staining for expressed CYP2B1 protein in tumor tissue 

Cryo sections (5µm) were transferred to a microscope slide and fixed with 4% 

paraformaldehyde (in PBS) for 5min, followed by treatment with Triton X (0.1% in 

PBS) for further 5min. Afterwards, tissue sections were rehydrated and washed with 

MACS buffer (PBS containing 5% FBS). Washing procedure was repeated for 2 

times. Surplus supernatant was removed and the rehydrated tissue sections were 

incubated with the mouse-anti-ratCYP2B1 antibody (Oxfordbiomedical Research, 

Oxford, UK), used as a 1:200 dilution in MACS buffer (PBS containing 5% FBS). 

Control antibody staining was performed by the mouse IgG1, negative control 

antibody (Dako, Copenhagen, Denmark). Antibody binding was carried out in a 
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humified atmosphere at room temperature for 2h, followed by a washing procedure 

with MACS buffer. For secondary antibody staining, tissue sections were incubated 

with ALEXA488 labelled goat –anti-mouse antibody (Invitrogen, Oregon, USA), used 

as a 1:200 dilution in MACS buffer, for 1h in a humified atmosphere at room 

temperature. Before analysis by fluorescence microscopy, sections were washed 

with MACS buffer (repeated for 2 times). 

 

Staining for integrin gv 

Cryo sections (5µm) were transferred to a microscope slide and fixed with 4% 

paraformaldehyde (in PBS) for 5min, followed by treatment with Triton X (0.1% in 

PBS) for further 5min. Afterwards, tissue sections were rehydrated and washed with 

MACS buffer (PBS containing 5% FBS). Washing procedure was repeated for 2 

times. Surplus supernatant was removed and the rehydrated tissue sections were 

incubated with the rat-anti-mouse CD51 antibody (Dako), used as a 1:200 dilution in 

MACS buffer (PBS containing 5% FBS). Control antibody staining was performed by 

the mouse-anti-human CD51/61 antibody (Dako, Copenhagen, Denmark). Antibody 

binding was carried out in a humified atmosphere at room temperature for 2h, 

followed by a washing procedure with MACS buffer. For secondary antibody staining, 

tissue sections were incubated with the appropriated ALEXA488 labelled antibodies 

(Invitrogen, Oregon, USA), used as a 1:200 dilution in MACS buffer, for 1h in a 

humified atmosphere at room temperature. Before analysis by fluorescence 

microscopy, sections were washed with MACS buffer (repeated for 2 times). 

 

Staining for acrolein-adducts in tumor tissue 

Cryo sections (5µm) were transferred to a microscope slide and fixed with 4% 

paraformaldehyde (in PBS) for 5min, followed by treatment with Triton X (0.1% in 

PBS) for further 5min. Afterwards, tissue sections were rehydrated and washed with 

MACS buffer (PBS containing 5% FBS). Surplus supernatant was removed and the 

rehydrated tissue sections were incubated with the anti-acrolein-antibody (ACR, 

monoclonal antibody, JaICA, Japane) and simultaneous incubation was performed 

with the rat-anti-mouse-CD31 antibody (CALTAG, Burlingame, USA). Both antibodies 

were used in a 1:100 dilution (in MACS buffer). Antibody binding was carried out in a 

humified atmosphere at 4ºC over night. Control antibody staining was performed by 

the mouse IgG1, negative control antibody (Dako, Copenhagen, Denmark) instead of 
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the anti-acrolein-antibody (ACR) in the same manner. After removing of antibody 

containing supernatant, tissue sections were washed with 1ml MACS buffer. The 

washing procedure was repeated for five times. For visualizing binding of the firstly 

antibodies, staining was performed with a 1:200 dilution (in MACS buffer) of 

secondary antibodies, ALEXA467-anti-rat and ALEXA488-anti-mouse. Incubation 

was carried out for 2h at room temperature in a humified atmosphere. Before 

analysis by fluorescence microscopy, sections were washed with MACS buffer, 

followed by an additional washing step with demineralised water and embedding in 

glycerine. 

2.11.10 Reisolation of tumor cells 

For the reisolation of tumor cells, mice were sacrificed with CO2. The skin was 

cleaned and sanitized by isopropanol (70% in water V/V) followed by drying under 

steril conditions. Tumors were collected and immediately inserted in the indicated 

Penstrep (Biochrome, Germany) containing medium. In the case of Neuro2A tumors, 

DMEM low Glucose medium was used, whereas DMEM high glucose/F12 medium 

was used for HUH7 tumors and in the case of PC3, tumor tissue was inserted in 

RPMI medium. 

Tumor tissue was reduced to small pieces under steril conditions with a scalpel. This 

procedure was repeated until tumor tissue was homogenized. In the case of 

reimplantation of PC3 tumor cells, homogenized tumor tissue was directly injected 

subcutaneously to male SCID mice by use of a 25G needle (Braun, Mesungen, 

Germany) into the flank of the animals. 

The obtained homogenized cell suspension was diluted with fresh medium, followed 

a centrifugation step (150g/5min). The supernatant was removed and resuspension 

of the tumor cell containing pellet was performed with fresh, Penstrep containing 

medium. The tumor cell containing suspension was transferred to collagen coated 

(Collagen G, Biochrom) tissue flasks (TPP, Switzerland) and incubated under 

standard conditions (37ºC, 5% CO2) in a humified atmosphere for 2-3 days. When 

cells were attached to the bottom of the flasks, medium was replaced every second 

day, until cells reached a confluency of about 70%. Obtained cells were cultured for 2 

passages before harvested by tyrpsin/EDTA treatment and placed in storage as 

described in 2.2.5. 
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2.11.11 Isolation of PEC cells 

Pig aortas were obtained from the local slaughterhouse (Munich, Germany) and 

immediately inserted in Penstrep (Biochrome, Germany) containing medium (M199, 

Invitrogen). Adipose and loose tissue was removed carefully and the aorta was cut 

lengthwise into two pieces. Aortic tissue was fixed with the luminal, endothelial cell 

containing layer to the upper side and washed with prewarmed (37ºC) PBS. 

Afterwards, 5ml of collagenase type II CLS (625U/ml) (Biochrome, Germany) and 

trypsin/EDTA (Invitrogen, Germany) containing solution was added to the aortic 

tissue, followed by an incubation step at 37ºC for 15 to 20 minutes. 

The incubation solution was removed carefully and replaced by 5ml of M199 medium, 

containing 10% FCS (Invitrogen, Germany). Endothelial cells were obtained by 

repeated replacement of fresh M199 medium. Cell containing medium was pooled 

and the procedure was followed by a centrifugation step (150g, 8min) and 

resuspension of the obtained pellet in fresh, Penstrep containing M199 medium. 

Cells were seeded in tissue flasks (75 cm2, Costar, Sigma-Aldrich, USA) and 

incubated under standard conditions (37ºC, 5% CO2) in a humified atmosphere for 2 

to 5 days. When cells began to proliferate, medium was replaced every second day, 

until cells reached a confluency of 80 to 90%. Obtained PEC cells were harvested by 

tyrpsin/EDTA treatment and placed in storage as described in 3.2.5. 

2.11.12 Isolation of fibroblasts / NF-遠B Animals 

NF-mB-luciferase-reporter mice were bred and used for the measurement of changes 

in NF-せB transcriptional activity as described previously (87). The NF-せB-luciferase 

transgene contained the firefly luciferase gene, driven by two NF-せB sites responding 

to p65/p50, p50/cRel and other dimer combinations of NF-せB as established in 

previous studies (88;89) 

Primary fibroblast cultures were obtained following a standard protocol for skin 

biopsies with slight modifications. Briefly, skin biopsies of E15 luciferase-reporter 

mouse embryos were placed in a culture dish containing 1 ml Dulbecco’s minimal 

essential medium supplemented with 10% FBS. Using two sterile scalpels and a 

crisscrossing motion the skin was cut into small pieces, not greater than 1 mm X 1 

mm. Afterwards media and tissue pieces were transferred as a suspension into a T25 

vented flask. The petri dish was rinsed with additional 1 ml medium and then 

transferred to the T25 flask. The T25 flask was then placed in a 5% CO 2 incubator at 

37°C, and the media was changed weekly until the fibroblast layer in the flask was 
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confluent. Confluent cultures were trypsinized following standard methods and grown 

in Dulbecco’s minimal essential medium supplemented with 10% FBS at 37°C in a 

humidified atmosphere with 5% CO2 in air. Cells were routinely seeded at a density 

of 104/cm2 and subcultured every 7 days upon reaching confluence. 
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3 Results 

3.1 Evaluation of tumor cells as producer cells 
  in the standard GDEPT concept 

3.1.1 Endogenous P450 activity of the used cancer cell lines 

The family of cytochrom P450 enzymes include isoforms that metabolize the 

anticancer prodrugs CPA (cyclophosphamide) and IFO (ifosphamide) by a 

hydroxylation reaction. This activation is the basic requirement for their antitumoral 

and cytotoxic activity. CYP2B1 is one of the P450 isoforms that convert CPA and 

IFO. Yet tumor cells usually exhibit rather low expression of endogenous CYP2B1 

activity (90); bioactivation of the prodrugs CPA and IFO is mainly localized in the liver 

so that the activated drugs have to be distributed over the blood stream to reach the 

tumor tissue. 

Localized activation of the prodrug in the context of GDEPT concept as studied in the 

current thesis would be more effective and less toxic and can be obtained by transfer 

of CYP2B1 encoding plasmid DNA into tumor cells. As a first step, endogenous 

CYP2B1 activity of the wild type (wt) cancer cell lines used in this thesis was 

evaluated by the acrolein assay and resorufin assay. 

3.1.1.1 Acrolein assay 

The acrolein assay is based on the detection of acrolein in biological fluids. Acrolein 

is one of the metabolites that is released by activated cyclophosphamide or 

ifosphamide, respectively. The amount of acrolein in the supernatant of cultured cells 

reflects therefore cellular cytochrom P450 enzymatic activity when cells are grown in 

the presence of CPA or IFO, respectively. 

Acrolein was not evident in the supernatant of the wt tumor cells CT26, Neuro2A 

HUH7 and 9L, indicating low cytochrom P450 enzymatic activity in terms of CPA or 

IFO conversion capability (FIG 3-1). 
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Fig.: 3-1 Conversion of CPA by wt tumor 
cell lines (acrolein assay). Detection of 
the metabolite acrolein was performed in 
the supernatant of cells incubated with 
2.0mM CPA for 24h. Values are means 
± SE of triplicates. 

 

3.1.1.2 Resorufin assay 

The different P450 cytochrom isotypes are catalysts for different biochemical 

reactions. The isoenzyme cytochrom P4502B1 exhibit also alkoxy-o-dealkylase 

activity. This catalytic activity provides the reaction of 7-pentoxyresorufin to the 

fluorescent compound resorufin (91). The CYP2B1 activity of cultivated cells is 

therefore reflected by the amount of in situ produced resorufin, which can be easily 

measured in the supernatant by its fluorescence signal. 

The tumor cell lines CT26, Neuro2A, HUH7 and 9L were again analyzed for their 

CYP2B1 enzymatic activity by the resorufin assay. Alkoxy-o-dealkylase activity was 

detected in HUH7 cells, whereas no enzymatic activity was evident in CT26, 

Neuro2A and 9L cells (FIG 3-2). 
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Fig.: 3-2 Detection of CYP2B1 
enzymatic activity in wt tumor cells by 
the resorufin assay. Cells were 
incubated with resorufin incubation 
solution and in situ released resorufin 
was detected in the supernatant of the 
cells after a freeze-thaw cycle by 
fluorescence measurement 
Measurements were normalized on 
cell count. Values are means ±SD of 
triplicates. *p<0.05, compared to 
vehicle treated system (Mann-Whitney 
U-test). 
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For further investigation of endogenous CYP2B1 activity in wt tumor cells, detected 

fluorescence signal was normalized for total metabolic activity measured by the MTT 

assay. 

CYP2B1 enzymatic activity of wt HUH7 cells was about 16 fold higher than CYP2B1 

activity of Neuro2A, CT26 and 9L cells, whereas total metabolic activity of HUH7 cells  

was about 4 times higher than metabolic activity of the other assayed cell lines (9L, 

CT26, Neuro2A). Therefore, HUH7 cells exhibited a higher specific endogenous 

alkoxy-o-dealkylase enzymatic activity than the other wt cell lines Neuro2A, CT26 

and 9L. Alkoxy-o-dealkylase level of the CT26, 9L and the Neuro2A cell line were on 

similar low levels and not detectable in the resorufin assay (FIG 3-3). 
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Fig.: 3-3 CYP2B1 alkoxy-o-dealkylase 
activity (resorufin assay) normalized on 
total metabolic activity (MTT assay). The 
wt cell lines Neuro2A, CT26, 9L and 
HUH7 were analyzed for CYP2B1 alkoxy-
o-dealkylase activity by the resorufin 
assay. In a parallel experiment the 
mentioned cell lines were analyzed for 
metabolic activity by the MTT assay. 
Values are means ±SE of duplicates 
(resorufin assay) or triplicates (MTT 
assay). *p<0.05, compared to vehicle 
treated system (Mann-Whitney U-test). 

 

3.1.1.3 Comparison of the acrolein and the resorufin assay 

The acrolein assay is based on the detection of acrolein as a metabolite released by 

activated cyclophosphamide and ifosphamide and reflects therefore directly CPA or 

IFO conversion capability. Yet, the resorufin assay exhibits higher sensitivity and 

lower signal to noise ratio. Moreover, enzymatic activity of the CYP2B1 may be 

decreased or regulated by cytotoxic metabolites over the time when cells are 

incubated with CPA or IFO. For that reason the resorufin assay was preferred in 

order to detect CYP2B1 activity in the following experiments. 
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3.1.2 Sensitivity of wt tumor cells against CPA treatment 

3.1.2.1 Assays for determination of cell survival and proliferation 

For investigation of biological activity of CPA and IFO, respectively, different 

concentrations of the anticancer drugs were assayed for reduction in proliferation and 

survival of each cell line. Proliferation and survival were investigated by the 

Hoechst33258 based DNA content proliferation assay and the MTT assay. 

Reliability and correlations of the used assays were verified (compare materials and 

methods). 

3.1.2.2 Survival and proliferation of CT26 and Neuro2A cells 

  after CPA or IFO treatment 

To determine the relevant CPA and IFO concentration range for further experiments 

wt CT26 and Neuro2A cells were treated with different concentrations of CPA and 

IFO ranging from 0.05mM to 10.0mM. The level of cell proliferation was determined 

on day 3 after the beginning of the treatment by the Hoechst 33258 based DNA 

content assay. The results demonstrate that CPA had no significant antiproliferative 

effects up to 1.0 mM on both tested wt cell lines. However IFO treatment resulted in 

decreased cell proliferation when IFO concentration was 0.25mM or higher, indicating 

a higher unspecific toxicity of the inactivated prodrug (FIG 3-4A and 3-4B). For that 

reason all further experiments with CYP2B1 expressing cells were performed with 

CPA. 
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Fig.: 3-4 Decrease in proliferation rate by a 3 day treatment of wt CT26 and wt Neuro2A cells with 
either CPA or IFO. Wt CT26 and wt Neuro2A cells were treated for with increasing concentrations of 
CPA or IFO. Proliferation rate was determined by Hoechst 33258 based DNA content assay. 
Measurements were normalized on untreated control cells. A) wt CT26 cells, B) wt Neuro2A cells. 
Values are means ±SD of triplicates. 
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3.1.3 Generation of CYP2B1 expressing tumor cells 

3.1.3.1 Stable Transfection 

3.1.3.1.1 Generation of the stably transfected X39 cell line 

The CT26 and the Neuro2A cell line were chosen for stable transfection due to their 

low endogenous CYP2B1 enzymatic activity. The cell lines were transfected with 

LPEI polyplexes (N/P=6, HBS) containing a linearized form of the pCMV-CYP2B1 

expression vector. G418-selected colonies were chosen for expansion and further 

evaluation for CYP2B1 activity. 

3.1.3.1.2 Pre-evaluation of CYP2B1 activity of the G418 

  resistant CT26 and Neuro2A clones 

G418 resistant CT26 and Neuro2A clones were expanded and CYP2B1 enzymatic 

activity was pre-evaluated by the resorufin assay. Measurements were normalized on 

cell count. G418 resistant CT26 clones exhibited higher enzymatic activity in the 

resorufin assay compared to the not transfected wt CT26 cell line (FIG 3-5). CYP2B1 

activity of Neuro2A sublines were on lower levels compared to stable transfected 

CT26 cells (data not shown). The highest expressing CT26 clone called X39 was 

chosen for further investigation. 
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Fig.: 3-5 CYP2B1 enzymatic activity of different 
stable transfected CT26 clones. CT26 cells were 
transfected with LPEI polyplexes containing a 
linearized form of the pCMV-CYP2B1 expression 
vector, followed by selection via G418 treatment. 
Resistant cells were subcloned and analyzed for 
CYP2B1 activity by the resorufin assay. 
Measurements were normalized on cell count. 
Values are means ±SE of duplicates. 

 

3.1.3.1.3 Confirmation of continuity of CYP activity 

In order to confirm constant CYP2B1 activity, enzymatic activity was correlated to the 

total metabolic activity of the X39 cells over a culture period of 7 days. Therefore 

CYP2B1 enzymatic activity and total metabolic activity were measured in parallel 

experiments on days 1, 3, 6 and 7 after seeding of the cells. The experiment was 
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performed in the absence of G418 in the culture medium. CYP2B1 enzymatic activity 

and total metabolic activity were correlating at every analyzed time point, indicating 

continued high CYP2B1 enzymatic activity of the X39 cells (FIG 3-6). 
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Fig.: 3-6 CYP2B1 enzymatic activity is 
continuous in X39 cells. CYP2B1 activity and 
total metabolic activity were analyzed at over 
a period of 7 days in cultured X39 cells. 
CYP2B1 enzymatic activity was determined 
on day 1, 3, 6 and 7 by performing the 
resorufin assay. In a parallel experiment total 
metabolic activity of the cultured X39 cells 
was determined by MTT assay. Values of 
CYP2B1 enzymatic activity are means ± SE 
of duplicates. Values of total metabolic 
activity (MTT assay) are means ± SD of 6 
values. 

 

 

3.1.3.1.4 Confirmation of CYP2B1 protein in X39 by antibody staining 

X39 cells were cultivated in G418 free medium for at least 5 passages. Expression of 

rat CYP2B1 protein in the X39 clone was confirmed by specific antibody staining 

against rat CYP2B1 protein, followed by FACS analysis. X39 cells showed a 

homogenous population of CYP2B1 expressing cells, indicated by one peak in the 

histogram, shifted in comparison to CT26 control cells. In this context, >80% of 

analyzed X39 cells were positive for CYP2B1 protein expression (FIG 3-7). 

 

 

 

 

 

Fig.: 3-7 Antibody staining of ratCYP2B1 
expression, followed by analysis via cell flow 
cytometry. Wt CT26 and CYP2B1 expressing 
X39 cells were subjected to antibody staining for 
ratCYP2B1 protein. Antibody staining was 
performed as described in materials and 
methods, followed by FACS analysis. 
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3.1.3.1.5 Characterisation of the X39 clone for CYP2B enzymatic activity 

   by resorufin assay and CPA conversion  

Alkoxy-o-dealkylase enzymatic activity of the stably transfected X39 cells was 

measured by the resorufin assay and compared to CYP2B1 expressing 9L-D2B1 and 

wt tumor cell lines. 

The highest alkoxy-o-dealkylase activity was detected for stably transfected X39 and 

9L-D2B1 tumor cells. Enzymatic activity of X39 cells were about 100 fold higher than 

the parental CT26 wt cells. In comparison to stably CYP2B1 expressing 9L-D2B1 

cells, alkoxy-o-dealkylase activity of X39 cells was about two times higher (FIG 3-8). 
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Fig.: 3-8 Detection of CYP2B1 enzymatic activity in the stable transfected X39 and 9L-D2B1 cells. 
Cells were incubated with resorufin incubation solution and in situ released resorufin was detected in 
the supernatant of the cells after a freeze-thaw cycle by fluorescence measurement. Black bars: stable 
CYP2B1 expressing cells; hatched bars: wt tumor cell lines. Measurements were normalized for cell 
count. Values are means ± SD of triplicates. 

 

CYP2B1 enzymatic activity was further evaluated by the acrolein assay in the 

supernatant of cells. The concentration of acrolein reflects directly the ability of the 

stable transfected cells to activate the prodrug by enzymatic hydroxylation. 

Similar to the results of the resorufin assay, X39 cells showed highest enzymatic 

activity for CYP2B1. The stably transfected 9L-D2B1 cells were about half times less 

effective in converting CPA. No acrolein was detectable in the supernatant of CT26 

wt and all other wt cells (FIG 3-9). 
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Fig.: 3-9 Detection of the metabolite acrolein in the supernatant of cells. Cells were grown in the 
presence of 2.0mM CPA for 24h. Supernatant was analyzed by the acrolein assay. Measurements 
were normalized on cell count. Values are means ± SD of triplicates. 

 

3.1.3.1.6 Suicidal effects of CYP2B1 expressing X39 and 9L-D2B1 tumor cells 

In order to compare suicidal effects in CYP2B1 stable expressing cell lines, CYP2B1 

expressing X39 and 9L-D2B1 cells were cultured in the absence or in the presence 

of 0.5mM CPA. Suicidal effects (decrease in proliferation and metabolic activity) were 

determined by Hoechst33258 based DNA content assay and by MTT assay. Control 

experiments were performed with the wt cells lines 9L and CT26. Suicidal effects in 

X39 cells were not significantly distinctive in comparison to the suicidal effects in 9L-

D2B1 cells at the same CPA concentration and incubation time. However, X39 as 

well as 9L-D2B1 exhibited increased sensitivity towards CPA treatment compared to 

the corresponding parental cell lines at 0.5mM CPA (FIG 3-10). 
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Fig.: 3-10 Suicidal effects of stable CPY2B1 expressing tumor cells cultured in the presence of 0.5mM 
CPA. X39 and 9L-2B1 tumor cells were cultured in the absence or in the presence of 0.5mM CPA. 
After an incubation time of 3 days, suicidal effects were determined by Hoechts33258 based 
proliferation assay (A). Additionally metabolic activity was measured by MTT assay (B). Control 
experiments were performed with wt CT26 and 9L tumor cells. Open bars: 0mM CPA, black bars: 
0.5mM CPA. Values are means ±SD of triplicates. *p<0.05, compared to vehicle treated system 
(Mann-Whitney U-test). 

 

Moreover, CYP2B1 expressing X39 tumor cells were cultivated with different 

concentrations of CPA that did not show any anti-proliferative effects on the CT26 wt 

cell line. Concentrations for CPA included in vivo relevant concentrations (0.05mM to 

1.0mM). Suicidal effects were quantified by DNA content (Hoechst33258 based DNA 

content assay) and total metabolic activity (MTT assay). Without CPA treatment X39 

cells grew to a confluent monolayer. X39 cells incubated with CPA showed significant 

decrease in cell proliferation (FIG 3-11). Decrease in metabolic activity was similar to 

the decrease in proliferation rate (data not shown). 

Sensitivity of the CYP2B1 stable expressing X39 cells towards CPA treatment was 

significantly increased in comparison to the CT26 wt cells (compare FIG 3-4). This 

indicates that the expression of the CYP2B1 in X39 cells catalyses the reaction of the 

non-toxic prodrug CPA to toxic metabolites and leads to reduction in proliferation and 

survival of the tumor cells. 
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Fig.: 3-11 High sensitivity of cultured 
CYP2B1 expressing X39 cells towards 
CPA treatment in terms of cell 
proliferation. X39 cells were treated 
with different concentrations of CPA in 
the medium for 3 days. Proliferation 
rate was determined by Hoechst33258 
based DNA content assay. 
Measurements were normalized on 
DNA content of non treated X39 tumor 
cells. Values are means ± SD of 
triplicates.  

 

3.1.3.1.7 Suicidal effects of CPA treatment in comparison to IFO treatment 

The prodrugs cyclophosphamide and ifosphamide are both metabolized by CYP2B1 

enzymatic activity to the active cytotoxic compounds. X39 cells were utilized to 

investigate the potential of CPA and IFO regarding to suicidal effects on CYP2B1 

expressing tumor cells. 

CPA treatment and IFO treatment did not show a significant difference in the 

inhibition of proliferation (FIG 3-12). However, non-activated CPA exhibited less 

unspecific toxicity to tumor cells than IFO (compare FIG 3-4). For that reason all 

further studies were carried out with CPA. 
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Fig.: 3-12 Sensitivity of stable 
CYP2B1 expressing X39 cells 
towards CPA and IFO treatment. 
X39 cells were cultured for 3 days 
either in the absence of CPA/IFO 
or in the presence of different 
concentrations of CPA/IFO 
(0.05mM, 0.25mM, 0.5mM 1.0mM, 
5.0mM and 10.0mM). Cell 
proliferation was determined by 
Hoechst 33258 based DNA 
content assay. Measurements 
were normalized on DNA content 
of non-treated X39 tumor cells. 
Values are means ±SD of 
triplicates. 
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3.1.3.1.8 Verification the presence of soluble cytotoxic metabolites 

   (Transwell system) 

In the GDEPT concept the bystander effect is one of the crucial factors for efficient 

antitumoral effects in the context of the CPA/CYP2B1 concept. In order to verify the 

presence of soluble cytotoxic metabolites, cells were cultured in a transwell system to 

avoid cell-cell contacts. Biological effects that occur in a transwell system are 

therefore caused by soluble compounds that are able to pass the porous membrane. 

To verify the presence of diffusible metabolites in this work, CYP2B1 expressing X39 

cells were cocultivated with wt CT26 cells in a ratio of 1:1, whereas the CPA 

concentration in cell culture medium was adjusted to 0.5mM. Control experiments 

were performed by replacement of X39 tumor cells by corresponding wt CT26 cells. 

After an incubation time of 3 days cell proliferation was separately assayed for cells 

at the bottom of the well plate (target cells) and in the well plate insert (producer 

cells). CPA did not show any anti-proliferative effects on the wt CT26 cells, when no 

CYP2B1 expressing X39 tumor cells were present in the coculture system. In the 

presence of 0.5mM CPA CT26 cells exhibited decreased proliferation rate when 

cocultivation was performed with X39 cells in the transwell system. No reduction in 

proliferation rate occurred when CT26 cells were cocultured with X39 cells in the 

absence of CPA (FIG 3-13). 
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Fig.: 3-13 Evidence of soluble 
cytotoxic compounds by in situ 
activated CPA.
Wt CT26 cells were cultivated with 
stably CYP2B1 expressing X39 cells 
in (ratios 1:1) in the absence or in the 
presence of 0.5mM CPA in a 
transwell coculture system. Control 
experiments were performed by 
exchange of X39 cells by wt CT26 
cells. After an incubation time of 3 
days, proliferation rate for cells in 
each compartment was performed 
separately by Hoechst33258 based 
DNA content assay. Open bars: 
vehicle treated. Black bars: 0.5mM 
CPA. Values are means ± SD of 
triplicates. *p<0.05, compared to 
vehicle-treated system (Mann-
Whitney U-test). 
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3.1.3.2 Transient transfection 

3.1.3.2.1 Expression kinetics and expression levels after transient transfection 

Wt tumor cell lines CT26, Neuro2A, and 9L were transfected with pCMV-CYP 

containing polyplexes (LPEI, N/P=6, 300ng total plasmid DNA/well, HBS). Control 

transfection experiment was performed with pEGFN1 plasmid DNA containing LPEI 

polyplexes. CYP2B1 enzymatic activity was determined at different time points after 

the transfection by the resorufin assay. Highest CYP2B1 enzymatic activity was 

detected about 60 hours after the transfection in Neuro2A cells (FIG 3-14 A). A 

moderate increased CYP2B1 enzymatic activity was detected in transiently 

transfected 9L cells 24h after the transfection. Transient CYP2B1 enzymatic activity 

in 9L cells was stable for 70h after transfection (FIG 3-14 B). No enzymatic CYP2B1 

activity was detectable in transiently transfected CT26 cells by the resorufin assay 

(data not shown). 

Control transfection with LPEI polyplexes containing plasmid DNA encoding for 

EGFP resulted in 38.5% transfection efficiency in Neuro2A cells, 8% in 9L and 8.5% 

in CT26 tumor cells (data not shown). 
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Fig.: 3-14 CYP2B1 enzymatic activity after transient transfection with pCMV-CYP2B1 containing LPEI 
polyplexes. Wt cells (A) Neuro2A and (B) 9L were transfected transiently with pCMV-CYP2B1 
containing LPEI polyplexes. Control transfection experiments were performed with pCMV-EGFP 
containing LPEI polyplexes (300ng/well, N/P=6, HBS). CYP2B1 enzymatic activity was determined at 
different time points after the transfection by resorufin assay. Values are means ±SD of triplicates. 
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3.1.3.2.2 Evaluation of CYP2B1 dependent activation of CPA in vitro 

For the detection of CYP2B1 dependent activation of CPA in wt cell lines after 

transient transfection with LPEI polyplexes containing pCMV-CYP2B1 plasmid DNA 

(N/P=6, HBS) the acrolein assay was performed. Detection of acrolein was 

performed for transiently transfected Neuro2A and 9L cells. Acrolein was not 

detectable in the supernatant of pCMV-CYP2B1 transfected cells (data not shown), 

indicating that activation of the prodrug CPA did not occur at considerable amounts.  

3.1.3.2.3 Evaluation of sensitizing tumor cells against CPA after transient

  transfection (conventional cell culture) 

Transient CYP2B1 expressing Neuro2A cells were analyzed for sensitization towards 

CPA treatment after transient transfection with pCMV-CYP containing LPEI 

polyplexes (N/P=6, HBS, 300ng DNA/well). Control experiment was performed with 

pCMV-LUC and pCMV-EGFP (EGFPN1) plasmid DNA. 

Forty eight hours after the transfection, when CYP2B1 enzymatic activity measured 

by the resorufin assay reached maximum values (compare FIG 3-14 A), CPA was 

administered. Cells were cultured for further 3 days in the absence or in the presence 

of 0.5mM CPA. Sensitivity against CPA treatment was determined by measuring total 

metabolic activity by the MTT assay. 

Transiently transfected cells were not sensitized against CPA treatment. No increase 

in sensitivity towards CPA was detectable in comparison to transfection with the 

control plasmids (FIG 3-15). 
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Fig.: 3-15 Transient 
transfection of Neuro2A 
tumor cells with LPEI 
polyplexes containing 
CYP2B1 encoding plasmid 
DNA did not result in 
increased sensitivity towards 
CPA treatment. Cells were 
treated with indicated 
concentrations of CPA for 3 
days. Metabolic activity was 
determined by MTT assay. 
Values are means ± SD of 
triplicates. 
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Despite CYP2B1 enzymatic activity as measured by the resorufin assay no 

sensitizing towards CPA treatment was evident after transient transfection in 

conventional cell culture. Due to the reason that this failure might result from the 

artificial cell culture environment, development of a new cell culture technique was 

essential for further evaluation of the GDEPT concept. 

3.1.3.3 Bystander effect in a tumor environment mimicking 

  cell culture system: Agarose overlay technique 

Diffusion of drugs is far more limited within a tumor in vivo than in tumor cells cultured 

in vitro. In addition, tumor cells are often subjected to a hypoxic environment. These 

factors are both likely to affect CYP prodrug activation and bystander cytotoxicity. To 

better mimic the tumor microenvironment, tumor cells seeded in tissue culture plates 

were covered with a thin layer of agarose dissolved in cell culture medium. Oxygen, 

nutrients and drugs can reach the cells by diffusion through the agarose layer. We 

anticipated that the activated metabolites of CPA would form a concentration gradient 

in the vicinity of the drug-activating cells, similar to the situation in a solid tumor. 

3.1.3.3.1 Diffusion in the agarose layer 

To test the agarose overlay technique in terms of limited diffusion, a small amount of 

the membrane-permeable DNA stain Hoechst 33258 was added to the cells (FIG. 3-

16). When the stain was added to normal culture medium, the concentration was too 

low for detection of fluorescent cell nuclei by fluorescence microscopy. However, 

when a similar amount of Hoechst stain was injected in the agarose layer covering 

the cells, bright fluorescent nuclei were observed near the injection site. More distant 

cells were less fluorescent but still visibly stained. Thus, the agarose layer is likely to 

limit diffusion of low molecular weight drugs and their metabolites, thereby 

establishing a concentration gradient. Hoechst33258 is indeed a good model for CPA 

in terms of diffusion within a gel as both drugs have a low molecular weight, 

(Hoechst33258 624Da, CPA 250Da) and are both hydrophilic. 
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Fig.: 3-16 Diffusion and concentration effects of an agarose overlay using Hoechst 33258. CT26 cells 
were seeded at 40,000 cells per well of a 24-well plate 24 h before addition of an agarose overlay. The 
agarose was added as described in materials and methods. Hoechst 33258-containing solution (1 µl 
at 0.02 ng/ml in PBS) was injected into the agarose layer and cellular fluorescence was monitored 30 
min after the injection using a Zeiss Axiovert 200 microscope equipped with appropriate excitation 
(365 nm) and emission (420 nm long pass) filters. Cells were viewed with a 10X objective and phase 
contrast pictures were obtained for transmitted light. A control experiment was performed without 
agarose overlay, with the same amount of Hoechst 33258 dye added to a similar volume of culture 
medium. Application of Hoechst 33258 without agarose overlay (A: transmitted light, B: fluorescence); 
injection of Hoechst 33258 into the agarose layer (C: transmitted light, D: fluorescence). Similar 
exposure times were used for B and D (X: point of dye injection). 

3.1.3.3.2 Cell morphology under the agarose layer 

CT26 cells and Neuro2A cells were grown in conventional cell culture and under an 

agarose layer (0.5% agarose distributed in cell culture medium, 200µl/well, 48 well 

plate). After 3 days cell morphology was assayed by transmitted light microscopy. No 

obvious differences in cell morphology were detected when cells were grown under 

the agarose layer in comparison to cells cultured in conventional cell culture systems. 

   
A 
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C                  D 

Fig.: 3-17: Cell morphology is not significantly 
influenced by the agarose overlay. Neuro2A (A and 
B) and CT26 cells (C and D) were cultured either 
under conventional cell culture conditions (A and 
C) or with agarose overlay for 3 days (B and D). 
Cells were viewed with a 20X objective and phase 
contrast pictures were obtained for transmitted 
light. 
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3.1.3.3.3 Influence of the agarose layer on cell proliferation 

In order to evaluate the impact of the agarose overlay on cell proliferation and 

survival, CT26 and Neuro2A cells were cultured either with or without the agarose 

overlay technique. Cell proliferation and survival were assayed at several time points 

by the Hoechst33258 based DNA content assay and by MTT assay over a period of 

5 days. In the case of the agarose overlay, the agarose layer was removed just 

before performing Hoechst33258 based DNA content and MTT assays. 

Both cell lines exhibited decreased proliferation rates in the Hoechst33258 based 

DNA content assay as well as in the MTT assay when cell culturing was carried out 

under an agarose layer (FIG 3-18). Additional performed analysis by transmitted light 

microscopy did not give any evidence for cell death (data not shown) indicating the 

decrease in metabolic activity resulted from decreased proliferation rate. 
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Fig.: 3-18 Influence of the agarose overlay on proliferation and survival of CT26 and Neuro2A cells. 
CT26 and Neuro2A cells were cultured for 5 days either under standard cell culture conditions or with 
the agarose overlay. Cell proliferation and survival were measured at several time points by (A) 
Hoechst33258 based DNA content assay and (B) by determination of metabolic activity (MTT assay). 
Values are means ± SD of triplicates. 
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3.1.3.3.4 Investigation of the agarose overlay technique in terms of  

  hypoxic stress 

Hypoxic environment might change gene expression profiles and therefore influences 

sensitivity of tumor cells to chemotherapeutic drugs. Therefore, it was essential to 

investigate if hypoxia responsive gene expression was evident under the agarose 

overlay. Therefore CT26 and Neuro2A cells were transfected in a cotransfection 

experiment with LPEI polyplexes (N/P=6, HBS) containing two different luciferase 

encoding plasmid constructs. Expression of the Renilla luciferase plasmid was 

controlled by the CMV promoter, a hypoxia unresponsible promoter, whereas the 

expression of the firefly luciferase was under the control of a hypoxia responsible 

promoter HRE (hypoxia responsive element). After the removal of medium or 

agarose layer, respectively, luciferase activity was measured in a dual-luciferase 

assay. 

