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Zusammenfassung

Diese Dissertation ist der Untersuchung des Zusammenspiels von super-

symmetrischen Yang–Mills-Theorien (SYM) und Supergravitationstheori-

en (SUGRA) gewidmet. Das Thema wird von zwei Seiten beleuchtet:

Zunächst vom Standpunkt der AdS/CFT Korrespondenz, die die Kopp-

lung zwischen vierdimensionaler superkonformer N = 4 SYM-Theorie und

zehndimensionaler Typ IIB SUGRA holographisch realisiert. Um zu Theo-

rien zu gelangen, die größere Ähnlichkeit mit Quantenchromodynamik

(QCD) aufweisen, werden fundamentale Felder mit Hilfe von D7-Branen

in die Korrespondenz eingeführt und nicht-triviale Hintergrundkonfigu-

rationen betrachtet. Insbesondere werden Supergravitationslösungen ver-

wendet, die nur noch asymptotisch die anti-de Sitter-Geometrie annähern,

was Supersymmetrie bricht und die Beschreibung von spontaner chira-

ler Symmetriebrechung ermöglicht. Das Mesonspektrum wird berechnet

und die Existenz einer zugehörigen Goldstone-Mode nachgewiesen sowie

das nicht Auftreten der Entartung bei Mesonen hoher radialer Anregung.

Darüberhinaus werden Instantonkonfigurationen auf den D7-Branen un-

tersucht, die zu einer Beschreibung des Higgs branch der dualen Feldtheo-

rie führen. Im Anschluss wird eine holographische Beschreibung von heavy-

light Mesonen entwickelt, die sich aus Quarks mit großem Massenunter-

schied zusammensetzen, was die Behandlung von B-Mesonen ermöglicht.

Als zweite Zugang zum Thema wird die Technik der sogenannten orts-

abhängigen (auch:
”
lokalen“) Kopplungen gewählt, bei der die Kopplungs-
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konstanten zu externen Quellen erweitert werden, was die Untersuchung

der konformen Anomalie von Quantenfeldtheorien, die an einen klassi-

schen Gravitationshintergrund gekoppelt werden, ermöglicht. Diese Tech-

nik wird auf die Superfeldbeschreibung minimalerN = 1 Supergravitation

ausgedehnt, eine Basis für die Anomalie angegeben und die Konsistenzbe-

dingungen, die im Rahmen von Kohomologiebetrachtungen auftreten, be-

rechnet. Mögliche Implikationen für eine Erweiterung von Zamolodchikovs

c-Theorem auf vierdimensionale supersymmetrische Quantenfeldtheorien

werden diskutiert.



Who is General Failure and what did he do to my

thesis?

author unknown (due to technical problems)

Abstract

This dissertation is devoted to the investigation of the interplay of super-

symmetric Yang–Mills theories (SYM) and supergravity (SUGRA). The

topic is studied from two points of view:

Firstly from the point of view of AdS/CFT correspondence, which re-

alises the coupling of four dimensional superconformal N = 4 SYM theory

and ten dimensional type IIB SUGRA in a holographic way. In order to

arrive at theories that resemble quantum chromodynamics (QCD) more

closely, fundamental fields are introduced using probe D7-branes and non-

trivial background configuration are considered. In particular supergravity

solutions that are only asymptotically anti-de Sitter and break supersym-

metry are used. This allows the description of spontaneous chiral symme-

try breaking. The meson spectrum is calculated and the existence of an

associated Goldstone mode is demonstrated. Moreover it is shown that

highly radially excited mesons are not degenerate. Additionally instanton

configurations on the D7-branes are investigated, which lead to a holo-

graphic description of the dual field theory’s Higgs branch. Finally a holo-

graphic description of heavy-light mesons is developed, which are mesons

consisting of quarks with a large mass difference, such that a treatment of

B mesons can be achieved.

The second approach to the topic of this thesis is the technique of so-

called space-time dependent couplings (also known as “local couplings”),

where coupling constants are promoted to external sources. This allows to
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explore the conformal anomaly of quantum field theories coupled to a clas-

sical gravity background. The technique is extended to the superfield de-

scription of N = 1 supergravity, a complete basis for the anomaly is given

and the consistency conditions that arise from a cohomological treatment

are calculated. Possible implications for an extension of Zamolodchikov’s

c-theorem to four dimensional supersymmetric quantum field theories are

discussed.
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Art is born of the observation and investigation of

nature.

Cicero

Introduction

An important goal of theoretical physics is the algorithmic compression of

nature to a set of fundamental laws. This means that a minimal descrip-

tion is sought that encodes a maximum of information about our universe.

At the current state of knowledge, this description is in terms of the stan-

dard model of elementary particles and Einstein gravity, as well as initial

conditions and parameters. Although many models used in other areas of

physics are not derived from those fundamental theories, in principle such

a derivation should nevertheless be possible.

The standard model is a quantum field theory that describes elec- standard model

tromagnetism, the weak and the strong force, organised by the princi-

ple of gauge invariance. The latter arises from making the formulation

manifestly Lorentz invariant which requires the introduction of extra non-

physical degrees of freedom. Consequently there are many representations

of the same physical state, which are related by so-called gauge transfor-

mations. Gauge transformations can be identified with Lie groups having

space-time dependent parameters and form the internal symmetry group

of the standard model, the group U(1)×SU(2)×SU(3), corresponding to

quantum electrodynamics (QED) describing photons, the weak interaction,

whose gauge fields are the W and Z bosons responsible for the β decay, and

quantum chromodynamics (QCD), the theory of the strong force, which

describes the constituents of hadrons like the proton and the neutron.

We shall first have a closer look at QED, which is a remarkably success-

QED and

renormalisation
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ful theory, confirmed to an incredible accuracy of up to 10−11 over the past

decades. Since a rigorous treatment of interacting quantum field theories

is difficult, an important reason for this success is the possibility to treat

QED perturbatively. In perturbation theory a theory is effectively split

into a solvable part; e.g. a free theory, and the remainder that renders

the theory unsolvable; e.g. the interaction terms. Assuming that the solu-

tions of the free theory are only slightly modified by the presence of the

additional interaction terms allows an expansion in the coupling constant.

However this expansion is not a true series expansion since the coupling

constants themselves need to be modified during the expansion by a pro-

cedure called renormalisation to absorb infinite contributions arising from

the interplay of the quantisation procedure and perturbation theory. Theo-

ries allowing to absorb these infinities in a finite number of parameters are

called renormalisable and can be treated perturbatively in a well defined

manner.

There are basically two points where this strategy can fail and inter-

estingly both have a connection to string theory as will be seen later.

The first problem arises when trying to tackle non-renormalisable the-non-renormalisable

theories ories like gravity. Each order of perturbation theory then produces a grow-

ing number of coupling constants that destroy the predictive power of the

theory. This can either be interpreted as there being something wrong with

the quantisation procedure assuming that gravity has some miraculous ul-

traviolet (UV) behaviour that is merely poorly understood or that Einstein

gravity is just an effective field theory that breaks down when leaving its

regime of validity (at the order of the Planck mass mP ≈ 1019 GeV) and

a more fundamental theory is required.

In the spirit of the introductory remarks at the beginning, such a “more

fundamental” theory, from which also the standard model of elementary

particles should be derived, is a natural goal, which unfortunately seems

to be currently out of reach. However there exists at least a candidate the-

ory that consistently quantises gravity and at the same time incorporates

gauge theories similar to the standard model, namely superstring theory.

Entertainingly this extremely remarkable feature was not what led to its

discovery and it is also not the feature central to this thesis, which shall

be explicated in the followings.
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The second problem of perturbation theory arises from the phenome- strong coupling

non of running gauge couplings, a result—though not a consequence—of

renormalisation. It is the statement that the strength of the interaction

and thus the validity of perturbation theory depends on the energy scale.

While the electroweak force has small coupling constants at low energies,

which become large when going to higher energies, the opposite is true

for QCD, which is asymptotically free. For small energies QCD exhibits a

phase transition, the confinement, that effectively screens the theory’s fun-

damental particles, the quarks and gluons, from the dynamics by creating

bound states of vanishing colour charge: hadrons. In that sense QCD is an

accelerator theory that can only be observed at high energies, although

there is very strong evidence from lattice calculations that QCD is also the

correct theory for low energies where ordinary perturbation theory is not

applicable and the dominating degrees of freedom are better recast in an

effective field theory. However a better understanding of the low-energy

dynamics of QCD and confinement is still sought after.

Before the break-through of QCD there was another candidate theory

for the strong interaction, which could reproduce certain relations in the

spectra of low energy hadron physics: string theory.

String theory describes particles as oscillation modes of strings that string theory

propagate through space-time, joining and splitting along their way, thus

sweeping out a two-dimensional surface, the world-sheet. The action of

a string is that of an idealised soap film; i.e. proportional to the area of

the world sheet. Another interesting feature of the low energy dynamics

of hadrons is the formation of flux tubes between quarks, which are also

string like and even though nowadays perfectly understandable from a

pure QCD point of view seemed to hint at a connection between string the-

ory and hadron physics. As will be seen later this connection does indeed

exist in the form of the ’t Hooft large Nc expansion [5], which was born in ’t Hooft

expansionan attempt to find a small parameter for perturbative calculations in the

strong coupling regime. The basic idea is to look at SU(Nc) Yang–Mills

theories, where Nc is the number of colours,∗ and perform an expansion

in 1
Nc

. This implies at leading order the ’t Hooft limit Nc → ∞, where

additionally λ := g2
Y MNc is kept fixed, with gY M the Yang–Mills coupling

∗For Nc = 3 this describes the pure glue part of QCD.
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constant. This particular choice is motivated by keeping the strong cou-

pling scale ΛQCD constant in a perturbative calculation of the β function.

In a double line notation, the diagrams associated to each order in 1
Nc

can

be seen to give rise to a topological expansion, which can be interpreted

as a triangulation of two dimensional manifolds, the string world sheets in

a genus expansion. While this triangulation is not understood in detail—

see [6] for recent approaches to this important point—there is nevertheless

a map between a particular gauge theory and string theory in a certain

background.

This map, tested by a large number of highly non-trivial checks, isAdS/CFT

Maldacena’s conjecture [7] of AdS/CFT correspondence. In its boldest

form, it is the statement that N = 4 super-Yang–Mills (SYM) theory,

which is a conformal field theory (CFT) is dual to (quantised) type IIB

string theory on AdS5 × S5. By “dual” the existence of a map is meant

that identifies correlation functions of both theories, thus rendering them

actually two different pictures of the same theory. The details will be

reviewed in Chapter 1. For now it is sufficient to remark that string

theory in that particular background is still ill-understood, but that there

are limits in which things are better under control. In the string loop

expansion, each hole in the world sheet comes with a factor of gs, while in

a similar gauge theory Feynman diagram each hole corresponds to a closed

loop and is therefore accompanied by a factor of g2
Y M . This näıve analysis

allows to identify g2
Y M = gs, which therefore go to zero simultaneously in

the ’t Hooft limit, demonstrating that the 1
Nc

expansion corresponds to a

genus expansion of the string world sheet.

From the construction of the AdS5 × S5 background in type IIB super-

gravity (SUGRA) theory, which is the small curvature, low energy limit of

type IIB superstring theory, it is possible to derive the relation
(

L
`s

)4 ∼ λ,

where L is the respective curvature radius of the anti-de Sitter space

(AdS5) and the five-sphere (S5), and `s =
√
α′ is the string length.

Therefore, the limit of small curvature L � `s, where type IIB su-

pergravity on AdS5 × S5 is a good approximation of the corresponding

string theory, is dual to taking λ large in the field theory. Because λ takes

over the rôle of the coupling constant in the large Nc limit, with λ � 1

the perturbative regime, the duality relates said supergravity theory to
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strongly coupled N = 4 SYM theory in the large Nc limit. Since the

discovery of the actual mapping prescription between correlators on both

sides of the correspondence [8, 9], a plethora of non-trivial checks have

been performed [10, 11], that not only extended the correspondence to

less symmetric regimes but also provided overwhelming evidence that the

conjecture actually holds true.

This thesis is devoted to studying the coupling between supergravity QFT coupled to

SUGRA(SUGRA) theories and quantum field theories. Although the idea was

revived by the discovery of AdS/CFT duality, where this coupling is realised

holographically, that is between a four and a five dimensional theory, it

has also been considered earlier in the context of space-time dependent

coupling constants [12–14].

In the first part of this thesis several aspects of AdS/CFT correspon-

dence will be discussed, while the second part uses the idea of space-time

dependent couplings to analyse the conformal anomaly in super-Yang–

Mills theories coupled to minimal supergravity.

Since at a first glance these two subjects seem rather unrelated, I

would like to linger on a bit on the question of what the two topics have

in common before continuing the introduction to those two parts.

The idea of space-time dependent couplings is to promote coupling space-time

dependent

couplings

constants to (external) fields. Generically the coupling takes the form∫
d4xJO, where J acts as a source for the operator O. A particularly

important example for such a source/operator pair is the metric and the

energy-momentum tensor, which couple according to

S 7→ S +

∫
d4x gmnTmn,

such that allowing coordinate dependence gmn = gmn(x) amounts to cou-

pling the quantum field theory to a (classical) gravity background—or

a supergravity background for supersymmetric quantum field theories.

Invariance of the action under diffeomorphisms δgmn = Lvg
mn implies

∇mTmn = 0, while from Weyl invariance (δgmn = 2σgmn) one may con-

clude Tm
m = 0. When quantum effects destroy the Weyl symmetry of a

classical theory, the trace of the energy-momentum tensor does not vanish

anymore. It is said to have an anomaly : the Weyl or trace anomaly, which
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is a standard example of a quantum anomaly. More will be said about it

below.

For now let us have a look at the coupling of quantum field field the-AdS/CFT mapping

of correlation

functions

ories to supergravity from the AdS/CFT point of view. In the AdS/CFT

correspondence, the prescription for the calculation of CFT correlators in

terms of SUGRA fields is given by

〈
exp

∫
d4xφ(0)O

〉
CFT

= exp
{
−SSUGRA[φ]

}∣∣∣∣
φ(∂AdS)=φ(0),

where the right hand side is the generating functional of the classical

supergravity theory, which is evaluated with its fields φ determined by

their equations of motion and their boundary values φ(0) that appear as

sources for field theory operators in the CFT.

Much of the excitement about the AdS/CFT duality came from theAdS/QCD?

prospect of gaining insight into the strong coupling regime of Yang–Mills

(YM) theories and QCD. BothN = 4 SYM and type IIB SUGRA are (almost)

entirely determined by their large symmetry group, namely SU(2, 2|4).

For the mapping of operators on both sides, this is a beautiful feature,

but non-supersymmetric YM has a much smaller field content and the

problem arises how to get rid of the extra fields. Furthermore to describe

QCD quarks are needed but N = 4 SYM contains only one hypermultiplet

whose gauge field forces its adjoint representation on all other fields.

The conformal group SO(2, 4) of the CFT corresponds to the isometry

group of AdS5. Similarly the SU(4)R group is matched by the SO(6) isom-

etry group of the S5. Therefore a less supersymmetric CFT will be dual

to a SUGRA on AdS5 ×M5, where M5 is a suitable less symmetric mani-

fold. Unfortunately the operator map relies heavily upon the field theory

operators being uniquely determined by their transformational behaviour

under the global symmetry groups, such that reducing the symmetry im-

plies making the correspondence less precise. This is especially true when

also giving up the conformal symmetry in order to obtain discrete mass

spectra.

Therefore the strategy employed in this thesis will be to describe theo-deformed AdS/CFT

ries that are very symmetric in the UV but are relevantly deformed and flow

to a less symmetric, phenomenologically more interesting non-conformal
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infrared (IR) theory. This allows to still use the established AdS/CFT cor-

respondence while at the same time capturing interesting IR physics.

Such a renormalisation group (RG) flow is represented by a supergrav-

ity solution that approaches an AdS geometry only towards the boundary,

it is asymptotically AdS. The interior of the deformed space corresponds

to the field theoretic IR. The interpretation of the radial direction of the

(deformed) AdS space as the energy scale can be easily seen from con-

sidering dilations of the boundary theory. Since the boundary theory is

conformal such a dilation should leave the action invariant. To achieve

the same in the SUGRA theory, the radial direction has to transform as

an energy to cancel in the metric the transformation of the coordinates

parallel to the boundary. The interpretation of the radial direction as the

renormalisation scale was introduced in [15, 16] and has been used for a

number of checks of the AdS/CFT duality, for example calculation of the

ratio of the conformal anomaly at the fixed points of holographic RG flows

[10, 17], which coincides with field theory predictions.

An important step towards a holographic description of QCD is the quarks

introduction of fundamental fields into the correspondence. The first real-

isation of such a theory was a string theory in an AdS5×S5
/
Z2 background

where a number of D7 branes wrapped the Z2 orientifold plane with ge-

ometry AdS5 × S3 [18, 19], which is dual to an N = 2 Sp(Nc) gauge

theory. As was realised by [20], a similar scenario of probe D7-branes

wrapping a contractible S3 in AdS5 × S5 leads to a consistent description

of an N = 2 SU(Nc) theory, since a contractible S3 does not give rise

to a tadpole requiring cancellation, nor to an unstable tachyonic mode

due to the Breitenlohner–Freedman bound [21]. (Further extensions of

AdS/CFT using D7 branes to include quarks have been presented in [1, 22–

28].∗) The full string picture is that of a D3-brane stack, whose near

horizon geometry gives rise to an AdS5 × S5 space, probed by parallel

D7-branes wrapping and completely filling an AdS5 × S3 geometry. The probe D7-branes

strings connecting the two stacks give rise to an N = 2 hypermultiplet in

the fundamental representation. The resulting field theory is conformal

as long as the two brane stacks coincide. In this case the setup preserves

an SO(4)× SO(2) subgroup of the original SO(6) isometry, which is dual

∗Related models involving other brane setups may be found in [29–37].
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to an SU(2)L × SU(2)R × U(1)R subgroup of the SU(4)R.

Separating the two stacks introduces a quark mass and breaks confor-

mal symmetry as well as the SO(2) ' U(1)R symmetry. Consequently the

induced geometry on the D7-branes becomes only asymptotically AdS5.

At the same time, the S3 starts to slip of the internal S5 when approach-

ing the interior of the AdS5 and shrinks to zero size. At that point the

quarks decouple from the IR dynamics and the D7-brane seems to end

from a five dimensional point of view. By solving the Dirac–Born–Infeld

(DBI) equations of motion for the fluctuations of the D7 branes about

their embedding the meson spectrum can be determined [24]. The setup

is reviewed in more detail in Chapter 2.

In Chapter 3, I discuss how to combine the ideas laid out above, that isdeformed

background

geometry

to consider probe D7-branes in background geometries that only approach

AdS5 × S5 asymptotically. The specific geometry under consideration is

that of a dilaton flow by Gubser [38], which preserves an SO(1, 3)×SO(6)

isometry while breaking conformal invariance and supersymmetry, thereby

allowing chiral symmetry breaking by the formation of a bilinear quark

condensate.

In the framework of AdS/CFT correspondence all supergravity fields

encode two field theoretic quantities, a source and a vacuum expectation

value (VEV). The embedding of a probe D7-brane is determined by a

scalar field arising from the pullback of the ambient metric to the world

volume of the brane. Solving the equation of motion for this scalar field

Φ yields the following UV behaviour,

Φ ∼ mq +
〈ψ̄ψ〉
ρ2

,

where ρ is the radial coordinate of the AdS space, whose boundary is

approached for ρ→∞.

Extending the solution to the interior of the space, it turns out that

generic combinations of the quark mass mq and the chiral condensate

〈ψ̄ψ〉 do not produce solutions that have a reasonable interpretation as a

field theoretic flow; i.e. are expressible as a function of the energy scale

ρ. I demonstrate that this requirement is sufficient to completely fix the

condensate as a function of the quark mass. In the limit of vanishing
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quark mass there is a non-vanishing bilinear quark VEV indicating that

the background is indeed a holographic description of spontaneous chiral

symmetry breaking.

I then determine the mass of the lowest scalar, pseudoscalar and vec-

tor meson by calculating the fluctuations about the embedding solutions.

Since the equations of motion for the D7 embedding in the deformed

background could only be solved numerically, the same holds true for

the fluctuations about these vacuum solutions. Still the spectrum is well

understood because it approaches the analytic solutions of the supersym-

metric case in the limit of large quark mass. This is to be expected since

for larger quark mass, the corresponding mesons decouple from the dy-

namics at high energies where supersymmetry is restored. I show that

in the limit of vanishing quark mass, where chiral symmetry is broken

spontaneously, the pseudoscalar meson becomes massless and is therefore

a Goldstone boson for the axial symmetry. For small quark mass mq, the

mass of the Goldstone mode essentially behaves like
√
mq in accordance

with predictions from effective field theory.

Moreover I discuss the spectrum of highly radially excited mesons (as

opposed to excitations on the S3, which are not in mutually same repre-

sentations of SU(2)L × SU(2)R). It is explained why in this holographic

setup (as in many others [39]) the field theoretic expectation [40, 41] of

chiral symmetry restoration cannot be met. The reason is the infrared

being probed more densely in the limit of large radial excitations, which

also has an interesting effect on the heavy-light spectra discussed below.

In Chapter 4 instead of considering a non-trivial geometry, I discuss non-trivial gauge

backgroundthe effects of a non-trivial gauge field configuration on the brane. The

spectrum of Nf � Nc coincident D7-branes is described by a non-Abelian

DBI action plus Wess–Zumino term C4 ∧ F ∧ F . Both scalar and vector

fields on the brane are now matrix valued. Assuming that the branes

are coincident one may diagonalise and obtain effectively Nf copies of

the spectrum of a single brane—unless there is a contribution from the

Wess–Zumino term. This requires to choose a background configuration

with non-trivial second Chern class; i.e. an instanton solution, which I

demonstrate to indeed minimise the D7-brane action.

The string connecting the D7 and D3-branes separated by a distance
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(2πα′)mq introduces a massive N = 2 hypermultiplet in the fundamental

representation, which contributes the term Q̃i(mq + Φ3)Q
i to the super-

potential. Q̃i and Qi form the fundamental hypermultiplet and Φ3 is the

chiral field that is part of the adjoint N = 2 gauge multiplet. The scalar

component of Φ3 is an Nc × Nc matrix. If some of its elements acquire

a VEV such that mq + Φ3 is zero, then the corresponding components of

the fundamental field may also get a VEV and the theory is on the mixed

Coulomb–Higgs branch. I show that this Higgs VEV corresponds to the

instanton size of above background and calculate the spectrum of scalar

and vector mesons as a function of the Higgs VEV. In the limit of van-

ishing Higgs VEV I reproduce the analytic spectrum of the SU(Nc) gauge

theory. Not surprisingly there is a sense in which the spectrum of an in-

finitely large Higgs VEV is equivalent since it belongs to an SU(Nc − 1)

gauge theory. I show that this equivalence holds only up to a non-trivial

rearrangement of the spectrum by a singular gauge transformation.

In Chapter 5 mesons consisting of a light and a heavy quark are dis-heavy-light mesons

cussed. A näıve approach would be to use the non-Abelian DBI action,

where the diagonal elements of the matrix valued scalar field now encode a

mass and bilinear condensate for each of the correspondingNf quarks. Off-

diagonal elements of the embedding solution would contain mass-mixing

terms and mixed condensates, which one could set to zero for phenomeno-

logical reasons. Fluctuations about these embeddings would correspond

to the ordinary same-quark meson for the diagonal elements and to heavy-

light mesons for the off-diagonal entries. However the latter are not small

with respect to the corresponding light quark and expansion of the DBI

action to quadratic order is not possible anymore. This step however is

crucial to obtain an eigenvalue equation for the meson mass.

The approach chosen here is to find an effective description for heavy-

light mesons from the Polyakov action of the string stretched between two

D7-branes with different separation from the D3 branes corresponding to

two different quark masses. The separation is assumed to be large (that

is only one quark is heavy, the light quark is taken massless), such that a

semi-classical description of this long string is possible. I take the ansatz of

a rigid string spanned in the direction of the separation of the two branes.

The string is not allowed to oscillate or bend but only to move along the
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world volume of the D7s. Then integration over the string length can be

carried out to obtain an effective point-particle-like action. Its equation

of motion is a generalisation of the Klein–Gordon equation which can be

quantised. I evaluate the resulting eigenvalue equation for the undeformed

AdS background as well as dilaton deformed backgrounds by Gubser [38]

and Constable–Myers [42].

The heavy-light meson spectrum for both deformed geometries approx-

imates the AdS heavy-light spectrum for large quark mass. This behaviour

is expected because a large quark mass corresponds to the string probing

larger parts of the space-time that are approximately AdS. At the same

time, it can be observed that highly excited mesons converge more slowly

to their AdS values. Again this is in accordance with previous results of

Section 3.8, where it has been demonstrated that highly excited mesons

probe the IR region of the space time more densely, where the deviation

from the AdS geometry is large.

These heavy-light spectra can be used to determine the mass of the B physics

B meson by using the results of Chapter 3 as well as the experimental

values of the Rho and Upsilon meson mass to fix the confinement scale

and heavy quark mass. The prediction for the B mesons is 20% above

the experimental value. Since the B mesons are far in the supersymmetric

regime of this holographic model while at the same time the field theory is

strongly coupled at that scale, this level of agreement is surprisingly good.

The AdS/CFT models I considered here describe chiral symmetry break- summary

ing, highly excited mesons, the Higgs branch and heavy-light mesons, re-

spectively. They have in common that they are not focused on building a

perfect QCD dual, but instead are used to investigate particular features of

YM theory with matter. The strategy of keeping a connection to standard

AdS/CFT with flavours worked out and the results show either the qualita-

tive behaviour expected from field theoretic and SUGRA considerations or

could even be matched quantitatively to analytic results in certain limits.

As already mentioned this thesis consists of two parts. In the first part pre-

sented so far various aspects of AdS/CFT correspondence have been discussed

and a number of models extending the AdS/CFT correspondence to theories
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with fundamental quarks have been developed and explored. The second part

is devoted to an analysis of the conformal anomaly in super-Yang–Mills the-

ories coupled to minimal supergravity in four space-time dimensions. This

analysis is aimed at providing building blocks for a future generalisation of the

two dimensional c-theorem, see below, to four-dimensional supersymmetric

field theories.

The conformal anomaly expresses the breaking of conformal invariancetrace anomaly

in a classically conformal field theory by quantum effects. It arises as

the trace of the energy-momentum tensor, which—as mentioned above—

vanishes in a conformally invariant theory, and is also called trace anomaly,

hence.

An investigation of the trace anomaly is interesting because of its po-c-theorem

tential relation to a four dimensional version of Zamolodchikov’s c-theorem

[43]. The c-theorem is a statement about the irreversibility of renormali-

sation group flows connecting two fixed points of a quantum field theory

in two space-time dimensions. To be more precise the theorem states the

existence of a monotonic function that at the fixed points, where the β

functions vanish, coincides with the trace anomaly coefficient c defined by

〈
Tm

m
〉

=
c

24π
R,

where R is the scalar curvature. Moreover the coefficient c turns up as

the central charge of the Virasoro algebra and in the two point function

of the energy-momentum tensor.

The c-theorem is also interesting from a philosophical point of view,

because the c-function is interpreted to measure the number of degrees

of freedom along the RG flow. Suppose that one believes that in the real

world this number should be non-increasing when going to lower energies,

a future “theory of everything” should certainly incorporate a function

that measures these degrees of freedom and is monotonic hereby. While

it is not clear that such an irreversibility theorem should be realised in

terms of a c-theorem, the questions remains if there is a class of theories

in four dimensions where an analogous statement to the two dimensional

c-theorem can be made. Such a generalisation is not straight forward since4D
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conformal symmetry in four dimensions is far less powerful because the

conformal algebra contains only a finite number of generators.

In four dimensions the trace anomaly reads from a to c

〈
Tm

m
〉

= cC2 − a R̃2 + bR2 + f �R, (?)

with C2, R̃2 and R2 respectively the square of the Weyl tensor, the Euler

density and the square of the Ricci scalar R. The first question that arises

is which of these coefficients is to take over the rôle of the two dimensional

c. While f can be removed by adding a local counterterm to the quan-

tum effective action, c is known to be increasing in some theories and

decreasing in others and b is eliminated by Wess–Zumino consistency con-

ditions. For the remaining coefficient, conventionally denoted “a”, there

is no known counterexample to aUV > aIR, though explicit checks can only

be performed in certain classes of supersymmetric field theories [44, 45].

This might be an indication that supersymmetry is a necessary ingredient

for such an a-theorem. The prospect of an a-theorem [46] has attracted

some interest in the recent past under the name a-maximisation [47].

In this thesis a different approach inspired by an alternative proof of space-time

dependent

couplings

the c-theorem in two dimensions is chosen [48]. The author of [48] couples

a quantum field theory that is conformal to a classical gravity background

and investigates the anomaly arising from that coupling by promoting the

coupling constants λ to external fields λ(x).

This trick yields well-defined operator insertions from functional deriva-

tions of the generating functional with respect to the couplings. A gen-

eralisation of the Callan–Symanzik equation to Weyl rescalings is found,

which becomes anomalous when Weyl symmetry is broken upon quantisa-

tion. The structure of this equation is ∆σW = A, where ∆σ contains a

Weyl scaling part and a β function part in analogy to the case of constant

couplings and constant scale transformations.

The shape of the anomaly A is determined by dimensional analysis, anomaly ansatz

yielding an ansatz that is a linear combination between a set of coefficient

functions, which only depend on the couplings, and a set of basis terms,

which depend on the curvature and derivatives of the couplings. There is

only a finite number of possible basis terms and their coefficient functions
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can be perturbatively determined for a particular theory.

Without resorting to a particular theory, one may nevertheless find con-Wess–Zumino

consistency straints between the coefficients arising from a Wess–Zumino consistency

condition

[
∆σ, ∆σ′

]
W = 0.

In two dimensions this consistency condition implies βi∂i(c+ wiβ
i) =

χijβ
iβj, where c is the central charge and wi(λ

k) and χij(λ
k) are above

mentioned coefficient functions. χij can be related to the positive definite

Zamolodchikov metric, which is the key ingredient for the definition of a

monotonic c-function.

In the four-dimensional case it is such a relation to a positive definitefailure

object that is missing. In particular the analogous consistency condition

for the a coefficient in the four dimensional trace anomaly (?) reads

βi∂i(a+ 1
8
wiβ

i) = 1
8
χg

ijβ
iβj,

where χg
ij(λ

k) is one of the (many) coefficients in the four-dimensional

anomaly ansatz. There is a relation to a positive definite coefficient χa,

χg
ij = 2χa

ij + (other terms), but it is spoiled by the occurrence of extra

terms.

In supersymmetric theories, some of these extra terms are known to

vanish and there might be hope that additional constraints arise from

a local RG equation incorporating super-Weyl transformations that allow

the construction of a monotonic a-function. Before tackling this ambitious

task, a first step is to analyse the trace anomaly in a supersymmetric

framework, which is what has been pursued in the second part of this

thesis.

In Chapters 6 and 7 respectively, I give an introduction to minimalcontents

supergravity in an N = 1 superfield formulation and to the non-super-

symmetric local renormalisation group technique outlined above.

In Chapter 8, I present superfield versions of the local RG equation,

give a complete ansatz for the trace anomaly, and determine the full set of

consistency equations. I then discuss the N = 4 case, which gives rise to

an interesting puzzle: In [49] by a component approach a one-loop result
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for the trace anomaly of N = 4 SYM was found to contain a conformally

covariant operator of fourth order, the Riegert operator [50], which is re-

viewed in Section 7.1.4. In [51] a supersymmetric version of this operator

is given in components, but I was not able to find a satisfactory superfield

version of this operator. A superfield Riegert operator is known to exist

in new-minimal supergravity [52], which however in general is known to

be inconsistent on the quantum level [53, 54]. I discuss the possible ori-

gin of that problem, which I suspect to arise from the impossibility to

separate local U(1)R transformations from super-Weyl transformations in

the minimal supergravity formulation such that a too strong symmetry

requirement is imposed on the ansatz.∗ Nevertheless the extended cal-

culations presented here should provide a good starting point for further

exploration of this fascinating topic. In the conclusions possible future

steps are discussed.

∗In new-minimal supergravity this problem does not arise because U(1)R is indeed
a local symmetry of the theory.





Part I

Generalizations of AdS/CFT





“After all, all he did was string together a lot of old,

well-known quotations.”

H. L. Mencken, on Shakespeare

Chapter 1

Overview

§1.1 QCD, 3. §1.2 N = 4 Super-Yang–Mills Theory, 5. §1.3 Type IIB Supergrav-

ity, 6. §1.3.1 p-brane Solutions, 8. §1.4 D-branes, 9. §1.4.1 Abelian, 10. §1.4.2

Non-Abelian, 11. §1.4.3 Quadratic Action, 13. §1.5 AdS/CFT Correspondence,

15.

1.1 QCD

The gauge theory of the strong interaction, quantum chromodynamics

(QCD), is based on the success of the parton model [55, 56], which describes

the high-energy behaviour of hadrons as bound states of localised but

essentially free particles, to describe the high-energy hadron spectrum.

The other key ingredient was to realise that an additional hidden three-

valued quantum number, colour, is needed.

The former means that the theory should be asymptotically free; i.e.

the coupling constant becomes small in the ultraviolet regime (UV). This

requirement is only met by Yang–Mills theories, that means non-Abelian

gauge theories.

The latter (hiding the colour) makes plausible a colour dependent force

to form colour singlets only, such that one may assume the colour sym-

metry (as opposed to the flavour symmetry) to be gauged. Indeed lattice
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Quark Masses

Type Q Generations

u c t
up 2

3
1.5 to 4 MeV 1.15 to 1.35 GeV 169 to 179 GeV

d s b
down −1

3
4 to 8 MeV 80 to 130 MeV 4.1 to 4.4 GeV

Table 1.1: Quark masses (Particle Data Group [57])

calculations demonstrated that QCD is confining, such that the formation

of colour singlets is a consequence of the dynamics.

The QCD Lagrangean describes an SU(Nc) Yang–Mills theory withQCD Lagrangean

Nc = 3 the number of colours and Nf = 6 the number of quarks, with

a global SU(Nf )L × SU(Nf )R × U(1)V × U(1)A symmetry that is partly

broken by the different mass of the six quarks, cf. Table 1.1. It is given by

LQCD = −1
2
TrFmnF

mn +

Nf∑
i

q̄i(iγ
mDm −mi)qi (1.1)

Fmn = ∂mAn − ∂nAm + i g
[
Am, An

]
Dmqi = (∂m − i gAm)qi

Am = Am
aT q[

T a, T b
]

= i fabcT c

The N2
c − 1 = 8 fields Am

a are called gluons, the Nf = 6 quark fields

qi are the Dirac fermions u, d, s, c, b, t. The global flavour symmetry is

explicitly broken by (the inequality of) the masses mi, though they can be

assumed to be realised approximately for the isospin group SU(2)f or even

(including the strange quark) SU(3)f . The corresponding transformation

and algebra as well as Noether current and charge read

δqi = iαataijqj,
[
ta, tb

]
= ifabctc,

Ja
µ = q̄iγµt

a
ijqj, (1.2)

Qa =

∫
d3xJa

0 ,
[
Qa, Qb

]
= ifabcQc,
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where for SU(3)f the generators ta = λa

2
are usually expressed by the eight

Gell-Mann matrices λa.

Furthermore the Lagrangean is invariant under an overall U(1)V vector axial

transformationsymmetry q 7→ eiα q, often also referred to by baryon number symmetry.

The massless version of (1.1) is in addition invariant under the U(1)A axial

transformations q 7→ eiβγ5 q giving rise to a second copy of the flavour

symmetry group,

δqi = iαataijqj, J5 a
µ = q̄iγµt

a
ijqj, (1.3)

Q5 a =

∫
d3xJ5 a

0 ,
[
Q5 a, Q5 b

]
= ifabcQ5 c. (1.4)

Together they form the chiral symmetry group SU(Nf )L×SU(Nf )R, whose

generators and corresponding algebra are given by

Qa
L = 1

2
(Qa −Q5 a), Qa

R = 1
2
(Qa +Q5 a),[

Qa
L, Q

b
L

]
= ifabcQc

L,
[
Qa

R, Q
b
R

]
= ifabcQc

R, (1.5)[
Qa

L, Q
b
R

]
= 0.

When switching on mass terms this symmetry is not exact anymore and

the associated charges, while still obeying the algebra, are not conserved;

i.e. become time dependent.

1.2 N = 4 Super-Yang–Mills Theory

While classically Yang–Mills theories are conformally invariant, this is

no longer true upon quantisation and the conformal symmetry becomes

anomalous. It turns out that it is actually quite hard to find a field

theory that is conformally invariant on the quantum level and it comes

as a surprise that N = 4 SYM, whose formulation was first achieved by

compactifying ten dimensional N = 1 SYM on a six dimensional torus,

actually preserves a larger symmetry group than its higher dimensional

ancestor and has vanishing β functions to all orders in perturbation theory

[58].

Consequently from the commutators of supercharges and the generator

of special conformal transformation, an additional set of (so-called confor-
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mal) supercharges is generated. From the perspective of AdS/CFT corre-

spondence this doubling of supercharges is quite important since N = 4

has therefore the same number of supercharges as five dimensional max-

imally supersymmetric supergravity. The full superconformal algebra is

SU(2, 2|4), where its bosonic subgroups are SU(2, 2) ' SO(2, 4), the con-

formal group in four dimensions, and SU(4)R, the R-symmetry group.

Being maximally supersymmetric, N = 4 SYM consists entirely of onemultiplets

multiplet, the N = 4 gauge multiplet. In N = 1 language, this corre-

sponds to one gauge multiplet plus three chiral multiplets.∗ So the field

content is one vector, four chiral fermions and three complex scalars. As

the gauge and SUSY generators commute, all fields are in the adjoint rep-

resentation. Two of the chiral superfields form an N = 2 hypermultiplet,

while the other chiral superfield together with the N = 1 gauge multiplet

forms an N = 2 gauge multiplet.

In N = 1 superfield language the Lagrangean readsLagrangean

L =

∫
d4θTr

(
Φ̄i e2V Φi e−2V

)
+

[
1

4g2

∫
d2θWαW

α +

∫
d2θW + c.c.

]
,

(1.6)

where the gauge field strength is given by Wα = −1
8
D̄2(e−2V Dα e2V ) and

the superpotential is

W = Tr Φ3
[
Φ1, Φ2

]
. (1.7)

1.3 Type IIB Supergravity

There are only two maximally supersymmetric supergravity theories in ten

dimensions, called type IIA and type IIB. Both are N = 2 SUGRAs and

contain (among others) two chiral gravitini, but IIA is non-chiral in the

sense that these fermions have opposite chirality while IIB has gravitini of

the same chirality. The particle content of the latter is given by Table 1.2.

