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Abstract

In this thesis we study two quantum aspects of black holes, their entropy and
the Hawking effect. First, we present a model for the statistical interpretation
of black hole entropy and show that this entropy emerges as a result of missing
information about the exact state of the matter from which the black hole
was formed. We demonstrate that this idea can be applied to black holes
made from both ultra-relativistic and nonrelativistic particles.

In the second part we focus our attention on several features of black hole
evaporation. We discuss the dependence of the Hawking radiation on the
vacuum definition of different observers. It becomes evident that in certain
cases the choice of observer has an influence on the particle spectrum. In
particular, we study the meaning of the Kruskal vacuum on the horizon. After
that we determine the Hawking flux for nonstationary black holes. We find
approximate coordinates which are regular on the time dependent horizon
and calculate the particle density measured by an observer at infinity.

Finally, we derive the response of a particle detector in curved back-
ground. In our approach we use the Unruh detector to quantify the spec-
trum of radiation seen by general observers in Minkowski, Schwarzschild and
Vaidya space-times. We find that an arbitrarily accelerated detector in flat
space-time registers a particle flux with a temperature proportional to a
time dependent acceleration parameter. A detector moving in Schwarzschild
space-time will register a predominantly thermal spectrum with the exact
temperature depending on the observer’s trajectory. If the detector is located
at constant distance from the black hole it measures a shifted temperature
which diverges on the horizon. On the other hand, a detector in free fall to-
wards the black hole does not register a thermal particle flux when it crosses
the horizon. In this framework corrections to the temperature measured by
a detector moving in Vaidya space-time are obtained as well. We argue that
our result also clarifies the role of horizons in black hole radiation.
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Notation
We use the conventions of [31, 33].
The signature of the space-time metric is {+,−,−,−},
Greek indices µ, ν, ... range from 0 to 3,
whereas Latin indices i, j, ... range from 0 to 1 and denote time and space
components in two dimensions,
and repeated indices are summed.
If not mentioned otherwise we use natural units, ~ = c = kB = G = 1.



Introduction

The existence and simple geometrical properties of black holes are predicted
by the theory of general relativity. Astrophysical observations have confirmed
their existence with almost certainty. It is believed that supermassive black
holes exist in the centres of most galaxies, including our own [14, 45]. As-
trophysical black holes can be formed during gravitational collapse. If the
mass of a collapsing star is large enough no inner structure survives and the
star becomes a black hole. The essential feature of black holes is the exis-
tence of the so-called horizon that defines a region from which no signals, not
even light, can escape. According to the no-hair theorem, stationary black
holes – the asymptotic final state of the collapse – are uniquely described by
only three parameters: mass, electric charge and angular momentum. This
suggests an analogy to gases which can be described macroscopically by few
parameters, such as temperature, pressure, volume and entropy.

In 1972 Bekenstein showed that black holes possess entropy proportional
to the horizon area and deduced that they should therefore emit radiation
[4, 5]. Soon afterwards Hawking confirmed this conjecture. In his famous
work of 1974 he calculated the particle flux from black holes in the framework
of quantum field theory in curved backgrounds [20, 21]. In effect a black
hole is not completely black but emits radiation with a low but nonzero
temperature. An intuitive picture of black hole radiation involves virtual
particle-antiparticle creation in the vicinity of the horizon due to quantum
fluctuations. It may happen that two particles with opposite momenta are
created, one particle inside the horizon and the other particle on the outside.
The first virtual particle always falls into the black hole. If the momentum
of the particle outside is directed away from the black hole, it has a nonzero
probability of moving away from the horizon and becoming a real radiated
particle. The mass of the black hole will decrease in this process since the
energy of the particle falling into the black hole is formally negative. The
result of careful calculations is that the black hole emits a flux of thermally
distributed particles with a temperature inversely proportional to its mass.
Actually, the spectrum of the emitted particles contains an additional grey



x Introduction

factor since particles with low energies are backscattered by a potential bar-
rier. Although the Hawking effect is negligible for astrophysical black holes,
it becomes significant for very small, primordial black holes which might have
been formed in the very early stage of our universe’s evolution when it was
still extremely dense and hot.

The derivation of Hawking radiation confirmed the existence of black
hole entropy and led to the formulation of black hole thermodynamics [2, 6].
Nevertheless, even today there remain open questions such as the information
paradox, the microscopical origin of entropy and the final state of evaporation
[15]. A complete understanding of those problems is only possible within a
consistent quantum theory of gravity. In recent years promising progress in
this direction has been made within loop quantum gravity and string theory,
see for example [38, 50, 53] and references therein. However, at least for very
large black holes, quantum effects can be studied within semi-classical theory
as well.

In the following we investigate two aspects of quantum black holes, the
statistical origin of entropy and the properties of the Hawking radiation for
general observers and for nonstationary black holes. To motivate our consid-
erations we briefly discuss previous work in these areas.

In usual thermodynamics, the entropy definition based on information
theory assumes a direct relation between the lack of information about a
physical system and its entropy. By analogy, one tries to find a similar
understanding of why SBH = 1

4
A represents the entropy of a black hole by

identifying its quantum dynamical degrees of freedom [5, 66]. Zurek and
Thorne suggested that the entropy of a black hole can be interpreted as “the
logarithm of the number of quantum-mechanical distinct ways that the hole
could have been made” [66]. Another interesting approach is to attempt
quantization of the black hole mass [7, 32]. However, neither approach gives
a complete solution to the problem [15].

The computation of Hawking radiation appears to be reasonably robust.
Schützhold showed in [46] that the particle flux at late times is insensitive to
the presence of particles in the initial state. One might also anticipate that
the spectrum depends on physics beyond the Planck scale, since outgoing
modes which contribute to the particle spectrum originate from modes with
extremely large wave numbers [10, 55]. In a recent article Unruh et al.

presented examples where changes in the dispersion relation in the Planckian
regime are visible in the particle spectrum [56]. On the other hand, properties
of Hawking radiation will depend on the motion of the observer and the choice
of vacuum state.

The Hawking flux for an eternal black hole is usually derived using the
maximally extended Kruskal manifold. Then the initial vacuum state is
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specified by imposing boundary conditions on the past event horizon, where
the Kruskal coordinate U is a Killing vector, see also [9, 12, 16, 17, 47]. Some
work has been done concerning the dependence of the particle spectrum on
the choice of other possible coordinates, in essence other possible vacua.
Shankaranarayanan et al. studied the derivation of the Hawking effect in
Lemaitre coordinates which describe a freely falling observer and cover only
half of the Kruskal manifold. Their calculations were performed using the
Euclidean formulation of field theory. They find that in this case the change
of coordinates does not affect the particle spectrum [48].

The Hawking effect is certainly sensitive to changes in the black hole
mass. When a black hole emits radiation it loses energy and therefore its
mass decreases. In this process the temperature increases and the black
hole will emit more radiation. A model for black holes with linear mass
decrease has been studied in [23, 60]. However, the real situation is more
complicated since the mass decrease of a black hole due to evaporation is
inversely proportional to the square of its mass. A number of researchers
studied the particle flux for general black hole mass using the method of
analytic continuation [27, 63, 64]. However, the results are limited since they
are only valid in the vicinity of the horizon [49].

From the physical perspective, perhaps the most appealing derivation of
the Hawking effect is to determine the particle flux registered by a detector
moving in the space-time. Often the “Unruh thermometer”, introduced in
[54], is used as a model for this particle detector. The detector is coupled
to a quantum field with the interaction being turned on and off in some
proper detector time. Given the motion of the detector in the space-time, the
transition probability to its various energy eigenstates can be calculated using
standard time dependent perturbation theory. The transition probability for
a uniformly accelerated detector in flat space-time which registers a thermal
flux of particles in the Minkowski vacuum has been studied extensively [17,
54]. In a recent article [28] Lin et al. showed that including the backreaction
of the detector on the field does not change the particle spectrum significantly
and therefore can be neglected. It has also been argued that as long as
the detector is turned on and off smoothly the spectrum changes only by
transients [51]. As noted by Schlicht [44], however, it is still an open question
if the existence of a horizon is crucial for the emergence of a particle flux for
an arbitrary observer.

In this thesis we present a new statistical explanation for black hole en-
tropy and study some properties of the Hawking radiation in detail. Us-
ing the Unruh detector the particle flux measured by different observers in
Minkowski and Schwarzschild space-time is determined. In this framework
we also derive the Hawking effect for an observer in a time dependent black
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hole space-time.
The outline of our thesis is as follows. In chapter 1 we discuss stationary

black hole solutions in general relativity and review the development of black
hole thermodynamics. After that we calculate the particle density emitted
by eternal black holes as well as black holes formed by gravitational collapse.

We present a new statistical explanation for the origin of black hole en-
tropy in chapter 2 and show that our model can be used for black holes made
from relativistic as well as nonrelativistic particles.

In chapter 3 some properties of the Hawking radiation are examined in
detail. To make the problem mathematically tractable we work in the 1 + 1
dimensional theory. Of special interest is the sensitivity of the observed
particle spectrum on the choice of vacuum, and we discuss the influence of
the presence of particles in the initial state. Lastly, we compute the particle
flux measured by different observers and clarify the meaning of the Kruskal
coordinates.

We calculate the Hawking flux for a black hole with time dependent
mass in chapter 4. As a model for such nonstationary black holes we use
the Vaidya solution. We find coordinates which are regular on the time
dependent horizon and examine their relation to an observer very far away
from the black hole. After that we determine the Hawking spectrum for
particular examples.

The Unruh detector is introduced in chapter 5 to quantify the spectrum
of radiation seen by general observers. First we study detectors moving in
Minkowski space-time. After that, the particle spectrum registered at finite
distance from the black hole is derived. We consider both static and freely
falling detectors and show that in both cases the Hawking temperature is
multiplied by a factor depending on the detector’s radial distance from the
black hole. Finally, we compute the particle flux registered by a detector in
Vaidya space-time, and compare the results to chapter 4. This sheds light
on the role of horizons for black hole radiation.

In chapter 6 we review the general results and discuss still open problems.



Chapter 1

Black holes and Hawking
radiation

Classical general relativity describes black holes as massive objects with such
a strong gravitational field that even light cannot escape their surface. On
the other hand, quantum theory predicts that black holes do emit particles.
The particle flux has a thermal distribution, and a temperature inversely
proportional to the mass can be assigned to the black hole. Accordingly,
black holes have nonzero entropy and, analogous to usual thermodynamical
systems, laws of black hole thermodynamics can be formulated. On the clas-
sical level this is a purely formal analogy, whereas a physical interpretation
is possible within quantum theory.

In the following we will first give a brief introduction to black holes in
general relativity. Then we present the laws of black hole thermodynamics
and discuss the analogy to classical thermodynamics. Finally we review the
derivation of Hawking radiation for eternal black holes as well as black holes
formed by gravitational collapse.

1.1 Black holes in general relativity

1.1.1 Schwarzschild metric

A spherically symmetric nonrotating, uncharged black hole is described by
the well-known Schwarzschild metric

ds2 =
(

1 − rs
r

)

dt2 −
(

1 − rs
r

)−1

dr2 − r2dΩ2, (1.1)

where dΩ2 = dθ2 + sin2 θdφ2 is the line element on the unit two-sphere. The
Schwarzschild radius rs = 2M is also called the black hole horizon since it
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causally separates the exterior region from the interior. The Schwarzschild
space-time is the unique spherically symmetric solution to the vacuum Ein-
stein equations Rµν = 0. The components of the metric tensor do not depend
on time t, and the generator of this time symmetry transformation is the
Killing vector ∂t. At large distances, r → ∞, the metric reduces to the usual
Minkowski metric. Hence, r is the radial space- and t the time-coordinate
for an observer located at infinity.

The metric (1.1) has two singular points. The singularity at r = rs
represents a breakdown of these particular coordinates, which means it is a
coordinate singularity similar to that at the origin r = 0 of polar coordinates
in flat space. In the next section we will show that there exist coordinates
which are regular on the horizon. The other singularity occurs at the origin
r = 0 and is a real curvature singularity which can be seen from the diver-

gence of the invariant I = RαβγδRαβγδ = 12 r
2
s

r6
. Inside the horizon, for r < rs,

the coordinate t is space-like and r is time-like. Therefore the coordinates
(t, r) may be used with the normal interpretation of time and space only in
the exteriour region r > rs.

1.1.2 Kruskal coordinates

Since the Schwarzschild metric (1.1) only describes the space-time outside
the black hole horizon, it is useful to find coordinates which do not show a
singularity at that point and can be extended beyond. The most convenient
way to study the behavior near r = rs is to choose coordinates along ingoing
and outgoing radial null geodesics. For this purpose we introduce the tortoise
coordinate

r? = r − rs + rs ln
( r

rs
− 1
)

, dr? =
dr

(1 − rs
r
)
, (1.2)

which results in the alternative from of the metric

ds2 =
(

1 − rs
r

)

(

dt2 − dr?2
)

− r2(r?)dΩ2. (1.3)

In these coordinates the horizon is mapped to infinity, that means r = rs
corresponds to r? = −∞. This is why r? is called tortoise coordinate: An
object approaching the horizon has to cross an infinite distance in r?. If we
take a set of photons at a fixed t and assign to each of them a number v which
remains constant during the motion of the photon, this v can be chosen as a
new coordinate. The light cone coordinate for ingoing photons, i.e. photons
moving radially towards the black hole centre, is

v = t+ r?(r). (1.4)
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singularity r = 0

U V
singularity r = 0

r = rs

r < rs

U < 0

V < 0

r > rs

II

IIII

IV

Figure 1.1: Spacetime diagram of the extended Kruskal manifold.

The distance to the black hole decreases with time, so v is called the advanced
time. Since no observer can move together with a photon, the new frame
strictly speaking does not fulfill the requirement of a reference frame. Nev-
ertheless, the system of test photons proves to be convenient. The outgoing
light cone coordinate u is called the retarded time and is defined by

u = t− r?(r). (1.5)

Now we can rewrite the Schwarzschild metric (1.1) using either the ingoing
coordinate v,

ds2 =
(

1 − rs
r

)

dv2 − 2dvdr − r2dΩ2 , (1.6)

or using the outgoing coordinate u,

ds2 =
(

1 − rs
r

)

du2 + 2dudr − r2dΩ2. (1.7)

These coordinates (u, v) are called Eddington-Finkelstein coordinates and
are defined only outside the horizon. However, since they are regular on the
horizon they can be analytically continued to the origin r = 0.

The two line elements (1.6) and (1.7) describe different physical scenarios.
Examining the light cone equation ds2 = 0, for (1.6) we find the two equations
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dv
dr

= 0 and dv
dr

= 2
1− rs

r
. The solution describes a black hole, since everything

inside r = rs falls towards the black hole centre r = 0. Only massless
particles can move on the horizon. Since the Einstein equations are invariant
under time reflection, general relativity allows the existence of both black
holes and white holes. In distinction to black holes, white holes need special
initial conditions and are unstable, which is why in nature there can only
exist black holes [15]. The second metric (1.7) describes a white hole. The
light rays are given through u = const and du

dr
= − 2

1− rs
r

.

Our next step is to introduce the Kruskal coordinates

U =−1

κ
e−κu , (1.8)

V =
1

κ
e κv , (1.9)

where κ = (4M)−1 = (2rs)
−1 is the black hole surface gravity. In these

coordinates the black hole metric becomes

ds2 = f(U, V )dUdV − r2dΩ2, (1.10)

where

f(U, V ) =
rs
r
e1−

r
rs . (1.11)

The radial coordinate r is a function of U and V :

r

rs
− 1 = W

(

−UV
4r2

s

)

, (1.12)

where W is the Lambert function which satisfies W (x)eW (x) = x. We get

f(U, V ) =
W (−UV

4r2s
)

1 +W (−UV
4r2s

)

(

− 4r2
s

UV

)

. (1.13)

The Kruskal coordinates given by (1.8), (1.9) are defined only in the exte-
riour region r > rs, which corresponds to the range of U ∈ (−∞, 0] and
V ∈ [0,∞), but can be analytically continued to U > 0 and V < 0 since
metric (1.10) is regular on the horizon. Then the singularity at r = 0 cor-
responds to UV = 1, the horizon r = rs to either U = 0 or V = 0. The
resulting Kruskal diagram of the Schwarzschild black hole is shown in Fig.
1.1. The Kruskal coordinates are the maximal analytical extension of the
Schwarzschild coordinate, meaning that every geodesic either extends to all
values of its affine parameter or encounters a singularity.
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singularity r = 0

singularity r = 0 i+

i−

I +

I −
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r = rs
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II
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IV

Figure 1.2: Conformal diagram of an eternal black hole.

The Kruskal space-time can be separated into four different regions: a
black hole (region II), a white hole (region IV), and two regions outside
the horizons (I and III). The null surface U = 0 which separates the
exteriour region I and the black hole interiour II is called event horizon and
is denoted by H+. The null surface V = 0 on the other hand which separates
the exteriour region and white hole region is called past event horizon H−.
One can see from Fig. 1.1 that the singularity r = 0 is space-like and
therefore labels not a certain point, but a certain time. As mentioned earlier
the Schwarzschild coordinates change their role inside the horizon and the
metric inside the horizon is no longer static.

Another very convenient way to examine the causal structure of a space-
time is via its conformal diagram. Using conformal transformations, regions
at infinity are mapped to a finite boundary. Light rays are always mapped to
lines at 45 degrees. Since the diagram is two-dimensional, every point on the
diagram represents a two-dimensional sphere. For a pedagogical introduction
to conformal diagrams see [31, 52]. The conformal diagram of an eternal
Schwarzschild black hole is shown in Fig. 1.2.

1.1.3 Gravitational collapse

In this section we analyze the formation of a black hole as a result of con-
traction of a spherical mass to a size less than rs. For simplicity we consider
a spherically symmetric collapse. In this case the space-time outside the
collapsing body can be described by the Schwarzschild metric, whereas the
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singularity r = 0 i+

i−

I
+

I −

i0
r = rs

Surface of collapsing star

Figure 1.3: Conformal diagram of a black hole formed by gravitational collapse.
The vertical line r = 0 represents the centre of the collapsing body.

metric inside the collapsing body is of course different and depends on the
properties of the collapse. It can be seen from Fig. 1.2 that only regions I
and II of the conformal diagram of the eternal black hole are relevant for the
collapsing model. In Fig. 1.3 the conformal diagram of a black hole formed
by a gravitational collapse is shown. The vertical line r = 0 is not singular
but represents the centre of the collapsing body.

Often the well known Vaidya metric is used to describe the space-time in
case of a collapsing body [57, 58]. In terms of ingoing coordinates (r, v) it
looks as follows,

ds2 =

(

1 − 2M(v)

r

)

dv2 − 2drdv − r2dΩ2 . (1.14)

The metric (1.14) is a solution to the Einstein equations with an energy
momentum tensor

Tvv =
ε(v)

4πr2
, (1.15)
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Figure 1.4: Conformal diagram of a black hole formed by spherically symmetric
collapse of a null shock wave.

all other components of Tµν being zero. The relation between total mass
M(v) inside v and energy density ε is then given by

M(v) =

∫ v

−∞

dxε(x) . (1.16)

As a simple example we consider the gravitational collapse of a null shock
wave. In this case the energy momentum tensor is nonzero only along v = v0,

Tvv =
M0δ(v − v0)

4πr2
, (1.17)

and the total mass is

M(v) = M0θ(v − v0) . (1.18)

In this case the region above v = v0 is described by the Schwarzschild met-
ric, whereas for v0 the space-time is flat and is described by the Minkowski
metric. The conformal diagram for a black hole formed by a spherically
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symmetric null shock wave is shown in Fig. 1.4. A characteristic feature
of the gravitational collapse is the occurrence of a future event horizon that
prevents the singularity being seen from outside. Of course, there is no past
event horizon for a black hole formed by gravitational collapse.

1.1.4 Charged and rotating black holes

In addition to the Schwarzschild solution there exist other stationary black
hole solutions which have charge and/or angular momentum. In general
relativity stationary black holes, the asymptotic final state after gravitational
collapse, are uniquely described by the three parameters mass M , electric
charge q, and angular momentum J . All other degrees of freedom are radiated
away during the collapse. Wheeler expressed this property of stationary black
holes in the following way: “Black holes have no hair” [39].

In the presence of non-Abelian gauge fields, the no-hair theorem no longer
necessarily holds, but the corresponding black hole solutions are usually un-
stable, see [15] and references therein.

The spherically symmetric black hole solution with electric charge q can
be formally generated from the Schwarzschild metric (1.1) by substituting

M → M − q2

2r
. The resulting metric is called Reissner-Nordstrøm metric and

is given by

ds2 =

(

1 − 2M

r
+
q2

r2

)

dt2 −
(

1 − 2M

r
+
q2

r2

)−1

dr2 − r2dΩ2. (1.19)

It is the unique spherically symmetric and asymptotically flat solution of
the Einstein-Maxwell equations. For |q| < M , the metric has coordinate
singularities at

r± = M ±
√

M2 − q2. (1.20)

The point r+ denotes the position of the event horizon, which can be seen
taking the limit q → 0, whereas r− characterizes the Cauchy horizon. (For
the meaning of different types of horizons see 1.1.5.) The conformal diagram
of the Reissner-Nordstrøm space-time is shown in Fig. 1.5. The singularity
at r = 0 is now time-like and therefore is a naked singularity in some regions,
e.g. region III. The special case |q| = M is referred to as extremal black
hole. The two horizons now coincide. For |q| > M there is no event horizon,
instead of a black hole there is now a naked singularity.

