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Zusammenfassung

Da sehr starke Windereignisse das Entgleisen einiger Hochgeschwindigkeitszüge verur-

sachen können, ist Kenntnis über das Verhalten vom Windprozeß in extremen Be-

reichen notwendig. Die Windrichtung relativ zur Fahrtrichtung des Zuges spielt eine

entscheidende Rolle für die Stabilität des Zuges, so daß diesem Aspekt Rechnung

getragen werden muß. Zunächst wird das Sturmverhalten an einer Wetterstation

betrachtet. Ein Extremwertmodell für Windgeschwindigkeiten, das auch die Wind-

richtung berücksichtigt, wird sowohl auf Rohdaten als auch auf modifizierte Daten,

die die Kraft des Windes in eine bestimmte Richtung repräsentieren, angewendet.

Extreme Quantile und Überschreitungswahrscheinlichkeiten werden geschätzt und

zugehörige Konfidenzintervalle bestimmt. Ein gängiges Problem mit Winddaten ist,

daß pro Zeitintervall nur die größte Beobachtung aller Richtungen registriert wird,

während Beobachtungen in allen anderen Richtungen des selben Zeitintervalls un-

beachtet bleiben. Um Modellschätzungen zu verbessern schlagen wir ein Modell

vor, das diesem Problem Rechnung trägt. Anhand einer Simulationsstudie werden

die Eigenschaften des neuen Modells in unterschiedlichen Situationen untersucht.

Dabei wird das Verhalten des neuen Modells mit dem eines herkömmlichen Modells

verglichen und auf der Basis des mittleren quadratischen Fehlers extremer Quantile

beurteilt. Sowohl in der Simulationsstudie als auch bei nachfolgender Anwendung

auf reale Winddaten zeigt das neue Modell wünschenswerte Eigenschaften.

Daraufhin wird ein kürzlich vorgestelltes multivariates Extremwertmodell betrachtet,

das ein breites Spektrum verschiedener Abhängigkeitsstrukturen erlaubt und des-

halb für viele Anwendungen sehr geeignet ist. Da der Abhängigkeitsgrad dieses

Modells von mehreren Größen bestimmt wird, ist eine exakte Quantifizierung der

Abhängikeitsstärke nicht einfach. Zur Beurteilung der Abhängigkeit betrachten wir

deshalb visuelle Kenngrößen, deren Verhalten in einer Simulationsstudie untersucht
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wird. Das multivariate Extremwertmodell wird im weiteren auf Winddaten zweier

Wetterstationen unter Berücksichtigung der Windrichtung angewendet. Mit diesem

Modell lassen sich Aussagen über das gemeinsame Windverhalten beider Stationen

machen. Es trägt somit zur Beurteilung bei, ob Sturmereignisse eher lokal oder über

weitere Teile einer Bahnstrecke auftreten.

Abstract

Very strong wind gusts can cause derailment of some high speed trains so knowledge

of the wind process at extreme levels is required. Since the sensitivity of the train to

strong wind occurrences varies with the relative direction of a gust this aspect has to

be accounted for. We first focus on the wind process at one weather station. An ex-

treme value model accounting at the same time for very strong wind speeds and wind

directions is considered and applied to both raw data and component data, where

the latter represent the force of the wind in a chosen direction. Extreme quantiles

and exceedance probabilities are estimated and we give corresponding confidence

intervals. A common problem with wind data, called the masking problem, is that

per time interval only the largest wind speed over all directions is recorded, while

occurrences in all other directions remain unrecorded for this time interval. To im-

prove model estimates we suggest a model accounting for the masking problem. A

simulation study is carried out to analyse the behaviour of this model under dif-

ferent conditions; the performance is judged by comparing the new model with a

traditional model using the mean square error of high quantiles. Thereafter the

model is applied to wind data. The model turns out to have desirable properties in

the simulation study as well as in the data application.

We further consider a multivariate extreme value model recently introduced; it al-

lows for a broad range of dependence structures and is thus ideally suited for many

applications. As the dependence structure of this model is characterised by several

components, quantifying the degree of dependence is not straight forward. We there-

fore consider visual summary measures to support judging the degree of dependence

and study their behaviour and usefulness via a simulation study. Subsequently,

the new multivariate extreme value model is applied to wind data of two gauging

stations where directional aspects are accounted for. Therefore this model allows
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for statements about the joint wind behaviour at the two stations. This knowledge

gives insight whether storm events are likely to be jointly present at larger parts of

a railway track or rather occur localized.
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Chapter 1

Introduction

Technical innovations often face the risks of failure posed by natural forces. Not

properly accounting for such risks can have catastrophic consequences. One of these

forces is storms and strong wind events, and there are many applications where

a solid knowledge of the present storm behaviour is essential. Examples include

large buildings, hang bridges, and other design structures. An application we are

particularly interested in is modern high speed trains, which are built with light

materials to reach a very high velocity. Both, the increased speed and lower weight

of these trains, reduce their stability and they are consequently more sensitive to

strong storms. An important aspect in this context is the direction of the wind. The

risk of derailment is highest if the wind direction is perpendicular to the motion of

the train and vanishes if it is parallel to the rails.

To judge the risk of a strong wind event with potential of causing derailment, knowl-

edge of the wind process at extreme levels is required. The most promising approach

is extreme value statistics. It joins two important pieces together: an extensive

mathematical theory providing distributions derived for this problem, and informa-

tion contained in collected data properly exploited by statistical techniques adapted

to this situation. This combined tool then allows us to make judgement in regions

where data are too scarce to provide solid empirical information or are even beyond

any observations made so far.

Extreme value techniques have been applied and proven to be successful in very

1



CHAPTER 1. INTRODUCTION 2

many different areas. Temperature and rainfall data are two examples. It is invalu-

able for designing sea-defences protecting against coastal flooding or in developing

off-shore designs. Applications to air-pollution are often related to pollution stan-

dards (Küchenhoff and Thamerus, 1996). But also non-environmental applications

are common as, for example, to assess portfolio risks, material-strength, or even to

assist in judging whether exceptional sport events may have been achieved by the

support of drugs (Robinson and Tawn, 1995).

Applications to storm events are also common. The wind behaviour in Germany is

dominated by storms resulting from a differential in pressure and by thunderstorms.

For applications to complex dynamic wind systems such as tropical storms see for

example Casson and Coles (1998) or Walshaw (2000). Walshaw (1991) discusses

univariate extreme value statistics applied to wind gusts, and Walshaw and Ander-

son (2000) consider how to incorporate information about average wind speeds to

improve knowledge about gust behaviour. An important feature considered in this

thesis is directionality of extreme winds. Coles and Walshaw (1994) suggest a model

for extreme wind speeds allowing for smooth directional variation in extreme wind

occurrences.

We analyse wind data provided by the Deutscher Wetterdienst DWD (German

weather service) for different gauging stations nearby a railway track from Han-

nover to Würzburg (see Firgure 1.1). They consist of 22 years of daily maxima

and the mean wind direction of the hour they occurred within. Additionally we

have for the weather station Würzburg data of ten minutes maxima and their cor-

responding directions. These gauging stations were chosen since the railway track

they are nearby has north-south orientation. So with the dominant wind direction

being west, gusts roughly hit the train perpendicular to its direction of movement

and therefore pose the highest risk.

Knowledge of the storm behaviour is essential for the Deutsche Bahn (German Rail)

to make effective safety decisions. These may include building wind walls at certain

exposed or dangerous parts of the track, the installation of a wind warning system at

the track, or if necessary, trains need to reduce speed at certain parts of the track or

at times with a high storm risk. Methods discussed in this thesis, however, are not
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restricted to high speed trains, as already mentioned. For example, knowledge of

directionality of storm events may lead to considerable cost savings when planning

a large building. Depending on the application at hand, it may be more appropriate

to work directly with the wind data or transform them, in a way to be made more

precise, to represent the force of the wind at a specific point of a train or a design

structure exposed in a certain direction.

When analysing the wind behaviour of just one weather station, the random process

may be assumed as bivariate with wind speed and wind direction as components.

It is, however, more convenient to break up this bivariate random variable into the

univariate random variable direction and the conditional variable wind speed given

a certain direction. The latter one is often more complex to model, and mostly

interest is just in extreme wind speeds for a given direction. The directional dis-

tribution may be estimated empirically, as there is usually enough data, so joint

probabilities are easily calculated from the two distributions. When considering two

or more stations, we are also interested in the dependence structure and thus apply

multivariate methods.

The thesis is structured as follows. In the subsequent sections of this chapter we

give a short overview of univariate extreme value theory and practical aspects rele-

vant for this thesis. Thereafter, the data we have are considered, and we introduce

some of the notation used in this work. Chapter 2 is a reviewed and modified ver-

sion of Payer and Küchenhoff (2004). In that chapter we discuss the application

of a model employing the k largest values and accounting for directionality in the

context of high speed trains. A common problem with wind data, called the mask-

ing problem, is discussed as well. This problem arises from the way of recording

wind data by registering information about wind speeds only in the direction where

the maximum occurred. In Chapter 3 we suggest an approach to account for this

problem by including the knowledge in other directions to be no larger than the

biggest wind speed observed in this day. In Chapter 4 the conditional multivariate

extreme value model introduced by Heffernan and Tawn (2004) is considered. It

provides much greater flexibility in modelling the dependence structure at extreme

levels than earlier models did. The dependence structure is, however, determined by

several parameters and a residual distribution, making it difficult to state the degree
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of dependence in a simple number. Furthermore, direct comparisons to earlier mod-

els is not straight forward. We analyse different visual measures summarizing the

dependence structure. Due to the great flexibility of the conditional multivariate

extreme value model, it is ideally suited for jointly analysing the wind behaviour

at extreme levels for two stations accounting simultaneously for direction. This ap-

proach is considered in Chapter 5. In comparison with a sector by sector analysis,

this approach has the advantage of considerably reducing the number of parameters

as well as allowing information from neighbouring directions to be employed.

Most of the programs used in this thesis were coded up by the author himself. Some

codes of Jan Heffernan and Stuart Coles are employed and extended. The statistical

software used is R, and in some cases requiring high computational performance the

program C was incorporated using the GNU compiler gcc.

1.1 Some univariate techniques for extreme events

We give a short overview of univariate extremes relevant to the work presented in

this thesis. Since interest is in rare events often outside the range of data, extreme

value theory and statistics is based on parametric distributions. First, the maxi-

mum of independent and identically distributed random variables and possible limit

distributions are considered, forming the backbone of extreme value theory. How to

access this theory for practical purpose and further statistical aspects are discussed

thereafter. For a more complete introduction we refer to Embrechts, Klüppelberg

and Mikosch (1997), Coles (2001), Beirlant, Geogebeur, Segers and Teugels (2004),

de Haan and Ferreira (2006), Leadbetter, Lindgren and Rootzén (1983), and Resnick

(1987).

1.1.1 Theoretical results

Let X1, . . . , Xn be independent and identically distributed (iid) random variables

where Xi, i = 1, . . . , n, has distribution function F with upper endpoint xF =

sup{x ∈ IR : F (x) < 1}. The classical approach to extremes is in considering the
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distribution of the maximum

Mn = max{X1, . . . , Xn}, n ∈ IN,

that is P (Mn ≤ x) = F n(x). In many applications F is not known exactly, and

consequently, the exact distribution of Mn is unknown. To find a more general result

it is natural to consider the asymptotic behaviour of Mn. As n→ ∞, however, F n is

a degenerate distribution converging to the upper end point xF . Thus the growth of

Mn has to be adjusted properly to avoid degeneracy. In analogy to the central limit

theorem, an apparent choice is a linear transformation (Mn− bn)/an with sequences

of coefficients bn ∈ IR and an > 0. The key result, attributed to Fisher and Tippet

(1928) and Gnedenko (1943), states that if there exist sequences of constants an > 0

and bn, such that, as n→ ∞,

P

(

Mn − bn
an

≤ x

)

→ G(x) (1.1)

for some non-degenerate distribution G, then G belongs to one of the three families

Gumbel : Λ(x) = exp {− exp(−[(x− b)/a])} , −∞ < x <∞

Fréchet : Φα(x) =

{

0 x ≤ b

exp(−[(x− b)/a]−α) x > b, α > 0

Weibull : Ψα(x) =

{

exp(−(−[(x− b)/a])α), x < b, α > 0

1 x ≥ b,

where convergence is in distribution. Collectively the three distributions are referred

to as extreme value family. The Weibull occurring in the extreme value family is a

reversed version of the usually considered standard Weibull. It is worth mentioning

that for each member G of the above families G(ax + b) = G∗(x) with a > 0 and

b ∈ IR, G and G∗ are belonging to the same family. Furthermore, if G belongs to

one of the above families, then for any positive n there exist an > 0 and bn so that

Gn(anx+bn) = G(x) holds. The latter property is unique to the three extreme value

families and often referred to as max-stability.

In many applications the iid assumption underlying the above stated limiting result

is not satisfied. Leadbetter et al. (1983) give conditions under which the limiting
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distribution of the maximum of a strictly stationary time series is still one of the ex-

treme value families. Two of these conditions are referred to as D and D′. Condition

D insures dependency to be negligible for two variables being separated far enough

in time. So for a stationary sequence (X̃i)i≥1 with marginal distribution F satisfying

D its maximum, M̃n, has the limiting distribution P ((M̃n− bn)/an < x) → G̃(x) as

n→ ∞. The relation of this limiting distribution with its counterpart based on iid

random variables is G̃ = Gδ where δ ∈ [0, 1] is called the extremal index accounting

for the reduction of independent information. Condition D′ focuses on the short-

term dependence behaviour of a sequence and together with D states the limiting

distribution of the maximum to behave like an iid sequence.

1.1.2 Statistical aspects

Working with three different limit distributions is not of practical advantage, as it

requires a choice to be made in advance. A unification of these three types into a

single family (von Mises, 1954; Jenkinson, 1955), known as the generalized extreme

value distribution (GEV), is given by

G(x) = G(ξ,µ,σ)(x) = exp

{

−

[

1 + ξ

(

x− µ

σ

)]−1/ξ
}

(1.2)

whenever {x : 1 + ξ(x− µ)/σ > 0} with µ ∈ IR and σ > 0 being location and scale

parameters, respectively. The shape parameter ξ ∈ IR determines whether or not

the distribution has an upper bound. The former is true whenever ξ < 0, which

corresponds to a Weibull distribution with upper endpoint xF = µ−σ/ξ, while there

is no upper limit for ξ > 0, which is of Fréchet type and ξ = 0, being interpreted as

ξ → 0 yielding a Gumbel distribution.

The sample size n is finite in any application. For large n it is natural to assume the

limiting distribution arising from equation (1.2) to be a reasonable approximation.

Focusing directly on the distribution of the maximum may be represented as

P (Mn ≤ x) ≈ G((x− bn)/an) = G∗(x),



CHAPTER 1. INTRODUCTION 7

where G and G∗ are two different members of the same family given by (1.2) differ-

ing in location and scale. Using G∗ does not require knowledge of an and bn, so it

can be directly fitted to a series of maxima.

In applications the sample size is assumed to be large enough for the limit dis-

tribution to serve as a good approximation to the true one. Consequently, the

limit distribution is supposed to hold exactly. Common methods of estimation are

maximum likelihood and Bayesian estimation (Coles and Powell, 1996; Stephenson

and Tawn, 2004). A frequently mentioned competitor is the probability weighted

moments (PWM) estimator, where estimation is based on equating these modified

theoretical moments to their empirical counterparts. Hosking (1985) shows that for

small sample sizes the PWM method is superior to maximum likelihood. However,

it is not applicable for ξ ≥ 1, as the expectation and higher moments do not exist,

so the parameter space is a priori restricted to (−∞, 1). Coles and Dixon (1999)

clarify that the supposed superiority for small samples of the estimators based on

probability weighted moments is due to this restriction of the parameter space. A

major drawback of PWM is that it does not allow for extension to more complex

problems like including covariable information (Smith, 1990). Since covariable in-

formation is essential to the present work, PWM is not a possible choice. We will

use maximum likelihood and methods derived from it.

Prescott and Walden (1980) discuss maximum likelihood estimation for the GEV,

giving exact expressions for the calculation of the expected Fisher information ma-

trix. Many authors, however, suggest the observed Fisher information to produce

better results (Smith, 1990). With the range of the distribution depending on the

parameters of the GEV, common regularity conditions underlying maximum like-

lihood theory are not satisfied. However, Smith (1985) shows that for ξ > −1/2

the asymptotic theory underlying maximum likelihood is still applicable. In par-

ticular the asymptotic normality for parameter estimates holds. Distributions with

ξ ≤ −1/2 relate to a very short upper tail, which are rather an exception in envi-

ronmental applications.

Extreme value statistics is usually considered if interest is in very rare events possibly

outside the range of data observed so far. Having estimated the parameters of the
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GEV, calculation of the probability of any event is immediate from equation (1.2).

Another very common application is to consider a high quantile xp = G−1(p) given

by

xp = µ−
σ

ξ
{1 − [− log(p)]−ξ},

where, for estimation of the quantile, parameters are replaced by their estimates.

Often the maximum is taken over an interval corresponding to one year, so a com-

mon way to state quantiles is in terms of years. In this context quantiles are called

return levels and the J-year return-level with p = 1− 1/J is given by x(J) = x1−1/J .

Extreme events are rare in nature, and consequently the amount of observations to

draw conclusions from is small. So it is necessary to make the best use of available

information. In many applications there is much more data recorded than just the

maximum. There are two common approaches to include additional information.

One approach is to not only consider the maximum, but also other order statistics.

The other possibility is to consider all values which are extreme in the sense of ex-

ceeding a certain high value.

An extension of (1.2) is given by considering the k largest values with k ∈ {1, 2, . . . }.

Let x(1) ≥ x(2) ≥ · · · ≥ x(n) be the ordered values of a sample of size n. Then the

asymptotic distribution of the k largest order statistics has for x = (x(1), . . . , x(k))

the density given by

g(k)(x) = σ−k exp

{

−

[

1 + ξ

(

x(k) − µ

σ

)]−1/ξ

−

−

(

1 +
1

ξ

) k
∑

l=1

log

[

1 + ξ

(

x(l) − µ

σ

)]

}

(1.3)

whenever {x(l) : 1 + ξ(x(l) − µ)/σ > 0, l = 1, . . . , k}. For k = 1 this reduces to the

density of the GEV given in (1.2). Statistical aspects are discussed by Smith (1986)

and Tawn (1988).

An alternative approach is to consider values which are extreme in the sense of

exceeding a large, specified value. The generalized Pareto distribution (short GPD)
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arises from the conditional distribution of exceedances X of a high threshold uX .

If X is in the domain of attraction of an extreme value distribution given by (1.2),

then as uX approaches xF

P (X ≤ x|X > uX) ≈ 1 −

[

1 + ξ
x− uX
β

]−1/ξ

+

for x > uX ,

where β > 0 and ξ ∈ IR are a scale and a shape parameter, respectively, and

m+ := max{0,m} (this is made precise in Pickands (1975)). The case ξ = 0 is

interpreted as ξ → 0, resulting in the well–known exponential distribution. There

is a strong relation between the GPD and GEV; in particular, the shape parame-

ters ξ of the two distributions coincide. The scale parameter of the GPD relates

to parameters of the GEV by β = β(uX) = σ + ξ(uX − µ), where β(uX) stresses

the dependence on the choice of threshold. Statistical application of the GPD is

discussed by Davison and Smith (1990).

Another approach, which directly focuses on the upper tail of the distribution F of

X, is to use the GEV for all values exceeding a certain high value u. Let us assume

that (1.1) holds for some large n, and we further assume the existence of some u

close to the upper endpoint xF so that

P (Mn ≤ anx+ bn) = {F (anx+ bn)}
n ≈ G+(x)

holds for each x satisfying anx+bn > u , where G+ is given by (1.2). Then it follows

that {F (y)}n ≈ G+((y−bn)/an) = G(y) for y > u, and consequently F (y) ≈ G1/n(y)

holds if y > u. G and G1/n have the same shape parameter ξ, while the parameters

µ∗ and σ∗ of G1/n are given by µ∗ = µ + (n−ξ − 1)σ/ξ and σ∗ = n−ξσ. Advantage

of this approach is the direct focus on GEV parameters, so return-level calculation

is immediate after parameters are estimated. This approach is used in Chapter 3.

The alternatives to just considering maxima are capable of better exploiting infor-

mation within the data leading to a higher precision of estimates. However, the

number of order statistics should not be too high or the threshold too low, as this

may invalidate the asymptotic assumptions justifying the use of these approaches.
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1.2 Description of the data

The data being analysed in this thesis are from the meteorological gauging stations

Würzburg and Hannover, which constitute the two endpoints of a railway track

for high speed trains. A schematic map of Germany and the track are shown in

Figure 1.1. It can be seen from the map that the orientation of the track is in

north south direction. Recent analyses for German wind data based on ten-minutes

averages have been carried out by Kasperski (2002).

Figure 1.1: Schematic map of Germany and the position of the railway track.