∗In an attempt to embrace both naming conventions used in SUSY, multiplets are
denoted chiral, gauge or hyper in conjunction with the number of supersymmetries.
Super fields on the other hand shall always mean N = 1 language and will be distin-
guished by their constraint (none, chiral, real, linear) and transformation behaviour of
the lowest component (scalar, spinor, vector, tensor, density).
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IIB SUGRA Particle Content

Symbol #DOF Field

GAB 35B metric — graviton

C + iϕ 2B axion — dilaton

BAB + iC2 AB 56B rank 2 antisymmetric

C4 ABCD 35B antisymmetric rank 4

ψ1,2
Aα 112F two Majorana–Weyl gravitini

λ1,2
α 16F two Majorana–Weyl dilatini

Table 1.2: IIB SUGRA Particle Content [59]

IIB contains a self-dual five-form field F̃5 := F5 − 1
2
C2 ∧H3 + 1

2
B ∧ F ,

F5 := dC4, which makes it hard to write down an action from which all

equations of motion may be derived.∗

Often in the literature [59, 62], the following action is used,∗∗ aug-

mented by the self-duality condition F̃5 = ∗F̃5, which has to be imposed

additionally on the equations of motion and where ∗ denotes the Hodge

dual. IIB action

SIIB =
1

2κ2

∫
d10x

√
GE

{
RE −

∂Aτ̄ ∂
Aτ

2(Im τ)2
− 1

4
|F1|2 − 1

2
|G3|2 − 1

4
|F̃5|2

}
− 1

4iκ2

∫
C4 ∧ Ḡ3 ∧G3, (1.8)

where the expressions in order of appearance are the determinant of the

metric, the Ricci scalar RE, axion–dilaton field τ := C + i e−ϕ composed

of the axion C and the dilaton ϕ, field strength F1 := dC and G3 :=√
Im τ(F3− iH3) with F3 := dC2 and H3 = dB. The complex objects have

been introduced to make manifest an additional rigid SL(2,R) symmetry SL(2,R)

∗See [60, 61] for recent attempts to improve this situation.
∗∗The conventions employed here are:

Ap = 1
p!AA1...Ap

, (dAp+1)A1...Ap+1 = (p + 1)∂[A1AA2...Ap+1], and
|Fp|2 = 1

p!FA1...ApFA1...Ap .



8 Overview

of type IIB SUGRA, which transforms

τ 7→ aτ + b

cτ + d
, det

(
a b

c d

)
= 1, (1.9)

G3 7→
cτ̄ + d

|cτ + d|
G3, (1.10)

and leaves invariant the other fields.

Many also prefer to follow the historic approach [63–67] of writingequations of

motion down the equations of motion only, which restricted to the graviton, axion,

dilaton, and four-form Ramond–Ramond potential read:

RAB = e2ϕ ∂AC ∂BC + ∂Aϕ∂Bϕ

+ 1
2·4! F̃AC2...C5F̃B

C2...C5 ,

∇A∇AC = −2(∇AC)(∇Aϕ), (1.11)

∇A∇Aϕ = e2ϕ(∇AC)(∇AC),

∂[A1(C4)A2...A5] = εA1...A5

A6...A10∂A6(C4)A7...A10 ,

where by convention the total anti-symmetric Levi-Civita symbol takes

values±
√
− detGE for all indices lowered (and accordingly±

√
− detGE

−1

for all indices raised).

1.3.1 p-brane Solutions

There is a particular class of solutions to the supergravity equations of

motion (1.11) that preserve half of the supersymmetry and the subgroup

SO(1, p)× SO(9− p) of the ten dimensional Lorentz group. Additionally

they have a non-trivial Cp+1 charge coupled to the supergravity action by

Sp ∼
∫
dCp+1. (1.12)

These solutions are called p-branes. They are determined by the ansatzp-brane ansatz

ds2 = H(y)αηµνdx
µdxν +H(y)β(dy2 + y2dΩ2

5) (1.13)

with ηµν the (p+1)-dimensional Minkowski metric, dΩ2
8−p the line element

of the (8−p)-dimensional unit sphere and constants α, β to be determined
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by the equations of motion. The directions x are referred to as world-

volume or longitudinal coordinates, while y are called transversal.

Since to this thesis, the most relevant p-branes are 3-branes, their full 3-brane solution

solution in terms of bosonic supergravity fields is given,

ds2 = H(y)−1/2ηµνdx
µdxν +H(y)1/2(dy2 + y2dΩ2

8−p),

Φ = Φ0 = const, C = const,

BAB = C2,AB = 0, (1.14)

C4 = H(y)−1dx0 ∧ · · · ∧ dx3,

H(y) = 1 +
∑

i

L4

|~y − ~yi|
, L4 = 4πgsNα

′2,

for a distribution of 3-branes at positions yi. Close to the origin of a single

brane |~y − ~yi| � L4, the 1 in the warp factor can be neglected such that near-horizon

geometrythe geometry becomes approximately AdS5 × S5.

1.4 D-branes

A Dp-brane is a (p + 1)-dimensional hypersurface in the target space of

string theory, where open strings can end [68, 69]. Their discovery inte-

grates some features of superstring theory and supergravity that would

have been puzzling without them. Firstly, the open string admits two boundary

conditionskinds of boundary conditions,

Dirichlet X i(τ, σ) = const,

Neumann ∂σX
i(τ, σ) = 0.

However from a näıve point of view, Dirichlet boundary conditions

have to be considered unphysical as they break Lorentz invariance and—

worse—make the open strings loose momentum trough their endpoints.

With the discovery of T-duality [70–73] it became apparent that one could

transform from one kind of boundary condition to the other and it was

no longer possible to exclude Dirichlet boundary conditions a priori. In

the D-brane picture, momentum conservation can be restored by assum-

ing the D-branes as dynamical objects can absorb the above mentioned
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Index Conventions

longitudinal transversal

Xa,b,... X i,j

XA,B,...

Table 1.3: Index conventions for ambient space, world volume and
transversal coordinates

momentum flow.

Secondly, p-brane solutions∗ of SUGRA are interpreted as the low energy

effective objects corresponding to Dp-branes.

Thirdly, it was realised early [74], that it is possible to attach gauge

group factors to the end points of open strings. These Chan–Paton factors

have a natural explanation as encoding which brane in a stack of coincident

branes the string is attached to.

1.4.1 Abelian

For a single Dp-brane this factor is a U(1) in accordance with the fact,

that the massless modes of open string theory form a (p+ 1)-dimensional

U(1) SYM with one vector, 9 − p real scalars, whose VEVs describe the

position of the brane, and fermionic superpartners, which shall be ignored

in the following. For constant field strengths Fab, F = 1
2
Fab dX

a∧dXb, by

resummation it is possible to determine the action to all orders in α′ [75]

to be the first (Dirac–Born–Infeld, DBI) part ofDirac–Born–Infeld

SDp =− Tp

∫
dp+1ξ e−ϕ

√
− detP [G+B]ab + 2πα′Fab

± Tp

∫
P
[∑

Cn eB
]
e2πα′F ,

(1.15)

which couples the brane to the massless Neveu–Schwarz (NS) sector of

closed string theory while the second (Wess–Zumino, WZ) part determinesWess–Zumino

the coupling of the brane to the massless Ramond–Ramond (RR) sector.

The index conventions are depicted in Table 1.3, while the fields are ex-

plained in Section 1.3.

∗p-branes are domain wall solutions of SUGRA, see Section 1.3.1 for details.
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The prefactor Tp is given by

Tp =
2π

gs(2π`s)p+1
, (1.16)

with gs the string coupling and `s the string length.

Throughout this thesis, for explicit calculations the Kalb–Ramond

field will be assumed to vanish. As will be commented on below, the

Wess–Zumino term allows coupling to—with respect to the brane’s world

volume—lower dimensional RR potentials if the gauge field has a non-

trivial Chern class. The only RR potential in the backgrounds discussed

here, will be C4 associated to the five-form flux always present in the

AdS/CFT correspondence. In the particular case of a D7-brane, the Wess–

Zumino term then reads

SD7−WZ = Tp

∫
d8ξ P [C4] ∧ F ∧ F. (1.17)

1.4.2 Non-Abelian

N parallel D-branes describe a U(1)N gauge theory. When these branes

approach one another, strings stretched between different branes become

light and the gauge symmetry is promoted to U(N). Generalising to the

case of U(N) is straight forward in the case of D9-branes,∗ which does not

require a generalised pull-back and thus requires merely an additional trace non-Abelian

pull-backover gauge indices. The action of Dp-branes of arbitrary world volume

dimension p + 1 can then be determined by T-duality, which transforms

the T-dualized direction from longitudinal to transversal and vice versa.

The result [76] in string frame is Dp action

SDp =− Tp

∫
dp+1ξ STr

[
e−ϕ

√
detQ

√
− detP [Ẽ]ab + 2πα′Fab

]
± Tp

∫
STr

[
P [ei(2πα′)iΦiΦ

∑
Cn eB] e2πα′F

]
,

(1.18)

where “STr” is a trace operation that shall also take care of any ordering

ambiguities in the expansion of the non-linear action. Its name (“sym-

∗ Apart from the additional complication of finding the correct series expansion,
which is non-trivial due to ordering ambiguities.
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metrised trace”) is reminiscent of an ordering prescription suggested by

[77], which however is not valid beyond fifth order. Throughout this thesis,

an expansion to second order will be sufficient and no ordering ambiguities

appear at all.

The following abbreviations have been introduced:

ẼAB := EAB + EAi(Q
−1 − δ)ijEjB (1.19a)

EAB := GAB +BAB, (1.19b)

Qi
j := δi

j + iγ
[
Φi, Φk

]
Ekj, (1.19c)

(Q−1 − δ)ij :=
[
(Q−1)i

k − δi
k

]
Ekj, (1.19d)

γ := 2πα′, (1.19e)

iΦiΦf
(n) :=

1

2(n− 2)!

[
Φi, Φj

]
f

(n)
jiA3...An

dxA3 ∧ · · · ∧ dxAn , (1.19f)

where f (n) is an arbitrary n-form field acted upon by iΦ, the interior prod-

uct with Φi. Eij is the inverse of Eij (as opposed to the transversal

components of EAB).

In particular static gauge is chosen,

Xa = ξa, X i = γΦi(ξa), (1.20)

which means transversal coordinates X i are in one-to-one correspondence

to the scalar fields Φi. Then the pull-back of an arbitrary ambient space

tensor TA1...An can recursively be defined by

P [TA1...An ]a1...an
:= P [Ta1A2...An ]a2...an + γ(Da1Φ

i)P [TiA2...An ]a2...an , (1.21)

which yields for the combined metric/Kalb–Ramond field

P
[
Ẽ
]

:= Ẽab + γẼaiDbΦ
i + γẼibDaΦ

i + γ2ẼijDaΦ
iDbΦ

j. (1.22)

Da denotes the gauge covariant derivative.

Finally Eab still may contain a functional dependence on the non-

commutative scalars Φ and is to be understood as being defined by a

non-Abelian Taylor expansion [78]Taylor expansion
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Eab(ξ
a) = exp[γΦi∂Xi ]Eab(ξ

a, X i)
∣∣
Xi=0

. (1.23)

Again the Wess–Zumino part shall be given for the eight dimensional

case; i.e. a stack of D7-branes,

SWZ = T7

∫
STr

{
P [C8] + γP [iγiΦiΦC8 + C6] ∧ F

+
γ2

2
P [(iγiΦiΦ)2C8 + iγiΦiΦC6 + C4] ∧ F ∧ F

+
γ3

3!
P [(iγiΦiΦ)3C8 + (iγiΦiΦ)2C6

+ iγiΦiΦC4 + C2] ∧ F ∧ F ∧ F
}
,

(1.24)

where B has been assumed to vanish. For a 3-brane background, there is

only a four-form potential and accordingly the Wess–Zumino part is given

by

SWZ = T7

∫
STr

γ2

2
P [C4] ∧ F ∧ F +

iγ4

3!
P [iΦiΦC4] ∧ F ∧ F ∧ F. (1.25)

While (1.18) encodes the high non-linearity of a D-brane action in a

compact manner, it is often not suited for explicit calculations and needs

to be expanded.

1.4.3 Quadratic Action

As both the non-Abelian scalars and the field strength carry γ as a pref-

actor, it is tempting to think of it as an expansion parameter, keeping

track of the order. However in equation (1.19c) in front of the commuta-

tor there is a factor of γ where following this logic a factor of γ2 should

be expected.∗

To avoid these pitfalls and unambiguously define what is meant by quadratic order

“quadratic order”, a parameter ε shall be thought to accompany γ in each

of the equations of the last Section with the sole exception of (1.19c),

where an ε2 is included in front of the commutator. Then, the order εn

∗Furthermore some authors prefer to use factors of α′ to obtain D3-transversal
coordinates with mass dimension 1, thus modifying the manifest α′ dependence even
though in physical observables such redefinitions cancel of course.
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denotes a total of n fields of Φ or Fab in a term.

Pulling out a factor Eab(ε = 0) (which shall also not depend on trans-

verse directions X i as they come with an ε) from the DBI part of the

D-brane action defines a matrix M(γ) according to

SDBI =− Tp

∫
dp+1ξ STr

[
e−ϕ

√
detQ

√
− detEab(0)

√
detM(ε)

]
,

(1.26)

which has the property M(0) = 1 and is given by

M(ε)a
b = Eac(ε = 0)

(
P [Ẽ(γ)]cb + εγFcb

)
. (1.27)

Eac is the inverse of Eac. An expansion in ε is performed according to

√
detM(ε) = 1 +

ε

2
Tr (M ′(0)) +

ε2

4

[
Tr (M ′′(0))− Tr

(
M ′(0)2

)
+ 1

2
Tr2 (M ′(0))

]
+O(ε3),

(1.28)

where

M ′(0) = γEacΦi∂XiEcb + Eac(γEkbDcΦ
k + γEckDbΦ

k) + γEacFcb,

(1.29)

M ′′(0) = γ2EacΦiΦj∂Xi∂XjEcb

+2γ2EacΦi∂Xi(EkbDcΦ
k + EckDbΦ

k)

+Eac[Eci(2iγ
[
Φi, Φj

]
− Eij)Ejb + 2γ2EijDcΦ

iDbΦ
j].

(1.30)

All quantities on the right hand sides of (1.29) and (1.30) are to be un-

derstood as having ε set to zero. In particular this means the right hand

sides are evaluated at vanishing transversal coordinates X i = 0.

For a diagonal metric and vanishing Kalb–Ramond field, the DBI partquadratic DBI
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of the action up to quadratic order simplifies dramatically,

SDBI = −Tp

∫
dp+1ξ STr e−ϕ

√
− detGab

[
1 + (lin.)

+ γ2

2
GabGijDaΦ

iDbΦ
j + γ2

4
GacGbdFabFcd

+ γ2

4
(Gab∂Xi∂XjGab)Φ

iΦj

]
,

(1.31)

where the following terms vanish unless the transversal coordinates enter

the metric linearly,

(lin.) := γ
2
TrM− γ2

4
TrM2 + γ2

8
Tr2M,

Ma
c := GabΦi∂XiGbc.

(1.32)

1.5 AdS/CFT Correspondence

The AdS/CFT correspondence (Anti-de Sitter/Conformal Field Theory) is

the statement of two seemingly different theories to be equivalent. These

theories are ten dimensional Type IIB string theory on an AdS5×S5 space-

time background and four dimensional N = 4 extended supersymmetric

SU(Nc) Yang–Mills theory. The latter is a (super)conformal field theory

with coupling constant g2
Y M = gs, where gs is the string coupling. The

string theory has Nc units of five-form flux through the S5, which is related

to the equal curvature radii L of the AdS5 and S5 by L4 = 4π`4sgsNc, where

`s =
√
α′ is the string length. This equivalence is supposed to hold for

arbitrary values of Nc and the coupling constants, but since string theory

on AdS5 × S5 is not well-understood, it is usual to take two consecutive

limits that make a supergravity description valid but still leave the duality

non-trivial.

The first limit to take is the ’t Hooft large Nc limit, with Nc → ∞ ’t Hooft limit

while λ := g2
Y MNc is kept fixed, in which the field theory reorganises

itself in a topological expansion. This can be seen by using a double line

representation for Feynman diagrams assigning a line to each gauge index,

such that fields in the adjoint are equipped with two indices, while fields

in a vector representation carry a single line. The diagrams, see Figure 1.1,

then correspond to polyhedrons, which contribute with a power of Nc that
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2
N

N
0

Figure 1.1: Double Line Representation: Non-planar diagrams are sup-
pressed by powers of N2

c [79]

is suppressed by the diagram’s genus and the polyhedrons are interpreted

as triangulating the string world sheet, though the exact nature of this

triangulation is still to be understood. Due to gs = λ/Nc the strict ’t Hooft

limit corresponds to considering classical string theory on AdS5 × S5. At

the same time the ’t Hooft coupling takes over the rôle of the field theoretic

coupling constant.

In the second limit `s → 0, the curvature radius is assumed to be largesmall curvature

compared to the string length `s � L. This corresponds to the low energy

limit where supergravity becomes an effective description. On the field

theory side this implies a large ’t Hooft coupling

1 � L4

`4
= 4πλ (1.33)

and a strongly coupled theory therefore, indicating that AdS/CFT is a weak-

strong duality. This means that one theory in its perturbative regime is

dual to the other theory in the strong coupling regime, which renders the

duality both extremely useful and hard to proof.

While on the one hand the supergravity version is the weakest form ofcorrelation

functions the AdS/CFT conjecture, it is the most useful version for practical calcula-

tions on the other hand. The equivalence of both theories to be expressed
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by

〈
exp

∫
d4xφ(0)O

〉
CFT

= exp
{
−SSUGRA[φ]

}∣∣∣∣
φ(∂AdS)=φ(0),

(1.34)

where the field theoretic operator O is coupled to the boundary value φ0 of

an associated supergravity field φ, which is determined by the supergravity

equations of motion and the boundary condition.

This implicitly introduces the notion of the conformal field theory be- bulk vs.

boundarying defined on the boundary of AdS5, where one may imagine the AdS5

space being build up from slices of Minkowski spaces parallel to the bound-

ary and fibred over a fifth (“radial”) direction y. The line element reads

dsAdS5×S5 =
y2

L2
dx2

1,3 +
L2

y2
dy2 + L2dΩ2

5. (1.35)

For the metric to be invariant under rescalings of the coordinates on the

boundary x, the radial direction has to transform reciprocal, which means

that y transforms as an energy and is interpreted as the renormalisation

scale of the boundary theory. Considering domain wall solutions it is

actually possible to represent field theoretic renormalisation group flows

on the supergravity side [10, 17], establishing the fact that the interior of

the AdS space may be interpreted as the infrared (IR) and the boundary

as the ultraviolet (UV) of the field theory.

By the standard AdS/CFT dictionary supergravity fields, φ being solu- operator map

tions to differential equations of second order, encode actually two field

theoretic objects, whose conformal dimension can be read off from the

asymptotic behaviour,

φ(y →∞) ∼ J y∆−4 +
〈
O
〉
y−∆, (1.36)

where the radial direction is interpreted as the renormalisation scale. The

first, non-normalisable part corresponds to a field theoretic source and has

conformal dimension 4−∆; the normalisable part yields the corresponding

VEV of mass dimension ∆. A simple example shall illustrate this. For

the bilinear operator ψ̄ψ, the dual supergravity field has the asymptotic
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behaviour

φ(y →∞) ∼ m

y
+

c

y3
, (1.37)

where m is the mass term of field ψ and c the bilinear quark condensate〈
ψ̄ψ
〉
. The difficult part is to find out which supergravity fields correspond

to which field theoretic operators. For 1
2
-BPS states, which correspond to

superconformal chiral primary operators, the situation is simpler because

they are determined by their transformational behaviour under the large

global symmetry group SU(2, 2|4). On the field theory side its bosonic

subgroup SO(2, 4)×SU(4) ' SO(2, 4)×SO(6) is realised as the conformal

and R-symmetry group, while it corresponds to the isometry group on the

supergravity side.

From a string theoretical perspective, the correspondence can be un-D3-branes

derstood as two different effective descriptions of a D3-brane stack, namely

as a Yang–Mills theory from an open string perspective and a p-brane so-

lution from a closed string perspective. In the latter case, the AdS5 × S5

geometry arises from a near-horizon limit. The picture of AdS/CFT being

two descriptions of a D3-brane stack turns out to be particularly useful

when adding additional branes to include fundamental fields into the du-

ality. This shall be the topic of the next Chapter.



We used to think that if we knew one, we knew two,

because one and one are two. We are finding that we

must learn a great deal more about “and”.

Sir Arthur Eddington

Chapter 2

Spicing with Flavour

§2.1 Motivation, 20. §2.2 Probe Brane, 21. §2.3 Analytic Spectrum, 23. §2.3.1

Fluctuations of the Scalars, 23. §2.3.2 Fluctuations of the Gauge Fields, 26.

§2.4 Operator Map, 28.

While the AdS/CFT correspondence has been a remarkable progress in

the understanding of the ’t Hooft large Nc limit [5], a need to extend

the Maldacena conjecture beyond N = 4 super-Yang–Mills (SYM) theory

was soon felt, see [80] for a most prominent example. Since N = 4 SYM

contains only one multiplet, the gauge field forces its representation on all

other fields in the theory. As a consequence, also the fermions transform

under the adjoint representation, and thus do not describe quarks. only adjoints

There have been early attempts to augment the boundary theory with

fundamental fields by including D7-branes in an AdS5 × S5
/
Z2 geometry

[18, 19]. The orientifold was introduced to satisfy a tadpole cancellation

condition, but the dual N = 2 boundary theory had gauge group Sp(N).

In order to obtain an SU(Nc) gauge theory for the description of large Nc

cousins of quantum chromodynamics (QCD), [20] dropped the orientifold

from the setup. This was justified by the fact, that the probe D7-brane

wraps a contractible S3 cycle on the S5 and does not lead to a tadpole,

hence. In [20] it was shown that the string mode corresponding to the
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direction in which the S3 slips from the S5 has negative mass square, but

satisfies (saturates) the Breitenlohner–Freedman bound and does not in-

troduce an instability.

In this Chapter, the main ideas of [20] will be reviewed, before calculat-

ing the meson spectrum of a field theory dual to a more general geometry

in the next Chapter.

2.1 Motivation

Conventional AdS/CFT correspondence can be understood as two different

limits (see the introductory Chapter) of the same object, namely a stack

of Nc coincident D3-branes in string theory. The choice on which of those

Nc branes an open string may end, is reflected by the SU(Nc) symmetry

of the dual field theory. The number of ways to attach both ends to the

stack is N2
c − Nc, indicating that the field describing the open string is

in the adjoint representation. When including another, non-coincident

brane in this setup, a string connecting it to the stack has Nc choices

and thus describes a field transforming under the vector representation of

the gauge group. Another perhaps less heuristic way to understand this

scenario, is to return to the ’t Hooft expansion. If one takes the intuition

about the field theory’s reorganisation into a triangulation of the closed

string world sheet serious, then apparently, fundamental fields will provideworld sheet

triangulation boundaries that lead to a triangulation of the open string world sheet. In

this sense, augmenting the AdS/CFT correspondence by additional branes,

which exactly provide these open strings, extends the correspondence from

an open-closed duality to a full string duality.

While the inclusion of D3 or D5-branes leads to fundamental fields on

the boundary of AdS that are confined to a lower dimensional defect (so-

called “defect CFTs”), the addition of D7-branes provides space-time fillingwhy D7

fields in the fundamental representation. Furthermore it breaks supersym-

metry by a factor of two; from N = 4 to N = 2 on the four-dimensional

field theory side by inclusion of an N = 2 fundamental hypermultiplet

given rise to by the light modes of strings with one end on the D3s and

one on the D7s.
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Coordinates

0 1 2 3 4 5 6 7 8 9

D3

D7

xµ,ν,... ym,n,... zi,j,...

r

y

Xa,b,...

XA,B,...

Table 2.1: D3- and D7-brane embedding in the AdS5×S5 geometry. The
D7-branes (asymptotically) wrap an AdS5×S3. The Table also summarises
the index conventions used throughout this part of the thesis.

2.2 Probe Brane

In order to maintain the framework of conventional AdS/CFT correspon-

dence, [20] neglected the gravitational backreaction of the D7-branes on

the geometry, which was justified by requiring the numberNf of D7-branes

to be sufficiently small. The contribution of the Nc D3-branes and the Nf

D7-branes to the background fields is of order gs times their respective

number. So as long as Nc � Nf , the geometry is dominated by the probe limit

D3-branes and the D7-branes are approximately probe branes. In the

strict Nc → ∞ limit, which comes with the supergravity description of

AdS/CFT, this approximation becomes exact.∗

This is analogous to the so-called quenched approximation in lattice quenched

approximationQCD, where the action of the gauge bosons on the matter field is included,

while the action of the matter on the bosons is neglected.

∗ It should be noted that meanwhile there are supergravity solutions that include
the backreaction of the D7-branes [81].



22 Spicing with Flavour

The metric of AdS5 × S5 can be written as

ds2 =
r2

L2
ηµνdx

µdxν +
L2

r2
(d~y2 + d~z2)

=
r2

L2
ηµνdx

µdxν +
L2

r2
dr2 + L2dΩ2

5,

(2.1)

where the index conventions as well as the embedding of the D7-branes

have been summarised in Table 2.1. The multiplication of vectors is

supposed to denote contraction with a Euclidean metric, that means

d~y2 =
∑

4,5,6,7 dy
mdym, d~z2 =

∑
8,9 dz

idzi. There are three qualitatively

different types of directions: x denote the world volume coordinates of the

D3s, y the coordinates transversal to the D3s and longitudinal to the D7s,

and z the coordinates transversal to both kinds of branes. Since y and

z are on the same footing in the metric, assigning z to the 8, 9-plane is

arbitrary, but manifestly breaks the SO(6) ' SU(4)R isometry group toisometry group

SO(4)× SO(2) ' SU(2)L× SU(2)R×U(1)R, where the orthogonal groups

represent rotational invariance in the coordinates y and z, respectively. In

the case of coincident D3 and D7 branes, the hypermultiplet stemming

from the strings stretched between the two stacks is massless, such that

there is no classical scale introduced into the setup and conformal symme-

try is maintained in the strict probe limit. Then the R-symmetry of the

field theory is SU(2)× U(1)R.

When separating the stacks in the z-plane, the SO(2)8,9 ' U(1)R groupembedding

is explicitly broken, though one may use the underlying symmetry to

parametrise this breaking as

z8 = 0, z9 = m̃q. (2.2)

Since this introduces a scale into the setup, namely a hypermultiplet mass

mq = m̃q/(2πα
′), it is not to be expected that conformal symmetry, and

hence AdS isometry, can be maintained. The R-symmetry of the field

theory becomes SU(2)R only, which is in accordance with the geometric

symmetry breaking above.

Indeed, the induced metric on the D7s readsinduced metric
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ds2 =
y2 + m̃2

q

L2
ηµνdx

µdxν +
L2y2

y2 + m̃2
q

d~y2

=
y2 + m̃2

q

L2
ηµνdx

µdxν +
L2

y2 + m̃2
q

dy2 +
L2y2

y2 + m̃2
q

dΩ2
3,

(2.3)

which towards the boundary at |y| → ∞, with y2 ≡ |y|2 := ~y~y, approxi-

mates AdS5 × S3, reflecting the fact that a quark mass term is a relevant

deformation that is suppressed in the ultraviolet.

This is in accordance with the usual picture of the radial direction r = radius = energy√
y2 + m̃2

q of the AdS space describing the energy scale of the field theory,

where approaching the interior of AdS from the boundary corresponds to

following a renormalisation group flow from the ultraviolet (UV) to the

infrared (IR).

When the renormalisation scale is lowered below the quark mass, the

quarks should drop out of the dynamics. This happens when reaching the

radius r = m̃q in the ambient space, which corresponds to the interior

of the D7s at y = 0, where the D7-branes stop from a five dimensional

perspective, although as depicted in Figure 2.1 there is no boundary asso-

ciated to this ending.

When m̃q = 0, the U(1)R and SO(2, 4)AdS symmetry are restored and conformal limit

the D7s fill the whole of the ambient AdS5, which suggests that conformal

symmetry is restored. However, this is only true in the strict probe limit,

as otherwise contributions to the beta function of order Nf/Nc occur [20,

24].

2.3 Analytic Spectrum

2.3.1 Fluctuations of the Scalars

The spectrum of the undeformed D3/D7 system described above admits

analytic treatment at quadratic order [24] and therefore sets the baseline

for the numerical determination of meson spectra in the more complicated

setups of the following Chapters.

From equations (1.14), (1.15) and (1.17) the D7-brane action in a
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r = m̃q

Figure 2.1: The D7-brane wraps an S3 on the internal S5 which slips
towards a pole and shrinks to zero size. From the five dimensional point
of view, the brane terminates at a certain radius, but there is no boundary
associated to this ending. (Figure taken from [82])

background of D3-branes reads

SD7 = −T7

∫
d8ξ
√
− det(P [G]ab + (2πα′)Fab)

+
2πα′

2
T7

∫
P [C4] ∧ F ∧ F,

(2.4)

C4 =
r4

L4
dx0 ∧ · · · ∧ dx3, (2.5)

where P is the pullback to the world-volume of the D7-branes and r2 =

y2 + z2.

For fluctuations of the scalars, the Wess–Zumino term contributes onlyfluctuations about

the embedding at fourth order (with (scalar)2 ·F 2). From the action and for an embedding

according to

z8 = 0 + (2πα′)δz8(ξ), z9 = m̃q + (2πα′)δz9(ξ). (2.6)

the expansion of the action to quadratic order (1.31) yields

L =
√
− det gab(1 + 1

2
(2πα′)2gijg

ab∂az
i∂bz

j), (2.7)
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where the fact that metric admits a diagonal form has been used. For the

induced D7 metric (2.3), the Lagrangean (2.7) reads at quadratic order

2(2πα′)−2L = y3
√

det(ĝ)[ηµν(∂µδz
8)(∂νδz

8) (2.8)

+

(
L2

y2 + m̃2
q

)2

(∂yδz
8)2 + ĝαβ(∂αz

8)(∂βz
9) + (z8 ↔ z9)],

with ĝαβ the metric on the three sphere and the equation of motion equation of

motion
L4

(y2 + m̃2
q)

2
∂µ∂µδz

i + y−3∂y(y
3∂yδz

i) + y−2∇̂α∇̂αδz
i = 0, i = 8, 9,

(2.9)

where ∇̂α is the covariant derivative on the unit S3. An ansatz for sep- radial equation

aration of variables δzi(xµ, y, S3) = ζ i(y) eik·x Y`(S3), with ∇̂α∇̂αY` =

−`(`+ 2)Y`, ` ∈ N0 yields[
∂2

ỹ +
3

ỹ
∂ỹ +

M̃2
s

(1 + ỹ2)2
− `(`+ 2)

ỹ2

]
ζ i(ỹ) = 0, (2.10)

ỹ =
y

m̃q

, M̃2
s = −k

2L4

m̃2
q

, (2.11)

where a rescaling has removed all explicit scale dependencies. Requiring

regularity at the origin, the radial equation (2.10) can be solved uniquely

in terms of a hypergeometric function,

ζ i(y) =
y`

(y2 + m̃2
q)

n+`+1 2F1

(
−(n+ `+ 1),−n; `+ 2;−y2/m̃2

q

)
,

M2
s = −k2 =

4m̃2
q

L4
(n+ `+ 1)(n+ `+ 2),

(2.12)

with the discretisation condition n ∈ N0 from normalisability. Note that

the spectrum becomes degenerate in the conformal m̃q → 0 limit. The

conformal dimension of the boundary operator dual to the solution above,

can be read off from its scaling behaviour with respect to the radial co-

ordinate. In [24] the UV behaviour is determined from (2.12), but one UV behaviour

may instead simply discuss the radial equation (2.10), which for large ỹ
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becomes approximately[
∂2

ỹ +
3

ỹ
∂ỹ −

`(`+ 2)

ỹ2

]
ζ i(ỹ) = 0. (2.13)

Its solutions are of the form ζ i(ỹ) = Aỹ` +Bỹ−`−2, which contradicts the

näıve AdS/CFT expectation of ỹ∆−4 + ỹ−∆ as can be seen from taking the

sum of the exponents. This is due to the appearance of a determinant

factor
√
− det gab ∼ ỹ3, which imposes a non-canonical normalisation onnon-canonical

normalisation the kinetic term. So the generic behaviour should be ỹp+∆−4 + ỹp−∆ and

subtracting the exponent of the non-normalisable solution, which corre-

sponds to a field theory source, from that of the normalisable one, which

corresponds to a vacuum expectation value, it can be seen that

− (`+ 2)− ` = (p−∆)− (p+ ∆− 4) = −2∆ + 4

=⇒ ∆ = `+ 3.
(2.14)

2.3.2 Fluctuations of the Gauge Fields

The equations of motion for the gauge fields read

∂a(
√
− det gcdF

ab)−
4ρ(ρ2 + m̃2

q)

L4
εbβγ∂βAγ = 0, (2.15)

with εαβγ taking values ±1, and 0 when the free index b is none of the

angular S3 directions.

Expanding the equation of motion yields[
(gxx)

−1∂µ∂
µ + y−3∂y(y

3(gyy)
−1∂y) + ∇̃α∇̃α

]
Aν

− ∂ν

[
(gxx)

−1∂µA
µ + y−3∂y(y

3(gyy)
−1Ay) + ∇̃αAα

]
= 0,

(2.16)[
(gxx)

−1∂µ∂
µ + ∇̃α∇̃α

]
Ay − ∂y

[
(gxx)

−1∂µA
µ + ∇̃αAα

]
= 0, (2.17)
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(gxx)

−1∂µ∂
µ + y−3∂y(y

3(gyy)
−1∂y) + ∇̃α∇̃α

]
Aδ

− ∂δ

[
(gxx)

−1∂µA
µ + y−3∂y(y

3(gyy)
−1Ay) + ∇̃αAα

]
− C ′4 g̃δαε

αβγ∂βAγ = 0,

(2.18)

each of which has to be satisfied for a particular ansatz. For the com-

ponents (Aµ, Ay, Aα), the first two should transform under SO(4)4567 as

scalars, while the last should transform as a vector and accordingly be

built up from vector spherical harmonics. The simplest choice is ∇̃αY`, spherical

harmonicswhich transforms in the ( `
2
, `

2
). The other two possibilities are Y`,±

α , which

transform in the ( `±1
2
, `∓1

2
) and obey

∇̃2Y`,±
α − 2δβ

αY
`,±
β = −(`+ 1)2Y`,±

α , (2.19)

εαβγ∇̃βY`,±
β = ±(`± 1)Y`,±

α , (2.20)

∇̃αY`,±
α = 0. (2.21)

The modes containing Y`,± should not mix with the others since they are

in a different representations. The following types of solutions can be

obtained:

Type I± Aα = φ±I (y) eikx Y`,±, Aµ = Ay = 0, (2.22a)

Type II Aµ = ξµφII(y) eikx Y`, Ay = Aα = 0, kµξ
µ = 0, (2.22b)

Type III Ay = φIII(y) eikx Y`, Aα = φ̃III(y) eikx ∇̃αY`. (2.22c)

Type II and III come from recognising that in the gauge ∂µA
µ = 0, Aµ

does not appear in (2.17) and (2.18), and can therefore be treated inde-

pendently. Kruczenski et al. argue that modes not satisfying the gauge

condition are either irregular or have a polarisation parallel to the wave

vector k; i.e. can be brought to the gauge ∂µA
µ = 0.

The simplest radial equation arises from the ansatz II,[
∂2

ỹ +
3

ỹ
∂ỹ +

M̃2
II

(1 + ỹ2)2
− `(`+ 2)

ỹ2

]
Aa = 0. (2.23)

Up to the polarisation vector, this is the same equation as (2.9) and there-

fore produces a degeneracy of the mass spectrum, mass spectrum



28 Spicing with Flavour

M̃2
II = M̃2

s = 4(n+ `+ 1)(n+ `+ 2), n, ` ≥ 0, (2.24)

with the same conformal dimension ∆ = `+ 3.

For type III and I±, an analogous calculation yields the mass formulae

and conformal dimensions of the corresponding UV operators,

M̃2
I+ = 4(n+ `+ 2)(n+ `+ 3), ∆ = `+ 5 ` ≥ 1, (2.25)

M̃2
I− = 4(n+ `)(n+ `+ 1), ∆ = `+ 1 ` ≥ 1, (2.26)

M̃2
III = 4(n+ `+ 1)(n+ `+ 2), ∆ = `+ 3 ` ≥ 1, (2.27)

with n ≥ 0 in all cases.

The full mesonic mass spectrum is given in Table 2.2, were the Diracmatching of

representations fermions needed to fill the states into massive N = 2 supermultiplets have

been added. Since the SU(2)L group commutes with the supercharges, all

states in the same supermultiplet should be in the same representation

with respect to the left quantum number. Indeed redefining ` in such a

manner that the SU(2)L representations are the same also makes the mass

coincide. This argument cannot be applied to the right quantum number,

for the supercharges are not singlets under the R-symmetry. (Although

the spectrum is symmetric under swapping the rôles of the left and right

group, which corresponds to considering an anti-D7-brane, that is the

opposite sign in front of the Wess–Zumino term.)

2.4 Operator Map

As has been seen, the fluctuation modes of the D7-brane organise them-

selves in N = 2 multiplets, which are made of a chiral primary field

and descendants. The mode with highest SU(2)R quantum number is

the scalar of type (I-). The choice of the corresponding primary operator

is restricted by the requirement of containing exact two hypermultipletlowest primary

fields in the fundamental representation, being in the same representation

( `
2
, `+2

2
)0 and having conformal dimension ∆ = `+2. For ` = 0 this merely

admits the unique combination

OI = ψασI
αβ̇
ψ̄β̇, (2.28)
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IIB SUGRA Particle Content

Type SU(2)R U(1)R ∆− `

1 scalar (I-) `+2
2

2 ` ≥ 0 2

2 scalars (s) `
2

0 ` ≥ 0 3

1 vector (II) `
2

0 ` ≥ 0 3

1 scalar (III) `
2

0 ` ≥ 1 3

1 scalar (I+) `−2
2

0 ` ≥ 2 4

1 Dirac (F1) `+1
2

1 ` ≥ 0 5
2

1 Dirac (F2) `−1
2

1 ` ≥ 1 9
2

Table 2.2: Mesonic Spectrum in AdS5 × S5. The Dirac fermions are
deduced from Supersymmetry. ∆ is the conformal dimension of the
corresponding UV operator and the representations have been shifted
to have the same SU(2)L spin `

2
and therefore the same mass M̃2 =

4(n+ `+ 1)(n+ `+ 2), n ≥ 0.

with the Pauli matrices σI . The higher chiral primary in the Kaluza–Klein Kaluza–Klein

primariestower, can be obtained by including the adjoint operators obtained a the

subset Y 4,5,6,7 of the six adjoint scalars of the N = 4 multiplet by traceless

symmetrisation,∗

χ` = Y (i1, . . . Y i`). (2.29)

The operators χ` transforms under SU(2)L × SU(2)R × U(1)R as ( `
2
, `

2
)0,

which in the combination

OI
` = ψχ`σ

Iψ̄, (2.30)

gives a ( `
2
, `+2

2
)0 of conformal dimension ∆ = ` + 2. The other operators

can be obtained from acting with supercharges on those chiral primaries.