Whereas it is most unlikely that we will ever observe astrophysical black
holes with a considerable net charge, most black holes are expected to be
rotating. The solution for a rotating stationary black hole, the so-called Kerr
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Figure 1.5: Conformal diagram of a Reissner-Nordstrøm black hole with |q| < M .

solution, is no longer spherically symmetric and static, but it is axisymmetric
and stationary. The solution is characterized by the mass M and angular
momentum J . There exist two Killing vectors ∂t and ∂φ representing the
symmetries of the space-time. The Kerr solution, in the frequently used
Boyer-Lindquist coordinates, is given by

ds2 =

(

1 − 2Mr

Σ

)

dt2 − 4Mra sin2 θ

Σ
dtdφ− Σ

∆
dr2 − Σdθ2, (1.21)

where

a =
J

M
, Σ = r2 + a2 cos2 θ , and ∆ = r2 − 2Mr + a2 . (1.22)

For the sake of completeness we also note the most general solution for a
stationary black hole which is the Kerr-Newman solution characterized by
mass M , angular momentum J and electric charge q. It can be obtained
from the Kerr solution (1.21) substituting M − q2

2r
for M .

Formally, laws of thermodynamics can be established for these stationary
black hole solutions. The three parameters M,J and q characterizing black
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holes are identified with thermodynamic variables. This will be discussed in
section 1.2.

1.1.5 Event horizon, apparent horizon, trapped sur-

faces

In this section we discuss the previously used notions of event horizon, appar-
ent horizon, Cauchy horizon and trapped surfaces. We will not provide rig-
orous mathematical definitions, but explain their physical meaning in spher-
ically symmetric space-times.

The future event horizon defines a region from behind which it is
impossible to escape to I + without exceeding the speed of light. The past
event horizon is the time reverse of this, that means it is impossible to
get behind starting from I −. The maximally extended Kruskal manifold
contains both past and future event horizon at r = rs, as can be seen in Fig.
1.2, whereas a black hole formed by gravitational collapse only possesses a
future event horizon, see Fig. 1.3.

The interiour of a black hole generally contains a region of trapped sur-
faces. To illustrate this notion consider a two-sphere in flat Minkowski space.
There are two families of null geodesics which emanate from the two-sphere,
those that are outgoing and those that are ingoing. The former diverge, while
the latter converge. A trapped surface is one for which both families of
null geodesics are everywhere converging, due to gravitational forces. It is
easy to check that two-spheres of constant r behind the future event horizon
in the Schwarzschild space-time are trapped. Outgoing light rays at r = rs
of course generate the horizon itself, whose area is constant in Schwarzschild
space-time. Thus this two-sphere is marginally trapped.

An apparent horizon is the outer boundary of a region of trapped sur-
faces. In the Schwarzschild space-time the apparent horizon is located at r =
rs. Thus event horizon and apparent horizon coincide for the Schwarzschild
black hole. This sometimes leads to confusion about the two surfaces which
in general are quite different. An event horizon is a global concept, and the
structure of the entire space-time must be known to define it. The location of
an apparent horizon can be determined from the initial data on a space-time
slice.

To illustrate the difference let us have a look at a black hole with increas-
ing mass. At time t0 the black hole would have a fixed apparent horizon.
Throwing matter into the black hole at some time t > t0 will have no effect
on the area or location of the apparent horizon at t0 (though it will at later
times), but the infalling matter changes the event horizon at the earlier time
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t0 to move out to larger distances. Of course, the position of the event hori-
zon can only be determined if the mass function for the whole space-time is
known. If we assume that there is no additional mass change at later times
then at t0 the apparent horizon lies inside the event horizon.

The above example is a typical situation in classical general relativity
where the apparent horizon is usually a null or space-like surface which lies
inside or coincides with the event horizon (assuming cosmic censorship). We
will later consider evaporating black holes. In this case the apparent horizon
moves outside the event horizon, since the black hole mass decreases. This
will be discussed in detail in chapter 4.

The location of the apparent and event horizon for a black hole formed
by a null shock wave are shown in Fig. 1.4. The solid line is the apparent
horizon, which bounds the shaded region of trapped surfaces. The dashed
line is the event horizon, which coincides with the apparent horizon after the
collapse is completed.

The Cauchy horizon is a light-like surface which is the boundary of
the domain of validity of the Cauchy problem. That means it is impossible
to use the laws of physics to predict the structure of the region beyond the
Cauchy horizon. Thus it signals the onset of unpredictability. An example
is the surface r = r− in the Reissner-Nordstrøm space-time in Fig. 1.5.

1.2 Black hole thermodynamics

Even before Hawking’s discovery of black hole evaporation it has been known
that black holes require a thermodynamical description involving a nonzero
intrinsic entropy.

The situation is as follows. Imagine that a black hole swallows a hot body
possessing a certain amount of entropy. Then an observer outside the black
hole finds that the total entropy in the part of the world accessible to him
has decreased. This would contradict the second law of thermodynamics,
however, which states that the entropy of a closed system can never decrease
in time. We can avoid the decrease of entropy if we assign the entropy of the
investigated body to the interiour region of the black hole. This attempt is
quite unsatisfactory since by no means could any outside observer measure
this entropy. If we are not inclined to give up the law of nondecreasing
entropy we have to conclude that the black hole itself possesses a certain
amount of entropy and that a body which falls into it not only transfers its
mass, angular momentum and charge to the black hole, but also its entropy
S. As a result the entropy of the black hole increases at least by S.

The first hint that black holes are endowed with thermodynamic proper-
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ties was the area theorem of black holes [19], according to which the total
horizon area A in black hole spaces has to increase in all reasonable physical
processes. The area theorem is a result only using classical general relativity
together with certain reasonable assumptions about the behavior of matter.
The area law seems to exhibit a close analogy to the second law of ther-
modynamics. This was discussed by Bekenstein in 1972 [4, 5] who therefore
postulated a connection between black hole area and entropy. In 1974 Hawk-
ing discovered that black holes emit particles with thermal spectrum [20, 21].
Thus a temperature can be assigned to black holes and the connection be-
tween black hole area and entropy was confirmed. In this framework laws of
black hole thermodynamics have been established [2], see also [15].

The first law of black hole thermodynamics is just the conservation of en-
ergy. An arbitrary black hole, similar to thermodynamical systems, reaches
an equilibrium state after the relaxation processes are completed. As men-
tioned earlier it is then uniquely described by the three parameters mass M ,
angular momentum J , and electric charge q. The area of the black hole in
terms of these parameters is

A = 4π
(

2M2 − q2 + 2M
√

M2 − q2 − J2/M2
)

. (1.23)

If dM is an infinitesimal change of the black hole mass, then

dM =
κ

8π
dA+ ΩdJ + φdq , (1.24)

where κ is the black hole surface gravity

κ = 4π

√

M2 − q2 − J2/M2

A
, (1.25)

Ω = 4πJ/MA is the angular velocity and φ = 4πqr+/A the electrostatic
potential. The second and third term in (1.24) describe the change in the
rotational and electric energy. Since M can be identified with the energy of
the black hole, (1.24) is the analogue to the first law of thermodynamics

dE = TdS − pdV + µdN. (1.26)

In classical thermodynamics temperature is the conjugate variable to the
entropy. Comparing (1.24) and (1.26) it becomes obvious that in black hole
thermodynamics the quantity analogous to the temperature is the surface
gravity κ. At this point this analogy is purely formal. However, considering
quantum field theory in black hole space-time not only supports this analogy
but provides the correct coefficients (in SI units),

T =
~κ

2πckB
. (1.27)
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This formula will be derived in the next section.
The second law of black hole thermodynamics is a direct consequence of

Hawking’s area theorem. It can be formulated as follows: In any classical
process the area of the black hole A, and hence its entropy SBH , does not
decrease,

dA > 0, dSBH > 0. (1.28)

Both for usual and black hole thermodynamics the second law signals the
irreversibility inherent in a system as a whole, and thus provides an arrow of
time.

Lastly, Bardeen, Carter and Hawking [2] also formulated the analogue of
the third law for black holes. It states that it is impossible by any procedure,
no matter how idealized, to reduce the black hole surface gravity κ to zero
by a finite sequence of operations. This corresponds to the formulation of
the third law of thermodynamics due to Nernst. It must be emphasized that
Planck’s formulation of the third law of thermodynamics, stating that the
entropy of a system vanishes at zero absolute temperature, does not hold for
black holes. Extremal black holes have temperature zero, nevertheless they
possess nonzero area A and entropy.

1.3 Black hole evaporation

It has been shown in the last section that entropy and temperature can be
assigned to black holes. Using the formula TBHdSBH = c2κ

8πG
dA (now using

SI units), on dimensional grounds we have

TBH ∝ ~κ

ckB
, SBH ∝ c3kBA

G~
. (1.29)

The exact coefficients in (1.29) cannot be determined within the classical
theory, since there this analogy is only formal. Studying quantum fields in
a classical black hole background provides the exact coefficients. For this it
is necessary to introduce the framework of quantum theory in curved space-
time.

As mentioned earlier the first rigorous calculation of the rate of particle
creation by a black hole was presented by Hawking in 1974 [20]. An intu-
itive picture of Hawking radiation involves the creation of virtual particle-
antiparticle pairs in the vicinity of the black hole horizon. It may happen
that two particles with opposite momenta are created on the horizon, one
particle inside the horizon and the other particle outside the horizon. The
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first virtual particle always falls into the black hole. If the momentum of
the second particle is directed away from the black hole, it has a nonzero
probability for moving away from the horizon and becoming a real radiated
particle. In the following we will calculate the density of particles emitted
by a static black hole, as registered by observers far away from the horizon.

In quantum theory, particles are excitations of quantum fields, so we
consider a scalar field φ in the presence of a single nonrotating black hole
with mass M which is described by the Schwarzschild metric (1.1). As an
example we consider a 1 + 1-dimensional black hole with coordinates (t, r).
It will be shown later that, apart from an irrelevant transmission coefficient,
this reduction of dimensionality does no injustice to the physics. The two-
dimensional line element is

ds2 =
(

1 − rs
r

)

dt2 −
(

1 − rs
r

)−1

dr2 = gkldx
kdxl. (1.30)

The action for a minimally coupled scalar field is

S[φ] =
1

2

∫

d2x
√−ggkl ∂φ

∂xk
∂φ

∂xl
, (1.31)

where g ≡ det(g) = −1. It is more convenient to work with the metric in
conformally flat form. Using the tortoise coordinate (1.2), the conformally
flat metric is

ds2 =
(

1 − rs
r

)

(

dt2 − dr?2
)

. (1.32)

The action for the scalar field in the tortoise coordinate becomes

S[φ] =
1

2

∫

dtdr?
[

(∂tφ)2 − (∂r?φ)2
]

. (1.33)

From this we can now derive the classical equation of motion

∂2φ

∂t2
− ∂2φ

∂r?2
= 0 , (1.34)

which has the general solution

φ(t, r?) = P (t− r?) +Q(t+ r?) . (1.35)

Here P (t− r?) and Q(t+ r?) are arbitrary smooth functions.
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1.3.1 Quantization in Schwarzschild space-time

We shall now quantize the scalar field φ in two different reference frames and
compare the vacuum states. Suitable choices are the Schwarzschild reference
frame with tortoise coordinate r? and the Kruskal frame. At spatial infinity,
r → ∞, the Schwarzschild metric tends to the Minkowski metric, so the time
coordinate t coincides with proper time in this limit. Therefore the tortoise
coordinates are suitable coordinates for observers very far away from the
black hole. On the horizon we found that the Kruskal coordinates U and V
are regular.

The familiar mode expansion in Kruskal coordinates, with proper time
T = 1

2
(U + V ) and spatial coordinate X = 1

2
(V − U), is

φ̂(T,X) =

∫ ∞

−∞

dk

(2π)
1
2

1
√

2|k|
(

e−i|k|T+ikX â−k + ei|k|T−ikX â+
k

)

. (1.36)

Here the normalization factor which is (2π)
3
2 in the four-dimensional theory

is replaced by (2π)
1
2 . The creation and annihilation operators â±k defined

in (1.36) satisfy the usual commutation relations, see appendix (A.26), and
describe particles moving with momentum k either in the positive (k > 0) or
negative (k < 0) direction. The vacuum state in the Kruskal reference frame
is the zero eigenvector of all annihilation operators â−k ,

â−k |0K〉 = 0 for all k . (1.37)

The mode expansion in the tortoise coordinate frame (t, r?) is formally very
similar to (1.36),

φ̂(t, r?) =

∫ ∞

−∞

dk

(2π)
1
2

1
√

2|k|
(

e−i|k|t+ikr
?

b̂−k + ei|k|t−ikr
?

b̂+k

)

. (1.38)

Then the corresponding vacuum state is defined as

b̂−k |0S〉 = 0 for all k , (1.39)

where the index S stands for Schwarzschild. The mode expansion (1.36) can
be rewritten in light cone coordinates U and V . In these coordinates the
field is decomposed into out- and ingoing waves

φ̂(U, V ) =

∫ ∞

0

dω

(2π)
1
2

1√
2ω

(

e−iωU â−ω + eiωU â+
ω + e−iωV â−−ω + eiωV â+

−ω

)

,(1.40)

where we have used ω = |k|. The light cone mode expansion in the Schwarz-
schild reference frame has the same form, using Eddington-Finkelstein coor-
dinates u = t− r? and v = t+ r?. We use Ω = |k| for the integration variable
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to distinguish the mode expansion in the Schwarzschild reference frame from
that in Kruskal coordinates,

φ̂(u, v) =

∫ ∞

0

dΩ

(2π)
1
2

1√
2Ω

(

e−iΩub̂−Ω + eiΩub̂+Ω + e−iΩv b̂−−Ω + eiΩv b̂+−Ω

)

. (1.41)

1.3.2 Hawking effect

The vacua |0S〉 and |0K〉, annihilated by b̂−Ω and â−ω , respectively, are different.

Therefore b̂−Ω|0K〉 6= 0 and vice versa, which means the state |0K〉 contains
particles with frequency ±Ω. Or in other words, particles are created due to
the gravitational field.

The operators b̂±Ω can be expressed in terms of the operators â±ω by a
so-called Bogolyubov transformation. This is, see also appendix (A.30),

b̂−Ω =

∫ ∞

0

dω
(

αωΩâ
−
ω + βωΩâ

+
ω

)

, (1.42)

where the Bogolyubov coefficients αωΩ and βωΩ are determined as

αωΩ

βωΩ

}

=

√

Ω

ω

∫ ∞

−∞

du

2π
eiΩu∓iωU . (1.43)

For general properties of the Bogolyubov transformation see appendix A.
We keep in mind that U = U(u). To determine the number of particles
which are created in the Schwarzschild background we use the transformation
(1.8) between Kruskal coordinate U and Eddington-Finkelstein coordinate u
explicitly,

αωΩ

βωΩ

}

=

√

Ω

ω

∫ ∞

−∞

du

2π
eiΩu±i

ω
κ
e−κu

. (1.44)

The average density of the created particles as measured by an observer at
infinity can be determined as follows. The b-particle operator is N̂Ω = b̂+Ω b̂

−
Ω ,

so the average number of particles in the Kruskal vacuum |0K〉 is equal to its
expectation value

〈N̂Ω〉 = 〈0K |b̂+Ω b̂−Ω|0K〉 =

∫ ∞

0

dω|βωΩ|2 . (1.45)

Evaluating the integral (1.44), the coefficients αωΩ and βωΩ can be expressed
in terms of the Γ-function. The relation between them is |αωΩ|2 = e2πΩ/κ|βωΩ|2.



1.3 Black hole evaporation 17

Finally, using the normalization condition of the Bogolyubov coefficients
(A.34), the total number of emitted particles in the mode Ω is

〈N̂Ω〉 = δ(0)
1

e2πΩ/κ − 1
. (1.46)

Since 〈N̂Ω〉 represents the total number of particles in the entire space we
expect it to be divergent. To extract the mean density of particles from
〈N̂Ω〉 the divergent volume factor δ(0) has to be separated. Hence, the mean
density of particles in the mode Ω is

nΩ =
1

e2πΩ/κ − 1
. (1.47)

The above result has been derived for positive modes Ω > 0. The particle
density for negative frequencies is obtained by replacing Ω by |Ω| in (1.47).
The spectrum of emitted particles is thermal, corresponding to the spectrum
of black body radiation with the temperature

TH =
κ

2π
(1.48)

in natural units, which in SI units becomes

TH =
~κ

2πckB
. (1.49)

The surface gravity of the Schwarzschild black hole in SI units is κ = c4

4GM
,

so the Hawking temperature

TH =
~c3

8πGMkB
(1.50)

is inversely proportional to the black hole mass M . This leads to an unusual
thermal property of black holes. When a black hole emits particles and in
this way loses energy, its mass decreases. In this process the black hole
temperature increases since it is inversely proportional to the mass. The
black hole gets hotter and will emit more radiation which means that the
black hole’s heat capacity is negative.

In the final state of black hole evaporation the semiclassical treatment is
no longer justified, since quantum gravitational effects can no longer be ne-
glected. Whether the black hole will disappear with an explosion, or whether
there might be a remnant of Planckian size (10−5g), still remains an open
question.
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1.3.3 Gravitational collapse

In the previous section we studied the thermal radiation emitted by an eternal
black hole. In a realistic scenario a black hole is formed by gravitational
collapse. In the following we will calculate the particle flux emitted by such
black holes. We will show that the particle spectrum is identical to that of
an eternal black hole.

We consider the simple model of a collapsing null shock wave which was
introduced in section 1.1.3. Let us recall that the space-time inside the shell
is flat, whereas outside the shell it is described by the Schwarzschild metric.
In distinction to the eternal black hole one considers light rays which emerge
at infinity I −, cross the collapsing shell, and at some later time escape to
infinity I +. Such a light ray γ is shown in Fig. 1.6, where γH+ depicts
the last light ray escaping to infinity. It follows from the no-hair theorem
that during the collapse of an arbitrary matter shell all inhomogeneities are
radiated away. Hence the Hawking spectrum at late times u cannot depend
on the details of the collapse. It is sufficient to consider light rays γ which
reach I + at late time u and use the geometric optics approximation to trace
them back to I −.

At I + the light ray is described by the parameter u which is constant
along the outgoing light ray. Tracing it back to I

− it is reflected at the
origin r = 0 and becomes an ingoing light ray described by v = const. Thus
the task is to find the transformation v(u) connecting these two coordinates.

The line element of the space-time is given by the Vaidya metric (1.14)
with the mass function (1.18). Without loss of generality we assume v0 = 0.
Along the outgoing light ray the light cone coordinate u is constant. Outside
the shell the space-time is described by the Schwarzschild metric and we can
again use the tortoise coordinate r?. In terms of advanced and retarded time
the tortoise coordinate is 2r?(u, v) = v−u. Inside the shell space-time is flat,
so the ingoing light ray is given by v = t + r = const and the outgoing ray
by u = t− r = const. The coordinates inside and outside are matched along
v = 0. The radial coordinate inside the shell is

r =
1

2
v − r(u, v = 0) . (1.51)

The light ray γ reaches I + at some late time u, which means it crosses the
shell at a radius near rs. In this limit the relation between tortoise coordinate
r? and radial coordinate r is r? ' rs ln(r/rs− 1). Then the radial coordinate
at v = 0 is

r(u, 0) ' rs(1 + e−κu) . (1.52)
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Figure 1.6: The light ray γ emerges at infinity I −, is reflected at the origin r = 0
and at late time u escapes to infinity. γH+ is the last light ray escaping to infinity.

Substituted into (1.51) this yields the desired coordinate relation

v(u) ' −1

κ
e−κu , (1.53)

which connects the time v when the light ray γ emerges from I − with the
time u when it reaches I +.

Now we define suitable vacuum states for the ingoing wave at I − and
the outgoing state at I +. On I +, we can expand the field operator in
Schwarzschild coordinates in the same way as we did in the case of the
eternal black hole, see (1.38) with the corresponding vacuum state.

Inside the shell space-time is flat, the light cone coordinates are u and v.
Hence, on I − the field can be resolved into positive and negative frequencies
as well. Calculating the Bogolyubov coefficients we find

αωΩ

βωΩ

}

=

√

Ω

ω

∫ ∞

−∞

du

2π
eiΩu∓iωv(u) . (1.54)
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The transformation v(u) for late times u is identical to the Kruskal coordinate
U = − 1

κ
e−κu. Hence, the Bogolyubov coefficients are the same in both cases

and the particle spectrum is thermal with a temperature TH = κ
2π

.
An observer at infinity, who examines the collapse using a detector, will

measure almost no radiation during the time when the radius of the shell is
still very large. With decreasing size the particle flux increases exponentially
and asymptotically approaches the radiation of the eternal black hole.

The above calculations have shown that at late times u the particle spec-
trum emitted by a black hole created by gravitational collapse is identical to
the particle spectrum of an eternal black hole. This result is not surprising
since according to the no-hair theorem an uncharged nonrotating black hole
is asymptotically described solely by its mass. Thus the particle spectrum of
a black hole should not depend on the details of its formation.

1.3.4 Black hole wave equation

The above calculations have been done in the two-dimensional theory. In
four dimensions the derivation of Hawking radiation is essentially the same.
The resulting particle spectrum is thermal, but it will be suppressed due to
the existence of a potential barrier of the black hole in the four-dimensional
theory.

