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Abstract

It is well-known that traditional clustering methods considering all dimen-

sions of the feature space usually fail in terms of efficiency and effectivity

when applied to high-dimensional data. This poor behavior is based on the

fact that clusters may not be found in the high-dimensional feature space,

although clusters exist in subspaces of the feature space. To overcome these

limitations of traditional clustering methods, several methods for subspace

clustering have been proposed recently. Subspace clustering algorithms aim

at automatically identifying lower dimensional subspaces of the feature space

in which clusters exist.

There exist two types of subspace clustering algorithms: Algorithms for

detecting clusters in axis-parallel subspaces and, as an extension, algorithms

for finding clusters in subspaces which are arbitrarily oriented. Generally, the

subspace clusters may be hierarchically nested, i.e., several subspace clusters

of low dimensionality may form a subspace cluster of higher dimensionality.

Since existing subspace clustering methods are not able to detect these com-

plex structures, hierarchical approaches for subspace clustering have to be

applied.

The goal of this dissertation is to develop new efficient and effective meth-

ods for hierarchical subspace clustering by identifying novel challenges for the

hierarchical approach and proposing innovative and solid solutions for these

challenges.

The first Part of this work deals with the analysis of hierarchical sub-

space clusters in axis-parallel subspaces. Two new methods are proposed
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that search simultaneously for subspace clusters of arbitrary dimensionality

in order to detect complex hierarchies of subspace clusters. Furthermore, a

new visualization model of the clustering result by means of a graph repre-

sentation is provided.

In the second Part of this work new methods for hierarchical clustering

in arbitrarily oriented subspaces of the feature space are discussed. The

so-called correlation clustering can be seen as an extension of axis-parallel

subspace clustering. Correlation clustering aims at grouping the data set into

subsets, the so-called correlation clusters, such that the objects in the same

correlation cluster show uniform attribute correlations. Two new hierarchi-

cal approaches are proposed which combine density-based clustering with

Principal Component Analysis in order to identify hierarchies of correlation

clusters.

The last Part of this work addresses the analysis and interpretation of the

results obtained from correlation clustering algorithms. A general method

is introduced to extract quantitative information on the linear dependencies

between the objects of given correlation clusters. Furthermore, these quanti-

tative models can be used to predict the probability that an object is created

by one of these models.

Both, the efficiency and the effectiveness of the presented techniques are

thoroughly analyzed. The benefits over traditional approaches are shown by

evaluating the new methods on synthetic as well as real-world test data sets.



Abstract (in German)

Beim Clustering hochdimensionaler Daten erweisen sich oftmals traditionelle

Clusteringverfahren, die sämtliche Dimensionen des Datenraums berücksichti-

gen, als ineffizient und ineffektiv. Dies ergibt sich aus der Tatsache, dass im

hochdimensionalen Gesamtdatenraum möglicherweise keine Cluster entdeckt

werden können, obwohl die Daten in Unterräumen des Datenraums Cluster

bilden. Zur Beseitigung der Nachteile traditioneller Clusteringverfahren wur-

den eine Vielzahl sogenannter Subspace-Clustering-Algorithmen entwickelt,

deren Ziel es ist, Cluster zu identifizieren, die in niedriger dimensionalen

Unterräumen (Subspaces) des Gesamtdatenraums existieren.

Man unterscheidet zwei Arten von Subspace-Clustering-Algorithmen: Al-

gorithmen zur Suche von Clustern in achsenparallelen Unterräumen des Ge-

samtdatenraums sowie, als Erweiterung, Algorithmen, die auf beliebig orien-

tierten Unterräumen angewendet werden können. Die Cluster in den einzel-

nen Unterräumen können dabei auch ineinander geschachtelt sein, d.h. ein

höher dimensionaler Unterraum kann Cluster enthalten, die ihrerseits Cluster

in niedriger dimensionalen Unterräumen bilden. Da existierende Subspace-

Clustering-Verfahren nicht in der Lage sind derartige Strukturen zu ent-

decken, sind hierzu neuartige hierarchische Ansätze für das Subspace-Cluster-

ing notwendig.

Das Ziel dieser Doktorarbeit ist es, effektive und effiziente Algorithmen

im Bereich des hierarchischen Subspace-Clusterings zu entwickeln. Es wer-

den neue Anwendungs- und Problemfelder für den hierarchischen Ansatz

erschlossen und Lösungen für die resultierenden Probleme vorgestellt.
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Der erste Teil der Arbeit beschäftigt sich mit der Analyse von hierar-

chischen Subspace-Clustern in achsenparallelen Unterräumen. Dabei werden

zwei neuartige Verfahren vorgestellt, die simultan nach Subspace-Clustern

unterschiedlicher Dimensionalität suchen, um komplexe Hierarchien von Sub-

space-Clustern aufzudecken. Des Weiteren wird ausführlich auf eine geeignete

Visualisierung des Clustering-Ergebnisses mittels Graphen eingegangen.

Im zweiten Abschnitt der Arbeit werden neue Methoden zur hierarchi-

schen Clusteranalyse in beliebig orientierten Unterräumen des Gesamtdaten-

raums behandelt. Das sogenannte Correlation-Clustering kann als Erweiter-

ung des achsenparallelen Subspace-Clusterings betrachtet werden, um Ob-

jektgruppen, sogenannte Correlation-Cluster, in einer Datenbank zu ermit-

teln, die einheitliche Attribut-Korrelationen aufweisen. Dazu werden zwei

hierarchische Ansätze beschrieben, die dichtebasiertes Clustering mit Haup-

tachsentransformation verbinden, um Hierarchien von Correlation-Clustern

zu identifizieren.

Der letzte Teil der Arbeit erstreckt sich auf die Analyse und Interpreta-

tion der Ergebnisse von Clustering-Algorithmen für Unterräume. Dazu wird

ein Verfahren vorgestellt, dass für gegebene Correlation-Cluster jeweils ein

Modell zur Interpretation der linearen Abhängigkeiten der Objekte innerhalb

des Clusters ableitet. Darüber hinaus können diese Modelle benutzt werden,

um die Wahrscheinlichkeit zu ermitteln, dass ein Objekt von einem dieser

Modelle erzeugt wurde.

Die Effizienz und Effektivität der vorgestellten Techniken wird detailliert

untersucht und die Vorteile gegenüber herkömmlichen Verfahren sowohl mit-

tels synthetischen Daten als auch realen Daten experimentell nachgewiesen.
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Chapter 1

Introduction

The amount of data being collected in databases today far exceeds the ability

to reduce and analyze data without the use of automated analysis techniques.

Knowledge Discovery in Databases (KDD) is an interdisciplinary field that

is evolving to provide automated analysis solutions. The core part of the

KDD process is the application of specific data mining methods for pattern

discovery and extraction. Section 1.1 introduces first the main concepts

of Knowledge Discovery in Databases. Afterwards the data mining step is

described in more detail and the most prominent methods on data mining

are reviewed. As this thesis focus on hierarchical subspace clustering, a brief

motivation for the special requirements when clustering high-dimensional

data, leading to the paradigm of subspace clustering is given in Section 1.2.

Section 1.3 concludes this Chapter with an outline of this thesis.

1.1 Knowledge Discovery in Databases

Knowledge Discovery in Databases (KDD) is the non-trivial process of identi-

fying valid, novel, potentially useful, and ultimately understandable patterns

in data [FPSS96]. The KDD process consists of an iterative sequence of the

following steps (see Figure 1.1 for an illustration):

3



4 1 Introduction

Pre-
processing

Trans-
formation

Data

Selection
Data
Mining

Interpretation/
Evaluation

Patterns Knowledge

Figure 1.1: The KDD process.

• Selection: Creating a target data set by selecting a data set or focusing

on a subset of attributes or data samples.

• Preprocessing: Performing data cleaning operations, such as remov-

ing noise, handling missing data fields, accounting for time-sequence

information, etc.

• Transformation: Finding useful features to represent the data, e.g.,

using dimensionality reduction or transformation methods to reduce

the number of attributes or to find invariant representations for the

data.

• Data Mining: Searching for patterns of interest in a particular repre-

sentation form, e.g., by applying classification rules, regression analysis,

or clustering algorithms to the transformed data.

• Interpretation and Evaluation: Applying visualization and knowl-

edge representation techniques to the extracted patterns. The user

may return to previous steps of the KDD process if the results are

unsatisfactory.

Since data mining is the core step of the KDD process, the notions “KDD”

and “Data Mining” are often used as synonyms. In [FPSS96] data mining is

defined as a step in the KDD process which consists of applying data anal-

ysis algorithms that, under acceptable computational efficiency limitations,

produce a particular enumeration of patterns over the data. Existing data

mining algorithms can be classified according to the following data mining

methods [HK01]:



1.2 Subspace Clustering 5

• Characterization and Discrimination: Summarization and com-

parison of general features of objects.

• Association Analysis: Discovering association rules showing attribute

value conditions that occur frequently together in a given data set.

• Classification and Prediction: Supervised learning of models or

functions to organize (new) data objects into predefined classes.

• Evolution Analysis: Modeling trends in time related data that change

in time.

• Clustering: Unsupervised grouping of the data objects into classes

by maximizing the similarity between objects of the same class and

minimizing the similarity between objects of different classes.

• Outlier Analysis: Identifying data objects that cannot be grouped

in a given class or cluster, since they do not correspond to the general

model of the data.

1.2 Subspace Clustering

The general topic of this thesis is clustering, one of the primary data min-

ing tasks. All clustering algorithms aim at segmenting a collection of objects

into subsets or “clusters”, such that those objects within one cluster are more

closely related to one another than to objects assigned to different clusters.

Thus, clustering groups the objects of a data set into clusters by maximiz-

ing the intra-cluster similarity and minimizing the inter-cluster similarity.

Finding these clusters is important because they represent different classes

of objects that were previously unknown, bringing additional insight which

can be exploited for various purposes.

Many applications of clustering are characterized by high-dimensional

data which poses two challenges: First, clusters may be only visible in certain,

maybe even arbitrarily oriented subspaces of the feature space. The second

challenge is the so-called curse of dimensionality which essentially means
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C2

C1

C3

Figure 1.2: Hierarchy of subspace clusters.

that distance measures become increasingly meaningless as the number of

dimensions increases in the data set. Thus, traditional clustering methods

considering all dimensions of the feature space often fail to detect meaningful

clusters in high-dimensional data.

To overcome the limitations of traditional clustering methods, recent re-

search has focused on discovering clusters embedded in different subspaces of

high-dimensional data sets, a paradigm commonly known as subspace clus-

tering. Subspace clustering algorithms can be classified in two groups:

1. Algorithms that aim at finding clusters in axis-parallel subspaces of

the data space. These methods are also called axis-parallel subspace

clustering or projected clustering.

2. Algorithms for finding clusters in arbitrarily oriented subspaces of the

feature space. These methods are also called oriented clustering, gen-

eralized subspace clustering, or correlation clustering.

Generally, the subspace clusters may be hierarchically nested, i.e., sev-

eral subspace clusters of low dimensionality may together form a subspace
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cluster of higher dimensionality. Figure 1.2 illustrates a simple example of a

hierarchy of subspace clusters in a 3-dimensional feature space: the clusters

C1 and C2 are embedded within cluster C3. Since existing subspace cluster-

ing methods are not able to detect these complex structures, hierarchical

approaches for subspace clustering have to be applied. In this thesis, the

research field of hierarchical subspace clustering is addressed and innovative

and solid solutions for identifying hierarchically nested clusters that only

appear in subspaces of the entire feature space are proposed.

1.3 Outline of the Thesis

The remainder of this thesis is organized as follows:

Part I deals with the preliminaries.

Chapter 1 should give the reader a short introduction to the broader

context of this thesis.

Chapter 2 provides a brief and rather general overview of traditional hi-

erarchical clustering methods.

Chapter 3 introduces first the density-based notion of clusters underly-

ing the algorithm DBSCAN. Then, its hierarchical extension, leading to the

notion of hierarchical density-based clustering which constitutes the central

concept of the algorithm OPTICS is discussed in detail.

Part II deals with the analysis of hierarchical subspace clusters in axis-

parallel subspaces. Two new methods are proposed that search simulta-

neously for subspace clusters of arbitrary dimensionality in order to detect

complex hierarchies of subspace clusters.

Chapter 4 gives an introduction and motivation to the research area of

hierarchical axis-parallel subspace clustering.

Chapter 5 reviews current approaches on axis-parallel subspace clustering.
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Chapter 6 proposes the novel algorithm HiSC (Hierarchical Subspace

Clustering) which is the first subspace clustering algorithm for detecting

hierarchies of subspace clusters. HiSC can detect clusters in subspaces of

significantly different dimensionality and is able to determine hierarchies of

nested subspace clusters. Several comparative experiments show the superi-

ority of HiSC to existing methods.

Chapter 7 presents a major extension of HiSC called DiSH (Detecting

Subspace Cluster Hierarchies). While HiSC is limited to single inclusions of

subspace cluster hierarchies, DiSH is able to determine hierarchies of single

and multiple inclusions. Furthermore, DiSH computes a clear and intuitive

graph representation of the result such that the complete relationships among

subspace clusters can be seen at a glance. A broad experimental evaluation

shows the superior accuracy of DiSH compared to its competitors.

Part III discusses two new methods for hierarchical clustering in arbi-

trarily oriented subspaces of the feature space. The so-called correlation

clustering can be seen as an extension of axis-parallel subspace clustering.

Correlation clustering aims at grouping the data set into subsets, the so-called

correlation clusters, such that the objects in the same correlation cluster show

uniform attribute correlations.

Chapter 8 gives an introduction and motivation to the research area of hi-

erarchical subspace clustering in arbitrarily oriented subspaces of the feature

space.

Chapter 9 provides related work on subspace clustering algorithms for

arbitrarily oriented subspaces.

Chapter 10 proposes the new algorithm HiCO (Hierarchical Correlation

Ordering), the first algorithm for computing hierarchies of correlation clus-

ters. In contrast to existing approaches, HiCO does not require the user

to specify any global density threshold, the number of clusters to be found,

nor any parameter specifying the dimensionality of the correlations. The ex-

tensive experimental evaluation shows that HiCO finds meaningful and rich

hierarchies of correlation clusters in synthetic and real-world data sets.
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Chapter 11 introduces the novel clustering algorithm ERiC (Exploring

complex hierarchical Relationships among Correlation clusters) to efficiently

detect hierarchical relationships between correlation clusters also allowing

multiple inclusions. The resulting cluster hierarchy is visualized by means

of a graph model. A broad experimental evaluation shows that ERiC finds

more information than state-of-the art correlation clustering methods and

outperforms existing competitors in terms of efficiency.

Part IV addresses the analysis and interpretation of the results obtained

from correlation clustering algorithms. An original approach to derive quan-

titative information on the linear dependencies within correlation clusters is

proposed. The concepts are independent of the clustering model and thus,

can be applied as a post-processing step to any correlation clustering algo-

rithm.

Chapter 12 gives a short introduction to the challenge of advanced data

analysis and system modeling.

Chapter 13 reviews related work on existing approaches for deriving de-

scriptions of quantitative dependencies among several attributes.

Chapter 14 formalizes the notion of PCA-based correlation clusters.

Chapter 15 proposes the concepts to derive quantitative models of cor-

relation clusters. Furthermore, it is sketched how these quantitative models

can be used to predict the probability that an object is created by one of

these models.

Chapter 16 presents a broad experimental evaluation where the practical

importance of the new approach is demonstrated.

Part V concludes this thesis.

Chapter 17 summarizes and discusses the major contributions of this

thesis. It concludes with pointing out some future directions.
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Chapter 2

Hierarchical Clustering

In the past decade, many algorithms for the problem of clustering have been

proposed. There are two major methods of clustering – partitioning cluster-

ing and hierarchical clustering. Partitioning clustering methods compute a

“flat” partition of the data set, i.e., they produce a unique assignment of each

data object to a cluster. The number of clusters k is often a user specific pa-

rameter. Prominent example algorithms for such partitioning clustering are

k-means [McQ67], PAM [KR90], CLARANS [NH94], and the EM-algorithm

[DLR77]. Density-based methods like the DBSCAN-algorithm [EKSX96] also

assign each object to a unique cluster or noise. Since this clustering notion is

basis of this thesis, the concepts underlying DBSCAN are presented in detail

in Section 3.1.

In hierarchical clustering, the data are not partitioned into a particular

cluster in a single step. Instead, a series of partitions takes place which may

run from a single cluster containing all objects to n clusters each containing

a single object. As this thesis copes with the challenge of extending tradi-

tional hierarchical clustering to hierarchical subspace clustering, in the fol-

lowing Sections a brief and rather general overview of traditional hierarchical

clustering methods is given. The hierarchical clustering algorithm OPTICS

[ABKS99] combines the notion of density-based clustering and hierarchical

clustering. Since the enhancements to hierarchical subspace clustering pre-

sented in Part II and III are based to some extent on the concepts of this

11
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Figure 2.1: A dendrogram (right) for a sample data set (left).

algorithm, OPTICS are discussed in more detail in section 3.2.

2.1 Concepts of Hierarchical Clustering

Hierarchical clustering algorithms compute a hierarchical decomposition of

the data objects instead of a unique assignment of data objects to clusters.

Given the data set D, the goal is to produce a 2-dimensional diagram known

as dendrogram in which nodes represent subsets ofD, simulating the structure

found in D with the following properties (cf. Figure 2.1):

• The root of the dendrogram is the whole data set D.

• Each leaf of the dendrogram corresponds to one data object of D.

• The internal nodes of the dendrogram are defined as the union of their

children, i.e., each node represents a cluster containing all objects of

the leaf nodes below this node.

• Each level of the dendrogram represents a partition of the data set into

several nested clusters.

Hierarchical Clustering is subdivided into agglomerative methods which

proceed by series of fusions of data objects into clusters, and divisive methods
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which separate the data objects successively into finer clusters. Agglomera-

tive hierarchical clustering algorithms follow a bottom-up strategy by merg-

ing the clusters iteratively. They start by placing each data object in its own

single cluster. Then, the clusters are merged together into larger and larger

clusters by grouping similar data objects together until the entire data set

is encapsulated into one final root cluster. Most hierarchical methods be-

long to this category. They differ only in their definition of between-cluster

similarity.

Divisive hierarchical clustering works the opposite way around - it starts

with all data objects in one root cluster and subdivides them into smaller

clusters until each cluster consists of only one single data object. Divisive

methods are not generally available, and rarely have been applied. The

reasons for this is mainly computational - divisive clustering is more com-

putationally expensive when deciding to divide one cluster in two, given all

possible choices. While in agglomerative procedures in one step two out of

maximum n elements have to be chosen for merging, in divisive procedures

fundamentally all subsets have to be analyzed so that divisive procedures

have an algorithmic complexity of O(2n).

Agglomerative procedures have the drawback that an incorrect merging

of clusters in an early stage often yields results which are far away from the

real cluster structure. Divisive procedures immediately start with interesting

cluster arrangements and are therefore more robust. Since usually agglom-

erative procedures are used because of their efficiency, the agglomerative

algorithm will be explained in detail in the following.

2.2 Basic Algorithm for Agglomerative Hier-

archical Clustering

Given a data set D of n objects to be clustered, the basic process of agglom-

erative hierarchical clustering is defined as follows:

1. Place each data object oi ∈ D (i = 1, . . . n) in its own single cluster Ci.
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Create the list of initial clusters C = C1, . . . , Cn which will build the

leaves of the resulting dendrogram.

2. Find the two clusters Ci, Cj ∈ C with the minimum distance to each

other.

3. Merge the clusters Ci and Cj to create a new internal node Cij which

will be the parent of Ci and Cj in the resulting dendrogram. Remove Ci
and Cj from C.

4. Repeat step 2 and 3 until the total number of clusters in C becomes

one.

In the first step of the algorithm, when each object represents its own

cluster, the distances between the clusters are defined by the chosen distance

function between the objects of the data set. However, once several objects

have been linked together, a linkage rule is needed to determine the actual

distance between two clusters. There are numerous linkage rules that have

been proposed. In the following Section some of the most commonly used

linkage methods are presented.

2.3 Linkage Methods

Let D be a data set, Dist denote the distance function between the data

objects of D, and Ci and Cj be two disjunct clusters consisting of objects

of D, i.e., Ci, Cj ⊆ D and Ci ∩ Cj = ∅. In the following, some of the most

commonly used linkage rules to determine the distance between two clusters

are described.

Single-Link. One of the simplest agglomerative hierarchical clustering meth-

ods is the Single-Link method [Sib73], also known as the nearest neighbor

technique. Single-Link defines the distance DistSL between any two clus-

ters Ci and Cj as the minimum distance between them, i.e., as the distance

between the two closest objects:
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DistSL(Ci, Cj) = min
xi∈Ci,xj∈Cj

{Dist(xi, yi)}.

Using the Single-Link method often causes the chaining phenomenon,

also called Single-Link effect, which is a direct consequence of the Single-

Link approach tending to force clusters together due to single objects being

close to each other regardless of the positions of other entities in that cluster.

Complete-Link. The Complete-Link method [Def77], also called farthest

neighbor technique, is the opposite of Single-Link. Complete-Link defines

the distance DistCL between any two clusters Ci and Cj as the maximum

distance between them:

DistCL(Ci, Cj) = max
xi∈Ci,xj∈Cj

{Dist(xi, yi)}.

The Complete-Link method should not be used if there is a lot of noise

expected to be present in the data set. It also produces very compact clusters.

This method is useful if one is expecting objects of the same cluster to be far

apart in multidimensional space (provided there is no noise). In other words,

outliers are given more weight in the cluster decision.

Average-Link. Average-Link [Voo86] takes the mean distance between all

possible pairs of objects belonging to the two clusters in question. There-

fore, it is more computationally expensive to compute the distance DistAV G

between any two clusters Ci and Cj than the before mentioned methods:

DistAV G(Ci, Cj) =
1

|Ci| · |Cj|
∑

xi∈Ci,xj∈Cj

{Dist(xi, yi)}.

Average-Link is sometimes also called UPGMA (Unweighted Pair-Group

Method using Arithmetic averages). There are several other variations of

this method, e.g. Weighted Pair-Group Average, Unweighted Pair-Group

Centroid, Weighted Pair-Group Centroid, but one should understand that
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it is a halfway-house between Single-Link and Complete-Link. The chaining

problem is not observed for this method and outliers are not given any special

favor in the cluster decision, which makes this method very popular.

Wards method This method is distinct from all other methods because

it uses an analysis of variance approach to evaluate the distances between

clusters. In short, this method attempts to minimize the sum of squares of

any two (hypothetical) clusters that can be formed at each step. Generally,

this method is regarded as very efficient, however, it tends to create clusters

of small size.



Chapter 3

Density-Based Clustering

Many clustering algorithms have been proposed in recent years. This thesis

is especially based on the density-based clustering approach which turned

out to be one of the most effective and also efficient ones. The key concept of

density-based clustering is the observation that inside a cluster the density of

points is considerably higher than outside a cluster. Furthermore, different

clusters are separated by areas of noise, where the density is lower than inside

a cluster.

In this Chapter, an introduction to the density-based notion of clusters

is given. In particular, first, in Section 3.1 the notion of density-connectivity

underlying the algorithm DBSCAN (Density-Based Spatial Clustering of Ap-

plications with Noise) [EKSX96] is introduced. Then, in Section 3.2 its hi-

erarchical extension leading to the notion of hierarchical density-based clus-

tering as proposed in [ABKS99] which constitutes the central concept of the

algorithm OPTICS (Ordering Points To Identify the Clustering Structure)

is discussed.

3.1 Foundations of Density-Based Clustering

The key idea of density-based clustering is that for each object of a cluster the

neighborhood of a given radius ε has to contain at least a specified minimum

17
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number µ of objects, i.e., the cardinality of the neighborhood has to exceed

a given threshold. In the following, the basic definitions of density-based

clustering are presented.

Let D be a data set of objects. The distance function between the objects

of D is denoted by Dist. For any ε ∈ R+ the ε-neighborhood of an object

p ∈ DB is denoted by Nε(p). More formally:

Nε(p) = {o ∈ D|Dist(p, o) ≤ ε}.

Definition 3.1 (direct density-reachability).

Let ε ∈ R+, µ ∈ N+, µ ≤ |D|. An object p ∈ DB is directly density-reachable

from object q ∈ D w.r.t. ε and µ if |Nε(q)| ≥ µ ∧ p ∈ Nε(q).

If the first condition |Nε(q)| ≥ µ holds for an object q, q is called a core

point.

Definition 3.2 (density-reachability).

Let ε ∈ R+, µ ∈ N+, µ ≤ |D|. An object p ∈ DB is density-reachable from an

object q ∈ D w.r.t. ε and µ if there is a sequence of objects p1, . . . , pn, p1 =

q, pn = p such that pi+1 is directly density-reachable from pi.

Definition 3.3 (density-connectivity).

Let ε ∈ R+, µ ∈ N+, µ ≤ |D|. An object p ∈ DB is density-connected to

object q ∈ D w.r.t. ε and µ if there is an object o ∈ D such that both, p and

q, are density reachable from o.

Figure 3.1 illustrates the concepts of density-based clustering given above.

Intuitively, a density-based cluster is defined to be a set of density-connected

objects which is maximal w.r.t density-reachability. The objects in D not

belonging to any cluster are defined as noise. A cluster consists of core

objects inside the cluster and so-called border objects located at the border

of the cluster which do not fulfill the core object condition. These border

objects are directly density-reachable from at least one core object of the

cluster.

Using the previously described concepts, the algorithm DBSCAN (Density-

Based Spatial Clustering of Applications with Noise) as proposed in [EKSX96]
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Figure 3.1: Density-based clustering concepts (µ = 4).

computes a flat density-based decomposition w.r.t. the user-specified param-

eters ε and µ. DBSCAN is able to detect arbitrarily shaped clusters by one

single pass over the data. To do so, DBSCAN uses the fact, that a density-

connected cluster can be detected by finding one of its core points p and

computing all objects which are density-reachable from p (cf. Lemma 1 and

2 in [EKSX96]). The retrieval of density-reachable objects is performed by

iteratively collecting directly density-reachable objects. DBSCAN checks the

ε-neighborhood of each point p in the database. If Nε(p) of an object p con-

sists of at least µ objects, i.e., if p is a core object, a new cluster C containing

all objects of Nε(p) is created. Then, the ε-neighborhood of all points q ∈ C
which have not yet been processed is checked. If object q is also a core object,

the neighbors of q which are not already assigned to cluster C are added to

C and their ε-neighborhood is checked in the next step. This procedure is

repeated until no new point can be added to the current cluster C. Then the

algorithm continues with a point which has not yet been processed, trying

to expand a new cluster.

3.2 Hierarchical Density-Based Clustering

The algorithm OPTICS (Ordering Points To Identify the Clustering Struc-

ture) as proposed in [ABKS99] extends the density-connected clustering no-
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tion of DBSCAN by hierarchical concepts. In contrast to DBSCAN, OPTICS

does not assign cluster memberships but computes an ordering in which the

objects are processed and additionally generates the information which would

be used by an extended DBSCAN algorithm to assign cluster memberships.

This information consists of two values for each object, the core-distance

and the reachability-distance. In the following, the definitions underlying

the algorithm OPTICS are shortly introduced.

Let D be a data set of objects. The distance function between the objects

of D is denoted by Dist. For any ε ∈ R+ the ε-neighborhood of an object

p ∈ DB is denoted by Nε(p).

Definition 3.4 (core-distance).

Let ε ∈ R+, µ ∈ N+, µ ≤ |D| and µ−Dist(p) denote the distance from object

p ∈ D to its µ-nearest neighbor in D w.r.t. distance function Dist. The

core-distance of p w.r.t. ε and µ is defined as

CoreDistε,µ(p) =

{
∞ if |Nε(p)| < µ

µ−Dist(p) otherwise
.

Definition 3.5 (reachability-distance).

Let ε ∈ R+, µ ∈ N+, µ ≤ |D|. The reachability-distance of an object q ∈ D
w.r.t. ε and µ relative to an object p ∈ D is defined as

ReachDistε,µ(p, q) = max{CoreDistε,µ(p),Dist(p, q)}.

Figure 3.2 illustrates both concepts: The reachability-distance of object

p relative to object o equals the core-distance of o. The reachability distance

of object q relative to o is equal to the distance between q and o.

The result of OPTICS is an ordering of the objects, the so-called cluster

ordering of the data set w.r.t. the two input parameters ε and µ.

Definition 3.6 (cluster ordering).

Let ε ∈ R+, µ ∈ N+, µ ≤ |D|, and CO be a totally ordered permutation of the

objects in D. Each object p ∈ D has additional attributes p.Pos, p.Core,
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Figure 3.2: Illustration of core-distance and reachability distance for µ = 4.

and p.Reach, where p.Pos ∈ {1, . . . , |CO|} symbolizes the position of p in

CO. CO is called a cluster ordering w.r.t. ε and µ if the following conditions

hold:

1. ∀p ∈ CO : p.Core = CoreDistε,µ(p)

2. ∀p, q, r ∈ CO : p.Pos < q.Pos ∧ q.Pos < r.Pos

⇒ ReachDistε,µ(p, q) ≤ ReachDistε,µ(p, r)

3. ∀p, q ∈ CO : q.Reach = min{ReachDistε,µ(p, q)|p.Pos < q.Pos},
where min ∅ =∞

Intuitively, condition 2 states that the cluster ordering is built on selecting

at each position i in CO that object p having the minimum reachability-

distance to any object before p in CO. The attribute p.Core for any object

p ∈ D denotes the core-distance of p, whereas the attribute p.Reach is equal

to the reachability-distance assigned to object p during the generation of the

cluster ordering CO. The attribute p.Reach is also called the reachability

of object p.

The pseudocode of the algorithm OPTICS is depicted in Figures 3.3 and

3.4. It starts with an arbitrarily chosen object p ∈ D, assigns a reachability of
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algorithm OPTICS(Database D, Real ε, Integer µ)

initialize empty cluster order co;

initialize empty priority queue pq ordered by Dist;

for each p ∈ D do

if p 6∈ co do

p.Reach :=∞;

p.Core := CoreDistε,µ(p);

co.add(p);

if p.Core 6=∞ do

update(pq, p, ε, co);

while pq 6= ∅ do

q := pq.next();

q.Core := CoreDistε,µ(q);

co.add(q);

if q.Core 6=∞ do

update(pq, q, ε, co);

end if

end while

end if

end if

end for

return co;

end.

Figure 3.3: The OPTICS algorithm.