No hypoxia induced increase in firefly luciferase activity was detected. The ratio of 

CMV-controlled luciferase expression and HRE controlled luciferase expression was 

not changed by the agarose layer within 24h, indicating that gene expression was not 

strongly influenced by the potential hypoxic environment under the agarose layer. 

Control experiments for positive activation of the hypoxia responsible promoter were 

performed in an atmosphere with 1% O2 in a hypoxia chamber (data not shown). 
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Fig.: 3-19 Regulation of hypoxia responsible elements under conditions of the agarose overlay. 
Activation of hypoxia responsible elements in cells cultured under the agarose layer was investigated 
by a dual luciferase assay. Cells were transfected in a cotransfection experiment with 2 different 
luciferase encoding plasmids. Expression of firefly luciferase encoding plasmid was therefore 
controlled by a hypoxia sensitive promoter, whereas the expression of the Renilla luciferase encoding 
plasmid was controlled by the CMV promoter. The diagram shows the relative ratios between both 
luciferase levels controlled by hypoxia-sensitive and hypoxia insensitive CMV-promoter controlled 
expression.Open bars: conventional cell culture, black bars: agarose overlay. Values are means ± SE 
of duplicates. 
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3.1.3.3.5 Dependency of the CYP2B1 on sufficient oxygen supply 

The CYP2B1 enzyme exhibits monooxidase enzymatic activity. Therefore its 

functionality critically depends on the presence of oxygen. CPY2B1 enzymatic activity 

in X39 cells was assayed under different oxygen partial pressures. Therefore cells 

were incubated with the CYP2B1 substrate 7-pentoxyresorufin in a hypoxia chamber 

under defined ambient oxygen concentrations. Temperature was adjusted to 37°C 

and humidity was kept constant during incubation time. CYP2B1 enzymatic activity 

was directly dependent on the oxygen content, as indicated by the near linear 

correlation between O2 concentration and fluorescence signal, resulting from in situ 

converted 7-pentoxyresorufin (Fig. 3-20). Based on this calibration curve, CYP2B1 

enzymatic activity was reduced to ~25% of the normoxic control level at 5% O2, and 

to 7% in the absence (<0.1%) of O2. 

 

 

 

 

 

 

Fig.: 3-20 Influence of oxygen 
concentration on CYP metabolic activity. 
CYP2B1 enzymatic activity was measured 
in X39 cells under different concentrations 
of O2 as described in materials and 
methods. Resorufin production determined 
at 21% O2 was set to 100%; mean values 
from triplicates ± SD are shown. 

 

3.1.3.3.6 CYP2B1 enzymatic activity under the agarose layer 

To evaluate CYP2B1 enzymatic activity under the agarose layer, X39 cells, cultured 

under standard conditions or under an agarose layer, respectively, were assayed for 

CYP2B1 activity by the resorufin assay. 

The substrate, 7-pentoxyresorufin: 1) was added directly to the culture medium (‘- 

gel’); 2) was carefully injected into the space between the cells and the agarose 

overlay (‘+ gel’); or 3) was added to cells cultured under agarose after the gel was 

removed (‘gel removed’). The DNA content of each well was quantified to ensure that 

similar cell numbers were present in the individual wells. The CYP activity of cells 

grown under standard conditions was similar to that of cells cultured under agarose 

with removal of the agarose prior to substrate incubation. In contrast, CYP activity 
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assayed in cells under the agarose layer was reduced to 12% compared to cells 

without the agarose (FIG 3-21), despite the presumed substrate concentration effect 

of the agarose overlay. This CYP activity level corresponds to an oxygen 

concentration of about 1-2% based on the calibration curve shown in FIG. 3-20. To 

rule out artifacts due to diffusion of resorufin into the agarose gel, a control 

experiment with resorufin injected under the agarose layer in the absence of cells 

was carried out. Approximately 83% of the fluorescent dye was found in the solution 

under similar incubation conditions (data not shown). CYP2B1 protein levels were not 

influenced by the agarose overlay, as determined by antibody staining and flow 

cytometry analysis (data not shown). Hence, the agarose layer does not influence 

expression of CYP2B1. Thus, the agarose overlay technique apparently mimics the 

tumor environment regarding hypoxic conditions. 
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Fig.: 3-21 Twenty four h prior to agarose overlay, 30000 X39 cells were seeded per well of a 48-well 
plate. CYP activity was measured as described in materials and methods (‘- gel’). When performing 
the resorufin-assay under the agarose overlay (‘+ gel’), 200 µl of the incubation solution was injected 
under the agarose layer 1 h after solidification of the agarose overlay. After the incubation, 
fluorescence measurements were performed in the same way as described above. In ‘gel removed’ 
samples, CYP activity with pentoxyresorufin was determined for cells cultured under agarose after 
removal of the agarose overlay. Resorufin production by cells without agarose overlay (‘-gel’) was set 
to 100%. Mean values from triplicates ± SD are shown. 
 

3.1.3.3.7 Enhancement of bystander activity by the agarose  

  overlay technique in a coculture system 

Coculture experiments were carried out to determine the impact of the conditions 

imposed by the agarose overlay, i.e., limited drug and metabolite diffusion and 

hypoxic conditions, on bystander anti-tumor activity. Different ratios of X39 and CT26 

cells (FIG. 3-22A and 3-22B) or X39 and murine neuroblastoma Neuro2A cells (FIG. 

3-22C and 3-22D) were seeded in multi well plates. The cells were treated with 0.5 
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mM CPA in standard cell culture medium (A and C) or after coating the cells with a 

layer of 0.5% agarose (B and D). After CPA treatment for 5 days, cell proliferation 

was measured using the DNA content assay. Under standard culture conditions, 

CT26 cells were quite resistant to the cytotoxic effects of CPA activated by X39 cells. 

Thus, 50% killing of the overall cell population was only achieved when the 

population was comprised of 75% CYP2B1-expressing (X39) cells (FIG. 3-22A). 

Neuro2A cells exhibited somewhat greater sensitivity to activated CPA, with 50% cell 

killing achieved in cocultures containing ~60-65% X39 cells (FIG. 3-22C). By 

contrast, a remarkable bystander effect was achieved when agarose overlaid 

cocultures were treated with CPA. In particular, CPA killed ~ 80% of the Neuro2A + 

X39 mixed cell population in cultures containing 25% CYP-expressing cells, and 

almost complete eradication of the Neuro2A + X39 mixed cell population was 

achieved in cultures containing 50% CYP-expressing cells (FIG. 3-22D; also see 

CT26 cells in FIG. 3-22B). 

 
 

  

Fig.: 3-22 Impact of agarose overlay on bystander effect in mixed cell populations: Different ratios of 
CT26 cells (A and B) or Neuro2A cells (C and D) mixed with the CYP2B1-expressing X39 cells were 
treated for 5 d with 0.5 mM CPA. The DNA content of each well was assayed, and absolute DNA 
content values expressed as RFU x 1000 are shown on the y-axis. A and C: conventional cell culture; 
B and D: agarose overlay cell culture; mean values from triplicates ± SD are shown. Open symbols, no 
CPA treatment; closed symbols, treatment with 0.5 mM CPA 
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3.1.3.3.8 Kinetic of cell death induced by CPA treatment 

To investigate if the agarose layer has an influence on the kinetic of cell death by in 

situ activated CPA, coculture experiments were performed with and without the 

overlay technique. CT26 cells and Neuro2A cells were grown as a coculture system 

with 25% of CYP2B1 expressing X39 cells. The medium was removed 24h after the 

seeding and exchanged by either 200µl of fresh medium or the agarose layer was 

applied. Afterwards 600µl CPA containing medium was added to each well; the 

resulting concentration of CPA was 0.5mM CPA. Cell proliferation and survival was 

analyzed for the following 6 days by Hoechst33258 based DNA content assay and a 

parallel performed MTT assay. Analysis was performed every 24h. 

The coculture systems without the overlay technique showed the most distinctive 

decrease in cell survival at day 3 after the CPA administration, indicated by 

decreased fluorescence signal in the Hoechst33258 based proliferation assay and a 

decreased absorbance in the MTT assay. Likewise, the coculture systems with the 

agarose layer showed a decrease in proliferation at day 3 of treatment. Yet, reduction 

in proliferation and survival was more pronounced in the system with the agarose 

layer. Beside detection of pronounced reduction on cell proliferation in the coculture 

systems with the agarose overlay, no time dependent effects regarding cell death in 

comparison to conventional cell culture technique were evident in the agarose 

overlay system. 
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Fig.: 3-23 Time dependency of CPA based reduction in tumor cell proliferation in cocultures with 
CYP2B1 expressing cells (A: Neuro2A/X39; B: CT26/X39; C: Neuro2A/ X39; D: CT26/X39). 
Cocultures were treated with 0.5mM CPA for 6 d in conventional environment or under an agarose 
layer. Proliferation was determined by (A and B) DNA content measured or by (C and D) performing 
the MTT assay. Relative DNA content or metabolic activity is shown, with control levels set tovehicle 
treated cells. Black symbols: cells cultured with agarose overlay; white symbols: cells cultured without 
agarose overlay; mean values from triplicates ± SD are shown. 

3.1.3.3.9 Bystander effect in cocultures with a fixed ratio of CYP2B1 

   expressing cells 

The CPA concentration achieved in tumor tissue in vivo can be quite low (< 0.5 mM) 

due to rapid clearance of the drug from the blood stream (half-life <30 min (92)). We 

therefore investigated if a bystander effect of activated CPA can also be obtained at 

low CPA concentrations. CT26, HUH7 and X39 cells, and mixtures of X39 cells and 

either CT26 cells or HUH7 cells (25%/75%) were treated for 5 days with 0.01 to 10.0 

mM CPA in culture medium, with or without an agarose overlay. The CYP2B1-

deficient CT26 and HUH7 cells were quite resistant to CPA, both in the absence and 

in the presence of the agarose layer, and significant cell killing was only observed at 

CPA concentrations >3 mM (FIG. 3-24). No beneficial effect of the agarose layer was 

observed in cultures conatining X39 cells alone, as all the cells express CYP2B1 and 

generate 4-OH-CPA intracellularly, and thus no bystander effect is required for cell 

killing (Fig. 3-24C). In cocultures of 25% X39 cells and 75% CT26 cells, the presence 

of an agarose overlay markedly increased CPA-induced cell killing (FIG. 3-24D). At 

0.05 mM CPA, ~40% cell killing was observed, both with and without the agarose 

overlay. As the X39 cells grow slightly faster than the parental cell line (data not 

shown), the 40% reduction in DNA content most probably reflects the killing of the 

25% X39 cells seeded initially. A clear bystander effect was observed for the cells 

under the agarose layer at CPA concentrations between 0.1 and 1.0 mM, which 
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corresponds to a pharmacologically relevant concentration range. In cocultures of 

X39 cells with HUH7 hepatoma cells, 50% cell killing was achieved at very low 

concentrations of CPA (0.05 mM) and this effect was further enhanced by the 

agarose overlay (Fig. 3-24E). 
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Fig.: 3-24 Effect of CPA concentration on tumor 
cell proliferation in cocultures with CYP2B1 
expressing cells (A: CT26; B: HUH7; C: X39; D: 
CT26/X39 75%/25%; E: HUH7/X39  75%/25%) 
were treated with different concentrations of CPA 
for 5 d and the DNA content measured thereafter. 
Relative DNA content is shown, with the cells 
without CPA treatment set to 100%. Black 
symbols: cells cultured with agarose overlay; 
white symbols: cells cultured without agarose 
overlay; mean values from triplicates ± SD are 
shown. 
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3.1.3.3.10 Enhancement of bystander activity by the agarose overlay technique 

   in transient transfection experiments 

To investigate the impact of the agarose overlay on bystander activity under 

conditions where CYP2B1 encoding plasmid DNA is expressed in tumor cells after 

transient transfection, HUH 7 cells were transfected with CYP2B1 encoding plasmid 

DNA using LPEI; transient transfection resulted in ~13 % transfection efficiency, as 

shown by using EGFP as a reporter gene and confirmed by antibody staining for 

CYP2B1 (data not shown). Using similar conditions, HUH7 cells were transfected 

with plasmid encoding CYP2B1, or luciferase, followed by treatment with 0.5 mM 

CPA. 

In cells transfected with CYP2B1 and agarose overlay, >90% of the cells were killed 

after only a 5 h CPA treatment, as judged in by MTT assay 3 days after the 

treatment. Control cells, transfected with luciferase, exhibited non-significant 

increased sensitivity. 
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Fig.: 3-25 Influence of agarose overlay on 
cytotoxicity of CPA toward transiently 
transfected tumor cells. HUH7 cells were 
transfected with LPEI polyplexes containing 
either pCMV-LUC (Luc) or pCMV-CYP2B1 
(CYP). Forty eight h after transfection, the cells 
were treated for 5 h with 0.5 mM CPA either 
with agarose overlay (black bars) or under 
standard culture conditions (white bars). Culture 
medium and agarose overlay were then 
removed and replaced by CPA free medium. 
Three days after CPA treatment, cell viability 
was measured by the MTT assay.. Data are 
normalized to control cells treated in the same 
way but without CPA. Open bars: vehicle 
treated, black bars: 0.5mM CPA. Data shown 
are mean values for triplicates, ± SD. *p<0.05, 
compared to vehicle treated system (Mann-
Whitney U-test). 

 

For further investigation of the GDEPT concept, with attention to transient 

transfection and short CPA exposure time, in vivo experiments were performed. In 

this context, the therapeutic gene pCMV-CYP2B1 was delivered to the tumor tissue 

of established subcutaneous CT26 tumors by electroporation, followed by systemic 

CPA treatment. 

3.1.4 In vivo approach 

The in vivo studies were performed in SCID mice bearing subcutaneous CT26 

tumors to evaluate effects of local CPA prodrug activation after gene transfer in 
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addition to liver metabolism. Therefore the subcutaneous CT26 tumor model in SCID 

mice was chosen because of low endogenous cytochrom enzymatic activity of CT26 

cells and already established efficient gene transfer via electroporation in the 

subcutaneous CT26 tumor model. 

3.1.4.1 Characterisation of tumor histology and tumor growth 

For the in vivo investigation of CPA treatment after CYP2B1 gene transfer, the 

subcutaneous CT26 tumor model was established in SCID mice to avoid possible 

immune response on expressed rat CYP2B1 protein. Tumor growth was initialized by 

implantation of 100000 CT26 cells in the flank of the animals and tumor growth was 

determined; additionally mice were monitored for body weight loss. 

3.1.4.1.1 Tumor histology 

For characterization of the established subcutaneous CT26 tumors, tumor tissue was 

collected and analyzed by Haematoxylin/Eosin staining. Positively charged 

haematoxilin binds to DNA resulting in blue stained nuclei, whereas negatively 

charged eosin binds to plasma proteins and is therefore used as plasma stain. CT26 

xenografts own a very compact and homogenous tissue structure. Tumor cell nuclei 

are large in comparison to the cytoplasm. The tumor tissue was encased in a layer of 

connective tissue (FIG 3-26A). In tumors of an average cross section dimension of 

10mm and larger necrotic areas were detected in the central areas of the tumors.  

  
A B 

Fig.: 3-26 Histology of subcutaneous CT26 xenografts in SCID mice (H/E stain). Cryosections (8µm) 
were fixed with 4% paraformaldehyde and subjected to H/E staining. Sections were viewed on a Zeiss 
Axiovert 200 transmitted light microscope and pictures were taken by a Sony DSC-S75 digital camera. 
A, B) 20x0.4 NA objective 
 

3.1.4.1.2 Tumor growth and body weight 

In order to initialize growth of CT26 xenografts in SCID mice, CT26 tumor cells were 

implanted subcutaneously in the flank of SCID mice as described in materials and 
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methods. After a lag time of about 7 days tumors were palpable in most of the mice. 

At this stage tumor volume increased in an exponential manner for the next two 

weeks (FIG 3-27A). Average tumor volume doubling time was 3.5 days. When the 

tumors reached a cross section dimension of 15mm in one of the measured 

variables, mice were sacrified. 

Tumor bearing mice were additionally monitored for changes in body weight over the 

time of tumor growth. Body weight was constant for about 20 days after tumor 

implantation (FIG 3-27F). When average tumor size reached 300 to 400 mm3 mice 

began to loose body weight (data not shown). At more than 20% loss of body weight 

mice were sacrified. 

3.1.4.2 Tumor response to metronomic scheduled CPA treatment 

In order to find a dose interval for metronomic scheduled CPA that is adequate for 

combination with CYP2B1 gene transfer, CPA dose response rates were determined 

in the CT26 SCID xenograft model. When the average tumor size reaches 40mm3 at 

day 9 after the tumor implantation CPA treatment was started. Different doses 

(mg/kg) CPA were administered in a 6 day schedule. Tumor size and body weight 

were monitored over the time of treatment. When tumors reached a cross section 

dimension of 15mm in one of the measured variables or when body weight loss was 

more than 20%, mice were sacrified. 

Metronomically scheduled CPA treatment in a 6 day regime caused a slower 

increase in tumor volume of the treated tumors in comparison to the untreated control 

group. The tendency of decreased tumor growth was already evident when mice 

were treated with 75mg/kg CPA intraperitoneally every 6 days. Average tumor 

volume double time was 6 days versus 3.5 days of the non-treated control group (FIG 

3-27C). When animals were treated with 50mg/kg CPA every 6th day, influence on 

tumor volume doubling time was slight (FIG 3-27B). Treatment of mice with 

120mg/kg and 150mg/kg CPA intraperitoneally resulted in pronounced decrease in 

tumor growth. Average tumor double time was increased up to 13 to 14 days at both 

CPA dosages (FIG 3-27D and 3-27E). Average loss in body weight was not 

detectable in any treated group up to day 23 after tumor cell implantation (FIG 3-27 

F). 
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Fig.: 3-27 Tumor growth curves of CT26 xenografts in SCID mice and body weight analysis. CPA 
administration, tumor volume measurement and body weight elevation were carried oust. (A) 
untreated control; (B) treated with 50mg/kg CPA; (C) treated with 75mg/kg CPA; (D) treated with 
120mg/kg CPA; (E) treated with 150mg/kg CPA; (F) average changes in body weight. (n=5 or n=4 for 
120mg/kg group) 
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To further evaluate suitable CPA treatment regimes for gene therapy combinations, 

the treatment free interval between CPA applications was shorted to 3 days with half 

dosage of the 6 day schedule. Subcutaneous CT26 bearing mice were treated with 

either 40mg/kg every third day or 80mg/kg every 6th day. Tumor growth and body 

weight was monitored over the time of treatment. 

No difference was evident in the 3 day regime with 40mg/kg in comparison to the 6 

day schedule with 80mg/kg in terms of tumor growth and body weight (FIG 3-28C 

and 3-28D). Therefore the time between the CPA applications was shortened for the 

combination with CYP-gene therapy in the following experiment.  
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Fig.: 3-28 Tumor growth curves of CT26 xenografts in SCID mice and body weight analysis. CPA 
administration, tumor volume measurement and body weight elevation were carried out. (A) untreated 
control; (B) average body weight (C) treated with 40mg/kg CPA every third day; (D) treated with 
80mg/kg CPA every 6th day.  
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3.1.4.3 Metronomic scheduled CPA treatment combined with 

precedent CYP2B1 gene transfer 

CT26 tumors were initialized in SCID mice as described in materials and methods. In 

separately performed studies parameters for electroporation were optimized via 

luciferase reporter gene expression (S. van der Piepen and M. Ogris, unpublished). 

When average tumor volume reached 40mm3 on day 11, the combined gene transfer 

plus CPA treatment regime was started. Intratumoral injections of plasmid (either 

pCYP2B1 or an empty control plasmid (pNull) with subsequent electroporation were 

performed to achieve transgene expression within the tumor tissue. Animals were 

treated with low dose CPA (40mg/kg) on both following days after the gene transfer. 

In addition to the control electroporation group a further control group with animals 

which were not subjected to the electroporation procedure was set; CPA application 

was performed as in both electroporation groups. Tumor growth and body weight was 

monitored over the whole period of treatment. The schedule was repeated every 4 

days. No significant change in body weight was observed for all treated groups 

compared to the control (data not shown). From day 17 on, after tumor cell 

implantation, CPA treated tumors showed a decreased growth rate to untreated 

control. The decrease in tumor growth was more pronounced for the combination of 

electroporation and CPA treatment. Interestingly also the transfection with the control 

plasmid (pNull) had a similar effect on growth retardation. There was no significant 

difference in tumor growth retardation between the pCYP4502B1 and pNull groups 

(FIG 3-29). 
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Fig.: 3-29 Tumor growth of 
subcutaneous CT26 tumors, treated 
with CPA only or in combination 
with pP450CYP2B1/pcontrol gene 
transfer by electroporation. SCID 
mice bearing subcutaneous CT26 
tumor were treated either a 
combination of gene transfer via 
electroporation (pP4502B1 or pNull) 
and CPA treatment on both 
following days or only CPA 
treatment. Broad arrows indicate 
days of gene transfer via 
electroporation, light arrows indicate 
days of CPA application (40mg/kg, 
intraperitoneally). 
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3.2 Evaluation of tumor cells as producer cells in the 
  antiangiogenic GDEPT concept 

3.2.1 Endogenous CYP activity in endothelial cells 

In order to evaluate endothelial cells for endogenous CYP activity, HUVEC and PEC 

cells were evaluated for enzymatic activity by the resorufin assay. Measured 

fluorescence signal was on background levels; no enzymatic activity was detectable 

in HUVEC and in PEC cells by the resorufin assay (data not shown). 

3.2.2 Sensitivity of primary endothelial cells against CPA 
  treatment  

To determine the toxic profile of the prodrug CPA on endothelial cells, HUVEC and 

PEC cells were incubated for 3 days with different concentrations of CPA (0.05mM, 

0.5mM, 1.0mM and 10.0mM) in the medium. Sensitivity against CPA treatment was 

then evaluated by measuring proliferation rate by the DNA content assay. 

Additionally total metabolic activity was determined by the MTT assay (data not 

shown). Reduction in proliferation rates of HUVEC and PEC cells were not observed 

when CPA concentrations were adjusted up to 1.0mM CPA in the cell culture 

medium, indicating low unspecific toxicity of the prodrug on primary endothelial cells. 

However, treatment with 10.0mM CPA resulted in significantly decreased proliferation 

rates due to relevant unspecific toxic effects of CPA prodrug at this concentration. 
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Fig.: 3-30 Effects of the prodrug CPA on 
the proliferation rate of endothelial cells. 
HUVEC and PEC cells were incubated 
for 3d with different concentrations of 
CPA. Proliferation levels were 
determined by the Hoechst33258 based 
proliferation assay. The values are 
means ± SD of triplicates. 
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3.2.3 Coculture of endothelial cells with CYP2B1 
  expressing tumor cells 

3.2.3.1 Evaluation of proliferation and survival 

The sensitivity of endothelial cells to in situ activated CPA was evaluated in coculture 

experiments with CYP2B1 expressing tumor cells (X39). Coculture experiments were 

performed in conventional coculture systems (cell-cell-contacts between tumor and 

endothelial cells were possible) and in transwell systems with prevented cell-cell-

contacts. 

3.2.3.1.1 Proliferation of endothelial cells in a coculture 

HUVEC cells and PEC cells were cocultured with different rates of CYP2B1 

expressing tumor cells (X39) at a constant CPA concentration of 0.5mM for 3 days. 

The concentration of 0.5mM CPA in the medium was chosen because proliferation 

rate of evaluated endothelial cells was not influenced at this concentration in a 

monoculture system. After the incubation time of 3 days, proliferation rate of the 

coculture system was determined by measuring DNA content by the Hoechst33258 

based proliferation assay. X39 cells are nearly completely removed by suicidal 

effects when treated with 0.5mM CPA for 3 days. Measurements were corrected for 

background by remaining X39 DNA content. The resulting DNA, measured by the 

Hoechst33258 based proliferation assay therefore reflects the proliferation of the 

endothelial cells in the coculture system. 

In HUVEC cells, 50% of CYP2B1 expressing tumor cells were required in order to 

decrease total proliferation rate in the coculture system extending suicidal effects of 

X39 cells (FIG 3-31). In PEC cells, 25% of CYP2B1 expressing tumor cells 

decreased total proliferation rate extending suicidal effects of X39 cells (FIG 3-32). 

This indicates higher sensitivity of PEC cells to treatment with in situ activated CPA in 

terms of proliferation. 
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Fig.: 3-31 Proliferation levels of coculture systems with different rates of endothelial HUVEC and 
CYP2B1 expressing tumor cells in the presence of 0.5mM CPA. Cocultures were treated in the 
presence of CPA for 3 days. Proliferation rate was determined by DNA content based Hoechst33258 
proliferation assay. Measurements are corrected for X39 DNA content. Values are means ± SD of 
triplicates. *p<0.05, compared to the HUVEC monoculture system (Mann-Whitney U-test). 
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Fig.: 3-32 Proliferation levels of coculture systems with different rates of endothelial PEC and CYP2B1 
expressing tumor cells in the presence of 0.5mM CPA. Cocultures were treated in the presence of 
CPA for 3 days. Proliferation rate was determined by DNA content based Hoechst33258 proliferation 
assay. Measurements are corrected for X39 DNA content. Values are means ± SD of triplicates. 
*p<0.05, compared to the HUVEC monoculture system (Mann-Whitney U-test). 
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3.2.3.1.2 Proliferation and survival in a transwell system 

For further evaluation of in situ activated CPA on primary endothelial cells, coculture 

studies were performed in a transwell system preventing direct cell-cell contacts; 

antiproliferative effects of soluble CPA metabolites should be detectable. Therefore 

endothelial cells (HUVECs and PECs) were cultured in the bottom chamber of the 

transwell system (target cells). CYP2B1 expressing X39 and CT26 control tumor cells 

were seeded in the insert of the transwell system (producer cells). 

Culturing was performed in the absence or in the presence of 0.5mM CPA. After an 

incubation time of 3 days, proliferation rate of endothelial cells in the bottom 

compartment was determined by the Hoechst33258 based proliferation assay. 

Additionally metabolic activity of endothelial cells was measured in a parallel 

experiment.  

Proliferation rate of PEC cells was decreased when the coculture was performed in 

the presence of CYP2B1 expressing X39 cells and 0.5mM CPA for 3 days (FIG 3-

33). In contrast, coculturing with wt CT26 cells in the absence or in the presence of 

0.5mM CPA did not result in antiproliferative effects on PEC cells. Also, no 

antiproliferative effects were detectable when the coculture experiment was 

performed with X39 cells in the absence of CPA. Decrease in metabolic activity of 

PEC cells cocultured with X39 cells in the presence of 0.5mM CPA was in the same 

range than the decrease in proliferation rate (data not shown). 

The incidence of antiproliferative effects in the coculture system with CYP2B1 

expressing X39 cells in the presence of 0.5mM CPA indicates in situ activation of 

CPA and soluble CPA metabolites bothering the proliferation of cocultured PEC cells. 

When HUVECs were cocultured in the transwell system with CYP2B1 expressing 

X39 cells for 3 days in the absence or in the presence of 0.5mM CPA, no anti-

proliferative effect was evident in comparison to the control system with wt CT26 cells 

(FIG 3-34). Moreover no decrease in metabolic activity was detectable when HUVEC 

cells were cocultured with X39 cells in the presence of 0.5mM CPA (data not shown). 
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Fig.: 3-33 In situ activated CPA decreases proliferation rate of PEC cells in a transwell system. PEC 
cells were cocultured with CYP2B1 expressing X39 and wt CT26 tumor cells in the absence or in the 
presence of 0.5mM CPA. Proliferation rate of the PEC cells was determined by Hoechst 33258 
proliferation assay. Open bars: Cocultivation with wt CT26 cells; black bars: Cocultivation with 
CYP2B1 expressing X39 tumor cells. Values are means ± SD of triplicates. *p<0.05, compared to 
control systems (Mann-Whitney U-test). 
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Fig.: 3-34 In situ activated CPA did not decrease proliferation rate of HUVEC cells in a transwell 
system. HUVEC cells were cocultured with CYP2B1 expressing X39 and wt CT26 tumor cells in the 
absence or in the presence of 0.5mM CPA. Proliferation rate of the HUVEC cells was determined by 
Hoechst 33258 proliferation assay. Open bars: Cocultivation with wt CT26 cells; black bars: Co-
cultivation with CYP2B1 expressing X39 tumor cells. Values are means ± SD of triplicates. 

 

3.2.3.2 Anti-migrative effects in an endothelial  

  cell – tumor cell coculture system 

Anti-migrative effects of in situ activated CPA by CYP2B1 expressing X39 tumor cells 

was evaluated by performing the wound scratch assay in an endothelial – tumor – 

cell coculture system. Migration rate of HUVEC and PEC cells was decreased when 



Results   82

the coculture was performed with X39 cells in the presence of 0.5mM CPA. No 

antimigrative effects were evident when the migration assay was performed in the 

absence of CPA or when the coculture was carried out with wt CT26 cells. HUVEC 

cells and PEC cells exhibited similar decrease in mean migration rates when 

cocultured with X39 cells in the presence of 0.5mM CPA. Yet, these antimigrative 

effects were not statistically significant (data not shown). 

3.2.3.3 Coculturing endothelial cells with X39 cells in the  

  presence of CPA disturbed the tube forming process 

PEC cells were cocultured with CYP2B1 expressing X39 cells and with control wt 

CT26 tumor cells on collagen coated glass dishes. The mixed coculture (75% PEC, 

25% tumor cells) was seeded in the presence of 0.5mM CPA in the cell culture 

medium. Control experiments were performed in the absence of CPA. 

When PEC cells were cultured as a monoculture system on collagen coated glass 

dishes a monolayer was formed and no tube forming process was evident within 24h 

(FIG 3-35A). However, endothelial cells exhibited tube forming processes when co-

culturing was performed with wt CT26 or X39 cells within 24h (FIG 3-35B and FIG 3-

35C) in the absence of CPA. 

In the presence of CYP2B1 expressing X39 cells the process of tube formation was 

disturbed significantly in the presence of 0.5mM CPA. Further on, the intensity of F-

actin staining was decreased, indicating degradation of the F-actin cytoskeleton (FIG 

3-35E). Tube forming process was not negatively influenced by coculturing PEC cells 

with control wt CT26 cells in the absence or in the presence of 0.5mM CPA (FIG 3-35 

B and FIG 3-35D).  

  
A B 
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C D 

 

 

E  

Fig.: 3-35 Tube forming and F-actin staining of PEC cells cultured on collagen coated glass dishes. A) 
PEC cells in the absence of X39/CT26 cells, B) PEC cells cocultured with 25% wt CT26 cells in the 
absence of CPA, C) PEC cells cocultured with 25% CYP2B1 expressing X39 cells in the absence of 
CPA, D) PEC cells cocultured with 25% wt CT26 cells in the presence of 0.5mM CPA and E) PEC 
cells cocultured with 25% CYP2B1 expressing X39 cells in the presence of 0.5mM CPA. The 
experiment was performed in duplicates. Figures show representative sections. 

 

3.2.3.4 Coculturing of endothelial cells with CYP2B1 

  expressing tumor cells in the presence of CPA results in 

  modifications of the F-actin cytoskeleton 

The F-actin cytoskeleton of PEC and HUVEC cells showed modifications, when 

coculturing with CYP2B1 expressing X39 cells was performed in the presence of 

CPA. Therefore F-actin filaments were further analyzed by epifluorescence 

microscopy after staining. F-actin staining did not result in distinguishable F-actin 

fibres, indicating a breakdown of the endothelial F-actin cytoskeleton when 

coculturing was performed in the presence of CYP2B1 expressing tumor cells and 

CPA (FIG 3-36D and 3-36H). No breakdown of the F-actin cytoskeleton was 

detectable when endothelial cells were cocultured with X39 in the absence of CPA 

(FIG 3-36C and 3-36G). Further on endothelial cells cocultured with wt CT26 cells in 

the absence or in the presence of 0.5mM CPA did not result in disturbance in the F-

actin cytoskeleton (FIG 3-36A, 3-36B and 3-36E, 3-36F). 
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This finding indicates that in situ activated CPA or metabolites of activated CPA, are 

responsible for the disturbance in the F-actin cytoskeleton of the endothelial cells. 

 A  B 

 C  D 

 E  F 

 G  H 

Fig.: 3-36 F-actin cytoskeleton of endothelial cells after coculturing with CYP2B1 expressing X39 or wt 
CT26 cells in the absence or in the presence of 0.5mM CPA for 24h. For optimal visualization of F-
actin fibres light was collected through a 63x1.4 NA oil immersion objective (Zeiss). A) PEC cells 
cocultured with CT26 cells in the absence of CPA, B) PEC cells cocultured with CT26 cells in the 
presence of 0.5mM CPA, C) PEC cells cocultured with X39 cells in the absence of CPA, D) PEC cells 
cocultured with X39 cells in the presence of 0.5mM CPA, E) HUVEC cells cocultured with CT26 cells 
in the absence of CPA, F) HUVEC cocultured with CT26 cells in the presence of 0.5mM CPA, G) 
HUVEC cells cocultured with X39 cells in the absence of CPA and H) HUVEC cells cocultured with 
X39 cells in the presence of 0.5mM CPA. Figures show representative sections. 
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3.3 Role of acrolein in CPA therapy at  
  metronomic schedule 

Acrolein is one of the metabolites released by in situ activated CPA. This metabolite 

is considered to be very toxic; however, no impact on tumor growth is accredited to 

acrolein, at least in conventional high dose CPA regimes. In order to investigate a 

possible role for contribution of acrolein to the total antitumoral effect in metronomic 

scheduled CPA therapy, in vivo and in vitro experiments were performed. 

3.3.1 Significant reduction in tumor blood flow and tumor growth  
  in CPA treated mice 

The ability of CPA to delay tumor growth in a metronomic schedule was evaluated in 

colon carcinoma CT26. Treatment of mice bearing CT26-tumors with CPA (40mg/kg 

on two consecutive days followed by two days without treatment) resulted in a 

significant growth delay as indicated by a lagged increase in tumor volume compared 

to the untreated control (FIG 3-29). Treatment was well tolerated as no significant 

decrease in body weight was observed (data not shown). 

Changes in blood supply were measured by using Hoechst33258 as a tracer. This 

method was preferred because previous results showed a great discrepancy 

comparing CD31 antibody staining with actual functional blood flow (data not shown). 

Measurements were performed either at the end of the experiment (day 28 after 

tumor setting) or when tumor size exceeded 15mm in one dimension. CPA treatment 

resulted in a decreased blood supply in all three indicated areas of the tumors. The 

decrease in fluorescence was significant, indicating reduced blood flow compare to 

untreated animals. 
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Fig.: 3-37 Decrease in blood supply induced by low dose scheduled CPA treatment of SCID mice 
bearing subcutaneous CT26 tumors. Cryo-sections (10µm) were humidified with a drop of PBS, 
provided with a cover slip and immediately analyzed for fluorescence signal of intravenously injected 
Hoechst 33258 stain. For analysis 5 sections of the tumor regions (central, middle and tumor 
periphery) of each tumor, and 5 areas of each section were chosen in a randomized assortment. 
Analysis was performed with a Zeiss Axiovert 200 fluorescence microscope equipped with a 20x0.4 
Zeiss objective and a Zeiss Axiocam. Quantification was performed with the MIPAV (Medical Image 
Processing, Analysis and Visualisation) software. Values are medians ± SD of six animals in the 
control group and ten animals in the CPA treated group. ***p<0.001; **p<0.01; *p<0.05, compared to 
control tumors (Mann-Whitney U-test). 

