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Zusammenfassung

Die vorliegende Arbeit befaßt sich mit der Ionenbeschleunigung von Hochinten-

sitätslaser-bestrahlten Folien. Mögliche Anwendungen dieser neuartigen Ionen-

strahlen reichen von kompakten Injektoren für konventionelle Partikelbeschleu-

niger über die schnelle Zündung prekomprimierter Fusionstargets bis zur Onkologie

und Radiotherapie mit Ionen. Darüber hinaus wird Protonenradiography schon

heute zum Studium der Dynamik Lasererzeugter Plasmen mit ps-Zeitauflösung

eingesetzt.

Im Rahmen dieser Arbeit wurde ein analytisches Modell entwickelt, basierend

auf der Oberflächenladung, die durch die auf der Folienrückseite austretenden

laserbeschleunigten Elektronen erzeugt wird. Dieses Feld wird für die Dauer

des Laserimpulses τL aufrechterhalten, ionisiert Atome an der Folienrückseite und

beschleunigt die Ionen. Die vorhergesagten Maximalenergien der Ionen Em stim-

men gut mit den experimentellen Resultaten dieser Arbeit und verschiedenener

Gruppen weltweit überein (Abb. 1).

Neben Protonen, die aus Kohlenwasserstoffverunreinigungen auf den Folien-

oberflächen stammen, werden auch schwerere Ionen, wie zum Beispiel Kohlen-

stoff, beschleunigt. Mit der Schneidenmethode konnten neben der Verifikation

der aus zahlreichen Messungen bekannten Quellgrößen von Protonen auch die

Quellgrößen der verschiedenen Kohlenstoffladungszustände bestimmt werden. Aus

der Unterdrückung hoher Ladungszustände weit entfernt vom Zentrum der Emis-

sionszone konnte die radiale Feldverteilung des Beschleunigungsfeldes abgeleitet

werden (Abb. 2), dessen radiale Ausdehnung die Größe des Laserfokus um zwei
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Figure 1: Ver-
gleich experimenteller
Ergebnisse mit dem
analytischen Modell
(Kurve). Die Sym-
bole zeigen die von
verschiedenen Grup-
pen experimentell
bestimmten Maxi-
malenergien Em als
Funktion der Dauer
der Laserimpulse τL.



50 100 150 200 250
10

-2

distance from center [µm]

M
ax

A
cc

el
er

at
io

n
 f

ie
ld

 [
T

V
/m

]

d =2r =5µmFWHM L

F
C5+

th

F
C4+

th

F
C3+

th

F
C2+

th

10
-1

10
0

10
1

d=5µm

laser

Figure 2: Radiale
Feldverteilung an der
Folienrückseite einer
d = 5µm dicken Alu-
miniumfolie bestrahlt
mit einem Laserimpuls
mit einer Intensität von
2 · 1019 W/cm2 in einem
Fokus mit dFWHM = 5 µm
Durchmesser. Die mit den
Fehlerbalken gekennzeich-
neten Grenzen markieren
die Schwellen für se-
quenzielle Feldionisation
Fth.

Größenordnungen übertrifft. Desweiteren konnte mit Hilfe von vergrabenen Schich-

ten gezeigt werden, daß das elektrische Feld Ionen aus einer Tiefe von 50 nm er-

reichen kann. Aus diesen Einsichten wurde geschlußfolgert, daß monoenergetische

Ionenstrahlen durch die Einschränkung der Quelle sowohl in ihrer Dicke (< 50 nm)

als auch transversal zu einer kleinen Fläche mit einem Durchmesser der Größdes

Laserfokus (< 10 µm), erzeugt werden können. Dies bedeutet, daß alle Ionen die

gleiche elektrische Feldstärke während ihrer Beschleunigung spüren.

In einigen Experimenten wurden die bestrahlten Folien geheizt, um die Kohlen-

wasserstoffverunreinigungen zu entfernen, so daß schwerere Ionen von Lithium bis

Wolfram effektiv beschleunigt werden konnten. Die beobachteten Ladungszus-

tandsverteilungen ähnelten Gleichgewichtsladungsverteilungen, wie man sie von

Ionen hinter einem Strippermaterial erwartet. Da der Einfluß des Restgases in der

Experimentierkammer ausgeschlossen werden konnte, muß sich die Gleichgewicht-

sladungsverteilung nahe der Folienrückseite, wo auch die eigentliche Beschleuni-

gung stattfindet, einstellen.

Die Erkenntnisse dieser Arbeit führten zu einem verbesserten Verständnis des

Prozesses der Ionenbeschleunigung mit Hochintensitätslasern wie sie heutzutage

verwendet werden [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12]. Die neuartigen Ionenstrahlen

könnten ihre Anwendung in der Radiotherapie finden. Die dafür notwendigen

monoenergetischen Protonen mit Energien von 140 MeV können mit den künftig

weit verbreiteten PW-Lasersystemen erzeugt werden.



Abstract

Within the framework of this thesis the ion acceleration from foils irradiated by

high-intensity laser pulses was studied. The application of such laser accelerated

ion beams could reach from compact fast-ion injectors for conventional particle

accelerators over fast ignition for inertial confinement fusion to oncology and ra-

diotherapy with ion beams. Proton imaging of laser produced plasmas is one

application which had already great impact in exploring laser plasma dynamics

with ps time resolution. For all applications it is necessary to understand the

physical processes to be able to control the properties of the ion beam.

In this work an analytical model could be derived which is purely based on the

surface charge created by the laser accelerated electrons which pass the target and

exit into vacuum at the rear side. The field of this surface charge is maintained for

the duration of the laser pulse τL and, after field-ionizing atoms at the target rear

side, accelerates the ions. The predicted maximum ion energies Em are in good

agreement with experimental results obtained in this work and by other groups

all over the world (Fig. 3). The found scalings are also confirmed by recent PIC

simulations.

In addition to protons also the acceleration of heavier ions was investigated. The

appearance of different charge states raised questions about their origin for a long

time. In all experiments heavy ions such as carbons are accelerated along with

protons. Using the knife edge method not only the large source sizes for protons

could be verified but also the source sizes of the different carbon charge states
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Figure 3: Com-
parison of experimen-
tal results with an-
alytic model (solid
line). The sym-
bols denote the ex-
perimentally obtained
maximum ion ener-
gies Em from different
laser systems all over
the world as a func-
tion of the laser pulse
duration τL.
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Figure 4: Radial profile
of the maximum field at
the rear side of a d =
5µm thick aluminum tar-
get irradiated by a laser
pulse with an intensity of
2 · 1019 W/cm2 in a focal
spot of dFWHM = 5 µm
full width at half maxi-
mum diameter. The lim-
its marked by the error
bars represent the thresh-
old fields for sequential
field ionization Fth.

could be estimated. The suppression of high charge states at large distances from

the center of the emission zone could be used to derive a radial field distribution

(Fig. 4). The radial extension was found to exceed the focal spot size by 2 orders

of magnitude. Additionally the longitudinal extension of the electric field inside

the target was estimated by using buried layers. It was found that the field reaches

ions in the target up to a depth of 50 nm. These insights led to the understanding

of how mono-energetic ion beams can be produced by constraining the source to

a thin layer (< 50 nm) and a small area with a diameter of the order of the laser

focal spot (< 10 µm). Thus, the field does not considerably change over the source

layer, i.e., all ions are accelerated in the same field.

A number of experiments were performed with heated targets where all hydrogen

contaminants were removed thus allowing for an effective acceleration of heavier

ions reaching from lithium to tungsten. The observed charge state distributions

resembled equilibrium charge state distributions as one would expect from ions

passing a stripper medium. The influence of the residual gas in the target chamber

could be ruled out, concluding that the charge state distribution arranges near the

rear side of the foil where also the acceleration takes place.

The insights attained in this work did lead to a good understanding of the

process of ion acceleration with nowadays high-intensity laser pulses [1, 2, 3, 4, 5,

6, 7, 8, 9, 10, 11, 12]. Possible applications are seen in the radiotherapy with ion

beams where the required mono-energetic proton beams with energies of 140 MeV

could be achieved with PW-class lasers.
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Chapter 1

Introduction

1.1 History of laser-ion acceleration

The interaction of light at high intensities with matter has been studied since the

first realization of the laser in 1960 [13], although the meaning of “high intensity“

drastically changed over the last decades (Fig. 1.1). Based on the Q-switch tech-

nique it became possible to produce short (ns) and powerful (MW) laser pulses.

The ions emitted from the plasmas produced by these giant pulses reached en-

ergies in the keV-range [14]. The emission was rather undirected and unordered

and could be explained by self-similar plasma expansion models [15]. In 1985, the

invention of the chirped pulse amplification (CPA) technique by Strickland and

Mourou [16] provided for the next milestone in increasing the power of laser pulses.

It is worth noting that the optical pulse stretching and compression with diffraction

gratings was demonstrated by Treacy [17] in 1969 already. These techniques were

essential for CPA which, in turn, provided for the field of relativistic laser-plasma

physics. The term “relativistic“ marks the fact that electrons in the laser focus

are accelerated close to the velocity of light within one laser period. This happens

for light intensities IL exceeding 1018 W/cm2 for common laser wavelengths λL of

about 1 µm. The corresponding intensity for the relativistic motion of protons in

the laser field exceeds 5× 1024 W/cm2.

The new regime of laser-electron interaction also reflects in the ion acceleration

processes. In addition to even higher ion energies, the ion beam characteristics

differed tremendously from the early ion beams emitted from nanosecond laser-

plasmas, i.e., they are highly directed and have a small transverse emittance. The

process of ion acceleration is understood best in the concept of the Target Normal

Sheath Acceleration (TNSA). Nowadays, “high power“ addresses the Multi-TW

1
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Figure 1.1: History of high intensity/power laser pulses. The solid black curve is taken
from Tajima and Mourou [18, 19] and depicts the development of the laser intensity and
power resp. since the invention of the laser. This trend needed to be corrected (red line)
since the 1PW threshold was not overcome since the first realization at the Lawrence
Livermore Laboratory, USA. CPA was successfully applied to increase the laser power in
1989, 4 years after the proposal of Strickland and Mourou [16], although the possibility
of stretching and compression of broad band laser pulses was shown in 1969 already
by Treacy [17]. The right column shows the evolution of the ion energies observed in
laser plasma experiments with the respective intensities. The green rectangle marks the
power region where the experiments discussed in this thesis were performed.

and even PW-regime and the term “short pulses“ stands for laser pulse durations

below one pico second. The intensities produced by focussing these high-power

laser pulses (1019 − 1021 W/cm2) exceed the first giant pulses by ten orders of

magnitude and the obtained ion energies were pushed over six orders of magnitude

up to 100 MeV during the last 40 years (Fig. 1.1).

1.2 Recent results

Ion acceleration from high-intensity laser irradiated foil targets has been exten-

sively studied during the last decade. Since hydrogen is always present on the

target surfaces, namely in hydrocarbon and water contaminants, protons were the
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subject of interest in most of the experiments. The emitted ion and, in particular,

proton pulses reached large particle numbers between 1010 and 1013 with energies

in the MeV- [20, 21] and multi-MeV-range [22, 23, 24, 25] and are tightly confined

in time (∼ ps) and space (source radius few µm). In recent experiments, the high

quality in terms of emittance of proton beams emitted from the rear side of laser

irradiated thin foils was proven [26, 27, 28]. The outstanding characteristics of

the laser accelerated ion beams triggered speculations about their applications in

nuclear physics. They have been considered as an ion source for the injection into

a conventional particle accelerators (see, for example, ref [29]) and for fast ignition

[30]. More practically, potential applications of laser accelerated ions in medicine,

i.e., for ion-cancer-therapy were discussed [31, 32]. In fundamental research laser-

accelerated protons are successfully used for diagnosing the electromagnetic fields

in overdense laser-produced plasmas with a picosecond time resolution [33, 34].

The accelerating electric field as high as several TV/m is set up by the laser ac-

celerated electrons which propagate through the target and exit on the target rear

side. Therefore attempts have been made to diagnose the transport of the large

electron current (MA) through solid targets by measuring the ion properties [35].

Besides protons, also heavier ions originating from the contaminant layers or the

target itself are accelerated in the huge electric field [12, 22, 36]. Heavy ion acceler-

ation up to 5 MeV/u could be demonstrated when the light protons were removed

by heating the targets before laser irradiation [37, 38, 8]. Those ions show similar

characteristics as protons in terms of ion numbers and beam quality [3].

The energy distributions of the accelerated ions observed so far are broad and

have an exponential shape. An important feature of the observed ion spectra

is the hard cut-off at a certain maximum ion energy which is observed in all

experiments concerning ion acceleration from high-intensity laser irradiated foils.

The maximum ion energy thus is widely used to characterize the ion acceleration

and to study its dependence on different parameters (see, for example, refs. [11, 39,

5]). Just recently mono-energetic ion beams from laser irradiated foils have been

observed by the two groups around Hegelich et al. [4] and Schwoerer et al. [40]

for the first time. This observation is very encouraging for further developments

and the applicability of laser accelerated ions.

1.3 Thesis structure

The theoretical descriptions of the ion acceleration from laser irradiated thin foils

are mainly based on numerical simulations such as particle-in-cell (PIC) models
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[41, 42], fluid [15] or hybrid models [6]. A short introduction to these methods

is given in sections 2.3.1 and 2.3.2. Analytical approaches are meant to describe

the plasma expansion process by solving the Vlasov-equation in the quasi-neutral

approximation [43, 44], or adapting self-similar solutions of the expansion process

to fit numerical results of plasma expansion models (PEM, sec. 2.3.3 [45]).

In the scope of this work a simple analytic approach [1] was developed (chapter

3) which treats the accelerated ions as light test particle in a quasi-static electric

field set up by the surface charge on the target rear side. This model allows to

calculate the observed maximum ion energies in many experimental studies during

the last decade.

Following the explanation of the experimental methods (chapter 4) the exper-

imental chapter addresses on the properties of the ion source. The dependence

of proton acceleration on different experimental parameters, i.e., laser intensity,

pulse duration, energy and target thickness is analyzed (sec. 5.1). The extension

of the accelerating electric field is determined both transversely using the knife

edge method (sec. 5.2) and longitudinally inside the target probing with buried

ion layers (sec. 5.3). These measurements for field characterization are needed to

understand the conditions necessary for the creation of mono-energetic ion beams

(sec. 5.4). A very complicated issue is the occurrence of different charge states of

the accelerated heavy ions (charge number Z > 1) as already discussed by Hegelich

[36]. Experiments with various ions ranging from lithium to tungsten are described

in Sec. 5.5.

In chapter 6 the experimental results will be discussed. The analytical model

described in chapter 3 nicely reproduces the obtained ion energies in Sec. 6.1 and

conclusions for the perfect laser conditions are drawn. Sec. 6.2 discusses the results

from the scraper measurement and the transverse shape of the accelerating electric

field is estimated. Its longitudinal range is deduced from the measurements with

buried ion layers in Sec. 6.3. Sec. 6.4 concentrates on the mono-energetic ion beams

while Sec. 6.5 discusses the appearance of the peaked ion charge state spectra from

the heavy ion measurements.

Finally, chapter 7 summarizes the main results of this work and gives a perspec-

tive of laser-ion acceleration and its possible applications.



Chapter 2

Theory

In order to understand the process of ion acceleration by high-intensity lasers some

relevant quantities and concepts need to be introduced. The huge electric field of

the discussed laser pulses (TV/m) immediately ionizes the atoms of the irradiated

material. This results in a plasma, a state where outer electrons are not longer

bound to their nuclei. Because of their low mass the primary interaction is between

laser light and electrons.

2.1 Laser-electron interaction

2.1.1 Interaction with a single electron

It is worth to consider the case of a single electron in the transverse electromagnetic

field of a laser pulse. Due to the electric field component with amplitude FL0 the

electron feels a force

K⊥ = eFL0cos (ωLt) (2.1)

which oscillates with the laser angular frequency ωL = 2π/λL. In a non-relativistic

description the velocity amplitude of this oscillation is

v⊥ =
eFL0

mωL

sin (ωLt) (2.2)

where e and m are the electrons charge and mass, respectively. At the same time

the electron is pushed forward due to the force

K‖ = ev⊥BL = e
v⊥
c

FL0

2
· sin (ωLt) (2.3)

with BL being the magnetic field component of the laser and c the velocity of

light. The laser-electron interaction is called relativistic if the transverse maximum

5
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electron velocity (Eq. (2.2)) approaches c or, more precisely, if the longitudinal

force K‖ exceeds the transversal force K⊥ which suggests the definition of the

dimensionless laser amplitude

aL ≡ K‖
K⊥

=
eFL0

mcωL

. (2.4)

For laser systems available today and relevant for this work it is approximately

3 < aL < 30. The corresponding amplitudes for electric and magnetic fields then

read

FL0 = aL
2πmc2

eλL

=
aL

λL[µm]
· 3.2× 1012V/m (2.5)

BL0 = aL
2πmc

eλL

=
aL

λL[µm]
· 1.07× 104T (2.6)

and the intensity is given by

IL =
1

2
ε0cF

2
0L =

a2
L

λ2
L[µm2]

· 1.37× 1018W/cm2 (2.7)

for linearly polarized light. For circular polarized or unpolarized light IL would

have to be multiplied by a factor of 2. Experimentally the laser intensity

IL =
EL

τLπr2
L

(2.8)

is measurable by determining the laser pulse energy EL, its duration τL and its

spot radius rL. Therefore it is convenient to rewrite Eq. (2.7) to define

a2
L =

2

π

ILλ2
L[µm2]

PR

(2.9)

where PR = mc3/re = 8.71 GW is the natural relativistic power unit (re =

e2/(4πε0mc2) = 1.4 fm is the classical electron radius).

Up to now the considerations were restricted to a plane wave. In this case an

electron initially at rest does not gain energy and will be at rest again after the

laser has passed. In a more realistic treatment the laser is focussed to focal spot

diameters of several µm and its transversal shape could be, for example, gaussian.

In this case one can imagine an electron in the laser spot which is accelerated away

from the focal region due to the electric field. When the electric light field changes

its sign the force driving the electron back to the center will be smaller because of

the transversely varying field amplitude, thus, with every laser cycle the electron

is pushed more and more out of the high intensity region and gains energy. This

effect can be described by an electron running down the ponderomotive potential

of the laser

Φpond =
mc2

4γ2
a2

L (2.10)
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thus gaining the energy

We = mc2(γ − 1) (2.11)

where

γ =
√

1 + a2
L/2. (2.12)

is the cycle-averaged gamma factor [46] which is of the order of 2-20 for realistic

laser parameters. The real electron emission pattern is radially symmetric [47]

and not in the polarization plane of the laser as could be expected by the simple

picture eplained above.

2.1.2 Interaction with a plasma

As mentioned above the electric field of the laser pulses discussed in this context

are much higher than the fields which bind the outer electrons to their nuclei.

Thus, already pre-pulses or the pedestal of the laser pulse are intense enough (>

1012 W/cm2) to ionize the material so that the highly intense laser pulse interacts

with a preformed plasma. When electrons are pushed by the laser pulse they feel

a repelling force from the nearly immobile ion background and oscillate with the

electron plasma frequency

ωp =

√
e2ne

ε0mγ
. (2.13)

The refractive index of a plasma with electron density ne reads

np =

√√√√1− ω2
p

ω2
L

(2.14)

and is smaller than 1 for ωL > ωp allowing light to propagate with phase velocity

vph = c/np and group velocity vg = cnp. For ωL < ωp the refractive index is purely

imaginary expressing that light can not penetrate. The transition between these

two scenarios happens for ωp = ωL at the critical density

nc =
ε0mγω2

L

e2
. (2.15)

The interaction of the laser with the plasma electrons depends on many param-

eters and is not the subject of this thesis. Nevertheless, since the laser accelerated

electrons are responsible for the ion acceleration as will be shown later it is worth

to summarize the most important electron acceleration mechanisms.

The ponderomotive acceleration of electrons is present as soon as high intense

laser light interacts with a plasma. The electrons acquire an exponential energy
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distribution with a mean energy of [48]

kBTe = mc2
(√

1 + a2
L − 1

)
(2.16)

very similar to the kinetic energy obtained from Eq. (2.11).

When the laser propagates through a plasma of low density (ne ≈ 1017 −
1019/cm3) the laser ponderomotively pushes the electrons. The slow reaction of the

plasma (Eq. (2.13)) favors the build up of plasma density modulations which move

with the group velocity of the laser. Electrons can be caught in the corresponding

electric field of the laser wake and are accelerated [49]. Recently it could be shown

that for certain circumstances the laser wake field acceleration is transferred into

the bubble regime where the energy spectra of the accelerated electrons are not

broad and exponential anymore but become mono-energetic [50, 51, 52].

Electrons can also be efficiently accelerated near the critical surface where the

electron density approaches nc and the laser can not propagate any further and

is reflected. If the laser is p-polarized and incident under an angle it pulls out

electrons into the vacuum. After one half cycle the electrons are repelled back and

are smashed into the solid where the field of the laser can not reach them anymore.

The electrons gain energy during the half period they spent in vacuum giving the

name vacuum heating [53].

2.2 Ion acceleration

Strictly speaking, the notion ion acceleration with high intensity laser pulses is not

warrantable. In fact, the field quantities for electrons derived above (Eq. (2.4)-

(2.7)) can be applied to ions. Replacing the electron mass m by, for example, the

proton mass mp results in

FL0,p = aL,p
2πmpc

2

eλL

=
aL,p

λL[µm]
· 5.9× 1015V/m (2.17)

BL0,p = aL,p
2πmpc

eλL

=
aL,p

λL[µm]
· 1.9× 107T (2.18)

IL,p =
1

2
ε0cF

2
0L,p =

a2
L,p

λ2
L[µm2]

· 4.6× 1024W/cm2. (2.19)

With intensities available today (IL = 1018 − 1021 W/cm2, λL ≈ 1 µm) the ions

hardly move in the electric field of the laser. As soon as the laser starts to tear

off the electrons its e~v× ~BL-force (Eq. (2.3)) pushes electrons forward and electric
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fields evolve due to charge separation. These longitudinal fields can be as high as

the electric field of the laser itself but are stationary for the laser pulse duration,

which is why they are called quasi-static. Different regimes for ion acceleration

were discussed and investigated experimentally, namely the plasma thermal ex-

pansion into vacuum [54, 15, 45], Coulomb explosion of strongly ionized clusters

[55], transverse explosion of a self-focussing channel [56] and the ion acceleration

in the strong charge separation field caused by a strong quasi-static magnetic field

[57]. In this present work the ion acceleration from the rear side of high intensity

laser irradiated foils will be discussed and is qualitatively explained by the target

normal sheath acceleration (TNSA) mechanism [42] which is explained in Fig. 2.1.

In the process of chirped pulse amplification (CPA) parasitic effects such as

amplified spontaneous emission (ASE) or spectral modulations favor the forma-

tion of pre-pulses which are intense enough (> 1012 W/cm2) to ionize the target

and form a pre-plasma. Thus, the main laser pulse interacts with a plasma with

an exponential density profile at the target front side depicted by the ramp in

Fig. 2.1. The solid target with ion density ns is assumed to be qs-fold ionized.

The characteristic length or scale length in which the electron density drops from

the solid (qsns ≈ 1023/cm3) to the critical density (nc ≈ 1021/cm3, (Eq. (2.15))

is of the order of several µm. As mentioned above the laser can propagate to

the point where the density becomes critical, the critical surface, and there it is

reflected. The electrons are accelerated in forward direction while the ions initially

remain at rest so that an electric field Ffront evolves due to the charge separation

(Fig. 2.1). Thus, at the target front side ions can be accelerated (see ref. [58] and

ref. [59] for measurement and theory), although this process is not relevant for the

ion acceleration experiments within the scope of this work.

The laser accelerated fast electron bunch travels through the foil while it is

considered to be dynamically shielded by the cold target electrons, which makes

the inner part field-free. The transport mechanisms is still subject of investigation

and beyond the scope of this work. Assuming an opening angle θ (≈ 25◦) for the

electron propagation through the foil with thickness d (≈ 10 µm) one can write

the radius B of the electron bunch at the rear surface as

B = rL + d · tan θ (2.20)

rL being the radius of the laser focal spot (≈ 3 µm). Still the radius of the electron

bunch which exits the foil is rather small (≈ 10 µm). The number of electrons Ne

accelerated by the laser with energy EL (1− 10 J) can be estimated by

NekBTe = ηEL (2.21)
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Laser

nc~1021/cm³

1019/cm³

qsns~1023/cm³

ne0~1020/cm³

λD~1 µm

+ -

[z]

front charge
seperation

fast electrons

FrearFfront

target thicknessd

rL θθθθ
B

ne(z)

1022/cm³

[electron density]

Figure 2.1: Scheme of the laser-solid interaction and ion acceleration. The laser with
focal spot radius rL propagates through the pre-plasma until it reaches the critical
density nc where it is reflected. The accelerated electrons form a bunch which propagates
through the target of thickness d while spreading with a certain angle θ. At the target
rear side the electrons bunch has spread over a circular area with radius B exhibiting
the mean density ne0. When the electrons exit the rear-side, they set up an electric field
Frear normal to the target surface, which forces them to turn around at the hot electron
Debye-length λD resulting in the rear side electron density distribution ne(z). Atoms
sitting at the surface are field-ionized and accelerated in target normal direction, giving
the process its name, target normal sheath acceleration (TNSA).

with the mean electron energy of the exponential spectrum kBTe (1 − 10 MeV)

defined by Eq. (2.16) and the conversion efficiency η of laser energy into hot elec-

trons (10 − 50%). With nowadays common high-intensity laser pulses electron

numbers Ne = 6 · 1011 − 6 · 1013 are accelerated within common laser pulse du-

rations τL = 50 − 600 fs. The resulting density of the hot electron bunch can be

estimated to

ne0 =
Ne

cτLπB2
≈ 2 · 1020 − 2 · 1021 /cm3. (2.22)

Inserting Eqs. (2.16), (2.8), (2.9) and (2.20) into Eq. (2.22) the hot electron density
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can be written as

ne0 = η · nc

2
· a2

L√
1 + a2

L − 1
· r2

L

(rL + d · tanθ)2
. (2.23)

Thus, the density of the hot electron pulse is much smaller than the density qsns

of the target electrons. This supports the validity of the assumption that the

electrons are shielded while they propagate through the target.

