Das Membranproteom halophiler Archaea -Identifizierung und Quantifizierung

Birgit Bisle

München 2006

Dissertation zur Erlangung des Doktorgrades der Fakultät für Chemie und Pharmazie der Ludwig-Maximilians-Universität München

Das Membranproteom halophiler Archaea -Identifizierung und Quantifizierung

Birgit Bisle

aus

Krumbach

2006

Erklärung

Diese Dissertation wurde im Sinne von § 13 Abs. 3 bzw. 4 der Promotionsordnung vom 29. Januar 1998 von Prof. Dr. D. Oesterhelt betreut.

Ehrenwörtliche Versicherung:

Diese Dissertation wurde selbständig, ohne unerlaubte Hilfe angefertigt.

München, am 29.09.2006

but bigit

Dissertation eingereicht am 29.09.2006

- 1. Berichterstatter: Prof. Dr. D. Oesterhelt
- 2. Berichterstatter: Prof. Dr. L. A. Eichacker

Mündliche Prüfung am: 25.01.2007

Publikationsliste

Tebbe A., Klein C., <u>Bisle B.</u>, Siedler F., Scheffer B., Garcia-Rizo C., Wolfertz J., Hickmann V., Pfeiffer F. and Oesterhelt D. (2005) Analysis of the cytosolic proteome of *Halobacterium salinarum* and its implication for genome annotation. Proteomics 5, 168-179

Klein C., Garcia-Rizo C., <u>Bisle B.</u>, Scheffer B., Zischka H., Pfeiffer F., Siedler F. and Oesterhelt D. (2005) The membrane proteome of *Halobacterium salinarum*. Proteomics 5, 180-197

<u>Bisle B.</u>, Schmidt A., Scheibe B., Klein C., Tebbe A., Kellermann J., Siedler F., Pfeiffer F., Lottspeich F. and Oesterhelt D. (2006) Quantitative profiling of the membrane proteome in a halophilic archaeon. *Mol. Cell. Proteomics* 5 (9), 1543-1558

Falb M., Aivaliotis M., Garcia-Rizo C., <u>Bisle B.</u>, Tebbe A., Klein C., Konstantinidis K., Siedler F., Pfeiffer F. and Oesterhelt D. (2006) Archaeal N-terminal protein maturation commonly involves N-acetylation: a large-scale proteomics survey. *J. Mol. Biol.* 236 (5), 915-924

Konstantinidis K., Tebbe A., Klein C., Scheffer B., Aivaliotis M., <u>Bisle B.</u>, Falb M., Pfeiffer F., Siedler F. and Oesterhelt D., Genome-wide proteomics of *Natronomonas pharaonis, im Druck*

Klein C., Aivaliotis M., van Olsen J., Falb M., Besir H., Scheffer B., <u>Bisle B.</u>, Tebbe A., Konstantinidis K., Siedler F., Pfeiffer F., Mann M. and Oesterhelt D., Proteome analysis of low molecular weight proteins in *Halobacterium salinarum*, *eingereicht*

Tebbe A., Schmidt A., Konstantinidis K., Falb M., <u>Bisle B.</u>, Klein C., Aivaliotis M., Siedler F., Pfeiffer F., Kellermann J., Lottspeich F. and Oesterhelt D., Life-Style changes of a Halophilic Archaeon analyzed by Quantitative Proteomics, *in Vorbereitung*

<u>Bisle B.</u>, Mitterweger S., Siedler F., Pfeiffer F. and Oesterhelt D., What makes Membrane proteins different: The Membrane Proteome of Natronomonas pharaonis, *in Vorbereitung*

Aivaliotis M., Gevaert K., Falb M., Tebbe A., Konstantinidis K., <u>Bisle B.</u>, Klein C., Martens L., Staes A., Timmerman E., Van Damme J., Siedler F., Pfeiffer F., Vandekerckhove J. and Oesterhelt D., Large scale identification of N-terminal peptides in Archaea: Halobacterium salinarum and Natronomonas pharaonis, *in Vorbereitung*

VI

Abkürzungen

16- BAC	Benzyldimethyl-n-hexadecyl-ammoniumchlorid
1D	eindimensional
2D	zweidimensional
2 DE	zweidimensionale Gelelektrophorese
Abb.	Abbildung
ACA	ε- Aminocapronsäure
ACN	Acetonitril
APS	Ammoniumperoxodisulfat
BCA	Bichinconinsäure
Bis	N, N'- Methylenbisacrylamid
BN- PAGE	Blue Native Polyacrylamidgelelektrophorese
BR	Bacteriorhodopsin
BS	Basalsalz
BSA	bovine serum albumine
CID	Collision induced dissociation
DD	Dried Droplet
ddH ₂ O	bidestilliertes Wasser
DIGE	Differenzielle Gelelektrophorese
DSMZ	Deutsche Sammlung von Mikroorganismen und Zellkulturen GmbH
DTT	1,4- Dithiothreitol
EDTA	Ethylendiamintetraacetat
EtOH	Ethanol
FA	Ameisensäure
FT	Fourrier Transform
h	Stunde(n)
H. salinarum	Halobacterium salinarum
HCCA	a-Cyano-4-Hydroxy-Zimtsäure
HOAc	Essigsäure
i.d.	Innendurchmesser
IAA	Iodacetamid
ICAT	Isotope coded affinity tag
ICPL	isotope coded protein label
IEF	isoelektrische Fokussierung
kbp	kilo base pairs
I	Liter
LC	Flüssigchromatographie (liquid chromatography)
LC-MS/MS	Flüssigkeitschormatographei mit anschließender MS/MS-Messung
m/z	Massen-Ladungsverhältnis
mA	Milli Ampere
MALDI	Matrix assisted Laser Desorption/Ionisation
MeOH	Methanol
MilliQ	Millipore Wasser
min	Minuten
<i>M</i> _r	Molekulargewicht
MS	Massenspektrometrie

VIII

MS/MS	Tanden- Massenspektrometrie
N. pharaonis	Natronomonas pharaonis
NP- BS	Natronomonas Basalsalz
OD ₆₀₀	Optische Dichte bei 600nm Wellenlänge
PAA	Polyacrylamid
PAGE	Polyacrylamidgelelektrophorese
p/	Isoelektrischer Punkt
PMF	peptide mass fingerprint
ppm	parts per million
Q-TOF	Quadrupol-Time of Flight (vgl. TOF)
RP	Reversed Phase
rpm	rounds per minute
RT	Raumtemperatur
SDS	Natriumdodecylsulfat
SDS- PAGE	SDS-Polyacrylamidgelelektrophorese
sec	Sekunden
TCA	Trichloressigsäure
TCEP	Tris-(2-carboxyethyl)phosphine, hydrochloride
TEMED	N, N, N', N'-Tetramethylethylendiamin
TFA	Trifluoressigsäure
TMD	Transmembrandomäne
TOF	Time-of-flight (MS-Messungen)
Tris	Tris-(Hydroxymethyl)-aminomethan
Tween 20	Polyoxyethylene-Sorbitan Monolaurate
U	units
V	Volt
v/v	Volumen pro Volumen
w/v	Gewicht pro Volumen

Inhaltsverzeichnis

<u>1</u>	<u>ZL</u>	JSAMMENFASSUNG	<u>1</u>
<u>2</u>	EI	NLEITUNG	3
2.1		ARCHAEA – DIE DRITTE DOMÄNE DES LEBENS	3
2.2	ł	HALOPHILIE	
2.3	E	BIOENERGETIK DER HALOPHILEN ARCHAEA	6
2.4		HALOBACTERIUM SALINARUM ALS MODELORGANISMUS	9
2.5	F	PROTEOM UND PROTEOMIK	10
2.5	.1	DAS MEMBRANPROTEOM	
2.5	.2	MEMBRANPROTEOMANALYSE	
2.6	[DIE MASSENSPEKTROMETRIE IN DER PROTEOMIK	13
2.6	.1	IONISIERUNG	13
2.6	.2	MASSENANALYSATOREN	15
2.6	.3	PROTEINIDENTIFIZIERUNG: MS- UND MS/MS-MASSENSPEKROMETRIE	16
2.7	(QUANTIFIZIERUNG IN DER PROTEOMIK	
2.8	Z	ZIELSETZUNG	
3	M	ATERIALIEN UND METHODEN	
-			
3.1	1 1		
১ । ১া	. I 		
ง. I วา	.∠ د		
ວ. ເ ວ. ວ			21 عو
3.Z	1		20 مر
3.2	. I 1 ·	ANZUCHT VON MALOBACTERIUM SALINARUM	20 28
3.2	 1 (2 Vorkultur	20 28
3.2	<u>.</u> 1 : 1	2 Gebrauchskultur	20 20
3.2	. 1 1.2	4 Wachstumsbedingungen	23 29
3.2	. 1 4	1 Aerobe Kultur	20 29
3.2.	1.7	2 Phototrophe Kultur	
3.2.	1. i 1 4	3 Sauerstofflimitierte Kultur	
3.2	14	4 Anaerobe Kultur	29
3.2.	1.4	5 Kultur mit DMSO	
3.2.	1.4	6 Kultur mit Arginin	
3.2	.1.!	5 Wachstumskurven	
3.2	.1.6	6 Sauerstoffmessung	
3.2	.2	ANZUCHT VON NATRONOMONAS PHARAONIS	
3.2	.3	ZELLERNTE	
3.2	.4	ZELLAUFSCHLUSS	

3.2.4.1 Dialyse	31
3.2.4.2 Beschallen	31
3.2.5 MEMBRANISOLATION	31
3.2.6 ABREICHERUNG MEMBRANASSOZIIERTER PROTEINE	32
3.2.7 PROTEINFÄLLUNG	32
3.2.7.1 Chloroform/Methanol-Extraktion	32
3.2.7.2 TCA-Fällung	33
3.2.7.3 Acetonfällung	33
3.2.8 PROTEINBESTIMMUNG	33
3.2.8.1 Proteinbestimmung mittels BCA	33
3.2.8.2 Proteinbestimmung nach Bradford	33
3.2.9 PROTEINMARKIERUNG	34
3.2.9.1 ICPL-Markierung	34
3.2.9.2 Fluoreszensmakierung von Proteinen	35
3.2.10 GELELEKTROPHORESE VON PROTEINEN	35
3.2.10.1 Eindimensionale SDS-Gelelektrophorese	35
3.2.10.1.1 Probenvorbereitung	35
3.2.10.1.2 Herstellung und Lauf von 1D- Gelen nach Lämmli [1970]	36
3.2.10.1.3 Herstellung und Lauf von 1D- Gelen nach Schägger [1987]	36
3.2.10.1.4 Herstellung und Lauf von 1D- Gelen nach Ahn [2001]	36
3.2.10.2 Zweidimensionale Gelelektrophorese	37
3.2.10.2.1 Denaturierende Gelelektrophorese in der ersten Dimension (16-BAC-PAGE)	37
3.2.10.2.1.1 Probenvorbereitung für 16-BAC-PAGE	37
3.2.10.2.1.2 Herstellung und Lauf von 16-BAC-Gelen	38
3.2.10.2.2 Blue-Native- PAGE	38
3.2.10.2.2.1 Probenvorbereitung für BlueNative-Gele	39
3.2.10.2.2.2 BlueNative- Geleelektrophorese	39
3.2.10.2.3 Blue-Native/Ahn- PAGE	40
3.2.10.2.4 Zweite Dimension: SDS-PAGE	41
3.2.10.2.4.1 Äquilibrieren der Gelstreifen	41
3.2.10.2.4.2 Lämmli-SDS-Gele	41
3.2.10.2.4.3 Schägger-SDS-Gele	41
3.2.11 PROTEINFÄRBUNGEN IN GELEN	42
3.2.11.1 Coomassie- Färbung	42
3.2.11.2 Kolloidale Coomassie-Färbung	42
3.2.11.3 Silber- Färbung	42
3.2.12 PROBENVORBEREITUNG FÜR DIE MASSENSPEKTROMETRIE	44
3.2.12.1 Ausstechen der Proteinspots aus Gelen	44
3.2.12.2 Tryptischer In-Gel-Verdau aus eindimensionalen Gelen	44
3.2.12.3 I ryprischer In-Gel-Verdau aus 2DE-Gelen	45
3.2.12.4 Tryptischer In-Gel-Verdau in 60% Methanol	45
3.2.12.5 In-Losung-Verdau ICPL-markierter Proteine	46
3.2.12.6 Probenentsalzung mittels RP-C8-Material	46

3.2.12.7 Probenentsalzung mittels RP-C4-Material	47
3.2.12.8 Peptid-Vorfraktionierung mittels RP-C4-Material	47
3.2.13 MASSENSPEKTROMETRIE	47
3.2.13.1 Matrix-assisted Laser-Desorption/Ionisation peptide mass fingerprint	47
3.2.13.1.1 Probenpräparation	48
3.2.13.1.2 MALDI Messung	48
3.2.13.1.3 Auswertung der MALDI Spektren	49
3.2.13.2 Nano-LC MALDI-TOF/TOF der ICPL Proben	49
3.2.13.2.1 LC-Trennung und Probenvorbeitung	49
3.2.13.2.2 MALDI MS-und MS/MS-Messung	50
3.2.13.2.3 Datenprozessierung und -auswertung	50
3.2.13.3 Elektrospray Massenspektrometrie, offline	51
3.2.13.4 ESI-LC-MS/MS an der Q-TOF	52
3.2.13.4.1 Packen von Nano-LC Säulen	52
3.2.13.4.2 ESI LC-MS/MS Messung	52
3.2.13.4.3 Datenprozessierung und -auswertung	53
3.2.14 BIOINFORMATISCHE METHODEN	54
3.2.14.1 Berechnung der Regulationsfaktoren für ICPL (Kapitel 3.2.12.2.3)	54
3.2.14.2 Proteinquantifizierung mittels DIGE	55
3.2.14.3 Integration der Proteomik-Daten in das HALOLEX-System und Statistische	
Berechnungen	55
3.2.15 ELEKTRONENMIKROSKOPIE VON MEMBRANVESIKELN	56
3.2.15.1 Probenauftrag, Fixierung und negative Färbung	56
3.2.15.2 Messung	56
4 ERGEBNISSE	<u> 57</u>
4.1 MEMBRANISOLATION.	57
4.2 ZWEIDIMENSIONALE GEL-BASIERTE SYSTEME FÜR MEMBRANPROTEINE	60
4.2.1 BI UF-NATIVE-PAGE	60
4.2.1.1 Anpassung der Technologie für halophile Archaea	60
4.2.1.2 Analysen von Proteininteraktionen mittels BN-AHN/SDS-PAGE	65
4.2.2 16-BAC-PAGE	67
4.2.2.1 Etablieren des Systems	68
4.2.2.2 16-BAC/SDS-Referenzgel des Membranproteoms von <i>H. salinarum</i>	70
4.3 INVENTARISIERUNG DES MEMBRANPROTEOMS VON H. SALINARUM UND N. PHARAONIS.	71
4.3.1 ANREICHERUNG UND IDENTIFIZIERUNG INTEGRALER MEMBRANPROTEINE MIT RP-LC-	
MS/MS ANALYSE	72
4.3.2 PROBLEMANALYSE VON TMD-PEPTIDEN	73
4.3.2.1 Probenvorbereitung und LC-Trennung	74
4.3.2.2 MS/MS-Messung	78
4.3.3 INVENTARISIERUNG DES MEMBRANPROTEOMS VON H. SALINARUM	79
4.3.4 INVENTARISIERUNG DES MEMBRANPROTEOMS VON NATRONOMONAS PHARAONIS	82

VII
XII
1 7 1 1

4.4	AUSWIRKUNGEN VON VERSCHIEDENEN WACHSTUMSBEDINGUNG AUF DAS	
	MEMBRANPROTEOM VON HALOBACTERIUM SALINARUM	88
4.4.	1 AUSWIRKUNG VON AEROBEM UND PHOTOTROPHEM WACHSTUM AUF DAS	
	MEMBRANPROTEOM VON H. SALINARUM	88
4.4.	1.1 Probenpräparation und Zellzucht	88
4.4.	1.2 Strategie der Quantifizierung von Membranproteinen (aerob – phototroph)	90
4.4.	1.3 Gelbasierte Quantifizierung – 16-BAC/SDS-PAGE und DIGE	91
4.4.	1.4 Quantifizierung von Membranproteinen – ICPL (Isotope-Coded Protein Label).	95
4.4.	1.4.1 Abschätzen der Zuverlässigkeit der Proteinidentifizierung	99
4.4.	1.4.2 Berechnung der ICPL-Regulationsfaktoren und Bewertung deren Variabilität	100
4.4.	1.4.3 Regulierte Proteine (aerob – phototroph)	101
4.4.	1.4.4 Zeitreihenexperiment	104
4.4.	2 ANAEROBES WACHSTUM MIT DMSO?	106
4.4.	2.1 Definition des DMSO-Wachstums	106
4.4.	2.2 Quantitative Untersuchung mittels ICPL-Analyse	108
4.4.	3 VERGLEICH DES WACHSTUMS VON H. SALINARUM IN KOMPLEX- BZW. SYNTHETISCHEI	Л
	MEDIUM AUF EBENE DES MEMBRANPROTEOMS	110
4.4.	3.1 Probenpräparation	110
4.4.	3.2 Das Proteininventar der Subfraktionen SM-A und SM-B	112
4.4.	3.3 2D-Analyse der Subfraktionen	113
5	DISKUSSION	116
<u> </u>	DISKUSSION	110
5.1	MEMBRANISOLATION	116
5.2	ZWEIDIMENSIONALE ELEKTROPHORESE VON MEMBRANPROTEINEN – EIN UNMÖGLICH	ES
	UNTERFANGEN?	118
5.2.	1 16-BAC-PAGE	119
5.2.	2 BLUE-NATIVE-PAGE	120
5.3	DIE MASSENSPEKTROMETRISCHE IDENTIFIZIERUNG INTEGRALER MEMBRANPROTEINE .	123
5.4	DIE IDENTIFIZIERUNG INTEGRALER MEMBRANPEPTIDE	129
5.5	DIE QUANTIFIZIERUNG VON MEMBRANPROTEINEN	131
5.5.		
	I MASSENSFERTROMETRIE-BASIERTE QUANTIFIZIERUNG	131
5.5.	2 GEL-BASIERTE QUANTIFIZIERUNG	131
5.5. 5.5.	 2 GEL-BASIERTE QUANTIFIZIERUNG	131 135
5.5. 5.5.	 2 GEL-BASIERTE QUANTIFIZIERUNG	131 135 137
5.5. 5.5.	 2 GEL-BASIERTE QUANTIFIZIERUNG	131 135 137
5.5. 5.5.	 MASSENSPERTROMETRIE-BASIERTE QUANTIFIZIERONG	131 135 137 . 141
5.5. 5.5. <u>6</u>	 MASSENSPERTROMETRIE-BASIERTE QUANTIFIZIERONG	131 135 137 141 159
5.5. 5.5. <u>6</u>	MASSENSPERTROMETRIE-BASIERTE QUANTIFIZIERONG GEL-BASIERTE QUANTIFIZIERUNG UNTERSCHIEDE IM MEMBRANPROTEOM VON AEROB UND ANAEROB/PHOTOTROPH KULTIVIERTEN ZELLEN REFERENZEN ANHANG DANKEA CUNC	131 135 137 137 141 159
5.5. 5.5. <u>6</u> <u>7</u> <u>8</u>	 MASSENSPERTROMETRIE-BASIERTE QUANTIFIZIERONG	131 135 137 137 141 159 195

1 Zusammenfassung

Membranproteine als Mediatoren zwischen extrazellulären Reizen und intrazellulären Prozessen sind trotz ihrer enormen biologischen Bedeutung in Proteomstudien meist unterrepräsentiert. Die vorliegende Arbeit konzentriert sich auf die kartierende und quantitative Analyse des Membranproteoms am Beispiel der Modellorganismen *Halobacterium salinarum* und *Natronomonas pharaonis*.

Grundlage war die Entwicklung einer optimierten Membranisolierung für halophile Archaea unter Beibehaltung hoher Salzkonzentrationen. Nach Zellaufschluss durch Beschallen wurden die so generierten Membranvesikel über Zuckergradienten-Dichtezentrifugation aufgereinigt. Es konnte gezeigt werden, dass hohe Salzkonzentrationen nicht nur zur Stabilisierung der Membran sondern auch der Membranproteinkomplexe notwendig sind. Für die Analyse von halophilen Membranproteinkomplexen wurde die Blue Native Elektrophorese-Technik etabliert und adaptiert, sodass salzhaltige Proben untersucht werden konnten. Anhand dieses Systems konnten z.T. unbekannte Proteininteraktionen nachgewiesen werden.

Da integrale Membranproteine mit der klassischen 2D-Elektrophorese nicht getrennt werden können, wurde für die zweidimensionale gelbasierte Darstellung des Membranproteoms das 16-BAC/SDS-System etabliert und bezüglich Trennleistung optimiert. Die Identifizierung von Proteinsspots war für membranassoziierte Proteine mit der *peptide mass fingerprinting* Methode erfolgreich, diese Technologie ist jedoch für die Analyse von integralen Membranproteinen stark eingeschränkt. Deren Inventarisierung erfolgte über einen LC-MS/MS Ansatz. Die auch bei dieser Technik beobachteten Schwierigkeiten konnten darauf zurückgeführt werden, dass Peptide, die membranintegrale Bereiche repräsentieren, spezifisch an langkettigen *reversed phase* Materialien verloren gehen und sich daher einer Analyse entziehen. Aus diesem Grunde war die Abreicherung membranassoziierter Proteine während der Membranisolierung durch ein mildes Detergens entscheidend, sodass integrale Proteine angereichert und der Analyse zugeführt werden konnten. Durch einen 1D-SDS PAGE LC-MS/MS Ansatz wurden so 50% des vorhergesagten integralen Membranproteoms von *H. salinarum* und 32% des integralen Membranproteoms von *N. pharaonis* identifiziert.

Damit war die Grundlage geschaffen, die Veränderungen im Membranproteom von *H. salinarum*, hervorgerufen durch unterschiedliches Energie- und Nahrungsangebot, zu untersuchen. Im Rahmen dieser Arbeit wurde für die quantitative Membranproteomik erstmals die differenzielle Gelelektrophorese (DIGE) mit dem 16-BAC/SDS-System kombiniert. Diese gelbasierte Quantifizierungsstrategie ermöglicht nicht nur eine Übersicht

über das Ausmaß der Regulation des gesamten Proteoms, sondern auch die Quantifizierung einzelner Proteinspots unabhängig von deren Identifizierung.

Mit einer grundlegend anderen, massenspektrometrie-basierten Technologie wurden diese Ergebnisse verifiziert und erweitert. Theoretische Berechnungen zeigten, dass auch bei diesen Analysen die Quantifizierung integraler Membranproteine erschwert ist, da wesentlich weniger Peptide pro Protein als bei löslichen Proteinen für eine Quantifizierung zur Verfügung stehen. Sie zeigten aber auch, dass die Markierung freier Aminogruppen mit isotopenmarkierten Sonden, wie die Nicotinoylierung (ICPL), für Membranproteine erfolgreicher ist, als eine Cystein-basierte Markierungsstrategie.

Mit Hilfe der ICPL-Technologie, die in dieser Arbeit erstmals für Membranproteine angewandt wurde, war es möglich am Beispiel von aerob und phototoph kultivierten Zellen für 155 Membranproteine quantitative Information zu erhalten, darunter 101 integrale Membranproteine. Das am stärksten regulierte Protein war, wie zu erwarten, das photosynthetisch aktive Protein Bacteriorhodopsin. Daneben konnten weitere am aeroben und anaeoben Energiemetabolismus beteiligte Proteine als reguliert identifiziert werden. Die insgesamt überraschend geringen Regulationen auf Ebene des Membranproteoms, welche sich sowohl aus der gelbasierten als auch bei der massenspektrometrie-basierten Analyse ergaben, könnten eine günstige Überlebensstrategie für Organismen in ökologische Nischen mit geringem selektivem Druck darstellen.

2 Einleitung

2.1 Archaea – Die dritte Domäne des Lebens

Archaeen sind einzellige Mikroorganismen, die als eine stammesgeschichtlich alte Organismengruppe zu den "einfachsten" Formen des Lebens zählen. Sie wurden vorwiegend in extremen Habitaten nachgewiesen, z.B. bei Temperaturen um den Siedepunkt, extrem niedrigen oder hohen pH-Werten, Salzgehalten um die Sättigungskonzentration und galten daher als Exoten. Derartige Biotope erinnern an Bedingungen auf der Erde in der frühen Phase der biologischen Evolution, eine Situation, die sich in der Namensgebung durch Carl Woese widerspiegelt (gr. *archaios* für "ursprünglich").

Moderne Methoden der Mikro- und Molekularbiologie (v.a. Analysen der 16S rRNA) ermöglichten die Entwicklung eines phylogenetischen Stammbaums (Abb. 2.1), der eine Dreiteilung in die Domänen Eukaryoten, Archaeen und "echte" Bakterien (Eubakteria) erlaubte [Woese 1987; Woese *et al.*, 1990]. So konnte nachgewiesen werden, dass die Eubakteria als erste von der gemeinsamen evolutiven Linie abzweigten und damit die Archaeen zu den Eukaryoten näher verwandt sind als zu den Eubakterien, der zweiten Domäne der Prokaryoten.

Abb. 2.1: Phylogenetischer Stammbaum aus Allers *et al.*, 2005

Die Eigenständigkeit der Archaea als Domäne spiegelt sich auch in der einzigartigen Kombination biochemischer Merkmalen wieder. So unterscheiden sich Archaea von den Eubakterien, durch einen den Eukaryoten ähnlichen Transkriptionsund Translationsapparat [Thomm 1996]. Ihre einzigartigen Membranlipide aus Glycerinethern mit verzweigten Ketten (Isoprenoidlipide) [Gambacorta et al., 1994] stehen im Gegensatz zu den weit verbreiteten Fettsäureglycerinestern. Mureinhaltige Zellwände (Peptidoglykan) wie bei den Eubacteria konnten bisher bei Archaea nicht nachgewiesen werden, ihre Zellwände sind sehr heterogen gestaltet (z. B. Pseudomurein, Glykoproteine) [König 1988; Kandler und König 1993].

Die Domäne der Archaea wurde zunächst, basierend auf kultivierten Organismen, in zwei Hauptäste, Crenarchaeota und Euryarchaeota, eingeteilt [Wose *et al.*, 1990]. Crenarchaeota sind phänotypisch relativ homogen und zum großen Teil hyperthermophil [Woese 1987]. Die Euryarchaeota weisen in Bezug auf Lebensraum und Physiologie sehr vielfältige Eigenschaften auf: neben mesophilen Organismen, wobei die Methanogenen dominieren [Burggraf *et al.*, 1991], sind thermophile und die extrem halophilen Organismen zu finden [Woese und Olsen 1986; Woese 1987].

Das Forschungsfeld der Archaea hat sich in den letzten Jahren als sehr dynamisch erwiesen, so wurde in besonders heißen Quellen im Yellowstone National Park erstmals eine neue Gruppe der Archaea, die Korarchaeota entdeckt [Barns *et al.*, 1996]. Bisher ist es jedoch nicht gelungen sie zu kultivieren und ihre Existenz ist nur aufgrund von 16 s/r DNA Analysen von Umweltproben nachgewiesen worden. Darüber hinaus wurden hyperthermophile Symbionten gefunden, die den Archaea zugeordnet werden [Huber *et al.*, 2002]. Die phylogenetische Einteilung dieser Nanoarchaeota innerhalb der Archaea ist jedoch noch nicht endgültig geklärt [Allers und Mevarech, 2005]

Archaea werden heute ubiquitär gefunden [Übersichtsartikel: Robertson *et al.*, 2005], so wiesen z.B. Karner und Kollegen [2001] einen erstaunlich hohen Anteil an Archaeen im Ozean nach. Gemessen an deren bekannt werdender Verbreitung sind Archaeen offensichtlich nicht nur auf extreme Nischenhabitate beschränkt, und gewinnen damit ökologisch immer mehr an Bedeutung.

2.2 Halophilie

Halophile Organismen (gr. *hals* für "Salz" und *philos* für "Freund") leben in Biotopen mit hohen Salzkonzentrationen wie z.B. Salzseen und Salzlaken [Kamekura 1998; Oren 1994]. In allen drei phylogenetischen Domänen wurden halophile Organismen nachgewiesen, was darauf hindeutet, dass diese halophile Adaptation in der Evolution mehrfach entwickelt wurde [Oren 2002]. Hypersaline Biotope sind "physiologisch trocken", d.h. aufgrund des hohen osmotischen Drucks entzieht die Umgebung den Zellen Wasser, ermöglicht durch die Wasserpermeabilität biologischer Membranen. Zur Bewältigung dieses osmotischen Stresses wurden zwei fundamental unterschiedliche Strategien entwickelt [Oren 1999]:

1. Bei der kompatiblen Osmolyt Strategie wird der osmotische Druck des Mediums durch organische kompatible Osmolyte (Polyole, Zucker, Zuckerderivate und Aminosäuren) ausgeglichen, die die Enzymaktivität nicht beeinflussen [Oren 1999]. Diese Strategie ist

jedoch aufgrund der ATP- aufwendigen Synthese dieser Substanzen für Organismen energetisch ungünstig [Dennis und Shimmin 1997; Oren 1999].

2. Eine alternative Strategie ist die so genannte Einsalz- Strategie bei der isoosmolare Verhältnisse im Cytoplasma durch das Angleichen der Ionenkonzentration an das Medium erfolgt. Während im Wachstumsmedium die Konzentration von Natrium die des Kaliums um mehr als das hundertfache übersteigt, liegt die intrazelluläre Kaliumkonzentration bei bis zu 3 M und ist somit weitaus höher als die des Natriums [Ginzburg *et al.*, 1971; Lanyi und Silverman, 1972].

Während die kompatible Osmolyt Strategie über alle Domänen verteilt ist, findet man die "Einsalzstrategie" v.a. bei halophilen Archaea. *Halobacterium salinarum (H. salinarum)* als ein Vertreter ist in der Lage Cl⁻-Ionen aktiv aufzunehmen. Ermöglicht wird dies durch das Retinalprotein Halorhodopsin [Schobert und Lanyi 1982], welches lichtgetrieben Cl⁻-Ionen in die Zelle pumpt und damit zur Lichtenergiewandlung fähig ist. Dieser Anionentransport muss aktiv gegen das Membranpotential erfolgen während anschließend Kationen (v.a. Kalium) dem Membranpotential folgend passiv aufgenommen werden können. Dieses dient der Aufrechterhaltung isoosmolarer Verhältnisse während des Wachstums [Oesterhelt 1995].

Halophile Proteine werden definiert als Proteine die aus einem halophilen Organismus stammen, der das osmotische Gleichgewicht im Cytoplasma durch entsprechende Salzkonzentration aufrecht erhält, d.h. Proteine die an hohe Salzkonzentrationen adaptiert sind [Kempf und Bremer 1998; Martin *et al.*, 1999]. Diese Anpassung äußert sich in speziellen Eigenschaften halophiler Proteine. Ihre Primärsequenz zeichnet sich durch einen hohen Anteil saurer Aminosäuren aus, was die Hydrophobizität und Stabilität der Proteinstruktur beeinflusst [Dennis und Shimmin 1997]. Die Oberflächenladung von halophilen Proteinen ist deutlich negativer als die mesophiler Proteine [Fukuchi *et al.*, 2003] und sorgt so für eine verstärkte Hydratisierung [Kuntz 1971] was ein Aussalzen verhindert. Der hohe Anteil saurer Aminosäuren manifestiert sich darüber hinaus im isoelektrischen Punkt (p*I*) der Proteine, welcher speziell bei cytosolischen Proteinen sehr stark in den sauren Bereich verlagert ist [Tebbe *et al.*, 2005, Klein *et al.*, 2005].

2.3 Bioenergetik der Halophilen Archaea

Die halophilen Archaea umfassen nur eine Familie, die *Halobacteriaceae*, bestehend aus 10 Gattungen, den Halobakterien *Halobacterium*, *Haloferax*, *Haloarcula*, *Halorobrum*, *Halobaculum* und *Halococcus*, welche bei neutralem pH wachsen, sowie den Natronobakterien *Natronobacterium*, *Natronomonas*, *Natrialba* und *Natronococcus*, die alkalische Bedingungen bevorzugen [Kamekura *et al.*, 1997]. Diese Organismen haben zur Deckung ihres Energiebedarfs meist parallel mehrere verschiedene bioenergetische Mechanismen zur Energieumwandlung ausgeprägt, wie z.B. Fermentation, aerobe und anaerobe Atmung oder Photosynthese.

Unter aeroben Bedingungen wird ein breites Spektrum an organischen Energieträgern v.a. über den TCA-Zyklus in Kombination mit der Atmungskette vollständig oxidiert [Übersichtsartikel: Oren 2002, Kapitel 4]. Eine für die Atmung notwendige Kaskade von Redoxsystemen, die einen Elektronentransport von Donoren mit negativen zu Akzeptoren mit positiven Redoxpotentialen ermöglichen, wurde bei verschiedenen Archaeen nachgewiesen [Lübben 1995]. Die enzymatische Ausstattung der Atmungskette, welche Redoxreaktionen an Transmembranprozesse wie der Translokation von Protonen koppeln, ist innerhalb der Archaeen jedoch sehr variabel ausgeprägt. So wurde eine vollständige Atmungskette, vergleichbar mit den mitochondrialen Komplexen I-IV, bei halophilen Archaeen noch nie gefunden [Schäfer et al., 1999]. Bei nahezu allen Archaeen wurden 11 Untereinheiten der NADH-Dehydrogenase (der Komplex I der Atmungskette) nachgewiesen, welche Module für Protonentranslokation und Quinonbindung darstellen. Untereinheiten, zuständig für die NADH-Dehydrogenase-Funktion, fehlen jedoch bei allen Archaeen [Friedrich und Scheide, 2000], ebenso wie die für den Komplex typischen Schwefel-Zentren [Leif et al., 1995]. So ist die Bezeichnung "NADH-Dehydrogenase" für den Komplex I-Homologen bei Archaeen nicht anwendbar und der Eingang der Elektronen in die Atmungskette ist bis heute noch nicht vollständig geklärt. Diskutiert wird eine zwischengeschaltete F₄₂₀H₂ Dehydrogenase welches F₄₂₀H₂, einen reversiblen Hydrid-Donor vergleichbar dem NADH, oxidiert [Friedrich und Scheide 2000].

Hemmversuche bei *H. salinarum* weisen auf eine NADH-Dehydrogenase Typ II hin [Sreeramulu *et al.*, 1998]. Dieses Enzym wurde bei dem hyperthermoacidophilen Arachaeon *Acidianus ambivalens* durch eine rekonstruierte Atmungskette funktionell charakterisiert [Gomes *et al.*, 2001]. In *Natronomonas pharaonis* (*N. pharaonis*) [Falb *et al.*, 2005] und auch in *H. salinarum* [OE2307F, www.halolex.mpg.de] konnten Homologe nachgewiesen werden. Mobile Elektronencarrier bilden die zentralen Bindeglieder in der Atmungskette, welche den Elektronenfluss zwischen Dehydrogenasen und terminalen Oxidasen vermitteln. Dies sind bei halophilen Archaeen zum einen Menaquinon, meist MK-8, [Schäfer *et al.*, 1999], zum anderen verschiedene membranverankerte Halocyanine (Kupferproteine) [Brischwein *et al.*, 1993; Mattar *et al.*, 1994; Scharf *et al.*, 1997]. Ein zwischengeschalteter Komplex III (Ubihydrochinon: Cytochrom-c-Oxidoreduktase Homolog) kann wie bei *H. salinarum* eigenständig stehen, mit terminalen Oxidasen fusionieren (*S. acidocaldarius*) oder vollständig fehlen (*N. pharaonis*) [Falb *et al.*, 2005]. Terminale Oxidasen (Komplex IV) sind bei Archaeen omnipresent, es konnten sowohl Cytochrom-Oxidasen des aa3 oder des ba3 Typs als auch Quinol-Oxidasen nachgewiesen werden [Schäfer *et al.*, 1996], wobei ein Organismus, wie z.B. *H. salinarum*, meist mehrere verschiedene terminale Oxidasen parallel besitzt [www.halolex.mpg.de]. Trotz verschiedenster enzymatischer Ausstattung ist die überwiegende Mehrheit der halophilen Archaeen zur oxidativen Atmung fähig.

Für den halobakteriellen Stoffwechsel ist Sauerstoff häufig ein limitierender Faktor, da dessen Löslichkeit in konzentrierten Salzlösungen und bei Temperaturen um 40°C gering ist. Archaeen sind in der Lage dies durch alternative Elektronenakzeptoren zu kompensieren und eine Atmung unter anaeroben Bedingungen aufrecht zu erhalten. So wurden Fumerat [Oren 1991], Dimethylsulfoxid (DMSO), Trimethylamin N-Oxid (TMAO) [Oren und Trüper 1990; Müller und DasSarma 2005] oder Nitrat [Yoshimatsu *et al.*, 2000; Lledo *et al.*, 2004; Martinez-Expinosa *et al.*, 2006] als alternative Elektronenakzeptoren beschrieben.

Aerobe oder anaerobe Atmung resultieren in einem Protonengradienten über die Membran, der von der protonentranslozierenden ATPase zur Synthese von ATP aus ADP und anorganischem Phosphat unter Rückfluss der Protonen ins Cytoplasma genutzt wird [Bickel-Sandkötter *et al.*, 1998]. Die archeale ATPase, strukturell eher der V-ATPase (Vakuoläre ATPase) als der F_0F_1 ATPase (Chloroplasten ATPase) verwandt [Grüber *et al.*, 2001], ist darüber hinaus wie auch in Bakterien in der Lage, diesen Prozess umzukehren, d.h. unter ATP-Hydrolyse einen Protonengradienten zu generieren [Bickel-Sandkötter *et al.*, 1996].

Einen alternativen Weg einen Protonengradienten über die Membran aufzubauen wird bei *H. salinarum* durch die lichtgetriebene Protonenpumpe Bacteriorhodopsin [BR, Oesterhelt 1976] ermöglicht. Dieses Retinalprotein vermittelt einen gerichteten Protonentransport vom Cytoplasma in den extrazellulären Raum durch eine thermoreversiblen Photoisomerisierung des Chromophors (Retinal) von der all-*trans* in die 13-*cis* Form [Subramaniam und Henderson 2000]. Ein so aufgebauter Protonengradient kann von der ATP-Synthase zur Bildung von ATP herangezogen werden [Hartmann und Oesterhelt 1977]. Die ATP-Synthese ist demnach direkt gekoppelt mit einem lichtgetriebenem Auswärtsstrom der Protonen

(schematisch dargestellt in Abb. 2.2). Dies ist der einfachste bekannte Fall von Photophosporylierung und wird neben der Chlorophyll-Photosynthese von Bakterien oder Pflanzen als die zweite Art der Photosynthese bezeichnet, welche auf halophile Archaea beschränkt ist [Übersicht: Häder 1999, Kapitel 8].

Die protomotorische Kraft, bestehend aus einem Protonen-Konzentrationsgradienten und der elektrischen Potentialdifferenz, treibt neben der ATP-Synthese auch verschiedene Transportprozesse wie die Aufnahme von Aminosäuren [Duschel und Wagner 1986] und anderer Ionenspezies [Lanyi und MacDonald 1977] sowie den Flagellarmotor [Alam und Oesterhelt 1984] an, was in Abbildung 2.2 skizziert ist.

Abb 2.2: Schematische Darstellung der Halobakterienzelle mit wesentlichen bioenergetischen Systemen und daran beteiligten Ionenbewegungen in der Zelle.

Energie kann von Zellen in Form von ATP oder mittels eines Protonengradienten nur in begrenzten Maß gespeichert werden. *H. salinarum* umgeht dies durch den Aufbau eines Kaliumgradienten. Ermöglicht wird diese Strategie durch ein Na⁺/K⁺-Austauschsystem, das aus einem Natriumionen/Protonen-Antiporter und einem selektiven Kaliumkanal besteht. Der durch BR aufgebaute Protonengradient treibt einen gegen den Konzentrationsgradienten gerichteten Einstrom von Kaliumionen an und führt zu deren Akkumulation im Zellinneren [Wagner *et al.*, 1978]. Gekoppelt ist dies an einen Na⁺/H⁺-Antiport, der den H⁺-Gradienten in einen Na⁺-Konzentrationsgradient transformiert [Lanyi und MacDonald 1976], welcher in Folge in einen elektroneutralen K⁺-Gradienen umgewandelt wird. Der Aufbau dieses elektroneutralen Na⁺/K⁺-Konzentrationsgradienten dient als Langzeitenergiespeicher und besitzt eine wesentlich höherer Kapazität als ein Protonengradient [bis zu 3M, Wagner *et al.*, 1978]. Im Dunkeln entleert sich diese "Batterie" durch das Umkehren der beschriebenen Prozesse: einem Ausfluss von Kaliumionen folgt der elektroneutrale Einstrom von Natriumionen mit gekoppelter Extrusion von Protonen und schließlich dem Protoneneinstrom unter ATP-Synthese. So erlaubt der Kaliumgradient der Zelle eine lichtunabhängige ATP-Synthese und gewährleistet auch im Dunkeln eine Energieversorgung bis zu 24 Stunden.

Bei halophilen Archaeen findet man verschiedene Formen der Fermentation. Als Fermentation werden energieliefernde Stoffwechsel-Prozesse bezeichnet, die durch Zersetzung organischen Materials ohne Einfluss von freiem Sauerstoff stattfinden. Manche Spezies fermentieren Zucker in metabolischen Abbauwegen, die Modifikationen der Glykolyse oder des Entner-Doudoroff-Weges darstellen [Übersicht: Oren 2002, Kapitel 4]. *H. salinarum* ist in der Lage fermentativ auf Arginin zu wachsen, das zu Ornithin und ATP umgesetzt wird [Dundas und Halvorson 1966; Hartmann *et al.*, 1980]. Die archaeale ATPase erzeugt bei fermentativem Wachstum durch ATP-Hydrolyse die notwendige ionenmotorische Kraft für Transportprozesse, Ionenaustausch und Bewegung. Einen schematischen Überblick gibt Abb. 2.2.

Neben Photosynthese und dem metabolischen Abbau von organischen Substraten, wurde bei halophilen Archaeen CO₂-Fixierung nachgewiesen. Begründet ist dies in der Beobachtung, dass eine lichtabhängige CO₂ Fixierung aus Proben vom Toten Meer nur zum geringen Teil durch eine Hemmung der Chlorophyll-Photosynthese unterbunden werden konnte [Oren 1983]. Davon ausgehend wurde in Laborexperimenten gezeigt, dass diese CO₂-Fixierung auf Halobakterien, die eine Purpurmembran ausgebildet haben, zurückgeht [Oren 1983].

2.4 Halobacterium salinarum als Modellorganismus

Abb. 2.3 Elektromikroskopische Aufnahme von *Halobacterium salinarum* bei einer 13.500-fachen Vergrößerung. Quelle: www.biochem.mpg.de/oesterhelt

Halobacterium salinarum ist ein halophiles motiles stäbchenförmiges Archaeon (Abb. 2.3) das in salzhaltigen Biotopen bis hin zur Sättigung lebt. Dieser Organismus besitzt ein komplexes System sensorischer Prozesse z.B. der Phototaxis und Chemotaxis [Marwan und Oesterhelt 1999; Kokoeva *et al.*, 2002] was ein optimales System für die Modellierung biochemischer Vorgänge zwischen spezifischen Sensoren und dem Effektorsystem (Motor) am Beispiel des Schwimmverhaltens der Zelle darstellt [Nutsch *et al.*, 2005]. Das Genom von H. salinarum wurde von zwei Stämmen, NRC-1 und R1, unabhängig voneinander sequenziert und weist bei beiden nahezu 100% Sequenzidentitat des Chromosoms auf [Ng et al., 2000; www.halolex.mpg.de]. Deutliche Unterschiede zeigt jedoch die Annotation, d.h. die auf der Genomsequenz beruhende Vorhersage von potentielle Proteinen, den sogenannten ORF's (Open Reading Frame) [Pfeiffer et al., in Vorbereitung]. Die Identifizierung aller Proteine und damit Inventarisierung des Proteoms kann in diesem Zusammenhang einer Validierung bzw. Korrektur der bioinformatischen Vorhersagen dienen und bietet so eine Möglichkeit der Überprüfbarkeit bioinformatischer Algorithmen anhand experimenteller Daten[Tebbe et al., 2005]. Darüber hinaus besitzt H. salinarum das sowohl stukturell als auch funktionell am besten untersuchte Membranprotein, Bakteriorhodopsin (BR) [Haupts et al., 1999] welches relativ einfach in großen Mengen zu isolieren ist [Oesterhelt und Stoeckenius 1974]. Daher gilt BR als Modellprotein für die Membranproteomik und wird zur Methodenoptimierung herangezogen [Blonder et al., 2002; Hufnagel et al., 1996]. Die in Kapitel 2.3 beschriebenen verschiedenen, parallel ausgebildeten bioenergetischen Mechanismen sind überwiegend mit Membranproteinen assoziiert. Ein Wechsel bioenergetischer Wachstumsbedingungen sollte daher die daran beteiligten membrangebunden Enzyme beeinflussen, was H. salinarum als einen optimalen Modellorganismus zum Etablieren quantitativer Membranproteomik ausweist.

2.5 Proteom und Proteomik

Der Begriff "Proteom", erstmals 1994 von Marc Wilkins eingeführt, steht für die Gesamtheit der Proteine einer Zelle, eines Gewebes oder Organismus, die zu einem bestimmten Zeitpunkt exprimiert werden. So sind die Proteine, deren Zusammenspiel und Zusammensetzung Ursache und Ausdruck der Diversität des Lebens.

Im Gegensatz zur der relativ statischen genetischen Ausstattung ist das Proteom einer Zelle hochgradig dynamisch und kann daher in seiner qualitativen und quantitativen Zusammensetzung aufgrund sich verändernder Bedingungen (Umweltfaktoren, Temperatur, Wirkstoffgabe etc.) variieren. Posttranslationale Modifikationen wie z.B. Methylierung oder Phosphorylierungen von Proteinen, die im Rahmen der Signaltransduktion eine sehr wichtige Rolle spielen [Pawson und Scott 2005], erhöhen diese Variabilität zusätzlich um ein Vielfaches.

Die Proteomik ist das Forschungsgebiet, das sich mit der Untersuchung, Identifizierung und Katalogisierung ganzer Proteome oder Subproteome beschäftigt. Proteomische Analysen

liefern daher Momentaufnahmen vom jeweiligen aktuellen "Zustand" der Zellen in Abhängigkeit von ihrer Umgebung.

2.5.1 Das Membranproteom

Membranproteine, die ein Drittel aller zellulären Proteine repräsentieren [Wallin 1998; Stevens 2000], nehmen Schlüsselpositionen in einer Vielfalt zentraler Prozesse wie z.B. Signaltransduktion, Transport von Metaboliten und Energieumwandlung ein (vgl. Kapitel Bioenergetik). Sie bilden hierbei das Bindeglied zwischen extrazellulären Reizen und intrazellulären Prozessen.

Das Membranproteom umfasst alle Proteine die mit der Membran assoziiert sind. Dieses sind (I) Proteine mit ein oder mehreren Transmembrandomänen (TMD) (das integrale Membranproteom) (II) Proteine die einen kovalent gebundenen Lipidanker besitzen, (III) Untereinheiten eines Membranproteinkomplexes oder (IV) Proteine, die über elektrostatische Wechselwirkungen mit der Membran oder integralen Membranproteinen an die Membran assoziiert sind (periphere Membranproteine) [Santoni *et al.*, 2000].

Die Definition eines theoretischen Membranproteoms auf der Basis der Genomsequenz und daraus resultierender vorhergesagter Proteine gestaltet sich oft schwer. Integrale Membranproteine oder Lipidanker Proteine können durch bioinformatische Algorithmen wie TMHMM [Krogh *et al.*, 2001] oder das Motiv PS0013 [Prosite] relativ zuverlässig vorhergesagt werden, wobei letzterer für halophile Proteine optimiert wurde [Falb *et al.*, 2005].

Membranassoziierte Proteine besitzen keine charakteristischen Sequenzen und können daher nur anhand ihrer Funktion oder Funktionsvorhersage dem Membranproteom zugeordnet werden. Eine solche Einteilung auf theoretischer Ebene ist daher nur durch die Annotation möglich, d.h. durch die Voraussage von Proteinen und deren Funktion aufgrund von Sequenzähnlichkeiten mit denen anderer Organismen bekannter Funktion. Für Proteine, bei welchen eine zuverlässige Annotation nicht möglich ist, kann daher nicht zwischen membranassoziierten Proteinen und cytosolischen Verunreinigungen unterschieden werden. Dies bedeutet jedoch im Umkehrschluss, dass nicht alle nicht-TMD-Proteine in einer Membranpräparation definitionsgemäß Verunreinigungen darstellen.

Trotz deren herausragender biologischer Bedeutung sind Membranproteine in der Proteomik verhältnismäßig unterrepräsentiert. Im Bezug auf Hydrophobizitat, Löslichkeit, Größe und Konzentration von Proteinen umfasst dieses Subproteom eine große Heterogenität, die eine enorme analytische Herausforderung darstellt.

2.5.2 Membranproteomanalyse

Die Analyse komplexer Proben in der Proteomik und damit auch in der Membranproteomik umfasst zwei separate Bereiche, die Trennung und die anschließende Identifizierung einer Vielzahl von Proteinen. Letzteres, früher mit Immunodetektion oder Edmansequenzierung durchgeführt, erfolgt heute mit modernen Methoden der Massenspektrometrie. Diesem stetig wachsenden Teilbereich der Proteomik wird daher ein eigenes Kapitel gewidmet (2.6).

Die Schlüsseltechnik im Feld der Proteomik war und ist die zweidimensionale Gelelektrophorese (2DE) [O'Farrell 1975; Klose 1975]: in der ersten Dimension erfolgt dabei eine Trennung der Proteine nach ihrem isoelektrischen Punkt (isoelektrische Fokussierung; IEF), in der zweiten aufgrund der Größe (SDS-Polyacrylamid-Elektrophorese). Mit der 2DE können bis zu 10.000 Polypeptide aufgetrennt werden [Klose und Kobalz 1995] und daher ist die 2DE seit 1975 noch immer die wichtigste Methodik zur Trennung komplexer Proteingemische [Rabilloud 2002]. Für Membranproteine gilt dies jedoch nur in eingeschränkten Maß, da TMD-Proteine bei der IEF irreversibel präzipitieren und daher auf klassischen 2DE-Gelen unterrepräsentiert sind [Santoni et al., 2000; Klein et al., 2005; Bunai et al., 2005; Twine et al., 2005]. Diese kritische IEF umgehen alternative zweidimensionale gelbasierte Methoden wie 16-BAC-Gelelektrophorese [Macfarlane et al., 1983; Macfarlane 1988; Hartinger et al., 1996; Dreger et al., 2001] oder eine zweidimensionale SDS-Elektrophorese [Rais et al., 2004]. Diese Methoden basieren auf dem abweichenden Laufverhalten speziell von Membranproteinen in kationischer vs. anionischer Elektrophorese bzw. in verschiedenen SDS-Systemen. Das Resultat solcher Gelsysteme ist eine Diagonale von der Proteine abweichen und so eine zweidimensionale Auftrennung ermöglichen. Einem anderen Prinzip folgt die Blue-Native-Gelelektrophorese [Schägger und Jagow, 1991; Schägger et al., 1994; Poetsch et al., 2000]: in einer ersten Dimension werden Membranprotein-Komplexe in ihrer nativen Form aufgrund der Größe getrennt. Die zweite denaturierende SDS-Dimension erlaubt das Trennen der Untereinheiten eines Komplexes, auf dessen Zusammensetzung so rückgeschlossen werden kann.

Die gelfreie Trennung von intakten Membranproteinen mittels Chromatrographie ist meist direkt an eine Massenbestimmung mittels ESI-MS gekoppelt (vgl. Kapitel Proteinidentifizierung) [Whitelegge et al., 1999; le Coutre et al., 2000; Whitelegge et al., 2002]. Für eine weitaus sichere Identifizierung von Membranproteinen wird in den letzten Jahren immer häufiger eine mehrdimensionale Chromatographie auf der Ebene von Peptiden, nach gemeinsamen proteolytischen Verdau von Proteinen, angewendet [Wo et al., 2003; Nielsen et al., 2005]. Diese wird in der Regel mit Tandem-Massenspektrometrie gekoppelt (Kapitel Proteinidentifizierung). So ist es möglich Membranproteine im Idealfall anhand eines einzigen Peptides zu identifizieren und diese Vorgehensweise wird daher als "shotgun Proteomik" bezeichnet [McDonald und Yates 2003]. Damit verschmelzen die ehemals separaten Bereiche der Proteomik, die Trennung und die Identifizierung von Proteinen, zu der kombinierten Technik LC-MS/MS.

2.6 Die Massenspektrometrie in der Proteomik

Massenspektrometrie befasst sich mit der Gasphasenanalyse von Protein- oder Proteinfragmenten mit Hilfe verschiedener physikalischer Techniken im Hochvakuum. Das allgemeine Arbeitsprinzip beruht auf der Überführung neutraler Spezies in Ionen (Ionisierung), der Trennung der Ionen nach ihrem Masse-zu-Ladung Verhältnis (Analyse) und deren Nachweis (Detektion). Diese funktionelle Dreiteilung findet sich im allgemeinen Aufbau von Massenspektrometern in Ionenquelle, Analysator und Detektor wieder, die gängigsten Typen dieser Komponenten werden im Folgenden beschrieben.

2.6.1 Ionisierung

Die Erschließung der Proteomik als Anwendungsfeld für die Massenspektrometrie war verknüpft mit der Entwicklung schonender Ionisierungsverfahren für große Moleküle (z.B. Proteine und Peptide). Von besonderer Bedeutung sind hier die Matrixunterstützte Laserdesorption/Ionisation-Massenspektrometrie (MALDI-MS) [Koichi Tanaka (Nobelpreis für Chemie 2002), Karas und Hillenkamp 1988] und die Elektronspray-Ionisations-Massenspektrometrie (ESI-MS) [Fenn *et al.*, 1989, Nobelpreis für Chemie 2002].

Abb. 2.4: Schematische Darstellung der MALDI Ionisierung

Grundlage beim MALDI-Prozeß ist der gepulste Laserbeschuss einer festen, kristallinen und UV-Strahlung absorbierenden Matrix, mit der die Analytmoleküle kokristallisiert wurden. Durch die Laserenergie wird der Analyt mit der verdampfenden Matrix in die Gasphase überführt und ionisiert, es bildet sich eine Wolke geladener Teilchen. Die Matrix absorbiert dabei überschüssige Energie und verhindert so eine Zersetzung der Analytmoleküle. Zwischen dem Probenteller (Target) und einer gegenüberliegenden Elektrode wird ein elektrisches Feld angelegt (vgl. Abb. 2.4) und die Ionen so in

Richtung Massenanalysator beschleunigt. Bei diesem Ionisierungsverfahren entstehen

bevorzugt einfach geladene Ionen, wobei der detaillierte Ionisationsprozeß noch diskutiert wird [Karras *et al.*, 2000]. Beim MALDI-Prozess handelt es sich dementsprechend um eine gepulste und damit diskontinuierliche Ionenerzeugung, während mittels alternativer Methoden die Möglichkeit besteht kontinuierlich einen Ionenstrom zu generieren.

Eine der meist verwendetsten ist die Elektrospray-Ionisation (ESI, Abb. 2.5). Die Probe liegt in Lösung vor und wird durch eine Metallkapillare geleitet, an deren Spitze eine Spannung angelegt ist. Zwischen der Kapillare und einer Gegenelektrode entsteht ein elektrisches Feld, durch welches die Flüssigkeit zu einem Nebel feinster und hoch geladener wird. Tröpfchen versprüht Durch

Abb. 2.5: Schematische Darstellung des ESI.-Prozess

kontinuierliches Verdampfen der Lösungsmittelmoleküle erreichen die Tröpfchen eine hohe Ladungsdichte in deren Folge sie spontan zerfallen (Coulomb-Exposionen). Für den Ionisierungsprozess werden zwei Modelle diskutiert: das Ion Evaporation Model (IEM, Ionenemissionsmodell) und das Charge Residue Model (CRM, Modell des geladenen Rückstands). Letzteres geht davon aus, dass in Folge von Coulomb-Explosionen winzige Tropfen entstehen, die aus einem einzigen geladenen Analyten (Ion) bestehen. Das Ionenemissionsmodel behauptet dagegen die Emission von Ionen aus größeren Tropfen. Im Gegensatz zum MALDI-Prozeß können bei der ESI-Ionisierung mehrfach geladene Ionen entstehen. Die sich in Lösung befindlichen Analytmoleküle werden direkt in das Massenspektrometer eingesprüht [Fenn *et al.*, 1989] daher kann dies mit einer Flüssigkeitschromatographie (LC) gekoppelt werden, was als online-Kopplung bezeichnet wird [Ducret *et al.*, 1998; Washburn *et al.*, 2001; Ishihama 2005].

2.6.2 Massenanalysatoren

Analysatoren trennen ein komplexes Gemisch verschiedener Ionen nach deren Masse-zu-Ladungs Verhältnis (m/z) und erlauben so die eigentliche Charakterisierung der Probe.

Abb. 2.6: Schematische Darstellung eines Flugzeit-Massenanalysators

Einer der einfachsten Massenanalysatoren ist der Flugzeitoder TOF- (Time Of Flight) Analysator, welcher oft wie in Abb. 2.6 dargestellt, in Kombination mit einer MALDI-Quelle Anwendung findet. Bereits in der Quelle werden die Ionen

in einem elektrischen Feld beschleunigt (Beschleunigungsspannung U) und legen anschließend im Hochvakuum eine definierte Wegstrecke (L) bis zum Detektor zurück. Ionen (Elementarladung e) mit verschiedenen Masse/Ladung- Werten (m/z) besitzen nach der Beschleunigung gleiche kinetische Energie (E_{kin}) aber verschiedene Geschwindigkeit (v = L/t). Große Ionen brauchen demzufolge aufgrund ihrer geringeren Geschwindigkeit länger um den Detektor zu erreichen als kleine Ionen. Gemessen wird im TOF-Analysator die Zeit (t), die Ionen zum Zurücklegen dieser bekannten Strecke (L) im Hochvakuum benötigen. Über diesen einfachen mathematischen Zusammenhang, dargestellt in den folgenden Formeln,

kann so die Masse der Ionen bestimmt werden.

Ein zweiter, weit verbreiteter Analysator-Typ ist der Quadrupol. Dieser besteht aus vier hyperbolisch geformten, stabförmigen Elektroden an welchen ein kombiniertes Wechsel- und Gleichspannungsfeld angelegt wird, wobei gegenüberliegende

$$E_{kin} = \frac{1}{2} \cdot m \cdot v = 2 \cdot e \cdot 0$$

Abb. 2.7: Schematische Darstellung eines Quadrupol Massenanalysators

Stäbe gleiche Polarität der Gleichspannung und gleiche Phase der Wechselspannung besitzen. Das Verhältnis von Gleich- und Wechselspannung bestimmt, welche Ionen mit definiertem m/z auf einer stabilen oszillierenden Flugbahn den Quadrupol passieren können (Abb. 2.7, blaue Flugbahn). Ionen mit abweichendem m/z Verhältnis werden nach außen hin beschleunigt und kollidieren mit den Elektroden (Abb. 2.7, rote Flugbahn). Ein definierter Massenbereich wird durch das Verändern der Gleichspannung sowie der Amplitude des Wechselfelds gescannt und so den Ionen sukzessive der Durchgang durch den Quadrupol zum Detektor ermöglicht.

Eine Abwandlung des Quadrupol-Analysators stellt die Ionenfalle oder auch Pauli-Falle dar, benannt nach dem Physiker Wolfgang Paul (Nobelpreis für Physik 1989). Bei diesem Analysator treten Ionen durch ein Inlet in ein dreidimensionales Quadrupolfeld ein und werden durch dieses auf einer Kreisbahn "eingefangen". Die Ionenfalle dient so als Ionenspeicher. Das Feld wird durch drei rotationssymmetrische hyperbolisch geformte Elektroden erzeugt: zwei Endkappenelektroden und eine mittlere Ringelektrode. Zwischen der Ringelektrode und den Endkappenelektroden liegt eine Überlagerung einer Gleich- und einer Wechselspannung an, vergleichbar dem Quadrupol. Während einer Analyse wird die Amplitude des Wechselspannungsanteils erhöht was in einer Destabilisierung der Ionenbewegung resultiert. Je nach Molekulargewicht werden Ionen beim Erreichen einer bestimmten Amplitude aus der Ionenfalle ejiziert und detektiert.

2.6.3 Proteinidentifizierung: MS- und MS/MS-Massenspekrometrie

Ein Massenspektrum ist allgemein eine zweidimensionale Darstellung der Ionenhäufigkeit (Intensität der Signale) aufgetragen gegen das Ionenmasse-zu-Ladungs-Verhältnis (m/z). Ein einzelnes Signal, das aus dem Hintergrundrauschen hervortritt, wird dabei als Peak bezeichnet.

Die massenspektrometrische Analyse ermöglicht z.B. die Bestimmung der Molekülmasse von intakten Proteinen (MS-Messung). Eine eindeutige Identifizierung eines Proteins durch den Vergleich der experimentell gemessenen Masse mit der theoretisch zu erwartenden mittels Datenbanksuche, ist hier jedoch nur in wenig komplexen Proben und eingeschränktem Kandidatenkreis möglich [Whitelegge *et al.*, 2002]. Ein genomweiter Ansatz würde mehrere Kandidaten mit gleicher oder sehr ähnlicher Masse (innerhalb der Messgenauigkeit liegend) liefern und damit eine eindeutige Identifizierung erschweren wenn nicht gar verhindern.

Verdaut man dagegen ein Einzelprotein mit einer spezifischen Protease (meist Trypsin) und misst die daraus resultierenden Peptide, erhält man ein MS-Spektrum, das eine Gruppe von Peaks zeigt, welche für dieses Protein charakteristisch sind. Dies wird als Fingerabdruck des Proteins bezeichnet (PMF, Peptide Mass Fingerprint). Die Identifizierung erfolgt durch einen Abgleich der gemessenen Signale mit den theoretisch zu erwartenden, ermittelt auf der Basis der Genomsequenz. Diese MS-Methode findet v.a. in Kombination mit einer 2D-Gelelektrophore Anwendung [Hecker und Völker 2004; Tebbe *et al.*, 2005].

Abb. 2.8: Fragmentierung und Nomenklatur der Fragmentionen nach Roepstorff und Fohlman [1984]

Eine zusätzliche Sicherheit der Identifizierung wird gewährleistet, wenn neben der reinen der Peptidmassen Information deren Aminosäuresequenz ermittelt wird. Mit Hilfe Tandem-Massenspektrometern von ist es möglich, spezifisch Ionen aus einem Ionenstrahl auszuwählen, diese zu fragmentieren und aus den so entstehenden

Fragmenten die Aminosäure- Sequenz oder Teile davon abzuleiten. In solchen Massenspektrometern sind zwei Massenanalysatoren durch eine Kollisionskammer von einander getrennt (Tandem Massenspektrometer), wodurch ein zweistufiger Prozess der Massenanalyse ermöglicht wird. Im ersten Schritt wird ein Ion aus einem komplexen Ionenstrahl selektiert und damit der erste Analysator (meist ein Quadrupol) als Ionenfilter eingesetzt. In einer zweiten Stufe wird das ausgewählte Mutterion in einer Stoßzelle durch Kollision mit einem Inertgas (Argon oder Stockstoff) fragmentiert (CID, collision induced fragmentation) und die daraus resultierenden Fragment-Ionen im zweiten Analysator bestimmt. Durch die bevorzugte Fragmentierung an der Peptidbindung werden Ionen erzeugt, deren Massendifferenz einen direkten Rückschluss auf die Aminosäuresequenz zulässt. Typische Fragmentierungsmuster bei der Analyse von Peptiden in MS/MS- Messungen sind in Abb. 2.8 dargestellt [Roepstorff und Fohlman, 1984; Biemann, 1992].

Durch die MS/MS-Technologie wurde die so genannte Shotgun-Proteomik ermöglicht. Eine komplexe Probe wird proteolytisch verdaut, was in einem weitaus komplexeren Gemisch aus Peptiden resultiert. Eine meist mehrdimensionale chromatographische Trennung wird der MS/MS-Messung vorgeschaltet (LC-MS/MS). Hier geht die für eine PMF-Identifizierung essentielle Information über die Peptidzugehörigkeit zu einem Protein verloren, dennoch ist es im Idealfall möglich durch die Sequenzinformation nur eines Peptides ein Protein eindeutig zu identifizieren. Dieses Vorgehen wird als "bottom-up-Ansatz" bezeichnet.

Mit der neuesten Generation von Massenspektrometern ist es darüber hinaus möglich, durch eine MS/MS-Fragmentierung erhaltene Ionen einer weiteren Fragmentierung zu unterziehen, der so genannten MS³ Messung. Da hier ein Teil der Peptidsequenz zweimal unabhängig ermittelt wird und diese für eine Identifizierung übereinstimmen müssen, wird die Sicherheit der Identifizierung weiter erhöht [Übersichtsartikel: Olsen und Mann, 2004].

2.7 Quantifizierung in der Proteomik

Veränderungen im Proteom von Zellen, Geweben oder Organismen, hervorgerufen durch definierte Stimuli oder Krankheiten, lassen Rückschlüsse auf beteiligte funktionelle Netzwerke wie Stoffwechselwege und Regulationskaskaden zu. Detaillierte Informationen über die Dynamik eines Proteoms können so gewonnen und z.B. für systembiologische Untersuchungen extrahiert werden. Verschiedene zelluläre Zustände werden miteinander durch die subtraktive Analyse von Proteinmustern und Proteinintensitäten verglichen. Es handelt sich daher um eine Quantifizierung von Veränderungen und nicht um eine absolute Quantifizierung von Proteinen.

Hierfür wurden verschiedene Strategien entwickelt, die auf dem Vergleich von Signalintensitäten von Proteinen auf 2D Gelen oder Peptiden bei massenspektrometrischen Messungen basieren [Übersichtsartikel: Monteoliva und Albar 2004; Lill 2003].

Erste differenzielle Analysen beruhten auf dem Vergleich von Proteinmustern zweier Proteome getrennt in individuellen zweidimensionalen Gelen. Die Quantifizierung erfolgt nach Färben der Proteine densitometrisch mit Hilfe von Laserscannern. Dieses wird in den letzten Jahren immer mehr unterstützt durch verschiedene Bildverarbeitungsprogramme, die eine Korrelation der Proteinmuster aus verschiedenen Gelen erleichtern und damit eine Auswertung verbessern [Raman *et al.*, 2002; Dowsey *et al.*, 2003]. Dennoch sind solche Strategien anfällig für Gelartefakte und daher angewiesen auf reproduzierbare Gelsysteme.

Mit Hilfe der DIGE Technologie (DIfferenzielle GelElektrophorese) [Unlu *et al.*, 1997; Tonge *et al.*, 2001] ist es möglich vor einer gelelektrophoretischen Trennung Proteine mit verschiedenen CyDyeTM Fluoreszenz- Farbstoffen zu markieren. Dieses erlaubt die gemeinsame Trennung zweier zu vergleichender Proben in einem Gel und umgeht damit eine nachgeschaltete Spotkorrelation. Zusätzlich weisen die Fluoreszenz-Farbstoffe einen weitaus höheren dynamischen Bereich auf als Coomassie- oder Silberfärbung [Alban *et al.*, 2003; Karp *et al.*, 2005]. Die Identifizierung der Proteine erfolgt in einer anschließenden massenspektrometrischen Analyse und ist damit von einer Quantifizierung völlig unabhängig (Abb. 2.9, II). Diese Technologie ist nicht nur auf die klassische 2D-Elektrophorese beschränkt sondern kann prinzipiell für alle zweidimensionalen Elektrophorese Techniken angewendet werden wie z.B. Blue Native PAGE [Perales *et al.*, 2005] oder der in dieser Arbeit verwendeten 16-BAC-PAGE [Macfarlane 1983; 1989].

Neben gelbasierten densiometrischen Strategien wurde eine Vielzahl massenspektrometriebasierender Techniken entwickelt. Proteine oder Peptide werden mit stabilisotopenmarkierten Reagenzien versehen, wobei ein Zustand mit der "leichten", ein zweiter mit der "schweren" Variante der Sonde markiert wird (Abb. 2.9, I).

Abb. 2.9: Überblick über verschiedene Quantifizierungsstrategien in der Proteomik

Nach gemeinsamem proteolytischem Verdau und Trennung beider Proben erhält man bei einer anschließenden Messung zwei Massensignale eines Peptides, die von demselben Protein aber aus verschiedenen Zuständen stammen. Diese so genannten Paare zeigen eine charakteristische Massendifferenz die durch die Sonde definiert ist. Der Vergleich der Signalintensitäten im MS-Spektrum ergibt das Verhältnis der Proteine, das die Konzentrationsunterschiede in den beiden Proben widerspiegeln [Ong *et al.*, 2003, Aebersold und Mann 2003]. Die Identifizierung der Proteine erfolgt in einer gekoppelten MS/MS-Messung der Peptide (Abb. 2.9, III).

Die Isotopenmarkierung, und damit der Träger der quantitativen Information, kann metabolisch während der Zellkultur mittels markierter Aminosäuren (SILAC, Stable Isotope Labeling with Amino acids in Cell culture), [Ong *et al.*, 2002, 2003] in Proteine eingeführt

werden (Abb. 2.9, I). Alternativ können isolierte Proteine durch eine kovalente Modifikation einer bestimmten Aminosäure mit einer Sonde versehen werden, wie z.B. bei der ICAT Methode (Isotope Coded Affinity Tag) [Gygi *et al.*, 1999], der ersten Technik die in diesem Bereich vorgestellt wurde. Seitdem ist eine Vielzahl von chemischen Modifikationen zur Quantifizierung von Proteinen entwickelt worden [Übersichtsartikel: Julka und Regnier 2004; Schneider und Hall 2005; Ong und Mann 2005]. Die ICPL Technologie (Isotope Coded Protein Labelling), welche in dieser Arbeit angewandt wurde, modifiziert alle freien Aminogruppen von intakten Proteinen (Lysin und N-Terminus) [Schmidt *et al.*, 2005]. Da hier Proteine von Organellen, Zellen oder Geweben markiert werden können sowie prinzipiell alle anschließenden Trennungsmethoden angewendet werden können (Abb. 2.9, III) ist diese eine viel versprechende, allgemein anwendbare Quantifizierungsstrategie.

Obwohl die Quantifizierung in der Proteomik in den letzten Jahren weite Verbreitung fand, sind Studien die sich speziell auf den Vergleich von Membranproteomen beziehen in der Minderheit [Han *et al.*, 2001; Olsen *et al.*, 2004; Foster *et al.*, 2004; Scheurer *et al.*, 2005a; 2005b; Ramus *et al.*, 2006].

2.8 Zielsetzung

Im Rahmen dieser Arbeit soll das Membranproteom halophiler Archaeen am Beispiel der Modellorganismen *Halobacterium salinarum* und *Natronomonas pharaonis* analysiert werden. In der Proteomik häufig angewandte Standardtechniken, wie die auf IEF beruhende zweidimensionale Gelelektrophorese, sind in Ihrer Anwendbarkeit auf Membranproteine stark eingeschränkt und eine Analyse des integralen Membranproteoms deshalb fast unmöglich. Daher sollten alternative zweidimensionale Elektrophoresesysteme etabliert und für halophile Membranproteine optimiert werden. Auf der Basis einer solchen Proteom-Darstellung können, neben der massenspektrometrischen Identifizierung der einzelnen Proteinspots, Proteininteraktionen durch eine native Elektrophorese-Strategie aufgezeigt werden.

Darauf aufbauend soll eine differenzielle Proteomanalytik von Membranproteinen über den Vergleich von Proteinmustern sowie durch Isotopenmarkierung und anschließender massenspektrometrischer Quantifizierung etabliert werden. Ziel ist es, das dynamische Verhalten des Membranproteoms als Reaktionen auf verschiedene Wachstumsbedingungen zu verfolgen, welche als Reizvermittler von besonderem biologischen Interesse sind.

Im Zentrum der Arbeit steht die massenspektrometrische Identifizierung von Membranproteinen, insbesondere integraler Proteine. Konkrete Schwierigkeiten in der Identifizierung von Transmembranproteinen im Vergleich zu löslichen Proteinen darzustellen ist dabei ein ebenso zentraler Punkt wie Lösungsstrategien aufzuzeigen. Für diese Untersuchung sollen MALDI-TOF und ESI-LC-MS/MS Methoden angewandt werden, wobei die Informationen aus den Proteinidentifizierungen fortlaufend zur Validierung der Genomannotation und zum Ausbau des Datenbanksystems HALOLEX herangezogen und so die Inventarisierung des Gesamtproteoms vervollständigt werden sollte.

