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Abstract

The dynamics of single semiflexible polymers in solution under the influence of an external
field are investigated with Brownian Dynamics simulations. Hydrodynamic interactions are
included on the Rotne-Prager level and proof to be essential. Model equations are used to
derive scaling laws. The work consists of five projects that are distinct but closely related to
each other:

In the first project, a neutral semiflexible particle is moved by centrifugal or gravitational
forces relative to quiescent fluid. A coupling between hydrodynamic interactions and flexi-
bility leads - depending on the elastic parameters - to a rod orientation perpendicular to the
external field. This coupling is also investigated for a filament that is rotated at one end by
some external torque (second project). Above a critical torque the filament folds itself around
the rotational axis, with important consequences for the propulsion with a nano-machine. The
third project deals with flexible polymers in an ultracentrifuge where a novel compactifica-
tion and unfolding scenario is predicted: The established theories on sedimentation use the
preaveraging approximation of the hydrodynamic interactions and cannot explain the poly-
mer configurations at high fields consisting of a dense head and a long tail, which make a new
efficient separation technique possible. In the forth project, the diffusion of charged semiflexi-
ble polymers under different salt conditions is treated. Ions are included explicitly and not on
a mean-field level. The theory of electrolyte friction for spherical objects is qualitatively ex-
tended to semiflexible polymers. A heuristic formula for the diffusion constant over the whole
range of persistence lengths is proposed. In the final project, the hydrodynamic orientation
mechanism found in the first project is suggested as a possible source of anomalous electric
birefringence which is observed for rod-like polymers. It is compared with the competing
parallel induced dipole orientation. The dependence of the polarizability on rod length, salt
and polymer concentration is clarified.
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Zusammenfassung

Die Dynamik von semiflexiblen Polymeren in Lösung in einem äußeren Feld wird mittels Simu-
lationen der Brownschen Dynamik untersucht. Hydrodynamische Wechselwirkungen werden
auf dem Rotne-Prager Niveau berücksichtigt und stellen sich als wesentlich heraus. Modell-
gleichungen werden aufgestellt um Skalengesetze herzuleiten. Die Arbeit besteht aus fünf
getrennten aber benachbarten Teilprojekten:

Im ersten Projekt wird ein semiflexibles Teilchen mittels Zentrifugal- oder Gravitations-
kräfte durch eine stille Flüssigkeit bewegt. Die Kopplung zwischen hydrodynamischen Wech-
selwirkungen und der Flexibilität des Teilchens bewirkt eine Senkrecht-Stellen des Teilchens
zum äußeren Feld, je nach den elastischen Parametern. Diese Art der Kopplung wird ferner
für ein Filament untersucht, das an einem Ende durch ein äußeres Drehmoment rotiert wird
(zweites Projekt). Oberhalb eines kritischen Drehmoments wird das Filament um die Rota-
tionsachse gebogen, was für den Antrieb einer möglichen Nano-Maschine von Bedeutung ist.
Das dritte Projekt handelt von flexiblen Polymeren in einer Ultrazentrifuge; ein neuartiges
Kompaktifizierungs- und Entfaltungsszenario wird vorhergesagt: Bisherige theoretische Unter-
suchungen verwenden eine Preaveraging-Näherung zur Beschreibung der hydrodynamischen
Wechselwirkungen und können die Polymer-Konfigurationen bei starken Feldern bestehend
aus einem dichten Kopf und einem langen Schwanz nicht erklären, welche eine neue effizien-
te Trennmethode ermöglichen. Im vierten Projekt wird die Diffusion geladener semiflexibler
Polymere unter verschiedenen Salzlösungsbedingungen untersucht. Ionen werden explizit und
nicht auf dem Mean-Field Niveau berücksichtigt. Die Theorie der Elektrolyten-Reibung für
sphärische Objekte wird erweitert für semiflexible Polymere. Eine heuristische Gleichung für
die Diffusionskonstante im gesamten Bereich der Persistenzlänge wird vorgeschlagen. Im letz-
ten Projekt wird der im ersten Projekt gefundene hydrodynamische Orientierungsmechanis-
mus als mögliche Ursache für anomale Doppelbrechung stabförmiger Polymere interpretiert
und der konkurrierenden parallelen Orientierung mittels induzierter Dipole gegenübergestellt.
Die Abhängigkeit der Polarisierbarkeit von der Stablänge und der Salz- und Polymerkonzen-
tration wird geklärt.
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Chapter 1

