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wofür vor allem meine Kollegen verantwortlich sind. Für technischen, organ-

isatorischen und sonstigen Support sage ich im besonderen Brigitte Maxa

und Christa Jürgensonn ein herzliches ’Dankeschön’.

An letzter, aber prominenter Stelle denke ich an meine Familie – meinen

Bruder, meine Eltern und meine Großeltern. Seit kurzem habe ich eine eigene
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Zusammenfassung

In vielen Anwendungsgebiete der Statistik wird man zunehmend aufmerksam

auf das Problem messfehlebehafteter Variablen und die Problematik einer

angemessenen Analyse. Das schlichte Ignorieren dieser Fehler führt in vielen

Fällen, wie zum Beispiel in der Regression mit fehlerbehafteten Kovariablen,

zu verzerrten Schätzungen. Während das Problem für die parametrische

Regression ausführlich diskutiert wurde, gibt es nur wenige Vorschläge zur

Korrektur der nonparametrischen Regression. Die vorhandenen Ansätze sind

leider oft computerintensiv oder wenig effektiv.

In Rahmen dieser Arbeit werden verschiedene neue Methoden entwickelt,

die zum Teil die Effektivität von bestehenden ’state-of-the-art’ Korrekturver-

fahren besitzen, gleichzeitig aber nur einen Bruchteil deren Rechenzeit bean-

spruchen. Diese neuen Methoden verwenden hauptsächlich die sogenan-

nte Relevance Vector Machine (RVM) zur nichtparametrischen Regression

- allerdings nun erweitert um Messfehlerkorrekturideen aus der Regressions-

kalibrierung, dem sogenannten SIMEX und dem Markov Chain Monte Carlo

(MCMC) Korrekturansatz. Ausführliche Simulationsstudien mit gausschen,

binären und poissonverteilten Responsevariablen vergleichen die Methoden

untereinander. Es wird weiterhin der Fall mehrerer messfehlerbehafteter Ko-

variablen berücksichtigt.

Für den in der Epidemiologie besonders relevanten Fall von binären Longitu-

dinaldaten wird außerdem ein MCMC-Ansatz zur nichtparametrischen Mo-

dellierung dieser Daten unter Berücksichtigung von Kovariablenmessfehlern

vorgestellt.





Abstract

Many areas of applied statistics have become aware of the problem of mea-

surement error-prone variables and their appropriate analysis. Simply ig-

noring the error in the analysis usually leads to biased estimates, like e.g.

in the regression with error-prone covariates. While this problem has been

discussed at length for parametric regression, only few methods exist to han-

dle nonparametric regression under error, which are usually either computer

intensive or little effective.

This thesis develops new methods achieving the correction quality of state

of the art methods while demanding only a trickle of their computing time.

These new methods use the so-called relevance vector machine (RVM) for

nonparametric regression - now enhanced by correction methods based on

the ideas of regression calibration, the so-called SIMEX and Markov Chain

Monte Carlo (MCMC) correction. All methods are compared in simulation

studies regarding Gaussian, binary and Poisson responses. This thesis also

discusses the case of multiple error-prone covariates.

Furthermore, a MCMC based correction method for nonparametric regres-

sion of binary longitudinal data with covariate error is introduced. This data

scenario is often encountered, e.g. in epidemiological applications.
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Chapter 1

Introduction and overview

By 1799, the German mathematician Carl Friedrich Gauss (1777-1855) had

developed a completely new technique for fitting an equation to a set of data

points: the least squares method. Based on model assumptions about the

true state of a system and empirical observations from the system, he suc-

ceeded in predicting the re-appearance of the planetoid Ceres after its path

hid Ceres behind the sun in 1801. This was accomplished by the assumption

of elliptical orbits and a few observations made by the Italian astronomer

Giuseppe Piazzi (1746-1826).

This strong instrument of least squares will also be applied in this work for

making predictions in the context of regression analysis.

The term ’regression’, however, was not established until 1877. It was Sir

Francis Galton (1822-1911), who derived and applied linear regression to

problems of heredity by e.g. examining characteristics of the sweet pea plant.

He performed regression by using the medians of the dependent variable given

a grouped independent variable and fitting a line by eye.

Finally, Karl Pearson (1857-1936) and George Udny Yule (1871-1951) linked

Galton’s regression to Gauss’s least squares method and thus released re-

gression from its association with Galton’s work. Subsequently, statistical

regression entered into a variety of fields.

It was in 1908, when Louis Bauer (1865-1932), an American geomagnetist,

1



2 CHAPTER 1. INTRODUCTION AND OVERVIEW

criticized Gauss’s spherical harmonic regression model of the terrestrial ge-

omagnetic field: there was no realistic (physical) interpretation of the para-

meters beyond the first three of the 24 parameters used in this model. One

could hardly imagine that roughly 80 years later an area of statistics gains

ground, which completely gave up the interpretability of parameters.

The so-called flexible regression methods, which are a subclass of nonpara-

metric methods, completely abandon the interpretability of parameters. On

the other hand, they allow for an appropriate analysis of observations that

have been generated from a complex data generating process. The flexible

regression methods, therefore, relax the strong, yet common, model assump-

tion of the true process being of linear or quadratic form. Consequently, their

predictions are rather driven by the observed data than by model assump-

tions. On that account, it is important to keep the balance between just

fitting the particular observations and the ability to generalize the results of

the analysis to a predication about the true underlying process.

The application of flexible regression methods for the estimation of complex

true functions is a core point in the present work. However, it is only one

aspect of relaxing the strong assumptions typically inherent in statistical

analysis. The main achievement of this thesis is the development of correc-

tion methods for covariate measurement error, which help to improve flexible

regression analysis.

It is common assumption in the regression context that the covariates can

be measured exactly. Hence, any observational error of the covariates is ig-

nored. However, measurement error is particularly plausible when thinking

of studies in the field of economic and social sciences applying statistics to

hardly measurable constructs, e.g. motivation to work, personality and self-

confidence. Other areas of application include medicine and epidemiology,

where effects of (lifelong) risk factors are of interest. But, how should e.g.

long term nutrition habits, like fat intake, be observed – are food diaries a

reliable and valid measure here? What specific information can be extracted
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from air pollution measurements in a city about one’s individual exposure to

that pollutants?

A general source of measurement error are retrospective surveys. That is,

because most people tend to forget e.g. what time they spent watching TV

during the last week and thus can merely give a rough guess.

While measurement error in the response variable is usually much easier to

handle and not of interest here, accounting for covariate measurement error

yields far more complex models and standard analysis is typically not avail-

able. For that reason, temptation is great to ignore it. Small error of course

affects the analysis only to a minor degree and accurate data collection, if

possible, would entirely displace the need for correction. However, the results

obtained under violated assumptions are invalid.

Even then, when the data are suspected to contain covariate measurement

error, taking that fact into account may be profitable. By comparing the

results from the analysis ignoring measurement error with the results when

accounting for that error, one can judge whether this suspicion was justified

or not. Both results only differ, if covariate measurement error is really an

issue in the present case.

The following paragraphs present how this thesis proceeds in developing cor-

rection methods for flexible regression. Chapter 2 kicks off with a rather

general description of the considered methods and the new developments of

the present work. Chapter 3, 4 and 5 contain the details of these approaches

for flexible Gaussian, binary and Poisson regression, respectively. Chapter 6

concludes the work and highlights some aspects of future research.

The course of each chapter is summarized and the main points are explained

briefly.

Chapter 2 comprises a description of the main techniques employed in this

work and its structure is tripartite: firstly, flexible regression using the ’rel-

evance vector machine’ (RVM) is introduced. Tipping (2000) presents this

Bayesian concept of flexible regression where a set of weighted so-called basis
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functions is fitted to the data. Most notably, this method performs data

driven selection of relevant basis functions from an arsenal of arbitrarily

many basis functions and typically finds an extremely parsimonious model

representation. An important point for later error correction is presented

here; it lies in the equivalence of two parameter estimation methods based

on different paradigms: the specific method of the Bayesian posterior mode

estimation applied in the RVM is identical to Fisher scoring in a frequentistic

penalized likelihood setting.

Secondly, a Markov Chain Monte Carlo (MCMC) version of the relevance

vector machine for binary regression is introduced. It is inspired by an ap-

proach by Chakraborty, Gosh & Mallick (2005), but additionally implements

Bayesian model averaging as used by Denison, Holmes, Mallick & Smith

(2002). A brief introduction to MCMC methodology prepares this develop-

ment. Including Bayesian sampling methods in the data analysis will prove

to be very fruitful in complex data situations.

Finally, the covariate measurement error problem is described. This problem

has generated major research interest, driven by the growing awareness of

the adverse effects of that error on the statistical analysis (cf. Fuller (1987),

Carroll, Ruppert & Stefanski (1995)).

The core ideas of the correction methods developed in this thesis are briefly

motivated in this chapter in order to elaborate how these strategies are con-

nected and in which respects they differ. Details are, however, deferred to

the following chapters.

Chapter 3 comprises the full details on the developed error correction meth-

ods in flexible Gaussian regression. Though the Gaussian regression case may

be considered less challenging, error correction in flexible models is vividly

concerned with this situation.

The first method developed here is a generalization of the standard regres-

sion calibration (cf. e.g. Carroll et al. (1995)) to the specific form of the

RVM. Furthermore, this thesis contains a previously unattempted approach

for flexible regression, the exact structural quasi likelihood correction (cf.

e.g. Carroll et al. (1995)). A simulation study is conducted, where all cor-
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rection methods developed here are compared to the naive analysis, ignor-

ing measurement error, and to a state-of-the-art approach by Berry, Carroll

& Ruppert (2002). While the Bayesian P-spline approach by Berry et al.

(2002) is based on parameter sampling via MCMC techniques, the methods

introduced here exclusively rely on algorithmic schemes for parameter opti-

mization. Hence, they require much less computing time while giving error

correction that appears to be in most cases better than the MCMC method.

An exception in terms of computer efficiency is the simulation based and

thus also computer intensive SIMulation EXtrapolation approach (SIMEX),

which is motivated from Carroll, Maca & Ruppert (1999) and transferred to

the RVM methodology.

Chapter 4 is dedicated to correction methods for flexible binary regression.

A part of the methods from the Gaussian case can with slight modification

also be applied here. However, this work also develops a more refined ap-

proach for the binary case, which will be termed ’expanded basis function

calibration’ and has not yet been used in the context of flexible binary regres-

sion before. It follows the spirit of the structural quasi likelihood, but con-

tains much more algebra to suit the binary case. The results of the attached

simulation, however, can not justify the additional costs of this sophisticated

method. Instead, the results witness the strength of the SIMEX approach

and a here developed approach based on MCMC sampling techniques. This

latter method combines the Bayesian treatment of covariate measurement

error, which essentially goes back to Richardson & Gilks (1993b), and the

MCMC version of the RVM. Another approach, which is rather an ad-hoc

development, combines the idea of Bayesian ’data augmentation’ with the

calibration of basis functions. This attempt proves to be surprisingly suc-

cessful in the simulation study.

Furthermore, a real data example is included in this chapter where the in-

fluence of animal and plant protein intake on mortality is investigated. The

complexity lies here in the flexible modeling of two error-prone covariates and

additionally accounting for confounder variables in the model; having more

than one error-prone covariate in a regression model is a relevant practical
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situation, which has very rarely been reflected in the existing literature.

Finally, this chapter contains error correction in flexible models for binary

longitudinal data, which is a very important enhancement to the cross-

sectional scenario. Though this problem case is highly relevant for practical

applications, it has not yet been discussed in the literature. This work shows

how the usage of Bayesian sampling techniques allows for the estimation of

a flexible binary regression model accounting for subject specific effects, au-

tocorrelated covariate and response observations and covariate measurement

error.

Chapter 5 gives the relevant details of how some of the previous methods

from the binary case can be adopted for the Poisson case by undergoing

only minor (technical) modifications. The escorting simulation study indi-

cates that all correction methods bring a clear improvement, even when the

measurement error is small. As in the binary case, there is no unambiguous

recommendation which method to favor in the Poisson case.

The broad spectrum of methods visited during this work brings up a num-

ber of important, yet unsolved, problems and generates various aspects that

appear to be promising for further investigation.

Chapter 6 briefly recapitulates the achievements of this thesis and concludes

with a discussion on several perspectives for future research based on these

achievements.



Chapter 2

The main techniques

Mostly, the type of functional relationship between independent and depen-

dent variables in a regression context is hardly to predict a priori. A rea-

sonable strategy lies then in adopting such a type of regression model for

the analysis that is as flexible as possible to fit the data and find this re-

lationship. Successful application of this philosophy can be found in many

examples of real data analysis. These include the investigation of the in-

fluence of construction year and floor space on the rent of a flat (cf. Lang

& Brezger (2004)) or the effect of calendar time on the forest health (cf.

Fahrmeir, Kneib & Lang (2004)). Those methods are particularly attractive

in the field of epidemiology where causal relations are highly complex and

not nearly investigated and covariates like e.g. the exposure to a certain radi-

ation or pollution may have an unpredictable effect on the human organism.

It is again this area of epidemiology which shows a strong demand for meth-

ods that take into account that observed covariates can be mismeasured or

inaptly operationalized. Examples include Küchenhoff & Carroll (1997) who

investigate the critical dust exposure to affect health or Augustin (2002) who

studies the effect of animal and plant protein intake on mortality and mor-

bidity, a data example that will be re-analyzed in chapter 4, but then, for

the first time, adopting flexible modeling of the intake effects.

This chapter introduces the core concept of flexible regression using the rele-

7
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vance vector machine (RVM), gives an overview of general Bayesian method-

ology that will be used in this thesis and recalls some fundamental concepts

of analysis under covariate measurement error.

Throughout this thesis, only the RVM and its Markov Chain Monte Carlo

(MCMC) transformation described here are used for flexible modeling. How-

ever, some of the derived results are generalizable to alternative flexible ap-

proaches as well. Introduction of covariate measurement error is postponed

to the last section of this chapter, where some error models and standard

correction methods are recalled. The newly developed strategies to han-

dle measurement error in flexible regression are already sketched here to

demonstrate their relation to established approaches, and to make the new

achievements obvious.

2.1 Sparsity and smoothness - The relevance

vector machine

This section describes the RVM by giving detailed descriptions of the model

assumptions and inference methods (cf. Tipping (2000) and Tipping (2001)).

This method comes from the field of machine learning, where the respective

literature conventionally terms ’target’ what a statistician terms ’response’.

This thesis will, however, rely on the statistical terminology and notation

by denoting ’Y ’ as the response variable. Neither the model setup nor the

inferential methods take into account covariate measurement error at this

stage.

2.1.1 The model setup

In regression tasks one is commonly concerned with data sampled from mul-

tiple covariates Xd, d = 1, . . . , D and a single response Y . A typical sample

{(xi, yi)}N
i=1 with (xi, yi) ∈ R

D × A, includes a vector of covariate observa-

tions xi = (xi1, . . . , xiD) and a scalar response yi for every unit i. Here, e.g.
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A := R stands for the Gaussian regression, A := {0, 1} for the binary regres-

sion and A := N0 for the Poisson regression case.

Based on that sample, one would like to estimate a model that allows for

making good predictions for y∗ on yet unseen x∗. The responses are assumed

being decomposable into a structural and a random part:

yi = f(xi) + εi, i = 1, . . . , N, (2.1)

where the errors εi comprise e.g. imprecise measurement of the responses and

the impact of unaccounted covariates; it is commonly assumed that E(εi) = 0

and thus E(Y |X = x) = f(x). The mean function f(x) usually comprises

two functions f(x) = G(f ∗(x)), where G(z) denotes the so-called response

function, which is conventionally chosen with respect to the distribution of

the response and the specific predictor f ∗(x).

Making assumptions about the functional form of f ∗(x) in (2.1) is the first

source of error on the way to a sensible analysis. Classical regression allots

a polynomial of certain order, determined by a set of related parameters, to

describe this dependency. However, if the true f ∗(x) is not representable by

the chosen polynomial further analysis will be erroneous. In many practical

cases, as in those mentioned in the preface of this chapter, one has no previous

idea how to specify f ∗(x) and thus wisely prefers to follow a rather flexible

approach, like e.g. the one applied throughout this work - the RVM; instead

of proposing a rather rigid structural form, the RVM follows the concept of

fitting a set of weighted (nonlinear) basis functions to the data; this core idea

can also be found in other flexible approaches like smoothing splines (cf. e.g.

Wahba (1978), Wahba (1990)), B-Splines (cf. de Boor (1978)), P-splines (cf.

Eilers & Marx (1996)) and the support vector machine (SVM) (cf. Vapnik

(1998)).

The utilized basis functions are generally not representable by linear combi-

nations of covariates (nor arbitrary products of covariates), but are rather

artificial. Each main effect and each interaction between covariates is non-

linearly represented by an individual set of basis functions. The structural

part of the model f ∗(x) can be most flexibly represented by the double-sum
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over D∗ main effects plus interactions and their individual representation as

a sum of weighted basis functions, respectively. An intercept ω0 is typically

introduced as well. Thus, the decomposition of the response for D∗= number

of main effects and interactions reads as

yi = G

(
D∗∑

d=1

Jd∑

j=1

ωdjφdj(xdi) + ω0

)
+ εi, i = 1, . . . , N, (2.2)

where Jd is the number of knots used for specifying the dth design matrix

expanding either a main effect in univariate basis functions or an interaction

in multivariate basis hyperplanes, respectively. Depending on whether d

indices a main effect or an interaction xdi is a single covariate value or a

vector of values associated with the ith observation in the data, respectively.

A popular choice of basis function, which will be adopted throughout this

thesis, is the radial basis function (RBF) kernel (here for a main effect and

thus x being a scalar)

φdj(xdi) = exp(−η(xdi − cdj)
2). (2.3)

Here, φdj(xdi) denotes the jth (univariate) basis function at position xdi for

the dth main effect being centered on knot cdj using a covariate specific

kernel parameter η. In the case of an interaction between covariates, the

multivariate RBF kernel is given by

φdj(xdi) = exp
(
−(xdi − cdj)

Tη(xdi − cdj)
)
, (2.4)

where the jth basis hyperplane is being centered on a multidimensional knot

cdj at position xdi using a diagonal matrix η = diag(η1, η2, . . . , ) with covari-

ate specific kernel parameters. For simplicity, the notation does not distin-

guish between the main effects and interactions and all of the basis functions

are collected in one design matrix yielding

yi = G (Φ(xi)ω) + εi, i = 1, . . . , N, (2.5)

where Φ(xi) is the ith row, i.e. corresponding to observation xi, of the com-

plete design matrix

Φ = (1, Φ1, . . . , Φd, . . . , ΦD∗)
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including an intercept and D∗ horizontally concatenated matrices Φd, d =

1, . . . , D∗. Again, each design matrix Φd = (φd1, . . . , φdJd
) consists of Jd

column vectors, each representing a single basis function evaluated at all of

the sample observations xdi, i = 1, . . . , N , cf. (2.3) and (2.4). The parameter

vector of the weight coefficients corresponding to that design matrix (2.5) is

given by

ω = (ω0, ω11, . . . , ω1J1 , ω21, . . . , ω2J2 , . . . , ωD∗1, . . . , ωD∗JD∗ )
T

and contains one intercept weight plus J =
∑D∗

d=1 Jd weights. The structure

of the RVM is additive within each expansion of a non-parametric effect and

also between the non-parametric effects, a property that is typically found

in generalized additive models (cf. e.g. Fahrmeir & Tutz (2001)). So far

and until the end of this subsection no specific assumption is made about

the distribution of the response and the error. Estimation of the weight

parameters leads to the prediction function f̂(x) = G (Φ(x)ω̂).

A special feature of the RVM as described by Tipping (2000) lies in using

every covariate sample as a basis knot on which a basis function is centered,

i.e. Jd = N, d = 1, . . . , D∗, which is also found in the smoothing splines.

So, principally every observation is conceded to express its impact on fitting

the data. However, in later applications contained in this thesis only a subset

recruiting the 100 quantiles of the covariate observations will be used. This is

in concordance with B-splines and P-splines, where usually some points on a

grid are selected to represent the knots of the basis functions. The complete

set of basis functions can be viewed as an arsenal of functions, where usually

a small subset of vectors sufficiently explains the variation of the response.

So, in order to avoid overfitting of the data, the method should automatically

infer which subset of functions is relevant for data fitting and exclude the

others from the model.

The RVM, hereby, follows an approach of MacKay (1994), termed automatic

relevance determination, to find these relevant basis functions. Exclusion of

a basis from the model is equivalent to setting the related weight parameter

to zero. A preference for a sparse model with only few weights being nonzero

is here encoded by placing a Gaussian prior over every weight, centered on



12 CHAPTER 2. THE MAIN TECHNIQUES

zero with an individual precision (inverse variance) parameter

p(ω|α) =
J∏

j=0

√
αj

2π
exp

(
−αj

2
ω2

j

)
. (2.6)

This is in exact analogy to the concept of penalization (cf. e.g. Fahrmeir &

Tutz (2001)), where, usually only one, but here multiple penalization con-

stants αj, each associated with an input basis, are introduced. Generally,

those penalization constants that correspond to basis vectors with low pre-

dictive value are expected to take on large values during the inference process,

i.e. the data driven penalization is expected to be high in this case. A basis

function is excluded from the model if the related data driven penalization

constant tends towards infinity.

MacKay (1994) suggests estimation of the αj, j = 0, . . . , J via a likelihood

approach, while Tipping (2000) goes for a Bayesian specification by placing

a prior distribution over the αj’s, too.

Gamma hyperpriors are specified over these inverse variance parameters, also

called scale parameters

p(α) =
J∏

j=0

Γ(a)−1baαa−1
j exp(−bαj),

where Γ(a) =
∫∞

0
ta−1 exp(−t)dt. In case the variance V(Y |X) includes a

dispersion parameter σ2, like in the Gaussian response case, a Gamma hy-

perprior is also placed over the, usually inverse, dispersion parameter, where

it is conventionally defined β ≡ σ−2

p(β) = Γ(c)−1dcβc−1 exp(−dβ).

Tipping (2001) describes setting the corresponding parameters a = b = c =

d = 0, a way to proceed that is equivalent to specifying uniform distributions

for α and β on a logarithmic scale.

Before the details on the inferential process are presented in the next section,

Figure 2.1 visualizes the fitting principle of the relevance vector machine
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Figure 2.1: Example of RVM regression with true function f(x) =√
x(1 − x) sin 2π(1+2−3/5)

x+2−3/5 . The six weighted basis functions with nonzero

weights are displayed in the background. The associated relevant vectors are

circled. Adding up these basis functions yields the prediction function.

(here for Gaussian regression). While allowing for a very complex model to

describe the data (2.2) by specifying a huge arsenal of potentially relevant

basis vectors, the RVM model automatically determines truly relevant vectors

for sufficiently modeling the data. The final model is then typically very

parsimonious.

2.1.2 Inference

The estimation of the unknown parameters ω,α and β in a Bayesian frame-

work is commonly done via the posterior distribution of these parameters,

given the data y = (y1, y2, . . . , yN)T. Bayes’ rule gives

p(ω,α, β|y) =
p(y|ω,α, β)p(ω,α, β)

p(y)
. (2.7)
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Then, predicting y∗ for a previously unseen observation x∗, is achieved via

the predictive distribution

p(y∗|y) =

∫
p(y∗|ω,α, β)p(ω,α, β|y) dωdαdβ.

It may come as no surprise that these calculations can not be performed

in full analytically and an effective approximation must be sought. Ana-

lytic calculation of (2.7) is not feasible, since the normalizing integral p(y) =∫
p(y|ω,α, β)p(ω,α, β) dωdαdβ can not be computed. A frequentist ap-

proach would circumvent this problem by merely maximizing the numerator

of (2.7) using some kind of scoring algorithm, which however comes at the

cost of not adequately capturing the uncertainty in these parameter esti-

mates.

Now, Bayesian inference must rely on an effective approximation of the joint

posterior distribution which is based on the following decomposition

p(ω,α, β|y) = p(ω|y,α, β)p(α, β|y),

where Bayes’ rule yields the posterior over the weights and scales

p(ω|y,α, β) =
p(y|ω, β)p(ω|α)

p(y|α, β)
(2.8)

p(α, β|y) ∝ p(y|α, β)p(α)p(β). (2.9)

The posterior over the scales (2.9) can only be determined up to a constant

since repeated application of the Bayes rule again involves the normalizing

constant p(y). Expression (2.9) only allows for finding the mode of the pos-

terior instead of revealing its full form. Tipping (2001) comments on the

quality of this approximation, which seems to be very effective in general.

Both distributions (2.8) and (2.9) build the core of inference for the RVM.

Depending on the specification of the distribution over the responses the

trail of inference is pursued. The following inferential schemes distinguish

between the Gaussian and non-Gaussian case, including Bernoulli and Pois-

son distributed responses.
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Gaussian regression case

In the Gaussian case, the response function G(z) in model (2.1) is the identity

function, and the errors are assumed to be i.i.d. normally distributed, where

it is conventionally defined β ≡ σ−2

p(ε) =
N∏

i=1

√
β

2π
exp

(
−β

2
ε2
i

)
.

Thus the likelihood is Gaussian

p(y|ω, β) = (2πβ−1)−N/2 exp

{
−β

2
(y − Φω)T(y − Φω)

}

and since the prior over the weights (2.6) is chosen to be Gaussian, too, the

marginal likelihood of the data is again - Gaussian:

p(y|α, β) =

∫
p(y|ω, β)p(ω|α) dω,

= (2π)−
N
2 | C |− 1

2 exp

(
−1

2
yTC−1y

)
, (2.10)

where the covariance matrix C = β−1I + ΦA−1ΦT and the diagonal matrix

A = diag(α0, α1, . . . , αN ) contains the scale parameters from (2.6), previously

also characterized as regularization constants. With the Gaussian prior over

the weights (2.6), the posterior of the weights is Gaussian

p(ω|y,α, β) = (2π)−
(J+1)

2 |Σ |− 1
2 exp

(
−1

2
(ω−µ)TΣ−1(ω−µ)

)
,(2.11)

where the posterior covariance matrix and mean vector are, respectively

Σ = (βΦTΦ + A)−1, (2.12)

µ = βΣΦTy. (2.13)

Since the posterior distribution is multivariate Gaussian the posterior mode

estimator is then given by the mean. The following two inserted paragraphs
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comment on this posterior mean estimator from a rather frequentistic per-

spective.

Connection between RVM inference and penalized likelihood estimation:

A look at the log-posterior of the weights reveals the connection between this

Bayesian setup of the relevance vector machine and the principle of penal-

ization, which is applied in flexible regression methods under a frequentis-

tic perspective, like e.g. in the natural cubic splines, see Fahrmeir & Tutz

(2001). The log-posterior is according to Bayes’ theorem proportional to the

log-likelihood plus the logarithm of the Gaussian prior:

log p(ω|y,α, σ2) ∝ log p(y|ω,α, σ2) −
J∑

j=0

αjω
2
j . (2.14)

In the frequentistic branch of statistics this expression is well known as the

’penalized likelihood’ under quadratic penalty function and fixed penalties

αj, j = 0, . . . , J . Estimation of the parameters ω is done via maximization

of this penalized likelihood. This means finding the root of the so-called

penalized score function, which is the first derivative of the penalized likeli-

hood (2.14) with respect to ω (cf. e.g. Fahrmeir & Tutz (2001)). Then, the

penalized least squares estimator under quadratic penalty function and fixed

penalties is exactly equivalent to the posterior mode estimator in (2.13), i.e.

the two rather different concepts of (Bayesian) posterior mode estimation

and (frequentistic) penalized likelihood generate the same estimator. In a

truly frequentistic approach the variance of this estimator is derived via the

so-called sandwich formula (cf. e.g. Fahrmeir & Tutz (2001), p.57). However,

in the Bayesian setup, the posterior variance estimator (2.12) is given by the

inverse expected (penalized) Fisher matrix, which is computed via the second

derivative of the penalized likelihood (2.14) with respect to ω (cf. e.g. Lin &

Zhang (1999), Fahrmeir & Tutz (2001), p.62).

The frequentistic viewpoint to the estimation of the parameters ω, will be

used later in the development of correction methods for measurement error.
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Unbiasedness of the RVM estimator:

From a frequentist’s point of view a strongly desired property of an estimator

is unbiasedness. It is clear that in the context of penalization a revised defini-

tion of unbiasedness is needed, which has been stated by Fan & Li (2001): an

estimator is ’nearly unbiased’ if it avoids unnecessary modeling bias in case

the true unknown parameter is large. A sufficient condition for unbiasedness

in this sense is the first derivative of the penalty function with respect to

the weights being zero for large weights. Loosely spoken, constant penaliza-

tion of large parameter values yields nearly unbiased estimates. So in the

spirit of Fan & Li (2001) the resulting estimator of the RVM is not unbiased

because in order to achieve unbiased estimates one would have to place an

improper prior over the weights, possibly leading to a non-standard posterior

distribution of the weights. A special case is the usage of the following prior

distribution:

p(ω|α) =

{ ∏J
j=0

√
αj

2π
exp

{
−αj

2
ω2

j

}
: if |ωj| < λ

c(αj, λ) : |ωj| ≥ λ

where c(αj, λ) is a constant making p(ω|α) = 1. This bifid specification of

the prior leads to a Gaussian posterior distribution of the weights as above

in (2.11) with the following specification of moments:

Σ∗ = (βΦTΦ + A∗)−1

µ = Σ∗ΦTy,

where A∗ = diag(α∗
0, . . . , α

∗
J) and

α∗
j =

{
αj : if |ωj| < λ

0 : if |ωj| ≥ λ

One would now have to specify a value for λ and to know the value of the

true ωj to configure the posterior mean and variance estimator. Several ad-

hoc strategies are conceivable to run this method but this trail will not be

continued in this thesis.
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Finally, an estimation scheme for the hyperparameters α and β is described.

In contrast to the posterior over the weights in (2.11) the posterior over the

scale parameters in (cf. 2.8) is only defined up to a constant. A type II

maximum likelihood approach (Good (1965)) is taken to optimize the scales,

where the idea is to mimic the maximum likelihood approach at the mar-

ginal level. For other cases than uniform hyperpriors (in some scale) this

is a variation on the type II maximum likelihood making allowance for the

specific distributions of the hyperparameters. Harville (1974) showed that

this optimization procedure is equivalent to the concept of ’restricted max-

imum likelihood’ (REML) as introduced by Patterson & Thompson (1971).

Throughout this thesis uniform hyperpriors over a logarithmic scale are used

and thus the objective function to be optimized is solely the logarithm of the

marginal likelihood (2.10)

L = −1

2

(
log | C | +yTC−1y

)
, (2.15)

with the covariance matrix

C = β−1I + ΦA−1ΦT.

Solutions for α and β are described in turn whereas there are two fun-

damentally different approaches in deriving the optimal hyperparameters

αj, j = 0, . . . , J .

α-Rule 1&2:

In an ’early’ version of the RVM (cf. Tipping (2001)), the updating rule

for the entries in α is achieved by differentiating the marginal log-likelihood

(2.15) with respect to log αj, which gives

∂L(α)

∂ log αj

=
1

2

(
1 − αj(µ

2
j + Σjj)

)
, (2.16)

where Σjj denotes the jth diagonal element of the covariance matrix Σ (2.12)

and µj the jth element in the mean vector (2.13). Setting this to zero and

solving for αj gives

αnew
j =

1

µ2
j + Σjj

. (2.17)
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Alternatively, setting (2.16) to zero and defining quantities

γj = 1 − αjΣjj (2.18)

leads to the following update

αnew
j =

γj

µ2
j

. (2.19)

Although this update does not benefit from the local maximization of L it

was observed to lead to much faster convergence, and in practical applica-

tions a hybrid scheme of both updating rules is used. This scheme starts

from the full model including all of the potential basis functions making this

approach relatively computationally intensive at the beginning. An αj-scale

is manually set to infinity when it either exceeds a pre-specified threshold

or becomes less or equal zero leading to pruning of the corresponding basis.

Once a basis is excluded from the model it can not be reintroduced, so this

is a strictly degenerative process.

α-Rule 3:

Tipping & Faul (2002) more recently investigated a decomposition of the

marginal likelihood (2.15) into two terms where only one is dependent on the

jth basis vector. This is the key to a non-iterative analytic optimization of

the marginal likelihood with respect to a single hyperparameter αj. The two

stationary points of the marginal likelihood are found to be

αj =

{
s2
j

q2
j−sj

if q2
j − sj > 0

∞ else
. (2.20)

For simplicity the quantities qj = φT
j C−1

−j y and sj = φT
j C−1

−j φj have been de-

fined here. In (2.20), C−j = C−αjφjφ
T
j denotes the covariance matrix of the

marginal log-likelihood (2.15) with the influence of basis vector φj removed.

The index new is suppressed in (2.20) to underline the non-iterative charac-

ter of this solution. This maximum of the objective function for an individual

parameter is, of course, dependent on the values of all other hyperparameters.
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Separating the influence of the jth basis in the marginal likelihood is also a

key point in order to derive the following stepwise optimization algorithm:

Firstly, the likelihood gain of the following actions for every basis function is

assessed:

• add the basis to the model (if not already present in the model)

• remove the basis (if basis is in the actual model)

• update the hyperparameter of this basis (if basis is present in the

actual model).

Then only that action associated with the highest likelihood gain is realized.

This scheme usually starts with only a single basis, and most desirable, from

a computational point of view, even the maximum number of basis being in

the model during this scheme is usually only a fraction of all potential basis

functions. Alternative versions of this scheme check the possible actions

only for a random subset of basis functions, a measure that further increases

computational speed.

The required quantities qj and sj in (2.20) can be conveniently computed by

utilizing the so-called Woodbury identity involving the posterior moments

(2.13) and (2.12), cf. Tipping & Faul (2003).

β-Rule:

The updating rule for the error variance is derived from differentiating the

objective function (2.15) with respect to log β

∂L(β)

∂ log β
=

1

2

(
N − β ‖ y − Φµ ‖2 −tr(ΣΦTβΦ)

)
, (2.21)

where ‖ y − Φµ ‖2:= (y − Φµ)T(y − Φµ). Here, tr(ΣΦTβΦ) is the trace of

the matrix product that can be re-written as the sum over all parameters γj

defined earlier in (2.18). Equating this to zero gives

σ2 new =
‖ y − Φµ ‖2

N −∑j γj

. (2.22)
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It is important to stress that neither of the presented updating rules leads

to an analytic solution for all hyperparameters at once, and thus the opti-

mization procedure is practically iterative, alternating between finding the

moments of the posterior distribution (2.11) and optimizing the marginal

likelihood (2.10) with respect to the hyperparameters until some convergence

criteria is satisfied.

Non-Gaussian regression case

Under the term non-Gaussian regression the binary classification case and

Poisson regression is subsumed in this thesis. The main difference to the

Gaussian case is that the response function G(z) in model (2.1) is no longer

the identity function but e.g. the Gaussian cumulative distribution function

for binary, or the exponential function for count data. Therefore, the likeli-

hood is non-Gaussian and thus the integration involved in determining the

marginal likelihood is infeasible and so is the posterior over the weights. Note

that in the binary and Poisson case the variance of ε is completely specified

by the mean E(Y |X), as long as under-/overdispersion is not considered.

The general approach to infer the parameters ω in this case is via the ap-

proximative decomposition

p(ω|y,α) ∝ p(y|ω)p(ω|α), (2.23)

where the specification of the likelihood depends on the distribution over

the responses and the prior over the weights is Gaussian (2.6). Tipping

(2001) originally follows the Laplace’s method (cf. e.g. Tierney & Kadane

(1986), MacKay (2003)) approximating p(ω|y,α) by a Gaussian centered on

its mode ωMP with its covariance matrix being equal to the inverse observed

Fisher matrix (i.e. negative inverse Hessian) at the mode. However, in this

thesis the inverse expected Fisher matrix will be used instead (cf. e.g. Lin

& Zhang (1999), Fahrmeir & Tutz (2001)). The moments of the Gaussian



22 CHAPTER 2. THE MAIN TECHNIQUES

approximation to the posterior are then given by

Σ = (ΦTBΦ + A)−1, (2.24)

µ = ωMP = ΣΦTBy∗ (2.25)

with working observations

y∗ = Φω + D−1(y − G(Φω)). (2.26)

The diagonal matrix B consist of elements

Bii =

(
∂G(Φ(xi)ω)

∂(Φ(xi)ω)

)2

/ V(yi|xi), i = 1, . . . , N

involving the first derivative of the response function with respect to the

linear predictor and V(yi|xi), which is the variance of the responses according

to their distribution. The diagonal matrix D consists of elements

Dii =

(
∂G(Φ(xi)ω)

∂(Φ(xi)ω)

)
, i = 1, . . . , N.

In contrast to the Gaussian response case, finding the posterior mean of

(2.23) is iterative and uses some scoring method like e.g. Fisher scoring.

The resulting posterior mean estimator (2.25), exactly corresponds to the ’it-

eratively weighted least squares’ (IWLS) representation of the Fisher scoring

maximization (cf. e.g. Fahrmeir & Tutz (2001)). The maximization of (2.23)

can be again considered from the frequentistic perspective as optimization of

a likelihood, coming from a generalized linear model, under quadratic penal-

ization. In contrast to a truly frequentistic approach, where the variance of

the mean estimator is derived via the so-called sandwich formula Fahrmeir

& Tutz (2001), p.57), (2.24) is here approximated by the inverse expected

Fisher matrix.

The relation between estimating the moments, particularly the mean, of the

posterior approximation and inference in generalized linear models under pe-

nalization is a crucial point and provides solutions for a broad spectrum of

response distributions.
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Like in the Gaussian case the posterior approximation and the posterior

mode estimation of the hyperparameters alternate. However, the marginal

likelihood is no longer Gaussian here. Tipping (2001) suggests a pragmatic

approach and assumes that p(y∗|α,ω) is approximately Gaussian, which is

basically again a Laplace approximation, giving the following objective func-

tion

L = −1

2

(
log | C | +y∗T

C−1y∗
)

(2.27)

where C = B + ΦA−1ΦT

with working observations y∗ as defined above (2.26). This optimization

procedure based on the marginal log-likelihood is also used in the concept of

’restricted maximum likelihood’ (REML) (cf. Harville (1974), Patterson &

Thompson (1971)). Finding the hyperparameters proceeds by differentiating

(2.27), equating to zero and solving for the respective hyperparameter.

For the αj’s this yields the same updating rules as in the Gaussian case,

stated in (2.17) and (2.19), but with the elements of µ and Σ replaced by

their estimators (2.25) and (2.24), respectively.

The one step maximization scheme (2.20) that will be used in the present

work utilizes the covariance matrix from (2.27) and the vector of working

observations y∗ (2.26).

Since the mean function fully implies the variance function in the binary and

the Poisson response case, there is no additional updating scheme for the

variance. However, potential under-/overdispersion can disturb the setting

of the exponential family since the data might suggest a different variance

function V
∗(yi|xi) = σ2

V(yi|xi) than implied by the mean function where σ2

denotes the dispersion parameter accounting for more or less variance in the

responses than implied by the mean model. Dispersion is easily introduced

into the RVM by including σ2 in matrix B which consequently modifies

(2.25) and (2.24). An estimator for the dispersion parameter can be derived

by differentiation of the objective function with respect to σ2

∂L(σ2)

∂σ2
=

1

2

[
−N

σ2
+

(y∗ − Φµ)TB(y∗ − Φµ)

(σ2)2 − tr(ΣΦTBΦ)

]
, (2.28)
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and equating to zero which gives

(
σ2
)new

=
(y∗ − Φµ)T B (y∗ − Φµ)

N −∑j γj

(
σ2
)old

.

As before γj = 1 − αjΣjj. Note that the old value (σ2)
old

is also contained

in B and thus in µ and γi. The potential need of a dispersion parameter

for non-Gaussian regression cases is however not considered in the practical

applications presented in this thesis.

2.2 Flexible regression and Markov Chain

Monte Carlo

The optimization scheme in the previous section relied on several approxima-

tions. For instance, the estimation of the scales was based on the marginal

likelihood instead of the posterior distribution of the scales which was not

analytically available. Furthermore, to find the weight estimates in the non-

Gaussian case a Laplace approximation to the weights posterior was applied,

cf. (2.24) and (2.25). Both approximations are due to the complexity of the

joint posterior including intractable integrals. The approximations have been

utilized to iteratively maximize the joint posterior, an approach, which is,

however, not at the heart of true Bayesian analysis. Following the approx-

imative approach, e.g. uncertainty in the smoothing parameters αi is not

captured in the prediction.

In this section a full Bayesian version of the flexible regression is introduced

using MCMC sampling techniques while at the same time preserving the two

main features of the RVM:

• the structural part of the model contains the expansion of the covariates

in terms of weighted radial basis functions

• relevant basis functions are automatically selected.
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Therefore, the main topics of Bayesian inference using Markov Chain Monte

Carlo (MCMC) methods are first briefly presented. A good basis to under-

stand MCMC methods is given by Jackman (2000) giving insight by pre-

senting practical applications. Green (2001) Green (2001) theoretically and

practically reviews a broad range of available MCMC tools. Denison et al.

(2002) and Dellaportas & Roberts (2003) discuss the material in view of flex-

ible regression and spatial statistics, respectively.

The second subsection describes in more detail flexible regression applying

MCMC methodology in the binary response case, which is extensively used

in chapter 4 of this thesis. A detailed description of MCMC methodology

in the Gaussian response case is not undertake here, although a Bayesian

P-spline approach (cf. Berry et al. (2002)) will also be used as a reference

method in the attached simulation study. Instead the interested reader is

conferred to Denison et al. (2002) who present a very detailed explanation

of Bayesian flexible regression in the Gaussian case and, of course, to Berry

et al. (2002).