Consider again a scalar field in the Schwarzschild background. Since the
background space-time is spherically symmetric the Klein-Gordon equation
(� +m2)φ = 0 may be separated into spherical harmonics,

φ =
f(r, t)

r
Ylme

−iωt . (1.55)

Using the tortoise coordinate r? the resulting radial wave equation is

∂2f

∂t2
− ∂2f

∂r?2
− Vl(r)f = 0 , (1.56)

with the potential

Vl(r) =
(

1 − rs
r

)

[

rs
r3

+
l(l + 1)

r2
+m2

]

, (1.57)

where m is the mass of the scalar field. Near the black hole horizon, as
r? → −∞, the potential falls off exponentially, V ∼ er

?/rs. For r? → ∞ the
potential behaves as V ∼ m2(1−rs/r?) in the massive case and V ∼ l(l+1)/r2

in the massless case. The detailed form of the potential is irrelevant in the
geometric optics approximation. The incoming waves, however, will partially
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scatter off the gravitational field on the potential (1.57) which results in
a superposition of incoming and outgoing waves. The backscattering is a
function of Ω, and the spectrum is not precisely thermal. The luminosity of
the black hole is given by [61]

LH =
1

2π

∞
∑

l=0

(2l + 1)

∫ ∞

0

dΩ
ΓΩl

e8πMΩ − 1
, (1.58)

where ΓΩl is the so-called grey factor of the black hole. A possible dependency
on the angular momentum and spin of the particles resides in ΓΩl.

1.3.5 Black hole life time

During evaporation the mass of the black hole decreases. It is still unknown
whether a black hole can lose its whole mass or if there is a black hole remnant
of Planckian size as the final stage of evaporation. This difference does not
play any role for the estimate of black hole life time. If M0 is the initial
mass of the black hole, then after evaporation its mass M in any case is
much smaller, M � M0. We estimate the life time of a black hole using the
assumption that the decrease of the black hole mass can be identified with
the energy radiated to infinity using the Stefan-Boltzmann law

dM

dt
∼ −AT 4

H ∼ −M2 ·M−4 = − 1

M2
. (1.59)

Integration of this equation yields

t(M) ∼
(

M3
0 −M3

)

'M3
0 . (1.60)

The life time of the black hole can now be estimated as [15]

tH ∼
(

M0

mp

)

tp ∼ 1065

(

M0

MJ

)

years. (1.61)

If in the early universe primordial black holes with M0 ∼ 1014 g have been
created, they should evaporate at the present age of the universe.

During the process of evaporation different kinds of particles can be emit-
ted depending on the black hole mass. For black holes with a mass of 1017 g
the temperature is less than 109 K and only massless particles can be emit-
ted, photons, gravitons, and neutrinos. Black holes with smaller mass will
also emit electrons and positrons, and if the mass is below 1014 g, heavier
particles such as protrons and neutrons can be emitted. In this case the black
hole temperature is more than 1013 K. A detailed investigation of this topic
has been performed by Page in [34, 35, 36].
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1.3.6 Charged and rotating black holes

Let us now consider the particle spectrum for rotating and charged black
holes. It turns out that the presence of charge and/or angular momentum
changes the black hole temperature as well as the particle spectrum.

First consider a charged black hole with mass M and charge q, described
by the Reissner-Nordstrøm metric (1.19). The event horizon is located at
r+ = M +

√

M2 − q2, and the black holes surface area is given by A = 4πr2
+.

Substituting the expression for the surface gravity κ we find the radiation
temperature

TH =
κ

2π
=

1 − 16π2q2/A2

8πM
. (1.62)

Thus the presence of a charge q reduces the Hawking temperature of a black
hole. For an extremal black hole with q2 = M2 the temperature is zero,
whereas the area is not. According to the second law of black hole thermo-
dynamics, see section 1.2, the entropy of such a black hole is S = 1

4
A 6= 0.

This implies that the formulation of the third law, which states that the en-
tropy becomes zero for the limit where the temperature tends to zero, cannot
be valid in the case of extremal black holes.

For rotating black holes with angular velocity Σ the situation is more
complicated. A black hole with mass M and angular momentum J is de-
scribed by the Kerr metric (1.21). In this case the scalar field potential has
additional terms, and the solution of the scalar field equation is more compli-
cated. However, at large distances the difference to nonrotating black holes
can be mainly described by replacing the frequency Ω by Ω −mΣ, where m
is the azimuthal quantum number of the spheroidal harmonics. Hence, the
particle spectrum on I + becomes

nΩ =
1

e2π(Ω−mΣ)/κ − 1
. (1.63)

The rotation of the black hole is reflected as a chemical potential in the parti-
cle spectrum. Since the spectrum depends on m the radiation is asymmetric.
The black hole tends to emit those particles which result in a decrease of the
black hole’s angular momentum.

In the case of Ω < mΣ the particle flux becomes negative. The black hole
loses energy to an ingoing wave with lower frequency Ω which then becomes
outgoing with a larger amplitude. This phenomenon of rotating black holes
is called super-radiance.



Chapter 2

Origin of black hole entropy

Hawking’s discovery of black hole evaporation confirmed the formal analogy
between usual thermodynamics and black hole thermodynamics. It veri-
fied Bekenstein’s conjecture that black holes are endowed with entropy and
proved the validity of the second law which seemed to be violated in processes
where matter is swallowed by a black hole.

Nowadays, more than thirty years after the discovery of black hole en-
tropy, its statistical origin is still a rather hot topic in the literature, see [15]
and references therein. We believe that the proper understanding of this
quantity can be extremely useful and could highlight important aspects of
black hole physics. In the following we present some considerations concern-
ing the origin of black hole entropy. We show that this entropy can be related
to missing information about the exact state of the matter from which the
black hole was formed.

The entropy of ordinary matter can be understood by counting different
possibilities of preparing the system in a final state with given macroscopic
parameters from microscopically different states

SI = −
∑

α

pα ln pα , (2.1)

where pα are the probabilities of different initial states. This definition di-
rectly relates the entropy of a given system to the information lost in the
process of its formation. In the informational approach to black hole en-
tropy one tries to find a similar understanding of why SBH = 1

4
A represents

the entropy of a black hole by identifying its quantum dynamical degrees of
freedom. In the following we discuss two different approaches to this topic.
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2.1 Concerning black hole entropy

In 1985 Zurek and Thorne proposed that the entropy of a black hole can be
interpreted as “the logarithm of the number of quantum-mechanical distinct
ways that the hole could have been made” [66]. In this model one estimates
the time it takes to form a black hole of massM to be of the order of the black
hole life time tH ∼ M3, see (1.61). The vast majorities of ways to form a
black hole involve building it up by accretion of one quantum after the other
where the energy ε of the quanta should be as small as possible ε ∼ M−1.
Then the total number of quanta which are required to form a black hole of
total mass M is Nq ∼ M/ε ∼ M2. The effective cross-section of the black
hole is proportional to M2, so the total volume in phase space which the
particles occupy before the injection is ∼ M2tHε

3. Hence, N ∼ M2 ∼ Nq

is the total number of single-particle states in which the Nq quanta can be
injected into the black hole. With that the number of ways to build the black
hole is the number of ways to distribute the Nq quanta, for simplicity bosons,
among the N states

N ∼ (N − 1 +Nq)!

(N − 1)!Nq!
. (2.2)

The logarithm of this expression can be identified with the black hole entropy

SBH ∼ lnN ∼ Nq ∼M2. (2.3)

This result is in approximate agreement with the formula for black hole
entropy SBH = 4πM2. In this approach the expression for the black hole
entropy does not depend on the number of possible different particle species.
One might expect that the number of possibilities to create the black hole
increases if more than one particle species are involved, but at the same time
the black hole life time decreases and N stays constant. Thus Zurek and
Thorne [66] showed that the entropy (2.3) is related in a simple way to the
amount of information lost by stretching the horizon.

In another interesting approach to explain the origin of black hole entropy
Bekenstein and Mukhanov consider quantization of the black hole mass [7].
They assume that the black hole area should be quantized in integers as
A = α~n, where n ∈ N. If the black hole has mass M , the system is in the
state n ∼M

1
2 . The absorption and emission of one quantum is described by

the transition of the energy state from n to n± 1. In general the degeneracy
of an energy level labeled by n is g(n) and is identified with the number of
different ways to reach the level n by injecting quanta into the black hole. It
is easy to see that the number of possible ways to reach the n-th level from
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n = 0 is 2n−1. Since the logarithm of the degeneracy of states, ln g(n), can be
identified with the entropy the parameter α can be determined as α = 4 ln 2.

The radiation emitted by a black hole with quantized mass will be con-
centrated in lines at integer multiples of the fundamental frequency

ω̄ =
ln 2

8πM
. (2.4)

No quanta are expected with frequencies below this fundamental frequency.
Even if some broadening occurs or if the spectrum is blurred by multiquanta
emission per jump, the spectrum will be radically different to the originally
derived Hawking spectrum. Thus if one day primordial black holes can be
produced in the laboratory and quantum aspects of black holes can be inves-
tigated this will exclude at least one model.

There are of course more attempts to explain black hole entropy which
we did not mention here, e.g. relating the entropy to the properties of the
vacuum in strong gravitational fields, for references see [15].

In the following we present some considerations concerning the origin
of black hole entropy. We show that the entropy of a black hole can be
interpreted as lost information of the matter forming the black hole. To do
so we study the physically most relevant case of the evaporating black hole
and avoid discussion of the eternal black hole in which case the considerations
presented below fail (at least when applied naively).

2.2 Entropy of a nonequilibrium gas

In view of the following sections we recall the calculation of entropy for
nonequilibrium systems. According to (2.1) the informational entropy is
related to missing information about the exact state of the system, where pα
characterizes the probability to find the system in the states α. It takes its
maximum value when all states are equally probable, that is when pα = 1/Γ.
Hence, the entropy is equal to

S = ln Γ, (2.5)

where Γ is the total number of possible microstates which the system can
occupy. Let us characterize an ideal gas of N Bose particles located within
a box of volume V by its energy spectrum. In this case the number of
particles with energy in the interval between ε and ε + ∆ε is equal to ∆Nε,
and the information about the exact microscopic configuration of the system
is missing. In fact, even if the energy spectrum is completely specified every
particle can still have an arbitrary, nonspecified direction of propagation, and
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can be located in any place inside the box. If we require that the unspecified
directions of the particle propagation are restricted by the solid angle ∆O
then the number of possible indistinguishable microstates for every particle
with energy between ε and ε+ ∆ε is equal to

∆gε =
gp

(2π)3

∫

d3xd3p ' gp
(2π)3

V∆O
√
ε2 −m2ε∆ε , (2.6)

where gp is the helicity of the particle species and m the particle mass. The
total number of possible configurations for ∆Nε Bose particles is equal to the
number of ways to distribute those particles among ∆gε states,

∆Gε =
(∆gε − 1 + ∆Nε)!

(∆gε − 1)!(∆Nε)!
. (2.7)

The total number of states is given by

Γ =
∏

ε

∆Gε . (2.8)

Since for a given energy spectrum {∆Nε} all these states are equally probable
the entropy is

S = ln Γ =
∑

ε

ln∆Gε . (2.9)

Assuming that ∆Nε,∆gε � 1 and using Stirling’s formula to approximate
the factorials in (2.7) we finally get

S =
∑

ε

∆gε [(nε − 1) ln(1 − nε) − nε ln(nε)] , (2.10)

where nε = ∆Nε/∆gε is the occupation number. The entropy for a gas of
fermions in nonequilibrium state can be calculated along the same lines, see
[31]. The only difference is that for fermions the Pauli exclusion principle
forbids two fermions from simultaneously occupying the same microstates.
The general result for the entropy for a gas of bosons or fermions, respectively,
is

S =
∑

ε

∆gε [(nε ∓ 1) ln(1 ∓ nε) − nε ln(nε)] , (2.11)

where − is valid for bosons and + for fermions. If the total number of
particles N =

∑

∆gεnε and the energy E =
∑

ε∆gεnε are conserved, the
entropy (2.11) takes its maximum value for thermally distributed particles

nε =
1

e(ε−µ)/T ∓ 1
, (2.12)
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where µ denotes the chemical potential of the particles.

If one considers an ideal gas of photons, which have zero mass and thus
zero chemical potential, the energy and entropy can easily be calculated.
The number of possible indistinguishable microstates for every photon with
energy between ω and ∆ω in one-particle phase space is equal to

∆gω = 2

∫

d3xd3k

(2π)3
' 1

4π3
V ω2∆O∆ω , (2.13)

where the factor two accounts for the different possible polarizations of the
photons. The total energy of the photon gas can be determined by

E =
V∆O

4π3

∫

dωω3nω , (2.14)

where nω is the occupation number of the photons. According to the above
considerations the photons have maximal entropy if they have Planckian
spectrum nω = 1

eω/T−1
. In this case their energy can be expressed in terms

of volume V , solid angle ∆O and temperature T , see [26], which yields

E =
π

60
T 4V∆O . (2.15)

The entropy of the photon gas is equal to

S =
4

3

E

T
. (2.16)

This entropy characterizes the missing information about the exact micro-
scopic state of a nonequilibrium gas of photons which can propagate only
within the solid angle ∆O and have Planckian spectrum.

In the next section we will also need expressions for the entropy and
energy for a gas of nonrelativistic particles. In this case the temperature
is much smaller than the rest mass m

T
� 1, and in addition m−µ

T
� 1.

Hence, the spin-statistics does not play an essential role and the occupation
number (2.12) becomes nm = e−(m−µ)/T . For nonrelativistic particles with
nonvanishing chemical potential we can neglect the antiparticle density as it
is suppressed by e−

2µ
T .

In the leading order the integrals for the energy density ε = E/V , particle
density n = N/V , and pressure p can be evaluated up to corrections of
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O
(

1/(m
T

)2
)

, see [31],

ε =
gT (Tm)3/2∆O

27/2π5/2
e

µ−m
T

(

m

T
+

27

8
+

45

8

T

m

)

, (2.17)

n =
g(Tm)3/2∆O

27/2π5/2
e

µ−m
T

(

1 +
15

8

T

m

)

, (2.18)

p =
gT (Tm)3/2∆O

27/2π5/2
e

µ−m
T

(

1 +
15

8

T

m

)

. (2.19)

In terms of the particle density n the above expressions can be written as

ε ∼=
(m

T
+

3

2

)

nT , (2.20)

p ∼= nT . (2.21)

Then the entropy density s = ε+p−µn
T

takes the form

s ∼=
(m− µ

T
+

5

2

)

n . (2.22)

Equipped with various formulae for the thermodynamic quantities we now
turn to the question of the origin of black hole entropy.

2.3 Statistical interpretation of black hole en-

tropy

2.3.1 Remarks on the entropy of Hawking radiation

Hawking radiation emitted in empty space is far from equilibrium. Never-
theless it possesses entropy and has Planckian spectrum. Hawking radiation
has temperature

TH =
1

8πM
. (2.23)

If we neglect the influence of the potential barrier of the black hole, the
entropy of emitted radiation is given by (2.16). When the black hole emits
energy ∆M it carries the entropy

∆SH =
4

3

∆M

TH
. (2.24)
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At the same time the entropy of the black hole decreases by the amount

∆SBH = −∆M

TH
. (2.25)

Hence, while the black hole evaporates the total entropy of the system con-
sisting of Hawking radiation and black hole increases by

∆S = ∆SH + ∆SBH =
1

3

∆M

TH
. (2.26)

As it is clear from (2.16) the entropy of the emitted radiation does not change
as long as the radiation propagates in the space since its total energy and
temperature remain the same. At first glance this seems to contradict the fact
that the total volume occupied by the Hawking quanta, emitted for instance
within the time interval ∆t, increases as V ' 4πt2∆t for big t. However, the
indeterminacy of the concrete photon propagation direction characterized by
the solid angle

∆O ' 4π
σBH
4πt2

, (2.27)

decreases with time, and V∆O in (2.15) remains constant which is in com-
plete agreement with the fact that the temperature does not change. Here
σBH ∼ M2 is the classical effective cross-section of the black hole.

In this consideration we neglect the grey factor in the Hawking spectrum.
However, if one takes it into account, the main conclusion that the total
entropy increases remains unchanged.

2.3.2 Black hole entropy

The idea of a statistical interpretation of black hole entropy is rather simple
and can roughly be formulated as follows. Take the emitted Hawking radia-
tion and reverse it forming a new black hole. Then the entropy of this black
hole should be about the entropy of the Hawking radiation. For simplicity
we consider photon radiation in the following, but the same arguments also
hold for ultrarelativistic bosons and fermions. In the next section our con-
siderations will be generalized to the case of nonrelativistic particles. In the
calculations we neglect the influence of the potential barrier of the black hole
on the particle spectrum.

Actually, if we want to build a black hole from photons with total energy
M we first put them into a box of volume V ∼ D3, where D is the typical size
of the box and then collect these photons inside the volume M3. How this
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might be done realistically is not important for the general question of the
origin of the entropy. Could we then identify the maximal possible entropy
of these photons with the entropy of the formed black hole? As mentioned
above, the entropy of the photons has its maximal value when the photons
have thermal spectrum with temperature

T ∼ M1/4D−3/4(∆O)−1/4 . (2.28)

Then the entropy is

S ∼M/T ∼M3/4D3/4(∆O)1/4 . (2.29)

If one takes the box size D to be of the order of the black hole size M and
∆O ∼ O(1), then the entropy S is approximately M3/2 which is too small
to explain the black hole entropy SBH ∼M2. On the other hand, if the box
is very large, D → ∞, then S tends to infinity, too. The size of the box
will be restricted by the life time of the black hole tH , otherwise the black
hole which was already formed would radiate away before we have put all
matter inside. Therefore we take D ∼ tH , which for a black hole of mass M
is tH ∼ M3. With this value of D the entropy is S ∼ M3(∆O)

1
4 . Moreover,

in order to form the black hole the propagation of the photons will not be
completely arbitrary. Most of the photons are located near the border of the
box. If the black hole is formed in the centre of the box the photons have to
be directed in such a way to arrive in a small region of size M in the centre
of the box. This restricts the solid angle ∆O for most of them by

∆O ∼ M2

D2
∼ 1

M4
. (2.30)

Putting together the above considerations we get the correct estimate for the
entropy of the black hole,

S ∼M2. (2.31)

The system of mirrors which one could use to redirect the photons com-
plicates the consideration but leaves the conclusion unchanged. Thus this
approach opens the way to understand the statistical origin of black hole
entropy as a result of lost information about the exact microscopical initial
state of the matter from which the black hole was formed.

This interpretation of black hole entropy does not depend on the number
of fields. In the case of N massless fields the total energy increases by a
factor N ,

M ∼ NT 4D3∆O. (2.32)
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On the other hand, the rate of evaporation of the black hole is proportional
to the number of fields. Thus the life time of the black hole and the size of
the box, respectively, should be N times smaller. Taking into account that
∆O ∼ M2

D2 we see that the number of fields N is cancelled in (2.32). Therefore
temperature and entropy, S ∼ M/T , should not depend on the number of
fields.

Now we address the question about the exact numerical coefficient in the
formula for the entropy. As already mentioned in the above approach we
have just reversed the Hawking flux and explained the black hole entropy
via the entropy of the Hawking radiation itself. Therefore the result might
be 4/3 times bigger than it should be. However, the real situation is more
complicated. To get a more precise picture of what is going on let us find
how much entropy matter can contribute to the black hole. Let us consider
an already existing black hole of mass M and the amount of matter ∆E.
We then address the question how much entropy this matter can “add to
the black hole”, taking into account that during the process of absorption
the black hole continues to evaporate losing mass and respectively entropy.
During the time ∆t when the matter ∆E is absorbed, the black hole also
emits Hawking radiation with luminosity LH , so the mass of the black hole
only increases by ∆M , given by

∆M = ∆E − LH∆t . (2.33)

The photons emitted by the black hole fill a shell of width ∆t, the radius of
which grows with time. The energy of the Hawking radiation emitted during
∆t is easily determined. The photons have temperature TH and the total
amount of energy they carry can be calculated as

LH∆t =
π

60
T 4
HV∆O =

π2

15
σBHT

4
H∆t , (2.34)

where we took into account V = 4πt2∆t and used the formula (2.27) for the
solid angle. Since we assume that the photons which are responsible for the
mass increase will add maximal entropy to the black hole we find

∆M =
π2

15
σBHT

4
?∆t , (2.35)

where T? is the temperature of the photons. Given ∆E we get from (2.35)

∆t =
(π2

15
σBH

)−1 ∆E

T 4
? + T 4

H

. (2.36)
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Accordingly, the amount of entropy which matter adds to the black hole is

∆S =
4

3

∆M

T?
=

4

3

T 3
?

T 4
? + T 4

H

∆E . (2.37)

Keeping ∆E fixed, we maximize ∆S with respect to the temperature T? and
find that it takes its maximal value at

T? = 31/4TH . (2.38)

Therefore the maximal amount of entropy matter can contribute when the
mass of the black hole increases by ∆M is

∆S =
4

35/4

∆M

TH
' 1.0131

∆M

TH
. (2.39)

We compare this result to the change of the black hole entropy (2.25). There
is only a mismatch of one percent, which is probably due to the neglected
influence of the black hole potential barrier in the calculation. The exact
calculations in this case are rather complicated. However, one can easily see
that including the grey factor decreases the coefficient in (2.39), that is, at
least acts in the correct direction.

