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1 Summary 
The Retinoblastoma protein (pRb) was the first tumor suppressor protein to be identified. It is 

the founding member of the so called pRb or pocket protein family, comprising two additional 

members (p107 and p130) in mammalian cells, and its best characterized function is the 

regulation of the E2F family of transcription factors. Today, the pRb-E2F network represents 

one of the best understood pathways implicated in cell cycle regulation and differentiation.  

Pocket proteins negatively regulate the transactivation properties of E2F proteins by two 

mechanisms: First, binding of pocket proteins to E2F masks the E2F transactivation domain 

and thereby impairs transcriptional activation. Second, pocket proteins interact with several 

chromatin modifying and chromatin binding proteins and recruit these proteins to E2F target 

genes, where they help to establish a repressive chromatin conformation.  

In this work, advantage was taken of the relative simplicity of the Drosophila melanogaster 

pRb-E2F network to purify and functionally characterize native pRb repressor complexes.  

Two related multisubunit complexes that only differ in their pocket protein subunit (RBF1 or 

RBF2) have been purified from Drosophila embryo nuclear extract. These complexes contain 

several novel pocket protein-associated polypeptides and localize to transcriptionally silent 

regions on Drosophila polytene chromosomes. Moreover, they specifically associate with 

deacetylated histone tails, which are a hallmark of transcriptionally silent chromatin. In cycling 

Drosophila S2 cells, the purified complexes redundantly repress the expression of a certain 

class of E2F target genes implicated in differentiation and development, whereas they do not 

control the expression of cell cycle-regulated E2F targets. Interestingly, the isolated 

complexes seem to be highly conserved between different organisms. Genes encoding the 

Caenorhabditis elegans homologs of the complex subunits act within the same genetic 

pathway involved in vulval cell fate determination and they functionally cooperate in different 

developmental processes. Furthermore, a complex with striking homology to the Drosophila 

complexes also exists in human cells.  

In the light of the specific repression of developmentally regulated E2F target genes in cycling 

Drosophila cells, it is conceivable that the complexes prevent the uncontrolled expression of 

genes important during differentiation. Since the C. elegans homologs of the complex 

subunits are also involved in cell fate determination, this might be a highly conserved feature 

of the isolated complexes. 
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2 Introduction 
 

2.1 The pRb-E2F network in mammals 
Today, the pRb-E2F pathway represents one of the best understood transcriptional networks 

in eukaryotes. Its detailed characterization began 20 years ago with the identification of a 

gene, both copies of which are mutated or deleted in Retinoblastoma, a rare childhood tumor 

of the eye (Friend et al. 1986). The protein product of this gene, the Retinoblastoma protein 

(pRb) was the first tumor suppressor protein to be identified. At the same time, a cellular 

activity associating with and regulating the Adenovirus E2 promoter was identified and named 

E2 promoter binding factor (E2F) (Kovesdi et al. 1986; Kovesdi et al. 1987). Induction of the 

E2 promoter is mediated by the Ad-E1A protein, which is a potent oncoprotein, involved in 

cellular transformation. In untransformed cell lines, E2F can form complexes with cellular 

proteins, which are disrupted upon addition of the Ad-E1A protein, and this results in the 

stimulation of E2F-dependent transcription from the E2 promoter (Bagchi et al. 1990). 

Interestingly, the Ad-E1A protein, and the oncoproteins of other DNA tumor viruses can also 

interact with pRb (DeCaprio et al. 1988; Whyte et al. 1988; Dyson et al. 1989), providing a link 

between the cellular E2F and pRb proteins. This connection was confirmed by the finding of a 

physical association between pRb and E2F. Moreover, this interaction is disrupted by viral 

oncoproteins (Bagchi et al. 1991; Bandara and La Thangue 1991; Chellappan et al. 1991; 

Chittenden et al. 1991). 

These discoveries resulted in the model that pRb negatively regulates the E2F transcription 

factor. Upon viral transformation, this repression can be overcome by the binding of viral 

oncoproteins to pRb, which leads to its dissociation from E2F. Subsequently, E2F-dependent 

transcription promotes cell proliferation due to the activation of E2F target genes involved in 

cell cycle progression (Dyson 1998). This mechanism represents a crucial step for cellular 

transformation by oncoviruses. Under non-transforming, physiological conditions, association 

between E2F and pRb depends on the phosphorylation status of pRb, which is regulated by 

cyclin/cyclin dependent kinase (cdk) complexes in a cell cycle specific manner (Dyson 1998). 

These pioneering studies have established E2F and pRb proteins as master regulators of cell 

cycle progression. 
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2.1.1 The E2F transcription factor family 

E2F transcription factors act as heterodimeric proteins, consisting of an E2F and a DP 

(differentiation regulated transcription factor, DRTF Protein) subunit (Girling et al. 1993; Helin 

et al. 1993b; Krek et al. 1993; Bandara et al. 1994). Moreover, the structural features of E2F-

DP heterodimers bound to DNA support the preferential heterodimer formation (Zheng et al. 

1999), even though homodimers have also been described (Huber et al. 1993). The E2F 

transcription factor family comprises eight E2F (E2F1-8) and two DP proteins (DP1+2). 

E2F1-6 can associate with each of the two DP proteins, resulting in a highly complex network 

of transcription factors (Trimarchi and Lees 2002). In contrast, two recently identified, atypical 

E2F proteins (E2F7 and E2F8) do not heterodimerize with DP (Table 2.I). These factors 

possess a tandem pair of DNA binding domains, which interact with E2F binding sites on 

DNA (de Bruin et al. 2003; Di Stefano et al. 2003; Logan et al. 2004; Christensen et al. 2005; 

Logan et al. 2005; Maiti et al. 2005). 

E2F1-5 can transactivate reporter genes in transient transfection assays, but they differ in 

their occupancy of target genes during the cell cycle. E2F1-3 are associated with their target 

promoters in late G1 and S phase, when the genes are actively transcribed (Takahashi et al. 

2000; Wells et al. 2000), and are referred to as "activator E2Fs". In contrast, E2F4 and E2F5 

occupy their target genes in quiescent cells and in early G1 when the genes are not 

expressed, and have been classified as "repressor E2Fs". The transactivation properties of 

E2F1-5 are repressed by their association with members of the pRb protein family (Dyson 

1998). 

Unlike the other E2F factors, E2F6-8 do not activate reporter genes in transient transfection 

experiments. Rather, E2F6-8 repress transcription in a pocket protein-independent manner 

(Table 2.I) (Morkel et al. 1997; Cartwright et al. 1998; Trimarchi et al. 1998; de Bruin et al. 

2003; Di Stefano et al. 2003; Logan et al. 2004; Christensen et al. 2005; Logan et al. 2005; 

Maiti et al. 2005). 
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Table 2.I: Features of mammalian E2F proteins 

 TAD DBD* DP 

dimerization 

pRb family 

interaction 

E2F1 + 1 + E2F1/pRb 

E2F2 + 1 + E2F2/pRb 

E2F3 + 1 + E2F3/pRb 

E2F4 + 1 + E2F4/pRb, 

E2F4/p107, 

E2F4/p130 

E2F5 + 1 + E2F5/p130 

E2F6 - 1 + - 

E2F7 - 2 - - 

E2F8 - 2 - - 

TAD, transactivation domain; DBD, DNA binding domain. 

* Number of DNA binding domains within the E2F protein. 

 

The exact mechanism of how E2F proteins activate transcription is not fully resolved, but 

several modes of action can be hypothesized: (1) E2F1 interacts with the TBP and TFIIH 

subunits of the general transcription machinery and loss of this interaction results in a 

decrease of E2F-dependent transcription (Hagemeier et al. 1993; Emili and Ingles 1995; 

Pearson and Greenblatt 1997; Vandel and Kouzarides 1999). (2) E2Fs are known to 

associate with proteins that have histone acetyltransferase (HAT) activity. Furthermore, these 

HATs cooperate with E2F in transcriptional activation and acetylate histones on E2F target 

promoters in an E2F dependent manner (Trouche and Kouzarides 1996; Lang et al. 2001; 

Taubert et al. 2004). Moreover, acetylation of E2F itself by the same enzymes increases its 

DNA binding affinity and activation properties (Martinez-Balbas et al. 2000; Marzio et al. 

2000). (3) Another possible mechanism of transcriptional activation by E2F factors might 

involve their ability to bend DNA, thereby creating a more favorable conformation for the 

interaction of transcription factors with the basal transcription machinery (Cress and Nevins 

1996). These putative mechanisms are not mutually exclusive and might therefore also 

cooperate during E2F transactivation. 
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2.1.2 E2F target genes 

The characterization of the E2F binding site in the Adenovirus E2 promoter subsequently led 

to the identification of similar sequences in the promoters of cellular genes and revealed their 

regulation by E2F (Blake and Azizkhan 1989; Thalmeier et al. 1989). Since E2F has been 

shown to promote S phase entry of quiescent cells (Johnson et al. 1993), the search for novel 

E2F target genes was originally focused on well known regulators of G1/S phase progression. 

Therefore, many of the E2F target genes identified to date are important for regulated entry 

and progression through the S phase of the cell cycle.  

Within the last couple of years, however, several labs have used microarray based 

techniques to identify novel genes regulated by members of the E2F and pRb protein families 

(Ishida et al. 2001; Muller et al. 2001; Ren et al. 2002; Weinmann et al. 2002). As expected, a 

large number of E2F target genes identified in these studies are important for cell cycle 

progression. In addition, many novel E2F-regulated genes are implicated in DNA repair, 

apoptosis, differentiation and development, suggesting that E2F and pRb protein function is 

not restricted to cell cycle control (Stevaux and Dyson 2002). 

 

2.1.3 The pocket protein family 

In mammalian cells, pRb and the highly related proteins p107 and p130 comprise the so 

called pocket protein family. This family is characterized by a conserved region, composed of 

two conserved domains (A and B) separated by a spacer. These motifs give rise to a pocket 

like structure, called the pocket domain. The pocket domain appears to be the main 

interaction module of these proteins and is highly conserved between all family members. 

Within this domain, the LxCxE binding cleft represents the critical interaction module for 

proteins containing the so called LxCxE (Leu-x-Cys-x-Glu) motif, including viral oncoproteins 

and cellular transcription factors (Kim and Cho 1997; Lee et al. 1998). However, the pocket 

region also mediates the interaction with proteins that lack an LxCxE motif, including the E2F 

family of transcription factors. In addition to the pocket domain, the pRb C-terminus appears 

to be involved in stabilizing the association with E2Fs (Hiebert et al. 1992; Qian et al. 1992; 

Qin et al. 1992). 

Several lines of evidence suggest that p107 and p130 are more closely related to each other 

than to pRb. First, p107 and p130 contain an extended spacer region in the pocket domain, 

which is involved in the binding of cyclin E/cdk2 and cyclin A/cdk2 (Devoto et al. 1992; Lees 

et al. 1992; Li et al. 1993). The precise function of the stable association between these 

proteins is still not fully resolved, but it has been shown that when p107 is bound, it inhibits 
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the target phosphorylation by cyclin E/cdk2 and cyclin A/cdk2 and is involved in growth 

suppression (Zhu et al. 1995a; Zhu et al. 1995b). Second, p107 and p130 interact exclusively 

with “repressor E2Fs”, whereas pRb can associate with both “activator” and “repressor E2Fs” 

(see Table 2.I). 

As a consequence, p107 and p130 repress E2F-dependent transcription together with E2F4 

and E2F5 during the G0 and early G1 phases of the cell cycle. pRb, however, also represses 

transactivation by E2F1-3 in late G1, just before these proteins are activated (see 2.1.1 and 

Fig. 2.1). During the G1 phase, mitogenic signals result in the sequential activation of cyclin 

D/cdk4 or 6 and cyclin E/cdk2 complexes. Phosphorylation of pRb by these complexes in late 

G1 reduces its affinity for E2F, which results in pRb dissociation. Uncomplexed E2F1-3 can 

subsequently activate target genes that are important for the G1/S transition and cell cycle 

progression (Fig. 2.1). 

 

 

Figure 2.1: Cell cycle regulation by pocket proteins 

Cyclin/cdk complexes can phosphorylate pocket proteins, leading to their dissociation from E2F factors.  

cyc, cyclin; cdk, cyclin dependent kinase; cdki, cdk-inhibitor; P, Phosphate group. 

Abbreviations for cell cycle phases: G0, quiescence phase; G1/G2, gap phases; S, DNA synthesis 

phase; M, mitosis. See text for details.  
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2.1.4 Mechanisms of pocket protein mediated transcriptional 
repression 

Pocket proteins repress transcription by two different mechanisms: First, binding of pocket 

proteins to E2F masks the E2F transactivation domain and thereby impairs transcriptional 

activation (Flemington et al. 1993; Helin et al. 1993a). Second, pocket proteins interact with 

several chromatin modifying and chromatin binding proteins and recruit these proteins to E2F 

target genes, where they help to establish a repressive chromatin conformation. This 

mechanism is also referred to as "active repression".  

The degree of chromatin condensation, especially in the promoter region of a gene, is a 

critical determinant for the activity status of the gene. Depending on the chromatin 

conformation, important regulatory sequences can be accessible for or excluded from 

transcription factor binding. Chromatin modifications play an essential role in the 

establishment of both, active and repressive chromatin conformations, either by creating a 

binding platform for other proteins or by directly changing chromatin structure.  

Enzymes capable of changing chromatin structure can be classified into two groups: Covalent 

histone modifiers and ATP-dependent chromatin remodelers. The most common covalent 

histone modifications comprise acetylation, methylation, phosphorylation and ubiquitylation. 

Acetylation and methylation of histone tails are well characterized with regard to their effect 

on the transcription of genes. Whereas hyperacetylated histones are a hallmark of actively 

transcribed genes, hypoacetylation of histones is associated with transcriptional repression. 

Histone methylation, however, can be a mark for either active or inactive chromatin, 

depending on the amino acid that is modified. For example, methylation of lysine (K) residues 

9 and 27 on histone H3 and K20 on H4 are hallmarks of transcriptionally silent chromatin, 

whereas H3K4-methylation is associated with active transcription. Besides, several additional 

lysine (K) and arginine (R) residues within histones are methylated and the impact of these 

modifications on transcription is currently subject to intensive studies. 

The second class of chromatin modifying enzymes, ATP-dependent chromatin remodelers, 

utilize the energy of ATP hydrolysis to directly move histone octamers relative to the DNA, 

which is wrapped around them. ATP-dependent chromatin remodeling can be involved in 

transcriptional repression as well as activation (Saha et al. 2006). 

Physical and functional Interactions between pocket proteins and several chromatin modifying 

enzymes have been proven. Best characterized is the interaction of pocket proteins with 

histone deacetylases (HDACs). Pocket proteins and HDACs physically interact and 

cooperatively repress the expression of cell cycle-regulated E2F target genes in 
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cotransfection experiments. Furthermore, HDAC activity is required for this repression (Brehm 

et al. 1998; Ferreira et al. 1998; Luo et al. 1998; Magnaghi-Jaulin et al. 1998).  

Moreover, pRb interacts with the SUV39H1 histone methyltransferase (HMT), which 

methylates K9 on histone H3, and with Heterochromatin Protein 1 (HP1). Interestingly, HP1 

specifically recognizes and binds the methylation mark set by SUV39H1 and appears to be a 

key player in the establishment of transcriptionally silent chromatin (Bannister et al. 2001; 

Lachner et al. 2001). pRb and SUV39H1 cooperate in the repression of E2F target genes 

(Nielsen et al. 2001; Vandel et al. 2001) and knockout of the HMT results in the upregulation 

of endogenous E2F/pocket protein targets (Nielsen et al. 2001). H3K9-methylation at the 

cyclin E promoter is strongly reduced in pRb-/- cells, further supporting the functional interplay 

between pRb and SUV39H1. Strikingly, also the association of HP1 with the cyclin E 

promoter disappears upon loss of pRb (Nielsen et al. 2001). 

The assembly of the methyltransferase PRMT5 into an E2F4 repressor complex, which is 

bound to the cyclin E promoter, shows that also HMTs modifying arginine residues might be 

involved in the repression of E2F target genes (Fabbrizio et al. 2002). Recently, also PRMT2 

has been shown to interact with pRb and repress E2F-regulated reporter genes in a pRb-

dependent manner (Yoshimoto et al. 2006). 

In overexpression experiments, pRb interacts with the polycomb group (PcG) protein HPC2 

(Dahiya et al. 2001). PcG proteins are negative regulators of transcription, important for the 

maintenance of homeotic (Hox) gene expression patterns. To do so, they act within 

multisubunit protein complexes with chromatin modifying and binding properties (Bantignies 

and Cavalli 2006). Like pRb, HPC2 is a negative regulator of cell proliferation (Satijn et al. 

1997). pRb and HPC2 cooperate to mediate growth arrest, probably due to the cooperative 

repression of certain cell cycle-regulated E2F target genes (Dahiya et al. 2001). 

Furthermore, pocket proteins interact with BRG1 and hBRM, two members of the SWI2/SNF2 

family of ATP-dependent chromatin remodeling enzymes (Dunaief et al. 1994; Strober et al. 

1996). Like pRb, expression of BRG1 can induce a so called “flat cell” phenotype in certain 

cell lines (Dunaief et al. 1994). Flat cells share some of the hallmarks of senescent and 

differentiated cells. Cellular differentiation and senescence depend on permanent cell cycle 

withdrawal, which includes the stable repression of E2F-regulated cell cycle genes. pRb is 

thought to be critical for this repression. Accordingly, the pRb-BRG1 interaction appears to be 

involved in the repression of cell cycle regulated E2F target genes (Zhang et al. 2000). 

However, a recent study has shown that BRG1 might cooperate with pRb indirectly through 

upregulation of the cdk inhibitor p21 (Kang et al. 2004). Consequently, the inactivation of 



INTRODUCTION 

 - 9 -   

cyclin/cdk complexes results in the accumulation of hypophosphorylated (active) pRb and cell 

growth arrest. 

RbAp46 and RbAp48, two highly homologous human proteins, provide additional support for 

pRb-mediated transcriptional repression by recruitment of chromatin modifying and binding 

proteins. RbAp46 and RbAp48 have originally been identified as pRb-Associated proteins 

(Qian et al. 1993; Qian and Lee 1995). Moreover, they are histone-binding proteins (Verreault 

et al. 1998) and components of several chromatin modifying and binding complexes (Henikoff 

2003), suggesting that they might represent a bridging factor between pRb and chromatin 

modifying/binding complexes. 

 

2.1.5 The role of pocket proteins and E2F proteins in development 

The recent use of ChIP-on-chip approaches for the identification of novel E2F target genes 

has revealed that E2F and pocket proteins are also bound to the promoter regions of genes 

implicated in processes such as differentiation and development (see 2.1.2). These findings 

are in agreement with developmental defects observed in mice deficient for different E2F or 

pocket proteins, which seem not to be attributable to defects in cell proliferation. 

Mice deficient for pRb die early during embryogenesis with tissue-specific developmental 

defects. Even though initiation of differentiation occurs, end-stage differentiation of 

erythrocytes is strongly impaired (Clarke et al. 1992; Jacks et al. 1992; Lee et al. 1992). 

Moreover, expression of certain late neuronal differentiation markers is decreased in pRb-/- 

mice, suggesting that proper neuronal differentiation is also affected (Lee et al. 1994).  

Knockout of p107 gives rise to animals without obvious abnormalities. However, the parallel 

inactivation of pRb results in the same developmental deficiencies as observed for pRb-/- 

embryos, but the double-knockout animals show these defects earlier and, thus, also die 

earlier (Lee et al. 1996). Therefore, p107 can, to a limited extent, substitute for loss of pRb, 

suggesting that it can function in the same developmental processes. 

Mice deficient for E2F1 suffer from testicular atrophy and this phenotype is enhanced in  

E2F1-/- E2F3+/- animals, suggesting that, as seen for p107 and pRb, E2F3 can partially 

substitute for loss of E2F1 (Yamasaki et al. 1996; Cloud et al. 2002). Furthermore, knockout 

of E2F3 results in cardiac dysfunction, which is a defect specifically observed upon E2F3 loss 

(Cloud et al. 2002).  

Inactivation of E2F4 results in defects in late stages of erythrocyte differentiation and 

craniofacial defects (Humbert et al. 2000; Rempel et al. 2000). Strikingly, the erythrocyte 

differentiation phenotype is very similar to the defects observed upon loss of pRb, suggesting 
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a tight cooperation of these proteins. Deficiency for E2F5 results in hydrocephalus formation 

due to a dysfunction of the choroid plexus epithelium in the secretion of cerebrospinal fluid 

(Lindeman et al. 1998). A mouse knockout model for E2F6 revealed defective 

spermatogenesis and homeotic transformations of the axial skeleton (Storre et al. 2002). A 

similar skeletal transformation phenotype is known from polycomb mutant mice. Moreover, 

E2F6 has been shown to be assembled into complexes containing PcG proteins, supporting 

the idea that the similar phenotypes observed upon knockout of the genes might be 

attributable to the loss of function of the protein complexes (Trimarchi et al. 2001; Ogawa et 

al. 2002; Attwooll et al. 2005).  

Interestingly, loss of the “repressor E2F” family members (E2F4-6) does not affect cell cycle 

kinetics of embryonic fibroblasts, but only developmental defects in the knockout animals are 

observed. Recent work, however, has shown that roles of the proteins in cell cycle regulation 

might have been missed in the single-knockout cell lines due to functional redundancy of E2F 

family members (Gaubatz et al. 2000; Giangrande et al. 2004). Nevertheless, the studies of 

knockout animals show that the developmental role of repressive E2F proteins is more critical 

than has been suggested from overexpression studies in cell lines, which mainly implicated 

them in proliferation control. 

 

2.2 The pRb-E2F network in flies and worms 
To a large extent, the pRb-E2F network is conserved between mammals and simpler model 

organisms like flies and worms (Table 2.II). Drosophila melanogaster and C. elegans have 

contributed greatly to our understanding of fundamental developmental processes and are, 

therefore, ideally suited to study pRb-E2F function in a developmental context. In addition, the 

lower level of redundancy within the pocket protein and E2F families facilitates analysis. 
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Table 2.II: pRb-E2F network components in humans, flies and worms 

  
Human Drosophila C. elegans 

 
Pocket 
proteins 

 

 
pRb, p107, 

p130 
 

 
RBF1, RBF2 

 
LIN-35 

 
E2F 

proteins 

 
E2F1, E2F2, 

E2F3a, E2F3b, 
E2F4, E2F5, 
E2F6, E2F7, 

E2F8 
 

 
dE2F1, dE2F2 

 
EFL-1, EFL-2 

 
DP 

proteins 

 
DP1, DP2 

 

 
dDP 

 
DPL-1 

 

2.2.1 The Drosophila melanogaster pRb-E2F network 

In the fruitfly Drosophila melanogaster, the pRb-E2F network is well characterized and the 

functional hierarchy is well conserved compared to the mammalian system. The fly possesses 

two Retinoblastoma like factors (RBF1 and RBF2), two E2F proteins (dE2F1 and dE2F2) and 

one DP protein (dDP), in addition to G1 cyclins, cdk´s and cdk inhibitors (Sutcliffe et al. 2003). 