2.2.1 Main topics of Bayesian inference using MCMC

Bayesian inference is based on the joint posterior distribution of the unknown

parameters gathered in the vector θ. Following Bayes’ theorem, the joint

posterior distribution is derived from the likelihood p(y|θ) and the prior

distribution of the unknowns p(θ) as

p(θ|y) =
p(y|θ)p(θ)∫
p(y|θ)p(θ)dθ

. (2.29)

Expanding Bayesian models to more complex problems, following the hierar-

chical Bayesian approach, a hierarchy of p models each utilizing a parameter

vector θi, i = 1, . . . , p may be needed. θi, i = 1, . . . , p denote here parame-

ters that are introduced additionally to the vector θ. A neat explanation of

hierarchical modeling, compared to empirical Bayes, is given by Vidakovic

(2005), and the following lines are inspired by these lecture notes.
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In a hierarchical setting, the prior is represented via a conditional hierarchy

of so-called hyperpriors

p(θ) =

∫
p1(θ|θ1)p2(θ1|θ2)p3(θ2|θ3), . . . , pp(θp−1|θp)pp+1(θp)dθ1dθ2 . . . dθp,

where only hyperparameter vectors of proximate hierarchy levels are depen-

dent. Notice that in the hierarchy of data, parameters and hyperparameters,

y → θ → θ1 → θ2 → θ3 . . . → θp

y is independent of θi given θ. That means

p(y|θ,θi)
d
= p(y|θ) and p(θi|θ,y)

d
= p(θi|θ),

where ’
d
=’ means equality in distribution. The joint distribution can then be

represented as

p(y,θ,θ1, . . . ,θp) = p(y|θ)p1(θ|θ1)p2(θ1|θ2) . . . pp(θp−1|θp)pp+1(θp).

Therefore, in order to fully specify the model, only neighboring conditionals

and the closure distribution pp+1(θp) are needed. Reasons for the prior de-

composition include feasibility of the analysis and objectiveness in that sense

that the data should determine the hyperparameters.

Although the posterior distribution of the unknown parameters p(θ|y) or

p(θ,θ1, . . . ,θp|y) in the hierarchical case might be written in closed form

(at least up to a constant), the moments of that distribution are usually not

computable analytically. Direct sampling from the joint posterior may be

difficult due to its high dimensionality, so that simple Monte Carlo evalua-

tion of the moments is not possible. MCMC instead simulates from a Markov

Chain whose invariant distribution is p(θ|y). There are essentially two ba-

sic sampling schemes used in MCMC: the very general Metropolis Hastings

algorithm and its special case, Gibbs sampling.
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Sampling schemes

The Metropolis-Hastings algorithm is an extension by Hastings (1970) of

the original work by Metropolis, Rosenbluth, Rosenbluth, Teller & Teller

(1953). The Markov Chain is constructed by random generation of J samples

θ[0],θ[1], . . . ,θ[J ], where θ[0] is the starting state of all unknown parameters

involved in the model. Let p(θi|θ\i,y) denote the conditional density of θi

given all other parameters θ\i = (θ1, . . . ,θi−1,θi+1, . . . ,θp). In contrast to

the previous paragraph, the θi, i = 1, . . . , p denote components of the full

vector of unknowns θ and not additionally introduced vectors.

Instead of sampling all unknown parameters stacked in θ[j] at once, one

usually successively generates subvectors θ
[j]
i having smaller dimensionality

by performing the following two steps:

• Generate a candidate θ′
i from an arbitrary proposal density qi(θ

′
i|θ),

where the prime symbol denotes the proposal and θ denotes the current

state of all unknown parameters

• Set

θ
[j]
i =

{
θ′

i with probability α = min
[
1,

p(θ′
i|θ\i,y)qi(θi|θ′

i,θ\i)

p(θi|θ\i,y)qi(θ
′
i|θi,θ\i)

]

θ
[j−1]
i otherwise

.

The key feature of this algorithm is that the possibly intractable normalizing

constant of the full conditional density p(·|θ\i,y), evaluated at θ′
i in the nu-

merator and at θi in the denominator, cancels out in the so-called acceptance

probability α. The order of the subvector updating is arbitrary. The pro-

posal qi can be chosen arbitrarily, but must be capable of allowing to reach

all areas of positive probability under p(θi|θ\i,y) (irreducibility postulate).

However, specifying a poor proposal density might hurt the efficiency of this

procedure, since either the constructed Markov Chain explores the space too

slow or the rejection rate is too high. Finding a decent proposal is an out-

standing problem and there is no universal answer. Three standard recipes

applied in this work are described in the following.
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Considering the special structure of the acceptance probability α in the sam-

pling scheme, a favorable proposal should closely approximate the condi-

tional density p(θi|θ\i,y), whereupon the acceptance probability is close to

one. The special and very popular case of setting qi = p(θi|θ\i,y) presumes

that the conditional density is recognizable as a standard distribution one

could sample from. Every proposal drawn from that special distribution is

accepted since the acceptance probability becomes exactly one. This partic-

ular choice was first proposed by Geman & Geman (1984) and is now known

as the Gibbs sampler.

If all conditional densities are of standard form, the MCMC algorithm using

Gibbs sampling is very similar to the ’iterated conditional modes’ approach

by Besag (1986). Here, the posterior mode is found by sequentially updat-

ing the parameters with the modal value of the full conditional, instead of

sampling the parameters from the respective full conditional. However, the

greatest benefits of the Bayesian framework are assumed to result from a

truly Bayesian inference strategy implying sampling techniques in order to

find the (empirical version of the) joint posterior.

If the conditional density is not recognizable as a standard distribution, nu-

merical approximation can be used to construct the proposal. Therefore, e.g.

the Laplace method can be used to approximate the log conditional density

by a Gaussian distribution centered on its mode and variance equal to the

negative inverse Hessian matrix evaluated at the mode. This method has

already been used in the non-Gaussian RVM regression case in Subsection

2.1.2 to approximate the posterior distribution of the weights.

Another strategy of generating candidates θ′
i, when the conditional density is

not recognizable, is drawing from a (multivariate) Gaussian centered on the

current value θi and variance equal to some multiple of the negative inverse

Hessian matrix at the posterior mode. This is called a ’symmetric random

walk Metropolis’ algorithm. Since the proposal is symmetric it cancels out in

the acceptance probability of the MH-algorithm. The random walk is biased

towards the mode of the conditional density, since all ’uphill moves’ increas-
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ing p(θi|θ\i,y) are accepted, while some ’downhill moves’ are rejected. A

high acceptance probability is not always desirable for this type of proposal

since it indicates a propensity to avoid the tails of the distribution.

Convergence

It is important to run the sampling scheme long enough to ensure the chain

has approached stationarity - so that the samples θ[j] come from the in-

variant distribution of the Markov chain, which is the joint posterior p(θ|y)

by construction. Common practise is to discard the first number of draws

as a burn-in period and base inference on the so-called ’Monte Carlo’ sam-

ple. This recruits subsequent draws for which convergence is assumed to be

achieved.

Popular alternatives use subsamples of the Monte Carlo sample using e.g.

every tenth observation to obtain approximately independently identically

distributed draws.

Assessing the convergence of the Markov chain and the optimal number of

samples is a well known and discussed problem. Andrieu, de Freitas, Doucet

& Jordan (2003) present a summary of some of the available approaches

to this problem. Common tools to check for convergence include visual in-

spection of sampling paths, plots of autocorrelation and comparing a set of

chains based on different starting values. The log of the posterior density

at the current state may indicate, if the method is still working its way to

a more representative part of the distribution. An instructive discussion on

this topic (and other relevant MCMC topics) is available from Kass, Carlin,

Gelman & Neal (1998).

Ways to improve convergence include blocking of parameters, i.e. joint updat-

ing of several parameters at once in order to reduce the dependency between

iterates.
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Estimators

There is a range of estimators available using the samples from the Markov

chain. The so-called histogram estimator consistently estimates the posterior

mean of the parameter vector by calculating the sample means of its iterates.

An estimation of the posterior mean of functionals is in an analog way derived

as

E(h(θi|y)) ≈ m−1

J∑

j=j∗

h(θ
[j]
i |y), (2.30)

where h is a function and m indicates the number of draws used for inference.

Here, j∗ = J−m+1 is the number of the first sample after the burn-in period

has been completed and that is assumed to come from the joint posterior.

Tierney (1994) and Gelfand & Smith (1990) discuss conditioning, also called

Rao-Blackwellisation. This is available for those parameters, where the con-

ditional density is known or at least its first moment, the conditional mean.

An consistent estimator of the mean of the posterior density can then be

derived by averaging the conditional means instead of the generated samples

from this full conditional

E(θi|y) ≈ m−1

J∑

j=j∗

E

(
θi|θ[j]

\i ,y
)

. (2.31)

This so-called ’mixture’ estimator has always smaller variance than the his-

togram estimator for independent samples (cf. Gelfand & Smith (1990)) and

its efficiency for dependent MCMC samples depends basically on the corre-

lation structure of the draws (cf. Tierney (1994)).

Similarly, if the entire conditional density is known, an estimator for the

marginal posterior density p(θi|y) is obtained by replacing the conditional

mean in (2.31) by the complete full conditional density

p(θi|y) ≈ m−1

J∑

j=j∗

p
(
θi|θ[j]

\i ,y
)

.

This estimator uses the full conditional density and outperforms most gen-

eral density estimators in estimating the tails of the density.
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Finally, the prediction density p(y∗|y, x∗) can be estimated from the set of

prediction densities conditional on the parameters θ[j]. An consistent esti-

mator is given by

p(y∗|y) ≈ m−1

J∑

j=j∗

p
(
y∗|θ[j],y

)
.

Data augmentation

The data augmentation technique can be applied when e.g. the likelihood of

the data can be represented in terms of an expectation with respect to some

latent structure. While this expectation might not be easily computable, it

may well be the case that the conditional likelihood, given the latent struc-

ture, is much simpler. More specifically, in some statistical problems the

likelihood might be difficult to obtain. Whereas, it may be much easier and

efficient to sample from a joint distribution, augmented with some auxiliary

variable, than from the distribution of the model parameters alone. More

formally, the likelihood p(y|θ) might not be available and consequently fore-

closing a MCMC approach because the posterior comprises this likelihood

p(θ|y) ∝ p(y|θ)p(θ).

However, it may well be the case that introduction of an additional parameter

of unknowns θ∗ makes the conditional likelihood p(y|θ∗,θ) more handy and

thus allowing for applying MCMC techniques via the augmented posterior

p(θ,θ∗|y) ∝ p(y|θ∗,θ)p(θ∗,θ).

Treating the latent structure θ∗ as unobserved augmented data and sampling

this data together with the other unknowns from the MCMC algorithm can

be most appealing, since sampling the unknown parameters then only in-

volves the conditional likelihood having the simpler form. The success of

this approach relies heavily on a certain amount of ingenuity in identifying

the latent parameter that can be used to simplify the scheme. Two examples
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of data augmentation, which are also applied in this work, are given for a

better understanding.

Albert & Chib (1993) present an approach for binary probit regression mod-

els using this auxiliary variable technique. Introducing a (truncated normally

distributed) latent variable as dependent variable, and treating their ’obser-

vations’ as additional unknown parameters, the conditional distributions of

the other model parameters remain the same as in the Bayesian Gaussian lin-

ear regression model. The latent variable can here be viewed as utility/risk,

whereas a high value of the variable means an increased probability of an

event to occur.

The Bayesian way of measurement error correction, as used by e.g. Berry

et al. (2002) in the context of flexible regression, can also be seen as data

augmentation. By introducing the true but unobservable covariate obser-

vations as additional unknown parameters, the likelihood (based on these

parameters) most conveniently remains a standard distribution easy to han-

dle in the optimization scheme.

Bayesian model selection

If there is uncertainty about which model, from a set of competing models

M1,M2, . . ., describes the data generating process best, one may wish to

compare these models. In this thesis the model alternatives will only differ

in the specific sets of basis functions they adopt, while in general all model

characteristics as prior distributions, error distributions, type of basis may

specify a certain model.

The so-called Bayes’ factor compares the marginal likelihood of the data

under two competing model

BFij =
p(y|Mi)

p(y|Mj)
(2.32)

and one judges that model as the best one that has the highest Bayes’ factor.

Kass & Rafferty (1995) present a comprehensive treatment of Bayes’ factors.

Estimates of the marginal likelihood for each model in (2.32) can rarely be
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obtained analytically, but Chib (1995) and Chib & Jeliazkov (2001) propose

an approximation of this quantity directly from the MCMC output under

only slight changes in the construction of the chain. However, when the set

of models under consideration is huge the computational effort to compute

all Bayes factors is immense. Finding an optimal set of basis functions from

a huge pool of possible basis functions represents such a case.

Instead of searching over the complete model space, which is impractical

for most problems, model selection can be done in a subspace of all mod-

els. Search algorithms include greedy searches, EM algorithms, simulated

annealing and genetic algorithms, see Denison et al. (2002) and the refer-

ences herein. The previous strategies attempt to find a single optimal model

among those under consideration, however, one can rarely expect to replicate

the truth with exactly one model among the proposed alternatives.

Bayesian model averaging

Another strategy, which will be used in the course of this thesis, accepts

that none of the proposed models is true. A mixture model of all proposed

alternative models is considered with the prior over each model formulating

the relative degree of believe on each model, see e.g. Smith & Kohn (1996).

This is sometimes called Bayesian model averaging (BMA). Bayesian model

averaging accounts for model uncertainty the same way, as diversification of

an investment portfolio accounts for the stock market uncertainties.

Let an auxiliary parameter vector γ+ index the different models. Samples

of either, the parameters and model indicators, are drawn from the joint

posterior p(θγ+ ,γ+|y). In this thesis the potential model alternatives are

characterized by the number and position of utilized basis functions and

thus the vector γ+ = (γ+
1 , γ+

2 , . . . γ+
T ), with γ+

i = {0, 1} and model space

Γ = {0, 1}T indicates whether a particular basis function, from a potential

set of T basis functions, is in the model or not.

The most popular sampling scheme for model averaging is the reversible jump

algorithm proposed by Green (1995). While the general Metropolis-Hastings
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sampler requires a deterministic scan over all elements γ+
i in the vector γ+,

the reversible jump algorithm can handle variable, i.e. non fixed, dimen-

sions. This is an advantageous property since it allows for focusing entirely

on the non zero elements in γ+: basically, this algorithm proceeds similar

to the Metropolis Hastings algorithm described in the paragraph ’Sampling

schemes’, except that γ+ is re-defined as γ, which now contains the positions

of the nonzero elements in γ+ – e.g. γ = {1, 5, 6} indicates that the first, fifth

and sixth basis function is in the model. So, the dimension of γ is not fixed

any longer. The acceptance probability needs to be modified by introducing

a Jacobian term to take into account the change in dimension. In case of a

discrete model space, as this is the relevant case in this thesis, this Jacobian

term is not required as can be seen from Denison et al. (2002).

Once the sampler has converged, posterior averaging across the model space

leads to the expectation of the predictive distribution

E(y∗|x∗,y) =
2T∑

s=1

E(y∗|x∗,y,γ+
s )p(γ+

s |D)

≈ 1

m

J∑

j=J−m+1

E(y∗|x∗,y,γ [j]). (2.33)

Here, γ+
s denotes one particular specification of 0’s and 1’s in γ+ of 2T

possible specifications. The predictive distribution contains E(y∗|x∗,y,γ [j]),

which is based on all visited models γ [j] during the sampling scheme after the

burn-in period. This approach is obviously motivated by a phrase delivered

from the Greek philosopher Epicurus (ca. 341-271 BC) that says:
”
if more

than one theory is consistent with the data, keep them all“.

In the face of potential overfitting of the data by a large set of basis func-

tions it is important to understand that the Bayesian framework contains

a naturally penalty of complex models via the specification of priors over

the coefficients. This is sometimes called Ockham’s razor, see also MacKay

(2003) for an introduction on this topic. It goes back to a phrase attributed

to the Franciscan friar William of Ockham (ca. 1285-1349)
”
pluralitas non
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est ponenda sine necessitate“, roughly translating to
”
plurality should not be

posited without necessity“. The specific form of the prior distribution on the

model coefficients strongly influences model selection. In case of very vague

priors this leads to selection of the least complex model. This is an example

of Lindley’s paradox (cf. Lindley (1957)), which states that when comparing

models of different complexity with diffuse priors on the model coefficients,

then the simpler model is always favored, irrespective of the data. Choosing

a ’good’ prior on the coefficients is a sensible task as it controls the complex-

ity of the favored model, comparable to a smoothing parameter. Denison

et al. (2002) most interestingly explain the effect of prior choices on the final

model fit.

2.2.2 The flexible Bayesian probit regression model

In the course of this thesis the Markov Chain Monte Carlo (MCMC) tech-

niques of parameter estimation are only applied and further investigated in

the case of binary regression. For the interested reader, a broad discussion

on the Bayesian Gaussian model is given by Denison et al. (2002).

The binary regression case applied in this thesis follows the probit regression

approach by Albert & Chib (1993), later refined by Holmes & Held (2006).

Both apply data augmentation in order to obtain closed form conditional

densities for parameter sampling. While the original sample consists of out-

comes yi = {0, 1} , a latent variable Z is introduced into the model

yi =

{
1 : if zi > 0

0 : otherwise
(2.34)

zi = Φ(xi)ω + εi (2.35)

εi ∼ N(εi|0, 1). (2.36)

Now, the stochastic auxiliary variable Z determines the response Y . In

analogy to the RVM model setup in (2.5), Φ(xi) is the ith row of the design

matrix including an intercept and the expansion of covariate(s) in terms of



36 CHAPTER 2. THE MAIN TECHNIQUES

radial basis functions. The appealing feature of data augmentation is that

by introducing the latent variable Z all full conditionals take the form of

standard distributions, as will be explained in the next section.

2.2.3 MCMC inference in the flexible binary case

In analogy to the RVM specification in Section 2.1.1, a multivariate Gaussian

prior distribution is defined over the weights, whereas the exact form of the

prior depends on the specific choice for model selection. There are two con-

ceivable strategies: the first imitates the automatic relevance determination

approach, described in Section 2.1.1 where hyperparameters need to be esti-

mated that determine the precision of the weights. The second is associated

with Bayesian model averaging, where these hyperparameters take on a fixed

value a priori, however, additional indicator variables are introduced into the

model controlling the complexity of the model. While the MCMC samples

of the hyperparameters give merely an indication of the importance of the

associated basis function, the indicator samples provide a clear declaration

whether to include or to drop a basis at the current state of the MCMC

sampling scheme. Both strategies are described in turn together with their

respective sampling scheme in the following paragraphs.

Hyperparameter approach

The first approach follows the original RVM as presented in Section 2.1.1. A

Gaussian prior distribution is specified over the weights

p(ω|α) =
J∏

j=0

√
αj

2π
exp

(
−αj

2
ω2

j

)
, (2.37)

with individual smoothing parameters assembled in the vector α = (α0, . . . , αJ)T

and a Gamma prior specified over these scales

p(α) =
J∏

j=0

Γ(a)−1baαa−1
j exp(−bαj), (2.38)
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where Γ(a) =
∫∞

0
ta−1 exp(−t)dt.

If it is reasonable to include a dispersion parameter into the model to account

for under-/overdispersion in the observed responses then it would also be

necessary to specify a prior distribution for that parameter. This is however

not realized in this work. In contrast to Section 2.1.1 the specification of the

Gamma distribution must now be proper in order to receive a proper posterior

distribution, a postulation which goes back to Casella & George (1992), who

investigated the interaction between prior and posterior distribution.

Bayesian analysis of the probit regression model (2.34)-(2.36) now aims at

finding the joint posterior distribution over the unknown parameters and

auxiliary variable p(ω,α, z|y). There is no analytic solution to this problem,

but under certain conditions one is able to draw samples from this posterior

distribution and so can determine an empirical version of the joint posterior.

The Gibbs sampler is a standard sampler, where samples are alternately

drawn from the conditional distributions of one parameter given the other(s);

and these successively drawn samples form a Markov chain with the joint

posterior being the (unique) invariant distribution of the chain, see Section

2.2.1.

The Gibbs sampler is completely specified by the so-called full conditional

distributions. The priors for the coefficients and the scales have been chosen

in a conjugate way, so that the full conditionals are recognizable as standard

distributions. The usual way of deriving the full conditional of a certain

parameter (vector) is recruiting those terms of the joint posterior distribution

that contain this certain parameter (vector).

The joint posterior for the problem at hand is proportional to the product

of the likelihood times the prior distributions

p(ω,α, z|y) ∝ p(y|z)p(z|ω,α)p(ω|α)p(α)

⇔ p(ω,α, z|y) ∝ p(y|z) × exp

(
−1

2

N∑

i=1

(zi − Φ(xi)ω)2

)

× exp

(
−1

2

J∑

j=0

ω2
j αj −

J∑

j=0

bjαj

)
×

J∏

j=0

αa−1
j .
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By picking the relevant terms from the joint posterior distribution, the full

conditional densities are recognized as standard distributions

p(ω|α, z) = N (µω|·, Σω|·) (2.39)

where µω|· = Σω|·Φ
Tz

Σω|· = (A + ΦTΦ)−1,

p(αj|ωj, z) = Ga

(
a +

1

2
, b +

1

2
ω2

j

)
(2.40)

p(zi|z−i, yi) ∝
{

N(µzi|·, Σzi|·)I(zi > 0) if yi = 1

N(µzi|·, Σzi|·)I(zi < 0) otherwise
(2.41)

where µzi|· = Σzi|·Φ(xi)µω|· − wizi

Σzi|· = 1 + wi

wi = hi/(1 − hi).

In (2.40), Ga(·) denotes the univariate Gamma density (cf. (2.38)). In (2.41),

zi denotes the current value for zi and z−i the vector z with zi removed. The

indicator function is denoted by I(·) indicating if the condition, given in

parentheses, is valid. In p(zi|z−i, yi), hi denotes the ith diagonal element of

the Bayesian hat matrix, hi = Hii, H = ΦΣω|·Φ
T.

1 The usage of |· in the moments of the full conditionals generally

indicates the conditioning on other unknown parameters and the

observed data. This notational shortcut will be used for all MCMC

approaches in this thesis since full conditional distributions are typ-

ically conditional on a large set of other unknowns.

2 Especially in the MCMC context, the notation p(·) = type of dis-

tribution will be used, when a lot of place can be spare by doing

so, compared to giving the detailed specification of the respective

distribution.
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Controlling the weights by individual random scales αj is inspired by the

original RVM regression setup in Section 2.1.1. There, a type II maximum

likelihood approach (cf. Good (1965)) is taken to optimize the scales and

a scale is manually set to infinity when it exceeds a pre-specified threshold

leading to pruning of the corresponding basis.

To mimic that approach in a MCMC setup brings an unexpected inconve-

nience: as mentioned earlier the user set parameters a, b from the Gamma

prior over the scales (2.38) must be specified in order to give a proper prior

distribution. This is in contrast to the original RVM specification, where

both parameters have been set to zero being equivalent to an uniform prior

on the log scale.

However, Chakraborty et al. (2005) follow this scheme and sample these

hyperparameters as unknown parameters within a MCMC scheme. Doing

so, firstly, a measure of the uncertainty of the scales can be given and sec-

ondly the predictive distribution automatically captures the uncertainty in

the scales. This reflects a fully Bayesian analysis while on the other hand no

selection of basis function is undertaken in their approach.

However, sparsity is a core characteristic of the RVM, but it remains an

open problem how to transfer this concept from the original RVM to its

MCMC mimicry adopting these scales. As for the original setting, many αj’s

approach infinity during the optimization algorithm and as they exceed a

certain threshold the corresponding basis functions are cut from the model.

A comparable strategy in the MCMC case would be to base the decision

whether a basis is relevant or not on the posterior distribution of the αj’s.

This means assessing the complete set of basis functions and finally label-

ing these functions non-relevant, where the empirical mean of the related

scale parameter exceeds a certain threshold. Though ending up with a post-

sampling indicator of the relevance of a basis, the prediction function is still

based on the complete set of basis functions. And from a computational

perspective even worse, each MCMC loop is based on the full model instead

of only a subset of functions. This property is a pronounced burden in the

calculation of e.g. the moments in the full conditional density of the weights

(2.39), since Σω|· is a (J + 1) × (J + 1) matrix that needs to be inverted.
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An alternative ad-hoc strategy is to decide within every MCMC loop, based

on the actual sampled values αj, whether to keep or to discard the corre-

sponding basis. The main difficulty is, to specify a concrete threshold to

include or remove a basis.

After one of the previous described strategies is chosen and values of the

Gamma prior and starting values for the unknown variables have been set,

samples from (2.39), (2.40) and (2.41) are drawn in turn. After having col-

lected a large number of samples, the initial set of samples (burn-in) is dis-

carded, leaving inference to the remaining samples assumed to come from

the joint posterior distribution. Several estimators can be applied to this

sample, as explained in Section 2.2.1.

The first strategy to handle the hyperparameters is not designed to simplify

the model during the MCMC algorithm, while the second founds the basis

elimination on an arbitrary threshold. One usually prefers to have a clear

indicator whether to add or to remove a basis function that makes speci-

fication of a threshold needless. The following section describes a MCMC

version of the RVM, which accomplishes this claim with the aid of Bayesian

model averaging.

Indicator approach - Bayesian model averaging

Determination of relevance is here no longer accomplished by the random

hyperparameters αj. Instead, these hyperparameters are replaced by a single

pre-specified value 1/v, which is not subject to randomness, in the weights

prior (2.37).

Bayesian model averaging, as described in Section 2.2.1, assumes that there

is no unique optimal model, but instead the best approximation to the truth

is a mixture of models from some model space. In the course of this thesis a

particular component model is fully characterized by the set of utilized basis

functions as indicated by the parameter vector γ+. The respective part of
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the Bayesian probit model (2.35) is then given as

zi = Φγ+(xi)ωγ+ + εi,

where the vector of coefficients is now modified to ωγ+ = (ω0γ
+
0 , ω1γ

+
1 , . . . ,

ωT γ+
J )T and γ+

j = {0, 1}, j = 1, . . . , J + 1, such that γ+
j = 1 if the jth basis

function is in the model and γj = 0 if it is not. Hereby, J + 1 denotes the

size of the complete stock of potential basis functions, while usually only a

maximum set of size T , with T ≤ J + 1 is admitted in the model. This

reflects the belief that a wide range of different basis function is needed to fit

a wide range of functional forms, while normally a subset of only few selected

basis functions represents the truth quite decently. Φγ+(xi) is defined in an

analog way to the weights, with the indicators working on the columns of

the design matrix representing the basis functions.

In this formulation all elements in γ+ are unknowns having to be sampled

during the sampling scheme. A MH-step would scan over all elements in γ+

and sample each individual γ+
j . If the number of possible basis functions

is very large the computational effort to approximate the posterior density

would be immense and impractical. A more convenient way is to redefine

γ+ as γ = {locations of nonzero elements in γ+}. Typically, the dimension

of γ is much smaller, however, its dimension is no longer fixed and thus a

sampling scheme allowing for variable dimensions is needed, which is the

reversible jump algorithm.

A prior distribution on the basis function set is adopted via a prior over γ

where Denison et al. (2002) suggest application of a discrete uniform that

takes

p(γ) =

(
J + 1

dim(γ)

)−1

× 1

T + 1
. (2.42)

Here, dim(γ) denotes the number of elements in γ, J + 1 the number of

the candidate locations for the basis functions, and T the maximum num-

ber of basis functions allowed. The ’+1’ in ’J+1’ comes from the intercept

in the model and the ’+1’ in ’T+1’ means that also an empty model with

dim(γ) = 0 is allowed. The maximum number of basis functions T is typi-

cally chosen so large that it effectively does not affect the posterior. Given
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model dimension dim(γ), each combination of dim(γ) basis functions from

the stock of J + 1 candidates has equal probability and each model com-

plexity is equally likely. This prior does not place an explicit penalty on the

model complexity. However, as described in connection with Bayesian model

selection/averaging, the marginal likelihood already contains a penalty on

the dimension, which depends on the prior variance of the coefficients (cf.

Ockham’s razor in Section 2.2.1). So this uniform prior seems adequate and

will be chosen throughout this thesis, while also alternative types, like e.g.

Poisson and truncated geometric prior are used in practise.

The reversible jump algorithm (cf. Green (1995)), which is based on the

Metropolis-Hastings sampler, is briefly described in the following. Only the

two move types BIRTH and DEATH are applied here to traverse the poste-

rior probability surface, naming jumps in higher and lower model dimensions,

respectively. The current model is assumed to be of dimension t := dim(γ).

BIRTH. Proposal of adding a randomly chosen new basis (including inter-

cept) from those that are not present in the current model with probability

bt.

DEATH. Proposal of removing a randomly chosen basis (including inter-

cept) from those that are present in the current model with probability dt.

The proposal probabilities depend on the current complexity of the model,

denoted by t, in that sense that they are chosen as bt, dt = 0.5 for 0 < t < T

and b0, dT = 1 and bT , d0 = 0. A specific basis function to be born or to

die is randomly selected with uniform probability from the basis functions

currently being excluded or contained, respectively.

Under this specification, the acceptance probability of a proposed move from

model γ of dimension t to model γ ′ of dimension t′ is

α = min

{
1,

p(z|γ ′)

p(z|γ)
× R

}
, (2.43)

with the ratio of the marginal likelihoods multiplied by a constant R, where

R is the ratio of probabilities given by d′
t/bt for a BIRTH and b′j/dj for a
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DEATH. The specific form of the acceptance probability (2.43) is due to

the marginalization of (i.e. integration over) the weight vector allowing for

a block update of γ together with ω. This block update proceeds by first

generating a new sample of γ and then generating the new coefficients for

these sampled basis functions. For details on deriving this expression see

Denison et al. (2002) and Ranyimbo & Held (2006).

The specific from of the marginal likelihood is presented below since it relies

on the moments from the full conditional distribution of the weights. By

realization of a uniform random number u the proposed jump from t to t′

dimensions is accepted if u < α, where α is the acceptance probability (2.43).

A very appealing feature of this method is that the model complexity is small

with high probability if the data suggest a simple model.

Samples of the unknown parameter vector ωγ and the observations from the

latent variable z are obtained from the conditional densities (2.39) and (2.41),

but now based on the model as defined by the model selection parameter γ.

It is stressed here again, that the former hyperparameter vector α, is now

replaced by a pre-specified and fixed prior precision v−1 (i.e. prior variance v)

in the prior over the weights (2.37), and is not subject any form of uncertainty

or randomness. Consequently, it does not have to be sampled in the following

sampling scheme:

p(ωγ |z) = N(µωγ |·, Σωγ |·) (2.44)

where µωγ |· = Σωγ |·Φ
T
γz

Σωγ |· = (v−1I + ΦT
γΦγ)−1,

p(zi|z−i, yi) ∝
{

N(µzi|·, Σzi|·)I(zi > 0) if yi = 1

N(µzi|·, Σzi|·)I(zi < 0) otherwise
(2.45)

where µzi|· = Σzi|·Φγ(xi)µωγ |· − wizi

Σzi|· = 1 + wi

wi = hi/(1 − hi).

Here, hi is the ith diagonal element of the Bayesian hat matrix, hi = Hii, H =

ΦγΣωγ |·Φ
T
γ and I(·) again denotes the indicator function.
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Finally, the marginal likelihood which is used in the acceptance probability of

the γ-sampling scheme (2.43) is based on the moments of the full conditional

of the parameter vector ωγ (2.39). It is given by

p(z|γ) = (2π)−
N
2
| Σωγ |· |

1
2

| vγ | 12
exp

(
−1

2

(
zTz − µT

ωγ |·Σ
−1
ωγ |·µωγ |·

))
, (2.46)

where the exponential term zTz cancels out in the acceptance probability.

Here, vγ denotes the prior covariance matrix over the weights for a model as

defined by γ.

Model selection occurs here in each cycle of the sampling scheme. Yet, not a

single most probable model is sought, but instead, following the Epicurean

spirit described in the respective paragraph of Section 2.2.1: every type of

model that is able to explain the data is considered in order to make the final

predictions. This is called Bayesian model averaging and yields prediction

by averaging the results over all models visited during the sampling scheme.

The different models are characterized by the parameter vector of varying

length γ, naming these basis functions that are in the model.

The histogram estimator (cf. (2.30)) for the posterior mean prediction y∗ at

an unseen x∗ is based on the samples y∗[j]
:= G

(
Φ(x∗)ω[j]

)
, where G(t) is

the Gaussian cumulative distribution function. It is given by

E(y∗|x∗,y) ≈ 1

m

J∑

j=J−m+1

(y∗[j] |y, z[j],ω[j]γ [j]), (2.47)

where it is made explicitly that the samples y∗[j]
are conditioned on the cur-

rent samples for z[j], ω[j] and γ [j].

The right hand side of (2.47) reflects the approximation of the integral over

the parameter space (ω, z) and the model space γ. Here, the final estimating

function is based on potentially different subsets of basis functions in each

MCMC loop. This contrasts the original RVM where the final prediction

model displays reduced complexity.

A slight modification of the estimator (2.47) lies in computing the posterior
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mean estimator for the linear predictor z∗ := Φ(x∗)ω via a histogram esti-

mator and then to link this estimate to the desired probability by using the

response function G
(
Ê(z∗|y)

)
. While this estimator is equivalent to (2.47)

in the Gaussian response case, it is slightly different otherwise. This latter

estimator will be used in the simulation study of the binary case (cf. Section

4.1.4).

2.3 Covariate measurement error and its cor-

rection

So far, all of the covariates have been assumed to be collectable without

any error. A more realistic view is to allow for error-prone covariates, where

sources of error include e.g. imperfect measurement devices or defective oper-

ationalization of factors. Measurement error of the response is not discussed

here, since it is usually much less problematic.

Popular examples of covariate measurement error are described by Fuller

(1987) and Carroll et al. (1995), ranging from bioassay experiments with

plants to the investigation of earthquakes. Particularly in the area of econo-

metrics this problem has received a lot of attention (cf. Schneeweiß (1990))

where relevant econometric variables, like e.g. intensity of motivation, are

hardly observable. Also in the field of medicine and epidemiology this error

has generated major research interest (cf. Willett (1998)) where e.g. individ-

ual exposures to a certain radiation or nutrition habits of study participants

need to be recorded and their influence on disease is investigated.

It is stressed, that there is almost no kind of measurement that is free from

potential measurement error. This error may seem negligible in some cases,

however, in a lot of cases it is not and the impact of this error on the analysis

is indisputable in the existent literature (cf. all of the references given above).

Statistical analysis ignoring such inherent error is referred to as ’naive analy-

sis’ and, for instance, Carroll et al. (1999) emphasize that when measurement

error is ignored
”
conventional parametric and nonparametric techniques are
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no longer valid“. That means, the parameter estimates from that so-called

naive analysis, where measurement error is ignored, are usually biased.

Statistically speaking, the fundamental parameters ω in the ’ideal mean

model’, formulated in the true, however, unobservable covariate ξ

E(Y |ξ) = f(ξ,ω) (2.48)

are usually not retained in the ’observed mean model’, where the error-prone

covariate X replaces ξ

E(Y |X) = f(X,ω∗), (2.49)

with ω 6= ω∗.

Note:

The fundamental mean model parameters collected in ω are here and in

the remainder of this section considered as being non-random and thus the

moments need not to be conditioned on ω. This frequentistic perspective as

sketched in the paragraph ’Connection between RVM inference and penalized

likelihood estimation’ in Section 2.1.2 is inherent in all calibration methods

applied to the RVM concept.

The following paragraphs summarize some ’classical’ as well as very recent

approaches to error correction briefly. The reader, not yet familiar with the

terminology in that area is recommended to skip this at first reading and

resume reading where the models for measurement are introduced.

There are a range of approaches to error correction being employed in (non-)

linear regression. Among these are regression calibration which was sug-

gested by Carroll & Stefanski (1990) and Gleser (1990) and an approach

based on simulation and extrapolation called SIMEX by Cook & Stefanski

(1994). Though both methods usually do not yield consistent estimators,

they are able to reduce the measurement error induced bias to a great ex-

tent, investigated e.g. by Wolf (2004). These two methods are the first ones

to be readily implemented in a statistical software package, which may also

speak for their popularity, see http://www.stata.com/merror/ for further
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information. An extensive description of both methods is also provided by

Carroll et al. (1995).

Also likelihood methods, which are particularly appealing because of the op-

timality properties of maximum likelihood estimates, have been investigated

(cf. Carroll et al. (1995), Schafer & Purdy (1996), Küchenhoff & Carroll

(1997)). The likelihood of the observed data can, except for the Gaussian

and probit regression model (cf. Fuller (1987), Carroll & Gallo (1984)), not

be obtained analytically and usually requires numerical integration – a fact

that is, however, less appealing.

A very recent approach by Carroll, Midthune, Freedman & Kipnis (2006) in-

vestigates ’seemingly unrelated regression’ to obtain more precise estimates

of the inherent attenuation, i.e. deflation to zero, when basing analysis on

error-prone data. Being interested in the attenuation introduced by e.g.

error-prone protein intake data and having a second related error-prone vari-

able like e.g. energy intake available, fitting simultaneous measurement error

models for protein and energy may result in better estimates for the system-

atic bias of the protein measurement tool.

However, particularly in the flexible regression case the problem of covariate

measurement error has not received extensive attention, yet. A most dis-

couraging result has been stated by Fan & Truong (1993) who investigated

consistent estimators, which have the desired property of deviating from the

true function on a compact interval with probability zero when the sample

size goes to infinity. A crucial point for practical usefulness is the rate of

convergence describing the order in terms of the sample size N an estimator

approaches the true function. They found that the optimal rate of conver-

gence of an consistent nonparametric estimator under measurement error is

(log(N))2, which is impractically slow.

In a very recent work on that subject, Schennach (2004) presents a
√

N

consistent estimation of nonlinear models with covariate measurement error.

The integral equations relating the distribution of true and observed vari-

able are converted into algebraic equations by Fourier transform. Resolving

these equations allows to identify arbitrary moments of the true unobserv-

able variable which can then be used in moment based estimators like e.g.
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nonlinear least squares or general extremum estimators. The key to the fast√
N convergence rate is here that the proposed moment estimator contains

a function, which is able to downweight the noisy tail of the estimated char-

acteristic function of the latent ξ.

Another possible resort to Fan & Truong (1993) is the consideration of ap-

proximately consistent estimators in flexible, yet parametric, subclasses of

the nonparametric family. The RVM is a member of this subclass among

others, like e.g. regression splines Carroll et al. (1999) describe a correction

method, based on the popular regression calibration approach, for flexible

regression using (penalized) regression splines. They also present a SIMEX

version of kernel estimators and spline smoothing.

A Bayesian approach to covariate measurement error in flexible regression

is suggested by Berry et al. (2002) based on MCMC sampling of the true

but unknown covariate observations together with the other unknowns. The

basic principle of Bayesian error correction goes back to Richardson & Gilks

(1993a) and Richardson & Gilks (1993b), and an overview is given by Richard-

son (1996).

For the sake of simplicity, only a single error-prone variable will be consid-

ered in the following sections. Extension to the case of multiple covariates is

straightforward as long as there are no dependencies between the covariates –

a strong restriction indeed. The case of multiple covariates in flexible regres-

sion is more complicated and, to the author’s knowledge, has been studied in

the existent literature only by Ganguli, Staudenmayer & Wand (2005). They

develop a likelihood-based method for fitting additive models where random

coefficient penalized splines are used to estimate the smooth functions. The

problem of analytically intractable integrals in the likelihood is overcome by

using a nested Monte Carlo Expectation Maximization algorithm. There,

the samples from the unknown covariate are drawn in a Metropolis Hastings

step and then used in a nested ’expectation maximization’ (EM) algorithm.

Throughout this thesis it is further claimed that the error-prone variable is

continuous. Measurement error in categorical variables, typically called mis-

classification, is discussed by Küchenhoff, Mwalili & Lesaffre (2005) and is
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beyond the scope of this thesis.

Firstly, an overview of the standard measurement error models is given and

then the new correction methods for flexible regression are motivated and

briefly described in order to elaborate how the different strategies are con-

nected and in which respects they differ.

2.3.1 Models for measurement error

The fundamental prerequisite for error correction is the specification of an

error model, which relates the observed error-prone variable X to the true

variable ξ one would ideally like to observe. Two general types of error

processes as presented by Carroll et al. (1995) are illustrated in the following.

The classical additive error

The concept of classical measurement error is appropriate, when e.g. one

tries to determine ξ, but the technical device does not allow for a correct

measurement. Measurement deviates randomly from the true value, but

is expected to be correct on average. A common model for that type of

error process links the true and the observed covariate, sometimes also called

surrogate variable, in an additive way

X = ξ + δ, (δ, ξ) ∼ indep., E(δ|ξ) = 0, (2.50)

which is frequently extended to δ ∼ N (0, σ2
δ ) and ξ ∼ N (µξ, σ

2
ξ ). This

assumption will be used later for several correction methods, e.g. basis func-

tion calibration and structural quasi likelihood. A more flexible specification

for the distribution of ξ is the mixture of normals as applied in Davidian &

Gallant (1993) and Carroll et al. (1999). While in model (2.50) the variable

X denotes a single error-prone measurement of ξ, it may generally be the

case that a series of replicate measurements are available. Apart from the

particular usage of X in the error model (2.50) above, the variable X may
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just as well represent the average over m possible replicate measurements,

which is an unbiased estimator for ξ in model (2.50). Of particular interest

for some of the later error correction methods, is the conditional density of ξ

given X. For δ and ξ being Gaussian, this conditional distribution is given

as

pξ|X =
1√

2πσξ|X
exp

(
−1

2

(ξ − µξ|X)2

σ2
ξ|X

)

µξ|X = µξ + λ · (X − µξ), λ :=
σ2

ξ

σ2
ξ + σ2

δ/m

σ2
ξ|X =

σ2
ξσ

2
δ/m

σ2
ξ + σ2

δ/m
, (2.51)

where the surrogate variable X may now stand for an average over m possible

replicate measurements.