The data consist of 22 years of daily maximum wind speeds corresponding to a

2 - 3 seconds gust and the time of day they occurred. The recording period is
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from 1 January 1976 to 31 December 1997. The wind-direction of the maximum

itself is not available, but the average of the wind-direction within each hour has

been recorded with an accuracy of 10◦. Thus we take the average wind-direction of

the hour in which the maximum occurred as its direction. Analyses of data from

shorter time intervals for one year have shown that the hourly average of the wind-

direction constitutes a reliable measurement for the exact direction corresponding

to the maximum.
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Figure 1.2: (Würzburg) Boxplots of the wind speeds of all observations within the 22 years
for different directions (left); histogram of directions (right).
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To get an impression of the data we consider plots for the 7892 observations from

Würzburg left after removing 144 missing values. Figure 1.2 shows boxplots of the

wind speeds of daily maxima for all directions as well as a histogram reflecting cor-

responding frequencies of directions. The angle φ = (0) = 360 given in degrees is

defined as the direction north, and angles are recorded clockwise. The graphs indi-

cate the wind process to change in a smooth fashion over directions. The strongest

gusts as well as the highest frequency of gusts are in western direction, but also the

opposite direction produces high wind events. Therefore the main wind occurrences

are approximately perpendicular to the track. For the weather station Hannover

there are 7909 data after removing missing values. For both stations, wind speeds

are given in metres/second (m/s) with an accuracy of 0.1 m/s for an effective height

of 10 m above ground level.

For a period of ten years, from 1 January 1993 to 31 December 2002, we have wind

maxima and their corresponding direction of ten-minutes intervals for the Würzburg

station. With missing values and after deletion of some obvious mis-recordings, the

data set consists of 486267 observations.

Let the pair (R,Φ) describe the daily maximum wind speed R having direction Φ,

where R = [0,∞) and Φ ∈ Ω ⊂ (0, 2π]. In applications Ω is a finite subset of (0, 2π].

Our data, for example, partition (0, 2π] into 36 equally spaced sectors, which are

referred to by their center-points in degree, that is {10◦, 20◦, . . . , 360◦}, so that with

b = 2π/360◦ we have Ω = {b·10◦, . . . , b·360◦} represented in radians. Angles in radi-

ans and degrees are used according to convenience, and we drop the degree-symbol if

the unit is clear from the context. The conditional random variable Rφ = (R|Φ = φ)

is used to describe the conditional distribution of wind speed given wind direction φ.

In this thesis we consider two types of data depending on the context and application.

The first type simply employs the raw data as recorded. The second type is to

consider the force of the wind in a specified direction. For a given wind event Rφ

in direction φ, the power of the wind in direction α is R̃α = Rφ cos(φ − α). To

distinguish the two approaches we refer to the second as component or resolved

data. So while the first type of data reflects the nature of the wind process, the

component data focus on the power of the wind, which may be more appropriate
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for some applications within an engineering context.



Chapter 2

Modelling extreme wind speeds at

a German weather station

In this chapter we consider modelling extreme wind speeds for one weather station,

Würzburg. A key factor is to take directionality into account. In the context of

high speed trains this knowledge about extreme wind speeds in different directions

is crucial. Both, the fact that the trains reach very high velocities as well as lower

weights due to the use of light materials to reach this goal, reduce the stability of

the train and make them more sensitive to strong wind events which are not paral-

lel to the rails. Therefore models to describe directional behaviour of extremes are

necessary.

The problem we face is to assess the risk of derailment caused by extreme gusts. Sev-

eral factors like speed of the train, track curves, and others have an influence on this

risk. One apparent and important factor is the wind speed itself. As the stability of

the train to wind varies with relative wind direction this variable has to be taken into

account as well. For the analysis of wind speeds allowing for directional variation we

apply a model proposed by Coles and Walshaw (1994). It uses the k largest order

statistics of every year to estimate the parameters of the generalized extreme value

distribution (GEV), the asymptotic distribution of annual maxima. The parameters

of the GEV vary according to harmonic terms with direction. Incorporation of this

functional relationship allows transfer of information over directions, so precision of

estimates can be improved in comparison with a sector by sector analysis.

14
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We consider two approaches. The first simply employs the raw data as they are

recorded. The second uses wind speeds resolved to component data to reflect the

power of the wind. We discuss both methods and their different interpretation and

usefulness in the context of probabilistic assessment.

After having estimated the model, there are two possibilities of probabilistic assess-

ment we look at. The first one is the classical approach, where extreme quantiles,

often referred to as return-levels, are calculated; here, the exceedance probability is

fixed and the corresponding wind speed is calculated. The second possibility is to fix

a critical wind speed value and calculate its probability of being exceeded. The first

approach is sensible if we are interested in the wind speeds we must expect to face

in order, for example, to think about measures like wind protection. The second is

favourable if we know the wind speed which leads to derailment of the train at a

particular point of the track.

To get an impression of the precision of either, the return-level or the exceedance

probability, confidence intervals are calculated. Two methods are commonly ap-

plied: the so called delta method, which yields symmetric intervals, and the profile

likelihood method, allowing for asymmetric intervals. We discuss both methods.

All analyses and conclusions are based on the assumption that the applied model

using harmonic terms is an appropriate choice and that the data used are enough to

yield a good approximation to the applied model, which is justified by asymptotic

arguments. The model’s performance is investigated through a simulation study.

Then for one particular choice confidence intervals of extreme quantiles are used to

judge the adequacy.

By just recording the maximum of a certain time interval (say, a day), for analysing

extremes over directions there is always the problem of extremes in other directions

than the maximum being missed in the resulting data set. This problem, often

referred to as ’masking’, is partially alleviated by using components. We therefore

compare daily maxima and components with maxima of ten-minutes intervals for

two subsequent years.
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2.1 Theoretical Background

2.1.1 Model for extreme wind speeds

In investigating processes at extreme levels it is common practice to employ para-

metric models which have an asymptotic justification. The classical approach is to

consider the maximum of a large iid sample, which in the case of non-degeneracy

converges to the GEV distribution given in (1.2). We analyse the annual maximum

of wind speeds, which may be regarded as the maximum of 365 daily maxima. As

the asymptotic theory is still valid under mild dependence conditions (Leadbetter

et al., 1983), the slight deviation from the independence assumption is not essential.

We therefore assume the GEV to be an appropriate model for annual maxima.

Taking only the maximum value of each year is apparently a high loss of informa-

tion; as, additionally, in most applications only data from a few years are available,

the precision of resulting estimates is low. Exploiting the information of other high

values leads to a generalization of the GEV which is the limiting distribution of the

k largest order statistics. This distribution is characterized by the same parameters

as the GEV.

The random variable Rφ is defined as the wind speed R given that it occurred in di-

rection φ ∈ Ω ⊂ (0, 2π], while we denote the corresponding outcome by rφ. Further-

more, we denote the order statistics for a given direction φ by r
(1)
φj ≥ r

(2)
φj ≥ r

(3)
φj , . . . ,

where j = 1, . . . , N denotes the time interval or year considered. Then the joint

density of rφj = (r
(1)
φj , . . . , r

(k)
φj ) for {r

(l)
φj : 1 + ξφ(r

(l)
φj − µφ)/σφ > 0, l = 1, . . . , k} is

h
(k)
φj (rφj) = σ−k

φ exp







−

[

1 + ξφ

(

r
(k)
φj − µφ

σφ

)]−1/ξφ

−

−

(

1 +
1

ξφ

) k
∑

l=1

log

[

1 + ξφ

(

r
(l)
φj − µφ

σφ

)]}

. (2.1)
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Since we assume the wind process to vary smoothly over directions, we model the

dependence of the parameters on direction φ by a continuous function. This requires

a flexible function allowing for a broad range of possible variations, as well as it needs

to satisfy circular boundary conditions. The functional relationship taken here is

given by harmonic terms having the form

τc(φ) = ac +
nc
∑

t=1

bct cos(tφ− wct), (2.2)

with τc, c = 0, 1, 2, corresponding to the parameters ξφ, µφ, and σφ. For the model

to be well defined the restrictions bct ≥ 0 and 0 < wct ≤ 2π are imposed while

ac ∈ IR. With the parameters of interest, namely ξφ, µφ, and σφ, being restated

accordingly by ac, bct, and wct, nc is the number of harmonic terms necessary to

account for the variation in direction. The model is therefore determined by a total

number of 3 + 2
∑2

c=0 nc parameters. Let N be the number of intervals, say years,

and k denote the number of order statistics for a subset Ω ⊂ (0, 2π], then, assuming

the wind speeds to be independent over different directions, the logarithm of the

likelihood is

l(ϑϑϑ) =
∑

φ∈Ω

N
∑

j=1

log h
(k)
φj (rrrφj), (2.3)

with h
(k)
φj being the joint density given in (2.1). After substituting the parameters

of the density by harmonic terms as given in (2.2) usual maximization procedures

will supply parameter estimates of ac, bct, and wct. Related standard errors are

calculated from the observed Hessian HO = −∇2l(ϑϑϑ) evaluated at ϑϑϑ = ϑ̂ϑϑ, where ϑϑϑ

denotes the vector of all parameters ac, bct, and wct.

The alternative approach is to use component data, which implies a processing of

data before analysing them. For each direction α the data consist of all values

R̃α = Rφ cos(α − φ) whenever |α − φ|(modulo π) < π/2 holds and 0 otherwise;

Rφ represents a gust in direction φ. From these values the k largest ones of any

direction contribute to the likelihood in the usual way. The dependence induced by

the processing procedure does not alter the validity of using maximum likelihood

estimation assuming independence as in (2.3) to obtain an asymptotically consistent

estimate of ϑϑϑ; but the dependence needs, however, to be accounted for when calcu-
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lating the standard errors of parameter estimates. Let l(ϑϑϑ) denote the logarithm of

the likelihood as given in (2.3) stressing the dependence on parameters. Then, by

applying an approximation using Taylor series expansion, the covariance matrix of

ϑ̂ϑϑ becomes

cov(ϑ̂ϑϑ) ≈ H−1VH−1, (2.4)

where H = −E(∇2l(ϑϑϑ)) and V = cov(∇l(ϑϑϑ)); ∇ and ∇2 denote gradient and Hes-

sian, respectively. Dependence across directions invalidates the equality H = V.

To estimate the covariance matrix the following method may be applied: let h
(k)
φj

denote the density of the k largest order statistics in year j; with the annual contri-

butions uj(ϑϑϑ) = ∇
∑

φ∈Ω log h
(k)
φj (rφj) being independent and identically distributed

random variables, the score vector can be restated as ∇l(ϑϑϑ) =
∑N

j=1 uj(ϑϑϑ) =
∑N

j=1

[

∇
∑

φ∈Ω log h
(k)
φj (rφj)

]

and therefore its corresponding covariance matrix is

given by

V = cov(∇l(ϑϑϑ)) = NVuj
,

where Vuj
= cov(uj(ϑϑϑ)). An apparent estimator of Vuj

is

V̂uj
=

1

N

N
∑

j=1

uj(ϑ̂ϑϑ)uj(ϑ̂ϑϑ)′.

Substitution of Vuj
by V̂uj

and consequently V by V̂ as well as replacing the

expected Fisher information matrix H−1 by its observed counterpart yields, when

applying (2.4), an estimate of the desired covariance matrix.

2.1.2 Probabilistic assessment via quantiles

Traditionally, quantiles G(rp) = p or an equivalent formulation, frequently used in

the context of extreme value statistics, return-levels G(r(J)) = 1 − 1/J ,

r
(J)
φ = µφ −

σφ
ξφ

{1 − [− log(1 − 1/J)]−ξφ}, (2.5)

are the quantities of interest. There are two methods of calculating confidence

intervals of return-levels, which are commonly applied. A detailed treatment of

both methods in the simple case of non-directional modelling may be found at Coles
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(2001). The first one, often referred to as delta method, is to construct a symmetric

interval by employing the asymptotic normality of the estimated return-level; the

corresponding variance is calculated via an approximation based on Taylor series

expansion,

V
r
(J)
φ

≈ d′Vϑϑϑd. (2.6)

In (2.6) we have d = ∇$
(J)
φ (ϑϑϑ), with $

(J)
φ (ϑϑϑ) = r

(J)
φ denoting the return-level given

in (2.5) stressing dependence on the vector of parameters ϑϑϑ.

The alternative approach to calculate confidence intervals is the so called method

of profile likelihood, which is derived from a likelihood ratio test. We first express

one parameter, say the constant a1 of the harmonic term of µφ, as a function of the

return-level r
(J)
φ and all remaining parameters. Using (2.5) and (2.2) this is

a1 = r
(J)
φ +

τ2φ
τ0φ

{

1 − [− log(1 − 1/J)]−τ0φ
}

− (τ1φ − a1), (2.7)

where τcφ, c = 0, 1, 2, are the parameters according to (2.2) at the point φ. Max-

imization of the likelihood (2.3) after substitution of a1, and maximizing over a

reasonable range of return-level-candidates r
(J)
φ for every φ ∈ {10, . . . , 360} yields,

after comparison with the required quantiles of the χ2-distribution, the desired con-

fidence bands.

2.1.3 Probabilistic assessment of exceedances

While the preceding paragraph focuses on calculating extreme quantiles, the strat-

egy here is to determine the exceedance probability for a given critical value, which

in the subsequent application is the critical wind speed. Let vcrit be this critical

value, then from (1.2) we get the probability of vcrit being exceeded in any one year

by P (R > vcrit) = 1 − G(ξ,µ,σ)(vcrit) =: ν(ϑϑϑ). In practice, however, the parameters

are replaced by their estimates, which are subject to sampling error, and so, in turn,

is the estimated probability of an annual maximum above the critical value. To

assess the precision of the estimated exceedance probability, confidence bounds or

bands are desirable.



CHAPTER 2. MODELLING EXTREME WIND SPEEDS AT ONE LOCATION 20

One way to calculate confidence intervals is via the delta method. Using approxi-

mation (2.6) by replacing d with d = ∇ν(ϑϑϑ) yields the variance of the exceedance

probability. Because of the approximate normality, it is again straightforward to

calculate confidence bounds. It is worth mentioning that this way of determining

confidence intervals may result in a negative lower interval bound; the lower interval

bound is set equal zero in this situation. When using component data the covariance

matrix Vϑϑϑ is replaced by (2.4).

It is also possible to apply the profile likelihood method to gain confidence intervals

for the exceedance probability. Let p = 1/J and replace r
(J)
φ with vcrit, then equation

(2.7) can be restated as

a1 = vcrit +
τ2φ
τ0φ

{

1 − [− log(1 − p)]−τ0φ
}

− (τ1φ − a1). (2.8)

For the calculation of the confidence intervals we now require p to vary across a

reasonable interval and maximize the likelihood at each step. The profile likelihood

intervals become the more asymmetric the more extreme the values are they are

calculated for.

2.2 Simulation study

To investigate the performance of the model a simulation study is carried out. Due

to the complex structure of the model direct simulation of the distribution of the r

largest order statistics is not feasible. An alternative approach is to use the largest

values of a distribution which is easy to simulate from and which has the same

upper tail as the distribution of daily maxima. This can be achieved by employing

the max-stability property of the GEV, restated here as

F (x) = G1/n(x), (2.9)

which yields a distribution F being again of extreme value type with a change in

the parameters µφ and σφ, while ξφ remains the same. By taking n = 365 in (2.9),

we do not assume the distribution F to be the distribution of daily maxima but it

has the same upper tail as the latter. So for values of x near the upper endpoint we
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can replace simulated values from the distribution of daily maxima by those of F .

The simulation procedure then works as follows. We assume the true parameters

to be the estimated values described in Section 2.3, see Table 2.3. As the data are

discretized to 10◦, we will have φ ∈ {10, . . . , 360}. For any direction φ the param-

eter values of ξφ, µφ, and σφ are re-calculated from the given parameters ac, bct,

and wct using (2.2). Thereafter, n values are simulated from the distribution F for

each direction φ ∈ {10, . . . , 360} constituting one block, which corresponds to one

year; 22 blocks each of which has length n = 365 are simulated and joint together;

thus simulated data correspond to the number of observed wind data. Finally, the

r largest values for each combination of block and direction are extracted and used

for model estimation.

As already mentioned, important quantities in applications are extreme quantiles.

It is therefore sensible to judge the model by its return-levels. A natural approach

is to first calculate the return-levels from simulated data for every point within 10◦

and 360◦; then compute (pointwise) corresponding confidence bands for them; and

finally check (again pointwise) whether or not the true values are lying within the

confidence bounds. We simulate 200 samples.

In this simulation study we take the delta method yielding symmetric confidence

intervals. In the following we use a model having a constant for the parameter

ξφ, and one and four harmonic terms to describe variation in σφ and µφ, respec-

tively; this model is abbreviated (0,4,1)-model in the subsequent. After having

simulated data for any direction using the method described above, the parameters

of a (0,4,1)-model and return-levels for 10, 50, 100, and 1000 years with correspond-

ing 95%-confidence bands based on the delta method are estimated using maximum

likelihood. Due to high computational costs the simulation size being 200 is rather

small. However, we can recognize basic features and get an impression of the model’s

performance from this number of replicates.

The results are shown in Table 2.1; for every direction and any return-level the

table states the number of values smaller than the lower interval bound in the

upper line, while the number of cases exceeding the upper bound are given in the

second line. There seems to be a slight systematic pattern of some neighbouring
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φ 10◦ 20◦ 30◦ 40◦ 50◦ 60◦ 70◦ 80◦ 90◦ 100◦ 110◦ 120◦ 130◦ 140◦ 150◦ 160◦ 170◦ 180◦ 190◦

10y 3 1 2 3 4 5 4 3 7 4 5 5 2 1 3 1 3 4 3
8 7 9 10 8 7 8 8 7 8 7 6 7 7 7 5 4 7 7

50y 1 1 2 3 4 5 6 4 4 5 4 2 2 0 2 2 3 3 1
8 8 8 10 9 8 9 6 7 9 6 5 6 8 7 4 4 5 7

100y 1 1 1 4 4 5 5 4 4 4 3 2 2 1 2 2 2 2 1
8 9 8 10 9 11 10 7 7 9 8 8 6 7 8 5 5 5 5

1000y 1 1 1 3 4 4 4 3 1 2 2 2 1 0 1 2 2 1 1
7 9 9 8 11 11 11 6 8 9 9 9 11 10 9 6 8 8 7

φ 200◦ 210◦ 220◦ 230◦ 240◦ 250◦ 260◦ 270◦ 280◦ 290◦ 300◦ 310◦ 320◦ 330◦ 340◦ 350◦ 360◦

10y 1 0 0 0 1 2 3 3 2 2 4 2 3 5 7 6 6
8 8 9 8 9 14 9 9 7 5 5 7 6 4 5 5 6

50y 1 1 0 0 0 0 1 2 2 3 4 2 3 3 4 4 3
7 11 10 10 10 12 9 9 9 7 6 7 7 8 9 9 7

100y 2 1 0 0 0 0 1 2 2 3 3 2 3 3 3 3 2
9 11 11 10 11 11 10 9 9 7 7 6 7 9 10 10 9

1000y 0 1 0 0 0 0 1 1 1 2 2 1 1 2 3 3 2
7 9 10 9 11 9 9 10 8 7 8 7 7 10 9 10 10

Table 2.1: Results of Simulation study with 200 repetitions; number of cases being smaller than the lower confidence
bound are shown in the upper line, while those exceeding the upper interval limit are seen in the lower line: for 10,
50, 100, and 1000 year return-level.
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directions to have more values outside the required interval than others. However,

as repeated simulations show the opposite phenomenon, we assume it to be random.

A striking fact, in contrast, is that most points outside the interval are above the

upper bound of the interval, and only a very little amount being smaller than the

required bounds. This might be addressed by considering confidence intervals based

on profile likelihood, which exhibit an asymmetric shape for extreme return-periods.

More precisely, those plots show that the upper bound of the interval has a greater

distance to the maximum likelihood point estimate than its lower counterpart. Due

to the symmetry of intervals by application of the delta method, the number of

points lying outside the interval must be higher for larger values.

2.3 Analysis of German wind data

The model described above is now applied to daily maximum wind speed data of the

gauging station of Würzburg. To get an impression of the data, Figure 1.2 shows

boxplots of the wind speeds of daily maxima for all directions as well as a histogram

reflecting corresponding frequencies of directions. There is a clear pattern supporting

the choice of a model for wind speeds which varies smoothly over directions.

A convenient feature of the k largest order distribution is its capability to incorpo-

rate different numbers of order statistics for different years or, as in our case, for

different directions. The former case often arises when analysing data where just

annual maxima are known for the first years, while in the later ones complete data

are available; both data may then be analysed at the same time contributing to

the same likelihood function. In the present case, the number of order statistics

varies with different directions and over years. We restrict the number of largest

observations k to be at most five, so each direction within each year contributes by

r ≤ 5 values per year. Table 2.2 shows the number of least available order statistics

in any of the 22 years for each direction. For example, taking direction 20◦: in

each year there are at least two observations recorded. Directions indicated by NA

are those having at least one year with no observation being made at all. For the

subsequent analysis is based on at most the five largest values in each direction and

year, those being five or greater are both indicated by ≥ 5. Data from directions

indicated by NA are excluded from the analysis. The model is then estimated for
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10◦ NA 130◦ r=1 250◦ r = 3
20◦ r=2 140◦ r=2 260◦ r ≥ 5
30◦ r=3 150◦ r=2 270◦ r ≥ 5
40◦ r ≥ 5 160◦ r=1 280◦ r ≥ 5
50◦ r=4 170◦ NA 290◦ r ≥ 5
60◦ r=4 180◦ NA 300◦ r=2
70◦ r=1 190◦ NA 310◦ r=2
80◦ r=2 200◦ r=1 320◦ r=3
90◦ r=3 210◦ r=3 330◦ r=1
100◦ r=3 220◦ r=4 340◦ NA
110◦ r=1 230◦ r ≥ 5 350◦ NA
120◦ r=2 240◦ r ≥ 5 360◦ r=1

Table 2.2: Number of least available order statistics for each direction in any year for
the Würzburg data; directions indicated by NA have at least one year without any one
observation.

different numbers of harmonic terms for each parameter.