2.3.3 Nonrelativistic particles

Now we apply the considerations concerning black hole entropy to nonrela-
tivistic particles. We show that our statistical explanation for the origin of
black hole entropy can also be applied in this case. During evaporation the
black hole also emits massive particles, but the probability is exponentially
suppressed by e−m/T , i.e. by the mass m of the emitted particles. Hence this
process becomes important only if the temperature of the black hole is much
bigger than the electron rest mass, TH � me. If we artificially separate the
emission of massless and massive particles and assume that the black hole
evaporates only by emitting nonrelativistic particles with mass m, the life
time of the black hole will certainly be very big,

tH ∼ e8πMm. (2.40)

The following considerations are very similar to the case of photons discussed
before, so we will just review the basic steps. Let us assume an ensemble of
nonrelativistic particles of mass m. To build a black hole of mass M from
those particles first we place the total number of particles, N = M/m, inside
a box with the volume V = D3 and then collect them inside M3. The entropy
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of the particles reaches its maximal value for thermally distributed particles,
so the particle density is given by (2.18). The total number of particles N
can be expressed in terms of the particle density n and the occupied volume

N = n ·D3 = g∆OD3(mT )3/2e
µ−m

T , (2.41)

where g is the number of possible polarizations, T is the particle temperature
and µ their chemical potential. Since the size of the box is restricted by the
black hole life time tH we assume

D = tHv , (2.42)

where v := |~v| =
√

8T
πm

is the particles’ mean thermal velocity. If the black

hole is formed in the center of the box the particles’ direction of propagation
cannot be completely arbitrary. As for the photons the solid angle for most
of them will be restricted to ∆O ∼ M2

D2 , which yields

N = g(mT )3/2M2e8πMme
µ−m

T . (2.43)

Solving this equation for m−µ
T

implies

m− µ

T
' 8πMm + O (ln (m/T )) . (2.44)

The logarithmic corrections can be neglected, so the entropy that the non-
relativistic particles can add to the black hole is

S ∼ m− µ

T
N ∼Mm · M

m
∼M2. (2.45)

Thus black hole entropy can be interpreted as a result from lost information
about the exact microscopical initial state of the matter from which the black
hole was formed, even if we consider a black hole built from nonrelativistic
particles, instead of photon radiation considered before.

Our next step is to determine the exact coefficient for the formula of black
hole entropy. Consider an existing black hole of mass M and a given amount
of matter ∆E, which will be absorbed by the black hole. During the process
of absorption the black hole will continue to evaporate. When the matter
∆E is absorbed by the black hole during the time interval ∆t, during this
time the black hole will emit the energy LH∆t, where LH is the Hawking
flux due to the emission of nonrelativistic particles, see also (2.33).

The emitted particles with mass m carry the energy

LH∆t = 2n(m,TH) ·mV =
gm(mTH)3/2VTH

∆OTH

25/2π5/2
e
− m

TH . (2.46)
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Here the factor two arises since for a nonrotating black hole the Hawking
particles have zero chemical potential and both particles and antiparticles
contribute to the energy in the same amount. We write VT∆OT with sub-
script T to indicate that these quantities also depend on the temperature.
The particles which are responsible for the black hole mass increase ∆M
in general will have nonzero chemical potential µ, their temperature will be
denoted by T?. Since µ 6= 0 the number of antiparticles is exponentially

suppressed by the factor e−
2µ
T? . The particles can add maximal entropy to

the black hole if they have thermal distribution, and we write

∆M = n(m,T?)m · V =
gm(T?m)3/2VT?∆OT?

27/2π5/2
e

µ−m
T? . (2.47)

Now we have to consider VT∆OT in detail. For big t the volume occupied by
the Hawking particles changes as

VT = 4πr2∆r = 4πv3t2∆t , (2.48)

where the particles move with constant mean velocity v. Strictly speaking
the particles move with the mean radial velocity vr, but since we only con-
sider particles very far away from the black hole, which means large t, the
indeterminacy of the concrete direction of the particles, characterized by the
solid angle

∆OT = 4π
σBH
4πr2

, (2.49)

is very small. Hence, vr can be replaced by the mean thermal velocity of
particles

vr ' v =

√

8T

πm
. (2.50)

The quantity V∆O = 4πσBHv∆t does not depend on time t since the mean
velocity v is a function of temperature and particle mass only. Now (2.33)
can be solved for

∆t =
(gm2σBH

π2

)−1 ∆E

T 2
? e

µ−m
T? + 2T 2

He
− m

TH

, (2.51)

where TH is the temperature of the black hole and T? the temperature as-
signed to the particles. These contribute to the black hole mass change by

∆M = ∆E
T 2
? e

µ−m
T?

T 2
? e

µ−m
T? + 2T 2

He
− m

TH

. (2.52)
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The increase of the entropy due to nonrelativistic particles is

∆S ' ∆M

T?

(

1 − µ

m
+ O ((m/T?))

−1
)

. (2.53)

Substituting (2.52) yields

∆S ' ∆M

T?

(

1 − µ

m

)

= ∆E
(1 − µ

m
)T?e

µ−m
T?

T 2
? e

µ−m
T? + 2T 2

He
− m

TH

, (2.54)

which can be maximized with respect to the chemical potential µ. It takes
its maximal value for

m− µ

T?
∼= m

TH
− ln

(

2
m

TH

)

, (2.55)

up to higher order logarithmic corrections. The maximal amount of entropy
matter can contribute to the black hole is

∆S ' ∆M

TH
. (2.56)

One might wonder why this result is in such good agreement with the ex-
pected change of entropy, even though we neglected the influence of the grey
factor in our calculation. This can be explained easily, having a brief look at
the scattering problem for massive scalar fields. As shown in appendix B.1.2
for nonrelativistic particles, mM � 1, the four-dimensional potential barrier
coincides with the two-dimensional one and the reflection of particles in this
case is exponentially suppressed. Thus the potential barrier of the black hole
should be of no relevance for nonrelativistic particles.

Note that in principle ∆S can also be maximized with respect to the
temperature T? instead of the chemical potential, which is why we can also
apply the above arguments for particles with µ = 0. The only difference is
that in the case of vanishing chemical potential the antiparticle density is
equal to the particle density. We have

∆M = 2n(m,T?) ·mV . (2.57)

The resulting temperature of the particles T? will be equal to the Hawking
temperature TH . Nevertheless the black hole mass increases by

∆M =
1

2
∆E . (2.58)

At first sight this result seems to contradict the well-known fact that there is
no mass change for a black hole in equilibrium with a thermal bath, T = TH .



36 2. Origin of black hole entropy

However, we should not forget the meaning of T?, which is the temperature
assigned to the particles contributing to the effective mass change ∆M of
the black hole. The energy thrown in was taken arbitrarily and did not
necessarily possess thermal spectrum. In the case of µ = 0, if one afterwards
assigns a temperature to ∆E, it is bigger than the Hawking temperature TH .



Chapter 3

Stability of Hawking radiation

The Hawking radiation measured by an observer at rest at infinity has ther-
mal distribution with a temperature inversely proportional to the black hole
mass. This is valid for eternal black holes as well as for the more realistic
case when a black hole is formed during gravitational collapse [20]. In the
latter case, due to the formation of a horizon, the initial state might not be
the vacuum. The question arises whether the presence of particles in the
initial state is visible in the Hawking flux at infinity. Hawking argued that
any finite number of particles do not change the radiation spectrum as they
suffer an infinite red shift and thus “never” reach the observer at infinity.
This was confirmed by [46], see also [8] and references therein.

The Hawking effect might still depend on other parameters. For example,
the particle spectrum might be sensitive to physics beyond the Planck scale,
as discussed in [10, 55]. The contributing outgoing modes originate from
modes with extremely large wave numbers (due to the exponential red shift
near the horizon). Thus changes in the dispersion relation in the Planckian
regime might be visible in the particle spectrum. It has been shown in [56]
that under certain conditions the Hawking effect is insensitive to changes in
the dispersion relation. However, the authors also present examples where
there will be strong deviations from Hawking’s result.

In the following we address the question whether the vacuum definition
of different observers has any influence on the Hawking spectrum. In the
maximally extended Kruskal space-time the initial vacuum state is usually
defined by the boundary conditions on the past event horizon H−, where the
outgoing modes can be defined using the Killing vector ∂U . The correspond-
ing vacuum is called the Unruh vacuum [54] and is a good approximation to
the more realistic case of graviational collapse since the surface H− resembles
the last outgoing light ray γ in the collapsing model, see [9, 12, 16, 17, 47],
as well as Fig. 1.4. However, the maximally extended Kruskal manifold is a
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quite unphysical scenario, since it contains two eternal black and two white
holes. As shown in chapter 1.3, in the derivation of the Hawking effect we
only consider the exterior region of the black hole, corresponding to region I
in Fig. 1.2. The initial vacuum is defined using proper time coordinates in
the vicinity, but outside the event horizon H+. Then the Kruskal coordinates
are just one possible choice of coordinates which are regular on the horizon,
and we can transformation to other coordinates. Besides, since the Kruskal
coordinates define a freely falling frame only at one particular moment on
the horizon, they are not special from this point of view either. The vacuum
states for the outgoing modes for each new coordinate frame is then defined
by means of the corresponding Killing vector ∂Ũ . In general the resulting
vacuum states will not be equivalent since the Kruskal vacuum is invariant
only under Lorentz transformations.

In the following we show how to compute the particle spectrum for quite
arbitrary coordinate transformations. Since the Bogolyubov coefficients often
cannot be determined explicitly we will compute the particle density in a
different way. First we study the influence of Lorentz transformations on
the Hawking spectrum. After that we discuss the presence of particles in
the initial state. Finally we consider different observers on the horizon and
calculate the corresponding particle flux measured at infinity. We will show
that this choice of initial vacuum does not change the Hawking spectrum.

3.1 Hawking radiation

In section 1.3 we have determined the particle flux from the black hole using
the explicit form of the Bogolyubov coefficients (1.44). The total number of
emitted particles in the mode Ω has been calculated from

〈N̂Ω〉 = 〈0K |b̂+Ω b̂−Ω|0K〉 =

∫ ∞

0

dω|βωΩ|2 . (3.1)

Afterwards we have been able to separate the particle density nΩ from this
diverging quantity,

〈N̂Ω〉 = nΩδ(0) . (3.2)

It will prove convenient for us to write (3.1) in a different way,

〈N̂Ω〉 = lim
Ω′→Ω

N(Ω,Ω′) , (3.3)

where we introduce

N(Ω,Ω′) =

∫ ∞

0

dω

ω

√
ΩΩ′

∫ ∞

−∞

du

2π
eiΩue+iωU(u)

∫ ∞

−∞

du′

2π
e−iΩ

′u′e−iωU(u′). (3.4)
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We may as well compute the regularized energy momentum tensor using the
method of point splitting. In two dimensions the contribution to the energy
momentum tensor is

Tuu,reg =
1

2π
lim
u′→u

∫ ∞

0

dΩ

∫ ∞

0

dΩ′
√

ΩΩ′<
(

e−iΩueiΩu
′

N(Ω,Ω′)
)

. (3.5)

The above expression can be verified using the completeness relation of the
Bogolyubov coefficients (A.35). Other possible terms in the energy momen-
tum tensor are proportional to δ(Ω + Ω′) and do not contribute.

The computation of the Bogolyubov coefficients αωΩ and βωΩ depends
crucially on the coordinate transformation U = U(u). In the case of the
transformation between the Schwarzschild and the Kruskal coordinates (1.8)
we have already determined the particle spectrum in section 1.3.2. For arbi-
trary coordinate transformations U = U(u) it is impossible to calculate the
Bogolyubov coefficients explicitly. Therefore we calculate the particle flux in
a different way.

We assume that the order of integration in (3.4) can be reversed. Then
we need to solve the integral

K(x) =

∫ ∞

0

dω

ω
eiωx , (3.6)

which has an infrared (IR) and ultraviolet (UV) divergence, the latter when
x = 0. We use a smoothing function e−αω tanh(βω), which introduces a
cutoff in the IR region at β−1 and an UV cutoff at α−1. After the calculation
we let α→ 0 and β → ∞. According to appendix B.2.1, that yields

K(x) = ln β +
iπ

2
sgn(x) − ln |x| . (3.7)

This result can be used to determine (3.4). We get

N(Ω,Ω′) =
√

ΩΩ′

∫ ∞

−∞

du

2π
eiΩu

∫ ∞

−∞

du′

2π
eiΩ

′u′

×
[

ln β +
iπ

2
sgn(U − U ′) − ln |U − U ′|

]

, (3.8)

which is valid for general coordinate transformations U(u). The first two
terms of (3.8) do not depend on the special relation between the coordinates
U and u, but for the computation of the third part we need the explicit
transformation U(u). The first term in (3.8) can be easily evaluated

N1 = ln(β)
√

ΩΩ′δ(Ω)δ(Ω′) , (3.9)
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which gives us a zero mode contribution which is zero for finite β and can
be ignored for β → ∞. The second term simplifies since sgn(U − U ′) =
sgn(u− u′). Introducing the new coordinates

x = u− u′ ,

y = u+ u′ , (3.10)

the integral takes the form

N2 =
iπ

4

√
ΩΩ′

∫ ∞

−∞

dy

2π
e

1
2
i(Ω−Ω′)y

∫ ∞

−∞

dx

2π
e

1
2
i(Ω+Ω′)xsgn(x)

= −πΩδ(Ω − Ω′)

∫ ∞

0

dx

2π
sin Ωx

= −1

2
δ(Ω − Ω′) . (3.11)

We note that this contribution is negative and interpret it as accounting for
the zero point occupancies of the various modes of the field.

To determine the last term in (3.8) we need to know the function U(u).
As a first example we use the usual Kruskal coordinates on the horizon, see
(1.8). Introducing the new coordinate x = −U , we have

N3 =−κ−i(Ω−Ω′)/κ
√

ΩΩ′

∫ ∞

0

dx

2πκ

∫ ∞

0

dx′

2πκ
x−1−iΩ/κx′−1+iΩ′/κ ln |x− x′|.(3.12)

It turns out to be more convenient to introduce yet other coordinates of
integration,

x′ =
s

t
,

x = st . (3.13)

We find that the contribution to the total number of particles is

N3 = −2κ−i(Ω−Ω′)/κ
√

ΩΩ′

∫ ∞

0

ds

2πκ

∫ ∞

0

dt

2πκ

×s−1−i(Ω−Ω′)/κt−1−i(Ω+Ω′)/κ ln |1/t− t|

=
1

2
coth

(

πΩ

a

)

δ(Ω − Ω′) . (3.14)

Putting together the contributions N2 and N3 we have

N(Ω,Ω′) =
1

2

[

coth

(

πΩ

κ

)

− 1

]

δ(Ω − Ω′) =
1

e2πΩ/κ − 1
δ(Ω − Ω′) . (3.15)
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From that we can easily extract total number of particles in the limit Ω → Ω′.
This yields

〈N̂Ω〉 =

∫ ∞

−∞

du

2π

1

e2πΩ/κ − 1
, (3.16)

where the integral over u corresponds to the diverging δ-function. The above
expression clarifies the infinite nature of the total number of particles as
emerging as a result of an integral over an infinite time interval. The particle
density itself is a time independent quantity,

nΩ =
1

e2πΩ/κ − 1
, (3.17)

which gives us the expected result, identical to (1.47). Thus the particle flux
from the black hole has the expected thermal spectrum with the temperature

T =
κ

2π
. (3.18)

3.2 Defining vacuum and choice of observer

As mentioned earlier, the initial vacuum in the maximally extended Kruskal
space-time is defined by the boundary conditions on the past event horizon,
where ∂U is a Killing vector. If we now work in the Schwarzschild space-
time and choose different coordinates by a suitable transformation U →
Ũ(U), the initial vacuum state with respect to the new observer can be
defined along the surface where ∂Ũ is a Killing vector. One special type of
coordinate transformations are Lorentz transformations. The observers move
with constant velocity with respect to each other, but still they agree on their
definition of the vacuum state.

In the following we study the particle numbers for different scenarios in
detail and discuss possible effects on the Hawking spectrum.

3.2.1 Moving observers

We examine the influence of Lorentz transformations between observers on
the Hawking spectrum. First we assume that an observer at spatial infinity,
who examines the particle emission of a black hole, moves with constant ve-
locity with respect to the Schwarzschild observer, who is at rest at infinity.
As his distance from the black hole is infinite, he does not feel any gravita-
tional acceleration. We obtain the coordinate system of the moving observer
using the Lorentz transformation between the Schwarzschild coordinates and
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the new coordinate frame. If the observer’s proper velocity is given by v,
then the Lorentz transformation between the two frames is

t′ =
t− vr√
1 − v2

,

r′ =
r − vt√
1 − v2

. (3.19)

Alternatively, we can rewrite the transformation (3.19) in terms of light cone
coordinates

u′ =
1 + v√
1 − v2

u = αu ,

v′ =
1 − v√
1 − v2

v =
v

α
, (3.20)

where α denotes the Doppler factor. If the observer moves towards the black
hole, then v is positive, otherwise v is negative. The particle density can
be calculated as shown in section 3.1. It follows that the moving observer
measures a thermal spectrum with the Doppler shifted temperature

T ′
H =

κ

2πα
. (3.21)

In terms of v = tanh(β) we determine the Doppler factor and get

α = sinh(β) + cosh(β) = eβ. (3.22)

The metric in light cone coordinates remains unchanged under the above
coordinate transformation

ds2 = dudv = duα
dv

α
= du′dv′. (3.23)

Besides, we note that if the Doppler-factor is equal to the surface curvature
α = 2rs the temperature measured by the moving observer is equal to the
Planckian temperature.

Now we consider an observer on the horizon, moving with constant ve-
locity ṽ with respect to the Kruskal observer. According to (3.20), the ap-
propriate Lorentz transformation is

U ′ =
1 + ṽ√
1 − ṽ2

U = α̃U ,

V ′ =
1 − ṽ√
1 − ṽ2

V =
V

α̃
. (3.24)
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When we calculate the particle flux measured by an observer at rest at in-
finity, the particle density and the Hawking temperature remain unchanged.

We have seen that linear coordinate transformations Ũ(U) will not change
the particle spectrum measured at infinity. On the other hand, an observer
at infinity moving with constant velocity will measure a Doppler shifted
temperature. At first sight this seems to contradict the fact that this observer
has the same vacuum state as an observer at rest at infinity. However, the
Doppler shifted temperature can easily be explained if we bear in mind that
the invariant quantity in the thermal spectrum is ω

T
. Thus the shift in the

particle frequencies compensates the Doppler shifted temperature.

3.2.2 Kruskal particles on the horizon

In the previous calculations we studied the particle spectrum for an eternal
black hole where the regular state on the horizon is taken to be the initial
vacuum. However, the initial state on the horizon might be occupied if the
black hole was formed by a gravitational collapse. In the following we show
that a finite number of particles on the horizon does not change the particle
spectrum measured at infinity.

For simplicity we consider the one-particle state defined as

|1ω1〉 =
√
ω1â

†
ω1
|0〉 . (3.25)

The results obtained for this case can be easily generalized to n particles.
The factor proportional to the particle energy ensures Lorentz invariance of
the state. Note that the vacuum state is normalized as

〈0|0〉 = 1 , (3.26)

whereas the one-particle state is normalized according to

〈1ω|1ω′〉 = ωδ(ω − ω′) . (3.27)

We calculate the average particle number in the one-particle state

〈N̂Ω〉 =
〈1ω1|b̂+Ω b̂−Ω|1ω1〉

〈1ω1|1ω1〉

=

∫ ∞

0

∫ ∞

0

dωdω′

〈1ω1|1ω1〉
(

α?ωΩαω′Ω〈1ω1|â+
ω â

−
ω′ |1ω1〉 + β?ωΩβω′Ω〈1ω1|â−ω â+

ω′ |1ω1〉
)

=

∫ ∞

0

dω|βωΩ|2 +
ω1

〈1ω1|1ω1〉
(

|αω1Ω|2 + |βω1Ω|2
)

= 〈N̂Ω〉0 + δNΩ , (3.28)
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where 〈N̂Ω〉0 is the total number of particles per unit energy, evaluated from
Kruskal vacuum, and δNΩ denotes the change of the particle number. Ac-
cording to (1.46) these are

〈N̂Ω〉0 =

∫ ∞

−∞

du

2π

1

e2πΩ/κ − 1
(3.29)

and

δNΩ =
1

2πa〈1ω1|1ω1〉
coth(πΩ/a) . (3.30)

As expected, the total number of particles 〈N̂Ω〉0 is divergent, see also section
3.1. The change in the particle number is a finite quantity and does not
contribute to the particle density. If we separate the divergent volume factor
L ∼ δ(0) from (3.30), we immediately see that the change in the particle
density is suppressed by the factor L−2. Thus we conclude that the particle
density measured by an observer at infinity remains unchanged.

3.2.3 Considering different freely falling observers

We have seen that neither Lorentz transformations between observers on
the horizon nor the presence of a finite number of particles in the horizon
state change the Hawking spectrum at infinity. Now we address the question
whether the general choice of vacuum on the horizon affects the Hawking
flux at infinity. Corresponding to each coordinate transformation U → Ũ
the vacuum can be defined along the new Killing surface ∂Ũ . One possibility
is to consider freely falling observers which cross the horizon at some moment
V = V0. It can be easily seen that the Kruskal observer is freely falling along
U = V and crosses the horizon at V = 0. The nonvanishing Christoffel
symbols of the Kruskal metric (1.10) are

ΓUUU =
f,U
f

and ΓVV V =
f,V
f
. (3.31)

On the horizon, when U = 0 and V 6= 0, the ΓVV V component vanishes but
ΓUUU tends to a constant

ΓUUU =
1

2

r + rs
r2

e1−
rs
r e

v
2rs → 1

2rs
e

v(rs)
rs =

1

2r2
s

V . (3.32)

Hence ΓUUU vanishes only at U = V = 0.
We can always find a freely falling observer who crosses the horizon at

some V = V0 by a transformation, such that a quadratic term in the original
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r = 0

i−

I +

I −

i0

i+

H+

V1

V0

Figure 3.1: Possible choices of initial vacuum in the vicinity of the horizon, for
example at some moment V0 = 2r2

sΓ
U
UU |V=V0 .

coordinate U cancels the value of the Christoffel symbol on the horizon, that
is

Ũ = U +
1

2
αU2 + ... , (3.33)

where α = V0/2r
2
s is the value of the Christoffel symbol ΓUUU at V0. The dots

represent a whole class of inertial observers, which differ by arbitrary higher
order terms in the transformation. For the definition of a new observer we
also have to change the coordinate V correspondingly, but since these modes
are not important for the computation of the total number of particles we
skip this part here. One can easily check that in the new coordinates the
metric still has Minkowski form on the horizon and all Christoffel symbols
vanish at U = 0 and V = 2αr2

s .