If the real data provides mi replicate measurements of ξi for subject i, the

measurement error variance can be estimated from the data by the usual

components of variance analysis

σ̂2
δ =

∑N
i=1

∑mi

j=1(xij − xi)
2

∑N
i=1(mi − 1)

, (2.52)

with xi = 1
mi

∑mi

j=1 xij denoting the average over a subjects’s replicates.

Furthermore, µξ and σ2
ξ can be consistently estimated from the sample using

the analysis of variance formulas

µ̂ξ =
N∑

i=1

mixi/
N∑

i=1

mi = µ̂X

σ̂2
ξ =

[
N∑

i=1

mi(xi· − µX)2 − (N − 1)σ̂2
δ

]
/ν

ν =
N∑

i=1

mi −
N∑

i=1

m2
i /

N∑

i=1

mi. (2.53)

The classical additive error model (2.50) is despite its simplifying character

the prevalent case to be considered when new correction methods are stud-

ied. It is well known in the literature that even this classical type of error,
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expected to be zero on average, leads to biased parameter estimates in a

regression context. More general error models account for the observed vari-

able possibly being biased, which might be caused by some other variables or

an intercept, representing e.g. erroneous gauging (cf. Carroll et al. (1995)).

The Berkson error

A slightly different model renders the true variable being the result from

the observed variable plus some independent random deviation. This seems

reasonable when e.g. individual exposure to a certain radiation is measured

by a stationary recording device. These measurements typically do not reflect

one’s personal individual exposure, but merely represent one determinant of

exposure. The true individual exposure varies among persons according to

their personal habits of being outdoor, ventilating the rooms, etc.

These foregoing considerations are captured in the model

ξ = X + δ, (δ,X) ∼ indep., E(δ|X) = 0, (2.54)

which is frequently extended to δ ∼ N (0, σ2
δ ). Here in (2.54), X denotes again

a single error-prone observation of ξ, though it may generally be the case that

a series of replicate measurements are available. If not stated otherwise, the

variable X may just as well represent the average over m available replicate

measurements, as in the following specification of the conditional density of

the latent variable given the observation(s)

pξ|X =
1√

2πσδ

exp

(
−1

2

(ξ − X)2

σ2
δ

)
. (2.55)

The Berkson model is a special case of the more general ’regression calibra-

tion model’ additionally allowing for a bias, which can be introduced into

the model by an intercept and possibly further covariates (cf. Carroll et al.

(1995)).

It is not always clear, which error model to use and then the choice between

them is made on the basis of convenience. In practical applications one
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may also find hybrid forms of both error models. Heid, Gerken, Wellmann,

Küchenhoff, Kreienbrock & Wichmann (2002) investigate the effect of radon

exposure and lung cancer where measurements of the exposure come from

two sources: a questionnaire and a measuring instrument. Either contains

substantial measurement error, however the type of error differs between both

methods.

2.3.2 Methods for error correction

After a sensible choice of the error model has been made, there are several

approaches to measurement correction depending on the error model and the

type of statistical analysis. In this thesis, the focus lies on error correction

for flexible regression for Gaussian, binary and Poisson responses and the

error is assumed to come from the classical error model (2.50) unless stated

otherwise.

This work develops a number of new approaches that are highlighted here,

briefly. The so-called ’basis function calibration’ method is a transformation

of the structural regression splines (cf. Carroll et al. (1999)) to suit the pop-

ular radial basis functions (RBF) applied by the relevance vector machine

(RVM).

Furthermore, an exact structural quasi likelihood method for flexible Gaussian

regression will be developed and additionally a refined approximative method

in the spirit of expanded regression calibration for flexible regression in non-

Gaussian cases (cf. Carroll et al. (1995)).

The nonparametric SIMEX as presented by Carroll et al. (1999) will be

adopted here for the RVM regression.

The core idea of Bayesian measurement error correction, as described by

Richardson (1996), will be introduced into the MCMC version of the RVM

from Section 2.2.3.

The major part of the methods applied in this thesis are roughly described in
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the following, while a detailed description follows in the respective chapter,

where they are used for the first time.

However, this work also develops ’basis function calibration’ for two error-

prone covariates and an approach for measurement error correction in a flex-

ible model for binary longitudinal data. The details on these latter, very

specific, methods are postponed to chapter 4.

Standard regression calibration

The main purpose of regression calibration is to find an approximation to

the observed mean model E(Y |X) in (2.49), while retaining the fundamental

model parameters ω of the ideal mean model E(Y |ξ) in (2.48) (cf. Carroll

et al. (1995)).

This approximation is implemented by replacing the latent ξ in the ideal

model by its expectation given the surrogate, i.e. µξ|X = E(ξ|X), which

yields

E(Y |X) ≈ f
(
µξ|X ,ω

)
.

The basic idea is that under small measurement error ξ will be close to its

expectation µξ|X . However, even with small measurement error, ξ may not

be close to X. Thus naively replacing ξ by X may lead to large bias, hence

the need for calibration. Though standard regression calibration itself is not

applied in this work, it is the foundation of basis function calibration and

structural quasi likelihood, both discussed later. This justifies the following

presentation, which is a bit more detailed compared to the other methods

presented in this chapter.

Regression calibration is a pre-procession of the covariate observations and

these modified observations are then used for the analysis. This analysis,

however, is then performed by the standard routine as if no measurement

error was in the data. Each true but unobservable covariate observation ξi
1

1Although the variable ξ is latent, i.e. unobservable, this work occasionally needs to

refer to ξi and therefore uses the term observation. This pun is not intended, but necessary.
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is replaced by µξ|xi
= E(ξ|X = xi) and then the standard analysis is carried

out. If there are replicate measurements available, then X and the realization

xi may again represent the average of these replicates.

The desired quantities µξ|xi
, i = 1, . . . , N are readily derived for the Berkson

error model from (2.55) as

µξ|xi
= xi. (2.56)

And for the classical error model with ξ and δ being normally distributed

they are straightforwardly derived from (2.51) as

µξ|xi
= µξ + λ · (xi − µξ), λ :=

σ2
ξ|xi

σ2
δ/m

(2.57)

σ2
ξ|xi

=
σ2

ξσ
2
δ/m

σ2
X

=
(σ2

X − σ2
δ/m)σ2

δ/m

σ2
X

, (2.58)

where λ has been slightly re-arranged compared to (2.51). The error vari-

ance σ2
δ needs to be known or estimated from e.g. validation/replication data

using formula (2.52). The mean of the latent variable µξ can be calculated

from its analysis of variance formula (2.53).

This approach yields consistent parameter estimates in the linear regression

model. In other non-linear regression cases this is merely an approximate

working model for the observed data which can be checked via residual plots

and possibly modified accordingly.

Since assumptions about the distributions of ξ are necessary to perform re-

gression calibration this method is categorized as a ’structural method’ in

contrast to ’functional methods’, which do not need any distributional as-

sumptions about ξ. Carroll et al. (1995) present the more general case of

multiple, possibly error-prone, correlated covariates and generalizations to

nonlinear and nonadditive measurement error.

Adopting that strategy for the relevance vector machine regression reveals

an interesting aspect of how regression calibration modifies the radial basis

functions (RBF). This is shortly highlighted in the following two paragraphs.
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Regression calibration and basis function modification

The ideal RVM mean model is

E(Y |ξ) = G
(∑J

j=1 ωjφj(ξ) + ω0

)
. (2.59)

The replacement of ξ by its calibrated version µξ|X in effect proposes the

following approximation to the observed mean model under retainment of

the true mean model parameters ω0, . . . , ωJ

E(Y |X) ≈ G
(∑J

j=1 ωjφj(µξ|X) + ω0

)
. (2.60)

Through this work, the focus lies on the classical measurement error model

(2.50). Here is, how standard regression calibration for that case affects the

RVM.

Straightforward use of the calibrated covariate µξ|X from (2.57) modifies each

univariate radial basis function φj(ξ) = exp(−η(ξ − cj)
2) in the ideal model

(2.59) into

φj

(
µξ|X

)
= exp(−η(µξ|X − cj)

2)

= exp(−η · (µξ + λ · (X − µξ) − cj)
2),

designated to be utilized in the working model (2.60). The kernel parameter

η determines the width of the Gaussian basis and the knots cj define the

position on which the jth basis function is centered.

Following the original RVM setup (cf. Tipping (2000)), using a RBF type

kernel with knots given by the N covariate observations xi, i = 1, . . . , N (now

subject to calibration!) and assuming the same number of replicates for all

observations, which means that λ in (2.57) is the same for all observations,

the jth basis function at position cj = xj is now given as

φj

(
µξ|xi

)
= exp(−η2(µξ|xi

− µξ|xj
)2)

= exp(−(η · λ)2 · (xi − xj)
2). (2.61)

Thus, the inference of the weight parameters applying standard regression

calibration is equivalent to a naive analysis using a modified basis kernel with
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parameter η∗ = η · λ, instead of η.

What is the intuition behind error correction via basis modification and how

does this modification affect the quality of error correction? The following

paragraph describes the mechanism behind regression calibration, first on

the basis of classical linear regression and finally generalizes to the flexible

RVM regression.

A note on the mechanism behind regression calibration

The connection between regression calibration and modification of the uti-

lized basis function reveals an appealing new perspective on how regression

calibration works. By choosing the example of classical linear regression, this

idea is easily put across.

Figure 2.2 displays the true linear relationship between covariate ξ and re-

sponse Y and observations (xi, yi) generated from that functional form under

response error and covariate measurement error. Naive linear regression can
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Figure 2.2: Classical linear regression can be seen as fitting a basis function

to the observed data. When covariate measurement error is introduced, naive

estimation and regression calibration exclusively differ in the type of basis

function they fit to the data.

now be viewed as fitting a linear basis f(x) = x to the observed data. This
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basis function is the steep, 45 degree line in the figure.

In an analog way, regression calibration in linear regression can then be

understood as fitting the more flattened linear basis f(x) = E(ξ|x) also

displayed in Figure 2.2 to the observations. Intuitively, the estimated coef-

ficient under calibration needs to be larger then the naive one in order to

fit that flattened basis properly to the observed data. Indeed, the naive es-

timate and that under calibration for this example are β̂naive = 0.7073 and

β̂calib = 1.8099, respectively. In linear regression and parametric regression

in general, the accuracy of both estimates is assessed by simply comparing

the parameter estimates β̂naive and β̂calib with the true regression coefficient,

which is βtrue = 2 in this example.

However, in the case of flexible regression the true functional form is not

necessarily in the scope of the applied, flexible model. The quality of the

estimates is then checked by comparing the true underlying function with

the prediction functions from the naive and corrected analysis, respectively.

Prediction means plugging in the parameter estimates in the ideal mean
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Figure 2.3: The quality of naive and corrected analysis in the flexible regres-

sion is conventionally judged by the accuracy of prediction both methods

achieve. Here, this principle is visualized for the classical linear regression.

model and evaluating for a set of yet unseen covariate observations that are

free from measurement error: for the linear regression example, discussed
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here, this means plugging in β̂naive and β̂calib, respectively, into the ideal

(classical regression) model Y = ξβ and then evaluating at a set of prede-

termined points ξk, k = 1, . . . , K. Figure 2.3 displays the true, the naive and

the corrected (under regression calibration) estimated relationship between

ξ and Y . It can be seen that regression calibration leads to a much steeper

estimate of the true relationship, which is obviously more accurate than the

naive attenuated estimate.

This principle of calibration fitting a more flattened basis type to the ob-

served data also carries over to the nonlinear RVM regression: the basis

under calibration (2.61) is more flattened (less peaked) than the original ba-

sis because η∗ < η for σ2
δ > 0, as can be seen from Figure 2.4. A simulation
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Figure 2.4: When covariate measurement error is introduced into the RVM

regression model, naive estimation and regression calibration exclusively dif-

fer in the type of basis function they fit to the data.

study indicated that, for the RVM approach, standard regression calibration

applying (2.61) is more or less equivalent to the naive analysis. So standard

regression seems not to be a promising correction approach in a flexible re-

gression setup. However, the principle of regression calibration can be carried

forward to a more successful method which will be termed as ’basis function

calibration’ and will be presented in the next paragraph.
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Basis function calibration

Carroll et al. (1999) present a structural approach to regression splines, which

extends the idea of standard regression calibration to flexible regression.

Rummel (2004) combines the core of this approach with the relevance vector

machine and terms this ’basis function calibration’. Using the radial basis

function type is the prominent new challenge, however, making this approach

particularly profitable. The idea of basis function calibration is sketched in

the following.

An intuitive improvement of standard regression calibration, which fits the

working model (2.60) to the data lies in finding a better approximation of

the observed mean E(Y |X), i.e. a more accurate working model under re-

tainment of the parameters of the ideal mean model ω (2.59). Indeed an

exact model will be developed for the Gaussian RVM regression.

In the context of flexible regression the predictor f ∗ is formulated in terms

of nonlinear basis functions φj(ξ) rather than in ξ itself. Consequently, it is

natural to think of replacing each basis function φj(ξ) by E(φj(ξ)|X), instead

of replacing ξ by E(ξ|X).

The values of the basis functions at a certain observation ξi in the ideal model

are organized in row vectors

Φ(ξi) = [φ0, φ1(ξi), . . . , φJ(ξi)].

Thus, it is convenient to define the calibrated version of this vector for each

observation as

µΦ(ξ)|xi
:= [φ0, E(φ1(ξ)|xi), . . . , E(φJ(ξ)|xi)]. (2.62)

This is still a row vector and will be used for the new approximate observed

mean model. The basic idea is again, similar to the standard regression cali-

bration, that under small measurement error the latent row vector Φ(ξi) will

be close to µΦ(ξ)|xi
. However, even with small measurement error, Φ(ξi) may

not be close to Φ(xi). Thus naively replacing Φ(ξi) by Φ(xi) may lead to

large bias, hence the need for calibration.
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Note that if φj(·) is a linear basis E(φj(ξ|X)) simplifies to φj (E(ξ|X)), which

is equivalent to standard regression calibration as discussed in the previous

paragraph. Choosing the typical radial basis function (RBF) type, the com-

putation of the elements E(φj(ξ)|X) in the calibrated vector µΦ(ξ)|X is more

complex. Chapter 3 presents details on the calculations for univariate ra-

dial basis functions under the structural assumption of ξ ∼ N (µξ, σ
2
ξ ) and

δ ∼ N (0, σ2
δ ). A more flexible specification of ξ following a mixture of nor-

mals, as adopted by e.g. Davidian & Gallant (1993) and Carroll et al. (1999)

leaves the core of the method unchanged and the required computations of

the elements E(φj(ξ)|X) still tractable. However, it requires the estimation

of the associated parameters of this mixture distribution.

In the particular case of Gaussian regression, i.e. G(z) = Id(z) = z, the

replacement of the row vector Φ(ξ) by µΦ(ξ)|X (cf. (2.62)) yields an exact

representation of E(Y |X) in terms of the parameter vector ω of the ideal

mean model, i.e.

E(Y |X) = µΦ(ξ)|Xω. (2.63)

Here, the parameters collected in ω are viewed as non-random and thus

conditioning on the left hand side is superfluous. In any other case than the

Gaussian regression case, where G 6= Id, this is an approximate, so-called

working model for the mean function of the observed data, i.e.

E(Y |X) ≈ G(µΦ(ξ)|Xω). (2.64)

Inference for the RVM using basis function calibration proceeds then in a

standard way as described in Section 2.1.2, but now, of course, with the new

design matrix, defined as

Φc =




µΦ(ξ)|x1

µΦ(ξ)|x2

. . .

µΦ(ξ)|xN




utilizing the calibrated row vectors from (2.62).
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Rummel (2004) presents evidence of the improvement that can be achieved

by using this method in the Gaussian case. In that case this method retains

an analytical solution for the posterior mean estimator for the weights ω (cf.

2.11), which is a neat property since a time consuming scoring algorithm can

be prevented.

This working model (2.64) for basis function calibration will later also be

used for binary and Poisson distributed responses treated in this work.

Viewing this measurement error problem in terms of the mean model is

halfway to a more general class of correction methods that consider correction

of the so-called ’score function’ and thus addressing both, mean and variance

function.

Structural quasi likelihood

Earlier in Section 2.1.2, the connection between finding the posterior mean

of the weights in the RVM regression setup and solving a penalized score

function has been established. As described by Carroll et al. (1995), chapter

7, the essence of likelihood based measurement error correction lies in finding

the likelihood, conditional on the observed data

pY |X(y|x,ω) =

∫
pY |ξ(y|ξ,ω)pξ|X(ξ|x)dξ, (2.65)

where parameters, besides the fundamental mean model parameters ω, are

suppressed here for the sake of clarity. Further parameters inherent in (2.65),

include variance parameters in the likelihood function and parameters of the

conditional distribution pξ|X , like e.g. the measurement error variance.

Maximizing the modified likelihood pY |X(y|x,ω) from (2.65) with respect to

ω yields error corrected parameter estimates for ω. However, the likelihood

of the observed data pY |X(y|x,ω) does rarely represent a standard density

and its specific form is usually not even computable due to the complexity

of the integration.

An appealing facilitation of parameter estimation is the quasi likelihood
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method introduced by Wedderburn (1974) and further developed by McCul-

lagh (1983). In that approach, the unknown parameters are estimated from

the mean and variance function only, rather than from the full likelihood.

This is the basis for the structural quasi likelihood correction as presented

by Carroll et al. (1995) and applied e.g. by Augustin (2002) in the context

of survival analysis. Here, the error correction affects only the mean and the

variance function of the model not the full likelihood.

The ’ideal mean model’ is recalled here from (2.48) as

E(Y |ξ) = f(ξ,ω) (2.66)

and the ’ideal variance model’ is defined as

V(Y |ξ) = σ2g2(ξ,ω, θ), (2.67)

based on the true but latent covariate ξ. As before the respective model

parameters are assumed being non-random and thus do not appear in the

conditional moments on the left hand sides.

Considering the RVM from a frequentist’s view with fixed ω its ideal mean

function is represented by a sum of weighted basis functions, which is in

matrix notation

E(Y |ξ) = G(Φ(ξ)ω),

while the ideal variance function is specified according to the type of response

distribution and possibly accounting for over- and underdispersion and het-

eroscedasticity.

Now, given the specifications of the mean model E(Y |ξ) and the variance

model V(Y |ξ) together with realizations (yi, ξi), i = 1, . . . , N , where it is as-

sumed for a moment that the latent ξi could be observed, the quasi score

function for the parameters ω is computed as

sξ(Y, ξ,ω) =
N∑

i=1

∂ E(yi|ξi)

∂ω

yi − E(yi|ξi)

V(yi|ξi)
. (2.68)

E(Y |ξi) and V(Y |ξi) account e.g. for the type of response distribution. Equat-

ing (2.68) to zero yields the parameter estimates ω̂. If the underlying model
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is a generalized linear model in canonical form this coincides with the usual

score function derived as first derivative of the log-likelihood with respect to

the unknown parameters. Even with other models, under appropriate reg-

ularity conditions, the estimators obtained from (2.68) are still consistent,

asymptotically normal and this estimation method is the most efficient one

among those being linear in Y .

Estimation of the additional variance parameter σ2 and the nuisance para-

meters θ in (2.67) can be achieved by solving

sξ(Y, ξ, σ2, θ) =
N∑

i=1

∂ log(V(yi|ξi))

∂(σ2, θT)T

(
(yi − E(yi|ξi))

2

V(yi|ξi)
− N − (J + 1)

N

)
= 0,

(2.69)

where J + 1 denotes here the number of current weights in the model. How-

ever, the variance parameter estimation for the RVM, where σ2 is a random

variable, will again be derived via an approximation to the marginal likeli-

hood as before (cf. Section 2.1.2). Consequently, (2.69) will not be considered

further.

An appropriate quasi score function for the relevance vector machine needs

to account for the specified prior over the fundamental parameters ω. The

adopted Gaussian prior (cf. 2.6) works as a quadratic penalty on the coef-

ficients, and under this supplement the quasi score function from (2.68) is

slightly modified to the penalized quasi score function

sξ(Y, ξ,ω) =
N∑

i=1

∂ E(yi|ξi)

∂ω

yi − E(yi|ξi)

V(yi|ξi,ω, θ)
− ωA.

In the structural quasi likelihood approach error correction is realized by

substituting E(Y |ξ) and V(Y |ξ) by their observed counterparts

E(Y |X) =

∫
E(Y |ξ)pξ|Xdξ (2.70)

V(Y |X) =

∫
V(Y |ξ)pξ|Xdξ (2.71)
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under retainment of the fundamental mean and variance model parameters

(cf. e.g. Carroll et al. (1995)). This yields the modified estimation equation

N∑

i=1

∂ E(yi|xi)

∂ω

yi − E(yi|xi)

V(yi|xi,ω, θ)
− ωA = 0. (2.72)

Like in other structural correction methods it is again indispensable to spec-

ify distributions over ξ and δ to compute the conditional distribution p(ξ|X),

which is required for calculating E(Y |X) and V(Y |X).

Through the connection between solving a penalized quasi score function and

Bayesian inference in the RVM as described earlier in Section 2.1.2, finding

the root of the modified score function (2.72) yields a corrected estimate of

the posterior mode of the distribution p(ω|y,α, σ2). The posterior covari-

ance matrix is given by the inverse expected Fisher matrix, which is derived

via the first derivative of the penalized score vector (2.72) with respect to

ω. This estimator does, however, not take into account that the moments

of p(ξ|X) might have been estimated and not given a priori. Accounting for

that uncertainty properly remains an open problem.

Theoretically, it is similarly possible to compute the corrected moments of

the marginal likelihood and use these in (2.69) to estimate the variance pa-

rameters σ2 and α – at least if a uniform prior has been specified over these

parameters. However, an approximation for the marginal likelihood will be

sought and maximized as described in Section 2.1.2.

The analytic computation of the mean (2.70) and variance function (2.71) of

the observed data is restricted to Gaussian responses. This approach itself

and how it is embedded in the estimation of the hyperparameters is discussed

in greater detail in chapter 3 of this thesis.

For all other response functions G 6= Id this structural quasi likelihood ap-

proach is not passable since observed mean and variance functions can not

be exactly related to their ideal counterparts. This means that the observed

E(Y |X) and observed variance V(Y |X), both in terms of the parameter ω

of the ideal model, can not be computed offhand. This fact is particularly

attributable to the expansion of the covariate in nonlinear basis functions.

Numerical integration may be of some help at this point, which is, however,
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not investigated during the course of this work.

In order to improve the analysis of non-Gaussian responses, i.e. when G 6= Id,

the following related ’expanded basis function calibration’ approach merely

seeks to find good approximations to the observed models instead an exact

representation .

Expanded basis function calibration

The structural quasi likelihood approach seeks an exact representation of

the observed mean and variance models. In the case of non-Gaussian RVM

regression the structural quasi likelihood is not feasible, and approximate

models are attractive. The expanded basis function calibration introduced

here is a derivative of the approximate quasi likelihood method presented

by Carroll & Stefanski (1990), which was, however, exclusively used in non-

flexible regression until now. This method was later also termed expanded

regression calibration by Carroll et al. (1995). They suggest a method, utiliz-

ing standard regression calibration and Taylor series expansion, to improve

the approximation of the observed moments. This thesis extends that ap-

proach to basis function calibration in the flexible RVM.

The original expanded regression calibration as described by Carroll et al.

(1995) is based on standard regression calibration and is very briefly pre-

sented here. Though ’expanded regression calibration’ itself will not be ap-

plied in this work, it may give insight into the basic idea behind the concept

which is later applied to radial basis functions in the ’expanded basis func-

tion calibration’.

The ideal mean and variance models are recalled as

E(Y |ξ) = f(ξ,ω)

V(Y |ξ) = σ2g2(ξ,ω, θ),

with dispersion parameter σ2 and a function g2(ξ,ω, θ) possibly accounting

for heteroscedasticity.
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The essential idea behind regression calibration as already described earlier

is to replace ξ by µξ|X = E(ξ|X). This yields the following working model

for the observed data (retaining the fundamental mean and variance model

parameters)

E(Y |X) ≈ f(µξ|X ,ω) (2.73)

V(Y |X) ≈ σ2g(µξ|X ,ω, θ). (2.74)

That is, where the ’expanded’ comes in. The working models (2.73) and

(2.74) are now refined by a second order Taylor series expansion of the true

functions f(ξ,ω) and σ2g(ξ,ω, θ) around µξ|X .

In the expanded basis function calibration this Taylor series expansion will

be around µΦ(ξ)|X , which is the calibrated row vector from (2.62) as defined

earlier. Exact calculation of µΦ(ξ)|X and ΣΦ(ξ)|X = V(Φ(ξ)|X) will be required

and will be shown to be feasible under the assumption of ξ and δ being

Gaussian. This approach is again structural since the latent covariate ξ is

assumed to follow a certain distribution.

Once the approximate observed mean and variance model are computed,

parameter estimation is accomplished by finding the root of the penalized

quasi score under usage of the approximations for E(Y |X) and V(Y |X). This

is in analogy to the structural quasi likelihood approach presented previously.

Expanded basis function calibration will be used for the non-Gaussian cases,

where no analytic solution for the observed mean and variance model is

available. The details on expanded regression calibration are postponed to

chapter 4 for binary RVM regression, and the amendments for the Poisson

case are developed in chapter 5.

SIMEX

The idea of SIMEX (SIMulation EXtrapolation) was originally proposed by

Cook & Stefanski (1994) and further developed by Carroll, Küchenhoff, Lom-

bard & Stefanski (1996). Carroll et al. (1995) present a detailed description

of SIMEX which has become a standard method in correction for covariate
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measurement error in parametric models. An extension to flexible regression

is given by Carroll et al. (1999) and applied to the RVM model for the first

time in Rummel (2005).

SIMEX is exclusively applicable in the case of classical measurement error,

i.e. independent additive error (in some scale, e.g. , log), as presented in the

respective paragraph of Section 2.3.1. However, and most notably, SIMEX

is a so-called functional correction method that is realizable without any

distributional assumptions about the latent covariate ξ. In contrast to the

calibration methods, the conditional distribution p(ξ|X) is not required here.

The core of SIMEX is studying the effect of measurement error on the ob-

served mean E(Y |X) in a simulation study and afterwards extrapolating on

the error-free case.

For the classical additive measurement error model, as described in (2.50),

artificial random errors δ∗i ∼ N
(
0,

σ2
δ∗

mi

)
are generated and added to the orig-

inal covariate samples xi, i = 1, . . . , N , where the surrogate xi may again

stand for the mean of mi replicate measurements. Then a standard RVM

analysis is performed using these ’new’ data containing the additional error.

Repeating this scheme sufficiently often with varying error variances σ2
δ∗ =

c · σ2
δ (in multiples of the original error variance) allows to study the effect

of the (additional) measurement error on the estimated mean function f̂(x).

Figure 2.5 displays the typical attenuation of the prediction f̂(ξk) at position

ξk with increasing artificial error variance σ2
δ∗ .

Finally one extrapolates on the case of zero measurement error. Different

extrapolation schemes are conceivable, however, extrapolation itself remains

a dubious task.

Again the true error variance σ2
δ has to be known or estimated from replica-

tion or validation data in order to know how far to extrapolate the scheme.

But, no assumptions about the distribution of ξ have to be made and even

the assumption of normally distributed measurement error is not critical in

practise (cf. Carroll et al. (1995), chapter 4).

Beyond that, the SIMEX approach is readily applicable to any kind of re-

sponse model i.e. response function G(z). However for responses being re-
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Figure 2.5: By inflating the variance for artificially generated error by c×σ2
δ ,

the effect of additional error on the estimation f̂(ξk) can be studied. Setting

c = 0 is equivalent to using the original data in the analysis. The curve can

be extrapolated to the case of zero measurement error for instance by using

quadratic regression.

stricted to a certain domain, the SIMEX estimates might take on inadmiss-

able values like f̂SIMEX(X) < 0 or f̂SIMEX(X) > 1 in a binary regression.

An ad-hoc modification instead corrects the unlinked predictor f ∗(x), which

is defined over the domain of R and finally links the corrected predictor to

obtain the corrected estimation G
(
f̂ ∗

SIMEX(x)
)
. So very minor modification

has to be done to suite the binary and Poisson regression cases in chapter 4

and 5.

But, since in fact one generates multiple artificial data sets and RVM esti-

mates for each chosen error variance SIMEX becomes a computational heavy

method.

Markov Chain Monte Carlo error correction

A radically different method to correct for measurement error goes back to

Richardson & Gilks (1993a) and Richardson & Gilks (1993b). They follow a

fully Bayesian approach of filling in the latent ξi’s into the model by treat-
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ing them as additional unknown parameters that have to be estimated. An

overview of Bayesian error correction is presented by Richardson (1996) and

the underlying idea is used e.g. by Gössl & Küchenhoff (2001) in a logistic

regression problem with unknown change point and by Berry et al. (2002) in

a flexible regression approach using P-splines.

This, typically MCMC based, measurement error correction exploits the

strength of data augmentation (cf. Section 2.2.1) by additionally introduc-

ing the true but unobservable ξi, i = 1, . . . , N into the MCMC scheme as

unknown parameters. The essential feature of this procedure is that, once

these latent quantities are generated from their full conditional distribution,

sampling from the other full conditionals remains basically unchanged from

the case without measurement error. The correction comes here automati-

cally from the Bayes machinery.

The sampling routine for the latent observations ξi can be modularly intro-

duced into the MCMC-RVM from Section 2.2.2, essentially without affecting

the other conditional densities in form. A remaining challenge is, however,

to generate observations from the latent true covariate. The main features of

Bayesian error correction in a flexible Bayesian probit model are presented

in the following

The flexible Bayesian binary probit regression model from Section 2.2.2 en-

riched by basis selection (indicated by the subscript γ) and with the latent

variable ξ is recalled as

yi =

{
1 : if zi > 0

0 : otherwise

zi = Φγ(ξi)ωγ + εi,

εi ∼ N (εi|0, 1).

For the parameter estimation, the samples of the weights, of the latent obser-

vations from both latent variables Z and ξ, and of the parameter γ indicat-

ing model complexity, have to be drawn from the joint posterior distribution

p(ωγ , z, ξ,γ|y). Though the joint posterior itself is not available, this is

accomplished via the MCMC algorithm sampling in turn from the full con-
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ditionals of the unknown parameters (cf. paragraph ’Sampling schemes’ in

Section 2.2.1). The modular design of the hitherto existing sampling scheme,

without error correction (cf. Section 2.2.2) needs to be extended in order to

account for measurement error, now.

Firstly, the covariate model, i.e. the prior distribution over the ξi’s needs to

be specified. In the simplest case, this is chosen to be a normal distribution

ξi ∼ N (µξ, σ
2
ξ )

with respective normal and inverse Gamma hyperpriors over its moments:

µξ ∼ N (f, g2), (2.75)

σ2
ξ ∼ IG(Aξ, Bξ). (2.76)

The inverse Gamma is defined as

f(x|A,B) =
1

Γ(A)BAxA+1
exp

(
− 1

Bx

)
I(0 ≤ x < ∞). (2.77)

More flexible variants of specifying the distribution of ξi include the specifi-

cation of a mixture of normals (cf. Roeder & Wasserman (1997)), which in

turn increases the number of unknown parameters in the sampling scheme.

For convenience the covariate observations are assumed to come from the

classical additive measurement error model (cf. 2.50) under the additional

assumption of normally distributed measurement errors

xij = ξi + δij, (δij, ξi) ∼ indep., δij ∼ N (0, σ2
δ ). (2.78)

In the case of replication data, j = 1, . . . ,mi indexes these replications for

person i. If the variance of the measurement error σ2
δ is unknown it can also

be sampled in the algorithm if replication data is available; a typical prior

over this variance is again the inverse Gamma distribution (2.77).

For the classical additive measurement error (2.50), as will be considered

throughout this work, it holds that

σ2
x = σ2

ξ + σ2
δ .
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Now, in order to account for this additional information in the sampling

scheme, σ2
δ is reparametrized as σ2

δ = 1−λ
λ

· σ2
ξ with the so-called attenuation

factor λ =
σ2

ξ

σ2
X

(cf. the implementation of the methods of Berry et al. (2002)

and also Carroll, Ruppert, Crainiceanu, Tosteson & Karagas (2004)). Thus,

the respective distribution of the error-prone observations following model

(2.78) becomes:

p(xij|ξi) ∝ exp

(
− 1

21−λ
λ

· σ2
ξ

N∑

i=1

mi∑

j=1

(xij − ξi)
2

)

Consequently, σ2
δ does not have to appear in the sampling scheme, but in-

stead λ does. A uniform prior is specified for λ on the interval [λL, λH ].

The conditional distributions of the parameters ω, µξ, σ
2
ξ , the model indica-

tors γ and the vector of observations for the latent ξ and Z, i.e. ξ and z are

constructed by collecting those terms from the joint posterior that contain

the respective parameters of interest.

The joint posterior for θ := (ω,γ, z, ξ, µξ, σ
2
ξ , λ), under consideration of the

prior distributions, as already specified in Section 2.2.3, is given by

p(θ|y) ∝ p(y|z) × exp

(
−1

2

N∑

i=1

(zi − Φγ(ξi)ωγ)2

)

×
(

J + 1

dim(γ)

)−1
1

T + 1
exp

(
− 1

21−λ
λ

· σ2
ξ

N∑

i=1

mi∑

j=1

(xij − ξi)
2

)

× exp

(
− 1

2σ2
ξ

N∑

i=1

(ξi − µξ)
2

)
exp

(
− 1

2g2
(µξ − f)2 − 1

Bξσ2
ξ

,

)

× σ
−2(n+Aξ+1)

ξ

(
λ

1 − λ

)n/2

I(λL < λ < λH)

The model indicators γ are again sampled in a reversible jump MH step

as presented in the respective Subsection in 2.2.3, based on the marginal

likelihood. This is now conditioned on the latent ξi’s, which means using the

design matrix Φ constructed from the samples ξi, i = 1, . . . , N .

The weights ω and the latent variable vector z, are sampled as above in
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(2.44) and (2.45) and now also conditioned on the latent ξi, i.e. the design

matrix based on the ξi’s. So, in every step of the MCMC algorithm this

design matrix has to be recalculated from the current samples.

The full conditional distributions of the parameters of the error model, µξ

and σ2
ξ , are recognized as standard distributions

p(µξ|ξ, σ2
ξ ) = N




(∑N
i=1 ξi

)
g2 + fσ2

ξ

Ng2 + σ2
ξ

,
σ2

ξg
2

Ng2 + σ2
ξ




p(σ2
ξ |x, ξ, µξ, λ) = IG

(
Aξ|·,

1

Bξ|·

)

Aξ|· = Aξ +
1

2

N∑

i=1

mi +
N

2
,

Bξ|· = B−1
ξ +

λ

2(1 − λ)

N∑

i=1

mi∑

j=1

(xij − ξi)
2 +

1

2

N∑

i=1

(ξi − µξ)
2,

where Aξ, Bξ are from the prior specification (2.76) and Aξ|·, Bξ|· denote the

moments of the full conditional distribution.

Samples for the attenuation parameter λ relating σ2
δ to σ2

ξ are generated with

the aid of a gridded Gibbs estimator that has also been used by Berry et al.

(2002) and Carroll et al. (2004) in this situation. The full conditional of this

parameter is given by

p(λ|ξ, σ2
ξ ) ∝ I(λL < λ < λH)

(
λ

1 − λ

)a

exp

(
− λ · b

2(1 − λ)σ2
ξ

)

a =
∑

i

mi/2

b =
∑

i

mi(xi − ξi)
2 + σ̂2

δ

∑

i

(mi − 1), (2.79)

with xi = 1
mi

∑mi

j=1 xij denoting the average over a subjects’s replicates. Here,

σ̂2
δ is the methods of moments estimate for the measurement error variance

(cf. (2.52)). The set λ ∈ [λL, λH ] can be discretized into a number of different

values, then (2.79) is computed for these values, a discrete distribution func-

tion is constructed from the results and λ is sampled from this distribution
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function. Alternatively, one can also implement a MH step based on (2.79).

Finally, the conditional density of ξ is given as a product of the full condi-

tionals of its elements ξi. These are given, up to a constant, by

p(ξi|zi,xi, µξ, σ
2
ξ ,ωγ ,γ, λ) ∝ exp

(
−1

2
(zi − Φγ(ξi)ωγ)2

)

× exp

(
− 1

21−λ
λ

· σ2
ξ

mi∑

j=1

(xij − ξi)
2

)

× exp

(
− 1

2σ2
ξ

(ξi − µξ)
2

)
, (2.80)

which is not recognized as standard density. The ξi’s are independent a

posteriori and xi := (xi1, . . . , ximi
) denotes the vector of replicates for person

i. A Metropolis Hastings (MH) step is needed to sample observations from

(2.80). Choosing a symmetric random walk proposal leads to the acceptance

probability of the proposed move being equal to

α = min

{
1,

p(ξ′i|zi,xi, µξ, σ
2
ξ ,ωγ ,γ, λ)

p(ξi|zi,xi, µξ, σ2
ξ ,ωγ ,γ, λ)

}
, (2.81)

with the prime symbol indicating the proposal. The random walk proposal

cancels out in (2.81), since it is symmetric. It is sufficient to be able to

evaluate the conditional density (2.80) at both positions ξi and ξ′i to perform

MH sampling.

It may be stressed here again that, given the current values for ξ, µξ, σ2
ξ ,

and λ, the remaining unknowns (ω, z and γ) are still sampled from Gibbs

sampling and MH sampling (cf. Section 2.2.3) – but now with the design

matrix Φ based on the samples ξi, i = 1, . . . , N instead based on the error-

prone observations xi, i = 1, . . . , N .

2.3.3 A failure - Corrected score

As stated earlier in Section 2.1.2, finding the posterior moments of the weights

is equivalent to solving a penalized score function and calculating the in-
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verse expected Fisher information matrix, respectively. The following small

paragraph checks the possibility of applying the corrected score method (cf.

Stefanski (1989)) to flexible regression using radial basis functions. For the

sake of clarity penalization is not considered here.

The first derivative of the log likelihood yields the score function

sξ(Y, ξ,ω) =
N∑

i=1

∂ E(yi|ξi)

∂ω

yi − E(yi|ξi)

V(yi|ξi)
.

Of particular interest for parameter estimation are unbiased estimation func-

tions having E(sξ(Y, ξ,ω)) = 0.

Let sξ(Y, ξ,ω) denote the score function given the observations yi and based

on the latent ξi and let sξ(Y,X,ω) denote the naive score function, which

arises from sξ(Y, ξ,ω) after replacing ξ by X.

In general E(sξ(Y,X,ω)) 6= 0 and thus the root of sξ(Y,X,ω) is an inconsis-

tent estimator of the true weights ω. This is an functional approach, which,

in contrast to the structural approaches, does not use any information about

the distribution of the latent covariate ξ and the error distribution and thus

can be performed with high generality.

The idea of corrected score, as described by Stefanski (1989), is to search

for a function sX(Y,X,ω), with the property E(sX(Y,X,ω)|ξ) = sξ(Y, ξ,ω).

Every such function is called a corrected score function, since, by the law of

iterated expectation it yields expectation being zero.

Therefore, in case of the classical additive error (2.50), ′ξ + δ′ (=X) is

plugged into the ideal score function (here for the RVM with E(yi|ξi + δi) =

G(Φ(ξi + δi)ω))

sξ(Y, ξi + δi,ω) =
N∑

i=1

δG(Φ(ξi + δi)ω)

δω

yi − G(Φ(ξ + δ)ω)

V(yi|ξi + δ)

and one has to compensate for the effects of δ, which have entered after the

replacement, such that E(sX(Y,X,ω)|ξ) = sξ(Y, ξ,ω).

Since in the RVM the covariate is encoded in a set of radial basis functions and

E(Φ(ξi + δi)) is not decomposable into Φ(ξi) and a term being independent
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of ξ, there seems to be no chance for compensation for the effects of the

measurement error on the score function in this setting.
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Chapter 3

Covariate measurement error in

flexible Gaussian regression

This chapter is concerned with covariate measurement error in the flexible

Gaussian regression model. Since the main techniques, including the response

model, error model and correction methods, have already been presented in

chapter 2, the task is merely putting the pieces together. Problem orientated

details of the methods are, of course, stated in more detail in this chapter.

While the Gaussian response case is trivial in standard statistical analysis,

appropriate covariate measurement error correction in flexible Gaussian re-

gression models is still of major interest.

Firstly, the Gaussian relevance vector machine (RVM) is recalled from chap-

ter 2 and then Section 3.1 develops the error correction methods for this

specific model. Relevant aspects of the methods and literature head the re-

spective subsections. A simulation concludes this chapter.

The Gaussian RVM regression model is of the form

Y = Φ(ξ)ω + ε, (3.1)

77
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where the error is assumed to be ε
i.i.d.∼ N (0, σ2). Furthermore, a prior distri-

bution over the parameters of the mean model is specified

p(ω|α) =
J∏

j=0

√
αj

2π
exp

(
−αj

2
ω2

j

)
.

Gamma hyperpriors are specified over the variance σ2 and those hyperpara-

meters collected in α = (α0, α1, . . . , αJ)T (cf. Section 2.1.1).

Thus the ’ideal mean model’ and the ’ideal variance model’, motivated from

(2.66) and (2.67) in Section 2.3, are here

E(Y |ξ) = Φ(ξ)ω (3.2)

V(Y |ξ) = σ2. (3.3)

More generally the ’ideal variance model’ can be formulated as

V(Y |ξ) = σ2g2(ξ,ω, θ), (3.4)

with dispersion parameter σ2, nuisance parameters collected in θ and g2(·)
possibly accounting for heteroscedasticity. This is however not considered in

this work. The mean model parameters and the dispersion parameter, though

chosen to be random parameters in a Bayesian context, are suppressed in the

conditional mean and variance on the left hand side in (3.2) and (3.4) for

notational clarity and will be throughout this chapter.