Model discrimination is carried out by employing a likelihood ratio test with a sig-

nificance level of 5% using a forward selection procedure. As the location parameter

is usually most sensitive, model selection starts with a (0,1,0)-model. Separately for

each of the parameters ξ, µ, and σ one harmonic term is added, and the maximum

change in log-likelihood is taken to yield the improved model if this change is signif-

icant according to a likelihood ratio test. The procedure terminates when none of

the three models proposed results in a significant change in the log-likelihood. This

favours a (0,4,1)-model, our final choice. Estimated parameters and related stan-

dard errors are given in Table 2.3. The shape parameter ξ is estimated by −0.197

with a standard error of 0.011. This gives a clear indication that the Gumbel model

(ξ = 0) is not an appropriate choice in our case.

As we are investigating extreme events, return-levels are the quantities we are in-

terested in. To assess precision of the estimation confidence-bands are calculated

additionally. The two alternative possibilities are, as described in preceding parts,

those based on the delta method and those using the profile likelihood method. Fig-
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raw data components
(0,4,1) (1,2,1)

â0 -0.197 (0.011) -0.106 (0.023)

ξ̂φ b̂01 NA 0.061 (0.022)
ŵ01 NA 1.014 (0.517)
â1 14.451 (0.150) 20.061 (0.451)

b̂11 4.843(0.157) 6.668 (0.380)
ŵ11 4.542 (0.047) 4.493 (0.049)

b̂12 4.686 (0.212) 2.677 (0.278)
µ̂φ ŵ12 2.579 (0.036) 2.451 (0.078)

b̂13 1.086 (0.168) NA
ŵ13 0.797 (0.167) NA

b̂14 0.589 (0.172) NA
ŵ14 3.619 (0.288) NA
â2 3.733 (0.06) 2.705 (0.186)

σ̂φ b̂21 0.890 (0.074) 0.793 (0.137)
ŵ21 4.536 (0.116) 4.603 (0.141)

Table 2.3: Estimated parameters for the (0,4,1)-model in case of raw data, and the
(1,2,1)-model in case of component data; the number of harmonic terms are according
to (ξφ, µφ, σφ) for the gauging station Würzburg; standard errors are given in parenthesis.

ure 2.1 shows a plot of the 100-year return-level for the Würzburg data together

with a 95%-profile likelihood confidence band. The equivalent graph with confi-

dence intervals based on the delta method is shown in Figure 2.2. In both plots

we super-imposed separate estimates based on data of that direction only (points).

The strong variation of these points highlights the improvement of the harmonic

model by allowing the transfer of information over directions over a sector by sector

analysis.

The alternative approach is to use the component data described in Section 2.1.1.

In this case we have r = 5 for any year and direction. Estimation results are given

in Table 2.3. Now the shape parameter ξ depends on direction and is estimated by

−0.106 + 0.061 cos(φ − 1.014). Again the estimation of the general level of ξ given

by a0 = −0.106 with standard error 0.023 shows that the Gumbel model cannot be
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Figure 2.1: Plot of the (0,4,1)-model of Würzburg: ML–estimates for the 100-year return-
level and 95%-profile likelihood confidence bands; points are estimated return-levels based
on data of that direction only.

applied for all directions in our data.

For comparison of the two methods we have calculated the 100-year return-levels

and corresponding confidence bands, see Figure 2.3. When using the likelihood ratio

test for model selection using component data the reference distribution needs to be

adjusted in order to account for dependencies across directions; for its calculation

see Coles and Walshaw (1994). Applying this model selection procedure yields a

(1,2,1)-model. One can see a higher overall level of the 100-year return-level for the

latter model. This is due to the different definition of the problem, since in this case

the components are analysed.
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Figure 2.2: Plot of the (0,4,1)-model of Würzburg: ML–estimates for the 100-year return-
level and 95%-confidence bands by the delta method; points are estimated return-levels
based on data of that direction only.

If a critical wind speed value is known then interest is in calculating its probability

of being exceeded. For these probabilities confidence intervals can be calculated by

the delta method or by the method of profile likelihood as described in Section 2.1.

Applying the delta method over all directions, resulting confidence intervals from

models based on non-processed data are shown in Figure 2.4, while those based on

component data are given in Figure 2.5. By just using non-processed data, profile-

likelihood intervals for the exceedance probabilities of a critical value 38 m/s can be

calculated for a fixed direction. Taking the direction where the highest wind speeds

occurred, 260◦, the profile-likelihood intervals for the two critical wind speeds 32 m/s

and 42.7 m/s are shown in Figures 2.6 and 2.7 respectively. These plots indicate,

that the profile-likelihood confidence intervals are getting the more asymmetric the
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Figure 2.3: Plot of the (1,2,1)-harmonic model of Würzburg: ML–estimates for the 100-
year return-level using component data and 95%-confidence bands by the delta method;
points are estimated return-levels based on data of that direction only.

greater the critical value is. So for large critical values the approximation by a

symmetric interval, such as is the case in the application of the delta method, is

questionable. Unfortunately, this approximation is also anti-conservative leaving its

applicant possibly expecting himself in a safer position than he actually is. For this

reason we prefer the application of intervals based on the profile-likelihood method.

2.4 Aspects of masking

A common problem with wind data when considering directions is masking of gusts

(Coles and Walshaw, 1994; Moriarty and Templeton, 1983). This problem is easiest

understood by an example: there is a very strong gust from, say east, and at the
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Figure 2.4: Plot of the exceedance probability of the critical wind speed 38m/s as a function
of direction using the (0,4,1)-model based on unprocessed data.

same day a slightly stronger one from west. If maxima are recorded daily, the data

contain the one from west, but that one of east, which might rank among the great-

est ones of this direction, is lost. In this case we say that the gust from east was

masked by the one from west and this may cause biased estimates. An immediate

consequence of masking is the down-shift of many recorded values compared to the

true, unknown ones. A reasonable assumption is therefore expecting return-levels

to be underestimated. Moriarty and Templeton (1983) found in their analysis of

directional sectors, using annual maxima only, that in many directions calculated

return-levels rather overestimate the true values; they argue, that the most extreme

values of the whole observation period in most directions are not masked, but lower

ones of other years are, a consequence of which is a larger estimate of the scale

parameter. Considering equation (2.5), a larger scale parameter, in turn, results in

a larger return-level. In our case the effect is not clear.

We consider two different types of data: the non-processed data and derived com-
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Figure 2.5: Plot of the exceedance probability of the critical wind speed 38m/s as a function
of direction using the (1,2,1)-model based on component data.

ponent data. To assess the masking effect a comparison with maxima of shorter

time intervals is desirable. For Würzburg, data of maxima within each ten–minutes

interval are available for a small number of years. For these maxima also their pre-

cise direction is recorded in contrast to the data of daily maxima used before, where

just the average direction of the hour the maximum occurred is known and therefore

substituted.

We examine data of two years and compare the different types of data. Considering

for each direction the largest observation of the original data and their counterparts

of ten-minutes maxima clearly reveals the presence of the masking effect (see Figures

2.8 a) and b)). A considerable number of daily recorded maxima lie well below their

ten-minutes counterparts. This effect will be even stronger for higher order statistics

and may cast doubt on the reliability of using model (2.1) based on non-processed

daily maxima. A possibility to overcome this problem is suggested in the next chap-

ter. In 1994 there are a few maxima of the raw data exceeding the ten-minutes data

but are equivalent in size to the maximum of the latter in a neighbouring direction;

this effect is due to the substitution of the maximum’s direction by the average of
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Figure 2.6: Plot of the exceedance probability of the critical wind speed 32m/s using
the (0,4,1)-model; profile likelihood with horizontal line indicating the interval limits and
dashed vertical lines indicating the corresponding interval based on the delta method .

its hourly direction used for daily maxima. It also indicates that the effect of this

substitution is little.

Though ten-minutes values are sometimes slightly exceeded by corresponding com-

ponents, Figure 2.8 d) shows acceptable agreement between their largest values and

the corresponding ones of ten-minutes recordings. This is also true for 2.8 c), but

less obvious due to the slight directional shift of the largest observation of daily max-

ima resulting from the substitution. Finally, comparing the component data with

components of ten-minutes recordings shows quite good agreement (see Figures 2.8

e) and f)). In summary, while the non-processed data are heavily affected by mask-

ing the component data show much better agreement with those of far shorter time

intervals.
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Figure 2.7: Plot of the exceedance probability of the critical wind speed 42.7 m/s using
the (0,4,1)-model; profile likelihood with horizontal line indicating the interval limits and
dashed vertical lines indicating the corresponding interval based on the delta method.

2.5 Discussion

To model extreme wind behaviour we applied a model extending the annual extreme

value approach by employing the largest order statistics. Another possibility would

be to consider exceedances of a suitably high threshold (Pandey, 2002; Pandey,

Van Gelder and Vrijling, 2001). We have discussed a directional model for extreme

value data and two quantities derived therefrom. The first one is using quantiles

as commonly applied in the classical approach, while the second one is based on

the exceedance probability. As estimates of the model parameters are subject to

sampling variation, so are these quantities themselves. A natural way to account for

this uncertainty is to calculate confidence intervals providing us with the precision of

the estimate under consideration. The two most important methods of calculating

intervals, the delta method and the profile likelihood method, are dealt with in detail.

The model has been applied to two types of data. In both cases, a fixed number

of order statistics in each direction were extracted for parameter estimation. In the
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Figure 2.8: The largest observations for each direction are shown both for the ten-minutes
data (line) and the original data (triangles) for the year 1994 in a) and for 1997 in b).
In c) and d) the maxima of components (line) are compared with ten-minutes maxima
(points) for 1994 and 1997. For both years the maxima of components (line) are compared
with components of ten-minutes maxima in e) and f).
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first approach data from different directions without being processed are used. One

has to be cautious when taking this approach. One problem is, that in a number

of directions there are only very few observations, so the asymptotics may not hold

to justify both the application of the extreme value model used and the assumption

of the estimates being normally distributed. A further problem is possible depen-

dencies, both between data of neighbouring directions and successive data. Unlike

many other analysis working with hourly observations, the present one uses daily

maxima - a much longer period - so the problem of dependence within the data is

not that critical when applying maximum-likelihood. Finally, the study of masking

has shown that a considerable number of occurrences are missed and not available

for model estimation. All these problems cast doubt on the reliability of this model

based on unprocessed daily maxima.

By using components and calculating the variance adjusted for this situation, direc-

tional dependencies are accounted for. Furthermore, the problem of scarcity of data

in some directions is not present any more, so asymptotic arguments apply in the

usual way. This advantage is on expense of straightforward calculation: components

have to be computed as well as the variance needs to be adjusted; additionally, a

reference distribution for model discrimination via a likelihood ratio test has to be

calculated, which implies a high amount of additional computing cost. The study

of the masking effect has shown that components of daily maxima may serve as an

acceptable substitute for data of far shorter time intervals, which further supports

the application of models based on these data.

Considering the most extreme observation of the whole investigation period, which

is 42.7 m/s in direction 260◦, is around the upper limit of the confidence band of

the 1000 year return-level when looking at the ordinary model, and far away of the

estimate of the corresponding 100-year return-level. This again makes the practical

applicability of using a model with non-processed data questionable. A comparison

of the largest observation with the 100-year return-level using the component model

proves this model to supply far more plausible and reliable results.

For model estimation we have used the method of maximum likelihood. An alter-

native approach is Bayesian estimation. A review of these methods may be found in
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Coles and Powell (1996), Coles and Tawn (1996) give an approach for determining

the prior distribution based on expert knowledge, Van Gelder (1996) shows how his-

torical knowledge can be incorporated, and an application to wind data is Walshaw

(2000). Furthermore, the calculation of confidence intervals of extreme quantiles by

Bayesian methods also yields asymmetric intervals; the results are comparable to

those of profile-likelihood when non-informative priors are used.

In many situations of extreme wind speeds a Gumbel distribution is applied (Cook,

Harris and Whiting, 2003). This is justified by the fact, that the Weibull distribution

often serves as a good approximation to the wind data at hand. Pre-analyses have

shown that the Weibull distribution does not well describe the distribution of our

data. Furthermore, the application of the generalized extreme value distribution,

which includes the Gumbel as a special case, clearly excludes the latter distribution

and supports the application of the more general family in our situation. Coles and

Pericchi (2003) show that even in cases where a Gumbel is justifiable on statistical

grounds its application, instead of the more general GEV, is a risky strategy.

The analyses carried out in this chapter can be used for probabilistic assessment at

a track of the German rail. Since there are no wind measurements available it is

assumed that the wind at the track differs from that at a close weather station by a

constant factor. This factor is determined by meteorological methods. The critical

wind speed perpendicular to the track is determined by technical considerations; its

probability of being exceeded has then to be estimated. These exceedance proba-

bilities can be estimated by the methods described in this study. Furthermore, we

can give confidence intervals for this probabilities. These local estimates serve as a

sensible input for an overall measure of the whole track, which adds up functions of

the estimated quantities over all points. So the methods give substantial improve-

ment of overall measures compared to those employing empirical quantiles of the

wind speed distribution.



Chapter 3

A model for the masking problem

3.1 Introduction

A well-known complication when analysing extreme wind data taking directionality

into account is referred to as masking problem. The analysis in Chapter 2 suggests

that masking has an impact on resulting model estimates for the data we have anal-

ysed, and a visual comparison with data from shorter time intervals in Section 2.4

gives further insight to this phenomenon. The masking problem is due to the record-

ing mechanism. It occurs when the recording interval is large, and just the maximum

wind speed of the interval and its direction is recorded. In this case, there might

have been a strong gust which ranks among the largest in its own direction, but

it is not recorded, since the maximum over the interval was in another direction.

Consequently, the recorded data do not necessarily contain the true largest ones in

all directions.

Assuming that we have additionally to the observed time interval maxima knowl-

edge about wind events within sub-intervals, we can include this information to

reduce the masking effect. In the present case we assume observations to be daily

wind speed maxima together with their corresponding directions, and additionally

we have the empirical distribution of directions of ten-minutes maxima.

Directional models for extreme wind speeds are commonly based on the largest ob-

servations in each direction for a fixed time period (see Chapter 2) or on exceedances

36
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of high directional thresholds. These observations represent maxima over all direc-

tions of each time interval. This, however, implies that wind speeds of all other

directions in the same time interval are equal or less than the observed one. The

approach suggested here is to additionally include this information on other direc-

tions to increase the accuracy of estimated return-levels.

The approach presented requires knowledge of the occurrence distribution over di-

rections in sub-intervals. For some gauging stations this knowledge is available at

least for a short time period. In this case the empirical directional occurrence distri-

bution may be taken as the true one. In cases of weather stations without knowledge

about the directional occurrence distribution in sub-intervals, corresponding data of

a nearby weather station might be employed. This is, however, just reasonable, if

the model is not too sensitive to deviations from the correct distribution.

In the following we describe the new approach considered here and a classical equiva-

lent, and describe how corresponding quantiles are calculated. A simulation study is

carried out to compare these two models under different conditions: ideal conditions,

mis-specification of directional probabilities, and serial correlation. Performance of

the models is judged by their mean square errors. Thereafter the two models are

applied to real data.

3.2 The model

Let the pair (R,Φ) denote the daily maximum wind speed R having direction Φ,

where R ∈ [0,∞), Φ ∈ Ω ⊂ (0, 2π], and Rφ = (R|Φ = φ) describes the daily

maximum wind speed given its in direction φ. To describe the distribution in a

sub-interval of time we use the pair (S,Θ), where S refers to the wind speed in the

sub-interval and Θ its direction. As the directional sectors for the sub-intervals are

in the present situation the same as for days, we have Θ ∈ Ω. We use the directional

occurrence probability of daily maxima pΦ(φ) = P (Φ = φ), and for the sub-interval

data pΘ(θ) = P (Θ = θ), which in the present context refer to the probability of the

whole sector they identify.
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Daily Maxima Model

For a gust Rφ in direction φ exceeding a certain high threshold uφ we assume the

generalized extreme value distribution Gφ(r) = G(ξφ,µφ,σφ)(r) given by (1.2) to be an

appropriate model for extreme wind speeds. We assume the parameters ξφ, µφ, and

σφ to vary smoothly over directions φ ∈ (0, 2π]. Thus a functional relationship of

parameters on direction is imposed on the distribution of wind speeds to account

for this variation. The relationship is given by harmonic terms.

We start by considering the likelihood of a model just using daily maxima. Let

uφ be a high threshold in direction φ, and let pΦ(φ) be the probability of a daily

maximum occurring in direction φ; then equation (1.2) provides an approximation

above uφ to the distribution of R in direction Φ

{

g(r, φ) = gφ(r)pΦ(φ), r ≥ uφ
G(uφ, φ) = Gφ(uφ)pΦ(φ), r < uφ,

(3.1)

where gφ(r) = g(r|φ) is the density corresponding to Gφ(r); the index φ in the

previous density and distribution function is used as an abbreviation for the GEV-

parameters (ξφ, µφ, σφ) in direction φ for the distribution given in (1.2). The likeli-

hood is now constructed under the assumption of independence over directions and

over days. Define {rexc,φ} and {rbel,φ} to be the sets of all pairs (r, φ) with r above

and below the threshold uφ, respectively, then the log-likelihood may be written as

lD =
∑

φ∈Ω

log





∏

{rexc,φ}

g(r, φ)
∏

{rbel,φ}

G(uφ, φ)





=
∑

φ∈Ω

log



(G(uφ, φ))Nrbel,φ
∏

{rexc,φ}

g(r, φ)



 , (3.2)

where Nrbel,φ denotes the number of daily maxima in direction φ below the threshold

uφ. If there is no interest in the distribution pΦ(φ), or pΦ(φ) is assumed to be known,
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then the above likelihood is proportional to

lD ∝
∑

φ∈Ω

log





∏

{rexc,φ}

gφ(r)
∏

{rbel,φ}

Gφ(uφ)





=
∑

φ∈Ω

log



(Gφ(uφ))
Nrbel,φ

∏

{rexc,φ}

gφ(r)



 . (3.3)

Directional variation in parameters is allowed for by including equation (2.2).

In extreme value analysis interest is commonly in high quantiles often termed return-

levels. The period corresponding to a return level is usually stated on an annual

scale. The daily maxima distribution for each direction corresponds to the number

of days of observed daily maxima in that direction, which varies over years. To

transform to an annual scale, we assume a Poisson distribution with parameter

according to the annual average number of observations N̄φ = nφ/Ny in direction

φ, where nφ is the total number of observations in direction φ, and Ny is the total

number of years. The annual distribution derived from the daily maxima model is

therefore given by

Dφ(x) =
m
∑

i=0

e−N̄φ(N̄φ)
i

i!
(Gφ(x))

i

≈

∞
∑

i=0

e−N̄φ(N̄φ)
i

i!
(Gφ(x))

i = exp
{

−N̄φ(1 −Gφ(x))
}

,

where m is the number of days per year and the approximation is reasonable as

N̄φ << m. Return-levels or quantiles are calculated in the usual way by inversion of

the above equation. So the quantile corresponding to Dφ(x
(q)
φ ) = q is

x
(q)
φ = µφ +

{

[

− log{1 +
log(q)

N̄φ

}

]−ξφ

− 1

}

σφ
ξφ
. (3.4)
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Subinterval Model

In the following we build up the likelihood for a directional extreme value model

accounting for masked observations. The key idea here is to incorporate the knowl-

edge of wind speeds in directions other than the actual observation, which need to

be less than or equal to the interval maximum. We further assume that values in

sub-intervals are independent and the wind-speed distribution of Sθ varies with di-

rection θ. We use Sφ to mean Sθ|θ=φ when referring to the wind-speed distribution

in sub-intervals considered in the direction φ where the observed interval maximum

occurred. The contribution of the observed interval maximum r, having occurred

in direction φ, together with the unobserved occurrences in all directions and other

sub-intervals of the same time-interval to the likelihood is

{

g∗φ(r)
∏n−1

i=1 P (Si ≤ r), r ≥ uφ
G∗
φ(uφ)

∏n−1
i=1 P (Si ≤ r), r < uφ,

(3.5)

where n is the number of sub-intervals in a day or larger time-interval. Here G∗
φ,

with density g∗φ, corresponds to the upper tail of the sub-interval distribution; again

we use G∗
φ as an abbreviation for G∗

θ|θ=φ and it is given by (1.2) with G∗
θ = G(ξ∗

θ
,µ∗
θ
,σ∗
θ
).