Introduction

An important branch of biophysics deals with the characterization and manipulation of macro-
molecules. Classical problems are the separation of deoxyribonucleic acid (DNA) strands ac-
cording to their molecular weight by sedimentation or electrophoresis, the function of actin
filaments in the cell [7, 59, 152] and the physical properties of the rod-like viruses [31]. In
many experimental situations the macromolecules are subject to an external field. In the case
of capillary electrophoresis it is a static electric field that is homogeneous on the scale of the
sample dimension. Static electric fields are used also in an electric birefringence experiment
where the mean orientation of the particles is recorded by optical means. A third example is
ultracentrifugation in which the sedimentation velocity gives valuable information about the
physical properties of the solute particle, and which is also used for size separation.

Usually these biopolymers are dissolved in water so that hydrodynamic effects have to be
taken into account. The sizes of these molecules, which are in the range from nanometers to
several micrometers (see fig. 1.1), make low-Reynolds number hydrodynamics applicable and
the inclusion of the fluctuating Brownian forces in the theoretical description indispensable.
The presence of an external field gives rise to non-equilibrium phenomena.

Although many of the phenomena I discuss in my thesis are known for decades, their
theoretical description still presents a challenge. The reason for this is twofold: On the one
hand, the use of statistical mechanics is complicated by the fact the systems are often far
from equilibrium. On the other hand, analytical solutions of the hydrodynamic equations in
the presence of flexible objects are in general not possible, since the particle surface which
gives a boundary condition to the fluid velocity changes with time. Due to this complica-
tions, available theories often rely on (more or less justified) approximations and usually are
restricted to situations that are close to certain limiting cases which are known analytically
(rigid bodies, thermodynamic equilibrium). Numerical studies, however, were until recently
restricted to very simple systems.

This is the point where my thesis sets in. Simulations avoid many of the approximations
made so far, and at the same time, they provide a clear physical picture that is very useful to
devise models in order to derive scaling laws. They shed light on some unresolved issues, and
some unexpected new phenomena are predicted. Most of these problems are as relevant as
thirty years ago, some have received even more attention in the last ten years: Modern optical
detection systems have revived the interest in analytical ultracentrifugation as a contemporary
research tool [92]; and many experiments with polymers can now work with - in principle -
single molecule precision [27, 86]. The dynamics of single polymers can often be directly
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Figure 1.1: Examples of biologically important semiflexible rods: a) Electron micrograph of actin
filaments (f-actin) obtained from J. Kwak’s webpage (elchem.kaist.ac.kr/jhkwak). b) Tobacco mo-
saic virus (TMV) from the virus database of the International Committee on Taxonomy of Viruses
(www.ncbi.nlm.nih.gov/ICTVdb). c) fd-virus, picture taken from [116].

tested in experiments [99], without a detour to bulk properties.

Outline of the Thesis

This work investigates the non-equilibrium dynamics of single polymers in solutions in external
fields. The long-ranged hydrodynamic interactions play an important role. No restriction on
the flexibility of the polymers is made but special emphasis is paid to the limiting cases of a
weakly bending rod and a very flexible chain. The thesis consists of five projects: In the first
three projects neutral polymers are investigated, or rather situations where the charge of the
polymers plays a minor role. New phenomena special to rod-like, semiflexible and flexible
polymers are the subject of chapter 3, 4, and 5, respectively. The last two projects deal with
charged polymers in a salt solution, the diffusion constant of semiflexible polymers, and the
polarizability and birefringence of rod-like polymers in electric fields.

The thesis starts with an overview of the techniques used for a dynamical description of
soft materials in solution. The theoretical foundations of the simulation methods are sketched,
and the choice of Brownian Dynamics simulations as the central tool in this work is motivated.

In chapter 3 the Brownian Dynamics method is used to investigate the hydrodynamic
properties of a single microscopic semiflexible rod in a homogeneous Stokes flow. Such a
situation is especially relevant for ultracentrifugation experiments when a dilute solution of
rod-like particles is subject to strong centrifugal fields, but under certain circumstances also for
electrophoresis. As a result of a coupling between flexibility and hydrodynamic interactions
the rods are oriented with their long axis perpendicular to the external field. Analytical
calculations for a simple model support this finding, scaling laws are established that predict
a strong dependence on the ratio of the rod length to the rod diameter.

