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1. INTRODUCTION

Some of the main areas of medical research are prevention and cure of pathological

conditions and increase of life quality (and quantity). This is directly linked to the

development of new treatments, which work faster, are more effective and with less side

effects than the old ones. The term treatment here is used in a broad sense to cover the

most common chemical (i.e. medication coming from the pharmaceutical industry), as

well as surgical, mechanical, radial, and psychological treatment. In order to judge the

efficacy of a new treatment objectively, a clinical trial needs to be designed and

evaluated. This is one of the major working fields of biostatistics as well.

Just as any other modern science, biostatistics is a hybrid science. It is mainly based in

the area of statistics, but it reaches over to medicine, mathematics, and computer science

as well. This research represents such a mixture of statistics, optimization, and computer

science in the search for improvements in the clinical trial evaluation process.

1.1 Aims

The subject of this thesis is responder analysis. The term response up to now appears

only in clinical trials, in which surrogate markers are used to describe the effect of the

treatment when that effect is other than to prevent an event.

Example 1: In oncology, the desired effect of a treatment may be reduction of tumor

size, whereas the outcome of interest (called event) may be death. Then a responder is a

patient who experienced tumor reduction or complete remission and a non-responder is

a patient who’s tumor did not change or grew. Notice, that does not necessarily mean

that responders lived longer.

Example 2: If a headache medicine is tested, the event may not be defined to be

death, but recurrence of headache. There is no existing definition of responder in this
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case, but, in general, the goal is to prolong the event-free (headache-free) period.

Notice, side effects and death due to the drug should also be tested before the drug is

approved, but this would not be the main aim of the study.

The European Myocardial Infarction Amiodarone Trial (EMIAT), described in chapter

10 falls in the case described by the second example. Amiodarone is an anti-arrhythmic

drug. In order to approve the drug, an anti-arrhythmic effect as well as prolonging of

life had to be shown, so event was defined to be all cause mortality. Once again, no

definition of responder is available in this case, but the final goal was to show, that

Amiodarone increases the event-free period (prolongs life).

The classical definition of responder is altered in this research in order to fit the more

general clinical trial situation, in which the wished effect of a treatment is increasing the

event-free period of the treated patient (example 2).

1.2 Outline

The term responder is redefined in chapter 2 and distinction between prognostic and

predictive factors is made. The rest of this thesis focuses on methods for identification

of responders. Chapter 3 gives an overview of residuals to the Cox-PH model, which

can be used as a prognostic model. The ability of different residuals to identify

predictive factors is analyzed. The classical approach for responder identification is

presented in chapter 4. Chapter 5 gives an overview of recursive partitioning while

focusing on regression trees. Bump hunting is presented in chapter 6. Both regression

trees and bump hunting can be used for responder identification purposes. An attempt to

stabilize the bump hunting algorithm through bootstrapping is given in chapter 7.

Chapter 8 lists the steps of the proposed responder identification algorithm, as well as

some general suggestions on its use. The results of a simulation study which compares

all discussed versions of the responder identification algorithm are presented in chapter

9. Finally, the last chapter presents the results of the responder analysis performed on

the EMIAT data set.



 2. RESPONDERS AND NON-RESPONDERS

2.1 Motivation

Consider the common clinical trial situation in which the ability of a new treatment to

prevent an event is tested. Patients are randomized into two groups: one receiving the

classical treatment (or placebo) and the other receiving the new treatment. Not rarely,

the outcome of such trials shows no difference in the survival probabilities of the two

treatment groups (see figure 2.1). But still, it could happen that certain subgroups of

patients show improved survival under the new treatment, while others appear to suffer

from it (see figure 2.2). 

Figure 2.1: Kaplan-Meier survival curve estimates for the placebo and Amiodarone
treatment arms of the EMIAT study (details on the study in chapter 10).
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Figure 2.2: Comparison of the Kaplan-Meier survival curve estimates for the
placebo and Amiodarone arms of EMIAT for the subgroups of patients
on and off beta-blocker.

Suppose the survival time of a patient in the new treatment group is greater than the

overall survival time. There can be three reasons for this phenomena:

1. Chance: we cannot predict or account for occurrence by chance in any way or form

in a model.

2. The patient has a prognosis better than the average, due to the specific prognostic

factors that he enjoys.

For example, if younger patients in general have different prognosis than older

ones, independently of their treatment group, then we would say that age is a

prognostic factor.  

We can account for prognostic factors, provided that they have been measured, by

developing a prognostic model on the classical treatment (or placebo) group. Such
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survival (or hazard) in the classical treatment arm of the study. Factors found to be

significant in such a model are called prognostic.

Notice, the so defined factors would be prognostic in the real sense of the term only

if they are found on a placebo arm. If the new treatment is tested against a classical

treatment, the factors would be "prognostic" only with respect to the new treatment

and not in general. To avoid confusion, for the rest of this thesis we will call both

factor types prognostic.

3. The new therapy is really working. The purpose of this research is to explore

methods of identifying patients with special reactions to the new treatment (those

could be positive as well as negative), which are different from the whole patient

population and cannot be explained by prognostic factors. In such cases predictive

factors are responsible for the difference in survival. 

"Predictive factors:

� Any factor which predicts how a patient will do with

adjuvant systemic therapy

� Looks for differential effect of treatment

� To understand predictive factors subgroup analyses are

required..."

Silva & Zurrida, 2000 

Note, that a factor can have both prognostic and predictive power, if its prognostic

value is different in the two treatment groups. If only one predictive factor is

involved (or several independent predictive factors), it can be found by adding an

interaction term involving the treatment randomization index and the predictive

factor in question in a model which already accounts for prognostic factors (see

chapter IV). Methods for identifying groups of predictive factors are described in

chapters V and VI.
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2.2 Definitions

We define positive responders to be patients under the new treatment, who benefit

from it. Their benefit is manifested in the fact that their survival time is longer than that

of patients with the same characteristics (predictive factors), randomized in the classical

treatment group.

We define negative responders to be patients under the new treatment who are harmed

by it. Their survival time is shorter than that of a similar, described by predictive

factors, group of patients under the classical treatment.

Consequently, non-responders would be patients who are neither positive nor negative

responders. Their survival time does not differ from similar patients under the classical

treatment. 

We are interested in identifying responders – both positive and negative.

2.3 Assumptions

Responders are identified and characterized by predictive factors. For the successful

identification of predictive factors we need the assumption that all prognostic factors are

already correctly accounted for in a prognostic model. This is a strong, but not

unreasonable assumption. 

If this assumption is not fulfilled, we run the risk of wrong conclusions. For example,

we may conclude a therapy effect where there is none. The patient just has a better

prognosis to begin with, which was not recognized by the prognostic model. The

opposite can also be falsely concluded. We can conclude that a patient is harmed by the

new treatment, when in fact he/she does not react to the new treatment any differently

than the rest of the group. The patient just has a worse prognosis due to a prognostic

factor which was not yet accounted for. 



3. PRELIMINARY: RESIDUALS TO THE COX-PH 
MODEL 

 
 
 

Before describing methods for responder identification, we need a prognostic model. 

One possible method of constructing a prognostic model is the Cox proportional 

hazards model (Cox-PH), which is well known and widely used in the area of survival 

analysis (Cox, 1972). This chapter gives some preliminary knowledge of the Cox-PH 

model and its residuals, as well as the foundation for their possible use for responder 

identification purposes. 

 

3.1 The Cox-PH model 

The Cox-PH model describes a population of n patients with follow-up times ti, final 

status δi, and a set of K covariates xi = (x1i, x2i, ..., xKi) by describing the hazard rate for 

each patient i from 1 to n as: 

ix
i etxt ⋅′⋅= βλλ )(),( 0                                       (3.1) 

The effect of the covariates is assumed to be log-linear and independent of time. 

Proportionality of hazards is also assumed, i.e. the failure rates of any two individuals 

are proportional, which means that their hazard ratio is constant over time. Naturally, 

one can use extensions to the Cox model as prognostic models as well. For simplicity, 

we will restrict this research to the classical Cox-PH model. 

Estimating β: 

As described by Cox & Oakes (1984) and Marubini & Valsecchi (1995), one needs to 

use partial likelihood for estimation of the coefficient vector β, since the baseline hazard 

λ0(t) in the Cox-PH model is not specified parametrically. Suppose a total of J events 
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occur in a sample of N subjects. Let t(j) denote the ordered failure times, j = 1, …, J. Let 

R(t) be the set of subjects at risk at time t and Rj be the set of subjects at risk at time t(j) 

(i.e. Rj = R(t(j))). Let xj be the vector of K covariates for the subject who fails at time t(j) 

and xi be the vector of covariates for the ith subject, i = 1, …, N. Assuming that only one 

individual fails at t(j) ∈ (t, t + ∆t), the probability that it is an individual with covariates 

xj is (Marubini & Valsecchi, 1995): 

∑
∈ jRi

ij

jj

xt
xt

),(
),(

)(

)(

λ
λ

 

Then the function describing the entire failure pattern for the set of J deaths is the 

product (Cox & Oakes, 1984): 

∏∑=
∈

=
J

j
Ri

ij
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λ
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Given the Cox-PH model (3.1), the likelihood function simplifies to: 

∏∑=
∈

⋅′

⋅′

=
J

j
Ri

x

x

j

i

j

e
eL

1

)( β

β

β , 

which is a partial likelihood function depending only on the unknown β values (and the 

known x values). The unknown values of β are then estimated by the values , which 

maximize the partial log-likelihood: 

β̂

∑ ∑∑
= =∈

⋅′ =



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














−⋅′=

J

j

J

j
j

Ri

x
j lexLL

j

i

1 1
log)( βββ , 

where lj is the contribution to the log-likelihood for failure time t(j) (Marubini & 

Valsecchi, 1995). The estimates of β are found by equating to zero the K first partial β̂
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derivatives of LL(β) with respect to βk, k = 1, …, K, and solving the system of K 

equations, each of which has the form: 

                                                 0)()(
1

=
∂

∂
=

∂
∂

= ∑
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lLL
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ββU                                  (3.2) 

Concentrating just on the derivative contribution to the sum: 
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it can be generalized to: 

                                                       ∑
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for the entire vector of K covariates for a subject failing at time t(j). 

If more than one deaths occurred at time t(j), the partial log-likelihood can be modified 

to: 

∑ ∑∑
= =∈

⋅′ =







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



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
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
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j

J
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1 1
log)( βββ , 

where sj is the sum of all covariate vectors of the subjects who fail at time t(j) and dj is 

the number of such subjects. This approach was proposed by Peto (1972).    
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Estimating the baseline hazard: 

A simple maximum likelihood estimator of Λ0(t) was proposed by Breslow (1974), 

which is now widely used for baseline hazard estimation. To deal with the censoring 

problem, Breslow assumed that the hazard is constant between two consecutive failure 

times. The baseline hazard was estimated separately in each of the intervals between 

failure times: (t(j-1), t(j)], where j = 1, …, J. Assumed are: t0 = 0 and censoring within the 

interval occurred at the beginning of the interval, t(j-1). Then the estimate of λ0(t) for the 

interval (t(j-1), t(j)], is: 

∑
∈

⋅′
− ⋅−

=

j

i

Ri

x
jj

j
j ett

d
βλ

)(
ˆ

)1()(
 

where dj is the number of failures which occurred in the jth time interval. Breslow’s 

estimator of the cumulative baseline hazard at time t is: 

∑ ∑≤
∈

⋅′=Λ
tt

Ri

x
j

j

j

ie
d

t
)(

)(ˆ
0 β  

and the baseline hazard itself is: 

                                                     ∑
∈

⋅′=

j

i

Ri

x
j

j e
d

t βλ )(ˆ
)(0                                             (3.5) 

calculated at each failure time t(j). 
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3.2 Schoenfeld residuals [Schoenfeld, 1982] 
 

For a Cox-PH model involving K covariates for each subject i: xi = (x1i, x2i, ..., xKi) and   

β = (β1, β2, ..., βK), Schoenfeld residuals are defined at each failure time t(j) as the 

difference between the covariates of the subject who fails at time t(j) and their estimated 

values, given the subjects still at risk at time t(j): 

                                                                                                       (3.6) )|(ˆˆ jjjj RxExr −=

There is one Schoenfeld residual for each failure time (assuming that only one 

individual fails at a time) and each residual is a vector of K components (one for each 

covariate), where  is obtained by substituting the maximum likelihood 

estimates  in .  

)|(ˆ
jj RxE

)| jj Rxβ̂ (E

∑

∑

∈

′
∈

′⋅

=

j

k

j

k

Rk

x
Rk

x
j

jj e

ex
RxE β

β

)|(  

Note that those residuals belong to time points and cannot be computed for all 

individuals. It can be shown, that under the correct model the values of  are 

asymptotically uncorrelated with their expected value zero. 

jr̂

Each component  corresponds to the kkjr̂ th covariate. A plot of the  values against 

time would show possible departures from the PH assumption related to the k

kjr̂
th covariate 

(Figure 3.1). To discover the presence of patterns over time (hence departure from the 

PH assumption) one would need to smooth the residuals. Figure 3.1 shows no change of 

the residual pattern over time, hence we can conclude that covariate LVEF satisfies the 

PH assumption.  

If more than one subject fails at time t(j), a separate residual is calculated for each 

subject instead of averaging (Therneau & Grambsch, 2000).  
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Figure 3.1: Scatter plot of the Schoenfeld residuals for factor LVEF against follow-

up time for the prognostic model (section 10.4.1) built on the EMIAT 
data. The residuals are smoothed with cubic splines. 

 
 
 

3.3 Martingale residuals [Barlow & Prentice, 1988] 
 

The basis for development of martingale-type residuals is the difference of the counting 

process observed on individual i and the integrated intensity function for this counting 

process: 

)()()()( 0
)(

0
sdesYtNtM sZt

iii
i Λ⋅−= ⋅′∫ β

                     (3.7) 

where: 

i  = 1, ... , n 

Yi(t)  is a 0-1 process, indicating whether the ith subject is at risk at time t 

β  is a vector of regression coefficients 

Zi(t)  is a p-dimensional vector of covariate processes 

Λ0  is the baseline cumulative hazard function. 
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Ni(t)  is the counting process for subject i; for right censoring, it is 0 prior to 

time of event and 1 thereafter. 

We are in the framework of the Cox-PH model where Λ0 is unspecified and Yi(t) = 1 

until the first event or censoring and zero thereafter. For example, if patient i is censored 

or fails at time t = 5, 





>
≤

=
50
51

)(
tif
tif

tYi  

Subject to standard measurability and intergrability requirements, Mi(·) will be a 

subject-specific martingale [Gill, 1980, 1984]. 

Using standard partial likelihood theory, we can get the maximum likelihood estimate 

of β and consequently an estimate of Λ0 [Breslow, 1974]: 

∫ ∑ ⋅

∑
⋅′

=Λ
t

esY

sdN
sjZ

i

it
0 )(

)(
0 )(ˆ)(ˆ

β                                      (3.8) 

We can define the martingale residuals as: 

∫ Λ⋅−= ⋅′t sZ
iii sdesYtNtM i

0 0
)(ˆ )(ˆ)()()(ˆ β

                      (3.9). 

Martingale residuals have the following properties: 

1.  asymptotically ,0)ˆ,ˆcov()ˆ( == jii MMME

2.  ∑ ∀= ttM i ,0)(ˆ

Specifically for Cox-PH model, the definition of martingale residuals reduces (see 

Appendix A) to: 

),(ˆ)(ˆˆ ˆ
0 iiii

Z
iii ZtetM i Λ−=⋅Λ−= ⋅′ δδ β

                     (3.10) 
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where: 

ti is the observation time for subject i and 

δi is the final status for subject i. 

The residuals can be interpreted at each time t as:  

"... the difference over [0, t] of the observed number of 

events minus the expected number given the model, or as 

excess deaths."                (Therneau et al., 1990)     

Kay (1977) came to this residual from a different perspective and Crowley & Hu, 1977 

developed a similar residual based on the original work of Cox & Snell, 1968. 

Notice that since the status can take only values of 0 or 1 and the hazard is always non-

negative, the martingale residual for the Cox-PH model takes values only in the interval 

(-∞, 1]. The following figures 3.2 & 3.3 give an example of what a plot of the 

martingale residuals could look like and a box plot for demonstration of the skewed 

nature of their distribution. 
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Figure 3.2: Scatter plot of the martingale residuals against follow-up time for a 

model on a data set simulated as in chapter 9.  
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Figure 3.3: Box-and-whisker plot for the martingale residuals from figure 3.2. 

 

3.4 Score residuals [Therneau et al, 1990] 
 

The score residuals are a martingale-transform type of residuals defined for each subject 

on the basis of his/her contribution to the score statistic (3.11). In our case the integral is 

with respect to the martingale residual, which involves β and Λ0. When Λ0 is 

unspecified, as it is the case in the Cox-PH model, it can be estimated using Breslow’s 

estimate. Then, when  β = b, the derivative of the partial likelihood function Lp with 

respect to βj can be written as: 

∑
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               (3.11) 
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where ),( sbZ j is the weighted mean of the covariates over the risk at time s: 

∑

∑

=

⋅′

=

⋅′

⋅

⋅⋅
= n

i

sZb
i

n

i
ij

sZb
i

j
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i

esY

sZesY
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1

)(

1

)(

)(

)()(
),(                               (3.12) 

We define  as the score process and as the score residual of the i),ˆ( ⋅βijL ),ˆ( ∞βijL th 

subject and the jth variable.  Score residuals measure the leverage exerted by each 

subject on parameter estimates in that they provide an estimate of the changes in the 

coefficients β that would occur when each of the observations are deleted. Therefore, 

one should look for outliers in the residual plots. Several outliers are visible on the score 

residual plots of  figure 3.4. Each outlier corresponds to a patient, who's value for the 

factor being analyzed influence strongly the model coefficient of that factor.  

The score residuals also sum to zero. 
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Figure 3.4: Scatter plots of the score residuals of factors LVEF, NYHA, and AGE 

against follow-up time for the model from section 10.4.1. 
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3.5 Deviance residuals (Therneau et al, 1990) 
 

A major deficiency of the martingale residuals is their skewed distribution. They take 

values in the interval (-∞, 1].  A transformation helps solving this problem:  

Define: deviance: 

D = 2·[ LL(saturated) – LL( )]                       (3.13),  β̂

where the saturated model is one for which β is free, i.e. each observation i has its own 

vector of coefficients β. Any nuisance parameters, such as the baseline hazard  are 

held constant across the two models. Assuming known 

0Λ

0Λ  and letting hi be the 

individual estimates of β for each subject i: 

( ) ( ){ }∑ ∫∫ Λ−⋅−−⋅= ⋅′⋅′⋅′⋅′ )()()(lnlnsup2 0
ˆˆ sdeesYsdNeeD iiiiii ZZh

ii
ZZh

h

ββ
      (3.14) 

Using Lagrange multiplier, the maximal value of hi satisfies: 

∫ ∫
∞ ∞⋅′ =Λ⋅

0 00 )()()( sdNsdesY i
Zh

i
ii  

Let the Martingale residual with estimated β and known Λ0 be: 

∫ Λ−≡ ⋅′t Z
ii sdetNtM i

0 0
ˆ )()()(~ β

                            (3.15) 

Substituting in the deviance definition: 
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Estimation of Λ0 results in the replacement of iM~  by  in the formula. The deviance 

residual is the signed square root of the deviance D. It is zero if and only if . For 

the Cox-PH model, the deviance simplifies to: 

iM̂

0ˆ =iM

)]ˆln(ˆ[2)ˆsgn( iiiiii MMMd −⋅+⋅−⋅= δδ                    (3.16) 

The ln(·) function inflates martingale residuals close to 1 and the square root contracts 

the large negative values. 

Usually deviance residuals are plotted against the risk score of the model (β·x), but for 

the purpose of outlier screening one can use observation time instead of score or simply 

a box-and-whiskers plot. The martingale residuals used in figures 3.2 & 3.3 were 

transformed to deviance residuals in figures 3.5 & 3.6. Notice that the magnitude of the 

residuals changes, but their relationship to one another stays the same since they are 

monotonic transformations of each other (see figure 3.7 for illustration). The same 

negative outliers can be detected visually on the scatter plots. As expected, after the 

transformation the distribution of the deviance residuals appears more symmetric and 

differences among the positive residuals are enhanced (recall: martingale residuals can 

be at most 1 whereas deviance residuals do not have such restrictions).  
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Figure 3.5: Scatter plot of the deviance residuals against follow-up time 

corresponding to the martingale residuals from figure 3.2. 
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Figure 3.6: Box-and-whiskers plot of the deviance residuals from figure 3.5. 
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3.6 Log-odds and normal deviate residuals (Nardi & 
Schemper, 1999) 

 

Nardi & Schemper (1999) suggested the use of log-odds or normal deviate residuals for 

outlier screening, which seem to have better distributional properties than the Deviance 

residuals. The log-odds and normal deviate residuals are constructed on the basis of the 

estimated survival function for individual i and his/her observed event time ti or 

censored time ti
c. The prediction of survival is considered "perfect" if . 

Those residuals do not measure directly the difference between observed and predicted 

survival time. Instead, they do this indirectly by comparing the estimated survival 

probability at time t

5.0)(ˆ =ii tS

i (or ti
c) with the "perfect" value of 0.5. 

Log-odds residuals are defined as the logit transformation of : )(ˆ
ii tS
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                                             (3.17) 

Normal deviate residuals are defined as the probit transformation of : )(ˆ
ii tS
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i tS
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n ,                                              (3.18) 

where Φ is the normal cumulative distribution function. 

The censored case in both definitions deserves special attention. Since for censored 

individuals the censoring time is always less than the time of event, a uniform 
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distribution of  is assumed on the interval [0, ] (Crowley & Hu, 1977). The 

unknown value of  is then replaced by its mean 

)(ˆ
ii TS

(ˆ
iS

)(ˆ c
ii tS

)it 2
(ˆ c

ii tS )
. 

 

3.7 Suitable residuals for responder identification 
 

For the purpose of responder identification we need residuals to the Cox-PH model 

which correspond to data points and are not explicitly connected to single prognostic 

factors contained in the model. Such residuals would be able to identify outlying points 

with poorly predicted individual outcomes by the prognostic model. Those points can be 

used for predictive factor identification and, ultimately, responder identification  

purposes. 

Schoenfeld residuals check the validity of the proportional hazards assumption. A large 

(positive or negative) residual indicates that the event which occurred at time tj is 

unlikely under the current model, given the covariates of the individual who failed 

relative to those still at risk. They belong to time points rather than to individuals and 

are plotted against the prognostic factors. Therefore, they are not suitable for responder 

identification.  

Score residuals look for presence of observations which are influential to a prognostic 

factor's coefficient estimate. They are different for each prognostic factor and, thus, 

cannot be used for predictive factor identification.  

Martingale residuals, on the other hand, are suitable for responder identification. 

Naturally, they were originally constructed with a different implementation in mind, 

namely, to deal with the linearity assumption for prognostic factors, as summarized in 

table 3.1 (Harrell, 2001), but their properties together with their simple and logical 

interpretation make them a natural candidate for responder (outlier) identification.  
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Table 3.1:  Use of martingale residuals (Harrell, 2001). 
 