Also P (Si ≤ r) represents the probability of the maximum of the sub-interval, which

is known to be no greater than the maximum of the whole interval. If we assume

that the distribution of directions, hΘ(θ), or the relative frequency of directional

sectors, pΘ(θ), is known, and sub-interval maxima are independent, then

P (Si ≤ r) =

∫ 2π

0

∫ r

z=0

f ∗(z|θ)hΘ(θ)dzdθ

=

∫ 2π

0

F ∗(r|θ) hΘ(θ) dθ ≈
∑

θ∈Ω

F ∗(r|θ)pΘ(θ), (3.6)

where f ∗(r|θ) and F ∗(r|θ) are, respectively, the density and distribution function of

the sub-interval wind speed given direction θ. With interest in the upper tail, we

replace F ∗ by G∗ in the previous equation. More precisely, for an observation r in

direction φ, we use G∗
θ(r) if r exceeds the directional threshold uθ and G∗

θ(uθ) if r is

not greater than uθ.
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Partition the data as {rφ} ={rexc,φ}∪{rbel,φ}, then the likelihood is given by

lT = lT (ϑϑϑ) = −
∑

φ∈Ω

〈

nexc,φ log(σ∗
φ) + (1 + 1/ξ∗φ)

∑

{rexc,φ}

log(1 + ξ∗φ
r − µ∗

φ

σ∗
φ

) +
∑

{rexc,φ}

[

1 + ξ∗φ
r − µ∗

φ

σ∗
φ

]−1/ξ∗
φ

+
∑

{rbel,φ}

[

1 + ξ∗φ
uφ − µ∗

φ

σ∗
φ

]−1/ξ∗
φ

−(n− 1)
∑

{rφ}

log

(

∑

θ∈Ω

G∗
θ(max{r, uθ})pΘ(θ)

)〉

, (3.7)

where nexc,φ is the number of elements of the set {rexc,φ}. The second line of the

above likelihood represents all observations above the threshold, the third accounts

for those observations below the threshold, while the last line includes the informa-

tion of unobserved occurrences in the sub-intervals. Harmonic terms given by (2.2)

are again employed to allow for directional variation in the model parameters; the

corresponding parameter vector of all harmonic terms is denoted by ϑϑϑ.

To calculate return-levels on an annual scale for the subinterval model we transform

its distribution in two steps: first we transform to a daily scale and thereafter to

an annual scale. To transform the subinterval model to daily scale, we have to take

into account, that the number of sub-interval occurrences in each direction varies

from interval to interval. We assume the number of daily observations in direction

θ to follow a Poisson distribution with parameter NpΘ(θ), where N is the number

of sub-intervals per time-interval (e.g. one day). Then the daily distribution in

direction θ can be approximated by

Hθ(x) =
N
∑

i=0

e−NpΘ(θ)(NpΘ(θ))i

i!
(G∗

θ(x))
i

≈
∞
∑

i=0

e−NpΘ(θ)(NpΘ(θ))i

i!
(G∗

θ(x))
i = exp

{

−NpΘ(θ)(1 −G∗
θ(x))

}

.
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With interest in the annual maxima distribution [Hθ(x)]
m, where m is the number

of days per year, the above approximation yields

[Hθ(x)]
m ≈ exp

{

−NmpΘ(θ)(1 −G∗
θ(x))

}

.

Return-levels or quantiles are calculated again by inversion of the above equation.

Let λθ := NmpΘ(θ) and G∗
θ follow a GEV with parameters ξ∗θ , σ

∗
θ , and µ∗

θ, then the

quantile corresponding to [Hθ(x
(q)
θ )]m = q is

x
(q)
θ = µ∗

θ +

{

[

− log{1 +
log(q)

λθ
}

]−ξ∗
θ

− 1

}

σ∗
θ

ξ∗θ
. (3.8)

3.3 Comparison of the two models

We consider now the behaviour and features of the new model. A natural way is to

compare the classical approach based on (3.3) with the new one given by (3.7). As

the objective of extreme value analysis is commonly the estimation of high quantiles,

it is sensible to take this quantity for comparison. We choose the mean square error

to measure the performance of an estimator. Define mq to be the ratio of both mean

square errors, that is

mq :=
mse(x̂

(q)
lT

)

mse(x̂
(q)
lD

)
,

where x̂
(q)
i is a high quantile estimated by maximum likelihood with the likelihood

indexed by i = {lT , lD}. This ratio will then quantify superiority or inferiority of

the new model according to whether or not mq is smaller or greater than one.

For a comparison of the two models considered, we simulate data and judge model

performance according to the ratio of mean square errorsmq. The data are simulated

from an extreme value distribution with some parameters varying over directions.

The simulation size is fifteen years with each day consisting of 144 observations.

Thereafter, parameters of the daily maxima model and the subinterval model are

estimated. While the daily maxima model is allowed to have as many parameters

as sensible according to a selection procedure based on likelihood ratio tests, the

subinterval model is restricted to have the same structure as is used for the simula-
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tion.

We first study how the subinterval model performs under the conditions assumed

for it, that is independence for wind speeds and independence for wind directions,

where the occurrence distribution is taken to be uniform over directions. The as-

sumption of exact knowledge of the underlying occurrence distribution, pΘ(θ), as

well as the independence assumption may not hold for real data. We therefore con-

sider separately sensitivity to mis-specification of the directional distribution, pΘ(θ),

and robustness of the model in the presence of serial correlation.

3.3.1 Model comparison under ideal conditions

The simulation is carried out under idealized circumstances. We simulate the sub-

interval data to be independent of one another and that all distributions remain the

same over time. Furthermore, the true distribution of occurrence numbers is taken

to be uniform so pΘ(θ) is constant over directions θ.

For the subinterval model with likelihood lT we choose an exponential link to ensure

positivity, that is σθ = exp(τ(θ)) with τ defined in (2.2), which is also employed

for the simulated data. In the following the notation (nξ, nµ, nσ)-harmonic terms

is used to describe the number of harmonic terms ni for parameter i. We first

simulate 15 years with each day consisting of 144 ten-minutes data from a (0,1,0)-

harmonic model having the parameters ϑϑϑ = (−0.15, 15, 3, π, log(3.5)); so ξ = −0.15

and σ = log(3.5) are constant, while µ(θ) = 15 + 3 cos(θ − π) changes with direc-

tion θ. The sub-interval occurrence distribution of directions, pΘ(θ), is taken to be

uniform.

Both models just use daily maxima and associated directions as input-data. For

the comparisons we estimate a daily maxima model based on lD, where a forward-

selection procedure is applied to find the model fitting best. From this model,

estimated quantiles are derived for the subsequent comparison. The subinterval

model uses the same data, but requires the additional information of pΘ(θ). The

true distribution for directional frequencies is used here for the subinterval model,

that is pΘ(θ) is uniform. Furthermore, we just allow the subinterval model to have
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Direction x(5) x(15) x(100)

90◦

mseT/mseD 0.340 0.354 0.380
180◦

mseT/mseD 0.395 0.270 0.236
270◦

mseT/mseD 0.323 0.310 0.324
360◦

mseT/mseD 0.020 0.087 0.280

Table 3.1: Relative efficiency mq under ideal conditions.

a (0,1,0)-harmonic structure. The choice of thresholds uθ is based on the generated

sub-interval data; we choose uθ to be the upper 0.001-quantile, where its calculation

is based on all simulated sub-interval data in direction θ. Return-levels for four

selected directions are considered (an example of which is Figure 3.1), and three

particular return-levels (5-years,15-years, and 100-years), imposed as vertical lines,

are chosen for the comparison. The simulation size is 500.

Table 3.1 shows the efficiency mq defined previously. All values are considerably

smaller than one, so there is apparent superiority of the subinterval model over

the daily maxima model. By symmetry of the harmonic term with respect to the

strongest wind direction π = 180◦ and constant pΘ(θ), one might expect the two

directions 90◦ and 270◦ to be identical. However, the differences are rather small

and can be attributed to randomness.

The results also indicate that accuracy in directions tending to have smaller values

and therefore produce just a few daily maxima (360◦ in the current case) is highly

increased by the subinterval model. The superiority in directions with few obser-

vations might also be due to some sensitivity of quantiles based on equation (3.4).

There occurred a few missing values for the 5-year return-level in direction 360◦,

which were eliminated from the calculation. Since the location parameter µθ is

smallest for this direction the resulting number of occurrences is the lowest over all
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Direction Squared Bias Variance
x(5) x(15) x(100) x(5) x(15) x(100)

90◦

TenMin 0.001 0.000 0.002 0.011 0.017 0.047
Daily 0.002 0.000 0.003 0.032 0.048 0.127

180◦

TenMin 0.000 0.000 0.003 0.010 0.016 0.046
Daily 0.000 0.000 0.000 0.026 0.059 0.206

270◦

TenMin 0.001 0.000 0.002 0.011 0.016 0.044
Daily 0.003 0.001 0.008 0.034 0.051 0.133

360◦

TenMin 0.001 0.001 0.001 0.013 0.017 0.046
Daily 0.337 0.034 0.001 0.358 0.176 0.169

Table 3.2: Squared bias and variance under ideal conditions.

directions. Note that for quantiles based on equations (3.4) and (3.8)

0 < 1 +
log(q)

λ
< 1

needs to hold; the right inequality is naturally satisfied whenever λ > 0 and q ∈

(0, 1); the left inequality requires λ > − log(q); for a 5-year return-level λ >

− log(1 − 1/5) = 3.347/15, so at least four observations are required to fulfill the

constraint. The efficiency in 360◦ for a 15-year return-level is still far away from all

other values, while the 100-year return-level is similar to those of other directions.

So even when the constraint is fulfilled, return-levels based on (3.4) may be inter-

preted with caution when both the occurrence number and the return-period are

small.

We now consider the bias and variance contributions to the mean square errors; this

is shown in Table 3.2 where, for reasons of comparison, the bias is squared. For the

daily maxima model in direction 360◦ and small return-levels, both bias and variance

are large for reasons discussed above. For all other directions considered here, the

major part leading to the size of the mean square error is due to the variance and
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not to the bias contribution. This is a surprising result. With the masking of data

possibly leaving some large observations in several directions un-recorded, this may

lead to the assumption of derived estimates being biased.

3.3.2 Wrong directional probabilities

The directional occurrence distribution, pΘ(θ), plays an important role in the subin-

terval model. As pΘ(θ) may not always be known in real applications, it is natural

to think of substituting it with a corresponding one from a neighbouring station,

assuming that differences are little. This is, however, just sensible if the model is

not too sensitive to departures from the true distribution. We therefore analyse the

robustness of the subinterval model when the directional distribution, pΘ(θ), is not

correctly specified.

As the true model for directional frequency, pΘ(θ), we use again a uniform dis-

tribution. From this model data are simulated. To analyse model departures,

we define the pΘ(θ) that we use in the likelihood to follow a von Mises distribu-

tion vM(η, κ), where η specifies location while κ is a scale parameter (Mardia and

Jupp, 2000; Fisher, 1993). Our choice is the von Mises distribution vM(π, κ) with

different κ = 0, 0.1, 0.3, 0.5, 0.7, 0.9, 1.0. When κ = 0 we have a uniform distribu-

tion, while a bigger κ corresponds to a more concentrated distribution with a higher

density at its mode η = π; Figure 3.2 shows the densities of this different distri-

butions. The distribution of wind speeds is taken to be the same (0,1,0)-harmonic

GEV–model used above.

Figure 3.3 shows in each plot the change of relative efficiency with the change of

κ for the different directions 90◦, 180◦, 270◦, and 360◦. For κ = 0 the relative ef-

ficiency reflects the correctly specified directional distribution, while the departure

of correct specification increases with κ. The three different plots differ in the value

of the quantile, which were chosen as before.

For the shortest return-period, 5 years, mq is almost the same for the two directions

90◦ and 270◦, approximately constant and considerably smaller than one for all κ

values. A possible explanation for this constant good performance is that for this
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Figure 3.2: Von Mises distribution over (0,360◦] with κ =0, 0.1, 0.3, 0.5, 0.7, 0.9, 1. κ=0
is the uniform distribution and the higher κ the more concentrated the distribution.

two directions the occurrence-probability is almost unchanged (compare Figure 3.2).

The relative efficiency of the strongest direction 180◦ is below one for κ smaller than

0.6. The opposite direction 360◦ is close to 0, as both squared bias and variance

of the daily maxima model (see Figure 3.4) are very high for reasons discussed above.

The 15-year return-level corresponds to the period the simulated data represent.

Apart from mq in direction 180◦, which starts exceeding 1 for a κ around 0.7, all

relative efficiency curves keep below this boundary for all κ values. The values of

mq for the weakest wind speed direction 360◦ are smaller than the corresponding

values of mq for the strongest wind speed direction 180◦ for all values of κ. However,

a closer inspection at the bias - variance plots, see Figure 3.5, gives more insight

to this phenomenon. For the subinterval model the squared bias for 180◦ is smaller

than for direction 360◦ for all κs. However, the squared bias and variance for the
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daily maxima model are considerably bigger for 360◦ than for 180◦ leading to the

surprising effect when comparing the efficiency.

We consider now the 100-year return-level, which is probably the most important

one in real applications. The ratio of mean square errors for direction 180◦ is perma-

nently below one while the opposite direction 360◦ exceeds this value for a κ around

0.5. The two directions 90◦ and 270◦ perform again quite well apart from for very

high values for κ.

In conclusion, the subinterval model is not very sensitive to departures of correctly

specified pΘ(θ). A closer look at Figure 3.2 suggests, that superiority of the daily

maxima model is just present in cases where model departures are strong. Thus,

the values for κ chosen here do rather highlight the often still superior behaviour of

the subinterval model under extreme model departures.

3.3.3 Serial correlation

The assumption of independence is not valid in most applications, serial correla-

tion is present instead. As we use independence as a working assumption for the

subinterval model, it is necessary to study the behaviour of the model when this

assumption is violated. We therefore simulate data, which exhibit dependence from

one observation to the next both in direction and in speed. We first consider the

directional distribution and thereafter the conditional wind speed distribution. The

performance of the subinterval model is again judged by comparison with the daily

maxima model based on the ratio of mean square errors.

Let us consider dependence for the direction. We allow a change from one direction

just to a neighbouring one each with a probability pΘ. Let pi+1|i(θi+1|θi) =

P (Θi+1 = θi+1|Θi = θi) then the probabilities for possible states of Θi+1 are

pi+1|i(θi + 10◦|θi) = pi+1|i(θi − 10◦|θi) =
1

2
(1 − pi+1|i(θi|θi)) = pΘ, (3.9)

where circular boundary conditions have to be taken into account. The smaller pΘ



CHAPTER 3. A MODEL FOR THE MASKING PROBLEM 54

the less likely the process is to leave its current state inducing higher directional

dependence. With first simulating a starting directional value for Θ1 from a discrete

uniform distribution over {10, . . . , 360} the subsequent simulation of Θ2,Θ3, . . . is

straight forward.

The conditional distribution of wind speeds S|Θ is modelled as a time series with

marginal distribution G(ξθ,µθ ,σθ) and with Markov dependence structure given by a

bivariate normal copula; a detailed treatment of copulas is given by Nelsen (1999)

and Joe (1997). For simulation of dependence in wind speeds, the dependence

structure of a simple normal autoregressive model is employed. More precisely,

consider

Zi = αZi−1 + εi, i = 1, 2, . . . , (3.10)

where εi ∼ N(0, (1 − α2)) and α ∈ (0, 1). Having simulated a starting value for Z0

from a standard normal and εi from a normal distribution with mean zero and vari-

ance (1−α2), recursive calculation yields Z1, Z2, . . . . Let Ψ denote the distribution

function of a standard normal distribution and G−1
(ξθ,µθ,σθ)

(x) the quantile function

of the extreme value distribution in direction θ. Then after simulation of Zi and Θi,

we first transform the Zi to standard uniform margins Ui = Ψ(Zi), and in a second

step transform back to the required extreme value distribution

Si = G−1
(ξθ,µθ,σθ)

(Ui) = G−1
(ξθ,µθ,σθ)

(Ψ(Zi)). (3.11)

Increasing dependence is reflected by a larger value of α.

In order to carry out a comparison of the subinterval model with the daily max-

ima model, we employ again the mean square error of a certain return-level. This

requires knowledge of the true return level. The dependence introduced by the sim-

ulation scheme requires calculation of return-levels to be adjusted to account for the

reduction in effectively independent information. A well-known measure of depen-

dence at extreme levels is the extremal index. For an application of the extremal

index to directional extremes we refer to Robinson and Tawn (1997). In the present

case we employ a representation of the extremal index suggested by O’Brien (1987)
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Direction (0.3, 0.8) (0.2, 0.95) (0.18, 0.99) (pΘ(Z), 0.99)
90◦

mseT/mseD 0.496 0.565 0.586 0.528
180◦

mseT/mseD 0.656 0.727 0.576 0.390
270◦

mseT/mseD 0.517 0.552 0.634 0.493
360◦

mseT/mseD 0.518 0.524 0.687 0.503

Table 3.3: Relative efficiency for x(100) in the presence of serial correlation

adapted to the directional nature of our data, given by

δθ = P ( max
j=2,...,J

{SjI(Θj = θ)} < uθ|S1 > uθ,Θ1 = θ) (3.12)

with uθ being a high value in direction θ, and I is the indicator function. Equa-

tion (3.12) states the conditional probability, that given any one occurrence exceeds

its directional threshold uθ, none of the subsequent J − 1 values exceed uθ if they

occur in direction θ. The true return-levels are calculated using equation (3.8) ad-

justed for dependence by taking λθ = (Nmpθ)δθ. In the subsequent application δθ
turned out to vary considerably, so we used a very high number of simulated values

first to compute the extremal index. In equation (3.12) we choose J = 144 corre-

sponding to a period of one day.

We consider three different combinations of parameters for directional dependence

and wind speed dependence, where dependence is increased for both simultaneously.

The chosen values for the pair (pΘ, α) are (0.3, 0.8), (0.2, 0.95), and (0.18, 0.99). We

simulate 500 times repeatedly from a 15-year period using the same distribution for

wind speeds as above. The threshold for calculation of the extremal index is chosen

to be identical with the threshold uθ used for subsequent model estimation.

Table 3.3 shows the ratio of mean square errors of the 100-year return-levels for

the three different degrees of dependence described previously. All cases show clear
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superiority of the subinterval model over the daily maxima approach. There is slight

suggestion of mq rising with dependence, but it is neither strong nor present in all

directions.

From studying real wind data, it is not an uncommon phenomenon that directional

dependence increases with strong wind events. We therefore consider a further simu-

lation mechanism given by a latent Gaussian prossess {Zt}, given by (3.10), with St
and Θt both determined by Zt and hence dependent. Specifically for Θt|Zt we take

the random walk of (3.9) with pΘ
i (Zi) = (1−Ψ(Zi)) · 0.4 + 0.1; so for large Zt, p

Θ is

small and hence the Θt value is more likely to be equal to Θt−1. Also St|(Θt, Zt) has

the form (3.11). This simulation scheme reflects increasing directional dependence

with increasing quantiles of the wind speed distribution. For the process generating

the Zi an α = 0.99 was chosen. Resulting ratios of mean square errors, shown in

the last column of Table 3.3, confirm the sub-interval model performing well under

this changed conditions.

In summary, the simulation study has shown superiority of the subinterval model

over a daily maxima approach. Its performance is best under iid conditions and a

correctly specified occurrence distribution. For deviations from ideal conditions, the

model still shows good results suggesting it to be reasonably robust. In the simula-

tion study we have just used one particular choice for the wind speed distribution.

To get further insight it would be useful to analyse a range of different models.

3.4 Application to data

We now apply the two models considered to wind data at hand. These data exhibit

seasonality with the strongest gusts occurring during the winter period. As our aim

is to present clearly the features of the new model, we avoid seasonality and restrict

our analysis to the winter period including the months November, December, and

January.

We consider two data situations: a data set of daily maxima where additionally a

ten-minutes data set for a shorter observation period is available; another data set

of daily maxima without additional subinterval information. For the daily maxima
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model we employ in both situations a forward selection procedure using likelihood

ratio tests, as successive days appear to be roughly independent. In the case of the

subinterval model we just suggest a discrimination procedure in the situation where

sub-interval information is available which is based on bootstrap methods.

We first consider wind data from Würzburg, where ten-minutes data are available

for a period of ten years. The occurrence distribution of directions for the subin-

terval model, pΘ(θ), is taken to be the empirical distribution of the directions of

ten-minutes data. Selection of the subinterval model is based on a bootstrap pro-

cedure, which is described in the following. As sub-interval data are available it

is sensible to make use of them. For selecting the number of harmonic terms in

the subinterval model, we use a block bootstrap with replacement, taking blocks of

whole days from the ten-minutes data. The blocks are joined to give the equivalent

of ten years of data, this being the same period as the observed ten-minutes data.

Though the simulation study did not show the model to be very sensitive to depar-

tures from a correctly specified pΘ(θ) and serial correlation, this approach allows us

to re-estimate pΘ(θ) from the bootstrap sample so that it preserves the dependence

between sub-intervals within the data. As we restrict the analysis just to the winter

season, each year consists of three months. The subinterval model is then estimated

for a selected number of harmonic terms. This process of simulating and estimating

is repeated 100 times to give 100 estimates for each parameter included in the model.

We now explain the selection process, where the parameters of one harmonic term

are either jointly discarded or kept together in the model.

As we assume the model to correctly describe the underlying process, a harmonic

term actually present in the underlying process will not just have a positive am-

plitude, but also a unique location parameter, which is fixing the position of the

harmonic term. So by repeated block bootstrap simulation, estimates of the loca-

tion parameter should be highly concentrated around one certain value. In contrast,

if these estimates show a different behaviour, like a high scattering over the whole

range (0, 2π], this harmonic term is not likely to be present in the underlying pro-

cess. So we use the variation of the location parameter to judge on whether to keep

the harmonic term in the model or not. In difficult cases the size of the amplitude

parameter may be considered as well.
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We start the selection procedure by restricting the maximum number of harmonic

terms for each parameter to be three. Then, having simulated and estimated re-

peatedly, the largest harmonic term of each parameter is considered. Applying the

selection criteria just described, we decide on whether or not the harmonic term is

retained in the model. This selection process yields a (2,2,2)-harmonic model in the

present case, which is the model we continue working with.
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Figure 3.7: (Würzburg) Return-level estimates based on the (2,2,2)-harmonic subinterval
model: 100-year return-levels (upper solid line) and 22-year return-levels (lower solid line);
return-level estimates for the daily maxima model: 100-year return-levels (dashed line) and
22-year return-levels (dashed-dotted line).