 

3.3.2 Acrolein adducts in tumor tissue of treated mice 

Conversion of CPA to its activated metabolites is mainly taking place in the liver. In 

situ activated CPA and metabolites are then distributed all over the body via the 

blood stream. In order to investigate if relevant amounts of acrolein reach the tumor, 

cryosections were screened for acrolein adducts by specific antibody staining. Cryo-

sections (5µm) of two randomly chosen CPA treated tumors of the experiment 

described in 3.3.1 were stained with an antibody that is specific for acrolein modified 

protein structures. In addition tumor sections were stained for endothelial cells with a 

rat-anti-mouse CD31 antibody in order to visualize tumor blood vessels. 

Acrolein protein adducts were detected in both CPA treated tumor tissues by 

antibody staining, in tumor cells and in endothelial cells (FIG 3-38B). No staining was 

detectable with the control IgG (data not shown) and only slight staining appeared in 

the untreated control tumors (FIG 3-38A). It is noteworthy that acrolein adducts were 
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often localized in tumor areas of low blood supply, indicated by low Hoechst33258 

signal. 

Staining for acrolein adducts in the liver did not give a significant difference in CPA 

treated versus untreated animals. In both groups only slight positive staining for 

acrolein-protein adducts was detectable (data not shown). These results indicate that 

the metabolite acrolein reaches the tumor site via blood stream in detectable 

amounts and therefore may contribute to antitumoral effects of metronomic 

scheduled CPA therapy.  

  

A B 

Fig.: 3-38 Distribution of acrolein modified proteins in the tumor tissue of CPA treated (B) versus 
untreated control tumors (A). Cryo-sections (5µm) were fixed with 4% paraformaldehyde and stained 
with specific antibodies for endothelial cells (rat-anti-mouse CD31 (red)) and acrolein modified proteins 
(yellow). The intravenously injected Hoechst 33258 stain was visualized as well (blue). Analysis was 
performed with a Zeiss Axiovert 200 fluorescence microscope equipped with a 20x0.4 Zeiss objective 
and a Zeiss Axiocam. 
 

3.3.3 Antiangiogenic properties of acrolein in vitro  

For further investigation of possible antiangiogenic properties of acrolein, effects of 

this metabolite were investigated on primary endothelial cells regarding proliferation, 

migration and differentiation. In addition, effects of acrolein on NF-遠B levels in 

endothelial cells and tumor cells were investigated because NF-遠B seems to be a key 

regulator in angiogenic processes. Moreover, acrolein was evaluated for the potential 

of modulation on thrombospondin-1 levels due to thrombospondin-1 was identified as 

a possible mediator of antiangiogenic scheduled CPA therapy (93). 

3.3.3.1 Changes of cell morphology 

Primary endothelial cells (HUVECs) were analyzed for morphological changes due to 

acrolein treatment. Therefore, HUVEC cells were seeded 24h prior treatment at a 

density of 15000 cells/well on collagen G coated 24 well plates. Cells were cultured 
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with acrolein containing medium for 24h and morphology of cells was analyzed by 

transmitted light microscopy. Cell morphology was different in comparison to the 

control, when cell culture was performed in the presence of 30µM and 40µM acrolein 

(FIG 3-39 D and E) whereby cells appeared spindle-shaped at 30µM and rounded at 

40µM Acrolein. Morphological changes were not evident when HUVEC cells were 

cultured in the presence of 10µM and 20µM acrolein (FIG 3-39 B and C). 

   

A B C 

  

 

D E  

Fig.: 3-39 Morphology of HUVEC cells cultured in the presence of different concentrations of acrolein 
for 24h. 15000 HUVEC cells were seeded on collagen coated 24 well plates. 24h after the seeding 
different amounts of acrolein (dissolved in PBS) were added to the wells to adjust increasing 
concentrations of acrolein in the medium; (A) vehicle (PBS) 0µM acrolein, (B) 10µM acrolein, (C) 
20µM acrolein, (D) 30µM acrolein and (E) 40µM acrolein. Cells were visualized 24h after the acrolein 
addition by transmitted light microscopy. 

3.3.3.2 Acrolein is antiproliferative on endothelial cells 

Primary endothelial cells (HUVECs and PECs) were investigated for antiproliferative 

properties of acrolein. Therefore cells were cultured for 24h in the absence or in the 

presence of different concentrations of acrolein in the medium (7.5µM, 10µM, 

12.5µM, 25µM and 50µM). Survival and proliferation was determined by MTT assay 

as described in materials and methods. 

Acrolein inhibited the proliferation and survival of vascular endothelial cells in a dose 

dependent manner. Effects in HUVEC cells were less pronounced than in PEC cells. 

(FIG 3-40) 



Results   89

0

0.25

0.5

0.75

1

1.25

1.5

0 5 10 15 20 25 30 35 40 45 50

acrolein [µM]

re
l.
 m

e
ta

b
o
lic

a
c
ti
v
it
y

HUVEC

PEC

0

0.25

0.5

0.75

1

1.25

1.5

0 5 10 15 20 25 30 35 40 45 50

acrolein [µM]

re
l.
 m

e
ta

b
o
lic

a
c
ti
v
it
y

HUVEC

PEC

 

 

 

 

 

Fig.: 3-40 Proliferation and survival 
of primary endothelial cells cultured 
with different concentrations of 
acrolein. HUVEC and PEC cells 
were cultured in the absence or in 
the presence of 7.5 to 50µM 
acrolein in the medium. Proliferation 
and survival was determined by 
MTT assay. Values are means ±SD 
of triplicates. 

3.3.3.3 Acrolein inhibits endothelial cell migration 

Primary endothelial cells were further analyzed for sensitivity towards acrolein 

regarding migration. Migration of cells HUVEC cells was decreased by 50% in the 

presence of 20µM acrolein and even to 80% when the scratch wound assay was 

performed in the presence of 25µM acrolein (FIG 3-41A). In the case of the PEC cells 

migration decreased to 40% when the scratch wound assay was performed in the 

presence of 15µM acrolein (FIG 3-41B). 
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Fig.: 3-41 Treatment of HUVEC cells (A) and PEC cells (B) for 24h with increasing concentrations of 
acrolein resulted in a dose dependent inhibition of migration in the scratch wound assay. A confluent 
cell layer of endothelial cells was scratched with a pipette tip and analyzed by transmitted light 
microscopy (t=0). After 24 h of incubation with increasing concentrations of acrolein cells were fixed 
and analyzed again (t=24). In the absence of acrolein HUVEC cells as well as PEC cells grow to a 
confluent monolayer. Values are means ± SD of ten values. *p<0.05, compared to untreated control 
cells (Mann-Whitney U-test). 
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3.3.3.4 Acrolein inhibits endothelial tube formation 

The ability of primary endothelial cells to differentiate and form vessel like structures 

was analyzed in the matrigel tube formation assay. HUVEC cells usually form tube 

like structures within 4h when seeded on the polymerised matrigel. Performing the 

tube formation assay in the presence of acrolein inhibited the formation of tube like 

structures in a dose dependent manner (FIG 3-42).  

A B CA B C

 

Fig.: 3-42 Matrigel tube formation assay in the presence of acrolein. The matrigel tube formation assay 
was carried out in the absence (A) or in the presence of 10µM (B) and 30µM (C) acrolein. Tube 
formation was analyzed by transmitted light microscopy. 

 
Quantification of tube like structures was carried out; only tube like structures, without 

interruptions, were counted in each well. Even at 10µM acrolein the number of tube 

like structures without defects decreased by approximately 70% (FIG 3-43). 
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Fig.: 3-43 Disturbance of tube like structure 
formation in the matrigel assay. Matrigel tube 
formation assay was performed with HUVEC 
cells in the absence or in the presence of 10µM 
to 30µM acrolein in the medium. Forming of tube 
like structures was quantified by transmitted light 
microscopy. Values are means ±SE of duplicates 
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3.3.3.5 Subacute cytotoxic acrolein concentrations disrupt 

  endothelial F-actin cytoskeleton 

To further investigate the impact of acrolein on migration of primary endothelial cells, 

F-actin cytoskeleton analysis was performed. HUVEC cells were seeded 24h before 

treatment. Cells were cultured for further 12h in the absence or in the presence of 

different concentrations of acrolein (5µM to 20µM). Afterwards cells were fixed and 

staining of the F-actin cytoskeleton was performed. Control cells contained thick long 

fibres of actin filaments, often spanned across the entire cytoplasm. Incubation of 

proliferating HUVECs with non acute cytotoxic concentrations of acrolein (0-20µM) 

resulted in cytoskeletal disorganisation and disruption of F-actin filaments within 12h 

of incubation. The extent of cytoskeleton damage was dose dependent (FIG 3-44). 

Damaged cells were able to remodel F-actin cytoskeleton to a certain degree within 

24h after acrolein removal (data not shown). 

  

A B C 

Fig.: 3-44 Disorganisation of F-actin cytoskeleton in primary endothelial cells (HUVECs) due to 
acrolein treatment. F-actin cytoskeleton of cultured HUVEC cells on a collagen G coated glass surface 
in the presence of 10% FBS and 10ng/ml bFGF is well organized (A). Treatment of HUVEC cells with 
acrolein leads to disruption of the F-actin cytoskeleton and F-actin plugs are formed in the cells (10µM 
acrolein (B) and 20µM acrolein (C)). 

3.3.3.6 Acrolein inhibits integrin v 3 clustering 

  on endothelium filopodiae 

Integrin cvd3 plays a crucial role in the angiogenic process. Clustering of the integrin 

cvd3 receptor induces several signalling cascades in endothelial cells, regulating cell 

survival, migration and differentiation properties of angiogenic endothelial cells 

(94;95). 

Therefore the impact of acrolein on the integrin cvd3 receptor systems of primary 

endothelial cells (HUVECs) was investigated. Cells were screened for integrin cvd3  

clustering and total receptor levels on the surface of the cells were determined. 

HUVEC cells were seeded on collagen IV coated Lab-Tek slides 24h before 

treatment. Cells were cultured for further 12h in the absence or in the presence of 
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different concentrations of acrolein (5µM to 20µM). Afterwards cells were fixed and 

staining of the integrin cvく3 receptor was performed. Additionally cells were stained 

for F-actin cytoskeleton. Integrin clustering and changes in the cytoskeleton were 

analyzed by fluorescence microscopy. 

Incubation of HUVECs with acrolein for 12h leads to disarrangement of integrin cvd3 

receptors and clustering at the filopodia of the cells was inhibited (FIG 3-45). 

Additionally F-actin staining consolidated the absence of functional filopodia when 

the cells were cultured with 20µM acrolein in the medium. 

  

A B 

Fig.: 3-45 Acrolein treatment disturbs integrin cvd3 (violet) receptor clustering and the formation of 
focal adhesions in primary endothelial cells (HUVECs). (A) Vehicle (PBS) treated HUVEC on a 
collagen coated surface show a well organized F-actin cytoskeleton (green) with F-actin 

accumulations in the area of focal adhesions). Moreover, clustering of integrin cvd3 receptors at focal 
adhesions is seen. (B) Incubation of HUVEC with 20µM acrolein for 12h results in destruction of the F-

actin cytoskeleton in the area of focal adhesion and as well in a disturbance of integrin cvd3 receptor 
clustering. 
 

Integrin cvd3 receptor status was also determined by flow cytometry. HUVEC cells 

were cultured for 12h in the absence or presence of 20µM acrolein, and antibody 

staining was carried out, followed by FACS analysis. No change in total amount of 

integrin cvd3 receptor on the surface of the endothelium cells was detectable when 

cells were cultured for 12h with 20µM acrolein (data not shown). 

3.3.3.7 Acrolein modulates NF-遠B activity 

  in cultured human endothelial cells 

NF-遠B plays a crucial role in angiogenesis and cell survival. Therefore, effects of 

acrolein on NF-遠B activity levels in primary endothelial cells were determined. 

HUVEC cells were transiently transfected with LPEI polyplexes (HBS, N/P 6) 

containing an NF-遠B dependent expression vectors for luciferase (pNF遠B-LUC). 
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Control experiments were performed with similar LPEI polyplexes (HBS, N/P 6) 

containing a luciferase encoding plasmid without NF-遠B enhancer areas in the 

promoter region (pTAL-LUC). Twenty four hours after transfection acrolein was 

added to the supernatant and luciferase activity was measured 48h after the 

transfection. 

Treatment of HUVEC cells with 10µM and 20µM acrolein decreases basal NF-遠B 

activity within 24h of acrolein treatment (FIG 3-46). Interestingly, NF-遠B activity was 

upregulated after cells were treated with 30µM acrolein for 24h. 
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Fig.: 3-46 Modulation of NFKB activity in HUVEC cells by acrolein. HUVEC cells were transfected with 
LPEI polyplexes contained an expression vector for luciferase with NFKB sensitive binding sites in the 
promoter region. Control experiments were performed with a similar vector, yet without NFKB binding 
sites. 24 h after the transfection cells were cultured for further 24h in the absence or in the presence of 
10µM, 20µM or 30µM acrolein. Luciferase measurement was performed as described in materials and 
methods. Ratios of luciferase expression obtained with pNFキB-LUC and control plasmid pTAL-LUC in 
HUVEC cells are shown. Mean values of eight transfections per condition ± SD are shown. 
***p<0.001, compared to control tumors (Mann-Whitney U-test). 

3.3.3.8 Acrolein modulates thrombospondin-1 

  levels in primary endothelial cells (HUVECs) 

For investigation of modulation effects on thrombospondin-1 levels by acrolein in 

HUVEC cells, thrombospondin-1 levels were analyzed in HUVEC cell lysates by a 

competitive ELISA. Moreover total protein content was measured by the BCA-

protein-content assay (Pierce). Thrombospondin-1 levels were modulated by acrolein 

in cultured primary HUVEC cells. Interestingly, incubation of HUVECs with only 5µM 
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acrolein for 24h results in highly increased thrombospondin-1 levels (11-fold). High 

induction of TSP-1 levels was also evident when cells were treated with 10µM and 

20µM acrolein. Decreasing Thrombospondin-1 levels were detected when cells were 

cultured in the presence of 30µM acrolein and higher. The total protein content (BCA 

assay) was similar at all indicated concentrations.  
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Fig.: 3-47 Modulation of thrombospondin-1 levels in HUVEC cells by acrolein. HUVEC cells were 
cultured in the presence of different concentrations of acrolein for 24h. After the incubation time, cells 
were washed with PBS and 100µl/well water was added, followed by a freeze-thaw-cycle. 
thrombospondin-1 contents were determined by the competitive thrombospondin-1 ELISA (Chemicon). 
Moreover cell lysates were analyzed for total protein content (BCA-protein-assay). Thrombospondin-1 
levels were normalized on total protein content. Values are means ± SE of duplicates. 

 

3.3.4 Impact of acrolein on CT26 tumor and 
  tumor stroma cells (fibroblasts) 

3.3.4.1 Proliferation and survival of CT26 tumor cells 

In order to evaluate direct antitumoral effects of acrolein on tumor cells, CT26 cells 

were cultured in the absence or in the presence of different concentrations of acrolein 

(5µM to 40µM). After 24h of incubation survival and proliferation was determined by 

measuring total metabolic activity via MTT assay as described in materials and 

methods. Values were normalized to vehicle treated cells (PBS). 

Total metabolic activity was decreased in a dose dependent manner. When CT26 

cells were cultured with 40µM acrolein in the medium, metabolic activity was 

decreased to 50% compared to vehicle treated cells (FIG 3-48). 
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Fig.: 3-48 CT26 cells were cultured 
with increasing concentrations of 
acrolein (0µM to 40µM) for 24h. 
Survival was determined by 
measuring total metabolic activity 
via MTT assay. Values are means 
±SD of four samples. *p<0.05, 
compared to untreated control cells 
(Mann-Whitney U-test). 

 

3.3.4.2 Regulation of NF-遠B activity levels in CT26 tumor cells 

Several tumor relevant cytokines regulating angiogenic processes, like VEGF or 

bFGF, are also controlled by NF-遠B activity (96-98). Therefore the impact of acrolein 

on NF-遠B activity levels was investigated in CT26 tumor cells. In contrast to the 

effects of acrolein on NF-遠B levels in HUVEC cells, no obvious modulatory effects 

were detected in CT26 tumor cells. 
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Fig.: 3-49 Modulation of NF-キB activity 
in CT26 tumor cells by acrolein. CT26 
cells were transfected with LPEI 
polyplexes containing an expression 
vector for luciferase with NF-キB 
sensitive binding sites in the promoter 
region (pNFキB-LUC). Control 
experiments were performed with a 
similar vector, but without NF-キB 
binding sites (pTAL-LUC). 24 h after 
the transfection cells were cultured for 
further 24h in the absence or in the 
presence of 5µM or 40µM acrolein. 
The ratio of luciferase expression 
obtained by pNFキB-LUC to pTAL-LUC 
is shown. Values ± SD are means of 
eight values. 
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3.3.4.3 NF-遠B regulation and survival of fibroblasts 

Tumor stroma cells, particularly fibroblasts, have great influence on the angiogenic 

process in tumors due to their output of proangiogenic cytokines such as bFGF. NF-

遠B is a crucial factor in the regulation of these cytokines. Therefore the influence of 

acrolein treatment on NF-遠B levels in fibroblasts was evaluated. Moreover, cell 

survival was investigated and correlated with NF-遠B activity levels. 

Fibroblasts expressing luciferase under the control of a NF-遠B sensitive promoter 

were obtained from transgenic animals (NF-遠B-LUC mice) (99;100). The luciferase 

expressing fibroblasts were cultured with different concentrations of acrolein for 6 and 

up to 24h. Luciferase expression levels were measured by performing a luciferase 

assay after 6 and 24h of treatment; in a parallel experiment cell survival was 

determined by performing the MTT assay. 

Decreased NF-遠B activity levels were detected after 6h of acrolein treatment at 30µM 

and above. Cell survival was not influenced at this time point, indicated by constant 

total metabolic activity (FIG 3-50A). 

After 24h of acrolein treatment NF-遠B levels and cell survival were decreased when 

the acrolein concentration in the medium was beyond 20µM (FIG 3-50 B). Correlation 

of NF-遠B activity, indicated by luciferase expression levels, and cell survival, 

indicated by metabolic activity was evident after 24h, but not after 6h of treatment, 

indicating that decrease in NF-遠B levels occur prior to cell death. 
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Fig.: 3-50 NF-キB activity levels, indicated by luciferase expression levels and cell survival, indicated by 
metabolic activity (MTT) of mouse fibroblasts treated with different concentrations of acrolein. 
Fibroblasts were obtained from transgenic mice expressing luciferase under the control of a NF-キB 
sensitive promoter. Luciferase levels were analyzed after 6h (A) and 24h (B) of treatment with 
acrolein. Total metabolic activity (MTT) was monitored in a parallel experiment also after 6h (A) and 
24h (B) of acrolein treatment. Values are means ± SD of 6 measurements. 
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3.4 Chemoresistance in metronomic CPA therapy 

Resistance to chemotherapy is a major hindrance for classical chemotherapy and 

also occurs in metronomic scheduled chemotherapy. Therefore investigating 

mechanisms of chemoresistance is an important objective. During evaluation of 

different CPA regimes in this thesis, chemoresistance occurred in different syngeneic 

and xenograft in vivo tumor models. Moreover, primary chemoresistance occurred 

when chemosensitive X39 tumor cells were grown in a three dimensional cell culture 

model or in SCID mice as subcutaneous tumors. For investigation of resistance in 

CPA treated tumors, histological changes were analyzed and tumor cells were 

isolated of for further characterisation. 

3.4.1 Resistance in the CT26/X39 tumor model 

3.4.1.1 CT26/X39 sensitivity to CPA treatment in a coculture system 

In order to evaluate primary resistance of CYP2B1 expressing X39 tumor cells, their 

sensitivity towards CPA treatment was determined both in a multicellular spheroid 

culture model and in standard monolayer culture. CT26 cells were cocultured with 

X39 cells at different ratios in a system combining monolayer and spheroid culture in 

the absence or in the presence of 0.5mM CPA. For three dimensional cell culture 

system, different ratios of CT26 and X39 cells were suspended in agarose containing 

medium. After solidification of the agarose, medium was added and spheroids were 

grown for 10 days (FIG 3-51). 

  

X39 cells day 3 X39 cells day 10 

Fig.: 3-51 X39 and CT26 tumor cells, suspended in agarose containing medium, grow to multicellular 
spheroids within 10 days. 

 

Similar ratios of CT26 and X39 cells were cultivated as a standard monolayer. 

Twenty four hours after monolayer culture ten day old spheroids were added to the 

monolayer cultures. Thereafter the mixture was treated for 3 days with 0.5 mM CPA. 
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This combination of monolayer culture and spheroid culture in the same incubation 

medium ensured similar concentration of metabolites for monolayers and spheroids.  

Cell proliferation and survival was determined by measuring total metabolic activity 

by the MTT assay. Analysis of metabolic activity were performed separately for 

monolayer and spheroid cultures. 

An increasing ratio of X39 cells resulted in elevated sensitivity of the coculture in the 

monolayer. Coculturing 25% X39 cells in the system reduced metabolic activity of the 

monolayer to 50%. When 50% of X39 were present in the system, metabolic activity 

of the monolayer was even reduced to 25% compared to the control system without 

CPA treatment. The strong reduction in the monolayer may result from additional 

diffusible CPA metabolites produced by the spheroids. In a pure monolayer system 

reduction in metabolic activity was not as pronounced (FIG 3-27). 

In contrast, metabolic activity of cells in the microspheroid section was decreased in 

a lesser degree by the CPA treatment. Even when 100% of CYP2B1 expressing X39 

cells were present in the system, decrease in total metabolic activity was only 40% 

(FIG 3-52). 
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Fig.: 3-52 Sensitivity of wt CT26 tumor cells, cocultured with CYP2B1 expressing X39 cells in a 
combined system of monolayer and multicellular microspheroids, against CPA treatment. Metabolic 
activity was determined separately for the monolayer and for the agarose wrapped spheroids by MTT 
assay. The values are means ±SD of triplicates. *p<0.05, compared to untreated control cells (Mann-
Whitney U-test). 

 

When agarose embedded CYP2B1 expressing X39 cells were treated with CPA prior 

to spheroid forming, X39 cells were as sensitive towards treatment as X39 cells in a 

standard monolayer system (data not shown). This indicates that diffusion of CPA 

and decreased enzymatic activity of CYP2B1 are not limiting factors in the three 
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dimensional system, but rather decreased sensitivity that results from modifications 

of the tumor cells when they grow as multicellular spheroids. 

3.4.1.2 CYP2B1 expression of X39 microspheroids 

To further investigate the mechanism of resistance towards CPA treatment in the 

three dimensional cultivated X39 cells, antibody staining against CYP2B1 protein was 

performed after the CPA treatment. Therefore X39 cells were grown as 

microspheroids in agarose containing medium. Agarose wrapped microspheroids 

were subject to CPA treatment for 3 days. Afterwards agarose wrapped spheroids 

were embedded in OTC medium and frozen at -80°C. Frozen spheroids were cut 

with a cryostat to slides of 5µm thickness, following antibody staining against 

CYP2B1 protein as described in materials and methods. Cell nuclei were stained with 

Hoechst 33258. Control spheroids were treated in the same manner except for the 

CPA treatment. CYP2B1 expression was evident both in CPA treated and in control 

spheroids (FIG 3-53), indicating that decreased sensitivity does not result from 

downregulation of CYP2B1 or selection processes by the CPA treatment. 

 

 

control spheroid CPA treated spheroid 

Fig.: 3-53 CYP2B1 expression in CYP2B1 expressing X39 cells grown as multicellular spheroids in the 
absence (control) or in the presence of 0.5mM CPA for 3 days. Cell nuclei were stained by 

Hoechst33258, fragmented nuclei are marked ( ) 

 

In CPA treated X39 microspheroids DNA fragmentation was detected by 

fluorescence microscopy after staining with Hoechst 33258 dye. According to these 

results resistance of three dimensional grown X39 cells to CPA treatment is not due 

to decreased CYP2B1 expression. 

3.4.1.3 Decreased sensitivity of CT26 microspheroids 

  towards treatment with 4OOH-CPA  

CT26 cells were analyzed for changes in sensitivity towards 4OOH-CPA treatment 

comparing cells were grown as microspheroids or monolayer. Established CT26 
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microspheroids wrapped in agarose and CT26 cells grown as a monolayer were 

treated with medium containing different concentrations of 4OOH-CPA. 

After incubation for 3 days metabolic activity of CT26 cells was significantly reduced 

even at the lowest 4OOH-CPA concentration tested whereas CT26 microspheroids 

did not show response to the treatment up to concentrations of 20µM 4OOH-CPA 

(FIG 3-54). 
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Fig.: 3-54 Sensitivity of CT26 cells towards CPA treatment, cultivated either as multicellular spheroids 
or as a monolayer. Metabolic activity was measured by MTT assay and normalized to cell without CPA 
treatment. Values are means ± SD of four measurements. *p<0.05, **p<0.01, compared to untreated 
control cells (Mann-Whitney U-test). 

 

3.4.1.4 Sensitivity of established X39 tumors in vivo 

In order to investigate sensitivity of CYP2B1 expressing tumor cells in vivo, 

subcutaneous CT26 and X39 tumors were established in SCID mice. 

Before implantation of X39 cells into the flank of the SCID mice CYP2B1 expression 

was confirmed by antibody staining followed by FACS analysis (data not shown). 

Further on X39 cells were analyzed for sufficient CYP2B1 enzymatic activity by the 

resorufin assay; fluorescence levels in the resorufin assay indicated sufficient 

CYP2B1 activity (FIG 3-55). 
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Fig.: 3-55 Confirmation of CYP2B1 enzymatic 
activity in stable transfected X39 cells prior to 
implantation. Cells were incubated with resorufin 
incubation solution and in situ released resorufin 
was detected in the supernatant of the cells after 
a freeze-thaw cycle by fluorescence 
measurement. Hatched bars: stable CYP2B1 
expressing cells; open bars: wt CT26 tumor cell 
line. Measurements were normalized to cell 
count. Values are means ± SD of triplicates. 

 

The X39 tumors showed later onset of tumor growth compared to CT26 tumors. 

When tumors reached a volume of 35mm3 80mg/kg CPA was administered every 

sixth day intraperitoneally. Tumor size and body weight was measured regularly 

during treatment period. 

Treatment was well tolerated in CT26 and in X39 tumor bearing mice indicated by no 

significant weight loss (data not shown). Despite high CYP2B1 expression in X39 

tumors the response to the CPA treatment was not significantly different from CPA 

response in CT26 tumors (FIG 3-56). 
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Fig.: 3-56 Growth delay of 
subcutaneous CT26 and 
CYP2B1 expressing X39 tumors 
in SCID mice treated with 
80mg/kg intraperitoneally every 
6th day. (n=5 for CT26 bearing 
animals and n=3 for X39 bearing 
mice) *p<0.05, compared to 
untreated control cells (Mann-
Whitney U-test). 
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3.4.1.5 Detection of CYP2B1 expression in CPA treated X39 tumors 

To clarify if the moderate response to CPA treatment in terms of tumor growth delay 

is due to in vivo selection of CYP2B1 negative tumor cells, antibody staining against 

ratCYP2B1 protein was performed at the endpoint of the treatment. No difference in 

CYP2B1 expression was detectable in CPA treated X39 tumors compared to 

untreated X39 tumors (FIG 3-57). 

  
Control tumor CPA treated tumor 

Fig.: 3-57 CYP2B1 expression in subcutaneous grown X39 tumors after CPA treatment with 80mg/kg 
CPA every six days. Control tumors were obtained of non-treated SCID mice. 

3.4.1.6 Integrin gv expression in subcutaneous CT26 xenografts 

Integrins were shown to modulate apoptotic signaling (101) and preventing CPA 

induced cell death in endothelial and epithelial cells (102). Therefore integrin 

expression levels of subcutaneous grown CT26 tumors were compared to monolayer 

cultured CT26 cells. Interestingly, gv expression was detectable in tumors in vivo but 

not on the cell surface of cultured CT26 tumor cells. 

 

 A B 

Fig.: 3-58 (A) Cryo sections (5µm) were fixed with 4% PFA and stained with specific antibodies for rat-
anti-mouse CD51 (red). Secondary antibodies were labelled with Alexa 488. The intravenously injected 
Hoechst 33258 stain was visualized as well (blue). (B) CD51 expression levels on in vitro cultured CT26 
cells. Staining was performed with the indicated antibody, followed by FACS analysis. Secondary 
antibodies were labelled with Alexa 488. 

 

untreated control 
(red) 

Control IgG 
(black) 

Mouse anti human 
CD51/61 (blue) 

Rat anti mouse 
CD51 (green) 
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3.4.2 Resistance in the PC3 tumor model 

Subcutaneous human PC3 tumors were established in male SCID mice by injection 

of 1x106 PC3 cells in the flank of the animals. CPA treatment was started on day 11 

after tumor implantation when tumors reached an average volume of 37 mm3. Tumor 

bearing mice were treated with 120mg/kg CPA every six days. Metronomic 

scheduled CPA treatment resulted in a significant tumor growth delay. Tumor volume 

of treated mice was constant up to day 50 after the tumor cell implantation whereas 

tumors in the control group exhibited a tumor volume doubling time of 2.5 days. 

Around day 50 after tumor implantation tumor volume began to increase in the CPA 

treated group despite ongoing treatment with a tumor doubling time of 9 days (FIG 3-

59). 
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Fig.: 3-59 Tumor growth in a human PC3 xenograft model with and without metronomic scheduled 
CPA treatment. Tumor bearing SCID mice were treated intraperitoneally with 120mg/kg CPA every 
sixth day. (n=4 for untreated control animals and n=6 for CPA treated animals) 

 
Metronomic scheduled CPA therapy was well tolerated indicated by constant animal 

body weight up to day 67. Further CPA treatment resulted in significant loss of body 

weight observed in all CPA treated animals. Treatment was stopped and animals 

were sacrificed when average loss in body weight reached 20%. 

For further investigation tumors were collected and subject to histological analysis. 

Further on, tumor cells were extracted from tumor tissue for characterisation and cell 



Results   104

culture experiments. Part of the reisolated tumor cells were reimplanted into male 

SCID mice.  

3.4.2.1 Histological analysis of PC3 tumors 

For characterisation and evaluation of histological changes induced by CPA 

treatment, tumors were collected, embedded in OTC medium and frozen at -80ºC. 

Cryostat were stained with Haematoxylin/Eosin and analyzed by transmitted light 

microscopy. Untreated PC3 xenografts own a very compact tissue structure and only 

small areas of condensed and fragmented cell nuclei were detected (FIG 3-60A). In 

contrast, CPA treated tumors exhibited larger areas of condensed and fragmented 

cell nuclei, indicating a higher degree of cell death (FIG 3-60B). 

  

A B 

Fig.: 3-60 Histology of subcutaneous PC3 xenografts in male SCID mice (H/E stain). Control tumors 
were collected at day 32 (A), CPA treated tumors on day 67 (B) after tumor setting. Cryosections 
(8µm) were fixed with 4% paraformaldehyde and subjected to H/E staining. Sections were viewed on a 
Zeiss Axiovert 200 transmitted light microscope with a 20x0.4 NA objective. Pictures were taken by a 
Sony DSC-S75 digital camera. 

3.4.2.2 Immunohistological analysis of PC3 tumors 

To further evaluate possible reasons for the occurred resistance towards CPA 

treatment, PC3 tumors were analyzed for immunohistological changes. Due to the 

antiangiogenic metronomic schedule of CPA, attention was focussed on vascular 

markers. Functional blood flow was visualized by intravenous application of Hoechst 

33258 dye and antibody staining against laminin, CD31 and CD13 was performed. 

Functional blood flow was decreased in CPA treated tumors, indicated by decreased 

Hoechst33258 fluorescence signal within the tumor tissue (FIG 3-61B and D). No 

significant changes in the arrangement of laminin and CD31 positive endothelial cells 

was detected in CPA treated tumors in comparison to control tumors. Moreover, 

colocalisation of laminin and CD31 positive endothelial cells remained unchanged 

(FIG 3-61A and B). Tendency of tumor cell lined vessels (vascular mimicry) was not 
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detected. However staining for CD13 positive cells, a marker for angiogenic active 

endothelial cells, was increased in CPA treated tumors, whereas colocalisation of 

laminin and CD13 staining was decreased compared to untreated control (FIG 3-61C 

versus 3-61D). 

 

A B 

 

C D 

Fig.: 3-61 Cryo sections (5µm) of untreated (A and C) and CPA treated tumors (B and D) were fixed 
with 4% paraformaldehyde and stained with specific antibodies for rat-anti-mouse CD31 (green) and 
anti laminin (red) (A and B), or for rat-anti-mouse CD13 (green) and anti laminin (red) (C and D). 
Secondary antibodies were labelled with Alexa 488 (CD31/CD13) or Texasred (laminin). The 
intravenously injected Hoechst 33258 stain was visualized as well (blue).Analysis was performed with 
a Zeiss Axiovert 200 fluorescence microscope equipped with a 10x 0.4 Zeiss objective and a Zeiss 
Axiocam. 

 

3.4.2.3 Characterisation of reisolated tumor cells 

3.4.2.3.1 Morphology 

Reisolated PC3 tumor cells (PC3ID3 and PC3ID4) and parental PC3 cells were 

analyzed for cell morphology by transmitted light microscopy. Twenty four hours after 

seeding no obvious changes in cell morphology were detectable (FIG 3-62).  
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A B C 

Fig.: 3-62 Morphologies of wt PC3 cells (A) and reisolated PC3ID3 (B) and PC3ID4 cells (C).  

3.4.2.3.2 EGF and CD71 status 

To verify the identity of reisolated PC3 cells, antibody staining against huEGFR and 

human CD71 was performed and analyzed by cell flow cytometry. Receptor status of 

reisolated cells was similar to the receptor status of wt PC3 cells regarding EGF 

receptor and human CD71 expression (FIG 3-63). 

A  

 

 

 

 

red: parental PC3 cells; control IgG 

black: PC3Id4 control; IgG 

green: PC3Id3 control; IgG 

dark blue: parental PC3; anti human-EGF 

violet: PC3ID3; anti human-EGF 

light blue: PC3ID4; anti human-EGF 

B      

 

 

 

 

red: parental PC3 cells; control IgG 

black: PC3ID4; control IgG 

green: PC3ID4; control IgG 

dark blue: parental PC3; anti human CD71 

violet: PC3ID3; anti human CD71 

light blue: pc3id4; anti human CD71 

Fig.: 3-63 Antibody status for EGF- (A) and transferrin receptor (CD71) (B) on parental and reisolated 
PC3 cells. Parental and reisolated PC3 tumor cells were stained for human EGF- and human 
transferrin-receptor, followed by FACS analysis. 
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3.4.2.3.3 Proliferation rate 

In order to investigate whether the resistance towards CPA treatment occurred due to 

changes in the proliferation rate, reisolated tumor cells were compared to parental 

PC3 cells in terms of proliferation by the Hoechst 33258 based DNA content assay. 

The proliferation rate was determined over a period of 5 days. Reisolated tumor cells 

PCID3 and PCID4 exhibited a slightly increased proliferation rate compared to the 

parental PC3 cells, however increase in proliferation rate was not significant (p>0.05, 

Mann-Whitney U-test). 
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Fig.: 3-64 Proliferation of parental 
and reisolated PC3 cells (PCID3 
and PCID4). Parental PC3 and 
reisolated tumor cells were seeded 
in a 48 well plate (1500 cells/well) 
and medium was changed every 
second day. Proliferation was 
determined by Hoechst33258 
based DNA content assay over a 
period of 5 days. Open symbols: 
parental PC3 cells, closed symbols: 
reisolated PC3 cells. Values are 
means ± SD of four measurements. 

3.4.2.3.4 NF-ゐB expression level 

NF-遠B is reported to be a critical factor in the response of tumors to chemotherapy; 

increased expression levels of NF-遠B are able to protect tumor cells from drug 

induced cell death (68-71). Therefore, reisolated cells PC3ID3 and PC3ID4 were 

compared to the parental PC3 cell line in terms of NF-遠B expression levels. 

Parental and reisolated cells were transiently transfected with LPEI polyplexes (LPEI, 

N/P=6, HBS, 400ng/well) containing an NF-遠B sensitive luciferase encoding plasmid.  