At this point it is worth to comment on the conversion efficiency η of laser

energy into hot electron energy which is a crucial quantity and can depend on

many parameters. Obviously, it is 0 < η < 1. In experiments with foil targets

irradiated by high-intensity laser pulses the dependence of η on the laser intensity

IL was studied by Yu et al. [60] for IL = 1016− 1018 W/cm2 and by Key et al. [61]

for IL = 1018 − 3 · 1019 W/cm2. In both works it could be shown that η scales as

I
3/4
L . The experimental results from [61] were fitted by the function

η = 1.2 · 10−15 · I3/4
L (2.24)

with IL in W/cm2. It should be emphasized that in case of lower intensities [60]

η needs to be corrected by a factor of 2 only. However, as indicated by Hatchett

et al. [24] who used IL = 3 · 1020 W/cm2, it is likely that η can not exceed 0.5

which, according to Eq. (2.24), is reached at an intensity of IL = PL/(πr2
L) =

3.1× 1019 W/cm2.

When the electrons exit the rear surface an electric field evolves. The elec-

trons with energies not sufficient to escape their self-induced field turn around and

reenter the foil. This leads to an equilibrium situation where the electrons exit-

ing the foils are compensated by electrons reentering. The blue curve in Fig. 2.1

schematically depicts their evolving density distribution ne(z) whose extension is

determined by the hot electron Debye-length

λD =

√
ε0kBTe

e2ne0

. (2.25)

Substituting with Eqs. (2.16) and (2.23) reads

λD =
λL

π
· 1√

2η
·

√
1 + a2

L − 1

aL

· rL + d · tanθ

rL

(2.26)

and delivers Debye-lengths of the order of the laser wavelength λL. The corre-

sponding electric field at the target rear side is estimated by

F0 =
kBTe

eλD

(2.27)
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Laser 2B (20µm)

fast electrons

electric
field

target
foil

Figure 2.2: Scheme of the transversal spread of electrons causing the large tranverse
extension of the field. Electrons may be transversely deflected in the field at the rear
side or they may be reflected in the fields building up at the surfaces giving rise to the
phenomenon of recirculation.

Introducing the dimensionless field a0 = eF0/mcωL and using Eq. (2.16) and (2.26)

delivers

a0 = aL ·
√

η

2
· rL

rL + dtanθ
(2.28)

expressing that the field at the target rear side is of nearly the same strength as

the laser field itself (TV/m) which is strong enough to field ionize atoms and to

accelerate the ions to energies of several MeV/u. The field is pointed normal to

the target rear side giving the process its name target normal sheath acceleration

(TNSA).

Although the radius of the electron bunch which exits at the target rear side is

only of the order of several 10 µm the field at the rear side extends over hundreds

of µm. This could be caused by electrons which are transversely deflected in the

field or spread while they recirculate through the target (Fig. 2.2). Those effects

are not fully understood yet but appear in all source size measurements as will be

described in Sec. 5.2. Due to the recirculation [39] the accelerating electric field
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is also maintained for times longer than the laser pulse duration, i.e., until the

electrons are stopped. However, this has no strong influence on the maximum ion

energy but may be reflected in the observed energy distributions of the ions.

The following sections address theoretical models used for the quantitative ex-

planation of the ion acceleration processes. The numerical models (PIC, hybrid

models and PEM) are reviewed in Sec. 2.3. Chapter 3 is dedicated to a self-evident

analytical model which was derived within the scope of this work and explains the

maximum ion energies observed in a variety of experiments [1].

2.3 Numerical models

2.3.1 Particle-in-cell simulations

Particle-in-cell (PIC) simulations were used for the theoretical investigation of

laser-plasma interaction for a long time. The volume is described by a discrete

grid. On this grid the Maxwell equations are solved with certain boundary condi-

tions. The particles like electrons and ions are summarized to macro-particles each

representing millions of real particles. The particle dynamics is treated by solving

the equations of motion in the fields. The particles produce currents which, in

turn, react on the fields via the Maxwell equations. For laser-plasma interaction

at low densities, e.g. gases, PIC-methods could explain the underlaying processes

best and have become one of the most important tools to describe the underlaying

processes (see, for example, refs. [50, 51, 52]). The extension to higher densi-

ties became possible with growing computer capabilities. Still it is very time and

computer memory consuming to simulate the real solid density in a sufficiently

large volume with three-dimensional geometry. Moreover, in high density plasmas

hard collisions as well as ionization and recombination processes play a major role

which are usually insufficiently modelled in PIC codes. Some of the effects can be

included by using empirical models like the Lotz-formula for collisional ionization

and the WBK-model for field ionization (see [62] and references therein). However,

even if there are limitations in the applicability of the PIC-method, it provides a

powerful tool to get insight into physical phenomena and to explain experimental

results [41, 27, 63].
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2.3.2 Hybrid and other numerical models

The insufficiency of PIC models in describing high densities can be overcome only

by improving the spatial resolution of the computing grid up to a nanometer level,

which also leads to an increase of the number of simulated particles. For solid

densities, these simulations are very time consuming. An additional problem when

simulating solid targets is the low number of fast electrons which interact with the

laser pulse. A large number of target electrons need to be taken into account to

resolve the fast electrons. One alternative method to avoid these problems is a

hybrid code. Here, the low number of fast moving particles (electrons) are treated

as quasi-particles within a PIC-model. The behavior of the cold target electrons

is described within a fluid model, thus no single particles are considered, but they

are treated as a continuous electron background. This type of numerical model

works well as long as the fast electron number is much lower than the number

of background electrons, which is true for nowadays laser powers. One example,

where a hybrid code was used to describe laser ion acceleration experiments is

given by Honrubia et al. [6].

A totally different approach is based on a hierarchical tree algorithm as used

by Gibbon [64]. The field acting on a certain particle is calculated from all other

particles in the simulation box without using a grid. This actually is the most

natural approach, but also the most time consuming. The problem would grow

with the square of the number of particles N , but with the trick, that distant

particles are summarized to charge groups whose multipole expansions are calcu-

lated, the problem complexity can be reduced to NlogN . The clear advantage of

such a code is that particles close to each other feel the real coulomb potential of

their neighbors so that hard collisions are intrinsically described. Still, so far, the

applicability to real experiments was not extensively shown yet.

2.3.3 Plasma expansion model (PEM)

The ion acceleration on the rear surface of a laser irradiated foil was treated like

a plasma expansion into vacuum by Mora [45] who applied the numerical method

proposed by Crow et al. [15]. The starting conditions (Fig. 2.3) are a step-like

density profile for ions with density ni0 = ne0/qi where ne0 is the density of the

laser accelerated electron bunch (Eq. (2.22)). The electron density is in thermal

equilibrium with the quasi-static electric potential Φ(z), expressed by

ne (z) = ne0 exp [eΦ (z) / (kBTe)] (2.29)
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Figure 2.3: Starting conditions for plasma expansion into vacuum [45, 15] for the
potential Φ (black), the electron density ne (red), and the electric field F normalized to
F0 = kBTe/eλD (blue). Note that the maximum density ne0 = qini0 is the one of the
hot electron bunch which is produces by the laser, not the solid density ns.

where kBTe is the mean energy of the hot electrons. This implies the boundary

condition for the potential Φ → −∞ for z → ∞. The potential is defined by

the Poisson equation d2Φ(z, t)/dz2 = e/ε0 · (ne(z, t) − qini(z, t)), where qi is the

ion charge number and ne(z, t) and ni(z, t) are the densities of the hot electrons

and ions as they evolve in space and time. Note, that ni is not the density of

the target ions but the ion density which exactly compensates the hot electrons so

that neutrality is maintained over the whole system. For the boundary conditions

dΦ/dz = 0, Φ = 0 at z → −∞ and dΦ/dz = 0, Φ → −∞ at z → ∞ the electron

density ne(z, t = 0) and the potential Φ(z, t = 0) can be calculated by integration

of Eq. (2.29) in the vacuum region (z > 0) and read

ne(z, t = 0)

ne0

= exp(−1) · 1
(
1 + z

(2exp(1))1/2λD

)2 (2.30)

eΦ(z, t = 0)

kBTe

= −2 · ln
(

1− z

(2exp(1))1/2λD

)
− 1 (2.31)

with the hot electron Debye length λD defined by Eq. (2.25). For z < 0 the

potential, and thus, the electron density can be calculated numerically (Fig. 2.3).
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The plasma expansion is described by solving the continuity equation ∂ni(z, t)/∂t+

∂ni(z, t)vi(z, t)/∂z = 0 and the force equation ∂vi(z, t)/∂t + vi(z, t)∂vi(z, t)/∂z =

−qie/mi∂Φ(z, t)/∂z in each time step, where vi(z, t) is the ion mean velocity and

mi is the ion mass. Details and results of these calculations are given in [45, 15].

According to Mora’s model [45], the maximum ion energy can be calculated via

EPEM
m = 2qikBTe

[
ln

(
τ +

√
τ 2 + 1

)]2
(2.32)

where τ = 0.43ωpiτL is usually of the order of 1-10. The ion plasma frequency is

given by ωpi =
(
ni0 (qie)

2 /ε0mi

)1/2
, where ni0 = ne0/qi is the plasma ion density

prior to expansion and qi the charge of the ions. Note, that ni0 used in the

calculations is usually 3 orders of magnitude smaller than the density ns of ions in

a solid. The hot electron temperature Te needs to be estimated by Eq. (2.16).

The plasma expansion model was widely used during the last years to explain

experimental observations [11, 5]. Nevertheless, there are some inconsistencies

within this approach which need to be mentioned. It seems arbitrary to choose

ni0 = ne0/qi to be the ion density prior to expansion which is much smaller (2-4

orders of magnitude) than the solid state density of typically ns = 1023/cm3. Also

the logarithmically diverging character of the maximum ion energy of Eq. (2.32)

for large pulse durations τL appears unphysical. Last but not least, the mean

electron energy kBTe is needed for the evaluation of Eq. (2.32) which is usually

calculated by Eq. (2.16). However, all these inconveniencies could be overcome by

an analytic approach derived within the scope of this thesis. This simple model

is able to describe most of the experimental observations and will be derived in

Chapter 3.



Chapter 3

Analytic Model

In this chapter an analytical model is derived which explains the maximum ion

energy observed in a broad variety of experiments where high-intensity laser pulses

interact with a thin foil. The accelerating field originates from the surface charge

which is built up by hot electrons accelerated by the laser which exit the foil at its

rear side. This model recently has been submitted to Physical Review Letters [1].

Consider Ne laser accelerated electrons in an electron bunch with length L =

cτL, where τL is the laser pulse duration. Transversely, the electrons are spread

over a circular area with radius B (Eq. (2.20), Fig. 3.1). The electrons have an

exponential distribution for the electron energy E:

dN

dE
=

Ne

kBTe

exp
[
− E

kBTe

]
(3.1)

The hot electron number is given by Ne = ηEL/ (kBTe) with the energy conver-

sion efficiency η of laser energy EL into hot electrons. The mean electron energy

kBTe and number Ne appear as implicit quantities which can be determined ex-

perimentally. It is one of the most astonishing features of this simple model that

the quantities connected to the electrons do not play a role in the final equations

for the ions.

When the electrons cross the solid/vacuum boundary they induce a positive

surface charge Qe on the conducting rear surface, leading to a surface charge

density Qe/ (πB2) located at z = 0, where z is the electron propagation axis. The

potential of such a charge density in a cylindrically symmetric geometry where r

denotes the radial coordinate can be calculated via

Φ(r, z) =
1

4πε0

· Qe

πB2
·
∫ B

0

∫ 2π

0

r′dr′dφ′√
z2 + r2 + r′2 − 2rr′cosφ

. (3.2)

17
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At the z-axis (r = 0) this integral can be calculated and gives

−eΦ (ξ) = E∞s (ξ) (3.3)

with ξ = z/B and s (ξ) = 1 + ξ − (1 + ξ2)
1/2

. Only few electrons with energies

exceeding

E∞ = Qe2/ (2πε0B) (3.4)

can escape the rear surface potential whereas the low energetic electrons reenter

the foil. The point ξ̂ = ẑ/B where electrons with the mean energy kBTe turn

around is defined by

E∞s(ξ̂) ≈ E∞ξ̂ = kBTe (3.5)

for ξ̂ ¿ 1. This approximation is valid for all experiments to be discussed. Using

the definition for E∞ and the electron density nQ0 = Q/(πB2ẑ) directly at the

surface one derives

ẑ =
(
2ε0kBTe/nQ0e

2
)1/2 ≡ λD (3.6)

where λD is called the hot electron Debye-length. Note, that nQ0 = 2ne0 (Eq. (2.22))

is composed from electrons with density ne0 streaming out of and back into the

foil, thus, Eq. (3.6) is equal to the earlier definition of λD (Eq. (2.25)). It is readily

seen from Eq. (3.5) that it holds

λD

B
=

kBTe

E∞
. (3.7)

The electron density distribution which is in equilibrium with the surface charge

potential Φ is defined by

nQ (ξ) =
Q

πB3
· dN

dE
· dE

dξ
. (3.8)

The exponential energy distribution (Eq. (3.1)) and E = −eΦ delivers

nQ (ξ) = nQ0 exp [−s (ξ) /ξD]
[
1− ξ/

(
1 + ξ2

)1/2
]
, (3.9)

where ξD = λD/B. It holds

πB3
∫ ∞

0
nQ (ξ) dξ = Q. (3.10)

Electrons propagate over distance λD and back before they reenter the foil leading

to an obvious density enhancement expressed by nQ0 = 2ne0. In the equilibrium

situation Q = 2NeλD/L electrons are permanently outside the foil, which, in turn,
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induce Q positive charges in order to maintain charge neutrality also on a scale of

λD. This picture is true only for long enough pulses so one may write

Q =





2Ne
λD

L
, for λD < L

Ne, for λD > L
. (3.11)

However, assuming the practically relevant case λD < L and using Eqs. (3.7) and

(2.21) one can write

Q = 2 · B

L
· ηEL

E∞
(3.12)

and since E∞ depends only on B and Q (Eq. (3.4)) it is readily seen that both

the surface charge number Q and the electron escape energy E∞ do not depend

on the electron properties kBTe and Ne.

From Eq. (3.3) together with F = −dΦ/dz one obtains

F (ξ) =
kBTe

eλD

[
1− ξ/

(
1 + ξ2

)1/2
]

(3.13)

for the electric field F in the vacuum region outside the foil. Directly at the surface

(ξ = 0) the electric field agrees with the well-known result F0 = kBTe/(eλD) from

PEM [15, 45] (Eq. (2.28)). Yet, in contrast to PEM the potential (Eq. (3.3)) stays

finite for ξ → ∞ in the model. Fig. 3.1 shows the shapes of the electron density

distribution nQ, the electric field F , and the potential Φ.

In a second step the potential Eq. (3.3) is used to calculate the energy Ei(ξ) an

ion with charge qie gains between ξ = 0 and ξ

Ei(ξ) = −qieΦ (ξ) = Ei,∞s (ξ) (3.14)

where Ei,∞ = qiE∞ defines the energy an ion with charge qie could theoretically

gain by completely running down the potential well. Here only the most energetic

ions are described which are emitted from the center of the emission zone where

the field is highest. Ions starting from outer zones or from deeper surface layers

(z < 0) will gain less energy and are not treated. The ion energy Ei (ξ) of Eq. (3.14)

results solely from the repulsion due to surface charges Qe, i.e., the influence of

the hot electrons is neglected. This assumption is justified by the following simple

picture based on the very different longitudinal spatial distributions of both charge

contributions. The positive charge distribution (surface charges) is much more

localized (within nm) than the electron cloud nQ above the rear surface. The

electron center of charge is approximately at a distance λD above the surface and

its longitudinal width is of the same order (µm). Thus, the forces of the electrons

on an ion at some distance from the surface compensate each other to some degree.
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Figure 3.1: Explanation of quantities used in the text. The electrons are accelerated
by the laser and then travel through the target with a certain spread. The self-induced
field on the rear-side forces the electrons to turn around. The normalized quasi-static
potential −eΦ/E∞ (black), the electron density nQ/nQ0 and the electric field F/F0 are
drawn as an example for ξD = 1.

The field appears the same as if the target would be Q-fold positively charged even

though the electrons are not totally removed.

Using Eqs. (3.12) and (3.4) one can derive

Ei,∞ = qiE∞ = qi2mc2 (ηPL/PR)1/2 (3.15)

where PR = mc3/re = 8.71 GW is the relativistic power unit. Ei,∞ denotes the

maximum possible energy an ion could gain for a certain laser power PL provid-

ing an infinitely long acceleration. Note, that the maximum possible ion energy

depends on the square root of the absorbed laser pulse power only [32] and that

Eq. (3.15) shows no explicit dependence on the hot electron temperature Te.

For future reference it is worth to consider the number of surface charges Q

in more detail. Again it should be emphasized that Q electrons are permanently

outside the foil so that the foil appears to carry a charge of +Qe. Using Eqs. (3.4)

and (3.15) one finds

Q =

√
4ε0

e2c
πB2ηPL (3.16)

with no dependence on the special properties kBTe and Ne of the laser acceler-

ated electrons. For common values for the charge radius B ≈ 10 µm, conversion
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Figure 3.2: Curve sketching of Eq. (3.17). The second term of the right hand side of
Eq. (3.17) (green) appears negligible. The exact solution (black) can be approximated by
either the first term (blue) when τL/τ0 → 1.3 ·τL/τ0 or the taylor expansion of Eq. (3.17)
to the third order with respect to X = 0 (red).

efficiency η = 25%, and laser power PL ≈ 100 TW Q is of the order of 1011.

For experimentally observable maximum ion energies Em the time dependence

of the accelerating process needs to be included, i.e., the acceleration stops after

the electron pulse has passed. This is expressed by integrating the equation of

motion dξ/dt = v(ξ)/B with v(ξ) = (2Ei(ξ)/mi)
1/2 (Eq. (3.14)) and mi as the ion

mass one has
τL

τ0

= X
(
1 +

1

2

1

1−X2

)
+

1

4
ln

1 + X

1−X
(3.17)

where τ0 = B/v(∞) with

v(∞) =

√
2 · Ei,∞

mi

(3.18)

and X = (Em/Ei,∞)1/2. This equation (3.17) is the main result of this analysis

and will be discussed in the following. It should be mentioned that the quantities

Ne and λD depend on the mean hot electron energy kBTe, but they do not appear

in the final equation (3.17).

The black curve in Fig. 3.2 shows the solution of Eq. (3.17) which is not re-

solvable to obtain an explicit expression for the maximum ion energy Em but the
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taylor expansion of Eq. (3.17) around X = 0 when processed to the third order

leads

X = tanh
τL

2τ0

(3.19)

which is close to the exact solution (red curve, Fig. 3.2). It is also obvious that

the second term on the right hand side of Eq. (3.17) (green) has minor importance

compared to the first term (blue). However, it turns out that none of the approx-

imations is able to account for the complete properties of the exact solution and

are therefore not used in this work.



Chapter 4

Experimental Setup and

Diagnostics

4.1 General setup and laser systems

All experiments were performed with high-intensity laser systems which are based

on the chirped pulse amplification technique. Laser pulses from a conventional

fs-oscillator are temporally stretched by 4-5 orders of magnitude to several ns

duration. These stretched pulses are amplified from the nJ-level to several Joules in

several stages and finally recompressed to the initial pulse duration in the fs range.

The amplified short pulses are guided to the experimental chamber (Fig. 4.1) under

vacuum to avoid nonlinear interactions with air. An off-axis parabolic mirror

focusses the laser pulse on to the target in the center of target chamber obtaining

spot sizes of several µm full width half maximum (FWHM) diameter. In this work

laser irradiated thin foils, typically aluminum, gold, tungsten, or other metals,

with thicknesses ranging from 1 − 100 µm were studied. The main concern was

with the energy distributions of the ions emitted from the non-irradiated side of

the foils. A Thomson parabola spectrometer looking in target normal direction at

a distance of usually one meter served for this purpose and will be explained in

more detail in Sec. 4.2.

During the amplification process, spectral modulations and amplified sponta-

neous emission (ASE) in the different stages lead to pre-pulses and a ns pedestal

which one always needs to be aware of while performing an experiment. These pre-

pulses usually have 7 orders of magnitude lower intensity (≈ 1012 W/cm2) which

is enough to ionize the target before the arrival of the main laser pulse. Thus, a

solid density foil could be evaporated, which drastically changes the experimental

23
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Figure 4.1: Typical setup in the experimental chamber (MBI, Berlin). The laser
pulse (red) is guided trough vacuum tubes into the chamber and focussed with the off-
axis parabolic mirror on to the target. The ion beam emitted mainly in target normal
direction is detected with a Thomson parabola spectrometer with a single pinhole is
located at the chamber wall (≈ 0.5− 1.5 m).

conditions.

The experiments were performed on a variety of different high-intensity CPA

laser systems (Tab. 4.1). Their peak powers ranged from 5 to 30 TW correspond-

ing to laser pulse energies from 1 to 20 J compressed into durations varying from

50 to 800 fs. The two comparably small laser systems (Max-Planck-Institute for

Quantum Optics, Germany and Max-Born-Institute, Germany) had a repetition

rate of 10 Hz, though this could not be committed because of the time consuming

ion diagnostics. Nevertheless, a comprehensive study of the ion emission character-

istics and the influence of different experimental parameters became accessible and

will be discussed in sections 5.1 and 5.2. The remaining laser systems (LULI and

LANL) were run in single shot mode which considerably constrained the num-

ber of shots (20 shots per week) and therefore the statistical accuracy. Due to

their higher power (100 TW) experiments with heavy ions (Z > 1, Sec. 5.5) could
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Location
MPQ

Garching

MBI

Berlin

LULI

France

LANL

USA

Medium Ti:Sa Ti:Sa Nd:Glass Nd:Glass

Wavelength λL [µm] 0.8 0.8 1.054 1.054

Rep. rate 10 Hz 10 Hz 1 shot/30 min 1 shot/30 min

Energy EL [J] 0.7 0.7 10 16

Duration τL [fs] 150 50 350 800

Spot size rL [µm] 2.9 4.7 3.8 8.0

Peak

Power
PL [TW] 5.3 14 28 20

Peak

intensity
IL


 W

cm2


 2× 1019 2× 1019 6× 1019 1019

aL 3 3 7 3

Table 4.1: Survey of laser-systems used for the experiments in the scope of this work.
MPQ: Max-Planck-Institute for Quantum Optics, Garching, Germany; MBI: Max-Born-
Institute, Berlin, Germany; LULI: Laboratoire pour l’Utilisation des Lasers Intenses,
École Polytechnique-Univ. Paris VI, Palaiseau, France; LANL: Los Alamos National
Laboratory, Los Alamos, USA.

be performed (Laboratoire pour l’Utilisation des Lasers Intenses, France). The

demonstration of mono-energetic ion beams (Sec. 5.4) and a study of the longitu-

dinal range of the accelerating field (Sec. 5.3) was done with the TRIDENT laser

system at the Los Alamos National Laboratory, USA.

4.2 The Thomson parabola spectrometer

The ion energy distributions were measured with a Thomson parabola spectrome-

ter invented by Joseph John Thomson in 1912. Although this diagnostic tool ap-

pears antic, it is the best solution for the experimental conditions in laser plasma

experiments. It allows to determine the energy distributions of all participating

particles in a single shot. The different ion species and charge states which are

accelerated from the laser irradiated foil are deflected by a parallel electric and

magnetic field onto parabolas giving the spectrometer its name. The curvature of

the parabolic traces depend on the charge-to-mass ratios of the respective ions.