The selected subinterval model is applied to the 22 years of daily wind-data of
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Würzburg restricted to the winter period. The occurrence distribution of directions,

pΘ(θ), is taken to be the empirical distribution from the ten years of ten-minutes

data. Figure 3.7 shows estimates of 100-year and 22-year return-levels for the subin-

terval model as upper and lower solid lines respectively, and the largest observation

for each direction over the 22 years observation period as circles. As well in the

graphs are the corresponding return-levels from the daily maxima model, which

was found to be a (0,2,1)-harmonic model by the forward selection procedure; with

100-year return-levels dashed, and 22-year return-levels dotted-dashed. In general,

both methods seem to describe the behaviour of extreme wind speeds well. The

100-year return-level of the subinterval model is closer to the largest observation (42

m/s; 260◦) than the corresponding one of the daily maxima model, indicating slight

improvement.

Let us consider data from Hannover. The directional distributions of daily data

for Würzburg and Hannover are given in the histograms in Figure 3.8. The two

histograms show reasonable similarity making it likely that their corresponding di-

rectional ten-minutes distributions are not differing too much. Thus we estimate

the subinterval model for Hannover taking the ten-minutes directional occurrence

distribution from Würzburg, and the 22 years of daily maxima from Hannover. A

reasonable subinterval model in terms of number of parameters, but still a flexible

choice, is the (1,3,2)-harmonic subinterval model, which is used for Hannover. Ap-

plying this model, estimates of the 100-year return-level are given as upper solid line

in Figure 3.9, as well as the 22-year return-level (lower solid line) corresponding to

the observation period. Observed maxima of the daily data for each direction are

super-imposed in the same plot as circles. For comparison, we include return-levels

based on the same daily data from the (1,2,1)-harmonic daily maxima model found

by the forward selection procedure. Corresponding 100-year and 22-year return-

levels are included as dashed and dashed-dotted lines in the plot.

A comparison of the 22-year return-levels with maxima of the observation period

shows the sub-interval model to reflect the structure much better than the daily

maxima model. The stronger wind events in eastern directions (around 90◦) are

well captured. Especially, when considering the 100-year return-level, the large ob-

servation in direction 270◦ appears not to be so unlikely as for the daily maxima
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Figure 3.8: Histograms of wind directions of daily maxima for Hannover (top) and
Würzburg (bottom).
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Figure 3.9: (Hannover) Return-level estimates based on the (1,3,2)-harmonic subinterval
model based on p̂Θ(θ) of Würzburg: 100-year return-levels (upper solid line) and 22-year
return-levels (lower solid line); return-level estimates for the daily maxima model: 100-year
return-levels (dashed line) and 22-year return-levels (dashed-dotted line).

model, being much more in agreement with meteorological judgement.

Considering again the histograms of Figure 3.8, the daily directional distribution ap-

pears to be shifted roughly by ten degree. We therefore re-estimate the model chang-

ing the occurrence distribution of directions by 10◦, pHannover
Θ (θ) = pWürzburg

Θ (θ−10◦);

results are given in the Figure 3.10. The estimated 100-year return-level in direction

270◦ appears now to be slightly above the largest observation in the same direction.

Estimates, however, did not change very much, a finding which is in agreement with

the results of our simulation study of Section 3.3.2 into the sensitivity of the sub-
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Figure 3.10: (Hannover) Return-level estimates based on the (1,3,2)-harmonic subinterval
model based on p̂Θ(θ − 10◦) of Würzburg: 100-year return-levels (upper solid line) and
22-year return-levels (lower solid line); return-level estimates for the daily maxima model:
100-year return-levels (dashed line) and 22-year return-levels (dashed-dotted line).

interval model’s modelling assumptions.

3.5 Discussion

In this chapter we have considered an approach to treat the masking problem. This

problem is due to the recording mechanism of the data, where just the maximum

wind speed of an interval is recorded, but no information about the wind behaviour

in other directions within this interval is registered.
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While daily maxima approaches model only the data actually observed, our ap-

proach additionally includes for all remaining directions that occurrences were no

larger than the maximum wind speed of that interval. We assume that knowledge of

the occurrence probability of each direction for sub-intervals can be approximated

reasonably. This is motivated by the fact that at many weather stations such data

exist, at least for short time periods. Here, we have daily maxima for 22 years for

two stations, and additionally a shorter data set of ten-minutes maxima for one of

the stations.

The performance of the approach suggested here to account for masked data is based

on a comparison with the daily maxima approach. Mean square errors of high quan-

tiles are used for this comparison via a simulation study. The quantiles we consider

are adjusted to the situation of varying numbers of occurrences within intervals.

The simulation study has been carried out to analyse the model behaviour under

ideal conditions, but also to assess its robustness to deviations of the assumptions

occurring with real data.

In the simulation study we have first considered ideal conditions. The new approach

shows considerable improvement over the daily maxima approach for all directions.

Another result worth noting is that mostly there is a small bias for the daily max-

ima approach; it just gets large in cases of small return-levels and directions with

a low occurrence frequency, which may be attributed to the adjusted return-levels

used. The main contribution to the mean square error in case of the daily maxima

approach is the variance.

We analysed the robustness of the model in cases of departures from a correctly

specified occurrence distribution. The model has turned out to be robust against

such departures. This is a very important feature as in a real application the period

of available sub-interval data may be short. Furthermore, if no sub-interval data are

available for the weather station considered those of a nearby station may be taken

instead.

We have also considered the impact of serial correlation, which real data for short
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time-intervals exhibit. There is still clear superiority of the new approach, although

slightly less strong than for ideal conditions.

Application to real data confirm the results of the simulation study. For the data

of Würzburg there is a slight improvement. In case of the data of Hannover, the

new model has been applied using the occurrence distribution of Würzburg; this

approach seems reasonable due to the results on robustness in the simulation study.

Especially for Hannover, the new approach seems to pick up much better the gen-

eral structure when compared with real data than its daily maxima counterpart.

Furthermore, the largest recorded observation for that station and corresponding

return-level estimates based on the new approach are much more in agreement with

meteorological judgement.

For clarity of presentation, we have restricted the analysis to data from the winter

season, which is producing the strongest storm events. Seasonality may, for example,

be incorporated as covariates on the parameters (Coles, 2001). Our simulation study

has just used one particular model for the wind-speed distribution. Additional

analysis with different models might be useful to get further insight.



Chapter 4

Visual summary measures for the

conditional model for multivariate

extreme values

In previous chapters we have considered the wind behaviour at one weather station

only. This included directions and extreme wind speeds. Although this problem

may naturally be regarded as bivariate, we have actually split up this into two com-

ponents, the wind direction and the wind speed given a certain direction. The focus

has mainly been on the latter component, which has been treated as univariate. In

the following we concentrate on multivariate extreme values. The margins still have

to follow a univariate extreme value distribution, but additionally the dependence

structure between variables has to be taken into account.

The classical approach to multivariate extremes has turned out to provide a range

of possibilities to allow for modelling this dependence structure. This range of de-

pendence structure entirely covers cases where the dependence structure remains

the same when moving further into the tails, which is often termed asymptotic de-

pendence. In many situations, however, this type of dependence structure is not

present in the underlying process, and a broader class is required. In the Chapters 4

and 5 we consider a recently introduced model for multivariate extreme values that

is overcoming this and other restrictions faced by earlier models.

65
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The conditional approach for multivariate extreme values can describe the behaviour

of variables having different forms of dependence including asymptotic dependence

and asymptotic independence; the latter comprises the three cases of positive and

negative extremal dependence, and near extremal independence. An additional

advantage is that not all variables need to jointly become large. This feature is im-

portant for the approach discussed in Chapter 5. Furthermore, the joint probability

of an event falling into a specified region at extreme levels can be calculated for a

big variety of regions.

Though, having all these advantages, direct comparison with well known models is

not straight forward. The dependence structure of the conditional model is defined

pairwise; for each of these pairs we consider one variable is conditioned on the other

one which is getting large, and vice versa. So for a given pair of variables we have

two dependence statements describing the behaviour of each variable when the other

is large. Each of these statements is, in turn, given by two or three parameters and

a residual distribution. It is therefore desirable to describe the joint dependence

structure of pairs of variables.

In this study we compare visual methods based on different failure regions in order to

judge the dependence structure. Performance of these visual methods is investigated

via simulation of bivariate normal data using a range of different correlations. We

start by giving a short overview of earlier multivariate extreme value approaches

and then describe the conditional multivariate extreme value model.

4.1 Introduction

Multivariate extensions of the univariate approach are less straight forward. For ex-

ample the way of ordering multivariate observations is not obvious (Barnett, 1976).

A common approach is to consider componentwise maxima Mn = (M1n, . . . ,Mdn)

of n iid replicates of X = (X1, . . . , Xd). Usually, marginal and dependence aspects

are treated separately. Therefore all marginal distributions are estimated and then

transformed to a common distribution. The choice of common distribution is not

essential, although some choices turn out to be more convenient than others. There-

after the dependence structure is analysed.
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The classical approach of multivariate extreme values is often presented on unit

Fréchet margins, given by P (Z ≤ z) = exp(−1/z) for z ≥ 0. In the bivariate

case the componentwise normalized maxima after transformation to Fréchet margins

P (M1/n ≤ z1,M2/n ≤ z2) can be shown (Resnick, 1987) to converge to a bivariate

distribution function given by

G(z1, z2) = exp

{

−

∫ 1

0

max{sz−1
1 , (1 − s)z−1

2 }dH(s)

}

, (4.1)

where H is a non-negative measure, which satisfies integral constraints to ensure

the marginal distributions are Fréchet distributed, but is arbitrary otherwise. In-

herent in the structure given by model (4.1) is the assumption of a constant de-

pendence structure over all extreme levels, which is termed asymptotic dependence.

As in the univariate case threshold methods were developed for multivariate appli-

cations to make better use of the information at hand (de Haan, 1985; Coles and

Tawn, 1991; Coles and Tawn, 1994). In the classical case, the dependence structure

at extreme levels is assessed and used for extrapolation. These models allow for a

variety of possible ’failure regions’, see Coles and Tawn (1994). If the dependence

structure of the physical process under consideration does not remain the same over

all levels within the tails then application of a model given by (4.1) is likely to yield

misleading results.

Ledford and Tawn suggested a generalization of the above model (Leford and Tawn,

1996; Leford and Tawn, 1997). One property of their model in the bivariate case,

for variables (Y1, Y2) having Gumbel margins, is

P ((Y1, Y2) ∈ t+D) = exp(−t/η)P ((Y1, Y2) ∈ D) (4.2)

for an extreme set D which is large in all components and a scalar t > 0. They

term η ∈ (0, 1] the coefficient of tail dependence and the model given by (4.2) is ca-

pable of accounting for asymptotic dependence and asymptotic independence. The

coefficient of tail dependence allows for changes in the dependence structure over

different levels within the joint tail region, with η = 1/2 representing near indepen-

dence, while η ∈ (0, 1/2) and η ∈ (1/2, 1) represent negative and positive extremal
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dependence within the class of asymptotic independence, respectively. If η = 1 the

class is asymptotically dependent and the dependence structure is not changing over

different levels t. Containing this great flexibility, the model has, however, the dis-

advantage of requiring all components to become large at the same time. A model

overcoming this drawback is summarized subsequently.

For the conditional multivariate extreme value model introduced by Heffernan and

Tawn (2004) separation of marginal and dependence aspects is retained. So prior to

analysing the dependence structure, the margins of X = (X1, . . . , Xd) are estimated

using the semi-parametric model

F̂Xi(x) =

{

1 − {1 − F̃Xi(uXi)}{1 + ξi(x− uXi)/βi}
−1/ξi
+ for x > uXi ,

F̃Xi(x) for x ≤ uXi ,
(4.3)

consisting of the generalized Pareto above a high marginal threshold uXi , and using

the empirical distribution function F̃Xi below the threshold. All margins are then

transformed to standard Gumbel, P (Y ≤ y) = exp(− exp(−y)) for real y, simplify-

ing the presentation of the dependence structure.

Let Y = (Y1, . . . , Yd) denote a vector with margins following a standard Gumbel

distribution, and define Y−i to be the vector of all but the i–th component. The

conditional limiting distribution of all but the i–th component, given Yi gets large,

is then given by

lim
yi→∞

P (Y−i ≤ a|i(yi) + b|i(yi)z|i|Yi = yi) = G|i(z|i), (4.4)

where the components of a|i(·) and b|i(·) are normalizing functions, and the only

assumption on G|i is to have non-degenerate margins. An alternative representation

of equation (4.4) is given by

lim
yi→∞

P (Z|i ≤ z|i|Yi = yi) = G|i(z|i). (4.5)
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where Z|i are standardized variables given by

Z|i =
Y−i − a|i(yi)

b|i(yi)
(4.6)

and G|i has non-degenerate marginal distributions. An important feature of the

model is that in the limit, the Z|i and Yi are conditionally independent given Yi is

large.

There is no unique form to which the normalizing functions a|i(·) and b|i(·) are

restricted to. Heffernan and Tawn (2004) suggest a functional relationship which

has a natural structure and is supported by a broad range of parametric model

examples. Their suggestion is to use

a|i(y) = a|iy + I{a|i=0,b|i<0}{c|i − d|i log(y)}

b|i(y) = yb|i , (4.7)

where I denotes the indicator function. The components of a|i, b|i, c|i, and d|i are

constants with 0 ≤ aj|i ≤ 1, −∞ < bj|i < 1, −∞ < cj|i < ∞, and 0 ≤ dj|i ≤ 1

for j 6= i. They contain information about the dependence structure which can

be categorized into asymptotic dependence (aj|i = 1, bj|i = 0), positive extremal

dependence (either aj|i ∈ (0, 1) or aj|i = 0, bj|i > 0), near independence (aj|i = 0,

bj|i ≤ 0, dj|i = 0) or negative extremal dependence (aj|i = 0, bj|i < 0, dj|i ∈ (0, 1),

cj|i ∈ IR). Applications of the model then proceed by assuming equation (4.4) to

hold exactly for yi above some threshold uYi .

As no specific structure is required for G|i a non-parametric model is adopted for

it. We take the empirical distribution of G|i, which can be calculated from equa-

tion (4.6) with parameters of the functions a|i(·) and b|i(·) being replaced by their

estimates. Estimation of the parameters of a|i(·) and b|i(·) is based on the stan-

dardized residuals given by equation (4.6) and assuming the Z|i to have finite first

two moments

µµµ|i(y) = a|i(y) + µµµ|ib|i(y)

σσσ|i(y) = µµµ|ib|i,
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where the components of µµµ|i and σσσ|i are constants. All parameters are then esti-

mated by a pseudolikelihood approach in which an objective function is maximised

with respect to all parameters aj|i, bj|i, cj|i, dj|i, µj|i, and σj|i in order to obtain point

estimates of aj|i, bj|i, cj|i, and dj|i while the µj|i and σj|i are nuisance parameters.

Technically this is carried out by falsely assuming all margins of Z|i for all i to fol-

low a Gaussian distribution and that all contributions to the objective function are

independent; so we assume independence between all margins of each conditional

distribution as well as independence between all conditional distributions. Although

the margins of G|i may actually not follow a Gaussian distribution this approach ex-

ploits the consistency property of maximum likelihood estimates for the parameters

aj|i, bj|i, cj|i, and dj|i, which we are interested in. The independence assumption of

the margins of G|i may not hold, although it is often present in common theoretical

examples; however, this approach yields consistent point estimators for the param-

eters aj|i, bj|i, cj|i, and dj|i of the margins of the conditional distribution. The false

independence assumption between different conditional distributions can be shown

in the case of a Gaussian error distribution to be an approximation to the joint

likelihood function (Heffernan and Tawn, 2004).

4.2 Simulation study

Although the multivariate conditional model is flexible and allows for different forms

of dependence, it is not always easy to quantify the degree of dependence. The de-

pendence structure is characterized by the parameter functions a(·), b(·) and the

distribution of the residuals Z. It is therefore desirable to have a scalar quantity,

or a visual summary, to assess the magnitude of dependence. One quantity already

introduced by Coles, Heffernan and Tawn (1999) is χ̄ = 2η−1 or equivalently η. To

give further assistance in assessing the degree of dependence we introduce a range

of visual summaries. To see how χ̄ and the visual methods perform, we carry out a

simulation study. The choice of distributions to simulate from should include a wide

range of degrees of dependence, and its behaviour should also be well understood. A

possible candidate is the bivariate normal distribution, which we apply using a range

of different correlations. We first describe the simulation design, thereafter discuss

resulting parameter estimates, and finally suggest visual summaries of dependence
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and consider their performance when applied to the simulated bivariate normal data.

4.2.1 Parameter estimates and dependence

To study the performance of the conditional multivariate model and its behaviour

for different degrees of dependence, we carry out a simulation study using a bivari-

ate normal distribution with different correlations covering the range from negative

dependence via independence to positive dependence. The choice of correlation co-

efficients in the subsequent study is ρ = 0.9, 0.75, 0.5, 0.25, 0, -0.25, -0.5, -0.75,

-0.9. We simulate 20 000 iid replicates in each case. Both the marginal thresholds

uX and the dependence thresholds uY are taken to be the 95%-marginal quantile.

Estimates of the shape parameter are significantly different from ξ = 0 at a 5%-

level, although it is well known that the limit of a normal distribution is of Gumbel

type. This disagreement with theoretical results is due to the slow convergence of

the normal distribution; the thresholds would have needed to be much higher and

the sample size by far larger to yield estimates agreeing with the null hypothesis

ξ = 0. However, the aim of the study is to see how the model and resulting measures

for dependence behave for sample sizes approximately in the order of a potential

application.

Having simulated the data, the parameters of the model given by (4.7) are esti-

mated; after estimation of the margins, Heffernan and Tawn (2004) suggest a two

step procedure for estimation of the dependence parameters: first using a pseudo-

likelihood (subsequently referred to just as likelihood) approach with parameter

functions aj|i(y) = aj|iy and bj|i(y) = ybj|i as given in (4.7), then in a second step, if

both aj|i = 0 and bj|i < 0 hold, re-estimating aj|i(y) by using cj|i−dj|i log(y) instead.

In some cases of our simulation study we detected local instead of global maxima of

the likelihood in applying the procedure just described. To avoid this problem we

calculate both likelihoods and use information criteria for discrimination between

them; in our case the Akaike information criterion is applied. Table 4.1 shows the

estimated parameters from the simulated normal data.
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ρ a b c d η χ̄ χ̄o

0.9 0.752 0.557 0 0 0.899 0.799(0.764,0.964) 0.817 (0.641,1.020)
0.724 0.580 0 0

0.75 0.460 0.630 0 0 0.844 0.687(0.589,0.801) 0.744(0.477,0.889)
0.430 0.560 0 0

0.5 0.359 0.567 0 0 0.796 0.592(0.337,0.612) 0.377(0.274,0.658)
0.310 0.298 0 0

0.25 0.075 0.128 0 0 0.598 0.196(0.073,0.499) 0.336(0.084,0.443)
0.089 -0.056 0 0

0 0 -0.249 5.066 1 0.425 -0.150(-0.218,0.356) 0.105(-0.068,0.209)
0 -0.143 0.566 0.164

-0.25 0 -0.146 0.433 0.508 0.386 -0.229(-1.000,0.268) -0.204(-0.234,-0.009)
0 -0.214 0.377 0.424

-0.5 0 -0.369 1.188 1 0 -1(-1,NA) -0.403(-0.417,-0.232)
0 -0.278 0.232 0.720

-0.75 0 -0.224 0.123 0.876 NA NA -0.530(-0.599, -0.481)
0 -0.427 -1.909 0.274

-0.9 0 -0.299 -3.075 0.258 NA NA -0.712 (-0.745,-0.673)
0 -0.401 0.011 0.926

Table 4.1: Estimated parameters of the conditional model for different correlations ρ and
estimates for η, χ̄, and χ̄o.

Figure 4.1 shows the value of the profile log-likelihood for data with different correla-

tions and for a range of different b values. For illustration we applied a simplification

by using the likelihood functions including the parameters µ, σ, a (where µ and σ

are the nuisance parameters used for estimation discussed in Section 4.1) whenever

b > 0 and µ, σ, c, d otherwise. The vertical dotted line indicates the resulting es-

timate, when the procedure is allowed to stop after having found a maximum for

positive b. For small negative correlated data the procedure without applying an

information criterion works quite well, as the likelihood increases when positive val-

ues of b are getting smaller resulting in estimates with a = 0 and b < 0. In contrast,

for correlations in between -0.45 and -0.55, and stronger negative cases, the likeli-

hood has a local maximum at a positive value of b a consequence of which is the

estimation procedure terminating with b > 0. However, as these plots demonstrate,

a far higher likelihood is achieved for negative b.
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Figure 4.1: (Modified) Profile log-likelihood using a model based on normalizing functions
given by (4.7) applied to normal data having a range of different negative correlations.
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One feature of the conditional model is that (in the limit) residuals are independent

of the conditioning variable. Analysis of the residuals in the present case did not

show any dependence on the conditioning variable. The residuals were regressed

on the conditioning variable on the original scale and on their quantiles (which are

equally spaced). In both cases all coefficients of the regression analysis undertaken

had non-significant slope-parameters. Furthermore, simulated normal data and sim-

ulated values under the conditional model have shown good agreement in the tail

regions.