Control experiments were performed with similar LPEI polyplexes (HBS, N/P 6) 

containing a luciferase encoding plasmid without NF-遠B enhancer areas in the 

promoter region. The reisolated cells PC3 ID3 and PC3 ID4 showed a significant 

increase in NF-遠B activity in comparison to the parental PC3 cell line. 
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Fig.: 3-65  Increased NF-キB 
activity levels in reisolated 
PC3ID3 and PC3ID4 cells. 
Data were corrected by control 
luciferase expression of 
parental PC3 cells. Mean 
values ± SD of four 
measurements are shown. 
*p<0.05, compared to parental 
PC3 NF-キB levels (Mann-
Whitney U-test). 

 

3.4.2.3.5 Sensitivity to 4OOH-CPA treatment 

For further investigation of secondary resistance, the effect of 4OOH-CPA treatment 

on survival of parental PC3 cells and reisolated PC3ID3 and PC3ID4 tumor cells was 

investigated. Therefore parental PC3 cells and reisolated tumor cells were seeded as 

a monolayer and incubated with different concentrations of 4OOH-CPA for 3 days. 

Survival was analyzed by measuring total metabolic activity (MTT assay). The 

reisolated PC3ID3 and PC3ID4 cells exhibited comparable sensitivity to the 4OOH-

CPA induced reduction of cell survival as the parental PC3 cells in the monolayer 

system (FIG 3-66). 

0

0.25

0.5

0.75

1

0 20 40 60

4-OOH-CPA [µM]

re
l.
 m

e
ta

b
o
lic

a
c
ti
v
it
y

PC3 ID4

PC3 ID3

parental PC3

0

0.25

0.5

0.75

1

0 20 40 60

4-OOH-CPA [µM]

re
l.
 m

e
ta

b
o
lic

a
c
ti
v
it
y

PC3 ID4

PC3 ID3

parental PC3

 

 

Fig.: 3-66 Sensitivity of parental 
PC3 and reisolated PC3ID3 and 
PC3ID4 cells towards treatment 
with 4-OOH-CPA. Parental and 
reisolated cells were treated with 
different concentrations of 4-OOH-
CPA for 3 days. Survival was 
determined by measuring total 
metabolic activity. Control 
experiments were performed in the 
absence of 4-OOH-CPA. Mean 
values ± SD of four measurements 
are shown. 
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3.4.2.3.6 Tumor growth of reimplanted PC3 tumor cells 

For further evaluation of resistance phenomena, in vivo experiments were performed. 

Reisolated PC3 tumor cells were again implanted in the flank of other male SCID 

mice. On day 17 after the tumor implantation, when average tumor volume reached 

28mm3, mice were subject to CPA treatment (120mg/kg, every six days). 

Tumor volume and body weight were measured regularly over the period of the 

treatment. In contrast to the achieved growth delay of the tumors in the first CPA 

treatment (see FIG 3-59), no difference in tumor growth between the treated group 

and the control group was detectable. Control tumors as well as treated tumors had 

an average tumor volume doubling time of approximately three days (FIG 3-67). 

Metronomic scheduled CPA was again well tolerated, indicated by no significant loss 

in body weight (data not shown). 
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Fig.: 3-67 Tumor growth of reisolated PC3 tumor cells. Cells from resistant CPA treated tumors were 
obtained and again implanted subcutaneously in male SCID mice. Mice were treated again with 
120mg/kg every sixth day. (n=4 for untreated control animals, n=5 for CPA treated animals) 

3.4.2.4 Immunohistochemical analyses of reimplanted tumors 

Reimplanted PC3 xenografts were analyzed for immunohistological changes in 

comparison to parental PC3 tumors. Again, attention was concentrated on vascular 

markers. Functional blood flow was visualized by intravenous application of Hoechst 

33258 dye and antibody staining against laminin, CD31 and CDE13 was performed. 

Blood supply in reimplanted PC3 tumors was homogenous, indicated by 

homogenous staining of cell nuclei by systemically applied Hoechst 33258 dye. No 

significant changes in the arrangement of laminin and CD31 positive endothelial cells 
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was detected in reimplanted tumors in comparison to parental control tumors. 

Moreover, colocalisation of laminin and CD31 positive endothelial cells remained 

unchanged (FIG3-68A). Tendency of structural modifications or tumor cell lined 

vessels (vascular mimicry) as a possible mechanism of resistance were not detected. 

In parental PC3 tumors CD13 positive cells and laminin staining was partly 

colocalized (FIG 3-61C), whereas in the reimplanted tumors no colocalisation was 

detectable (FIG 3-68B). 

  

A B 

Fig.: 3-68 Immunohistochemical analysis of reimplanted PC3 tumors. Cryo sections (5µm) were fixed 
with 4% paraformaldehyde and stained with specific antibodies for A) rat-anti mouse CD31 (green) 
and anti laminin (red), respectively for B) rat-anti mouse CD13 (green) and anti laminin (red). 
Secondary antibodies were labelled with Alexa 488 (CD31/CD13) or Texasred (laminin). The 
intravenously injected Hoechst 33258 stain, indicating functional blood flow, was visualized as well 
(blue). 
 

3.4.3 Resistance in the HUH7 tumor model 

3.4.3.1 HUH7 tumor model 

Subcutaneous human HUH7 tumors were established in SCID mice by injection of 

5x106 HUH7 cells in the flank of the animals. When tumors reached an average 

tumor volume of 32 mm3 CPA treatment was started on day 12 after the tumor 

implantation. Tumor bearing mice were treated with 75mg/kg CPA every 6th day. 

Tumor volume and body weight was measured over the time of CPA treatment. 

Metronomic scheduled CPA treatment resulted in a significant delay in tumor growth. 

Tumor volume was constant up to day 75 after the tumor cell implantation, whereas 

tumors in the control group showed tumor progression. When CPA treated HUH7 

tumor began to grow despite ongoing CPA therapy, tumor double time was 3.5 days.
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Fig.: 3-69 Tumor growth in a human HUH7 xenograft model with and without metronomic scheduled 
CPA treatment.  Tumor bearing SCID mice were treated with 75 mg/kg CPA every 6th day. (n=3 
animals per group) 

 

Metronomically scheduled CPA therapy was well tolerated indicated by constant 

animal body weight up to day 85. Further CPA treatment resulted in significant loss of 

body weight pertaining to all CPA treated animals (data not shown). Treatment was 

stopped and animals were sacrified when average loss in body weight reached 20%. 

Tumors were collected and subjected to histological analysis. Further on, tumor cells 

were extracted from rebounded tumors for characterisation and cell culture 

experiments.  

3.4.3.1.1 Macroscopic differences between tumors 

The embedded and frozen tumor tissue was analyzed for macroscopical changes 

because treated tumors were obviously different in their appearance compared to 

non-treated control. The tumor tissue of non-treated tumors was compact and 

homogenous (FIG 3-70A and B), whereas resistant CPA treated tumors exhibited an 

inhomogeneous and sponge like structure. Moreover the tissue of treated tumors 

appeared darker resulting from incorporated blood lakes within the tissue (FIG 3-70C, 

D, E and F). 
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Fig.: 3-70 Macroscopic appearance of relapsed CPA treated HUH7 tumors. Tumor tissue was 
collected on day 112 after implantation in case of treated tumors (C, D, E and F) and on day 27 in the 
case of control tumors (A and B). Frozen, embedded tumor tissue was cut with a cryostat until the 
centre of the tumors was reached. Photos were taken with a SONY DSC-75 digital camera. Pictures 

B, D and F are enlarged details from overview pictures A, C and E (  ) 

 

3.4.3.1.2 Histology (HE) 

For characterisation and evaluation of histological changes induced by CPA 

treatment, tumors were collected and histological analyses by H/E staining and 

transmission light microscopy were performed. 

Untreated HUH7 xenografts own a very compact and homogenous tissue structure 

(FIG 3-71 A). In contrast, relapsed CPA treated tumors appeared inhomogeneous 

and exhibited a spongy structure with large cell free areas (FIG 3-71 B). These cell 

free areas were identified as intratumoral blood lakes, characterized by the presence 

of erythrocytes. Interestingly, larger areas of condensed or fragmented cell nuclei 

were neither found in control tumors nor in relapsed CPA treated tumors, indicating a 

similar degree of cell death (FIG 3-71A and B). 
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 A   B  

Fig.: 3-71 Histology of subcutaneous HUH7 xenografts in male SCID mice (H/E stain). Control tumors 
were collected at day 27 (A) and CPA treated tumors on day 112 (B) after tumor cell implantation. 
Cryosections (10µm) were fixed with 4% paraformaldehyde and subjected to H/E staining as 
described in materials and methods. Sections were viewed on a Zeiss Axiovert 200 transmitted light 
microscope with a 20x0.4 NA objective. Pictures were taken by a Sony DSC-S75 digital camera. 

 
To evaluate, if integrated blood lakes contribute to blood supply Hoechst33258 was 

applied systemically as a tracer. Several blood lakes exhibited Hoechst 33258 

stained lining (blue), indicating connection with systemic blood supply (FIG 3-72B). 

Blood supply of non treated HUH7 tumors was investigated with the same technique 

(FIG 3-72A). Counterstain of nuclei was performed with propidium iodide. 

 A  B 

Fig.: 3-72 Blood supply in HUH7 xenografts. Cryo sections (10µm) were fixed with 4% 
paraformaldehyde and counter stain was performed with propidium iodide (red). Blood supply is 
indicated by blue staining of intravenously applied Hoechst 33258 dye. Analysis was performed with a 
Zeiss Axiovert 200 fluorescence microscope, equipped with a 10x0.4 Zeiss objective and pictures 
were taken with a Zeiss Axiocam. 

 

3.4.3.1.3 EGF-receptor status 

For further evaluation of potential changes responsible for resistance against CPA 

treatment, HUH7 tumors were analyzed for immunohistological modifications. Due to 

the antiangiogenic metronomic schedule of CPA, attention was focussed on vascular 
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markers. Functional blood flow was visualized by intravenous application of Hoechst 

33258 dye and antibody staining against laminin, CD31 and CD13 was performed. 

Functional blood flow was decreased in relapsed CPA treated tumors, indicated by 

decreased Hoechst33258 fluorescence signal within the tumor tissue (FIG 3-73 B 

and D); moreover vessel density was decreased. Less CD31 and laminin positive 

vessels were detected in comparison to the control tumors. Colocalisation of laminin 

and CD31 positive endothelial cells remained unchanged (FIG 3-73A and B). 

However, in contrast to control tumors, in CPA treated tumors vessels were not 

continuously lined with CD31 positive endothelial cells. Tumor cell lined vessels 

(vascular mimicry) for a possible reason of resistance towards the metronomic 

scheduled CPA treatment was evident in these relapsed tumors. 

Staining for CD13 positive cells, a marker that indicates angiogenic active endothelial 

cells, resulted in slightly decreased fluorescence signal compared to non-treated 

control tumors. Similar to evaluated PC3 tumors, colocalisation of laminin and CD13 

staining was decreased in relapsed CPA treated HUH7 tumors. In the case of HUH7 

tumors colocalisation was even completely diminished. In contrast to organized 

structures of CD13 positive cells in the control tumors, CD13+ endothelial cells 

exhibited manifest trappings of disorganisation. In treated tumors CD13+ cells were 

scattered distributed over the tumor tissue whereas CD13+ cells were colocated with 

the established vessel network in control tumors (FIG 3-73C and D). 

  

A B 
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C D 

Fig.: 3-73 Immunohistochemical analysis of HUH7 tumors (A,C) untreated control tumors and (B,D) 
CPA treated. Cryo sections (5µm) were fixed with 4% paraformaldehyde and stained with specific 
antibodies for A,B rat-anti mouse CD31 (green) and anti laminin (red), respectively for C,D rat-anti 
mouse CD13 (green) and anti laminin (red). Secondary antibodies were labelled with Alexa 488 
(CD31/CD13) or Texasred (laminin). The intravenously injected Hoechst 33258 stain was visualized 
as well (blue). 
 

3.4.3.1.4 Morphology of reisolated HUH7 tumor cells 

Reisolated HUH7 tumor cells and cells from the HUH7 parental cell line were 

analyzed for cell morphology by transmitted light microscopy. Parental HUH7 cells 

and reisolated cells from relapsed CPA treated tumors were seeded in well plates. 

24h after the seeding pictures were taken. No obvious changes in cell morphology 

were detectable. 

 

 

A B 

Fig.: 3-74 Morphology of parental HUH7 cells (A) and reisolated HUH7 (HUH7 REISO) cells (B). 

 

3.4.3.1.5 EGF-receptor expression 

To verify the identity of reisolated human HUH7 tumor cells, antibody staining against 

human EGFR receptor was performed and analyzed by cell flow cytometry. 
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Receptor status of reisolated cells was very similar to the receptor status of parental 

HUH7 cells regarding human EGF receptor. The EGF receptor was detected in a 

similar density on the reisolated cells compared to parental HUH7 cells (FIG 3-75). 
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red: parental HUH7; control IgG 

black: parental HUH7; anti huEGF 
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red: HUH7 REISO; control IgG 

black: HUH7 REISO; anti huEGF 

Fig.: 3-75 Antibody status for human EGF receptor on parental and reisolated HUH7 cells. Parental 
and reisolated PC3 tumor cells were stained for human EGF- and human Transferrin-receptor as 
described in materials and methods, followed by FACS analysis. A) parental HUH7 cells, B) reisolated 
HUH7 cells. 

 

3.4.3.1.6 Proliferation rate of reisolated HUH7  

In order to test whether the non response towards CPA treatment is due to changes 

in the proliferation rate, reisolated tumor cells were compared to the parental cell 

lines in terms of proliferation rate by the Hoechst DNA content assay. Proliferation 

rate was determined over a period of 4 days. No difference in proliferation rate was 

found in the reisolated HUH7 cells compared to proliferation rate of parental HUH7 

cells. 
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Fig.: 3-76 Proliferation of 
parental and reisolated HUH7 
cells (HUH7 REISO). Parental 
HUH7 and reisolated tumor cells 
were seeded in a 48 well plate 
(1500 cells/well). Medium was 
changed every second day. 
Proliferation was determined by 
Hoechst33258 based DNA 
content assay over a period of 4 
days. Values are means ± SE of 
five measurements. 

 

3.4.3.1.7 CYP activity in HUH7 

Since HUH7 cells have endogenous CYP enzymatic activity in the resorufin assay, 

non response to CPA therapy might be a result of changes in endogenous activity. 

Therefore HUH7 REISO cells were compared to parental HUH7 cells in terms of 

endogenous CYP enzymatic activity in the resorufin assay. Enzymatic CYP activity 

was indeed reduced in the HUH7 REISO cells in comparison to the HUH7 parental 

cell line (FIG 3-77). The reduction of CYP2B1 enzymatic activity leads to decreased 

CPA activation in the cells and therefore may contribute to a non CPA responsive 

phenotype. Reduction in endogenous CYP2B1 activity was significant referring to cell 

count and total metabolic activity. (p=0.049; Mann-Whitney U-test).
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Fig.: 3-77 Decreased CYP2B1 
activity levels in reisolated HUH7 
tumor cells. Data were corrected by 
cell count or metabolic activity 
(MTT) of parental HUH7 cells. 
Mean values ± SD of triplicates are 
shown. *p<0.05, compared to 
parental HUH7 CYP activity levels 
(Mann-Whitney U-test). 

 

 



Results   118

3.4.3.1.8 NF-ゐB activity 

Reisolated HUH7 tumor cells were compared to parental cells in terms of NF-遠B 

activity levels. Determination of NF-遠B activity levels was performed similar as in PC3 

and Neuro2A cells. The increase in luciferase expression by transfection with the 

plasmid containing NF-遠B responsive elements in the promoter region was most 

pronounced in HUH7 cells compared to other cell lines (see chapters 2 CT26:10,1 

and chapter 4, Neuro2A: 2,2 , PC3: 1,6). Moreover reisolated cells HUH7 REISO 

shows a significantly increased NF-遠B activity in comparison to the parental HUH7 

cell line, indicating that NF-遠B activity might contribute to decreased sensitivity 

towards cytotoxic treatment. 
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Fig.: 3-78 Increased NF-キB activity levels in 
reisolated HUH7 tumor cells. Data were 
corrected by control luciferase expression of 
parental HUH7 cells. Mean values ± SD of four 
measurements are shown. *p<0.05, compared to 
parental HUH7 NF-キB activity levels (Mann-
Whitney U-test). 
 

3.4.3.1.9 Sensitivity of HUH7 towards CPA treatment in a coculture model 

For further investigation of resistance phenomena, reisolated HUH7 cells were 

exposed to in situ activated CPA in a coculture system with CYP2B1 expressing X39 

tumor cells. Reisolated or parental HUH7 cells were seeded with X39 cells in a ratio 

of 75:25 and incubated with different concentrations of CPA for 5 days. Control 

experiments were performed in the absence of CPA. Cell survival was analyzed by 

measuring total metabolic activity (MTT assay). The reisolated cells exhibited 

comparable sensitivity to the CPA induced reduction of cell survival as the parental 

HUH7 cells in a monolayer system. 
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Fig.: 3-79 Sensitivity of parental HUH7 
and reisolated HUH7 REISO cells 
towards treatment with in situ activated 
CPA. Parental and reisolated cells co-
cultivated with X39 cells and treated 
with different concentrations of CPA for 
5 days. Survival was determined by 
measuring Hoechst DNA content assay. 
Control experiments were performed in 
the absence of CPA. Mean values ± SD 
of six measurements are shown. 

 

3.4.3.2 Reimplantation of reisolated HUH7 cells 

For the reimplantation of HUH7 tumors, cells obtained from one relapsed CPA 

treated tumor were isolated, passaged four times in vitro and injected in the flank of 

SCID mice. On day 12 when average tumor volume reached 40mm3 CPA treatment 

was started (75mg/kg, every sixth day). 

In contrast to significant growth delay of tumors established with parental HUH7 cells 

due to CPA treatment, tumor progression of treated and control animals were not 

significantly different when tumors were established with reisolated HUH7 tumor cells 

(Mann-Whitney U-test). Metronomic scheduled CPA was again well tolerated 

indicated by no significant loss in body weight (data not shown). 
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Fig.: 3-80 Tumor growth of reisolated 
HUH7 tumor cells. Cells from relapsed 
CPA treated tumors were obtained 
and reimplanted subcutaneously in 
SCID mice. Mice were treated with 
75mg/kg every sixth day. (n=3 for 
untreated control group, n=4 for CPA 
treated group). 
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3.4.3.3 Histology of reimplanted tumors 

Reimplanted HUH7 xenografts were analyzed for immunohistological changes in 

comparison to parental HUH7 tumors. Blood supply in reimplanted HUH7 tumors was 

heterogeneous and insufficient, indicated by large areas without staining after 

systemic application of Hoechst 33258 dye. Moreover, a considerable fraction of 

tumor vessels was dilated and tissue structure was rather spongy in comparison to 

parental HUH7 tumors. No significant changes in the arrangement of laminin and 

CD31 positive endothelial cells was detected in reimplanted tumors in comparison to 

parental control tumors. Moreover, colocalisation of laminin and CD31 positive 

endothelial cells remained unchanged (FIG 3-81A). Tendency of tumor cell lined 

vessels (vascular mimicry) for a possible reason of resistance towards the 

metronomic scheduled CPA treatment was detected in some tumor areas (FIG 3-

81B). Colocalization of CD13 positive cells and laminin was detectable in some tumor 

areas (FIG 3-81C). However, colocalisation of laminin and CD13 staining was 

significantly decreased in considerable areas of tumor tissue in comparison to 

parental HUH7 tumors (FIG 3-81D). 

 A  B 

 C  D 

Fig.: 3-81 Cryo sections (5µm) were fixed with 4% paraformaldehyde and stained with specific 
antibodies for rat-anti mouse CD31 (green) and anti laminin (red) (A and B), respectively for rat-anti- 
mouse CD13 (green) and anti laminin (red) (C and D). Secondary antibodies were labelled with Alexa 
488 (CD31/CD13) or TexasRed (laminin). The intravenously injected Hoechst 33258 stain was 
visualized as well (blue). 
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3.4.4 Resistance in the syngeneic Neuro2A tumor model 

3.4.4.1 In vivo treatment of Neuro2A tumors 

Subcutaneous Neuro2A tumors were established in A/J mice by subcutaneous 

injection of 1x106 Neuro2A cells in the flank of the animals. On day 11 after the tumor 

implantation when tumors reached an average tumor volume of 50mm3, combined 

electroporation with plasmid DNA encoding for CYP2B1 enzyme and CPA treatment 

(75mg/kg every seventh day) was started (GDEPT concept, chapter 1). Tumor 

volume and body weight was measured at constant intervals during CPA treatment. 

Electroporation combined with metronomic scheduled CPA treatment (application two 

day after electroporation) resulted in a significant delay in tumor growth. Tumor 

progression of the treated animals was diminished up to day 62 after the tumor cell 

implantation whereas tumors of the control group showed an average tumor doubling 

time of about 3 days. When electroporated and CPA treated Neuro2A tumors began 

to re-grow despite ongoing therapy tumor doubling time was 6 days. 

Combined electroporation with metronomic scheduled CPA therapy was well 

tolerated indicated by constant animal body weight up to day 65. Further treatment 

resulted in significant weight loss in all treated animals. Treatment was stopped and 

animals were sacrified when average weight loss reached 20% (data not shown). 

For further investigation of treatment non-responding, tumors were collected and 

cells were extracted from the tumor tissue for further characterisation. 
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Fig.: 3-82 Tumor growth in a 
Neuro2A tumor model with and 
without metronomic scheduled 
CPA combined with electroporation 
treatment. (n=3 animals per group) 
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3.4.4.2 Morphology of reisolated Neuro2A tumor cells. 

Reisolated Neuro2A tumor cells and parental cells from the Neuro2A cell line were 

analyzed for cell morphology by transmitted light microscopy. Therefore parental cells 

and reisolated cells, obtained from the treatment non responsive tumors, were 

seeded in well plates. 24h after the seeding pictures were taken. No obvious 

changes in cell morphology were detectable. 

  

A B 

Fig.: 3-83 Morphology of parental Neuro2A cells (A) and reisolated Neuro2A cells (Neuro2A REISO) 
(B). 

3.4.4.3 CD71 status of reisolated Neuro2A tumor cells 

To verify the identity of reisolated Neuro2A tumor cells, antibody staining against 

CD71 was performed and analyzed by cell flow cytometry. The parental Neuro2A 

cells and as well the reisolated cells were positively stained for CD71 receptor. A 

slightly increased CD71 density was detected on Neuro2A REISO cells compared to 

parental Neuro2A cells. 

 

 

 

 

 

 

 

red: isotype control IgG-PE 

black: parental Neuro2A; anti mouse CD71-PE 

green: Neuro2A REISO; anti mouse CD71-PE 

 

Fig.: 3-84 Antibody status for mouse CD71 on parental and reisolated Neuro2A cells. Parental and 
reisolated Neuro2A tumor cells were stained for mouse transferrin receptor (CD71) as described in 
materials and methods, followed by FACS analysis. 
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3.4.4.4 Proliferation rate of reisolated Neuro2A cells 

In order to test whether the non response towards CPA treatment is due to changes 

in the proliferation rate, reisolated tumor cells were compared to the parental cell 

lines in terms of proliferation rate by the Hoechst DNA content assay. Proliferation 

rate was determined over a period of 4 days. No difference in proliferation between 

reisolated and parental Neuro2A was detected. 
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Fig.: 3-85 Proliferation of parental and reisolated Neuro2A cells (Neuro2A REISO). Parental Neuro2A 
and reisolated tumor cells were seeded in a 48 well plate (1500 cells/well). Medium was changed 
every second day. Proliferation was determined by Hoechst33258 based DNA content assay over a 
period of 4 days. Values are means ± SD of six measurements. 

3.4.4.5 CYP activity in reisolated Neuro2A tumor cells 

Due to the fact that mice were treated with a combination of CYP2B1 gene transfer 

and metronomic scheduled CPA therapy, reisolated tumor cells were analyzed for 

CYP activity by the resorufin assay. Neuro2A REISO cells did not exhibit increased 

CYP activity in comparison to parental Neuro2A cells (data not shown). 

3.4.4.6 NF-遠B expression levels 

To evaluate a potential role of NF-遠B activity in resistance of the Neuro2A tumor 

model, reisolated Neuro2A tumor cells were investigated regarding to their NF-遠B 

activity levels. Determination of NF-遠B levels was performed similar as in PC3 and 

HUH7 cells. Reisolated Neuro2A cells exhibited no significantly increased NF-遠B 

activity in comparison to parental Neuro2A cells (p=0.078, Mann-Whitney U-test). 
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Fig.: 3-86 NF-キB activity levels in parental 
Neuro2A and reisolated Neuro2A 
(Neuro2A REISO) cells. Mean values ± SD 
of six measurements are shown. 

3.4.4.7 Sensitivity towards 4OOH-CPA treatment 

For further evaluation of resistance in the Neuro2A tumor model, the effect of 4OOH-

CPA treatment on the survival of parental Neuro2A and reisolated Neuro2A REISO 

cells was investigated in vitro. Therefore, parental Neuro2A cells and reisolated 

tumor cells were seeded as a monolayer and incubated with different concentrations 

of 4OOH-CPA for 3 days. Survival was analyzed by measuring total metabolic activity 

(MTT assay). 

Reisolated cells exhibited comparable sensitivity to the 4OOH-CPA induced 

reduction of cell survival as the parental Neuro2A cells in a monolayer system. 
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Fig.: 3-87 Sensitivity of parental Neuro2A and 
reisolated Neuro2A REISO cells towards 
treatment with 4-OOH-CPA. Parental and 
reisolated cells were treated with different 
concentrations of 4-OOH-CPA for 3 days. 
Survival was determined by measuring total 
metabolic activity. Control experiments were 
performed in the absence of 4-OOH-CPA. Mean 
values ± SD of four measurements are shown. 
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3.4.5 CPA treatment of reimplanted Neuro2A REISO cells 

For the reimplantation of Neuro2A tumors, cells from one CPA treated tumor were 

recultivated and 106 cells were injected subcutaneously in the flank of A/J mice. 

When the average tumor volume was 46.5 mm3 on day 8 after tumor implantation, 

mice were subjected to CPA treatment (75mg/kg, every 6th day). Electroporation 

prior to CPA application was not performed in this experiment. Tumor volume and 

body weight were measured regularly over the period of the treatment. 

CPA treated tumor bearing mice exhibited a strong decrease in tumor growth 

whereas control tumors exhibited an average tumor volume double time of 2 days.  

Metronomic scheduled CPA was again well tolerable, indicated by no significant loss 

in body weight (data not shown). 
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Fig.: 3-88Tumor growth of reimplanted 
Neuro2A tumor cells in A/J mice. Cells from 
one rebounded CPA treated tumor were 
obtained and subjected to recultivation. 10

6
 

reisolated tumor cells were again implanted 
subcutaneously. Mice were treated with 
75mg/kg every 6th day. Difference in tumor 
volume was significant at day 14 and day 17 
after tumor cell implantation. (n=4 for the 
control group and n=5 for treated group) 
**p<0.01; *p<0.05, compared to non treated 
control tumors (Mann-Whitney U-test). 
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4 Discussion 
Therapy of malignant diseases was continuously improved over the last decades. 

Drugs and treatment regimes were optimized in order to achieve adequate anti 

cancer activity combined with tolerable side effects. However, treatment with 

conventional antitumor drugs is still marked by a balance between antitumoral and 

side effects due to insufficient specificity. In particular, widely used low molecular 

drugs are distributed in similar quantity in healthy tissue, when administration is 

performed systemically. 

Recently, a change towards more specific drugs is noticeable. Moreover, tumor 

vasculature as a promising target in anticancer strategies emerged in the last years. 

According, investigation of tumor angiogenesis and antiangiogenic approaches was a 

main issue in new antitumor strategies. Treatment regimes with conventional 

cytotoxic antitumoral drugs were evaluated and changed experimentally from high 

dose therapies to low dose metronomic schedules. In addition more specific 

approaches with antibodies, e.g. Herceptin® and Avastin®, thyrosin kinase inhibitors 

(Clivec®), or proteasom inhibitors (Velcade®) were recently developed and entered 

the clinic. New treatment regimes such as nucleic acid therapies including siRNA and 

gene therapy are investigated because of their potential of selectivity. 

However, several limitations for cancer therapy exist up to now. The occurrence of 

primary and secondary resistance towards treatment regimes is still a major obstacle 

in tumor therapy. Approaches for cancer therapy have to be further improved 

regarding to specificity, antitumoral efficiency and resistance. A major obstacle for 

evaluation of new therapeutic strategies is the lack of reliable model systems and/or 

evaluation of potential strategies without incorporating tumor specific environmental 

properties. 

Main issues in this thesis were therefore the evaluation of a potential specific gene 

therapeutic approach (GDEPT) in a tumor mimicking environment. Moreover, 

attention was turned towards metronomic scheduled CPA and acrolein as one of the 

metabolites that potentially support antiangiogenic activity. During the investigations 

chemoresistance towards CPA therapy was observed in tumor models in vitro and in 

vivo and was characterized by histological analysis and evaluations in reisolated 

tumors. 
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4.1 Classic GDEPT concept 

A major obstacle for the improvement of CPA/IFO treatment regimes in regards to 

specificity and side effects is activation of CPA/IFO prodrug by liver enzymes and the 

systemic distribution of cytotoxic metabolites via the vasculature. Enzymatic 

conversion of CPA/IFO in the tumor site is in general prevented due to low 

endogenous CYP P450 activity in tumor cells. Conversion of CPA prodrug in the 

tumor area would result in relocation of cytotoxic metabolites in terms of high local 

concentrations of antitumoral active metabolites combined with a lower systemic 

burden compared to conventional CPA/IFO treatment regimes. Therefore, delivery of 

plasmids encoding for CPA/IFO converting enzymes to tumor cells, is a promising 

approach in improving CPA/IFO treatment (GDEPT, gene directed enzyme prodrug 

therapy). 

While several hundreds of isoenzymes pertain to the family of P450 enzymes, only 

some of them contribute to the conversion of CPA and IFO. Primary, CPA/IFO 

activation by 4-OH hydroxylation reaction is catalyzed by P4502B and P4502C 

isoforms (103). P4502C isoforms exhibit fast conversion, however, application in the 

classic GDEPT concept is prevented due to saturation effects (104). Human CYP3A4 

and CYP2B6 were found to activate the CPA prodrug very efficiently (105), however, 

CYP3A4 conversion resulted beneath hydroxylation of CPA in neurotoxic and 

nephrotoxic side products. In contrast, enzymatic activity of CYP2B1 and CYP2B6 is 

restricted on hydroxylation reaction, leading to the antitumoral active phosphoramid 

mustard (106). 

In the context of this thesis, evaluation of this approach was performed with plasmid 

DNA encoding for rat CYP2B1 enzyme, due to substantial evaluations and 

characterizations of prior studies (107-111). For sufficient expression levels of the 

therapeutic gene in tumor cells, CYP2B1 expression was regulated by a highly 

efficient CMV-promoter/enhancer. 

Evaluation of sensitizing tumor cells towards CPA/IFO treatment via CYP2B1 

expression was performed in standard cell culture and additionally in the agarose 

overlay system, mimicking tumor environmental characteristics. Finally this GDEPT 

approach was investigated in vivo by intratumoral CYP2B1 gene transfer followed by 

CPA treatment in a CT26 xenograft tumor model. 
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Conventional cell culture 

Evaluation of sensitizing tumor cells towards CPA/IFO treatment via CYP2B1 

expression was performed on transiently transfected cells as well as on stably 

transfected cell lines. Different from prior studies on the CYP/CPA combination, 

attention was focused to low CPA concentrations, reflecting the metronomic 

scheduled CPA treatment regimes and not high dose therapy. 

Beside assurance of expressed CYP2B1 protein in transfected cells via specific 

antibody staining, special attention was set to the evaluation of enzymatic activity. 

Enzymatic activity does not directly correlate, of necessity, on CYP protein content. 

Beneath environmental conditions (50) other factors are crucial for CYP2B1 

enzymatic activity (112-114). Therefore two different assays for detecting CYP2B1 

enzymatic activity were performed. The acrolein assay that directly reflects 

conversion of CPA/IFO was found to suffer from low signal to noise ratios, especially 

in culture systems with low CPA concentrations. Low detection rate of free acrolein in 

supernatants may be due to covalent reaction to serum proteins, present in the cell 

culture medium. To circumvent low sensitivity of the acrolein assay a modified 

resorufin assay was used for evaluation of CYP enzymatic activity. Resorufin 

recovery in serum containing biological fluids was easily detectable due to high 

sensitivity and sufficient signal to noise ratio. Therefore the resorufin assay was used 

by default to evaluate CYP2B1 enzymatic activity in the thesis. 

In following studies, wt tumor cell lines and the CYP2B1 expressing X39- and 9L-

D2B1 cells were analyzed on CYP2B1 enzymatic activity via resorufin assay. In line 

with literature, wt tumor cell lines exhibited only very low conversion capability (115); 

however, compared to CT26, 9L and Neuro2A, HUH7 cells exhibited 10-fold higher 

CYP activity in the resorufin assay (FIG 3-2). Elevated conversion capability of HUH7 

cells can be explained by their origin on human hepatocytes, whereas enzymatic 

activity of severally CYP P450 systems were detected (116). 

Stabely transfected CYP2B1 expressing cell lines X39 and 9L-D2B1 showed high 

enzymatic activity, whereas resorufin conversion capability of X39 cells was about 

twice as high in comparison to 9L-D2B1. This result was confirmed by the acrolein 

assay, indicating high relevance of the resorufin assay in terms of CPA metabolism 

(FIG 3-8 and 3-9). 

Further on, sensitivity of wt CT26 and Neuro2A tumor cells towards CPA and IFO 

treatment was investigated. Treatment with IFO resulted in enhanced antiproliferative 
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effects compared to CPA; low CYP2B1 levels in this wt cancer cell lines indicate 

higher unspecific toxicity of the IFO prodrug (FIG 3-4). This phenomena may be 

based on the non-enzymatic hydrolysation reaction of IFO that is catalyzed by 

anorganic phosphates and results in the formation of cytotoxic chlorethylamine (117-

119). No enhanced sensitivity of stable expressing CYP2B1 X39 tumor cells towards 

IFO treatment was detected (FIG 3-12). Enhanced sensitivity towards CPA treatment 

was detected when stable CYP2B1 expressing tumor cell lines X39 and 9L-D2B1 

were cultured with CPA compared to the corresponding wt tumor cells (FIG 3-10). 

This indicates in situ conversion of CPA to cytotoxic metabolites and is a proof of 

principle for this GDEPT concept. 

Even at low concentrations, relevant for the in vivo situation significantly decreased 

proliferation and survival was detected for both CYP2B1 expressing cell lines. In this 

context CYP2B1 high expressing X39 tumor cells tended to exhibit enhanced suicidal 

effects compared to 9L-D2B1 cells. However, due to predominantly apoptotic 

processes, induced by the in situ formed phosphoramid mustard (120;121), 

correlation of enzymatic activity and suicidal effects are not necessary direct. Beside 

the delivery of stably transfected, encapsulated, CYP2B1 expressing cells (31), in 

vivo approaches within the GDEPT concept includes strategies with tumor targeted 

gene transfer vehicles leading to transient expression of the therapeutic gene in 

tumor cells. Transient transfection of Neuro2A and 9L cells resulted in detectable 

enzymatic activity of the expressed CYP2B1 enzyme within 20h after the 

transfection. Maximum enzymatic activity was measured in Neuro2A tumor cells 60h 

after the transfection, whereas activity levels in transfected 9L cells were more 

constant over the observation period (FIG 3-14). 

CYP2B1 enzymatic activity levels of Neuro2A cells were about two times (at maximal 

enzymatic activity, 60h after the transfection) compared to 9L cells when total 

transfection rates (measured by EGFP reporter gene expression) were considered. In 

the case of CYP2B1 plasmid DNA delivery to CT26 tumor cells no enhanced 

enzymatic activity was detectable in the resorufin assay despite similar transfection 

rates as detected in 9L cells via EGFP reporter gene expression. 

Differences in CYP2B1 enzymatic activity after gene delivery are critically depending 

on several cellular characteristics. Beside influences on protein expression levels, 

several factors are crucial for enzymatic activity. Predominately, supply with NADH 

reduction equivalents by the P450 reducase were described for the 9L cell line (122); 
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additional effects on CYP2B1 activity might result form differences of total metabolic 

activity and characteristics of the endoplasmatic reticulum (123). 