3 Materialien und Methoden

3.1 Materialien und Geräte

3.1.1 Materialien/Chemikalien

Materialien	Firma	
1,4-Butansulton	Fluka	
16-BAC	Sigma	
1-Butanol	Merck	
2,5-Dihydroxybenzoesäure (DHB)	Aldrich (Sigma)	
2-Butanol	Merck	
2-Hydroxy-5-methoxybenzoesäure(MHB)	Fluka (Sigma)	
3-Dimehtylamino-1-propylamin	Fluka	
Aceton	Riedel-de-Haen	
Acetonitril	Merck	
Acrylamid Proto Gel	nationaldiagnostic	
ACTH (1- 17)	Sigma	
ACTH (18- 39)	Sigma	
a-Cyano-4-Hydroxy-Zimtsäure	Sigma	
Agarose	Gibco	
Ameisensäure 98-100%	Merck	
Ammoniumbicarbonat	Fluka	
Ammoniumhydrogencarbonat	Fluka	
Ammoniumperoxidisulfat	BioRad	
Angiotensin 1 Acetet Human	Sigma	
Angiotensin 2 Acetet Human	Sigma	
Ascorbinsäure	Caesar & Loretz GmbH	
BCA-Reagenz	Pierce	
Biotin D (+)	Fluka	
Bis- Tris	Roth	
---------------------------------------	---------------------	
Bombesin	Sigma	
Bradykinin Fragment 1- 7	Sigma	
Bromphenolblau	Sigma	
C ₈ -Extraction Disks	3M Empore	
Calciumsulfat	Merck	
Casamino acids	Difco	
Chloroform	Merck	
Citronensäure-Monohydrat	Merck	
Cobaltchlorid	Merck	
Coomassie Brilliant Blau G-250	Serva	
Coomassie Brilliant Blau R-250	Serva	
Cy [™] 3 dye	GE Healthcare	
Cy [™] 5 dye	GE Healthcare	
Dinatriumhydrogenphosphat	Merck	
Dithiothreitol	Merck	
DNase I	Fluka	
EDTA- Na ₂	Merck	
Eisen(II)-Sulfat	Merck	
Essigsäure 100%	Merck	
Ethanol absolut	Riedel de Haen	
Folsäure	Sigma	
Formaldehyd 37%	Merck	
Formvar	Fluka	
Glutaraldehyd	Serva	
Glycerin	Roth	
Glycin	Merck	
Harnstoff	Amersham Bioscience	
Hydroxypropyl-Methyl-Cellulose (HPMC)	Aldrich (Sigma)	
lodacetamid	Fluka	
Isopropanol	Merck	
Kaliumchlorid	Merck	

Kaliumdihydrogenphosphat	Merck
Kaliumhexacyanoferrat(III)	Fluka
Kupferchlorid	Merck
L- Alanin	Merck
L- Arginin	Biomol
L- Cystein	Merck
L- Isoleucin	Hoffman- La Roche
L- Leucin	Merck
L- Methionin	Fluka
L- Prolin	Merck
L- Serin	Merck
L- Threonin	Merck
L- Tyrosin	Fluka
L- Valin	Fluka
L-Asparaginsäure	Merck
Magnesiumsulfat- heptahydrat	Merck
Manganchlorid	Merck
Methanol	Merck
N, N´-Methylenbisacrylamid (Bis)	BioRad
Natriumacetet	Merck
Natriumcarbonat	Riedel de Haen
Natriumcitrat	Merck
Natriumdihydrogenphosphat	Merck
Natriumdithionit	Merck
Natriumhydroxid	Merck
Natrium-L-Glutamat Monohydrat	Merck
Natriumthiosulfat-pentahydrat	Merck
Nickelchlorid	Merck
Pepton	Oxoid
Phosphorsäure	Merck
Pyronin Y	Sigma
RP-C18 Material (Reprosil)	Dr. Maisch GmbH

RP-C4 Material (Reprosil)	Dr. Maisch GmbH
Saccharose	Merck
Salzsäure	Riedel-de-Haen
Saran-Film	Roth
Siedespeisesalz	Saline Bad Friedrichshall
Silbernitrat	Riedel-de-Haen
Sodiumdodecylsulfat	Serva
Taurodeoxycholat	Sigma
TEMED	BioRad
Thiamin	Sigma
Thioharnstoff	Sigma
Trichloressigsäure	Riedel-de-Haen
Trifluoressigsäure	Perkin Elmer
tri-Natriumcitrat-dihydrat	Merck
Tris-(Hydroxymethyl)-aminomethan	Riedel de Haen
Trypsin, Modified Sequencing Grade	Promega
Tween 20	Sigma
Zinkchlorid	Merck
Zinksulfat	Merck
ε- Aminocapronsäure	Fluka
TFA-Filter	Perkin Elmer

3.1.2 Geräte

Geräte	Firma
10ml Diamand Precisions Tips	Gilson
8-Kanal Pipetten	SL-Pette
Eppendorf Tischzentrifuge	Eppendorf
Gradientenmischer	Bromma
IPG-Phor	Amersham Biosciences
Lyophille	Christ Alpha 2-4
MALDI-Massenspektrometer Reflex III	Bruker Daltonics
MAP II-Pipettierroboter	Bruker Daltonics
Multiphor II + IEF Zubehör	Amersham Biosciences
Nadelsonifizierer	Branson Sonifier, Cell Disrupter B15
Pipetten	Eppendorf Research 2 ml, 20 ml, 200 ml, 1000 ml
Pipetten (2, 10, 20, 100, 200, 1000, 5000 µl)	Gilson
Power-Supply EPS 1000 XL	Amersham Biosciences
Power-Supply EPS 3500 XL	Amersham Biosciences
Proteineer SP	Bruker Daltonics
Proteineer SP	Bruker Daltonics
Q-TOF Ultimate Massenspektrometer	Waters
Reinstwasseranlage	Millipore
Safe lock Reaktionsgefäße 0.5ml, 1.5ml, 2ml	Eppendorf
Saran-Film	Roth
Sauerstoffelektrode Oxi 2000	WTW
SDS-Elektrophorese-Tank Protean	BioRad
SMART HPLC System	Amersham Biosciences
Speed Vac	Savant
Spotpicker Roboter ProteineerSp	Bruker-Daltonics
Sterilfilter	Millipore

Tisch-Ultrazentrifuge	Beckmann TL-100
Tischzentrifuge	Eppendorf 5417R
Typhoon [™] 9400 Scanner	GE Healthcare
Ultraschall Bad (Sonorex RK510)	Bandelin
Ultrazentrifuge	Beckmann Coulter
Vortex Genie 2	Bender & Hobein AG
Wasserbad	Julabo C
Zentrifuge	Rotixa 120 R
Zentrifuge, groß	Hettich Roto Silenta/RP

3.1.3 Programme

Programm	Firma		
Biotools 2.2	Bruker		
Data Explorer 4.3 A	Applied Biosystems		
Exel OfficeXP	Microsoft		
GPMAW 6.2	Lighthouse Data		
HALOLEX	Abteilung Oesterhelt		
Mascot	Matrix Science		
MassLynx 4.0	Waters		
MSQuant (Version 1.4.0a12)	Center for Experimental BioInformatics, University of Southern Denmark		
Origin 7.0 SR0	OriginLab Corporation		
Proteomweaver	Definiens		
Spotfire DecisionSite 8.0	Spotfire, Inc		
Word OfficeXP	Microsoft		

3.2 Methoden

3.2.1 Anzucht von Halobacterium salinarum

3.2.1.1 Standkulturen

Es wurden Standkulturen des Wildtyps R1 und der Mutanten TOM ("Two Opsins missing", BR⁻, HR⁻) sowie TOM \triangle OR5204R (BR⁻, HR⁻, OE5204R⁻, zur Verfügung gestellt von J. Tittor) generiert. Hierfür wurden mit 35 ml bereits bestehender Kulturen 1L Komplexmedium in einem 2L Erlenmeyerkolben angeimpft und bei 37°C und 100 rpm im Dunkeln bis zur stationären Phase angezogen. Ein Liter des Mediums bestand aus 250 g NaCl, 20 g MgSO₄ x 7 H₂O, 2 g KCl, 3 g Tri-Na-Citrat und 10 g/L Oxoid-Pepton, pH 7.0 [Oesterhelt und Krippahl, 1983].

Zusätzlich wurde für die Stämme R1 und TOM auf die selbe Art eine Standkultur in synthetischem Medium generiert (für ein Liter Medium: 235 g NaCl, 10 g MgSO₄x7 H₂O, 2 g KCl, 0.1 g KNO₃, 0.5 g Tri-Na-Citrat, 0.3 g KH₂PO₄, 0.3 g K₂HPO₄, 0.05 mg CuSO₄ x 5 H₂O, 2.3 mg FeCl₂ x 4 H₂O, 0.3 mg MnSO₄ x H₂O, 0.44 mg ZnSO₄ x 7 H₂O, 0.02 mg Ascorbinsäure, 0.4 g L-Arginin, 0.44 g L-Isoleucin, 0.8 g L-Leucin, 0.224 g L-Lysin H₂O, 0.2 g LMethionin, 0.5 g L-Threonin, 0.25 g L-Valin, 0.61 g L-Serin, 0.1 g L-Phenylalanin, 0.2 g L-Tyrosin, 5 mg Thiamin, 5 mg Folsäure, 0.5 mg Biotin, 0.5% (v/v) Glycerol).

Die Kulturen wurden im Dunkeln bei Raumtemperatur gelagert.

3.2.1.2 Vorkultur

Die Anzucht der Vorkulturen erfolgte in 100 ml Erlenmeyerkolben mit angebrachtem Reagenzglasfortsatz (Klettkolben). 35 ml Medium (siehe Kapitel 3.2.1.1) wurden mit 1 ml der Standkultur angeimpft und bei 37°C unter Schütteln mit 100 rpm bis zur stationären Phase kultiviert.

Für quantitative Proteomanalysen wurden die Zellen bis zu einer optischen Dichte von 30-40 Klett-Einheiten bei 100 rpm geschüttelt. Um zu gewährleisten, dass sich die Zellen in einer einheitlichen Wachstumsphase befinden, wurde für diese Analysen eine zweite Vorkultur (Folgekultur) unter gleichen Bedingungen bis 30-40 Klett kultiviert.

3.2.1.3 Gebrauchskultur

Ein Liter Medium in einem 2 Liter Erlenmeyerkolben wurden mit 35 ml Vorkultur angeimpft und im Brutraum bei 37°C mit 100 rpm geschüttelt, bis die Kultur die stationäre Phase bzw. für quantitative Proteomanalysen eine Zelldichte von 30-40 Klett erreichte.

3.2.1.4 Wachstumsbedingungen

3.2.1.4.1 Aerobe Kultur

Nach dem Animpfen wurden die Koben mit einem Zellkultur-Stopfen verschlossen und bei 37°C und 100 rpm im Dunkeln bis zu der gewünschten Zelldichte geschüttelt.

3.2.1.4.2 Phototrophe Kultur

Für die Anzucht der Zellen unter phototrophen Bedingungen, wurden Klettkolben mit Schliff verwendet. Nach dem Animpfen wurden diese mit einem Septum luftdicht verschlossen und die Kultur bei 37°C unter Belichtung mit 50-100 mW/cm² bei 100 rpm geschüttelt.

3.2.1.4.3 Sauerstofflimitierte Kultur

Kulturen wurden in einem Schliffkolben angeimpft, mit Septen luftdicht verschlossen und im Dunkeln bei 37°C mit 100 rpm geschüttelt. Diese Kulturen beginnen daher ihr Wachstum unter aeroben Bedingungen und enden unter Anaerobizität.

3.2.1.4.4 Anaerobe Kultur

Die Anaerobe Kultur erfolgte wie von Müller und DasSarma [2005] beschrieben. Das Medium so wie die Standkultur wurde in einem anaeroben Zelt, das mit Formiergas (N_2/H_2 im Verhältnis 95/5) gefüllt war, für 24h inkubiert. 35 ml Medium wurden mit 1 ml Kultur angeipft und mit einem Septum luftdicht verschlossen. Die Kulturen wurden bei 37°C und 100 rpm im Dunkeln geschüttelt, bei phototrophem Wachstum unter Belichtung mit 50-100 mW/cm².

3.2.1.4.5 Kultur mit DMSO

Zu 35 ml Komplexmedium wurden 0.2%, 0.5%, 1%, 2% oder 3% DMSO (v/v) gegeben und anschließend mit 1 ml Standkultur inokuliert. Die Kulturen wurden in einem Schliffkolben angeimpft, mit Septen luftdicht verschlossen und im Dunkeln bei 37°C mit 100 rpm geschüttelt.

3.2.1.4.6 Kultur mit Arginin

Zu 35 ml Komplexmedium wurden 0.5% Arginin (w/v) gegeben. Bevor dieses mit 1 ml Standkultur inokuliert wurde, wurde der pH-Wert erneut auf 7.2 eingestellt. Die Kulturen wurden in einem Schliffkolben angeimpft, mit Septen luftdicht verschlossen und im Dunkeln bei 37°C mit 100 rpm geschüttelt.

3.2.1.5 Wachstumskurven

Das Wachstum von *H. salinarum* wurde in den oben beschriebenen Medien und Bedingungen vergleichend verfolgt (Kapitel 4.4.2.1). Dazu wurden je Bedingung mehrere Kolben mit je 35 ml Medium mit 1 ml einer Standkultur angeimpft und bei 37°C mit 100 rpm geschüttelt. Die Zelldichte wurde zu verschiedenen Zeitpunkten mit Hilfe eines Klett- Photometers gemessen. Der Mittelwert der Parallelkulturen wurde für die Erstellung der Wachstumskurven verwendet.

3.2.1.6 Sauerstoffmessung

Um die Sauerstoff- Abnahme im Medium unter Sauerstoff- limitierenden Bedingungen zu messen, wurden in einem 250 ml Klettkolben 105 ml Medium mit 3 ml H. salinarum Standkultur angeimpft, luftdicht verschlossen und bei 37°C mit 100 rpm unter Schütteln inkubiert. Mit Hilfe einer Sauerstoffelektrode (Oxi 2000, WTW) wurde der Sauerstoffverbrauch während des Zellwachstums verfolgt. Die Spannung am Ausgang des Messgeräts (MacLab, ADInstruments, Castle Hill Australien) wurde digitalisiert und jede Minute ein Wert aufgezeichnet. Vor den Messungen wurde eine 2 Punkt Kalibrierung wie folgt durchgeführt: Zur Bestimmung des Nullpunkts wurden zu 105 ml Medium zwei Spatelspitzen Natriumdithionit gegeben und so der im Medium gelöste Sauerstoff vollständig reduziert. Die gemessene Spannung bei 0% Sauerstoff betrug 1,9-2,0 mV. Zur Bestimmung 100% iger Sauerstoffsättigung wurde durch die gleiche Menge Medium für 1h Luft geperlt. Die anschließende Spannungsmessung ergab 115-120 mV.

3.2.2 Anzucht von Natronomonas pharaonis

N. pharaonis, Stamm Gabara, wurde in Medium 205 der DSMZ (Deutsche Sammlung von Mikroorganismen und Zellkulturen GmbH, <u>www.dsmz.de/strains/no002160.htm</u>) kultiviert. Dieses Medium bestand aus 4.1 M NaCl, 26 mM KCl, 10 mM MgSO₄, 16 mM L-

Glutaminsäure, 10 mM Natrium-Citrat, 1.5% (w/v) Casamino acide, pH 8.5. Die Zellkultur erfolgte unter aeroben Bedingungen im Dunkeln wie für *H. salinarum* beschrieben (Kapitel 3.2.1.4.1).

3.2.3 Zellernte

2 Liter Zellkultur wurden in einer Hettichzentrifuge eine Stunde bei 4000 rpm und 10°C abzentrifugiert, der entstandene Niederschlag je nach Aufschluss (siehe Kapitel 3.2.4) in unterschiedlicher Menge Basalsalz (BS) resuspendiert und gepottert.

3.2.4 Zellaufschluss

3.2.4.1 Dialyse

Der durch Zentrifugation von 2L Kultur gewonnene Niederschlag wurde in 30 ml BS resuspendiert, gepottert und nach Zugabe von einer Spatelspitze DNase 30 min bei RT gerührt. Die Suspension wurde in einen Dialyseschlauch überführt und über Nacht gegen 10 mM Phosphatpuffer, pH 7 bei 4°C dialysiert.

3.2.4.2 Beschallen

Der durch Zentrifugation von 2L Kultur gewonnene Niederschlag wurde in 40 ml BS resuspendiert, gepottert und in ein Gefäß mit rundem Boden überführt. Um die Zellen mechanisch aufzuschließen, wurde die Zellsuspension 3x1 min mit je 5 min Pause bei 50% Duty Cycle auf Eis beschallt. Die Zugabe von DNase war bei diesem vorgehen nicht notwendig, da die freigesetzte DNA durch Sonifizieren zerstört wurde.

3.2.5 Membranisolation

Unlösliche Zellbestandteile aus der Zellaufschluss- Lösung wurden durch Zentrifugation (Rotixa 120 R-Zentrifuge, 15 min, 4600 rpm, 10°C) entfernt und der Überstand zur Sedimentation der Membran ultrazentrifugiert (Ti60-Rotor, 1 h, 30000 rpm, 4°C). Der entstandene Niederschlag wurde je nach gewähltem Aufschluss in unterschiedlichen Medien resuspendiert (nach Beschallen in 4 ml BS, nach Aufschluss über Dialyse in 3 ml 10 mM Phosphatpuffer, pH 7), gepottert und damit ein linearer Sucrose- Dichtegradient überschichtet

(10-50% Sucrose in BS bei Beschallen, 20-40% Sucrose in 10 mM Phosphatpuffer, pH 7 bei Dialyse). Die Gradienten wurden in einem TST-28 Rotor bei 25000 rpm 14 h bei 4°C zentrifugiert und die Membranen ihrer spezifischen Dichte entsprechend im gesamten Gradientenbereich aufgetrennt.

Die Bande aus dem Hochsalz-Gradienten (Zellaufschluss durch Beschallen) wurden abgenommen, mit ¹/₄ BS verdünnt und ultrazentrifugiert (Ti60-Rotor, 1 h, 40000 rpm, 4°C). Der Niederschlag wurde in 1/8 BS resuspendiert und ein weiteres Mal gewaschen (Ti60-Rotor, 1 h, 40000 rpm, 4°C). Der finale Niederschlag wurde schließlich entweder in 1-2 ml H₂O aufgenommen (für eine anschließende Chloroform-Methanol-Fällung) oder in 500 µl 1/8 BS resuspendiert und bei –20°C gelagert.

Die Banden aus dem Gradienten nach Dialyse wurden abgenommen, in 10 mM Phosphatpuffer, pH 7 resuspendiert und ultrazentrifugiert (Ti60-Rotor, 1 h, 4000 rpm, 4°C). Dieses wurde mit dem Niederschlag ein weiteres Mal wiederholt, der finale Niederschlag in 1-2 ml H₂O aufgenommen und bei -20°C gelagert.

3.2.6 Abreicherung membranassoziierter Proteine

Zur Abreicherung membranassoziierter Proteine wurde die unter 3.2.5 beschriebene Isolationsmethode folgendermaßen abgeändert: Nach Isolation durch Beschallen und anschließendem Dichtegradient in BS wurden die Banden abgenommen und in $\frac{1}{4}$ BS gewaschen. Der resultierende Niederschlag wurde in 2 ml 1/8 BS resuspendiert, mit 1/8 BS, 5% Tween 20 auf 20 ml aufgefüllt und 20 min bei RT langsam gerührt. Danach wurde die Suspension ultrazentrifugiert, der entstandene Niederschlag zweimal mit 1/8 BS gewaschen und schließlich in 50 µl H₂O aufgenommen.

3.2.7 Proteinfällung

3.2.7.1 Chloroform/Methanol-Extraktion

1 ml einer Membransuspension in Wasser wurde mit 9 ml eines Chloroform/Methanol-Gemisch (8:1) versetzt, durch vortexen gemischt und für 30 min inkubiert [Santoni *et al.*, 2000]. Nach erfolgter Phasentrennung wurde die obere Phase, in der sich die Membranproteine befanden, abgenommen und lyophilisiert.

3.2.7.2 TCA-Fällung

Eine Proteinlösung wurde mittels einer 20%-igen (w/v) Trichloressigsäure auf eine Finalkonzentration von 2% TCA gebracht, 30 min auf Eis inkubiert und zentrifugiert (15 min, 20krpm, 4°C). Der entstehende Überstand wurde verworfen und der Proteinniederschlag in einer Vakuumzentrifuge getrocknet.

3.2.7.3 Acetonfällung

Die Proteinlösung wurde mit einem 10-fachen Überschuss an –20°C kaltem Aceton versetzt, 1 h auf Eis inkubiert und anschließend für 15 min in einer Tischzentrifuge bei 16 krpm, 4°C zentrifugiert. Der Überstand wurde verworfen, der Niederschlag in kaltem 50%igen Aceton resuspendiert und erneut zentrifugiert. Dieser Waschschritt diente der Entfernung von Salzkontaminationen. Der Überstand wurde verworfen und der Niederschlag in einer Vakuumzentrifuge getrocknet.

3.2.8 Proteinbestimmung

3.2.8.1 Proteinbestimmung mittels BCA

Zur quantitativen Proteinbestimmung wird eine Farbreaktion von Bicinchoninsäure (BCA) mit Cu⁺-Ionen zu einem violetten Farbkomplex ausgenutzt [Smith *et al.* 1985]. Proteine bilden mit Cu²⁺-Ionen in alkalischer Lösung einen Komplex (Biuret-Reaktion), gleichzeitig werden die Cu²⁺-Ionen zu Cu⁺-Ionen reduziert. Diese bilden mit der Bicinchoninsäure einen violetten Farbkomplex mit einem Absorptionsmaximum bei 562nm. 50 Volumenanteile von Lösung A (1% BCA-Na₂, 2% Na₂CO₃ x H₂O, 0.16% Na₂-tartrat, 0.4% NaOH, 0.95% NaHCO₃, pH 11.25) wurden mit 1 Volumenanteil von Lösung B (4% CuSO₄ x 5H₂O) vermischt und zu 1ml dieses Gemisches 50 µl der zu analysierenden Probe gegeben. Die Probe wurde für 30 min bei 37°C inkubiert, anschließend die Absorption bei 562 nm gemessen und die Proteinkonzentration aus dem Vergleich mit einer BSA-Eichgeraden (0.1-1.0 mg/ml) ermittelt.

3.2.8.2 Proteinbestimmung nach Bradford

Die Proteinbestimmung nach Bradford [Bradford 1976] beruht auf der Verschiebung des Absorptionsmaximums des Farbstoffs Coomassie Brilliant Blau G250 von 465 auf 595 nm in

Gegenwart von Proteinen. Grund dafür ist die Stabilisierung des Farbstoffs in seiner anionischen Form durch Bindung an Arginyl-Reste von Proteinen. Durch Messung der Absorption bei 595 nm wird die Menge des gebundenen Farbstoffes quantifiziert. 10 µl Proteinlösung wurden mit 990 µl Bradford-Reagenz (800 µl H₂O + 200 ml Bradford-Dye, BioRad) versetzt, 10 min bei RT inkubiert und die Absorption photometrisch bei 595 nm gemessen. Die Proteinkonzentration wurde durch Vergleich mit einer Eichkurve (BSA, 0.1-1.0 mg/ml) ermittelt.

3.2.9 Proteinmarkierung

3.2.9.1 ICPL-Markierung

Mit Hilfe der ICPL-Technologie [Schmidt *et al.*, 2005] ist es möglich Proteine zweier unterschiedlicher Proben auf Ebene der Massenspektrometrie relativ zu quantifizieren. Zu diesem Zweck wurden Membranproteine mit der ICPL-Sonde (6-Nicotinoyl-N-hydroxy-succinimid) markiert. Delipidierte und lyophilisierte Membranproteine (Kapitel 3.2.7.1) aus aeroben und phototrophen *H. salinarum*-Kulturen wurden jeweils in ICPL-Markierungspuffer (6 M Guanidiniumchlorid, 0.1 M HEPES, pH 8.5, complete protease inhibitor mix / 1 Tablette pro 25 ml) aufgenommen und 10 min im Ultraschallbad sonifiziert. Die Proteinkonzentration der beiden Lösungen betrug 5 mg/ml (w/v).

Je Wachstumsbedingung wurden 40 µl Probe (200 µg Protein) durch die Zugabe von 1 µl TCEP-Lösung (0.2 M TCEP; 0.1 M HEPES; pH 8.5) bei 60°C für 30 min reduziert und anschließend durch Zugabe von 1 µl Iodacetamid-Lösung (0.4 M Iodacetamid (IAA); 0.1 M HEPES, pH 8.5) für 30 min bei RT im Dunkeln alkyliert. Durch Zugabe von 1 µl Acetyl-Cystein-Lösung (0.5 M N-Acetyl-Cystein; 0.1 M HEPES, pH 8.5) wurde restliches IAA abgefangen. Vor der Nicotinoylierung der Proteine wurde der pH-Wert der Lösungen überprüft und ggf. wieder auf 8.5 eingestellt. Die Markierung erfolgte durch die Zugabe eines zehnfachen molaren Überschusses von ICPL-Reagenz gegenüber allen freien Aminogruppen (je 6 µl einer 0.15 M N-Nicotinoyl-NHS-Lösung). Dabei wurden die aerobe Probe mit dem leichten ($^{12}C_6$ -Nic-NHS) und die phototrophe Probe mit dem schweren Reagenz ($^{13}C_6$ -Nic-NHS) markiert. Die Proben wurden für 2 h bei RT inkubiert und die Reaktion durch Zugabe von 4 µl 1.5 M Hydroxylaminlösung abgebrochen. Anschließend wurden beide Proteinlösungen vereinigt.

3.2.9.2 Fluoreszensmakierung von Proteinen

Für eine gelbasierte Proteinquantifizierung wurden delipidierte und lyophilisierte Membranproteine von aeroben und phototrophen *H. salinarum*-Kulturen eingewogen und getrennt voneinander in 6 M Harnstoff, 10 mM Tris/HCl pH 8,8 resuspendiert (20 mg/ml). Cyanine dye 3 und 5 (Cy^{TM} 3 minimal dye, Cy^{TM} 5 minimal dye) wurden nach Herstellervorschrift in DMF gelöst und 200 pmol Fabstoff zu je 100 µg Proteinlösung gegeben, wobei Proteine aus phototrophen Kulturen mit Cy 5 (rot) und Proteine aus aeroben Kulturen mit Cy 3 (grün) markiert wurden. Nach Inkubation auf Eis im Dunkeln für 30 min wurde die Reaktion durch Zugabe von 10 mM Lysin (1 µl zu 200 pmol Farbstoff) und Inkubation für weitere 10 min auf Eis gestoppt. Die beiden Proben wurden gemischt und mit je 15 µl unmarkierter Proteinlösung (20 mg/ml) beider Zustände versetzt.

Die Proben wurden für eine anschließende zweidimensionale Auftrennung mittels 16-BAC/SDS-PAGE 1:1 mit 2x BAC- Auftragspuffer ohne Harnstoff versetzt (Kapitel 3.2.10.2.1.1) und mit einem Tropfen 300 mM Kaliumphosphat pH 2,1 angesäuert (Farbumschlag von Pyronin Y von gelb nach rosa). Die Proteine wurden auf einem 12% igen 16-BAC-Gel aufgetrennt. Die Streifen wurden im ungefärbten Zustand ausgeschnitten und in einer zweiten Dimension auf 10% ige Lämmli-Gele aufgelegt (Kapitel 3.2.10.2.4.2).

3.2.10 Gelelektrophorese von Proteinen

3.2.10.1 Eindimensionale SDS-Gelelektrophorese

3.2.10.1.1 Probenvorbereitung

Delipidierte Membranproteine wurden in Wasser aufgenommen (5 mg/ml), mit 5x Probenpuffer (50 mM Tris-HCl pH 6,8; 100 mM DTT; 2% SDS; 0.1% Bromphenolblau; 10% Glycerin) im Verhältnis 4:1 gemischt und für 10 min sonifiziert.

Nicht- delipidierte Membranen (Suspension in 1/8 BS) wurden abzentrifugiert (Tisch- UZ, 15 min, 60000 rpm, 4°C), der Überstand verworfen, der Niederschlag in Wasser (250 µl pro 1L Kultur) resuspendiert und mit 5x Probenpuffer vgl. oben gemischt. Die Proben wurden nicht, wie bei Lämmli 1970 beschrieben, erhitzt, sondern für 10 min mit Ultraschall behandelt. Dies führt zu einer effektiveren Solubilisierung und verhindert ein Präzipitieren von Membranproteinen.

So solubilisierte Membranproteine konnten mit den im Folgenden beschriebenen SDS-Gelsystemen von Lämmli, Schägger oder Ahn aufgetrennt werden.

3.2.10.1.2 Herstellung und Lauf von 1D- Gelen nach Lämmli [1970]

Zur eindimensionalen Auftrennung von Proteinen wurde ein diskontinuierliches Gelsystem nach Lämmli verwendet, bestehend aus Sammelgel (5% Polyacrylamid (Acrylamid/ Bisacrylamid = 30/0.8); 125 mM Tris-HCl, pH 8.8; 0.015% (v/v) TEMED; 0.05% (w/v) APS) und Trenngel (12.5% Polyacrylamid (Acrylamid/Bisacrylamid = 30/0.8); 375 mM Tris-HCl, pH 8.8; 0.015% (v/v) TEMED; 0.05% (w/v) APS). Als Laufpuffer diente eine Lösung bestehend aus 25 mM Tris-HCL pH 8.3, 0.192 M Glycin und 0.1% (w/v) SDS.

Die Trennung erfolgte in so genannten Mini-Gelen, bei welchen die Dimensionen des Trenngeles 7 x 8 x 0.075 cm (Höhe, Breite, Dicke) betrug. Auf das Trenngel wurde nach dessen Auspolymerisieren ein 5mm hohes Sammelgel gegossen.

Die Elektrophorese erfolgte bei einer Stromstärke von 5 mA/Gel, bis die Proben die Grenze zum Trenngel erreicht hatten, anschließend wurde die Stromstärke auf 10 mA erhöht.

3.2.10.1.3 Herstellung und Lauf von 1D- Gelen nach Schägger [1987]

Das diskontinuierliche Gelsystem nach Schägger eignet sich besonders zur Auftrennung von kleinen Proteinen und setzte sich aus einem Trenngel (17% Polyacrylamid (Acrylamid/Bisacrylamid = 30/0.8); 1 M Tris-HCl pH 8.45; 0.1% SDS; 13% (w/v) Glycerin; 0.015% (v/v) TEMED; 0.05% (w/v) APS) und einem Sammelgel (5% Polyacrylamid (Acrylamid/ Bisacrylamid = 30/0.8); 0.73 M Tris-HCl, pH 8.45; 0.07% SDS; 0.015% (v/v) TEMED; 0.05% (w/v) APS) zusammen. Als Kathoden-Laufpuffer diente eine Lösung bestehend aus 0.1 M Tricine; 0.1 M Tris-HCl pH 8.25; 0.1% SDS, als Anodenpuffer wurde eine Lösung aus 0.2 M Tris-HCl pH 8.9 verwendet.

Die Dimensionen der Gele waren vergleichbar den Lämmli-Gelen (Kapitel 3.2.10.1.2), der Gellauf erfolgte für 1h bei 30V und wurde anschließend auf 100V erhöht.

3.2.10.1.4 Herstellung und Lauf von 1D- Gelen nach Ahn [2001]

Es handelt sich um ein kontinuierliches Gelsystem das von Ahn und Kollegen entwickelt und als "single gel" bezeichnet wurde. Es besteht aus einem uniprozentualen Gel, in welches drei Aminosäuren einpolimerisiert wurden (12% Polyacrylamid (Acrylamid/Bisacrylamid = 30/0.8); 76 mM Tris-HCl pH 7.4; 0.1 M Serin; 0.1 M Glycin; 0.1 M Asparagin). So konnten Proben bis zu einem Salzgehalt von 1M NaCl mit hoher Auflösung aufgetrennt werden. Der

Laufpuffer sowie die Parameter des Gellaufs entsprachen dem des Lämmli-Systems (Kapitel 3.2.10.1.2).

3.2.10.2 Zweidimensionale Gelelektrophorese

Um eine Vergrößerung des Trennraums zu erreichen, wurde eine zweidimensionale Elektrophorese angewandt. Die Proben wurden dabei in der ersten Dimension entweder auf denaturierenden 16-BAC (Benzyldimethyl-n-hexadecyl-ammoniumchlorid) -Gelen oder nativen BN (Blue Native) -Gelen aufgetrennt. Die Streifen wurden nach dem Lauf ausgeschnitten und in einer zweiten Dimension die Proteine auf SDS (Sodiumdodecylsulfat)-Gelen erneut getrennt.

3.2.10.2.1 Denaturierende Gelelektrophorese in der ersten Dimension (16-BAC-PAGE)

Um die Proteine in der ersten Dimension denaturierend gemäß ihrem Molekulargewicht aufzutrennen, wurde die 16-BAC/SDS Elektrophorese nach Macfarlane angewendet (Macfarlane 1983, Macfarlane 1989, Hartinger *et al.*, 1996). 16-BAC ist ein positiv geladenes Detergens, durch welches die Proteine eine positive Nettoladung unabhängig ihrer eigenen Ladung erhalten und so im elektrischen Feld zur Kathode wandern.

3.2.10.2.1.1 Probenvorbereitung für 16-BAC-PAGE

Delipidierte Proteine wurden abgewogen, in H₂O aufgenommen (20 mg/ml) und mit gleicher Menge doppelt-konzentriertem Probenpuffer (6 M Harnstoff; 55 mM DDT; 1% (w/v) 16-BAC; 1% (v /v) Glycerin; 0.05% Pyronin Y) versetzt. Membranen in 1/8 BS wurden 15 min bei 4°C und 60000 rpm in der Tisch-Ultrazentrifuge abzentrifugiert, der Niederschlag in H₂O resuspendiert und in gleicher Menge Probenpuffer aufgenommen. Bis zum Gelauftrag wurden die Proben bei 60°C inkubiert.

3.2.10.2.1.2 Herstellung und Lauf von 16-BAC-Gelen

Für die Auftrennung der Proteine wurden 12% ige 16-BAC Gele hergestellt. Die Lösung (12% Polyacrylamid (Acrylamid/Bisacrylamid = 30/0.8); 0.11% Bisacrylamid; 3.5 M Harnstoff; 88 mM KH₂PO₄ pH 2.1; 3 mM 16-BAC; 4.7 mM Ascorbinsäure; 0.01 mM FeSO₄; 0.00066% H₂O₂) wurde sterilfiltriert, die Gele (20 cm x 20 cm) in einer BioRad- Gießapparatur gegossen und mit Wasser überschichtet. Für die Gele wurden 0.75 mm Spacer verwendet. In das ca. 4 cm hohe Sammelgel (4% Polyacrylamid (Acrylamid/Bisacrylamid = 30/0.8); 0.23% Bisacrylamid; 1.6 M Harnstoff; 125 mM KH₂PO₄ pH 4.1; 1.7 mM 16-BAC; 4 mM Ascorbinsäure; 0.004 mM FeSO₄; 0.00075% H₂O₂) wurden 1 cm breite Taschen einpolymerisiert. Die 16-BAC-Gele wurden einen Tag vor Gebrauch hergestellt, um sicherzustellen, dass das Gel vollständig auspolymerisiert war.

Der Laufpuffer bestand aus 2.5 mM 16-BAC, 150 mM Glycine und 50 mM Phosphorsäure. Die Elektrophorese wurde bei 20 mA für zwei Gele gestartet, bis die Proben die Grenze zum Trenngel erreicht hatten. Danach wurde die Stromstärke sukzessive auf maximal 60 mA erhöht. Sobald die Lauffront eine Krümmung aufwies wurde der Gellauf mit den Anfangsbedingungen bis zum Ende durchgeführt. Der Anodenpuffer wurde gewechselt, sobald sich in diesem ein weißer Niederschlag bildete.

Nach der Elektrophorese wurde die Spuren mit einem Skalpell ausgeschnitten und entweder direkt weiterverarbeitet oder bei –20°C eingefroren. Bereiche des Gels, die nicht in einer zusätzlichen elektrophoretischen Dimension analysiert werden sollten wurden mit Coomassie (Kapitel 3.2.11.1) gefärbt.

3.2.10.2.2 Blue-Native- PAGE

Um Membranproteinkomplexe in ihrer nativen Form trennen zu können, wurden sie mit dem BlueNative-Gelsystem analysiert, welches von Schägger und Jagow [1991] ursprünglich für die Analyse von Komplexen aus der mitochondrialen Atmungskette entwickelt wurden. Coomassie G250 dient dabei als Ladungsträger und bindet durch hydrophobe Wechselwirkungen an die Oberfläche von Proteinen, wobei diese negativ geladen werden und im elektrischen Feld zur Anode wandern. Da ein natives Puffersystem verwendet wird, können intakte Proteinkomplexe ihrer Größe entsprechend aufgetrennt werden. Isolierte Membranen, gewonnen aus 1L Kultur (Kapitel 3.2.1.3), wurden abzentrifugiert (Tisch-UZ, 15 min, 60000 rpm, 4°C) und in 900 μ l BN-Probenpuffer (750 mM Aminocapronsäure (ACA), 50 mM Bis-Tris pH 7.0, 0.5 mM EDTA) resuspendiert. Die Proben wurden mit 1% bzw. 0.5% Dodecyl-Maltosid (DDM) solubilisiert, für 40 min auf Eis inkubiert und anschließend in der Tisch-Ultrazentrifuge die nicht solubilisierten Bestandteile abzentrifugiert (Tisch-UZ, 1 h, 60000 rpm, 4°C). Der Überstand wurde in ein neues Eppendorfgefäß überführt, aliquotiert (je Gelspur 60-80 μ l Probe) und kurz vor Auftrag mit je 5 μ l Coomassie-Beladungslösung (750 mM ACA; 5% (w/v) Coomassie Brilliant Blue G 250) versetzt.

3.2.10.2.2.2 BlueNative- Gelelektrophorese

Das Polyacrylamidgel (20 cm×20 cm×0,75 mm) war aus einem 4% Sammelgel und einem Trenngel zusammengesetzt, wobei letzteres ein lineares Gradientengel mit variabler Acrylamidkonzentration, hier beschrieben für eine Konzentration zwischen 6 und 12%, darstellte.

Mittels eines Gradientenmischers wurde ein Gradientengel von 6% - 12% mit einer Geldicke von 0.75 mm gegossen. Hierfür wurden in die linke Kammer eines Gradientenmischers 10.5 ml einer 6% igen Acrylamidlösung (6% Polyacrylamid (Acrylamid/Bisacrylamid = 30/0.8), 500 mM ACA, 50 mM BisTris-HCl pH 7.0; 0.019% (w/v) TEMED, 0.048% (v/v) APS) und in die Rechte 10.5 ml einer 12% igen Acrylamidlösung (12% Polyacrylamid (Acrylamid/Bisacrylamid = 30/0.8), 500 mM ACA, 20% Glycerin, 50 mM BisTris-HCl pH 7.0, 0.019% (w/v) TEMED; 0.048% (v/v) APS) gegeben. Die beiden Acrylamidlösungen wurden vor Gebrauch auf 6°C gekühlt. Das Trenngel wurde bei RT gegossen und mit Wasser überschichtet. Nach dessen Polymerisation wurde es mit einem Sammelgel (4% Polyacrylamid (Acrylamid/Bisacrylamid = 30/0.8); 500 mM ACA; 50 mM BisTris-HCl, pH 7.0; 0.019% (w/v) TEMED; 0.048% (v/v) APS) überschichtet, 1 cm breite Taschen einpolymerisiert und das Gel nach dem Auspolymerisieren über Nacht bei 4°C aufbewahrt.

Das Gel wurde am nächsten Tag beladen, die elektrophoretische Trennung erfolgte bei einer Stromstärke von 12 mA/Gel unter Kühlung bei 4 bis 6°C. Die angegebenen Parameter beziehen sich auf ein Gel der Größe 20cm×20cm×0.75mm.

Als Kathoden-Laufpuffer diente eine Lösung bestehend aus 50 mM Tricine, 15 mM BisTris-HCl pH 7.0, 0.02% (w/v) Coomassie Brilliant Blue G250, als Anodenpuffer eine Lösung aus 50 mM BisTris-HCl pH 7.0. Nachdem die Lauffront die Hälfte des Gels erreicht hatte, wurde der blaue Kathodenpuffer gegen einen ungefärbten (ohne Coomassie G250), der ansonsten die gleiche Zusammensetzung hatte, ausgetauscht. Nach dem Ende des Gellaufs wurden die Spuren mit einem Skalpell ausgeschnitten und entweder direkt weiterverarbeitet oder bei -20°C zwischen zwei Folien eingefroren.

3.2.10.2.3 Blue-Native/Ahn- PAGE

Um salzhaltige Proben bis zu einer Konzentration von 1 M NaCl in einem nativen Gelsystem zu trennen, wurden die BlueNative-PAGE (Kapitel 3.2.10.2.2) wie folgt abgewandelt: In das Gel wurden 0.1 M der Aminosäuren Serin, Glycin und Asparagin nach dem Vorbild der Ahn-PAGE (Kapitel 3.2.10.1.4) einpolymerisiert. Darüber hinaus war in beiden Lösungen des Trenngels Glycerin enthalten. Die Gradientengele wurden mittels einer niedrig-konzentrierten Lösung (5% Polyacrylamid (Acrylamid/Bisacrylamid = 30/0.8); 500 mM ACA ; 0.1 M Serin; 0.1 M Glycin; 0.1 M Asparagin; 15% Glycerin; 50 mM BisTris-HCl, pH 7.0 ; 0.019% (w/v) TEMED; 0.048% (v/v) APS) und einer höher-konzentrierten Acrylamidlösung (10% Polyacrylamid (Acrylamid/Bisacrylamid = 30/0.8); 500 mM ACA ; 0.1 M Serin; 0.1 M Glycin; 0.1 M Asparagin; 20% Glycerin; 50 mM BisTris-HCl, pH 7.0; 0.019% (w/v) TEMED; 0.048% (v/v) APS) hergestellt.

Die Proben wurden wie unter 3.2.10.2.2.1 beschrieben vorbereitet, mit dem Unterschied, dass der BN-Auftragspuffer gegen einen salzhaltigen Probenpuffer ansonsten gleicher Zusammensetzung ausgetauscht wurde (500 mM NaCl; 750 mM ACA; 50 mM Bis-Tris pH 7.0; 0.5 mM EDTA).

Für die elektrophoretische Trennung wurden die Puffer der klassischen BN-PAGE verwendet (Kapitel 3.2.10.2.2.2), der Gellauf erfolgte für ca. 2h bei 5 mA/Gel, anschließend bei 10 mA/Gel. Der Kathodenpuffer wurde nach der Hälfte des Gellaufs gegen einen ungefärbten ausgetauscht. Nach dem Ende des Gellaufs wurden die Spuren mit einem Skalpell ausgeschnitten und entweder direkt weiterverarbeitet oder bei -20° C zwischen zwei Folien eingefroren.

3.2.10.2.4 Zweite Dimension: SDS-PAGE

Die Proteinbanden aus den BAC- oder BN- Gelen konnten mithilfe einer zweiten Dimension in Einzelproteine separiert werden. Für diesen Zweck wurden zwei verschiedene denaturierende SDS-Gel-Systeme verwendet. Um die ausgeschnittenen, 0.75 mm dicken Streifen auf die zweite Dimension auflegen zu können, wurden 1 mm dicke Gele angefertigt.

3.2.10.2.4.1 Äquilibrieren der Gelstreifen

Proteine wurden für den Transfer in die zweite Dimension mit SDS beladen bzw. Proteinkomplexe der ersten Dimension mittels SDS denaturierend solubilisiert. Die ausgeschnittenen Gelstreifen wurden in gefrorenem Zustand in Äquilibrierungspuffer 1 (65 mM DTT, 2% SDS, 80 mM Tris, pH 8.8) zur Reduktion von Disulfidbrücken gegeben und für 15 min bei RT unter Schütteln inkubiert. Durch den Austausch des reduzierenden Puffers gegen Aquilibrierungspuffer 2 (260 mM Iodoacetamid, 2% SDS, 80 mM Tris, pH 8.8) wurden die Sulfhydrylgruppen irreversibel carbamidomethyliert. Hier wurden die Streifen für weitere 15 min inkubiert. Die Streifen wurden kurz auf Whatmanpapier getrocknet, luftblasenfrei auf das SDS-Gel aufgelegt und mit 0.5% Agarose in SDS-Laufpuffer überschichtet.

3.2.10.2.4.2 Lämmli-SDS-Gele

Die Gel- Streifen aus 16-BAC-Gelen wurden in der zweiten Dimension auf 10% Lämmli-Gele aufgelegt. Die Herstellung der Lämmli- Gele (20 cm x 20 cm) erfolgte analog zu Kapitel 3.2.10.1.2. Die Sammelgele, die keine Taschen enthielten, wurden so hoch gegossen, dass ein Gelstreifen der Breite von ca. 1 cm aufgelegt werden konnten. Der Lauf erfolgte, nach Auflegen des Streifens (Kapitel 3.2.10.2.4.1), bei 10 mA pro Gel bis die Lauffront das Trenngel erreicht hatte, anschließend wurde die Stromstärke auf 20 mA/Gel erhöht.

3.2.10.2.4.3 Schägger-SDS-Gele

Bei BlueNative- oder BlueNative- Ahn- Gelen wurden in der zweiten Dimension 10% ige Schägger-Tricin Gele (20 cm x 20 cm) verwendet, welche vor allem für die Auftrennung kleiner Proteine und für Membranproteine geeignet sind. Die Lösungen (vgl. Kapitel 3.2.10.1.3) wurden entgast und das Gel nach dem Gießen mit H₂O überschichtet. Die Sammelgele wurden analog zu denen der Lämmli- Gele hergestellt. Zusätzlich wurde zum besseren Transfer der Proteine von der ersten in die zweite Dimension ein weiteres, Blue-Native-Sammelgel integriert. Nachdem das SDS-Sammelgel auspolimerisiert war, wurde dieses mit ca. 1 cm der Sammelgellösung (4% Polyacrylamid (Acrylamid/Bisacrylamid = 30/0.8); 500 mM ACA; 50 mM BisTris-HCl, pH 7.0; 0.019% (w/v) TEMED; 0.048% (v/v) APS) überschichtet.

Der Gellauf erfolgte, nach Auflegen des Streifens (Kapitel 3.2.10.2.4.1), die erste Stunde bei 35 mA (für 2 Gele) bis die Lauffront das Trenngel erreicht hatte, und dann über Nacht bei 40 mA.

3.2.11 Proteinfärbungen in Gelen

3.2.11.1 Coomassie- Färbung

Zur Detektion von Proteinen wurden die Gele in einer Coomassie- Färbelösung (45% MeOH, 10% Essigsäure, 0.1% Coomassie Brilliant Blue R250) für eine Stunde unter Schwenken inkubiert. Danach wurden sie zur Entfärbung des blauen Hintergrunds über Nacht in Entfärbelösung geschüttelt (12,5% Isopropanol, 10% Essigsäure).

3.2.11.2 Kolloidale Coomassie-Färbung

Das Gel wurde ohne vorangestellte Fixierung in der Färbelösung (0.08% Coomassie G-250, 1.6% H₃PO₄, 8% (NH₄)₂SO₄, 20% MeOH) über Nacht inkubiert. Die anschließende Entfärbung erfolgte durch mehrfaches Inkubieren in Wasser [Neuhoff *et al.*, 1985].

3.2.11.3 Silber- Färbung

Um eine anschließende massenspektrometrische Identifizierung der Proteine zu ermöglichen, wurde eine Silberfärbung mittels eines leicht verändertem Protokoll nach Vorum durchgeführt, bei der die Proteine im Gel nicht vernetzt werden [Mortz *et al.*, 2001]. Dies setzt die Sensitivität im Vergleich zu der Silberfärbung von Heukeshoven [Heukeshoven und Dernick 1985] geringfügig herab, ist aber deutlich sensitiver als eine kolloidale Coomassie-Färbung.

Fixieren I	2 x 30 min	50% (v/ v) Methanol
		12% (v/ v) Essigsäure
Fixieren II	3 x 20 min	50% (v/ v) Ethanol (absolut)
Sensibilisieren	1 min	200 mg/ ml Na ₂ S ₂ O ₃
		(frisch angesetzt)
Waschen	2 x 1 min	MilliQ
Färben	20 min	0.2% (w/ v) AgNO ₃
		0.0375% (v/ v) Formaldehyd
		(frisch angesetzt)
Waschen	10 sec	MilliQ
Entwickeln	Bis gewünschte	6% (w/ v) Na ₂ CO ₃
	Färbung erreicht	0,025% (v/ v) Formaldehyd
		(frisch angesetzt)
Stoppen	5 min	1% HOAc
Lagerung		1% HOAc bei 4°C

Tabelle 3.1: Protokoll für die Silberfärbung von SDS-Gelen

Die erste Inkubation des ersten Fixierschritts kann über Nacht erfolgen. Zur Archivierung wurden die Gele zwischen 2 Cellophanfolien luftgetrocknet, nachdem sie für einen Tag in 20% EtOH, 2% Glycerin äquilibriert wurden.

3.2.12 Probenvorbereitung für die Massenspektrometrie

3.2.12.1 Ausstechen der Proteinspots aus Gelen

Im Gel visualisierte Proteine wurden je nach Grad der Auftrennung zur anschließenden massenspektrometrischen Analyse unterschiedlich aus dem Gel ausgeschnitten:

Bei eindimensionalen Gelen wurde eine Spur mittels eines Skalpells ausgeschnitten, in ca. 0.5 cm breite Banden unterteilt, diese jeweils in ca. 1 mm² große Stücke zerkleinert und in Eppendorf- Gefäße transferiert.

Bei zweidimensionalen Auftrennungen wurden die Proteine mit Hilfe des SP-Proteineer-Roboters (Bruker Daltonics) ausgeschnitten (Spot-Durchmesser 1.5 mm). Dazu wurde das Gel auf den Durchlichtscanner aufgelegt, fixiert und gescannt. Die Spots wurden manuell am Gelbild markiert, automatisch ausgestochen und in 96ger Mikrotiter-Filterplatten (Multiscreen Durapor MAHV N45, Millipore, Bedford, MA, USA) transferiert. Durch die Verwendung von Mikrotiter-Filterplatten konnten bei einem anschließenden Verdau alle Wasch- und Inkubationslösungen durch Zentrifugation aus den Platten entfernt werden. Mit Hilfe der spControl3-Software (Bruker Daltonics) wurde die Korrelation der XY-Koordinaten auf dem Gelbild mit der entsprechenden Mikrotiterplatten- Position dokumentiert.

3.2.12.2 Tryptischer In-Gel-Verdau aus eindimensionalen Gelen

Die Coomassie-gefärbten Gelstücke wurden je zweimal im Wechsel mit je 50 µl 50% Acetonitril bzw. 50 mM Ammoniumbicarbonat für 10 Minuten inkubiert, was zu einer Entfärbung der Proteine führte. Die Gelstücke wurden anschließend für 45 Minuten in 50 µl 10 mM DTT, 50 mM Ammoniumbicarbonat bei 56°C inkubiert, gefolgt von einer 30 minütigen Inkubation im Dunkeln in 50 µl 55 mM Iodacetamid. 50 mM Ammoniumbicarbonat. In diesem Schritt wurden die Cysteinreste der Proteine carbamidomethyliert, was bei einer zweidimensionalen Elektrophorese bereits im Gelstreifen der ersten Dimension erfolgte (Kapitel 3.2.10.2.4.1). Anschließend wurde erneut je zweimal im Wechsel mit 50% Acetonitril und 50 mM Ammoniumbicarbonat gewaschen, bevor 50 µl Trypsinlösung zugegeben wurden (20 µg Trypsin gelöst in 20 µl "Storage Puffer", dazu 5.2 ml 50 mM Ammoniumbicarbonat). Die Proben wurden über Nacht bei 37°C unter schütteln inkubiert.

Am nächsten Tag wurde der Überstand in ein neues Eppendorf-Gefäß überführt und die Peptide in drei weiteren Schritten in der Abfolge MilliQ, 50% Acetonitril und 50% Acetonitril, 0.1% TFA eluiert (jeweils mit 50 µl für 20 min unter Schütteln). Die Überstände dieser drei Schritte wurden vereinigt, in flüssigem Stickstoff eingefroren und in der Speed Vac getrocknet. Der Niederschlag wurde schließlich bis zur Salzfreiheit in 100 µl Wasser aufgenommen (2x), eingefroren und in der Speed Vac getrocknet.

3.2.12.3 Tryprischer In-Gel-Verdau aus 2DE-Gelen

Zum Entfärben der silbergefärbten Proteinspots über eine Oxidation von Ag⁰ nach Ag⁺ wurde jeder Spot unter Schütteln in 30 µl Entfärbelösung inkubiert (15 mM Kaliumhexacyanoferrat (III), 50 mM Natriumthiosulfat), bis alle Gelstücke farblos waren [Gharahdaghi et al., 1999]. Nach Zentrifugation der Lösung durch die Filtermembran der Microtitterplatten (Kapitel 3.2.12.1) wurde 3x mit 100 µl Wasser gewaschen (1x kurz, 2x nach Inkubation für 5 min), dabei wurde nach jedem Waschschritt die Flüssigkeit durch die Membran zentrifugiert und verworfen. Die Spots wurden mit folgenden Lösungen (je 100 µl pro Spot) für je 10 min auf dem Schüttler inkubiert und die Lösung anschließend verworfen: 50% Acetonitril; 50 mM Ammoniumbicarbonat; 50% Acetonitril; 50 mM Ammoniumbicarbonat. Der Proteinverdau erfolgte über Nacht bei 37°C. Hierfür wurde je Spot 25 µl Trypsinlösung verwendet (20 µg Trypsin gelöst in 20 µl Storage Puffer, dazu 5.2 ml 50 mM Ammoniumbicarbonat für 2 Mikrotiterplatten), was einer Menge von 100 ng Trypsin pro Proteinspot entspricht. Um eine Verdunstung der Lösungen zu verhindern, wurden die Mikrotiterplatten in Saranfolie gewickelt. Am nächsten Tag wurde der Überstand in eine neue Mikrotiterplatte zentrifugiert, und die Peptide in drei weiteren Schritten mittels MilliQ, 50% Acetonitril und 50% Acetonitril, 0.1% TFA eluiert (jeweils mit 50 µl für 20 min unter Schütteln). Die gesammelten Überstände wurden in flüssigem Stickstoff eingefroren und in der Speed Vac getrocknet. Der Niederschlag wurde schließlich bis zur Salzfreiheit in 100 µl Wasser aufgenommen (2x), eingefroren und in der Speed Vac getrocknet.

3.2.12.4 Tryptischer In-Gel-Verdau in 60% Methanol

Die silbergefärbten Proteinspots wurden wie in Kapitel 3.2.12.3 beschrieben entfärbt und je zweimal im Wechsel mit 50% Acetonitril und 50 mM Ammoniumbicarbonat für je 10 min inkubiert. Dieses erfolgte in Eppendorf-Reaktionsgefäßen. Die Verdaueffizienz von Trypsin liegt in 60% MeOH bei 20% [Blonder *et al.*, 2004], daher wird die 5 fache Trypsinkonzentration des Standard-InGel-Verdaus verwendet. 5 µl Trypsinlösung (20 µg Trypsin gelöst in 20 µl Storage Puffer) wurden mit 200 µl 125 mM NH₄HCO₃ versetzt. Zu jedem Spot werden 20 µl Trypsin-Lösung und 30 µl MeOH gegeben, woraus eine finale Konzentration von 60% MeOH, 50 mM NH₄HCO₃ und 500 ng Trypsin/Spot resultiert. Der Verdau erfolgte über Nacht bei 37°C unter schütteln. Die Elution der Peptide erfolgte wie unter 3.2.12.2 beschrieben.

3.2.12.5 In-Lösung-Verdau ICPL-markierter Proteine

Die ICPL-isotopenmarkierten Proben (Kapitel 3.2.9.1) wurden in Lösung enzymatisch gespalten. Die Proben, die in Markierungspuffer gelöst vorlagen (6M Guanidiniumchlorid, 0.1 M HEPES, pH 8.5), wurden vor dem Verdau mit wässrigem Spaltpuffer (25 mM Tris/HCl pH 7.8) verdünnt, um die Guanidinhydrochlorid Konzentration auf eine für das Enzym tolerierbare Menge zu senken. Dabei wurde die Probe bei der Trypsinspaltung (Enzym-zu-Protein Verhältnis (m/m) = 1/50) 1 zu 10 mit 25 mM Tris (pH 8.5) und bei einer Spaltung mit Glu-C (Enzym-zu- Protein Verhältnis (m/m) = 1/30) 1 zu 5 mit 25 mM Tris (pH 7.8) verdünnt. Beide enzymatische Spaltungen wurden über Nacht durchgeführt, wobei der Verdau mit Trypsin bei einer Temperatur von 37°C und mit Glu-C bei Raumtemperatur erfolgte. Bei der kombinierten Spaltung mit beiden Enzymen wurden die Proteine zuerst mit Trypsin verdaut. Anschließend wurde die Probe auf die Hälfte ihres Volumens unter Vakuum eingeengt, der pH-Wert durch Zugabe von 0.5% TFA auf 7.8 eingestellt und mit Endoproteinase Glu-C (Enzym-zu-Protein Verhältnis (m/m) = 1/30) bei 25°C über zehn Stunden enzymatisch gespalten. Alle In-Lösung gespaltenen Proben wurden vor der LC-MS/MS Analyse auf ihr ursprüngliches Volumen (vor der Zugabe des Tris-Puffers) eingeengt.

3.2.12.6 Probenentsalzung mittels RP-C8-Material

Die Entsalzung kleiner Peptidmengen, z.B. aus einem In-Gel Verdau, kann mittels selbst hergestellter "*Stage Tips*" durchgeführt werden [Rappsilber *et al.*, 2003]. Dazu wurde ein ca. 1 mm großes Stück aus in Teflon eingebettetem C8-Material (3M EmporeTM Extraction Disks) ausgestochen und in eine GeLoader-Spitze eingeführt. Durch Anlegen von Druck mittels einer 1 ml Einmalspritze können die Lösungen durch die RP-Säule gepresst werden. Das Äquilibrieren des C8-Materials erfolgte mit 10 μ l Isopropanol, gefolgt von einem Waschschritt mit 10 μ l 10% Ameisensäure (FA). Die Peptide wurden in FA gelöst, anschließend mit Wasser auf eine FA-Konzentration von 10% verdünnt und über die Säule gegeben. Salze wurden durch zweimaliges Waschen der Säule mit 10% FA entfernt und anschließend die Peptide mit 80% MeOH, 10% FA eluiert. Das Trocknen der Peptide erfolgte im Vakuum.

3.2.12.7 Probenentsalzung mittels RP-C4-Material

Hydrophobe Peptide wurden mittels C4-RP-Säulen entsalzt. Da dieses kurzkettige RP-Material nicht als "*Extraction Disks*" (vgl. Kapitel 3.2.12.6) erhältlich ist, wurden kleine Entsalzungs-Säulchen hergestellt, deren Fritten aus TFA-Filtern bestehen. Diese wurden vergleichbar den Stage-Tips ausgestanzt und in eine GeLoader-Spitze transferiert. RP-C4-Material (Reprosil- Pur 300, Durchmesser 5 μ m) wurde in Methanol aufgeschlämmt (50 mg/ml) und 10 μ l davon aufgetragen. Mittels leichten Überdrucks wurde das Material in das Ende der Gelloaderspitze gedrückt, so dass eine ca. 8 mm Säule entstand. Die Entsalzung der Peptide erfolgte wie in Kapitel 3.2.12.6 beschrieben, die Volumina wurden jedoch aufgrund des erhöhten Säulenvolumens verdoppelt.

3.2.12.8 Peptid-Vorfraktionierung mittels RP-C4-Material

Die C4-Säulen (Kapitel 3.2.12.7) wurden zweimal mit je 20 μ l Isopropanol aktiviert und zweimal mit je 20 μ l 10% FA äquilibriert. Die Peptide wurden in 30 μ l 30% ACN; 10% FA aufgenommen, auf die Säule aufgetragen und mit 30% ACN; 10% FA gewaschen (der Durchfluss wurde aufbewahrt). Die an das RP- Material gebundenen Peptide wurden zweimal mit je 20 μ l 80% ACN; 10% FA eluiert und erneut eingetrocknet. Der aufbewahrte Durchfluss wurde getrocknet und in einem anschließenden Schritt in 30 μ l 10% FA aufgenommen und auf eine weitere C4- Säule aufgetragen. Die Säule wurde zweimal mit 20 μ l 10% FA gewaschen und die Peptide mit 30 μ l 80% ACN, 10% FA eluiert. Dieses Vorgehen ist in Abb. 4.19 schematisch dargestellt.

3.2.13 Massenspektrometrie

3.2.13.1 Matrix-assisted Laser-Desorption/Ionisation peptide mass fingerprint (MALDI-PMF)

Mit Hilfe der massenspektrometrischen Methode MALDI-TOF PMF (*Matrix- assisted Laser Desorption/Ionization Time-of-Flight peptide mass fingerprint*) ist es möglich eine große Zahl von Proteinen innerhalb von kurzer Zeit zu identifizieren. Die durch proteolytischen Verdau von Proteinen entstandenen Fragmente (Peptide) werden im Massenspektrometer analysiert. Die Peptid-Massensignale, die im Idealfall zu einem einzigen Protein gehören, werden im Spektrum abgebildet und als so genannter Peptide Mass Fingerprint bezeichnet. Über den Vergleich dieses Signalmusters mit einem theoretisch zu erwartenden werden die Proteine identifiziert.

3.2.13.1.1 Probenpräparation

Die aus einem tryptischen Verdau von Proteinen resultierenden Peptide wurden auf ein 384er MALDI-Target (*stainless steel*) aufgebracht. Die Proben wurden je in 10 µl 33% ACN, 0.1% TFA- Lösung im Ultraschallbad für 30 sec. gelöst. Große Probenmengen im Mikrotiterplatten-Format wurden automatisch für die MALDI-TOF Messung mit dem MAP II Pipettierroboter (Buker Daltonics) präpariert. 0.5 µl der Probe wurden mit 0.5 µl Matrixlösung (gesättigte α -Cyano-4-Hydroxy-Zimtsäure in 40% ACN, 0.1% TFA) gemischt, wobei die Kokristallisation durch Trocknen an der Luft erfolgte (*Dried-Droplet-Methode*).

Die Kalibrierung der Massenspektren erfolgte anhand eines Peptidstandards, der nach jeder achten Probe aufgetragen wurde, so dass insgesamt die Proben von 3 Mikrotiterplatten auf ein MALDI-Probenteller aufgebracht werden konnten (288 Proben + 36 Standardproben). Als Peptid-Standardlösung wurde ein Gemisch aus folgenden Peptiden hergestellt (Konzentration jeweils 100 pmol/µl): Bradykinin Fragment 1-7 (757.3998 g/mol), Angiotensin 2 Acetat Human (1046.542 g/mol), Angiotensin 1 Acetat Human (1296.6853 g/mol), Substance P (1347.7361 g/ mol), Bombesin (1619.823 g/mol), ACTH (1-17) (2093.0868 g/mol), ACTH (18-39) (2465.199 g/mol), Somatostatin 28 (3147.4714 g/mol), Insulin Chain B Oxidized f. Bovine (3494.651 g/mol). Für die Präparation wurden 3 µl Peptid-Standardlösung mit 18 µl 33% ACN, 0.1% TFA-Lösung verdünnt und analog den Proben behandelt.

3.2.13.1.2 MALDI Messung

Die Fingerprint Spektren wurden an einem MALDI Bruker Reflex III Massenspektrometer im Reflex Mode mit 1851 V Detektorspannung voll automatisch durch Einschalten der *Fuzzy Control* Automatik aufgenommen. Die anfängliche Laserleistung des verwendeten Lasers (337 nm) betrug 15%, die maximale Laserleistung 50%. Für ein Einzelspektrum wurden 200 Schüsse pro Probe und 100 Schüsse pro Peptidstandard aufsummiert. Dabei erfolgten maximal 20 Laserschüsse auf einer Targetposition wobei alle Signale oberhalb der Grenze von 5000 relativen Einheiten aufsummiert wurden. Die Positionen auf dem Probenteller waren dabei so gewählt, dass je ein Standard von acht Proben umgeben war. Dieser wurde zuerst gemessen und die benachbarten Proben anhand dessen kalibriert. Das Massenfenster der Messung befand sich zwischen 800 und 4000 m/z.

3.2.13.1.3 Auswertung der MALDI Spektren

Die Auswertung der MALDI- Fingerprint Spektren erfolgte vollautomatisch. Über das Programm Xmas (Version 5.1.16, Bruker Daltonics) wurde die Annotation der Spektren vorgenommen und daraus resultierend eine Peakliste generiert. Diese stellt die Grundlage der Recherche gegen die H. salinarum Datenbank (www.halolex.mpg.de) dar, die über die Oberfläche BioTools (Bruker Daltonics) auf einem Mascot- Server (Matrix Science) erfolgte. Als Suchparameter wurden dabei folgende Einstellungen vorgenommen: Als variable Modifikation wurde Oxidation von Methioninen, als festgesetzte Modifikation Carbamidomethylierung von Cysteinen gewählt. Für die Proteinidentifizierung wurden die von Mascot generierten Scores als Grundlage verwendet. Die Kriterien zur Validierung der Proteinidentifizierung wurden von Klein (Doktorarbeit 2005) übernommen: Ein Protein gilt bei einem Mascot Score ab 72 als identifiziert. Dieser Wert liegt 20 über der von Mascot errechneten Signifikanz von 95% und entspricht einer Sicherheit der Identifizierung von 99.95%. Die identifizierten Proteine wurden in zwei Kategorien eingeteilt: Ein als "insecure" identifiziertes Protein weist einen Score zwischen 72 und 92 auf, ab einem Mascot Score von 92 gilt ein Protein als "trusted" identifiziert.

Die erhobenen Daten wurden in das Halolex-Datenbanksystem (<u>www.halolex.mpg.de</u>) überführt.

3.2.13.2 Nano-LC MALDI-TOF/TOF der ICPL Proben

Die Messungen erfolgten in der Arbeitsgruppe von Dr. Lottspeich, MPI für Biochemie in Martinsried.

3.2.13.2.1 LC-Trennung und Probenvorbeitung

Die nicotinoylierten (Kapitel 3.2.9.1) und durch In-Lösung-Verdau (Kapitel 3.2.12.5) generierten Peptide wurden chromatographisch mit dem Ultimate HPLC-System (LC Packings) getrennt. Es wurden Probenvolumina von 50 µl injiziert, wobei die Peptide zunächst auf einer RP-C18 Vorsäule (LC Packings Pepmap, 300 µm i.d., 5 mm) gesammelt wurden. Die Trennung erfolgte über eine analytische RP-C18 Säule (LC Packings Pepmap, 75 µm i.d., 15 cm), die direkt mit einem MALDI-Target-Präparierroboter (Probot, LC Packings) verbunden war. Die mobilen Phasen bestanden aus (A) 0.05% TFA und (B) 0.04% TFA, 80% (v/v) ACN. Die Trennung der Peptide erfolgte innerhalb von 66.66 min durch einen linearen Gradienten von 10% bis 45% B, gefolgt von einer 20 min Waschphase bei 100%. Die Flussrate betrug 200 nl/min. Das Eluat wurde in einem MicroTee

Verbindungsstück (Upchurch), in dem die analytische Säule mündete, mit Matrixlösung (5 mg/ml HCCA, 5 mM NH4H2PO4, 50% (v/v) ACN, 0.1% TFA) gemischt (Flussrate der Matrixlösung: 1.3 μ l/min) und auf ein MALDI Probenteller (*blank, barcoded*) aufgetragen. Während der Elution wurden 10 sec-Fraktionen generiert und je als Spot auf einen MALDI-Probenteller aufgebracht. Daraus resultierten 400 gespottete Fraktionen pro LC-Lauf.

3.2.13.2.2 MALDI MS-und MS/MS-Messung

Die Aufnahme der Massenspektren erfolgte mit dem MALDI-TOF/TOF-Gerät 4700 Proteomics Analyzer (Applied Biosystems), ausgestattet mit einem YAG-Laser (355 nm), der mit einer Frequenz von 200 Hz und einer Wellenlänge von 355 nm betrieben wurde. Für ein MS-Spektrum wurden 2500 Laserschüsse im positive-reflector Modus ausgeführt und summiert. Mit Hilfe der Peakpicker-Software (Applied Biosystems) wurden isotopenmarkierte Peptid-Paare durch die definierte Massendifferenz ausgewählt und quantifiziert. Von derselben Software wurden Massenlisten erstellt, die Peptidmassen der ausgewählten Precursor für die folgende MS/MS-Analyse beinhalten. Dabei wurde das intensivere Peptidsignal eines Paares zur Fragmentierung ausgewählt und die Peptidmassen pro Fraktion auf maximal 40 begrenzt. Wurden in einer Fraktion weniger Peptid-Paare detektiert, konnten zusätzlich einzelne Peptide ("Singlets") analysiert werden. Die MALDI-TOF/TOF (MS/MS) Analyse der ausgewählten Peptide erfolgte in einem zweiten Durchlauf bei 1500 Laserschüssen pro Peptid und einer Kollisionsenergie von 1 keV mit Stickstoff als Kollisionsgas.

3.2.13.2.3 Datenprozessierung und -auswertung

Die Recherche der ICPL Daten (LC-MALDI-TOF/TOF) erfolgte mit Hilfe des GPS Explorers Version 2.0 (Applied Biosystems), der die Mascot Suchmaschine integriert. Für die Recherche wurde eine aktalisierte Version der *H. salinarum* Datenbank verwendet, die nach Abgleich mit dem annotierten Genom von *N. pharaonis* korrigiert worden war und nur die Proteinsequenzen enthielt, die zu diesem Zeitpunkt als reale Proteine angesehen wurden.

Die Suchparameter waren hierbei: eine erlaubte *missed cleavage site*, 150 ppm Massentoleranz für die MS und 0.4 Da für die MS/MS-Messungen sowie Carbamidomethylierung von Cysteinen als feste und Oxidation von Methioninen als variable Modifikation. Die chemischen Modifikationen der Peptide durch das ICPL-Reagenz wurden als Nicotinoylierung aller Lysine sowie der N-terminalen Aminogruppe des Proteins mit dem

leichten (${}^{12}C_6$ -Nic-NHS) und dem schweren Reagenz (${}^{13}C_6$ -Nic-NHS) berücksichtigt. Da alle Lysine durch das ICPL-Reagenz modifiziert wurden und so Trypsin nur noch nach Arginin schneidet, wurde dies durch die Auswahl des Arg-C Enzyms bei der Mascot-Suche imitiert.

Um die Scoregrenzen für identifizierte Peptide zu ermitteln, wurde ein Datensatz ("Trypsin 1") gegen eine Reverse Datenbank recherchiert. In dieser Datenbank waren alle Aminosäuresequenzen der Proteine umgedreht, was zur Folge hatte, dass die meisten tryptischen Fragmente zwar die gleiche Masse (ausgenommen sind die N- und C-terminalen Peptide), nicht aber das gleiche MS/MS Fragmentmuster aufwiesen.

Die vom GPS Explorer als Excel-Tabellen ausgegebenen Mascot Ergebnisse wurden nachträglich mit dem Spotfire[®] DecisionSiteTM Browser 0.8 (Spotfire AB Europe, Göteborg Sweden) bearbeitet und falsch positiv identifizierte Peptide herausgefiltert. Dieses waren Peptide, bei denen die Anzahl der Modifikationen (ICPL-Tags) nicht mit der Anzahl der Lysine in der Peptidsequenz und evtl. dem N-Terminus übereinstimmten. Als zusätzliches Kriterium diente die Anzahl der Isotopenmarkierungen verglichen mit dem Abstand der Signal-Paare im Massenspektrum.

Durch die Analyse mit der Reversen Datenbank (Kapitel 5.4.1.4) wurden folgende Kriterien für die Identifizierung eines Peptids festegelegt: Für Peptid-Paare wurde ein Mascot Confidence-Level von 90%, für Singlets von 98% als Grenzwert definiert. So konnte gewährleistet werden, dass maximal 2% falsch positive Identifizierungen auf Peptidebene im Datensatz zugelassen werden. Alle Peptide, die diese Kriterien nicht erfüllten, wurden von der Analyse ausgeschlossen.

3.2.13.3 Elektrospray Massenspektrometrie, offline

Zur Elektrospray Messung (*off-line*) wurde die Probe (tryptischer Verdau von Proteinen) in 1-2 μ l 50% MeOH, 10% FA aufgenommen und 0.5 μ l in eine auf die richtige Länge zurechtgeschnittene Elektrospray-Nadel (Protana) pipettiert. Durch Zentrifugation wurde die Probe in das spitze Ende der Nadel gepresst. Die Nadel wurde in den entsprechenden Halter am Massenspektrometer eingebaut. Die Messung erfolgte bei einer Kapillarspannung von 1.3 kV. Nach manueller Auswahl eines Peptids für die MS/MS-Messung wurde dieses bei einer Kollisionsspannung zwischen 20-38 kV fragmentiert.

3.2.13.4 ESI-LC-MS/MS an der Q-TOF

3.2.13.4.1 Packen von Nano-LC Säulen

Sowohl die Vor- als auch die Hauptsäulen für die chromatographische Trennung der Pepide mit dem CapLC-System (Waters) wurden selbst hergestellt. Das Ende einer Glaskapillare (Vorsäule: Länge 2,5 cm, Innendurchmesser 100 μ m; Hauptsäule Länge 14 cm, Innendurchmesser 75 μ m) wurde kurz einige Millimeter in eine Mischung aus 80 μ l Kasil #1 (Potassium Silikat) und 16 μ l Formamid eingetaucht und für zwei Stunden bei 100°C ausgehärtet. Die entstandenen Fritten wurden mit H₂O auf ihre Durchlässigkeit getestet und anschließend mit C4 (Reprosil- Pur 300) oder C18 (Reprosil- Pur 120 ODS-3) RP Material gepackt. Der Durchmesser des RP- Materials der Vorsäule betrug 5 μ m, der der Hauptsäule 3 μ m. Das Säulenmaterial wurde eine Minute in Methanol (50mg/ml) mittels eines Vortexers suspendiert und mit einem 2 mm langen Rührfisch bei 1000 rpm gerührt. Die Kapillare wurde mit der Fritte nach oben in eine Druckbombe eingespannt, bei 50 bar 30 min gepackt und nach Belüftung mit 500 fmol BSA gesättigt.

3.2.13.4.2 ESI LC-MS/MS Messung

Komplexe Peptidmischungen wurden in einem kombinierten LC-MS/MS-Verfahren chomatographisch getrennt und das Eluat direkt massenspektrometrisch vermessen.

Die Peptide wurden in 10% Ameisensäure aufgenommen und je 5 μ l Probe durch einen Autosampler in das CapLC-System (Waters) injiziert. Die Probe wurde bei einem Fluss von 2 μ l/min auf die Vorsäule aufgetragen und mit 200 nl/min auf der Hauptsäule analysiert, wobei je nach Komplexität der Probe und zu erwartender Hydrophobizität der Peptide verschiedene Acetonitril-Gradienten zur Elution verwendet wurden, die sich im Mischungsverhältnis von Puffer A (2% ACN, 0.5% FA) und Puffer B (80% ACN, 0.5% FA) unterschieden (Tabelle 3.2).

Tabelle 3.2: nano-HPLC-Gradienten zur LC-MS/MS-Ar	alyse
---	-------

hydrophobe Peptide		hydrophile Peptide			
120 n	nin	125 min 75 min		nin	
Zeit (min)	B (%)	Zeit (min)	B (%)	Zeit (min)	B (%)
3	0	3	0	2	0
21	0	21	0	13	0
25	20	25	10	14	10
30	30	30	15	15	15
75	60	40	20	18	18
90	100	60	25	35	25
95	0	80	35	45	35
100	100	95	50	50	45
105	0	100	100	55	100
120	0	105	0	57	0
		110	100	61	100
		115	0	62	0
		125	0	75	0

Vor- und Hauptsäule bestanden dabei entweder beide aus RP-C4 oder RP-C18 Material. Folgende Abbildung gibt einen schematischen Überblick über das Kapillarsäulen- HPLC-System und die Ventilschaltung in Lade- und Messposition.

Abb. 3.1: Schematische Darstellung des HPLC-Systems

Während der Injektion der Probe über den Autosampler waren die blau eingezeichneten Kanäle des 10-Port-Ventils durchgängig. Durch diesen Vorgang wird die Probe auf die Vorsäule geladen. Durch das schalten des Ventils auf die roten Kanäle können die Peptide von der Vorsäule auf die Hauptsäule eluiert und mittels eines ACN-Gradienten (gemischt aus A und B) getrennt werden. Das Eluat wurde direkt massenspektrometrisch vermessen.

Die massenspektrometrische Analyse der eluierenden Peptide erfolgte mit dem Q-TOF Ultimate Massenspektrometer (Waters) im *positive ion mode*. Zunächst wurde für 1.5 sec. ein MS-Spektrum aufgenommen, anhand dessen 4 Peptide für eine anschließende Fragmentierung im MS/MS-Modus ausgewählt wurden. Kriterien für deren Selektion waren die Intensität des Signals und die Ladung des korrespondierenden Peptids (zwei oder mehrfach geladene Ionen). Die Messungen erfolgten bei einer Kapillarspannung von 2.3 kV in einem Massenbereich von 300-2000 Da im MS und 50-2000 Da im MS/MS-Modus. Die Kollisionspannung wurde je nach Peptidmasse und Ladungszustand zwischen 16 und 40 kV variiert, wobei Helium als Kollisionsgas diente.

3.2.13.4.3 Datenprozessierung und -auswertung

Aus den Rohdaten wurde mit Hilfe der MassLynx- Software (Waters, Version 4.0) eine Peakliste erstellt, welche die Grundlage für eine Recherche mit dem Mascot- Server (Matrix Science) darstellte. Als Suchparameter wurden dabei folgende Einstellungen vorgenommen: Als variable Modifikation wurde Oxidation von Methioninen sowie eine fehlende enzymatische Schnittstelle zugelassen, als festgesetzte Modifikation Carbamidomethylierung von Cysteinen gewählt. Die Massentoleranz betrug sowohl für MS als auch für MS/MS-Spektren 0.15 Da. Grundlage der Proteinidentifzierung waren die im Haus erstellten Proteindatenbanken für *H. salinarum* und *N. pharaonis* (www.halolex.mpg.de). Analog den MALDI-PMF-Daten (Kapitel 3.2.13.1.3) wurde für eine Proteinidentifizierung ein Mascot-Confidence-Level von 99.95% gewählt. Dabei wurde der Mascot Signifikanz-Level von 95% (entspricht einem absoluten Wert von 17-25) für jedes Protein einmal abgezogen. Daraus resultierte ein "Difference-score", der bei einem Wert zwischen 20 und 40 zu einer "insecure" Identifizierung (99,95% Signifikanz) und über 40 zu einer "trusted" Identifizierung (99,9995% Signifikanz) führte.

Die erhobenen Daten wurden in das Halolex-Datenbanksystem (www.halolex.mpg.de) überführt.

3.2.14 Bioinformatische Methoden

3.2.14.1 Berechnung der Regulationsfaktoren für ICPL (Kapitel 3.2.12.2.3)

Zur massenspektrometrie-basierten Proteinquantifizierung wurde das Verhältnis der Signalflächen von isotopenmarkierten Peptid-Paaren durch die Peakpicker-Software (Applied Biosystems) berechnet und als Exel-Tabelle ausgegeben. Die quantitativen Daten von mehreren Messungen der identischen Probe wurden gemeinsam analysiert. Für Proteine deren Quantifizierung auf mehreren Peptiden beruht, wurde deren Regulation als der Mittelwert aller Regulationsfaktoren berechnet. Zusätzlich wurde die Streuung des Regulationsfaktors eines Proteins auf der Basis der Regulationsfaktoren der einzelnen Peptide mit Hilfe des Programms Spotfire berechnet und in Prozent des Faktors angegeben. Der Median aller Regulationsfaktoren wurde auf Peptidebene berechnet und mit diesem die ursprünglichen Faktoren normalisiert.