∗The four scalars belong to the N = 2 hypermultiplet.
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3.1 Chiral Symmetry Breaking

While much progress has been made in the sector of AdS/CFT correspon-

dence, it has proved difficult to find a realistic holographic dual of QCD.

There are many reasons, which range from practical—working with ten-

dimensional supergravity equations—to principle: The ultraviolet (UV)

regime is weakly coupled, which corresponds to strong coupling (large cur-

vature) on the AdS side and hence the requirement of quantising string

theory on that background. Furthermore models discussed so far contain

only one scale and cannot provide a separation of supersymmetry (SUSY)

breaking and confinement scale ΛQCD.

Despite those obstacles AdS/CFT correspondence has been remarkably
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successful in capturing many aspects of QCD. In this Chapter, such an

aspect will be the important feature of chiral symmetry breaking, whichchiral symmetry

shall be described holographically. Since supersymmetry prohibits chiral

symmetry breaking as a non-vanishing chiral VEV violates D-flatness, the

background geometry has to be deformed in such a way that SUSY is

broken. At the same time it is desirable not to loose contact to the well

tested framework of AdS/CFT. It is therefore crucial to look at a geometry

that in the ultraviolet approaches AdS5 × S5.

Here this will be achieved by preserving in the whole space time andilaton deformed

backgrounds SO(1, 3)× SO(6) isometry. There are three IIB supergravity backgrounds

in the literature [38, 42, 83], which satisfy this condition. The implications

of the background by Constable–Myers [42] have been studied in [82]. Here

the focus shall be on the background by Gubser.

In analogy to the undeformed case of the previous Chapter, a D7-brane

embedding parallel to the D3s will be considered and its scalar and vec-

tor fluctuations be studied. By diagonalising the fields, the discussion of

multiple D7-branes reduces to several identical copies of the single brane

case and has therefore no impact on the mass spectrum. There is however

the important difference that a D7-brane stack admits non-trivial gauge

configurations such that the Wess–Zumino term C4∧F ∧F can contribute.

The effect of non-trivial F ∧ F will be studied in the next Chapter, the

Wess–Zumino term will be assumed to vanish for now and an Abelian

Dirac–Born–Infeld action (DBI) can safely be considered therefore.

As has been explained in Section 1.5, the quark mass mq and chiralchiral condensate

vs. SUSY quark condensate c form the source/VEV pair that is described by the UV

values of scalar fields on the brane. (Which in the string picture describe

the transversal position of the brane.) In the supersymmetric scenario,

the only solutions that have a field theoretic interpretation require c = 0

for all mq. In particular, this implies that there is no chiral quark con-

densate in the limit mq → 0 and no dynamical chiral symmetry breaking,

hence. Basically the problem is that in terms of geometry a chiral con-

densate corresponds to a brane bending outward and behaving irregular

towards the interior of AdS. Since the radial direction of the AdS space

corresponds to the energy scale in the field theory, such a bending means

that the field theory flows to the IR and comes back as is shown (“Bad”)
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z 0

Singularity

y

Good

Bad

Ugly

Figure 3.1: Possible solutions for the D7 embeddings. The half circles
correspond to constant energy scale µ. The “bad” solution cannot have
an interpretation as a field theoretic flow. The “ugly” solution hits the
singularity (filled circle at the centre) and can thus not be relied on. (Plot
taken from [82])

in Figure 3.1. Clearly this is an unphysical behaviour. The effect of the

deformed background is that the D7-brane experiences attraction from

the singularity and bends inward compensating the effect of the boundary

value c. This compensating is highly sensitive to the exact value of the

chiral condensate as a function of the quark mass, which completely fixes

the functional dependence.

In the previous Chapter, it was explained how adding D7-branes to the isometry

AdS/CFT correspondence breaks the SO(6)4...9 ' SU(4)R isometry of the

six D3 transversal coordinates to an SO(4)4567 × SO(2)89 isometry, which

corresponds to SU(2)L × SU(2)R × U(1)R, with SU(2)R × U(1)R the R-

symmetry group of the N = 2 superconformal Yang–Mills theory.∗ Giving

a mass to the N = 2 hypermultiplet corresponds to separating the two

brane stacks and breaking the conformal symmetry. This has two effects:

∗To be precise, the SO(2)89 corresponds to the U(1)A axial symmetry, while the
U(1)R R-symmetry is diag[SO(2)45× SO(2)67× SO(2)89]. Breaking of SO(2)89 implies
breaking of the axial and R-symmetry simultaneously.
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Figure 3.2: Spontaneous breaking of the U(1)A symmetry, which rotates
(circle) the 8, 9-plane, by the zero quark mass solution. Zero quark mass
means that the asymptotic separation between the brane embedding and
the y-axis (large axis) vanishes. Non-vanishing quark mass means explicit
and thereby not spontaneous symmetry breaking.

On the field theory side, the breaking of conformal symmetry reduces the

R-symmetry to SU(2)R, on the supergravity side it breaks the rotational

invariance in the 8, 9-plane associated to the U(1)R. Now this breaking

acquires an additional interpretation in the limit mq → 0, where this U(1)

is present in the UV, but is broken dynamically by the branes bending

away from the symmetry axis, cf. Figure 3.2: The symmetry spontaneously

broken by the chiral condensate is the U(1)A axial symmetry.

Since determining the chiral symmetry breaking behaviour is equiva-Goldstone mode

lent to finding correct D7-brane embeddings, one may go one step further

and also find fluctuations about these embeddings, which corresponds to

meson excitations in the correct field theoretic vacuum. For vanishing

quark mass, the bilinear quark condensate breaks the axial symmetry

spontaneously and the associated meson becomes massless providing a

holographic version of the Goldstone theorem.

It should be noted that the explicit breaking of the U(1)A by an in-

stantonic anomaly, which in QCD is responsible for the η′ to be heavy, is

suppressed in the large Nc limit. In that sense the holographic η′ is more

similar to a Pion even though it is not related to the breaking of the chiral

SU(Nf )L× SU(Nf )R to its diagonal subgroup. Therefore in particular for

comparison with experimental data the Pion mass is a more appropriate

choice.
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This Chapter is organised as follows. First, the Dirac–Born–Infeld contents

(DBI) action and the equations of motion describing the D7-brane embed-

ding and fluctuations about the vacuum solution will be derived. Then the

background by Gubser will be shortly reviewed and transformed into a con-

venient coordinate system. The undeformed supersymmetric scenario will

be compared with a numerical evaluation of the chiral symmetry break-

ing and meson spectrum in the Gubser background. Additionally, the

behaviour of strongly radially excited mesons will be discussed.

3.2 DBI to Quadratic Order

Consider the diagonal background metric

ds2 = gxx(y, z)dx
2
1,3 + gyy(y, z)(dy

2 + y2dΩ2
3) + ĝzz(y, z)(dz

2 + z2dθ2),

(3.1)

which may be written as

g(10) = diag(gxx11,3, gyy, gyy y
2 g̃αβ, ĝzz, ĝθθ), (3.2)

where g̃αβ is the metric on the unit three sphere, and it holds

ĝθθ = z2ĝzz. (3.3)

In the case gyy = ĝzz, the radial direction of the warped AdS space can be

expressed as r2 = y2 + z2 = ~y2 + ~z2 with y,Ω3 7→ y5, . . . , y7 and z, θ 7→
z8 = z sin θ, z9 = z cos θ a transformation from respectively spherical or

polar to Cartesian coordinates.

Choosing static gauge, static gauge

x0,...,3 = ξ0,...,3, y4,...,7 = ξ4,...,7, z8,...,9 = φ8,9(ξ0,...,7), (3.4)

the DBI action in Einstein frame for a D7-brane in this background is given
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by

S =

∫
d4x dy dΩ3

√
−g eϕ

[
1 + ĝzzg

ab(∂aΦ)(∂bΦ̄)

+ 1
2
e−ϕ FabF

ab

] 1
2

(3.5)

where expansion to second order in the scalar fields Φ, Φ̄ = φ9 ± iφ8 and

field strength has been performed. The remaining determinant is

√
−g = y3

√
g̃ (gxxgyy)

2. (3.6)

3.3 Quadratic Fluctuations

Expanding an action

S =

∫
d8ξL (φi, ∂aφ

i) (3.7)

into small fluctuations δφi around a solution φ0 of the Euler–Lagrange-

equations yields

φi = φi
0 + εδφi, (3.8)

S =

∫
d8ξL0 +

1

2
ε2

[
∂2L

∂(∂aφi)∂(∂bφj)

]
ε=0

(∂aδφ
i)(∂bδφ

j). (3.9)

Note that the above statement is merely the Legendre criterion for an

extremal solution of a variational principle, which is a minimum if the

parenthesised expression above is positive definite.

In accordance with the previous Chapter, where dependence on x was

associated to massive excitations and dependence on the spherical coordi-

nates Ω3 gave rise to Kaluza–Klein states, the embedding of the D7 that

forms a ground state should only depend on the radial direction y. For

fluctuations about a vacuum solution φ0 = φ0(y), F
ab
0 ≡ 0, the quadraticvacuum solution
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expansion in scalar and vector fluctuations yields

S =

∫
d4x dy dΩ3

√
−g eϕ

√
1 + |φ′0(y)|2

[
1 +

1

2

(
gabĝij

1 + |φ′(y)|2

)
(∂aδφ

i)(∂bδφ
j) (3.10)

− 1

2

(
gyyĝij(∂yφ

i
0)(∂yδφ

j)

1 + |φ′(y)|2

)2

+
1

4

FabF
ab

1 + |φ′0(y)|2

]
,

with

√
−g = y3(gxxgyy)

2
√
g̃,

|φ′0(y)|2 := ĝij g
ab(∂aφ

i
0)(∂bφ

j
0),

(3.11)

and FabF
ab expressed solely in terms of fluctuations δAm about the trivial

background Am ≡ 0.

For numerics, expressing the scalar fluctuations in terms of Cartesian Cartesian vs.

polarfields z8, z9 has some advantages.∗ From the field theoretic point of view,

expressing the fluctuations in polar coordinates z eiθ = z9+iz8 is more nat-

ural, because the fluctuations of the pseudo-Goldstone mode correspond

then exactly to rotations of the U(1)A. Since both approaches yield the

same results due to the infinitesimal nature of the fluctuations, the polar

coordinate formulation will be chosen here.

For Φ = z eiθ, z = z0(y) + δσ(~x, ~y) and θ = 0 + δπ(~x, ~y), expansion of

the DBI action to quadratic order in the fluctuations yields

S =

∫
d4x dy dΩ3

√
g̃ eϕ y3(gxxgyy)

2
√

1 + z′0(y)
2

[
1 +

1

2

gabĝθθ(∂aδπ)(∂bδπ) + gabĝzz(∂aδσ)(∂bδσ)

1 + z′0(y)
2

− 1

2

(
gyyĝzz(∂yz0)(∂yδσ)

1 + z′0(y)
2

)2

+
1

4

FabF
ab

1 + |z′0(y)|2

]
,

(3.12)

where (z′0)
2 = ĝzzg

yy(∂yz0)
2.

∗In particular, the excitation number n of the meson tower (2.12) corresponds to
the number of zeros of the solution to the radial equation (2.10), which provides a good
check whether a meson solution was accidentally skipped.
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3.4 Equations of Motion

3.4.1 Vacuum

From (3.12) by setting δσ = δπ = 0, the equation describing the D7embedding

embedding in terms of z0(y) is obtained,

d

dy

[
gyygzzF(y, z0)√

1 + z′0(y)
2
z′0(y)

]
= gyygzz

√
1 + z′0(y)

2
∂

∂z0

F(y, z0),

F = eϕ y3(gxxgyy)
2.

(3.13)

3.4.2 Pseudoscalar Mesons

The pseudoscalar mesons correspond to fluctuations along the U(1)A and—Goldstone mode

as shall be seen below—become massless for vanishing quark mass. They

are thus (pseudo-) Goldstone bosons, which become true Goldstones for

mq → 0. Their equations of motion are

∂a

[√
|g̃|F(y, z0)√
1 + z′0(y)

2
ĝθθg

ab∂bδπ

]
= 0, (3.14)

which for the ansatz δπ = δπ(y) eik·x Y`(S3) and M2
π = −k2 read√

1 + z′0(y)
2

F
∂y

[
F gyyĝθθ√

1 + z′0(y)
2
∂yδπ

]
(3.15)

+

[
M2

π ĝθθg
xx − `(`+ 2)

ĝθθg
yy

y2

]
δπ = 0,

with the same shorthand F as in (3.13).

3.4.3 Scalar Mesons

These correspond to fluctuations in the radial direction transverse to theHiggs mode
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U(1)A. The equations of motion for the scalar mesons are

∂a

[√
|g̃|F(y, z0)√
1 + z′0(y)

2
ĝzzg

ab∂bδσ

]
= ∂y

[√
|g̃|F(y, z0)√
1 + z′0(y)

2
3 (ĝzzg

yy)2(∂yz0)
2∂yδσ

]
,

(3.16)

which for the ansatz δσ = δσ(y) eikx Y`(S3) and M2
σ = −k2 become√

1 + z′0(y)
2

F
∂y

[
F ĝzzg

yy√
1 + z′0(y)

2

(
1− ĝzzg

yyz′0(y)
2

1 + z′0(y)
2

)
∂yδσ

]
(3.17)

+

[
ĝzzg

xxM2
σ − `(`+ 2)

ĝzzg
yy

y2

]
δσ = 0.

Again it holds F(y, z0) = eϕ y3(gxxgyy)
2.

3.4.4 Vector Mesons

In accordance with Section 2.3.2, vector mesons can be obtained from the

D7-brane gauge fields whose equations of motion are

∂a

[√
g̃ y3(gxxgyy)

2√
1 + z′0(y)

2
F ab

]
= 0 (3.18)

for solutions with no components on the S3, δAα = 0. The ansatz δAν =

ξν δρ(y) eik·x Y`(S3), where the polarisation vector ξν satisfies kµξµ = 0,

yields √
1 + z′0(y)

2

y3(gxxgyy)2
∂y

[
y3gxxgyy√
1 + z′0(y)

2
∂yδρ

]
(3.19)

+

[
(gxx)2M2

ρ −
`(`+ 2)

y2

]
δρ = 0.

3.5 Backgrounds

3.5.1 AdS5 × S5

In this Section, it is demonstrated that the holographic description of the

undeformed, supersymmetric case [24] shows no chiral symmetry break-

ing. To describe the field theoretic vacuum, the embedding should neither
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depend on x, which gives rise to a massive excitation, nor on the coordi-

nates of the internal S3, which gives rise to Kaluza–Klein states. Using

the SO(2)89 symmetry, one may choose the coordinate system such that

the embedding is simply z9 = z0(y).

Then the linearised equation of motion (2.10) is given by[
∂2

ỹ +
3

ỹ
∂ỹ

]
z0(y) = 0 (3.20)

with M̃ = ` = 0. The full (as opposed to only asymptotic) solutions∗ are

of the form

z0(y) = m+ c y−2, (3.21)

with the conformal dimension of the dual operator ψ̄ψ given by ∆ =

`+3 = 3. For c = 0, this is the constant embedding chosen by Kruczenski

et al. [24] and presented in the previous Chapter. For c 6= 0, the solu-

tion diverges when approaching the centre y → 0 of the D7-branes. This

by itself is still a valid D7-brane embedding in the supergravity sense.

However, it does not have an interpretation as a field theoretic renormali-IR regularity

sation group flow, because the D7-brane embedding cannot be expressed

as a (one-valued) function of the radial variable r2 = y2+z0(y)
2, which cor-

responds to the energy scale. This is also depicted as the “bad” solution

in Figure 3.1.

3.5.2 Gubser’s Geometry

A particular solution to the type IIB supergravity equations of motion (3.1)

that preserves SO(1, 3)× SO(6) isometry was found by Gubser [38], who

chose an appropriate warped diagonal ansatz for the metric, a Freund–

Rubin ansatz for the five-form flux and took only the dilaton as a non-

constant supergravity field with a radial dependence.

∗Keep in mind that these are only solutions expanded to quadratic order. For the
Abelian case one can do better, expand the determinant to all orders and keep the
square root unexpanded. However, the outcome does not change.
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The solution presented in [38] takes the form∗

ds2
10 = e2σ dx2

1,3 +
L2dσ2

1 +B2 e−8σ
+ L2dΩ2

5, (3.22)

ϕ− ϕ0 =

√
3

2
arcoth

√
1 +B−2 e8σ, (3.23)

where due to arcothx = 1
2
ln x+1

x−1
the dilaton ϕ may be written as

ϕ− ϕ0 =

√
3

8
ln

√
1 +B−2 e8σ + 1√
1 +B−2 e8σ − 1

. (3.24)

These coordinates are such that

IR σ → −∞ singularity in the far interior,

UV σ → +∞ boundary,

where there is a naked singularity in the infrared.

For calculating the meson spectrum in a background, it is more con- SO(6) manifest

coordinatesvenient to work in a coordinate system that brings the metric exactly to

the SO(1, 3) × SO(6) manifest form (3.1). This can be achieved by the

coordinate transformation

e2σ =

√
B

2r4
0

r2

√
1− r8

0

r8
, (3.25)

which yields

ds2
10 = gxx(r)dx

2
1,3 + gyy(r)(dr

2 + r2dΩ2
5),

gxx(r) =
r2

L2

√
1− r8

0

r8
,

gyy(r) = gzz =
L2

r2
,

ϕ− ϕ0 =

√
3

2
ln
r4 + r4

0

r4 − r4
0

.

(3.26)

Note that additionally x has been rescaled such that gxx reproduces the

canonical normalisation of the asymptotic AdS that is approached for r →
∞ and r0 is the minimum value of r where the infrared singularity resides.

∗In the original publication B2/24 is used instead of B2 to parametrise the defor-
mation.
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For computations it is convenient to rescale the coordinates by r0 such

that effectively r0 7→ 1; i.e. all equations become independent of r0. In this

frame the quark mass is measured in units of r0T , with T the string tension,

and the meson mass in units L−2r0. As will be shown below, for large

quark masses the supersymmetric results of the undeformed AdS5 × S5

are reproduced, such that M ∼ mq. Due to

ML2

r0
= const. · (2πα′)mq

r0
(3.27)

the supersymmetric limit r0 → 0 allows direct identification of the numer-

ical constant with that of equation (2.12). The situation is more compli-

cated for the similar background of Constable–Myers, see Section 5.2.2,

where by rescaling the deformation parameter cannot be entirely removed

from the equations of motion, such that it also enters the numerical con-

stant. Moreover in that background the units depend on the deformation

parameter in such a way that it does not cancel in a relation similar to

(3.27).

3.6 Chiral Symmetry Breaking in Gubser’s

Background

For (3.26), the equation of motion (3.13) for the vacuum solution z = z0(y)

is given by

d

dy

[
y3f√

1 + z′0(y)
2
z′0(y)

]
= y3

√
1 + z′0(y)

2
∂

∂z0

f, (3.28)

f =
(r4 + 1)(1+∆/2)(r4 − 1)(1−∆/2)

r8
, r2 = y2 + z0(y)

2, ∆ =
√

6.

The constant ∆ has been defined for convenient comparison to a back-

ground by Constable–Myers, cf. Chapter 5, and should not be mixed up

with the conformal dimension.

Since the background (3.26) approaches AdS5×S5 towards the bound-

ary, it does not come as a surprise that the UV behaviour of z0(y) is given

by mq + cy−2 with mq the quark mass and c the bilinear quark conden-
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Figure 3.3: The Figure shows regular D7 embeddings with different
quark mass. The embedding coordinate z0(y) is a radial coordinate in
the 8, 9-plane. While all solutions break the rotational U(1)A symmetry
in that plane, the zero quark mass solution (dashed) does so spontaneously.

sate as in the supersymmetric case. In the infrared there are still two

solutions of qualitatively different behaviour: One is divergent and can-

not correspond to field theoretic vacuum therefore, the other approaches

a constant. However, the infrared dynamics is modified such that the pair

in the UV mixes while going to the IR. Whereas in the supersymmetric

case the UV solution with c = 0 corresponded one-to-one to the regular

behaviour in the IR, now for each value of mq there is only one value of c

such that the combined solution mixes into a regular one in the IR. Such

regular solution have been determined numerically and are plotted in Fig-

ure 3.3. Each of the solutions is determined by a pair of quark mass and

quark condensate. These pairs also determine the quark condensate as a

function of the quark mass as is shown in Figure 3.4.

The possible outcomes for arbitrary combinations of mq and c are de- qualitative

behaviourpicted in Figure 3.1: The solution can hit the singularity (denoted “ugly”,

since the supergravity approximation fails when coming to close to the

singularity), the solution may diverge (denoted “bad”, because it cannot

correspond to a field theoretic flow), or the solution may reach a constant

value for the embedding coordinate z0(y) at y = 0, denoted “good”. In
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Figure 3.4: The first plot shows the chiral condensate 〈ψ̄ψ〉 as a function
of the quark mass mq as determined by regularity requirements for the D7
embedding. For large quark mass mq the chiral condensate behaves like
c ∼ 1

mq
in accordance with predictions from effective field theory.
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terms of the ambient space radial coordinate r2 = y2 + z2
0 the D7-brane

“ends” at r = z0(0) by the S3 slipping from S5 of the background and

shrinking to zero size at a pole of the S5, cf. Figure 2.1. There is a stability

tachyon associated to this slipping mode, but its mass obeys (saturates)

the Breitenlohner–Freedman bound [21] and does not lead to an instability

hence.

One might however worry about regular solutions reaching the singu-

larity. For the discussion of whether this may happen, it is advantageous

to shift the point of view to the infrared.

Starting at a finite value in the IR, there has to be a unique flow singularity

shieldingto the UV, which fixes the correct combination of mq and c, since one

also needs the IR-divergent solution to create arbitrary combinations of

mq and c. As has been explained above, z0(0) sets the scale were the

quarks drop out of the dynamics. So one generically may expect that

a large quark mass corresponds to a large value of z0(0). Starting at

distances closer to the singularity generates solutions with smaller quark

mass till one reaches a limiting solution at z0(0) ≈ 1.38 that corresponds to

vanishing quarks mass. Going even closer to the singularity gives rise to a

spurious negative quark mass. Due to the SO(2)89 present, these solutions

are in fact positive mass solutions with negative quark condensate, as negative

condensatecan be seen by rotating around the y-axis, see Figure 3.2. This assigns

two potentially valid solutions to each positive quark mass.∗ However

solutions that do not come closer to the singularity than the zero quark

mass solution have a smaller potential energy V = −L , cf. Figure 3.6,

and are therefore physical. This realises some sort of screening mechanism

preventing solutions from entering the region between the zero-quark mass

solution and the singularity, cf. Figure 3.5. The physical solutions outside

have a positive quark condensate.

Having established the conditions that determine the chiral condensate vanishing quark

massas a function of the quark mass—the result is plotted in Figure 3.3—

the case mq = 0 will be discussed in more detail now. z0(y) ≡ 0 is

obviously a solution of the equations of motion, which does however reach

the singularity. To obtain a solution exhibiting chiral symmetry breaking

∗ The situation is to some extent analogous to asking which is the shortest route
connecting two points on a sphere. The answer is a grand circle, which however also
provides the longest straight route.



46 First Deformation: Geometry

0.5

−0.5

10

1.0

−1.0

2 4 6 8

z0(y)

r0

y

r0

Figure 3.5: Two solutions of the same quark mass and the zero quark mass
solution (dashed) are depicted. The zero mass solution exactly avoids the
region between the inner circle, which is the singularity, and dashed outer
“shielding” circle. Of the two massive solutions, only the one with the
larger action enters the shielded region, cf. fig. 3.6.

behaviour, it is necessary to either start at a suitable value in the IR, thus

forcing the solution to behave as desired, or to start with an infinitesimal

deviation from z0 ≡ mq = 0 in the UV. This situation is analogous to

calculations of the magnetisation in solid state physics, where spontaneous

symmetry breaking is initiated by an arbitrarily small but non-vanishing

external B field.

The conclusion is that indeed spontaneous chiral symmetry breaking

is observed in this geometry and one may wonder about the appearance

of an associated Goldstone mode.

3.7 Mesons

The meson spectrum is determined by finding regular and normalisablespectrum

solutions to the equations of motion arising from fluctuations about the

brane embedding. These equations, given in (3.15), (3.17) and (3.19), can

be solved in analogy to the case of the embedding equation (3.13), which
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Figure 3.6: Potential Energy of D7-brane embeddings as function of the
quark mass: Since the energy itself is infinite what is actually plotted is
the finite difference to the action of the zero quark mass solution defined
as follows,

E(mq)− E(0) = −∆S = − lim
Y→∞

Y∫
0

L (mq)−L (mq = 0)dy.

The physical solutions have smaller energy and are farther from the sin-
gularity than the zero-mass solution.

has been discussed in the previous Section. The solutions of the meson

equations have a boundary behaviour of generic type c1+c2/y
2. In contrast

to the embedding solutions, where regularity fixed c2 as a function of c1,

the fluctuations should always be normalisable, such that the solutions

behave as y−2 towards the boundary. The remaining overall factor c2 is

undetermined because the equations of motion are linear. The requirement

of regularity in the infrared can then only be satisfied by a discrete set of

values for the meson mass M , which determines the spectrum. The result

for the lowest lying meson modes is depicted in Figure 3.7.

With these results it is possible to return to the question of a holo- Goldstone

graphic realisation of Goldstone’s theorem. For the following discussion,

it is important to keep in mind that the supergravity approximation in

AdS/CFT correspondence implies being in the Nc → ∞ limit, where the

U(1)A axial symmetry is non-anomalous in the field theory. A look at
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the large Nc limit of QCD, where the η′ becomes massless and thus a

true Goldstone boson, inspires to look for the corresponding (pseudo-)

Goldstone meson in this geometric setup.

A massless embedding with UV behaviour z0(y) ∼ c y−2 restores the

U(1)A ' SO(2)89 symmetry in the UV and therefore shows spontaneous

symmetry breaking. In particular that means that the embedding solu-

tion z0 eiθ0 , has an undefined angle θ0 at the boundary, which acquires an

arbitrary value along the flow, picked out spontaneously by the dynamics.

Clearly any fluctuation in the θ angle simply corresponds to a rotation into

an—because of the presence of the U(1)—equivalent but different value of

θ0. Since these values are all equivalent, the fluctuation in the θ direction

should be a flat direction in the potential and correspond to a massless

meson.

When the U(1)A symmetry is explicitly broken in the UV by the quark

mass (z0 ∼ mq + c(mq) y
−2), fluctuations in the angular direction do not

rotate into an equivalent embedding and are therefore expected to become

massive. Figure 3.7 shows that this holographic version of the Goldstone

theorem is indeed realised. Furthermore beyond a certain quark mass, su-

persymmetry is restored and the meson masses become degenerate. ForSUSY

small quark mass, Figure 3.7(b), accordance with a prediction from effec-

tive field theory is found, the Gell-Mann–Oakes–Renner (GMOR) relation

[84]

M2
π =

mq

〈
ψ̄ψ
〉

Nff 2
π

. (3.29)

3.8 Highly Excited Mesons

In this Section inspired by a similar analysis in [39], the highly excited

meson spectrum in the present background shall be investigated. In

AdS/CFT this corresponds to considering mesons with large radial exci-

tation number n. According to [40] the semi-classical approximation be-

coming valid in this limit gives rise to a restoration of chiral symmetry,

because its breaking resulted from quantum effects at one-loop order which

are suppressed for S � ~.
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Figure 3.7: Plot (a) shows the lightest vector, scalar and pseudoscalar
meson (in order of decreasing mass). While the scalar and vector meson
retain a mass, the pseudoscalar meson becomes massless and therefore a
true Goldstone boson in the limit mq → 0. Furthermore its mass exhibits
a square root behaviour as predicted from effective field theory, plot (b).
For large quark masses, supersymmetry is restored and the analytic SUSY
result M(n = 0, ` = 0) = 2mq

L2

√
2 is reproduced (black straight line).
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Figure 3.8: These plots show highly radially excited mesons for the
mq = 0 embedding (with r0 = L = 1 for numerics). For the ana-
lytically solvable SUSY case, this corresponds to n � 1 and therefore
MKMMW = 2

√
(n+ `+ 1)(n+ `+ 2) ∼ 2n. While the proportionality to

n is preserved in the deformed case, the overall slope of the SUSY case
is different and has been adjusted by multiplying MKMMW by 1.15 for
comparison. The difference to this rescaled mass as depicted in plot (b)
suggests that the mass of the scalar and pseudoscalar mesons is not de-
generate in the limit of large excitations.
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[39] found the rather generic behaviour

Mn ∼ n, n� 1, (3.30)

for holographic duals of QCD-like theories. This is not in accordance

with field theoretic expectations [41], which can be derived from simple

scaling arguments: The length of the flux tube spanned between two ultra- scaling

argumentsrelativistic quarks of energy E = p = Mn/2 is

L ∼ Mn

Λ2
QCD

, (3.31)

such that from the quasi-classical quantisation condition∫
p dx ∼ pL ∼ M2

n

ΛQCD

∼ n, (3.32)

one reads off

Mn ∼
√
n. (3.33)

This is in contradiction to the results (3.30) and also the numerical results

one obtains for the Gubser background shown in Figure 3.8. However

this behaviour was to be expected since it is also found in the analytic

spectrum of Kruczenski et al.

A to some extent related question is whether the difference δMn of chiral symmetry

restorationthe scalar and pseudoscalar meson mass shows the right field theoretic

behaviour, which has been predicted to be |δMn| . n−3/2ΛQCD with alter-

nating sign for δMn [41].

While the analytic supersymmetric case fulfils this requirement triv-

ially δMn = 0, interestingly this seems not to be the case for the Gubser

background as can be seen in Figure 3.8. Actually δMn even could not

be shown to vanish at all in the limit n→∞ implying that neither chiral

symmetry nor supersymmetry is restored.

Having a closer look at the behaviour of such highly excited mesons,

cf. Figure 3.9, one notices that the effect of large radial excitation is that

the interior of the holographic space corresponding to the field theory’s

infrared is probed more densely. This suggests that for highly excited
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mesons in such a holographic description infrared effects might indeed not

be sufficiently suppressed. On the other hand it seems surprising that

mass degeneracy is not restored contrary to the case of large quark mass,

where the mesons end up in the supersymmetric regime and do become

degenerate as has been demonstrated in Figure 3.7.

Currently the method for calculating the meson spectrum inherently

requires expansion to quadratic order in fluctuations. It would certainly

be interesting to extend this procedure to include higher order contribu-

tions and reexamine the question of whether at least restoration of mass

degeneracy can be achieved in the limit of highly radial excitation.
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Figure 3.9: Pseudoscalar meson solution with excitation number n = 49;
i.e. the solution plotted in (a) has 49 zeros. Most of them concentrate
in the far IR, but the solution is still smooth close to the centre (b). In-
creasing the excitation number scans the IR in more detail, where scalar
and pseudoscalar meson mass are different. Therefore it is not expected
to find mass degeneracy when increasing n further. (Note that Cartesian
fluctuations as opposed to polar fluctuations in z and θ have been plotted.
The mass spectrum is independent of this choice.)
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4.1 Introduction

In this Chapter the meson spectrum of the Higgs branch of the particular

N = 2 super-Yang–Mills (SYM) theory (4.3) that can be described by a

D3/D7-brane system [20] in the framework of AdS/CFT correspondence [7–

9] will be determined. The analogous calculations for the Coulomb branch

can be performed analytically [24], see Chapter 2, and can be made contact

to in the cases of zero and infinite Higgs vacuum expectation value (VEV).

The work presented here is intrinsically a generalisation of the D3/D7

system of Chapter 2 to the case of more than one D7 brane, which cor-

responds to having multiple quark flavours. In particular, an additional

effect that goes beyond simply having multiple copies of the Abelian case

is considered. On the supergravity side it arises from the Wess–Zumino
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term in the D7-brane action, allowing four-dimensional instanton configu-

rations to be classical solutions of the D7-brane gauge fields. On the field

theory side this corresponds to switching on a vacuum expectation value

(VEV) for the fundamental hypermultiplet. The field theory is therefore

on the Higgs branch.

In the following Sections, the dual field theory will be presented and

the exact notion of “Higgs branch” (which actually is a mixed Coulomb–

Higgs branch) will be clarified. A short review of the BPST instanton

solution is given.

The equations of motions are derived that determine the vector meson

spectrum, which is calculated numerically and discussed analytically in

the limits of small and large Higgs VEV. Finally the operator dictionary is

explained and the fluctuations corresponding to scalar mesons are shown

to fall into the same supermultiplets.

4.2 Conventions

The main difference between this Chapter and the preceding ones is the

use of a non-Abelian D7-brane action to extend the analysis of the SUSY

D3/D7 system to the sector of two flavours (Nf = 2). Therefore, the

introduction of non-Abelian gauge covariant derivatives

Da = ∂a + gAa,

Fab = ∂aAb − ∂bAa + g
[
Aa, Ab

]
,

can no longer be avoided and in addition to the index conventions of

Table 4.1, a few notations have to be established.

The indicesM,N, . . . will also be used as SU(2) generator indices, with

the convention ε456 = 1 and the Hermitean Pauli matrices

(T4, T5, T6) =

((
0 1

1 0

)
,

(
0 −i
i 0

)
,

(
1 0

−1 0

))
,

TMTN = iεMNKTK , TrTMTN = 2δMN ,
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Coordinates

0 1 2 3 4 5 6 7 8 9

D3

D7

xµ,ν,... ym,n,... zi,j,...

yM,N,...

r

y

Xa,b,...

XA,B,...

Table 4.1: Index Conventions

which allows to introduce the (anti-Hermitean) quaternion basis quaternion basis

σ4,5,6,7 = (iT4,5,6,1). (4.1)

The reader shall be reminded that in this basis SO(4)4567 transforma-

tions of ym can be also written as

ymσm 7→ ymULσmUR, (4.2)

with UL and UR elements of SU(2)L and SU(2)R respectively. Since the

vector (0, 0, 0, y7) is invariant under transformations UL = (UR)−1, rota-

tions in the first three coordinates SO(3)456 can be identified with the

diagonal subgroup diag[SU(2)L × SU(2)R].

4.3 Dual Field Theory

On the string theory side, the setup discussed here is that of a stack

of D3-branes and a parallel stack of D7s. In the decoupling limit, this

amounts to considering type IIB supergravity (SUGRA) on AdS5×S5 with

Nf probe D7-branes, which is dual to an N = 2 gauge theory obtained

from coupling Nf N = 2 hypermultiplets in the fundamental representa-
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tion to N = 4 SU(Nc) SYM [20].

In N = 1 language the Lagrangean of the dual field theory is

L =

∫
d4θTr

(
Φ̄i e2V Φi e−2V + Q†i e2V Qi + Q̃i e

2V Q̃i†
)

+

[
1

4g2

∫
d2θWαW

α +

∫
d2θW + c.c.

] (4.3)

where the chiral fields Φ1,2,3 and the gauge field V build up the N = 4

adjoint hypermultiplet, which in turn can be split into an N = 2 adjoint

hypermultiplet composed of Φ1,2 and an N = 2 adjoint gauge multiplet

of V and Φ3. Q
i and Q̃i are the Nf chiral fields that build up the N = 2

fundamental hypermultiplet, and the superpotential is

W = Tr(εIJKΦIΦJΦK) + Q̃i(mq + Φ3)Q
i. (4.4)

At finite Nc this theory is not asymptotically free, and the correspond-stability

ing string background suffers from an uncancelled tadpole. However, in

the strict probe limit Nf/Nc → 0, the contributions to the ’t Hooft cou-

plings β function, which scale like Nf/Nc, are suppressed. Furthermore

the dual AdS string background has no tadpole problem because the probe

D7-branes wrap a contractible S3. Although contractible, the background

is stable, since the tachyon associated with shrinking the S3 satisfies (sat-

urates) the Breitenlohner–Freedman bound [21]. Moreover the AdS5 × S3

embedding has been shown to be supersymmetric [85].

4.3.1 Higgs Branch

In terms of N = 2 multiplets, the theory consists of an adjoint gauge and

hypermultiplet, which form the N = 4 hypermultiplet of N = 4 SU(Nc)

SYM, and Nf fundamental hypermultiplets. When the scalars of the latter

acquire a VEV, the theory is on the Higgs branch.

While the scalars φ1,2 of the adjoint hypermultiplet independently may

also have a VEV, VEVs of the N = 2 gauge multiplet’s scalar φ3 prohibit a

VEV for the fundamental hypermultiplets. Refining the discussion for the

components gives rise to the mixed Coulomb–Higgs branch. The superpo-
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tential in N = 1 language is∗

W = Tr(εIJKΦIΦJΦK) + Q̃i(mq + Φ3)Q
i, (4.4)

with index i enumerating the Nf = 2 hypermultiplets.

Assume that a small number k of the components of φ3 obtain a VEV,

(φ3)Nc×Nc =



0
. . .

0

−v
. . .

−v


, (4.5)

which is dual to separating out k D3-branes from the stack, and moreover

that these VEVs are exactly such that some of the components of m+ 〈φ3〉
vanish, v = m, which is dual to the singled out D3-branes coinciding with

the D7-branes. Then F-flatness conditions q̃i(φ3+m) = (φ3+m)qi = 0 per-

mit the corresponding 2k components of the fundamental hypermultiplet

to also acquire a non-vanishing VEV

(qi)Nc×1 =



0
...

0

αi
1
...

αi
k


, (q̃i)1×Nc =

(
0 · · · 0 β1i · · · βki

)
. (4.6)

These VEVs, which are further constrained by additional F- and D-flatness

conditions, are the string theory dual of the D3-branes that coincide with

the D7-branes to be dissolved [86] in the D7-branes and form instantons dissolved branes

in the gauge fields of the D7s. This process is caused by the Wess–Zumino

coupling SWZ ∼
∫
P [C(4)] ∧ F ∧ F . Note that the backreaction of the

∗There are three adjoint N = 1 chiral fields Φ1,2,3 with lowest components φ1,2,3

and one real field V , which forms an N = 2 gauge multiplet with Φ3. The Nf chiral
fields Qi and Q̃i make up the N = 2 fundamental hypermultiplet and have lowest
components qi and q̃i.
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dissolved D3-branes can only be neglected when their number k is small

in comparison to Nc. Specifically in this Chapter k = 1 will be assumed.

Taking into account the breaking of SU(2)R × SU(2)f to its diagonal

subgroup, which is mediated by the instanton configuration on the super-

gravity side, the structure of the VEVs is as follows

(φ3)Nc×Nc =


0

. . .

0

−m

 , (qi
α) =


0
...

0

εiαΛ

 , (4.7)

with α = 1, 2 the SU(2)R index and q1 = q, q2 = q̃.

4.4 Supergravity

4.4.1 Instantons

In Yang–Mills (YM) theories, instantons arise as finite action solutions

from the semi-classical approximation to path integrals, which requires

to find all solutions that minimise the Euclidian action. These solutions,

(anti-)self dual gauge field configuration of arbitrary topological charge k,

can be found from a set of algebraic equations, the so-called ADHM con-

straints due to Atiyah, Drinfeld, Hitchin and Manin. These equations are

non-linear and cannot be solved in general because of their complex struc-

ture, though there has been recent progress in AdS/CFT inspired large

Nc considerations [87]. In particular the four dimensional ADHM con-

straints arise from D and F-flatness conditions of D(p+ 4)-branes probed

by Dp-branes [88, 89].