The coordinate transformation Ũ(U) has to be unambiguous. Therefore
it is not sufficient to use the quadratic transformation, as it maps differ-
ent values of U to the same Ũ . Possible coordinate transformations are for
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examples

Ũ =















− 1
α

ln(1 − αU)
1
α
(eαU − 1)
U

1− 1
2
αU

, (3.34)

which map U ∈ [0,−∞) to Ũ ∈ {[0,−∞), [0,−1/α), [0,−2/α)}, respectively.
The inverse transformations are given by

U =















− 1
α
(e−αŨ − 1)

1
α

ln(1 + αŨ)

Ũ
1+ 1

2
αŨ

. (3.35)

Since for general coordinate transformations it is impossible to determine
the Bogolyubov coefficients analytically we apply our method introduced in
section 3.1. As an example we consider the transformation

Ũ =
U

1 − 1
2
αU

=
−κ−1e−κu

1 + 1
2
ακ−1e−κu

, (3.36)

where we have used the defining equation for the Kruskal coordinate (1.8).
To determine the total number of particles we solve the integrals in (3.8). As
shown above only the third term N3 depends on the particular coordinate
transformation. We have

N3 = −
√

ΩΩ′

∫ ∞

−∞

du

2π
eiΩu

∫ ∞

−∞

du′

2π
eiΩ

′u′ ln |U − U ′| . (3.37)

Again we introduce the coordinates x = κ−1e−κu, x′ = κ−1e−κu
′

and find

ln |Ũ − Ũ ′| = ln |x′ − x| − ln

(

1 +
1

2
αx

)

− ln

(

1 +
1

2
αx′
)

. (3.38)

The first term in (3.38) represents the usual contribution to the total number
of particles, but the other two terms are corrections to the result found
above. However, since they are proportional to

√
Ω′δΩ′ and

√
ΩδΩ these

terms are infinitely red shifted, their contribution to the energy momentum
tensor vanishes. Thus we conclude that there is no change in the thermal
spectrum measured by an observer at infinity.

After demonstrating that the particle flux is not influenced by the partic-
ular transformation (3.36) we turn to the question if any other well defined
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t = 1

s = const

x̃(x)

x̃(x′)

Figure 3.2: The range of integration x ∈ [0,∞), x′ ∈ [0,∞) is covered by the
coordinates t and s. The line t = 1 corresponds to the divergent ln |x̃′ − x̃|.

coordinate transformation Ũ(U) might induce a change in the Hawking spec-
trum at infinity. To do so we try to extend our particular example to a general
statement.

Since only the last term in (3.8) depends on the particular form of the
transformation we focus on its general form,

N3 =−κ−i(Ω−Ω′)/κ
√

ΩΩ′

∫ ∞

0

dx

2πκ

∫ ∞

0

dx′

2πκ
x−1−iΩ/κx′−1+iΩ′/κ ln |x̃′ − x̃|,(3.39)

where x̃′ = x̃(x′). We can always separate the term contributing to the usual
particle spectrum in this expression, which yields

N3 =−κ−i(Ω−Ω′)/κ
√

ΩΩ′

∫ ∞

0

dx

2πκ

∫ ∞

0

dx′

2πκ
x−1−iΩ/κx′−1+iΩ′/κln|x′− x|+δN3,

where

δN3 =−κ−i(Ω−Ω′)/κ
√

ΩΩ′

∫ ∞

0

dx

2πκ

∫ ∞

0

dx′

2πκ
x−1−iΩ/κx′−1+iΩ′/κ ln

∣

∣

∣

∣

x̃′ − x̃

x′ − x

∣

∣

∣

∣

.(3.40)



48 3. Stability of Hawking radiation

Again we transform to coordinates s and t as defined in (3.13), writing the
general expression for N3 as

N3 = −2κ−i(Ω−Ω′)/κ
√

ΩΩ′

∫ ∞

0

ds

2πκ

∫ ∞

0

dt

2πκ

×s−1−i(Ω−Ω′)/κt−1−i(Ω+Ω′)/κ ln
∣

∣

∣
x̃(
s

t
) − x̃(st)

∣

∣

∣
. (3.41)

Lines of constant s and t are shown in Fig. 3.2. The line t = 0 corresponds
to x = 0 and t = 1 to x̃′ − x̃ = x′ − x = 0. For arbitrary coordinate
transformations it seems to be impossible to calculate the integral (3.41).
However, it can be solved using an approximation. Our claim is that changes
to the integral (3.14) mainly originate in the region where t = 1. Therefore
we examine the function f̃ = 1

st
ln |x̃( s

t
) − x̃(st)|. As shown in Fig. 3.3 the

diverging contributions to the original integral evaluated along s = const = 1,
∫∞

0
1
t
ln |1

t
− t|dt, result from the divergence at t = 0 and t = ∞, whereas the

contribution from the divergence at t = 1 is finite. Proper regularization of
the integral smoothes out the divergences at t = 0 and t = ∞ and the finite
value of the integral can be calculated. If we now perform the transformation
x → x̃(x) the regularization of the integral is still valid as long as x̃ is a
polynomial of x, x̃ ∼ xn. Thus we conclude that the change to the original
N3 mainly originates from the region around x̃′ − x̃ = 0. Near x = x′ we can
apply

lim
x′→x

x̃(x′) − x̃(x)

x′ − x
=
∂x̃(x)

∂x
, (3.42)

and approximate δN3 by

δN3 =−κ−i(Ω−Ω′)/κ
√

ΩΩ′

∫ ∞

0

dx

2πκ

∫ ∞

0

dx′

2πκ
x−1−iΩ/κx′−1+iΩ′/κ ln

∣

∣

∣

∣

∂x̃(x)

∂x

∣

∣

∣

∣

.(3.43)

It is now easy to see that the integral is proportional to
√

Ω′δ(Ω′). Therefore
this term is infinitely red shifted and its contribution to the particle density
vanishes. Therefore the particle spectrum as measured by an observer at
infinity remains unchanged with the usual Hawking temperature

TH =
κ

2π
. (3.44)

The above approximation can be checked with the transformation (3.36)
which we have studied earlier. In that case the approximation (3.43) is even
exact since we can symmetrize the derivative

ln

∣

∣

∣

∣

∂x̃(x)

∂x

∣

∣

∣

∣

=
1

2
ln

∣

∣

∣

∣

∂x̃(x)

∂x

∣

∣

∣

∣

+
1

2
ln

∣

∣

∣

∣

∂x̃(x′)

∂x′

∣

∣

∣

∣

=
1

1 + 1
2
αx

+
1

1 + 1
2
αx′

. (3.45)
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∼− ln t/t

∼ ln |t − 1|

∼ ln t/t

t

f

0

Figure 3.3: The diverging pieces in the integral over f(t) = 1
t ln |1/t− t| originate

from the regions around t = 0 and t = ∞, whereas the contribution around t = 1
is finite.

This example supports the validity of our approximation. Thus we conclude
that the particle spectrum remains unchanged by the coordinate transforma-
tion as long as x̃ is a polynomial of x, x̃ ∼ xn. Possible transformations in
comparsion to the exponential eαx are shown in Fig. 3.4.

The Hawking flux measured by an observer at infinity is not affected by
general transformations of the coordinates on the horizon. Since the vacuum
is only invariant under Lorentz transformations, the vacuum states defined
by different observers on the horizon in general do not agree. As mentioned
before, for each transformation U → Ū the initial vacuum state is defined
using the corresponding Killing vector ∂Ū . It can be shown that ∂Ū is a
Killing vector along the line which starts at the point on the horizon where
the coordinates are inertial and end at I +. This is quite different from the
Kruskal coordinates, for which ∂U is a Killing vector along the past event
horizon H−. This difference does not affect our argument since we define the
vacuum in the vicinity of the horizon H+. The physical interpretation of our
result is as follows: Outside the horizon the Kruskal coordinates are inertial
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∼(1 − e−αX)

∼ x/(1 + 1
2αx)

∼ ln(1 − αx)

∼eαx

x

x̃

Figure 3.4: Possible coordinate transformations X → x̃ are shown for α = 1
2 .

They correspond to transformations Ũ(U) through x = −U and x̃ = −Ũ .

only at U = V = 0. To define the proper vacuum state in the vicinity of
the horizon, in principle we have to introduce a new freely falling system for
every moment V0. Nevertheless the Hawking spectrum measured at infinity
is not sensitive to this subtlety. The above considerations have been done
in the two-dimensional theory. The calculations in four dimensions will be
more complicated, but we expect the same result.



Chapter 4

Nonstationary black holes

Naturally, the mass of a black hole increases by the absorption of matter. On
the other hand, we expect that due to Hawking radiation the mass decreases.
Since this time dependence will of course influence the emitted radiation itself
it is physically interesting to study the spectrum of radiation of nonstationary
black holes.

For a nonrotating uncharged black hole with constant massM the Schwarz-
schild radius rs = 2M marks the location of both apparent and event horizon.
If the mass of the black hole changes, event horizon and apparent horizon no
longer coincide. As an example we draw the conformal diagram of a black
hole with linearly decreasing mass in Fig. 4.1. We assume that after a grav-
itational collapse the mass of the black hole is M0. After that, there is a
period of linear decrease until the black hole has completely vanished. For
0 < v < v0, the apparent horizon is constant, r = 2M0, whereas between
v0 < v < v1 it decreases linearly. After the black hole has evaporated com-
pletely space-time is flat, hence the space-time does not possess an event
horizon. This example shows that since the event horizon is a global quan-
tity one needs to know the development of the mass in the whole space-time
before it can be determined.

However, we expect the particle spectrum at infinity to depend on the
local change of the black hole mass. For this reason the event horizon cannot
be meaningful for the derivation of Hawking radiation. The importance
of other horizons is often suggested, see for example Ashtekar’s dynamical
horizon or Hayward’s work on isolated horizons, [1] and references therein.
Recently Visser et al. introduced the notion of an evolving horizon which
essentially coincides with the apparent horizon [59].

In the following we derive the Hawking flux for a black hole with time
dependent mass. As a model for an evaporating black hole we consider the
Vaidya solution. We will focus our attention on light rays which stay near
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the apparent horizon for a very long time. It turns out that they can be
used to define the line separating the light rays which escape from the black
hole from those falling in. We find an approximate solution for this time
dependent horizon and introduce coordinates which are regular on it. After
that we consider particular examples for the mass change.

There has been earlier work concerning the issue of Hawking flux from
black holes with changing mass. For some particular types of mass functions
the space-time possesses an extra conformal Killing vector. In this case it
becomes easier to determine the particle flux, e.g. for linear mass decrease
[60, 23]. However, the situation is more complicated if one considers general
mass change, in particular including the physically relevant mass change due
to Hawking radiation. There have been some articles considering general
mass [27, 49, 63, 64] which focus on the behaviour of the wave function in
the vicinity of the event horizon and use the method of analytic continua-
tion suggested for the Schwarzschild black hole by Damour and Ruffini [11].
Analytic continuation may work well in the case of black holes with constant
mass, but in the nonstationary case we doubt the validity of such a procedure.
Furthermore, as noted in [27], the resulting temperature is meaningful only
in the vicinity of the event horizon. Besides, it remains unclear in which way
the black hole parameters are connected to the time of observation. There-
fore it is desirable to gain a better understanding of the Hawking effect and
the meaning of horizons of nonstationary black holes.

4.1 Vaidya space-time

For the sake of completeness we start with the general metric for a spherically
symmetric gravitational field

ds2 = e2ψ
(

1 − 2m

r

)

dv2 − 2eψdrdv − r2dΩ2, (4.1)

where ψ and m are both functions of v and r, see also [62]. If ψ = 0 and
m = const > 0, then (4.1) is the Schwarzschild metric in (r, v) coordinates,
see (1.6). In the case of ψ = 0 and m = M(v), (4.1) is the Vaidya metric
which can be used as a model to describe nonstationary black holes with
increasing or decreasing mass. It has already been introduced in section
1.1.3 to model the mass increasing in the case of black hole formation. The
corresponding line element for an arbitrary mass function is given by

ds2 =

(

1 − 2M(v)

r

)

dv2 − 2drdv − r2dΩ2. (4.2)
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r = 0

Figure 4.1: Conformal diagram of a black hole with linearly decreasing mass in
the region v ∈ [v0, v1]. The light ray γ reaches infinity at uB .

In the following we consider decreasing mass dM
dv

< 0, the physically most
relevant progression given by (1.59). The Einstein equations Gµν = 8πTµν
for (4.2) are

∂vM = −4πr2T rv , (4.3)

with all other components equal to zero. For the general metric (4.1) we
have in addition ∂rm = 4πr2T vv and ∂rψ = 4πr2Trr. The geodesic equation
for radially outgoing light rays in the Vaidya space-time is

dr

dv
=

1

2

(

1 − 2M(v)

r

)

. (4.4)

This equation can be solved exactly only for special cases such as mass linear
or exponential in v [24]. Here we want to study a general mass change and
thus have to solve the geodesic equation approximately.
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4.1.1 Horizons

First we study important horizons in the Vaidya space-time. The location of
the apparent horizon ra can be determined from dr

dv
= 0, thus we have

ra(v) = 2M(v). (4.5)

Note that the apparent horizon ra is not a solution to the geodesic equation
(4.4) for non-constant mass.

The event horizon is defined by the outmost locus traced by outgoing
photons that can never reach arbitrarily large distances. To determine the
location of the event horizon one needs to know the development of the
black hole mass at all times. A more practical approximate condition for
this horizon is to look for outgoing light rays which stay near the apparent
horizon for an infinitely long time. Strictly speaking, this is not an event
horizon in the sense of section 1.1.5. Nevertheless it proves useful for the
calculation of the particle flux.

Expanding the geodesic equation near the apparent horizon, we find that
there is only one light ray re(v), which does not deviate exponentially from
the apparent horizon. We introduce a small parameter ε by assuming that
the mass and therefore the apparent horizon is slowly changing in v and write
ra = ra(εv). To first order in ε our ansatz is

r(v) = ra(εv) (1 + εz(v)) . (4.6)

Using r′a = dra
d(εv)

the linearized geodesic equation reads

1

2
z(v) = r′a + ra(εv)

dz

dv
. (4.7)

The homogeneous solution can be obtained straightforwardly

zh(v) = z0e
R

v
dv′

ra(v′) , (4.8)

where z0 is a constant of integration. The particular solution to zeroth order
in ε is

zp(v) = 2r′a . (4.9)

From this follows the existence of one light ray, z0 = 0, which does not deviate
exponentially quickly from the apparent horizon. Returning ε to unity, the
location of our time dependent horizon to first order is

r(1)
e (v) = ra(v)

(

1 + 2
dra
dv

)

. (4.10)



4.1 Vaidya space-time 55

This result is in agreement with the approximation obtained by York in [62],
who studied the surface of “unaccelerated” photons with d2r

dv2
= 0.

Let us briefly explain the relation between the energy emission of a black
hole and the corresponding change of its horizon area. During the process of
evaporation the black hole mass decreases according to

dM

dv
= − c

M2
, (4.11)

where c is some constant, see (1.59). The approximate solution to the
geodesic equation near the apparent horizon ra is given by (4.10). Using
(4.11) yields

r(1)
e = 2M − 8c

M
. (4.12)

From the above result we see immediately that the difference between the
two horizons is very small as long as the black hole mass is larger than the
Planck mass,

r(1)
e − ra = −8πc

M
. (4.13)

Furthermore, assuming that the emission of one quantum causes a change in
the horizon as (4.13) the black hole area is changed by one Planckian area,

∆A = 4π
(

r2
a − r2

e

)

∼ Apl. (4.14)

It seems astonishing that this result is independent from the black hole mass.

4.1.2 Double-null coordinates

To determine the particle flux from a nonstationary black hole we first have
to solve the wave equation �φ = 0. The following calculations will again
be performed in the two-dimensional model. For the case of constant black
hole mass we have already shown that apart from an irrelevant transmis-
sion coefficient this reduction of dimensionality does not affect the physics.
Therefore we expect that the physically relevant information for the Vaidya
space-time can be extracted from the two-dimensional model as well. It is
useful to write the metric (4.2) in a conformally flat form. For this purpose
we introduce a new coordinate defined by

y = r − re(v) . (4.15)



56 4. Nonstationary black holes

In the case of an arbitrarily changing black hole mass the location of the
horizon re can only be determined approximately. In the following we use
the approximate solution from above. Using the new coordinate frame the
Vaidya metric can be written as

ds2 =
y

y + re
redv

[

dv
ra
r2
e

− 2d ln(y) − 2
dy

re

]

. (4.16)

It turns out to be useful to introduce the rescaled coordinate

dṽ =
ra(v)

re(v)2
dv , (4.17)

which gives ṽ = v
2M0

in the limit of constant mass, corresponding to a Lorentz

transformation. For y < rera
ra−re

we can replace dy
re

in (4.16) by the total
differential d( y

re
) and define the outgoing light cone coordinate

ũ = ṽ − 2 ln(y) − 2
y

re
. (4.18)

Using the coordinate ũ the metric reads

ds2 =
y

y + re
redvdũ . (4.19)

Now we check the range of validity of our light cone coordinates. Since the
emission of one quantum changes the black hole area only by one Planckian
length (4.14), the difference between the apparent horizon ra and re is much
smaller than one as long as the black hole mass is larger than the Planck
mass, |ra − re| ∼ 1/M � 1. In this case the above approximation can be
used for y < M3 and therefore is still valid far away from the horizon. The
metric (4.19) is not regular on the horizon, but we can define coordinates
analogous to the Kruskal coordinates in the following way

dŨ = e−
1
2
ũdũ , (4.20)

dṼ = e
1
2
ṽdv . (4.21)

Then the resulting form of the metric looks very familiar,

ds2 =
y

y + re
redvdũ =

re
r
e1−

r
re dṼ dŨ. (4.22)

Thus we found coordinates which are regular on the time dependent horizon
re(v). These coordinates will be used to define the vacuum state on the
horizon. Far away from the horizon we have to use a different approximation
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for the retarded time coordinate. This can be done in the following way:
For y � re the logarithmic term in (4.16) can be neglected and the metric
becomes

ds2 =
y

y + re
dvdu , (4.23)

where the retarded time coordinate u is given by

u = v − 2y . (4.24)

The coordinates (4.23) reduce to the Minkowski metric at spatial infinity.
Hence they can be used to define the vacuum state of an observer at rest at
infinity.

4.1.3 Hawking effect

We introduced two appropriate coordinate frames in the previous section.
The coordinates (Ũ , Ṽ ) can be used to define a regular coordinate frame on
the horizon, the coordinates (u, v) at spatial infinity. Since the two coordinate
frames are valid in different regions of the space-time we have to match them
in the region

re < y <
rera
ra − re

, (4.25)

where both ũ = const and u = const are good approximations for the solution
to the geodesic equation. The coordinates will be matched along an arbitrary
line v = vg in this region. Accordingly, for v < vg the light rays are described
by constant ũ and for v > vg they obey u = const. The relation between ũ
and u can be written down immediately,

ũ =
u

2M(vg)
− 2 ln

(

M(vg)y

m0

)

, (4.26)

where we keep in mind that y = y(u, vg). The light cone coordinates in the
Vaidya space-time which have been introduced above are valid for an arbi-
trary function M(v). For simplicity we consider a rate of change according to
(1.59) in the following, since this is the expected mass change due to Hawking
radiation. The corresponding mass of the black hole is

M(v) = m0(1 − 3cv)
1
3 . (4.27)

We will show later that these results can also be applied to other mass func-
tions.
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To determine the time dependent Hawking flux we consider a light ray
that reaches an observer at infinity at very late time uB. This light ray stays
near the horizon re for a very long time, so we linearize the geodesic equation
around r(v) = re(v) + ε(v) and obtain the following solution

r(v) = re(v) + εi exp

(
∫ v

vi

dv′
ra(v

′)

2re(v′)2

)

. (4.28)

We expect that this light ray brings information to an observer at infinity
about the black hole mass at the time when its distance from the horizon
was of order ε. Using the change of the mass according to (1.59) we have

r(v) = re(v) + εi
M(vi)

M(v)
e

1
8c(M(vi)2−M(v)2) . (4.29)

Tracing back the light ray ũ to the moment vi when its distance from the
horizon was very small, r(vi) = re(vi) + ε, it turns out that during this time
the mass of the black hole does not change significantly. This is due to the
exponential deviation of the light ray from the horizon. The relative mass
change can be estimated

∆M

M(vi)
' 1

M(vi)2

[

ln

(

M(vg)y

M(vi)ε

)

+
y

re

]

. (4.30)

Thus we write

ũ =
u

2M(vi)

[

1 +
1

M(vi)2
ln

(

M(vg)y

M(vi)ε

)

+
y

reM(vi)2

]

− 2 ln

(

M(vg)y

m0

)

.(4.31)

If we consider an observer rB = r(uB, vB) at very large distance, we can
connect uB to the initial moment vi, when the light ray was just a distance
ε from the horizon,

uB = vi

(

1 +
∆M

M(vi)

)

+ u? , (4.32)

where u? = 4M(vg) ln
(M(vg)y
M(vi)

)

, and we define

M(uB) 'M(uB − u?) 'M(vi) . (4.33)

Thus we have been able to find the relation between the mass of the black
hole at the moment vi, when the light ray was still very close to the horizon,
and the time uB, when the observer measures the radiation. Now we can
determine the coordinate transformation Ũ(u). This yields

Ũ = e−
1
2
ũ(u) ' e

− u
4M(uB) . (4.34)
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The Bogolyubov coefficients are calculated as

αωΩ

βωΩ

}

=
1

2π

√

Ω

ω

∫ ∞

−∞

dueiΩue∓iωŨ(u) . (4.35)

We can read off the temperature measured by an observer rB which is equal
to

T =
1

8πM(uB)
, (4.36)

and depends on the retarded time uB. We conclude that this time dependence
of the black hole mass is reflected in a time dependent Hawking flux at
infinity. Using the geometric optics approximation it becomes obvious that
an observer at infinity receives information about the state of the black hole
when the distance of the light ray from the apparent horizon was very small.
We also expect nonthermal corrections in the Hawking spectrum, but these
corrections probably cannot be recovered by the above method.