The deflection along each parabola is a measure for the particle energy. The
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Figure 4.2: (a) Experimental setup with an example of the CR39-density image. The
distances between target-pinhole and pinhole-detector are usually Aph ≈ 1m and Adet ≈
0.3m. (b) Sketch of the Thomson parabola spectrometer introducing the variables used
in equations (4.1). Ions with charge-to-mass ratio qi/mi, e.g. 1 for protons, entering the
pinhole (≈ 300µm diameter) with velocity v0 ≈ 0.05c, eventually under certain angles
φin and θin which are usually zero. In the electric field ETP (≈ 1MV/m) applied over
a length of LE ≈ 5 cm the ions are deviated and exit under an angle θout (≈ 1.3◦). Due
to the magnetic field BTP ≈ 500mT the ions are deflected at φEout ≈ 10◦ when they
leave the shorter electric field and at φout ≈ 20◦ when they exit the magnetic field after
LB = 10 cm. Finally, after another ballistic propagation over Ddet ≈ 3− 20 cm they hit
the detector.

deflected ions are detected on a two dimensional screen (Fig.4.2). In usual exper-

iments a single pinhole with a diameter of 100 − 300 µm is used at the entrance

of the Thomson parabola spectrometer. Due to the large distance between target

and pinhole (Aph ≈ 1 m) the solid angle of the spectrometer is of the order of

10−4 msr. Using a single pinhole at the spectrometer entrance has some important

consequences. Neglecting the electromagnetic field, the setup would depict an ion

pinhole camera. Therefore the chosen spectrometer setup combines both an energy

and a spatially resolved measurement. For most experiments this effect is negligi-

ble, since the target size is small (≈ 2 mm wide) and the distance to the pinhole

Aph is much larger than the distance between pinhole and detector (Adet ≈ 30 cm).
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One exceptional experiment is discussed by Schreiber et al. [2].

To determine the observed ion species and charge states the equations of motion

in the static electromagnetic fields need to be solved. The most general form is

given by

xD = Dph tan θin + v0 sin θintB +
qie

mi

ETP tEtB − qie

2mi

ETP t2E + Ddet tan θout

yD = Dph tan φin + R cos φin −
√

R2 − (LB −Rsinφin)2 + Ddet tan φout

R =
miv0 cos θin

qieBTP

tan φEout =
LE −R sin φin√

R2 − (LE −R sin φin)2

tan φout =
LB −R sin φin√

R2 − (LB −R sin φin)2

tE =
R

v0 cos θin

(φEout − φin)

tB =
R

v0 cos θin

(φout − φin)

tan θout =
qieETP tE

miv0 cos θin cos φout

+
tan θin

cos φout

(4.1)

where the variables are explained in Fig. 4.2. In quite a few Thomson parabola

spectrometer setups [36, 65] the length of the electric field LE differs from the

length of the magnetic field LB. As a consequence the traces at the detector are

not parabola like, which is often misattributed to the non-homogeneous magnet

field. Assuming the standard setup, i.e., LE = LB ≡ L, D ≡ Ddet À L and R À L

with normal incidence of particles the well known parabola equation

xD =
mi

qie
· ETP

LDB2
TP

y2
D (4.2)

is obtained.

However, in reality the electric and the magnetic field is inhomogeneous. Espe-

cially in the fringe regions additional field components appear and contribute to

the particle deflection. Therefore, it is convenient to solve the equations of motion

numerically in the realistic three-dimensional fields. The magnetic field geome-

try can be measured with a Hall probe or calculated numerically from the given

geometry of the magnets (CST EMStudioTM [66]). The used spectrometer had a

magnetic field of 500 mT over a length of LB = 10 cm. Fig. 4.3a shows the good

agreement of the measured and simulated main magnetic field component on the

axis of the magnet which was used in the present experiments.
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Figure 4.3: (a) Comparison between the measured (black) and simulated (red) (EM-
Studio) on-axis magnetic field of the Thomson parabola spectrometer magnet. The blue
curve depicts the mean magnetic field Bmean obtained from BTP · LB =

∫
Breal (x) dx.

Similarly the electric field was approximated by ETP ·LE =
∫

Ereal (x) dx. (b) Detector
view with overlayed traces obtained from the analytic expression (eq. 4.1, blue) and the
particle tracking (red) for the respective ion species. The black dots show experimental
data.

The electric field was simulated, since the measurement is not straight forward

at all. It was produced by 2 electrodes with a voltage of ±15 kV placed 2 cm apart

resulting in a field of 1.5 MV/m which is maintained over a length of LE = 5 cm.

The measured traces can be reproduced well by the particle tracking (red) using

the calculated three-dimensional field distributions, as shown in Fig. 4.3b for ions

with a variety of charge-to-mass ratios and energies. The blue lines depict the

traces obtained from Eq. (4.1) by using the constant mean magnetic (blue line in

Fig. 4.3) and electric field and neglecting inhomogeneities and additional compo-

nents. In fact, the particle tracking reproduces the shape of the measured traces

better only for the low energetic protons which take a longer way through the mag-

netic field and are strongly deviated so that field inhomogeneities and additional

field components become important.

4.3 The detector

The deflected ions are detected on a two-dimensional screen which is sensible in the

keV/u- and MeV/u-energy range. Two solutions are widely used in laser-plasma

experiments, i.e., micro channel plates (MCP) and plastic track detectors (CR39).
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Figure 4.4: (a) The automated CR39-scanning system (SAMAICA) with computer
and microscope. For more information see the PhD-thesis of Hegelich [36]. (b) Ion-
intensity-image of a counted CR39-plate.

An MCP is a two-dimensional electron multiplier. In the first plate ions expel

electrons which are accelerated on to the second plate where they in turn produce

an electron avalanche. These secondary electrons are accelerated and hit a phos-

phor screen. The scintillating light is imaged on a coupled charge device (CCD)

camera. Single ion events are measurable and the maximum signal is limited by

the saturation of one micro-channel (≈ 10 ions per 50×50 µm2). However, the

ion spectra can be obtained online, although the electronics of the detection sys-

tem usually requires some effort in shielding because of the strong electromagnetic

pulse due to the laser impact.

Plastic track detectors, e.g. CR39, do not underlay such problems, but the eval-

uation is time consuming (approximately 4 hours per shot). After the irradiation

the plates need to be etched in 6-molar sodium leach. This process expands the

small destruction in the polymer matrix caused by the energy deposition of the ion

to visible craters of several micrometer size. Each crater corresponds to a single

ion hit allowing single ion detection. The size of the craters does depend on the

ion species, its energy and the etching temperature and duration. The craters on

the etched CR39-plates need to be counted which is a time consuming procedure

even with the automated system consisting of a computer-controlled microscope

with a movable stage and a CCD-camera (SAMAICA, Fig. 4.4a). With this device

the CR39-plates are scanned and on each position a pattern recognition software

analyzes the picture and counts the craters. After the whole procedure one can
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obtain an image of the CR39 (Fig. 4.4b). Although the resolution of this image

is of the order of a few µm, a pixel-size of 50×50 µm2 was chosen. The maximum

value in this picture is ≈ 100 , exceeding the MCP maximum by approximately

one order of magnitude. By choosing proper etching conditions, i.e., etching for

shorter times, this number can be easily increased by 2 orders of magnitude.

In this work mainly CR39-plastic track detectors were used in the Thomson

parabola spectrometer. Most of the presented experiments were done on high

power laser facilities, where one can expect only 20 shots per beam time (1 week)

or less, so the post-processing time was still acceptable. The setup during the

experiment was very simple and insensitive to disturbances. The ability of CR39

to detect a large number of ions in a single shot was an additional basic necessity,

because it is unthinkable to improve statistics by doing multiple identical shots.

4.4 Typical spectrum

Once the observed ion species and charge states have been identified, their cor-

responding energy distributions can be calculated. This is done by dividing the

respective trace into spatial bins and counting the particles therein. From the

single pinhole setup (Fig.4.2) it is obvious that the bin-size should be larger than

bmin = dph(1+V ), where dph is the pinhole diameter, and V = Adet/Aph (Fig. 4.2a)

is the magnification of the ion pinhole camera and usually of the order of 0.3.

Since the deflection along a certain parabola depends nonlinearly on the energy

(Eq. (4.1)) the constant spatial bin-size bmin leads to an energy dependent energy

resolution, i.e., the resolution in the low energy part of the spectrum is better

(Fig. 4.5). This also leads to an energy dependent lower detection threshold (dot-

ted lines Fig. 4.5). The spectral distributions were observed from a laser irradiated

contaminated aluminum foil at the MPQ, Garching. The hydrocarbon contami-

nants reflect in the observation of protons and carbon ions up to the forth charge

state, where the protons are most prominent and accelerated to the highest ve-

locities (0.1c). The spectral distributions show a clear cutoff at the respective

maximum ion energy Em (see also Fig. 4.3) well above the detection threshold.

These cutoff energies are of major importance for this work and will be used to

compare with the theories.
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Chapter 5

Experiments

5.1 Variation of experimental parameters

In this section the dependence of the maximum proton energy on different exper-

imental parameter is explored and compared with the analytical theory (chapter

3) and PEM (Sec. 2.3.3). The experiments were performed at the MPQ and the

MBI laser systems delivering laser pulses with energies of EL < 1 J and pulse

durations τL of 150 and 50 fs, respectively. In the focal spot of 5 and 8 µm full

width at half maximum (FWHM) diameter the intensity reached approximately

2 × 1019 W/cm2. The targets were common aluminum foils with thicknesses of

5 and 13 µm contaminated with the usual amount of hydrocarbon caused by the

poor vacuum conditions (≈ 10−6 − 10−4 mbar). The maximum proton energies

were measured as a function of laser energy EL, focal spot size rL, and target

thickness d (MPQ) and pulse duration τL (MBI). Only one of those parameter was

varied while the others were kept constant.

Fig. 5.1 shows the maximum proton energy Em as a function of laser energy

EL. The dependence is reproduced quite well by the analytical model (solid line,

Eq. (3.17)) and PEM (dashed line, Eq. (2.32)). At higher laser energies the mea-

sured ion energies seem to saturate, which could be due to the shock wave launched

by the laser pre-pulse (ASE) which causes a destruction of the rear surface at higher

laser energies.

In a second experiment the radius of the laser focal spot was varied by moving

the focussing off-axis parabolic mirror along the laser propagation direction in

steps of 50 µm. This not only changes the focal spot size but also the intensity

distribution which was imaged on to a CCD camera (Fig. 5.2a). The FWHM

32



5.1. VARIATION OF EXPERIMENTAL PARAMETERS 33

EL [J]

E
m

[M
eV

]

0.2 0.4 0.6 0.8

1

2

5

4

3

Figure 5.1: Dependence of the maximum proton energy on the energy of the laser
pulse (τL = 150 fs, rL = 3 µm, d = 5 µm). The result of the analytical model (solid
line, Eq. (3.17)) and PEM assuming ni0 = 0.3− 1.2 · 1021/cm3 (dashed, Eq. (2.32)) are
compared to the data.

diameter (2rL) of the distributions were determined by counting the area of the

pixels with values higher than half of the appearing maximum and assuming this

total area to form a circle. The assigned values dFWHM and the corresponding

mean intensities (blue and green curve in Fig. 5.2b) were used for the theoretical

predictions of Eq. (3.17) (solid line) and PEM (dashed) and are compared to the

experimental data in Fig. 5.2.

Fig. 5.3 shows the experimentally observed values for the maximum proton

energy as a function of the laser pulse duration again keeping d = 13 µm, rL = 4 µm

and EL = 0.7 J constant. Both the experimental data and the models (analytic

model, solid and PEM, dashed) show an optimal maximum proton energy of ≈ 3

MeV at an optimal pulse duration of around 250 fs. This observation will be

discussed in more detail in section 6.1.2. The maximum in the data points is

more pronounced than both theories predict eventually showing deficiencies in the
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Figure 5.2: (a) Focal intensity distributions for the focal scan. The numbers give
the position of the focus relative to the target in µm. Although the distributions are
inhomogeneous far from the focus it is possible to assign a mean intensity IL and FWHM
diameter dFWHM (b). Negative values mean the laser was focus is places in front of the
target and defocuses again. (c) Dependence of the maximum proton energy on the
position of the laser focal spot relative to the target position compared to the analytic
theory (solid) and PEM (ni0 = 0.4 − 1.2 · 1021/cm3 (dashed)). The aluminum target
thickness (d = 5µm), the laser pulse duration (τL = 150 fs) and energy EL = 0.8 J were
kept constant.

models.

The experiment with varying target thickness was part of a study performed in

the very beginning of this thesis in cooperation with Malte Kaluza at the Max-

Planck-Institute for Quantum Optics, Garching [67]. The influence of the amplified
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Figure 5.3: Dependence of maximum proton energy on laser pulse duration for constant
laser energy (EL = 0.7 J) and laser focal spot size (rL = 4 µm). The experimental data
are compared with the analytical model (solid) and PEM with ni0 = 0.02−1.46·1021/cm3

(dashed). The data show a more pronounced maximum than predicted by both theories.

spontaneous emission (ASE) pedestal, which is present in all CPA laser systems, on

the acceleration of ions accelerated from the rear side of laser irradiated thin foils

was explored (For detailed information see, for example, refs. [11, 67]). The laser

pulse had an energy of ≈ 0.6 J within 150 fs FWHM-duration and was focussed

to a spot of 4 µm FWHM-diameter. The ASE intensity (4 × 1012W/cm2) and

duration (0.5 ns) was kept constant. Fig. 5.4 compares the observed maximum

proton energies with the predictions of the analytical theory (solid curve) and

PEM (dashed curve). For thin targets (< 5 µm) the maximum proton energy

drops unlike as predicted by the theory. This is a consequence of the shock wave

launched by the ASE pre-pulse which destroys the target rear side before the arrival

of the main laser pulse thus suppressing the ion acceleration process as discussed

by Kaluza et al. [11, 67].
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Figure 5.4: Dependence of maximum proton energy on aluminum target thickness.
The laser energy (0.6 J), focal spot diameter (4µm and pulse duration (150 fs) were
kept constant. The intensity of the ASE pedestal was on a level of 2 × 10−7 with
respect to the intensity of the main pulse (IL = 2 × 1019W/cm2) and it was set to a
duration of 0.5 ns. The data are compared with the analytic theory (solid) and PEM
with ni0 = 0.05− 1.18 · 1021/cm3 (dashed).

5.2 Source-size measurements

Up to now only the maximum proton energy was discussed. The ions which gain

the maximum energy originate from the center of the emission zone while the

source gets larger for the lower energetic protons. The acceleration field spreads

transversely over large distances as confirmed by recent measurements of the source

sizes of protons [26, 27, 28]. Usually for these measurements, the rear surface was

grid-structured on a µm-scale. Radiochromic film-stacks were used to measure

both the proton energy distribution and their beam profile. The grid structure

was visible in the different RCF-layers of the stack which gives rise to a very low

emittance of only 0.01 mm·msr [26, 27]. Furthermore, by simply counting the

number of grid lines visible in the RCF-layers, the source-sizes could be estimated
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for different proton energies. The estimation of the source-sizes of the heavier

ions such as carbon and oxygen which are usually co-accelerated with the protons

from the hydrocarbon and water contaminants on the target surfaces is rather

complicated. The heavy ion numbers are a factor of 100 smaller than the proton

numbers so that their signal in the RCF-layers is negligible. The only way to

determine the source-sizes of heavy ions using the RCF-stack method is to heat

the target to get rid of the contaminating proton layers [3]. Still the energies of the

heavy ions are too small to penetrate more than the first two RCF-layers, giving

a rather insufficient energy resolution. These considerations clearly motivate the

performed scraper measurement which additionally allows a rough transversal field

characterization.

The source-size measurements were performed at the ATLAS10 10-Hz-tabletop-

laser-system at the MPQ Garching providing laser pulses with energies of about

0.8 J and 150 fs FWHM duration at a center wavelength of 790 nm. Single laser

pulses were focused onto 5 µm thick aluminum foils with an incident angle of

30◦ reaching an intensity of 2 × 1019 W/cm2 in a spot of 5 µm FWHM diameter.

The ion spectra were recorded in the target normal direction (±5 mrad) using the

Thomson parabola spectrometer with a pinhole of 300 µm diameter placed 80 cm

behind the target while the distance pinhole-detector (CR39) was 30 cm. The

standard experimental setup was extended by the introduction of a scraper placed

8 mm behind the target to perform the knife-edge measurements by moving the

scraper across the beam. A stainless steel razor-blade served for this purpose.

Since the solid angle of the ion beam (∼ 25 msr, see, for example, ref. [67]) was

about 5 orders of magnitude larger than the detector solid angle (10−4 msr), only

a small fraction of the signal passing the scraper was detected.

Fig. 5.5 shows the spectra of protons and carbon ions with charge states 1+

to 4+ for six selected scraper positions, namely with the scraper at the center

of the ion beam (a) and successively moved inwards in 40 µm-steps (b-f). For

the next scraper position, following (f) corresponding to 240 µm off center, no

ions are detected. The high-energy protons (Ekin > 0.8 MeV) and highly charged

carbon ions (C4+, Ekin > 2.5 MeV) already vanish after the first scraper step

(40 µm) whereas the low-energy protons (< 0.8 MeV) and the lower carbon charge

states appear to be unaffected. The maximum kinetic energy both of protons and

C4+-ions decreases with the scraper sliding into the ion beam. Only protons and

singly-charged carbon ions remain at the last scraper position (Fig. 5.5f).

In order to rule out influences of the scraper itself the deflection of the ions

with the lowest energies was calculated assuming that the scraper is charged with
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Figure 5.5: Proton and carbon spectra for different scraper positions, starting from
the center (a). The aluminum target was 5µm thick and the laser was focussed to a
FWHM diameter of 5µm. The scraper was moved in 40µm-steps into the ion beam.

1 nC. This is a reasonable value for the charge carried by the fast electrons leaving

the target. The deflection in the plane of the Thomson parabola spectrometer

pinhole was 40 µm and 100 µm for protons and C4+-ions, respectively. Since the

pinhole diameter was 300 µm the influence of the scraper on the passing ions was

negligible.

The measurements provide information of the energy dependent source sizes

of not only the protons but also the accelerated carbon ions. This allows the

approximation of the electric fields which were present during the acceleration

process and will be discussed in Sec. 6.2.
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5.3 Ion acceleration from buried layers

While the previous sections dealt with maximum proton energies and the transver-

sal characteristics of the electric field and the ion sources the aim of this experiment

was to characterize the acceleration field longitudinally, i.e., its extension into the

solid target. The measurement described in this section provides information about

the depth from where ions can be accelerated and thus contribute to the observed

spectrum.

The experiments were performed at the TRIDENT laser facility at the Los

Alamos National Laboratory, Los Alamos, USA, delivering 16 J pulse energy in a

duration of 800 fs reaching an intensity of ≈ 1019 W/cm2 in the focal spot. Up

to now the experiments addressed on the acceleration of ions from the target rear

surfaces. Here an experiment is presented where the laser pulse was focussed onto

25 µm thick platinum foils with thin titanium nitrite layers (∼ 3 nm) buried in

different depths (3−200 nm) measured from the rear side. The nitrogen ions should

serve as test ions to probe the electric field inside the target having the advantage

that, unlike protons, carbon or oxygen ions from water and oil contaminants,

nitrogen is not observed in usual experiments. The targets were produced by

sputtering titanium onto the platinum foils in a nitrogen atmosphere which should

be sufficient to build the TiN compound. After that another layer of platinum

was sputtered on top for different time spans achieving a variety of cover layer

thicknesses.

Fig. 5.6a shows the depth distribution of nitrogen determined by the Elastic Re-

coil Detection Analysis (ERDA) [68, 69, 70] at the tandem accelerator in Garching,

Germany. In this method gold ions with energies of several MeV/u are shot on

the target rear side under a small angle. In the material they loose energy and

slow down. Target ions are Rutherford-scattered and observed under a certain

angle with a detector which is able to measure both incident energy and energy

loss. This allows the identification of the particles and their original depth in the

target.

Obviously carbon atoms were included into the buried layer during the sputter-

ing process (Fig. 5.6a). The surface contaminants were removed by heating the

targets to ≈ 800◦ K for several minutes which had no influence on the distributions

of the different elements inside the target as proofed by ERDA measurements. Still

the number of carbon atoms near the surface was enhanced (red curve in Fig. 5.6b).
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Fig. 5.7 shows the energy distributions of nitrogen (a) and carbon ions (b) as they

were observed from the laser irradiated foils. Here only the total energy distribu-

tion are shown without differentiation into charge states. The shape of the energy

distributions hardly changes with the depth of the layer. The nitrogen almost

vanishes for the case of the deepest layer (red curve, fig. 5.7a), i.e. 200 nm, where

the number of ions per msr (integral over the ion spectrum,
∫∞
0 dNi/(dEidΩ)dEi)

is reduced by factor of 20. Also the number of carbon ions is six times lower for

this case (red curve, fig. 5.7b).
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Figure 5.8: Ion spectra measured from 20µm Pd-foils. The plot shows the mono-
energetic C5+-ion energy distribution (black), the dominant substrate charge state Pd22+

(blue) and the corresponding results from the 1D-BILBO-simulation (green and red,
respectively). The magenta curve shows a typical C5+-spectrum obtained from an un-
heated Pd-foil, and the grey curve represents a C4+-spectrum from a heated tungsten
target. In the last two cases the carbon contaminant layer is thick and does not form a
monolayer source, resulting in continuous energy distributions.

5.4 Mono-energetic ion beams

In the previous experiments wide exponential energy distribution were observed.

This can be qualitatively understood by the fact that the acceleration field drops

transversely over several 100 µm (section 5.2), thus ions starting at different trans-

verse positions experience different ionization and acceleration field strengths.

Moreover, if the source sheath of ions is thicker than some monolayers, the most

energetic ions starting from the topmost layer can modify the field for the proxi-

mate ones. In this section an experiment is discussed, where the source volume of

the ions is reduced in a way that quasi mono-energetic ion beams were observed

[4].

The experiments were performed at the TRIDENT laser facility, Los Alamos
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National Laboratory, USA. The targets (20 µm thick Palladium foils) were heated

in order to remove the hydrogen contaminants, which is achieved for temperatures

above 600 K. The carbon from the various hydrocarbon contaminants remains on

the surfaces. The special catalytic surface chemistry of palladium causes these

carbons to form thin graphite layer (only some monolayers) when heated to tem-

peratures above 1100 K. Further increasing the temperature above 1300 K would

lead to a complete removal of the carbon layers. The measured ion spectra are

shown in Fig. 5.8. The black curve shows the mono-energetic energy distribution

of C5+-ions measured from a Pd-foil heated to approximately 1100 K. The ratio

∆E/E is ∼ 17 %, where ∆E is the width of the distribution and E its mean

energy. The corresponding highest substrate charge state Pd22+ (blue) is acceler-

ated after all of the C5+-ions have detached and were accelerated. Both spectra

are well reproduced by 1D-numerical simulations (green for carbon, red for palla-

dium). The magenta and the grey curves show energy distributions of C5+-ions

from cold Pd-foils and C4+-ions from heated W-foils. In both cases the carbon

layer is comparably thick and not monolayer-like, leading to a continuous energy

spectrum. A detailed discussion is found in Sec. 6.4.

5.5 Acceleration of heavy ions (Z>1)

As indicated in the previous sections the accelerated ions appear with certain

energy and charge state distributions which, in general, cover a broad energy

range. In this section the ion acceleration is explored under the aspect of different

elements and their corresponding charge state distribution.

The experiments were performed at the Laboratoire pour l’Utilisation des Lasers

Intenses (LULI) at École Polytechnique. It delivered pulses with an energy of

8− 10 J and a FWHM duration of 320 fs in a focal spot of 8 µm FWHM diameter

reaching an intensity of ≈ 6× 1019W/cm2. The targets were resistively heated to

remove the contaminating hydrogen. Different ion species could be observed by

varying the target material, i.e., tungsten foils with layers of lithium, beryllium,

carbon, oxygen and argon as well as vanadium and zirconium foils. Nevertheless,

the remaining oxide- and carbide-layers on the targets could not be removed by

heating. Since oxygen and carbon is usually ionized up to the helium like charge

state (O6+ and C4+) these ions provided the highest charge-to-mass-ratio and were

preferentially accelerated. Figure 5.9 shows typical energy distributions obtained

from the rear side of a laser irradiated 25 µm-thick tungsten foil with a layer

composed from beryllium, oxygen and argon, which was heated to a temperature
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Figure 5.9: Typical ion spectra from heated W-foils irradiated at LULI-laser conditions.
The lighter elements oxygen, argon and beryllium are contained in the surface layers and
show the energy distribution depicted in a, b and c, respectively. Ions from the tungsten
foil itself reach only very low energies (d) because of the small charge-to-mass ratio. For
each ion species, higher charge states are shifted towards higher energies. The total ion
energy distributions show a single- or double-exponential energy distribution (insets)
with a larger mean energy Th for larger charge-to-mass ratios.

of 1300 K. The total energy distribution of each element, obtained by summing

up the charge state spectra, can be described by a single- or a double exponential

function as shown in the insets of Fig. 5.9. The mean ion energy Th gets larger for

higher charge-to-mass ratios, i.e., for oxygen Th = 400keV/u and Th = 10keV/u for

tungsten. When considering each ion species separately, higher charge-states are

shifted towards higher energies. However, the explicit shape of the single charge

state spectra especially for the case of oxygen (fig. 5.9a) and argon (fig. 5.9b) show

distinct maxima. This phenomenon will be considered in more detail in section

6.5.



Chapter 6

Discussion

6.1 Potential of the analytical model

6.1.1 Comparison with published results

The good agreement between the analytical model described in chapter 3 could

be shown in the experiments where several experimental parameter were varied

(sec. 5.1). Here the result of Eq. (3.17) will be compared to experimental results

obtained from other groups. The data shown in Fig. 6.1b are divided into three

groups with comparative laser pulse parameters in terms of energy and pulse dura-

tion. For the electron propagation angle θ (Eq. (2.20)) a value of 10◦ was estimated

following [11] for the 1 J-laser-group (ASTRA, ATLAS, MBI, LOA, JANUSP), of

25◦ as used in [5] and confirmed by source-size-measurements [35] for the 10 J-

laser-group (GEKKO, LULI, TRIDENT), and of 45◦ for the 100 J-laser-group

(NOVAPW, RALVULCAN, RALPW) as indicated by angular resolved X-ray mea-

surements [71]. Apart from the experimental evidence for the electron propagation

angles θ with respect to the laser parameters this behavior is not understood. Re-

garding the range of parameters, the comparison presented in Fig. 6.1b shows a

remarkably good agreement with the analytical theory within a factor of two and

thus supports its generality. In case of PEM (Fig. 6.1a) the data marked with

a green circle scatter up to one order of magnitude around the theoretical curve.