Um eine bessere Vergleichbarkeit der Regulation in beiden Dimensionen zu gewährleisten (Hochregulation: Werte von 1 bis Unendlich; Runterregulation: Werte von 1 bis 0), wurde eine symmetrische Skala eingeführt. Werte zwischen 0 und 1 wurden als deren negativer reziproker Wert angegeben, sodass in dieser Skala Werte von +1 bis -1 ausgeschlossen wurden.

Peptide, deren Regulationsfaktoren stark von denen anderer Peptide des gleichen Proteins abwichen, sowie alle Regulationen, die nur auf dem Ergebnis von einem einzigen Peptid beruhten, wurden nachträglich manuell anhand der Massenspektren überprüft.

3.2.14.2 Proteinquantifizierung mittels DIGE

Proteine von zu vergleichenden Proben wurden wie in Kapitel 3.2.9.2 beschrieben mit CyDye Farbstoffen markiert und anschließend zweidimensional mittels 16-BAC/SDS-PAGE (Kapitel 3.2.10.2.1) aufgetrennt. Die Gele wurden in der Gelkassette mit einem TyphoonTM Scanner (GE Healthcare) eingelesen und markierte Proteine so visualisiert. Der Cy3-Farbstoff wurde mit einem grünen (532 nm) und Cy5 mit einem roten (633 nm) Laser angeregt unter der Verwendung von Emissionsfiltnern (Cy3: 580 band pass 30; Cy5: 670 band pass 30) bei 20 μm Auflösung. Die Bildanalyse wurde mit dem Programm DeCyderTM Version 6.5 (GE Healthcare) durchgeführt, das eine besondere Kodetektion der Spots erlaubt. Dies bietet die Möglichkeit, unterschiedlich regulierte Spots, die aus dem gleichen Gel aber von zwei Bildaufnahmen (mit verschiedenen Wellenlängen) stammen, mit identischen Spotgrenzen zu versehen. Die Spotdetektion sowie die Normalisierung und die relative Proteinquantifizierung erfolgten automatisch mittels der DeCyder-Software in Zusammenarbeit mit Dr. B. Scheibe (GE Healthcare).

3.2.14.3 Integration der Proteomik-Daten in das HALOLEX-System und Statistische Berechnungen

Die in massenspektrometrischen Analysen erhobenen Daten und die daraus resultierenden Proteinidentifikationen wurden kontinuierlich in das HALOLEX Datenbank-System (<u>www.halolex.mpg.de</u>) integriert. Dieses wurde in der von Dr. Friedhelm Pfeiffer geleiteten Bioinfomatik Gruppe der Abteilung Membranbiochemie (Prof. Dieter Oesterhelt) entwickelt und dient als Plattform in welcher neben den Proteom-Daten auch Genom- und Transkriptom-Daten zusammenfließen.

Neben der Daten-Archivierung, ermöglichte dieses eine anwenderorientierte Darstellung sowie ständige Nachbearbeitung oder Reinterpretation der experimentell erhobenen Daten (verbesserte Protein Datenbanken, veränderte Suchparameter etc.). Auf dieser Basis wurden in Zusammenarbeit mit der Arbeitsgruppe Bioinformatik statistische Analysen sowohl von experimentellen Daten als auch des theoretischen Proteoms durchgeführt.

3.2.15 Elektronenmikroskopie von Membranvesikeln

Die Aufnahmen erfolgten in Zusammenarbeit mit Christine Kofler der Abteilung Molekulare Strukturbiologie am Max-Planck-Institut für Biochemie.

3.2.15.1 Probenauftrag, Fixierung und negative Färbung

2 L *H. salinarum* wurden in synthetischem Medium bis zu einer Zelldichte von OD₆₀₀ 1.4 kultiviert, die Zellen mittels Beschallen aufgeschlossen (Kapitel 3.2.4.1) und daraus resultierende Membranvesikel über einen Hochsalz-Sucrosegradient getrennt (Kapitel 3.2.5). Die zwei entstandenen Banden wurden abgenommen, je 1:100 mit BS verdünnt, je 4 µl der Suspension auf das Kupfernetzchen (Grid) aufgebracht und die Flüssigkeit nach 1.5 min mit einem Filterpapier abgezogen. Die Fixierlösung (0,4% Glutaraldehyd in BS) wurde aufgebracht und erneut nach 1.5 min abgezogen. Anschließend wurde das Netzchen zweimal für 15 sec mit 4 µl H₂O gewaschen, bevor 4 µl einer 2% Uranylacetatlösung in Wasser zugegeben wurde. Diese wurde ebenfalls nach 1.5 min vollständig abgezogen und das Kupfernetzchen bei RT getrocknet.

3.2.15.2 Messung

Die Aufnahmen wurden an einem Transmissionselektronenmikroskop (Philips CM12) erstellt. Die Spannung betrug dabei 120 kV. Die Dokumentation erfolgte über ein Photometrix CCD-Kamera mit einer Pixelgröße von 24 µm.

4 Ergebnisse

4.1 Membranisolation

Die Untersuchung des Membranproteoms setzt eine reproduzierbare und einfache Präparation der Membran mit minimalen cytosolischen Kontaminationen voraus, bei der aber gleichzeitig ein Verlust von Membranproteinen verhindert werden soll. Daher wurde im Rahmen dieser Arbeit zunächst eine Membranpräparation speziell für halophile Organismen etabliert.

Halobacterium salinarum (H. salinarum) besitzt einen Spezialfall biologischer Membranen: die Purpurmembran (PM). Es handelt sich um inselförmige Membranbereiche die zu 75% aus Bacteriorhodopsin (BR) und zu 25% aus Lipid bestehen [Sumper *et al.*, 1976; Jonas *et al.*, 1990]. Deren Isolation gelingt durch Dialyse der Zellen gegen Niedrigsalz und anschließender Sucrose-Dichtezentrifugation [Oesterhelt und Stoeckenius 1974]. Die Erniedrigung der Salzkonzentration mit der damit verbundenen Reduktion der Ionenstärke führen zu einer Dissoziation der Zellmembran entlang bestimmter "Sollbruchstellen". Die entstehenden Membranspezies unterschiedlicher chemischer Zusammensetzung, darunter die PM, können im Sucrosegradienten voneinander getrennt werden. Bei dieser Art der Membranisolation kommt es jedoch zu hohen Verlusten von Membranproteinen, mit Ausnahme von BR, sowie zu einer unspezifischen Adsorption cytosolischer Proteine [Doktorarbeit Klein 2005].

Um dies zu umgehen, wurde die Membranisolierung unter Hochsalz-Bedingungen etabliert. *H. salinarum* (Stamm R1) wurde bis zur stationären Phase kultiviert ($OD_{600} = 1$), die Zellen abzentrifugiert und in gepuffertem Basalsalz (BS) resuspendiert, das der Salzkonzentration und damit der Ionenstärke des Wachstumsmediums weitgehend entspricht. Zellen wurden mechanisch durch Beschallen aufgeschlossen und so generierte Vesikel in einem Hochsalz-Zuckergradienten aufgereinigt (Abb. 4.1, A). Diese Prozedur dient vor allem der Abreicherung von cytoplasmatischen Verunreinigungen, darunter den Ribosomen.

Solch hohe Salzkonzentrationen stören jedoch anschließende Analysen, wie z.B. die native Elektrophorese (Kapitel 4.2.1) oder massenspektrometrische Analysen (Kapitel 4.3). Daher wurde im Anschluss untersucht, wie weit die Salzkonzentration, bei gleichzeitigem Erhalten der Membran-Vesikel, reduziert werden kann.

Die Hauptbande aus dem Hochsalzgradienten (Abb. 4.1, A) wurde abgenommen und die Membranvesikel vergleichend gegen Wasser, 1 M NaCl, 500 mM NaCl sowie 1 M Aminocapronsäure (ACA) dialysiert. Letzteres sollte als Zwitterion bei gleicher Konzentration wie NaCl und damit vergleichbarer Ionenstärke die Membran stabilisieren, eine anschließende native Elektrophorese jedoch nicht negativ beeinflussen (Kapitel 4.2.1). Die Membranen wurden nach Dialyse erneut pelletiert und je in einem weiteren Sucrosegradienten aufgetrennt (Abb. 4.1, B-E). Die Sucrosekonzentration wurde so gewählt, dass unter Berücksichtigung der jeweiligen Salzkonzentration die Dichten der vier unterschiedlichen Gradienten insgesamt vergleichbar waren.

Abb. 4.1: Auftrennung von durch Sonifizieren generierten Membranvesikeln durch isopyknische Zentrifugation in einem kontinuierlichen Sucrosegradienten (10-60%) in Basalsalz (A). Die angezeigte Bande wurde abgenommen, gegen H₂O, 1 M ACA, 1 M NaCl oder 500 mM NaCl dialysiert und die durch Ultrazentrifugation gewonnenen Membranen erneut je in einem kontinuierlichen Sucrosegradienten analysiert (B-E). Bei den Gradienten in 1 M und 500 mM NaCl wurde der so gewonnene Niederschlag resuspendiert und anschließend in einem, dem ersten Gradienten vergleichbaren, kontinuierlichen Sucrosegradienten (10-60%) in 1 M bzw. 500 mM NaCl aufgetrennt (F, G).
Durch die Dialyse von isolierten Membranvesikeln gegen Wasser dissoziieren diese in PM sowie in die rote Membran (Abb. 4.1, B), ein Effekt, der auch bei einer Dialyse intakter Zellen gegen Niedrigsalz auftritt [Oesterhelt und Stoeckenius 1974]. Das gleiche Phänomen zeigt sich bei der Dialyse der Membranvesikel gegen 1 M ACA, wodurch die Möglichkeit eines Austausches von NaCl gegen dieses Zwitterion bei gleichzeitiger Stabilisierung der Membran ausgeschlossen werden kann (Abb. 4.1, B). Vergleichbare Analysen mit Ammonium-Molybdat und Ectoin führten zu identischen Ergebnissen (Daten nicht gezeigt).

Dagegen können die rote bzw. Purpurmembran bei einem Reduzieren der NaCl-Konzentration auf 1 M oder 500 mM NaCl im anschließenden Sucrosegradienten nicht detektiert werden (Abb. 4.1, D, E), was darauf hinweist, dass unter diesen Bedingung die Membran nicht dissoziiert. Der überwiegende Teil der Membran befindet sich im Sucrosegradienten im Niederschlag. Analysiert man dieses Niederschlag erneut in einem 10-60% Sucrosegradienten in 1 M bzw. 500 mM NaCl, kann die Bande, die unter Hochsalzbedingungen entsteht, detektiert werden.

Aus diesen Experimenten leitet sich eine Standard-Membranisolation ab, die die Basis der vorliegenden Arbeit zur Analyse des Membranproteoms halophiler Archaea bildet. Zellen werden in BS sonifiziert und so generierte Membranvesikel durch isopyknische Zentrifugation in einem kontinuierlichen Sucrosegradienten (10-60%) in Basalsalz aufgereinigt. Die Vesikel-Bande wird abgenommen, in 1 M NaCl resuspendiert, Membranen durch Ultrazentrifugation pelletiert und dieser Vorgang mit 500 mM NaCl wiederholt. Dieses Präzipitat kann zur Gewinnung von Membranproteinen mit den nativen Zustand der Proteine erhaltenden ("native Behandlung") (DDM, TritonX100) oder denaturierenden Detergenzien (SDS, 16-BAC) solubilisiert werden. Alternativ können Lipide mit Chloroform/Methanol aus der Membran extrahiert und so Detergens-frei von den Proteinen getrennt werden (Kapitel 3.2.7.1). Die jeweilige Vorgehensweise hängt von der anschließenden Analyse ab und wird variabel eingesetzt.

4.2 Zweidimensionale gel-basierte Systeme für Membranproteine

4.2.1 Blue-Native-PAGE

Die Blue-Native-PAGE (BN-PAGE) ist ein zweidimensionales Elektrophorese-System, das ursprünglich für die Analyse von Atmungskettenkomplexen der Mitochondrien entwickelt In wurde [Schägger et al., 1991, 1994]. einer ersten Dimension werden Membranproteinkomplexe nach "nativer" Solubilisierung mit einem nicht-ionischen Detergens (z.B. n-Dodecyl- β -maltosid, DDM) elektrophoretisch getrennt. Ein Binden von Coomassie an die solubilisierten Membrankomplexe vermittelt diesen nicht nur eine negative Ladung, sondern färbt sie zusätzlich blau, was dieser Technik ihren Namen gibt. Nach Elektrophorese unter "nativen" Bedingungen wird eine Spur aus dem Gel ausgeschnitten, die Proteinkomplexe im Gelstreifen mit SDS denaturiert und mittels SDS-PAGE getrennt. So findet man die zu einem Komplex gehörenden Untereinheiten nach der zweiten Dimension in einer vertikalen Reihe.

4.2.1.1 Anpassung der Technologie für halophile Archaea

H. salinarum (Stamm TOM, "two opsin missing", Deletionsmutante BR⁻, HR⁻) wurde aerob bis zur stationären Phase kultiviert, Zellen durch Beschallen aufgeschlossen und die Membranen, wie in Kapitel 4.1 beschrieben, isoliert. Das Material wurde in BN-Auftragspuffer (750 mM ACA, 50 mM BisTris, pH 7.0) resuspendiert, Membranproteine mit 1% DDM solubilisiert, von nicht solubilisiertem Material durch Ultrazentrifugation getrennt und der Überstand mit Coomassie G versetzt. Die elektrophoretische Trennung erfolgte bei 12 mA und 4°C in einem 6-12%igen Blue-Native-Gel. Anschließend wurde eine Spur ausgeschnitten, mit SDS-Puffer inkubiert, in der zweiten Dimension über ein Lämmli-SDS-Gel aufgetrennt und mit Silber gefärbt (Abb. 4.2).

Abb. 4.2: Zweidimensionale Trennung Membranfraktion. Membranen der durch wurden Sonifizieren und anschließender Sucrosegradienten-Dichtezenrifugation gewonnen, mit 1% DDM solubilisiert, mittels Blue-Native/SDS-PAGE aufgetrennt und die Proteine mit Silber angefärbt.

In Abb. 4.2 wird deutlich, dass im linken Bereich des Gels, in welchem die Untereinheiten von Proteinkomplexen erscheinen sollten, kaum Proteine detektiert werden können. Proteine, die in zwei Dimensionen elektrophoretisch aufgetrennt werden, werden generell nach einer Färbung als Proteinpunkte detektiert, die im Folgenden als "Spots" bezeichnet werden. Die Ergebnisse zur Entwicklung der Membranisolation zeigen, dass ein Minimum von 500 mM NaCl zur Stabilisierung der Membran nötig ist (Kapitel 4.1). Es ist weiterhin anzunehmen, dass neben der Membran auch die Stabilität der Protein-Protein-Interaktionen in Membrankomplexen von der Salzkonzentration abhängig ist. Um einen Verlust von Membranproteinkomplexen möglichst gering zu halten, sollte demzufolge deren Solubilisierung bei einer NaCl-Konzentration von mindestens 500 mM stattfinden.

Daher wurden Membranen in verschiedenen salzhaltigen Puffer resuspendiert (1 M NaCl, 500 mM NaCl, 250 mM NaCl, 1 M ACA), mit 1% DDM solubilisiert und mittels BN-PAGE getrennt (Abb. 4.3-A).

Die elektrophoretische Trennung solch salzhaltiger Proben über die klassische BN-PAGE führte zu einem Schmieren im Gel und außerordentlich schlechter Auflösung (Abb. 4.3-A). Diese ist daher für die Analyse von halophilen Membranproteinkomplexen nicht geeignet.

Abb. 4.3: Auftrennung von Proben mit unterschiedlichen Salzgehalten mittels BN-PAGE (A) und BN-AHN-PAGE (B). Für jede Bedingung wurden zwei Proteinkonzentrationen (50 μ g bzw. 100 μ g Gesamtprotein) aufgetragen. Die Proteine wurden je in einem 6-12% PAA-Gel getrennt und anschließend mit Coomassie angefärbt. Die verschiedenfarbigen Pfeile deuten auf Unterschiede im Bandenmuster zwischen diesen beiden Systemen hin und werden im Text näher erläutert.

Um eine gel-basierte Trennung von "nativen" Membranproteinkomplexen bei höheren Salzkonzentrationen zu erreichen, wurde die klassische BN-PAGE [Schägger et al., 1991] mit einem salztoleranten, denaturierenden SDS-Elektrophoresesystem von Ahn und Kollegen (2001) kombiniert. Der wesentliche Unterschied dieses, im Folgenden als BN-AHN-PAGE bezeichneten Systems, ist das zusätzliche Einpolymerisieren von je 0.1 M der Aminosäuren Glycin, Serin und Asparaginsäure ins Gel. Das Puffersystem sowie die Elektrophoresebedingungen bleiben wie für BN-PAGE beschrieben, konstant.

Trennt man mit diesem System vergleichbare Proben, die1 M NaCl, 500 mM NaCl, 250 mM NaCl oder 1 M ACA enthalten, können auch bei Anwesenheit von NaCl im Probenpuffer eindeutig Proteinbanden detektiert und die Schmiereffekte im Vergleich zur BN-PAGE deutlich reduziert werden (Abb. 4.3-B). Das Bandenmuster bei Proben, die in 1 M oder 0,5 M NaCl solubilisiert wurden, ist sehr ähnlich, während bei einer Reduktion der NaCl Konzentration auf 250 mM oder dem Austausch gegen 1 M ACA sukzessive Banden verschwinden (Abb. 4.3-B, rote und grüne Pfeile). Dagegen treten bei ACA im Vergleich zu NaCl neue, niedermolekulare Banden auf (Abb. 4.3-B, blauer Pfeil). Diese Beobachtungen stützen die Annahme, dass nicht nur die Stabilität der Membran, sondern auch die der Membranproteinkomplexe von der Salzkonzentration abhängig ist. Durch eine Reduktion der Salzkonzentration scheinen hochmolekulare Komplexe zerfallen, wodurch niedermolekulare Einzelproteine entstehen.

Die zuverlässige Analyse der Proteinkomplexe erfolgt in einer zweiten Dimension über die Identifizierung ihrer Untereinheiten. Von entscheidender Bedeutung für die Auflösung eines nicht auf IEF basierenden zweidimensionalen Gelsystems ist der Proteintransfer in die 2. Dimension. Daher wurden im Folgenden drei verschiedene Systeme (SDS-PAGE nach Lämmli, "Lämmli mit Harnstoff" sowie "Tricine-Schägger", Kapitel 3.2.10.2) in Kombination mit der BN-AHN-PAGE für die zweite Dimension getestet. Zwischen dem Gelstreifen der ersten und dem Trenngel der zweiten Dimension wird zum besseren Transfer ein Sammelgel gegossen, wobei entweder nur ein SDS-Sammelgel oder eine Kombination aus BN- und SDS-Sammelgel verwendet wird (Kapitel 3.2.10.2.4.3). Letzteres ermöglicht den Proteintransfer vom BN-Streifen zunächst in ein niederprozentuales natives Gel und anschließend über ein SDS-Sammelgel ins SDS-Trenngel. Es wurden sechs identische Streifen der ersten Dimension (BN-AHN-PAGE) ausgeschnitten, mit SDS solubilisiert und in den drei verschiedenen SDS-Systemen aufgetrennt, wobei jeweils die beiden Sammelgel-Kombinationen getestet wurden (Abb. 4.4).

Abb. 4.4: Verschiedene Systeme in der zweiten, denaturierenden Dimension des BN-AHN/SDS-Systems. Sechs identische Streifen der ersten Dimension wurden mit SDS solubilisiert und alternativ mit Lämmli- (A, D), Lämmli/Harnstoff- (B, E) oder Schägger- (C, F) SDS-PAGE getrennt. Bei den Gelen D-F wurde zusätzlich zum SDS-Sammelgel ein BN-AHN-Sammelgel eingefügt.

Die Kombination aus BN-AHN-PAGE und Schägger-Tricine-PAGE mit zwei verschiedenen Sammelgelen liefert in Bezug auf Auflösung und Reproduzierbarkeit die besten Ergebnisse (Abb. 4.4-F). In einem solchen Gel konnten, anders als beim Blue-Native-System (Abb. 4.2), auch im linken Bereich des Geles Proteinspots detektiert werden. Diese befinden sich auf einer vertikalen Linie und sind daher auf einen hochmolekularen Proteinkomplex zurück zu führen, der in der ersten Dimension als solcher getrennt wurde. Nach der Solubilisierung mit SDS zerfällt dieser in seine Untereinheiten, die anschließend im SDS-Gel voneinander getrennt werden können. Der wesentliche Unterschied der SDS-Gele ist die im jeweiligen System verwendete Pufferkomponente. Während das Schägger-System einen Tricin-Puffer verwendet, basieren die verwendeten Lämmli-Systeme auf einem Tris-Glycin-Puffer. Letzterer ist offensichtlich in der Kombination mit einem BN-Sammelgel, welches BisTris als Pufferkomponente verwendet, nicht kompatibel, was sich in zwei artifiziellen Horizontalstreifen im Gel ausdrückt (Abb. 4.4-D, -E).

Veränderungen im Gelsystem können die Laufgeschwindigkeit von Proteinen beeinflussen und damit den Trennbereich verändern. Anhand von Markerproteinen mit bekannten Molekularmassen wurde untersucht, ob sich die im BN-AHN-Gel zugefügten Aminosäuren auf das Proteinmuster der aufgetrennten Proteinkomplexe auswirken.

Abb. 4.5: Molekularmassenbereich der BNbzw. BN-AHN-PAGE. 55 μ g des HMW-Markers (GE Healthcare) mit Proteinkomplexen der Massen 669 kDa, 440 kDa, 232 kDa, 140 kDa und 69 kDa wurden analog den Membranproteinkomplexen für die BN-PAGE vorbereitet. Diese wurden vergleichend in je einem 6-12% Gradientengel des BN- bzw. BN-AHN-Systems getrennt und die Proteine mit Coomassie angefärbt.

Die Proteinkomplexe des HMW-Markers (GE Healthcare) wurden analog den Membranproteinkomplexen für die BN-PAGE behandelt, vergleichend in einem 6-12% Gradientengel des BN- bzw. BN-AHN-Systems getrennt und die Proteine mit Coomassie angefärbt. Die vom Hersteller angegebenen Molekularmassen können im Blue-Native-System eindeutig den Proteinbanden zugeordnet werden (Abb. 4.5). Um die anhand des Proteinmusters vorgenommene Molekularmassenzuordnung im BN-AHN-System (Abb. 4.5, schwarze Ziffern) zu überprüfen, wurde jedes dieser Markerproteine als Einzelprotein in je einer eigenen Spur im Gel aufgetrennt (Daten nicht gezeigt). So konnte nachgewiesen werden, dass die Markerproteine der Molekularmasse 440 kDa und 230 kDa im BN-AHN-Gel, anders als im BN-System, co-migrieren. Darüber hinaus wurde ein Auftrennen des Markerproteins mit der Molekularmasse 69 kDa in eine Doppelbande deutlich. Eine Zuweisung der Molekularmassen durch das Übertragen des Bandenmusters, welches vom Hersteller vorgeschlagen wird, führt in diesem Fall zu einer Fehlinterpretation der Massenbestimmung und konnte durch diese Analyse korrigiert werden. Es ist daher nicht möglich, den über die BN-AHN-PAGE separierten Proteinkomplexen anhand deren Migrationsverhalten im Gel Molekularmassen zuzuordnen, da bereits Markerproteine mit 200 kDa Massendifferenz sich in diesem System nahezu identisch verhalten.

4.2.1.2 Analysen von Proteininteraktionen mittels BN-AHN/SDS-PAGE

Mit Hilfe dieses "nativen" Gelsystems können die zu einem Membranproteinkomplex gehörenden Untereinheiten analysiert werden um so Information über Wechselwirkungen zwischen Proteinen zu erhalten. Obwohl bei der Analyse des Membranproteoms von *H. salinarum* nur wenige höhermolekulare Komplexe detektiert werden konnten, geben diese trotzdem wertvolle Hinweise auf Protein-Protein-Interaktionen.

Abb. 4.6: Zweidimensionale Trennung der Membranfraktion des Stammes TOM sowie einer OE5204R⁻ Mutante dieses Stamms. Gezeigt ist der gleiche Ausschnitt zweier verschiedener Gele. Die Proteine wurden mit Silber gefärbt und die Farbintensität in Falschfarben dargestellt. Die Intensität der Färbung steigt in der Folge blau, grün, gelb und rot, an.

In einem zweidimensionalen BN-AHN/SDS-Gel konnte das Protein OE5204R in zwei Spots identifiziert werden, wobei die Hauptmenge des Proteins im niedermolekularen Bereich (Abb. 4.6-A, rechter Spot) detektiert wurde. Das Protein OE5204R, aufgrund von Homologie-Vergleichen als Na⁺/H⁺-Antiporter annotiert, konnte von Dr. Jörg Tittor als Arginin/Ornithin-Antiporter funktionell charakterisiert werden (persönliche Mitteilung), wobei über Wechselwirkungen mit anderen Proteinen keine Daten vorliegen.

Dieser Versuch zeigt, dass dem linken der beiden Spots ein höheres apparentes Molekulargewicht in Dimension der ersten. nativen zugrunde liegt. Diese Molekularmassenzunahme kann durch eine Wechselwirkung mit einem anderen Protein oder durch Dimerisierung zustande kommen. Direkt senkrecht über diesem Spot befindet sich das Protein OE1932R, welchem aufgrund von Holmologievergleichen keine Funktion zugeordnet werden kann (www.halolex.mpg.de). Die Identifizierung der beiden Proteine erfolgte über MS/MS-Messungen, sowohl mit dem **TOFTOF**als auch mit dem O-TOF-

Massenspektrometer (Daten nicht gezeigt). Durch die Analyse des Membranproteoms einer Deletionsmutante für das Protein OE5204R mittels BN-AHN/SDS-PAGE konnte gezeigt werden, dass neben den beiden Spots des Proteins OE5204R auch der Spot von OE1932R an dieser Stelle verschwindet (Abb. 4.6). Dieses beweist eine Wechselwirkung zwischen den beiden Proteinen, die während der nativen Elektrophorese aufrechterhalten wird. In mehreren Versuchen erwies sich diese Interaktion als reproduzierbar, wie z.B. im Versuch in Abb. 4.7.

Die Analyse der Deletionsmutante zeigt darüber hinaus, dass der rechte, intensivere Spot des Proteins OE5204R das Monomer darstellt. Da die Spots, die hier senkrecht über oder unter dem Spot liegen auch bei der Mutante an derselben Stelle detektiert werden können, ist eine Wechselwirkung mit diesen Proteinen ausgeschlossen.

Bei *H. salinarum* konnten darüber hinaus mittels BN-AHN/SDS-PAGE zwei Subkomplexe der Atmungskette detektiert werden. Der A0-Subkomplex der archaealen ATPase wurde anhand der Identifizierung der K-Untereinheit (OE3989R) in der zweiten Dimension detektiert (Abb. 4.7). Die ATPase kann generell in zwei Subkompexe unterteilt werden, die über verschiedene Proteine funktionell miteinander verbunden sind [Muller *et al.*, 2005]. Dieser archaeale Teilkomplex ist homolog zu dem F0 (Chloroplasten-ATPase) oder V0 (Vaskulären) Teilkomplex, wodurch sich der Name erklärt [Bickel-Sandkötter *et al.*, 1996].

Abb. 4.7: Gelausschnitt einer zweidimensionalen Trennung der Membranfraktion von *H. salinarum*, Stamm TOM. Die Proteine wurden mit Silber gefärbt und die Farbintensität in Falschfarben dargestellt. Die Intensität der Färbung steigt in der Folge blau, grün, gelb, rot, an. Die Proteine wurden mittels MS/MS-Messungen identifiziert (Daten nicht gezeigt).

Dieser integrale Subkomplex besteht aus mindestens 12 Kopien dieses Proteins, die einen Kanal bilden. Auch nach denaturierender SDS-Solubilisierung können in der zweiten Dimension neben dem Monomer (Abb. 4.7, a) das Dimer (Abb. 4.7, b) und Trimer (Abb. 4.7, c) detektiert werden. In einer vertikalen Linie über diesen Spots (a-c) liegen in Abb. 4.7 zusätzliche Proteinspots, so dass eine Interaktion mit diesen nahe liegt. Um diesem nach zu gehen wurde diese Analyse mit unterschiedlichen Gradientengelen in der ersten Dimension wiederholt und der Molekularmassenbereich besser aufgelöst (Daten nicht gezeigt). Dadurch konnte gezeigt werden, dass es sich hier nicht um Interaktionspartner des A0-Komplexes handelt, sondern dass diese Proteine zufällig ähnliches Laufverhalten in der BN-AHN-PAGE zeigen. Die ATPase-Untereinheiten A und B des A1-Subkomplexes wurden zwar im Gel identifiziert, liegen jedoch in 500 mM NaCl offensichtlich getrennt von dem A0- Subkomplexe vor.

Im linken Bereich des Gelausschnitts (Abb. 4.7) konnte ein Komplex, bestehend aus mehreren senkrecht untereinander liegenden Untereinheiten, detektiert werden. Eine Proteinidentifizierung mittels MALDI-PMF schlug fehl, dennoch konnten durch MS/MS Analysen drei Proteine der Atmungskette identifiziert werden. Mit den Proteinen petD (OE1872R), petB (OE1874R) sowie NADH-H (OE1957F) konnten in diesem System Untereinheiten der Komplexe I und III der Atmungskette zusammenhängend in einem Komplex isoliert werden. Bei den anderen Proteinspots, die aufgrund ihrer Position im zweidimensionalen Gel ebenfalls zu dem Komplex gehören sollten, konnten die korrespondierenden Proteine nicht identifiziert werden.

Insgesamt wurden mit der Blue-Native- sowie der BN-AHN-Technik bei *H. salinarum* im Vergleich zu Analysen von Mitochondrien [Schägger *et al.*, 1991, 1994] oder Chloroplasten [Bisle, Diplomarbeit 2000] sehr wenige Membranproteinkomplexe detektiert. Dies zeigt sich auch bei vergleichbaren Experimenten zur Untersuchung des Membranproteoms von *Natronomonas pharaonis* [Mitterweger, Masterarbeit 2005] oder *Haloquadratum walsbyi* (Daten nicht gezeigt). Gemessen an diesen Ergebnissen ist die Analyse von Membranproteinkomplexen halophiler Archaeen mit diesen Systemen nur in sehr eingeschränktem Maße möglich.

4.2.2 16-BAC-PAGE

Diese Technik ist ein von Macfarlane 1980 entwickeltes zweidimensionales Gelsystem das in beiden Dimensionen Proteine denaturierend nach ihrer Größe auftrennt. In der ersten Dimension werden Proteine mit dem kationischen Detergens Benzyldimethylhexadecylammoniumchlorid (16-BAC) solubilisiert und so positiv geladene Proteine einer kathodischen Elektrophorese unterzogen. Daran schließt sich als zweite Dimension eine SDS-PAGE an, mittels der nach einem Detergensaustausch (SDS gegen 16-BAC) die elektrophoretische Trennung in anodischer Richtung erfolgt.

4.2.2.1 Etablieren des Systems

Zur Charakterisierung der Technik wurde ein Gemisch aus cytosolischen Modelproteinen bekannter Molekularmassen zweidimensional aufgetrennt.

Abb. 4.8: Auftrennung von Modelproteinen mittels zweidimensionaler 16-BAC/SDS-PAGE. Die Massen der Proteine sind 68 kDa (Albumin, Rind), 60 kDa (Katalase), 45 kDa (Albumin, Huhn), 40 kDa (Aldolase), 25 kDa (Chymotrypsin), 14 kDa (Ribonuklease) und 13 kDa (Cytochrom C). Das Protein Cytochrom C wurde zusätzlich als einziges Proteinen in einem weiteren 16-BAC/SDS-Gel getrennt (Zusatzbild oben rechts). Die Proteine wurden mittels MALDI-TOF identifiziert und so die Spots den jeweiligen Molekularmassen zugeordnet.

Im 16-BAC-Gel läuft das Protein Albumin (Rind) mit einer Molekularmasse von 68 kDa schneller als das monomere Protein der Katalase mit einem Molekulargewicht von 60 kDa, während sich das Laufverhalten dieser beiden Proteine in der SDS-Dimension umkehrt. Dieses führt zu einem Abweichen der Proteine aus einer Diagonalen (Abb. 4.8). Das Proteinpaar Albumin (Huhn, 45 kDa) und Aldolase-Monomer (40 kDa) zeigen das gleiche Verhalten, d.h. inverse Laufgeschwindigkeit in den verschiedenen elektrophoretischen Dimensionen bei nur 5 kDa Massendifferenz. Dieses Phänomen verdeutlicht das Prinzip der zweidimensionalen Trennung, welches auf dem unterschiedlichen apparenten Laufverhalten von Proteinen bei positiver bzw. negativer Ladung basiert. Diese werden durch das jeweilige Detergens vermittelt.

Auffällig ist, dass Cytochrom C (Cyt C), obwohl in dem Protein-Mix enthalten, nicht auf dem Gel detektierbar ist. Um auszuschließen, dass dieses System für basische Proteine fehlschlägt, wurde Cyt C als einziges Protien in einem zweidimensionalen 16-BAC/SDS-Gel aufgetrennt (Abb. 4.8, Zusatzbild). Es konnte eindeutig nachgewiesen werden, dass auch dieses Protein als Proteinspot aufgetrennt und mit Silber angefärbt werden kann. Möglicherweise war Cyt C bei der 16-BAC/SDS-Analyse des Protein-Mix in der Lauffront und entzog sich damit der Detektion.

Mit diesem System sollten auch komplexe Proben analysiert und die Proteine als Einzelspots aufgetrennt werden können. Membranen von *H. salinarum*, Stamm TOM, wurden mit 16-BAC solubilisiert und 4 identische Proben in nebeneinander liegenden Spuren über 16-BAC-PAGE getrennt. Zwei Spuren wurden mit Coomassie angefärbt und Proteine somit im Gel fixiert. Dies bietet die Möglichkeit, die Streifen gezielt anhand des Proteinmusters auszuschneiden. Die beiden anderen Spuren wurden abweichend von der Orginalvorschrift [Macfarlane 1983] ungefärbt ausgeschnitten und anschließend alle vier Streifen mit SDS solubilisiert. In der zweiten Dimension wurden die SDS-Systeme von Lämmli [1970] und Schägger [1987], je für gefärbte und ungefärbte Proteine in der ersten Dimension, verglichen.

Abb. 4.9 zeigt, dass ein Transfer von im Gelstreifen gefärbten und so fixierten Proteinen mit Proteinverlusten verbunden ist. Das Schägger-System zeigt deutliche Vertikalstreifen und einen intensiven Hintergrund im Gel B. Zusätzlich konnten im niedermolekularen Bereich deutlich weniger Proteinspots detektiert werden. Die Ursache hierfür scheint die Coomassie-Färbung der Proteine in der ersten Dimension zu sein, da diese Effekte im Gel D nicht auftreten. Diese Beeinträchtigung ist im Lämmli-System weniger stark ausgeprägt (Abb. 4.9-A), dennoch ist die Spotintensität v.a. im niedermolekularen Bereich deutlich geringer als beim Gel C (ungefärbter Streifen, Lämmli-System).

Abb. 4.9: Verschiedene Systeme in der zweiten Dimension des 16-BAC/SDS-Systems.

Insgesamt sind die Spots im Lämmli-System deutlich besser aufgelöst, was in den vorliegenden Gelen in lang gestreckten Ellipsen resultiert. Dieses ist eine Folge von breiten Proteinbanden in der ersten Dimension (16-BAC-PAGE) und konnte durch eine langsamere Elektrophorese-Geschwindigkeit und mehrmaligen Wechsel des Anodenpuffers verbessert werden (Abb. 4.10).

4.2.2.2 16-BAC/SDS-Referenzgel des Membranproteoms von H. salinarum

Unter optimierten Elektrophorese- und Transferbedingungen kann mit dem 16-BAC/SDS System eine Auftrennung auf Einzelproteinebene erreicht werden. So wurde dieses zum Erstellen eines zweidimensionalen Referenzgels für Membranproteine genutzt. Für das Cytosolproteom wird ein solches Mastergel mit dem klassischen IEF-2D-Ansatz verwirklicht [Tebbe *et al.*, 2005], welcher für Membranproteine fehl schägt [Klein *et al.*, 2005]. Abb. 4.10 zeigt ein typisches 16-BAC/SDS-Gel des Membranproteoms von *H. salinarum*, Stamm R1, wobei die Proteinidentifizierung entweder über MALDI-PMF (schwarz), TOFTOF-MS/MS (rot) oder mittels beider Methoden (blau) erfolgte.

BAC-PAGE

Abb. 4.10: 16-BAC/SDS-Referenzgel des Membranproteoms von *H. salinarum* (Stamm R1). Spots deren Proteine mit MALDI-TOF-PMF identifiziert werden konnten sind Schwarz markiert, Proteinidentifizierungen mittels MALDI-TOFTOF sind in Rot dargestellt, während Proteine die mit Blau markiert sind, mit beiden Methoden identifiziert wurden.

Ein so erstelltes Mastergel dient nicht nur der Identifizierung des Membranproteoms, sondern stellt darüber hinaus die Grundlage einer gelbasierten differenziellen Proteomik dar, die in den Kapiteln 4.4.1.3 und 4.4.3.3 näher behandelt wird.

4.3 Inventarisierung des Membranproteoms von *H. salinarum* und *N. pharaonis*

Die genomweite Proteomanalyse eines Organismus hat die Identifizierung einer möglichst hohen Abdeckung des theoretischen Proteoms zum Ziel. Dieses bietet die Möglichkeit, die Genomsequenz vorhergesagten offenen Leserahmen auf der Basis der durch massenspektrometrische Analysen zu bestätigen oder zu widerlegen. In Untersuchungen, die das gesamte Proteom eines Organismus umfassen, sind Membranproteine in der Regel unterrepräsentiert [Konstantinidis et al., im Druck]. Für deren erfolgreiche Identifizierung ist eine spezifische Anreicherung dieses Subproteoms bei der Probenvorbereitung Voraussetzung.

Eine anschließende zweidimensionale, gel-basierte Trennung erlaubt die Analyse auf Einzelproteinebene und die anschließende Identifizierung mit MALDI-TOF PMF v.a. von membranassoziierten Proteinen (Kapitel 4.2.2.2). Integrale Membranproteine sind mit dieser Methodik schwerer nachzuweisen, da hier mittels enzymatischer Spaltung durchschnittlich zu wenig Peptide pro Protein generiert werden um eine sichere Identifizierung zu gewährleisten [Doktorarbeit Klein, 2005].

Bei der "shotgun" Proteomik erfolgt die Proteinidentifizierung mittels MS/MS-Methoden, wodurch ein Protein bereits auf der Basis eines Peptids identifiziert werden kann. Eine native Membranisolation wie in Kapitel 4.1 beschrieben, ermöglichte über einen 1D-Gel Ansatz und daraus resultierenden 50 LC-MS/MS-Analysen die Identifizierung von 205 Proteinen, darunter 114 integrale Membranproteine [Klein *et al.*, 2005]. Über einen solchen Standard-Ansatz hinaus sollte nun eine erschöpfende Analyse der TMD-Proteine von *H. salinarum* und *N. pharaonis* angeschlossen werden.

4.3.1 Anreicherung und Identifizierung integraler Membranproteine mit RP-LC-MS/MS Analyse

Abb. 4.11: 1D-SDS-Gel von Membranproteinen nach Tween 20 –Behandlung der isolierten Membran. Das Gel wurde in 10 Fraktionen unterteilt, jede trypisch verdaut und anschließend mit LC-MS/MS vermessen. Die Strategie der Proteinidentifizierung ist im Überblick wiedergegeben. Die Charakterisierung des TMD-Proteoms setzt eine Probe voraus, bei der integrale Proteine im Verhältnis zu membranassoziierten Proteinen stark angereichert sind. Um eine Abreicherung cytoplasmatischer und membranassoziierter bei Proteine bereits der wurden Membranpräparation erreichen. durch zu Beschallen isolierte und über Sucrosegradient gereinigte Membranen (Kapitel 4.1) mit dem milden Detergens Tween 20 behandelt (Kapitel 3.2.6). So isolierte Membran wurde mit SDS solubilisiert und in einem eindimensionalen Lämmli-Gel getrennt. Abb. 4.11 zeigt das Bandenmuster des Gels, wobei, anders als bei nativ isolierten Membranen, kaum prominente Proteinbanden auftreten. Diese sind bei H. salinarum zum großen Teil auf membranassozierte ABC-Transport Proteine wie z.B. OE4305R, OE4551F oder OE2703R zurückzuführen [Klein et al., 2005]. Andere Verfahren zur Abreicherung membranassoziierter Proteine, z.B. durch die Behandlung der Membranen mit Carbonat

oder Hochsalz, zeigen bei der Membran von H. salinarum keinen Effekt (Daten nicht gezeigt).

Die Identifizierung der isolierten Proteine mittels LC-MS/MS-Analysen sollte Aufschluss über den Erfolg der Abreicherung membranassoziierter Proteine geben. Eine Spur wurde in 10 Stücke unterteilt und je die Proteine in-gel tryptisch verdaut (Abb. 4.11). Dies resultiert für jede Fraktion in einem komplexen Peptidgemisch, das mittels einer dem ESI-Q-TOF-Massenspektrometer vorgeschalteten Flüssigkeitschromatographie (LC) getrennt wird. Diese so genannte "Online-Kopplung" ermöglicht es, Peptide, die von der Säule eluieren, direkt zu ionisieren und massenspektrometrisch zu vermessen. Die chromatographische Trennung wird an Umkehrphasen-Säulen ("Reversed Phase", RP) durchgeführt, die aus einem Trägermaterial mit hydrophob modifizierten Silicaten bestehen. Unter wässrigen Bedingungen binden Peptide an das Trägermaterial und werden mit steigendem organischem Lösungsmittelanteil (meist Acetonitril, ACN) eluiert. Salze können eine derartige massenspektrometrische Analyse stören und die Messung in Bezug auf Sensitivität und Auflösung beeinträchtigen. Daher wurden die Proben in einem ersten Schritt entsalzt. Dies beruht auf dem gleichen Prinzip wie die darauf folgende LC: Peptide werden im Gegensatz zu Salzen, unter wässrigen Bedingungen an RP-Material gebunden und anschließend mittels organischem Lösungsmittel von dem RP-Material eluiert. Die Entsalzung der Peptide erfolgt nach der Methode von Rappsilber und Kollegen (2003) an so genannten "Stage-Tips" aus C8-RP-Material (Kapitel 3.2.12.6). Die Proben wurden anschließend mit MS/MS, gekoppelt an ein C4-LC-Säulensystem, analysiert.

Insgesamt wurden 92 Proteine sicher identifiziert (Anhang, Tabelle 7.1), davon können 84 dem Membranproteom zugeordnet werden (Abb. 4.12). 84% der identifizierten Proteine besitzen eine oder mehrere vorhergesagte Transmembrandomänen. Daraus lässt sich ableiten,

dass durch die Behandlung mit dem milden Detergens Tween 20 ein Grossteil der membranassoziierten Proteine sowie cytosolische Kontaminationen entfernt werden konnten. Es wird aber auch deutlich, dass trotz einer Anreicherung von integralen Membranproteinen das Ausmaß der Identifizierung relativ gering ist. Zusätzlich zeigt diese Analyse, dass kaum TMD-Peptide mittels RP-LC gekoppelter MS/MS-Analyse detektiert werden konnten.

Aufgrund dieser Beobachtung folgte eine weitergehende, gezielte Analyse der Problematik der massenspektrometrischen Analyse für Peptide die einen Teil oder eine komplette Transmembrandomäne repräsentieren.

Abb. 4.12: Kategorien der 92 identifizierten Proteine. Integrale Membranproteine wurden durch TMHMM [Krogh *et al.*, 2001], Lipidanker-Proteine durch das lipobox-Motiv PS0013 [Prosite] und Untereinheiten von Membranproteinkomplexen durch den Homologievergleich mit anderen Organismen zugeordnet (www.halolex.de).

4.3.2 Problemanalyse von TMD-Peptiden

Die LC-MS/MS Analyse, wie sie in Abb. 4.11 schematisch dargestellt ist, kann in drei unabhängige und damit auf den Verlust von TMD-Peptiden einzeln überprüfbare Abschnitte unterteilt werden. Dieses sind Probenvorbereitung mit Entsalzung der Peptide, sowie die anschließende chromatographische Trennung eines Peptidgemisches an RP-Säulen. Beide Schritte beinhalten im Wesentlichen das Binde- und Elutionsverhalten von Peptiden an verschiedenen RP-Materialien. Davon unabhängig ist die anschließende

massenspektrometrische Analyse der Peptide, die u.a. Vorgänge wie Ionisierung, Fragmentierung und Detektion der Ionen umfasst.

4.3.2.1 Probenvorbereitung und LC-Trennung

In einem ersten Schritt wurde ein möglicher Verlust von TMD-Peptiden während der Probenvorbereitung durch Entsalzung untersucht. Als Modelprotein wurde der Arginin/Ornithin-Antiporter OE5204R gewählt, ein Protein mit 11 vorhergesagten Transmenbrandomänen [TMHMM, Krogh et al., 2001]. Durch einen tryptischen Verdau dieses Proteins ist es möglich, ein Peptid der Masse 2400 Da zu generieren, das eine dieser Transmembrandomänen repräsentiert und im Folgenden als TMD-Modelpeptid dient. Das Protein OE5204R konnte mittels zweidimensionaler BN-AHN-PAGE als Einzelprotein aufgetrennt werden (Kapitel 4.2.1.2). Der tryptische Verdau erfolgte in 60% Methanol (MeOH), eine von Blonder und Kollegen (2004) speziell für Membranproteine beschriebene Methode. Der hohe Lösungsmittelanteil garantiert eine vollständige Denaturierung und damit Entfaltung der Proteine, wodurch der Protease Trypsin der Zugang zu schwerer zugängigen Bereichen wie z.B. TMD-Helices ermöglicht wird. Abweichend von der Orginalvorschrift wurden diese Verdaubedingungen hier auf einen in-gel-Verdau übertragen (Kapitel 3.2.12.4).

Vier identische Ansätze mit je zwei silbergefärbten Spots des Proteins OE5204R wurden tryptisch verdaut, und das resultierende finale Peptidgemisch auf je zwei Aliquots aufgeteilt. Je Ansatz wurde eines dieser Aliquots direkt mit MALDI-TOF analysiert, da die Technologie weniger anfällig für geringe Mengen an Salzen ist als die ESI-Ionisierung. In allen vier Spektren konnte das TMD-Peptid der Masse 2400 Da nachgewiesen werden, Abb. 4.13-A zeigt exemplarisch eines der Spektren. Durch diese Analyse konnte das TMD-Peptid nach dem Verdau und damit vor der Entsalzung nachgewiesen werden. Eine dem tryptischen Verdau vorausgehende Behandlung mit Triethyamin zum Entfernen von restlichem SDS brachte hier, anders als beschrieben [Zischka *et al.*, 2005], keine Verbesserung der Verdaueffizienz für TMD-Peptide (Daten nicht gezeigt).

Die Entsalzung von Peptiden basiert auf der hydrophoben Wechselwirkung zwischen Peptiden und Trägermaterial. Da bei dem Verdau von Membranproteinen Peptide mit sehr unterschiedlichen Eigenschaften bezüglich Größe und Hydrophobizität generiert werden (Abb. 4.13), wurde als Kompromiss ein C8-RP-Material für die Entsalzung gewählt. Die im Vergleich zur meist verwendeten C18-Material verkürzten Alkylketten sollten eine zu starke Bindung zu sehr hydrophoben Peptiden verhindern. Die vier Proben wurden in 5% Ameisensäure (FA) resuspendiert, die C8-Säulchen damit beladen und die gebundenen Peptide anschließend mit unterschiedlichen Lösungsmitteln eluiert (Abb. 4.13).

Abb. 4.13: Vier identische, silber-gefärbte Spots des Proteins OE5204R wurden tryptisch verdaut und mit MALDI-TOF vermessen, wobei exemplarisch eines dieser Spektren gezeigt ist (A). Die restlichen Proben wurden anschließend in 5% FA resuspendiert und mittels C8-RP-STAGE-Tips entsalzt. Die Elution erfolgte mit 80% MeOH/5% FA, 80% ACN/5% FA, 80% Isopropanol/5% FA oder ACN/Isopropanol (1/2 (v/v)). Die eluierten Peptide wurden getrocknet und erneut mit MALDI-TOF vermessen, die Spektren sind in B-E wiedergegeben. Im Inset sind die im MALDI-TOF-Messfenster theoretisch zu erwartenden sechs Peptide nach deren Masse geordnet und zusätzlich deren GRAVY-Index dargestellt. Die grau unterlegten Peptide IV und VI repräsentieren je eine vorhergesagte Transmembrandomäne.

Dieses Experiment demonstriert, dass die Elution der Peptide von der Säule mit 80% MeOH/5% FA, wie in Kapitel 4.3.1 beschrieben, in dem Verlust des TMD-Peptids der Masse 2400 Da resultiert, während die cytosolischen Peptide des Proteins detektiert werden können (Abb. 4.13-B). Dabei fällt jedoch auf, dass das Signal des cytosolischen Peptids der Masse 2610 Da (Abb. 4.13, Peptid V) nach der Entsalzung im Vergleich zum ursprünglichen Spektrum (Abb. 4.13-A) sehr stark an Intensität verliert, besonders bei der Elution mit Isopropanol/ACN (Abb. 4.13-E). Auch durch eine Elution mit 80% ACN/5% FA (Abb. 4.13-C) oder 80% Isopropanol/5% FA (Abb. 4.13-D) konnte das 2400 Da TMD-Peptide nicht von der C8-Säule eluiert werden, während das 2610 Da cytosolische Peptid hier mit hoher Signalintensität im MS-Spektum nachgewiesen werden konnte. Das Peptid der Masse 3861, welches eine weitere TMD des Protein OE5204R repräsentiert, lieferte vor der Entsalzung nur ein sehr schwaches Signal und war nach allen vier Entsalzungsverfahren nicht mehr nachweisbar.

Bei allen vier Ansätzen wurde sowohl der Rückstand im Reaktionsgefäß als auch der Durchfluss beim Beladen der Säule sowie die Waschlösung vermessen und keine oder nur sehr geringe Mengen an Peptide detektiert. Dies deutet auf eine sehr starke, unter den angegebenen Bedingungen irreversible Bindung von hydrophoben und langen Peptiden an das C8-RP-Material hin. Damit ist dieser erste Schritt eindeutig für einen Verlust von TMD-Peptiden verantwortlich.

Die eigentliche chromatographische Trennung erfolgte bei der an die MS/MS-Analyse gekoppelten Nano-HPLC an einem C4 Säulensystem. Um diesen Schritt der Analyse auf den Verlust von TMD-Peptiden zu überprüfen, wurden diese Nano-HPLC-Säulen durch externe Säulen imitiert. Dazu wurde ein ca. 1mm² Stück aus einem TFA-Filter ausgestochen und als Fritte in einem Gel-Loader-Tip platziert. So kann mit dem C4-Material der Porengröße von 3 µm Durchmesser, welches zum Packen von Nano-Säulen verwendet wird, eine kleine Säule gepackt werden. Mittels dieser Säulen wurde ein selektiver Verlust von TMD-Peptiden an diesem RP-Material, mit Hilfe des Modelproteins OE5204R, verfolgt. Der tryptische Verdau eines silbergefärbten Spots von OE5204R zeigte das typische Signalmuster in einer MALDI-TOF-Analyse wie in Abb. 4.13-A (Daten nicht gezeigt). Diese Probe wurde in 10% FA aufgenommen, an die C4-RP-Säule gebunden und anschließend mit 80% ACN/10% FA von dem RP-Material eluiert. Für diesen Versuch wurde ACN gewählt, da die LC-MS/MS-Messungen mit diesem Lösungsmittel betrieben werden. Abb. 4.14-A zeigt, dass hier nun alle Peptide, die direkt nach dem Verdau detektiert werden konnten, auch nach dem Entsalzen wieder nachweisbar sind. Das Intensitätsverhältnis der Peptidsignale im MS-Spektrum ist vor und nach der Entsalzung ähnlich. Es fällt auf, dass das 2400 Da TMD-Peptid das schwächste MS-Signal liefert. Dies kann möglicherweise auf eine geringere Verdaueffizienz hinweisen. Somit wird deutlich, dass bei einer chromatographischen Trennung an C4-RP-Material kein spezifischer Verlust an TMD-Peptiden zu erwarten ist.

Das unterschiedliche Bindeverhalten an C8 und C4 RP-Material verschiedener Peptide eines Proteins zeigt, dass bei Verdau von Membranproteinen, Peptide mit sehr verschiedenen Eigenschaften bezüglich Hydrophobizität und Größe generiert werden. Im Folgenden sollte geprüft werden, wie sich ein steigender Anteil an organischem Lösungsmittel beim Beladen auf das Bindeverhalten der Peptide an das Säulenmaterial auswirkt, mit dem Ziel, dieses für eine auf Hydrophobizität beruhende Vorfraktionierung auszunutzen.

Abb. 4.14: Fünf identische, silber-gefärbte Spots des Proteins OE5204R wurde tryptisch verdaut und mit MALDI-TOF vermessen, die Spektren wiesen die gleichen Signale wie in Abb. 4.13-A auf (Daten nicht gezeigt). Die Peptide wurden in 10% FA, 5% ACN/10% FA, 10% ACN/10% FA, 20% ACN/10% FA oder 30% ACN/10% FA resuspendiert, mittels C4-RP-Säulchen entsalzt und mit 80% ACN/10%FA eluiert. Die eluierten Peptide wurden getrocknet und erneut mit MALDI-TOF vermessen.

Neben dem oben beschriebenen, wurden vier weitere Spots des Proteins OE5204R tryptisch in-gel verdaut und mit MALDI-TOF vermessen. In alle Fällen wurden die im Messfenster zu erwartenden Peptide detektiert (Daten nicht gezeigt). Die getrockneten Peptide wurden in 5% ACN/10% FA, 10% ACN/10% FA, 20% ACN/10% FA oder 30% ACN/10% FA aufgenommen, über C4 Säulen entsalzt, mit 80% ACN/10%FA eluiert und das so gewonnene Eluat mittels MALDI-TOF-PMF vermessen. Gemessen werden in diesem Versuch diejenigen Peptide, die unter den jeweiligen Lösungsmittelbedingungen an das Säulenmaterial binden und wieder eluiert werden können.

Eine steigende ACN-Konzentration führt zu einer schwächeren Wechselwirkung zwischen Peptiden und den Alkylketten des RP-Materials. Das Peptid mit der Masse 775 Da und einem GRAVY-Index von -1,0 kann bereits bei einer ACN-Konzentration von 5% nicht mehr an die Säule binden und ist daher im Eluat nicht nachweisbar (Abb. 4.14-B). Dagegen binden größere und hydrophobe Peptide unter diesen Bedingungen an das C4-Material. Mit sukzessiv ansteigender ACN-Konzentration setzt sich dieser Trend fort. So kann das Peptid II, welches mit dem höchsten MS-Signal unter wässrigen Bedingungen nachweisbar ist (Abb. 4.14-A), bei 20% und 30% ACN nicht mehr im Eluat (Abb. 4.14-D, -E) sondern im Duchfluss (Daten

nicht gezeigt) detektiert werden. Bei 30% ACN können nur noch große und hydrophobe Peptide im Eluat nachgewiesen werden, wie z.B die TMD-Peptide der Masse 2400 Da und einem GRAVY-Index von 9.29 sowie der Masse 3861 Da mit einem GRAVY von 0.955.

Die Kombination der Peptideigenschaften Länge und Hydrophobizität bestimmt demnach das Binde und Elutionsverhalten der Peptide. Unter Standard LC-Bedingungen können lange hydrophobe Peptide, Eigenschaften die oft mit TMD-Peptiden korrelieren, nicht analysiert werden. Wird jedoch auf ein kurzkettiges RP-Material zurückgegriffen, gelingt dessen Elution von der RP-Säule, wobei die Möglichkeit zur massenspektrometrischen Analyse im Folgenden näher untersucht wird.

4.3.2.2 MS/MS-Messung

An die chromatographische Trennung der Peptide ist deren Identifizierung mittels MS/MS-Analyse angeschlossen. Im Folgenden wird untersucht, ob hydrophobe Peptide, die eine TMD repräsentieren, mittels ESI ionisiert und anschließend durch MS/MS fragmentiert werden können. Für diese Experimente wird wie in Kapitel 4.3.2.1 ein tryptischer Verdau des Proteins OE5204R mit dem 2400 Da TMD-Modelpeptid herangezogen.

Eine Probe wurde mit MALDI-TOF vermessen und das 2400 Da TMD-Peptid eindeutig detektiert (Daten nicht gezeigt). Diese Probe wurde ohne weitere Aufreinigung und daher möglicher Verluste direkt, "offline" (Elektrospray), mit dem Q-TOF-Massenspektrometer vermessen. Anders als bei der MALDI-Ionisierung, können bei der ESI-Ionisierung auch mehrfach geladene Ionen aufteten, welche die Basis einer MS/MS-Fragmentierung sind. Im ESI-MS-Spektrum konnten bei dem OE5204R-Verdau weder das einfach geladene Ion mit einem Masse-zu-Ladungs Verhältnis (m/z) von 2400 Da noch die zwei- oder mehrfach geladenen Ionen detektiert werden (Abb. 4.15, MS-Spektrum, rote Pfeile).

Abb. 4.15: ESI-MS-Spektrum des tryptischen Verdaus des Protein OE5204R und MS/MS-Spektrum des Peptids mit m/z 801 Da.

Das potentiell dreifach geladene TMD-Modelpeptid besitzt ein theoretisches m/z von 801 Da. Diese Masse wurde manuell als zu fragmentierendes Ion gewählt, obwohl im MS-Spektrum kein Signal dieser Masse detektiert werden konnte. Abb. 4.15 zeigt das MS/MS-Spektrum mit einer über weite Strecken des Peptids vollständigen y-Serie. Damit konnte eindeutig gezeigt werden, dass TMD-Peptide sowohl mehrfach geladen vorliegen, als auch wie cytosolische Peptide fragmentiert werden können. Die Konzentration dieses Ions ist offensichtlich jedoch zu gering um als MS-Signal detektiert zu werden. Bei einer automatischen LC-MS/MS Messung, werden die Ionen für eine anschließende Fragmentierung anhand der Signalintensitäten des zunächst aufgenommenen MS-Spektrums selektiert. Daher könnte die Analyse von TMD-Peptiden in der Automation nur nach einer vorhergehenden Anreicherung erfolgen.

4.3.3 Inventarisierung des Membranproteoms von H. salinarum

Die Experimente an dem Modellprotein OE5204R (Kapitel 4.3.2) zeigten, dass TMD-Peptide sowohl im MALDI-Fingerprint detektiert als auch durch ESI-MS/MS-Messungen fragmentiert werden können. Deutlich wurden aber auch unterschiedliche Bindeeigenschafen der verschiedenen tryptischen Peptide des Membranproteins, sowie Unterschiede der Signalintensitäten in MS-Spektren zwischen cytosolischen und TMD-Peptiden. Diese Ergebnisse wurden im Folgenden auf einen Gesamtmembranproteomansatz bei *H. salinarum* übertragen und die gezeigten Bindungseigenschaften verschiedener Peptide zur Anreicherung hydrophober Peptide genutzt.

Eine Membran, bei der membranassoziierte Proteine durch die Behandlung mit mildem Detergens abgereichert wurden (Kapitel 3.2.6), wurde mit SDS solubilisiert, die Proteine mittels SDS-PAGE aufgetrennt, das Gel in 14 Stücke zerteilt und jedes mit Trypsin in-gel verdaut. Anders als im Experiment in Kapitel 4.3.1 wurden die Proben mit Hilfe selbst hergestellten Säulchen aus C4-Material entsalzt um die verlustreiche Entsalzung an C8-Stagetips zu umgehen.

Die aus dem Verdau der 14 Gelstücke resultierenden Peptide wurden vorfraktioniert: Die Peptide wurden in 30% ACN/10% FA aufgenommen und über C4-Säulen entsalzt. Peptide, die unter diesen Lösungsmittelbedingungen an das C4-RP-Material binden und anschließend eluiert werden konnten, finden sich, für jedes Gelstück, in Probe A. Der Durchfluss, Peptide die bei 30% ACN/10% FA nicht an das Säulenmaterial binden, werden getrocknet, in 10% FA resuspendiert und erneut an C4-RP-Säulen entsalzt. Die so generierte Probe (Eluat) wird im Folgenden mit B bezeichnet. In Summe wurden so, aus den 14 Gelstücken, durch tryptischen Verdau und Entsalzen der Peptide 14-mal Probe A sowie 14-mal Probe B

gewonnen und jede an der LC-Q-TOF vermessen. Ziel hierbei ist eine Reduktion der Komplexität der einzelnen Proben und eine Anreicherung von hydrophoben Peptiden, die sich bei Standard-Analysen der Messung entziehen. Damit soll nicht nur die Identifizierungsrate von Membranproteinen erhöht, sondern auch durch eine steigende Anzahl an identifizierten Peptiden pro Protein die Sicherheit der Identifizierung verbessert werden.

Aus dem Vorversuch von Abb. 4.14 konnte man erwarten, dass sich die Peptide der Fraktionen A und B in ihren Eigenschaften fundamental unterscheiden, daher wurden für die LC-Trennung dieser Proben verschiedene Elutionsgradienten verwendet.

Für die Messreihe der A-Proben wurde der Anteil von organischem Lösungsmittel während der LC schneller erhöht und steigt steiler an, um den Trennraum für hydrophobe Peptide optimal zu nutzen. Dagegen wird die Messreihe der B-Proben mit einem Gradienten durchgeführt, bei welchem der Anteil von organischem Lösungsmittel wesentlich langsamer ansteigt um die zu erwartenden, hydrophilen Peptide über einen längeren Zeitraum zu trennen. So ist ein ACN-Gehalt von 30% im Gradienten bei der A-Messreihe bereits nach 30 Minuten, bei der B-Messreihe erst nach 70 Minuten erreicht (Abb. 4.16).

Abb. 4.16: Gradienten zur chromatographischen Trennung der Peptide der Proben A und B. Angegeben ist der zeitabhängige Anstieg von Acetonitril (ACN).

In Abb. 4.17 sind die Proteinidentifizierungen der A- und B- Messreihe voneinander unterschieden und nach ihrer Membranlokalisation gruppiert. In beiden Gruppen besitzen je 79% der identifizierten Proteine mindestens eine vorhergesagte TMD.

Da auch in beiden Gruppen das Verhältnis von integralen, löslichen, Lipidanker- und Membrankomplexproteinen sehr ähnlich ist, scheint mit dieser Vorgehensweise keine Vorfraktionierung nach integralen Membranproteinen möglich zu sein. Insgesamt wurden in den A-Fraktionen 84 Proteine identifiziert, 66 davon mit vorhergesagter TMD. Dem gegenüber stehen 181 Proteinidentifizierungen der B-Messreihe, was 143 TMD-Proteine mit einschließt.

Abb. 4.17: Kategorien der 203 identifizierten Proteine von *H. salinarum*. Die Proteine wurden nach ihrer Identifizierung in der A- bzw. B-Messreihe unterschieden und anschließend zusammenfassend dargestellt (unteres Kreisdiagram). TMD-Proteine wurde durch TMHMM, der Lipidanker durch das lipobox-Motiv und Untereinheiten von Membranproteinkomplexen durch den Homologievergleich mit anderen Organismen zugeordnet (www.halolex.mpg.de).

Da die A- und B-Proben jeweils Fraktionen aus einem Gelstück sind, ist es möglich, dass Peptide eines Proteins auf beide Fraktionen verteilt sind. Für eine Gesamtbetrachtung der Identifizierungen wurden daher die Ergebnisse beider Messungen aus einem Gelstück jeweils kombiniert und mit diesem die Mascot-Recherche durchgeführt. Insgesamt konnte so für den gesamten Datensatz 203 Proteine identifiziert werden (Anhang, Tabelle 7.2), davon 77% mit mindestens einer vorhergesagten TMD (Abb. 4.17). Die 14-LC-MS/MS-Messungen der A-Proben führten demzufolge zu 22 zusätzlich identifizierten Proteinen, darunter 13 TMD-Proteine. Dies bedeutet, dass auf Ebene der Proteine eine große Überschneidung zwischen beiden Messreihen existiert.

Abb. 4.18: Vergleich der identifizierten Peptide in den beiden Messreihen (A und B). Der Median des GRAVY-Index der identifizierten Peptide wurde in Exel berechnet.

Den 203 Proteinen liegt die Identifizierung von 715 verschiedenen Peptiden zu Grunde. Bei den Messungen der A-Fraktionen konnten insgesamt 201, in den Messungen der B-Fraktionen 664 Peptide identifiziert werden, wobei sich beide Messreihen in der Identifizierung von 151 Peptiden überschneiden (Abb. 4.18). Diese Analyse verdeutlicht, dass die Messungen der A-Reihe, gemessen an der Anzahl der identifizierten Peptide, wesentlich weniger effizient sind als die der B-Reihe. Dennoch konnten bei den 14 LC-MS/MS-Analysen der A-Proben 50 zusätzliche Peptide identifiziert werden. Der Median des GRAVY-Index dieser 50 Peptide beträgt 0.35 und ist damit deutlich über dem Wert der Peptide der B-Fraktionen (-0.3) bzw. der Peptide die in beiden Fraktionen identifiziert werden konnten (-0.2).

Damit tragen die Peptide, die in den A-Proben identifiziert wurden nicht nur zur Identifizierung weiterer 22 Proteine bei, sondern erhöhen auch die Sicherheit der Identifizierung der restlichen Proteine, sodass von den 203 Proteinen 163 als "trusted" identifiziert werden konnten.

Durch diese Strategie, die auf den Ergebnissen der Versuche an einem Modelprotein basieren (Kapitel 4.3.2), konnte die Identifizierung von TMD-Proteinen deutlich verbessert werden. Aus einer vergleichbaren Ausgangprobe wurden bei einem Standard-LC-MS/MS-Ansatz 92 Proteine identifiziert (Kapitel 4.3.3). Die Identifizierungsrate der Membranproteine wurde so, durch die in diesem Abschnitt beschriebenen Verbesserungen der Analyse, um über 100 Prozent gesteigert.

4.3.4 Inventarisierung des Membranproteoms von Natronomonas pharaonis

Im Rahmen dieser Arbeit wurden Verfahren zur Analyse und Identifizierung des Membranproteoms von *H. salinarum* etabliert. Am Beispiel des haloalkalophilen Archaeon *Natronomonas pharaonis* wurden diese auf ihre generelle Anwendbarkeit für halophile Organismen überprüft. *N. pharaonis* wurde in der Abteilung Prof. Oesterhelt sequenziert, so dass dessen vollständige Genomsequenz und, daraus resultierend, die Proteom-Datenbank vorlag.

Die Membranisolation durch Sonifizieren, die Abreicherung membranassoziierter Proteine durch das milde Detergens Tween 20 sowie die gelbasierte zweidimensionale Analyse des Membranproteoms stellte sich als übertragbar auf diesen Organismus heraus (Masterarbeit Mitterweger 2005). Auch zeigten sich für *N. pharaonis* die gleichen Schwierigkeiten einer PMF-Identifizierung von Membranproteinen. Daher wurde für die Inventarisierung dieses Membran-Subproteoms die für *H. salinarum* erfolgreiche Strategie, beschrieben in Kapitel 4.3.3 angewandt, methodisch aber vertieft und weiter ausgereizt.

Eine, wie in Kapitel 4.3.1 für *H. salinarum* beschrieben, Tween 20-behandelte Membran von *N. pharaonis* wurde mit SDS solubilisiert, die Proteine mittels SDS-PAGE aufgetrennt, in 17 Stücke zerteilt und die Proteine jeder Fraktion tryptisch verdaut. Die so generierten Peptide

aus den Proteinen jedes Gelstücks wurden wie für *H. salinarum* beschrieben vorfraktioniert (Abb. 4.19).

Abb. 4.19: Vorgehensweise der Membranproteinidentifizierung von *N. pharaonis*. Die Peptide jedes verdauten Gelstücks wurden in 30% ACN/10% FA resuspendiert, an C4-Säulen gebunden und mit 80%ACN/10% FA eluiert. Peptide, die unter diesen Bedingungen an das C4-RP-Material binden, sind in Probe A. Der Durchfluss wurde getrocknet, wieder aufgenommen in 10% FA und erneut an C4-RP-Säulen entsalzt. Das so generierte Eluat wird vergleichend an einem C4 (Probe B) bzw. C18-LC-MS/MS-System (Probe C) vermessen. Peptide, die unter wässrigen Bedingungen nicht an C4-RP-Säule binden, befinden sich im Durchfluss II und werden als Probe D an einem C18-LC-MS/MS-System gemessen.

Aufbauend auf den Ergebnissen der Inventarisierung des Membranproteoms von *H. salinarum* (Kapitel 4.3.3) werden bei den LC-MS/MS-Analysen der unterschiedlichen Proben eines Gelstücks nicht nur die LC-Gradienten den zu erwartenden Peptiden angepasst, sondern auch verschiedene Säulensysteme (C4 und C18) verglichen. Aus dem schematischen Überblick (Abb 4.19) geht hervor, dass aus jedem verdauten Gelstück die so gewonnenen Peptide in 3 verschiedene Proben fraktioniert wurden, dem Eluat I und II sowie dem Durchfluss II, der in Kapitel 4.3.3 verworfen wurde. Gemessen an den Ergebnissen für *H. salinarum* sollte das Eluat II die komplexeste Probe sein, daher wird diese vergleichend auf einem C4 und auf einem C18 System, gekoppelt and die MS/MS-Analyse, gemessen. Das Eluat I, vergeichbar der Probe A aus Kapitel 4.3.3, wurde aufgrund der zu erwartenden Hydrophobizität der Peptide auf einem C4-, Reversed phase" Chromatographie System gemessen. Peptide, die in wässriger Säure nicht an ein C4-RP-Material binden und damit relativ hydrophil sind, befinden sich in Durchfluss II und wurden als Probe D des jeweiligen Gelstücks an einem C18-System gemessen. Abb. 4.19 gibt einen Überblick über die Zusammenhänge zwischen Fraktionen und Messstrategien.

So werden für jedes tryptisch verdaute Gelstück vier verschiedene Proben mittels LC-MS/MS analysiert. Da hier aus einer ursprünglichen Probe (Verdau eines Gelstücks) vier unterschiedliche Messungen resultieren, ist es wahrscheinlich, dass Peptide eines Proteins in

unterschiedlichen Messungen identifiziert werden. Daher wurden die Resultate für jedes Gelstück (A-D) vereinigt und mit diesen die Mascot-Suche durchgeführt. Insgesamt konnten so 231 Proteine identifiziert werden (Anhang, Tabelle 7.3), 95% davon konnten dem Membranproteom und 83% dem integralen Membranproteom basierend auf der TMD-Vorhersage von TMHMM [Krogh *et al.*, 2001] zugewiesen werden (Abb. 4.20).

Abb. 4.20: Kategorien der 231 identifizierten Proteine. Integrale wurden Membranproteine durch TMHMM [Krogh et al., 2001], Lipidanker-Proteine durch das lipobox-Motiv PS0013 [Prosite] und Untereinheiten Membranproteinvon komplexen durch den Homologievergleich mit anderen Organismen zugeordnet (www.halolex.mpg.de).

Durch die Kombination aus Vorfraktionierung von Peptiden und vier Messungen pro Probe (Methode A- D) konnte in diesem Experiment 29% des theoretisch vorhergesagten integralen Membranproteom identifiziert werden.

In einer anschließenden Beurteilung der Effektivität der vier Messreihen auf Peptidebene, wurden alle Peptide mit einem Mascot-Score größer als 20 in die Analyse mit eingeschlossen, wobei die Zugehörigkeit zu einem sicher identifizierten Protein nicht berücksichtigt wurde. Gemessen an diesen Kriterien wurden durch die insgesamt 68 LC-MS/MS Messungen 1021 verschiedene Peptide identifiziert. Die Peptide wurden aufgrund ihrer Identifizierung in verschiedenen Messungen gruppiert (Abb. 4.21).

Abb. 4.21: Einteilung der 1021 verschiedenen Peptide nach ihrer Identifizierung in unterschiedlichen Messungen.

Die Analyse zeigt, dass 530 Peptide jeweils in nur einer der vier Methoden (A-D) identifiziert werden konnten. Bei einem Prozentsatz von 52% stellt sich die Frage, ob bestimmte Eigenschaften der Peptide für die selektive Identifizierung mit einer der vier angewandten Methoden verantwortlich sind. Charakteristisch für Membranproteine ist, dass durch tryptischen Verdau Peptide mit sehr unterschiedlicher Größe und Hydrophobizität generiert werden. Daher wurden die identifizierten Peptide auf einen Zusammenhang zwischen Hydrophobizität bzw. Peptidlänge und der jeweiligen Mess-Methode statistisch untersucht. Das Maß der Hydrophobizität wird mit Hilfe des GRAVY- Index angegeben (je negativer der Index, desto hydrophiler das Peptid).

	Proben	Α	В	С	D
alle Peptide	Nr. Peptide score >20	212	559	681	190
	GRAVY (Median)	-0,1	-0,3	-0,3	-0,7
	Anzahl AS/Peptid (Median)	14	11	11	7
	TMD-Peptide	35	48	56	9
	Anzahl TMD-AS (Median)	12	4	4	3
ausschließlich in der jeweili- gen Probe	Nr. Peptide score >20	76	106	205	143
	GRAVY (Median)	0,4	-0,25	-0,3	-0,9
	Anzahl AS/Peptid (Median)	21	12	10	7
	TMD-Peptide	25	7	13	7
	Anzahl TMD-AS (Median)	15	3	4	3

Tab. 4.1: Statistische Analyse der 1021 Peptide aufgrund nach ihrer Hydrophobizität und Sequenzlänge. Gegeben sind die jeweiligen Medianwerte der einzelnen Untergruppen.

Die statistische Analyse zeigt, dass in der Messreihe A Peptide mit durchschnittlich 14 Aminosäuren und einem GRAVY Index von -0,1 identifiziert wurden. Unter den 212 identifizierten Peptiden befinden sich 35 TMD-Peptide, von welchen im Median 12 Aminosäuren innerhalb einer vorhergesagten Helix liegen.

Den Messungen B und C liegt die identische Probe (Abb. 4.19, Eluat I) zu Grunde, es wurden aber vergleichend die LC-Trennung an C4 bzw. das C18 Material durchgeführt. In Bezug auf Hydrophobizität und Sequenzlänge der Peptide konnten im Durchschnitt keine Unterschiede detektiert werden (Tabelle 4.1). Die höhere Anzahl an Peptididentifizierungen in der Gruppe C (681 Peptide) macht jedoch deutlich, dass die Kombination mit einer C18- Säule die beste Trennleistung und, als Folge daraus, die besten Identifizierungsergebnisse liefert. Im Vergleich zu den Peptiden der Messreihe A sind die Peptide in diesen beiden Gruppen kürzer und hydrophiler. Dieses zeigt sich auch in den hier identifizierten TMD-Peptiden. Obwohl in diesen Messungen mehr TMD-Peptide identifiziert werden konnten als bei A, ist deren durchschnittlicher Anteil der Aminosäuren innerhalb einer Helix mit je 4 deutlich unter dem Wert der TMD-Peptide in den Messungen A. In der Gruppe D, die Messungen der Peptide, die unter wässrigen Bedingungen nicht an das C4-Material binden (Abb. 4.19), konnten nur 190 Peptide identifiziert werden. Dies sind Peptide mit, im Vergleich zu den Messreihen A-C, der geringsten Sequenzlänge und dem negativsten GRAVY-Index. Von diesen Peptiden konnten jedoch 75% (143) ausschließlich in dieser Messreihe identifiziert werden (Tabelle 4.1).

Betrachtet man die Statistik für Peptide die ausschließlich in der jeweiligen Messreihe identifiziert wurden, so werden die Unterschiede in den Eigenschaften der Peptide noch deutlicher.

Peptide, die ausschließlich in A identifiziert wurden, besitzen im Median 21 Aminosäuren und einen GRAVY von 0,4. Im Vergleich zu den anderen Messreihen, wurden hier somit die längsten und hydrophobsten Peptide identifiziert. Diese Eigenschaften fallen von A nach D ab, d.h. sowohl die Sequenzlänge als auch des GRAVY-Index nehmen ab (Tabelle 4.1).

Aus dieser statistischen Analyse wird ersichtlich, dass sehr kleine und sehr große Peptide in den B und C Messreihen nicht identifiziert werden konnten. Hier sind vor allem für große Peptide Methode A (Eluat 1 + C4-Säule) und für kleine Peptide Methode D (Durchfluss + C18-Säule) geeignet.