4.2 Examples

In the following we calculate the particle flux for two particular choices of
black hole mass. In some cases our method to determine Hawking radia-
tion can be used to determine the main effects of the mass change quite
straightforwardly.

Our first example is a black hole with fluctuating horizon. This model
was also examined by Barrabes et al. in [3]. This scenario is very interest-
ing physically since metric fluctuations are expected due to quantum correc-
tions. To describe these fluctuations quantum mechanically and to determine
their influence on the Hawking radiation in principle requires a full theory of
quantum gravity. However, it might be possible to obtain the main effects
via semiclassical theory. The fluctuations of the black hole geometry are
approximated by periodic changes in its mass

M(v) = M0 [1 + µ0 sin(ωv)] θ(v) , (4.37)

where µ0 is the dimensionless amplitude of the fluctuations. The step func-
tion θ(v) shows that the black hole results from gravitational collapse of
a massive null shell propagating along v = 0. Following [3] we assume
µ0 = α(

mpl

M
), where α is a number of order unity. In particular this means

µ0 � 1 for a black hole mass M � mpl. In this case the rescaled coordinate



60 4. Nonstationary black holes

r(v)

v

Figure 4.2: Numerical plot of (r, v)-diagram of Vaidya space-time with oscillating
mass.

(4.17) can be integrated explicitly. The black hole mass changes periodically
with vT = 2π

ω
. This property can be used to define the average surface gravity

κ̄ '
(

ra
2r2

e

)

=
1

vT

∫ vT

0

dv
ra(v)

2re(v)2
. (4.38)

Since the average surface gravity (4.38) is constant the light cone coordinate
u can be defined as

ũ = 2κ̄u . (4.39)

Correspondingly, the Kruskal-like coordinate is Ũ ∼ e−κ̄u. The thermal
corrections to the temperature can now be read off the transformation im-
mediately,

TH =
κ̄

2π
. (4.40)



4.2 Examples 61

r(v)

v

Figure 4.3: Numerical plot of (r, v)-diagram of Vaidya space-time with linearly
decreasing mass.

This agrees with the result derived in [3], where the particle flux was obtained
by including corrections to the light rays and the temperature was propor-
tional to some rescaled surface gravity, that coincided with the averaged
surface gravity only by chance. In our derivation it becomes immediately
obvious that the Hawking temperature is indeed proportional to the average
surface gravity. In Fig. 4.2 we show a numerical plot of the (r, v)-diagram
for oscillating mass showing in- and outgoing light rays. For oscillating mass
the approximation (4.10) is not a good approximation, but re can be deter-
mined as a perturbation around r̄a = 2M0, see [3]. Both apparent and event
horizon oscillate around the same mean value r̄a = r̄e = 2M0. However, their
amplitudes are different depending on µ0 and ω, and there is a phase shift
between them. We conclude that our derivation of time dependent Hawking
temperature is especially useful in cases where we can exploit the character-
istic features of the metric. In the above case this is the periodicity of the
black hole mass.

Our next example is the linear mass function

M(v) = M0

(

1 − α

M0
v

)

, (4.41)

where we restrict v to positive values and α
M0
v < 1. The conformal diagram

of a Vaidya black hole with linearly decrasing mass is shown in Fig. 4.1. The
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geodesic equation (4.4) can be solved analytically with the result

re =
ra
8α

(√
1 + 16α− 1

)

, (4.42)

which coincides with the Cauchy horizon of the space-time satisfying the
relation d2r

dv2
= 0. Since the derivative of the mass function with respect to

v is Ṁ = −α, the distance between ra and re is constant. For small α we
obtain

re ' ra(1 − 4α) . (4.43)

We determine the average surface gravity defined over the interval ∆v =
vf − vi,

κ̄ =
1

∆v

∫ vf

vi

dv
ra(v)

2re(v)2
=

1

4α∆v (1 − 4α)2
ln

(

M(vi)

M(vf )

)

. (4.44)

For a typical interval ∆v this can be approximated by

κ̄ ' 1

4α∆v (1 − 4α)2

α∆v

M(vi)
' 1

4M(vi)
(1 + 8α) . (4.45)

If we consider a light ray which at v = vi has distance ε from re we define
the mass dependence for an observer at infinity by M(uB) = M(uB − u?) '
M(vi). Hence, we can compute the corrections to the Hawking temperature

TH =
κ̄

2π
=

1

8πM(uB)
(1 + 8α) . (4.46)

It turns out that we found an additional correction in temperature in formula
(4.46) which we have not been able to determine in (4.36).

The previous examples illustrate the derivation of the Hawking flux for
black holes with changing mass. In some cases thermal corrections can be
determined quite easily, for example for linearly decreasing mass. The tem-
perature of the particle flux has been extracted from the total number of
particles emitted in the space-time. For nonstationary black holes the ques-
tion arises which horizon is the important one. Here we have chosen an
approximate solution to the geodesic equation, which at every moment of
time describes a light ray which does not deviate exponentially fast from the
apparent horizon. In the next chapter we will turn back to this question, ex-
amining the response of a detector moving in a time dependent background.
In this way further corrections to the temperature can be determined as well.



Chapter 5

Particle detectors

What do our previous considerations imply for the detection of particles in
curved space-time? Necessarily, one has to specify all details of the process
used to detect the presence of quanta. In particular the state of motion of the
detector has an affect on the outcome. For example a freely falling detector
will not register the same spectrum as a noninertial accelerated detector.
This is so even in flat space-time: A detector moving with constant proper
acceleration registers a thermal flux of particles in the Minkowski vacuum
with a temperature proportional to its acceleration. This is the well known
Unruh effect [54].

In the previous chapters we studied the particle flux from black holes by
calculating the total number of emitted particles 〈N̂Ω〉, which is integrated
over all times. However, as shown in the following example, the physical
interpretation of this approach is problematic since it is difficult to account
for a time dependent scenario. In contrast, a particle detector can be switched
on for a measurement over a finite period of time and consequently reveals
information about the spectrum of radiation at this time.

In the following we use a model particle detector to quantify the particle
spectrum measured by observers moving in a curved background. The finite
nature of the physical measurement will be taken into account by a suitable
window function in the detector-field interaction. Since formally the deriva-
tion of the Hawking radiation is equivalent to the Unruh effect we start with
some considerations in Minkowski space-time.

5.1 Accelerated observers in flat space-time

Particle creation in Minkowski space-time was first studied by Unruh for the
case of a uniformly accelerated observer [54]. He found that this so-called
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Rindler observer detects a thermal flux of particles in the Minkowski vacuum
with a temperature proportional to his acceleration. Formally the derivation
of this effect is identical to the derivation of Hawking radiation since the
transformation between Minkowski coordinates (uM , vM) and the observer’s
rest frame (ũ, ṽ) can be written as

uM =− 1

a0
e−a0ũ ,

vM =
1

a0
ea0 ṽ , (5.1)

where a0 is the proper acceleration of the Rindler observer. This transfor-
mation is identical to (1.9) with the identification

(U, V ) =̂ (uM , vM),

(u, v) =̂ (ũ, ṽ). (5.2)

Thus the Kruskal observer in the black hole space-time corresponds to an
inertial observer in Minkowski space-time and Eddington-Finkelstein corre-
spond to Rindler coordinates. Correspondingly, 1

4M
is substituted by the

acceleration a0.
We consider an observer moving with general acceleration. The Bo-

golyubov approach of transformations to scalar particle creation in flat space-
time has been considered for some classes of accelerated frames in 1 + 1 di-
mensions [40, 41, 42, 44, 65] and in four dimensions [43]. Dolby [13] extended
the considerations to fermionic particle production for some special examples
of observers in 1 + 1 dimensions.

Calculating the controlling equations for an arbitrarily accelerated ob-
server is straightforward. We start with the two-dimensional line element in
Minkowski space-time

ds2 = dt2 − dr2 = ηikdx
idxk, (5.3)

with Latin indices i, k = 0, 1. If τ is the proper time parametrizing the
observer’s trajectory xk(τ) = (t(τ), r(τ)), then the observer’s two-velocity is
given by

uk(τ) =
dxk

dτ
=
(

ṫ(τ), ṙ(τ)
)

, (5.4)

which is normalized according to

uk(τ)uk(τ) = ηikẋ
iẋk = 1 . (5.5)
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The two-acceleration is defined as ak = d2xk

dτ2 = u̇k and is orthogonal to the
velocity

uk(τ)ak(τ) = 0 , (5.6)

which can be shown by taking the derivative of (5.5). In an instantly co-
moving inertial frame the observer is at rest and thus ṙ(τ) = 0. Then the
observer’s velocity is uk(τ) = (1, 0) and the acceleration ak(τ) = (0, a(τ)).
The absolute value of the acceleration is given by

ηika
i(τ)ak(τ) = −a(τ)2 . (5.7)

This relation is valid in the comoving frame and since it is completely covari-
ant it is valid in an arbitrary inertial frame. In the case of the Rindler observer
the proper acceleration is constant in time, a(τ) = a0 = const. To under-
stand the physical meaning of constant acceleration consider a spaceship with
infinite energy supply and a propulsion engine that exerts a constant force.
Then the acceleration of the spaceship in its comoving frame is constant. In
light cone coordinates, uM = t − r, vM = t + r, the two-dimensional line
element in Minkowski space-time is given by

ds2 = duMdvM . (5.8)

In the following we skip the index M for simplicity. The two-velocity of the
observer in light cone coordinates is

uk(τ) =
dxk

dτ
= (u̇(τ), v̇(τ)) . (5.9)

The observer’s trajectory can be determined from the following equations,

u̇v̇ = 1 , (5.10)

üv̈ = −a(τ)2 . (5.11)

Differentiating (5.10) with respect to τ we get v̈ = − ü
u̇2 . Substituting this

result into (5.11) yields

ü

u̇
= − v̈

v̇
= −a(τ) . (5.12)

This equation can be integrated and using (5.10) we obtain

u̇ = c1e
−

R

a(t)dt ≡ A(τ) , (5.13)

v̇ = c−1
1 e

R

a(t)dt ≡ A(τ)−1 , (5.14)
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where c1 is a constant of integration. The appropriate comoving frame
(ξ0, ξ1), where the accelerated observer is at rest, can be defined choosing
ξ1 = const = 0, and the time coordinate ξ0 to be the proper time τ along
the observer’s world line. Then the world line ξk(τ) of the observer is given
by

ξ0(τ) = τ , ξ1(τ) = 0 . (5.15)

Assuming that the coordinate basis vectors ξk are orthogonal, the metric in
this frame is

ds2 = G2(ξ0, ξ1)
[

(dξ0)2 − (dξ1)2
]

, (5.16)

where G(ξ0, ξ1) is the conformal factor of the metric which still has to be
determined. Now we can introduce light cone coordinates for the comoving
frame ũ = ξ0 − ξ1 and ṽ = ξ0 + ξ1. In these coordinates the observer’s
trajectory is

ṽ(τ) = ũ(τ) = τ . (5.17)

The coordinates (u, v) and (ũ, ṽ) describe Minkowski space-time in two dif-
ferent frames,

ds2 = dudv = G2(ũ, ṽ)dũdṽ , (5.18)

where G2(ṽ = τ, ũ = τ) = 1. The observer’s trajectory in terms of the two
coordinate systems is

du(τ)

dτ
=
du(ũ)

dũ

dũ(τ)

dτ
. (5.19)

In addition, we know that

du(τ)

dτ
= A(τ) ,

dũ(τ)

dτ
= 1 . (5.20)

Therefore the exact form of the transformation can be determined. This
yields

du

dũ
= A(ũ) , (5.21)

dv

dṽ
= A(ṽ)−1 . (5.22)
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Figure 5.1: World lines of uniformly accelerated observers. The solid hyperbolae
are lines of constant proper distance ξ. Lines of constant τ are dashed. The outer
dashed lines show the light cone which corresponds to ξ = −a−1

0 .

Now we consider the Rindler observer, where a(τ) = a0 = const, and A(τ) =
c1e

−a0τ . In this case (5.22) can be integrated with the result

u =− c1
a0
e−a0ũ +B , (5.23)

v =
1

a0c1
ea0 ṽ + C . (5.24)

With a suitable choice of the integration constants c1 and B,C, which cor-
respond to Lorentz transformation and shifting the origin of the coordinate
system, we arrive at equation (5.1). In Fig. 5.1 world lines of uniformly
accelerated observers are drawn. The solid hyperbolae are lines of constant
proper distance. Lines of constant τ are dashed. For large |t| the trajecto-
ries approach the light cone. Using the arguments of section 1.3.2 we can
determine the total number of particles,

〈N̂Ω〉 =

∫ ∞

0

dω

2π

1

e2πΩ/a0 − 1
. (5.25)
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Since the acceleration of the observer a0 is constant we can read off the
particle density immediately,

nΩ =
1

e2πΩ/a0 − 1
. (5.26)

Therefore the uniformly accelerated observer in Minkowki space-time mea-
sures a thermal particle flux with temperature proportional to its acceleration
a0.

As an example for nonuniformly accelerated motion we consider an ob-
server in Minkowski space-time who at τ = −∞ is at rest. His acceleration
a(τ) constantly increases for −∞ < τ <∞ until finally it tends to a constant.
Such an observer can be described by

A(ṽ)−1 = 1 + eaf ṽ , (5.27)

where af is the final value of the acceleration at τ = ∞. The proper acceler-
ation a(τ) of the observer can be determined from

üv̈ = −a(τ)2 , (5.28)

which yields

a(τ) =
af

1 + e−af τ
. (5.29)

A possible trajectory is shown in Fig. 5.2. For τ → −∞ the observer
coincides with the Minkowski observer, for τ → ∞ he approaches the light
cone. The transformation between Minkowski coordinates and the observer’s
comoving frame is

u = − 1

af
ln(1 + e−af ũ) , (5.30)

v = ṽ +
1

af
eaf ṽ . (5.31)

The computation of the Bogolyubov coefficients (1.44) in this case yields

αωΩ

βωΩ

}

=

√

Ω

ω

∫ ∞

−∞

dũ

2π
eiΩũ

(

1 + eaf ũ
)±iω/af

=

√

Ω

ω

1

2πaf

Γ(− iΩ
af

)Γ( i(Ω∓ω)
af

)

Γ(∓ iω
af

)
. (5.32)

Accordingly, we can naively determine the total number of particles (1.45)
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Figure 5.2: World line of a nonuniformly accelerated observer. The observer
starts at rest at τ = −∞. He is accelerated until a(τ) → af and for τ → ∞ he
approaches the light cone.

as

〈N̂Ω〉 =

∫ ∞

0

dω
1

4πaf(Ω + ω)

sinh(πω
af

)

sinh(πΩ
af

) sinh(π(Ω+ω)
af

)
. (5.33)

It is now impossible, however, to extract the proper time-dependent particle
density from the above result. At early times we expect that the observer
does not measure any particles or at least very few, whereas at late times
the spectrum should resemble a thermal spectrum with temperature T =

af

2π
.

This example reveals the limited utility of computing 〈N̂Ω〉. Because of the
formal analogy between accelerated observers and black hole radiation we
expect that we also have to be careful in the case of Vaidya space-time.

5.2 Unruh detector

The Unruh detector [8, 54] can be implemented in a number of ways. Here we
take the coupling between the detector and the field to be of linear monopole
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type. The detector itself is an idealized point-like detector defined solely
through its energy levels Em. The states evolve as

|m, τ〉 = eiH0τ |m〉 = eiEmτ |m〉 , (5.34)

where H0 is the unperturbed Hamiltonian of the detector and τ denotes the
proper time measured along its trajectory x(τ). The detector-field interaction
is described by an interaction Lagrangian of the form

ÛI = −iε
∫ ∞

−∞

dτW (τ)Q̂(τ)φ̂(x) , (5.35)

where Q̂ is the detector’s monople moment and ε is a small coupling parame-
ter. Usually, the response of the detector is studied for its entire history, from
the infinite past to the infinite future in the detectors proper time, but in any
realistic situation the detector is only switched on for a finite period of time.
The window function W (τ) models the finite duration of the measurement
and it allows for the time dependence of the detector response.

During a measurement the detector will undergo a transition from its
ground state Ei to an excited state Ef due to its interaction with the scalar

field. If we suppose the field φ̂ is initially in its vacuum state |0〉 then the
transition amplitude in first order perturbation theory is

A(Σ) = 〈Σ|〈f |ÛI |i〉|0〉 , (5.36)

where |Σ〉 is the final state of the field. Since |Σ〉 is immaterial for the
detector the probability of transition is

P =

∫

dΣA(Σ)∗A(Σ)

= ε2
∫ ∞

−∞

dτ

∫ ∞

−∞

dτ ′W (τ)W (τ ′)Qfie
i∆E(τ−τ ′)〈0|φ̂(x)φ̂(x′)|0〉 ,(5.37)

where Qfi = |〈f |ÛI |i〉|2.
We will now compute the transition probability (5.37) explicitly. The

detector’s trajectory is parametrized in terms of in- and outgoing light cone
coordinates (u(τ), v(τ)). Using the plane wave expansion for the scalar field

φ̂(u, v) =

∫ ∞

0

dΩ

(2π)
1
2

1√
2Ω

(

e−iΩub̂−Ω + eiΩub̂+Ω + e−iΩv b̂−−Ω + eiΩv b̂+−Ω

)

(5.38)

and the result for the integral (3.7) we obtain

P ∝
∫ ∞

−∞

dτ

2
√
π

∫ ∞

−∞

dτ ′ei∆E(τ−τ ′)e−
(τ−τ0)2

2σ2 e−
(τ ′−τ0)2

2σ2

×
[

− ln|u− u′| + iπ

2
sgn(u− u′) −ln|v − v′| + iπ

2
sgn(v − v′)

]

,(5.39)
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where u′ = u(τ ′) and v′ = v(τ ′). We use the Gaussian window function

W (τ) = e−
(τ−τ0)2

2σ2 , (5.40)

where τ0 denotes the time of the measurement and σ is the proper time in-
terval of the measurement. Other possible choices for the window function
are a δ-function or a step-function. However, as noted in [22], instanta-
neously switching on and off the detector leads to divergences in the detector
response, whereas smooth window functions are expected to change the reg-
istered spectrum only by transients. This has been shown explicitly in the
case of an uniformly accelerated detector in [51].

Without a suitable finite window function one would expect to measure
an infinite number of particles but, as it stands, the transition probability
(5.39) has an undesirable dependence on the interaction time σ. Besides, it
typically exceeds unity after a finite time. It is sufficient, however, to consider
the transition rate of the detector which is given by

T ≡ lim
σ→∞

P
σ
. (5.41)

This quantity is independent of the details of the interaction and from this
we can determine the spectrum of radiation measured by the observer.

Now, given the motion of an observer in the space-time, we are able
to calculate its transition rate, assuming that the integrals (5.39) can be
computed at least approximately. To be physically sensible, we require a
restriction on the detector motion

a

ȧ
� σ � (∆E)−1 , (5.42)

where a = a(τ) is a parameter describing the observer’s acceleration in proper
time. In flat space-time this quantity coincides with the proper acceleration.
This means, that the interaction time must be less than the time scale of any
changes in the system we hope to measure, and we can only detect radiation
with energy greater than the inverse of the interaction time.

5.2.1 Rindler observer

The simplest application of the Unruh detector is the Rindler observer in flat
space-time. In this case the trajectory of the observer is given by (5.1). In
this section we let τ0 = 0 without loss of generality and write a instead of a0.
The transition probability (5.37) can be calculated explicitly. The first term
in (5.39) yields

P1 ∝ −
∫ ∞

−∞

dx

4
√
π

∫ ∞

−∞

dye−
x2

4σ2 e−
y2

4σ2 ei∆Ex ln |1 − e−ax| , (5.43)
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with the change of integral variables x = τ−τ ′ and y = τ+τ ′. The y-integral
can be performed easily and gives an overall multiplicative factor of σ. Then
we find

T1 ∝ π

2

coth(∆Eπ/a)

∆E
. (5.44)

Since sgn(u−u′) = sgn(τ − τ ′), the contribution of the second term of (5.39)
to the transition rate is

T2 ∝ − π

2∆E
. (5.45)

The v-terms in (5.39) result in exactly the same contributions, therefore in-
and outgoing particles contribute to the particle density in the same amount.
The corresponding transition rate is

T ∝ 2

[

π

2

coth(∆Eπ/a)

∆E
− π

2∆E

]

=
2π

∆E

1

e2π∆E/a − 1
, (5.46)

which means that the particle detector behaves as if it is immersed in a
thermal bath of radiation with temperature T = a

2π
.