∞ to object p and expands the cluster order if the core-distance of p is smaller

than the specified ε-parameter. The expansion is worked out by inserting

each object q ∈ Nε(p) into a priority queue. The priority queue stores that

object first, having the minimum reachability to all already processed objects.

The heap structure is maintained by a procedure (cf. Figure 3.4) which

updates the reachability of the objects that are already in the priority queue
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procedure update(PriorityQueue pq, Object p, Real ε, ClusterOrder co)

for each q ∈ Nε(p) do

if q 6∈ co do

r := max{p.Core,Dist(p, q)};

if q ∈ pq do

if q.Reach > r do

q.Reach := r;

pq.decrease(q);

end if

else

q.Reach := r;

pq.add(q);

end if

end if

end for

end.

Figure 3.4: The procedure to update the priority queue.

if their according values decrease. The next object to be inserted in the

cluster ordering is always the first object of the priority queue. If the core

distance of this object is smaller or equal to ε, all points in the ε-neighborhood

are again inserted into or updated in the priority queue. If the priority queue

is empty and there are still some not yet processed points in D, another not

yet handled object in D is chosen to further expand the cluster ordering CO

as described above.

The cluster structure can be visualized by so-called 2-dimensional reach-

ability plots where the objects are plotted according to the sequence specified

in the cluster ordering along the x-axis, and for each object, its reachability

along the y-axis. Figure 3.5 (right) depicts the reachability plot based on the

cluster ordering computed by OPTICS for the sample 2-dimensional data set

in Figure 3.5 (left). Valleys in this plot indicate clusters: objects having a
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Figure 3.5: Reachability plot (right) computed by OPTICS for a sample

2-dimensional data set (left).

small reachability value are closer and thus more similar to their predecessor

objects than objects having a higher reachability value.

The reachability plot generated by OPTICS can be cut at any level ε′ par-

allel to the x-axis. It represents the density-based clusters according to the

density threshold ε′: A consecutive subsequence of objects having a smaller

reachability value than ε′ belongs to the same cluster. An example is pre-

sented in Figure 3.5: For a cut at the level ε1, two clusters A and B can be

found. Compared to this clustering, a cut at level ε2 would yield three clus-

ters. The cluster A is split into two smaller clusters denoted by A1 and A2

and cluster B decreased its size. This illustrates, how the hierarchical cluster

structure of a database is revealed at a glance and can be easily explored by

visual inspection.



Part II

Hierarchical Axis-Parallel

Subspace Clustering
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Chapter 4

Introduction

The well-known curse of dimensionality usually limits the applicability of

traditional clustering algorithms to high-dimensional feature spaces because

different sets of features are relevant for different (subspace) clusters. To

detect such lower dimensional axis-parallel subspace clusters, the task of

subspace clustering (or projected clustering) has been defined recently. Sub-

space clustering can be seen as an extension of traditional clustering which

aims at automatically identifying lower dimensional axis-parallel subspaces

of the feature space in which clusters exist. For the sake of brevity, an axis-

parallel subspace cluster is shortly called subspace cluster in the following. A

subspace cluster that is associated to a λ-dimensional projection/subspace,

i.e., that it is spanned by λ attributes, is called a λ-dimensional subspace

cluster. The dimensionality of a subspace associated to a subspace cluster is

called subspace dimensionality.

Subspace clustering algorithms can be classified by the type of results they

produce. The first class of algorithms allows overlapping clusters, i.e., one

point may belong to different clusters in different projections. The second

class of subspace clustering algorithms generates non-overlapping clusters

and assigns each object to a unique cluster or noise. Please refer to Chapter

5 for a detailed discussion on both types of existing subspace clustering ap-

proaches. Algorithms that allow an overlap usually produce a vast amount

of clusters which is hard to interpret. Thus, in the following discussion only

27



28 4 Introduction

2D cluster

1D clusters embedded
within a 2D cluster

x

x
x

x

x
x

x

x
x
x

x x
x x

x
xx

xx

xx

x

x

x

Figure 4.1: Hierarchically nested subspace clusters.

algorithms that generate non-overlapping clusters are considered.

The existing algorithms for non-overlapping subspace clustering - as men-

tioned in Chapter 5 - usually have one severe limitation in common. These

algorithms will miss important information about the clustering structure

in case of hierarchically nested subspace clusters, i.e., if several subspace

clusters of low dimensionality may together form a larger subspace cluster

of higher dimensionality. For example, consider two axis-parallel lines in a

3-dimensional space that are embedded into an axis-parallel 2-dimensional

plane (cf. Figure 4.1). Each of the two lines forms a 1-dimensional subspace

cluster. On the other hand, the plane is a 2-dimensional subspace cluster

that includes the two 1-dimensional subspace clusters. In order to detect the

lines, a search for 1-dimensional subspace clusters has to be applied, whereas

in order to detect the plane, a search for 2-dimensional subspace clusters has

to be performed. Moreover, searching subspace clusters of different dimen-

sionality is basically a hierarchical problem, because the information that a

point belongs to some k-dimensional subspace cluster that is itself embedded

into an l-dimensional subspace cluster (k < l) can only be uncovered by using

a hierarchical approach. None of the previously proposed algorithms for sub-

space clustering is able to detect such hierarchies of nested subspace clusters.
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Figure 4.2: Hierarchies of subspace clusters with multiple inclusion.

A related problem of many existing approaches is that the dimensionality of

the subspace clusters needs to be specified in advance. However, if the di-

mensionalities of the subspace clusters vary significantly, these methods will

most likely miss important clusters.

A second limitation of some approaches for non-overlapping subspace

clustering is the use of a clustering model that relies on a global density

threshold. The usage of a global density threshold that all clusters must

exceed is rather inapplicable since higher dimensional subspace clusters will

most likely be less dense than lower dimensional subspace clusters. In ad-

dition, different clusters in one single subspace may exhibit significantly dif-

ferent densities. To discover clusters of different densities, a hierarchical

approach has to be applied.

A third limitation derives from the fact that subspace clusters may be

hierarchically nested exhibiting multiple inclusions. For instance, a subspace

cluster of low dimensionality may be embedded within several larger sub-

space clusters of higher dimensionality. None of the existing algorithms is

able to detect such important complex hierarchical relationships among the

subspace clusters. An example of such a hierarchy is depicted in Figure 4.2

(left). Two 1-dimensional (1D) cluster (C and D) are embedded within one

2-dimensional (2D) cluster (B). In addition, cluster C is embedded within

both 2-dimensional clusters A and B. Detecting such relationships of sub-
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space clusters is obviously a hierarchical problem. The resulting hierarchy is

different from the result of a conventional hierarchical clustering algorithm,

e.g., a dendrogram. In a dendrogram, each object is placed in a singleton

cluster at the leaf level, whereas the root node represents the cluster consist-

ing of the entire data set. Any inner node n represents the cluster consisting

of the points located in the subtree of n. Dendrograms are limited to sin-

gle inclusion, i.e., a lower dimensional cluster can only be the child cluster

of one higher dimensional cluster. However, hierarchies of subspace clusters

may exhibit multiple inclusions, e.g., cluster C in Figure 4.2 is a child of

cluster A and B. The concept of multiple inclusions is similar to that of

“multiple inheritance” in software engineering. To visualize such more com-

plex relationships among subspace clusters, graph representations are needed

rather than tree representations. An appropriate visualization model to vi-

sualize the complex hierarchies, the so-called subspace clustering graph, will

be proposed in Chapter 7. The subspace clustering graph consists of nodes

at different levels (cf. Figure 4.2 (right)). These levels represent the dimen-

sionality λ of the subspace in which the cluster is found. For instance, the

level of subspace cluster A in the graph of Figure 4.2 is two, because A forms

a 2-dimensional subspace cluster. Each object p is assigned to a unique node

in the graph, representing the lowest dimensional subspace cluster in which

p is placed. In addition, an edge between a k-dimensional cluster C and an

l-dimensional cluster B, where l > k, such as in Figure 4.2, indicates that all

points of cluster C are also members of cluster B.

In this Part, two new hierarchical approaches for subspace clustering are

proposed. First, Chapter 5 surveys related work in the area of axis-parallel

subspace clustering. Then, Chapter 6 introduces the algorithm HiSC (Hi-

erarchical Subspace Clustering) which overcomes the first two limitations of

the state-of-the-art subspace clustering approaches mentioned above. HiSC

is a new algorithm that applies a hierarchical approach to subspace clustering

and searches simultaneously for subspace clusters of arbitrary dimensional-

ity detecting hierarchies of subspace clusters. HiSC follows the Single-Link

approach and does not require the user to specify critical parameters such as

a global density threshold for the points within a cluster or the dimension-
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ality of the subspace clusters which has been limiting the quality of several

previously proposed subspace clustering algorithms.

In Chapter 7 the algorithm DiSH (Detecting Subspace cluster Hierar-

chies) is proposed which includes all advantages of HiSC, and furthermore,

can cope adequately with the third restriction of existing subspace clustering

approaches mentioned before. DiSH improves in the following aspects over

the state-of-the-art subspace clustering approaches: First, DiSH uncovers

complex hierarchies of nested subspace clusters including multiple inclusions.

Second, DiSH can detect clusters in subspaces of significant different dimen-

sionality. Third, DiSH is able to detect clusters of different size, shape, and

density. Besides, a new visualization method, the so-called subspace cluster-

ing graph is proposed to visualize the resulting complex hierarchies by means

of an appropriate visualization model. Utilizing this visualization method,

the relationships between the subspace clusters can be explored at a glance.
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Chapter 5

Related Work

Subspace clustering algorithms can be distinguished by the type of results

they produce. One class of algorithms aims at finding all clusters in all sub-

spaces of the feature space producing overlapping clusters, i.e., one point may

belong to different subspace clusters in different subspaces. Prominent exam-

ples of such algorithms include e.g. CLIQUE [AGGR98], ENCLUS [CFZ99],

MAFIA [GNC99], SUBCLU [KKK04], and FIRES [KKRW05]. These algo-

rithms are discussed in Section 5.1. The second class of subspace clustering

algorithms, such as PROCLUS [APW+99], DOC [PJAM02], and PreDeCon

[BKKK04], focus on finding non-overlapping subspace clusters. These meth-

ods assign each point to a unique subspace cluster or noise and are reviewed in

Section 5.2. Please note that none of the existing approaches to axis-parallel

subspace clustering can detect hierarchies of nested subspace clusters.

5.1 Overlapping Algorithms

CLIQUE (CLustering In QUEst) [AGGR98] is one the first approaches to

subspace clustering. CLIQUE is a grid-based algorithm using an Apriori-like

method to recursively navigate through the set of possible subspaces in a

bottom-up way. The data space is first partitioned by an axis-parallel grid

into equi-sized blocks of width ξ called units. Only units whose densities
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exceed a threshold τ are retained. Both ξ and τ are the input parameters of

CLIQUE. The bottom-up approach of finding such dense units starts with

1- dimensional dense units. The recursive step from (k − 1)-dimensional

dense units to k-dimensional dense units takes (k − 1)-dimensional dense

units as candidates and generates the k-dimensional units by self-joining all

candidates having the first (k − 2) dimensions in common. All generated

candidates which are not dense are eliminated. For efficiency reasons, a

pruning criterion called coverage is introduced to eliminate dense units lying

in less “interesting” subspaces as soon as possible. For deciding whether a

subspaces is interesting or not, the Minimum Description Length principle

is used. Naturally this pruning bears the risk of missing some information.

After generating all “interesting” dense units, clusters are found as a maximal

set of connected dense units. For each k-dimensional subspace, CLIQUE

takes all dense units of this subspace and computes disjoint sets of connected

k-dimensional units. These sets are in a second step used to generate minimal

cluster descriptions. This is done by covering each set of connected dense

units with maximal regions and then determining the minimal cover.

ENCLUS (ENtropy-based CLUStering) [CFZ99] is a slight modification of

CLIQUE. The major difference is the criterion used for subspace selection.

The criterion of ENCLUS is based on entropy computation of a discrete

random variable. The entropy of any subspace S is high when the points are

uniformly distributed in S whereas it is lower the more closely the points in

S are packed. Subspaces with an entropy below an input threshold ω are

considered as good for clustering. A monotonicity criterion is presented to

be used for a similar bottom-up algorithm as in CLIQUE.

MAFIA (Merging of Adaptive Finite IntervAls) [GNC99] is a more signif-

icant modification of CLIQUE. MAFIA uses adaptive, variable-sized grids in

each dimension. A dedicated technique based on histograms which aims at

merging grid cells is used to reduce the number of bins compared to CLIQUE.

An input parameter α is used as a so-called cluster dominance factor to select

bins which are α-times more densely populated (relative to their volume)



5.1 Overlapping Algorithms 35

than the average. The algorithm starts to produce such one-dimensional

dense units as candidates and proceeds recursively to higher dimensions. In

contrast to CLIQUE, MAFIA uses any two k-dimensional dense units to

construct a new (k+ 1)-dimensional candidate as soon as they share an arbi-

trary (k− 1)-face (not only first dimensions). As a consequence, the number

of generated candidates is much larger compared to CLIQUE. Neighboring

dense units are merged to form clusters. Redundant clusters, i.e. clusters

that are true subsets of higher dimensional clusters, are removed.

SUBCLU (density-connected SUBspace CLUstering) [KKK04] overcomes

the limitations of grid-based approaches like the dependence on the posi-

tioning of the grids. Instead of using grids the DBSCAN [EKSX96] cluster

model of density-connected sets is used (cf. Chapter 3 for details on DB-

SCAN). SUBCLU is based on a bottom-up, greedy algorithm to detect the

density-connected clusters in all subspaces of high-dimensional data. The

algorithm starts with generating all 1-dimensional clusters w.r.t. the input

parameters ε and µ by applying DBSCAN to each 1-dimensional subspace.

Then, for each k-dimensional cluster it has to be checked iteratively if it is

still existent in one ore more (k + 1)-dimensional subspaces. For this pur-

pose, all pairs of k-dimensional cluster having (k − 1) attributes in common

are joined together to generate (k + 1)-dimensional candidate subspaces. In

the last step of the iteration the (k + 1)-dimensional clusters are generated

by applying DBSCAN to each cluster of one k-dimensional subspace of each

(k + 1)-dimensional candidate subspace. These steps are recursively exe-

cuted as long as the set of k-dimensional subspaces containing clusters is not

empty. Compared to the grid-based approaches SUBCLU achieves a better

clustering quality but requires a higher runtime.

FIRES (FIlter REfinement Subspace clustering) [KKRW05] is a a general

framework for efficient subspace clustering. It is generic in such a way that

it works with all kinds of clustering notions. FIRES consists of the follow-

ing three steps: preclustering, generation of subspace cluster approximations,

and postprocessing. First, in the preclustering step, all 1-dimensional clusters
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called base-clusters are computed. This is similar to existing subspace clus-

tering approaches and can be done using any clustering algorithm of choice.

In a second step, the base-clusters are merged to find maximal-dimensional

subspace cluster approximations. However, they are note merged in an Apri-

ori style but by using an algorithm that scales at most quadratic w.r.t. the

number of dimensions. As a last step, a postprocessing step can be applied

to refine the cluster approximations retrieved after the second step.

5.2 Non-Overlapping Algorithms

PROCLUS (PROjected CLUStering) [APW+99] is a k-means like ap-

proach to subspace clustering assigning each point to one of k clusters. The

number of clusters k and the average subspace dimension l are input pa-

rameters. PROCLUS proceeds in three phases: initialization, iteration, and

cluster refinement. The initialization phase uses a greedy technique to select

a set of potential medoids, such that each cluster is represented by at least

one medoid. The iterative phase start with selecting k medoids as cluster

representatives from the super set found in the initialization phase. Then

iteratively the quality of clustering is improved by replacing bad medoids

with randomly chosen new medoids. The quality of clustering is based on

the average distances of the objects to their nearest medoids. The subspace

of each cluster is found by examining the objects in the full-dimensional

neighborhood of its medoid and computing some statistics. These statistics

determine the relevant dimensions of the subspace of the cluster. The as-

signment of objects to the clusters is then based on the so-called Manhattan

segmental distances relative to the assigned sets of dimensions. Finally, a

cluster refinement is performed by computing new subspaces for each cluster

and reassigning the objects to the clusters. PROCLUS suffers from the well-

known problems of locally optimizing clustering methods and requires the

user to specify the number k of clusters and the average dimensionality l of

the subspaces of the clusters in advance. Since l is a rather sensitive param-

eter, PROCLUS usually has problems with subspace clusters of significantly

different dimensionality. However, using a small number of representatives
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can cause PROCLUS to entirely miss some clusters. Thus, the cluster quality

of PROCLUS is very sensitive to the chosen input parameters, which may

be difficult to determine.

DOC (Density-based Optimal Projective Clustering) [PJAM02] proposes

a mathematical definition of an “optimal projective cluster” along with a

Monte Carlo algorithm to compute approximations of such optimal projective

clusters. A projective cluster is defined as a pair (C,D) where C is a subset of

the data set and D is a subset of the dimensions of the data space. Using the

user specified input parameters ω and α, an optimal projective cluster (C,D)

is given if C contains more than α% of the data set and the projection of C

into the subspace spanned by D must be contained in a hyper-cube of width ω

whereas in all other dimensions d /∈ D the points in C are not contained in a

hyper-cube of width ω. Another parameter β has to be specified that defines

the balance between the number of points in C and the number of dimensions

in D. The proposed algorithm DOC only finds approximations because it

generates projected clusters of width 2ω. In addition, no assumption on

the distribution of points inside such a hyper-cube is made. The reported

projected clusters may contain additional noise objects (especially when the

size of the projected cluster is considerably smaller than 2ω) and/or may

miss some points that naturally belong to the projected cluster (especially

when the size of the projected cluster is considerably larger than 2ω).

PreDeCon (subspace PREference weighted DEnsity CONnected cluster-

ing) [BKKK04] expands the density-based clustering notion of DBSCAN

[EKSX96] to subspace clustering. PreDeCon builds for each point p a so-

called subspace preference vector which reflects the variance of the points in

the ε-neighborhood of p along each attribute. During the run of PreDeCon

all points are either assigned to a certain cluster or marked as noise. For

each point which is not yet classified, PreDeCon checks whether this point

is a so-called preference weighted core point. Otherwise the point is marked

as noise. To find a new cluster, PreDeCon starts with an arbitrary prefer-

ence weighted core point p and adds all points that are preference weighted
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reachable from p to the current cluster. Then the algorithm continues with

a point which has not yet been processed trying to expand a new cluster.

PreDeCon has four input parameters, two density parameters ε and µ and

two preference parameters λ and δ. The parameters ε and µ define a global

density threshold by means of a radius ε and a minimum number of points µ

in a region. The input parameter λ specifies the maximum subspace cluster

dimensionality to be found, and parameter δ specifies the upper bound for

the variance in an attribute. In fact, the dimensionality of the subspace clus-

ters produced by PreDeCon are strongly biased towards λ. Thus, PreDeCon

has problems with subspace clusters of significantly different dimensionality.



Chapter 6

HiSC: Finding Hierarchies of

Subspace Clusters

Many traditional clustering algorithms are not applicable to high-dimensional

feature spaces, because the clusters often exist only in specific subspaces

of the original feature space. To cope with this problem, many subspace

clustering algorithms have been proposed in recent years, which all aim at

finding clusters in different subspaces within a data set. In this Chapter

a new hierarchical subspace clustering algorithm, called HiSC (Hierarchical

Subspace Clustering) is proposed that overcomes the following limitations of

existing approaches:

1. HiSC can detect clusters in subspaces of significantly different dimen-

sionality.

2. HiSC uncovers hierarchies of nested subspace clusters, i.e., the relation-

ships of lower dimensional subspace clusters that are embedded within

higher dimensional subspace clusters.

3. HiSC does not rely on a global clustering criterion.

4. The choice of parameters is considerably simplified compared to previ-

ous methods.

39
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The rest of this Chapter is organized as follows. Section 6.1 contains

the basic definitions for the main concepts of HiSC Section 6.2 provides the

details of the new HiSC algorithm. The choice and impact of the input

parameters are discussed in Section 6.3. Section 6.4 examines the runtime

complexity of HiSC. Several comparative experiments, using synthetic and

real-world data sets, show the performance and the effectivity of HiSC in Sec-

tion 6.5. Parts of the material presented in this Chapter have been published

in [ABK+06a].

6.1 Basic Definitions

Let D be a data set of n normalized feature vectors of dimensionality d

(D ⊆ Rd). Let A = {A1, . . . , Ad} be the set of all attributes Ai of D. Any

subset S ⊆ A is called a subspace. The projection of an object p ∈ D into

a subspace S ⊆ A is denoted by πS(p). The distance function between the

feature vectors of D is denoted by Dist. It is assumed that Dist is one of the

Lp-norms. The k-nearest neighbors of an object p ∈ DB for any k ∈ NN+

are denoted by NNk(p). More formally, the set of k-nearest neighbors of an

object op is the smallest set NNk(p) ⊆ D that contains at least k objects

from D such that

∀o ∈ NNk(p),∀o′ ∈ D − NNk(p) : Dist(p, o) < Dist(p, o′).

In general, hierarchical clustering methods are able to find hierarchies of

clusters which are nested into each other, i.e., weaker clusters in which some

stronger clusters are contained. The hierarchical density-based clustering

method OPTICS [ABKS99], for example, is able to detect clusters of higher

density which are nested in clusters of lower but still high density. Adapting

these ideas to subspace clustering, the user is interested in detecting subspace

clusters of lower dimensionality which are contained in subspace clusters of

higher dimensionality. The general idea is to evaluate whether two points

are contained in a common subspace cluster. For example, two points that

belong to two different 1-dimensional subspace cluster may also be contained
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together in a 2-dimensional cluster that consists of the two 1-dimensional

projections. This verification is performed with a special distance measure

called subspace distance which is introduced in Section 6.2. This distance

results in a small value whenever two points are in a common low-dimensional

subspace cluster, whereas the subspace distance is high if both points are in

a common high-dimensional subspace cluster or are not in a subspace cluster

at all. Therefore, the strategy is to merge those points into common clusters

which have small subspace distances. A hierarchy of subspace clusters means

that clusters containing objects having small subspace distances are nested

in clusters containing objects having higher subspace distances to each other.

In order to define the already mentioned subspace distance, a local sub-

space dimensionality is assigned to each point of the data set in a prepro-

cessing step. The local subspace dimensionality of a point represents the

subspace preference of its local neighborhood, i.e., it reflects those attributes

having a small variance in the local neighborhood of the point. Since a hi-

erarchical approach is followed, the definition of the local neighborhood of a

point does not rely on range queries as proposed in previous approaches such

as in [BKKK04]. Rather, the k-nearest neighbors are used as local neighbor-

hood of a point p, denoted by NNk(p), to determine the variance in the local

neighborhood of p.

Definition 6.1 (variance of the local neighborhood of a point).

The variance of the local neighborhood of a point p ∈ D from p along an

attribute Ai ∈ A, denoted by VarAi(NNk(p)), is defined as follows:

VarAi(NNk(p)) =

∑
q∈NNk(p)

(
π{Ai}(q)− π{Ai}(p)

)2

|NNk(p)|
.

Intuitively, the local subspace dimensionality is the number of attributes

with high variance within the local neighborhood. Similar to [BKKK04], a lo-

cal subspace preference vector is assigned to each point, indicating attributes

with high and low variance within their local neighborhood.

Definition 6.2 (local subspace preference vector of a point).

Let α ∈ R be a threshold value. The local subspace preference vector of a
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Figure 6.1: Visualization of the local subspace dimensionality of a point.

point p ∈ D, denoted by wp = (w1
p, . . . , w

d
p)

T, is defined as

wip =

{
0 if VarAi(NNk(p)) > α

1 if VarAi(NNk(p)) ≤ α
for i = 1, . . . , d.

The local subspace dimensionality of a point can now be defined as fol-

lows.

Definition 6.3 (local subspace dimensionality of a point).

The local subspace dimensionality λp of a point p ∈ D is the number of

zero-values in the local subspace preference vector of p, wp, formally:

λp =
d∑
i=1

{
1 if wip = 0

0 if wip = 1
.

An example is visualized in Figure 6.1. The 9-nearest neighbors of the

3-dimensional point p exhibit a 1-dimensional subspace cluster spanned by

the attribute A3, i.e., the variance of the local neighborhood of p has a high

value along attribute A3, whereas it has a low value along attributes A1 and

A2. Consequently, wp = (1, 1, 0)T and λp = 1.
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6.2 Algorithm HiSC

Once the points of the data set have been associated to a local subspace di-

mensionality and to a local subspace preference vector, the main concept of

the hierarchical subspace clustering algorithm HiSC can be explained. Con-

ventional hierarchical clustering algorithms like SLINK [Sib73] or OPTICS

[ABKS99] work as follows: They keep two separate sets of points. The first

set contains points which were already placed in the cluster structure and

the second set consists of points which have not been processed already. In

each step, one point of the latter set is selected and placed in the first set.

The algorithm always selects that point which minimizes the distance to any

of the points in the first set. By this selection strategy, the algorithm tries to

extend the current cluster hierarchy as close to the bottom of the hierarchy

as possible.

This paradigm will be adapted to the context of hierarchical subspace

clustering where the hierarchy is a containment hierarchy of the subspaces.

Two or more 1-dimensional subspace clusters may together form a 2-dimensio-

nal subspace cluster and so on. This behavior will be simulated by defining

a similarity measure between two points which assigns a distance of 1, if

these two points share a common 1-dimensional subspace cluster. If they

share a common 2-dimensional subspace cluster, they have a distance of 2,

etc. Sharing a common subspace cluster may imply different consequences:

Both points may be associated to the same 2-dimensional subspace cluster,

or both points may be associated to different 1-dimensional subspace clusters

that intersect at some point or are parallel (but not skew).

If a distance measure with the properties mentioned before is assigned

to a pair of points, the well-known hierarchical clustering algorithms can

be used in general. Intuitively, the distance measure between two points

corresponds to the dimensionality of the data space which is spanned by the

attributes of high variance of the neighborhoods of the two points. Firstly,

a definition of the local subspace dimensionality of a pair of points λ(p, q)

which follows the intuition of the spanned subspace is given. Secondly, the

subspace distance measure based on these concepts will be defined. In fact,
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the subspace dimensionality is the most important component of the distance

measure.

Definition 6.4 (local subspace preference vector of a pair of points).

The local subspace preference vector w(p, q) = (w1(p, q), . . . , wd(p, q)) of a

pair of points p, q ∈ D, representing the attributes with low and high variance

of the combined subspace is the attribute wise AND-conjunction of the local

subspace preference vector wp of p and the local subspace preference vector

wq of q, formally:

wi(p, q) =

{
1 if wip = 1 ∧ wiq = 1

0 else
for i = 1, . . . , d.

The local subspace dimensionality of a pair of points can now be defined

as follows:

Definition 6.5 (local subspace dimensionality of a pair of points).

The local subspace dimensionality between two points p, q ∈ D, denoted by

λ(p, q), is the number of zero-values in the local subspace preference vector of

p and q, w(p, q), formally:

λ(p, q) =
d∑
i=1

{
1 if wi(p, q) = 0

0 if wi(p, q) = 1
.

An example is visualized in Figure 6.2. The upper figure shows on the

left hand side a 3-dimensional data space with three 1-dimensional subspace

clusters, one of them embedded in a fourth 2-dimensional subspace cluster.

The subspace dimension of point p1 which is a member of the 2-dimensional

subspace cluster is λp1 = 2, whereas the subspace dimensionality of the other

five highlighted points p2, . . . , p6 is 1. The combined subspace dimensionali-

ties are depicted in the lower figure on the left hand side.

A first approach defines the subspace distance between two points p and

q as the local subspace dimensionality λ(p, q). A slight extension for points

that have the same local subspace preference vector, but do not belong to

the same subspace cluster is needed. For example, in Figure 6.2, the points
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Figure 6.2: Visualization of the subspace dimensionality and subspace dis-

tance of pairs of points.

p2 and p3 will have the same preference vector and therefore, have a com-

mon subspace dimensionality of 1, indicating that they are in a common

1-dimensional subspace cluster. Obviously, this is not the case. Though the

two 1-dimensional subspace clusters the points belong to are in parallel pro-

jections, the two clusters span together a 2-dimensional subspace because

they are considerably far apart along at least one attribute of low variance.

On the other hand, the subspace clusters of points p3 and p5 span together

a 1-dimensional subspace because they are (though considerably far apart
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along the attribute of high variance) compactly located along the attributes

with low variance.

In order to formalize these intuitions, the distance between the points

along the attributes of low variance has to be checked. If this distance, which

can be evaluated by a simple weighted Euclidean distance using the common

preference vector of p and q as weighting vector, exceeds α, the points or cor-

responding clusters do not belong to the same cluster but belong to different

parallel clusters. The threshold value α, which indicates attributes with low

and high variance within their local neighborhood in Definition 6.2, controls

also the degree of jitter of the subspace clusters.

As λ(p, q) ∈ N, many distances between different point pairs are identical.

Therefore, there are many tie situations during clustering. These tie situa-

tions are resolved by additionally considering the Euclidean distance within

a subspace cluster as a secondary criterion. This means, inside a subspace

cluster (if there are no nested lower dimensional subspace clusters), the points

are clustered in the same way as using a conventional hierarchical cluster-

ing method. The Euclidean distance between p and q hereby is weighted

by the inverse of the combined preference vector w(p, q), as given in Defini-

tion 6.4. The inverse of the combined preference vector w(p, q), denoted by

w̄(p, q) = (w̄1(p, q), . . . , w̄d(p, q)), is defined as

w̄i(p, q) =

{
0 if wi(p, q) = 1

1 if wi(p, q) = 0
for i = 1, . . . , d.

This inverse subspace preference vector w̄(p, q) weights the distance along

attributes spanning the cluster with 1, the distance along any other attribute

is weighted with 0. Formally:

Definition 6.6 (subspace distance).

Let v = (v1, . . . , vd)T be a d-dimensional vector, and

Distv(p, q) =

√√√√ d∑
i=1

vi(π{Ai}(p)− π{Ai}(q))2

be the weighted Euclidean distance w.r.t. v between two points p, q ∈ D. The
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subspace distance between p and q, denoted by SDist(p, q) = (d1, d2), is a

pair consisting of the following two values:

d1 = λ(p, q) +

{
1 if Distw(p,q)(p, q) > α

0 else,

d2 = Distw̄(p,q)(p, q).