Although the ADHM formalism works for all non-exceptional groups,

the focus here will be on SU(N) theories in Euclidian space. Consider the

following action,

S = −1

2

∫
d4xTrF 2

mn + iθk, (4.8)
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with the topological charge and field strength

k := − g2

16π2

∫
d4yTrFmn

∗Fmn, k ∈ Z, (4.9)

Fmn := ∂mAn − ∂nAm + g
[
Am, An

]
, (4.10)

∗Fmn := 1
2
εmnklFkl (4.11)

and anti-Hermitean gauge field Am such that the covariant derivative reads

Dm = ∂m + gAm.

Instantons with negative topological charge, also known as anti-instan-

tons, will not be considered here. The action is minimised by self dual

solutions

∗Fmn = ±Fmn,

=⇒ S = −2πikτ k > 0,
(4.12)

with the complex coupling τ = 4πi
g2 + θ

2π
.

The self-dual SU(2) instanton solution, also known as the Belavin–

Polyakov–Shvarts–Tyupkin (BPST) instanton [90], is given by

Ainst
n = g−1 2(ym − Ym)σmn

(y − Y )2 + Λ2
, F inst

mn = g−1 4ρ2σmn

((y − Y )2 + Λ2)2
, (4.13)

with the instanton moduli Λ (size) and Y m (position). The Lorentz gen-

erators are given by

σmn =
1

4
(σmσ̄n − σnσ̄m), σ̄mn =

1

4
(σ̄mσn − σ̄nσm), (4.14)

and it holds

σmn =
1

2
εmnklσkl, σ̄mn = −1

2
εmnklσ̄kl. (4.15)

The above identification of gauge indices with vector indices expresses the

instanton breaking the SU(2)L × SU(2) to its diagonal subgroup, with

SU(2)L from the double covering group of the Euclidian Lorentz group

SO(4) and SU(2) the gauge group.

The BPST instanton falls off slowly for large distances, which creates
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convergence problems of various integrals. A well known solution in the

instanton literature is the use of a singular gauge transformation

U(y) :=
σm(y − Y )m

|y − Y |
, (4.16)

which transforms the non-singular instanton solution to a singular one,

An = g−1 2Λ2(y − Y )mσ̄mn

(y − Y )2[(y − Y )2 + Λ2]
, (4.17)

that has better large distance behaviour. This particular gauge trans-

formation also associates SU(2)R with the gauge group, such that (4.17)

breaks the SU(2)L × SU(2)R × SU(2) to SU(2)L × diag[SU(2)R × SU(2)].

Note that also in the instanton literature a known consequence of (4.16)

is the modification of boundary terms. Therefore consequences for the

AdS/CFT dictionary are also to be expected.

4.4.2 D7-brane Action

As a reminder the AdS5 × S5 background as given in (2.1), (2.5) is

ds2 = H−1/2(r) ηµνdx
µdxν +H1/2(r) (d~y 2 + d~z 2), (4.18)

with

H(r) =
L4

r4
, r2 = ~y 2 + ~z 2, (4.19)

L4 = 4πgsNc(α
′)2, ~y 2 =

7∑
m=4

ymym, (4.20)

C
(4)
0123 = H−1, ~z 2 = (z8)2 + (z9)2, (4.21)

eϕ = eϕ∞ = gs. (4.22)

The constant embedding

z8 = 0, z9 = m̃q (4.23)
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defines the distance m̃q = (2πα′)mq between the D3 and D7-branes and

therefore determines the mass mq of the fundamental hypermultiplet.

Moreover it yields the induced metric (2.3)

ds2
D7 = H−1/2(r) ηµνdx

µdxν +H1/2(r) d~y 2,

r2 = y2 + (2πα′)2m2
q, y2 ≡ ymym

(4.24)

on the D7-brane.

At quadratic order, the non-Abelian DBI action (1.31) and the Wess–

Zumino term (1.25) are respectively

SDBI = −µ7

∫
dp+1ξ STr e−ϕ

√
− detGab

[
λ2

2
DaΦiDaΦi + λ2

4
FabF

ab

]
= −T7γ2

4

∫
d4x d4y Tr

[
− 2H(r)DµΦDµΦ̄ + 2DmΦDmΦ̄+

H(r)FµνFµν + 2FmνFmν+

H−1(r)FmnFmn

]
,

(4.25)

SWZ = T7

∫
STr

γ2

2
P [C(4)] ∧ F ∧ F

= T7
γ2

4

∫
TrH−1(r)Fmn

1
2
Frs dx

0 ∧ . . . dx3 ∧ dym ∧ dyn ∧ dyr ∧ dys︸ ︷︷ ︸
=εmnrs dy4∧dy5∧dy6∧dy7

= T7
γ2

4

∫
d4x d4y H−1(r) TrFmn

∗Fmn,

(4.26)

where Φ, Φ̄ = Φ9±iΦ8, γ = 2πα′ and the Hodge dual is ∗Fmn := 1
2
εmnrsFrs,

with the epsilon symbol ε4567 = 1. All indices have been lowered and are

now contracted with a Minkowski metric ηab = (ηµν , δmn). This will be

true for all subsequent expressions in this Chapter, providing a convenient

framework for the discussion of solutions that are self-dual with respect

to the flat metric δmn.

These solutions arise because there is a (known, cf. [88, 89]) correspon- DBI/WZ

conspiracydence between instantons and the Higgs branch. The discussion in this the-

sis will be confined to quadratic order,∗ where the DBI and Wess–Zumino

∗The explicit expanded form of the non-Abelian DBI action is only known to finite



64 Second Deformation: Gauge Fields

term due to Fmn(Fmn − ∗Fmn) = 2F−mnF
−
mn complement one another to

yield

S = −T7γ2

4

∫
d4x d4y Tr

[
− 2H(r)DµΦDµΦ̄ + 2DmΦDmΦ̄+

H(r)FµνFµν + 2FmνFmν+

2H−1(r)F−mnF
−
mn

]
.

(4.27)

This action is extremised by the configuration

F−mn = 0,

Φ = m̃q, Fµν = Fmn = 0,
(4.28)

which is manifestly self-dual with respect to the D3-transversal flat metric

δmn. The particular background configuration that will be investigated

here,

Am =
2Λ2σ̄mnyn

y2(y2 + Λ2)
, Aµ = 0, Φ0 = m̃q, (4.29)

takes the singular gauge instanton (4.17) as an ansatz for (4.28) that brings

the correct boundary behaviour for the AdS/CFT dictionary as will be seen

below.

4.5 Meson Spectrum

Now the meson spectrum for fluctuations about the above background

shall be calculated. Obviously there should be massless mesons corre-

sponding to changes of the instanton moduli, size (Λ) and position (not ex-

plicit in the above ansatz, since the instanton is simply located at ym = 0).

These will be ignored and concentration will be instead on the more in-

teresting fluctuations of the gauge fields and scalars. The simplest modes

are vector fluctuations of type II, cf. eq. (2.22b), and scalar fluctuations,

both in the same supermultiplet and in the the lowest representation of

SU(2)L × diag[SU(2)R × SU(2)f ]. In particular this means that the fluc-

order, cf. [91] for terms at sixth order. The existence of instanton solutions puts
constraints on unknown higher order terms [92, 93].
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tuations will be assumed to be independent of angular variables in the

D3-transversal/D7-longitudinal coordinates; i.e. in the language of the an-

alytically solvable scenario of Chapter 2: ` = 0.

4.5.1 Vector Fluctuations

In accordance with the coordinate splitting Xa = xµ, ym performed in the

action (4.27), fluctuations of the form A := A − Ainst will be considered.

The simplest ansatz for gauge fluctuation, which at the same time is most

interesting due to describing vector mesons, is given by “Type II” fluctu-

ation (2.22b) in the language of Kruczenski et al., see Chapter 2. This

particular ansatz is non-trivial in the D3-longitudinal components only,

such that the simplest non-Abelian choice is a singlet under SU(2)L and

a triplet under diag[SU(2)R × SU(2)f ]. An obvious ansatz is given by

Aµ
(a) = ξµ(k)f(y) eikµxµ T a, y2 ≡ ymym, (4.30)

and

Aµ = Aµ, Am = Ainst
m . (4.31)

The Euler–Lagrange equations

∂µ
∂L

∂∂µAM
ν

+ ∂m
∂L

∂∂mAM
ν

− ∂L

∂AM
ν

= 0, (4.32)

∂µ
∂L

∂∂µAM
n

+ ∂m
∂L

∂∂mAM
n

− ∂L

∂AM
n

= 0 (4.33)

for the action (4.27) are

Dµ (HFµν) +DmFmν = 0, (4.34)

DµFµn + 2Dm

[
H−1F−mn

]
= 0. (4.35)

To linear order the former becomes ∂µAµ = 0, which is solved by kµξµ = 0,

while the latter reads

H∂µ∂µAν + ∂m∂mAν + g ∂m

[
Ainst

m , Aν

]
+g
[
Ainst

m , ∂mAν

]
+ g2

[
Ainst

m ,
[
Ainst

m , Aν

]]
= 0,

(4.36)
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which for the ansatz (4.30) yields

0 =

[
M2L4

(y2 + (2πα′)2m2
q)

2
− 8Λ4

y2(y2 + Λ2)2
+

1

y3
∂y(y

3∂y)

]
f(y), (4.37)

where M2 = −kµkµ in accordance with having chosen a Minkowski metric

with mostly plus convention for contraction of flat indices.

For numerics it is convenient to join the two parameters quark mass

and instanton size by rescaling according to

ỹ ≡ y

2πα′mq

, Λ̃ ≡ Λ

2πα′mq

, M̃2 ≡ M2L4

(2πα′mq)2
, (4.38)

such that equation (4.37) becomes

0 =

[
M̃2

(ỹ2 + 1)2
− 8Λ̃4

ỹ2(ỹ2 + Λ̃2)2
+

1

ỹ3
∂ỹ(ỹ

3∂ỹ)

]
f(ỹ). (4.39)

At large ỹ (4.39) has two linear independent solutions whose asymp-operator map

totics are given by ỹ−w with w = 0, 2. The normalisable solutions cor-

responding to vector meson states behave as ỹ−2 asymptotically. From

standard AdS/CFT correspondence, one expects w = ∆ and w = 4 − ∆,

where ∆ is the UV conformal dimension of the lowest dimension operator

with the quantum numbers of the vector meson. However, the kinetic

term does not have a standard normalisation; i.e. the radial component of

the Laplace operator appearing in the equation above is not (only) ∂2
ỹ , and

consequently an extra factor of ỹα, for some α, appears in the expected

behaviour; so the exponents actually read w = α + ∆, α + 4 − ∆. From

the difference it is read off that ∆ = 3. The dimensions and quantum

numbers are those of the SU(2)f flavour current,

J b
µ = −ψ̄±iγµσ

b
ijψ∓

j + q̄αi
↔
Dµ σ

b
ij qα

j , (4.40)

with α the SU(2)R index and i, j the flavour indices. This current has

SU(2)R × SU(2)L × U(1) quantum numbers (0, 0)0.
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1 2 3 4 5

f(ρ)

ρ

(a) Regular solutions of (4.39) in arbitrary units for Λ = 2πα′m
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(b) Numerically determined meson masses.

Figure 4.1: Each dotted line represents a regular solution of the equation
of motion, corresponding to a vector multiplet of mesons. Plot (a) shows
the five regular solutions of (4.39) corresponding to the lightest meson
masses in (b). The units on axis of ordinate in (a) are arbitrary because
(4.39) is a linear equation. The vertical axis in (b) is

√
λM/mq where

M is the meson mass, λ the ’t Hooft coupling and mq the quark mass.
The horizontal axis is v/mq, where v = Λ/2πα′ is the Higgs VEV. In the
limits of zero and infinite instanton size (Higgs VEV), the spectrum (grey
horizontal lines) obtained analytically in Chapter 2 is recovered.
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The asymptotic behaviour of the supergravity solution is

Aµ
b(a) = ξµ(k) eik·x f(ỹ)δab ∼ ỹ−2 〈a, ξ, k| J µ

b (x) |0〉 , (4.41)

where J µ is the SU(2)f flavour current and |a, ξ, k〉 is a vector meson with

polarisation ξ, momentum k, and flavour triplet label a. Note that the

index b in Aµ
b(a) is a Lie algebra index, whereas the index (a) labels the

flavour triplet of solutions.

The meson spectrum is numerically determined by a shooting tech-meson spectrum

nique using interval bisection to find the values M̃2 that admit solutions

to (4.39) that are regular (c2 = 0 for IR behaviour c1ỹ
2 + c2ỹ

−4) and nor-

malisable (c1 = 0 for UV behaviour c1 + c2ỹ
−2). The result for the lowest

lying modes is shown in Figure 4.1.

In passing it is noted that the second term in (4.39), which comes fromwhy singular gauge

the g2 term in the equation of motion (4.36), is roughly the instanton

squared and up to numerical constants would have been y2/(y2 + Λ2)2

for the instanton in non-singular gauge. This contribution would have

changed the UV behaviour of f(y) and therefore prohibited to make contact

to the SUSY case in the limit of zero instanton size, where (4.36) can be

solved analytically.

In the limit of infinite instanton size, one might expect the same spec-asymptotics

trum since the field strength vanishes locally. This corresponds to infinite

Higgs VEV in the field theory, which reduces the gauge group from SU(Nc)

to SU(Nc − 1). This difference is negligible in the large Nc limit and one

might expect to return to the origin of moduli space. However there is

a non-trivial shift of the spectrum, which makes the flow from zero to

infinite Higgs VEV not quite a closed loop as can be seen in Figure 4.1(b).

Since at both ends the analytic spectrum in reproduced, it should be

possible to capture this behaviour in the equation of motion (4.36). Indeed

a simultaneous treatment of both cases can be achieved by rewriting (4.36)

in the suggestive form

0 =

[
M̃2

(ỹ2 + 1)2
− `(`+ 2)

ỹ2
+

1

ỹ3
∂ỹ(ỹ

3∂ỹ)

]
f(ỹ), (4.42)

with ` = 0, 2 for zero or infinite Λ̃ respectively.
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This is the same equation (2.10) that was found for fluctuations about

the trivial background Aa = 0, but ` was given rise to by excitations on

the internal manifold. The ansatz was

Aµ = ξµ(k) eikµxµ

f(y)Y`(S3), (4.43)

with Y`(S3) the scalar spherical harmonics on S3 transforming under ( `
2
, `

2
)

representations of SU(2)L × SU(2)R. [24] found that (4.42) can be solved

analytically in terms of a hypergeometric function (2.12) parametrised by

n and `, which by regularity and normalisability become quantised and

yield the discrete spectrum

M̃2 = 4(n+ `+ 1)(n+ `+ 2), n, ` ≥ 0. (2.24)

For intermediate values of the instanton size, a flow connecting the

analytically known spectra is expected and could be confirmed numerically,

see Figure 4.1(b).

It remains to comment on how it is possible to continuously transform singular gauge

revisiteda spherical harmonic in the (0, 0) of the unbroken SU(2)L × SU(2)R into

one that transforms under the (1, 1), while SU(2)L is unbroken along the

flow.∗ The solution to this puzzle is that the instanton in singular gauge

does not vanish in the limit of large instanton size, while in non-singular

gauge it does. So the spectrum at large instanton size is related to the one closing the loop

at zero instanton size exactly by the singular gauge transformation (4.16),

which reads

U =
ymσm

|y|
. (4.44)

This gauge transformation is large. While in the instanton literature it

is merely employed as a computational trick to improve convergence of

numerical calculations for large distance from the instanton core, in this

setup it has physically observable consequences because the large distance

behaviour is related to the conformal dimension of boundary operators. It

also does not leave the global charges under SU(2)L × SU(2)R × SU(2)f

∗SU(2)R × SU(2)f is broken to diag[SU(2)R × SU(2)f ] except at zero and infinite
Higgs VEV.
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Figure 4.2: Numerical results for the meson mass spectrum as function
of the quark mass. Both for mq/Λ → 0 and for mq/Λ → ∞, the curves
become linear, however with different slope. The asymptotic slopes corre-
spond to the constant values approached in Figure 4.1(b).
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invariant: Acting on the ansatz (4.30), the singular gauge transformation

(4.16) yields

Aµ
(a) = ξµ(k)f(y) eikµxµ

[ymyn

y2
σmT aσ̄n

]
. (4.45)

The parenthesised expression should be the ` = 2 spherical harmonic.

Due to σmT aσ̄n being traceless, there is indeed no singlet contribution.

Moreover a spherical harmonic should be independent of |y| as is true for
ymyn

y2 . With ĝij the metric on the three sphere it holds

∂m∂mY` = y−2∇̂iĝ
ij∇̂jY` = −`(`+ 2) y−2 Y`, (4.46)

which is also satisfied by (4.45).

4.5.2 Scalar Fluctuations

The mesons arrange themselves in massive N = 2 multiplets, some of

which are obtained by different, scalar ansätze for the gauge fluctuations

(4.30). In addition, there arise mesons from fluctuations of the scalars in

(4.27). For these the equation of motion reads

H∂µ∂µΦ +DmDmΦ = 0, (4.47)

where

DmDmΦ = ∂m∂mφ+
[
Ainst

m , ∂mΦ
]

+ ∂m

[
Ainst

m , Φ
]
+
[
Ainst

m ,
[
Ainst

m , Φ
]]
,

(4.48)

which coincides with the equation of motion for the gauge field (4.36)

except for the vector index present. Therefore the same ansatz up to a

polarisation vector

Φ(a) = f(ỹ) eikµxµ T a (4.49)

yields exactly the same radial differential equation (4.39) and the same

mass spectrum, Figure 4.1.

The scalar fluctuations (4.49) are dual to the descendant QQ(qiq̄
i) of

the scalar bilinear qiq̄
i, which has conformal dimension ∆ = 3. At Λ = 0
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the scalar bilinear is in the (0, 0) representation of the unbroken SU(2)L×
SU(2)R symmetry.



If little else, the brane is an educational toy.

Tom Robbins (up to a small typo)

Chapter 5

Heavy-Light Mesons

§5.1 Heavy-Light Mesons in AdS5 × S5, 74. §5.2 Dilaton Flow Geometries,

80. §5.2.1 Gubser’s Dilaton Deformed Geometry, 81. §5.2.2 Constable–Myers’

Background, 85. §5.3 Bottom Phenomenology, 88.

This Chapter is similar in spirit to the D3-D7 systems discussed so far,

though different in implementation. The reason is that while fundamental

fields are still assumed to arise from D7 branes in a—possibly deformed—

AdS space, the requirement to describe quarks of vastly different mass, as

needed for heavy-light mesons, makes those quarks arising from a stack

of coincident D7-branes being no longer a good approximation. In this re-

gard, heavy-light mesons are intrinsically stringy and cannot be captured

by the DBI techniques discussed in the previous Chapters. Unfortunately

as full quantised string theory on AdS is not well understood, the question

arises of how to transfer such features into a supergravity framework.

Here idealised heavy-light mesons will be considered, composed of a

massless and a very massive quark, such that in an appropriate back-

ground, the light quark may exhibit dynamical chiral symmetry breaking,

while the heavy quark does not. For now, let us stick with the AdS case.

Clearly the geometric picture is that of two parallel (probe) D7-branes in

a background determined by a stack of D3-branes. The different quark
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masses correspond to the two different separations of the D7-branes from

the D3 stack. Strings describing heavy-light mesons now differ from light-

light and heavy-heavy ones, whose ends are attached to the respective

same brane, by being stretched between the two different D7-branes. In

the limit where the heavy quark is much heavier than the light quark,

henceforth called large separation limit, the string becomes very long and

admits a classical description.

To obtain a description both simple and similar to the examples studiedeffective

point-particle

action

so far, the ansatz of a rigid non-oscillating string is chosen that moves in

the AdS radial direction along the D7-branes, with the essential assumption

that oscillations and longitudinal movement are suppressed in the large

separation limit.∗ Integration of the Polyakov action along the string

can then be performed, yielding effectively a centre-of-mass movement

weighted by a factor from averaging over the geometry between the two

D7s. To obtain a field equation, näıve quantisation is performed, which

results in a modified Klein–Gordon equation. (In a Minkowski space, this

procedure yields the conventional, unmodified Klein–Gordon equations.)

After the AdS case, the discussion will be moved on to the dilaton deformed

background by Gubser introduced in Chapter 3 and a similar background

by Constable–Myers. Both exhibit chiral symmetry breaking. While these

are known to be far from perfect QCD gravity duals, experience shows

that even simple holographic models can reproduce measured mass values

with an accuracy of 10–20%. Assuming the two respective quark flavours

associated to the D7-branes being up and bottom, the mass of the rho

(uū) and upsilon (bb̄) meson can be used to fix all scales in the theory and

yield a numerical prediction for the B meson mass, which indeed is less

than 20% from the experimental value.

5.1 Heavy-Light Mesons in AdS5 × S5

As shown in Chapter 2, quarks can be introduced into the AdS/CFT corre-

spondence by augmenting the D3 stack with a stack of probe D7-branes

∗On the field theory side at large separation; i.e. large quark mass mH , effects
distinguishing vector from scalar mesons are suppressed by m−1

H . Indeed the formalism
described here is not capable of capturing such a difference and meson masses are thus
manifestly degenerate.



5.1 Heavy-Light Mesons in AdS5 × S5 75

3−brane

7−brane
1,2,3

8,9 4,5,6,7

Figure 5.1: The geometry of the D3-D7 system under consideration [2].

[20]. The backreaction of the Nf D7-branes on the AdS5 × S5 geometry

(2.1) formed by the Nc D3-branes may be neglected as long as Nf � Nc;

i.e. Nf is kept fixed in the ’t Hooft limit.

ds2 =
r2

L2
ηµνdx

µdxν +
L2

r2
dr2 + L2dΩ2

5, (5.1)

This corresponds to the quenched approximation of lattice gauge theory

on the field theory side. The D7-branes wrap an AdS5 × S3 geometry

when coincident with the D3s. When separated the corresponding N = 2

hypermultiplet acquires a mass and the D7-branes wrap a geometry

ds2 =
y2 + m̃2

q

L2
ηµνdx

µdxν +
L2

y2 + m̃2
q

dy2 +
L2y2

y2 + m̃2
q

dΩ2
3, (5.2)

which is only asymptotically AdS5 × S3 and does not fill the complete

AdS5 background, but instead terminates from the five-dimensional point

of view and drops from the IR dynamics. This configuration is shown in

Figure 5.1. The meson spectrum can be determined analytically [24] and spectrum

the degenerate mass of the scalar and pseudoscalar meson is given by

M2
s =

4m̃2
q

L4
(n+ `+ 1)(n+ `+ 2). (5.3)

These mesons are build up from quarks carrying all the same mass; two flavours

i.e. they form “light-light” or “heavy-heavy” mesons depending on the

distance m̃q = (2πα′)mq between the D7-branes and the D3 stack. When

considering two D7-branes with different distances m̃L and m̃H to the
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D3

Heavy quark
D7’ brane

Light quark
D7 brane

LL

HH

HL

Figure 5.2: The brane configuration including both a heavy and a light
quark. The 77 and 7′7′ strings are holographic to light-light and heavy-
heavy mesons respectively. Heavy-light mesons are described by strings
between the two D7-branes.

D3 stack, there are accordingly two towers of mesons MH and ML whose

lightest representatives have a mass ratio of mL

mH
and which come from

strings having attached both ends to the same brane. The configuration

is shown in Figure 5.2. Strings stretched between the two branes should

then form a set of mesons composed of a heavy and a light quark.

In the limit mH � mL the string becomes very long and will be as-

sumed to be in the semi-classical limit, where quantum effects to the un-

excited string can be neglected. The string described here will therefore

approximate above mesons, which by construction will be degenerate.

The gauge-fixed Polyakov action will be taken as a starting pointPolyakov

SP = −T
2

∫
dσ dτ Gµν(−ẊµẊν +X ′µX ′ν), (5.4)

such that the constraints

GµνẊ
µX ′ν = 0, Gµν(Ẋ

µẊν +X ′µX ′ν) = 0, (5.5)

have to be taken into account.

The two D7-branes are assumed to be separated from the D3 stack in

the same direction θ = 0; i.e. the string connecting them will obey σ = z,

where σ is the spatial world sheet coordinate and z eiθ = z9 + iz8. While

the string will be allowed to move along the world volume of the D7s, it

shall be stiff such that integration over σ can be performed to generate an

effective point particle action. With the embeddingembedding
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XA = (xµ(τ), ym(τ), z8 = 0, z9 = σ), (5.6)

which implies ẊaX ′a = 0 automatically, and the AdS5×S5 geometry (5.1),

the Polyakov action reads

SP = −T
2

∫
dτ

m̃H∫
m̃L

dσ

[
−y

2 + σ2

L2
ẋαẋα −

L2

(y2 + σ2)
ẏiẏi +

L2

(y2 + σ2)

]
,

(5.7)

where y ≡ |y| ≡
√∑

i=4,5,6,7(y
i)2. Integrating over σ yields

SP = −T
2

∫
dτ
[
−f(y)ẋ2 − g(y)ẏ2 + g(y)

]
, (5.8)

with (choosing m̃L = 0)

f(y) =
1

L2

(
y2m̃H +

1

3
m̃3

H

)
, g(y) =

L2

y
arctan

m̃H

y
. (5.9)

The remaining constraint equation Gµν(Ẋ
µẊν +X ′µX ′ν) = 0 is

y2 + σ2

L2
ẋαẋα +

L2

(y2 + σ2)
ẏiẏi +

L2

(y2 + σ2)
= 0, (5.10)

which gives

1

f(y)
p2

x +
1

g(y)
p2

y + T 2g(y) = 0, (5.11)

pα
x :=

∂L

∂ẋα

,

pi
y :=

∂L

∂ẏi

when integrating over σ. The same calculation for Minkowski space gives

f(y) = g(y) = m̃H , such that one obtains E2 = m2 + p2. For AdS space

the mass m depends on the position of the string y via the factors f(y)

and g(y), which average over the geometry between the two D7-branes.

For the quantisation prescription p 7→ −i∂, the following modified equation of

motion
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Figure 5.3: The mass ratio of the heavy-light meson and the heavy quark
mass (the light quark is taken to be massless) as a function of the ’t Hooft
coupling for the AdS background. In the large λ limit, MHLL

2/(2πα′mH)
behaves as 1 + const./

√
λ + O(λ−1). The black line in the second plot

corresponds to MHLL
2 = (2πα′)mH .
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Figure 5.4: The heavy-light meson spectrum in AdS for small ’t Hooft
coupling with vanishing mass for the light quark. The mass ratio behaves
as const./

√
λ+O(λ). Note however that the supergravity approximation

is not reliable in this regime.

Klein–Gordon equation is obtained[
�2

x +
f(y)

g(y)
∇2

y − T 2g(y)f(y)

]
φ(~x, ~y) = 0. (5.12)

The usual procedure for this kind of equations is to find the correct back-

ground solution, which by assumption only depends on the radial direction

y and find fluctuations about this solution. By a separation ansatz these

fluctuations can be seen to be a plain wave in the x direction and spherical

harmonics in the angular coordinates Ω3(y
4,5,6,7). The remaining equation

for the radial coordinate y often has to be solved numerically.

In the UV limit y → ∞, (5.12) is dominated by the Laplace operator

in the y directions due to f
g
∼ y4 and f g → 1, such that

∇2
yφ = 0. (5.13)

When φ only depends on y, the solution has the form required to couple
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to the VEV and source of a heavy-light quark bilinear ψ̄HψL.

φ(y →∞) = m̃HL +
cHL

y2
+ . . . (5.14)

However there are no heavy-light mass mixing term and no heavy-lighttrivial vacuum

bilinear condensate in QCD, so φ(y) ≡ 0 is chosen.

Assuming a singlet under SU(2)L × SU(2)R, the ansatz for linearised

fluctuations about above vacuum solution reads

φ = 0 + h(y) eik·x, M2
HL = −k2, (5.15)

where h(y) shall be regular in the IR and normalisable h(y → ∞) ∼ y−2.

Only for a discrete set of values for MHL this requirement can be satisfied.

For numerics it is convenient to employ rescaled coordinates y = m̃H ỹ,

such that equation (5.12) reads[
π

λ

ỹ3 + ỹ
3

arctan 1
ỹ

∇2
ỹ +

(
ỹ +

1

3ỹ

)
arctan

1

ỹ
+
M2L4

m̃2
H

]
h(ỹ) = 0. (5.16)

The ’t Hooft coupling λ arises from R4/(2πα′) = gsNc/π. The mass

ratios yielding regular normalisable solutions to (5.16) have been plotted

in Figures 5.3 and 5.4. It can be read off

MH

mH

=
2πα′

L2

[
1 +

const.√
λ

+O(λ−1)
]
. (5.17)

In the large λ limit, M̃HL = m̃H is approached in agreement with the na-

ı̈ve expectation of the meson mass being equal to the string length times

its tension. For comparison in Figure 5.4 the mass ratio is plotted for

small values of the ’t Hooft coupling, where supergravity is not a reliable

approximation anymore.

5.2 Dilaton Flow Geometries

The N = 2 SYM considered so far provides a basis for studying meson

spectra since it gives analytic expressions for solutions and masses con-

sisting of identical quarks. However it does not capture a number of
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phenomenologically relevant features like chiral symmetry breaking since

chiral symmetry breaking requires SUSY breaking. The setup discussed

now improves at least in that regard by providing a simple geometry that

describes a non-supersymmetric dual of a large Nc QCD-like theory and

thus exhibits dynamical chiral symmetry breaking.

The first background discussed is the dilaton deformed background by

Gubser, which has been described in Chapter 3. It is demonstrated that

the semi-analytic prediction of the AdS case is reproduced in the large

heavy-quark limit. Then the same procedure is applied to the similar

geometry of Constable and Myers, but it turns out that in this setup the

heavy-light meson spectrum does not approach the AdS spectrum in a

similar manner.

5.2.1 Gubser’s Dilaton Deformed Geometry

Let me remind the reader that Gubser’s geometry is given by, cf. (3.26),

ds2
10 = gxx(r)dx

2
1,3 + gyy(r)(d~y

2 + d~z2),

gxx(r) =
r2

L2

√
1− r−8,

gyy(r) = gzz =
L2

r2
,

eϕ = eϕ0

(
r4 + 1

r4 − 1

)√ 3
2

,

r2 = ~y2 + ~z2,

(5.18)

where Einstein frame has been used and the coordinates have been rescaled

such that infra-red singularity resides at r = 1. The coordinates y4,5,6,7

and z8,9 are on equal footing and can be interchanged by SO(6) transfor-

mations until probe D7-branes, which break the SO(6) to SO(4)× SO(2),

are introduced to obtain quarks. The D7-branes are embedded according
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Figure 5.5: Chiral symmetry breaking embeddings in Gubser’s back-
ground.

to z = |z9 + iz8| = z0(y), which yields the following equation of motion

d

dy

[
y3f√

1 + z′0(y)
2
z′0(y)

]
= y3

√
1 + z′0(y)

2
∂

∂z0

f, (5.19)

f =
(r4 + 1)(1+∆/2)(r4 − 1)(1−∆/2)

r8
, r2 = y2 + z0(y)

2, ∆ =
√

6.

At large y, solutions to (5.19) take the form

z0 =
m̃q

r0
+

c

r3
0y

2
+ . . . , (5.20)

which by standard AdS/CFT duality corresponds to a source of conformal

dimension 1 and a VEV of conformal dimension 3 in the field theory. The

former corresponds to the quark mass mq = m̃q/(2πα
′) and describes

the asymptotic separation m̃q of the D3 and D7-branes, the latter is the

bilinear quark condensate c ∼
〈
ψ̄ψ
〉
. The factor of r0, which gives the

position of the singularity, arises from the coordinate rescaling used to

remove r0 from the metric and equations of motion.

Requiring regularity in the IR by ∂yz0(0) = 0 fixes the quark condensateregular embeddings

as a function of the quark mass, see Section 3.6. Some regular solutions to
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(5.19) are plotted in Figure 5.5, which provide the D7 embeddings that are

used as the boundary conditions for the heavy-light string in the following.

The Polyakov action (5.4), which due to being in string frame requires

additional factors of eϕ/2, reads for this background

SP = −T
2

∫
dτ

z0(mH)∫
z0(mL)

dz0

[
− eϕ/2 gxxẋ

αẋα − eϕ/2 gyyẏ
iẏi + eϕ/2 gyy

]
,

(5.21)

with the metric factors and dilaton from (5.18).

One obtains again an equation of motion of the form[
�2

x +
f(y)

g(y)
∇2

y − T 2g(y)f(y)

]
φ(~x, ~y) = 0, (5.22)

where the coefficients f(y) and g(y) this time are given by

f(y) =

z0(mH)∫
z0(mL)

dz0 eϕ/2 gxx, g(y) =

z0(mH)∫
z0(mL)

dz0 eϕ/2 gyy. (5.23)

The integration limits in (5.23); i.e. the positions of the D7-branes, are

given by the solutions to (5.19), which are only known numerically, such

that f(y) and g(y) also require numerics.

For an ansatz describing a field theoretic vacuum φ ≡ φ0(y), equation

(5.22) has the same UV behaviour as the AdS case, φ0(y → ∞) ∼ m̃HL +

cHL y
−2, where m̃HL corresponds to heavy-light mass mixing term and

cHL to a heavy-light quark condensate. Because both are absent in QCD,

fluctuations about the trivial vacuum φ0(y) ≡ 0 are considered. Plot 5.6 fluctuation

ansatzshows the mass spectrum of normalisable, regular solutions

δφ = φ(y) eik·x (5.24)

as it can be obtained from[
M2

HL

Λ2
+
π

λ

f̂(y)

ĝ(y)
∇2

y − g(y)f(y)

]
φ(~x, ~y) = 0 (5.25)
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Figure 5.6: The binding energy of the heavy-light meson masses as a
function of the heavy quark mass for λ = 100 (first plot) and as a function
of the ’t Hooft coupling for mH = 11.50 Λ (second plot). The respective
AdS values are shown as gray lines in the background and are approached
in the limit of large values of the heavy quark mass, while for small values
effects of the chiral symmetry breaking are seen.
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with Λ = r0/(2πα
′) the QCD scale. f̂ and ĝ can be obtained from (5.23) by

setting L = 1. The light quark mass mL has been set to zero to describe a

quark experiencing dynamical chiral symmetry breaking, while the large

quark mass mH is varied.

The spectrum obtained is very similar to that of the AdS geometry. To

make the deviations caused by the deformation more visible, the binding

energy has been plotted. In Figure 5.6 it is shown for λ = 100 as a function

of the quark mass. It is also shown as a function of the ’t Hooft coupling

with the (for now arbitrary value of the) heavy quark mass mH = 11.50 Λ.

The binding energy approaches its AdS values for mH → ∞, but highly SUSY restoration

excited mesons converge more slowly. Both features can be understood

from the spectrum of light-light/heavy-heavy mesons in Chapter 3. The

higher the quark mass, the higher is the energy scale, where the brane

“ends” and decouples from the spectrum. At high energies supersymmetry

is restored and the light-light mesons become degenerate. While the effect

is the same for the heavy-light mesons, that argument is not quite true

anymore since the light quark has been set to be massless all the time—at

least one end of the string stays close to IR region. However the centre of

mass of the heavy-light string moves farther away from the interior of the

space when the heavy quark mass grows. The effective averaging of the

geometry in (5.23) takes into account more and more of the geometry far

from the centre, which is nearly AdS.

At the same time highly excited mesons probe the IR more densely as

has been seen in Section 3.8, so they require the string to be stretched

much more to allow neglecting the vicinity of the singularity.

5.2.2 Constable–Myers’ Background

The particular geometry considered here is a dilaton deformed AdS geom-

etry introduced in [42], which has been employed by [82, 94] to describe

chiral symmetry breaking in AdS/CFT. Like the background of the previ-

ous Section it is a warped AdS5×S5 geometry with a running dilaton that

preserves SO(1, 3)× SO(6) isometry.
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The background is given by

ds2 = H−1/2Xδ/4dx2
1,3 +H1/2X(2−δ)/4Y (d~y2 + d~z2),

H = Xδ − 1, X =
r4 + b4

r4 − b4
, Y =

r4 − b4

r4
,

e2ϕ = e2ϕ0 X∆, C(4) = H−1dx0 ∧ · · · ∧ dx3,

δ =
L4

2b4
, ∆2 = 10− δ2, (5.26)

with r2 = ~y2 + ~z2. R and b are free parameters and will be set to 1

for the numerics, since that allows to make contact with [82], where the

same choice has been made. The authors of [82] embedded the D7-branes

according to z = |z9 + iz8| = z0(y) and obtained the following equation of

motion

d

dy

[
eϕ G(y, z0)√
1 + (∂yz0)2

(∂yz0)

]
=
√

1 + (∂yz0)2
∂

∂z0

[eϕ G(y, z0)] , (5.27)

where

G(y, z0) = y3 ((y2 + z2
0)

2 + 1)1+∆/2((y2 + z2
0)

2 − 1)1−∆/2

(y2 + z2
0)

4
. (5.28)

This is the same equation as (5.19) albeit with a free parameter ∆, which

in Gubser’s geometry has the fixed value
√

6. The asymptotic behaviour

and their field theoretic interpretation are the same as for Gubser’s back-

ground and have been reviewed in the previous Section. Note however

that only the particular combination eϕ
√
−g appearing in the equation

for the vacuum embedding (5.27) coincides in both backgrounds. On the

level of meson spectra, the results for light-light mesons are similar but

not identical to those in Gubser’s background.

Expanding the DBI action (1.15) to quadratic order in fluctuations

(3.12) yields (3.19) for a vector meson ansatz, that is an ansatz of the

form Aµ = ξµδρ(y) eik·x, M2
ρ = −k2 for the D7 gauge field. The vector

meson radial equation (3.19) reads for the Constable–Myers background

∂y

(
K1(y)∂yδρ(y)

)
+M2

ρK2(y)δρ(y) = 0, (5.29)
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Figure 5.7: The binding energy of the heavy-light meson masses as a
function of the heavy quark mass for λ = 100 (first plot) and as a function
of the ’t Hooft coupling for mH = 12.63/Λb (second plot). The respective
AdS values are shown as gray lines in the background and are approached
in the limit of large values of the heavy quark mass, while for small values
effects of the chiral symmetry breaking are seen.
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with

K1 = X1/2y3(1 + z′20 )−1/2, K2 = HX1−δ/2Y 2y3(1 + z′20 )−1/2 (5.30)

and

X =
(y2 + z2

0)
2 + 1

(y2 + z2
0)

2 − 1
, Y =

(y2 + z2
0)

2 − 1

(y2 + z2
0)

2
. (5.31)

The Polyakov action

SP = −T
2

∫
dτ
[
−f(y)ẋ2 − g(y)ẏ2 + g(y)

]
(5.32)

preserves its AdS form but the coefficients are now

f(y) =

z0(mH)∫
z0(mL)

dz0 (X1/2 − 1)−1/2X∆+ 1
8 , (5.33)

g(y) =

z0(mH)∫
z0(mL)

dz0 Y (X1/2 − 1)1/2X∆+ 3
8 , (5.34)

with X, Y defined in (5.31) and the integration limits are given by the

solutions to (5.27).

