Logo
DeutschClear Cookie - decide language by browser settings
Stork, Martina (2007): Molekulardynamik-Simulationen von amyloidogenen Proteinen in Lösung: Stabilitätsuntersuchungen und Weiterentwicklung einer Kontinuumsmethode. Dissertation, LMU München: Faculty of Physics
[img]
Preview
PDF
Stork_Martina.pdf

14Mb

Abstract

Viele neurodegenerative Erkrankungen, wie die transmissiblen spongiformen Enzephalopathien (TSE), die Alzheimer- und die Huntington-Krankheit, sind durch charakteristische Ablagerungen im Gehirn, sogenannte Amyloide, gekennzeichnet. Amyloide sind oftmals fibrilläre Aggregate von normalerweise löslichen Proteinen, deren dreidimensionale Strukturen sich bei der Aggregation verändern. Bedauerlicherweise waren hochauflösende Methoden biophysikalischer Strukturaufklärung bislang auf Amyloide nicht anwendbar. Dagegen können Molekulardynamik (MD)-Simulationen amyloidogener Proteine und Peptide in ihrer Lösungsmittelumgebung dazu beitragen, die Mechanismen der auftretenden Konformationsänderungen zu verstehen und die Strukturen amyloider Fasern aufzuklären. Die korrekte und effiziente Beschreibung der Lösungsmittelumgebung spielt dabei eine entscheidende Rolle. Im ersten Teil dieser Arbeit wird die Konformationsdynamik Amyloid bildender Peptide und Proteine in expliziter wässriger Umgebung untersucht. In MD-Simulationen des zellulären Prion Proteins (PrPC) werden durch Einführung der Punktmutationen M205S und M205R entscheidende Faktoren für die korrekte Faltung und strukturelle Stabilität des Proteins identifiziert. Ferner wird für die Grundstruktur der bei TSE auftretenden pathogenen Isoform PrPSc ein Modell basierend auf dem Strukturmotiv einer parallelen beta-Helix entwickelt. Analog dazu werden Peptide aus poly-Glutamin, die den mutmaßlichen Aggregationskeim bei der Huntington-Krankheit darstellen, als parallele beta-Helizes unterschiedlicher Formen und Größen modelliert. In MD-Simulationen ermitteln wir aus diesen Strukturen thermodynamisch stabile monomere und dimere Aggregationskeime. Da die erreichbaren Simulationszeiten in expliziten Lösungsmitteln verglichen mit den Zeitskalen der Proteindynamik zu kurz sind, wird im zweiten Teil dieser Arbeit eine effiziente Kontinuumsmethode für Proteine in polaren Lösungsmitteln weiterentwickelt. In dieser Methode wird das durch die Polarisation des Lösungsmittels hervorgerufene Reaktionsfeld (RF) durch normalverteilte RF-Dipoldichten an den Orten der Proteinatome beschrieben. Die sich daraus ergebenden RF-Kräfte auf die Proteinatome berücksichtigen aber nicht den Druck an den dielektrischen Grenzflächen, der vom Kontinuum auf das Protein ausgeübt wird, und verletzen damit das 3. Newtonsche Gesetz. Dies führt in MD-Simulationen zu erheblichen Artefakten. In dieser Arbeit wird diese Kontinuumsmethode so umformuliert und erweitert, dass die resultierenden RF-Kräfte dem Prinzip Actio=Reactio gehorchen. Die modifizierte Kontinuumsmethode wird in ein MD-Programm implementiert und an Hand geeigneter Systeme parametrisiert. In ausgedehnten MD-Simulationen des Alanin-Dipeptids wird die Korrektheit und Effizienz der Methode demonstriert.