Obwohl die Messung C, das Eluat II gekoppelt mit der Messung an einer C18-Säule, insgesamt die besten Ergebnisse liefert, kann durch die zusätzliche Identifizierung von Peptiden mittels anderer Messreihen das Problem einer Proteinidentifizierungen auf der Basis nur eines Peptids ("one hit wonder") umgangen werden.

Dies zeigt sich z.B. für das Protein NP0578A, welches bis zu seiner Identifizierung als hypothetisches Protein klassifiziert war. Aus der Probe "Gelstück 6", wurden die vier Messungen vorgenommen. In A wurde das Peptid der Masse 2606 Da mit 23 Aminosäuren und einem GRAVY-Index von 0.2 identifiziert. Dagegen wurde das Peptid der Masse 1996 Da (18 Aminosäuren, GRAVY -0.5) je in den Messungen B und C identifiziert, während in D ein Peptid der Masse 792 Da, bestehend aus 6 Aminosäuren mit einem GRAVY von -1.5 detektiert und identifiziert werden konnte. Dieses Beispiel zeigt, dass erst die Kombination der verschiedenen Methoden zu einer sicheren Identifizierung des Proteins auf der Basis von drei Peptiden führte, und damit das Protein NP0578A eindeutig nachgewiesen werden konnte.

Diese, exemplarisch an einem Protein aufgezeigten, Unterschiede zwischen den vier Messungen eines Gelstücks zeigen sich nicht nur in Bezug auf die Identifizierung von verschiedenen Peptiden, sondern auch in dem Chromatogramm der LC-Trennung. In Abb. 4.21 sind die "Base-Peak-Chromatograme", die zu jedem Zeitpunkt die Summe der detektierten MS-Signale und damit die Summe der eluierten Ionen widerspiegeln, für die vier Messungen des Gelstücks Nummer 6 gezeigt. Das Profil unterscheidet sich in allen vier Fällen deutlich und demonstriert damit erneut, dass es sich bei diesen Analysen nicht um eine wiederholende Messung der gleichen Probe, sondern um sich ergänzende Ansätze handelt.

Abb. 4.21: "Base-Peak-Chromatogramme" der Messungen A-D aus dem Gelstück Nr. 6.

4.4 Auswirkungen von verschiedenen Wachstumsbedingung auf das Membranproteom von *Halobacterium salinarum*

Die Membran einer prokaryotischen Zelle ist gleichzeitig Barriere zur und Kommunikationsorgan mit der Umwelt. Membranproteine nehmen eine zentrale Rolle in der selektiven Aufnahme von Substraten, der Signaltransduktion aber auch in der Bioenergetik ein. Das folgende Kapitel stellt die Analyse von Reaktionen des Membranproteoms von H. salinarum auf definierte Veränderungen der Umwelt (Energiezufuhr, Medienzusammensetzung) in den Mittelpunkt. Der Vergleich des Proteoms zweier unterschiedlicher Zustände hat die Analyse von Veränderungen zum Ziel, was sich in dem Begriff "Differenzielle Proteomik" wiederspiegelt.

4.4.1 Auswirkung von aerobem und phototrophem Wachstum auf das Membranproteom von *H. salinarum*

4.4.1.1 Probenpräparation und Zellzucht

H. salinarum Stamm R1 wurde in Vollmedium (VM) aerob im Dunkeln bzw. anaerob im Licht, d.h. phototroph kultiviert. Die Kulturbedingungen waren identisch, außer dass bei phototrophem Wachstum die Kolben nach dem Animpfen luftdicht verschlossen wurden und das Wachstum im Licht stattfand. Um ein einheitliches Zellwachstum zu gewährleisten, wurden die Kulturen je dreimal bei Klett 30-40 überimpft und die dritte Kultur für die Membranprotein-Präparation herangezogen. Zur Charakterisierung der phototrophen Wachstumsbedingung wurde der Sauerstoffverbrauch im Medium während des Wachstums verfolgt. Um das Volumenverhältnis von Gasraum und Medium bei dieser Messung der realen Kulturbedingung anzupassen, wurden in einem 250 ml Kolben 105 ml VM mit 3 ml Standkultur angeimpft, luftdicht verschlossen und inkubiert. So konnte gewährleistet werden, dass die Sauerstoffelektrode auch während der Inkubation unter Schütteln ständig mit Flüssigkeit bedeckt ist. Die an der Elektrode gemessene Spannung wurde digitalisiert und jede Minute ein Wert aufgezeichnet (Kapitel 3.2.1.6). In Abb. 4.22 ist für alle drei Folgekulturen die Abnahme des Sauerstoffs (mV, blaue Kurve) in Zusammenhang mit dem Zellwachstum (Klettwerte, rote Kurve) dargestellt.

Um die Sauerstoffmessung nicht zu beeinträchtigen wurde die optische Dichte der Kultur während der Sauerstoffmessung nur stichpunktartig ermittelt. Die Meßwerte der Zelldichte in Abb. 4.22 stammen von einer synchron wachsenden Parallelkultur, von welcher deutlich mehr Werte ermittelt und der Sauerstoffabnahme gegenübergestellt wurden. Die Analyse zeigt eine Abnahme der Sauerstoffkonzentration im Medium bei einem Anstieg der Zelldichte. Die Zellen veratmen demnach zunächst den sich im Medium befindenden Sauerstoff um anschließend unter anaeroben Bedingungen mit Licht als Energiequelle und damit phototroph zu wachsen. Dieser Zyklus wiederholt sich für jede Folgekultur (Abb. 4.22).

Für die quantitative Analyse des Membranproteoms wurden je Wachstumsbedingung (aerob und phototroph) eine 1L Kultur bei 30-40 Klett geerntet, die Zellen mittels Sonifizieren aufgeschlossen und die so generierten Membranvesikel über Zuckergradienten aufgereinigt (vgl. Abb. 4.34). Die Membranen wurden in Wasser resuspendiert, die Proteine mittels Chloroform-Methanol-Fällung präzipitiert und anschließend lyophilisiert. Dieses erlaubt nicht nur ein Detergens-freies Arbeiten mit Membranproteinen sondern zusätzlich das Einwiegen von Membranproteinen für quantitative Untersuchungen. So kann die kolorometrische Proteinbestimmung umgangen werden, die für Membranproteine oft fehlerhafte und kaum reproduzierbare Werte liefert.

4.4.1.2 Strategie der Quantifizierung von Membranproteinen (aerob – phototroph)

Die quantitativen Unterschiede im Membranproteom von *H. salinarum* als Folge von aerobem im Vergleich zu phototrophem Wachstum, wurde mit zwei grundsätzlich verschiedenen proteomischen Strategien untersucht. Die unterschiedliche Fluoreszenzmarkierung isolierter Membranproteine beider Zustände mit Cy-Farbstoffen ermöglicht eine anschließende gemeinsame gelbasierte zweidimensionale Trennung der Proteine. Die in dieser Arbeit etablierte und optimierte 16-BAC/SDS-PAGE (Kapitel 4.2.2) bietet die Möglichkeit Membranproteine zweidimensional zu trennen und wurde daher zum ersten Mal in Kombination mit dem DIGE-System (Differenzielle Gelelektrophorese, GE Healthcare) angewandt (Abb. 4.23-B). Die Quantifizierung erfolgt hier durch den computergestützten densitometrischen Vergleich der Fluoreszenzintensitäten innerhalb der gleichen Spotgrenzen.

Abb. 4.23: Strategie der Quantifizierung des Membranproteoms von aerob und phototroph kultivierten Zellen.

Weitergehend wurde die gleiche Probe mit der neu entwickelten ICPL-Methodik [Schmidt et al., 2005] analysiert. Hier werden freie Aminogruppen isolierter Proteine mit einem isotopenmarkierten Reagenz (Nicotinoyl-Nhydroxy-succinimide) umgesetzt, wobei unterschiedliche Proben mit verschiedenen Formen des Reagenz markiert werden. In der vorliegenden Arbeit wurden Proteine aus aerober mit der leichten (¹²C) bzw. aus phototropher Kultur mit der schweren (^{13}C) Variante markiert. Aus einem gemeinsamen proteolytischen Verdau resultieren bei der MS-Analyse Peptidpaare, die jeweils durch die integrierte gekennzeichnet sind. Sonde Anhand deren relativen Signalintensitäten

werden die Peptide quantifiziert und verglichen. Die ICPL-Technologie ist daher ein Beispiel einer massenspektrometrie-basierter Quantifizierung von Proteinen (Abb. 4.23-C).

Abb. 4.23 gibt einen Überblick über die Strategie der quantitativen Analyse des Membranproteoms von aerob und phototroph kultivierten *H. salinarum*, wie sie in dieser Arbeit angewandt wurde.

4.4.1.3 Gelbasierte Quantifizierung – 16-BAC/SDS-PAGE und DIGE

Unterschiede im Membranproteom von aerob und phototroph kultivierten Zellen (Stamm R1) Vergleich der Spotintensitäten auf wurden zunächst durch den individuellen zweidimensionalen 16-BAC/SDS-Gelen verfolgt. Ein optimiertes Protokoll für diese Gele (Kapitel 4.2.2) ermöglichte eine hochauflösende Trennung von Membranproteinen, dennoch konnten nach einer Silberfärbung kaum Unterschiede detektiert werden. Eine Korrelation der Spotmuster von beiden Gelen mit der Proteomweaver-Software ist in Abb. 4.24 dargestellt. Dabei wurde die Farbe orange für das Spotmuster aus der aeroben Probe, blau für das phototrophe Spotmuster vergeben. Proteinspots die in beiden Gelen vorhanden sind und von dem Programm als identisch erkannt wurden, sind in schwarz dargestellt.

Abb. 4.24: Je 80 µg delipidierte Proteine von Zellen die aerob bzw. phototroph kultiviert wurden, wurden über 16-BAC/SCS-PAGE getrennt und die Proteine jeweils mit Silber gefärbt. Die Proteinmuster wurden Hilfe Programm mit des Proteomweaver korreliert. In dem daraus resultierenden Überlagerungsbild, ist das Proteinmuster von aeroben Zellen in orange, das aus phototrophen Zellen in Blau und in Schwarz das in beiden Gelen übereinstimmende Proteinmuster dargestellt. Ein Teilbereich des Gels ist zusätzlich vergrößert dargestellt.

Eine Spotkorrelation mit Hilfe von Bildbearbeitungsprogrammen ist für dieses zweidimensionale Gelsystem schwierig, da die Fokussierung der Proteine und damit die Auflösung nicht die Qualität einer IEF erreicht, für deren Anwendung diese Programme entwickelt wurden. Die so errechneten Unterschiede sind bei genauerer Betrachtung oft auf fehlerhafte Zuweisung vermeintlich identischer Spots zurück zu führen, weniger auf tatsächliche Unterschiede im Proteinmuster (Abb. 4.24, Detailabbildung). Des Weiteren ist der dynamische Bereich einer solchen, auf Silberfärbung basierenden Abschätzung von Proteinregulationen meist nur für stark ausgeprägte Regulationen bis hin zum Fehlen einzelner Spots aussagekräftig.

Diese Probleme werden bei einer gemeinsamen Trennung beider Proben in einem zweidimensionalen Gel umgangen. Voraussetzung ist hier die vorausgehende

Fluoreszenzmarkierung der beiden zu analysierenden Proben mit unterschiedlichen CyDye Farbstoffen. Daher wurden in dieser Arbeit zum ersten Mal das DIGE System (Differenzielle Gelelektrophorese) mit dem zweidimensionalen 16-BAC/SDS-Gel kombiniert.

Je Wachstumsbedingung (aerob und phototroph) wurden 50 µg delipidierte Membranproteine eingewogen und getrennt voneinander in 6 M Harnstoff, 10 mM Tris/ HCl pH 8.8 resuspendiert (finale Proteinkonzentration: 20 mg/ml), wobei das Einhalten des pH-Wertes Voraussetzung für eine hohe Markierungseffizienz der Cy-Farbstoffe an Proteine ist. 200 pmol Cyanine dye (Cy3 minimal dye, Cy5 minimal dye) wurden zu je 50 µg Proteinlösung gegeben, wobei Proteine aus phototrophem Wachstum mit Cy5 (in Abb. 4.25, rot) und Proteine aus aerober Kultur mit Cy3 (in Abb. 4.25, grün) markiert wurden. Die beiden Proben wurden nach dem Stoppen der Reaktion gemischt und mit je 17.5 µl unmarkierter Proteinlösung (20 mg/ml) beider Zustände versetzt. So wurde sichergestellt, dass ausreichend Protein für eine anschließende massenspektrometrische Identifizierung bereitgestellt wird. Die Proben wurden im Verhältnis 1:1 mit doppelt konzentriertem 16-BAC- Auftragspuffer, abweichend von der Orginalvorschrift [Macfarlane, 1980] ohne Harnstoff, versetzt, angesäuert und zweidimensional über 16-BAC/SDS-PAGE aufgetrennt. Die fluoreszenz-markierten Proteine wurden über einen TyphoonTM Scanner visualisiert und das Gel anschließend für eine massenspektrometrische Identifizierung der Proteine mit Silber angefärbt.

Die verschiedenen Farben in Abb. 4.25 beschreiben die quantitativen Unterschiede der beiden Wachstumsbedingungen. Dabei kodiert rot für Hochregulation im phototrophen, grün Hochregulation im aeroben Zustand, während gelb sehr ähnliche Konzentration des Proteins in beiden Zuständen und daher Nichtregulation bedeutet.

Die Analyse der Regulationsfaktoren, d.h. das Verhältnis der Fluoreszensintensitäten wurde mit dem DeCyder Auswertungsprogramm in Zusammenarbeit mit Dr. Scheibe (GE Healthcare) durchgeführt. Tabelle 4.2 fasst die Regulationsfaktoren derjenigen Proteine zusammen, die über MALDI-TOF PMF identifiziert werden konnten. Spalte 5-7 bezieht sich auf die Regulation die in ICPL-Experimenten der gleichen Probe gefunden wurden und wird im folgenden Kapitel diskutiert.

Abb. 4.25: Zweidimensionale Trennung von differentiell fluoreszenz markierten Membranproteinen von *H. salinarum*. Membranproteine von aerob kultivierten Zellen wurden

kultivierten Zellen wurden mit Cy3 (grün), von phototroph kultivierten Zellen mit Cy5 (rot) markiert. Die Proteine beider Zustände wurden mit Hilfe eines Fluoreszensscanners visualisiert. Gelb dargestellte wurden Proteinspots in beiden Proben mit ähnlicher Intensität detektiert.

Tab. 4.2: Vergleich der Quantifizierung mit ICPL und DIGE. In der Tabelle sind die Regulationsfaktoren von Proteinen die mit DIGE [4] und ICPL [5] quantifiziert wurden, gegenüber gestellt. Für die Quantifizierung mittels ICPL sind außerdem die Anzahl der identifizierten [6] und der quantifizierten [7] Peptide angegeben. Für die einzelnen Proteine ist der Protein-Code [1], der Proteinname [2] sowie die Anzahl der vorhergesagten TMDs oder eines Lipidankers (0*) [3] gezeigt.

05 0 de 141	Destain Name [0]	TM [3] -	Regulationsfaktor		Zahl der Peptide (ICPL)	
OE-Code [1]	Protein-Name [2]		DIGE [4]	ICPL [5]	identifiziert [6]	quantifiziert [7]
OE4311F	ABC-type transport system (binding protein)	0*	-2.5	-2.4	6	2
OE1806R	probable periplasmic protein	0*	-1.4	-1.3	5	1
OE1490R	conserved protein	1	-1.3	-1.1	27	28
OE4551F	ABC-type transport system (binding protein)	0*	-1.2	-1.6	13	10
OE4305R	ABC-type transport system (binding protein)	0*	-1.2	-1.3	39	34
OE1391R	halocyanin hcpG	0*	-1.2	-1.2	4	3
OE3987R	H+-transporting two-sector ATPase, chain C	0	-1.2	-1.2	7	4
OE2703F	probable copper-containing oxidoreductase	0*	-1.1	1.1	15	18
OE3629R	ABC-type transport system (binding protein)	0*	1.1	-1.2	3	2
OE1465F	endopeptidase La	1	1.1	1.0	26	27
OE2866R	succinate dehydrogenase, chain B	0	1.2	1.1	14	12
OE3347F	transducer protein htrl	1	1.3	1.0	22	12
OE2149R	conserved protein	0	1.4	1.1	13	7
OE3106F	bacteriorhodopsin precursor	7		3.1	1	1
	Spot (a)		2.3			
	Spot (b)		3.5			
	Spot (c)		4.4			

Dieses Experiment gibt einen guten Überblick über das Ausmaß der Regulation (Unterschiede in der Proteinkonzentration) zwischen den beiden untersuchten Wachstumsbedingungen und ist dabei unabhängig von einer anschließenden Proteinidentifizierung. Die Regulation über das gesamte Membranproteom gesehen ist relativ gering, was bei den verglichenen bioenergetisch völlig unterschiedlichen Wachstumsbedingungen der Zellen überrascht.

Die Identifizierung war für periphere Membranproteine erfolgreich, wobei die Identifizierung von integralen Membranproteinen durch das Anwenden der Hochdurchsatz-Technik MALDI-TOF eingeschränkt ist [Klein *et al.*, 2005]. Die am höchsten regulierten, mit PMF nicht identifizierten Proteinspots (in Abb. 4.25 eingekreist), wurden auf korrespondierenden Gelen mit MALDI-TOFTOF über eine MS/MS-Messung analysiert. In drei Spots wurde eindeutig BR identifiziert (Tabelle 4.2). Ein weiterer Hinweis für die Identität der Spots wurde durch den Vergleich der BR-Deletionsmutante TOM erhalten, bei dessen zweidimensionaler Auftrennung des Membranproteoms diese charakteristischen Spots fehlen (Daten nicht gezeigt).

Tab. 4.3: Die drei typischen Spots, in Abb. 4.25 mit a-c markiert, wurden von vier vergleichbaren Gelen (Gel-ID) ausgeschnitten, tryptisch verdaut und mit MALDI-MS/MS vermessen. Für jede Identifizierung von BR wurde der jeweilige Protein Score, der Confidence Level sowie die Anzahl an Peptiden des Proteins angegeben, die mit Hilfe der MS/MS-Messung identifiziert werden konnten.

Gel-ID)	OE-Code	Protein	Protein Score	Confidence Level	Nr. ident. Peptide
ndg0144sds06	Spot a	OE3106R	Bacteriorhodopsin	53	99.9	2
	Spot b	OE3106R	Bacteriorhodopsin	40	99.9	1
	Spot c	OE3106R	Bacteriorhodopsin	56	100	1
ndg0145sds05	Spot a	OE3106R	Bacteriorhodopsin	25	89	1
	Spot b					
	Spot c					
ndg0170sds06	Spot a	OE3106R	Bacteriorhodopsin	97	100	2
	Spot b	OE3106R	Bacteriorhodopsin	49	99.9	1
	Spot c	OE3106R	Bacteriorhodopsin	37	99.9	1
ndg0171sds05	Spot a	OE3106R	Bacteriorhodopsin	100	100	2
	Spot b	OE3106R	Bacteriorhodopsin	52	99.9	1
	Spot c	OE3106R	Bacteriorhodopsin	39	99.9	1

Die drei BR-Spots zeigten Regulationsfaktoren von 2.3 (a), 3.5 (b) und 4.4 (c). In einem ICPL Experiment, welches im Folgenden beschrieben wird, wurde BR über ein einziges Peptid mit einem Regulationsfaktor von 3.1 quantifiziert. Mittels dieser gelfreien Methode ist es nicht möglich zwischen Isoformen zu unterscheiden und so wird das Protein als eine Mischung aus
den drei Formen quantifiziert. Unter Berücksichtigung der relativen Intensitäten der Spots ist die Korrelation der beiden Techniken gut. Dieses gilt ebenfalls für das durch beide Techniken als reguliert identifizierte Protein OE4311F sowie für die große Zahl an nicht regulierten Proteinen (Tabelle 4.2).

Das DIGE System konnte in Kombination mit 16-BAC-PAGE für Membranproteine zwar erfolgreich angewandt werden, aber die anschließende Identifizierung der Proteine mit PMF MALDI-TOF erwies sich als problematisch [Klein *et al.*, 2005]. Daher wurde die Quantifizierung der Unterschiede im Membranproteom von aerob und phototroph kultivierten Zellen auf eine massenspektrometrie-basierte Strategie ausgeweitet, bei der die Proteinidentifizierung über MS/MS-Messungen durchgeführt werden kann.

4.4.1.4 Quantifizierung von Membranproteinen – ICPL (Isotope-Coded Protein Label)

Bei der ICPL-Technologie werden isolierte Proteine aus verschiedenen zellulären Zuständen mit unterschiedlich isotopenmarkierten Reagenzien versehen und anschließend durch Massenspektrometrie quantitativ verglichen. Die delipidierten und lyophilisierten Proteine wurden eingewogen und somit gleiche Proteinmengen der beiden Zustände isotopenmarkiert. Trotz der Abwesenheit von Detergenzien lösten sich die beiden Proteinproben vollständig in dem verwendeten Puffer (6 M Guanidin-HCl/ 0.1 M HEPES) bei einer Proteinkonzentration von 5 mg/ml.

Die Isotopenmarkierung erfolgte in Zusammenarbeit mit Alexander Schmidt, eine detailierte Beschreibung findet sich bei Schmidt *et al.*, 2005. Die aerobe Probe wurde mit der leichten (¹²C) und die phototrophe Probe mit der schweren (¹³C) Variante des Reagenz markiert. Gleiche Mengen der beiden ICPL-markierten Proben wurden nach Mischung weiter aufgearbeitet.

Die enzymatische Spaltung der Membranproteine erfolgte in Lösung und erlaubte so die gelfreie quantitative Membranproteinbestimmung. Hierzu wurde die Proteinlösung mit einem wässrigem Puffer (10 mM Tris) bis zu einer für das Enzym tolerablen Guanidin-hydrochlorid Konzentration verdünnt (für Trypsin = 0.5 M; für Glu-C = 1 M), der optimale pH-Wert für das verwendete Enzym eingestellt und die Proteine über Nacht inkubiert. Abschließend wurde die Probe unter Vakuum bei 40°C wieder auf ihr ursprüngliches Volumen reduziert.

Die entstehenden Peptide wurden an einer Nano-HPLC getrennt, Fraktionen automatisch mit Matrix gemischt und auf ein Target präpariert (Dried-Droplet Methode, Probot). Die Quantifizierung der Peptide erfolgte mittels MALDI-TOFTOF-MS, ihre Identifizierung durch MS/MS-Analyse. Die bei der MS-Messung vorgeschlagenen Peptid-Paare, als Träger der quantitativen Information wurden bevorzugt mit MS/MS vermessen. Einzelne Massensignale, sogenannte Singlets, wurden bei verbleibender Kapazität zusätzlich analysiert. Diese dienen ausschließlich der Identifizierung von Proteinen, tragen aber nicht zur Quantifizierung bei.

Bei der ICPL-Technologie erfolgt die Proteinquantifizierung auf Peptidebene. Diese setzt zwei Peptideigenschaften für eine Quantifizierung voraus: eine Molekularmasse innerhalb des analysierten Meßfensters (800 – 4000 Da) und ein Lysin in der Peptidsequenz bzw. den freien N-Terminus mit welchem das Reagenz reagieren kann.

Für halophile Organismen ist dies limitierend, da deren Lysingehalt von Proteinen aufgrund deren Azidität wesentlich geringer ist als die anderer Organismen (Lysinanteil: knapp 2% bei *H. salinarum* gegenüber 6% bei mesophilen Proteinen). Eine zusätzliche Beeinträchtigung die speziell für Membranproteine zum Tragen kommt, ist die Größe der enzymatisch generierten Peptide, die oft außerhalb des Meßfensters (800-400 Da) liegen [Klein *et al.*, 2005]. Hinzukommt der vermehrte Verlust von TMD-Peptiden an RP-Säulen (siehe Kapitel 4.3.2).

In Summe bedeutet dies für halophile Membranproteine, dass wesentlich weniger Peptide pro Protein für eine Quantifizierung zur Verfügung stehen, als dies für cytoplasmatische Proteine der Fall ist (Kapitel 5.5.1).

Als Folge dessen besitzt z.B. Bakteriorhodopsin (BR) nach ICPL-Markierung und tryptischem Verdau kein einziges Peptid mit beiden oben genannten Eigenschaften und entzieht sich somit einer Quantifizierung. Durch einen kombinierten Verdau mit Trypsin und GluC konnte für BR ein ICPL-markiertes Peptid der Masse 1125 Da generiert werden, welches zur Quantifizierung dieses Proteins führte. Das Peptid repräsentiert einen Teil der Helix 6 von BR. Die schwache Intensität des MS-Signals (Abb. 4.26) demonstriert erneut die Schwierigkeit der Analyse dieser Art von Peptiden (Kapitel 4.3.2) und ist nur bei sehr hoch abundanten Proteinen möglich.

Abb. 4.26: Quantifizierung von Bacteriorhodopsin mittels ICPL. MS-Spektrum mit zusätzlich vergrößertem Isotopenpaar des 1125 Da Peptid von BR. Die beiden Signale des Peptidpaares sind dem jeweiligen Zustand zugeordnet.

Für eine umfassende quantitative ICPL-Analyse des aeroben und phototrophen Membranproteoms von *H. salinarum* wurden verschiedene Verdauszenarien für die gleiche Probe angewandt: GluC, Trypsin und die Kombination beider Enzyme. Während Peptide aus einem GluC-Verdau und der kombinierten proteolytischen Spaltung mit beiden Enzymen einmal vermessen wurden, wurde der tryptische Verdau zweimal unabhängig der LC-MS/MS Messung unterzogen. Dies diente der Abschätzung der technischen Reproduzierbarkeit der LC-MS/MS Analyse. Tabelle 4.4 fasst die Ergebnisse der 4 Experimente zusammen, Details finden sich im Anhang (Tabelle 7.4).

Tab. 4.4: Statistik der LC-MS/MS ICPL Experimente. Für alle vier individuellen Experimente [1] wurden die zugewiesenen Massensignale in Peptid-Paare oder individuelle Massensignale (Singlets) gruppiert [2]. Für jede Gruppe ist die Anzahl der aufgenommenen MS/MS Spektren [3], die Anzahl der Spektren die einem Peptid zugeordnet werden konnten [4], sowie deren Anzahl nach manueller Kontrolle [5] gegeben. Die daraus resultierende Anzahl an identifizierten Proteinen findet sich in Spalte 6 und 7.

		N	IS/MS Spektre	en	individuelle	Proteine
Enzymat.	Paar/	Anzahl	automatisch	manuell	automatisch	manuell
Verdau	Singlet	insgesamt	zugewiesen	korrigiert	zugewiesen	korrigiert
Trypsin 1	Paare	802	247 (30.80%)	217	156	127
	Singlets	883	338 (38.28%)	347	113	110
Trypsin 2	Paare	1146	349 (29.49%)	238	155	132
	Singlets	1388	433 (31.20%)	469	147	146
GluC	Paare	550	113 (20.55%)	90	57	48
	Singlets	628	112 (17.83%)	115	45	45
GluC/Typsin	Paare	528	200 (37.88%)	175	97	94
	Singlets	421	169 (40.14%)	183	52	54

Nach automatischer Messung und daraus resultierender Identifizierung von Peptiden und Peptidpaaren (Tabelle 4.4, Spalte 4 und 6) wurden die Daten manuell kontrolliert. Die dabei angewendeten Kriterien werden in Kapitel 3.2.13.2.3 beschrieben. Dies resultiert in einer Reduktion um ca. 20% der automatisch vorgeschlagenen Peptide je Experiment und in einer Reduktion quantifizierter Proteine um 12% (Tabelle 4.4, Spalte 5 und 7).

Für die Quantifizierung wurden die Ergebnisse der vier Experimente kombiniert. Somit erhöht sich nicht nur die Wahrscheinlichkeit für ein Protein quantifiziert zu werden, sondern auch die Anzahl der zur Quantifizierung beitragenden Peptide pro Protein. Durchschnittlich konnten 4 Peptide pro Protein quantifiziert werden, was die Zuverlässigkeit der Quantifizierung erhöht, dennoch konnten 26% der Proteine nur anhand eines Peptides quantifiziert werden.

Lipid-Anker-Proteine, Membranproteine, Proteine, für die keine andere Membranzugehörigkeit vorhergesagt werden konnte. Von den 206 identifizierten Proteinen konnten 175 (85%) quantifiziert werden. konnten 163 Insgesamt Membranproteine identifiziert werden, für 83% (136) dieser konnten quantitative Daten erhoben werden. Eine sehr ähnliche Identifizierungsund Quantifizierungsrate von TMD und Nicht-TMD-Proteinen zeigt, dass diese Technik in Kombination mit einer optimalen Probenpräparation integrale Membranproteine nicht benachteiligt, trotz der beschriebenen Probleme. 13 der 39 quantifizierten nicht-TMDbisher funktionell Proteinen sind nicht sowohl charakterisiert und können daher cytoplasmatische Kontaminationen als auch membranassoziierte Proteine darstellen.

Damit erweist sich diese Technologie für eine Hochdurchsatz-Quantifizierung von Membranproteinen als geeignet.

gruppiert alle identifizierten (A) und quantifizierten (B) in integrale oteine, Lipid-Anker-Proteine, Membranproteinkomplex-Untereinheiten und

Abb. 4.27: Kategorien der 206 identifizierten (A) und 175 quantifizierten (B) Proteine. TMD wurde durch TMHMM, der Lipidanker durch das lipobox-Motiv und Untereinheiten von Membranprotein-komplexen durch den Homologievergleich mit anderen Organismen zugeordnet (www.halolex.de).

Abb. 4.27

4.4.1.4.1 Abschätzen der Zuverlässigkeit der Proteinidentifizierung

Basis der Quantifizierung eines Proteins ist die korrekte Identifizierung des quantifizierten Peptids. Für eine zuverlässige massenspektrometrische Analyse ist es entscheidend, falsch positive Identifizierungen zu minimieren, dabei aber gleichzeitig falsch Negative möglichst zu vermeiden. Um ICPL-Analysen in diesem Sinne zu optimieren, wurde der Datensatz des Experimentes "Trypsin 1" herangezogen und ein Grenzwert ermittelt, der diesem Ziel nahe kommt. Die Rohdaten wurden mit denen von zwei Datenbanken verglichen, zum einen der Standard Datenbank (www.halolox.mpg.de), zum anderen einer reversen Datenbank bei welcher die Proteinsequenzen vom C- zum N-Terminus geschrieben sind [Moore et al., 2002; 2003]. einer solchen Datenbank sind Charakteristika Peng *et* al., In wie Aminosäurezusammensetzung und Peptidmasse nahezu identisch, während das auf der Aminosäuresequenz basierende Fragmentionen-Spektrum, das die Grundlage der Peptididentifizierung bei einer MS/MS-Messung darstellt, maximal unterschiedlich ist. Die Falsch-positiv Rate wurde unter der Annahme berechnet, dass alle Identifikationen in der Reversen Datenbank falsch positive und alle Identifikationen in der Standard Datenbank korrekte Identifizierungen sind.

Tab. 4.5: Berechnung der Rate der falsch positiv identifizierten Peptide.

Für verschiedene Mascot Confidence Levels ist die Anzahl der identifizierten Peptide für die Standard und die Reverse Datenbank angegeben. Es wurde zwischen markierten und nichtmarkierten individuellen Massensignalen (Singlets) sowie zwischen Signalpaaren unterschieden.

Mascot zugewiesene Peptide (insg.)		nicht markie	nicht markierte Singlets		ICPL-markierte Singlets		ICPL-markierte Paare	
confidence	Standard	Reverse	Standard	Reverse	Standard	Reverse	Standard	Reverse
Level	Datenbank	Datenbank	Datenbank	Datenbank	Datenbank	Datenbank	Datenbank	Datenbank
75%	728	86 (11.81%)	246	73 (29.67%)	254	6 (2.36%)	228	7 (3.07%)
80%	710	73 (10.28%)	239	61 (25.52%)	246	6 (2.44%)	225	6 (2.67%)
85%	688	48 (6.98%)	232	41 (17.67%)	233	4 (1.72%)	223	3 (1.35%)
90%	649	30 (4.62%)	218	24 (11.01%)	215	4 (1.86%)	216	2 (0.93%)
95%	595	11 (1.85%)	204	10 (4.90%)	185	0 (0%)	206	1 (0.49%)
98%	530	5 (0.94%)	191	5 (2.62%)	157	0 (0%)	182	0 (0%)

Die Zahl der identifizierten Peptide ist von der Einstellung des MASCOT Confidence Levels abhängig. Dieser gibt den Prozentsatz der korrekten Identifizierungen bezogen auf die Gesamtzahl der Identifizierungen an und wird vom Programm berechnet. Im Falle von nicht markierten Peptiden korreliert der berechnete Anteil an falsch positiven Identifizierungen gut mit dem angewandten MASCOT-Confidence Level. (Tabelle 4.5, Spalte 5). Diese Analyse zeigt, dass ICPL-markierte Peptide bessere Ergebnisse liefern, d.h. es wurden deutlich weniger falsch positive Identifizierungen mit der Reversen Datenbank erhalten als von MASCOT berechnet. Dies ist auf zwei ihrer Eigenschaften zurück zu führen: (i) die Peptidmasse nimmt um genau die Masse der ICPL-Sonde(n) zu, deren Zahl mit der Anzahl der Lysine in der Peptidsequenz (und gegebenenfalls des N-Terminus) übereinstimmen muss. Die Konsequenz hieraus ist, dass nur 1.86% falsch-positive bei einem Confidence-Level von 90% erhalten wurden (Tabelle 4.5, Spalte 7). (ii) Die Massendifferenz von Peak-Paaren ist definiert durch die Anzahl der Sonden welche aus der Anzahl der Lysine in der identifizierten Peptidsequenz hervorgeht. Für diese Massendifferenz wurde eine sehr stringente Toleranz von 0.05 Da erlaubt. Durch diese zusätzliche Einschränkung wurden nur 0.93% falsch-positiv identifizierte Paare bei einem Level von 90% erhalten (Tabelle 4.5, Spalte 9).

Aufgrund dieser Evaluierung wurden MASCOT-Grenzen für die Daten gesetzt, die eine Falsch-Postiv-Rate von weniger als 2%, d.h. 98% Sicherheit der Identifizierung gewährleisten. Daher wurde für Paare ein MASCOT Confidence-Level von 90%, für Singlets von 98% angewendet um für letztere auch bei nicht markierten Peptiden die Falsch-Positiv-Rate bei 2% zu halten.

4.4.1.4.2 Berechnung der ICPL-Regulationsfaktoren und Bewertung deren Variabilität

Die Quantifizierung basiert auf dem Berechnen der Verhältnisse der Peak-Flächen von Peptidpaaren, welche die ICPL-Sonde in ihrer schweren (C^{13} , phototroph) und leichten (C^{12} , aerob) Form tragen. Daraus resultiert eine asymmetrische Skala mit Werten von 1 bis Unendlich für Proteine mit höherer Abundanz im phototrophen Zustand. Proteine mit einer Regulation von 0 bis 1 sind dagegen mit höherer Abundanz im aeroben Zustand präsent. Um eine bessere Vergleichbarkeit der Regulation in beide Dimensionen zu gewährleisten werden diese Werte in eine symmetrische Skala umgerechnet. Werte zwischen 0 und 1 werden als deren negativer reziproker Wert angegeben, sodass das Ausmaß der Regulation in beide Richtungen in dem gleichen numerischen Betrag resultiert und somit die Zahlenwerte besser vergleichbar sind. In dieser Skala werden daher Werte von +1 bis -1 ausgeschlossen.

Für jedes quantifizierte Peptidpaar wird der Regulationsfaktor berechnet. Für Proteine deren Quantifizierung auf mehreren Peptiden beruht, wurde die Streuung der Regulationsfaktoren mit Hilfe des Programms Spotfire berechnet. Dabei wurde (i) der Einfluss der quantifizierten Peptide pro Protein und (ii) der Einfluss von verschiedenen Verdauszenarien im Vergleich zur technischen Reproduzierbarkeit der LC-MS/MS Messung abgeschätzt. Die Standardabweichung (s.d.) ist in Prozent der Regulation angegeben (Abb. 4.28). Beim Vergleich von Proteinquantifizierungen die auf 2 bzw. 3 oder mehr Peptiden basieren, zeigt sich, dass die Variabilität für letztere leicht erhöht ist (7.9% versus 10.4%).

Zusätzlich wurde die Standardabweichung der technischen Wiederholung der LC-MS/MS Messung (Abb. 4.28, weiße Balken) verglichen mit der Standardabweichung der Quantifizierung, die auf allen 4 Experimenten beruht (Abb. 4.28, schwarze Balken). Es zeigt sich, dass letztere eine höhere Variabilität als die Zweifachbestimmung der identischen Probe besitzt (Abb. 4.28).

Abb. 4.28: Varianz ICPLder Methode. Die Standardabweichung als Prozent des Regulationsfaktors wurde für Proteine, die mit mindestens drei Peptiden quantifiziert wurden, berechnet (4 Experimente: Balken; schwarze technisches Replikat: weiße Balken). Zusätzlich wurde die Berechnung für Proteine, die auf der Basis zweier Peptide quantifiziert wurden, wiederholt (gestreifte Balken). Das Inset zeigt durchschnittliche die Standardabweichung jeder Gruppe.

Für die analysierten Untergruppen ist die Standardabweichung der Quantifizierung unter oder leicht über 10%. Die dreifache mittlere Standardabweichung, d.h. 30% Unterschied in der Intensität der Signalpaare (Regulationsfaktor +/- 1.3), wird daher als signifikante Änderung des Proteingehalts in dieser Analyse gewertet.

4.4.1.4.3 Regulierte Proteine (aerob – phototroph)

Die Analyse, gemessen an den Kriterien der statistischen Beurteilung der Quantifizierung (Kapitel 4.4.1.4.2), resultiert in 24 Proteinen die unter phototrophen Wachstumsbedingungen hochreguliert sind (Regulationsfaktoren > 1.3; Abb. 4.29, schwarze Balken) sowie in 20 Proteinen die bevorzugt bei aerober Kultur exprimiert sind (Regulationsfaktoren < -1.3; Abb. 4.29, weiße Balken). Die regulierten Proteine sind wie erwartet an aeroben oder anaeroben/phototrophen bioenergetischen Prozessen, Transport und an der Proteinsynthese beteiligt. Die verbleibenden Proteine gehören einigen anderen Funktionsklassen, bzw. solchen deren Funktion ist noch nicht geklärt, an (Abb. 4.29).

Abb. 4.29: Funktionsklassen der Proteine. Die Proteine regulierten wurden in die Klassen aerobe und anaerobe Bioenergetik, Transportprozesse und Proteinbiosynthese/ Translation eingeteilt. Proteine mit anderer Funktion wurden unter dem Begriff "Andere" zusammengefasst sowie eine Gruppe von Proteinen mit unbekannter Funktion erstellt. Die Zuweisung der Proteine zu einer Gruppe erfolgte aufgrund der Funktionsvorhersage (www.halolex.mpg.de).

Das am deutlichsten regulierte Protein ist wie in der DIGE-Analyse (Kapitel 4.4.1.3) Bacteriorhodopsin (BR). Dieses Protein ist unter phototrophen Wachstumsbedingungen dreifach höher abundant als bei aeroben Bedingungen (Tabelle 4.6). Proteine, die in die Transkriptionsregulation und Biosynthese von BR involviert sind (TFB Homolog, BAT Regulator), wurden aufgrund deren cytoplasmatischer Lokalisation in dieser Analyse des Membranproteoms nicht quantifiziert. Diese Proteine wie auch die Phytoen-Dehydrogenase, ein Schlüsselenzym der Retinalbiosynthese, wurden bei der quantitativen Analyse des Cytosol-Proteoms als hochreguliert unter phototrophen Bedingungen gefunden [Baliga et al., 2002; Doktorarbeit Tebbe 2005]. Neben BR wurden zwei Proteinkomplexe unter phototrophen Bedingungen hochreguliert gefunden: Zum einen die DMSO-Reduktase, von welcher die A (OE2223F) und B (OE2225F) Untereinheiten quantifiziert wurden (Tabelle 4.6); dieser Komplex ist als Endoxidase beschrieben, die unter anaeroben Bedingung Elektronen auf DMSO überträgt [Müller und DasSarma, 2005]. Zum anderen der halobakterielle homologe Komplex der anaeroben sn-Glycerol-3-Phosphat-Dehydrogenase aus E. coli, für welche die A- (OE3763F) und C- (OE3765F) Untereinheit quantifiziert werden konnten.

Unter aeroben Bedingungen werden drei Untereinheiten von zwei unterschiedlichen Cytochrom-C-Typ terminalen Oxidasen hochreguliert. Diverse Untereinheiten der Komplexe I, II und III sowie der ATPase wurden quantifiziert, sind aber nicht signifikant reguliert (Anhang, Tabelle 7.4).

Eine große Gruppe hochregulierter Proteine unter aerobem Wachstum sind in Transportprozesse involviert. 10 Untereinheiten von 9 verschiedenen ABC-Typ Transportsystemen konnten quantifiziert werden.

Auffällig ist eine signifikante Gruppe von ribosomalen Proteinen, die unter phototrophen Bedingungen hochreguliert ist. Ob es sich hier um eine tatsächliche Induktion der Ribosomen-Biosynthese oder einer gesteigerten Membranassoziation als Folge von erhöhter Membranprotein-Biosynthese handelt, kann auf Ebene dieses proteomischen Vergleichs nicht unterschieden werden. Drei der vier auch in Kapitel 4.4.1.4.4 beschriebenen ribsomalen Proteine sind Bestandteil der kleinen Untereinheit des Ribosoms.

Darüber hinaus wurde eine Anzahl von "hypothetischen" Proteinen als reguliert gefunden. Bis jetzt ist es jedoch nicht möglich diesen Proteinen eine Funktion und sie damit einem zellulären Prozess zuzuordnen, der vom Wechsel von aerobem zu phototrophem Wachstum beeinflusst ist.

Die in diesem Experiment als reguliert identifizierten Proteine sind in folgender Tabelle zusammengefasst und nach ihrem Regulationsfaktor geordnet.

Tab. 4.6: Proteine die unter phototrophen (A) bzw. aeroben Bedingungen (B) reguliert sind. Gegeben sind OE-Code (1), Proteinname (2), die Funktionsklasse, die Anzahl der vorhergesagten TMD's (4) oder Lipidanker (0*, 4), die Anzahl der identifizierten Peptide (5) sowie die Anzahl der Peptidpaare, die zur Quantifizierung beitrugen (6). Der Regulationsfaktor (7) sowie die Standardabweichung (s.d.) wurden wie in Kapitel 4.4.1.4.2 beschrieben berechnet. Die Funktionsklassen entsprechen den in Abb. 4.29 beschriebenen.

OE-Code	Protein Name	Funktions- klasse	TMD	identifiz. Peptide	Peptid Quanti.	Regulations- faktor	s.d.	s.d. (%)
OE3106R	bacteriorhodopsin precursor	anaerob BE	7	1	1	3,05	-	-
OE2116R	conserved hypothetical protein	unbekannt	2	2	1	2,36	-	-
OE3947R	probable mechanosensitive channel	Transport	5	1	1	2,33	-	-
OE4735R	ribosomal protein S7	Translation	0	3	5	2,08	0,23	14,3
OE3763F	glycerol-3-phosphate dehydrogenase, chain A	anaerob BE	0	3	2	1,99	0,01	0,9
OE2121F	conserved hypothetical protein	unbekannt	2	4	1	1,91	-	-
OE1597F	hypothetical protein	unbekannt	0*	1	1	1,88	•	-
OE2225F	dimethylsulfoxide reductase, chain B (electron transfer protein)	anaerob BE	0	1	2	1,80	0,06	4,1
OE2159R	ribosomal protein S3a.eR	Translation	0	2	4	1,74	0,25	18,8
OE1724R	conserved hypothetical protein	unbekannt	1	1	1	1,74	-	-
OE2223F	probable dimethylsulfoxide reductase, chain A (reductase subunit)	anaerob BE	0	9	6	1,54	0,13	10,6
OE1294R	ribosomal protein L15.eR	Translation	0	7	9	1,52	0,12	10,1
OE1211F	heat shock protein homolog	unbekannt	4	4	7	1,48	0,10	8,4
OE3415F	ribosomal protein S5	Translation	0	2	2	1,48	0,11	9,5
OE2316R	ABC-type transport system ATP-binding protein	Transport	0	2	3	1,39	0,11	10,3
OE3392F	ribosomal protein L2	Translation	0	1	2	1,38	0,21	19,3
OE5187R	hypothetical protein	unbekannt	0	6	3	1,37	0,19	18,1
OE2092F	conserved hypothetical protein	unbekannt	2	1	3	1,34	0,17	16,2
OE3342R	conserved hypothetical protein	unbekannt	2	2	3	1,34	0,10	9,7
OE3533F	probable protoporphyrinogen oxidase	andere	0	1	2	1,32	0,14	13,3
OE1847R	hypothetical protein	unbekannt	3	1	1	1,32	•	-
OE3765F	glycerol-3-phosphate dehydrogenase, chain C	anaerob BE	0*	3	6	1,32	0,09	9,2
OE1365F	conserved hypothetical protein	unbekannt	8	2	2	1,31	0,02	2,2
OE2390R	flagella accessory protein	andere	0	1	2	1,31	0,10	9,5

A hochregulierte Proteine unter phototrophen Bedingungen

OE-Code	Protein Name	Funktions- klasse	TMD	identifiz. Peptide	Peptid Quanti.	Regulations- faktor	s.d.	s.d. (%)
OE4311F	ABC-type transport system periplasmic substrate-binding protein	Transport	0*	6	2	-2,38	0,01	2,0
OE1442R	conserved hypothetical protein	unbekannt	0	1	1	-2,33	-	-
OE4301R	ABC-type transport system ATP- binding protein	Transport	0	10	6	-2,12	0,06	16,0
OE2076F	drug export protein homolog	Transport	12	2	2	-1,94	0,09	22,7
OE1932R	conserved hypothetical protein	unbekannt	0	3	3	-1,83	0,02	5,8
OE1976R	cytochrome-c oxidase, chain I	aerob BE	13	1	2	-1,68	0,04	9,1
OE3641F	ABC-type transport system periplasmic substrate-binding protein	Transport	0*	2	1	-1,61	-	-
OE4551F	ABC-type transport system periplasmic substrate-binding protein	Transport	0*	13	10	-1,55	0,06	12,1
OE1676R	probable ABC-type phosphate transport system permease protein	Transport	14	1	1	-1,53	-	-
OE3367F	dnaJ N-terminal domain protein	unbekannt	2	1	1	-1,52	-	-
OE4576F	probable ABC-type transport system substrate-binding protein	Transport	0*	2	1	-1,52	-	-
OE4304R	ABC-type transport system permease protein	Transport	6	5	7	-1,48	0,08	14,6
OE2964F	signal-transducing histidine kinase homolog	unbekannt	0	1	1	-1,48	-	-
OE4357F	ABC-type transport system periplasmic substrate-binding protein	Transport	0*	5	2	-1,43	0,11	20,4
OE1202F	probable ABC-type transport system ATP-binding/permease protein	Transport	4	5	5	-1,43	0,08	14,9
OE3597R	hypothetical protein	unbekannt	4	1	1	-1,36	-	-
OE5032R	hypothetical protein	unbekannt	1	1	3	-1,32	0,04	7,1
OE1988R	cytochrome-c oxidase, chain II	aerob BE	3	2	2	-1,31	0,02	4,0
OE4070R	cytochrome-c oxidase, chain I	aerob BE	13	3	1	-1,31	-	-
OE3907R	ABC-type transport system permease protein	unbekannt	6	3	6	-1,30	0,08	14,1

B hochregulierte Proteine unter aeroben Bedingungen

4.4.1.4.4 Zeitreihenexperiment

Abb. 4.30: Sucrosegradienten in Hochsalz Aufschluß durch nach Sonifizieren von Kulturen, die aerob im Dunkeln bis zu einer Zelldichte von 30-40 Klett kultiviert wurden. Diese wurden entweder direkt zur Membranisolation herangezogen (0h), oder anschließend für 3, 10 oder 24h unter phototrophen Bedingungen weiter kultiviert.

Um die Induktion der BR Biosynthese zeitlich aufzulösen, wurden aerobe Kulturen mit einer Zelldichte 30-40 Klett für unterschiedliche Zeit von der phototrophen Wachstumsbedingung unterzogen. Vier Kulturen wurden zunächst parallel im Dunkeln unter aeroben Bedingungen angezogen. Eine dieser Kulturen wurde für die Membranpräparation herangezogen, und diente als Referenz für alle anderen Kulturen (0h). Die restlichen Kolben wurden luftdicht verschlossen und das Wachstum für weitere 3, 10 oder 24h unter phototrophen Wachstumsbedingungen fortgesetzt (Abb. 4.30). Eine Messung der Sauerstoffkonzentration zeigte, dass hier bereits nach 5 Minuten im Medium kein Sauerstoff mehr nachweisbar war (Daten nicht gezeigt). Der Übertritt einer Kultur mit hoher Zelldichte von aerobem zu phototrophem Wachstum ist demnach physiologisch nicht gleichzusetzen mit einer Kultur, die frisch inokulliert von Beginn an unter phototrophen Bedingungen wächst und der sich im Medium befindliche Sauerstoff wesentlich langsamer verbraucht wird. Dieses zeigt sich z.B. durch die Tatsache, dass sich die Zelldichte auch nach 24h noch nicht wesentlich verändert hatte, also keine Zellteilung mehr stattfand.

Von allen Kulturen wurden Membranen isoliert, mit ¹²C-ICPL-Sonde (0h) oder ¹³C-ICPL-Sonde (3, 10 und 24h) markiert und die phototrophen Kulturen mit je der aeroben Kontrollkultur gemischt. Der Verdau erfolgte je mit Trypsin sowie der Kombination von Trypsin mit GluC um eine ICPL-Quantifizierung für BR zu ermöglichen (vgl. Kapitel 4.4.1.4). Die Quantifizierung erfolgte durch den Vergleich aller phototrophen Kulturen mit der aeroben Kontrolle.

Unter diesen Bedingungen steigt die Menge BR linear bis zu fünffach innerhalb von 24h an (Abb. 4.31), welches auch in diesem Experiment das am höchsten regulierte

Abb. 4.31: Veränderungen der relativen Abundanz von BR, COX 1B und vier ribosomalen Proteinen (Rsp7, Rsp3aR, Rp115R, Rsp5) in Abhängigkeit von 3, 10 oder 24h phototrophem Wachstum.

Protein war. Eine Untereinheit der Cytochrom-C-Typ Terminalen Oxidase konnte in diesen Experimenten quantifiziert werden und deren Proteingehalt bleib, anders als bei adaptierten Kulturen, konstant. Andere Proteine die in die Bioenergetik involviert sind, konnten nicht quantifiziert werden. Zusätzlich wurden verschiedene ribosomale Proteine nachgewiesen, deren Proteingehalt linear abfiel (Abb. 4.31) und die damit im Vergleich zu adaptierten Kulturen gegenläufig reguliert sind.

Zusammenfassend wird deutlich, dass trotz maximal verschiedener bioenergetischer Wachstumsbedingungen (aerob – phototroph) die quantitativen Unterschiede im Membranproteom relativ gering sind. Dies deckt sich mit quantitativen Untersuchungen des cytosolischen Proteoms dieser beiden Wachstumsbedingungen bei *H. salinarum*. [Doktorarbeit Tebbe 2005].

4.4.2 Anaerobes Wachstum mit DMSO?

Der quantitative Vergleich des Membranproteoms von aerob bzw. phototroph/anaerob adaptierten Zellen (Kapitel 4.4.1) zeigt, dass neben BR zur Photosynthese auch die membranassozierte DMSO-Reduktase bei phototroph/anaerobem Wachstum hochreguliert wird. Dieser Komplex ist beschrieben als eine terminale Oxidase, durch welche Elektronen auf alternative Elektronenakzeptoren wie DMSO oder TMAO übertragen werden [Müller und DasSarma 2005]. Im Folgenden wurde geprüft, ob *H. salinarum* in der Lage ist, im Dunkeln unter anaeroben Bedingungen bei Verfügbarkeit von DMSO zu wachsen.

4.4.2.1 Definition des DMSO-Wachstums

H. salinarum Stamm R1 wurde in Vollmedium im Dunkeln kultiviert. Dem Medium wurden entweder 0.5% Arginin oder verschiedene Konzentrationen an DMSO zugegeben (0.2%, 0.5%, 1%, 2% und 3 %), als Kontrolle dient eine Kultur ohne DMSO/Arginin. Die Kulturen wurden wie bei phototrophen Kulturen (Kapitel 4.4.1.1) nach dem Animpfen luftdicht verschlossen und unter Schütteln im Dunkeln inkubiert. Für jede Bedingung wurden zwei Kulturen parallel angezogen, die Zelldichten mit dem Klett-Photometer bestimmt und zu jedem Zeitpunkt mit dem Mittelwert beider Parallelkulturen die Wachstumskurven erstellt (Abb. 4.32). Zu erwarten wäre bei einer anaeroben auf DMSO basierenden Atmung ein schnelleres und zu höheren Zelldichten ansteigendes Wachstum der Kulturen mit zugegebenem DMSO im Vergleich zur Kontrolle.

Abb. 4.32: A: Vergleich des Wachstums vom *H. salinarum* Stamm R1 unter verschiedenen Bedingungen. Dem Komplexmedium wurden entweder 0.5% Arginin oder 0.2%, 0.5%, 1%, 2% und 3% DMSO zugegeben, als Kontrolle diente eine Kultur ohne DMSO/Arginin. 35 ml Medium wurden mit je 1 ml Standkultur angeimpft, die Kulturen luftdicht verschlossen und unter schütteln im Dunkeln inkubiert. Je Bedingung wurde zwei Parallelkulturen kultiviert, die Zelldichte mit Hilfe eines Klett-Photometers verfolgt und die Wachstumskurven mit den Mittelwerten beider Kulturen erstellt. **B:** Wiederholung des Experiments mit verschiedenen DMSO-Konzentrationen bzw. der Kontrollkultur ohne DMSO.

Die so erstellten Wachstumskurven (Abb. 4.32-A) demonstrieren, dass die Zugabe von verschiedenen Konzentrationen DMSO im Vergleich zur Kontrollkultur (ohne DMSO) kein verändertes Wachstum zur Folge hat. Dieses wurde auch in einem weiteren Experiment bestätigt (Abb. 4.32–B). Dagegen ist ein fermentatives Wachstum mit Arginin wie in der Literatur beschrieben [Hartmann *et al.*, 1980] zu einer Zelldichte vergleichbar von aerobem Wachstum möglich (Abb. 4.32-A).

Betrachtet man diese unterschiedlichen Zelldichten in der Stationären Phase in Bezug auf Zellzahlen (eine Klett-Einheit entspricht 10⁷ Zellen/ml [Oesterhelt und Krippahl 1983]), so fällt auf, dass der Unterschied des "anaeroben" Wachstums im Dunkeln zum aeroben Wachstum in nur einer zusätzlichen Zellgeneration liegt. Dieses Ergebnis überrascht v.a. durch die Tatsache, dass ohne Zugabe von DMSO anaerob im Dunkeln ein Wachstum bis zu einer Zelldichte von ca. 60 Klett erreicht werden kann. Vergleicht man diese beiden Experimente (Abb. 4.32-A, -B), so wird deutlich, dass die geringen Unterschiede in der Zelldichte der stationären Phase zwischen der Kontrollkultur (ohne DMSO) und den Kulturen mit verschiedenen DMSO-Konzentrationen eher auf eine biologische Varianz zurück zu führen sind als auf die zugegebenen unterschiedlichen DMSO-Konzentrationen. Um dieses Wachstum (anaerob, +/- DMSO) näher zu charakterisieren wurden, wie beim phototrophen Wachstum, drei Folgekulturen einer Sauerstoffmessung unterzogen, wobei jeweils bei 30-40 Klett überimpft wurde. Der Abfall des Sauerstoffgehalts in allen drei Kulturen ist mit und ohne DMSO identisch dem phototrophen Wachstum (vgl. Abb. 4.22). Aus den Daten geht hervor, dass bei der ersten Kultur bereits nach 5 Klett-Einheiten kein Sauerstoff nachweisbar war. Dieses bedeutet, dass nach dem Verbrauch des Sauerstoffs noch drei weitere Zellteilungen stattfinden, dieses ist in beiden Kulturen (+/- DMSO) identisch. Im Vergeich dazu ist die lag-Phase der zweiten und dritten Folgekultur jeweils wesentlich kürzer und der Sauerstoff zwar in kürzerer Zeit, jedoch bei höherer Zelldichte (20 Klett Einheiten) verbraucht. Da diese Kulturen ihr Wachstum unter aeroben Bedingungen beginnen und unter Anaerobizität fortsetzen, wird dieses im Folgenden als sauerstoff-limitiertes Wachstum bezeichnet.

Diese Beobachtung steht im Widerspruch zu einer Veröffentlichung, die eine deutliche Induktion des Wachstums von *H. salinarum* Stamm NRC-1 durch DMSO nachweisen konnte [Müller und DasSarma 2005]. In einer exakten Reproduktion der Wachstumsbedingungen, d.h. Inkubation des Mediums in einem anaeroben Zelt unter reduzierenden Bedingungen sowie Inokulation in diesem (Kapitel 3.2.1.4.4), konnte weder mit noch ohne Zugabe von DMSO ein Wachstum nachgewiesen werden (Abb. 4.33). Auch fermentatives Wachstum mit 0.5% Arginin ist unter diesen Bedingungen sehr eingeschränkt (Abb. 4.33, grüne Kurve). Zusätzlich wurden aus der gleichen Stockkultur parallel Kulturen angeimpft und unter sauerstofflimitierten Bedingungen mit und ohne DMSO (vgl. oben) kultiviert. Auch hier konnten Zelldichten vergleichbar denen in den vorhergegangen Experimenten erreicht werden.

4.33: Vergleich der Abb. Kultur vom H. salinarum Stamm R1 unter anaeroben und sauerstofflimitierten Bedingungen. Bei anaerobem Wachstum wurde das Medium für 24h in reduzierender Atmosphäre inkubiert und anschließend mit einer ebenfalls inkubierten Stockkultur angeimpft. Dem Medium wurde entweder 1% DMSO oder 0.5% Arginin zugegeben, als Kontrolle diente eine Kultur ohne DMSO/Arginin. Das sauerstoff-limitierte Wachstum Erstellung sowie die der Wachstumskurven wurden wie in Abb. 4.32 beschrieben durchgeführt.

Zusammenfassend lässt sich aus diesen Versuchen ableiten, dass ein sauerstofflimitiertes Wachstum von *H. salinarum* Stamm R1 im Dunkeln bis zu einer Zelldichte von ca. 60 Klett möglich ist, wobei, gemessen an Wachstumsgeschwindigkeit und Zelldichte, kaum ein Unterschied durch die Zugabe von DMSO erreicht wird. Ein DMSO-abhängiges Wachstum im Dunkeln bei Kulturen die von Beginn an strikt anaerob sind, kann nicht nachgewiesen werden.

4.4.2.2 Quantitative Untersuchung mittels ICPL-Analyse

In den beschriebenen Wachstumsexperimenten konnte kein eindeutiger Unterschied durch DMSO detektiert werden. Es stellt sich die Frage, ob ein durch die Anwesenheit von DMSO induzierter Unterschied weniger im Zellwachstum als vielmehr auf Ebene des Membranproteoms existiert. Es sollte vor allem überprüft werden, ob dieses potentielle Substrat als Regulator für die DMSO-Reduktase dient.

H. salinarum Stamm R1 wurde in Vollmedium aerob bzw. sauerstofflimitiert im Dunkeln kultiviert, letzteres zusätzlich mit 1% DMSO. Um ein einheitliches Zellwachstum für jede Wachstumsbedingung zu gewährleisten wurde die Kultur, wie in Kapitel 4.4.2.1 beschrieben, je dreimal bei Klett 30-40 überimpft und die dritte Kultur für die Präparation der Membranproteine herangezogen. Proteine aus der aeroben Kultur wurden mit dem leichten (¹²C), Proteine aus sauerstofflimitierten Kulturen mit und ohne DMSO je mit der schweren (¹³C) ICPL-Sonde markiert.

Die Proben wurden vereinigt (aerob mit sauerstofflimitiert/DMSO sowie aerob mit sauerstofflimitiert/ohne DMSO), mit Trypsin verdaut und die Proteine mittels LC-MALDI-

TOFTOF quantifiziert und identifiziert. Für diesen Versuch wurde der Trypsin-Verdau gewählt, da im Versuch aerob – phototroph die Untereinheiten der DMSO-Reduktase bei dieser enzymatischen Spaltung quantifiziert werden konnten (Kapitel 4.4.1.4). Die komplette Liste der quantifizierten Proteine findet sich im Anhang (Tabelle 7.5 und 7.6).

Tab. 4.7: Regulationsfaktoren der Untereinheiten A-C der DMSO-Reduktase von Zellen kultiviert unter sauerstofflimitierten Bedingungen im Dunkeln mit und ohne DMSO sowie im Licht (phototroph). Dies spiegelt die relative Abundanz der Proteine in Bezug zu Zellen unter aeroben Bedingungen wieder.

		sauerstofflimitiertes Wachstum				
Dim	ethylsulfoxid Reduktase	Du	Licht			
	5	-	1% DMSO	-		
OE2223F	chain A (reductase subunit)	5,46	4,03	1,54		
OE2225F	chain B (electron transfer protein)	3,53	3,39	1,80		
OE2227F	chain C (membrane anchor subunit)	-	2,27	-		

Die Ergebnisse der Quantifizierung zeigen, dass bei sauerstofflimitiertem Wachstum im Dunkeln im Vergleich zu aeroben Kulturen die DMSO-Reduktase der am stärksten hoch regulierte Membranproteinkomplex ist, unabhängig von der Zugabe von DMSO zum Medium (Tabelle 4.7). Diese Regulation ist wesentlich deutlicher ausgeprägt als bei phototrophem Wachstum (Tabelle 4.7, sauerstofflimitiertes Wachstum im Licht, siehe auch Kapitel 4.4.1.4.3) und bei beiden anderen Ansätzen, mit und ohne DMSO, ähnlich. Dies deutet darauf hin, dass weniger die Anwesenheit des potentiellen Substrats DMSO als vielmehr die Abwesenheit von Sauerstoff der Auslöser dieser Proteinregulation ist.

Insgesamt sind bei diesen beiden Experimenten (aerob versus sauerstofflimitiert, aerob versus sauerstofflimitiert/1% DMSO) die Konzentrationsunterschiede im Membranproteom wesentlich deutlicher und damit die Regulationsfaktoren größer als beim Vergleich von aerobem – phototrophem Wachstum. So wurde z.B. in beiden Experimenten die Untereinheit A (-7.89 sauerstoff-limitiert; -8.98 sauerstofflimitiert/1% DMSO) und die Untereinheit D (-8.11 sauerstoff-limitiert; -5.56 sauerstofflimitiert/1% DMSO) der ATPase als weniger abundant bei limitiertem Sauerstoff quantifiziert, während andere Untereinheiten des Komplexes als nicht reguliert identifiziert wurden. In beiden Experimenten sind, wie beim Vergleich von aerobem und phototrophem Wachstum, mehrere ABC-Transport-Proteine herunterreguliert (Anhang, Tabelle 7.5 und 7.6).

4.4.3 Vergleich des Wachstums von *H. salinarum* in Komplex- bzw. synthetischem Medium auf Ebene des Membranproteoms

Die selektive Aufnahme von Substraten wird im Wesentlichen durch die Membranproteine einer Zelle vermittelt. Im Folgenden sollte untersucht werden, ob ein unterschiedliches Spektrum an Nährstoffen Auswirkungen auf das Membranproteom hat und die Zelle somit auf das jeweilige Nahrungsangebot durch eine Veränderung der Membranproteinausstattung reagiert.

4.4.3.1 Probenpräparation

Abb. 4.34: Sucrosegradient (10-60%) in Hochsalz nach Zellaufschluß durch Sonifizieren, die in synthetischem oder Komplexmedium kultiviert wurden. Für letzteres wird zwischen aerob und phototroph kultivierten Zellen unterschieden.

H. salinarum wurde aerob in Komplexmedium bzw. in synthetischem Medium angezogen (Kapitel 3.2.1), wobei durch das dreimalige Überimpfen der Kulturen die Adaptation der Zellen an das jeweilige Medium gewährleistet wurde. Die Zellen wurden nach dem Erreichen der stationären Phase durch Sonifizieren aufgeschlossen und die nach Ultrazentrifugation gewonnene Membran über einen Zuckergradienten in Hochsalz aufgereinigt. Zellen, die im Komplexmedium wurden, angezogen zeigen unabhängig des bioenergetischen Wachstums (aerob, phototroph) nur Gradienten eine deutliche (Vesikel-)Bande im (Abb. 4.34). Dagegen entstehen durch Sonifizieren von Zellen, die in synthetischem Medium kultiviert wurden

zwei Fraktionen, die im (Hochsalz-) Sucrosegradienten von einander getrennt werden können. Im Vergleich zum Komplexmedium kann eine etwas höher gelegene, rot gefärbte Bande (SM-A) und eine tiefer gelegene, braun gefärbte Bande (SM-B) detektiert werden (Abb. 4.34). Aufgrund ihrer Lage im Gradienten scheint die Bande SM-B eine spezifisch höhere Dichte aufzuweisen als die Fraktion SM-A bzw. als auch die einzelne Bande gewonnen von Zellen aus Komplexmedium. Sowohl die Farbe, als auch die Lage im Gradienten könnten darauf hindeuten, dass durch den Wechsel des Mediums aus einer ehemals homogenen Membran, und damit durch Sonifizieren generierten homogenen Vesikel, verschiedene distinkte Bereiche der Membran entstehen, die durch Beschallen mechanisch voneinander getrennt werden. Unabhängige Wiederholungen des Versuchs mit dem Stamm R1 aber auch mit der BR⁻ -Mutante TOM zeigten reproduzierbar dieses Phänomen (Daten nicht gezeigt). Um strukturelle Unterschiede zwischen den Subfraktionen im Sucrosegradienten aufzuzeigen, wurden in Zusammenarbeit mit Christine Kofler (Abteilung Prof. Baumeister, MPI für Biochemie) elektronenmikroskopische Aufnahmen der beiden Membranspezies aus synthetischem Medium erstellt. Abb. 4.35 zeigt je drei verschiedene Aufnahmen der oberen, roten (SM-A) bzw. der unteren braunen Bande des Sucrosegradienten (SM-B). Während bei SM-A deutlich runde Vesikel nachgewiesen werden können, erkennt man bei SM-B zum Teil Flagellen, wobei die Gesamtstruktur schwer zu definieren ist (Abb. 4.35).

Die Unterschiede der Membranen von Zellen die in Komplex- bzw. synthetischem Medium angezogen wurden, gehen über die Regulation von Proteinen hinaus, denn es entstehen zwei Membran-Subfraktionen vermutlich verschiedener Zusammensetzung. Daher werden diese Unterschiede nicht mit Techniken der Quantitativen Proteomik untersucht, die auf dem Vergleich zweier gleich präparierter Proben beruhen, da dieses hier nicht möglich ist. Bei derart fundamentalen Veränderungen der Membran kann aber bereits das Proteininventar zur Charakterisierung der Differenzen und damit deren möglicher Funktion dienen

4.4.3.2 Das Proteininventar der Subfraktionen SM-A und SM-B

Abb. 4.36: 1D SDS Gel von Fraktionen SM-A und SM-B, jeweils in verschiedenen Konzentrationen aufgetragen.

Proben beider Fraktionen wurden mit SDS solubilisiert, über ein 1D-Gel getrennt und die mit Proteinbanden Coomassie gefärbt (Abb. 4.36). Das Bandenmuster unterscheidet sich deutlich zwischen den Fraktionen SM-A und SM-B. Während bei SM-A am oberen Bereich des Gels (Abb. 4.36, 11) das typische Präzipitat, hervorgerufen durch das S-layer Glykoprotein (OE4759F), zu erkennen ist, fehlt dieses bei SM-B (Abb. 4.36, 1). Dagegen können hier die typisch intensiven Banden der Flagelline (Abb. 4.36, 6-8) detektiert werden. Zwei Gelspuren wurden wie in Abb. 4.36

eingezeichnet unterteilt und jedes Gelstück tryptisch verdaut. Die aus jedem Stück resultierenden Peptide wurden mit LC-Q-TOF-MS/MS vermessen.

In der Vesikelbande des Gradienten (SM-A) wurden v.a. Proteine identifiziert, die in Membranpräparation aus Vollmedium identifiziert wurden, wie z.B. ABC-Transport Proteine, Proteine der Atmungskette, Transducer-Proteine, Flagelline oder Bacteriorhodopsin. Dagegen

sind bei der Bande SM-B in nahezu jeder Fraktion die am häufigsten und mit höchstem Score identifizierten Proteine die Flagelline, was sich bereits am Gel andeutete. Darüber hinaus wurden hier Proteine identifiziert. die im Proteom-Projekt (www.halolex.mpg.de) bis zu diesem Zeitpunkt noch nicht identifiziert werden konnten. Auffällig ist hier eine Gruppe von Proteinen, denen bisher keine Funktion zugeordnet werden konnte, wie z.B. OE2816F, OE3270R, OE4748F, OE5033R, OE5219F, OE5248F oder OE5276R. Ebenfalls zum ersten Mal konnte in dieser Fraktion die alkalische Phosphatase (OE5192R), Halolysin R4 (OE4612F) und beide Untereinheiten (OE2205F, OE2206F) eines Proteinkomplexes identifiziert werden, der der "Chitinase" homolog ist. Auffällig ist, dass in der Fraktion SM-B TMD-Proteine unterrepräsentiert sind. Daher wurden alle

Abb. 4.37: Einteilung der identifizierten Proteine der Fraktionenen SM-A und SM-B (vgl. Abb. 4.36) auf Grund deren Verankerung an der Membran bzw. deren Exportsequenz. Die Zahlen entsprechen der Anzahl gefundener Proteine der jeweiligen Klasse

Identifizierungen der beiden Subproteome nach ihrer vorhergesagten Verankerung an die Membran durch eine TMD (TMHMM) oder einen Lipidanker (vorhersagbar über ein konserviertes LAGC-Motiv in der Primärsequenz) gruppiert. Zusätzlich wurde jeweils unterschieden, ob diese Proteine eine Exportsequenz besitzen (sec-, tat- und fla-Exportsystem; Doktorarbeit Falb 2005). Abb. 4.37 zeigt, dass in Fraktion SM-B mehr als 50% der identifizierten Proteine eine vorhergesagte Exportsequenz besitzen, darunter die in dieser Fraktion hoch abundanten Flagelline, die Monomere der Flagellen. Eine derartige Anhäufung von extrazellulären Proteinen könnte darauf hindeuten, dass in diesem Bereich der Membran vermehrt Proteine über die Membran transportiert werden. Möglicherweise handelt es sich hier auch um einen Bereich der Membran, an dem die Flagellen assembliert werden.

Diese Verteilung der Proteinklassen zwischen den beiden Membranfraktionen zeigt sich auch bei dem Stamm TOM, der auf die gleiche Art analysiert wurde (Daten nicht gezeigt).

4.4.3.3 2D-Analyse der Subfraktionen

Die Identifizierung der Proteine über LC-MS/MS erlaubt eine qualitative Aussage über das Proteininventar der jeweiligen Subfraktion. Aufgrund der Häufigkeit der Identifizierung eines Proteins und der Abdeckung der Proteinsequenz durch die Peptididentifizierung kann man eine Abschätzung über die Abundanz treffen (je höher die "sequence coverage", desto höher abundant ist ein Protein in der Probe). Gemessen daran ist ein großer Teil der Proteine der SM-B Fraktion auf Flagelline zurück zu führen. Diese hohe Abundanz erschwert jedoch die Analyse der anderen Proteine.

Bei einer zweidimensionalen 16-BAC/SDS-Analyse kann dieses Problem umgangen werden, da hier bereits im Probenpuffer glycosylierte Proteine, wie die Flagelline, ausfallen und sich so der Analyse entziehen. Dies bietet somit die Möglichkeit die restlichen Proteine dieser Fraktion zu analysieren.

Es wurden vergleichend beide Subfraktionen gewonnen, durch Sonifizieren von Zellen in synthetischem Medium (SM-A und SM-B) zweidimensional mittels 16-BAC/SDS-PAGE getrennt und die Proteine durch Silberfärbung visualisiert. Vergleichend wurde auch das Membranproteom von Zellen aus Komplexmedium auf dieselbe Weise analysiert.

Abb. 4.38: Je 70 μ g delipidierte Proteine der Fraktion SM-A und SM-B sowie der Membran aus Komplexmedium wurden über 16-BAC/SCS-PAGE getrennt und die Proteine jeweils mit Silber gefärbt. Das Proteinmuster von Komplexmedium und SM-A wurden mit Hilfe des Programm Proteomweaver korreliert. Das Linke Gel der Abbildung ist das daraus resultierende Überlagerungsbild, wobei in blau das Proteinmuster aus dem Komplexmedium, in orange das aus der Fraktion SM-A und in Schwarz das in beiden Gelen übereinstimmende Proteinmuster dargestellt ist. Die aus dem Gel SM-B identifizierten Proteine (OE-Code und Proteinname) sind den jeweiligen Spots zugewiesen, "conserved proteins" deren Funktion nicht bekannt ist wurden mit c.p. abgekürzt.

Vergleicht man die Gele von Membranpräparationen aus Vollmedium und der Fraktion SM-A (Abb. 4.38, Überlagerungsbild), so erkennt man, dass beide ein ähnliches Proteinmuster aufweisen, was auf eine ähnliche Proteinausstattung der Membran schließen läßt. Obwohl die Analyse mit dem Programm ProteomweaverTM für diese Gele erschwert ist (Kapitel 4.4.1.3), scheinen dennoch bei SM-A einige Proteine zu fehlen die nur im Komplexmedium detektiert werden konnten (Abb. 4.38, blau markierte Proteinspots). Die Identifizierung der Proteine erfolgte im Rahmen der Erstellung des 16-BAC/SDS-Mastergels in Kapitel 4.2.2.2.

Eine Korrelation zwischen dem Proteinmuster aus SM-A und SM-B schlägt mit dieser Software fehl, da hier zu wenige Übereinstimmungen existieren. Das zweidimensional aufgetrennte Proteinmuster der Fraktion SM-B unterscheidet sich grundlegend von allen bisher angefertigten Gelen des Membranproteoms von *H. salinarum*. Es wurden alle sichtbaren Proteinspots ausgeschnitten, tryptisch verdaut und mit MALDI-TOFTOF vermessen. Die daraus resultierenden Proteinidentifizierungen sind in der Abb. 4.38 markiert. Von den sechs identifizierten Proteinen wurden fünf Proteine (OE2816F, OE3270R, OE4748F, OE5172R, OE5276F) nur in der Fraktion SM-B identifiziert. Dies deckt sich auch mit den Proteinidentifizierungen über 1D- Gel LC-MS/MS (Kapitel 4.4.3.2). Außerdem ist in dieser Fraktion das Rieske-Protein (OE1876R), als einziges Protein der Atmungskette, sehr stark vertreten.

Daneben kann nur noch einem dieser Proteine eine Funktion zugeordnet werden, der alkalischen Phosphatase (OE5172R). Für die restlichen vier Proteine existieren zwar Homologe in anderen Organismen, daher der Name "conserved hypothetical protein", deren Funktion wurde aber bisher nicht charakterisiert.

Ein Vergleich des halobakteriellen Membranproteoms von Zellen kultiviert in synthetischem und komplexem Medium soll, wie in Kapitel 4.4.1.4. beschrieben, mit der ICPL-Technik erfolgen, um so detaillierter Aussagen über die Regulation von Proteinen treffen zu können. Dieses war allerdings im Rahmen dieser Arbeit nicht mehr möglich.

5 Diskussion

In dieser Arbeit wurde das Membranproteom halophiler Archaeen analysiert. Im Folgenden wird die Problematik verschiedener Prozessstadien wie Isolierung, Trennung, Identifizierung und Quantifizierung von Membranproteinen aufgezeigt und Lösungsansätze diskutiert.

5.1 Membranisolation

Membranproteine repräsentieren ca. 30% des Proteininventars eines Organismus, weisen aber im Vergleich zu cytosolischen Proteinen oft ein geringeres Expressionsniveau auf. Die erfolgreiche Analyse dieses Subproteoms ist maßgeblich verbunden mit einer effektiven Membranisolation und damit Anreicherung dieser Proteine bei gleichzeitiger Abreicherung cytosolischer Kontaminationen [Blonder *et al.*, 2004; Fischer *et al.*, 2006].