After transient transfections with LPEI polyplexes only a part of the cell population is 

transfected successfully. Thus, bystander activity is crucial. Malfunction can 

therefore result, beneath insufficient CYP2B1 expression and activity, from dilution 

effects in conventional cell culture. This effect seem to play an important role when 

enzymatic activity is rather low (50). In transwell coculture systems of wt CT26 and 

CYP2B1 expressing tumor cells influence of proliferation and survival was detected in 

both compartments when culturing was performed in the presence of 0.5mM CPA 

(FIG 3-13). In contrast to other GDEPT-based enzyme/prodrug combinations, e.g. 

herpes simplex virus thymidine kinase/ganciclovir, 4-OH-CPA readily diffuses across 

cell membranes and is not dependent on direct cell-cell contact for bystander killing 

(50). 

However, strong cytotoxic effects were only detected for the 4-OH-CPA producing 

X39, whereas the wt CT26 acceptor cells only exhibited a moderate response in 

terms of proliferation and survival. This result indicates the importance of dilution 

effects especially in a low dose CPA GDEPT concept in vitro. In addition, 4-OH-CPA 

is very unstable and breaks down with a half-life time of only 17 min at 37ºC in serum 

containing medium (50). Efficiency of bystander effect seems to be dramatically 

linked to degrading of 4-OH-CPA and dilution effects. In vitro artifacts were 

circumvented by the development of the agarose overlay technique, mimicking 

limited diffusion effects of tumor tissue. 

 

Evaluation of the CPA GDEPT approach in the agarose overlay system 

Drug diffusion and concentration effects within the tumor tissue play an important role 

in the action of drugs such as CPA due to the short half-life of its active metabolites 

(124). Tumor cell uptake of CPA and 4-OH-CPA is facilitated by the low extracellular 

pH associated with tumors, which may increase intracellular accumulation of this 

weakly acidic drug and its metabolite by an ion trapping mechanism (125). The tumor 

microenvironment has a substantial impact on the response of tumor cells to 

cytotoxic agents (126). The diffusion of nutrients, drugs and metabolites within a solid 

tumor is limited. Moreover, most solid tumors are characterized by extended hypoxic 

regions and areas with an acidic microenvironment (127). 
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In addition to the level of CYP gene expression, the extent of CPA activation is highly 

dependent on the availability of oxygen, which is a cosubstrate for all CYP-

catalyzed monooxygenation reactions. Low oxygen pressure resulting from 

insufficient blood supply is a hallmark of solid tumors (128). Despite the limited 

oxygen supply, excellent antitumor activity was reported in mouse and rat models of 

GDEPT using CYP2B enzymes (122;129), with some indications of efficiency 

reported in initial clinical trials after local delivery of a CYP gene (130).  

Results obtained in bystander experiments of prior studies may be non-physiological 

and reflect the unnatural environment of conventional cell culture. Therefore, the 

CYP-CPA-GDEPT strategy was evaluated by using an agarose overlay technique 

to study the effect of limited diffusion and reduced oxygen supply on the bystander 

cytotoxicity of CYP activated CPA.  

Agarose has been described as a suitable material for simulation of diffusion within a 

solid tumor (131). This effect was confirmed by injecting the membrane-permeable 

DNA dye Hoechst 33258 into the agarose layer. The limited diffusion of this dye led 

to the formation of a concentration gradient and the staining of tumor cell nuclei in the 

immediate vicinity of the injection site (FIG 3-16). 

Beside bystander activity in the environment mimicking cell culture model, the impact 

of the agarose layer was evaluated in terms of cell morphology, proliferation rate and 

induction of hypoxia sensitive gene expression. 

Within 24h of agarose overlay no obvious changes in cell morphology (FIG 3-17) and 

no induction of hypoxia induced gene expression was detected (FIG 3-19). However, 

cell proliferation rate was influenced when cells were cultured under an agarose layer 

for several days (FIG 3-18). Oxygen deprivation under the agarose layer was not 

leading to hypoxia induced gene expression within 24h, measured by luciferase 

expression under control of a HRE (hypoxic responsive element) containing 

promoter. This indicates that the agarose overlay reflects areas in the tumor with 

moderate hypoxia. Despite the lack of hypoxia induced gene expression, the agarose 

overlay imposed an apparent hypoxic environment on the cells, as shown by the 

88% decrease in CYP metabolic activity of X39 tumor cells cultured under an 

agarose layer, which corresponds to the CYP activity at an ambient oxygen content 

of 2% (v/v) (FIG 3-21). 

Regardless of reduced CYP activity, however, the CYP-expressing tumor cells 

cultured with the agarose overlay exhibited an enhanced bystander cytotoxic effect.  
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The increased bystander activity was seen in experiments with cocultures of CYP-

expressing cells and CYP-deficient cells, and in experiments where the CYP gene 

was introduced by transient transfection. 

Thus, with the agarose overlay, a population of 25% CYP-expressing X39 cells killed 

80% of the overall tumor cell population compared to only 13% tumor cell killing in 

the absence of the overlay. Of note, X39 cells exerted greater bystander toxicity in 

HUH7 hepatoma cells compared to CT26 cells. The enhanced sensitivity of the 

HUH7 cells towards CPA may in part be due to the intrinsic CYP activity of HUH7 

cells, which is ~2% of that seen with the X39 clone. 

CPA induced decrease of cell survival in the agarose overlay model resulted in 

similar kinetics as in conventional cell culture when CYP2B1 expressing X39 tumor 

cells were cocultured with CT26 or Neuro2A cells. However, decrease in survival was 

more pronounced and was maximal at the third day of treatment under the agarose 

layer. The similar kinetic indicates that the mechanism of induced cytotoxicity is not 

influenced by the agarose overlay. The latency period of one to two days concede 

the case for maintaining an induction of apoptotic cell death also in the tumor 

environment mimicking cell culture model (FIG 3-23). 

Short-term treatment (5 h) with 0.5 mM CPA should mimic the in vivo situation, 

where short exposures to CPA at peak levels of <1 mM can be found in tumor tissue, 

even after a high dose bolus of CPA (132). In the transient transfection studies, 

where only a limited number of cells expressed CYP2B1 (13%, estimated based on 

CYP2B1 antibody staining and EGFP as reporter gene in a parallel experiment), a 

clear CPA-induced killing effect was only observed for cells cultured under an 

agarose layer (FIG 3-25). 

In conclusion, the present studies highlight the utility of an agarose overlay method 

that mimics moderate hypoxic areas in the tumor tissue and restricted diffusion of 

activated drug metabolites. In the case of CYP2B1-dependent CPA activation, the 

restricted diffusion of activated metabolites out from the tumor cell microenvironment 

is likely to prolong the exposure to elevated concentrations of active metabolites that 

play a crucial role in enhancing bystander cytotoxicity. Despite the fact that CYP 

activity, and therefore prodrug activation, is substantially reduced under the hypoxic 

conditions imposed by the agarose overlay, a strong bystander effect could 

nevertheless be observed as a consequence of the restricted diffusion of active 

metabolites. This bystander effect becomes even more important at low oxygen 
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concentrations and under conditions where only a limited fraction of the tumor cells 

express the CYP gene, as is likely to be the case in any in vivo gene delivery 

situation. 

 

In vivo evaluation of the CPA GDEPT approach 

For further evaluation of the CYP-CPA GDEPT strategy, CYP2B1 plasmid DNA was 

delivered to subcutaneous CT26 tumors via electroporation, followed by systemic 

CPA treatment on 2 consecutive days after gene transfer. Pronounced decrease in 

tumor growth was observed for CPA treatment regime combined with gene transfer 

(FIG 3-29). Interestingly, also transfection with an empty control plasmid increased 

antitumoral effects of treatment, which can be explained by several factors. Already 

electroporation of the tumor alone led to reduced tumor growth in certain cases (Silke 

van der Piepen, unpublished results). Moreover, local application of plasmid DNA can 

evoke enhanced immune response due to non methylated CpG sequences (133). 

Control experiments with subcutaneous CYP2B1 expressing X39 cells in SCID mice 

with a similar CPA treatment regime (without gene transfer via electroporation) did 

not result in enhanced antitumoral activity compared to wt CT26 xenografts. 

Therefore, primary resistance was supposed in the CT26 xenograft model.  

4.2 Extended GDEPT concept – antiangiogenic approach 

Antiangiogenic approaches exhibit several advantages in comparison to conventional 

strategies in tumor treatment, e.g. reduced side effects. Therefore the CYP/CPA 

GDEPT approach was extended on endothelial cells and the strategy of locally 

activated CPA was evaluated with attention to antiangiogenic effects.  

The bystander effect of in situ activated CPA via CYP2B1 expressing X39 tumor cells 

(producer) on primary endothelial cells (acceptor) was investigated in terms of critical 

key steps in the angiogenic process. Endothelial cells exhibit only low CYP activity 

and are therefore not able to contribute to CPA conversion. This results in low 

sensitivity towards CPA treatment (FIG 3-30). In prior studies, however, impact on 

proliferation and migration capability were detected when primary endothelial cells 

were cultured with 4-OH-CPA (20). Coculturing endothelial cells with CYP2B1 

expressing tumor cells resulted in increased sensitivity in terms of proliferation and 

survival towards CPA treatment. Interestingly, PEC cells exhibited pronounced 

sensitization compared to HUVEC cells (FIG 3-31 and 3-32). In the case of 

coculturing producer and acceptor cells in a transwell system, bystander activity was 
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evident on PEC but not on HUVEC cells (FIG 3-33 and 3-34). Differences in 

sensitivity in the context of proliferation and survival are supposed to be provoked by 

higher proliferation rate of PEC cells due to certain cell cycle specificity of the 

phosphoramid mustard. However, several other factors including phenotype and 

species might be involved in the difference of sensitization towards CPA and its 

metabolites. In particular, differences in cellular GSH levels are crucial in the 

detoxification of the metabolite acrolein (134); interestingly, treatment of primary PEC 

and HUVEC cells with acrolein alone resulted in similar difference in sensitivity (FIG 

3-40); in this context HUVEC cells were shown to exhibit an adaptive protection 

system (135). In addition, acrolein was shown to exhibit a more potent impact on cell 

death in the case of endothelial cells than the metabolite phosphoramid mustard 

(136). 

Further on, the impact of in situ activated CPA was evaluated in terms of 

antimigrative effects on primary endothelial cells by coculturing with CYP2B1 

expressing X39 cells. HUVEC as well as PEC cells exhibited decreased migration 

capabilities, however, antimigrative effects were less distinctive compared to 

treatment with 4-OH-CPA (20). Reasons for non significant effects on migration might 

result from different pharmacokinetics of in situ activated CPA and 4-OH-CPA 

administered directly to the cell culture medium. However, CPA conversion by 

CYP2B1 expressing X39 tumor cells is sufficient to inhibit endothelial differentiation 

processes via bystander activity (FIG 3-35). Control experiments with wt CT26 tumor 

cells indicate that disturbance of differentiation processes are specific in terms of 

CYP2B1 expression in the presence of CPA. Moreover, changes in the 

rearrangement of endothelial F-actin cytoskeleton was only detected in coculture 

systems with CYP2B1 expressing tumor cells in the presence of CPA (FIG 3-36). 

 

In the GDEPT strategy, CYP2B1 expressing tumor cells can be utilized as producer 

cells for activated CPA metabolites, inhibiting crucial key steps in the angiogenic 

process. The bystander principle can therefore be extended on endothelial acceptor 

cells in terms of an antiangiogenic treatment approach. 
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4.3 Acrolein – unwanted side product or contribution to 
  antiangiogenic properties of metronomic CPA therapy? 

Metronomically scheduled CPA has been linked to antiangiogenic effects, reduced 

tumor blood supply and decreased side effects compared to conventional high dose 

CPA therapy (19). Moreover, activated CPA was shown to inhibit endothelial cell 

proliferation and migration in vitro and endothelial cell apoptosis in experimentally in 

vivo tumors (17;20). Modulation of endogenous antiangiogenic cytokines like 

thrombospondin-1 by metronomic scheduled CPA was described and is discussed as 

a potential mediator of antiangiogenic effects of this approach (21;22;93;137). 

CPA is an anticancer prodrug that is dependent on cytochrom P450 metabolism to be 

activated to the first metabolite 4-OH-CPA. In vivo, this hydroxylation reaction is 

predominantly conducted by liver P450 cytochrom systems. The activated drug is 

released to the blood stream and distributed systemically over the body including the 

tumor site. 4-OH-CPA exists in equilibrium with aldophosphamide that releases 

spontaneously the phosphoramid mustard and acrolein. Antitumor activity was 

accredit to the phosphoramid mustard whereas acrolein was considered as a side 

product, responsible for unwanted side effects (138). However, some recent studies 

certify antitumor modulating effects, e.g. over modulation of the immunosystem, to 

acrolein, predominantly within low dose CPA therapy regimes (139-142). 

For in vivo evaluation, CT26 xenografts were treated with a metronomic low dose 

CPA therapy regime (40mg/kg on two consecutive days, followed by two days 

without treatment). CPA treatment resulted in significant decreased tumor growth 

compared to the untreated control group (FIG 3-29). Possible antiangiogenic effects 

of this treatment regime were analyzed by intravenously injection of Hoechst33258 

dye as a tracer. By performing this method only functional tumor blood vessels are 

visualized. In recent studies, tumor vessels are quantified after visualizing vessel cell 

markers by antibody staining, e.g. CD31. However, staining for vessel markers and 

quantification of anatomically present tumor blood vessels does not give evidence for 

the contribution of indicated vessels on tumor blood supply. Even in non treated 

experimental subcutaneous tumors, great discrepancy between CD31 stained tumor 

vessels and functional vessels was detected (not shown). Due to the fact that blood 

supply in tumors is very heterogeneous and experimentally subcutaneous grown 

tumors are often characterized by a necrotic central area and highly proliferating 

regions in the periphery, measurements were performed separately for three different 

areas (central, middle and peripheral area). Tumor blood supply of the peripheral 
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area of the tumors tended to be higher than in the central parts of the analyzed 

tissue, indicated by enhanced Hoechst33258 fluorescence signal. CPA treatment 

resulted in decreased tumor blood supply in all three tumor areas , whereas reduction 

was most pronounced in the peripheral areas. Tumor cell proliferation and angiogenic 

processes are most active in the peripheral areas of experimental subcutaneous 

tumors. Distinct reduction of blood supply in this proliferation zones indicated that 

the performed low dose CPA treatment regime indeed affected the forming of new 

functional blood vessels in terms of antiangiogenic therapy (FIG 3-37). For further 

investigation of a possible contribution of acrolein to antiangiogenic properties of low 

dose CPA scheduling, tumor tissue was analyzed for the presence of acrolein 

adducts by specific antibody staining against mouse CD31. Indeed, acrolein 

modified proteins were detected within the tumor tissue of CPA treated CT26 tumors. 

Moreover, colocalisation of CD31 and acrolein adduct antibody staining was evident, 

indicating a possible impact of acrolein on tumor endothelial cells (FIG 3-38). Acrolein 

adducts were also detected in prior studies far away form the site of CPA activation; 

e.g. acrolein-lysin adducts were located in aorta walls of CPA treated rats (143). 

Delivery of acrolein towards the tumor site can occur directly by 4-OH-CPA or 

aldophosphamide, respectively, due to relevant concentrations of these metabolites 

in peripheral blood (144). A second pathway of acrolein transport to the tumor tissue 

may be supported via thiol conjugates. In this context, these metabolites are 

described for transporting and releasing acrolein via く-elimination and were identified 

for delivery of toxic side effects of acrolein to distant organs like lung and bladder 

(145;146). Notably, tumor regions with increased acrolein adduct content displayed 

reduced tumor blood supply as identified by low Hoechst33258 staining. The in vivo 

results initiated further in vitro studies to evaluate a possible role for contribution of 

acrolein to the antiangiogenic effects of metronomic CPA therapy. 

Antiangiogenic properties of acrolein on primary endothelial cells were evaluated in 

terms of classical antiangiogenic assays including proliferation, migration and 

differentiation studies. Further on, the impact of acrolein was assayed in terms of 

crucial cellular mechanisms that are linked to cell survival, migration and angiogenic 

phenotype. 
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Proliferation 

Growing tumors require flexible adaptation and expanding tumor vessel networks. A 

basic requirement for the expansion of the vessel network is therefore the entrance of 

usually resting endothelial cells into cell cycle. The switch from resting endothelial 

cells to an angiogenic active phenotype is driven by several factors like hypoxia, 

released proangiogenic factors and other tumor environmental conditions. Culturing 

of primary endothelial cells in the presence of acrolein resulted in decreased 

proliferation and survival (FIG 3-40). In prior studies it was shown that acrolein is the 

crucial metabolite affecting endothelial cells survival; the metabolite phosphoramid 

mustard was recognized in this context to exhibit a minor role (147). Moreover, 

acrolein was shown to have the potential of inhibiting cell cycle regulating proteins 

(148). 
 

Migration 

Cell motility and migration are critical aspects in tumor progression influencing the 

sprouting of new blood vessels in the angiogenic process, cancer cell invasion and 

metastasis (149). During tumor blood vessel formation angiogenic endothelial cells 

migrate towards the direction of the angiogenic stimuli (chemotaxis). During the 

migration process further proliferation of endothelial cells can occur. Prior studies 

exhibited antimigrative effects of 4-OH-CPA on primary endothelial cells (20). 

However, treatment with acrolein alone inhibited endothelial cell migration in a dose 

dependent manner (FIG 3-41). Disturbance of cell migration by acrolein was more 

pronounced than in experiments with enzymatically in situ activated CPA. This 

difference in migration capability might result from different pharmacokinetics of 

acrolein which is released by enzymatic activated CPA and acrolein which is 

administrated directly to the cell culture medium. 
 

Differentiation 

Another crucial step in the angiogenic process is the endothelium specific 

differentiation of vascular cells in order to form lumen and functional blood vessels. 

Therefore potential antiangiogenic active drugs are evaluated for disturbing this 

differentiation processes. The matrigel assay operates on the capability of primary 

endothelial cells to form tube-like structures when cultured on a supportive matrix 

(150). The differentiation processes are promoted by different protein structures in 

the gel; laminin and to a lesser extend collagen IV seem to be the key regulator 

elements which interact with cellular surface receptors. Moreover, several 
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proangiogenic factors and growth factors like bFGF and EGF are embedded in the 

matrix. Morphological differentiation is rapid and occurs within several hours (151). 

Performing the matrigel tube formation assay in the presence of indicated 

concentrations of acrolein in the medium resulted in a pronounced and dose 

dependent inhibition of tube forming (FIG 3-42 and 3-43). 

 

In summary, acrolein disturbs crucial key steps in the angiogenic process including 

proliferation, migration and differentiation 

 

Actin cytoskeleton and integrin gvく3 receptors 

Dynamics of the actin cytoskeleton is a key element in cell migration and 

differentiation processes of endothelial cells (152). VEGF induces angiogenic 

activation of endothelial cells by assessing endothelial stress fiber assembly and F-

actin cytoskeletal rearrangements are a very early step in the angiogenic process 

(153). While cell cycle proteins and apoptosis have been under investigation for anti-

cancer drug development for several years, processes involved in controlling actin 

cytoskeleton dynamics, responsible for cell motility and cell shape, receives 

increasing attention. Actin cytoskeleton of endothelial cells and inhibitors for actin 

based endothelial cell migration are mainly investigated in the context of developing 

new antiangiogenic drugs or in mechanistic evaluation of already known 

antiangiogenic compounds. Disturbance of the endothelial F-actin cytoskeleton 

results in decreased migration and tube/capillary forming ability. 

Actin has several nucleophilic reaction sites and can be targeted for Michael 

adduction. Acrolein was shown to react with actin in cell free systems in a dose 

dependent manner, leading to structural distortions and changes in polymerization 

rates. Moreover, it was shown that acrolein leads to the breakdown of the actin 

cytoskeleton in fibroblasts (154). 

In this thesis a breakdown of the F-actin cytoskeleton was detected in primary 

endothelial cells when coculture experiments with CYP2B1 expressing X39 tumor 

cells were performed in the presence of CPA (FIG 3-36). Further, acrolein interacted 

with F-actin of HUVEC cells in a dose dependent manner and leads to the 

breakdown of the F-actin cytoskeleton (FIG 3-44), accounting for the ability of 

acrolein to inhibit cell migration and tube forming morphogenesis. 
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Endothelial cell adhesion molecules of the integrin family are critical mediators and 

regulators in the angiogenic process. Integrins are heterodimeric cell surface 

molecules consisting of two associated subunits (g and く) providing physical 

interaction with the extracellular matrix and are linked with the F-actin cytoskeleton 

(94;155); therefore integrins exhibit a crucial role for adhesion and migration 

processes. Especially, integrin gvく3 is one of the central surface molecules in 

capillary forming during the angiogenic process (156). Moreover, integrins interact 

with several signaling pathways via cytoplasmic domains and are necessary for 

signaling events essential for cell survival, proliferation, migration and differentiation 

of endothelial cells (157). Following adhesion, integrin receptor clustering occur 

which recruit cytoskeletal and cytoplasmatic proteins to link the new formed integrin 

complexes to the actin cytoskeleton. The integrin signaling leads to cytoskeletal 

rearrangements, entry into S-phase of the cell cycle and as well to integrin mediated 

gene transcription (94). Several studies showed that disturbance of integrin gvく3 

clustering results in antiangiogenic effects in vitro and in vivo. 

Specific antibody staining for integrin gvく3 receptors exhibited dramatically changes 

in cell surface distribution on cultured primary endothelial cells after treatment with 

acrolein. Notably, integrin receptor clustering, being essential for signal transduction, 

was diminished. Moreover, accumulation of integrin gvく3 receptors at filopodia 

structures, providing adhesion in migration processes, were prevented (FIG 3-45). 

Total expression levels, analyzed by antibody staining followed by FACS analyses, 

however, were not changed during observation period. 

 

In summary, disturbance of integrin gvく3 clustering by acrolein and the influence on 

regulation of F-acting cytoskeletal rearrangements indicate profound interference of 

acrolein with angiogenic processes. Additionally, results suggest possible 

mechanistic insights in the direct effects of acrolein on endothelial cell migration and 

differentiation. 

 

NF-キB levels 

Besides direct interference of acrolein with integrins and the F-actin cytoskeleton, 

modulation of NF-遠B levels by acrolein was assayed. NF-遠B signaling plays a critical 

role in cancer development, progression, angiogenesis and influences response to 

chemotherapy. In this context hypoxia (158) but also hormones (159) and growth 
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factors like EGF (160) were identified as important triggers of NF-遠B activity. High 

levels of NF-遠B were shown to be linked with cancer cell survival, expression of 

proteases (e.g. MPPs) and upregulation of proangiogenic cytokines (161;162). 

Several proangiogenic factors and extracellular matrix degrading enzymes are not 

only secreted by tumor cells themselves but additionally by stromal fibroblasts in the 

vicinity of tumor cells. Also in fibroblasts the expression of critical proangiogenic 

genes are regulated by NF-遠B and fibroblasts NF-遠B activity levels are in turn 

regulated by cytokines released from tumor cells (163). 

 
Fig.: 4-1 Network of tumor, tumor stroma and endothelial cells in the regulation of proangiogenic 
processes, leading to tumor progression and neovascularisation.  
 

This network of paracrine effects, based on NF-遠B mediation, indicates NF-遠B as a 

promising target in tumor therapy. Therefore contribution of acrolein on 

antiangiogenic effects regarding metronomic CPA treatment was assayed in the 

context of NF-遠B regulation in CT26 tumor cells, primary fibroblasts and as well in 

primary endothelial cells (HUVECs). Downregulation of NF-遠B activity levels by 

acrolein was described for human A549 lung tumor cells (164); however modulation 

of NF-遠B was not evident in CT26 tumor cells (FIG 4-50). Therefore it is assumed 

that effects of acrolein on CT26 tumors are not based on NF-遠B dependent 

pathways. However, influence of acrolein on other pathways in terms of the 

expression of proangiogenic cytokines, have to be evaluated. 

Analyzing primary fibroblasts in terms of modulation on NF-遠B activity levels due to 

acrolein treatment resulted in a dose dependent inhibition of NF-遠B activity within 6h 

(FIG 3-51A). Moreover, acrolein treatment reduced fibroblast cell survival within 24h 

(FIG 3-52B). Therefore, it is assumed that acrolein can interact with tumor supportive 
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stromal fibroblasts and may contribute to antiangiogenic effects of CPA therapy by 

reducing NF-遠B regulated output of proangiogenic factors.  

NF-遠B activity is crucial for regulation of angiogenic or resting phenotype in 

endothelial cells. Autocrine expression of several proangiogenic factors are 

modulated by NF-遠B (165;166). On the other hand proangiogenic factors like VEGF 

(167) can in turn activate NF-遠B signaling in endothelial cells. Moreover, inhibition of 

NF-遠B signaling inhibits bFGF induced angiogenesis (168) and resulted in inhibition 

of tube formation in in vitro matrigel assays (169). Another potential mechanism by 

which NF-遠B may promote angiogenesis is via autocrine effects inducing endothelial 

VEGF expression. (170). In addition, NF-遠B was identified as an important signaling 

molecule in integrin gvく3 mediated endothelial cell survival (171) and was linked to 

the PI3K/Akt pathway (172), influencing survival, proliferation and differention. As 

tumor derived endothelial cells show upregulation of the PI3K/Akt pathway, 

suppression of TSP-1 expression was functionally linked to an upregulated PI3K/Akt 

pathway (173). 

 

Fig.: 4-2 Interplay of important receptors, cytokines, pathways and the cytoskeleton in an angiogenic 
active endothelial cell  

 

Reduction of NF-遠B activity was significant when HUVEC cells were treated with 

10µM acrolein for 24h. Decrease in NF-遠B activity was even more pronounced when 

treatment was carried out with 20µM acrolein. Interestingly, culturing HUVEC cells 

with 30 µM acrolein resulted in highly increased NF-遠B activity levels (FIG 3-46). This 

increase, however, seems to be not relevant in the context of angiogenesis, due to 
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the fact that treatment of HUVEC cells with 30µM or higher concentrations of acrolein 

were shown to interfere with cell survival after 3 days of treatment (unpublished 

results). 

 

Thrombospondin-1 

The hypothesis that acrolein interferes partly via NF-遠B in the regulation of 

endothelial angiogenic phenotype may be assured by the expression profile of TSP-1 

in HUVEC cells. TSP-1 expression was found to be highly upregulated in HUVEC 

cells cultured with 5, 10, and 20µM acrolein for 24h (FIG 3-48). TSP-1 expression 

falls back to control levels when treatment was carried out with 30µM acrolein and 

above. However, the strongest induction in TSP-1 expression was detected at a 

concentration of 5 µM, whereby NF-遠B activity levels were reduced in a dose 

dependent manner with minimal activity levels at 20.0µM acrolein. These data 

suggest participation of other pathways involved in the acrolein affected regulation of 

TSP-1 expression. Other regulatory proteins affected by acrolein might be AP-1 

(activator protein 1) (148;174), or the modulation of JNK- (175;176) and PKC 

pathways (177;178). Enhanced TSP-1 expression levels, however, seems to be 

specific, as general protein expression is downregulated, indicated by decreased 

luciferase expression levels after transfection with pCMV-LUC and acrolein treatment 

(not shown). 

 

In conclusion, acrolein was shown to inhibit several crucial steps of the angiogenic 

process. Further on, disturbance of integrin clustering and reorganization processes 

of the F-actin cytoskeleton was detected in acrolein treated primary endothelial cells. 

Modulation of endothelial NF-遠B regulated gene expression by acrolein and induction 

of TSP-1 expression was evident. Due to prior studies, TSP-1 is one of the most 

important endogenous inhibitors of angiogenesis and was functionally linked to 

metronomic CPA therapy regimes. The detection of acrolein protein adducts in 

tumors and especially acrolein modified endothelial cells suggest an important 

contribution of acrolein to antiangiogenic effects of metronomic CPA treatment 

regimes. 
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4.4 Resistance towards CPA treatment 

Chemotherapy is the standard treatment in metastasized cancers. A major drawback 

of such treatment regimes, however, is resistance that either exists from the 

beginning of treatment (primary resistance) or is developed during chemotherapy 

(secondary resistance). 

4.4.1 Primary resistance 

Primary resistance is an existing obstacle in several types of cancer. Interestingly, 

drug resistant phenotypes described in several studies occur in multicellular tumor 

spheroids or in in vivo tumor models but not in monolayer cultures (179). 

As described in chapter 1, CT26 tumor cells were highly sensitized towards CPA 

treatment in monolayer cultures when CYP2B1 gene expression was evident. 

However, this sensitizing effect was diminished when CYP2B1 expressing CT26 

tumor cells (X39) were grown as subcutaneous tumors in vivo from the beginning of 

CPA treatment (FIG 3-56). Therefore, failure of sensitizing towards CPA treatment 

was classified as primary resistance. 

In order to exclude the possibility of downregulation of therapeutically expressed 

CYP2B1 protein or to recognize possible selection effects occurring under CPA 

treatment, tumor tissue was collected and analyzed for CYP2B1 expression by 

specific antibody staining at the end of treatment. CYP2B1 expression was evident in 

control as well as in CPA treated tumors, indicating that the non-response towards 

treatment is not based on changes in expression levels or selection processes (FIG 

3-57). 

For further evaluation of this effect, CYP2B1 expressing X39 tumor cells were 

cultured in a combined cell culture system including a monolayer section as well as 

three dimensional grown X39 spheroids. The compartments in the system were 

connected over a joint medium reservoir to assure the exchange of free diffusible 

metabolites occurring in CPA prodrug conversion. Reduction in cell survival and 

proliferation in the monolayer section was even more pronounced than in standard 

cell culture experiments performed in chapter 1; whereas reduction in the 

multicellular tumor spheroid compartment was not pronounced (FIG 3-52). Killing rate 

in the monolayer section indicates high total concentrations of activated CPA in the 

joint medium by contribution of multicellular tumor spheroids to CPA conversion. 
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This is contradictive to the possibility of inadequate CPA conversion within the 

agarose wrapped spheroids due to limitations of oxygen supply as an explanation for 

insufficient cytotoxic effects in the spheroid compartment. In addition, limitations in 

oxygen supply by an agarose layer were detected to exhibit only a secondary role in 

the efficiency of CPA to induce cell death. 

The possibility of insufficient diffusion of CPA prodrug to agarose wrapped X39 tumor 

cells were excluded by control experiments with prematured X39 tumor spheroids, 

exhibiting similar sensitivity towards CPA treatment as X39 cells grown as a 

monolayer (data not shown). In addition, analyses of multicellular tumor spheroids for 

CYP2B1 expression via specific antibody staining resulted in similar CYP2B1 

expression for treated X39 multicellular tumor spheroids and not treated control 

spheroids. Hoechst33258 counterstaining in agarose wrapped X39 microspheres 

resulted in the detection of fragmented cell nuclei in CPA treated tumor spheroids, 

indicating presence of active CPA metabolites and deterioration of tumor cells (FIG 3-

53). Further evaluation of resistance in the multicellular spheroid model of 

established wt CT26 tumor spheroids resulted in decreased sensitivity to 4-OOH-

CPA compared to the monolayer systems. By the use of 4-OOH-CPA, which breaks 

up into phosphoramid mustard and acrolein without enzymatic conversion, effects in 

terms of enzymatic capability in agarose wrapped tumor microspheres were 

excluded. This experimental system assures that reduction in CYP2B1 dependent 

CPA conversion was unincisive in the case of multicellular spheroids, assuring 

resistance mediated effects via three dimensional conditions in the agarose wrapped 

microspheres (FIG 3-54). 

 

In conclusion, these results demonstrate that resistance of CT26/X39 cells in vivo is 

manifested in cell culture only under three dimensional conditions in the case of 

multicellular tumor spheroids. Since CT26 or X39 cells were not resistant against 

CPA or 4-OH-CPA treatment, when grown as two dimensional monolayer cultures, 

(uni)cellular resistance is implausible. In several prior studies phenomena of 

spontaneous drug resistance in three dimensional conditions were described e.g. for 

vinca alkaloids and antimetabolites (180;181). Moreover, resistance towards CPA 

treatment, mediated by three dimensional culture conditions was described for 

murine mammary tumor cells (182). When treatment is performed with high 

molecular drugs, resistance phenomena can be explained by limited drug diffusion. 
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However, in the case of CPA, which is a low molecular weight drug (271 g/mol), this 

is unlikely to be predominant. This observation suggests that tumor tissue may be 

able to increase its relative resistance towards cytotoxic CPA metabolites by 

alterations in tissue architecture resulting in a “group protection” of the individual 

tumor cell. This point of view is assisted by the loss of resistance when treatment is 

performed on premature spheroid cultures. However, limited diffusion of drugs into 

the microspheroids seems not to be crucial, indicating other mechanisms of 

resistance. Usually proliferation rate is reduced in multicellular spheroids, which leads 

to decreased numbers of cells in the S phase of cell cycle; however, reduction in cell 

proliferation may play a major role in conventional spheroid culture technology and 

not in agarose wrapped microspheres due to constant growing over several days 

(183). Other mechanisms that may be involved are changes in DNA conformation or 

altered expression of intracellular proteins, surface proteins and cytokines. Changes 

in the expression of proteins mediating cell-cell or cell-ECM (extracellular matrix) 

contacts have to be considered. Integrins were shown to essentially modulate 

apoptotic signaling (184) and preventing CPA induced cell death in endothelial and 

epithelial cells (185). This might be a mechanism in epithelial CT26/X39 tumors, as 

alterations in cell surface integrin gv receptors of in vitro monolayers compared to 

subcutaneously grown tumors were observed: integrin gv cell surface receptors were 

only detected in CT26 tumor tissues (FIG 3-58A), whereas on CT26 tumor cells, 

cultured as two dimensional monolayers, a very low expression of integrin gv 

receptors (CD51) was observed (FIG 3-58B). Primary resistance in the context of 

CT26 and X39 multicellular tumor spheroids is a supposable explanation for GDEPT 

treatment failure in vivo. 

In summary, agarose wrapped tumor microspheres seem to be a suitable model 

system for multicellular mediated drug resistance. Moreover, in contrast to 

establishing multicellular spheroids e.g. by the liquid overlay technique (186;187), 

tumor cells maintain proliferating phenotype and form spheroids via cell division over 

several days, which is a more natural way of generating tumor spheroids (188). 

Different from other techniques, agarose wrapped spheroids implies the forming of a 

natural extracellular matrix (189-191). 

4.4.2 Secondary resistance 

In contrast to primary resistance, secondary resistance is characterized by its 

development under ongoing therapy of tumors being sensitive prior to treatment. This 
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type of resistance occurred within the metronomically scheduled CPA treatment 

regimes of subcutaneous grown PC3 and HUH7. Interestingly, therapy failure 

became evident around day 50 to day 70 in all both tumor models. 

Despite the proposal of avoiding acquired drug resistance by metronomic CPA 

therapy (192;193), recent studies indicate resistance mechanisms also occurring in 

this treatment regimes. However, previous reimplantation studies of reisolated tumor 

cells presented sensitivity towards treatment again, indicating the involvement of 

other resistance mechanism than conventional acquired multidrug resistance (MDR), 

which is predominantly based on alterations of tumor cells, e.g. upregulation of DNA 

repair, modulation of apoptotic pathways or expression of transporter systems 

(20;194;195). 
 

PC3 xenograft model 

Subcutaneous human PC3 tumors in SCID mice were treated with a higher dose of 

CPA (120mg/kg, compared to treatment of HUH7 (75mg/kg) and Neuro2A (75mg/kg) 

tumor bearing mice. Tumor volume remained constant up to day 50 after tumor cell 

implantation, thereafter tumor volume increased despite ongoing CPA therapy. Due 

to initial sensitivity towards the treatment, resistance was classified as secondary 

resistance. 

Histological analyses of collected tumor tissue, comparing relapsing CPA treated 

tumors and untreated control tumors resulted in similar tissue structure; however, 

treated tumors exhibited larger areas of condensed and fragmented cell nuclei, which 

probably resulted from direct cytotoxic effects of CPA or may be induced by hypoxic 

effects due to the antiangiogenic scheduling. 

