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I. Summary 

The PHO5 and PHO8 genes in yeast provide typical examples for the role of chromatin in 

promoter regulation. Both genes are regulated by the same transcriptional activator, Pho4, 

which initiates nucleosome remodeling and transcriptional activation. In spite of this co-

regulation, there are important differences in gene activity and in the way promoter chromatin 

undergoes chromatin remodeling. First, PHO5 belongs to one of the most strongly induced 

genes in yeast being 10-fold more active than the PHO8 gene (Oshima, 1997; Barbaric et al., 

1992). Second, chromatin remodeling at the PHO5 promoter affects four nucleosomes (Almer 

et al., 1986), whereas only two nucleosomes are afffected at the PHO8 promoter (Barbaric et 

al., 1992). Third, neither the histone acetyl transferase Gcn5 nor chromatin remodeling 

complex Swi/Snf seem to be critically required for chromatin remodeling at the PHO5 

promoter (Barbaric et al., 2001; Reinke and Hörz, 2003; Dhasarathy and Kladde, 2005; Neef 

and Kladde, 2003). At the PHO8 promoter, on the other hand, absence of Swi/Snf results in 

the complete loss of chromatin remodeling under inducing conditions. Furthermore, Gcn5 is 

required for full remodeling and transcriptional activation at this promoter (Gregory et al., 

1999).  

Ever since these differences were recognized there have been speculations about the 

underlying reasons. This work shows that these discrepancies are not a direct consequence of 

the position or strength of the UASp elements driving the activation of transcription. Instead, 

these differences result from different stabilities of the two promoter chromatin structures. 

The basis for these results was the development of a competitive yeast in vitro assembly 

technique in which differences in nucleosome stability between promoter regions could be 

directly compared. This technique originated from a yeast in vitro chromatin assembly system 

that generated the characteristic PHO5 promoter chromatin structre (Korber and Hörz, 2004). 

As shown here, this system also assembles the native PHO8 promoter nucleosome pattern. 

Using the competitive assembly system it was shown that the PHO8 promoter has greater 

nucleosome positioning power, and that the properly positioned nucleosomes are more stable 

than at the PHO5 promoter. This provided for the first time evidence for the correlation of 

inherently more stable chromatin with stricter co-factor requirements.  

Remarkably, the positioning information for the in vitro assembly of the native PHO5 and 

PHO8 promoter chromatin patterns was specific to the yeast extract. Salt gradient dialysis or 

Drosophila embryo extract assemblies did not support the proper nucleosome positioning. 
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However, nucleosomes in chromatin generated in these systems could be shifted to their in 

vivo-like positions by the addition of yeast extract. This indicates that the nucleosome 

positioning mechanisms in vitro are uncoupled from the nucleosome loading machinery. The 

nucleosome positioning at the PHO5 and PHO8 promoters was energy dependent suggesting 

a role of chromatin remodeling machines in generation of the repressed promoter chromatin 

structure. In spite of this, the chromatin remodeling machines Swi/Snf, Isw1, Isw2 and Chd1 

were dispensable nucleosome positioning at both promoters. 
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II. Zusammenfassung 

Die PHO5- und PHO8-Gene in Hefe stellen typische Beispiele für die Rolle von Chromatin 

bei der Promotorregulation dar. Beide Gene werden vom selben Transkriptionsaktivator, 

Pho4, aktiviert, der sowohl Nukleosomenremodulierung als auch Transkriptionsaktivierung 

initiiert. Trotz dieser Coregulation gibt es bedeutende Unterschiede bei der Genaktivierung 

und in der Art in der die Chromatinremodulierung am Promoterchromatin stattfindet. 

Zunächst ist festzustellen, dass PHO5 zu den am stärksten induzierbaren Hefegenen gehört, es 

ist 10 mal stärker aktiv als PHO8. Darüber hinaus sind von der Chromatinremodulierung am 

PHO5-Promotor vier Nukleosomen betroffen, während es sich am PHO8-Promotor nur um 

zwei Nukleosomen handelt. Zuletzt ist festzustellen, dass weder die Histonacetyltransferase 

Gcn5 noch der Chromatinremodulierungskomplex Swi/Snf zwingend notwendig für die 

Chromatinremodulierung am PHO5-Promotor zu sein scheinen. Dagegen führt die 

Abwesenheit von Swi/Snf zum vollständigen Verlust der Chromatinremodulierung am 

PHO8-Promotor unter induzierenden Bedingungen. Außerdem ist Gcn5 für die vollständige 

Remodulierung und Transkriptionsaktivierung an diesem Promotor notwendig. 

Seitdem diese Unterschiede erkannt wurden wird über die zugrundeliegenden Ursachen 

spekuliert. Die hier vorgestellte Arbeit zeigt, dass diese Unterschiede nicht direkt auf die 

Position oder Stärke der UASp-Elemente, die die Transkriptionsaktivierung antreiben, 

zurückzuführen sind. Vielmehr beruhen die Unterschiede auf der unterschiedlichen Stabilität 

der beiden Promotorchromatinstrukturen. Die Basis für diese Ergebnisse stellte die 

Entwicklung einer kompetitiven Hefe-in vitro-Assemblierungstechnik dar, mithilfe derer 

Unterschiede in der Nukleosomenstabilität zwischen Promoterregionen direkt verglichen 

werden konnten. Diese Technik stammte ursprünglich von einem Hefe-in vitro-

Chromatinassemblierungssystem, das die charakteristische PHO5-Promotorchromatinstruktur 

ausbildet. Wie hier gezeigt wird, assembliert dieses System auch die native PHO8-

Promotorchromatinstruktur. Unter Verwendung des kompetitiven Assemblierungssystems 

wurde gezeigt, dass der PHO8-Promotor eine größere Nukleosomenpositionierungsstärke 

besitzt, und dass die korrekt positionierten Nukleosomen stabiler als die des PHO5-Promotors 

sind. Daraus konnten erstmalig Anhaltspunkte dafür bezogen werden, dass eine Korrelation 

zwischen inhärent stabilerem Chromatin und einem stärkeren Bedarf an Cofaktoren besteht. 

Bemerkenswerterweise war die Positionierungsinformation für die in vitro-Assemblierung der 

nativen PHO5- und PHO8-Promotorchromatinstruktur spezifisch für den Hefeextrakt. 
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Salzgradientendialyse oder Assemblierung durch Drosophila-Embryoextrakt führte nicht zu 

korrekter Nukleosomenpositionierung. Dennoch konnten Nukleosomen, die durch dieses 

System erzeugt worden waren, durch die Zugabe von Hefeextrakt auf deren entsprechende in 

vivo-Positionen verschoben werden. Das ist ein Anhaltspunkt dafür, dass die Mechanismen 

zur Nukleosomenpositionierung in vitro nicht an die Maschine, die die Nukleosomen auf die 

DNA lädt, gekoppelt sind. Die Nukleosomenpositionierung am PHO5- und PHO8-Promotor 

war energieabhängig, was darauf schließen lässt, dass Chromatinremodulierungsmaschinen 

eine Rolle bei der Erzeugung der reprimierten Promotorchromatinstruktur spielen. Trotzdem 

waren die Chromatinremodulierungsmaschinen Swi/Snf, Isw1, Isw2 und Chd1 an beiden 

Promotoren nicht für die Nukleosomenpositionierung eforderlich. 
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1.1. 

III. Introduction 
1. Chromatin structure 

The nucleus of eukaryotic cells contains one complement of the genome of the organism. 

Genome sizes vary among species, e.g., the haploid yeast genome contains 107 and the diploid 

human genome contains 3x109 base pairs of DNA. If stretched out, the total length of the 

human DNA is around one meter. As the diameter of an average cell nucleus is only about 10-

20 μm the DNA needs to be highly compacted to fit into the nucleus. This task is 

accomplished by having the DNA in a complex with a set of special proteins, the histones, to 

form a structure called chromatin which ultimately leads to an up to 100.000 fold compaction 

of the DNA.  

Originally, chromatin was thought of as a DNA packaging device only. However, it soon 

became clear that chromatin provides also an additional level of regulation for all DNA 

related processes, such as replication, repair and gene expression, providing a platform where 

biological signals are integrated and molecular responses take place.  

The 10 nm fiber 

The association of histone proteins with eukaryotic DNA had long been recognized, however, 

it was not until 30 years ago that the precise role was understood. At that time, the 

nucleosome particle was proposed to consist of ~200 base pairs of DNA  wrapped around a 

histone protein core consisting of an octamer of of four histones (H2A, H2B, H3 and H4) 

forming a structure containing a single dyad axis (Kornberg, 1974; Kornberg and Thomas, 

1974; Kelley, 1973). Shortly afterwards it was shown that the nucleosome is the repeating 

unit of chromatin and that nucleosomes are assembled on DNA like “beads-on-a-string” 

(Olins and Olins, 1974; Finch et al., 1975; Oudet et al., 1975; Woodcock et al., 1976), 

generating the so-called 10 nm fiber. This structure allows an approximately six-fold 

compaction of the DNA and constitutes the first level of chromatin condensation (Griffith, 

1976). Digestion of chromatin with nuclease proved that the “linker” DNA between two 

nucleosomes is readily cleaved by nuclease whereas the so-called nucleosome “core particle” 

is much more resistant to nuclease digestion. Further characterization of the core particle 

showed that it consists of 146 bp of DNA wrapped around the histone octamer (Lohr and van 

Holde, 1975) in approximately 1.7 left-handed superhelical turns (Finch et al., 1977; Klug et 

al., 1980; Arents et al., 1991).  
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1.2. 

A high-resolution crystal structure of the nucleosome core particle was solved (Luger et al., 

1997; Davey et al., 2002). This structure shows that each core histone contains two separate 

functional domains: a uniquely structured C-terminal “histone fold domain” sufficient for 

both histone-histone and histone-DNA contacts within the nucleosome, and the N-terminal 

“tail” domain that contains sites for posttranslational modifications (Finch et al., 1977; Klug 

et al., 1980; Arents et al., 1991; Luger et al., 1997). The histone tails promote chromatin fiber 

formation, possibly by contacting adjacent nucleosomes or by influencing the configuration of 

the linker DNA (Schwarz et al., 1996). Under physiological conditions the DNA-histone 

interactions in the nucleosome core particle are stabilized by more than 116 direct and 358 

water-bridged interactions rendering the nucleosome a stable particle in the absence of any 

additional factors (Davey et al., 2002; Luger and Richmond, 1998). The DNA in the 

nucleosome has a phased helical periodicity (Wang, 1982). Accordingly, the histone octamers 

interact with the DNA approximately every 10 bp whereby the minor groove of the double 

helix is faced inwards (Davey et al., 2002; Luger and Richmond, 1998).  

Higher order chromatin structures 

The first level of compaction, the 10 nm fiber, establishes only a small portion of the 

condensation necessary to fit the eukaryotic DNA into the nucleus. Additional condensation is 

accomplished by folding of the chromatin fiber into higher order secondary and tertiary 

chromatin structures (Woodcock and Dimitrov, 2001) (Figure 1). The secondary level of 

compaction involves the folding of the beaded 10 nm fiber into a thicker fiber of about 30 nm 

in diameter (see Hansen, 2002, and references therein). This folding is mediated by histone-

histone interactions, especially interactions between the tail domain of H4 and the “charged 

patch” of H2A are important for the generation of the secondary chromatin structure (Dorigo 

et al., 2003; Gordon et al., 2005; Dorigo et al., 2004; Fan et al., 2004). In addition, the 

metazoan linker histone H1 as well as several linker DNA binding proteins are implicated in 

stabilizing the histone tail-mediated chromatin condensation (reviewed in Adkins et al., 

2004b; and Luger and Hansen, 2005). The second level of condensation adds another six- to 

seven-fold compaction.  

The folding of chromatin at the tertiary level to fibers of 100-300 nm in diameter in interphase 

nuclei remains a contentious issue despite extensive research. However, it is believed that the 

histone tails are involved in the formation of these tertiary chromatin structures along with 

several architectural chromatin proteins (see Horn and Peterson, 2002, and references 

therein).  
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Figure 1. Multiple levels of chromatin folding. DNA compaction within the interphase nucleus 
(depicted on the left) occurs through interactions of the nucleosomes in a hierarchy that can be 
sub-divided into primary, secondary and tertiary levels of compaction. The 10 nm fiber composes 
the primary structural unit. The second level of condensation involves the formation of the 30 nm 
fiber formed by nucleosome-nucleosome interactions. The tertiary level generates the so-called 
chromonema fiber which is likely to result from histone tail mediated associations within the 
individual 30 nm chromatin fibers (from Horn and Peterson, 2002).  

Although most of the chromatin research was done at the level of the beaded string, this 10 

nm fiber may no more physiologically relevant than the mononucleosomes. Recently it was 

shown that transcriptionally active MMTV promoter chromatin does not decondense into 

primary chromatin structure but forms secondary chromatin structures in vivo (Georgel et al., 

2003). As also illustrated in Figure 1, in vivo chromatin might only exist as 30-300 nm 

structures (reviewed by Horn and Peterson, 2002; Luger and Hansen, 2005), and it is still 

unclear how the different levels of chromatin organization influences DNA related processes.  

In spite of this, to understand the regulation of chromatin at the secondary and tertiary level 

one must first understand the basic principles at the level of the nucleosomal array.  

1.3. Hetero- and euchromatin 

Historically, the generic organization of chromatin is divided into two structures; 

heterochromatin and euchromatin, the identification of which originates from cytogenetic 

observations. Heterochromatin represents the portion of the genome that remains condensed 

in interphase. In yeast it corresponds mainly to telomeres and pericentric chromosomal areas 

and generally localizes to the perinuclear compartment. Heterochromatic areas tend to be rich 

in repetitive sequences, low in gene content and typically replicate late in the cell cycle 

(reviewed by Dillon, 2004). Euchromatin on the other hand may be considered as the non-

 7
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2.1. 

heterochromatic rest of the genome. It decondenses during interphase, contains most of the 

genes, is active or proficient for transcription and replicates early. In addition, the 

organization of euchromatin changes transiently in local areas of the genome as a response to 

cellular stimuli and/or differentiation programs.  

2. Chromatin dynamics 

Chromatin is a highly flexible environment, wherein spatially and temporally coordinated 

changes between transcriptionally active and structurally accessible states as well as 

transcriptionally repressive and structurally condensed states regulate gene expression.  

Chromatin remodeling and nucleosome sliding  

Nucleosomes were long perceived as large immovable obstacles in the path of DNA directed 

processes. However, this view changed dramatically by the finding that ATP dependent 

chromatin remodeling factors exist, which are capable of mobilizing histone octamers leading 

ultimately to the exposure or occlusion of the underlying DNA sequences (Eberharter and 

Becker, 2004; Längst and Becker, 2004). Several cellular mechanisms exists that remodel 

chromatin in a temporal/spatial manner. Mechanistically especially well understood is the 

process of nucleosome sliding in which nucleosomes are translocated in cis along the DNA. 

Nucleosome sliding was observed to occur as a spontaneous as well as a catalyzed process. 

Spontaneous nucleosome sliding can be induced under certain conditions in vitro in a 

temperature- and salt-dependent manner (Pennings et al., 1991; Meersseman et al., 1991). 

These in vitro results suggested that nucleosomes are not static but dynamic. The temperature 

and the time required for sliding in defined model systems allowed for a comparison of the 

relative stability of histone-DNA interactions in the nucleosome (Flaus et al., 2004).  

In vivo chromatin remodeling is catalyzed by large ATP-dependent chromatin remodeling 

machines. These remodeling machines can be divided into different classes based on their 

protein composition and functions. This includes the Swi/Snf (Switch/sucrose non-

fermenting), Iswi (imitation switch), INO80 (inositol)/Swr1 (Swi/Snf related), and Chd 

(chromodomain helicase/ATPase DNA binding protein) groups. In vivo chromatin remodeling 

leads to several different outcomes. These include shifting of the positions of nucleosomes, 

nucleosome sliding (Belikov et al., 2001; Fazzio and Tsukiyama, 2003; Kent et al., 2001), 

histone eviction (Reinke and Hörz, 2003; Boeger et al., 2003) and exchange of H2A variants 

(Krogan et al., 2003; Mizuguchi et al., 2004). 
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2.2. Histone modifications 

Chromatin structure can also be regulated by post-translational covalent modifications of the 

amino terminal histone tails, as well as on residues within the globular domain. These 

modifications include phosphorylation, acetylation, methylation, ubiquitination, and 

SUMOylation (Figure 2). Such modifications can be binding sites for regulatory proteins like 

transcription factors, proteins involved in chromatin condensation or DNA repair. There are 

modifications that co-exist and work in a coorporative manner in the same nucleosome but 

some are incompatible with others (reviewed by Margueron et al., 2005). The recognition of 

this dynamic interplay between histone modifications led to the “histone code” hypothesis 

(Jenuwein and Allis, 2001; Rice and Allis, 2001). This hypothesis proposes that histone 

modifications on the same or another histone molecule constitute a code. Individual types of 

histone modifications are read by proteins via for example chromo- and bromodomains that 

function as binding modules for methylated and acetylated lysines, respectively (reviewed by 

de la Cruz et al., 2005). Many chromatin remodeling machines contain subunits with one or 

more bromodomains. The RSC complex, for example, that is closely related to the Swi/Snf 

complex contains the tandem bromodomain protein Rsc4 that interacts with acetylated H3-

K14 (Kasten et al., 2004) directly connecting chromatin remodeling to histone modification 

marks.  

Most post-translational modifications are reversible (except maybe for arginine methylation). 

The dynamic equilibrium of lysine acetylation in vivo is governed by the opposing actions of 

histone acetyl transferases, HATs, and deacetylases, HDACs. Lysine methylation was long 

thought to be irreversible. However recently it was shown that a demethylase, LSD1, could 

reverse this modification on modified peptides (Shi et al., 2004; and reviewed by Wysocka et 

al., 2005). Interestingly, the activity and specificity of LSD1 can be modulated by association 

with specific cofactors (Lee et al., 2005; Metzger et al., 2005; Shi et al., 2005), suggesting that 

lysine methylation is indeed a dynamic mark. Similarly, although the search for arginine 

demethylases so far were fruitless an alternative pathway for the reversal of arginine 

methylation was proposeed (Bannister et al., 2002).  
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Figure 2. Histones are subject to a variety of post-translational modifications. Modifications 
in S. cerivisae include acetylation of lysine residues (A, blue), methylation of lysine and arginine 
residues (M, red), phosphorylation of serine residues (P, green) and ubiquitylation of lysine 
residues (U, purple). Arginines can be either mono- or dimethylated, whereas methylated lysines 
exist in a mono- di- or trimethylated form.  