SDist(p, q) ≤ SDist(r, s) if one of the following conditions hold:

1. SDist(p, q).d1 < SDist(r, s).d1

2. SDist(p, q).d1 = SDist(r, s).d1 and SDist(p, q).d2 ≤ SDist(r, s).d2

As discussed above, d1 corresponds to the local subspace dimensional-

ity of p and q, taking special care in case of parallel clusters. The value

d2 corresponds to the weighted Euclidean distance between p and q, where

the inverse of the combined preference vector is used, w̄(p, q), as weighting

vector. An example can be seen in Figure 6.2, where the values of d1 of

the corresponding subspace distances between the points are depicted in the

lower figure on the right hand side.

Using the subspace distance defined above as a distance measure, basi-

cally every hierarchical or even non-hierarchical clustering algorithm which

is based on distance comparisons can be applied. Examples for such al-

gorithms are Single-Link [Sib73] and its variant Complete-Link [Def77], and

the density-based clustering methods DBSCAN [EKSX96] (non-hierarchical)

and OPTICS [ABKS99].

HiSC follows a Single-Link based approach and selects in each step of

the algorithm that point p having the minimum subspace distance to any

already processed point. For that purpose, each object p has an additional

attribute p.MinSDist that holds the minimum subspace distance to any

object processed before p. The main data structure is a priority queue orga-

nized as a heap which stores all points according to their minimum subspace

distances in ascending order. Initially, all points of the data set are added
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algorithm HiSC(Database D, Integer k, Real α)

initialize empty subspace cluster order co;

initialize empty priority queue pq ordered by MinSDist;

for each p ∈ D do

compute wp w.r.t. parameters k and α;

p.MinSDist = ∞;

pq.insert(p);

end for

while pq 6= ∅ do

p := pq.next();

co.add(p);

for each q ∈ pq do

if SDist(p, q) < q.MinSDist then

q.MinSDist := SDist(p, q);

pq.decrease(q);

end if

end for

end while

return co;

end.

Figure 6.3: The HiSC algorithm.

to the priority queue with a minimum subspace distance of ∞ and the lo-

cal subspace preference vector of each point is computed. The next point p

to be processed is always the first object in the priority queue. Then, the

minimum subspace distances of objects q which are still remaining in the

priority queue are updated if their according values decrease. In this way, a

special order of the data set according to its subspace-based clustering struc-

ture is generated, the so-called subspace cluster order. Using a visualization

technique similar to that of OPTICS [ABKS99], the subspace cluster order
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can be displayed in a subspace distance diagram. Such a subspace distance

diagram consists of the subspace distance values on the y-axis of all points,

plotted in the order which HiSC produces on the x-axis. The result is a vi-

sualization of the subspace clustering structure of the data set which is very

easy to comprehend and interpret. The “valleys” in the plot represent the

subspace clusters, since points within a subspace cluster typically have lower

subspace distances than points outside of a subspace cluster. The complete

integration of the subspace distance measure into the algorithm HiSC can be

seen in Figure 6.3.

6.3 Input Parameters

HiSC has two input parameters. First, the parameter k specifies the locality

of the neighborhood from which the local subspace dimensionality of each

point is determined. Obviously, this parameter is rather critical because

if it is chosen too large, the local subspace preference may be blurred by

noise points, whereas if it is chosen too small, there may not be a clear sub-

space preference observable, although existing. However, in the experiments,

choosing k in the range between 10 and 20 turned out to produce very stable

and robust results.

Second, the parameter α is important for specifying the attributes with

low and high variance within their local neighborhood and therefore, α af-

fects the computation of the local subspace dimensionality of each point. In

fact, attributes where the variance of the k-nearest neighbors of a point is

below α are relevant for the subspace preference of the point. In the exper-

iments, it turned out that HiSC is quite robust against the choice of α as

long as α is chosen between 0.1% and 0.5% of the attribute range, i.e., the

maximum attribute value. However, if subspace clusters having a lot of jitter

are expected, α can be increased accordingly.
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6.4 Runtime Complexity

Let n be the number of data points and d be the dimensionality of the

data space. In the first loop the local subspace dimensionalities and local

preference vectors are precomputed which requires the determination of the

k-nearest neighbors of each object. Assuming a suitable spatial index struc-

ture, this can be done in O(log n · d) time. Since this step is done for each

object in the data set, the runtime complexity for the preprocessing step

results in O(n · log n · d) if a spatial access method to support k-nearest

neighbor queries exists. If no such spatial index is at hand, the complexity

of the preprocessing step is O(n2 · d).

During the run of HiSC, for each point p of the data set its subspace

distance to all remaining points q in the priority queue has to be evaluated.

This requires first the determination of the subspace dimensionality of p and

q in form of a simple logical AND-conjunction on the subspace preference

vectors of p and q which has a complexity of O(d). Secondly, the weighted

distance between p and q has to be computed, which also can be done in

O(d). Thus, the complexity of the main loop of HiSC yields in O(n2 · d)

time.

Overall, the complete runtime complexity of HiSC results in O(n2 · d).

6.5 Experimental Evaluation

All experiments have been performed on a workstation with a 2 · 64-bit 2.6

GHz CPU and 16 GB main memory. All evaluated methods have been imple-

mented in Java. In all experiments, the input parameters of all methods have

been optimized in terms of quality and the best results have been reported

in order to achieve a fair comparison.
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Figure 6.4: Data set “DS1”.

6.5.1 Effectivity

Synthetic Data Sets. First, HiSC has been evaluated on several synthetic

data sets. Exemplary, the results on two data sets named “DS1” and “DS2”

are shown. The synthetic data sets contain 3- and 20-dimensional objects

grouped in hierarchical subspace clusters and additional noise points. The

attribute values of all synthetic data sets are in the range of 0.0 to 100.0.

Data set “DS1” (cf. Figure 6.4) contains 3-dimensional points grouped

in three hierarchical subspace clusters and noise. Two 1-dimensional sub-

space clusters (cluster 1.1 and cluster 1.2) are both embedded within a 2-

dimensional subspace cluster (cluster 1). The subspace distance diagram

produced by HiSC applied to “DS1” with parameter setting α = 0.0001 and

k = 11 is depicted in Figure 6.5. As it can be seen, the complete hierarchical

clustering structure can be obtained from the resulting reachability plot. In

particular, the nested clustering structure of the two 1-dimensional subspace

clusters embedded within the 2-dimensional subspace cluster can be seen at

first glance.

For comparison, PreDeCon and PROCLUS have also been applied to

data set “DS1”. As expected, PreDeCon can either detect the 1-dimensional

subspace cluster or the 2-dimensional subspace clusters, but not both in one

single run. The results of PreDeCon with different settings for parameter λ,
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cluster 1.1 cluster 1.2

cluster 1 noise

Figure 6.5: Result of HiSC on “DS1”.

which determines the subspace dimensionality of the clusters to be found, are

depicted in Figure 6.6. The left Figure 6.6(a) shows the two 1-dimensional

subspace clusters found by PreDeCon with parameter setting ε = 0.1, µ =

20, λ = 1, δ = 0.001. In this run, the 2-dimensional plane was classified as

noise. In the right Figure 6.6(b) the 2-dimensional subspace cluster detected

by PreDeCon with parameter setting ε = 0.25, µ = 20, λ = 2, δ = 0.001

is depicted. This cluster includes the two 1-dimensional subspace clusters,

thus in both runs PreDeCon was not able to detect the hierarchies and all

subspace clusters in “DS1”. As it can be seen in Figure 6.7, PROCLUS

(k = 3, l = 3) failed completely in finding the subspace clusters in “DS1”.

Data set “DS2” is a 20-dimensional data set containing three subspace

clusters of significantly different dimensionality and noise: subspace cluster

1 is a 15-dimensional subspace cluster, subspace cluster 2 is 10-dimensional,

and subspace cluster 3 is a 5-dimensional subspace cluster. The resulting sub-

space distance diagram produced by HiSC on “DS2” (α = 0.00001, k = 60)

is shown in Figure 6.8. HiSC has no problems detecting the three subspace

clusters of considerably different dimensionality. The clusters can again be

visually explored at first glance. Again, PreDeCon and PROCLUS have

also been applied to data sets “DS2”. Like in the first experiment, both

algorithms failed to detect the hierarchies and all subspace clusters of signif-

icantly different dimensionality.
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cluster 2

cluster 1

(a) Result of PreDeCon with λ = 1.

cluster 1

(b) Result of PreDeCon with λ = 2.

Figure 6.6: Results of PreDeCon with different λ-parameter settings on

“DS1”.

Real-world Data Set. HiSC has been applied to a real-world data set

named “Metabolome”, containing metabolic screening data of 2,000 new-

borns. For each newborn, the blood-concentration of 43 different metabolites

were measured. Thus, the data set is 43-dimensional containing 2,000 objects.

The newborns are labeled by one of three categories. The healthy patients

are marked by “control”, newborns suffering phenylketonuria (a well-known

metabolic disease) are labeled with “PKU”, and newborns suffering any other

metabolic disease are labeled with “others”. The resulting subspace distance

diagram HiSC generates when applied to this data set is visualized in Figure

6.9. As it can be seen, HiSC produced a large hierarchy of 17-dimensional to

25-dimensional subspace clusters nested into each other. All these subspace

clusters contain approximately 98% newborns marked with “control”. A

second hierarchy of nested subspace clusters contains only newborns marked

with “PKU”. The rest is a mix of all three categories. However, it can be

observed that the newborns marked with “other” are mainly at the end of

the subspace cluster ordering having rather high subspace dimensionalities.

In summary, it can be stated that HiSC is able to clearly separate the vast

majority of the three classes present in the data set.
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(a) PROCLUS - cluster 1. (b) PROCLUS - cluster 2.

(c) PROCLUS - cluster 3.

Figure 6.7: Results of PROCLUS on “DS1”.

cluster 2 cluster 3 cluster 1 noise

Figure 6.8: Results of HiSC on “DS2”.
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PKUcontrol control others

Figure 6.9: Results of HiSC on “Metabolome” data.

6.5.2 Scalability

The scalability of HiSC w.r.t. the dimensionality of the data set is depicted in

Figure 6.10. The experiments were obtained by using 10 synthetic data sets of

10,000 objects with varying dimensionality of d = 10, 20, 30, . . . , dmax = 100.

For each data set, the objects were equally distributed over 10 subspace

clusters, where the single attributes have values in the range of [0.0, 1.0]. The

result shows a linear increase of runtime when increasing the dimensionality

of the data set. The parameters for HiSC were set to k = 3 · dmax = 300 and

α = 0.1% of the attribute range, i.e., α = 0.001. This experiment confirms

the theoretically determined runtime complexity of O(n2 ·d) (cf. Section 6.4).

A similar observation can be made when evaluating the scalability of

HiSC w.r.t. the data set size (cf. Figure 6.11). The experiment was run on

a set of 6 10-dimensional synthetic data sets with varying number of objects

ranging from 50,000 to 300,000. The objects are equally distributed over

nine subspace clusters of subspace dimensionality λ = 1, . . . , 9 and noise,

where the attribute values are in the range of 0.0 to 1.0. The parameters

for HiSC were set to k = 3 · d = 15 and α = 0.1% of the attribute range,

i.e., α = 0.001. As it can be seen, HiSC scales quadratic w.r.t. the number

of tuples in the data set. Again, this experiments confirms the theoretically
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Figure 6.10: Scalability of HiSC w.r.t. the dimensionality.
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Figure 6.11: Scalability of HiSC w.r.t. the size.

determined runtime complexity of O(n2 · d).

In summary, the scalability experiments show that HiSC scales well also

for large and high-dimensional data sets.



Chapter 7

DiSH: Detecting and

Visualizing Complex

Hierarchies of Subspace

Clusters

Existing subspace clustering algorithms such as [APW+99, PJAM02, BKKK04]

assign each point to a unique subspace cluster or noise. Usually, those meth-

ods do not produce any information on the hierarchical relationships among

the detected subspaces. The only approach to find some special cases of

subspace cluster hierarchies introduced so far is HiSC (cf. Chapter 6). How-

ever, HiSC is limited by the following severe drawbacks. First, HiSC usually

assumes that if a point p belongs to a projected cluster C, then C must be

visible in the local neighborhood of p in the entire feature space. Obviously,

this is a quite unrealistic assumption. If p belongs to a projected cluster and

the local neighborhood of p in the entire feature space does not exhibit this

projection, HiSC will not assign p to its correct cluster. Second, the hierarchy

detected by HiSC is limited to single inclusions which can be visualized by

a tree representation such as a dendrogram. As discussed above, hierarchies

of subspace clusters may also exhibit multiple inclusions. To visualize such

more complex relationships among subspace clusters, graph representations

57
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are needed rather than tree representations. Third, HiSC uses a Single-Link

approach for clustering and, thus, suffers from the so-called Single-Link ef-

fect, which means that a single noise object bridging the gap between two

actual subspace clusters can hamper the algorithm in detecting the correct

subspace clustering structure.

To overcome these limitations, the hierarchical subspace clustering al-

gorithm DiSH (Detecting Subspace Cluster Hierarchies) is proposed in this

Chapter. DiSH overcomes the limitations of existing subspace clustering

approaches mentioned before and claims the following contributions:

1. DiSH assigns points to their correct subspace clusters even if this pro-

jection is not visible in the local neighborhoods of the points in the

entire feature space.

2. DiSH applies a density-based hierarchical approach similar to OPTICS

[ABKS99] to the subspace clustering problem. Thus, DiSH avoids

Single-Link effects. Furthermore, it is able to determine hierarchies

of nested subspace clusters containing single and multiple inclusions.

3. DiSH can detect subspace clusters of significantly different subspace

dimensionality.

4. DiSH computes a clear and intuitive graph representation of the result

such that the complete relationships among subspace clusters are pre-

sented and the entire hierarchical subspace clustering structure can be

explored at a glance.

Section 7.1 introduces the basic definitions and explains the necessary

preprocessing steps to be performed before applying DiSH. Section 7.2 in-

troduces the main concepts of the new DiSH algorithm in detail. The choice

and impact of the input parameters are discussed in Section 7.3, and Section

7.4 examines the runtime complexity of DiSH. The generation of a clear rep-

resentation of the complex subspace cluster hierarchy in a so-called subspace

clustering graph is shown in Section 7.5. Several comparative experiments
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presented in Section 7.6 using synthetic and real-world data sets show the ef-

ficiency and the effectivity of DiSH. The basic ideas contained in this Chapter

have been published in [ABK+07a].

7.1 Basic Definitions

LetD ⊆ Rd be a data set of n normalized feature vectors andA = {A1, . . . , Ad}
be the set of attributes of D. For any subspace S ⊆ A, πS(p) denotes the

projection of object p ∈ D into S. Furthermore, it is assumed that Dist is a

distance function applicable to any subspace S ⊆ A, denoted by DistS. For

instance, when using the Euclidean distance for p, q ∈ D,

DistS(p, q) =

√∑
Ai∈S

(
π{Ai}(p)− π{Ai}(q)

)2
.

The key idea of DiSH is similar to HiSC and is based on the definition

of the so-called subspace distance that assigns small values if two points are

in a common low-dimensional subspace cluster, and high values if two points

are in a common high-dimensional subspace cluster or are not in a subspace

cluster at all. Again, subspace clusters with small subspace distances are

embedded within clusters with higher subspace distances.

In contrast to HiSC, the subspace distance used in the DiSH algorithm

is not based on the local neighborhoods of the points, but on the global

neighborhoods in each dimension. First, for each point p ∈ D the subspace

dimensionality representing the dimensionality of that subspace cluster in

which p fits best is computed. Thereby, it is assumed that the “best” projec-

tion for clustering p is the subspace with the highest dimensionality providing

the most information. In case of tie-situations, p will be assigned to the larger

subspace cluster, containing more points in the neighborhood of p w.r.t. the

subspace. The subspace dimensionality of a point p is determined by search-

ing for dimensions of low variance in the neighborhood of p. Intuitively, a

low variance along one attribute indicates that if the points are projected

on that dimension, p lies within a dense area. To detect dimensions of low
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variance, i.e., high density, the ε-neighborhood of a point p in each dimension

can be used.

Definition 7.1 (ε-neighborhood of a point w.r.t. a subspace).

Let ε ∈ R+ be a threshold value. The ε-neighborhood of a point p ∈ D w.r.t.

subspace S ⊆ A, denoted by NS
ε (p), is defined as follows:

NS
ε (p) = {q | q ∈ D ∧DistS(p, q) ≤ ε}.

An attribute-wise ε-range query for each Ai ∈ A yields a simple way to

assign a predicate to an attribute for a certain object p. If only few points are

found within the ε-neighborhood in attribute Ai most of the attributes will be

distributed over a broader range and, thus the variance around p in attribute

Ai will be relatively high. Therefore, this attribute does not participate in

a subspace that is relevant to any cluster to which p could possibly belong.

Otherwise, if N{Ai}ε (p) contains at least µ objects, the attribute Ai will be a

candidate for a subspace containing a cluster including object p.

Having determined the candidate attributes that might span the subspace

Sp in which object p is clustered, these attributes have to be combined in a

suitable way. In fact, the problem of finding the correct subspace is equivalent

to finding the “correct” item-subset of a set of items and thus, is equivalent

to itemset mining. The items correspond to (candidate) attributes. Each

point q ∈ D − {p} represents a transaction T p(q) with items Ai such that

q ∈ N{Ai}ε (p), i.e., T p(q) = {Ai | p ∈ N{Ai}ε (p)}. The support of item Ai is

defined by sup(Ai) = |N{Ai}ε (p)|. Obviously, the support is anti-monotonic,

i.e., sup(T ) ≤ sup(S) for all S ⊆ T ⊆ A. As a consequence, any frequent

itemset mining algorithm can be used in order to determine the best subspace

Sp of an object p, e.g., the Apriori-algorithm [AS94]. In particular, for an

object p ∈ D the maximum frequent itemset representing the best subspace

Sp is determined such that |NSp
ε (p)| ≥ µ, i.e., sup(Sp) ≥ µ. As discussed

above, if there are several such itemsets/subspaces, the one with the highest

support is chosen. Then, the subspace preference vector wp of object p ∈ D
is defined as follows.

Definition 7.2 (subspace preference vector of a point).

Let Sp be the best subspace determined for object p ∈ D, i.e., the highest
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dimensional subspace S with |NS
ε (o)| ≥ µ. In case of tie situations let Sp

be the subspace containing the most objects in the ε-neighborhood of p w.r.t.

Sp. The subspace preference vector of p, denoted by wp = (w1
p, . . . , w

d
p)

T, is

defined as

wip =

{
1 if Ai ∈ Sp
0 if Ai 6∈ Sp

for i = 1, . . . , d.

Obviously, the exhaustive search for the best subspace using the Apriori-

algorithm or one of its variants is rather inefficient for high-dimensional data

sets, especially when the dimensionality of the subspace clusters is also high.

The worst case complexity of the Apriori-algorithm results in an exponential

runtime of O(2d). To overcome this limitation, in the following a heuris-

tics is proposed for determining the best subspace Sp for an object p which

scales quadratic in the number of dimensions (cf. Section 7.4 for a detailed

discussion).

The method to determine the best subspace for an object p is depicted

in Figure 7.1. First, the candidate attributes Cp of object p are determined

by computing the ε-neighborhoods N{Ai}ε (p) of p in each attribute Ai ∈ A.

If N{Ai}ε (p) contains at least µ objects, attribute Ai will be added to the

candidate set Cp. After determining the candidate attributes that might

span Sp, simply a best-first search is used, starting with the attribute Ai ∈ Cp
where the number of objects in N{Ai}ε (p) is highest. This attribute is added

to the subspace Sp and removed from the candidate set Cp. The intersection

of the ε-neighborhoods of p in the attributes already assigned to Sp , denoted

by I, is initialized with N{Ai}ε (p). Then, in the merging loop iteratively that

attribute is merged to Sp that “fits best” to the attributes already belonging

to Sp. The “best” attribute Ai is always that attribute of the candidate set

Cp, where the intersection of the ε-neighborhood in Ai with I contains the

most objects. If the intersection of I and N{Ai}ε (p) contains at least µ objects,

attribute Ai is added to the subspace Sp and removed from the candidate

set Cp. The intersection of the ε-neighborhoods of p in the already merged

attributes is updated. The search for the best subspace Sp terminates if the

candidate set is empty or NAi
ε (p) contains less than µ objects, i.e., there exists

no more attribute Ai ∈ Cp which can extend Sp to a subspace containing at
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function determineBestSubspace(Object p, Real ε, Integer µ)

initialize empty subspace Sp;

Cp := {Ai |Ai ∈ A ∧ |N{Ai}ε (p)| ≥ µ};

Ai = arg max
Aj∈Cp

{|N{Aj}ε (p)|};

Sp.add(Ai);

Cp.remove(Ai);

I := N{Ai}ε (p);

while Cp 6= ∅ do

Ai = arg max
Aj∈Cp

{|I ∩ N{Aj}ε (p)|};

if |I ∩ N{Ai}ε (p)| ≥ µ then

Sp.add(Ai);

Cp.remove(Ai);

I := I ∩ N{Ai}ε (p)

else

return Sp;

end if

end while

return Sp;

end.

Figure 7.1: The heuristics to determine the best subspace for an object.

least µ objects in the ε-neighborhood.

Using this heuristics to compute the best subspace Sp for p ∈ D, the

subspace preference vector of object p, wp, can be determined as defined in

Definition 7.2. Again, the assigned predicate for each attribute describes the

preference for the corresponding subspace. Overall, a d-dimensional subspace

preference vector is assigned to each point, containing “1” and “0” values that

represent the above described predicates for each attribute. The attributes

having a “1” predicate span the subspace of the cluster the point belongs to.
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Figure 7.2: Subspace selection for a point o.

The remaining attributes with “0” predicates are irrelevant for that subspace.

The subspace dimensionality of a point can now be defined as follows.

Definition 7.3 (subspace dimensionality of a point).

The subspace dimensionality λp of a point p ∈ D is the number of zero-values

in the subspace preference vector of p, wp, formally:

λp =
d∑
i=1

{
1 if wip = 0

0 if wip = 1
.

In the example in Figure 7.2 the ε-neighborhoods of the 3-dimensional

point o in attributes x and y are shown by gray-shaded areas. Assuming that

both of these areas contain at least µ points whereas the ε-neighborhood of

o along z (not shown) contains less than µ points, o may participate in a

subspace cluster that is projected into the subspace {x, y}. The cardinality

of N{x,y}ε (o) has still to be tested, i.e., the cardinality of N{x}ε (p)∩N{y}ε (p). If

this cardinality is also greater than or equal to µ, then wo = (1, 1, 0)T and
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λo = 1. On the other hand, if |N{x}ε (o) ∩ N{y}ε (o)| < µ, the projection of the

neighborhood of o into subspace {x, y} is not dense. In other words, o may be

part of several 1-dimensional subspace clusters, but none of these subspace

clusters can be merged to form a higher dimensional subspace cluster. In

that case, o will be classified as noise.

7.2 Algorithm DiSH

After assigning during a preprocessing step the subspace dimensionality and

the subspace preference vector to each point p of the data set, the similarity

measure between two points, called the subspace distance, can be defined

analogously as in Chapter 6.2. First, the definitions of the subspace pref-

erence vector and the subspace dimensionality of a pair of points are given,

then the distance measure is defined.

Definition 7.4 (subspace preference vector of a pair of points).

The subspace preference vector w(p, q) = (w1(p, q), . . . , wd(p, q)) of a pair of

points p, q ∈ D representing the combined subspace of p and q is computed by

the attribute wise logical AND-conjunction of the subspace preference vector

wp of p and the subspace preference vector wq of q, formally:

wi(p, q) =

{
1 if wip = 1 ∧ wiq = 1

0 else
for i = 1, . . . , d.

Definition 7.5 (subspace dimensionality of a pair of points).

The subspace dimensionality between two points p, q ∈ D, denoted by λ(p, q),

is the number of zero-values in the subspace preference vector of p and q,

w(p, q), formally:

λ(p, q) =
d∑
i=1

{
1 if wi(p, q) = 0

0 if wi(p, q) = 1
.

The subspace dimensionality λ(p, q) cannot be directly used as the sub-

space distance because points from parallel subspace clusters will have the

same subspace preference vector. Thus, it has to be checked whether the
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subspace preference vectors of two points p and q are equal or one subspace

preference vector is “included” in the other one. This can be done by com-

puting the subspace preference vector w(p, q) and checking whether w(p, q)

is equal to w(p) or w(q). If so, the distance between the points in the sub-

space spanned by w(p, q) is determined. If this distance exceeds the threshold

2 · ε, the points belong to different, parallel clusters. The threshold ε, play-

ing already a key role in the definition of the subspace dimensionality (cf.

Definition 7.3) controls the degree of jitter of the subspace clusters.

Since λ(p, q) ∈ N, there exist usually many tie situations when merging

points/clusters during hierarchical clustering. These tie situations can be

solved by considering the distance within a subspace cluster as a second

criterion. Inside a subspace cluster, the points are then clustered in the

corresponding subspace using the traditional OPTICS algorithm and, thus,

the subspace clusters can exhibit arbitrary sizes, shapes, and densities.

Definition 7.6 (subspace distance).

Let w be an arbitrary preference vector. Then S(w) is the subspace defined

by w, i.e., S(w) = {Ai | Ai ∈ A ∧ wi = 1}. The inverse of w is denoted by

w̄, i.e.,

w̄i =

{
0 if wi = 1

1 if wi = 0
for i = 1, . . . , d.

The subspace distance SDist between two points p, q ∈ D, denoted by

SDist(p, q) = (d1, d2), is a pair consisting of the following two values

d1 = λ(p, q) + ∆(p, q)

d2 = DistS(w̄(p,q))(p, q).

∆(p, q) is defined as

∆(p, q) =


1 if (w(p, q) = wp ∨ w(p, q) = wq) ∧

DistS(w(p,q))(p, q) > 2ε

0 else

.

SDist(p, q) ≤ SDist(r, s) if one of the following conditions hold:
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algorithm DiSH(Database D, Real ε, Integer µ)

initialize empty subspace cluster order co;

initialize empty priority queue pq ordered by MinSReach;

for each p ∈ D do

compute wp w.r.t. parameters ε and µ;

p.MinSReach = ∞;

pq.insert(p);

end for

while pq 6= ∅ do

p := pq.next();

co.add(p);

r := µ-NN of p w.r.t. SDist;

for each q ∈ pq do

srnew := max(SDist(p, r),SDist(p, q));

if srnew < q.MinSReach then

q.MinSReach := srnew;

pq.decrease(q);

end if

end for

end while

return co;

end.

Figure 7.3: The DiSH algorithm.

1. SDist(p, q).d1 < SDist(r, s).d1

2. SDist(p, q).d1 = SDist(r, s).d1 and SDist(p, q).d2 ≤ SDist(r, s).d2

As suggested in [ABKS99], a smoothing factor µ is introduced to avoid

the Single-Link effect and to achieve robustness against noise points. The

parameter µ represents the minimum number of points in a cluster and is
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equivalent to the parameter µ used to determine the best subspace for a

point. Thus, instead of using the subspace distance SDist(p, q) to measure

the similarity of two points p and q, the subspace reachability SReachµ(p, q)

is used to compare these two points. The subspace reachability of a point q

relative to a point p is defined as the maximum value of the subspace distance

from p to its µ-nearest neighbor (w.r.t. the subspace distance SDist) and

the subspace distance between p and q.

Definition 7.7 (subspace reachability).

For µ ∈ N+, µ ≤ |D| let r ∈ D be the µ-nearest neighbor of p ∈ D w.r.t.

the subspace distance SDist. The subspace reachability of a point q ∈ D
relative to point p w.r.t. µ is defined as

SReachµ(p, q) = max(SDist(p, r),SDist(p, q)).

The pseudocode of the DiSH algorithm can be seen in Figure 7.3. First,

for each object its subspace preference vector is computed. In addition, for

each point p ∈ D the minimum subspace reachability p.MinSReach relative

to any object processed before p is stored. Initially, p.MinSReach is set to

∞ and p is added to a priority queue which stores all points according to

MinSReach in ascending order. DiSH selects in each step of the algorithm

that point p having the minimum subspace reachability to any already pro-

cessed point. The minimum subspace reachabilities of objects q which are

still remaining in the priority queue are updated if their according values de-

crease. The resulting order of the points is called subspace cluster order. In

a so-called subspace reachability diagram for each point, sorted according to

the subspace cluster order along the x-axis, the subspace reachability value is

plotted along the y-axis. The valleys in this diagram represent the subspace

clusters.

7.3 Input Parameters

DiSH has two input parameters. The first parameter ε specifies the neigh-

borhood of an object in an attribute. The ε-neighborhoods in each attribute
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are used to detect dimensions of low variance, i.e., high density. If the ε-

neighborhood in one attribute contains at least the number of objects the

second parameter µ specifies, the attribute is a so-called candidate attribute

that might be used to build the subspace preference and the subspace di-

mensionality of a point (cf. Definition 7.2 and Definition 7.3). Thus, both

input parameters are important for specifying the subspace preference vec-

tor and the subspace dimensionality of points. Additionally, the parameter

ε specifies the amount of jitter that the projected clusters may exceed. In

the experiments it turned out that DiSH is quite robust against the choice

of ε, since ε is chosen between 0.1% and 0.5% of the attribute range. How-

ever, if subspace clusters with a lot of jitter are expected, ε can be increased

accordingly.

The choice of parameter µ, specifying the minimum number of points in

a cluster, is very intuitive. As mentioned above, it is needed for defining

the subspace preference vector and the subspace dimensionality of a point

In addition, it defines the density-based smoothing factor in order to avoid

Single-Link effects during clustering. Again, the experimental evaluation

shows that DiSH is quite robust against the choice of µ.

7.4 Runtime Complexity

Let n be the number of data points and d be the dimensionality of the data

space. In the first loop, the subspace dimensionalities and preference vec-

tors are precomputed which requires the determination of the best subspace

for each object. Using the Apriori algorithm for determination of the best

subspace, the complexity of the preprocessing step yields O(n · 2d).

If the proposed heuristics is used (cf. Figure 7.1), the runtime of the

preprocessing step results from the runtime of the determination of the can-

didate attributes and the complexity of the merging loop. The assignment

of the candidate attributes requires the determination of the ε-neighborhood

of each object in each dimension. Assuming a suitable index structure, this

can be done in O(log n · d) time for one object. If no such index is at hand,
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the time complexity of the determination of the candidate set is O(n · d)

for one object. In each step of the merging loop, the intersection of the ε-

neighborhoods in the already merged attributes with all ε-neighborhoods in

the remaining candidate attributes has to be computed which needs O(n · d)

time. Thus, the merging loop takes a runtime of O(n · d2) for one object.