Angiogenesis was demonstrated to be associated with the aggressiveness of tumors 

(196). Recent studies indicate that also non-angiogenesis based mechanisms may 

exist in certain tumors and are predominately promoted by tumor cell plasticity (197). 

To give consideration to possible resistance mechanism resulting from metronomic 

scheduled CPA treatment, which targets predominately tumor vessel cells, 

immunohistochemical analysis of collected tumor tissues was performed with 

attention on alterations in vascular markers. Analysis of laminin, which is a main 

compound of the basal lamina of blood vessels, and staining for CD31 positive 

endothelial cells showed colocalisation in treated as well as in untreated tumors (FIG 

4-62). Moreover, the appearance of vascular mimicry in treated PC3 tumors was not 

evident. Reduction in blood supply, indicated by decreased Hoechst33258 staining 
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levels contribute to the suggestion that regrowth of tumors are not due to malfunction 

of antiangiogenic scheduled CPA. 

Further on, laminin and CD13, a marker expressed on angiogenic active endothelial 

cells, only colocalized in untreated control tumors, but not in treated tumors. Tumor 

angiogenesis is predominately promoted by sprouting form the existing blood vessel 

network which exhibits laminin as well as CD31 markers (198); therefore, 

organization and colocalisation of CD13 with vessel markers of already established 

blood vessels can be interpreted as angiogenesis. Analysis of laminin and CD13 

staining indicate that ongoing metronomic CPA therapy is effective regarding 

antiangiogenic effects; thus the observed resistance likely results from alterations of 

the tumor cells themselves. 

Reisolated tumor cells were characterized and identified in the context of cell 

morphology and receptor status; no differences in cell morphology or EGF- or 

transferrin receptor expression were detected by comparing reisolated tumor cells 

with PC3 cells from the parental cell line, indicating identity of reisolated cells (FIG 4-

64). Due to the involvement of NF-遠B on mediating resistance towards cytotoxic CPA 

treatment by modulating apoptotic pathways, the detected upregulation of NF-遠B 

mediated gene expression can contribute to the resistant phenotype (199). 

Reisolated tumor cells did not manifest their drug resistant phenotype in two-

dimensional monolayer, when treatment was performed with 4-OOH-CPA (FIG 4-

67). However, drug resistant phenotype of reisolated tumor cells (PC3ID3 and 

PC3ID4) was manifested after reimplantation into mice (FIG 4-68). 

Immunohistochemical analysis of vascular markers laminin and CD31 in the 

reimplanted tumors resulted in a similar distribution and colocalisation of laminin and 

CD31 compared to tumors of parental PC3 cells (FIG 3-68).  

Multicellular spheroids were established from PC3ID3 and PC3ID4 reisolated 

sublines and subjected to 4-OOH-CPA treatment. Interestingly, multicellular 

spheroids were found to show resistance as detected by MTT assay (MTT, blue 

staining; FIG 4-3) when 4-OOH-CPA treatment was performed in concentrations that 

decreased metabolic activity levels in monolayer cultures to 15% of control values in 

both sublines (FIG 3-66). Comparison with parental PC3 cells failed due to it was not 

possible to establish agarose wrapped microspheroids of the parental PC3 cell line.  
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A B 

Fig.: 4-3 Metabolic activity (MTT) in established PC3ID3 (A) and PC3ID4 (B) agarose wrapped 
multicellular spheroids after 3 days of incubation with 50.0µM 4-OH-CPA. Spheroids were incubated 
with MTT reagent and metabolic activity was analyzed via transmitted light microscopy after 2h of 
incubation. Dark or blue staining of spheroids indicates metabolic activity and cell survival. 

  
Despite lacking comparableness to parental PC3 cells, occurring resistance in 

agarose wrapped spheroids indicate again possible mechanisms resulting from three 

dimensional growth conditions. For further clarifying possible mechanism involved in 

the resistant PC3 phenotype, follow up studies have to be performed.  
  

HUH7 xenograft model 

Subcutaneous human HUH7 tumors in SCID mice were treated with a low dose 

metronomic scheduled CPA treatment regime (75mg/kg). Tumor volume was kept 

constant up to day 70 after tumor cell implantation before tumor volume began to 

increase despite ongoing CPA therapy. Due to primary sensitivity towards the 

treatment, occurring resistance was likewise classified as secondary resistance. 

Tumor tissue of relapsed CPA treated tumors appeared obviously different compared 

to untreated control tumors. Whereas, control tumors exhibited a macroscopical 

homogenous and compact tissue structure, relapsed tumors were characterized by 

an inhomogeneous and spongy structure and the incorporation of several blood lakes 

(FIG 3-70). 

Further histological analysis via H/E stain assured the differences in tissue 

structure found by macroscopical analyze (FIG 3-72). Interestingly, in contrast to the 

increase of areas with condensed and fragmented cell nuclei in the relapsed PC3 

tumors, no obvious changes in histological indicators for tumor cell death were 

evident in treated HUH7 tumors. Preevaluation a possible contribution of integrated 



Discussion   149

blood lakes to tumor blood supply by Hoechst33258 as a tracer, resulted in fractional 

staining of blood lakes, indicating connection to systemic blood circulation (FIG 3-72). 

The incidence of tumor cell lined blood vessels (vascular mimicry) (200) and 

mosaic vessels (tumor cells located in blood vessel wall) (201) was predominately 

described for aggressive melanomas. In the case of vascular mimicry, tumor cells 

acquire trans-endothelial functions and are able to participate in forming channels in 

order to contribute to blood supply (202). By this mechanism, tumors are less 

dependent on functional angiogenic processes, indicating that the appearance of 

vascular mimicry and mosaic vessels might be a reasonable resistance mechanism 

in antiangiogenic treatment strategies (203). 

Again, to give consideration to possible resistance mechanism resulting from 

metronomic CPA treatment which targets predominately tumor vessel cells, 

immunohistochemical analysis of collected tumor tissues was performed with 

attention on alterations in vascular markers. 

Analysis of laminin and simultaneous staining for CD31 positive endothelial cells 

resulted in colocalisation in treated as well as in untreated control tumors. However, a 

decreased rate of anatomical present tumor vessels was detected in treated tumors, 

likely resulting from antiangiogenic effects of metronomic CPA treatment. Moreover, 

tendency of functional blood flow in treated tumor was found to be reduced, indicated 

by decreased Hoechst33258 staining. 

However, in contrast to control tumors, vessels were not continuously lined with 

CD31 positive endothelial cells in relapsed tumors. Hoechst33258 staining indicated 

that these channels within the tumor tissue are contributing to tumor blood supply 

and therefore provide oxygen and nutrients. By detailed fluorescence microscopical 

analysis of these functional channels, the presence of mosaic- as well as tumor-cell 

lined vessels was evident (FIG 3-73). The appearance of vascular mimicry 

phenomena in treated HUH7 tumors suggest a possible resistance mechanism 

towards antiangiogenic scheduled CPA therapy, due to the relative autonomy of 

tumors in the context of angiogenic processes. Analysis of laminin and CD13, 

resulted in colocalisation in untreated control tumors, but not in treated tumors. 

Moreover, organization of CD13 positive cells appeared disordered in such a 

manner, that sprouting of new blood vessels from existent ones was completely 

inhibited. Therefore, malfunction of metronomic CPA treatment regarding 

antiangiogenic effects was not evident, indicating sufficient conversion of CPA 
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prodrug and still antiangiogenic effective concentrations of active metabolites in 

blood stream. However, relapsing tumors achieved independence from angiogenesis 

and therefore were able to revoke antiangiogenic scheduled CPA treatment. 

Reisolated tumor cells were characterized and identified in the context of cell 

morphology and receptor status; no differences in cell morphology or EGF-

receptor cell surface expression were detected by comparing reisolated tumor cells 

with HUH7 cells from the parental cell line, indicating the identity of reisolated cells 

(FIG 3-74 and 3-75). Changes in endogenous CPA conversion capability may 

contribute to the resistant phenotype in HUH7 tumor cells due endogenous CYP 

activity. Indeed, endogenous CYP activity was significantly reduced, comparing 

reisolated and parental HUH7 cells (FIG 3-77). This finding suggests that decreased 

conversion of CPA to cytotoxic metabolites may further assist to treatment 

malfunction. 

Involvement of NF-遠B in resistance against cytotoxic treatment was reported in 

several studies. In this context, significant upregulation of NF-遠B induced gene 

expression was detected in reisolated HUH7 cells, indicating a role in mediating CPA 

resistant phenotype (FIG 3-78). In addition to the modulating effects of NF-遠B in 

apoptotic processes (161), increased NF-遠B induced gene expression may also 

contribute to differentiation processes (204). Therefore, NF-遠B might play an 

essential role in the case of mediating drug resistance in the HUH7 xenograft model, 

due to a possible involvement in structuring tumor tissue and in vascular mimicry 

phenomena. 

Similar to PC3ID3 and PC3ID4 sublines, reisolated tumor cells did not manifest their 

drug resistant phenotype in a two dimensional monolayer, when CPA treatment was 

performed in a coculture system with CYP2B1 expressing X39 tumor cells (FIG 3-

80). However, reisolated tumor cells manifested their drug resistant phenotype when 

reimplantation in vivo was performed. Interestingly, resistance was not absolute in 

this case. Reimplanted HUH7 xenografts exhibited decreased sensitivity towards 

CPA treatment in comparison to parental HUH7 tumors; the lag phase in tumor 

growth up to day 70 after cell implantation was not evident. On the other hand, tumor 

growth was influenced by the CPA treatment, whereby reduction in tumor growth was 

not significant at any time point of measurement (FIG 3-80). 
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Interestingly, tissue structure of reimplanted control tumors was again characterized 

by regions with a spongy, heterogeneous structure similar to relapsed CPA treated 

tumors (FIG 3-81). 

Simultaneous analysis of vessel markers, laminin and CD13, resulted partly in 

colocalisation in reimplanted HUH7 tumors (FIG 3-81A). Interestingly, colocalisation 

was not evident in all tumor regions (FIG 3-81 B). Simultaneous staining of laminin 

and CD31 resulted in unobtrusive colocalisation of both vascular markers. However, 

several tumor cell lined channels were detected to be functional for tumor blood 

supply (FIG 3-81A and 3-81B), indicated by Hoechst33258 staining. This reaches to 

the conclusion that reimplanted HUH7 tumors again manifest vascular mimicry 

phenomena in vivo and revoke tumors, at least, partly from metronomic CPA 

treatment. 

The ability of forming angiogenesis independent channels for tumor blood supply is 

therefore suggested to be “stored” in resistant HUH7 tumors and affect HUH7 

phenotype in vivo even in the absence of CPA treatment. 

Vascular mimicry phenomena are predominately described for aggressive melanoma 

tumors (205-210). However, there is growing evidence for the existence of similar 

phenomena in breast carcinoma (211-213), prostatic carcinoma (214;215), ovarian 

carcinoma (216), different sarcomas (217) and is recently detected in hepatocellular 

tumors (218;219). Forming angiogenesis independent channels for tumor blood 

supply in melanoma was linked to upregulation of the PI3K pathway and expression 

of several downstream controlled proteins (220;221). The “stored” significantly 

increased activity levels of NF-遠B in reisolated HUH7 tumor cells (FIG 3-78) indicate 

possible modulation of the PI3K pathway and may be therefore involved in a HUH7 

phenotype which forms a tumor cell lined channel network for blood supply. 

The possibility of NF-遠B/PI3K involvement in the context of the phenotype of 

reimplanted HUH7 tumors is further supported by differences in the regulation of NF-

遠B activity levels by CPA metabolites. Acrolein resulted in significantly increased NF-

遠B induced gene expression in reisolated HUH7 tumor cells but not on, in parental 

HUH7 tumors (FIG 4-4). In the cases of resistant PC3 tumors, which were 

unremarkable for vascular mimicry, regulation of NF-遠B induced gene expression by 

acrolein was not evident (data not shown). 



Discussion   152

  

0

10

20

30

40

50

0 20 30 40 50 60

Acrolein [µM]

re
l.
 R

L
U

"HUH7 parental cell

line"

HUH7 REISO

 
Fig.: 4-4 Induction of NF-キB induced gene expression by the metabolite acrolein in reisolated HUH7 
tumor cells. Parental and reisolated HUH7 tumor cells were transfected transiently with LPEI 
polyplexes (N/P 6; HBS) containing luciferase encoding plasmid DNA with a NF-キB sensitive 
promoter/enhancer region (pNF-キB-LUC). Control experiments were performed with pTAL-LUC. 24h 
after the transfection cells were subjected acrolein treatment for further 24h. Luciferase measurements 
were performed as described in materials and methods. Values represent NF-キB activity levels in 
HUH7 cells. Values ±SE are means of four values.  

 

However, a possible connection of NF-遠B activity levels and phenotype of reisolated 

HUH7 tumor cells has to be evaluated in further studies, particularly due to the 

lacking knowledge about possible PI3K mediation on vascular mimicry phenomena in 

human hepatoma tumors.  
 

In summary, resistance towards metronomic CPA treatment in HUH7 tumors is 

suggested to be based predominately on the ability of forming angiogenesis 

independent channels for blood supply, potentially resulting from differences in NF-

遠B/PIK3 modulated pathways. The spongy tissue structure, easing metabolic 

requirements due to lower cell count and advanced diffusion of oxygen and nutrients 

might contribute to this effect. Reduced endogenous CPA conversion capability of 

resistant tumor cells might be an additional reason for resistant HUH7 tumors in 

revoking CPA treatment. 

 

4.4.3 Resistance in the syngeneic Neuro2A tumor model 

Subcutaneous Neuro2A tumors were treated with a low dose metronomic scheduled 

CPA treatment regime (75mg/kg) in combination with CYP2B1 gene transfer via 

electroporation. Tumor volume was kept constant up to day 60 after tumor cell 

implantation before tumor volume began to increase despite ongoing treatment (FIG 

3-82). Reisolated Neuro2A tumor cells from refractory tumors were characterized and 

identified via cell morphology and cell surface receptor status. Interestingly, 
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reisolated tumor cells exhibited slightly increased CD71 expression levels (FIG 3-84). 

Further studies, including evaluation of proliferation rate, endogenous CYP activity 

and NF-遠B activity, showed no significant difference compared to parental Neuro2A 

cells.  

Similar to PC3ID3, PC3ID4 and HUH7 REISO cells, reisolated Neuro2A tumor cells 

did not manifest their drug resistant phenotype in a two dimensional monolayer, 

when treatment was performed with 4-OOH-CPA (FIG 3-87). However, in contrast to 

reimplanted PC3 and HUH7 tumors, reimplantated Neuro2A tumors resulted in high 

sensitivity towards metronomic CPA treatment, indicating that reimplanted Neuro2A 

tumor cells are not able to manifest their drug resistant phenotype in vivo again (FIG 

3-88). This suggests that in reisolated Neuro2A tumor cells the drug resistant 

phenotype is not a typical secondary resistance; resistance is not “stored” as in the 

cases of PC3 and HUH7 drug resistant tumors. This observation is conform to prior 

studies with experimentally PC3 and Lewis Lung carcinoma (20;222;223). 
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5 Summary 
The development of more specific and effective anti cancer strategies is crucial in 

overcoming current obstacles in tumor therapy. Especially antiangiogenic 

approaches and gene therapy might be suitable instruments in the treatment of 

already metastasized cancers. Further on, the development of relevant cellular model 

systems, mimicking tumor environment or permitting three dimensional culture 

conditions, are crucial for improved assessment of therapeutic approaches. 

 

Gene transfer with vectors coding for CYP2B1 was shown in several studies to 

enhance sensitivity of tumor cells towards CPA treatment. However, investigation of 

this concept was performed so far predominately with high dose CPA regimes. In this 

work, the concept was further evaluated with special attention to low dose CPA 

treatment regimes and in the context of tumor environmental characteristics. To 

provide an in vitro model system that recapitulates limited diffusion and hypoxia, an 

agarose overlay model was established. Evaluation of CYP2B1 enzymatic activity 

levels and bystander activity, which are the “supporting pillars” in the CYP/CPA 

concept, demonstrated great influence of the agarose overlay in terms of conversion 

capability and induced cytotoxicity. Restricted diffusion of activated drug metabolites 

was found to play a crucial role in enhancing bystander cytotoxicity.  

Further on, the classical CYP/CPA GDEPT concept was extended and evaluated in 

terms of antiangiogenic properties. In this context, CYP2B1 expressing tumor cells 

were found to exert antiangiogenic bystander effects on endothelial cells in the near 

vicinity. 

 

In the context of evaluation antiangiogenic properties of CYP/CPA GDEPT concept 

and low dose metronomic CPA treatment regimes, the 4-OH-CPA released 

metabolite acrolein was investigated for antiangiogenic properties. Interestingly, 

acrolein was detected to disturbe several crucial key steps in the angiogenic process 

including proliferation, migration and differentiation processes. Further on, 

upregulation of TSP-1, which was identified as a crucial endogenous inhibitor of 

angiogenesis and recently associated with metronomic scheduled CPA treatment 

regimes, by acrolein in primary endothelial cells, was detected. In addition, NF-遠B 

activity levels, which were shown to exhibit important proangiogenic properties in 

primary endothelial cells, were reduced by acrolein treatment. Detection of acrolein-
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protein adducts in CPA treated subcutaneous tumors and high levels of 4-OH-CPA 

(360µM) suggest a contribution of acrolein in vivo in the context of the antiangiogenic 

properties of metronomic CPA treatment. 

 

Resistance towards chemotherapy is a major reason for failure of conventional 

chemotherapy and occurs also in metronomically scheduled treatment regimes as 

investigated in this thesis. Resistance can either occur as primary resistance, as 

detected for CT26/X39 subcutaneous tumors or secondary, acquired drug resistance 

occurred in experimentally PC3, HUH7 and Neuro2A tumors in a similar time period 

of treatment. Primary resistance phenomena result in most cases from protection of 

the individual tumor cell by three dimensional conditions and established cell-cell-

contacts. This protection effects are supposed to play the crucial role in 

subcutaneous CT/X39 tumors or in established three dimensional microsphere 

model. In this context agarose wrapped tumor microspheres seem to be a suitable 

model system for multicellular mediated drug resistance. 

 

Despite drug resistance in experimental PC3, HUH7 and Neuro2A tumor models at a 

similar period of CPA treatment, mechanisms resulting in drug resistance were 

apparently varied. While drug resistance in the experimentally PC3 xenograft model 

predominantly seems to be based on the protection of the individual cancer cell in a 

multicellular network, resistance of HUH7 xenografts was found to be a result from 

plasticity of tumor tissue and the ability to form angiogenesis independent structures. 

In contrast to reimplanted PC3 and HUH7 tumors, Neuro2A did not manifest the drug 

resistant phenotype in vivo again. 

 

In summary, CPA is an anticancer drug that can be applied in conventional tumor 

therapy, in combination with gene transfer and in antiangiogenic approaches with low 

dose metronomically scheduled regimes. In the context of metronomic CPA therapy, 

acrolein was shown to exhibit antiangiogenic effects and therapeutic contribution has 

to be reconsidered. Despite improved treatment regimes, drug resistance will be still 

an obstacle in chemotherapeutic regimes due to different escape mechanisms; 

progress in the development of new strategies might be achieved by suitable in vitro 

models such as the agarose overlay system or agarose wrapped microspheroids. 
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6 Appendix 

6.1 Abbreviations 

4-OOH-CPA 4-hydroperoxy-cyclophosphamide 

AP-1IL activator protein 1Interleukin 

ATP adenosine triphosphate 

bFGF basic fibroblast growth factor 

BPEI branched PEI of 25 kDa 

BSA bovine serum albumine 

CMV cytomegalovirus 

CPA cyclophosphamide 

CYP cytochrom P450 

DMEM Dulbecco´s Modified Eagle´s Medium 

DMSO dimethylsulfoxide 

DNA deoxyribonucleic acid 

ECM extracellular matrix 

EDTA ethylenediaminetetraacetic acid 

EGFP enhanced green fluorescent protein 

ELISA enzyme-linked immunosorbent assay 

EPR enhanced permeability and retention effect 

FCS fetal calf serum 

FITC fluorescein 

FLU relative fluorescence units 

g relative centrifugal force 

GDEPT gene directed enzyme prodrug therapy 

GSH glutathione 

HBG HEPES-buffered glucose 

HBS HEPES buffered saline 

HEPES N-(2-hydroxyethyl)piperazine-N´-(2-ethanesulfonic acid) 

HRE hypoxia response element 

huEGF human endothelial growth factorHuman EGF 

huTF human transferrin 

IFO ifosphamide 
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IL interleukin 

LPEI linear PEI of 22 kDa 

LPEI polyplexes LPEI/DNA, N/P 6 

LUC luciferase 

MCR multicellular resistance 

MDR multidrug resistance 

MMP metalloprotease 

mTF murine transferrin 

MTT methylthiazol tetrazolium salt 

N/P ratio molar ratio of PEI nitrogen to DNA phosphate 

NA numerical aperture 

NF-遠B nuclear factor 遠B 

PBS phosphate buffered saline 

PE phycoerythrin 

PEG polyethylene glycol 

PEI polyethylenimine 

PFA paraformaldehyde 

PI propidiumiodide 

PKC protein kinase C 

RLU relative light units 

RT room temperature 

SCID severe combined immunodeficiency syndrome 

SD standard deviation 

SE standard error 

SDS sodium dodecyl sulphate 

TSP-1 thrombospondin-1 

V volume 

VEGF vascular endothelial growth factor 

wW weight 
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6.2 Publications 

6.2.1 Original papers 

Gunther M, Waxman DJ, Wagner E, Ogris M. 

Effects of hypoxia and limited diffusion in tumor cell microenvironment on bystander 

effect of P450 prodrug therapy.Cancer Gene Ther. 2006 Aug;13(8):771-9. 

 

Gunther M, Wagner E, Ogris M. 

Acrolein – unwanted side product or contribution to antiangiogenic properties of 

metronomic scheduled CPA therapy. In preparation. 

 

Fahrmeir J, Gunther M, Wagner E, Ogris M. 

An electroporetic method for purification of DNA polyplexes. In preparation. 

 

Gunther M, Thoenes L, Wagner E, Ogris M. 

Shielded polyplexes containing RGD or NGR peptides for vascular targeting. In 

preparation. 

 

 

6.2.2 Reviews 

Gunther M, Wagner E, Ogris M. 

Specific targets in tumor tissue for the delivery of therapeutic genes. 
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1 Introduction 

1.1 Targeting strategies within the GDEPT concept 

Tumor cells as well as tumor endothelial cells are possible targets for gene delivery 

within the GDEPT (gene directed enzyme prodrug therapy) concept (compare FIG 1-

5 of the thesis). Therefore, development of highly specific and efficient gene delivery 

systems for in vivo application is necessary to achieve sufficient levels of therapeutic 

enzyme expression. 

1.1.1 Gene delivery strategies 

Current gene therapy vectors can be divided into two major groups: viral vectors 

which are derived form natural viruses, and nonviral, synthetic vectors (1).  

Viral vectors have developed natural pathways to transfer their genetic information 

into cells, and offer an efficient system for introducing foreign DNA sequences into 

mammalian cells. Viral vectors are highly efficient in cellular uptake, intracellular 

delivery and therefore results in high gene transfer efficiency. Therefore viral systems 

were one of the first vectors used in gene delivery systems (2). Genetically 

engineered retroviral vectors were the first gene delivery systems used in gene 

therapy studies being utilized for efficient transduction of mammalian cells ex vivo 

and already led to therapeutic success (3;4). Good progress has been achieved in 

terms of modifying viral vectors in terms of removing viral genes associated with 

pathogenic function and in altering their natural tropism (5). In spite of recent 

improvements, concerns about their safety are still a strong aspect in their usage as 

these vectors bear the risk of random integration into the host genome followed by a 

possible activation of oncogenes (3;6). Moreover, inflammatory effects and host 

immune response are further obstacles in the application of viral vectors for gene 

therapy, particularly when the therapeutic concept demands multiple applications (7). 

Nonviral vectors are usually based on chemically defined cationic lipids (lipoplexes) 

or cationic polymers (polyplexes) which condense DNA to protect it from enzymatic 

digestion (8-11). Polycationic carriers for gene delivery include natural DNA binding 

molecules like histones and protamines or chemically synthesized polycationic 

polymers like polylysine or polyethylenimine (PEI), which was shown to be a highly 

efficient carrier for the delivery of genetic information (8;12). Lipoplexes and 

polyplexes were already used for gene delivery in vitro and in vivo. Non viral vectors 

have only low immunogenicity since immunogenic proteins can be avoided in vector 
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design (13). This allows repeated applications of the gene delivery system. Moreover, 

non viral vectors offer high flexibility regarding size of the genetic material that should 

be delivered and exhibit a wide spectrum in surface modifications that allows a more 

universal usage than viral gene delivery systems. The major obstacle of non viral 

systems is that they are still less efficient compared to viral systems (14). For in vivo 

application it is necessary that the vector is small and does not exhibit unspecific 

interactions with biological fluids and non-target cells (15). 

1.1.1.1 Targeting to tumor cells 

Tumors can be targeted passively by their capacity to accumulate macromolecular 

components and particles due to an effect called “enhanced retention and 

permeability” (EPR effect) (16;17). This effect results from an abnormal leaky 

architecture of tumor vasculature (hyperpermeability) and inadequate lymphatic 

drainage. As blood flow is decelerated in tumor vessels, diffusion into the tissue is 

increased and accumulation of blood delivered compounds can reach 10 fold higher 

ranges compared to healthy tissue (18;19). 

Both, tumor cells and the tumor vasculature offer specific molecular targets, which 

can be utilized for even more specific delivery of therapeutic genes. Various cell 

surface markers have been identified that are highly expressed on proliferating tumor 

cells. Incorporation of binding ligands against these specific surface structures into 

gene transfer systems has the potential to further increase selectivity and efficiency 

of tumor targeted vectors (20;21). 

1.1.1.2 Targeting towards tumor vasculature 

Due to the fact that tumor cells critically depend on a functional blood vessel network, 

tumor vessels seem to be an attractive target for gene therapy. Moreover drug 

resistance of tumors often is the reason for negative outcome of chemotherapy. 

Endothelial cells have a functional apoptosis system, are genetically stable and in 

close contact to the blood stream witch make them easily accessible for systemically 

applied drugs (22). The efficient, save and selective delivery of gene transfer 

complexes to the tumor vasculature is therefore a major goal for therapeutic 

approaches. 

Especially the GDEPT concept seems to be useful for therapies focused to tumor 

vasculature and has several advantages compared to the “classical” antiangiogenic 

tumor therapy with low molecular drugs (1). 



Annex 6

Tumor vasculature is characterized by mitotic activity of endothelial cells and several 

surface markers are highly expressed that are not present in resting blood vessels of 

healthy tissue. Many of these surface proteins are involved in promoting tumor 

angiogenesis (23;24) 

 

 

Fig.: 1-1 Tumor vessel ligands: Gene delivery vectors (top left) can be targeted to certain markers of 
the tumor vascular system with the help of corresponding ligands. In this work, vectors based on PEI 
were targeted with RGD- and NGR- peptides to achieve selectivity in gene transfer. 

 

Targeting these specific receptors by incorporating targeting ligands into the gene 

delivery systems, therapeutic genes can be delivered in a selective way to tumor 

endothelial cells (25). 

Integrins are heterodimeric cell surface receptors consisting of an g- and a く-subunit. 

Their function is to mediate adhesion processes, to provide for traction during cell 

migration and to forward mechanical and chemical signals from the surrounding 

matrix. Many integrin receptors are involved in cell cycle regulation, differentiation, 

survival and apoptosis of endothelial cells (26). Endothelial cells in angiogenic active 

vessels exhibit an integrin expression pattern that is different from endothelial cells in 

resting blood vessels. Especially the integrins gvく5 and gvく3 are upregulated in 

endothelium undergoing angiogenesis (27). Integrin antagonists are shown to induce 
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apoptosis and inhibit proliferation of endothelial cells, hence receptor function of gvく3 

integrins are essential for survival and maturation of newly formed blood vessels. The 

overexpression of these integrins in tumor vessels and integrin supported 

internalization of payloads (28),bound to integrin recognition sequences, makes them 

an attractive target for gene transfer systems. 

Utilizing phage display technique, a short peptide sequence, arginine-glycine-aspartic 

acid (RGD) was found to be highly selective for tumor vasculature (29;30). The 

integrins gvく5 and gvく3 have been identified to be the corresponding receptors for 

the RGD peptide sequence. Modification of the sequence into a bicyclic version of 

the RGD motif showed increased binding affinity for gvく5 and gvく3 and decreased 

binding to other integrins (31). 

 

R   D
C C
D F
C C

NH
2

H-くA

G

N   R
C C

G

H-くA NH
2

A B
R   D

C C
D F
C C

NH
2

H-くA

G

N   R
C C

G

H-くA NH
2

N   R
C C

G

H-くA NH
2

A B

 

Fig.: 1-2 Targeting Peptides: A) bicyclic RGD containing peptide binding to integrins B) Cyclic NGR 
containing peptide binding to aminopeptidase N 

 

Aminopeptidases are ubiquitously expressed in a wide subset of cells and have been 

recently identified to play an important role in angiogenesis. Aminopeptidase N (APN, 

also termed CD13) was shown to be expressed exclusively on newly formed blood 

vessels and is absent on normal vasculature (32;33). A short peptide sequence NGR 

has been identified to be a highly selective ligand to APN by in vivo screening of 

peptide libraries. Cyclic as well as linear peptides containing the NGR peptide 

sequence home to tumor vessels in vivo (34). Stabilizing the binding peptide through 

a disulfide bond (sequence CNGRC) led to conformational changes and increased 

targeting efficiency (35). Both, RGD and NGR-ligands were already used in tumor 

targeted gene delivery systems based on PEI; different efficiency in tumor targeting 

capability was observed (36-38). 
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2 Additional materials and methods 

2.1 Melittin derivate (CMA-3) 

The melittin analog CMA-3 was obtained from the Genzentrum (group of G.J. Arnold, 

Munich, Germany), or IRIS Biotech (Marktredwitz, Germany). The peptide was 

synthesized with a purity of > 95% and was used as acetate salt after lyophilization in 

4% acetic acid. C-mel-analog (CMA-3) had the following sequence: 

CMA-3: GIGA VLKV LTTG LPAL ISWI KRKR EEC 

The CMA-PEI conjugate are synthesized according to (39). The molar ratio CMA-

3/PEI was 9/1. 

2.2 Targeting ligands and conjugates 

Integrin binding sequence ACDCRGDCFC and CD13 binding sequence CNGRC 

were purchased from Jerini Peptide Technology. 

RGD-PEG-PEI25 and NGR-PEG-PEI25 conjugates linked with a heterobifunctional 

3.5kDa PEG derivate were synthesized as described in (40). The molar ratio of 

PEG/PEI in the resulting conjugates was approximately 0.8/1. 

2.3 PEG-PEI conjugate 

NHS-PEG 5kD was coupled to BPEI as described in (41). The molar ratio of 

PEG/PEI25 was 23/1. 

2.4 Additional antibodies 

Primary antibodies 

Rat-anti-mouse CD13 antibody and mouse-anti-human CD13 antibody, were 

obtained from Dako, Copenhagen, Denmark. 

 
Secondary antibodies 
Goat-anti-mouse IgG Horseradish Peroxidase conjugate antibody was part of the 

Amplex Red ELISA KIT and was obtained from Invitrogen, UK. 

2.5 Polyplex formulation 

2.5.1 Polyplex formation for RGD/NGR targeting experiments 

Plasmid DNA encoding luciferase was condensed with LPEI or peptide-PEI 

conjugates at an N/P ratio (PEI nitrogen to DNA phosphate ratio) of 6. DNA/PEI 

polyplexes were prepared at a final DNA concentration of 200µg/ml as described in 

Kircheis et al. 1997. Briefly, indicated amounts of plasmid DNA and PEI or peptide-
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PEI conjugates were each diluted in HEPES-buffered glucose (HBG, 5% (w/w) 

glucose, 20mM HEPES, pH 7.1) and rapidly mixed by pipetting up and down 10-20 

times. Targeted and non-targeted polyplexes were allowed to stand for at least 20min 

at room temperature (RT) before use. 

2.5.2 Polyplex formation for in vitro transfection 
  (GDEPT experiments) 

In general, polyplexes were generated by condensing plasmid DNA encoding 

luciferase, EGFP-N1 or pCMV-CYP2B1 with LPEI at a molar ratio of PEI nitrogen to 

DNA phosphate (N/P) of 6. For this reason, plasmid DNA and PEI or PEI conjugates 

were each diluted in HBS (HEPES buffered saline and rapidly mixed by pipetting up 

and down 10 to 20 times. DNA/PEI polyplexes were prepared at a final DNA 

concentration of 20µg/ml. Polyplexes were allowed to stand for at least 20min at 

room temperature before use. 

2.5.3 Measurement of particle size and zeta potential 

Particle size of polyplexes was measured by laser-light scattering using a Malvern 

Zetasizer 3000HS (Malver Instruments, Worcestershire, UK). Polyplexes for RGD- 

and NGR-targeting experiments were generated in HBG at DNA concentrations of 

200µg/ml and subsequently diluted in Optimem to 10µg/ml prior to size 

measurement. For estimation of the surface charge, polyplexes were diluted in 10mM 

NaCl to give a final DNA concentration of 2µg/ml and zeta potential was measured as 

previously described (42). 

2.6 Transfection of HUVEC cells by electroporation 

HUVEC cells were grown prior to the transfection up to 90% confluency in collagen G 

coated tissue flasks (TPP, Switzerland). Cells were harvested by treatment with 

Trypsin/EDTA and washed with prewarmed PBS. 106 cells were diluted in 100µl 

Nucleofector solution, followed by the administration of 1µg plasmid DNA. 

Afterwards, the cell suspension was transferred in the Amaxa certified cuevette and 

transfection was carried out according to manufactures protocol. 

2.7 Covalent labelling of plasmid DNA 

Plasmid pCMV-LUC was covalently labelled with the fluorophores Cy3 or Cy5 using 

the Label IT kits (MIRUS, Madison, WI) according to the manufacture’s instructions. 

20µg of DNA were diluted with 1xBuffer A to a final volume of 195µl. After addition of 

5µl reconstituted Label IT reagent, the reaction mixture was incubated for 3h at 37°C. 
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To precipitate labelled DNA, 550µl of ice-cold 100% ethanol and 22µl of 3M sodium 

acetate were added. The solution was then mixed and placed at -20°C overnight. 

Subsequent centrifugation at 16000g for 60min (4C) allowed removal of unreacted 

label in the supernatant. The pellet was gently washed with ice-cold 70% ethanol, 

centrifuged again and all traces of ethanol were removed. Labelled DNA was allowed 

to dry for 5min and finally resuspended in sterile HBG. 

Cy3 (i550nm=150,00lxmol-1xcm-1) and CY5 (i650nm=250,00lxmol-1xcm-1) content 

was measured by absorption at 550nm and 650nm, respectively. DNA was quantified 

by measuring the absorbance at 260nm with the ratio of 260nm/280nm serving as an 

index for DNA purity (œ1.8 ø1.9). On average, one dye molecule was bound per 50bp 

to 100bp, approximately. 

2.8 Hypoxia induced regulation of integrin  
  and aminopeptidase N expression 

Cells were seeded in collagen G (Biochrome AG, Germany) coated 24 well plates 

(TPP, Switzerland) at a density of 15000 cells per well. About 20h after the seeding, 

standard medium M199 containing 10% FBS and 20ng/ml bFGF was replaced by a 

M199 medium, containing 2% FBS and 20ng/ml bFGF. Cells were cultured for further 

24h at 37ºC in humified atmosphere containing either air (20.9% oxygen; normoxia) 

or air sufficient to give 1% oxygen. 5% CO2 was used in all normoxic and hypoxic 

incubators, with the balance being nitrogen in the hypoxic incubation. Oxygen partial 

pressure was measured with a digital oxymeter (GMH 3690, Greisinger Electronic, 

Germany). The treatment was followed by a washing step with prewarmed PBS and 

fixing the cells with paraformaldehyde (4% in PBS) for 5min. 