3.1 The arsenal of correction methods

Due to the simple model structure (3.1), a variety of promising correction

methods is available. The main points and relations between the methods

have already been roughly discussed in Section 2.3.2 and here follow the de-

tails.

Basis calibration is an ad-hoc idea in the spirit of standard regression in-

volving the reformulation of the observed mean model only. However, most
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conveniently it guarantees an analytic solution of the posterior mean over

the fundamental model parameters. This method only improves estimation

of the the fundamental model parameters of the mean model, i.e. those pa-

rameters collected in the vector ω.

The structural quasi likelihood method, however, obtains an approximately

unbiased estimation equation for the posterior mean. This requires reformu-

lation of both the observed mean and variance model. An important point

to justify the adoption of these two methods lies in the equivalence of para-

meter estimation via the posterior mode estimation as applied in the RVM

and solving a penalized quasi score function (cf. Section 2.1.2).

Finally, the simulation based SIMulation EXtrapolation (SIMEX) method is

discussed, which in contrast to the former approaches makes no assumption

about the distribution of the latent variable.

All methods are compared to the naive RVM and a competing state-of-the-art

strategy using Markov Chain Monte Carlo (MCMC) techniques to estimate

the parameters of a P-spline model.

3.1.1 Basis function calibration

The here developed basis function calibration can be seen as a generalization

of the well known standard regression calibration (cf. Carroll & Stefanski

(1990) and Gleser (1990)). To the author’s knowledge, this generalization

has only been used in the context of regression splines (cf. Carroll et al.

(1999)). Rummel (2004), for the first time, shows that this approach does

most successfully work in flexible regression using radial basis functions. The

core idea is briefly motivated from the perspective of the standard regression

calibration.

The standard regression calibration seeks an approximate model for the ob-

served data in terms of the fundamental model parameters by replacing ξ in

the ideal model (3.2) by µξ|X = E(ξ|X). For the Gaussian RVM this yields



80 CHAPTER 3. CORRECTING THE FLEXIBLE GAUSSIAN MODEL

the following approximation to the observed mean function

E(Y |X) ≈ ∑J
j=1 ωjφj(µξ|X) + ω0 = Φ(µξ|X)ω. (3.5)

In the RVM model (3.1), the linear predictor is formulated in terms of the

radial basis functions φ(ξ) rather than ξ. Consequently, it is more natural to

think about replacing all row vectors in the design matrix

Φ(ξi) = [φ0, φ1(ξi), . . . , φJ(ξi)]

by the calibrated row vectors, defined as

µΦ(ξ)|xi
:= [φ0, E(φ1(ξ)|xi), . . . , E(φJ(ξ)|xi)]. (3.6)

Though the RVM uses radial basis functions, the required computation of

E(φj(ξ)|X) is analytically tractable in particular cases, depending on the

specification of the conditional distribution p(ξ|X).

Under the structural assumptions ξ ∼ N (µξ, σ
2
ξ ) and δ ∼ N (0, σ2

δ ) and an

additive relation between ξ and X it follows

p(ξ|X) = N (µξ|X , σ2
ξ|X). (3.7)

The specific figures of the moments µξ|X and σξ|X may account for replicate

measurements, potential heteroscedasticity introduced by the error process

and depend on the kind of error model - classical additive error or Berkson

error, see also the respective paragraphs in Section 2.3.1.

It is important to note that the computation of the moments in (3.7) involves

the measurement error variance σ2
δ . This has to be known or estimated from

replication or validation data. The latter will be done in the simulation

study in Section 3.2, where two replicates will be available. The distribution

p(ξ|X) being Gaussian is a special case, however a popular one. Since it will

be exclusively used in this work, the robustness of this method under this

assumption will be tested.

Now, given p(ξ|X) being Gaussian, the desired quantity E(φj(ξ)|X) in (3.6)
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can be re-written as the following integral

E(φj(ξ)|X) =

∫ ∞

−∞
exp(−η(ξ − cj)

2)p(ξ|X)dξ

=
√

2π

∫ ∞

−∞
ϕ
(√

2η(ξ − cj)
) 1

σξ|X
ϕ

(
ξ − µξ|X

σξ|X

)
dξ,

where ϕ(·) denotes the standard Gaussian density.

Then, after substituting t :=
√

2η(ξ − cj) and rearranging this is

E(φj(ξ)|X) =

√
π√

ησξ|X

∫ ∞

−∞
ϕ(t)ϕ

(
t√

2ησξ|X
+

cj − µξ|X
σξ|X

)
dt.

Here, the knots cj are required to be located at fixed positions, not subject

to any form of randomness as in the original RVM setup, see Tipping (2000).

Integration of the product of two Gaussians is feasible (cf. e.g. Appendix of

Küchenhoff (1995)) and the calibrated basis function can be written as

E(φj(ξ)|X) =

√
π√

ησξ|X
ϕ

(
b√

1 + c2

)
1√

1 + c2
,

where

b =

(
cj − µξ|X

σξ|X

)

c =
1√

2ησξ|X
.

Inserting b and c leads to the representation

E(φj(ξ)|X) =
1√

2ησ2
ξ|X + 1

exp

(
− η

2ησ2
ξ|X + 1

(cj − µξ|X)2

)
. (3.8)

This shows that calibration of the basis is threefold: firstly, replacing X

by µξ|X , secondly, applying a wider width parameter (i.e. a smaller η) and

finally, re-scaling the basis function. If σ2
ξ|X = 0 the calibrated basis function

(3.8) is equivalent to the original radial basis function.

Here it may be helpful to revive the connection between error correction
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and basis modification, established in Section 2.3.2: basis calibration like

regression calibration exclusively differs from the naive analysis by adopting

a modified basis function type for inference. According to this interpretation,

Figure 3.1 visualizes this threefold modification of the original radial basis

function leading to (3.8). Intuitively, the use of the new basis functions

−4 −3 −2 −1 0 1 2 3 4
−0.2

0

0.2

0.4

0.6

0.8

1

1.2

X

Y

original basis φ(x)
modified basis E(φ(ξ)|x)

Figure 3.1: The RVM under basis calibration fits a modified basis functions

to the observed data. Compared to the original radial basis type, this new

basis is more flattened and wide.

leads to larger estimates for the coefficients. In this way, one alleviates the

oversmoothing that is typically inherent in the naive analysis.

The Gaussian regression represents a special case, where the replacement of

the latent row vector Φ(ξ) by µΦ(ξ)|X yields an exact representation of the

observed mean model E(Y |X) in terms of the ideal mean model parameters

ω. To make this clear, the law of iterated expectations is used to rewrite

E(Y |X) in terms of the parameters of the ideal mean model

E(Y |X) = E(E(Y |X, ξ)|X)

= E(E(Y |ξ)|X)

= E

((∑J
j=1ωjφj(ξ) + ω0

)
|X
)

=
∑J

j=1ωj E(φj(ξ)|X) + ω0

= µΦ(ξ)|Xω. (3.9)
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As usual in this context, it is assumed that the measurement error is inde-

pendent of the response variable. This property is called non-differentiability

of the measurement error and means thats there is no additional information

in the error about the response. Thus, conditioning on X is dispensable in

the second line of the above re-formulation (3.9). The fundamental mean

model parameters ωj from (3.2) are retained under the modification of intro-

ducing the calibrated basis functions E (φj(ξ)|X). This is in contrast to the

standard regression calibration in (3.5), which is a working model in a literal

sense.

The estimation of the parameters ω again proceeds via the posterior distri-

bution (2.11) (cf. Section 2.1.2). And the estimation of α and σ2 (=β−1)

is again performed by optimizing the marginal likelihood (2.10) (cf. Section

2.1.2).

However, the posterior distribution of the weights and the marginal likelihood

are now based on the calibrated design matrix

Φc =




µΦ(ξ)|x1

µΦ(ξ)|x2

. . .

µΦ(ξ)|xN


 , (3.10)

containing the row vectors from (3.6).

It is important to note, that the standard errors based on the resulting pos-

terior covariance matrix of ω (2.11) do not properly account for the inherent

covariate measurement error, which is a open problem, yet.

This method will also later be used for binary and Poisson regression, though

it merely yields an approximate mean model for the observed data.

From a computational point of view it is important to note that computation

of the calibrated design matrix is a preprocessing step that needs to be accom-

plished only once, before the parameter estimation procedure. Furthermore

this method retains an analytical solution of the posterior moments of the

weights in the Gaussian case. This is a nice property since time consuming
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scoring algorithms can be prevented, which, however, come into play when

additionally considering the observed variance as in the following approach.

3.1.2 Structural quasi likelihood

The connection of estimating the moments of the posterior distribution of the

mean model parameters ω and finding the root of a penalized score function

has been described in Section 2.1.2. Through this link it is advantageous to

cast the measurement error problem more generally in the form of so-called

mean and variance models (cf. Carroll & Ruppert (1988)). There, a corrected

parameter estimation is based upon a score function employing the observed

mean and variance functions E(Y |X) and V(Y |X). Carroll et al. (1995) term

these methods later ’quasi likelihood and variance function methods’.

The RVM model setup remains here truly Bayesian, adopting hyperparame-

ters and seeking to find the posterior mean of the unknowns. However, it

will prove fruitful here to view the measurement error problem as occurring

in a penalized likelihood setting, where the methods for mean and variance

models can be applied to achieve a corrected estimator. Here, the art is

Bayesian but the instruments are frequentistic!

Given the specifications of the ideal mean model (3.2) and the ideal variance

model (3.4), together with realizations (yi, ξi), i = 1, . . . , N , the penalized

quasi score function for the parameters ω in the RVM regression model is

given by

sξ(Y, ξ,ω) =
N∑

i=1

∂ E(yi|ξi)

∂ω

yi − E(yi|ξi)

V(yi|ξi)
− ωA. (3.11)

Here, A again denotes the diagonal matrix having the vector α as its diagonal.

Then, if the ξi’s were available, equating (3.11) to zero yields the parameter

estimate ω̂. This penalized quasi score function (3.11) coincides with the

usual penalized score function (without ’quasi’) derived as first derivative of

the log-likelihood plus the log-prior with respect to ω.



3.1. THE ARSENAL OF CORRECTION METHODS 85

The baseline of the structural quasi likelihood approach is to substitute

E(Y |ξ) and V(Y |ξ) in (3.11) by their observed counterparts under retain-

ment of the fundamental mean and variance model parameters. In case of an

un-penalized score function, this procedure yields an approximately unbiased

estimation function for ω. Unbiasedness in penalized settings, is discussed

in Section 2.1.2 and has a slightly different meaning. Despite it has been

revealed in Section 2.1.2 that the RVM eo ipso is not unbiased, a good deal

of error correction is expected to come from the application of that approach.

Therefore, the relation between the observed conditional moments and the

ideal conditional moments is required, which retains both parameters, ω and

σ2, of the ideal mean and variance model (cf. (3.2), (3.4)).

Assuming non-differentiability of the measurement error and applying the

theorem of iterated expectations, the mean and variance functions of the

observed data are given as

E(Y |X) = E(E(Y |ξ,X)|X)

V(Y |X) = σ2 + V(E(Y |ξ,X)|X).

In the specific Gaussian RVM case, where Φ(ξ) denotes the row vector of all

J + 1 basis functions (including the intercept) at position ξ, this is

E(Y |X) = E(Φ(ξ)|X)ω = µΦ(ξ)|Xω (3.12)

V(Y |X) = σ2 + V(Φ(ξ)ω|X). (3.13)

For notational clarity, the row vector µΦ(ξ)|X := E(Φ(ξ)|X) is introduced.

This quantity is recognized from the basis function calibration approach (cf.

(3.6)). The required assumptions allowing for the computability of µΦ(ξ)|X
are echoed later this paragraph. Thus, only the observed variance (3.13) is

yet unknown and of further interest.

Applying the variance decomposition formula to (3.13), this can equivalently

be written as

V(Y |X) = σ2 + ωT
E(Φ(ξ)TΦ(ξ)|X)ω − ωTµT

Φ(ξ)|XµΦ(ξ)|Xω. (3.14)

It is stressed again, that the weights are assumed to be fixed in the expan-

sion of the observed variance since it has been implicitly conditioned on the
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weights, which is however suppressed for notational clarity.

The second summand in (3.14) reflects integration of elements in a matrix

constructed by the vector product Φ(ξ)TΦ(ξ). The third summand represents

a vector product of the calibrated vectors µΦ(ξ)|X . Interchanging summation

and integration and expanding (3.14) into a elementwise sum allows for a

more convenient reformulation

V(Y |X) = σ2 +
J∑

k=0

J∑

j=0

(
E(φj(ξ)φk(ξ))|X) − µφj(ξ)|Xµφk(ξ)|X

)
ωjωk

= σ2 + ωTΣΦ(ξ)|Xω, (3.15)

where µφj(ξ)|X := E(φj(ξ))|X) denotes the (j+1)th element of the row vector

µΦ(ξ)|X and ΣΦ(ξ)|X := V(Φ(ξ)|X) denotes the covariance matrix of the J + 1

latent basis functions given X. The matrix ΣΦ(ξ)|X describes the dependence

structure of the true, but latent, basis functions given the observed data.

Since the ’first’ basis function φ0, the intercept, is independent of X, the

first column and row of ΣΦ(ξ)|X have zero entries.

For heteroscedastic response error, i.e g(ξ,ω, θ) 6= 1, the observed variance

would also include an integral over g2(ξ,ω, θ)

V(Y |X) = σ2

∫
g2(ξ,ω,θ)pξ|Xdξ + ωTΣΦ(ξ)|Xω, (3.16)

which can be a complex task in some special cases, but usually is easy to

calculate. However, only the case of homoscedastic response errors is consid-

ered throughout this thesis.

Having knowledge about the conditional distribution pξ|X is again essential

in order to perform the necessary integration inherent in ΣΦ(ξ)|X in (3.15).

Therefore, in the classical error model, distributions over the latent variable

and the measurement error must be specified. In the Berkson case only the

distribution over the error is needed to be able to compute pξ|X .

Alternatively, one can directly specify p(ξ|X) in a flexible way, e.g. by a mix-

ture of normals or mixture distributions as proposed by Davidian & Gallant

(1993). Carroll et al. (1999) assume a mixture of normals to appropriately
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represent p(ξ) in a classical (Gaussian) error setup. They perform MCMC

sampling to determine posterior probabilities for the number of mixture com-

ponents and the estimates for the associated moments. This information can

be used to determine the density p(ξ|X) which is, again a mixture of nor-

mals and can be used for the correction of the mean and variance function,

respectively.

The required integrations in order to compute µΦ(ξ)|X and ΣΦ(ξ)|X in the ob-

served models (cf. (3.12) and (3.15)) are analytically tractable in particular

cases, depending on p(ξ|X).

As described in Section 2.3.1, the following assumptions are made in this

work: ξ ∼ N (µξ, σ
2
ξ ), δ ∼ N (0, σ2

δ ) and the measurement error is additive.

Then, it follows that the required conditional distribution is of the from

p(ξ|X) = N (µξ|X , σ2
ξ|X).

The specific figures of the moments µξ|X and σξ|X may again account for

replicate measurements, potential heteroscedasticity introduced by the mea-

surement process and depend on the kind of error model - classical additive

error or Berkson error, cf. Section 2.3.1. In any case its computation involves

the measurement error variance that has to be known or estimated from

replication or validation data. The robustness of this method under the nor-

mality assumption for the conditional distribution will be investigated later

in the simulations.

The mean function (3.12) is formulated in terms of the calibrated basis func-

tions as derived earlier in the basis function calibration (3.8).

However, the exact representation of the observed variance function (3.15)

involves computation of the elements in ΣΦ(ξ)|X which is rather complex.

The non-zero elements of ΣΦ(ξ)|X corresponding to the J non-intercept basis

functions are given as

Cov(φj(ξ), φk(ξ)|X) = E(φj(ξ), φk(ξ)|X) − E(φj(ξ)|X) E(φk(ξ)|X).

(3.17)
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For univariate radial basis functions and under the assumption of p(ξ|X)

being a Gaussian distribution, the first term in (3.17) can be rewritten as

E(φj(ξ), φk(ξ)|X) =

∫ ∞

−∞
exp(−η(ξ − cj)

2) exp(−η(ξ − ck)
2)p(ξ|X)dξ

=

√
2π√

ησξ|X

∫ ∞

−∞
ϕ(t)ϕ

(
t√

2ησξ|X
+

cj − µξ|x
σξ|X

)

ϕ
(
t +
√

2η(cj − ck)
)

dt,

where ϕ(·) denotes the standard Gaussian density and the substitution t :=√
2η(ξ − cj) has been performed. Rewriting the radial basis functions in

terms of normal distributions proceeds as described for the calculation of

the calibrated basis functions in Section 3.1.1. The knots cj and ck are

again required to be located at fixed positions, not subject to any form of

randomness. Integrating a product of three Gaussians is feasible (cf. e.g.

Appendix of Küchenhoff (1995)) and given by

E(φj(ξ), φk(ξ)|X) =

√
2π√

ησξ|X
ϕ

(
b√

1 + c2

)
1√

1 + c2
ϕ

(
d

e

)
, (3.18)

where

b =


2ησ2

ξ|X(cj − ck) + cj − µξ|x√
σ2

ξ|X + 2ησ4
ξ|X




c =

√
1 +

1

2ησ2
ξ|X

d =
√

2η(µξ|X − ck)

e =
√

1 + 2ησ2
ξ|X .

Combining the recent result (3.18) with the formula for the calibrated basis

functions (3.8) allows for calculation of the elements of the desired covariance

matrix ΣΦ(ξ)|X in (3.15). However, since this matrix depends on the specific

realizations, an individual matrix ΣΦ(ξ)|X=xi
for every observation xi, i =

1, . . . , N must be calculated.
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It is important to stress, that computation of these N covariance matrices

is a preprocessing step that is performed only once prior to the optimization

algorithm of the RVM. But in the light of typically having a huge set of

potential basis functions, the calculation of J(J + 1/2) distinct elements in

each of N distinct covariance matrices might be expensive.

Alternatively, and more efficiently, one can focus on calculating the required

covariances only for those basis functions present in the current model. As

discussed in Section 2.1.2 the algorithm starts with having only a single basis

function in the model and decides from step to step whether to include or to

exclude basis function. Thus, the matrices ΣΦ(ξ)|xi
need only to be updated

if a new basis is introduced.

The observed mean E(Y |X) from (3.12) and the observed variance V(Y |X)

from (3.15) are plugged into the penalized score (3.11) to give

sX(Y,X,ω) =
N∑

i=1

∂ E(yi|xi)

∂ω

yi − E(yi|xi)

V(yi|xi)
− ωA. (3.19)

The posterior mean of the parameters ω is estimated by finding the root of

this penalized score function.

Since the observed variance function (3.15) is formulated in terms of the un-

known parameters ω, the modified score function (3.19) can no longer be

solved analytically in contrast to the basis function calibration.

Instead, the Fisher scoring algorithm utilizing the modified score function

(3.19) and the expected Fisher matrix will be applied, as is also used in the

non-Gaussian regression case in Section 2.1.2.

Calculation of the expected Fisher matrix includes differentiation of the pe-

nalized score with respect to ω and is given by

F (ω) =
(
ΦT

c BcΦc + A
)
, (3.20)
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where for the sake of clarity the calibrated design matrix Φc, given the ob-

servations x1, . . . , xN , and the diagonal matrix Bc are defined as

Φc =




µΦ(ξ)|x1

µΦ(ξ)|x2

. . .

µΦ(ξ)|xN


 , Bc =




V(y1|x1)
−1

. . .

V(yN |xN)−1


 . (3.21)

Here, V(yi|xi) = σ2 + ωTΣΦ(ξ)|xi
ω as stated in (3.15). So, Bc is the inverse

covariance matrix of the responses given the observations. In contrast to the

basis function calibration, which leaves the variance unchanged, this accounts

now for heteroscedasticity introduced by the measurement error process. The

subscript ’c’ has been chosen to indicate that both quantities are affected by

calibration.

Using the Fisher scoring algorithm, the corrected posterior mean of the

weights and its approximative variance are given as

Σ = F (ω)−1, (3.22)

µ = ΣΦT
c Bcy. (3.23)

Taking the inverse expected Fisher matrix as posterior covariance matrix

is according to Lin & Zhang (1999) and Fahrmeir & Tutz (2001) and uses

Laplace’s approximation (cf. e.g. Tierney & Kadane (1986), MacKay (2003)).

It is stressed here, that the standard errors based on (3.22) are not properly

corrected for the inherent covariate measurement error if the true moments

of p(ξ|X) are not given, but instead must be estimated. So, correct standard

errors remain an open problem.

The posterior moments (3.22) and (3.23) are then used in the type II max-

imum likelihood estimation of the hyperparameters. Details on this estima-

tion procedure is described in the following subsection.
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Estimating the hyperparameters

Recalling the true underlying model of the data

Y = Φ(ξ)ω + ε, ε
i.i.d∼ N (0, σ2),

the ’ideal’ likelihood of the data, based on the latent covariate ξ is Gaussian.

However, the ’observed’ likelihood of the data y = (y1, y2, . . . , yN)T based

on the error-prone covariate observations x = (x1, x2, . . . , xN)T is usually no

longer Gaussian

p(y|x,ω, σ2) 6= N (y|Φω, σ2), (3.24)

where the design matrix Φ contains the intercept and J basis vectors evalu-

ated at N observations xi, i = 1, . . . , N .

This is in contrast to measurement error in classical linear regression, where

(3.24) is Gaussian with moments readily available (cf. Carroll et al. (1995),

section 7.9.2). When the predictor contains nonlinear basis vectors in ξ this

becomes a non-standard density.

In order to derive the observed marginal likelihood of the data p(y|x,α, σ2)

to perform the hyperparameter optimization, one has to find a sensible ap-

proximation for the observed likelihood p(y|x,ω, σ2) in order to solve

p(y|x,α, σ2) =
p(y|x,ω, σ2)p(ω|α)

p(ω|y,x,α, σ2)
. (3.25)

In the following it is shown how a Gaussian approximation to the likelihood

leads to a Gaussian marginal likelihood.

Based on the ideal likelihood being Gaussian and the fact that the measure-

ment error introduces heteroscedasticity into the model (cf. (3.15)), a sensible

approximation for the observed likelihood is given by a Gaussian distribution

with heteroscedastic variance

p(y|x,ω, Bc) ≈ |Bc|1/2

(2π)N/2
exp

(
−1

2
(y − Φcω)TBc(y − Φcω)

)
. (3.26)
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Here, the observed mean and variance function (3.12) and (3.15) are con-

tained in Φc and Bc (cf. 3.21).

Now, in order to find the explicit form of the marginal likelihood, it is con-

venient to rewrite (3.25) as

p(y|x,α, Bc)p(ω|y,x,α, Bc) = p(y|x,ω, Bc)p(ω|α),

and then to expand the right hand side. After having collected all terms

containing ω into the weights posterior, the remainder is the sought marginal

likelihood.

Now, expanding the right hand side p(y|x,ω, Bc)p(ω|α) gives

(2π)−N/2|Bc|1/2 exp
(
−1

2
(y − Φcω)TBc(y − Φcω)

)

×(2π)−(J+1)/2|A|1/2 exp
(
−1

2
ωTω

)
. (3.27)

Collecting all terms in ω yields the weights posterior as

p(ω|y,x,α, Bc) ≈ (2π)−
(N+1)

2 |Σ |− 1
2exp

(
−1

2
(ω−µ)TΣ−1(ω−µ)

)
,

where Σ = (ΦT
c BcΦc + A)−1,

µ = ΣΦT
c Bcy. (3.28)

The posterior moments derived via this approximation of the observed likeli-

hood (3.26) is in concordance with their derivation from Fisher scoring above

(cf. (3.22) and (3.23)).

Having the weights collected, the remainder of (3.27) is the marginal likeli-

hood given the observations

p(y|x,α, Bc) ≈ (2π)−
N
2 | C |− 1

2 exp

(
−1

2
yTC−1y

)
,

where C = B−1
c + ΦcA

−1ΦT
c . (3.29)

The approximate marginal likelihood (3.29) is of the same form as the ’ideal’

marginal likelihood (2.10), in the error free case as described in Section 2.1.2.

However, the calibrated basis functions Φc from (3.21) replace the unobserv-

able Φ. Furthermore, the diagonal matrix Bc from (3.21) accounts for the
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heteroscedasticity introduced by the measurement error and replaces the for-

mer βI := σ−2I.

In case of uniform hyperpriors on a logarithmic scale, estimators for the hy-

perparameters are derived by differentiating the logarithm of the marginal

likelihood (3.29). This yields the objective function

L ≈ −1

2

(
log | B−1

c + ΦcA
−1ΦT

c | +yT(B−1
c + ΦcA

−1ΦT
c )−1y

)
, (3.30)

which is similar to the objective function in the error free case (2.15).

In the simulations, the one step optimization scheme of the marginal likeli-

hood (cf. paragraph ’α-Rule 3’ in Section 2.1.2), based on the decomposition

of the marginal likelihood by Tipping & Faul (2002) is applied . This yields

the non-iterative updating rule for a single αj

αj =

{
s2
j

q2
j−sj

if q2
j − sj > 0

∞ otherwise
. (3.31)

For the sake of clarity, qj = φT
cj

C−j−1y and sj = φT
cj

C−1
−j φcj

are defined

here, with the column vector φcj
:= E(φj(ξ)|x) being the jth calibrated ba-

sis functions in the calibrated design matrix Φc = [φc0 , φc1 , . . . , φcJ
]. Here,

C−j = C − αjφcj
φT

cj
denotes the covariance matrix in (3.29) with the influ-

ence of basis vector φcj
removed. When αj = ∞, the corresponding basis is

removed.

The updating rule for the variance σ2 (= β−1) is derived from differentiat-

ing the objective function (3.30) with respect to log β and equating to zero.

Therefore the diagonal matrix Bc is rewritten as Bc = β(Bc/β) and differen-

tiation with respect to log β is only applied to the pre-multiplied β in front

of the parentheses. This gives the following updating rule for σ2

σ2 new =
(y − Φcµ)TBc(y − Φcµ)

N −∑j γj

1

βold
. (3.32)

The post-multiplied βold comes from the re-writing of Bc = β(Bc/β), with

the β in parenthesis being neglected for differentiation.
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Both updating rules, (3.31) and (3.32) rely on the Gaussian approximation of

the observed likelihood in (3.26). Most importantly, they take into account

that there is additional variance in the responses due to covariate measure-

ment error. This fact is expected to become manifest in the estimation of

the variance parameter σ2. This will be investigated later in the simulations.

3.1.3 SIMEX

All of the calibration methods discussed earlier require the knowledge of the

conditional distribution p(ξ|X). However, when the assumption of ξ being

Gaussian is not supported and consequently p(ξ|X) is not a normal density,

the required calculation of the calibrated design matrix may become nasty

(cf. Section 3.1.1).

Here, the competing SIMEX approach (Cook & Stefanski (1994)) comes into

play. It relies on an experimental study of the effect of measurement error

on the outcome of a naive analysis. The core idea is to predict the estimates

of a error free analysis based on an simulation experiment.

SIMEX in a non-parametric regression context is presented by Carroll et al.

(1999), which is successfully adopted by Rummel (2005) for the RVM regres-

sion. The basic intuition behind that concept has already been sketched in

Section 2.3.2.

Particularly in the case of flexible regression models, the effect of measure-

ment error on the estimated prediction function is hard to forecast. Here, it

seems reasonable, to study the impact of measurement error on the predic-

tion f̂(ξk) for a set of ξk’s. The details to perform this correction methods

are presented now:

1a) Random errors δ∗i ∼ N
(
0,

σ2
δ∗

m

)
are generated and added to the ob-

served xi, i = 1, . . . , xN . Here, xi may denote the mean of m replicate

measurements xi1, xi2 . . . , xim. It is for simplicity assumed that the

number of replicates are identical for all objects in the sample.
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1b) Then a standard RVM analysis is performed using these ’new’ data

containing the additional error.

These steps are repeated sufficiently often to obtain a series of estimates

f̂1(ξk), f̂2(ξk), . . . , f̂B(ξk), B = 50 − 200 at ξk.

2) Averaging over these estimates yields f̂(ξk) =
∑B

s=1 f̂s(ξk).

Finally, this whole scheme is repeated for a set of different error variances

σ2
δ∗ = c · σ2

δ . The multiplication factor c is typically chosen to be c =

0, 0.5, 1, 1.5, . . ., where c = 0 corresponds to the naive analysis.

This yields a series of mean estimates f̂c1(ξk), f̂c2(ξk), . . . depending on the

factor c of the error variance.

Plotting these mean estimates versus the variance of the measurement error

may now reveal a pattern, of how the measurement error affects the estimate

for f(ξk). Fitting a line to the error contaminated estimates f̂c(ξk) and ex-

trapolate to c = −1 yields the desired SIMEX estimate for the mean function

at ξk.

Figure 3.2 displays the typical attenuation of the estimation f̂c(ξk) with in-

creasing artificial error variance σ2
δ∗ and the final extrapolation step to zero

measurement error at c=-1.

Particular care must be taken to fit an adequate model to the estimates

f̂c(ξk). This should ideally be based on theoretical considerations and model

diagnostics. Still, extrapolation is a risky task. In many problems the magni-

tude of the error variance is such that the curvature in the best extrapolant

is small and adequately modeled by the quadratic extrapolant (cf. Carroll

et al. (1995), section 4.3.4).

In contrast to the calibration methods described above, and most advanta-

geously, no assumptions about the distribution of the latent ξ has to be made.

Moreover, the assumption of δ being normally distributed, which is inherent

in step 1a) above, is not critical in practise. However, a basic requirement is

the classical additive structure of the measurement (2.50) in some scale, e.g.

g(X) = g(ξ)+δ, where δ is independent of ξ and has mean zero and variance

σ2
δ . Approaches for non-additive measurement error rely on transformations
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)    

under additional me       
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Figure 3.2: Manually inflating the error variance and estimating f̂(ξk) allows

for studying the effect of measurement error on the analysis. Plotting f̂(ξk)

against the multiples of the variance, fitting a line and extrapolate it to the

case of zero measurement error yields the SIMEX estimate.

and are described by Carroll et al. (1995), section 4.4. The measurement er-

ror variance can be estimated from replication data or validation data using

(2.52) or must be guessed.

The Gaussian response is not restricted to a certain domain, so f̂SIMEX(X)

will always be in R and no additional precautions need to be taken here.

In the following simulation study, a quadratic extrapolation based on the

naive analysis (c=0) and the mean estimates over B = 50 repetitions for

each c ∈ {0.5, 1, 1.5, 2} is used to attain the SIMEX estimates.

It is important to stress once more the computational heaviness of SIMEX,

which is a pronounced burden compared to the previous methods.

3.2 Simulation study

The presented correction methods, basis function calibration, structural quasi

likelihood and SIMEX are now compared in a simulation study. As a state

of the art reference method the approach of Berry et al. (2002) is used. They
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present Bayesian P-splines for measurement error problems using a MCMC

approach. All methods are investigated in a variety of data scenarios.

Firstly, these data scenarios are described, before the competing methods are

contrasted in some essential respects. Finally the results of the simulation

study are presented and discussed.

3.2.1 The data

For each data scenario 200 data sets are simulated.

There are always two replicates (mi = 2) available containing classical ad-

ditive measurement error with µδ = 0. Thus, each surrogate observation

xi, i = 1, . . . , N represents the average over these two replicates. From these

replicates the measurement error variance σ2
δ will be estimated by the usual

components of variance analysis, cf. (2.52) in Section 2.3.2.

In the first five data cases the ξi, i = 1, . . . , N are generated as independent

normal random variables with mean µξ and variance σ2
ξ . Case 6 and case 7

study deviations from that assumption. Case 8 represents a function that is

difficult to fit with the described methods.

The level of measurement error variance is different for the data scenarios.

As a consequence of having two replicates, the measurement error variance

of the surrogates xi = xi1+xi2

2
is only half the error variance that is stated

below in the respective cases.

Predictions of the methods were obtained for 101 grid values in the interval

[a, b]. The specific limits a and b are expected to contain most of the distri-

bution for ξ.

The responses are generated randomly from the (true) mean functions m(ξ),

with variance σ2. The series of simulation includes the following eight data

cases:

Case 1: The mean function of the data is given by

m(ξ) =
sin(πξ/2)

1 + 2ξ2(sign(ξ) + 1)
,
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with N = 100, a = −2.0, b = 2.0, σ2 = 0.32, σ2
δ = 0.82, µξ = 0 and

σ2
ξ = 1

Case 2: Same as case 1 except N = 200

Case 3: Same as case 1 except N = 500

Case 4: The mean function of the data is given by

m(ξ) = 1000ξ3
+(1 − ξ)3

+,

where ξ+ = ξI(ξ > 0), with N = 200, a = 0.1, b = 0.9, σ2 = 0.00152,

σ2
δ = (3/7)σ2

ξ , µξ = 0.5 and σ2
ξ = 0.252

Case 5: The mean function of the data is given by

m(ξ) = 10 sin(4πξ),

with N = 500, a = 0.1, b = 0.9, σ2 = 0.052, σ2
δ = 0.1412, µξ = 0.5 and

σ2
ξ = 0.252

Violations of the assumptions that ξ and ε are normally distributed are stud-

ied in the following cases:

Case 6: The same as case 1 above except that ξ is a standardized

χ2(4) random variable. MSE is evaluated on [−1.25, 2.00].

Case 7: The same as case 1 above except that ξ is a standardized χ2(4)

random variable and ε is generated as a Laplace random variable. MSE

is evaluated on [−1.25, 2.00].

A plateau function is difficult to model with the RVM methods using RBF

kernels or the MCMC approach using 2nd order truncated power series. This

model misspecification is investigated here:

Case 8: The same as case 1 above except that

m(ξ) = H(100ξ) + H (−100(ξ − 0.5)) ,

where H(ξ) = (1 + exp(−ξ))−1.
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Figure 3.3 and 3.4 display example data sets for each scenario as well as the

mean function. Despite there are two replicate measurements available and

usually the average is taken to perform the model estimation, here only a

single measurement is displayed. These figures demonstrate the challenge of

inferring the underlying mean function - a task that can hardly be performed

’by eye’.
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Figure 3.3: Example data sets for cases 1-4 and the respective true mean

function. The response is plotted versus one error-prone measurement, i.e.

no averaging over the two available replicates is done here. Only the range

[a, b] on which the methods will be evaluated is shown.
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Figure 3.4: Example data sets for cases 5-8 and the respective true mean

function. The response is plotted versus one error-prone measurement, i.e.

no averaging over the two available replicates is done here. Only the range

[a, b] on which the methods will be evaluated is shown.
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3.2.2 Specification details of the methods

Some general settings of the presented methods are briefly described in the

following paragraph.

Basis calibration, structural quasi likelihood and SIMEX use radial basis

functions centered on 100 knots located at the quantiles of the observed

data. For SIMEX the knots are located at the quantiles of the artificially

generated observations in each simulation step.

The kernel parameter η (cf. (2.3)) is selected from a set of admissible values

and is chosen as to give the maximal alignment of the basis functions with

the observations

η := max
ηm

‖ ΦT
ηm

C−1y ‖,

where Φηm is the design matrix constructed under the mth kernel parameter

ηm from the list and C is the covariance matrix of the marginal likelihood

(cf. 2.10). Here, ‖ · ‖ denotes the quadratic norm.

By including this sub-procedure into the RVM optimization scheme, an op-

timal η 6= η0 (η0 denotes the starting state) can usually be found in the

very first iteration. If so, this sub-procedure is blocked for the rest of the

optimization algorithm. Otherwise this sub-procedure is active until an op-

timal η 6= η0 is found. This ad-hoc approach is motivated by Tipping & Faul

(2003), who introduce the quantity ΦTC−1y in the context of updating the

hyperparameters α and works surprisingly well in practise. While the naive

RVM uses the observed covariate values xi in the design matrix Φηm , SIMEX

uses the artificially simulated covariate observations. For simplicity, basis

calibration and structural quasi likelihood simply copy the optimal η found

by the naive approach.

All methods use the analytic updating scheme of the precisions α (cf. para-

graph ’α-Rule 3’ in Section 2.1.2) and for the modified version in the struc-

tural quasi likelihood approach in Section 3.1.2. That is, starting from a

model with only the intercept included, in each iteration step a basis func-

tion can be either deleted, updated or newly introduced into the model,

according to what gives the highest improvement in the marginal likelihood.
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All methods developed here are also compared to the state-of-the-art error

correction approach by Berry et al. (2002). They describe a Bayesian P-

spline approach where a set of 30 second order truncated power series basis

are fit to the data. They construct a MCMC sampling scheme regarding the

smoothing parameter, the coefficients and all parameters associated with the

distributions of Y, ξ, δ as random variables. The main idea is here is to regard

the latent ξi, i = 1, . . . , N as additional unknown parameters in the spirit of

data augmentation (cf. Section 2.2.1) and benefit from the fact that all full

conditional distributions take on the figure of standard distributions given

the ξi. The final parameter estimates are based on 2000 MCMC samples

(after a burn-in period of 2000 runs) from the full conditionals. These sam-

ples ideally represent an empirical version of the joint posterior. The general

reasoning behind that methodology has already been described in Section

2.2.1 and Section 2.3.2 of chapter 2.

Berry et al. (2002) accompanied their article with a MATLAB implemen-

tation of the described methods which is downloadable from the homepage

http://www.stat.tamu.edu/~carroll/matlab_programs/software.php.

The results from this implementation are used here as reference.

Table 3.1 contrasts all compared methods in some essential respects.
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ibration]

RVMSQL [structural
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RVMSIMEX BRS [bayesian re-

gression splines]

type of basis function RBF RBF RBF RBF 2nd order truncated

power series

potential / effective

number of basis funct.

w/o intercept

100/usually very few,

see results

100/usually very

few, see results

100/usually very few,

see results

100/usually very

few

30/30

knot selection quantiles of error-

prone data

same as RVMnaive same as RVMnaive quantiles of gen-

erated SIMEX-

observations

same as RVMnaive

error correction none Correction of ob-

served mean, by us-

ing calibrated basis

functions E(Φ(ξ)|X)

instead of Φ(X).

Correction of observed

mean and variance.

Approximation for

the observed marginal

likelihood for hyperpa-

rameter estimation

The effect of addi-

tive error is stud-

ied in a simulation

study and then cor-

rected

The true ξi are re-

garded as unknown

parameters and sam-

pled in an MCMC

approach

unknown parameters

in the response model

(and their estimation

scheme)

the fundamental

model parameters

ω (posterior mean),

hyperparameters

α (marginal likeli-

hood optimization),

σ2(marginal likelihood

optimization), η (grid

search)

same as RVMnaive same as RVMnaive same as RVMnaive fundamental model

parameters ω (sam-

pled in Gibbs-step),

true covariate values

ξi (sampled in MH-

step), γ := α
σ2

,

with α :=smoothing

parameter (sam-

pled in Gibbs-step),

σ2 (sampled in

Gibbs-step)

unknown parameters

in the error model

(and their estimation

scheme)

σ2
δ (from components

of variance analysis

using replicates), µξ

(analysis of variance

formula), σ2
ξ (analysis

of variance formula)

same as RVMnaive same as RVMnaive same as RVMnaive λ :=
σ2

ξ

σ2

ξ
+σ2

δ
/m

(dis-

crete search), µξ

(sampled in Gibbs-

step), σ2
ξ (sampled in

Gibbs-step)

Table 3.1: Overview of methods
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3.2.3 The results

The quality of the correction methods is investigated by means of various

criteria including mean squared error and pointwise bias. Other secondary

properties like the quality of the σ2-estimation and the effective number of

kernels are also considered.

MSE:

The mean squared error is computed over a grid of 101 equidistant values in

the interval [a, b] as given earlier (cf. Section 3.2.1)

MSE =
1

101

101∑

k=1

(
m(ξk) − f̂(ξk)

)2

,

where m(ξ) is the true mean function from above (cf. Section 3.2.1). Here,

f̂(ξk) is an estimate for m(ξk).

Table 3.2 presents summary results for the MSE from the 200 simulations

for each data scenario. Since the results of the MCMC approach as stated in

the original article by Berry et al. (2002) for some cases clearly differ from

the results based on the present simulation study, they are additionally given

here for reasons of completeness. These differences are partly explainable by

the use of smoothing splines and (slightly) different priors in the original

article compared to the P-splines and prior specifications used here (cf. Ta-

ble 3.1). But beyond that, the differences are surprisingly articulate though

Berry et al. (2002) state that
”
smoothing splines and P-splines with 30 knots

give much the same result“.

The smallest mean MSE value in each scenario is in boldface.