 

2.2.1.1 Transcriptional regulation by dE2F and RBF proteins 

The domain structure of dE2F proteins is highly conserved, including DNA-binding, DP-

dimerization and pocket protein-binding domains. Within these regions the homology to their 

mammalian counterparts is most pronounced (Dynlacht et al. 1994; Ohtani and Nevins 1994; 

Sawado et al. 1998). Moreover, association with E2F binding sites requires the cooperation of 

dE2F and dDP proteins (Dynlacht et al. 1994; Sawado et al. 1998). Reporter gene assays in 

Drosophila cell lines show that dE2F1 acts as a potent activator of transcription (Dynlacht et 

al. 1994; Ohtani and Nevins 1994) and is negatively regulated by RBF1 (Du et al. 1996a). In 

the same type of assay, dE2F2 mediates transcriptional repression (Sawado et al. 1998; 

Stevaux et al. 2002). Accordingly, dE2F1 is referred to as the "activator E2F" and dE2F2 as 

the "repressor E2F".  

The Drosophila pocket proteins RBF1 and RBF2 share higher sequence similarity with p107 

and p130 than with pRb. The organization of the pocket domain and especially of the spacer 

region, however, argues for RBF1 being more closely related to pRb, and RBF2 to p107 and 

p130 (Du et al. 1996a; Stevaux et al. 2002). This is supported by the analysis of interactions 

between RBF and dE2F proteins (Fig. 2.2): RBF1 can associate with both, dE2F1 and dE2F2, 



INTRODUCTION 

 - 12 -   

(Stevaux et al. 2002) and, therefore, resembles mammalian pRb, which also binds to both, 

activating and repressing E2Fs. In contrast, RBF2 interacts exclusively with the repressive 

dE2F2, a property that it shares with p107 and p130. Accordingly, RBF2 cooperates with 

dE2F2 in transcriptional repression but fails to block activation by dE2F1 (Stevaux et al. 

2002). 

 

   

Figure 2.2: The Drosophila pRb-E2F network 

Interactions between proteins are indicated by black lines. +, “activator E2F”; -, “repressor E2F”. See 

text for details. 

 

2.2.1.2 RBF and chromatin regulation 

Like in mammalian cells, repression of dE2F-dependent transcription by RBF proteins might 

involve chromatin modifying and binding proteins. de2f1 and genes encoding subunits of the 

Brahma (Brm) chromatin remodeling complex interact genetically during eye development 

and have opposing functions (Staehling-Hampton et al. 1999). Moreover, in the fly Brm 

complex genes act as negative regulators of S phase onset, and RBF1 and Brm interact 

physically in embryos (Brumby et al. 2002). This is especially interesting in the light of the 

pRb-hBRM interaction in mammalian cells (see 2.1.4). However, a genetic interaction 

between rbf1 and Brm complex genes could not be shown (Brumby et al. 2002).  

RBF1 has also been shown to associate with the histone deacetylase dRPD3 as well as with 

CAF1p55, the Drosophila homolog of mammalian RbAp46 and RbAp48 (Taylor-Harding et al. 

2004).  
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However, a cooperation of RBF proteins and chromatin modifying and binding proteins in the 

regulation of dE2F target gene expression still remains to be established. 

 

2.2.1.3 Cell cycle control by dE2F and RBF proteins 

dE2F1 is essential during early Drosophila development and de2f1 knockout flies die with 

defects in DNA synthesis and cell proliferation (Duronio et al. 1995). In contrast, de2f2 

knockout flies survive to adulthood, although with a lower frequency than wild type flies 

(Frolov et al. 2001). Interestingly, simultaneous inactivation of de2f1 and de2f2 partially 

rescues the de2f1 mutant phenotype (Frolov et al. 2001). This suggests that dE2F1 and 

dE2F2 have antagonistic functions in vivo and that the severe phenotype in de2f1 mutant 

animals is brought about by the unchecked activity of dE2F2. The fact that flies lacking both 

dE2F factors still make it through a large part of development demonstrates that dE2F activity 

is not absolutely essential for correct DNA synthesis and proliferation. 

Directed overexpression of dE2F1/dDP in the Drosophila eye allows differentiated cells to re-

enter the cell cycle (Du et al. 1996b). Conversely, the simultaneous overexpression of RBF1 

can suppress this phenotype (Du et al. 1996b). This demonstrates that, analogous to the 

situation in mammals, RBF1 is a negative regulator of dE2F1 and cell cycle progression in 

vivo. 

 

2.2.1.4 dE2F target genes 

Based on the knowledge obtained from the study of mammalian cells and the cell cycle 

phenotype observed in de2f1 knockout flies, the first dE2F target genes that have been 

identified were genes implicated in DNA synthesis. dE2F factors regulate their expression in 

reporter gene assays (Ohtani and Nevins 1994; Sawado et al. 1998) and deletion of de2f1 

results in the cessation of expression of these genes in embryos (Duronio et al. 1995).  

Using a combination of RNA interference and microarray techniques a plethora of novel dE2F 

target genes has recently been identified (Dimova et al. 2003). As expected, many of the 

target genes are involved in S-phase entry, DNA replication, mitosis, cell cycle checkpoint 

control and DNA repair. However, a second group lacks genes implicated in S-phase entry 

and DNA replication but contains genes encoding for differentiation factors that are expressed 

in developmentally regulated and sex-specific patterns (Dimova et al. 2003).    

Interestingly, these dE2F targets can be classified into five groups (A – E) according to their 

regulation by distinct RBF and dE2F proteins. These groups of dE2F target genes range from 

well characterized S phase-specific genes that are activated by dE2F1 and repressed by 
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RBF1 (A group genes) through genes that are permanently repressed by dE2F2 and the 

redundant action of RBF1 and RBF2 (E group genes) (Fig. 2.3). These E group genes 

encompass dE2F targets that are repressed in a cell cycle independent manner. Interestingly, 

many E group genes are specifically expressed in the germ line and function during 

gametogenesis (Dimova et al. 2003).  

 

 

 

Figure 2.3: Regulation of A and E group genes 

A and E group genes are dE2F target genes, the expression of which depends upon distinct dE2F and 

RBF proteins. See text for details. 
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2.2.2 The Caenorhabditis elegans pRb-E2F network 

Growing evidence suggests that the pRb-E2F pathway is also conserved in the nematode 

worm C. elegans. Homologs of the main players of the pathway exist in the worm, including 

one pocket protein (LIN-35), two E2F factors (EFL-1 and EFL-2) and one DP protein (DPL-1) 

(Table 2.II). Moreover, genetic studies suggest a regulation of these factors analogous to the 

mammalian and Drosophila systems. 

 

2.2.2.1 EFL-1, DPL-1, LIN-35 and cell cycle regulation 

The C. elegans homologs of pRb and E2F family proteins show the same domain structure as 

their mammalian counterparts and also the overall amino acid sequence homology clearly 

identifies them as the worm homologs of these proteins (Lu and Horvitz 1998; Ceol and 

Horvitz 2001). EFL-1/E2F displays higher sequence similarity to mammalian repressive than 

to activating E2Fs and might, therefore, represent the "repressor E2F" in C. elegans. In 

contrast, EFL-2/E2F cannot be classified as “activator” or “repressor E2F” due to its amino 

acid sequence, despite a clear homology with E2F factors in general. LIN-35/Rb, DPL-1/DP 

and EFL-1/E2F proteins interact and can form trimeric complexes in vitro (Ceol and Horvitz 

2001).  

In contrast to their Drosophila counterparts, animals lacking lin-35/Rb, efl-1/E2F or efl-2/E2F 

function do not display any obvious cell cycle defects. Only the inactivation of dpl-1/DP results 

in the downregulation of a transgene, which is under the control of the S phase-specific 

ribonucleotide reductase (rnr) promoter (Boxem and van den Heuvel 2002). Furthermore, dpl-

1/DP mutation negatively affects the division of specific cell types in the worm, but no general 

block of cell division or S phase progression occurs (Ceol and Horvitz 2001; Boxem and van 

den Heuvel 2002). These data indicate that in C. elegans DPL-1/DP can act as a positive 

regulator of transcription and cell cycle progression.  

G1/S phase progression during postembryonic cell divisions in C. elegans is strictly 

dependent on CYD-1 and CDK-4, the homologs of mammalian cyclin D and cyclin dependent 

kinases (cdk) 4/6, respectively. Animals mutated for cyd-1 or cdk-4 loose expression of the 

rnr-reporter gene and intestinal cells which normally undergo endoreplication, arrest with a 

DNA content of 2n instead of 32n (Boxem and van den Heuvel 2001). The simultaneous 

inactivation of lin-35/Rb restores the reporter gene expression and DNA endoreplication 

(Boxem and van den Heuvel 2001), suggesting that LIN-35/Rb is a negative regulator of cell 

cycle progression that acts downstream of CYD-1 and CDK-4. Moreover, RNAi-mediated 
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knockdown of EFL-1/E2F in a cyd-1 background can also suppress the cell cycle phenotype, 

whereas RNAi of EFL-2/E2F does not (Boxem and van den Heuvel 2002). 

 

2.2.2.2 EFL-1, DPL-1, LIN-35 and development 

Studies of animals lacking efl-1/E2F, dpl-1/DP and lin-35/Rb have revealed that they act in 

the same genetic pathway to determine cell fate during vulval differentiation (Lu and Horvitz 

1998; Ceol and Horvitz 2001).  

During the past two decades, development of the C. elegans vulva has emerged as a 

genetically accessible model system to study the regulatory networks directing cell fate 

determination (Ferguson and Horvitz 1985; Sternberg and Horvitz 1991; Fay and Han 2000; 

Wang and Sternberg 2001; Sundaram 2004). Vulval development has been studied in detail 

and is relatively well understood: Six vulval precursor cells (VPCs) have the intrinsic potential 

to give rise to the worm´s “egg-laying” organ. Wildtype animals have one single vulva, which 

develops from three VPCs, whereas the remaining VPCs give rise to the hypodermal 

syncytium.  

The current view is that the decision which VPCs will form the vulva arises from the relative 

distance of VPCs from a so called anchor cell. The anchor cell transmits a signal (LIN-3/EGF) 

to the VPCs to start the vulval differentiation program. The three VPCs in closest proximity to 

the anchor cell receive the strongest signal and can override an antagonizing pathway in the 

VPCs that blocks differentiation, whereas this threshold level is not overcome in the more 

distal cells (Fig. 2.4 A). 

Investigation of C. elegans mutants lacking a vulva altogether (the vulvaless phenotype) or 

sprouting additional vulvae (the multivulva phenotype) has led to the identification of 

numerous genes which cooperate to bring about a precisely orchestrated series of cell 

division and differentiation events. Several mutant alleles causing a vulvaless phenotype were 

found to encode components of a Ras/MAP kinase signaling cascade. Multivulva phenotypes 

are the result of a combination of at least two mutant alleles, which belong to different classes 

of so called synthetic multivulva (synMuv) genes. To date three synMuv classes – A, B and C 

– encompassing more than 30 genes have been identified (Fay and Han 2000; Thomas et al. 

2003; Ceol and Horvitz 2004; Ceol et al. 2006). C. elegans efl-1/E2F, dpl-1/DP and lin-35/Rb 

belong to the class B synMuv genes. According to the prevailing model, synMuv genes 

appear to counteract Ras/MAP kinase signaling (Figure 2.4 A). Failure to do so results in an 

abnormally high number of precursor cells adopting a vulval fate and consequently in animals 

with more than one vulva.  
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Two recent reports, however, question this idea of an antagonizing pathway in the VPCs. 

They rather suggest that the synMuv pathway acts in the surrounding hypodermal tissue by 

inhibiting the expression of LIN-3/EGF (Fig. 2.4 B) (Myers and Greenwald 2005; Cui et al. 

2006). According to this model, inactivation of synMuv genes in the hypodermis results in the 

deregulation of LIN-3/EGF expression, which adds to the LIN-3/EGF signal from the anchor 

cell, and additional VPCs can adopt a vulval fate. 

 

Figure 2.4: Models for vulval development in C. elegans 

(A) Vulval development is initiated through LIN-3/EGF signaling from the anchor cell to the vulval 

precursor cells, which results in the activation of a Ras/MAP kinase signaling pathway. This pathway is 

antagonized by the action of class A, B and C synMuv genes. See text for details. Brown ellipse, anchor 

cell; yellow + orange ellipses, vulval precursor cells; Ras/MAPK, Ras/MAP kinase signaling pathway. 

(B) Vulval development is initiated through LIN-3/EGF signaling from the anchor cell to the vulval 

precursor cells, which results in the activation of a Ras/MAP kinase signaling pathway. SynMuv genes 

repress the expression of LIN-3/EGF in the surrounding hypodermal syncytium. See text for details. 

Brown ellipse, anchor cell; yellow + orange ellipses, vulval precursor cells; blue rectangle; hypodermal 

syncytium; Ras/MAPK, Ras/MAP kinase signaling pathway. 
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In addition to its role during vulva development, LIN-35/Rb has recently been shown to 

function also in pharynx and larval development (Fay et al. 2003; Cui et al. 2004; Fay et al. 

2004). The mechanism underlying LIN-35/Rb function during pharynx development is still 

unclear. Interestingly, also other class B synMuv genes (such as efl-1/E2F) but no class A 

synMuv genes are important for pharynx development (Fay et al. 2004). This suggests that 

lin-35/Rb cooperates within different genetic networks in different developmental contexts. 

 

2.2.2.3 LIN-35 and chromatin regulation 

The mechanism of transcriptional repression by LIN-35/Rb has not been studied as 

extensively as in the mammalian system. Nevertheless, several lines of evidence argue that 

the basic mechanisms are conserved in C. elegans. First, the high degree of conservation of 

the domain structure of LIN-35/Rb, EFL-1/E2F and EFL-2/E2F is a strong hint that masking of 

the transactivation domain of the transcription factors is also utilized in the worm. Second, 

biochemical and genetic studies show that LIN-35/Rb interacts with chromatin modifying and 

binding proteins: LIN-35/Rb physically interacts with the histone deacetylase HDA-1 and the 

histone binding protein LIN-53, the C. elegans homolog of mammalian RbAp46 and RbAp48 

and Drosophila CAF1p55, in vitro (Lu and Horvitz 1998).  

Moreover, lin-35/Rb genetically interacts with numerous chromatin modifying and binding 

proteins in different developmental processes. lin-35/Rb acts in the same genetic pathway 

(synMuv pathway) than genes encoding subunits of the nucleosome remodeling and 

deacetylase (NuRD) complex, including the enzymatically active subunits CHD-3/Mi-2, CHD-

4/Mi-2 and HDA-1/HDAC (Solari and Ahringer 2000; von Zelewsky et al. 2000). Furthermore, 

many of the proteins encoded by genes from the synMuv pathway have been shown to 

associate with each other in different organisms, suggesting that they might also form 

complexes in C. elegans.  

The gene encoding the C. elegans homolog of the histone binding protein HP1, which in 

mammalian cells has been shown to be implicated in transcriptional repression by pRb 

(Nielsen et al. 2001), also acts in vulval development and genetically interacts with different 

class A and B synMuv genes (Couteau et al. 2002). Moreover, lin-35/Rb and hpl-2/HP1 

cooperate during larval development in the worm (Couteau et al. 2002). 

Furthermore, lin-35/Rb functionally cooperates with genes encoding subunits of the SWI/SNF 

chromatin remodeling complex (Cui et al. 2004).  
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These studies strongly suggest that “active repression” by pocket proteins might also occur in 

the worm, and that it might be mediated by the same enzymes than in mammals and 

Drosophila. 

 

2.3 Objectives 

2.3.1 Pocket protein containing complexes in mammals 

The major part of research regarding pocket protein function has been performed in 

mammalian model systems, including cell lines and knockout animals. The findings from 

these studies have, undoubtedly, greatly contributed to our understanding of the regulation of 

distinct physiological processes by the pRb-E2F network. However, a number of open 

questions are difficult to address in the mammalian system. These include the purification and 

functional characterization of endogenous pocket protein-containing complexes. Experimental 

approaches, including biochemical purification of protein complexes from mammalian cells, 

are almost exclusively performed using cell lines that have been transformed by viruses or 

mutational inactivation of the pRb-E2F pathway. Their fast growth facilitates the accumulation 

of sufficient starting material. These cell lines, however, harbor a major disadvantage for the 

purification of pocket protein complexes: Several viral oncoproteins have been shown disrupt 

the interaction of pocket proteins with some of their binding partners. Moreover, the 

transforming potential of oncoviruses has, at least partly, been attributed to this function. Even 

though a plethora of pocket protein interaction partners has been identified (Morris and Dyson 

2001), it seems very likely that some critical interacting proteins have been missed due to the 

use of transformed cell lines. In addition, in mammalian cells the functional analysis of protein 

complexes comprising members of the pRb-E2F network is further complicated by the high 

level of redundancy among pRb and E2F family members. 

 

2.3.2 Drosophila melanogaster as a model system to analyze pocket 
protein-containing complexes 

The high degree of conservation of the pRb-E2F network together with its lower level of 

complexity make Drosophila an excellent model organism to study pocket protein-containing 

complexes (Sutcliffe et al. 2003). The streamlined pRb-E2F network in the fly gives rise to a 

limited number of distinct pocket protein-containing complexes, which facilitates their analysis. 

In contrast to mammalian cells, Drosophila embryos are ideally suited for large scale 
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biochemical approaches due to the availability of sufficient starting material, and their 

untransformed status makes the purification of native pocket protein-containing complexes 

possible. Moreover, E2F target genes are well characterized in the fly with regard to their 

dependence on distinct pocket proteins and E2F factors (Dimova et al. 2003).  

Taken together, Drosophila happens to be an ideal model system for the isolation and 

functional characterization of native pocket protein-containing complexes. 

 

The aim of this PhD thesis was the isolation and functional characterization of pocket protein-

containing complexes from the fruitfly Drosophila melanogaster. Furthermore, this study 

sought to determine the contribution of such complexes to the role of pocket proteins in 

transcriptional regulation. 
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3 Material and methods 
 

3.1 Material 

3.1.1 Chemicals, enzymes, chromatographic and radioactive material 

Unless otherwise stated, all common material and chemicals were ordered from 

Amersham/Pharmacia (Freiburg), E. Merck (Darmstadt), NEN/Perkin Elmer (Rodgau), Pierce 

(Bonn), Promega (Mannheim), Roche (Mannheim), Roth (Karlsruhe), Serva (Heidelberg) and 

Sigma (Deisenhofen). Radioactive material was ordered from Amersham. 

 

3.1.1.1 Enzymes 

Restriction endonucleases    New England Biolabs, Fermentas,  

Promega, Roche 

Klenow enzyme      New England Biolabs 

Shrimp alkaline phosphatase    New England Biolabs 

T4 polynucleotide kinase (PNK)    Promega 

T4 DNA ligase      New England Biolabs 

Taq DNA polymerase     Promega 

RNasin       Promega 

 

3.1.1.2 Chromatographic material 

Q Sepharose FF resin     Amersham 

Biorex 70 Resin      BioRad 

Q Sepharose HP column    Amersham 

SP Sepharose HP column    Amersham 

Hydroxyl apatite resin     BioRad 

Gelfiltration column (Superose 6)   Amersham 

Chromatography systems (ÄKTA, FPLC & HPLC)  Amersham  

 

3.1.1.3 Affinity purification material 

Glutathione Sepharose 4B    Amersham 

Protein A Sepharose 4 FF    Amersham 

Protein G Sepharose 4 FF    Amersham 

M2 Agarose (Flag-beads)    Sigma 
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3.1.1.4 Blotting material 

Whatman 3MM paper     Whatman 

Hybond-P membrane     Amersham 

 

3.1.1.5 Dialysis and filtration material 

Dialysis membranes     Spectra Por 

Filtration units      Merck 

 

3.1.2 Standard solutions 

Stock solutions and buffers were prepared according to standard protocols. Protease 

Inhibitors, either Complete® EDTA-free (Roche), or a mix of Leupeptin, Pepstatin, Aprotinin 

(all 1 µg/ml) and PMSF (0.2 to 1 mM), and the reducing agent DTT (1 mM) were freshly 

added. The most common solutions are listed below. 

 

Phosphate Buffered Saline (PBS)   140 mM NaCl 

       2.7 mM KCl 

       8.1 mM Na2HPO4 

       1.5 mM KH2PO4 

pH adjusted to 7.4 with HCl 

 

TBE-buffer      90 mM Tris 

90 mM Boric acid 

2 mM EDTA 

 

TE buffer      10 mM Tris-HCl pH 7.6 

       1 mM EDTA 

 

Stacking buffer (4x)      0.5 M Tris-HCl 

0.4% SDS,  

pH 6.8 with HCl 

 

Resolving buffer (4x)     1.5 M Tris-HCl 

0.4% SDS,  

pH 8.8 with HCl 
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SDS-PAGE running buffer     192 mM glycine 

25 mM Tris 

0,1% (w/v) SDS 

 

Additional buffers are described in the individual method sections. 

 

3.1.3 Antibodies 

Unless otherwise stated dilutions are for Western Blot. 

αRBF1 (DX3)   Monoclonal antibody (mouse) against RBF1. Kind gift from  

    N. Dyson, used 1:50 and 1:4 for polytene stainings 

αRBF1 (DX5)   Monoclonal antibody (mouse) against RBF1. Kind gift from  

    N. Dyson, used 1:10 and 1:2 for polytene stainings 

αRBF2 (DR6)   Monoclonal antibody (mouse) against RBF2. Kind gift from  

    N. Dyson (Stevaux et al. 2002), used 1:10 

αdDP (YUN6)   Monoclonal antibody (mouse) against dDP. Kind gift from  

    N. Dyson, used 1:50 

αdE2F1 (HAO2)  Monoclonal antibody (mouse) against dE2F1. Kind gift from  

    N. Dyson, used 1:10 

αdE2F1    Polyclonal antibody (guinea pig) against dE2F1. Kind gift 

    from N. Dyson, used 1:5000 

αdE2F2    Polyclonal antibody (rabbit) against dE2F2. Kind gift from 

    N. Dyson (Frolov et al. 2001), used 1:2000 and 1:100 for  

    polytene stainings 

αCAF1p55   Polyclonal antibody (rabbit) against CAF1p55. Kind gift from  

    B. Turner, used 1:1000 

αMip40 / #3585   Polyclonal antibody (rabbit) against Mip40. Kind gift from  

    M. Botchan (Beall et al. 2002), used 1:5000 

αdMyb / #3587   Polyclonal antibody (rabbit) against dMyb. Kind gift from  

    M. Botchan (Beall et al. 2002), used 1:3000 

αMip120 / #3672  Polyclonal antibody (rabbit) against Mip120. Kind gift from  

    M. Botchan (Beall et al. 2002), used 1:5000 and 1:100 for  

    polytene stainings 

αMip130 / #3527  Polyclonal antibody (rabbit) against Mip130/TWIT. Kind gift  

from M. Botchan (Beall et al. 2002), used 1:5000 and 1:250 

for polytene stainings 

αAly    Polyclonal antibody (rabbit) against dAly. Kind gift from  

    H. White-Cooper (White-Cooper et al. 2000), used 1:12000 
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αdTwilight 2.1 Polyclonal antibody (guinea pig) against Mip130/TWIT. Kind 

gift from H. White-Cooper, used 1:1000 and 1:250 for 

polytene stainings 

αdTwilight 2.2 Polyclonal antibody (guinea pig) against Mip130/TWIT. Kind 

gift from H. White-Cooper, used 1:500 

αpol II / H5   Commercial antibody (mouse) against the phosphoserine 2  

version of RNA-Polymerase II (Covance), used 1:150 for 

polytene stainings 

αPc    Polyclonal antibody (rabbit) against Polycomb. Kind gift from  

    R. Paro, used 1:100 for polytene stainings 

αAcetyl Lysine / ab76  Commercial sheep polyclonal antibody against the 

tetra-acetylated N-terminal tail of histone H4 (aa 1-18)  

    (Abcam), used 1:100 for polytene stainings 

αhMip40 / ab12109 Commercial peptide antibody (rabbit) against hMip40 

(Abcam), used 1:300 

αhMip120 / ab12294  Commercial peptide antibody (rabbit) against hMip120  

    (Abcam), used 1:250 

αhLin-54   Polyclonal antibody (rabbit) against hMip120. Kind gift from  

    S. Gaubatz, used 1:500 

αB-Myb / ab12296  Commercial peptide antibody (rabbit) against B-Myb  

(Abcam), used 1:500 

αB-Myb / #5   Monoclonal antibody (mouse) against B-Myb. Kind gift from  

    R. Watson, used 1:10 

αhTWIT Peptide antibody (rabbit) against hMip130/TWIT. Purified 

antibody was diluted 1:300  

αhLin-9 Polyclonal antibody (rabbit) against hMip130/TWIT. Kind gift 

from S. Gaubatz (Gagrica et al. 2004), used 1:1000 

αRbAp46/48 / 15G12 Monoclonal antibody (mouse) against RbAp46 and RbAp48. 