After removing surplus fixing solution, cells were washed repeatedly with MACS 

buffer (PBS containing 2.5% FBS). For receptor status detection, cells were exposed 

to the mouse-anti-human CD51/CD61 (Dako) antibody and the mouse-anti-human 

CD13 antibody (Dako) for 2h at room temperature. Both antibodies were dissolved in 

MACS buffer (PBS containing 2.5% FBS) at a dilution of 1:200. Background staining 

was determined by exposing the cells to the mouse IgG control antibody (Dako), 

likewise. The incubation was followed by a repeatedly washing procedure with MACS 

buffer (PBS containing 2.5% FBS) whereas the last washing step was performed with 

PBS containing 0.05% Tween 20. Afterwards cells were exposed to the goat-anti-

mouse IgG Horseradish Peroxidase Conjugate (Invitrogen) for 1h at room 

temperature. The secondary antibody was used at a dilution of 1:500 in MACS buffer 
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(PBS containing 2.5% FBS).The incubation was again followed by a repeated 

washing procedure with MACS buffer (PBS containing 2.5% FBS) to remove 

unbound secondary antibody, whereas the last washing step was performed with 

PBS. Following HRP detection was performed according to manufactures protocol, 

using the Amplex® Red ELISA KIT #1 (Invitrogen). 

Fluorescence signal of in situ converted resorufin was measured using a Cary 

Eclipse fluorimeter (Cary, Mulgrave, Australia) with excitation and emission 

wavelengths set to 562 and 585 nm, respectively. Measurements were performed in 

triplicate and receptor status was expressed as relative fluorescence units (RFU) 

after normalizing on DNA content via the Hoechst33258 based DNA content assay. 

2.9 Flow cytometric analysis of integrin receptor and 
  aminopeptidase N on MDA-435 and CT26 tumor cells 

MDA-MB435 and CT26 tumor cells were seeded in collagen G (Biochrome AG, 

Germany) coated 24 well plates (TPP, Switzerland) at a density of 30000 cells per 

well, 24h prior receptor status detection. Cells were washed with prewarmed PBS 

and harvested by treatment with collagenase (Biochrome AG) (625 U/ml). The 

obtained cell suspensions were pooled and adjusted to 106 cells/ml with MACS buffer 

(PBS containing 2.5% FBS) after centrifugation for 5min at 150g (Haereus, Megafuge 

1.0 R). The cell suspension was divided up and exposed separately to the following 

antibodies at 4°C for 1h; mouse-anti-human CD51/61 antibody (Dako), mouse-anti-

human aminopeptidase N (CD13) (Dako), rat-anti-mouse CD51 (Dako) and rat-anti-

mouse CD13 (Biolegend). All antibodies were applied at a total dilution of 1:200. 

Afterwards, cells were washed repeatedly with prewarmed MACS buffer (PBS 

containing 2.5% FBS) to remove unbound antibody. Secondary antibody staining 

was performed by exposing the cell suspension to ALEXA488 labelled anti-mouse- or 

anti-rat-antibody (Invitrogen), respectively for 1h at 4°C. The secondary antibody was 

applied at a total dilution of 1:400. 

Samples were kept on ice until analysis. Receptor status was assayed by flow 

cytometry using a CyanTM MLE flow cytometer (Dako). The fluorophore was excited 

at 488nm and emission was detected by using a 530/40nm bandpass filter. To 

discriminate between viable and dead cells and to exclude doublets, cells were 

appropriately gated by forward/side scatter and pulse width. Antibody staining was 

evaluated via electronically analysis by using the WINMDI software.  
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2.10 Flow cytometric analysis of cellular polyplex 
  association after inhibition with antibody and free 
  peptide ligands 

Cells were seeded in a collagen G (Biochrome AG, Germany) coated 24 well plate 

(TPP, Switzerland) at a density of 30000 cells per well 24h prior the inhibition 

experiment. About 30min prior to administration of indicated polyplexes, containing 

Cy5-labelled DNA (20% Cy5 DNA), anti-human CD51/61 antibody (1:100) (Dako), 

free peptide ligands RGD or NGR (1000-fold excess, compared to polyplex 

incorporated ligands), respectively were added to the cells in 300µl of serum free 

Optimem I medium at 4°C. Indicated polyplexes were added (350ng/well, N/P 6, 

HBG) and cells were further incubated for 30min at 4°C. After total incubation time of 

1h, supernatant was removed and cells were washed with cold PBS to remove 

unbound polyplexes. Cells were harvested by treatment with collagenase (625 U/ml) 

(Biochrome) and kept on ice until analysis. Cell association of polyplexes was 

assayed by flow cytometry using a CyanTM MLE flow cytometer (Dako). The 

fluorophore Cy5 was excited at 635nm and emission was detected at 665/20nm. To 

discriminate between viable and dead cells and to exclude doublets, cells were 

appropriately gated by forward/side scatter and pulse width. Polyplex association was 

evaluated via electronically analysis by using the WINMDI software.  

2.11 In vivo application of polyplexes 

For the intravenous application of polyplex formulations mice were fixed in a modified 

50 ml Falcon tube, whereas supply of air was enabled by a hole in the bottom of the 

tube. Another hole near the closure head of the tube provided accession to the tail of 

the mice. Shortly before the injection, the tail was heated with warm water (about 38-

39ºC) in order to reach a dilatation of the tail veins. Polyplex formulations were 

administered into the tail vein (applied volume was about 250µl) with an insulin 

needle (30 G needle, U40, Becton Dickinson) within about 20 seconds. 

2.12 In vivo application of Cy3-labeled polyplexes 

At a tumor volume of approximately 400mm3, NGR- peptide ligand containing 

polyplexes (LPEI-NGR30) and control polyplexes containing BPEI instead of NGR-

PEG-conjugate were injected into the tail vein of CT26 tumor bearing mice at a dose 

of 50µg DNA/20g body weight 2h before mice were sacrified. 
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2.13 In vivo application of FITC-dextran 

For systemic application of FITC-dextran (42kDa) (10mg/ml in PBS, 200µl), as a 

marker for vessel leakiness, procedure of injection was similar to the application of 

the polyplex formulations described above. After the injection mice were removed 

from the tube. At 0.5h after the application of the FITC-dextran mice were sacrified. 

2.14 Luciferase reporter gene expression,  
  in vivo experiments 

Animals were sacrified 48h after the application of polyplex formulations with CO2. 

Before organs were removed the vein to the liver was cut in order to reduce rest 

blood. Removed organs were immediately frozen in liquid nitrogen and kept at -80C. 

For luciferase assay, organs were thawed on ice followed by lyses with 1ml of 

250mM TRIS buffer pH 7.5. For homogenisation of tissue samples an IKA-tissue 

homogenizer (IKA, Staufen) was used. The homogenisation process was performed 

on ice to avoid heating of the samples. Homogenisized samples were centrifuged for 

10min at 4C and 2800g (Haereus, Megafuge 1.0 R). For measurement of luciferase 

activity 25µl of the clear supernatant was submitted to luciferase measurement in a 

luminometer (Berthold, Bad Wildbad, Austria) as described previously (42). 

Background signal (about 200RLU) was substracted; reporter gene expression was 

calculated in RLU for each organ. 

2.15 GFP reporter gene expression, in vivo experiments 

Animals were sacrified 48h after the application of polyplex formulations with CO2. 

Before organs were removed the vein to the liver was cut in order to reduce rest 

blood. Collected organs were fixed with 4% PFA in PBS for 24h before embedding in 

OTC and freezing. Analysis was performed by fluorescence microscopy. 
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3 Results 

3.1 Evaluation of endothelial cells as producer cells 
   in the antiangiogenic GDEPT concept 

In situ activated CPA influences primary endothelial cells in terms of proliferation, 

migration and differentiation processes. CPA activation in the context of the 

CYP/CPA GDEPT concept can be mediated either by CYP2B1 expressing tumor 

cells via bystander activity or directly by CYP2B1 expression in tumor endothelial 

cells. In following studies the suitability of primary endothelial cells to act as producer 

cells was investigated. 

3.1.1 Transient transfection of HUVEC cells with polyplexes 
  based on PEI 

3.1.1.1 Evaluation of optimized transfection conditions for 

  HUVEC cells with PEI22lin polyplexes 

For evaluation of optimal in vitro transfection conditions, HUVEC cells were 

transfected with increasing amounts of LPEI polyplexes, containing plasmid DNA 

encoding luciferase as a reporter gene. Transfection efficiency was investigated by 

determination of luciferase activity 24h after the transfection as described in materials 

and methods. 

In a parallel performed experiment, transfected cells were analyzed for their viability. 

Therefore the MTT assay was performed 24h after the transfection with the LPEI 

polyplexes. 

Up to 300ng of plasmid DNA per 15000 cells, HUVEC cells did not show significant 

reduction in metabolic activity determined by the MTT assay. When the transfection 

was performed with 400ng of plasmid DNA or more, decrease in metabolic activity 

was more distinctive (FIG 3-1). 
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Fig.: 3-1 Luciferase expression and metabolic activity of transfected HUVEC cells. HUVEC cells were 
transfected with LPEI (N/P=6, HBS) polyplexes and indicated amounts of transfection complexes. 
Luciferase and metabolic activity was determined 24h after the transfection as described in materials 
and methods. Values are means ± SE of triplicates. 

 
In summary, transfection efficiency and cell viability LPEI polyplexes at a dose of 

300ng of plasmid DNA was chosen for further experiments. 

3.1.1.2 Evaluation of CYP expression of transient  

  transfected HUVEC cells 

3.1.1.2.1 Detection of CYP2B1 expression in HUVEC cells 

HUVEC cells were transfected with LPEI (N/P=6, HBS) polyplexes containing pCMV-

CYP2B1 plasmid DNA and 48h after transfection antibody-staining against rat 

CYP2B1 protein was performed as described in materials and methods. Control-

experiments were performed with plasmid DNA encoding for luciferase and 

additionally, staining was performed with the negative control antibody (Dako).  

Expressed CYP2B1 protein was detected in several HUVEC cells. 
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Fig.: 3-2 Antibody-staining of expressed 
rat CYP2B1 protein in HUVEC cells. Expression 
of CYP2B1 protein was detectable in HUVEC 
cells 48h after the transfection with pCMV-CYP 
containing LPEI polyplexes. Samples were 
visualized by epifluorescence microscopy. Blue: 
Hoechst 33258 stained nuclei. Red: antibody 
stained CYP2B1 protein. 

 

3.1.1.2.2 Transfection efficiency with pCMV-CYP2B1 

HUVEC cells were transfected under optimized conditions (300ng plasmid DNA, 

LPEI N/P=6, HBS) with pCMV-CYP2B1 plasmid DNA containing polyplexes. 48h 

after the transfection antibody-staining against ratCYP2B1 protein was performed 

and transfection efficiency was quantified by epifluorescence microscopy. The 

detected rate of ratCYP2B1 expressing HUVEC cells was 6.7%. 

3.1.1.2.3 Detection of CYP2B1 enzymatic activity by the resorufin assay 

HUVEC cells were transfected under optimized transfection conditions (300ng 

plasmid DNA, LPEI N/P=6, HBS) with pCMV-CYP2B1 plasmid DNA containing 

polyplexes. Control experiment was performed with LPEI polyplexes containing 

plasmid DNA encoding for luciferase. Forty eight hours after transfection CYP2B1 

enzymatic activity was evaluated by performing the resorufin assay. Fluorescence 

levels of the CYP2B1 transfected cells were at the same level of pCMV-LUC 

transfected cells. Specific CYP2B1 enzymatic activity was not detectable by the 

resorufin assay (data not shown). 

This might be due to rather low transfection efficiency of LPEI polyplexes on HUVEC 

cells and/or insufficient enzymatic activity of expressed ratCYP2B1 in HUVEC cells.  

3.1.1.3 Evaluation of biological activity of transient 

  CYP2B1 expression 

3.1.1.3.1 Proliferation 

HUVEC cells were transfected under optimized conditions with pCMV-CYP2B1 and 

pCMV-LUC as a control (300ng plasmid DNA, LPEI N/P=6, HBS). Thirty six hours 

after the transfection cells were incubated with different concentrations of CPA (0mM, 

0.05mM, 0.5mM and 1mM) in the medium. After culturing the transfected cells for 3 
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days in the absence or in the presence of CPA, respectively, proliferation rate was 

determined by Hoechst DNA content assay. Additionally metabolic activity of the cells 

was measured by MTT assay. Proliferation rate of HUVEC cells transfected with 

pCMV-CYP and with pCMV-LUC was decreased in the same manner when cells 

were cultivated with 1.0mM CPA, indicating the occurrence of unspecific toxicity (data 

not shown). When transfected cells were cultured for 3 days with 0.05 and 0.5mM 

CPA in the medium no anti-proliferative effects of CPA treatment were detectable 

(data not shown). Additionally performed MTT assay resulted in similar decrease in 

metabolic activity of CYP2B1 transfected HUVECs and reporter gene transfected 

HUVEC cells when incubation was performed for 3 days with 1.0 mM CPA in the 

medium (data not shown). Similar to the result of the DNA content assay, CPA 

concentrations of 0.05mM and 0.5mM CPA did not influence metabolic activity of the 

cells (data not shown). 

3.1.1.3.2 Migration 

HUVEC cells were transfected under optimized conditions with pCMV-CYP2B1 and 

pCMV-LUC as a control (300ng plasmid DNA, LPEI N/P=6, HBS). 24h after the 

transfection the medium was removed and cells were washed 2 times with warm 

(37°C) PBS. Cells were harvested with trypsin/EDTA (Promega) and seeded on 

collagen coated glass dishes. When the cell layer was confluent after 12h the scratch 

wound assay was performed in the absence or in the presence of 0.5mM or 1.0mM 

CPA. Migration was visualized by transmitted light microscopy and quantification was 

performed by picture analysis using Axio Vision LE. 

No antimigrative effects in CYP2B1 transfected cells were detectable in comparison 

to the reporter gene transfected HUVEC cells (data not shown). 

 

3.1.1.3.3 Tube forming 

HUVEC cells were transfected under optimized conditions with pCMV-CYP2B1 and 

pCMV-LUC as a control (300ng plasmid DNA, LPEI N/P=6, HBS). 36h after the 

transfection the medium was removed and cells were washed 2 times with warm 

(37°C) PBS. Cells were harvested with trypsin/EDTA (Promega) and the matrigel 

tube forming assay was performed in the absence or in the presence of 0.5mM or 

1.0mM CPA. Tube forming was visualized by transmitted light microscopy. 
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There was no difference detectable in the ability of the cells in forming tube like 

structures between pCMV-CYP and pCMV-LUC transfected cells (data not shown). 

3.1.1.4 Transient transfection of HUVEC cells by electroporation  

3.1.1.4.1 Transfection efficiency and detection of the CYP2B1 

   protein by antibody staining 

HUVEC cells were transfected with pCMV-CYP by electroporation as described in 

materials and methods (Amaxa). Transfection efficiency was quantified 48h after the 

transfection by antibody staining against rat CYP2B1 protein. Control experiment was 

performed with luciferase encoding plasmid (pCMV-LUC). Following the antibody 

staining, cell nuclei were counter stained with Hoechst 33258 and quantification was 

performed by epifluorescence microscopy. The detected rate of ratCYP2B1 

expressing cells was 38%. 

3.1.1.4.2 Detection of CYP2B1 enzymatic activity by the resorufin assay 

HUVEC cells were transfected with pCMV-CYP by electroporation as described in 

materials and methods (Amaxa). Enzymatic activity of expressed CYP2B1 protein 

was measured by resorufin-assay 48h after the transfection. Control experiments 

were performed with Luciferase encoding plasmid (pCMV-LUC). 

Enzymatic activity of expressed CYP2B1 was detectable in HUVEC cells transfected 

with CYP2B1 encoding plasmid. Fluorescence levels in control plasmid (pCMV-LUC) 

transfected cells were not clearly distinguishable from signal to noise ratio. 

Yet detected fluorescence signal in pCMV-CYP transfected HUVEC cells was low 

compared to X39 cells. 
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Fig.: 3-3 Enzymatic activity of transiently CYP2B1 expressing HUVEC cells. HUVEC cells were 
transfected by electroporation (Amaxa, standard protocol for HUVEC cells) with either pCMV-LUC or 
pCMV-CYP2B1 plasmid DNA. CYP2B1 enzymatic activity was measured 48h after the transfection by 
resorufin-assay. Values are means ±SE of triplicates. *p<0.05 compared to control plasmid DNA 
(Mann-Whitney U-test). 

 

3.1.1.5 Evaluation of biological activity of transient 

  CYP2B1 expression 

3.1.1.5.1 Antiproliferative effects 

HUVEC cells were transfected with pCMV-CYP2B1 by electroporation as described 

in materials and methods (Amaxa). Control transfections were performed with 

Luciferase encoding plasmid (pCMV-LUC). Thirty six hours after transfection HUVEC 

cells were cultured for 3 days in the absence or in the presence of indicated 

concentrations of CPA, followed by determination of cell proliferation by Hoechst 

DNA content assay. Additionally metabolic activity of treated cells was measured by 

MTT assay.  

The proliferation rate of transfected HUVEC cells was not decreased in pCMV-

CYP2B1 and in control plasmid (pCMV-LUC) transfected cells when cultivation was 

performed in the presence of up to 0.5 mM CPA. Culturing CYP2B1 transfected 

HUVEC cells in the presence of 1.0mM CPA resulted in a reduction in proliferation 

rate by 50%, whereas control plasmid expressing cells did not exhibit a significant 

decrease in proliferation rate.  
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Fig.: 3-4 Proliferation of pCMV-CYP transfected HUVEC cells (by electroporation) treated with different 
concentrations of CPA.HUVEC cells were transfected by electroporation as described in materials and 
methods (Amaxa) with either pCMV-LUC or pCMV-CYP2B1 plasmid DNA. 36h after the transfection 
cells were treated for 3 days with different concentrations of CPA (0mM, 0.05mM, 0.5mM and 1.0mM). 
Cell proliferation was determined by the Hoechst DNA content assay. Measurements were normalized 
on DNA content of CPA untreated cells. Values are means ±SE of triplicates. *p<0.05 compared to 
control plasmid DNA (Mann-Whitney U-test). 

 

Similar to DNA content, metabolic activity of CYP transfected HUVEC cells was not 

significantly decreased in pCMV-CYP and in control plasmid (pCMV-LUC) 

transfected cells when culture was performed up to 0.5 mM CPA. However, treatment 

of pCMV-CYP transfected cells with 1.0 mM CPA resulted in a reduction of metabolic 

activity by 53%, whereas control plasmid expressing HUVEC cells did not exhibit 

significant decrease in metabolic activity (data not shown). 

3.1.1.5.2 Antimigrative effects of transient expressed CYP2B1 in HUVEC cells 

HUVEC cells were transiently transfected with pCMV-CYP or pCMV-LUC plasmid 

DNA by electroporation as described in materials and methods. 24h after the 

transfection cells were seeded on collagen coated glass dishes and cultivated in the 

absence of CPA for further 12h, followed by the scratch wound assay in the presence 

of indicated concentrations of CPA. 

Migration capability of HUVEC cells transfected with the pCMV-CYP was decreased 

in the presence of CPA. However also control cells transfected with pCMV-LUC 

exhibited reduced migration rate when the scratch wound assay was performed in 

the presence of CPA. Inhibition of migration was not significantly different comparing 

pCMV-CYP and pCMV-LUC when the scratch wound assay was performed in the 

presence of 0.5mM CPA. A more pronounced decrease in migration rate occurred 
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when pCMV-CYP transfected HUVEC cells were incubated with 1mM CPA whereas 

migration rate of pCMV-LUC transfected cells was not further decreased.  
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Fig.: 3-5 Inhibition of migration after transient transfection of HUVECs with pCMV-CYP in the presence 
of CPA. HUVEC cells were transfected by electroporation (Amaxa) with either pCMV-LUC or pCMV-
CYP plasmid DNA. Scratch wound assay was performed 36h after transient transfection for 12h at 
CPA concentrations 0.0mM, 0.5mM and 1.0mM. Measurements were normalized on migration 
capability of untreated cells. Values are means ±SE of four measurements. *p<0.05 compared to 
control plasmid DNA (Mann-Whitney U-test). 

3.1.1.5.3 Transient expressed CYP2B1 inhibits tube forming in the presence of CPA 

HUVEC cells were transiently transfected with pCMV-CYP or pCMV-LUC by 

electroporation (Amaxa). 24h after the transfection a matrigel tube forming assay was 

performed in the presence of indicated concentrations of CPA. After an incubation 

time of 4h, tube forming was analyzed by transmitted light microscopy. 

Forming of tube like structures was similar in pCMV-CYP and pCMV-LUC transfected 

HUVEC cells. The count rate of tube like structures was reduced in the presence of 

CPA in pCMV-CYP and pCMV-LUC transfected cells in a similar manner, indicating 

unspecific toxic effects of the prodrug CPA (data not shown). 

 

3.2 Tumor and tumor vasculature targeting 

Gene therapy is a promising strategy to treat tumors due to the potential of higher 

specificity and lower side effects in comparison to established therapies with 

cytotoxic chemotherapeutics. In the in vitro evaluated GDEPT concept it was shown 

that tumor cells as well as endothelial cells can act as producer cells for in situ 

activated cyclophosphamide. CYP2B1 metabolic activity in the tumor/tumor vessels 

would cause higher, therapeutic relevant concentrations of activated 
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cyclophosphamide in the tumor area leading to more effective treatment and lower 

side effects. 

Insufficient transfection efficiency of target cells in vivo is one main obstacle in 

current gene therapy approaches with polyplexes based on PEI. Therefore it is 

necessary to improve gene delivery vectors to enhance their specificity and 

transfection efficiency. Tumor cells and tumor vasculature can both act as promising 

targets for the delivery of therapeutic genes. Microenvironmental conditions in the 

tumor (hypoxia) can be utilized for further increasing transfection specificity of vectors 

by choosing ligands, targeted to receptors, upregulated by hypoxia. As hypoxia 

sensitive targeting ligands the RGD-peptide and the NGR-peptide were chosen. The 

receptors for these ligands are present on tumor and/or tumor vessel cells and are 

upregulated on endothelial cells in hypoxic environment (43-45). 

3.2.1 Biophysical Characterisation of Targeted PEI Polyplexes 

3.2.1.1 Size and stability in salt containing media 

Different polyplex formulations for tumor and tumor vasculature targeting with defined 

amounts of PEG-PEI and Peptide ligand (Tab 3-1) were analyzed in terms of particle 

size and stability in salt containing medium (Optimem I). 

Polyplex LPEI BPEI-
PEG 

BPEI BPEI-PEG-ligand 

Plain LPEI 100%    

LPEI-BPEI-PEG50 50% 50%   

LPEI-BPEI-PEG20-BPEI30 50% 30% 20%  

LPEI-RGD50 50%   50% RGD- 

LPEI-RGD45 50% 5%  45% RGD- 

LPEI-RGD40 50% 10%  40% RGD- 

LPEI-RGD35 50% 15%  35% RGD- 

LPEI-RGD30 50% 20%  30% RGD- 

LPEI-RGD25 50% 25%  25% RGD- 

LPEI-RGD20 50% 30%  20% RGD- 

LPEI-RGD15 50% 35%  15% RGD- 

LPEI-RGD10 50% 40%  10% RGD- 

LPEI-NGR50 50%   50% NGR- 

LPEI-NGR45 50% 5%  45% NGR- 

LPEI-NGR40 50% 10%  40% NGR- 

LPEI-NGR35 50% 15%  35% NGR- 

LPEI-NGR30 50% 20%  30% NGR- 

LPEI-NGR25 50% 25%  25% NGR- 

LPEI-NGR20 50% 30%  20% NGR- 

LPEI-NGR15 50% 35%  15% NGR- 

LPEI-NGR10 50% 40%  10% NGR- 

LPEI-NGR5 50% 45%  5% NGR- 
Tab 3-1: Polyplex formulations for control and targeted PEI-Polyplexes 
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Incorporation of at least 15 to 20% of the PEG-PEI25br compound leads to the 

formation of polyplexes that did not aggregate in salt containing medium. PEG-

containing polyplexes (LPEI-RGD30 to LPEI-RGD5 and LPEI-NGR30 to LPEI-

NGR30 to LPEI-NGR5, LPE-BPEI-PEG50 and LPEI-BPEI-PEG20-BPEI30) had a 

size around 250nm. 

Above mentioned polyplex formulations remained stable for 16h, whereas unshielded 

or insufficient shielded polyplexes formed aggregates. 
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Fig.: 3-6 Evaluation of stability of A) RGD-targeted polyplex formulations and B) NGR targeted 
polyplex formulations over the time in a salt containing medium. 

 
Additionally, stability of size over the time was confirmed by fluorescence 

microscopy. Therefore, the different polyplex formulations used for the transfection 

experiments were labelled with sytox green. Polyplex formulations were analyzed 

after 30min of polyplex formation time in HBG and again after 16h incubation in 

Optimem. Particles LPEI-RGD20 and LPEI-NGR30 as well as LPEI-BPEI-PEG50 

and LPEI-BPEI-PEG20-BPEI30 did not form aggregates whereas unshielded LPEI 

particles formed large aggregates (data not shown). 
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3.2.1.2 Zetapotential measurements of polyplexes 

Measurements for Zeta potential was performed as described in materials and 

methods. Shielded polyplexes without peptide ligand incorporation exhibited a Zeta 

potential of 4.0±0.2 mV for LPEI-BPEI-PEG50 and 3.0±0.9mV for LPEI-BPEI-PEG20-

BPEI30. Unshielded PEI polyplexes (plain LPEI22) had a Zetapotential of 

21.0±1.6mV. The replacement of BPEI-PEG by BPEI-PEG-Ligand of up to 30% of 

peptide ligand in the polyplex did not change the zeta potential of the PEG-shielded 

polyplexes. 

Polyplex Particle Size [nm] Zeta Potential [mV] 

Plain LPEI >1000 (aggregates) 21.0 ± 1.6 

LPE-BPEI-PEG50 170 ±   22 4.0 ± 0.2 

LPEI-BPEI-PEG20-BPEI30 141±     4 3.0 ± 0.9 

LPEI-RGD20 199±   15 3.8 ± 0.5 

LPEI-NGR30 176 ±   18 4.1 ± 0.4 

Table 3-2: Particle size and Zeta potential of Targeted PEI-Polyplexes 

3.2.1.3 Freeze/Thaw stability 

Storage capability of ligand-containing polyplex formulations in the context of particle 

size was evaluated. Therefore particle size of freshly prepared polyplex formulations 

was determined. Afterwards polyplexes were subjected a freeze/thaw cycle followed 

by particle size measurements at 3 different time points. 

The unshielded PEI-polyplexes (plain LPEI) initially of a medium size (400nm) formed 

aggregates within 30min after thawing. PEG-shielded polyplexes (LPE-BPEI-PEG50 

and LPEI-BPEI-PEG20-BPEI30) initially of a medium size (150nm) were stable in 

size during the freeze/thaw cycle and maintained their particle size for at least 60min 

after thawing. The incorporation of 20% or 30% peptide ligand, respectively, did not 

decrease freeze/thaw stability. LPEI-RGD20 and LPEI-NGR30 did not form 

aggregates for at least 60min after thawing (data not shown). 

3.2.2 Biological activity/Targeting 

3.2.2.1 Receptor status 

Receptor status for integrin gvく3 (CD51/61) and aminopeptidase N (CD13) was 

determined on the human tumor cell line MDA-MB435 and the mouse tumor cell line 

CT26 by antibody-staining followed by FACS analysis. For detection of the receptor-
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status for integrin gvく3 and aminopeptidase N on primary endothelial cells, antibody 

staining was performed on HUVEC cells and analyzed also by FACS. 

Cellular binding of MDA-MB-435 cells with a CD51/61 mouse-anti-human antibody 

clearly increased fluorescence, whereas preparations with control antibody against 

murine CD51/61 and with the unspecific IgG1 isotype control did not. 

Antibody-staining of MDA-MB-435 cells for aminopeptidase N did not increase the 

fluorescence signal compared to isotype control or rat-anti-mouse CD13 antibody. 

Incubation of CT26 cells with a CD13 anti-mouse antibody resulted in significantly 

increased fluorescence compared to the preparations with mouse-anti-human CD13 

and unspecific IgG control antibody. Quantitative evaluation of the FACS data 

demonstrated that about 58% of the CT26 showed positive reaction for 

aminopeptidase N on the cell surface. 

Staining of CT26 cells for integrin gv receptor did not increase fluorescence signal 

compared to the isotype control or anti-human integrin gvく3 control antibody. 

Incubating HUVEC cells with a CD51/61 mouse-anti-human antibody resulted in 

clearly increased fluorescence signal compared to the preparations with control 

antibody against murine CD51 and compared to the unspecific IgG isotype control. 

Also antibody-staining for the aminopeptidase N on HUVEC cells significantly 

increased the fluorescence signal compared to isotype control or rat-anti-mouse 

CD13 antibody. 

Cell line Integrin gv aminopeptidase N 

MDA-MB435 100% - 

CT26 - 58% 

HUVEC 100%  100% 

TAB.: 3-3. Receptor status of MDA-MB435, CT26 and HUVEC cells in terms of integrin gvく3 and 
aminopeptidase N. Antibody-staining was performed as described in materials and methods, followed 
by FACS analysis. Measurements represent % positively stained cells.  

3.2.2.2 Cell association 

In order to evaluate differences in cell association of RGD-targeted polyplex 

formulations (LPEI-RGD20) versus not targeted control formulations (plain LPEI and 

LPE-BPEI-PEG50), integrin gvく3 expressing MDA-MB435 cells were incubated with 

Cy5-labelled, indicated polyplex formulations for 1h at 4°C. Afterwards, cell 

association was analyzed by FACS as described in materials and methods. 

Association of polyplexes occurred within 1h in all cases. Unshielded plain LPEI were 

detected to exhibit a broad distribution in cell association, whereas shielded 
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polyplexes LPEI-BPEI-PEG50 and LPEI-RGD20 resulted in narrower distributions. 

Association of targeted LPEI-RGD20 polyplexes resulted in increased fluorescence 

signal compared to the shielded control polyplex LPE50-BPEI-PEG50, despite similar 

biophysical properties (compare TAB 3-2). 

 

 

 

 

 

Fig.: 3-7 Total cellular association after 
transfection with polyplexes at 4°C. MDA-
MB435 cells were transfected with plain LPEI 
(black), shielded LPE50-BPEI-PEG50 (green) 
and RGD-targeted LPEI-RGD20 (blue) 
polyplexes. (HBG, N/P 6) containing Cy5-
labeled plasmid DNA. Total cellular association 
was determined by flow cytometry after 1h.  

 

3.2.2.3 Inhibition of cell association by competition 

In order to further evaluate specific binding of the peptide ligand containing 

polyplexes to the target cells, competition experiments with an excess of free peptide 

or antibody were performed on the integrin gvく3 positive MDA-MB435 cell line. 

Competition of RGD-containing polyplexes (LPEI-RGD20) with the antibody against 

integrin gvく3 did not show an inhibition of cell association indicating a different 

binding location than the RGD binding site. Competition of LPEI-RGD20 with free 

RGD peptide (1000-fold molar excess) decreased clearly cell association. 

Interestingly, competition of K7 with free NGR peptide (1000-fold molar excess) 

resulted also in a similar decrease of cell association (FIG 3-8B). 

The preincubation of the MDA-MB435 cells with antibody, free RGD- and free NGR-

peptide (1000-fold molar excess) did not influence cell association of control 

polyplexes LPE50-BPEI-PEG50 (FIG 3-8A). 

However, preincubation of MDA-MB435 cells with antibody resulted in decreased 

cellular association of plain LPEI polyplexes, whereas preincubation with free RGD- 

and NGR- peptide exhibited no influence on total cell association (FIG 3-8C and D). 

Interestingly, no decreased fluorescence signal was detected when NGR-targeted 

polyplexes LPEI-NGR30 were inhibited by an excess of free NGR-peptide, whereas 
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an excess of free RGD-peptide influenced total association of LPEI-NGR30 

polyplexes (FIG 3-8D). 
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Fig.: 3-8 Total cellular association of indicated polyplexes formulations after preincubation of MDA-
MB435 tumor cells with anti-human CD51/61 antibody or an excess of free RGD- or NGR-peptide. 
Cells were transfected with (A) LPE50-BPEI-PEG50 polyplexes, (B) LPEI-RGD20 polyplexes, (C) plain 
LPEI polyplexes and (D) plain LPEI or LPEI-NGR30 polyplexes, containing Cy5 labelled plasmid DNA. 
Total cellular association was analyzed by flow cytometry. 

3.2.2.4 Increase in transfection efficiency by stepwise 

  increasing ligand in shielded polyplexes on HUVECs 

Reporter gene expression (luciferase activity) was evaluated on primary endothelial 

cells (HUVECs). HUVEC cells were transfected with pegylated polyplexes containing 

increasing amounts of incorporated peptide ligand. Control transfection was 

performed with the unshielded LPEI polyplexes. 
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The luciferase expression was significantly increased by incorporating peptide ligand 

in the PEG-shielded polyplexes. Incorporation of RGD-PEG-PEI and NGR-PEG-PEI 

resulted in an increase in luciferase activity in a targeting-peptide rate dependent 

manner.  

PEG-shielded, peptide ligand containing polyplexes reached a similar luciferase 

expression level as the unshielded plain LPEI22 control when the transfection was 

performed in the presence of serum. 
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Fig.: 3-9 Increase in luciferase expression levels by equipping shielded polyplex formulations with 
increasing amounts of RGD- or NGR- peptide ligands. HUVEC cells were transfected with polyplex 
formulations incorporated indicated amounts of targeting ligand in the polyplexes. Control transfection 
was performed with plain LPEI polyplexes. Luciferase activity was measured 24h after the transfection 
as described in materials and methods. Values are means ± SE of triplicates. 

 

3.2.2.5 In vitro transfection efficiency of  

  LPEI-RGD20 and LPEI-NGR30 

Reporter gene expression (luciferase activity) was evaluated in the tumor cell lines 

MDA-MB435 and CT26 and in primary endothelial cells (HUVECs). Cells were 

transfected with different polyplex formulations and luciferase assay was carried out 

24h after the transfection as described in materials and methods. For the transfection 

experiments all polyplexes were generated at an N/P ratio of 6 in HBG. 

Polyplex formulations included the biophysically characterized polyplexes with RGD- 

and NGR-peptides (LPEI-RGD20 and LPEI-NGR30). Cells were also transfected with 

plain LPEI polyplexes as a control for unshielded polyplexes; LPEI-BPEI-PEG50 and 

LPEI-BPEI-PEG20-BPEI30 were used as a control for ligand free shielded polyplexes 

in the transfection experiments. 