Except in cases 7 and 8 the naive estimation is always dominated by all

other correction methods. Usually, RVMSIMEX yields the minimum gain

while RVMSQL (with exception of cases 2, 3 and 8) dominates all other

implemented methods though it seems not to be dramatically superior to

RVMBC. The large MSE values in case 4 and case 5 are not indicating a

miserable fit, but are due to the scale of the true function. Against one’s
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intuition, in case 6 and case 7, where ξ is not normally distributed, the ro-

bustness of the functional RVMSIMEX approach (cf. 2.3.2) does not become

manifest in the MSE results. Instead RVMBC and RVMSQL dominate the

scene. The Bayesian P-spline seems to profit the most from a larger sample

size (case 2 and case 3). It can be seen from the accompanying median val-

ues that the distributions of the MSE values is typically right skewed for all

correction methods.
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Mean squared error

Mean (SE) / Median (all ×102)

Method Case 1 Case 2 Case 3 Case 4

RV M .80 (.04) / .66 .50 (.02) / .43 .28 (.01) / .26 4.30 (1.05) / .00

RVMnaive 5.42 (.14) / 5.13 4.79 (.09) / 4.73 4.52 (.05) / 4.52 434.40 (9.76) / 431.97

RVMBC 4.08 (.23) / 3.38 2.32 (.14) / 1.83 1.10 (.06) / .92 53.68 (3.61) / 40.52

RVMSQL 3.76 (.20) / 3.23 2.23 (.12) / 1.77 1.03 (.04) / .89 51.98 (2.64) / 38.92

RVMSIMEX 4.48 (.23) / 3.68 3.25 (.14) / 2.80 2.39 (.08) / 2.13 145.88 (7.89) / 112.22

BRS 6.05 (.38) / 4.48 2.15 (.09) / 1.87 .69 (.03) / .57 56.02 (3.61) / 39.94

BRS∗ 2.84 (-) / - 1.56 (-) / - 1.47 (-) / - 195 (-) / -

Method Case 5 Case 6 Case 7 Case 8

RV M .13 (.00) / .05 .55 (.03) / .45 1.05 (.06) / .82 3.30 (.09) / 3.02

RVMnaive 1885.96 (18.36) / 1888.04 4.59 (.11) / 4.45 5.18 (.12) / 5.13 7.90 (.10) / 7.82

RVMBC 288.44 (13.22) / 257.09 3.02 (.11) / 2.67 4.15 (.14) / 3.71 7.84 (.16) / 7.40

RVMSQL 275.75 (13.07) / 234.03 2.87 (.10) / 2.50 4.04 (.14) / 3.63 7.76 (.13) / 7.40

RVMSIMEX 510.38 (17.46) / 466.27 4.27 (.21) / 3.59 5.41 (.28) / 4.44 9.32 (1.27) / 7.47

BRS 580.06 (20.68) / 535.04 4.48 (.09) / 4.58 5.72 (.22) / 5.10 9.75 (.22) / 9.21

BRS∗ 1031 (-) / - 2.69 (-) / - 2.49 (-) / - 7.41 (-) / -

∗ MSE results from Berry et al. (2002) using smoothing splines and a slightly modified prior specification.

Table 3.2: The mean squared error results for the simulation. In each column, the smallest mean value

among the implemented correction methods is in boldface.
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Variance estimation:

Table 3.3 displays the estimation for the variance parameter σ2. This clearly

indicates the worthiness of the additional expense in the structural quasi

likelihood RVMSQL compared to the basis calibration RVMBC. However,

in case 4 and case 5 the RVMSQL mean estimate is far away from the true

value, which is partly due to the scale of the respective true function.

Model complexity:

From Table 3.4 it is seen that the average number of utilized kernels for

function estimation is dramatically lower than for the MCMC approach of

Berry et al. (2002). While the MCMC method pre-specifies a set of 30 ba-

sis functions and retains that number of functions throughout the complete

algorithm, the RV M -methods select relevant basis function for estimation

from an arsenal of 100 radial basis functions and one intercept.

The optimal η is usually smaller for the naive approach, i.e. the utilized basis

functions of the RVMnaive and consequently for the calibration methods are

less peaked than for the error free RV M .

Taking measurement error into account might lead to a more sensible η selec-

tion for RVMBC and RVMSQL and possibly boost the performance of these

methods. Therefore, cases 1-8 are re-run for RVMBC and RVMSQL with

η-selection realized by a preceding RV M , however now, utilizing the (stan-

dard) regression calibrated observations µξ|xi
:= E(ξ|xi) (cf. 2.58) instead

xi. This is clearly an ad-hoc approach and more sophisticated methods are

desirable. However, the new MSE results in Table 3.5 already underline the

high potential that lies in an sensible kernel selection. Particularly cases 1-2

are improved by this ad-hoc amendment.
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Variance estimation

Mean

Method Case 1 Case 2 Case 3 Case4

(σ2=.09) (σ2=.09) (σ2=.09) (σ2=2.25e-6)

RV M .0907 .0928 .0918 0.0542

RVMnaive .2113 .2147 .2174 12.0153

RVMBC .2142 .2153 .2168 11.9147

RVMSQL .1346 .1202 .1081 4.0792

BRS .1785 .1317 .1038 .1102

Method Case 5 Case 6 Case 7 Case 8

(σ2=2.5e-3) (σ2=.09) (σ2=.09) (σ2=.09)

RV M .0642/ .0881 .1766 .1179

RVMnaive 36.8150 .2075 .2927 .2168

RVMBC 36.8923 .2072 .2929 .2203

RVMSQL 5.2130 .1218 .2131 .1916

BRS .1785 .1761 .2603 .2454

Table 3.3: The mean estimate of σ2. In each column the value closest to

the respective true value among the implemented correction methods is in

boldface. The SIMEX method was not designed to return an estimate of the

variance and thus is left out here.
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Kernel parameter and number of effective kernels

Mean / Mean

Method Case 1 Case 2 Case 3 Case 4

RV M 1.36/4.3600 1.32/4.4200 1.30/5.5000 21.01/17.7750

RVMnaive .82/2.6850 .80/2.6200 .76/2.9800 15.53/4.4950

RVMBC .82/3.6350 .80/4.3350 .76/4.7050 15.53/1.5250

RVMSQL .82/3.7150 .80/4.4350 .76/4.8750 15.53/1.3800

BRS -/30 -/30 -/30 -/30

Method Case 5 Case 6 Case 7 Case 8

RV M 69.11/23.7800 1.73/3.3700 1.71/3.1950 3.63/7.6950

RVMnaive 50.95/6.0550 .84/2.6750 .84/2.5050 1.49/2.3450

RVMBC 50.95/8.5600 .84/2.2950 .84/2.2050 1.49/2.2950

RVMSQL 50.95/8.4900 .84/2.6250 .84/2.4100 1.49/2.3850

BRS -/30 -/30 -/30 -/30

Table 3.4: The average number of utilized kernels. RVMBC and RVMSQL

copy the optimal η-value from RVMnaive. The RVMSIMEX method utilizes

different optimal values for η and different numbers of kernels during its

simulation phase. Thus it is not considered here. BRS utilizes 30 second

order regression splines that do not contain additional kernel parameters.

Mean squared error under refined η-selection

Mean (previous value) (all ×102)

Method Case 1 Case 2 Case 3 Case 4

RVMBC 3.73 (4.08) 2.18 (2.32) 1.13 (1.10) 175.12 (53.68)

RVMSQL 3.13 (3.76) 1.91 (2.23) 1.01 (1.03) 190.42 (51.98)

Method Case 5 Case 6 Case 7 Case 8

RVMBC 328.88 (288.44) 3.00 (3.02) 4.28 (4.15) 7.19 (7.84)

RVMSQL 349.84 (275.75) 2.85 (2.87) 4.18 (4.04) 7.02 (7.76)

Table 3.5: The mean squared error for the RVMBC and RVMSQL under η-

selection, now accounting for the covariate measurement error. The previous

values from Table 3.2 are given here in parentheses.
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Pointwise bias:

The bias of a method is its expected deviation from the true curve. The

pointwise bias of the methods under investigation can be seen from the vi-

sualization of the mean functions over the 200 simulations in Figure 3.5 (for

cases 1-4) and Figure 3.6 (for cases 5-8).

Already with small sample size in case 1, the correction power for the RV M -

methods becomes clear, especially when regarding the fit at the positions of

minimum and maximum of the true function.

The bias is again drastically reduced for higher sample sizes (case 2 and 3).

Case 4 shows a more or less consistent correction capacity of all correction

methods and even a very slight overestimation of RVMBC and RVMSQL,

which coincide here.

Case 5 is satisfactorily covered by all correction methods with slight deficien-

cies for RVMSIMEX.

In case 6 and case 7, the latent covariate ξ is no longer normally distributed.

Here, the expected superiority of the functional RVMSIMEX compared to

the structural RVMBC and RVMSQL, which assume ξ being normal, be-

comes, however, not manifest.

The plateau function in case 8 is poorly fit by all methods. A potential boost

of the RV M methods might result here from allowing basis functions having

locally different kernel parameters instead a single global η.
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Figure 3.5: The mean functions over 200 simulations for cases 1-4. Cases

1-3 solely differ in the number of observation, which are N = 100, N = 200,

N = 500, respectively. Only case 1 reveals accentuated differences between the

correction methods. Increasing the sample size obviously boosts all methods

except RVMSIMEX. The RV M without measurement error is left out here

for the sake of visibility. Particularly case 4, which has very small σ2, but

pronounced measurement error is well fit by all correction methods. RVMBC

and RVMSQL coincide in most cases.
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Figure 3.6: The mean functions over 200 simulations for cases 5-8. Case 5

is an oscillating function and data generated under ξ and ε being normally

distributed, while in case 6 the data is generated under ξ being a standardized

χ2(4) random variable and in case 7 additionally ε being a Laplace random

variable. Case 8 is a plateau function which is difficult to fit with RBF kernels

and 2nd order truncated power series, respectively. A pronounced gain of

using error correction methods is attested in case 5. Under distributional

deviations from the model (case 6, 7) and under model misspecification the

RV M methods seem to be slightly superior. RVMBC and RVMSQL coincide

in most cases.
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Chapter 4

Covariate measurement error

in flexible binary regression

This chapter is concerned with covariate measurement error in a flexible bi-

nary regression model. Most of the ideas underlying the forthcoming methods

have been sketched in chapter 2. Now, it is focused on putting flexible regres-

sion and error correction sensibly together and giving relevant computational

details.

Firstly, the binary relevance vector machine (RVM) regression model, which

is the basis for all strategies described here, is shortly recalled and then Sec-

tion 4.1 contains the development of the error correction methods for the

binary case. The respective underlying motives and additional literature

head each subsection. A simulation study is conducted in order to investi-

gate the strength of the developed methods.

Real data on nutritional habits and mortality from the German panel of the

WHO MONICA project (MONItoring of trends and determinants in CAr-

diovascular disease, cf. Döring & Kußmaul (1997), Keil (2000)) that have

previously analyzed by Augustin (2002) will be re-analyzed by a part of the

developed methods.

Finally, a MCMC sampling scheme is developed allowing the estimation of

parameters from a flexible binary regression model for longitudinal data.

115
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While this is a highly relevant case in real data situations, here only a few

data examples are discussed.

Recalling from chapter 2, the binary RVM is of the form

Y = G(Φ(ξ)ω) + ε,

where Y ∈ {0, 1} and E(ε) = 0. The response function G is typically chosen

as G(z) = (1+exp(−z))−1 (logit regression case) or G(z) =
∫ z

−∞
1√
2π

exp
(
−1

2
t2
)
dt

(probit regression case). Beside this specific weighted basis functions form,

all methods incorporate a strategy to select relevant basis functions from

a large set of potential basis functions. Therefore, those RVM approaches

not relying on Markov Chain Monte Carlo (MCMC) techniques employ the

following prior distribution over the parameters of the mean model

p(ω|α) =
J∏

j=0

√
αj

2π
exp

(
−αj

2
ω2

j

)
. (4.1)

Further, Gamma hyperpriors are specified over the hyperparameters collected

in α = (α0, α1, . . . , αJ)T and σ2 if dispersion is included in the model (cf.

Section 2.1.1).

Thus the ’ideal mean model’ and the ’ideal variance model’, motivated from

Section 2.3, are

E(Y |ξ) = G (Φ(ξ)ω) (4.2)

V(Y |ξ) = σ2g2(ξ,ω, θ), (4.3)

with dispersion parameter σ2 and g2(·) = G (Φ(ξ)ω) · (1 − G (Φ(ξ)ω)) ac-

counting for the inherent heteroscedasticity. The dispersion parameter is,

however, not considered in this work, i.e. σ2 !
= 1, unless stated otherwise.

Though the coefficients ω are taken to be random parameters, the condi-

tioning on this random vector is (and will be) suppressed in the conditional

expectation and variance in (4.2) and (4.3) for the sake of clarity.
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4.1 The arsenal of correction methods

Correcting for covariate measurement error in binary regression is generally

a more demanding task than in the Gaussian case. This fact is particularly

true for flexible binary regression, since the correction methods must now

cope with the additional nonlinearity of E(Y |ξ) in terms of the basis func-

tions. The main aspects of the methods, which are presented here in full

detail have already been roughly discussed in Section 2.3.2.

For the calibration methods, error correction again focuses exclusively on

the fundamental model parameters of the mean model, i.e. those parameters

collected in the vector ω.

Basis calibration as described in Section 3.1.1 is employed again, but in con-

trast to the Gaussian case it is merely an approximation to the observed

mean model here.

The expanded basis function calibration is in the spirit of the former struc-

tural quasi likelihood method and aims at a refined approximation of both

observed moments with the aid of Taylor series expansion. However, as will

be shown the necessary modifications of the estimation routine of ω must be

harmonized with the hyperparameter estimation, which is a creativity chal-

lenge here.

The simulation based SIMEX method, as described in full detail earlier in

Section 3.1.3, is slightly modified to suit the binary case.

Finally, a MCMC approach to measurement error correction and a MCMC

version of the RVM are combined circumventing the approximations that are

indispensable in the former methods.

The basis function calibration and SIMEX approach require only minor mod-

ification compared to their Gaussian regression settings and thus their de-

scription is kept rather compact in the following. All methods are again

compared to the naive RVM and a competing MCMC version of P-splines in

a concluding simulation study.
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4.1.1 Basis function calibration

This section presents the basis function calibration in the binary regression

case. The core of this method is the replacement of the design matrix Φ,

which is formulated in terms of the latent observations ξi, i = 1, . . . , N and

thus is latent itself, by its calibrated version Φc (cf. (3.21)). In the Gaussian

regression context this has already been described in Section 3.1.1. But

here, unlike in the Gaussian regression case, this replacement does no longer

yield the exact representation of the observed mean E(Y |X) in terms of the

fundamental model parameters. This can be seen by application of the law

of iterated expectations giving

E(Y |X) = E(E(Y |X, ξ)|X)

= E(E(Y |ξ)|X)

= E

((
G
(∑M

j=1ωjφj(ξ) + ω0

))
|X
)

6= G
(
µΦ(ξ)|Xω

)
.

Here, µΦ(ξ)|X := E(Φ(ξ)|X) denotes the row vector of calibrated basis func-

tions given the observed X. The second line is again justified by the non-

differentiability of the measurement error, i.e. the assumption that the error

is independent of the response.

Thus in binary regression, replacing the latent Φ by the calibrated design

matrix Φc, which is constructed from the row vectors µΦ(ξ)|xi
, i = 1, . . . , N

(cf. (3.10) in Section 3.1.1), merely yields a working model for the observed

mean.

The parameter estimation proceeds as described for the non-Gaussian case in

Section 2.1.2 via Fisher scoring. The Laplace approximation (cf. e.g. Tierney

& Kadane (1986), MacKay (2003)) for the posterior distribution of ω yields

a Gaussian with moments given by

Σ = (ΦT
c BΦc + A)−1, (4.4)

µ = ωMP = ΣΦT
c By∗, (4.5)
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now containing the working observations

y∗ = Φcω + D−1(y − G(Φcω)). (4.6)

The covariance matrix Σ is here given as the inverse expected Fisher matrix

(cf. Lin & Zhang (1999), Fahrmeir & Tutz (2001)). The diagonal matrix B

contains the elements

Bii =

(
∂G(µΦ(ξ)|xi

ω)

∂(µΦ(ξ)|xi
ω)

)2

/ V(yi|xi)

involving the first derivative of the response function with respect to the

linear predictor and the following approximation to the observed variance

V(yi|xi) ≈ G
(
µΦ(ξ)|xi

ω
)
·
(
1 − G

(
µΦ(ξ)|xi

ω
))

.

The diagonal matrix D in (4.6) consists of elements

Dii =

(
∂G(µΦ(ξ)|xi

ω)

∂(µΦ(ξ)|xi
ω)

)
.

Intuitively, the use of the calibrated basis functions, visualized in Figure

3.1 of the previous chapter, leads to larger estimates for the coefficients as

explained earlier in Section 2.3.2.

Tipping (2001) assumes for convenience that the marginal likelihood of the

working observations p(y∗|α) is approximately Gaussian (cf. Section 2.1.2)

yielding the following objective function

L = −1

2

[
log | C | +y∗T

C−1y∗
]

where C = B + ΦcA
−1ΦT

c . (4.7)

Since the calibrated basis functions are used in approximating E(Y |X) it is

sensible to formulate the marginal likelihood again in terms of the calibrated

design matrix Φc. The optimal hyperparameters are then found via the one

step maximization of the marginal likelihood as described in Section 2.1.2

utilizing the posterior variance (4.4) and the corrected posterior mean (4.5).

In case there is a dispersion parameter included in the model, σ2 can also be

estimated via the objective function (4.7), cf. (2.28) in Section 2.1.2.
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4.1.2 Expanded basis function calibration

The expanded basis function calibration presented in this section is a deriv-

ative of the approximate quasi likelihood method presented by Carroll &

Stefanski (1990). Carroll et al. (1995) describe that approach, which they

term as ’expanded regression calibration’, for classical linear regression. The

basic idea of expanded regression calibration is to find a decent approxima-

tion to the mean and variance models of the observed data under retainment

of the fundamental mean and variance model parameters.

The two major aspects, involved there, are standard regression calibration

and the approximation of the observed moments using Taylor series expan-

sion. In the flexible RVM regression, where each covariate is expanded in a

set of radial basis functions, a more appropriate correction method, compared

to standard regression calibration, is basis function calibration, discussed in

detail in Section 3.1.1.

Now, combining basis function calibration and Taylor series expansion of the

observed moments, yields a new method, which is termed expanded basis

function calibration and has, to the author’s knowledge, not even yet at-

tempted in the flexible regression context.

The ideal RVM mean and variance model from (4.3) and (4.2), based on the

true but latent covariate ξ, is recasted here for notational reasons as

E(Y |ξ) = f(Φ(ξ),ω) (4.8)

V(Y |ξ) = σ2g2(Φ(ξ),ω, θ) = σ2f(Φ(ξ),ω)(1 − f(Φ(ξ),ω)). (4.9)

Here, f(Φ(ξ),ω) : R
(J+1) → R and g2(Φ(ξ),ω, θ) : R

(J+1) → R are now

viewed as working on the domain of the individual basis functions, i.e. map-

ping the row vector Φ(ξ) containing the values of all basis functions at posi-

tion ξ to a scalar. Here, the fundamental mean model parameters are again

the weights ω. However, the variance function (4.9) also includes the parame-

ters ω, a dispersion parameter σ2 and possibly nuisance parameters collected

in θ. The fact that ω is a random parameter vector is again notationally ig-

nored. A correct notation would demand conditioning on ω in (4.8)-(4.9),
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but this will be suppressed in the following for the sake of clarity.

Firstly, it is important to understand that the idea of expanded regression

calibration is in general not restricted to the simple approximation utilizing

µξ|X in place of X, as in the standard regression calibration. Since the ba-

sis function calibration utilizing E(Φ(ξ)|X) in place of Φ(X) turned out to

be a clever strategy in the Gaussian regression case, it may be fruitful to

apply the basic idea of expanded regression calibration to basis function cal-

ibration. The necessary amendments for this new ’expanded basis function

calibration’ approach are described in the following.

In standard regression calibration, the approximate models for the observed

mean and variance function are based on the conditional mean of ξ given X

(X may here again denote the average over available replicates)

E(ξ|X) = µξ|X .

However, the basis function calibration (cf. Section 3.1.1) successfully ex-

tended this for the RVM and applied the conditional mean of the row vector

Φ(ξ) given X

E(Φ(ξ)|X) = µΦ(ξ)|X . (4.10)

Calculating µΦ(ξ)|X requires here distributional assumptions over ξ. Via the

specification of σξ|X , the calibrated row vector µΦ(ξ)|X may account for repli-

cate measurements and heteroscedasticity in the measurement process. The

specific figure of (4.10) depends of course on the type of error model - clas-

sical or Berkson.

Basis function calibration uses µΦ(ξ)|X instead of the error-prone Φ(X), yield-

ing the following approximations to the observed models

E(Y |X) ≈ f(µΦ(ξ)|X ,ω) (4.11)

V(Y |X) ≈ σ2g2(µΦ(ξ)|X ,ω, θ). (4.12)

Here, it is again assumed that, under small measurement error, Φ(ξ) will be

close to its expectation µΦ(ξ)|X whereas Φ(ξ) may not be close to Φ(X). So,
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naively replacing Φ(ξ) by Φ(X) may introduce a large bias into the analysis

and hence the need for calibration.

More formally, the true vector Φ(ξ) is decomposable into the vector µΦ(ξ)|X
containing the calibrated basis functions and a random vector V

Φ(ξ) = µΦ(ξ)|X + V (4.13)

where E(V |X) = 0, V(V |X) = ΣΦ(ξ)|X .

The assumption of ΣΦ(ξ)|X being small justifies the approximations (4.11)

and (4.12). The following insertion defines the notational shortcuts, which

are used throughout this section.

Insertion: Notational details

The basis function calibration is not least because of the notational details

demanding. The following shortcuts are defined to make the formulas in-

volved in this approach more lucid:

f := f(Φ(ξ),ω) = G(Φ(ξ)ω)

fµ := f(µΦ(ξ)|X ,ω) = G(µΦ(ξ)|Xω)

f ′ :=
∂G(Φ(ξ)ω)

∂Φ(ξ)

f ′
µ := f ′(µΦ(ξ)|X ,ω)

f ′′ :=
∂2G(Φ(ξ)ω)

∂Φ(ξ)TΦ(ξ)

f ′′
µ := f ′′(µΦ(ξ)|X ,ω)

g := g2(Φ(ξ),ω, θ) = G(Φ(ξ)ω)(1 − G(Φ(ξ)ω))

gµ := g2(µΦ(ξ)|X ,ω, θ) = G(µΦ(ξ)|Xω)(1 − G(µΦ(ξ)|Xω))

g′ :=
∂G(Φ(ξ)ω)(1 − G(Φ(ξ)ω))

∂Φ(ξ)

g′
µ := g′(µΦ(ξ)|X ,ω)

g′′ :=
∂2G(Φ(ξ)ω)(1 − G(Φ(ξ)ω))

∂Φ(ξ)TΦ(ξ)

g′′
µ := g′′(µΦ(ξ)|X ,ω),
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with all first derivatives being row vectors and all second derivatives being

matrices. Recall that in binary regression the response function G(z) is either

the inverse probit or inverse logit function, i.e. G(z) =
∫ z

∞
1√
2π

exp
(
−1

2
t2
)
dt

or G(z) = (1 + exp(−z))−1. The general form of these derivatives and the

specific form for probit and logistic regression will be given later.

Expanded basis function calibration now refines the approximation for the

observed mean (4.11) and the observed variance (4.12).

This is achieved by utilizing second order Taylor series expansion of the mean

model f and of the variance model g2 around the calibrated row vector µΦ(ξ)|X
from (4.10). Here it is displayed only for the mean model f :

f ≈ fµ + f ′
µV

T +
1

2
V f ′′

µV T. (4.14)

For the variance model g2 this is in complete analogy to (4.14) with g sub-

stituting f where it occurs. Under the assumption of ΣΦ(ξ)|X being small

and thus the deviation V (cf. (4.13)) being small with high probability the

second order Taylor series expansion should work quite well.

Finally, the expansion (4.14) is used to derive an approximation for the mean

function of the observed data under application of the theorem of iterated

expectations

E(Y |X) = E(E(Y |X, ξ)|X)

= E(f |X)

≈ E

{(
fµ + f ′

µV
T +

1

2
V f ′′

µV T

)
|X
}

= fµ +
1

2
tr
(
ΣΦ(ξ)|Xf ′′

µ

)
, (4.15)

where ’tr’ denotes the trace function, here applied to the product of matrices

ΣΦ(ξ)|X and f ′′
µ . As a consequence of E(V |X) = 0 the first derivative f ′

µ is

irrelevant in the representation (4.15).

Furthermore, a refined approximation of the observed variance is now found
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by utilizing the variance decomposition formula

V(Y |X) = V(E(Y |ξ,X)|X) + E(V(Y |ξ,X)|X)

= V(E(Y |ξ)|X) + E(V(Y |ξ)|X). (4.16)

The first term on the right hand side in (4.16) is approximated by using the

Taylor expansion (4.14) and additionally assuming that V(V 2|X) ≈ 0:

V(E(Y |ξ)|X) = V(f |X)

≈ V(f ′
µV

T|X)

= f ′T
µ ΣΦ(ξ)|Xf ′

µ.

This expression represents variability in Y due to measurement error. The

presence of ΣΦ(ξ)|X makes calculation of this expression computationally

heavy, since every individual observation in the data generates a matrix,

i.e. the computation of N matrices ΣΦ(ξ)|xi
, i = 1, . . . , N is required. The

formula for computing ΣΦ(ξ)|xi
and an elegant way to control the required

time and space resources is presented in the structural likelihood approach,

which also requires these matrices (cf. (3.18) in chapter 3).

The second term on the right hand side of (4.16) is

E(V(Y |ξ)|X) = E(g|X)

≈ σ2gµ + σ2 1

2
tr
(
ΣΦ(ξ)|Xg′′

µ

)
,

where Taylor expansion of g around µΦ(ξ)|X (cf. (4.14)) is used to approx-

imate the variance function. Now, putting the pieces together yields the

approximation of the observed variance

V(Y |X) ≈ f ′T
µ ΣΦ(ξ)|Xf ′

µ + σ2gµ + σ2 1

2
tr(ΣΦ(ξ)|Xg′′

µ). (4.17)

Most appealing, these approximations (4.15) and (4.17) can be used for gen-

eral response functions G(z). The first and second derivatives of f and g for

general response functions are given in the following.
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The first derivative f ′ is

f ′ =
∂G(Φ(ξ)ω)

∂Φ(ξ)

=
∂G(Φ(ξ)ω)

∂ (Φ(ξ)ω)

∂Φ(ξ)ω

∂Φ(ξ)

= G′(Φ(ξ)ω)ωT, (4.18)

where G′(Φ(ξ)ω) is scalar and denotes the first derivative of the response

function with respect to the linear predictor Φ(ξ)ω.

Further, the second derivative f ′′ is

f ′′ =
∂G′(Φ(ξ)ω)ωT

∂Φ(ξ)T

=
∂G′(Φ(ξ)ω)

(Φ(ξ)ω)

∂Φ(ξ)ω

∂Φ(ξ)T
ωT

= G′′(Φ(ξ)ω)ωωT, (4.19)

where G′′(Φ(ξ)ω) is scalar and denotes the second derivative of the response

function with respect to the linear predictor Φ(ξ)ω and ωωT is a matrix.

The first and second derivative of the variance function g2 for general response

functions G(z) in binary regression are given as

g′ =
∂G(Φ(ξ)ω)(1 − G(Φ(ξ)ω))

∂Φ(ξ)

=
∂G(Φ(ξ)ω)

∂ (Φ(ξ))
− ∂[G(Φ(ξ)ω)]2

∂Φ(ξ)

= [G′(Φ(ξ)ω) − 2G(Φ(ξ)ω)G′(Φ(ξ)ω)] ωT (4.20)

g′′ =
∂(G′(Φ(ξ)ω) − 2G(Φ(ξ)ω)G′(Φ(ξ)ω))

∂Φ(ξ)T

= [G′′(Φ(ξ)ω)(1 − 2G(Φ(ξ)ω))

− 2G′(Φ(ξ)ω)G′(Φ(ξ)ω)] ωωT, (4.21)

where g′ is a vector and g′′ is a matrix.

Here, f ′′ and g′′ are of matrix form for every observation in the data set. Since
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both depend also on the weight parameters, recalculation of these matrices

has to be performed in every step of the optimization algorithm, making the

procedure computationally extraordinarily challenging.

While the previous derivations hold for arbitrary binary regression models,

the specific expressions for the popular probit and logit case are given in the

following.

For the binary probit regression, where

f := G(Φ(ξ)ω) =

∫ Φ(ξ)ω

−∞

1√
2π

exp

(
−1

2
t2
)

dt

and with φ denoting the standard normal density these specific derivatives

are

f ′ = φ (Φ(ξ)ω) ωT

f ′′ = −ωf ′

g′ = f ′ − 2f · f ′

g′′ = f ′′(1 − 2f) − 2f ′Tf ′.

For the binary logit regression, where

f := G(Φ(ξ)ω) =
1

1 + exp(−Φ(ξ)ω)
,

the required derivatives are given by

f ′ = f(1 − f)ωT

f ′′ = ω(f ′ − 2f · f ′)

g′ = f ′ − 2f · f ′

g′′ = f ′′(1 − 2f) − 2f ′Tf ′.

Here, f ′ and subsequently (f ′ − 2Gf ′) are row vectors.

One potential problem with the approximations of the observed moments

(4.15) and (4.17) is that they might not be range preserving since g ′′ and f ′′
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need not be positive. A range preserving alternative is presented in Carroll

& Stefanski (1990) for expanded regression calibration and for the expanded

basis function calibration approach developed here it is derived as

E(Y |X) ≈ f

(
µΦ(ξ)|X +

1

2

f ′
µ

‖f ′
µ‖2

tr(f ′′
µΣΦ(ξ)|X),ω

)

V(Y |X) ≈ σ2g2

(
µΦ(ξ)|X +

1

2

g′
µ

‖g′
µ‖2

tr(g′′
µΣΦ(ξ)|X) + σ−2f ′T

µ ΣΦ(ξ)|Xf ′
µ,ω, θ

)
.

Another (ad-hoc) strategy to cope with this problem, is to exit the cur-

rent weight optimization in case the Taylor series approximation for E(Y |X)

(4.15) leaves the [0, 1]-interval and do a hyperparameter update until further

ω updating is performed. Even coming close to the boundaries of admissible

values might cause numerical instabilities, which are somewhat aggravated

when happening at the fringe of the data, where only sparse data is available.

This was, however, not encountered in the simulations presented below. Sev-

eral strategies placing lower and upper bounds on key values are conceivable

to partly cure the problem. In general it is not expected that the measures to

stabilize the numerical computations affect the presented method to a great

extend.

Once the approximate mean and variance models for the observed data are

calculated, model exploration as discussed in Carroll & Ruppert (1988) can

be used in addition as guide to the construction of a final model.

However, in this work both approximate observed moments (4.15) and (4.17)

are directly used in the penalized quasi score function.

The parameter estimation is then performed in an analog way to the algo-

rithm used in the structural quasi likelihood (cf. Section 3.1.2), where one

tries to find the root of the score function

sX(Y,X,ω) =
N∑

i=1

∂ E
∗(yi|xi)

∂ω

(
yi − E

∗(yi|xi)

V
∗(yi|xi)

)
− ωA. (4.22)

The symbol ∗ is chosen to indicate the approximative nature of these mo-

ments. Applying basic algebra, the required differentiation µ∗
Φ(ξ)|xi

:= δ E
∗(yi|xi)
δω
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in (4.22) is easily calculated as

µ∗
Φ(ξ)|xi

= µΦ(ξ)|xi
D1i +

1

2
ωTΣΦ(ξ)|xi

ωD3i + ωTΣΦ(ξ)|xi
D2i, (4.23)

with

D1i =

(
∂G(µΦ(ξ)|xi

ω)

∂(µΦ(ξ)|xi
ω)

)

D2i =

(
∂2G(µΦ(ξ)|xi

ω)

∂(µΦ(ξ)|xi
ω)(µΦ(ξ)|xi

ω)

)

D3i =

(
∂3G(µΦ(ξ)|xi

ω)

∂(µΦ(ξ)|xi
ω)(µΦ(ξ)|xi

ω)(µΦ(ξ)|xi
ω)

)
.

The score function (4.22) is then readily given.

The expected Fisher matrix is derived via the first derivative of the score

function (4.22) with respect to ω and here given as

F (ω) =
(
Φ∗T

c B∗
c Φ

∗
c + A

)
. (4.24)

For the sake of clarity, two quantities are introduced and defined here: dif-

ferentiation of the observed mean model with respect to the weights yields

the matrix Φ∗
c , constructed from the row vectors (4.23), and the observed

variances for each individual are collected in the diagonal matrix B∗
c :

Φ∗
c =




µ∗
Φ(ξ)|x1

µ∗
Φ(ξ)|x2

. . .

µ∗
Φ(ξ)|xN


 , B∗

c =




V
∗(y1|x1)

−1

. . .

V
∗(yN |xN)−1.


 .

(4.25)

The subscript ’c’ is chosen to indicate that both quantities are affected by

calibration, while the superscript ∗ again denotes that the approximate mo-

ments (4.15) and (4.17) are involved here.

The score function (4.22) with corrected mean and variance functions can no

longer be solved analytically. Again, Fisher scoring including the modified

score function (4.22) and the expected Fisher matrix (4.24) has to be applied,
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analogously to the non-Gaussian regression case in Section 2.1.2.

Approximating the posterior covariance matrix by the inverse expected Fisher

matrix yields the posterior moments of the parameters ω

Σ = F (ω)−1 =
(
Φ∗T

c B∗
c Φ

∗
c + A

)−1
, (4.26)

µ = ΣΦ∗T
c B∗

cy
∗, where y∗ = Φ∗

cω + (y − E
∗(y|x)). (4.27)

Here, E
∗(y|x) in the expression for the working observations y∗ is a column

vector based on the approximation in (4.15) with y = (y1, y2, . . . , yN )T and

x = (x1, x2, . . . , xN)T.

It is stressed here, that the standard errors based on (4.26) are not prop-

erly corrected for the inherent covariate measurement error, which is a open

problem, yet.

Now, approximating the marginal likelihood for estimation of the hyperpara-

meters is a creativity challenge. To understand this, the construction of the

marginal likelihood in the basis function calibration from the previous Section

4.1.1 is recalled here. There, the specific figure of the working observations

was given as

y∗ = Φcω + D−1 (y − G(Φcω)) ,

involving the diagonal matrix D consisting of elements Dii =
(

∂G(µΦ(ξ)|xi
ω)

∂(µΦ(ξ)|xi
ω)

)
.

Tipping (2001) follows the so-called Laplace approximation (cf. e.g. Tierney

& Kadane (1986), MacKay (2003)) and assumes the marginal likelihood of

these working observations being approximately normal

p(y∗|x,α) = N (0, B + ΦcA
−1ΦT

c ).

Then the hyperparameter estimation proceeded via the one step marginal

likelihood maximization scheme as discussed in Section 2.1.2. In contrast to

that previous specification, the working observations in the expanded cali-

bration case (4.27) are defined as

y∗ = Φ∗
cω + (y − E

∗(y|x)).
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They do no longer include the linear predictor Φcω in terms of the calibrated

design matrix Φc, but instead they contain Φ∗
c from (4.25), which is the

derivative of the observed mean model with respect to the weights.

The reason for this lies in the fact that the matrix Φ∗
c is not decomposable

into a product of the calibrated design matrix Φc and a second factor, which

can be captured in the diagonal covariance matrix B∗
c as it has been done

for basis function calibration (cf. (4.5)). A fact that makes the optimization

of the hyperparameters slightly obscure. Two conceivable approaches for

hyperparameter estimation via the marginal likelihood are developed in the

subsequent section:

Estimating the hyperparameters

Once the posterior moments (4.26) and (4.27) are computed, a strategy for

estimation of the hyperparameters α is needed. This should again proceed

via the marginal likelihood optimization, as described in Section 2.1.2 for

the non-Gaussian case. Therefore, Tipping (2001) assumes the marginal

likelihood being approximately normal, following the Laplace approximation.

In this respect, a first possible specification of the marginal likelihood is here

given as

p(y∗|x,α) = N (0, C∗) (4.28)

where C∗ = B∗
c + Φ∗

cA
−1Φ∗T

c ,

with Φ∗
c and B∗

c defined as in (4.25) and the working observations y∗ from

(4.27). Since the computational burden of calculating the posterior moments

is steeply rising with the number of basis functions in the actual model, the

one step optimization of the marginal likelihood by Tipping & Faul (2002), as

described in Section 2.1.2, is generally favored in this work. It allows to build

up the final model by introducing, updating and deleting basis functions in

each step of the algorithm. Usually, there are at no time more than a minor

fraction of all possible basis in the model, and thus the required computations

are reasonable.
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Revisiting this updating scheme, however, reveals a pronounced problem

when the marginal likelihood is taken to be as suggested in (4.28). The

updating rule is then given by

αj =

{
s2
j

q2
j−sj

if q2
j − sj > 0

∞ else
, (4.29)

where for simplicity qj = φ∗T
j C∗−1

−j y∗ and sj = φ∗T
j C∗−1

−j φ∗
j have been defined.

Here, C∗
−j = C∗ − αjφ

∗
jφ

∗T
j denotes the covariance matrix in (4.28) with the

influence of basis vector φ∗
j removed and φ∗

j being the jth basis vector from

the design matrix Φ∗
c from the expanded calibration framework (cf. (4.25)).

Now, to provide updated values for all αj, j = 0, . . . , J , the computation of

the ’full’ design matrix including all potential basis functions is necessary at

each step of the algorithm. The required (N × J + 1) design matrix Φ∗
c on

its part, however, involves the computation of the (J + 1)× (J + 1) matrices

ΣΦ(ξ)|xi
, i = 1, . . . , N (cf. (4.23)). Theoretically, only that part of the covari-

ance matrix ΣΦ(ξ)|xi
corresponding to those weights currently in the model

needs to be calculated. However, it is excessively expensive from a compu-

tational point of view to recalculate the ’full’ Φ∗
c at each step, whenever the

parameters ω have changed! A potential remedy lies in providing updated

values merely for a subset of basis, which means reducing the computational

costs by computing only a few φ∗
j ’s and their respective hyperparameter up-

date using rule (4.29).

An alternative approach:

In order to keep the hyperparameter update computationally operable it is

assumed that Φ∗
c = δ E

∗(y|x)
δω

is decomposable into a product of the calibrated

design matrix Φc and a second factor, the diagonal matrix D with elements

Dii =

(
∂G(µΦ(ξ)|xi

ω)

∂(µΦ(ξ)|xi
ω)

)
.

Subsequently, the posterior moments of the weights simplify to

Σ =
(
ΦT

c B∗∗
c Φc + A

)−1
, (4.30)

µ = ΣΦT
c B∗∗

c y∗∗, where y∗∗ = Φcω + D−1(y − E
∗(y|x)). (4.31)
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The redefined working observations y∗∗ are very similar to those specified

earlier in the basis function calibration (cf. (4.6) in Section 4.1.1) and only

differ from those with respect to E
∗(yi|xi) now incorporating the Taylor series

expansion (cf. (4.15)).

The matrix D has been factored out in y∗∗ (4.31) and has been collected,

together with matrix B∗
c from (4.25), into the new diagonal matrix B∗∗

c with

diagonal elements given by

B∗∗
cii

=

(
∂G(µΦ(ξ)|xi

ω)

∂(µΦ(ξ)|xi
ω)

)2

/ V
∗(yi|xi).

Matrix B∗∗
c now involves the first derivative of the response function with

respect to the linear predictor and V
∗(yi|xi), the approximated observed

variance of the responses. Here, B∗∗
c only differs from B in the basis function

calibration (cf. Section 4.1.1) with respect to V
∗(yi|xi) now incorporating the

Taylor series expansion (cf. 4.17).

The marginal log likelihood of the working observations y∗∗, based on the

decomposability of Φ∗
c , is then

L = −1

2

[
log | C∗∗ | +y∗∗T

C∗∗−1y∗∗
]

where C∗∗ = B∗∗
c + ΦcA

−1ΦT
c . (4.32)

Maximization of this objective function yields the hyperparameter estimates.

The one step maximization scheme from Section 2.1.2 therefore utilizes the

covariance matrix from (4.32) and the working vector y∗∗ as defined in (4.31).

There is no need for computationally intensive recalculation of the design

matrix Φ∗
c in each iteration step, since only the calibrated design matrix Φc

is required here in order to compute the quantities sj and qj in (4.29). Φc is

readily given and does not change during the algorithm. That approach is

used in the simulations presented later in this section.

In case there is a dispersion parameter included in the model, σ2 can also be

estimated via this objective function (4.32), cf. (2.28) in Section 2.1.2.

Note, that the modified posterior moments (4.30), (4.31) and the respective

working observations are only used here in the optimization scheme for the

hyperparameters α – not in the optimization of the weights ω.
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4.1.3 SIMEX

The fundamental concept of SIMEX in the flexible regression setting lies

in learning how the measurement error affects the prediction function and

correction of the error based on this acquired knowledge. An indispensable

requirement is the valid assumption of the classical measurement error model

(possibly after transformation) X = ξ + δ, where δ is independent of Y and

ξ and has mean zero and variance σ2
δ .

A very minor amendment of the Gaussian regression SIMEX, as presented

in Section 3.1.3 in order to satisfy the binary case lies in studying the error

effect on the linear predictor f̂ ∗(ξk) := Φ(ξk)ω̂ at points of interest ξk instead

of investigating its effect on the estimated probability f̂(ξk) := G (Φ(ξk)ω̂)

directly. This modification guarantees the final SIMEX prediction function

f̂SIMEX(ξk) = G
(
f̂ ∗

SIMEX(ξk)
)

to be in the scope of [0, 1] as postulated for

binary regression. The recipe for SIMEX is then

1a) Generate random errors δ∗i ∼ N
(
0,

σ2
δ∗

m

)
and add these to the ob-

served xi, i = 1, . . . , xN , where xi may be the mean of m replicate

measurements xi1, xi2 . . . , xim. For simplicity, it is again assumed that

the number of replicates are identical for all objects in the sample.

1b) Then perform a standard RVM analysis using these ’new’ data con-

taining the additional error.

Repeat these steps sufficiently often to obtain a series of estimates for the

linear predictor f̂ ∗
1(ξk), f̂ ∗

2(ξk), . . . , f̂ ∗
B(ξk), B = 50 − 200 at ξk.

2) Compute the average over the B predictions f̂ ∗(ξk) =
∑B

s=1 f̂ ∗
s(ξk) for

every ξk.

Now, repeat this whole scheme for a set of error variances σ2
δ∗ = c · σ2

δ , in

multiples of the original error variance. Typically, the multiplier is chosen to

be c = c1, c2, c3, c4, . . . with c1 = 0, c2 = 0.5, c3 = 1, c4 = 1.5. Here, c1 = 0

corresponds to the analysis based on the originally observed data, which, of

course, has to be performed only once, not B times.