Although the origin of this large disagreement is not clear the analytical theory

depicts a major improvement.

44
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Figure 6.1: Comparison of experimental results with theory (solid lines) for PEM
(a) and the analytical theory (b). The symbols denote the experimentally ob-
tained maximum ion energies from different laser systems split in three groups
with respect to the laser pulse energy; ≈ 1 J (MBI, data presented in Fig. 5.3,
MPQ[11], janusp[39], ASTRA[72], LOA[73], JETI[40]); ≈ 10 J (GEKKO[74], LULI and
LULI2[5], LULIheavy[37], TRIDENT[4]); and > 100 J (RALPW[38], RALVULCAN[71],
novaPW[23]). A single value of θ is assigned to each group. All data refer to protons,
except [37], where also C4+- and F 7+-ions were accelerated, and [4] where monoener-
getic C5+ ions were observed. The green circles in the left graph mark data points with
maximum deviation from the theoretical curve.

6.1.2 The optimal pulse duration

Regarding the power dependence of Eq. (3.15) the final ion energy Ei,∞ could

be increased for laser systems with constant pulse energy EL by shortening the

pulse duration τL. However, short laser pulse duration means a reduction of the

acceleration time so that massive ions cannot reach the final energy any more. That

this effect is of practical relevance was demonstrated in sec. 5.1 and emphasized

in Fig. 5.3 where Em is given as a function of pulse duration for four fixed laser

energies EL. In both PEM (dashed lines) and the analytical model (solid lines)

it is evident, that highest ion energies Eopt
m are obtained for a an optimum value

τ opt
L . In addition, Fig. 6.2 reveals that for ion acceleration it is not favorable to

build a PW-laser with pulse duration smaller than about 100 fs for the chosen

set of parameters. On the other hand, keeping the laser power PL constant while

increasing EL and τL does not result in an increase of the maximum ion energy once

the optimal pulse duration τ opt
L is exceeded. This saturation effect (Em = Ei,∞

for τL → ∞ visible in the slope of the shaded area in Fig. 6.1) was also observed

in recent PIC-simulations [75]. Note, that PEM does not show the mentioned

saturation effect as depicted by the blue PL = 1 PW curve in Fig. 6.2.
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It is worth to discuss the appearance of the optimal pulse duration on the basis

of the analytical model in more detail. The left graph of Fig. 6.3 depicts the

optimal laser pulse duration τ opt
L for varying laser energy EL. The non-monotonic

behavior of τ opt
L results from the explicit intensity dependence of the conversion

efficiency (η ∝ I
3/4
L and η = 0.5 for IL > 3.1 × 1019 W/cm2). It is important to

note that the optimal laser pulse duration does not only depend on the energy

of the laser pulse. In fact, when differentiating Eq. (3.17) with respect to τL and

setting dEm/dτL = 0 it turns out that the maximum ion energy is optimized for

constant values of

τ opt
L

τ0

= const . (6.1)

Recalling that τ0 = B/(2Ei,∞/mi)
1/2 where B and Ei,∞ are defined in Eqs. (2.20)

and (3.15) it is seen that the optimal pulse duration depends on many experimental



6.1. POTENTIAL OF THE ANALYTICAL MODEL 47

0

100

200

300

100

E [J]L

t L
o

p
t

[f
s]

E
[M

eV
]

mo
p
t

103

102

101

100

P [PW]L

10-3
10-2 10-1 100 101 102101 102 103

~PL
7/8

~PL
1/2

~EL

-7/9

~EL

-1/3
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(left, black). The parameters are identical to those of Fig. 6.2. The scaling for the two
regimes η ∝ I

3/4
L (green) and η = const (red) are discussed in the text. The right graph

shows the maximum energies Eopt
m (solid) and Ei,∞ (dotted) for optimal laser powers

PL = EL/τ opt
L . The data points depict the experimental results from the pulse duration

scan (sec. 5.1, Fig. 6.2)

parameters in a rather complicated way:

τ opt
L ∝ B

16
16−j ·

(
mi

qi

) 8
16−j

· E− j
16−j

L ·




1, j = 4; for η = const.

r
2/3
L , j = 7; for η ∝ I

3/4
L

. (6.2)

The green and the red graph in Fig. 6.3 visualize the two regimes were η ∝ I
3/4
L

and η = const, respectively. The solid line in the right graph of Fig. 6.3 illustrates

the maximum proton energy Eopt
m that can be achieved under optimum conditions

as a function of the laser pulse power PL = EL/τ opt
L . It shows the same dependence

on the laser power as Ei,∞ (dotted line, Eq. (3.15)), a scaling that is corroborated

by recent PIC-simulations [75].

6.1.3 Heavy Ions in the analytical model

Fig. 6.4 shows the maximum energies per nucleon with respect to their charge-

to-mass ratio of all ion species observed in the experiments with heated targets

(Sec. 5.5). Different foil materials (W, Zr, and V) were used and all of them had

remaining carbon and oxygen layers on their surfaces which could not be removed

by the heating process. Not touching the non-trivial problem of describing the

charge state population one could assume that all charge states qi are generated
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close to the rear surface and are then accelerated in the same electric field. Fig. 6.4

shows the maximum ion energy as a function of charge state for a variety of ions.

Since in the experiment all ions have been accelerated under identical experimental

conditions (i.e., constant EL, τL, rL, d and θ), it can be readily seen from Eq. (3.17)

that in this case the scaled ion energy Em/Ai is a unique function of qi/Ai where

Ai is the ion nucleon number. The solid curve in Fig. 6.4 represents this function

and shows a fair agreement with experimental data ranging from Li- to W-ions.

6.1.4 Limitations of the analytical model

In addition to the description of the ion energies one could hope to draw conclusions

for the electrons, too. It was quoted that only a few electrons

Nesc = Neexp(−E∞/kBTe) (6.3)
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can escape the potential barrier E∞ (Eq. (3.4)) built up by the surface charges.

Since in all experiments E∞/kBTe À 1 only a small number of electrons can

escape, i.e., nearly all hot electrons remain bound to the target giving rise to the

phenomenon of recirculation as proposed by Mackinnon et al. [39]. In this picture

the electrons reentering the target may be reflected at the front surface of the

target caused by the same mechanism as described for the rear side. The electrons

would then return to the rear surface after a third passage through the foil and

contribute to the acceleration field additionally to the electrons passing the foil

only once. This effect is neglected in the model so far.

It seems to be tempting to identify Nesc (Eq. (6.3)) with the number of elec-

trons arriving at a detector, but it turns out that this number is several orders of

magnitude smaller than number of the observed electrons (≈ Ne/1000). Never-

theless, due to the exponential dependence of Nesc on E∞ a lowering of the barrier

by just a factor of 2 would bring the number of escaping electrons in coincidence

with those detected. On the other hand, the model is very simple and does not

describe the dynamics during the formation of the surface charge. As pointed out

earlier electrons travel to a distance of λD and back before they reenter the foil,

thus setting up the equilibrium situation. In fact, during the phase where this

situation builds up electrons with energies smaller than E∞ can escape, and as

a maximum estimate Nmax
esc = Ne(2λD/cτL) ≈ Ne/10 electrons would reach the

detector. This value is clearly too high but shows a possible way to extend the

model taking into account the dynamics of the electrons in their self-induced field

which is not a simple task where the three-dimensional, radially symmetric nature

of the model needs to be taken into account and can probably be described in a

numerical model only. Developing this code is beyond the scope of this work but

seems to have the potential to describe not only electron measurements connected

to the ion acceleration experiments but also the angular characteristics of the ion

emission and their source sizes.

6.2 Interpretation of the scraper measurement

6.2.1 The radial field profile

In recent works field ionization was identified as the dominant ionization mecha-

nism [36] providing the accelerated ions. A significant number of ions with a certain

charge state qi thus can be produced only in regions where the field exceeds the re-
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spective threshold. Here only an order of magnitude estimate is necessary so that

the model for field ionization by barrier suppression is sufficient. This predicts a

threshold field [36]

Fth =
I2
p

qi

πε0

e
= 1.73 · 108V/m · I2

p

qi

(6.4)

where Ip is the ionization potential for the respective ion in eV (the energy needed

to produce, for example, C4+ from a C3+ ions). Note, that this assumption also

implies a sequential ionization qi → qi + 1, multiple ionization processes such as

qi → qi+j, j > 1 are neglected. Numerical values for Ip can be found, for example,

in [76].

With these assumptions Fth depicts a lower boundary for the field in the re-

gion where the charge state qi is created. On the other hand the appearance of

a maximum ion charge state suggests that the field has never been larger than

the threshold for the ionization to the charge state qi + 1 thus giving an upper

bound. Obviously this picture implies that no charge exchange occurs once the

field ionization process has finished. Following this interpretation Fig. 5.5 was used

to derive boundaries for the maximum electric field for different radial distances

from the center of the ion emission (Fig. 6.5). The field strength in the center

of the emission area was estimated using Eq. (2.28). The transversal extension

is of the same order of magnitude as described by Romagnani et al. [34] using

proton deflectometry. Unfortunately in the work cited no transversal field shape

was deduced with which one could compare.

One could hope to explain the observed transverse field distribution within the

analytical model. As mentioned before for r > 0 Eq. (3.2) which defines the

potential distribution of the surface charge can not be integrated analytically. For

the numerical integration it is convenient to normalize the radial coordinate r to

the radius of the surface charge B, ρ = r/B, in the same way as ξ = z/B was

defined for the longitudinal coordinate. Eq. (3.2) then reads

Φ(ξ, ρ) =
E∞
e
· 1

2π

∫ 2π

0

∫ 1

0

ρ′dρ′dφ√
ξ2 + ρ2 + ρ′2 − 2ρρ′cosφ

(6.5)

with E∞ defined by Eq. (3.4). Once this integral was solved the electric field can

be calculated for different radii B of the surface charge via

Fr(r, z) = − 1

B
· ∂Φ(ξ, ρ)

∂ρ
(6.6)

Fz(r, z) = − 1

B
· ∂Φ(ξ, ρ)

∂ξ
. (6.7)

Fig. 6.6 shows the normalized values of the potential eΦ(ξ, ρ)/E∞ (a), the radial

field component eB/E∞·Fr(ξ, ρ) (b), and the longitudinal field component eB/E∞·
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eration process. The limits marked by the error bars represent the threshold fields for
sequential field ionization Fth (Eq. (6.4)).

Fz(ξ, ρ) (c) obtained from the numerical evaluation of Eqs. (6.5) and (6.6). For the

source size measurements described in Sec. 5.2 it was rL = 2.5 µm, d = 5 µm and

θ = 10◦ resulting in the surface charge radius (Eq. (2.20)) B = 3.4 µm. Thus, in

the model the electric fields drop about 2 orders of magnitude within only 35 µm

which does not agree with the estimation from Fig. 6.5 and is not surprising when

keeping in mind the simplicity of the model. It is likely that the observed effect

can be described by the extensions of the model discussed in Sec. 6.1.4.

6.2.2 The source sizes

Due to the small solid angle of the Thomson parabola spectrometer (10−4 msr) as

compared to the opening angle of the emitted ion beam (≈ 25 msr), the knife-edge

method can not be used for the complete characterization of the source. In recent

experiments [27], it was shown that the proton beams emitted from the rear side

of thin foils exhibit a small normalized emittance (< 0.004π mm·mrad). Moreover,

their angular divergence depends linearly on the radial distance to the laser focal
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Figure 6.6: Numerical solution of Eq. (6.5) showing the potential Φ (a), the radial
electrical field component Fr (b), and the longitudinal field component Fz (c).

spot for the considered proton energies. If these results apply to the present case,

the ion signal should vanish as soon as the scraper passes the center of the emitting

area. In fact this is what happens for the high-energy protons and C4+-ions (Fig.

5.5a-b) while the low energetic protons and carbon ions are still detectable. They

might have a larger emittance or emit more straight then the high energetic ions

so that ions from the outer areas are able to hit the pinhole of the spectrometer.

To find a lower limit for the measured source sizes, it appears most feasible

to assume that the ions come from a circular source and every point makes the

same contribution to the spectrometer signal. For this case, the measured signal

can be written as S = N0/2
[
1− 2/π

(
arcsinxn + xn

√
1− x2

n

)]
, where N0 is the

number of ions in a certain energy interval observed without using the scraper

and xn = 2xs/s is the scraper position xs divided by the energy-dependent source

size s, which is the fit parameter. Fig. 6.7 shows the calculated source sizes of

protons and carbon ions as a function of their kinetic energy resulting from the

above model assumptions. The denoted values represent a lower boundary for the

source diameters except for the high-energy ions which are confined by the smallest

detectable diameter of 80 µm. Note that the source sizes exceed the dimensions

of the experimental parameters by a factor of 100, i.e., up to ≈ 500 µm source

diameter compared to 5 µm thick targets and 5 µm FWHM-diameter of the laser

focal spot. The source sizes are of the same order as referred to by other groups

(see, for example, refs. [26] and [27]).
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6.3 Ion acceleration from buried layers

From the experiment it is possible to deduce how far the acceleration field pene-

trates the solid foil at the rear side. The carbon ions were most effectively acceler-

ated. This agrees well with the picture, that the most energetic ions originate from

the very front layers which was carbon, as proofed by the ERDA measurements.

The nitrogen ions occurred with a factor of 10 lower ion numbers compared to

the carbons. The lower energies suggest that nitrogen ions were accelerated in a

lower field, i.e., a field which was suppressed by the precursory carbon ions. The

similarity between the ion spectra of the shots with 3 nm and 50 nm layer depth

suggests that the accelerating electric field reaches ions up to a depth of 50 nm or

even more. This can be understood by the following consideration.

The positive surface charge Qe which is responsible for the rear side field out-

side the foil is completely shielded by mobile nearly free target-electrons within

distances λDs = vF /ωps, where vF is the Fermi velocity and ωps the plasma fre-

quency of the target material (static screening by target electrons [77]). The fast
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electrons (≈ c) which turn around and reenter the foil are dynamically shielded

over distances λDf ≈ c/βωps, where β ≈ 0.1 [78]. While for typical solid state

targets λDs is of the order of 0.1 nm the shielding distance for MeV hot electrons

becomes λDf ≈ 40 nm. Thus, also buried target ions with distances up to λDf

from the rear side feel a negative driving charge and an accelerating field.

6.4 Mono-energetic ion beams

For the first time it was possible to observe mono-energetic C5+-ion beams from

laser irradiated thin palladium foils. This was achieved by reducing the thickness

of the rear-side carbon layer by controlled heating. It could be shown experimen-

tally that this is one necessity, because ions, specially the low energetic ones, can

originate from layers as deep as 50 nm inside the solid. However, in section 5.2

it was shown, that the field at the rear surface transversally extends over several

100 µm and that low energetic ions also originated far from the axis. This is in

contradiction with the proposed explanation in [4] where it was quoted that only

a reduction in thickness of the source layer leads to a mono-energetic energy dis-

tribution of the accelerated ions. Esirkepov et al. [79] proposed a small dot as an

ion source, which is constricted transversely and longitudinally to extensions much

smaller than the extension of the electric field. This proposed scheme was succes-

sively applied in an experiment by Schwoerer et al. [40] where mono-energetic

protons with 1 MeV energy were observed.

Up to now the found contradiction is not resolved. It seems likely that the

scheme of Esirkepov et al. can be applied for the observed mono-energetic C5+-ion

beams, too. One could speculate that the thin carbon sheath which develops during

the target heating is not homogeneously thick, i.e. carbon islands develop rather

than a continuous monolayer sheath. Another possibility is that the ionization

mechanism plays a role. One could think of a field, which transversely decreases

as found in Sec. 5.2 and by Romagnani et al. [34]. The field in the center is

large enough to produce C5+ by field ionization. However, it rapidly drops to

lower values with increasing radial distance to the maximum, i.e., no C5+-ions are

produced. This could be interpreted as a transversally restricted source for C5+-

ions, giving the same picture as proposed by Esirkepov et al. [79]. In this case also

lower carbon charge states should have been observed which is in contradiction

with the experiment. However, those lower charge states could be emitted with a

certain angle with respect to the target normal direction and thus not reach the

detector pinhole.
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6.5 Charge state distributions of heavy ions

This section is attributed to heavy ion charge state distribution described in section

5.5. The energy distributions of the observed charge states of oxygen and argon

showed distinct maxima and did not follow the usual exponential shape. In a

certain way each charge state could be called mono-energetic. Fig. 6.8a shows the

same oxygen energy distribution as in Fig. 5.9a, but each charge state spectrum

was normalized to a maximum of one. The obtained charge state distribution

reminds on a equilibrium charge state distribution as one would expect from a ion

beam with a continuous energy distribution which has passed a stripping medium.

Fig. 6.8b shows such a distribution for oxygen ions which have passed a carbon

stripper foil [80]. It is unlikely that the observed charge state distribution is

a direct effect of the accelerating field. Although lower charge states would be

expected to gain less energy in a constant field, the absence of low energy ions

with the respective charge state can hardly be explained. Thus, the similarity

between both charge state distributions suggests the existence of a medium in

the laser-plasma experiment which acts like a stripper medium to the oxygen ions.

Similar considerations are also true for the argon ions. In the following subsections,

possible stripper candidates will be discussed.
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6.5.1 The influence of the residual gas

The discussed experiments are performed under poor vacuum conditions. The

residual gas pressure was of the order of 10−4 mbar (N ∼ 2.7 · 1012 particles/cm3).

In a solid medium (N ∼ 2.7 · 1022 particles/cm3), the equilibrium charge state is

reached after 10 nm of propagation [81]. This rough approximation would lead to

an equilibrium length of 100 m for the residual gas pressure in the vacuum chamber,

much larger than the minimum mean free path Lmfp ≈ (10−152.7·1012)−1cm= 3.7 m

for electron exchange in gases [82]. The distance to the detector is usually one

meter. Thus, it is unlikely that the residual gas has an influence on the charge

distribution measured in the detector. However, the target heating could degrade

the vacuum due to evaporating material, which was not controlled during the

experiment.

The cross section for electron exchange is strongly dependent on the projectile

energy. For the relevant energy range these cross sections were measured by Mac-

Donald et al. [82] for oxygen ions in nitrogen. These values can be used to solve

the set of differential equations, which describe the electron exchange (Eq. A.1).

Fig. 6.9 shows the result for three different nitrogen pressures, i.e., (a) 10−4 mbar,

(b) 10−3 mbar, and (c) 10−2 mbar. The calculations were started with the total

oxygen energy distribution assuming a charge state of six (see inset of Fig. 5.9a)

following the assumption that the field at the target rear-side is high enough to

field-ionize oxygen to the helium-like charge state. It is obvious, that, unless the

target chamber pressure exceeds 10−2 mbar, electron exchange with the residual

gas can be ruled out as a factor which determines the charge distributions. Never-

theless one has to keep in mind, that eventually the pressure can be much higher

close to the target because of the evaporating material. A locally enhanced pres-

sure, i.e., 1 bar for a distance of 10 µm or a solid medium with a thickness of 10 nm

would lead to a comparable charge distribution as depicted in Fig. 6.9d, which is

close to the measured one.

6.5.2 The target rear side

If not the residual gas is responsible for the observed charge state distributions

another remaining candidate is the expanding plasma cloud at the rear surface of

the irradiated targets. In more detail, the electrons which exit the target are

decelerated and turn around at the hot electron Debye-length as discussed in

chapter 3. When re-entering the target they will have regained there initial energy.
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The returning electrons carry currents of the order of 1 MA. These high currents

may heat the target and evaporate the rear surface resulting in a gas cloud which

acts like a stripper material on the accelerated ions.

However, the up to now unknown stripper medium can be characterized by

its mean equilibrium charge state and the corresponding width as described in

the Appendix. These energy dependent quantities were treated as unknown fit

parameters which were adapted to reproduce the observed oxygen charge state

spectra best. Fig. 6.10 shows the resulting mean charge states (a) and the charge

state distribution widths (b). The solid curve represent the experimental data for

oxygen ions passing a carbon stripper foil [80]. The dashed curves result from

semi-empirical formulas given in [83] for the mean charge states and [84] for the

charge state distribution widths.

From the considerations above the presence of an unknown stripper material
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can be deduced. The calculated mean charge states (Fig. 6.10a) could correspond

to both a gaseous or solid stripper. On the other hand, the calculated charge

state distribution widths (Fig. 6.10b) are closer to the width predicted for oxygen

passing a nitrogen gas (dashed curve) suggesting that a gaseous stripper medium

is responsible for the observed oxygen mean charge state distributions.

As mentioned earlier a huge number of electrons (Ne ≈ 1013) with a mean energy

of several MeV penetrate the target and are even forced to recirculate. Assuming

a mean energy loss of ∆E/∆x ≈ 20 keV/µm in a solid target with electron density

qsns ≈ 1023/cm3, the target electrons in a volume A·δx are heated to a temperature

kBTe,t ≈ Ne∆E

qsns · A ·∆x
. (6.8)

Not touching the difficult problem of the energy transfer from the electronic sys-

tem to the lattice via electron-phonon coupling it is easily seen that the tungsten

target can be heated above the boiling temperature in a circular area with radius

rb ≈ 80 µm. This order of magnitude estimation shows that the target may be

evaporated by the hot electrons which, by the way, is also consistent with the fact

that the target has a hole of several 100 µm diameter after the laser shot. Although

the evaporation may happen within several ps due to the electron-phonon coupling

it may produce the gaseous stripper medium mentioned above. It is unlikely that

the fast ions which are generated within the laser pulse duration (several 100 fs)

interact with this stripper. On the other hand, the charge states of the low en-

ergetic ions which can originate from 50 nm deep buried layers (Sec. 5.3) may be

already influenced.



Chapter 7

Summary and Perspectives

7.1 Results of the thesis

The presented work focussed on ion acceleration from the rear side of high inten-

sity laser irradiated foils, often referred to as target normal sheath acceleration

(TNSA). Experimental and theoretical investigations improved the understanding

of the underlaying processes.

An analytical model was derived which described the experimentally observed

maximum ion energies. The applicability of this model to a wide range of experi-

mental data was shown. It describes the dependence of the ion maximum energy

on target thickness, laser pulse energy, intensity and duration, and the charge and

mass of the accelerated ions. The model also predicts the energy of mono-energetic

ions recently observed for the first time.

It could be shown that the acceleration field extends transversely over distances

which are 100 times larger than the focal spot size. Not only the low energetic

protons, but also low charge states of heavier ions originate from the outer part

of the acceleration zone. Also longitudinally the field penetrates the solid foil

much deeper (≈ 100x) than expected from static screening. By restricting the ion

source layer to small thicknesses and transversal extensions all ions see comparable

electric field strength resulting in mono energetic ion energy distributions.

Mono-energetic bunches with 5 × 107 C5+-ions at an energy of 3 MeV/u and

17% energy spread were observed. In this experiment palladium foils heated to

temperatures of 1200 K develop a thin carbon source layer with thicknesses below

0.5 nanometers. This restriction of the ion source seemed to be sufficient for mono

59
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energetic ion production.

Equilibrium charge state distributions of oxygen were observed in experiments

with heated targets. It was shown that this could not be caused by the residual gas

pressure in the vacuum chamber. Mean charge states and charge state distribution

widths were calculated from the measured spectra. The origin of the observed

equilibrium charge state distributions could not fully be clarified and is subject of

further investigation.

7.2 Future laser development

After the invention of the laser the power was increased mainly by decreasing

the laser pulse duration. At the end of the 70’s stagnation set in which could

be overcome by the invention of the chirped pulse amplification (CPA) technique

by Strickland and Mourou [16]. After the first realization the laser pulse power

could be increased by 6 orders of magnitude within one decade. The Exa- and

Zetta-Watt regime seemed to come into reach (Fig. 7.1, [18]). But since the first

PW-laser was built in the Lawrence Livermore Laboratory a new stagnation phase

has started (Fig. 7.1, red curve). Thus, the CPA technique followed the common

trace of development for any technical machine. For a long time it provided for a

strong increase in laser power and in principle it could still. However, the efforts

in terms of the size of the laser components [18] which comes along with a low

repetition rate of the laser due to the long cooling times of the amplifier media

would be tremendous. Currently a PW-CPA-laser system is under development

at the Friedrich-Schiller-University in Jena, Germany, which is planed to operate

with a comparably high repetition rate of 0.1 Hz [88]. However, regarding the

approach of even higher laser powers calls for a new technique.

The most hopeful candidate for high-repetition rate (kHz) high power (> 1 PW)

laser systems is the optical parametric chirped pulse amplification (OPCPA) tech-

nique [85]. This technique is currently under development at the Max-Planck-

institute for quantum optics, Garching, where the PW-regime with ultrashort (5 fs)

laser pulses will be entered within the PetaWatt-Field-Synthesizer (PFS) project

during the next years [89]. The PFS is planned to be used as a front end for the

200 PW laser of the Extreme-Light-Infrastructure (ELI) project [90] (blue dotted

curve in Fig. 7.1).