The interplay between flexibility and hydrodynamic interactions is further investigated
for a semiflexible filament rotated at one end as relevant for the propulsion of several types
of bacteria and nano-machines (chapter 4). Most of the work in this field of mathematical
biology concentrated on the fluid dynamics of rigid objects. Here it is shown that shape
transformations of the rotating flagellum can strongly affect the propulsion efficiency and can
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even lead to the design of a rectifying device that yields forward thrust irrespective of the
direction of rotation.

In chapter 5 elastic polymers in strong centrifugal fields are considered. Hydrodynamic
shielding leads to a compactification at small fields which for short chains gives rise to compact
globules. Longer chains unfold at higher fields; their limiting conformation at very high
fields has a tadpole shape consisting of a dense head plus a tail parallel to the direction
of motion. These conformational changes strongly affect the sedimentation coefficient in a
way much different from the established model proposed by B. Zimm. Our results explain
the sedimentation behavior of closed polymer rings, for which the Zimm model gives no
deformation and thus no dependence of the sedimentation coefficient on the driving force.

Chapter 6 deals with the diffusion constant of semiflexible polyelectrolytes in solutions
containing different amounts of added salt, which was recently investigated with Fluorescence
Correlation Spectroscopy [8, 154]. In a first step a heuristic formula for the diffusion constant
as a function of the persistence length is proposed that interpolates between the swollen
(good solvent) flexible limit and the rod limit. The presence of salt does not only lead to
conformational changes that affect the diffusion constant but also to an increased friction due
to the small ions surrounding the polyelectrolyte. Existing theories on electrolyte friction
of charged spheres are reviewed and - at least qualitatively - extended to the diffusion of
semiflexible polymers.

The polarizability of the ion cloud of a rod-like particle and its dependence on ionic
strength and rod length is investigated in chapter 7. The question whether the complete
cloud or rather the close and strongly bound counterions dominate the polarization is dis-
cussed. A strong and unexpected dependence of the polarizability on polymer concentration
is discovered. The induced dipoles lead to an orientation of the particles in the electric field
that can be measured in birefringence and dichroism experiments. Possible sources of anoma-
lous birefringence are presented with a focus on the perpendicular orientation mechanism of
chapter 3.

The work closes by relating the five projects with each other. A short outlook is given.
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Chapter 2

Polymers in Solution: Analytical

and Simulation Tools

In this chapter, I present and discuss methods and approximations that are used throughout
the thesis. The systems under investigation are dilute and semidilute solutions of polymers
that can be flexible or semiflexible. Using a very large persistence length also microscopic
rodlike objects can be described. Their usually mesoscopic size makes a classical mechanics
description possible.

2.1 Hydrodynamic simulation methods at low Reynolds num-

bers

To reduce the number of degrees of freedom in a dynamical system one would ideally use
projection operators to separate out the dynamics of the relevant variables (e.g. the positions
of the molecules of interest); the irrelevant variables (e.g. positions and momenta of the solvent
molecules) should then only appear in the memory function and the noise term of a generalized
Langevin equation [118, 194]. Such a method is exact but in most cases only formally possible,
i.e. does not lead to explicit results. One needs further assumptions to extract physical
properties. One possible set of assumptions is that the masses and momentum relaxation
times of the Brownian particles are much larger than those of the solvent molecules; and that
their velocities are much smaller than the buffeting solvent particles. A further requirement
is that continuous hydrodynamics can be used at this microscopic scale to include solvent-
mediated interactions between Brownian particles [30]. Since all these objects are at the
micrometer and nanometer scale a Reynolds number

Re =
ρL v

η
(2.1)

much less than unity can safely be presumed. It will be checked later with explicit examples.
ρ and η are the mass density and viscosity of the solvent, and L and v the length and velocity
scale. The equations for the incompressible stationary low-Reynolds number flow (Stokes
flow) read [63]

η∇2u(r) −∇P (r) = −f(r) (2.2)