Overall, for n objects the preprocessing step results in case of using the

heuristics in O(n2 · d2).

During the run of DiSH, for each point p of the data set the subspace

reachability of all remaining points q in the priority queue to p has to be

evaluated. This requires first the determination of the µ-nearest neighbor of

p w.r.t. SDist which needs O(n · d) time for one object and O(n2 · d) time

for n objects. Then, the subspace reachability of q to p can be calculated in

O(d) time. Since this is done for all point pairs p and q, the complexity of

the main loop of DiSH yields O(n2 · d).

Overall, the complete runtime complexity of DiSH results in O(n2 · d2).

7.5 Visualizing Subspace Cluster Hierarchies

The reachability plot works well for the original OPTICS algorithm, but as

output for DiSH it is not able to represent complex subspace hierarchies.

Using the Euclidean distance function as similarity measure, the reachability

plot reflects the density of the objects within the clusters. In contrast to

the Euclidean distance, the new distance measure proposed for DiSH reflects

the common subspace of two objects. Consequently, in that case the sub-

space reachability plot does not give the same information as for Euclidean

distances.

Furthermore, the subspace reachability plot hides significant information.

Consider the two data sets “DSA” and “DSB” depicted in Figures 7.4(a)

and Figure 7.4(b). Data set “DSA” consists of a 1-dimensional line which is

embedded in a 2-dimensional plane and some additional noise points. Data

set “DSB” consists of two intersecting planes sharing a common intersection



70 7 DiSH

(a) Data set “DSA”. (b) Data set “DSB”.

Figure 7.4: Data sets with different hierarchies in 3-dimensional data.

line. Exploring the subspace reachability plots of the two data sets, one can

see that they look almost the same (cf. Figures 7.5(a) and 7.6(a)). Thus,

taking only the subspace reachability plots into account, it is impossible to

detect the obviously different kind of hierarchy of the second data set.

This phenomenon is due to the fact that the subspace dimensionality be-

tween an object of data set “DSB” belonging to the intersection line and an

object belonging to the horizontal plane is the same as the subspace dimen-

sionality between an object belonging to the intersection line and an object

belonging to the vertical plane. Both pairs of objects span a 2-dimensional

space: in the first case a horizontal plane, in the second case a vertical plane.

For this reason, the subspace reachability plot of data set “DSB” shows no

difference between objects of the horizontal and objects of the vertical plane,

since both have a subspace reachability distance with a subspace dimension-

ality of two.

The limitation of the subspace reachability plot leads to the contribu-

tion of representing the relationships between subspace cluster hierarchies

as a so-called subspace clustering graph so that the relationships between

the subspace clusters can be explored at a glance. The subspace clustering

graph displays a kind of hierarchy which should not be confused with a con-

ventional (tree-like) cluster hierarchy as usually represented by dendrograms.

The subspace clustering graph consists of nodes at several levels, where each

level represents a subspace dimension. The top level represents the highest
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(a) Reachability plot. (b) Subspace clustering graph.

Figure 7.5: Results on data set “DSA”.

(a) Reachability plot. (b) Subspace clustering graph.

Figure 7.6: Results on data set “DSB”.

subspace dimension which has the dimensionality of the data space. The sub-

space clustering graph consists of only one root node, representing all points

that do not share a common subspace with any other point. These points

are also called noise. Note that this is different to dendrograms where the

root node represents the cluster of all objects. The nodes in the remaining

levels represent clusters in the subspaces with the corresponding dimension-

alities. They are labeled with the preference vector of the subspace cluster
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function extractCluster(ClusterOrder co)

initialize empty list of clusters cl;

for each p ∈ pq do

q := p.predecessor;

if @C ∈ cl : wC = w(p, q) ∧DistS(wC)(p, C.centroid) ≤ 2 · ε then

initialize a new cluster C with wC = w(p, q) and λC := λ(p, q);

cl.add(C);
end if

C.add(p);

end for

return cl;

end.

Figure 7.7: The function to extract the subspace clusters from the cluster

order.

they represent. For emphasizing the relationships between the subspace clus-

ters, every subspace cluster is connected with its parents and its children. In

contrast to tree representations, such as dendrograms, a graph representa-

tion allows multiple parents for a subspace cluster. This is necessary, since

hierarchical subspace clusters can belong to more than one parent cluster.

For instance, consider data set B, where the objects of the intersection line

are embedded in the horizontal plane as well as in the vertical plane, i.e.,

the subspace cluster forming the intersection line belongs to two parents in

the hierarchy. The subspace clustering graphs of the two data sets “DSA”

and “DSB” are depicted in Figures 7.5(b) and 7.6(b). The line of data set

“DSA” is represented by the subspace cluster with the subspace preference

vector [1,0,1]. This subspace cluster is a child of subspace cluster [1,0,0],

representing the plane in data set “DSA” (cf. Figure 7.5(b)). The more com-

plex hierarchy of data set “DSB” is represented in Figure 7.6(b), where the

subspace cluster [1,0,1] of the intersection line belongs to two parent clusters,

the subspace cluster of the horizontal plane [0,0,1] and the subspace cluster
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procedure buildHierarchy(ClusterList cl)

λmax := d; // d = dimensionality of data space

for each Ci ∈ cl do

for each Cj ∈ cl with λCi < λCj do

if λCj = λmax ∧ Ci.parents=∅ then

Ci.addParent(Cj);

else

if λ(Ci, Cj) + ∆(Ci, Cj) = λCj ∧
(Ci.parents=∅ ∨ ¬ isParent(Cj, Ci.parents))

then

Ci.addParent(Cj);
end if

end if

end for

end for

end.

Figure 7.8: The procedure to build the hierarchy of subspace clusters.

of the vertical plane [1,0,0].

In contrast to dendrograms, objects are not placed in singleton clusters

at the leaf level, but are assigned to the lowest dimensional subspace cluster

they fit in within the graph. Similar to dendrograms, an inner node N of the

subspace graph represents the subspace cluster of all points that are assigned

to N and of all points assigned to its child clusters.

To build the subspace clustering graph, in a first step all subspace clusters

are extracted from the subspace cluster order. A subspace cluster C consists

of a set of objects belonging to C, the preference vector wC of C indicating

the subspace in which the objects of C are embedded, and the subspace di-

mensionality λC of C. Note that parallel subspace clusters share the same
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function isParent(Cluster P , ClusterList cl)

for each C ∈ cl do

if λ(P , C) + ∆(P , C) = λP then

return true;

end if

end for

return false;

end.

Figure 7.9: The function to check whether a cluster is a parent of one of

the clusters in a list.

subspace preference vector and the same subspace dimensionality. For each

object p in the subspace cluster order the appropriate subspace cluster C has

to be found. A subspace cluster C accommodates object p if the subspace

preference vector wC of C is equal to the subspace preference vector w(p, q)

between object p and its predecessor q. Additionally, since parallel subspace

clusters share the same subspace preference vector, the distance between the

centroid of the subspace cluster C and object p in subspace S(wC) has to be

less than or equal to 2 · ε. If no such subspace cluster exists, a new subspace

cluster C with subspace preference vector wC = w(p, q) and subspace dimen-

sionality λC = λ(p, q) is created to accommodate object p. The complete

method to extract the subspace clusters from the subspace cluster order can

be seen in Figure 7.7.

After the subspace clusters have been derived from the subspace clus-

ter order, the second step builds the subspace cluster hierarchy. For each

subspace cluster Ci it has to be checked if Ci is part of one or more higher

dimensional subspace clusters Cj, whereas each subspace cluster is at least

the child of the noise cluster. In particular, the following steps are applied for

each subspace cluster Ci and each subspace cluster Cj with λCi < λCj : If no

parents have already been assigned to subspace cluster Ci and subspace clus-

ter Cj is the noise cluster, i.e., the subspace dimensionality λCj of subspace
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cluster Cj equals the dimensionality of the feature space, subspace cluster Cj
will become the (only) parent of subspace cluster Ci.

Otherwise it is checked if both subspace clusters Ci and Cj together form a

λCj -dimensional subspace cluster. For this purpose, the subspace dimension-

ality λ(Ci, Cj) and the value of ∆(Ci, Cj) has to be computed. The subspace

dimensionality λ(Ci, Cj) of the common subspace of Ci and Cj is the num-

ber of zero-values in the subspace preference vector w(Ci, Cj). The subspace

preference vector w(Ci, Cj) of subspace clusters Ci and Cj can be computed

analogously to the subspace preference vector of a pair of points (cf. Defini-

tion 7.4), i.e., w(Ci, Cj) is the attribute wise logical AND-conjunction of the

subspace preference vector wCi of subspace cluster Ci and the subspace pref-

erence vector wCj of subspace cluster Cj. The value of ∆(Ci, Cj) is determined

analogously to Definition 7.6:

∆(Ci, Cj) =


1 if (w(Ci, Cj) = w(Ci) ∨ w(Ci, Cj) = w(Cj)) ∧

DistS(w(Ci,Cj))(Ci.centroid, Cj.centroid) > 2ε

0 else

.

If both subspace clusters together form a λCj -dimensional subspace clus-

ter, subspace cluster Cj will become a parent of subspace cluster Ci, provided

that one of the following conditions holds: Either Ci has no parents so far or

Cj is no parent cluster of the already assigned parents of subspace cluster Ci,
because in that case the relationship between Cj and Cj is that of a grandpar-

ent. The methods used to build the subspace hierarchy from the subspace

clusters are depicted in Figure 7.8 and Figure 7.9.

7.6 Experimental Evaluation

All experiments have been performed on a workstation with a 2 · 64-bit 2.6

GHz CPU and 16 GB main memory. All evaluated methods have been imple-

mented in Java. In all experiments, the input parameters of all methods have

been optimized in terms of quality and the best results have been reported

in order to achieve a fair comparison.
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Figure 7.10: Runtime of the preprocessing step of DiSH w.r.t. the strategy

for preference vector computation.

7.6.1 Strategy Used for the Preprocessing Step

In a first experiment, the runtime of the preprocessing step of DiSH w.r.t. the

strategies used for the determination of the best subspace has been evaluated.

The experiment was run on data sets with 1,000 objects with varying dimen-

sionality of d = 10, . . . , 50. For each data set, the objects were equally dis-

tributed over 10 subspace clusters, where the attribute values are in the range

of 0.0 to 1.0. The parameters for DiSH were set to µ = 50 and ε = 0.1% of the

attribute range, i.e., ε = 0.001. The results are shown in Figure 7.10. The

strategy using the Apriori-algorithm [AS94] is denoted with “APRIORI”,

the heuristics using the best-first search is denoted with “BEST-FIRST”. As

it can be seen, the heuristics using best-first search outperforms the strat-

egy using the Apriori-algorithm in terms of runtime significantly (note the

logarithmic scale). Since both strategies have equal F-measures of 100% in

this experiment, in all further experiments the heuristics has been used to

compute the preference vectors rather than the Apriori-based approach.

7.6.2 Effectivity

Synthetic Data Sets. DiSH has been evaluated on several synthetic data

sets. The results on three data sets named “DS1”, “DS2” and “DS3” are
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Figure 7.11: Data set “DS1” (noise points are not depicted).

shown. The synthetic data sets contain 3-, 5- and 16-dimensional objects

grouped in complex hierarchies of subspace clusters with several multiple

inclusions and additional noise points. The attribute values of all synthetic

data sets are in the range of 0.0 to 1.0.

Data set “DS1“ (cf. Figure 7.11) contains 3-dimensional points grouped

in a complex hierarchy of three 1-dimensional and three 2-dimensional sub-

space clusters with several multiple inclusions and additional noise points

(not depicted). The results of DiSH applied to “DS1” are shown in Figure

7.12. The parameters of DiSH were set to ε = 0.001 and µ = 20. In the

upper left Figure 7.12(a) the three 2-dimensional subspace clusters found by

DiSH are marked with different colors. The upper right Figure 7.12(b) shows

the three 1-dimensional subspace clusters found by DiSH. In the lower Fig-

ure 7.12(c) the resulting subspace clustering graph is displayed. As it can

be seen, the complete hierarchical subspace clustering structure can be ob-

tained from the subspace clustering graph. In particular, the complex nested

subspace clustering structure can be seen at a glance.

For comparison, HiSC, PreDeCon and PROCLUS have also been applied

to data set “DS1”. The resulting subspace distance diagram of HiSC on

“DS1” (with parameter setting k = 20 and α = 0.001) is shown in Figure

7.13. Though, HiSC detects the simple hierarchical relationship that the 1-

dimensional subspace clusters are embedded in the 2-dimensional subspace

clusters, it fails completely in discovering the complex relationships of mul-
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(c) Subspace clustering graph.

Figure 7.12: Results of DiSH on “DS1”.

tiple inclusion as DiSH does (cf. also the discussion of Figure 7.4 in Section

7.5).

PreDeCon can either detect the 1-dimensional subspace clusters or the 2-

dimensional subspace clusters, but not both in one single run. The results of

PreDeCon with different settings for parameter λ which determines the sub-

space dimensionality of the clusters to be found, are depicted in Figure 7.14.

The left Figure 7.14(a) shows the two 1-dimensional subspace clusters found

by PreDeCon with parameter setting ε = 0.05, µ = 20, λ = 1, δ = 0.0001.

Although trying different settings, PreDeCon was not able to separate the

two intersecting lines correctly, i.e. PreDeCon always assigned them to one

cluster. Furthermore, in this run, the 2-dimensional planes were classified as
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Figure 7.13: Subspace distance diagram of HiSC on “DS1”.

noise. In the right Figure 7.14(b) the 2-dimensional subspace cluster detected

by PreDeCon with parameter setting ε = 0.2, µ = 20, λ = 2, δ = 0.0001 is

depicted. This cluster includes the three 1-dimensional subspace clusters and

the two 2-dimensional subspace clusters. As it can be seen in Figure 7.15,

PROCLUS (k = 6, l = 3) failed completely in finding the subspace clusters

in “DS1”. Overall, neither PreDeCon nor PROCLUS were able to detect the

hierarchies and all subspace clusters in data set “DS1”.

The synthetic data set “DS2” is a 5-dimensional data set containing ten

subspace clusters of different dimensionality and noise with several multi-

ple inclusions: one subspace cluster is embedded in a 4-dimensional sub-

space, four subspace clusters are 3-dimensional, three subspace clusters are

2-dimensional and two subspace clusters are 1-dimensional subspace clusters.

The resulting subspace clustering graph produced by DiSH (with parameter

setting ε = 0.001 and µ = 20) is shown in Figure 7.16 and exhibits all ten

subspace clusters of considerably different dimensionality correctly. The re-

lationships between the different subspace clusters have all been accurately

determined.

Similar observations can be made when evaluating the subspace clus-

tering graph obtained by DiSH on data set “DS3” (cf. Figure 7.17). The

16-dimensional data set “DS3” contains noise points, one 13 dimensional,
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cluster 2

cluster 1

(a) Result of PreDeCon with λ = 1.

cluster 1

(b) Result of PreDeCon with λ = 2.

Figure 7.14: Results of PreDeCon with different λ-parameter settings on

“DS1”.

one 11 dimensional, one 9 dimensional, one 7 dimensional subspace cluster,

and two 6 dimensional subspace clusters. Again, DiSH found all six sub-

space clusters and the relationships between the different subspace clusters

correctly.

Again, HiSC, PreDeCon and PROCLUS have also been applied to the two

data sets “DS2” and “DS3”. Although trying several parameter settings, all

three algorithms failed to detect the hierarchies or the subspace clusters of

significantly different dimensionality.

Real-world Data Sets. In addition to the synthetic data sets, the ef-

fectivity of DiSH has been evaluated by using several real-world data sets.

First, DiSH has been applied on the “Wages” data set1, consisting of 534 11-

dimensional observations from the 1985 Current Population Survey. Since

most of the attributes are not numeric, only 4 dimensions (YE=years of

education, W=wage, A=age, and YW=years of work experience) have been

used for clustering. The resulting subspace cluster hierarchy (using ε = 0.001,

µ = 9) is visualized in Figure 7.18. The nine parallel subspace clusters, hav-

ing a subspace dimensionality of λ = 3, consist of data of people having

equal years of education, e.g., in subspace cluster [1, 0, 0, 0 0] YE=17 and

1http://lib.stat.cmu.edu/datasets/CPS_85_Wages

http://lib.stat.cmu.edu/datasets/CPS_85_Wages
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(a) PROCLUS - cluster 1. (b) PROCLUS - cluster 2.

(c) PROCLUS - cluster 3. (d) PROCLUS - cluster 4.

(e) PROCLUS - cluster 5. (f) PROCLUS - cluster 6.

Figure 7.15: Results of PROCLUS on “DS1”.

in subspace cluster [1, 0, 0, 0 5] YE=12. The two subspace clusters labeled

with [1, 1, 0, 0 0] and [1, 1, 0, 0 1] in the 2-dimensional subspace are children

of subspace cluster [1, 0, 0, 0 5] and have (in addition to equal years of ed-

ucation, YE=12) equal wages values (W=7.5 and W=5, respectively). The

1-dimensional subspace cluster [1, 0, 1, 1] is a child of [1, 1, 0, 0 0] and has the

following properties: YE=12, A=26, and YW=8.

Then, DiSH has been applied to the original Wisconsin Breast Cancer



82 7 DiSH

Figure 7.16: Results of DiSH on synthetic data set “DS2”.

Figure 7.17: Results of DiSH on synthetic data set “DS3”.
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Figure 7.18: Result of DiSH on “Wages” data.

malignant

benign

Figure 7.19: Result of DiSH on “Breast Cancer” data.
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Figure 7.20: Result of DiSH on “Gene Expression” data.

Database from the UCI ML Archive2. This data set, in the following named

“Breast Cancer”, contains 9 measurements for each of 683 patients suffering

either from a malignant or from a benign type of breast cancer. Figure

7.19 depicts the results of DiSH applied to “Breast Cancer” using ε = 0.01

and µ = 15. As it can be seen, the resulting hierarchy contains several

low dimensional subspace clusters and one 7-dimensional subspace cluster.

It is worth mentioning that the reported subspace clusters are pure, i.e.,

they only contain patients of either malignant or benign type. In particular,

the seven low-dimensional subspace clusters only contain benign patients,

whereas the 7-dimensional subspace cluster only contains malignant patients.

Some patients from both classes could not be separated and were labeled as

noise.

Last but not least, DiSH has been applied to the “Gene Expression” data

set of [SSZ+98], consisting of the expression level of approximately 4,000

yeast genes measured at 24 time spots during mitosis. The result of DiSH

(using ε = 0.01, µ = 100) on the “Gene Expression” data is shown in Fig-

ure 7.20. Again, DiSH found several subspace clusters of different subspace

dimensionalities with multiple inclusions.
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Figure 7.21: Scalability of DiSH w.r.t. the dimensionality.
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Figure 7.22: Scalability of DiSH w.r.t. the size.

7.6.3 Scalability

The scalability of DiSH w.r.t. the dimensionality of the data set is depicted in

Figure 7.21. The experiments were obtained by using 10 data sets of 10,000

objects with varying dimensionality of d = 10, 20, 30, . . . , dmax = 100. For

each data set, the objects were equally distributed over 10 subspace clusters,

where the single attributes have values in the range of [0.0, 1.0]. The result

shows a quadratic increase of runtime when increasing the dimensionality of

the data set. The parameters for DiSH were set to µ = 3 · dmax = 300 and

ε = 0.1% of the attribute range, i.e., ε = 0.001. This experiment confirms

the theoretically determined runtime complexity of O(n2 · d2) (cf. Section

2http://www.ics.uci.edu/~mlearn/MLSummary.html

http://www.ics.uci.edu/~mlearn/MLSummary.html
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7.4).

A similar observation can be made when evaluating the scalability of

DiSH w.r.t. the data set size (cf. Figure 7.22). The experiment was run on a

set of 6 10-dimensional synthetic data sets with increasing number of objects

ranging from 50,000 to 300,000. The objects are equally distributed over

nine subspace clusters of subspace dimensionality λ = 1, . . . , 9 and noise,

where the attribute values are in the range of 0.0 to 1.0. The parameters

for DiSH were set to µ = 3 · d = 15 and ε = 0.1% of the attribute range,

i.e., ε = 0.001. As it can be seen, DiSH scales quadratic w.r.t. the number

of tuples in the data set. Again, this experiments confirms the theoretically

determined runtime complexity of O(n2 · d2).
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Chapter 8

Introduction

In high-dimensional data, meaningful clusters are usually based only on a

subset of all dimensions. Axis-parallel subspace clustering (or projected clus-

tering) as described in Part II is a well-known approach to find λ-dimensional

axis-parallel subspaces in a d-dimensional data space (λ < d) where certain

sets of points cluster well. Since the number of possible subspaces is expo-

nential in the dimensionality of the data space, all existing approaches are

based on some heuristics and therefore suffer from certain drawbacks.

An even more challenging problem is to find clusters in arbitrarily oriented

subspaces, also called generalized subspace clustering, where the number of

possible subspaces is even infinite. Such subspace clusters appear as sets

of points located near a common hyperplane of arbitrary dimension λ in a

d-dimensional data space. Since these hyperplanes correspond to linear de-

pendencies among several attributes and, thus, the corresponding attributes

are correlated, the concept of knowledge discovery in databases addressing

this problem is also known as correlation clustering. For a detailed discussion

on existing algorithms for correlation clustering please refer to Chapter 9.

Correlation clustering groups the data sets into subsets called correlation

clusters such that the objects in the same correlation cluster are all associated

to a common hyperplane of arbitrary dimensionality λ. A correlation cluster

associated to a λ-dimensional hyperplane is referred to as a λ-dimensional

89
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correlation cluster. The dimensionality of a hyperplane associated to a corre-

lation cluster is called the correlation dimensionality. Intuitively, the problem

of correlation clustering can be formalized as follows:

Given a set of n points from a d-dimensional vector space and a natural num-

ber µ. Find a set of λ-dimensional hyperplanes in Rd (λ < d) of minimum

dimensionality to each of which at least µ points can be assigned such that

the distance between the hyperplanes and the associated points is minimized.

For example, correlation clustering can be successfully applied in recom-

mendation systems. In target marketing, it is important to find homogeneous

groups of users with similar ratings in subsets of the attributes. In addi-

tion, it is interesting to find groups of users with correlated affinities. This

knowledge can help companies to predict customer behavior and thus de-

velop future marketing plans. A second application of correlation clustering

is metabolic screening. The collected data usually contain the concentrations

of certain metabolites in the blood of thousands of patients. In such data

sets, it is important to find homogeneous groups of patients with correlated

metabolite concentrations indicating a common metabolic disease. This is

an important step towards understanding metabolic or genetic disorders and

designing individual drugs. Another prominent application for correlation

clustering is the analysis of gene expression data. Gene expression data con-

tain the expression levels of thousands of genes, indicating how active the

genes are, according to a set of samples. A common task is to find clus-

ters of co-regulated genes, i.e., clusters of genes that share a common linear

dependency within a set of their features.

In [BKKZ04] it was demonstrated that none of the two obvious simple

approaches is sufficient to find correlation clusters. The first obvious ap-

proach is to apply PCA (Principal Component Analysis) for dimensionality

reduction and to perform a cluster analysis afterwards. This approach will

fail if different correlation clusters are associated to hyperplanes of different

dimensionality or direction. The other obvious approach, first searching for

clusters and after that applying a dimensionality reduction technique on top

of the detected clusters, fails if some of the correlation clusters touch or cross
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Figure 8.1: Hierarchies of correlation clusters.

each other. In this case, the clustering algorithm cannot separate the cor-

relation clusters correctly and the joint correlation cluster is not amenable

to dimensionality reduction any more. Therefore, algorithms for correla-

tion clustering have to integrate the concepts of clustering and correlation

detection in a more sophisticated way. The algorithm ORCLUS [AY00],

for instance, integrates PCA into k-means clustering and the algorithm 4C

[BKKZ04] integrates PCA into the density based clustering algorithm DB-

SCAN [EKSX96]. Both algorithms decompose a data set into subsets of

points, each subset being associated to a specific λ-dimensional hyperplane.

Since both methods use the correlation dimensionality λ as a global param-

eter, i.e., the correlation dimensionality of the resulting correlation clusters

must be determined by the user, they are both not able to find all correlation

clusters of different dimensionality during one single run.

Moreover, searching clusters of different dimensionality is basically a hi-

erarchical problem, because several correlation clusters of low dimensionality

may together form a larger correlation cluster of higher dimensionality, and

so on. As a simple illustration consider the data set depicted in Figure

8.1. Two lines, i.e., two 1-dimensional correlation clusters, are embedded

within a plane which forms a 2-dimensional correlation cluster. In order to

detect the lines, a search for 1-dimensional correlation clusters has to be

performed, whereas in order to detect the plane, a search for 2-dimensional
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Figure 8.2: Hierarchies of correlation clusters with multiple inheritance.

correlation clusters has to be started. The resulting hierarchy consists of two

1-dimensional clusters as leaf nodes of the hierarchy tree, both having the

2-dimensional correlation cluster as parent node.

None of the existing algorithms (cf. Chapter 9 for details) is able to de-

tect hierarchies of correlation clusters. Therefore, in this Part three new

hierarchical approaches for correlation clustering are proposed. Chapter 10

introduces the algorithm HiCO (Hierarchical Correlation Ordering), a new

algorithm for searching simultaneously for correlation clusters of arbitrary

dimensionality and detecting hierarchies of correlation clusters. The clus-

ter hierarchy is visualized by using so-called correlation reachability plots,

which are tree-based representations of the correlation cluster hierarchy. Ad-

ditionally, HiCO overcomes another drawback of the existing non-hierarchical

correlation clustering methods like 4C and ORCLUS: HiCO does not require

the user to define critical parameters that limit the quality of clustering such

as a density threshold or the number of clusters in advance.

However, it may not always be appropriate to reflect the hierarchy of

correlation clusters as a tree. A correlation cluster may be embedded in

several correlation clusters of higher dimensionality, resulting in a hierarchy

with multiple inclusions (similar to the concept of “multiple inheritance” in

software engineering). As an example consider the data set depicted in Fig-
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ure 8.2: One of the 1-dimensional correlation clusters is the intersection of

two 2-dimensional correlation clusters, i.e., it is embedded in two clusters of

higher dimensionality. Those multiple inclusions can only be represented by

a graph-based visualization approach. In Chapter 11 a new algorithm called

ERiC (Exploring complex hierarchical Relationships among Correlation clus-

ters) is proposed. ERiC is able to uncover complex hierarchical relationships

of correlation clusters in high-dimensional data sets including not only sin-

gle inclusions (like HiCO) but also multiple inclusions. In addition, ERiC

provides a clear visualization of these complex relationships by means of a

graph-based representation.
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Chapter 9

Related Work

In the following related work on correlation clustering is reviewed and dis-

cussed. Please note that none of the existing approaches to correlation clus-

tering can detect hierarchies of correlation clusters, i.e., lower-dimensional

correlations within a common higher-dimensional correlation.

Pattern Based Clustering methods [YWWY02, WWYY02, PZC+03,

LW03] aim at grouping objects that exhibit a similar trend in a subset of at-

tributes into clusters rather than objects with low distance. This problem is

also known as co-clustering or biclustering [Har72], as recently proposed e.g.

for gene expression data analysis [CC00]. A detailed comparison of biclus-

tering methods is presented in [MO04]. In contrast to correlation clustering,

pattern-based clustering is limited to a special form of correlation where all

attributes are positively correlated. It does not capture negative correlations

nor correlations where one attribute is determined by two or more other at-

tributes. Thus, biclustering or pattern-based clustering could be regarded

as a special case of correlation clustering, as more extensively discussed in

[BKKZ04].

EM (Expectation Maximization) [DLR77] is one of the first clustering al-

gorithms that can detect correlation clusters. The EM algorithm tries to
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model the data distribution of a data set using a mixture of non-axis parallel

Gaussian distributions. The algorithm starts with an initial clustering and

alternates between performing an expectation (E) step and a maximization

(M) step. The expectation step determines for each object based on an as-

sumed probability distribution the likelihood of the object belonging to each

cluster. The maximization step recomputes the clusters by maximizing the

expected likelihood found on the E step. The new clusters found on the M

step are then used to begin another E step, and the process is repeated until

the increase in likelihood becomes negligible. Although the EM-algorithm is

guaranteed to converge to a maximum, this maximum may not necessarily

be the same as the global maximum. However, the EM clustering cannot

distinguish between correlation clusters and full-dimensional clusters with-

out any correlation. In addition, it favors clusters of spherical shape and

requires the user to specify the number of clusters in advance. As a main

drawback, the EM clustering is very sensitive to noise and the quality of the

clustering result depends significantly on the chosen probability distribution.

ORCLUS (arbitrarily ORiented projected CLUSter generation) [AY00] is

an extended version of the algorithm PROCLUS [APW+99] that finds corre-

lation clusters in arbitrarily oriented subspaces. The user has to define two

input parameters, the number k of clusters to be found and the approximate

dimensionality l of the subspace containing a cluster. A generalized projected

Cluster is formed by a subspace E which is defined by a set of orthonormal

basis vectors and a cluster C consisting of a set of data points, such that

the points in C are closely clustered in E. ORCLUS iteratively performs the

following three steps until k clusters are found: cluster assignment, subspace

determination and merging. In the assignment step the data set is parti-

tioned into kc current clusters by assigning each data point to its nearest

seed using the projected distance in the current subspace Ei. Then, each

seed is replaced by the centroid of the newly created cluster. Subspace de-

termination finds the subspace Ei of dimensionality lc for each current cluster

Ci by calculating the covariance matrix of Ci and selecting the lc eigenvectors

having the smallest eigenvalues to form the basis of Ei. In each iteration step
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the dimensionality lc of the current subspace is reduced by fraction β < 1.

Clusters that are near to each other and have similar directions are merged

during the merge phase, while the number kc of current clusters is reduced

by a factor α < 1. The algorithm terminates when the number kc of cur-

rent clusters is equal to the input parameter k, which denotes the number

of clusters to be found. If the user’s guess of k does not correspond to the

actual number of clusters, the results of ORCLUS deteriorate considerably.