Das halophile Archaeon *H. salinarum* lebt in Biotopen mit sehr hohen Salzkonzentrationen und trotzdem bildet ihre Membran eine stabile Barriere zwischen Cytosol und Umgebung. Membranen und Protein-Protein-Wechselwirkungen nicht-halophiler Organismen verlieren unter solchen Bedingungen ihre Stabilität; daher sollten sich halophile Organismen in ihren Membranen- und Membranproteineigenschaften grundlegend von nicht Halophilen unterscheiden.

Bereits früh wurde beobachtet, dass sich die Membran von *H. salinarum* unter wässrigen Bedingungen aufzulösen scheint [Brown 1963; Stoeckenius und Rowen 1967], ein Verhalten, das zur Isolierung der Purpurmembran (PM) genutzt wurde [Oesterhelt und Stoeckenius 1974]. Als Konsequenz daraus findet man Proteine, die unter nativen Bedingungen in der Zellmembran verankert sind, wie z.B. das Glycoprotein [Hecht *et al.*, 1986] oder Transducer-Proteine [Klein *et al.*, 2005], aber unter Niedersalz oder in Wasser gelöst vorkommen. So kann eine Reduktion der Salzkonzentration während der Membranisolation zu einen Verlust an Membranproteinen führen, zusätzlich aber auch in einer artifiziellen und unspezifischen Adsorption von cytosolischen Proteinen an die Membran resultieren, wodurch die Membranpräparation kontaminiert wird [Klein *et al.*, 2005].

Um dem Rechnung zu tragen, wurde eine Membranisolation etabliert, bei der Zellen in einem ersten Schritt in Hochsalz mechanisch aufgeschlossen und so Vesikel generiert werden, die mittels Sucrosegradient von cytosolischen Proteinen getrennt werden können. Eine daran anschließende Untersuchung zur Stabilität dieser Vesikel zeigte, dass die NaCl-Konzentration

auf 500 mM reduziert werden kann (Abb. 4.1). Da cytosolische Proteine bereits im ersten Schritt entfernt wurden, ist dann eine durch die Reduktion der Salzkonzentration ausgelöste Adsorption von Kontaminationen an die Membran ausgeschlossen.

In Vesikeln, die mittels mechanischen Aufbrechens der Zellen in Hochsalz durch Sonifizieren generiert werden, konnte bei *H. salinarum* die Aktivität der ATPase nachgewiesen werden [Bickel-Sandkötter *et al.*, 1998]. Das zeigt, dass Membranproteinkompexe unter diesen Bedingungen erhalten bleiben. In einer Membranpräparation, bei der die Salzkonzentration sukzessive auf 500 mM NaCl reduziert wurde, können neben integralen auch membranassoziierte Proteine und lösliche Komponenten von Komplexen detektiert werden. Diese Membranpräparation war die Grundlage für die Analyse von Membrankomplexen mittels Blue-Native-PAGE und wird in Kapitel 5.2.2 diskutiert.

Für die gezielte Analyse integraler Membranproteine ist es entscheidend, nicht-integralen Proteine zu entfernen [Blonder *et al.*, 2004; Fischer *et al.*, 2006]. Dieses gelingt bei anderen Organismen durch das Waschen isolierter Membranen mit Salzen [De Michelis und Spanswick 1986] oder Natriumcarbonat, d.h. einer alkalischen Behandlung der Membran [Fujiki *et al.*, 1982]. Diese Ansätze zeigten bei *H. salinarum* jedoch keine Wirkung. Ein effektives Abreichern von membranassoziierten und Lipid-Anker-Proteinen konnte durch die Behandlung der Membran mit dem milden Detergens Tween 20 erreicht werden, was aber zu hohen Verlusten führte.

In jedem Stadium der Isolierung können Membranproteine aus der Membran, entweder durch die Behandlung mit "nativen", d.h. komplexerhaltenen Detergentien wie DDM oder denaturierenden Detergentien wie 16-BAC oder SDS erhalten werden. Alternativ werden Membranproteine und Lipiden durch Chloroform/MeOH-Behandlung separiert [Wessel und Flüggel 1984] und die so delipidierten Proteine lyophilisiert. Diese Isolierung umgeht die Verwendung von Detergentien und wird angewendet, wenn diese eine anschließende Analyse stören würden oder definierte Mengen an Protein eingewogen werden sollen (Kapitel 4.4.1.2).

Die Methode der Membran- und Membranproteinisolation muss je nach experimenteller Fragestellung gewählt und angepasst werden. Je "sauberer" eine Membranpräparation sein soll, d.h. je weniger nicht-integrale Proteine in der Probe sind, desto mehr Reinigungsschritte sind notwendig. Die dabei durchgeführten Manipulationen der Membran sind jedoch nicht alle zuverlässig reproduzierbar und führen zu hohen Verlusten. Für die Analyse von integralen Proteinen und Peptiden wurde dies bewusst akzeptiert, da diese nur in einer solchen Präparation zugängig sind.

Für den quantitativen Vergleich zweier unabhängig voneinander isolierter Proben überwiegt jedoch die Notwendigkeit einer reproduzierbaren Isolierung der Membran damit biologische

Unterschiede, hervorgerufen durch verschiedene Wachstumsbedingungen quantifiziert werden. Bei der hierfür verwendeten "nativen" Membranpräparation wurde daher ein deutlicher Anteil membranassoziierter und nicht-integraler Proteine analysiert, die aber zur Beantwortung einer biologischen Fragestellung wichtig und wertvoll sind.

5.2 Zweidimensionale Elektrophorese von Membranproteinen – ein unmögliches Unterfangen?

Der klassische Weg in der Proteomik, ein komplexes Proteingemisch hochauflösend zu trennen, ist seit Jahrzehnten die zweidimensionale Gelelektrophorese, eine Kombination aus isoelektrischer Fokussierung in der ersten und SDS-PAGE in der zweiten Dimension [O'Farrell, 1975; Klose, 1975; Ames und Nikaido, 1976]. Dieses System erlaubt eine sehr gute Auftrennung löslicher Proteine, schlägt allerdings für integrale Membranproteine in den meisten Fällen fehl [Coughenour *et al.*, 2004; Klein *et al.*, 2005]. Für das Versagen dieser Technik werden verschiedene Gründe diskutiert:

Membranproteine liegen zu meist in niedriger Abundanz vor und erschweren daher eine Analyse [Santoni et al., 2000]. In Standard-2DE-Gelen können v.a. saure bis leicht basische Proteine analysiert werden, der Isoelektrische Punkt von Membranproteinen liegt oft im Alkalischen und der pI steigt mit der Anzahl von Transmembrandomänen [Wilkins et al., 1998; Buttner et al., 2001; Schwartz et al., 2001]. Ein weiteres Problem bildet die schlechte Löslichkeit von Membranproteinen in Puffern, welche für die Isoelektrische Fokussierung verwendet werden [Santoni et al., 2000; Rabilloud, 2003]. Von Klein et al. [2005] wurde grundsätzlich gezeigt, dass integrale Membranproteine irreversibel an ihrem Isoelektrischen Punkt präzipitieren, und damit der Transfer in die zweite Dimension zu einem nahezu vollständigen Verlust dieser Proteine führt. Diese Ergebnisse zeigen deutlich, dass eine auf IEF basierende zweidimensionale Gelelektrophorese für Membranproteine nicht möglich ist und auch verschiedenste Verbesserungen an unterschiedlichen Punkten des Systems zu keinem zufrieden stellenden Ergebnis führen [Klein et al., 2005]. Daher wurden in der vorliegenden Arbeit für die Bearbeitung des Membranproteoms die alternativen Gelsysteme 16-BAC-PAGE und Blue-Native-PAGE etabliert und für die jeweilige Fragestellung optimiert.

5.2.1 16-BAC-PAGE

Die 16-BAC-Elektrophorese Technik [Macfarlane 1983, 1989] trennt wie die klassische 2D-PAGE ein komplexes Gemisch an Proteinen über zwei Dimensionen bis hin zum Einzelprotein auf. Da auch hier Proteine in beiden Dimensionen denaturierend analysiert werden, ist diese Technik eine Alternative zur Isoelektrischen Fokussierung.

Die Methode nutzt das unterschiedliche Laufverhalten von Membranproteinen bei kathodischer bzw. anodischer elektrophoretischer Trennung. Da beide Dimensionen eine Trennung aufgrund des Molekulargewichts vornehmen, resultiert in der zweiten Dimension eine Diagonale, von der Proteine unterschiedlich stark abweichen. Das Prinzip wurde in dieser Arbeit anhand von Modelproteinen gezeigt (Abb. 4.8). Im Vergleich zur Isolelektrischen Fokussierung/SDS-PAGE wird jedoch eine geringere Fläche des Gels für die Trennung genützt. Da aber das Membranproteom weniger komplex ist als das Cytosolproteom kann mit dieser Methode eine Auflösung bis hin zum Einzelprotein erreicht werden. Eine wichtige Eigenschaft von 16-BAC als kationischen Detergens ist es, Membranproteine bei niedrigem pH zu solubilisieren. Dies stellt einen Vorteil gegenüber den bei Isoelektrischer Fokussierung verwendeten nicht- ionischen Detergenzien dar, in welchen viele Membranproteine schlechte Löslichkeit zeigen [Hartinger *et al*, 1996].

Die Trennung der Membranproteine von *H. salinarum* mit diesem System erreichte eine bemerkenswert gute Auflösung. Von zentraler Bedeutung hierbei ist die Optimierung des Proteintransfers von der ersten in die zweite Dimension, welcher durch das Einfügen eines Sammelgels deutlich verbessert werden konnte. Der zweite wesentliche Punkt ist, anders als in bisher publizierten Methoden, die Proteine in der ersten Dimension nicht zu färben und damit im Gel zu fixieren, sondern direkt den Streifen der ersten Dimension mit SDS zu solubilisieren. So konnte ein Verlust von kleinen Proteinen reduziert werden (Abb. 4.9). Ein negativer Einfluss auf die SDS-Dimension durch verbleibendes 16-BAC wie von Macfarlane [1983] beschrieben, wurde nicht beobachtet.

In bisherigen Veröffentlichungen [Hartinger *et al.*, 1996; Dreger *et al.*, 2001; Coughenour *et al.*, 2004], in denen das 16-BAC-System für Membranproteine angewendet wurde, verblieben die Proteine weitgehend auf der Diagonalen, was zu einer verringerten Trennleistung führt. Das Abweichen halobakterieller Proteine von diesem Verhalten (Abb. 4.10) ist möglicherweise in ihrer Aminosäurezusammensetzung begründet. Im Vergleich zu mesophilen Proteinen ist ein deutlich höherer Anteil an Aminosäuren mit negativ geladenen Seitenketten (Aspartat und Glutamat) und ein geringerer Anteil an positiv geladenen Lysinresten vorhanden [Fukuchi *et al.*, 2003]. Dieses führt zu einem "abnormalen" Verhalten

in der SDS-Gelelektrophorese wodurch ein höheres apparentes Molekulargewicht resultiert [Mader *et al.*, 2000].

Für das Cytosolproteom verschiedener Organismen wurden 2D Referenzgele publiziert [Wang *et al.*, 2005; Tebbe *et al.*, 2005; Völker *et al.*, 2004]. Diese bilden die Grundlage einer gelbasierten differenziellen Proteomanalyse. Für das Membranproteom ist dieses mit dem 16-BAC/SDS-System mit vergleichbarer Auflösung möglich (Abb. 4.10). Eine anschließende massenspetrometrische Identifizierung integraler Membranproteine gestaltet sich bei der Anwendung der MALDI-PMF-Massenspektrometrie jedoch schwierig, was detailliert in Kapitel 5.3 diskutiert wird. Daher wurden v.a. membranassoziierte Proteine identifiziert. Um die Limitationen der PMF-Identifizierung zu umgehen, wurden diese Proteine zusätzlich mit MALDI-MS/MS vermessen. Hier konnten zwar einige zusätzliche, v.a. kleine Proteine identifiziert werden, dennoch wurde ein erheblicher Teil der auf dem Gel färbbaren Proteine auch mit dieser Technik nicht identifiziert (Abb. 4.10). Weitere Experimente müssen hier Klärung bringen.

Die klassische 2D-Gelelektrophorese wird in der Proteomforschung verwendet, um cytosolische Proteine unterschiedlicher Proben zu vergleichen und diese so einer relativen Quantifizierung zu unterziehen [Hecker und Völker, 2004; Völker und Hecker, 2005]. Dieses ist jedoch auf der Basis einer Gelfärbung mit Silber aufgrund der geringen Linearität dieser Färbung nur in sehr eingeschränkten Maß möglich. Nach der Etablierung des 16-BAC/SDS-Systems für halophile Membranproteine wurde dieses für eine gelbasierte quantitative Analyse mit dem DIGE-System kombiniert und wird in einem eigenem Kapitel diskutiert (5.5.2).

5.2.2 Blue-Native-PAGE

Das Blue Native Elektrophorese-System wurde von Schägger und Kollegen [1991] als eine einfache und effektive Methode zur Trennung und Analyse von Atmungskettenkomplexen der Mitochondrien entwickelt. Unter "nativ" versteht man in diesem Zusammenhang, dass Proteinkomplexe mittels des nicht-ionischen Detergens n-Dodecyl- β -maltosid (DDM) aus der Membran unter Erhalt der Komplexstruktur solubilisiert werden. Dieses Verfahren ist jedoch nicht auf das Detergens DDM beschränkt, sondern es sind eine Vielzahl von verschiedenen Detergentien in der Literatur beschrieben sind, die je nach Organismus bzw. Membrantypus ausgewählt werden können [Eubel *et al.*, 2005]. Die elektrophoretische Trennung erfolgt bei neutralem pH, was dem natürlichen Lebensraum der meisten Organismen entspricht, so auch dem von *H. salinarum*. Der dem System den Namen gebende blaue Farbstoff Coomassie G bindet über hydrophobe Wechselwirkungen an die Oberfläche von Membranproteinen und vermittelt ihnen dadurch eine negative Ladung. Membranproteine sind so in wässrigen Medien löslich und wandern im elektrischen Feld zur Anode, auch wenn während der Elektrophorese die Umgebung an Detergens verarmt.

Anlass für die Wahl dieses nativen Gelsystems zur Untersuchung des Membranproteoms von H. salinarum war es, Information über Membranproteinkomplexe und damit über die Wechselwirkungen zwischen den Proteinen zu erhalten. Nach Trennung von Membranproteinkomplexen von H. salinarum in dem klassischen BN-System, wie es von Schägger 1991 beschrieben wurde, konnten kaum hochmolekulare Komplexe detektieren werden (Abb. 4.2). Die Stabilität der Membran von H. salinarum ist abhängig von der Salzkonzentration des Mediums (5.1), wobei es nahe liegt, dass nicht nur die Stabilität der Membran, sondern auch die der Protein-Protein-Interaktionen in Membrankomplexen von höherer Salzkonzentration abhängig sind. Um salzhaltige Proben mit der BN trennen zu können wurden deshalb in das Gel Aminosäuren einpolymerisiert, die ein SDS-System salztolerant machen [Ahn et al., 2001]. Mit diesem System, das als BlueNative-Ahn-PAGE bezeichnet wurde, können Proben, die bis zu 1 M NaCl enthalten, aufgetrennt werden (Abb. 5.3). Diese Abbildung zeigt auch, dass salzabhängig verschiedene Banden im Gel detektiert werden können, die unterschiedliche Membranproteinkomplexe repräsentieren. Somit konnte bewiesen werden, dass auch die Stabilität der Interaktionen von Membranproteinkomplexen salzabhängig ist.

Da Salzkonzentrationen bis zu 1 M NaCl nur während der Solubilisierung, nicht aber während der elektrophoretischen Trennung vorhanden sind, könnte dies darauf hinweisen, dass die Detergens-Coomassie-Mizelle den Proteinkomplex stabilisiert und dieser während der Elektrophorese, dann auch ohne Salz, intakt bleibt. Das elektroneutrale Zwitterion 6-Aminocarpronsäure (ACA) ist im Gel mit einer Konzentration von 500 mM präsent. Es ist zwar nicht in der Lage die Membran zu stabilisieren (Abb. 4.1), könnte sich aber positiv auf isolierte Komplexe auswirken.

Trotz der Weiterentwicklung des Systems ist eine "native" Analyse halophiler Membranproteinkomplexe nur in eingeschränktem Maß möglich. Dies zeigt sich darin, dass lediglich der integrale Subkomplex der ATPase, A0, nicht aber die intakte ATPase detektiert werden konnte. Auch vom Komplex I-Homologen konnten nur Teilkomplexe analysiert werden (Abb. 4.7).

Allerdings gelang es, mit diesem System zum ersten Mal eine interessante Interaktion zwischen dem Arginin/Ornithin-Antiporter-Protein (OE5204R) und dem Protein OE1932R nachzuweisen. Homologe des Protein OE1932R wurden bei verschiedenen Archaea gefunden, eine Funktion ist aber für keines dieser Proteine nachgewiesen, weshalb es zur Funktionsklasse "conserved hypothetical protein" gezählt wird (<u>www.halolox.mpg.de</u>). Dieses Protein konnte im Rahmen des Proteom-Projekts von *H. salinarum* fast ausschließlich in Membranpräparationen identifiziert, obwohl es keine Transmenbrandomäne und keinen Lipidanker besitzt (<u>www.halolex.mpg.de</u>).

In der quantitativen Analyse des Membranproteoms beim Übergang von aerobem nach anaerob/phototrophem Wachstum wurde der Antiporter als nicht reguliert gefunden, während sein Interaktionspartner OE1932R unter anaerob/phototrophen Bedingung herunter reguliert ist (Tabelle 4.6-B). Dagegen wird dieses Protein durch die Anwesenheit von Arginin im Medium hochreguliert (Aivaliotis, persönliche Mitteilung). Da in diesem Experimentellen Ansatz integrale Membranproteine nicht analysiert wurden, kann aber über eine eventuelle Regulation von OE5204R keine Angabe gemacht werden.

Folgende Abbildung zeigt die Genregion des potentiellen Interaktionspartners von OE5204R:

Abb. 6.1: Genregion um das Protein OE1932R, nach www.halolex.mpg.de. Die Proteine sind nach der Anzahl ihrer vorhergesagten Transmembranregionen gefärbt.

Während der Arginin/Ornithin-Antiporter (OE5204R) auf dem Plasmid PHS3 codiert ist, befinden sich OE1932R auf dem Chromosom, in direkter Nachbarschaft zu den Genen eines Kaliumkanal (OE1931R) und dem Transducer-Protein Htr16 (OE1929R). Inwieweit ein Zusammenhang der Interaktion dieses Proteins unbekannter Funktion mit dem Arginin/Ornitin-Antiporter und den benachbarten Genen besteht, konnte in dieser Arbeit nicht beantwortet werden und ist Gegenstand sich anschließender Experimente.

5.3 Die massenspektrometrische Identifizierung integraler Membranproteine

Die routinemäßige Identifizierung einer Vielzahl cytosolischer Proteine ist mit der MALDI-TOF Fingerprint Massenspektrometrie möglich, die meist in Kombination mit der zweidimensionalen Elektrophorese angewendet wird [Tebbe *et al.*, 2005]. Einzelproteine werden mit einer spezifischen Protease verdaut, wobei das in einem Massenspektrum ermittelte Massenmuster für ein Protein charakteristisch ist (Signatur eines Proteins) und daher als Fingerabdruck des Proteins (PMF, Peptide Mass Fingerprint) bezeichnet wird. Die Identifizierung erfolgt durch einen Abgleich der gemessenen Signale mit den theoretisch zu erwartenden, ermittelt auf der Basis des theoretischen Proteoms [Thiede *et al.*, 2005]. Bei dieser Technologie steigt die Sicherheit der Proteinidentifizierung mit der Anzahl der identifizierten Peptide pro Protein. Vergleicht man die Anzahl der theoretisch messbaren Peptide von cytosolischen und integralen Proteinen aus *H. salinarum*, so fällt eine deutliche Diskrepanz auf.

Integrale Membranproteine mit 1-6 Transmembrandomänen weisen im Durchschnitt lediglich 7 bis 9 tryptische Peptide im Bereich von 800- 4000 Da auf (Abb. 5.2), wodurch eine Identifizierung im Vergleich zu cytosolischen Proteinen mit durchschnittlich 12 Peptiden/Protein, erschwert, bzw. für die meisten unmöglich ist [Klein *et al.*, 2005].

Abb. 5.2: Durchschnittliche Anzahl und Größenverteilung der tryptischen Peptide von Proteinen aus *H. salinarum* im MALDI-Messfenster von 800-4000 Da. Die Proteine wurden nach der Anzahl ihren vorhergesagten TMD gruppiert. (aus Dissertation Klein 2005)

Darüber hinaus hat die Masse eines Peptids, auch innerhalb des MALDI-Messfensters, einen entscheidenden Einfluss auf die nachfolgende Identifizierung mittels Massenspektrometrie. Für MALDI-PMF ist die Identifizierungsrate in einem Massenbereich von 1000- 2500 Da am höchsten (ca. 70%). Zwischen 800 und 1000 Da beträgt sie ca. 50% und bei Peptiden größer als 2500 Da ist sie kleiner als 30%. Peptide über 4000 Da liegen außerhalb des Massenfensters [Klein *et al.*, 2005]. Für Proteine mit 7 oder mehr vorhergesagten TMD steigt die Zahl der tryptischen Peptide pro Protein an, dieses aber v.a. im Bereich von 3000-4000 Da

(Abb. 5.2), was zusätzlich zu einer Schwierigkeit der Identifizierung dieser Proteingruppe beiträgt.

Als eine Folge daraus konnten mittels MALDI-TOF PMF aus 16-BAC/SDS- und Blue-Native/SDS-Gelen v.a. membranassoziierte Proteine identifiziert werden, während integrale Membranproteine deutlich unterrepräsentiert waren (Kapitel 4.2.2.2). Bei diesen Systemen, die im Rahmen dieser Arbeit für halophile Membranproteine etabliert wurden (Kapitel 4.2.1.1 und 4.2.2.1), wird die IEF-Dimension eliminiert, die für den Verlust an integralen Membranproteinen verantwortlich ist [Santoni *et al.*, 2000; Klein *et al.*, 2005]. Blue-Nativeund 16-BAC-PAGE sind in der Lage integrale Membranproteine als Einzelspots zu trennen [Macfarlane 1988; Schägger und von Jagow 1994], und diese der massenspektrometrischen Analyse zuzuführen. Aus der Tatsache, dass ein Großteil der Proteinspots aus diesen Gelen nicht, aber auch kaum cytosolische Verunreinigungen identifiziert werden konnten, kann man ableiten, dass das Problem weniger an der Probenpräparation oder der elektrophoretischen Trennung liegt, als vielmehr an der sich anschließenden MALDI-PMF-Massenspektrometrie.

Als Konsequenz daraus wurde in dieser Arbeit die so genannte Tandem-Massenspektrometrie (MS/MS) für die Proteinidentifizierung angewandt [Kolker *et al.*, 2006]. Zusätzlich zu der Bestimmung der Masse eines Peptids wird dieses anschließend in Fragmente gespalten, anhand derer die Aminosäure-Sequenz oder Teile daraus bestimmt werden können [Papayannopoulos 1995]. Die Kombination beider Eigenschaften eines Peptide, Masse und Sequenz, ist in den allermeisten Fällen für einen Organismus und damit in einer Datenbank einzigartig, woraus eine sichere Identifizierung des Peptids resultiert.

Im Feld der Proteomik wird derzeit kontrovers diskutiert, ob die Identifizierung eines Proteins auf der Basis eines Peptids möglich ist, bzw. welche Richtlinien für die Identifizierung von Proteinen mittels MS/MS-Technologien eingehalten werden sollten [Carr *et al.*, 2004; Wilkins *et al.*, 2006; Bradshaw *et al.*, 2006].

Verschiedene Kriterien haben maßgeblichen Einfluss auf die Anzahl der identifizierten Peptide pro Protein wie z.B. die Komplexität der Probe oder die Abundanz des Proteins [Adkins *et al.*, 2002]. Hinzu kommt, dass auch bei der MS/MS Methode, wie beim MALDI-PMF, große Peptide weniger effizient identifiziert werden. Die Peptide mit einer Masse von über 3000 Da werden sehr selten in einem Standard-Ansatz gemessen [Wilm und Mann 1996]. Aus Abb. 5.2 wird ersichtlich, dass deshalb besonders für integrale Membranproteine weniger Peptide pro Protein zu Verfügung stehen. Zusätzlich binden hydrophobe und/oder lange Peptide, z.B. TMD-Peptide, oft irreversibel an Oberflächen und entziehen sich somit einer Analyse (Kapitel 4.3.2 und 5.4).

Um die Anzahl der identifizierten Peptide pro Protein zu erhöhen, wurden in der vorliegenden Arbeit die unterschiedliche Stärken der Wechselwirkung mit hydrophoben RP-Materialien ausgenutzt um lange, hydrophobe Peptide anzureichern (Kapitel 4.3.3). Die Messparameter einer anschließenden Messung wurden speziell angepasst (Kapitel 4.3.4) wodurch es gelang Peptide zu messen, die in einer Standardmessung nicht identifiziert werden konnten. Dieses ist jedoch nur mit einem wesentlichen Mehraufwand an Messzeit und genügend Probenmaterial möglich und daher bei einem Standardansatz oft nicht durchführbar.

So können bei integralen Membranproteinen so genannte "One hit wonder", d.h. Proteinidentifizierungen auf der Basis nur eines Peptids [Veenstra *et al.*, 2004] oft nicht vermieden werden.

Um zu gewährleisten, dass eine solche Identifizierung korrekt ist, können neue Massenspektrometer eingesetzt werden, die eine weitere Dimension der Analyse ermöglichen, die so genannte MS³. Hierbei werden ein oder mehrere Fragment-Ionen der MS/MS-Messung erneut einer MS/MS-Analyse unterzogen. Damit werden Teile der Peptidsequenz zweimal unabhängig voneinander analysiert. Stimmen diese überein, ist die Wahrscheinlichkeit einer korrekten Identifizierung sehr viel höher [Olsen und Mann 2004].

Bei großen Datensätzen ist eine computergestützte Interpretation der MS/MS-Daten unabdingbar, d.h. das gemessene MS/MS-Spektrum wird gegen eine Sequenz-Datenbank abgeglichen um dasjenige Peptid mit der höchsten Übereinstimmung zu finden und so ein Protein zu identifizieren. Hierfür stehen verschiedene Programme zur Verfügung [Übersichtsartikel: Nesvizhskii und Aebersold 2004], von denen MASCOT [Perkins *et al.*, 1999] und Sequest [Eng *et al.*, 1994; Yates *et al.*, 1995] die weiteste Verbreitung fanden. Dabei wird der Grad der Übereinstimmung des Spektrums mit dem theoretisch zu erwartenden in einem Zahlenwert angegeben, dem so genannten "Score".

Entscheidend ist es dabei, einen Grenzwert zu finden, der es erlaubt, korrekt identifizierte Peptide bzw. Proteine von falsch Positiven zu unterscheiden. Das zentrale Problem hierbei ist, dass Scoring-Methoden von Suchprogrammen oft Fälle generieren, bei denen der Score-Zahlenwert von falsch identifizierten Peptiden höher ist als der Wert von korrekt identifizierten Sequenzen. Dieses wird in folgender Abbildung verdeutlicht, die 8 Spektren von 8 verschiedenen Peptiden desselben Proteins zeigt. Diese wurden alle innerhalb einer Mascot-Suche identifiziert wodurch alle Kriterien, die Einfluss auf das Scoring nehmen, wie z.B. Datenbankgröße oder Massentoleranz, identisch sind.

Abb. 5.3: MS/MS Spektren von 8 Peptiden des Proteins OE5204R Die Ergebnisse zweier LC-MS/MS-Messungen des Gelstücks 6 aus Kapitel 4.3.3 wurden kombiniert und mit dem Programm Mascot gegen die Datenbank abgegelichen. Gezeigt sind die jeweiligen Spektren 8 verschiedener Peptide (A-H), wobei die zum jeweiligen Peptid gehörenden Ionen (y und b) annotiert sind. Es sind für alle Peptide die Massen sowie die von Mascot errechneten Scores angegeben.

Die MS/MS-Spektren, die zu der Identifizierung der Peptide der Masse 775 Da (Abb. 5.3-A) und 3893 Da (Abb. 5.3-H) führten, besitzt einen sehr ähnlichen Zahlenwert im Scoring, die Anzahl der erklärbaren Fragmentionen ist aber im letzteren wesentlich höher.

Grund hierfür ist, dass Mascot die Zahl der erklärten ("maching peaks") und die Zahl der nicht erklärten Signale ("non-maching peaks") im Spektrum ins Verhältnis setzt, und nicht die absolute Zahl der gemessenen Signale und damit experimentell nachgewiesene Sequenzlänge gewertet wird. Dieses bedeutet, dass der Score-Zahlenwert eines Spektrums geringer wird, wenn die Zahl der identifizierten Signale langsamer steigt als die Zahl der nicht zugeordneten Signale. Dies kommt v.a. bei langen Peptiden zum tragen, da höhere Collisionsenergie benötigt wird [Wilm und Mann 1996], und dann Fragmentierungen in den Seitenketten öfter vorzukommen scheinen.

Fällt die Entscheidung über eine Peptid/Protein- Identifizierung auf der Basis dieses Zahlenwerts, sind lange Peptide benachteiligt, die bei integralen Membranproteinen im Vergleich zu cytosolischen Proteinen im Durchschnitt häufiger vorkommen.

Bei diesem Scoring-System wird jedoch nicht berücksichtigt, ob eine Serie von y oder b-Ionen zugeordnet werden kann, auf deren Basis experimentell die Peptidsequenz bestimmt wird. Bei einer manuellen Zuordnung von MS/MS-Spektren ist diese das wichtigste Kriterium. Für eine Validierung von MS/MS Spektren ist weiterhin entscheidend, ob die Mehrheit und die höchst abundanten Signale zugeordnet werden können und bevorzugte Bruchstellen wie z.B. N-terminal von Prolin zu den höchst abundanten Signalen in einem Spektrum führen (Abb. 5.3-H, y6-Ion) [Steen und Mann 2004]. Eine manuelle Annotation von MS/MS-Spektren ist jedoch für große Datensätze kaum durchführbar und zudem von der subjektiven Entscheidung der einzelnen Person abhängig, wodurch Ergebnisse schwer vergleichbar werden.

Der Nachweis von y- oder b-ionen in Serie ist als das wichtigste Kriterium für die Identifizierung einer Peptidsequenz und wird derzeit von F. Pfeiffer (Bioinformatik, Abteilung Oesterhelt, MPI für Biochemie) herangezogen, um ein darauf basierendes Scoring-System zu entwickeln. Dabei ist die Vorraussetzung um eine Aminosäure verlässlich nachzuweisen, dass beide flankierende Ionen in der gleichen Serie und chemisch identisch detektiert wurden. Die Ergebnisse der y, b und a Serien werden getrennt analysiert und anschließend zusammen ausgewertet. Jeder experimentell somit eindeutig nachgewiesenen Aminosäure wird ein Zahlenwert zugewiesen und zusätzlich berücksichtigt, ob sich diese in einer Abfolge von Ionen befindet. Dieses Scoring-System befindet sich im Moment in der Entwicklung, in Abb. 5.4 sind die vorläufig daraus resultierenden Zahlenwerte ("Our Score") den Mascot-Scores gegenübergestellt.

Pentid-			MASCOT	OUR
masse			Peptid	Score
775	y-Serie	VEFEPR	43	29
	b-Serie	VEFEPR		
	a-Serie	VEFEPR		
1128	y-Serie	SYEDFDPEK	56	59
	b-Serie	SYEDFDPEK		
	a-Serie	SYEDFDPEK		
1446	y-Serie	DPEESPEESADTAA	65	90
	b-Serie	DPEESPEESADTAA		
	a-Serie	DPEESPEESADTAA		
1711	y-Serie	DLNDEYDLDGTSLSR	115	175
	b-Serie	DLNDEYDLDGTSLSR		
	a-Serie	DLNDEYDLDGTSLSR		
1723	y-Serie	GF AEAWQIIYSGTG PK	77	164
	b-Serie	GFAEAWQIIYSGTGPK		
	a-Serie	GFAEAWQIIYSGTGPK		
2400	y-Serie	GYPALPSLGAGVFSAAGVSILIQGR	77	111
	b-Serie	GYPALPSLGAGVFSAAGVSILIQGR		
	a-Serie	GYPALPSLGAGVFSAAGVSILIQGR		
2610	y-Serie	QSPLSDTTLLASGVSDVDLWDHVR	55	333
	b-Serie	QSPLSDTTLLASGVSDVDLWDHVR		
	a-Serie	QSPLSDTTLLASGVSDVDLWDHVR		
3893	y-Serie	AVDSVGGATLVTALGPLVINALTADQYMSIVIPGMTFR	49	180
	b-Serie	AVDSVGGATLVTALGPLVINALTADQYMSIVIPGMTFR		
	a-Serie	AVDSVGGATLVTALGPLVINALTADQYMSIVIPGMTFR		

Abb. 5.4: Sequenzen der 8 Peptide, die den MS/MS Spektren von Abb. 6.3 zugrunde liegen. Die grün markierten Aminosäuren wurden durch beide flankierende Ionen nachgewiesen. Die a-, b-, und y-Serien wurden dabei unabhängig voneinander untersucht. Dem Mascot-Score ist der Zahlenwert des sich in der Entwicklung befindenden Scoring-Systems gegenüber gestellt, der zurzeit als "Our Score" bezeichnet wird.

Hier tritt dementsprechend die absolute Anzahl der identifizierten Ionen für jedes einzelne Peptid in den Vordergrund, was allerdings dazu führt, dass nun lange Peptide bevorzugt werden. Dieses Scoring-System ist daher nicht geeignet das MASCOT System zu ersetzt, sondern soll vielmehr dazu eingesetzt werden, trotz sehr stringenter Mascot-Kriterien, die Zahl der falsch Negativen zu reduzieren.

Da dieses für die vorliegende Arbeit noch nicht zur Verfügung stand, wurden, wie in Kapitel 3.2.13.4.3 beschrieben, die Mascot-Grenzen für eine Identifizierung sehr stringent gewählt und zwei Stufen der Identifizierung unterschieden: "insecure" bei Sicherheit der Identifizierung von 99,95% und "trusted" bei 99,9995% gemessen an den Kalkulationen von Mascot. Diese hohe Stringenz gewährleistet zwar eine geringe Falsch-Positiven Rate, eliminieren aber auch eine Vielzahl von korrekten Hits, v.a. wenn nur ein Peptid für eine Identifizierung benutzt wird, was bei integralen Membranproteinen oft nicht vermieden werden kann.

Die Wahl der Suchmaschine und damit das Prinzip der Dateninterpretation haben einen starken Einfluss auf das Ergebnis und damit auf die Proteinidentifizierung. Dies zeigt sich darin, dass unterschiedliche Programme auf der Basis identischer Datensätze und Datenbanken zu unterschiedlichen Ergebnissen kommen [Zhang *et al.*, 2002; Chamrad *et al.*, 2004; Kapp *et al.*, 2005; Wan *et al.*, 2006]. Die Autoren leiten daraus ab, dass in vielen Proteomik-Studien ein nicht zu unterschätzender Teil der als identifiziert klassifizierten Proteine falsch Positive sind. Als Folge daraus werden in letzter Zeit immer neue Algorithmen zur Interpretation dieser Daten, die oft mehrere Suchmaschinen in sich vereinen, entwickelt [Moore *et al.*, 2002; Zhang *et al.*, 2002; Savitski *et al.*, 2005;], wobei sich noch kein eindeutiger Trend abzeichnet.

Eine Möglichkeit den Anteil falsch positiv identifizierter Proteine in einem Datensatz abzuschätzen, ist der Abgleich mit einer artifiziellen Datenbank, bei der die Proteinsequenzen umgedreht werden [Moore *et al.*, 2002; Peng *et al.*, 2003] oder die völlig zufällig erstellt werden [Cargile *et al.*, 2004]. Alle Treffer in diesen Datenbanken gelten als zufällige Treffer und damit falsch positive Identifizierungen. Analysen mit einer reversen Datenbank (im Rahmen der Quantifizierung,) zeigten, dass der Anteil der so experimentell ermittelten falsch positiven Identifizierungen dem von Mascot angegebenen Prozentsatz relativ gut entspricht (Kapitel 4.4.1.4.1).

Neueste Überlegungen gehen dahin, so genannte "decoy"-Datenbanken zu generieren, bestehend aus den realen sowie den reversen Sequenzen, wobei zusätzlich typische Kontaminanten wie Trypsin oder Keratine mit eingeschlossen werden. Dieses bietet die Möglichkeit, innerhalb einer Datenbanksuche nicht nur die Proteinidentifizierung durchzuführen, sondern auch die Grenzwerte für eine sichere Identifizierung zu definieren.

5.4 Die Identifizierung integraler Membranpeptide

So wie Membranprotein-Identifizierungen in Proteomik-Studien selten sind, sind Peptide, die integrale Sequenzen von Membranproteinen darstellen, in Membranproteom-Untersuchungen notorisch unterrepräsentiert.

Dies wird z.B. dadurch illustriert, dass bei einer Analyse des Gesamtproteoms von Hefe insgesamt 5540 Peptide identifiziert wurden, darunter aber nur 4 Peptide die teilweise und weitere 4 Peptide die eine vollständige TMD repräsentieren [Washburn *et al.*, 2001].

Werden gezielt Membranen isoliert und deren Proteine massenspektrometrisch analysiert, steigt zwar der prozentuale Anteil an integralen Membranproteinen, aber in einer solchen Probe werden erneut kaum integrale Peptide identifiziert [Klein *et al.*, 2005].

Als Konsequenz daraus konzentrieren sich andere Membranproteom-Studien auf die Identifizierung cytosolischer Bereiche integraler Membranproteine, den Loop-Peptiden. Diese sind durch enzymatischen Verdau intakter Membranen zugängig und können von der verbleibenden Membran und darin enthaltenen integralen Bereiche der Proteine separiert werden [Wu et al., 2003; Nielsen *et al.*, 2005]. Gelingt es bei solchen Experimenten die Zugänglichkeit der Enzyme zu verschiedenen Bereichen der Membran zu kontrollieren, können zusätzliche Erkenntnisse über die Topologie von Membranproteinen gewonnen werden [Wu *et al.*, 2003]. Dass die Analyse von integralen Peptiden technisch möglich ist, zeigen Veröffentlichungen, die isolierte und aufgereinigte integrale Membranproteine wie z.B. Bacteriorhodopsin aus *H. salinarum* oder GalP aus *E. coli* analysieren. Hier konnten nahezu alle Peptide identifizieren werden, darunter auch membranintegrale Bereiche, wodurch eine sehr hohe Sequenzabdeckung erreichen werden konnte [Hixen *et al.*, 2002].

Dieser Diskrepanz, nämlich der prinzipiellen Möglichkeit der Identifizierung und dem tatsächlichen Fehlen dieser Peptide in den meisten Proteomstudien, wurde in der vorliegenden Arbeit experimentell nachgegangen. Als Model diente ein 11 TMD-Protein (OE5204R), das mittels zweidimensionaler BN/SDS-PAGE als Einzelprotein isoliert werden kann und nach trypischem Verdau neben Loop-Peptiden ein TMD-Peptid der Masse 2400 Da liefert. Abb. 4.13 illustriert anhand dieses Modellproteins, dass hydrophobe und lange Peptide, Eigenschaften, die meist mit TMD-Peptiden korrelieren, im Gegensatz zu hydrophilen Peptiden an langkettigem RP-Material irreversibel binden. Da die meisten proteomischen Hochdurchsatz-Studien eine ein- oder mehrdimensionale chromatographische Peptidtrennung an C18-RP Säulen vornehmen, geht diese Klasse an Peptiden bereits vor der massenspektrometrischen Analyse verloren.

Dagegen ist die Fragmentierung von TMD-Peptiden in einer MS/MS-Messung möglich (Abb. 4.15), was sich mit Beobachtungen der Arbeitsgruppe von Prof. Karas deckt [persönliche Mitteilung].

Aufgrund der Hydrophobizität dieser Peptide ist davon auszugehen, dass sie nicht nur an langkettiges RP-Säulenmaterial binden, sondern an den meisten Oberflächen, wie in Reagenzgefäßen, Kapillaren usw. sehr viel stärker binden und damit im Vergleich zu löslichen Peptiden stärker verloren gehen. Daraus ergib sich, dass das Fehlen dieser Peptide in MS/MS-Analysen im Wesentlichen eine Folge von deren vergleichsweise niedrigen Konzentration ist. Daneben kann aber auch die Größe dieser Peptide einen Einfluss auf die Identifizierung mittels MS/MS-Messungen haben. Peptide die größer als 2000 Da sind, typisch für TMD-Peptide, bedürfen einer Optimierung der Kollisions-Energie während der Fragmentierung [Wilm und Mann 1996], was allerdings bei einer automatischen LC-MS/MS-Analyse nicht möglich ist.

Ein Weg, den Verlust hydrophober Peptide zu umgehen könnte in der Oxidation von TMD-Peptiden liegen, wodurch diese besser analysierbar werden [Eichacker *et al.*, 2004].

Einen anderen Weg verfolgen Fischer und Kollegen [2006], die Membranproteine in intakte Membranen verdauten und die Membranen samt darin enthaltener TMD-Peptide re-isolierten. Daraus gewonnene Proteine wurden erneut mit einer Kombination aus Trypsin/Chymotrypsin verdaut und so gelang es, nach einer mehrdimensionalen LC-MS/MS Analyse 135 Peptide, die Bereiche von integralen TMDs repräsentieren, zu identifizieren. Dieses Vorgehen erlaubt die Identifizierung von TMD-Peptiden, die Information der Loop-Peptide geht aber verloren.

Da in diesem Fall eine Abreicherung membranassoziierter Proteine und cytosolischer Kontaminationen bei der Membranpräparation nicht erfolgreich war, würde die zusätzliche Analyse der Loop-Peptide v.a. zu der Identifizierung nicht-integraler Proteine führen, was nicht im Fokus dieser Publikation lag [Fischer *et al.*, 2006].

Das Ziel der vorliegenden Arbeit war es, integrale Membranproteine sicher zu identifizieren, d.h. die Anzahl der identifizierten Peptide pro Protein zu erhöhen, wodurch TMD-Peptide zusätzlich, nicht ausschließlich analysiert werden sollten. Daher wurde, wie in Abb. 4.19 beschrieben, die unterschiedlich starke Wechselwirkung der verschiedenen Peptide mit RP-Materialien ausgenutzt, um lange und hydrophobe Peptide aus einer komplexen Mischung anzureichern und diese neben den verbleibenden "Standard-Peptiden" gezielt zu analysieren. Dieses bietet die Möglichkeit die Messparameter wie RP-Material zur chromatographischen Trennung oder Messbereich und Dauer von MS/MS-Messungen an die jeweils zu erwartenden Peptideigenschaften anzupassen. Auf diese Weise konnten insgesamt 229 Proteine auf der Basis von 1022 Peptiden identifiziert werden, was durchschnittlich 4.5
Peptiden/Protein entspricht. 84% dieser Proteine besitzen eine oder mehrere vorhergesagte TMD, wobei insgesamt 97 Peptide identifiziert wurden, die teilweise oder komplett einen integralen Bereich repräsentieren.

An dieser Stelle ist jedoch zu beachten, dass die Definition von Transmembrandomänen bei allen diesen Betrachtungen auf Vorhersagen mittels Algorithmen, wie z.B. TMHMM [Krogh *et al.*, 2001] beruhen und diese Programme keine vollständig korrekten Ergebnisse liefern. Dies zeigt sich am Beispiel von BR, für welches 6 TMDs vorhergesagt werden, weil die 7. TMD wegen des in der Mitte befindlichen Lysins nicht erkannt wird.

5.5 Die Quantifizierung von Membranproteinen

Das Proteom eines Organismus ist kein statisches Gebilde, sondern ein sich ständig änderndes Netzwerk an Proteinen. Quantitative Proteomik ermöglicht es, die Dynamik von Proteomen, d.h. Unterschiede im Expressionsniveau der Proteine als Antwort auf sich ändernde Umweltbedingungen zu verfolgen. Auch hier sind Studien von Membranproteinen in der Minderzahl und belaufen sich auf nicht mal ein Dutzend [Han *et al.*, 2001; Olsen *et al.*, 2004; Foster *et al.*, 2004; Scheurer *et al.*, 2005a; 2005b; Ramus *et al.*, 2006]. Dabei nehmen Membranproteine eine zentrale Rolle als Mediator zwischen externen Reizen und dem Zellinneren ein. Im Folgenden wird die Anwendbarkeit verschiedener Techniken zur Quantifizierung von Membranproteinen diskutiert und am Beispiel des Membranproteoms von *H. salinarum* (Vergleich aerob versus anaerob/phototroph) die Strategie der Quantifizierung mit ICPL (Isotope Coded Protein Labelling) und DIGE (Differenzielle Gelelektrophorese) aufgezeigt.

5.5.1 Massenspektrometrie-basierte Quantifizierung

Für die relative Quantifizierung von Proteinen mit Hilfe der Massenspektrometrie werden Proteine oder Peptide mit stabil-isotopenmarkierten Reagenzien versehen, wobei ein Zellzustand mit der "leichten", ein zweiter mit der "schweren" Variante der Sonde kovalent markiert wird. Diese Modifikationen erfolgen an Seitengruppen spezifischer Aminosäuren, meist an Cystein [Gygi *et al.*, 1999; Olsen *et al.*, 2004] oder Lysin [Schmidt *et al.*, 2005]. Hierfür stehen mittlerweile eine Vielzahl von Technologien zur Verfügung [Übersichtsartikel: Julka und Regnier 2004; Schneider und Hall 2005; Ong und Mann 2005].

Um die Anwendbarkeit verschiedener Technologien für die Quantifizierung des Membranproteoms von *H. salinarum* abzuschätzen, wurde die Anzahl der theoretisch

quantifizierbaren Peptide pro Protein für Cystein- oder Lysin-basierter Markierung berechnet. Solche Peptide müssen zwei Kriterien erfüllen: die Peptidmasse liegt innerhalb des analysierten Massenbereich von 800-4000 Da und enthält die zu markierende Aminosäure. Da Peptide, die eine TMD repräsentieren, bei massenspektrometrischen Analysen stark unterrepräsentiert sind (Kapitel 4.3.2 bzw. 5.4), wurde für TMD Proteine zusätzlich eine auf deren Loop-Regionen beschränkte Analyse durchgeführt. In Abb. 5.5-A ist für unterschiedliche Verdauszenarien das durchschnittliche Peptid zu Protein Verhältnis gezeigt, wobei zwischen Proteinen ohne und mit TMD-Vorhersage unterschieden wurde, für letztere wurde zusätzlich die Untergruppe der Loop-Peptide analysiert.

Abb. 5.5: Statistische Analyse quantifizierbarer Peptide von H. salinarum.

A: Die durchschnittliche Anzahl quantifizierbarer Peptide/Protein die entweder Cystein oder Lysin enthalten und eine Masse von 800-4000 Da besitzen, wurde berechnet. Dabei wurde zwischen Nicht-TMD und TMD-Proteinen, für letztere zusätzlich die Untergruppe der Loop-Peptide, unterschieden. Die Buchstaben B und C bezeichnen die Daten, für welche Details in der Teilabbildung B und C gezeigt werden. **B,C**: Das Balkendiagram zeigt den Prozentualen Anteil der Proteine, die nicht ein einziges quantifizierbares Peptid enthalten (schwarzer Balken) der unterschiedlichen Gruppen. In dem Diagram auf der rechten Seite ist gezeigt, wie viel Prozent der Proteine die entsprechende Anzahl quantifizierbarer Peptide pro Protein enthalten.

Bei allen theoretisch berechneten Verdauszenarien sowie bei beiden Markierungsstrategien (Cystein oder Lysin) ist die Zahl der theoretisch quantifizierbaren Peptide pro Proteine für TMD-Proteine wesentlich geringer als für lösliche Proteine (2 bis 3 fach), und wird weiter reduziert, wenn die Analyse auf Loop-Peptide beschränkt wird (3 bis 4 fach) (Abb. 5.5-A). Für integrale Membranproteine sind quantifizierbare Lysin-Peptide ca. dreimal häufiger als Cys-Peptide. Beschränkt man diese Betrachtung auf Loop-Peptide, die im Vergleich zu TMD-Peptiden bei Standard-Proteomansätzen bevorzugt detektiert werden (Kapitel 5.4), sind die Unterschiede noch deutlicher. Dennoch ist auch bei einem Lys-Ansatz bei TMD-Proteinen durchschnittlich nur ein Loop-Peptid pro Protein quantifizierbar, dagegen für cytosolische ca. 3 Peptide pro Protein. Somit ist die Wahrscheinlichkeit der Quantifizierung eines TMD-Proteins im Vergleich zu löslichen Proteinen wesentlich geringer. Diese theoretischen Berechnungen zeigen deutlich, dass Quantifizierungen auf der Basis eines Peptids, so genannte "one-hit wonder", für Membranproteine nicht vermieden werden können, und der prozentuale Anteil nicht quantifizierbarer Proteine bei Membranproteinen wesentlich höher ist (exemplarisch für zwei Untergruppen gezeigt in Abb. 5.5-B und C).

Basierend auf dieser theoretischen Betrachtung wurde für den quantitativen Vergleich des Membranproteoms von *H. salinarum* die ICPL-Technologie gewählt, bei welcher neben Lysinen zusätzlich der freie N-Terminus von Proteinen markiert wird, und daher zusätzliche Peptide für eine Quantifizierung zur Verfügung stehen. Bei den Berechnungen (Abb. 5.5) wurden die N-terminalen Peptide jedoch nicht berücksichtigt, da posttranslationale Modifikationen der N-Termini, welche eine ICPL-Markierung verhindern würden, schwer vorherzusagen sind. Die veränderte Trypsinspezifität bei ICPL-markieren Proteinen (keine Spaltung nach markiertem Lysin), die bei den Berechnungen durch ArgC imitiert wurde, hat nur eine geringen Effekt auf die Anzahl quantifizierbarer Peptide (Abb. 5.5-A).

Um die Anzahl der quantifizierten Peptide pro Protein zu erhöhen, wurde das Experiment mit verschiedenen Verdau-Protokollen wiederholt. Zwar führt dies in dem individuellen Experiment nicht zu einer Erhöhung der Anzahl der quantifizierbaren Peptide pro Protein, weitet aber über alle Experimente gesehen die Bandbreite der quantifizierbaren Peptide aus. So konnte z.B. BR ausschließlich bei einem kombinierten Verdau von Trypsin und GluC auf der Basis eines Peptids quantifiziert werden (Abb. 4.26). Bei einer anschließenden gemeinsamen Auswertung der Daten steigt dadurch die Sicherheit der Quantifizierung.

Die angesprochenen Limitierungen gelten für die SILAC-Technologie nicht, da hier die Isotopenmarkierung während der Zellkultur mittels markierter Aminosäuren erfolgt (Stable Isotope Labeling with Amino acids in Cell culture) und prinzipiell jede Aminosäure dafür eingesetzt werden kann [Ong *et al.*, 2002]. Diese Technologie wurde daher bereits erfolgreich für Membranproteine angewandt [Foster *et al.*, 2003], dennoch hat auch sie einige Nachteile. Sie ist auf Zellkulturen beschränkt und daher z.B. für Gewebe nicht anwendbar. Für Prokaryoten ist ein synthetisches Medium Voraussetzung mit genau bekannter

Zusammensetzung und der Möglichkeit eine oder mehrere natürliche Aminosäuren gegen isotopenmarkierte auszutauschen. Für *H. salinarum* existiert ein solches Medium, aber sie wachsen in diesem unter phototrophen Bedingungen nur sehr schlecht. Daher wurde für den quantitativen Vergleich des halobakteriellen Membranproteoms von aerobem und phototrophem Wachstum diese Technologie nicht herangezogen, obwohl sie statistisch zu bevorzugen wäre.

Quantifizierungsstrategien wie iTRAQ [Ross *et al.*, 2004], die N-terminale Nicotinoylierung [Munchbach *et al.*, 2000] oder der Einbau von schweren Isotopen durch enzymatischen Verdau [Yao *et al.*, 2001] ermöglichen prinzipiell die Markierung jedes Peptids. Diese Technologien setzen jedoch einen unabhängigen Verdau beider zu vergleichender Proben voraus. Speziell für Membranproteine ist dieses oft ein Problem, zumal wenn die Spaltstellen in oder an integralen Domänen liegen. So konnten Blonder und Kollegen [2006] zwar den enzymatischen Einbau von ¹⁸O am Beispiel von BR optimieren, dennoch zeigen zwei unterschiedliche Peptide des gleichen Proteins deutlich unterschiedliche Regulationsfaktoren, woraus eine ungenaue Quantifizierung mit hoher Standardabweichung resultiert.

Die Isotopenmarkierung mittels ICAT [Gygi *et al.*, 1999] oder ICPL [Schmidt *et al.*, 2005] erfolgt dagegen vor dem Verdau auf Ebene der Proteinen. Damit wird die quantitative Information zu einem sehr frühen Zeitpunkt festgehalten und über alle weiteren, z.T. verlustreichen Schritte, konserviert. So konnte in dieser Arbeit eine durchschnittliche Standardabweichung der Quantifizierung von nur 10% des Regulationsfaktors (Kapitel 4.4.1.2) mit der ICPL-Technik erreicht werden.

Im Gegensatz zur ICAT-Technologie werden bei ICPL die markierten Peptide nicht spezifisch angereichert sondern alle Peptide analysiert. Die Komplexität einer Probe könnte sich dabei als limitierender Faktor bei der Proteinquantifizierung erweisen. Um dieses zu überprüfen wurde die identische Probe über ein 1D-Gel aufgetrennt, dieses in Fraktionen zerschnitten, jede tryptisch verdaut und der LC-MS/MS-Analyse unterzogen. Hier konnten in insgesamt 15 LC-MS/MS-Messungen weniger Membranproteine identifiziert und quantifiziert werden als bei einem LC-MS/MS-Lauf. Dieses ist begründet in der vergleichsweise geringen Komplexität des Membranproteoms von Prokaryoten, die jedoch nur zum Tragen kommt, wenn die Probenvorbereitung spezifisch Membranproteine anreichert und Kontaminationen minimiert. Dagegen übersteigt die Komplexität eines tryptischen Verdaus des Cytosolproteoms die Trennkapazität eines eindimensionalen LC-Laufs und macht die Anwendung einer zusätzlichen Trenndimension mittels 1D-Gels erforderlich [Tebbe *et al.*, in Vorbereitung].

Für *H. salinarum* können theoretisch für die 582 integralen Membranproteine 4176 tryptische Peptide im Messfenster generiert werden. Dagegen werden durch tryptischen Verdau von den 2247 Nicht-TMD-Proteinen 32180 messbare Peptide generiert. Dies zeigt, dass die Komplexität des integralen Membranproteoms um das 3.9-fache auf dem Protein und um das 7.7-fache auf dem Peptidlevel geringer ist. Die tatsächliche Komplexität in einer Membranprobe ist allerdings doch etwas höher, da membranassoziierte Proteine ohne TMD-Vorhersage hier nicht zum Membranproteom gerechnet wurden.

Zusammenfassend ergibt sich aus diesen Analysen, dass die gelfreie Analyse die Methode der Wahl für die Quantifizierung des Membranproteoms von *H. salinarum* mit der ICPL-Technologie ist. So konnten in dieser Arbeit 175 Proteine bei dem Vergleich von aeroben und phototrophem/anaeroben Wachstum quantifiziert werden, darunter 155 Membranproteine, von denen 101 mindestens eine vorhergesagt TMD besitzen. Die biologische Aussage zu dieser Regulation wird gesondert im Kapitel 5.5.3 diskutiert.

5.5.2 Gel-basierte Quantifizierung

Das Expressionsniveau von Proteinen korreliert mit deren Spotintensität auf Gelen und daher wird in der Proteomforschung der Vergleich von Proteinmustern auf 2D-Gelen für die relative Quantifizierung ausgenutzt [Hecker und Völker 2004; Völker und Hecker 2005]. Wie bereits diskutiert (Kapitel 5.2) ist das 16-BAC/SDS-System der klassischen zweidimensionalen Elektrophorese bei der Trennung von Membranproteinen überlegen. Daher wurden zur Bestätigung der massenspektrometrie-basierten Quantifizierung mittels ICPL (Kapitel 5.5.1) die beiden Proben (Membranproteine von aerob bzw. anaerob/phototroph kultivierten Zellen) vergleichend mit diesem System analysiert. Auf Basis der Silberfärbung konnten kaum Unterschiede detektiert werden (Kapitel 4.4.1.3). Die Silberfärbung ist im Vergleich zu alternativen Färbemethoden keine Endpunktmethode, d.h. die Spotintensitäten sind abhängig von der Inkubationszeit und können sich so stark in Abhängigkeit vom Färbevorgang voneinander unterscheiden.

Mit Hilfe der DIGE Technologie (**Di**fferenzielle **G**el **E**lektrophorese) ist es möglich vor einer gelelektrophoretischen Trennung Proteine mit verschiedenen Fluoreszenz- Farbstoffen zu markieren [Unlu *et al.*, 1997; Tonge *et al.*, 2001]. Dieses erlaubt die gemeinsame Trennung zweier zu vergleichender Proben in einem Gel und umgeht damit eine nachgeschaltete Spotkorrelation. Zusätzlich weisen die Fluoreszenz-Farbstoffe einen weitaus höheren dynamischen Bereich als Coomassie- oder Silberfärbung auf [Alban *et al.*, 2003; Karp *et al.*, 2005]. Das hier verwendete Minimal-Labeling bietet die Möglichkeit nur einen geringen

Prozentsatz der Proteine zu markieren, welcher für die Quantifizierung herangezogen wird, wobei der Rest der Proteine nicht modifiziert wird und so einer anschließenden MS-Identifizierung zur Verfügung steht.

Die gelbasierte Quantifizierung erlaubt einen umfassenden Überblick über die Regulationen eines Proteoms unabhängig von einer massenspektrometrischen Identifizierung, welche für Membranproteine generell schwierig ist (Kapitel 5.3).

Die mittels dieser Technik detektierten Unterschiede im Membranproteom von Zellen, die unter aeroben oder phototrophen Bedingungen kultiviert wurden, sind relativ gering (Abb. 4.25). Es konnten nur wenige, leicht regulierte Proteine identifiziert werden (Tabelle 4.2), unter ihnen, wie erwartet, BR, welches die Basis der archealen Photosynthese darstellt. Neben der quantitativen Information für einzelne Proteine dienen diese Daten als Referenz für den massenspektrometrie-basierten ICPL-Ansatz. Die Ergebnisse der Quantifizierung dieser beiden Techniken korrelieren sehr gut (Tabelle 4.2) und bestätigen sich daher gegenseitig.

Proteine werden in der zweidimensionalen Elektrophorese z.T in mehrere Spots aufgetrennt, die oft auf posttranslationale Modifikationen oder Isoformen eines Proteins zurückzuführen sind. Mit einer gel-basieren Quantifizierung ist es möglich das Verhältnis der Isoformen eines Proteins zu bestimmen, wohingegen in einer massenspektrometrie-basierten Quantifizierung verschiedene Formen eines Proteins nicht unterscheidbar sind.

Dieses zeigt sich am Beispiel von BR. Bei den ICPL-Experimenten wurde BR mittels eines Peptids mit einem Regulationsfaktor von 3.1 quantifiziert, wobei keine Isoformen des Proteins unterschieden werden konnten. Dagegen konnten im gel-basierten Ansatz mit DIGE und 16-BAC/SDS-PAGE 3 Spots dem Protein BR zugeordnet werden. Diese liegen auf einer Diagonalen (Abb. 4.25) und deuten daher auf eine stufenweise Verkürzung des Proteins hin. Die Regulationsfaktoren von 4.4, 3.5 und 2.3, vom größten zum kleinsten, zeigen, dass die Isoform der höchsten Masse unter phototrophen im Vergleich zu aeroben Bedingungen am stärksten reguliert ist. In der Literatur ist beschrieben, dass das BR-Vorläuferprotein in zwei Schritten zum maturen Protein prozessiert wird [Wolfer *et al.*, 1988]. Obwohl das Nterminale Peptid in diesen Spots nicht identifiziert werden konnte, kann man jedoch annehmen, dass der Spot mit der höchsten Masse das Vorläuferprotein ist. Als Translationsprodukt sollte dieses auch den höchsten Regulationsfaktor zeigen. In einer Silberfärbung nimmt die Intensität hin zum kleinsten Protein ab, und ist für den Precusor kaum nachweisbar. Dieses ist ein weiterer Hinweis auf den Intermediat-Charakter des obersten Spots. Der Einsatz von zwei fundamental unterschiedlichen Ansätzen zur Proteinquantifizierung ist von großem Vorteil, da dieses erlaubt, quantitative Daten zu validieren um einen so genannten "double standard in proteomics" zu generieren. Dieses wurde in letzter Zeit immer mehr für cytosolische Proteome angewendet [Tian *et al.*, 2004, Kolkmann *et al.*, 2005, Berendt *et al.*, 2005], ist für Membranproteine aber besonders wichtig, da diese sich tendenziell einer massenspektrometrischen Analyse entziehen [Patton *et al.*, 2002].

5.5.3 Unterschiede im Membranproteom von aerob und anaerob/phototroph kultivierten Zellen

Insgesamt konnten 175 Proteine mittels der ICPL-Analyse von phototrophen und aeroben Membranen quantifiziert werden, 155 davon konnten eindeutig dem Membranproteom zugeordnet werden, darunter 101 Proteine mit mindestens einer vorhergesagten TMD.

Obwohl die beiden Wachstumsbedingung einen dramatischen Unterschied im Energie-Angebot der Zelle darstellen, ändert sich nur ein geringer Teil des Membranproteoms, und dies meist nur in geringem Umfang. Quantitative Unterschiede waren für 75% der Proteine zu sehen, wobei ein Grenzwert von 1.3 eingesetzt wird, welcher einer Änderung der Proteinkonzentration von 30% entspricht.

Wie zu erwarten, ist die lichtgetriebene Protonenpumpe BR unter phototrophen Bedingungen hochreguliert, ein Phänomen, das in der Literatur seit langem dokumentiert ist [Shand *et al.*, 1991, Baliga *et al.*, 2002]. In der vorliegenden Untersuchung war BR unter anaeroben/phototrophen Bedingungen 3-fach höher abundant als bei aerobem Wachstum (Abb. 4.23). In einem Zeitreihenexperiment, bei dem eine aerob gewachsene Kultur phototroph weiter wuchs, stieg der BR-Gehalt linear bis zum fünffachen innerhalb von 24h an (Kapitel 4.4.1.4.4). Eine solche Regulation ist relativ gering, zumal BR das höchst abundante Protein unter phototrophen Bedingungen werden kann. Diese Beobachtung bezieht sich jedoch meist auf den BR überproduzierenden Stamm S9, während in der vorliegenden Analyse mit dem Wildtyp R1 gearbeitet wurde. Andere Untersuchungen zeigen eine sehr große Varianz des Regulationsfaktors von BR, abhängig von der aeroben Wachstumsbedingung, mit welcher das phototrophe Wachstum verglichen wurde [Sumper *et al.*, 1976].

Unter aeroben Bedingungen steigt die Konzentration von Untereinheiten zweier unterschiedlicher Cytochrom C-Oxidasen, den Äquivalenten zum Komplex IV der Atmungskette. Hierbei ist zu beachten, dass *H. salinarum* kein Cytochom C besitzt, sondern diese Komplexe wahrscheinlich Elektronen von Halocyanin erhalten. Im Zeitreihenexperiment konnte nur eine Untereinheit der Cytochrom C- Oxidase zu allen drei Zeitpunkten quantifiziert werden und diese zeigte auch nach 24h phototrophen Wachstums keine Abnahme in der relativen Proteinkonzentration (Abb. 4.31). Dies deutet darauf hin, dass die "Herunterregulation" unter adaptierten phototrophen Bedingungen vielmehr auf ein "Ausdünnen" der Proteine während der Zellteilung als auf eine spezifische Proteindegradation zurückzuführen ist.

Darüber hinaus konnten unter anaeroben/phototrophen Bedingungen in *H. salinarum* der homologe Komplex der anaeroben Glycerin-3-phosphat-Dehydrogenase als hochreguliert identifiziert werden, der in *E. coli* charakterisiert wurde [Schryvers und Weiner 1981]. Obwohl die Sequenz und die daraus ableitbaren Motive keinen Hinweis auf eine Membranverankerung liefern, ist die Untereinheit B relativ hydrophob. Diese Untereinheiten wurden darüber hinaus v.a. in Membranprotein-Präparationen identifiziert [Klein *et al.*, 2005] und zusätzlich ist von dem E. coli-Homologen bekannt, dass der Komplex an die Membran assoziiert ist [Schryvers *et al.*, 1978, Cole *et al.*, 1988].

Ein anderer Komplex, der erhöhte Konzentration unter anaerobem/phototrophem Wachstum zeigt, ist die DMSO-Reduktase. Dieser Membrankomplex ist als anaerobe terminale Oxidase beschrieben, deren Substrate DMSO und Triethylamin-N-oxid (TMAO) sind [Oren und Truper 1990, Muller und DasSarma 2005]. Da weder DMSO noch TMAO dem Medium beigefügt wurden, scheint diese Regulation eher auf die Abwesenheit von Sauerstoff denn auf die Anwesenheit des potentiellen Substrats zurückzuführen zu sein. Weitergehende Experimente zeigten außerdem, dass ein anaerobes Wachstum mit DMSO unter den angewandten Bedingungen nicht möglich ist (Abb. 4.33), was im Gegensatz zu einer Veröffentlichung steht [Muller und DasSarma 2005]. Dagegen konnte bei *H. salinarum* ein sauerstofflimitiertes Wachstum im Dunkeln beobachtet werden, das allerdings DMSO-unabhängig ist (Kapitel 4.4.2.1). Wurden solche Proben jeweils im Vergleich zu aerob kultivierten Zellen quantifiziert, zeigte sich, dass die Untereinheiten der DMSO-Reduktase ohne die Zugabe des Substrats stärker hochreguliert sind (Kapitel 4.4.2.2). Dieses weist erneut darauf hin, dass die Regulation dieses Enzymkomplexes eher durch das Fehlen von Sauerstoff als durch die Anwesenheit von DMSO ausgelöst wird.

Beide dieser regulierten Komplexe (DMSO-Reduktase und Glycerin-3-phosphat-Dehydrogenase), die in den anaeroben Energiemetabolismus involviert sind, interagieren mit dem lipidlöslichen Quinon-Pool der Atmungskette. Diese Regulation könnte darauf hindeuten, dass neben der Energiegewinnung durch Photosynthese unter anaeroben Bedingungen eine Atmung aufrechterhalten wird, die mit dem Austausch der terminalen Oxidase, je nach Verfügbarkeit eines End-Elektronenakzeptors, einhergeht. So kann die Zelle mit der Regulation von einem relativ geringen Set an Proteinen den physiologischen Status dramatisch verändern.

H. salinarum ist in der Lage durch die Regulation von nur wenigen Proteinen von Atmung auf Photosynthese umschalten. Dieses steht im Gegensatz zu der Chlorophyll-abhängigen Photosynthese in Bakterien. Hier besitzen die Membranen Reaktionszentren, die nicht unter aeroben Bedingungen sondern nur bei der Anwesenheit von Licht und unter anaeroben Bedingungen gebildet werden [Übersichtsartikel: Kaplan 1978]. Für diese Organismen ist eine Alles-oder-Nichts-Antwort essenziell, da durch die kombinierte Aktion von Licht und Sauerstoff im Chlorophyll-System hoch reaktive und damit toxischen Superoxid-Radikale entstehen, durch welche die Zellen empfindlich geschädigt werden können. Bei der Retinalbasierten Photosynthese fungiert BR als "mechanische", lichtgetriebene Protonenpumpe, deren Funktion ausschließlich auf einer thermoreversiblen cis-trans Isomerisierung ohne Elektronentransfer-Reaktionen beruht [Subramaniam und Henderson 2000, Kühlbrandt 2000]. Daher ist BR in der Anwesenheit von Sauerstoff aktiv, ohne dass die Gefahr von toxischen Seitenreaktionen besteht.

Im Rahmen dieser Analyse wurden verschiedene Proteine als reguliert identifiziert, die nicht direkt in Photosynthese oder aeroben bzw. anaeroben Energiemetabolismus involviert sind. So sind z.B. neun verschiedene ABC-Transporter unter anaeroben/phototrophen Bedingungen herunterreguliert. Dieses könnte auf ein Platzproblem innerhalb der Membran hinweisen, das durch die verstärkte Synthese von BR und damit verbundener Induktion der Purpurmembran ausgelöst wird. Möglich ist aber auch eine spezifische Herunterregulation der betroffenen ABC-Transporter. Unter anaeroben/phototrophen Bedingungen nutzen Zellen die Photosynthese als effiziente Energiequelle, dementsprechend könnte ein verminderter Bedarf an metabolischen Substraten und der zugehörigen Transportproteine für diese Reaktion verantwortlich sein. Dies zeigt sich auch darin, dass Licht sowohl die Atmung [Oesterhelt und Krippahl 1973] als auch die Arginin-Fermentation gehemmt wird [Hartmann *et al.*, 1980], wobei eine lichtabhängige CO₂-Fixierung gemessen werden konnte [Oren 1983].

Quantitative Unterschiede in den Membranfraktionen beider untersuchter Zellstadien konnten für verschiedene ribosomale Proteine detektiert werden. Diese Proteine werden sehr oft als Kontaminationen in einer Membranpräparation betrachtet. In Archaeen sind 50% der Ribosomen an die Membran gebunden, wobei dieser Anteil von der Wachstumsphase abhängt [Ring und Eichler 2004]. Zellen, die kontinuierlich unter anaeroben/phototrophen Bedingungen wachsen zeigen eine erhöhte Konzentration mancher ribosomaler Proteine, obwohl andere davon nicht beeinflusst werden. Diese "hochregulierten" ribosomalen Proteine sind v.a. der kleinen Untereinheit des Ribosoms zuzuordnen. Dieses kann als Konsequenz einer erhöhten Synthese des Membranproteins BR und damit verbundener Anheftung von Ribosomen an die Membran erklärt werden. So ist in der Literatur beschrieben, dass eine erhöhte Konzentration von Ribosomen mit der Membran isoliert werden konnten, wenn BR-Synthese induziert wurde [Gropp *et al.*, 1992].

Eine völlig andere Situation zeigt sich bei dem Zeitreihenexperiment, bei welchem die Konzentration der gleichen ribosomalen Proteine mit zunehmendem phototrophen Wachstum linear über 24h abnimmt. Die Messung der Zelldichte zeigte, dass das Wachstum eingestellt wird, sobald eine Zellkultur mit hoher Dichte vom aeroben zum anaeroben/phototrophen Wachstum überführt wird. Dieses resultiert offensichtlich in einer reduzierten Proteinsynthese und in dessen Folge in einer Degradierung von Ribosomen oder vermindertem Anhaften an die Membran.

Insgesamt zeigen über 75% der quantifizierten Proteine keine signifikanten Unterschiede in ihrem Expressionslevel. Die Tendenz, dass H. salinarum sehr wenige Proteine und diese auch nur in geringem Maß reguliert, zeigt sich auch in quantitativen Untersuchungen des Cytosolproteoms dieser beiden Zustände [Doktorarbeit Tebbe 2005]. Darüber hinaus konnten bei einem systematischen Ansatz zur Inventarisierung des Cytosolproteoms mittels 2D-PAGE 80% der vorhergesagten Proteine unter nur einer Wachstumsbedingung visualisiert werden [Tebbe et al., 2005]. Halobakterielle Zellen sind in ihrem natürlichen Habitat drastischen Veränderungen in Bezug auf Nährstoffangebot, Sauerstoff und Licht in relativ kurzen Zeitabständen ausgesetzt. Als Überlebensstrategie erscheint es vorteilhaft, eine möglichst komplette Ausstattung an Proteinen ständig zur Verfügung zu haben um so flexibel und schnell auf sich verändernde Umweltbedingungen reagieren zu können. Damit wird die Proteinsynthese als Folge von z.B. Energie-Engpässen nicht notwendig. Diese Strategie, könnte für Organismen die ökologische Nischen mit geringem selektivem Druck besetzen, vorteilhaft sein. In Zeiten hoher Energieversorgung wird das komplette Set an Proteinen gemacht um Zeiten mit geringer Energieversorgung zu überstehen, bei denen die Proteinbiosynthese erschwert oder unmöglich ist.