∇ · u = 0 (2.3)
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where u is the velocity field of the fluid, P the pressure and f the density of external forces.
Its Green’s function is called the Oseen tensor [137]

H(|ri − rj|) =
1

8π η|ri − rj|
(I + r̂ij ⊗ r̂ij) . (2.4)

r̂ij is short for rij/rij , rij = ri−rj and rij = |ri−rj |. I is the 3×3 unit matrix. The velocity
field at a point ri created by distant particles j is then given by

u(ri) =
∑

i6=j

H(rij) · Fj (2.5)

where Fj is the direct force on particle j. It can be used to calculate the indirect, solvent-
mediated force on particle i at position ri if one assumes that the flow field has the velocity
of the Brownian particle at its surface (“stick boundary condition”).

Ermak and McCammon [38] used this as a starting point to derive a position-Langevin
equation that is suitable for simulations. Integration over one time step ∆t leads to

ri(t+ ∆t) = ri(t) +
N
∑

j=1

µij(t) ·Fj(t)∆t+ kBT
N
∑

j=1

∇rj
· µij(t)∆t+ ∆ηi(t) . (2.6)

∇rj
is the gradient with respect to the position of the jth particle. The mobility matrix µij(t)

is equal to Oseen tensor (evaluated at time t) for i 6= j and equal to the Stokes mobility of
a sphere of radius ai for i = j, µii = I/(6πη ai). For this special choice of µij the derivative
∇rj

· µij vanishes. ∆ηi(t) is a Gaussian random vector the components of which obey

〈∆ηα
i (t)〉 = 0 (2.7)

〈∆ηα
i (t) · ∆ηβ

j (t′)〉 = 2 kBT ∆t δtt′ µ
αβ
ij (t) (2.8)

with Latin letters indicating different particles and Greek letters space directions. The corre-
lation of the noise at discrete times t and t′ insures the validity of the fluctuation-dissipation
theorem. It is important that ∆t is small enough that the forces and positions do not change
appreciably, but that it is at the same time large compared to the momentum relaxation time
to insure local thermodynamic equilibrium: ∆t≫ mi µii , where mi is the mass of particle i.
In the continuum limit, ∆t→ 0, eq. (2.6) can be written as a stochastic differential equation
[134]

dri =
N
∑

j=1

µij(t) · Fj(t) dt + kBT
N
∑

j=1

∇rj
· µij(t) dt + dηi(t) (2.9)

where the Itô convention is used.
If always a finite time step ∆t is assumed eq. (2.6) can be written as

ṙi(t) =
N
∑

j=1

µij · Fj + kBT
N
∑

j=1

∇rj
· µij + ξi(t) . (2.10)

ξi(t) is a stochastic velocity process the integral of which over a time step ∆t gives the random
increment ∆ηi [1]. Its expectation values are

〈ξα
i (t)〉 = 0 (2.11)

〈ξα
i (t) · ξβ

j (t′)〉 = 2 kBT δ(t− t′)µαβ
ij (t) (2.12)
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where the time is now continuous.
Are the above made requirements met? For colloidal particle of the order 100 nm or larger

this seems to be true. But in the following chapters, Langevin dynamics is also to be applied
to single ions which are certainly smaller than water molecules. One way of circumventing this
problem is to say that ions in water always have a hydration shell so that one should rather
treat the whole complex, ion plus at least one layer of water molecules, as the appropriate
Brownian particle (cf. the discussion and references in[149]). Here I will take the point of
view that Brownian dynamics constitutes a model for calculating non-equilibrium properties
of a system defined by mobilities and a Hamiltonian.

2.1.1 Stokes flow dynamics

Despite the linearity of the Stokes flow equations (2.2, 2.3) only highly symmetric problems
can be solved in closed form. A general introduction can be found in [63, 75]. An expression
for the hydrodynamic interaction between Brownian particles, i.e. for the mobility tensor
µij, is sought that can be used in the Langevin equation. The Oseen description is only
valid for widely separated point-like bodies and includes only pairwise interactions. A way of
improving this is the method of reflections [63] for a collection of spherical particles, which gives
an expansion in inverse powers of the particle separations divided by their radii, rij/ai. In eq.
(2.6) one restrains oneself to pairwise interactions, the neglect of multi-particle interactions
being motivated by the supposed diluteness of the system. An expansion to very high powers
of rij/ai for two spheres is given in [40, 156]. For equal sphere radii a and stick boundary
conditions one finds for the lowest correction to the Oseen tensor