A second problematic parameter of ORCLUS is the dimensionality l of the

correlation clusters ORCLUS is desired to uncover. ORCLUS usually has

problems with correlation clusters of very different dimensionalities because

the resulting clusters must have dimensionalities near l. Furthermore, like

most k-means based approaches ORCLUS is in general very sensitive to noise

and favors clusters of spherical shape.

4C (Computing Correlation Connected Clusters) [BKKZ04] integrates PCA

into DBSCAN [EKSX96] and searches for arbitrary linear correlations of fixed

dimensionality. The algorithm assigns to each point p a similarity matrix

which is determined from the covariances of the vectors in the neighborhood

of p. The point p is said to be a correlation core point, if the points in its

neighborhood form a λ-dimensional hyperplane where λ is a user-defined pa-

rameter. The neighboring points may also deviate from the ideal plane up to

a certain degree δ which is also a user defined parameter. During the run of

4C all objects are either assigned to a certain cluster or marked as noise. For

each object which is not yet classified, 4C checks whether this object is a cor-

relation core object. If the object is a correlation core object the algorithm

expands the cluster belonging to this object, otherwise the object is marked

as noise. To find a new cluster, 4C starts with an arbitrary correlation core

object p and adds all points that are correlation-reachable from p to the cur-

rent cluster. Then the algorithm continues with a point which has not yet

been processed trying to expand a new cluster. Beside the dimensionality

λ of the computed correlation clusters, the user must specify the additional

parameters ε and µ to define the minimum density of a cluster, and the pa-

rameter δ which determines the jitter of a correlation cluster. In fact, the



98 9 Related Work

dimensionality of the correlation clusters produced by 4C are strongly biased

towards λ. Thus, 4C has problems with correlation clusters of significantly

different dimensionality. In addition, the global density threshold for corre-

lation clusters specified by the input parameters is often hard to determine

since correlation clusters of different dimensionality will most likely exhibit

different densities.

CURLER (CURve cLustERs detection) [TXO05] is an algorithm for de-

tecting arbitrary, non-linear correlations. CURLER uses the concept of

micro-clusters that are generated using an EM variant and then are merged

to uncover correlation clusters. CURLER improves over ORCLUS and 4C as

the correlations underlying the clusters are not necessarily linear. Further-

more, as a fuzzy approach, CURLER assumes each data object to belong to

all clusters simultaneously, but with different probabilities for each cluster

assigned. By merging several clusters according to their co-sharing level the

algorithm on the one hand becomes less sensitive to the predefined number

k of clusters, thus also overcoming a severe limitation of any k-means related

approach. On the other hand, the user becomes disabled to directly derive a

model describing the correlations, since the original k models are no longer

persistent in the resulting clustering.

DIC (Dimension Induced Clustering) [GHPT05] extends the definition of

fractal correlation dimension, which measures average volume growth rate,

in order to estimate the intrinsic dimensionality of the data in local neigh-

borhoods. DIC creates a so-called local-growth model for each point. This

growth model depends only on pairwise point distances and captures how

each point “views” its local neighborhood. Each data object xi is repre-

sented by a tuple (di, ci), where di is the local dimensionality of object xi,

and ci is the local density. Intuitively, di depends on the growth rate of the

number of points in the neighborhood of xi, while ci depends on the density

of points in the neighborhood of xi. Afterwards, the EM algorithm is applied

to a data set containing these tuples of each data object. As a consequence,

DIC suffers from the problem that the number of clusters must be estimated
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in advance and specified as input parameter. In addition, DIC does not

distinguish between usual (full-dimensional) clusters and correlation clusters

that form a hyperplane in the data space.
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Chapter 10

HiCO: Mining Hierarchies of

Correlation Clusters

The detection of correlations between different features in high-dimensional

data sets is a very important data mining task. These correlations can be

arbitrarily complex: One or more features might be correlated with several

other features, and both noise features as well as the actual dependencies may

be different for different clusters. Therefore, each correlation cluster contains

points that are located on a common hyperplane of arbitrary dimensionality

in the data space and thus generates a separate, arbitrarily oriented subspace

of the original data space. The recently proposed algorithms designed to un-

cover these correlation clusters have several disadvantages. In particular,

these methods cannot detect correlation clusters of different dimensionality

which are nested into each other. The complete hierarchical structure of

correlation clusters of varying dimensionality can only be detected by a hi-

erarchical clustering approach. Therefore, the algorithm HiCO (Hierarchical

Correlation Ordering) is proposed in this Chapter, the first hierarchical ap-

proach to correlation clustering. The algorithm determines the correlation

cluster hierarchy, and visualizes it using so-called correlation reachability di-

agrams.

The remainder of this Chapter is organized as follows: Section 10.1 intro-

duces the basic definitions necessary for the main concepts of HiCO. To de-

101
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termine how to points are correlated, a special distance measurement, called

correlation distance, is introduced in Section 10.2. Section 10.3 provides the

new algorithm HiCO in detail. The runtime complexity of HiCO is examined

in Section 10.4, whereas Section 10.5 contains an extensive experimental eval-

uation of HiCO. The concepts described in this chapter have been published

in [ABKZ06].

10.1 Basic Definitions

In the following, D is assumed to be a data set of n feature vectors in a d-

dimensional data space, i.e., D ⊆ Rd. The set of points Np denotes the local

neighborhood of a point p ∈ D. As Np is used to determine the correlation

cluster to which p belongs to, Np should well reflect the correlation in the

local neighborhood of p. For instance, as local neighborhood of a point p the

ε-neighborhood of p could be chosen. Since usually the number of objects

in the ε-neighborhood of different points varies, and the query radius ε is

hard to chose, it is proposed to base the local neighborhood Np on the k-

nearest neighbors of point p. This way, it can be ensured to consider a set

of points large enough to reflect the local correlation affinity of point p well.

Obviously, k should considerably exceed d. On the other hand, k should not

be too large, as otherwise too many noise points may influence the derivation

of the local correlation structure. Please note, that any other set of points

can be chosen as local neighborhood of p, as long as it reflects the correlation

in the local neighborhood of p.

Definition 10.1 (local covariance matrix).

The local covariance matrix Σp of a point p ∈ D is formed by the local

neighborhood Np of p.

Formally1: Let x̄ be the centroid of Np, then

Σp =
1

|Np|
·
∑
x∈Np

(x− x̄) · (x− x̄)T .

1Column vectors are used by convention. Therefore, (x− x̄) · (x− x̄)T is not the inner
(scalar) product but the outer product constructing a d× d matrix.
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Since the local covariance matrix Σp of a point p is a square matrix it

can be decomposed into the Eigenvalue matrix Ep of p and the Eigenvector

matrix Vp of p such that

Σp = Vp · Ep ·VT
p .

The Eigenvalue matrix Ep is a diagonal matrix holding the d Eigenvalues

ei (i = 1, . . . , d) of Σp in decreasing order in its diagonal elements. The

Eigenvector matrix Vp is an orthonormal matrix with the corresponding d

Eigenvectors of Σp.

Now, the local correlation dimensionality of a point p can be defined

as the number of dimensions of the arbitrarily oriented subspace which is

spanned by the major axes of the neighbors of p, Np. If, for instance, the

objects in the local neighborhood of a point p are located near by a common

line, the local correlation dimensionality of p will be 1, if the neighbors are

forming a plane, the local correlation dimensionality of p will be 2, and so

on. In order to get the local correlation dimensionality of a point p, the prin-

cipal components of the points in Np have to be determined. This is done

by decomposing the local covariance matrix Σp into the Eigenvalue matrix

Ep and the Eigenvector matrix Vp (cf. Definition 10.1). Then, the Eigen-

vector associated with the largest Eigenvalue has the same direction as the

first principal component, the Eigenvector associated with the second largest

Eigenvalue determines the direction of the second principal component, and

so on. The sum of the Eigenvalues equals the trace of the square matrix Σp

which is the total variance of the points in Np. Thus, the obtained Eigenval-

ues are equal to the variance explained by each of the principal components

in decreasing order of importance. The correlation dimensionality of a point

p is now defined as the smallest number of Eigenvectors explaining a portion

of at least α of the total variance of the local neighbors of p.

Definition 10.2 (local correlation dimensionality).

Let α ∈]0, 1[. Then the local correlation dimensionality λp of a point p is

the smallest number r of Eigenvalues ei in the d × d Eigenvalue matrix Ep
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Figure 10.1: Strong and weak Eigenvectors of point p.

explaining a portion of at least α of the total variance:

λp = min
r∈{1,...,d}

{
r

∣∣∣∣∣
∑r

i=1 ei∑d
i=1 ei

≥ α

}
.

Typically α is set to values between 0.80 and 0.90. For instance, α = 0.85

denotes that the obtained principal components of Σp explain 85% of the

total variance. The λp-dimensional subspace which is spanned by the ma-

jor axes of the local neighborhood of point p is denoted as the correlation

hyperplane of p. Since it is assumed, that the Eigenvalues are ordered de-

creasingly in the Eigenvalue matrix Ep, the major axes correspond to the

λp first Eigenvectors of Σp. The first λp Eigenvectors of Vp are also called

strong Eigenvectors, the other Eigenvectors are called weak Eigenvectors.

The strong Eigenvectors of point p span the hyperplane associated with a

possible correlation cluster containing p, whereas the weak Eigenvectors of

p are perpendicular to this hyperplane. Figure 10.1 shows a 2-dimensional

example of the strong and weak Eigenvectors of a point p, where the local

neighborhood of p is illustrated by the gray points around p. The strong

Eigenvector of p spans the 1-dimensional line defining the correlation cluster

to which p belongs, the weak Eigenvector is oriented perpendicular to the

strong Eigenvector.

To easily describe some matrix computations in the following, selection

matrices for strong and weak Eigenvectors are defined.
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Definition 10.3 (selection matrices for strong and weak eigenvec-

tors).

Let p ∈ D and λp be the local correlation dimensionality of p.

The d× d selection matrix Ěp for strong Eigenvectors with entries ěij ∈
{0, 1}, i, j = 1, . . . , d, is constructed according to the following rule:

ěij =

{
1 if i = j ≤ λp

0 otherwise
.

The d × d selection matrix Êp for weak Eigenvectors with entries êij ∈
{0, 1}, i, j = 1, . . . , d, is constructed according to the following rule:

êij =

{
1 if i = j > λp

0 otherwise
.

The selection matrices for strong and weak Eigenvectors Ěp and Êp only

depend on the local correlation dimensionality λp of point p: Ěp is a d × d
diagonal matrix where the first λp diagonal elements are 1 and the remaining

d− λp diagonal element are 0 (and vice versa for Êp, i.e., Êp = Id×d − Ěp).

Based on Definition 10.3, the strong and weak Eigenvectors of an object p

are defined formally as follows:

Definition 10.4 (strong and weak eigenvectors).

Let p ∈ D, λp be the local correlation dimensionality of p, and let Vp be

the corresponding Eigenvectors of point p based on the local neighborhood Np
of p. The first λp Eigenvectors of Vp are called strong Eigenvectors, the

remaining d− λp Eigenvectors are called weak.

The matrix V̌p containing only strong Eigenvectors of p can be derived

in the following way, where Ě
[1...λp]
p denotes the matrix consisting of the first

λp columns of Ěp:

V̌p = Vp · Ě[1...λp]
p .

The matrix V̂p containing only weak Eigenvectors of p can be derived in

the following way, where Ê
[λp+1...d]
p denotes the matrix consisting of the last

d− λp columns of Êp:

V̂p = Vp · Ê[λp+1...d]
p .
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In the following, a similarity measure which reflects the distance between

any vector q ∈ Rd and the correlation hyperplane exhibited by the local

neighborhood of a point p is defined. Thus, this distance which is called

local correlation distance results in 0, if vector q lies within the correlation

hyperplane of p. Theoretically, the local covariance matrix Σp could be used

as a weight matrix for the similarity measure, but it has two undesirable

properties:

1. It corresponds to a similarity measure and to an ellipsoid which is

oriented perpendicularly to the major axes in the local neighborhood

of p. This would result in high distances to points lying within or

nearby the subspace of the major axes and in low distances to points

lying outside. Obviously, for detecting correlation clusters quite the

opposite is needed. Figure 10.2 (left) shows the ellipsoid containing

the ε-neighborhood of point p according to the local covariance matrix

Σp. Using Σp as weight matrix for the similarity measure, a high

weight ( 1√
λ1

) is put on the major axis with high variance, which is

defined by Eigenvector v1. The direction with low variance, defined by

Eigenvector v2, is associated with a low weight, 1√
λ2

.

2. The Eigenvalues vary with the data distribution, so some points p may

have higher Eigenvalues in Ep than others and this would lead to in-

comparably weighted distances. Thus, to compute comparable local

correlation distances, an inversion and a scaling of the Eigenvalues has

to be performed.

Therefore, an adaption of the local covariance matrix, the so-called local

correlation similarity matrix, is used to compute the local correlation distance

between the hyperplane exhibited by the local neighborhood of p and any

vector of the data space. The local similarity matrix is defined as follows:

Definition 10.5 (local correlation similarity matrix).

Let point p ∈ D, Vp be the corresponding d × d Eigenvector matrix of the

local covariance matrix Σp of p, and Êp be the selection matrix of the weak
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Figure 10.2: ε-neighborhood of a point p (gray shaded).

Eigenvectors of p. Then, the matrix

M̂p = Vp · Êp ·VT
p

is called the local correlation similarity matrix of p.

In Figure 10.2 (right) the ε-neighborhood of a point p according to local

correlation similarity matrix M̂p of p is illustrated. Using the local correla-

tion similarity matrix as weight matrix, the local correlation distance between

the hyperplane exhibited by the neighbors of point p ∈ D and any vector

q ∈ Rd can be defined.

Definition 10.6 (local correlation distance).

The local correlation distance between the hyperplane exhibited by the neigh-

bors of point p ∈ D and any vector q ∈ Rd is denoted by

LocDist(p, q) =

√
qT · M̂p · q.

The local correlation distance LocDist(p, q) is the weighted Euclidean

distance between vector q and the origin using the local correlation similar-

ity matrix M̂p as weight. Intuitively spoken, the local correlation distance
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LocDist(p, q) equals the Euclidean distance between vector q and the cor-

relation hyperplane exhibited by the neighbors of p. Thus, if vector q lies

within the correlation hyperplane of p, then LocDist(p, q) = 0. The local

correlation distance is not yet the similarity measure which is directly used

in the hierarchical clustering algorithm. It is merely a construction element

for the actual correlation distance measure which will be defined in the next

Section.

10.2 Determination of the Correlation between

two Points

In general, hierarchical clustering methods are able to find hierarchies of

clusters which are nested into each other, i.e., weaker clusters in which some

stronger clusters are contained. For example, the hierarchical density based

clustering method OPTICS [ABKS99] is able to detect clusters of higher

density which are nested in clusters of lower but still high density. The task

of correlation clustering as defined in [BKKZ04] is to group those points of a

data set with uniform correlation into the same correlation clusters. In the

context of hierarchical correlation clustering, the hierarchy is a containment

hierarchy of the correlation primitives. A hierarchy of correlation clusters

means that clusters with small correlation distances, such as lines, are nested

in clusters with higher correlation distances, such as planes.

The general idea is now to evaluate the correlation between two points

with a special distance measure called correlation distance. This distance

results in a small value whenever many attributes are highly correlated in the

neighborhood of the two points. In contrast, the correlation distance is high if

only a few attributes are highly correlated or the attributes are not correlated

at all. Therefore, the strategy is to merge those points into common clusters

which have small correlation distances. For instance, if two points share a

common correlation line, the correlation distance between both points will

be 1. If two points share a common correlation plane, they have a distance

of 2, and so on. Sharing a common plane can mean different things: Both
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Figure 10.3: Spaces spanned by two vectors.

points can be associated to a 2-dimensional correlation plane and the planes

are the same, or both points can be associated to 1-dimensional correlation

lines and the lines meet at some point or are parallel but not skew.

If a distance measure with the properties mentioned above is defined for

a pair of points, any of the well-known hierarchical clustering algorithms

can be used to determine a hierarchy of correlation clusters. Intuitively, the

distance measure between two points corresponds to the dimensionality of

the data space which is spanned by the strong Eigenvectors of the two points.

The notion spanning a space do not mean spanning in the algebraic sense

of linear independence which considers two vectors to span a 2-dimensional

space even if they have only a minimal difference of orientation. In this

context, a vector q adds a new dimension to the space spanned by a set of

vectors {p1, . . . , pn} if the “difference” between q and the space spanned by

{p1, . . . , pn} is substantial, i.e., if it exceeds the threshold parameter ∆. This

is illustrated in Figure 10.3: the space spanned by {q1} ∪ {p1} is considered

to be the same as the space spanned by p1 only. On the other hand, the set

of vectors {q2}∪{p1} span a 2-dimensional space as the “difference” between

q2 and p1 exceeds ∆.

In the following, first a definition of the correlation dimensionality of

a pair of points λ(p, q) is given which follows the intuition of the spanned

space. Later, a method for computing this dimensionality efficiently will

be proposed, given the local Eigenvector matrices and the local correlation

dimensionalities of p and q. The correlation dimensionality of a pair of points
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Figure 10.4: Two pairs of two vectors in a 2-dimensional vector space.

is the most important component of the correlation similarity measure and

is defined as follows:

Definition 10.7 (correlation dimensionality of a pair of points).

The correlation dimensionality of two points p, q ∈ D, denoted by λ(p, q), is

the dimensionality of the space which is spanned by the union of the strong

Eigenvectors associated to p and the strong Eigenvectors associated to q.

If the correlation dimensionality of two points p and q is determined

in a strong algebraic sense, the exactly linearly independent vectors in the

union of the strong Eigenvectors of p and q have to be computed. These n

vectors form a basis of the n-dimensional subspace spanned by the strong

Eigenvectors of p and q. The context of hierarchical correlation clustering

does not consider the notion of the spanned space in the strong algebraic

sense, but in a more informal way. That means that those vectors have to be

determined that are linearly independent in the relaxed notion as mentioned

above in order to allow a certain degree of jitter of data points around a

perfect hyperplane.

An obvious idea for computing the correlation dimensionality of a pair of

objects is to compare the strong Eigenvectors pi ∈ Vp · Ěp and qi ∈ Vq · Ěq

in a one-by-one fashion. However, as Figure 10.4 shows, the two vector

pairs {p1, p2} and {q1, q2} are linearly dependent although each vector is
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Figure 10.5: Two points with their Eigenvectors.

independent from each of the other three vectors.

One of the strong Eigenvectors, say q1 ∈ Vq · Ěq, can be tested whether

or not it is linearly independent - in the relaxed sense - to all the strong

Eigenvectors pi ∈ Vp · Ěp by testing if q1 lies (approximately) within the

correlation hyperplane of p. This can be done by using the local correlation

distance between the hyperplane exhibited by the neighbors of point p and

vector q1 as defined in Definition 10.6, i.e., by testing:

LocDist2(p, q1) = q1
T · M̂p · q1 > ∆2.

If this comparison holds, then it is known that q1 opens up a new di-

mension compared to p, and that the correlation dimensionality of p and q,

λ(p, q), is at least (λp+1). But if a second vector q2 ∈ Vq ·Ěq is tested, there

is still the problem that q2 can be linearly dependent from Vp · Ěp

⋃
{q1}

without being linearly dependent from any vector in Vp · Ěp and {q1} alone.

This problem is visualized in Figure 10.5. The strong Eigenvectors q1 and q2

of q (depicted in dashed lines) are each linearly independent from the strong

Eigenvectors p1 and p2 of p (depicted in solid lines) and by definition also

linearly independent from each other (they are even orthogonal). However,

q2 is linearly dependent from the vectors in Vp · Ěp

⋃
{q1}.

Therefore, before testing q2, vector q1 has to be integrated temporarily

into the Eigenvector matrix Vp, but only if q1 indeed opens up a new dimen-

sion. To do so, the weak Eigenvector pλp+1 has to be replaced temporarily

by the new strong Eigenvector q1 and afterwards the resulting matrix has to
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be orthonormalized.

To orthonormalize the set of vectors {p1, . . . , pλp , q1, pλp+2, . . . , pd}, the

following steps have to be applied according to the method of Gram-Schmitt:

Note that the vector pλp+1 is temporarily replaced by vector q1, i.e., pλp+1 =

q1.

1. xi := pi −
∑i−1

k=1〈pk, pi〉pk for i = λp + 1, . . . , d

2. pi := xi

||xi|| for i = λp + 1, . . . , d

The resulting vectors {p1, . . . , pd} build now again an orthonormal basis

of the d-dimensional feature space.

The orthogonalization of (d− λp) vectors causes some problems because

1. the linear independence, this time in the strong algebraic sense, of the

remaining Eigenvectors in Vp has to be guaranteed, since otherwise

orthonormalization could fail.

2. the effort is considerable high as the orthonormalization (which is in

O(d2)) has to be performed every time a new vector is integrated into

Vp.

Therefore, the test

q1
T · M̂p · q1 = q1

T · (Vp · Êp ·VT
p ) · q1 > ∆2

will be computed in an indirect way by replacing Êp by Ěp which will

yield the advantage that less vectors (one instead of up to d vectors) have to

be orthonormalized. The justification for the indirect computation is given

by the following lemma:

Lemma 10.1 (indirect similarity computation).

Let V be an orthonormal matrix consisting of the strong Eigenvectors of Σp,
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some of the added and orthonormalized Eigenvectors of Σq and the remaining

orthonormalized weak Eigenvectors of Σp. Than

xT · (V · Êp ·VT) · x = xT · x− xT · (V · Ěp ·VT) · x.

Proof.

xT · (V · Êp ·VT) · x =

xT · (V · (I − Ěp) ·VT) · x =

xT · (V · I ·VT) · x− xT · (V · Ěp ·VT) · x =

xT · x− xT · (V · Ěp ·VT) · x

2

The advantage of this computation is that now in the joint matrix M̌p =

Vp · Ěp ·VT
p the weak Eigenvectors pm for m > λp are not considered. Keep-

ing the weak Eigenvectors orthonormal after every insertion of a new strong

Eigenvector of Σq yields high computational costs: With direct computation,

up to d vectors have to be orthonormalized after each insertion. Therefore,

the overall complexity is O(d2) per insertion. Using the indirect computa-

tion, it is sufficient to orthonormalize only the inserted vector which can be

done in O(d) time. Note also that in this case the linear independence of the

vector to be orthonormalized to the strong Eigenvectors in Vp is given, be-

cause this vector is even linear independent in the relaxed sense - and linear

independency in weak sense implies linear independency in strict sense.

Now, the correlation distance between two points can be defined as fol-

lows:

Definition 10.8 (correlation distance).

The correlation distance between two points p, q∈D, denoted by CorrDist(p, q),

is a pair consisting of the correlation dimensionality of p and q and the Eu-

clidean distance between p and q, i.e.,

CorrDist(p, q) = (λ(p, q),Dist(p, q)).
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CorrDist(p, q) ≤ CorrDist(r, s) if one of the following conditions

hold:

1. λ(p, q) < λ(r, s),

2. λ(p, q) = λ(r, s) and Dist(p, q) ≤ Dist(r, s).

The algorithm for computing the correlation distance is presented in Fig-

ures 10.6 and 10.7. First, the correlation dimensionality λ(p, q) of two points

p and q is derived as follows: For each of the strong Eigenvectors qi of q test

whether qi
T · qi − qi

T · (Vp · Ěp · VT
p ) · qi > ∆2. If so, increase λp by one

and set vector pλp to the orthonormalized vector of qi. Finally, λp contains

the correlation dimensionality of p and q w.r.t. p. In an analogue way, the

correlation dimensionality of p and q w.r.t. q is derived. The overall corre-

lation dimensionality λ(p, q) is the maximum of both, λp, and λq. λ(p, q) is

now the major building block for the correlation distance. As λ(p, q) ∈ N,

many distances between different point pairs are identical. Therefore, there

are many tie situations during clustering. These tie situations are resolved

by additionally considering the Euclidean distance as a secondary criterion.

This means, inside a correlation cluster (if there are no nested stronger cor-

relation clusters), the points are clustered in a “conventional” way.

10.3 Algorithm HiCO

Using the correlation distance defined above as a distance measure, basi-

cally every hierarchical or even non-hierarchical clustering algorithm which

is based on distance comparisons can pe performed, e.g., Single-Link [Sib73],

DBSCAN [EKSX96] (non-hierarchical) or OPTICS [ABKS99]. Since OP-

TICS is hierarchical and more robust w.r.t. noise than Single- and Complete-

Link, the algorithmic schema and visualization technique of OPTICS are used

for HiCO.

In order to compute the correlation distance between two points, the

following attributes have to be determined for each point p of the data set

in a preprocessing step:
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function correlationDistance(Object p, Object q, Real ∆)

Vp := Eigenvector matrix of p;

λp := local correlation dimensionality of p;

Ěp := selection matrix of strong Eigenvectors of p;

V̌p := Vp · Ě[1...λp]
p := matrix of strong Eigenvectors of p;

Vq := Eigenvector matrix of q;

λq := local correlation dimensionality of q;

Ěq := selection matrix of strong Eigenvectors of q;

V̌q := Vq · Ě[1...λq ]
q :=matrix of strong Eigenvectors of q;

for each strong Eigenvector qi ∈ V̌q do

if qi
T · qi − qi

T · (Vp · Ěp ·VT
p ) · qi > ∆2 then

adjust(Vp, Ěp, qi, λp);

λp := λp + 1;

end if

end for

for each strong Eigenvector pi ∈ V̌p do

if pi
T · pi − pi

T · (Vq · Ěq ·VT
q ) · pi > ∆2 then

adjust(Vq, Ěq, pi, λq);

λq := λq + 1;

end if

end for

λ(p, q) := max(λp, λq)

return (λ(p, q),Dist(p, q));

end.

Figure 10.6: The function to determine the correlation distance between

two points.
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procedure adjust(Matrix V, Matrix Ě, Vector x, Integer λ)

// let matrix V consist of the column vectors v1, . . . , vd

// let diagonal matrix Ě consist of the diagonal elements ě1, . . . , ěd

vλ+1 := x

ěλ+1 := 1

for i = 1 . . . λ do

vλ+1 := vλ+1 − 〈vi, x〉 · vi;

end for

vλ+1 := vλ+1

||vλ+1||

end.

Figure 10.7: The procedure for orthonormalization.

1. The Eigenvector matrix Vp of p by decomposition of the local covari-

ance matrix Σp which is the covariance matrix of the k-nearest neigh-

bors of p.

2. The local correlation dimensionality λp which indicates the highly cor-

related dimensions in the k-nearest neighbors of p.

3. The selection matrix of the strong Eigenvectors Ěp of p which is used

to compute the correlation distance between point p and other points.

As suggested in [ABKS99], a smoothing factor µ is introduced to avoid

the Single-Link effect and to achieve robustness against noise points. Thus,

instead of using the correlation distance CorrDist(p, q) to measure the sim-

ilarity of two points p and q, the correlation reachability CorrReachµ(p, q)

is used to compare these two points. The correlation reachability of a point

q relative to a point p is defined as the maximum value of the correlation

distance from p to its µ-nearest neighbor (w.r.t. the correlation distance

CorrDist) and the correlation distance between p and q.

Definition 10.9 (correlation reachability).

For µ ∈ N+, µ ≤ |D| let r be the µ-nearest neighbor of p ∈ D w.r.t. the
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algorithm HiCO(Database D, Integer k, Integer µ, Real α, Real ∆)

initialize empty correlation cluster order co;

initialize empty priority queue pq ordered by MinCorrReach;

for each p ∈ D do

compute Vp, λp, Ěp w.r.t. parameters k and α;

p.MinCorrReach = ∞;

pq.insert(p);

end for

while pq 6= ∅ do

p := pq.next();

co.add(p);

r := µ-NN of p w.r.t. CorrDist;

for each q ∈ pq do

crnew := max(CorrDist(p, r),CorrDist(p, q));

if crnew < q.MinCorrReach then

q.MinCorrReach := crnew;

pq.decrease(q);

end if

end for

end while

return co;

end.

Figure 10.8: The HiCO algorithm.

correlation distance CorrDist. The correlation reachability of a point q ∈
D relative to point p w.r.t. µ is defined as

CorrReachµ(p, q) = max(CorrDist(p, r),CorrDist(p, q)).

In each step of the algorithm, HiCO selects that point p having the min-

imum correlation reachability relative to any already processed point. For
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that purpose, each object p has an additional attribute p.MinCorrReach

that holds the minimum correlation reachability relative to any object pro-

cessed before p. The pseudocode of the HiCO algorithm can be seen in Figure

10.8.

Initially, for each point p ∈ D its Eigenvector matrix Vp, its local corre-

lation dimensionality λp, its selection matrix of the strong Eigenvectors Ěp is

computed. Then, a minimum correlation reachability of∞ is assigned to each

object p and p is added to a priority queue. This priority queue is organized

as a heap and stores all points according to MinCorrReach in ascending

order. By always taking as next point to be processed the first object in the

priority queue, HiCO computes a “walk” through the data set and assigns to

each remaining point q its smallest correlation reachability relative to a point

considered before q in the walk. A special order of the database according

to its correlation-based clustering structure is generated, the so-called cor-

relation cluster order which can be displayed in a correlation reachability

diagram. Such a correlation reachability diagram consists of the correlation

reachability values on the y-axis of all points, plotted in the order which

HiCO produces on the x-axis. The result is a visualization of the correlation

clustering structure of the data set which is very easy to understand. The

“valleys” in the plot represent the correlation clusters, since points within a

correlation cluster typically have lower correlation reachabilities than points

outside a correlation cluster.

10.4 Runtime Complexity

Let n be the number of data points and d be the dimensionality of the data

space. In the preprocessing step, the Eigenvector matrix, the correlation

dimensionality, and the selection matrix of the weak Eigenvectors is pre-

computed for each object. This step requires the determination of the local

covariance matrix of an object which needs O(n · d + k · d2) time. Since

this is done for each object in the data set the runtime complexity results

in O(n2 · d + n · k · d2) for the determination of the local covariance matrix.
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Additionally, the local covariance matrix of each point has to be decomposed

into the Eigenvalue matrix and the Eigenvector matrix. This step has a

complexity of O(n · d3), which is absorbed by the time complexity for the

determination of the local covariance matrix (since k > d). Overall, the

complexity of the preprocessing step yields in O(n2 · d+ n · k · d2).