6 Referenzen

Adkins J.N., Varnum S.M., Auberry K.J., Moore R.J., Angell N.H., Smith R.D., Springer D.L. and Pounds J.G. (2002) Toward a human blood serum proteome - Analysis by multidimensional separation coupled with mass spectrometry. *Molecular & Cellular Proteomics* **1**, 947-955

Aebersold R. and Mann M. (2003) Mass spectrometry-based proteomics. Nature 422, 198-207

Ahn T., Yim S.K., Choi H.I. and Yun C.H. (2001) Polyacrylamide gel electrophoresis without a stacking gel: Use of amino acids as electrolytes. *Analytical Biochemistry* **291**, 300-303

Alam M. and Oesterhelt D. (1984) Morphology, Function and Isolation of Halobacterial Flagella. *Journal of Molecular Biology* **176**, 459-475

Alban A., David S.O., Bjorkesten L., Andersson C., Sloge E., Lewis S. and Currie I. (2003) A novel experimental design for comparative two-dimensional gel analysis: Two-dimensional difference gel electrophoresis incorporating a pooled internal standard. *Proteomics* **3**, 36-44

Allers T. and Mevarech M. (2005) Archaeal genetics - The third way. Nature Reviews Genetics 6, 58-73

Ames G.F.L. and Nikaido K. (1976) 2-Dimensional Gel-Electrophoresis of Membrane Proteins. *Biochemistry* **15**, 616-623

Baliga N.S., Pan M., Goo Y.A., Yi E.C., Goodlett D.R., Dimitrov K., Shannon P., Aebersold R., Ng W.V. and Hood L. (2002) Coordinate regulation of energy transduction modules in Halobacterium sp analyzed by a global systems approach. *Proceedings of the National Academy of Sciences of the United States of America* **99**, 14913-14918

Barns S.M., Delwiche C.F., Palmer J.D. and Pace N.R. (1996) Perspectives on archaeal diversity, thermophily and monophyly from environmental rRNA sequences. *Proceedings of the National Academy of Sciences of the United States of America* **93**, 9188-9193

Berendt F.J., Frohlich T., Schmidt S.E.M., Reichenbach H.D., Wolf E. and Arnold G.J. (2005) Holistic differential analysis of embryo-induced alterations in the proteome of bovine endometrium in the preattachment period. *Proteomics* **5**, 2551-2560

Bickel-Sandkotter S, Gartner W and Dane M. (1996) Conversion of energy in halobacteria: ATP synthesis and phototaxis. *Arch Microbiol* **166**, 1-11

Bickel-Sandkotter S., Wagner V. and Schumann D. (1998) ATP-synthesis in archaea: Structure-function relations of the halobacterial A-ATPase. *Photosynthesis Research* **57**, 335-345

Biemann K. (1992) Mass-Spectrometry of Peptides and Proteins. Annual Review of Biochemistry 61, 977-1010

Bisle B. (2000) Gelelektrophoretische Untersuchungen zur Assemblierung des Photosystem II. *Diplomarbeit an Der Ludwig-Maximilians Universität München*

Blonder J., Conrads T.P. and Veenstra T.D. (2004) Characterization and quantitation of membrane proteomes using multidimensional MS-based proteomic technologies. *Expert Review of Proteomics* **1**, 153-163

Blonder J., Conrads T.P., Yu L.R., Terunuma A., Janini G.M., Issaq H.J., Vogel J.C. and Veenstra T.D. (2004) A detergent- and cyanogen bromide-free method for integral membrane proteomics: Application to Halobacterium purple membranes and the human epidermal membrane proteome. *Proteomics* **4**, 31-45

Blonder J., Goshe M.B., Moore R.J., Pasa-Tolic L., Masselon C.D., Lipton M.S. and Smith R.D. (2002) Enrichment of integral membrane proteins for proteomic analysis using liquid chromatography-tandem mass spectrometry. *Journal of Proteome Research* **1**, 351-360

Blonder J., Goshe M.B., Xiao W.Z., Camp D.G., Wingerd M., Davis R.W. and Smith R.D. (2004) Global analysis of the membrane subproteome of Pseudomonas aeruginosa using liquid chromatography-tandem mass. *Journal of Proteome Research* **3**, 434-444

Blonder J., Hale M.L., Chan K.C., Yu L.R., Lucas D.A., Conrads T.P., Zhou M., Popoff M.R., Issaq H.J., Stiles B.G. and Veenstra T.D. (2005) Quantitative profiling of the detergent-resistant membrane proteome of Iota-b toxin induced Vero cells. *Journal of Proteome Research* **4**, 523-531

Blonder J., Hale M.L., Lucas D.A., Schaefer C.F., Yu L.R., Conrads T.R., Issaq H.J., Stiles B.G. and Veenstra T.D. (2004) Proteomic analysis of detergent-resistant membrane rafts. *Electrophoresis* **25**, 1307-1318

Blonder J., Terunuma A., Conrads T.R., Chan K.C., Yee C., Lucas D.A., Schaefer C.F., Yu L.R., Issaq H.J., Veenstra T.D. and Vogel J.C. (2004) A proteomic characterization of the plasma membrane of human epidermis by high-throughput mass spectrometry. *Journal of Investigative Dermatology* **123**, 691-699

Blonder J., Yu L.R., Radeva G., Chan K.C., Lucas D.A., Waybright T.J., Issaq H.J., Sharom F.J. and Veenstra T.D. (2006) Combined chemical and enzymatic stable isotope labeling for quantitative profiling of detergentinsoluble membrane proteins isolated using triton X-100 and Brij-96. *Journal of Proteome Research* **5**, 349-360

Bradford M.M. (1976) Rapid and Sensitive Method for Quantitation of Microgram Quantities of Protein Utilizing Principle of Protein-Dye Binding. *Analytical Biochemistry* **72**, 248-254

Bradshaw R.A., Burlingame A.L., Carr S. and Aebersold R. (2006) Reporting protein identification data - The next generation of guidelines. *Molecular & Cellular Proteomics* **5**, 787-788

Brischwein M., Scharf B., Engelhard M. and Mantele W. (1993) Analysis of the Redox Reaction of An Archaebacterial Copper Protein, Halocyanin, by Electrochemistry and Ftir Difference Spectroscopy. *Biochemistry* **32**, 13710-13717

Brown A.D. (1963) Peripheral Structures of Gram-Negative Bacteria .4. Cation-Sensitive Dissolution of Cell Membrane of Halophilic Bacterium, Halobacterium Halobium. *Biochimica Et Biophysica Acta* **75**, 425-&

Bunai K. and Yamane K. (2005) Effectiveness and limitation of two-dimensional gel electrophoresis in bacterial membrane protein proteomics and perspectives. *Journal of Chromatography B-Analytical Technologies in the Biomedical and Life Sciences* **815**, 227-236

Burggraf S., Stetter K.O., Rouviere P. and Woese C.R. (1991) Methanopyrus-Kandleri - An Archael Methanogen Unrelated to All Other Known Methanogens. *Systematic and Applied Microbiology* **14**, 346-351

Buttner K., Bernhardt J., Scharf C., Schmid R., Mader U., Eymann C., Antelmann H., Volker A., Volker U. and Hecker M. (2001) A comprehensive two-dimensional map of cytosolic proteins of Bacillus subtilis. *Electrophoresis* **22**, 2908-2935

Cargile B.J., Bundy J.L. and Stephenson J.L. (2004) Potential for false positive identifications from large databases through tandem mass spectrometry. *Journal of Proteome Research* **3**, 1082-1085

Carr S., Aebersold R., Baldwin M., Burlingame A., Clauser K. and Nesvizhskii A. (2004) The need for guidelines in publication of peptide and protein identification data - Working group on publication guidelines for peptide and protein identification data. *Molecular & Cellular Proteomics* **3**, 531-533

Chamrad D.C., Korting G., Stuhler K., Meyer H.E., Klose J. and Bluggel M. (2004) Evaluation of algorithms for protein identification from sequence databases using mass spectrometry data. *Proteomics* **4**, 619-628

Cole S.T., Eiglmeier K., Ahmed S., Honore N., Elmes L., Anderson W.F. and Weiner J.H. (1988) Nucleotide-Sequence and Gene-Polypeptide Relationships of the glpABC Operon Encoding the Anaerobic sn-Glycerol-3-Phosphate Dehydrogenase of Escherichia-Coli-K-12. *Journal of Bacteriology* **170**, 2448-2456

Coughenour H.D., Spaulding R.S. and Thompson C.M. (2004) The synaptic vesicle proteome: A comparative study in membrane protein identification. *Proteomics* **4**, 3141-3155

Demichelis M.I. and Spanswick R.M. (1986) H+-Pumping Driven by the Vanadate-Sensitive Atpase in Membrane-Vesicles from Corn Roots. *Plant Physiology* **81**, 542-547

Dennis P.P. and Shimmin L.C. (1997) Evolutionary divergence and salinity-mediated selection in halophilic archaea. *Microbiology and Molecular Biology Reviews* **61**, 90-&

Dowsey A.W., Dunn M.J. and Yang G.Z. (2003) The role of bioinformatics in two-dimensional gel electrophoresis. *Proteomics* **3**, 1567-1596

Dreger M., Bengtsson L., Schoneberg T., Otto H. and Hucho F. (2001) Nuclear envelope proteomics: Novel integral membrane proteins of the inner nuclear membrane. *Proceedings of the National Academy of Sciences of the United States of America* **98**, 11943-11948

Ducret A., Van Oostveen I., Eng J.K., Yates J.R. and Aebersold R. (1998) High throughput protein characterization by automated reverse-phase chromatography electrospray tandem mass spectrometry. *Protein Science* **7**, 706-719

Dundas I.E.D. and Halvorso H.O. (1966) Arginine Metabolism in Halobacterium Salinarium An Obligately Halophilic Bacterium. *Journal of Bacteriology* **91**, 113-&

Duschl A. and Wagner G. (1986) Primary and Secondary Chloride Transport in Halobacterium-Halobium. *Journal of Bacteriology* **168**, 548-552

Eichacker L.A., Granvogl B., Mirus O., Muller B.C., Miess C. and Schleiff E. (2004) Hiding behind hydrophobicity - Transmembrane segments in mass spectrometry. *Journal of Biological Chemistry* **279**, 50915-50922

Eng J.K., Mccormack A.L. and Yates J.R. (1994) An Approach to Correlate Tandem Mass-Spectral Data of Peptides with Amino-Acid-Sequences in A Protein Database. *Journal of the American Society for Mass* Spectrometry **5**, 976-989

Eubel H., Braun H.P. and Millar A.H. (2005) Blue-native PAGE in plants: a tool in analysis of protein-protein interactions. *Plant Methods* **16**, 1-11

Falb M., Pfeiffer F., Palm P., Rodewald K., Hickmann V., Tittor J. and Oesterhelt D. (2005) Living with two extremes: Conclusions from the genome sequence of Natronomonas pharaonis. *Genome Research* **15**, 1336-1343

Fenn J.B., Mann M., Meng C.K., Wong S.F. and Whitehouse C.M. (1990) Electrospray Ionization-Principles and Practice. *Mass Spectrometry Reviews* **9**, 37-70

Fenn J.B., Mann M., Meng C.K., Wong S.F. and Whitehouse C.M. (1989) Electrospray Ionization for Mass-Spectrometry of Large Biomolecules. *Science* **246**, 64-71

Fischer F., Wolters D., Rogner M. and Poetsch A. (2006) Toward the complete membrane proteome - High coverage of integral membrane proteins through transmembrane peptide detection. *Molecular & Cellular Proteomics* **5**, 444-453

Foster L.J., de Hoog C.L. and Mann M. (2003) Unbiased quantitative proteomics of lipid rafts reveals high specificity for signaling factors. *Proceedings of the National Academy of Sciences of the United States of America* **100**, 5813-5818

Friedrich T. and Scheide D. (2000) The respiratory complex I of bacteria, archaea and eukarya and its module common with membrane-bound multisubunit hydrogenases. *Febs Letters* **479**, 1-5

Fujiki Y., Hubbard A.L., Fowler S. and Lazarow P.B. (1982) Isolation of Intracellular Membranes by Means of Sodium-Carbonate Treatment - Application to Endoplasmic-Reticulum. *Journal of Cell Biology* **93**, 97-102

Fukuchi S., Yoshimune K., Wakayama M., Moriguchi M. and Nishikawa K. (2003) Unique amino acid composition of proteins in halophilic bacteria. *Journal of Molecular Biology* **327**, 347-357

Gambacorta A., Trincone A., Nicolaus B., Lama L. and Derosa M. (1994) Unique Features of Lipids of Archaea. *Systematic and Applied Microbiology* **16**, 518-527

Gharahdaghi F., Weinberg C.R., Meagher D.A., Imai B.S. and Mische S.M. (1999) Mass spectrometric identification of proteins from silver-stained polyacrylamide gel: A method for the removal of silver ions to enhance sensitivity. *Electrophoresis* **20**, 601-605

Ginzburg M., Sachs L. and Ginzburg B.Z. (1971) Ion Metabolism in A Halobacterium .2. Ion Concentrations in Cells at Different Levels of Metabolism. *Journal of Membrane Biology* **5**, 78-&

Gomes C.M., Bandeiras T.M. and Teixeira M. (2001) A new type-II NADH dehydrogenase from the archaeon Acidianus ambivalens: Characterization and in vitro reconstitution of the respiratory chain. *Journal of Bioenergetics and Biomembranes* **33**, 1-8

Gropp R., Gropp F. and Betlach M.C. (1992) Association of the Halobacterial-7S RNA to the Polysome Correlates with Expression of the Membrane-Protein Bacterioopsin. *Proceedings of the National Academy of Sciences of the United States of America* **89**, 1204-1208

Gruber G., Wieczorek H., Harvey W.R. and Muller V. (2001) Structure-function relationships of A-, F- and V-ATPases. *Journal of Experimental Biology* **204**, 2597-2605

Gygi S.P., Rist B., Gerber S.A., Turecek F., Gelb M.H. and Aebersold R. (1999) Quantitative analysis of complex protein mixtures using isotope-coded affinity tags. *Nature Biotechnology* **17**, 994-999

Häder D.P. "Photosynthese." Stuttgart, New York: Thieme Verlag

Han D.K., Eng J., Zhou H.L. and Aebersold R. (2001) Quantitative profiling of differentiation-induced microsomal proteins using isotope-coded affinity tags and mass spectrometry. *Nature Biotechnology* **19**, 946-951

Hartinger J., Stenius K., Hogemann D. and Jahn R. (1996) 16-BAC/SDS-PAGE: A two-dimensional gel electrophoresis system suitable for the separation of integral membrane proteins. *Analytical Biochemistry* **240**, 126-133

Hartmann R. and Oesterhelt D. (1977) Bacteriorhodopsin-Mediated Photophosphorylation in Halobacterium-Halobium. *European Journal of Biochemistry* **77**, 325-335

Hartmann R., Sickinger H.D. and Oesterhelt D. (1980) Anaerobic Growth of Halobacteria. *Proceedings of the National Academy of Sciences of the United States of America-Biological Sciences* **77**, 3821-3825

Haupts U., Tittor J. and Oesterhelt D. (1999) Closing in on bacteriorhodopsin: Progress in understanding the molecule. *Annual Review of Biophysics and Biomolecular Structure* **28**, 367-399

Hecht K., Wieland F. and Jaenicke R. (1986) The Cell-Surface Glycoprotein of Halobacterium-Halobium -Physicochemical Characterization in the Absence and Presence of Salt. *Biological Chemistry Hoppe-Seyler* **367**, 33-38

Hecker M. and Volker U. (2004) Towards a comprehensive understanding of Bacillus subtilis cell physiology by physiological proteomics. *Proteomics* **4**, 3727-3750

Heukeshoven J. and Dernick R. (1985) Simplified Method for Silver Staining of Proteins in Polyacrylamide Gels and the Mechanism of Silver Staining. *Electrophoresis* **6**, 103-112

Hixson K.K., Rodriguez N., Camp D.G., Strittmatter E.F., Lipton M.S. and Smith R.D. (2002) Evaluation of enzymatic digestion and liquid chromatography-mass spectrometry peptide mapping of the integral membrane protein bacteriorhodopsin. *Electrophoresis* **23**, 3224-3232

Huber H., Hohn M.J., Rachel R., Fuchs T., Wimmer V.C. and Stetter K.O. (2002) A new phylum of Archaea represented by a nanosized hyperthermophilic symbiont. *Nature* **417**, 63-67

Hufnagel P., Schweiger U., Eckerskorn C. and Oesterhelt D. (1996) Electrospray ionization mass spectrometry of genetically and chemically modified bacteriorhodopsins. *Analytical Biochemistry* **243**, 46-54

Ishihama Y. (2005) Proteomic LC-MS systems using nanoscale liquid chromatography with tandem mass spectrometry. *Journal of Chromatography A* **1067**, 73-83

Julka S. and Regnier F. (2004) Quantification in proteomics through stable isotope coding: A review. *Journal of Proteome Research* **3**, 350-363

Kamekura M. (1998) Diversity of extremely halophilic bacteria. Extremophiles 2, 289-295

Kamekura M., DyallSmith M.L., Upasani V., Ventosa A. and Kates M. (1997) Diversity of alkaliphilic halobacteria: Proposals for transfer of Natronobacterium vacuolatum, Natronobacterium magadii, and Natronobacterium pharaonis to Halorubrum, Natrialba, and Natronomonas gen. nov, respectively, as Halorubrum vacuolatum comb nov, Natrialba magadii comb nov, and Natronomonas pharaonis comb nov, respectively. *International Journal of Systematic Bacteriology* **47**, 853-857

Kandler,O. and Konig,H. "Cell envelopes of archaea: Structure and chemistry." In: The Biochemistry of Archaea, Elsevier Science Publishers B.V.

Kaplan S. "Control and Kinetics of Photosynthetic Membrane Development." In: The Photosynthetic Bacteria, Clayton, R. K. and Sistrom, W. R., pp. 809-840. New York: Plenium Press

Kapp E.A., Schutz F., Connolly L.M., Chakel J.A., Meza J.E., Miller C.A., Fenyo D., Eng J.K., Adkins J.N., Omenn G.S. and Simpson R.J. (2005) An evaluation, comparison, and accurate benchmarking of several publicly available MS/MS search algorithms: Sensitivity and specificity analysis. *Proteomics* **5**, 3475-3490

Karas M., Gluckmann M. and Schafer J. (2000) Ionization in matrix-assisted laser desorption/ionization: singly charged molecular ions are the lucky survivors. *Journal of Mass Spectrometry* **35**, 1-12

Karas M. and Hillenkamp F. (1988) Laser Desorption Ionization of Proteins with Molecular Masses Exceeding 10000 Daltons. *Analytical Chemistry* **60**, 2299-2301

Karner M.B., Delong E.F. and Karl D.M. (2001) Archaeal dominance in the mesopelagic zone of the Pacific Ocean. *Nature* **409**, 507-510

Karp N.A. and Lilley K.S. (2005) Maximising sensitivity for detecting changes in protein expression: Experimental design using minimal CyDyes. *Proteomics* **5**, 3105-3115

Kempf B. and Bremer E. (1998) Uptake and synthesis of compatible solutes as microbial stress responses to high-osmolality environments. *Archives of Microbiology* **170**, 319-330

Klein C. (2005) Proteomanalysen an Halobacterium salinarum. Dissertation an Der Ludwig-Maximilians-Universität

Klein C., Garcia-Rizo C., Bisle B., Scheffer B., Zischka H., Pfeiffer F., Siedler F. and Oesterhelt D. (2005) The membrane proteome of *Halobacterium salinarum*. *Proteomics* **5**, 180-197

Klose J. (1975) Protein Mapping by Combined Isoelectric Focusing and Electrophoresis of Mouse Tissues -Novel Approach to Testing for Induced Point Mutations in Mammals. *Humangenetik* **26**, 231-243

Klose J. and Kobalz U. (1995) 2-Dimensional Electrophoresis of Proteins - An Updated Protocol and Implications for A Functional-Analysis of the Genome. *Electrophoresis* **16**, 1034-1059

Koch M.K. and Oesterhelt D. (2005) MpcT is the transducer for membrane potential changes in Halobacterium salinarum. *Molecular Microbiology* **55**, 1681-1694

Kokoeva M.V., Storch K.F., Klein C. and Oesterhelt D. (2002) A novel mode of sensory transduction in archaea: binding protein-mediated chemotaxis towards osmoprotectants and amino acids. *Embo Journal* **21**, 2312-2322

Kolker E., Higdon R. and Hogan J.M. (2006) Protein identification and expression analysis using mass spectrometry. *Trends in Microbiology* **14**, 229-235

Kolkman A., Dirksen E.H.C., Slijper M. and Heck A.J.R. (2005) Double standards in quantitative proteomics -Direct comparative assessment of difference in gel electrophoresis and metabolic stable isotope labeling. *Molecular & Cellular Proteomics* **4**, 255-266

Konig H. (1988) Archaeobacterial Cell Envelopes. Canadian Journal of Microbiology 34, 395-406

Konstantinidis K., Tebbe A., Klein C., Scheffer B., Aivaliotis M., Bisle B., Falb M., Pfeiffer F., Siedler F. and Oesterhelt D (2006) Genome-wide proteomics of *Natronomonas pharaonis*. *Journal of Proteome Research* **im Druck**,

Krogh A., Larsson B., Von Heijne G. and Sonnhammer E.L.L. (2001) Predicting transmembrane protein topology with a hidden Markov model: Application to complete genomes. *Journal of Molecular Biology* **305**, 567-580

Kühlbrandt W. (2000) Bacteriorhodopsin - the movie. Nature 406, 569-570

Kuntz I.D. (1971) Hydration of Macromolecules .3. Hydration of Polypeptides. *Journal of the American Chemical Society* **93**, 514-&

Laemmli U.K. (1970) Cleavage of Structural Proteins During Assembly of Head of Bacteriophage-T4. *Nature* **227**, 680-&

Lanyi J.K. and Macdonald R.E. (1976) Existence of Electrogenic Hydrogen Ion-Sodium Ion Antiport in Halobacterium-Halobium Cell-Envelope Vesicles. *Biochemistry* **15**, 4608-4614

Lanyi J.K. and Macdonald R.E. (1977) Coupling of Light-Induced Cation Gradients to Amino-Acid Transport in Halobacterium Halobium. *Biophysical Journal* **17**, A32-A32

Lanyi J.K. and Silverma M.P. (1972) State of Binding of Intracellular K+ in Halobacterium-Cutirubrum. *Canadian Journal of Microbiology* **18**, 993-&

Leif H., Sled V.D., Ohnishi T., Weiss H. and Friedrich T. (1995) Isolation and Characterization of the Proton-Translocating Nadh-Ubiquinone Oxidoreductase from Escherichia-Coli. *European Journal of Biochemistry* **230**, 538-548

Lill J. (2003) Proteomic tools for quantitation by mass spectrometry. Mass Spectrometry Reviews 22, 182-194

Lledo B., Martinez-Espinosa R.M., Marhuenda-Egea F.C. and Bonete M.J. (2004) Respiratory nitrate reductase from haloarchaeon Haloferax mediterranei: biochemical and genetic analysis. *Biochimica Et Biophysica Acta-General Subjects* **1674**, 50-59

Lubben M. (1995) Cytochromes of Archaeal Electron-Transfer Chains. *Biochimica Et Biophysica Acta-Bioenergetics* **1229**, 1-22

Macfarlane D.E. (1988) A 2 Dimensional Preparative 16-Bac-]Sds Page Technique to Purify Proteins for Sequencing Or As Antigens. *Faseb Journal* **2**, A399-A399

Macfarlane D.E. (1983) Use of Benzyldimethyl-Normal-Hexadecylammonium Chloride (16-Bac), A Cationic Detergent, in An Acidic Polyacrylamide-Gel Electrophoresis System to Detect Base Labile Protein Methylation in Intact-Cells. *Analytical Biochemistry* **132**, 231-235

Macfarlane D.E., Fisher T.C. and Mills T.C.B. (1986) Protein-Phosphorylation in Blood-Platelets Studies with Polyacrylamide-Gel Electrophoresis in Sds and 16-Bac. *Clinical Research* **34**, A957-A957

Madern D., Ebel C. and Zaccai G. (2000) Halophilic adaptation of enzymes. Extremophiles 4, 91-98

Marouga R., David S. and Hawkins E. (2005) The development of the DIGE system: 2D fluorescence difference gel analysis technology. *Analytical and Bioanalytical Chemistry* **382**, 669-678

Martin D.D., Ciulla R.A. and Roberts M.F. (1999) Osmoadaptation in archaea. *Applied and Environmental Microbiology* **65**, 1815-1825

Martinez-Espinosa R.M., Richardson D.J., Butt J.N. and Bonete M.J. (2006) Respiratory nitrate and nitrite pathway in the denitrifier haloarchaeon Haloferax mediterranei. *Biochemical Society Transactions* **34**, 115-117

Marwan W. and Oesterhelt D. (1999) Biochemical mechanisms of a simple behavioral reaction. *Chemie in* Unserer Zeit **33**, 140-151

Mattar S., Scharf B., Kent S.B.H., Rodewald K., Oesterhelt D. and Engelhard M. (1994) The Primary Structure of Halocyanin, An Archaeal Blue Copper Protein, Predicts A Lipid Anchor for Membrane Fixation. *Journal of Biological Chemistry* **269**, 14939-14945

McDonald W.H. and Yates J.R. (2003) Shotgun proteomics: Integrating technologies to answer biological questions. *Current Opinion in Molecular Therapeutics* **5**, 302-309

Mitterweger S. (2005) Das Membranproteom eines haloalkalophilen Archaeons. Masterarbeit an Der Technischen Universität München

Monteoliva L. and Albar J.P. (2004) Differential proteomics: an overview of gel and non-gel based approaches. *Brief Funct Genomic Proteomic.* **3**, 220-239

Moore R.E., Young M.K. and Lee T.D. (2002) Qscore: An algorithm for evaluating SEQUEST database search results. *Journal of the American Society for Mass Spectrometry* **13**, 378-386

Mortz E., Krogh T.N., Vorum H. and Gorg A. (2001) Improved silver staining protocols for high sensitivity protein identification using matrix-assisted laser desorption/ionization-time of flight analysis. *Proteomics* **1**, 1359-1363

Muller J.A. and DasSarma S. (2005) Genomic analysis of anaerobic respiration in the archaeon Halobacterium sp strain NRC-1: Dimethyl sulfoxide and trimethylamine N-oxide as terminal electron acceptors. *Journal of Bacteriology* **187**, 1659-1667

Muller V., Lingl A., Lewalter K. and Fritz M. (2005) ATP synthases with novel rotor subunits: New insights into structure, function and evolution of ATPases. *Journal of Bioenergetics and Biomembranes* **37**, 455-460

Munchbach M., Quadroni M., Miotto G. and James P. (2000) Quantitation and facilitated de novo sequencing of proteins by isotopic N-terminal labeling of peptides with a fragmentation directing moiety. *Analytical Chemistry* **72**, 4047-4057

Nesvizhskii A.I. and Aebersold R. (2004) Analysis, statistical validation and dissemination of large-scale proteomics datasets generated by tandem MS. *Drug Discovery Today* **9**, 173-181

Neuhoff V., Stamm R. and Eibl H. (1985) Clear Background and Highly Sensitive Protein Staining with Coomassie Blue Dyes in Polyacrylamide Gels - A Systematic Analysis. *Electrophoresis* **6**, 427-448

Ng W.V., Kennedy S.P., Mahairas G.G., Berquist B., Pan M., Shukla H.D., Lasky S.R., Baliga N.S., Thorsson V., Sbrogna J., Swartzell S., Weir D., Hall J., Dahl T.A., Welti R., Goo Y.A., Leithauser B., Keller K., Cruz R., Danson M.J., Hough D.W., Maddocks D.G., Jablonski P.E., Krebs M.P., Angevine C.M., Dale H., Isenbarger T.A., Peck R.F., Pohlschroder M., Spudich J.L., Jung K.H., Alam M., Freitas T., Hou S.B., Daniels C.J., Dennis P.P., Omer A.D., Ebhardt H., Lowe T.M., Liang R., Riley M., Hood L. and DasSarma S. (2000) Genome sequence of Halobacterium species NRC-1. *Proceedings of the National Academy of Sciences of the United States of America* **97**, 12176-12181

Nielsen M.L., Savitski M.M. and Zubarev R.A. (2005) Improving protein identification using complementary fragmentation techniques in Fourier transform mass spectrometry. *Molecular & Cellular Proteomics* **4**, 835-845

Nielsen P.A., Olsen J.V., Podtelejnikov A.V., Andersen J.R., Mann M. and Wisniewski J.R. (2005) Proteomic mapping of brain plasma membrane proteins. *Molecular & Cellular Proteomics* **4**, 402-408

Nutsch T., Oesterhelt D., Gilles E.D. and Marwan W. (2005) A quantitative model of the switch cycle of an archaeal flagellar motor and its sensory control. *Biophysical Journal* **89**, 2307-2323

Oesterhe D. and Krippahl G. (1973) Light Inhibition of Respiration in Halobacterium-Halobium. *Febs Letters* **36**, 72-76

Oesterhelt D. and Stoeckenius W. (1974) Isolation of the cell membrane of Halobacterium halobium and its fractionation into red and purple membrane. *Methods Enzymol.* **31**, 667-678

Oesterhelt D. (1976) Bacteriorhodopsin As An Example of A Light-Driven Proton Pump. *Angewandte Chemie-International Edition in English* **15**, 17-24

Oesterhelt D. (1985) Light-Driven Proton Pumping in Halobacteria. Bioscience 35, 18-21

Oesterhelt D. (1976) Bacteriorhodopsin As A Light-Driven Ion-Exchanger. Febs Letters 64, 20-22

Oesterhelt D. and Krippahl G. (1983) Phototropic Growth of Halobacteria and Its Use for Isolation of Photosynthetically-Deficient Mutants. *Annales De Microbiologie* **B134**, 137-150

Ofarrell P.H. (1975) High-Resolution 2-Dimensional Electrophoresis of Proteins. *Journal of Biological Chemistry* **250**, 4007-4021

Olsen J.V., Andersen J.R., Nielsen P.A., Nielsen M.L., Figeys D., Mann M. and Wisniewski J.R. (2004) HysTag - A novel proteomic quantification tool applied to differential display analysis of membrane proteins from distinct areas of mouse brain. *Molecular & Cellular Proteomics* **3**, 82-92

Olsen J.V. and Mann M. (2004) Improved peptide identification in proteomics by two consecutive stages of mass spectrometric fragmentation. *Proceedings of the National Academy of Sciences of the United States of America* **101**, 13417-13422

Ong S.E., Blagoev B., Kratchmarova I., Kristensen D.B., Steen H., Pandey A. and Mann M. (2002) Stable isotope labeling by amino acids in cell culture, SILAC, as a simple and accurate approach to expression proteomics. *Molecular & Cellular Proteomics* **1**, 376-386

Ong S.E., Foster L.J. and Mann M. (2003) Mass spectrometric-based approaches in quantitative proteomics. *Methods* **29**, 124-130

Ong S.E., Kratchmarova I. and Mann M. (2003) Properties of C-13-substituted arginine in stable isotope labeling by amino acids in cell culture (SILAC). *Journal of Proteome Research* **2**, 173-181

Ong S.E. and Mann M. (2005) Mass spectrometry-based proteomics turns quantitative. *Nature Chemical Biology* **1**, 252-262

Oren A. (2002) Halophilic microorganism in their environment. *Dordrecht: Kluwer AcademicPublishers* Kapitel 4-

Oren A. (1983) Bacteriorhodopsin-Mediated CO₂ Photoassimilation in the Dead-Sea. *Limnology and Oceanography* **28**, 33-41

Oren A. (1991) Anaerobic Growth of Halophilic Archaeobacteria by Reduction of Fumarate. *Journal of General Microbiology* **137**, 1387-1390

Oren A. (1994) The Ecology of the Extremely Halophilic Archaea. Fems Microbiology Reviews 13, 415-439

Oren A. (1999) Bioenergetic aspects of halophilism. Microbiology and Molecular Biology Reviews 63, 334-+

Oren A. (2002) Diversity of halophilic microorganisms: Environments, phylogeny, physiology, and applications. *Journal of Industrial Microbiology & Biotechnology* **28**, 56-63

Oren A. and Truper H.G. (1990) Anaerobic Growth of Halophilic Archaeobacteria by Reduction of Dimethylsulfoxide and Trimethylamine N-Oxide. *Fems Microbiology Letters* **70**, 33-36

Papayannopoulos I.A. (1995) The Interpretation of Collision-Induced Dissociation Tandem Mass-Spectra of Peptides. *Mass Spectrometry Reviews* **14**, 49-73

Patton W.F., Schulenberg B. and Steinberg T.H. (2002) Two-dimensional gel electrophoresis; better than a poke in the ICAT? *Current Opinion in Biotechnology* **13**, 321-328

Pawson T. and Scott J.D. (2005) Protein phosphorylation in signaling - 50 years and counting. *Trends in Biochemical Sciences* **30**, 286-290

Peng J.M., Elias J.E., Thoreen C.C., Licklider L.J. and Gygi S.P. (2003) Evaluation of multidimensional chromatography coupled with tandem mass spectrometry (LC/LC-MS/MS) for large-scale protein analysis: The yeast proteome. *Journal of Proteome Research* **2**, 43-50

Perales M., Eubel H., Heinemeyer J., Colaneri A., Zabaleta E. and Braun H.P. (2005) Disruption of a nuclear gene encoding a mitochondrial gamma carbonic anhydrase reduces complex I and supercomplex I+III2 levels and alters mitochondrial physiology in Arabidopsis. *Journal of Molecular Biology* **350**, 263-277

Perkins D.N., Pappin D.J.C., Creasy D.M. and Cottrell J.S. (1999) Probability-based protein identification by searching sequence databases using mass spectrometry data. *Electrophoresis* **20**, 3551-3567

Poetsch A., Neff D., Seelert H., Schagger H. and Dencher N.A. (2000) Dye removal, catalytic activity and 2D crystallization of chloroplast H+-ATP synthase purified by blue native electrophoresis. *Biochimica Et Biophysica Acta-Biomembranes* **1466**, 339-349

Rabilloud T. (2002) Two-dimensional gel electrophoresis in proteomics: Old, old fashioned, but it still climbs up the mountains. *Proteomics* **2**, 3-10

Rais I., Karas M. and Schagger H. (2004) Two-dimensional electrophoresis for the isolation of integral membrane proteins and mass spectrometric identification. *Proteomics* **4**, 2567-2571

Raman B., Cheung A. and Marten M.R. (2002) Quantitative comparison and evaluation of two commercially available, two-dimensional electrophoresis image analysis software packages, Z3 and Melanie. *Electrophoresis* **23**, 2194-2202

Ramus C., de Peredo A.G., Dahout C., Gallagher M. and Garin J. (2006) An optimized strategy for ICAT quantification of membrane proteins. *Molecular & Cellular Proteomics* **5**, 68-78

Rappsilber J., Ishihama Y. and Mann M. (2003) Stop and go extraction tips for matrix-assisted laser desorption/ionization, nanoelectrospray, and LC/MS sample pretreatment in proteomics. *Analytical Chemistry* **75**, 663-670

Ring G. and Eichler J. (2004) In the archaea Haloferax volcanii, membrane protein biogenesis and protein synthesis rates are affected by decreased ribosomal binding to the translocon. *Journal of Biological Chemistry* **279**, 53160-53166

Robertson C.E., Harris J.K., Spear J.R. and Pace N.R. (2005) Phylogenetic diversity and ecology of environmental Archaea. *Current Opinion in Microbiology* **8**, 638-642

Roepstorff P. and Fohlman J. (1984) Proposal for A Common Nomenclature for Sequence Ions in Mass-Spectra of Peptides. *Biomedical Mass Spectrometry* **11**, 601-601

Ross P.L., Huang Y.L.N., Marchese J.N., Williamson B., Parker K., Hattan S., Khainovski N., Pillai S., Dey S., Daniels S., Purkayastha S., Juhasz P., Martin S., Bartlet-Jones M., He F., Jacobson A. and Pappin D.J. (2004)

Multiplexed protein quantitation in Saccharomyces cerevisiae using amine-reactive isobaric tagging reagents. *Molecular & Cellular Proteomics* **3**, 1154-1169

Ruepp A., Muller H.N., Lottspeich F. and Soppa J. (1995) Catabolic Ornithine Transcarbamylase of Halobacterium halobium (salinarium) - Purification, Characterization, Sequence Determination, and Evolution. *Journal of Bacteriology* **177**, 1129-1136

Ruepp A. and Soppa J. (1996) Fermentative arginine degradation in Halobacterium salinarium (formerly Halobacterium halobium): Genes, gene products, and transcripts of the arcRACB gene cluster. *Journal of Bacteriology* **178**, 4942-4947

Santoni V., Molloy M. and Rabilloud T. (2000) Membrane proteins and proteomics: Un amour impossible? *Electrophoresis* **21**, 1054-1070

Savitski M.M., Nielsen M.L. and Zubarev R.A. (2005) New data base-independent, sequence tag-based scoring of peptide MS/MS data validates Mowse scores, recovers below threshold data, singles out modified peptides, and assesses the quality of MS/MS techniques. *Molecular & Cellular Proteomics* **4**, 1180-1188

Schafer G., Engelhard M. and Muller V. (1999) Bioenergetics of the archaea. *Microbiology and Molecular Biology Reviews* 63, 570-+

Schafer G., Purschke W.G., Gleissner M. and Schmidt C.L. (1996) Respiratory chains of archaea and extremophiles. *Biochimica Et Biophysica Acta-Bioenergetics* **1275**, 16-20

Schagger,H. (1995) Native electrophoresis for isolation of mitochondrial oxidative phosphorylation protein complexes. pp.190-202

Schagger H., Cramer W.A. and Vonjagow G. (1994) Analysis of Molecular Masses and Oligomeric States of Protein Complexes by Blue Native Electrophoresis and Isolation of Membrane-Protein Complexes by 2-Dimensional Native Electrophoresis. *Analytical Biochemistry* **217**, 220-230

Schagger H. and Vonjagow G. (1987) Tricine Sodium Dodecyl-Sulfate Polyacrylamide-Gel Electrophoresis for the Separation of Proteins in the Range from 1-Kda to 100-Kda. *Analytical Biochemistry* **166**, 368-379

Schagger H. and Vonjagow G. (1991) Blue Native Electrophoresis for Isolation of Membrane-Protein Complexes in Enzymatically Active Form. *Analytical Biochemistry* **199**, 223-231

Scharf B., Wittenberg R. and Engelhard M. (1997) Electron transfer proteins from the haloalkaliphilic archaeon Natronobacterium pharaonis: Possible components of the respiratory chain include cytochrome bc and a terminal oxidase cytochrome ba(3). *Biochemistry* **36**, 4471-4479

Scheurer S.B., Roesli C., Neri D. and Elia G. (2005) A comparison of different biotinylation reagents, tryptic digestion procedures, and mass spectrometric techniques for 2-D peptide mapping of membrane proteins. *Proteomics* **5**, 3035-3039

Scheurer S.B., Rybak J.N., Roesli C., Brunisholz R.A., Potthast F., Schlapbach R., Neri D. and Elia G. (2005) Identification and relative quantification of membrane proteins by surface biotinylation and two-dimensional peptide mapping. *Proteomics* **5**, 2718-2728

Schindler J., Lewandrowski U., Sickmann A., Friauf E. and Nothwang H.G. (2006) Proteomic analysis of brain plasma membranes isolated by affinity two-phase partitioning. *Molecular & Cellular Proteomics* **5**, 390-400

Schmidt A., Kellermann J. and Lottspeich F. (2005) A novel strategy for quantitative proteomics using isotopecoded protein labels. *Proteomics* **5**, 4-15

Schneider L.V. and Hall M.R. (2005) Stable isotope methods for high-precision proteomics. *Drug Discovery Today* **10**, 353-363

Schobert B. and Lanyi J.K. (1982) Halorhodopsin Is A Light-Driven Chloride Pump. *Journal of Biological Chemistry* **257**, 306-313

Schryvers A., Lohmeier E. and Weiner J.H. (1978) Chemical and Functional Properties of Native and Reconstituted Forms of Membrane-Bound, Aerobic Glycerol-3-Phosphate Dehydrogenase of Escherichia-Coli. *Journal of Biological Chemistry* **253**, 783-788

Schryvers A. and Weiner J.H. (1981) The Anaerobic sn-Glycerol-3-Phosphate Dehydrogenase of Escherichia-Coli - Purification and Characterization. *Journal of Biological Chemistry* **256**, 9959-9965

Schwartz R., Ting C.S. and King J. (2001) Whole proteome pl values correlate with subcellular localizations of proteins for organisms within the three domains of life. *Genome Research* **11**, 703-709

Shand R.F. and Betlach M.C. (1991) Expression of the Bop Gene-Cluster of Halobacterium-Halobium Is Induced by Low Oxygen-Tension and by Light. *Journal of Bacteriology* **173**, 4692-4699

Smith P.K., Krohn R.I., Hermanson G.T., Mallia A.K., Gartner F.H., Provenzano M.D., Fujimoto E.K., Goeke N.M., Olson B.J. and Klenk D.C. (1985) Measurement of Protein Using Bicinchoninic Acid. *Analytical Biochemistry* **150**, 76-85

Sreeramulu K., Schmidt C.L., Schafer G. and Anemuller S. (1998) Studies of the electron transport chain of the euryarcheon Halobacterium salinarum: Indications for a type II NADH dehydrogenase and a complex III analog. *Journal of Bioenergetics and Biomembranes* **30**, 443-453

Steen H. and Mann M. (2004) The ABC's (and XYZ's) of peptide sequencing. *Nature Reviews Molecular Cell Biology* **5**, 699-711

Stevens T.J. and Arkin I.T. (2000) Do more complex organisms have a greater proportion of membrane proteins in their genomes? *Proteins-Structure Function and Genetics* **39**, 417-420

Stoecken W. and Rowen R. (1967) A Morphological Study of Halobacterium Halobium and Its Lysis in Media of Low Salt Concentration. *Journal of Cell Biology* **34**, 365-&

Subramaniam S. and Henderson R. (2000) Molecular mechanism of vectorial proton translocation by bacteriorhodopsin. *Nature* **406**, 653-657

Sumper M., Reitmeier W. and Oesterhelt D. (1976) Biosynthesis of the Purple Membrane of Halobacteria. *Angewandte Chemie (International Ed.in English)* **15**, 187-194

Tebbe A. (2006) Das Proteom eines halophilen Archaeons und seine Antwort auf Änderung der Lebensbedingungen – Inventarisierung, Quantifizierung und posttranslationale Modifikationen. Dissertation an Der Ludwig-Maximilians-Universität

Tebbe A., Klein C., Bisle B., Siedler F., Scheffer B., Garcia-Rizo C., Wolfertz J., Hickmann V., Pfeiffer F. and Oesterhelt D. (2005) Analysis of the cytosolic proteome of *Halobacterium salinarum* and its implication for genome annotation. *Proteomics* **5**, 168-179

Thiede B., Hohenwarter W., Krah A., Mattow J., Schmid M., Schmidt F. and Jungblut P.R. (2005) Peptide mass fingerprinting. *Methods* **35**, 237-247

Thomm M. (1996) Archaeal transcription factors and their role in transcription initiation. *Fems Microbiology Reviews* **18**, 159-171

Tian Q., Stepaniants S.B., Mao M., Weng L., Feetham M.C., Doyle M.J., Yi E.C., Dai H.Y., Thorsson V., Eng J., Goodlett D., Berger J.P., Gunter B., Linseley P.S., Stoughton R.B., Aebersold R., Collins S.J., Hanlon W.A. and Hood L.E. (2004) Integrated genomic and proteomic analyses of gene expression in mammalian cells. *Molecular & Cellular Proteomics* **3**, 960-969

Tonge R., Shaw J., Middleton B., Rowlinson R., Rayner S., Young J., Pognan F., Hawkins E., Currie I. and Davison M. (2001) Validation and development of fluorescence two-dimensional differential gel electrophoresis proteomics technology. *Proteomics* **1**, 377-396

Twine S.M., Mykytczuk N.C.S., Petit M., Tremblay T.L., Conlan J.W. and Kelly J.F. (2005) Francisella tularensis proteome: Low levels of ASB-14 facilitate the visualization of membrane proteins in total protein extracts. *Journal of Proteome Research* **4**, 1848-1854

Unlu M., Morgan M.E. and Minden J.S. (1997) Difference gel electrophoresis: A single gel method for detecting changes in protein extracts. *Electrophoresis* **18**, 2071-2077

Veenstra T.D., Conrads T.P. and Issaq H.J. (2004) Commentary: What to do with "one-hit wonders"? *Electrophoresis* **25**, 1278-1279

Venter H., Ashcroft A.E., Keen J.N., Henderson P.J.F. and Herbert R.B. (2002) Molecular dissection of membrane-transport proteins: mass spectrometry and sequence determination of the galactose-H+ symport protein, GalP, of Escherichia coli and quantitative assay of the incorporation of [ring-2-C-13]histidine and (NH3)-N-15. *Biochemical Journal* **363**, 243-252

Volker U. and Hecker M. (2005) From genomics via proteomics to cellular physiology of the Gram-positive model organism Bacillus subtilis. *Cellular Microbiology* **7**, 1077-1085

Wagner G., Hartmann R. and Oesterhelt D. (1978) Potassium Uniport and Atp Synthesis in Halobacterium-Halobium. *European Journal of Biochemistry* **89**, 169-179

Wallin E. and Von Heijne G. (1998) Genome-wide analysis of integral membrane proteins from eubacterial, archaean, and eukaryotic organisms. *Protein Science* **7**, 1029-1038

Wan Y.H., Yang A. and Chen T. (2006) PepHMM: a hidden Markov model based scoring function for mass spectrometry database search. *Analytical Chemistry* **78**, 432-437

Washburn M.P., Wolters D. and Yates J.R. (2001) Large-scale analysis of the yeast proteome by multidimensional protein identification technology. *Nature Biotechnology* **19**, 242-247

Wehmhoner D., Dieterich G., Fischer E., Baumgartner M., Wehland J. and Jansch L. (2005) "LANESPECTOR", a tool for membrane proteome profiling based on sodium dodecyl sulfate-polyacrylamide gel electrophoresis/liquid chromatography - tandem mass spectrometry analysis: Application to Listeria monocytogenes membrane proteins. *Electrophoresis* **26**, 2450-2460

Wessel D. and Flugge U.I. (1984) A Method for the Quantitative Recovery of Protein in Dilute-Solution in the Presence of Detergents and Lipids. *Analytical Biochemistry* **138**, 141-143

Whitelegge J.P., le Coutre J., Lee J.C., Engel C.K., Prive G.G., Faull K.F. and Kaback H.R. (1999) Toward the bilayer proteome, electrospray ionization-mass spectrometry of large, intact transmembrane proteins. *Proceedings of the National Academy of Sciences of the United States of America* **96**, 10695-10698

Whitelegge J.P., Zhang H.M., Aguilera R., Taylor R.M. and Cramer W.A. (2002) Full subunit coverage liquid chromatography electrospray ionization mass spectrometry (LCMS+) of an oligomeric membrane protein - Cytochrome b6f complex from spinach and the cyanobacterium Mastigocladus laminosus. *Molecular & Cellular Proteomics* **1**, 816-827

Wilkins M.R., Appel R.D., Van Eyk J.E., Chung M.C.M., Gorg A., Hecker M., Huber L.A., Langen H., Link A.J., Paik Y.K., Patterson S.D., Pennington S.R., Rabilloud T., Simpson R.J., Weiss W. and Dunn M.J. (2006) Guidelines for the next 10 years of proteomics. *Proteomics* **6**, 4-8

Wilkins M.R., Gasteiger E., Sanchez J.C., Bairoch A. and Hochstrasser D.F. (1998) Two-dimensional gel electrophoresis for proteome projects: The effects of protein hydrophobicity and copy number. *Electrophoresis* **19**, 1501-1505

Wilm M. and Mann M. (1996) Analytical properties of the nanoelectrospray ion source. *Analytical Chemistry* **68**, 1-8

Woese C.R. (1987) Bacterial Evolution. Microbiological Reviews 51, 221-271

Woese C.R., Kandler O. and Wheelis M.L. (1990) Towards A Natural System of Organisms - Proposal for the Domains Archaea, Bacteria, and Eucarya. *Proceedings of the National Academy of Sciences of the United States of America* **87**, 4576-4579

Woese C.R. and Olsen G.J. (1986) Archaebacterial Phylogeny - Perspectives on the Urkingdoms. *Systematic and Applied Microbiology* **7**, 161-177

Wolfer U., Dencher N.A., Buldt G. and Wrede P. (1988) Bacteriorhodopsin Precursor Is Processed in 2 Steps. *European Journal of Biochemistry* **174**, 51-57

Wu C.C. and MacCoss M.J. (2002) Shotgun proteomics: Tools for the analysis of complex biological systems. *Current Opinion in Molecular Therapeutics* **4**, 242-250

Wu C.C., MacCoss M.J., Howell K.E. and Yates J.R. (2003) A method for the comprehensive proteomic analysis of membrane proteins. *Nature Biotechnology* **21**, 532-538

Wu C.C. and Yates J.R. (2003) The application of mass spectrometry to membrane proteomics. *Nature Biotechnology* **21**, 262-267

Yao X.D., Freas A., Ramirez J., Demirev P.A. and Fenselau C. (2001) Proteolytic O-18 labeling for comparative proteomics: Model studies with two serotypes of adenovirus. *Analytical Chemistry* **73**, 2836-2842

Yates J.R., Eng J.K., Mccormack A.L. and Schieltz D. (1995) Method to Correlate Tandem Mass-Spectra of Modified Peptides to Amino-Acid-Sequences in the Protein Database. *Analytical Chemistry* **67**, 1426-1436

Yoshimatsu K., Sakurai T. and Fujiwara T. (2000) Purification and characterization of dissimilatory nitrate reductase from a denitrifying halophilic archaeon, Haloarcula marismortui. *Febs Letters* **470**, 216-220

Yu Y.Q., Gilar M. and Gebler J.C. (2004) A complete peptide mapping of membrane proteins: a novel surfactant aiding the enzymatic digestion of bacteriorhodopsin. *Rapid Communications in Mass Spectrometry* **18**, 711-715

Zhang N., Aebersold R. and Schwilkowski B. (2002) ProbID: A probabilistic algorithm to identify peptides through sequence database searching using tandem mass spectral data. *Proteomics* **2**, 1406-1412

Zhang R.J. and Regnier F.E. (2002) Minimizing resolution of isotopically coded peptides in comparative proteomics. *Journal of Proteome Research* **1**, 139-147

Zhong H.Y., Marcus S.L. and Li L. (2005) Microwave-assisted acid hydrolysis of proteins combined with liquid chromatography MALDI MS/MS for protein identification. *Journal of the American Society for Mass Spectrometry* **16**, 471-481

7. Anhang

Tabelle 7.1: Liste der identifizierten Proteine von H. salinarum, beschrieben in Kapitel 4.3.1.

Die Liste ist nach dem Protein-Code [1] sortiert. Zusätzlich sind der Gen- [2] und Proteinname [3], die Anzahl der vorhergesagten TMD's [4], die Molekularmasse [7], der isoelektrische Punkt [8] und der GRAVY-Index [9] des Proteins angegeben. Der Identifizierungslevel [5] und der "Differenz-Score" [6] wurden nach den Kriterien, die in Kapitel 3.2.13.4.3 beschrieben sind, ermittelt.

OE-CODE [1]	Gen [2]	Proteinname [3]	TMD [4]	id. level [5]	"Differenz-" Score [6]	MW [7]	рІ [8]	GRAVY [9]
OE1001F	-	conserved protein	2	Trusted	49,91	40562	4,59	-0,04
OE1008F	-	protein OE1008F	11	Insecure	38,26	80575	6,5	0,44
OE1133F	-	protein OE1133F	1	Trusted	110,44	39083	4,19	-0,12
OE1465F	lon	endopeptidase La (EC 3.4.21.53)	1	Trusted	94,25	77064	4,57	-0,39
OE1476R	-	protein OE1476R	0	Trusted	66,84	10375	4,17	0,34
OE1490R	-	conserved protein	1	Trusted	339,44	42645	4,23	-0,34
OE1534F	-	conserved protein	7	Trusted	42,52	26793	6,27	0,97
OE1541F	-	rhomboid family protein	6	Trusted	41,06	34446	6,28	0,3
OE1653R	nhaC1	Na+/H+ antiporter homolog	11	Trusted	70,38	53895	4,45	0,81
OE1676R	pstA2	probable ABC-type phosphate transport system permease protein	14	Trusted	48,29	58010	9,72	0,93
OE1806R	-	probable periplasmic protein	0	Trusted	84,28	33050	4,01	-0,12
OE1841R	-	HyfD / HycC / NADH dehydrogenase (ubiquinone) chain L homolog	16	Trusted	56,78	61961	7,29	0,83
OE1842R	-	NADH dehydrogenase (ubiquinone) chain L homolog	13	Insecure	32,37	55134	6,9	0,89
OE1844R	-	NADH dehydrogenase (ubiquinone) chain N homolog	13	Trusted	68,14	49900	5,41	1
OE1849R	-	conserved protein	4	Trusted	40,12	18367	5,02	0,97
0E1854R	-	conserved protein	0	Trusted	57,16	38623	4,97	0,06
OE1872R	petD	probable menaquinolcytochrome-c reductase (EC 1.10.2) (cytochrome bc complex) cytochrome b/c subunit (plastoquinolplastocyanin reductase (cytochrome b6-f complex) 17K polypeptide (subunit 4) homolog)	4	Trusted	87,07	28597	5,84	-0,11
OE1876R	petA	probable menaquinolcytochrome-c reductase (EC 1.10.2) (cytochrome bc complex) Rieske iron-sulfur protein (ubiquinolcytochrome-c reductase (cytochrome bc1 complex) Rieske iron-sulfur protein homolog)	0	Trusted	130,12	29957	4,62	-0,54

OE1878R	-	protein OE1878R	2	Insecure	34,89	14688	5,81	0,13
OE1932R	-	conserved protein	0	Trusted	133,73	27826	4,35	-0,25
OE1934R	edp	proteinase IV (EC 3.4)	1	Trusted	122,11	30528	4,96	-0,01
OE1956F	nuoCD	NADH dehydrogenase (ubiquinone) (EC 1.6.5.3) chain CD	0	Trusted	59,9	63371	4,33	-0,51
OE1957F	nuoH	NADH dehydrogenase (ubiquinone) (EC 1.6.5.3) chain H	8	Trusted	100,64	37172	5,21	0,87
OE1963F	nuoK	NADH dehydrogenase (ubiquinone) (EC 1.6.5.3) chain K	3	Insecure	36,14	10964	4,95	1,03
OE1964F	nuoL	NADH dehydrogenase (ubiquinone) (EC 1.6.5.3) chain L	17	Trusted	92,19	73749	6,03	0,74
OE2026F	trp5	ABC-type transport system ATP-binding protein	0	Trusted	226,68	30818	4,39	-0,14
OE2027F	-	conserved protein	11	Trusted	96,92	58673	4,97	0,7
OE2076F	-	conserved protein	12	Trusted	82,88	52282	8,72	0,73
OE2116R	-	glutamate-rich protein	2	Trusted	67,68	23836	3,76	-0,43
OE2149R	-	conserved protein	0	Trusted	44,34	45896	3,96	-0,4
OE2168R	htrVI,	transducer protein htrVI	2	Trusted	237,15	83877	4,13	-0,27
OE2170R	tmpC	probable periplasmic substrate-binding protein (membrane lipoprotein tmpC homolog)	0	Insecure	23,95	38250	4,33	-0,04
OE2189R	htr4,	transducer protein htr4 (htpVI)	2	Trusted	171,33	82027	4,21	-0,19
OE2195F	htr18	transducer protein htr18	2	Trusted	49,39	87008	4,13	-0,3
OE2314R	rbsC1	ABC-type transport system permease protein	9	Trusted	48,96	37362	5,72	0,81
OE2322F	putP	Na+/proline symport protein	12	Trusted	41,09	58682	4,49	0,64
OE2397F	flgB1	flagellin B1 precursor	1	Trusted	64,54	20442	4,54	-0,04
OE2398F	flgB2	flagellin B2 precursor	1	Trusted	119,03	20669	4,15	-0,05
OE2399F	flgB3	flagellin B3 precursor	1	Trusted	70,56	20508	4,79	-0,07
OE2443R	-	protein OE2443R	1	Trusted	59,43	25609	5,06	-0,24
OE2469F	flgA1	flagellin A1 precursor	1	Trusted	164,95	20610	4,37	-0,03
OE2470F	flgA2	flagellin A2 precursor	1	Trusted	227,73	20593	4,79	-0,09
OE2525R	-	conserved protein	1	Trusted	60,87	12239	6,25	-0,04
OE2548F	tot	probable transmembrane oligosaccharyl transferase	16	Trusted	166,66	114515	4,71	0,2
OE2703F	pan1	probable copper-containing oxidoreductase	0	Trusted	42,74	41147	5,32	-0,49
OE2764R	-	signal-transducing histidine kinase homolog	3	Insecure	31,87	48507	4,97	-0,05
OE2779F	pheP	amino acid transport protein (probable phenylalanine transport protein)	10	Insecure	28,93	76299	4,99	0,39
OE2865R	sdhA	succinate dehydrogenase (EC 1.3.99.1) chain A (flavoprotein)	0	Insecure	28,32	66825	4,52	-0,48
OE2867R	sdhD	succinate dehydrogenase (EC 1.3.99.1) chain D (membrane anchor protein)	3	Trusted	68,34	13090	10,36	0,64
OE2930R	-	conserved protein	5	Trusted	72,55	54098	9,2	0,21
OE2944F	-	conserved protein	4	Insecure	30,72	13874	8,31	0,95
OE3069R	-	conserved protein	2	Trusted	61,44	12942	4,41	-0,03
OE3102R	brp	bop gene expression regulator brp	7	Insecure	26,52	37545	6,97	0,79

OE3167F	htrVIII,	transducer protein htrVIII	5	Trusted	143,45	67250	4,21	-0,06
OE3347F	htrl,	transducer protein htrl	1	Trusted	431,05	56641	4,08	-0,4
OE3348F	sopl	sensory rhodopsin I	7	Trusted	59,42	25485	6,04	0,87
OE3384R	-	conserved protein	10	Insecure	23,61	44671	8,7	0,62
OE3427F	-	conserved protein	4	Insecure	33,79	32185	4,14	-0,08
OE3474R	cosT,	transducer protein cosT	2	Trusted	163,63	85168	3,98	-0,24
OE3481R	htrll,	transducer protein htrll	1	Trusted	130,71	78995	4	-0,16
OE3611R	basT,	transducer protein basT	1	Trusted	88,6	84780	3,94	-0,24
OE3784R	secD	probable cation efflux system membrane protein (zinc/cadmium)	6	Insecure	34,24	53417	5,34	0,22
OE3787R	secF	preprotein-export translocase chain secD	6	Trusted	83,53	29979	4,44	0,72
OE3883R	-	preprotein-export translocase chain secF	9	Insecure	30,01	61021	5,83	0,32
OE3889R	kefC	conserved protein	11	Trusted	87,12	64739	4,48	0,63
OE3958F	-	probable potassium transport protein kefC	2	Insecure	31,82	22635	4,12	0,18
OE3989R	atpK	conserved protein	2	Trusted	84,92	8924	4	1,08
OE4051R	-	H+-transporting two-sector ATPase (EC 3.6.3.14) chain K.a (A-type ATP synthase) (previously EC 3.6.1.34)	2	Insecure	33,83	41888	4,38	-0,07
OE4070R	cox1B,	probable signal-transducing histidine kinase	13	Insecure	22,39	61452	9,75	0,7
OE4073R	hcpB	cytochrome-c oxidase (EC 1.9.3.1) chain I	3	Trusted	60,9	43781	4,17	-0,18
OE4143F	-	halocyanin hcpB	4	Insecure	29,69	12526	5,63	0,96
OE4201R	flaK	protein OE4143F	5	Trusted	81,31	33133	4,5	0,61
OE4258F	hdrD	probable preflagellin peptidase	6	Trusted	121,48	78271	4,39	-0,19
OE4267F	-	probable iron-sulfur protein (heterodisulfide reductase homolog)	5	Insecure	20,91	22475	6,75	0,71
OE4336R	nosY	conserved hem operon protein	6	Insecure	19,6	28349	9,43	0,83
OE4339R	nosF1	ABC-type transport system ATP-binding protein	0	Insecure	30,59	31835	4,17	-0,04
OE4370R	dip1	drug export protein homolog	12	Insecure	20,1	56057	10,38	0,69
OE4384R	-	conserved protein	4	Trusted	59,66	18371	6,04	0,66
OE4583F	fer5	ferredoxin (2Fe-2S)	1	Trusted	49,74	20255	3,81	-0,36
OE4613F	acn	aconitate hydratase (EC 4.2.1.3)	0	Trusted	41,18	70997	4,27	-0,27
OE4721R	aef1a,	translation elongation factor aEF-1 alpha chain	0	Trusted	63,95	45451	4,38	-0,35
OE4757R	-	protein OE4757R	2	Insecure	27,08	64626	4,85	-0,23
OE4759F	csg	cell surface glycoprotein precursor	2	Trusted	112,23	89704	3,6	-0,55
OE5053F	kdpB	potassium-transporting ATPase (EC 3.6.3.12) chain B	7	Trusted	45,18	75939	4,2	0,16
OE5054F	kdpC	potassium-transporting ATPase (EC 3.6.3.12) chain C	1	Insecure	21,7	23753	4,17	-0,45
OE5125F	gvpA2	gas-veside protein gvpA2	0	Insecure	23,26	8367	4,16	0,32
OE5134F	-	conserved protein	1	Trusted	162,57	11229	6,17	-0,21

OE5157F	-	conserved protein	15	Trusted	47,17	67029	4,87	0,76
OE5200R	gltP	glutamate/aspartate transport protein	7	Insecure	22,84	51740	4,64	0,59
0E5204R	nhaC3	probable Na+/H+-exchanging protein	11	Trusted	119,23	50490	4,09	0,74
OE6185F	cydA2	cytochrome d ubiquinol oxidase (EC 1.10.3) chain I	9	Trusted	69,51	53131	6,12	0,44
OE7065F	cydA1	cytochrome d ubiquinol oxidase (EC 1.10.3) chain I	9	Trusted	69,51	53131	6,12	0,44

Tabelle 7.2: Liste der identifizierten Proteine von H. salinarum beschrieben in Kapitel 4.3.3.

Die Liste ist nach dem Protein-Code [1] sortiert. Zusätzlich sind der Gen- [2] und Proteinname [3], die Anzahl der vorhergesagten TMD's [4], die Molekularmasse[7], der isoelektrische Punkt [8] und der GRAVY-Index [9] des Proteins angegeben. Der Identifizierungslevel [5] und der "Differenz-Score" [6] wurden nach den Kriterien, die in Kapitel 3.2.13.4.3 beschrieben sind, ermittelt.

OE-CODE [1]	Gen [2]	Proteinname [3]	тмD [4]	id. level [5]	"Differenz-" Score [6]	MW (Da) [7]	pl [8]	GRAVY [9]
OE1001F	-	conserved protein	2	Trusted	314,00	40562	4,59	-0,04
OE1008F	-	protein OE1008F	11	Trusted	62,05	80575	6,50	0,44
OE1133F	-	protein OE1133F	1	Trusted	454,69	39083	4,19	-0,12
OE1134F	-	protein OE1134F	0	Trusted	167,91	15338	5,02	-0,18
OE1202F	trp1	probable ABC-type transport system ATP-binding/permease protein	4	Insecure	26,36	71290	4,45	-0,07
OE1211F	hsp4	heat shock protein homolog	4	Trusted	175,47	32805	9,70	0,01
OE1295R	-	protein OE1295R	0	Insecure	23,19	33996	4,33	-0,04
OE1410F	-	conserved protein	1	Insecure	33,09	38846	4,65	0,09
OE1426F	pds, zds	probable carotene dehydrogenase (EC 1) (phytoene dehydrogenase (EC 1.14.99) (phytoene desaturase) (pds(crtP)-type) homolog/ carotene 7,8-desaturase (EC 1.14.99.30) (zeta-carotene desaturase) (zds(crtQ)) homolog)	0	Insecure	31,42	58446	4,85	-0,25
OE1465F	lon	endopeptidase La (EC 3.4.21.53)	1	Trusted	965,36	77064	4,57	-0,39
OE1476R	-	protein OE1476R	0	Trusted	54,44	10375	4,17	0,34
OE1489R	-	conserved protein	0	Trusted	108,20	21608	4,95	-0,26
OE1490R	-	conserved protein	1	Trusted	1337,67	42645	4,23	-0,34
OE1492R	-	conserved protein	3	Trusted	112,30	17079	4,26	0,52
OE1501F	-	protein OE1501F	2	Trusted	140,43	13730	5,01	0,07
OE1534F	-	conserved protein	7	Insecure	32,85	26793	6,27	0,97
OE1536R	htr14	transducer protein htr14	1	Trusted	88,58	65616	3,75	-0,19
OE1539F	-	conserved protein	4	Insecure	19,85	31438	4,25	-0,11

OE1541F	-	rhomboid family protein	6	Trusted	80,53	34446	6,28	0,30
OE1558R	secE	probable protein translocase secE	1	Trusted	134,00	6045	4,87	1,17
0E1582R	-	conserved protein	6	Trusted	158,06	40302	4,70	0,53
OE1597F	-	protein OE1597F	0	Trusted	48,59	18843	4,09	-0,37
OE1614F	rfbU2	hexosyltransferase homolog	0	Insecure	33,41	39107	5,15	-0,29
OE1640F	-	transport protein homolog	11	Trusted	128,43	42578	4,38	0,93
OE1653R	nhaC1	Na+/H+ antiporter homolog	11	Trusted	196,75	53895	4,45	0,81
OE1676R	pstA2	probable ABC-type phosphate transport system permease protein	14	Trusted	70,45	58010	9,72	0,93
OE1679R	phoX2	probable ABC-type phosphate transport system periplasmic phosphate-binding protein	0*	Trusted	101,68	36464	4,12	-0,41
OE1738R	-	protein OE1738R	0	Trusted	56,33	24417	5,51	0,13
0E1799R	-	conserved hypothetical protein	24	Trusted	172,09	93116	5,19	0,85
0E1804R	-	conserved protein	1	Trusted	99,27	17725	4,89	0,15
OE1808F	crtl3	probable phytoene dehydrogenase (EC 1.14.99) 3 (alternative EC 1.3)	0	Trusted	49,79	44639	5,00	-0,12
OE1829R	-	conserved hypothetical protein	18	Trusted	45,70	86943	9,29	0,60
0E1841R	-	HyfD / HycC / NADH dehydrogenase (ubiquinone) chain L homolog	16	Trusted	219,33	61961	7,29	0,83
0E1842R	-	NADH dehydrogenase (ubiquinone) chain L homolog	13	Trusted	112,29	55134	6,90	0,89
0E1844R	-	NADH dehydrogenase (ubiquinone) chain N homolog	13	Trusted	106,31	49900	5,41	1,00
OE1849R	-	conserved protein	4	Trusted	58,01	18367	5,02	0,97
OE1852R	-	conserved hypothetical protein	3	Trusted	56,10	10746	5,37	0,63
OE1853R	-	Na+/cholate efflux system protein mrpF homolog	3	Trusted	42,00	9408	4,94	1,43
0E1854R	-	conserved protein	0	Trusted	598,55	38623	4,97	0,06
OE1859R	hcpF	halocyanin hcpF	0	Trusted	139,50	18630	5,34	-0,26
OE1867R	-	hypothetical protein	2	Insecure	28,16	9458	4,48	0,57
OE1872R	petD	probable menaquinolcytochrome-c reductase (EC 1.10.2) (cytochrome bc complex) cytochrome b/c subunit (plastoquinolplastocyanin reductase (cytochrome b6-f complex) 17K polypeptide (subunit 4) homolog)	4	Trusted	228,36	28597	5,84	-0,11
OE1874R	petB	probable menaquinolcytochrome-c reductase (EC 1.10.2) (cytochrome bc complex) cytochrome b subunit (plastoquinolplastocyanin reductase (cyt. b6-f) cyt. b6 subunit/ ubiquinolcytochrome-c reductase (cyt. bc1) cyt. b subunit (N-term. domain) homolog)	5	Trusted	138,65	30797	5,95	0,42
OE1876R	petA	probable menaquinolcytochrome-c reductase (EC 1.10.2) (cytochrome bc complex) Rieske iron-sulfur protein (ubiquinolcytochrome-c reductase (cytochrome bc1 complex) Rieske iron-sulfur protein homolog)	0	Trusted	610,42	29957	4,62	-0,54
OE1878R	-	protein OE1878R	2	Trusted	234,82	14688	5,81	0,13
OE1879R	hcpE	halocyanin hcpE	1	Trusted	64,40	23466	5,56	-0,39
OE1888R	-	conserved hypothetical protein	2	Trusted	65,53	22408	4,52	0,12
OE1931R	pchA2	potassium channel protein	2	Trusted	48,35	58298	4,48	0,11

OE1932R	-	conserved protein	0	Trusted	285,21	27826	4,35	-0,25
OE1934R	edp	proteinase IV (EC 3.4)	1	Trusted	519,83	30528	4,96	-0,01
OE1947F	-	conserved hypothetical protein	9	Trusted	117,13	62436	6,17	0,40
OE1953F	nuoA	NADH dehydrogenase (ubiquinone) (EC 1.6.5.3) chain A	3	Trusted	117,31	15153	8,15	0,55
OE1954F	nuoB	NADH dehydrogenase (ubiquinone) (EC 1.6.5.3) chain B	0	Trusted	271,15	26277	4,93	-0,39
OE1956F	nuoCD	NADH dehydrogenase (ubiquinone) (EC 1.6.5.3) chain CD	0	Trusted	642,04	63371	4,33	-0,51
OE1957F	nuoH	NADH dehydrogenase (ubiquinone) (EC 1.6.5.3) chain H	8	Trusted	210,07	37172	5,21	0,87
OE1958F	nuol	NADH dehydrogenase (ubiquinone) (EC 1.6.5.3) chain I	0	Trusted	147,76	17511	4,64	-0,53
OE1963F	nuoK	NADH dehydrogenase (ubiquinone) (EC 1.6.5.3) chain K	3	Trusted	74,19	10964	4,95	1,03
OE1964F	nuoL	NADH dehydrogenase (ubiquinone) (EC 1.6.5.3) chain L	17	Trusted	220,99	73749	6,03	0,74
OE1965F	nuoM	NADH dehydrogenase (ubiquinone) (EC 1.6.5.3) chain M	15	Trusted	94,68	55315	5,36	1,02
OE1967F	nuoN	NADH dehydrogenase (ubiquinone) (EC 1.6.5.3) chain N	14	Trusted	127,45	51213	4,53	0,92
OE1979R	cox1A, coxA1	cytochrome-c oxidase (EC 1.9.3.1) chain I	13	Insecure	34,35	65251	5,31	0,52
OE1982R	-	conserved protein	4	Insecure	30,72	12800	4,86	0,87
OE1997F	-	conserved hypothetical protein	6	Trusted	52,01	26171	10,50	0,92
OE2007F	-	conserved protein	0	Trusted	55,97	32408	5,62	0,09
OE2026F	trp5	ABC-type transport system ATP-binding protein	0	Trusted	191,41	30818	4,39	-0,14
OE2027F	-	conserved protein	11	Trusted	207,27	58673	4,97	0,70
OE2032F	-	conserved protein	5	Trusted	126,88	32122	4,99	0,46
OE2042F	yvgX	probable copper-transporting ATPase (EC 3.6.1)	7	Trusted	229,40	87592	4,19	0,29
OE2076F	-	conserved protein	12	Trusted	214,97	52282	8,72	0,73
OE2092F	-	hypothetical protein	2	Insecure	32,76	8012	4,77	0,88
OE2113R	-	phosphate permease homolog	8	Insecure	24,45	40181	5,00	0,83
OE2116R	-	glutamate-rich protein	2	Trusted	360,64	23836	3,76	-0,43
OE2121F	-	conserved protein	2	Trusted	100,17	25333	5,57	0,05
OE2124F	ybjG	ABC-type transport system permease protein	5	Insecure	24,60	21712	6,58	0,75
OE2149R	-	conserved protein	0	Trusted	295,38	45896	3,96	-0,40
OE2155R	pssA	CDP-diacylglycerolserine O-phosphatidyltransferase (EC 2.7.8.8)	6	Trusted	74,36	22412	6,82	0,86
OE2168R	htrVI, htr6, htJ	transducer protein htrVI	2	Trusted	1180,34	83877	4,13	-0,27
OE2170R	tmpC	probable periplasmic substrate-binding protein (membrane lipoprotein tmpC homolog)	0	Trusted	94,02	38250	4,33	-0,04
OE2186R	-	conserved protein	1	Trusted	159,79	9946	4,07	-0,13
OE2189R	htr4, htpVI, htD	transducer protein htr4 (htpVI)	2	Trusted	854,23	82027	4,21	-0,19
OE2195F	htr18	transducer protein htr18	2	Trusted	113,30	87008	4,13	-0,30

OE2260R	-	rhomboid family protein	10	Insecure	34,18	57117	9,42	0,52
0E2314R	rbsC1	ABC-type transport system permease protein	9	Trusted	64,96	37362	5,72	0,81
OE2317R	-	probable ABC-type transport system periplasmic substrate-binding protein (membrane lipoprotein tmpC homolog)	0*	Trusted	47,87	36417	4,20	-0,27
OE2322F	putP	Na+/proline symport protein	12	Trusted	41,88	58682	4,49	0,64
OE2397F	flgB1	flagellin B1 precursor	1	Trusted	202,98	20442	4,54	-0,04
OE2398F	flgB2	flagellin B2 precursor	1	Trusted	140,22	20669	4,15	-0,05
OE2399F	flgB3	flagellin B3 precursor	1	Trusted	287,08	20508	4,79	-0,07
0E2443R	-	protein OE2443R	1	Trusted	309,06	25609	5,06	-0,24
OE2444F	-	protein OE2444F	2	Trusted	177,77	30277	4,60	-0,40
0E2453R	-	conserved hypothetical protein	2	Trusted	53,84	9590	10,25	0,75
OE2469F	flgA1	flagellin A1 precursor	1	Trusted	219,50	20610	4,37	-0,03
OE2470F	flgA2	flagellin A2 precursor	1	Trusted	298,06	20593	4,79	-0,09
OE2508F	-	conserved protein	4	Trusted	71,06	14830	5,49	0,82
0E2525R	-	conserved protein	1	Trusted	80,79	12239	6,25	-0,04
0E2528R	gtl	glycosyltransferase homolog	2	Insecure	19,93	32736	4,75	0,08
OE2529F	-	polysaccharide biosynthesis protein homolog	11	Insecure	36,90	51373	9,51	0,73
OE2548F	tot	probable transmembrane oligosaccharyl transferase	16	Trusted	283,47	114515	4,71	0,20
OE2618R	-	conserved protein	0	Trusted	79,02	17777	4,73	-0,40
OE2703F	pan1	probable copper-containing oxidoreductase	0*	Trusted	206,43	41147	5,32	-0,49
OE2757F	-	hypothetical protein	2	Insecure	29,52	6201	8,53	1,60
0E2764R	-	signal-transducing histidine kinase homolog	3	Insecure	33,00	48507	4,97	-0,05
OE2779F	pheP	amino acid transport protein (probable phenylalanine transport protein)	10	Trusted	146,14	76299	4,99	0,39
OE2851R	-	protein OE2851R	1	Trusted	47,22	4079	5,10	0,63
0E2865R	sdhA	succinate dehydrogenase (EC 1.3.99.1) chain A (flavoprotein)	0	Insecure	29,77	66825	4,52	-0,48
OE2866R	sdhB	succinate dehydrogenase (EC 1.3.99.1) chain B (iron-sulfur protein)	0	Trusted	258,57	33611	4,61	-0,80
OE2867R	sdhD	succinate dehydrogenase (EC 1.3.99.1) chain D (membrane anchor protein)	3	Trusted	75,06	13090	10,36	0,64
OE2868R	sdhC	succinate dehydrogenase (EC 1.3.99.1) chain C (cytochrome b-556)	3	Insecure	21,60	14140	5,41	0,82
OE2930R	-	conserved protein	5	Trusted	229,82	54098	9,20	0,21
0E2934R	-	conserved protein	2	Trusted	63,67	17017	6,85	0,39
OE2944F	-	conserved protein	4	Trusted	47,73	13874	8,31	0,95
OE2946R	-	conserved hypothetical protein	9	Trusted	40,04	32397	4,28	1,10
OE2951R	-	ABC-type transport system periplasmic substrate-binding protein	1	Insecure	21,02	37690	4,83	0,06
OE2964F	-	signal-transducing histidine kinase homolog	0	Trusted	40,53	47330	4,72	-0,16
0E3054R	-	conserved hypothetical protein	7	Trusted	68,81	40907	5,15	0,77

OE3069R	-	conserved protein	2	Trusted	108,64	12942	4,41	-0,03
OE3116F	-	conserved protein	2	Trusted	163,90	57724	4,26	-0,28
OE3167F	htrVIII, htr8, htK	transducer protein htrVIII	5	Trusted	435,95	67250	4,21	-0,06
OE3169R	-	conserved hypothetical protein	13	Trusted	40,34	43310	6,08	1,11
OE3171F	trp6	probable sodium-dependent transport protein	13	Trusted	43,80	46453	4,44	0,99
OE3306R	сср	cytochrome-c-aa3 oxidase assembly factor ctaA	8	Trusted	84,89	29035	10,01	0,84
OE3318R	cbiN	cobalt transport protein CbiN	2	Insecure	25,09	10111	4,24	0,23
OE3319R	cbiM	CbiM protein (unassigned function) (probable ABC-type cobalt transport system permease protein 2)	6	Insecure	33,97	22730	9,63	0,98
OE3342R	-	hypothetical protein	2	Insecure	28,92	12960	6,82	-0,23
OE3343R	-	protein OE3343R	1	Trusted	87,26	34286	4,41	-0,01
OE3347F	htrl, htr1	transducer protein htrl	1	Trusted	1710,66	56641	4,08	-0,40
OE3348F	sopl	sensory rhodopsin I	7	Trusted	139,26	25485	6,04	0,87
OE3418F	secY	protein translocase secY	10	Insecure	26,59	52785	6,00	0,57
OE3456F	-	conserved protein	0	Trusted	60,00	24882	4,84	-0,08
OE3473F	htrVII, htr7, htpV, htl	transducer protein htrVII	3	Insecure	33,38	57036	3,93	-0,26
0E3474R	cosT, htr5, htpIV, htF	transducer protein cosT	2	Trusted	1413,41	85168	3,98	-0,24
OE3476R	cosB, proX	chemotactic signal transduction system periplasmic substrate-binding protein cosB	0*	Trusted	50,05	35600	4,26	-0,32
OE3481R	htrll, htr2	transducer protein htrll	1	Trusted	771,56	78995	4,00	-0,16
OE3490R	-	conserved protein	1	Trusted	69,54	64610	4,55	-0,14
OE3533F	hemY	probable protoporphyrinogen oxidase (EC 1.3.3.4)	0	Trusted	136,03	48263	4,37	-0,21
OE3611R	basT, htr3, htC	transducer protein basT	1	Trusted	1222,74	84780	3,94	-0,24
OE3612R	basB	chemotactic signal transduction system periplasmic substrate-binding protein basB	1*	Trusted	56,55	41186	4,30	0,04
OE3619R	cef	probable cation efflux system membrane protein (zinc/cadmium)	5	Trusted	66,49	31293	4,75	0,29
OE3629R	-	ABC-type transport system periplasmic substrate-binding protein	0*	Insecure	34,64	41686	4,58	-0,22
OE3661F	trp2	ABC-type transport system ATP-binding protein	0	Trusted	67,99	26663	4,58	-0,19
OE3662F	-	conserved hypothetical protein	12	Insecure	23,16	53714	9,77	0,86
OE3717F	nolA	NADH dehydrogenase (ubiquinone) (EC 1.6.5.3) 32K chain	0	Trusted	118,41	31627	4,70	0,12
OE3719F	-	conserved protein	2	Trusted	133,52	28299	4,08	-0,37
OE3782R	-	conserved hypothetical protein	13	Trusted	163,07	56323	4,85	0,75
OE3784R	secD	preprotein-export translocase chain secD	6	Trusted	624,66	53417	5,34	0,22
0E3787R	secF	preprotein-export translocase chain secF	6	Trusted	114,58	29979	4,44	0,72
OE3828F	-	conserved protein	7	Trusted	130,10	61910	4,48	0,46
---------	-----------------	--	----	----------	--------	-------	-------	-------
0E3883R	-	conserved protein	9	Insecure	28,52	61021	5,83	0,32
OE3889R	kefC	probable potassium transport protein kefC	11	Trusted	454,14	64739	4,48	0,63
OE3910R	hpb	probable ABC-type transport system periplasmic substrate-binding protein	0*	Trusted	73,79	33679	4,08	-0,18
OE3919F	-	conserved protein	2	Insecure	20,76	15498	6,29	0,14
OE3958F	-	conserved protein	2	Trusted	130,08	22635	4,12	0,18
OE3980R	blh	brp protein homolog	7	Insecure	21,88	36073	10,06	0,81
0E3984R	atpB	H+-transporting two-sector ATPase (EC 3.6.3.14) chain B.a (A-type ATP synthase) (previously EC 3.6.1.34)	0	Insecure	36,81	51925	4,14	-0,38
OE3985R	atpA	H+-transporting two-sector ATPase (EC 3.6.3.14) chain A.a (A-type ATP synthase) (previously EC 3.6.1.34)	0	Trusted	51,61	64178	4,03	-0,34
OE3989R	atpK	H+-transporting two-sector ATPase (EC 3.6.3.14) chain K.a (A-type ATP synthase) (previously EC 3.6.1.34)	2	Trusted	95,02	8924	4,00	1,08
OE3991R	atpl	H+-transporting two-sector ATPase (EC 3.6.3.14) chain I.a (A-type ATP synthase) (previously EC 3.6.1.34)	7	Trusted	108,23	77128	4,26	0,17
OE4034R	-	CBS domain protein	6	Trusted	188,11	41007	4,72	0,66
OE4051R	-	probable signal-transducing histidine kinase	2	Trusted	44,25	41888	4,38	-0,07
OE4070R	cox1B, coxA2	cytochrome-c oxidase (EC 1.9.3.1) chain I	13	Trusted	278,74	61452	9,75	0,70
OE4071R	cox2B, coxB2	cytochrome-c oxidase (EC 1.9.3.1) chain II	1	Trusted	127,86	19715	4,52	-0,10
OE4073R	hcpB	halocyanin hcpB	3	Trusted	177,73	43781	4,17	-0,18
OE4143F	-	protein OE4143F	4	Insecure	36,64	12526	5,63	0,96
OE4201R	flaK	probable preflagellin peptidase	5	Trusted	372,26	33133	4,50	0,61
OE4258F	hdrD	probable iron-sulfur protein (heterodisulfide reductase homolog)	6	Trusted	182,85	78271	4,39	-0,19
OE4267F	-	conserved hem operon protein	5	Trusted	91,49	22475	6,75	0,71
OE4272F	-	conserved hem operon protein	4	Trusted	52,70	18619	10,31	0,75
OE4302R	oppD2	ABC-type oligopeptide transport system ATP-binding protein	0	Insecure	26,59	39531	4,41	-0,33
OE4303R	dppC2	ABC-type transport system permease protein	8	Trusted	41,28	56220	5,67	0,36
OE4305R	dppA	ABC-type dipeptide transport system periplasmic dipeptide-binding protein	0*	Trusted	107,67	68913	4,38	-0,59
OE4336R	nosY	probable ABC-type transport system permease protein	6	Trusted	240,89	28349	9,43	0,83
OE4339R	nosF1	ABC-type transport system ATP-binding protein	0	Trusted	556,84	31835	4,17	-0,04
OE4357F	-	ABC-type transport system periplasmic substrate-binding protein	0*	Trusted	60,81	38631	4,34	-0,39
OE4370R	dip1	drug export protein homolog	12	Trusted	51,82	56057	10,38	0,69
OE4382R	-	hypothetical protein	2	Insecure	29,97	9307	5,65	0,66
OE4384R	-	conserved protein	4	Trusted	104,28	18371	6,04	0,66

OE4387F	-	hypothetical protein	3	Insecure	21,48	9490	9,30	0,95
OE4551F	dppD	ABC-type transport system periplasmic substrate-binding protein	0*	Insecure	37,98	60487	4,18	-0,46
OE4552F	dppB2	ABC-type transport system permease protein	7	Insecure	35,61	37418	8,83	0,72
OE4583F	fer5	ferredoxin (2Fe-2S)	1	Trusted	192,30	20255	3,81	-0,36
OE4633F	-	conserved protein	1	Trusted	92,77	24797	4,52	-0,05
OE4646R	-	hypothetical protein	1	Trusted	64,03	5525	4,22	0,55
OE4649F	arsB	probable transport protein	11	Trusted	61,41	64970	4,65	0,57
OE4668R	-	conserved protein	3	Insecure	21,09	10581	4,75	0,94
OE4700F	-	hypothetical protein	0*	Trusted	53,24	31554	9,32	-0,25
OE4721R	aef1a, tuf	translation elongation factor aEF-1 alpha chain	0	Trusted	125,10	45451	4,38	-0,35
OE4757R	-	protein OE4757R	2	Trusted	180,88	64626	4,85	-0,23
OE4759F	csg	cell surface glycoprotein precursor	2	Trusted	436,02	89704	3,60	-0,55
OE5032R	-	hypothetical protein	1	Insecure	28,33	4823	9,52	0,77
OE5134F	-	conserved protein	1	Trusted	366,71	11229	6,17	-0,21
OE5142F	ftsZ5	cell division protein ftsZ5	0	Trusted	63,60	37729	4,34	-0,12
OE5147R	ycdH	probable ABC-type transport system periplasmic substrate-binding protein	0*	Trusted	86,63	38317	4,46	-0,38
OE5157F	-	conserved protein	15	Trusted	426,47	67029	4,87	0,76
OE5187R	-	probable hydrolase	0	Trusted	64,95	33898	4,42	0,02
OE5192R	aph	alkaline phosphatase (EC 3.1.3.1)	0	Trusted	77,13	49275	4,43	-0,24
OE5200R	gltP	glutamate/aspartate transport protein	7	Trusted	58,73	51740	4,64	0,59
OE5204R	nhaC3	probable Na+/H+-exchanging protein	11	Trusted	603,79	50490	4,09	0,74
OE6185F	cydA2	cytochrome d ubiquinol oxidase (EC 1.10.3) chain I	9	Trusted	290,09	53131	6,12	0,44
OE6186F	cydB2	cytochrome d ubiquinol oxidase (EC 1.10.3) chain II	9	Trusted	104,91	35040	4,88	0,87
OE7065F	cydA1	cytochrome d ubiquinol oxidase (EC 1.10.3) chain I	9	Trusted	290,09	53131	6,12	0,44
OE7066F	cydB1	cytochrome d ubiquinol oxidase (EC 1.10.3) chain II	9	Trusted	104,91	35040	4,88	0,87
OE7187F	-	conserved protein	10	Trusted	260,60	39505	4,95	1,00
OE8018F	-	conserved protein	10	Trusted	260,60	39505	4,95	1,00

Tabelle 7.3: Liste der identifizierten Proteine von N. pharaonis beschrieben in Kapitel 4.3.4.