Purpose Method 

Estimate transformation for a single 
variable 

Force  and compute residuals from 
the null regression 

01̂ =β

Check linearity assumption for a single 
variable 

Compute  and the residuals from the 
linear regression (ordinary Cox model) 

1̂β

Estimate martingale transformations for p 
variables 

Force  and compute 
residuals from the global null model 

0ˆ,,1̂ =pββ K

Estimate transformations for variable i 
adjusted for the rest p-1 variables 

Estimate p – 1 β's, forcing . 
Compute residuals from mixed global/null 
model 

0ˆ =iβ

 

Martingale residuals for the Cox-PH model are defined in 3.10 to be the difference of 

the censoring indicator and the estimated hazard rate at each observation. Recall that 

martingale residuals can only achieve values in the interval (-∞, 1], since δi switches 

only between the values of 0 and 1. For residual interpretation purposes the censoring 

indicator can be thought of as a classification rule, which places patients into either the 

low or the high hazard group. This results in only a few possible scenarios: 

Martingale residuals with values close to zero: 

As by most other residuals, values around zero reflect good fit of the model. In our 

situation this can be achieved if δi = 1 and ≈ 1, which means that the iiΛ̂ th patient with 

an event was predicted to be at high risk, or if δi = 0 and ≈ 0, which means that the iiΛ̂ th 

patient was censored and predicted to be at low risk. Those are candidates for non-

responders. 

0ˆ
0ˆ
0

≈⇒
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≈Λ

=
j

j

j
M

δ
                 0ˆ
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j

j
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Martingale residuals with large positive values: 

Large values of any residuals are a sign of a bad fit of the prognostic model and here – a 

possible sign of existing predictive factors. Values of the martingale residuals close to 1 

can be achieved only if δi = 1 and  ≈  0, i.e. the iiΛ̂ th patient was predicted to be at low 

risk but he/she died. Such patients are candidates for negative responders. 

1ˆ
0ˆ

1
≈⇒







≈Λ

=
j

j

j
M

δ
 

Martingale residuals with large negative values: 

Large negative values are also a sign of a bad fit. Large negative values of the 

martingale residuals (e.g. –1) are achieved if δi = 0 and  > 0 (e.g.  ≈ 1), i.e. the iiΛ̂ iΛ̂ th 

patient was predicted to be at high risk but he/she was censored (i.e. did better than 

expected from the prognostic model). Such patients are candidates for positive 

responders. A large negative martingale residual is also possible for patients who died 

and have extremely large predicted hazard rate (e.g. δi = 1 and Λ  ≈ 2). Notice, that 

even though the patient dies, he would still be candidate for a positive responder, since 

in order to have such a large hazard rate, he must have lived much longer than expected.  

i
ˆ

)1(0ˆ
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δ

As mentioned in chapter 3.2, martingale residuals have two major disadvantages. They 

take values only in the interval (-∞, 1] and their distribution is highly asymmetric. 

Furthermore, censored cases always have negative residuals, which skews the 

distribution even further for data sets with large percent censoring. Deviance residuals 

were created especially to deal with the first problem and they have better distributional 

properties (Therneau et al, 1990). However, they do not always manage to transform the 

martingale residuals to a symmetric distribution, especially for data with large 

percentage of censoring. Although the definition of deviance residuals (3.16) looks 
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rather complicated, they can just as well as the martingale residuals be interpreted in the 

traditional form of expected – predicted value (for details, see Appendix A). If we 

regard once again the censoring indicator as the expected value from the data and the 

estimated hazard rate – as the predicted value from the (prognostic) model, with some 

calculations we reach the following conclusions: 

Deviance residuals with values close to zero: 

If the expected and the predicted values are the same, the resulting residual is small in 

absolute value or zero. Just as by martingale residuals, this can be achieved if a  patient 

is predicted (prognostic model) to have low hazard and he/she is censored or if a patient 

is predicted to have high hazard (about equal to one) and he/she experiences an event. 

Such patients are candidates for non-responders. 

0
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Deviance residuals with large positive values: 

Deviance residuals are transformed martingale residuals and as such, they can have 

positive values only if an event occurred and the predicted hazard rate is less than one. 

Unlike martingale residuals, they do not have an upper limit of one (see figure 3.5). 

Patients with large positive values of the residuals are candidates for negative 

responders: 

)2(0
)5.0(1ˆ

1
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Deviance residuals with large negative values: 

Deviance residuals can have negative values both for censored cases and for cases with 

events. If a patient is predicted to have large hazard but he/she is censored, the residual 

would be large negative. The patient shows improvement under the new treatment 

(he/she is censored before an event occurred) in comparison to his/her predicted hazard 
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(large positive) as expected from the prognostic model developed on the classical 

treatment group. Just as by martingale residuals, the patient can have an event and still 

show improvement under the new treatment, if his/her predicted hazard is much larger 

than one. Such situation would show that the patient did experience an event, but much 

later than expected. Such patients are candidates for positive responders. 
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The general relationship between the size of the predicted hazard and the resulting 

residual (martingale and deviance) is plotted in figure 3.7 for censored and uncensored 

cases. And the relationship between martingale and deviance residuals (defined in 3.16) 

is plotted in figure 3.8. As expected, those residuals are highly correlated (Spearman's 

rho correlation coefficient =.998, p < .001).  
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Figure 3.7: Relationship between the predicted hazard and the martingale and 
deviance residuals for the event and censored (always non-positive) 
cases. The relationship between predicted hazard and martingale 
residual is linear, whereas deviance residuals transform that 
relationship. 

 



 
 
 
     26 

 

 

MART

50-5-10-15-20-25

D
EV

I

4

2

0

-2

-4

-6

-8

 

 

 

 

 

 

 
 
Figure 3.8: Relationship between the deviance and martingale residuals from figures 

3.5 and 3.2. 
 

The log-odds or normal deviate residuals, which can be used for outlier screening, have 

better distributional properties than the deviance and the martingale residuals. However, 

they are both highly correlated (Spearman's rho correlation coefficient =.998, p < .001) 

with the martingale residuals (see figures 3.9 & 3.10).  
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Figure 3.9: Relationship between the martingale (MART) and log-odds (LOGODDS) 

residuals on a model from the simulation study in chapter 9. 
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Figure 3.10: Relationship between the martingale (MART) and normal-deviate 

(NORMDEV) residuals corresponding to figure 3.9. Notice, that the log-
odds and normal-deviate residuals from figures 3.9 & 3.10 were 
calculated on a different data set than the residuals in figure 3.8, hence 
the different scale of the martingale residuals. 

 

In addition, even though the log-odds and normal deviate residuals quantify the 

departure from perfect prediction of the prognostic model, they cannot be interpreted in 

the classical expected vs. predicted form, which makes them undesirable for responder 

identification. 

The above residual overview leaves us with the following thought. We can either have 

interpretable, hence usable for responder identification residuals, which have 

distributional problems connected to censoring, or we can choose the improved 

residuals, which are perfect for outlier screening and with nice symmetric distributions, 

but which are unusable as responder identifiers since they cannot be interpreted in the  

expected – predicted form (Nardi & Schemper, 1999). This leaves us with the 

martingale and the deviance residuals as suitable for responder identification purposes. 

Since they are highly correlated with each other and since they basically identify the 

same groups of outliers (see figure 3.2 & 3.5), a simulation study is needed in order to 

choose the more appropriate residual for responder identification (see chapter 9).  



4. THE CLASSICAL APPROACH: COX-PH MODEL 
WITH INTERACTIONS 

 
 
 

Up to now, the classical approach for responder identification in clinical trials has been 

the Cox-PH model including interaction terms between the treatment and some or all of 

the covariates (Schemper, 1998). 

 

4.1 Definition 
 

In a clinical trial with two arms, in which a classical and a new treatment are compared, 

one would use the following version of the Cox-PH model on the entire data set: 

44444 844444 76876
predictive

TiziI

prognostic

ix treatztreatzx
ii etzxt ⋅+⋅′+⋅⋅′+⋅′⋅= ββββλλ )(),,( 0  

where:  

i – patient identifier, i = 1, ..., n 

x  – vector of prognostic factors 

βx  – vector of coefficients of the prognostic factors 

z  – vector of predictive factors (z ⊂ x is possible) 

βz  – vector of coefficients of the predictive factors; 

    to avoid double appearance, βz[i] = 0 for zi ⊂ x 

treat  – factor indicating treatment group (0 = classical, 1 = new) 

βT  – coefficient of treatment indicator 

βI  – vector of coefficients of the interaction terms 
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4.2 Responder identification 
 

If a certain predictive factor interaction term shows to be adding information to the 

model, this should be interpreted as follows: 

• If the coefficients in the predictive part of the model are such, that the presence of 

factor zi in the model increases the hazard of patients having that factor and taking 

the new treatment, we can say that zi is a predictive factor and patients having this 

characteristic are negative responders of the new treatment (see figure 2.2).  

• Naturally, if the coefficients in the predictive part of the model lead to reduction of 

the hazard in the presence of factor zi, then zi would be a predictive factor which 

defines the positive responder group. 

The problem with this method is, that in order for it to recognize a combination of 

factors as predictive, this particular combination has to be present in the model as 

interaction. Even assuming that the interaction between the factors is linear, the order of 

the interaction term is unknown. If two predictive factors and factor treatment should 

show interaction, one needs to consider all possible interaction terms of up to third order 

in order to give a chance of a covariate selection procedure to choose the right 

combination. The number of possible interaction terms to be considered grows rapidly 

as the number of factors grows. It is also known, that the power of stepwise variable 

selection procedures decreases as the number of variables (variable combinations) 

increases.    

Considering the limitations of this simple approach, it is clear, that a new more involved 

exhaustive method is needed. A class of such methods is suggested and discussed in 

chapters V through VIII. 

 



5. CLASSIFICATION AND REGRESSION TREES 
(CART) – RECURSIVE PARTITIONING 

 
 
 

We will use the following standard tree terminology: 

Tree   A model based on recursive (usually binary) partitioning 

Node A position in the tree where a new partitioning can be performed. 

The node is the current space for all immediately following 

operations. 

Split  Position in the tree where the current space (node) is partitioned 

into (two) subspaces  

Root tree  A tree consisting of one node and no splits, i.e. the original space. 

End node (leaf) A node on which no more splits can be performed. The objects in 

each leaf are estimated with an appropriate function. 

Branch A node with all its following splits and nodes. A branch is a 

subtree. 

Pruning  Cutting off branches. 

Classification tree A tree model appropriate for data with a categorical response 

variable or, after alteration, for survival response. 

Regression tree A tree model appropriate for data with a continuous response 

variable. 

 
node

 

Tree diagram branch

end node 
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Although the original clinical trial data in our problem is survival data (two response 

variables: survival time and censoring indicator), predictive factor identification does 

not require application of survival trees. A survival model (in our case Cox-PH model) 

was already used on the data for prognostic factor identification. From this point on, we 

will have a single response variable – the residuals to the prognostic model. 

The regression and classification tree method (Breiman et al, 1984) is a method which 

employs recursive partitioning in order to split the response space into a set of 

rectangles. In classification trees, the response is categorical and the objects in one 

rectangle would be predicted to be in one of the response categories (classes). Since 

martingale and deviate residuals are continuous, we will need regression trees, which fit 

a simple (e.g. constant) model in each of the resulting rectangles to predict the response 

of the points in them. 

For illustration purposes, it is convenient to use just two continuous factors and a 

continuous response. Factors LVEF and HRVI were chosen from the treatment arm of 

the EMIAT data set for this example. The response variable here is the martingale 

residual of the prognostic model (see chapter 10.4.1 for details on the prognostic 

model). A binary regression tree was built on the data (figure 5.1b), which splits the 

input space recursively in two parts, as shown in figure 5.1a. The first split is made at 

the value of 8.95415 of factor HRVI, the second – at value 20.5 of LVEF, and so on. 

The result of this recursive binary partitioning is  a set of 6 regions R1, ... R6. The 

regression model predicts the residuals in each region with a constant cm (Hastie, 

Tibshirani, Friedman, 2001): 

∑
=

∈⋅=
6

1
21 }),{()(ˆ

m
mm RxxIcxf , 

where x1 & x2 are the two input factors. The resulting regions are represented in the 3D 

plot of figure 5.1c and the tree model representing this series of splits is shown in figure 

5.1b, where the end nodes of the tree represent the 6 regions. 
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Figure 5.1: A regression tree example built on a two dimensional input space from 

the EMIAT data set, including factors LVEF & HRV_index (HRVI), with 
the martingale residuals of the Cox-PH model from section 10.4.1 as a 
response variable. 
a) The two dimensional input space, divided into six regions as 

defined by the end nodes of the regression tree in b). 
b) The regression tree model 
c) Three dimensional representation of a) including the mean 

response (c) for each region, which represents the mean of the 
martingale residuals for patients in the six regions of a). 

 

Notice that the predictors xi may also be categorical, in which case the set of possible 

splits is predefined and finite (for binary predictors there is only one possible split 

point). Also, in general, we have more than two predictors to choose from. 
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5.1 Growing a regression tree 
 

Consider the following data available for growing a tree, the so called learning sample 

L: a set of p predictors xi = (xi1, xi2, ..., xip) and a response yi, available as pairs (xi, yi) for 

a total of N observations (i = 1, ..., N). The tree algorithm must be able to select splitting 

variables and corresponding split points, starting with L and ending when a stopping 

criteria is reached. The algorithm must also decide at each node if this is an end node or 

if further splitting is needed. Additionally, one may choose to reconsider the tree 

architecture and collapse some unimportant nodes, using pruning. 

 

5.1.1 Splitting 
 

Splitting in regression trees, as introduced by Breiman et al (1984), is done with the 

help of least squares regression. If a tree partitions the space into M regions R1, ..., RM, 

which are modeled with the simplest possible regression model – a constant cm, then the 

response variable can be described by: 

∑
=

∈⋅==
M

m
mm RxIcxfy

1

)()(  

Regression tree models, as described by Breiman et al (1984), use the least mean 

squared error of f(x) in the region as a splitting criterion. Each possible split defined 

with splitting variable xi and split point ti is evaluated by calculating the mean squared 

error of predictor f(xi) of yi:  

∑
=

−
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i
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N 1

2))((1
 

That means that the best constant  for region Rmĉ m is just the average of yi in Rm: 

)|(ˆ miim Rxyavec ∈=  
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The optimal cutpoint is chosen by minimizing the expected mean squared error. In 

terms of splitting L in two regions at predictor j and point ts, if R1 and R2 are the two 

resulting subspaces at this split, then: 

}|{),(}|{),( 21 sjsjsjsj tXXtXRandtXXtXR >=≤=  

Then one should be looking for splitting variable xj and point ts, which minimize: 


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The minimization over c1 and c2 is solved by the Bayes predictors (see Breiman et al, 

1984, for extensive theory of the splitting process): 

( ) ( )),(|ˆ),(|ˆ 2211 sjiisjii txRxyavecandtxRxyavec ∈=∈=  

Thus, minimization over xj and ts is done by considering all possible xj and ts 

combinations in L, and taking the one which minimizes the sum of the averages of yi in 

the two resulting subspaces. 

Splitting is done iteratively, starting with the original data set (learning sample), finding 

the best split, and then splitting again the resulting subspaces. The process is repeated 

by node number on all nodes which are not end-nodes (see figure 5.2 for node 

numeration scheme).   

 

//

R2 R1

111098

75 64

2 3

1

 

 

 

 R3 R4 R5 R6
 
Figure 5.2: Node numbering of trees 
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5.1.2 Stopping criteria 
 

The tree growing algorithm also needs to recognize when a node is final and when 

further splitting is needed. There are two stopping rules, which are used simultaneously. 

The current node is considered end node if: 

1. A minimum, predefined amount of data points in it is reached. 

2. No more splitting can be done, i.e. all data points in the node are described by   

the same vector of predictors (this is possible only if all predictors are 

categorical). 

In addition, goodness of split criteria can be used to decide if a split is significant, or if 

the current node should be final. However, Hastie, Tibshirani, and Friedman (2001) 

note that this strategy is rather "short-sighted" since a "seemingly worthless split might 

lead to a very good split below it." 

 

5.1.3 Pruning 
 

It is preferable to grow a large tree first, knowing that it overfits the data, and then 

reducing it to the right size with the help of cost-complexity pruning for regression 

trees. 

Let Ti be a subtree of the overgrown tree T0; Ti is obtained from T0 by pruning. Let |Ti| 

denote the number of endnodes in Ti and let they be indexed by m = 1, ..., |Ti|, 

corresponding to the regions Rm into which Ti splits the initial space (fig. 5.2). Then the 

cost-complexity criterion (also called error-complexity for regression trees) is defined to 

be (Breiman et al, 1984, Hastie, Tibshirani & Friedman, 2001): 

∑ ∑
= ∈
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The cost-complexity criterion is an AIC type criterion, which penalizes by increasing 

the complexity of big trees. The tuning parameter α ≥ 0 governs the trade off between 

complexity and goodness of fit. The cost-complexity criterion is calculated in Appendix 

A at each possible pruning point for the tree in figure 5.2. Pruning is applied first at the 

weakest link in the tree model, which is followed by the node producing the smallest 

increase (per node) in the error term of the cost-complexity criterion. The result of 

pruning with parameter α would then be a tree Tα ⊆ T0, which minimizes the cost-

complexity criterion. Notice that large α values result in smaller Tα trees and vice versa. 

If α = 0, then Tα = T0. 

Breiman et al (1984) describe the pruning theory in full length, and prove that there is a 

unique solution to the minimization problem. 

 

5.2 Tree Performance 
 

The tree model has lately become popular among medical scientists "... perhaps because 

it mimics the way that a doctor thinks." (Hastie, Tibshirani & Friedman, 2001). The 

main advantage of recursive binary partitioning is that the resulting models are 

interpretable. The whole space is partitioned in disjoint regions and all of them are 

described with a single tree.  

The main disadvantage of tree models is their instability, which is due to the 

hierarchical nature of the model construction method. Bagging, for example, is a 

method developed to cope with this disadvantage (Breiman, 1996). Bagging averages 

among several tree models in order to reduce the variance, but the averaging process 

deprives the model from its main advantage – interpretability.  
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5.3 Responder identification with regression trees 
 

As mentioned earlier, the responder identification idea is based on finding patients in 

the new treatment group, who are badly predicted by the prognostic model. In chapter 3 

we have shown why martingale and deviance residuals are suitable for this purpose. 

Since regression tree models split the input space into regions, which are described by a 

part of the input variables (the predictive factors), and the size of the output variable in 

each region is predicted, we can use regression trees for responder identification. The 

tree would be built on the new treatment arm of the data and the residuals to the 

prognostic model would be used as an output variable. Binary splitting is based on 

maximal difference of the output variable in the regions, so the hope is, that one or more 

of the final regions of the tree model would have much larger or much smaller mean of 

the residuals in them, than the average for the input space ( ≈ 0). 

The responder identification method is described in detail in chapter 8. 



6. PRIM – PATIENT RULE INDUCTION METHOD 
(BUMP HUNTING) 

 
 
 

Bump hunting, presented in this chapter as described by Friedman & Fisher (1999), is a 

Data Mining technique which optimizes a certain target function in order to find regions 

in the input space with special unique properties, different from the rest of the space. 

Unlike prediction models (like CART), which cover the whole input space and attempt 

to capture its general characteristics, bump hunting is designed to identify and describe 

only parts of the space, which gather elements with common special behavior.  

Having a learning sample L = {yi, xi}, i = 1, ..., N, xi = (x1i, x2i, ..., xni) taken from the 

underlying distribution with probability density of y at each x: p(y|x), described by its 

first moment )|()( xyExf = , one can use the minimizer of the mean squared prediction 

error at each input x as a way of describing the underlying distribution with the help of 

the learning sample. 

As previously mentioned, bump hunting is not interested in describing all of f. It merely 

searches for special properties of f, namely, its minima and maxima. This is a typical 

function optimization problem, which is solved by searching for regions of the input 

space (L) in which the average response values (yi) are much larger (or much smaller) 

than the overall response average. Notice, that min f(x) = max [– f(x)], so that the 

maximization algorithm can be transformed into a minimization one with just a simple 

sign change. For the rest of this chapter we will only discuss maximization without loss 

of generality. 

Assuming that Sj is the set of all possible values of variable xj, we can represent the 

entire input space as an n-dimensional product space: 

nSSSS ×××= K21  
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If we are not looking for a single maximal point x, but for a region containing that point, 

the goal of function optimization would be to find a subregion B of S, such that: 

SBxB fxfavef >>=
∈

)( . 

The size, also called support, of region B is then the integrated probability density:  

∫
∈

=
Bx

B dxxp )(β . 

Usually there is a trade-off between Bf  and Bβ  – larger function average is associated 

with smaller support in the region. Since we do not know the underlying distribution, 

but just have a learning sample, we will use the estimates of Bf  and Bβ : 
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where yi are the output values and function I is an indicator which (in the sum) counts 

the number of observations in region B. 

Optimization theory offers many different strategies for function optimization. Bump 

hunting is a type of greedy algorithm equipped with patience, which stresses 

interpretability of the resulting regions. 

 

6.1 General structure of the PRIM model 
 

In general, bump hunting focuses on solutions which can be described in terms of 

important characteristics of the data. In particular, that means that the sought region B 

(also called bump) can be described by simple statements involving the input variables. 
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The final bump can be composed of several sub-regions (called boxes) Bk, k = 1, ... , K, 

where B is the union of all sub-regions: 

k

K

k
BB

1=
= U . 

Each sub-region Bk is constructed of simple logical rules (called borders) involving 

different input variables. These borders are obtained by combining a certain number of 

basic rules that concern only one variable at a time. This makes the resulting region 

interpretable: 

nkkkk sssB ×××= K21 , 

where sjk is a subset of all possible values of xj, Sj:{ . Thus, the sub-regions Bn
jjk Ss 1}⊆ k 

are defined by the intersection of the subsets of all possible values of each single 

variable: 

)(
1

jkj

n

j
k sxBx ∈=∈

=
I . 

If input variable xj is continuous, subset sjk will be an interval; if variable xj is 

categorical, sjk is a finite set of values from Sj. 

Now we know that bumps are unions of boxes and boxes are intersections of borders. 

Next we need to know how to construct these elements. The construction of bumps 

happens stepwise. The calculation of the first box B1 is done with the entire data set. 

Then the elements contained in B1 are removed from the construction data set and the 

second box is constructed using the reduced data set. The kth box is found using all data 

not included in any of the previous boxes. In this manner, since the successive box 

definitions depend on the previously constructed boxes, box-definitions grow more and 

more complicated, but all building blocks stay simple logical rules. This process of 

removing the constructed boxes, and thus, indirectly including them in the definition of 

all following boxes is called covering. 
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Theoretically, the entire input space can be covered with boxes, however this is not 

done, since, as mentioned earlier, bump hunting is designed for the identification of 

extreme regions of the target variable, rather than for an optimal approximation or a 

good prediction of the output over the entire input space. 

 

6.2 Box construction 

During the box construction process, just as in regression trees, bump hunting (PRIM) 

looks for rectangular regions (boxes), but not by minimizing the sum of the averages of 

the (two) new regions into which the current space is split. Bump hunting "peels off" a 

certain percentage of the data while optimizing the response average of the elements left 

in the box (see figure 6.1 for illustration of the box construction process with two input 

variables). At each peeling step, a variable and a peel-off value is chosen, which 

together define a border (the lines in figure 6.1) so that the data points left in the region 

have the largest mean of the output variable: 

Btx
y

jj ,
max , 

where B is the box resulting from a peeling at variable xj and peeling point tj. The top-

down-peeling process stops when a minimum number of elements in the box is 

reached. 