Kind gift from A. Verreault (Qian and Lee 1995), used 1:1000 

αRbAp48 / 11G10  Monoclonal mouse antibody against RbAp48. Kind gift from   

A. Verreault (Qian and Lee 1995), used 1:500 in TBS-T 

αpRb / G3-245   Commercial monoclonal antibody (mouse) against pRb  

    (Pharmingen), used 1:1000 

αpRb / C-15   Commercial polyclonal antibody (rabbit) against pRb (Santa  

    Cruz), used 1:500 

αp107 / C-18   Commercial polyclonal antibody (rabbit) against p107 (Santa  

    Cruz), used 1:500 

αp130 / C-20   Commercial polyclonal antibody (rabbit) against p130 (Santa  

    Cruz), used 1:500 
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αE2F4 / C-20   Commercial polyclonal antibody (rabbit) against E2F4 (Santa  

    Cruz), used 1:500 

αE2F4 / C-108   Commercial polyclonal antibody (rabbit) against E2F4 (Santa  

    Cruz), used 1:500 

αMyc / 9E10   Mouse monoclonal antibody (Sigma) produced using a  

    Hybridoma cell line, used 1:5 

αHA / 12CA5   Commercial mouse monoclonal antibody (Roche), used  

1:4000 

αFlag / M2   Commercial monoclonal mouse antibody (Sigma), used  

    1:1000 

α-rabbit HRP   Commercial secondary antibody for Western Blot  

(Amersham), used 1:10000 

α-mouse HRP   Commercial secondary antibody for Western Blot  

(Amersham), used 1:5000 

α-guinea pig HRP  Commercial secondary antibody for Western Blot (Dianova),  

    used 1:5000 

α-mouse Cy2   Commercial secondary antibody for Immunofluorescence 

    (Jackson ImmunoResearch), used 1:300 for polytene  

    stainings 

α-rabbit Cy2   Commercial secondary antibody for Immunofluorescence 

    (Jackson ImmunoResearch), used 1:300 for polytene  

    stainings 

α-guinea pig Cy2  Commercial secondary antibody for Immunofluorescence 

    (Jackson ImmunoResearch), used 1:300 for polytene  

    stainings 

α-mouse Cy3   Commercial secondary antibody for Immunofluorescence 

    (Jackson ImmunoResearch), used 1:400 for polytene  

    stainings 

α-rabbit Cy3   Commercial secondary antibody for Immunofluorescence 

    (Jackson ImmunoResearch), used 1:400 for polytene  

    stainings 

α-sheep Cy3   Commercial secondary antibody for Immunofluorescence 

    (Jackson ImmunoResearch), used 1:300 for polytene  

    stainings 
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3.1.4  Plasmids 

Table 3.I: Plasmids 

Primers used for cloning are listed in 3.1.5 (Table 3.II) 

Plasmid name Description Generated by 

pSPORT1-Sfi-hp120sf cDNA encoding for a short 

isoform of hp120 

RZPD 

IRAKp961B1163Q2 cDNA encoding for hTwt RZPD 

pCMVSport6-hp40 cDNA encoding for hp40  

pcDNA3.1 mammalian expression 

vector 

Invitrogen 

pcDNA3.1-hp40 full length human Mip40 

cDNA in mammalian 

expression vector, PCR-

cloned via BamHI and XhoI, 

primer: hp40-for, hp40-rev 

M. Korenjak 

pcDNA3.1-hp40F full length human Mip40 

cDNA in mammalian 

expression vector with C-

terminal Flag-tag, PCR-

cloned via BamHI and XhoI, 

primer: hp40-for, hp40-

revflag 

M. Korenjak 

pcDNA3.1-hp120 cDNA encoding for a short 

isoform of human Mip120 in 

mammalian expression 

vector, PCR-cloned via 

BamHI and XhoI, primer: 

hp120-for, hp120-rev 

M. Korenjak 

pcDNA3.1-hp120F cDNA encoding for a short 

isoform of human Mip120 in 

mammalian expression 

vector with C-terminal Flag-

tag, PCR-cloned via BamHI 

and XhoI, primer: hp120-for, 

hp120-revflag 

M.Korenjak 

pcDNA3.1-hTwt full length human 

Mip130/TWIT cDNA in 

mammalian expression 

vector, PCR-cloned via 

M. Korenjak 
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BamHI and XhoI, primer: 

hTwt-for, hTwt-rev 

pcDNA3.1-hTwtF full length human 

Mip130/TWIT cDNA in 

mammalian expression 

vector with C-terminal Flag-

tag, PCR-cloned via BamHI 

and XhoI, primer: hTwt-for, 

hTwt-revflag 

M. Korenjak 

pcDNA3.1-RbAp48 full length human RbAp48 

cDNA in mammalian 

expression vector, cloned via 

EcoRI 

M. Korenjak 

pcDNA3.1-HA-B-Myb full length mouse B-Myb 

cDNA in mammalian 

expression vector with N-

terminal HA-tag 

R. Watson 

pcDNA3.1-myc-pRb full length human pRb cDNA 

in mammalian expression 

vector with N-terminal myc-

tag 

N. Dyson 

pcDNA3.1-myc-p107 full length human p107 cDNA 

in mammalian expression 

vector with N-terminal myc-

tag 

N. Dyson 

pcDNA3.1-myc-p130 full length human p130 cDNA 

in mammalian expression 

vector with N-terminal myc-

tag, cloned via BamHI and 

XbaI 

N. Dyson 

pcDNA3.1-flag-ΔN-lin9 human Mip130/TWIT cDNA 

encoding the C-terminus (aa 

296-542) of the protein in 

mammalian expression 

vector with N-terminal Flag-

tag, cloned via HindIII (Flag-

tag) / BamHI (Insert) and 

XhoI 

S. Gaubatz 

pcDNA3.1-flag-ΔC-lin9 human Mip130/TWIT cDNA 

encoding the N-terminus (aa 

S. Gaubatz 
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1-301) of the protein in 

mammalian expression 

vector with N-terminal Flag-

tag, cloned via HindIII (Flag-

tag) / BamHI (Insert) and 

XbaI 

pGEM3Z-RbAp48 full length human RbAp48 

cDNA, cloned via EcoRI 

 

T. Kouzarides 

pGEX2T-RbAp48 human RbAp48 cDNA cloned 

for expression as a GST-

fusion protein 

T. Kouzarides 

pBS-RbAp46 human RbAp46 cDNA T. Kouzarides 

 

3.1.5 Oligonucleotides 

Table 3.II: Oligonucleotides 

Oligoname Sequence Description 

hTwt-for 5´-GGG GAT CCC AAG ATG 

GCG GAG CT-3´ 

forward primer with BamHI 

restriction site used to clone 

hMip130/TWIT into 

pcDNA3.1  

hTwt-rev 5´-GGC TCG AGT CAG TCT 

CTG TTG GTG-3´ 

reverse primer with XhoI 

restriction site used to clone 

hMip130/TWIT into 

pcDNA3.1 

hTwt-revflag 5´-GGC TCG AGC TAC TTG 

TCA TCG TCG TCC TTG 

TAG TCG TCT CTG TTG 

GTG TT-3´ 

reverse primer with XhoI 

restriction site and Flag-tag 

sequence used to clone 

hMip130/TWIT-F into 

pcDNA3.1 

hp120-for 5´-GGG GAT CCG ATC ATG 

GAG GTG GT-3´ 

forward primer with BamHI 

restriction site used to clone 

hMip120sf into pcDNA3.1  

hp120-rev 5´-GGC TCG AGT TAG CAA 

TTC ATG GCA-3´ 

reverse primer with XhoI 

restriction site used to clone 

hMip120sf into pcDNA3.1 

hp120-revflag 5´-GGC TCG AGC TAC TTG 

TCA TCG TCG TCC TTG 

reverse primer with XhoI 

restriction site and Flag-tag 



MATERIAL AND METHODS 

 - 29 -   

TAG TCG CAA TTC ATG 

GCA CA-3´ 

sequence used to clone 

hMip120sf-F into pcDNA3.1 

hp40-for 5´-GGG AAG CTT GGA TCC 

ACC ATG TTC CCT GTG 

AAG-3´ 

forward primer with HindIII 

and BamHI restriction sites 

used to clone hMip40 into 

pcDNA3.1 

hp40-rev 5´-GGG TCT AGA CTC GAG 

TCA CTG TCG TTC GTA 

CAT C-3´   

reverse primer with XbaI and 

XhoI restriction sites used to 

clone hMip40 into pcDNA3.1 

hp40-revflag 5´-GGG CTC GAG TCA CTT 

GTC ATC GTC GTC CTT 

GTA GTC CTG TCG TTC-3´ 

reverse primer with XhoI 

restriction site and Flag-tag 

sequence used to clone 

hMip40-F into pcDNA3.1 

 

3.1.6 Bacteria, flies and cells 

3.1.6.1 Bacteria 

E.coli strains DH5α (Invitrogen), SURE (Stratagene) and XL1Blue (Stratagene) were used for 

DNA plasmid amplifications. 

 

3.1.6.2 Flies 

Drosophila melanogaster yw flies used for embryo nuclear extract preparation and polytene 

stainings are described in Flybase (http://flybase.bio.indiana.edu). 

 

3.1.6.3 Cell lines and tissue culture media 

HEK 293 cells: Human embryonic kidney cell line, adenovirally transformed human tumor 

cell line (ATCC® Number: CRL-1573) 

MOLT-4 cells: Human T lymphoblast cell line derived from a patient with acute 

lymphoblastic leukemia (ATCC® Number: CRL-1582) 

 

Commercially available media and solutions were used for human tissue culture: 

DMEM + GlutaMAX-I (Invitrogen), for HEK 293 cells 

RPMI1640 + GlutaMAX-I (Invitrogen), for MOLT-4 cells 

Fetal bovine serum (FCS, Sigma) 
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Penicillin/Streptomycin stock solution (Pen/Strep, 10000 U/ml penicillin, 10 mg/ml 

streptomycin, C. C. Pro) 

 

3.2 Methods 

3.2.1 Mammalian tissue culture 

3.2.1.1 General cell culture conditions 

HEK 293 and MOLT-4 cells were cultured in DMEM/GlutaMAX and RPMI1640/GlutaMAX, 

respectively. Before use, 100 U/ml penicillin, 0.1 mg/ml streptomycin and 10% FCS (DMEM) / 

15% FCS (RPMI) were added to the media. The cell lines were cultured in tissue culture 

flasks or stirring bottles in an incubator at 37°C and 5% CO2. Tissue culture work was done 

under sterile conditions. When HEK 293 cells reached confluency they were detached from 

the flask by pipetting, diluted and seeded in fresh flasks. MOLT-4 cells were diluted with fresh 

medium to 0.5 x 106 cells/ml when they reached a density of 1 – 1.3 x 106 cells/ml. The cell 

number was determined using a hemacytometer. 

 

3.2.1.2 Freezing and thawing of cells 

For freezing, cells were resuspended at a density of 5 x 106 cells/ml in cold freezing medium 

and aliquoted in 1 ml cryo-tubes. They were frozen for 30 minutes at -20°C, followed by 48-72 

hrs at -80°C, before they were stored in liquid nitrogen. 

 

Freezing medium: DMEM or RPMI 

   15% FCS 

   5% Dimethyl Sulfoxide (DMSO) 

 

For thawing, the frozen cells were slowly resuspended in 5 ml (MOLT-4) or 10 ml (HEK 293) 

of cold tissue culture medium. After 24 hrs, the cells were diluted (MOLT-4) or the medium 

was exchanged (HEK 293). 

 

3.2.1.3 Transfection of mammalian cells 

Transfection with Poly(ethylenimine) (PEI): 

HEK 293 cells were transfected with expression plasmids using the polycation PEI. Mixing 

PEI with DNA results in the formation of PEI/DNA complexes which leads to DNA 
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condensation and the formation of compact colloids. The aggregates on the plasma 

membrane surface are then taken up by the cell via endocytosis (Godbey et al. 1999).  

HEK 293 cells were seeded in 6-well-plates at a density of 200000 – 300000 cells/well and 

cultured for 24 hrs before transfection, in order to let them adhere. 2 µg of DNA were diluted 

in 100 µl of DMEM without serum and 6 µl of PEI (1mg/ml) were added for one transfection. 

After vortexing, the mixture was incubated for 5 min at room temperature. In the meantime, 

500 µl of medium were removed from every well. After incubation, 600 µl of DMEM with 

serum were added to each reaction, mixed and dropped onto the cells. The cells were 

cultured for 48 hrs and then harvested. 

 

Transfection by electroporation: 

MOLT-4 cells were transfected by electroporation. During electroporation the cell membrane 

gets reversibly perforated by a surge, which allows the DNA to enter the cell. 

MOLT-4 cells were washed with sterile PBS once and resuspended in RPMI without serum at 

a density of 2 x 107 cells/ml. 0.5 ml of the cell suspension were mixed with 10 µg of plasmid 

DNA (0.1 µg/µl) in an electroporation cuvette (BioRad Gene Pulser Cuvette, 0.4 cm electrode) 

and electroporated using the following conditions:  

high capacity 

960 µF 

200 V 

   

After electroporation the cells were transferred to tissue culture flasks containing 5ml of pre-

warmed RPMI containing 20% serum. Transfected MOLT-4 cells were harvested after 24-

48hrs. 

 

3.2.1.4 Generation of a MOLT-4 cell line stably expressing hMip40-F 

Before transfection, the plasmid DNA was linearized by restriction enzyme digestion to 

improve the rate of stable integration into the host genome. The DNA was Ethanol (EtOH)-

precipitated, resuspended in TE-Buffer and MOLT-4 cells were transfected by electroporation 

(see 3.2.1.3). 

48 hrs after electroporation, cells were transferred to medium containing 1 mg/ml Geneticin 

(stock solution: 50 mg/ml, Invitrogen) to select for cells that had stably integrated the 

expression plasmid. Cell survival was regularly determined by Trypan-Blue staining and living 

cells were kept at a density of 0.5 – 1 x 106 cells/ml. Expression of the protein of interest from 
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the stably integrated expression plasmid was controlled by Western Blot and stable cell lines 

were frozen and stored in liquid nitrogen (see 3.2.1.2).  

Western Blot using a hMip40 antibody revealed the presence of two distinct forms of hMip40 

in the extract derived from the stable cell line (Fig. 3.1 A). The faster migrating form 

corresponds to the band detected in the control cell line and represents the endogenous 

protein (black arrowhead), whereas the Flag-tagged protein runs slightly slower (black arrow). 

The expression level of hMip40-F is comparable to the endogenous protein. Moreover, 

hMip40-F is located to the nucleus like the endogenous B-Myb and hMip130/TWIT proteins, 

as assessed by Western Blot of nuclear and cytoplasmic extract using an αFlag-antibody 

(Fig. 3.1 B). A specific band (black arrowhead) was detected in the stable cell line, whereas 

only a cross-reacting band was observed in the control cell line (asterisk). 

 

 

Figure 3.1: Generation of MOLT-4 cells stably expressing hMip40-F 

(A) Western Blot using an antibody directed against hMip40. Cell lines from which the  extracts were 

derived are denoted on top. Black arrowhead indicates endogenous hMip40, black arrow indicates 

hMip40-F. (B) Western Blot using αB-Myb, αhMip130/TWIT and αFlag antibodies. Cell lines from which 

the extracts were derived are indicated on top. Black arrowhead indicates hMip40-F, asterisk indicates a 

cross-reacting polypeptide. ctrl, control; CE, cytoplasmic extract; NE, nuclear extract. 

 

Stable MOLT-4 cell clones were generated from the heterogeneous cell population by limited 

dilution in 96-well-plates. In order to improve the outgrowth of clones, α-Thioglycerol (α-TG) 

and Bathocuproinedisulfonic acid (BCS) were added to the medium to final concentrations of 

50 µM and 20 nM, respectively (Brielmeier et al. 1998). 
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3.2.1.5 Serum-arrest of MOLT-4 cells 

The removal of growth factors arrests cells in the G0 phase of the cell cycle, which allows a 

synchronization of cells in either G0 (by serum starvation) or S phase (by re-addition of 

serum). 

Exponentially growing MOLT-4 cells were washed with sterile PBS once and synchronized in 

G0 by resuspension and subsequent culturing in serum-free medium for 36 hrs (Jayadev et al. 

1995). 

 

3.2.2 Analysis of DNA 

Standard procedures in molecular biology, including preparation of competent bacteria, 

transformation of electro- or chemically-competent bacteria with DNA, amplification of plasmid 

DNA in bacteria, purification, concentration determination, restriction enzyme digestion, 

ligation of DNA fragments, analysis of DNA on agarose gels and amplification of DNA by 

polymerase chain reaction (PCR) were performed according to standard protocols.  

In addition, plasmid DNA was prepared using plasmid purification kits (Qiagen, Promega) for 

different amounts of DNA. Isolation of DNA fragments from agarose gels was performed 

using the Qiagen Gel Extraction kit.  

 

3.2.3 Analysis of proteins 

Protein analysis was performed according to standard protocols. In general, proteins were 

kept on ice (4°C), in the presence of protease inhibitors, either complete® (Roche), or a mix 

of Leupeptin, Pepstatin, Aprotinin (all 1 µg/ml), PMSF (0.2 to 1 mM) and the reducing agent 

DTT (1 mM). 

 

3.2.3.1 Preparation of whole cell extract (WCE) from mammalian cells 

Cells were harvested, washed once with PBS and resuspended in an appropriate amount of 

Lysis Buffer by pipetting. The cell suspension was incubated for 15 min on ice and centrifuged 

at 13000 rpm and 4°C for 15 min in a table-top centrifuge. The supernatant (WCE) was 

transferred to a fresh tube, frozen in liquid nitrogen and stored at -80°C. 
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Lysis Buffer: 50 mM Tris pH 8.0 

  300 mM NaCl 

  10 mM MgCl2 

  0.4% NP-40 

  protease inhibitors 

  DTT 

 

3.2.3.2 Preparation of nuclear extract (NE) from mammalian cells (MOLT-4) 

All steps were performed on ice or at 4°C. 

Nuclear extract preparation 1: 

Cells were harvested by centrifugation at 4630 g for 15 min in a Heraeus Cryofuge 6000i and 

the pellet was washed once with PBS and transferred to 50 ml Falcon tubes. After 

centrifugation at 2850g for 10 min the packed cell volume (PCV) was noted. The pellet was 

resuspended in 5 x PCV of Buffer A by vortexing on high for 2 sec and subsequently 

incubated on ice for 20 min. Following a centrifugation step at 2850 g for 10 min, the pellet 

was resuspended in 2 x PCV of Buffer A and the cells were disrupted by applying 14 strokes 

using a dounce homogenizer (pestle B). Disruption of the cells was microscopically controlled. 

The dounced cell suspension was first centrifuged at 1000 g for 10 min, followed by 

centrifugation at 4000 g for 10 min. The supernatants were combined and represented the 

cytoplasmic fraction. The nuclear pellet was resuspended in 3 ml Lysis Buffer / 1 x 109 cells 

by pipetting and incubated on ice for 15 min. Following centrifugation in a Sorvall RC5C, SS-

34 rotor at 13000 rpm for 15 min, the supernatant (nuclear extract) was diluted 1:2 with 

Dilution Buffer, frozen in liquid nitrogen and stored at -80°C. 

 

Buffer A: 10 mM HEPES pH 7.9   Lysis Buffer: 50 mM Tris pH 8.0 

  10 mM KCl      300 mM NaCl 

  1.5 mM MgCl2      10 mM MgCl2 

  protease inhibitors     0.4% NP-40 

  DTT       protease inhibitors

         DTT 

Dilution Buffer: 50 mM Tris pH 8.0 

  protease inhibitors 

  DTT 
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Nuclear extract preparation 2: 

Cells were harvested by centrifugation at 4630 g for 15 min in a Heraeus Cryofuge 6000i and 

the pellet was washed once with PBS and transferred to 50 ml Falcon tubes. After 

centrifugation at 2850 g for 10 min the packed cell volume (PCV) was noted. The pellet was 

resuspended in 5 x PCV of Buffer A by vortexing on high for 2 sec and subsequently 

incubated on ice for 20 min. Following a centrifugation step at 2850 g for 10 min, the pellet 

was resuspended in 2 x PCV of Buffer A and the cells were disrupted by applying 14 strokes 

using a dounce homogenizer (pestle B). The dounced cell suspension was centrifuged at 

1450 g for 10 min and to the supernatant (cytoplasmic fraction) 0.11 vol of Buffer B were 

added. The nuclear pellet was frozen in liquid nitrogen and stored at -80°C or immediately 

continued for nuclear extract preparation.  

0.9 vol of Buffer C were added to the nuclei while stirring and the suspension was dounced 20 

times with a type B glass homogenizer. After stirring for an additional 30 min on ice, a 

centrifugation step in a Sorvall RC5C, SS-34 rotor at 15000 rpm for 30 min was carried out. 

Over a period of about 15 min, 0.33 g of finely ground ammonium sulfate per ml supernatant 

(nuclear extract) and 8 µl 5 M KOH per g ammonium sulfate were added while stirring in the 

coldroom on ice. After stirring for an additional hr, the suspension was centrifuged in an SS-

34 rotor at 15000 rpm for 30 min. The pellet was resuspended in 1 ml of Buffer D-20 per 1 l of 

cells harvested and dialyzed twice for 2 hrs against 0.5 l of Buffer D-125. The nuclear extract 

was frozen in liquid nitrogen and stored at -80°C. 