This yields a series of mean estimates f̂ ∗
c1(ξk), f̂ ∗

c2(ξk), . . . depending on the
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multiple c of the error variance. Plotting these mean estimates versus their

respective inherent measurement error variance reveals a pattern of how the

error affects the estimate for the linear predictor. Fitting a line to the error

contaminated estimates f̂ ∗
c(ξk) and extrapolating to c = −1 gives the de-

sired SIMEX corrected linear predictor f̂ ∗
SIMEX(ξk). The SIMEX estimate

for the true probability is then simply f̂SIMEX(ξk) = G
(
f̂ ∗

SIMEX(ξk)
)
.

The pronounced crux of the method is the extrapolation part as this is always

an adventurous task. A popular choice is the quadratic extrapolant, which

sufficiently models the error pattern in many practical cases. The true error

variance σ2
δ must either be known or estimated from replication/validation

data. In the following simulation study a quadratic extrapolation based on

the naive analysis (c=0) and the mean estimates over B = 50 repetitions for

each c ∈ {0.5, 1, 1.5, 2} is used to attain the SIMEX estimates. The com-

putational heaviness of SIMEX is even increased here by the Fisher scoring

algorithm inherent in the standard RV M for binary regression (cf. Section

2.1.2).

4.1.4 MCMC error correction in flexible binary regres-

sion

The Markov Chain Monte Carlo (MCMC) version of the RVM (cf. Section

2.2.2) will be enriched in order to account for covariate measurement error.

Thus, it circumvents the approximations that are indispensable in the former

methods described in this section.

This approach is mainly inspired by three (different) aspects discussed in the

existent literature: Chakraborty et al. (2005) develop a MCMC version of

the RVM for problems where the sample size is substantially smaller as the

number of available covariates, known as large p small n problems. However,

they perform no selection of basis functions in their approach. This gap can

be filled by adopting Bayesian averaging allowing for model selection in each

step of the MCMC algorithm and finally averaging over all visited models (cf.
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Denison et al. (2002) and the respective paragraph in Section 2.2.1). Berry

et al. (2002) most notably introduce error correction for P-splines, where the

latent observations ξi, i = 1, . . . , N are introduced as further unknown para-

meters into the MCMC scheme following the concept of data augmentation

(cf. the respective paragraph in Section 2.2.1). This core idea of filling in the

latent ξi’s goes back to Richardson & Gilks (1993a) and Richardson & Gilks

(1993b). A detailed overview of the field of Bayesian measurement error cor-

rection is given by Richardson (1996).

An outstanding property of MCMC approaches is that these techniques re-

semble a construction kit, where the individual building blocks remain prac-

tically unchanged regardless of the ’monument’ one aims to construct. These

building blocks are the unknown model parameters and their respective sam-

pling schemes. The monument one hopes to complete is to model the data

adequately and to estimate the unknown parameters. More complex models

naturally require more building blocks. Typically more building blocks make

the construction more susceptible to collapse and consequently the number

of parameters to set up an adequate model should be limited. An exception

is the introduction of parameters for data augmentation reasons. This tech-

nique is intended to allow for the use of more manageable building blocks,

e.g. the use of Gibbs-sampling instead of difficult Metropolis Hastings (MH)

sampling, to realize the aspired model estimation.

This construction kit character is a tremendous advantage when it comes to

writing about these strategies since the flexible Bayesian probit regression

model (cf. Section 2.2.2) and the Bayesian correction for measurement error

(cf. Section 2.3.2) have been discussed at full length earlier and now the re-

maining task is to put the modules together.

Firstly, the flexible Bayesian probit model is recalled, together with model

selection and then the specification of the measurement error and covariate

model are given. Finally the complete ’ready to implement’ sampling scheme

is presented.
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Model setup and prior specifications

The flexible Bayesian probit regression model adopts a data augmentation

step in order to make the sampling scheme more handy by essentially im-

itating the Bayesian Gaussian regression model. Therefore the latent (de-

pendent) variable Z is artificially introduced in the model - a variable that

is in an economic context often termed as latent utility. The Bayesian mea-

surement error correction also adopts a data augmentation step, which treats

the true but unobservable ξi, i = 1, . . . , N as additionally unknown parame-

ters. Thus, and most conveniently, the flexible Bayesian probit model under

Bayesian error correction may now be formulated directly in terms of the

latent ξi’s.

Then the Bayesian probit regression model accounting for covariate measure-

ment error reads as

yi =

{
1 : if zi > 0

0 : otherwise

zi = Φγ(ξi)ωγ + εi

εi ∼ N (0, 1). (4.33)

While the original sample consists of binary random outcomes yi ∈ {0, 1},
these yi’s are no longer random given the zi’s. Here, the linear predictor

Φγ(ξi)ωγ is made up of the weighted basis functions, as in the previous RVM

methods, but now – most remarkably – constructed from the latent covariate

observations ξi, i = 1, . . . , N . The error-prone covariate observations xi, i =

1, . . . , N are now ”hidden” behind the newly introduced unknown parameters

ξi, i = 1, . . . , N . So, given values for the ξi’s this is a standard, however

flexible, Bayesian probit regression model as promoted by e.g. Albert & Chib

(1993) and Holmes & Held (2006). The parameter γ indicates, as explained

earlier, the model complexity.

In analogy to the RVM methods a multivariate Gaussian prior distribution is

defined over the weights. However, here with the slight modification of now

selecting a single fixed prior variance v in advance, which should be large
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enough to give reasonable probability even to relatively large weight values

p(ω|v) =
J∏

j=0

√
1

2πv
exp

(
−ω2

j

2v

)
. (4.34)

While all presented RVM methods select relevant basis functions from a large

set of (J +1) potential basis functions (usually (J +1) = 101, i.e. 1 intercept

+ 100 radial basis functions) this sparsity concern should somehow trans-

late to the MCMC approach. This is particularly important here since the

sampling of ω would otherwise include all (J + 1) parameters – a monstrous

since computer intensive task.

Two ways to realize sparsity have been described in Section 2.2.3, and finally

the Bayesian averaging method, discussed there at length is implemented

here: an additional parameter vector γ is introduced into the model naming

the relevant basis function, i.e. γ = {1, 3, 89} refers to the model only in-

cluding the first, third and 89th basis function. Typically the dimension of

γ is varying and thus the reversible jump algorithm, as allowing for variable

parameter dimensions, is employed.

The discrete uniform prior distribution over γ is adopted from Denison et al.

(2002) that takes

p(γ) =

(
J + 1

dim(γ)

)−1

× 1

T + 1
, (4.35)

with dim(γ) denoting the number of elements in γ, J + 1, the number of

the candidate basis functions, and T the maximum number of basis func-

tions allowed in a model, so T ≤ (J + 1). This is in concordance with all

previous methods, which select basis functions from an arsenal of J radial

basis functions and 1 intercept. The maximum number of basis functions T

should be chosen large enough not to affect the posterior, which is, however,

not checked here, instead this number is set to T = 20.

Then, the covariate and the measurement error model need to be character-

ized. Both are taken from Berry et al. (2002) and are briefly recalled here

from Section 2.3.2.

A multivariate normal prior distribution is applied over ξ, with its elements
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being independently

ξi ∼ N (µξ, σ
2
ξ ), (4.36)

with respective normal and inverse Gamma hyperpriors over its moments

µξ ∼ N (f, g2), (4.37)

σ2
ξ ∼ IG(Aξ, Bξ). (4.38)

The inverse Gamma distribution is defined as

f(x|A,B) =
1

Γ(A)BAxA+1
exp

(
− 1

Bx

)
I(0 ≤ x < ∞).

Assuming normally distributed measurement error, yields the error model

xij = ξi + δij, (δij, ξi) ∼ indep., δij ∼ N (0, σ2
δ ), (4.39)

where j = 1, . . . ,mi indexes the replicate measurements for person i.

Following Berry et al. (2002), the measurement error variance σ2
δ is repara-

metrized as

σ2
δ =

1 − λ

λ
· σ2

ξ , with λ =
σ2

ξ

σ2
X

(4.40)

in order to account for the inherent additive relationship between the vari-

ances: σ2
x = σ2

ξ + σ2
δ . Thus, σ2

δ itself does not appear in the sampling scheme

and instead draws for the so-called attenuation factor λ will be generated.

Therefore, following again the implementation of Berry et al. (2002) a uni-

form distribution on the interval [λL, λH ] is specified here as prior distribu-

tion.

In the forthcoming simulations the following prior specifications are used:

v = 100, T = 20, f = 0, g2 = 100, Aξ = 1, Bξ = 1, λL = 0.7, λH = 0.99.

The robustness to prior specification will not be investigated here. However,

the MCMC-RVM uses the same prior distributions as adopted in Berry et al.

(2002) for those parameters appearing in both methods, and Berry et al.

(2002) state that their method shows only minimal changes when using dif-

ferent priors.
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Inference

Samples of ωγ , µξ, σ
2
ξ and the latent variable z are obtained from their re-

spective full conditional densities based on the current model as defined by

γ. Most notably, the design matrix Φγ , wherever it appears in this sampling

scheme, is constructed from the sampled values ξi, i = 1, . . . , N for the latent

covariate ξ.

The full conditionals for ωγ , z, µξ and σ2
ξ are recognized as standard distrib-

utions:

p(ωγ |z, ξ) = N
(
µωγ |·, Σωγ |·

)
(4.41)

where µωγ |· = Σωγ |·Φ
T
γz

Σωγ |· =
(
v−1I + ΦT

γΦγ

)−1
,

p(zi|z−i, yi, ξ,γ) ∝
{

N(µzi|·, Σzi|·)I(zi > 0) if yi = 1

N(µzi|·, Σzi|·)I(zi < 0) otherwise
(4.42)

where µzi|· = Σzi|·Φγ(ξi)µωγ |· − wizi

Σzi|· = 1 + wi

wi = hi/(1 − hi),

p(µξ|ξ, σ2
ξ ) = N




(∑N
i=1 ξi

)
g2 + fσ2

ξ

Ng2 + σ2
ξ

,
σ2

ξg
2

Ng2 + σ2
ξ




p(σ2
ξ |x, ξ, µξ, λ) = IG

(
Aξ|·,

1

Bξ|·

)

where Aξ|· = Aξ +
1

2

N∑

i=1

mi +
N

2
,

Bξ|· = B−1
ξ +

λ

2(1 − λ)

N∑

i=1

mi∑

j=1

(xij − ξi)
2

+
1

2

N∑

i=1

(ξi − µξ)
2.
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Here, hi is the ith diagonal element of the Bayesian hat matrix, hi = Hii, H =

ΦγΣωγ
ΦT

γ . Most interestingly, since model selection is supposed to occur here

in each cycle of the sampling scheme, the necessary calculation of Σωγ |· in

(4.41) is usually not computer intensive since typically only few basis func-

tions are contained in the model. The details of how to sample the model

dimension parameter γ follow now.

As presented in Section 2.2.3, sampling the model selection parameter γ is

more complex than sampling the previously discussed parameters ωγ , µξ, σ
2
ξ

and the latent response observations z. The reversible jump algorithm needs

to be adopted here. This is based on the Metropolis-Hastings (MH) sampler

allowing for two move types, either in higher or lower model dimension. The

current model dimension may be denoted as t := dim(γ). Then these moves

are characterized by:

BIRTH. Proposal of adding a randomly chosen basis (including intercept)

from those that are not present in the current model with probability bt.

DEATH. Proposal of removing a randomly chosen basis (including inter-

cept) from those that are present in the current model with probability dt.

Then, the proposal probabilities for BIRTH and DEATH are chosen to be

bt = dt = 0.5 for 0 < t < 20 and b0, d20 = 1 and b20, d0 = 0, a choice that

allows a maximum number of T = 20 basis functions being in the model at

the same time. Depending on whether BIRTH or DEATH is proposed, the

specific basis to be contained or excluded is randomly selected with uniform

probability from the basis functions currently being excluded or contained,

respectively.

The acceptance probability of a move from a t basis function model γ to a

t′ basis functions model γ ′, where the prime indicates the ’proposal’, is

α = min

{
1,

p(z|γ ′, ξ)

p(z|γ, ξ)
× R

}
, (4.43)
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the ratio of the marginal likelihoods multiplied by R = d′
t/bt for a BIRTH

and R = b′t/dt for a DEATH proposal.

The proposed jump from t to t′ dimensions is accepted if an uniformly gen-

erated random number is smaller than the acceptance probability (4.43).

Sparse models are favored here through the use of the specific zero mean

normal prior over the weights (4.34) – a fact, which is explained by Ock-

ham’s razor (cf. Section 2.2.1).

The fact that the weights have been marginalized (i.e. integrated out) of the

marginal likelihood in (4.43), allows for a block update of γ together with

ωγ , which is
”
extremely important“ (cf. Holmes & Held (2006)), as typically,

when the basis functions are non-orthogonal, there is strong linear depen-

dence between the weights. The block update proceeds by firstly drawing

a new sample γ and then generating the respective coefficients ωγ for this

model. Since, however, the moments of the full conditional distribution of

the weights (4.41) are needed for calculating the acceptance probability, it

was decided here, to firstly present the full conditional of the weights and

then the sampling scheme for γ. However, in an computer implementation

this order would be vice versa.

Since accounting for measurement error here, the marginal likelihood in

(4.43) is now conditioned on the latent ξi’s, which means using the design

matrix Φ based on samples ξi, i = 1, . . . , N and is given by

p(z|γ, ξ) = (2π)−
N
2
| Σωγ |· |

1
2

| vγ | 12
exp

(
−1

2

(
zTz − µT

ωγ |·Σ
−1
ωγ |·µωγ |·

))
,

where the exponential term zTz cancels out in the acceptance probability

(4.43) since it is independent of the selected model. Here, vγ denotes the

prior covariance matrix over the weights for a model as defined by γ.

Samples for the attenuation parameter λ relating σ2
δ to σ2

ξ , cf. (4.40), are

generated with the aid of a gridded Gibbs estimator. The full conditional of
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this parameter is given by

p(λ|ξ, σ2
ξ ) ∝ I(λL < λ < λH)

(
λ

1 − λ

)a

exp

(
− λ · b

2(1 − λ)σ2
ξ

)

a =
∑

i

mi/2

b =
∑

i

mi(xi − ξi)
2 + σ̂2

δ

∑

i

(mi − 1), (4.44)

with xi = 1
mi

∑mi

j=1 xij denoting the average over a subjects’s replicates. Here,

σ̂2
δ is the methods of moments estimate for the measurement error variance

(cf. (2.52)). In the forthcoming simulations, the set λ ∈ [λL, λH ] is discretized

into 40 different values, then (4.44) is computed for these values, a discrete

distribution function is constructed from the results and λ is sampled from

this distribution function. This approach has also been used by Berry et al.

(2002) and Carroll et al. (2004) in this situation and usually provides good

mixing, though it is not strictly correct. Alternatively, one can also imple-

ment a MH step based on (4.44).

Finally, a sampling scheme for the latent covariate observations is required.

The conditional density of a single true covariate observation ξi is recalled

from Section 2.3.2 as

p(ξi|zi,xi, µξ, σ
2
ξ ,ωγ ,γ, λ) ∝ exp

(
−1

2
(zi − Φγ(ξi)ωγ)2

)

× exp

(
− 1

21−λ
λ

· σ2
ξ

mi∑

j=1

(xij − ξi)
2

)

× exp

(
− 1

2σ2
ξ

(ξi − µξ)
2

)
. (4.45)

The ξi’s are independent a posteriori and xi := (xi1, . . . , ximi
) denotes here

the vector of replicates for person i: only the complete series of measurements

taken for person i are required in order to compute the full conditional of ξi.

However, (4.45) is not a standard density and a Metropolis Hastings (MH)

step needs to be implemented. Therefore a symmetric random walk proposal
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is specified as

p (ξ′i) = N
(

ξi,
1

2
σ2

ξ|xi

)
, (4.46)

with the prime symbol indicating the proposal, so this must not be confused

with the prior over ξi derived from the covariate model (4.36). This proposal

is a Gaussian with the old value ξi as its mean and with variance being half

the conditional variance of ξ given the observed value xi. Here σ2
ξ|xi

can be

calculated from the general formula (2.51), but uses the current samples of

σ2
ξ and λ. A generated proposal ξ ′i is accepted with probability

α = min

{
1,

p(ξ′i|zi,xi, µξ, σ
2
ξ ,ωγ ,γ, λ)

p(ξi|zi,xi, µξ, σ2
ξ ,ωγ ,γ, λ)

}
.

The conditional density (4.45) is easily evaluated at the proposed value ξ ′
i

and the old value ξi to perform MH sampling. If the candidate value ξ ′i is

rejected, the current value of ξi is repeated as the next value of the MCMC

sample. So, according to the new samples ξi, i = 1, . . . , N the design matrix

Φ has to be recalculated in every step of the MCMC algorithm.

Given starting values for the unknown parameters, the sampling scheme is

executed and after a preceding burn-in period of 2000 runs, another 2000

samples are collected for parameter estimation. The choice of using 2000

samples as a burn-in period and another 2000 for inference is inspired by

the MCMC implementation of Berry et al. (2002) and no investigation of

convergence, as has been advised in Section 2.2.1, is done here.

Finally, predicting the probability of y∗ = 1 at an previously unseen ξ∗ is

accomplished in two steps. Firstly, by using the histogram estimator (cf.

(2.30)) as an consistent estimator for the posterior mean of the linear pre-

dictor z∗ := Φ(ξ∗)ω:

Ê(z∗|y) =
1

2000

2000∑

j=1

(Φ(ξ∗)ω[j]|y). (4.47)

Here, the implicit integration is done over both, the parameter space z, ω,

ξ, µξ, σ2
ξ , λ and the model space γ.
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Then, in a second step, this posterior mean estimate (4.47) is linked to the

desired probability by multiplying this by ’1.7’ and applying the inverse logit

function to the result, which gives

P̂ (y∗ = 1|ξ∗,y) =
(
1 + exp

(
1.7 · Ê(z∗|y)

))−1

.

Multiplying the linear predictor of a probit link model with the factor ’1.7’,

yields approximately the linear predictor of a logit link model. This circuitous

way of deriving the final estimator is due to the fact that in a previous setup

of the simulation study the estimates of the linear predictor assuming a logit

link model have been compared across all methods.

This estimator adopted here is not equivalent to the histogram estimator

using the transformed samples directly:

P̂ (y∗ = 1|ξ∗,y) =
1

2000

2000∑

j=1

((
1 + exp

(
1.7 · Φ(ξ∗)ω[j]

))−1 |y
)

.

Here, the transformed samples are restricted to the interval [0, 1] and are

expected to follow a skew distribution for many ξ∗’s. Then, the mean is a

rather poor estimate for the posterior mode. Thus, utilizing (4.47) is favored

here.

It may be stressed here again, that a major drawback of the MCMC approach,

which is generally inherent in sampling approaches, is the vast computational

effort to accomplish the desired prediction.
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4.1.5 A byproduct - data augmentation and calibra-

tion

Theoretical considerations for the Gaussian case in Section 3.1.1 showed that

basis function calibration leads to an exact representation of the observed

mean E(Y |X) when plugging the calibrated row vectors µΦ(ξ)|X into the

model (cf. (3.9)). The data augmentation approach described in the pre-

vious Section 4.1.4 introduces the latent response variable Z and so converts

binary regression into Gaussian regression and thus simplifies the inference

for the MCMC approach. There may be a gain in bringing both strategies

together. . .

Most interestingly, when adopting data augmentation in the probit model

yi =

{
1 : if zi > 0

0 : otherwise

zi = Φ(ξi)ω + εi (4.48)

εi ∼ N (0, 1) (4.49)

the observed mean function of the artificial responses zi, i = 1, . . . , N can be

given exactly as

E(zi|xi) = µΦ(ξ)|xi
ω, (4.50)

with the elements in the row vector µΦ(ξ)|X as calculated in (3.8). The para-

meter vector ω is again viewed as being fixed as usual in the basis function

calibration context (cf. Section 3.1.1). This relation (4.50) has an important

meaning: if zi is available, then using basis function calibration in the bi-

nary context is equivalent to using it in the Gaussian context. Of course

these latent quantities are not available and thus the need for coping with

the binary responses yi.

However, conditioning the latent model (4.48) on the error-prone observa-

tions x and additionally on the observed dichotomous responses y, yields an

alternative observed model to (4.50), which can be used for inference. This
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alternative observed model is, most notably, formulated in the parameters ω

of the ideal model (4.48) and is given by

E(zi|yi, xi) = E(Φ(ξi)ω|yi, xi) + E(εi|yi, xi)

= µΦ(ξ)|xi
ω + E

(
− φ(0,1)

Φ(0,1)(−f ∗
i ) − yi

|xi

)

= µΦ(ξ)|xi
ω + ε∗i , (4.51)

where f ∗
i := Φ(ξ)ω denotes the linear predictor from the ideal latent model

(4.48). Here, φ(a,b) and Φ(a,b) denote the Gaussian density and cumulative

distribution function with moments a and b. In the second line of (4.51) it

is assumed that yi has no additional information about Φ(ξi) given xi, i.e.

E(Φ(ξi)|yi, xi) = E(Φ(ξi)|xi) =: µΦ(ξ)|xi
. The expansion of E(εi|yi, xi) in the

second line comes from the application of the law of iterated expectations

and uses the non-differentiability of the measurement error. It involves the

usual formula for computing the mean of a truncated normal distribution.

For convenience, it is assumed that ε∗i is normally distributed with zero mean

and heteroscedastic variance σ∗2

i = V (E (εi|yi, xi)). Thus, σ∗2

i is no longer

equal to one as before in the original probit model (4.49).

Then, if an estimator for E(zi|yi, xi) exists, the ’observed’ model (4.51) can

be used to find the parameter estimates for ω. This can be accomplished

via some least squares estimator like in the Gaussian case but now using the

estimates Ê(zi|yi, xi) in place of the observed responses yi.

The residuals ε∗i from (4.51) can not be computed offhand and are here very

naively approximated as

ε̂∗i = − φ(0,1)

Φ(0,1)(−f̂ ∗
i ) − yi

, (4.52)

where f̂ ∗
i := µΦ(ξ)|xi

ω̂ denotes the linear predictor, however, now using the

calibrated row vector µΦ(ξ)|xi
and the current estimate for the weights ω̂.

The required estimation for E(zi|yi, xi) is then given by

µ̂zi|· := Ê(zi|yi, xi) = f̂ ∗
i − φ(0,1)

Φ(0,1)(−f̂ ∗
i ) − yi

. (4.53)
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From model (4.51), the following penalized quasi score function can be con-

structed

N∑

i=1

∂ E (E(zi|yi, xi))

∂ω

E(zi|yi, xi) − E (E(zi|yi, xi))

V (E(zi|yi, xi))
− ωA,

where the original responses yi, i = 1 . . . , N have been replaced by the new

responses E(zi|yi, xi).

The observed mean model derived from (4.51), under the assumption E(ε∗i ) =

0, is given by

E (E(zi|yi, xi)) = µΦ(ξ)|xi
ω. (4.54)

The observed variance V (E(zi|yi, xi)) = V(ε∗i ) is approximated by

V (E(zi|yi, xi)) ≈ V (E(zi|yi)|xi) = ωTΣΦ(ξ)|xi
ω + σ∗∗2

, (4.55)

with σ∗∗2
= V(zi|yi). The fact that σ∗∗2

depends on Φ(ξi)ω and thus is het-

eroscedastic is ignored here.

The observed moments (4.54) and (4.55) together with the estimated re-

sponses (4.53) yield the ’practical penalized quasi score function’

N∑

i=1

µΦ(ξ)|xi

µ̂zi|· − µΦ(ξ)|xi
ω

ωTΣΦ(ξ)|xi
ω + σ∗∗2 − ωA, (4.56)

where ΣΦ(ξ)|xi
is the conditional covariance matrix of the basis functions as

derived in Section 3.1.2.

The main difference to the quasi score function employed in the true Gaussian

context is that the observable responses yi enter conditionally in the moments

and that (4.56) is based on some artificial responses, which have to be esti-

mated and updated in turn with the other unknown parameters.

However, by equating (4.56) to zero one should obtain parameter estimates

ω̂ that possibly benefit from having transferred the problem into a Gaussian

context (at least if the estimation for the latent µzi|· is not too bad). But,

on the other hand, the estimation can be impaired by the misspecification of

the error distribution of ε∗i as zero mean Gaussian random variable and the
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approximation of its variance.

Care must be taken since the so estimated model parameters correspond to a

probit model. An approximation for the logit model is however easily derived

by multiplying ω̂ with the factor 1.7.

The hyperparameters α and σ∗∗2
are estimated via the optimization scheme

as described in Section 3.1.2 for the structural quasi likelihood approach,

where now the estimates µ̂zi|· (4.53) replace the former responses yi.

This ’latent variable’-approach discussed here is a genuine ad-hoc method,

which can possibly be refined after further consideration.
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4.2 Simulation study

The presented correction methods, basis function calibration, expanded basis

function calibration, SIMEX, the MCMC approach and the rather ad-hoc

structural quasi likelihood, based on the latent utility, are compared in a

simulation study. The MCMC implementation of Bayesian binary regression

under measurement error escorting the article by Berry et al. (2002) is chosen

as a reference. It is stressed here once more that the robustness of the MCMC

approaches to prior specification is not investigated here.

All methods are checked in a variety of data scenarios. Firstly, these data

scenarios are described, before all competing methods are contrasted in some

essential respects. This section concludes with a discussion of the presented

results from the simulation study.

4.2.1 The data

For each data scenario 200 data sets are simulated.

There are always two replicates (mi = 2) available containing classical addi-

tive measurement error with µδ = 0. Thus, each surrogate xi, i = 1, . . . , N

represents the average over these two replicates. All methods described in

this chapter use these replicates in order to estimate the measurement error

variance σ2
δ . If no replicates were available, a good intuition or a divine hint

would do as well.

The latent ξi, i = 1, . . . , N are generated as independent normal random vari-

ables with mean µξ and variance σ2
ξ for all, except one data case, where the

ξi’s are sampled from a standardized χ2(4) variable. Each data set contains

usually N = 500 samples, with exception of case 6, where N = 1000 samples

are available. The level of measurement error variance is different for the

data scenarios. As a consequence of having two replicates, the measurement

error variance of the surrogates xi = xi1+xi2

2
is only half the error variance

that is stated below in the respective cases.

For the purpose of mean squared error calculations, a prediction function is
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calculated for each of the methods. Therefore, predictions were computed on

a grid of 101 points in the interval [a, b], which is expected to contain most

of the distribution for ξ.

The series of simulation includes eight data cases, where the binary re-

sponses are generated from the underlying true probability P (Y = 1|ξ) =

E(Y |ξ) = (1 + exp(−m(ξ)))−1 with functional argument m(ξ). No under-

/overdispersion is specified here.

Case 1: A quadratic function of the covariate with m(ξ) = −0.2 +

0.25ξ + 0.1ξ2, with N = 500, a = −2.0, b = 2.0, σ2
δ = 0.82, µξ = 0 and

σ2
ξ = 1.5

Case 2: An oscillating function of the covariate with

m(ξ) =




−0.9 + 3 sin(5ξ)/(5ξ) ξ 6= 0

2.1 ξ = 0
,

N = 500, a = −2.0, b = 2.0, σ2
δ = 0.22, µξ = 0 and σ2

ξ = 1.5

Case 3: Same as case 2 except σ2
δ = 0.52

Case 4: Same as case 2 except σ2
δ = 0.82

Case 5: Another oscillating function of the covariate with

m(ξ) =





0.5 + 2

√
(0.25ξ+0.5)(1−(0.25ξ+0.5)) sin(2π(1+2(9−4j)/5))

ξ
4
+0.5+2(9−4j)/5

−2 ≤ ξ ≤ 2

0.5 otherwise

for j = 3, with N = 500, a = −2, b = 2, σ2
δ = 0.52, µξ = 0 and

σ2
ξ = 1.52

Case 6: Same as case 4 except N=1000

The violation of the assumption that ξ is normally distributed is studied in

the following case:

Case 7: The same as case 3 above, except that ξ is a standardized

χ2(4) random variable. The MSE will be evaluated on [−1.25, 2.00].
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A plateau function is difficult to model with the RVM methods using RBF

kernels or the MCMC approach using 2nd order truncated power series. This

model misspecification is investigated here:

Case 8: The same as case 3 above except that

m(ξ) = 1 + 2(−2 + H(100ξ) + H(100(ξ − 0.5))),

where H(ξ) = (1 + exp(−ξ))−1 .

Figure 4.1 and 4.2 display example data sets for each scenario as well as

the true mean function (probability). Despite there are two replicate mea-

surements available and usually the average is taken to perform the model

estimation, here only a single measurement is displayed. These figures may

give an impression of the detective work the correction methods have to

fulfill.
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Figure 4.1: Example data sets for cases 1-4 and the respective true underlying

probability function. The response is plotted versus one error-prone measure-

ment, i.e. no averaging over the two available replicates is done here. Only

the range [a, b] on which the methods will be evaluated is shown.
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Figure 4.2: Example data sets for cases 5-8 and the respective true underlying

probability function. The response is plotted versus one error-prone measure-

ment, i.e. no averaging over the two available replicates is done here. Only

the range [a, b] on which the methods will be evaluated is shown.
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4.2.2 Specification details of the methods

General settings of the presented methods are briefly described in the follow-

ing.

Both MCMC techniques and the latent variable byproduct from Section 4.1.5

fit a probit model to the data. All other methods apply a logit model.

Basis calibration, expanded basis function calibration, SIMEX and the MCMC

approach work with an arsenal of one intercept and 100 radial basis func-

tions located at the quantiles of the observed data. For SIMEX the knots

are again located at the quantiles of the artificially generated observations in

each simulation step.

The kernel parameter η is selected from a set of admissible values like in

the Gaussian implementations before (cf. Section 3.2.2). Basis calibration,

expanded basis function calibration and the MCMC approach simply copy

the optimal parameter found by the naive approach.

Basis function calibration and SIMEX use the analytic updating scheme of

the precisions α as described for the non-Gaussian case in Section 2.1.2. For

the expanded basis function calibration approach it is given in Section 4.1.2.

The ’latent utility’-byproduct uses the updating scheme as presented in the

Gaussian case in Section 2.1.2. The MCMC version of the RVM does not

use this hyperparameter, but instead the model selection parameter vector

γ naming relevant basis functions. This is sampled together with the other

unknowns in the sampling scheme.

The RVM without measurement error and the naive estimation are taken as

reference methods together with an MCMC implementation that came with

the article by Berry et al. (2002) and is downloadable from the home page

http://www.stat.tamu.edu/~carroll/matlab_programs/software.php.

Their implementation differs from the MCMC approach for the RVM devel-

oped here in using a set of only 30 truncated second order power series basis

and not doing any selection.

Both MCMC methods obtain their respective estimates P̂ (y∗ = 1|ξ∗,y) via
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the posterior mean estimator for the linear predictor z∗ := Φ(ξ∗)ω, as de-

scribed at the end of Section 4.1.4. This estimator is not equivalent to

the histogram estimator (cf. (2.30)) directly using the transformed samples

P (y∗ = 1|ξ∗,ω[j],y) for consistently estimating the posterior mean of this

probability. However, these transformed samples are restricted to the inter-

val [0, 1] and their distribution is expected to be skewed at values ξ∗ that are

associated with high or low probability. Then, the posterior mean estimate

is not representative for the posterior mode at these values. Thus, the his-

togram estimator based on the samples of the linear predictor is implemented

in the MCMC methods. These samples are expected to be symmetrically dis-

tributed and thus the posterior mean is more representative for the mode of

the posterior distribution.

Table 4.1 contrasts all compared methods in some essential respects.
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Table 4.1: Overview of methods and their specifications

Method Type of ba-

sis function

Number of potential/effective

basis functions w/o intercept

Knot selection Error correction

RVMnaive RBF 100/usually very few, see re-

sults

quantiles of error-prone data none

RVMBC (RVM +

basis function cali-

bration)

RBF 100/usually very few, see re-

sults

same as RVMnaive Approximation of the ob-

served mean function, by using

calibrated basis functions

E(Φ(ξ)|X) instead of Φ(X).

RVMEBC (RVM

+ expanded ba-

sis function cali-

bration)

RBF 100/usually very few, see re-

sults

same as RVMnaive Refining the approximation of

observed mean and variance

function by using Taylor se-

ries. Approximation of ob-

served marginal LH for hyper-

parameter estimation

RVMSIMEX RBF 100/usually very few, see re-

sults

quantiles of generated SIMEX-

observations

The effect of additive error is

studied in a simulation study

and then corrected

BRS (bayesian re-

gression splines)

2nd order

truncated

power

series

30/30 same as RVMnaive The true ξi are regarded as

unknown parameters and sam-

pled in an MCMC approach.

RVMMCMC

(MCMC approach

imitating the

original RVM)

RBF 100 (maximal 20 permitted at

once)/differs in the course of

updating

same as RVMnaive same as BRS

RVMLatVar

(combination of

data augmentation

and structural

quasi likelihood)

RBF 100/usually very few, see re-

sults

same as RVMnaive combination of data augmenta-

tion and quasi structural likeli-

hood
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Overview of methods and their specifications (continued)

Method Unknown parameters in the response model (and

their estimation scheme)

Unknown parameters in the error model (and

their estimation scheme)

RVMnaive fundamental model parameters ω (mean of full

conditional), hyperparameters α (marginal like-

lihood optimization), σ2(marginal likelihood op-

timization), η (grid search)

σ2
δ (from usual components of variance analysis

using replicates), µξ (analysis of variance for-

mula), σ2
ξ (analysis of variance formula)

RVMBC (RVM + basis

function calibration)

same as RVMnaive same as RVMnaive

RVMEBC (RVM + ex-

panded basis function cal-

ibration)

same as RVMnaive same as RVMnaive

RVMSIMEX same as RVMnaive same as RVMnaive

BRS (bayesian regression

splines)

fundamental model parameters ω (sampled in

Gibbs- step), true covariate values ξi (sampled

in MH- step), smoothing parameter α (sampled

in Gibbs-step)

λ :=
σ2

ξ

σ2

ξ
+σ2

δ
/m

(discrete Gibbs), µξ (sampled in

Gibbs-step), σ2
ξ (sampled in Gibbs-step)

RVMMCMC (MCMC ap-

proach imitation the origi-

nal RVM)

same as BRS, but no smoothing parameter

needed, instead selection of basis function via

γ (sampled in MH-step)

same as BRS

RVMLatVar (combination

of data augmentation and

structural quasi likelihood)

same as RVMnaive plus artificial responses

E(zi|yi, xi) (approximated, see Section 4.1.5)

same as RVMnaive plus σ∗∗2

(marginal likeli-

hood optimization)
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4.2.3 The results

All correction methods are again compared with respect to the mean squared

error (MSE) and pointwise bias. No further properties like the effective

number of kernels or selected η are considered, since it is not expected, that

the binary regression results deviate dramatically from the Gaussian results

discussed in Section 3.2.3. The approach combining data augmentation and

calibration, as described in Section 4.1.5, is only of secondary interest, since

it is a genuine ad-hoc method that needs further consideration. Thus, it is

compared to the other methods only with respect to the mean squared error.

MSE:

The mean squared error is computed over a grid of 101 equidistant values in

the given interval [a, b]. The specific values for a and b are stated above in

the description of the data cases (cf. Section 4.2.1).

MSE =
1

101

101∑

k=1

(
f(ξk) − f̂(ξk)

)2

,

where f(ξk) = E(yk|ξk) is the true mean function, i.e. the true probability of

yk = 1 given ξk. And f̂(ξk) is the estimated for this probability given ξk.

Table 4.2 presents summary results for the MSE from the 200 simulations for

each data scenario. The smallest mean MSE value among the naive analysis

and the implemented correction methods in each scenario is in boldface.

In contrast to the simulation study investigating the Gaussian case, the cor-

rection quality of the presented methods is mixed. While the correction

methods are usually still superior to the naive estimation, there is no method

that distinctly dominates the scene here.

Case 1 is particularly well fitted by the BRS implementation, which is

attributable to the underlying quadratic function of the covariate that is

theoretically exactly representable by the utilized second order P-splines.

The RVMBC, RVMEBC and RVMSIMEX work well in case 2 and case

3, where the RVMSIMEX approach seems to be slightly superior when the
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measurement error variance is higher (case 3: σ2
δ = 0.52, case 4: σ2

δ = 0.82).

The RVMMCMC displays particular strength when the measurement error

is moderate as in case 3. RVMBC and RVMEBC seem to lose their cor-

rective power with higher σ2
δ , however and most astonishingly the ad-hoc

RVMLatVar still seems to correct properly for higher error as far as can be

judged from the MSE values. For case 5 there is obviously cure in neither

of the presented strategies and only the RVMLatVar tends to alleviate the

adverse effect of measurement error. This difficulty of the RVM in fitting

functions of varying frequencies has already been presented by Krause &

Tutz (2003) in the Gaussian case. An improvement for fitting case 5 might

rely on the possibility to select locally different kernel parameters instead of

selecting only one global kernel parameter η. Though this enhancement is

straightforward and requires only a slight modification of the existing pro-

grams it has not been implemented, yet.

In the binary regression, where the responses carry less information com-

pared to the Gaussian case flexible regression (even without covariate mea-

surement error) is a demanding task, since a complex probability function

must be found from dichotomous outcomes. From case 6, which resembles

case 4, but employing N = 1000 observations per data set, it seems like the

number of observations not only improves the error free analysis but partic-

ularly boosts the performance of the correction methods. Case 6 displays an

even more pronounced gain for the RVMSIMEX and now a distinctive gain

in using RVMMCMC and indicates at least a slight gain for the structural

correction.

It is again RVMSIMEX and RVMMCMC which head the other methods in

the misspecification case 7, where the true covariate is not normally distrib-

uted anymore.

Obviously all correction methods have difficulties when the true underlying

probability is hard to model with radial basis functions and quadratic P-

splines, respectively. This could possibly again be improved by allowing for

the selection of locally different kernel parameters η.
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Mean squared error

Mean (SE) / Median (all ×102)

Method Case 1 Case 2 Case 3 Case 4

RV M 0.17 (.01) / 0.12 0.42 (.02) / 0.36 0.43 (.02) / 0.39 0.40 (.02) / 0.36

RVMnaive 0.20 (.01) / 0.13 0.59 (.02) / 0.55 1.76 (.03) / 1.77 2.91 (.04) / 2.79

RVMBC 0.20 (.01) / 0.16 0.53 (.02) / 0.47 1.54 (.04) / 1.57 3.27 (.05) / 3.42

RVMEBC 0.20 (.01) / 0.16 0.54 (.02) / 0.47 1.55 (.05) / 1.55 3.25 (.05) / 3.38

RVMSIMEX 0.28 (.02) / 0.19 0.61 (.02) / 0.56 1.40 (.03) / 1.39 2.36 (.06) / 2.14

BRS 0.16 (.01) / 0.12 0.63 (.03) / 0.58 2.67 (.06) / 2.63 3.74 (.03) / 3.80

RVMMCMC 0.45 (.01) / 0.51 0.62 (.02) / 0.59 1.24 (.05) / 1.09 2.83 (.08) / 2.61

RVMLatVar 0.21 (.01) / 0.16 0.55 (.02) / 0.49 1.51 (.03)/ 1.53 2.41 (.03) / 2.35

Method Case 5 Case 6 Case 7 Case 8

RV M 0.45 (.01) / 0.42 0.21 (.01) / 0.19 0.40 (.02) / 0.36 0.95 (.02) / 0.92

RVMnaive 0.69 (.02) / 0.67 2.66 (.02) / 2.64 1.72 (.03) / 1.67 1.41 (.02) / 1.36

RVMBC 0.71 (.02) / 0.68 2.61 (.05) / 2.64 1.34 (.05) / 1.23 1.44 (.02) / 1.38

RVMEBC 0.71 (.02) / 0.68 2.52 (.05) / 2.57 1.35 (.05) / 1.23 1.45 (.02) / 1.39

RVMSIMEX 0.82 (.02) / 0.80 1.99 (.03) / 1.93 1.05 (.05) / 0.87 1.41 (.02) / 1.31

BRS 1.12 (.02) / 1.14 3.07 (.03) / 3.06 2.58 (.06) / 2.54 1.88 (.01) / 1.88

RVMMCMC 0.92 (.02) / 0.94 1.92 (.04) / 1.97 1.16 (.04) / 1.06 1.61 (.02) / 1.56

RVMLatVar 0.64 (.02) / 0.62 2.13 (.02) / 2.20 1.22 (.03) / 1.19 1.41 (.02) / 1.34

Table 4.2: The mean squared error results for the simulation. In each column, the smallest mean value

among the naive analysis and the implemented correction methods is in boldface.
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Pointwise bias:

The pointwise bias of the methods under investigation can be seen from the

visualization of their mean predictions for E(Y |ξk) = P (Y = 1|ξk) over the

200 simulations in Figure 4.3 (for cases 1-4) and Figure 4.4 (for cases 5-8).

In accordance with the MSE results from Table 4.2, RVMSIMEX and the

sampling method RVMMCMC show the best bias performance across all sce-

narios, with exception of case 1. The RVMMCMC has problems in finding

the true probability function for case 1 which is most probably attributable

to the fact that this method is not restricted to have a minimum number of

1 basis functions in the model. Since the true probability is rather weakly

dependent on the covariate, the RVMMCMC seems to choose the sparse zero

model relatively often, which in turn results in undersmoothing. In contrast

to the former MSE results (cf. Table 4.2), where the RVMnaive, RVMBC

and RVMEBC have more or less the same MSE value, the RVMBC and

RVMEBC method (indistinguishable in the graphic) show now less devia-

tion from the true probability function than the naive approach does.

The graphs of cases 2-4 witness the strength of RVMSIMEX and RVMMCMC.