Since peeling is a greedy process, the average of the response variable in the box can 

often be improved by "pasting" back some of the data to the box (the checked regions in 

figure 6.1). The bottom-up-pasting process stops when the average in the box can no 

longer be improved. In general, when pasting is possible, the new box does have a 

larger mean of the response variable, but that rarely has a dramatic effect (Friedman & 

Fisher, 1999) 
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Figure 6.1: Example of bump hunting model growth in a two dimensional input space 
(X1 & X2 are the input factors): 
a) the entire input space 
b) construction of the first box through peeling 
c) improving the first box by pasting 
d) construction of the second box through peeling in the input space, 

excluding the first box; improving the second box by two step 
pasting 

e) the input space and the bump, consisting of two boxes; all borders 
are shown with factor and cut-value 

 

After covering, all resulting boxes together describe the maximal region – the resulting 

bump. Notice, that since each box is removed from the space before the construction of 

the next one, the following boxes are not always rectangular and, therefore, cannot 

always be expressed by a tree model.  

Two parameters need to be specified in the box construction algorithm: peeling 

quantile α and minimal support β0. The peeling quantile determines the percentage of 

data points excluded (peeled away) from the current box at each peeling step. Friedman 

and Fisher suggest values of α between 0.05 and 0.1, which results in the removal of 5% 

to 10% of the data at each step. The minimal support is a threshold parameter, which 

determines the minimal size of the final box. The choice of the minimal box support 

involves statistical and domain of application dependent considerations. The 

development of a box mean (i.e. mean of the target variable for data points in the box) 

with respect to support β can be observed with the help of the box construction 

trajectory. The trajectory allows one to visually choose an optimal β0. Figure 6.2 shows 

an example of a trajectory, constructed with α = 0.1 where the mean of the response 

variable is maximized. One can observe how the mean grows from the mean of the 

whole data set (0) to about 0.75. The points on the trajectory represent the consecutively 

chosen borders. The trade off between support and mean in the growing box is clearly 

visible. Notice, maximization is done only in the direction of mean response. 

Multivariate optimization is not performed 

If the input factors are categorical, that limits the peeling procedure in the following 

manner: 

• Binary variables allow of only one peeling point, which splits the data into two 

parts. 
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• Variables with more than two categories are treated the same way as in CART. The 

peeling points are defined in such manner, that any category can be peeled off. 

Unlike continuous variables, where only the largest or the smallest values can be 

peeled off, in a categorical variable with, say, three categories: A, B, and C, 

category B can be peeled off (categories are not ordered). 

• Continuous variables are often categorized. In this case, to preserve the order among 

the categories, we suggest artificially entering the categorized input variable as 

"continuous" in the bump hunting algorithm. 

The general bump hunting algorithm delivers rather unstable models (just as CART 

does). If data permits, one can use cross validation at each box in order to stabilize the 

resulting model. If the initial space is small and does not allow cross validation, another 

stabilizing improvement of bump hunting can be used (see chapter 7). 

Global Mean
Border 1 

  ...           Border 3
Border 2

 
Figure 6.2:  Trajectory – visualization of the box-building process (α = 0.1). 
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A comparison between a tree and a bump model can only be made in a very lose sense, 

although both models partition the input space in regions, since trees describe the entire 

space and bumps – just extreme parts of it. A general advantage of bump hunting over 

CART is its patience. Due to the binary splitting in CART, the input space is quickly 

fragmented into large regions. Bump hunting peels off a certain adjustable proportion of 

data points at each step and can perform many more steps (on continuous factors) before 

running out of data.    

For further detail on the bump hunting procedure, please refer to Friedman & Fisher 

(1999). 

 

6.3 Responder identification with bump hunting 
 

Although not created originally for responder identification, bump hunting seems to be 

tailor made for that purpose. Consider the function plotted in figure 6.3 to be the 

residual of a prognostic model of an imaginary (for visualization purposes two 

dimensional) input data set. The positive and negative bumps are clearly visible. The 

negative bump consists of two boxes; the positive one of three boxes. Bump hunting is 

designed precisely to identify the regions in the (two dimensional) input space, shown 

as the projection, where minima and maxima of the output function occur (the darker 

and lighter shaded areas). Applied to the residuals of the prognostic model, this 

procedure would identify patients with specific properties, who are not well predicted 

by the prognostic model. Those groups of patients, described by values of the input 

variables, would be candidates for positive and negative responders.  

For details on the responder identification method, please refer to chapter 8. 
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Figure 6.3: Visualization of bump hunting for responder identification (the surface 

was created using function "peeks" in MATLAB 5). The horizontal 
coordinates represent a two dimensional input space, the vertical 
coordinate – the response variable. The two dimensional projection 
includes the response average on color scale, corresponding to each 
subdivision of the plane. 

 
 



7. STABILIZATION OF BUMP HUNTING 
 
 
 

As mentioned earlier, bump models are rather unstable, due to their hierarchical nature. 

There are two general ways of assuring that a model is "good": validation and 

stabilization. Harrell, Lee, & Mark (1996) summarize the procedure for performing 

external validation and the types of internal validation: data splitting, cross-validation, 

and bootstrapping. The external and the first two internal validation methods require 

abundance of (appropriate) data, which one rarely has. Bootstrapping uses the entire 

data set in the model building process and then calculates come goodness-of-fit statistic 

on a large number of bootstrap samples taken from the original data.  

There is no known goodness-of-fit statistic for the bump model. One can use the mean 

squared error as a type of homogeneity statistic, showing the difference between the 

mean of the output variable and the actual output values in the bump, but this does not 

capture the goodness-of-fit of the entire model. The choice of input variables and cut 

points is just as important. Therefore, bootstrapping as a validation procedure is not 

directly applicable for bump models. The validation choices left are external validation 

or internal validation involving data splitting. Both are not always possible. 

If there is no direct way to validate a bump model, one should at least reduce the 

variability of the bump hunting model resulting from small changes in the data – the so 

called stabilizing.   

 

7.1 Stabilizing with bootstrapping 
 

Bootstrapping can be used as a stabilization procedure during the model building 

process (see Tibshirani & Knight, 1999, and Dannegger, 2000). One can use bootstrap 

samples of the original data in order to estimate the model coefficients or to choose 
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stronger predictors. Bootstrapping, in all of its shapes and forms improves or qualifies 

the predictive capacity of the model. 

We apply bootstrapping in the method for identification of responders at each predictor 

selection step of the bump hunting process. 

Referring back to chapter 6.2, figure 6.2, the borders involving different predictor 

variables are chosen one-by-one in the box-building procedure. Border 1 is represented 

in fig. 6.2 with its mean and support, i.e. using the restriction involving the predictor in 

Border 1, we obtain a box having a single border representing a set of patients from the 

treatment group. In order to choose the second border, the first one needs to be fixed. 

This hierarchical dependency leads to large variation in the bump hunting model after 

small alterations of the data set. We stabilize the bump hunting model  in two ways: 

1. Categorization of all continuous predictors needs to be done in order to reduce 

peel-off point variation. This limits somewhat the power of bump hunting, since 

it restricts the peeling process, but it is a necessary preliminary step for the 

bootstrapped bump hunting. We suggest using at least three categories, which 

can be either already known from previous studies cut points or the 

corresponding percentiles. Notice, however, that many of the predictors coming 

from the area of medicine can only be split into two logical parts (i.e. tumor size 

= increasing/decreasing), whereas others allow for more categories (i.e. age = 

child/adult/elderly). As suggested in chapter 6, such categorized continuous 

variables should be entered as "continuous" in the bump hunting procedure. See 

chapter 8.4 for a note on a more sophisticated procedure for cut point 

identification. 

2. In order to stabilize the border selection method, we choose each border (i.e. 

predictor-restriction combination) after considering all borders chosen from n 

bootstrap samples. We fix a border and proceed to the next one only if it was 

chosen in the majority of the bootstrap samples. 

The process in 2. is repeated according to the following algorithm: 
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7.2 Algorithm 
 

1. Set the p-value of the log-rank statistic to 1 ( p(LR) = 1) and let T be the set of all 

patients in the new treatment arm. 

2. Take n bootstrap samples of T and, using the original bump hunting algorithm, 

create a trajectory for each one of them, including the original sample. 

3. Consider all n + 1 first borders and the associated predictors and choose the one 

which appears most often. If there is a tie, choose the less restrictive border, i.e. 

one which results in a box with bigger support when applied to the original data 

set. 

Note: Predictor and border are not equivalent terms. One predictor may appear with different 

restrictions in different bootstrap samples. We are only interested in the border 

frequency as a combination of predictor and constraint. 

4. Restrict T using the border from step 3. Calculate the mean response and the 

support of the resulting box. 

5. Apply the rules restricting T to the classical treatment (or placebo) group and 

create a set P of patients under the same restrictions as in T. 

6. Calculate the log-rank statistic for the difference in survival between patients in 

P and in T. If p(LR) improves1 from its previous value, return to step 2. If not, 

stop. 

Notice, that any stopping criteria which considers only one step at a time is easily 

implemented, but in general nearsighted. An alternative is to look several steps ahead 

before a stopping decision is made, since a seemingly "bad" border can lead to a "good" 

one and result in a better model (see section 10.5 for an example). We choose not to do 

this in the simulation study of chapter 9 in order to fully automate the software 

implementation and reduce computation time. 

                                                           
1 The definition of "improves" can be different for different types of data. If initially there is no difference 
in survival between the new and the classical treatment groups, the p-value improves when it decreases. 
For cases where there is initial difference, please refer to chapter 8.2 
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As an example to the general algorithm above, the result of a single border selection 

step (steps 2 & 3) could be as summarized in table 7.1. 

 
Table 7.1: Hypothetical example of border selection with bootstrapping. AGE = 1 if 

patient age ≤ 30 years; AGE = 2 if patient age ∈ (30, 65] years; AGE = 
3 if patient age > 65 years. SMOKER = 0 if patient is non-smoker; 
SMOKER = 1 if patient is smoker. 

 

Restrictions: AGE = 1 AGE = 2 AGE = 3 SMOKER = 0 SMOKER = 1 

Original data 1 0 0 0 0 

100 bootstrap 
samples 

10 0 85 0 5 

 

Table 7.1 should be interpreted as follows: 

1. The first row shows all possible restrictions in the two input variables, i.e. all 

possible borders. Notice that the effect of restriction AGE = 1 is that all points 

with this characteristic would be chosen to be peeled off, i.e. AGE ≠ 1 are left in 

the box. 

2.  The second row shows which border was chosen when ordinary bump hunting 

was applied to the original data. 

3. The third row shows how many times each border was chosen by ordinary bump 

hunting in the 100 bootstrap samples of the original data. 

4. Notice, that the ordinary bump hunting procedure would choose border AGE = 1 

at this border selection step, whereas the stabilized procedure would choose 

border AGE = 3.  

 

 



 
 
 
     52 

 

7.3 Discussion 
 

The above algorithm can be modified to include pasting as well. In this case, we would 

use the minimal support (calculated in the original data set) as stopping criteria of the 

peeling process instead of the p-value of the log rank statistic. Pasting borders would 

also be chosen through bootstrapping. Here we can use both the p-value of the log rank 

statistic and the indicator for increase (decrease) of the box mean as stopping parameter.  

Please refer to chapter 9 for implementation and comparison of performance between 

ordinary and stabilized bump hunting. 

 
 



8. IDENTIFICATION OF RESPONDERS 
 
 
 

Assuming that we have a good prognostic (Cox-PH) model, we can use bump hunting 

or regression trees for responder identification. One can use both martingale and 

deviance residuals of the prognostic model in order to identify predictive factors. 

Without loss of generality, we will concentrate on martingale residuals for the rest of 

this chapter. A systematic comparison of the performance of martingale and deviance 

residuals in responder identification is shown in chapter 9. 

 

8.1 Algorithm using bump hunting 
 

Consider the following strategy for positive and negative responder identification using 

a predictive model based on bump hunting (original or improved algorithm): 

1. Develop a good prognostic Cox-PH model on the classical treatment arm of the 

data. 

2. Apply the prognostic model together with its estimated coefficients and baseline 

hazard to the new treatment group.  

3. Calculate the martingale residuals of the prognostic model in the new treatment 

group. Patients who are not well predicted (outliers in the residuals) would be 

candidates for responders. 

4. Develop a bump hunting model on the new treatment group, using martingale 

residuals of the prognostic model as response.  
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Figure 8.1.  Flow diagram of the responder identification algorithm. 
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5. Identify the groups of patients in the classical treatment group, who correspond to 

the extreme groups (bumps) in the new treatment arm, i.e. divide the classical 

treatment space in the same way as the new treatment space and consider the regions 

which were identified as extreme (bumps) in the new treatment space. Compare the 

survival curves of each classical-new treatment pair of extreme regions (log rank 

test). If there is a significant difference in survival, the group with extreme 

positive residuals would identify negative responders and the extreme negative 

residuals – positive responders. Also, the factors involved in the description of the 

regions will be predictive. For illustration, please refer to figure 6.3. 

The responder identification algorithm is shown schematically in the flow-chart of 

figure 8.1. The algorithm is tested in a simulation study (chapter 9). An application on 

the EMIAT data set can be found in chapter 10. 

 

8.2 A note on survival curve differences  
 

The responder identification method was developed with a situation in mind, in which 

overall the new treatment does not show to be better or worse than the classical 

treatment (i.e. the survival curves in both treatment arms do not differ significantly). 

The method needs slight alteration if initial difference in survival is at hand. Please refer 

to figure 8.2 for the following discussion. 

In chapter 2 we have defined positive and negative responders starting out with two 

treatment arms which do not differ in survival as in case A (figure 8.2). Then a 

subgroup of positive responders is one, for which the new treatment increases 

significantly the survival rate of patients taking it, as in case B (figure 8.2). The 

negative responders on the other hand are such patients in the new treatment group, 

who's survival time is significantly shorter than that of an equivalent group of patients 

taking the classical (old) treatment, as in case C (figure 8.2).  
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Figure 8.2: Possible overall survival curves in a clinical trial with two arms: 
A) No difference between the survival curves of the two arms 
B) The new treatment is overall better than the old one 
C) The new treatment is overall worse than the old one 

 

Let us consider now a clinical trial, in which the new treatment is better than the old 

one, when the entire patient populations are compared (case B). Then the entire new 

treatment group would be considered positive responders. In this case, it would be 

interesting to know if a certain subgroup of patients under the new treatment are 

actually harmed by it (as in case C). They would be considered negative responders. 

There might be a subgroup of patients taking the new treatment, who do just as well as 

their counterparts taking the classical treatment (case A). In this case, those patients 

would not be considered to be negative responders, since they are not harmed by the 

new treatment, although they do not profit from it either. 

Unfortunately, there are also trials in which the new treatment patients show worse 

survival rates than the classical treatment patients  (case C). In such disastrous trials one 

would be interested to know if a certain group of patients taking the new treatment 

actually do survive longer than a similar group taking the old treatment (as in case B). 

This would be a group of positive responders among the entire population of negative 

responders. Just as in the previously described situation, case A would be of no interest. 

In the last two trial scenarios, the algorithm for responder identification needs slight 

alteration. Ordinarily, one would use the change in p-value of the log-rank statistic as a 

stopping criteria in the bump hunting procedure (chapter 7.2, point 6 and chapter 8.1, 

point 5). In the peeling process of bump hunting, one would reduce the new treatment 

patient arm step by step. If there is a significant difference (case B or C) for the entire 

population, reducing the group would lead to less and less significant p-values before it 

eventually reduces the new treatment group to this one special subgroup, for which the 

p-values become significant again to show difference in survival between the new and 

the old treatment subgroups in the opposite direction from the initial situation (as in 

case C or B). In those cases, the p-value of the log-rank statistic cannot be used as an 

automatic stopping criteria and the growth of the bump hunting model needs to be 
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controlled manually. Alternatively, the algorithm can be changed to "intelligently" 

evaluate the p-values by looking some steps ahead in the algorithm. 

 

8.3 Changes to the responder identification 
algorithm if CART is used 

 

It is also possible to use a regression tree instead of a bump model. In this case, one 

would construct a regression tree model in step 4 of the algorithm in 8.1 and change the 

algorithm from that point on as follows:  

Steps 1 through 3 as in the algorithm in section 8.1. 

4. Develop a regression tree model on the new treatment group, using the martingale 

residuals of the prognostic model as response. 

Note:  A tree model describes the whole input space. We are interested only in extreme 

regions, i.e. end nodes with patients who have large positive or large negative residuals 

(e.g. R1 & R3 and R4 & R6 in figure 5.1). Notice that it is quite possible to have tree 

models which do not identify extreme regions or just deliver a negative or just a positive 

one. This depends on the tree complexity and on the data at hand. If an extreme region, 

positive or negative, is identified, the factors involved in defining it will be candidates 

for predictors. 

5. Order all end nodes by size of the mean response in them. 

6. Split the classical treatment group into subgroups as defined by the end nodes of the 

regression tree model. 

7. Start with the largest in absolute value (by mean of response) negative end node in 

the new treatment arm. Compare the survival curves of the new and classical 

treatment patients identified with that node. Calculate the p-value of the log-rank 

statistic. 

8. Add the patients contained in the next largest negative end node (from the list in 5.) 

to the previously considered group of new treatment patients. Calculate p(LR) for 

the identified groups in the new and classical treatment arms. 
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9. Repeat step 8 while p(LR) decreases or until there are no more negative end nodes. 

10. The last combination of end nodes defines the set of positive responders. The 

factors involved in defining it are predictive. 

11. Repeat steps 7 through 9 for the non-negative end nodes from the list in 5., starting 

with the largest (by mean of response). 

12. The last combination of non-negative end nodes defines negative responders. The 

factors involved in defining it are predictive. 

Notice again, that the algorithm can be improved, if it looks at p-values several steps 

ahead before it stops the growth of the responder groups.  

This strategy is tested in the simulation study of chapter 9 and applied on the EMIAT 

data set in chapter 10. 

 
 

8.4 Covariate considerations 
 

Obviously, continuous predictors give a large choice of borders (split-points in CART). 

Limiting this choice by categorizing continuous variables stabilizes the resulting model 

(see chapter 7.1). However, even though we recommend and perform categorization 

before bump hunting, one needs to carefully consider the dangers of such a procedure 

(see Altman et al, 1994). 

The most simple and most often applied categorization procedure is splitting at the 

median when dichotomizing or at the appropriate percentile for more than two 

categories. This results in equally sized categories, but the cut points are generally not 

"optimal." For some well established prognostic factors one could take the cutpoints 

which were used in previous studies. This is also dangerous, especially in cases, in 

which the new study differs in some major point from the old one (which is usually the 

case). Altman et al (1994) have suggested the minimal p-value approach instead – a 

more sophisticated categorization technique, which exists in different variations since 

1994.  



9. SIMULATION STUDY 
 
 
 

The responder identification method proposed in chapter 8 requires justification. If there 

is a data set, in which the positive and negative responder groups are known, one can 

apply the different versions of the algorithm discussed up to now and compare their 

ability to recognize those groups. Unfortunately, this is not possible in a real life data 

set, since the actual groups to be identified are not known. On the other hand, one can 

simulate survival data, in which the positive and negative responders are known. The 

full analysis and comparison of the responder identification algorithm requires a 

carefully planned simulation study. 

 

9.1 Methods 
 

A survival type data set was simulated to resemble a two arm randomized clinical trial 

with a total of 1000 patients, in which no difference in survival is observed between the 

two treatment groups (some structure of the EMIAT data set was mimicked). A total of 

seven factors were created: five binomial, one categorical with three levels, and one 

continuous in order to test the power of the different procedures in dealing with 

different types of variables. The factors were simulated in the following way: 

Binary factors X1, X4, X5, X6, and TREAT: 

Each factor is a vector of length 1000, each component of which is chosen at random 

from a binomial distribution with probability p = .5. TREAT = 0 denotes placebo 

patients, TREAT = 1 denotes new treatment patients. 

Categorical factor X2: 

Factor X2 is a vector of length 1000, the components of which were chosen at random 

from the set {0, 1, 2} with corresponding probabilities {.33, .33, .34}. 
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Continuous factor X3: 

Factor X3 is a vector of length 1000 with components chosen at random from a normal 

distribution with mean five and variance two. 

Follow-up time for the data set was simulated in a way, which assures that the following 

Cox-PH model with prognostic and predictive parts would fit the data set: 

4444444444 84444444444 7644444 844444 76
predictiveprognostic

TREATXXcTREATXXXcXXXXetXt ⋅⋅⋅+⋅⋅⋅⋅+⋅+⋅⋅+⋅⋅= 5226543311
0

maxmin321)()|( βββλλ
(9.1) 

where: 

 X is the matrix of factors in the model 
cmin and cmax are coefficients in the predictive part 

X22 = 
 1 if X2 = 2 

0 else 
β1, β2, and β3 are coefficients in the prognostic part 

The following pairs of values for cmin and cmax were chosen for further investigation: (-2, 

2), (-1, 1), and (-.5, .25). Note, that larger absolute values of the coefficients simulate 

stronger influence of the predictive part of the model on the hazard. In addition, since 

cmin is always negative, this term of the model decreases the hazard, i.e. patients with X4 

=1 & X5 = 1 & X6 = 1 would have lower hazard under treatment than under placebo – 

this is the simulated positive responder group. Conversely, since cmax is always positive, 

that term would increase the hazard, i.e., patients with X2 = 2 & X5 = 1 would have 

higher hazard under treatment than under placebo – this is the negative responder group. 

The values for the prognostic coefficients β1 = ln3, β2 = -(ln3)/5, and β3 = (ln3)/10       

(≈ 1.0986, -.2197, and .1099 respectively) simulate an interaction between categorical 

factor X1 and continuous factor X3 as depicted in the relative hazard plot of figure 9.1. 

The interaction can be interpreted the following way: in absence of factor X1 (X1 = 0), 

increase of factor X3 (from 0 to 10) increases the relative hazard (from 1 to 3); in 

presence of factor X1 (X1 = 1), increase of factor X3 (from 0 to 10) decreases the 

relative hazard (from 3 to 1). 
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Follow-up time for this model was simulated to be Weibull distributed with shape 

parameter equal to two and scale parameter equal to the relative hazard, i.e. TIME was 

created to be a vector of length 1000, each component of which was chosen at random 

from the unique to each patient Weibull distribution, depending on his/her relative 

hazard (= λ(t|x)/λ0(t)).  

Censoring was simulated in the usual way by first defining a temporary vector TEMP of 

length 1000, containing random values of the uniform distribution on the interval [0, τ]. 

Vector DEATH indicating event was then defined to be: 

DEATHi = 
 1 if ti ≤ TEMPi 

0 else 

This procedure for  assigning censoring allows for regulation of the percent censored 

cases in the data through parameter τ and assures, that censoring is assigned 

independently of time. Three different values of τ were considered: (11, 2.15, .65), 

which result in three different percentages censoring in the data: ≈ (10, 30, 70)% 

respectively. 
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Figure 9.1:  Interaction between X1 & X3 
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The above described survival data set was simulated a in groups with different model 

coefficients and censoring rates as shown in table 9.1.  