4.2.2 Dependence summaries based on failure regions

In this section we look at how different forms of dependence are summarized using

four chosen failure regions. Let x = (x1, x2) denote a point in IR2, these failure

regions are defined as

a)A1,v = {(x1, x2) : x1 + x2 > v}

b)A2,v = {(x1, x2) : (x2
1 + x2

2)
1/2 > v}

c)Amax,v = {(x1, x2) : max(x1, x2) > v}

d)Amin,v = {(x1, x2) : min(x1, x2) > v}.

(4.8)

While a) – c) are derived from well known distance measures, d) seems a sensible

choice for extremes as it measures whether a point is large in both components.

After model estimation, we can simulate data from the conditional model above the

dependence threshold uY . The procedure is as follows. Simulate y∗i from a standard

Gumbel distribution given it exceeds its threshold uYi , and calculate y∗j|i = aj|i(y
∗
i )+

bj|i(y
∗
i )Zj|i with i, j = 1, 2, i 6= j, where Zj|i is sampled with replacement from the

set of residuals independently of the value y∗i . This yields pairs (y∗1, y
∗
2|1) given y∗1

is large and pairs (y∗1|2, y
∗
2) given y∗2 is large. To be able to calculate probabilities

of sets of interest we first consider how to split up the space of points exceeding at

least one threshold. Let {C1, C2} be a disjoint partitioning of the space of points

(y1, y2) exceeding at least one threshold, and define C1 = {(y1, y2) : y1 > uY1 , y2 <

(uY2 − uY1) + y1} and C2 similar by interchanging the indices 1 and 2. Then the
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probability of Av can be stated as

P (Av) =
2
∑

i=1

P (Av ∩ Ci|Yi > uYi)P (Yi > uYi). (4.9)

By using the pairs of simulated values (y∗1, y
∗
2|1) and (y∗1|2, y

∗
2) it is then possible

to estimate the probabilities P (Av ∩ Ci|Yi > uYi), i = 1, 2, using their empirical

counterparts, while P (Yi > uYi) is calculated directly from the Gumbel distribution.

Multiplication of these probabilities and summing up over i = 1, 2 yields an estimate

for P (Av) whenever v > k, where k is the value so that all points in Av are above

the threshold uYi . To estimate P (Av) for v < k additionally requires calculation of

the probability for an event falling below the threshold; as data are dense in this

region, this probability is evaluated empirically.

Coefficient of tail dependence

We now consider the coefficient of tail dependence η, which can be calculated by

re-arranging equation (4.2) as

η =
−t

log(P (Y ∈ t+ Amin,v)) − log(P (Y ∈ Amin,v))
. (4.10)

The set Amin,v given by (4.8d) is equivalent to D in equation (4.2); obviously

t + Amin,v is the same set as Amin,v+t and we use both representations as conve-

nient. The procedure described in relation with equation (4.9) is used to calculate

the probabilities P (Amin,v) and P (t + Amin,v). For each set of simulated bivariate

normal data considered we now use the model estimated in Section 4.2.1. To es-

timate η we simulate 10 000 values for each of the margins and the corresponding

value of the other component from the estimated model, and substitute the P (Y ∈ ·)

terms in (4.10) by their empirical counterparts. The value v is chosen to be the de-

pendence threshold uY1 = uY2 . In the case of strong positive dependence the choice

of t is not crucial. However t needs to be large enough for the differences of proba-

bilities in (4.10) to be well estimated by its empirical counterparts, but should not

be too large to make estimates for P (Y ∈ t + Amin,v) unreliable. The latter point

will have a considerable impact for negatively dependent data, as joint exceedances

in this region become rare. We therefore recommend to try a number of t values
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and choose a value from within an interval where η appears to be approximately

constant. In this study t is taken to be 1. For normal data the theoretical value

of η is in the limit (1 + ρij)/2. Rearranging terms yields χ̄ = 2η − 1, which is in

the limit ρij, where the term χ̄ follows Coles et al. (1999); therefore χ̄ allows direct

comparison with ρ. Table 4.1 shows results for the same bivariate normal data

estimated previously. Data in the joint upper region, the set which χ̄ is based on,

are getting scarce with rising negative dependence. In the case of strong negative

dependence, there are no data left in this region which explains the NA values of

χ̄ if ρ ≤ −0.75. The 95%-confidence intervals for χ̄ shown in Table 4.1 are based

on 200 bivariate normal samples each of the same size as the original sample and

re-estimation of χ̄.

Since estimation of χ̄ is unreliable or even impossible for a range of cases with nega-

tive dependence, we alternatively calculate this dependence measure without using

the conditional model. Instead we use a non–parametric transformation to Gumbel

margins of the data although the transformation could also have been achieved by

using the marginal parameter estimates. To ensure having enough data for estima-

tion, the joint exceedance regions are chosen to be large quantiles fixed in advance.

Let (Y1, Y2) denote a bivariate random variable with Gumbel margins. Applying

the transformation U = min{(Y1, Y2)} it is seen that P (U > v) corresponds to the

probability of (Y1, Y2) falling into the set Amin,v, where we assume v to be a large

quantile of the distribution U . Using the distribution of U we fix the probability

of falling into the regions Amin,v and t + Amin,v = Amin,v+t by taking v and v + t

to be the upper 98% and 99% quantile, respectively. Having these regions fixed,

calculation of t is straightforward from the quantiles of U corresponding to Amin,v

and t+Amin,v. Calculation of ηo or χ̄o is immediate from equation (4.10), where the

index “o” is used to distinguish the estimates from those based on the conditional

model above. It can be seen from Table 4.1 that χ̄ is (in terms of confidence in-

tervals) superior to χ̄o for correlations around or greater than 0.5. However, due to

its construction, χ̄o supplies estimates for all values of ρ and yields better estimates

compared to χ̄ for any ρ below 0.25. Negative dependence is however permanently

underestimated. This bias is a consequence of the slow convergence in the normal

case to its limit; for illustration of the convergence of χ̄ in the normal case see Coles

et al. (1999).
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Visual summary measures

The procedure described in relation with equation (4.9) is used again to calculate

the probability P (Av). In order to establish graphs based on this procedure we eval-

uate P (Av) for a range of values v on Gumbel scale according to the different failure

regions Av given by (4.8) a) – d). The calculation of the probability of the region

Av is based on 100 000 simulated values above the dependence threshold uYi . Since

we are interested in the behaviour of the tails we consider log(1/P (Av)) rather than

P (Av) in the graphs. To provide a reference for comparison, values of log(1/P (Av))

corresponding to perfect dependence and independence are additionally superim-

posed.

We now consider the graphs based on different failure regions as described above,

see Figures 4.2 to 4.5. All graphs were calculated for a range of different values

v on Gumbel scale above the threshold; for a smaller range of values the visual

summaries were also evaluated below the threshold to get an impression how model

based estimation agrees with those additionally based on the empirical distribution.

The dotted vertical line corresponds to the value v of the particular failure region

at the dependence thresholds (uY1 , uY2). The dashed line indicates independence

of the two variables considered, while the dotted line represents perfect positive

dependence. Note that while for most graphs the dependence line is below the in-

dependence line for v greater than the threshold, in case of Amax the opposite is true.

As can be seen the graphs show good discrimination for positive dependence for

any choice of failure region given in (4.8) a) – d) above. One apparent drawback of

Amax and A2 is their lack in discriminating between data having different degree of

negative dependence including independence; this drawback makes their application

questionable. Amin and A1 do not exhibit this lack, and both of them seem appro-

priate to judge strength of dependence. We therefore focus on these two alternatives.

Although Amin has the potential to discriminate well between different degrees of

dependence, the plots indicate problems when correlation is negative. The reason

for this behaviour is that Amin is based on the upper joint tail region, and resulting

estimates for negatively related data are based on very few values. One possibility
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to alleviate this problem is to restrict v to smaller values to ensure there are enough

data for estimation. As we are mostly interested in the behaviour of the upper tail

this approach is not sensible. Considering just the non-negative case, estimated

curves appear to discriminate approximately linear between different degrees of de-

pendence making interpretation much easier.

There is a close link between χ̄ and visual measures based on Amin. Both of them

are based on probabilities of sets including joint exceedances only. So as χ̄ is not a

good measure in the case of negative dependence, due to scarcity of joint extremes,

similar arguments hold for a visual procedure based on Amin. Furthermore, once

having calculated one of both dependence measures, the other one is not likely to

contain much additional information.

We consider now the A1 measure. Its slight disadvantage is the crossing of de-

pendence and independence line at a low value (not shown in the graph), which

makes interpretation in this region difficult. However, in most cases, the dependence

threshold is above this value, and the tail is the region we are primarily interested

in. Measures based on A1 show good discrimination for all possible correlations.

The reason is that they take account of all extreme regions and not just those be-

ing jointly extreme. Therefore a considerable amount of data are incorporated for

estimation at all reasonable levels. So in contrast to the Amin, which agrees with

traditional approaches in that all components have to become jointly extreme, A1

much better ties in with the idea of the conditional approach in that additionally

regions are considered where not all components are extreme at the same time.

4.3 Wind speed application

In this section we apply the conditional multivariate model to wind data of three

different weather stations: Hannover, Göttingen, and Würzburg, which are in the

stated order lying approximately on one line in north-south direction with the dis-

tance Göttingen-Würzburg being roughly double the distance Hannover-Göttingen.

As we expect towns close together to show stronger dependence than those far apart,

we consider how well estimated dependences reflect the distances of towns. The data
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consist of daily maximum wind gusts for 22 successive years. No declustering of the

data is carried out here, as this procedure may slightly bias estimates of the depen-

dence structure; for example choosing componentwise maxima of blocks can yield

values of two components resulting from different events. However, non-declustering

should be taken into account when considering standard errors which may be un-

derestimated due to non-independence of data, while point estimates themselves are

not materially affected. However, as we are working with daily data, serial correla-

tion is rather weak.

β ξ
Hannover 3.923 -0.105
Würzburg 4.469 -0.081
Göttingen 3.691 -0.112

Table 4.2: Parameter estimates of the marginal GPD with scale and shape paramters β

and ξ for three different weather stations.

In each case a marginal threshold of 15 m/s, corresponding for Hannover, Würzburg,

and Göttingen to quantiles 0.84, 0.83, and 0.92, respectively, and a dependence

threshold with exceedance probability 0.2 were found appropriate by inspection of

corresponding mean exceedance plots and residual plots, respectively. Estimates of

the GPD marginal parameters are shown in Table 4.2.

a b η χ̄
Wü|Ha 0.802 0.411 0.927 0.855
Gö|Ha 0.824 0.366 0.958 0.916
Ha|Wü 0.670 0.463
Gö|Wü 0.764 0.326 0.946 0.892
Ha|Gö 0.835 0.507
Wü|Gö 0.836 0.408

Table 4.3: Parameter estimates of the conditional multivariate extreme value model, and
estimates for η and χ̄.



C
H

A
P

T
E

R
4
.

V
IS

U
A

L
S
U

M
M

A
R
Y

M
E

A
S
U

R
E

S
84

5.0 5.5 6.0 6.5 7.0

2.
5

3.
0

3.
5

4.
0

4.
5

5.
0

Failure Region A_ 1

Gumbelscale

lo
g(

1/
E

xc
ee

dP
ro

b)

5.0 5.5 6.0 6.5 7.0

3.
5

4.
0

4.
5

5.
0

5.
5

6.
0

Failure Region A_ 2

Gumbelscale

lo
g(

1/
E

xc
ee

dP
ro

b)

5.0 5.5 6.0 6.5 7.0

4.
5

5.
0

5.
5

6.
0

6.
5

7.
0

Failure Region A_ max

Gumbelscale

lo
g(

1/
E

xc
ee

dP
ro

b)

4.0 4.5 5.0 5.5 6.0
4

6
8

10
12

Failure Region A_ min

Gumbelscale

lo
g(

1/
E

xc
ee

dP
ro

b)

F
igu

re
4
.6

:
P
lo

t
o
f
th

e
visu

a
l
su

m
m

a
ry

u
sin

g
d
iff

eren
t
fa

ilu
re

regio
n
s

a
p
p
lied

to
w
in

d
d
a
ta

:
H

a
n
n
o
ver-W

ü
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Parameter estimates of the conditional multivariate model are found in Table 4.3.

The estimate of parameter a indicates strong dependence, though direct, exact in-

terpretation just by parameter estimates of a and b is difficult. Also shown are

estimates for η and χ̄; their magnitudes well represent the order of distances be-

tween pairs of towns.

Figure 4.6 shows plots of the wind data for the different failure regions evaluated

above the dependence threshold. 100 000 values are used for the simulation above

the dependence threshold to assess failure probabilities for each region. The solid

line corresponds to the largest distance, Hannover-Würzburg, the dotted line is for

Würzburg-Göttingen, while the dashed line describes the dependence of Hannover-

Göttingen. The covering dotted and dashed lines again represent perfect dependence

and independence, respectively. All plots well represent the order of the distances

of pairs of towns.

A comparison with the estimates of χ̄ confirm the observations drawn in the simula-

tion study. Since dependence appears to be strongly positive across all levels shown

in the plot, all four measures perform satisfactory. A drawback of the A2 measure is

its crossing of lines of stronger and weaker dependent data at a value around three,

making interpretation more difficult. Graphs based on failure regions A1 and Amin
show desirable discrimination between different degrees of dependence highlighting

well the behaviour in the upper tail.

4.4 Discussion

The conditional approach for multivariate extreme values overcomes a number of

drawbacks earlier models face. Its dependence structure is, however, determined by

two normalizing functions and the distribution of the residuals, and assessing its

dependence is therefore not easy. In this study we have looked at summaries of the

dependence structure. The scalar measure χ̄, forming a link to earlier approaches,

has been considered in a simulation study, which has shown satisfactory behaviour

for positive correlation. However, in case of negative dependence, estimates of χ̄

are not reliable or for large negative ρ not obtainable. So for the normal data the

estimator χ̄o performs considerably better than χ̄ for negative correlation, but is
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biased when negative dependence is present.

An alternative to the scalar dependence measure presented in this study is visual

summaries of dependence. These make use of four different failure regions, and their

ability to discriminate dependence has been analysed in detail using a simulation

study and applying them to a set of data. Since we are primarily interested in the

behaviour in the tails, the plots are organized so as to highlight this region.

In the case of positive correlation all visual measures can discriminate between dif-

ferent degrees of dependence. These findings are also confirmed by application of

these measures to wind data of three stations having different distances. For these

data all of the visual measures represent smaller distances by higher dependence,

a result being intuitively reasonable. Furthermore, results of the visual summaries

appear to be in good agreement with estimates of the scalar measure χ̄.

For the failure regions A2 and Amax these visual measures are unable to distinguish

between different degrees of non-positive dependence; the remaining two have the

capability to discriminate in all cases. Among these latter two, visual summaries

based on the failure region Amin turn out to yield very unreliable estimates when

based on data with small positive or small negative dependence. This is a conse-

quence of scarceness of data in the joint tail region and far extrapolation is therefore

not possible in these cases. For the same reason estimation of the probability of Amin

in case of strongly negative correlated data is based on virtually no joint exceedances

invalidating a visual summary based on this failure region. All these problems are

not present when applying the graphs to the failure region A1. Although separation

between different degrees of dependence is not exactly linear it appears to discrim-

inate well for the whole range of dependences. Furthermore, extrapolation far into

the tails shows good and reliable behaviour.

A common question when maximizing a likelihood is whether the applied procedure

indeed returns the overall maximum of the objective function. Though negative

dependence is not the most common case in applications, resulting estimation pro-

cedures may find a local instead of a global maximum of the likelihood function in

these situations. This situation has occurred in our study using simulated data hav-
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ing intermediate or strong negative correlation. Standard techniques can be applied

to avoid this problem.

It is worth mentioning that in the present study visual plots for negatively corre-

lated data still indicate negative dependence when the estimates of the parameters

resulted in a = 0 and b > 0, which would give rise to other conclusions. This is

a consequence of the visual summaries taking the distribution of the residuals into

account, which have in those cases most of their mass in the negative part. The

plots may thus provide a helpful tool to make a check on estimation results.

We finally want to mention that although the simulated data are symmetric, we have

not exploited this feature in the estimation procedure. Restricting estimation to this

symmetric structure may, however, improve the results. In applications symmetry

is not always a valid assumption and we have therefore not restricted estimation to

this special case in the present study.



Chapter 5

Directional dependence in

extremes for two stations

5.1 Introduction

For a number of applications of extreme wind speeds directionality plays an impor-

tant role. One application we are particularly interested in is related to some high

speed trains for which an extreme gust may cause derailment and the corresponding

risk depends on the angle between gust direction and direction of the rails. An

important question here is whether extreme wind events occur rather localized and

independent of points at some distance, or if some sort of joint dependence is present.

The two towns Hannover and Würzburg constitute the end points of a railway track

for high speed trains. The orientation of this track is in north-south direction. The

risk is highest for gusts perpendicular to the motion of the train, thus easterly and

westerly storm events are of particular interest. With the highest wind speeds oc-

curring roughly from west, we mainly focus on this direction. North is be denoted

by 360◦(=0◦) and directions are defined clockwise, so that west is 270◦.

For the weather stations of the two towns, daily maximum wind speeds are available

for the years 1976-1997. In the following we just consider data for days available at

both stations. In the current application interest is in the force of the wind, so it is

sensible to resolve all data appropriately to all directions. The wind component R̃α

88
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is defined here as R̃α = Rφ cos(α− φ) for all directions α and observed wind speeds

Rφ in direction φ; note that R̃α ∈ IR can take on negative values being interpreted

as the same absolute wind force in the opposite direction.

With interest in the joint behaviour of extreme wind events at both stations, it is

sensible to first consider our data. The scatterplot in Figure 5.1 shows component

wind speeds of Würzburg in direction 270◦ plotted against the corresponding ones

of Hannover in direction 270◦. For extreme levels at the upper end, the data exhibit

a positive relation between the two stations for this particular choice of combination

of directions, suggesting the presence of an underlying positive dependence.
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Figure 5.1: Scatterplot of wind components in direction 270◦ for both stations Hannover
and Würzburg.

Let us consider a simplified version of the track consisting of two stations only. Then
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it is natural to look at the probability of observing an extreme event at the track.

In mathematical terms this is given by

P ((Rφ1 > x) ∪ (Rφ2 > y)) =

P (Rφ1 > x) + P (Rφ2 > y) − P (Rφ2 > y|Rφ1 > x)P (Rφ1 > x). (5.1)

So to consider, whether at least at one of the two stations we observe a wind speed

of, say x = y = 40m/s, we use equation (5.1). For the calculation of the above

probability we need, however, to be able to calculate the conditional probability at

the right hand side of equation (5.1), which comprises the joint dependence between

the two variables of interest, and this will vary with φ1 and φ2.

To investigate the dependence structure of the wind process at extreme levels we

make use of the conditional multivariate extreme value model introduced in the pre-

vious chapter. The advantage of this particular model in the current application is

its high flexibility and the possibility to incorporate all forms of dependence, includ-

ing both positive and negative extremal dependence. As it is natural to assume the

wind process to vary smoothly over directions, we use functions to describe model

parameters which vary continuously over directions. All margins are transformed to

the double exponential distribution allowing for a smooth transition over different

forms of dependence. In contrast to a separate sector by sector analysis this further

allows us to employ neighbouring information to improve on estimates. Addition-

ally, the number of parameters can be reduced considerably.

5.2 Model definition

To analyse the dependence structure it is convenient to have a standard distribution

for all margins. The choice of common margins is to some extent arbitrary, in many

cases for mathematical convenience, presentational transparency or easier interpre-

tation. The conditional extreme value model introduced in the previous section was

presented using Gumbel margins as suggested by Heffernan and Tawn (2004).
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Due to the asymmetry of the Gumbel distribution there is actually two different

forms to describe the dependence structure with a difference in the number of pa-

rameters. Having two different forms of the dependence structure is rather inconve-

nient when considering dependence of wind speeds over directions, especially when

the number of parameters and their interpretation is changing. We therefore suggest

to use the double exponential distribution, having the same upper tail as the Gum-

bel distribution, but being symmetric at the same time. The double exponential

distribution is given by

P (Y ≤ y) = 0.5 exp(y)1{y≤0} + (1 − 0.5 exp(−y))1{y>0},

where 1{·} denotes the indicator function. By having the same upper tail and sym-

metry we can use the modified version

a∗
|i(y) = a|iy b∗

|i(y) = yb|i (5.2)

of parametrisation (4.7) for the whole range of y. That is, we do not need to use

different dependence functions for positive and negative dependence. We have now

−1 < ai|j ≤ 1 with negative values of ai|j corresponding to negative dependence.

We start building up a global model by first considering separate models for different

directions and then join these together. We begin by conditioning on one variable,

that is the wind speed for a fixed direction φ1 at the first station, and determine

the dependence structure of wind events in all directions at the other station, φ2 ∈

(0, 2π]. Let (Yφ1 , Yφ2) be a pair of random variables after transformation to double

exponential margins with each component representing the wind speed in direction

φi at station i = 1, 2. Then the conditional distribution of Yφ2 given an extreme

event at the first station in direction φ1 is assumed to follow

lim
yφ1

→∞
P (Yφ2 ≤ aφ1(φ2) · yφ1 + zφ2|φ1 · y

bφ1
(φ2)

φ1
|Yφ1 = yφ1) = Gφ2|φ1(zφ2|φ1), (5.3)

where aφ1(φ2) and bφ1(φ2) are parametric functions which, in the terminology of

(5.2), would be read for each fixed pair of directions (φ1, φ2) as aφ2|φ1 and bφ2|φ1 .