7.3. PERSPECTIVES OF LASER-ION ACCELERATION 61

1960 1970 1980 1990 2000 2010

year

10
10

/ 10
4

10
15

/ 10
9

10
20

/ 10
14

10
25

/ 10
19

10
30

/ 10
24

mode-locking

Q-switching

C
PA

1 PW

1 TW

Tajima & Mourou

real

OPCPA

Treacy

0.1 keV/u

1 keV/u

100 keV/u

100 MeV/u

1 MeV/u

ion
energies

1 GeV/u

laser
piston

TNSA

shock

ns-
plasma
expan-

sionla
se

r 
in

te
n
si

ty
 I

[W
/c

m
²]

 /
 p

o
w

er
[W

]
L

P
L

2020

1 EW

Dubietis et al.

PFS

ELI

Figure 7.1: History and future of high intensity/power laser pulses. The solid black
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corrected (red line) since the 1PW threshold was not overcome since the first realization
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PFS laser at MPQ and the 200 PW laser of the Extreme Light Infrastructure (ELI)
project. The right column shows the evolution of the ion energies observed in laser
plasma experiments with the respective intensities. For laser powers exceeding 1PW the
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7.3 Perspectives of laser-ion acceleration

The right axis in Fig. 7.1 shows the ion energies obtained in laser plasma experi-

ments with the respective laser pulse powers. Currently the TNSA-regime which

was discussed in the presented work offers maximum ion energies up to 200 MeV/u

for 1 PW lasers. It could be shown that for a PW-laser these energy can be ob-

tained with the optimal laser pulse duration of the order of 100 fs. For TNSA it

is not preferable to increase the power by shortening the laser pulses. However,

when further increasing the laser power and changing the target properties new
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acceleration schemes will dominate which will be illuminated in the following.

7.3.1 Double layer targets

For most applications high quality ion beams are essential, i.e., they should be

mono-energetic. It could be shown that in principle this can be achieved by reduc-

ing the source volume in a way that all ions experience the same field during the

acceleration. Thus, the transversal confinement of the source layer to sizes of the

order of the laser focal spot is needed. Moreover, also the longitudinal confinement

is important. Here it is not sufficient to make the source layer thin enough. As

described in the analytical model the hot electrons generate a surface charge on the

target rear surface whose field forces the electrons to turn around. The ions from

the surface are accelerated in these fields while the target itself does not expand,

thus, the rear surface remains in its original position. This may be true only if the

charge-to-mass ratio of the target material is much less than the one for the accel-

erated ions. In this case the ions can detach from the target substrate. Moreover,

if the ion number in the detached bunch is small enough, i.e., if the initial ion layer

is thin enough, a mono-energetic bunch is formed [79]. Large ion numbers would

necessarily lead to Coulomb interactions between the ions and result in a broad-

ening of the spectrum. Note, that this picture is assumed in the analytical model

since no expansion of the target is described so that the rear surface remains at its

initial position z = 0 and, in principle, only the one ion which gains the maximum

ion energy is treated.

7.3.2 The influence of the target size

As illustrated in Fig. 2.2 in experiments with wide (≈ 1 mm) targets the electrons

can transversely spread over large areas. This is the main reason why recirculation

may be neglected in the model derived in chapter 3 and the acceleration can be

considered to be over after the laser pulse duration τL. Especially for short pulses

this cancellation avoids ions to gain the maximum possible energy Ei,∞ (Eq. (3.15))

which depends on the square root of the laser power PL only. When the target

is restricted to small transversal sizes the picture considerably changes as will be

discussed in the following.

For simplicity a spherical target with diameter d will be considered under laser

irradiation (Fig. 7.2). The electrons may again propagate through the target
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Figure 7.2: Scheme of laser interaction with a spherical target with diameter d. Elec-
trons are heated due to the laser and are forced to recirculate around the target by their
self-induced fields thereby spreading over a sphere with average radius ru (a). In reality
the symmetry will be broken at least as long as the laser pulse irradiates the target (b).

where they are dynamically shielded. When they exit into the vacuum the elec-

trons induce a charge at the surface of the sphere so that an electric field evolves.

Considering immobile target ions, i.e., a heavy target material, the target will not

expand and after the laser pulse has passed an equilibrium will have formed where

QK electrons are permanently outside the target. It is assumed that this happens

very fast, i.e., the laser is sufficiently short (< 30 fs). The electrons quickly spread

around the sphere so that its potential ΦK is assumed to be spherically symmetric

and may be expressed as

eΦK(r) =
EK
∞
ρ

(7.1)

where ρ = 2r/d is the radial coordinate normalized to the radius of the sphere d/2

and

EK
∞ =

QKe2

2πε0d
(7.2)

denotes the energy an electron needs to escape the potential. The electrons have

an exponential spectrum (Eq. (3.1)) with mean energy kBTe. Electrons exhibiting

this energy will turn around at a radial distance ru = ρu · d/2 with

ρu =
1

1− kBTe/EK∞
(7.3)

where

λK
D = d/2(ρu − 1) (7.4)
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may be identified with the hot electron Debye-length for a spherical target. As-

suming that on average each electron with maximum velocity ve oscillates around

the sphere up to the distance ru = ρud/2 (Fig. 7.2) in one oscillation period it will

be outside the target for a time

tout =
2π

ωp

=
2πλK

D

ve

(7.5)

whereas it spends the time

tin =
2d

ve

(7.6)

inside the target not contributing to the field. Thus, from the Ne produced elec-

trons (Eq. (2.21)) only QK = Netout/tin electrons are permanently outside the

target which therefore appears with the same charge. Substituting with Eqs. (7.2)-

(7.6) one derives

QK =
d

4rc


1 +

√
1 +

4πrc

d
Ne


 (7.7)

with the distance of closest approach rc = e2/(4πε0kbTe) which is of the order

of 1 fm for MeV-electrons. For usual laser parameters (EL > 1 J) and target

diameters (d ≈ 10 µm) Eq. (7.7) can be approximated by

QK ≈
√

πd

4rc

Ne =

√
ηEL

π2ε0d

e2
(7.8)

where Eq. (2.21) was used. Substituting QK in Eq. (7.2) gives the relation

EK
∞ ≈

√
ηEL

d
· e2

4ε0

. (7.9)

As already mentioned, EK
∞ denotes the minimum energy an electron needs to get

free. Obviously, in reality it takes about the laser pulse duration until the field is

set up and also because of its light pressure the laser may deform the field from

being spherical symmetric. Nevertheless, this expression (7.9) may be used for

some order of magnitude estimates.

Considering an ion with charge qi at the surface of the laser irradiated sphere.

Under the condition that the main target does not essentially expand, i.e., the

charge-to-mass ratio qs/ms of the target ions is much smaller than the ions charge-

to-mass ratio qi/mi, the ion can gain the energy

EK
i,∞ ≈ qi

√
ηEL

d
· e2

4ε0

= 169 MeV · qi

√√√√ηEL [J]

d [µm]
. (7.10)

If the initial ion layer is thin enough one even would expect the ion bunch to

be mono-energetic as discussed in Sec. 7.3.1. Comparing Eq. (7.10) with a recent
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publication by Ter-Avetisyan et al. [91] where 1 MeV protons where obtained from

d = 20 µm water droplets irradiated with 35 fs-laser pulses EL = 0.75 J focussed to

an intensity of ≈ 1019 W/cm2 shows that Eq. (7.10) overestimates the maximum

ion energy with EK
i,∞ ≈ 10 MeV. This could be due to neglecting the temporal

evolution of the field during the laser irradiation where ions would already start

to accelerate before the maximum field is set up, thus resulting in a smaller final

energy. Also the fact that water as a target material is not heavy enough to sustain

its spherical shape but starts to expand which also would lower the field. However,

for an order of magnitude estimate the simple spherically symmetric model may

be squeezed a bit more.

From Eq. (7.10) one could hope to increase the ion energy by reducing the

target diameter. On the other hand the number of electrons outside the target

(QK , Eq. (7.8)) can not exceed the number of electrons

Qt = qsns · π

6
d3 (7.11)

which are actually contained in the target with ion density ns and mean charge qs.

Here a transition is expected where all electrons are pushed out of the spherical

target expressed by Qt = QK . Using Eqs. (7.8) and (7.11) the absorbed laser

energy for this transition reads

ηEt
L =

e2

36ε0

q2
sn

2
sd

5 ≈ 0.8 · d5 J

µm5
(7.12)

where the typical target electron density qsns ≈ 1023/cm3 was used and d is the

diameter of the target in µm. Note, that for a sphere of qs = 16-fold ionized

gold ions the electron density qsns = 1024 /cm3 is even a factor of ten higher than

assumed in Eq. (7.12) resulting in a laser transition energy EL enhanced by a

factor of 100.

The maximum ion energy for the case where all electrons are pushed out of the

sphere is obtained by replacing ηEL in Eq. (7.10) by ηEt
L (Eq. (7.12)):

EK
i,∞ = qiqsnsd

2 e2

12ε0

≈ qid
2 · 150

MeV

µm2
(7.13)

where again qsns = 1023/cm3 was used and d is the target diameter in µm. Note,

that this equation (7.13) would suggest that large target diameter are preferable

for higher ion energies. This is not true because the absorbed laser energy which

is needed to push all electrons out of the target (Eq. (7.12)) is proportional to d5.

According to Eq. (7.10) it is possible to achieve 150 MeV protons from a spherical

target with 1 µm diameter and 1 J of absorbed laser energy. The target could
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consist of a gold sphere with a thin (some monolayers) carbon or hydrogen layer

which then would be accelerated in a mono-energetic bunch due to the repulsion

of the charged target (Sec. 7.3.1).

As mentioned, for EL > Et
L (Eq. (7.12)) all electrons are pushed out of the

target which also leads to a field inside the target. In this case the electrons are

also pushed forward by the laser pressure so one can imagine that the whole target

may be accelerated in laser direction. This effect was predicted by Wei et al. [92]

for PW-laser pulses and small targets with rest masses of the order of the absorbed

laser pulse energy.

7.3.3 The transition to the laser-piston regime

The ion acceleration was understood in the framework of the electric field of the

surface charge built up by Q electrons which are permanently outside the foil.

The surface charge has radii of the order of 10 µm and is shielded by the huge

amount of electrons in the wide target foil (≈ 1 − 2 mm). One could imagine

that this picture breaks down when the target is transversely restricted or the Q

electrons are produced faster than the response of the target electrons. Both of

these modifications would change the physical picture, i.e., the target can not stay

neutral inside. This will happen when the number of electrons Q pushed out of

the target by the laser pulse (Eq. (3.16)) equals the number of electrons

Qt = qsnsπB2d(≈ 1014) (7.14)

provided by the target with electron density qsns ≈ 1023/cm3 within the radius B

and foil thickness d. The condition for the transition to the new regime, where all

electrons are pushed out of the foil then reads

ηIpd
L = q2

sn
2
sd

2 e2c

4ε0

≈ 2.2 · 1023 W/cm2 (7.15)

where it was assumed that B ≈ rL which is true for thin targets (d ≈ 1 µm). For

such high intensities the conversion efficiency η of laser energy into electron energy

is expected to be at least 0.5. From Ipd
L = 1/2 · ε0cF

pd
L one derives

F pd
L = nsd

e√
2ε0

≈ 1.3 · 1015 V/m (7.16)

which is the charge separation field when all electrons of the foil are displaced by

the target thickness d. Thus, Ipd
L may be identified with the threshold intensity

for the transition to the pressure dominated or laser-piston regime as discussed by

Esirkepov et al. [87].
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In the work cited it was shown that the huge charge separation field can acceler-

ate ions close to the velocity of light within one cycle of the laser pulse (≈ 3 fs). A

small part from the foil is teared off and starts to fly with velocities close to c. The

rest of the laser pulse is then reflected from the accelerated plasma bunch which

acts as a relativistically moving mirror. Assuming a reflectivity of 1 it can be

seen from simple energy conservation considerations that the energy of the bunch

(mirror)

Eb =

(
1− 1

4γb

)
EL. (7.17)

is proportional to the laser pulse energy EL once the foil moves relativistically

(γb > 2). At this stage the plasma bunch is accelerated due to the light pressure of

the laser pulse. As discussed by Esirkepov et al. ion energies of up to 100 GeV/u

could be achieved with present-day technologies.

7.4 Application of laser accelerated ion beams

Laser accelerated ion beams are considered for a wide range of applications such

as fast ignition for inertial confinement fusion [30], fast-ion beam injection to

conventional accelerators [93], proton imaging [28] and maybe the most interesting

although challenging field of ion therapy [94, 95]. Ion beams in radiotherapy and

oncology provides several advantages. Unlike electrons and gamma- or x-rays

ions are stopped in the well defined Bragg peak and are not strongly scattered

transversely. Thus, the energy of the ions can be directed very accurately to

the tumor which should be destroyed without damaging the surrounding tissue.

For that also ion beams with a high quality, i.e., small energy spread ∆E/E are

essential. In ion cancer therapy ∆E/E must be at least of the order of 2% to

prevent damage in the healthy tissue surrounding the tumor. In order to reach

tumorous tissue in a depth of up to 15 cm depth proton energies of approximately

170 MeV or 270 MeV/u carbon beams are necessary. For the exposure of a tumor

a dose of 106− 108 ions per second is appropriate. The relevant volume is divided

into up to 50000 pixels which are sequentially irradiated with 3 % accuracy in the

number of ions per pixel. The MHz repetition rate in conventional accelerators

ensures the smooth distribution of the dose.

Currently several hospitals start patient treatment on a daily basis where the

ions with the required parameters are delivered by particle accelerators such as

synchrotrons, cyclotrons, and linear accelerators [96].
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The biggest advantage in using laser-based ion accelerators is seen in the achiev-

able compactness of the system. Although the outstanding characteristics in terms

of transversal and longitudinal emittance of laser accelerated ion beams [27] are

encouraging, their main drawback arises from the very broad energy distribution

which mainly results from the radial and longitudinal variation of the electric field.

If the proton layer would be confined to a thin layer with a transversal extension

of the order of the focal spot size all ions are accelerated in the same field which

obviously results in a low energy spread as discussed by Esirkepov et al. [79]. The

experimental evidence of this method was supplied by Schwörer et al. [40] where

1.2 MeV protons with an energy spread of ∆E/E = 25% where observed from a

laser irradiated titanium foil with a 20 µm wide and 0.5 µm thick proton rich dot

on its rear side. For protons the essential energy range of 140 − 200 MeV will be

achieved with PW-class lasers. Laser accelerated ion bunches can contain up to

108 particles per bunch so one could hope that a repetition rate of 1 Hz is sufficient.

This is not true because it is necessary to distribute the ions smoothly over the

tumor so a higher repetition rate and lower ion numbers per bunch are essential.

The treatment of a tumorous volume consisting of 30000 pixels with 10 pulses per

pixel and a repetition rate of 1 kHz requires 5 minutes and is acceptable. The dose

accuracy of 10 % can only be improved to 1 % with a 10 kHz repetition rate and

10 times less ions per bunch.

Although in principle the dot targets described by Schwörer et al. [40] provide

the possibility of creating mono-energetic ion beams most of the accelerating elec-

tric field remains unused. This might be overcome by using small heavy targets

such as a gold sphere of µm or even sub-µm size which would act as a reservoir

of electrons and provides the substrate which forces the laser accelerated electrons

to recirculate on the scale of the size of the sphere. Thus, the acceleration field

will take a mean value which is constant around the sphere since the electrons

are confined in a three dimensional manner. In this scheme the duration of the

acceleration is not restricted by the laser pulse duration anymore. Moreover, in

order to build up the acceleration field very fast, i.e., before the first ions start to

move, short laser pulses are even preferable (PFS). On the surface of the sphere one

would deposit a thin layer of carbon or proton atoms which would be accelerated

in the electric field. Due to their much larger charge-to-mass ratios as compared to

the gold ions the ions from the layer would detach and form a mono-energetic ion

bunch [79]. The number of ions per bunch may be selected by the thickness of the

layer. Still, the ions would be accelerated mainly in target normal direction, i.e.,

isotropically in case of the sphere. However, once the proof of principle for this

scheme is done one could think of micro-structuring the target in order to orient
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the ion beam to a certain direction.

Apart from the proton imaging technique all other proposed applications of laser

accelerated ion beams are still hypothetical. The understanding of the underlaying

processes proceeded considerably during the last years and led to good models

which could be proofed to be reliable. Presently, the realization of the proposed

applications seems to be a question of the further development in high-intensity

laser technics.
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Appendix A

Charge transfer

The charge states of ions change while passing through matter, i.e., the residual

gas in the target chamber. The responsible electron transfer cross sections σ are

strongly dependent on the energy of the projectile, and can reach values as high as

10−15 cm2 [82]. The typical pressure in the interaction chamber is below 10−4 mbar

corresponding to a particle density n = 2.7 · 1012 cm−3, so that the mean free path

length l = (n · σ)−1 for electron transfer exceeds 4 m. The ions usually travel

around one meter from the target to the detector. This means electron transfer

reactions may not be neglected under the considered vacuum conditions.

The charge state distribution of ions passing trough a medium of density n (x)

is obtained by integrating the set of coupled differential equations

d

dx

dNi

dE
=

∑

j

n (x)

(
σji (E)

dNj

dE
(x,E)− σij (E)

dNi

dE
(x,E)

)
(A.1)

over the propagation distance, starting with the initial ion energy distribution
dNi

dE

∣∣∣
x=0

. The first term describes the population and the second term describes the

depopulation of the ith charge state with the energy dependent electron transfer

cross sections σij (E). This set of linear differential equations is valid as long as

stopping processes can be neglected and no higher order transitions occur. If the

travelling length of the projectile is much longer than the mean free path length

lmfp for electron transfer, the resulting charge state distribution corresponds to

an equilibrium distribution. For this case, the population of the charge states is

described by energy dependent mean charge states and charge state distribution

widths, which were extensively measured. These values are tabulated for a variety

of projectile ions and target materials [80] or can be calculated using semi-empirical

formulas [83, 84]. Referring to equation A.1, this equilibrium scenario is expressed

71
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by setting 1
dx

dNi

dE
to zero, and the final charge state distribution does not longer

depend on the initial charge state distribution. If the equilibrium conditions are

not fulfilled, the set of linear differential equations (A.1) must be solved, which

implies the knowledge of the electron transfer cross sections. For oxygen ions

passing nitrogen or other gases, these values were measured by MacDonald et al.

[82] for the relevant energy range.
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We present a general expression for the maximum ion energy observed in experiments with thin foils
irradiated by high-intensity laser pulses. The analytical model is based on a radially confined surface
charge set up by laser accelerated electrons on the target rear side. The only input parameters are the
properties of the laser pulse and the target thickness. The predicted maximum ion energy and the optimal
laser pulse duration are supported by dedicated experiments for a broad range of different ions.
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Ion acceleration from high-intensity laser irradiated thin
foils has attracted high attention during the past decade.
The emitted ion and, in particular, proton pulses contain
large particle numbers between 1010 and 1013 with energies
in the MeV [1,2] and multi-MeV range [3–6] and are
tightly confined in time (�ps) and space (source radius a
few�m). These outstanding characteristics triggered spec-
ulations about a wide range of applications in nuclear and
medical physics.

The dependence of the ion spectra on the intensity
[7,8] and target thickness was investigated experimentally
[2,4,9]. Theoretical models are presently based on particle-
in-cell simulations (PIC) [10,11] and plasma expansion
models (PEM) [12,13], the physical picture of the process
being the following. First, electrons are accelerated by the
impinging relativistic laser pulse and penetrate the target
driven by the Lorentz force. Leaving the target at the rear
side, they set up a huge electric field which, in essence, is
pointed normal to the target rear surface. Most electrons
are forced to turn around and build up a quasistationary
electron layer. By this field surface atoms are field ionized
and accelerated. This process is called target normal sheath
acceleration [10]. In most experiments, a thin layer (�nm)
of hydrocarbons, water, or oxides contaminates the target
surfaces so that ions with the highest charge-to-mass ratio
are accelerated predominantly.

In this work, we present a simple analytical model based
solely on a radially confined surface charge set up by laser
accelerated electrons on the target rear side. The model
explains the maximum ion energies observed in a variety of
existing experiments as well as in dedicated studies where
either the laser pulse duration or the charge-to-mass ratio
of the ions was varied.

We assume that Ne electrons are accelerated by the laser
and confined in an electron bunch of length L � c�L,
where �L is the laser pulse duration. At the rear side of

the foil, the electrons are transversely spread over a circular
area with radius

 B � rL � d tan�; (1)

where rL denotes the radius of the laser spot, d the thick-
ness of the target, and � the half-angle of the electrons
traveling through the target. We further imply an exponen-
tial electron energy distribution

 

dN
dE
�

Ne
kBTe

exp
�
�

E
kBTe

�
: (2)

When electrons cross the solid-vacuum boundary, they in-
duce a positive surface charge Qe on the conducting rear
surface, leading to a surface charge density Qe=��B2�
located at z � 0, where z is the electron propagation
axis. Solving the Poisson equation for such a charge den-
sity distribution, the potential on the z axis is given by

 � e���� � E1s���; (3)

with � � z=B and s��� � 1� �� �1� �2�1=2. Only a few
electrons with energies exceeding E1 � Qe2=�2��0B�
can escape the rear surface potential, whereas the low
energetic electrons reenter the foil. The point �̂ � ẑ=B
where electrons with the mean energy kBTe turn around
is defined by E1s��̂� � E1�̂ � kBTe, for �̂� 1. This
approximation is valid for all experiments to be discussed.
Using the definition for E1 and the electron density nQ0 �

Q=��B2ẑ� directly at the surface, one derives

 ẑ � �2�0kBTe=nQ0e
2�1=2 	 �D; (4)

where �D is called the hot electron Debye length.
The electron density distribution which is in equilibrium

with the surface charge potential � then reads

 nQ��� � nQ0 exp
�s���=�D�
1� �=�1� �2�1=2�; (5)
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where �D � �D=B. Electrons propagate over distance �D
and back before they reenter the foil. This leads to an
equilibrium situation where Q � 2Ne�D=L electrons are
permanently outside the foil, which, in turn, induce Q
positive charges in order to maintain charge neutrality
also on a scale of �D.

From Eq. (3) together with F � �d�=dz, we obtain

 F��� �
kBTe
e�D


1� �=�1� �2�1=2� (6)

for the electric fieldF in the vacuum region outside the foil.
Directly at the surface (� � 0), the electric field agrees
with the well-known result F0 � kBTe=�e�D� from PEM
[12,13]. Yet, in contrast to PEM, the potential [Eq. (3)]
stays finite for �! 1 in our model.

In a second step, the potential equation (3) is used to
calculate the energy Ei��� an ion with charge qie gains
between � � 0 and �

 Ei��� � �qie���� � Ei;1s���; (7)

where Ei;1 � qikBTeB=�D defines the energy an ion with
charge qie could theoretically gain by completely running
down the potential well. Here we describe only the most
energetic ions which are emitted from the center of the
emission zone where the field is highest. Ions starting from
outer zones or from deeper surface layers (z < 0) will gain
less energy and are not treated. The ion energy Ei��� of
Eq. (7) results solely from the repulsion due to surface
charges Qe; i.e., the influence of the hot electrons is
neglected. This assumption is justified by the following
simple picture based on the very different longitudinal
spatial distributions of both charge contributions. The
positive charge distribution (surface charges) is much
more localized than the electron cloud nQ above the rear
surface. The electron center of charge is approximately at a
distance �D above the surface, and its longitudinal width is
of the same order. Thus, the forces of the electrons on an
ion at some distance from the surface compensate each
other to some degree.

Using the fact that the laser energy EL � PL�L is con-
verted with an efficiency � into hot electron energy, i.e.,
NekBTe � �EL, we derive

 Ei;1 � qi2mc
2��PL=PR�

1=2; (8)

where PR � mc3=re � 8:71 GW is the relativistic power
unit (re is the classical electron radius). Ei;1 denotes the
maximum possible energy an ion could gain for a certain
laser power PL providing an infinitely long acceleration.
For radiation of the order of 1 �m wavelength, the effi-
ciency can be approximated by � � 1:2� 10�15  I3=4

L ,
with IL in W=cm2 [14,15] up to a maximum value of � �
0:5. This maximum conversion efficiency is reached for a
laser intensity IL � PL=��r2

L� � 3:1� 1019 W=cm2, as
indicated by Hatchett et al. [5] and successfully used by
Fuchs et al. [16]. Note that the maximum possible ion

energy depends on the square root of the absorbed laser
pulse power only [17] and that Eq. (8) shows no explicit
dependence on the hot electron temperature Te.