Table 9.1:  Simulation groups 

Simulation 
group # 

cmin cmax τ 

1 -2 2 11
2 -1 1 11
3 -.5 .25 11
4 -2 2 2.15
5 -1 1 2.15
6 -.5 .25 2.15
7 -2 2 .65
8 -1 1 .65
9 -.5 .25 .65

 

The survival curves of the placebo (TREAT = 0) and treatment (TREAT = 1) groups 

were compared in each simulation group. The difference was not significant at the .05 

level as it was expected by the simulation study design. Scatter plots of martingale 

residuals vs. follow-up time as well as deviance residuals vs. follow-up time are given 

in appendix B for the placebo and treatment groups of one data set in each of the nine 

simulation groups. One can observe how the different percentage of censoring and 

values of the predictive coefficients influence the residuals. 

The actual positive responder group in all simulations contained data points with 

TREAT = 1 and all of the following constraints: 

X4 = 1 & X5 = 1 & X6 = 1 

The actual negative responder group contained data points with TREAT = 1 and both 

constraints: 

X2 = 2 & X5 = 1 

The simulated responder groups differ in survival between the treatment and placebo 

groups (as expected). For example, a data set from simulation group 2 would have p-

values of the log-rank statistic, which are significant at the .001 level (please refer to 

figure 9.2 for Kaplan-Meier survival curves in the responder and non-responder groups 
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of TREAT = 0 and TREAT = 1). Figure 9.3 shows the martingale and the deviance 

residuals for both responder groups plotted against follow-up time in the placebo and 

treatment groups. 
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Figure 9.2: Kaplan-Meier survival curve estimates in the actual positive and 

negative responder groups for a data set in simulation group 2. 
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Figure 9.3:  Scatter plots of the deviance and martingale residuals in the placebo and 
treatment groups against follow-up time for the positive and negative 
responder groups of figure 9.2. 

 

9.2 Results 
 

9.2.1 Cox-PH with interaction 
 

The simulation study was designed in such a way, that a certain Cox-PH model with 

treatment interaction terms (model 9.1) should fit the data. We fit model 9.1 to all 

simulated data sets in order to check the simulation method. The mean of the Cox 

model coefficients over 100 data sets in each simulation group are shown in table 9.2. 

Notice, those coefficients are very close to the simulated ones, as they should be, so we 

can conclude that the data simulation was done correctly. The Wald statistic for factor 
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input to the model was significant in general at the .01 level, except for models 

constructed on data sets from simulation group 9. Apparently, the Cox-PH model 

cannot distinguish the simulated effect of the factors on hazard from noise when that 

effect is not strong (cmax and cmin are small in absolute value) and there is high 

percentage of censoring in the data. 

Table 9.2:  Mean coefficients of model 9.1 over 100 simulations 

Simulation 
group # β1 β2 β3 cmin cmax 

1 1.1116 -.2234 .1116 -1.9925 2.0039 
2 1.1205 -.2254 .1142 -.9981 .9942 
3 1.1120 -.2233 .1105 -.5019 .2628 
4 1.1238 -.2276 .1104 -1.9971 2.0226 
5 1.0935 -.2193 .1100 -1.0000 1.0030 
6 1.1433 -.2268 .1138 -.5048 .2629 
7 1.0857 -.2156 .1074 -2.1266 2.0410 
8 1.0970 -.2205 .1143 -1.0623 .9543 
9 1.0607 -.2143 .1008 -.4950 .2402 

 

Three representative simulation groups were chosen in an attempt to evaluate the power 

of the most frequently used variable selection process, forward stepwise selection, to 

identify the simulated Cox-PH model with interactions (model 9.1) as "best." Forward 

selection with likelihood ratio test as model improvement criteria was used with 

inclusion p(Wald) = .01 and exclusion p(Wald) = .05. Table 9.3 gives a summary of this 

investigation. Simulation groups 1, 5, and 9 were chosen as representative. Simulation 

group 1 has strong simulated treatment effect (easy to detect) and only 10% censoring. 

Simulation group 5 has medium strength simulated treatment effect and 30% censoring. 

Simulation group 9 has 70% censoring and slight treatment effect (difficult to detect). A 

total of 10 data sets were simulated in each group. The null model (no factors) and the 

correct model likelihood ratios were computed on each data set. Forward stepwise 

selection was applied on each data set four times: once including all factors X1 through 

X6 and TREAT and all their possible two-way interactions (a total of 7 + 21 = 28 

factors to choose from), once including all single factors and all their up to third order 

interactions (28 + 35 = 63 factors), all single factors and all their up to fourth order 

interactions (63 + 35 = 98 factors), and finally, all single factors and their up to fifth 
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order interactions (98 + 21 = 119 factors). The largest interaction term in the correct 

model is of fourth order. Interactions of up to fifth order were considered in order to 

check if forward selection including interaction terms of higher than needed order 

would choose more complicated terms than necessary. This should give a hint on the 

behavior of the automated selection procedure in a "real life" data set, for which the 

correct model is unknown. 

Table 9.3: Table of likelihood ratios for the null model, the models found with 
forward selection when different highest order interactions were present, 
and the correct model. 

 
Simulation 
group 

Run Null (df=0) 2d order 
interaction 
(df) 

3d order 
interaction 
(df) 

4th order 
interaction 
(df) 

5th order 
interaction 
(df) 

Correct 
(df=6) 

1 11239 11076 (11) 10976 (8) 10942 (6) 10942 (6) 10942 
2 11110 10941 (9) 10860 (5) 10844 (4) 10844 (4) 10820 
3 11121 10986 (10) 10884 (9) 10860 (5) 10860 (5) 10814 
4 11161 10946 (9) 10893 (6) 10868 (4) 10857 (6) 10822 
5 11094 10966 (9) 10787 (11) 10803 (5) 10803 (5) 10764 
6 11093 10929 (10) 10861 (5) 10819 (5) 10804 (8) 10784 
7 11132 10914 (13) 10801 (12) 10736 (10) 10736 (10) 10761 
8 11103 10919 (11) 10857 (5) 10819 (5) 10819 (5) 10803 
9 11109 10998 (6) 10878 (7) 10828 (7) 10828 (7) 10805 

1 

10 11189 11015 (11) 10912 (12) 10894 (8) 10894 (8) 10903 
1 8651 8608 (3) 8593 (5) 8581 (5) 8581 (5) 8555 
2 8705 8677 (3) 8633 (6) 8636 (5) 8636 (5) 8632 
3 8441 8422 (2) 8394 (5) 8395 (3) 8382 (5) 8366 
4 8525 8491 (5) 8476 (3) 8472 (3) 8472 (3) 8447 
5 8407 8381 (3) 8321 (9) 8329 (7) 8329 (7) 8324 
6 8412 8387 (3) 8365 (5) 8363 (4) 8363 (4) 8343 
7 8444 8410 (3) 8401 (3) 8384 (4) 8384 (4) 8368 
8 8584 8529 (4) 8522 (3) 8503 (3) 8503 (3) 8472 
9 8428 8397 (3) 8342 (4) 8335 (4) 8335 (4) 8316 

5 

10 8586 8547 (3) 8495 (3) 8486 (3) 8486 (3) 8453 
1 2740  2722 (3) 2722 (3) 2722 (3) 2724 
2 2474     2455 
3 2614     2600 
4 2643  2627 (2) 2627 (2) 2627 (2) 2631 
5 2845 2829 (3) 2829 (3) 2829 (3) 2829 (3) 2823 
6 2956     2945 
7 2509     2489 
8 2738 2729 (1) 2729 (1) 2729 (1) 2729 (1) 2724 
9 2751     2745 

9 

10 2291     2279 
 

bold = models with better LR than the corresponding correct model 
             = identical models (valid for the row) 
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In defense of the forward stepwise selection procedure, one should note, that in most 

cases (21 out of 24 constructed models) it did not add a fifth order interaction term, but 

delivered the model chosen from the procedure including up to fourth order interactions 

(see table 9.3). Unfortunately, it also chose the correct model only once out of 30 times. 

Consider first simulation group 9, the most realistic one. When the correct model 9.1 

was applied on the 10 data sets, it always reduced the likelihood ratio from the null 

model, but not always significantly (3 out of 10 were significant at the .01 level). In 

addition, the factor coefficients were also not significant (at the .01 level). In 6 out of 10 

cases the forward selection procedure did not find any significant factors. In the 4 data 

sets, in which significant factors were found, they were other than the simulated ones 

(i.e. noise).  

The overall impression is that the Cox-PH model with interactions is not a sensitive 

enough method for responder identification purposes when the effect of factors and 

factor combinations on treatment is weak and there is large percentage of censoring in 

the data. 

In simulation groups 1 and 5 (see table 9.3), the likelihood ratio of the correct model 

was better than that of the forward selected models for 18 out of 20 data sets (notice, in 

the cases where LR(forward) < LR(correct) the forward selected model contained the 

correct model and some additional factors). The coefficients of the correct model were 

always significant at the .01 level and most often at the .001 level. The Cox-PH model 

with interactions performs well on data sets with small to moderate percent censoring 

and strong to moderate treatment effect. The problem with applying this responder 

identification procedure in praxis is that the correct model is unknown and the forward 

selection procedure has low power (it chose the correct model only once out of 20 

times!). 
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9.2.2 Regression trees 
 

The regression tree version of the responder identification method described in chapter 

8 was applied on the following simulated data. In each of the nine simulation groups 

from table 9.1, 200 data sets were constructed as described in section 9.1. Martingale 

residuals were calculated on half of the data sets in each group. Deviance residuals were 

calculated on the other half. 

Goal: Using the known positive and negative responder groups in each data set: 

1) to evaluate the prognostic power of the responder identification procedure with 

regression trees (described in chapter 8), i.e. to compare the identified through the 

method groups of responders to the correct groups 

2) to compare the power of identification of the method when martingale and deviance 

residuals are used as response variables in the regression tree model. 

Step 1 of the responder identification algorithm can be skipped in the simulation study. 

The prognostic model here is known. It was simulated to contain factors X1, X3, and 

their linear interaction. This Cox-PH model was applied on the placebo part (TREAT = 

0) of each data set, where the three model coefficients and the baseline hazard were 

estimated. As shown in 9.2.1, the estimated coefficients would be very close to the 

simulated ones. Using the so estimated model coefficients and baseline hazard, 

martingale (or deviance) residuals were calculated on the treatment  (TREAT = 1) 

groups. The treatment groups of each simulated data set were used to construct 

regression tree models. All factors were included in the model selection procedure. 

Factor X3 was used dichotomized at the mean and the residuals were used as response 

variable. All regression tree models were pruned to size 5 (five end nodes), which 

showed to be sufficiently large to include all known predictive factors. A typical 

resulting tree is shown in figure 9.4. Generally, the correct predictive factors were 

chosen, but not always in an optimal arrangement, which is crucial for the responder 

identification power of the model. The pruned tree models were "applied" on the 

placebo groups and the data was divided into subgroups, corresponding to the end 
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nodes. Each pruned tree couple was analyzed separately. All end nodes were arranged 

by size of the mean response in the treatment arm.  
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Figure 9.4: A sample regression tree built on a simulated data set, pruned to 5 end 
nodes (c = mean response). 

 

Starting with the largest negative node, as described in the algorithm of section 8.3, we 

calculated the  log-rank statistic for difference in survival of the placebo and treatment 

patients in the node. Then we made a joint group of patients, containing the two most 

negative nodes and calculated the log-rank statistic for this group. We kept adding 

negative end nodes to the group according to their size until there were no more 

negative end nodes or until the p-value of the log-rank statistic stopped improving. The 

group of chosen negative end nodes defined positive responders. 

The same procedure was repeated for the positive end-nodes, starting with the largest 

one. The result was a set of negative responders in each simulation. 
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The so defined responder groups were then compared to the correct groups. Table 9.4 

shows the average number of times the entire responder sets were chosen correctly over 

the 100 data sets in each simulation group and each residual type. Since this did not 

happen very often, the mean percentage of correctly identified patients was also 

calculated (see table 9.4). 

 
Table 9.4:  Mean percent (%) correctly identified responders and number of times 

(#) the correct responder groups were chosen from 100 simulations for 
each simulation group, when regression tree is used as predictive model. 

 MART = martingale residuals; DEVI = deviance residuals. 
 

MIN end nodes 
(+ responders) 

MAX end nodes 
(− responders) 

MART DEVI MART DEVI 

sim. 
group # 

# % # % # % # % 
1 98 98 100 100 0 32.53 65 72.67
2 73 73 94 94 23 47.71 71 73.31
3 22 37.57 52 63.80 10 41.88 10 33.74
4 94 94 94 94 0 33.99 81 81.68
5 76 77.15 76 76 41 59.24 70 75.39
6 28 45.02 33 50.79 6 35.59 6 30.40
7 66 66 59 59 60 68.95 52 70.84
8 51 53.08 53 56.64 53 61.73 32 55.89
9 21 38.37 10 24 4 22.74 1 16.08

 

The results were better for data with low percentage censoring (sim. groups 1, 2, & 3 ≈ 

10%) than for data with high percentage censoring (7, 8, & 9 ≈ 70%), except for 

simulations with large coefficients in the positive nodes (1 & 4) with martingale 

residuals. This might be explained by the fact that MART ∈ (-∞, 1], whereas  DEVI ∈ 

(-∞, ∞). Large cmax delivers large positive residuals, so that with 90 and 70 % of the data 

being in the interval (0, 1], a lot of martingale residuals would be very close to 1. CART 

is based on splitting the data space into regions with most different mean of the 

response variable (here MART) and it obviously has a problem with simulation groups 

1 & 4. Deviance residuals, on the other hand, "stretch" the positive side of the 

martingale residuals distribution, so that CART shows to perform much better on them 

in groups 1 & 4. 
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Deviance residuals in general were about the same or better than martingale residuals 

for the purpose of positive responder identification (i.e. negative nodes). The same was 

true for negative responders (positive nodes), except for data sets with large percentage 

of censoring. Overall, the responder identification algorithm using regression trees 

showed acceptable power of identification for data, in which the groups to be identified 

were with much larger (or much smaller) hazard than the entire data set (sim. groups 1, 

4, & 7 with large predictive coefficients). The results were miserable for the data in sim. 

groups 3, 6, & 9, where the predictive coefficients were very small. This leads us to the 

conclusion, that regression trees are not sensitive enough method to be applied in 

responder identification. Nevertheless, if we had to make a recommendation which 

residuals to use as a response factor in CART, we would prefer deviance residuals, as 

they have acceptable performance at least for the case when censoring is not too large 

and the responder coefficients are strong (sim. groups 1, 2, 4, & 5). For data with large 

percentage censoring it is preferable to use martingale residuals.  

 

9.2.3 Bump Hunting 
 

Similar to section 9.2.2, the responder identification method from section 8.1 with 

original and stabilized bump hunting was applied on each of the 200 data sets of the 

nine simulation groups defined in table 9.1 (100 with martingale and 100 with deviance 

residuals as response in bump hunting).  

Goal: 

1) to evaluate the prognostic power of the responder identification algorithm (chapter 

8) with bump hunting 

2) to compare the power of identification of the method when martingale and deviance 

residuals are used as response variable in bump hunting, as well as when the original 

and the stabilized bump hunting procedure is used. 



 
 
 
     73 

 

We began the responder identification process with the algorithm of section 8.1 as 

described in section 9.2.2. This time bump hunting (original and stabilized) was used 

instead of regression trees. It turned out, that in the simulated data the p-value of the 

log-rank statistic never grew insignificant in the stabilized and original bump hunting. 

We developed the bump hunting models using minimal support of .05 as stopping 

criteria (as suggested by Friedman & Fisher, 1999). Since we knew the correct 

responder and non-responder groups, we considered just one box per bump and just the 

first three selected borders. The developed model was considered correct if the first 

three borders of the maximal box were any permutation of the following: 

X2 ≠ 0, X2 ≠ 1, X5 ≠ 0 

and the minimal box – any permutation of the following borders: 

X4 ≠ 0, X5 ≠ 0, X6 ≠ 0. 

Table 9.5 summarizes an example of border selection with bootstrapping (100 bootstrap 

samples + original data) when the correct model was chosen. Figure 9.5 gives the 

support vs. mean of residuals and support vs. p(LR) for the maximal and the minimal 

box construction process of this particular example. 

 
Table 9.5: Example of border selection when the correct border was chosen and 

stabilized bump hunting was used as predictive model (100 bootstrap 
samples + original data). 

 
 X1≠0 X1≠1 X2≠0 X2≠1 X2≠2 X3≠0 X3≠1 X4≠0 X4≠1 X5≠0 X5≠1 X6≠0 X6≠1 
max1 0 0 12 63 0 0 0 0 0 26 0 0 0
max2 0 0 101 0 0 0 0 0 0 0 0 0 0
max3 0 0 0 0 0 0 0 0 0 101 0 0 0
max4 0 0 0 0 0 0 0 0 32 0 0 0 69
max5 12 17 0 0 0 4 30 5 33 0 0 0 0
min1 0 0 0 0 0 0 0 43 0 10 0 48 0
min2 0 0 0 0 0 0 0 62 0 39 0 0 0
min3 0 0 0 0 23 0 0 0 0 78 0 0 0
min4 1 6 0 0 91 3 0 0 0 0 0 0 0
min5 7 12 46 3 0 31 2 0 0 0 0 0 0
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Notice, that the correct three borders in the maximal box were the only ones chosen as 

first borders (max 1). Once border X2 ≠ 1 is chosen, the other two correct borders were 

chosen in all bootstrap samples and the original data set (max 2 & max 3). For details 

on stabilized bump hunting, please refer to chapter 7. We know that the effect of the 

other two borders in the maximal box is by chance, since it was not programmed in the 

simulation. This also proves to be the case, as those borders change even in the 

stabilized procedure when a completely new data set is simulated (not shown in table 

9.5). A weaker, but similar effect can be seen for the minimal box. 

 

Figure 9.5: Plots of mean response (res.mean.min & res.mean.max)  vs. support 
(res.supp.min & res.supp.max)  and p-value of the log-rank statistic 
(res.lr.min & res.lr.max)  vs. support for the box built in table 9.5. 

 

Naturally, the correct bumps are usually not known. One does not even know how many 

boxes each bump has. Fortunately, "real life" data sets are not as clean and ordered as 

our simulated data, so that the bump growth process can actually be governed by the 
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log-rank statistic, as described in chapters 7 & 8. A statistician's educated guess is still 

needed sometimes for altering the algorithm, as shown in chapter 10.5, where the 

stabilized bump hunting procedure was applied on the EMIAT data set in a responder 

identification process. An additional step lead to an improvement of the p-value of the 

log-rank statistic, which had grown in the previous step (see table 10.6). 

Table 9.6 summarizes the results from all simulation runs. Each entry in the table 

represents the number of times the correct minimal or maximal bump was chosen from 

a total of 100 runs. 

 
Table 9.6: Number of times the correct minimal and maximal bump was chosen 

from 100 runs with original or stabilized bump hunting as predictive 
model and martingale or deviance residuals as response. 

 
MART DEVI 

MIN MAX MIN MAX 
sim. 
group # 

original stabilized original stabilized original stabilized original stabilized
1 71 97 95 99 42 72 100 100
2 65 88 98 100 33 52 100 100
3 47 84 94 99 26 46 100 100
4 72 99 98 99 39 78 100 100
5 67 92 97 99 35 59 99 100
6 52 79 97 100 22 36 100 100
7 75 97 96 99 43 78 100 100
8 67 89 94 99 31 48 100 100
9 56 83 94 98 26 35 99 100
 

 

The results seem to be independent of percent censoring: simulation groups (1, 4, 7), (2, 

5, 8), and (3, 6, 9) have similar outcomes across the different methods. Size of the cmin 

and cmax coefficients show effect: larger in absolute value coefficients result in better 

performance of the different methods – please refer to table 9.7, which summarizes the 

results by coefficient size, averaged over all censoring cases. Martingale residuals show 

to be better suited for positive responder identification (minimal bump) than deviance 

residuals. For negative responder identification (maximal bump) deviance residuals 

perform just as well or slightly better than martingale residuals. In all cases where 
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improvement was possible, the stabilized bump hunting algorithm showed much better 

results than the original algorithm. 

Table 9.7: Averages from table 9.6 over simulation groups with equal percent 
censoring. 

 
MART DEVI 

MIN MAX MIN MAX 
sim. 
group # 

original stabilized original stabilized original stabilized original stabilized
1, 4, 7 72.67 97.67 96.33 99 41.33 76 100 100
2, 5, 8 66.33 89.67 96.67 99.33 33 53 99.67 100
3, 6, 9 51.67 82 95 99 24.67 39 99.67 100

 

Conclusions:  

Deviance residuals perform excellent in negative responder identification and 

unsatisfactory in positive responder identification. Their use is not recommended when 

both responder groups are needed. The stabilized bump hunting procedure with 

martingale residuals as response variable delivers excellent results both in positive and 

negative responder identification, especially if the effect is strong. 

 

9.3 Comparison 
 

Table 9.8 gives a summary of the results of the responder identification algorithm when 

the best of regression trees and the best of bump hunting is employed (see tables 9.4 & 

9.6).  

Recall, comparison between a tree and a bump model can only be made in a very lose 

sense, since tree models describe the entire space and bump models – just extreme parts 

of it. In other words, the nature of bump models is much more adequate for responder 

identification. 

Indeed, in 16 out of the 18 cases, bump hunting was more powerful than regression tree 

(as predictive model in the responder identification algorithm). In the two other cases 

the results of both models were comparable; regression tree performed slightly better 

than bump hunting. We can then conclude, that the best version of the responder 
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identification method employing regression trees is not nearly as good as the one with 

stabilized bump hunting. It is, therefore, recommendable that the responder 

identification method, suggested in chapter 8, be used with martingale residuals as 

a response variable in the stabilized bump hunting (described in chapter 7).  

 
Table 9.8:  Number of correctly identified models from 100 runs in the nine 

simulation groups using the best of the responder identification 
algorithms employing regression trees and bump hunting. 

 
MIN MAX 

sim. group # TREE 
+ DEVI 

stable BUMP 
+ MART 

TREE 
+ DEVI

stable BUMP 
+ MART 

1 100 97 65 99 
2 94 88 71 100 
3 52 84 10 99 
4 94 99 81 99 
5 76 92 70 99 
6 33 79 6 100 
7 59 97 52 99 
8 53 89 32 99 
9 10 83 1 98 

 

 

9.4 Implementation 
 

This simulation study was performed with the help of the readily available statistical 

packages SPSS and S-PLUS and the programming languages S and C. The Cox model 

with interactions and the Kaplan-Meier curves were generated using the survival 

analysis tools in SPSS 10.0. The simulation of all data sets, as well as the bump hunting 

analysis were done with especially written for the purpose S programs, which run with 

S-PLUS 4.5. Construction of the bump models was done in S-PLUS for Unix, using the 

algorithms of Becker (1999) called .boxes, .express.boxes, and .border.ranking, which 

use C subroutines.  The part of the simulation study involving regression tree models 

was done in S-PLUS for Windows. S routines using the S-PLUS tools for regression 

tree construction were written for that purpose. The code of all self-implemented S 

routines are given in Appendix C. 