Scalar fluctuations of the form φ = 0 + δφ(y) eik·x yield[
M2

HL

Λ2
b

+
(2πα′)2

b4
f(y)

g(y)
∇2

y − g(y)f(y)

]
φ = 0, (5.35)

with Λb = b/(2πα′) the QCD scale and (2πα′)2/b4 = 2πδ/λ. For boundary

conditions ∂yδφ(0) = 0 and δφ(y →∞) ∼ cy−2 equation (5.35) determines

the meson spectrum. Since it is very similar to the AdS spectrum, the

binding energy, which demonstrates the deviations more clearly, has been

plotted in Figure 5.7 for massless light quark.

5.3 Bottom Phenomenology

There has been a number of attempts to apply holographic methods to phe-

nomenological models [95, 96], even for the Constable–Myers background
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Figure 5.8: Lightest pseudoscalar, scalar and vector mesons in Gubser’s
dilaton deformed geometry. The vector mode for the massless quark is
interpreted as a Rho meson, while for the heavy quark mass it yields the
the Upsilon. See also Section 3.7.

of the previous Section [97], successfully reproducing light quark meson

data with an accuracy better than 20%. That shall be motivation enough

to compare the heavy-light spectra calculated here with the bottom quark

sector of QCD; i.e. the massless quark in the setup above will be assumed

to play the rôle of an up quark, while the heavy quark, which will lie in

the AdS-like region, will be interpreted as a bottom quark.

In that regime supersymmetry will be restored and the field theory will shortcomings

be strongly coupled even though QCD dynamics should be perturbative at

this energy scale. These are respective consequences of the background

being too simple (though a background exhibiting separation of scales is

not known yet) and an intrinsic feature of the SUGRA version of AdS/CFT

that can only be overcome by a full string treatment, which is currently

out of reach.

The scales of the theory will be fixed by identifying the mass of the

lowest vector meson mode with the Rho and Upsilon mesons, which are

chosen as input data since they are less sensitive to the light quark mass

than the pseudoscalar modes roughly corresponding to the Pion, cf. Fig-
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Figure 5.9: Ratio of the mass of the lowest and first excited heavy-light
meson mode for the Gubser and Constable-Myers background. (They
really do look exactly the same, since the different units expressing the
different dependence on the respective deformation parameter cancel in
the ratio.) For large ’t Hooft parameter the ratio approaches 1, while the
physical B/B* ratio (which is 1.01) is reached at λ ≈ 82.

ure 5.8 and Section 3.7 for details.

From Figure 5.8 the ρ mass for Gubser’s background is read off to be

MρL
2/r0 = 2.93. Preserving the physical ratio

MΥ/Mρ = 9.4 GeV/770 MeV, (5.36)

the Υ mass has to be MΥL
2/r0 = 35.8 and the heavy quark mass can be

read off to be mb = 12.7 Λ.

The ’t Hooft parameter can be determined from the physical ratio of

the mass of the Rho and the B meson by searching for the value of λ for

which the numerical value of the lowest heavy-light excitation satisfies(
MB

Mρ

)phys

=

(
MHL(λ)

Λ

)num(
r0

MρL2

)num
√
λ

π
. (5.37)

Unfortunately this yields a value of the ’t Hooft coupling of λ = 2.31.

As can be seen in Figure 5.9 the mass ratio of the predicted B and B*

meson reaches its physical value of approximately 1.01 only for very large
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λ. Identifying MHL with the physical quark mass MB = 5279 MeV, one

obtains a QCD scale of 225 MeV.

With respect to the B mass ratio, the situation is slightly better for

the background by Constable and Myers, where the same procedure yields

a prediction of λ = 5.22. While it is not clear if this value is sufficient

for the large λ approximation inherent in the employed formulation of

the AdS/CFT correspondence, it gives a prediction for MB∗ = 6403 MeV,

which is 20% larger than the measured value of 5325 MeV. Again a much

larger value of the ’t Hooft coupling would be required to achieve a better

agreement. For the QCD scale on obtains Λb = 340 MeV, which is a little

too high. With mH = 12.63 Λb the physical b quark mass is predicted to

be 4294 MeV.

The overall agreement with experiment is far from perfect. However

this does not come as a surprise since the b quark mass (mb ≈ 12 Λ in

both backgrounds) is far in the supersymmetric regime: Restoration of

supersymmetry takes place approximately at mq ≈ 1.5 Λ as can be seen in

Figure 5.8. In other words a string connecting a brane describing a light

quark and this “b quark” has about 80% of its length in the supersymmet-

ric region, which is a good approximation of pure AdS. The only way to

improve this situation would be to use a (yet unknown) background that

allows to separate the SUSY breaking scale from the QCD scale.
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space Integrals, 119.

The second part of this thesis is devoted to the discussion of the conformal

anomaly in supersymmetric field theories, in particular supersymmetric

Yang–Mills theories.

The approach chosen is an extension to superfields of the space-time

dependent coupling techniques Osborn [48] applied to non-supersymme-

tric theories coupled to a gravity background in order to give an alter-

native proof of Zamolodchikov’s c-theorem, cf. Chapter 7. Consequently

a coupling to supergravity will have to be considered and its superfield

formulation shall be reviewed in this Chapter.

In Chapter 8 a discussion of the supersymmetric conformal anomaly

will be given.
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6.1 Conventions

To establish notations, a few basic ingredients for supersymmetry are re-

viewed in the shortest possible manner. Throughout this part, a dot-

ted/undotted Weyl spinor notation is being used.

The simplest double covering representation of the Lorentz group can

be constructed as follows. An arbitrary vector vαα̇ transforms under a

Lorentz transformation Λa
b ∈ SO(1, 3) according to

xa 7→ x′a = Λa
bx

b. (6.1)

The double covering group SL(2,C) transforms the same vector accordingdouble covering

to

σa
αα̇xa 7→ (Uα

βσa
ββ̇U †α̇β̇)xa ≡ σa

αα̇x′a, (6.2)

with U the element of the double covering group chosen such that x′a

coincides with the definition (6.1). The matrices σa := (1, ~σ) are the

Pauli matrices augmented by the unity matrix. As an aside, the “1 to 2”

relation of the two representations can be easily seen from the fact that for

any U being a solution to (Uα
βσ

ββ̇
a U †α̇β̇) = σb

αα̇Λb
a, −U is also a solution.

The group SL(2,C) leaves invariant the antisymmetric tensors εαβ andsymplectic metric

εα̇β̇, defined by

ε12 = ε1̇2̇ = −1, ε12 = ε1̇2̇ = 1, (6.3)

where the epsilon symbols with raised indices constitute the respective

inverse matrices by εαβεβγ = δα
γ . Since for any element U of SL(2,C) it

holds the relation εαβ = εγδUγ
αUδ

β, the combination εαβψαψβ is invari-

ant under ψα 7→ Uα
βψβ and therefore a Lorentz scalar. In other words,

the epsilon matrices can be used to obtain contragradiently transforming

representations according to

ψα = εαβψβ, ψα = εαβψ
β, (6.4)

ψ̄α̇ = εα̇β̇ψ̄β̇, ψ̄α̇ = εα̇β̇ψ̄
β̇. (6.5)



6.1 Conventions 97

For the sake of brevity, an indexless notation is often employed for con- indexless

notationtracted adjacent objects, where different conventions are being used for

dotted and undotted indices,

ψχ := ψαχα, ψ̄χ̄ = ψ̄α̇χ̄
α̇. (6.6)

This particular choice has the advantage that ψχ = ψ̄χ̄.

It is common to introduce

xαα̇ := σ̃a
αα̇xa, (6.7)

with σ̃αα̇
a = εαβεα̇β̇(σa)βδ, and convert back and forth between the two

representations using the relations

(σa)αγ̇(σ̃b)
βγ̇ + (σb)αγ̇(σ̃a)

βγ̇ = −2ηabδα
β, (6.8)

(σ̃a)
γα̇(σb)γβ̇ + (σ̃b)

γα̇(σa)γβ̇ = −2ηabδβ̇
α̇, (6.9)

which imply

xa = −1
2
(σa)αα̇x

αα̇, xaxa = −1
2
xαα̇xαα̇. (6.10)

A superspace is defined to be a space with coordinates xαα̇ of even Graßmann parity

Graßmann parity and θα, θ̄α̇ = (θα)† of odd Graßmann parity; i.e. anti-

commuting. The Graßmann parity of a quantity q is symbolised by #q and

capital Latin letters are used to denote collective indices; e.g. the superco-

ordinates are labelled∗ zA = (xαα̇, θα, θ̄α̇) and transform under the (1
2
, 1

2
),

(1
2
, 0) and (0, 1

2
) representations, respectively.∗∗ Arbitrary irreducible rep-

resentations (m
2
, n

2
) are given by symmetric tensors

ψα1,...,αm,β̇1,...,β̇n ≡ ψ{α1,...,αm},{β̇1,...,β̇n}, (6.11)

where the weight is chosen such that (anti-)symmetrisation is idempotent, (anti-)

symmetrisation

∗This convention implies that components of a tensorial object tA1...An
have a vary-

ing number of indices. Commas will be used to separate index pairs αα̇, βγ̇ whenever
this disambiguation is necessary.

∗∗The latter are (complex) Weyl spinors as opposed to Dirac spinors, which are
composed of two Weyl spinors.
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ψ{α1,...,αN} =
1

N !

∑
ψπ(α1),...,π(αN ), (6.12)

ψ[α1,...,αN ] =
1

N !

∑
sign(π)ψπ(α1),...,π(αN ), (6.13)

and (anti-)symmetrisation is performed over only those indices enclosed in

braces that are not additionally enclosed in a pair of vertical bars | |. From

the spin-statistics theorem follows that any physical field ψα1,...,αm,β̇1,...,β̇n

has Graßmann parity m+ n (mod 2).

Partial superderivatives ∂A = (∂αα̇, ∂α, ∂̄
α̇) are defined by

[
∂A, z

B
}

= (∂Az
B) := δA

B (6.14)

where the (Z2-)graded commutator is defined bygraded

commutator [
A, B

}
:= AB − (−1)#A #BBA (6.15)

and obeys the graded Leibniz rule and Jacobi identityLeibniz, Jacobi

[
A, B C

}
=
[
A, B

}
C + (−1)#A #BB

[
A, C

}
, (6.16)

(−1)#A #C
[
A,
[
B, C

}}
+ (cyclic A 7→ B 7→ C) = 0. (6.17)

The partial derivatives in a flat superspace satisfy

[
∂A, ∂B

}
= 0. (6.18)

A superfield f(x, θ, θ̄) on R4|4 can be defined by a Taylor expansion incomponents

the non-commuting coordinates according to

f(zA) = A(x) + θαψα(x) + θ̄α̇ψ̄
α̇(x)

+θ2F (x) + θ̄2F̄ (x) + θσaθ̄Va(x)

+θ̄2θαλα(x) + θ2θ̄α̇λ̄
α̇(x) + θ2θ̄2G(x),

(6.19)

where the respective coefficients are called components. Mass dimension

and Graßmann parity of the superfield are by definition given by the re-

spective property of the lowest component A. This definition of a super-

field can be extended to include tensorial fields by simply promoting the

components to tensors.
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In a similar manner a superfield can be defined on C4|2, which is build

up from four complex (ya) and two anticommuting (θα) coordinates. For

the remaining part of this introduction, these two superspaces will be

referred to as the real (R4|4) and complex (C4|2) superspace respectively.

The real superspace is a subspace of the complex superspace, embedded

according to

ya = xa + iθσaθ̄. (6.20)

By this relation holomorphic superfields can be defined on the real super- chiral superfields

space (where they are known as chiral superfields) according to

Φ(x, θ, θ̄) = Φ(x+ iθσaθ̄, θ) = eiH Φ(x, θ)

H := θσaθ̄∂a,
(6.21)

where H has been defined with future generalisations in mind. (The cur-

rent choice of H has the unique property of making super-Poincaré trans-

formations on both spaces coincide, thus providing the only Poincaré in-

variant embedding of R4|4 into C4|2.)

The property ∂̄Φ(y) = 0 can be rewritten as flat covariant

derivative

D̄α̇Φ(x, θ, θ̄) = 0, D̄α̇ := eiH(−∂̄α̇) e−iH = −∂̄α̇ − iθα∂αα̇. (6.22a)

Analogously, for an antichiral field it holds

DαΦ(x, θ, θ̄) = 0, Dα := e−iH(∂α) eiH = ∂α + iθα∂αα̇. (6.22b)

The set of derivatives DA = (∂a, Dα, D̄
α̇) has the property of commuting

with the supersymmetry generators and mapping a tensor superfield into a

tensor superfield with respect to the Lorentz group. Hence, they are called

(flat) covariant derivatives. The observant reader has noticed the unusual

sign in front of ∂̄α̇ in definition (6.22), which is related to convenient

complex conjugation properties as will be explained below. While partial

derivatives obey trivial (anti-)commutation rules, this is no longer true

for covariant derivatives (
{
Dα, D̄α̇

}
= −2i∂αα̇), and consequently special

attention has to be paid to the reordering upon complex conjugation, in

particular Hermitean and complex conjugation no longer coincide.
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Conjugations

O O† O∗ OT

O1 · · · On O†n · · · O
†
1 π#F O∗1 · · · O∗n π#F OT

n · · · OT
1

ψα ψ̄α̇ ψ̄α̇ ψα

ψα1...αmβ̇1...β̇n ψ̄β̇n...β̇1αm...α1 πnπmψ̄
β̇n...β̇1αm...α1 πnπmψ

αm...α1β̇n...β̇1

∂a −∂a ∂a −∂a

∂α ∂̄α̇ −∂̄α̇ −∂α

Da −Da Da −Da

Dα −D̄α̇ D̄α̇ −Dα

Table 6.1: Definition of the Hermitean and complex conjugate as well as
transposition (from left to right). The symbol

πm := (−1)b
m
2 c = (−1)

1
2

m(m−1)

denotes the sign change induced by reversing the order of m anticommut-
ing objects while #F is the number of fermionic terms in the corresponding
expression.

The Hermitean conjugate O† and transpose OT of an operator O areconjugation

respectively defined by∫
O†χψ :=

∫
χ̄Oψ, (6.23)∫

(OTχ)ψ := (−1)#χ #O
∫
χOψ, (6.24)

which additionally allows to define the complex conjugate by

O∗ := (O†)T. (6.25)

In particular, these definitions imply the following reorderings

(O1 . . .ON)† = O†N . . .O
†
1, (6.26)

(O1 . . .ON)T = (−1)#O1 #O2OT
N . . .OT

1 , (6.27)

(O1 . . .ON)∗ = (−1)#O1 #O2O∗1 . . .O∗N . (6.28)

From
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{
(∂̄α̇)†, (z̄β̇)†

}
=
{
∂̄α̇, z̄

β̇
}†

= (δα̇
β̇)† = δα

β =
{
∂α, z

β
}
, (6.29)

−
[
(∂a)

†, (za)†
]

=
[
∂a, z

b
]†

= (δa
b)† = δa

b =
[
∂a, z

b
]

(6.30)

one may deduce

(∂a)
† = −∂a, (6.31)

(∂α)† = ∂̄α̇, (6.32)

while the transpose ∂T
A = −∂A is determined by partial integration. So

complex conjugation of a spinor partial derivative involves an additional

minus sign compared to other fermionic objects. As complex conjugation

is an operation which will be employed quite frequently when working di-

rectly with the supergravity algebra, the definition of covariant spinor

derivatives (6.22) involves an additional minus sign for compensation.

The conjugation rules are summarised in Table 6.1. As one can see, for

the case of (anti-)commuting objects—“numbers”—Hermitean conjuga-

tion and complex conjugation are the same.

In the supergravity literature, the use of different notations and con- conventional

trapsventions is quite common. In particular it crucially depends on the task

to be performed, which conventions are the most suitable. This thesis

follows closely the conventions of [99], which contain the potential trap

that for an antisymmetric tensor

ψαβ ∼ εαβ (6.33)

the corresponding contragradient tensor reads

ψαβ = εαγεβδψγδ ∼ εαγεβδεγδ = −εαβ (6.34)

as a consequence of the conventions used for raising and lowering opera-

tors.

The other major source of this compilation [98] uses an imaginary

symplectic metric, which introduce a relative minus sign for complex con-

jugation of contragradient indices. Additionally, there appears a minus

sign in the complex conjugation of spinorial covariant superderivatives

Dα = (D̄α̇)† = −(D̄α̇)∗. Furthermore, quadratic quantities D2 contain a
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SUGRA Index Conventions

c-coordinates (x) a-coordinates (θ)

m,n, . . . µ, ν, . . .
world

M,N, . . .

a, b, . . . α, β, . . .
tangent

A,B, . . .

Table 6.2: Superfield Supergravity Index Conventions

factor of one half, which materialises upon partial integration.

6.2 Superspace Supergravity

In analogy to the non-supersymmetric case, a pseudo-Riemannian super-

manifold is defined by an atlas of maps from open sets of points on the

supermanifold to coordinates in flat superspace. When there is curvature,

in general more than one map is required to cover the whole manifold and

the maps are distorted in the sense, that a non-Minkowski metric is needed

to capture this distortion in terms of those superspace coordinates, which

shall be called world or curved coordinates coordinates zM = (zm, θµ, θ̄µ̇).world vs. tangent

To each point of the supermanifold one may attach a tangent superspace

(also referred to as flat), whose coordinates are called zA = (za, θα, θ̄α̇).

The distinction of flat vs. curved will also be made in referring to the

indices only as indicated in Table 6.2.

Superspace supergravity requires a tangent space formulation, wheredoubled Lorentz

superspace general coordinate transformations, realised as gauged curved

superspace translations, are augmented by an additional set of superlocal

Lorentz transformations acting on the tangent space only. The reason is

that without this doubling spinors can only be realised non-linearly, which

is inconvenient [98, p. 235].

A first order differential operator, expressed as

K = KM∂M + 1
2
KabMab = KM∂M +KαβMαβ +K α̇β̇M̄α̇β̇, (6.35)
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therefore allows to define covariant transformation under combined super-

coordinate and super-Lorentz transformations according to

X 7→ eK X e−K . (6.36)

The sl(2,C) versions Mαβ = 1
2
(σab)αβMab and M̄α̇β̇ = 1

2
(σ̃ab)α̇β̇Mab of Lorenz generators

the Lorentz generator Mab act on the corresponding indices (i.e. only on

indices of the same kind) according to

Mβγψα1...αn = 1
2

∑
i

(εαiβψγα1···6αi...αn + εαiγψβα1···6αi...αn), (6.37)

M̄β̇γ̇ψα̇1...α̇n = 1
2

∑
i

(εα̇iβ̇
ψγ̇α̇1···6α̇i...α̇n + εα̇iγ̇ψβ̇α̇1···6α̇i...α̇n

). (6.38)

In particular, it holds

Mβγψα = 1
2
(εαβψγ + εαγψγ),

Mβγψ
α = 1

2
(δα

βψγ + δα
γψβ),

Mαβψ
β = 3

2
ψβ.

In analogy to ordinary gravity (with torsion) one may define a deriva- curved covariant

derivativestive

DA = EA + ΩA (6.39)

that transforms covariantly under (6.36) by adding a vierbein field EA :=

EA
M∂M and a superconnection

ΩA := 1
2
ΩA

BCMBC = ΩA
βγMβγ + ΩA

β̇γ̇M̄β̇γ̇. (6.40)

The vierbein obeys the algebra anholonomy

[
EA, EB

}
= CAB

CEC , (6.41)

CAB
C = (EAEB

M − (−1)#A #BEBEA
M)EC

M , (6.42)

where CAB
C are the supersymmetric generalisation of anholonomy coef-

ficients. The non-degenerate supermatrix EA
M can be used to convert
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between world and tangent indices according to

VA = EA
MVM , (6.43)

and the bosonic submatrix Ea
m is the well known vierbein field of gravity

obeying

ηab = gmnEa
mEb

n. (6.44)

The covariant derivatives form an algebracurvature, torsion

[
DA, DB

}
= TAB +RAB, (6.45)

TAB := TAB
C∂C , (6.46)

RAB := 1
2
RAB

bcMbc = RAB
βγMβγ +RAB

β̇γ̇M̄β̇γ̇, (6.47)

with TAB = −(−1)#A #BTBA the supertorsion and RAB =

−(−1)#A #BRBA the supercurvature, which may be completely expressed

in terms of the supertorsion as a consequence of the Bianchi identities.

The latter are just the Jacobi identities (6.17) for the algebra (6.45).

6.3 Non-minimal Supergravity

The algebra above is a highly reducible representation of supergravity. To

extract the physical degrees of freedom a number of constraints has to be

imposed. One distinguishes between conventional constraintsconventional

constraints

Tαβ̇
γ = Tαβ̇

γ̇ = Rαβ
cd = 0,

Tαβ̇
c = −2iσc

αβ̇

}
⇐⇒ Dαα̇ = −2i

{
Dα, D̄α̇

}
, (6.48a)

Tαβ
γ = Tα̇β̇

γ̇ = Tα,β{β̇,
β

γ} = Tα,{β
β̇,

γ}β̇ = 0, (6.48b)

which are equivalent to redefinitions of the algebra’s constituents, and

representation preserving constraintsrepresentation

preserving

constraints Tαβ
c = Tα̇β̇

c = Tαβ
γ̇ = Tα̇β̇

γ = 0, (6.48c)
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which imply the existence of (anti-)chiral superfields by ensuring the Wess–

Zumino consistency condition

D̄α̇χ = 0 =⇒
{
D̄α̇, D̄β̇

}
χ = 0. (6.49)

While the Bianchi identities are trivially fulfilled by the unconstrained solving of Bianchi

identitiesderivatives, this is no longer true, when introducing constraints whose

consequences for the remaining torsion fields have to be evaluated. Since

this procedure is straight-forward, it will not be reproduced here due to

the length of the calculation and the fact, that it may be found in the

literature [98–101] under the name of “solving the Bianchi identities”.

After solving the Bianchi identities, all torsions and curvatures can be

expressed in terms of a few basic fields,

Tα := (−1)#BTαB
B, (6.50)

Gαα̇ := iT β,
βα̇,α + iT β̇,

αβ̇,α̇, (6.51)

R := 1
12
Rα̇β̇

α̇β̇, (6.52)

Wαβγ := 1
2
T{ia

β̇,
β|β̇|,γ}, (6.53)

where R and R̄ are chiral and antichiral superfields, Gαα̇ is real, and Tα,

Wαβγ are complex superfields, all of which are subject to a set of Bianchi

identities and obey the so-called “non-minimal supergravity algebra”.

6.3.1 Algebra and Bianchi identities

The non-minimal supergravity algebra is defined by the following three defining relations

(anti-)commutators,

{
Dα, D̄α̇

}
= −2iDαα̇, (6.54){

Dα, Dβ

}
= −4R̄Mαβ, (6.55)[

D̄α̇, Dββ̇

]
= εα̇β̇

[
1
2
T̄ γ̇Dβγ̇ − i(R + 1

8
D̄γ̇T̄

γ̇ − 1
16
T̄ 2)Dβ

− iψ̄β
γ̇D̄γ̇ + i(D̄δ̇ − 1

2
T̄ δ̇)ψ̄β

γ̇M̄δ̇γ̇

+ 2iXγMβγ − 2iWβ
γδMγδ

]
− i(DβR)M̄α̇β̇.

(6.56)
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The missing relations can be determined from the Bianchi identities (seeimplications

below) and complex conjugation.

{
D̄α̇, D̄β̇

}
= 4RM̄α̇β̇, (6.57)[

Dα, Dββ̇

]
= εαβ

[
1
2
T γDγβ̇ + i(R̄ + 1

8
DγTγ − 1

16
T 2)D̄β̇

+ iψγ
β̇Dγ + i(Dδ − 1

2
T δ)ψβ̇

γMδγ

− 2iX̄ γ̇M̄β̇γ̇ + 2iW̄β̇
γ̇δ̇Mγ̇δ̇

]
+ i(D̄β̇R̄)Mαβ,

(6.58)

[
Dαα̇, Dββ̇

]
= i

2

{[
Dα, Dββ̇

]
, D̄α̇

}
+ i

2

{[
D̄α̇, Dββ̇

]
, Dα

}
, (6.59)

with the abbreviations

ψαα̇ = Gαα̇ − 1
8
DαT̄α̇ − 1

8
D̄α̇Tα, (6.60)

Xα = 1
12

[
(D̄γ̇ − 1

2
T̄γ̇)(D̄γ̇ − 1

2
T̄ γ̇)− 4R

]
Tα

+ 1
12

[
2ψαα̇ + (D̄α̇ − 1

2
T̄α̇)(Dα − 1

2
Tα)

+ 1
2
(Dα − Tα)(D̄α̇ − 1

2
T̄α̇)

]
T̄ α̇.

(6.61)

The Bianchi identities expressed in terms of the supertorsion compo-Bianchi identities

nents read

D̄α̇R = 0, Ga = Ḡa, Wαβγ = W{αβγ},

DαTβ +DβTα = 0,

(D̄α̇ − 1
2
T̄ α̇)ψαα̇ = DαR, (D̄α̇ − 1

2
T̄α̇)Wαβγ = 0,

(Dγ − T γ)Wαβγ = i
2
(Dα

α̇ − i
2
(DαT̄

α̇))ψβα̇ + (α↔ β).

(6.62)

6.3.2 Partial Integration

From the supergravity algebra (6.45) it can be shown that

(−1)#AE−1DAV
A − (−1)#BV ATAB

B = (E−1V A)
←
EA, (6.63)
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which implies ∫
d8z E−1(Dαα̇ − (−1)#BTaB

B)V αα̇ = 0, (6.64)∫
d8z E−1(Dα + Tα)V α = 0, (6.65)∫
d8z E−1(D̄α̇ + Tα̇)V α̇ = 0. (6.66)

E−1 := sdet−1EA
M is the real superspace analogue of

√
−gmn.

Clearly it is a natural alternative to consider the combination Dα +Tα

as the basic covariant derivative. Then Tα takes over the rôle of a U(1)R

connection, an approach chosen in [98].

6.3.3 Superdeterminant

In the last Section the superdeterminant has been introduced and its defi-

nition shall follow here, belatedly. In analogy to the non-supersymmetric

case the superdeterminant is the exponential of the logarithm’s supertrace

sdetAM
N := exp STr lnAM

N , (6.67)

where the supertrace is supertrace

STrAM
N := (−1)#MAM

M , (6.68)

which is cyclic and invariant under a suitably defined supertransposition

(AsT)M
N := (−1)#N+#M#NAN

M .

For practical calculations, the following theorem is much more impor-

tant

z′M = e−K zM , K = KM∂
M
, (6.69)

sdet
∂z′M

∂zN
= (1 · e

←
K),

←
K = KM

←
∂

M
. (6.70)

The right partial derivative
←
∂

M
in
←
K acts on the components KM and right operator
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everything to the left of
←
K, such that

←
K = (−1)#M

←
∂

M
KM + (−1)#M(∂MK

M). (6.71)

Additionally the following rule holds

(1 · e
←
K)(eK Φ) = (Φ · e

←
K). (6.72)

Proofs for any of these statements can be found in the literature, in par-

ticular [99].

6.3.4 Super-Weyl Transformations

While the algebra of the previous Sections is by construction invariant

under general supercoordinate and superlocal Lorentz transformations, it

is in addition invariant under transformations of the vierbein of the form

Eα 7→ LEα, (6.73)

Ēα̇ 7→ L̄Ēα̇, (6.74)

Eαα̇ 7→ LL̄Eαα̇, (6.75)

E 7→ (LL̄)2E, (6.76)

which are easily seen to represent Weyl transformation of the bosonic

vierbein component, when restricting L to (the real part of) its lowest

component. The unconstrained complex superfield L = exp(1
2
∆ + i

2
κ)

parametrises mixed superlocal scale transformations (by ∆) and superlocal

chiral transformations (by κ). The latter can also be understood as local

U(1)R transformations.

The elements of the non-minimal supergravity algebra transform under

this symmetry as

Dα 7→ LDα − 2(DβL)Mαβ, (6.77)

D̄α̇ 7→ L̄D̄α̇ − 2(D̄β̇L̄)M̄α̇β̇, (6.78)

Tα 7→ LTα +D′α ln(L4L̄2), (6.79)

R 7→ −1
4
(D̄2 − 4R)L̄2. (6.80)
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6.3.5 Prepotentials

As a consequence of Frobenius’ theorem, the vierbein field, which is subject

to the constraint (6.41) can be decomposed into unconstrained superfields

F , W and Nα
µ, called prepotentials,

Eα = FNα
µ eW ∂µ e−W , detNα

µ = 1, (6.81)

Ēα̇ = −F̄ N̄α̇
µ̇ eW̄ ∂̄µ̇ e−W̄ . (6.82)

Because the “superscale” field F has been introduced to allow the choice

detNα
µ = 1, it is also the only prepotential that transforms under super-

Weyl transformations: F 7→ LF . Under coordinate transformations in-

duced by K = KM∂M = K̄, all prepotentials transform covariantly,

F ′ = (eK F ), (Nα
µ)′ = (eK Nα

µ), W ′ = (eK W ), (6.83)

while only Nα
µ transforms under superlocal transformations

(Nα
µ)′ = (e

1
2

KabMab)Nα
µ. (6.84)

While all supergravity superfields can be expressed in terms of prepo-

tentials, only the two simple expressions

Tα = Eα ln[EF 2(1 · e
←
W )], (6.85)

R = −1
4

ˆ̄Eµ̇
ˆ̄Eµ̇F̄ 2 (6.86)

shall be given here with the semi-covariant vierbein Ê defined by semi-covariant

vierbein

Êα := F−1Eα, Êα =: Nα
µÊµ

ˆ̄Eα̇ := F̄−1Ēα̇, (6.87)

Êαα̇ := i
2

{
Êα,

ˆ̄Eα̇

}
.

There is an additional prepotential ϕ, the chiral compensator, that can be

chosen to take over the rôle of F , see Section

refsec:superweyltrafos.
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6.4 Minimal Supergravity

From the non-minimal supergravity algebra, a formulation containing less

auxiliary fields may be obtained by setting Tα = 0. This has a number of

consequences: The algebra simplifies considerably, Wαβγ becomes a chiral

field and super-Weyl transformations can be formulated using a chiral

parameter field.

6.4.1 Algebra and Bianchi Identities

The minimal supergravity algebra is determined by the three (anti-)

commutators
{
Dα, D̄α̇

}
,
{
Dα, Dβ

}
,
[
Dα, D̄ββ̇

]
, which are listed below

with some of their straight-forward implications

{
Dα, D̄α̇

}
= −2iDαα̇, (6.88a){

Dα,Dβ

}
= −4R̄Mαβ, (6.88b){

D̄α̇, D̄β̇

}
= 4RM̄α̇β̇, (6.88c)

DαDβ = 1
2
εαβD2 − 2R̄Mαβ, (6.88d)

D̄α̇D̄β̇ = −1
2
εα̇β̇D̄

2 + 2RM̄α̇β̇, (6.88e)

DαD2 = 4R̄Dβ(εαβ +Mαβ), (6.88f)

D2Dα = −2R̄Dβ(εαβ +Mαβ), (6.88g)[
D2, D̄α̇

]
= −4(Gαα̇ + iDαα̇)Dα + 4R̄D̄α̇ (6.88h)

−4(DγGδ
α̇)Mγδ + 8W̄α̇

γ̇δ̇M̄γ̇δ̇,[
D̄2,Dα

]
= 2i

[
D̄α̇,Dαα̇

]
+ 4iDαα̇D̄α̇ (6.88i)

= −4(Gαα̇ − iDαα̇)D̄α̇ + 4RDα − 4(D̄γ̇Gα
δ̇)M̄γ̇δ̇ + 8Wα

γδMγδ,[
D̄α̇,Dββ̇

]
= −iεα̇β̇(RDβ +Gβ

γ̇D̄γ̇) (6.88j)

−i(DβR)M̄α̇β̇ + iεα̇β̇(D̄γ̇Gβ
δ̇)M̄γ̇δ̇ − 2iεα̇β̇Wβ

γδMγδ,[
D̄β̇,Dββ̇

]
= −2i(RDβ +Gβ

γ̇D̄γ̇) + 2i(D̄γ̇Gβ
δ̇)M̄γ̇δ̇ − 4iWβ

γδMγδ,

(6.88k)[
Dα,Dββ̇

]
= iεαβ(R̄D̄β̇ +Gγ

β̇Dγ) (6.88l)

+i(D̄β̇R̄)Mαβ − iεαβ(DγGδ
β̇)Mγδ + 2iεαβW̄β̇

γ̇δ̇M̄γ̇δ̇,[
Dβ,Dββ̇

]
= 2i(R̄D̄β̇ +Gγ

β̇Dγ)− 2i(DγGδ
β̇)Mγδ + 4iW̄β̇

γ̇δ̇M̄γ̇δ̇, (6.88m)



6.4 Minimal Supergravity 111

[
D2, D̄2

]
=
[
D2, D̄α̇

]
D̄α̇ − D̄α̇

[
D2, D̄α̇

]
(6.88n)

= 8iGαα̇Dαα̇ − 4iDαα̇

[
Dα, D̄α̇

]
−4(DαR)Dα + 4(D̄α̇R̄)D̄α̇

−8RD2 + 8R̄D̄2

−8(DγGδ
α̇)D̄α̇Mγδ + 8(D̄γ̇Gαδ̇)DαM̄γ̇δ̇ (6.88o)

−16W αγδDαMγδ + 16W̄α̇
γ̇δ̇D̄α̇M̄γ̇δ̇

−8(DβWβ
γδ)Mγδ + 8(D̄α̇W̄

α̇γ̇δ̇)M̄γ̇δ̇.

In minimal SUGRA R and Wαβγ are chiral fields, Gαα̇ is real.

Ga = Ḡa, (6.89a)

D̄α̇R = 0, (6.89b)

D̄α̇Wαβγ = 0, Wαβγ = W(αβγ). (6.89c)

The remaining identities also simplify dramatically,

D̄α̇Gαα̇ = DαR, (6.89d)

DαGαα̇ = D̄α̇R̄, (6.89e)

DγWαβγ = i
2
Dα

α̇Gβα̇ + i
2
Dβ

α̇Gαα̇. (6.89f)

Some trivial consequences of the above identities are

D̄α̇G
αα̇ = −DαR, (6.90)

DαG
αα̇ = −D̄α̇R̄, (6.91)

Dαα̇Gαα̇ = i
2
(D2R− D̄2R̄), (6.92)

(D2λ)(D̄2λ̄) = 4Gαα̇(Dαλ)(D̄α̇λ̄) + 8(Dαα̇λ)(Dαα̇λ̄)

+(total derivative).
(6.93)

6.4.2 Chiral Projector and d’Alembertian

As a consequence of (6.88c) as long as R 6= 0, D̄2U is no longer chiral

(U being an arbitrary superfield). But for tensor superfields carrying no
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dotted indices the following operator gives a covariantly chiral superfield.

D̄α̇(D̄2 − 4R)Uα1...αn = 0 ∀ undotted tensor superfield U (6.94)

Evidently the flat space limit, R→ 0 restores the usual chirality property

of D̄2U .

Since chiral scalar superfields will play an important rôle in this the-

sis, the commutators (6.88) acting on chiral scalar fields are worked out

explicitly in appendix E. The combination D̄2 − 4R is also known as the

chiral projector .

From the chiral projector a generalisation of the d’Alembert operator(anti-)chiral

d’Alembertian to the space of (anti-)chiral superfields can be given. The (anti-)chiral

d’Alembertian �+ (�−) is defined by

�+ := (Da + iGa)Da + 1
4
(RDα + (DαR))Dα, (6.95)

�− := (Da − iGa)Da + 1
4
(R̄D̄α̇ + (D̄α̇R̄))D̄α̇, (6.96)

and maps to (anti-)chiral fields as long as it acts on (anti-)chiral fields. In

this case �+ (�−) may be rewritten in the following manner,

�+λ = 1
16

(D̄2 − 4R)D2λ, (6.97)

�−λ̄ = 1
16

(D2 − 4R̄)D̄2λ̄, (6.98)

which makes manifest the (anti-)chirality property.

Also note that D̄2D2λ = 16(�+ + 1
4
RD2)λ.

6.4.3 Super-Weyl Transformations

The condition Tα = 0 is only invariant under a subset of the mixed super-

Weyl/local U(1)R transformations discussed in Section 6.3.4. To ensure

that 0 maps to 0 under those transformations, from

0 = Tα 7→ LTα + LDα ln(L4L̄2) = 0, (6.99)
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the condition Dα ln(L4L̄2) = 0 is read off. Consequently the parameter L

is restricted to be of the form

L = exp(1
2
σ − σ̄), D̄α̇σ = Dασ̄ = 0,

L̄ = exp(1
2
σ̄ − σ).

(6.100)

The minimal supergravity fields transform according to

D′α = LDα − 2(DβL)Mαβ, (6.101)

R′ = −1
4
(D̄2 − 4R)L̄2, (6.102)

G′αα̇ = LL̄Gαα̇ + 1
2
L̄DαD̄α̇L− 1

2
LD̄α̇DαL̄ (6.103)

W ′
αβγ = L2L̄Wαβγ, (6.104)

or in terms of σ and σ̄,

D′α = e
1
2

σ−σ̄(Dα − (Dβσ)Mαβ), (6.105)

R′ = −1
4
e−2σ[(D̄2 − 4R) eσ̄], (6.106)

G′αα̇ = e−(σ+σ̄)/2
[
Gαα̇ + 1

2
(Dασ)(D̄α̇σ̄) + i

(
Dαα̇(σ̄ − σ)

)]
, (6.107)

W ′
αβγ = e−3σ/2Wαβγ. (6.108)

Formulating T̄α̇ = 0 in terms of prepotentials (6.85) yields the impor- chiral

compensatortant equation

Ēα̇ϕ = 0, ϕ3 := E−1F̄−2(1 · e
←
W̄ )−1, (6.109)

where the exponent of “3” is for convenience as is seen in the next equation.