µij =
1

8π η rij

[(

I + r̂ij ⊗ r̂ij

)

+
2a2

rij
2

( I

3
− r̂ij ⊗ r̂ij

)]

, i 6= j (2.13)

while the self-mobility µii is unaffected. For two spheres with different radii a1 and a2, a
2

has to be replaced by (a2
1 + a2

2)/2. Mazur and van Saarloos used a different scheme [112] and
obtained additional multi-body terms, but their result agrees with eq. (2.13) at the O(r−3

ij )
level. It should be remarked that µij · F with µij given by eq. (2.13) is just the second order
in a multipole expansion for the velocity perturbation of the fluid at distance rij far away
from the sphere if a unit force F is homogeneously distributed over the surface of the sphere.
The calculation can be found e.g. in [106, 188].

Rotne and Prager used a variational method to derive eq. (2.13) for non-overlapping
equal-sized spheres i 6= j and

µij =
1

6π η a

[(

1 − 9

32

rij
a

)

I +
3

32

rij
a

r̂ij ⊗ r̂ij

]

, i 6= j (2.14)

for overlapping ones. The self-mobility is again given by the Stokes expression

µii = I/(6π η a) ≡ µ0 I (2.15)

It will be henceforth referred to as Rotne-Prager tensor. By construction it is positive definite.
A further useful property is that ∇rj

·µij = 0. Since it is the hydrodynamic interaction tensor
used in this thesis I will spend a few words on how it was derived: The energy dissipation
rate ǫ̇ of a collection of beads reads

ǫ̇ =
1

2η

∫

V

∑

αβ

σ′
αβ σ

′
αβ d

3r =
∑

i

∑

αβ

F α

i µ
αβ

ij F
β

j , α, β = 1, 2, 3 , (2.16)
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where σ′
αβ is the traceless, symmetric viscous stress tensor and Fi the force on sphere i. V

is the space outside all spheres. Any trial viscous stress σ′(1) fulfilling the correct boundary
conditions and the corresponding trial mobility tensor µ(1) give an upper limit to the true
energy dissipation via eq. (2.16). µ(1) itself is an upper limit to the true µ and hence positive
definite. If one uses for σ′(1) the superposition of single sphere solutions σ′(1)

i , σ′(1)(r) =
∑

i σ
′(1)

i (r), and extends the region of integration over the whole space (letting σ′(1)

i be zero
inside sphere i) one finds precisely eq. (2.13) for non-overlapping beads, which is somehow
expected. For overlapping beads one obtains eq. (2.14) with the same argument.

So far all beads were just translating frictional points with first order corrections for their
radii. In principle one should also include rotational degrees of freedom and use the grand
mobility matrix M defined by

(

V

Ω

)

=

[

Mtt Mtr

Mrt Mrr

]

(F
T

)

(2.17)

where the vector V contains the velocities of all beads, Ω the angular velocities, F the forces
and T the angular momenta. Mtt is the translational mobility tensor considered so far. In
polymer physics where the beads correspond to the monomers such an extension is necessary
if one wants to describe torsional effects. Including rotational-translational coupling modifies
also Mtt if the spheres are not freely rotating, for correction terms see e.g. [58]. Rigid body
Stokes flow dynamics will be described at the beginning of chapter 3.

Despite the smallness of the Reynolds number Re there are situations where the Stokes
flow approximation breaks down. The dissipated energy from an object dragged through the
fluid with some external force diverges due to the long-ranged character of the hydrodynamic
interaction. The solution to this apparent problem is that for distances r ∼ η/(ρ u) the neglect
of the non-linear term in the Navier-Stokes equation, (u · ∇)u, is not possible anymore so
there is a natural cutoff [90]. u is the fluid velocity relative to the center of mass of the object.
The case is related to the Stokes paradox: Equations (2.2) and (2.3) for the flow field u(r)
around an infinite cylinder have no solution that fulfill both the boundary condition at the
surface of the cylinder and at infinity. This problem is restricted to sedimentation. For a
charge-neutral system in an electric field the hydrodynamic interactions decay much faster
at large distances; positive and negative charges give opposite contributions to the flow field
such that just force dipole effects remain.