2.3. 

                                                

Histone variants 

A third mechanism for the regulation of chromatin structure is through substitution of 

histones by histone variants. Histone variants are variants of the major-type histones with 

moderate to significant degrees of sequence homology with their corresponding counter-parts. 

Histone variants can be actively replaced outside of replication. Replication independent 

nucleosome assembly was demonstrated for the H2A variant Htz11 in yeast (similar to the 

metazoan H2A.Z) by the Swr complex (Krogan et al., 2003; Mizuguchi et al., 2004; Kobor et 

 

 

1 Here and in the following sections standard nomenclature of proteins, genes and mutated genes for S. 
cerevisiae will be used (Demerec et al., 1966). This means that “Htz1” refers to the protein, “HTZ1” refers to the 
gene and “htz1” refers to the mutated gene. 
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al., 2004). Furthermore, as nucleosomes are lost from highly active genes in a genome-wide 

manner (Lee et al., 2004; Bernstein et al., 2004), the deposition of histones upon 

transcriptional repression might involve the incorporation of histone variants (Ahmad and 

Henikoff, 2002). The replacement of histone H2A and H3 with their corresponding variants 

can have several effects on chromatin structure as all histone variants assembled into 

nucleosomes cause subtle structural variations (Suto et al., 2000; Chakravarthy et al., 2005). 

This may lead to altered nucleosome stability as was described for some H2A variants (Bao et 

al., 2004; Park et al., 2004; Gautier et al., 2004; Abbott et al., 2001). The altered stability of a 

nucleosome might in turn influence subsequent histone eviction during transcriptional 

activation in vivo (Zhang et al., 2005), Nucleosome sliding, chromatin remodeling and histone 

modifications are also influenced by histone variants (Flaus et al., 2004; Angelov et al., 

2003).  

3. Nucleosome positioning 

Nucleosomes were long known to repress transcription. As early as 1979 it was shown that 

the in vitro assembly of SV40 DNA into chromatin leads to the inhibition of initiation and 

elongation of RNA polymerase I and II (Wasylyk and Chambon, 1979; Wasylyk et al., 1979). 

A similar inhibitory effect is seen in vivo. Turning off histone synthesis by genetic means in 

yeast results in activation of transcription of a number of genes including the PHO5 gene 

(Han et al., 1988). This activation did not require the usual regulatory elements responsible 

for gene regulation and occurred under otherwise non-inducing conditions (Lorch et al., 1987; 

Han and Grunstein, 1988; Durrin et al., 1992).  

The nucleosome core particle protects against the digestion of nucleases (Elgin, 1981; Reeves, 

1984). Consequently, high nuclease susceptibility of DNA regions correlates with the absence 

of canonical nucleosomes. Digestion of chromatin with both unspecific nucleases such as 

deoxyribonucleaseI (DNaseI) and miccrococcal nuclease (MNase) and restriction enzymes 

have proven to be useful tools in the analysis of chromatin structure (Elgin, 1981; Bellard et 

al., 1980; Almer and Hörz, 1986). Importantly, the absence of canonical nucleosomes as 

mapped by nuclease digestion does not distinguish between the absence or presence of 

histones. However, recently it was shown that hypersensitive sites are in fact devoid of 

histones all together (Boeger et al., 2003; Reinke and Hörz, 2003; Bernstein et al., 2004; Lee 

et al., 2004) 
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The majority of genomic DNA in yeast is assembled into distinctly positioned nucleosomes. 

In yeast, over 69 % of the nucleosomal DNA is found in well positioned nucleosomes (Yuan 

et al., 2005). The positioning of nucleosomes results from differing nucleosome linker lengths 

and varies between tissues of the same organism (van Holde, 1989). The exact positioning of 

a nucleosome can result in important DNA elements being incorporated into a nucleosome 

thereby being inaccessible for interacting factors. The variability in linker length is therefore, 

of great significance for the regulation of all chromatin related processes. 

The nucleosome core particle protects against the digestion of nucleases (Weintraub and 

Groudine, 1976; Elgin, 1981). Consequently, high nuclease susceptibility of DNA regions 

correlates with the absence of canonical nucleosomes. Digestion of chromatin with both 

unspecific nucleases such as deoxyribonucleaseI (DNaseI) and miccrococcal nuclease 

(MNase) and restriction enzymes were used to map chromatin structures at many promoters . 

Importantly, the absence of canonical nucleosomes as mapped by nuclease digestion does not 

distinguish between the absence or presence of histones. However, recently it was shown that 

hypersensitive sites are in fact devoid of histones all together (Boeger et al., 2003; Reinke and 

Hörz, 2003; Lee et al., 2004) 

 

Figure 3. Concepts of nucleosome positioning. (A and B) Chromatin can be either irregularly 
(A) or regularly spaced (B) on a particular DNA region. Additionally, on regularly spaced 
nucleosomal arrays nucleosomes can adopt either random multiple positioning (C) or unique 
positioning (D).  

The term “positioning” refers to nucleosomes occupying a defined set of positions on a 

particular DNA region resulting in nucleosomes that are uniquely located throughout a 
 12
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3.1. 

3.2. 

population of DNA molecules (Figure 3A). In contrast, in a random arrangement of 

nucleosomes, all DNA sequences will have an equal probability of binding a histone octamer 

(Figure 3B). A precisely positioned histone octamer might protect regulatory sequences of a 

gene and thereby have repressing functions (Venter et al., 1994; Anderson and Widom, 2000) 

or nucleosomes may be positioned such that regulatory regions localize to linker regions 

(Zhang and Reese, 2004). Nucleosome positioning may also result in location of regulatory 

sequences on the surface of the nucleosome exposing it to a DNA binding protein (Belikov et 

al., 2000). Additionally, secondary chromatin structure might bring cis-regulatory elements 

which are located in some distance along the same DNA sequence into closer proximity 

(Stunkel et al., 1997).  

Translational and rotational nucleosome positioning 

Two forms of nucleosome positioning are distinguished: translational and rotational 

positioning. Translational positioning refers to the extent to which a histone octamer selects a 

particular stretch of 147 bp of DNA in preference to other stretches on the same DNA. 

Rotational positioning, on the other hand, is a degenerate form of translational positioning in 

which a set of discrete translational positions, differing by integral multiples of the DNA 

helical repeat, are all occupied in preference to a set of other possible locations. Rotational 

positioning is so called because it maintains the rotational orientation of a given face of the 

DNA with respect to the underlying histone surface. Thus, a site on the DNA that faces 

outwards in one member of a rotationally related set of nucleosome positions does so for all 

members of that set of rotational positions (Widom, 2001).  

Contribution of DNA structure to nucleosome positioning 

Many in vivo studies have reported promoters comprising distinctly positioned nucleosomes 

(Almer and Hörz, 1986; Li and Wrange, 1993; Belikov et al., 2000). However, for most of 

these promoters it is still not clear which mechanisms direct the generation of these positioned 

nucleosomal arrays. With classical in vivo techniques the mechanistical properties of 

nucleosome positioning are difficult to assess as all interactions between histone octamers and 

DNA take place in the context and under the influence of various different cellular factors. 

Therefore, several in vitro approaches were developed to study why some histones prefer 

some DNA sequences over others. These include chromatin assembly by salt gradient dialysis 

(Wilhelm et al., 1978) and in vitro assembly systems based on cellular extracts such as 



III  Introduction 

 14

Xenopus eggs, Drosophila embryos and mammalian cells (Laskey et al., 1977; Becker and 

Wu, 1992; Kamakaka et al., 1993; Gruss et al., 1990).  

Chromatin assembly by salt gradient dialysis has the advantage of using purified components 

(histone octamers and DNA) and has therefore been the prefered in vitro system to study 

nucleosome positioning. Many of the identified rules governing nucleosome positioning are 

therefore biased by this method (Widom, 2001).  

Nucleosome positioning is influenced by the structure of DNA. The persistence length of a 

DNA molecule refers to the lenght over which a DNA molecule persist bending and twisting. 

DNA molecules of much shorter lenght than the persistence length are essentially straight in 

the absence of exogenous forces (Widom, 2001). The persistence length of an arbitrary DNA 

molecule is suggested to be between 50 and 150 bp (Hagerman, 1988). However, in 

nucleosomes 147 bp of DNA are wrapped around the histone octamer through 1.67 

superhelical turns (Luger et al., 1997; Richmond and Davey, 2003) presenting a severe 

distortion of the DNA. Additionally, DNA in a nucleosome is twisted less than arbitrary 

DNA. As estimated by the 2.8 Å crystal structure, the average twist for nucleosomal DNA is 

around 10.2 bp/turn (Luger et al., 1997; Richmond and Davey, 2003) whereas an average 

twist for DNA in solution is about 10.5 bp/turn (Travers and Klug, 1987; Olson et al., 1998). 

Thus, major forces work against the incorporation of DNA into a nucleosome. To overcome 

this energy barrier, several interactions have to be formed between the histone octamer and 

the DNA in order to make the nucleosome a stable particle. The structure of the underlying 

DNA sequence, that is the bendability and/or twistability, contributes significantly to the 

packaging of DNA into nucleosomes (Drew and Travers, 1985). Accordingly, the energy cost 

of the incorporation of DNA into a nucleosome is lower if a particular DNA sequence has an 

increased ability of being distorted. This leads to a higher affinity for the histone octamer, i.e. 

more or better bonds, e.g. more H-bonds or “salt-bridges”, better H-bond geometry, better 

steric fit etc. (Widom, 2001).  

Therefore, both translational and rotational nucleosome positioning is influenced by the 

structure of the underlying DNA. Shrader and Crothers designed DNA sequences that were 

expected to favor incorporation into nucleosomes because of their inherent structure. These 

sequences proved to bind to histone octamers with enhanced affinity in nucleosome 

reconstitution experiments, and exhibited rotational positioning according to their curvature 

(Shrader and Crothers, 1990; Shrader and Crothers, 1989). This incited the mapping of 

naturally occurring bent DNA structures close to important genomic sequences. However, 
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although such structures are present in the human beta-globulin locus (Wada-Kiyama and 

Kiyama, 1996a; Wada-Kiyama et al., 1999) these cannot solely account for nucleosome 

positioning at this locus.  

As rotational positioning is a degenerate form of translational positioning the rules that 

govern rotational positioning also apply for translational positioning. In agreement with this, 

the local DNA structure also has profound influence on the translational positioning of a 

nucleosome. Highly rigid DNA disfavors the incorporation into a nucleosome. An example of 

such sequences are poly(dT-dA) sequences. These sequences were proposed to repel the 

histone octamer based on the low yield in in vitro reconstitution assays (Simpson and Shindo, 

1979; Rhodes, 1979). Later this assumption was supported by X-ray analysis of long 

poly(dA-dT) stretches showing the rigidity of such a sequence (Nelson et al., 1987). Recently, 

these sequences were indeed shown to destabilize chromatin by directly destabilizing histone-

DNA interactions (Anderson and Widom, 2001). Interestingly, nucleosome free regions 

present in the majority of all Polymerase II promoters (Sekinger et al., 2005; Yuan et al., 

2005) are enriched in Poly(dA-dT) stretches (Yuan et al., 2005).  

In contrast, highly flexible DNA readily wraps around a histone octamer. Classical examples 

are the 5S rRNA positioning sequence which has a high affinity for nucleosomes in vitro 

(Hayes et al., 1990) and natural occurring DNA sequences like the TATAAACGCC repeat 

which is the strongest known natural occurring nucleosome positioning sequence (Thastrom 

et al., 1999; Widlund et al., 1999; Widlund et al., 1997). In another study, Lowary and Widom 

used an adapted SELEX approach to find rules governing histone-DNA interactions. This 

approach was completely unbiased towards DNA structures that were previously identified as 

influencing nucleosome positioning. Although, the original strategy was to screen for high 

nucleosome affinity sequences they identified the today strongest known nucleosome 

positioning sequence, the so called 601 sequence. This sequence directs nucleosomes into a 

single predominant translational position on DNA fragments as long as 288 bp in in vitro 

reconstitution experiments (Lowary and Widom, 1998; Thastrom et al., 1999).  

In vivo several sequences are also organized preferentially in positioned nucleosomes. Some 

of these sequences contain non-random periodic distributions of certain di-nucleotides related 

to those discovered in the sequences of isolated nucleosomeal DNA that proved to facilitate 

packaging of DNA in a nucleosome (Bina, 1994; Staffelbach et al., 1994; Bolshoy, 1995; 

Ioshikhes et al., 1996). However, this periodic di-nucleotide distribution cannot solely 

account for nucleosome positioning in vivo.  
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Interestingly, in spite of these findings, many of the sequences that have strong positioning 

power in vitro did not position a nucleosome in vivo (Tanaka et al., 1992b; Negri et al., 2001; 

Buttinelli et al., 1993). In addition, the bulk of the eukaryotic genome is not evolved to aid 

substantially in its own packaging at the level of individual nucleosomes as assayed by salt 

gradient dialysis (Lowary and Widom, 1997). Thus, although several DNA sequence rules 

were identified that govern nucleosome positioning in vitro these might be of little functional 

relevance in vivo.  

As DNA structure seems to play little role in global nucleosome positioning in the cell, 

nucleosome positioning was investigated using cellular extract assembly systems (Laskey et 

al., 1977; Becker and Wu, 1992; Kamakaka et al., 1993; Gruss et al., 1990;  see also Lusser 

and Kadonaga, 2004 and references herein). However, only in a few cases did in vitro 

assembly systems based on cellular extracts result in proper positioning of nucleosomes prior 

to the addition of a specific DNA binding protein. Assembly with Xenopus egg extract for 

example positioned nucleosomes over the 5 S rDNA sequence (Shimamura et al., 1988;  

although see Almouzni et al., 1990). Using the Drosophila embryo extract assembly system 

the Drosophila HSP26 gene was assembled into chromatin with properly positioned 

nucleosomes (Wall et al., 1995) and in vivo like nucleosome positioning over the MMTV 

promoter region was acchieved (Venditti et al., 1998). However, in the majority of cases a 

specific DNA binding factor was needed to position the nucleosomes in these systems 

(Tsukiyama et al., 1994; Pazin et al., 1994; Längst et al., 1997; Pazin et al., 1997; Mcpherson 

et al., 1993).  

In short, although several signals were identified that influence nucleosome positioning, little 

is still known about the mechanistic determinants in vivo. Table 1 summarizes the potential or 

proposed signals for nucleosome positioning some of which were already introduced in the 

previous section. 
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Table 1. Signals that affect rotational and translational positioning (adapted from Kiyama and 
Trifonov, 2002) 
Nucleosome positioning signal Reference 

Specific nucleotide sequences 
 

SV40 enhanser (Clarke et al., 1985) 
Satellite DNA (Linxweiler and Hörz, 1985) 
5S rRNA sequence  (Hayes et al., 1990; but see Blank and Becker, 1996) 
TATAAACGCC repeat (Widlund et al., 1999; Widlund et al., 1997) 
(A/T)3NN(G/C)3NN (Tanaka et al., 1992a; Shrader and Crothers, 1989) 
601 sequence (Lowary and Widom, 1998) 
AAA/TTT (Muyldermans and Travers, 1994) 
Albumin enhancer (Mcpherson et al., 1996) 
NGGR (Travers and Muyldermans, 1996) 
Non-T(A/T)G  (or VWG) (Stein and Bina, 1999; Baldi et al., 1996) 
A+T rich sequence in 5S rRNA gene (Tomaszewski and Jerzmanowski, 1997) 
Cis-elements for TFIIIA (Pfaff and Taylor, 1998) 
(A5(G/C)5)4 (Fitzgerald and Anderson, 1998) 
(CTG)n (Wang and Griffith, 1995; Godde and Wolffe, 1996) 
 
Specific DNA structures  
Curving or bending of DNA (Drew and Travers, 1985; Fitzgerald et al., 1994; Wada-Kiyama et 

al., 1999; Wada-Kiyama and Kiyama, 1996b) 
HRE of MMTV promoter (Pina et al., 1990) 
 
Sequences/structures that disrupts 
nucleosome formation 

 

Z-DNA (CA or CG repeats) (Nickol et al., 1982) 
Curved DNA at yeast ARS (Snyder et al., 1986) 
Triplex DNA (Pu-Py sequences) (Espinas et al., 1996; Westin et al., 1995) 
T14A11 of Alu element (Englander and Howard, 1996) 
TGGA (Cao et al., 1998) 
Poly(dA-dT) (Simpson and Shindo, 1979; Rhodes, 1979; Anderson and Widom, 

2001; Yuan et al., 2005) 
CCG triplet repeat blocks (Wang et al., 1996) 
 
Binding of proteins/transcription factors  
Sp1 and NFκB (Widlak et al., 1997) 
Adf-1 and GAGA factor (Gao and Benyajati, 1998) 
GAGA (Tsukiyama et al., 1994) 
Gal4-VP16 (Pazin et al., 1994) 
CENP-B (Tanaka et al., 2005) 
TTF-1 (Längst et al., 1997) 
Histone H1(H5) (Stein and Kunzler, 1983) 
Histone (H3-H4)2 (Dong and van Holde, 1991) 
NF1 of MMTV (Eisfeld et al., 1997; Archer et al., 1991) 
Histone H4 (Roth et al., 1992) 
 
Others 
Histone acetylation 
DNA methylation (Pennings et al., 2005) 
Superhelicity/higher order chromatin 
folding 
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4. The PHO regulon in S. cerevisiae 

The PHO regulon in yeast is composed of a number of structural and regulatory genes 

(Oshima, 1997). The structural genes correspond to phosphatases and phosphate transporters 

and the regulatory genes provide the cell with the ability to respond to phosphate starvation. 

Phosphate depletion in the growth media results in an at least 50-fold increased production of 

secreted acid phosphatase which helps to provide the cells with phosphate by hydrolysing 

phosphor-monoesters scavenged from the environment. Acidic phosphatase activity results 

from four isozymes encoded from the PHO5, PHO3, PHO10 and PHO11 genes (Vogel and 

Hinnen, 1990). The PHO5 gene product contributes to more than 90% of the acid phosphatase 

activity generated upon phosphate starvation and is the nost studied gene in the PHO regulon. 

In addition, an alkaline phosphatase encoded by the PHO8 gene is similarly activated in 

response to low phosphate levels (Kaneko et al., 1987).  