5.2.2 Nonuniformly accelerated observer

The trajectory of an observer in Minkowski space-time whose acceleration
changes with time can by derived from (5.13) and (5.14). To solve the inte-
grals in (5.39) we first note that the argument of the logarithm in the first
term in (5.39) can always be written as

u(τ) − u(τ ′) =

∫ τ

τ ′
ds u̇(s) , (5.47)

where u̇ = du
dτ

is given by (5.13). We assume that the detector is used for a
measurement at the moment τ0. Then we can expand u̇ around τ0,

u̇ ' u̇0e
−

ü0
u̇0

(τ−τ0)
e
− 1

2
(

ü0
u̇0

)·(τ−τ0)2
. (5.48)

This approximation is valid as long as the observer’s acceleration is in the
adiabatic regime,

ȧ

a2
� 1 . (5.49)

It can be easily seen that the adiabatic condition coincides with the restric-
tion (5.42), since we expect the temperature to be T ∼ a and therefore the
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difference between the detector states ∆E ∼ a. In this case it is enough to
use the first order term in (5.48). This yields

u(τ) − u(τ ′) =

∫ τ

τ ′
ds u̇(s) ' u̇2

0

ü0

[

e
−

ü0
u̇0

(τ ′−τ0) − e
−

ü0
u̇0

(τ−τ0)
]

. (5.50)

Analogous to the calculation of the Rindler observer we can now determine
the temperature. Since the time τ0 is arbitrary we have

T ' − 1

2π

ü

u̇
. (5.51)

To check the validity of this approximation we apply it to the observer who
is initially at rest and then is accelerated and finally approaches constant
acceleration. In this case the result is

T ' a(τ)

2π
=

1

2π

af
1 + e−af τ

. (5.52)

Initially the observer will measure no radiation whereas during his late-time
acceleration he detects particles. Finally the particle flux converges to that
seen by a Rindler observer with constant acceleration af . Of course, we can
only trust the result for large τ , when the motion of the accelerator satisfies
the adiabatic condition (5.49).

We have shown that for time dependent acceleration a model particle
detector is able to extract the time dependence of the particle flux. Fur-
ther corrections to the temperature (5.51) can be determined as well. This
question will be addressed in [37].

5.3 Hawking effect

Now we determine the transition rates for particle detectors in black hole
space-time. In this section we consider a Schwarzschild black hole with con-
stant mass M . In curved space-time the equations of motion of the detector
are in general more complicated than in flat space-time. Furthermore, one
has to impose proper boundary conditions for the scalar field. We assume
that there are no ingoing modes, i.e. nothing falling into the black hole
φ̂(u) ∼ e−iΩu. Ingoing v-modes originate from the past event horizon of an
eternal black hole. This corresponds to choosing the Unruh vacuum state
|U〉, see [54].
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5.3.1 Static detector

We consider a detector that is located at constant distance from the black
hole, also called a static detector. Of course, to stay at constant finite dis-
tance from the black hole we assume the detector is fitted with a suitable
rocket. We recall that the background metric is given by

ds2 = f̄(u, v)dudv = f(U, V )dUdV , (5.53)

where (u, v) and (U, V ) are the Eddington-Finkelstein coordinates and the
Kruskal coordinates, respectively, f̄ = 1− 2M

r
, and f(U, V ) is given by (1.11).

From the transformation between the coordinates (1.8) and (1.9) we define

f(U, V ) = f̄(u, v)
∂u

∂U

∂v

∂V
≡ f̄(u, v)B(U)A(V ) = f̄(u, v)e(

u
4M

− v
4M ) . (5.54)

The acceleration of an observer at rest at r = R can be determined from

ak =
Duk
Dτ =

duk

dτ
+ Γkiju

iuj, (5.55)

where uk denotes the observer’s proper velocity. With respect to the Schwarz-
schild background the observer feels the acceleration

a =
√

akak =
M

R2

1
√

1 − 2M
R

. (5.56)

This implies that if the observer is at rest at infinity he does not feel any
acceleration, whereas on the horizon R = 2M he feels an infinite force.

The detector’s world line (U(τ), V (τ)) is parametrized by its proper time
τ . The equations defining the observer’s trajectory are

ṙ = r,U U̇ + rV V̇ = 0 , (5.57)

f(U, V )U̇ V̇ = 1 , (5.58)

where

r,U = B(U)r,u = −1

2
f̄(u, v)B(U) ,

r,V = A(V )r,u =
1

2
f̄(u, v)A(V ) . (5.59)

Here and in the following ,v denotes partial derivative with respect to v
and so on. Both r,u and r,v are obtained from the light ray equation in
Eddington-Finkelstein coordinates. We have

r,v = −r,u =
1

2

(

1 − 2M

R

)

≡ 1

2
C2

0 . (5.60)
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Using (5.57) and (5.58) we obtain

V̇ =
1

A(V )C0

, and U̇ =
1

B(U)C0

. (5.61)

This implies the following relation between the proper time τ of the observer
and the light cone coordinates u and v, respectively,

∂v

∂τ
=

1

C0

,
∂u

∂τ
=

1

C0

. (5.62)

Then the observer’s trajectory is given by

V (τ) = 4Me
τ

4MC0 ,

U(τ) = −4Me
− τ

4MC0 . (5.63)

At infinity, R → ∞, we find C0 = 1 and τ = u = v up to an irrelevant
constant. Using the transformation between the coordinates we obtain

B(τ) =
1

A(τ)
. (5.64)

This result is in agreement with (5.58) even though f(U, V ) tends to zero for
R→ ∞. Expanding f((U(u), V (v))) for large arguments we find

f → e
(u−v)
4M , (5.65)

which exactly cancels the other contribution in (5.58).
The transition rate can be calculated analogously to (5.46). The only

difference is that now only the outgoing modes contribute to the spectrum
of radiation. We find

T ∝ π

∆E

1

e
2π∆E
4MC0 − 1

. (5.66)

Hence, the temperature measured by a static detector includes a multiplica-
tive factor that depends on its distance from the black hole

TH(R) =
1

8πM
√

1 − 2M
R

. (5.67)

If the observer is at rest at infinity, R→ ∞, the detected temperature (5.67)
coincides with the usual Hawking temperature. On the horizon R = 2M
the detector would measure an infinite temperature which corresponds to
the fact that the proper acceleration of the static observer diverges on the
horizon.
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5.3.2 Freely falling observer

If we parametrize the world line of a massive test particle in this space-time
by its proper time τ , then the equations of motion of the particle falling
radially into the black hole can be derived from the Lagrangian

L = f(U, V )U̇ V̇ , (5.68)

where the dots denote the derivative with respect to proper time τ , see
appendix B.3. In the Schwarzschild space-time where we have f(U, V ) =
f(U · V ) the equations of motion of a freely falling observer become

1 = f(UV )U̇ V̇ , (5.69)

V

V̇
=

U

U̇
+ k , (5.70)

ṙ2 = 2M

(

1

r
− 1

R

)

, (5.71)

where k is a constant of integration, r = r(UV ), and R denotes the point
where the observer is instantaneously at rest. If the observer is at rest at
infinity (5.71) implies

ṙ = −
√

2M

r
, (5.72)

and k can be determined as k = 8M . If the freely falling detector starts at
r = R <∞ the constant of integration is

k = 8M

√

1 − 2M

R
. (5.73)

From the above equations we compute

V̇

V
=

1

4M
·

√

1 − 2M
r

−
√

2M
r

− 2M
R

(

1 − 2M
r

) , (5.74)

U̇

U
= − 1

4M
·

√

1 − 2M
r

+
√

2M
r

− 2M
R

(1 − 2M
r

)
. (5.75)

By analogy to (5.12) we define

− ḟ

f
=
Ü

U̇
+
V̈

V̇
≡ aU + aV . (5.76)
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After that we interpret T = −aU

2π
as the temperature measured by the freely

falling detector, since there are no V -modes. Differentiating (5.75) with
respect to τ we extract the relevant information:

− aU =

(

1 +
2M

r

)

(

√

1 − 2M

R
+

√

2M

r
− 2M

R

)

, (5.77)

aV =

(

1 +
2M

r

)

(

√

1 − 2M

R
−
√

2M

r
− 2M

R

)

. (5.78)

We conclude that the freely falling detector measures the approximate tem-
perature

T (r, R) =
1

8πM

(

1 +
2M

r

)

(

√

1 − 2M

R
+

√

2M

r
− 2M

R

)

, (5.79)

and when it is instantaneously at rest measures the temperature

T (R) =
1

8πM

(

1 +
2M

R

)

√

1 − 2M

R
. (5.80)

Thus we find that a freely falling observer at rest on the horizon detects no
thermal flux of particles. In [29, 30] Massar et al. calculated the energy
momentum tensor in coordinates that are inertial at one point R. Their

resulting temperature T = TH

√

1 − 2M
R

also vanishes on the horizon1. By

construction, in this case the observer is inertial at R = 2M and his vacuum
definition agrees with the Kruskal vacuum. It is not clear where the dis-
crepancy between the results arises though it may be explained by a simple
Doppler shift.

We find from (5.80) that a freely falling detector at rest at infinity mea-
sures the temperature

T (r) =
1

8πM

(

1 +
2M

r

)

(

1 +

√

2M

r

)

. (5.81)

This result gives the usual Hawking temperature at infinity, but near the hori-
zon implies a nonvanishing temperature. However, in this limit, adiabaticity

1Their choice of coordinates does not lead to Minkowski coordinates at the point R
where the observer is at rest. They find the temperature T = TH(1 − 2M

R
) but proper

rescaling of the coordinates gives T = TH

√

1 − 2M

R
.
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is violated and we cannot trust our approximation. Another interesting ap-
proach is the derivation of Hawking radiation in Lemaitre coordinates by
the complex path approach [48]. The authors showed that in this case they
obtain Hawking’s result with no changes to the thermal spectrum. The dif-
ference of this result to (5.81) is surprising since the Lemaitre coordinates
are natural for a freely falling observer. Either the complex path approach
is no proper non-adiabatic treatment of the problem or, more likely, it is not
calculating what it claims to. The authors simply assert that there is no
connection between their method and that of the Unruh detector.

5.4 Evaporating black hole

The detector response can also be calculated for black holes with time depen-
dent mass. We determine the spectrum of radiation registered by a detector
in the Vaidya space-time. It turns out that using the detector approach
corrections to the temperature derived in chapter 4 can be determined.

5.4.1 Static observer

Converting the Vaidya solution (4.2) to double-null coordinates is straight-
forward, but it is not unique. We start with the form

ds2 = F̄ (u, v) dudv − r(u, v)2dΩ2, (5.82)

where

r,v =
1

2

(

1 − 2M(v)

r

)

. (5.83)

The conformal metric function F̄ (u, v) as well as the outgoing light cone
coordinate u still have to be determined from the physical properties of the
space-time, the controlling equation for F̄ being

F̄ = −2r,u (5.84)

which in addition has to satisfy the Einstein equation

F̄,v
F̄

=
m

r2
. (5.85)

With the requirement F̄ → 1 for r → ∞, the coordinates (5.82) are inertial
at infinity and we call this the Schwarzschild-like solution. We now introduce
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other light cone coordinates U and V and connect them to the original ones
via U(u) and V (v). The metric (5.82) becomes

ds2 = F (U, V ) dUdV −R(U, V )2dΩ2, (5.86)

where F (U, V ) can be expressed in terms of the function F̄ . It is clear that
R = r and the transformation between the conformal factors is

F = F̄
∂u

∂U

∂v

∂V
≡ F̄B(U)A(V ) . (5.87)

The geodesic equation (5.83) for outgoing light rays in the new coordinates
becomes

r,V =
1

2
A(V )

(

1 − 2M(v)

r

)

, (5.88)

the conformal factor satisfies

F = −2A(V )r,U , (5.89)

and using the Einstein equation (5.85) becomes

F,V
F

=
A′(V )

A(V )
+
A(V )M(v)

r2
, (5.90)

where A′(V ) = dA(V )
dV

. Since the information about the registered particle
flux is given by the U -modes we need to determine B(U) which in principle
results from

B(U) =
F

F̄A(V )
, (5.91)

once we have chosen the normalization of F . In fact, as we will see, B(U)
can be used to ensure the regularity of F on some surface.

We now turn to the considerations of the transformation A(V ). The
nonvanishing Christoffel symbols of the metric (5.86) are

ΓUUU =
F,U
F

, ΓVV V =
F,V
F

. (5.92)

Using (5.90) it follows that the choice of A(V ) dictates the properties of ΓVV V ,
in particular where it vanishes. If we choose A = 1, then ΓVV V vanishes at
infinity. This corresponds to an observer at rest at infinity and was therefore
called Schwarzschild-like. For the Schwarzschild black hole, where M(v) =
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M0, the choice of vacuum was justified by two conditions on the coordinates:
the vanishing of ΓVV V and regularity on the horizon r = 2M0. In general
we wish that the Christoffel symbols, at least ΓVV V vanish along some curve
r = rC(v). This curve is defined in terms of Schwarzschild time v. From this
we determine

A = e
−

R

dv M(v)

rC (v)2 . (5.93)

After this we may write

V =

∫

dve
R

v
dv′ M(v′)

rC (v′)2 . (5.94)

For the Schwarzschild black hole with mass M0 this yields A = e
− v

4M0 , which
implies

V = 4M0e
v

4M0 . (5.95)

Thus we call the solution (5.93) the Kruskal-like solution.
Analogous to the equations describing a static detector in stationary black

hole space-time (5.57) and (5.58), we have

ṙ = r,U U̇ + r,V V̇ = 0 , (5.96)

F (U, V )U̇ V̇ = 1 . (5.97)

We are interested in the temperature T ∼ Ü
U̇

measured by a detector at
r → ∞. Using the above equations we obtain

V̇ =
1

A(V )
√

1 − 2M(v)
r

, (5.98)

and then find

V̈

V̇
=

1
√

1 − 2M(v)
r

(

M(v)

rC(v)2
+

M ′(v)

r − 2M(v)

)

r→∞−→ M(v)

r2
C(v)

. (5.99)

Using the fact that r̈ = 0, we first calculate Ü and finally

Ü

U̇
=

1
√

1 − 2M
r

[

M

r
+

M ′

r − 2M
+
AFU
F 2

(

1 − 2M

r

)]

r→∞−→ AF,U
F 2

, (5.100)
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where for the sake of simplicity we omit the dependence on v in the formula.
The relation between the coordinates and the proper time of the detector at
infinity follows from

v̇ =
1

√

1 − 2M(v)
r

⇒ τ =

∫

dv

√

1 − 2M(v)

r
. (5.101)

As expected, at infinity the v coordinate coincides with proper time τ up
to a constant. The same result holds for u, where we have used the fact
that F̄ → 1 at infinity. For the physical measurement this constant is of
importance. Since the space-time is asymptotically flat F̄ → 1 we obtain
that r = 1

2
(v − u) + k, where k is some constant. The outgoing light cone

coordinate u can then be related to v via

u = v + 2(k − r). (5.102)

Furthermore, by analogy to (5.64) we expect that

B (U(τ)) =
1

A(V (τ))
. (5.103)

It is then straightforward to show that in this limit we also have

AF,U
F 2

∣

∣

∣

u=τ
=
B,u

B

∣

∣

∣

u=τ
= −A,v

A

∣

∣

∣

v=τ
. (5.104)

Let us now choose rC = re, the time dependent horizon we introduced in
chapter 4. It can be shown that this choice of re also insures that F is
regular on the horizon and

F (U, V )
∣

∣

r=re
= const. (5.105)

Another possibility for rC is the apparent horizon ra, as suggested by Visser
et al. [59]. However, since F will not be constant along this line this spoils
a proper vacuum definition. Then the thermal particles registered by the
detector at τ have the temperature

T =
1

2π

M(τ)

r2
e(τ)

=
1

2π

M(v − v∗)

r2
e(v − v∗)

, (5.106)

where v∗ = 2(r−k). The measurement of the detector at τ therefore provides
information about the black hole parameters at the retarded time in v − v∗.
This is a physically sensible result which becomes obvious in the light of
our results in chapter 4. In the geometric optics approximation light rays
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arriving at infinity carry information about the initial moment vi = v − v∗
when their distance to the horizon was very small.

Using the Unruh detector we have been able to determine thermal correc-
tions to the temperature of the Hawking flux of the Vaidya solution compared
to (4.36). The corrections depend on re which is the surface separating in-
and outgoing light rays. Our result also clarifies the role of horizons in black
hole evaporation and implies that re is the important horizon for nonstation-
ary black holes. The fact that F is constant on this surface further confirms
this claim. In our calculation we did not need the explicit form of the con-
formal factors F and F̄ . However, to study the response of a freely falling
detector in Vaidya space-time at least numerical solutions will be needed.



Chapter 6

Discussion

The examination of quantum effects in black hole physics provides important
hints on the way towards a unified theory of quantum gravity. We showed
that the microscopic origin of black hole entropy can be understood as a
result of missing information about the exact state of the matter from which
the black hole was formed. When matter falls into a black hole, the overall
change of its mass is the result of two competing effects. The black hole
gains mass due to matter absorption, but in the meantime loses mass due
to evaporation. We showed that the maximal amount of entropy matter
can contribute in this process can be identified with the change of the black
hole entropy, and that this applies to black holes made from ultra-relativistic
particles as well as nonrelativistic particles.

Secondly, we examined the influence of the observer’s motion and the
choice of vacuum on the spectrum of Hawking radiation. Concerning ob-
servers at infinity, we found that the Hawking effect is indeed sensitive to
their motion. The most obvious example is the Doppler shifted spectrum
measured by an observer moving with constant velocity with respect to an
observer at rest. On the other hand, the particle flux for an observer at in-
finity is not affected by a general transformation of the coordinates defining
the initial vacuum state. To be precise, the Kruskal coordinates which are
regular on the horizon but define an inertial frame at only one particular mo-
ment, can be replaced by other coordinates which are inertial on the horizon
at any later moment.

Next, we determined the Hawking flux for black holes with time depen-
dent mass, our model for the evaporating black hole being the Vaidya solu-
tion. We found that an observer at infinity in this space-time measures a
time dependent thermal radiation with a temperature inversely proportional
to the black hole mass at retarded time. As expected, the mass decrease leads
to an increasing temperature and therefore enhances evaporation. Previous
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work on the particle flux in the Vaidya space-time with arbitrarily changing
mass [63, 64, 49] was performed using analytic continuation and the results
were only valid in the vicinity of the horizon; whereas we were able to con-
sider observers very far away from the black hole. Unlike the other results
our derivation allows a physical interpretation: In the geometric optics ap-
proximation the light rays at infinity carry information about the black hole
mass at the time when they were very close to the apparent horizon.

Finally, we derived the response of a model particle detector, the Unruh
thermometer, moving in curved background. In this way we were able to de-
termine the particle flux for different observers in Minkowski, Schwarzschild
and Vaidya space-time. We found that an arbitrarily accelerated detector
in flat space-time registers a flux of radiation with a temperature propor-
tional to its time dependent acceleration parameter. A detector moving in
Schwarzschild space-time registers a predominantly thermal spectrum with
the observed black hole temperature depending on the observer’s trajectory.
For example, a detector in free fall towards the black hole registers a parti-
cles flux depending on its radial distance from the black hole which vanishes
when it crosses the horizon. This result is in agreement with that of [30]
but not with [48]. In the latter case, the particle flux is computed within
the complex path approach and even though coordinates describing a freely
falling observer are used the thermal spectrum obtained corresponds to that
of an observer at rest at infinity. This and the fact that the Unruh detector
is physically motivated suggests that the complex path approach may not
always be reliable.

Most importantly, using the Unruh detector we were able to determine
thermal corrections to the Hawking spectrum for an observer in the Vaidya
space-time. We found that the temperature does not only depend on the
black hole mass, but picks up a correction depending on re, which is the
horizon separating in- and outgoing light rays. Thus we showed that the
important horizon for black hole evaporation is re and not the apparent
horizon. From the physical perspective our result is quite appealing, since it
connects the time of measurement to the black hole parameters in a natural
way.

In addition to our results, it would be interesting to determine the particle
flux registered by a freely falling detector in the Vaidya space-time as well.
By analogy to a freely falling detector in the Schwarzschild space-time one
expects that the thermal particle flux will vanish when the detector crosses
the horizon re. Perhaps the spectrum measured when the detector crosses
the apparent horizon gives further information about its meaning. It may be
that numerical calculations will be needed to solve the controlling equations
in this case.



Appendix A

Quantum fields in curved
space-time

Here we collect some basic properties of quantum field theory (QFT) in
curved backgrounds. For a review on this topic see also [8, 25, 33, 61].

A.1 QFT in flat space-time

In usual field theory, physical fields such as scalar or electromagnetic fields
satisfy a wave equation in flat Minkowski space. For example a free real
scalar field φ(x) with mass m satisfies the Klein-Gordon equation

(� +m2)φ(x) = 0 , (A.1)

where � = ∂µ∂νη
µν = ∂2

t −∇2.
The field φ can be decomposed into positive and negative frequencies with

respect to the coordinates, corresponding to the Killing vector ∂t according
to

φ(x) =
1

(2π)3/2

∫

d3k

2ωk

(

ake
ikx−iωkt + a?

k
e−ikx+iωkt

)

, (A.2)

where ωk =
√

k2 +m2. In quantum theory the classical field φ is replaced
by the field operator φ̂ which can be expanded in terms of annihilation and
creation operators, âk and â†k, resp. analogous to (A.2). The field operator

φ̂(x) satisfies the commutation relation

[

φ̂(x), Π̂(x′)
]

= iδ3(x − x′) , (A.3)
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where Π(x) =
˙̂
φ(x) is the canonical momentum operator. Starting with these

relations a standard Fock space can be constructed. The vacuum state |0〉 is
the unique eigenvector of all annihilation operators âk with eigenvalue 0,

âk|0〉 = 0 for all k , (A.4)

and excited states are obtained by the application of the creation operators
â†
k

on the vacuum.