Case 5 is quite surprisingly well fitted by the naive method compared to the

others. Among the correction methods, RVMSIMEX does comparatively

well in detecting the true probability function for ξk ≤ 0, while all methods

(except BRS) seem to estimate the true probability function adequately for

ξk > 0.

All methods benefit (at least slightly) from the additional amount of avail-

able data (N = 1000) in case 6 compared to case 4.

All developed correction methods apparently reduces bias in case 7, where ξ

was not normally distributed. This is most clearly seen for RVMSIMEX and

RVMMCMC. Especially, the structural methods like, RVMBC, RVMEBC

and RVMMCMC, which assume ξ being normally distributed, were expected

to suffer from this distributional misspecification.

Neither of the methods is able to recover the true probability in case 8.
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Figure 4.3: The mean functions over 200 simulations for cases 1-4. Data

has been generated from the underlying probability function P (Y = 1|ξ) =

(1 + exp(−m(ξ)))−1. Case 1 reflects a weak quadratic relationship between

ξ and m(ξ), with particularly RVMMCMC displaying difficulties. Cases 2-4

represent an oscillating m(ξ) yielding true probabilities ranging from 17.53%

to 89.09%. These cases exclusively differ in the amount of measurement

error which is σ2
δ = 0.22, 0.52, 0.82 respectively. The strength of RVMSIMEX

becomes obvious here for higher measurement error variance. The RV M

without measurement error is left out here for sake of visibility. RVMBC

and RVMEBC visually coincide in most cases.
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Figure 4.4: The mean functions over 200 simulations for cases 5-8. Case

5 comprises an oscillating m(ξ) with locally different frequencies. Case 6 is

identical to case 4, but now supplying more sample data for the methods.

Case 7 employs non-normally distributed ξi’s and case 8 represents a mean

function adopting a plateau function which is difficult to fit with RBF kernels

and 2nd order truncated power series, respectively. Only a moderate gain of

using error correction methods is attested in case 5. In case 6 all correction

methods benefit from the larger sample size compared to case 4. Deviation

from the normal distribution for ξ in case 7 seems not to harm the power

of the (structural) correction methods profoundly. In contrast, neither of the

correction strategies can even roughly approximate case 8.
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4.3 A Real data example1

This section presents some of the previously introduced correction methods

of this chapter in a real data example. For this purpose, data from the

German panel of the WHO MONICA project (MONItoring of trends and

determinants in CArdiovascular disease, cf. , e.g. Döring & Kußmaul (1997),

Keil (2000)) is analyzed.

The main target is to quantify the influence of nutrition on cardiovascular

disease and mortality, where the focus is on animal and plant protein in-

take. For a subpopulation of N = 892 male respondents, data of a mortality

follow up for more than ten years is available. Besides information about

nutritional habits and confounders like Cholesterol, it contains also the age,

daily alcohol consumption, presence of Hypertonia and smoking status of the

participants. Though also information about morbidity is available, this is

not considered here.

The nutritional details were obtained by a comprehensive diary where the

study participants had to fill in all meals for seven consecutive days. The

individual plant and animal protein intake was calculated from the raw data

based on nutritional data containing standard recipes. The intake values,

computed in such a way, are suspect in double regard: a seven day observa-

tion of all meals is a questionable operationalization of the targeted variable

’nutritional habits’. Second, although high attention has been paid to exactly

distill the protein intake from the meals, substantial measurement error is

unavoidable.

Augustin (2002) investigates the effects on the survival times using a Cox

model under regression calibration. However, here the dichotomous informa-

tion of surviving/not surviving the monitoring period is chosen as response

for the flexible binary regression applying error correction. In this work,

these data are for the first time analyzed using error correction methods and

1This section is a contribution to a common research project with Angela Döring and

H.-Erich Wichman (GSF - National Research Center for Environment and Health, Neuher-

berg).
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flexible regression. Thus the obtained results may reveal interesting new in-

sights in how the protein intake affects the organism.

The particular challenge is to adequately consider the fact that two covari-

ates are error-prone and thus facing a so-called additive model, where both

are modeled in a flexible way. The confounders are modeled linearly. To the

author’s knowledge there is only one reference work on this topic of additive

models under measurement error published so far, which is by Ganguli et al.

(2005).

The following section shows how basis function calibration and SIMEX is gen-

eralized in order to suit the present case. Though application of expanded

basis function calibration is also possible, this is omitted here because it

shows nearly indistinguishable performance from basis function calibration in

the previous simulations (cf. Section 4.2). Application of a Bayesian MCMC

approach would be highly desirable, which, however, requires appropriate

consideration of the correlation structure between the unobserved covariates

and the confounder variables, which is not yet realized.

4.3.1 Naive approach and basis functions calibration

The naive approach simply uses the seven-days averages of animal and plant

protein intake X = (X1, X2) with X1 = averaged animal protein intake

[g/day] and X2 = averaged plant protein intake [g/day] as surrogates for

the true intake. The following confounders Z = (Z1, Z2, Z3, Z4, Z5) are in-

cluded: Z1 = Cholesterol [mg/dl], Z2 = Hypertonia [1=yes,0=no], Z3 =

age at event/end of study, Z4 = smoking status [1=yes,0=no], Z5 = alcohol

consumption [g/day]. These confounders enter linearly into the analysis and

their corresponding parameters are not penalized, i.e. the corresponding prior

precisions αZ1 , αZ2 , αZ3 , αZ4 and αZ5 are chosen very small a priori in (4.1).

The use of Z3 as a covariate might be critical since it contains information

about the time under study until an event/ end of study and, thus, can also

be thought of as a dependent variable.
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The basis function calibration approach accounts for measurement error by

utilizing the calibrated basis functions E(φ(ξ)|X,Z∗). It uses Z∗
3 = the age

of the responders at study entry for calibration instead of Z3 = the age at

event/end of study, which explains the notation Z∗ in the calibrated basis.

The variable Z∗
3 is used for calibration, because one would suspect that the

age at study entry Z∗
3 has more information about the plant and animal pro-

tein intake at that time than the variable Z3. The basis function approach

considers the correlation structure between all covariates.

An important feature of the data is that two covariates are error-prone and

both should be modeled in a flexible way. Recall the additive weighted basis

function structure in the ideal mean model of the RVM from 2.1.1, here for

two main effects (for simplicity without any confounders)

E(Y |ξ) = G

(
2∑

d=1

Jd∑

j=1

ωdjφdj(ξd) + ω0

)
,

where ξ = (ξ1, ξ2). Basis function calibration replaces the latent basis func-

tions φdj(ξd) in this ideal mean model by their calibrated versions. This yields

the approximate observed model

E(Y |X,Z∗) ≈ G

(
2∑

d=1

Jd∑

j=1

ωdj E (φdj(ξd)|X,Z∗) + ω0

)
.

(4.57)

In order to compute E (φdj(ξd)|X,Z∗), the distribution fξd|X,Z∗ is required.

Therefore, in a first step, the joint conditional distribution fξ|X,Z∗ is calcu-

lated.

If all variables ξ,X,Z∗ can reasonably be assumed being normal then one

can find the mean and variance of the conditional distribution fξ|X,Z∗ , which

is again a normal distribution, by the following theorem:

Theorem:

For two vectors X1 and X2 that are jointly normal, i.e.
(

X1

X2

)
∼ N

((
µ1

µ2

)
,

(
Σ1,1 Σ1,2

Σ2,1 Σ2,2

))
,
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the conditional distribution of X1|X2 is given by

X1|X2 ∼ N (µ1|2, Σ1|2)

with

µ1|2 = µ1 + Σ1,2Σ
−1
2,2Σ2,1

Σ1|2 = Σ1,1 − Σ1,2Σ
−1
2,2Σ2,1.

However, Z2 = Hypertonia and Z4 = smoking status enter as binary vari-

ables into the model and thus are far from being normally distributed. Con-

sequently, it is necessary to stratify the sample according to these variables

yielding four sub-samples defined by the four possible combinations of Hy-

pertonia and smoking status.

Multivariate analysis of variance formulas are required to compute the com-

ponents of the mean vector and covariance matrix of the joint distribution

fξ,X,Z1,Z2=z2,Z∗
3 ,Z4=z4,Z5 for each stratum defined by the absence/presence of

Hypertonia z2 ∈ {0, 1} and smoking habit z4 ∈ {0, 1} (cf. Carroll et al.

(1995)). The measurement errors are again assumed being independently

distributed and their variances can be computed from the seven replicate

measurements as before (cf. Section 2.3.1). Most conveniently, the required

marginal conditional distribution fξd|X,Z1,Z2=z2,Z∗
3 ,Z4=z4,Z5 in order to perform

the calibration in (4.57) is also Gaussian. Its moments are obtained by pick-

ing the dth element from the mean vector and diagonal element from the

covariance matrix in fξ|X,Z1,Z2=z2,Z∗
3 ,Z4=z4,Z5 . Care must be taken, because

there are four different conditional distributions used for calibration and each

observation’s Hypertonia/smoking status decides which one to use.

Correcting for heteroscedastic additive error, as presented by Augustin (2002),

could be straightforwardly realized here by accordingly modifying the joint

distribution of ξ given the observed variables which is however not presented

here.

The smooth function estimates modeling the influence of animal and plant

protein on the risk of dying are displayed in Figure 4.5 for the naive and
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corrected analysis under basis function calibration. The results are discussed

here in turn and compared to the naive and corrected analysis by Augustin

(2002).

The naive analysis

The naive analysis judges low animal protein intake having an adverse effect,

while there is no indication of high protein intake doing so, though there are

reasonable arguments that both types of extreme low and high intakes could

be detrimental. Higher plant protein intake up to a certain amount seems to

lower the risk of dying, but consuming beyond an amount of 30g/day appears

to invert this effect.

In Table 4.3 the naive parameter estimates and their corresponding p-values

based on the posterior covariance matrix are given. Though the concepts of

p-value and significance are squeamishly reserved to frequentistic statistics,

they are used here under the viewpoint that parameter estimation of the

main parameters ω in the Bayesian RVM is equivalent to parameter estima-

tion in a frequentistic penalized likelihood setting (cf. Section 2.1.2).

Only one basis function is used here to model the influence of animal protein

and its corresponding parameter is significant on the 5% level. There are two

radial basis functions modeling the influence of plant protein. Since they are

located at proximate knots, this can not be seen from Figure 4.5. Only for

one of these basis functions, the corresponding parameter estimate is signif-

icantly different from zero and only this estimate is displayed in Table 4.3.

Hypertonia and smoking status are found to be relevant risk determinants.

The slightly negative - however significant - effect of age is contributable to

the type of study: people who went through the complete ten years follow-up

are generally older than those, who died during the follow-up period.

These naive results are in concordance with the naive results from the Cox

model analysis as obtained by Augustin (2002). However, the beneficial ef-

fect of low and medium doses of plant protein intake is only significant for

the flexible regression.
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The corrected analysis

The influence of animal and plant protein are modeled by only a single basis

function, respectively. The adverse influence of low doses of animal protein

intake is much more pronounced in the corrected analysis compared to the

naive analysis. However, the beneficial effect of low and medium doses of

plant protein is no longer significant on the 5 % level. The effects of the con-

founders are confirmed by the corrected analysis since parameter estimates

and p-values remain here unchanged in essence. These corrected results are

in concordance with the results from the Cox model analysis correcting for

homoscedastic measurement error as developed by Augustin (2002). How-

ever, the detrimental effect of low animal protein intake becomes significant

only in the flexible regression applying error correction.

It must, however, be noted that the standard errors on which the p-values are

based do not account for the uncertainty in estimating the calibrated basis

functions E(φ(ξ)|X,Z∗) and thus can only communicate a rough impression

of significance for the parameters. Correct estimators for standard errors is

a open problem for flexible regression using calibration methods.

Naive and corrected estimates for basis function calibration

Parameter Naive estimate p-value Corrected estimate p-value

ωanimal 0.7164 0.0430 1.1291 0.0139

ωplant -0.5811 0.0317 -0.5611 0.0850

Cholesterol -0.0006 0.7737 -0.0008 0.7137

Hypertonia 0.7415 0.0005 0.7143 0.0009

age -0.0423 0.0000 -0.0436 0.0000

smoking status 1.0646 0.0006 1.0708 0.0006

alcohol -0.0005 0.8780 -0.0002 0.9452

Table 4.3: Naive and corrected parameter estimates under basis function

calibration of animal/plant protein intake and of confounders determining

the risk of dying from cardiovascular disease. The p-values are calculated

from the posterior covariance matrix.
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Figure 4.5: Centered smooth influence of animal and plant protein intake

on the risk of dying from cardiovascular disease. Solid line represents naive

estimate and dashed line represents estimate after basis function calibration.

4.3.2 SIMEX

To the author’s knowledge, there exists no literature on SIMEX correction

in additive models. A reasonable requirement seems to be that the SIMEX

prediction is again a sum of the influence of animal and the influence of plant

protein intake. This can be realized by studying the effect of additional mea-

surement error separately on each determinant. Thus the risk associated with

animal and the risk associated with plant protein are corrected separately.

Therefore, the mean model is split into three parts

f = G(fanimal + fplant + ZωZ),
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which belong to the influence of animal and plant protein intake and the

confounders. The influence of animal and plant protein intake will again be

modeled with the help of radial basis functions and the confounder enter

linearly.

The effect of additional measurement error is then studied separately on these

three model parts and corrected SIMEX estimates are computed for fanimal,

fplant and ωZ .

Figure 4.6 contains the SIMEX corrected predictors f̂animal and f̂plant and

the naive prediction for comparison. For animal protein, there seems to be
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Figure 4.6: Centered smooth influence of animal and plant protein intake

on the risk of dying from cardiovascular disease. Solid line represents naive

estimate and dashed line represents estimate under SIMEX correction.

an optimal daily intake of ≈ 60g. Lower intake is associated with rather high
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risk, while consuming beyond the optimal intake seems to increase the risk

slightly with every additional gram. Low animal protein intake is obviously

more detrimental than high intake.

The beneficial effect of plant protein intake is pronounced after correction.

High plant protein intake appears to be slightly more detrimental than low

intake. The SIMEX corrected parameter estimates of the confounders are

given in Table 4.4. The estimated effects of the confounder remain essentially

unaffected by the SIMEX correction.

Naive and corrected estimates for SIMEX

Parameter Naive estimate Corrected estimate

Cholesterol -0.0007 -0.0002

Hypertonia 0.7461 0.7101

age -0.0424 -0.0407

smoking status 1.0582 1.0647

alcohol -0.0003 -0.0004

Table 4.4: Naive and SIMEX corrected parameter estimates of the con-

founders determining the risk of dying from cardiovascular disease.
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4.4 Error correction in flexible models for

binary longitudinal data

Often, the target of epidemiological studies is to quantify how the study ob-

jects’ health is affected by e.g. environmental influences or dietary habits.

Therefore, the objects are typically traced over a certain period while the

variables of interest are measured repeatedly at certain time points.

The modeling requirements to analyze such longitudinal data appropriately

include the allowance for person specific effects and serial correlation of the

errors. The previous sections of this chapter only consider cross-sectional

data. The case of individuals providing multiple measurements, representing

a dynamic development over time, was excluded, though it is highly relevant

in practice.

Chib & Jeliazkov (2006) present an MCMC sampling approach to the analy-

sis of semiparametric models with serially correlated errors. However, to the

author’s knowledge the problem of covariate measurement error has not yet

been treated in this complex context. Based on the MCMC error correction

approach developed in 4.1.4, the necessary amendments to satisfy the mod-

eling needs of longitudinal data are presented in this section.

Firstly, the person specific random effect and serially correlated responses are

included into the Bayesian probit model. The new random effects are simply

additional unknown parameters in the mean model and the serial correlation

modifies the formerly diagonal covariance matrix of the (response) errors into

a block diagonal matrix. Finally, the serially correlated latent covariate ob-

servations are considered in much the same way as the responses.

After the specification of the prior distributions over the newly introduced

model parameters, the complete sampling scheme is explained. This section

concludes with the demonstration of this approach by means of a few data

examples.
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4.4.1 The model setup

A single binary response is now denoted as yit. The indices i and t (i =

1, . . . , n, t = 1, . . . , Ti) with
∑n

i Ti = N refer to individual objects (more

generally termed ’clusters’) and time points at which a measurement is taken,

respectively.

The longitudinal Bayesian probit model with Bayesian model selection via

the vector γ is then

yit =

{
1 : if zit > 0

0 : otherwise

zit = bi + Φγ(ξit)ωγ + εit, (4.58)

bi ∼ N (0, D),

where the exact specification of the errors εit is delayed for a moment.

The random intercepts bi are introduced to identify cluster specific effects and

follow a Gaussian distribution. Of course, also random slopes are conceivable

representing e.g. the individual (in contrast to all-over) impact of a covariate.

However, to keep the model (notationally) clear the present study is confined

to the very popular case of a random intercept to demonstrate the approach.

Besides the random effects, there are two more important sources of inter-

temporal dependence in the observations yit, t = 1, . . . , Ti from cluster i. One

source is due to lags that capture the so-called ’state dependence’, where the

probability of a certain outcome may depend on (a series of) past responses.

Though this is easily realized in the model (cf. Chib & Jeliazkov (2006)), it

is again not captured here in order to keep the model simple. The second

source is the presence of serial correlation in the errors εit, t = 1, . . . , Ti within

a cluster. In order to account for this in the model, a zero mean stationary

pth order autoregressive, AR(p), process can be specified, for instance. It is

parameterized in terms of the autocorrelation parameters ρ, . . . , ρp and given

as

εit = ρεit−1 + . . . + ρpεit−p + vit, vit
iid∼ N (0, 1) (4.59)
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An AR(1) process will be sufficient in most cases and will be considered for

the rest of this section.

It is convenient to combine the Ti observations belonging to the ith cluster

into a vector, which yields

zi = bi + Φγ(ξi)ωγ + εi, εi ∼ N (0, Ωi). (4.60)

Here, zi = (zi1, . . . , ziTi
)T and εi = (εi1, . . . , εiTi

)T are column vectors and

Φγ(ξi) is the matrix of basis functions at the cluster values ξi = (ξi1, . . . , ξiTi
)T.

The errors within a cluster are normally distributed like in the cross-sectional

case, before (cf. (4.33)), but are now longer independent. The covariance ma-

trix Ωi is the Ti×Ti Toeplitz matrix as implied by the autoregressive process

(4.59). For the AR(1) process applied here, the matrix elements are given by

Ωi[j, k] = ρ|j−k|/(1 − ρ2), 1 ≤ j, k ≤ Ti, where [j, k] denotes the kth element

of the jth row of the matrix.

Now, the covariate model describing the generative process of the ξ’s is char-

acterized. Due to the longitudinal data structure, it is no longer reasonable

to assume that the latent covariate observations ξit, t = 1, . . . , Ti are indepen-

dent as before (cf. (4.36)). Instead, assuming an AR(1) correlation structure

for the true covariate observations within a cluster yields the model for the

covariate observations

ξi = µξ + εξi
, εξi

∼ N (0, Ωξi
σ2

ξ ). (4.61)

The deviations from the mean are again assumed being normally distributed

as in the cross-sectional case (cf. 4.36). However, the covariance matrix Ωξi

is a Ti × Ti Toeplitz matrix according to the AR(1) process. The elements

are given by Ωξi
[j, k] = ρ

|j−k|
ξ /(1 − ρ2

ξ), 1 ≤ j, k ≤ Ti with ρξ denoting

the autocorrelation parameter for the latent covariate observations. Most

notably, if there is correlation in the data, i.e. Ωξi
6= I, then σ2

ξ is no longer

the variance of ξit but besides the factor 1/(1− ρ2
ξ) merely one component of

V(ξit) = σ2
ξ/(1 − ρ2

ξ).

One can also think of including a random intercept in the covariate model

(4.61) in order to account for cluster specific effects. This can be handled in
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complete analogy to the random intercept in the response model. Another

alternative, to relax the assumption of all clusters coming from a normal

distribution with same mean and variance structure, can be adopted from

Carroll et al. (1999). They enhance a Bayesian method for estimating the

parameters of a mixture of k normals in the face of inherent measurement

error. Again, only the relatively simple model (4.61) is considered in the

present demonstration.

To improve readability, the n clusters are stacked to give the model in terms

of all N observations

z = Wb + Φγωγ + ε, ε ∼ N (0, Ω), (4.62)

where the latent response vector z = (zT
1 , . . . , zT

n )T contains the cluster spe-

cific responses (4.60) and has dimension (N × 1).

The (N ×n) design matrix for the cluster specific effects is of block diagonal

structure and includes the (Ti×1) intercept vectors denoted as 1i. It is given

by

W =




11

. . .

1n


 ,

with related (n × 1) parameter vector b = (b1, . . . , bn)T.

The covariance matrix of the errors in (4.62) is of block diagonal structure

and defined as

Ω =




Ω1

. . .

Ωn


 ,

containing the covariance matrices Ωi from (4.60).

The covariate model, describing the generative process of all N latent covari-

ate observations is given by

ξ = µξ + εξ, εξ ∼ N (0, Σξ), (4.63)

where the vector ξ = (ξT
1 , . . . , ξT

n )T is composed of the sub-vectors from

(4.61). The covariance matrix for all latent covariate observations is of block
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diagonal form and defined as

Σξ = σ2
ξΩξ =




Σξ1

. . .

Σξn


 ,

with Σξi
:= σ2

ξΩξi
, i = 1, . . . , n. (4.64)

Here, the covariance matrices Ωξi
are from (4.61).

To complete the model specification, the measurement error model, relat-

ing true and observed covariate observations, is required. Again, a classi-

cal additive measurement error model is specified, which remains essentially

unchanged to the cross-sectional case (4.39) in Section 4.1.4, but now the

replicate measurements are taken for cluster i at a certain point in time t.

The parameter λ is in the longitudinal case defined as

λ =
σ2

ξ

σ2
X(1 − ρ2

ξ)
, (4.65)

where
σ2

ξ

1−ρ2
ξ

is the variance of ξ. After the response model, the covariate

model and the measurement error model have been specified, the specific

prior distributions are considered.

Specification of prior distributions

The prior over the weights ω is again a Gaussian distribution as in the cross-

sectional MCMC approach (cf. (4.34)).

To perform Bayesian model averaging the additional parameter vector γ is

introduced into the model with a prior distribution as given in (4.35).

The priors over µξ and σ2
ξ are, as in the cross-sectional case, chosen as a nor-

mal distribution (cf. (4.37)) and an inverse Gamma distribution (cf. (4.38)),

respectively.

The parameter specifications for these priors are adopted from Section 4.1.4.

However, the robustness of the method with respect to different prior spec-

ifications will be checked later. As above, a uniform prior is chosen for the
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attenuation factor λ.

New prior specifications are required for the variance of the cluster specific

random effect and both autocorrelation parameters.

A Wishart prior is defined over the inverse variance of the random intercept

D−1 ∼ W(r0, R0)

and truncated Gaussian priors over the autocorrelation coefficients of the

latent responses and covariate observations, respectively

ρ ∼ N (ρ0, P0)I(−1 < ρ < 1)

ρξ ∼ N (ρξ0, Pξ0)I(−1 < ρξ < 1).

The normalizing constant making the truncated normal a genuine density is

suppressed in the prior distributions over the autocorrelation parameters.

General priors can be adopted quite easily and analysis proceeds then via

weighted resampling of the MCMC draws obtained from a model using the

priors presented here.

In the data examples presented below, the following priors specifications are

used, if not stated otherwise: r0 = 2, R0 = 2.5 and ρ0 = ρξ0 = 0, P0 = Pξ0 =

0.52.

4.4.2 Inference

The introduction of serially correlated responses and latent covariate obser-

vations and the introduction of a cluster specific effect, affect almost all full

conditional distributions. The details of the new sampling scheme, now ac-

counting for the longitudinal structure in the Bayesian probit model, are

explained in this subsection.

In random coefficient models it is convenient to marginalize over the random

effect, which yields the following marginal response model

z = Φγωγ + ε∗, ε∗ ∼ N (0, Ω∗). (4.66)
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The block diagonal covariance matrix of the vector ε∗

Ω∗ =




Ω∗
1

. . .

Ω∗
n


 (4.67)

contains the blocks Ω∗
i = D +Ωi, where the variance of the random intercept

D is added to each element in Ωi. This model is then used in computing the

full conditional distribution of the weights, which is slightly different from

the cross-sectional case in Section 4.1.4, where the response error covariance

matrix was an identity matrix

p(ωγ |z, D, ρ, ξ) = N (µωγ |·, Σωγ |·)

where µωγ |· = Σωγ |·Φ
T
γΩ∗−1

z

Σωγ |· = (v−1I + ΦT
γΩ∗−1

Φγ)−1 (4.68)

and v denotes the prior variance of ω coming from its prior specification

(4.34).

The mechanism of basis function selection again works via a Metropolis Hast-

ings step for the parameter vector γ, which names the selected basis func-

tions. First, a proposal is generated of which basis function to introduce

into/exclude from the current model (cf. Section 4.1.4). Then it must be

decided whether to accept this proposal or not. Therefore, the acceptance

probability, as given by (4.43), needs to be computed, which in turn requires

computation of the marginal likelihood.

The marginal likelihood accounts for the autocorrelation in the responses and

is based on the moments of the full conditional distribution (4.68)

p(z|D, ρ, ξ,γ) = (2π)−
N
2

| Σωγ |· |
1
2

| vγ | 12 | Ω∗ | 12

exp

(
−1

2
(zTΩ∗−1

z − µT
ωγ |·Σ

−1
ωγ |·µωγ |·)

)
,

where Ω∗ is the block diagonal covariance matrix as defined in (4.67). Most

conveniently, the determinant of the covariance matrix Ω∗ and the term
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zTΩ∗−1
z cancel out in the acceptance probability since both are indepen-

dent of γ. Here, vγ denotes the prior covariance matrix over the weights for

a model as defined by γ.

In order to sample the latent responses zit, several strategies are conceivable.

The updating rule developed here, particularly considers computational effi-

ciency and minimization of posterior correlation between z and ωγ . In the

case of cross-sectional data, the single elements in z are sampled from their

respective full conditional after marginalizing over the parameter vector ω

in order to reduce posterior correlation (cf. Holmes & Held (2006)).

The resulting full conditional of a single zi after marginalizing over ω is

briefly recalled here for the cross-sectional case (4.42) as

p(zi|z−i, yi, D, ρ, ξi,γ) ∝
{

N (µzi|·, Σzi|·)I(zi > 0) if yi = 1

N (µzi|·, Σzi|·)I(zi < 0) otherwise
(4.69)

However, in the longitudinal case, these observational units zi that formerly

have been scalars are now vectors zi containing the serially correlated ele-

ments zit of a cluster. Furthermore, a random intercept is now present in the

model as well. Thus, the updating scheme for the latent responses must be

fundamentally reconsidered.

In a first step, the full conditional of the vector zi being marginal of b and

ω is required. This is a truncated normal distribution and the calculation of

the respective moments is in analogy to the earlier derivation of the moments

in (4.42) and is presented in the following.

The moments of the conditional distribution (4.69) are the well known leave-

one-out mean and variance that are used in the leave-one-out cross validation

e.g. for finding optimal smoothing parameters in spline regression. Instead,

for the longitudinal case the ’leave-one-block-out’ moments (referring to a

’block’ of correlated responses within a cluster) are sought now.

The full conditional of a single cluster i is again a multivariate truncated

normal

p(zi|z−i,yi, D, ρ, ξ,γ) ∝
{

N (µzi|·, Σzi|·)I(zi > 0) if yi = 1

N (µzi|·, Σzi|·)I(zi < 0) otherwise
,(4.70)
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where the indicator function I(·) and the comparison yi = 1 work on the

individual elements in zi and yi, respectively.

Applying the small rank adjustment formula (cf. Horn & Johnson (1985))

and some basic matrix algebra, this leave-one-block-out covariance matrix of

cluster i can be found to be

Σzi|· = Ω∗
i (Ω

∗
i − Hi)

−1Ω∗
i , (4.71)

with Ω∗
i being the ith diagonal block of the covariance matrix of the response

error as defined in (4.67). The matrix Hi = Φγ(ξi)Σωγ |·Φγ(ξi)
T contains

Φγ(ξi), which is a cutout of the design matrix comprising the Ti row vectors

associated with the elements in ξi. The matrix Σωγ |· is borrowed from the full

conditional of the weights above, cf. (4.68). Hi can equivalently be viewed

as the Ti × Ti block matrices along the diagonal of the Bayesian hat matrix

H := ΦγΣωγ |·Φ
T
γ .

The calculation of the leave-one block-out mean vector in (4.70) involves the

previous result (4.71) and is given by

µzi|· = Φγ(ξi)µωγ |· − Hi(Ω
∗
i − Hi)

−1
(
zi − Φγ(ξi)µωγ |·

)
, (4.72)

where µωγ |· is the mean of the full conditional distribution of the weights

(4.68). Now, the full conditional distribution (4.70) could be used to sample

values of zi, but direct sampling from the multivariate truncated normal is

known to be difficult.

More conveniently, the univariate distribution of a single zit, given all other

observations, i.e. zit|z−i, zi−t, is sought for generating the samples. Applying

the results from Robert (1995), the parameters of the univariate full condi-

tional

p(zit|z−i, zi−t, yit, D, ρ, ξ,γ) ∝
{

N (µzit|·, Σzit|·)I(zit > 0) if yit = 1

N (µzit|·, Σzit|·)I(zit < 0) otherwise

can be easily computed as

µzit|· = µzi|·[t] + Σzi|·[t,−t]
(
Σzi|·[−t,−t]

)−1
(zi−t − µzi|·[−t]),

Σzit|· = Σzi|·[t, t] − Σzi|·[t,−t]
(
Σzi|·[−t,−t]

)−1
Σzi|·[−t, t],
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where µzi|· and Σzi|· are from (4.72) and (4.71) and zi−t denotes the remaining

observations of cluster i, after having zit removed. Here, µzi|·[t] is the tth

element in µzi|· and µzi|·[−t] are the remaining Ti−1 elements after removing

the tth element. Furthermore, Σzi|·[−t,−t] is the (Ti − 1) × (Ti − 1) matrix

derived from Σzi|· by removing its tth row and tth column and Σzi|·[−t, t] is

the (Ti − 1) vector derived from the tth column of Σzi|· by eliminating the

tth row term.

Most importantly from a computational point of view, there is no need to

invert all the matrices Σzi|·[−t,−t]. These inverses can be derived from the

’global’ inverse S := Σ−1
zi|· since it holds

(
Σzi|·[−t,−t]

)−1
= S[−t,−t] − S[t,−t]S[t,−t]T/S[t, t].

Alternatively, the results of Robert (1995) could be directly applied to the

marginal multivariate distribution

p(z|y, D, ρ, ξ,γ) ∝ N (0, Ω∗)I(y, z),

where I(y, z) may denote the appropriate indicator function. However, this

approach does not exploit the block-diagonal structure in the error matrix Ω∗.

The here proposed two step approach via the leave-one-block-out procedure

is substantially more efficient since computation of the univariate moments

is then based on Ti×Ti matrices while the alternative strategy uses (N−1)×
(N − 1) matrices.

The full conditionals of the random intercept and the inverse covariance of

the random effect is Gaussian and Wishart, respectively. Both are easy to

sample from their respective full conditionals

p(b|z, D, ρ, ξ,ω,γ) = N (µb|·, Σb|·) (4.73)

where µb|· = Σb|·W
TΩ−1(z − Φγωγ)

Σb|· =
(
D−1I + WTΩ−1W

)−1
,

and

p(D−1|b) = W(r0 + n, (R−1
0 + bTb)−1). (4.74)
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Ideally, the autocorrelation parameter of the latent responses is sampled from

its full conditional distribution

p(ρ|z, ξ,ω,b,γ) ∝ Ψ(ρ) ×N (µρ|·, Σρ|·)I(−1 < ρ < 1). (4.75)

This is, however, not a standard density and thus a Metropolis Hastings

(MH) step is necessary in order to draw samples from (4.75).

It is useful to define the following quantities, which is here done specifi-

cally for the AR(1) error correlation structure: eit = zit − Φγ(ξit)ωγ −
bi, which is equivalent to εit from the response model (4.58) if there are

no lagged dependent variables in the model as it is the case here; ei =

(ei2, . . . , eiTi
)T and e = (eT

1 , . . . , eT
n )T are column vectors; E is a column vec-

tor of length (N − n) containing the one order lag of the elements in e, i.e.

E =
(
(e11, . . . , e1(T1−1)), . . . , (en1, . . . , en(Tn−1))

)T
.

The stationary covariance of the AR(1) process is denoted by ΩAR(1) =

1/(1 − ρ2). The moments of the Gaussian part in the full conditional (4.75)

are then computable as

Σρ|· = (P−1
0 + ETE)−1 (4.76)

µρ|· = Σρ|·(P
−1
0 ρ0 + ETe)

and furthermore

Ψ(ρ) = | ΩAR(1) |−n/2 exp

(
−1

2

n∑

i=1

e2
i1

ΩAR(1)

)
.

Firstly, a proposal draw ρ′ is generated from the truncated normal part of

(4.75), i.e. N (µρ, Σρ|·)I(−1 < ρ < 1). This is subsequently accepted with

probability

α = min

{
1,

Ψ(ρ′)

Ψ(ρ)

}
.

The necessary amendments to suit the general case of AR(p) processes and

lagged dependent variables are presented by Chib & Jeliazkov (2006).

The full conditionals of the covariate model parameters underly only minor
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modifications compared to their cross-sectional specifications in Section 4.1.4.

They are given as

p(µξ|ξ, σ2
ξ , ρξ) = N

(
µµξ|·, σ

2
µξ|·

)

µµξ|· =

(∑n
i=1

∑Ti

t=1 ξit

)
g2 + f

σ2
ξ

1−ρ2
ξ

Ng2 +
σ2

ξ

1−ρ2
ξ

,

σ2
µξ|· =

σ2
ξ

1−ρ2
ξ
g2

Ng2 +
σ2

ξ

1−ρ2
ξ

p(σ2
ξ |x, ξ, µξ, ρξ, λ) = IG

(
Aξ|·,

1

Bξ|·

)

Aξ|· = Aξ +
1

2

n∑

i=1

Ti∑

t=1

mit +
N

2
,

Bξ|· = B−1
ξ +

λ(1 − ρ2
ξ)

2(1 − λ)

n∑

i=1

Ti∑

t=1

mit∑

j=1

(xitj − ξit)
2

+
1

2
(ξ − µξ)

TΩ−1
ξ (ξ − µξ),

where the matrix Ωξ is only one part of the covariance matrix of the latent

ξi’s, cf. (4.64). The attenuation factor λ is defined as in (4.65) and again

sampled in a discrete Gibbs step as in the cross-sectional case (cf. Section

4.1.4) based on the full conditional

p(λ|ξ, ρξ, σ
2
ξ ) ∝ I(λL < λ < λH)

(
λ

1 − λ

)a

exp

(
−

λ(1 − ρ2
ξ) · b

2(1 − λ)σ2
ξ

)

a =
∑

i,t

mit/2

b =
∑

i,t

mit(xit − ξit)
2 + σ̂2

δ

∑

i,t

(mit − 1), (4.77)

with xit = 1
mit

∑mit

j=1 xitj denoting the average over a subjects’s replicates at

a certain time point.
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Finally, the autocorrelation parameter of the latent covariate ρξ has to be

sampled under usage of a Metropolis Hastings (MH) step similar to the sam-

pling scheme of ρ described above. Its full conditional distribution is specified

by

p(ρξ|ξ, µξ, σ
2
ξ ) ∝ Ψ(ρξ) ×N (µρξ|·, Σρξ|·)I(−1 < ρξ < 1). (4.78)

In analogy to above, it is again useful to introduce the following quanti-

ties (specifically for the AR(1) case): eit = ξit − µξ, ei = (ei2, . . . , eiTi
)T,

e = (eT
1 , . . . , eT

n )T; the column vector E is of length (N − n) and contains

the lag of order one of the elements in e, i.e. E =
(
(e11, . . . , e1(T1−1)), . . . ,

(en1, . . . , en(Tn−1))
)T

. The stationary covariance matrix of the AR(1) process

is ΩξAR(1) = 1/(1− ρ2
ξ). The terms in the full conditional (4.78) can then be

computed as

Σρξ|· =

(
P−1

ξ0 +
ETE

σ2
ξ

)−1

µρξ|· = Σρξ|·

(
P−1

ξ0 ρξ0 +
ETe

σ2
ξ

)

and furthermore

Ψ(ρξ) = | ΩξAR(1)σ
2
ξ |−n/2 exp

(
−1

2

n∑

i=1

e2
i1

ΩξAR(1)σ2
ξ

)
. (4.79)

A proposal draw ρ′
ξ is generated from the truncated normal density

N (µρξ|·, Σρξ|·) I(−1 < ρξ < 1) and subsequently accepted with probability

α = min

{
1,

Ψ(ρ′
ξ)

Ψ(ρξ)

}
. (4.80)

The necessary amendments to suit the general case of AR(p) processes are

analog to the AR(p) serial correlation of the latent responses, which are given

in the article of Chib & Jeliazkov (2006).

Somewhat more complicated is the updating scheme of the latent covari-

ate observations ξit. The contribution of a single ξit to the likelihood can
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no longer be separated out because of the correlation structure in the data.

While in the cross-sectional case the likelihood contribution of a single la-

tent observation and its proposal is calculated to compute the acceptance

probability (cf. (4.45)), in the longitudinal context the observations within a

cluster contribute jointly to the likelihood. It is thus reasonable to generate

’proposal blocks’ of latent observations ξ′
i and compute the ratio of the joint

likelihood contributions of these proposed cluster values to the current clus-

ter values ξi.

Like in the cross-sectional case (cf. 4.46), a multivariate symmetric random

walk proposal is specified. This is a Gaussian with the current sample ξi as

mean vector and with covariance matrix being half the conditional covariance

matrix of ξi given the observed values xi. Thus, a proposal ξ′
i is generated

from the distribution

p(ξ′
i) = N

(
µξ′

i
,
1

2
Σξ′

i

)
,

where µξ′
i
= ξi

Σξ′
i
=

(
mi

σ2
δ

I + Σ−1
ξi

)−1

. (4.81)

Here, mi denotes the number of replicate measurements, where it is assumed

that cluster i has the same number of replicate measurements at every time

point t = 1, . . . , Ti. If a different number of replicate measurements are

taken at the several time points, then miσ
−2
δ I in (4.81) is substituted by

diag(mi1, . . . ,miTi
)σ−2

δ . In the proposal distribution (4.81), the matrix Σ−1
ξi

is as previously defined in (4.64) and the measurement error variance σ2
δ is

calculated from the current samples of σ2
ξ , ρξ and λ, which gives σ2

δ =
σ2

ξ (1−λ)

(1−ρ2
ξ)λ

,

cf. (4.40).

After the proposal is generated from (4.81) it is accepted with probability

α = min

{
1,

p(ξ′
i|z,xi, ρ,D, µξ, σ

2
ξ , ρξ, λ,ωγ ,γ)

p(ξi|z,xi, ρ,D, µξ, σ2
ξ , ρξ, λ,ωγ ,γ)

}
. (4.82)

The required conditional density of the true covariate observations within
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cluster i is given by

p(ξi|z,xi, ρ,D, µξ, σ
2
ξ , ρξ, λ,ωγ ,γ) ∝

exp

(
−1

2
(zi − Φγ(ξi)ωγ)T Ω∗−1

i (zi − Φγ(ξi)ωγ)

−
(1 − ρ2

ξ)λ

2σ2
ξ (1 − λ)

Ti∑

t=1

mit∑

j=1

(xitj − ξit)
2 − 1

2
(ξi − µξ)

T Σ−1
ξi

(ξi − µξ)

)
(4.83)

The triple subscript denotes the cluster i = 1, . . . , n, the time t = 1, . . . , Ti

and the replicate measurements of an cluster at one point in time j =

1, . . . ,mit. The vector xi denotes here, and only here in (4.83), all avail-

able replicates mit for all time points t for this person i – only these are

required in the full conditional distribution of ξi.

The conditional density (4.83) is easily evaluated at both positions ξ ′
i and ξi

to give the desired acceptance probability (4.82). Now, for each cluster i only

a single uniform random number is generated to decide whether to accept or

reject the complete proposed cluster. If the candidate values ξ′
i are rejected,

all current values in ξi are repeated as the next values of the MCMC sample.

A potential improvement may lie in viewing the kernel parameter η of the ra-

dial basis functions (cf. (2.3)) also as unknown parameter and insert a further

MH-step to draw samples for η. In the data examples of the next section an

estimate for η comes from the naive RVM neither considering measurement

error nor the aspects of longitudinal data. Doing so, is in analogy to the

MCMC approach in the cross-sectional case.

Firstly, starting values for the unknown parameters are given and then after

a burn-in period of 8000 draws for each parameter (vector) another 12000

runs are executed, where samples are collected for parameter estimation.

Given a previously unseen ξ∗, predicting the probability P (y∗ = 1|ξ∗,y) is

accomplished by firstly averaging over the samples for the linear predictor

z∗ := Φ(ξ∗)ω from each MCMC run (after the burn-in period is finished)

Ê(z∗|y) =
1

12000

12000∑

j=1

(Φ(ξ∗)ω[j]|y),
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which is the histogram estimator for the posterior mean of the linear predictor

(cf. (2.30)). Then, this estimate is transformed to the desired estimate for

the probability by using the cumulative distribution function of a standard

Gaussian density with mean zero and variance one to give

P̂ (y∗ = 1|ξ∗,y) = Φ
(
Ê(z∗|y), 0, 1

)
,

where Φ(a, b, c) denotes the Gaussian cumulative distribution function at

value a with mean b and variance c.