Die Liste ist sortiert nach aufsteigendem Protein-Code [1]. Zusätzlich sind der Gen- [2] und Proteinname [3], die Anzahl der vorhergesagten TMD's [4], die Molekularmasse [7], der isoelektrische Punkt [8] und der GRAVY-Index [9] des Proteins angegeben. Der Identifizierungslevel [5] und der "Differenz-Score" [6] wurden nach den Kriterien, die in Kapitel 3.2.13.4.3 beschrieben sind, ermittelt.

CODE [1]	Gen [2]	Proteinname [3]	TMD [4]	idlevel [5]	"Differenz-" Score [6]	МW [7]	pl [8]	GRAVY [9]
NP0030A	-	probable metalloprotease (EC 3.4.24)/ CBS domain protein	6	Trusted	603,73	42793	5,13	0,51
NP0042A	tp01_1	transporter system 1 (probable substrates cationic amino acids), subunit 1	12	Trusted	343,65	79956	4,42	0,55
NP0080A	-	hypothetical protein	3	Trusted	43,02	9941	4,5	0,93
NP0120A	tp37	transporter 37 (probable substrates zinc/cadmium/cations)	6	Trusted	143,74	33032	4,76	0,42
		ABC-type transport system permease protein II (probable substrates branched-chain/neutral						
NP0170A	abc09p2,	amino acids) 5	9	Trusted	222,55	40899	8,57	0,83
		ABC-type transport system periplasmic substrate-binding protein (probable substrates						
NP0174A	abc09s,	branched-chain/neutral amino acids amide) 5	0	Insecure	21,39	47114	3,92	-0,29
NP0192A	-	conserved hypothetical protein	8	Insecure	32,09	45190	5,02	0,54
NP0234A	-	conserved hypothetical protein	5	Insecure	38,93	21832	4,43	1,19
NP0240A	-	conserved hypothetical protein	4	Trusted	139,93	26677	6,54	-0,1
NP0258A	tpa02	transport ATPase (EC 3.6.3) 2 (probable substrates zinc/cadmium)	5	Trusted	788,62	75693	4,27	0,22
NP0330A	tp40_1,	Kef-type transport system 1 (probable substrate potassium), subunit 1	13	Trusted	144,53	64599	4,46	0,67
NP0348A	sppA_1	probable signal peptide peptidase	2	Trusted	530,82	35317	4,12	0,06
NP0380A	-	conserved hypothetical protein	6	Trusted	44,41	38727	4,32	0,61
NP0404A	citB_1	aconitate hydratase (EC 4.2.1.3) 1	0	Trusted	275,61	70978	4,21	-0,34
NP0410A	-	conserved hypothetical protein	6	Trusted	126,07	33565	4,56	0,86
NP0428A	pyrD	dihydroorotate oxidase (EC 1.3.3.1)	0	Insecure	28,2	37123	4,45	-0,17
NP0450A	-	hypothetical protein	1	Trusted	50,89	7361	11,62	0,2
NP0500A	tp14	major facilitator family transporter 4 (probable hexuronate transporter	12	Trusted	42,33	44366	9,39	0,7
NP0510A	-	homolog to ABC-type phosphate transport system permease protein	7	Trusted	80,4	21630	4,92	1,44
NP0528A	-	probable cell surface glycoprotein	0	Trusted	60,89	32612	3,7	-0,83
NP0540A	tp53_3	predicted TRAP-type transport system permease protein	21	Trusted	254,43	96451	5,59	0,71
NP0544A	tp53_1	predicted TRAP-type transport system periplasmic protein 1	0	Trusted	82,76	35751	3,75	-0,35
NP0578A	-	conserved hypothetical protein	7	Trusted	178,19	45703	4,37	0,5
NP0642A	hop	halorhodopsin	7	Trusted	147,53	30943	4,4	0,88
NP0660A	degP	probable periplasmic serine proteinase	0	Trusted	78,71	35949	4,14	-0,02
NP0662A	-	hypothetical protein	7	Insecure	19,76	28613	5,18	0,67
NP0692A	-	conserved hypothetical protein	2	Trusted	217,39	12048	5,24	0,37
NP0740A	-	hypothetical protein	6	Trusted	111,12	32315	5,14	0,72
NP0742A	-	hypothetical protein	4	Trusted	158,44	24340	10,1	0,76
NP0754A	-	conserved hypothetical protein	8	Trusted	192,21	38809	5,07	0,68
NP0758A	abc01s.	ABC-type transport system periplasmic substrate-binding protein (probable substrates dipeptide/oligopeptide/nickel) 1	0	Trusted	425.75	60097	3.96	-0.6
NP0812A	secE	preprotein translocase subunit secE	1	Trusted	149,35	6115	8,2	0,85

NP0830A	tp49_7,	pH adaptation potassium efflux system protein D 1	13	Insecure	36,73	60293	4,87	0,62
NP0842A	tp49_1,	pH adaptation potassium efflux system protein E	3	Trusted	150,27	37973	4,56	0,16
NP0850A		conserved hypothetical protein	4	Trusted	307,39	35532	5,14	-0,19
NP0910A	lon	endopeptidase La	1	Trusted	485,9	78716	4,48	-0,44
NP0938A	hcp_3	halocyanin 3	0	Trusted	117,02	16059	4,55	-0,2
NP0964A	htpX_1	htpX protein homolog	4	Trusted	147,58	32095	5,89	0,21
NP0986A		conserved hypothetical protein	2	Trusted	456,87	23324	4,57	0,16
NP0990A	cdsA	phosphatidate cytidylyltransferase (EC 2.7.7.41)	4	Trusted	176,83	19782	5,24	0,67
NP0992A	-	conserved hypothetical protein	12	Trusted	145,07	37597	5,92	0,92
NP1020A	atpl	H(+)-transporting two-sector ATPase (EC 3.6.3.14) subunit I.a (A-type ATP synthase)	7	Trusted	86,34	80333	4,24	0,13
NP1022A	atpK	H(+)-transporting two-sector ATPase (EC 3.6.3.14) subunit K.a (A-type ATP synthase)	2	Trusted	83,27	8885	3,89	1,12
NP1026A	atpC	H(+)-transporting two-sector ATPase (EC 3.6.3.14) subunit C.a (A-type ATP synthase)	0	Trusted	125,49	39842	4,38	-0,4
NP1030A	atpA	H(+)-transporting two-sector ATPase (EC 3.6.3.14) subunit A.a (A-type ATP synthase)	0	Trusted	183,73	65029	4,09	-0,41
NP1048A	-	probable transcription regulator	0	Insecure	34,51	14350	4,71	-0,28
NP1057E	-	conserved hypothetical protein	1	Trusted	163,79	7361	4,31	0,7
NP1064A	tbpE	TATA-binding transcription initiation factor	0	Trusted	74,69	20396	4,18	-0,16
NP1080A	abc25p	ABC-type transport system permease protein (probable substrate copper) 3	6	Trusted	62,59	30924	4,45	0,91
NP1082A	abc25a	ABC-type transport system ATP-binding protein (probable substrate copper) 3	0	Trusted	213,22	31650	4,04	-0,09
NP1098A	-	cobalamin cluster protein	6	Trusted	84,03	26197	5,49	0,55
NP1126A	-	stomatin homolog	1	Trusted	1759,25	43486	4,41	-0,46
NP1147B	-	[del] spurious ORF	0	Insecure	21,08	34152	12,1	-1,18
NP1156A	-	GlpG-like protein	6	Trusted	80,6	33293	6,34	0,45
NP1160A	-	probable dehydrogenase/ reductase (EC 1.1.1) 7	0	Trusted	47,11	29933	4,53	-0,21
NP1172A	-	conserved hypothetical protein	0	Trusted	143,25	50984	4,15	-0,46
NP1178A	-	homolog 3 to S-adenosylmethionine-dependent methyltransferase (EC 2.1.1) 3	0	Trusted	61,21	26695	5,57	-0,36
NP1188A	-	conserved hypothetical protein	3	Trusted	420,46	22080	4,11	-0,03
NP1198A	abc26a	ABC-type transport system ATP-binding protein (probable substrate copper) 4	0	Trusted	214,42	31613	4,39	-0,03
NP1200A	abc26p	ABC-type transport system permease protein (probable substrate copper) 4	6	Trusted	62,64	27972	9,51	0,78
NP1232A	korA	oxoglutarateferredoxin oxidoreductase (EC 1.2.7.3), alpha subunit	0	Trusted	150,53	64245	4,31	-0,35
NP1240A	-	hypothetical protein	4	Trusted	71,4	12540	4,61	1,07
NP1276A	flaK	probable preflagellin peptidase	5	Trusted	106,26	38723	4,94	0,28
NP1338A	-	conserved hypothetical protein	4	Insecure	33,9	13034	6,7	0,93
NP1350A	tatC 2	sec-independent protein translocase component TatC 2	14	Trusted	151,83	80286	4,79	0,54
NP1354A		conserved hypothetical protein	6	Trusted	85,16	25620	4,85	0,75
NP1366A	-	predicted cell surface protein/ lipoprotein	0	Trusted	123,31	40403	4,83	-0,24
NP1372A	-	hypothetical protein	6	Trusted	130,25	29262	4,51	1,19
		ABC-type transport system operon protein (predicted ABC-type transport system substrate-					,	,
NP1394A	abc21u	binding protein)	5	Insecure	37,75	19873	4,62	1,07
NP1396A	abc21a	ABC-type transport system ATP-binding protein (probable substrate cobalt)	0	Trusted	65,83	24401	4,31	0,08
NP1400A	-	iron-sulfur protein (probable glycolate oxidase iron-sulfur subunit)	6	Trusted	874,01	82605	4,27	-0,17
		ABC-type transport system periplasmic substrate-binding protein (probable substrates					,	
NP1464A	abc07s,	branched-chain/neutral amino acids amide) 3	0	Trusted	215,73	47572	3,98	-0,33
		ABC-type transport system permease protein I (probable substrates branched-chain/neutral						, -
NP1466A	abc07p1,	amino acids) 3	8	Trusted	131,48	30934	5,17	1,2

		ABC-type transport system permease protein II (probable substrates branched-chain/neutral						
NP1468A	abc07p2,	amino acids) 3	8	Trusted	269,36	37140	5,23	0,95
NP1476A	-	hexosyltransferase homolog 3	0	Trusted	71,54	39033	5	-0,31
NP1484A	htpX_2	htpX protein homolog	4	Trusted	143,85	30437	5,36	0,32
NP1506A	-	signal-transducing histidine kinase	6	Trusted	293,69	62847	4,46	-0,02
NP1578A	-	conserved hypothetical protein	7	Insecure	24,56	53005	6,03	0,44
NP1612A	-	conserved hypothetical protein	0	Trusted	53,66	9993	4,72	-0,43
NP1614A	rpl36aR	ribosomal protein L36a.eR (HLA)	0	Trusted	54,51	10741	10,39	-1,21
NP1630A	crtl_3	phytoene dehydrogenase (EC 1.14.99) 3 (phytoene desaturase)	0	Insecure	32,3	44530	4,54	-0,17
NP1644A	mpcT,	transducer protein mpcT	2	Trusted	335,71	64199	3,82	-0,29
NP1652A	-	hypothetical protein	0	Trusted	101,11	18435	4,16	-0,33
NP1682A	-	subtilisin-like serine protease	1	Trusted	129,19	56923	4,23	-0,21
NP1742A	ubiB_1	probable ubiquinone biosynthesis transmembrane protein 1	3	Insecure	29,66	62434	4,6	-0,21
NP1752A	abc17p,	ABC-type transport system permease protein (probable substrate phosphonate) 1	6	Insecure	28,22	29790	5,54	0,61
NP1756A	htr22	transducer protein htr22	2	Trusted	214,75	56581	4	-0,13
NP1758A	-	hypothetical protein	7	Insecure	33,17	24559	9,56	0,87
NP1770A	-	heme O oxidase N-terminal domain homolog	8	Trusted	183,79	29481	9,34	1,06
		malate dehydrogenase (oxaloacetate decarboxylating) (EC 1.1.1.40)/ phosphate						
NP1772A	mdh_2,	acetyltransferase (EC 2.3.1.8) 2	0	Trusted	45,68	81285	4,33	-0,25
	_	ABC-type transport system permease protein II 1 (probable substrates						
NP1776A	abc04p2_1	glutamine/glutamate/polar amino acids)	4	Trusted	227,62	28387	4,87	0,61
		ABC-type transport system permease protein II 2 (probable substrates						
NP1780A	abc04p2_2	glutamine/glutamate/polar amino acids)	7	Trusted	230,39	35245	8,83	0,62
NP1798A	-	hypothetical protein	4	Trusted	76,04	15518	4,05	1,02
NP1810A	cstA	carbon starvation protein A	14	Trusted	247,4	65297	4,57	0,82
NP1824A	-	hypothetical protein	1	Trusted	41,46	8481	4,83	0,28
NP1842A	-	hypothetical protein	2	Insecure	25,19	22227	4,96	0,06
NP1852A	-	hypothetical protein	5	Trusted	143,88	31227	4,35	0,47
NP1868A	-	hypothetical protein	2	Trusted	52,6	49399	4,7	-0,17
NP1880A	-	conserved hypothetical protein	2	Trusted	163,82	10222	8,09	0,69
NP1888A	-	hypothetical protein	0	Trusted	57,97	18874	4,07	-0,68
NP1894A	-	predicted transporter (predicted permease)	8	Insecure	37,37	42994	4,13	0,72
NP1944A	tp57	transport protein 57 (probable polysaccharide biosynthesis transport protein)	12	Trusted	50,53	51123	9,21	0,87
NP1956A	-	conserved hypothetical protein	1	Trusted	54,82	16806	3,87	-0,24
NP1962A	-	conserved hypothetical protein	3	Insecure	26,01	21123	4,39	0,29
		ABC-type transport system periplasmic phosphate-binding protein (probable substrate						
NP1978A	abc14s,	phosphate) 1	0	Trusted	117,97	38574	4,29	-0,47
NP1980A	abc14p2,	ABC-type transport system permease protein II (probable substrate phosphate) 1	6	Insecure	35,72	32331	4,65	0,77
NP1982A	abc14p1,	ABC-type transport system permease protein I (probable substrate phosphate) 1	6	Trusted	143,93	31839	5,69	0,71
NP2036A	abc29p1,	ABC-type transport system permease protein 1 (heme exporter protein B)	6	Trusted	82,11	24093	4,76	0,98
NP2038A	abc29a	ABC-type transport system ATP-binding protein	0	Trusted	423,2	25522	4,84	0
		probable nitrate reductase (EC 1 7 99 4)/ sulfite dehydrogenase (EC 1 8 2 1) (nitrate/			- ,		,-	
NP2044A	-	sulfite:cytochrome C oxidoreductase protein)	3	Trusted	262,68	55464	4,57	-0,02
NP2046A	-	ccm operon protein	1	Trusted	59,89	4906	6,15	0,2
					,			

NP2048A	abc29p2,	ABC-type transport system permease protein 2 (heme exporter protein C)	6	Insecure	20,15	27458	9,47	0,53
NP2092A	flaD	flagella cluster protein FlaD	0	Trusted	55,74	20019	3,71	-0,84
NP2122A	-	hypothetical protein	1	Trusted	80,17	5420	3,47	0,16
NP2136A	-	conserved hypothetical protein	4	Trusted	96,06	15977	9,59	0,88
NP2144A	pgsA	probable CDP-diacylglycerol-glycerol-3-phosphate 3-phosphatidyltransferase (EC 2.7.8.5)	4	Trusted	67,43	21665	5,21	0,74
NP2150A	-	flagella cluster protein	7	Trusted	130,95	33453	9,09	0,53
NP2176A	htr21	transducer protein htr21	2	Trusted	443,97	86883	3,81	-0,31
NP2212A	-	conserved hypothetical protein	3	Trusted	364	60633	4,2	-0,22
NP2242A	-	conserved hypothetical protein	1	Trusted	239,04	13756	10,07	-0,35
NP2268A	-	probable metalloprotease	6	Trusted	221,09	61803	4,2	0,43
NP2292A	nuoA	NADH dehydrogenase-like complex, subunit A	3	Trusted	73,87	14815	4,82	0,76
NP2294A	nuoB	NADH dehydrogenase-like complex, subunit B	0	Trusted	321,3	25502	5,19	-0,33
NP2296A	nuoCD	NADH dehydrogenase-like complex, subunit CD	0	Trusted	504,78	63293	4,44	-0,5
NP2298A	nuoH	NADH dehydrogenase-like complex, subunit H	8	Trusted	238,32	37264	4,98	0,93
NP2300A	nuol	NADH dehydrogenase-like complex, subunit I	0	Trusted	138,52	17722	4,6	-0,66
NP2310A	nuoL	NADH dehydrogenase-like complex, subunit L	16	Trusted	223,68	72406	5,05	0,75
NP2312A	nuoM	NADH dehydrogenase-like complex, subunit M	14	Trusted	292,28	55159	4,8	0,98
NP2314A	nuoN	NADH dehydrogenase-like complex, subunit N	14	Trusted	94,48	51271	4,77	1
NP2326A	-	conserved hypothetical protein	6	Trusted	75,21	25299	5,11	1,14
NP2402A	-	conserved hypothetical protein	2	Trusted	68,63	27092	4,21	-0,43
NP2404A	ftsZ 4	cell division protein	0	Trusted	89,63	41893	4,58	-0,27
NP2430A	icd _	isocitrate dehydrogenase (NADP+) (EC1.1.1.42)	0	Trusted	79,1	46189	4,29	-0,42
NP2436A	-	conserved hypothetical protein	5	Trusted	61,57	21357	8,69	0,87
NP2440A	abc28p	ABC-type transport system permease protein	6	Trusted	40,69	27332	8,82	0,87
NP2448A	coxB 1	cvtochrome-c-like terminal oxidase (EC 1.9.3.1). subunit II 1	3	Trusted	172.3	28225	4.12	-0.13
NP2454A		conserved cox cluster protein	2	Trusted	176,55	10053	4,34	0,59
NP2456A	coxA 1	cvtochrome-c-like terminal oxidase (EC 1.9.3.1). subunit I 1	13	Trusted	210.67	64749	5.75	0.61
NP2464A		conserved hypothetical protein	2	Trusted	64.4	57647	4.04	-0.44
NP2469F	-	[del] spurious ORF	0	Insecure	19.92	35313	4.88	0.03
NP2472A	tp32,	CBS-domain protein/ transporter 32 (probable substrate magnesium)	4	Trusted	39,82	36581	4,13	0,47
NP2491G	-	conserved hypothetical protein	4	Trusted	49.36	17382	4.69	0.38
NP2522A	secD	preprotein translocase subunit secD	6	Trusted	895.05	60034	4.05	0
NP2524A	secF	preprotein translocase subunit secF	6	Trusted	65.95	30987	4.08	0.6
NP2592A	-	hypothetical protein	1	Insecure	31.24	6278	5.24	0.16
NP2598A	msc 3	probable mechanosensitive channel	3	Trusted	114.21	37978	4.88	-0.03
NP2669B	-	[del] spurious ORF	0	Insecure	26.36	18119	12.57	-1.23
NP2674A	-	conserved hypothetical protein	7	Trusted	50.33	44415	4.38	0.28
NP2702A	-	conserved hypothetical protein	6	Trusted	490.38	53471	4.42	0.44
NP2734A	menA	1 4-dihydroxy-2-naphthoate octaprenyltransferase (FC 2 5 1 -)	7	Trusted	101 01	33261	7 85	0.73
NP2750A	-	conserved hypothetical protein	0	Insecure	32.44	18020	5.22	-0.6
NP2766A	-	conserved hypothetical protein	2	Trusted	124 45	20089	4,61	0 15
NP2770A	rbcl	ribulose-bisphosphate carboxylase (FC 4 1 1 39) Jarge subunit	0	Trusted	80.34	44883	4 5	-0.3
NP2780A	-	conserved hypothetical protein	6	Trusted	382 22	55214	6.04	0.07
NP2782A	-	conserved hypothetical protein	2	Trusted	314 16	20286	4 74	0.13
			-		011,10	20200	.,	0,10

NP2802A ABC-type transport system permease protein 1 11 Insected 94,58 65145 4,45 0.58 NP2802A ABC-type transport system ATP-binding protein 0 Trusted 45,39 19427 4,74 -0.68 NP2802A - hypothetical protein 2 Trusted 45,39 1942 4,74 -0.68 NP2802A - prodictical protein 2 Trusted 45,64 22717 6,7 -0.49 NP2802A - prodictical Protein 1 Trusted 45,64 2276 38 4,10 0.9 NP2805A ABC-type transport system Permease protein 1 Trusted 35,59 660 -0,4 NP2805A ABC-type transport system Permease protein 1 Trusted 35,59 660 -0,4 NP2805A ABC-type transport system Permease protein 1 Trusted 35,59 6,70 4,81 0.59 NP2805A ABC-type transport system Permease protein 1 Trusted 56,74 5	NP2798A	abc23p_2	ABC-type transport system permease protein 2	6	Trusted	133,26	34492	4,5	0,73
NP2802 abc23a ABC-type transport system ATP-binding protein 0 Trusted 96.28 34449 4,74 -0.68 NP2800A in bypothetical protein 2 Trusted 41.04 7366 10.75 1.15 NP2806A in predicted NAD-binding protein 1 (probable Kef-type transporter subunit) 2 Trusted 45.35 57993 4.12 0.13 NP2806A ioS NP36MP-tamily transporter 11 Trusted 45.64 2.271 6.7 0.49 NP2806A ioS NPAMP-tamily transporter 11 Trusted 39.59 6.84 4.61 0.59 NP2806A coda cytochrome-ba3 oxidase (EC 1.9.3.1), subunit 13 Trusted 39.59 6.84 4.74 0.48 NP2806A coda cytochrome-ba3 oxidase (EC 1.9.3.1), subunit 10 Trusted 39.57 6.87 4.70 4.74 0.48 NP2806A coda cytochrome-ba3 oxidase (EC 1.9.3.1), subunit 10 Trusted 55.4 0.66 10.77 11.18	NP2800A	abc23p_1	ABC-type transport system permease protein 1	11	Insecure	34,58	65145	4,45	0,59
NP2830A rps4 hbosonial protein S4 0 Trusted 45.39 19427 4,74 -0.06 NP2830A - byodhelical protein 2 Trusted 41.04 7.06 1.75 0.49 NP2830A - prodicide NAD-binding protein 1 (probable Kef-type transporter subunit) 4 Trusted 68.35 57933 4.12 0.13 NP2830A - hyodhelical protein 6 Insecure 20.16 23638 10.06 0.9 NP2830A cbaC CbaC protein 6 176.32 41.04 0.8 0.7 4.6 0.8 0.7 4.6 0.8 0.7 4.12 0.4 0.8 0.7 4.6 0.8 0.7 4.12 0.4 0.8 0.7 4.6 0.8 0.7 4.12 0.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.3 1.3 0.14 1.7 1.7 1.13 5.2 1.0 0.6 0.7 1.15 0.2 0.14 1.13 5.2 1.0 0.14 1.13 0.5	NP2802A	abc23a	ABC-type transport system ATP-binding protein	0	Trusted	96,26	34449	4,74	-0,48
NP2880A - hypothetical probein 2 Trusted 41,04 7666 10,75 1,15 NP2880A - operational probein al probine in probable Kef-type transporter subunit) 2 Trusted 46,35 57993 4,12 0.06 0.8 NP2805A 103 NRAMP-family transporter 11 Trusted 36,35 8793 4,41 0.9 NP2805A toda cytochrome-ba3 oxidase (EC 1.9.3.1), subunit 1 13 Trusted 36,227 6307 4,12 0.74 NP2806A cbaB cytochrome-ba3 oxidase (EC 1.9.3.1), subunit 1 13 Trusted 91,13 6634 2,217 644 10,74 NP2806A cbaB cytochrome-ba3 oxidase (EC 1.9.3.1), subunit 1 13 Trusted 91,15 663,7 4,12 0,74 NP2806A cbaB cytochrome-ba3 oxidase (EC 1.9.3.1), subunit 1 13 Trusted 91,15 663,7 4,43 0.04 NP2806A cbaB cytochrome-ba3 oxidase (EC 1.9.3.1), subunit 1 15 NTusted 70	NP2830A	rps4	ribosomal protein S4	0	Trusted	45,39	19427	4,74	-0,66
NP2888 conserved hypothetical protein (probable Kef-type transporter subunit) 4 Trusted 63.64 22.717 6.7 0.49 NP2820A - hypothetical protein (probable Kef-type transporter subunit) 6 insecure 20.16 23.83 10.06 0.9 NP2806A cbaC CbaC protein 2 Trusted 39.59 85.94 4.61 0.59 NP2806A cbaC cydothrome-ba3 oxidase (EC 1.9.3.1), subunit 1 Trusted 39.52 6307 4.12 0.74 NP2806A cbaC cydothrome-ba3 oxidase (EC 1.9.3.1) subunit 1 Trusted 56.44 29.74 9.12 0.74 NP2806A cbaC cydothrome-ba3 oxidase (EC 1.9.3.1) subunit 6 7 Trusted 56.44 29.74 9.12 0.76 NP2806A cbaC probable transcription regulator 0 Trusted 160.23 46.30 4.8 -0.5 NP3002A - probable transcription regulator 0 Trusted 20.03 24.24 1.017	NP2880A	-	hypothetical protein	2	Trusted	41,04	7366	10,75	1,15
NP2302A - predicted NAD-binding protein 1 (probable Kef-type transporter subunit) 2 Trusted 68.35 57.93 4.12 0.13 NP2305A 103 NIRAMP-family transporter 11 Trusted 36.8 68.95 4.40 0.69 NP2305A cba3 cytochrome-ba3 oxidase (EC 1.9.3.1), subunit 13 Trusted 91.5 6077 4.12 0.41 NP2305A cba4 cytochrome-ba3 oxidase (EC 1.9.3.1), subunit 1 Trusted 91.5 6077 4.12 0.43 0.66 NP2305A - conserved trypothetical protein conserved trypothetical protein 7 Trusted 95.4 287.4 9.12 0.76 NP2305A - probabile transport system protein substrate-binding protein (probable substrates 7 Trusted 107.79 118.3 5.25 -1.08 NP3005A - probabile transport system protein (probabile substrates 7 Trusted 102.79 118.4 4.13 0.01 NP3005A - probabile transport system protein (probabil	NP2886A	-	conserved hypothetical protein	4	Trusted	45,64	22717	6,7	0,49
NP2262A - hypothetical protein - pypothetical protein 23638 10.06 0.05 NP256A CbaC protein 2 Trusted 39,59 6594 4,61 0.69 NP266A cbaC CbaC protein 2 Trusted 39,59 6594 4,61 0.69 NP266A cbaD cylochrome-ba3 oxidase (EC 1.9.3.1), subunit 1 1 Trusted 39,5 6077 4,12 0,74 NP226A cbaE cylochrome-ba3 oxidase (EC 1.9.3.1) subunit 2 Trusted 54,4 2874 9,12 0,76 NP226A - conserved hypothetical protein 7 Trusted 59,87 4,770 1118 5,25 -1,08 NP3002A - probable transcription regulator 0 Trusted 160,23 443 0,48 -0.5 NP304A a-C229 AEC/type transport system perileasis ubstrates fungate/sulfate) 0 Trusted 20,06 30808 6,88 -0.27 NP304A -	NP2920A	-	predicted NAD-binding protein 1 (probable Kef-type transporter subunit)	2	Trusted	68,35	57993	4,12	0,13
NP2860A tp36 NRAMP-Family transporter 11 Trusted 176.32 41325 4.49 0.9 NP2860A cbaC CaC protein 2 Trusted 362.27 63870 6.6 0.74 NP2860A cbaB cylochrome-ba3 oxidase (EC 1.9.3.1), subunit 13 Trusted 39.5 6077 4,12 0.74 NP2860A cbaB cylochrome-ba3 oxidase (EC 1.9.3.1) subunit 2 Trusted 91.13 6634 5,21 0.94 NP2900A - conserved hypothetical protein 6 Trusted 107.79 11183 5,25 -1.08 NP300A - probable transcription regulator 0 Trusted 107.79 11183 5,26 -0.08 NP300A - probable transcription regulator 0 Trusted 20.33 2424 6,80 -0.7 NP300A - conserved hypothetical protein 0 Trusted 20.03 24224 6,86 -0.07 NP304A abc22p ABC-type transport system permease protein (probable substrates tungstate/sulfate/sulfate/sulfate/sulfate/sulfate/sulfate/sulfate/sulfate	NP2926A	-	hypothetical protein	6	Insecure	20,16	23638	10,06	0,9
NP28020 cbaC CbaC protein 2 Trusted 39,59 8594 4,61 0,59 NP2962A cbaC cytochrome-ba3 oxidase (EC 1.9.3.1), subunit 1 Trusted 39,59 6077 4,12 0,74 NP2968A cbaE cytochrome-ba3 oxidase (EC 1.9.3.1), subunit 2 Trusted 39,59 6077 4,12 0,74 NP2967A conserved hypothetical protein 6 Trusted 59,47 45706 4,43 0,05 NP3002A conserved hypothetical protein 0 Trusted 59,47 45706 4,43 0,05 NP3002A conserved hypothetical protein 0 Trusted 107,79 1133 52,57 1108 2,57 1108 2,57 1,08 0,17,99 1133 5,51 1,08 0,07,79 1133 5,51 1,08 0,07,79 1133 5,51 1,08 0,07,79 1133 5,51 1,08 0,07,79 1133 5,51 0,36 0,17 0,51 1,08 0,01 5,79 1,09 1,017 5,99 0,78 0,01 5,9	NP2956A	tp36	NRAMP-family transporter	11	Trusted	176,32	41325	4,49	0,9
NP2962A cbaA, cytochrome-ba3 oxidase (EC 1.9.3.1), subunit 13 Trusted 382.27 6.870 6.6 0.74 NP2966A cbaC cytochrome-ba3 oxidase (EC 1.9.3.1), Subunit 2 Trusted 9.9.5 6.6 0.74 4.12 0.74 NP2966A cbaE cytochrome-ba3 oxidase (EC 1.9.3.1), Subunit 2 Trusted 9.9.13 6634 5.21 0.74 NP2960A conserved hypothetical protein 7 Trusted 55.47 4.750 4.43 0.08 NP300A conserved hypothetical protein 0 Trusted 107.79 11183 5.25 -1.08 NP304DA abc22p protable transport system perplasmic substrate-binding protein (probable substrates 0 Trusted 20.03 24224 6.66 4.07 NP304DA abc22p ABC-type transport system PartP-binding protein 0 Trusted 20.068 6.88 -0.27 NP304DA - transmembrane protein (probable substrates fungitate/sulfate) 1 Trusted 20.06 30.86	NP2960A	cbaC	CbaC protein	2	Trusted	39,59	8594	4,61	0,59
NP296A cbaD cytochrome-ba3 oxidase (EC 19.3.1) cbaD subunit 1 Trusted 91,13 6634 5,21 0,94 NP296A cbaE cytochrome-ba3 oxidase (EC 19.3.1) subunit 2 Trusted 91,13 6634 5,21 0,94 NP290A - hypothetical protein 6 Trusted 91,87 45706 4,43 0.08 NP300A - probable franscription regulator 0 Trusted 107,79 1183 5,52 -1.08 NP300A - conserved hypothetical protein 0 Trusted 107,79 1183 -0.14 NP304A abc22p ungstal/sulfate) 4 Trusted 230,03 24224 6.56 1.07 NP304A abc22p ABC-type transport system peripasmic substrates trugstate/sulfate) 1 Trusted 230,03 6.68 -0.27 NP304A abc22p ABC-type transport system Protein (nonolog 1 to type II secretion system protein TadC) 9 Insecure 230,6 6.63 .74 -0.26	NP2962A	cbaA,	cytochrome-ba3 oxidase (EC 1.9.3.1), subunit I	13	Trusted	362,27	63870	6,6	0,74
NP296A cbaE Optochrome-ba3 oxidase (EC 1.9.3.1) subunit 2 Trusted 91.13 66.34 5.21 0.94 NP290A - hypothetical protein 6 Trusted 59.87 45706 4.43 0.06 NP300A - probable transcription regulator 0 Trusted 160.23 48301 4.43 0.05 NP300A - probable transcription regulator 0 Trusted 160.23 48301 4.14 -0.14 NP304A abc22p ABC-type transport system periplasmic substrates tungstate/sulfate) 0 Trusted 230.03 2422 6.56 1.07 NP304A abc22p ABC-type transport system premease protein (probable substrates tungstate/sulfate) 0 Trusted 230.03 2422 6.56 1.07 NP304A abc22p ABC-type transport system premease protein (probable substrates tungstate/sulfate) 1 Trusted 230.03 2422 6.56 1.07 NP304A - conserved hypothetical protein 30.8 6.68 4.77	NP2966A	cbaD	cytochrome-ba3 oxidase (EC 1.9.3.1), CbaD subunit	1	Trusted	39,5	6077	4,12	0,74
NP2970A - conserved hypothetical protein 6 Trusted 55,44 28,74 9,12 0,76 NP2990A - hypothetical protein 7 Trusted 59,87 45,706 4,43 0,06 NP300A - conserved hypothetical protein 0 Trusted 107,79 11183 5,24 -1,08 NP300A - conserved hypothetical protein 0 Trusted 107,79 11183 5,24 -1,08 NP304A abc22p ABC-type transport system periplasmic substrate-binding protein (probable substrates tungstate/sulfate) 0 Trusted 230,30 24224 6,56 1,07 NP304A abc22p ABC-type transport system ATP-binding protein 3 Insecure 19,33 10117 5,59 0,78 <	NP2968A	cbaE	cytochrome-ba3 oxidase (EC 1.9.3.1) subunit	2	Trusted	91,13	6634	5,21	0,94
NP2900A - hyoothetical protein 7 Trusted 58,87 45706 4,43 0,08 NP300A - probable transcription regulator 0 Trusted 107,79 11183 5,25 -1,08 NP300A - conserved hypothetical protein 0 Trusted 160,23 4630 4,44 0,55 NP300A - conserved hypothetical protein 0 Trusted 160,23 4630 4,44 0,55 NP304A abc22p ABC-type transport system periplasmic substrate-binding protein (probable substrates tungstate/sulfate) 4 Trusted 230,03 24224 6,56 10,77 NP304A - hypothetical protein 0 Trusted 290,69 30808 6,88 -0,27 NP304A - transmembrane protein (nomolog 1 to type II secretion system protein SaCC) 9 Insecure 29,06 30808 6,88 -0,27 NP3108A - transduce protein hr23 transduce protein hr24 transduce protein hr23 5,770 3,82 6,508 0,33 6,403 0,34 0,36 10,35 3,	NP2970A	-	conserved hypothetical protein	6	Trusted	55,44	28784	9,12	0,76
NP3002A - probable transcription regulator 0 Trusted 107,79 11183 5,25 -1,08 NP3030A - conserved hypothetical protein 0 Trusted 160,23 46301 4,48 -0,5 NP3040A abc22p tungstate/sulfate) 0 Trusted 72,95 31984 4,13 -0,14 NP3040A abc22p ABC-type transport system permease protein (probable substrates tungstate/sulfate) 0 Trusted 230,03 2424 6,56 10,7 NP304A abc22p ABC-type transport system permease protein (probable substrates tungstate/sulfate) 0 Trusted 230,03 2424 6,56 10,7 NP304A abc22a ABC-type transport system protein 1118,3 5,19 0,17 5,59 0,78 NP304A abc2a ABC-type transport system protein 100,17 5,59 0,78 0,38 0,22 10,80,03 443 -0,26 0,39 6,163 3,74 -0,26 0,38 0,46 0,31 4,17 -0,31 0,31 4,17 -0,31 0,31 4,17 -0,31	NP2990A	-	hypothetical protein	7	Trusted	59,87	45706	4,43	0,08
NP3030A - conserved hypothetical protein ABC-type transport system periplasmic substrate-binding protein (probable substrates 0 Trusted 160,23 46301 4,48 -0,5 NP3040A abc22p ABC-type transport system periplasmic substrate-binding protein (probable substrates tungstate/sulfate) 0 Trusted 230,03 24224 6,56 107 NP3040A abc22p ABC-type transport system ATP-binding protein 0 Trusted 230,03 24224 6,56 107 NP3040A abc22p ABC-type transport system ATP-binding protein 3 Insecure 29,06 73092 5,15 0,36 NP312AA ht/23 transducer protein ht/23 Trusted 20,03 61653 3,74 -0,26 NP312AA ht/23 transducer protein ht/23 Trusted 20,03 61653 3,74 -0,26 NP313AA ht/24 transducer protein ht/24 Trusted 20,89 52126 6,59 0,93 NP313AA ht/24 transducer protein ht/24 transducer protein ht/24 10,02 10,7	NP3002A	-	probable transcription regulator	0	Trusted	107,79	11183	5,25	-1,08
ABC-type transport system periplasmic substrate-binding protein (probable substrates 0 Trusted 72,95 31984 4,13 -0,14 NP3040A abc22p ABC-type transport system permease protein (probable substrates tungstate/sulfate) 4 Trusted 230,03 24224 4,656 1,07 NP3042A abc22p ABC-type transport system ATP-binding protein 0 Trusted 230,03 24224 6,56 1,07 NP3048A abc22a ABC-type transport system ATP-binding protein 0 Trusted 230,03 24624 6,56 0,93 NP3048A - conserved hypothetical protein 10 type II secretion system proteins TadC) 9 Insecure 29,06 73092 5,15 0,36 NP3128A - conserved hypothetical protein 2 Trusted 260,89 25126 6,59 0,93 NP3132A - conserved hypothetical protein 5 Trusted 261,5 57750 3,82 -0,26 NP3138A - conserved hypothetical protein 6 Insecure	NP3030A	-	conserved hypothetical protein	0	Trusted	160,23	46301	4,48	-0,5
NP3040A abc22s tungstate/sulfate) 0 Trusted 72,95 31984 4,13 -0,14 NP3044A abc22p ABC-type transport system permease protein (probable substrates tungstate/sulfate) 4 Trusted 230,03 24224 6,66 1,07 NP3044A abc22p ABC-type transport system Permease protein (probable substrates tungstate/sulfate) 4 Trusted 230,03 24224 6,66 1,07 NP3044A abc22p ABC-type transport system ATP-binding protein 3 Insecure 19,53 10017 5,59 0,78 NP3108A - transducer protein htr23 2 Trusted 30,03 61653 3,74 -0,26 NP3132A - conserved hypothetical protein 2 Insecure 23,58 56008 4,17 -0,31 NP3134A transducer protein htr24 conserved hypothetical protein 2 Insecure 23,65 27751 3,82 -0,26 NP3134A - predicted lipoprotein 0 Insecure 23,65 27751 9,42 0,7 NP3134A - predicted NAD-b			ABC-type transport system periplasmic substrate-binding protein (probable substrates			,		,	,
NP3042A abc22p ABC-type transport system pernease protein (probable substrates tungstate/sulfate) 4 Trusted 230,03 2424 6,56 1.07 NP3044A abc22a ABC-type transport system ATP-binding protein 0 Trusted 290,69 30808 6,88 -0.27 NP3048A - hypothetical protein 10mscure 19,31 10017 5,59 0,78 NP312A - transmembrane protein (homolog 1 to type II secretion system proteins TadC) 9 Insecure 29,06 73092 5,15 0,36 NP312A - conserved hypothetical protein 2 Trusted 260,89 25126 6,59 0,93 NP3134A htr24 transducer protein htr24 2 Trusted 261,5 57750 3,82 -0,26 NP3142A - predicted lipoprotein 6 Insecure 23,65 27751 9,42 -0,26 NP3142A - predicted lipoprotein predicted lipoprotein 0 Insecure 23,65 27751 9,42 -0,26 NP3145A - predicted NAD-binding protein 2 (probab	NP3040A	abc22s	tungstate/sulfate)	0	Trusted	72,95	31984	4,13	-0,14
NP3044A abc22a ABC-type transport system ATP-binding protein 0 Trusted 290,69 30808 6,88 -0,27 NP3044A - hypothetical protein 3 Insecure 19,53 10017 5,59 0,78 NP3108A - transmethze protein (homolog 1 to type II secretion system proteins TadC) 9 Insecure 29,06 73092 5,15 0,36 NP3122A htr23 transmethzen protein intr23 2 Trusted 39,03 61653 3,74 -0,26 NP3122A conserved hypothetical protein 2 Insecure 23,68 56008 4,17 -0,31 NP3132A conserved hypothetical protein 5 Trusted 260,89 25126 6,59 0,93 NP3138A - conserved hypothetical protein 6 Insecure 23,65 27751 9,42 0,7 NP3138A - predicted liportein 0 Insecure 23,65 27751 9,42 0,7 NP3138A - predicted liportein 0 Insecure 23,65 246495 3,78 -0,	NP3042A	abc22p	ABC-type transport system permease protein (probable substrates tungstate/sulfate)	4	Trusted	230,03	24224	6,56	1,07
NP3048A - hypothetical protein 3 Insecure 19,53 10017 5,59 0,78 NP3108A - transmembrane protein (homolog 1 to type II secretion system proteins TadC) 9 Insecure 29,06 73092 5,15 0,36 NP3128A - conserved hypothetical protein 2 Trusted 39,03 61653 3,74 -0,26 NP3128A - conserved hypothetical protein 2 Insecure 33,58 56008 4,17 -0,31 NP3132A - conserved hypothetical protein 5 Trusted 261,5 57750 3,82 -0,26 NP3142A - predicted lipoprotein 6 Insecure 23,65 27751 9,42 0,78 NP3142A - predicted NAD-binding protein 2 (probable Kef-type transporter subunit) 7 Insecure 23,65 2462 3,81 -0,96 NP3128A - predicted NAD-binding protein 2 (probable Kef-type transporter subunit) 7 Insecure 33,5 23709 4,31 -0,04 NP3228A - homolog 2 to phycocyanobilin lyase subunit	NP3044A	abc22a	ABC-type transport system ATP-binding protein	0	Trusted	290,69	30808	6,88	-0,27
NP3108A - transmembrane protein (homolog 1 to type II secretion system proteins TadC) 9 Insecure 29,06 73092 5,15 0,36 NP3122A htr23 transducer protein htr23 transducer protein htr23 1/1 0,36 NP3128A - conserved hypothetical protein 2 Trusted 39,03 61653 3,74 -0,26 NP3138A - conserved hypothetical protein 5 Trusted 260,89 25126 6,59 0,93 NP3138A - conserved hypothetical protein 2 Trusted 261,5 57750 3,82 -0,26 NP3148A - predicted lipoprotein 0 Insecure 27,66 27482 3,17 -0,36 NP3178A - predicted NAD-binding protein 2 (probable Kef-type transporter subunit) 7 Insecure 23,55 23709 4,53 1,04 -0,92 NP3138A - conserved hypothetical protein 2 (probable Kef-type transporter subunit) 7 Insecure 33,5 23709 4,53 1,04 NP3230A pssA probable CDP-diacy(glycerol-serine O-ph	NP3048A	-	hypothetical protein	3	Insecure	19,53	10017	5,59	0,78
NP3122A htr23 transducer protein htr23 2 Trusted 39,03 61653 3,74 -0,26 NP3128A - conserved hypothetical protein 2 Insecure 33,88 56008 4,17 -0,31 NP3132A - conserved hypothetical protein 5 Trusted 260,89 25126 6,59 0,93 NP3138A - conserved hypothetical protein 5 Trusted 21,5 57750 3,82 -0,26 NP3138A - conserved hypothetical protein 6 Insecure 23,65 27751 9,42 0,7 NP3158A - predicted lipoprotein 0 Insecure 21,15 41931 4,7 0,34 NP3228A - homolog 2 to phycocyanobilin lyase subunit (EC 4,-,) 0 Trusted 385,15 46495 3,78 -0.61 NP3300A - conserved hypothetical protein 0 Trusted 39,92 31132 4,21 0,63 NP3300A - conserved hypothetical protein 0 Trusted 59,92 31132 4,24	NP3108A	-	transmembrane protein (homolog 1 to type II secretion system proteins TadC)	9	Insecure	29,06	73092	5,15	0,36
NP3128A - conserved hypothetical protein 2 Insecure 33,58 56008 4,17 -0,31 NP3132A - conserved hypothetical protein 5 Trusted 260,89 25126 6,59 0,93 NP3138A htr24 transducer protein htr24 2 Trusted 261,5 57750 3,82 -0,26 NP3138A - conserved hypothetical protein 6 Insecure 23,65 27751 9,42 0,7 NP3142A - predicted lipoprotein 0 Insecure 27,66 25482 3,81 -0,96 NP3178A - predicted NAD-binding protein 2 (probable Kef-type transport subunit) 7 Insecure 21,15 4131 4,7 -0,31 NP3230A - probable CDP-diacylglycerol-serine O-phosphatidyltransferase (EC 2.7.8.8) 6 Insecure 33,5 23709 4,53 1,04 NP3380A - conserved hypothetical protein 7 Trusted 59,92 31132 4,21 0,63 NP3390A - probable CDP-diacylglycerol-serine O-phosphatidyltransferase (EC 2.7.8.8)	NP3122A	htr23	transducer protein htr23	2	Trusted	39,03	61653	3,74	-0,26
NP3132A - conserved hypothetical protein 5 Trusted 260,89 25126 6,59 0,93 NP3134A htr24 transducer protein htr24 2 Trusted 261,5 57750 3,82 -0,26 NP3138A - conserved hypothetical protein 6 Insecure 23,65 27751 9,42 0,7 NP3142A - predicted lipoprotein 0 Insecure 21,15 41931 4,7 0,34 NP31378A - conserved hypothetical protein 0 Insecure 21,15 41931 4,7 0,34 NP32028A - homolog 2 to phycocyanobilin lyase subunit (EC 4) 0 Trusted 385,15 46495 3,78 -0,61 NP3300A - conserved hypothetical protein 7 Trusted 59,92 31132 4,21 0,63 NP3300A - conserved hypothetical protein 2 Trusted 59,92 31132 4,21 0,63 NP3422A alkK_3 acyl-CoA synthetase (EC 6.2.1) II 3 (probable cong-chain-fatty-acidCoA ligase) 0 Trusted	NP3128A	-	conserved hypothetical protein	2	Insecure	33,58	56008	4,17	-0,31
NP3134A htr24 transducer protein htr24 2 Trusted 261,5 57750 3,82 -0,26 NP3138A - conserved hypothetical protein 6 Insecure 23,65 27751 9,42 0,7 NP3138A - predicted lipoprotein 0 Insecure 27,66 25482 3,81 -0,96 NP3178A - predicted NAD-binding protein 2 (probable Kef-type transporter subunit) 7 Insecure 21,15 41931 4,7 0,34 NP3228A - homolog 2 to phycocyanobilin lyase subunit (EC 4) 0 Trusted 385,15 46495 3,78 -0,61 NP3330A probable CDP-diacylglycerol-serine O-phosphatidyltransferase (EC 2.7.8.8) 6 Insecure 33,5 23709 4,53 1,04 NP3330A - conserved hypothetical protein 7 Trusted 178,68 48807 4,07 -0,38 NP3422A alkK_3 acyl-CoA synthetase (EC 6.2.1) II 3 (probable long-chain-fatty-acidCoA ligase) 0 Trusted 327,89 60032 4,26 -0,53 NP3422A abc08p1, aminon	NP3132A	-	conserved hypothetical protein	5	Trusted	260,89	25126	6,59	0,93
NP3138A - conserved hypothetical protein 6 Insecure 23,65 27751 9,42 0,7 NP3142A - predicted lipoprotein 0 Insecure 27,66 25482 3,81 -0,96 NP3156A - conserved hypothetical protein 5 Trusted 114,62 31072 4,01 -0,02 NP3178A - predicted NAD-binding protein 2 (probable Kef-type transporter subunit) 7 Insecure 21,15 41931 4,7 0,34 NP3228A - homolog 2 to phycocyanobilin lyase subunit (EC 4) 0 Trusted 385,15 46495 3,78 -0,61 NP3380A - conserved hypothetical protein - conserved hypothetical protein 7 Trusted 59,92 31132 4,21 0,63 NP3390A - probable cell surface glycoprotein 2 Trusted 178,68 48807 4,07 -0,38 NP3422A alkK_3 acyl-CoA synthetase (EC 6.2.1) II 3 (probable long-chain-fatty-acidCoA ligase) 0 Trusted 327,89 60032 4,26 -0,53 NP3424A </td <td>NP3134A</td> <td>htr24</td> <td>transducer protein htr24</td> <td>2</td> <td>Trusted</td> <td>261.5</td> <td>57750</td> <td>3.82</td> <td>-0.26</td>	NP3134A	htr24	transducer protein htr24	2	Trusted	261.5	57750	3.82	-0.26
NP3142A-predicted lipoprotein0Insecure27,66254823,81-0,96NP3156A-conserved hypothetical protein5Trusted114,62310724,01-0,02NP3178A-predicted NAD-binding protein 2 (probable Kef-type transporter subunit)7Insecure21,15419314,70,34NP3228A-homolog 2 to phycocyanobilin lyase subunit (EC 4)0Trusted385,15464953,78-0,61NP3230ApssAprobable CDP-diacylglycerol-serine O-phosphatidyltransferase (EC 2.7.8.8)6Insecure33,5237094,53-0,63NP3390A-conserved hypothetical protein7Trusted59,92311324,210,63NP3422AalkK_3acyl-CoA synthetase (EC 6.2.1) II 3 (probable long-chain-fatty-acidCoA ligase)0Trusted327,89600324,26-0,53NP3424Aabc08s,branched-chain/neutral amino acids amide) 40Trusted45,35489424,17-0,32NP3426Aabc08p1,amino acids) 14ABC-type transport system permease protein (probable substrates branched-chain/neutral7Trusted67,63324545,181,24NP3428Aabc08p2,amino acids) 49Trusted296,21361736,740,83NP3428Aabc08p2,amino acids) 49Trusted39,12253034,53-0,29NP3428Aabc08p2,amino acids) 49Trusted <td>NP3138A</td> <td>-</td> <td>conserved hypothetical protein</td> <td>6</td> <td>Insecure</td> <td>23,65</td> <td>27751</td> <td>9,42</td> <td>0,7</td>	NP3138A	-	conserved hypothetical protein	6	Insecure	23,65	27751	9,42	0,7
NP3156A-conserved hypothetical protein5Trusted114,62310724,01-0,02NP3178A-predicted NAD-binding protein 2 (probable Kef-type transporter subunit)7Insecure21,15419314,70,34NP3228A-homolog 2 to phycocyanobilin lyase subunit (EC 4,-,-)0Trusted385,15464953,78-0,61NP3230ApssAprobable CDP-diacylglycerol-serine O-phosphatidyltransferase (EC 2.7.8.8)6Insecure33,5237094,531,04NP3380A-conserved hypothetical protein7Trusted59,92311324,210,63NP3390A-probable cell surface glycoprotein2Trusted178,68488074,07-0,38NP3422AalkK_3acyl-CoA synthetase (EC 6,2,1-) II 3 (probable long-chain-fatty-acidCoA ligase)0Trusted327,89600324,26-0,53NP3424Aabc08s,branched-chain/neutral amino acids amide) 4ABC-type transport system periplasmic substrate-binding protein (probable substrates0Trusted445,35489424,17-0,32NP3426Aabc08p1,amino acids) I 4ABC-type transport system permease protein (probable substrates branched-chain/neutral amino acids) I 49Trusted296,21361736,740,83NP3428Aabc08p2,amino acids) 49Trusted39,12253034,53-0,29NP3428Aabc08p2,amino acids) 49Trusted39,12 <td< td=""><td>NP3142A</td><td>-</td><td>predicted lipoprotein</td><td>0</td><td>Insecure</td><td>27,66</td><td>25482</td><td>3,81</td><td>-0,96</td></td<>	NP3142A	-	predicted lipoprotein	0	Insecure	27,66	25482	3,81	-0,96
NP3178A-predicted NAD-binding protein 2 (probable Kef-type transporter subunit)7Insecure21,15419314,70,34NP3228A-homolog 2 to phycocyanobilin lyase subunit (EC 4)0Trusted385,15464953,78-0,61NP3230ApssAprobable CDP-diacylglycerol-serine O-phosphatidyltransferase (EC 2.7.8.8)6Insecure33,5237094,531,04NP3380A-conserved hypothetical protein7Trusted59,92311324,210,63NP3390A-probable cell surface glycoprotein2Trusted178,68488074,07-0,38NP3422AalkK_3acyl-CoA synthetase (EC 6.2.1-) II 3 (probable long-chain-fatty-acidCoA ligase)0Trusted327,89600324,26-0,53NP3424Aabc08s,branched-chain/neutral amino acids amide) 40Trusted445,35489424,17-0,32NP3426Aabc08p1,amino acids) I 4ABC-type transport system permease protein (probable substrates branched-chain/neutral amino acids) I 47Trusted67,63324545,181,24NP3428Aabc08p2,amino acids) I 4ABC-type transport system permease protein II (probable substrates branched-chain/neutral amino acids) 49Trusted296,21361736,740,83NP3428Aabc08p2,amino acids) 40Trusted39,12253034,53-0,29NP3428Aabc08p2,amino acids) 40Trusted <t< td=""><td>NP3156A</td><td>-</td><td>conserved hypothetical protein</td><td>5</td><td>Trusted</td><td>114,62</td><td>31072</td><td>4,01</td><td>-0,02</td></t<>	NP3156A	-	conserved hypothetical protein	5	Trusted	114,62	31072	4,01	-0,02
NP3228A-homolog 2 to phycocyanobilin lyase subunit (EC 4)0Trusted385,15464953,78-0,61NP3230ApssAprobable CDP-diacylglycerol-serine O-phosphatidyltransferase (EC 2.7.8.8)6Insecure33,5237094,531,04NP3380A-conserved hypothetical protein7Trusted59,92311324,210,63NP3390A-probable cell surface glycoprotein2Trusted178,68488074,07-0,38NP3422AalkK_3acyl-CoA synthetase (EC 6.2.1) II 3 (probable long-chain-fatty-acidCoA ligase)0Trusted327,89600324,26-0,53NP3424Aabc08s,branched-chain/neutral amino acids amide) 40Trusted445,35489424,17-0,32NP3426Aabc08p1,amino acids) I 47Trusted67,63324545,181,24NP3428Aabc08p2,amino acids) 49Trusted296,21361736,740,83NP3472ApsmBproteasome beta subunit9Trusted88,54263424,53-0,29NP3472ApsmBproteasome beta subunit477170,3236,736,740,83NP3472ApsmBproteasome beta subunit9Trusted88,54263424,53-0,29NP3496A-hypothetical protein4770,3236,736,740,83NP3496A-hypothetical protein4 <td>NP3178A</td> <td>-</td> <td>predicted NAD-binding protein 2 (probable Kef-type transporter subunit)</td> <td>7</td> <td>Insecure</td> <td>21,15</td> <td>41931</td> <td>4,7</td> <td>0,34</td>	NP3178A	-	predicted NAD-binding protein 2 (probable Kef-type transporter subunit)	7	Insecure	21,15	41931	4,7	0,34
NP3230ApssAprobable CDP-diacylglycerol-serine O-phosphatidyltransferase (EC 2.7.8.8)6Insecure33,5237094,531,04NP3380A-conserved hypothetical protein7Trusted59,92311324,210,63NP3390A-probable cell surface glycoprotein2Trusted178,68488074,07-0,38NP3422AalkK_3acyl-CoA synthetase (EC 6.2.1) II 3 (probable long-chain-fatty-acidCoA ligase)0Trusted327,89600324,26-0,53NP3424Aabc08s,branched-chain/neutral amino acids amide) 40Trusted445,35489424,17-0,32NP3426Aabc08p1,amino acids) 147Trusted67,63324545,181,24NP3428Aabc08p2,amino acids) 49Trusted296,21361736,740,83NP3472ApsmBproteasome beta subunit0Trusted39,12253034,53-0,29NP3472ApsmBproteasome beta subunit0Trusted39,12253034,53-0,29NP3472ApsmBproteasome beta subunit0Trusted39,12253034,53-0,29NP3472ApsmBproteasome beta subunit4770,32NP3472ApsmBproteasome beta subunit0Trusted39,12253034,53-0,29NP3496A-hypothetical protein4Trusted88,54263424,470,3 </td <td>NP3228A</td> <td>-</td> <td>homolog 2 to phycocyanobilin lyase subunit (EC 4)</td> <td>0</td> <td>Trusted</td> <td>385,15</td> <td>46495</td> <td>3,78</td> <td>-0,61</td>	NP3228A	-	homolog 2 to phycocyanobilin lyase subunit (EC 4)	0	Trusted	385,15	46495	3,78	-0,61
NP3380A-conserved hypothetical protein7Trusted59,92311324,210,63NP3390A-probable cell surface glycoprotein2Trusted178,68488074,07-0,38NP3422AalkK_3acyl-CoA synthetase (EC 6.2.1-) II 3 (probable long-chain-fatty-acidCoA ligase)0Trusted327,89600324,26-0,53NP3424Aabc08s,ABC-type transport system periplasmic substrate-binding protein (probable substrates branched-chain/neutral amino acids amide) 40Trusted445,35489424,17-0,32NP3426Aabc08p1,amino acids) I 47Trusted67,63324545,181,24NP3428Aabc08p2,amino acids) 49Trusted296,21361736,740,83NP3472ApsmBproteasome beta subunit9Trusted39,12253034,53-0,29NP3496A-hypothetical protein40Trusted88,54263424,470,33	NP3230A	pssA	probable CDP-diacylolycerol-serine O-phosphatidyltransferase (EC 2.7.8.8)	6	Insecure	33,5	23709	4,53	1,04
NP3390A-probable cell surface glycoprotein2Trusted178,68488074,07-0,38NP3422AalkK_3acyl-CoA synthetase (EC 6.2.1) II 3 (probable long-chain-fatty-acidCoA ligase)0Trusted327,89600324,26-0,53NP3424Aabc08s,branched-chain/neutral amino acids amide) 40Trusted445,35489424,17-0,32NP3426Aabc08p1,abc08p1,ABC-type transport system permease protein (probable substrates branched-chain/neutral amino acids) I 47Trusted67,63324545,181,24NP3428Aabc08p2,amino acids) 49Trusted296,21361736,740,83NP3472ApsmBproteasome beta subunit0Trusted39,12253034,53-0,29NP3496A-hypothetical protein4Trusted88,54263424,470,3	NP3380A	-	conserved hypothetical protein	7	Trusted	59.92	31132	4.21	0.63
NP3422AalkK_3acyl-CoA synthetase (EC 6.2.1) II 3 (probable long-chain-fatty-acidCoA ligase)0Trusted327,89600324,26-0,53NP3424Aabc08s,ABC-type transport system periplasmic substrate-binding protein (probable substrates branched-chain/neutral amino acids amide) 40Trusted445,35489424,17-0,32NP3426Aabc08p1,ABC-type transport system permease protein (probable substrates branched-chain/neutral amino acids) I 47Trusted67,63324545,181,24NP3428Aabc08p2,amino acids) 49Trusted296,21361736,740,83NP3472ApsmBproteasome beta subunit0Trusted39,12253034,53-0,29NP3496A-hypothetical protein4Trusted88,54263424,470,3	NP3390A	-	probable cell surface glycoprotein	2	Trusted	178.68	48807	4.07	-0.38
ABC-type transport system periplasmic substrate-binding protein (probable substrates branched-chain/neutral amino acids amide) 4 NP3424A abc08s, ABC-type transport system permease protein (probable substrates branched-chain/neutral NP3426A abc08p1, amino acids) 14 ABC-type transport system permease protein II (probable substrates branched-chain/neutral ABC-type transport system permease protein II (probable substrates branched-chain/neutral NP3428A abc08p2, amino acids) 4 NP3472A psmB proteasome beta subunit NP3496A - hypothetical protein NP3496A - hypothetical protein	NP3422A	alkK 3	acvI-CoA synthetase (EC 6.2.1) II 3 (probable long-chain-fatty-acidCoA ligase)	0	Trusted	327.89	60032	4.26	-0.53
NP3424Aabc08s,branched-chain/neutral amino acids amide) 40Trusted445,35489424,17-0,32NP3426Aabc08p1,abc08p1,ABC-type transport system permease protein (probable substrates branched-chain/neutral amino acids) 147Trusted67,63324545,181,24NP3428Aabc08p2,amino acids) 49Trusted67,63324545,181,24NP3428Aabc08p2,amino acids) 49Trusted296,21361736,740,83NP3472ApsmBproteasome beta subunit0Trusted39,12253034,53-0,29NP3496A-hypothetical protein4Trusted88,54263424,470,3		_	ABC-type transport system periplasmic substrate-binding protein (probable substrates			- ,		, -	-,
ABC-type transport system permease protein (probable substrates branched-chain/neutral NP3426A abc08p1, amino acids) I 4 7 Trusted 67,63 32454 5,18 1,24 ABC-type transport system permease protein II (probable substrates branched-chain/neutral NP3428A abc08p2, amino acids) 4 9 Trusted 296,21 36173 6,74 0,83 NP3472A psmB proteasome beta subunit 0 Trusted 39,12 25303 4,53 -0,29 NP3496A - hypothetical protein 0 0 39,12 26342 4,47 0,3	NP3424A	abc08s.	branched-chain/neutral amino acids amide) 4	0	Trusted	445.35	48942	4.17	-0.32
NP3426Aabc08p1,amino acids) I 47Trusted67,63324545,181,24NP3428Aabc08p2,amino acids) 4ABC-type transport system permease protein II (probable substrates branched-chain/neutral9Trusted296,21361736,740,83NP3472ApsmBproteasome beta subunit0Trusted39,12253034,53-0,29NP3496A-hypothetical protein4Trusted88,54263424,470,3		,	ABC-type transport system permease protein (probable substrates branched-chain/neutral			- ,		,	- , -
ABC-type transport system permease protein II (probable substrates branched-chain/neutral NP3428A abc08p2, amino acids) 4 9 Trusted 296,21 36173 6,74 0,83 NP3472A psmB proteasome beta subunit 0 Trusted 39,12 25303 4,53 -0,29 NP3496A - hypothetical protein 4 Trusted 88,54 26342 4,47 0,3	NP3426A	abc08p1.	amino acids) 14	7	Trusted	67.63	32454	5.18	1.24
NP3428A abc08p2, amino acids) 4 9 Trusted 296,21 36173 6,74 0,83 NP3472A psmB proteasome beta subunit 0 Trusted 39,12 25303 4,53 -0,29 NP3496A - hypothetical protein 4 Trusted 88.54 26342 4.47 0,3		· · · · · · · · · · · · · · · · · · ·	ABC-type transport system permease protein II (probable substrates branched-chain/peutral	-		. ,		-,	,
NP3472A psmB proteasome beta subunit 0 Trusted 39,12 25303 4,53 -0,29 NP3496A - hypothetical protein 4 Trusted 88.54 26342 4.47 0.3	NP3428A	abc08p2	amino acids) 4	9	Trusted	296.21	36173	6.74	0.83
NP3496A - hypothetical protein 4 Trusted 88.54 26342 4.47 0.3	NP3472A	psmB	proteasome beta subunit	Õ	Trusted	39.12	25303	4.53	-0.29
	NP3496A	-	hypothetical protein	4	Trusted	88.54	26342	4.47	0.3

NP3508A	ndh	probable NADH dehydrogenase (EC 1.6.99.3)	0	Trusted	81,74	41944	4,28	-0,35
NP3536A	-	signal-transducing histidine kinase	6	Trusted	168,13	74332	4,65	0,13
NP3556A	menA_2	homolog to 1,4-dihydroxy-2-naphthoate octaprenyltransferase (EC 2.5.1)	9	Insecure	33,98	33535	5,41	0,95
NP3638A	htr8	transducer protein htr8	5	Trusted	517,43	65196	4,04	-0,08
NP3698A	-	predicted hydrolase	0	Trusted	463,01	49467	4,94	-0,37
NP3720A	stt3	oligosaccharyl transferase	13	Trusted	444,54	104502	4,15	0,04
NP3732A	-	hypothetical protein	0	Trusted	92,33	46630	4,31	-0,67
NP3738A	psmA	proteasome alpha subunit	0	Trusted	280,86	27985	4,25	-0,53
NP3778A	fumC	fumarate hydratase (EC 4.2.1.2)	0	Insecure	30,99	50891	4,68	-0,38
NP3794A	-	conserved hypothetical protein	4	Trusted	68,79	14677	5,59	0,9
NP3882A	-	conserved hypothetical protein	0	Trusted	61,35	108987	4,19	-0,67
NP3904A	-	hypothetical protein	4	Trusted	207,04	25234	4,31	0,05
NP3916A	abc11s,	ABC-type transport system substrate-binding protein (probable substrate copper) 1	1	Trusted	243,28	66084	4,21	-0,21
NP3918A	abc11a,	ABC-type transport system ATP-binding protein (probable substrate copper) 1	0	Trusted	59,62	25279	4,14	0,2
NP3920A	abc11p,	ABC-type transport system permease protein (probable substrate copper) 1	6	Trusted	277,17	29757	11,22	0,98
NP3926A	abc12p,	ABC-type transport system permease protein (probable substrate copper) 2	6	Trusted	118,14	30204	6,1	0,91
NP3934A	nosL	predicted lipoprotein NosL	0	Insecure	26,59	20887	3,89	-0,26
NP3954A	hcp 1	halocyanin 1	0	Insecure	30,79	17217	4,04	-0,43
NP3968A		hypothetical protein	0	Insecure	38,41	28114	4,22	-0,38
NP4040A	sod	superoxide dismutase (EC 1.15.1.1)	0	Trusted	44,07	22393	4,32	-0,67
NP4102A	-	conserved hypothetical protein	2	Trusted	121,36	30475	4,35	-0,38
		ABC-type transport system permease protein (probable substrates branched-chain/neutral			,		,	
NP4132A	abc05p1,	amino acids) 1	9	Trusted	203,26	38806	9,15	0,95
		ABC-type transport system permease protein II (probable substrates branched-chain/neutral						-
NP4134A	abc05p2,	amino acids) 1	9	Trusted	182,77	45890	4,71	0,72
	· · · · · · · · · · · · · · · · · · ·	ABC-type transport system periplasmic substrate-binding protein (probable substrates			- ,		,	- ,
NP4140A	abc05s.	branched-chain/neutral amino acids amide) 1	0	Trusted	42.93	45049	3.49	-0.15
NP4190A	-	conserved hypothetical protein	8	Trusted	57.99	40349	4.79	0.82
		homolog to ABC-type transport system periplasmic substrate-binding protein (probable			- ,		, -	- , -
NP4238A	-	substrates branched-chain/neutral amino acids amide)4	0	Trusted	98.91	48634	4.23	-0.3
NP4242A	acs 2	acvI-CoA synthetase (EC 6.2.1) 2	0	Insecure	23	62374	4.16	-0.57
NP4264A	sdhA	succinate dehydrogenase (EC 1.3.99.1), subunit A (flavoprotein)	0	Trusted	299.48	67063	4.57	-0.51
NP4266A	sdhB	succinate dehydrogenase (EC 1.3.99.1), subunit B (iron-sulfur protein)	0	Trusted	561.68	33476	5	-0.81
NP4268A	sdhD	succinate dehydrogenase (EC 1.3.99.1), subunit D (membrane anchor protein)	3	Trusted	61.37	13303	9.78	0.8
NP4270A	sdhC	succinate dehydrogenase (EC 1.3.99.1), subunit C (cytochrome b-556)	3	Trusted	46.76	14300	5.1	0.82
NP4350A	tatA 2	sec-independent protein translocase component TatA 2	1	Trusted	282.95	11715	3.74	-0.5
NP4362A	tp55	transporter 55(probable sodium-dependent transporter)	11	Trusted	99.65	46796	4.46	1.04
NP4380A	ccmF	cvtochrome c-type biogenesis protein	15	Trusted	544 48	83408	4 76	0.42
NP4382A	-	conserved hypothetical protein	1	Trusted	90.59	17440	4 15	-0.37
NP4384A	CDX	cvtochrome-c peroxidase (EC 1 11 1 5) (CvtC-type peroxidase)	2	Trusted	189 77	49985	3,91	-0.59
NP4392A	-	probable cell surface glycoprotein	0	Trusted	396 66	40463	4 58	-0.89
		producto con contract grycoprotein product $A_{\rm b}$ product $A_{$	Ū		000,00	-0-00	4,00	0,00
NP4470A	ubiA 2	protylitansiciase 2 (probableinvolovybenzoale ociaprenylitansiciase (EC 2.3.1), probable	7	Trusted	77 68	28489	5 19	0.94
NP4476A	msc 7	probable mechanosensitive channel	3	Trusted	143 09	33202	4 74	0.16
			•		,		• • • •	2,.0