Annex 29

1.E+02

1.E+03

1.E+04

1.E+05

1.E+06

1.E+07

plain LPEI LPEI-BPEI-

PEG20-BPEI30

LPEI-BPEI-

PEG50

LPEI-RGD20 LPEI-NGR30

R
L
U

 /
 7

5
0

0
 c

e
lls

1.E+02

1.E+03

1.E+04

1.E+05

1.E+06

1.E+07

plain LPEI LPEI-BPEI-

PEG20-BPEI30

LPEI-BPEI-

PEG50

LPEI-RGD20 LPEI-NGR30

R
L
U

 /
 7

5
0

0
 c

e
lls

 

A 

1.E+02

1.E+03

1.E+04

1.E+05

1.E+06

1.E+07

1.E+08

plain LPEI LPEI-BPEI-

PEG20-

BPE30

LPEI-BPEI-

PEG50

LPEI-RGD20 LPEI-NGR30

R
L
U

/ 
7
5
0
0
 c

e
ll
s

1.E+02

1.E+03

1.E+04

1.E+05

1.E+06

1.E+07

1.E+08

plain LPEI LPEI-BPEI-

PEG20-

BPE30

LPEI-BPEI-

PEG50

LPEI-RGD20 LPEI-NGR30

R
L
U

/ 
7
5
0
0
 c

e
ll
s

 
B 

1.E+02

1.E+03

1.E+04

1.E+05

1.E+06

1.E+07

1.E+08

plain LPEI LPEI-BPEI-

PEG20-BPEI30

LPEI-BPEI-

PEG50

LPEI-RGD20 LPEI-NGR30

R
L
U

 /
 1

5
0

0
0
 c

e
lls

1.E+02

1.E+03

1.E+04

1.E+05

1.E+06

1.E+07

1.E+08

plain LPEI LPEI-BPEI-

PEG20-BPEI30

LPEI-BPEI-

PEG50

LPEI-RGD20 LPEI-NGR30

R
L
U

 /
 1

5
0

0
0
 c

e
lls

 

C 

Fig.: 3-10 Transfection efficiency of RGD- and NGR-peptide ligands containing polyplexes. (A) MDA-
MB435, (B) CT26 and (C) HUVEC cells were transfected with plain LPEI22, LPEI-BPEI-PEG20-
BPEI30, LPEI-BPEI-PEG50 or targeted polyplexes LPEI-RGD20 and LPEINGR30. Polyplexes were 
prepared in HBG at N/P 6. Luciferase assay was performed 24h after transfection as described in 
materials and methods. Mean values ± SE of triplicates are shown. 
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3.3 Hypoxia increases selectivity of RGD-   
  and NGR- peptide ligands containing polyplexes 

Hypoxia is a common phenomenon in solid tumors. Hypoxia triggers several 

adjustment processes as well in tumor cells and in tumor stroma cells. Endothelial 

cells are able to adjust to hypoxic environment, among other mechanism, by 

increasing several types of receptors on the cell surface. 

3.3.1 Receptor regulation in primary endothelial cells 
  by hypoxia in terms of integrin gvく3 and aminopeptidase N 

Primary endothelial cells (HUVECs) were grown in normoxic and hypoxic 

environment for 24h (21% Oxygen or 1% Oxygen). To evaluate regulations in integrin 

gvく3 and aminopeptidase expression on the cell surface antibody staining was 

performed followed by the Amplex® red assay. Simultaneous cell number was 

evaluated by Hoechst 33258 based DNA content assay as described in materials 

and methods. HUVEC cells showed upregulation of the integrin gvく3 and the 

aminopeptidase receptor indicated by higher enzymatic activity when cells were 

grown for 24h in the hypoxic environment. Fluorescence signal was normalized on 

cell count in order to avoid falsification by unequal proliferation rate in different 

environments. 
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Fig.: 3-11 Receptor status CD13 and CD51/61 of HUVEC cells; normoxic versus hypoxic conditions. 
HUVEC cells were cultured for 24h either in a normoxic (21% O2) or in hypoxic atmosphere (1%) in 
the presence of 2% serum. Receptor status was determined by incubating the pretreated cells with 
antibodies against integrin avb3 or aminopeptidase followed by incubation with a second antibody with 
enzymatic activity. Conversion of a non-fluorescent compound to resorufin by the enzymatic activity of 
the second antibody is therefore representative for the amount of receptors on the cell surface. 
Receptor signal was normalized on DNA content measured by Hoechst 33258 based DNA content 
assay. Mean values ± SE of triplicates are shown. *p<0.05, compared to normoxic receptor expression 
levels (Mann-Whitney U-test). 
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3.3.1.1 Enhancement of transfection efficiency by hypoxic  

  pre-treatment 

Primary endothelial cells (HUVECs) were grown in normoxic and hypoxic 

environment for 24h before transfection with peptide ligand containing polyplexes. In 

order to investigate a targeting specific enhancement of receptor regulation HUVEC 

cells were parallel transfected with the unshielded plain LPEI22 and the pegylated 

LPEI-BPEI-PEG50 polyplex. Transfection efficiency of the untargeted polyplexes 

remained at a similar level when cells were pretreated in a hypoxic environment. In 

contrast, targeted polyplexes reached higher levels of transfection efficiency when 

cells were pretreated in hypoxic environment before the transfection.  
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Fig.: 3-12 Transfection efficiency of targeted polyplexes on HUVEC cells after hypoxic pre-treatment. 
HUVEC cells were cultured for 24 in a normoxic (21% oxygen) or hypoxic (1% oxygen) containing 
atmosphere with 2% serum. Afterwards transfection was performed as described in materials and 
methods with indicated polyplex formulations in a normoxic atmosphere and in the presence of 10% 
serum. Luciferase expression levels were determined 24h after the transfection. Values were 
normalized on expression levels of cells grown under normoxic conditions. Values are means ± SE of 
four measurements. *p<0.05, compared to reporter gene expression levels at normoxic conditions 
(Mann-Whitney U-test). 

 

3.3.2 Enhancement of transfection efficiency by  
  incorporation of the endosomolytic compound CMA-3 

Endosomal release of internalized polyplexes is an important step in achieving 

efficient gene expression with non viral gene vectors. Coupling an analog of the 

membrane active peptide melittin (CMA-3) to PEI25 and incorporation into the 

targeted polyplex should improve endosomal release and therefore enhance gene 

expression of the targeted polyplexes (39;46). To evaluate effects on transfection 



Annex 32

efficiency in terms of improved endosomal release of the targeted polyplexes CMA-3-

PEI25br was incorporated instead of LPEI into the polyplexes. MDA-MB435 cells 

were transfected with different targeted and non targeted, plain and pegylated 

polyplexes. CMA-3 could enhance luciferase expression to the level of the 

unshielded plain LPEI control polyplex for shielded RGD-targeted polyplex. 

Incorporation of CMA-3-PEI25br instead of LPEI resulted in a 120- to 320-fold 

increase in luciferase activity. 

The incorporation of CMA-3 into the untargeted pegylated control polyplexes LPEI-

BPEI-PEG50 did not enhance transfection efficiency significantly. 
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Fig.: 3-13 Effect of the melittin analog CMA-3 on transfection efficiency of targeted PEI polyplexes. 
7500 cells were seeded in 48-well plates 24h prior to transfection. Cells were transfected with either 
plain LPEI22, LPEI-BPEI-PEG50, LPEI-RGD20 or LPEI-NGR30 and compared to cells transfected 
with CMA-3 containing formulations of these polyplexes (-CMA3) (formulations see Tab. 4-4). 
Polyplexes were prepared in HBG at N/P 6. Polyplexes in a total volume of 300µl with serum 
containing medium were kept on cells for 4h, thereafter the solution was replaced by fresh medium. 
Luciferase assay was performed 24h after transfection. Mean values + SD from n=3 are shown. 

 

In order to verify that increased transfection efficiency is not based on altered 

biophysical properties of the polyplexes, particle size and zeta potential 

measurements were performed (TAB 3-5). 

The size of the polyplexes was not altered significantly when PEI22 was exchanged 

by CMA3-PEI25br; polyplexes maintained their small size of <250nm for at least 

60min. Furthermore incorporation of CMA-3 into the polyplexes did not result in 

changes in the surface charge of the indicated polyplexes. 
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Tab.: 4-4: CMA-3 containing polyplex formulations 

Tab.: 3-4: CMA-3 containing polyplex formulations 

 

 

Polyplex Particle size Zeta potential 
LPEI-PEG50-CMA3 192 ± 15 4.0 ± 1.2 
LPEI-RGD20-CMA3 213 ±   8 7.1 ± 2.6 
LPEI-NGR30-CMA-3 210 ± 15 4.2 ± 0.3 

Tab.: 3-5: Particle size and Zeta potential of CMA-3 containing Polyplexes 

 

 

3.4 In vivo evaluation 

In order to evaluate characteristics of RGD- and NGR- peptide containing polyplexes 

in vivo, experiments were performed with subcutaneous CT26 tumor bearing SCID 

mice. Prior to polyplex administration morphology, blood supply and properties of 

tumor vesselas were analyzed.  

3.4.1 Morphology of subcutaneous CT26 tumors in SCID mice 

Morphology of subcutaneous CT26 tumors was evaluated by Haematoxilin/Eosin 

stain and is described in the thesis, chapter 1. 

3.4.2 Blood supply, distribution of endothelial cells 
  and aminopeptidase N expression 

Areas of high level of CD31 staining (rat anti mouse antibody, which can specifically 

identify endothelial cells) correlates well with Hoechst stain, indicating sufficient blood 

supply in these parts of the tumor. The well vascularized regions were detected in 

most cases in the peripheral of the subcutaneous tumors. Regions in the core 

showed less CD31 staining and also less Hoechst stained nuclei. 

Polyplex CMA-3-
PEI25 

PEG-PEI25 Ligand-PEG-PEI25 

LPEI-PEG50-CMA-3 50% 50%  
LPEI-RGD20-CMA-3 50% 30% 20% RGD- 
LPEI-NGR30-CMA-3 50% 20% 30% NGR- 



Annex 34

 

Fig.: 3-14 Distribution of endothelial cells 
(CD31+ cells) and functional blood vessels in 
subcutaneous CT26 Xenografts in SCID mice. 
Cryo-sections (5µm) were fixed with 4% 
paraformaldehyde and stained with the specific 
antibody rat-anti-mouse CD31 (red). The 
second antibody was labelled with Alexa 488. 
The intravenously injected Hoechst 33258 
stain was visualized as well (blue). Analysis 
was performed with 20x 0.4 Zeiss objective 
with a Zeiss Axiovert 200 fluorescence 
microscope equipped with a Zeiss Axiocam. 

 

Cryosections were further investigated for CD13 staining. In contrast to the CD31 

staining, positive immunoreactions was detected for CD13 all over the tumor tissue. 

This indicates an expression of aminopeptidase N on the CT26 tumor cells 

themselves. Control staining was performed with the unspecific control IgG. 

A B 

Fig.: 3-15 Cryo sections (5µm) were fixed with 4% paraformaldehyde and stained with specific 
antibodies for A,B rat-anti-mouse CD13 (yellow). Secondary antibodies were labelled with Alexa 488. 
The intravenously injected Hoechst 33258 stain was visualized as well (blue). Analysis was performed 
either with 63x1.4 Zeiss oil immersion objective with a Zeiss Axiovert 200 fluorescence microscope, 
equipped with a Zeiss Axiocam. 

3.4.2.1 Blood supply and vessel leakiness in the CT26 tumor model 

Gene vector systems depend highly on vascular escape to achieve efficient delivery; 

leakiness of tumor vessels enhances uptake of polyplex formulations within the tumor 

tissue and increases transfection efficiency. Therefore, to investigate the tumor 

vessels in the subcutaneous CT26 tumor model in terms of leakiness, experiments 

with high molecular fluorescent marked dextrane (FITC-dextrane, 42 kDa) were 

performed. 200 µl of FITC-dextran, solved in PBS (10mg/ml) were administered 

intravenously to CT26 bearing SCID mice. One h after the FITC-dextran application, 

mice were subjected to a second intravenous injection with Hoechst33258 in PBS 
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(2.5mg/ml). The Hoechst 33258 staining was detected in all organs and the tumor 

(blue staining). The staining of the FITC-dextran was located all over the tumor tissue 

(green staining) (FIG 3-16), whereas FITC-dextran was distributed in healthy tissue 

only in a small degree (data not shown). In brain tissue FITC-dextran staining was 

only detectable in the cavity of blood vessels (data not shown). The localisation of 

FITC staining within the tumor tissue indicates leakiness of vessels.  

 

 

 

 

Fig.: 3-16 Cryo sections (8µm) were 
visualised unfixed immediately after preparation. 
Distribution of FITC-dextran in the tissue was 
visualized by fluorescence microscopy. The 
intravenously injected Hoechst 33258 stain was 
visualized as well (blue).Analysis was performed 
with 20x 0.4 Zeiss objective with a Zeiss Axiovert 
200 fluorescence microscope equipped with a 
Zeiss Axiocam. 

 
 

3.4.2.2 Distribution of polyplexes 

Evaluation of polyplex distribution of the untargeted polyplex LPEI-BPEI-PEG50 and 

NGR- peptide containing polyplex LPEI-NGR30 was performed by fluorescence 

microscopy. Therefore Cy3 labelled DNA was incorporated into the polyplexes and 

the polyplexes were administered intravenously. At 2h after the application mice were 

sacrified and organs were collected. Both polyplex formulations were found in the 

tumor tissue. No obvious difference in tissue distribution could be found by 

fluorescence microscopic analysis. 2h after application, polyplexes were not 

distributed within the tumor tissue but associated to vessel like structures in the tumor 

tissue.  
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A        B 

Fig.: 3-17 Cryo sections (8µm) were fixed with 4% paraformaldehyde and visualized with Zeiss 64x1.4 
immersion oil objective and a Zeiss Axiovert 200 fluorescence microscope equipped with a Zeiss 
Axiocam. Localisation of polyplex formulations in the tumor tissue is indicated by the fluorescence 
signal of the incorporated Cy3 labelled plasmid DNA (red) A) control polyplexes and B) NGR targeted 
polyplexes.  

3.4.2.3 In vivo transfection efficiency 

In order to investigate targeting effects in subcutaneous CT26 bearing mice, polyplex 

formulations LPEI-BPEI-PEG20-BPEI30 and LPEI-NGR30 with incorporated CMV-

LUC plasmid DNA were administered intravenously. Mice were sacrified 48h after the 

application; tumor and organs were collected and analyzed for luciferase activity. No 

significant difference in the luciferase expression in the tumors could be found. Only 

a slight enhancement in luciferase activity was found in tumors when LPEI-NGR30 

was administered compared to the control polyplex LPEI-BPEI-PEG20-BPEI30. 

Transgene expression levels were low in control tumors and as well in tumors 

targeted with LPEI-NGR20. Yet, administration of NGR- peptide containing 

polyplexes tended to result in decreased transfection rate of non targeted organs. 
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Fig.: 3-18 Reporter gene expression 
(luciferase) 48h after systemic 
application of polyplex formulations 
LPEI-BPEI-PEG20-BPEI30 (untargeted 
control polyplex) and LPEI-NGR30 
(NGR-targeted polyplex) in HBG, N/P 6 
in CT26 tumor bearing SCID mice. 250 
µl of the polyplex formulations (total 
amount of plasmid DNA: 50µg) were 
injected into the tail vene of the mice. 
Luciferase activity was determined by 
performing the luciferase assay as 
described in materials and methods. 
Luciferase activity is visualized as total 
luciferase activity per organ. Values are 
means ± SE of four animals per groups. 
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3.4.2.4 Transfection GFP 

Localisation of transfected cells in the tumor tissue after the administration of the 

NGR- peptide containing polyplex LPEI-NGR30 was performed by fluorescence 

microscopy. Therefore p-CMV-EGFP containing LPEI-NGR30 polyplexes were 

administered intravenously. 48h after the administration mice were sacrified and 

tumor tissue was fixed with 4% PFA in PBS before embedding in OTC and freezing. 

Clusters of GFP fluorescent cells were detectable in the tumor tissue. Also GFP 

positive endothelial cells were detected by fluorescent microscopy in the tumor 

tissue. 

 

A B 

Fig.: 3-19 Cryo sections (8µm) were fixed with 4% paraformaldehyde and analyzed for GFP positive 
cells by fluorescence microscopy. The intravenously injected Hoechst 33258 stain was visualized as 
well (blue). Slide A shows clustered GFP positive cells in distant to areas with blood supply (blue 
stain). In slide B GFP fluorescence is located directly in an area of blood supply (blue stain), indicating 
endothelial cells of a tumor blood vessel. Analysis was performed with 20x 0.4 Zeiss objective with a 
Zeiss Axiovert 200 fluorescence microscope equipped with a Zeiss Axiocam. 
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4 Discussion 

4.1 Evaluation of endothelial cells as producer cells  
  in the antiangiogenic GDEPT approach 

In the following, the suitability of primary endothelial cells as producer cells is 

discussed in terms of an antiangiogenic CYP-CPA-GDEPT approach. Therefore, 

HUVEC cells were transiently transfected with the therapeutic plasmid, followed by 

CPA treatment. Gene transfer was performed with LPEI polyplexes (N/P 6; HBS) 

containing pCMV-CYP2B1 plasmid DNA or by in vitro electroporation (Amaxa). 

Both transfection methods resulted in ratCYP2B1 gene expression in HUVEC cells; 

protein expression was detected by specific antibody staining, indicating that in 

principle HUVEC cells are suitable for therapeutic CYP2B1 gene expression. 

However, CYP2B1 enzymatic activity was only detectable when gene transfer was 

performed via electroporation. This difference in conversion capability in the resorufin 

assay is probably due to the difference in transfection efficiency: ratCYP2B1 protein 

was detected in only 6.7% of HUVEC cells after LPEI transfection versus 38% in the 

case of gene transfer via electroporation. Compared to enzymatic activity of 

transiently expressed CYP2B1 in tumor cells, HUVEC cells exhibited only moderate 

conversion capability. This might be provoked by an unincisive endoplasmatic 

reticulum, low activity of P450 reductase or the low total metabolic activity of this cells 

type. However, HUVEC cells are an artificial model and do not reflect specific 

characteristic of tumor derived endothelial cells; discrepancies can occur in several 

aspects e.g. expansion of the endoplasmatic reticulum (47). 

Due to the insufficient CYP2B1 enzymatic activity in LPEI transfected HUVEC cells, 

specific effects in terms of preventing proliferation, migration and differentiation were 

not detected. 

In the case of gene transfer via electroporation, specific effects of the transgene 

were detected in the context of proliferation and survival (FIG 3-4). 

Inhibition of migration capability after gene transfer via electroporation and following 

CPA treatment was measured at concentrations of 1.0mM. Decrease in migration 

capability of endothelial cells was not pronounced and resulting partly from unspecific 

toxic effects of the treatment (FIG 3-5). Unspecific effects were even more distinctive 

in the matrigel tube forming assay, resulting a non detectable specific effect of the 

therapeutic gene. 
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In summary, CYP2B1 expression in primary endothelial cells is a possible concept in 

an antiangiogenic GDEPT approach. However, gene transfer via plain LPEI 

polyplexes to primary endothelial cells suffer from low transfection efficiency. 

Moreover, endothelial cells exhibit only low conversion capability, when transfection 

is performed with pCMV-CYP2B1 plasmid DNA via electroporation. These limitations 

seem to be due to characteristic properties of primary endothelial cells, at least in the 

HUVEC model system, and resulted only in weak specific antiangiogenic effects. 

Tumor derived endothelial cells might be therefore a better model in evaluation of 

CYP2B1 based antiangiogenic strategies and indicates that improvement of the gene 

delivery system is necessary. 
 

4.2 Targeted gene transfer to tumor cells 
   and tumor vasculature 

Gene therapy is a promising approach in tumor therapy due to the potential of higher 

specificity in comparison to established cytotoxic treatment wit low molecular drugs.  

In the in vitro evaluated GDEPT concept it was found that tumor as well as 

endothelial cells might be in principal adequate target cells for expressing therapeutic 

genes in the context of GDEPT. Polyethylenimine (PEI) is one of the most efficient 

nonviral gene delivery systems in vitro and in vivo. However, to achieve specificity in 

transfer of therapeutic genes, several modifications of PEI are necessary. 

Unmodified, plain PEI polyplexes bind, due to their positive surface charge, to any 

cell membrane via unspecific electrostatic interactions. Therefore, systemic 

administration of plain PEI polyplexes is associated with high lung gene expression 

(48) and pronounced toxicity (49). Moreover, positively charged polyplexes were 

detected to be not suitable for tumor targeted gene transfer in vivo due to interactions 

with erythrocytes, resulting again in toxic effects and fast clearing from the blood 

stream. Incorporation of the hydrophilic 5kDa PEG-PEI25 conjugates were resulted in 

low surface charge (41). On the other hand, pegylation of polyplexes resulted in 

strong decrease of gene transfer efficiency also in target cells. Gene transfer 

efficiency was restored partly by incorporation of RGD- and NGR- peptide ligands 

into the vector system. 
 
 

Biophysical Characterization of targeted PEI-polyplexes 

Due to the fact that biophysical characteristics of polyplexes (Zeta Potential and 

particle size) play a crucial role for transfection efficiency (50) and their applicability 

for systemic administration, polyplexes were analyzed for these parameters. 
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Measurements showed that a minimum amount (at least 15-20% (w/w)) of pegylated 

conjugate is necessarily incorporated into the PEI polyplexes to generate small sized 

and stable vector systems. Incorporation of lower ratios of pegylated compounds 

resulted in aggregation of polyplexes in the presence of salt containing medium, 

indicating insufficient shielding (FIG 3-6). Small polyplexes have been shown to 

internalize more efficiently by receptor-mediated uptake than larger polyplexes (51). 

In addition, extravasation into tumor tissue as well as tissue diffusion is proposed to 

be dependent on a small particle size. This turns up the achieved particle size of 

about 150 to 250nm to be optimal for in vivo application and receptor-mediated 

uptake and tissue diffusion. 

Another aspect in developing polyplexes for in vivo applications is their storage 

capability. Therefore polyplexes were analyzed for their stability in terms of particle 

size during a freeze/thaw cycle. Previous experiments demonstrated that pegylation 

effectively stabilizes PEI-polyplexes during a freeze/thaw cycle (41). This could be 

confirmed for peptide targeted polyplex formulations LPEI-RGD20 and LPEI-NGR30, 

which were further analyzed in transfection and targeting experiments. 
 
 

Targeting to tumor- and endothelial cells 

Main part of this section was the analysis of targeting capabilities and specificity of 

RGD- and NGR-peptide containing polyplexes in vitro. Therefore, cell association 

and transfection efficiency has been investigated on MDA-MB-435 and CT26 tumor 

cells as well as primary endothelial (HUVECs) cells. It was described previously 

that human MDA-MB-435 breast carcinoma cells highly express integrins on their cell 

surface (52). Antibody staining followed by cell flow cytometric analysis could confirm 

integrin gvく3 expression on MDA-MB-435 cells, whereas expression of 

aminopeptidase N on the cell surface was not detected. 

Antibody staining followed by cell flow cytometric analysis resulted in the detection of 

aminopeptidase N expression on approx. 58% of CT26 tumor cells, whereas 

expression of gv integrins was not evident. 

In contrast to above mentioned tumor cells, which express either integrin receptors of 

gv family or aminopeptidase N, both receptors were detected on HUVEC cells. 

In order to evaluate for targeting specificity of peptide ligand modified vector systems, 

inhibition studies with polyplex formulations were performed by incorporation of 

fluorescence labeled plasmid DNA and an excess of free peptide ligand or an specific 

antibody, respectively. Attention was directed towards RDG-peptide ligand containing 
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polyplexes, due to pronounced targeting effects in terms of transfection efficiency, 

compared to NGR (FIG 3-10). Increased targeting effects may be based on an effect 

called “integrin supported internalization”, which increases the uptake of payloads 

bound to integrin recognition sequences (53). Inhibition studies were therefore 

performed on the MDA-MB-435 cell line, due to expression of integrin gvく3 

receptors, but not aminopeptidase N. Cell association of plain LPEI polyplexes as 

well as shielded, untargeted LPEI-BPEI-PEG50 polyplexes was, as expected, not 

inhibited by an excess of free RGD- and NGR-peptides. Interestingly, cell association 

was disturbed when binding of plain LPEI polyplexes was inhibited with the integrin 

specific antibody; presumably, antibody and plain LPEI polyplexes form complexes. 

This effect might be triggered by high positive surface charge of plain LPEI 

polyplexes and therefore resulting in adhesiveness. Thus, this effect was not evident 

in the inhibition studies with the shielded control polyplex formulation LPEI-BPEI-

PEG50, whereas cell association was not altered due to administration of the integrin 

specific antibody (FIG 3-8A and B). Further on, cell association was not altered when 

inhibition studies were performed with the specific anti-integrin antibody and the PEI-

RGD20 polyplex formulation. This indicates that antibody binding location and RGD 

recognition region are different; further on, in contrast to plain LPEI polyplexes which 

associate assumedly with the integrin antibody, PEI-RGD20 polyplexes exhibit 

sufficient shielding to avoid interaction. However, cell association was diminished 

when binding of the PEI-RGD-20 polyplex formulation was inhibited with an excess of 

free RGD peptide, indicating targeting specificity. Interestingly, cell association was 

reduced in the same degree when inhibition was performed with an excess of free 

NGR-peptide even though MDA-MB-435 tumor cells were negative for 

aminopeptidase N on the cell surface (FIG 3-8B). This finding, however, is consistent 

with previously performed studies, where cross reactivity between RGD- and NGR- 

recognition sequences were already described. The NGR binding motif resembles 

RGD, consequently NGR peptides can bind to integrin receptors; however binding 

affinity of the NGR peptides is lower (54). Consequently, cell association with integrin 

expressing MDA-MB-435 tumor cells was not altered when the NGR-peptide ligand 

containing polyplex formulation (PEI-NGR30) competed with an excess of free NGR-

peptide for recognition sequences, though an excess of free RGD peptide leaded to 

reduced cell association of PEI-NGR30 (FIG 3-8D). 
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In summary, the LPEI-RGD20 polyplex formulation exhibited high specificity in cell 

association. The described cross reactivity is a plausible explanation for the 

increased transfection efficiency by NGR-peptide containing polyplexes on 

aminopeptidase N negative MDA-MB435 cells and of RGD-peptide containing 

peptides on integrin gv negative CT26 tumor cells. The developed polyplex 

formulations PEI-RGD20 and PEI-NGR30 exhibited similar binding attitudes as 

phages, displaying the conformable binding sequence (34). 

In the context of developing gene delivery systems specific for tumor cells and, to a 

greater extent, for angiogenic active endothelial cells, polyplex formulations were 

optimized in terms of transfection efficiency on primary endothelial cells. 

Therefore, reporter gene expression was evaluated on integrin gvく3 and 

aminopeptidase N expressing HUVEC cells with different peptide targeted polyplex 

formulations delivering plasmid DNA encoding for luciferase. Control transfection 

experiments were performed with plain LPEI polyplexes and the shielded untargeted 

polyplex formulation LPEI-BPEI-PEG50. Luciferase expression levels were 

significantly increased by incorporating peptide ligand into PEG-shielded polyplexes; 

increase in transfection efficiency was dependent on the ratio of RGD-PEG-PEI or 

NGR-PEG-PEI, respectively. The influence of incorporating peptide ligands into the 

shielded polyplex formulations in terms of transfection efficiency was further 

evaluated on integrin gvく3 expressing MDA-MB-435 and aminopeptidase N positive 

CT26 tumor cells. The incorporation of targeting ligands into the shielded polyplex 

formulations resulted in increased transfection efficiency of MDA-MB-435 and CT26 

tumor cells, compared to both untargeted, shielded polyplex formulations. 

Transfection efficiency was significantly increased for the NGR-targeted polyplex 

formulation LPEI-NGR30 on aminopeptidase N negative MDA-MB435 cells; 

transfection with LPEI-RGD20 resulted on CT26 tumor cells in similar expression 

levels as with the NGR-peptide containing formulation, even though integrin gv- 

receptors were not detected on the cell surface. This finding, however, can be 

explained by a cross reactivity of RGD- and NGR- recognition sequences. 

Comparing targeting capability in the context of transfection efficiency, higher 

reporter gene expression levels were detected for the LPEI-RGD20 polyplexes 

compared to the LPEI-NGR20 polyplex formulation on MDA-MB435 tumor cells and 

on primary endothelial cells. The increased transfection efficiency is probably based 

on “integrin supported internalization”, which increases the uptake of payloads bound 
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to integrin recognition sequences (55). Transfection of integrin gv negative CT26 

tumor cells with RGD-targeted polyplex formulations is presumably driven by binding 

to aminopeptidase N receptors due to cross reactivity, which exhibit, in contrast to 

integrin receptors, no supported internalization. Alternatively, internalization of RGD-

peptide ligand containing polyplexes may be supported by integrin receptors of other 

families, which exhibit as well RGD-recognition sequences. 
 
 

Receptor regulation by hypoxia influences targeting properties 

Hypoxia is a common phenomenon in solid tumors. Hypoxia triggers several 

processes in tumor cells as well as in tumor stroma cells. Endothelial cells adapt to 

hypoxic environment by, amongst other mechanisms, increasing several cell surface 

molecules relevant for angiogenic processes. Among these angiogenesis promoting 

receptors, integrin gvく3 and aminopeptidase N were found to be upregulated by 

hypoxic stimuli in prior studies (32;56). Modulation of integrin gvく3 and 

aminopeptidase N cell surface expression by hypoxia was further on confirmed by 

specific antibody staining followed by quantification with the Amplex-Red kit within 

this work (FIG 3-11). In order to evaluate if hypoxia therefore enhances transfection 

efficiency by upregulation of hypoxia responsible integrin gvく3 and aminopeptidase 

N receptors on the cell surface of primary endothelial cells transfection experiments 

were performed after preincubation of HUVEC cells in a hypoxic environment. 

Indeed, transfection efficiency was increased when the transfection was carried out 

with the targeted polyplex formulations LPEI-RGD20 and LPEI-NGR30, whereas 

transfection efficiency with plain LPEI polyplexes remained unchanged. This 

supposes increased transfection efficiency due to upregulation of cell surface 

receptors by the hypoxic treatment (FIG 3-12). Increase in transfection efficiency of 

LPEI-RGD20 was even more pronounced compared to the LPEI-NGR-30 polyplex 

formulation, though, integrin gvく3 receptor was lower than aminopeptidase N 

upregulation (FIG 3-11). This effect might be triggered by “integrin supported  

internalization”, which increases the uptake of payloads bound to integrin recognition 

sequences (57) and indicates integrin gvく3 receptor mediated gene transfer with 

RGD-peptide containing polyplexes as highly effective to primary endothelial cells, 

especially in hypoxic environments. 
 

Incorporation of endosomolytic escape domains in targeted polyplexes 

After cellular association of polyplexes, particles are internalized by receptor-

mediated endocytosis, macropinocytosis, phagocytosis or related processes (58-60). 
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Internalized particles are captured in intracellular vesicles such as endosomes. For 

efficient transgene expression, polyplexes need to escape from the endosomes by 

endosomal release. Incorporation of the melittin analog CMA-3 into the polyplex 

formulations indicated an effective approach towards enhanced transfection 

efficiency of targeted polyplexes. The membrane active peptide melittin was able to 

enhance endosomal release of internalized polyplexes. However, effective cellular 

uptake is necessary and can be accomplished by receptor mediated internalization. 

Therefore, transfection efficiency of RGD-peptide containing polyplexes can be 

enhanced up to levels of plain LPEI polyplexes. Targeted polyplexes profit from 

effective endocytosis via integrins, whereas the incorporated CMA-3 enhances 

intracellular endosomal release of the polyplexes. Importantly, transfection efficiency 

of shielded, but untargeted control polyplex formulation LPEI-BPEI-PEG50 was not 

enhanced by the incorporation of CMA-3, indicating that internalization of polyplexes 

play a crucial role for their intracellular trafficking. The internalization of LPEI-BPEI-

PEG50 is less efficient on MDA-MB-435 cells and/or may be accomplished by a 

pathway leading directly to degradation of the polyplexes. Targeted polyplexes with 

NGR-peptide were shown to exhibit lower total transfection efficiency compared to 

RGD-peptide containing polyplexes, however, enhancement in transfection efficiency 

by the incorporation of the endosomolytic compound CMA-3 was similar. 
 

In vivo evaluation of targeted polyplex formulations 

Receptor expression strongly depends on cellular microenvironment. Moreover in 

vivo transfection efficiency is influenced by several tissue specific parameters as e.g. 

total tumor blood supply, vessel diameter and vessel leakiness. Further on 

distribution of polyplex formulations in vivo depend on diffusion capability in the 

indicated tissue. CT26 tumors are well vascularized especially in the peripheral 

regions, whereas less blood supply was detected in the central areas (FIG 3-14). 

However, reasoning view of a therapeutic approach, gene delivery to the angiogenic 

active peripheral regions is supposed to be sufficient. Antibody staining of CD31 

positive endothelial cells in combination with systemically Hoechst33258 staining 

indicated that functional blood supply and the existence of endothelial cell lined blood 

vessels correlated in this tumor model. Antibody staining against mouse 

aminopeptidase N (CD13) indicated that aminopeptidase N is distributed over the 

whole tumor tissue, including vessel like structures (FIG 3-15A and B). Subcutaneous 

CT26 were evaluated for vessel leakiness by systemic administration of FITC-dextran 
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(42kDa) in combination with likewise systemically applied Hoechst33258 dye. 

Accumulation of FITC-dextran was evident within the tumor tissue (FIG 3-16), 

whereas FITC-dextran was distributed in healthy control tissue only in a small 

degree. Despite the difference in molecular weight of the FITC-dextran used as a 

marker in comparison to the indicated polyplex formulations, its accumulation in the 

tumor tissue indicates enhanced vessel leakiness compared to healthy tissue. 

Leakiness of vessels has great impact on passive tumor targeting effects (EPR 

effect), allows escape of gene vector systems from the blood stream and is therefore 

crucial for uptake within the tumor tissue. 

For evaluation of delivery and subsequent distribution of polyplexes in the tumor 

tissue, targeted LPEI-NGR30 and control polyplexes LPEI-BPEI-PEG20-BPEI30, 

containing Cy3-labeled plasmid DNA, were administered into the tail vain of CT26 

bearing SCID mice. Both, targeted as well as shielded, untargeted control polyplexes 

were detected in the tumor indicating that both polyplex formulations reach the tumor 

via blood stream (FIG 3-17). Nevertheless, 2h after polyplex administration, labeled 

polyplexes were still found in close vicinity to vessel like structures. This indicates 

limited diffusion within the tumor tissue and may result from the compact structure of 

subcutaneous CT26 tumors (compare thesis, chapter 1). Differences in the 

distribution of targeted and untargeted control polyplexes were not detectable by 

microscopic analysis. However, in order to investigate if the incorporation of peptide 

ligands enhances transfection efficiency, the polyplex formulation LPEI-NGR30 

and shielded control polyplexes LPEI-BPEI-PEG20-BPEI30 were utilized for systemic 

delivery of plasmid DNA encoding for luciferase in the subcutaneous CT26 tumor 

model. In contrast to in vitro experiments, enhanced tumor transfection efficiency by 

incorporation of NGR-peptide into the polyplex formulation for was not significant. 

Notably, transgene expression in not targeted organs, however, tended to result in 

lower levels, when the application was performed with the LPEI-NGR30 polyplex in 

comparison to the shielded, untargeted control (FIG 3-18). Indistinctive enhancement 

in tumor transfection efficiency by the incorporation of the NGR-peptide may be on 

one hand explained by rather low transfection rates in total. On the other hand, low 

tumor transfection efficiency might result form insufficient diffusion processes within 

the tumor tissue. Incorporation of the endosomolytic compound CMA-3 can be 

utilized in further experiments to overcome these limitations and may lead to more 

distinctive targeting characteristics of NGR-peptide containing polyplex formulations, 
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due to the enhancement of transfection efficiency only for receptor mediated uptake 

(FIG 3-13). 

Aminopeptidase N, which is the receptor targeted by LPEI-NGR30 polyplexes is 

expressed on CT26 tumor as well as on tumor vessel endothelial cells. For 

evaluation of transfected cell type in vivo, delivery of plasmid DNA encoding for 

EGFP was performed by systemic application of LPEI-NGR30 polyplex formulation. 

Prior to sacrifying, Tumor tissue was collected and analyzed via fluorescence 

microscopy for EGFP positive cells, resulting in the detection of EGFP expressing 

tumor as well as endothelial cells in the direct vicinity of functional blood flow (FIG 3-

19). Recently, transfection of tumor vessel endothelial cells with NGR-targeted PEI 

polyplex formulations was described (37). 
 

In summary, pegylated LPEI polyplexes containing RGD- and NGR-peptide ligands 

are small and stable particles (<200nm). RGD- and NGR- ligands are able to 

enhance transfection efficiency significantly on target cells, moreover, tumor specific 

environmental properties, like hypoxia further enhance selectivity. Transfection 

efficiency of peptide ligand containing polyplex formulations on target cells can be 

further enhanced by the incorporation of endosomolytic compounds. 

Reasons for indistinctive enhancement of tumor transfection efficiency in vivo have to 

be further investigated by establishment of in vitro spheroid tumor models and further 

transfection experiments. 

Incorporation of CMA-3, as a compound enhancing endosomal release, might be 

performed in further in vivo studies to overcome limitations and may further adjust 

tumor selectivity and transgene expression levels. 
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