The Bayesian hope lies in the samples z[j], ρ[j], b[j], D[j], ω[j], ξ[j], ρ
[j]
ξ , µ

[j]
ξ ,

(σ2
ξ )

[j], λ[j], γ [j], j = 1, . . . , 12000 behaving as if coming from their joint

posterior distribution and thus Ê(z∗|y) being a decent approximation to the

mean of the marginal posterior distribution for the linear predictor z∗. The

estimate P̂ (y∗ = 1|ξ∗,y) obtained here is not equivalent to the posterior

mean estimate of P (y∗ = 1|ξ∗,y), but rather a transformation of the mean

estimate Ê(z∗|y), cf. end of Section 4.1.4 and Section 4.2.2.

4.4.3 A few data examples

The flexible modeling of longitudinal binary data under covariate measure-

ment error is rather complex and requires the specification of a load of pa-

rameters that have to be estimated from the MCMC draws. The idea of an

extensive simulation study is discarded here in favor of a few relevant data

examples with an increased number of MCMC runs accounting for the com-

plexity of the model. That is, a burn-in period of 8000 runs was taken and

parameter estimation relied on the following 12000 runs.

The binary responses are generated from a probit model with linear predictor

m(ξ) and characterized as follows

Case 1: An oscillating function of the covariate with

m(ξ) =




−0.9 + 3 sin(5ξ)/(5ξ) ξ 6= 0

2.1 else
,
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n = 100, Ti = 10, i = 1, . . . , n, ρ = −0.6,D = 0.3, σ2
δ = 0.52, µξ = 0

and σ2
ξ = 1.5, ρξ = 0.5

Case 1 is further investigated under varying specifications for the prior distri-

butions in order to check, whether the results are robust against modifications

(cf. Table 4.5).

Case 2: Same as case 1 but now with n = 200 and Ti = 5, i = 1, . . . , n

Case 3: Same as case 1 but now with n = 100, Ti = 10, i = 1, . . . , n,

ρ = 0.6, D = 0.5, σ2
δ = 0.52, µξ = 0 and σ2

ξ = 1.5, ρξ = −0.5

Before the results for these cases are given, it is emphasized that in all three

cases ρ and ρxi carry contrary signs – a fact that makes the data difficult to

analyze since it might blur the true impact of the covariate on the response.

This should be kept in mind when interpreting the results.

The Results

Case 1:

The first data case represents the prototype of a small-sized study, where only

n = 100 subjects are followed over ten time points. The measurement error

is small while autocorrelation of the responses and the true latent covariate

observations is pronounced as well as the impact of the random effect.

Figure 4.7 displays the model fit and shows how well the underlying true

probability function is recovered by the sampling strategy described above,

here termed ’RVMMCMC’.

The 90% prediction band is constructed from the 0.05 and 0.95 quantile of

the empirical posterior density of the parameter ω. Although it does not

contain the true probability at every covariate point, the rough course of this

function is very well discovered in the face of autocorrelation, person specific

effects and covariate measurement error. A refined estimation routine for the

basis function parameter η, determining the width of a basis, may lead to a

further improvement.

The inspection of the sampling paths for some key parameters in Figure 4.8
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indicates no severe problems like paths getting stuck in certain regions of the

parameter space or revealing a trend as if working their way to a more rep-

resentative part of the posterior distribution. However, the coarse sampling

path of a randomly chosen latent observation (here ξ2) and the sampling path

of the number of basis functions in the model witness a lower acceptance rate

than e.g. for both autocorrelation parameters that are just as well drawn in

MH-steps.

Figure 4.9 depicts the histogram of the 12000 samples used for inference.

The empirical marginal posterior distributions are symmetric (except for the

number of basis functions) and thus the posterior mean estimate is expected

to be a reliable summary statistic of the distribution. The histogram esti-

mator (2.30) based on these samples gave the following posterior mean esti-

mates (true values in brackets): µξ = −0.0223(0.0), σ̂2
ξ = 1.4069(1.5), ρ̂ξ =

0.4673(0.5), σ̂2
δ = 0.2411(0.25), ρ̂ = −0.3312(−0.6) and D̂ = 0.1576(0.3).

The mean squared error for this example is 0.0103 and is monitored under

varying prior specifications in Table 4.5.

Case 2:

The second data case mirrors the problem of having rather few measurements

for each individual cluster. Here, n = 200 cluster/individuals are followed

over a time period of only five units. The remaining setup is unchanged to

case 1.

The model fit in Figure 4.10 indicates again a good quality in detecting at

least roughly the tenor of the underlying true probability function. The sam-

pling paths of almost all parameters in Figure 4.11 are located in vicinity to

the true values and do not display a pattern as if working their way to an-

other part of the posterior distribution.

Figure 4.12 depicts the histogram of the 12000 samples used for inference.

The histogram estimator (2.30) based on these samples gave the following

posterior mean estimates (true values again in brackets): µ̂ξ = −0.0913(0.0),

σ̂2
ξ = 1.5249(1.5), ρ̂ξ = 0.4221(0.5), σ̂2

δ = 0.2363(0.25), ρ̂ = −0.3953(−0.6)

and D̂ = 0.1281(0.3).
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MSE under alternative prior specifications

Case 1 Case 1 b) Case 1 c) Case 1 d)

MSE 0.0103 0.0126 0.0145 0.0115

ωj ∼ N (0, v) v = 100 v = 1000 v = 1000 v = 1000

µξ ∼ N (f, g) f = 0, f = 0, f = 0, f = 0,

g = 100 g = 1000 g = 1000 g = 1000

σ2
ξ ∼ IG(Aξ, Bξ) Aξ = 1, Aξ = 1, Aξ = 1, Aξ = 100,

Bξ = 1 Bξ = 100 Bξ = 100 Bξ = 1

ρξ ∼ N (ρξ0, Pξ0)I[−1,+1] ρξ0 = 0, ρξ0 = 0, ρξ0 = 0.5, ρξ0 = −0.5,

Pξ0 = 0.25 Pξ0 = 0.25 Pξ0 = 1 Pξ0 = 1

ρ ∼ N (ρ0, P0)I[−1,+1] ρ0 = 0, ρ0 = 0, ρ0 = 0.5, ρ0 = −0.5,

P0 = 0.25 P0 = 0.25 P0 = 1 P0 = 1

D−1 ∼ W (ro, R0) r0 = 2, r0 = 2, r0 = 4, r0 = 6,

R0 = 2.5 R0 = 2.5 R0 = 1.25 R0 = 0.33

Table 4.5: The data from case 1 are also analyzed under alternative prior

specifications. The mean squared error criterion indicates, except for case

1 c), only a slight impact of the modified prior specifications on the final

estimation. Here, the normalizing constant is suppressed in the priors over

the autocorrelation parameters and I[−1,+1] stands for the indicator function.

Case 3:

Similar to case 1, ten dynamic measurements Ti are available for each of the

n = 100 individuals. However, here the direction of autocorrelation has been

switched for response and covariate observations and the person specific ef-

fect is slightly increased compared to case 1.

The model fit in Figure 4.13 shows that the RVMMCMC is able to recon-

struct roughly the course of the true underlying probability. Compared to

the first case, this reconstruction is less successful which is probably rather

attributable to the concrete data samples than to the slight modifications in

the underlying data generation setup. The sampling paths in Figure 4.8 do

not indicate any severe problems.

The histograms of the 12000 samples used for inference in Figure 4.15 are

symmetric (except for the number of basis functions) and thus the posterior
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mean estimate is expected to be a reliable summary statistic of the distri-

bution. The histogram estimator based on these samples gave the follow-

ing posterior mean estimates (true values in brackets): µ̂ξ = −0.0525(0.0),

σ̂2
ξ = 1.5438(1.5), ρ̂ξ = −0.4773(−0.5), σ̂2

δ = 0.2585(0.25), ρ̂ = 0.4593(0.6)

and D̂ = 0.2222(0.5).

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2

0

0.2

0.4

0.6

0.8

1

Case 1
true probability
RVM

MCMC

90% CI
sample data

Figure 4.7: Final model fit for case 1. This prediction is calculated from the

posterior mean estimate for the linear predictor z∗ := Φ(ξ∗)ω at 101 grid

points −2 ≤ ξ∗ ≤ 2. The pointwise 90% credible intervals are calculated

from the 0.05 and 0.95 quantiles of the empirical posterior distribution of the

linear predictor.
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Figure 4.8: Sampling paths of key parameters for case 1.
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Figure 4.9: Histograms of MCMC samples for key parameters for case 1.
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Figure 4.10: Final model fit for case 2. This prediction is calculated from

the posterior mean estimate for the linear predictor z∗ := Φ(ξ∗)ω at 101 grid

points −2 ≤ ξ∗ ≤ 2. The pointwise 90% credible intervals are calculated

from the 0.05 and 0.95 quantiles of the empirical posterior distribution of the

linear predictor.
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Figure 4.11: Sampling paths of key parameters for case 2.
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Figure 4.12: Histograms of MCMC samples for key parameters for case 2.
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Figure 4.13: Final model fit for case 3. This prediction is calculated from

the posterior mean estimate for the linear predictor z∗ := Φ(ξ∗)ω at 101 grid

points −2 ≤ ξ∗ ≤ 2. The pointwise 90% credible intervals are calculated

from the 0.05 and 0.95 quantiles of the empirical posterior distribution of the

linear predictor.
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Figure 4.14: Sampling paths of key parameters for case 3.
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Figure 4.15: Histograms of MCMC samples for key parameters for case 3.
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Chapter 5

Covariate measurement error in

flexible Poisson regression

This chapter considers the flexible Poisson regression model under covariate

measurement error. Chapter 4 already developed strategies of how to correct

for error in the flexible binary regression. It is revealing to see, how a part of

these methods can be generalized, usually under only minor modifications,

to suit Poisson responses and how they behave in this case. This chapter is

mainly left with giving the relevant modifications and computational details

and concludes with a simulation study.

To keep this chapter self-contained the Poisson RVM regression model is

briefly recalled, before Section 5.1 surveys the employed correction methods

together with the necessary amendments.

Resorting to chapter 2, the Poisson RVM is of the form

Y = G(Φ(ξ)ω) + ε, (5.1)

where Y ∈ N0 and E(ε) = 0. The response function is typically chosen as

G(z) = exp(z), and (5.1) is then called a log link Poisson model.

All methods described in this chapter employ the Gaussian prior distribution

199
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over the fundamental mean model parameters

p(ω|α) =
J∏

j=0

√
αj

2π
exp

(
−αj

2
ω2

j

)
. (5.2)

Further, Gamma hyperpriors are specified over those hyperparameters col-

lected in α = (α0, α1, . . . , αJ)T and also over σ2 if dispersion is included in

the model (cf. Section 2.1.1).

Thus, the ’ideal mean model’ and the ’ideal variance model’ are here given

as

E(Y |ξ) = G (Φ(ξ)ω) (5.3)

V(Y |ξ) = σ2G (Φ(ξ)ω) , (5.4)

with dispersion parameter σ2. The variance V(Y |ξ) is again heteroscedastic

as in the binary case (cf. (4.3)). Throughout this chapter, the dispersion

parameter σ2 !
= 1, unless stated otherwise. Though the mean model para-

meters ω are random in a Bayesian context they are again suppressed on the

left hand side of (5.3) and (5.4) for notational clarity and will be throughout

this chapter for the sake of clarity.

5.1 The arsenal of correction methods

The correction for covariate measurement error in Poisson regression is like

in binary regression a more demanding task than in the Gaussian case. It

is complicated by the non-linear response function G(z) in the ideal models

(5.3) and (5.4).

Basis calibration, as described earlier in Section 4.1.1, can be straightfor-

wardly applied, but again merely approximates the observed mean model in

terms of the true model parameters ω. The expanded basis function calibra-

tion, as introduced in Section 4.1.2, refines the approximation to the observed

mean and variance model. However, it requires careful consideration of the

specific form of the ideal moments (5.3) and (5.4) in the Poisson case. The
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SIMEX (cf. Section 4.1.3) is easily adapted to the Poisson case. The three

methods are compared to the naive RVM regression in a concluding simula-

tion study. There, it is most interesting to see how the informational gain

in the Poisson responses, in contrast to the binary responses, is responsible

for the clear superiority of the correction methods compared to the naive

analysis.

An MCMC approach to suit the Poisson regression model under covariate

error is conceivable, e.g. via the Binomial approximation of the Poisson case

(cf. Denison et al. (2002)). This is not realized, yet. This could, however,

prove to be particularly rewarding in the case of longitudinal data, where

the methodology from the longitudinal binary case (cf. Section 4.4) can be

adopted. Such an approach is not yet discussed in the existing literature.

5.1.1 Basis function calibration

The core of basis function calibration is the replacement of the design matrix

Φ, formulated in terms of the latent observations ξi, i = 1, . . . , N , by its

calibrated version Φc in the ideal mean model (5.3). This calibrated design

matrix Φc is made up of the row vectors µΦ(ξ)|X = E(Φ(ξ)|X) as described

at great length in the Gaussian case (cf. Section 3.1.1).

Like in the binary case, this replacement does no longer yield the exact

representation of E(Y |X) in terms of the fundamental model parameters ω,

because

E(Y |X) 6= G
(
µΦ(ξ)|Xω

)
. (5.5)

In Poisson regression, substituting Φc into Φ yields merely an working model

for the observed mean.

Parameter estimation proceeds via Fisher scoring as described for the binary

case in Section 4.1.1, but now with the exponential response function for

G(z). The usage of the modified basis functions should intuitively lead to

larger estimates for the mean model parameters ω (cf. Figure 3.1) and so

ideally alleviate the oversmoothing that is typically inherent in the naive
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analysis.

Hyperparameter estimation is done via the maximization of the marginal

likelihood as depicted for the binary case in Section 4.1.1.

5.1.2 Expanded basis function calibration

The basic idea of expanded basis function calibration is to refine the approx-

imation of the observed mean and variance model under retainment of the

fundamental parameters of the ideal mean (5.3) and variance model (5.4).

This concept utilizes the idea of basis function calibration and uses Taylor

series expansion for the improved approximation to the observed moments.

The underlying idea has bees discussed in detail in Section 4.1.2. From the

theoretical aspect, the adoption for the Poisson case is straightforward, how-

ever, the technical details, required for a successful implementation, need

somewhat more considerate explanation.

In the Poisson regression case (with dispersion parameter σ2) the ideal mean

and variance model are based on the true but latent covariate ξ

E(Y |ξ) = f(Φ(ξ),ω) (5.6)

V(Y |ξ) = σ2g2(Φ(ξ),ω, θ) = σ2f(Φ(ξ),ω), (5.7)

where f(Φ(ξ),ω) : R(J+1) → R is viewed as working on the domain of the

individual basis functions i.e. mapping the row vector Φ(ξ) containing the

values of all basis functions at position ξ to a scalar.

Like the structural quasi likelihood approach (cf. Section 3.1.2), expanded

basis function calibration also requires the conditional mean and variance of

the basis function vectors Φ(ξ) given X

E(Φ(ξ)|X) = µΦ(ξ)|X

V(Φ(ξ)|X) = ΣΦ(ξ)|X ,

to approximate the observed mean E(Y |X) and observed variance V(Y |X).

Both quantities can be calculated with the aid of the formulas (3.8) and
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(3.18) in Section 3.1.2

Again some notational shortcuts are introduced in order to make the formulas

involved in this approach more lucid.

Insertion: Notational details

The ideal mean model (5.6) and the ideal variance model (5.7) only differ in

the dispersion parameter σ2. Hence, only half of the shortcuts, compared to

the binary case in Section 4.1.2, are needed here:

f := f(Φ(ξ),ω) = G(Φ(ξ)ω)

fµ := f(µΦ(ξ)|X ,ω) = G(µΦ(ξ)|Xω)

f ′ :=
∂G(Φ(ξ)ω)

∂Φ(ξ)

f ′
µ := f ′(µΦ(ξ)|X ,ω)

f ′′ :=
∂G(Φ(ξ)ω)

∂Φ(ξ)TΦ(ξ)

f ′′
µ := f ′′(µΦ(ξ)|X ,ω).

Here, all first derivatives are row vectors, while the second derivatives are ma-

trices. Poisson regression adopts the exponential response function G(z) =

exp(z) and the specific form of the derivatives for this response function will

be given later.

Basis function calibration (cf. Section 3.1.1) substitutes the latent design ma-

trix Φ by its calibrated version Φc, which yields the following approximations

for the observed mean and variance model

E(Y |X) ≈ f(µΦ(ξ)|X ,ω)

V(Y |X) ≈ σ2f(µΦ(ξ)|X ,ω, θ).

Expanded basis function calibration now refines these approximations em-

ployed in basis function calibration by adopting Taylor series expansion

around µΦ(ξ)|X . Expanding the Taylor series around µΦ(ξ)|X is justified by
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the ’basis function model’

Φ(ξ) = µΦ(ξ)|X + V

where E(V |X) = 0, V(V |X) = ΣΦ(ξ)|X .

The improved mean model approximation is then derived under application

of the law of iterated expectations, as described for the binary case in (4.15),

as

E(Y |X) ≈ fµ +
1

2
tr
(
ΣΦ(ξ)|Xf ′′

µ

)
, (5.8)

where ’tr’ denotes the trace function applied to the matrix product (ΣΦ(ξ)|Xf ′′
µ).

A refined approximation of the observed variance uses the variance decom-

position formula, and is in analogy to the binary case (4.16) given by

V(Y |X) ≈ f ′T
µ ΣΦ(ξ)|Xf ′

µ + σ2fµ + σ2 1

2
tr
(
ΣΦ(ξ)|Xf ′′

µ

)
. (5.9)

The necessary first and second derivatives of f for the exponential response

function G(z) = exp (z) are given as:

f ′ = fωT

f ′′ = −ωf ′

Since f ′′ depends on the parameters ω, recalculation of this matrix has to be

performed in every step of the optimization algorithm, making the procedure

computer intensive.

The approximations of the observed moments (5.8) and (5.9) are again not

range preserving, since they might become negative. A range preserving al-

ternative is discussed for the binary case in Section 4.1.2 and can be easily

adopted for the Poisson case. Instead an alternative strategy is used, where

the Fisher scoring for ω is exited if the approximation for E(Y |X) becomes

negative and further ω updating is not performed, before a hyperparameter

update is accomplished.
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The approximated observed moments (5.8) and (5.9) replace their ideal coun-

terparts in the penalized quasi score function

sX(Y,X,ω) =
N∑

i=1

δ E
∗(yi|xi)

δω

(
yi − E

∗(yi|xi)

V
∗(yi|xi)

)
− ωA. (5.10)

Parameter estimation is performed via Fisher scoring (cf. Section 4.1.2) and

involves, besides the score function (5.10), the expected Fisher matrix

F (ω) =
(
Φ∗T

c B∗
c Φ

∗
c + A

)
. (5.11)

The symbol ∗ indicates that the approximative moments (5.9) and (5.8)

are involved here. The Fisher matrix (5.11) comprises the following two

quantities

Φ∗
c =




∂ E
∗(y1|x1)
∂ω

∂ E
∗(y2|x2)
∂ω

. . .
∂ E

∗(yN |xN )
∂ω


 , B∗

c =




V
∗(y1|x1)

−1

. . .

V
∗(yN |xN)−1.




The matrix Φ∗
c is constructed from the vectors of derivatives of the observed

mean model with respect to the weights (cf. (4.23)). The diagonal matrix

B∗
c contains the observed variances for each individual. The subscript ’c’

indicates that the calibrated design matrix Φc is involved here.

The posterior covariance matrix is approximated by the inverse expected

Fisher matrix and thus the posterior moments of the parameter vector ω are

given as

Σ = F (ω)−1 =
(
Φ∗T

c B∗
c Φ

∗
c + A

)−1
, (5.12)

µ = ΣΦ∗T
c B∗

cy
∗, where y∗ = Φ∗

cω + (y − E
∗(y|x)). (5.13)

The working observations y∗ include the column vector E
∗(y|x), which is

based on the approximation in (5.8) with y = (y1, y2, . . . , yN)T and x =

(x1, x2, . . . , xN)T.

The so computed standard errors, based on (5.12), are not properly corrected
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for the inherent covariate measurement error, which is a open problem, yet.

According to Tipping (2001), the marginal likelihood of the working obser-

vations is then approximated by a Gaussian essentially following a Laplace

approximation. Like in the binary case, the required working observations

are here not derived from the ’iteratively weighted least squares’ represen-

tation of the Fisher scoring (5.13), but (for computational reasons) defined

as

y∗∗ := Φcω + D−1(y − E
∗(y|x)) (5.14)

with the diagonal matrix D having elements

Dii =

(
∂G(µΦ(ξ)|xi

ω)

∂(µΦ(ξ)|xi
ω)

)
.

For the binary case, this particular specification of the working observations

is discussed at great length in the paragraph ’Estimating the hyperparame-

ters’ of Section 4.1.2. The expression E
∗(y|x) in (5.14) denotes again the

approximation for the observed mean model (5.8) for all observations in the

data set.

This yields the marginal likelihood of the working observations that will be

used in the hyperparameter optimization

p(y∗∗|α) = N
(
0, B∗∗ + ΦcAΦT

c

)
.

The elements of the diagonal matrix B∗∗ are given by

B∗∗
ii =

(
∂G(µΦ(ξ)|xi

ω)

∂(µΦ(ξ)|xi
ω)

)2

/ V
∗(yi|xi)

involving the first derivative of the response function with respect to the lin-

ear predictor and V
∗(yi|xi), the approximated observed variance from (5.9).

5.1.3 SIMEX

The SIMEX for Poisson regression can be straightforwardly adopted from the

binary case in Section 4.1.3. Again, the error effect is studied on the linear
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predictor f̂ ∗(ξk) := Φ(ξk)ω̂ at points of interest ξk, instead of investigating

its effect directly on f̂(ξk) := exp (Φ(ξk)ω̂). This modification guarantees

the final SIMEX prediction function f̂SIMEX(ξk) = G
(
f̂ ∗

SIMEX(ξk)
)

to be

non-negative as postulated for Poisson regression. The recipe for SIMEX

is unchanged from the binary case, but now the mean function estimate is

given by f̂SIMEX(ξk) = exp
(
f̂ ∗

SIMEX(ξk)
)
. Here, f̂ ∗(ξk)SIMEX denotes the

SIMEX corrected linear predictor.

In the following simulation study, a quadratic extrapolation, based on the

naive analysis (c=0) and the mean estimates over B = 50 repetitions for

multiples c ∈ {0, 0.5, 1, 1.5, 2} of the original measurement error variance, is

used to attain the SIMEX estimates.

5.2 Simulation study

Basis function calibration, expanded basis function calibration and SIMEX

are compared in a simulation study. Firstly, the various data scenarios con-

sidered in the simulation study are described. Then, some general settings

are recalled. Finally, the results of the simulation study are presented and

discussed.

5.2.1 The data

For each data scenario 200 data sets are simulated.

There are always two replicates (mi = 2) available containing classical ad-

ditive measurement error with µδ = 0. Thus, each surrogate observation

xi, i = 1, . . . , N represents the average over these two replicates. The mea-

surement error variance can then be estimated from these replicates and so

the money for the fortune teller can be saved.

In seven of the eight scenarios the ξi, i = 1, . . . , N are generated as inde-

pendent normal random variables with mean µξ and variance σ2
ξ . Case 7
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adopts a standardized χ2(4) distribution for the generation of the ξi’s. Each

data set contains usually N = 500 samples, with exception of case 6, where

N = 1000 samples are available. The level of measurement error variance is

different for the data scenarios. As a consequence of having two replicates,

the measurement error variance of the surrogates xi = xi1+xi2

2
is only half the

error variance that is stated below in the respective cases.

For the purpose of mean squared error calculations, the predictions of the

correction methods were computed on a grid of 101 points in the interval

[a, b]. The mean squared error was computed over this grid, which is ex-

pected to cover most of the distribution for ξ.

The series of simulation includes eight data cases, where the Poisson re-

sponses are generated from the underlying mean function f(ξ) = exp(−m(ξ))

with functional argument m(ξ). No under-/overdispersion is specified here.

The general setup of this simulation study is almost identical to the one in

the binary case:

Case 1: A quadratic function of the covariate with m(ξ) = −0.2 +

0.25ξ + 0.1ξ2, with N = 500, a = −2.0, b = 2.0, σ2
δ = 0.82, µξ = 0 and

σ2
ξ = 1.5

Case 2: An oscillating function of the covariate with

m(ξ) =





0.9 + 1.8 sin(5ξ)/(5ξ) ξ 6= 0

2.7 ξ = 0
,

N = 500, a = −2.0, b = 2.0, σ2
δ = 0.22, µξ = 0 and σ2

ξ = 1.5

Case 3: Same as Case 2 except σ2
δ = 0.52

Case 4: Same as Case 2 except σ2
δ = 0.82
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Case 5: Another oscillating function of the covariate with

m(ξ) =





1 + 2

√
(0.25ξ+0.5)(1−(0.25ξ+0.5)) sin(2π(1+2(9−4j)/5))

ξ
4
+0.5+2(9−4j)/5

−2 ≤ ξ ≤ 2

1 otherwise

for j = 3, with N = 500, a = −2, b = 2, σ2
δ = 0.52, µξ = 0 and

σ2
ξ = 1.52

Case 6: Same as case 4 except N=1000

The violation of the assumption of ξ being normally distributed is studied in

Case 7: The same as case 3 above except that ξ is a standardized

χ2(4) random variable. The MSE will be evaluated on [−1.25, 2.00].

A plateau function is difficult to model with the RVM methods using RBF

kernels or the MCMC approach using 2nd order truncated power series. This

model misspecification is investigated in

Case 8: The same as case 3 above except that

m(ξ) = 3 + 0.5(−2 + H(100ξ) + H(100(ξ − 0.5))),

where H(ξ) = (1 + exp(−ξ))−1 .

Figure 5.1 and 5.2 display example data sets for each scenario as well as the

true mean function. Only a single measurement is displayed here, although

there are two replicate measurements available and usually the average is

taken as surrogate to perform the analysis. Compared to the binary data

examples in the respective Section 4.2.1, the Poisson responses rather al-

low for inferring the underlying mean function ’by eye’ - at least when the

measurement error is small.
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Figure 5.1: Example data sets for cases 1-4 and the respective true underlying

mean function. The response is plotted versus one error-prone measurement,

i.e. no averaging over the two available replicates is done here. Only the

range [a, b] on which the methods will be evaluated is shown.
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Figure 5.2: Example data sets for cases 5-8 and the respective true underlying

mean function. The response is plotted versus one error-prone measurement,

i.e. no averaging over the two available replicates is done here. Only the

range [a, b] on which the methods will be evaluated is shown.
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5.2.2 Specification details of the methods

Basis calibration, expanded basis function calibration and SIMEX are im-

plemented as described above with an arsenal of 100 radial basis functions

centered on knots located at the quantiles of the observed data and one in-

tercept. For SIMEX, the knots are again located at the quantiles of the

artificially generated observations in each simulation step.

The kernel parameter η of the radial basis functions is selected from a list

of admissible values like in the Gaussian implementation (cf. Section 3.2.2).

Basis calibration and expanded basis function calibration copy the optimal

kernel parameter selected by the naive approach.

All methods use the analytic updating scheme of the hyperparameter vector

α as described for the non-Gaussian case of the RVM in Section 2.1.2 and

in Section 4.1.2 for the modified version in the expanded basis function cali-

bration approach.

For an compact overview of the methods, the interested reader is referred to

Table 4.1 of the previous chapter, which contains an overview of the com-

pared methods in some essential respects.

5.2.3 The results

The quality of the correction methods is again investigated by mean squared

error and pointwise bias.

MSE:

The mean squared error is computed over a grid of 101 equidistant values in

the given interval [a, b] (specific values see in Section 5.2.1 above)

MSE =
1

101

101∑

k=1

(
f(ξk) − f̂(ξk)

)2

,
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where f(ξk) = E(yk|ξk) is the true mean function and f̂(ξk) an estimate.

Table 3.2 presents summary results for the MSE from the 200 simulations for

each data scenario. The smallest average MSE value among the naive analy-

sis and the implemented correction methods in each scenario is in boldface.

Like in the simulation study investigating the binary models (cf. Section

4.2.3) the correction quality of the presented methods is heterogeneous,

though all are decidedly superior to the naive analysis (except for cases 1

and 8). Unlike the binary case, where higher measurement error variance

suggests RVMSIMEX correction, the results from cases 2-4 give no unam-

biguous recommendation when to use which method.

Case 5 is an oscillating function with two different frequencies and is gener-

ally hard to fit with the RV M models (see also simulation study in Krause

& Tutz (2003)). However, even here the corrective power of the presented

methods becomes obvious.

As can be seen from cases 4 and 6, increasing the sample size affects the

correction methods only marginally in the Poisson regression compared to

the pronounced effects in binary regression (cf. MSE results for binary re-

gression in Table 4.2). That may be due to the fact that Poisson responses

contain much more information than binary responses and there is no im-

provement in using 500 more (error-prone) observations in detecting the un-

derlying complex mean function. This hypothesis is supported by the results

of the RVMnaive for cases 4 and 6, which indicate no further improvement

when using N = 1000 observations and consequently there appears to be

no huge potential in making 500 additional observations available for the

correction methods. Comparing the observed effects in binary and Poisson

regression, when increasing the sample size, there seems to be the following

relationship: the correction methods benefit from a larger sample size only

if the naive analysis benefits, too. This is the case for binary regression, but

not for Poisson regression.

All methods, most notably, including the structural ones, RVMBC and

RVMEBC, show distinctive correction power in case 7, although ξ is gen-

erated here as a standardized χ2(4) random variable. Since RVMBC and

RVMEBC are based on the additional assumption of ξ being normally dis-
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tributed, these methods were expected to fail in that case.

When the functional form of the true mean function is not presentable as a

sum of weighted basis functions as in case 8, then error correction seems to

have little impact on the analysis.
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Mean squared error

Mean (SE) / Median (all ×102)

Method Case 1 Case 2 Case 3 Case 4

RV M 1.10 (.05) / .92 9.56 (.35) / 8.73 8.91 (.39) / 7.91 9.81 (.40) / 8.45

RVMnaive 1.52 (.09) / 1.06 40.21 (1.23) / 37.20 345.22 (4.32) / 344.26 663.59 (4.89) / 655.66

RVMBC 2.16 (.14) / 1.68 26.31 (.92) / 23.97 194.09 (3.61) / 190.41 385.96 (5.69) / 372.34

RVMEBC 1.62 (.09) / 1.28 20.85 (.87) / 19.30 204.28 (4.61) / 203.70 394.77 (6.02) / 374.47

RVMSIMEX 2.36 (.16) / 1.59 25.11 (1.12) / 21.86 164.62 (4.58) / 159.79 413.08 (7.80) / 386.69

Method Case 5 Case 6 Case 7 Case 8

RV M 14.39 (.41) / 14.30 4.38 (.17) / 4.32 10.27 (.37) / 8.98 143.65 (2.65) / 134.60

RVMnaive 56.70 (1.00) / 55.52 665.12 (3.93) / 665.12 417.85 (5.70) / 409.21 362.04 (2.74) / 364.62

RVMBC 44.68 (.99) / 42.97 366.73 (3.97) / 358.14 206.94 (7.80) / 191.14 343.16 (2.86) / 342.42

RVMEBC 43.31 (.94) / 41.85 379.92 (4.64) / 365.55 194.97 (6.69) / 185.59 345.05 (2.87) / 346.87

RVMSIMEX 42.50 (1.29) / 38.53 400.95 (6.13) / 384.33 166.76 (8.28) / 138.91 328.57 (2.95) / 327.54

Table 5.1: The mean squared error results for the simulation. In each column, the smallest mean value

among the naive analysis and the implemented correction methods is in boldface.
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Pointwise bias:

The pointwise bias of the methods under investigation can be seen from the

visualization of the mean predictions for E(Y |ξk) over the 200 simulations in

Figure 5.3 (for cases 1-4) and Figure 5.4 (for cases 5-8).

The cases 2-4 display impressively the growing difference between naive es-

timation and correction methods, when the error variance increases. While

in case 1 all correction approaches seem to be more or less indistinguishable,

the strength of RVMBC is revealed for higher measurement error variance.

Case 5 can be fitted comparatively well by the naive method, while all cor-

rection methods slightly underestimate the true curve for ξk ≤ 0, and over-

estimate it for ξk > 0.

Increasing the sample size does not seem to help to improve the corrective

power, as already indicated by the MSE results (cf. Table 5.1).

Even under wrongly assuming that ξ is normally distributed, the structural

methods RVMBC and RVMEBC maintain their prominence in case 7.

The plateau function in case 8 is badly fit by all approaches and only marginal

effects of error correction are observable.
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Figure 5.3: The mean functions over 200 simulations for cases 1-4. Data has

been generated from the underlying mean function E(Y |ξ) = exp(m(ξ)). Case

1 reflects a weak quadratic relationship between ξ and m(ξ), cases 2-4 employ

an oscillating m(ξ) yielding a true mean function ranging from 1.67 to 14.88.

These cases exclusively differ in the amount of measurement error, which is

σ2
δ = 0.22, 0.52, 0.82, respectively. Here, the RVMBC shows to be somewhat

superior for higher measurement error variance. However, there lies a clear

improvement in all correction strategies. The RV M without measurement

error is left out here for the sake of visibility.
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Figure 5.4: The mean functions over 200 simulations for cases 5-8. Data

has been generated from the underlying mean function E(Y |ξ) = exp(m(ξ)).

Case 5 comprises an oscillating m(ξ) with locally different frequencies. Case

6 is identical to case 4 but now supplying more sample data for the analysis.

Case 7 employs non-normally distributed ξi’s and case 8 represents a mean

function adopting a plateau function which is difficult to fit with RBF kernels.

With exception of case 8, a clear improvement of the prediction is indicated

for every correction method. RVMSIMEX and RVMBC seem to be slightly

preferable in these cases.
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Concluding discussion

There is a strong interest in generating knowledge on the basis of empiri-

cal observations. The basic requirements are a set of hypotheses, empirical

data and, for instance, a statistical regression model for inference. Prob-

lems occur, when the hypotheses include complex covariates that can not be

operationalized completely or can not be measured correctly. Applying the

chosen statistical model without accounting for the intrinsic measurement

error leads to deceptive conclusions about the true relation between covari-

ates and response.

The cure lies in methods that account for covariate measurement error and

this work develops such strategies for flexible regression using the relevance

vector machine (RVM) in Gaussian, binary and Poisson regression. The RVM

specifies a parametric, yet flexible, model and thus belongs to a subclass of

nonparametric methods.

Only correction for covariate measurement error is investigated throughout

the present work, since the impact of mismeasured responses on the analysis

is usually far less pronounced. Emphasis is on the development of structural

methods that use distributional information about the not directly observ-

able covariate ξ. These include, on the one hand, the Markov Chain Monte

Carlo (MCMC) sampling techniques and on the other hand so-called cali-

bration methods. The latter ones are based on the equivalence between the

219
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posterior mode estimator, adopted by the RVM, and Fisher scoring in a pe-

nalized likelihood setting for parameter estimation. Finally, the SIMulation

EXtrapolation (SIMEX) approach presented here, is an adaption of the non-

parametric SIMEX developed in Carroll et al. (1999) for the RVM.

The next paragraph summarizes the main points made in this thesis. After-

wards, a number of important, yet unsolved, problems and promising aspects

of further research are presented.

Summary

In chapter 3, the correction for covariate measurement error in flexible mod-

els for Gaussian responses is discussed. This work develops two new correc-

tion methods for the RVM termed ’basis function calibration’ and ’structural

quasi likelihood’. These are particularly attractive, since they do not rely on

computer intensive simulation like SIMEX or costly MCMC sampling like

the state-of-the-art Bayesian P-splines for measurement error problems by

Berry et al. (2002). Furthermore, basis function calibration can also be used,

at least approximatively, for the non-Gaussian response cases.

The discussed methods are compared in a simulation study, where the method

of Berry et al. (2002) is taken as a reference. All correction methods show

a strong improvement compared to the naive analysis ignoring measurement

error. The simulation study presents evidence that basis function calibration

and structural quasi likelihood are the most powerful tools here to combat

the adverse effects of measurement error.

Chapter 4 presents the correction of flexible models for binary responses.

This work develops an expanded version of basis function calibration, termed

’expanded basis function calibration’ and an MCMC version of the RVM us-

ing Bayesian measurement error correction.

The results of the attached simulation study are somewhat more heteroge-

nous than in the Gaussian case. Judging by the pointwise bias, all correction

methods appear to improve the naive results in the investigated data sce-
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narios. Considering the MSE criterium, only the ad-hoc development that

combines the idea of Bayesian ’data augmentation’ and calibration shows a

consistently strong improvement in all data cases. Little if any gain is indi-

cated for the other calibration methods. However, the MCMC version of the

RVM and the SIMEX adoption for the RVM do particularly well when the

measurement error is moderate and the sample size is high. All correction

methods clearly improve the analysis when the sample size is increased. Par-

ticularly in flexible binary regression, the sample size seems to be a strong

determinant of successful error correction. Against that background, it would

be interesting to re-run a part of the simulation study with increased sample

size.

A part of the correction methods developed here are also applied in re-

analyzing data from the MONICA study (MONItoring of trends and deter-

minants in CArdiovascular disease). Here, the nutritional variables, animal

and plant protein intake, are both suspected to influence mortality, however,

their observations contain substantial measurement error. The results of the

applied correction methods deviate clearly from the naive analysis and thus

underline the impact of taking the error into account.

This work also contributes to the highly relevant problem of error correction

in flexible regression for binary longitudinal data. This requires an extremely

complex model, which accounts for person specific effects, autocorrelated co-

variate and response observations and, of course, for covariate measurement

error. The parameter inference proceeds here via a subtle MCMC sampling

algorithm.

Chapter 5 shows, how basis function calibration, expanded basis function

calibration and SIMEX can be generalized to the case of Poisson responses.

All correction methods show here a convincing performance on the simulated

toy data.
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Future work

This paragraph specifies some challenging, but probably rewarding prospects

of future work based on the current achievements.

Correct estimators of standard errors for the presented (non-MCMC) cor-

rection methods are desirable. They must take into account the inherent

measurement error in the covariate. Further research for the SIMEX method

could be based on the theoretical developments for SIMEX using regression

splines by Carroll et al. (1999). For the basis function calibration, the re-

sults for standard regression calibration (cf. Carroll et al. (1995), Subsection

3.12.2) and structural regression splines (cf. Carroll et al. (1999)) may be

of interest. For structural quasi likelihood and expanded basis function cal-

ibration the asymptotic standard errors can be derived from the so-called

sandwich formula (cf. Carroll & Stefanski (1990)), but must account for the

penalization in the RVM setup.

It has been shown that the method for estimating the posterior mode of the

mean model parameters in the RVM is exactly equivalent to Fisher scoring

in a penalized likelihood setting, where the latter represents a more frequen-

tistic view on this parameter estimation.

The powerful calibration methods, developed in this work, only intervene into

this part of the optimization scheme. However, this scheme of optimization

under penalization is also applied in a range of very promising alternative

approaches to flexible regression. These include mixed model smoothing

(cf. Wand (2003)) and structured additive regression (cf. Kneib & Fahrmeir

(2005)), which are up to date applied to multinomial, ordinal or survival re-

sponse data. Using radial basis functions instead truncated power series or

B-spline basis functions for these approaches, makes the calibration method-

ology from the present work directly available for these attractive and fast

emerging methods. Otherwise, the calibration of regression splines has al-

ready been presented by Carroll et al. (1999) and the calibration of B-spline

basis functions as commonly used in the P-splines approach seems to be only
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a stone’s throw away.

The calibration methods developed in this thesis are readily applicable to the

Berkson type covariate measurement error. Setting up a simulation study

considering this error type or a mixture of classical and Berkson error will

give further insight into the correction properties of these methods.

A special focus, when designing a new simulation study, should lie on the in-

vestigation of the ’byproduct approach’, which combines data augmentation

and calibration for binary regression. In contrast to the other methods, this

is not firmly rooted in theory, but rather relies on several ad-hoc approx-

imations. Nevertheless, it works surprisingly well in the simulation study

presented here.

The core idea of all calibration methods is to find an (approximative) rep-

resentation of the observed moments in terms of the true parameters. A

completely different view of error correction is to approximate the ideal mo-

ments required for parameter inference. This strategy, described by Schen-

nach (2004), can be easily extended to suit models like the RVM. Therefore,

further investigation is attractive and may be fruitful.

Now, turning to the MCMC methods, a correction method for Gaussian lon-

gitudinal data can be directly attained from the binary longitudinal case in

chapter 4. Solely, time prevented a realization during this work.

Also, for flexible Poisson regression under covariate measurement error an

obvious enrichment lies in accounting for longitudinal data. This is an ex-

tremely important case for practical applications e.g. from the area of epi-

demiology. There, the dependent variable is often an aggregated number of

events, e.g. death or disease, in a population. In a first step, this could be

realized by using the Binomial approximation to the Poisson distribution and

adopting the MCMC methodology developed for binary longitudinal data in

chapter 4.
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Finally, a lot of data sets could be re-analyzed, then appropriately accounting

for covariate measurement error, if the developed MCMC approach could be

generalized to more than one error-prone covariate. This seems to be man-

ageable for the cross-sectional data case, however, much more difficult when

considering longitudinal data.

Carl Friedrich Gauss’s least squares method has most prominently made its

way into present-day statistics. However, as demonstrated by the MCMC

sampling strategies, there are also other approaches for making predictions.

This thesis has worked in both fields and it seems probable that many more

questions of future research can be answered when considering both areas

together.
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Gössl, C. & Küchenhoff, H. (2001). Bayesian analysis of logistic regression

with an unknown change point and covariate measurement error, Sta-

tistics in Medicine 20: 3109–3121.

Green, P. (1995). Reversible jump markov chain monte carlo computation

and bayesian model determination, Biometrica 82: 711–732.

Green, P. J. (2001). A primer on mcmc, in O. E. Barndorff-Nielsen, D. R. Cox
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