Since for any scalar D̄α̇ ≡ Ēα̇, the field ϕ is chiral and transforms under

generalised super-Weyl transformations into

ϕ3 7→ [(LL̄)−2E−1][L̄−2F̄−2](1 · e
←
W̄ )−1 = L−2L̄−4ϕ3 = (eσ ϕ)3. (6.110)

This makes ϕ the compensating field for super-Weyl transformations. Ac-

cordingly it is called chiral compensator.
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6.4.4 Chiral Representation and Integration Rule

Performing the picture changing operation

Ṽ = e−W̄ V, (6.111)

D̃A = e−W̄ DA eW̄ = ẼA
M∂M + 1

2
Ω̃bc

AMbc, (6.112)

and additionally going to the gauge Nα
µ = δα

µ introduces the so-called

chiral representation. The important feature of the chiral representation

is that the spinorial vielbein ˜̄Eα̇ = −F̄ ∂̄α̇ takes a most simple form, while

Ẽα and complex conjugation are more complicated than in the vector

representation used so far. The determinant of the vierbein becomes

Ẽ−1 = (E−1 e−
←
W ), (6.113)

such that∫
d8z Ẽ−1L̃ =

∫
d8z (E−1 e−

←
W ) e−W L

(6.72)
=

∫
d8z E−1L . (6.114)

In chiral representation, equations (6.109) and (6.86) read

ϕ̃3F̄ 2 = Ẽ−1, (6.115)

R̃ = 1
4
∂̄µ̇∂̄

µ̇F̄ 2, (6.116)

which combined yield

ϕ̃3R̃ = 1
4
∂̄µ̇∂̄

µ̇Ẽ−1, (6.117)

=⇒ ϕ̃3L̃c = 1
4
∂̄µ̇∂̄

µ̇

(
Ẽ−1

R̃
L̃c

)
. (6.118)

This gives the important chiral integration rule∫
d6z ϕ̃3L̃c =

∫
d8z

Ẽ−1

R̃
L̃c

(6.114)
=

∫
d8z

E−1

R
L , (6.119)

due to d2θ̄ = 1
4
∂̄µ̇∂̄

µ̇.
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6.5 Component Expansion

6.5.1 Superfields and First Order Operators

In supergravity as opposed to flat supersymmetry, the (non-linearised)

components of a superfield are given in terms of covariant derivatives Dα

and D̄α̇ and are in one-to-one correspondence to the coefficients in the

usual θ, θ̄ expansion of a superfield.

f
∣∣
0

Dαf
∣∣
0

D̄α̇f
∣∣
0

−1
4
D2f

∣∣
0

−1
4
D̄2f

∣∣
0

1
2

[
Dα, D̄α̇

]
f
∣∣
0

(6.120)

−1
4
DαD̄2f

∣∣
0

−1
4
D̄αD2f

∣∣
0

− 1
32

{
D2, D̄2

}
f
∣∣
0

Here, the notation

f
∣∣
0

:= f(x, θ = 0, θ̄ = 0) (6.121)

has been introduced.

For arbitrary superfields f1 and f2, it holds

(f1f2)
∣∣
0

= f1

∣∣
0
f2

∣∣
0
, (6.122)

which obviously can no longer be true when f1 is an operator containing

derivatives on anticommuting coordinates.

The space projection of a general first order differential operator

O = OM(z)∂M +Oab(z)Mab (6.123)

is defined to be

O
∣∣
0

= OM
∣∣
0
∂M +Oab

∣∣
0
Mab. (6.124)

Acting with such an operator on an arbitrary superfield (with Lorentz
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indices of f suppressed), one immediately sees that

(Of)
∣∣
0

= (OM∂Mf)
∣∣
0

+ (OabMabf)
∣∣
0

= OM
∣∣
0
∂Mf

∣∣
0

+Oab
∣∣
0
Mabf

∣∣
0

(6.125)

= (O
∣∣
0
f)
∣∣
0

is different from

O
∣∣
0
f
∣∣
0

= Om
∣∣
0
∂mf

∣∣
0

+Oab
∣∣
0
Mabf

∣∣
0
. (6.126)

Using pure superspace methods, it is possible (though tedious) to show,

that in Wess–Zumino gauge the vector derivative has the following expan-

sion,

Dαα̇

∣∣
0

= ∇αα̇

∣∣
0

+ 1
2
Ψαα̇,

βDβ

∣∣
0

+ 1
2
Ψ̄αα̇,β̇D̄

β̇
∣∣
0
, (6.127)

with Ψ the gaugino field strength. As a simple example, the expansion of

Dαα̇f is given,

(Dαα̇f)
∣∣
0

= (Dαα̇

∣∣
0
f)
∣∣
0

= ∇αα̇(f
∣∣
0
) + 1

2
Ψαα̇,

β
(
(Dβf)

∣∣
0

)
+ 1

2
Ψ̄αα̇,β

(
(D̄βf)

∣∣
0

)
.

(6.128)

More complicated combination of the derivatives Dα, D̄α̇ and Dαα̇ act-

ing on a field require rearrangement such that the leftmost derivative is

of vector type. Then the above rule (with f containing the remaining

derivatives) can be used to recursively reduce the superspace derivatives

to space-time covariant derivatives ∇αα̇ until only expressions containing

component combinations (6.120) of the spinorial derivatives are left over.

Due to the three-folding caused by each application of (6.128), let alone

the required rearrangement of vector derivatives to the left, even terms

with a relatively small number of derivatives may grow dramatically. The

situation is (slightly) better when one is not interested in terms containing

the gaugino field strength. Therefore, the operator
∣∣
b

shall denote space-

time projection while simultaneously neglecting all gravitational fermionic

and auxiliary fields.
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6.5.2 Supergravity Fields

The derivation of the component expansion in Wess–Zumino gauge is

rather involved and only the final expression shall be reproduced here.

The real part of the prepotential W can be gauged away, but requiring

instead the condition

exp(W̄ n∂n)xm = xm + iHm(x, θ, θ̄) Hm = H̄m (6.129)

defines the gravitational Wess–Zumino gauge, also called gravitational su-

perfield gauge. In this gauge, the gravitational degrees of freedom are

encoded in the gravitational superfield Hm and the chiral compensator

ϕ̂(x, θ).

Hm = θσaθ̄ea
m + iθ̄2θαψm

α − iθ2θ̄α̇Ψ̄mα̇ + θ2θ̄2Am

ϕ̂3 = e−1(1− 2iθσaΨ̄
a + θ2B) ϕ̂ = e−W̄ ϕ (6.130)

ˆ̄ϕ3 = e−1(1− 2iθ̄σ̃aΨ
a + θ̄2B̄)

In Wess–Zumino gauge, the spinorial semi-covariant vierbein fields

(6.87) coincide with the partial derivatives and can therefore be used to

extract the components of the above gravitational superfields just as in

flat supersymmetry.

The spinorial semi-covariant vierbein fields Êα, ˆ̄Eα̇ were defined by

just pulling out a factor of F from the covariant spinorial derivatives Dα,

D̄α̇. In addition without proof, for the prepotential F it holds

F
∣∣
0

= 1, ÊαF = − i
2
Ψ̄αβ̇β̇, (6.131)

such that

DαO
∣∣
0

= ÊαO
∣∣
0
,

−1
4
D2O

∣∣
0

= −1
4
Ê2O

∣∣
0

+ i
2
Ψ̄α

β̇,
β̇DαO

∣∣
0
. (6.132)

This allows to write down the chiral compensator’s components in terms
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of covariant derivatives

ϕ3
∣∣
0

= e−1, (6.133a)

Dαϕ
3
∣∣
0

= −2ie−1(σaΨ̄a)α, (6.133b)

−1
4
D2ϕ3

∣∣
0

= e−1(B − Ψ̄σ̃σΨ̄), (6.133c)

where Ψ̄σ̃σΨ̄ = −Ψ̄α
β̇,

β̇Ψ̄αγ̇,
γ̇. In other words

ϕ
∣∣
0

= e−1/3 (6.134a)

Dαϕ
∣∣
0

= −2

3
ie−1/3(σaΨ̄a)α (6.134b)

−1
4
D2ϕ

∣∣
0

=
1

3
e−1/3(B − 1

3
Ψ̄σ̃σΨ̄) (6.134c)

For the chiral supertorsion component:

R̄
∣∣
0

=
1

3
B, B = B + 1

2
Ψ̄aσ̃aσbΨ̄

b + 1
2
Ψ̄aΨ̄a, (6.135a)

D̄α̇R̄
∣∣
0

=
4

3
Ψ̄α̇β̇,

β̇ +
i

3
BΨβ

α̇,β, (6.135b)

D̄2R̄
∣∣
0

=
2

3
(R+

i

2
εabcdRabcd) +

8

9
B̄B

−2

9
B(Ψaσaσ̃bΨ

b + ΨaΨa)

+iD̄α̇R̄
∣∣
0
(σ̃bΨ

b)α̇ +
2i

3
Ψαα̇,βD{αGβ},α̇

∣∣
0
,

(6.135c)

where R denotes the Ricci scalar, tensor or Riemann tensor, respectively.

For the real supertorsion component:

Ga

∣∣
0

=
4

3
Aa, (6.136a)

Aa = Aa +
1

8
εabcdCbcd −

1

4
(ΨaσbΨ̄

b + ΨbσbΨ̄a)

−1

2
ΨbσaΨ̄b +

i

8
εabcdΨbσcΨ̄d,

(6.136b)

D̄{α̇Gβ
β̇}
∣∣
0

= −2Ψα̇β̇,
β +

i

3
B̄Ψ̄β

{α̇,β̇}, (6.136c)

D̄{α̇D{γGδ}
β̇}
∣∣
0

= 2Eγδ
α̇β̇ + 2iΨ{γ{α̇,

δ}D̄β̇}R̄
∣∣
0
− iΨα{α̇,

αD{γGδ}
β̇}
∣∣
0

+2iΨ̄α{α̇,β̇}W
αγδ
∣∣
0

+
2

3
B(σ̃ab)α̇β̇Ψa

γΨb
δ, (6.136d)
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with

Eab := 1
4

(
2R̃ab + i

2
(εacdeRcde

b + εbcdeRcde
a − 1

2
ηabε

cdefRcdef )
)
, (6.137a)

R̃ab := 1
2
(Rab +Rba)− 1

4
ηabR = G{ab} + 1

4
ηabR. (6.137b)

6.5.3 Full Superspace Integrals

Using the chiral integration rule (6.119), any real superspace integral can

be reduced to a chiral one.

S =

∫
d8z E−1L

=

∫
d8z

E−1

R

(
−1

4

)
(D̄2 − 4R)L︸ ︷︷ ︸

=:Lc

(6.138)

Then the following manipulations, which crucially depend on the semi- density formula

covariant vierbein coinciding (6.87) with the partial derivatives in Wess–

Zumino gauge, lead to the density formula

S =

∫
d6z ϕ̂3L̂c = 1

4

∫
d4x ∂α∂α(ϕ̂3L̂c) = −1

4

∫
d4x Ê2(ϕ3Lc)

∣∣
0

= −1
4

∫
d4xϕ3

∣∣
0
Ê2Lc

∣∣
0

+ 2Dαϕ3
∣∣
0
DαLc

∣∣
0

+ Ê2ϕ3
∣∣
0
Lc

∣∣
0

=

∫
d4xϕ3

∣∣
0
(−1

4
D2Lc)

∣∣
0
− 1

4
Dαϕ3

∣∣
0
DαLc

∣∣
0

+BLc

∣∣
0
.

(6.139)

where B = B− 1
2
Ψ̄aσ̃aσbΨ̄

b − 1
2
Ψ̄aΨ̄a = −1

4
D2ϕ3 + e−1Ψ̄σ̃σΨ̄.
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Chapter 7

Space-Time Dependent

Couplings

§7.1 Weyl Transformations, 122. §7.1.1 Conformal Killing Equation, 122. §7.1.2

Conformal Algebra in d > 2, 123. §7.1.3 Weyl Transformations of the Riemann

Tensor, 124. §7.1.4 Weyl Covariant Differential Operators, 125. §7.2 Zamolod-

chikov’s c-Theorem in Two Dimensions, 127. §7.3 Conformal Anomaly in Four

Dimensions, 129. §7.4 Local RG Equation and the c-Theorem, 130. §7.4.1

a-Theorem, 133.

This Chapter is meant to give a short introduction into the space-time

dependent couplings technique and its application to a proof of Zamolod-

chikov’s c-theorem in two dimensions. Additionally the four dimensional

trace anomaly and some of the problems encountered when trying to ex-

tend the theorem to four dimensions are discussed.
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7.1 Weyl Transformations

7.1.1 Conformal Killing Equation

A Weyl transformation is a rescaling of the metric by a space-time depen-

dent factor

gmn 7→ e−2σ gmn. (7.1)

Upon restriction to flat space these transformations generate the confor-

mal group, which locally preserves angles.

Using

δgmn = −2σgmn,

δxm = ξm,

δdxm = (∂nξ
m)dxn,

(7.2)

the requirement of invariance of the line element

δ(ds2)
!
= 0 = [−2σgmn + ∂mξn + ∂nξm]dxmdxn (7.3)

amounts to the conformal Killing vector equationconformal Killing

vector

∂mξn + ∂nξm = 2
d
∂kξ

kgmn,

σ = 1
d
∂kξ

k,
(7.4)

where d is the dimension of space time.

Under (7.2), the action transforms as follows,

δS =

∫
ddx

δS

δgmn

δgmn

=

∫
ddx

[
−1

2
Tmn][−2σgmn],

(7.5)

which demonstrates that for conformal invariance the trace of the energy-

momentum tensor has to vanish.

As an aside, in two dimensions after Wick rotation the conformal

Killing vector equation becomes the Cauchy–Riemann system, such thatCauchy–Riemann

conformal transformations are given by holomorphic or antiholomorphic
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Conformal Transformations

Name Group Element Generator

translations xa 7→ xa + aa Pa

(Lorentz∗) rotations xa 7→ Λa
bx

b Mab

dilation xa 7→ λxa D

SCT∗∗ xa 7→ xa+bax2

ΩSCR(x)
Ka

Table 7.1: Finite Conformal Transformations

functions. Decomposing these functions by a Laurent expansion demon-

strates that the two dimensional conformal group has infinitely many gen-

erators, which form the Witt/Virasoro algebra.

The four dimensional case is generic and will be discussed below.

7.1.2 Conformal Algebra in d > 2

In d > 2 dimensions in Minkowski space, infinitesimal conformal transfor-

mations are given by

ξa(x) = aa + ωabxb + λxa + (x2ba − 2xaxbb
b) (7.6)

with the corresponding generators

δC = iaaPa + iωabMab + iλD + ibaKa, (7.7)

which form the conformal algebra

[Mab, Pc] = −2iP[aηb]c, [Mab, Kc] = −2iK[aηb]c,

[D,Pa] = −iPa, [D,Ka] = iKa,

[D,Mab] = 0, [Pa, Kb] = 2i(Mab − ηabD),

[Mab,Mcd] = 2i
(
ηa[cMd]b − ηb[cMd]a

)
.

(7.8)

This can be identified with the algebra so(d, 2) by defining a suitable
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(d+ 2)× (d+ 2) matrix

Mm̂n̂ :=

 Mmn
1
2
(Km − Pm) 1

2
(Km + Pm)

−1
2
(Km − Pm) 0 −D

−1
2
(Km + Pm) D 0

 (7.9)

and choosing ηm̂n̂ = diag(ηmn, 1,−1) as metric. As an aside, the d-dimen-

sional conformal algebra is identical to the (d+1)-dimensional ads algebra

cfd ≡ adsd+1 ≡ so(2, d). (7.10)

The finite transformations corresponding to the infinitesimal solutionsfinite

transformations (7.6) are shown in Figure 7.1, where ΩSCT(x) := 1−~b ·~x+ b2~x2 is the scale

factor Ω of the metric for special conformal transformations, and ~a ·~b has

been used as a short-hand for ηmna
mbn.

7.1.3 Weyl Transformations of the Riemann Tensor

Since superspace supergravity is described using a tangent space formula-

tion, which has the additional advantage of a metric δ[ηab] = 0 invariant

under Weyl transformations, the transformational behaviour of the Rie-

mann Rabcd and Weyl Cabcd tensor, Ricci tensor Rab and scalar R, and

covariant derivative ∇ under δ[gmn] = −2σgmn shall be given in terms of

tangent space objects.

δ[ea
m] = σea

m, (7.11a)

δ[
√
− det g] = δ[det e−1] = −σd

√
− det g = −σd det e−1, (7.11b)

δ[Rab
cd] = δ

[a

[c
∇

b]
∇

d]
σ + 2σRab

cd, (7.11c)

δ[Rabcd] = η[c[a∇b]∇d]σ + 2σRabcd, (7.11d)

δ[Rab] = ηab∇2σ + 2∇a∇bσ + 2σRab, (7.11e)

δ[R] = 6∇2σ + 2σR, (7.11f)

∗Λc
aηcdΛd

b = ηab
∗∗Special Conformal Transformation
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δ[Gab] = δ[Rab]− 1
2
ηabδ[R]

= −2ηab∇2σ + 2∇a∇bσ + 2σGab,
(7.11g)

δ[Cabcd] = 2σCabcd, (7.11h)

δ[∇a] = σ∇a − (∇bσ)Mab, MabV
c = δc

aVb − δc
bVa, (7.11i)

δ[∇aλ] = σ∇aλ, (7.11j)

δ[∇2λ] = 2σ(∇2λ) + (2− d)(∇aσ)(∇aλ), (7.11k)

where d is the space-time dimension, which from now on will be assumed

to be equal to four.

7.1.4 Weyl Covariant Differential Operators

By definition a field ψ is denoted conformally covariant if it transforms

under Weyl transformations into ewσ ψ, that is homogeneously with Weyl

weight w. In particular, it is interesting to have invariant expressions of

the form ∫
d4x e−1χ∗∆4−2wψ, (7.12)

with ∆4−2w a differential operator of order 4− 2w and ψ, χ are assumed

to be Lorentz scalars.

The unique local, Weyl covariant differential operator acting on such

fields ψ and χ of Weyl weight 1 is given by

∆2 = ∇2 − 1
6
R, (7.13)

which can be easily verified using relations (7.11). It is however entertain-

ing to derive this expression in a slightly different manner.

General relativity is not invariant under Weyl transformations as can

be seen from the Einstein–Hilbert action transforming according to∫
d4x e−1R 7→

∫
d4x e−1[e−2σR+ 6(∇a e−σ)(∇a e−σ)]. (7.14)

Since Weyl transformations form an Abelian group, a parametrisation

may be chosen where two consecutive transformations with parameters

σ1 and σ2 correspond to a single Weyl transformation with parameter
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σ1 + σ2. (Evidently ea
m 7→ eσ ea

m is such a parametrisation.) Replacing

the parameter of the first transformation by a field φ = e−σ1 of Weyl

weight 1 yields an invariant expression as can be seen from

eσ1 ea
m = φ−1ea

m 7→ (e−σ2 φ−1)(eσ2 ea
m) = φ−1ea

m. (7.15)

Therefore, the following action is Weyl invariant∫
d4x e−1[φ2R+ 6(∇aφ)(∇aφ)] = 6

∫
d4x e−1φ[∇2 − 1

6
R]φ (7.16)

and the operator ∆2 has been rederived.

In addition the important notion of a compensating field, here φ, hascompensator

been introduced. Compensating fields allow incorporating a symmetry

into the formulation of a theory that originally was not part of it. An ana-

logue procedure is needed to embed Poincaré supergravity into the Weyl

invariant supergravity algebra by use of a so-called chiral compensator.

Unfortunately, the elegant method above does not lend itself to gener-

alisations and clearly cannot be used to construct a conformally covariant

operator for a field of vanishing Weyl weight. However a dimensional anal-

ysis can be used to write down a basis for such an operator and determine

the prefactors from Weyl variation. The following operator due to RiegertRiegert operator

[50] is the unique conformally covariant differential operator of fourth or-

der, which because of its importance for this work will be given in several

equivalent forms,

∆4 := ∇4 + 2Gab∇a∇b + 1
3
∇aR∇a

= ∇4 + 2Gab∇a∇b + 1
3
(∇aR)∇a + 1

3
R∇2

= ∇4 + 2Rab∇a∇b + 1
3
(∇aR)∇a − 2

3
R∇2

= ∇4 + 2∇aRab∇b − 2
3
(∇aR)∇a − 2

3
R∇2,

(7.17)

or partially integrated,

λ′∆4λ = (∇2λ)(∇2λ′)− 2Gab(∇aλ)(∇bλ′)

− 1
3
R(∇aλ)(∇aλ

′) + (total deriv.).
(7.18)
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7.2 Zamolodchikov’s c-Theorem in Two Di-

mensions

In a classical theory scale invariance is expected at the ultraviolet limit

where particle masses may be neglected and at the infrared limit where

massive particles decouple from the theory. In this sense the transition

from UV to IR is irreversible in a classical theory. For simple theories

scale invariance (which implies one additional symmetry generator) may

be enough to establish conformal symmetry (which in two dimensions

implies an infinite set of symmetry generators and is thus a much larger

symmetry). At the quantum level, conformal invariance is often broken.

Still there are many known examples of two dimensional theories which

flow from one conformal fixed point in the UV to another one in the IR.

In four dimensions the existence of conformal fixed points is much more

difficult to establish.

The breaking of conformal invariance at the quantum level is induced

by the introduction of a regulator during renormalisation, which creates

a scale µ that leads to non-vanishing anomaly terms in the trace of the

energy-momentum tensor.

Renormalisation group (RG) theory describes the change of the effec-

tive Hamiltonian of a theory during the change of scale. The breaking of RG equation

scale invariance is described by the RG equation

µ
d

dµ
W = µ

∂

∂µ
W + βi ∂

∂λi
W = 0, (7.19)

βi := µ
∂λi

∂µ
, (7.20)

W = W (λi, µ), (7.21)

where W is the generating functional of the connected Green’s functions,

which due to being a formal series expansion of physical observables is

expected to be RG invariant, that is constant with respect to the scale µ.

From a mathematical point of view, there is no reason a theory should

not exhibit a complex flow behaviour. In particular the RG flow could

approach a limit cycle, see Figure 7.1, possibly making the theory increase

and decrease its number of degrees of freedom periodically while going to
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IR limit cycle

λj

λi

UV fixed point

Figure 7.1: Limit Cycle in the Space of Couplings

lower and lower energies. Since this is certainly an unphysical behaviour,

a natural question is under which conditions such a behaviour cannot be

displayed by a quantum field theory.

A partial answer to this question was given by Zamolodchikov’s fun-

damental theorem [43] in two dimensions, which states the irreversibility

of RG flows connecting two fixed points in two dimensions.

Theorem 1 (Zamolodochikov 1986). “There exists a function c(g) of the

coupling constant g in a 2D renormalisable field theory which decreases

monotonically under the influence of a renormalisation group transforma-

tion. This function has constant values only at fixed points, where c is

the same as the central charge of a Virasoro algebra of the corresponding

conformal field theory.”

Therefore, it holds

cUV ≥ cIR, (7.22)

where c is the respective value of central charge at the infrared and ultra-

violet.
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7.3 Conformal Anomaly in Four Dimensions

Due to its elegance and simplicity, the two-dimensional c-theorem was

hoped to soon be generalised to four dimensions, but an accepted proof is

outstanding for 20 years.

The first obstacle that arises is the question of which quantity is to

take over the rôle of the two dimensional central charge c, which in two

dimensions turns up as the central charge of the conformal algebra, as

the coefficient of the two point function of the energy-momentum tensor,

and as the anomalous contribution to the trace of the energy-momentum

tensor.

In the four dimensional trace anomaly, the following constants appear trace anomaly

〈
Tm

m
〉

= cC2 + a R̃2 + bR2 + f�R, (7.23)

where R is the scalar curvature (Ricci scalar), C2 is the square of the Weyl

tensor, and R̃2 is the Euler density,

C2 := CabcdC
abcd = RabcdRabcd − 2RabRab + 1

3
R2, (7.24)

R̃2 := RabcdRabcd − 4RabRab +R2. (7.25)

There are known counter examples for a “c”-theorem in four space-time

dimensions but that still leaves open the possibility of an a-theorem [46],

which holds in all examples that permit explicit checking. Since these are

supersymmetric theories, it may well be that supersymmetry is a neces-

sary ingredient for the irreversibility of RG flows. (As an aside in all known

examples of holographic renormalisation group flows that permit determi-

nation of the anomaly coefficients on both ends of the flow it holds c = a.

On the supergravity side monotonicity of the flow is related to energy con-

ditions as they have to be employed in causality considerations in Einstein

gravity [10].) Often by an abuse of language the a-theorem is also called

c-theorem, even though the prefactor of Euler density is conventionally

denoted “a”.
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7.4 Local RG Equation and the c-Theorem

The analysis of this Section will be confined to idealised renormalisable

field theories that are classically conformally invariant and involve a set of

coupling constants λi corresponding to local scalar operators Oi. Due to

conformal invariance the coupling constants should have mass dimension

zero such that the operator’s mass dimension should be equal to the space-

time dimension.

When the theory is not conformally invariant on the quantum level

the trace of the energy-momentum tensor is non-vanishing and can be

expressed in terms of some operator basis formed by Oi

〈
Tm

m
〉

= βi
〈
[Oi]

〉
, (7.26)

where [Oi] denotes a (by some renormalisation scheme) well-defined opera-

tor insertion and βi are the beta functions associated to the corresponding

couplings λi.

When Weyl symmetry is preserved during quantisation, the beta func-

tions and therefore the trace of the energy-momentum tensor vanish.

Promoting the coupling constants λi to fields as well as the metric,operator insertions

λi 7→ λi(x), (7.27)

ηmn 7→ gmn(x), (7.28)

allows to give well-defined expressions for the operators Oi (the bracket

indicating that the operator is well-defined will be silently dropped, hence-

forth) and the energy-momentum tensor,

Oi(x) :=
δ

δλi(x)
W, Tmn(x) := 2

δ

δgmn(x)
W. (7.29)

This requires the theory to be defined for a general curved background

metric gmn. In addition to the counterterms present in the QFT on flat

space with constant couplings, which give rise to the usual running of cou-

plings, generically there should be now also counterterms A depending

on the curvature and on ∂mλ
i, which vanish in the limit of constant cou-

plings and metric. In particular (7.26) acquires additional contributions
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according to

〈
Tm

m
〉

= βi
〈
Oi

〉
+∇m

〈
Jm
〉

+A, (7.30)

with Jm a local current. In general the trace above is not a local expres-

sion, which is why it was important to introduce space-time dependent

couplings to give a meaning to any products of finite operators by func-

tional derivatives with respect to couplings or the metric. The essential

assumption is that the anomaly A stays a local expression to all orders, or

in other words that the non-local contribution to the vacuum expectation

value of the trace is contained in
〈
Oi

〉
.

The statement (7.30) can be recast in the form

∆W
σ W = ∆β

σW −
∫
dDx

√
gA(σ,Rabcd, ∂mλ

i), (7.31)

where W = ln
∫

[dφ] exp(−S/~) is the generating functional of the con-

nected Green’s functions, σ is the parameter of Weyl transformation gen-

erated by ∆W
σ and

∆W
σ := 2

∫
dV gmn δ

δgmn
, dV = dDx

√
g, (7.32)

∆β
σ :=

∫
dV σβi δ

δλi
, (7.33)

with D the number of space-time dimensions.

Equation (7.31) is in effect a local version of the (anomalous) Callan–

Symanzik equation [
µ
∂

∂µ
+ βi ∂

∂λi

]
W = A. (7.34)

The shape of A(σ,Rabcd, ∂mλ
i) is restricted by power counting and the

requirement to vanish in the flat space/constant coupling limit, such that

in this limit the local RG equation (7.31) reduces to the homogeneous

Callan–Symanzik equation when imposing the condition[
µ
∂

∂µ
+ 2gmn δ

δgmn

]
W = 0, (7.35)
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which is a consequence of näıve dimensional analysis.

As a simple example a possible parametrisation of the ambiguous∗

anomaly in two dimensions is

(∆W
σ −∆β

σ)W =

∫
dV

[
σ
(

1
2
cR+ 1

2
χij∂mλ

i∂mλi
)

+ (∂mσ)wi∂
mλi

]
,

(7.36)

with c, χij and wi arbitrary function of the couplings, which may be

determined in a perturbative expansion with the assumption that the

above shape is preserved to all orders, and partial derivatives ∂i := ∂λi .

A further constraint on the anomaly with far less trivial consequencesWess–Zumino

consistency arises from Weyl transformations being Abelian, which implies

[
∆W

σ −∆β
σ, ∆W

σ′ −∆β
σ′

]
= 0. (7.37)

This Wess–Zumino consistency condition renders the determination of the

trace anomaly an algebraic (cohomological) problem.

In the case of two dimensions (7.36) the consistency condition yields

[
∆W

σ −∆β
σ, ∆W

σ′ −∆β
σ′

]
=

∫
dV (σ′∂mσ − σ∂mσ

′)V m, (7.38)

Vm = (∂mλ
i)(∂i(c+ wjβ

j)− χijβ
j + (∂iwj − ∂jwi)β

j) (7.39)

and therefore the following coefficient consistency condition holds

βi∂i(c+ wjβ
j) = χijβ

iβj. (7.40)

The arbitrariness of W with respect to local functionals of the fields

δW =

∫
dV (1

2
bR− 1

2
cij∂mλ

i∂mλj) (7.41)

∗In this formulation the anomaly is of course only determined up to partial integra-
tions. Furthermore it is only defined up to adding local counterterms to the vacuum
energy functional W .
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implies for the coefficients

δc = βi∂ib, δχij = Lβχij = βk∂kcij + 2βiβ
kckj, (7.42)

δwi = −∂ib+ cijβ
j, δ(c+ wjβ

j) = cijβ
iβj. (7.43)

The Zamolodchikov metric Gij, Zamolodchikov

metric

Gij(t) =
1

8
(x2)2

〈
Oi(x)Oj(0)

〉
, t = 1

2
lnµ2x2, (7.44)

is positive by unitarity (or reflection positivity in Euclidean space). It can

be shown that Gij = χij + Lβcij.

Then the function

C := 3(c+ wiβ
i + cijβ

iβj) (7.45)

is monotonic by (7.40) and positive definiteness of Gij,

C ′ = −βi∂iC = −3Gijβ
iβj < 0. (7.46)

This is Zamolodchikov’s famous c-theorem.

Of course there is more to be said about renormalisation scheme depen-

dence, for details see [48]. Here it shall suffice to mention that equation

(7.40) is invariant under (7.41).

7.4.1 a-Theorem

The same calculation can be repeated in four space-time dimensions, giv-

ing rise to a system of coefficient consistency equations much more involved

than the two dimensional example. The complete set of anomaly terms

and consistency equations shall not be reproduced here, the interested

reader is referred to [48] instead.

Omitting a number of less interesting terms, a sketch of the four di-
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mensional trace anomaly is given by

[∆W
σ −∆β

σ]W =

∫
dV σ

[
a R̃2 + cC2 + bR2

+ 1
2
χg

ij Gmn∂mλ
i∂nλj + 1

2
χa

ij∇2λi∇2λj

+ 1
2
χb

ijk ∂mλ
i ∂mλj∇2λk + . . .

]
(7.47)

+

∫
dV ∂mσ

[
Sij ∂mλ

i∇2λj + . . .
]
,

with R̃2, C2, R2, Gmn the Euler density, square of the Weyl tensor and

Ricci scalar and the Einstein tensor, respectively.

The coefficient consistency equation analogue to (7.40) reads

βi∂i(a+ 1
8
wjβ

j) = 1
8
χg

ijβ
iβj. (7.48)

By virtue of a further consistency equation,

χg
ij + 2χa

ij + 2∂iβ
kχa

kj + βkχb
kij = LβSij, (7.49)

where −χa
ij can be shown to be positive definite, there might be hope

to find a four-dimensional “a-theorem”, when getting under control the

other coefficients χb
kij and Sij. In the bosonic sector discussed by Osborn,

this seems not feasible. However there might be additional constraints in

supersymmetric theories. This is the topic of the next Chapter.
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This Chapter generalises the local renormalisation group equation reviewed

in the previous Chapter to a minimal supergravity framework. A basis

for the trace anomaly is found and the consequences of the Wess–Zumino

consistency conditions for super-Weyl transformations are evaluated.

8.1 SUSY Local RG Equation

The (integrated) local Callan–Symanzik (CS) equation of the previous

Chapter reads

[

∫
d4x

√
−g σ(x) 2gmn δ

δgmn

+

∫
d4x

√
−g σ(x) βi δ

δλi(x)
]W

=

∫
d4x

√
−gA(σ, λi).

(8.1)
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Generically the action for a supersymmetric Yang–Mills theory readschiral coupling

S =
1

8π
λ

∫
d6zTrW αWα + c.c., (8.2)

Wα = −1

8
D̄2(e−2V Dα e2V ), (8.3)

with λ the coupling constant, which may be complex,

λ =
4π

g2
− iθ

2π
. (8.4)

Because the action is chiral it is natural to promote the complex couplings

to chiral fields as well.

Coupling to minimal supergravity, which is both the simplest and best

explored choice, implies that the Weyl parameter σ(x) becomes a chiral

field too. Furthermore the supersymmetric generalisation of the trace of

the energy-momentum tensor (“supertrace”) is also chiral and defined by

T = ϕ
δS

δϕ
. (8.5)

The supertrace is related to the supercurrent by

D̄α̇Tαα̇ = −2

3
DαT , (8.6)

where the supercurrent is defined by

Tαα̇ =
δS

δHαα̇

, (8.7)

with Hαα̇ corresponding to the gravitational superfield.∗

Accordingly a SUSY version of (8.1) should be given by [102][∫
d6z σ ϕ

δ

δϕ
−
∫
d6z σ βi δ

δλi
+ c.c.

]
W = A+ c.c., (8.8)

where A denotes the anomaly which consists entirely of terms that contain

∗To be precise, it is the quantum superfield associated to the gravitational superfield
Hαα̇ in quantum-background splitting. In Wess–Zumino gauge the lowest component
of the gravitational superfield Hαα̇ contains the vierbein.
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supergravity fields or depend on a derivative of λ or λ̄,

A =

∫
d6zφ3σA. (8.9)

Using the differential operators

∆W
σ,σ̄ := ∆W + ∆̄W , (8.10)

∆β
σ,σ̄ := ∆β + ∆̄β, (8.11)

∆W :=

∫
d6z σ φ

δ

δφ
, (8.12)

∆β :=

∫
d6z σβ

δ

δλ
, (8.13)

the SUSY local RG equation can be recast into the form

(∆W −∆β)W = A+ Ā. (8.14)

It is convenient to additionally split this local CS equation into a chiral local CS equation

and anti-chiral equation,

(∆W −∆β)W = A, (8.15)

(∆̄W − ∆̄β)W = Ā, (8.16)

which gives rise to the following two Wess–Zumino consistency conditions, Wess–Zumino

consistency[
∆W

σ −∆β
σ, ∆W

σ′ −∆β
σ′

]
W = 0, (8.17)[

∆W
σ̄ −∆β

σ̄, ∆W
σ −∆β

σ

]
W = 0. (8.18)

It remains to find a suitable expression for the anomaly A.

8.2 Basis for the Trace Anomaly

In this Section a basis of dimension two operators is constructed that

consists strictly of supergravity superfields (supertorsions) and covariant

chiral derivatives and furthermore contains no fields with negative powers.∗

∗Due to the peculiarities of curved superspace there is actually a seemingly non-
local term namely R−1WαβγWαβγ , which is Weyl covariant by itself and could be
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Supergravity Fields

quantity dimension undotted dotted

R 1 0 0

R̄ 1 0 0

D 1/2 1 0

D̄ 1/2 0 1

Dαα̇ 1 1 1

G 1 1 1

W 3/2 3 0

W̄ 3/2 0 3

Table 8.1: Dimensional Analysis for Supergravity Fields: The total di-
mension of any basis term has to be two, the number of respective dotted
and undotted indices even.

By assumption (see Section 8.1) the Weyl parameter σ and the cou-

plings λi are chiral scalar fields.

The strategy for finding a basis of dimension two operators is as follows.

1. Use the freedom to partially integrate to remove any derivatives on

the Weyl parameter σ. The anomaly then has the shape

∆W Γ =

∫
d8z E−1σB(λ, λ̄) · A, (8.19)

with A = A(R, R̄,Gαα̇,Wαβγ, W̄α̇β̇γ̇,D, D̄,Dλ, D̄λ̄).

2. Expand in derivatives on couplings. Since the overall scaling dimen-

sion is supposed to be two, there are at most four derivatives and

consequently at most four couplings in A.

Furthermore since all basis terms for A should be scalars, the to-

tal number of indices should be even (dotted and undotted indices

respectively). The properties relevant to these simple counting ar-

guments are summarised in Table 8.1.

trivially included in the discussion. The expression is related to the Pontryagin invari-
ant.
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The following combinations (bars not yet included) have a chance

to yield the right dimension and index structure:

2×R, 2×G, (1×R, 2×D), (1×G, 2×D), 4×D.

Taking into account the algebra and Bianchi identities, several deriva-

tives acting on the same coupling λ can be brought to a standard order.

I chose

Dαλ, D2λ, Dαα̇λ, Dαα̇Dβλ, Dαα̇D2λ, Dαα̇Dαα̇λ, (8.20)

and accordingly for λ̄.

In total there arise 38 terms, such that the basis ansatz for the anomaly

reads

B · A

= b(A)Gαα̇G
αα̇ + b(B)RR̄ + b(C)R2 + b(C̄)R̄2

+ b(D)(D2R) + b(D̄)(D̄2R̄)

+ b
(E)
i RD2λi + b

(Ē)
ı̄ R̄D̄2λ̄ı̄

+ b
(F )
ı̄ RD̄2λ̄ı̄ + b

(F̄ )
i R̄D2λi + b

(G)
i (DαR)(Dαλ

i) + b
(Ḡ)
ı̄ (D̄α̇R̄)(D̄α̇λ̄ı̄)

+ b
(H)
i Gαα̇Dαα̇λ

i + b
(H̄)
ı̄ Gαα̇Dαα̇λ̄

ı̄ + b
(I)
i Dαα̇Dαα̇λ

i + b
(Ī)
ı̄ Dαα̇Dαα̇λ̄

ı̄

+ b
(J)
ij R(Dαλi)(Dαλ

j) + b
(J̄)
ı̄̄ R̄(D̄α̇λ̄

ı̄)(D̄α̇λ̄̄)

+ b
(K)
ij R̄(Dαλi)(Dαλ

j) + b
(K̄)
ı̄̄ R(D̄α̇λ̄

ı̄)(D̄α̇λ̄̄)

+ b
(L)
ī G

αα̇(Dαλ
i)(D̄α̇λ̄

̄) + b
(M)
ī (Dαα̇λi)(Dαα̇λ̄

̄)

+ b
(N)
ij (Dαα̇λi)(Dαα̇λ

j) + b
(N̄)
ı̄̄ (Dαα̇λ̄̄)(Dαα̇λ̄

̄)

+ b
(O)
ī (Dαλi)(Dαα̇D̄α̇λ̄̄) + b

(Ō)
ı̄j (D̄α̇λ̄ı̄)(Dαα̇Dαλj)

+ b
(P )
ī (D2λi)(D̄2λ̄̄)

+ b
(Q)
ij (D2λi)(D2λj) + b

(Q̄)
ı̄̄ (D̄2λ̄ı̄)(D̄2λ̄̄)

(8.21)
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+ b
(R)
ijk (Dαλi)(Dαλ

j)(D2λk) + b
(R̄)

ı̄̄k̄
(D̄α̇λ̄

ı̄)(D̄α̇λ̄̄)(D̄2λ̄k̄)

+ b
(S)

ijk̄
(Dαλi)(Dαλ

j)(D̄2λ̄k̄) + b
(S̄)
ı̄̄k (D̄α̇λ̄

ı̄)(D̄α̇λ̄̄)(D2λk)

+ b
(T )

ijk̄
(Dαα̇λ

i)(Dαλj)(D̄α̇λ̄k̄) + b
(T̄ )
ı̄̄k (Dαα̇λ̄

ı̄)(Dαλk)(D̄α̇λ̄̄)

+ b
(U)

ijk̄l̄
(Dαλi)(Dαλ

j)(D̄β̇λ̄
k̄)(D̄β̇λ̄l̄)

+ b
(V )
ijkl(D

αλi)(Dαλ
j)(Dβλk)(Dβλ

l)

+ b
(V̄ )

ı̄̄k̄l̄
(D̄α̇λ̄

ı̄)(D̄α̇λ̄̄)(D̄β̇λ̄
k̄)(D̄β̇λ̄l̄).

where b(A...V̄ ) are potentially functions of λ and λ̄.∗ However, this choice

is not minimal as it still allows for partial integration with respect to D̄α̇

because the chiral field σ ignores these. Single derivatives on λ̄ cannot be

removed by partial integration in general, since a derivative acting on the

coefficient b reproduces the same term again.