 

Buffer A:   10 mM HEPES pH 7.6  Buffer B:   300 mM HEPES pH 7.6 

     10 mM KCl         1.4 M KCl 

     1.5 mM MgCl2        30 mM MgCl2 

    pH 7.9 with 5 M KOH        protease inhibitors 

     protease inhibitors        DTT 

     DTT 

 

Buffer C:   20 mM HEPES pH 7.6  Buffer D-X:   20 mM HEPES pH 7.6 

     420 mM NaCl            X mM KCl 

     1.5 mM MgCl2            2 mM MgCl2 

     0.2 mM EDTA            0.2 mM EDTA 

     25% Glycerol             20% Glycerol 

     pH 7.9 with 5 M NaOH           pH 7.9 with 5 M KOH 

     protease inhibitors            protease inhibitors 

     DTT              DTT 
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3.2.3.3 Determination of protein concentration 

Protein concentration was determined using the colorimetric assay described by Bradford 

(Bradford 1976). The concentration of purified proteins was also estimated according to 

protein standards with a known concentration (e.g. BSA) in SDS-PAGE followed by 

Coomassie blue staining. 

 

3.2.3.4 Trichloroacetic acid (TCA) precipitation of proteins 

TCA was added to the protein sample at a final concentration of 20%, mixed and incubated 

for 10 min on ice. After spinning the sample at 13000 rpm and 4°C for 10 min, the 

supernatant was removed and the pellet washed twice with 500 µl of cold acetone by 

centrifuging it at 13.000 rpm and 4°C for 5 min. The protein pellet was dried and resuspended 

in 1 x SDS-PAGE loading buffer and 1/40 volume of 1 M Tris pH 8.0.  

 

3.2.3.5 In vitro translation 

In vitro translation was carried out using the TNT rabbit reticulocyte lysate system (Promega) 

and performed according to the manufacturer´s instructions. 

 

3.2.3.6 SDS-polyacrylamide gel electrophoresis (SDS-PAGE) 

Pouring and electrophoresis of SDS-polyacrylamide gels was performed using the Novex 

system (pre-assembled gel cassettes). Resolving and stacking gels were prepared according 

to standard protocols using ready-to-use polyacrylamide solutions from Roth (Rotigel, 30%, 

49:1) (see 3.1.2 for buffers). For electrophoresis, protein samples were mixed with SDS-

PAGE sample buffer, heat-denatured for 5 min at 95°C and directly loaded onto the gel. 

Proteins were separated at 200V until the dye front had reached the end of the gel. The 

molecular weight of proteins was estimated by running pre-stained or non-stained marker 

proteins (Peqlab, peqgold protein marker) in parallel. Following electrophoresis, proteins were 

stained with either Coomassie Brilliant Blue, Silver or subjected to Western blotting. 

 

3.2.3.7 Coomassie Blue staining of protein gels 

Polyacrylamide gels were fixed for at least 30 min in fixation solution (50% methanol / 10% 

acetic acid) and stained for 60 min to overnight on a slowly rocking platform with Coomassie 

staining solution (0.025% Coomassie Blue R in 10% Acetic acid). To visualize proteins, gels 
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were destained in 10% acetic acid. After documentation, the gels were dried onto a Whatman 

paper at 80°C for 1 hr on a gel dryer (BioRad). 

In order to analyze proteins by Mass Spectrometry, gels were stained with a Colloidal 

Coomassie staining kit (Merck). Briefly, gels were fixed for at least 2 hrs in fixation solution 

(50% methanol / 10% acetic acid) and incubated overnight in staining solution. Destaining of 

the gels was performed using ddH2O. After documentation, the bands were excised with a 

scalpel and stored in 0.2 ml PCR tubes with 150 µl of ddH2O at -20°C. Mass Spectrometry 

analysis of the proteins by MALDI-TOF or nano-spray-LC-MS/MS was carried out in a core 

facility (http://proteinanalytik.web.med.uni-muenchen.de/index.php/home/). 

Staining solution: 10 ml Stainer A 

   2.5 ml Stainer B 

   10 ml Methanol 

   27.5 ml ddH2O 

 

3.2.3.8 Silver staining of protein gels 

The staining of protein gels with silver nitrate solution was carried out according to the 

protocol of Blum. The gel was fixed in 50% ethanol / 10% acetic acid for at least 2 hrs and 

washed three times in 30% ethanol (20 min each), incubated for 1 min in 0.02% Na2S2O3 

(sodium thiosulfate), washed three times with water (ddH2O, 20 sec each) and stained with 

0.2% AgNO3 solution for 1 hr. Afterwards, the gel was washed with water (three times, 20 sec 

each) and developed using developing solution (3% Na2CO3, 0.05% H2CO, 0.0004% 

Na2S2O3) until the desired proteins were visible (typically, after 5 to 10 min). After a short 

wash in water (1 min) the reaction was stopped by incubating the gel in 0.5% glycine stop 

solution (more than 5 min). After a final water wash (>30 min), the gel was documented and 

dried onto a Whatman paper at 80°C for 1 hr on a gel dryer (BioRad). 

 

3.2.3.9 Western Blotting 

Proteins were separated by SDS-PAGE and transferred to PVDF membranes using the 

BioRad “Wet Blot system”. The gel was placed onto a membrane and sandwiched between 

gel-sized Whatman paper soaked in transfer buffer (25 mM Tris, 192 mM glycine, 20% 

methanol). The proteins were then transferred onto the membrane for 1.5 hrs (400 mA 

constant) at room temperature. The transfer reaction was cooled by the addition of an ice 

block into the transfer chamber. After transfer, the PVDF membranes were incubated for 1 hr 

in blocking solution (PBS/0.1% Tween-20/4% dried milk) in order to reduce the non-specific 
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background. Membranes were sealed in a plastic bag and incubated overnight on a horizontal 

shaker in the coldroom with an appropriate dilution of the primary antibody directed against 

the protein of interest. PVDF membranes were washed three times in PBS/0.1% Tween-20 

(10 min each) and incubated for one additional hr with horseradish peroxidase-coupled 

secondary antibody at room temperature. After three washes (10 min each, in PBS/0.1% 

Tween-20) antigen-antibody complexes were detected using the Enhanced Chemi-

Luminescence Kit (ECL, Amersham) and autoradiography according to the manufacturer´s 

instructions. 

 

3.2.3.10 Chromatographic purification of dE2F2 complexes from Drosophila embryo 

nuclear extract (TRAX) 

Chromatographic purification was performed using Chromatography Systems from Pharmacia 

(ÄKTA: FPLC & HPLC). Members of the Drosophila RBF-dE2F network were monitored 

during the purification procedure by Western Blot. 

50 – 100 ml Drosophila embryo nuclear extract (0 – 12 hr TRAX) (10 – 15 µg/µl) in Buffer Q-

100 was loaded onto a 70 ml Q Sepharose FF column, washed with Buffer Q-100 and eluted 

stepwise with 450 and 1000 mM KCl. The 450 mM fraction, which contained the proteins of 

interest, was dialyzed against Buffer HEMG-100 and loaded onto a 25 ml Biorex 70 column. 

The column was washed with Buffer HEMG-100 and bound proteins were eluted with 250, 

500 and 1000 mM KCl. RBF, dE2F and dDP proteins were detected in the 250 mM elution 

and dialyzed against Buffer Q-100. The proteins were loaded onto a 5 ml Q Sepharose HP 

column, washed with 3 column volumes (CV) of Buffer Q-100 and eluted with a gradient from 

100 to 500 mM KCl over 25 CV (fraction size: 2.5 ml). dE2F2 eluted in one peak at a salt 

concentration of about 400 mM KCl. 2 ml of the peak fraction were directly loaded onto a 0.8 

ml Hydroxyl apatite column, the column was washed with 2 CV of Buffer Q-400/10mM 

Phosphate and eluted with a Phosphate gradient from 10 to 500 mM over 25 CV (fraction 

size: 500 µl). 200 µl of the dE2F2 peak fraction were subsequently separated on a Superose 

6 gelfiltration column using Buffer EX-300 (fraction size: 500 µl). The eluted fractions were 

precipitated either by TCA-precipitation or by using StrataClean Resin (Stratagene), 

resuspended in 1 x SDS-PAGE loading buffer and analyzed by Western Blot, Coomassie or 

Silver staining. 
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Buffer Q-X:  20 mM Tris pH 8.0   Buffer HEMG-X:   25 mM HEPES pH 7.6 

       1 mM MgCl2           12.5 mM MgCl2 

        10% Glycerol          0.1 mM EDTA 

            X mM KCl            10% Glycerol 

         PMSF               X mM KCl      

         DTT            PMSF 

             DTT 

 

HyAp Buffer A: 20 mM Tris pH 8.0  HyAp Buffer B: 20 mM Tris pH 8.0 

  1 mM MgCl2     1 mM MgCl2 

  10% Glycerol     10% Glycerol 

  400 mM KCl     400 mM KCl 

  PMSF      500 mM K2HPO4/KH2PO4 

  DTT      PMSF 

        DTT 

 

Buffer EX-300: 10 mM HEPES pH 7.6 

  300 mM KCl 

  1.5 mM MgCl2 

  0.5 mM EGTA 

  10% Glycerol 

  10 mM β-Glycerophosphate 

  PMSF 

  DTT 

 

3.2.3.11 Chromatographic purification of a complex homologous to the dE2F2 

complexes from MOLT-4 nuclear extract 

Chromatographic purification was performed using Chromatography Systems from Pharmacia 

(ÄKTA: FPLC & HPLC). The proteins of interest were monitored during the purification 

procedure by Western Blot. 

2 g of MOLT-4 nuclear extract in Lysis Buffer (150 mM NaCl, see 3.2.3.2) was loaded onto a 

70 ml Q Sepharose FF column, washed with Buffer Q-150 and eluted stepwise with 300, 450 

and 1000 mM KCl. The 300 mM fraction, which contained the proteins of interest, was diluted 

to 125 mM KCl with Buffer Q-0, loaded onto a 25 ml Biorex 70 column and washed with 

Buffer HEMG-125. Bound proteins were eluted with 250, 500 and 1000 mM KCl. The 250 mM 

elution was diluted with Buffer HEMG-0 to 150 mM KCl, loaded onto a 5 ml Q Sepharose HP 

column, washed with 3 CV of Buffer Q-150 and eluted with a gradient from 150 to 500 mM 
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KCl over 25  CV (fraction size: 2.5 ml). The proteins of interest eluted in one peak and the 

corresponding fractions were combined and diluted to 125 mM KCl with Buffer Q-0. They 

were loaded onto a 1 ml SP Sepharose HP column, washed with 2 CV of Buffer SP-125 and 

eluted with a gradient from 125 to 500 mM KCl over 20 CV (fraction size: 500 µl). The 

complex eluted at a salt concentration of about 250 mM KCl. The pooled peak fractions were 

directly loaded onto a 0.8 ml Hydroxyl apatite column, washed with 2 CV of Buffer SP-250/10 

mM Phosphate and eluted with a Phosphate gradient from 10 to 300 mM over 20 CV and 

from 300 to 500 mM over 2 CV (fraction size: 500 µl). 250 µl of the peak fraction of the 

complex were subsequently separated on a Superose 6 gelfiltration column using Buffer EX-

300 (fraction size: 500 µl). The eluted fractions were precipitated either by TCA-precipitation 

or by using StrataClean Resin (Stratagene), resuspended in 1 x SDS-PAGE loading buffer 

and analyzed by Western Blot, Coomassie or Silver staining. 

 

Buffer Q-X:  20 mM Tris pH 8.0   Buffer HEMG-X:   25 mM HEPES pH 7.6 

       1 mM MgCl2           12.5 mM MgCl2 

        10% Glycerol           0.1 mM EDTA 

            X mM KCl            10% Glycerol 

         PMSF               X mM KCl      

         DTT            PMSF 

              DTT 

 

HyAp Buffer A: 20 mM HEPES pH 7.6  HyAp Buffer B: 20 mM HEPES pH 7.6 

  250 mM KCl     250 mM KCl 

  10% Glycerol     10% Glycerol 

  PMSF      500 mM K2HPO4/KH2PO4 

  DTT      PMSF 

        DTT 

 

Buffer EX-300: 10 mM HEPES pH 7.6  Buffer SP-X:   20 mM HEPES pH 7.6 

  300 mM KCl              X mM KCl 

  1.5 mM MgCl2              10% Glycerol 

  0.5 mM EGTA              PMSF 

  10% Glycerol              DTT 

  10 mM β-Glycerophosphate 

  PMSF 

  DTT 
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3.2.3.12 Histone tail-peptide pulldown 

Histone tail-peptides were either synthesized and coupled to a column matrix by Peptide 

Specialty Laboratories or biotinylated peptides were purchased from Upstate and bound to 

Dynabeads® M-280 Streptavidin (Dynal). 

 

Drosophila: 

Pulldown experiments were done in siliconized reaction tubes. First, beads were equilibrated 

with Binding Buffer and then blocked with Binding Buffer + 0.2 mg/ml BSA for 20 min at 4°C 

on a rotating wheel. 50 µl of TRAX or partially purified fractions (Q Sepharose HP) were 

diluted to 500 µl with Binding Buffer and incubated with 15 µl of a 1:1 bead slurry for 3 hrs at 

4°C on a rotating wheel. After extensively washing the beads once with Binding Buffer and 

three times with Washing Buffer, they were resuspended in 1 x SDS-PAGE loading buffer and 

analyzed by Western Blot. 

 

Binding Buffer:  20 mM Tris pH 8.0  Washing Buffer:  20 mM Tris pH 8.0  

              1 mM MgCl2       1 mM MgCl2 

              100 mM KCl       300 mM KCl 

              0.2% NP-40       0.2% NP-40 

                          10% Glycerol       10% Glycerol 

protease inhibitors      protease inhibitors 

DTT        DTT 

 

Human cell lines: 

Pulldown experiments from MOLT-4 NE were performed essentially as described for 

Drosophila extracts but buffers differed in their stringency. 

 

Binding Buffer:  20 mM HEPES pH 7.9  Washing Buffer: 20 mM HEPES pH 7.9 

              100 mM KCl       150 mM KCl 

              0.2 mM EDTA      0.2 mM EDTA 

              0.05% NP-40      0.05% NP-40 

              10% Glycerol      10% Glycerol 

  protease inhibitors     protease inhibitors 

  DTT       DTT 

 

Histone tail-peptides: H3 (aa 1 – 20) wt  H3 (21 – 34) wt 

   H3 (1 – 20) K9me2  H3 (21 – 34) K27me2 
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   H3 (1 – 20) K4me2 

 

   H4 (1 – 20) wt   H4 (9 – 35) wt    

   H4 (1 – 20) K5,8,12,16-Ac H4 (9 – 35) K20me2 

 

H3 (1 – 20)-, H3 (21 – 34)- and H4 (9 – 35)-peptides were kindly provided by A. Imhof. 

 

3.2.3.13 GST-pulldown assays 

Glutathione-Sepharose 4B beads were equilibrated in Buffer EX-250/0.05% NP-40 and 

loaded with recombinant, E. coli-expressed GST and GST-pRb (379 – 928). Binding of 

approximately 0.75 mg protein/ml bead volume occurred by rotating overnight at 4°C and 

subsequently the beads were washed twice with Buffer EX-250/0.05% NP-40. 

 

GST-pulldown assay of in vitro translated proteins: 

GST fusion proteins on beads were pre-incubated with 1 mg/ml BSA in Buffer Z´ for 5 min at 

room temperature. In vitro translated test proteins in 200 µl of Buffer Z´ were incubated with 

equal amounts of GST or GST-pRb (20 µl of a 1:1 bead slurry each) for 1 hr at room 

temperature on a rotating wheel. The beads were washed three times in 1.5 ml of Buffer 

NETN, resuspended in 1 x SDS-PAGE loading buffer and analyzed by autoradiography.  

 

Buffer Z´:  25 mM HEPES-KOH pH 7.5  Buffer NETN:  20 mM Tris pH 8.0 

     12.5 mM MgCl2              150 mM NaCl 

     150 mM KCl                1 mM EDTA 

     0.1% NP-40                0.5% NP-40 

     20 µM ZnSO4       protease inhibitors 

     20% Glycerol      DTT 

     protease inhibitors 

     DTT 

 

GST-pulldown assay from partially purified MOLT-4 NE: 

GST fusion proteins on beads were pre-incubated with 1 mg/ml BSA in Buffer Q-150/0.05% 

NP-40 for 5 min at room temperature. 50 µl of the Q Sepharose HP fraction containing the 

human homolog of the dE2F2 complexes (assessed by Western Blot) were diluted to 200 µl 

with Buffer Q-150/0.05% NP-40 and rotated with equal amounts of GST or GST-pRb (20 µl of 

a 1:1 bead slurry each) for 3 hrs at 4°C. The beads were washed three times in 500 µl of 
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Buffer Q-300/0.05% NP-40, resuspended in 1 x SDS-PAGE loading buffer and analyzed by 

Western Blot. 

 

3.2.3.14 αFlag-Co-immunoprecipitation 

αFlag M2 beads were equilibrated in Buffer D-125/0.05% NP-40 and 10 µl of a 1:1 bead 

slurry were added to 400 µg of either transiently transfected HEK 293 WCE or stably 

transfected MOLT-4 NE. The extract with the beads was incubated in Buffer D-125/10% 

Glycerol/0.05% NP-40 (final concentration) for 3 hrs at 4°C on a rotating wheel and the beads 

were washed once with Buffer D-125/10% Glycerol/0.05% NP-40 and three times with Buffer 

D-300/10% Glycerol/0.05% NP-40. After washing one more time with Buffer D-125/0.05% 

NP-40, bound proteins were eluted using Flag-peptide in the same buffer (final concentration: 

0.4 mg /ml). The beads were diluted 1:1 with elution buffer and the elution was carried out for 

2 hrs on ice by regular mixing of the slurry. An additional elution was performed overnight at 

4°C on a rotating wheel. The eluted material was subsequently analyzed by Western Blot or 

Mass Spectrometry. 

 

For Mass Spec analysis, 8 mg of MOLT-4 NE were precipitated in 4 aliquots, the eluted 

material was combined and precipitated using StrataClean Resin (Stratagene). 

 

3.2.3.15 Binding and covalent coupling of antibodies to Protein G beads 

Unless otherwise indicated all steps were carried out at 4°C. 

First, the pH of the antibody preparation was adjusted to 8.0 by adding 1/10 volume of 1 M 

Tris pH 8.0. The Protein G beads were incubated with the respective antibody for 1 hr on a 

rotating wheel (beads bind approximately 10 – 20 mg of antibody per ml of wet beads). The 

antibody bead slurry was then loaded onto a plastic column, the flowthrough was collected 

and reloaded twice onto the column. After washing the beads with 10 CV of 100 mM Tris pH 

8.0 and subsequently with 10 CV of 10 mM Tris pH 8.0, the efficiency of the binding was 

checked by Western Blot. 

 

For coupling, the beads were washed twice with 10 volumes of 0.2 M sodium borate pH 9.0 

and resuspended in 10 volumes of 0.2 M sodium borate pH 9.0 (the equivalent of 10 µl of 

beads was removed to control for the efficiency of coupling). Dimethylpimelimidate (solid) was 

added to a final concentration of 20 mM and incubated for 30 min at room temperature on a 
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rotating wheel (coupling efficiency control, see above). The coupling reaction was stopped by 

washing the beads once in 0.2 M ethanolamine pH 8.0 and rotating them for additional 2 hrs 

at room temperature in 0.2 M ethanolamine.  

The beads were then washed with PBS, followed by a wash with 4 – 5 CV of 100 mM glycine 

pH 3.0 in a column to remove any antibodies that were not covalently bound to the protein G 

beads. After washing the beads with 10 CV of PBS (coupling efficiency control, see above), 

they were resuspended in PBS/0.02% sodium azide. 

The efficiency of coupling was tested by boiling the removed bead samples and Coomassie 

staining of the eluted heavy chain.  

 

3.2.3.16 Co-immunoprecipitation 

Protein G beads were equilibrated in Buffer Q-125/0.05% NP-40. Protein extracts were either 

incubated with ethidium bromide (final concentration: 50 µg/ml) for 30 min on ice, centrifuged 

at 13000 rpm for 5 min and the supernatant was used for immunoprecipitation (IP), or directly 

used for IP.  

Extracts were incubated with the respective antibody for 3 hrs at 4°C on a rotating wheel and 

after addition of 30 µl of protein G beads for an additional hour. Alternatively, extracts were 

rotated with 30 µl of antibody coupled protein G beads for 3 hrs at 4°C. The beads were 

washed three times with Buffer Q-300/0.05% NP-40 (optional: 50 µg/ml ethidium bromide), 

resuspended in 1 x SDS-PAGE loading buffer and analyzed by Western Blot. 

 

3.2.3.17 Immunofluorescence of polytene chromosomes 

Drosophila salivary glands were dissected from 3rd instar larvae in 0.7% NaCl solution and 

incubated for 10 min in fixing solution (45% acetic acid / 1.85% formaldehyde) on a siliconized 

coverslip. The coverslip was taken up by a poly-lysine-treated slide and the glands were 

broken by regularly dotting the coverslip with the back end of a paintbrush in a spiral 

movement. Polytene chromosomes were spread by squeezing the slide and coverslip with the 

thumb. The polytene chromosome quality was checked by phase contrast microscopy and 

acceptable slides were frozen in liquid nitrogen. The coverslip was removed from the frozen 

slide with a razor blade and the slide was washed in PBS for 5 min and in PBS/0.1% Triton-X-

100 for 10 min. 

For blocking, the slide was incubated in PBS/0.1% Triton-X-100/1% BSA. Subsequently, the 

slide was placed in a humid chamber and the squashed polytene chromosomes were covered 
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overnight at 4°C with 20 µl of the primary antibody dilution and a fresh coverslip. All 

antibodies were diluted in PBS/0.1% Triton-X-100/1% BSA. 

The next day, the slides were washed three times for 5 min in PBS and twice for 15 min in 

PBS/0.1% Triton-X-100/1% BSA before the polytene chromosomes were incubated with the 

appropriately diluted secondary antibody as described before for 1 hr at room temperature. 

Slides were washed twice for 10 min with PBS/0.1% Triton-X-100/1% BSA and three times for 

5 min in PBS, before staining the DNA with Hoechst dye (1:20000 in PBS) for 2 min. The 

slides were washed twice for 5 min in PBS, mounted with PBS/0.1 M n-propyl-gallate/50% 

glycerol and stored at 4°C in the dark. 
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4 Results 

4.1 Retinoblastoma complexes in Drosophila melanogaster 
Sequencing of the Drosophila genome has revealed that a plethora of human disease related 

genes have counterparts in the fly (Adams et al. 2000; Fortini et al. 2000). Further studies on 

several of them have shown that also the context in which these proteins act in Drosophila is 

often highly conserved compared to the mammalian system. Among these candidates are the 

fly´s Retinoblastoma like factors, RBF1 and RBF2 (Du et al. 1996a; Stevaux et al. 2002). The 

identification of RBF1 and RBF2 has enabled us to study the Retinoblastoma tumor 

suppressor pathway in a relatively simple model organism and gain further insight into its 

mechanism of action. 

