Logo
DeutschClear Cookie - decide language by browser settings
Boos, Dominik (2007): Separase: Regulation, Funktion und neue Substrate. Dissertation, LMU München: Faculty of Biology
[img]
Preview
PDF
Boos_Dominik.pdf

9Mb

Abstract

Zusammenfassung Die Protease Separase trägt zur Regulation mitotischer und meiotischer Vorgänge entscheidend bei. Ihre klassische Funktion ist die Induktion der Schwesterchromosomen-trennung durch Spaltung des Cohesin-Proteinkomplexes, der die Schwesterchromatiden von der S-Phase bis zur Mitose gepaart hält. Separase wird am Ende der Metaphase durch Ubiquitin-abhängigen Abbau ihres Inhibitors Securin aktiviert. Ein zweiter Separase-Inhibitionsmechanismus ist die Hemmung durch Cyclin B1/Cdk1 („Cyclin Dependent Kinase 1“). Dafür ist Separase-Phosphorylierung durch Cdk1 notwendig (Stemmann et al., 2001). In vielen Modellorganismen hat Separase Funktionen, die über die Anaphase-Induktion hinausgehen. So trägt sie in S. cerevisiae beispielsweise zur Cdk1-Inaktivierung beim Meiose I-Meiose II-Übergang bei. Diese Separase-Funktion benötigt die proteolytische Separase-Aktivität nicht, ist jedoch abhängig vom Securin-Abbau. Für andere Funktionen der Separase hingegen könnte die Separase-abhängige Spaltung noch nicht identifizierter Substrate notwendig sein. In der vorliegenden Arbeit wird deshalb die Etablierung der IVEC-Methode („In Vitro Expression Cloning“) zur Identifizierung neuer Separase-Substrate vorgestellt. Mittels IVEC wurde - basierend auf der proteolytischen Separase-Aktivität - aus einer menschlichen cDNA-Bibliothek das In-vitro-Separase-Substrat GASP isoliert. Des Weiteren wurde die Separase-Hemmung durch Cyclin B1/Cdk1 näher untersucht. In der vorliegenden Arbeit konnte gezeigt werden, dass die Phosphorylierung von Separase durch Cyclin B1/Cdk1 für ihre Inhibition zwar notwendig, aber nicht hinreichend ist. Nach Phosphorylierung der Separase assoziiert die Kinase stabil mit der Protease, und erst diese Komplexbildung führt letztendlich zur Inhibition der proteolytischen Separase-Aktivität. Cyclin B1/Cdk1 ist also ein nicht-katalytisch wirkender Separase-Inhibitor. Die zeitlich korrekte Separase-Aktivierung ist für die fehlerlose Chromosomentrennung essentiell. Da Zellen ohne Securin ihre Chromosomen jedoch akkurat und zum richtigen Zeitpunkt trennen, muss es alternative Separase-Inhibitionsmechanismen geben. Die Separase-Hemmung durch Cyclin B1/Cdk1-Bindung könnte dieser gesuchte Securin-unabhängige Mechanismus sein, da der Separase-Cyclin B1/Cdk1-Komplex in Zellen bereits vor der Anaphase nachgewiesen werden kann und Cyclin B1 - wie Securin - am Ende der Metaphase Ubiquitin-vermittelt abgebaut wird. Securin und Cyclin B1/Cdk1 können nicht gleichzeitig an Separase binden. Die beiden Inhibitoren sind also Komponenten parallel und nicht konvergent wirkender Regulationsmechanismen. Die Phosphorylierung von Separase an Serin 1126 ist für ihre Cyclin B1/Cdk1-abhängige Inhibition essentiell (Stemmann et al., 2001). Daneben konnte in der hier vorgestellten Arbeit eine zweite Domäne in Separase identifiziert werden, die ebenfalls sowohl für die Inhibition der proteolytischen Separase-Aktivität als auch für die Komplexbildung mit Cyclin B1/Cdk1 nötig ist. Da diese zweite Cyclin B1/Cdk1-Bindungsdeterminante Sequenzhomologie zu dem Cdc6-Protein aufweist, wurde sie CLD („Cdc6 Like Domain“) genannt. Cdc6 ist ein konserviertes Protein, das in S. cerevisiae Cdk1-Inhibitionsaktivität besitzt. Dazu bindet es abhängig von der Phosphorylierung seines Aminoterminus direkt an B-Typ-Cycline, die sich im Komplex mit ihren Cdks befinden (Mimura et al., 2004). Durch Phosphatase-behandlung und Mutationsanalyse konnte bewiesen werden, dass die Interaktion zwischen Separase und Cyclin B1/Cdk1 auch von Phosphorylierung der Protease innerhalb ihrer CLD abhängt. Dies legt nahe, dass die Separase-CLD wie der Cdc6-Aminoterminus direkte Kontakte mit der Cyclin-Untereinheit der Kinase ausbildet. Serin 1126-Phosphorylierung ist dagegen indirekt an der Kinase-Bindung beteiligt. Denn erstens wird sie nach der Etablierung des Komplexes für seinen Erhalt nicht mehr benötigt (Holland et al., 2006), und zweitens ist sie für die Wechselwirkung zwischen CLD-enthaltenden Separasefragmenten und der Kinase abkömmlich. Ein zunächst favorisiertes Bindungsmodell, bei dem die Polo-Kinase an phosphoryliertes Serin 1126 bindet, um danach die Bindung von Cyclin B1 durch Phosphorylierung der CLD zu vermitteln, konnte ausgeschlossen werden. Stattdessen bewirkt die Phosphorylierung von Serin 1126 wohl eine Konformationänderung der CLD, die dadurch in die Lage versetzt wird, starke Wechselwirkungen mit der Cyclin B1-Untereinheit der Kinase einzugehen. Überraschenderweise ist im Separase-Cyclin B1/Cdk1-Komplex auch die Kinase inaktiv. Diese unerwartete Separase-Funktion als Cdk1-Inhibitor ist in Oozyten der Maus für den Übergang von der Meiose I in die Meiose II von entscheidender Bedeutung. Denn die Inhibition der Separase-Cyclin B1/Cdk1-Komplexbildung durch Mikroinjektion entsprechender Antikörper in Maus-Oozyten verhindert den Ausstoß des ersten Polkörpers, d.h., die Eizellen können den Meiose I-Meiose II-Übergang nicht vollziehen. In diesen Oozyten sinkt die Cdk1-Aktivität am Ende der Meiose I nicht wie bei Kontroll-Oozyten ab. Diese persistente Cdk1-Aktivität ist der Grund für den verhinderten Übergang von Meiose I nach -II, da künstliche Cdk1-Inhibition in Anwesenheit des inhibitorischen Antikörpers den Polkörperausstoß wiederherstellt. In mitotischen Zellen steigt der unter endogenen Bedingungen mit Separase assoziierte Anteil von Cyclin B1/Cdk1 in der Anaphase - d.h. nach dem Abbau seines Bindungskompetitors Securin - an. Übertragen auf die Meiose bedeutet das, dass Securin-Abbau die Induktion der Anaphase mit der Separase-abhängigen Cdk1-Inaktivierung koppelt.