During the run of HiCO, for each point p of the data set, the correlation

reachability of all remaining points q in the priority queue to p has to be

evaluated. This requires first the determination of the µ-nearest neighbor of p

w.r.t. CorrDist which needs O(n·d3) time for one object and O(n2·d3) time

for n objects. Then, the correlation reachability of q to p can be calculated

in O(d3) time. Since this is done for all point pairs p and q, the complexity

of the main loop of HiCO yields O(n2 · d3).

Overall, since k < n, the complete runtime complexity of HiCO results

in O(n2 · d3).

10.5 Experimental Evaluation

All experiments have been performed on a workstation with a 2 · 64-bit 2.6

GHz CPU and 16 GB main memory. All evaluated methods have been imple-

mented in Java. In all experiments, the input parameters of all methods have

been optimized in terms of quality and the best results have been reported

in order to achieve a fair comparison.

10.5.1 Results on Synthetic Data

HiCO has been applied to several synthetic data sets. In the following, the

results on a 3-dimensional data set named “DS1”, which is depicted in Fig-

ure 10.9, are shown. Data set “DS1” contains a hierarchy of correlation

clusters consisting of two 1-dimensional correlation clusters (lines) belonging

to a 2-dimensional correlation cluster (plane) and additional noise points.

The correlation reachability diagram computed by HiCO with a parameter
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Figure 10.9: Data set “DS1”.

setting of k = µ = 20, α = 0.9,∆ = 0.05 is shown in Figure 10.10(a). As it

can be observed, HiCO detects two 1-dimensional correlation clusters that

are embedded within a 2-dimensional correlation cluster. Additionally, some

objects have a correlation distance of 3 which equals the data dimensionality,

i.e., they can be regarded as noise. The “valleys” in the correlation reacha-

bility diagram marked with “Cluster 1”, “Cluster 2”, and “Cluster 3” have

been analyzed. The points that are clustered together in that correlation

clusters are depicted in Figures 10.10(c), 10.10(d), and 10.10(b). As it can

be seen, the correlation plane “Cluster 3” corresponds to the 2-dimensional

correlation cluster in the diagram, whereas the two correlation lines “Cluster

1” and “Cluster 2” exactly correspond to the 1-dimensional correlation sub-

clusters of “Cluster 3” in the diagram. Obviously, HiCO detects the hidden

correlation hierarchy exactly.

For comparison, ORCLUS, OPTICS and 4C have been applied on the

same data set, but none of them were able to find the correlation clusters

equally well despite reasonable parameter settings. For ORCLUS, the pa-

rameters have been set to k = 3 and l = 2, but as it can be seen in Figure

10.11, ORCLUS was not able to find the correlation clusters hidden in the

synthetic 3-dimensional data set “DS1”.

OPTICS has also been applied to the synthetic 3-dimensional data set

“DS1” with a parameter setting of ε = 1, µ = 20. The results are shown in
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Cluster 1 Cluster 2

Cluster 3

(a) Correlation reachability diagram. (b) Cluster 3.

(c) Cluster 1. (d) Cluster 2.

Figure 10.10: Results of HiCO on “DS1”.

Figure 10.12. The reachability diagram computed by OPTICS is depicted in

the upper Figure 10.12(a). The objects corresponding to the “valleys” in the

reachability diagram marked with “Cluster 1” and “Cluster 2” are shown in

the upper two Figures 10.12(b) and 10.12(c). As it can bee seen, OPTICS

detected a hierarchy of clusters according to its density based paradigm, but

it was obviously not able to separate the correlation within these clusters.

Figure 10.13 shows the results of two 4C runs with different parameter

settings for parameter λ which determines the correlation dimensionality of

the correlation clusters to be found. As parameter λ was set to one in the

first run, 4C detected four 1-dimensional clusters consisting of the two lines

in the synthetic 3D data set (cf. Figure 10.13(a)), but 4C failed to detect

the 2-dimensional correlation cluster. The remaining parameters in this run

were set to ε = 0.1, µ = 20, δ = 0.2. According to the parameter setting

of λ = 2, ε = 0.25, µ = 20, δ = 0.1 in the second run, 4C found one 2-
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(a) Cluster 1. (b) Cluster 2.

(c) Cluster 3.

Figure 10.11: Results of ORCLUS on “DS1”.

dimensional correlation cluster. This cluster consists of the plane, but also

of the two lines (cf. Figure 10.13(b)). In both runs, 4C was not able to detect

all three correlation clusters as HiCO did.

10.5.2 Results on Real-world Data

Additionally to the synthetic data sets, the effectivity of HiCO has been

evaluated by using four real-world data sets. The results of HiCO applied

to the real-world data sets are shown in Figure 10.14 where the correlation

reachability diagrams are depicted.

The first data set is derived from a medical study to develop screening

methods in order to identify carriers of a rare genetic disorder. Four measure-

ments were made on blood samples of approximately 150 people who do not
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Cluster 1

Cluster 2

(a) Reachability diagram.

(b) Cluster 1. (c) Cluster 2.

Figure 10.12: Results of OPTICS on “DS1”.

suffer from the disease and on 50 carriers of the disease. This data set is in

the following called “Biomed”. Applied to the “Biomed” data with a param-

eter setting of k = 25, µ = 10,∆ = 0.25, α = 0.8, HiCO found a cluster with

correlation dimensionality of 2, embedded in a larger 3-dimensional correla-

tion cluster. The corresponding correlation reachability diagram is depicted

in Figure 10.14(a). The cluster with a correlation dimensionality of 2 mostly

consists of carriers of the genetic disorder. Most of the people not suffering

from the disease belong to the cluster with a correlation dimensionality of 3.

As a second data set, the “El Nino” data has been used, a benchmark

data set from the UCI KDD Archive2. The data set contains oceanographic

and surface meteorological readings taken from a series of buoys positioned

throughout the equatorial Pacific. These data are expected to aid in the

understanding and prediction of El Nino / Southern Oscillation cycles. It

2http://kdd.ics.uci.edu/

http://kdd.ics.uci.edu/
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Cluster 3

Cluster 2

Cluster 1

Cluster 4

(a) Results of 4C with λ = 1.

Cluster 1

(b) Results of 4C with λ = 2.

Figure 10.13: Results of 4C with different λ-parameter settings on “DS1”.

contains of approximately 800 objects with 9 dimensions. The resulting

correlation reachability diagram of HiCO (k = 40, µ = 15,∆ = 0.25, α = 0.8)

applied on the “El Nino” data set is depicted in Figure 10.14(b). As it

can be seen, the hierarchy contains a 1-dimensional correlation cluster and

four 2-dimensional clusters. Analyzing these clusters, it turned out that the

observations belonging to these clusters were mostly made from neighbored

buoys.

The third data set consists of 534 11-dimensional observations from the

1985 Current Population Survey3. It includes information for each worker:

the years of education, an indicator for southern states, sex, years of working

experience, an indicator for union membership, the hourly wage in dollars,

age, race, occupation, sector and marital status. This data set is in the follow-

ing named “Wages”. HiCO has been applied to this data set with a param-

eter setting of k = 40, µ = 10,∆ = 0.25, α = 0.8. The resulting correlation

reachability diagram is depicted in Figure 10.14(c), where a strong hierarchy

of correlation clusters can be observed. HiCO computed four 2-dimensional

correlation clusters embedded in a 3-dimensional correlation cluster which

is also embedded in a 4-dimensional cluster. The hierarchy ends up with 5-

and 6-dimensional clusters. The first of the 2-dimensional clusters consists

of only white married women living not in the southern states of the USA

and not belonging to any union. To the second 2-dimensional cluster male

3http://lib.stat.cmu.edu/datasets/CPS_85_Wages

http://lib.stat.cmu.edu/datasets/CPS_85_Wages
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persons with the same attributes as the women in the first cluster have been

assigned. The third 2-dimensional cluster consists of unmarried white women

being no union member and living in the northern states. And last but not

least, people belonging to the fourth 2-dimensional cluster have the same

attributes as the third cluster but being men instead of women. Obviously,

HiCO computed pure correlation clusters on this data set.

The fourth data set consists of the concentrations of 43 metabolites in

2,000 newborns. The newborns were labeled according to some specific

metabolic diseases. Thus, the data set consists of 2,000 data points with

43 dimensions. This data set is in the following called “Metabolome”. HiCO

retrieved with a parameter setting of k = 100, µ = 10,∆ = 0.25, α = 0.8 on

the “Metabolome” data 7- and 8-dimensional correlation clusters embedded

in higher dimensional clusters. These clusters of relative low dimensionality

consist of only newborns suffering from phenylketonuria (PKU), while the

healthy newborns are grouped in the clusters of higher dimensionality.

To summarize, the experiments show that HiCO detects several interest-

ing correlation cluster hierarchies in real-world data sets.
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(a) Results on “Biomed” data set. (b) Results on “El Nino” data set.

(c) Results on “Wages” data set.
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(d) Results on “Metabolome” data set.

Figure 10.14: Resulting correlation reachability diagrams of HiCO applied

to the real-world data sets.



Chapter 11

ERiC: Exploring Complex

Hierarchical Relationships of

Correlation Clusters

In high-dimensional data, clusters often only exist in arbitrarily oriented sub-

spaces of the feature space. In addition, these so-called correlation clusters

may have complex relationships between each other. For example, a corre-

lation cluster in a 1-dimensional subspace forming a line may be enclosed

within one or even several correlation clusters in 2-dimensional superspaces

forming planes. In general, such relationships can be seen as a complex hi-

erarchy that allows multiple inclusions, i.e., clusters may be embedded in

several super-clusters rather than only in one. Obviously, uncovering the

hierarchical relationships between the detected correlation clusters is an im-

portant information gain.

The only approach for finding hierarchies of correlation clusters intro-

duced so far is HiCO (cf. Chapter 10). But HiCO suffers from two main

drawbacks: Firstly, HiCO uses a relatively complex distance measure for

every distance query in the clustering step. This results in considerable com-

putational efforts. Secondly, the hierarchy detected by HiCO is limited to

simple inclusions, i.e., HiCO cannot uncover complex hierarchies that exhibit

127
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multiple inclusions. The reason for this limitation is that HiCO uses the al-

gorithmic schema and visualization technique of OPTICS [ABKS99]. Thus,

the tree-like hierarchy of the correlation reachability plot produced by HiCO

cannot reflect complex hierarchical relationships of correlation clusters like

multiple inclusions. To tackle these problems, in this Chapter the algorithm

ERiC (Exploring complex hierarchical Relationships among Correlation clus-

ters) is proposed. ERiC is able to uncover efficiently complex hierarchical re-

lationships of correlation clusters in high-dimensional data sets including not

only single inclusions (like HiCO) but also multiple inclusions. In addition,

ERiC provides an appropriate visualization of these complex relationships by

means of a graph-based representation and outperforms HiCO and its other

(non-hierarchical) competitors significantly in terms of efficiency.

The remainder of this Chapter is organized as follows. Section 11.1 de-

scribes the three steps of the new algorithm ERiC in detail: First, the par-

titioning of the objects w.r.t. their local correlation dimensionality. Second,

the clustering of the points within each partition, and, third, the aggrega-

tion of the hierarchy of correlation clusters. The experimental evaluation

in Section 11.3 shows that ERiC finds more information than state-of-the-

art correlation clustering methods and outperforms existing competitors in

terms of efficiency. Parts of the material presented in this Chapter have been

published in [ABK+07c] and [ABK+07b].

11.1 Algorithm ERiC

Hierarchical clustering schemata such as the agglomerative schema (e.g. used

by Single-Link [Sib73]), the divisive schema, or the density-based schema

(e.g. used by OPTICS [ABKS99]) cannot uncover complex hierarchies that

exhibit multiple inclusions. The reason for this limitation is that the result-

ing complex hierarchy of an algorithm implementing any of the traditional

schemata is only capable of producing a tree-like hierarchy rather than pro-

ducing a graph-like hierarchy. Thus, approaches like HiCO (cf. Chapter

10) that integrate a suitable “correlation distance measure” into traditional
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hierarchical clustering schemata cannot be used to handle hierarchies with

multiple inclusions.

As a consequence, ERiC follows a different strategy. The basic idea of

ERiC is first to determine all correlation clusters for all possible correlation

dimensions simultaneously. Then, the hierarchical relationships among the

correlation clusters is aggregated from this result. In particular, the algo-

rithm ERiC consists of the following three steps: First, the objects of the

database are partitioned w.r.t. their “local correlation dimensionality”, re-

flecting the dimensionality of the correlation cluster in which p fits best (cf.

Section 11.1.1). In a second step, the points within each partition are clus-

tered by using a “flat” correlation clustering algorithm (cf. Section 11.1.2).

The result of these two steps is the complete set of correlation clusters with

the additional information regarding their correlation dimensionality. To ex-

plore the relationships among the correlation clusters found during step 2,

a bottom-up strategy is applied: For any cluster Ci with correlation dimen-

sionality λi, those clusters Cj with correlation dimensionality λj > λi are

considered as possible parents. A cluster Cj is a parent of Ci if Ci is embed-

ded in (and therefore part of) Cj. Using this information, ERiC creates the

final result, i.e., a hierarchy of correlation clusters with multiple inclusions in

the third step (cf. Section 11.1.3). Regarding the basic definitions applicable

to this Chapter please refer to Section 10.1.

11.1.1 Partitioning w.r.t. Correlation Dimensionality

In the following, D is assumed to be a data set of n feature vectors in a

d-dimensional data space, i.e., D ⊆ Rd. In the first step of ERiC, the ob-

jects of the data set D are partitioned according to their local correlation

dimensionality as already defined in Definition 10.2. The local correlation

dimensionality λp of a point p reflects the correlation dimensionality of the

local neighborhood of p. That means, λp mirrors the correlation dimension-

ality of the correlation cluster to which p should belong to (if such a cluster

exists). Thus, database objects of different local correlation dimensionality

cannot form a common correlation cluster. As a consequence, it is sufficient
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to extract correlation clusters from each of the partitions separately.

An important aspect of Definition 10.2 is the notion of the local neighbor-

hood of a point p, denoted by Np. The set of points belonging to Np should

reflect the correlation in the local neighborhood of p. In [BKKZ04], the corre-

lation in the neighborhood of p is determined in terms of the ε-neighborhood

of p. However, the proper representation of the local correlation is very sensi-

tive to the choice of ε. If ε is chosen too small, Np will contain an insufficient

number of points, resulting in an unstable covariance matrix. As a conse-

quence, PCA will fail to determine the proper correlation. On the other hand

if ε is chosen too high, Np will contain noise points that do not fit to the

local correlation but are located near to p. In that case, the local correlation

dimensionality of p derived by PCA of Σp will be considerably higher than

the dimensionality of the local correlation to which p belongs. In addition,

the global choice of ε as proposed in [BKKZ04] may cause that both sketched

problems appear for different points in the database, i.e., for some points ε

is chosen too high, whereas for some other points ε is chosen too low.

Due to these considerations, ERiC uses the k-nearest neighbors of p to

determine the local correlation dimensionality of p, i.e., Np contains the k-

nearest neighbors of p. This ensures that the number of points in Np is large

enough to avoid the first problem mentioned above if k is chosen properly.

Usually it seems to be a good choice to set k = 3 · d in order to derive a

meaningful covariance matrix Σp and a stable singular value decomposition

of Σp to yield its principal components. Thus, the local correlation dimen-

sionality is well defined even for outliers. Furthermore, the range of the

k-nearest neighbors is adaptive to variations of the local density: A higher

local density for a point is more accurately resolved by using the k-nearest

neighbors rather than the ε-neighborhood. This is due to the fact, that the

ε-neighborhood would provide a considerably larger amount of points which

results in in a local correlation dimensionality that does not reflect the ac-

tual local correlation dimensionality as exactly as the k-nearest neighbors

do. As a consequence, the local correlation dimensionality of each point is

based on an equal amount of points and, thus, it is more comparable. In

fact, it empirically turned out that using the k-nearest neighbors instead of
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the ε-neighborhood avoids also the second mentioned problem.

After determinating the local correlation dimensionality λp of each object

p ∈ D based on the k-nearest neighbors of p, all points p ∈ D with λp = i are

assigned to a partition Di of the database D. This results in a set of d disjoint

subsets D1, . . . ,Dd of D. Some of these subsets may remain empty. If not a

single point exhibits a local correlation dimensionality of i, then Di = ∅. In

terms of correlation clustering, Dd contains only noise, since there is no linear

dependency of features within the neighborhood of p if λp = d. Note that

the number of attributes involved in linear dependencies within a correlation

cluster C is not λC, but d− λC.

By means of this first step of ERiC one does not only yield an appropriate

local correlation dimensionality for each point in advance. Even a consider-

able reduction of the number of data points to be processed in each single

run of a correlation clustering algorithm is given. On average, the number of

data points is reduced to n
d

for each run. In fact, ERiC processes each data

object only once during the second step when determining the correlation

clusters.

11.1.2 Computing Correlation Clusters within each Par-

tition

Having performed the partitioning of the database D in the first step, now

a clustering step is performed for each partition separately. For the clus-

tering procedure, the fact that all points within a given partition Di share

a common local correlation dimensionality i can be utilized. Based on the

local correlation dimensionality of a point p, strong Eigenvectors that span

the hyperplane associated with a possible correlation cluster containing p,

and weak Eigenvectors that are perpendicular to this hyperplane are distin-

guished: The first λp Eigenvectors of the Eigenvector matrix Vp are called

strong Eigenvectors of p, the remaining d − λp Eigenvectors are called weak

Eigenvectors (cf. Definition 10.4).

Two points p, q ∈ Di are associated to the same correlation cluster if
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their strong Eigenvectors span approximately the same hyperplane. This

will not be the case if any strong Eigenvector of p is linearly independent

from the strong Eigenvectors of q or vice versa. However, linear dependency

needs to be considered in a weakened sense to allow a certain degree of

deviation, say ∆. In real-world data, it is unlikely to find a correlation cluster

that perfectly fits to a hyperplane. Therefore, the strong Eigenvectors of a

point q are considered to be approximately linear dependent from the strong

Eigenvectors of p if the local correlation distance LocDist (as defined in

Definition 10.6) between point p and all strong Eigenvectors qi of point q

does not exceed the threshold ∆. Formally:

Definition 11.1 (approximate linear dependency).

Let ∆ ∈ ]0, 1[ , p, q ∈ D, w.l.o.g. λq ≤ λp, and let LocDist denote the local

correlation distance as defined in Definition 10.6. Then the strong Eigen-

vectors of q are approximately linear dependent w.r.t. ∆ from the strong

Eigenvectors of p if the following condition holds for all strong Eigenvectors

qi of q:

LocDist(p, qi) ≤ ∆.

If the strong Eigenvectors of q are approximately linear dependent w.r.t. ∆

from the strong Eigenvectors of p, it is shortly denoted by

span(q) ⊆∆
aff span(p).

Since obviously a higher dimensional subspace could never be included

within a lower dimensional one, the approximate linear dependency of the

strong Eigenvectors of an object q from the strong Eigenvectors of an object

p is only defined for objects p, q with λq ≤ λp. For the clustering step the

condition λq ≤ λp of Definition 11.1 is fulfilled, because the local correlation

dimensionality is the same for all objects placed in one partition Di. As the

definition of approximate linear dependency is also needed in the third step

of ERiC for aggregating the hierarchy of correlation clusters, this condition

is defined more general for a different number of strong Eigenvectors λp and

λq.
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Figure 11.1: Affine subspaces.

As indicated above, the threshold ∆ specifies the degree of deviation

of a straight plane a correlation cluster may exhibit. Since approximate

linear dependency is not symmetric in general, two objects p and q can

only belong to a common correlation cluster if span(q) ⊆∆
aff span(p) and

span(p) ⊆∆
aff span(q). However, Definition 11.1 does not take into account

any affinity. Thus, the strong Eigenvectors of q are considered approximately

linear dependent from the strong Eigenvectors of p, although if the space

spanned by the strong Eigenvectors of q is (approximately) parallel to the

space spanned by the strong Eigenvectors of p. Figure 11.1 illustrates an

simple 2-dimensional example: the 1-dimensional subspace spanned by the

strong Eigenvector p1 of p is parallel to the subspace spanned by the strong

Eigenvector q1 of q, although LocDist(p, q1) ≤ ∆ for a small ∆ and thus,

span(q) ⊆∆
aff span(p). In order to exclude affine subspaces, the distance

between p and q has to be additionally assessed along the weak Eigenvectors

of p, i.e., perpendicular to the hyperplane defined by the strong Eigenvectors

of p. This distance which is called affine distance uses the local correlation

similarity matrix of Definition 10.5 and is defined as follows.

Definition 11.2 (affine distance).

Let p, q ∈ D, and let M̂p be the local correlation similarity matrix of p as

defined in Definition 10.5. The affine distance between p and q is given by

Distaff(p, q) =

√
(p− q)T · M̂p · (p− q).

Basically, the affine distance between a a point p and a point q is a

weighted distance where the weights are based on the local neighborhood of

p. The weights are constructed to take into account only the distances along

the weak Eigenvectors of p, while distances along the strong Eigenvectors of
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p are neglected. The affine distance as defined above is an non-symmetric

distance measure, i.e., assessing the affine distance between p and q will in

general not yield the same result as using the affine distance between q and

p.

Combining approximate linear dependency (Definition 11.1) and the affine

distance (Definition 11.2) yields the definition of a correlation distance be-

tween two points. The correlation distance between two points p and q is

a binary distance measure that results in 0 if q lies within the correlation

hyperplane of p and in 1, otherwise. Since both, approximate linear depen-

dency and the affine distance are non-symmetric, the correlation distance is

also a non-symmetric distance measurement.

Definition 11.3 (correlation distance).

Let ∆ ∈ ]0, 1[ , δ ∈ R+
0 , p, q ∈ D, and w.l.o.g. λq ≤ λp. Then the correlation

distance between p and q, denoted by CorrDist δ
∆(p, q), is defined as follows

CorrDist δ
∆(p, q) =

{
0 if span(q) ⊆∆

aff span(p) ∧ Distaff(p, q) ≤ δ

1 otherwise
.

These concepts can now be integrated into a clustering algorithm which

is performed on each partition. As clustering algorithm the density-based

clustering algorithm GDBSCAN [SEKX98] is chosen, which is a generaliza-

tion of the well-known DBSCAN clustering algorithm [EKSX96]. The choice

of GDBSCAN is because of its efficiency and its effectivity. GDBSCAN is

robust against noise and does not require the user to specify the number of

clusters in advance.

DBSCAN iteratively performs the following procedure for each not yet

processed point p ∈ D: First, the ε-neighborhood of p in the feature space

is computed. If this ε-neighborhood contains less than µ points, p is marked

as noise and the procedure is performed for the next unclassified point in D.

Else, if p’s neighborhood contains at least µ points, p is considered as core

point and a new cluster is initiated. All points in the ε-neighborhood of p are

inserted into a queue and are marked with the same cluster-ID as p. As long

as this queue is not empty, the described procedure is repeated for the next
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point in the queue. If the queue is empty, the procedure starts with another

arbitrary not yet marked point. DBSCAN terminates after a single scan over

the database. ε ∈ R+ and µ ∈ N+ are the input parameters specifying the

density threshold points within a cluster must exceed.

The GDBSCAN framework as proposed in [SEKX98] provides a very easy

possibility to integrate any similarity model into the algorithmic schema of

DBSCAN. The basic idea is that instead of the ε-neighborhood one has to

specify a generalized neighborhood of an object p, denoted by NNPred(p),

given by

NNPred(p) = {q |NPred(p, q)},

where NPred(p, q) is a predicate on p and q that has to be reflexive and

symmetric. In addition, to decide whether or not object p is a core point,

a generalized minimum weight of NNPred(p) must be defined, denoted by

MinWeight(NNPred(p)).

Thus, in order to integrate the correlation distance measure into the GDB-

SCAN algorithm

(i) a symmetric and reflexive predicate NPred(p, q) on two points p, q ∈ D
and

(ii) a minimum weight MinWeight

have to be specified.

Intuitively, the neighborhood of an object p is formed by all points q for

which the strong Eigenvectors of q span the same hyperplane as the strong

Eigenvectors of p. Since the correlation distance between two points p and

q can only take a value of 0 or 1 (cf. Definition 11.3), the neighborhood of

an object p is formed by all points q having a correlation distance w.r.t. p of

0 to p. For symmetry reasons also the correlation distance between p and q

w.r.t. q has to be 0. Formally:

Definition 11.4 (neighborhood predicate).

Let ∆ ∈ ]0, 1[ , δ ∈ R+
0 , p, q ∈ D. The neighborhood predicate of p and q is
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given by:

NPred(p, q)⇔ CorrDist δ
∆(p, q) = 0 ∧CorrDist δ

∆(q, p) = 0.

The second issue is to define the minimum weight MinWeight on the

neighborhood. Intuitively, if MinWeight of the neighborhood of a point p is

true, p is considered as core point by the run of GDBSCAN. Analogously

to traditional clustering, it is required that a point p finds at least µ points

in its neighborhood NNPred(p) using the correlation distance CorrDist as

distance function.

Definition 11.5 (minimum weight).

Let µ ∈ N+, p ∈ D and let NNPred(p) be the neighborhood of p based on the

neighborhood predicate as defined in Definition 11.4. The minimum weight

of NNPred(p) such that p is a core point is given by:

MinWeight(NNPred(p))⇔ |NNPred(p)| ≥ µ.

Now, having defined the neighborhood predicate of an object and the

minimum weight predicate of the neighborhood of an object, the GDBSCAN

framework can be used to compute the set of correlation clusters in each

partition Di.

11.1.3 Aggregating the Hierarchy of Correlation Clus-

ters

The first approach deriving information regarding the hierarchical relation-

ships among correlation clusters is HiCO (cf. Chapter 10 for details). HiCO

integrates a distance measure which takes the local correlation dimension-

ality of the objects into account into the hierarchical clustering algorithm

OPTICS [ABKS99]. The resulting correlation reachability plot allows the

user to derive a simple hierarchy of correlation clusters, but multiple inclu-

sions cannot be derived from the resulting correlation reachability plot. Thus,

the detected hierarchical structure of correlation clusters can be misleading.
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(a) Data set “DSA”. (b) Data set “DSB”.

Figure 11.2: Data sets with different hierarchies of correlation clusters.

(a) Correlation reachability plot of “DSA”. (b) Correlation reachability plot of “DSB”.

Figure 11.3: Results of HiCO.

This limitation is illustrated in Figure 11.3 depicting the resulting correla-

tion reachability plots when applying HiCO on the sample data sets from Fig-

ure 11.2. Data set “DSA” consists of a simple hierarchy of two 1-dimensional

correlation clusters that are embedded within a 2-dimensional correlation

cluster (cf. Figure 11.2(a)). The second data set “DSB” forms a more com-

plex hierarchy with multiple inclusions, where one of the 1-dimensional cor-

relation clusters is the intersection of two 2-dimensional correlation clus-

ters, i.e., it is embedded in two clusters of higher dimensionality (cf. Figure

11.2(b)). As it can be observed, the resulting correlation reachability plots

of HiCO look almost identical for both, sample data set “DSA” (cf. Figure

11.3(a)) and sample data set “DSB” (cf. Figure 11.3(b)). Since valleys in the

correlation reachability plot indicate correlation clusters, both plots reveal
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Figure 11.4: Correlation clustering graph of “DSB”.

the same information of two 1-dimensional correlation clusters embedded

within one 2-dimensional correlation cluster. In fact, in data set “DSB” the

two 2-dimensional correlation clusters cannot be separated and the complex

hierarchy consisting of the multiple inclusion cannot be detected by HiCO.

The true hierarchy hidden in sample data set “DSB” can only be represented

by a graph model. Figure 11.4 envisions such a visualization of the complete

correlation hierarchy allowing for multiple inclusions. In fact, ERiC will pro-

duce such a visualization in the third step of the algorithm, which is described

in detail in the following.

To explore the relationships among the correlation clusters found during

the second step, a bottom-up strategy is now applied in the third step of

the ERiC algorithm. For each correlation cluster Ci derived in step 2 (cf.

Section 11.1.2) its centroid c̄i is determined as mean value over all cluster

members. Then the correlation cluster centroid c̄i gets assigned its local cor-

relation similarity matrix M̂c̄i
(cf. Definition 10.5) using all cluster members

as neighborhood Nc̄i . Note that the correlation dimensionality of correla-

tion cluster Ci, and thus the local correlation dimensionality of centroid c̄i is

already given by the partition Di to which Ci belongs to, i.e., λCi = λc̄i = i.
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procedure buildHierarchy(ClusterList cl, Real ∆, Real δ)

λmax := d; // d = dimensionality of data space

for each Ci ∈ cl do

c̄i := Ci.centroid;

for each Cj ∈ cl with λCi < λCj do

c̄j := Cj.centroid;

if λCj = λmax ∧ Ci.parents=∅ then

Ci.addParent(Cj);

else

if CorrDist δ
∆(c̄j, c̄i) = 0 ∧

(Ci.parents=∅ ∨ ¬ isParent(Cj, Ci.parents, ∆, δ))

then

Ci.addParent(Cj);
end if

end if

end for

end for

end.

Figure 11.5: The procedure to build the hierarchy of correlation clusters.

As mentioned before, the parent of a cluster Ci with correlation dimen-

sionality λCi can be any cluster Cj with correlation dimensionality λCj > λCi .

Therefore, the following steps are applied to each correlation cluster Ci and

each correlation cluster Cj with λCj > λCi : If no parents have already been

assigned to correlation cluster Ci, and correlation cluster Cj is the noise clus-

ter, i.e., the correlation dimensionality λCj of Cj equals the dimensionality

of the feature space, correlation cluster Cj will become the only parent of

correlation cluster Ci.

Otherwise it is checked if both correlation clusters Ci and Cj together

form a λCj -dimensional correlation cluster. This is given if the correlation
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function isParent(Cluster P , ClusterList cl, Real ∆, Real δ)

for each C ∈ cl do

p̄ := P .centroid;

c̄ := C.centroid;

if CorrDist δ
∆(p̄, c̄) = 0 then

return true;

end if

end for

return false;

end.

Figure 11.6: The function to check whether a cluster is a parent of one of

the clusters in a list.

distance between the centroid of Cj and the centroid of Ci equals 0, i.e., if

CorrDist δ
∆(c̄j, c̄i) = 0. Please note that now the correlation distance only

has to be considered w.r.t. the centroid of the higher dimensional (potential)

parent cluster Cj, since obviously, a higher dimensional subspace could never

lie within a lower dimensional one. If CorrDist δ
∆(c̄j, c̄i) = 0, correlation

cluster Cj will become a parent of correlation cluster Ci, if one of the following

conditions holds: Either Ci has no parents so far or Cj is no parent cluster of

the already assigned parents of correlation cluster Ci, because in that case the

relationship between Ci and Cj is that of a grandparent. The methods used

to build the correlation hierarchy from the correlation clusters are depicted

in Figure 11.5 and Figure 11.6.