For experimentally observable maximum ion energies
Em, we need to include the time dependence of the accel-
erating process, i.e., the stopping of the acceleration after
the electron pulse has passed. This is expressed by inte-
grating the equation of motion d�=dt � v���=B with
v��� � �2Ei���=mi�

1=2 [Eq. (7)] and mi as the ion mass;
one has

 

�L
�0
� X

�
1�

1

2

1

1� X2

�
�

1

4
ln

1� X
1� X

; (9)

where �0 � B=v�1� and X � �Em=Ei;1�1=2. This Eq. (9) is
the main result of our analysis and will be compared with
experimental values. The data shown in Fig. 1 are divided
into three groups with comparative laser pulse parameters
in terms of energy and pulse duration. For the electron
propagation angle � [Eq. (1)], a value of 10� was estimated
following Ref. [9] for the 1 J-laser group (ASTRA,
ATLAS, MBI, LOA, JANUSP), of 25� as used in
Ref. [16] and confirmed by source-size measurements
[18] for the 10 J-laser group (GEKKO, LULI,
TRIDENT), and of 45� for the 100 J-laser group
(NOVAPW, RALVULCAN, RALPW) as indicated by an-
gular resolved x-ray measurements [19]. A precise deter-
mination of the source size B seems to be difficult, and
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FIG. 1 (color). Comparison of experimental results with theory
(solid line). The symbols denote the experimentally obtained
maximum ion energies from different laser systems split in three
groups with respect to the laser pulse energy: �1 J (MBI, data
presented in Fig. 2, MPQ [9], JANUSP [6], ASTRA [24], LOA
[25], JETI [26]); �10 J (GEKKO [27], LULI and LULI2 [16],
LULIheavy [21], TRIDENT [28]); and * 100 J (RALPW [29],
RALVULCAN [19], NOVAPW [4]). A single value of � is
assigned to each group. All data refer to protons, except
Ref. [21], where also C4� and F7� ions were accelerated, and
Ref. [28], where monoenergetic C5� ions were observed.
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uncertainty even of a factor of 2 might be realistic. Since B
enters the time �0 only, such an uncertainty would be
reflected in a horizontal displacement of data points in
Fig. 1 by the same amount and thus lies within the general
scatter of the experimental data. Regarding the range of
parameters, the comparison presented in Fig. 1 shows a
remarkably good agreement with our theory and thus sup-
ports its generality.

Regarding the power dependence of Eq. (8), the final ion
energy Ei;1 could be increased for laser systems with
constant pulse energy EL by shortening the pulse duration
�L. However, short laser pulse duration means a reduction
of the acceleration time so that massive ions cannot reach
the final energy any more. That this effect is of practical
relevance is demonstrated in Fig. 2, where Em is given as a
function of pulse duration for four fixed laser energies EL
(solid lines). It is evident that the highest ion energies Eopt

m

are obtained for an optimum value �opt
L . In addition, Fig. 2

reveals that for ion acceleration it is not favorable to build a
petawatt laser with pulse duration smaller than about
100 fs for the chosen set of parameters. On the other
hand, keeping the laser power PL constant while increasing
EL and �L does not result in an increase of the maximum
ion energy once the optimal pulse duration �opt

L is ex-
ceeded. This saturation effect (Em � Ei;1 for �L ! 1
visible in the slope of the shaded area in Fig. 1) was also
observed in recent PIC simulations [20]. In order to test our
approach, an experiment at the 10 Hz-Ti:Sa-laser system
of the Max-Born-Institut, Berlin, was performed. The laser
energy EL was 0:7 J within a focal spot of 8 �m (FWHM).
Both parameters were kept constant while the laser pulse

duration �L was changed between 50 fs and 5 ps. Clearly,
the experimental data points in Fig. 2 reveal the existence
of an optimal pulse duration �opt

L of about 250 fs, well in
agreement with the prediction of our model.

The left graph in Fig. 3 depicts the optimal laser pulse
duration �opt

L for varying laser energy EL. The nonmono-
tonic behavior of �opt

L results from the explicit intensity
dependence of the conversion efficiency. An intensity in-
dependent � would result in a strictly decreasing function.
The solid line in the right graph in Fig. 3 illustrates the
maximum proton energy Eopt

m that can be achieved under
optimum conditions as a function of the laser pulse power
PL � EL=�

opt
L . It shows the same dependence on the laser

power as Ei;1 [dotted line, Eq. (8)], a scaling that is
corroborated by recent PIC simulations [20].

In a minority of laser ion acceleration experiments, the
contaminating hydrogen layer was removed from the target
surfaces [21,22], thus allowing for the observation of the
acceleration of heavier ions. This immediately implies the
question of how the acceleration process depends on the
ion charge qie. Experimentally, this issue has been inves-
tigated by Schreiber et al. [22]. Not touching the nontrivial
problem of describing the charge state population, we
assume that all charge states qi are generated close to the
rear surface and are then accelerated in the same electric
field. Figure 4 shows the maximum ion energy as a func-
tion of charge state for a variety of ions. Since in the
experiment cited [22] all ions have been accelerated under
identical experimental conditions (i.e., constant EL, �L, rL,
d, and �), it can be readily seen from Eq. (9) that in this
case the scaled ion energy Em=Ai is a unique function of
qi=Ai, where Ai is the ion nucleon number. The solid curve
in Fig. 4 represents this function and shows a fair agree-
ment with experimental data ranging from Li to W ions.

It seems to be indicated to compare our result of Eq. (9)
with that of PEM [13,16]
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 EPEM
m � 2qikBTe
ln���

��������������
�2 � 1

p
��2; (10)

where � � 0:43!pi�L. The ion plasma frequency is given
by !pi � �ni0�qie�

2=�0mi�
1=2, where ni0 is the plasma ion

density before expansion. A natural choice of ni0 is the
atom solid state density of typically 1023=cm3. Combined
with an expression for the hot electron temperature Te
given by Wilks et al. [23], the obtained maximum ion
energies would differ from experimental data by about an
order of magnitude. Attempts to circumvent this problem
have been made by Kaluza et al. [9] and Fuchs et al. [16].
However, in our model, no detailed description of the
plasma is needed and the relevant characteristic constant
is the ballistic time �0 � B=v�1�, which is independent of
the ion density. This seems to be an advantage in cases
where ions from surface contaminants are considered. We
also note that the maximum ion energy of Eq. (10) diverges
logarithmically for large pulse durations �L, in contrast to
the saturation effect discussed above.

In conclusion, our model describes in good agreement
the maximum ion energies observed nowadays in high-

intensity laser experiments with foil targets, including
those where different charge-to-mass ratios are present.
We have found that the highest intensity is not necessarily
suitable for reaching maximum ion energies.

This work was supported by DFG under Contract
No. TR18.
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Small fluctuations in the acceleration sheath change the pointing of a proton beam accelerated from
the rear side of a laser irradiated thin aluminum foil. The proton acceleration was produced with
40 fs pulses of a Ti:sapphire laser at an intensity of approximately 1019 W/cm2. This observation
has been made with a high spatial resolution Thomson spectrometer. The proton beam pointing has
appeared stable in the energy range between the high energy cutoff �3 MeV� and 50% of this value.
Deviations of the beam position at lower energies changes in a range of 0–3 mrad. The recorded
pictures show wiggled and continuous proton traces which imply a release of the proton beam from
the acceleration zone with a velocity chirp. © 2006 American Institute of Physics.
�DOI: 10.1063/1.2181978�
I. INTRODUCTION

The development of short pulse proton radiography
needs such beam characteristics as the energy spectrum,
beam emittance, pulse duration, and the peak and average
particle fluxes. High intensity laser produced proton beams
cover kinetic energies between several and tens of mega-
electron volts when laser peak powers between some tens of
TeraWatt �TW� and PetaWatt �PW� are used �see, e.g., Refs.
1–11�. Protons with these energies have already been used in
the first proof-of-principle experiments to trace strong elec-
tric and magnetic fields in laser produced dense plasmas as
given in Ref. 12. Quantitative knowledge of these fields is an
essential prerequisite for a better understanding of energy
transport and energy conversion triggered by laser fields of
relativistic strength. Release of the energetic ions from the
targets at very intense laser irradiation is a consequence of
these processes. Recently Cowan et al.13 and Borghesi et
al.14 reported very low emittance values of �10−3 and
�10−1 mm mrad, respectively, for laser accelerated proton
beams. This beam feature is superior for radiographic image
generation.

In this work we analyze the beam pointing and the
divergence of a beamlet of protons emitted from thin
aluminum foils. The results presented demonstrate for
the first time a high angular resolution of proton trajectories

in dependence on the proton energy. The latter allows

1070-664X/2006/13�3�/033111/5/$23.00 13, 03311
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conclusions regarding not only the angular and spatial emis-
sion of the source but also the history of its temporal evolu-
tion.

II. EXPERIMENT

The experiments have been carried out with a 40 fs Ti:
sapphire laser.15 The laser pulses with energy of up to
700 mJ were focused with an f /2.5 off-axis parabolic mirror
to intensities approximately 2�1019 W/cm2. The latter was
estimated from the energy content in a focal area with a
diameter approximately 10 �m. Imaging of the focal spot
with a microscope objective at micrometer resolution and a
12 bit dynamic range for the intensity resulted in a Gaussian-
like smooth distribution. Aluminum foils with a thickness of
10–13 �m were used in the experiment. The measurements
of the ion emission spectrum were carried out with an abso-
lutely calibrated Thomson parabola spectrometer. Typically,
a magnetic field of approximately 0.27 T and electric fields
of 2–6 kV/cm have been applied. The ions were detected by
a multichannel plate �MCP� detector with a diameter of
40 mm coupled to a phosphor screen imaged on a cooled
chip of a charge-coupled device �CCD� camera. The single
particle response of the whole detection and registration sys-
tem was calibrated. Details of this experimental layout are
described in Ref. 16.

The Thomson spectrometer was used in previous studies

�see, e.g., Refs. 9, 11, and 16� in an 1:1 imaging mode. An

© 2006 American Institute of Physics1-1
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entrance aperture of 200 �m in diameter was located at a
distance of 30 cm from the investigated ion source. The im-
aging plane of the ion traces was placed behind the aperture
at a distance of 30 cm. Laser irradiated tiny water droplets
�as used in Refs. 9 and 16� gave perfect parabolic traces from
all registered ions. This indicates that the geometry of the
deflecting B and E fields of the spectrometer produces no
artefacts on the ion trajectories. However, in the experiments
with plane target foils some kinks or small bumps have ap-
peared in the ion traces when strong ion �dominantly proton�
emission occurred. This effect was also observed if the cutoff
energy of the protons was in a range between 2 and 4 MeV
under our laser irradiation conditions. The energy of the de-
tected protons ranged between the cutoff energy and approxi-
mately 10% of this value. If such deviations were caused by
changes in the angular distribution of the proton emission it
could limit the spatial resolution in an imaging experiment.
Therefore, it is important to measure the scale of that effect
and to explain its origin.

III. IMAGING THOMSON SPECTROMETER

In order to study the phenomenon in detail we set up a
Thomson spectrometer in a 1:15 imaging mode, i.e., a
30 �m pinhole was positioned at a distance of 5 cm from the
source and the detector screen was located 75 cm behind the
pinhole. The electric and magnetic fields acted 14 cm in
front of the detector screen. With a 1 cm separation between
the electric field plates we could observe an area of the target
rear side with an extension of ±400 �m relative to the target
center with a resolution of 32 �m. This resolution depends
on the pinhole size, the magnification, the channel resolution
of the MCP, and the imaging of the MCP screen on the CCD
camera. Two examples of the recorded proton emission with
the two different magnification modes are depicted in Fig. 1.
The distortion of the parabolic character of the trace recorded
at low magnification becomes clearly visible at high magni-
fication. Such a wiggled trace is reproducible. The explicit
shape of the trace varies from shot to shot whereas similari-
ties between consecutive shots are clearly seen. Trace bend-

FIG. 1. �Color online� �a� Photograph of an energy dispersed proton trace
which is detected with a multichannel plate and phosphorous screen imaging
device and a pinhole Thomson spectrometer, the imaging ratio is 1:1 �b�
Detected proton trace with a magnified imaging ratio of 1:15, target and
laser parameter �see the text�.
ing is observed in different directions. The high energy part
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of the emission between the cutoff and approximately 50%
of this value shows no deviations from the expected trace.

The observed effect is a feature of the emitted proton
beam and it is not caused by a possible injection of addi-
tional charged particles into the spectrometer. In principle,
such a massive injection of charged particles could change
instantaneously the potential on the deflecting plates of the
spectrometer. Charge injection has been ruled out by either
putting an additional aperture at a 4 kV potential in front of
the spectrometer entrance or switching a grounded short cir-
cuit to the electrical field plates. If trace deviations occur
they are not influenced by these spectrometer modifications.
Also we can rule out that the pinhole itself causes the effect
because it is observable with quite different pinhole setups.
We can conclude that we are measuring a property of proton
beam emission from extended planar foil targets. The devia-
tions were not observed with small isolated droplet targets
�see, e.g., Refs. 9, 11, and 16� at comparable densities of the
emitted ions.

IV. DATA ANALYSIS PROCEDURE

Before we analyze the traces in detail it is worth having
a look at the measures we detected. Our apparatus is a com-
bination of a pinhole camera and a spectrometer. If ions from
all points of the source pass the pinhole, e.g., they are emit-
ted uniformly, the source extension can be imaged with the
pinhole camera. However here, the source emits a beam with
a certain opening angle and a small emittance13. Several
investigations11,13 reported the opening angles of the proton
beams between 10° and 20°, whereas the extension of the
area from which the beams were emitted was between 100
and 500 �m �as given in Refs. 13 and 17�. Cowan et al.13

demonstrated small normalized emittances � �transversal
temperatures� of a proton beam accelerated from laser irra-
diated foils ���0.001 mm mrad�. The fact that we detected
nonblurred, although wiggled, parabola traces conforms to
such a beam characteristic. In our setup the beam illuminates
the pinhole and we detect a trace with a certain spread. This
spread is a measure of the divergency of a small beamlet
where the pinhole acts as the aperture of this small beam. We
call it for simplicity the divergence of the beamlet. The po-
sition of the trace at the detector is determined by the emis-
sion direction at the target surface. The “pointing” is the
mean angular direction of the beam at a specific energy,
which passed through the pinhole. This emission direction
�two angle coordinates� is given by the pinhole position and
by the source position. Further the energy of the ions deter-
mines the beam deflection inside the spectrometer. The two
angle coordinates we call target emission coordinates. They
can be given directly in units of an angle or can be calculated
as a deviation in x and y directions from a fixed point at the
target plane. Emission from a fixed point at target produces
an ideal undisturbed Thomson parabola trace. The ideal pa-
rabola trace starts from a so called “zero” point at the detec-
tor plane. This zero point is a projection of the target point by
high energy photons and neutrals which cause a point like
blob at the detector. Concerning the coordinate denotation in

Fig. 2 we can write the Thomson trace formula:

AIP license or copyright, see http://pop.aip.org/pop/copyright.jsp



033111-3 Pointing of laser-accelerated proton beams Phys. Plasmas 13, 033111 �2006�
ytrace − yt0�xsource,ysource� = m�xtrace�E�

− xt0�xsource,ysource��2, �1�

where m is a spectrometer calibration factor and
�xsource ,ysource�, �xtrace ,ytrace� are the source and trace coordi-
nates, respectively. The coordinates of the zero point at the
detector plane are �xt0 ,yt0�. This formula describes a pa-
rabola for ions with different energies E only if the source
position �xsource ,ysource� remains constant for all ions �ideal
trace� Otherwise, as visible in the experiment, distortions
may occur.

In our measurements we determine two coordinates of
each registered signal �or pixel� at the detector plane within
the trace. These two coordinates carry the information about
the ion trajectory—its direction and energy. However, we are
interested in the emission characterization with three param-
eters and we have to, in order to achieve it, assume that there
is an useful interconnection. It should allow to determine the
parameters within some uncertainty range. We think that the
following approximation Ansatz is possible because we al-
ways detected a clear and sharp trace which does not show
some strange or irregular blurring.

Our present Ansatz for ions with different starting points
�xsource ,ysource� and “wiggly” traces:

ytrace − yt0�xsource,ysource� − m�xtrace�E�

− xt0�xsource,ysource��2 = 0 �2�

is approximated by

ytrace − yt0 − m�xtrace�E� − xt0�2 + ��y�xsource,ysource�

+ �x�xsource,ysource�� = 0. �3�

The condition we use for the data analysis is that the
major deflection from the zero point is governed by the ve-
locity �energy� of the protons and the distortion �bending,
wiggling� from the ideal parabolic trace is influenced by two

FIG. 2. Scheme of the geometry in the measurement: The source coordi-
nates of the target are imaged to the detector plane via a pinhole and are
dispersed due to their energy in the spectrometer �not depicted for simplic-
ity� along a trace �gray shaded area� which will be compared to the ideal
parabolic trace �parabolic line�. The ideal trace is calculated from a source
without directional emission fluctuation.
energy dependent target emission coordinates. In order to get
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the target emission coordinates for the protons within a cer-
tain energy range we applied the following procedure: The
coordinates are schematically depicted in Fig. 2. The ideal
trace is known from the geometry of the detection system.
We assign the x coordinate of a signal xtrace to the ion veloc-
ity undergoing deflection in the B-field. The y-coordinate
ytrace is compared to the y value �yideal� of the ideal trace at
this energy. The difference is assigned to the target emission
coordinate in y �ysource� direction. We can reverse this se-
quence and start taking the y coordinate of a signal ytrace

which we assign to the ion velocity undergoing the deflection
in the E field. The x coordinate xtrace is compared to the x
value �xideal� of the ideal trace at this energy. The difference
is assigned to the target emission coordinate in x �xsource�.
Doing so and arranging the data we can assign a range of
target emission coordinates in x and y directions to a certain
range of velocities �or energies� of the proton beam. The
calculation is based on a self developed ray tracing pro-
gramme.

V. DISCUSSION AND CONCLUSIONS

Figure 3 shows the result of this calculation when the
trace in Fig. 1�b� is analyzed. The changes of the target emis-
sion coordinates show changes in the beam pointing. From
the change of the width of the trace we can infer that the

FIG. 3. �Color� Result of the analysis of the recorded proton emission
shown in Fig. 1�b�. The source emission coordinates xsource and ysource are
plotted as a function of proton energy.
divergence of the beamlet decreases with increasing proton
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energy. The variation of the beam pointing �Fig. 3� and the
divergence values of the beamlet are low as one can infer
from the numbers in Fig. 4 which have been calculated for
the distance of the source to the detector and trace spreading.
These values are well suited for imaging experiments. A
beam analysis across the whole beam would require an array
of pinholes—the so-called pepperpot—which enables deter-
mination of the beam emittance. If we multiply the numbers
in Fig. 4 by the distance between the pinhole and the detector
we can roughly determine the lower limit of the beam emit-
tance under our experimental conditions. These values are
�2-3� 10−3 mm mrad for 2–3 MeV proton energy and ap-
proximately 10−2 mm mrad for 0.2–0.3 MeV proton energy.

Some visible differences in the target emission coordi-
nates we can partly ascribe to the temporal change of the
intensity distribution in the laser beam. The laser intensity
and energy determine the pulse of hot electrons propagating
through the target and building up the acceleration sheath at
the rear side of the target. The focal intensity distribution is
spatially symmetrical and no hot spots at a micrometer scale
have been observed. The highest intensity at the beam axis is
responsible for the peak of a bell-shaped acceleration sheath
�as described in Ref. 13�. The protons with the highest ener-
gies originate in this zone and propagate without significant
�noticeable� deviations. Regions of lower intensity are more
extended. Irradiation of the target at an incidence angle of
45° causes the illumination to be stretched in y direction and
the corresponding coordinate covers a more extended range
as visible in Fig. 3. As more as the acceleration sheath ex-
pands and the acceleration field strength decreases the emit-
ted lower energetic protons form a beam with higher diver-
gency. This is seen from the width of the registered trace at
lower energies.

The more rapid changes of the target emission coordi-
nates as a function of the energy are not simply accessible.
These changes of the target emission coordinates or the beam
pointing are probably connected with fast changes within the
acceleration sheath. These field changes could be affected by
changes during the hot electron transport or the circulation of
electrons in the acceleration zone. Also microstructure ef-
fects of the target can influence the evolving proton beam in

FIG. 4. Divergence of the beamlet calculated from the trace width of the
recorded proton beam shown in Fig. 1�b� in dependence of the energy.
a significant way as it was demonstrated in Ref. 13. The
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whole scenario needs a very complex modeling. Neverthe-
less, our recorded traces imply a distinct emission of the
protons. The traces, even if bending is strong, are intercon-
nected concerning the energies and are not blurred. This sug-
gests that the protons concerning their velocity �or the en-
ergy� are strictly emitted as function of time. The fastest are
emitted first. The beam leaves the acceleration sheath with a
velocity chirp. Otherwise, the changes of the beam pointing
should affect a much larger range of energies. Such a veloc-
ity chirp is an important characteristic because it sheds light
on the temporal development of the acceleration scenario. A
velocity chirp of the accelerated protons was mentioned in
respect to theoretical investigations by Cowan et al.13 A de-
tailed knowledge of the temporal evolution of the accelera-
tion process may help to develop further scenarios for the
creation of laser accelerated ion pulses with a strong peak in
the energy spectrum.

In summary, we measured variations of the pointing of
laser accelerated proton beams. They have become visible
for the first time by applying a Thomson spectrometer which
detects ions from a source with a high spatial resolution.
Thus, small fluctuations of the target emission coordinates
could be detected as a function of proton energy. The ob-
served changes in beam pointing are in the order of
0–3 mrad if the proton energy falls below 50% of the cutoff
energy. The beam characteristics produced with ultrashort
laser pulses—especially the high pointing stability and the
low emittance values for protons with energies above 50% of
the cutoff value—show that the proton beams of mega-
electron volt energy are superior for imaging applications.
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Laser acceleration of quasi-monoenergetic MeV
ion beams
B. M. Hegelich1, B. J. Albright1, J. Cobble1, K. Flippo1, S. Letzring1, M. Paffett1, H. Ruhl2, J. Schreiber3,4,
R. K. Schulze1 & J. C. Fernández1

Acceleration of particles by intense laser–plasma interactions
represents a rapidly evolving field of interest, as highlighted by
the recent demonstration1–4 of laser-driven relativistic beams of
monoenergetic electrons. Ultrahigh-intensity lasers can produce
accelerating fields of 10 TV m21 (1 TV 5 1012 V), surpassing
those in conventional accelerators by six orders of magnitude.
Laser-driven ions with energies of several MeV per nucleon have
also been produced5–9. Such ion beams exhibit unprecedented
characteristics—short pulse lengths, high currents and low trans-
verse emittance10 —but their exponential energy spectra have
almost 100% energy spread. This large energy spread, which is a
consequence of the experimental conditions used to date, remains
the biggest impediment to the wider use of this technology. Here
we report the production of quasi-monoenergetic laser-driven
C51 ions with a vastly reduced energy spread of 17%. The ions
have a mean energy of 3 MeV per nucleon (full-width at half-
maximum ,0.5 MeV per nucleon) and a longitudinal emittance of
less than 2 3 1026 eV s for pulse durations shorter than 1 ps. Such
laser-driven, high-current, quasi-monoenergetic ion sources may
enable significant advances in the development of compact MeV
ion accelerators11, new diagnostics12,13, medical physics14, inertial
confinement fusion and fast ignition15–17.
An ultrahigh-intensity laser (Il2 . 1018W cm22 mm22, where I is

intensity and l is wavelength) incident on a target accelerates a large
number of electrons to multi-MeV energies18,19. These electrons
traverse typical thin foil targets and set up a very strong electrostatic
field exceeding 1 TVm21. This field ionizes the rear surface and
accelerates ions to energies of many MeV. This process is known as
target normal sheath acceleration (TNSA)5. Experiments have
demonstrated acceleration of protons to more than 60MeV (ref. 8),
fluorine ions to above 100MeV (ref. 6) and high-Z palladium ions
up to 225MeV (ref. 20), that is, more than 2MeV per nucleon. These
ion beams have a much lower transverse temperature and a much
shorter duration and a much higher current than those from
conventional accelerators. These unique characteristics make them
ideal candidates for a number of experiments not feasible otherwise.
Owing to their short pulse length and high energy content, the ion

beams can heat macroscopic amounts of matter to more than 106 8C
before the matter can expand21, thereby creating conditions of high
temperature and density only found in the interior of stars. Con-
versely they can also be used as a probe to investigate ion transport
and stopping in a hot, dense plasma before it has time to disassemble.
Conventional accelerators are hard pressed to deliver enough par-
ticles in the available ,ps time window to make high-quality
measurements feasible. These are but two examples where the high
current and short pulse duration are the key to an otherwise
impossible experiment. More examples can be found in nuclear

physics, fusion research and other areas—examples are the synthesis
of neutron rich nuclei or the measurement of fusion cross-sections in
supernova-like hot, dense plasma conditions. Themuch higher beam
current and the much lower emittance of the laser-driven ion beams
make them a promising candidate for advanced accelerator concepts.
Today, a standard linear accelerator that matches the MeV/u

energy level (with u being the atomic mass unit) of these laser-driven
ions is ,100m long. In contrast, the laser fits in a large room and
accelerates the ions to MeV/u over just 10 mm. The low duty-cycle in
present experiments is a limitation that is likely to bemitigated by the
next generation of high-power lasers, currently under development.
However, the major difficulty with all the TNSA and other laser-
driven ion-acceleration mechanisms9,22 has been the resulting
maxwellian energy distribution, with a typical 100% energy
spread6,8,9. All the above-mentioned applications would benefit
greatly from a narrower energy distribution, centred about a specific
value.
We report here a laser-driven quasi-monoenergetic ion beam, a