Two DNA binding proteins are responsible for the regulation of the structural genes: an 

activator of the bHLH family, Pho4, and a pleiotropic homeodomain protein, Pho2 (Vogel 

and Hinnen, 1990). The PHO5 gene possesses one of the most strongly inducible promoters 

in yeast with transcription levels increasing over 100-fold upon phosphate starvation (Oshima, 

1997). This induction is brought about by the coordinated action of Pho4 and Pho2 (Barbaric 

et al., 1998). In contrast, complete promoter opening at the PHO8 promoter is independent on 

Pho2 (Barbaric et al., 1992). However at this promoter Pho2 plays a role at the transcriptional 

level (Münsterkötter et al., 2000). 

The activation of Pho4 is regulated at several levels (Figure 4). When cells are grown at high 

phosphate conditions Pho4 is phosphorylated by the cyclin/cyclin-dependent kinase (CDK) 

complex Pho80-Pho85. This phosphorylation prevents the binding of Pho4 to DNA (Komeili 

and O'Shea, 1999) and facilitates recognition by the nuclear export factor Msn5 resulting in 

its export into the cytoplasm (Kaffman et al., 1998) (Figure 4, top). Conversely, under 

conditions of phosphate starvation, the CDK inhibitor Pho81 becomes activated. This 

activation seems to involve the action of the proteins Adk1 and Ado1  (Huang and O'Shea, 

2005). Pho81 in turn inhibits the activity of the Pho80-Pho85 CDK complex thereby 

preventing the phosphorylation of Pho4 (Komeili and O'Shea, 1999). This leads to 

accumulation of unphoshorylated Pho4 in the nucleus (Kaffman et al., 1998) which in its 

unphosphorylated state can bind to its target promoters in a cooperative manner with Pho2 

(Figure 4, bottom). 
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Figure 4. Phosphate-dependent signal transduction. When phosphate levels are high, Pho4 is 
phosphorylated by the Pho80-Pho85 complex which ultimately leads to export of Pho4 to the 
cytoplasm (top). Phosphate starvation results in inhibition of the Pho80-Pho85 complex leading to 
accumulation of Pho4 in the nucleus where it binds in corporation with Pho2 to phosphate 
responsive promoter elements (bottom).  
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4.1. Chromatin structure of the PHO5 and PHO8 promoters 

Both the PHO5 and PHO8 promoters contain regions with positioned nucleosomes under 

repressing conditions (Svaren and Hörz, 1997; Barbaric et al., 1992; Almer et al., 1986). At 

the PHO5 promoter four nucleosomes are positioned, interrupted by a short 80 bp 

hypersensitive region between nucleosome -2 and -3 (Almer and Hörz, 1986) (Figure 5, top). 

This hypersensitive site contains one of the two Pho4 binding sites (UASp1) while the second 

(UASp2) is localized near the center of nucleosome –2. The TATA box is incorporated into 

nucleosome –1 (Figure 5, top). Thus, under repressing conditions the nucleosomal structure of 

the PHO5 promoter prevents both the binding of the specific transcription factor Pho4 to the 

UASp2 site and the general transcription machinery from accessing the underlying DNA 

(Venter et al., 1994). The repressed PHO8 promoter is organized into to two uniquely 

positioned nucleosomes and one nucleosome (-2), which is less distinctly positioned resulting 

in two overlapping positions (Barbaric et al., 1992) (Figure 5, bottom). In contrast to the 

PHO5 promoter, the two UAS elements at the PHO8 promoter are both located within 

hypersensitive sites. The TATA element is nevertheless located within a stable nucleosome, 

and in analogy to PHO5 (Han and Grunstein, 1988) loss of nucleosome structure through 

depletion of histone H4 activates this promoter in the absence of inducing conditions and/or 

UAS elements (Gregory et al., 1999).  

Upon activation of PHO5 and PHO8 the positioned nucleosomes are the in vivo substrate for 

remodeling processes that generate extensive nuclease hypersensitive sites (Almer et al., 

1986; Almer and Hörz, 1986; Venter et al., 1994) (Figure 5). A series of in vivo studies 

increased our understanding of the mechanism of remodeling leading to the open activated 

state (Reinke and Hörz, 2004; Svaren and Hörz, 1997). In particular, activation of PHO5 and 

PHO8 upon phosphate starvation leads to the loss of histone DNA contacts, i.e. to histone 

eviction in the respective promoter regions (Reinke and Hörz, 2003; Adkins et al., 2004a; 

Boeger et al., 2003; Korber et al., 2006). Remodeling at the PHO5 promoter is more extensive 

than at the PHO8 promoter, resulting in a hypersensitive site of 600 base pairs in length and 

affecting four nucleosomes (Almer et al., 1986) (Figure 5, top). In the case of the PHO8 

promoter, two nucleosomes are remodeled upon phosphate starvation (Figure 5, bottom) 

(Barbaric et al., 1992). Furthermore, the histones at the PHO5 promoter are evicted from the 

DNA in trans (Boeger et al., 2004; Korber et al., 2004). This histone loss is mediated by the 

histone chaperone Asf1 that is thought to function as a histone acceptor (Adkins et al., 2004a; 

Korber et al., 2006). Similarly Asf1 also plays a role in the remodeling of PHO8 (Adkins et 
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al., 2004a; Korber et al., 2006) and, although not explicitly shown, it is likely that histone 

eviction at the PHO8 promoter occurs via a trans-mechanism as well.  

 

Figure 5. Promoter chromatin structure of the PHO5 and PHO8 promoters. The repressed 
PHO5 and PHO8 promoters are organized into positioned nucleosomes numbered -1 to -4 
according to their position from the transcriptional start site. Upon phosphate starvation Pho4 is 
bound to the UASp elements leading to nucleosome loss in trans rendering the “open state” 
sensitive to nucleases. On average two nucleosomes are lost from the PHO5 promoter (Boeger et 
al., 2003; Korber et al., 2004). The remaining two nucleosomes are drawn transparent. 
Nucleosome -2 of the PHO8 promoter represents nucleosome with alternative positions and is 
drawn as two nucleosomes with overlapping positions. Furthermore, binding of Pho4 to the 
UASp1 and 2 of the PHO5 promoter and UASp2 of the PHO8 promoter is shown. 

4.2. Co-factor requirements for chromatin opening  

Even though both the PHO5 and the PHO8 promoter are co-regulated by the same trans-

activator Pho4 and both promoter regions loose histones in trans upon induction, chromatin 

remodeling at each promoter has cofactor requirements of differing stringency. At the PHO8 

promoter, no remodeling is detectable in the absence of a functional SWI/SNF complex, and 
 21
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in a strain without Gcn5 histone acetyl transferase (HAT) activity there is only locally 

restricted remodeling that does not support induction of PHO8 activity (Gregory et al., 1999). 

In contrast, at the PHO5 promoter the chromatin structure is still completely remodeled 

without Gcn5 and/or SWI/SNF activity, although with a kinetic delay (Barbaric et al., 2001; 

Reinke and Hörz, 2003; Dhasarathy and Kladde, 2005; Neef and Kladde, 2003).  

5. Aims of this work 

The hosting lab has a long history in elucidating the role of chromatin structure and 

remodeling in gene regulation using the PHO5 and PHO8 genes as model systems. These 

studies led to the unraveling of many aspects of the regulation of chromatin opening and 

closing (see above) that were later proven to be part of universal mechanisms of chromatin 

regulation in eukaryotes. These studies were mainly been performed using in vivo techniques. 

However, there are clear limitations to this approach and many issues, especially mechanistic 

questions, are impossible to answer with such techniques. Therefore, a complementary in 

vitro approach using a chromatin assembly system based on whole cell extracts was initiated. 

This system was able to properly position nucleosomes at the PHO5 promoter (Korber and 

Hörz, 2004). Such an in vitro system is especially valuable as it has a direct in vivo 

counterpart and therefore the physiological relevance of in vitro results can be directly 

compared and tested in vivo.  

One aim of this work was to extend the yeast in vitro approach to include the PHO8 promoter. 

This allows a detailed analysis of requirements for chromatin regulation at the PHO8 

promoter that can supplement the present in vivo data. In addition, an in vitro system 

including both the PHO5 and the PHO8 promoter provides a powerful tool for studying the 

differences in chromatin regulation between the two promoters.  

It has been a long standing question in the field how the regulation of chromatin opening by 

one and the same transcriptional activator can differ depending on the promoter context. 

Previously, it was shown that exchanging the DNA sequence, which assembled into 

nucleosome -2 at the PHO5 promoter, for a strong nucleosome positioning sequence, namely 

an α-satellite DNA fragment, largely abolished chromatin opening (Straka and Hörz, 1991). 

From these results it was speculated that the inherent stability of a positioned promoter 

nucleosome directly affects the inducibility of the promoter. In light of this and other studies, 

it was suggested that the differences in cofactor requirements for chromatin opening at the 

PHO5 and PHO8 promoters reflected differences in the stability of the chromatin substrate 
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for the two remodeling processes (Münsterkötter et al., 2000). This inherent stability of 

nucleosomes may be especially relevant for a remodeling mechanism leading to histone 

eviction in trans as it requires the complete disruption of all histone DNA contacts. As 

nucleosome stability and therefore this hypothesis is not easily testable with classical in vivo 

techniques, one of the aims of this work was therefore to develop an in vitro approach to 

study nucleosome stabilities at the PHO5 and PHO8 promoters.   

In addition, another aim of the presented work was to modify the in vitro chromatin assembly 

system (Korber and Hörz, 2004) in such a way that mechanistic questions of nucleosome 

positioning could be addressed successfully. It was recently suggested that the DNA sequence 

is the determinant of nucleosome positioning at the PHO5 promoter (Terrell et al., 2002). The 

authors used an uncatalyzed chromatin assembly system based on the histone chaperone 

Nap1. However, in this system  nucleosome -2 did not affect the binding of Pho4 to its intra-

nucleosomal binding site, thereby contradicting in vivo data (Venter et al., 1994). Thus, 

additional factors are likely to influence nucleosome positioning at the PHO5 promoter. 

Similarly, the determinants of nucleosome positioning at the PHO8 promoter are still 

unknown. The yeast in vitro assembly system provided a powerful tool to study nucleosome 

positioning. However, at the time of initiation of this work this system was rather unstable 

and proper nucleosome positioning was difficult to obtain. Therefore, this approach was to be 

improved, making the technique more stable and consistent.   
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1.1. 

                                                

IV. Results 

1. An in vitro assembly system capable of proper native-like 

nucleosome positioning 
The yeast extract assembly system generates the native nucleosome positioning at 

the PHO8 promoter in vitro 

Previously, an in vitro assembly system was developed in the lab using yeast whole cell 

extract that can generate extensive nucleosomal arrays on naked DNA and establish the 

correct nucleosome positions at the PHO5 promoter (Korber and Hörz, 2004). Yeast whole 

cell extract does not contain large amounts of histones and it was therefore necessary to 

supplement the extract with exogenous histones. In short, the assembly system comprises 

yeast whole cell extract, histones purified from Drosophila embryo extracts and an energy 

regenerating system consisting of ATP, creatine phosphate (CP) and creatine kinase (CK). 

This mixture was added to a DNA template and incubated for up to six hours at 30°C. The 

generated chromatin was thereafter analyzed by MNase digestion to probe for the generation 

of regularly spaced nucleosomal arrays or by DNaseI digestion in combination with indirect 

end labeling to analyze nucleosome positioning.  

To test whether this assembly system can also assemble the PHO8 locus into chromatin with 

properly2 positioned nucleosomes, a plasmid was generated similar to the one used as a 

template for the in vitro assembly of the PHO5 promoter (Korber and Hörz, 2004). Instead of 

the PHO5 locus the PHO8 gene along with 1700 bp of the upstream region was inserted. 

Using this plasmid as template in an in vitro assembly reaction revealed a chromatin pattern 

virtually identical to that seen at the PHO8 promoter in vivo (Figure 6). Both patterns are 

clearly different from that of free DNA. Characteristic for the PHO8 promoter chromatin 

pattern are two hypersensitive sites at the positions of the UASp elements flanking a 
 

 

2 Proper positioning refers to the positions of the native in vivo chromatin structure as determined by low 
resolution mapping techniques. 
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nucleosome and a third hypersensitive site located close to a HindIII site (Figure 6, schematic 

and lane M). Differences between in vivo and in vitro generated DNaseI patterns further 

upstream of the promoter (in the upper part of the lanes) reflect differences in the underlying 

DNA sequences, i.e., vector versus chromosomal sequences. Thus, the established in vitro 

assembly system completely recapitulates the native nucleosome positions not only at the 

PHO5 promoter but also at the PHO8 promoter. 

 

Figure 6. In vitro chromatin assembly with yeast whole cell extract generates the native 
chromatin structure at the PHO8 promoter. Limited DNaseI digestion and secondary cleavage 
with BglII for indirect end labeling was performed with free DNA (lanes 1 and 2), chromatin 
assembled with yeast extract in vitro for 6 hours (lanes 3 and 4) and yeast nuclei from a wild type 
strain (lane 5). The marker bands correspond to the EcoRV-BglII, HindIII-BglII and XhoI-BglII 
fragments of the PHO8 promoter (lane M). Schematics of the chromatin structure at the PHO8 
promoter are shown on the right side of the gel. Nucleosomes are depicted as ovals, UASp elements 
as black dots and the open reading frame as broken bar. Asterisks in the gel refer to the most 
distinguishing bands of the PHO8 promoter chromatin pattern. All samples were digested with a 
range of DNaseI concentrations (ramps on top of the lanes). However, due to space limitations only 
representative lanes are shown in this and the following figures.

The kinetics of nucleosome positioning at the PHO5 and PHO8 promoter in a de 

novo in vitro assembly reaction are different 

1.2. 

The generation of extensive nucleosomal arrays as well as proper nucleosome positioning at 

the PHO5 promoter in vitro is a slow process which takes approximately 6 hours (Korber and 

Hörz, 2004). The kinetics of nucleosome assembly and positioning at the PHO8 promoter was 

therefore analyzed and compared to that of the PHO5 promoter. The plasmids carrying the 

PHO5 and PHO8 loci are identical except for the respective loci. Furthermore, the size of the 

PHO5 and PHO8 loci are approximately similar. Accordingly, when both templates were 

added at equimolar ratios in one and the same assembly reaction, the kinetics of nucleosome 

assembly and positioning could be directly compared.  

 25
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The extent of chromatin assembly was monitored by MNase digestion (Figure 7A). The 

generation of extensive nucleosomal arrays on the PHO8 template, detected by a probe 

recognizing part of the PHO8 promoter region without preceding secondary cleavage, took 3 

to 4 hours (Figure 7A). Similar results were obtained by re-hybridizing with a probe 

recognizing the BamHI-ClaI fragment of the PHO5 promoter (data not shown). These results 

are in agreement with previously published data (Korber and Hörz, 2004).  

The generation of nucleosomal arrays and positioning of the nucleosomes need not follow the 

same kinetics. Therefore, in addition to kinetics of overall chromatin assembly, kinetics of 

nucleosome positioning were also investigated by DNase I digestion followed by indirect end 

labeling (Figure 7B and C). In keeping with published data (Korber and Hörz, 2004), the 

proper nucleosome positioning pattern over the PHO5 promoter was not discernible prior to 3 

hours after the beginning of the assembly reaction but was clearly established after 6 hours 

(Figure 7B). Surprisingly, however, the generation of the native chromatin structure at the 

PHO8 promoter was much more rapid. The nucleosomes were properly positioned already 

after 30 min to 1 hour (Figure 7C) even before extensive nucleosomal ladders were generated 

(Figure 7A). It was also noted repeatedly, that the generation of proper nucleosome 

positioning over the PHO5 promoter required certain buffer conditions and careful titration of 

DNA, histones and extract. In contrast, the assembly of properly positioned nucleosomes at 

the PHO8 promoter proved to be much more lenient to changes in experimental conditions. In 

many cases, proper positioning could be observed at the PHO8 promoter however, at the 

PHO5 promoter either no pattern was present or the pattern was only hardly discernible even 

though both plasmids were present in the same assembly reaction (data not shown). 



IV  Results 

 

Figure 7. In a de novo in vitro assembly reaction nucleosomes become positioned more rapidly 
at the PHO8 than at the PHO5 promoter. Assembly kinetics of a yeast extract in vitro assembly 
reaction with plasmids containing the PHO5 and PHO8 locus in the same reaction were monitored at 
the indicated time points by MNase digestion followed by specific probing for the PHO8 promoter 
region (A) and DNaseI mapping followed by probing for the PHO5 (B) or the  PHO8 (C) promoter. 
Equivalent results as in panel (A) were also obtained by using a PHO5 promoter probe (not shown). 
Ramps on top of the lanes represent increasing MNase digestion times. Lane M shows a 123 bp 
ladder (Gibco). The marker in (B) corresponds to the ApaI-BamHI, ApaI-ClaI and ApaI-DraI 
fragments of the PHO5 promoter and in (C) the EcoRV-BglII, HindIII-BglII and XhoI-BglII 
fragments of the PHO8 promoter. Schematics of the chromatin structure at the PHO5 and PHO8 
promoters are on the right side of the gels. Nucleosomes are depicted as ovals, UASp elements as 
black dots and open reading frames as broken bars. HS in panel (B) denotes the linker region 
between nucleosomes –2 and –3 at the PHO5 promoter. 
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2.1. 

2. The nature of the nucleosome positioning information 
The UASp elements have no influence on the kinetics of nucleosome positioning in 

vitro 

The UASp elements of the PHO8 promoter are both located in linker regions (Barbaric et al., 

1992). On the contrary, at the PHO5 promoter one UASp element, the UASp2, is located in a 

nucleosome. This means that binding of a protein to the UASp elements during an assembly 

reaction would result in different outcomes at the PHO5 and the PHO8 promoters, 

respectively. Binding of a protein to the UASp2 site of the PHO5 promoter might compete 

with the assembly of a nucleosome, and thus negatively influence the assembly kinetics. 

Conversely, such a factor could help to position the nucleosomes at the PHO8 promoter as the 

binding could function as a “signpost” for the nucleosomes. Therefore the influence of the 

UASp sites were further analyzed.  

Both UASp2 elements of the PHO5 and the PHO8 promoter are consensus E box motifs. 

Apart from binding the transcriptional activator Pho4 these E-box motifs are also a potential 

target site for another protein, Cpf1 (Baker and Masison, 1990; Cai and Davis, 1990; Mellor 

et al., 1990). At the PHO8 promoter this protein binds to the UASp2 under repressing 

conditions (Moreau et al., 2003). Furthermore, the transcriptional co-activator Pho2 had also 

been shown to bind to several binding sites within the PHO5 promoter (Barbaric et al., 1996; 

Magbanua et al., 1997).  