10.  APPLICATIONS: EMIAT 
 
 
 

                                                          

10.1 Data 
 

The European Myocardial Infarction Amiodarone Trial (EMIAT) is a randomized 

double blind placebo controlled trial, designed to compare the drug Amiodarone to 

placebo with respect to all cause mortality. It includes a total of 1486 survivors of acute 

myocardial infarction who have left ventricular ejection fraction (LVEF) of 40% or less, 

randomized into two groups of 743 patients each. There were 103 deaths in the 

Amiodarone arm and 102 deaths in the placebo arm of the study. A total of 1169 

patients had Holter recordings available with sinus rhythm and at least one ventricular 

premature beat (VPB), which are necessary for calculation of the new parameters Onset 

and Slope – the two components of heart rate turbulence (HRT)1. The Amiodarone 

group had 577 patients, 87 of which died during the two years of follow-up (85% 

censoring). 592 patients were in the placebo group, 82 of which died (86% censoring). 

Figure 2.1 shows the Kaplan-Meier survival function estimates in the two study arms. 

Visually, as well as statistically, no difference between the two curves can be found 

(p(LR) = .5815). Baseline patient characteristics can be found in table 10.1. Continuous 

factors were categorized as shown in the table, using cut points, chosen by the EMIAT 

investigators and the research group of Prof. G. Schmidt at the Technical University in 

Munich. 

 

10.2 Previous investigations 
 

Janse et al (1998) did subgroup analysis of the EMIAT data in order to find patients, 

who may benefit from treatment with Amiodarone, i.e. they were looking for positive 

responders. The strategy performed in this substudy of EMIAT was to choose four 

 
1 Updated information on parameter HRT can be found at www.h-r-t.com 

http://www.h-r-t.com/
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important, readily available baseline characteristics and consider all groups resulting 

from their combinations. The factors chosen were: 

Left ventricular ejection fraction, dichotomized at 30% 

Arrhythmia signs on Holter recordings (Yes/No) 

Beta-blocker treatment (Yes/No) 

Heart rate (Low/High)* 

In both arms of the study: 

Amiodarone treatment (Yes/No (placebo)) 

* The lowest and the highest 25% of the heart rate measurements were used; cut 

points were determined separately for each subgroup, defined by a combination 

of the rest of the factors. A total of 80 subgroups were analyzed. 

All possible subgroups were considered. In each group, the event rates in the placebo 

and the Amiodarone arms were compared. The log-rank statistic was computed.  

The largest reduction of event rate on Amiodarone vs. placebo (i.e. positive responders) 

was found for the group: 

ARRHYTHM = Yes 

Beta-blocker = Yes 

Heart rate = High ( ≥ 75 beats/min) 

p(LR) = 0.15 (not significant at the 0.05 level)  

The largest increase of event rate on Amiodarone vs. placebo (negative responders) was 

found for the group: 

LVEF ≥ 30% 

Beta-blocker = No 

Heart rate = Low ( ≤ 66 beats/min) 

p(LR) = 0.0314 (significant at the 0.05 level)  

Notice, that only interactions of up to third order were considered. No adjustment for 

prognostic factors was done. For details, see Janse et al, 1998. 
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Table 10.1:  Baseline characteristics of EMIAT. 

Placebo (n = 592) Treatment (n = 577)  
Variable 

 
Code Name 

 
Dichotomization Mean (SD) Number (%) Mean (SD) Number (%)

Sex SEX 1 = male  506 (86%)  487 (84%) 
More than one 
infarct INFARCT 1 = Yes  157 (27%)  188 (33%) 

New York Heart 
Association 
Classification 

NYHA 
1 
2 
3 

  
251 (42%) 
44 (7%) 

  
264 (46%) 
46 (8%) 

Diabetes DIABETES 1 = Yes  95 (16%)  98 (17%) 
Thrombolyse THROMBOL 1 = Yes  355 (60%)  321 (56%) 
Digoxin DIGOXIN 1 = Yes  73 (12%)  86 (15%) 
β - blocker  BETABLO 1 = Yes  262 (44%)  255 (44%) 
Calcium-
antagonist CALCANT 1 = Yes  81 (14%)  71 (12%) 

ACE - inhibitors ACEINHI 1 = Yes  348 (59%)  354 (61%) 
Arrythmia on 
Holter ARRHYTHM 1 = Yes  208 (35%)  212 (38%) 

Left-ventricular 
ejection fraction LVEF 1 if LVEF ≤ 30 29.92 (7.52) 278 (47%) 30.20 (6.99) 275 (48%) 

Age AGE 1 if AGE > 65 60.62 (9.33) 240 (41%) 60.21 (9.67) 220 (38%) 
Mean heart rate 
frequency FREQ 1 if FREQ > 75 73.37 (11.76) 250 (42%) 73.10 (12.02) 251 (44%) 

Heart rate 
variability index HRVI 1 if HRVI ≤ 20 26.08 (10.38) 185 (31%) 26.34 (10.41) 175 (30%) 

Onset ONSET 1 if ONSET > 1 0.99 (0.023) 158 (27%) 0.99 (0.026) 148 (26%) 
Slope SLOPE 1 if SLOPE ≤ 2.5 6.60 (8.08) 172 (29%) 6.43 (8.39) 189 (33%) 

Heart Rate 
Turbulence HRT 

0 if ONSET = 0  
   & SLOPE = 0 
1 if ONSET = 1  
   or SLOPE = 1 
2 if ONSET = 1  
   & SLOPE = 1 

  
 
174 (29%) 
 
78 (13%) 

  
 
181 (31%) 
 
78 (14%) 

 

Malik et al (2000) performed subgroup analysis of the EMIAT data set with final aim to 

test the hypothesis that EMIAT patients with depressed heart rate variability (HRV) 

benefit from the Amiodarone treatment (i.e. are positive responders). They did this by 

developing a Cox-PH model on the entire data set, including Amiodarone treatment as a 

factor, which accounts for the following prognostic factors: 

Age, dichotomized at 60 years 

LVEF, dichotomized at 30% 

History of MI (Yes/No) 

Heart rate, dichotomized at 75 beats/min 

Arrhythmia on Holter (Yes/No) 
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Beta-blocker treatment (Yes/No) 

HRV index, dichotomized at 20 units 

The authors applied this model on various subgroups of the data and concluded, that in 

groups of patients with depressed HRV, the Amiodarone treatment factor increases its 

significance. Table 10.2 gives a very brief summary of their findings. For further 

details, please refer to the original publication. 

Table 10.2: Summary of the results of Malik et al (2000). 
 

Group p-value of Amiodarone treatment  
after accounting for prognostic factors 

Total population .9068 

Depressed HRV .3221 

Depressed HRV & Low LVEF .3785 

Depressed HRV & No history of MI .0417* 

Depressed HRV & High heart rate .2404 

Depressed HRV & Arrhythmia .1458 

Depressed HRV & on Beta-blocker .4909 

  * significant at the 0.05 level        

 

 

10.3 Cox-PH with interaction 
 

The following results were obtained after applying the method described in chapter 4 on 

the EMIAT data set. Continuous factors were not dichotomized. 

Using forward selection on the entire data set, the model summarized in table 10.3 was 

found as "best." 

The search for interactions delivered just one possible predictive factor, heart rate 

(HR_V0), which was not significant at the .05 level but, nevertheless, increased the 

significance of factor treatment from .78 (in a model including prognostic factors only) 

to .08. The interaction model is summarized in table 10.4. 
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Table 10.3: Summary of the "best" Cox-PH model without interactions on the entire 
EMIAT data set. 

 
Variables β p(Wald) Exp(β) 95% CI for Exp(β) 

    Lower Upper 
LVEF -.032 .002 .968 .949 .988 
AGE .030 .003 1.031 1.010 1.051 
INFARCT .737 .000 2.090 1.534 2.849 
DIABETES -.454 .009 .635 .452 .893 
HR_V0 .016 .003 1.017 1.006 1.028 
HRT .001  

HRT(1) .439 .022 1.551 1.064 2.261 
HRT(2) .842 .000 2.320 1.506 3.575 

score statistic = 148.49 
p(score) < .001 

 
 
Table 10.4: Summary of the "best" Cox-PH model with interactions on the entire 

EMIAT data set. 
 

Variables β p(Wald) Exp(β) 95% CI for Exp(β) 
    Lower Upper 

LVEF -.032 .001 .967 .948 .987 
AGE .031 .002 1.031 1.011 1.052 
INFARCT .734 .000 2.084 1.528 2.841 
DIABETES -.464 .008 .629 .447 .884 
HR_V0 .025 .001 1.025 1.011 1.040 
HRT .001   

HRT(1) .434 .024 1.544 1.059 2.252 
HRT(2) .842 .000 2.321 1.506 3.578 

TREATMEN 1.420 .083 4.137 .830 20.626 
HR_V0*TREATMEN -.017 .087 .983 .964 1.002 

score statistic = 150.60 
p(score) < .001 

 

Analyzing the part of the linear predictor corresponding to the interaction term in the 

last model, i.e. the linear predictor for factors HR_V0, TREATMEN, and their 

interaction, it is easy to see that, in general, increase in HR_V0 results in increase of the 

hazard. A treatment with Amiodarone decreases this effect (please refer to figure 10.1). 

The lines cross at about HR_V0 = 83, so that patients with heart rate greater than 83 

should be positive responders and ones with heart rate less than 83 – negative 

responders. However, looking at the survival curves of the two groups in both treatment 

arms, we find the difference to be not significant at the .05 level (p(LR) = .3058 for 

HR_V0 ≤ 83 and p(LR) = .6045 for HR_V0 > 83). 
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Figure 10.1: Interaction of factors HR_V0 and treatment (TREAT = 0 denotes 
placebo, TREAT = 1 denotes Amiodarone). 

 
 

On the other hand, figure 2.2 in chapter 2.1 shows different effects of treatment with 

beta-blocker on mortality in the two arms of EMIAT. One should expect to see 

interaction between beta-blocker and Amiodarone treatment, but it does not appear in 

the predictive part of the Cox model. Considering the fact that the EMIAT data set has 

even higher percentage censoring than data from group 9 of the simulation study 

(chapter 9), and knowing how badly the Cox-PH model with treatment interaction 

performed on such data (see section 9.2.2), one should not expect great results on the 

EMIAT data. Cox-PH model with interactions is simply not a sufficiently good way of 

doing responder analysis, even though it is more systematic than the work of Janse et al 

and Malik et al. 
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10.4 Responder identification with CART 
 

10.4.1 The prognostic model 
 

As described in chapter 8, one needs to develop a "good" prognostic model in the first 

step of the responder identification algorithm. We developed a Cox-PH model on the 

placebo group of EMIAT, using stepwise selection methods and validated it internally. 

The "good" prognostic model we found contains the continuous factors left-ventricular 

ejection fraction (LVEF) and heart rate at initial visit (HR_V0), and the categorical 

factors previous infarction (INFARCT) and Heart Rate Turbulence (HRT). The model 

was internally validated using 100 bootstrap samples of the placebo group. When 

applied to the samples, the Cox model had mean score statistic of 78.68 (SE = 20.64), 

which is in the same order as the one from the original sample, even slightly better. A 

summary of the chosen prognostic model is given in table 10.5. 

Table 10.5:  Summary of the "best" Cox model on the placebo group of EMIAT. 
 
 

Variable   β p(Wald) Exp(B) 95.0% CI for Exp(B) 
Lower    Upper 

LVEF -0.035 .013 0.966 0.939     0.993 
HR_V0 0.024 .001 1.024 1.009     1.039 
INFARCT 0.603 .008 1.827 1.171     2.850 
HRT .000   
HRT(1) 0.599 .030 1.820 1.059     3.128 
HRT(2) 1.181 .000 3.257 1.818     5.835 

score statistic = 69.83             
                              p(score) = 1.14×10 -13 

 

Further, the hazard function and martingale residuals in the Amiodarone group were 

calculated using the baseline hazard function and the factor coefficients as estimated in 

the placebo group Cox model. 
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10.4.2 The predictive model with continuous factors 
 

The use of continuous vs. categorized factors in regression trees was discussed in 

section 8.4. The simulation study in chapter 9 considered the only continuous factor 

(X3) dichotomized at the mean. It is well known, that categorization of continuous 

factors limits the recursive partitioning process and decreases the goodness of fit of the 

resulting model, however, it also increases the predictive power of the model, which is 

often the more desirable quality of both. In the following two sections, we will build 

regression tree models with both types of factors, which we will then compare. 

Regression tree analysis was performed on the Amiodarone arm of EMIAT, where all 

available factors (see table 10.1) were used as predictors. Since EMIAT has very large 

percent censored cases, we used martingale residuals as response of the tree model, as 

recommended in chapter 9 on the basis of a simulation study. Continuous factors were 

not categorized here. Initially, a large tree was grown,  after which it was pruned down 

to a tree with ten end nodes, using pruning parameter α = 1.85 (see chapter 5 for details 

on pruning). Figure 10.2 gives the tree diagram of the final tree – our predictive model, 

containing factors SLOPE, FREQ, NYHA, AGE, and DIGOXIN. 

In order to find responders, we consider the end nodes one by one, ordering them by the 

size of their mean response (martingale residuals), as described in section 8.3. We split 

the placebo group into ten regions, defined as the end nodes of the regression tree, 

which was constructed on the Amiodarone group. Now we are able to describe each 

region in the Amiodarone arm and compare it to its corresponding region in the placebo 

arm. 

Consider first all "negative" nodes, i.e. nodes with negative mean of the residuals 

(figure 10.2). We will be looking for responders in them. Starting with the end node 

which has the largest negative mean of the residuals in the Amiodarone group (node 14, 

region R6), we plot the mean of the residuals and its 95% confidence interval (figure 

10.3). There are only eight patients in R6 (Amiodarone arm) and the log-rank statistic 

comparing patients in R6 in the Amiodarone and the placebo groups is not significant at 

the .05 level (p(LR) = .1187). Further, we can combine the two end nodes with the 
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largest negative mean of the residuals in the Amiodarone group (node 14, region R6 and 

node 19, region R10). The mean and 95% confidence interval of the combined regions 

in the treatment group is also plotted in figure 10.3. The process is repeated until no 

more negative end nodes are left (four steps). The results are summarized in figure 10.3. 

Since initially there was no difference in survival between the Amiodarone and placebo 

groups (the entire groups), in our search for responders we should stop at the 

combination of end nodes in figure 10.3, just before the log-rank statistic becomes 

insignificant or when its p-value stops decreasing, as discussed in section 8.3. In our 

case, this happens for the combination of regions R6, R10, and R4, p(LR) = .0036.  

Then patients having the characteristics of one of these regions wold be considered to be 

positive responders: 

R4: SLOPE < 1.5697 
FREQ ≥ 83.5 
AGE < 56 

R6: SLOPE < .66004
FREQ ≥ 83.5 
62.5 ≤ AGE < 70

R10: .66004 ≤ SLOPE < 1.5697
FREQ ≥ 83.5 
AGE ≥ 70.5 
DIGOXIN = 2 (No) 

 

In order to find negative responders, the process described above needs to be repeated 

for all "positive" end nodes, starting with region R8, which has the highest mean of the 

residuals in the Amiodarone arm. Figure 10.4 illustrates the six step process.  

We can conclude that regions R2, R5, R7, R8, and R9 define negative responders: 

 
R2: SLOPE < 1.5697 

FREQ < 83.5 
NYHA = 1 

R5: SLOPE < 1.5697
FREQ ≥ 83.5 
56 ≤ AGE < 62.5

R7: SLOPE < .66004 
FREQ ≥ 83.5 
AGE ≥ 70 

     
R8: SLOPE < 1.5697 

FREQ ≥ 83.5 
AGE ≥ 62.5 
DIGOXIN = 1 (Yes)

R9: SLOPE < .66004 
FREQ ≥ 83.5 
62.5 ≤ AGE < 70.5 
DIGOXIN = 2 (No) 
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Figure 10.2: Predictive regression tree model on the Amiodarone arm of EMIAT with 

continuous input factors and martingale residuals of the prognostic 
model in section 10.4.1 as response variable. 



 

88

Negative nodes
M

ea
n 

M
AR

T
0.0

-.2

-.4

-.6

-.8

-1.0

-1.2

N (Am iodarone) /
events 8 / 1 14 / 1 26 /1 491 / 46

p(LR)
Am iodarone
vs. p lacebo

.1187 .0321 .0036 .1832

     R6                  R6+R10        R6+R10+R4    R6+R10+R4+R1 

         Mean 
            95% CI 
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Figure 10.4: Growth of the negative responder group (continuous factors tree). 
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The scatter plot of figure 10.5 shows the martingale residuals of the identified positive 

and negative responders in the Amiodarone and placebo arm of EMIAT. 
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Figure 10.5: Scatter plot of the residuals of all patients in the responder groups for the 
placebo and Amiodarone arms of EMIAT (continuous factors tree). 

 R6+R10+R4 = positive (+) responders 
  R8+R5+R2+R9+R7 = negative (−) responders 
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10.4.3   The predictive model with categorized factors 
 

The size of the EMIAT data set and most of all its high percent censoring do not allow 

for internal validation, so in order to develop a more stable predictive model with 

CART, one can use pre-defined cut points. Pros and cons of factor categorization are 

discussed in sections 7.1 and 8.4. The resulting regression tree model with predefined 

cut points (as in table 10.1) was pruned down to a tree with 13 end nodes, using pruning 

parameter α = .925 (see chapter 5 for details on pruning). Figure 10.6 gives the tree 

diagram of the pruned tree, which contains the following predictive factors: ONSET, 

AGE, DIABETES, HRVI, BETABLO, LVEF, SLOPE, NYHA, FREQ, SEX and 

ARRYTHM. The search for end nodes containing responders is repeated as in section 

10.4.2. 

We consider first all end nodes containing Amiodarone patients with negative mean 

martingale residuals. Starting with node 19, region R6, which has the largest negative 

mean of the residuals (figure 10.6), we plot the mean and its 95% confidence interval in 

figure 10.7. Next, we plot the combined mean of the two end nodes with largest mean of 

the residuals (calculated in the Amiodarone group), namely node 19, region R6 and 

node 10, region R3. We repeat this process a total of six times until no more negative 

end nodes are available. The survival curves of the patients in each of the given end 

node combinations are compared between the placebo and Amiodarone groups. The p-

values of the resulting log-rank statistics are also given in figure 10.7. Judging the end 

node combinations by their size, mean of the residuals, and p-value of the log-rank 

statistic, we would choose the group of regions R6, R3, R10, and R13 as the positive 

responder group. That means, that the regression tree predictive model of figure 10.5 

defines patients with the following characteristics to be positive responders of 

Amiodarone (one factor combination should hold): 
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Figure 10.6: Predictive regression tree model on the Amiodarone arm of EMIAT with 
categorized input factors and martingale residuals of the prognostic 
model in 10.4.1 as response variable. 
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R6: ONSET > 1 
DIABETES = No 
LVEF ≤ 30 
AGE > 65 

ONSET > 1 
DIABETES = Yes 
BETABLO = Yes 

  

R3:

 
R10: ONSET > 1 

DIABETES = No 
LVEF ≤ 30 
AGE ≤ 65 
SEX = Male 

R9: ONSET ≤ 1 
AGE > 65 
HRVI > 20 
SLOPE ≤ 2.5 
FREQ > 75 
ARRYTHM = Yes 

 

Negative nodes

M
ea

n 
M

AR
T

0.0

-.1

-.2

-.3

-.4

-.5

-.6

N (Amiodarone) /
event 23 / 3 30 / 3 64 / 6 72 / 6 116 / 10 399 / 34

p(LR)
Amiodarone
vs. placebo

.1394 .0449 .0058 .0015 .0053 .1239

          Mean 
          95% CI 

       R6          R6+R3   R6+R3+R10   R6+R3      R6+R3+R10    R6+R3+R10 
                                                         +R10+R13    +R13+R4     +R13+R4+R1

 
Figure 10.7: Growth of the positive responder group (categorized factors tree). 
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N (Amiodarone) /
event 10 / 8 29 / 19 35 /22 44 / 26 117 /39 138 /46 177 /53

p(LR)
Amiodarone
vs. placebo

.1026 .0082 .0171 .0058 .0047 .0126 .0186

          Mean 
          95% CI 

      R7          R7+R9     R7+R9+R12     R7+R9      R7+R9+R12    R7+R9+R12    R7+R9+R12 
                                                           +R12+R11    +R11+R5       +R11+R5+R8   +R11+R5+R8+R2

Figure 10.8: Growth of the negative responder group (categorized factors tree). 

The same procedure is repeated on the positive end nodes in the search for non-

responders. The results are shown in figure 10.8. The p-values of the log-rank statistic 

are of the same order for all shown end node combinations except the first one (R7). We 

choose the last region combination before the mean of the martingale residuals 

dramatically drops, namely, regions R7, R9, R12, and R11. The difference in survival 

between patients with the following characteristics in the Amiodarone and the placebo 

arm is significant at the .05 level (p(LR) = .0058): 

R7: ONSET > 1 
DIABETES = Yes 
BETABLO = No 
NYHA = 1 

R9: ONSET ≤ 1 
AGE > 65 
HRVI > 20 
SLOPE ≤ 2.5 
FREQ ≤ 75 
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R12: ONSET ≤ 1 

AGE > 65 
HRVI > 20 
SLOPE ≤ 2.5 
FREQ > 75 
ARRYTHM = No 

R11: ONSET > 1 
DIABETES = No 
LVEF ≤ 30 
AGE ≤ 65 
SEX = Female 

If a patient is in one of the groups above, he/she would be considered a negative 

responder to Amiodarone. The residuals of the positive and negative responders are 

plotted against follow-up time in figure 10.9. 
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ã − responder  

 

 

 

Figure 10.9: Scatter plot of the residuals of all patients in the responder groups for the 
placebo and Amiodarone arms of EMIAT (categorized factors tree).  

 R6+R3+R10+R13 = positive (+) responders 
 R7+R9+R12+R11 = negative (−) responders 
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Notice, that the p-value of the log-rank statistic for the two largest positive end nodes is 

.0082. Adding one more node increases the p-value. Instead of stopping here, as 

suggested by the algorithm, we made one more step, which did not change the mean of 

the residuals in the group, but decreased the p-value dramatically. Sometimes it is worth 

to look a step ahead in the algorithm. 

As it should be expected, the regression tree with continuous covariates finds groups of 

Amiodarone patients with more difference in survival (when compared to similar 

patients under placebo) than the model with categorized factors. For fair comparison, 

consider equal size groups:  

26 negative responders identified with continuous factors bring p(LR) = .0036.  

26 negative responders identified with categorical factors bring  

.0449 < p(LR) < .1394 (for N = 30 & 23 respectively). 

50 positive responders identified with continuous factors bring p(LR) = .0012. 

50 positive responders identified with categorical factors bring  

.0047 < p(LR) < .0058 (for N = 115 & 44 respectively). 

 
Table 10.6: Identified responders errors in the algorithm with continuous and 

categorized factors regression trees. Table cells represent number of 
patients in the Amiodarone arm. 