More precisely, due tominimal basis ∫
d8z b̄(D̄α̇λ̄̄)X̄α̇ =

∫
d8z

[
b̃̄ + (∂̄b̃ı̄)λ̄

ı̄

]
(D̄α̇λ̄̄)X̄α̇

= −
∫
d8z b̃̄λ̄

̄(D̄α̇X̄α̇),

b̄ = ∂̄(b̃ı̄λ̄
ı̄) (8.22)

a basis term with a single derivative on λ̄ can only be removed from the

tentative basis if a b̃ obeying (8.22) exists; i.e. the integrability conditions

∂ı̄b̄ = ∂̄bı̄ are fulfilled. This is certainly not true in general, but for only

one coupling or if the theory is invariant under arbitrary exchange of the

coupling constants λ̄ı̄ ↔ λ̄̄, the basis reduces further.

Apart from this complication, removable terms are those which either

have an outer D̄ derivative (as opposed to one being hidden behind a Dα)

or can be brought to that form by using the Bianchi identities and the

supergravity algebra.

The above “basis” not being a minimal set of operators is not really a

problem (except for creating a bit of extra work in the followings), since

it will be possible to consistently set to zero the prefactors to such super-

∗Note that b(T ) and b(T̄ ) are the only coefficients which potentially can be asymmet-
ric in two indices of the same type. As we will see later, the variations are symmetric,
so consistency conditions can only give results for the respective symmetric part.
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fluous terms belatedly.

8.3 Wess–Zumino Consistency Conditions

It is now time to evaluate the Wess–Zumino consistency conditions

[
∆W

σ −∆β
σ, ∆W

σ′ −∆β
σ′

]
W = 0, (8.23)[

∆W
σ̄ −∆β

σ̄, ∆W
σ −∆β

σ

]
W = 0. (8.24)

As shall be seen, all necessary expressions can be determined from

(∆W
σ −∆β

σ)(∆W
σ′ −∆β

σ′)W, (8.25)

which requires to calculate the Weyl variation of all basis terms as well as

to determine the expressions

∆W
σ (∆W

σ′ −∆β
σ′)W, ∆β

σ(∆W
σ′ −∆β

σ′)W. (8.26)

Since the calculation is straight-forward but tedious, the results have been

banned to appendices B, C and D.

The general structure of (8.25) is

(∆W
σ −∆β

σ)(∆W
σ′ −∆β

σ′)W

=

∫
d8z E−1σ′

{
σF0 + (Dασ)Fα + (D2σ)F2 + (Dαα̇σ)Fαα̇

+ (Dαα̇Dασ)F̄ α̇
3 + (Dαα̇Dαα̇σ)F4

}
, (8.27)

where the coefficients F can be determined from the intermediate results

in appendix B and are listed in appendix C.

The naming scheme for the anomaly terms has been chosen such that

the calculation of the Weyl consistency conditions only requires

∆σ∆σ′W (8.28)

to be computed by variation. The reader may convince himself that the

other three operator combinations can be determined from the following
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simple set of rules.

∆σ′∆σW = (∆σ∆σ′W )σ↔σ′ ; (8.29)

∆σ∆̄σ̄W = (∆σ∆σ′W )N, (8.30)

(b(x))N := b̄(x̄),

(σ′)N := σ̄,

(σ)N := σ,

(. . . )N := (. . . );

(8.31)

∆̄σ̄∆σ′W = (∆σ∆σ′W )N, (8.32)

where (. . . ) denotes anything that is not covered by explicit prior rules.

Note that for the few real terms, it holds b(x̄) = b(x).

So the
[
∆, ∆

]
Wess–Zumino consistency condition (8.23) is

[∆W
σ −∆β

σ,∆
W
σ′ −∆β

σ′ ]W

=

∫
d8z E−1(σ′Dασ − σDασ′)

{
Fα −Dα(F2 − i

4
D̄α̇F̄ α̇

3 )

+ i
2
D̄α̇(Fαα̇ −Dαα̇F4) + iGαα̇F̄ α̇

3

}
, (8.33)

while the
[
∆, ∆̄

]
Wess–Zumino consistency condition (8.24) yields

[
∆W

σ̄ −∆β
σ̄, ∆W

σ −∆β
σ

]
W

=

∫
d8z E−1

[
σσ̄ (b) + σ(Dαα̇σ̄) (c) + (Dαα̇σ)(Dαα̇σ̄) (d)

]
,

(8.34)

with (b), (c) and (d) the respective left hand sides of
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Fα −Dα(F2 − i
4
D̄α̇F̄ α̇

3 )

+ i
2
D̄α̇(Fαα̇ −Dαα̇F4) + iGαα̇F̄ α̇

3 = 0,
(8.35a)

{
F0 − (DαFα) + (D2F2)− 1

2
Dαα̇(Fαα̇ −Dαα̇F4 −DαF̄3 α̇)

(8.35b)

− 2i(D̄α̇R̄)F̄ α̇
3 − 2iGαα̇(DαF̄3 α̇)

}N − c.c. = 0, (8.35c){
Fαα̇ −Dαα̇F4 −DαF̄3 α̇

}N
+ c.c. = 0, (8.35d)

FN
4 = F̄N

4 , (8.35e)

which constitute the full set of consistency conditions on the level of ab-

breviations F . The complex conjugate of (8.35a) is an additional part of

this system.

These coefficient consistency equations are the main result of this Part.

Unfortunately expanded out they fill about three pages and have been put

into Appendix D, therefore.

8.4 Local Counterterms

The vacuum energy functional W is only determined up to the addition

of local counter terms δW , a convenient choice for which is provided by

the basis used for the anomaly, since it allows to reuse the results from

the Wess–Zumino consistency condition:

W ≡ W + δW, (8.36)

δW =

∫
d8z E−1δB · A, (8.37)

with δB · A analogous to (8.21). To fulfil the reality requirement δW =

δW , it is necessary (and sufficient) to choose the coefficients δb from δB
according to δb̄(x) = δb(x̄) for any x.∗

∗In particular for coefficients of the single, real terms (A), (B), (L), (M), (P ), (U),
this amounts to taking b(x) = b̄(x).
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Realising that

∆σW =

∫
d8z E−1σ B · A, (8.38)

=⇒ δW = ∆σ′W
∣∣∣∣∣σ′ 7→1
b(x) 7→δb(x)

b(x̄) 7→δb̄(x)

=: ∆σ′W
∣∣
δ
, (8.39)

the effect of adding the local counter terms δW to the generating func-

tional W is seen to be

∆σ(W + δW ) = ∆σ(W + ∆σ′W
∣∣
δ
) (8.40)

=

∫
d8z E−1σ B · A

+

∫
d8z E−1σ

{
F0 −DαFα +D2F2 −Dαα̇Fαα̇

+DαDαα̇F̄ α̇
3 +Dαα̇Dαα̇F4

}∣∣
δ
,

(8.41)

where in the last line equation (8.27) has been used.

In other words, the addition of local counter terms corresponds to the

mapping

B · A 7→ B · A+
{
F0 −DαFα +D2F2 −Dαα̇Fαα̇

+DαDαα̇F̄ α̇
3 +Dαα̇Dαα̇F4

}∣∣
δ
.

(8.42)

8.5 S-duality

N = 4 SYM is invariant under an SL(2,R) symmetry that is preserved

on the quantum level. Explicit calculations indicate the symmetry is also

maintained to one loop during coupling to gravity. Assuming that this is

true to all orders, one might restrict the discussion of anomaly terms to

superfield expressions that are manifestly invariant under that symmetry

for the discussion of an N = 4 fixed point.

The theory of modular forms easily fills an entire book [103], but the

consideration here shall be restricted to SL(2,R) invariant terms that can

be build from the basis of anomaly terms (8.21).

In terms of the complex coupling λ := 4π
g2 − iθ

2π
, the SL(2,R) symmetry
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is generated by the two transformations

λ 7→ 1

λ
, λ 7→ λ+ i, (8.43)

which have this unusual form due to employing the convention of taking

the coupling constant g−2 as the real part of λ.

It follows immediately that for coefficient functions b(λ, λ̄) in the a-

nomaly it holds b = b(λ+ λ̄).

In addition one observes

1

λ+ λ̄
7→ λλ̄

1

λ+ λ̄
, (8.44)

Dαλ 7→ − 1

λ2
Dαλ, (8.45)

D̄α̇λ̄ 7→ − 1

λ̄2
D̄α̇λ̄, (8.46)

D
2λ 7→ − 1

λ2
D

2λ, (8.47)

D̄
2λ̄ 7→ − 1

λ̄2
D̄

2λ̄, (8.48)

Dαα̇Dαλ 7→ − 1

λ2
Dαα̇Dαλ, (8.49)

where

D
2λ := D2λ− 2

λ+ λ̄
(Dαλ)(Dαλ), (8.50)

D̄
2λ̄ := D2λ = D̄2λ̄− 2

λ+ λ̄
(D̄α̇λ̄)(D̄α̇λ̄), (8.51)

Therefore S-invariant expressions are given by

1

(λ+ λ̄)2
(D2λ)(D̄2λ̄), ∼ (P ), (S), (S̄), (U) (8.52)

1

(λ+ λ̄)2
(Dαλ)(DαD̄

2λ̄), ∼ (L), (O), (U), (T̄ ) (8.53)

1

(λ+ λ̄)2
(D̄α̇D

2λ)(D̄α̇λ̄), (8.54)

1

(λ+ λ̄)2
(Dαα̇λ)(Dαα̇λ̄), ∼ (M) (8.55)

1

(λ+ λ̄)2
Gαα̇(Dαλ)(D̄α̇λ̄), ∼ (L) (8.56)
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1

(λ+ λ̄)4
(Dαλ)(Dαλ)(D̄α̇λ̄)(D̄α̇λ̄) ∼ (U) (8.57)

and moreover the λ, λ̄ independent terms (A) to (D̄).

8.6 Towards a Proof

For the proof of Zamolodchikov’s theorem in two dimensions, the crucial

ingredient is the connection of the anomaly coefficients to correlation func-

tions from which the positive definite Zamolodchikov metric was defined,

see Sections 7.4 and 7.4.1 in particular.

As an example of how this procedure works the consistency condition

(D.3f) from the appendix shall be discussed,

− i
2
b
(M)

jk̄
+ βib

(T )

jik̄
+ ib

(L)

jk̄
+ i

2
b
(N)
ij (∂k̄β

i) + i
2
βi(∂k̄b

(N)
ij )− b

(T )

ijk̄
βi = 0.

b
(T )

ijk̄
is the only coefficient function that is not (anti-)symmetric in indices

of the same kind. From the expression above it can however be projected

out by multiplying with βj, which leaves

βj
[
b
(M)

jk̄
− 2b

(L)

jk̄
− ∂k̄(β

ib
(N)
ij )

]
= 0, (8.58)

In fact b
(N)
ij vanishes identically as a consequence of the RG equation, which

for the anomaly restricted to that coefficient reads

µ
∂

∂µ
W + βi∂iW = b

(N)
ij (D2λi)(D2λj). (8.59)

Acting on it with δ
δλk

δ
δλl , gives

µ
∂

∂µ

〈
OkOl

〉
+ βi∂i

〈
OkOl

〉
= b

(N)
kl (D2δ6(z))(D2δ6(z′)), (8.60)

where the left-hand side vanishes by non-renormalisation of chiral corre-

lation functions. It immediately follows that b
(N)
ij ≡ 0, which means that

equation (8.58) implies

βjβ̄k̄
[
b
(M)

jk̄
− 2b

(L)

jk̄

]
= 0. (8.61)
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This is the supersymmetric version of equation (7.49), which reads

χg
ij − 2χa

ij = LβSij − 2∂iβ
kχa

kj − βkχb
kij,

though from (8.61) the right hand side is zero when taking into account

b(M) ∼ χg − χa, b(L) ∼ χg, (8.62)

as will be seen from the component expansions (8.68)–(8.70) of the next

Section. This is just as required for a proof of the a-theorem, since χ(a) can

be shown to be positive definite in a particular scheme. In that scheme,

−χ̂a =
x8S4

192

〈
Oi(x)Oj(0)

〉
, (8.63)

where the right hand side is positive definite by unitarity. The set of

counterterms which are needed to change to a scheme where χa = χ̂a were

determined in [104].

Of course the other anomaly terms might contribute further terms to

the simple identification between b(M), b(L) and χa, χg, thus spoiling the

success. Actually from the whole basis for the anomaly, there is only one

term which could do so, namely (D2λ)(D̄2λ̄), which seems harmless since

its component expansion yields only (∇2λ)(∇2λ∗). Moreover it is expected

to conspire with the (M) and (L) terms from the anomaly basis to form

a supersymmetric version of the “Riegert operator” as shall be explained

now.

8.7 Superfield Riegert Operator

For N = 4 Yang–Mills theory [49] obtains a one-loop trace anomaly that

contains the operator

1

(λ+ λ∗)2

(
∇2λ∇2λ∗ − 2Gmn∇mλ∇nλ

∗ − 1
3
R∇mλ∇mλ

∗) , (8.64)
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which basically is the Riegert operator (7.17).∗ Note that the bosonic

Riegert operator is a direct consequence of the (bosonic) consistency con-

ditions for the N = 4 case. It is therefore important to reproduce the

Riegert operator in the component expansion of the superfield formula-

tion employed here.

This result indicates an inconsistency with our result because there

does not seems to exist a superfield expression that generates this Riegert

operator in a component expansion. Therefore it cannot be generated as

part of the derived superfield trace anomaly.

Strange enough in components a super-Weyl covariant version of thiscomponent version

operator is known such that the following expression [51] is invariant under

super-Weyl transformations,

L = e−1∇2φ∗∇2φ− 2(Rmn − 1
3
gmnR)∇mφ

∗∇nφ

−1
2
χ̄[6D3 + (Rmn − 1

6
gmnR)γmDn]χ

−3
4
χ̄γmDnχFmn + F ∗[D2 − 1

6
(R− ψ̄mRm)]F

+(gravitino terms),

(8.65)

with

Dmχ = ∇mχ+ 3i
4
γ5Amχ, Dm = (∂m + 3i

2
Am)F, (8.66)

and φ, ψ, F the components of a chiral field of Weyl weight 0.

Therefore one should expect a superfield version ∆4
R of this operator

to exist such that

δWeyl

[∫
d8zE−1λ∆4

Rλ̄
]

= 0, (8.67)

with δWeyl indicating a super-Weyl transformation.

On the other hand one might simply use a component expansion of allcomponent

expansion basis terms and determine the linear combination that yields the bosonic

Riegert operator (7.17) as its lowest component.

Such a component expansion can be quite involved, but fortunately

there is only a limit number of terms that can contribute. Here the dis-

∗The factor in front plus some further terms are required to make the operator
SL(2,R) invariant in addition.
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cussion shall be restricted to a few natural candidate terms which already

produces some interesting results.

D2(D̄2 − 4R)(D2λ)(D̄2λ̄)
∣∣
b

= 256(∇2λ)(∇2λ∗), (8.68)

D2(D̄2 − 4R)Gαα̇(Dαλ)(D̄α̇λ̄)
∣∣
b

(8.69)

= 64(G(µν) + 1
4
gµνR)(∇µλ)(∇νλ∗)− 16

3
R(∇µλ)(∇µλ

∗) + (imag.),

D2(D̄2 − 4R)(Dαα̇λ)(Dαα̇λ̄)
∣∣
b

= 32
3
Rgµν(∇µλ)(∇νλ∗)− 32(∇µλ)(∇2∇µλ∗) + (imag.) (8.70)

= 32
3
Rgµν(∇µλ)(∇νλ∗)− 32Rµν(∇µλ)(∇νλ∗)

+32(∇2λ)(∇2λ∗) + (total deriv.),

where the following relations have been used,

[
∇µ,∇ν

]
V ρ = Rρ

σµνV
σ, (8.71)

∇2∇µV = ∇µ∇2V +Rνµ∇νV. (8.72)

First of all one should note that (8.68) can be expressed by a linear

combination of (8.69) and (8.70) and a total derivative, which is just the

component version of (6.93),

(D2λ)(D̄2λ̄) = 4Gαα̇(Dαλ)(D̄α̇λ̄) + 8(Dαα̇λ)(Dαα̇λ̄)

+(total derivative).
(8.73)

This relation being preserved in the component expansion is a strong in-

dication for equations (8.68)–(8.70) to be correct.

Up to this identity the only combination of the candidate terms (8.68)–

(8.70) that yields the bosonic Riegert operator as its lowest component is

(D2λ)(D̄2λ̄)− 8Gαα̇(Dαλ)(D̄α̇λ̄). (8.74)

This combination is not super-Weyl covariant however and it turns out

that for the anomaly basis (8.21), there is no non-trivial super-Weyl in-

variant expression that includes (D2λ)(D̄2λ̄)—or (Dαα̇λ)(Dαα̇λ̄) by (8.73).

In other words, there is no superfield version of the Riegert operator for

chiral fields of Weyl weight 0. This is rather puzzling since the component
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version does exist. What may have gone wrong?

8.8 Discussion

Equation (8.73) provides a rather non-trivial consistency check for the

component expansion and the Weyl variations are simple to check. One

should therefore be confident that the result of the previous Section is

correct.

Since the Weyl parameter in minimal supergravity is a chiral field, itminimal SUGRA

naturally also encodes superlocal U(1)R transformations. So perhaps one

is simply requiring too much symmetry. Since the expressions are global

U(1)R invariant anyway, neglecting the local symmetry corresponds to

allowing terms that contain derivatives acting on σ−σ̄. Due toDα(σ−σ̄) =

Dα(σ + σ̄) this cannot be distinguished from super-Weyl transformations.

In non-minimal supergravity it is possible to not require invariancenon-minimal

SUGRA under local U(1)R, and a possible super-Weyl covariant operator (in the

conventions of [98]) is given by

(Dαα̇λ)(Dαα̇λ̄) (8.75)

with the Weyl covariant vector derivative for scalar chiral yields of U(1)R

charge y given by

Dαα̇ := i(∇̄α̇ − i(2
3

+ y)Γ̄α̇)(∇α + iyΓα), (8.76)

δ[Dαα̇λ] = LDαα̇λ. (8.77)

In new-minimal supergravity the U(1)R drops from the formulationnew-minimal

SUGRA and it is possible to give a superfield Riegert operator for linear superfields

of Weyl-weight 0 that is covariant under the full invariance group of the

supergravity algebra [52]

Dαα̇D
αα̇ +

i

3
(DαT̄α̇ + D̄α̇Tα)Dαα̇, (8.78)

where Dαα̇ = Dαα̇− i
12

(TαD̄α̇ + T̄α̇Dα) is a super-Weyl covariant derivative.

The difficulties to formulate fields of arbitrary Weyl and U(1)R weight

in a superconformal framework are long known (see for example [105]) and



8.8 Discussion 151

led to the introduction of a chiral compensating field. This can be most

easily illustrated taking a chiral field λ as an example. It clearly should

transform under generalised super-Weyl transformations according to

λ 7→ en+σ+n−σ̄ λ, (8.79)

with n+ a real number and n− = 0 in order to stay a chiral field. In

other words the type of the field dictates a fixed relation between its

U(1)R charge and its Weyl weight. Therefore a single field transforming

as Φ 7→ eσ Φ can be used to bring all other fields to a fixed Weyl and U(1)

weight, by redefinitions of the type λ̃ = Φ−n+λ for example.

A suitable set of invariant supergravity fields is given by Weyl invariant

algebra

Dα = UDα − 2(DβU)Mαβ, U = [Ψn+1Ψ̄n−1]−
3n+1
8n ,

D̄α̇ = ŪD̄α̇ − 2(D̄β̇Ū)M̄α̇β̇,

Dαα̇ = i
2

{
Dα, D̄α̇

}
,

Tα = DαT, T = ln U4Ū2, (8.80)

R = −1

4
(D̄2 − 4R)Ū2, Wαβγ = Ū2UWαβγ,

Gαα̇ = ŪUGαα̇ + 1
2
(D̄α̇ ln U)(Dα ln U)

+1
4
D̄α̇Dα ln(U2Ū−1)− 1

4
DαD̄α̇ ln(Ū2U−1),

where Ψ is a linear conformal compensator which transforms under Weyl

transformation ϕ 7→ eσ ϕ according to

Ψ 7→ Ψ′ = exp

[
3n− 1

3n+ 1
σ − σ̄

]
Ψ, D̄α̇σ = 0. (8.81)

The case n = 1
3

corresponds to minimal supergravity and the compensator

Φ := Ψ̄ is a chiral field.

It should be remarked that the expressions (8.80) can be easily ob-

tained by replacing σ and σ̄ in the Weyl transformed objects by − ln Φ

and − ln Φ̄ in a similar way as in the bosonic case in Section 7.1.4.

One might think of taking the already known chiral compensator ϕ−1 which

compensatoras the compensator Φ in (8.80). However this use of the chiral compen-

sator ϕ, which is also a prepotential that transforms under the Λ super-
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group, would break invariance under that symmetry. Another interesting

possibility is the use of

Ω = 1 +

∫
d8z′E−1(z′)G+−(z, z′), (8.82)

where G+− is the Feynman superpropagator defined by

1
4
(D2 − 4R̄)zG+−(z, z′) = δ6(z, z′) (8.83)

and δ6(z, z′) is the chiral delta distribution.

A simple consequence of the defining relation is

D̄α̇Ω = 0, (D2 − 4R̄)Ω = 0, (8.84)

which implies Ω 7→ e−σ Ω under super-Weyl transformation and Ω is a suit-

able (though non-local) compensator. For superconformal backgrounds Ω

actually becomes local and take the form

Ω = ϕ−1 +O(H ). (8.85)

With such a compensator the expressiontrivially Weyl

invariant

(D2λ)(D̄2λ̄)− 8Gαα̇(Dαλ)(D̄α̇λ̄) (8.86)

yields the bosonic Riegert operator and is super-Weyl invariant. Unfor-

tunately the latter is also true for any other expression, so not much has

been gained. In particular in the presence of a compensator the criterion

for Weyl invariance of a term is the absence of any functional dependence

on that compensating field, which is certainly not true for (8.86).

Another approach may be to ask what is a natural Weyl invariant

operator for an arbitrary field, such that the operator does not coincide

with the Riegert operator. For examplelinear superfield

E−1[(D2 − 4R̄)ψ][(D̄2 − 4R)ψ̄] (8.87)

is invariant when ψ 7→ eσ̄−σ ψ. This transformational behaviour is incom-

patible with ψ being a chiral field. It is possible for ψ being linear, but
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that assumption annihilates the operator of course.

For a real field V , a Weyl invariant operator is given by real superfield

E−1VDα(D̄2 − 4R)DαV ≡ E−1V D̄α̇(D2 − 4R̄)D̄α̇V, (8.88)

with additional gauge invariance V 7→ V +λ+ λ̄, where λ and λ̄ are chiral

and anti-chiral fields respectively.

Since the N = 4 case should also incorporate SL(2,R) symmetry with

invariance of the anomaly under

λ 7→ λ+ i, λ 7→ 1

λ
, (8.89)

one might be tempted to use the SL(2,R) Kähler form

V = lnλ+ λ̄

to also include that symmetry. Of course the operator will then contain

additional pieces acting on more than two fields. However those pieces

which do act on only two fields form exactly the combination (8.73), such

that the Riegert operator is missing again.

It seems that there is something in the minimal supergravity formalism

that does not allow for superfield formulation of the Riegert operator. I

strongly suspect that it is the U(1)R symmetry that spoils the formulation

of the operator by being inevitable tied to the super-Weyl transformations.





When your work speaks for itself, don’t interrupt.

Henry J. Kaiser

Conclusions

For the understanding of quantum field theories, its coupling to gravity

backgrounds has proved a valuable tool. The discovery of AdS/CFT corre-

spondence, which realises such a coupling holographically, has revived the

interest in this idea and been a major break-through in the understanding

of strongly coupled Yang–Mills theories. While the original AdS/CFT du-

ality involves N = 4 supersymmetric Yang–Mills theory, it has soon been

extended to less symmetric, more realistic theories.

In this work, such an extension is explored in more detail, taking as a extension of

AdS/CFTstarting point the N = 2 supersymmetric D3/probe D7-brane framework

of [20], which is dual to N = 4 supersymmetric, large Nc SU(Nc) Yang–

Mills theory augmented by a small number Nf of N = 2 hypermultiplets

in the fundamental representation. By holographic methods, this theory’s

meson spectrum can be calculated analytically at quadratic order [24].

I considered first a geometry more general than the conventional

AdS5× S5 and second an instanton gauge configuration on the D7-branes.

The general strategy was to introduce background configurations that re-

produce the conventional setting in certain limits. This allowed to make

contact with the ordinary AdS/CFT dictionary and is an important feature

of this approach compared to others in the area that is sometimes referred

to as AdS/QCD.

The following results were obtained:

• A holographic dual of spontaneous chiral symmetry breaking by a chiral symmetry

breaking
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bilinear quark condensate
〈
ψ̄ψ
〉

was found. Since such a condensate

is prohibited by supersymmetry, this required to use a background∗

that completely breaks supersymmetry and approximates AdS5×S5

only towards the boundary. By standard AdS/CFT, the boundary

of the space-time is associated to the ultraviolet of the dual field

theory, such that the configuration describes an N = 2 theory that

is relevantly deformed and flows to a non-supersymmetric infrared.

I calculated the quark condensate
〈
ψ̄ψ
〉

as a function of the quarkquark condensate

mass mq, which gave a non-vanishing quark condensate in the limit

mq → 0; i.e. sponetaneous chiral symmetry breaking. Moreover I

determined the meson spectrum and demonstrated that the meson

mode associated to the U(1)A axial symmetry, which is geometri-

cally realised as rotations, becomes massless in the mq → 0 limit as

expected for a true Goldstone boson. When mq 6= 0 this modeGoldstone boson

becomes a pseudo-Goldstone mode, which obeys the Gell-Mann–

Oakes–Renner relation M2
π ∼ mq. In the large quark mass limit,

the mesons lie in the supersymmetric regime such that their mass

is degenerate and approximates the analytic results of the N = 2

theory.

In addition I determined the mass of highly excited scalar and pseu-

doscalar mesons, which have the interesting feature of not being

degenerate in this setup.

• The dual description of the mixed Coulomb–Higgs branch of theinstantons on the

D7 N = 2 theory was found. The Higgs VEV corresponds to the size of

an instanton configuration on the supergravity side, establishing a

link between supersymmetry and the ADHM construction that was

known to exist. Such an instanton configuration can only exist when

there are at least two flavours, such that a non-Abelian Dirac–Born–

Infeld action had to be used. Ordering ambiguities can be avoided

since a calculation to quadratic order is sufficient, but a crucial in-

sight was the use of a singular gauge transformation to obtain the

correct boundary behaviour consistent with the AdS/CFT dictionary.

Having overcome this major obstacle, I numerically determined the

∗Here a background by Gubser [38] was chosen.
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meson spectrum and found it to approach the analytic N = 2 spec-

trum in the limit of vanishing and infinite Higgs VEV, though in the

latter case a non-trivial rearrangement was observed, which could

be explained to arise from above singular gauge transformation.

• A geometric realisation of heavy-light mesons was developed; i.e. heavy-light

mesonmesons build up from a light and heavy quark providing a frame-

work for the description of B mesons not available before. Since a

realisation in terms of a non-Abelian D7-brane action only makes

sense for small mass differences, a different approach has to be cho-

sen. The configuration under consideration is that of a long string

stretched between two D7-branes with a large separation, where the

D7-branes are arranged to correspond to a massless and a heavy

quark respectively.

I describe an effective point-particle action derived from the Polya-

kov action for a straight string in a semi-classical approximation.

After quantisation the equation of motion gives rise to the spec-

trum of mesons consisting of a massless and a heavy quark. I eval-

uated the spectrum in the standard AdS5 × S5 background, where I

could find an analytic formula for the numerically determined heavy-

light meson masses, and for the non-supersymmetric backgrounds by

Constable–Myers [42] and by Gubser discussed earlier. In the for- B meson

mer case a comparison with the experimental values of the B meson

mass yields a deviation of about 20%.

The models considered in this thesis are not meant to be realistic

duals of QCD, but instead focus on a particular aspect like chiral sym-

metry breaking by a chiral quark condensate, the meson spectrum for

D3/D7 AdS/CFT either non-supersymmetric deformed or with a Higgs

VEV switched on, and the spectrum of heavy-light mesons in several back-

grounds, giving a description of B mesons.

It would be certainly interesting to extend the techniques developed in future challenges

this thesis to a more realistic example of AdS/QCD.∗ Over the last years

there has been steady progress towards such a description, including string

∗In particular the heavy-light meson construction could be easily extended to other,
more realistic models.
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theory duals of theories that exhibit chiral symmetry breaking [82, 106–

124]. There are however three major points that need to be addressed in

future refinements of AdS/QCD.

The models considered here have a UV fixed point, but they are notstrong coupling

asymptotically free. The weak-strong nature of the duality, which makes

AdS/CFT so interesting, unfortunately means that weak coupling in the

field theory’s UV implies strong curvature towards the boundary of the AdS

space, thus requiring a full string theoretical treatment, which currently

is not feasible. Lacking that, there are recent attempts to circumvent

the situation by introducing a UV cut-off in the geometry to produce

phenomenological models of QCD dynamics [95–97, 125–139].

A second problematic property is the probe limit Nf � Nc, whichbackreaction

corresponds to the quenched approximation of lattice QFT. Additional

contributions are roughly of the order
Nf

Nc
. Including the backreaction of

the D7-branes on the geometry would allow the number of flavours to be of

the same order of magnitude as the number of colours. Such backgrounds

have been considered in [81].

The last important aspect is the separation of the SUSY and con-separation of scales

finement scales. In the B physics example discussed in Section 5.3, the

B meson is far in the supersymmetric regime. To change this situation one

needs a background configuration that incorporates at least two different

scales.

From the recent works cited above one can read off a tendency to focus

on particular aspects of the larger problem of finding a holographic dual

of QCD and YM theories, an approach also to be found in this thesis. A

challenge for the future will be to incorporate into one model as many as

possible of the insights gained here and elsewhere since the discovery of

AdS/CFT duality almost ten years ago.

In the second Part of this thesis the coupling of supersymmetric quan-

tum field theories to minimal supergravity was investigated. Coupling a

gravity background to a conformal quantum field theory gives rise to a

conformal anomalyconformal anomaly



Conclusions 159

〈
Tm

m
〉

= cC2 − a R̃2 + bR2 + f �R. (?)

In [48] a space-time dependent coupling approach was used to calculate

consistency conditions for the coefficients in the two-dimensional anomaly

providing an alternative proof for Zamolodchikov’s c-theorem. However

[48] did not obtain consistency conditions sufficiently restrictive to extend

the theorem to four dimensions.

The specific project pursued here was to extend this technique to su-

perfields and determine the conformal anomaly for those supersymmetric

field theories whose coupling constants can be promoted to chiral fields λ.

A prominent example for such is given by super-Yang–Mills theories.

The steps performed in detail were:

• I determined a complete ansatz for the conformal anomaly by finding basis of superfield

operatorsa basis of 38 local superfield expressions of dimension 2 and compos-

ing a linear combination with arbitrary coefficient functions b(λ, λ̄).

In the constant coupling limit, these coefficient functions become

the superspace analogue of the coefficients c, a, b and f that appear

in the bosonic conformal anomaly (?).

• Then I calculated the Wess–Zumino consistency conditions for the consistency

conditionscoefficient functions, which arise from the fact that Weyl transfor-

mations are Abelian.

• Furthermore I discussed the dependence on local counterterms and

possible consequences of S-duality in the N = 4 case.

• It is noted that a superfield version of the Riegert operator∗ is needed superfield Riegert

operatorto make contact with an existing one-loop calculation [49]. Various

approaches to the problem of finding a superfield Riegert operator

(which is independent of the anomaly calculation presented) have

been discussed. The conclusion is that the problem is rooted in

the U(1)R symmetry being built into the formalism of minimal su-

pergravity in superfield formulation in a local way, while on the

component level the U(1)R is only realised as a global symmetry.

In order to check this assumption it would be desirable to repeat the computer

algebra?∗The Riegert operator is the unique conformally covariant differential operator of
fourth order acting on a scalar field of Weyl weight 0.



160 Conclusions

full calculation in a component approach. The sheer size of this task is

daunting however: The basis for the anomaly I found contains about 40

terms in superfield formulation plus their complex conjugates. As a con-

sequence the calculation of the Wess–Zumino consistency conditions is

very involved and potentially error prone. A component based approach

will probably incorporate even more terms and should therefore be imple-

mented with the help of a computer. Unfortunately a computer based

treatment of supergravity has a number of requirements not satisfied by

any existing computer algebra system (CAS) today. These requirements

are

• an efficient mechanism for the representation of tensors and con-

tracted indices,

• handling of commuting, anticommuting and non-commuting objects

(this should include the ability to reduce a number of terms to a

canonical basis of terms using the supergravity algebra and Bianchi

identities),

• a way to represent non-commuting tensor valued functions of other

objects (e.g. for non-anticommuting spinorial derivatives),

• making no assumption about the symmetries of the metric,

• allowing torsion, and

• no automatic expansion of compact parenthesised expressions into

a lengthy sum of terms.

Of the existing systems, FORM [140] seems to be coming the closest to these

requirements since it provides a rather low-level tensor support without

restrictive internal assumptions. Its summarising capabilities are unsatis-

factory however and may be a major obstacle in the implementation of a

computer based analysis of the trace anomaly.

Another promising program is Cadabra [141, 142], which meets all of

the above requirements but is still in a development stage.

Nevertheless the next steps in a future analysis of the trace anomalycomponent

calculation are the implementation of a supergravity computer algebra package and a

component based analysis. As outlined above this is a difficult task, but
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the results presented in this thesis can serve as a highly non-trivial unit

test to confirm the correctness of such a package. Then one may carry

out a complete component expansion of all basis terms and reexamine

the question of whether a superfield version of the Riegert operator does

exist in minimal superfield supergravity. This analysis can then be easily

extended to non-minimal SUGRA and as a check one may reproduce the

Riegert operator in new-minimal SUGRA as well.

A reimplementation of the whole calculation in a component based

approach would provide an independent source of confirmation for the

results of this thesis. If a superfield based treatment of minimal super-

gravity is consistent on the quantum level,∗ the two calculations should

actually yield the same result, strengthening confidence in the results pre-

sented here. Of course inconsistency would be an interesting result in its

own right.

In any case I hope to have provided a basis for understanding the struc-

ture of the conformal anomaly in supersymmetric field theories coupled to

supergravity.

∗See [53] on why a superfield treatment of minimal supergravity should be consis-
tent and [54] on the question of consistence of anomaly calculations in the presence of
compensating fields.





It pays to be obvious, especially if you have a repu-

tation for subtlety.

Isaac Asimov
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Appendix A

Determinant Expansion

While most complicated backgrounds require working in the linearised ap-

proximation (that is expansion to quadratic order of the DBI action, see

sec. 1.4.3), for the vacuum solution there are occasions where a full expan-

sion of the determinant in the DBI action is needed. Since in string/M

theory there is at most an eleven-dimensional metric, this can be easily

done using a computer. However symbolic algebra programs like Mathe-

matica® or Maple® are sometimes not capable of simplifying the result

sufficiently well to obtain an expression suitable for calculations by hand.

In that case the following theorem, which is probably well known in the

mathematics literature (even though I could not find it), can be useful

as long as the metric is sufficiently simple. Since the formulation of the

theorem is a bit hard to decode, studying the corollaries first might be

helpful, in particular the last two corollaries, which are relevant for the

pullback of a D7-brane.

Theorem 2 (Full Determinant Expansion).

Let A,B be N ×N matrices and 1 the corresponding unity matrix, then

it holds

det [1+ AB] = det
m,n

[δmn + AkmmBmkn ] (no sum on m), (A.1)
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where on the right hand side, Einstein’s convention is used on the indices

km after having evaluated the determinant in indices m and n.

The right hand side may be formulated alternatively in the following

manner:

det [1+ AB] =
∑

k1,...,kN

det
[

1
N
δmn + AkmmBmkn

]
(no sum on m). (A.2)

Proof.

LHS = det [1+ AB]

= det

[∑
k

(
1
N
δmn + AmkBkn

)]
=
∑

π∈SN

sgn π
∏
m

∑
km

(
1
N
δmn + AmkmBkmn

)
=

∑
k1,...,kN

∑
π∈SN

sgn π
∏
m

(
1
N
δmπ(m) + AmkmBkmπ(m)

)
(A.3)

=
∑

k1,...,kN

∑
π∈SN

sgn π

[∏
m

AmkmBkmπ(m)+

+
∏

i

δiπ(i)

N

∏
m

m6=i

AmkmBkmπ(m) + . . .

]

=
∑

k1,...,kN

∏
m

Amkm

[
detB +

∏
i

δiπ(i)

NAmkm
detBii + . . .

]
,

where Bii is the adjugate matrix corresponding to Bii.

RHS =
∑

k1,...,kN

det
[

1
N
δmn + AkmmBmkn

]
=

∑
k1,...,kN

∑
π∈SN

sgnπ
∏
m

(
1
N
δmπ(m) + AkmmBmkπ(m)

)
=

∑
k1,...,kN

∑
π∈SN

sgnπ
∏
m

(
1
N
δmπ(m) + AmkmBkπ(m)m

)
(A.4)

=
∑

k1,...,kN

∑
π∈SN

sgnπ

[∏
m

AmkmBkπ(m)m+

+
∏

i

δiπ(i)

N

∏
m

m6=i

AmkmBkπ(m)m + . . .

]
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=
∑

k1,...,kN

∏
m

Amkm

[
detB +

∏
i

δiπ(i)

NAmkm
detBii + . . .

]
= LHS (A.5)

Corollary 1 (Vector formulation).

For the matrices

A = (~a1, . . . ,~aN), B =


~bT1
...
~bTN

, (A.6)

theorem (A.1) reads

det

[
1+

∑
λ

~aλ ⊗~bλ

]
= det

[
δmn + (~am)km(~bm)kn

]
, (A.7)

where again Einstein’s convention is used on km.

Corollary 2 (Fewer vectors).

For ~aλ = ~bλ = 0 ∀ λ > L this is

det

[
1+

L∑
λ=1

~aλ ⊗~bλ

]

= det

(
δmn + (~am)km(~bm)kn irrelevant

0 1N−L

)
= det

[
δµν + (~aµ)kµ(~bµ)kν

]
,

(A.8)

with indices µ, ν running from 1 to L and summation on indices kµ. The

right hand side may be evaluated using the following simple Mathemat-

ica script.