In order to address the question if any of these proteins have an effect on the positioning of 

nucleosomes in vitro at either promoter, chromatin was assembled using an extract from a 

strain triply deleted in Pho4, Pho2 and Cpf1. The simultaneous deletion of these three proteins 

had no effect on the nucleosome positioning at either promoter (Figure 9B and C; lanes 1 and 

2).  
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Figure 8. Also in the absence of functional UASp elements the in vitro assembly kinetics of 
nucleosome positioning at the PHO8 promoter are more rapid than at the PHO5 promoter. In 
vitro chromatin assembly was performed as in Figure 7 but using plasmids with deletions in either 
UASp1 (A) or UASp2 (B) at each promoter or UASp1 and UASp2 together at the PHO8 promoter 
(C). Chromatin was mapped by DNaseI digestion followed by indirect end labeling at the indicated 
times and probed for the PHO5 (left side of each panel) or the PHO8 (right side) promoter. 
Schematics, asterisks and marker lanes are the same as in Figure 7. 
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2.2. 

E boxes are binding sites for some bHLH proteins and the whole cell extract is rather 

abundant in such proteins (Robinson and Lopes, 2000). The possibility was therefore 

considered that a fortuitous E-box binding protein from the whole cell extract could bind to 

the UASp sites of both promoters. To address this theory experimentally, DNA templates 

were generated in which the E-box consensus sequence 5’-CANNTG-3’ was mutated.  

Importantly, mutation of the intra-nucleosomal UASp site of the PHO5 promoter did not alter 

the kinetics of nucleosome positioning neither did mutation of the inter-nucleosomal binding 

site (Figure 8A and B). Similar results were obtained at the PHO8 promoter; mutation of 

either UASp site or mutation of both sites did not show any influence on the kinetics of 

nucleosome positioning (Figure 8C-E). Thus, the difference in the kinetics of nucleosome 

positioning at the PHO5 and PHO8 promoters can not be explained by a fortuitous E box 

binding activity in the yeast extract. 

The DNA sequence information alone is not sufficient to position the nucleosomes 

at the PHO5 and PHO8 promoters by salt gradient dialysis chromatin assembly  

As the templates only differ in the PHO5 and PHO8 loci, respectively, the observed 

difference in the kinetics of nucleosome positioning must lie within this DNA region. Strong 

nucleosome positioning information present in the DNA sequence of the PHO8 promoter 

could explain why nucleosomes become positioned more rapidly at the PHO8 promoter 

compared to those at the PHO5 promoter. In this scenario the PHO8 promoter would have 

higher nucleosome positioning power than the PHO5 promoter. Such a difference in 

nucleosome positioning power might already become apparent in an un-catalyzed assembly 

system like salt gradient dialysis. In this system histones and DNA are mixed at high salt 

concentration (2 M NaCl) that prevents histone-DNA interactions. The salt concentration is 

then slowly reduced allowing first histone H3 and H4 to bind DNA between 1.2 M NaCl and 

0.85 M NaCl imposing a nucleosome like structure to which the histone H2A and H2B are 

bound at lower salt concentrations (Wilhelm et al., 1978). Further reduction of the salt 

concentration to physiological levels (100-150 mM NaCl) or below (50 mM) "freezes in" the 

resulting chromatin state. Generation of chromatin by this protocol has the advantage of 

working with purified components, i.e., only DNA and histones, and was previously been 

widely used in order to study the influence of the DNA sequence on the formation of a 

nucleosome (Widom, 1998 and references herein).  
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If strong positioning information were present in the PHO8 promoter sequence it was possible 

that the proper nucleosome positioning at the PHO8 promoter could be generated in such an 

un-catalyzed system. At the PHO5 promoter nucleosome positioning might be less defined 

through the DNA sequence alone and would therefore have to rely on factors from the yeast 

extract to properly position the nucleosomes. To test this hypothesis the PHO5 and PHO8 

DNA constructs were assembled into chromatin by salt gradient dialysis whereby several 

ratios of histones to DNA were tested. Nucleosomal arrays as assayed by MNase digestion 

were generated at various different ratios of histones to DNA in the range between 0.9 to 1.1 

(Figure 9A). At the highest ratio tested (1.1) the lowest amount of sub-nucleosomal DNA, an 

indicator of incomplete chromatin assembly, was visible on the gel (Figure 9A), arguing for a 

more complete assembly under these conditions. At histone to DNA ratios below 0.9 

extensive nucleosomal arrays were not generated and at ratios higher than 1.1 the generated 

chromatin began to aggregate during the assembly reaction, probably due to the high amount 

of histones (data not shown).  
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Figure 9. Chromatin assembly by salt gradient dialysis does not generate the proper chromatin 
structure at the PHO5 or the PHO8 promoter. (A) Chromatin assembled by salt gradient dialysis 
at histone to DNA mass ratios of 0.9, 1.0 and 1.1 (as indicated) was subjected to MNase digestion 
(ramps on top of lanes represent increasing MNase digestion times) and visualized by ethidium 
bromide staining. Lane M shows a 123 bp ladder (Gibco). The same chromatin preparations as in 
(A) were subjected to DNaseI mapping and probed for the PHO5 (B) or the PHO8 (C) promoter 
before and after a 6 hour incubation at 40°C (as indicated). DNaseI mapping of free DNA (lanes 3 
and 4) as well as chromatin assembled with yeast extract made from a pho4, pho2, cpf1 triple mutant 
strain (lanes 1 and 2) is shown for comparison. Ramps on top of the lanes 1 to 4 in panel (B) and (C) 
denote increasing DNaseI concentrations. Marker bands (lanes M), schematics and asterisks are the 
same as in Figure 7. 
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The same chromatin shown in Figure 9A was subjected to DNaseI mapping and probed for 

both the PHO5 and the PHO8 promoter regions subsequently on the same blot membrane 

(Figure 9B and C). The resulting nucleosomal patterns were distinct patterns and not similar 

to the patterns of free DNA but they were also clearly different from the patterns obtained 

with the yeast extract assembly system. In particular, the hypersensitive site in the PHO5 

promoter between nucleosomes -2 and -3 was strongly protected in the chromatin assembled 

by salt dialysis, and the region of nucleosome -3 contained a strong hypersensitive site. 

Furthermore, a band at the position of the ClaI marker band was visible both in the patterns of 

free DNA and in the salt dialysis chromatin. This region is protected by nucleosome -2 in the 

native yeast pattern (Figure 9B; compare lanes 1 and 2 with lanes 3 to 10). Notably, however, 

the promoter nucleosome -1 seemed to have been formed properly in the chromatin assembled 

by salt dialysis suggesting that a strong nucleosome-positioning DNA sequence may be 

involved in determining the position of this nucleosome. At the PHO8 locus the 

hypersensitive site at UASp1 that is clearly visible in the yeast pattern was strongly protected 

in the chromatin assembled by salt dialysis, while the hypersensitive sites at the position of 

UASp2, at the position of the HindIII marker band, and at the beginning of the open reading 

frame were present in both patterns of free DNA and in chromatin generated by salt dialysis 

(Figure 9; compare lanes 1 and 2 with 5 to 10).  

It was shown repeatedly that the assembly of chromatin by salt dialysis need not result in 

nucleosomes occupying the energetically most favorable positions right away. Many 

protocols therefore apply an additional heat shifting step at 37 to 55°C in order to allow the 

nucleosomes to adopt their preferred positions (Flaus and Richmond, 1998; Luger et al., 1999; 

Meersseman et al., 1992; Pennings et al., 1991). To test whether this might change the 

patterns of the PHO5 and PHO8 promoter after assembly by salt dialysis, chromatin was 

generated by salt dialysis and then incubated up to 6 hours at 40°C. This did, however, not 

lead to a significant change in the chromatin structure of either promoter (Figure 9B and C, 

compare lanes 5 to 7 with 8 to 10). Thus, the DNA sequence alone, as read by the formation 

of histone-DNA interactions after salt gradient dialysis assembly is not sufficient to properly 

position the nucleosomes at either promoter.  
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2.3. An in vitro assembly system based on Drosophila embryo extract does not generate 

the proper chromatin structure at the PHO5 and PHO8 promoters 

The fact that the proper chromatin pattern at either the PHO5 or the PHO8 promoter was not 

generated by salt dialysis alone does not exclude that the positioning information is in fact 

present in the DNA sequence at physiological conditions, but that it takes an ATP-dependent 

chromatin remodeling machine to move the nucleosomes into their proper positions. In 

accordance with this theory, the yeast whole-cell extract, which contains such machines, is 

been shown to be sufficient for proper nucleosome positioning at the PHO5 promoter (Figure 

6) (Korber and Hörz, 2004). Maybe one or several other remodeling machines (different from 

the ones present in the yeast extract) might also be able to position the nucleosomes at the 

PHO5 and PHO8 promoters. To test this hypothesis the well-established cell-free chromatin 

reconstitution system based on Drosophila embryo extracts was employed. These extracts are 

rich in histones and chromatin-remodeling activities (Becker et al., 1994; Becker and Wu, 

1992; Kamakaka et al., 1993) (Figure 10). Using this system, Drosophila embryo extracts 

were incubated with the yeast DNA templates and an energy regenerating system for up to six 

hours. In agreement with previously published data (Becker et al., 1994; Becker and Wu, 

1992), arrays of regularly spaced nucleosomes were assembled on both DNA templates 

(Figure 10B and data not shown). However, mapping the positions of the nucleosomes on 

both promoters showed that this in vitro system could not generate the native yeast chromatin 

patterns. Instead, the resulting nucleosome pattern was very similar to the pattern of free DNA 

(Figure 10C and D, compare lanes 1 and 2 with 3 and 4). Again, the interference of a 

fortuitous E box binding protein from the Drosophila extract was controlled for. Mutating the 

UASp sites at either promoter did not alleviate the inability of the Drosophila extract to 

generate the characteristic yeast pattern (data not shown). Notably, in all three chromatin 

assembly systems histones from Drosophila embryos were used, and therefore differences in 

the generated nucleosomal patterns cannot be due to the source of histones.  
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Figure 10. A Drosophila embryo extract assembly system cannot position the nucleosomes at 
the PHO5 and PHO8 promoter. (A) Scheme of the assembly reaction. Chromatin was generated by 
incubating Drosophila embryo extract (Drex) with DNA and an energy regenerating system for 6 
hours at 26°C. The chromatin was analyzed by MNase digestion and DNaseI mapping (DNaseI) 
either directly or after addition of yeast extract (Yex), a fresh energy mix and incubation for up to 6 
more hours at 30°C. (B) The chromatin generated with the Drosophila embryo extract system was 
subjected to MNase digestion and visualized by ethidium bromide staining. Ramps on top of lanes 
represent increasing amounts of digestion time and lane M shows a 123 bp ladder (Gibco). (C and D) 
DNaseI mapping of free DNA (lanes 1 and 2) or chromatin prior (lanes 3 and 4) or after (lanes 5 to 
7) addition of yeast extract and further incubation for 3 hours, probed for the PHO5 (B) or the PHO8 
(C) promoter. Schematics, asterisks and marker lanes (M) are as in Figure 7. Ramps on top of the 
lanes in panel (B) and (C) denote increasing DNaseI concentrations. 
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2.4. 

2.5. 

These results can be explained in two ways: (i) the underlying DNA sequence contains 

sufficient positioning information, but as Drosophila embryo extract is rich in chromatin 

remodeling activities these machines override these specific determinants responsible for 

nucleosome positioning and thereby randomize the pattern, or (ii) neither the underlying DNA 

sequence nor the Drosophila embryo extract contain sufficient positioning information to 

position the PHO5 and PHO8 promoter nucleosomes. 

The addition of yeast extract to chromatin preassembled by Drosophila extract can 

shift the nucleosomes to the proper positions at both the PHO5 and PHO8 

promoter 

To address the question if the lack of proper nucleosome positioning in Drosophila extract-

assembled chromatin could be compensated by the yeast extract, the PHO5 and PHO8 

plasmids were first assembled into chromatin using the Drosophila extract system and then 

yeast extract was added followed by an incubation for up to six more hours. Strikingly, this 

experimental setup indeed led to the generation of proper nucleosome patterns at both 

promoters (Figure 10C and D, lanes 5 to 7). Interestingly, nucleosome repositioning at both 

promoters by addition of the yeast extract was completed after just 30 min, and the chromatin 

retained the same pattern for up to six more hours of incubation (data not shown). These 

results show that the Drosophila embryo extract can assemble chromatin as assayed by the 

formation of regularly spaced nucleosomes but it cannot position the nucleosomes correctly 

on a yeast DNA template because it lacks the necessary nucleosome positioning information. 

The addition of yeast extract to chromatin preassembled by salt gradient dialysis 

also repositions nucleosomes to the native chromatin patterns 

Apparently, yeast extract can shift nucleosomes on a chromatin template pre-assembled by 

Drosophila extract into the native nucleosome pattern much more rapidly compared to a de 

novo assembly. This could be due to a specific property of the Drosophila extract that 

generates an ideal template for the yeast extract. Alternatively, the fact that the nucleosomes 

were already loaded on the DNA could greatly enhance the speed of nucleosome positioning 

in the yeast extract. In order to differentiate between these two possibilities, re-positioning of 

the promoter nucleosomes to the native PHO5 and PHO8 patterns by addition of yeast extract 

to chromatin pre-assembled by salt gradient dialysis was tested next. In this system only 

purified components are used and therefore an initial effect on nucleosome loading and 
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subsequent nucleosome positioning by cellular factors besides the yeast extract could be 

excluded.  

Indeed, a clear shift from the pattern characteristic of the chromatin generated by salt dialysis 

to the proper PHO5 and PHO8 promoter chromatin structure was seen for both promoters 

(Figure 11B and C, lanes 1 to 4). This shift in positioning was energy dependent as no change 

was seen in the absence of ATP (Figure 11B and C, lanes 6). Again, as opposed to de novo 

chromatin assemblies where proper nucleosome positioning at the PHO5 promoter was not 

observed until after three to four hours, the kinetics of the pattern switch were very rapid, and 

were complete within 30 min at both promoters. No major changes in the pattern occurred 

after incubation for up to 6 hours (data not shown). Thus, chromatin assembly and 

nucleosome positioning in this in vitro system can be mechanistically separated into two 

processes: chromatin assembly being a very slow process taking three to four hours, whereas 

nucleosome positioning is very rapid, accomplished within 30 min. Furthermore, shifting of 

the nucleosomes to the proper chromatin structure at the PHO5 promoter using pre-assembled 

chromatin templates proved to be much more lenient to both buffer conditions and extract 

concentrations, as opposed to de novo assemblies of the PHO5 promoter which required a 

careful titration of histones and yeast extract and was very sensitive to buffer conditions. 

Interestingly, titrating in the amount of yeast extract needed to switch the pattern showed that 

only 1:80 of the amount that is normally needed for a de novo yeast extract assembly was able 

to switch the pattern at the PHO8 promoter on a pre-assembled chromatin template whereas 

for PHO5 promoter dilutions lower than two-fold failed to generate the pattern (data not 

shown). 
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Figure 11. Nucleosomes preassembled by salt gradient dialysis become rapidly and properly 
repositioned after the addition of yeast extract. (A) Reaction scheme. Chromatin was generated 
by mixing DNA and histone octamers at a mass ratio of 1.1 and over night (o/n) salt gradient dialysis 
from 2M to 50mM NaCl. The resulting chromatin was analyzed by DNaseI mapping (DNaseI) either 
immediately afterwards or following an additional incubation step with yeast extract (Yex) with or 
without an energy regenerating system (energy) for up to 6 hours at 30°C. (B) and (C) DNaseI 
mapping of chromatin after addition of yeast extract for the indicated times in the presence (lanes 1 
to 5) or for 3 hours in the absence of energy (lane 6) as probed for the PHO5 (B) or the PHO8 (C) 
promoter. Marker lanes (M), schematics and asterisks are the same as in Figure 7. 
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2.6. Swi/Snf, Isw1, Isw2 or Chd1 are not required for nucleosome positioning at the 

PHO5 and PHO8 promoters 

Taking advantage of the fact that chromatin assembly and nucleosome positioning can be 

functionally dissected, the latter could now be investigated more carefully. First, the 

requirement for ATP-dependent chromatin remodeling machines for correct nucleosome 

positioning was addressed. Extracts from yeast strains deleted in ATPase subunits of the 

chromatin remodeling complexes Swi/Snf, Isw1, Isw2 and Chd1 were prepared. In de novo 

chromatin assemblies the isw1, isw2 double mutant and the isw1, isw2, chd1 triple knockout 

extracts could not assist the generation of extensive nucleosomal arrays and these extracts was 

therefore not able to generate the proper PHO5 chromatin structure in de novo assemblies 

(data not shown and unpublished data from the lab). However, the snf2 extract, the isw1, isw2 

double mutant extract and the isw1, isw2, chd1 tripple mutant extract were able to properly 

position the nucleosomes at the PHO5 and PHO8 promoters in nucleosome shifting reactions 

(Figure 12A and B, lanes 1 to 4). This suggests that the observed deficiency in generation of 

extensive nucleosomal arrays in the double and triple mutant occurs at the level of chromatin 

assembly and not at nucleosome positioning. Thus, at least Isw1 and Isw2 are essential for in 

vitro chromatin assembly, however neither Swi/Snf, Isw1, Isw2 nor Chd1 are strictly required 

for nucleosome positioning at the PHO5 and PHO8 promoters. 
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Figure 12. The absence of various Snf2-type ATPases has no effect on the proper repositioning 
of chromatin preassembled by salt gradient analysis. The analogous experiment to the one in 
Figure 10 was done by adding yeast extracts from strains deleted for the indicated gene(s) to salt 
dialysis assembled chromatin followed by further incubation for 2 hours in the presence of energy 
and subsequent DNaseI mapping and probing for the PHO5 (A) or the PHO8 (B) promoter. 
Schematics, asterisks and marker lanes are the same as in Figure 7. Ramps on top of the lanes 
indicate increasing DNaseI concentrations. 
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2.7. 