According to the continuous nature of φ ∈ (0, 2π] the parameters as components as
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given by (5.2) have now to be represented by continuous cyclic functions.

The limiting distribution of Zφ2|φ1 , Gφ2|φ1 , in (5.3) is assumed to be non-degenerate.

The estimation procedure further requires specification of the mean µφ2|φ1 and stan-

dard deviation σφ2|φ1 of the limiting distribution of Zφ2|φ1 . As the wind process can

be assumed to vary smoothly over directions, it is natural to model all parameters

by continuous functions satisfying circular boundary conditions.

5.2.1 Conditioning on a single direction

To model the distribution Yφ2 |(Yφ1 = yφ1), where φ2 ∈ (0, 2π] while φ1 is fixed, we

account for directional variation by using m harmonic terms given by

ηζ,φ1(φ2) = γζ +
m
∑

j=1

βζ,j cos(jφ2 − ωζ,j) (5.4)

with ζ ∈ {a, b, µ, σ}. For reasons of identifiability we let γζ ∈ IR, but restrict the

amplitude parameters βζ,j ≥ 0 and location parameters ωζ,j ∈ (0, 2π]. Instead of

using (5.4), we employ the modified version

ηζ,φ1(φ2) = γζ +
m
∑

j=1

βζ,j cos(jφ2 − ωζ,j − φ1) (5.5)

to account for variation purely induced by changing φ1. To ensure that the range

conditions of the individual parameters are satisfied, a further transformation or

link function ρ is suggested to each of the harmonic terms, for example µφ1(φ2) =

ρµ(ηµ,φ1(φ2)) and the other parameters similarly. Derived from common likelihood

techniques, the objective function for a fixed direction φ1 is given by

−
∑

φ2∈Ω2

{

nφ1 log(σφ1(φ2)) + bφ1(φ2)

nφ1
∑

i=1

log(yφ1,i)

+
1

2

nφ1
∑

i=1

[

yφ2|φ1,i − aφ1(φ2)yφ1,i − µφ1(φ2)y
bφ1

(φ2)

φ1,i

σφ1(φ2) · y
bφ1

(φ2)

φ1,i

]2






, (5.6)
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where Ω2 is a finite subset of (0, 2π] and yφ1,i, i = 1, . . . , nφ1 , are exceedances of a

high dependence threshold uφ1 in direction φ1.

5.2.2 Global model, extension to conditioning on all direc-

tions

To extend the model to all directions φ1 ∈ (0, 2π], we need to allow each of the

parameters in expression (5.5) of all harmonic terms to vary over directions φ1.

These parameter functions are denoted by ψϑ(φ1) with ϑ ∈ {γζ , βζ , ωζ} and ζ ∈

{a, b, µ, σ}. As we assume the wind process to vary smoothly over directions, we

restrict ourselves to functions ψϑ being continuous and satisfying circular boundary

conditions. Abbreviating terms to simplify notation we may restate function (5.5)

as, for example,

ηa(φ1, φ2) = ψγa(φ1) +
m
∑

j=1

ψβa,j(φ1) cos(jφ2 − ψωa,j(φ1) − φ1) (5.7)

and similarly for µ, σ, and b. As before we then use the link functions ρ to transform

the harmonic functions to satisfy the appropriate range conditions, for example

aφ1,φ2 = ρ(ηa(φ1, φ2)). The objective function then takes the form

−
∑

φ1∈Ω1

∑

φ2∈Ω2

(

nφ1 log(σφ1,φ2) + bφ1,φ2

nφ1
∑

i=1

log(yφ1,i)

+
1

2

nφ1
∑

i=1

[

yφ2|φ1,i − aφ1,φ2yφ1,i − µφ1,φ2y
bφ1,φ2
φ1,i

σφ1,φ2 · y
bφ1,φ2
φ1,i

]2


 , (5.8)

with Ω1 being a finite subset of (0, 2π].

5.3 Implementation of the model

Commonly, all margins are estimated separately. However, in the present case, pool-

ing information over directions can be used to improve on estimates of the margins.
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We employ the model already discussed in Chapter 2. The model suggests a dis-

tribution for annual maxima by assuming model parameters to vary smoothly over

directions. To improve estimates the k largest order statistics in each direction are

used. After having chosen thresholds in each direction, standard transformations

yield parameters of the corresponding GPD; together with the exceedance probabil-

ity of the thresholds and the empirical distribution, this is everything required for

the model given by (4.3). To analyse the dependence structure, margins are then

transformed to the double exponential distribution.

We approach the global dependence model by first considering the conditional model

Yφ2|(Yφ1 = yφ1) separately for φ2 ∈ Ω2. The data at hand are recorded over directions

within 36 equally–spaced intervals, so Ω2 = {10, . . . , 360} given in degrees. To satisfy

range conditions we suggested the use of link functions ρ of functions given by (5.5).

In the following we choose

• the identity link for the parameters µ ∈ IR

• an exponential transformation for σ ∈ (0,∞), that is σ = exp(η)

• a modified logit link for a ∈ [−1, 1] taking the form

mod.logit(η) = 2

(

exp(η)

1 + exp(η)

)

− 1

• a modification of an exponential transform for b ∈ (−∞, 1) given by mod.exp(η) =

1 − exp(−η)

We consider now the choice of functions ψϑ used in (5.7). Plots of ψϑ based on sepa-

rate estimation, that is conditioning on a single direction φ1 only, carried out for all

conditioning directions φ1, again suggest harmonic terms to be a good choice to cap-

ture directional variation in ψϑ. In the case of intercept and amplitude parameters

harmonic terms itself seem to be most appropriate. We therefore use

ψϑ(φ1) = λϑ +

p
∑

l=1

κl,ϑ cos(lφ1 + νl,ϑ) (5.9)
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for ϑ ∈ {γζ , βζ} and ζ ∈ {a, b, µ, σ}, and restrict κl,ϑ ≥ 0, νl,ϑ ∈ (0, 2π] while λϑ ∈ IR.

To accommodate the periodic nature of ωζ , we use a modified version of (5.9) given

by

ψω(φ1) =

(

λω +

p
∑

l=1

κl,ω cos(lφ1 + νl,ω)

)

mod(2π), (5.10)

where mod is the usual modulo function, giving the value of ψω(φ1) up to a shift of

k · 2 · π, where k is an integer. For reasons of identifiability we therefore constrain

λω ∈ (0, 2π].

Parameters are then estimated by maximizing expression (5.8) using a gradient-

based optimization procedure; an analytic version of the gradient can be found in

Appendix A. Since the model may contain a high number of parameters, a good

choice of starting values is advisable to speed up the optimization process. A pos-

sibility to get these is using least square estimates from separate estimation.

5.4 Bootstrap

An important part of every statistical analysis is to assess the fit of an estimated

model and the sampling variation of estimated parameters. Since the objective

function (5.8) is not a proper likelihood, the corresponding asymptotic theory is not

applicable in the present case.

More flexible but computationally expensive alternatives are methods based on boot-

strap (Davison and Hinkley, 1997). As we are interested in extreme events, and want

to allow for variation due to the resolving process and uncertainty of the dependence

model, standard bootstrap methods are not applicable. More precisely, using simple

non-parametric re-sampling from the original data set does not allow for more ex-

treme values than those observed in the data set. Using a parametric version, on the

other hand, will not be capable of maintaining the inherent dependence structure,

as we do not have a fully parametric model for the dependence structure.
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We therefore suggest a semi-parametric bootstrap, being a mixture of non-parametric

and parametric, which is in a similar fashion to the one used by Heffernan and Tawn

(2004). Once a model has been estimated from the data at hand, we are in posses-

sion of both a marginal model for components based on (4.3), which we refer to by

(M), and a model describing the dependence structure.

In step one we sample with replacement from the original data. These data are then

resolved to components for both sites φj, j = 1, 2. Having the component data, ob-

servations are ranked for each margin separately, so that for each observation R̃+
φj ,t

,

t = 1, . . . , n, we have its corresponding rank Lφj ,t ∈ {1, . . . , n}, where n is the total

number of daily data at hand.

In the second step, we re-sample from the estimated model (M) in each direction

φj exactly the same number of data, as we obtained in step one, which we denote

by R̃∗
φj ,i

, i = 1, . . . , n. Then we match for each pair of directions (φ1, φ2) the pair of

parametrically sampled values according to the ranks obtained in step one, that is

(R̃∗
φ1,Lφ1,t

, R̃∗
φ2,Lφ2,t

). This will keep up the dependence structure of the component

data in terms of ordered size (ranks), though the functional relationship induced by

components may not exactly be maintained. Additionally values obtained by this

simulation procedure may be more extreme than those observed in the actual data

set making it appropriate for analysing extreme values.

The model is then re-estimated for the new data-set based on pairs (R̃∗
φ1,Lφ1,t

, R̃∗
φ2,Lφ2,t

)

using the procedure described previously. Repeating this procedure several times

yields full sampling distributions of the parameters. Model selection based on the

bootstrap is discussed in a later section.

5.5 Return-level estimation

Common quantities of interest in extreme value applications are high quantiles of-

ten referred to as return-levels. A related concept often employed is known as the

return-period. The return-period is the average number of repetitions of a process

required to produce a value at least as high as the return-level. Estimates of return-

levels may be compared with corresponding observations to judge model fit.
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In the present case, we are interested in extreme quantiles in direction φ2 of station

two, given an extreme event occurred at station one in direction φ1. More precisely,

we consider

P (R̃φ2 ≤ rφ2,p|R̃φ1 > rφ1) = p, rφ1 > uφ1 , (5.11)

where uφ1 is the dependence threshold in direction φ1 above which we assume the

dependence model to be valid. Equation (5.11) provides great flexibility to adjust

for quantities of interest. For example, by adjusting p we find the quantile rφ2 corre-

sponding to an event at the first station known to be greater than rφ1 . Apart from

high quantiles, p = 0.5 yields the median at the second station with a particular

extreme event for R̃φ1 . On the other hand, for a given known design value rφ1 we

can find the corresponding distribution of R̃φ2 using (5.11). We may for example

wonder, what is the probability of a train passing the second station first but facing

an extreme event leading to derailment at station one. These and other quantities

can be derived from equation (5.11).

To estimate the distribution given in (5.11) we proceed as follows. First we sim-

ulate Y ∗
φ1

from a double exponential distribution. Given the simulated value Y ∗
φ1

exceeds its dependence threshold uφ1 , we additionally sample with replacement a

value Z∗ from the empirical distribution of Gφ2|φ1(z), and compute Y ∗
φ2

using (5.2)

with parameters being replaced by their estimates. Thereafter, both margins are

back-transformed to their original margins. Repeating this procedure N times yields

pairs (R̃∗
φ1,j

, R̃∗
φ2,j

), j = 1, . . . , N , from which we can empirically calculate the prob-

abilities of interest.

A further important use of (5.11) is assessing the fit of the model. We therefore

calculate return-levels for each pair of directions (φ1, φ2) based on the procedure de-

scribed above. Model judgement is then based on the comparison of model estimates

and empirical values. Using the bootstrap procedure proposed in the previous sec-

tion, confidence intervals can be calculated to support assessing the fit of the model.
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5.6 Application of the model to the data

In this section we apply the wind data of the two stations to the conditional model

described above. As outlined before, the data at both stations are first resolved

to components. Thereafter, distributions of the margins are estimated and their

margins are transformed to the double exponential distribution. Based on these

transformed data the dependence structure using the conditional approach described

above is estimated. φ1 refers to the considered direction at Hannover, while φ2

denotes the corresponding one for Würzburg.

5.6.1 Model selection

An important part of every statistical analysis is to explore which parameters of a

model are important to describe the underlying process producing the data. Since

the objective function given by (5.8) is not a proper likelihood, standard likelihood

methods for model selection are not applicable here. We therefore use the boot-

strap procedure introduced above on which parameter selection is based on. We

start using a model including many harmonic terms and subsequently discard those

which are not relevant. We limit the number of harmonic terms to four. That is, for

each ηζ , ζ ∈ {µ, σ, a, b}, in (5.7) we start with m = 4. Furthermore, for each of the

ψϑ in (5.7) we also allow four harmonic terms. So the total number of parameters

in the starting-model is 324, compared with 5184 parameters if all combinations of

directions are estimated separately.

The first harmonic term has one oscillation and therefore picks up the basic structure

of variation over directions. The higher the harmonic term the more it is oscillating,

and it is natural to think that a harmonic term of higher order accounts for fine and

subtle adjustments rather than reflecting the rough, basic structure. For this reason

we start by considering the highest harmonic terms to decide on whether to discard

them or not. More precisely, we repeat the whole bootstrap five times (as there is in

each case four harmonic terms and one intercept), and after each bootstrap consider

the highest harmonic term for each ψϑ (36 in the present case) and either retain it

in or reject it from the model. Note, that the approach here is selecting harmonic

terms and not their individual parameters. So parameters of one harmonic term are

either jointly discarded or together kept in the model.
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A natural way to decide on whether a harmonic term is to be kept in the model is

by checking if its amplitude is significantly different from zero. However, to check

this is impossible with the current procedure as the amplitude values are for reasons

of uniqueness bound to be non-negative so that no interval based on the bootstrap

procedure can overlap zero; in fact with zero being the value on the boundary of the

parameter space, it will almost never take on zero itself. As the bootstrap procedure

is not a (purely) parametric one, but mainly based on resampling from original data,

it is neither possible to simulate from a parametric distribution with a certain null

hypothesis to test against.

Two possible approaches are as follows. The first one is based on the idea above to

check if the amplitude is close to zero. We therefore set a small boundary-value (for

example 0.01) and discard the considered harmonic term if a certain percentage of

the bootstrap estimates are smaller than this bound. If this is the case, the corre-

sponding amplitude parameter cannot be significantly greater than this bound, and

its contribution to the model is not likely to be substantial. Of course the choice of

this critical value is to some degree subjective, but apart of this the selection process

is straight forward with an obvious decision rule.

The second possibility is the selection procedure already used in Chapter 3 by con-

sidering the variation of the location parameter of each harmonic term. If bootstrap

estimates of the location parameter are highly concentrated around a certain value,

the corresponding harmonic term is kept in the model; otherwise, if the location

parameter shows, for example, high scattering over (0, 2π] it is removed from the

model. This approach is based on the assumption that the true underlying process

is correctly described by the model. A harmonic term actually present in the under-

lying process has a fixed position, so bootstrap estimates will exhibit a rather high

concentration around a certain value. Other behaviour of the bootstrap estimates

rather suggests this harmonic term not to be present in the underlying process.

The selection procedure applied here is based on the second approach. We use plots

of (circular-adjusted) kernel-density estimates of the location parameters and graphs

where the location parameters are plotted against the corresponding amplitude pa-
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rameter. In cases of difficulty, additionally to the variation of the location parameter

the actual size of the amplitude is used to decide on its importance. Again subjec-

tivity is an issue here; however, each individual judgement can reveal features of the

data, which are not seen when just applying a straight forward decision rule.

For intercept parameters λϑ in equation (5.9) of the terms ψγ and ψβ, judgement

based on whether confidence intervals include zero can be employed, as their range

is allowed to be all over the real line. The intercepts of location parameters λω in

(5.10), ψω, are restricted to (0, 2π], and thus the second method based on its varia-

tion is appropriate.

Three typical examples from the graphs of the bootstrap are given in Figure 5.2. The

plots of every row belong together with the left graph showing the kernel-density

estimate of a chosen location parameter, while the right graph is showing the same

estimates plotted against their corresponding amplitude. The first row exhibits a

pronounced bimodal density of parameter estimates with modes having roughly a

distance of π. From the corresponding plot on the right hand side it can be seen

that any amplitude value can come from either of the two modes. It does not ap-

pear very sensible that one harmonic term and the one resulting from a shift of

π (which is equivalent to a reflection of the term on its horizontal axes) are the

same likely to be in the model. This harmonic term is therefore discarded from the

model. The second example in the middle row shows almost a uniform distribution

over the whole range of (0, 2π]; every value of the location parameter based on the

bootstrap is roughly the same likely and therefore it is not sensible to be kept within

the model. The final row shows a density highly concentrated roughly around π;

the same can be seen from the right-hand plot, showing no change of location with

different values for the size of the amplitude. This parameter is kept in the model.

The model-selection procedure finally yields a (3,4,1,2)-model with 76 parameters,

that is three harmonic terms to describe the variation in µ, four for σ, one for a, and

two for b. These are given in terms of the ψϑ, ϑ ∈ {γ, β, ω}, as stated in (5.7). The

ψϑ-terms, in turn, are given by harmonic terms defined in (5.9) and (5.10), which

are determined by the estimated parameters λ, κ, and ν. Table 5.1 shows the results

and estimates for the final model.
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To get an impression of the validity of the model, we compare estimates of the four

parameters µ, σ, a, and b based on the model with separate estimates. By sepa-

rate estimates we mean estimates which are individually obtained for each sector-

combination (φ1, φ2). Figure 5.3 shows these separate estimates (points) for all

directions φ2 ∈ {10, . . . , 360} and conditioning direction φ1 = 90◦. The solid line

is based on the final model as given by Table 5.1. For comparison we use the

(4,4,4,4)-model with 324 parameters shown as dashed line. The plot shows that the

µ-parameter is estimated quite well, and the a and b estimates are also close to their

separately estimated counterparts. The σ-parameter is not captured exactly by the

model, but the basic behaviour of the separate estimates is clearly exhibited. For

φ1=180◦ (see Figure 5.4) the adaptation to the separate model is less good but its

general overall features are well reflected apart from estimates for b, which however

have a smaller variation than it is the case for φ1=90◦; furthermore, the (4,4,4,4)-

model with a much higher number of parameters is just slightly better than our final

model. Similar behaviour is present for directions φ1=270◦ and 360◦ (see Figures

5.5 and 5.6), where the final model ranges from reflecting the basic features of the

separate estimates to an almost perfect description. For these directions the final

model does not seem to appear worse than the (4,4,4,4)-model.

5.6.2 Calculation of return-levels

After having selected a model as outlined above, we consider now return-level cal-

culation based on equation (5.11). Thus we compute pairs of values (R̃∗
φ1,j

, R̃∗
φ2,j

),

j = 1, . . . , N , which in turn result from simulating and calculating pairs (Y ∗
φ1,j

, Y ∗
φ2,j

)

and back-transform them to the original margins. Given a simulated value Y ∗
φ1,j

exceeds a high specified value the resulting Y ∗
φ2,j

depends both on the estimated pa-

rameters for aφ2|φ1 and bφ2|φ1 and the stochastic residual Zφ2|φ1 . To calculate Y ∗
φ2,j

we

therefore need to sample from the distribution of Zφ2|φ1 . However, this distribution

is just known empirically, which limits the number of possible values to simulate

from.

We consider now a possibility to extend the number of values for Zφ2|φ1 which to

simulate from. The approach suggested here is to check for possible inclusion of
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term noht parameter values of harmonic terms
ψγµ 0 -0.00079
ψβµ,1 3 0.5040, 0.4496, 1.3130, 0.0723, 0.1548, 0.0410, 1.9370
ψωµ,1 2 6.1479, 0.9422, 0.0839, 0.1914, 2.1965
ψβµ,2 0 0.0099
ψωµ,2 0 0.9989
ψβµ,3 2 0.0791, 0.04407, 0.9321, 0.0138, 3.8333
ψωµ,3 1 5.4787, 0.3366, 0.6283
ψγσ 4 0.1081, 0.0623, 1.0657, 0.1056, 5.8802, 0.0170, 0.6690, 0.0168, 3.0884
ψβσ,1 0 0.0134
ψωσ,1 0 3.1090
ψβσ,2 2 0.0816, 0.1721, 4.4536, 0.0318, 2.4764
ψωσ,2 0 1.2293
ψβσ,3 0 0.0073
ψωσ,3 0 2.6375
ψβσ,4 1 0.0212, 0.0128, 4.3316
ψωσ,4 2 0.9010, 0.3750 ,0.6121, 0.7189, 1.4789
ψγa 1 -0.0238, 0.0232 ,1.1076
ψβa,1 2 1.0203, 0.7547, 4.3332, 0.2359, 2.1837
ψωa,1 3 6.0740,0.8031, 3.2805, 0.1691, 0.2368, 0.1496, 2.3879
ψγb 2 0.3172, 0.0722, 3.6360, 0.1755, 2.7258
ψβb,1 0 0.0155
ψωb,1 0 3.1408
ψβb,2 1 0.0589, 0.1706, 1.1950
ψωb,2 0 1.168

Table 5.1: The final model: First column shows the term considered, the second the number
of harmonic terms (noht) to describe the term in the first column (with 0 being just an
intercept parameter), while the last column gives the estimates of this harmonic terms.
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Figure 5.2: Three typical examples from bootstrap procedure; each row is for the same
harmonic term with the left plot showing the density estimate of the location parameter
and the right plot the very same location parameter against its corresponding amplitude
parameter.
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residuals of neighbouring directions which are, due to local proximity, supposed to

be sufficiently similar in distribution. The procedure applied is as follows. We first

normalize all residuals in all directions φ1 and φ2,

Zs
φ2|φ1,j

= (Zφ2|φ1,j − µφ2|φ1)/σφ2|φ1 .