The resulting hierarchy is visualized by using a graph-like representation,

the so-called correlation clustering graph. An example is depicted in Figure

11.4, showing the hierarchy of correlation clusters in sample data set “DSB”

(cf. Figure 11.2(b)). In general, the representation is organized top-down

w.r.t. the correlation dimensionality similar to a tree but allows multiple in-

clusions. The “root” of the correlation clustering graph contains all objects

in partition Dd. All correlation clusters with equal correlation dimensionality
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algorithm ERiC(Database D, Integer k, Integer µ, Real α, Real ∆, Real δ)

// Step 1: Partition data objects according

// to their local correlation dimensionality

initialize D1, . . . ,Dd with Di = ∅;
for each p ∈ D do

Np := NNk(p);

compute λp w.r.t. NNk(p) and α;

Dλp := Dλp ∪ p;
end for

// Step 2: Extract correlation clusters from each partition

initialize empty list of clusters cl;

for each Di ∈ D1, . . . ,Dd do

cli := GDBSCAN(Di,NPred ,MinWeight);

cl.add(cli);

end for

// Step 3: Aggregate hierarchy of correlation clusters

buildHierarchy(cl, ∆, δ);

end.

Figure 11.7: The ERiC algorithm.

are placed at the same level below the root. Thus, 1-dimensional correlation

clusters are placed at the bottom level. Each object is placed in that corre-

lation cluster with the smallest correlation dimensionality. An edge between

two nodes of the correlation clustering graph indicates a containment rela-

tionship. In fact, a node N represents a correlation cluster of all objects

assigned to N as well as all objects assigned to child nodes of N .

The overall procedure of ERiC is visualized in Figure 11.7: Step 1 parti-

tions the database points according to their local correlation dimensionality.

The k-nearest neighbors of p are chosen as neighborhood Np of a point p.

Step 2 applies GDBSCAN with NPred and MinWeight as defined in Defini-

tions 11.4 and 11.5, respectively. Then, the third step builds the hierarchy
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as described above.

11.2 Runtime Complexity

Runtime Complexity. Let n be the number of data points and d be the

dimensionality of the data space. The preprocessing step of ERiC works

for each point as follows: First, a k-nearest neighbor query based on the

Euclidean distance is performed which has a complexity of O(n · d) since

the data set is scanned sequentially. Based on the result of the k-nearest

neighbor query, the d× d covariance matrix is determined. This can be done

in O(k · d2) time. Then the covariance matrix is decomposed by using PCA

which requires O(d3) time. Thus, for all points together the time complexity

results in O(n2 · d+ n · k · d2) in the first step of ERiC, since k > d.

The original GDBSCAN has a worst case complexity of O(n2) on top of

the sequential scan. Applying the correlation distance as given in Definition

11.3, the time complexity of the second step of ERiC is O(n2
p · d3) for each

partition of the data set, where np denotes the number of objects in the each

particular partition. Assuming that the data points are uniformly distributed

over all possible correlation dimensionalities, and all partitions will contain
n
d

points, the second step of ERiC yields an average time complexity of

O(n2 · d2).

The hierarchy aggregation considers all pairs of correlation clusters (Ci, Cj)
associated to different partitions with λi < λj, and determines the correla-

tion distance CorrDist for the corresponding correlation cluster centroids.

Thus, an upper bound for the complexity of the third step corresponds to

O(|C|2 · d3), where |C| is the number of correlation clusters. However, in

the experimental evaluation it is shown that the third step requires only a

marginal runtime compared to the overall runtime of the ERiC algorithm.

This is due to the fact that |C| << n holds.

Thus, the overall time complexity of ERiC on top of the sequential scan

of the data set can be considered as O(n2 · d2).
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Figure 11.8: Data set “DS1”.

11.3 Experimental Evaluation

All experiments have been performed on a workstation with a 2 · 64-bit 2.6

GHz CPU and 16 GB main memory. All evaluated methods have been imple-

mented in Java. In all experiments, the input parameters of all methods have

been optimized in terms of quality and the best results have been reported

in order to achieve a fair comparison.

11.3.1 Effectivity

Synthetic Data Set. The accuracy of ERiC in comparison to ORCLUS,

4C, and HiCO has been evaluated on several synthetic data sets. Exemplarily,

the results on one data set named “DS1” are shown. The synthetic data set

contains 3-dimensional objects grouped in a complex hierarchy of arbitrarily

oriented correlation clusters with multiple inclusion and noise points. The

attribute values of the synthetic data set are in the range of 0.0 to 1.0.

The synthetic data set “DS1” (cf. Figure 11.8) contains 3-dimensional

objects grouped in a complex hierarchy of four 1-dimensional and three 2-
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cluster [2_2]

cluster [2_1]

cluster [2_0]

(a) 2-dimensional correlation clusters.

cluster [1_3]

cluster [1_2]

cluster [1_0]
cluster [1_1]

(b) 1-dimensional correlation clusters.

(c) Correlation clustering graph.

Figure 11.9: Results of ERiC on “DS1”.

dimensional correlation clusters with a multiple inclusion and some noise

points. The results of ERiC applied to “DS1” using a parameter setting

of k = 16, µ = 30, α = 0.85.∆ = 0.1 are shown in Figure 11.9. In the

upper left Figure 11.9(a) the three 2-dimensional correlation clusters found

by ERiC are marked with different colors, the upper right Figure 11.9(b)

shows the four 1-dimensional correlation clusters found by ERiC. In the lower

Figure 11.9(c) the resulting hierarchy visualized by the correlation clustering

graph is depicted. As it can be seen, the graph illustrates the correct and

complete hierarchy. One can see at a glance that the data set contains

two 1-dimensional clusters (lines “1 1” and “1 3”) embedded within a 2-

dimensional cluster (plane “2 2”), one separate 1-dimensional cluster (line

“1 2”), and a multiple inclusion of one 1-dimensional cluster (line “1 0”)

embedded within two 2-dimensional clusters (planes “2 1” and “2 2”).
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(a) Results of 4C with λ = 1.

cluster 2
cluster 1

cluster 4

cluster 5

cluster 3

(b) Results of 4C with λ = 2.

Figure 11.10: Results of 4C with different λ-parameter settings on “DS1”.

For comparison, ORCLUS, 4C, and HiCO have also been applied to data

set “DS1”, but none of the existing state-of-the-art correlation clustering

approaches performs equally well. The algorithm 4C can produce a “flat”

clustering, i.e., 4C can either detect the 1-dimensional correlation clusters

or the 2-dimensional one, but not both within a single run. The results of

4C with different settings for parameter λ which is an upper bound for the

correlation dimensionality of the clusters to be found, are depicted in Figure

11.10. The left Figure 11.10(a) shows the five 1-dimensional correlation clus-

ters found by 4C with a parameter setting of λ = 1, ε = 0.05, µ = 10, δ = 0.2.

As it can be seen, 4C splits the compact cluster “1 2” (shown in Figure 11.9)

into two clusters. The three 2-dimensional planes have been classified as

noise in this run. In the right Figure 11.10(b) the five 2-dimensional correla-

tion clusters detected by 4C with a parameter setting of λ = 2, ε = 0.1, µ =

25, δ = 0.1 is shown. In this run, on the one hand, 4C has problems to sepa-

rate the 1-dimensional correlation clusters “1 1”, “1 2”, and “1 3” from the

2-dimensional correlation cluster “2 2” as ERiC did (cf. Figure 11.9). On

the other hand, 4C splits compact clusters into several parts, e.g., clusters

“1 2”, “2 0”, and “1 0”. When looking at the results of ORCLUS on “DS1”

(k = 7, l = 2) which are depicted in Figure 11.11, one can see that ORCLUS

completely failed to detect all correlation clusters in data set “DS1”.

Since both 4C and ORCLUS produce a flat clustering, no hierarchy can
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(a) ORCLUS - cluster 1. (b) ORCLUS - cluster 2. (c) ORCLUS - cluster 3.

(d) ORCLUS - cluster 4. (e) ORCLUS - cluster 5. (f) ORCLUS - cluster 6.

(g) ORCLUS - cluster 7.

Figure 11.11: Results of ORCLUS on “DS1”.

be derived from their results. Last but not least, the result of HiCO with

a parameter setting of k = 16, µ = 30, α = 0.85,∆ = 0.1 on “DS1” is

depicted in Figure 11.12. The obtained correlation reachability diagram has

been analyzed and the objects in the “valleys” have been marked with the

according cluster memberships. As it can be seen, HiCO can detect the

simple hierarchical relationships, but the multiple inclusion of cluster “1 0” in

cluster “2 0” cluster “2 1” is not visible at all in the resulting correlation plot.

In summary, while ERiC has no problems to reveal the complete hierarchy

of correlation clusters and to detect all correlation clusters correctly, the
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[2_0]
[2_1] [2_2]

[1_0] [1_2] [1_1] [1_3]

[all]

Figure 11.12: Result of HiCO on “DS1”.

competitors all fail to produce the true clusters and the proper hierarchy.

Real-world Data Sets. Additionally to the synthetic data set, the ef-

fectivity of ERiC has been evaluated by using several real-world data sets.

First, ERiC has been applied on the “Wages” data set1 consisting of 534 11-

dimensional observations from the 1985 Current Population Survey. Since

most of the attributes are not numeric, only 4 dimensions (YE=years of edu-

cation, W=wage, A=age, and YW=years of work experience) have been used

for clustering. The parameters of ERiC were chosen to k = 5, µ = 4, α =

0.85,∆ = 0.01. The results are shown in Figure 11.13(a). ERiC found seven

correlation clusters. The two one-dimensional correlation clusters “1 0” and

“1 1” contain both the data of people having 12 years of education. The

people in the first correlation cluster are all of age 22 and have a working

experience of 4 years. The second 1-dimensional correlation cluster contains

people at the age of 38 with a working experience of 16 years. The four

2-dimensional correlation clusters found by ERiC consist of people having

constant years of education and a linear dependency between their age and

1http://lib.stat.cmu.edu/datasets/CPS_85_Wages

http://lib.stat.cmu.edu/datasets/CPS_85_Wages
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their years of working experience. In the 3-dimensional correlation cluster

“3 0” those employees are grouped which started school at the age of 6 years

and after graduation immediately began working. Thus, the years of educa-

tion equals the difference of the age, the years of working experience and 6.

The contents of the correlation clusters are summarized in Figure 11.13(b).

Neither HiCO, 4C nor ORCLUS were able to detect meaningful correlation

clusters in the “Wages” data set.

Then, ERiC has been applied to the (original) Wisconsin “Breast Can-

cer” Database from the UCI ML Archive2. This data set consists of 683

patients suffering from two types of breast cancer, benign and malignant.

Each patient is represented by a 9-dimensional vector of specific biomedical

features. ERiC detected four almost pure correlation clusters in this data

set. The hierarchy generated by ERiC on this data set with a parameter

setting of k = 30, µ = 30, α = 0.85,∆ = 0.75 is depicted in Figure 11.14.

The resulting hierarchy contains four correlation clusters that are placed in

two different branches in the graph. It is worth mentioning that the two

lower dimensional correlation clusters “2 0” and “3 0” in the first branch are

pure clusters, i.e., they only contain benign patients. The higher dimensional

correlation cluster “5 0” and its parent cluster “6 0” in the second branch

are nearly pure, they contain almost only malignant patients. Some patients

from both classes could not be separated and were labeled as noise. Again

ERiC outperforms its competitors, since none of them were able to detect

pure correlation clusters in this data.

A third real-world data set used for evaluating ERiC is the “Pendigits”

data set3 containing approximately 7,500 16-dimensional points, representing

certain features of hand-written digits. The objects are labeled according to

the digit. The resulting hierarchy computed by ERiC with a parameter

setting of k = 15, µ = 10, α = 0.85,∆ = 0.5 is depicted in Figure 11.15.

Interestingly, all clusters found by ERiC are pure, i.e., contain only objects

from one class. The clusters forming the observed multiple inclusion also

contain objects from the same class.

2http://www.ics.uci.edu/~mlearn/MLSummary.html
3http://www.ics.uci.edu/~mlearn/databases/pendigits/

http://www.ics.uci.edu/~mlearn/MLSummary.html
http://www.ics.uci.edu/~mlearn/databases/pendigits/
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(a) Hierarchy generated by ERiC

cluster description

1 0 YE = 12, A = 22, YW = 4

1 1 YE = 12, A = 38, YW = 20

2 0 YE = 14, A = YW + 20

2 1 YE = 12, A = YW+18

2 2 YE = 16, A = YW + 22

2 3 YE = 13, A = YW+19

3 0 YE = A - YW - 6
(b) Contents of found clusters

Figure 11.13: Results of ERiC on “Wages” data.
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malignant

benign

Figure 11.14: Results of ERiC on “Breast Cancer” data.

In summary, the experiments confirmed that ERiC finds meaningful clus-

ter hierarchies allowing for multiple inclusions in real-world data sets.

11.3.2 Efficiency

For the evaluation of efficiency, synthetic data sets have been used where the

dimensionality or the number of points has been varied.

For the impact of the dimensionality of the data space on the runtime, 10

data sets with a varying dimensionality of d = 10, 20, 30, . . . , dmax = 100 have

been created. For each data set, 10,000 objects were equally distributed over

10 correlation clusters, where the single attributes have values in the range

of [0.0, 1.0]. In the first experiment, the runtime of ERiC, HiCO, 4C and

ORCLUS has been compared w.r.t. the dimensionality of the data set. The

parameters for ERiC were set to k = 50, µ = 500, α = 0.999,∆ = 0.01. HiCO

has been applied to the data sets with a parameter setting of k = 50, µ =
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Figure 11.15: Results of ERiC on “Pendigits” data.
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Figure 11.16: Runtime of ERiC, HiCO, 4C, and ORCLUS w.r.t. the di-

mensionality.
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Figure 11.17: Runtime of ERiC, 4C, and ORCLUS w.r.t. the size.

500, α = 0.999,∆ = 0.01. The λ parameter of 4C was set to the maximal

occurring correlation dimensionality, i.e., λ = d− 1. The parameter µ which

determines the minimum number of objects within a correlation cluster was

set to µ = 500. The remaining parameters were set to ε = 0.1, δ = 0.01. As

a fair setting, the parameter k of ORCLUS was set to the exact number of

correlation clusters in the data set and parameter l was set to the maximal

occurring correlation dimensionality, i.e., k = 9 and l = d − 1. As it can be

seen in Figure 11.16, ERiC clearly outperforms the other competitors (please

note the logarithmic scale of the runtime-axis).
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Figure 11.18: Runtime of ERiC, HiCO, 4C and ORCLUS w.r.t. the number

of clusters.

Analogously, for the impact of the size of the data set on the runtime,

six data sets of dimensionality d = 10 have been created with an increasing

number of objects ranging from 50,000 to 300,000. The objects are equally

distributed over nine correlation clusters of correlation dimensionality λ =

1, . . . , 9 and noise, where the attribute values are in the range of 0.0 to 1.0.

The parameters for ERiC were set to k = 50, µ = 2, 500, α = 0.999,∆ = 0.01.

Again, the λ parameter of 4C was set to the maximal occurring correlation

dimensionality, i.e., λ = 9. The remaining parameters of 4C were set to

µ = 2, 500, ε = 0.1, δ = 0.01. As before, the parameter k of ORCLUS

was set to the exact number of correlation clusters in the data set, and

parameter l was set to the maximal occurring correlation dimensionality, i.e.,

k = l = 9. Figure 11.17 illustrates the runtime of ERiC, 4C, and ORCLUS

w.r.t. the data set size. The runtime of HiCO w.r.t. the size of the data

set (k = 50, µ = 2, 500, α = 0.999,∆ = 0.01) is far above the others and

therefore omitted in the chart for clearness. ERiC clearly outperforms 4C

and shows a runtime comparative to that of ORCLUS.

Additionally, the overall runtime w.r.t. the number of correlation clusters

in the data set of ERiC to its competitors has been compared. For this

experiment five data sets of dimensionality d = 10 have been created. For

each data set, 10,000 objects were equally distributed over a varying number

c = 20, 30, 40, 50, 60 of correlation clusters. The parameters for ERiC and
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Figure 11.19: Runtime of the third step of ERiC (hierarchy aggregation)

w.r.t. the number of clusters.

HiCO were set to k = 50, µ = 50, α = 0.999,∆ = 0.01. 4C has been applied

to the data sets with a parameter setting of λ = 9, µ = 50, ε = 0.01 and

δ = 0.01. Again, the parameter k of ORCLUS was set to the exact number

of correlation clusters in the data set, and parameter l was set to the maximal

occurring correlation dimensionality, i.e., l = 9. As it can be seen in Figure

11.18 the runtime of ERiC, HiCO and 4C is quite robust w.r.t. the number of

correlation clusters in the data set, while the runtime of ORCLUS increases

considerably. Again, ERiC gains a significant speed-up over its competitors.

In the last efficiency experiment, the impact of the number of correlation

clusters in the data set to the runtime of the third step of the ERiC algorithm,

the hierarchy aggregation, has been analyzed. For this purpose, the data set

of the former experiment has been used and the parameters of ERiC were

also chosen as before. Figure 11.19 shows the fraction of the runtime of

the third step of ERiC in comparison to the overall runtime of ERiC. As

already mentioned in Section 11.2, the runtime of the hierarchy aggregation

is negligible since it only requires a marginal runtime of at most 0.15% in

relation to the overall runtime of the ERiC algorithm.
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Deriving Quantitative Models
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Chapter 12

Introduction

As mentioned before, the detection of correlations between different features

in a given data set is a very important data mining task. High correlation

of features may result in a high degree of collinearity or even a perfect one.

Thus, strong correlations between different features correspond to approx-

imate linear dependencies between two or more attributes. These depen-

dencies can be arbitrarily complex, one or more features might depend on

a combination of several other features. In the data space, dependencies of

features are manifested as lines, planes, or, generally speaking, hyperplanes

exhibiting a relatively high density of data points compared to the surround-

ing space. Knowledge concerning these arbitrary correlations is traditionally

used to reduce the dimensionality of the data set by eliminating redundant

features. However, detection of correlated features may also help to reveal

hidden causalities that are of great importance and interest to the domain

expert.

Recently, generalized subspace clustering, also called correlation cluster-

ing, has been introduced as a novel concept of knowledge discovery in data-

bases to address the task of detection of dependencies among features and to

cluster those points that share a common pattern of dependencies (cf. Chap-

ter 9 for a detailed discussion). Again, for the sake of clarity, the expressions

generalized subspace cluster/clustering and correlation cluster/clustering are

used as synonyms.
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Correlation clustering has been successfully applied to several applica-

tion domains, e.g., see [AY00, YWWY02, BKKZ04]. For example, customer

recommendation systems are important tools for target marketing. For the

purpose of data analysis for recommendation systems, it is important to find

homogeneous groups of users with similar ratings in subsets of the attributes.

In addition, it is interesting to find groups of users with correlated affinities.

This knowledge can help companies to predict customer behavior and thus

develop future marketing plans. In molecular biology, correlation clustering

is an important method for the analysis of several types of data. For ex-

ample, in metabolic screening, the collected data set usually contains the

concentrations of certain metabolites in the blood of thousands of patients.

In such data sets, it is important to find homogeneous groups of patients

with correlated metabolite concentrations, indicating a common metabolic

disease. Thus, several metabolites can be linearly dependent on several other

metabolites. Uncovering these patterns and extracting the dependencies of

these clusters is a key step towards understanding metabolic or genetic dis-

orders and designing individual drugs. A second example where generalized

subspace clustering is a sound methodology for data analysis in molecular bi-

ology is DNA microarray data analysis. Microarray data usually contain the

expression levels of thousands of genes expressed in different samples such as

experimental conditions, cells or organisms. Roughly speaking, the expres-

sion level of a gene indicates how active this gene is, i.e., it allows the user

to draw some conclusions about the amount of the product of a given gene

in the given sample. The recovering of dependencies among different genes

in certain conditions is an important step towards a more comprehensive un-

derstanding of the functionality of organisms which is a prominent aspect of

systems biology. In addition, when the samples represent some patients, it

is important to detect homogeneous groups of persons exhibiting a common

linear dependency among a subset of genes in order to determine potential

pathological subtypes of diseases and to develop individual treatments.

In all these cases, however, knowing merely of the existence of correla-

tions among some features is just a first step. It is far more important to

reveal quantitatively and as exactly as possible which features contribute to
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which dependencies as a second step. Having performed this second step,

modeling a system becomes possible that describes the respective underlying

data quantitatively as well as qualitatively. Thus, in order to gain the full

practical potentials from generalized subspace cluster analysis, this second

step is urgently needed. All existing approaches for generalized subspace

clustering usually focus only on the first step of detecting the clusters. There

is no method known for the second step of extracting quantitative correlation

cluster information.

In this Part an approach is described to handle this second step of data

analysis. General concepts are introduced for extracting quantitative infor-

mation on the linear dependencies within a generalized subspace cluster such

that domain experts are able to understand the correlations and dependencies

in their data. In fact, the method can be applied to any correlation clusters,

regardless which correlation clustering algorithm produced the results. As

output, a set of linear equations is obtained that are displayed to the user.

These equations can be used to understand the dependencies hidden in the

analyzed data set and to create complex real-life models. As an example how

this information can be used for further analysis, additionally a framework

is introduced to predict the probability that a new object is generated by a

specific model of the derived ones.

The remainder of this Part is organized as follows. Chapter 13 reviews

related work on existing approaches for deriving descriptions of quantita-

tive dependencies among several attributes. For a detailed discussion of

related work on correlation clustering please refer to Chapter 9. Chapter

14 formalizes the notion of PCA-based correlation clusters. The concepts to

derive quantitative models of correlation clusters are proposed in Chapter

15. Chapter 16 presents a broad experimental evaluation where the practical

importance of the new approach is demonstrated. The concepts described in

this Part have been published in [ABK+06b].
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Chapter 13

Related Work

13.1 Quantitative Association Rules

An interesting approach to derive descriptive models of quantitative rela-

tionships among subsets of attributes is known as quantitative association

rule mining. Some earlier approaches to this task loose information requir-

ing discretization of attributes, e.g., [SA96]), or representation of numerical

values in a rule’s right-hand side by some statistical characterizations, e.g.,

the mean or sum of the values (cf. [Web01]). Moreover, discretization of

attributes does not overcome the restriction to axis parallel dependencies.

Recently, Rückert et al. [RRK04] proposed to base quantitative association

rules on half-spaces, thus allowing the discovery of non-axis-parallel rules

and possibly accounting for cumulative effects of several variables. The rules

derived by this approach are of the form “if the weighted sum of some vari-

ables is greater than a threshold, then a different weighted sum of variables

is with high probability greater than a second threshold”. This approach has

been shown to be useful in detecting some rules of gene-expression data sets

[GRRK05]. However, these association rules do not yet uncover continuous

linear dependencies, but stick to certain thresholds, reflecting the boundaries

of half-spaces.
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13.2 Regression Analysis

A task very similar to the one tackled in this Part is linear and multiple

regression analysis (cf. [HK01] for details). The general purpose of linear

regression is to learn a linear relationship between a “predictor” variable and

a “response” variable. Multiple regression extends this task by allowing mul-

tiple “predictor” variables. In the following, the multiple regression model

will briefly reviewed.

In the multiple linear regression model, the response variable (also re-

ferred to as the dependent variable) is assumed to be a linear function of

p predictor variables (also referred to as the independent variables) plus an

error introduced to account for all other factors. Formally, the model for

multiple linear regression, given n observations, is for i = 1 . . . n:

yi = β1xi1 + β2xi2 + . . .+ βpxip + ei.

The goal of multiple linear regression analysis is to obtain estimates of

the unknown parameters β1, ..., βp which indicate how a change in one of

the independent variables affects the values taken by the dependent variable.

The multiple regression equation can be rewritten more concisely in matrix

notation as

Y = Xβ + E,

where Y is a (n×1) data matrix (vector) containing the response variable,

X is a (n×p) data matrix containing the observations of the p predictor vari-

ables, β is a (p× 1) data matrix containing the unknown model parameters,

and E is a (n× 1) data matrix (vector) containing the error terms e1, . . . en.

The usual method of estimation for the multiple linear regression model is

ordinary least squares (OLS). The basic idea of OLS estimation is to choose

estimates for β that minimize the sum of squared residuals
∑n

i=1 e
2
i . The

estimated values of the parameters β1, ..., βp are then given as
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β̂ = (X ′X)−1X ′y

Other non-linear regression models can be used to learn non-linear rela-

tionships among the predictor and the response variables. However, the main

difference between regression analysis and this approach is, that in regres-

sion analysis the predictor variables are assumed to be independent. Since

correlation clusters are defined to consist of points that exhibit a linear de-

pendency among a set of attributes, the aim of this approach is to identify

these dependencies when deriving a quantitative model for each cluster. Ob-

viously, the independent variable(s) cannot be defined in advance, i.e., a set

of predictor variables cannot be derived. Thus, regression analysis fails to

derive quantitative models for correlation clusters as envisioned in this Part.
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Chapter 14

Formalization of Correlation

Clusters

In this Chapter, the notion of correlation clusters is formalized. In the fol-

lowing D is assumed to be a database of n feature vectors in a d-dimensional

real-valued feature space, i.e., D ⊆ Rd. A correlation cluster C is a sub-

set of those feature vectors that are close to a common, arbitrarily oriented

subspace of a given dimensionality di (1 ≤ diyd). In the data space the

correlation clusters appear as a hyperplane of dimensionality di.

Generally, one way to formalize the concept of correlation clusters is to

use PCA. Thus, the covariance matrix of a correlation cluster is defined as

follows:

Definition 14.1 (covariance matrix of a correlation cluster).

Let C ⊆ D be a correlation cluster that is derived using any algorithm capable

of finding correlation clusters and x̄C denote the centroid (mean) of all points

x ∈ C. The covariance matrix ΣC of correlation cluster C is defined as

ΣC =
1

|C|
·
∑
x∈C

(x− x̄C) · (x− x̄C)T .

Since the covariance matrix ΣC of C is a positive semi-definite square

matrix, it can be decomposed into the Eigenvalue matrix EC of ΣC and the
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Figure 14.1: Correlation dimensionality of correlation clusters.

Eigenvector matrix VC of ΣC such that

ΣC = VC · EC ·VT
C .

The Eigenvalue matrix EC is a diagonal matrix holding the d non-negative

Eigenvalues of ΣC in decreasing order in its diagonal elements. The Eigen-

vector matrix VC is an orthonormal matrix with the corresponding d Eigen-

vectors of ΣC.

Now the correlation dimensionality of C will be defined as the number

of dimensions of the (arbitrarily oriented) subspace which is spanned by the

major axes in VC. Note that the correlation dimensionality is closely related

to the intrinsic dimensionality of the data distribution. If, for instance, the

points in C are located near a common line, the correlation dimensionality

of these points will be 1. This means that the principal components (Eigen-

vectors) of the points in C have to be determined. The Eigenvector associ-

ated with the largest Eigenvalue has the same direction as the first principal

component. The Eigenvector associated with the second largest Eigenvalue

determines the direction of the second principal component and so on. The

sum of the Eigenvalues equals the trace of the square matrix ΣC which is the

total variance of the points in C. Thus, the obtained Eigenvalues are equal

to the variance explained by each of the principal components in decreasing

order of importance. The correlation dimensionality of a set of points C is

now defined as the smallest number of Eigenvectors explaining a portion of



167

at least α of the total variance of C. These ideas are illustrated in Figure

14.1. Figure 14.1(a) shows a correlation cluster of correlation dimensionality

1 corresponding to a (perfect) line. Only one Eigenvector (e1) explains the

total variance of C. Figure 14.1(b) shows a correlation cluster of correlation

dimensionality 2 that corresponds to a (perfect) plane. Here, two Eigenvec-

tors explain the total variance of C. Note that in the displayed examples, the

correlations are perfect, i.e., there is no deviation from the hyperplane but all

points within the set perfectly fit to the hyperplane. However, in real-world

data sets, this is a quite unrealistic scenario. A threshold α may account

for that fuzziness to define an adequate dimensionality of the correlation hy-

perplane. The dimensionality of a hyperplane neglecting a certain amount

of deviation in orthogonal direction is called correlation dimensionality. The

correlation dimensionality is defined more formally in the following.

Definition 14.2 (correlation dimensionality of a correlation cluster).

Let α ∈]0, 1[, and C ⊆ D be a correlation cluster. Then the correlation

dimensionality λC of C is the smallest number r of Eigenvalues ei in the d×d
Eigenvalue matrix EC explaining a portion of at least α of the total variance:

λC = min
r∈{1,...,d}

{
r

∣∣∣∣∣
∑r

i=1 ei∑d
i=1 ei

≥ α

}
.

Typically, values for α are chosen between 0.8 and 0.9. for example,

α = 0.85 denotes that the obtained principal components explain 85% of the

total variance. In the following, we denote the λC-dimensional affine space

which is spanned by the major axes of C, i.e., by the λC first Eigenvectors of

C and translated by, e.g., the mean vector x̄C, the correlation hyperplane of

C.

Thus, the correlation dimensionality λC is the dimensionality of the affine

space containing all points of the correlation cluster C, allowing a small de-

viation corresponding to the remaining portion of variance of 1 − α. The

remaining, neglected variance scatters along the Eigenvectors eλC+1, . . . , ed.

Therefore, two disjoint sets of Eigenvectors will be distinguished:
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Definition 14.3 (strong and weak eigenvectors of a correlation clus-

ter).

Let C ⊆ D be a correlation cluster, λC be the correlation dimensionality of C,

and let VC be the corresponding Eigenvectors of correlation cluster C. The

first λC Eigenvectors of VC are called strong Eigenvectors. The strong Eigen-

vectors of VC are denoted by V̌C. The remaining Eigenvectors are called weak

Eigenvectors. The weak Eigenvectors are denoted by V̂C.

For an illustration see again Figure 14.1: In the correlation cluster of cor-

relation dimensionality 1 (Figure 14.1(a)) e1 is a strong Eigenvector whereas

e2 and e3 are weak Eigenvectors. In the correlation cluster of correlation di-

mensionality 2 (Figure 14.1(b)) e1 and e2 are strong Eigenvectors whereas e3

is a weak Eigenvector. The Eigenvectors are overemphasized in this example.