                                                

Treatment with high concentrations of RNaseA abolishes the nucleosome 

positioning activity of a whole cell yeast extract 

RNaseA treatment of a Drosophila embryo extract prior to a de novo chromatin assembly 

completely abrogates its ability to generate nucleosomal arrays (data not shown and Gernot 

Längst, personal communication). The function of RNA in in vitro chromatin assembly may 

be a histone chaperone function similar to that of Nap1, which binds to the free histones 

thereby preventing protein aggregation (Lusser and Kadonaga, 2004 and references herein). 

Therefore, it is not possible to test whether RNA could play a role in nucleosome positioning 

at the PHO5 and PHO8 promoter in de novo chromatin assemblies. However, using pre-

assembled chromatin as a substrate in a nucleosome shifting reaction allowed testing of a 

possible involvement of RNA in nucleosome positioning. Prior to the nucleosome shifting 

reaction yeast extract was digested with different concentrations of RNaseA for one hour. 

Treatment of the extract with low amounts of RNaseA did not have any effect on nucleosome 

positioning at either promoter (Figure 13A and B, lanes 3 to 14), but nucleosome positioning 

was lost at both promoters after treatment of the extract with high concentrations of RNaseA 

(48 mM3) (Figure 13A and B, lanes 1 and 2). The resulting DNaseI patterns looked very 

similar to that of the salt dialyzed chromatin (compare Figure 9B and C, lanes 5-10 with 

Figure 13A and B, lanes 1 and 2). Extract treated with high amounts of RNaseA (48 and 4.8 

mM) were also tested in de novo assemblies. In these extracts no RNA was visible by 

Ethidium Bromide staining and these extracts could not generate extensive nucleosomal 

arrays (data not shown)  

 

 

3 48 μM Rnasee corresponds to approximately 50 μg of protein. In comparison, in a nuclesome shifting reaction 
approximately 300 μg of protein are added with the extract.  
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Figure 13. Treatment with high concentrations of RNaseA abolishes the nucleosome 
positioning activity in a whole cell yeast extract. Whole cell extract was treated with the indicated 
concentrations of RNaseA for one hour and then added to pre-assembled chromatin. After 2 hour 
incubation in the presence of energy DNaseI mapping was performed and blots were probed for the 
PHO5 (A) or the PHO8 (B) promoter. Schematics, asterisks and marker lanes are the same as in 
Figure 7. Ramps on top of the lanes indicate increasing DNaseI concentrations. 

2.8. RNA Polymerase II transcription is not required for nucleosome positioning  

The PHO5 promoter has baseline activity even under repressing conditions in high phosphate 

medium so that low levels of mRNA and acid phosphatase activity can still be measured 

(Gregory et al., 1998). Furthermore, under repressing conditions the accessibility of the ClaI 

site of the PHO5 promoter is around 10-20 % in a wild type strain (Almer et al., 1986). 

It was therefore considered that RNA-Polymerase II (Pol II) transcription may be a 

prerequisite for nucleosome positioning. To test this possibility, nucleosome positioning at the 

PHO5 and PHO8 promoters was analyzed in a strain with a temperature-sensitive mutation of 
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the largest subunit of the RNA Polymerase II, Rpb1-1 (Nonet et al., 1987). When the 

temperature is increased to 36ºC for two to four hours in this strain, a complete block in Pol II 

transcription occurs whereby the catalytic activity of the enzyme is impaired but the integrity 

of the PolII complex is not compromised (Nonet et al., 1987). Furthermore, yeast whole cell 

extracts harvested from this strain grown at the permissive temperature (24ºC) have no 

detectable in vitro transcription activity (Nonet et al., 1987, and Jesper Svejstrup, personal 

communication).  

Whole cell extract from a temperature sensitive rpb1-1 strain grown at the permissive 

temperature were prepared and tested in a nucleosome shifting reaction. This extract could 

indeed properly position the nucleosomes at the PHO5 and PHO8 promoters (Figure 14A and 

B, lanes 3 and 4) in an energy-dependent way (compare Figure 9B and C, lanes 5-10 with 

Figure 14A and B, lanes 5 and 6).  

 

Figure 14. Whole cell extract from a temperature sensitive rpb1-1 strain can position the 
nucleosomes at the PHO5 and PHO8 promoters. Whole cell extract, prepared from a temperature 
sensitive rpb1-1 strain grown at the permissive temperature was added to chromatin assembled by 
salt gradient dialysis with and without energy for two hours and subsequently DNaseI mapping was 
performed and visualized by probing for the PHO5 (A) and the PHO8 (B) promoter. Schematics, 
asterisks and marker lanes are the same as in Figure 7. Ramps on top of the lanes indicate increasing 
DNaseI concentrations. 

In parallel to the in vitro approach, nucleosome positioning was also analyzed in vivo in the 

rpb1-1 temperature-sensitive strain. Nuclei were prepared from the temperature sensitive 

rpb1-1 strain grown at the permissive (24°C) or after a shift to the restrictive temperature 

(36°C) for 12-16 hours. To rule out any effects on chromatin structure caused solely by the 

elevated temperature, nuclei from the isogenic wild type strain were prepared in parallel. In 

the wild type strain the chromatin structure of both promoters appeared less distinct upon 

incubation at 36°C. This was apparent both from the DNaseI indirect end labeling experiment 
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(Figure 15A and C, compare lanes 1 and 2 with 3 and 4) and the restriction enzyme 

accessibility assay (Figure 15B and D). In particular the ClaI site of the PHO5 promoter, 

which is normally protected by nucleosome -2, became more accessible at elevated 

temperatures (Figure 15B), but also both the StuI and NdeI site of the PHO8 promoter (Figure 

15D) were more accessible to restriction enzymes under these conditions arguing that high 

temperature has a negative effect on the chromatin structure in vivo. In the temperature 

sensitive rpb1-1 mutant the DNaseI patterns at both promoters also became less distinct when 

the cultures were grown at the restrictive temperature (Figure 15A and C, compare lanes 5 

and 6 with 7 and 8). However, as judged both by DNaseI indirect end labeling (Figure 15A 

and C) and restriction enzyme accessibility (Figure 15B and D) this effect was not as severe 

as in the wild type strain. Interestingly, the ClaI site of the PHO5 promoter became less 

accessible when the cells were grown at the restrictive temperature (Figure 15B) However, 

this could also be explained by the lack of basal level transcription. At the PHO8 promoter the 

accessibility of both the StuI and NdeI site did not change significantly (Figure 15D). These 

results clearly show that PolII transcription per se is not a determinant of nucleosome 

positioning at the PHO5 and PHO8 promoters. 
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Figure 15. Inhibition of RNA PolII transcription in vivo has no effect on nucleosome 
positioning at the PHO5 and PHO8 promoters. Yeast nuclei prepared from a temperature 
sensitive rpb1-1 strain and from its wild type strain grown at the permissive (24°C) and restrictive 
(36°C) temperature were subjected to DNaseI mapping and restriction enzyme accessibility. (A) and 
(B) Schematics, asterisks and marker lanes are the same as in Figure 2 and ramps on top of the lanes 
indicate increasing DNaseI concentrations. (C) Nuclei were digested with two concentrations of four 
fold difference of BamHI, ClaI and BstEII, subsequently the DNA was prepared and digested with 
HaeIII and probed for the PHO5 promoter. The accessibility of each restriction enzyme was 
normalized to the accessibility of the ClaI site of the PHO3 gene (data not shown) and is shown as 
percentage of the total signal. (D) Same as C except that nuclei were digested with StuI and NdeI, 
subsequently the DNA was prepared and digested with BglI/EcoRV and probed for the PHO8 
promoter.  
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3.1. 

3. Stability of positioned nucleosomes 
Proper nucleosome positioning at the PHO5 promoter is dependent on higher 

degrees of chromatin assembly than at the PHO8 promoter 

In a de novo assembly reaction nucleosomes at the PHO8 promoter were positioned much 

more rapidly than at the PHO5 promoter (Figure 7), however, in a nucleosome shifting 

reaction no difference in nucleosome positioning kinetics was observed after 30 minutes 

(Figure 11). This suggests that there is no difference between the two promoters when the 

template is already fully assembled. If this was true it would suggest that nucleosome 

positioning at the PHO5 promoter can only occur when an extensive nucleosomal array is 

present whereas positioning of the nucleosomes at PHO8 promoter is largely independent on 

the nucleosome occupancy of neighboring sequences.  

In accordance with this hypothesis, proper nucleosome positioning at the PHO5 promoter was 

sometimes impaired when using chromatin pre-assembled by Drosophila embryo extract in a 

nucleosome shifting reaction. Such an assembly can lead to more or less extensive 

nucleosome arrays depending on the quality of the extract and the buffer conditions. The 

repositioning of the pattern at the PHO8 promoter to yield the proper chromatin structure by 

addition of yeast extract was largely independent of the extent of nucleosomal arrays as 

preassembled by the Drosophila embryo extract. However, repositioning at the PHO5 

promoter worked properly only if extensive nucleosomal arrays were pre-assembled by the 

Drosophila embryo extract (data not shown). 

This could however be also be a result of differences in nucleosome affinities between the 

PHO5 and PHO8 promoters. If the PHO8 promoter had a higher affinity for nucleosomes 

than the PHO5 promoter the PHO8 promoter region may become more fully assembled under 

conditions of limiting histones (low histone to-DNA ratios) whereas the PHO5 promoter 

region would not. To test this directly, chromatin templates with different degrees of 

nucleosomes assembly were generated by varying the histone-to-DNA mass ratio in the salt 

gradient dialysis assembly (0.6 to 1.4). Using this strategy different assembly states were 

purposely generated. The plasmids harbouring the PHO5 and PHO8 loci were present at 

equimolar ratios in all reactions. Following assembly by salt gradient dialysis the different 

reactions were pooled and the differently chromatinized DNA molecules were separated 

according to their sedimentation velocity, i.e. assembly state on a sucrose gradient by 

ultracentrifugation.  
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First, the assembly state of the chromatin in each fraction for each promoter plasmids were 

determined by limited MNase digestion followed by quantification of the signals remaining 

after digestion (Figure 16A). DNA that is not assembled into chromatin is readily digested by 

MNase whereas DNA assembled into chromatin is resistant to MNase digestion. The ratios 

between nucleosomal and non-nucleosomal DNA can therefore serve as a measure for the 

assembly state of the DNA. The signals remaining after the MNase digest were determined 

with specific probes of the PHO5 (data not shown) and PHO8 promoter regions (Figure 16A), 

respectively, and is therefore a direct measure of the assembly states of the promoter regions. 

The ratios between nucleosomal and non-nucleosomal DNA for the PHO5 and the PHO8 

promoter region were similar in each fraction (data not shown) indicating that both promoter 

regions are assembled to the same degree.  

Next, the relative amount of chromatinized PHO5 and PHO8 plasmids in each fraction 

(determined by the undigested DNA) were quantified using a probe recognizing the PHO5 

and the PHO8 promoter region of the plasmid, respectively, and compared to the total amount 

of chromatinized DNA loaded on the gradient. As the chromatin sediments according to its 

nucleosome density this is a measurement of the assembly state of each plasmid. These 

relative amounts were similar for the PHO5 and the PHO8 plasmids (Figure 16B) indicating 

that both plasmid are assembled into chromatin equally efficient. Taken together, it can 

therefore be excluded that the PHO8 plasmid locally at the promoter region has a higher 

nucleosome density than the PHO5 promoter region under limiting histone conditions.  
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Figure 16. The PHO8 and PHO5 promoter regions have the same affinity for nucleosomes. 50 
μg of chromatin assembled by salt gradient dialysis with different histone-to-DNA mass ratios (0.6 
to 1.4) were loaded onto a 10-50% sucrose gradient. The chromatin in each fraction was analyzed by 
limited MNase digestion and probed for the PHO8 promoter (A). Equivalent results as in panel (A) 
were obtained by using a PHO5 promoter probe (not shown). One sample from each fraction was 
left un-digested (marked -). As loading reference 10 ng of each construct was added on each gel. 
Ramps on top of the lanes indicate increasing digestion times. (B) The amount of DNA in each 
fraction was estimated comparing the signal of the undigested sample (-) with the signal 
corresponding to 10 ng DNA for both the PHO5 (data not shown) and the PHO8 promoter (A).The 
percentage of total DNA loaded on the gradient (50 μg) was calculated and plotted against fraction 
number.  
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As chromatin assembly under limited amounts of histones leads to less assembled chromatin 

templates and as both promoter regions are assembled to the same degree under such 

conditions it was possible to directly test if nucleosome at the PHO8 promoter could be 

positioned at lower nucleosome densities that the PHO5 promoter.  

Underassembled chromatin was generated by salt gradient dialysis with limiting amounts of 

histones (0.4 to 0.8) and both plasmids at equimolar ratios. Again the different chromatin 

preparations were tested by limited MNase digestion to determine the degree of assembly. In 

accordance with the results in Figure 16, the ratios between nucleosomal and total DNA were 

the same for both the PHO5 and PHO8 promoters (Figure 17A and data not shown). Next, 

this chromatin was shifted by addition of whole cell yeast extract. In all under-assembled 

chromatin preparations, nucleosomes at the PHO5 promoter did not become properly 

positioned (Figure 17B, lanes 1 to 8), whereas at the PHO8 promoter the correct positioning 

of the nucleosomes was already discernible at low histone-to-DNA mass ratios (Figure 17C, 

lanes 1 to 4) and became more distinctive with increasing mass ratios (Figure 17C, lanes 5 to 

8). Thus, the shift to proper nucleosome positioning at the PHO5 promoter requires higher 

degrees of chromatin assembly than at the PHO8 promoter. These results, together with the 

results in Figure 7 (nucleosome positioning kinetics in de novo assemblies), suggest that the 

PHO8 promoter has stronger nucleosome positioning power than the PHO5 promoter, i.e. the 

properly positioned nucleosomes at the PHO8 promoter have higher relative stability 

compared to those of the PHO5 promoter.   
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Figure 17. The PHO8 promoter has higher nucleosome positioning power than the PHO5 
promoter. (A) Chromatin was generated by salt gradient dialysis with increasing histone to DNA 
mass ratios. The ratio of DNA protected from limited MNase digestion versus total DNA, reflecting 
the nucleosome density after chromatin assembly, was determined by specific probing for both the 
PHO5 and the PHO8 promoters (data not shown). The quotient of this ratio for the PHO8 to that for 
the PHO5 promoter is given for the histone octamer to DNA mass ratios used in the respective salt 
gradient dialysis assembly reaction. (B and C) The same chromatin preparations as in (A) were 
mixed with yeast extract as in Fig. 5, incubated for 90 min at 30°C and then subjected to DNaseI 
mapping and probed for the PHO5 (B) or the PHO8 (C) promoter. Schematics, asterisks and marker 
lanes are the same as in Figure 7. Ramps on top of the lanes indicate increasing DNaseI 
concentrations. 
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3.2. Nucleosomes at the PHO8 promoter are more resistant to thermally induced loss of 

positioning than nucleosomes at the PHO5 promoter 

The studies on relative stability of nucleosomes at the PHO5 and PHO8 promoter were 

extended to chromatin assembled in vivo . Yeast nuclei were prepared and used as an in vitro 

substrate for the reverse process of nucleosome assembly, i.e., the loss of positioned 

nucleosome structure.  

Nucleosomes exhibit temperature-dependent mobility on DNA (Flaus and Richmond, 1998; 

Luger and Richmond, 1998; Meersseman et al., 1992; Pennings et al., 1991). By incubating 

nuclei at elevated temperatures loss of nucleosome positioning can be accomplished. Changes 

in chromatin structure were assayed by DNase I mapping at three time points during 

incubation at 55°C (Figure 18A and B). At the PHO5 promoter, the nucleosome pattern was 

largely lost after 20 min (Figure 18A, lanes 5 and 6) whereas the nucleosomes at the PHO8 

promoter were still properly positioned at this time point (Figure 18B, lanes 5 and 6). After 1 

hour the pattern was lost at both promoters (Figure 18A and B, lanes 7 and 8). These results 

show that the nucleosomes at the PHO8 promoter have a higher kinetic stability towards 

thermally induced loss of nucleosome positioning. 
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Figure 18. Using in vivo assembled chromatin, nucleosomes at the PHO8 promoter are more 
resistant to temperature induced loss of nucleosome positioning than those at the PHO5 
promoter. (A) and (B) Yeast nuclei were incubated at 55°C for the indicated times and subjected to 
DNaseI mapping and probed for the PHO5 (A) or the PHO8 (B) promoter. Schematics and asterisks 
are the same as in Figure 7, ramps on top of the lanes indicate increasing DNaseI concentrations. 
The bands in the marker lanes (M) are generated by restriction digests of genomic DNA and 
correspond to the restriction sites indicated on the gel. Additional bands outside the region of interest 
stem from the digestion of the PHO5 locus with BglII used as secondary digest for PHO8 (A) and 
from the digestion of the PHO8 locus with ApaI used as secondary digest for PHO5 (B).  
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4.1. 

4. The influence of UASp elements on co-factor requirements for 

chromatin opening 
Co-factor requirements are not determined by position or strength of UASp sites 

Chromatin remodeling at the PHO8 promoter proceeds through a dedicated pathway, 

stringently requiring the cofactors Snf2 and Gcn5 (Gregory et al., 1999). These cofactors are 

also involved in chromatin remodeling at the PHO5 promoter (Barbaric et al., 2001; Reinke 

and Hörz, 2003). However, the absence of either factor leads only to a kinetic delay in 

opening and after prolonged induction chromatin remodeling goes to completion. This argues 

for redundant pathways of chromatin remodeling at the PHO5 promoter. Here, the UASp2 

site is located within a nucleosome. This is a strong binding site for the transcriptional 

activator Pho4. The UASp1 site, which is a weak binding site for Pho4, is located in a linker 

region (Svaren and Hörz, 1997; Barbaric et al., 1998). In contrast, at the PHO8 promoter both 

UASp sites are present in linker regions and again only UASp2 is a strong binding site for 

Pho4.  