1 rank = 4; (∗ plug in appropriate value ∗)

2 Expand
[
Det
[
Table

[
dummy[i][j], {i, rank}, {j, rank}

]]]
/.

dummy[x ][y ] :→ KroneckerDelta[x, y] + ~ax[x]~by[y];

3 result = (% //. ~ai [k ]~bj [k ] → ~ai · ~bj])

(A.9)

Corollary 3 (D7 pullback for diagonal metric).
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For L = 2 one obtains

det
[
1+ ~a1 ⊗~b1 + ~a2 ⊗~b2

]
= det

(
1 + (~a1)k1(

~b1)k1 (~a1)k1(
~b1)k2

(~a2)k2(
~b2)k1 1 + (~a2)k2(

~b2)k2

)
= (1 + ~a1

~b1)(1 + ~a2
~b2)− (~a2

~b1)(~a1
~b2),

(A.10)

which for the vectors

(~a1)b = G88G
bc∂cz

8, (~a2)b = G99G
bc∂cz

9, (A.11)

(~b1)a = ∂az
8, (~b2)a = ∂az

9 (A.12)

yields

det
[
1+G88G

bc∂cz
8∂az

8 +G99G
bc∂cz

9∂az
9
]

= (1 +G88G
bc∂bz

8∂cz
8)(1 +G99G

bc∂bz
9∂cz

9)

−G88G99(G
bc∂bz

8∂cz
9)2.

(A.13)

Corollary 4 (D7 pullback for block diagonal metric).

For a ten-dimensional metric of the form

GAB dX
A dXB =

(
dxadzi

)(gab 0

0 gij

)(
dxb

dzj

)
(A.14)

with indices a, b = 0, . . . , 7 and i, j = 8, 9, the determinant of an eight

dimensional pullback with respect to the embedding xa = ξa, zi = zi(ξa)

is given by

detP [GAB]

= det

{
gab + gij

∂zi

∂ξa

∂zj

∂ξb

}
= det gab · det

{
18 + gij∂az

i∂bz
jgbc
}

= det gab · det

[
1+

4∑
λ=1

~aλ ⊗~bλ

] (A.15)
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with the vectors ~aλ,~bλ given by

~a1 := g88 (g) · ~∇z8, ~b1 := ~∇z8,

~a2 := g89 (g) · ~∇z8, ~b2 := ~∇z9,

~a3 := g98 (g) · ~∇z9 = g98/g88~a1, ~b3 := ~∇z8 = ~b1,

~a4 := g99 (g) · ~∇z9 = g99/g89~a2, ~b4 := ~∇z9 = ~b2,

where (g) · ~∇ denotes the matrix multiplication gab∂b. Using the theorem

this may be expanded into 4! = 24 terms, which due to above proportion-

ality properties can be dramatically simplified, and one obtains

detP [GAB] = det gcd ·
(
1 + gij∂az

i∂bz
jgab

+ det gij · det
kl

{
∂az

k∂bz
lgab
})
,

(A.16)

where

det
kl

{
∂az

k∂bz
lgab
}

= (gab∂az
8∂bz

8)(gcd∂cz
8∂dz

8)− (gab∂az
8∂bz

9)2.
(A.17)

Note that no approximation has been used.





Genius is one per cent inspiration, ninety-nine per

cent perspiration.

Thomas A. Edison

Appendix B

Weyl Variation of the Basis

This Chapter provides the Weyl variations of all basis terms. The terms for

∆W
σ can be extracted from those proportional to σ, and correspondingly

for the complex conjugated fields.

Eδ
[
E−1Gαα̇G

αα̇
]

= 2iGαα̇Dαα̇(σ̄ − σ) (B.1A)

Eδ
[
E−1RR̄

]
= −1

4
(D̄2σ̄)R̄− 1

4
(D2σ)R (B.1B)

Eδ
[
E−1R2

]
= 3(σ̄ − σ)R2 − 1

2
(D̄2σ̄)R (B.1C)

Eδ
[
E−1R̄2

]
= 3(σ − σ̄)R̄2 − 1

2
(D2σ)R̄ (B.1C̄)

Eδ
[
E−1D2R

]
= −2(Dασ)(DαR)− 2(D2σ)R− 1

4
D2D̄2σ̄

= −2(Dασ)(DαR)− 2(D2σ)R

+ 2(Dαα̇Dαα̇σ̄)− 2iGαα̇(Dαα̇σ̄) (B.1D)

Eδ
[
E−1D̄2R̄

]
= −2(Dα̇σ̄)(D̄α̇R̄)− 2(D̄2σ̄)R̄− 1

4
D̄2D2σ

= −2(D̄α̇σ̄)(D̄α̇R̄)− 2(D̄2σ̄)R̄

+ 2(Dαα̇Dαα̇σ) + 2iGαα̇(Dαα̇σ) (B.1D̄)

Eδ
[
E−1RD2λ

]
= −1

4
(D̄2σ̄)(D2λ) + 2R(Dασ)(Dαλ) (B.1E)

Eδ
[
E−1R̄D̄2λ̄

]
= −1

4
(D2σ)(D̄2λ̄) + 2R̄(D̄α̇σ̄)(D̄α̇λ̄) (B.1Ē)
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Eδ
[
E−1RD̄2λ̄

]
= 3(σ̄ − σ)R(D̄2λ̄)− 1

4
(D̄2σ̄)(D̄2λ̄)

+ 2R(D̄α̇σ̄)(D̄α̇λ̄) (B.1F )

Eδ
[
E−1R̄D2λ

]
= 3(σ − σ̄)R̄(D2λ)− 1

4
(D2σ)(D2λ)

+ 2R̄(Dασ)(Dαλ) (B.1F̄ )

Eδ
[
E−1(DαR)(Dαλ)

]
= −2(Dασ)(Dαλ)R− 1

4
(DαD̄2σ̄)(Dαλ)

= −2(Dασ)(Dαλ)R + [(Gαα̇ − iDαα̇)(D̄α̇σ̄)](Dαλ) (B.1G)

Eδ
[
E−1(D̄α̇R̄)(D̄α̇λ̄)

]
= −2(D̄α̇σ̄)(D̄α̇λ̄)R̄− 1

4
(D̄α̇D2σ)(Dα̇λ̄)

= −2(D̄α̇σ̄)(D̄α̇λ̄)R̄− [(Gαα̇ + iDαα̇)(Dασ)](D̄α̇λ̄) (B.1Ḡ)

Eδ
[
E−1Gαα̇Dαα̇λ

]
= i[Dαα̇(σ̄ − σ)](Dαα̇λ)

− i
2
Gαα̇(D̄α̇σ̄)(Dαλ) (B.1H)

Eδ
[
E−1Gαα̇Dαα̇λ̄

]
= i[Dαα̇(σ̄ − σ)](Dαα̇λ̄)

− i
2
Gαα̇(Dασ)(D̄α̇λ̄) (B.1H̄)

Eδ
[
E−1(Dαα̇Dαα̇λ)

]
= (Dαα̇(σ + σ̄))Dαα̇λ−R(Dασ)(Dαλ)

− i
2
(D̄α̇σ̄)(Dαα̇Dαλ) +Gαα̇(D̄α̇σ̄)(Dαλ) (B.1I)

Eδ
[
E−1(Dαα̇Dαα̇λ̄)

]
= (Dαα̇(σ + σ̄))Dαα̇λ̄− R̄(D̄α̇σ̄)(D̄α̇λ̄)

− i
2
(Dασ)(Dαα̇D̄α̇λ̄)−Gαα̇(Dασ)(D̄α̇λ̄) (B.1Ī)

Eδ
[
E−1R(Dαλ)(Dαλ)

]
= −1

4
(D̄2σ̄)(Dαλ)(Dαλ) (B.1J)

Eδ
[
E−1R̄(D̄α̇λ̄)(D̄α̇λ̄)

]
= −1

4
(D2σ)(D̄α̇λ̄)(D̄α̇λ̄) (B.1J̄)

Eδ
[
E−1R̄(Dαλ)(Dαλ)

]
= 3(σ − σ̄)R̄(Dαλ)(Dαλ)

− 1
4
(D2σ)(Dαλ)(Dαλ) (B.1K)

Eδ
[
E−1R(D̄α̇λ̄)(D̄α̇λ̄)

]
= 3(σ̄ − σ)R(D̄α̇λ̄)(D̄α̇λ̄)

− 1
4
(D̄2σ̄)(D̄α̇λ̄)(D̄α̇λ̄) (B.1K̄)

Eδ
[
E−1Gαα̇(Dαλ)(D̄α̇λ̄)

]
= i(Dαα̇(σ̄ − σ))(Dαλ)(D̄α̇λ̄) (B.1L)

Eδ
[
E−1(Dαα̇λ)(Dαα̇λ̄)

]
= − i

2
(D̄α̇σ̄)(Dαλ)(Dαα̇λ̄)

− i
2
(Dασ)(D̄α̇λ̄)(Dαα̇λ) (B.1M)

Eδ
[
E−1(Dαα̇λ)(Dαα̇λ)

]
= −i(D̄α̇σ̄)(Dαλ)(Dαα̇λ) (B.1N)

Eδ
[
E−1(Dαα̇λ̄)(Dαα̇λ̄)

]
= −i(Dασ)(D̄α̇λ̄)(Dαα̇λ̄) (B.1N̄)

Eδ
[
E−1(Dαλ)(Dαα̇D̄α̇λ̄)

]
= 1

2
(Dαλ)[(Dαα̇(σ̄ + σ))(D̄α̇λ̄) (B.1O)

− i(Dασ)(D̄2λ̄) + 2(D̄α̇σ̄)(Dαα̇λ̄)
]
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Eδ
[
E−1(−1)(D̄α̇λ̄)(Dαα̇Dαλ)

]
= −1

2
(D̄α̇λ̄)[(Dαα̇(σ̄ + σ))(Dαλ)

+i(D̄α̇σ̄)(D2λ) + 2(Dασ)(Dαα̇λ)
]

(B.1Ō)

Eδ
[
E−1(D2λ)(D̄2λ̄)

]
= 2(Dασ)(Dαλ)(D̄2λ̄)

+ 2(D̄α̇σ̄)(D2λ)(D̄α̇λ̄) (B.1P )

Eδ
[
E−1(D2λ)2

]
= 3(σ − σ̄)(D2λ)2

+ 4(D2λ)(Dασ)(Dαλ) (B.1Q)

Eδ
[
E−1(D̄2λ̄)2

]
= 3(σ̄ − σ)(D̄2λ̄)2

+ 4(D̄2λ̄)(D̄α̇σ̄)(D̄α̇λ̄) (B.1Q̄)

Eδ
[
E−1(Dαλ)(Dαλ)(D2λ)

]
= 3(σ − σ̄)(Dαλ)(Dαλ)(D2λ)

+ 2(Dασ)(Dαλ)(Dβλ)(Dβλ) (B.1R)

Eδ
[
E−1(D̄α̇λ̄)(D̄α̇λ̄)(D̄2λ̄)

]
= 3(σ̄ − σ)(D̄α̇λ̄)(D̄α̇λ̄)(D̄2λ̄)

+ 2(D̄α̇σ̄)(D̄α̇λ̄)(D̄β̇λ̄)(D̄β̇λ̄) (B.1R̄)

Eδ
[
E−1(Dαλ)(Dαλ)(D̄2λ̄)

]
= 2(Dαλ)(Dαλ)(D̄α̇σ̄)(D̄α̇λ̄) (B.1S)

Eδ
[
E−1(D̄α̇λ̄)(Dα̇λ̄)(D2λ)

]
= 2(D̄α̇λ̄)(D̄α̇λ̄)(Dασ)(Dαλ) (B.1S̄)

Eδ
[
E−1(Dαα̇λ

i)(Dαλj)(D̄α̇λ̄k̄)
]

= i
2
(Dαλj)(Dαλ

i)(D̄α̇σ̄)(D̄α̇λ̄k̄) (B.1T )

Eδ
[
E−1(Dαα̇λ̄

ı̄)(Dαλk)(Dα̇λ̄̄)
]

= − i
2
(D̄α̇λ̄

ı̄)(D̄α̇λ̄̄)(Dασ)(Dαλ
k) (B.1T̄ )

Eδ
[
E−1(Dαλ)(Dαλ)(D̄β̇λ̄)(D̄β̇λ̄)

]
= 0 (B.1U)

Eδ
[
E−1(Dαλ)(Dαλ)(Dβλ)(Dβλ)

]
= 3(σ − σ̄)(Dαλ)(Dαλ)(Dβλ)(Dβλ) (B.1V )

Eδ
[
E−1(D̄α̇λ̄)(D̄α̇λ̄)(D̄β̇λ̄)(D̄β̇λ̄)

]
= 3(σ̄ − σ)(D̄α̇λ̄)(D̄α̇λ̄)(D̄β̇λ̄)(D̄β̇λ̄) (B.1V̄ )
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Appendix C

Wess–Zumino

Consistency Condition

Weyl Contribution

For the coefficients defined in

(∆W
σ )(∆W

σ′ −∆β
σ′)W =

∫
d8z E−1σ′

{
σC0 + (Dασ)Cα+

(D2σ)C2 + (Dαα̇σ)Cαα̇ + (Dαα̇Dασ)Cα̇
3 + (Dαα̇Dαα̇σ)C4

}
, (C.1)

one obtains

C0 = −3b(C)R2 + 3b(C̄)R̄2

−
[
3R(D̄2λ̄)b(F )

]
+ 3R̄(D2λ)b(F̄ )

+ 3b(K)R̄(Dαλ)(Dαλ)−
[
3b(K̄)R(D̄α̇λ̄)(D̄α̇λ̄)

]
+ 3b(Q)(D2λ)2 − 3b(Q̄)(D̄2λ̄)2

+ 3(Dαλ)(Dαλ)(D2λ)b(R) − 3b(R̄)(D̄α̇λ̄)(D̄α̇λ̄)(D̄2λ̄)

+ 3b(V )(Dαλ)(Dαλ)(Dβλ)(Dβλ)− 3b(V̄ )(D̄α̇λ̄)(D̄α̇λ̄)(D̄β̇λ̄)(D̄β̇λ̄),

(C.2a)
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Cα = −2b(D)(DαR)− 2R(Dαλ)b(E) + 2R̄(Dαλ)b(F̄ )

−
[
2(Dαλ)Rb(G)

]
−
[
Gαα̇(D̄α̇λ̄)b(Ḡ)

]
− i

2
Gαα̇(D̄α̇λ)b(H̄) − i

2
b(M)(D̄α̇λ̄)(Dαα̇λ)− i(D̄α̇λ̄)(Dαα̇λ̄)b(N̄)

−
[

i
2
(Dαλ)(D̄2λ̄)b(O)

]
−
[
b(Ō)(Dαα̇λ)(D̄α̇λ̄)

]
+ 2b(P )(Dαλ)(D̄2λ̄)

+ 4b(Q)(D2λ)(Dαλ) + 2(Dαλ)(Dβλ)(Dβλ)b(R)

+ 2b(S̄)(D̄α̇λ̄)(D̄α̇λ̄)(Dαλ)− i
2
b(T̄ )(D̄α̇λ̄)(D̄α̇λ̄)(Dαλ),

(C.2b)

C2 = −1
4
b(B)R− 1

2
b(C̄)R̄

− 2b(D)R− 1
4
(D̄2λ̄)b(Ē)

− 1
4
(D2λ)b(F̄ ) − 1

4
(D̄α̇λ̄)(D̄α̇λ̄)b(J̄) − 1

4
b(K)(Dαλ)(Dαλ),

(C.2c)

Cαα̇ = −2ib(A)Gαα̇ + 2iGαα̇b
(D̄)

− i(Dαα̇λ)b(H) − i(Dαα̇λ̄)b(H̄)

− ib(L)(Dαλ)(D̄α̇λ̄) +
[

1
2
b(O)(Dαλ)(D̄α̇λ̄)

]
−
[

1
2
b(Ō)(Dαλ)(D̄α̇λ̄)

]
,

(C.2d)

C̄α̇
3 =

[
ib(Ḡ)(D̄α̇λ̄)

]
, (C.2e)

C4 =
[
2b(D̄)

]
. (C.2f)

For further discussion, it proves useful to sort its contents with respect to

derivatives on λ or λ̄.

C0 = −3b(C)R2 + 3b(C̄)R̄2

−
[
3R(D̄2λ̄ı̄)b

(F )
ı̄

]
+ 3R̄(D2λi)b

(F̄ )
i

+ 3b
(K)
ij R̄(Dαλi)(Dαλ

j)−
[
3b

(K̄)
ı̄̄ R(D̄α̇λ̄

ı̄)(D̄α̇λ̄̄)
]

+ 3b
(Q)
ij (D2λi)(D2λj)− 3b

(Q̄)
ı̄̄ (D̄2λ̄ı̄)(D̄2λ̄̄)

+ 3(Dαλi)(Dαλ
j)(D2λk)b

(R)
ijk − 3b

(R̄)

ı̄̄k̄
(D̄α̇λ̄

ı̄)(D̄α̇λ̄̄)(D̄2λ̄k̄)

+ 3b
(V )
ijkl(D

αλi)(Dαλ
j)(Dβλk)(Dβλ

l)

− 3b
(V̄ )

ı̄̄k̄l̄
(D̄α̇λ̄

ı̄)(D̄α̇λ̄̄)(D̄β̇λ̄
k̄)(D̄β̇λ̄l̄),

(C.3a)
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Cα = −2b(D)(DαR) + (Dαλ
i)

(
−2R(b

(E)
i +

[
b
(G)
i

]
+
[

1
2
b
(I)
i

]
) + 2R̄b

(F̄ )
i

)
+ (D̄α̇λ̄ı̄)

(
− i

2
Gαα̇b

(H̄)
ı̄ −Gαα̇b

(Ī)
ı̄ −

[
Gαα̇b

(Ḡ)
ı̄

])
+ (Dαα̇D̄α̇λ̄ı̄)

(
− i

2
b
(Ī)
ı̄

)
+ (Dαα̇λ̄

ı̄)(D̄α̇λ̄̄)

(
−ib(N̄)

ı̄̄

)
+ (Dαα̇λ

i)(D̄α̇λ̄̄)

(
− i

2
b
(M)
ī −

[
b
(Ō)
̄i

])
+ (Dαλ

i)(D̄2λ̄̄)

(
−
[

i
2
b
(O)
ī

]
+ 2b

(P )
ī

)
+ (D2λi)(Dαλ

j)

(
4b

(Q)
ij

)
+ (Dαλ

i)(Dβλj)(Dβλ
k)

(
2b

(R)
ijk

)
+ (D̄α̇λ̄

ı̄)(D̄α̇λ̄̄)(Dαλ
k)

(
2b

(S̄)
ı̄̄k − i

2
b
(T̄ )
{ı̄̄}k

)
,

(C.3b)

C2 = −(1
4
b(B) + 2b(D))R− 1

2
b(C̄)R̄− 1

4
(D̄2λ̄ı̄)b

(Ē)
ı̄

− 1
4
(D2λi)b

(F̄ )
i − 1

4
(D̄α̇λ̄

ı̄)(D̄α̇λ̄̄)b
(J̄)
ı̄̄ − 1

4
b
(K)
ij (Dαλi)(Dαλ

j),
(C.3c)

Cαα̇ = 2iGαα̇(
[
b(D̄)

]
− b(A)) + (Dαα̇λ

i)(
[
b
(I)
i

]
−
[
ib

(H)
i

]
)

+ (Dαα̇λ̄
ı̄)(b

(Ī)
ı̄ − ib

(H̄)
ı̄ ) + (

[
1
2
b
(O)
ī

]
−
[

1
2
b
(Ō)
ī

]
− ib

(L)
ī )(Dαλi)(D̄α̇λ̄̄),

(C.3d)

C̄α̇
3 =

[
ib

(Ḡ)
̄ (D̄α̇λ̄̄)

]
, (C.3e)

C4 =
[
2b(D̄)

]
. (C.3f)

Beta Contribution

Acting with the operator ∆β on the conformal anomaly, one first notices,

that δ
δλi should only act on derivatives of λ, since otherwise a σσ′ contri-

bution, which vanishes from the commutator, is created.

∆β
σ(∆W

σ′ −∆β
σ′)W =

∫
d8z E−1σ′

{
σβi(∂iB(0))A(0) + (Dασβi)E i

α (C.4)

+ (D2σβi)E i
(2) + (Dαα̇σβi)E i

αα̇ + (Dαα̇Dαα̇σβi)E i
4 + (Dαα̇Dα̇σβi)Ē iα̇

3

}
,
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Eα =
[
b
(G)
i (DαR)

]
+
[
2b

(J)
ij R(Dαλ

j)
]
+ 2b

(K)
ij R̄(Dαλ

j)

+ b
(L)
ī Gαα̇(D̄α̇λ̄̄) +

[
b
(O)
ī (Dαα̇D̄α̇λ̄̄)

]
+ 2b

(R)
ijk (Dαλ

j)(D2λk) +
[
2b

(S)

ijk̄
(Dαλ

j)(D̄2λ̄k̄)
]

+ b
(T )

jik̄
(Dαα̇λ

j)(D̄α̇λ̄k̄) + b
(T̄ )

̄ik̄
(Dαα̇λ̄̄)(D̄α̇λ̄

k̄)

+ 2b
(U)

ijk̄l̄
(Dαλ

j)(D̄β̇λ̄
k̄)(D̄β̇λ̄l̄) + 4b

(V )
ijkl(Dαλ

j)(Dβλk)(Dβλ
l),

(C.5a)

E2 = b
(E)
i R + b

(F̄ )
i R̄ + b

(P )
ī (D̄2λ̄̄)

+ 2b
(Q)
ij (D2λj) + b

(R)
lji (Dαλl)(Dαλ

j) + b
(S̄)
ı̄̄i (D̄α̇λ̄

ı̄)(D̄α̇λ̄̄),
(C.5b)

Eαα̇ =
[
b
(H)
i Gαα̇

]
+ b

(M)
ī (Dαα̇λ̄

̄) + b
(N)
ij (Dαα̇λ

j) + b
(T )

ijk̄
(Dαλ

j)(D̄α̇λ̄
k̄),

(C.5c)

Ē α̇
3 =

[
b
(Ō)
̄i (D̄α̇λ̄̄)

]
, (C.5d)

E4 =
[
b
(I)
i

]
. (C.5e)

Summary

The results of the previous two Sections can be used to determine the F
coefficients defined by

(∆W
σ −∆β

σ)(∆W
σ′ −∆β

σ′)W

=

∫
d8z E−1σ′

{
σF0 + (Dασ)Fα + (D2σ)F2 + (Dαα̇σ)Fαα̇

+ (Dαα̇Dασ)F̄ α̇
3 + (Dαα̇Dαα̇σ)F4

}
, (C.6)

by expanding the Weyl and beta contribution in terms of derivatives on

λ and λ̄, keeping in mind that the b coefficients and beta functions are

functions of λ and λ̄ in general, so it holds

b = b(λ, λ̄), (C.7a)

Dαb = (Dαλ
k)(∂kb), (C.7b)

D̄α̇b = (D̄α̇λ̄k̄)(∂k̄b), (C.7c)

Dαα̇b = (Dαα̇λ
k)(∂kb) + (Dαα̇λ̄

k̄)(∂k̄b), (C.7d)
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D̄α̇Dαα̇b = (D̄α̇Dαα̇λ
k)(∂kb) + (Dαα̇λ

k)(D̄α̇λ̄̄)(∂̄∂kb)

+ (D̄α̇Dαα̇λ̄
k̄)(∂k̄b) + (Dαα̇λ̄

k̄)(D̄α̇λ̄̄)(∂̄∂k̄b), (C.7e)

Dαα̇Dαα̇b = (Dαα̇Dαα̇λ
k)(∂kb) + (Dαα̇Dαα̇λ̄

k̄)(∂k̄b)

+(Dαα̇λk)(Dαα̇λ
l)(∂l∂kb)

+2(Dαα̇λk)(Dαα̇λ̄
l̄)(∂k∂l̄b)

+(Dαα̇λ̄k̄)(Dαα̇λ̄
l̄)(∂k̄∂l̄b) (C.7f)

and similarly for βi. This yields

F0 = C0 + βi(∂iB) · A

+ (Dαλj)(∂jβ
i)E i

α

+ [(D2λj)(∂jβ
i) + (Dαλj)(Dαλ

k)(∂j∂kβ
i)]E i

2

+ [(Dαα̇λj)(∂jβ
i) + (Dαα̇λ̄̄)(∂̄β

i)]E i
αα̇

+ [(Dαα̇Dαλj)(∂jβ
i) + (Dαλj)(Dαα̇λ

k)(∂k∂jβ
i)

+ (Dαλj)(Dαα̇λ̄
k̄)(∂k̄∂jβ

i)]Ē α̇i
3

+ [(Dαα̇Dαα̇λ
k)(∂kβ

i) + (Dαα̇Dαα̇λ̄
k̄)(∂k̄β

i)

+ (Dαα̇λk)(Dαα̇λ
j)(∂j∂kβ

i) + 2(Dαα̇λk)(Dαα̇λ̄
̄)(∂̄∂kβ

i)

+ (Dαα̇λ̄k̄)(Dαα̇λ̄
̄)(∂̄∂k̄β

i)]E i
4,

(C.8a)

Fα = Cα + βiE i
α + 2(Dαλ

j)(∂jβ
i)E i

2

+ [(Dαα̇λ
k)(∂kβ

i) + (Dαα̇λ̄
k̄)(∂k̄β

i)]Ē α̇i
3 ,

(C.8b)

F2 = C2 + βiE i
2, (C.8c)

Fαα̇ = Cαα̇ + βiE i
αα̇ + (Dαλ

j)(∂jβ
i)Ē i

3 α̇

+ 2(Dαα̇λ
k)(∂kβ

i)E i
4 + 2(Dαα̇λ̄

k̄)(∂k̄β
i)E i

4,
(C.8d)

F̄ α̇
3 = C̄α̇

3 + βiĒ iα̇
3 , (C.8e)

F4 = C4 + βiE i
4. (C.8f)
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Appendix D

Coefficient Consistency

Equations

Consistency equation (8.35e) yields

2b̄(D) − 2b(D) + βib̄
(Ī)
i − β̄ ı̄b̄

(Ī)
ı̄ = 0. (D.1)

From consistency equation (8.35d) one obtains

− b̄(A) + b(A) = 0, (D.2a)

b̄
(N̄)
ij βi + (∂jβ

i)b̄
(Ī)
i + 2∂j b̄

(D) + (∂j b̄
(Ī)
i )βi + b

(I)
j + ib

(H)
j + b

(M)
jı̄ β̄ ı̄

+ (∂jβ̄
ı̄)b

(Ī)
ı̄ + 2(∂jb

(D)) + (∂jb
(Ī)
ı̄ )β̄ ı̄ − 2b

(G)
j − 2iβ̄ ı̄b

(O)
jı̄ = 0,

(D.2b)

b
(N̄)
ı̄̄ β ı̄ + (∂̄β̄

ı̄)b
(Ī)
ı̄ + 2∂̄b

(D) + (∂̄b
(Ī)
ı̄ )β̄ ı̄ + b̄

(I)
̄ − ib̄

(H)
̄ + b̄

(M)
ī βi

+ (∂̄β
i)b̄

(Ī)
i + 2(∂̄b̄

(D)) + (∂̄b̄
(Ī)
i )βi − 2b̄

(G)
̄ + 2iβib̄

(O)
̄i = 0,

(D.2c)

−ib̄(L)
ī + b̄

(T̄ )
kī β

k − i(∂ib̄
(G)
̄ )− (∂ib̄

(O)
̄k )βk + ib

(L)
̄i

+ b
(T̄ )

k̄̄i
β̄k̄ + i(∂̄b

(G)
i )− (∂̄b

(O)

ik̄
)β̄k̄ = 0.

(D.2d)
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The following sets of equations have to be augmented by their complex

conjugates. From consistency condition (8.35a) one gets

− 2b(D) + 1
4
b(B) + b(A) + 2b(D) − βib

(E)
i = 0, (D.3a)

− 2b
(E)
j + 2βib

(K)
ij + b

(E)
i (∂jβ

i) + 1
4
(∂jb

(B))

+ 2(∂jb
(D))− βi(∂jb

(E)
i ) + b

(N)
ij βi = 0,

(D.3b)

2b
(F̄ )
j + b

(F̄ )
i (∂jβ

i) + 1
2
(∂jb

(C̄))

+ b
(F̄ )
j − βi(∂jb

(F̄ )
i ) + 8βib

(Q)
ij = 0,

(D.3c)

− i
2
b
(H̄)
̄ − b

(Ī)
̄ + βib

(L)
ī + b

(Ē)
̄ − 4βib

(P )
ī + (∂̄b

(A))− b
(Ī)
̄ + ib

(H̄)
̄ = 0,

(D.3d)

− i
2
b
(Ī)
̄ − ib

(Ē)
̄ + 4iβib

(P )
ī + i

2
b
(Ī)
̄ + 1

2
b
(H̄)
̄ + i

2
βib

(M)
ī = 0, (D.3e)

− i
2
b
(M)

jk̄
+ βib

(T )

jik̄
+ ib

(L)

jk̄
+ i

2
b
(N)
ij (∂k̄β

i) + i
2
βi(∂k̄b

(N)
ij )− b

(T )

ijk̄
βi = 0,

(D.3f)

− ib
(N̄)

̄k̄
+ βib

(T̄ )

̄ik̄
− ib

(J̄)

̄k̄
+ 2iβib

(S̄)

̄k̄i

+ i
2
(∂k̄b

(Ī)
̄ − i∂k̄b

(H̄)
̄ ) + i

2
(∂k̄β

i)b
(M)
ī + i

2
(∂k̄b

(M)
ī )βi = 0,

(D.3g)

4b
(Q)
kj + 2βib

(R)
ijk + 2b

(Q)
ik (∂jβ

i) + 1
4
(∂jb

(F̄ )
k )

− 1
4
b
(K)
kj − 2βi(∂jb

(Q)
ik )− βib

(R)
jki = 0,

(D.3h)

2b
(P )
ī + b

(P )
k̄ (∂iβ

k) + 1
4
(∂ib

(Ē)
̄ )− βk(∂ib

(P )
k̄ ) + 1

2
b
(L)
ī + i

2
b
(T )
kī β

k = 0, (D.3i)

2b
(R)
jkl + 4βib

(V )
ijkl + b

(R)
kli (∂jβ

i) + 1
4
∂jb

(K)
kl − βi(∂jb

(R)
kli ) = 0, (D.3j)

2b
(S̄)
ı̄̄k − i

2
b
(T̄ )
{ı̄̄}k + 2βlb

(U)
lkı̄̄ + b

(S̄)
ı̄̄l (∂kβ

l) + 1
4
∂kb

(J̄)
ı̄̄

− βl(∂kb
(S̄)
ı̄̄l ) + 1

2
(∂ı̄b

(L)
k̄ ) + i

2
b
(T )
lkı̄ (∂̄β

l) + i
2
(∂̄b

(T )
lkı̄ )βl = 0,

(D.3k)

while consistency equation (8.35c) yields

βl(∂lb̄
(A))− β̄ l̄(∂l̄b

(A)) = 0, (D.4a)

βl(∂lb̄
(B̄))− β̄ l̄(∂l̄b

(B)) = 0, (D.4b)
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− 3b̄(C̄) + βl(∂lb̄
(C̄))− 3b(C) − β̄ l̄(∂l̄b

(C)) = 0, (D.4c)

+ 2b̄(D̄) + 1
4
(b̄(D) − b̄(A))− 1

4
(b̄(B) + 2b̄(D̄)) + βlb̄

(Ḡ)
l + βlb̄

(Ē)
l

− i
4
βlb̄

(H̄)
l + βl(∂lb̄

(D̄)) + 1
4
(b(D) − b(A)) + i

4
β̄ l̄b

(H̄)

l̄
− β̄ l̄(∂l̄b

(D)) = 0,

(D.4d)

+ 2b̄
(Ē)
i + 2b̄

(Ḡ)
i + b̄

(Ī)
i − ∂k(

1
4
b̄(B) + 2b̄(D̄))− b̄

(F )
i + 2βlb̄

(J̄)
li + βl∂ib̄

(Ē)
l

+ 8βlb̄
(Q̄)
li + βl(∂lb̄

(Ē)
i ) + b

(I)
i + 2b

(E)
i − 8β̄ l̄b

(P̄ )

l̄i
− β̄ l̄(∂l̄b

(E)
i ) = 0,

(D.4e)

− 3b̄
(F̄ )
ı̄ + 2iβlb̄

(Ō)
l̄ı + βl(∂lb̄

(F̄ )
ı̄ )− b

(F )
ı̄

+ 1
2
∂ı̄b

(C) − 2β̄ l̄b
(K̄)

l̄̄ı
− β̄ l̄∂ı̄b

(F )

l̄
− β̄ l̄(∂l̄b

(F )
ı̄ ) = 0,

(D.4f)

+ 2∂ib̄
(D̄) + 2b̄

(Ē)
i + 2b̄

(Ḡ)
i + b̄

(Ī)
i − ∂i(

1
2
b̄(B) + 4b̄(D̄)) + βl∂ib̄

(Ḡ)
l

+ 2βlb̄
(J̄)
li + 2βl∂ib̄

(Ē)
l + βl(∂lb̄

(Ḡ)
i ) + i

2
b
(H)
i − b

(I)
i − b

(G)
i

+ b
(E)
i − β̄ l̄b

(L)

l̄i
− 4β̄ l̄b

(P )

l̄i
− β̄l(∂l̄b

(G)
i ) = 0,

(D.4g)

− i∂i(b̄
(D) − b̄(A)) + 1

2
b̄
(H̄)
l ∂iβ

l − 1
2
βl∂ib̄

(H̄)
l + βl(∂lb̄

(H̄)
i )− b

(H)
i − 2ib

(G)
i

− i∂i(b
(D) − b(A))− 2ib

(E)
i − 2iβ̄ l̄b

(L)

l̄i
− 4β̄ l̄b

(Ō)

l̄i
+ 8iβ̄ l̄b

(P )

l̄i

− 1
2
b
(H̄)

l̄
∂iβ̄

l̄ + 1
2
β̄ l̄∂ib

(H̄)

l̄
− β̄ l̄(∂l̄b

(H)
i ) = 0,

(D.4h)

− 1
2
(b̄

(Ī)
i − ib̄

(H̄)
i ) + ∂ib̄

(D) − 1
2
βlb̄

(N̄)
li + 1

2
βl∂ib̄

(Ī)
l + 1

2
b̄
(Ī)
l ∂iβ

l + βl(∂lb̄
(Ī)
i )

− b
(I)
i + 1

2
(b

(I)
i + ib

(H)
i )− 2b

(E)
i − ∂ib

(D) − 2iβ̄ l̄b
(Ō)

l̄i
+ 8β̄ l̄b

(P )

l̄i

+ 1
2
β̄ l̄b

(M)

l̄i
− 1

2
β̄ l̄∂ib

(Ī)

l̄
− 1

2
b
(Ī)

l̄
∂iβ̄

l̄ − β̄ l̄(∂l̄b
(I)
i ) = 0,

(D.4i)

+ 2∂j(b̄
(Ē)
i + b̄

(Ḡ)
i + 1

2
b̄
(Ī)
i )− 1

4
∂i∂j b̄

(B) − 2∂i∂j b̄
(D̄) − 2∂ib̄

(F )
j

+ 2βl∂ib̄
(J̄)
lj + βl∂i∂j b̄

(Ē)
l + βl(∂lb̄

(J̄)
ij ) + 2b

(N)
ij + 2b

(J)
ij − 4β̄ l̄b

(S)

ijl̄

+ 2iβ̄ l̄b
(T )

il̄j
− β̄ l̄(∂l̄b

(J)
ij ) = 0,

(D.4j)

+ 4b̄
(K̄)
ij − 2∂j b̄

(F )
i − 16b̄

(Q̄)
ij − 1

2
∂i∂j b̄

(C) + 2βl∂ib̄
(K̄)
lj + 8βlb̄

(R̄)
lij

+ βl∂i∂j b̄
(F )
l + 16βl∂ib̄

(Q̄)
lj − 4βlb̄

(R̄)
ijl + βl(∂lb̄

(K̄)
ij ) + 3b

(K)
ij

− β̄ l̄(∂l̄b
(K)
ij ) = 0,

(D.4k)
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i
2
∂ib̄

(H)
̄ + ∂ib̄

(I)
̄ + ∂ib̄

(G)
̄ + b̄

(M)
ī − 2ib̄

(O)
̄i + 2ib̄

(Ō)
ī − 8b̄

(P )
ī

− 2∂ib̄
(E)
̄ + βl∂ib̄

(L)
l̄ + 8βlb̄

(S̄)
lī − 2iβlb

(T )
il̄ + 8βl∂ib̄

(P )
l̄

+ βl(∂lb̄
(L)
ī ) + i

2
∂̄b

(H)
i − ∂̄b

(I)
i − ∂̄b

(G)
i − b

(M)
ī − 2ib

(O)
ī

+ 2ib
(Ō)
̄i + 8b

(P )
ī + 2∂̄b

(E)
i − β̄ l̄∂̄b

(L)

l̄i
− 8β̄ l̄b

(S̄)

l̄̄i
− 2iβ̄ l̄b̄
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(Ō)
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ī − 2b̄

(P )
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Appendix E

Minimal Algebra on

Chiral Fields

The following follows from the superalgebra for a chiral (λ) or antichiral

(λ̄) scalar superfield. Although trivial, these special cases occur sufficiently

frequent to earn explicit treatment,

D2D̄2λ̄ = (8iGαα̇Dαα̇ − 8Dαα̇Dαα̇ + 4(D̄α̇R̄)D̄α̇ + 8R̄D̄2)λ̄,

(E.1a)

DαDαα̇λ = Dαα̇Dαλ− 2iGαα̇Dαλ, (E.1b)

DαDαα̇λ̄ = 2iR̄D̄α̇λ̄, (E.1c)

(DαD̄2λ̄) = 4(Gαα̇ − iDαα̇)(D̄α̇λ̄), (E.1d)

(DαD2λ) = 4R̄(Dαλ), (E.1e)

(D2Dαλ) = −2R̄(Dαλ), (E.1f)

(D2D̄α̇λ̄) = 4R̄(D̄α̇λ̄), (E.1g)

Dα(Dβλ)(Dβλ) = −(Dαλ)(D2λ), (E.1h)

(D̄α̇Dαα̇λ̄) = (Dαα̇D̄α̇λ̄)− 2iGα
α̇(D̄α̇λ̄), (E.1i)

(D̄α̇Dαα̇λ) = −2iR(Dαλ), (E.1j)
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(D̄α̇D2λ) = 4(Gαα̇ + iDαα̇)(Dαλ), (E.1k)

(DαDβλ) = 1
2
εαβ(D2λ), (E.1l)

(DαDαα̇D̄α̇λ̄) = −2iDαα̇Dαα̇λ̄+ 2iR̄D̄2λ̄+ 4Gαα̇Dαα̇λ̄. (E.1m)

Weyl variations for derivatives acting on chiral fields of Weyl weight 0

are given by
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= 0, (E.2a)
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]
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2
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