 

4.1.1 High molecular weight RBF complexes exist in Drosophila 
embryos and cell lines 

In order to get a first insight regarding the existence and size of RBF complexes, Drosophila 

embryo nuclear extract (TRAX) from embryos of different age (0 – 12 and 0 – 2 hr) and 

nuclear extract from a Drosophila cell line were separated on a Superose 6 gel filtration 

column (Fig. 4.1). In 0 – 12 hr embryos, peaks of RBF1, RBF2 and dDP were found in high 

molecular weight fractions reflecting a molecular weight larger than 669 kDa (Fig. 4.1 A, B, C; 

upper panel), and a minor RBF1 peak was detected with an apparent molecular weight of 

about 100 kDa, probably reflecting monomeric RBF1 (Fig. 4.1 A; upper panel). The faster 

migrating form of RBF1, which was detected in the Western Blot of fraction 31 is probably the 

result of degradation of the protein (Fig. 4.1 A; upper + middle panel). Interestingly, in early 

embryos RBF1 was present only in its monomeric form (Fig. 4.1 A; middle panel), whereas 

RBF2 was detected in high (>669 kDa) and low (100 kDa) molecular weight fractions (Fig. 4.1 

B; middle panel). dDP eluted in a broad molecular weight range from 100 to >669 kDa in size 

(Fig. 4.1 C; middle panel). In KC cells however, RBF1 mainly eluted in medium (∼500 kDa) 

and RBF2 in high (>669 kDa) molecular weight fractions (Fig. 4.1 A, B; lower panel). dDP 

eluted with a similar pattern as in early embryos (Fig. 4.1 C; lower panel).  

These results suggest, that RBF and dDP proteins are assembled into high molecular weight 

complexes, both in Drosophila embryos and cells. These complexes differ in their size, 

depending on the origin (early and late embryos vs. KC cells). Furthermore, RBF2 is 
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assembled into large complexes early in development, whereas RBF1 exists only in 

monomeric form in 0 – 2 hr Drosophila embryos.  

 

 

Figure 4.1: RBF and dDP proteins exist in high molecular weight complexes in Drosophila 
embryos and cells 

TRAX from 0 – 12 and 0 – 2 hr embryos and KC cell nuclear extract were separated on a Superose 6 

gel filtration column. The eluted fractions were tested by Western Blot for the presence of RBF1 (A), 

RBF2 (B) and dDP (C). Upper panel: 0 – 12 hr, Middle panel: 0 – 2 hr, Lower panel: KC cells. Fraction 

numbers are denoted on top, size standards on the bottom. IN, input. 

 

4.1.2 0 – 12 hr Drosophila embryo nuclear extract contains at least 
three distinct RBF-containing complexes 

In order to separate distinct complexes that could not be distinguished by the gel filtration 

experiments (see 4.1.1), Drosophila embryo nuclear extract (0 – 12 hr) was loaded onto a Q 

Sepharose HP ion exchange column. Western Blot analysis of the eluted material using 

antibodies against all members of the RBF-dE2F network identified three protein peaks (Fig. 

4.2). Peak I contained only RBF1 and subsequent analysis by gel filtration revealed a 
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molecular weight of approximately 100 kDa, probably reflecting monomeric RBF1 (Fig. 4.3 A). 

In peak II, dE2F1 and dDP were identified in addition to RBF1 (Fig. 4.2). Gel filtration analysis 

of peak II showed that those proteins were assembled into a complex of about 500 kDa in 

size (Fig. 4.3 B). RBF1, RBF2, dE2F2 and dDP coeluted in peak III (Fig. 4.2) and are part of 

high molecular weight complexes (>669 kDa), as shown by gel filtration analysis of the 

corresponding Q Sepharose fractions (Fig. 4.3 C). 

 

 

Figure 4.2: RBF complexes in Drosophila embryos 

Nuclear extract was separated over a Q Sepharose HP ion exchange column. Fractions were analyzed 

by Western Blot using specific antibodies as shown. Three RBF1 peaks and fraction numbers are 

indicated on top. IN, input; FT, flowthrough. This figure is taken from (Korenjak et al. 2004). 
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Figure 4.3: At least three distinct RBF complexes exist in Drosophila embryos 

RBF1 peaks I, II and III (Fig. 4.2) were separated on a Superose 6 gel filtration column. (A) RBF1 peak 

I, (B) RBF1 peak II, (C) RBF1 peak III. Fractions were analyzed by Western Blot using specific 

antibodies as shown. Fraction numbers are indicated on top, size standards on the bottom. IN, input. 

 

The elution profile of RBF-dE2F network members (Fig. 4.2) and the fact that RBF1 and 

RBF2 do not interact with each other (Stevaux et al. 2002) suggest the existence of at least 

three distinct RBF-containing complexes in Drosophila embryos: an approximately 500 kDa 

complex containing RBF1 and dE2F1 and two complexes of higher molecular weight 

containing dE2F2 and either RBF1 or RBF2. The identical elution profile of the dE2F2/RBF 

complexes on the ion exchange column suggests that these complexes are otherwise very 

similar in their subunit composition.  

 

4.1.3 Purification of dE2F2/RBF complexes 

Due to the apparent molecular weight of dE2F2 complexes (>669 kDa) it seemed very likely 

that they contained additional subunits. Therefore, a purification strategy using conventional 

chromatography was established to isolate the endogenous complexes from 0 – 12 hr embryo 

extract (Fig. 4.4 A). The applied scheme included chromatography columns that were tested 

for the binding and elution of dE2F2/RBF complexes. Throughout the purification procedure 

RBF1, RBF2, dE2F2 and dDP cofractionated on all columns and eluted with a molecular 
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weight between 669 kDa and 1.2 MDa from the final Superose 6 gel filtration column (Fig. 4.4 

B). Silver staining of the Superose 6 fractions revealed that 7 bands were coeluting perfectly 

with the Western Blot signals (Fig. 4.4 C). In order to identify the corresponding proteins, the 

bands were excised and analyzed by Mass Spectrometry. The results confirmed the presence 

of RBF1, RBF2, dE2F2 and dDP, as expected from the Western Blot experiments. Four 

additional proteins could be identified: Mip130/TWIT, dMyb, CAF1p55 and Mip40 (Fig. 4.4 C).  

Interestingly, all four newly identified proteins have previously been shown to be subunits of a 

dMyb complex (Beall et al. 2002). Mip120, which is also a component of this complex, has not 

been identified in the Mass Spectrometry analysis. However, Western Blot using a Mip120-

specific antibody revealed its presence in Superose 6 fractions also containing the RBF 

proteins (see Fig. 4.5). Furthermore, Mip120 co-immunoprecipitated with RBF1 and RBF2 

(see Fig. 4.6 and 4.11). This strongly suggests that Mip120 is an integral subunit of 

dE2F2/RBF complexes but has been progressively lost or degraded during the purification 

procedure. 

CAF1p55 is the Drosophila homolog of mammalian RbAp46 and RbAp48 that have originally 

been identified as pRb interacting proteins (Qian et al. 1993; Qian and Lee 1995). This, and 

the fact that all copurifying proteins were present in stoichiometric amounts in the silver 

staining (Fig. 4.4 C) – except of one stronger protein band, which comprises two proteins 

(dE2F2 and CAF1p55) – strongly suggest that these proteins form stable complexes in 

Drosophila embryos. 

 



RESULTS 

 - 51 -   

 

Figure 4.4: Purification of dE2F2/RBF complexes  

(A) Purification scheme for dE2F2/RBF complexes. (B) Western Blot using specific antibodies as 

indicated after the final Superose 6 gel filtration column of the purification scheme. Fraction numbers are 

denoted on top, size standards on bottom. IN, input. (C) Silver staining of the eluted material after the 

final gel filtration column. Bands that were excised for Mass Spectrometry analysis are highlighted with 

black circles and the identified proteins are indicated on the right. Molecular weight markers are 

indicated on the left. Fraction numbers are denoted on top, size standards on bottom. MW, molecular 

weight marker; IN, input. This figure is taken from (Korenjak et al. 2004). 

 

The fractions from the final Superose 6 gel filtration column were analyzed by Western Blot 

for the elution profile of the newly identified proteins. All proteins were present in high 

molecular weight fractions between 669 kDa and 1.2 MDa, confirming the results obtained by 

Mass Spectrometry (Fig. 4.5). Moreover, also Mip120, which has not been identified in the 
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original Mass Spectrometry approach, could readily be detected in the final fractions of the 

purification. 

 

Figure 4.5: Copurification of putative dE2F2/RBF complex subunits  

Western Blot of the final Superose 6 gel filtration column from the purification scheme for dE2F2/RBF 

complexes (Fig. 4.4 A) using the indicated antibodies. Fraction numbers are indicated on top, size 

standards on bottom. IN, input. This figure is taken from (Korenjak et al. 2004). 

 

4.1.4 Co-immunoprecipitation of putative dE2F2/RBF complex subunits 

In spite of the copurification experiments that strongly argue for the association of the 

identified proteins in dE2F2/RBF1 and dE2F2/RBF2 complexes, the possibility that distinct 

RBF- and dMyb-containing complexes have been copurified could not be ruled out with 

certainty. However, the size of the purified complex(es) and the lack of additional bands in the 

silver staining (Fig. 4.4 C) argue against this possibility.  

In order to confirm that the identified proteins were associated in dE2F2/RBF1 and 

dE2F2/RBF2 complexes, co-immunoprecipitation experiments from Q Sepharose peak III 

(see Fig. 4.2) were carried out. RBF1 (DX3) and RBF2 (DR6) antibodies covalently coupled to 

protein G beads were used for precipitation. Western Blot analysis of the immunoprecipitated 

material revealed an association of Mip130/TWIT, Mip120, CAF1p55, Mip40, dE2F2 and dDP 

with RBF1 and RBF2 (Fig. 4.6 A, lanes 2 – 3, 6 – 7, 11 – 12) while they were not 

coprecipitated using a control antibody (Fig. 4.6 A, lanes 4, 8, 10). The RBF1 antibody did not 
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coprecipitate RBF2 and vice versa. These results strongly support the idea of distinct 

dE2F2/RBF1 and dE2F2/RBF2 complexes in Drosophila embryos that share the same 

subunit composition and only differ in their RBF subunit (Fig. 4.6 B).  

 

 

Figure 4.6: Interaction of dE2F2/RBF complex subunits 

(A) RBF1 (DX3), RBF2 (DR6) and Myc (9E10, control) antibodies were covalently coupled to protein G 

beads and used for immunoprecipitation from Q Sepharose peak III fractions (see Fig. 4.2). Co-

immunoprecipitations were performed in the presence of ethidium bromide to minimize DNA-mediated 

interactions. Western Blot using antibodies specific for the proteins indicated on the left. Antibodies used 

for immunoprecipitation are indicated on top. IN, input; IP, immunoprecipitation. This figure is taken from 

(Korenjak et al. 2004). (B) Schematic depiction of the two dE2F2/RBF complexes purified from 0 – 12 hr 

Drosophila embryo nuclear extract. The complexes only differ in their RBF subunit (RBF1 or RBF2), 

otherwise they share the same subunit composition. 

 

4.1.5 dE2F2/RBF complex subunits colocalize on Drosophila polytene 
chromosomes 

Since dE2F2/RBF complexes contain several DNA-binding proteins (dE2F2/dDP, dMyb, 

Mip120) (Sawado et al. 1998; Beall et al. 2002) and the role of the RBF-dE2F network in 

transcriptional regulation is well established (Dimova et al. 2003) it seemed plausible to look 

for chromatin distribution of dE2F2/RBF complexes. Drosophila RBF1 and RBF2 proteins are 

known to be expressed not only in embryos, but also in larvae and adult flies (Stevaux et al. 

2002; Keller et al. 2005). Moreover, Drosophila third instar larvae offer a unique possibility to 

study the in vivo distribution of chromatin-associated proteins on polytene chromosomes by 

indirect immunofluorescence. 

Therefore, polytene chromosomes were stained with antibodies directed against different 

dE2F2/RBF complex subunits (Fig. 4.7). Costaining experiments revealed colocalization of 
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RBF1/dE2F2 (Fig. 4.7 A), RBF1/Mip130 (Fig. 4.7 B), RBF1/Mip120 (Fig. 4.7 C) and 

Mip130/Mip120 (Fig. 4.7 D). All proteins localized to numerous sites on the chromosomes.  

These results provide further support for the dE2F2/RBF complex purification and show that 

the complexes likely exist at different stages of Drosophila development.  
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Figure 4.7: dE2F2/RBF complex subunits colocalize on polytene chromosomes 

Immunostaining of Drosophila polytene chromosomes using antibodies directed against the indicated 

proteins. (A) RBF1/dE2F2, (B) RBF1/Mip130, (C) RBF1/Mip120 and (D) Mip130/Mip120 costainings. 

White arrowheads in the split image indicate colocalizing bands. DNA was counterstained using 

Hoechst. This figure is taken from (Korenjak et al. 2004). 
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4.1.6 dE2F2/RBF complexes localize to transcriptionally silent 
chromatin 

dE2F2/RBF complexes bind to numerous sites on polytene chromosomes (see Fig. 4.7). 

Given the general role of RBF-containing complexes in transcriptional repression, it was 

tempting to speculate that dE2F2/RBF complexes would be associated with transcriptionally 

inactive chromatin.  

In order to test this, Drosophila polytene chromosomes were costained using a Mip130/TWIT 

antibody and an antibody specifically recognizing the elongating form of RNA-Polymerase II 

(RNA-Pol II phosphorylated at Ser2) (Fig. 4.8). Costainings of RNA-Pol II and Polycomb (Pc), 

a well characterized transcriptional repressor, were performed as a control. As expected, no 

overlap between RNA-Pol II and Pc was observed (Fig. 4.8 A). Interestingly, the 

Mip130/RNA-Pol II costaining was also mutually exclusive, suggesting that dE2F2/RBF 

complexes localize to transcriptionally silent chromatin (Fig. 4.8 B). Furthermore, the parallel 

staining of Mip130/TWIT and Pc revealed binding of distinct regions of inactive chromatin 

(Fig. 4.8 C), suggesting that dE2F2/RBF complexes are associated with specific 

transcriptionally silent regions.  
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Figure 4.8: dE2F2/RBF complexes bind to transcriptionally inactive chromatin 

Immunostaining of Drosophila polytene chromosomes using antibodies directed against the indicated 

proteins. (A) Pc/RNA-Pol II, (B) Mip130/RNA-Pol II and (C) Mip130/Pc costainings.  DNA was 

counterstained using Hoechst. The figure is taken from (Korenjak et al. 2004). 
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4.1.7 dE2F2/RBF complexes bind to deacetylated histone tails in vitro 

In a chromatin context, transcriptionally inactive regions have been shown to be enriched in 

specific histone tail modifications, whereas others are excluded from these regions. These 

specific patterns of histone modification provide a platform for chromatin binding proteins and, 

as a consequence, could be important for the formation of higher order chromatin structures 

typical for silent genomic regions. In general, silent chromatin has a high proportion of 

hypoacetylated histone tails, whereas histones in active chromatin are hyperacetylated. 

Furthermore, the methylation of specific lysine (K) residues in histone tails is another well 

characterized modification affecting the establishment of either active or inactive chromatin. 

While histone H3K4-methylation is a hallmark of transcriptionally active regions, H3K9-, 

H3K27- and H4K20-methylation are associated with silent chromatin in metazoans. 

To test whether dE2F2/RBF complexes had a specificity for modified histone tails, binding 

experiments were performed using the partially purified complexes and differentially modified 

histone tail-peptides coupled to beads. First, the impact of methylation of histone tails on the 

binding of the complexes was analyzed (Fig. 4.9).  

Chromatography fractions containing Heterochromatin Protein 1 (HP1) were used as a 

positive control for the pulldown experiment. HP1 is known to specifically bind to H3-peptides 

methylated at K9 (Bannister et al. 2001; Lachner et al. 2001). Accordingly, it was found 

strongly associated with the H3K9-methylated peptide and to a lesser extent with the 

unmodified H3-peptide (Fig. 4.9 A, compare lanes 4 + 6). HP1 did not interact with the H3K4-

methylated peptide (lane 5). Hence, the binding profile of HP1 reflects its established binding 

properties, showing that the histone tail-peptide pulldown has worked properly.  

Fractions containing monomeric RBF1 were used as a negative control for histone tail-

association. Western Blot analysis revealed that monomeric RBF1 did not bind to any of the 

peptides (Fig. 4.9 B).  

When RBF1 was assembled into the dE2F2/RBF1 complex, histone tail-binding was 

detected, as analyzed by Western Blot of the bound material (Fig. 4.9 C, upper panel). This 

interaction was further confirmed by Western Blot using an antibody directed against the 

Mip130/TWIT protein (Fig. 4.9 C, lower panel). However, only binding to unmodified H3 (aa 1 

– 20)- and H4 (9 – 35)-peptides was observed, whereas no association to the unmodified H3 

(21 – 34)-peptide was detected (compare lanes 2, 4 + 7). This difference in binding, 

regardless of the methylation status, might be due to the different number of charged amino 

acids in the peptides. The H3 (21 – 34)-peptide contains the lowest number of charged amino 

acid residues, suggesting that the observed binding difference is due to a charge effect.  
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The methylation status of the peptides did not result in a significant change in the binding 

efficiency of RBF1 and Mip130/TWIT compared to the unmodified peptides (Fig. 4.9 C). 

These results suggest that the dimethylation of distinct residues in histone tails, implicated in 

transcriptional activation/repression, is not important for the binding of dE2F2/RBF complexes 

in vitro. Rather, the overall charge of the histone tails could be involved in the binding of 

dE2F2/RBF complexes to histones. 

 

 

Figure 4.9: Binding of dE2F2/RBF complexes to histone tails in vitro 

Partially purified fractions containing HP1 (A), monomeric RBF1 (B) or dE2F2/RBF complexes (C) were 

used for pulldown experiments with differentially modified histone tail-peptides coupled to beads. The 

bound material was analyzed by Western Blot using antibodies directed against the proteins indicated 

on the right. Histone tail-peptides are indicated on top. H3 + H3K27me2 (lanes 2 + 3) comprised aa 21 – 

34. H3, H3K4me2 + H3K9me2 (lanes 4 – 6) comprised aa 1 – 20. H4 + H4K20me2 (lanes 7 + 8) 

comprised aa 9 – 35. IN, input. 
 

In contrast to methylation, modification of histone tails by acetylation results in the 

neutralization of charged amino acid residues. The histone H4 tail is known to be highly 

modified by acetylation of lysine residues 5, 8, 12 and 16 in vivo. Therefore, binding of 

dE2F2/RBF complexes to unmodified and tetra-acetylated H4 tails was assessed by pulldown 

experiments (Fig. 4.10). Partially purified fractions containing dE2F2/RBF complexes, 

dE2F1/RBF1 complex or monomeric RBF1 were used as input material. dE2F2/RBF 

complexes specifically associated with unmodified H4 tails, whereas no binding to tetra-
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acetylated tails was observed, as assessed by Western Blot using antibodies directed against 

Mip130/TWIT, RBF1 and RBF2 (Fig. 4.10, lanes 10 + 11). The dE2F1/RBF1 complex did 

neither bind to unmodified nor to tetra-acetylated H4 tails (Fig. 4.10, lanes 6 + 7), whereas 

monomeric RBF1 showed weak binding to tetra-acetylated H4 tails and did not bind to 

unmodified tails (Fig. 4.10, lanes 2 + 3). 

The specific binding of dE2F2/RBF complexes to deacetylated H4 tails, which are a hallmark 

of transcriptionally inactive chromatin, is in agreement with a putative role of these complexes 

in transcriptional repression. With respect to the results presented above, the exact binding 

mechanism is likely to involve charge effects. However, specific binding of one or more 

complex subunits to deacetylated H4 tails, which might become sterically impossible upon 

acetylation, is possible. 

 

        RBF1     dE2F1/RBF1     dE2F2/RBF 
     monomer           cpx    cpxs       

 

Figure 4.10: dE2F2/RBF complexes specifically bind to deacetylated H4 tails in vitro 

Partially purified fractions containing dE2F2/RBF complexes, dE2F1/RBF1 complex or monomeric RBF1 

were used for pulldown experiments with unmodified or tetra-acetylated histone H4 tail-peptides 

immobilized on beads. Beads without bound peptide were used as a control (ctrl). The bound material 

was analyzed by Western Blot using antibodies directed against Mip130/TWIT, RBF1 and RBF2, as 

indicated. Input material and histone tail-peptides are indicated on top. H4 tail-peptides comprised aa 1 

– 20. IN, input; H4-Ac, tetra-acetylated H4 tail; H4, unmodified H4 tail. This figure is taken from 

(Korenjak et al. 2004). 

 

4.1.8 dE2F2/RBF complexes repress a specific set of dE2F target genes 

Several lines of evidence suggest an involvement of dE2F2/RBF complexes in transcriptional 

repression. The RBF-dE2F transcriptional network and dE2F target genes have been 

characterized in detail in S2 cells and target genes have been classified into five groups due 

to their dependence on different RBF and dE2F proteins (Dimova et al. 2003). Among these 

groups, the so-called A group genes comprise well characterized E2F target genes, 

implicated in cell cycle progression. These genes are regulated in a cell cycle-dependent 
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manner and they are activated by dE2F1, whereas RBF1 represses their expression. E group 

genes, on the other hand, are negatively regulated by dE2F2 and the redundant action of 

RBF1 and RBF2. The results presented above, showing that the purified dE2F2/RBF 

complexes share the same subunit composition and only differ in the RBF factor, makes 

these complexes interesting candidates for the regulation of E group genes. E group genes 

are stably repressed in somatic, cycling Drosophila S2 cells. Many of them are specifically 

expressed in the germ line.  

In collaboration with the group of Nick Dyson (MGH Cancer Center, Boston), attempts were 

undertaken to identify genes that are regulated by dE2F2/RBF complexes. In order to confirm 

that the complexes also exist in S2 cells, immunoprecipitation experiments were performed 

on extracts derived from cells stably expressing Flag-tagged RBF1 or RBF2 (Fig. 4.11). The 

known subunits of the complexes coprecipitated with RBF1 and RBF2, suggesting that 

dE2F2/RBF complexes also exist in S2 cells. As expected, dE2F1 coprecipitated only with 

RBF1, whereas histone H3 and HP1 interacted with neither RBF1 nor RBF2. Co-

immunoprecipitations were performed in the absence and presence of ethidium bromide to 

rule out unspecific interactions mediated by DNA. 
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Figure 4.11: dE2F2/RBF complexes exist in Drosophila S2 cells 

αFlag M2 Agarose beads were used for immunoprecipitation from extracts derived from cells stably 

expressing Flag-tagged RBF1, RBF2 or a control cell line. Western Blot using antibodies specific for the 

proteins indicated on the left. Cell extracts from which the precipitation was performed are denoted on 

top. Immunoprecipitations were carried out in the absence or presence of ethidium bromide (EtBr), as 

indicated. IN, input; IP, immunoprecipitation. The experiment was carried out by N. Dyson and U. Binne. 

The figure is taken from (Korenjak et al. 2004). 