 
CONTINUOUS TREE  

+ responders 
(-1) 

non-responders 
(0) 

− responders 
(1) Total 

+ responders (-1) 9 52 11 72 

non-responders (0) 16 420 25 461 

C
A

T
E

G
O

-

R
IZ

E
D

 T
R

E
E

 

− responders (1) 1 29 14 44 
 Total 26 501 50 577 

 

Table 10.6 gives a comparison in responder identification of the tree models with 

continuous and categorized factors in the Amiodarone group. The patients in the main 

nine cells of table 10.6 are also represented with their martingale residuals in figure 

10.10. The crucial mismatches in classification with respect to the other model are 

depicted in the plots of (row 1, column 3) and (row 3, column 1). The first shows the 11 
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Amiodarone patients who were considered to be positive responders by the categorized 

factors model and negative responders – by the continuous factors model. The second 

shows the patient who was considered to be a positive responder by the continuous and 

negative responder – by the categorized factors model. In both cases the continuous 

factors model shows, as expected, better fit to the data. However, the cut points in the 

continuous factors tree are hierarchically dependent on all higher level nodes, which 

makes them impossible to reproduce when the model is built on a slightly altered or 

new data set. Therefore, it is preferable to use the categorized factors tree model for 

responder identification purposes. 
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Figure 10.10: Martingale residuals of the Amiodarone patients in groups as in table 

10.6.   1= −  responders, 0 = non-responders, -1 = + responders. 
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10.5 Responder identification with bump hunting 
 

As shown in the simulation study of chapter 9, the stabilized through bootstrapping 

bump hunting procedure with response martingale residuals delivers the best results in 

the responder identification algorithm. The following is an application of that algorithm 

on the EMIAT data set. 

We use the prognostic model developed in section 10.4.1 on the placebo arm of EMIAT 

with its martingale residuals in the Amiodarone as a response variable in the following 

stabilized bump hunting application. Before the search for predictive bump model can 

begin, all continuous variables need categorization (as in table 10.1). 

When the stabilized bump hunting procedure is applied on the Amiodarone arm of 

EMIAT, it finds the following predictive "bump" model: 

MAX bump MIN bump 
Box 1 Box 2 Box 1 
 
ONSET ≤ 1 
AGE ≥ 65 
NYHA > 1 

All not in Box 1 ∋: 
DIABETES = 1 
BETABLOC = 0 
THROMBOL = 0 
CALCANT = 0 

All not in MAX bump ∋: 
CALCANT = 0 
DIABETES = 0 
ONSET > 1 
SEX = male 

The maximal bump contains two boxes – one with three borders and one with four 

borders. The minimal bump consists of a single box with four borders. The evolution of 

the support-mean relationship of the bump model is shown in figure 10.11. Notice, that 

the support-mean points are denoted with circles for the three borders of the first 

positive box. Then Box 2 is added to the model border by border (denoted with 

triangles). Finally, the negative bump is added to the model (the four rhombs). The final 

support-mean of the model is denoted by the triangle with smallest support and largest 

mean for the positive bump and the rhomb with smallest support and largest in absolute 

value mean for the negative bump. The growth of the bump model is shown in detail in 

table 10.7, including the p-value of the log-rank statistic when comparing patients with 

the current model characteristics in the placebo vs. Amiodarone groups. Notice, that in 

the minimal box, adding the third border actually slightly increases the p-value of the 
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log-rank statistic, however, adding the fourth border decreases it dramatically. As 

described in chapter 7, the bootstrapped bump hunting procedure stops when the p-

value does not improve from the previous step. In our case, it was worth to consider one 

additional step. In this case, we used the advantages of doing responder analysis with a 

semi-automated software implementation to overcome the nearsightedness of the p-

value stopping criteria. 

Both the maximal and minimal bumps define groups of patients who have significantly 

different survival estimates under Amiodarone and under placebo. Therefore, we can 

consider the positive bump as a definition of negative responders and the negative bump 

as a definition of positive responders of Amiodarone under the conditions of the 

EMIAT study. Figure 10.12 contains a scatter plot of martingale residuals vs. follow-up 

time of the identified positive and negative responder groups, which shows the possibly 

misclassified by the model patients, i.e. positive responders with positive residuals and 

negative responders with large negative residuals in the Amiodarone panel. Those 

would be patients, for whom the prognostic and the predictive factors in the chosen 

models do not explain the changes in survival pattern under Amiodarone. As discussed 

in chapter 2, they either appeared by chance, or some prognostic and/or predictive 

factors were not accounted for in the EMIAT study and, therefore, the effect of 

Amiodarone on those patients cannot be explained by the current models. The "flower" 

plot of figure 10.13 represents schematically the structure of the positive and negative 

responder groups. Figure 10.14 shows the Kaplan-Meier survival curve estimates for 

those groups in the Amiodarone and placebo arms of EMIAT.    
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Figure 10.11:  Growth of the stabilized bump hunting model in the Amiodarone arm of 

EMIAT. 
 
 
 
Table 10.7:  Cumulative bump means and p-values stepwise after the addition of each 

new border to the bump model (to complement figure 10.11). 
 

PLACEBO AMIODARONE   
p(LR) Mean n events Mean n events 

1. .1537 .0298 434 44 .0341 428 57 
2. .1622 .0543 164 26 .1170 158 36 

MAX 
Box 1 

3. .1007 .0561 86 15 .1708 93 27 
1. .1181 .0457 165 33 .1220 172 48 
2. .0607 .0474 146 30 .1538 156 48 
3. .0334 .0507 117 24 .1887 125 42 

MAX 
Box 2 

4. .0147 .0453 115 23 .2096 119 42 
1. .0614 -.0197 413 53 -.0529 400 35 
2. .0979 -.0067 372 45 -.0523 359 30 
3. .1037 -.0142 105 22 -.1398 98 12 

MIN 
Box 1 

4. .0236 -.0008 89 20 -.1788 77 7 
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Figure 10.12: Scatter plot of the residuals of all patients in the responder groups for the 

placebo and Amiodarone arms of EMIAT (stabilized bump hunting 
model). 
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Figure 10.13:  Flower plot of the bump model. 
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Figure 10.14: Kaplan-Meier survival curve estimates for the two responder groups of 
the bump model, compared in the Amiodarone and placebo groups of 
EMIAT. 
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10.6 Comparison and discussion 
 
 

From chapter 9 we know, that the bump hunting model performs better than the tree 

model in responder identification context when all factors are categorized. Nevertheless, 

let us compare the outcomes of the categorical factor regression tree and the stabilized 

bump hunting models. We know from section 10.4.3, that the continuous factors tree 

model fits better the data. We also know from chapter 9, that stabilized bump hunting 

performs better than ordinary bump hunting in responder identification. And since 

stabilized bump hunting requires categorized factors, in order to compare the 

procedures, we need to consider the regression tree model with categorized  factors. For 

the rest of this chapter, when not otherwise specified, "tree model" would denote the 

categorized factor tree model from section 10.4.3 and "bump model" the stabilized 

bump hunting model from section 10.5. 

Both the tree and the bump models are hierarchical, so that the first few split nodes of 

the tree contain predictive factors, which are comparable in their performance to the 

factors in the first few borders of the first box in the bump model (the main difference, 

of course, is the type of interaction between the factors). The first level of the regression 

tree model contains the predictive factor ONSET. The second level contains AGE and 

DIABETES. ONSET is the most important predictor in the bump model as well, as it 

defines the first border of the first box. AGE comes in second, DIABETES is the first 

border of the second box. So we can find the same three factors among the most 

important predictive factors in both models. Yet the models identify  different groups of 

positive and negative responders. Indeed, further comparison shows that the tree model 

is much more complicated than the bump model. Notice also that the difference between 

end nodes of the tree containing positive responders and ones containing negative 

responders is often just one or two predictors. For example, patients with high onset, 

diabetes and on beta-blockers are classified as positive responders, whereas patients 

with high onset, diabetes, off beta-blockers, and with NYHA = 1 are classified as 

negative responders. The more complicated such models are, the more difficult it is to 

judge the correctness of such differences clinically.  
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Let us now compare the groups of patients identified as positive and negative 

responders in both models. We would be interested in the Amiodarone arm only. Table 

10.8 gives a cross-tabulation of the 577 patients as classified in responder and non-

responder groups with the help of the regression tree and bump models. A complete 

mismatch in the classification scheme occurred for a total of 13 patients. Their residuals 

are plotted in figure 10.15. Only three patients who were identified as positive 

responders using the bump model were considered to be negative responders when 

using the tree model. Ten negative responders in the bump model were considered to be 

positive responders by the tree model. 

 

Table 10.8: Identified responders in the algorithm with categorized factors 
regression tree and stabilized bump hunting predictive models. Table 
cells represent number of patients in the Amiodarone arm. Please refer to 
table 10.7 and figures 10.7 & 10.8 as well. 

 
TREE  

+ responders
(-1) 

non-responders 
(0) 

− responders 
(1) Total 

+ responders 
(-1) 27 47 3 77 

non-responders 
(0) 35 326 20 381 

B
U

M
P 

− responders 
(1) 10 88 21 119 

 Total 72 461 44 577 
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Figure 10.15: Martingale residuals of patients identified to be positive responders in 

one model and negative responders in the other and vice versa: T = Tree 
model, B = Bump model, -1 = + responders, 1 = − responders.  

 
 

It is more interesting to look at patients who were identified as positive or negative 

responders by one model only. In table 10.8, the number of patients who were identified 

as positive responders in one model only are printed in bold; ones who were identified 

as negative responders in one model only are in shaded boxes. Figure 10.16 shows four 

panels, corresponding to the four possible mismatches by the models: 
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Figure 10.16:  Martingale residuals of patients identified to be positive or negative 

responders by one model only: 
Panel 1  (T-1B01) contains the 45 patients who were considered to 

be responders in the tree model only. 
Panel 2  (T01B-1) contains 50 patients classified as responders by 

the bump model only. 
Panel 3  (T-10B1) contains 98 patients who were non-responders 

in the bump model only. 
Panel 4  (T1B-10) contains 23 patients who were non-responders 

in the tree model only. 
T = Tree model, B = Bump model, -1 = + responders, 1 = − responders, 
0 = non-responders.  
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Panels 1 & 4 show differences of the bump model with respect to the tree model (notice: 

fewer patients). Panels 2 & 3 show differences of the tree model with respect to the 

bump model (notice: more patients). Chapter 9 showed that the bump model should 

deliver better results than the tree model. To see this, one should not only be looking at 

the misclassification rate with respect to the other model, but also at the size of the 

misclassified residuals (figure 10.16) as well as the survival curves for the four pannels 

of figure 10.16.  

Consider the misclassified residuals and the type of error which is likely to have 

occurred, assuming that patients with large positive residuals are likely to be negative 

responders and patients with large negative residuals are likely to be positive 

responders. Panels 3 & 4 give insight to model performance with respect to the most 

dramatic error which can be made: failing to identify negative responders, which results 

in treating patients with medication, which is harmful for them (kills them). Panel 3 

shows the martingale residuals of patients who were not identified as negative 

responders by the tree model. Concentrating on the positive residuals (patients who 

died), we notice that they all have values above .5. When comparing the entire group of 

patient in this panel to the corresponding group in the placebo arm, the survival curves 

show difference at the .1 level (p(LR) = .0986). Those patients with large positive 

residuals are likely to belong to the negative responder group, as recognized in the 

bump model. Panel 4 shows the same for the bump model. Notice, much fewer patients 

were misclassified with respect to the other model than in panel 3 and only seven had 

positive residuals, i.e. are likely negative responders and were not chosen as such by the 

bump model. Panels 1 & 2 give information on the less crucial error, which can be 

made: failing to identify positive responders, i.e. denying medication to patients, which 

would actually help them (improves survival). Very few possible errors were made here, 

which appear on the plots as large negative residuals (e.g. < -.5). The performance of 

the two models in this case is comparable. 

In general, the bump model had less (presumably) misclassified patients than the tree 

model, as it was to be expected after the simulation study in chapter 9. 
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A note on software and algorithmic implementation: 

The above analysis was done with the help of SPSS 10.0, S-PLUS 4.5 (for Windows 

and for Unix), functions from Becker's bump hunting software (1999), as well as some 

S functions, written to automate the bootstrapping part of the stabilized bump hunting 

algorithm. All self generated code is given in Appendix C.  

 



CONCLUSIONS 
 
 
 

Summary 
 

Clinical trials often judge the efficacy of a new treatment by comparing the outcome 

(survival patterns) of patients randomly assigned to undergo a new or a standard 

treatment. Usually, the entire groups are analyzed, although it is well known that certain 

subgroups of patients react differently to the new treatment than others. Some patients 

taking the new treatment might benefit from it (the positive responders) while others 

may be harmed by it (the negative responders). The topic of this thesis is extraction of 

such special subgroups of patients, based on finding the so called predictive factors, 

which describe survival differences solely due to the new treatment. 

The thesis gives an overview of the techniques used up to now for responder 

identification and proposes a new method for systematic search for responders. The 

responder identification method consists of the following three steps: 

1. Identification of "prognostic" factors (e.g. via Cox-PH model on the standard 

treatment arm). Notice, those factors are prognostic in the classical sense only if the 

study was performed with placebo, not standard treatment arm. 

2. Identification of patients in the new treatment arm, who's survival time is badly 

estimated by the prognostic model (e.g. via search for outliers in the deviance or 

martingale residuals) 

3. Identification of predictive factors, which describe common features of the patients 

with residual outliers, namely the positive and negative responders (e.g. via 

regression tree or bump hunting analysis, or via the suggested stabilized bump 

hunting procedure) 

The basic responder identification method was developed for analysis of clinical trial 

data, in which no difference in survival between the new and the classical treatment 



 
 
 
   
 

110

groups is present. Slight changes to the method were discussed for application on data, 

which does show initial difference in survival between the two treatment groups. 

Several variations of the basic responder identification method were proposed and 

compared in a simulation study.  

In the search for predictive factors, one can apply martingale or deviance residuals to 

the prognostic model as a response variable in a regression tree, bump hunting, or the 

proposed stabilized bump hunting analysis. The simulation study showed that 

martingale residuals, combined with the stabilized bump hunting procedure are most 

suitable for responder identification. This variation of the suggested procedure has 

power of 99% (i.e. recognized the correct positive and negative responder groups 99% 

of the time).  

Some versions of the proposed responder identification method were also applied on a 

"real life" data set – the European Myocardial Infarction Amiodarone Trial (EMIAT) 

and the identified positive and negative responder groups were compared.  

All versions of the proposed responder identification algorithm, and especially the one 

employing stabilized bump hunting with martingale residuals as response, perform 

better than the method available up to now – Cox-PH model with treatment interactions. 

This was shown in the simulation study and in the analysis of the EMIAT data. The 

better performance of the new method is due to the fact that it recognizes interactions of 

higher order between covariates much easier than the Cox-PH model does. 

 

Outlook 
 

Fully automated implementation of the six different versions of the responder 

identification algorithm were done only for the simulation study, where the number and 

type of factors in the data were set. Responder analysis of the EMIAT data was done 

with semi-automated implementation, which allows more flexibility in the predictive 

model building process, but also slows down the analysis. If the best version of the 

responder identification algorithm, stabilized bump hunting with martingale residuals as 
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response, is to be used on a regular basis, a computer program is needed, which fully 

automates the procedure, allowing for different number and type of factors, different 

size of the data set, and flexibility in choosing the stopping criteria for model growth. 

The responder identification procedure was created for and tested on data sets with no 

survival difference between the new and the classical treatment groups. A future 

software product for responder analysis should allow for data with initial survival 

difference as well. The performance of the proposed responder identification method on 

such data may be tested in a simulation study. 

So far, it was also assumed that none of the prognostic and predictive factors vary with 

time. A new study can be done, which extends responder identification to data with time 

varying effects as well. 



APPENDIX A: PROOFS AND EXAMPLES 
 
 
 

1. Reduction of  to  )(ˆ tM i iM̂
 

In chapter 3.3 we defined Martingale residuals as follows (3.9): 

∫ Λ⋅−= ⋅t sZ
iii sdesYtNtM i

0 0
)(´ˆ )(ˆ)()()(ˆ β

 

using Stieltjes Integral 

dssesYtN
t sZ

ii
i∫ ⋅⋅−= ⋅

0 0
)(´ˆ )(ˆ)()( λβ

 

For a right censored data time-constant model, such as Cox-PH: 

∫ ⋅⋅−= ⋅ i
i dsssYeM i

Z
ii

τβ λδ
0 0

´ˆ )(ˆ)(ˆ
 

where: 

τi is the observation time for subject i and 

δi is the final status for subject i. 

Let us consider the integral part of the equation above and let  

)(ˆ)()( 0 xxYxf ii λ⋅=  

Then: 
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, which can be approximated by

where tc denotes censoring times and td – observed failure times. Now we can return to 

 where for the Cox-PH model we have the following: iM̂

),(ˆ)(ˆˆ ´ˆ
0 iiii

Z
iii ZeM i τδτδ β Λ−=⋅Λ−= ⋅

 

▄ 

2. Deviance residuals examined by cases 
 

Deviance residuals, as defined in 3.16, can be combined with the definition of 

Martingale residuals (3.10) and transformed the following way: 

)ˆlnˆ(2)ˆsgn(

)]ˆln(ˆ[2)ˆsgn(

)]ˆln(ˆ[2)ˆsgn(

iiiiii

iiiiiiii

iiiiii MMMd

Λ⋅−−Λ⋅⋅Λ−=

Λ+−⋅+Λ−⋅−⋅Λ−=

−⋅+⋅−⋅=

δδδ

δδδδδ

δδ

 

Case δi = 0: 

),0[ˆ,ˆ2ˆ2)ˆsgn( ∞∈ΛΛ−=ΛΛ−= iiiiid  
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2ˆ2
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impossible in this case 

 
and in general (see figure #): 

0ˆ0 >Λ< ii ifd
 

Case δi = 1: 
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and in general: 

1ˆ00

1ˆ0

<Λ<>

>Λ<

ii

ii

ifd

ifd

 
* solutions were found using Maple 6 and the function "solve". 

 
 
 
 

3. Pruning example to chapter 5 
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APPENDIX B:   SIMULATION STUDY PLOTS 
 
 
 

1.  Simulation study: scatter plots of the residuals 
 
 
 
 

Simulation group 1 (cmin = -2, cmax = 2, censored = 10%): 
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Simulation group 2 (cmin = -1, cmax = 1, censored = 10%): 
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Simulation group 3 (cmin = -0.5, cmax = 0.25, censored = 10%): 
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Simulation group 4 (cmin = -2, cmax = 2, censored = 30%): 
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Simulation group 5 (cmin = -1, cmax = 1, censored = 30%): 
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Simulation group 6 (cmin = -0.5, cmax = 0.25, censored = 30%): 
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Simulation group 7 (cmin = -2, cmax = 2, censored = 70%): 
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Simulation group 8 (cmin = -1, cmax = 1, censored = 70%): 
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Simulation group 9(cmin = -0.5, cmax = 0.25, censored = 70%): 
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APPENDIX C:   ALGORITHMIC IMPLEMENTATION IN S 
 
 
 

1. Functions needed for simulations with bump hunting 

(on UNIX) 

".boot.sim" <- function(nboot=10, coeffmin=1, coeffmax=-2, cens.max=11, beta =.1) 
{ 
  rownames <- c("x10", "x11", "x20", "x21", "x22", "x30", "x31", "x40", "x41", "x50", "x51", 
"x60", "x61") 
  output <- rep(0,4) 
  simdata <- .data.sim(coeffmin=coeffmin, coeffmax=coeffmax, cens.max=11) 
  martdata <- .model.fit(simdata) 
  prepdata.max <- .box.prep(martdata) 
  prepdata.min <- prepdata.max 
  minbox <- .boxes(train.data = prepdata.min, type = rep(1, 6), nboxes = 1, maxi = F, beta = 
beta, pasting = F, peel.crit = 2, output = F) 
  min.rank <- .border.ranking(minbox, crit.valid = F) 
  maxbox <- .boxes(train.data = prepdata.max, type = rep(1, 6), nboxes = 1, maxi = T, beta = 
beta, pasting = F, peel.crit = 2, output = F) 
  max.rank <- .border.ranking(maxbox, crit.valid = F) 
   
  # min original bump hunting 
  onm <- dimnames(min.rank[[4]])[[1]] 
  orm <- min.rank[[4]][,3] 
  n <- length(onm) 
  if(onm[n]=="x4" && onm[n-1]=="x5" && onm[n-2]=="x6" && orm[n]=="= 0" && orm[n-1]=="= 
0" && orm[n-2]=="= 0") output[1] <- 1 
  if(onm[n]=="x4" && onm[n-1]=="x6" && onm[n-2]=="x5" && orm[n]=="= 0" && orm[n-1]=="= 
0" && orm[n-2]=="= 0") output[1] <- 1 
  if(onm[n]=="x5" && onm[n-1]=="x6" && onm[n-2]=="x4" && orm[n]=="= 0" && orm[n-1]=="= 
0" && orm[n-2]=="= 0") output[1] <- 1 
  if(onm[n]=="x5" && onm[n-1]=="x4" && onm[n-2]=="x6" && orm[n]=="= 0" && orm[n-1]=="= 
0" && orm[n-2]=="= 0") output[1] <- 1 
  if(onm[n]=="x6" && onm[n-1]=="x4" && onm[n-2]=="x5" && orm[n]=="= 0" && orm[n-1]=="= 
0" && orm[n-2]=="=0") output[1] <- 1 
  if(onm[n]=="x6" && onm[n-1]=="x5" && onm[n-2]=="x4" && orm[n]=="= 0" && orm[n-1]=="= 
0" && orm[n-2]=="= 0") output[1] <- 1 
 
  # max original BH 
  onx <- dimnames(max.rank[[4]])[[1]] 
  orx <- max.rank[[4]][,3] 
  n <- length(onx) 



 
 
 
   
 

123

  if(onx[n]=="x5" && onx[n-1]=="x2" && onx[n-2]=="x2" && orx[n]=="= 0" && orx[n-1]=="= 0" 
&& orx[n-2]=="= 1") output[2] <- 1 
  if(onx[n]=="x5" && onx[n-1]=="x2" && onx[n-2]=="x2" && orx[n]=="= 0" && orx[n-1]=="= 1" 
&& orx[n-2]=="= 0") output[2] <- 1 
  if(onx[n]=="x2" && onx[n-1]=="x2" && onx[n-2]=="x5" && orx[n]=="= 0" && orx[n-1]=="= 1" 
&& orx[n-2]=="= 0") output[2] <- 1 
  if(onx[n]=="x2" && onx[n-1]=="x5" && onx[n-2]=="x2" && orx[n]=="= 0" && orx[n-1]=="= 0" 
&& orx[n-2]=="= 1") output[2] <- 1 
  if(onx[n]=="x2" && onx[n-1]=="x5" && onx[n-2]=="x2" && orx[n]=="= 1" && orx[n-1]=="= 0" 
&& orx[n-2]=="= 0") output[2] <- 1 
  if(onx[n]=="x2" && onx[n-1]=="x2" && onx[n-2]=="x5" && orx[n]=="= 1" && orx[n-1]=="= 0" 
&& orx[n-2]=="= 0") output[2] <- 1 
 