A last comment concerns the approximation of distant spheres. For nearly touching
spheres lubrication effects will give qualitatively new features and can be treated using different
methods [34]. Although monomers in a polymer chain are not far away from each other, it
is the long ranged hydrodynamic interactions that determine many of the dynamical aspects
[32] so that lubrication is neglected in this work.

2.1.2 Comparison of Brownian Dynamics simulations with other methods

Eq. (2.6) for the time evolution of a collection of particles in a fluid is called the Brownian
Dynamics methods. It will be the method of choice in this thesis. It is especially useful for
dilute solutions. Brownian Dynamics simulations offer the possibility to observe the dynamical
evolution of the system, e.g. the collapse and unfolding of a polyelectrolyte [122, 185], and does
not just calculate averages. In that point it has the same advantage as Molecular Dynamics.
The solvent molecules only enter the mobility matrix and the noise term but at the price that
every time step the correlated random numbers have to be calculated according to eq. (2.8) by
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Cholesky decomposition or a similar method (see appendix A). The number of floating point
operations per Cholesky decomposition grows as the third power of the number of particles
N which makes the method impractical if N is greater than several hundreds.

Another difficulty arises if the system displays several widely separated time scales. For
example in the polarizability studies of chapter 7 the motion of the ions is much faster than the
rotational diffusion time of the rod-like polymer. The time step is determined by the smallest
time scale but the total simulation time by the longest time scale. This difficulty can be
circumvented if instead of following physical trajectories of the system a more efficient phase
space sampling is done. It was shown [179, 190] that the Metropolis Monte Carlo method
can be used to describe non-equilibrium stationary systems. But unless cluster algorithms
are applied the problem of separated time scales remains [100]. Another approach to this
problem are multiscale simulation techniques [84].

There are other ways to include the effect of the solvent molecules in a mesoscopic simula-
tion than using a Langevin equation. Dissipative Particle Dynamics (see [60] for a derivation
and [171] for polymer dynamics) describes blocks of molecules that move together in a co-
herent fashion subject to soft potentials and governed by predefined collision rules. The soft
potential allows the use of a larger time step. One can therefore explore much longer time
scales. Hydrodynamic effects are accounted for by extended soft blocks of solvent particles
interacting with the polymer.

Another off-lattice alternative is the Multi-Particle-Collision Dynamics method (MPCD)
[101, 186]. In a molecular simulation with explicit solvent molecules most of the time is spent
to evaluate the solvent dynamics in great detail which is not necessary if one is just interested
in their hydrodynamic influence on colloidal particles. In MPCD a great number of solvent
particle, typically of the order of 105, is included but their dynamics is very simplified: In
the first half of every time step the new position of particle i is calculated by ri(t + ∆t) =
ri(t) + vi(t)∆t. vi(t) is the velocity of the ith solvent particle. In the second half-step the
particles are grouped into small cells which are then rotated around their centers of mass by
a random angle that differs from cell to cell. No direct interaction is imposed on the solvent
particles which makes their evaluation fast. Coupling to e.g. polymers is done by including
monomers in the rotation of the cells. Momentum and energy are conserved; the method is
in principle not restricted to small Reynolds numbers.

In Lattice Boltzmann methods (for a review see [23]) time, positions and velocities and
dicretized, and Boltzmann equation for the fluid is solved. It can also be used for charged
colloids [72] where in addition to the solvent particles the small ions are simulated on a lattice.

2.2 Electrostatic effects

Most polymers relevant for biological applications are charged and dissociate ions in water.
It would therefore be a serious neglect for a realistic treatment not to include the effects
of the ion cloud, especially if electric fields are applied. On a mean field level one solves
the Poisson-Boltzmann equation for the mean electrostatic potential Φ around a fixed point
charge Ze [149] which reads in SI units

∇2Φ(r) = −Ze
ǫǫ0

δ(r) −
∑

α

zαe cα
ǫǫ0

exp[ZeΦ(r)] . (2.18)

The index α numbers the different ionic species with valencies zα and bulk densities cα. e is the
elementary charge. The Poisson-Boltzmann equation is the result of replacing the fluctuating
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electrostatic potential by its mean value. It neglects correlations among the fluctuations and
hence many important physical effects [150] which must be included in an extended procedure
(see e.g. [121]). In the limit of dilute solutions the exponential can be expanded in a Taylor
series leading to

Φ(r) =
Ze

4πǫǫ0 r
exp[−κ r] (2.19)

where the Debye-Hückel screening length is given by

κ−1 =

(

4π ℓB
∑

α

z2
α cα

)−1/2

. (2.20)

Here a new length scale is introduced, the Bjerrum length [15]

ℓB =
e2

4πǫǫ0 kBT
, (2.21)

which is about 0.7 nm in water at room temperature.