 

A possible regulation of A and E group genes by dE2F2/RBF complexes was investigated 

using RNAi mediated knockdown of individual subunits in S2 cells followed by expression 

analysis of A and E group genes by Northern Blot (Fig. 4.12 A). Knockdown of Mip130/TWIT, 

Mip120 or dE2F2 did not affect the expression of selected A group genes (lanes 2, 4, 6). Only 

downregulation of RBF1 resulted in a strong derepression of these genes (lane 3), which is in 

agreement with previous work (Dimova et al. 2003). These results suggest that A group 

genes are not regulated by dE2F2/RBF complexes but by (a) distinct RBF1-containing 

complex(es). Strikingly, knockdown of Mip130/TWIT and Mip120 led to a massive 

derepression of E group genes comparable to the known effect of dE2F2 downregulation 

(compare lanes 2 + 6 to lane 4). RBF1 RNAi did not result in upregulation of E group genes 

(lane 3). This can be explained by the redundant function of RBF1 and RBF2 on this group of 

genes (Dimova et al. 2003). Taken together, this suggests that dE2F2/RBF1 and 

dE2F2/RBF2 complexes regulate E group genes in a redundant manner, whereas they do not 

affect A group gene expression.  
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The efficiency of RNAi mediated knockdown was controlled by Western Blot (Fig. 4.12 B). 

Interestingly, downregulation of Mip130/TWIT resulted in a simultaneous decline of dE2F2 

protein levels and vice versa (lanes 2 + 4). Such an effect can sometimes be observed for 

interacting proteins and could be due to destabilization of a protein as a result of the loss of its 

binding partner.  

         

Figure 4.12: Mip130/TWIT and Mip120 specifically repress E group genes 

(A) Expression of A (rnr2, dnk, pcna) and E group genes (arp53D, CG17142, CG3505) and one control 

gene (rp49) was monitored by Northern Blot in Drosophila S2 cells. dsRNAs used for depletion of the 

respective proteins are denoted on top, probes used for Northern Blot are indicated on the left. NS 

dsRNA, nonspecific dsRNA (luciferase) (B) Western Blot control for the efficiency of the RNAi mediated 

knockdown. dsRNAs used for knockdown of the respective proteins are denoted on top, specific 

antibodies are indicated on the left. The experiment was carried out by N. Dyson and B. Taylor-Harding. 

The figure is taken from (Korenjak et al. 2004). 
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In agreement with the role of dE2F2/RBF complexes in the regulation of E group gene 

repression, also CAF1p55 is essential for the stable repression of these genes in S2 cells 

(Taylor-Harding et al. 2004). However, RNAi mediated knockdown of dMyb, another subunit 

of the complexes, did not result in the upregulation of E group genes (Fig. 4.13 A, left panel). 

Furthermore, the simultaneous downregulation of dMyb and dE2F2 did not enhance the 

deregulation of E group genes observed by knockdown of dE2F2 alone (Fig. 4.13 A, right 

panel). Western Blot analysis confirmed the efficiency of RNA interference (Fig. 4.13 B).  

These results show that even though dMyb is an integral component of dE2F2/RBF 

complexes, it is the only subunit that is not required for the transcriptional repression 

mediated by the complexes. This could be due to an important role of the other complex 

subunits in keeping the integrity of the complexes, whereas dMyb could be dispensable for 

this purpose. Alternatively, in contrast to the other complex subunits dMyb might be involved 

in the activation of E group genes in specific developmental situations, therefore having no 

effect when these genes are repressed by the other subunits of the complexes. 
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Figure 4.13: dMyb is dispensable for repression of E group genes 

(A) Expression of different A (dnk, rnr2) and E group genes (arp53D, CG17142) and one control gene 

(rp49) was monitored by Northern Blot in Drosophila S2 cells. dsRNAs used for knockdown of the 

respective proteins are denoted on top, probes used for Northern Blot are indicated on the left. NS 

dsRNA, nonspecific dsRNA (luciferase) (B) Western Blot control for the efficiency of the RNAi mediated 

knockdown. dsRNAs used for knockdown of the respective proteins are denoted on top, specific 

antibodies are indicated on the left. The experiment was carried out by N. Dyson and B. Taylor-Harding. 

The figure is taken from (Korenjak et al. 2004). 

 

4.1.9 Mip130/TWIT is bound to E group genes in vivo 

In order to show an association of dE2F2/RBF complexes with promoters of E group genes, 

Chromatin immunoprecipitation (ChIP) experiments were carried out using antibodies directed 

against Mip130/TWIT and dE2F2 (Fig. 4.14). Both proteins were specifically found to 

associate with the promoter regions of arp53D and CG17142, whereas the rp49 control gene 

was not bound (lanes 3 + 4). A control antibody did not precipitate arp53D and CG17142 
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(lane 2). Hence, this supports the notion that dE2F2/RBF complexes are physically 

associated with E group genes in S2 cells. 

 

   

Figure 4.14: Mip130/TWIT and dE2F2 are associated with E group gene promoters 

ChIP was performed from Drosophila S2 cell extracts using antibodies directed against Mip130/TWIT 

and dE2F2. The precipitated chromatin was used as a template for PCR reactions using primers for the 

promoter regions of the E group genes arp53D and CG17142 and the control gene rp49. Antibodies for 

IP are indicated on top, specific primers on the right. IN, input genomic DNA; NS Ab, nonspecific 

antibody. The experiment was carried out by N. Dyson and B. Taylor-Harding. The figure is taken from 

(Korenjak et al. 2004). 
 

4.1.10 Caenorhabditis elegans homologs of dE2F2/RBF complex 
subunits interact genetically 

An interesting feature of dE2F2/RBF complexes is the high degree of conservation of their 

subunits between different species. Homologs of RBF1/2, dE2F2, dDP, Mip130/TWIT and 

CAF1p55 have been identified in the nematode worm C. elegans. Strikingly, all of these 

proteins act as so called class B synthetic multivulva (synMuv) genes. The synMuv pathway 

consists of three classes of genes (A, B and C) and is involved in antagonizing vulval 

differentiation in C. elegans (see introduction). SynMuv genes can be identified by a 

multivulva phenotype, which is the result of a combination of at least two mutant alleles, which 

belong to different classes of synMuv genes. 

To test whether in worms the homologs of Mip120 and dMyb were also acting as class B 

synMuv genes, RNAi experiments were performed to functionally knockdown these subunits 
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in a class A synMuv mutant background. These experiments were done in collaboration with 

the group of Nick Dyson (MGH Cancer Center, Boston).  

Knockdown of the Mip120 homolog, JC8.6, by feeding RNAi resulted in a highly penetrant 

multivulva phenotype (Fig. 4.15 A). This phenotype was comparable to the ones produced by 

inactivation of the established class B synMuv genes lin-9 and lin-35, the C. elegans 

homologs of Mip130/TWIT and RBF1/2, respectively (Fig. 4.15 B). Interestingly, another study 

has also identified JC8.6 as a synMuv gene, supporting the results presented in this work 

(Owen et al. 2003). Inactivation of the putative dMyb homolog GEI-11 resulted in only few 

progeny, suggesting that GEI-11 is important for early steps of embryogenesis, and the 

survivors displayed normal vulvae. However, the similarity between dMyb and GEI-11 is 

restricted to tandemly arranged SANT domains, which are found in many nuclear proteins 

with diverse functions (Aasland et al. 1996). It is therefore unclear whether GEI-11 represents 

a homolog of dMyb.  

 

Figure 4.15: The C. elegans Mip120 homolog acts as a synMuv class B gene 

(A) Feeding RNAi using gfp (control) or JC8.6 constructs in lin-15 (n767) synMuv class A mutant 

background animals. Black arrowheads indicate vulva-like structures. (B) Statistic analysis of the 

frequency of multiple vulva-like structures in lin-15 (n767) mutant animals depleted for lin-9, lin-35, 

JC8.6 or odr-10 (control) by RNAi. avg. % Muv, average percentage of animals with multiple vulvae from 

three independent experiments; +/- SE, standard errors. The experiment was carried out by N. Dyson 

and J. Satterlee. The figure is taken from (Korenjak et al. 2004). 
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A Mip40 homolog could not be identified in C. elegans by a conventional BLAST search. In 

collaboration with Rein Aasland (University of Bergen, Norway), a sequence profile was 

created from Mip40 and different vertebrate homologs. A subsequent profile search resulted 

in the identification of C. elegans LIN-37 and a related protein in C.briggsiae. The similarity 

with Mip40 is restricted to three segments (A, B and C) within the proteins and it is not very 

high, which might explain why it was not picked up in the conventional BLAST search (Fig. 

4.16). Strikingly, lin-37 has previously been shown to act as a class B synMuv gene and its 

protein product has been identified as a LIN-53 interaction partner (Walhout et al. 2000). LIN-

53 is the C. elegans homolog of CAF1p55.  

Taken together, these results show that the C. elegans homologs of dE2F2/RBF complex 

subunits interact genetically. Furthermore, the Drosophila complex purification supports the 

hypothesis that synMuv gene products might act together in transcriptional repressor 

complexes (Ceol and Horvitz 2001). It seems likely that complexes similar to dE2F2/RBF also 

exist in the worm. 

 

 

Figure 4.16: LIN-37 is the C. elegans homolog of Mip40 

Color-coded multiple sequence alignments of Mip40-related and LIN-37 proteins. A putative nuclear 

localization sequence in the vertebrate sequences (NLS) and three segments of similarity (A, B and C) 

are shown. The figure is taken from (Korenjak et al. 2004). 
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4.2 Retinoblastoma complexes in the human system 
The conservation of dE2F2/RBF complexes between Drosophila and C. elegans raised the 

question whether such complexes also existed in higher organisms. Strikingly, homologs of all 

subunits exist in the human genome. Whereas some of the human proteins are well 

characterized transcriptional regulators (pocket proteins, E2F/DP factors, B-Myb, RbAp46 and 

RbAp48), others are not characterized, and the genes exist only as predicted open reading 

frames (hMip130/TWIT, hMip120, hMip40).  

 

4.2.1 Generation of antibodies directed against hMip130/TWIT, hMip120 
and hMip40 

In order to be able to biochemically characterize dE2F2/RBF complex subunit homologs in 

human cells, peptide antibodies were raised against hMip130/TWIT, hMip120 and hMip40. 

The specificity of the antibodies was tested by Western Blot using extracts derived from 

transiently transfected cells and in vitro translated proteins. The antibody directed against 

hMip130/TWIT gave rise to four bands when HEK 293 extract was subjected to Western Blot 

analysis (Fig. 4.17 A). One of the proteins recognized migrated with a molecular weight of 

approximately 65 kDa, which is close to the calculated molecular weight of hMip130/TWIT (64 

kDa) (lane 1, black arrow). This band increased in intensity when extract derived from HEK 

293 cells transfected with a hMip130/TWIT-expression vector was analyzed (lane 2, black 

arrow). Expression of Flag-tagged hMip130/TWIT resulted in the detection of an additional 

band, which migrated just above the 65 kDa band (lane 3, black arrowhead). Furthermore, the 

antibody specifically recognized in vitro translated untagged (black arrow) and Flag-tagged 

(black arrowhead) hMip130/TWIT, whereas an unrelated protein was not detected (lanes 4 – 

6). 

The specificity of the hMip40 and hMip120 antibodies was assessed in a similar manner. The 

antibody raised against hMip40 specifically recognized a protein of the expected size in the 

transfection and in vitro translation experiments (Fig. 4.17 B, lanes 2 + 4, black arrowhead). 

Two cDNAs encoding hMip120 proteins with a molecular weight of 60 kDa (from hereon 

referred to as hMip120 short form (hMip120sf)) and 90 kDa (from hereon referred to as 

hMip120 long form (hMip120lf)) have been reported. For these experiments only hMip120sf 

was available. The hMip120 antibody detected a specific band in the in vitro translation 

experiment (Fig. 4.17 C, lane 4, black arrowhead), but no specific signal was recognized in 

the transfection experiment (Fig. 4.17 C, lane 2). The corresponding protein product might be 
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highly unstable, which could be an explanation for the lack of detection of the protein in the 

transfection experiment. But since nothing is known about the biochemical properties of 

hMip120 this remains speculation. Moreover, the antibody cross-reacted with several 

polypeptides from the cell extract (Fig. 4.17 C, lanes 1 + 2).  

Taken together, these results suggest that antibodies specifically recognizing hMip130/TWIT 

and hMip40 have been generated that can be used for detection of these proteins in human 

cell extracts. The hMip120 antibody, however, could not reliably be used for further studies. 
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Figure 4.17: Tests for assaying the specificity of antibodies raised against hMip130/TWIT, hMip40 

and hMip120 

(A) Western Blot using the antibody directed against hMip130/TWIT of extracts derived from transiently 

transfected HEK 293 cells (lanes 1 – 3) or in vitro translated proteins (lanes 4 – 6). (B) Western Blot 

using the antibody directed against hMip40 of extracts derived from transiently transfected HEK 293 

cells (lanes 1 – 2) or in vitro translated proteins (lanes 3 – 4). (C) Western Blot using the antibody 

directed against hMip120 of extracts derived from transiently transfected HEK 293 cells (lanes 1 – 2) or 

in vitro translated proteins (lanes 3 – 4). Transiently expressed or in vitro translated proteins are denoted 

on top. hMip120sf, hMip120 short form; ctrl, control; tfxn, transfection; IVT, in vitro translation. Black 

arrows and arrowheads indicate specific Western Blot signals. Asterisks indicate cross-reacting 

polypeptides. 
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4.2.2 Human homologs of dE2F2/RBF complex subunits interact in HEK 
293 cells 

Interactions between pRb and RbAp46 and RbAp48 (Qian et al. 1993; Qian and Lee 1995), 

as well as an association of p107 and p130 with B-Myb (Joaquin et al. 2002) have been 

reported previously. These data provide a first hint that complexes homologous to 

dE2F2/RBF might also exist in human cells. 

To further test whether the human proteins could interact, a Flag-tagged version of hMip40 

was overexpressed in HEK 293 cells together with different human homologs of the 

Drosophila complex subunits. Interaction of the cotransfected proteins was tested by 

immunoprecipitation with an αFlag-antibody and verified by Western Blot. hMip40-F efficiently 

co-immunoprecipitated B-Myb, hMip130/TWIT and RbAp48 (Fig. 4.18, lanes 4, 8, 12). The 

multiple bands detected in the hMip40-F Western Blot are probably due to degradation of the 

protein. 

  

 

Figure 4.18: B-Myb, hMip130/TWIT and RbAp48 interact with hMip40 in HEK 293 cells 

HEK 293 cells were transfected with expression plasmids for hMip40-F and either B-Myb (lanes 1 – 4), 

hMip130/TWIT (lanes 5 – 8) or RbAp48 (lanes 9 – 12), as indicated. Transfected plasmids are denoted 

on top, proteins analyzed by Western Blot on the right. hMip40 was detected using an αFlag-antibody. 

IN, input; IP, immunoprecipitation. 

 

The interactions presented above comprise human homologs of proteins that have originally 

been identified as subunits of the dMyb-complex (Beall et al. 2002). In the next step, 

interactions between hMip40-F and the human pocket proteins were investigated using the 

same co-immunoprecipitation approach. Unexpectedly, none of the pocket proteins was 

found associated with hMip40, even though the precipitation of the Flag-tagged protein 

worked efficiently (Fig. 4.19, lanes 4, 8, 12). The pRb signal detected in the precipitated 

material is due to unspecific binding, since a signal of the same intensity also appeared in the 

control lane, where no Flag-tagged protein was present. 
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Several possibilities could account for the lack of interaction between hMip40 and pocket 

proteins in HEK 293 cells. One reason could be a general lack of this interaction in human 

cells. Alternatively, the association could be cell type specific. HEK 293 cells are virally 

transformed and express the potent viral oncoproteins Ad5-E1A and SV40-T, both of which 

have been shown to be able to bind the pocket domain. This results in the disruption of the 

interaction between pocket proteins and cellular targets (e.g. E2F/DP). It is also conceivable 

that the interaction between hMip40 and pocket proteins is not direct and in the cotransfection 

assay a bridging factor might have been missing or underrepresented compared to the 

overexpressed proteins.  

 

 

Figure 4.19: Pocket proteins do not interact with hMip40 in HEK 293 cells 

HEK 293 cells were transfected with expression plasmids for hMip40-F and either pRb (lanes 1 – 4), 

p107 (lanes 5 – 8) or p130 (lanes 9 – 12) as indicated. Transfected plasmids are denoted on top, 

proteins analyzed by Western Blot on the right. hMip40 was detected using an αFlag-antibody. IN, input; 

IP, immunoprecipitation. 

 

Since RbAp48 interacts with both, hMip40 and pRb, it was expected to be the most likely 

candidate for executing such a bridging function. In order to address this point, HEK 293 cells 

were cotransfected with Flag-tagged hMip40, RbAp48 and different pocket proteins. 

Immunoprecipitation of hMip40 revealed a clear interaction with RbAp48, as seen before, but 

the pocket proteins did not associate to form trimeric complexes (Fig. 4.20, lanes 4, 8, 12). 

Even though it cannot be excluded that another protein acts as a bridging factor, these results 

rather suggest that pocket proteins do not stably interact with hMip40 in HEK 293 cells. 

Taken together, these data provide evidence for interactions between human homologs of 

dMyb-complex subunits, but fail to show an association with pocket proteins. 
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Figure 4.20: Pocket proteins do not form trimeric complexes with hMip40 and RbAp48 in HEK 

293 cells 

HEK 293 cells were transfected with expression plasmids for hMip40-F, RbAp48 and either pRb (lanes 1 

– 4), p107 (lanes 5 – 8) or p130 (lanes 9 – 12) as indicated. Transfected plasmids are denoted on top, 

proteins analyzed by Western Blot on the right. hMip40 was detected using an αFlag-antibody. IN, input; 

IP, immunoprecipitation. 

 

4.2.3 Pocket proteins, B-Myb and hMip130/TWIT are assembled into 
high molecular weight complexes in MOLT-4 cells 

Since the use of HEK 293 cells as a system to look for pocket protein interactions holds 

caveats (see above), MOLT-4 cells were used for further studies of a putative human 

homolog of dE2F2/RBF complexes. MOLT-4 cells are a human T lymphoblast cell line, which 

is not virally transformed. It offers the additional advantage of growing in suspension and is, 

therefore, also more suitable for large scale biochemical approaches.  

Separation of MOLT-4 cell nuclear extract on a Superose 6 gel filtration column (Fig. 4.21) 

revealed that both, B-Myb and hMip130/TWIT eluted with an apparent molecular weight >669 

kDa, suggesting that these proteins are subunits of a large protein complex. pRb and p107 

showed a broad molecular weight distribution, ranging from 400 kDa to more than 1 MDa. 

Hence, they might be subunits of distinct protein complexes of different size. The p130 peak 

with a size of ∼500 kDa further confirms the co-immunoprecipitation results from HEK 293 

cells, suggesting that p130 is not assembled into the same complex(es) as B-Myb and 

hMip130/TWIT in MOLT-4 cells. 
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Figure 4.21: B-Myb, hMip130/TWIT and pocket proteins exist in large complexes in MOLT-4 cells 

MOLT-4 nuclear extract was loaded onto a Superose 6 gel filtration column. Elution of the indicated 

proteins was assessed by Western Blot, as indicated on the right. Fraction numbers are denoted on top, 

size standards on bottom. 

 

4.2.4 Partial purification of endogenous dE2F2/RBF-like complexes 
from MOLT-4 cells 

The presence of B-Myb, hMip130/TWIT and pocket proteins in high molecular weight 

complexes in MOLT-4 cells offered the possibility to purify the endogenous complex(es) and 

identify the cofractionating proteins by Western Blot and Mass Spectrometry. 

A similar purification protocol to the Drosophila one was used for the isolation of the human 

complex(es) (Fig. 4.22 A). Western Blot on the fractions from the final Superose 6 gel filtration 

column was performed using antibodies directed against B-Myb, hMip120, hMip130/TWIT, 

RbAp48 and hMip40 and the mammalian pocket proteins. The hMip120 antibody used for this 

and the following experiments was kindly provided by S. Gaubatz. B-Myb, hMip120lf, 

hMip130/TWIT, RbAp48 and hMip40 perfectly coeluted in fractions representing an apparent 

molecular weight >669 kDa (Fig. 4.22 B). Interestingly, these five proteins represent the 

human homologs of the subunits of the previously described dMyb complex (Beall et al. 

2002). The size of the purified human complex, however, suggests the presence of additional 

proteins. Alternatively, the complex could exist as a dimer.  

All three human pocket proteins were still detectable by Western Blot following the applied 

purification scheme. However, a clear coelution, as seen for the dMyb complex homologs, 
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was not observed (Fig. 4.22 B). This does not necessarily rule out pocket proteins as complex 

subunits, since pRb and p107 were still present in the B-Myb, hMip120lf, hMip130/TWIT, 

RbAp48 and hMip40 peak fractions. It is conceivable that a minor fraction of pRb or p107, 

which cannot be resolved with the applied purification procedure, is assembled into the 

complex. The lack of perfect coelution might also reflect that pocket proteins are no stable 

subunits of the complex. Alternatively, it is possible that the interaction between pRb and/or 

p107 and the other proteins was disrupted during the chromatographic purification.  

The homogeneity of the purified material was not sufficient for mass spectrometrical analysis 

of coeluting proteins and the establishment of additional columns in the purification process 

resulted in the drop of protein levels below the detection limit.  

 

 

Figure 4.22: Partial purification of an endogenous hMip40-containing complex from MOLT-4 cells 

(A) 2 g of MOLT-4 nuclear extract were subjected to the depicted purification scheme.  

(B) Western Blot using antibodies directed against the indicated proteins after the final Superose 6 gel 

filtration column of the purification procedure. Fraction numbers are denoted on top, size standards on 

bottom. IN, input. 
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4.2.5 hMip40 interacts with homologs of all dE2F2/RBF subunits in 
MOLT-4 cells 

The purification of the endogenous complex did not answer the question whether pocket 

proteins are subunits of the human complex. Therefore, an alternative strategy to resolve this 

point was established. A MOLT-4 cell line stably expressing a Flag-tagged hMip40 protein 

was generated as an efficient tool for identifying hMip40-associated proteins (see methods, 

3.2.1.4).  

Nuclear extracts derived from the hMip40-F and a control cell line were used for 

immunoprecipitations with an αFlag-antibody. The precipitated material was eluted and 

resolved by SDS-PAGE. Colloidal Coomassie staining revealed specific bands in the hMip40-

F IP, which were analyzed by Mass Spectrometry (Fig. 4.23). Six bands with stoichiometric 

intensity were detected on the Coomassie stained gel (lane 5, black ellipses), five of which 

could be identified and turned out to be hMip40, hMip130/TWIT, hMip120lf, B-Myb and p107. 

One stoichiometric band could not be identified by different mass spectrometical approaches. 