NP4512A	-	conserved hypothetical protein	6	Trusted	187,13	31137	3,95	0,61
NP4560A	-	hypothetical protein	5	Trusted	85,22	27180	6,32	0,63
NP4564A	-	predicted electron-transferring-flavoprotein dehydrogenase (EC 1.5.5.1) 2	0	Trusted	199,44	49873	4,38	-0,34
NP4576A	-	predicted transporter (predicted permease)	7	Trusted	135,9	40066	4,5	0,94
NP4588A	-	hypothetical protein	6	Trusted	145,11	23731	9,4	0,55
NP4610A	-	conserved hypothetical protein	9	Insecure	30,49	67161	4,4	0,34
NP4616A	-	probable cell surface glycoprotein	0	Trusted	86.25	39890	3.28	-0.39
NP4620A	-	probable cell surface glycoprotein	2	Trusted	39.67	114029	3.33	-0.51
NP4622A	-	probable cell surface glycoprotein	2	Trusted	126.16	114066	3.17	-0.56
NP4624A	-	probable cell surface glycoprotein	1	Trusted	842.39	140306	3.14	-0.41
		ABC-type transport system periolasmic substrate-binding protein (probable substrates			- ,		- 1	- /
NP4728A	abc20s	zinc/manganese/metal ions) 2 (probable adhesion lipoprotein)	0	Trusted	54,34	36924	3,77	-0,45
		ABC-type transport system permease protein (probable substrates zinc/manganese/metal ions)						
NP4/32A	abc20p,	2	9	Trusted	/3,18	33762	6,04	1,19
NP4734A	-	probable cell surface glycoprotein	2	Irusted	335,15	107614	3,5	-0,51
		prenyltransferase 1 (probable 4-hydroxybenzoate octaprenyltransferase (EC 2.5.1), probable	•		~~~~	00707		0.00
NP4766A	ubiA_1	protoneme IX farnesyltransferase (EC 2.5.1))	6	Trusted	99,26	30787	4,74	0,68
NP4778A	tp44	transporter 44 (probable sodium/calcium exchanging protein)	10	Trusted	52,42	34787	4,63	1,09
NP4802A	-	nomolog to glutamate-rich protein	2	Trusted	193,84	20630	3,88	-0,31
NP4818A	-	nypotnetical protein	2	Trusted	63,43	12390	4,28	0,12
NP4826A	IdiA	isopentenyl-diphosphate delta-isomerase (EC 5.3.3.2) I	0	Trusted	45,88	21523	4,39	-0,65
NP4832A	htrll,	sensory rhodopsin II transducer	2	Trusted	1/9/,25	56601	3,94	-0,35
NP4834A	sopli	sensory rhodopsin II	(Irusted	202,63	25355	5,38	0,92
NP4836A	mvaB_2	hydroxymethylglutaryl-CoA synthase (EC 2.3.3.10) 2	0	Trusted	88,72	49588	4,45	-0,58
NP4842A		conserved hypothetical protein	1	Trusted	163,27	62257	3,76	-0,49
NP4894A	rps5	ribosomal protein S5	0	Trusted	51,46	23022	8,6	-0,54
NP4900A	secY	preprotein translocase subunit secY	9	Trusted	269,38	53352	5,44	0,49
NP4912A	-	conserved adk/cmk cluster protein	3	Trusted	226,85	33492	4,18	0
		anaerobic dehydrogenase (probable formate dehydrogenase (EC 1.2.1.2), probable						
NP4944A	fdhC,	dimethylsulfoxide reductase (EC 1.8)), membrane anchor subunit	10	Trusted	459,37	49357	6,75	0,64
		conserved anaerobic dehydrogenase subunit/ anaerobic dehydrogenase (probable formate dehydrogenase (EC 1.2.1.2), dimethyl sulfoxide reductase (EC 1.8)), iron-sulfur binding						
NP4946A	fdhB_1,	subunit 1	0	Trusted	222,83	53742	4,01	-0,95
NP4958A	-	anaerobic dehydrogenase transmembrane subunit	8	Trusted	249,56	37600	8,75	0,68
NP4960A	fdhB 2.	anaerobic dehydrogenase (probable formate dehydrogenase (EC 1.2.1.2), dimethyl sulfoxide reductase (EC 1.8)), iron-sulfur binding subunit 2	0	Trusted	112.47	21478	3.96	-0.44
	_ /	anaerobic dehydrogenase (probable formate dehydrogenase (FC 1212) probable			,		- ,	- /
NP4962A	fdhA_1,	dimethylsulfoxide reductase (EC 1.8)), alpha subunit (reductase subunit)	0	Trusted	406,62	109179	4,41	-0,59
NP5000A	abc03s,	ABC-type transport system periplasmic substrate-binding protein (probable substrate iron(III)) 1	0	Trusted	100,38	43784	3,83	-0,49
NP5004A	abc03p,	ABC-type transport system permease protein (probable substrate iron(III))	11	Trusted	79,82	57868	5,79	0,75
NP5030A	-	conserved hypothetical protein	1	Insecure	19,8	44476	4,11	-0,3
NP5136A	-	predicted transporter	13	Trusted	230,42	61389	4,73	0,81
NP5138A	-	probable stress response protein	0	Trusted	189,75	16721	5,08	-0,35

NP5162A	-	conserved hypothetical protein	6	Trusted	107,39	38462	4,16	0,57
NP5194A	-	hypothetical protein	2	Trusted	98,39	7804	7,93	0,93
NP5270A	-	conserved hypothetical protein	0	Trusted	56,92	24600	4,59	-0,5
NP5292A	-	multidrug efflux protein norM homolog	10	Trusted	90,38	51851	7,7	0,66
NP5306A	cobS	cobalamin (5'-phosphate) synthase (EC 2.7.8)	5	Trusted	55,64	24787	4,54	1,07
NP5358A	-	conserved hypothetical protein	1	Trusted	93,5	19041	3,59	-0,28
NP6078A	-	conserved hypothetical protein	2	Trusted	110,24	9775	4,68	0,58
NP6086A	-	hypothetical protein	0	Trusted	61,26	29332	4,32	-0,2
NP6100A	abc15p1,	ABC-type transport system permease protein I (probable substrate phosphate) 2	6	Trusted	40,16	32604	5,94	0,68
NP6190A	abc06s,	ABC-type transport system periplasmic substrate-binding protein (probable substrates branched-chain/neutral amino acids amide) 2	0	Trusted	162,77	47266	3,89	-0,31
		ABC-type transport system permease protein II (probable substrates branched-chain/neutral						
NP6194A	abc06p2,	amino acids) 2	8	Trusted	58,45	38275	5,41	0,8
NP6232A	-	conserved hypothetical protein	4	Trusted	52,27	18909	4,75	0,71
NP6260A	tp03	stress response protein/ transporter 3 (probable substrates cationic amino acids)	11	Trusted	61,08	78448	4,43	0,5
NP6264A	tp47	transporter 47 (probable formate transporter)	6	Trusted	97,39	31927	4,54	0,71

Tabelle 7.4: Liste der quantifizierten Proteine von *H. salinarum* aus dem Vergleich von aerobem und phototrophem Wachstum, beschrieben in Kapitel 4.4.1.4. Für jedes Protein sind die Anzahl der vorhergesagten Transmembrandomänen (TMD) sowie die Anzahl der identifizierten Peptide angegeben. Die Berechnung des Regulationsfaktors und der Standardabweichung (s.d) erfolgte für den gesamten Datensatz, sowie für die einzelnen Experimente (Trypsin1, Trypsin2, GluC, Trypsin+GluC) wie in Kapitel 3.2.14.1 beschrieben.

			ins	sges	samt					Try	/psir	า 1	Tr	ypsi	n 2		GluC	;	T	ryps ⊦ Glu	in ıC
OE- CODE	Proteinname	TMD	Identifizierte Pentide	Peptid Quantifizierungen	Verhältnis	s.d.	s.d. (%)	normalisiertes Verhältnis	Regulations- faktor	Peptid Quantifizierungen	Verhältnis	s.d.	Peptid Quantifizierungen	Verhältnis	s.d.	Peptid Quantifizierungen	Verhältnis	s.d.	Peptid Quantifizierungen	Verhältnis	s.d.
OE4311F	ABC-type transport system periplasmic substrate-binding protein	0*	6	2	0,33	0,01	2,0	0,42	-2,38	1	0,33	-	-	-	-	1	0,32	-	-	-	-
OE1442R	conserved hypothetical protein	0	1	1	0,33	-	-	0,43	-2,33	1	0,33	-	-	-	-	-	-	-	-	-	-
OE4301R	ABC-type transport system ATP- binding protein	0	10	6	0,37	0,06	16,0	0,47	-2,12	-	-	-	3	0,35	0,09	1	0,40	-	2	0,37	0,01
OE2076F	drug export protein homolog	12	2	2	0,40	0,09	22,7	0,52	-1,94	1	0,46	-	1	0,34	-	-	-	-	-	-	-
OE1932R	conserved hypothetical protein	0	3	3	0,42	0,02	5,8	0,55	-1,83	1	0,45	-	1	0,40	-	-	-	-	1	0,42	-
OE1976R	cytochrome-c oxidase, chain I	13	1	2	0,46	0,04	9,1	0,59	-1,68	1	0,49	-	1	0,43	-	-	-	-	-	-	-
OE3641F	ABC-type transport system periplasmic substrate-binding protein	0*	2	1	0,48	-	-	0,62	-1,61	1	0,48	-	-	-	-	-	-	-	-	-	-
OE4551F	ABC-type transport system periplasmic substrate-binding protein	0*	13	10	0,50	0,06	12,1	0,64	-1,55	3	0,48	0,02	3	0,56	0,08	-	-	-	4	0,47	0,04
OE1676R	probable ABC-type phosphate transport system permease protein	14	1	1	0,51	-	-	0,65	-1,53	1	0,51	-	-	-	-	-	-	-	-	-	-
OE3367F	dnaJ N-terminal domain protein	2	1	1	0,51	-	-	0,66	-1,52	-	-	-	1	0,51	-	-	-	-	-	-	-
OE4576F	probable ABC-type transport system substrate-binding protein	0*	2	1	0,51	-	-	0,66	-1,52	-	-	-	-	-	-	-	-	-	1	0,51	-
OE4304R	ABC-type transport system permease protein	6	5	7	0,52	0,08	14,6	0,68	-1,48	3	0,51	0,06	2	0,55	0,15	-	-	-	2	0,51	0,06
OE2964F	signal-transducing histidine kinase homolog	0	1	1	0,52	-	-	0,68	-1,48	1	0,52	-	-	-	-	-	-	-	-	-	-
OE4357F	ABC-type transport system periplasmic substrate-binding protein	0*	5	2	0,54	0,11	20,4	0,70	-1,43	1	0,46	-	1	0,62	-	-	-	-	-	-	-

OE1202F	probable ABC-type transport system ATP-binding/permease protein	4	5	5	0,54	0,08	14,9	0,70	-1,43	2	0,51	0,11	3	0,56	0,07	-	-	-	-	-	-
OE3597R	hypothetical protein	4	1	1	0,57	-	-	0,74	-1,36	-	-	-	1	0,57	-	-	-	-	-	-	-
OE5032R	hypothetical protein	1	1	3	0,59	0,04	7,1	0,76	-1,32	1	0,55	-	2	0,61	0,04	-	-	-	-	- 1	-
OE1988R	cytochrome-c oxidase, chain II	3	2	2	0,59	0,02	4,0	0,76	-1,31	1	0,57	-	1	0,61	-	-	-	-	-	-	-
OE4070R	cytochrome-c oxidase, chain I	13	3	1	0,59	-	-	0,76	-1,31	-	-	-	1	0,59	-	-	-	-	-	-	-
OE3907R	ABC-type transport system permease protein	6	3	6	0,60	0,08	14,1	0,77	-1,30	2	0,56	0,00	2	0,61	0,01	-	-	-	2	0,62	0,17
OE1679R	probable ABC-type phosphate transport system periplasmic phosphate-binding protein	0*	1	3	0,61	0,05	8,2	0,78	-1,28	1	0,60	-	2	0,61	0,07	-	-	-	-	-	-
OE4197F	conserved hypothetical protein	0*	2	1	0,61	-	-	0,78	-1,28	-	-	-	-	-	-	-	-	-	1	0,61	-
OE4748F	conserved hypothetical protein	1	3	1	0,61	-	-	0,78	-1,28	-	-	-	-	-	-	-	-	-	1	0,61	-
OE4343R	hypothetical protein	5	1	2	0,61	0,02	3,6	0,78	-1,28	1	0,59	-	1	0,62	-	-	-	-	-	-	-
OE3612R	chemotactic signal transduction system periplasmic substrate-binding protein basB	1	3	3	0,61	0,01	1,1	0,79	-1,27	1	0,60	-	1	0,61	-	-	-	-	1	0,61	-
OE4305R	ABC-type dipeptide transport system periplasmic dipeptide-binding protein	0*	39	34	0,61	0,12	19,5	0,79	-1,27	5	0,53	0,02	4	0,57	0,04	12	0,63	0,13	13	0,63	0,14
OE1806R	probable periplasmic protein	0*	5	1	0,62	-	-	0,80	-1,25	1	0,62	-	-	-	-	-	-	-	-	-	-
OE1391R	halocyanin hcpG	0*	4	3	0,64	0,09	13,9	0,82	-1,21	1	0,54	-	1	0,72	-	1	0,65	-	-	-	-
OE3987R	H+-transporting two-sector ATPase, chain C (A-type ATP synthase)	0	7	4	0,64	0,09	14,8	0,83	-1,21	2	0,57	0,09	1	0,69	-	-	-	-	1	0,72	-
OE2397F	flagellin B1 precursor	1	1	1	0,65	-	-	0,84	-1,20	-	-	-	-	-	-	-	-	-	1	0,65	-
OE3908R	ABC-type transport system ATP-binding protein	0	1	3	0,66	0,04	6,1	0,85	-1,18	1	0,61	-	1	0,67	-	-	-	-	1	0,69	-
OE3473F	transducer protein htrVII	3	2	4	0,66	0,09	13,8	0,85	-1,18	2	0,65	0,12	2	0,66	0,10	-	-	-	-	-	-
OE1934R	proteinase IV	1	6	8	0,67	0,06	9,2	0,86	-1,16	2	0,59	0,05	2	0,69	0,03	1	0,69	-	3	0,69	0,05
OE8018F	conserved hypothetical protein	10	2	3	0,67	0,08	12,6	0,86	-1,16	-	-	-	-	-	-	2	0,65	0,11	1	0,71	-
OE3629R	ABC-type transport system periplasmic substrate-binding protein	0*	3	2	0,67	0,02	2,5	0,86	-1,16	-	-	-	2	0,67	0,02	-	-	-	-	-	-
OE4238R	hemolysin homolog	2	3	4	0,68	0,02	2,3	0,88	-1,14	1	0,67	-	2	0,69	0,00	1	0,66	-	-	-	-
OE3017R	UDP-sugar hydrolase / 5'-nucleotidase	2	4	3	0,68	0,05	7,5	0,88	-1,14	1	0,63	-	1	0,69	-	-	-	-	1	0,73	-
OE3418F	protein translocase secY	10	4	4	0,68	0,13	19,7	0,88	-1,13	2	0,76	0,18	2	0,61	0,00	-	-	-	-	-	-
OE3292F	conserved hypothetical protein	1	2	4	0,69	0,04	6,4	0,89	-1,13	1	0,73	-	2	0,69	0,01	-	-	-	1	0,63	-
OE1558R	probable protein translocase secE	1	1	1	0,69	-	-	0,89	-1,13	1	0,69	-	-	-	-	-	-	-	-	-	-
OE2548F	probable transmembrane oligosaccharyl transferase	16	4	4	0,69	0,07	9,6	0,89	-1,12	1	0,72	-	1	0,74	-	-	-	-	2	0,65	0,08
OE3988R	H+-transporting two-sector ATPase, chain E (A-type ATP synthase)	0	8	3	0,69	0,06	8,6	0,90	-1,12	1	0,68	-	1	0,64	-	-	-	-	1	0,76	-
OE4069R	hypothetical protein	1	2	3	0,70	0,04	6,2	0,90	-1,11	1	0,70	-	2	0,69	0,06	-	-	-	-	-	-

OE2276F	conserved hypothetical protein	0	1	2	0,70	0,04	6,3	0,90	-1,11	1	0,67	-	1	0,73	-	-	-	-	-	- '	-
OE3388F	ribosomal protein L3	0	8	10	0,70	0,07	9,4	0,90	-1,11	4	0,69	0,06	5	0,68	0,06	-	-	-	1	0,82	-
OE4258F	probable iron-sulfur protein (heterodisulfide reductase homolog)	6	7	7	0,70	0,03	3,6	0,91	-1,10	2	0,69	0,01	2	0,72	0,00	2	0,68	0,01	1	0,74	-
OE1842R	NADH dehydrogenase (ubiquinone) chain L homolog	13	1	1	0,70	-	-	0,91	-1,10	-	-	-	-	-	-	-	-	-	1	0,70	-
OE2975F	hypothetical protein	0	1	1	0,71	-	-	0,91	-1,10	-	-	-	-	-	-	-	-	-	1	0,71	-
OE4339R	ABC-type transport system ATP-binding protein	0	2	4	0,71	0,07	9,7	0,91	-1,09	2	0,72	0,09	2	0,70	0,07	-	-	-	-	-	-
OE1614F	hexosyltransferase homolog	0	1	1	0,71	-	-	0,92	-1,09	-	-	-	1	0,71	-	-	-	-	-	-	-
OE3955F	probable proline dehydrogenase (EC 1.5.99.8)	0*	4	8	0,71	0,08	11,3	0,92	-1,09	3	0,70	0,06	4	0,68	0,06	-	-	-	1	0,87	-
OE2170R	probable periplasmic substrate-binding protein (membrane lipoprotein tmpC homolog)	1	6	3	0,71	0,05	7,2	0,92	-1,09	1	0,69	-	1	0,77	-	-	-	-	1	0,67	-
OE1848R	conserved hypothetical protein	4	1	1	0,71	-	-	0,92	-1,09	-	-	-	1	0,71	-	-	-	-	-	-	-
OE1490R	conserved hypothetical protein	1	27	28	0,71	0,10	13,5	0,92	-1,08	5	0,65	0,06	10	0,73	0,12	7	0,72	0,11	6	0,74	0,06
OE3116F	conserved hypothetical protein	2	3	6	0,71	0,05	7,6	0,92	-1,08	2	0,66	0,01	2	0,71	0,02	-	-	-	2	0,77	0,05
OE3719F	conserved hypothetical protein	2	7	1	0,72	-	-	0,92	-1,08	-	-	-	-	-	-	-	-	-	1	0,72	-
OE5091F	conserved hypothetical protein	1	3	3	0,72	0,05	7,4	0,92	-1,08	-	-	-	-	-	-	2	0,70	0,07	1	0,74	-
OE1133F	hypothetical protein	1	7	3	0,72	0,02	2,6	0,92	-1,08	1	0,69	-	1	0,73	-	-	-	-	1	0,73	-
OE2951R	ABC-type transport system periplasmic substrate-binding protein	1	4	1	0,72	-	-	0,93	-1,08	1	0,72	-	-	-	-	-	-	-	-	-	-
OE3611R	transducer protein basT	1	9	5	0,72	0,02	3,4	0,93	-1,08	2	0,71	0,02	2	0,74	0,02	-	-	-	1	0,70	-
OE3992R	H+-transporting two-sector ATPase, chain H (A-type ATP synthase)	0	4	7	0,72	0,11	14,8	0,93	-1,08	3	0,71	0,15	3	0,68	0,04	1	0,85	-	-	-	-
OE3472F	conserved hypothetical protein	3	1	1	0,73	-	-	0,94	-1,07	1	0,73	-	-	-	-	-	-	-	-	-	-
OE3961R	probable Na+/H+-exchanging protein	13	1	1	0,73	-	-	0,94	-1,06	-	-	-	1	0,73	-	-	-	-	-	-	-
OE1870R	hypothetical protein	2	1	1	0,74	-	-	0,95	-1,05	-	-	-	1	0,74	-	-	-	-	-	-	-
OE1872R	probable menaquinolcytochrome-c reductase (cytochrome bc complex)	4	6	4	0,74	0,07	9,8	0,95	-1,05	1	0,70	-	2	0,80	0,03	-	-	-	1	0,66	-
OE3991R	H+-transporting two-sector ATPase chain I (A-type ATP synthase)	7	5	3	0,74	0,02	2,2	0,95	-1,05	-	-	-	1	0,73	-	1	0,76	-	1	0,72	-
OE1001F	conserved hypothetical protein	2	3	4	0,74	0,05	7,1	0,96	-1,05	1	0,71	-	1	0,73	-	-	-	-	2	0,76	0,08
OE2307F	NADH dehydrogenase homolog	0	6	6	0,74	0,08	10,3	0,96	-1,04	2	0,75	0,12	3	0,74	0,09	-	-	-	1	0,74	-
OE2168R	transducer protein htrVI	2	9	8	0,74	0,05	6,8	0,96	-1,04	3	0,73	0,06	3	0,74	0,01	1	0,83	-	1	0,72	-
OE4336R	probable ABC-type transport system permease protein	6	4	7	0,74	0,10	14,0	0,96	-1,04	2	0,67	0,07	2	0,69	0,02	-	-	-	3	0,82	0,11
OE3414F	ribosomal protein L18	0	2	3	0,74	0,16	21,0	0,96	-1,04	2	0,77	0,21	1	0,69	-	-	-	-	-	-	-
OE3427F	conserved hypothetical protein	4	6	6	0,75	0,10	13,6	0,96	-1,04	1	0,63	-	1	0,70	-	1	0,73	-	3	0,81	0,11
OE1008F	hypothetical protein	11	2	2	0,75	0,02	2,1	0,97	-1,03	1	0,76	-	1	0,74	-	-	-	-	-	-	-

OE2273F	hypothetical protein	1	1	2	0,75	0,05	6,2	0,97	-1,03	-	-	-	-	-	-	1	0,72	-	1	0,78	
OE3347F	transducer protein htrl	1	22	12	0,75	0,10	13,7	0,97	-1,03	2	0,74	0,06	2	0,82	0,15	6	0,74	0,13	2	0,72	0,01
OE3167F	transducer protein htrVIII	5	7	11	0,75	0,08	10,4	0,97	-1,03	4	0,72	0,07	5	0,76	0,06	1	0,91	-	1	0,70	-
OE3784R	preprotein-export translocase chain secD	6	8	6	0,76	0,08	10,2	0,98	-1,02	1	0,68	-	2	0,76	0,10	1	0,76	-	2	0,80	0,10
OE1652R	protein OE1652R	0	2	3	0,76	0,06	8,4	0,98	-1,02	1	0,75	-	1	0,70	-	-	-	-	1	0,83	-
OE2930R	conserved hypothetical protein	5	1	1	0,76	-	-	0,99	-1,01	1	0,76	-	-	-	-	-	-	-	-	-	-
OE2443R	hypothetical protein	1	7	3	0,77	0,01	1,6	0,99	-1,01	1	0,76	-	1	0,78	-	-	-	-	1	0,76	-
OE1295R	hypothetical protein	0	4	2	0,77	0,05	6,5	0,99	-1,01	-	-	-	1	0,73	-	-	-	-	1	0,80	-
OE5204R	probable Na+/H+-exchanging protein	11	2	2	0,77	0,05	6,0	0,99	-1,01	1	0,80	-	1	0,74	-	-	-	-	-	-	-
OE1254R	conserved hypothetical protein	0*	2	1	0,78	-	-	1,00	1,00	1	0,78	-	-	-	-	-	-	-	-	-	-
OE3958F	conserved hypothetical protein	2	1	1	0,78	-	-	1,01	1,01	1	0,78	-	-	-	-	-	-	-	-	-	-
OE1465F	endopeptidase La	1	26	27	0,78	0,14	17,9	1,01	1,01	6	0,72	0,14	8	0,80	0,12	5	0,78	0,15	8	0,81	0,16
OE7008F	hypothetical protein (encoded by ISH7/ISH24 subtype 1)	4	2	4	0,78	0,05	7,0	1,01	1,01	2	0,81	0,06	2	0,75	0,05	-	-	-	-	-	-
OE1958F	NADH dehydrogenase (ubiquinone), chain l	0	8	7	0,79	0,09	10,9	1,01	1,01	2	0,68	0,03	2	0,79	0,04	1	0,93	-	2	0,81	0,00
OE1827F	conserved hypothetical protein	0	3	3	0,79	0,06	7,2	1,02	1,02	1	0,73	-	1	0,79	-	-	-	-	1	0,85	-
OE1954F	NADH dehydrogenase (ubiquinone), chain B	0	4	4	0,79	0,07	8,3	1,02	1,02	1	0,73	-	-	-	-	1	0,88	-	2	0,77	0,02
OE4399F	probable oxidoreductase (glycerol-3- phosphate dehydrogenase homolog)	0	1	1	0,79	-	-	1,02	1,02	-	-	-	1	0,79	-	-	-	-	-	-	-
OE2027F	conserved hypothetical protein	11	1	2	0,79	0,00	0,4	1,03	1,03	1	0,79	-	1	0,80	-	-	-	-	-	-	-
OE1005F	conserved hypothetical protein	4	1	1	0,80	-	-	1,03	1,03	-	-	-	1	0,80	-	-	-	-	-	-	-
OE2186R	conserved hypothetical protein	1	2	2	0,81	0,02	2,4	1,04	1,04	-	-	-	1	0,79	-	1	0,82	-	-	-	-
OE1879R	halocyanin hcpE	1	5	4	0,81	0,08	9,8	1,05	1,05	1	0,70	-	1	0,81	-	1	0,86	-	1	0,87	-
OE1956F	NADH dehydrogenase (ubiquinone) chain CD	0	24	18	0,81	0,07	8,3	1,05	1,05	6	0,76	0,07	7	0,84	0,05	2	0,88	0,12	3	0,79	0,02
OE4011R	conserved hypothetical protein	6	1	2	0,81	0,09	11,0	1,05	1,05	1	0,75	-	1	0,87	-	-	-	-	-	-	-
OE2632F	ribosomal protein L18.eR	0	1	2	0,81	0,08	10,2	1,05	1,05	1	0,87	-	1	0,75	-	-	-	-	-	-	-
OE3787R	preprotein-export translocase chain secF	6	1	1	0,81	-	-	1,05	1,05	-	-	-	-	-	-	-	-	-	1	0,81	-
OE2559R	probable 1,4-dihydroxy-2-naphthoate octaprenyltransferase	7	1	2	0,81	0,08	9,6	1,05	1,05	1	0,87	-	1	0,76	-	-	-	-	-	-	-
OE1537B1 R	conserved hypothetical protein	0	6	8	0,81	0,04	4,5	1,05	1,05	3	0,82	0,04	4	0,81	0,05	-	-	-	1	0,80	-
OE4563F	hypothetical protein	0*	9	2	0,82	0,04	4,8	1,05	1,05	-	-	-	-	-	-	1	0,84	-	1	0,79	-
OE3343R	hypothetical protein	1	2	3	0,82	0,02	2,9	1,06	1,06	1	0,84	-	2	0,81	0,03	-	-	-	-	-	-
OE4271F	conserved hem operon protein	3	1	2	0,82	0,19	22,5	1,06	1,06	1	0,96	-	1	0,69	-	-	-	-	-	-	-
OE2866R	succinate dehydrogenase chain B (iron- sulfur protein)	0	14	12	0,83	0,09	10,7	1,07	1,07	4	0,78	0,06	5	0,85	0,12	1	0,81	-	2	0,87	0,04

OE2703F	probable copper-containing oxidoreductase	0*	15	18	0,83	0,11	13,0	1,07	1,07	7	0,85	0,17	5	0,81	0,07	1	0,81	-	5	0,83	0,03
OE4303R	ABC-type transport system permease protein	8	2	2	0,83	0,03	3,3	1,07	1,07	1	0,85	-	1	0,81	-	-	-	-	-	-	-
OE1539F	conserved hypothetical protein	4	3	5	0,83	0,07	8,2	1,07	1,07	2	0,77	0,06	2	0,87	0,04	-	-	-	1	0,88	-
OE2189R	transducer protein htr4 (htpVI)	2	8	4	0,83	0,08	9,5	1,07	1,07	1	0,77	-	-	-	-	1	0,82	-	2	0,87	0,11
OE3118F	conserved hypothetical protein	11	2	2	0,84	0,09	10,9	1,08	1,08	-	-	-	-	-	-	1	0,77	-	1	0,90	-
OE2149R	conserved hypothetical protein	0	13	7	0,85	0,08	9,3	1,09	1,09	1	0,73	-	2	0,84	0,12	2	0,91	0,02	2	0,84	0,02
OE6332R	transducer protein htrll weak homolog	2	4	2	0,85	0,02	2,5	1,09	1,09	1	0,86	-	1	0,83	-	-	-	-	-	-	-
OE3764F	glycerol-3-phosphate dehydrogenase chain B	0	4	2	0,85	0,02	2,1	1,09	1,09	-	-	-	1	0,86	-	1	0,83	-	-	-	-
OE6325R	hypothetical protein	1	3	5	0,85	0,12	13,8	1,10	1,10	2	0,81	0,10	2	0,82	0,13	-	-	-	1	1,00	-
OE1821R	ribosomal protein L36a.eR (HLA)	0	2	3	0,85	0,18	21,4	1,10	1,10	-	-	-	2	0,95	0,12	-	-	-	1	0,67	-
OE1772F	hypothetical protein	2	1	1	0,86	-	-	1,11	1,11	1	0,86	-	-	-	-	-	-	-	-	-	-
OE2444F	hypothetical protein	2	3	5	0,86	0,11	12,5	1,11	1,11	2	0,78	0,15	2	0,91	0,03	1	0,93	-	-	-	-
OE2288F	pheromone shutdown protein homolog	7	3	4	0,86	0,07	7,9	1,12	1,12	2	0,85	0,05	2	0,87	0,11	-	-	-	-	-	-
OE1854R	conserved hypothetical protein	0	3	2	0,86	0,02	2,5	1,12	1,12	1	0,85	-	1	0,88	-	-	-	-	-	-	-
OE1536R	transducer protein htr14	1	9	10	0,87	0,07	7,9	1,12	1,12	2	0,84	0,00	3	0,95	0,02	2	0,87	0,07	3	0,81	0,07
OE3474R	transducer protein cosT	2	12	4	0,88	0,09	10,5	1,13	1,13	1	0,94	-	1	0,91	-	1	0,91	-	1	0,74	-
OE5157F	conserved hypothetical protein	15	2	4	0,88	0,03	3,3	1,13	1,13	1	0,85	-	2	0,87	0,01	-	-	-	1	0,92	-
OE1699R	oxidoreductase (geranylgeranyl hydrogenase homolog)	0	2	6	0,88	0,11	12,9	1,13	1,13	2	0,77	0,01	2	0,86	0,08	-	-	-	2	1,01	0,03
OE1957F	NADH dehydrogenase (ubiquinone), chain H	8	1	2	0,88	0,06	7,2	1,14	1,14	-	-	-	1	0,93	-	-	-	-	1	0,84	-
OE4757R	hypothetical protein	2	6	3	0,88	0,05	5,6	1,14	1,14	2	0,86	0,04	1	0,93	-	-	-	-	-	-	-
OE3910R	probable ABC-type transport system periplasmic substrate-binding protein	0*	7	8	0,89	0,15	17,0	1,15	1,15	1	1,14	-	1	1,05	-	2	0,79	0,04	4	0,84	0,11
OE4583F	ferredoxin (2Fe-2S)	1	5	2	0,89	0,09	10,2	1,15	1,15	-	-	-	-	-	-	1	0,83	-	1	0,96	-
OE1079F	conserved hypothetical protein	0	1	1	0,90	-	-	1,16	1,16	-	-	-	-	-	-	1	0,90	-	-	-	-
OE4384R	conserved hypothetical protein	4	3	1	0,90	-	-	1,16	1,16	-	-	-	-	-	-	1	0,90	-	-	-	-
OE1501F	hypothetical protein	2	2	3	0,90	0,13	14,6	1,16	1,16	1	0,75	-	1	0,94	-	-	-	-	1	1,01	-
OE1878R	hypothetical protein	2	5	5	0,91	0,10	11,4	1,17	1,17	2	0,93	0,07	1	1,04	-	-	-	-	2	0,82	0,07
OE4377R	GTP-binding protein homolog	0	2	2	0,91	0,20	21,7	1,17	1,17	1	0,77	-	1	1,05	-	-	-	-	-	-	-
OE3491R	heat shock protein homolog	0	1	2	0,91	0,08	9,1	1,18	1,18	1	0,85	-	1	0,97	-	-	-	-	-	-	-
OE1160R	ribosomal protein L10.eR	0	2	3	0,92	0,00	0,1	1,19	1,19	1	0,92	-	2	0,92	0,00	-	-	-	-	-	-
0E2528R	glycosyltransferase homolog	2	2	2	0,92	0,05	5,7	1,19	1,19	-	-	-	-	-	-	1	0,89	-	1	0,96	-
OE5134F	conserved hypothetical protein	12	5	6	0,93	0,05	5,8	1,20	1,20	2	0,89	0,06	2	0,91	0,02	1	0,94	-	1	1,01	-
OE1876R	probable menaquinolcytochrome-c reductase (cytochrome bc complex) Rieske	0	8	11	0,93	0,11	12,1	1,20	1,20	3	0,89	0,19	3	0,92	0,13	2	0,98	0,08	3	0,95	0,04
OE4460R	ribosomal protein L39.eR	0	3	3	0,93	0,09	9,3	1,20	1,20	2	0,94	0,12	1	0,92	-	-	-	-	-	-	-

OE2315R	ABC-type transport system permease protein	8	1	1	0,93	-	-	1,21	1,21	-	-	-	1	0,93	-	-	-	-	-	-	-
OE3408F	ribosomal protein S14	0	2	3	0,95	0,12	12,8	1,22	1,22	2	0,90	0,13	1	1,04	-	-	-	-	-	- 1	-
OE3718F	cell division protein	0	4	7	0,96	0,17	18,0	1,24	1,24	3	0,95	0,20	3	1,01	0,20	-	-	-	1	0,85	-
OE4093F	hypothetical protein	1	1	1	0,97	-	-	1,25	1,25	-	-	-	-	-	-	-	-	-	1	0,97	-
OE2944F	conserved hypothetical protein	4	1	1	0,98	-	-	1,26	1,26	-	-	-	1	0,98	-	-	-	-	-	-	-
OE7065F	cytochrome d ubiquinol oxidase, chainl	9	2	1	0,98	-	-	1,27	1,27	-	-	-	-	-	-	-	-	-	1	0,98	-
OE5322R	conserved hypothetical protein	0	1	1	0,99	-	-	1,27	1,27	-	-	-	-	-	-	-	-	-	1	0,99	-
OE4759F	cell surface glycoprotein precursor	2	40	30	0,99	0,12	12,6	1,27	1,27	4	0,86	0,04	3	1,08	0,28	9	1,00	0,07	14	1,00	0,11
OE2865R	succinate dehydrogenase, chain A (flavoprotein)	0	12	6	0,99	0,14	14,5	1,28	1,28	1	0,82	-	2	1,06	0,20	1	0,98	-	2	1,02	0,15
OE4485R	probable ABC-type phosphate transport system periplasmic substrate-binding protein	0*	5	4	0,99	0,11	11,2	1,28	1,28	1	0,84	-	1	0,99	-	1	1,05	-	1	1,09	-
OE6347R	transducer protein htrll weak homolog	3	3	4	0,99	0,16	16,1	1,28	1,28	1	0,76	-	2	1,05	0,01	-	-	-	1	1,12	-
OE1545F	probable oxidoreductase (cis-retinol dehydrogenase homolog)	0	2	1	1,00	-	-	1,29	1,29	-	-	-	-	-	-	-	-	-	1	1,00	-
OE4712F	conserved hypothetical protein	0	1	1	1,00	-	-	1,29	1,29	-	-	-	1	1,00	-	-	-	-	-	-	-
OE5188F	protein kinase weak homolog	0*	1	2	1,00	0,07	7,1	1,29	1,29	1	1,05	-	1	0,95	-	-	-	-	-	-	-
OE2390R	flagella accessory protein	0	1	2	1,01	0,10	9,5	1,31	1,31	1	0,95	-	1	1,08	-	-	-	-	-	-	-
OE1365F	conserved hypothetical protein	8	2	2	1,02	0,02	2,2	1,31	1,31	1	1,00	-	1	1,03	-	-	-	-	-	-	-
OE3765F	glycerol-3-phosphate dehydrogenase, chain C	0*	3	6	1,02	0,09	9,2	1,32	1,32	2	0,96	0,06	2	1,06	0,02	-	-	-	2	1,03	0,17
OE1847R	hypothetical protein	3	1	1	1,02	-	-	1,32	1,32	-	-	-	1	1,02	-	-	-	-	-	-	-
OE3533F	probable protoporphyrinogen oxidase	0	1	2	1,02	0,14	13,3	1,32	1,32	1	1,12	-	1	0,93	-	-	-	-	-	-	-
OE3342R	conserved hypothetical protein	2	2	3	1,04	0,10	9,7	1,34	1,34	2	1,02	0,14	1	1,08	-	-	-	-	-	-	-
OE2092F	conserved hypothetical protein	2	1	3	1,04	0,17	16,2	1,34	1,34	1	0,91	-	1	0,98	-	-	-	-	1	1,23	-
OE5187R	hypothetical protein	0	6	3	1,06	0,19	18,1	1,37	1,37	1	1,28	-	-	-	-	1	0,92	-	1	0,98	-
OE3392F	ribosomal protein L2	0	1	2	1,07	0,21	19,3	1,38	1,38	1	0,92	-	1	1,21	-	-	-	-	-	-	-
OE2316R	ABC-type transport system ATP-binding protein	0	2	3	1,07	0,11	10,3	1,39	1,39	2	1,06	0,15	1	1,10	-	-	-	-	-	-	-
OE3415F	ribosomal protein S5	0	2	2	1,14	0,11	9,5	1,48	1,48	-	-	-	-	-	-	-	-	-	2	1,14	0,11
OE1211F	heat shock protein homolog	4	4	7	1,15	0,10	8,4	1,48	1,48	2	1,08	0,05	2	1,13	0,02	-	-	-	3	1,20	0,13
OE1294R	ribosomal protein L15.eR	0	7	9	1,17	0,12	10,1	1,52	1,52	3	1,06	0,12	2	1,20	0,06	1	1,16	-	3	1,28	0,06
OE2223F	probable dimethylsulfoxide reductase, chain A (reductase subunit)	0	9	6	1,19	0,13	10,6	1,54	1,54	4	1,13	0,11	1	1,28	-	-	-	-	1	1,33	-
0E1724R	conserved hypothetical protein	1	1	1	1,34	-	-	1,74	1,74	1	1,34	-	-	-	-	-	-	-	-	-	-
OE2159R	ribosomal protein S3a.eR	0	2	4	1,35	0,25	18,8	1,74	1,74	1	0,98	-	2	1,49	0,08	-	-	-	1	1,44	-
0E2225F	dimethylsulfoxide reductase, chain B (electron transfer protein)	0	1	2	1,39	0,06	4,1	1,80	1,80	1	1,35	-	1	1,43	-	-	-	-	-	-	-

OE1597F	hypothetical protein	0*	1	1	1,46	-	-	1,88	1,88	-	-	-	1	1,46	-	-	-	-	-	-	-
OE2121F	conserved hypothetical protein	2	4	1	1,48	-	-	1,91	1,91	-	-	-	1	1,48	-	-	-	-	-	-	-
OE3763F	glycerol-3-phosphate dehydrogenase, chain A	0	3	2	1,54	0,01	0,9	1,99	1,99	-	-	-	-	-	-	1	1,53	-	1	1,55	-
OE4735R	ribosomal protein S7	0	3	5	1,61	0,23	14,3	2,08	2,08	2	1,39	0,10	2	1,69	0,07	-	-	-	1	1,90	-
OE3947R	probable mechanosensitive channel	5	1	1	1,80	-	-	2,33	2,33	1	1,80	-	-	-	-	-	-	-	-	-	-
OE2116R	conserved hypothetical protein	2	2	1	1,83	-	-	2,36	2,36	-	-	-	-	-	-	1	1,83	-	-	-	-
OE3106R	bacteriorhodopsin precursor	7	1	1	2,36	-	-	3,05	3,05	-	-	-	-	-	-	-	-	-	1	2,36	-
OE1541F	conserved hypothetical protein	6	1																		
OE1653R	Na+/H+ antiporter homolog	11	1																		
OE1657R	geranylgeranyl hydrogenase homolog	0	1																		
OE1852R	conserved hypothetical protein	3	1																		
OE2007F	conserved hypothetical protein	0	1																		
OE2032F	conserved hypothetical protein	5	2																		
OE2317R	probable ABC-type transport system periplasmic substrate-binding protein (membrane lipopr	0*	5																		
OE2330R	hypothetical protein	1	1																		
OE2348R	probable ABC-type transport system periplasmic substrate-binding protein	0*	1																		
OE2586F	hypothetical protein	1	1																		
OE2618R	conserved hypothetical protein	0	1																		
OE2791R	hypothetical protein	1	6																		
OE2988R	conserved hypothetical protein	5	1																		
OE3165R	probable A/G-specific adenine glycosylase	0	1																		
OE3190F	hypothetical protein	1	3																		
OE3270R	conserved hypothetical protein	0*	2																		
OE3320F	halocyanin hcpA	0*	2																		
OE3476R	chemotactic signal transduction system periplasmic substrate-binding protein cosB	0*	3																		
OE3481R	transducer protein htrll	1	3																		
OE4008R	conserved hypothetical protein	0*	1																		
OE4030F	hypothetical protein	0*	1																		
OE4071R	cytochrome-c oxidase chain II	1	4																		
OE4073R	halocyanin hcpB	3	4																		
OE4388R	probable signal peptidase	1	1																		
OE4523F	hypothetical protein	1	5																		
OE4552F	ABC-type transport system permease protein	7	2												_						

OE4593R	probable ABC-type transport system substrate-binding protein	0*	1									
OE4633F	conserved hypothetical protein	1	1									
OE4646R	hypothetical protein	1	1									
OE4755F	hypothetical protein	2	2									
OE5249F	conserved hypothetical protein	11	1									

Tabelle 7.5: Liste der quantifizierten Proteine von *H. salinarum* aus dem Vergleich von aerobem und sauerstoff limitierten Wachstum, beschrieben in Kapitel 4.4.2.2. Für jedes Protein sind die Anzahl der vorhergesagten Transmembrandomänen (TMD) sowie die Anzahl der quantifizierten Peptide angegeben. Die Berechnung des Regulationsfaktors und der Standardabweichung (s.d) erfolgte wie in Kapitel 3.2.14.1 beschrieben.

(OE-CODE) Protein Name	TMD	quantifizierte Peptide	O₂-limitiert/ aerob	Regulations- faktor	s.d.
(OE1737R) dnaK-type molecular chaperone hsp70	0	1	0,10	-10.97	-
(OE3978R) H+-transporting two-sector ATPase (EC 3.6.3.14) chain D.a (A-type ATP synthase)	0	2	0,13	,	0,02
(previous (OE3985R) H+-transporting two-sector ATPase (EC 3.6.3.14) chain A.a (A-type ATP synthase) (previous	0	1	0,13	-8,86	-
(OE3411F) ribosomal protein L6	0	1	0,18	-6,09	-
(OE4550F) ABC-type transport system ATP-binding protein	0	1	0,19	-6,20	-
(OE2662F) ribosomal protein L7a.eR/HS6 (isolated from the small ribosomal subunit)	0	1	0,22	-5.09	-
(OE4713R) conserved protein	0	1	0,28	-4 02	-
(OE2419R) purine-binding chemotaxis protein cheW1	0	1	0,30	-3.80	-
(OE3404F) ribosomal protein L24	0	1	0,30	-3 74	-
(OE4339R) ABC-type transport system ATP-binding protein	0	2	0,31	-3.66	0,04
(OE3412F) ribosomal protein L32.eR	0	2	0,32	-3.55	0,02
(OE2527F) conserved protein	0	1	0,32	-3 49	-
(OE3407F) ribosomal protein L5	0	1	0,33	-3.39	-
(OE4736R) ribosomal protein S12	0	1	0,43	-2.66	-
(OE4301R) ABC-type transport system ATP-binding protein	0	2	0,48	-2.35	0,03
(OE3413F) ribosomal protein L19.eR	0	2	0,52	-2 16	0,29
(OE1319R) cell division protein ftsZ2	0	2	0,54	-2.08	0,03
(OE4673F) carboxypeptidase (EC 3.4)	0	1	0,54	-2,08	-

(OE1652R) protein OE1652R	0	1	0,55	-2.05	-
(OE1442R) conserved hypothetical protein	0	1	0,56	-2.02	-
(OE4122R) thermosome alpha chain	0	1	0,61	-1.85	-
(OE2159R) ribosomal protein S3a.eR	0	1	0,63	-1,00	-
(OE3542R) protein OE3542R	0	1	0,65	-1,75	-
(OE2632F) ribosomal protein L18.eR	0	1	0,68	-1,75	-
(OE4311F) ABC-type transport system periplasmic substrate-binding protein	0	4	0,68	-1,65	0,07
(OE2865R) succinate dehydrogenase (EC 1.3.99.1) chain A (flavoprotein)	0	4	0,69	-1,05	0,07
(OE2390R) flagella accessory protein	0	1	0,70	-1,05	-
(OE3992R) H+-transporting two-sector ATPase (EC 3.6.3.14) chain H.a (A-type ATP synthase)	0	2	0,75	-1,01	0,03
(previous (OE3017R) UDP-sugar hydrolase (EC 3.6.1.45) / 5'-nucleotidase (EC 3.1.3.5)	2	2	0,75	-1,51	0,32
(OE3417F) ribosomal protein L15	0	2	0,76	-1,31	0,01
(OE2121F) conserved protein	2	1	0,77	-1,49	-
(OE4305R) ABC-type dipeptide transport system periplasmic dipeptide-binding protein	0	11	0,80	-1,48	0,07
(OE4303R) ABC-type transport system permease protein	8	1	0,81	-1,42	-
(OE2307F) NADH dehydrogenase homolog	0	2	0,81	-1,40	0,00
(OE1934R) proteinase IV (EC 3.4)	1	2	0,82	-1,39	0,07
(OE3481R) transducer protein htrll	1	2	0,83	-1,57	0,06
(OE4304R) ABC-type transport system permease protein	6	2	0,83	-1,30	0,05
(OE3991R) H+-transporting two-sector ATPase (EC 3.6.3.14) chain I.a (A-type ATP synthase)	7	1	0,84	-1,00	-
(previous	0	2	0.94	-1,35	0.02
(OE4551F) ABC-type transport system periplasmic substrate-binding protein	5	5	0,64	-1,35	0,03
(OE316/F) transducer protein nu vin	5	0	0,65	-1,33	0,00
(OE3000R) ARC trace tracement sustain ATR binding protein	2	1	0,85	-1,33	-
(OE3908R) ABC-type transport system AIP-binding protein	0	1	0,85	-1,32	-
(OE1821R) ribosomal protein L36a.eR (HLA)	0	3	0,86	-1,32	0,05
(OE3718F) cell division protein	0	3	0,86	-1,31	0,15
(OE1979R) cytochrome-c oxidase (EC 1.9.3.1) chain I	13	1	0,87	-1,30	-
(OE3988R) H+-transporting two-sector ATPase (EC 3.6.3.14) chain E.a (A-type ATP synthase) (previous	0	1	0,88	-1.28	-
OE6347R) transducer protein htrll weak homolog	3	2	0,91	-1.25	0,00
(OE4258F) probable iron-sulfur protein (heterodisulfide reductase homolog)	6	2	0,91	-1.24	0,08
(OE2042F) probable copper-transporting ATPase (EC 3.6.1)	7	1	0,92	-1.23	-
(OE2170R) probable periplasmic substrate-binding protein (membrane lipoprotein tmpC homolog)	0	1	0,92	-1.23	-
(OE3292F) conserved protein	1	1	0,93	-1.21	-
(OE1008F) protein OE1008F	11	1	0,94	-1.20	-

(OE3955F) probable proline dehydrogenase (EC 1.5.99.8)	0	3	0,94	-1 20	0,08
(OE1202F) probable ABC-type transport system ATP-binding/permease protein	4	4	0,94	-1 20	0,25
(OE1005F) conserved protein	5	1	0,94	-1 20	-
(OE1806R) probable periplasmic protein	0	1	0,95	-1.19	-
(OE3612R) chemotactic signal transduction system periplasmic substrate-binding protein basB	1	1	0,95	-1 19	-
(OE1679R) probable ABC-type phosphate transport system periplasmic phosphate-binding protein	0	1	0,96	-1 18	-
(OE2316R) ABC-type transport system ATP-binding protein	0	2	0,96	-1.18	0,07
(OE3987R) H+-transporting two-sector ATPase (EC 3.6.3.14) chain C.a (A-type ATP synthase)	0	3	0,97	.,	0,17
(previous (OE4271E) conserved hem operan protein	3	1	0.97	-1,17	_
(OE2559R) probable 1 4-dibydroxy-2-paphthoate octaprenyltransferase	7	1	0.98	-1,16	_
(OE3611R) transducer protein basT	1	2	0.98	-1,15	0.07
(OE1854R) conserved protein	0	-	0,99	-1,15	-
(OE3907R) ABC-type transport system permease protein	6	1	0,99	-1,15	-
(OE2443R) protein OE2443R	1	2	0,99	-1,15	0 28
(OE2092F) hypothetical protein	2	-	1.00	-1,14	-
(OE3784R) preprotein-export translocase chain secD	6	2	1.01	-1,13	0.02
(OE1501F) protein OE1501F	2	2	1.02	-1,12	0.28
(OE3787R) preprotein-export translocase chain secF	6	1	1.02	-1,11	-
(OE4685R) conserved hypothetical protein	6	1	1,03	-1,10	_
(OE2548F) probable transmembrane oligosaccharyl transferase	16	1	1,05	-1,10	-
(OE2930R) conserved protein	5	2	1,05	-1,00	0,13
(OE1490R) conserved protein	1	11	1,06	-1,08	0,29
(OE1465F) endopeptidase La (EC 3.4.21.53)	1	8	1,06	-1,07	0,24
(OE3473F) transducer protein htrVII	3	2	1,06	-1,00	0,13
(OE3418F) protein translocase secY	10	2	1,08	-1,00	0,01
(OE1133F) protein OE1133F	1	1	1,09	-1,03	-
(OE2288F) pheromone shutdown protein homolog	7	1	1,09	-1,03	-
(OE4011R) conserved hypothetical protein	6	1	1,10	-1,03	-
(OE6325R) protein OE6325R	1	2	1,11	-1,03	0,07
(OE3958F) conserved protein	2	1	1,11	-1.02	-
(OE2868R) succinate dehydrogenase (EC 1.3.99.1) chain C (cytochrome b-556)	3	1	1,11	-1.02	-
(OE2866R) succinate dehydrogenase (EC 1.3.99.1) chain B (iron-sulfur protein)	0	6	1,12	-1 01	0,09
(OE2168R) transducer protein htrVI	2	4	1,12	-1 01	0,12
(OE2026F) ABC-type transport system ATP-binding protein	0	1	1,13	1 00	-
(OE4668R) conserved protein	3	1	1,13	1,00	-
				.,00	

selected records		283	1,13	1 00	0,69
(OE1879R) halocyanin hcpE	1	1	1,13	1,00	-
(OE1872R) probable menaquinolcytochrome-c reductase (EC 1.10.2) (cytochrome bc complex) cytochr	4	1	1,14	1,01	-
(OE1254R) conserved protein	0	1	1,16	1,02	-
(OE2944F) conserved protein	4	1	1,16	1,02	-
(OE3392F) ribosomal protein L2	0	1	1,17	1,03	-
(OE1876R) probable menaquinolcytochrome-c reductase (EC 1.10.2) (cytochrome bc complex) Rieske	0	3	1,17	1.04	0,28
(OE4238R) hemolysin homolog	2	2	1,17	1.04	0,12
(OE1295R) protein OE1295R	0	1	1,17	1.04	-
(OE4357F) ABC-type transport system periplasmic substrate-binding protein	0	1	1,18	1.04	-
(OE3765F) glycerol-3-phosphate dehydrogenase (EC 1.1.99.5) chain C	0	2	1,18	1 05	0,09
(OE4069R) hypothetical protein	1	3	1,19	1 05	0,09
(OE1724R) conserved hypothetical protein	1	1	1,20	1.06	-
(OE1827F) conserved hypothetical protein	0	1	1,20	1.06	-
(OE1558R) probable protein translocase secE	1	1	1,21	1.07	-
(OE1958F) NADH dehydrogenase (ubiquinone) (EC 1.6.5.3) chain I	0	1	1,21	1,07	-
(OE3388F) ribosomal protein L3	0	6	1,23	1,01	0,65
(OE2076F) conserved protein	12	1	1,24	1,00	-
(OE2276F) conserved protein	0	1	1,24	1 10	-
(OE1211F) heat shock protein homolog	4	2	1,25	1 11	0,03
(OE1539F) conserved protein	4	1	1,26	1 12	-
(OE3347F) transducer protein htrl	1	3	1,27	1 12	0,22
(OE1001F) conserved protein	2	1	1,28	1 13	-
(OE4032R) conserved protein	0	1	1,28	1,10	-
(OE5157F) conserved protein	15	2	1,29	1 14	0,10
(OE1365F) conserved hypothetical protein	8	2	1,30	1 15	0,55
(OE1932R) conserved protein	0	1	1,31	1 16	-
(OE6335R) transducer protein htrll weak homolog	2	1	1,31	1,10	-
(OE2703F) probable copper-containing oxidoreductase	0	5	1,31	1,10	0,18
(OE7008F) hypothetical protein (encoded by ISH7/ISH24 subtype 1)	4	2	1,33	1,18	0,16
(OE1956F) NADH dehydrogenase (ubiquinone) (EC 1.6.5.3) chain CD	0	7	1,34	1,18	0,09
(OE4759F) cell surface glycoprotein precursor	2	15	1,34	1 19	0,55
(OE3414F) ribosomal protein L18	0	2	1,36	1 21	0,92
(OE1537B1R) conserved hypothetical protein	0	2	1,37	1,21	0,00

(OE2149R) conserved protein	0	2	1,38	1.22	0,19
(OE3116F) conserved protein	2	1	1,39	1.23	-
(OE2186R) conserved protein	1	1	1,40	1.24	-
(OE5204R) probable Na+/H+-exchanging protein	11	2	1,41	1.25	0,20
(OE6332R) transducer protein htrll weak homolog	2	2	1,43	1.26	0,43
(OE4070R) cytochrome-c oxidase (EC 1.9.3.1) chain I	13	1	1,44	1.27	-
(OE4336R) probable ABC-type transport system permease protein	6	2	1,49	1.32	0,17
(OE4757R) protein OE4757R	2	1	1,55	1.37	-
(OE1954F) NADH dehydrogenase (ubiquinone) (EC 1.6.5.3) chain B	0	1	1,58	1.40	-
(OE1391R) halocyanin hcpG	0	1	1,59	1.41	-
(OE1597F) protein OE1597F	0	1	1,66	1.47	-
(OE1160R) ribosomal protein L10.eR	0	3	1,70	1.50	0,15
(OE1294R) ribosomal protein L15.eR	0	4	1,73	1.53	0,17
(OE1536R) transducer protein htr14	1	4	1,74	1.54	0,25
(OE5134F) conserved protein	1	2	1,82	1.61	0,02
(OE5187R) probable hydrolase	0	2	1,89	1.67	0,30
(OE4735R) ribosomal protein S7	0	1	2,03	1.79	-
(OE4460R) ribosomal protein L39.eR	0	1	3,77	3.33	-
(OE2227F) probable dimethylsulfoxide reductase (EC 1.8) chain C (membrane anchor subunit)	10	1	4,29	3.80	-
(OE2225F) dimethylsulfoxide reductase (EC 1.8) chain B (electron transfer protein)	0	1	4,35	3.85	-
(OE2223F) probable dimethylsulfoxide reductase (EC 1.8) chain A (reductase subunit)	0	3	5,64	4,99	0,64

Tabelle 7.6: Liste der quantifizierten Proteine von *H. salinarum* aus dem Vergleich von aerobem und sauerstoff limitierten Wachstum in der Anwesenheit von 1% DMSO, beschrieben in Kapitel 4.4.2.2. Für jedes Protein sind die Anzahl der vorhergesagten Transmembrandomänen (TMD) sowie die Anzahl der quantifizierten Peptide angegeben. Die Berechnung des Regulationsfaktors und der Standardabweichung (s.d) erfolgte wie in Kapitel 3.2.14.1 beschrieben.

(OE-CODE) Protein Name	TMD	quantifizierte Peptide	1% DMSO/ aerob	Regulations- faktor	s.d.
(OE3985R) H+-transporting two-sector ATPase (EC 3.6.3.14) chain A.a (A-type ATP synthase) (previous	0	1	0,12	-9,67	-
(OE2097F) conserved protein	0	1	0,12	-9,51	-
(OE2419R) purine-binding chemotaxis protein cheW1	0	1	0,13	-9,21	-
(OE4550F) ABC-type transport system ATP-binding protein	0	1	0,17	-6,76	-
(OE1737R) dnaK-type molecular chaperone hsp70	0	2	0,19	-6.03	0,03
(OE3389F) ribosomal protein L4.eR	0	1	0,20	-6.00	-
(OE3978R) H+-transporting two-sector ATPase (EC 3.6.3.14) chain D.a (A-type ATP synthase) (previous	0	2	0,20	-5.98	0,07
(OE2662F) ribosomal protein L7a.eR/HS6 (isolated from the small ribosomal subunit)	0	1	0,20	-5 76	-
(OE4709F) hypothetical protein	0	1	0,20	-5.74	-
(OE1559R) cell division protein ftsZ1	0	1	0,23	-5 15	-
(OE3411F) ribosomal protein L6	0	1	0,25	-4.62	-
(OE3404F) ribosomal protein L24	0	1	0,27	-4.38	-
(OE4697R) hypothetical protein	0	1	0,31	-3.81	-
(OE1584R) conserved protein	0	1	0,32	-3.67	-
(OE3187R) conserved hypothetical protein	0	1	0,33	-3,57	-
(OE1319R) cell division protein ftsZ2	0	1	0,34	-3.40	-
(OE4339R) ABC-type transport system ATP-binding protein	0	3	0,34	-3,40	0,04
(OE2602R) ribosomal protein L1	0	2	0,35	-3.33	0,04
(OE2527F) conserved protein	0	1	0,36	-3.21	-
(OE4736R) ribosomal protein S12	0	1	0,50	-2.36	-
(OE2573F) hypothetical protein	0	1	0,50	-2.32	-
(OE4301R) ABC-type transport system ATP-binding protein	0	2	0,58	-2,01	0,00
(OE3524F) pyridoxine biosynthesis protein	0	2	0,60	-1.96	0,01
(OE4721R) translation elongation factor aEF-1 alpha chain	0	1	0,62	-1.89	-
(OE4122R) thermosome alpha chain	0	1	0,62	-1,88	-
(OE2390R) flagella accessory protein	0	1	0,62	-1,88	-

(OE2632F) ribosomal protein L18.eR	0	1	0,65	-1 79	-
(OE3357R) ribosomal protein S8.eR	0	2	0,66	-1 78	0,15
(OE5032R) hypothetical protein	1	1	0,66	-1 77	-
(OE4304R) ABC-type transport system permease protein	6	1	0,69	-1 70	-
(OE4311F) ABC-type transport system periplasmic substrate-binding protein	0	4	0,69	-1 69	0,03
(OE3292F) conserved protein	1	1	0,71	-1 64	-
(OE2307F) NADH dehydrogenase homolog	0	2	0,76	-1 54	0,11
(OE2865R) succinate dehydrogenase (EC 1.3.99.1) chain A (flavoprotein)	0	6	0,77	-1 53	0,04
(OE1979R) cytochrome-c oxidase (EC 1.9.3.1) chain I	13	1	0,77	-1 52	-
(OE3805R) probable proteasome regulatory chain (probable proteasome-activating nucleotidase PAN)	0	1	0,78	-1,49	-
(OE3343R) protein OE3343R	1	1	0,79	-1,49	-
(OE3342R) hypothetical protein	2	1	0,81	-1.45	-
(OE2315R) ABC-type transport system permease protein	8	1	0,81	-1.44	-
(OE2316R) ABC-type transport system ATP-binding protein	0	1	0,82	-1.44	-
(OE4305R) ABC-type dipeptide transport system periplasmic dipeptide-binding protein	0	10	0,82	-1.42	0,14
(OE1676R) probable ABC-type phosphate transport system permease protein	14	1	0,83	-1 41	-
(OE3908R) ABC-type transport system ATP-binding protein	0	1	0,85	-1.38	-
(OE2325F) hypothetical protein	1	1	0,85	-1.37	-
(OE4258F) probable iron-sulfur protein (heterodisulfide reductase homolog)	12	3	0,87	-1.34	0,16
(OE3417F) ribosomal protein L15	0	1	0,87	-1 34	-
(OE3907R) ABC-type transport system permease protein	6	2	0,88	-1 33	0,06
(OE2548F) probable transmembrane oligosaccharyl transferase	16	1	0,88	-1.33	-
(OE3988R) H+-transporting two-sector ATPase (EC 3.6.3.14) chain E.a (A-type ATP synthase) (previous	0	2	0,89	-1.32	0,01
(OE4011R) conserved hypothetical protein	6	1	0,89	-1.31	-
(OE3787R) preprotein-export translocase chain secF	6	1	0,89	-1.31	-
(OE3992R) H+-transporting two-sector ATPase (EC 3.6.3.14) chain H.a (A-type ATP synthase) (previous	0	4	0,89	-1,31	0,09
(OE3427F) conserved protein	4	1	0,90	-1,30	-
(OE4551F) ABC-type transport system periplasmic substrate-binding protein	0	4	0,90	-1,30	0,16
(OE3349F) coenzyme F420quinone oxidoreductase 42K chain homolog	0	1	0,90	-1,30	-
(OE4357F) ABC-type transport system periplasmic substrate-binding protein	0	1	0,90	-1,30	-
(OE2092F) hypothetical protein	2	1	0,92	-1,28	-
(OE2159R) ribosomal protein S3a.eR	0	2	0,93	-1,26	0,06
(OE1490R) conserved protein	1	9	0,94	-1,25	0,03
(OE6347R) transducer protein htrll weak homolog	3	3	0,94	-1,24	0,12

(OE1442R) conserved hypothetical protein	0	1	0,96	-1 22	-
(OE1806R) probable periplasmic protein	0	1	0,96	-1 22	-
(OE1934R) proteinase IV (EC 3.4)	1	3	0,96	-1 22	0,07
(OE3955F) probable proline dehydrogenase (EC 1.5.99.8)	0	4	0,97	-1 21	0,16
(OE1679R) probable ABC-type phosphate transport system periplasmic phosphate-binding protein	0	1	0,97	-1 21	-
(OE2170R) probable periplasmic substrate-binding protein (membrane lipoprotein tmpC homolog)	0	1	0,97	-1 21	-
(OE5188F) protein kinase weak homolog	0	2	0,97	-1 20	0,13
(OE1821R) ribosomal protein L36a.eR (HLA)	0	3	0,98	-1 20	0,09
(OE4238R) hemolysin homolog	2	2	0,98	-1 20	0,05
(OE3784R) preprotein-export translocase chain secD	6	1	0,98	-1 19	-
(OE2930R) conserved protein	5	1	0,99	-1 18	-
(OE2168R) transducer protein htrVI	2	4	0,99	-1 18	0,05
(OE3481R) transducer protein htrll	1	1	0,99	-1 18	-
(OE3017R) UDP-sugar hydrolase (EC 3.6.1.45) / 5'-nucleotidase (EC 3.1.3.5)	2	2	1,00	-1 17	0,12
(OE6332R) transducer protein htrll weak homolog	2	1	1,01	-1 16	-
(OE4757R) protein OE4757R	2	1	1,01	-1 16	-
(OE3611R) transducer protein basT	1	2	1,02	-1 15	0,06
(OE3392F) ribosomal protein L2	0	1	1,03	-1 14	-
(OE4499F) conserved protein	0	1	1,04	-1 13	-
(OE4032R) conserved protein	0	1	1,04	-1 13	-
(OE1501F) protein OE1501F	2	2	1,05	-1 12	0,04
(OE3474R) transducer protein cosT	2	2	1,05	-1 12	0,03
(OE1008F) protein OE1008F	11	1	1,05	-1 11	-
(OE2026F) ABC-type transport system ATP-binding protein	0	1	1,05	-1 11	-
(OE3167F) transducer protein htrVIII	5	5	1,07	-1 09	0,12
(OE2288F) pheromone shutdown protein homolog	7	2	1,08	-1.08	0,14
(OE1652R) protein OE1652R	0	1	1,08	-1.08	-
(OE5157F) conserved protein	15	2	1,08	-1.08	0,03
(OE3491R) heat shock protein homolog	0	1	1,09	-1.08	-
(OE1391R) halocyanin hcpG	0	1	1,10	-1 07	-
(OE1465F) endopeptidase La (EC 3.4.21.53)	1	11	1,10	-1.07	0,10
(OE2443R) protein OE2443R	1	1	1,11	-1.06	-
(OE3418F) protein translocase secY	10	2	1,12	-1 04	0,07
(OE3991R) H+-transporting two-sector ATPase (EC 3.6.3.14) chain I.a (A-type ATP synthase)	7	1	1,13	1,04	-
(previous (DE520/P) probable Na+/H+-exchanging protein	11	2	1 13	-1,04	0.02
(טבטבטדול) אוטשטוב ואמדוו ודיכגעומושווש אוטנכווו	11	2	1,10	-1,03	0,02

(OE6325R) protein OE6325R	1	2	1,13	-1.03	0,13
(OE3987R) H+-transporting two-sector ATPase (EC 3.6.3.14) chain C.a (A-type ATP synthase)	0	2	1,14	1,00	0,02
(previous (OE6059R) iron-sulfur protein homolog / glycerol-3-phosphate dehydrogenase homolog (two- demoin prot	0	1	1,14	-1,03	-
(OE1558R) probable protein translocase secE	1	1	1,14	-1,03	-
(OE1539F) conserved protein	4	2	1,16	-1,02	0,20
selected records		331	1,17	1 00	0,63
(OE2559R) probable 1,4-dihydroxy-2-naphthoate octaprenyltransferase	7	1	1,17	1,00	-
(OE3473F) transducer protein htrVII	3	2	1,17	1,00	0,13
(OE1202F) probable ABC-type transport system ATP-binding/permease protein	4	4	1,17	1,00	0,43
(OE3612R) chemotactic signal transduction system periplasmic substrate-binding protein basB	1	1	1,17	1,00	-
(OE1870R) hypothetical protein	2	1	1,18	1,00	-
(OE3958F) conserved protein	2	1	1,18	1,00	-
(OE3116F) conserved protein	2	3	1,19	1,01	0,16
(OE2317R) probable ABC-type transport system periplasmic substrate-binding protein (membrane	0	1	1,19	1 01	-
(OE2189R) transducer protein htr4 (htpVI)	2	2	1,20	1,01	0,14
(OE1133F) protein OE1133F	1	1	1,21	1,02	-
(OE4336R) probable ABC-type transport system permease protein	6	2	1,22	1,04	0,02
(OE4685R) conserved hypothetical protein	6	1	1,22	1,01	-
(OE4668R) conserved protein	3	1	1,22	1,01	-
(OE1770F) DNA double-strand break repair ATPase	0	1	1,23	1,01	-
(OE4070R) cytochrome-c oxidase (EC 1.9.3.1) chain I	13	1	1,24	1.06	-
(OE1872R) probable menaquinolcytochrome-c reductase (EC 1.10.2) (cytochrome bc complex)	4	3	1,24	.,00	0,09
cytochr (OE1958F) NADH dehydrogenase (ubiquinone) (EC 1.6.5.3) chain I	0	1	1,25	1,06 1.06	-
(OE3765F) glycerol-3-phosphate dehydrogenase (EC 1.1.99.5) chain C	0	3	1,27	1,00	0,15
(OE1879R) halocyanin hcpE	1	1	1,27	1,09	-
(OE7008F) hypothetical protein (encoded by ISH7/ISH24 subtype 1)	4	2	1,28	1,00	0,12
(OE1254R) conserved protein	0	1	1,29	1,00	-
(OE4069R) hypothetical protein	1	2	1,29	1,10	0,02
(OE2703F) probable copper-containing oxidoreductase	0	7	1,29	1,10	0,29
(OE4759F) cell surface glycoprotein precursor	2	12	1,29	1,10	0,26
(OE3718F) cell division protein	0	2	1,31	1,10	0,20
(OE3662F) conserved hypothetical protein	12	1	1,31	1 12	-
(OE1827F) conserved hypothetical protein	0	1	1,33	1,14	-

(OE1854R) conserved protein	0	1	1,33	1 14	-
(OE3542R) protein OE3542R	0	1	1,34	1 14	-
(OE1932R) conserved protein	0	1	1,34	1 15	-
(OE1001F) conserved protein	2	1	1,35	1,15	-
(OE2866R) succinate dehydrogenase (EC 1.3.99.1) chain B (iron-sulfur protein)	0	7	1,35	1,15	0,22
(OE2944F) conserved protein	4	1	1,37	1,10	-
(OE2186R) conserved protein	1	1	1,39	1,17	-
(OE3910R) probable ABC-type transport system periplasmic substrate-binding protein	0	1	1,42	1,13	-
(OE1876R) probable menaquinolcytochrome-c reductase (EC 1.10.2) (cytochrome bc complex) Rieske	0	3	1,42	1.22	0,21
(OE1878R) protein OE1878R	2	2	1,43	1.22	0,25
(OE1956F) NADH dehydrogenase (ubiquinone) (EC 1.6.5.3) chain CD	0	8	1,43	1.23	0,11
(OE2444F) protein OE2444F	2	2	1,46	1 24	0,03
(OE1772F) hypothetical protein	2	1	1,46	1.25	-
(OE1882R) hypothetical protein	2	1	1,49	1.28	-
(OE3414F) ribosomal protein L18	0	2	1,50	1.28	0,85
(OE2149R) conserved protein	0	3	1,52	1 30	0,18
(OE1537B1R) conserved hypothetical protein	0	4	1,53	1.31	0,11
(OE1536R) transducer protein htr14	1	4	1,53	1 31	0,15
(OE1294R) ribosomal protein L15.eR	0	3	1,54	1.31	0,17
(OE3388F) ribosomal protein L3	0	7	1,55	1 32	0,65
(OE1699R) oxidoreductase (EC 1) (geranylgeranyl hydrogenase homolog)	0	1	1,58	1.35	-
(OE1211F) heat shock protein homolog	4	2	1,63	1 39	0,27
(OE3408F) ribosomal protein S14	0	1	1,63	1,40	-
(OE1954F) NADH dehydrogenase (ubiquinone) (EC 1.6.5.3) chain B	0	1	1,63	1.40	-
(OE5413F) conserved hypothetical protein	1	1	1,66	1,41	-
(OE4271F) conserved hem operon protein	3	1	1,67	1.43	-
(OE1295R) protein OE1295R	0	1	1,68	1.44	-
(OE2276F) conserved protein	0	1	1,69	1 44	-
(OE2868R) succinate dehydrogenase (EC 1.3.99.1) chain C (cytochrome b-556)	3	1	1,70	1 45	-
(OE4735R) ribosomal protein S7	0	1	1,71	1 46	-
(OE1160R) ribosomal protein L10.eR	0	4	1,73	1 48	0,23
(OE5134F) conserved protein	1	2	1,78	1 52	0,01
(OE2121F) conserved protein	2	1	1,85	1.58	-
(OE3347F) transducer protein htrl	1	4	1,85	1 58	0,15
(OE5187R) probable hydrolase	0	2	1,92	1 64	0,28
				.,•.	

(OE3093R) geranylgeranyl-diphosphate geranylgeranyltransferase (EC 2.5.1.32) (phytoene synthase)	0	1	2,70	2,31	-
(ÓE3407É) ribosomal protein L5	0	1	2,88	2.46	-
(OE4460R) ribosomal protein L39.eR	0	1	3,00	2 57	-
(OE2227F) probable dimethylsulfoxide reductase (EC 1.8) chain C (membrane anchor subunit)	10	1	3,03	2 59	-
(OE2223F) probable dimethylsulfoxide reductase (EC 1.8) chain A (reductase subunit)	0	5	4,38	3 74	0,76
(OE2225F) dimethylsulfoxide reductase (EC 1.8) chain B (electron transfer protein)	0	1	4,51	3,85	-

8. Danksagung

Mein erster Dank gilt meinem Doktorvater Prof. Dr. Dieter Oesterhelt für die wissenschaftliche Betreuung während der gesamten Promotion, für alle Mittel und Freiheiten und die wertvolle Unterstützung bei der Anfertigung dieser Arbeit. Seine zahlreichen konstruktiven Anregungen und Diskussionen haben entscheidend zum Gelingen dieser Arbeit beigetragen und mich stets zur Realisierung eigener Ideen motiviert.

Herzlichen Dank allen Mitglieder der Arbeitsgruppe "Masse" allen voran Dr. Frank Siedler, der die stetig wachsende Gruppe koordinierte. Ohne seine Hilfe bei der Einarbeitung in die vielfältigen Technologien wäre diese Arbeit in der vorliegenden Form nicht möglich gewesen.

Dr. Christian Klein danke ich für die vielen Diskussionen rund um Halos, deren Membranen im Speziellen und der Membranproteomik im Allgemeinen, sowie für seine wertvollen Tipps. Bea Scheffer danke ich für Ihre geduldigen Hilfestellungen bei unzähligen nano-LC-Messungen, die Einführung in die Massenspektrometrie und die damit verbundenen humorvollen Stunden im Keller. Dr. Andreas Tebbe danke ich für die nette Zusammenarbeit, Dr. Michalis Aivaliotis für die hilfreichen Diskussionen v.a. im Zusammenhang mit dem Verfassen von Papern. Weiter danke ich Sigrid Bauer für die MALDI-Messungen sowie Barbara Fischer für ihre stete Hilfsbereitschaft und die erholsamen Pausen.

Dr. Friedhelm Pfeiffer danke ich für sein unermüdliches Engagement bei der Weiterentwicklung von HaloLex, seine unbestechliche Betrachtung von Ergebnissen und seine Hilfe beim Verfassen des papers. Die vielen anregenden Diskussionen und seine Ideen haben diese Arbeit entscheidend beeinflusst. Darüber hinaus gilt allen Mitgliedern der Bioinformatik mein besonderer Dank, die uns "Proteomikern" mit Ihren Hilfestellungen und oft kurzfristig erstellten Programmen das Leben erleichterten.

Allen Kooperationspartner möchte ich danken:

Der Arbeitsgruppe von Dr. Friedrich Lottspeich, insbesondere Dr. Alex Schmidt für die tolle und produktive Zusammenarbeit bei den ICPL-Experimenten sowie Moni Zobawa für Messungen an der TOFTOF; Dr. Burghardt Scheibe (GE Healthcare) für die Unterstützung und Hilfe bei den DIGE-Experimenten; Christine Kofler für die elektronenmikroskopischen Aufnahmen; den Arbeitsgruppen von Prof. Joël Vandekerckhove und Prof. Kris Gevaert für die COFRADIC-Messungen sowie der Arbeitsgruppe von Prof. Matthias Mann für die FT-ICR-Messungen. Meinem langjährigen Mitstreiter im "Kleinen" Labor und Büro Christoph Schwarz möchte ich für die vielen wissenschaftlichen und unwissenschaftlichen Diskussionen danken – es wurde nie langweilig! Bei Simone Mitterweger, mit deren selbständiger Hilfe während Ihrer Masterarbeit ich immer rechnen konnte, möchte ich mich ebenso bedanken wie bei Kathi, Daniela und Rita für die nette und angenehme Atmosphäre.

Ein besonderer Dank geht an Jörg Tittor für alle größeren und kleineren Hilfestellungen im wissenschaftliche Kontext und darüber hinaus, sowie Frau Haack für Ihre unbürokratische Hilfe.

Allen Mitglieder des "OE"-Labors gilt mein herzlicher Dank, die immer mit Geräten und Chemikalien aushalfen sowie allen derzeitigen und ehemaligen Mitgliedern der Abteilung Membranbiochemie für die Zusammenarbeit und freundschaftliche Atmosphäre- die unterhaltsamen Kaffeepausen im Halocafe haben den Laboralltag bereichert.

Last but not least möchte ich mich bei allen Freunden im In-, Aus-, und Schwabenland und ganz besonders bei meiner Familie bedanken, die mich immer unterstützt haben.

9. Curriculum Vitae

Persönliche Daten

Name:	Birgit Bisle
geboren am:	10.04.1976 in Krumbach
Familienstand:	ledig
Nationalität:	deutsch

Schulbildung

1982 – 1986	Grundschule in Balzhausen
1986 – 1995	Gymnasium in Ursberg Abschluss: allgemeine Hochschulreife

Hochschulbildung

Ludwig-Maximilians-Universität, München

Nov. 1995 – März 2002	Studium für das Lehramt an Gymnasien in den Fächern Chemie und Biologie, sowie Studium der Diplombiologie
Dez. 1999 – Sept. 2000	Zulassungs- und Diplomarbeit mit dem Thema "Gelelektrophoretische Untersuchungen zum Assembly des Photosystem II" unter der Betreuung von Prof. Dr. L.A. Eichacker, Lehrstuhl für Phytochemie
Aug. 2001 – Dez. 2001	Abschluss: Staatsexamen in Biologie/Chemie
Jan. 2002 – März 2002	Abschluss: Diplom-Biologie

Promotion

Max-Planck Institut für Biochemie, Martinsried

Seit Juli 2002 Promotion mit dem Thema "Das Membranproteom halophiler Archaea – Identifizierung und Quantifizierung" unter der Betreuung von Prof. Dr. D. Oesterhelt am Max-Planck-Institut für Biochemie, Abteilung Membranbiochemie