  # initiate resulting vectors 
  orignam.max <- rep("0", 14) 
  origrestr.max <- rep("0", 14) 
  orignam.min <- rep("0", 14) 
  origrestr.min <- rep("0", 14) 
  boxmax <- rep("0", 14) 
  boxmin <- rep("0", 14) 
  res.supp.max <- c(1,rep(0, 13))  
  res.supp.min <- c(1,rep(0, 13)) 
  res.mean.max <- rep(0, 14) 
  res.mean.max[1] <- mean(prepdata.max$mart) 
  res.mean.min <- rep(0, 14) 
  res.mean.min[1] <- res.mean.max[1] 
  res.lr.max <- rep(0, 14) 
  lrmax <-.logrank(S=Surv(martdata$time, martdata$death), group=martdata$treat) 
  res.lr.max[1] <- lrmax$pval 
  res.lr.min <- rep(0, 14) 
  res.lr.min[1] <- res.lr.max[1] 
  treat.num <- dim(prepdata.max)[1] 
   
  # constructing boxmax 
  cat("maxbox", "\n") 
  nbord <- 1 
  spri <-F 
  while(spri == F) 
    { 
      outmat.max <- matrix(0, 13, nboot+1, dimnames=list(rownames, NULL)) 
      oresult <- .evaluate(prepdata.max, maxi=T, beta=.05) 
      op <- dim(oresult[[4]])[1] 
      orignam.max[nbord] <- dimnames(oresult[[4]])[[1]][op] 
      origrestr.max[nbord] <- oresult[[4]][op,3] 
      j <- 1       # bootstrap sample number 
      while(j < nboot+1)            #bootstrap samples 
        { 
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          length <- dim(prepdata.max)[1] 
          n <- c(1:length) 
          samp <- sample(n, replace=T) 
          sampdata <- prepdata.max[samp,] 
          names(sampdata) <- names(prepdata.max) 
          result <- .evaluate(sampdata, maxi=T, beta=.05) 
          p <- dim(result[[4]])[1] 
          varnam <- dimnames(result[[4]])[[1]][p] 
          restrict <- result[[4]][p,3] 
          outmat.max <- .fals.funk(j=j, varnam=varnam, restrict=restrict, outmat=outmat.max) 
          j <- j+1 
        } 
      for(i in 1:13) 
        outmat.max[i,nboot+1] <- sum(outmat.max[i,]) 
      cat(outmat.max[,nboot+1], "\n") 
      maximal <- max(outmat.max[,nboot+1]) 
 
      # if two borders are maximal, take the one with the bigger support 
      support <- rep(0,13) 
      for(i in 1:13) 
        if(outmat.max[i,nboot+1]==maximal) 
          { 
            maxrow <- rownames[i] 
            tempo.max <- .restrict(prepdata=prepdata.max, maxrow=maxrow) 
            support[i] <- dim(tempo.max)[1] 
          } 
      maxi.supp <- max(support) 
      for(i in 1:13) 
        if(support[i] == maxi.supp) index <- i 
      maxrow <- rownames[index] 
      prepdata.max <- .restrict(prepdata=prepdata.max, maxrow=maxrow) 
      boxmax[nbord+1] <- maxrow 
       
      # update loop parameter 
      nbord <- nbord+1 
      supp.max <- dim(prepdata.max)[1] 
      res.supp.max[nbord] <- supp.max/treat.num 
      res.mean.max[nbord] <- mean(prepdata.max$mart) 
      boxdata.max <- .box.restrict(box=boxmax, martdata) 
      lrmax <- .logrank(S=Surv(boxdata.max$time, boxdata.max$death), 
group=boxdata.max$treat) 
      res.lr.max[nbord] <- lrmax$pval 
 
      # stopping criteria 
      if(res.supp.max[nbord] < beta) 
        spri <- T 
    } 
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  # constructing minbox 
  cat("minbox", "\n") 
  nbord <- 1 
  spri <- F 
  while(spri == F) 
    { 
      outmat.min <- matrix(0, 13, nboot+1, dimnames=list(rownames, NULL)) 
      oresult <- .evaluate(prepdata.min, maxi=F, beta=.05) 
      op <- dim(oresult[[4]])[1] 
      orignam.min[nbord] <- dimnames(oresult[[4]])[[1]][op] 
      origrestr.min[nbord] <- oresult[[4]][op,3] 
      j<- 1          # bootstrap sample number 
      while(j < nboot+1)         #bootstrap samples 
        { 
          length <- dim(prepdata.min)[1] 
          n <- c(1:length) 
          samp <- sample(n, replace=T) 
          sampdata <- prepdata.min[samp,] 
          names(sampdata) <- names(prepdata.min) 
          result <- .evaluate(sampdata, maxi=F, beta=.05) 
          p <- dim(result[[4]])[1] 
          varnam <- dimnames(result[[4]])[[1]][p] 
          restrict <- result[[4]][p,3] 
          outmat.min <- .fals.funk(j=j, varnam=varnam, restrict=restrict, outmat=outmat.min) 
          j <- j+1   
        } 
          
      for(i in 1:13) 
        outmat.min[i,nboot+1] <- sum(outmat.min[i,]) 
      cat(outmat.min[,nboot+1], "\n") 
      maximal <- max(outmat.min[,nboot+1]) 
 
      # if two borders are maximal, take the one with the bigger support 
      support <- rep(0,13)           
      for(i in 1:13) 
        if(outmat.min[i,nboot+1]==maximal) 
          { 
            maxrow <- rownames[i] 
            tempo.min <- .restrict(prepdata=prepdata.min, maxrow=maxrow) 
            support[i] <- dim(tempo.min)[1] 
          } 
      maxi.supp <- max(support) 
      for(i in 1:13) 
        if(support[i] == maxi.supp) index <- i 
      maxrow <- rownames[index] 
      prepdata.min <- .restrict(prepdata=prepdata.min, maxrow=maxrow) 
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      boxmin[nbord+1] <- maxrow 
       
      # update loop parameter 
      nbord <- nbord+1 
      supp.min <- dim(prepdata.min)[1] 
      res.supp.min[nbord] <- supp.min/treat.num 
      res.mean.min[nbord] <- mean(prepdata.min$mart) 
      boxdata.min <- .box.restrict(box=boxmin, martdata) 
      lrmin <- .logrank(S=Surv(boxdata.min$time, boxdata.min$death), 
group=boxdata.min$treat) 
      res.lr.min[nbord] <- lrmin$pval 
 
      # stopping criteria 
      if(res.supp.min[nbord] < beta) 
        spri <- T           
    } 
 
  # cutting all zeros 
  spri <- F 
  i.max <- 2 
  while(spri == F) 
    { 
      if(boxmax[i.max] == "0") 
        spri <- T 
      else 
        i.max <- i.max + 1 
    } 
  spri <- F 
  i.min <- 2 
  while(spri == F) 
    { 
      if(boxmin[i.min] == "0") 
        spri <- T 
      else 
        i.min <- i.min + 1 
    } 
  boxmax <- boxmax[1:i.max-1] 
  boxmin <- boxmin[1:i.min-1] 
  res.supp.max <- res.supp.max[1:i.max-1]  
  res.supp.min <- res.supp.min[1:i.min-1] 
  res.mean.max <- res.mean.max[1:i.max-1] 
  res.mean.min <- res.mean.min[1:i.min-1] 
  res.lr.max <- res.lr.max[1:i.max-1] 
  res.lr.min <- res.lr.min[1:i.min-1] 
  if(boxmin[2]=="x40" && boxmin[3]=="x50" && boxmin[4]=="x60") 
    output[3] <- 1 
  if(boxmin[2]=="x40" && boxmin[3]=="x60" && boxmin[4]=="x50") 
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    output[3] <- 1 
  if(boxmin[2]=="x50" && boxmin[3]=="x60" && boxmin[4]=="x40") 
    output[3] <- 1 
  if(boxmin[2]=="x50" && boxmin[3]=="x40" && boxmin[4]=="x60") 
    output[3] <- 1 
  if(boxmin[2]=="x60" && boxmin[3]=="x40" && boxmin[4]=="x50") 
    output[3] <- 1 
  if(boxmin[2]=="x60" && boxmin[3]=="x50" && boxmin[4]=="x40") 
    output[3] <- 1 
  if(boxmax[2]=="x50" && boxmax[3]=="x20" && boxmax[4]=="x21") 
    output[4] <- 1 
  if(boxmax[2]=="x50" && boxmax[3]=="x21" && boxmax[4]=="x20") 
    output[4] <- 1 
  if(boxmax[2]=="x20" && boxmax[3]=="x21" && boxmax[4]=="x50") 
    output[4] <- 1 
  if(boxmax[2]=="x20" && boxmax[3]=="x50" && boxmax[4]=="x21") 
    output[4] <- 1 
  if(boxmax[2]=="x21" && boxmax[3]=="x50" && boxmax[4]=="x20") 
    output[4] <- 1 
  if(boxmax[2]=="x21" && boxmax[3]=="x20" && boxmax[4]=="x50") 
    output[4] <- 1 
   
  return(output, boxmin, boxmax, min.rank[[4]][,3], max.rank[[4]][,3]) 
} 
 
".box.prep"<-function(daten) 
{ 
  # prepares data from .model.fit for use in .boxes 
  treat <- daten[, 9] 
  simtreat <- daten[treat == 1,  ] 
  names(simtreat) <- names(daten) 
  mart <- simtreat[, c(14, 2:8)] 
  mart <- mart[, -4] 
  m <- mean(mart[,4]) 
  for(i in 1:dim(mart)[1]) 
    if(mart[i,4] <= m) mart[i,4] <- 0  
    else mart[i,4] <- 1 
  return(mart) 
} 
 
".box.prep.devi"<-function(daten) 
{ 
  # prepares data from .model.fit for use in .boxes 
  treat <- daten[, 9] 
  simtreat <- daten[treat == 1,  ] 
  names(simtreat) <- names(daten) 
  devi <- simtreat[, c(17, 2:8)] 
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  devi <- devi[, -4] 
  m <- mean(devi[, 4]) 
  for(i in 1:dim(devi)[1]) 
    if(devi[i, 4] <= m) devi[i, 4] <- 0 else devi[i, 4] <- 1 
  return(devi) 
} 
 
".data.sim"<-function(coeffmin = 1, coeffmax = -2, cens.max = 10) 
{ 
  n <- c(1:1000) 
  x1 <- rbinom(1000, 1, 0.5) 
  x2 <- rep(0, 1000) 
  tempo <- runif(1000, min = 0, max = 1) 
  for(i in 1:1000) 
    if(tempo[i] > 0.3333) x2[i] <- 1 
  for(i in 1:1000) 
    if(tempo[i] > 0.6667) x2[i] <- 2 
  ind2x2 <- rep(0, 1000) 
  for(i in 1:1000) 
    if(x2[i] == 2) ind2x2[i] <- 1 
  x3 <- rnorm(1000, mean = 5, sd = 2) 
  x4 <- rbinom(1000, 1, 0.5) 
  x5 <- rbinom(1000, 1, 0.5) 
  x6 <- rbinom(1000, 1, 0.5) 
  treat <- rbinom(1000, 1, 0.5) 
  rr <-  - log(3) * x1 + (2 * log(3) * x1 * x3)/10 - (log(3) * x3)/10 + coeffmax * ind2x2 * x5 * 
treat + coeffmin * x4 * x5 * x6 * treat 
  lambda <- exp(rr) 
  simdata <- cbind(n, x1, x2, ind2x2, x3, x4, x5, x6, treat, rr, lambda) 
  simdata <- as.data.frame(simdata) 
  zeit <- rep(0, 1000) 
  for(i in 1:1000) 
    zeit[i] <- rweibull(1, shape = 2, scale = sqrt(lambda[i])) 
  censor <- runif(1000, min = 0, max = cens.max) 
  death <- rep(0, 1000) 
  l <- (zeit <= censor) 
  for(i in 1:1000) 
    if(l[i] == 1) death[i] <- 1 
  simdata <- cbind(simdata, zeit, death) 
  names(simdata)[12] <- "time" 
  names(simdata)[13] <- "death" 
  return(simdata) 
} 
 
".evaluate"<-function(boxdata, maxi=T, beta =.05) 
{ 
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  # takes data from .box.prep and runs .boxes; uses .express.boxes to see which variables 
are in the box 
  type <- rep(1, 6) 
  x2 <- boxdata[, 3] 
  x5 <- boxdata[, 6] 
  box <- .boxes.vic(train.data = boxdata, type = type, nboxes = 1, maxi = maxi, beta=beta, 
pasting = F, peel.crit = 2, output=F) 
  if(box$flag == 0) 
    { 
      rank.bord <- NA 
      cat("no more boxes can be found", "\n") 
    } 
  else 
    { 
      descr <- .express.boxes(box$result) 
      rank.bord <- .border.ranking(box$result, crit.valid = F) 
    } 
  return(rank.bord) 
} 
 
".fals.funk" <- function(j, varnam, restrict, outmat) 
{ 
   
   if((varnam == "x1") && (restrict == "= 0")) outmat[1,j] <- 1 
      
   if((varnam == "x1") && (restrict == "= 1")) outmat[2,j] <- 1 
     
   if((varnam == "x2") && (restrict == "= 0")) outmat[3,j] <- 1 
     
   if((varnam == "x2") && (restrict == "= 1")) outmat[4,j] <- 1 
     
   if((varnam == "x2") && (restrict == "= 2")) outmat[5,j] <- 1 
  
   if((varnam == "x3") && (restrict == "= 0")) outmat[6,j] <- 1 
 
   if((varnam == "x3") && (restrict == "= 1")) outmat[7,j] <- 1 
 
   if((varnam == "x4") && (restrict == "= 0")) outmat[8,j] <- 1 
 
   if((varnam == "x4") && (restrict == "= 1")) outmat[9,j] <- 1 
 
   if((varnam == "x5") && (restrict == "= 0")) outmat[10,j] <- 1 
  
   if((varnam == "x5") && (restrict == "= 1")) outmat[11,j] <- 1 
 
   if((varnam == "x6") && (restrict == "= 0")) outmat[12,j] <- 1 
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   if((varnam == "x6") && (restrict == "= 1")) outmat[13,j] <- 1 
 
   return(outmat) 
 
} 
".logrank" <- function(S, group) 
{ 
  for(j in 1:length(group)) 
    if(group[j]==0) group[j]<-2  
  y <- S[,1] 
  event <- S[,2] 
  i <- order(-y) 
  y <- y[i] 
  event <- event[i] 
  group <- group[i] 
  x <- cbind(group==1, group==2, (group==1)*event, (group==2)*event) 
  s <- rowsum(x, y, F) 
  nr1 <- cumsum(s[,1]) 
  nr2 <- cumsum(s[,2]) 
  d1 <- s[,3] 
  d2 <- s[,4] 
  rd <- d1 + d2 
  rs <- nr1 + nr2 - rd 
  n <- nr1+nr2 
  oecum <- d1 - (rd*nr1)/n 
  vcum <- (rd*rs*nr1*nr2)/n/n/(n-1) 
  chival <- sum(oecum)^2/sum(vcum, na.rm=T) 
  pval <- 1-pchisq(chival,df=1) 
  return(chival, pval) 
} 
 
".model.fit" <- function(daten, coeffmin = 1, coeffmax = -2) 
{ 
  ind <- order(daten$treat, daten$time, rev(daten$death)) 
  ordtreat <- daten[ind,  ] 
  names(ordtreat) <- names(daten) 
  # omits all (first) rows in the data set for which delta(t1)=0 
  while(ordtreat$death[1]==0) ordtreat<-ordtreat[-1,] 
  treat <- ordtreat[, 9] 
  plac <- ordtreat[treat == 0,  ] 
  coxmod <- coxph(Surv(time, death) ~ x1 + x3 + x1 * x3, data = plac, method = "breslow", x 
= T) 
  coxdetail <- coxph.detail(coxmod) 
  beta <- as.vector(coxmod$coefficients) 
  mart <- coxmod$residuals 
  hazard <- plac$death - mart 
  plac.linpred <- beta[1] * plac$x1 + beta[2] * plac$x3 + beta[3] * plac$x1 * plac$x3 
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  basehaz <- hazard/exp(plac.linpred) 
  len <- length(mart) 
  m <- dim(ordtreat)[1] 
  martfull <- c(mart, rep(-999, (m - len))) 
  hazfull <- c(hazard, rep(-999, (m - len))) 
  basefull <- c(basehaz, rep(-999, (m - len))) 
  ordtreat <- cbind(ordtreat, martfull, hazfull, basefull) 
  names(ordtreat)[14:16] <- c("mart", "hazard", "basehaz") 
  ind <- order(ordtreat$time, rev(ordtreat$death), ordtreat$treat) 
  orddata <- ordtreat[ind,  ] 
  names(orddata) <- names(ordtreat) 
  p <- 1 #pionts to the index of the first basehaz != -999   
  while(orddata$basehaz[p]==-999) p <- p+1 
 
  # replaces all treatment values with the last known (placebo) estimate 
  for(i in (p+1):m) 
    { 
      if(orddata$basehaz[i] == -999)  

orddata$basehaz[i] <- orddata$basehaz[i - 1] 
      if(orddata$hazard[i] == -999)  

orddata$hazard[i] <- orddata$basehaz[i] * exp(beta[1] * orddata$x1[i] + beta[2] * 
orddata$x3[i] + beta[3] * orddata$x1[i] * orddata$x3[i] + coeffmax * 
orddata$ind2x2[i] * orddata$x5[i] * orddata$treat[i] + coeffmin * orddata$x4[i] 
* orddata$x5[i] * orddata$x6[i] * orddata$treat[i])   

      if(orddata$mart[i] == -999)  
orddata$mart[i] <- orddata$death[i] - orddata$hazard[i] 

    } 
   
  # erraces the first treatment values which cannot be estimated with placebo values 
  orddata <- orddata[-(1:(p-1)),] 
  orddata$n <- c(1:dim(orddata)[1]) 
  return(orddata) 
} 
 
".model.fit.devi"<-function(daten, coeffmin = 1, coeffmax = -2) 
{ 
  ind <- order(daten$treat, daten$time, rev(daten$death)) 
  ordtreat <- daten[ind,  ] 
  names(ordtreat) <- names(daten)  
  # omits all (first) rows in the data set for which delta(t1)=0 
  while(ordtreat$death[1] == 0) ordtreat <- ordtreat[-1,  ] 
  treat <- ordtreat[, 9] 
  plac <- ordtreat[treat == 0,  ] 
  coxmod <- coxph(Surv(time, death) ~ x1 + x3 + x1 * x3, data = plac, method = "breslow", x 
= T) 
  coxdetail <- coxph.detail(coxmod) 
  beta <- as.vector(coxmod$coefficients) 
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  mart <- coxmod$residuals 
  hazard <- plac$death - mart 
  plac.linpred <- beta[1] * plac$x1 + beta[2] * plac$x3 + beta[3] * plac$x1 * plac$x3 
  basehaz <- hazard/exp(plac.linpred) 
  len <- length(mart) 
  m <- dim(ordtreat)[1] 
  martfull <- c(mart, rep(-999, (m - len))) 
  hazfull <- c(hazard, rep(-999, (m - len))) 
  basefull <- c(basehaz, rep(-999, (m - len))) 
  ordtreat <- cbind(ordtreat, martfull, hazfull, basefull) 
  names(ordtreat)[14:16] <- c("mart", "hazard", "basehaz") 
  ind <- order(ordtreat$time, rev(ordtreat$death), ordtreat$treat) 
  orddata <- ordtreat[ind,  ] 
  names(orddata) <- names(ordtreat) 
  p <- 1 #ponts to the index of the first basehaz != -999   
  while(orddata$basehaz[p] == -999) p <- p + 1  
  # replaces all treatment values with the last known (placebo) estimate 
  for(i in (p + 1):m) { 
    if(orddata$basehaz[i] == -999) 
       orddata$basehaz[i] <- orddata$basehaz[i - 1] 
    if(orddata$hazard[i] == -999) 

orddata$hazard[i] <- orddata$basehaz[i] * exp(beta[1] * orddata$x1[i] + beta[2] * 
orddata$x3[i] + beta[3] * orddata$x1[i] * orddata$x3[i] + coeffmax * 
orddata$ind2x2[i] * orddata$x5[i] * orddata$treat[i] + coeffmin * orddata$x4[i] 
* orddata$x5[i] * orddata$x6[i] * orddata$treat[i]) 

    if(orddata$mart[i] == -999) 
       orddata$mart[i] <- orddata$death[i] - orddata$hazard[i] 
  } 
  # erraces the first treatment values which cannot be estimated with placebo values 
  orddata <- orddata[ - (1:(p - 1)),  ] 
  orddata$n <- c(1:dim(orddata)[1]) # calculates deviance residuals 
  devi <- rep(0, dim(orddata)[1]) 
  for(i in 1:dim(orddata)[1]) 
    if(orddata$mart[i] >= 0)  

devi[i] <- sqrt(-2 * (orddata$mart[i] + orddata$death[i] * log(orddata$death[i] - 
orddata$mart[i]))) else devi[i] <-  - sqrt(-2 * (orddata$mart[i] + orddata$death[i] 
* log(orddata$death[i] - orddata$mart[i]))) 

  orddata <- cbind(orddata, devi) 
  names(orddata)[17] <- "devi" 
  return(orddata) 
} 
 
".restrict" <- function(prepdata, maxrow) 
{ 
  vari <- maxrow 
  if(vari == "x10") 
    { 



 
 
 
   
 

133

      x <- prepdata[,2] 
      prepdata <- prepdata[x != 0,] 
    } 
  if(vari == "x11") 
    { 
      x <- prepdata[,2] 
      prepdata <- prepdata[x != 1,] 
    } 
  if(vari == "x20") 
    { 
      x <- prepdata[,3] 
      prepdata <- prepdata[x != 0,] 
    } 
  if(vari == "x21") 
    { 
      x <- prepdata[,3] 
      prepdata <- prepdata[x != 1,] 
    } 
  if(vari == "x22") 
    { 
      x <- prepdata[,3] 
      prepdata <- prepdata[x != 2,] 
    } 
  if(vari == "x30") 
    { 
      x <- prepdata[,4] 
      prepdata <- prepdata[x != 0,] 
    } 
  if(vari == "x31") 
    { 
      x <- prepdata[,4] 
      prepdata <- prepdata[x != 1,] 
    } 
  if(vari == "x40") 
    { 
      x <- prepdata[,5] 
      prepdata <- prepdata[x != 0,] 
    } 
  if(vari == "x41") 
    { 
      x <- prepdata[,5] 
      prepdata <- prepdata[x != 1,] 
    } 
  if(vari == "x50") 
    { 
      x <- prepdata[,6] 
      prepdata <- prepdata[x != 0,] 



 
 
 
   
 

134

    } 
  if(vari == "x51") 
    { 
      x <- prepdata[,6] 
      prepdata <- prepdata[x != 1,] 
    } 
  if(vari == "x60") 
    { 
      x <- prepdata[,7] 
      prepdata <- prepdata[x != 0,] 
    } 
  if(vari == "x61") 
    { 
      x <- prepdata[,7] 
      prepdata <- prepdata[x != 1,] 
    } 
  return(prepdata) 
} 
 

2. Functions needed for simulations with regression trees 

(on Windows) 

".100.trees" <- function(nsim = 1, coeffmin = 2, coeffmax = -2, cens.max = 11) 
{ 
 min.percent.correct <- rep(0, nsim) 
 max.percent.correct <- rep(0, nsim) 
 for(k in 1:nsim) { 
  result <- .sim.tree(coeffmin = coeffmin, coeffmax = coeffmax, cens.max = 

cens.max) 
  min.percent.correct[k] <- result[[1]] 
  max.percent.correct[k] <- result[[2]] 
 } 
 return(min.percent.correct, max.percent.correct) 
} 
 