The stoichiometric appearance of these proteins and the fact that they are human homologs 

of dE2F2/RBF complex subunits strongly argue for their association in a protein complex. In 

contrast to the results obtained from the co-immunoprecipitation studies in HEK 293 cells (see 

4.2.2), a pocket protein (p107) was identified as a hMip40 interaction partner. Interestingly, 

neither pRb nor p130 were found in the Mass Spectrometry analysis. Furthermore, E2F/DP 

proteins and RbAp48 were not identified. This might be explained by the molecular weight of 

these proteins, which makes them migrate in the size range of the IgG heavy chain. The 

strong signal of the heavy chain might, therefore, cover these proteins in the Coomassie 

staining. In summary, these results suggest that a complex similar to dE2F2/RBF, including 

pocket protein(s), might exist in human cells. 

Among the bands that were present with lower or higher stoichiometry (white ellipses) were 

Tubulin and HSP70. Due to their high abundance in cells and the differences in stoichiometry, 

they were not considered as putative complex subunits. 
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Figure 4.23: Identification of hMip40-associated proteins in MOLT-4 cells 

Colloidal Coomassie staining of an αFlag-Immunoprecipitation from nuclear extract of a hMip40-F-

expressing (lane 5) or control cell line (lane 4). Precipitated material was eluted with Flag-peptide. 

Specific bands were excised and analyzed by Mass Spectrometry. Molecular weight markers are 

indicated on the left, identified polypeptides on the right. Black ellipses, proteins with comparable 

stoichiometry; white ellipses, proteins with lower or higher stoichiometry; *, not identified; x, IgG heavy 

chain; MW, molecular weight marker; IN, input; IP, immunoprecipitation; ctrl, control cell line (transfected 

with empty vector). 

 

The Mass Spectrometry data were further confirmed by Western Blot analysis of the 

precipitated material using antibodies directed against human homologs of dE2F2/RBF 

complex proteins (Fig. 4.24). As expected, all stoichiometric proteins that have been identified 

by Mass Spectrometry, were also detected by Western Blot. Moreover, by Western Blot also 

RbAp48 and E2F4 were identified as hMip40 interacting partners. Interestingly, E2F4 and 

E2F5 constitute the repressive E2F factors in the human system, which are the functional 

homologs of dE2F2 in the fly. In contrast to p107, no clear coprecipitation of pRb and p130 

with hMip40 could be detected, which is in contrast to Drosophila embryos and cell lines 

where both Retinoblastoma like factors (RBF1 + RBF2) are assembled into the complexes. 
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Taken together, the presented data strongly support the idea that a complex homologous to 

dE2F2/RBF also exists in human cells. 

 

 

Figure 4.24: Human homologs of dE2F2/RBF complex subunits interact with hMip40 

Western Blot of an αFlag-immunoprecipitation from nuclear extract derived from a hMip40-F-expressing 

(lanes 4, 8) or control cell line (lanes 3, 7) using the antibodies indicated on the right. The precipitated 

material was eluted with Flag-peptide. IN, input; IP, immunoprecipitation; ctrl, control cell line. 

 

4.2.6 Chromatographic purification disrupts the interaction of 
p107/E2F4 with hMip40 and associated proteins 

The fact that hMip40 coprecipitates the human homologs of all dE2F2/RBF subunits strongly 

argues for the presence of a similar complex in human cells. On the other hand, purification of 

the endogenous complex revealed a lack of exact coelution of p107 with the other proteins 

(see Fig. 4.22 B). The most likely explanation for this discrepancy would be the disruption of 

this interaction during the purification procedure. 

To test this hypothesis, nuclear extract derived from MOLT-4 cells stably expressing hMip40-

F was separated on the Q Sepharose HP ion exchange column. B-Myb, hMip130/TWIT and 

hMip40 perfectly coeluted in one peak, whereas two p107/E2F4 peaks were observed, both 
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of which were clearly shifted compared to the hMip40 profile (Fig. 4.25). Interestingly, hMip40 

eluted in one sharp peak, argueing against hMip40 being independently associated with 

hMip130/B-Myb and p107/E2F4. The data rather suggest a disruption of the p107/E2F4 – 

hMip40/hMip130/B-Myb interaction on the column. Nevertheless, the idea of two distinct 

hMip40-containing complexes could not be ruled out completely, since a certain degree of 

overlap between hMip40 and p107/E2F4 was still detectable. 

 

 

Figure 4.25: hMip40/hMip130/B-Myb and p107/E2F4 do not coelute on an ion exchange column 

Nuclear extract derived from the MOLT-4 hMip40-F cell line was loaded onto a Q Sepharose HP column 

and the bound material was eluted with a shallow salt gradient. The eluted material was analyzed by 

Western Blot using the indicated antibodies. The doublet in the hMip40 Western represents endogenous 

and Flag-tagged hMip40. Fraction numbers are denoted on top. IN, input; FT, flowthrough. 
 

To investigate a possible disruption of the hMip40 – p107/E2F4 interaction following 

chromatographic separation of nuclear extract on the Q Sepharose column, the hMip40 (#33) 

and the p107/E2F4 peak fractions (#25 + #37) were immunoprecipitated with an αFlag-

antibody (Fig. 4.26). hMip40, hMip130/TWIT and B-Myb were found to associate in #33 as 

well as #37 (lanes 5 + 8). Strikingly, neither p107 nor E2F4 specifically coprecipitated with 

hMip40 (lane 8). The intensity of the p107 signal detected in the immunoprecipitation is 

comparable to the p107 signal in the control-IP, where no hMip40-F was present (compare 

lanes 2 + 8). 
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The fact that hMip40 and p107/E2F4 associate in MOLT-4 nuclear extract (see 4.2.5) but this 

interaction is lost after separation of the extract on the Q Sepharose HP column, strongly 

argue for the disruption of this association during the purification process. This might also 

explain the discrepancies observed in the elution profile of p107 compared to the other 

complex components, which has been observed during the purification of the endogenous 

complex (see 4.2.4). 

 

 

Figure 4.26: The purification procedure disrupts the hMip40 – p107/E2F4 interaction 

Partially purified fractions from Fig. 4.25 were used as input material for immunoprecipitation using M2 

Agarose (Flag-beads). Equal amounts of hMip40-F in the input material from fractions 33 and 37 were 

estimated from the intensity of the signals in the elution profile in Fig. 4.25. The precipitated material 

was analyzed by Western Blot using the indicated antibodies. Input fractions for the IP are denoted on 

top. IN, input; IP, immunoprecipitation; Sup, supernatant; #, fraction. 
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4.2.7 The human B-Myb subcomplex specifically binds to deacetylated 
histone H4 tails 

Drosophila dE2F2/RBF complexes are implicated in transcriptional repression of a special 

class of dE2F target genes and they specifically interact with deacetylated histone H4 tails in 

vitro. Therefore, it was tested whether the human B-Myb subcomplex (B-Myb, hMip120, 

hMip130/TWIT, RbAp48, hMip40) shared some of these features. 

The properties of the partially purified human B-Myb subcomplex regarding its interaction with 

H4 tails were determined using the same H4 tail-peptide pulldown described for dE2F2/RBF 

complexes (see 4.1.7). Briefly, the partially purified complex was incubated with tetra-

acetylated or unmodified H4 tails bound to beads, and the precipitated material was analyzed 

by Western Blot. All proteins tested, bound specifically to unmodified H4 tails, whereas no 

interaction was observed with acetylated tails (Fig. 4.27). Since tetra-acetylated H4 is a mark 

for transcriptionally active chromatin, whereas deacetylated H4 is a feature of silenced 

regions, these results are consistent with an involvement of the complex in transcriptional 

repression. As suggested for the Drosophila complexes, binding might be due to the different 

charge of unmodified versus acetylated H4 tails. Alternatively, the specific binding of one or 

more complex subunits to deacetylated tails, which might become sterically impossible upon 

acetylation, is possible.  

Interestingly, clear differences were observed in the binding efficiency of the tested proteins 

(Fig. 4.27, compare lanes 1 + 4 to lanes 3 + 6). A possible explanation for the strong binding 

of RbAp48 might be the fact that it is a subunit of several chromatin modifying complexes, 

which might still be present in the partially purified fractions that were used as input material 

for the experiment. Therefore, the efficient binding observed for RbAp48 might result from the 

association of (a) different protein complex(es) with deacetylated H4 tails. Alternatively, the 

RbAp48 subunit might directly interact with the deacetylated H4 tails, whereas the other 

subunits might only be associated with the tails via RbAp48. Therefore, they might have got 

progressively lost during the washing steps. 
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Figure 4.27: Specific interaction of subunits of the human B-Myb subcomplex with deacetylated 

histone H4 tails 

Fractions containing partially purified B-Myb subcomplex (Hydroxylapatite column, see Fig. 4.22 A) were 

incubated with unmodified or tetra-acetylated H4 tail-peptides immobilized on beads. The bound 

material was analyzed by Western Blot using antibodies directed against the indicated proteins. Histone 

tail-peptides are indicated on top. H4 tail-peptides comprised aa 1 – 20. IN, input; H4 tetra-Ac, tetra-

acetylated H4 tail; H4, unmodified H4 tail. 

 

Interestingly, binding of the B-Myb subcomplex to unmodified H4 tails occurs independently of 

the association with p107/E2F4, showing that the subunits of the B-Myb complex are 

sufficient for this property. Therefore, the ability of each individual subunit to specifically bind 

to H4 tails was determined using in vitro translated proteins (Fig. 4.28). pRb and B-Myb did 

neither bind to tetra-acetylated nor to unmodified H4 tails (lanes 5 + 6, 8 + 9). Given the 

binding of B-Myb to unmodified H4 tails in the context of the complex (Fig. 4.27), this 

suggests that binding of in vitro translated proteins to H4 tails is probably not due to complex 

formation with the proteins from the reticulocyte lysate but is rather an intrinsic property of the 

proteins. hMip130/TWIT and hMip120sf interacted weakly, but specifically, with unmodified 

tails (lanes 12, 15). Since only the short form of hMip120 was analyzed for its binding 

properties, it remains possible that hMip120lf could behave differently. hMip40 bound both, 

acetylated and unmodified H4 tails, although the association with the unmodified tails was 

stronger (lanes 20 + 21). The most prominent interaction with unmodified H4 tails was found 

for RbAp48 (lane 18), suggesting that it might be the critical subunit for the binding of the B-

Myb complex to deacetylated H4 tails. Given that also hMip130/TWIT, hMip120sf and hMip40 

can interact with unmodified H4 tails, it is conceivable that they also contribute to the histone 

binding properties of the complex. 
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Figure 4.28: Several B-Myb complex subunits specifically interact with unmodified H4 tails 

Autoradiography of the bound material from an H4-peptide pulldown with in vitro translated 35S-labelled 

proteins. In vitro translated proteins and histone tail-peptides are denoted on top. Luc, Luciferase 

(control); hMip120sf, hMip120 short form; IN, input; H4 tetra-Ac, tetra-acetylated H4 tail; H4, unmodified 

H4 tail.  
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5 Discussion 
In this PhD thesis advantage was taken of the streamlined pRb-E2F network in the fruitfly 

Drosophila melanogaster. High molecular weight dE2F2/RBF complexes, which only differ in 

their RBF subunit (RBF1 or RBF2), were purified from Drosophila embryo nuclear extract. 

These complexes contain several novel pocket protein-associated polypeptides and localize 

to transcriptionally silent chromatin. Furthermore, the complexes specifically repress a certain 

class of dE2F target genes, which show sex-specific expression patterns and are implicated 

in gametogenesis. Strikingly, dE2F2/RBF complexes seem to be highly conserved between 

different organisms: Genes encoding the C. elegans homologs of the complexes act within 

the same genetic pathway and cooperate in different developmental processes. Moreover, a 

complex with striking similarity to the Drosophila complexes also exists in human cells.  

 

5.1 RBF-containing complexes in Drosophila 
High molecular weight RBF-containing complexes exist in Drosophila embryos as well as in 

Drosophila KC cells. dE2F2/RBF complexes represent the predominant species in late 

embryos, although a dE2F1/RBF1 complex is also detectable (see Fig. 4.2 + 4.3). The 

subunit composition and function of the latter was not studied in more detail, but since 

dE2F2/RBF complexes do not seem to be involved in cell cycle regulation, it appears likely 

that dE2F1/RBF1 complexes act in cell cycle control. This is in agreement with the analysis of 

de2f1 mutant flies, which show numerous deficiencies in cell cycle regulation and with results 

showing that dE2F1 is required for transcription of many cell cycle regulated dE2F target 

genes (Dimova et al. 2003). 

Analysis of early embryos revealed that high molecular weight RBF2-containing complexes 

assemble earlier in development than RBF1 complexes (see Fig. 4.1). Given the redundant 

functions of dE2F2/RBF complexes, this discrepancy is unexpected. It cannot formally be 

excluded that this complex differs in its subunit composition from the dE2F2/RBF2 complex in 

0 – 12 hr embryos. However, this seems unlikely since no additional RBF2 complex was 

detected in 0 – 12 hr embryos (see Fig. 4.2).  

RBF1- and RBF2-containing complexes in KC cells differ in size (see Fig. 4.1), suggesting 

that in KC cells the complexes have a subunit composition distinct from embryos. Unlike cells 

of the Drosophila embryo, KC cells are highly proliferative. This property might explain a 

possible difference in the subunit composition of the complexes compared to embryos. 
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The presence of monomeric RBF1 in Drosophila embryos is in agreement with its role in cell 

cycle progression and the dissociation of phosphorylated RBF1 from dE2F factors. The 

detection of uncomplexed RBF1 implies the presence of free dE2F/dDP heterodimers. 

However, no separate dE2F/dDP peak was observed in the embryo extract (see Fig. 4.2). It is 

formally possible that dissociation of RBF1 from dE2F1/dDP and/or association with 

coactivators does not affect interaction with the ion exchange resin. However, it seems more 

likely that Drosophila embryos might contain an excess of RBF1 protein to “neutralize” 

uncontrolled dE2F activity, whereas the transient, cell cycle-dependent changes in RBF-dE2F 

interaction are not detected. 

 

5.2 dE2F2/RBF complexes act in transcriptional regulation 
Several of the subunits of dE2F2/RBF complexes are implicated in transcriptional regulation. 

RBF1, RBF2 and dE2F2 are well characterized transcriptional repressors (Du et al. 1996a; 

Sawado et al. 1998; Stevaux et al. 2002; Dimova et al. 2003). In addition, dMyb has been 

implicated in progression from the G2 to the M phase of the cell cycle due to transcriptional 

activation of the cyclin B gene (Katzen et al. 1998; Okada et al. 2002). Furthermore, CAF1p55 

is a component of several chromatin modifying complexes (Henikoff 2003), implicated in both, 

activation and repression of transcription. Mip130/TWIT, Mip120 and Mip40, however, have 

not been shown to function in transcriptional regulation before, but rather are involved in the 

selective amplification of the chorion gene cluster in Drosophila ovarian follicle cells (see 

below). 

 

5.2.1 dE2F2/RBF complexes repress transcription of a special class of 
dE2F target genes 

dE2F2, dDP and the redundant function of RBF1 and RBF2 are required for the stable 

repression of E group genes, a class of dE2F target genes, many of which show sex-specific 

expression patterns and have been implicated in gametogenesis (Dimova et al. 2003). In 

agreement with their presence in dE2F2/RBF1 and dE2F2/RBF2 complexes, knockdown of 

Mip130/TWIT, Mip120 and CAF1p55 results in the de-repression of E group genes (see Fig. 

4.12) (Taylor-Harding et al. 2004). Interestingly, downregulation of dMyb protein level does 

not result in an upregulation of E group gene expression, even though it is an integral 

complex subunit (see Fig. 4.13). Moreover, on E group gene promoters E2F binding sites but 

no Myb binding sites are found. Therefore, it remains possible that dMyb in the context of 
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dE2F2/RBF complexes is crucial for the regulation of genes containing Myb binding sites, 

whose expression was not tested in this work. Alternatively, the integrity of the complexes 

might be essential for their function and most dE2F2/RBF complex subunits might be crucial 

for this, whereas dMyb might be dispensable. Moreover, dMyb might not be needed for the 

function of dE2F2/RBF complexes in transcriptional repression but might be a crucial 

component for their role in chorion gene amplification, which will be discussed below. 

Strikingly, several dE2F2/RBF complex subunits are not required for the regulation of the cell 

cycle-regulated A group genes (see Fig. 4.12) (Dimova et al. 2003; Taylor-Harding et al. 

2004). Nevertheless, complex subunits are physically present at A group gene promoters. 

The effect of Mip130/TWIT, Mip120, dMyb and CAF1p55 knockdown on the expression of A 

group genes was tested only for a subset of these genes and cannot exclude a possible 

regulation of other A group genes. All A group genes tested for regulation by dE2F2/RBF 

complexes are implicated in the G1/S progression of the cell cycle. However, in addition to 

genes important for G1/S progression, A group genes also comprise genes encoding factors 

with functions in other aspects of cell cycle regulation, such as DNA repair, mitosis and with 

still unknown roles (Dimova et al. 2003). A regulation of these distinct sets of genes by 

dE2F2/RBF complexes cannot formerly be excluded. 

The involvement of dE2F2/RBF complexes in transcriptional repression is supported by the 

association of complex subunits with transcriptionally silent chromatin on polytene 

chromosomes (see Fig. 4.7 and 4.8). The numerous chromosomal regions bound by complex 

subunits, which exceeds the number of known E group genes, could reflect association with 

other dE2F target genes (e.g. A group genes, see above), dMyb target genes, sites of DNA 

replication or yet other DNA sequences. 

 

5.2.2 Transcription repression mechanism of dE2F2/RBF complexes 

dE2F2/RBF complexes block E group gene transcription in a cell cycle-independent manner 

in proliferating Drosophila cells. This implies a relatively stable repression mechanism that 

has to be unresponsive to cyclin/cdk-mediated phosphorylation of RBF proteins during the 

cell cycle. Moreover, such a stable repression mechanism is very likely to involve the 

formation of a repressive chromatin conformation at the target gene promoters.  

Indeed, RBF1 is not dissociated from the dE2F2/RBF1 complex upon phosphorylation by 

cyclin E/cdk2 complexes (Lewis et al. 2004). The mechanism responsible for this escape is 

not known, but it seems likely that the additional complex subunits play a crucial role. 



DISCUSSION 

 - 88 -   

In order to establish a repressive chromatin conformation, enzymes capable of covalently 

modifying histones or remodeling nucleosomes are essential. In this respect it is rather 

surprising that no subunits with known enzymatic activity directed towards histones were 

identified as complex components. On the other hand, the characterization of dE2F2/RBF 

complexes by another group revealed the histone deacetylase dRPD3 and the subunits of the 

NURF chromatin remodeling complex as Mip120 and Mip130/TWIT interaction partners 

(Lewis et al. 2004). However, these proteins are present in substoichiometric amounts and 

knockdown of the proteins in S2 cells does not result in a de-repression of E group genes 

(Taylor-Harding et al. 2004). Furthermore, treatment of S2 cells with the histone deacteylase 

inhibitor Trichostatin A does not affect the repression of E group genes (Taylor-Harding et al. 

2004). Therefore, it is unlikely that loss of dRPD3 can be compensated by other histone 

deacetylases. Furthermore, several other chromatin modifying enzymes, implicated in active 

repression by pRb, are not essential for E group gene repression (Taylor-Harding et al. 2004). 

In C. elegans, LIN-37 (Mip40) is part of a protein complex containing LIN-35 (RBF), DPL-1 

(dDP) and LIN-53 (CAF1p55), but it is not associated with HDA-1 (dRPD3) (M. Harrison and 

R. Horvitz, personal communication). 

Despite being not important for the repression of E group genes in Drosophila S2 cells, the 

presented data cannot exclude a possible role for chromatin modifying proteins in the 

establishment of the repressive chromatin conformation at E group gene promoters early in 

development. Therefore, a model is conceivable in which chromatin modifying factors might 

get recruited to E group genes by dE2F, RBF or unknown factors early in development in 

order to establish the repression of the genes. In late embryos and differentiated Drosophila 

S2 cells, however, the maintenance of this repression is taken over by dE2F2/RBF complexes 

and the repression mechanism might involve stable chromatin/histone binding (Fig. 5.1). 
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Figure 5.1: Model for the repression of E group genes during development 

See text for details. 
 

The idea of dE2F2/RBF complexes acting by stable chromatin/histone binding is supported by 

the specific association of the complexes with deacetylated H4 tail-peptides in vitro (see Fig. 

4.10). Moreover, studies of individual human homologs of complex subunits revealed a strong 

interaction of RbAp48 (CAF1p55) with deacetylated H4 tails, whereas hMip40, hMip120, 

hMip130/TWIT and B-Myb showed modest or no interaction (see Fig. 4.28). Interestingly, 

RbAp46 and RbAp48 have previously been shown to interact with a region within the globular 

domain of histone H4 (Verreault et al. 1998). The data presented here provide evidence that 

RbAp48 can also specifically associate with histone H4 tails, when they are deacetylated. In 

contrast to the other human proteins tested for H4 tail interaction, RbAp48 is a known 

component of several chromatin modifying complexes. Therefore, it cannot formerly be 

excluded that RbAp48 is assembled into chromatin binding complexes with proteins from the 

reticulocyte lysate, which has been used for the in vitro translation reactions. The lack of 

interaction between pRb and the H4 tail, however, argues against this possibility because 

pRb is also known to interact with many chromatin modifying and binding proteins.  

The interaction between RbAp48 (CAF1p55) and the H4 tail very likely involves charge 

effects. Histone tails have a strong positive charge, whereas RbAp48 (CAF1p55) has a net 
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negative overall charge (pI = 4.74). In addition, RbAp48 (CAF1p55) contains WD40 repeats, 

which have been shown to fold into a beta-propeller domain. Recently, another WD40 repeat 

protein, WDR5, has been shown to specifically bind to methylated histone tails (Dou et al. 

2005; Wysocka et al. 2005), suggesting that also RbAp48 (CAF1p55) might be able to 

specifically bind to histone tails via its WD40 repeats. In addition to WD40 repeats, Tudor and 

MBT domains have also been implicated in the binding of specific histone lysine methylation 

marks (Huyen et al. 2004; Kim et al. 2006; Klymenko et al. 2006). Strikingly, Mip130/TWIT 

contains a region with similarity to a Tudor domain. Moreover, Lewis et al. identified L(3)MBT 

as a substoichiometric component of dE2F2/RBF complexes and showed that it is required 

for the stable repression of some E group genes (Lewis et al. 2004), and L(3)MBT contains 3 

MBT domains. However, dE2F2/RBF complexes show no specific association with histone 

tails dimethylated at H3K4, H3K9, H3K27 and H4K20 (see Fig. 4.9). Regardless of this lack of 

interaction, two lines of evidence argue for a more thorough investigation of this hypothesis: 

First, many more histone lysine residues are known to be methylated and binding is often 

very specific for the modification of one certain lysine residue. Heterochromatin Protein 1 

(HP1), for example, binds preferentially to methylated H3K9, whereas little binding to the 

same modification on H3K27 is observed, even though the amino acids surrounding the 

lysine are identical. Second, the specific recognition of lysine methylation marks by some 

WD40, Tudor and MBT domain proteins depends on the methylation state of the residue 

(mono-, di- or trimethylation).  