LETTERS

Figure 1 | Experimental set-up. A short, high-intensity laser pulse is focused
on a thinmetal foil target by an off-axis parabolicmirror (OAP). The red line
shows the laser beam axis, and the red disks represent the laser pulse
travelling along that axis and getting focused down by the OAP. Two wires
(green and blue) are attached to the target, pass a current through it and heat
it to ,1,100K to remove contaminants. Ions are accelerated at the target
rear surface and are detected by a stack of radiochromic film (RCF) and a
Thomson parabola (TP) spectrometer using CR-39 track detectors. The
inset shows an enlarged frontside view of the target, with the target and the
green and blue wires being in the lower right corner and the RCF and TP
detectors in the upper left.
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C5þ beam created in the interaction of a 20 TW/0.8 ps laser pulse
with a solid target. A simple schematic illustrating the process can be
found in Supplementary Information (sections SI_1 and SI_2). The
experiments were performed at the LANL Trident laser facility. The
experimental set-up is shown in Fig. 1 (for details see Methods), and
a time-integrated photograph of an actual laser shot is shown in
Supplementary Information section SI_3. The monoenergetic sig-
nature is the direct result of a fundamentally different target com-
position employed in these experiments. In TNSA, the ions with the
highest charge-to-mass ratio dominate the acceleration, gaining the
most energy. Given typical vacuum conditions of ,1026mbar,
surface target contaminants containing protons are always present.
These protons have the largest charge-to-mass ratio by at least a
factor of 2. Controlled treatment of foil targets before irradiation
with the ultrahigh-intensity laser reduces adsorbed and absorbed
proton contaminants to an unobservable level, allowing higher-Z
ions to be the dominant species6. Using the right treatment param-
eters and target materials, a thin source layer of just a few monolayers
can be formed by catalytic processes.
Specifically, we have demonstrated the acceleration of C5þ and

C6þ from an ultrathin layer of graphitic carbon, formed from
catalytic decomposition of adsorbed hydrocarbon impurities on a
20 mmpalladium foil. Unlike the low-energy lasers which are used for
electron acceleration2–4, which have a high repetition rate and allow
the taking of many shots to obtain good statistics, ion acceleration
requires higher energy lasers which are single shot in nature. The
number of shots is extremely limited and fluctuations in the laser
parameters further complicate obtaining good statistics. However,
five shots exhibiting monoenergetic carbon ions have been observed
in two separate campaigns months apart, and another ten shots
showing indication of monoenergetic ions are still being analysed.
Figure 2 shows the measured C5þ spectrum (black curve) with the
lowest ratio DE/E of ,17%, where E is the mean energy of the C5þ

ions and DE is their energy spread. It also shows the corresponding
highest substrate charge state Pd22þ (blue). Having the highest

charge-to-mass ratio of 0.42, the C5þ is dominantly accelerated.
Owing to the extremely small spatial extent of the carbon layer and its
localization at the rear surface, all of the carbon ions are accelerated
at once at the peak of the accelerating field, leading to the mono-
energetic ion pulse. After all carbon ions are accelerated, the field
is still very strong and only moderately screened by the carbon,
therefore the next highest charge-to-mass ratio ion—that is, Pd22þ

with a charge-to-mass ratio of 0.2—is now dominantly accelerated
and gains a large fraction of the energy before the field decays and
lower Pd charge states are created and accelerated.
For the purpose of this Letter we limit our discussion to the two

dominant charge states, which together contain ,20% of the total
integrated ion energy and have a bearing on the results reported here.
The leading short bunch of C5þ ions shows a monoenergetic energy
distribution with a mean energy of E < 36MeV, that is, 3MeV per
nucleon and a full-width at half-maximum of 0.5MeV per nucleon.
We infer that the accelerated C5þ ion bunch has a longitudinal
emittance of 1 l , 2 £ 1026p eV s, improving on conventional high-
current accelerators by orders of magnitude. Also, in contrast to the
Pd and to any previous measurements, no lower C charge states
are present. Closer analysis reveals important differences in the
acceleration mechanism for the Pd substrate ions and the C ions
from the source surface layer. Whereas the substrate ions have a
typical exponential spectrum, the C ions are monoenergetic.
The small energy spread of the observed carbon ions can be

understood from consideration of quasi-neutral (n e ¼ ZPdnPd),
adiabatic expansion in one dimension (1D) of a palladium substrate
coated by a very thin film of carbon. (Here n e is the electron density,
nPd the palladium density and ZPd the mean palladium charge state.)
The electric field obeys eE<2men

21
e ›x

Ð
dv v2ðf e 2ZPdf PdÞ; with f e

and fPd the distribution functions of electrons and palladium ions, e
the elementary charge, m e the electron mass and n velocity. Such a
plasma columnwill expand with sound speed c s to characteristic size
L2ðtÞ ¼ L20ð1þ t2c2s=L

2
0Þ. The ion and electron temperatures will

therefore decrease by a factor L0=LðtÞ, which leads to an electric
field eE< xc2smPdZ

22
Pd L

22, where mPd is the atomic mass of palla-
dium. This field leads to an acceleration d2xC=dt

2 ¼ rxCc
2
sL

22 of the
carbon ions, with xC being the spatial coordinate of the carbon ions.
The dynamics of the layer are characterized by r, the ratio of charge-
to-mass ratios of C to Pd ions: for r .. 1, the carbon layer detaches
from the substrate at early time and propagates ahead of it as a
directed bunch. For r , 1, the substrate overtakes the C layer and
flow instabilities may arise. With an average Pd charge state
Z eff,Pd < 7, one obtains r ¼ 6.3, predicting a clean separation of

Figure 2 |Monoenergetic carbon ions from a 20mm palladium substrate.
The curves show ion number (N) over energy per nucleon (MeV/u). The
black curve shows the spectra of the measured C5þ ions, the blue curve
shows the dominant substrate charge state Pd22þ. The green and the red
curves are simulations obtained using the 1D-hybrid-code BILBO, showing
the simulated C5þ and Pd21þ spectra, respectively. The grey curve shows the
dominant C4þsignal from a heated W target, and the magenta trace shows
the C5þ signal from a cold Pd target. In these last two cases, the targets have a
thick layer of carbon contaminants and do not form a monolayer source.
The resulting carbon signals are therefore exponential and show lower
numbers in the high-energy range. The errors are: dN # 1% statistical
accuracy, and dE # 2% for C and dE # 4.5% for Pd.

Figure 3 | Changing the thickness of the carbon source layer leads to a
change in the energy spectrum in the BILBO simulations. Decreasing the
layer thickness (d) causes the spectrum to become more monoenergetic.
Increasing the layer thickness leads to a broader distribution and ultimately
the appearance of lower charge states and a maxwellian spectrum.
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the carbon ions from the substrate. Esirkepov et al.23 have also
examined the problem of monoenergetic ion acceleration, but their
model relies explicitly upon finite transverse extent of the target and
is not applicable to the TNSA scenario we find in our experiments.
In order to improve our understanding and our predictive

capability, we developed a numerical model that simulates the
ionization and acceleration physics. Full ab initio simulations
with the required dynamics and sufficiently low noise levels to
faithfully capture the ionization kinetics are not feasible, so we
have focused on a reducedmodel that takes into account the essential
physics. This 1D-hybrid model BILBO (backside ion lagrangian
blow-off) uses a relativistic Boltzmann fluid model of the electrons
and represents ions as kinetic simulation particles. This model has
been explicitly designed to implement TNSA5 in a heterogeneous
mixture of ionization species and ion types. In our simulations, a thin
layer of carbon (1–1,000 Å) with areal density r ¼ 5 £ 10210–
5 £ 1027 g cm22 is placed on the surface of a palladium foil of
solid density r ¼ 12.16 g cm3 and a thickness of 20 mm. Using
parameters matched to the experiment (see Methods), we are able
to reproduce the experimental results.
Figure 2 shows the energy spectra of the C5þ (green) and Pd21þ

(red) components obtained in the simulation. The energy per
nucleon of the C5þ ions agrees well with the measured energies
and the total number of ions accelerated, albeit with a somewhat
smaller energy spread. The energy spectrum and peak ionization state
of Pd between 50 and 200MeV are likewise in good agreement with
the data. From this simulation we can also infer a source layer
thickness of ,10 Å (that is, a few monolayers), which is in good
agreement with published measurements—for example, using Auger
spectroscopy24,25. In our parametric simulation study, increasing the
number of initial carbon layers while keeping the density fixed leads
to two effects, shown in Fig. 3. The mean energy of the C5þ beam
decreases and the energy spread increases with increased layer
thickness. This trend continues until adequate space charge exists
in the carbon layer to shield the ionizing electric field experienced by
the carbon ions at the back of the layer. These more deeply buried
carbon ions only attain ionization state C4þ and they separate from
the layer of C5þ ions; for the parameters considered in this study,
this occurs for areal charge densities exceeding ,2 £ 1028 g cm22,
corresponding to a layer thickness of,80 Å and above. Lower carbon
ionization states appear with increasing layer thickness, and the ion
energies eventually approach a maxwellian distribution. This beha-
viour is also seen in the experiment (Fig. 2). The grey curve shows the
C4þ spectrum from a laser shot of comparable energy but from a
tungsten target, which is not a catalyst for the required surface
chemistry, and therefore does not form a thin source layer.
Measurements using transmission electron microscopy (see Sup-

plementary Information section SI_4) reveal that upon heating, the
target actually forms a 400-Å-thick tungsten carbide (W2C) layer.
This surface layer is not thin enough, and as a consequence the C
spectrum is maxwellian and all lower charge states are present, as
observed in earlier experiments6. Comparison of the two spectra
shows that the direct production of monoenergetic ions by thin
source layers is more effective than just slicing the equivalent energy
range out of the maxwellian spectrum. Specifically, the number of
ions in the corresponding energy range from 2.5 to 3.5MeV per
nucleon is a factor of 2 lower than in the monoenergetic case.
Comparison with a cold Pd target shot at similar laser conditions
also shows a maxwellian distribution of considerable lower energy
(magenta curve, Fig. 2), because (1) the protons drain energy; and (2)
the localized source layer is not formed. Our model predicts that the
energy spread in the carbon beam may be minimized by localizing
the initial carbon layer spatially, that is, by minimizing the source
layer thickness, a process which should also result in higher mean
energy of the light ion beam. This hypothesis will be tested in future
experiments.
Our experimental results, simulation and analytic modelling have

established the basis for laser-driven acceleration of monoenergetic
ion beams using specifically designed and treated targets. Moreover,
catalytic metal substrates such as Pd offer the chance of having a
target that configures itself in situ if subjected to the right conditions.
Such a target would solve major technical obstacles for a host of
possible applications, making future laser-based accelerators much
more feasible. We recently confirmed these results by repeating the
experiments in another campaign at the Trident facility, using a
substantially equivalent experimental set-up, where we reproduced
the qualitative findings reported here. Although the errors in the
analysis for any specific shot are small, the reproducibility of our C5þ

results from shot to shot is only,50%, possibly owing to the degree
of control and diagnosis of key input parameters achievable in our
present experimental set-up. Large, high-energy, single-shot glass
lasers have typical shot-to-shot power fluctuations of,25%, and the
focal spot conditions drift over time. Varying preplasma conditions
and possible self-focusing add further to the variability of the results.
The resulting unique beam characteristics, including short pulse

duration, high current and small transverse and longitudinal emit-
tances, represent a strong incentive to pursue further research and
applications, such as advanced accelerator concepts11, laboratory
astrophysics, isochoric heating21, fusion science15 and medical phy-
sics14. The achieved particle energy is already in the right energy
range for fusion applications like fast ignition, whereas particle
number and conversion efficiency have to be substantially increased.
For medical applications like tumour therapy the situation is the
opposite: here, the particle numbers are sufficient but the particle
energy has to be increased substantially. Considering the fast paced
progress in ultrahigh intensity laser technology in recent years, it is
reasonable to anticipate progress on all these issues and the deploy-
ment of a laser-driven, quasi-monoenergetic ion accelerator in the
not so distant future. Progress made in diode-pumped glass laser
systems, especially, should enable far higher repetition rates of
0.1–1Hz (ref. 26). At these repetition rates, several applications in
accelerator physics, medical physics, material science and neutron
physics become feasible.

METHODS
Laser system and diagnostics. The experiments were performed at the short
pulse arm of the Trident Nd:glass laser facility at Los Alamos National
Laboratory. The Trident C-beam delivers up to 30 TW in a 20 J, ,600 fs pulse
at 1.054mm wavelength, using chirped pulse amplification27. The typical pulse
contrast is,1026 at 2 ns before the peak of the pulse. As illustrated in Fig. 1, an
off-axis parabolic mirror is used to focus the laser pulse onto a thin foil target at
22.58 with respect to the target normal. Typical focal spot sizes are ,10mm
radius, resulting in intensities on target of ,1019W cm22. A stack of Gafcom
radiochromic film (RCF) is placed behind the target to record the ion beam
profile. A hole in the middle of this film stack provides a line of sight for a
Thomson parabola (TP) ion spectrometer28 attached to the outer chamber wall.
The Thomson parabola deflects the ions by means of parallel electric and
magnetic fields, so that the projection of their path in the detector is defined
by parabolic traces. Ions with different charge-to-mass ratios are deflected onto
different traces, while their positions on a given trace are determined by their
energies. A CR-39 solid state nuclear track detector records the ions, typically
,300,000 per shot, and is read out by a specialized automated analysis system29.
With properly chosen parameters, the counting error is below 0.01%. The error
in ion numbers per energy bin (dN) is dominated by Poisson statistics, and is
below#1% owing to the large number of counts per shot. For example, for the
C5þ trace in Fig. 2, dN < 0.3%. The solid angles of the TPs are 3.4 £ 1025

millisteradians (msr), and the opening angles of the ion beams are 24–100msr
depending on charge state and energy. The TPs are absolutely calibrated for
energy and the energy error is dominated by the pinhole size (100 mm). It is given
as dE , E3/2, yielding an upper boundary for an energy error of less than 1MeV
for ,45MeV carbon, that is, less than 2% and decreasing with energy.
Target treatment and chemistry. The foil target is heated to T t < 1,100K by
two attached wires that pass a current through the foil. Palladium at room
temperature is a hydrogen-getter, that is, H can be found throughout the bulk of
the material as well as on the surfaces. The heating process desorbs the hydrogen
contaminants (adsorbed and absorbed in the foil), thus enabling the efficient
acceleration of heavier ions. In the experiment presented here, the special
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catalytic surface chemistry of palladium causes a few carbon monolayers of
hydrocarbon contaminants to remain on the surface of the palladium substrate
and form a well defined source layer for the monoenergetic carbon beam. Given
the ambient vacuum of ,1026mbar, the surface is contaminated with various
CxHy compounds. When the Pd is heated, the Pd surface undergoes multiple
phase changes24,25 and the loosely bound H is driven out of the bulk and off the
surfaces. At 600K the target is completely dehydrogenized. The carbon, however,
remains on the surface in various different configurations. When heating the
target further, to temperatures T . 1,100K, the various carbon compounds
undergo a phase change, forming a well-defined, very thin graphite layer at the
monolayer scale on the Pd surface. If heated up further, to above 1,300K, this
layer will be removed and a clean Pd surface remains. In the experiment, we did
not reach this last state, but remained in the graphite regime, thereby preparing a
thin source layer perfect for creating monoenergetic ions.
BILBO hybrid code. In BILBO, ion formation and acceleration is accomplished
by the electric fields of a virtual cathode of hot electrons at the back surface of the
target. Assuming separation of the electron and ion timescales, self-consistent
electric fields are obtained by solving the time-stationary relativistic Vlasov–
Maxwell equations for each electron component. These fields accelerate the ions
and ionize them to higher charge states, where ionization is implemented in
BILBO by means of a threshold ionization model30. The boundary conditions
require the electric field to vanish within the target and far from the target
surface. In addition, the electron densities and temperatures of the hot and cold
components are specified within the target as internal boundary conditions. The
hot electron density and temperature are functions of the laser energy deposition
model, and their dynamics include adiabatic expansion and the loss of energy to
ionization and ion acceleration. The cold electron temperature increases from
ohmic heating and collisions with the hot electron component. In the simu-
lations, the laser spot diameter was assumed to be 30mm; 50% absorption of the
incident laser into hot electrons was assumed (Th < 2.5MeV), with the hot
electrons’ density assumed to be equal to the critical density (n e ¼ 1.01 £ 1021).
The cold electrons had n c ¼ 6.8 £ 1022 cm23 and initial cold electron tempera-
ture T c ¼ 10 eV. The density and temperature profiles of the hot electron
component were assumed to evolve in time with gaussian shape during the
pulse rise and have a full-width at half-maximum of 700 fs. The simulation used
5 £ 104 simulation ions of each species, had a time step of 2 fs, and employed
6 £ 105 simulation cells over a domain of size 100mm.
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We investigate the influence of the laser prepulse due to amplified spontaneous emission on the
acceleration of protons in thin-foil experiments. We show that changing the prepulse duration has a
profound effect on the maximum proton energy. We find an optimal value for the target thickness, which
strongly depends on the prepulse duration. At this optimal thickness, the rear side acceleration process
leads to the highest proton energies, while this mechanism is rendered ineffective for thinner targets
due to a prepulse-induced plasma formation at the rear side. In this case, the protons are primarily
accelerated by the front side mechanism leading to lower cutoff energies.

DOI: 10.1103/PhysRevLett.93.045003 PACS numbers: 52.38.Kd, 29.30.Ep, 41.75.Jv
Proton and ion acceleration using high-intensity lasers
is a field of rapidly growing interest. For possible appli-
cations of proton beams produced in laser-solid inter-
actions like the imaging of electromagnetic fields in
overdense plasmas [1] and the envisaged usage of proton
beams in the fast-ignitor scenario [2], the generation of
beams with controllable parameters such as energy spec-
trum, brightness, and spatial profile is crucial. Hence, for
the reliable generation of proton beams, the physics under-
lying the acceleration processes has to be well understood.
After the first proof-of-principle experiments [3–6], sys-
tematical studies were carried out to examine the influ-
ence of target material and thickness [7–9]. To establish
the influence of the main laser parameters such as inten-
sity, pulse energy, and duration over a wide range, results
from different laser systems have to be compared, since
usually each system covers a small parameter range only.
Besides these parameters, strength and duration of the
prepulse due to amplified spontaneous emission (ASE)
play an important role, too [7], but until now a detailed
investigation has not yet been carried out.

In most experiments, protons with energies exceeding
1 MeV have been observed. They originate from water
and hydrocarbon molecules adsorbed at the target sur-
faces due to the unavoidable presence of water and pump
oil vapor in the target chamber. The origin of the most
energetic protons is still debated. There are at least two
acceleration scenarios able to explain the occurrence of
MeV protons. (i) They may come from the front surface of
the target, i.e., the side irradiated by the laser pulse
[3,4,10] or (ii) from the rear surface [5,11,12]. Recent
results indicate that both mechanisms act simultaneously
[13,14], in accordance with the predictions of multidi-
mensional particle-in-cell (PIC) codes [15,16].

In this Letter, we report on experiments performed to
investigate the effect both of the ASE prepulse duration
and the target thickness on the acceleration of protons.
The proton cutoff energy depends very sensitively on the
combination of these two parameters. For a fixed prepulse
duration, the highest proton energies are obtained at an
0031-9007=04=93(4)=045003(4)$22.50 
optimal target thickness, which in turn is determined by
the ASE prepulse duration. The results can be consistently
interpreted if one assumes that above this thickness, the
fastest protons are accelerated at the target rear side,
while for thinner targets this mechanism is rendered
ineffective and only the front side acceleration is active,
resulting in lower proton cutoff energies. Furthermore,
our results allow a comparison of the experimental results
obtained with different laser systems.

The experiments were carried out with the ATLAS
laser system at the Max-Planck-Institut für Quanten-
optik. It consists of a MIRA oscillator delivering 100-fs
pulses of 790-nm wavelength. The pulses are stretched to
160 ps followed by a regenerative amplifier (RA), two
multipass amplifiers, and a grating compressor. The output
pulses have a duration of �L � 150 fs (FWHM) with an
on-target energy, EL, between 600 and 850 mJ. The
p-polarized beam is focused under 30� incident angle
by a f=2:5 off-axis parabolic mirror onto Al foils of
0.75 to 86-�m thickness. About 60% of the pulse energy
is contained in a spot of rf � 2:5�m radius, resulting in
an averaged intensity, IL, slightly above 1019 W=cm2

within this spot. The high-intensity part of the pulse is
preceded by a 6-ns long low-intensity pedestal due to
ASE mainly generated in the RA. The prepulse duration
can be controlled by means of an ultrafast Pockels cell
located after the RA with a top-hat-like temporal gate of
6-ns duration. The rise time of the leading edge is 300 ps
and the gate jitter is 150 ps. By changing the position of
the gate relative to the main pulse, the pedestal is either
fully or partially transmitted or almost fully suppressed
to a minimum prepulse duration of �500� 150� ps. The
intensity ratio between main and prepulse is better than
2� 107 and the increase of the intensity above the ped-
estal level, as measured by a third-order autocorrelator
[17], starts 11 ps before the peak intensity.

Two different proton detectors were used. Pieces of
CR 39 were placed 82 mm behind the target to record
the spatial profile of the proton beam. Covering a half-
opening angle of�20�, they were wrapped with a 12-�m
2004 The American Physical Society 045003-1



P H Y S I C A L R E V I E W L E T T E R S week ending
23 JULY 2004VOLUME 93, NUMBER 4
Al foil to filter out heavier ions and protons with ener-
gies below 900 keV. Through a small hole around the
target normal direction, ions could pass to be detected
by a Thomson parabola. In such a spectrometer, ions with
different charge-to-mass ratios are dispersed by paral-
lel electric and magnetic fields onto distinct parabola
tracks in the plane of the detector (CR 39). After etch-
ing the CR 39, the ion pits were counted under a
computer-controlled microscope, revealing the exact en-
ergy spectra.

We have performed several series of measurements,
varying the ASE duration, 
ASE, the laser intensity, IL,
and the target thickness. Figure 1 shows the measured
proton cutoff energies versus the target thickness for IL �
1:0� 1019 W=cm2 and ASE durations of 0.5, 0.7, and
2:5 ns, respectively. For each duration we find that with
increasing target thickness the cutoff energy first in-
creases and then drops again. The highest proton energies
are achieved at an optimal target thickness. When the
prepulse duration is changed, this optimal value changes
correspondingly, as it is shown in the inset. For thicker
targets, the prepulse duration appears to have no effect on
the proton cutoff energies, whereas for thinner targets and
longer 
ASE the cutoff energies are reduced.

To check the influence of the laser intensity, we have
performed shots with constant prepulse duration of 2:5 ns
but slightly different laser intensities by changing the
laser energy (Fig. 2). While the proton cutoff energies
strongly depend on IL, the optimal thickness appears to
depend on the prepulse duration only (cf. Fig. 1).

The proton spectra around the optimal target thickness
measured with an intensity of 1:3� 1019 W=cm2 and a
prepulse duration of 2:5 ns are plotted in Fig. 3. In addi-
tion to the rather cold proton component dominating the
spectrum of the 2-�m foil with a Boltzmann-like tem-
FIG. 1 (color). Proton cutoff energies for differently thick
targets and prepulse durations, 
ASE, of 0.5, 0.7, and 2:5 ns,
respectively, at IL � 1:0� 1019 W=cm2. For longer 
ASE, the
maximum proton energies are achieved with thicker foils. The
inset gives the optimal thickness, depending on 
ASE.
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perature of 250� 30 keV, a population with a signifi-
cantly higher temperature of 800� 200 keV and
4:0� 0:6 MeV appears in the 5 and 8:5-�m foil spectra,
respectively. The temperatures of the hottest proton com-
ponent, given in the inset, exhibit a similar behavior as
the cutoff energies, i.e., the proton temperature drastically
decreases below the optimal target thickness.

The spatial profiles of the proton beam also change
around the optimal thickness. Figures 4(a)–4(c) show the
proton beam profiles obtained with targets 2, 5, and
8:5�m thick. While the first profile is rather blurred, a
collimated feature aligned along the target normal ap-
pears in Figs. 4(b) and 4(c), persisting for all thicker
targets.

The significant changes in proton spectra and beam
profiles described above can be interpreted as a transition
between two regimes delimited by the optimal thickness:
(i) Only the front side acceleration is active for targets
thinner than the optimal thickness and (ii) protons are
accelerated from both target surfaces for target thick-
nesses above the optimal value. In this second regime,
the rear side acceleration leads to higher cutoff energies.
This mechanism is suppressed in the first regime due to
the formation of an ASE-induced density gradient at the
rear side of the target.

On the target front side, the high-intensity part of the
laser pulse interacts with a plasma created by the ASE
prepulse. Electrons are expelled from high-intensity re-
gions by the ponderomotive potential of the laser, ’p �
mec2��os 	 1�, until it is balanced by the electrostatic
potential arising from the charge separation. Here, �os �������������������������������������������������������������������������������

1
 IL�
2
L=�1:37� 1018 W cm	2 �m2�

q
is the relativistic

factor, me the rest mass of the plasma electrons. Sentoku
et al. showed [18] that protons can initially gain kinetic
energies approaching this potential, when the laser pulse
FIG. 2 (color). Proton cutoff energies for differently thick
targets and different laser intensities for a prepulse duration
of 
ASE � 2:5 ns. The cutoff energies vary with the laser
intensity, but the optimal target thickness depends on 
ASE

only (cf. Fig. 1).
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FIG. 3 (color). Proton spectra at IL � 1:3� 1019 W=cm2 for

ASE � 2:5 ns and 2, 5, and 8:5�m thick foils. With increasing
target thickness, a second hotter proton population with much
higher cutoff energies appears. The inset gives the temperatures
of the hot proton component for all measured thicknesses. A
similar behavior is observed for all different 
ASE.
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is longer than the acceleration time 
a � �L=c�����������������������
mp=me�os

q
; where mp is the proton mass. For our

conditions, we have 
a � 70 fs, which is shorter than
our pulse duration, and ’p varies between 0.72 and
0:92 MeV, depending on IL. During the acceleration, a
sharp proton front is formed, that expands afterwards
due to an electrostatic repulsion within this front, addi-
tionally increasing the peak proton velocity by 50% [18],
and thus resulting in cutoff energies of 1:52 � ’p �
1:6 . . . 2:1 MeV for protons accelerated at the front side
of the target.