Suppose they were scaled by their corresponding Eigenvalues. If no variance

remains along an Eigenvector as it may appear for e2 and e3 in Figure 14.1(a),

this Eigenvector will disappear since the corresponding Eigenvalue becomes

zero.

While the correlation hyperplane is spanned by the strong Eigenvectors,

it is equally well defined by the weak Eigenvectors that are orthogonal to this

hyperplane in Rd. Furthermore, describing the correlation cluster by means

of the weak Eigenvectors (instead of the strong Eigenvectors) directly yields

an equality system that defines not only the corresponding hyperplane, but

also allows the user to directly inspect the underlying dependencies among

attributes numerically, as it will be shown in more detail subsequently.



Chapter 15

Deriving Quantitative Models

15.1 Deriving Correlation Cluster Models

Let C be a λ-dimensional correlation cluster in D (C ⊆ D). Thus, there are

λ strong Eigenvectors and d− λ weak Eigenvectors in the describing matrix

of Eigenvectors derived by PCA on the points of cluster C. A λ-dimensional

hyperplane defining the correlation cluster C is therefore completely defined

by the mean point (centroid) x̄C = (x̄1 · · · x̄d)T of all points belonging to

cluster C and the set of weak Eigenvectors, V̂C, that are normal vectors to the

hyperplane. Then the following equation system to describe the hyperplane

can be derived, consisting of d− λ equations:

v(λ+1),1(x1 − x̄1) + v(λ+1),2(x2 − x̄2) + · · · + v(λ+1),d(xd − x̄d) = 0

v(λ+2),1(x1 − x̄1) + v(λ+2),2(x2 − x̄2) + · · · + v(λ+2),d(xd − x̄d) = 0
...

vd,1(x1 − x̄1) + vd,2(x2 − x̄2) + · · · + vd,d(xd − x̄d) = 0

where vi,j is the value at column i, row j in the Eigenvector matrix VC

of C. As pointed out, only the weak Eigenvectors are relevant. Thus this

equation system can be equivalently denoted by

V̂T
C · x = V̂T

C · x̄C.
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The defect of V̂T
C gives the number of free attributes, the other attributes

may actually be involved in linear dependencies. Basically, these dependen-

cies are revealed by transforming the equation system using Gauss-Jordan

elimination. The thus derived reduced row echelon form of the matrix is

known to be unique [Yus84]. The unique form does, of course, not provide

new information, but it is easily comparable to alternative solutions and con-

veniently interpretable by inspecting experts. To enhance numerical stability,

the use of total pivoting for the Gauss-Jordan elimination is supposed.

By construction, the equation system is – at least approximately – fulfilled

for all points x ∈ C. But, furthermore, it suggests a quantitative model for

the cluster. This model could be evaluated by using retained data points.

Besides, as shown below, it may also serve as a predictive model to classify

new data points.

In summary, the following general method to derive quantitative models

of clusters in a data set of feature vectors D ⊂ Rd is proposed:

1. Run a clustering algorithm on D that is able to find correlation clusters,

i.e., use, e.g., 4C [BKKZ04] or ORCLUS [AY00]. However, also k-means

[McQ67] or DBSCAN [EKSX96] is possible, provided that a proper dis-

tance function is used which takes the correlation dimension into ac-

count. If the result may be restricted to clusters of positively correlated

features, even the usage of any general biclustering [Har72] or pattern-

based clustering algorithm [WWYY02, YWWY02, LW03, PZC+03] will

be possible. The decision for a specific clustering algorithm will also

determine whether or not a data object may belong to several clusters

simultaneously. In the experiments, the algorithm COPAC [ABK+07c]

is applied, a correlation clustering algorithm that is shown to improve

over 4C as well as over ORCLUS w.r.t. efficiency, effectivity, and ro-

bustness.

2. For each correlation cluster Ci ⊂ D found in the previous step:

(a) Derive the covariance matrix ΣCi .

(b) Select the weak Eigenvectors V̂Ci of ΣCi with respect to a certain
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threshold α.

(c) Derive the equation system describing the correlation hyperplane:

V̂T
Ci · x = V̂T

Ci · x̄Ci

(d) Apply Gauss-Jordan elimination to the derived equation system

to obtain a unique description of quantitative dependencies by

means of the reduced row echelon form of the equation system.

15.2 Interpretation of Correlation Cluster Mod-

els

Suppose by applying this method, the following solution describing a cluster

in a 5-dimensional feature space R5 is obtained:

1x1 + 0x2 + c1x3 + 0x4 + e1x5 = f1

0x1 + 1x2 + c2x3 + 0x4 + e2x5 = f2

0x1 + 0x2 + 0x3 + 1x4 + e3x5 = f3

This would provide a quantitative model describing a correlation clus-

ter of correlation dimensionality 2 (corresponding to the number of free at-

tributes, or, equivalently, the number of strong Eigenvectors) where linear

dependencies exist among

• x1, x3, and x5

• x2, x3, and x5

• x4 and x5

by given factors c1, e1, c2, e2, and e3.

Note that there must not be drawn any conclusions concerning causalities

between attributes. But relations between certain attributes are quantita-

tively and uniquely defined. To resolve these relations to any formula that
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suggests a causality, one has to rely on the experts domain knowledge. How-

ever, uncovered quantitative relationships will lead to refined experiments

and help to finally explore supposable causalities. Thus, experimental set-

tings could be chosen involving either

• x4 and x5 or

• x2, x3, and x5 or

• x1, x3, and x5,

and changing the quantities in relation to each other. The dependencies

revealed in the original experiment could have been interpreted such as fall

or rise of an arbitrary subset of S ⊂ {x1, x3, x5} that caused fall or rise of

the remaining subset {x1, x3, x5} \ S. Further experiments could refine the

model by excluding certain combinations of causal models. Of course, the

three variables, x1, x3, and x5, may also simply be connected by a fourth

variable that has not been monitored so far. Thus, trivially, a quantitative

connection will never guarantee a direct causal relationship. Furthermore,

in many domains, one-way causal relationships provide only one part of the

whole picture, since systems often are regulated by negative-feedback-loops

that make causalities circular. Nevertheless, modeling parts of a complex

system remains useful even under restrictive constraints, e.g., as shown for

genetic regulatory interaction networks in [Hus03].

15.3 Sample Application: Predictive Models

Having derived a descriptive model, it can be refined by determining an

average distance of the cluster members from the correlation hyperplane.

Such deviations are typically expected in natural systems. At least, one has

to account for errors in measurement. The distance of a point to a hyperplane

is thereby naturally defined as the Euclidean distance to its perpendicular

projection onto the hyperplane, i.e.,

d(x, C) = ||x− x̄C − projC−x̄C(x− x̄C)||,
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Figure 15.1: Decision models of different types of classifiers.

where C denotes the idealized hyperplane of a correlation cluster. By defini-

tion, the hyperplane C is an affine space, i.e., a subspace translated by x̄C,

the mean vector of all points of the cluster corresponding to C. The func-

tion projS : Rn → Rn denotes the perpendicular projection of a vector to an

arbitrary subspace S of Rn. If S is given by an orthonormal basis, e.g., the

set of strong Eigenvectors derived for the corresponding correlation cluster,

{s1, · · · , sλS}, then

projS(x) = 〈x, s1〉s1 + 〈x, s2〉s2 + · · ·+ 〈x, sλS〉sλS .

Assuming the deviations fit to a Gaussian distribution with µ = 0, the

standard deviation σ of the distances of all cluster members suffices to define

a Gaussian model of deviations from the common correlation hyperplane.

For each of the derived models, the probability is given for a new data object

to be generated by this specific Gaussian distribution. A set of models for

a set of correlation clusters can therefore provide a convenient instrument

for classification in the perspective of different linear dependencies among

the data. The probability that an object x was generated by the jth of n

Gaussian distributions, Cj, is given by

P (Cj|x) =

1
σj
√

2π
e
− 1

2σ2
j

(d(x,Cj))2

∑n
i=1

1
σi
√

2π
e
− 1

2σ2
i

(d(x,Ci))2 .

Compared to many traditional classification algorithms, like SVM or

kNN, these predictive models do not only provide a separating boundary
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between classes (cf. Figure 15.1(a)), but also give a meaningful definition of

the class. So do other classifiers, like decision trees or rule based learners,

but their descriptions usually are limited to (at least in sections) axis parallel

decision boundaries (cf. Figure 15.1(b)). The models provided by the EM

algorithm or other Bayesian learners differ from the proposed models in that

they simply define a scattering around a mean point using a quadratic form

distance function or a density function for a certain probability distribution

(cf. Figure 15.1(c)). For underlying linear dependencies, a quadratic distance

function will resemble these new models only if the dependencies are perfectly

expressed in the data without any aberrations. Accounting for some vari-

ance perpendicular to a hyperplane, while the hyperplane represents a linear

dependency among several attributes, is a novel approach among the family

of classification algorithms (cf. Figure 15.1(d)).



Chapter 16

Evaluation

All experiments have been performed on a workstation with a 2 · 64-bit 2.6

GHz CPU and 16 GB main memory. All evaluated methods have been imple-

mented in Java. In all experiments, the input parameters of all methods have

been optimized in terms of quality and the best results have been reported

in order to achieve a fair comparison. In all experiments the correlation

clustering algorithm COPAC [ABK+07c] has been used to determine the

correlation clusters in a preprocessing step. This algorithm has been chosen

due to its efficiency, effectivity, and robustness. In each case, parameters for

clustering were chosen according to [ABK+07c]. Again, please note that any

other correlation clustering algorithm is applicable for preprocessing.

16.1 Synthetic Data Sets

For the experiments several synthetic data sets have been used containing cor-

relation clusters in the unit cube of Rd that have been generated by a generic

data generator. The generated correlation clusters form a λ-dimensional hy-

perplane which is specified by an equation system of d − λ equations. The

distances of the points to the hyperplane are normally distributed with a

specified standard deviation and a mean of zero.

The first data set “DS1” consists of five correlation clusters, each forming

175



176 16 Evaluation

Figure 16.1: Synthetic data set “DS1”.

a line of 1,000 points in R3 (cf. Figure 16.1). In each cluster, the distances of

the points to the correlation lines are normally distributed with a standard

deviation of about 1.5% of the maximum distance in the unit cube. The

purpose of this data set is to demonstrate the capability of the proposed

method to obtain a quantitative model for the correlation clusters. As it

can be seen in Table 16.1 a good approximation of the equation systems has

been derived that define the models for the correlation clusters despite the

obviously strong jitter in the data set.

In the second experiment, the proposed method has been evaluated on

data sets with varying standard deviation. For this purpose, six data sets

(“DS20”, ..., “DS25”) have been generated, forming a 2-dimensional hyper-

plane in R3 with different values for the standard deviation of the distances.

The generated dependencies follow the equation x1−0.5x2−0.5x3 = 0. The

values for the standard deviation were set to σ0 = 0% up to σ5 = 5% of the

maximum distance in the unit cube (cf. Figure 16.2). The results are shown in

Table 16.2. As expected, with increasing standard deviation of the distances,

the detected correlation models suffer from a slight blurring, i.e., the coeffi-

cients of the models slightly deviate from the exact coefficients. However, the

general correlations are still detected and also the hidden quantitative rela-

tionships are still uncovered rather clear even if the points stronger deviate

from the optimal hyperplane. In general, the proposed method has proven

to be rather robust w.r.t. small jitter.
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Table 16.1: Dependencies on “DS1” data.

Generated Found

dependencies standard dependencies

deviation

cluster 1 x1− x3 = 0 σ = 0.0246 x1− 1.0069x3 = −0.0035

x2 + 0.5x3 = 0.75 x2 + 0.5065x3 = 0.7537

cluster 2 x1− x3 = 0 σ = 0.0243 x1− 1.0027x3 = −0.0028

x2− x3 = 0 x2− 0.9901x3 = 0.0022

cluster 3 x1 + x3 = 1 σ = 0.0238 x1 + 1.0008x3 = 1.0005

x2− x3 = 0 x2− 1.0011x3 = 0.0000

cluster 4 x1− x3 = 0 σ = 0.0246 x1− 1.0009x3 = 0.0000

x2 + x3 = 1 x2 + 0.9999x3 = 0.9995

cluster 5 x1 + x3 = 1 σ = 0.0249 x1 + 0.9975x3 = 0.9988

x2 + x3 = 1 x2 + 0.9968x3 = 0.9992

In addition to the reported experiments on 3-dimensional data, several

similar experiments on higher dimensional data have been performed. In all

experiments, results of similar high quality have been achieved, i.e., all linear

dependencies hidden in the data were correctly uncovered.
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(a) DS20 (σ0 = 0) (b) DS21 (σ1 = 0.0173)

(c) DS22 (σ2 = 0.0346) (d) DS23 (σ3 = 0.0520)

(e) DS24 (σ4 = 0.0693) (f) DS25 (σ5 = 0.0866)

Figure 16.2: Synthetic data sets “DS2” with different values for standard

deviation.
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Table 16.2: Found dependencies on “DS2” data, with generated dependen-

cies: x1− 0.5x2− 0.5x3 = 0.

Generated Found

standard deviation dependencies

“DS20” σ0 = 0 x1− 0.5000x2− 0.5000x3 = 0.0000

“DS21” σ1 = 0.0173 x1− 0.4989x2− 0.5002x3 = 0.0000

“DS22” σ2 = 0.0346 x1− 0.5017x2− 0.4951x3 = 0.0016

“DS23” σ3 = 0.0520 x1− 0.5030x2− 0.5047x3 = −0.0059

“DS24” σ4 = 0.0693 x1− 0, 4962x2− 0.5106x3 = −0.0040

“DS25” σ5 = 0.0866 x1− 0.4980x2− 0.4956x3 = 0.0064
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16.2 Real-world Data Sets

“Wages” data. The “Wages’ data set1 consists of 534 11-dimensional ob-

servations from the 1985 Current Population Survey. Since most of the at-

tributes are not numeric, we used only 4 dimensions (A=age, Y E=years

of education, YW=years of work experience, and W=wage) for correlation

analysis.

COPAC detected three correlation clusters in this data set. The resulting

dependencies of these clusters are summarized in Table 16.3. The first cluster

consists only of people having 12 years of education, whereas the second

cluster consists only of people having 16 years of education. Furthermore,

in both of these clusters the difference between age and work experience is

a specific constant, namely years of education plus 6, which makes perfectly

sense. Additionally, for the first cluster, a dependency between wage and

age has been found: the wage equals a constant plus a small factor times

the age of an employee, i.e., the older an employee, the more he earns. This

relationship is independent from the attribute work experience. Note that

years of education is a constant where this condition holds. In the third

cluster only those employees are grouped which started school in the age of

6 years and after graduation immediately began working. Thus, the sum of

years of education and work experience equals the age minus 6.

“Gene Expression” data. This data set was derived from an experimen-

tal study of apoptosis in human tumor cells2. Apoptosis is a genetically

controlled pathway of cell death. The data set contains the expression level

of 4,610 genes at five different time slots (5, 10, 15, 30, 60 minutes) after

initiating the apoptosis pathway.

The two correlation clusters with cluster ID (cID) 1 and 2 detected by

COPAC have been analyzed. The derived dependencies of these clusters

are depicted in Table 16.4. The attributes are abbreviated by Mi, where i

1http://lib.stat.cmu.edu/datasets/CPS_85_Wages
2The data are donated by project partners.

http://lib.stat.cmu.edu/datasets/CPS_85_Wages
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Table 16.3: Dependencies on “Wages” data.

derived dependencies

cluster 1 Y E = 12

YW − 1 · A = −18

W − 0.07 · A = 5.14

cluster 2 Y E = 16

YW − 1 · A = −22

cluster 3 Y E + 1 · YW − 1 · A = −6

denotes the time slot of this attribute, e.g., M5 denotes time slot “5 minutes”.

The first cluster contains several genes that are located at the mitochondrial

membrane. The first four time slots exhibit a negative linear relationship

with M60. Similar observations can be made for the second cluster that

contains several genes that are related to the tumor necrosis factor (RNF).

The uncovered dependencies suggest that the activity of the corresponding

genes decrease with proceeding cell death. The strong negative correlations

among genes related to mitochondria (cluster 1) indicates that the volume of

the energy metabolism (which is located in mitochondria) is decreasing over

time. In addition, the correlation among the genes related to RNF makes

sense since the dying cells are tumor cells.

“Breast Cancer” data. The proposed method has also been applied to

four correlation clusters found in the Wisconsin Breast Cancer data derived

from UCI ML Archive3. This data set measures nine biomedical parameters

characterizing breast cancer type in 683 humans (humans with missing values

were removed from the data set). The parameters include Clump Thickness

(attribute “A1”), Uniformity of Cell Size (“A2”), Uniformity of Cell Shape

3http://www.ics.uci.edu/~mlearn/MLSummary.html

http://www.ics.uci.edu/~mlearn/MLSummary.html
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Table 16.4: Dependencies on “Gene Expression” data.

cID derived dependencies sample gene names

1 M5− 1.05 ·M60 = −0.12 NDUFB10, MTRF1, TIMM17A,

M10−M60 = −0.17 TOM34, CPS1, NM44, COX10,

M15−M60 = 0 FIBP, TRAP1, MTERF, ME2,

M30− 1.1 ·M60 = 0.11 HK1, HADHA, ASAH2, CPS1,

CA5A, BNI3PL

2 M5− 0.98 ·M60 = 0 TNFRSF6, TNFRSF11A, TNFRSF7,

M10− 0.98 ·M60 = 0 TNFRSF1B, TNFRSF10B,TNFRSF5,

M15− 0.97 ·M60 = 0 TNFRSF1A, TRAF5, TRAF2,

M30− 0.97 ·M60 = 0 TNFSF12

(“A3”), Marginal Adhesion (“A4”), Single Epithelial Cell Size (“A5”), Bare

Nuclei (“A6”), Bland Chromatin (“A7”), Normal Nucleoli (“A8”), and Mi-

toses (“A9”).

The derived dependencies of the four clusters with cluster ID (cID) 1, . . . , 4

are depicted in Table 16.5. It has to be stressed that each cluster only con-

tains humans suffering from a benign tumor type. The patients suffering

from a malignant tumor type were classified as noise. The dependencies in

the first cluster are quite clean and indicate a constant behavior of seven

attributes. In addition, A5 is related to A7. The models of the remaining

clusters are quite complex. Mostly, the first attributes which measure an ag-

gregated information about the shape and the size of the tumor cells exhibit

a relationship to more specific measurements on single parts of the tumor.

In general, since the clusters only contain benign tumors, the results indicate

that this mostly harmless tumor type can still be explained and modeled

by linear relationships among the measurements, whereas the more danger-

ous tumor type cannot be explained or modeled through any linear relations
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Table 16.5: Dependencies on “Breast Cancer” data.

cID derived dependencies

1 A1 = 2 and A2 = 1 and A3 = 1 and

A4 = 1 and A6 = 1 and A5− 0.1 · A7 = 1.9

A8 = 1 and A9 = 1

2 A1− 0.4 · A4 + 0.7 · A5− 0.2 · A6 + 0.9 · A7− 24 · A8 = −20.9

A2 + 0.03 · A4− 0.05 · A5 + 0.02 · A6 + 0.02 · A7− 0.3 · A8 = 0.8

A3 + 0.2 · A4 + 0.1 · A5 + 0.1 · A6 + 0.2 · A7− 1.8 · A8 = 0.3

3 A1 + 82.2 · A6 + 7.8 · A7− 42 · A8− 18.5 · A9 = 38.5

A2− 1.9 · A6− 0.2 · A7 + 0.9 · A8 + 1.8 · A9 = 1.5

A3− 60.1 · A6− 6.5 · A7 + 25.1 · A8 + 141 · A9 = 97.5

A4− 7.2 · A6− 0.4 · A7− 1.1 · A8 + 15.6 · A9 = 7.6

A5− 18.8 · A6− 1.4 · A7− 0.5 · A8 + 45.9 · A9 = 26.1

4 A1− 5.4 · A5 + 1.6 · A6− 0.1 · A7 + 1 · A8− 16.3 · A9 = −21.1

A2 + 1.7 · A5− 0.6 · A6 + 0.2 · A7− 0.7 · A8− 9.9 · A9 = −6.5

A3− 1.8 · A5− 0.8 · A6− 0.3 · A7− 0.7 · A8− 11.9 · A9 = −8.5

A4− 2.3 · A5− 0.2 · A6 + 0.2 · A7 + 0.4 · A8 + 8.6 · A9 = 6.5

among the measurements.
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Figure 16.3: Data set “DS32”.

16.3 Applying Quantitative Models to Class

Prediction

Last but not least, a further potential application of the proposed method is

briefly discussed that utilizes the derived models for subsequent data analy-

sis. As sketched above, the quantitative models generated by the proposed

approach can be used to predict the class of a new object. To evaluate this

potential three 2-dimensional synthetic data sets each with 5 classes have

been used. The first data set (“DS30”) contains 50 points per class, the sec-

ond and the third data sets (“DS31” and “DS32”) each contain 100 points per

class. Each class is generated according to a certain linear dependency. The

class distributions in “DS30” and “DS31” exhibit a jitter of 0.5% of the max-

imum distance in the unit cube, whereas the jitter of the classes in “DS32”

is 0.75%. The third data set is depicted in Figure 16.3. Note that these data

sets are rather artificial and are only applied for a proof of principle.

The classification accuracy of the sketched classifier has been compared to

several other standard learning approaches. For this comparison the WEKA

framework [WF05] has been used with standard parameter settings, in partic-
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Table 16.6: Comparison of different classifiers in terms of accuracy (in %).

Proposed IBk SMO PART NB J48 Log.

method

“DS30” 95 91 62 82 65 82 67

“DS31” 94 94 54 85 64 83 60

“DS32” 91 91 58 81 60 83 57

ular, kNN (IBk) with k = 1 (best results reported), SVM (SMO), rule-based

learner (PART), Naive Bayes, decision tree (J48), and multinomial logis-

tic regression (Logistic). The results are depicted in Table 16.6. As it can

be seen, the proposed approach significantly outperforms most of the other

approaches, except kNN, in terms of accuracy.

Please note that standard classifiers will most likely produce compara-

tive or even better results if the classes are generated through models that

cannot be captured by the concepts of linear dependencies. However, this

small example may show that if the classes are generated by a model of linear

dependencies as captured by the proposed concepts, the proposed method ob-

viously yields a better prediction accuracy than standard supervised learners.
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Chapter 17

Summary and Future

Directions

Within the KDD process, data mining is the application of algorithms to

discover patterns and trends in large databases. Clustering is one of the

most important data mining tasks. The methods and concepts presented in

this thesis contribute to the field of hierarchical subspace clustering. This

chapter summarizes the main contributions of this thesis (cf. Section 17.1)

and shows some directions for future work (cf. Section 17.2).

17.1 Summary of Contributions

The rapidly increasing amount of data stored in databases requires efficient

and effective data mining methods to gain new information contained in the

collected data. Clustering is one of the primary data mining tasks and aims

at detecting subgroups of similar data objects. This thesis contributes to the

field of hierarchical clustering. Novel challenges for the hierarchical approach

to subspace clustering are identified and innovative and solid solutions for

these challenges are proposed. In the following, a detailed summary of these

contributions is given.

189
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17.1.1 Preliminaries (Part I)

The preliminaries in Part I provide some motivation and illustrate the topic

and the background of this work. After a very general introduction to the pro-

cess of Knowledge Discovery in Databases and Data Mining, a brief overview

of traditional hierarchical clustering methods is given. Afterwards, an intro-

duction to the density-based notion of clusters is provided. In particular, the

notion of density-connectivity underlying the algorithm DBSCAN [EKSX96]

is introduced. Then, its hierarchical extension leading to the notion of hier-

archical density-based clustering which constitutes the central concept of the

algorithm OPTICS [ABKS99] is discussed.

17.1.2 Hierarchical Axis-Parallel Subspace Clustering

(Part II)

Part II deals with the analysis of hierarchical subspace clusters in axis-parallel

subspaces. Subspace clustering can be seen as an extension of traditional

clustering which aims at automatically identifying lower dimensional axis-

parallel subspaces of the feature space in which clusters exist. After dis-

cussing existing approaches on axis-parallel subspace clustering, two new

algorithms are presented for detecting hierarchies of subspace clusters in

axis-parallel subspaces.

First, the algorithm HiSC (Hierarchical Subspace Clustering) is proposed

which is the first subspace clustering algorithm for detecting hierarchies of

subspace clusters. HiSC scales linearly in the dimensionality of the data

space and quadratically in the number of points. It is superior to the state-

of-the-art subspace clustering algorithms in several aspects: First, HiSC can

detect clusters in subspaces of significantly different dimensionality. Sec-

ond, HiSC is able to determine hierarchies of nested subspace clusters, i.e.,

the relationships of lower dimensional subspace clusters that are embedded

within higher dimensional subspace clusters. Third, HiSC does not rely on

a global clustering criterion and, thus, is able to detect clusters of different

size, shape, and density. Fourth, the choice of parameters is considerably
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simplified compared to previous methods. Several comparative experiments

using synthetic and real-world data sets show that HiSC has a superior per-

formance and effectivity compared to existing methods.

Additionally, the algorithm DiSH (Detecting Subspace Cluster Hierar-

chies) is introduced which is a major extension of HiSC. While HiSC is limited

to single inclusions of subspace cluster hierarchies, DiSH is able to determine

hierarchies of single and multiple inclusions. DiSH applies a density-based

hierarchical approach similar to OPTICS [ABKS99] and, thus, avoids Single-

Link effects like they can occur while using HiSC. Furthermore, DiSH com-

putes a clear and intuitive graph representation of the result such that the

complete hierarchical relationships among subspace clusters can be seen at

a glance. The complete runtime complexity of DiSH results in O(n2 · d2),

where n is the number of objects and d is the dimensionality of the data

space. Applying DiSH to synthetic and real-world data sets yields further

important insights of the hierarchical subspace clustering structure that have

been missed by HiSC.

17.1.3 Hierarchical Subspace Clustering in Arbitrarily

Oriented Subspace (Part III)

Part III discusses new methods for hierarchical clustering in arbitrarily ori-

ented subspaces of the feature space. The so-called correlation clustering can

be seen as an extension of axis-parallel subspace clustering. Correlation clus-

tering aims at grouping the data set into subsets, the so-called correlation

clusters, such that the objects in the same correlation cluster show uniform

attribute correlations. In the first Chapter existing work on the research area

of correlation clustering is reviewed and discussed. Then, two new algorithms

are introduced for identifying hierarchies of correlation clusters in arbitrarily

oriented subspaces.

The algorithm HiCO (Hierarchical Correlation Ordering) is the first algo-

rithm for computing hierarchies of correlation clusters, i.e., lower dimensional

correlation clusters which are embedded within larger dimensional correla-
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tion clusters. In contrast to existing approaches, this method does not require

the user to specify any global density threshold, the number of clusters to be

found, nor any parameter specifying the dimensionality of the correlations.

The complete runtime complexity of HiCO yields O(n2 ·d3), with n being the

number of objects and d being the dimensionality of the data space. The ex-

perimental evaluation shows that HiCO finds meaningful and rich hierarchies

of correlation clusters in synthetic and real-world data sets.

Afterwards, the search for complex hierarchies of correlation clusters in-

cluding the information that lower dimensional correlation clusters are em-

bedded within multiple higher dimensional ones is motivated. Since none

of the existing algorithms for correlation clustering can reveal the complete

hierarchical structure, the algorithm ERiC (Exploring complex hierarchical

Relationships among Correlation clusters) is introduced, a novel clustering

algorithm to detect complex hierarchical relationships between correlation

clusters also allowing for multiple inclusions. The resulting cluster hierar-

chy is visualized by means of a clear graph model. The complete runtime

of ERiC results in O(n2 · d2), where n is the number of objects and d de-

notes the dimensionality of the data space. It is shown experimentally that

ERiC outperforms existing state-of-the-art correlation clustering algorithms

in terms of runtime and accuracy.

17.1.4 Deriving Quantitative Models for Generalized

Subspace Clusters (Part IV)

None of the existing correlation clustering algorithms derives a quantitative

model for each correlation cluster which is urgently needed in order to gain

the full practical potentials from correlation cluster analysis. Part IV de-

scribes an original approach to derive quantitative information on the linear

dependencies within correlation clusters. The concepts are independent of

the clustering model and can thus be applied as a post-processing step to

any correlation clustering algorithm. Furthermore, as a sample application

of the approach, it is sketched how these quantitative models can be used to

predict the probability distribution that an object is created by these models.
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The broad experimental evaluation demonstrates the beneficial impact of the

proposed method on several applications of significant practical importance.

It is exemplified how the method can be used in conjunction with a suit-

able clustering algorithm to gain valuable and important knowledge about

complex relationships in real-world data.

17.2 Potentials for Future Work

At the end of this thesis, the potentials of the proposed methods for fu-

ture research are emphasized. For generalized subspace clustering of high-

dimensional data, future research could be guided in the following directions:

• While much work has been done in identifying linear correlation among

subsets of features in high-dimensional data, the field of detecting non-

linear correlations is quietly unexplored. Using standard (linear) PCA

algorithms can detect linear correlations within a data set, but fail in

identifying nonlinear structures. The concept of kernel PCA is a new

method for applying a nonlinear form of PCA, and thus, is very well

suited to extract nonlinear structures in the data. It would be interest-

ing to investigate how the concepts of Kernel PCA could be combined

with the notion of density-based clustering to find nonlinear correlation

clusters in arbitrarily oriented subspaces.

• Another interesting idea would be to extend the derivation of a quan-

titative model for linear correlation clusters to one for nonlinear corre-

lation clusters. This problem may be solved by applying the so-called

kernel trick to map the original observations into a higher dimensional

feature space. Then, one could try to find a quantitative model of the

correlation cluster in the feature space and perform a transformation

of the derived model back to the original data space.

• Beside PCA (used in HiCO and ERiC as proposed in this thesis), there

are several other concepts, such as the Hough transform or fractal di-

mension which could be used for correlation clustering. For instance,
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the Hough transform maps the data space to a parameter space, defin-

ing the set of possible arbitrarily oriented subspaces. An interesting

approach would be to integrate the principles of the Hough transform

into a clustering algorithm, i.e., to find those among all the possible

subspaces that accommodate many database objects. This would lead

to a clustering algorithm which is independent of any distance measure

and is able to subspace clusters which are sparse and/or intersected by

other clusters within a noisy environment.
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