The possibility existed that the presence of an intra-nucleosomal binding site in the PHO5 

promoter makes this promoter more amenable to chromatin remodeling because the binding 

of the transcriptional activator Pho4 would compete with the binding of a nucleosome. If that 

was the case, mutation of the intra-nucleosomal binding site should make the promoter more 

dependent on co-factors such as Snf2 and Gcn5. To test this hypothesis, the activity of a 

PHO5 promoter construct without the intra-nucleosomal UASp2 site was measured in wild 

type, snf2 and gcn5 strain backgrounds. However, this construct was never induced to normal 

wild type levels even when Pho4 was over-expressed (data not shown) as this construct only 

contains the weak UASp1 site. To circumvent this problem the weak UASp1 site in the linker 

region of the PHO5 promoter was exchanged with the strong UASp2 site of the PHO5 

promoter. In order to have a more direct comparison with the PHO8 promoter the similarly 

strong UASp site of the PHO8 promoter was also introduced. In this way two constructs were 

created without an intra-nucleosomal binding site and with a strong UASp2 element of the 

PHO5 or PHO8 promoter located in the linker region (Figure 19A). The activity of these 

constructs was significantly induced in a wild type background however, not as highly as a 

wild type construct. Similarly, in a gcn5 background phosphate starvation resulted in low but 

significant levels induction of the PHO5 gene. Interestingly induction of both constructs in a 

snf2 background was similar to that of a wild type construct (Figure 19B). 
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Figure 19. Position and strength of the UASp sites does not influence cofactor requirements. 
(A) schematics of constructs transformed into pho5, pho5,snf2 and pho5,gcn5 strain backgrounds. 
(B) Acid phosphatase activity of the transformed constructs was measured in the aforementioned 
strains in logarithmic growth in phosphate containing and after over night induction in phosphate-
free medium. Error bars indicate standard deviations of four independent experiments. 

The surprisingly strong activation of both constructs in a snf2 strain background could be a 

consequence of an atypically closed promoter structure making it easier to remodel. It was 

therefore important to establish whether both constructs were assembled into the characteristic 

PHO5 promoter chromatin structure under repressing conditions in vivo. Therefore nuclei 
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were prepared from this strain grown in phosphate containing medium, and the chromatin 

structure was mapped with DNaseI indirect end labeling and restriction enzyme accessibility. 

Due to cross-hybridization of the plasmid locus with the partially deleted chromosomal locus 

it was not possible to use the probe normally used to map the chromatin structure at the PHO5 

promoter. Instead, a probe corresponding to the BamHI-ClaI fragment of the promoter was 

used. This probe has the disadvantage that only nucleosome -1 and -2 is visible on the DNaseI 

blot, however, using BamHI in accessibility assays the position of nucleosome -3 can also be 

determined. Both constructs assembled into the characteristic chromatin structure under 

repressive conditions (Figure 20A and B). Thus, the full induction of PHO5 in a snf2 strain 

background is not due to a difference in chromatin structure of the closed state.  

Taken together, these results indicate for one that although the full induction is not achieved 

in a wild type and gcn5 strain background the presence of an intra-nucleosomal binding site 

does not render the PHO5 promoter more dependent on co-factors for chromatin remodeling. 

Second, the difference in strength of Pho4 binding between the PHO5 and PHO8 promoter 

does not account for the difference in co-factor requirements.  
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Figure 20. The PHO5 promoter constructs from fFigure 19 are assembled into the 
characteristic chromatin structure of the PHO5 promoter under repressing condition in a snf2 
strain background. Nuclei were prepared from a pho5, snf2 strain transformed with the promoter 
constructs from Figure 19A. (A) Chromatin was analyzed with DNaseI mapping (A) and restriction 
enzyme accessibility (B) and probed with a probe recognizing the BamHI-ClaI fragment of the 
PHO5 promoter. (A) Schematics, asterisks and marker lanes are the same as in Figure 2. Ramps on 
top of the lanes indicate increasing DNaseI concentrations. (B) Nuclei were digested with two 
concentrations with a four fold difference of BamHI, ClaI and BstEII, DNA was prepared and 
digested with HaeIII. The accessibility of each restriction enzyme is indicated as percentage of the 
total signal. 
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V. Discussion 
1. Differences between the PHO5 and PHO8 promoters  

Several differences in gene activity and chromatin regulation between the PHO5 and PHO8 

promoters are recognized, although both are regulated by the same transcriptional activator. 

For one, the difference in promoter strength resulting in 10-fold higher activity of the PHO5 

gene compared to the PHO8 gene (Oshima, 1997; Barbaric et al., 1992). Second, chromatin 

remodeling at the PHO5 promoter affects 4 nucleosomes (Almer et al., 1986), whereas only 

two nuclesomes are affected at the PHO8 promoter (Barbaric et al., 1992). Third, the PHO8 

promoter is dependent on SWI/SNF and Gcn5  for chromatin remodeling whereas the PHO5 

promoter is not (Barbaric et al., 2001; Gaudreau et al., 1997; Gregory et al., 1999).  

There have been several speculations about the underlying reasons for these differences. One 

attractive possibility is that differences inherent in the chromatin structures render one 

promoter more amenable for chromatin remodeling and chromatin opening than the other. 

According to this hypothesis, nucleosomes that are more stably associated with the underlying 

DNA will be more difficult to remodel and subsequently lost in trans than nucleosomes that 

are less stably associated with the underlying DNA. In the case of the PHO5 and PHO8 

promoters, nucleosomes at the PHO8 promoter are speculated to be more stable than 

nucleosomes at the PHO5 promoter. Another possibility is the position and/or strength of the 

UASp elements. In a promoter with an intra-nucleosomal UASp site the activator binding 

competes with the formation of a nucleosome. This may make one promoter easier to remodel 

than the other. In line with this, one strong UASp site at the PHO5 promoter is located within 

a nucleosome whereas the strong UASp site of the PHO8 promoter is located in a linker 

region. 

2. The PHO8 promoter has greater nucleosome positioning power, 

and properly positioned PHO8 promoter nucleosomes are more 

stable than their PHO5 counterparts. 

The hypothesis that the stability of nucleosomes is linked to their remodeling was inspired by 

results from studies of the PHO5 promoter. Insertion of a fragment from the African green 

monkey α-satellite DNA at the position of nucleosome -2 of the PHO5 promoter completely 

abolished inducibility of this promoter. In contrast, insertion of a pBR322 DNA segment at 

the same position of the PHO5 promoter had the opposite effect (Straka and Hörz, 1991). The 



V  Discussion 

 58

α-satellite DNA fragment was known to be a strong nucleosome positioning sequence (see 

introduction section 3 and Linxweiler and Hörz, 1985). It associates with histones in a highly 

specific manner to give a uniquely positioned nucleosome determined solely on the histone-

DNA interactions (Neubauer et al., 1986). Therefore, the quality of the histone-DNA 

interactions contributes to the regulation of the gene. These results were later backed up by 

studies of the PHO8 promoter (Münsterkötter et al., 2000). By replacing the UASp elements 

of the PHO8 promoter with those of the PHO5 promoter it was shown that the nature of the 

UASp elements does not account for the differences in inducibility between the PHO5 and 

PHO8 promoters. Rather, the difference in extent of remodeling and promoter strength 

between PHO5 and PHO8 relies on the presence of persistent nucleosomes at the PHO8 

promoter that are more resistant to chromatin remodeling (Münsterkötter et al., 2000). Thus, 

several results from studies of the PHO system point toward differences in inherent chromatin 

structures between the PHO5 and PHO8 promoters. However, as these results all rely on 

classical in vivo techniques it is difficult to directly address this hypothesis.  

As an alternative approach to the classical in vivo chromatin techniques an in vitro chromatin 

assembly system was recently established. This system was initially shown to properly 

positioning nucleosomes over the PHO5 promoter (Korber and Hörz, 2004). The advantages 

of such an approach are numerous as several parameters in the assembly reaction can be 

specifically controlled. Here, the in vitro assembly approach was successfully extended to the 

PHO8 promoter. As with the PHO5 promoter, this yeast extract system was capable of 

properly positioning the nucleosomes at the PHO8 promoter. Including both the PHO5 and 

the PHO8 promoter sequences in one and the same assembly reaction allowed to directly 

compare the assembly and positioning of nucleosomes at the two promoter regions under the 

same experimental conditions. Therefore, this method for the first time provided a tool to 

directly study differences in nucleosome stability between the PHO5 and the PHO8 promoter. 

The results presented in this work show that nucleosomes at the PHO8 promoter nucleosomes 

become positioned much more rapidly in a de novo in vitro assembly reaction than at the 

PHO5 promoter. Such a difference could result from a difference in nucleosome affinities. If 

the PHO8 promoter had a higher overall affinity for nucleosomes compared to the PHO5 

promoter, nucleosomal arrays could be present over the PHO8 promoter already at very early 

time points of assembly kinetics, whereas it would take longer to generate nucleosomal arrays 

over the PHO5 promoter. However, the kinetics of nucleosome assembly as assayed by 

MNase digestion where similar at the two promoter regions. Therefore both promoter regions 
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have the same overall assembly states during assembly kinetics. Hence, nucleosome 

positioning at the PHO8 promoter is truly generated at lower overall nucleosome densities 

than at the PHO5 promoter. This suggests that the properly positioned nucleosomes of the 

PHO8 have a higher stability than those of the PHO5 promoter. 

This concept relies on the following. As each significantly long stretch of DNA has a certain 

propensity to be assembled into a nucleosome, principally every base pair can serve as a 

starting point for a nucleosome position. Overlapping positions can not be occupied at the 

same time, resulting in a competition of positions along the DNA. As some nucleosome 

positions may be energetically more favorable than others, such positions will be occupied 

more often. If the energetic difference is high, this leads to more or less exclusively occupied 

major positions at so called strong nucleosome positioning sequences (see also Introduction 

section 3). According to this, sequences having lower or greater relative affinities for the 

histone octamer, that is lower or greater relative free energy for nucleosome formation, must 

create nucleosomes having correspondingly lower or greater relative equilibrium stabilities 

(Widom, 2001). As a consequence, the proper nucleosome positions at the PHO8 promoter 

have a higher stability relative to alternative positions in the same region than the proper 

positions at the PHO5 promoter have relative to alternative positions in that region. This 

relative stability of nucleosome positions is equivalent to the “nucleosome positioning power” 

of the corresponding DNA regions (Lowary and Widom, 1998). Importantly, this stability of 

nucleosomes is defined relative to other positions on the same sequencer. This type of 

stability should not be confused with the stability of positioned nucleosomes at the PHO8 

promoter relative to the stability of positioned nucleosomes at the PHO5 promoter. This 

stability comparison between nucleosomes at two different promoter regions is made on an 

absolute scale and referred to as “absolute stability”. If, at a DNA region of sufficient length, 

one nucleosome position exists that has a high absolute stability for a nucleosome this DNA 

region would accordingly have high nucleosome positioning power. However, importantly, 

absolute stability and positioning power need not correlate with each other. A DNA sequence 

of sufficient length may have a very high overall affinity for nucleosomes, i.e. this sequence 

confers high absolute stability for nucleosomes. However, several possible nucleosome 

positions on the same template may have very similar high stabilities. In such a case the 

nucleosome positioning power would be low. Nonetheless, it is reported for short in vitro 

selected DNA fragments that the overall affinity of a DNA sequence for a nucleosome 

correlates with the ability to position nucleosomes either rotationally or translationally 
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(Lowary and Widom, 1998). In the same sense, higher positioning power of the PHO8 

promoter also goes together with higher absolute stability as compared to the PHO5 promoter. 

These nucleosome stability arguments are supported by two results presented in this work. 

For one, nucleosomes at the PHO8 promoter became properly positioned even under 

conditions of limiting histone octamers whereas the proper positioning at the PHO5 promoter 

was not generated. Under such conditions, where low nucleosome densities are deliberately 

generated, there is competition of all possible nucleosome positions with each other for the 

formation of a nucleosome, and only those positions will be occupied that are significantly 

more stable than others. Therefore, the proper positions at the PHO8 promoter are more stable 

than all alternative positions in this region. Secondly, under the same conditions of limiting 

histone octamers the overall assembly states4 of the PHO5 and PHO8 promoter regions in the 

same assembly reaction were compared. As both plasmids were present at equimolar ratios, 

this directly assays the overall, or average, nucleosome affinity of both regions regardless of 

the particular positions of the nucleosomes. Sucrose gradient fractionation of a pool of 

chromatin assembled by salt gradient dialysis under differing histone to DNA ratios showed 

that both the chromatinized plasmids were distributed equally over the gradient. This indicates 

that chromatin assembly under limiting histone conditions results in similar assembly states at 

both promoters. Similarly, quantification of the amount of each plasmid resistant to MNase 

digestion present in one particular chromatin assembly reaction by salt gradient dialysis under 

a range of limiting histone conditions also showed that both plasmids were assembled to the 

same degree. Therefore, the average histone affinities for each promoter region is very similar 

and provide a common reference point for comparison of nucleosome stabilities: As the 

proper nucleosome positions at the PHO8 promoter are more stable than the average positions 

under the limiting conditions, whereas the proper positions at the PHO5 promoter are not, it 

can be concluded that the proper positions at the PHO8 promoter are more stable than the 

proper positions at the PHO5 promoter.  

 

 

4 Assembly states refers to the extent of nucleosomal arrays as monitored by MNase digestion.. 
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Importantly, higher stabilities of nucleosomes at the PHO8 promoter compared to those of the 

PHO5 promoter are not just a property of in vitro assembled chromatin. In in vivo assembled 

chromatin the nucleosomes at the PHO8 promoter resist thermally induced nucleosome 

sliding longer than the nucleosomes at the PHO5 promoter. As finally both chromatin patterns 

are lost, this assay measures the kinetic stability of the nucleosomes at the promoter regions. 

Thus, nucleosomes at the PHO8 promoter have a higher kinetic stability than nucleosomes at 

the PHO5 promoter.  

These conclusions are summarized in Figure 21. Positioned nucleosomes at the PHO8 

promoter have high intrinsic stability as they adopt their proper positions in spite of 

competition for the formation of a nucleosome with neighboring sequences on the same DNA 

template under conditions of limiting histones. During a de novo in vitro assembly when the 

nucleosome density increases and more and more of the neighboring sequences become 

occupied by nucleosomes, the proper positions persist through all assembly states. Thus, at 

the PHO8 promoter the nucleosomes are positioned under any condition and are therefore 

concluded to have a high intrinsic stability. Conversely, positioned nucleosomes at the PHO5 

promoter have low intrinsic stability since these positions are only achieved when competition 

from neighboring sequences is diminished by the increasing incorporation of more stable 

nucleosomes. Under conditions of limiting histones nucleosomes are first formed on preferred 

positions. With the exception of nucleosome -1 which may be properly positioned already 

during salt gradient dialysis, these are not the position of the native PHO5 promoter. 

Nucleosome -1 is therefore depicted as having a high intrinsic stability. As the alternative 

positions at the PHO5 promoter that are occupied first under limiting histone conditions are 

overridden by the positions of the native PHO5 promoter structure at high nucleosome 

densities they are assumed to be of medium intrinsic stability. 
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Figure 21. Nucleosomes at the PHO8 promoter have higher intrinsic stability than nucleosomes 
at the PHO5 promoter. Nucleosomes at the PHO8 promoter are positioned as soon as they are 
deposited onto the DNA in spite of competition from neighboring sequences. In contrast, 
nucleosomes at the PHO5 promoter are only positioned at high nucleosome densities. 
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Notably, affinities can only be directly compared under equilibrium conditions. It was 

previously shown, that the yeast in vitro chromatin assembly system generates an equilibrium 

of positions of the nucleosomes as prolonged incubations under conditions of sustained 

nucleosome mobility did not alter the final chromatin structure (Korber and Hörz, 2004). The 

same independence of the generated chromatin patterns on prolonged incubation times was 

confirmed for all assembly reactions presented in this work.  

3. The differences in nucleosome stability correlate with 

differential cofactor requirements for chromatin opening 

Chromatin remodeling at the PHO8 promoter proceeds through a dedicated pathway. In the 

absence of Swi/Snf, the chromatin structure at the PHO8 promoter is retained in its repressed 

state even under inducing conditions and the absence of Gcn5 permits only partial and 

localized perturbation of the chromatin immediately adjacent to the upstream transcription 

factor binding site (Gregory et al., 1999). Similarly, the chromatin transition upon induction 

of the PHO5 gene also seems to involve these cofactors as it is delayed in their absence 

(Barbaric et al., 2001 ; Neef and Kladde, 2003; Dhasarathy and Kladde, 2005; Reinke and 

Hörz, 2003). However, after prolonged induction, chromatin remodeling still goes to 

completion arguing for redundant pathways that can support promoter opening at the PHO5 

promoter even without Snf2 and Gcn5. The same is true in the absence of  Ino80, Asf1, Swr1, 

Isw1, Isw2, Chd1, Rad54, Mot1, Esa1, and other cofactors (Kent et al., 2001; Korber et al., 

2006; Gaudreau et al., 1997; Boeger et al., 2004, and unpublished data from the lab). Further, 

while chromatin opening affects four nucleosomes at the PHO5 promoter, only one 

nucleosome is fully affected at the PHO8 promoter. This results in much weaker promoter 

strength of the PHO8 promoter compared to the PHO5 promoter with the PHO5 being 10 

fold more active than the PHO8 (Almer et al., 1986; Barbaric et al., 1992). 

The differences in the extent of chromatin remodeling and promoter strength between the 

PHO5 and PHO8 promoter are unlikely due to differences in the recruitment of cofactors as 

both promoters are regulated by the same trans-activator Pho4. However, the differences 

could be a direct consequence of differences in binding strength and position of the UASp 

elements. First, simply the number of functional UASp elements could influence the extent of 

chromatin remodeling. The PHO8 promoter contains only one functional UASp element 

(Münsterkötter et al., 2000), whereas both UASp elements at the PHO5 promoter bind Pho4, 

although with different affinity (Venter et al., 1994; Barbaric et al., 1998). Nevertheless, 
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introduction of the PHO5 UASp elements at the PHO8 promoter did not yield the completely 

open chromatin structure typical for the PHO5 promoter (Münsterkötter et al., 2000).  

Second, differences in promoter strength could be a direct consequence of the strength of the 

UASp elements at each promoter. Several experiments addressed this speculation (Figure 

22M-Q). Insertion of the strong UASp2 element of the PHO5 promoter at the position of the 

UASp1 element of the PHO8 promoter, thereby generating a promoter driven by two strong 

UASp elements, did result in somewhat higher gene activity, however only two-fold (Figure 

22M). As mentioned previously, exchanging the UASp elements of the PHO8 promoter with 

those of the PHO5 did not result in full gene activity (Figure 22N) nor in more extensive 

chromatin opening (Münsterkötter et al., 2000).  