 

5.3 dE2F2/RBF complexes are highly conserved among 
different species 

An interesting feature of dE2F2/RBF complexes is the high degree of conservation of their 

subunits between different species. Besides Drosophila, C. elegans and mammals represent 

the model systems that provide the largest body of knowledge about proteins homologous to 

dE2F2/RBF complex subunits. 

 

5.3.1 Worms, vulval development and dE2F2/RBF complex homologs 

Homologs of all complex subunits exist in the nematode worm Caenorhabditis elegans. 

Intriguingly, most of them act in the same genetic pathway to determine cell fate during vulval 

differentiation. With the exception of dMyb, homologs of all dE2F2/RBF complex subunits in 
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C. elegans are members of the class B synMuv genes (Table 5.I). Whereas some of these 

genes have already been characterized before, JC8.6/Mip120 and lin-37/Mip40 were shown 

to function as a class B synMuv gene, and to encode a worm homolog of the dE2F2/RBF 

complex component Mip40, respectively (see 4.1.10 and (Owen et al. 2003)). LIN-52 is the 

homolog of dLin52, which has been shown to be an integral component of dE2F2/RBF 

complexes and to be required for the stable repression of E group genes (Lewis et al. 2004). 

The fact that dLin52 and the substoichiometric proteins L(3)MBT and dRPD3 were identified 

in the purification by Lewis et al. but not in the work presented in this PhD thesis might be due 

to the different purification strategies that have been used. While Lewis et al. used an 

immunoaffinity purification, in this work a more stringent classical chromatographic purification 

was applied. This difference might account for the loss of the integral complex subunit dLin52, 

but might also explain why the putative contaminant dRPD3 was not picked up in the work 

presented here. 

 

Table 5.I: C. elegans homologs of dE2F2/RBF complex subunits act in the same genetic pathway 

dE2F2/RBF complex subunits C. elegans homolog synMuv B gene 

Mip130/TWIT LIN-9 + 

Mip120 LIN-54/JC8.6 + 

RBF1/RBF2 LIN-35 + 

dMyb* GEI-11 - 

CAF1p55 LIN-53 + 

dDP DPL-1 + 

dE2F2 EFL-1 + 

Mip40 LIN-37 + 

dLin52 LIN-52 + 

dRPD3*§ HDA-1 + 

L(3)MBT§ LIN-61 + 

*dMyb and dRPD3 are not required for the repression of E group genes in Drosophila S2 cells (Korenjak 

et al. 2004; Lewis et al. 2004; Taylor-Harding et al. 2004) 

§dRPD3 and L(3)MBT are substoichiometric components of dE2F2/RBF complexes 

See text for details. 
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It has been proposed that synMuv gene products might act together in transcriptional 

repressor complexes regulating the expression of vulva-specific genes (Ceol and Horvitz 

2001). Recent work, however, suggests that the adoption of the vulval fate by additional 

precursor cells upon synMuv gene knockout is non-cell-autonomous and probably due to a 

failure in the transcriptional repression of the signaling molecule (LIN-3/EGF), that triggers the 

vulval differentiation program, in the surrounding tissue (Myers and Greenwald 2005; Cui et 

al. 2006). Future experiments should clarify if synMuv gene products regulate the expression 

of additional vulval differentiation genes or whether regulation of lin-3/EGF transcription is 

sufficient for the role of synMuv genes in vulval differentiation.  

Regardless of the place of action and the exact nature of the target gene(s), there is general 

agreement on the idea that synMuv gene products might form multi-subunit transcription 

repressor complexes. This hypothesis is supported by several observations: The homologs of 

many synMuv gene products act as transcriptional regulators in a variety of organisms. They 

comprise sequence specific DNA binding proteins (e.g. EFL-1/E2F) as well as proteins with 

chromatin modifying (e.g. CHD3/Mi-2, HDA-1/HDAC) and binding (e.g. LIN-

53/RbAp46,RbAp48) properties. Several of these proteins can interact and form multi-subunit 

complexes in other organisms (e.g. E2F-pocket protein complexes, NuRD complex). C. 

elegans LIN-35/Rb can interact with EFL-1/E2F, DPL-1/DP and LIN-53/RbAp46,RbAp48 and 

the latter one associates with HDA-1/HDAC in vitro (Lu and Horvitz 1998; Ceol and Horvitz 

2001). Moreover, LIN-37/Mip40 is part of a protein complex containing LIN-35/Rb, DPL-1/DP 

and LIN-53/RbAp46,RbAp48 (M. Harrison and R. Horvitz, personal communication). 

Together with the data implicating the Drosophila homologs of a variety of class B synMuv 

genes in a transcription repressor complex, this strongly supports the hypothesis that 

complexes similar to dE2F2/RBF act in C. elegans.  

 

5.3.2 A distinct function for a homologous mammalian E2F4/p107 
complex? 

The human genome encodes homologs of all dE2F2/RBF complex subunits and, 

interestingly, several of these proteins have been shown to associate with each other. 

Besides the well characterized interaction between E2F and pocket proteins, RbAp46 and 

RbAp48 have originally been identified as pRb interacting proteins (Qian et al. 1993; Qian and 

Lee 1995). Moreover, an association between p107 and B-Myb and a pRb – hMip130/TWIT 

interaction have been established more recently (Joaquin et al. 2002; Gagrica et al. 2004).  
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Indeed, several lines of evidence argue for the existence of a complex homologous to 

dE2F2/RBF in mammalian cells. The human homologs of complex components are 

assembled into high molecular weight complexes (see Fig. 4.21). Moreover, B-Myb, 

hMip130/TWIT, hMip120, RbAp48 and hMip40, representing the homologs of dMyb complex 

subunits (Beall et al. 2002), copurifiy over six chromatography columns and elute in fractions 

representing a molecular weight >669 kDa (see Fig. 4.22). The strongest evidence for the 

existence of a complex comprising also pocket and E2F proteins comes from the analysis of 

hMip40 interacting proteins (see Fig. 4.23 and 4.24). Strikingly, p107 coprecipitates with 

hMip40 in stoichiometric amounts compared to B-Myb, hMip120 and hMip130/TWIT in 

nuclear extract derived from MOLT-4 cells (see Fig. 4.23). Moreover, also E2F4 associates 

with hMip40. Interestingly, E2F4 is a mammalian repressive E2F factor, thereby representing 

the closest homolog of dE2F2. However, no other E2F factors were tested for their 

association with hMip40 in this work. Therefore, it cannot be excluded that additional human 

E2F proteins can interact with hMip40. 

What argues against the existence of a complex comprising all homologs of dE2F2/RBF 

subunits, is the slight shift in the peak fractions of dMyb complex homologs (B-Myb, hMip120, 

hMip130/TWIT, RbAp48 and hMip40) and pocket proteins observed during the purification 

procedure (see Fig. 4.22 + 4.25). A possible explanation for this discrepancy could be the 

existence of two distinct hMip40-containing complexes, one representing the human homolog 

of the dMyb complex and the second one comprising hMip40, p107 and E2F4. However, the 

fact that the association of hMip40 with p107 and E2F4 gets disrupted when MOLT-4 nuclear 

extraxct is separated on a Q Sepharose HP ion exchange column rather argues for the 

presence of a single, large complex like in Drosophila, which gets disrupted during the 

purification (see Fig. 4.25 + 4.26).  

No interaction between p107 and hMip40 was observed in HEK 293 cells, consistent with the 

idea that this association might be cell type-specific (see Fig. 4.19 and 4.20). A possible 

explanation might be the viral transformation of HEK 293 cells. Viral oncoproteins like Ad5-

E1A or SV40-T have been shown to disrupt the interaction between pocket proteins and 

some of their binding partners. Since this is thought to be an important transformation 

strategy of oncoviruses, dissociation of pocket proteins from the human complex might be a 

critical step in oncogenic transformation.  

B-Myb does not only interact with p107, but also associates, more weakly, with p130 (Joaquin 

et al. 2002). Furthermore, in MOLT-4 cells hMip40 interacts with p130, although much less 

efficiently than with p107 (data not shown). Therefore, it remains possible that, like in the fly, 

two redundantly acting complexes also exist in human cells.  
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Regarding the function of the human complex, the specific binding of the partially purified B-

Myb subcomplex and the individual proteins, most notably RbAp48, to deacetylated histone 

H4 tail-peptides are consistent with a role in transcriptional repression, as shown for the 

Drosophila complexes (see Fig. 4.27 and 4.28).  

hMip130/TWIT mutant mice do not show any obvious phenotype. However, the simultaneous 

mutation of hMip130/TWIT and the cell cycle regulatory factor cdk4, whose single inactivation 

results in decreased cell proliferation and downregulation of genes important for the G1/S 

transition of the cell cycle, can restore the protein levels of several of the G1/S regulators to 

some extent (Sandoval et al. 2006). This would be in agreement with a role for hMip130/TWIT 

in transcriptional repression. Furthermore, overexpression of hMip130/TWIT in mouse cells 

significantly decreases the number of S-phase cells (Sandoval et al. 2006). In contrast to the 

function of Mip130/TWIT in Drosophila cells, these findings implicate hMip130/TWIT in the 

control of G1/S phase progression. The data presented by Sandoval et al. closely resemble a 

study in C. elegans, where opposing functions for LIN-9/TWIT and CYD-1 in G1 regulation 

have been shown in double mutant animals (Boxem and van den Heuvel 2002). LIN-35/Rb, 

EFL-1/E2F and DPL-1/DP behave like LIN-9/TWIT, whereas LIN-37/Mip40 and LIN-

53/RbAp46,RbAp48 do not act in G1 regulation. This argues for a separate function of pRb, 

E2F, DP and Mip130/TWIT proteins in the worm that might not involve other complex 

subunits. The same might be the case in human cells, although no additional hMip130/TWIT 

complexes were detected during the purification procedure. These interactions might, 

however, be transient which would explain the lack of such complexes that are amenable to 

biochemical purification. In Drosophila, a role for Mip130/TWIT in G1 regulation in the context 

of cyclin/cdk knockout has not been studied.  

Regarding the analysis of the mutant mice it should be noted that single knockout of 

hMip130/TWIT did not result in any obvious phenotype, except of an increase in body size 

(Sandoval et al. 2006). This mild phenotype might be explained by fact that the “knockout” 

does probably not result in a complete null allele. It rather only removes the N-terminal 84 

amino acids, giving rise to a truncated protein. Importantly, the critical functional domains of 

hMip130/TWIT might reside in the Box 1 and 2 regions, which appear to be the most highly 

conserved stretches within the protein (Gagrica et al. 2004), and they are still present in the 

truncated protein. 

In contrast to its proposed role in cell cycle regulation, another study does not implicate 

hMip130/TWIT in G1/S phase progression. Neither overexpression nor RNAi-mediated 

knockdown of hMip130/TWIT reveals significant changes in the cell cycle profile of human 

cells (Gagrica et al. 2004). Although hMip130/TWIT and pRb interact, they do not cooperate 
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in transcriptional repression. Moreover, hMip130/TWIT does not control expression from the 

cell cycle-regulated cyclin E gene promoter, which is a target of the E2F transcription factor 

family (Gagrica et al. 2004). It rather cooperates with pRb in the induction of the “flat cell” 

phenotype, which shows some of the hallmarks of senescent and differentiated cells, and in 

the activation of a differentiation-specific gene (Gagrica et al. 2004). 

The discussed findings suggest rather diverse functions for hMip130/TWIT in human cells. 

Together with the role of dE2F2/RBF complexes in the repression of sex- and differentiation-

specific dE2F target genes and the fact that a homologous complex also exists in human 

cells, these results put another twist to the possible role of the complex in mammalian cells. In 

order to unravel the actual function of the human complex, future work will have to address 

the question of endogenous target genes of the complex.  

 

5.4 A conserved role for E2F and pocket proteins in germ 

line – soma distinction 
Many E group genes are known to act during gametogenesis and show sex-specific 

expression patterns (Dimova et al. 2003), suggesting that their expression is essential for 

proper development of germ cells and, hence, fertility. Accordingly, their expression is stably 

repressed in somatic Drosophila S2 cells. This is in agreement with the idea that their 

expression has to be specifically restricted to the germ line. It is tempting to speculate that 

dE2F2/RBF complexes are crucial for the repression of germ line-specific genes in somatic 

tissues. This assumes that mechanisms exist that override repression in the germ line. 

Interestingly, Drosophila spermatocytes express the always early (Aly) gene product, a 

paralog of Mip130/TWIT (White-Cooper et al. 1998). Aly is a chromatin-associated protein 

that is essential for progression through meiosis and terminal differentiation (White-Cooper et 

al. 2000) and might, therefore, be involved in the activation of germ line-specific genes. 

However, a direct role for Aly in the activation of these genes remains to be shown. The 

comparison of genes that are repressed by dE2F2 in S2 cells and ovaries revealed only very 

limited overlap (Stevaux et al. 2005). This suggests that the majority of genes that are stably 

inactivated by dE2F2/RBF complexes in S2 cells are not negatively regulated by the same 

complexes in the germ line. 

Further support for a role of E2F and pocket proteins in germ line – soma distinction comes 

from studies in C. elegans. Inactivation of lin-35/Rb results in the detection of PGL-1, a 

component of the strictly germ line-specific P-granules, in somatic cells. In addition, structures 
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resembling P-granules can be observed in the soma (Wang et al. 2005). These findings 

suggest that lin-35/Rb functions to repress germ line-specific genes in somatic tissues. In 

contrast, LIN-35/Rb does not repress a group of genes implicated in oogenesis, which is 

positively regulated by EFL-1/E2F and DPL-1/DP, in the hermaphrodite gonad, suggesting 

that the LIN-35/Rb-dependent repression of germ line-specific genes might be overcome in 

the gonad (Chi and Reinke 2006). These findings are in agreement with the observation that 

inactivation of efl-1/E2F and dpl-1/DP results in sterility due to oocyte degeneration, whereas 

lin-35/Rb mutant animals are fertile with a morphologically normal germ line (Lu and Horvitz 

1998; Ceol and Horvitz 2001; Chi and Reinke 2006).  

Several dE2F2/RBF complex components are conserved in plants, including members of the 

RBR1 (RBF), MSI1 (CAF1p55), ALWAYS EARLY (Mip130/TWIT) and MYB (dMyb) families, 

and they appear to play an important role during reproductive development (Hennig et al. 

2003; Kohler et al. 2003; Bhatt et al. 2004; Ebel et al. 2004; Hennig et al. 2004).  

In mammalian cells, E2F6 has recently been shown to be crucial for the stable repression of 

testis-specific genes in somatic tissues. These targets include genes specifically required 

during meiosis (Pohlers et al. 2005; Storre et al. 2005). In contrast to the situation in 

Drosophila and C. elegans, repression by E2F6 is pocket protein-independent. Rather, E2F6 

is known to be assembled into complexes with PcG proteins, some of which have chromatin 

modifying activity (Trimarchi et al. 2001; Ogawa et al. 2002; Attwooll et al. 2005). In 

agreement with this, loss of E2F6 results in a decrease in repressive histone modifications at 

target gene promoters (Storre et al. 2005). It is conceivable that E2F6 has evolved as a 

specialized member of the E2F transcription factor family in higher organisms to adopt the 

role of pocket proteins in the stable repression of germ line-specific genes in somatic tissues. 

This hypothesis is supported by the lack of E2F6-like factors in flies, worms and plants. 

 

5.5 A role for dE2F2/RBF complexes in DNA replication? 
Resolving the subunit composition of dE2F2/RBF complexes revealed an intriguing feature of 

the complex components. Several of the subunits (Mip130/TWIT, Mip120, dMyb, CAF1p55 

and Mip40) have previously been shown to be assembled into a dMyb complex (Beall et al. 

2002). This complex functions during the endoreplication of chorion genes in Drosophila 

ovarian follicle cells. In Drosophila, the developing oocyte is surrounded by a layer of follicle 

cells, which produce large amounts of eggshell protein, required for proper oocyte 

development. During oogenesis, the chorion (eggshell) genes in follicle cells are subject to 

specialized DNA replication events. These comprise the shutdown of genomic DNA 
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replication and subsequent specific amplification of four chorion gene loci (Calvi et al. 1998; 

Claycomb et al. 2004). Chorion gene amplification differs from normal DNA replication by re-

replication events within a single cell cycle. The dMyb complex binds site-specifically to 

chorion gene amplification control elements (ACE). Moreover, dMyb interacts with origin 

recognition complex (Orc) proteins, and both, dMyb and Mip120 binding sites in an ACE, are 

required for proper amplification in a replication reporter assay (Beall et al. 2002). The 

analysis of dmyb and mip130/twit mutants revealed opposing effects on chorion gene 

amplification. dmyb mutant follicle cells shut down genomic DNA replication but they are 

unable to initiate amplification of the chorion gene loci (Beall et al. 2002). In contrast, 

mip130/twit mutants fail to shut down genomic DNA replication (Beall et al. 2004). This led to 

a model implicating the dMyb complex in the cessation of genomic DNA replication and the 

dMyb protein in overriding this negative regulation at chorion gene loci (Beall et al. 2004). As 

an integral subunit of the “repressor complex”, specific activation of dMyb seems essential for 

the initiation of chorion gene amplification. However, the underlying mechanism is still 

unclear.  

Excitingly, the gene amplification defect observed in dmyb mutant flies is closely resembled 

by a hypomorphic allele of de2f1 (Royzman et al. 1999). Therefore, dE2F1 might also act in 

overriding the activity of the “chorion gene amplification repressor complex”. On the other 

hand, rbf1 and e2f2 flies continue genomic DNA replication instead of restricting replication to 

chorion gene loci, as seen for the inactivation of mip130/twit (Bosco et al. 2001; Cayirlioglu et 

al. 2001). These findings are especially interesting with respect to the subunit composition of 

dE2F2/RBF complexes. Several of the complex components seem to play a role in the 

amplification of chorion genes. Moreover, they associate with ACEs and interact with Orc 

proteins (Bosco et al. 2001; Beall et al. 2002). Therefore, it is conceivable that dE2F2/RBF 

complexes, in addition to their role in transcriptional regulation, have an unexpected role in 

DNA replication control at chorion gene loci. Replication of chorion genes in Drosophila, 

however, is a rather specialized event and mutation of de2f2 and mip130/twit does not result 

in more general replication defects (Frolov et al. 2001; Beall et al. 2004). Nevertheless, 

pocket proteins have also been implicated in DNA replication in human cells. In early S 

phase, they specifically localize to sites of active DNA replication and pRb localizes to specific 

replication control sites after S phase DNA damage, where it suppresses abnormal 

endoreplication events (Kennedy et al. 2000; Avni et al. 2003).  

Taken together, it is conceivable that dE2F2/RBF complexes execute rather distinct functions. 

They act in the stable repression of sex- and differentiation-specific genes, which might, for 

example, be crucial in germ line – soma distinction. On the other hand, they might also be 
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directly involved in the regulation of DNA replication. Therefore, dE2F2/RBF complexes might 

provide an important link for the coordination between cell cycle regulation, DNA replication 

and the onset of a specific differentiation program. 

 

Pocket protein-mediated recruitment of several transcription repressor complexes has been 

shown to play an essential role in the regulation of E2F target genes important for cell cycle 

progression. This study, for the first time, implicates native pocket protein-containing 

complexes in the specific regulation of developmentally controlled E2F target genes. Based 

on the data presented in this work, further characterization of these complexes will be another 

step forward in our understanding of the pRb-E2F network as a “master regulator of cell cycle 

and differentiation”. 
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List of abbreviations and acronyms 
 

aa   amin acid 

ACE   amplification control element 

Ad-E1A   Adenovirus E1A protein 

Aly   always early 

arp   actin related protein 

ATP   adenosine triphosphate 

BLAST   basic local alignment search tool 

BRG1   brahma related gene 1 

BRM   brahma 

BSA   bovine serum albumine 

CAF1   chromatin assembly factor 1 

cdk   cyclin dependent kinase 

cdki   cyclin dependent kinase inhibitor 

CHD   chromatin organization modifier/helicase/DNA binding domains 

ChIP   chromatin immunoprecipitation 

CV   column volume 

CYD   cyclin D 

DMSO   dimethyl sulfoxide 

DNA   deoxyribonucleic acid 

dnk   deoxyribonucleoside monophosphate kinase 

DP   differentiation regulated transcription factor protein 

DPL   DP like 

DTT   dithiotreithol 

EDTA   ethylene diamine tetraacetic acid 

EFL   E2F like 

EGF   epidermal growth factor 

EGTA   ethylene glycol-bis(2-aminoethylether)-N,N,N´,N´-tetraacetic acid 

E2F   E2 promoter binding factor 

FCS   fetal calf serum 

GEI   GEX interacting protein 

G1 phase  gap phase 1 

GST   glutathione-S-transferase 

G2 phase  gap phase 2 

HAT   histone acetyltransferase 

HDAC   histone deacetylase 

HEK 293  human embryonic kidney epithelial cell line 
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HEPES   N(2-hydroxyethyl)piperazine-N´(2-ethanesulphonic acid) 

HMT   histone methyltransferase 

HPC2   human polycomb 2 

HPL   HP1 like 

HP1   heterochromatin protein 1 

HPV16-E7  Human Papilloma Virus E7 protein 

HRP   horseradish peroxidase 

HSP   heat shock protein 

Ig   immunoglobuline 

IP   immunoprecipitation 

IVT   in vitro translation 

kDa   kilodalton 

LIN   abnormal cell lineage 

L(3)MBT  lethal (3) malignant brain tumor 

MALDI-TOF  matrix-assisted laser desorption ionization – time of flight 

MAP   mitogen activated protein 

MBT   malignant brain tumor 

MDa   megadalton 

Mip   Myb interacting protein 

M phase  mitosis 

MSI1   mulitcopy suppressor of IRA 1 

Myb   myeloblastosis 

NE   nuclear extract 

NuRD   nucleosome remodeling/deacetylation 

NURF   nucleosome remodeling factor 

Orc   origin recognition complex 

PAGE   polyacrylamide gel electrophoresis 

PBS   phosphate buffered saline 

Pc   polycomb 

PcG   polycomb group 

pcna   proliferating cell nuclear antigen 

PCR   polymerase chain reaction 

PCV   packed cell volume 

PEI   poly(ethylenimine) 

PGL   P granule abnormality 

PMSF   phenylmethane sulfonyl fluoride 

Pol   polymerase 

pRb   Retinoblastoma protein 

PRMT   protein arginine methyltransferase 

PVDF   polyvinylidine difluoride 
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RbAp   Retinoblastoma associated protein 

RBF   Retinoblastoma like factor 

RBR1   Retinoblastoma related 1 

RNA   ribonucleic acid 

rnr   ribonucleotide reductase 

RPD3   reduced potassium dependency 3 

rp49   ribosomal protein 49 

SANT   SWI/SNF, ADA, N-CoR, TFIIIB 

SDS   sodium dodecyl sulfate 

S phase  DNA synthesis phase 

SUV39H1  suppressor of variegation 3-9 H1 

SV40-T   Simian Virus 40 T antigen 

SWI/SNF  mating type switch/sucrose non-fermenting 

synMuv   synthetic multivulva 

TBP   TATA binding protein 

TCA   trichloroacetic acid 

TFIIH   transcription factor II H 

TRAX   Drosophila transcription extract 

TWIT   Twilight 

VPC   vulval precursor cell 

WCE   whole cell extract 
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