The target normal sheath acceleration (TNSA) mecha-
nism is responsible for proton acceleration from the target
rear side [15]. At the front side, a fraction of � � 25% of
the laser energy is converted into fast electrons having a
mean energy of kBTe � mec

2��os 	 1� [19], resulting in a
total number Ne � �EL=kBTe of hot electrons that propa-
gate through the target. Arriving at the rear side, only a
small fraction of the fastest electrons can escape, while
the target charges up. Most of the electrons are held back
FIG. 4. Proton beam profiles for 
ASE � 2:5 ns recorded on
CR 39 for 2, 5, and 8:5�m thick targets, respectively. While in
(a) the profile is blurred, we observe in (b) and (c) that the
major part of the beam is well collimated along the target
normal direction. This collimated feature appears only for
targets at and above the optimal thickness. The circles in (a)
give half-opening angles of 5�, 10�, and 15�, respectively.
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by the arising electic field and form a sheath at the rear
side with a Debye length of �D �

���������������������������
"0kBTe=nee

2
p

. This
field ionizes atoms at the rear surface and accelerates
them in target normal direction. Mora described the
acceleration process with 1D simulations [20]. Here, the
target consists of preionized hydrogen. The electrons,
having a mean energy of kBTe during the laser pulse
duration, are assumed to be in thermal equilibrium with
the electrostatic potential � at the target rear side, i.e.,
ne � ne0 � exp�e�=kBTe�. On the other hand, � can
be obtained from the Poisson equation "0@2�=@x2 �
e�ne 	 np�, taking into account the electron and proton
densities. Initially, the proton density, np, is steplike with
np � ne0 in the target. By iteratively solving the equation
of motion and the continuity equation for the protons,
their new density in the next time step is obtained, lead-
ing to a new potential and electric field. As the field is
always peaked at the proton front, the fastest protons are
also located there. Mora also found an analytical expres-
sion for the evolution of the maximum proton energy, Ep,
as a function of the interaction time, ti, depending only on
the electron temperature, Te, and the initial electron
density, ne0:

Ep � 2kBTe

(
ln

"
ti!pp��������

2eE
p 


�����������������������������
1


�ti!pp��������
2eE
p

�
2

s #)
2

: (1)

!pp �
�������������������������
ne0e2="0mp

q
is the proton plasma frequency, that

depends on ne0, and eE � 2:71828 . . . .We assume ti � 
L,
the same electron numbers and temperatures on both
target surfaces, and a constant divergence of the electron
beam propagating through the target. The hot electron
density at the rear side, ne0, is estimated as follows.
Accelerated in the laser focus with an initial radius of
rf � 2:5�m and a half-opening angle of  in, the electron
beam travels through an effective target thickness of
d�t � dt= cos30� and leaves it within an area of "�rf 

d�t tan in�

2. Assuming an electron bunch length of c
L,
the averaged electron density at the rear side is

ne0 �
Ne

c
L � "�rf 
 d�t tan in�
2 : (2)

The peak proton energies for differently thick tar-
gets calculated with Eqs. (1) and (2) are compared in
Fig. 5 with the experimental results for IL � 1:3�
1019 W=cm2 and 
ASE � 2:5 ns. The cutoff energies for
targets optimally thick and thicker are well described
by this model for an initial half-opening angle of  in �
�8� 2��, which is comparable to the value found in [21].
For the same  in, this model describes also well the results
from Fig. 1, when the reduced laser intensity is taken into
account.

The cutoff energies for thinner targets cannot be ex-
plained by the TNSA mechanism assuming a steplike
density gradient at the rear side. Because of the ASE
prepulse, a plasma is formed at the target rear surface,
045003-3



FIG. 5 (color). Comparison of experimental data for 
ASE �
2:5 ns and IL � 1:3� 1019 W=cm2 with theoretical predictions.
The dotted line gives the cutoff energy for front side accel-
erated protons including their stopping in the target, while the
broad area gives the maximum rear side proton energies for a
range of opening angles  in � �8� 2�� of the electron beam.
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reducing the acceleration fields [12,19]. We investigated
the evolution of this rear side density gradient using the
1D-hydro code MULTI-FS [22]. A simulation for the rear
side proton acceleration as described above, that starts
with the same rear side density gradient as predicted by
MULTI-FS, gives much lower proton cutoff energies for the
thinnest foils than those observed in the experiment.
Therefore, the rear side acceleration process alone is not
able to explain the measured proton energies for all foil
thicknesses. On the other hand, protons accelerated at the
target front side are not affected by a plasma at the rear
side [12]. The maximum energy for front side protons
predicted by Sentoku et al. [18] reproduces the experi-
mental data much better. Their initial energy is deter-
mined by the laser intensity only. The comparison with
this model including proton stopping in the target [23] is
shown in Fig. 5, yielding a good agreement for the
thinnest foils. The increase of the proton cutoff energy
for thin targets due to electron recirculation in the target
[8] could not be observed, because in our experiment the
laser contrast ratio was 500 times lower.

The optimal target thickness is found to depend on the
ASE duration only (cf. Figs. 1 and 2). This dependency
can be approximated linearly with a slope of vpert �
3:6�m=ns (cf. Fig. 1). MULTI-FS simulations show that
(i) the prepulse launches a shock wave into the target and
(ii), the bulk of the target is radiatively heated due to x
rays generated in the focus of the prepulse on the target
front side. Both effects can cause an expansion of the
target. While the shock wave is weak for our prepulse
conditions, the radiative heating is sufficiently strong to
form a rear side density gradient for the thinnest foils. In
contrast, due to the absorption of radiation in the bulk of
the target, the formation of a rear side density gradient
045003-4
sets in at later times for thicker targets. The onset of this
plasma formation as observed in MULTI-FS simulations
defines the optimal thickness for proton acceleration. The
simulation results reproduce the experimentally found
value of 3:6�m=ns. Although slightly dependent on the
ASE intensity, which could not be varied during the
experiment, this value can be used to estimate the effect
of the prepulse in various laser systems, each having a
fixed prepulse duration, on the rear side ion acceleration
[9].

In conclusion, we demonstrated a strong influence of
the ASE prepulse on the laser-initiated acceleration of
protons. An optimal target thickness for the proton ac-
celeration was found. This optimal value depends linearly
on the ASE duration and it is determined by a prepulse-
induced formation of an ion-density gradient at the rear
side of the target. Furthermore, we were able to distin-
guish between the two main proton acceleration mecha-
nisms, the fastest protons are accelerated from the rear
side of the target having the optimal thickness. Analy-
tical estimates support this interpretation. The determi-
nation of the optimal target thickness allows a better
comparison between existing experimental results and
can help to optimize the conditions for proton accelera-
tion for a large range of laser systems in the future.
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ABSTRACT We report on measurements of source sizes
and charge state distributions of ions accelerated from thin
foils irradiated by ultrashort (100–300 fs) high-intensity (1−
6×1019 W/cm2) laser pulses. The source sizes of proton and
carbon ion beams originating from hydrocarbon contaminants
on the surfaces of 5 µm thick aluminum foils were investi-
gated using the knife-edge method. For low-energy protons and
low-carbon charge states, the source area was found to exceed
the focal spot area by a factor of 104. For the determination
of charge state distributions, sandwich targets consisting of a
25 µm thick tungsten layer, a 2-nm thin beryllium layer, and
again a tungsten layer whose thickness was varied were used.
These targets were resistively heated to remove the light surface
contaminants. Peaked energy spectra of oxygen and argon ions
corresponding to the equilibrium distribution after propagation
through matter were observed.

PACS 41.75.Jv; 52.38.Kd; 52.25.Jm; 52.50.Jm; 52.70.Nc;
41.75.Ak

1 Introduction

The effective acceleration of ions by ultrashort
(30 fs–1 ps) high-intensity (1018–1021 W/cm2) laser pulses
interacting with thin foils attracted high attention during re-
cent years. The emitted ion and, in particular, proton pulses
reached large particle numbers between 1010 and 1013 with
energies in the MeV- [1, 2] and multi-MeV-range [3–6]. In
recent experiments, the high quality of proton beams emit-
ted from the rear side of laser irradiated thin foils was
proved [7–9]. On this account, they have been considered as
an ion source for the injection into a conventional particle
accelerator [10] and for fast ignition [11]. Moreover, laser-
accelerated protons were successfully used for diagnosing the
electromagnetic fields in overdense laser-produced plasmas
with a picosecond time resolution soon after they were first
observed [12]. The potential of using protons as an indirect

� Fax: +49-89-32905-200, E-mail: joerg.schreiber@mpq.mpg.de

diagnostic for the electron transport through solid targets has
also been demonstrated [13].

The acceleration of ions during the laser-plasma interac-
tion is qualitatively understood. When a laser pulse of rel-
ativistic intensity (Iλ2 > 1018 W/cm2 ×µm2) impinges on
a solid surface or a preformed plasma, electrons are acceler-
ated to relativistic velocities within half an oscillation period
(1–2 fs for typical laser wavelengths). Simultaneously, they
are bent into the propagation direction of the laser pulse be-
cause of the v× B-term in the Lorentz-force referred to as
ponderomotive potential when cycle-averaged. There are ad-
ditional mechanisms for energy absorption in presence of
steep density gradients ([14] and references therein) which
will not be discussed here. However, the ions remain at rest
since they are too massive to follow the fast laser oscillation.
Thus a quasi-stationary electric field is formed near the criti-
cal density surface due to this laser driven charge separation.
This is most likely the source of the front-side accelerated ions
observed in various experiments [15]. The fastest electrons
(∼ MeV mean energy) travel through the foil and escape on
their rear-side leaving a charged target behind. With increas-
ing quasi-static electrical potential, slower electrons are no
longer able to leave the target. They form a µm-scale Debye-
sheath at the target rear side, where the electric field reaches
values in the TV/m-regime. Atoms on the target rear-side
experience field ionization and are subsequently accelerated.
Emerging from this sheath region, the ions gain kinetic en-
ergies of several MeV per nucleon [4, 6, 16]. As the electric
field points normal to the target surface, this process is called
target normal sheath acceleration (TNSA) [17]. For the laser
parameter range and target properties this paper deals with,
it has been shown that TNSA is dominant over front-side-
acceleration [18, 19].

A series of experiments was performed to investigate
the dependence of the observed ion spectra on the
intensity [14, 20] and contrast ratio [2, 21] of the laser pulse as
well as on different target properties [2, 4, 21]. Although some
theories exist reproducing experimental data [22, 23], none
of them includes all physically relevant processes. Since in
most experiments hydrocarbons contaminated the target sur-
faces, protons got accelerated predominantly due to their high
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charge-to-mass ratio and thus were the subject of the most
studies. Nevertheless, carbon and even heavier ions of various
charge states are usually observed simultaneously under these
conditions, albeit with lower number and energy [16, 20, 24].
However, neither the appearance of the observed charge state
distributions nor their spatial origin in terms of source size and
shape can be explained by the models so far. For the latter,
some experimental estimates were already obtained show-
ing that the source size of the rear-side accelerated protons
is much larger than the laser focal spot [4, 7–9]. In all these
experiments protons were studied. Their number usually ex-
ceeds the number of heavier ions by a factor of 100 or more.
Additionally, stacks of radiochromic film were used as an
ion-detector. These stacks are usually shielded with an alu-
minum foil, which stops the heavier ions. For a simultaneous
source-size measurement of protons and, e.g., carbon ions,
the different species and charge states must be separated. In
a single shot experiment, this can be done with a Thomson
parabola spectrometer only.

A rather simple experiment for source size measurements
of protons and carbon ions will be described in Sect. 2 using
the knife-edge method. Sect. 3 will address an experiment
where oxygen and argon ions could be accelerated. This could
be achieved by heating the target to temperatures exceeding
1000 ◦C. Although it is not yet clear if a major fraction of the
contaminant elements is removed or if it diffuses into the tar-
get, this technique is appropriate for heavy ion acceleration as
demonstrated in [16, 24].

2 Source size measurements

The experiments were performed at the ATLAS10
10-Hz-tabletop-laser-system at the MPQ Garching providing
laser pulses with energies of about 0.75 J and 150-fs full width
at half maximum (FWHM) duration at a center wavelength
of 790 nm. Single laser pulses were focused onto 5-µm thick
aluminum foils with an incident angle of 30◦ reaching an in-
tensity of 2 ×1019 W/cm2 in a spot of 3-µm FWHM diameter.
The duration of the amplified spontaneous emission (ASE)
was controlled by a fast Pockels cell and chosen to be 1 ns with
an intensity contrast of better than 2 ×107. This pedestal gen-
erated a pre-plasma with a scale length of 4 µm at the critical
density. Ion spectra were recorded in the target normal direc-
tion (±5 mrad) using a Thomson parabola spectrometer with
a pinhole of 300-µm diameter placed 80 cm behind the tar-
get (Fig. 1). Nuclear track detectors (CR39) were used inside
the Thomson parabola spectrometer to record the ion tracks.
After etching, the ion pits were counted by a commercial auto-
mated scanning system composed of a computer-controlled
optical microscope and a pattern recognition software. This
standard experimental setup was extended by the introduc-
tion of a scraper placed 8 mm behind the target to perform
the knife-edge measurements by moving the scraper across
the beam. A stainless steel razor-blade served for this pur-
pose. Since the solid angle of the ion beam (∼ 25 msr) was
about 5 orders of magnitude larger than the detector solid
angle (area of entrance aperture of the Thomson parabola
spectrometer/(distance to target)2, 10−4 msr), only a small
fraction of the signal passing the scraper was detected (Fig. 1).
This is important for the interpretation of the results.

FIGURE 1 Experimental setup. (a) The laser pulse is focused by an off-
axis parabola onto the foil target with an incident angle of 30◦. The ions are
detected in target normal direction with a Thomson parabola type spectrom-
eter using CR39 plastic track detectors. After irradiation they are etched in
sodium league and scanned by a computer controlled microscope (b). Every
single ion track is counted leading to a density image (c) from which the
spectra are calculated

Figure 2 shows the spectra of protons and carbon ions
with charge states 1+ to 4+ for six selected scraper pos-
itions, namely with the scraper at the center of the ion beam
(a) and successively moved inwards in 40 µm-steps (b–f).
For the next scraper position, following (f) corresponding to
240 µm off center, no ions are detected. The high-energy pro-
tons (Ekin > 0.8 MeV) and highly charged carbon ions (C4+,
Ekin > 2.5 MeV) already vanish after the first scraper step
(40 µm) whereas the low-energy protons (< 0.8 MeV) and the
lower carbon charge states appear to be unaffected. The max-
imum kinetic energy both of protons and C4+-ions decreases
with the scraper sliding into the ion beam. Only protons and
singly-charged carbon ions remain at the last scraper position
(Fig. 2f). The deflection of the ions with the lowest energies
was calculated assuming that the scraper is charged with 1 nC.
This is a reasonable value for the charge carried by the fast
electrons leaving the target. The deflection in the plane of
the Thomson parabola spectrometer pinhole was 40 µm and
100 µm for protons and C4+-ions, respectively. Since the pin-
hole diameter was 300 µm, the influence of the scraper on the
passing ions was neglected.

The appearance of only singly ionized carbon in the outer
regions indicates a radial decrease in the strength of the quasi-
static electric field. As it was discussed in [16], field ionization
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FIGURE 2 Proton and ion spectra for different scraper positions, starting
from the center (a)

is the dominant ionization mechanism. In this case, a sig-
nificant number of ions with a certain charge state can be
produced only in regions where the field once exceeded the
respective threshold. It thus depicts a lower boundary for the
field in this place. The appearance of a maximum ion charge
state suggests that the field was never larger than the threshold
for the ionization to the next charge state thus giving an upper
bound. Although the latter statement implies that no charge
exchange occurs after the field ionization process, these as-
sumptions have been used to derive the radial field profile. By
reading out the ion spectra of Fig. 2 one can estimate the max-

FIGURE 3 Radial profile of the maximum field present during the acceler-
ation process. The error bars represent the threshold fields for field ionization
(FI)

imal field which was present during the acceleration process
(Fig. 3). The field strength in the center of the emission area

was estimated using the formula E = √
2/e×ne0kbTe/ε0 [25]

where ε0 is the vacuum dielectric constant and e is Euler’s
constant. The product of the mean energy (kbTe) and the dens-
ity of the fast electrons (ne0) can be expressed by nekbTe = η ·
I/c, where I is the laser intensity, c is the velocity of light,
and η is the conversion ratio of laser energy into hot electrons
chosen to be 10 percent.

Due to the small solid angle of the Thomson parabola
spectrometer (10−4 msr) as compared to the opening angle of
the emitted ion beam (∼ 25 msr), the knife-edge method can
not be used for the complete characterization of the source.
In recent experiments [8], it was shown that the proton beams
emitted from the rear side of thin foils exhibit a small nor-
malized emittance (< 0.004 πmm ×mrad). Moreover, their
angular divergence depends linearly on the radial distance to
the laser focal spot for the considered proton energies. If these
results apply to the present case, the ion signal should vanish
as soon as the scraper passes the center of the emitting area. In
fact this is what happens for the high-energy protons and C4+-
ions (Fig. 2a–b). Nevertheless this principle does not seem to
apply to the low-energy protons and carbon ions. They might
have a larger emittance or emit more straight then the high-
energy ions, so ions stemming from the outer areas are able to
hit the pinhole of the spectrometer. This could also be caused
by a bumpy sheath, where different spatial zones emit ions
in target-normal direction. To find a lower constraint for the
measured source sizes, it appears most feasible to assume that
the ions stem from a circular source, where every point was
considered to make the same contribution to the spectrom-
eter signal. For this case, the measured signal can be written

as S = N0/2
[
1 −2/π

(
sin−1 xn + xn

√
1 − x2

n

)]
, where N0 is

the number of ions in a certain energy interval observed with-
out using the scraper and xn = 2xs/s is the scraper position xs

divided by the energy-dependent source size s, which is the
fit parameter. Figure 4 shows the calculated source sizes of

FIGURE 4 Proton and ion source sizes versus kinetic energy. The values
represent lower limits for the source diameters
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protons and carbon ions as a function of their kinetic energy
resulting from the above model assumptions. The denoted
values represent a lower boundary for the source diameters
except for the high-energy ions. They are confined by the
smallest detectable diameter of 80 µm, which is twice as high
as the scraper step width.

The heavier ions, e.g. carbon, represent only a mi-
nor fraction of the total number of ions in experiments
using hydrocarbon-contaminated metal targets. This picture
changes dramatically once the targets are heated. In this case,
protons can be completely removed from the target surfaces
resulting in a much larger number and energy of the heavy
ions. The next section addresses measurements of charge
state distributions of ions accelerated from heated sandwich-
targets.

3 Heavy ion measurements – heated targets

In most experiments, hydrocarbon and water con-
taminants cover the target surface. Here we describe ex-
periments employing resistive heating to remove these con-
taminants [16]. The 100-TW laser system at the Labora-
toire pour l’Utilisation des Lasers Intenses (LULI) at École
Polytechnique was used for this campaign. It delivers pulses
with an energy of 20 J and a FWHM duration of 320 fs in
a focal spot of 6-µm FWHM diameter reaching an inten-
sity of 6 ×1019 W/cm2. Except for the fact that the laser
was normally incident and the scraper was removed, the ex-
perimental setup was similar to that depicted in Fig. 1. In-
stead of the aluminum, we used tungsten foils (25 µm) the
rear-sides of which were coated with a thin (∼ 2 nm) beryl-
lium layer followed by a layer of tungsten of variable thick-
nesses (0–40 nm). This target geometry was chosen aiming at
a measurement of the depth profile of the rear-side accelera-
tion field inside the foil by measuring the number of beryllium
ions as a function of the tungsten layer thickness. This topic
will be discussed in more detail elsewhere. To our surprise, we
found oxygen ions from the first up to the sixth charge state in
each shot. Since no protons or carbon ions were observed, the
oxygen ions most probably originate from oxide layers of the
tungsten rather then from water contaminants. Tungsten accu-
mulates an oxide layer similar to aluminum. Furthermore, the
25 µm-tungsten foil was milled under red heat (∼ 800 ◦C) re-
sulting in an oxide-layer buried under the beryllium-tungsten-
sandwich structure. Additionally, argon ions (1+ to 8+) were
present in some of the shots. This is not surprising since they
were used as sputtering projectiles for the target coating pro-
cess. Usually a small fraction of these ions incorporate into
the sputtered layers. The O6+-ions with maximum kinetic en-
ergies of 2 MeV/u were the most energetic species measured.
Typical spectra of oxygen and argon ions taken from one shot
where both species were present are shown in Fig. 5a and b
separately.

The total ion spectra were calculated by adding the spec-
tral distributions of the different charge states for both elem-
ents. The spectra can be described by double exponential
distributions with mean energies of 62 keV/u and 0.4 MeV/u
for oxygen and 17 keV/u and 0.1 MeV/u for argon (Insets
of Fig. 5a,b). The spectra of the individual charge states are
shifted to higher energies with increasing charge. Note the

FIGURE 5 Spectra of oxygen (a) and argon (b) ions from an irradiated
25-µm tungsten/2-nm beryllium sandwich-target. The arrows depict the ki-
netic energy an ion needs to reach the given charge states in case of charge
equilibrium. The total spectra of the oxygen and argon ions are shown in the
insets. The spectra can be fitted by a double exponential function with mean
energies, Tc and Th

pronounced maxima appearing in the spectral distributions,
especially for the higher charge states. The arrows depict the
kinetic energies at which the corresponding ions, in case of
charge equilibrium, take on the given charge states in solids.
The values for O4+ to O6+ were taken from measured equi-
librium charge states for oxygen ions after having passed
through gold foils [26], which is close to tungsten. Since ex-
perimental data are lacking, the respective values for argon
and the lower oxygen equilibrium charge states were calcu-
lated using the empirical formula given in [27]. The observed
maxima are close to the equilibrium charge states. This find-
ing basically means that the detected ions must have left the
foil with their final energy and the corresponding charge state.
Taking into account that these ions started at rest, a consid-
erable acceleration distance inside the foil is required. This
gives two possibilities for their original locations, because the
rear-surface is ruled out as ions originating from there lack
sufficient matter to reach charge state equilibrium by electron
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exchange reactions. The front-side appears possible, however,
oxygen ions need about 100 MeV to traverse 25 µm of tung-
sten. Therefore, we tentatively propose that the observed oxy-
gen and argon ions came from the bulk of the foil, at least from
a thick enough region underneath the rear-surface.

4 Conclusion

Experiments using the knife-edge method were
performed to determine the source extension of protons and
carbon ions accelerated from thin aluminum foils irradiated
with high-intensity laser pulses. The quasi-static electric field
was reduced by two orders of magnitude within a radial dis-
tance of 200 µm from the laser focus. The source extension
of the most energetic protons (> 0.8 MeV) was smaller than
80 µm which is in good agreement with earlier proton source
size measurements [4, 8, 9]. Moreover, it was shown that the
most energetic C4+-ions (> 2.5 MeV) originate from the same
central spot. Source size diameter up to 500 µm were ob-
served for the low energy protons and carbon ions.

In the second experiment oxygen and argon ions emit-
ted from coated tungsten foils were observed. The targets
were resistively heated to remove the hydrocarbon and wa-
ter contaminant layers. The total spectra could be described
by double exponential distributions, whereas the individual
charge state spectra overlapped and were shifted to higher en-
ergies with higher charge states. The observed pronounced
maxima were compared to equilibrium charge state distribu-
tions well known from stripper-foil experiments in accelerator
physics [26, 27]. For the found agreement we have suggested
an explanation in terms of starting positions of the detected
ions underneath the rear-surface.
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iche Gespräche. Den Kollegen Klaus Eidmann, Ernst Fill und George Tsakiris

sowie Malte Kaluza, Matthias Dreher, Jürgen Stein, wie auch unseren technischen

Mitarbeitern Harald Haas, Manfred Fischer und Alois Böswald danke ich für den
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Florian Grüner möchte ich für die Begeisterung für die von mir aufgeworfenen

physikalischen Probleme bedanken und schließlich für die Bekanntmachung mit

Friedhelm Bell. Florian, Walter Assmann und Andi Bergmaier verdanke ich viele
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daß sie mir in all den Jahren entgegengebracht hat, und für unser Krümelchen,
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France

von 14/02/2005 bis 09/03/2005 MBI, Berlin

von 23/05/2005 bis 13/06/2005 Los Alamos National Laboratories, Los

Alamos, USA

von 14/06/2005 bis 24/06/2005 CLF at RAL, Chilton, Didcot, England



von 06/02/2006 bis 03/03/2006 GSI Darmstadt

Sprachen

Englisch fließend in Wort und Schrift

Russisch 8 Jahre Schulbildung