A third possibility for the observed differences between PHO5 and PHO8 could be the 

influence of the transcriptional co-activator Pho2. The PHO5 promoter is strictly Pho2-

dependent. Pho2 plays a dual role in the activation process, as it is critical both for binding of 

Pho4 to the weak UASp1 site and is required for the ability of Pho4 to trans-activate from the 

UASp2 site (Barbaric et al., 1998). Pho2 is not required for Pho4 binding to the PHO8 

promoter and for chromatin remodeling (Barbaric et al., 1992), however, Pho2 significantly 

increases the expression of PHO8 (Münsterkötter et al., 2000). Even though Pho2 has a role 

in chromatin opening at the PHO5 promoter, this role can be compensated for by the 

overexpression of Pho4 (Fascher et al., 1990). In this case the PHO5 promoter is still 

remodeled whereas the PHO8 promoter is not. Based on these results it seems unlikely that 

the action of Pho2 can account for the differences between the two promoters. Thus, neither 

Pho2 nor the number of binding sites for the transcriptional activator Pho4 nor their quality 

can adequately explain the apparent “weakness” of the PHO8 promoter. 
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Figure 22. The effect of various UASp mutations on gene activity of the PHO5 and the PHO8 
promoter in a wild type background. Filled circles and squares denote strong UASp sites and open 
circles and squares denote weak UASp sites (Data summarized from Venter et al., 1994; Svaren and 
Hörz, 1997; Barbaric et al., 1998; Münsterkötter et al., 2000, and results in this work (G and H)). 

Recent data showed that the Pho4 concentration and its occupancy at the PHO5 promoter play 

crucial roles in defining the extent to which chromatin opening requires Swi/Snf and Gcn5 

(Dhasarathy and Kladde, 2005). Similarly, data from the lab showed that under certain sub-

maximal induction conditions deletion of the histone chaperone Asf1 prevents PHO5 

 65



V  Discussion 

 66

induction, whereas it only causes a kinetic delay under maximal induction conditions (Korber 

et al., 2006). Thus, under some sub-maximal induction conditions the co-factor requirements 

for PHO5 promoter opening are more stringent. In line with this, it was possible that a partial 

crippling of the PHO5 promoter (e.g., by mutation of the UASp elements) would render this 

promoter variant strictly dependent on co-factors for chromatin opening. Although the nature 

of the UAS elements proved not to be responsible for the difference in promoter strength and 

the extent of chromatin remodeling at the PHO5 and PHO8 promoters in a wild type 

background, possibly some promoter variants would behave significantly different in co-

factor mutant strain.  

Especially the presence of an intra-nucleosomal Pho4 binding site could potentially render the 

PHO5 promoter less stable and therefore easier to remodel because the binding of Pho4 

would compete with nucleosome -2.  This could lead to a redundancy in co-factor 

requirements. The deletion of the intra-nucleosomal Pho4 binding site of the PHO5 promoter, 

leaving only the weak UASp1 site intact, completely abolished promoter inducibility probably 

because only a weak UASp site was present in the promoter. Therefore, a PHO5 promoter 

variant with one strong UASp site present in a linker region and no intra-nucleosomal site was 

constructed. Induction of such a construct proved to be very weak, although significant, in a 

wild type background. However, in a snf2 strain levels of acid phosphatase activity upon 

induction was similar to the wild type promoter construct. Thus, the absence of an intra-

nucleosomal UASp element does not make the PHO5 promoter more dependent on at least 

the co-factor Swi/Snf. Taken together, the position and strength of the UASp elements are 

unlikely to be responsible for the difference in co-factor requirements between the PHO5 and 

PHO8 promoter.  

An alternative explanation for the differences in co-factor requirements for chromatin 

remodeling between the PHO5 and the PHO8 promoter is the properties of the substrate for 

the chromatin remodeling reaction, i.e. the positioned nucleosome structure. Especially for a 

mechanism leading to histone eviction in trans, the absolute stability of nucleosomes would 

be an important feature as a chromatin remodeling machine needs to completely disassemble 

the nucleosome. In this context, it cannot be excluded that a remodeling mechanism leading to 

histone eviction in trans may not involve an initial phase of nucleosome sliding (Korber et al., 

2004). For such a phase the intra-molecular relative stability of positioned nucleosomes 

compared to alternative positions along the same DNA molecule would be relevant. Whether 

or not histone loss involves an initial sliding phase, not only the thermodynamic stabilities of 
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proper and alternative positions have to be considered. Also the kinetic energy barrier for 

dislocating nucleosomes from their starting positions, i.e. their kinetic stability will influence 

the process of histone loss. 

The data presented in this work show that the absolute nucleosome stability, the relative intra-

molecular nucleosome stability and the kinetic stability of the properly positioned 

nucleosomes at the PHO5 promoter are lower compared to those at the PHO8 promoter. 

These results suggest that the inherent nucleosome stability determines to what extent the 

promoter chromatin will open up when it is provided with the right trigger, i.e. Pho4 and 

factors recruited by Pho4. In the case of the PHO5 promoter the process of chromatin opening 

seems to be energetically so favorable that it is supported by a redundant set of co-factors. 

4. The nature of the nucleosome positioning information at the 

PHO5 and PHO8 promoters 

Even though positioned nucleosomes were described in vivo for a long time and these were 

shown to play important roles in gene regulation (Lu et al., 1995; Schild et al., 1993; 

Kornberg and Lorch, 1995; Straka and Hörz, 1991; Venter et al., 1994; Yuan et al., 2005) (see 

also Introduction), the molecular nature of the positioning information remains largely 

unresolved. The DNA sequence certainly plays an important role but there is no algorithm 

available to reliably predict nucleosome positions from the DNA sequence alone (Widom, 

2001). Most studies on the role of DNA sequence in nucleosome positioning are done in vitro 

using salt gradient dialysis. During this procedure the histone H3/H4 tetramers are the first to 

bind DNA in the range of 0.75 – 1 M salt imposing a nucleosome-like structure to which 

histone H2A and H2B then bind at lower salt concentrations (Wilhelm et al., 1978). This 

means that the positioning of nucleosomes during this procedure is mainly determined by the 

H3/H4 tetramer (for review of this argument see Widom, 2001). This could explain why some 

sequences, which are strong nucleosome positioning sequences in vitro, are not preferably 

assembled into a nucleosome in vivo (Tanaka et al., 1992b; Negri et al., 2001; Buttinelli et al., 

1993). Indeed it has been shown that > 95% of a eukaryotic genome did not sufficiently 

constrain nucleosome positioning in salt gradient dialysis reconstitution (Lowary and Widom, 

1997). In spite of this, over 69% of all nucleosomes in yeast are positioned (Yuan et al., 

2005). 

The results presented in this work show that in the case of the PHO5 and PHO8 promoters 

salt gradient dialysis does not reflect the same preferences for nucleosome positions as seen in 
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vivo. Nevertheless, salt gradient dialysis may properly assemble sub-regions of both 

promoters. A region of the PHO8 promoter (between UASp2 and HindIII), which has been 

characterized as being especially repressive for transcription (Münsterkötter et al., 2000), was 

assembled in salt gradient dialysis with the same nucleosome positioning as in the native 

pattern. Similarly, although slightly shifted compared to the native yeast pattern, nucleosome 

-1 of the PHO5 promoter also seems to be positioned by salt gradient dialysis. Interestingly, 

nucleosomes in both of these regions are not completely remodeled in vivo during chromatin 

opening (Almer et al., 1986; Barbaric et al., 1992). This may be a direct consequence of high 

nucleosomes stabilities and it might also point to strong nucleosome positioning sequences 

being present in these regions. However, aside from these regions, strong nucleosome 

positioning sequences are not sufficient for setting up the repressive chromatin structure at the 

PHO5 and PHO8 promoters. 

The here modified yeast in vitro assembly system provides a strong tool to identify the 

nucleosome positioning information. The positioning information at the PHO5 and PHO8 

promoter is specific to the yeast extract as a Drosophila embryo extract does not support 

proper positioning at either promoter, although this system can support proper nucleosome 

positioning on other DNA sequences (Blank and Becker, 1996; Wall et al., 1995; Varga-

Weisz et al., 1995). Rather, nucleosome positions are completely randomized in an in vitro 

assembly reaction using Drosophila embryo extracts. Even the potential positioning 

information present in the above-mentioned DNA regions of the PHO5 and PHO8 promoters 

are overridden. Nevertheless, chromatin pre-assembled by Drosophila embryo extract can be 

properly positioned by addition of yeast extract. This suggests that the Drosophila embryo 

extract is devoid of the information needed to properly position both the PHO5 and the PHO8 

promoter nucleosomes.  

Interestingly, this shifting of nucleosomes to the positions of the native chromatin structure is 

much faster than the de novo assembly starting from free DNA. Therefore, positioning of 

nucleosomes seems to be uncoupled from their loading onto the DNA and the generation of 

chromatin with physiological spacing is the slow step in de novo chromatin assemblies 

(Korber and Hörz, 2004, and results presented in this work). Additionally, nucleosome 

positioning is energy dependent. On one hand this energy dependence may indicate that a 

chromatin remodeling complex is part of the positioning information, on the other hand it 

could also mean that ATP dependent nucleosome sliding is necessary to overcome the kinetic 

barrier of nucleosome repositioning.  
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At this point one can only speculate about the molecular nature of the nucleosome positioning 

information beyond the DNA sequence information. It may be a specific or unspecific DNA 

binding protein, a chromatin remodeling complex or a combination of several types of factors. 

It is remarkable that this information appears to be species-specific as it is not contained in a 

Drosophila embryo extract. As an assembly reaction contains many copies of the PHO5 and 

PHO8 promoters it is unlikely that the amount of yeast extracts used can contains enough 

PHO5 and PHO8 promoter-specific factors to induce the proper positioning in all these 

copies. If the nucleosome positioning information were a sequence specific DNA binding 

factor it would have to be rather abundant. One such factor could be the protein Reb1p. Reb1p 

is an essential, abundant DNA-binding protein (Ju et al., 1990), and recent studies showed 

that its binding site is the single most conserved motif found in yeast, even more conserved 

across species than the TATA box (Elemento and Tavazoie, 2005). At the GAL1-10 promoter 

the presence of Reb1p binding sites correlated with a nucleosome free region and it was 

therefore claimed that Reb1p was involved in nucleosome positioning by excluding the 

binding of a nucleosome (Fedor et al., 1988). However, this speculation was however 

disputed later (Axelrod et al., 1993; Reagan and Majors, 1998). Furthermore, a Reb1p binding 

site of the ILV1 promoter was shown to be dispensable for nucleosome positioning at this 

promoter (Moreira et al., 2002). In contrast, another study showed that the Rep1p biding site 

was indispensable for nucleosome positioning at the PFY1 gene (Angermayr et al., 2003). 

Thus, the general importance of Reb1p in nucleosome positoining is still unclear. 

Interestingly, it was recently published that a binding site of Reb1p together with adjacent 

dA:dT tracts was sufficient to direct the formation of a nucleosome free region flanked by 

H2A.Z containing nucleosomes (Raisner et al., 2005). This might suggest that Reb1p could be 

involved in setting up nucleosome positioning on a global level either directly or indirectly 

through recruitment of H2A.Z. 

Similarly, most yeast genes contain a nucleosome-free region around 200 bp upstream of the 

transcriptional start site that includes conserved dA:dT stretches (Yuan et al., 2005). dA:dT 

stretches were shown to disfavor the incorporation into a nucleosome (Anderson and Widom, 

2001). This is in agreement with the reported difference in nucleosome occupancy between 

coding and non-coding DNA sequences. Coding regions that are low in dA:dT were found to 

be more stably associated with nucleosomes than non-coding regions (Sekinger et al., 2005; 

Lee et al., 2004; Pokholok et al., 2005). Additionally, Struhl and colleagues also showed that 

the lower histone density can be explained by an intrinsically poor nucleosome stability of 

such regions as assayed in salt gradient dialysis (Sekinger et al., 2005). Taken together, these 



V  Discussion 

 70

results suggest that nucleosome positioning at many promoter regions may be determined by 

the presence of a nucleosome-free region due to DNA sequences of intrinsically low affinity 

to nucleosomes.  

However, this seems not to be the case for the PHO5 promoter. For one, the results presented 

in this work clearly show that the hypersensitive site containing the UASp1 site is not 

generated by salt gradient dialysis. On the contrary, in chromatin generated by salt gradient 

dialysis this region was protected from DNaseI digestion, indicating that a nucleosome 

actually forms on this particular stretch of DNA and ruling out intrinsically poor nucleosome 

stability in this region. Second, deleting most of the hypersensitive region, including UASp1, 

leaves positioning of the adjacent nucleosomes in the repressed PHO5 promoter intact 

(Fascher et al., 1993). Thus, in the case of the PHO5 promoter, it seems unlikely that the 

hypersensitive site or a factor binding to this DNA region is involved in positioning of the 

promoter nucleosomes. At the PHO8 promoter salt gradient dialysis does recapitulate part of 

the native pattern. The hypersensitive site at the position of UASp2 is generated in salt 

gradient dialysis. However, the hypersensitive sites at the positions of UASp1 and the HindIII 

site are not generated. Thus, although the hypersensitive site at the position of UASp2 might 

be characterized by poor intrinsic nucleosome stability, this is not sufficient to position the 

adjacent nucleosomes at the PHO8 promoter. 

A more likely hypothesis is that an abundant protein like, e.g. HMG proteins or remodeling 

factors rather than sequence specific DNA binding proteins are involved in setting up the 

repressive chromatin structure at the PHO5 and PHO8 promoters. From this group of proteins 

the members Nhp6A and Nhp6B can be excluded as being solely responsible for nucleosome 

positioning at the PHO5 and the PHO8 promoters. Double mutant strains showed no defects 

in setting up the repressive chromatin structure in vivo (Moreira and Holmberg, 2000). 

Similarly, it can be excluded that the Swi/Snf, Isw1, Isw2 and Chd remodeling complexes are 

involved, as results in this work show that mutation in their respective catalytic subunits does 

not destroy nucleosome positioning in vitro. Another candidate for a chromatin remodeling 

complex involved in nucleosome positioning is the Rsc complex. The Rsc complex is closely 

related to the Swi/Snf complex. However, in contrast to the Swi/Snf complex it is required for 

yeast viability (Angus-Hill et al., 2001). Furthermore, the Rsc complex is very abundant 

(Cairns et al., 1996) making it a conceivable candidate for being involved in nucleosome 

positioning on a genome-wide level. Although, this complex was suggested to be involved in 

setting up the repressive chromatin structure at the CHA1 gene (Moreira and Holmberg, 
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1999), the same publication also showed that depletion of Swh3p or Sth1p (two essential 

components of the Rsc complex) did not have any effect on nucleosome positioning at the 

repressed PHO5 promoter (Moreira and Holmberg, 1999). Further experiments will clarify 

whether the Rsc complex is responsible for nucleosome positioning at the PHO8 promoter.  

Another attractive hypothesis is that yeast-specific RNA might play a role in nucleosome 

positioning. Recently it was shown that many intergenic regions including the PHO5 

promoter are transcribed in an rrp6 mutant in yeast (Davis and Ares, Jr., 2006). Rrp6 is a 

component of the nuclear exosome and contributes to the quality control system that retains 

and degrades aberrant mRNA in the nucleus and mutations in RRP6 lead to the accumulation 

of several species of RNA (Wyers et al., 2005; Kuai et al., 2004; van Hoof et al., 2000). In 

agreement with this, treatment of high amounts RNaseA abolished nucleosome positioning at 

both the PHO5 and PHO8 promoters in a nucleosome shifting reaction. However, blocking 

RNA PolII transcription in vivo did not result in loss of nucleosome positioning at neither 

promoter.  
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5. Outlook 

The results presented in this work answered one of the long-standing questions regarding the 

differential co-factor requirements of the co-regulated PHO5 and PHO8 promoters. The basis 

for this was the development of a reliable in vitro assay that could directly compare 

nucleosome stability. It showed a direct correlation between intrinsic stability of promoter 

nucleosomes and co-factor requirements for chromatin remodeling at the PHO5 and PHO8 

promoters. This prompted the question whether intrinsic stability of nucleosomes directly 

dictates the co-factor requirements. Experiments are under way using the methods developed 

in this work to study the stability of nucleosomes at promoters of genes known to be 

dependent on co-factors for chromatin remodeling. The result from these experiments will 

answer whether the correlation between nucleosome stability and co-factor requirements for 

chromatin opening is a universal feature.  

In addition, the methods established here provide an feasible way to generate fully positioned 

chromatin templates. This opens up wide possibilities for in vitro studies of chromatin 

structure and remodeling in yeast systems. Especially, studies on the mechanisms involved in 

nucleosome positioning might benefit from these techniques. Ongoing work in the lab is 

trying to further characterize the molecular nature of nucleosome positioning at the PHO5 and 

PHO8 promoters. 
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2.1. 

2.2. 

2.3. 

3.1. 

VI. Materials and Methods 
1. Standard methods 

All standard methods were done according to standard protocols (Sambrook et al., 1989). This 

includes agarose gel electrophorese, cloning, SDS PAGE and subsequent staining, western 

blotting etc. In addition, diverse DNA purifications were performed with kits from Qiagen.  

2. Media for growing S. cerevisiae and E. Coli 
YPDA medium 

1% (w/v) yeast extract (Difco), 2% (w/v) peptone (Difco), 2 % (w/v) glucose, 100 mg/l 

adenine.  

YNB minimal media 

6.7 g/L Yeast Nitrogen Base w/o amino acids, 2% (w/v) glucose, 1.6 mg/L amino acid drop-

out mix (2 g adenine, 2 g alanine, 2 g arginine, 2 asparagine, 2 g aspartate, 2 g cysteine, 2 g 

glutamine, 2 g glutamate, 2 g glycine, 2 g meso-inositol 2 isoleucine, 2 g lysine, 2 g. 

methionine 0,2 g p-aminobenzoic acid 2 g phenylalanine, 2 g proline, 2g serine, 2 g threonine, 

2 g Tryptophane, 2 g tyrosine, 2 g valine, 2 g histidine, 2 g uracile, 2 g leucine) 

Phosphate-free minimal media 

2 g/l L-asparagine; 500 mg/l MgSO4 x H2O; 100 mg/l NaCl; 100 mg/l CaCl2 x 2 H2O; 2 mg/l 

Inositol; 500 μg/l H3 BO3; 40 μg/l CuSo4 x H2O; 100 mg/l KJ; 200 μg/l Fe(III)Cl3 x 6 H2O; 

400 mg/l MnSO4 x H2O; 200 μg/l (NH4)6Mo7O27 x 4 H2O; 200 mg/l ZnSO4 x 7 H2O; 200 μg/l 

Riboflavin; 200 μg/l p-aminobezoesäure; 2 μg/l biotin; 2 μg/l folic acid; 400 μg/l nicotin acid; 

400 μg/l pyridoxin-HCl; 400 μg/l thyaminchlorid; 13,4 mM KCl; 50 mM natriumcitrate pH 

5,0, 2% (w/v) glucose; 1,6 g/l aminoacid drop out mix.  