".100.trees.devi" <- function(nsim = 1, coeffmin = 2, coeffmax = -2, cens.max = 11) 
{ 
 min.percent.correct <- rep(0, nsim) 
 max.percent.correct <- rep(0, nsim) 
 for(k in 1:nsim) { 
  result <- .sim.tree.devi(coeffmin = coeffmin, coeffmax = coeffmax, cens.max = 

cens.max) 
  min.percent.correct[k] <- result[[1]] 
  max.percent.correct[k] <- result[[2]] 
 } 
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 mean.min <- mean(min.percent.correct) 
 mean.max <- mean(max.percent.correct) 
 return(min.percent.correct, max.percent.correct, mean.min, mean.max) 
} 
 
".plac.prep" <- function(daten) 
{ 
 treat <- daten[, 9] 
 tempdata <- daten[treat == 0,  ] 
 names(tempdata) <- names(daten) 
 placdata <- tempdata[, c(14, 2, 3, 5:9, 12, 13)] 
 m <- mean(placdata[, 4]) 
 for(i in 1:dim(placdata)[1]) 
  if(placdata[i, 4] <= m) placdata[i, 4] <- 0 else placdata[i, 4] <- 1 
 return(placdata) 
} 
 
".plac.prep.devi" <- function(daten) 
{ 
 treat <- daten[, 9] 
 tempdata <- daten[treat == 0,  ] 
 names(tempdata) <- names(daten) 
 placdata <- tempdata[, c(17, 2, 3, 5:9, 12, 13)] 
 m <- mean(placdata[, 4]) 
 for(i in 1:dim(placdata)[1]) 
  if(placdata[i, 4] <= m) placdata[i, 4] <- 0 else placdata[i, 4] <- 1 
 return(placdata) 
} 
 
".sim.tree" <- function(coeffmin = 2, coeffmax = -2, cens.max = 11) 
{ 
 simdata <- .data.sim(coeffmin, coeffmax, cens.max) 
 martdata <- .model.fit(simdata, coeffmin, coeffmax) 
 placdata <- .plac.prep(martdata) 
 treatdata <- .treat.prep(martdata) 
 boxtree <- tree(mart ~ x1 + x2 + x3 + x4 + x5 + x6, data = treatdata) 
 treattree <- prune.tree(boxtree, best = 5) 
 endnodes <- treattree$frame 
 ind <- order(endnodes$var, endnodes$yval) 
 ordnodes <- endnodes[ind,  ] 
 var <- ordnodes[, 1] 
 ordnodes <- ordnodes[var == "<leaf>",  ] 
 ordnodes <- ordnodes[, -3] 
 ordnodes <- ordnodes[, -4] 
 ordnodes <- ordnodes[, -4] 
 ordnodes <- ordnodes[, -1] 
 pos.ind <- rep(0, dim(ordnodes)[1]) 
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 for(i in 1:dim(ordnodes)[1]) 
  if(ordnodes$yval[i] >= 0) pos.ind[i] <- 1 
 ordnodes <- cbind(ordnodes, pos.ind) 
 names(ordnodes)[3] <- "pos.ind" 
 ind.treat <- identify.tree(treattree, nodes = row.names(ordnodes)) 
 plactree <- predict.tree(treattree, newdata = placdata, type = "tree") 
 ind.plac <- identify.tree(plactree, nodes = row.names(ordnodes)) 
 n <- dim(ordnodes)[1] 
 lr <- rep(-1, n) 
 p <- 0 
 if(ordnodes[p + 1, 3] != 1) { 
  plactemp <- placdata[ind.plac[[1]],  ] 
  treattemp <- treatdata[ind.treat[[1]],  ] 
  mincurrent <- rbind(plactemp, treattemp) 
  lr[1] <- .logrank(S = Surv(mincurrent$time, mincurrent$death), group = 

mincurrent$treat) 
  minregion <- mincurrent 
  p <- 1 
  while(ordnodes[p + 1, 3] != 1 && p + 1 <= n) { 
   p <- p + 1 
   plactemp <- placdata[ind.plac[[p]],  ] 
   treattemp <- treatdata[ind.treat[[p]],  ] 
   mincurrent <- rbind(plactemp, treattemp) 
   minregion <- rbind(minregion, mincurrent) 
   lr[p] <- .logrank(S = Surv(minregion$time, minregion$death), group = 

minregion$treat) 
  } 
 } 
 if(ordnodes[n, 3] == 1) { 
  plactemp <- placdata[ind.plac[[n]],  ] 
  treattemp <- treatdata[ind.treat[[n]],  ] 
  maxcurrent <- rbind(plactemp, treattemp) 
  lr[n] <- .logrank(S = Surv(maxcurrent$time, maxcurrent$death), group = 

maxcurrent$treat) 
  maxregion <- maxcurrent 
  q <- 1 
  while(ordnodes[n - q, 3] == 1 && n - q > p) { 
   plactemp <- placdata[ind.plac[[n - q]],  ] 
   treattemp <- treatdata[ind.treat[[n - q]],  ] 
   maxcurrent <- rbind(plactemp, treattemp) 
   maxregion <- rbind(maxregion, maxcurrent) 
   lr[n - q] <- .logrank(S = Surv(maxregion$time, maxregion$death), group = 

maxregion$treat) 
   q <- q + 1 
  } 
 } 
 ind <- 1 
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 while(ind + 1 <= p && lr[ind] > lr[ind + 1]) ind <- ind + 1 
 indm <- n 
 while(indm - 1 > p && lr[indm] > lr[indm - 1]) indm <- indm - 1 
 tree <- rep(0, dim(treatdata)[1]) 
 treatdata <- cbind(treatdata, tree, tree) 
 names(treatdata)[11] <- "tree" 
 names(treatdata)[12] <- "actual" 
 treatdata[ind.treat[[ind]], 11] <- -1 
 treatdata[ind.treat[[indm]], 11] <- 1 
 for(i in 1:dim(treatdata)[1]) { 
  if(treatdata[i, 3] == 2 && treatdata[i, 6] == 1) 
   treatdata[i, 12] <- 1 
  if(treatdata[i, 5] == 1 && treatdata[i, 6] == 1 && treatdata[i,7] == 1 && treatdata[i, 

12] == 0) 
   treatdata[i, 12] <- -1 
 } 
 tabelle <- table(treatdata$tree, treatdata$actual) 
 sums <- colSums(tabelle) 
 min.percent.correct <- (100 * tabelle[1, 1])/sums[1] 
 max.percent.correct <- (100 * tabelle[3, 3])/sums[3] 
 return(min.percent.correct, max.percent.correct) 
} 
 
".sim.tree.devi" <- function(coeffmin = 2, coeffmax = -2, cens.max = 11) 
{ 
 simdata <- .data.sim(coeffmin, coeffmax, cens.max) 
 martdata <- .model.fit.devi(simdata, coeffmin, coeffmax) 
 placdata <- .plac.prep.devi(martdata) 
 treatdata <- .treat.prep.devi(martdata) 
 boxtree <- tree(devi ~ x1 + x2 + x3 + x4 + x5 + x6, data = treatdata) 
 treattree <- prune.tree(boxtree, best = 5) 
 endnodes <- treattree$frame 
 ind <- order(endnodes$var, endnodes$yval) 
 ordnodes <- endnodes[ind,  ] 
 var <- ordnodes[, 1] 
 ordnodes <- ordnodes[var == "<leaf>",  ] 
 ordnodes <- ordnodes[, -3] 
 ordnodes <- ordnodes[, -4] 
 ordnodes <- ordnodes[, -4] 
 ordnodes <- ordnodes[, -1] 
 pos.ind <- rep(0, dim(ordnodes)[1]) 
 for(i in 1:dim(ordnodes)[1]) 
  if(ordnodes$yval[i] >= 0) pos.ind[i] <- 1 
 ordnodes <- cbind(ordnodes, pos.ind) 
 names(ordnodes)[3] <- "pos.ind" 
 ind.treat <- identify.tree(treattree, nodes = row.names(ordnodes)) 
 plactree <- predict.tree(treattree, newdata = placdata, type = "tree") 
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 ind.plac <- identify.tree(plactree, nodes = row.names(ordnodes)) 
 n <- dim(ordnodes)[1] 
 lr <- rep(-1, n) 
 p <- 0 
 if(ordnodes[p + 1, 3] != 1) { 
  plactemp <- placdata[ind.plac[[1]],  ] 
  treattemp <- treatdata[ind.treat[[1]],  ] 
  mincurrent <- rbind(plactemp, treattemp) 
  lr[1] <- .logrank(S = Surv(mincurrent$time, mincurrent$death), group = 

mincurrent$treat) 
  minregion <- mincurrent 
  p <- 1 
  while(ordnodes[p + 1, 3] != 1 && p + 1 <= n) { 
   p <- p + 1 
   plactemp <- placdata[ind.plac[[p]],  ] 
   treattemp <- treatdata[ind.treat[[p]],  ] 
   mincurrent <- rbind(plactemp, treattemp) 
   minregion <- rbind(minregion, mincurrent) 
   lr[p] <- .logrank(S = Surv(minregion$time, minregion$death), group = 

minregion$treat) 
  } 
 } 
 if(ordnodes[n, 3] == 1) { 
  plactemp <- placdata[ind.plac[[n]],  ] 
  treattemp <- treatdata[ind.treat[[n]],  ] 
  maxcurrent <- rbind(plactemp, treattemp) 
  lr[n] <- .logrank(S = Surv(maxcurrent$time, maxcurrent$death), group = 

maxcurrent$treat) 
  maxregion <- maxcurrent 
  q <- 1 
  while(ordnodes[n - q, 3] == 1 && n - q > p) { 
   plactemp <- placdata[ind.plac[[n - q]],  ] 
   treattemp <- treatdata[ind.treat[[n - q]],  ] 
   maxcurrent <- rbind(plactemp, treattemp) 
   maxregion <- rbind(maxregion, maxcurrent) 
   lr[n - q] <- .logrank(S = Surv(maxregion$time, maxregion$death), group = 

maxregion$treat) 
   q <- q + 1 
  } 
 } 
 ind <- 1 
 while(ind + 1 <= p && lr[ind] > lr[ind + 1]) ind <- ind + 1 
 indm <- n 
 while(indm - 1 > p && lr[indm] > lr[indm - 1]) indm <- indm - 1 
 tree <- rep(0, dim(treatdata)[1]) 
 treatdata <- cbind(treatdata, tree, tree) 
 names(treatdata)[11] <- "tree" 
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 names(treatdata)[12] <- "actual" 
 treatdata[ind.treat[[ind]], 11] <- -1 
 treatdata[ind.treat[[indm]], 11] <- 1 
 for(i in 1:dim(treatdata)[1]) { 
  if(treatdata[i, 3] == 2 && treatdata[i, 6] == 1) 
   treatdata[i, 12] <- 1 
  if(treatdata[i, 5] == 1 && treatdata[i, 6] == 1 && treatdata[i,7] == 1 && treatdata[i, 

12] == 0) 
   treatdata[i, 12] <- -1 
 } 
 tabelle <- table(treatdata$tree, treatdata$actual) 
 sums <- colSums(tabelle) 
 min.percent.correct <- (100 * tabelle[1, 1])/sums[1] 
 max.percent.correct <- (100 * tabelle[3, 3])/sums[3] 
 return(min.percent.correct, max.percent.correct) 
} 
 
".treat.prep" <- function(daten) 
{ 
 treat <- daten[, 9] 
 tempdata <- daten[treat == 1,  ] 
 names(tempdata) <- names(daten) 
 treatdata <- tempdata[, c(14, 2, 3, 5:9, 12, 13)] 
 m <- mean(treatdata[, 4]) 
 for(i in 1:dim(treatdata)[1]) 
  if(treatdata[i, 4] <= m) treatdata[i, 4] <- 0 else treatdata[i,4] <- 1 
 return(treatdata) 
} 
 
".treat.prep.devi" <- function(daten) 
{ 
 treat <- daten[, 9] 
 tempdata <- daten[treat == 1,  ] 
 names(tempdata) <- names(daten) 
 treatdata <- tempdata[, c(17, 2, 3, 5:9, 12, 13)] 
 m <- mean(treatdata[, 4]) 
 for(i in 1:dim(treatdata)[1]) 
  if(treatdata[i, 4] <= m) treatdata[i, 4] <- 0 else treatdata[i,4] <- 1 
 return(treatdata) 
} 
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3. Functions needed for analysis of EMIAT with stabilized 

bump hunting (on UNIX) 

 
".bumping.borders"<-function(method = 3, train.data, valid.data = 0, varno = 1, type =  

rep(0,dim(train.data)[2] - 1), maxi = T, pasting = T, missing = -9999, 
beta = 1/dim(train.data)[1], alpha = seq(from = 0.05, to = 0.1, by = 
0.005), thinning = T, peel.crit = 2, globalmean = T, legende = T, 
interactive = F, n.samples = 10, train = F, xl = 0, xu = 1, yl = 
min(train.data[train.data[, varno] != missing, varno]), yu = 
max(train.data[train.data[, varno] != missing, varno]), denom = 10, 
lineplot = T, both = T, language = 1) 

{ 
  traj <- .multiple.traj(method = method, train.data = train.data, valid.data = train.data,  

type = type, maxi = maxi, alpha = alpha, beta = beta, peel.crit = peel.crit, 
interactive = interactive, n.samples = n.samples) 

  m <- order(traj[[1]][, 6], traj[[1]][, 3])  
   
# gives a vector of coefficients ordered first by sample no., then by train.ymean as in traj 
  traj.sorted <- cbind(traj[[1]][, 1][m], traj[[1]][, 3][m], traj[[1]][, 6][m])  
# contains the columns: beta before pasting, ymean, and sample no. 
  traj.sorted <- data.frame(traj.sorted) 
  end <- dim(traj[[2]])[2] 
  cat("Original Data", "\n")  
  for(i in 1:(n.samples + 1)) { 
    index.samples <- traj[[2]][, 2:end]  
# extracts the indexes of all bootstrap samples 
    data <- train.data[index.samples[i,  ],  ]  
# takes only the current boot sample data 
    beta <- traj.sorted[2, 1]  
# takes the beta before pasting for the current sample 
    if(beta > 0 && beta < 1) { 
      box <- .boxes(train.data = data, alpha = alpha, beta = beta, nboxes = 1, output = F, maxi  

= maxi, type= type, peel.crit = peel.crit) 
      outbox <- .express.boxes(box) 
      cat(outbox[[2]], "\n", outbox[[5]], "\n") 
    } 
    cat("bootstrap sample = ", (i + 1), "\n") 
    Sample <- traj.sorted[, 3] 
    traj.sorted <- traj.sorted[Sample != i,  ] 
  } 
  return(0) 
} 
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".bumping.borders.min"<-function(method = 3, train.data, valid.data = 0, varno = 1, type =  
rep(0, dim(train.data)[2] - 1), maxi = F, pasting = T, missing = 
-9999, beta = 1/dim(train.data)[1], alpha = seq(from = 0.05, 
to = 0.1, by = 0.005), thinning = T, peel.crit = 2, globalmean = 
T, legende = T, interactive = F, n.samples = 10, train = F, xl = 
0, xu = 1, yl = min(train.data[train.data[, varno] != missing, 
varno]), yu = max(train.data[train.data[, varno] != missing, 
varno]), denom = 10, lineplot = T, both = T, language = 1) 

{ 
  traj <- .multiple.traj(method = method, train.data = train.data, valid.data = train.data,  

type = type, maxi = maxi, alpha = alpha, beta = beta, peel.crit = peel.crit, ^
 interactive = interactive, n.samples = n.samples) 

  m <- order(traj[[1]][, 6],  - traj[[1]][, 3])  
# gives a vector of coefficients ordered first by sample no., then by train.ymean as in traj 
  traj.sorted <- cbind(traj[[1]][, 1][m], traj[[1]][, 3][m], traj[[1]][, 6][m])  
# contains the columns: beta before pasting, ymean, and sample no. 
  traj.sorted <- data.frame(traj.sorted) 
  resultat <- traj.sorted 
  end <- dim(traj[[2]])[2] 
  cat("Original Data", "\n")  
  for(i in 1:(n.samples + 1)) { 
    index.samples <- traj[[2]][, 2:end]  
# extracts the indexes of all bootstrap samples 
    data <- train.data[index.samples[i,  ],  ]  
# takes only the current boot sample data 
    beta <- traj.sorted[2, 1]  
# takes the beta before pasting for the current sample 
    if(beta > 0 && beta < 1) { 
      box <- .boxes(train.data = data, alpha = alpha, beta = beta, nboxes = 1, output = F, maxi  

= F, type = type, peel.crit = peel.crit) 
      outbox <- .express.boxes(box) 
      cat(outbox[[2]], "\n", outbox[[5]], "\n") 
    } 
    cat("bootstrap sample = ", (i + 1), "\n") 
    Sample <- traj.sorted[, 3] 
    traj.sorted <- traj.sorted[Sample != i,  ] 
  } 
  return(resultat) 
} 
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ZUSAMMENFASSUNG 

Klinische Untersuchungen beurteilen die Wirksamkeit einer neuen Behandlungs-

methode oftmals dadurch, dass sie Patienten zufällig der neuen oder einer etablierten 

Behandlungsmethode zuweisen und danach die Ergebnisse (Überlebensrate) 

vergleichen. Gewöhnlicherweise wird dabei die komplette Patientengruppe analysiert 

obwohl bekannt ist, dass bestimmte Untergruppen unterschiedlich auf die neue 

Behandlungsmethode reagieren. Einige der Patienten profitieren von der neuen 

Behandlung (positive Respondern), während andere dadurch zu Schaden kommen 

(negative Respondern). Das Ziel dieser Dissertation ist es, solche Untergruppen von 

Patienten zu identifizieren. Erreicht wird es dadurch dass man sogenannte prädiktive 

Faktoren findet, die unterschiedliche Überlebenswahrscheinlichkeiten nur anhand von 

Unterschieden in der Behandlungsmethode beschreiben. 

Diese Dissertation beginnt mit einer Übersicht über Techniken, die bisher zur 

Responderidentifikation benutzt wurden und schlägt gleichzeitig eine neue Methode zur 

systematischen Suche nach Respondern vor. Diese neue Methode besteht aus den 

folgenden drei Schritten: 

1. Identifikation von prognostischen Faktoren hinsichtlich der neuen Behandlung 

(Zum Beispiel durch das Cox-PH Model angewandt auf die Teilgruppe der 

Patienten die man der Standardbehandlung unterzieht). Diese Faktoren sind 

'prognostisch' im klassischen Sinne für den Fall, dass in der Studie gegen Placebo 

und nicht eine Standardmethode getestet wurde. 

2. Identifizierung der Patientengruppe(n) aus der Neubehandlungsgruppe, deren 

Überlebenswahrscheinlichkeiten nur schlecht durch das Prognosemodel 

vorhergesagt wurden. (Zum Beispiel durch eine Suche nach Ausreissern in der 

Devianz- oder Martingaleresiduen.) 

3. Identifikation der prädiktive Faktoren, welche die gemeinsamen Eigenschaften von 

Patienten mit Residuenausreissern beschreiben (positive und negative Respondern). 



Dies führt man mit Regressionsbäumen, bump hunting oder mit dem 

vorgeschlagenen stabilisierten  bump hunting durch. 

Die Methode zur Identifizierung von Respondern wurde zur Analyse von Daten 

klinischer Studien entwickelt, in denen kein Unterschied in den Überlebens-

wahrscheinlichkeiten von Patienten, die nach der alten oder der neuen Behandlungs-

methode versorgt wurden, festzustellen ist. Änderungen an der Methode für den Fall, 

dass bei den Daten der beiden Patientengruppen doch Unterschiede in den Überlebens-

kurven bestehen, wurden diskutiert. Darüber hinaus wurden Variationen der Responder-

identifikation vorgeschlagen und in einer Simulationsstudie verglichen. 

Bei der Suche nach prädiktive Faktoren kann man Martingale- oder Devianzresiduen 

auf das Prognosemodel als Responsevariable im Regressionsbaum, bump hunting oder 

stabilisierten bump hunting Prozess anwenden. Die Simulationsstudie hat gezeigt, dass 

Martingaleresiduen kombiniert mit dem stabilisierten bump hunting Prozess am 

geeignetsten für die Identifizierung von Respondern ist. Diese Variante des 

vorgeschlagenen Prozesses identifizierte positive und negative Respondern in 99% aller 

Fälle. 

Einige Variationen der vorgeschlagenen Methode zur Identifikation von Respondern 

wurden auch auf einen ‚echten’ Datensatz (dem European Myocardial Infarction 

Amiodarone Trial EMIAT) angewandt. Die dabei identifizierten Gruppen von positiven 

und negativen Respondern wurden verglichen. 

Alle Variationen des beschriebenen Algorithmus zur Identifikation von Respondern und 

speziell der Prozess mit stabilisiertem bump hunting mit martingale Residuen als 

Response zeigen eine bessere Leistung als die momentan verwendete Cox-PH Methode 

mit Behandlungsinteraktionen. Dies wurde anhand der Simulationsstudie und anhand 

der Daten von EMIAT gezeigt. Die besseren Ergebnisse der neuen Methode erklären 

sich aus der Tatsache, dass es im Vergleich zu dem Cox-PH Model viel leichter 

Interaktionen höherer Ordnung zwischen Kovariablen erkennt. 



Ausblick 

Eine vollständige Implementierung der sechs verschiedenen Variationen des 

Algorithmus zur Responderidentifizierung mit festgelegter Art und Anzahl von 

Faktoren wurde für die Simulationsstudie durchgeführt. Die Responderanalyse der 

EMIAT-Daten wurde teilautomatisch durchgeführt. Dadurch erhält man einerseits mehr 

Flexibilität bei der Bestimmung eines prädiktiven Models, verlangsamt andererseits 

aber die Analyse der Daten. Für eine zukünftige Verwendung des nachweislich besten 

Algorithmus, stabilisiertes bump hunting mit Martingaleresiduen, macht es Sinn, eine 

vollständige Implementierung mit frei wählbaren Einstellungen für die Anzahl und Art 

der Faktoren, verschiedenen Größen von Datensätzen, und der Stopkriterien für den Bau 

des Models zu verwirklichen. 

Die Methode zur Identifizierung von Respondern wurde für Datensätze entwickelt, bei 

denen die beiden Patientengruppen (klassische und neue Behandlungsmethode) keine 

Unterschiede in den Überlebenskurven zeigen, und auch an diesen getestet. Ein 

zukünftiges Softwareprodukt zur Responderanalyse sollte dieser Beschränkung nicht 

mehr unterliegen und auch Datensätze sinnvoll analysieren können, bei denen bei den 

beiden Patientengruppen Unterschiede in der Überlebenscharakteristik bestehen. Die 

Leistung eines solchen Programms könnte man dann auch wieder anhand simulierte 

Daten testen. 

Bisher wurde angenommen, dass weder prognostische noch prädiktive Faktoren sich 

mit der Zeit ändern. Eine neue Studie könnte durchgeführt, werden die Zeit-

abhängigkeiten bei der Identifikation von Respondern berücksichtigt. 
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