Thereafter we consider the distribution of Z+1
φ∗2|φ

∗
1

which consists of joining all Zs
φ∗2|φ

∗
1

where (φ∗
1×φ

∗
2) ∈ {φ1−10◦, φ1, φ1 +10◦}×{φ2−10◦, φ2, φ2 +10◦}. Let the empirical

distribution of Zs
φ2|φ1

consist of m observed values. Then we can simulate m values

from the distribution of Z+1
φ∗2|φ

∗
1

and re-arrange these values in an increasing order.

Repeating this simulation process several times allows for calculating pointwise con-

fidence intervals on the ordered values (we used 95%−confidence intervals based on

200 simulations). If the ordered values of the observed Zs
φ2|φ1

keep within this confi-

dence limits, the distributions are not significantly different from one another and we

can use the set Z+1
φ∗2|φ

∗
1

to simulate from. In this case we consider a further extension

using Z+2
φ∗2|φ

∗
1

where (φ∗
1×φ

∗
2) ∈ {φ1−20◦, . . . , φ1 +20◦}×{φ2−20◦, . . . , φ2 +20◦} and

repeat the above calculation of confidence intervals and compare with the distribu-

tion of Zs
φ2|φ1

. We continue this procedure by considering Z+t
φ∗2|φ

∗
1

with (φ∗
1 × φ∗

2) ∈

{φ1 − t · 10◦, . . . , φ1 + t · 10◦} × {φ2 − t · 10◦, . . . , φ2 + t · 10◦}, t = 3, 4, . . . , until

the first time that the ordered Zs
φ2|φ1

do not keep inside the calculated confidence

interval. Of course for all t the values φj ± t · 10◦, j = 1, 2, are adapted to the

circular nature insuring to be within {10◦, . . . , 360◦}. We then take the largest set

Z+t
φ∗2|φ

∗
1

where Zs
φ2|φ1

kept within the intervals to simulate residuals from; this set is

denoted by Z+ max
φ∗2|φ

∗
1

. Having simulated (with replacement) a value Zs∗
φ∗2|φ

∗
1,j

∈ Z+ max
φ∗2|φ

∗
1

,

j = 1, . . . , N , it is back-transformed using Z∗
φ2|φ1,j

= σφ2|φ1 · Z
s∗
φ∗2|φ

∗
1,j

+ µφ2|φ1 .

As described above we then simulate a value Y ∗
φ1,j

> vrφ1
, where vrφ1

> uφ1 is the

value rφ1 given in (5.11) transformed to double exponential scale. Using Y ∗
φ1,j

and

Z∗
φ2|φ1,j

, we calculate Y ∗
φ2,j

via

Y ∗
φ2,j

= aφ2|φ1 · Y
∗
φ1,j

+ Z∗
φ2|φ1,j

· Y ∗
φ1,j

bφ2|φ1 ,

where the model parameters aφ2|φ1 and bφ2|φ1 are replaced by their estimates. Thus,

a pair (Y ∗
φ1,j

, Y ∗
φ2,j

) is obtained, which is then back-transformed to its original mar-

gins yielding the desired pair (R̃∗
φ1,j

, R̃∗
φ2,j

).
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We consider now the procedure just described in the application at hand using the

model results of the previous section. Figure 5.7 illustrates the steps of the selec-

tion process of the normalized residuals. In case of the first three extension steps

(top line plots and bottom left plot) using neighbouring residuals, namely Z+h
φ∗2|φ

∗
1
,

h = 1, 2, 3, the observed Zs
φ2|φ1

keep well within the confidence limits. The fourth

extension (bottom right plot), in contrast, exhibits significant difference between the

distributions of Zs
φ2|φ1

and Z+4
φ∗2|φ

∗
1
. Consequently the residuals are simulated from the

largest set not in disagreement with Zs
φ2|φ1

, that is Z+ max
φ∗2|φ

∗
1

= Z+3
φ∗2|φ

∗
1
.

Having simulated the residuals and values Y ∗
φ1

the corresponding Y ∗
φ2

result imme-

diately. The top left plot of Figure 5.8 shows for a simulation size of n = 5000 the

results for exceedances of the value vrφ1
corresponding to rφ1 = 21 m/s of the con-

ditioning variable in direction φ1 = 270◦. Included lines highlight the conditional

distribution of Yφ2 given Yφ1 > vrφ1
for the combination (φ1, φ2) = (270◦, 250◦);

the middle line represents the mean response of Yφ2 given yφ1 , surrounded first by

0.25- and 0.75-quantiles, followed by 0.1- and 0.9-quantiles and finally by 0.005- and

0.995-quantiles. Both, points and lines, clearly indicate a positive relation between

conditioning and conditioned variable. Back-transformation to original margins is

shown in the bottom left plot of Figure 5.8 represented by black circles. For compar-

ison, corresponding data points where super-imposed indicated by crosses. The plot

also indicates that the model provides a good description of the data. When interest

is entirely in the marginal conditional distribution of R̃φ2 , kernel density plots are

an appropriate choice of representation; for the current combination of directions

this is given in the top-right plot.

Equation (5.11) can also be applied by fixing a certain value p and rφ1 , and thereby

considering different quantiles of the distribution R̃φ2 . Lets assume, for example,

that at the first station we know that the wind speed in direction φ1 = 270◦ exceeds

23 m/s, we may want to know the median wind speed at station two. In the top-left

plot of Figure 5.9, based on model results, this is given for all directions by the

solid line, using a simulation size of n = 250000. Its empirical counterpart is super-

imposed by circles. The same figure also shows results for higher quantiles. For

most of the quantiles there is good agreement between empirical and model results.
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A slight departure of this can be observed for easterly directions (around 90◦) for

the 99%−quantile in the bottom right plot. It should be kept in mind, however,

that the number of empirical observations exceeding this quantile, is comparatively

small; the smooth appearance of these empirical points is to be attributed to the

component nature of the data and should not be misinterpreted as resulting from a

high number of exceedances entering the calculation of the quantile. These results

again suggest a good fit of the model to the data.

The dominant wind direction at the two stations is west. It is therefore natural to

closer examine these directions. Figure 5.9 shows different quantiles given a high

wind speed in a western direction at the first station. Roughly half of the wind

components in western direction of the second station reach 20 m/s or more, every

tenth occurrence reaches almost 30 m/s or more, while one out of hundred events

can be close to 40 m/s or above. In contrast, quantiles in easterly directions tend to

be negative. As negative speeds are defined as the same wind speed in the opposite

direction, this fact clarifies the non-independent wind behaviour at the two stations.

The plots of Figure 5.9 show the necessity for a model accommodating a range of

different dependencies to describe the changing behaviour of the wind process over

directions. Clearly, the conditional model provides this necessary flexibility. With

adaptations to the conditional model suggested in this paper, smooth changes of the

wind process over directions can be captured by the model; these smooth changes

are even possible, and in the present case necessary, at the transition from positive

to negative dependence.

While the plots provide examples within the range of the data to examine the fit of

the model, it easily extends to ranges where no data are available and in which it

is the only possibility to make sensible judgement from. This can supply important

information for decisions on how to run high speed trains in the presence of extreme

wind occurrences. With the north-south orientation of the track, wind forces from

east and west pose the biggest risk to the train. The joint behaviour, that is the

occurrence of high wind components at the second station in westerly direction when

they are present at the first station, makes it very likely, that strong wind events

are also present in between this two stations. A possible consequence may be lower
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Figure 5.10: Top: Shows the probability for one day of observing a wind speed exceeding
at least at one station 40m/s over all directions φ2 for fixed φ1=270◦. Bottom: Shows the
corresponding conditional probabilities over directions.
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train-speeds at certain points or over the whole track when extreme wind conditions

are present.

Let us consider again equation (5.1) for a simplified track consisting just of two

stations. For both stations we consider the event of exceeding the wind speed 40m/s,

that is x = y = 40, when φ1=270◦. The probability for observing this event at least

at one station is given in top of Figure 5.10, while the corresponding conditional

probabilities required in the calculation are given in the bottom. The probabilities

correspond to a one-day period. With the major wind direction being west and

fixing φ1 to be in this direction, the probability of observing such a strong gust at

least at one station is largest in western directions. With a strong wind event in

direction φ1=270◦, the conditional probability clearly exhibits the dependence of a

big event at the second station to occur in a similar direction than the one at the

first station did.

5.7 Discussion

An important question in assessing the risk of storm events is whether strong gusts

occur rather localized or if they are present over extended parts of the track. This

requires knowledge of the dependence structure of the wind process at extreme lev-

els. A crucial aspect in the context of high speed trains is the wind direction, which

has to be taken into account. As we are interested in the force of the wind, resolved

components are analysed. The dependence structure changes with the combination

of directions considered. Thus a flexible model is required accommodating a wide

range of dependence structures.

When simplifying the track to just two stations, a necessary component to calcu-

late the probability of at least one station facing an extreme storm is a conditional

probability comprising the dependence structure. The conditional approach for mul-

tivariate extremes is thus a natural candidate. Its high flexibility in incorporating

different types of dependence supports this choice, as this is feature is required in

the present application.

The Gumbel distribution is originally employed in the conditional method as com-
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mon margins for the dependence function. It consists of two different parametri-

sations differing in the number of parameters. As we require smooth transition

from positive to negative extremal dependence, we take the double exponential dis-

tribution for the common margins instead. This choice allows to have the same

parameters for all types of dependence.

To enable transfer of information over directions, a functional relationship account-

ing for directional variation of the parameters is imposed. This functional relation-

ship depends on both directions of the two stations, which is handled in two stages.

In both stages harmonic terms or adaptations of them are taken, as these terms turn

out to be very flexible and satisfy circular boundary conditions.

The objective function is derived from common likelihood methods, but is not a

real likelihood in itself. Thus inference has been based on a bootstrap procedure.

This procedure has been adapted to requirements essential for extreme values and

component data. Model selection based on this bootstrap procedure can not be

carried out in the usual way; we have proposed a method applicable in the present

situation based on the variation of bootstrap estimates of the location parameter.

We have considered return-level estimation, which is a common quantity of inter-

est in extreme value statistics. Return-level estimation was based on simulation.

As this requires estimation from the empirical distribution function of the residual

distribution, we suggest possibilities to extend the number of values of the residual

distribution to simulate from by considering neighbouring directions.

A way to assess the fit of the model is by comparison of model based quantities

with the corresponding ones of the data. The return-levels are a natural choice for

this comparison. In the present study there is good agreement between model-based

return-levels and their equivalent based on the data. This suggests that the model

provides a good basis for judgement when considering levels beyond the data.



Chapter 6

Summary

In many situations strong wind gusts pose a severe risk for the system under con-

sideration to fail. These situations include design structures and also the stability

of high speed trains, which we are particularly interested in. The direction of strong

gusts plays an important role so the analysis of storm events need to account for this

feature. Extreme value theory provides us with the necessary tools allowing us to

make judgement at extreme levels and even beyond the range of the data. Although

directionality of strong wind events plays an important role in many applications,

it has not found very much attention in most analysis. The aim of this thesis is

to develop extreme value models taking directionality of strong wind events into

account.

We have first considered univariate extreme value theory and related statistical as-

pects relevant for the present work. The data analysed consist of 22 years of daily

maxima for the towns Würzburg and Hannover, which are located at each endpoint

of a highspeed track. The track was chosen since the dominant wind directions, west

and east, are perpendicular to the train’s motion thus posing the highest risk for

derailment. We have another data set consisting of ten-minutes data for Würzburg

from a shorter observation period, which gives insight into the wind behaviour within

a day. Two types of data are considered which are of interest in wind applications:

raw data and component data representing the force of the wind in a certain direc-

tion.

117
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Though the wind process may naturally be represented as bivariate with compo-

nents wind speed and wind direction, it is easier to consider them separately by

splitting them up into the wind direction and the wind speed given its direction;

this allows the conditional distribution wind speed given its direction to be treated as

univariate. In Chapter 2 we analyse daily wind data of Würzburg using an extreme

value model employing the k largest order statistics in each direction. Variation in

direction is accounted for by allowing the distributional parameters to vary with

directions according to a functional relationship given by harmonic terms; harmonic

terms are very flexible and satisfy circular boundary conditions. Once the model is

selected and parameters are estimated, we consider for a fixed direction two quan-

tities: return-levels (or quantiles) providing information about the most extreme

value to be expected within a given time-period and probabilities of exceeding cer-

tain given design values within one year. In the railway application return-levels

can be employed to judge which wind-speeds on a longer time horizon have to be

expected, exceedance probabilities are useful once knowledge about a certain wind

speed likely to cause derailment is determined by engineers. For both quantities

we consider confidence intervals based on the delta method and profile likelihood

method. The former is easier to apply but results in symmetric intervals; the latter

is computationally more expensive but allows for asymmetric intervals. Results of

a simulation study confirm that allowing for asymmetric confidence intervals is a

more appropriate choice with this model.

The extreme value model employing the k largest order statistics was fitted to raw

data and component data of Würzburg. We estimated return-levels and exceedance

probabilities of design values for both data cases as well as related confidence in-

tervals. Though the two types of data have a different definition of the problem,

the model based on component data appeared to agree better with the data than

the one based on raw data. This may be partly attributed to the masking problem,

which can be regarded as a shortcoming of the common recording mechanism in

extracting the largest daily observation only but leaving observations in all other

directions unrecorded. To get further insight we compare for each direction annual

maxima of ten-minutes data with annual maxima of the daily data and resolved

data. The comparison clearly shows the presence of masking in the case of daily

raw data and an alleviation of this problem when using component data.
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In Chapter 3 we suggest a model, which we refer to as subinterval model, to account

for the masking problem and compare it with a classical modelling approach similar

to the one in Chapter 2, which we refer to as daily maxima model. Instead of using

order statistics we employ a threshold approach for both models. For the subin-

terval model we require additionally to daily maxima the information of directional

occurrence frequency. As for many weather stations a data set of smaller time in-

tervals is available at least for a short observation period, the directional occurrence

distribution can be estimated empirically. The approach is to include additionally

to the daily maximum the information that occurrences in all other directions are

no larger than the daily maximum. Parameter estimation is carried out using a

likelihood which possibly wrongly assumes independence between sub-intervals. In

most extreme value applications interest is in return-levels or high quantiles; as for

any fixed direction the number of occurrences within sub-intervals vary from interval

to interval we use a version of return-levels taking this variation into account. The

performance of the new approach is then investigated by using a simulation study

and comparing the mean square errors of high quantiles of the subinterval model

with those of the daily maxima model.

In the first study, data are simulated from a chosen subinterval model assuming inde-

pendence between subintervals. The subinterval model was then re-estimated with

the same number of harmonic terms as was used in the simulation and compared

with a daily maxima model found by a forward selection procedure. The subinterval

model turns out to be considerably better than the daily maxima model in terms

of mean square error of high quantiles for all directions and choices of quantiles. A

surprising result is that the bias in the case of the daily model is mostly small, and

the size of the mean square error is rather due to the variance contribution; a larger

bias for the daily maxima model is mainly found in directions with a low occurrence

frequency.

For data sets without sub-interval information it is tempting to substitute this in-

formation from a neighbouring one assuming differences to be little. This requires

the subinterval model to be robust against not correctly specified directional occur-

rence distributions. A simulation study was carried out analysing different degrees
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of deviation of the directional occurrence distribution from the true one which the

data are simulated from. The subinterval model turns out to be robust against de-

partures from a correctly specified occurrence distribution.

The strong assumption of independence between sub-intervals in the likelihood func-

tion may not hold in most real data applications but environmental time series of-

ten exhibit serial correlation instead. A simulation study using different degrees of

dependence of successive sub-interval values was carried out. Although the perfor-

mance of the subinterval model is slightly worse than in the independence study

there is still clear superiority over the daily maxima model.

Finally the new model was applied to two sets of real data consisting of daily max-

ima and their directions; for one of these data-sets an additional data-set with ten-

minutes recordings was available for a shorter observation period. For the data set

of Würzburg with additional sub-interval information the new model shows slight

improvement. In the case of the Hannover data set without any sub-interval data the

directional occurrence distribution was substituted by using the ten-minutes data

of Würzburg. The estimated subinterval model of Hannover reflects much better

the structure of the data than the daily maxima model, and return-level estimates

of the largest observation within the recording period are much more in agreement

with meteorological judgement.

In Chapters 4 and 5 we apply the multivariate conditional extreme value model.

Chapter 4 gives a short overview over existing multivariate extreme value models

and discusses their applicational shortcomings which the conditional model over-

comes. One difficulty with the conditional multivariate model is to quantify exactly

the degree of dependence between variables as this is given by parameters of two

functions and a residual distribution. Based on the conditional model we study the

behaviour of the well known scalar dependence measure χ̄ and different failure re-

gions via simulation. Data are simulated from a bivariate normal distribution with

a range of different correlations, which is a distributional choice where the extremal

behaviour is well understood. The χ̄ measure shows good results for strong posi-

tive correlation, but is not reliable for non-positive dependence; a non-parametric

equivalent of χ̄ is much more reliable in the presence of negative correlation. An
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alternative to the scalar dependence measure is to consider visual summaries of de-

pendence based on failure regions. Via simulation we studied the behaviour of four

different failure regions and their ability to distinguish between different degrees of

dependence. For positive dependence, summary measures based on all failure re-

gions discriminate well between different degrees of correlation. However, just two of

them are capable of separation in the case of non-positive correlation. While one of

this remaining two summary measures fails clear discrimination, especially between

strongly negatively correlated data, the other one provides good and clear results

for all degrees of dependence and is therefore our preferred choice.

For the parametrisation of the conditional multivariate model we followed the sug-

gestion of Heffernan and Tawn (2004). They use a combination of two different

parametrisations accounting for the different decay of the upper and lower tail of

the Gumbel distribution. The estimation procedure first calculates parameters for

one type of parametrisation and, given the values of these parameters, either stops

or continues to calculate the parameters of the other type of parametrisation; the

breakpoint between this two parametrisations is within the range of near extremal

independence. Our simulation study shows that for a range of negative correlations

the application of this procedure leads to estimates resulting from a local but not a

global maximum of the likelihood. We therefore applied an information criteria to

avoid this shortcoming.

In Chapter 5 we consider dependence at extreme levels between component data of

two weather stations. We are interested in whether extreme wind events along a

railway track occur rather localized or exhibit joint dependence. A simplified ver-

sion of the track consists of two points only; in the present application these are the

endpoints of a railway track for high speed trains. Using this simplified version, one

necessary component to calculate the probability of at least one station facing an

extreme storm event is a conditional distribution comprising the dependence struc-

ture; the conditional model introduced in Chapter 4 is thus a natural choice. As we

consider all directions we require a model capable of accounting for a broad range of

different forms of dependence; the conditional model provides exactly this flexibility.

We, however, need a model which allows smooth transition over different types of

dependence, so the breakpoint within the parametrisation employed in Chapter 4
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is not convenient. Therefore all margins are transformed to follow a double expo-

nential distribution, which is symmetric and has the same upper tail as a Gumbel

distribution, thus one parametrisation can be used for all types of dependence.

To enable directional variation of parameters we employ a functional relationship

depending on the directions of both stations; it consists of two stages in each of

which harmonic terms or adaptions of them are used. This allows a considerable

reduction in parameters compared with a sector by sector analysis and the pool-

ing of information to improve parameter estimation. Point estimation was carried

out using an objective function derived from common likelihood methods. As the

objective function is not a real likelihood, standard methods for model selection

cannot be employed. We suggest a selection method based on a bootstrap proce-

dure and consider the variation of bootstrap estimates of the location parameter; the

bootstrap procedure is adapted to component data and the nature of extreme values.

Estimation of return-levels is based on simulation, which in turn requires simulation

from the distribution of the residuals. Usually, the empirical distribution function is

taken as an estimate of the residual distribution but we consider an extension which

allows neighbouring information to be incorporated. Return-levels are used to assess

the fit of the model, by comparing quantities based on data with the corresponding

ones from the estimated model. For the analysis presented there was good agreement

between return-levels derived from the model and the corresponding ones based on

the data.
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Gradient for Chapter 5

To find estimates using objective function (5.8), the optimization procedure requires

the gradient function of parameters of the dependence structure. The gradient for

parameter ϑ is

∂l
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= −
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with [+] given by
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and ∂ηζ/∂ϑ is given by
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1 if ϑ = λψγζ
cos(lφ1 − ν

ψγζl
) if ϑ = κ

ψγζl

sin(lφ1 − νψγζl)κψγζl if ϑ = νψγζl

cos(jφ2 − ψωζj(φ1) − φ1) if ϑ = λψβζj
cos(jφ2 − ψωζj(φ1) − φ1) cos(lφ1 − νψβζjl) if ϑ = κψβζjl
cos(jφ2 − ψωζj(φ1) − φ1) sin(lφ1 − νψβζjl)κψβζjl if ϑ = νψβζjl

ψβζj(φ1) sin(jφ2 − ψωζj(φ1) − φ1) if ϑ = λψωζj
ψβζj(φ1) sin(jφ2 − ψωζj(φ1) − φ1) cos(lφ1 − νψωζjl) if ϑ = κψωζjl
ψβζj(φ1) sin(jφ2 − ψωζj(φ1) − φ1) sin(lφ1 − νψωζjl)κψωζjl if ϑ = νψωζjl

0 otherwise
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