3. Extract and protein preparations 
Whole cell yeast extract 

Yeast extracts were prepared as described (Korber and Hörz, 2004). The protocol is based on 

the protocol from (Schultz et al., 1997; Schultz, 1999) with modifications by S.E. Kong and J. 

Q. Svejstrup. Briefly, cells were grown to an OD600 of 2-4, harvested at 3000 x g for 5 min at 
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3.2. 

room temperature. The cell pellet was washed subsequently with water and extraction buffer 

(0.2 M Tris/HCl pH 7.5, 10 mM MgSO4, 20% glycerol, 1 mM EDTA, 390 mM (NH4)2SO4, 1 

mM DTT and CompleteTM  protease inhibitor without EDTA (Roche Applied Science)). The 

pellets were shock frozen and lysed by grinding in liquid nitrogen in a mortar with an 

additional 1.5 ml of extraction buffer. After slow thawing the lysed cells were cleared by 

centrifugation (2 hours at 100,000 x g at 4°C). The middle part of the supernatant containing 

the soluble proteins was withdrawn with a syringe, leaving behind the cloudy layer on top of 

the pellet and the lipid-rich layer at the meniscus. Proteins were precipitated by adding 337 

mg/ml (NH4)2SO4 while stirring until complete dissolution. The solution was then centrifuged 

for 20 min at 41,000 x g at 4°C and the pellet was resuspended in 500-700 μl dialysis buffer 

(20 mM Hepes/KOH pH7.5, 20% glycerol, 50 mM NaCl, 1 mM EGTA, 5 mM DTT and 

CompleteTM protease inhibitor without EDTA) and dialyzed three times for 30 minutes 

against the same buffer. Aliquots of the extract were frozen in liquid nitrogen and stored at -

80°C. 

Drosophila embryo extract 

Drosophila embryo extract was essentially prepared as described (Becker et al., 1994; Bonte 

and Becker, 1999). 0-2 hours preblastoderm Drosophila embryos were harvested several 

successive collections and washed in wash buffer (0.7 % NaCl, 0.05 % Triton-X-100). 

Embryos were resuspended in 200 ml wash buffer. For dechorionation 60 ml of 13 % 

hypochloric acid was added per 200 ml embryo suspension and stirred vigorously for 3 min. 

Following dechorionation the embryos were washed extensively in 1) tap water, 2) embryo 

wash, 3) embryo wash without triton and 4) twice in cold EX buffer (10 mM Hepes-KOH, pH 

7.6, 10 mM KCl, 1.5 mM MgCl2, 0.5 mM EGTA, 10 % glycerol). After washing the embryos 

were resuspended in EX buffer supplemented with MgCl2 to 5 mM, 0.2 mM PMSF and 0.1 

mM DTT and homogenized by 6 complete strokes at 2000-3000 rpm with a Teflon pestle 

connected to a motor driven drill press. The extract was then centrifuged for 10 min at 17,000 

x g and the supernatant was withdrawn. This fraction was then cleared by ultra-centrifugation 

for 2 hours at 150,000 x g at 4°C. The supernatant containing the soluble proteins was 

collected with a syringe and aliquots of the extract were frozen in liquid nitrogen and stored at 

-80°C.  
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3.3. 

3.4. 

Yeast nuclei 

Yeast nuclei were performed as described (Almer et al., 1986; Gregory and Hörz, 1999). Cells 

were grown to an OD600 of 2-4, harvested at 3000 x g for 5 min at room temperature and 

washed once with water. After centrifugation the pellet was resuspended in 2 x volumes of 

pre-incubation buffer (0.7 M β-mercaptoethanol, 2 mM EDTA) and incubated for 30 min at 

30°C with shaking. After incubation the cells were centrifuged and the pellet was washed 

with 1 M sorbitol and resuspended in 5 ml 1 M sorbitol, 5 mM β-mercaptoethanol per gram 

wet weight. The absorbance (OD600) was measured to determine cell density and spheroblast 

were generated by adding zymolyase 100 T (ICN) was added to a final concentration of 2% 

and incubated for 30 min at 30°C with shaking. After incubation the efficiency of the 

enzymatic removal of the cell wall was determined by absorbance (OD600) (normally in the 

range of 60- 95%). Spheroblasts were washed once in 1 M sorbitol and lysis was performed 

by resuspending the spheroblasts in a hypotonic buffer (18% ficoll, 20 mM KH2PO4, 1 mM 

MgCl2, 0.25 mM EGTA, 0.25 mM EDTA, pH 6.8 adjusted with KOH). Following lysis the 

nuclei were pelleted by centrifugation 30 min at 24,000 x g at 4°C and aliquots were frozen 

and stored at -80°C. 

Drosophila embryo histone-octamer purification 

Purification of Drosophila embryo histone octamers was performed as described (Simon and 

Felsenfeld, 1979). Drosophila embryos were collected, washed in tap water, resuspended in 

lysis buffer (15 mM Hepes-KOH, pH 7.5, 10 mM KCl, 5 mM MgCl2, 0.05 mM EDTA, 0.25 

mM EGTA, 10 % glycerol, 1 mM DTT, 0.2 mM PMSF) and homogenized by 6 complete 

strokes at 1000-2000 rpm. The homogenized embryos were then centrifuged for 10 min at 

10,000 x g at 4°C resulting in three fractions; a solid pellet, soft layer on top of pellet 

containing the nuclei, and supernatant layer. The supernatant layer was carefully withdrawn 

and the nuclei layer was resuspended in sucrose containing buffer (15 mM Hepes-KOH, pH 

7.5, 10 mM KCl, 5 mM MgCl2, 0.05 mM EDTA, 0.25 mM EGTA, 1.2 % sucrose, 1 mM 

DTT, 0.2 mM PMSF) transferred to new tubes and centrifuged again for 10 min at 10,000 x g 

at 4°C. The supernatant was resuspended in sucrose buffer, CaCl2 was adjusted to 3 mM and 

protease inhibitor (aprotinin, pepstatin, leupeptin) in addition to the PMSF was added. The 

nuclei was digested with approximately 200 u/μl MNase (Roche) for 10 min at 26°C, stopped 

with 10 mM EDTA and centrifuged for 10 min at 10,000 x g at 4°C. The resulting nuclei 

pellet was resuspended in TE, pH 7.6 with 1 mM DTT and 0.2 mM PMSF and lysed by 

rotation for 30-45 min at 4°C. After lysis the nuclei were centrifuged for 30 min at 23,000 x g 
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4.1. 

4.2. 

4.3. 

at 4°C and the supernatant containing the soluble nuclear proteins was withdrawn. Salt 

concentration was adjusted to 0.63 M KCl and added to 30 ml pre-washed hydroxylapatite 

(Biorex) and mononucleosomes were allowed to bind the hydroxylapatite by rotation for 60 

min at 4°C. The bound mononucleosomes were washed with 0.63 M KCl buffer and loaded 

into a FPLC column. The histone octamers were eluted with a salt gradient between 0.63 M 

and 2 M KCl (octamers usually eluted at approximately 1 M KCl). Glycerol concentration 

was adjusted to 40-50 % and supplemented with CompleteTM protease inhibitor without 

EDTA (Roche) and kept at -20°C. Concentration was estimated by SDS-PAGE in comparison 

to other histone preparations and Bradford assays. 

4. In vitro chromatin assembly 
DNA templates  

The DNA templates for all chromatin assembly reactions were circular, supercoiled, 10 kb 

plasmids that are derivatives of plasmid pCB/wt (LEU2) (Fascher et al., 1993), where the 

TRP1 marker in pCB/wt is replaced by the LEU2 marker and with either the PHO5 ORF plus 

1311 bp upstream region or the PHO8 ORF plus 1661 bp upstream region inserted 

analogously to the PHO5 insertion in pCB/wt. Mutation of the UASp sites in these plasmids 

were as described (Münsterkötter et al., 2000; Venter et al., 1994). All cloning and ligation 

reactions were performed according to Maniatis. Both plasmids were combined at equimolar 

ratio in all in vitro assembly reactions. 

Drosophila embryo extract assembly 

Chromatin assembly with Drosophila embryo extracts was performed according to published 

procedures (Becker et al., 1994; Tsukiyama et al., 1994). A standard chromatin assembly 

reaction contained 0.9 μg DNA, 40-80 μl Drosophila extract in a total of 150 μl assembly 

buffer (80 mM KCl, 10 mM Tris/HCl pH 7.6, 1.5 mM MgCl2, 0.5 mM EGTA, 10% Glycerol, 

1 mM DTT) supplemented with a regenerative energy system of 3 mM ATP/MgCl2, 30 mM 

creatine phosphate (Sigma) and 5 ng/μl creatine kinase (Roche) and incubated for 6 hours at 

26°C. 

De novo yeast extract assembly 

Chromatin assembly with yeast extracts was performed as described (Korber and Hörz, 2004). 

For each preparation of DNA, extract and histones, the ratio of DNA:extract:histones had to 
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4.4. 

4.5. 

5.1. 

be carefully optimized. A normal assembly reaction contained approximately 1.8 μg DNA, 

300 μg of extract protein and 6 μg of Drosophila histone octamers in 150 μl assembly buffer 

(20 mM Hepes pH 7.5, 80 mM KCl, 25 mM (NH4)2SO4, 1.5 mM MgCl2, 0.5 mM EGTA, 

12% Glycerol, 2.5 mM DTT), supplemented with a regenerative energy system of 3 mM 

ATP/MgCl2, 30 mM creatine phosphate (Sigma) and 5 ng/μl creatine kinase (Roche) and 

incubated for up to 6 hours at 30°C. The assembly reaction was performed in siliconized tubes 

which were blocked with a solution of 2 mg/ml bovine serum albumin, 0.1% Nonidet-40. 

Prior to any manipulation or analysis, the assembly reaction was always centrifuged for 2 min 

at room temperature and maximum speed in a table-top centrifuge. 

Salt gradient dialysis assembly 

Salt gradient dialysis was performed as described (Längst et al., 1999). A typical assembly 

reaction contained 4-20 μg DNA, 4 μg BSA, 3.6-4.4 μg Drosophila embryo histone octamers 

(see Materials and Methods section 3.4) in 50 μl high salt buffer (10 mM Tris/HCl pH 7.6, 2 

M NaCl, 1 mM EDTA, 1 mM ß-Mercaptoethanol, 0.05% Nonidet P40). This was dialyzed for 

12-16 hours against low salt buffer (10 mM Tris/HCl pH 7.6, 50 mM NaCl, 1 mM EDTA, 1 

mM ß-mercaptoethanol, 0.05% Nonidet P40). Chromatin was stored at 4°C for up to 6 

months.  

Adding yeast extract to pre-assembled chromatin (nucleosome shifting reaction) 

Yeast extract (100-900 µg protein for Drosophila embryo extract chromatin or 3-500 µg 

protein for salt gradient dialysis chromatin) was added to 2 µg DNA preassembled chromatin 

along with a fresh complement of the regenerative energy system (3 mM ATP/MgCl2, 30 mM 

creatine phosphate (CP) (Sigma) and 5 ng/μl creatine kinase (CK) (Roche) and further 

incubated at 30°C for up to 6 hours. 

5. Chromatin analysis 
DNaseI digestion of in vitro assembled chromatin 

DNase indirect endlabeling was performed as described in (Almer and Hörz, 1986). In vitro 

assembled chromatin was digested with a range of bovine deoxyribonucleaseI (DNaseI, 

Roche) concentrations for 5 min at room temperature and the reaction was stopped by adding 

SDS to a final concentration of 0.5 % and EDTA to a final concentration of 2 mM. 80 mg of 

Proteinase K (Roche) was added to the digested chromatin incubated for 12-15 hours at 37°C. 
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5.2. 

5.3. 

5.4. 

After incubation DNA was precipitated and resuspended in 20 μl TE buffer (10 mM Tris, pH 

8.0, 1 mM EDTA) followed by secondary digest with ApaI (Roche) for the PHO5 promoter 

or BglII (Roche) for the PHO8 promoter. The resulting DNA fragments were resolved on a 

1.5 % agarose gel and blottet on a membrane (Biodyne RBO 45μ, Pall Corporation). The 

membrane was baked for 1-2 hours at 80°C and then washed for two hours at 68°C in 3 x 

SSC (900 mM NaCl, 90 mM Na-Citrate), 1 x Denhardt (0.5 % SDS, 1 mM EDTA, 0.02 % 

BSA, 0.02 % PVP-40, 0.02 % Ficoll). Prior to hybridization the membrane was pre-

hybridized in 2 x SSC, 1 x Denhardt with carrier DNA for 1 hour at 68°C. Hybridization was 

carried out over night and the following day the blots were washed 3 x 30 min in 2 x SSC, 1 x 

Denhardt. In all DNaseI mapping experiments chromatin samples were digested with a range 

of DNaseI concentrations. However, due to space limitations only one or few representative 

lanes are shown in the figures. 

Miccrococcal nuclease digestion of in vitro generated chromatin 

In vitro assembled chromatin was digested with a range of Micrococcal Nuclease 

concentrations (MNase, S7Nuclease, Roche) and DNA was precipitated using the same 

protocol as for DNaseI digestions but without the secondary digest with a restriction enzyme.  

DNaseI digestion of nuclei 

Nuclei were washed in DNaseI buffer (15 mM Tris, pH 7.5, 75 mM NaCl, 3 mM MgCl2, 0.05 

mM CaCl2, 1 mM β-mercaptoethanol) and resuspended in the same buffer. The nuclei were 

digested with a range of DNaseI for 20 min at 37°C and the reaction was stopped with 0.5 % 

SDS, 4 mM EDTA, 50 mM Tris-HCl, pH 8.8 a final concentration. 300-600 μg Proteinase K 

(Roche) was added and incubated for 30 min at 37°C. DNA was extracted by 

phenol/chloroform extraction and ETOH precipitated. RNA was digested with RNaseA (8 % 

final concentration) (Roche) for 1 hour at 37°C followed by precipitation with isopropanol. 

Secondary digest, blotting and hybridizing was performed as described for DNaseI digestion 

of in vitro assembled chromatin. 

Digestion of nuclei with restriction nucleases 

Nuclei were washed in 1 x SSTEEM (0.15 mM Spermine, 0.5 mM Spermidine, 10 mM Tris-

HCl, pH 7.4, 0.2 mM EDTA, 0.2 mM EGTA, 10 mM MgCl2, 5 mM NaCl, 5 mM β-

mercaptoethanol, pH 7.4 adjusted with HCl) and resuspended in the same buffer. Nuclei were 
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5.5. 

digested with two concentrations of restriction nuclease for 30 min at 37°C and stopped with 

0.5 % SDS, 4 mM EDTA, 50 mM Tris-HCl, pH 8.8. The nuclei were then digested with 

Proteinase K (Roche), phenol/chloroform extracted and RNase treated as descirbed for the 

DNaseI digest of nuclei. The rest of the procedure follows that described for DNaseI digestion 

of in vitro assembled chromatin except that secondary cleavage was performed with HaeIII 

for the PHO5 promoter and BglII/EcoRV for the PHO8 promoter.  

Probes 

The ApaI-BamHI fragment upstream of the PHO5 gene was used as a probe for DNaseI 

mapping of the PHO5 promoter and the XhoI-PvuII fragment at the beginning of the PHO8 

open reading frame (ORF) for mapping of the PHO8 promoter. The probes hybridizing within 

the PHO5 or PHO8 promoter regions correspond to the BstEII-DraI fragment of the PHO5 

promoter or to a PCR fragment of the PHO8 promoter using the following primers 

TGGAACTACTTGCGAATATG and ACGCCTTCTTCTAGTAGGAA, respectively.  

6. Acid phosphatase activity 

Acid phosphatase activity was performed as described (Haguenauer-Tsapis and Hinnen, 

1984). Briefly, cells were grown to an OD of around 2 to 4. For cells grown at high phosphate 

4 OD cells were taken and for cells grown without phosphate 0.8 OD was taken. The cells 

were washed in water and resuspended in 0.1 M NaAc, pH 3.6. The exact amount of cells was 

determined by OD600 and 1 ml of each sample was incubated with 1 ml of NPP solution (75 

mg 4-Nitrophenylphosphate dinatrium-hexahydrate in 10 ml 0.1 M NaAc, pH 3.6) for exactly 

10 min at 30°C. The reaction was stopped with 500 μl 1 M NaOH, and the phosphatase 

activity was measured at OD410.  
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VIII. Appendix 
1. Abbreviations 

aa   Amino acid 
ATP   Adenosine-5'-triphosphate 
bp   Base pairs 
BSA   Bovine serum albumine 
CEA   chicken egg albumin 
Ci   Curie 
ChIP  Chromatin immunoprecipitation 
CK  Creatine kinase 
CP  Creatine phosphate 
Cpm   counts per minute 
C-terminal   Carboxy-terminal 
DNA   Deoxyribonucleic acid 
DNase I   Deoxyribonucleosidase I 
DREX   Drosophila embryo extract 
DTT   Dithiothreitol 
E. coli   Escherichia coli 
EDTA   Ethylenediaminetetraacetic acid 
EGTA   Ethylene glycol-bis(ℵ-aminoethyl ether)-N,N,N',N'-

tetraacetic acid 
H1/H2A/H2B/H3/ H4   Histone proteins  
HAT   Histone acetyltransferase 
HDAC   Histone deacetylase 
HMT   Histone methyl transferase 
h  hour 
kDa   Kilo daltons 
M  Molar 
min   Minute(s) 
MNase   Micrococcus Nuclease 
NP-40   Nonidet P-40 
NPP  Nitrophenylphosphate dinatrium-hexahydrate 
OD  Optical density 
ORF  Open reading frame 
PBS   Phosphate-buffered saline 
PCR   Polymerase chain reaction 
PMSF  Phenylmethylsulphonylfluoride 
RNA   Ribonucleic acid 
RNA PolII  RNA polymerase II 
rpm   Rounds pro minute 
RT   Room temperature 
SDS   Sodium Dodecyl Sulphate 
sec   Second 
TBE   Tris borate EDTA buffer 
Tris   Tris(hydroxymethyl)-amino-methane 
Tween-20   Polyoxyethylene-sorbitan monolaurate 
wt  wild type 
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