A.2 QFT in curved backgrounds

Now we consider quantum field theory on a globally hyperbolic space-time
with metric gµν and g = det gµν . The Klein-Gordon equation for a massive
scalar field now reads

(� +m2)φ(x) = 0 , (A.5)

where

� =
1√−g∂µ

(√−ggµν∂ν
)

. (A.6)

Consider two solutions f1 and f2 of (A.5). These solutions are generalizations
of the plane wave solutions,

fk =
1

(2π)3/2

eikx−iωkt

√
2ωk

. (A.7)

The corresponding canonical momentum is defined as Π = nµ∇µf , where nµ

is the normal vector with respect to a space-like hypersurface Σ. The inner
product of the solutions is

(f1, f2) = i

∫

Σ

(f ∗
1 Π2 − Π1f2)d

3x = (f2, f1)
∗, (A.8)

which can be shown to be is independent of the choice of the hypersurface
Σ, but is not positive definite. A complete set of solutions {fk, f ∗

k} can be
normalized according to

(fk, f
′
k) = δ(k, k′) and (fk, f

′∗
k ) = 0 . (A.9)

Since {fk, f ∗
k} is a complete set of solutions the field φ can be expanded as

φ(x) =

∫

dµ(k) (fkak + f ∗
ka

∗
k) , (A.10)

where dµ(k) stands for the integral measure.
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A.2.1 Quantization

In flat space-time the classical field φ is replaced by the operator φ̂ which can
be expanded in terms of the annihilation and creation operators âk and â†k.

Excitations of the vacuum state, like â†k|0〉, are interpreted as particles. In
curved space-time the interpretation is more complicated. Here the vacuum
state can be defined as the eigenvector for all âk with eigenvalue 0,

âk|0k〉 = 0 for all k . (A.11)

We consider a solution to the equation of motion (A.10), written in terms of
field operators,

φ̂(x) =

∫

dµ(k)
(

fkâk + f ∗
k â

†
k

)

. (A.12)

In general relativity there are no distinguished coordinate frames, so the
notion of positive and negative frequencies is no longer unambiguous and
the definition of vacuum depends on the chosen set of solutions. This is a
consequence of the general covariance of general relativity. We take this into
account by labeling the vacuum state as |0k〉. The annihilation and creation
operators satisfy the commutation relations

[âk, â
†
k′] = δ(k − k′) . (A.13)

One can expand the field into a different complete set of solutions {gK , g∗K}
which , analogous to (A.12), yields

φ̂(x) =

∫

dµ(K)
(

gK b̂K + g∗K b̂
†
K

)

. (A.14)

The corresponding vacuum state is

b̂K |0K〉 = 0 for all K. (A.15)

The two different sets {fk, f ∗
k} and {gK , g∗K} can be connected by a transfor-

mation, called a Bogolyubov transformation. The relation between fk and
gK is

gK =

∫

dµ(k) (αK,kfk + βK,kf
?
k ) , (A.16)

where αK,k and βK,k are the Bogolyubov coefficients, given by

αK,k = (fk, gK) , and βK,k = −(f †
k , gK) . (A.17)
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The Bogolyubov coefficients satisfy a normalization and completeness re-
lation. In matrix notation (skipping the indices K and k for the sake of
readability) we have

αα† − ββ† = 1 ,

βαT − αβT = 0 . (A.18)

It is possible also to connect the creation and annihilation operators of one
frame âk to those of the other frame b̂K by

(â, â†) = (b̂, b̂†)

(

α β
β∗ α∗

)

and

(

b̂

b̂†

)

=

(

α∗ −β∗

−β α

)(

â
â†

)

.(A.19)

Since the vacua |0k〉 and |0K〉 corresponding to the operators âk and b̂K are
different, one vacuum contains particles with respect to the other, and vice
versa.

The particle number operator of particles of type k in a given state is
ˆ̃Nk = â†kâk. Its expectation value with respect to the vacuum |0k〉 is of
course zero. On the other hand, if we compute the expectation value of the
particle number operator N̂K = b̂†K b̂K , which gives us the number of “b̂K-
particles”, in the vacuum |0k〉, the result does not vanish in general. The
expectation value of N̂K is

〈N̂K〉 = 〈0k|b̂†K b̂K |0k〉 =

∫

dµ(k)|βK,k|2 . (A.20)

The âk-vacuum |0k〉 contains particles with frequency K. For quantum field
theory in a curved background the vacuum definition and thus the whole
particle concept is ambiguous if the Bogolyubov coefficients βK,k are nonzero.

A.2.2 QFT in two dimensions

In the following the above considerations will be applied to a scalar field in
1+1 dimensions. A detailed consideration of this topic can be found in [33].
The action for a massless scalar field is

S =

∫

d2x
√−g

(

1

2
gab∂aφ∂bφ

)

, (A.21)

where a, b take values 0 and 1. The corresponding equation of motion
(gabφ,b

√−g),a is conformally invariant, i.e. the form of (A.21) remains un-
changed if metric in one coordinate frame differs only by an overall factor
from the metric in another coordinate frame.
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In two dimensions every metric can be written as Minkowski metric with
a conformal factor, ds2 = F (t, x)(dt2 − dx2), so that the equation of motion
can always be written as

∂2
t φ− ∂2

xφ = 0 . (A.22)

This equation has the solution

φ(t, x) = A(t− x) +B(t+ x) (A.23)

with arbitrary smooth functions A and B. We can also rewrite the solution
with mode expansion in k,

φ(t, x) =

∫

dµ(k) (fkak + f ∗
ka

∗
k) , (A.24)

where the mode functions fk are functions of x−t. Using suitable coordinates
(t1, x1) we can substitute φ by the operator φ̂ and express the solution in
terms of ingoing and outgoing waves. In light cone coordinates u1 = t1 − x1

and v1 = t1 + x1 we have

φ̂(u1, v1) =
1

(2π)
1
2

∫ ∞

0

dω√
2ω

(

e−iωu1 âω+ eiωu1 â†ω + e−iωv1 â−ω+ eiωv1 â†−ω

)

(A.25)

where ω = |k| and (2π)
1
2 replaces the four-dimensional factor (2π)3/2, u1 is

the advanced time coordinate, and v1 is the retarded time coordinate. The
two terms in (A.25) depending on u1 describe outgoing waves, whereas the
two other an ingoing ones. The operators âω satisfy the usual commutation
relation

[â−ω , â
+
ω′ ] = δ(ω − ω′) , (A.26)

where â−ω = âω and â+
ω = â†ω. The vacuum state is defined as

âω|01〉 = 0 for all ω . (A.27)

In different coordinates (t2, x2) the field can be expanded in a very similar
way. By analogy, using u2 = t2 − x2 and v2 = t2 + x2 we have

φ̂(u2, v2) =
1

(2π)
1
2

∫ ∞

0

dΩ√
2Ω

(

e−iΩu2 b̂Ω +eiΩu2 b̂†Ω + e−iΩv2 b̂−Ω + eiΩv2 b̂†−Ω

)

(A.28)

In regions where the coordinates overlap we can expand the field φ̂ in both
frames

φ̂ =
1

(2π)
1
2

∫ ∞

0

dω√
2ω

(

e−iωu1 âω + eiωu1 â†ω + e−iωv1 â−ω + eiωv1 â†−ω

)

=
1

(2π)
1
2

∫ ∞

0

dΩ√
2Ω

(

e−iΩu2 b̂Ω + eiΩu2 b̂†Ω + e−iΩv2 b̂−Ω + eiΩv2 b̂†−Ω

)

.(A.29)
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A.2.3 Bogolyubov transformation

The operators b̂±Ω can be expressed in terms of â±ω . We have

b̂−Ω =

∫ ∞

0

dω(αωΩâ
−
ω + βωΩâ

+
ω ) , (A.30)

with Bogolyubov coefficients αωΩ and βωΩ. The relation for the operator b̂+Ω
is the Hermitian conjugate of (A.30). Note that for simplicity a different
convention for the Bogolyubov coefficients is used, that is α → α∗ and β →
−β∗ compared to subsection A.2.1. Substituting (A.30) into (A.29) we find

1√
ω
e−iωu1 =

∫ ∞

0

dΩ′

√
Ω′

(

αωΩ′e−iΩ
′u2 − βωΩ′eiΩ

′u2

)

. (A.31)

By carrying out a Fourier transformation of the above equation with respect
to u2, the Bogolyubov coefficients can be calculated explicitly. This yields

αωΩ

βωΩ

}

=

√

Ω

ω

∫ ∞

−∞

du2

2π
eiΩu2∓iωu1 , (A.32)

where u1 can be expressed in terms of u2. Let us briefly consider the prop-
erties of the general Bogolyubov transformation

b̂−Ω =

∫ ∞

−∞

dω
(

αωΩâ
−
ω + βωΩâ

+
ω

)

, (A.33)

The relation is equal to (A.30) except for the range of integration which now
covers −∞ to ∞. This is justified since in (A.30) all Bogolyubov coefficients
relating momenta of opposite sign vanish, i.e. α−ω,Ω = 0, β−ω,Ω = 0. The
normalization and completeness relation of the Bogolyubov coefficients read,
see [33],

∫ ∞

−∞

dω (αωΩα
∗
ωΩ′ − βωΩβ

∗
ωΩ′) = δ(Ω − Ω′) , (A.34)

∫ ∞

−∞

dω (αωΩβωΩ′ − αωΩ′βωΩ) = 0 , (A.35)

analogous to the general form in (A.18). From this we can formally define
the inverse Bogolyubov transformation

â−ω =

∫ ∞

−∞

dΩ
(

α∗
ωΩb̂

−
Ω − βωΩb̂

+
Ω

)

. (A.36)

This relation can be easily verified by substituting in (A.30).
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The b-particle operator is N̂Ω = b̂+Ω b̂
−
Ω and the average number of particles

in the vacuum |01〉 is equal to its expectation value

〈N̂Ω〉 = 〈01|b̂+Ω b̂−Ω|01〉 =

∫ ∞

0

dω|βωΩ|2. (A.37)
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Appendix B

Calculations

B.1 Potential barrier for Schwarzschild black

hole

B.1.1 Black hole wave equation

The Klein-Gordon equation for a scalar field with mass m in Schwarzschild
background (1.1) reads

�Φ =
1√
g
∂µ

(

1√
g
gµν∂νΦ

)

= m2Φ . (B.1)

Separating the angular variables as well as the time dependence e−iωt as
usual, we find the wave equation

[

d2

dr2
?

+ ω2 − V (r)

]

φ(r) = 0 , (B.2)

with the potential

V (r) =

(

1 − 2M

r

)[

l(l + 1)

r2
+

2M

r3
+m2

]

, (B.3)

where dr? = dr/(1 − 2M/r) is the well-known tortoise coordinate. If we
introduce the dimensionless variable x = r/(2M), equation (B.2) becomes

φ′′+
1

x(x − 1)
φ′+

[

4M2ω2x2

(x− 1)2
− 4M2m2x

(x− 1)
− l(l + 1)

x(x− 1)
− 1

x2(x− 1)

]

φ = 0(B.4)

where the prime denotes the derivative with respect to x.
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B.1.2 Potential barrier for nonrelativistic particles

If we want to determine the Gray factor of the Hawking radiation of nonrela-
tivistic particles, we have to calculate the absorption probability of particles
of mass m in the black hole background. We compare the above potential
(B.3) to the two-dimensional case, 2�Φ −m2Φ = 0, which yields the wave
equation

[

d2

dr2
?

+ ω2 − V2D(r)

]

φ(r) = 0 , (B.5)

with the potential

V2D(r) =

(

1 − 2M

r

)

m2. (B.6)

It is obvious that in the limit of large particle mass mM � 1 the four-
dimensional problem reduces to the 2-dimensional one, V (r) → V2D(r). We
know that in the nonrelativistic limit the temperature T of a particle is much
smaller than its mass, m

T
� 1, and is inversely proportional to the black hole

mass M . Hence, it is justified to use the two-dimensional approximation. On
the other hand, in distinction to the massless case, even in two dimensions
there is a potential well for nonrelativistic particles. The ingoing wave will be
scattered at the potential barrier. The corresponding boundary conditions
are

φ =

{

√

k
ω
T (ω)e−iωr? , r? → −∞

√

ω
k

[

e−ikr?(2kr?)
−iMm2/k +R(ω)eikr?(2kr?)

iMm2/k
]

, r? → +∞ ,
(B.7)

where k =
√
ω2 −m2 � ω, as we are studying the nonrelativistic limit.

Using the above normalization we ensure that 1 = |R|2 + |T |2. We substitute
φ =

√

x
x−1

ξ, and get the approximate equation,

d2ξ

dx2
+

[

4M2ω2x2

(x− 1)2
− 4M2m2x

(x− 1)

]

ξ(x) = 0 . (B.8)

Equivalently, in terms of k that is

d2ξ

dx2

(x− 1)2

4M2
+ (k2x2 +m2x)ξ(x) = 0 . (B.9)

Using ξ the boundary conditions are

ξ =

{

√

k
ω
T (ω)(x− 1)

1
2
−2iMω , r? → −∞

√

ω
k

{

e−2iMk(x−1)(x− 1)−2iMk [4Mk(x− 1)]−
iMm2

k

+R(ω)e2iMk(x−1)(x− 1)2iMk [4Mk(x− 1)]
iMm2

k

}

, r? → +∞ .

(B.10)
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The above equation can be solved in terms of generalized hypergeometric
functions of first order, so-called Kummer functions M. Using ω > m and
Mω � 1 we find

ξ(x) = C1(x− 1)
1+a
2 e−

1
2
b(x−1)M

(

1 + a

2
+ k̃, 1 + a, b(x− 1)

)

+ C2(x− 1)
1−a
2 e−

1
2
b(x−1)M

(

1 − a

2
+ k̃, 1 − a, b(x− 1)

)

(B.11)

where a = 4iωM , b = 4iMk and k̃ = iM
k

(2k2 + m2). From the boundary
conditions on the horizon we conclude that C1 = 0 and C2 = 1

√

ω
k
. The

solution also has to satisfy the boundary conditions at infinity, where we can
use the asymptotics of the Kummer function for large z, see [18],

M(a1, a2, z)

Γ(a2)
→ eiπa1z−a1

Γ(a2 − a1)
+
ezza1−a2

Γ(a1)
. (B.12)

We then have

ξ→C2b
a−1

2 Γ(1 − a)

{

eiπ( 1−a
2

+k̃) [b(x− 1)]−k̃ e−
1
2
b(x−1)

Γ(a−1
2

− k̃)
+

[b(x− 1)]−k̃ e
1
2
b(x−1)

Γ(a−1
2

+ k̃)

}

.

Then the transmission and reflection coefficient, resp., are

|T |2 =
1 − e−8πMω

1 + e−4πM(ω+k)e−
2πMm2

k

,

|R|2 = e−4πMω cosh(2πM(ω − k) − πMm2

k
)

cosh(2πM(ω + k) + πMm2

k
)
, (B.13)

which satisfy the relation |T |2 = 1 − |R|2. The physical interpretation of
the above boundary condition is that no wave should leave the black hole,
which corresponds to the classical scattering problem. In the situation of
particle creation we have of course an outgoing wave, which is reflected at
the black hole barrier. But as we will show this yields the same result for
the coefficients. Considering the general boundary condition

φ =

{

√

k
ω

(Aeiωr? +Be−iωr?) , r? → −∞
√

ω
k

[

Ceikr?(2kr?)
iMm2/k +De−ikr?(2kr?)

−iMm2/k
]

, r? → +∞ ,
(B.14)

we determine the constraint on the coefficients from the constant Wronskian

|A|2 − |B|2 = |C|2 − |D|2. (B.15)
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The classical scattering corresponds to A = 0, B = T, C = R, and D = 1,
whereas for particle creation we have A = 1, B = R,C = T and D = 0. We
also check limiting cases for small and large k,

k → 0

|T |2 → (1 − e−8πMω)

|R|2 → e−4πMωe−4πMω = e−8πMω , (B.16)

k → ∞
|T |2 → (1 − 2e−8πMω)

|R|2 → e−4πMω(e−4πMω + e−4πMω) = 2e−8πMω. (B.17)

B.2 Stability of Hawking radiation

B.2.1 Explicit calculation of the integral K(x)

Here we compute the integral

K(x) =

∫ ∞

0

dω

ω
eiωx. (B.18)

As noted in chapter 3, we first calculate the renormalized integral

K(x) =

∫ ∞

0

dω

ω
e−(α−ix)ω tanh(βω) , (B.19)

and then let α→ 0 and β → ∞. For simplicity we substitute α− ix → α in
the calculation and later convince ourselves that the result is also valid for
complex α. We find

∂K(α, β)

∂α
= −J(α, β) , (B.20)

where

J =

∫ ∞

0

dωe−αω tanh(βω) . (B.21)

The calculation of this integral is quite straight forward,

J =

∫ ∞

0

dωe−αω
1 − e−2βω

1 + e−2βω

=
∞
∑

m=0

(−1)m
∫ ∞

0

dωe−αω(1 − e−2βω)e−2βωm

=

∞
∑

m=0

(−1)m

2β

(

1
α
2β

+m
− 1

α
2β

+ 1 +m

)

, (B.22)
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and implies, see [18] for the function Ψ(z),

∂K(α, β)

∂α
= − 1

α
+ Ψ

(

α

4β
+ 1

)

− Ψ

(

α

4β
+

1

2

)

. (B.23)

Now the equation (B.23) can easily be integrated. Using the proper boundary
condition K → 0 for α → ∞ we get

K(x) = − ln
α

4β
+ 2 ln

Γ( α
4β

+ 1)

Γ( α
4β

+ 1
2
)

(B.24)

Replacing α→ α− ix we determine the limit α→ 0,

K(x) = − ln
α− ix

4β
+ 2 ln

Γ(α−ix
4β

+ 1)

Γ(α−ix
4β

+ 1
2
)

→ ln β − ln(α− ix)

→ ln β − ln |x| + iπ

2
sgn(x). (B.25)

B.3 Freely falling observers

B.3.1 Euler-Lagrange equations

The trajectory of a massive test particle in an arbitrary background can be
determined using the Euler-Lagrange equations. If the geodesic world line
of the observer is parametrized by its proper time τ , then the equations of
motion can be derived from the Lagrangian

L = gµν ẋ
µẋν , (B.26)

where the dots denote the derivative with respect to proper time τ . The
corresponding line element of the background space-time is given by

ds2 = gµνdx
µdxν . (B.27)

The particle’s four-velocity ẋµ is normalized as usual,

gµν ẋ
µẋν = 1. (B.28)

The Euler-Lagrange equations read

∂τ

(

∂L
∂ẋµ

)

=
∂L
∂xµ

, (B.29)
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which are equivalent to

ẍµ + Γµκλẋ
κẋλ = 0. (B.30)

In the following we focus on spherically symmetric background space-times
and consider the general spherically symmetric time dependent line element

ds2 = g(r, t)dt2 − g(r, t)−1dr2 − r2dΩ2. (B.31)

The Lagrangian for a massive test particle falling radially towards the centre
of the black hole can be derived easily

L = g(r, t)ṫ2 − g(r, t)−1ṙ2. (B.32)

Using the Euler-Lagrange equations (B.29) we get

∂τ
[

2g(r, t)ṫ
]

= ∂tf ṫ
2 − ∂t

(

f−1
)

ṙ2 , (B.33)

∂τ
[

2g(r, t)−1ṙ
]

= −∂rf ṫ2 + ∂r
(

f−1
)

ṙ2 . (B.34)

In addition, we use the normalization condition of the particle’s four-velocity

g(r, t)ṫ2 − g(r, t)−1ṙ2 = 1 . (B.35)

First we study an observer falling into a static black hole. In this case we
have g = g(r). The first equation of (B.34) can be integrated which yields

ṫ =
c1

2f(r)
, (B.36)

where c1 is a constant of integration. Hence we get

ṙ = −
√

c21
4
− f(r) , (B.37)

where we have chosen the minus sign since we consider an infalling observer.
The particle’s rest energy is denoted by E. Using the identification E = 1

2
c1

the observer’s trajectory is

dr

dt
= −f(r)

E

√

E2 − f(r). (B.38)

If the observer is at rest at infinity then its rest energy is E = 1, and at
infinity t coincides with the proper time coordinate τ . For the Schwarzschild
black hole we have f(r) = 1 − 2M

r
. With respect to the observer’s proper

time we now have

dr

dτ
= −

√

2M

r
. (B.39)
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The integration of this equation is quite straight forward. As a result we
determine the proper time ∆τ which the observer takes to fall from r1 to r.

∆τ = τ − τ0 =
2

3
2M

[

( r1
2M

)3/2

−
( r

2M

)3/2
]

. (B.40)

This shows that even though for an outside observer it takes an infinite time
for the particle to fall into the black hole, in the particle’s rest frame the
measured time interval is finite.

B.3.2 Freely falling observer in light cone coordinates

Alternatively, we can consider the metric in light cone coordinates

ds2 = f(U, V )dUdV . (B.41)

Then the equation of motion of the radially infalling particle can be derived
from the Lagrangian

L = f(U, V )U̇ V̇ , (B.42)

where the dots still denote the derivative with respect to proper time τ .
Applying the Euler-Lagrange equations (B.29) we obtain

V̈

V̇
= −(∂V f)V̇

f

Ü

U̇
= −(∂Uf)U̇

f
. (B.43)

In light cone coordinates the normalization condition of the four-velocity
becomes

f(U, V )U̇ V̇ = 1 , (B.44)

which together with (B.43) yields

Ü

U̇
+
V̈

V̇
= − ḟ

f
. (B.45)

If we assume that f = f(U · V ) the above equations simplify and we obtain

U

U̇
+ k =

V

V̇
, (B.46)
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where k is a constant of integration. In addition r = r(U · V ) satisfies the
equation

ṙ2 = 2M

(

1

r
− 1

R

)

, (B.47)

where R is the point where the observer is at rest. Hence, (B.46) and (B.47)
are the controlling equations for a freely falling observer in the black hole
space-time.
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