Electrostatic effects could now be included by assuming a background salt concentration
and adding screened Coulombic forces using eq. (2.19) between the Brownian particles in the
Langevin equation (2.10). This would only give a minimal extra computational cost. But is
has several disadvantages: In order to describe the deformation of the counterion cloud with
respect to its equilibrium distribution one could add “Brownian” counterions to the system
and let all charged particles interact with screened Coulombic forces. This would mean that
counterions and salt ions are treated on a very different footing despite the fact that they have
similar or even equal sizes and charges. Further, the non-equilibrium distribution of the salt
ions (in the presence of external fields and conduction) is not known; it might be dangerous to
use its equilibrium value instead. And after all the above mentioned approximations (mean
field, dilute solutions) need not necessarily be justified for the investigated systems.

For these reasons I will include counterions and salt ions explicitly as Brownian particles.
The charged polymer or polyelectrolyte (PE) will be simulated as a string of charged spherical
monomers. The Langevin equation of motion then reads in case of a Rotne-Prager or Oseen
mobility tensor

ṙi(t) =
2N+2Ns
∑

j=1

µij ·
[

−∇rj
U({rk}) + zjeE

]

+ ξi(t) (2.22)

where E is the external (static homogeneous) electric field and

U({rk}) = Upol + kBT
∑

i6=j

zi zj ℓB
rij

+ ǫLJ

∑

i6=j

Θ(2a−rij)

[

(2a)12

r12ij

− 2 (2a)6

r6ij
+ 1

]

. (2.23)

N is the number of monomers and hence the number of counterions, Ns the number of pairs
of salt ions. The first term is the stretching and bending potential of the polymer which will
be specified later. The second term gives the Coulomb energy between two charged Brownian
particles, monomers or small ions, with valencies zi and zj , and the last term, the truncated
Lennard-Jones potential of strength ǫLJ = kBT , prevents strong overlap of oppositely charged
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particles and is responsible for the swollen (excluded volume) behavior of the polymer chain.
Θ is the Heavyside step function. For simplicity, all Brownian particles have the same radius
a and magnitude of valency z,

zi = si z , si = ±1 . (2.24)

Rescaling all lengths by the monomer radius a and energies by kBT eq. (2.23) can be written
as

Ũ({r̃k}) = Ũpol +
∑

i6=j

{

si sj ζ

r̃ij

+ Θ(2 − r̃ij)

[

212

r̃12ij

− 27

r̃6ij
+ 1

]}

(2.25)

with the coupling parameter

ζ =
z2 ℓB
a

. (2.26)

Since the linear charge density of the polyelectrolyte is z/(2a) it is related to the Manning
parameter ξM [108] by

ζ = 2 ξM . (2.27)

From the Debye-Hückel theory I borrow the expression of the screening length including
salt ions and counterions but not the polyelectrolyte in the screening

κ̃−1 =
(

4π ζ (N + 2Ns)/B̃
3
)−1/2

. (2.28)

B is the size of the cubic simulation box. For finite polymer and hence finite counterion
density it is natural to include not only the background salt but also the counterions in κ. The
repulsion between the polyelectrolytes on the other hand renders their screening unimportant
up to length scales of their mutual overlap. A thorough discussion is given in [119]. If there
are Np > 1 polyelectrolytes per simulation cell all NpN counterions are included.
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Chapter 3

Sedimentation of Semiflexible Rods

Rod-like objects are ubiquitous in colloidal science and biophysics. Their contour lengths span
the range from several nanometers, as e.g. short DNA strands (persistence length of about 50
nm under physiological conditions), up to several hundreds of micrometers like microtubules
(persistence length of the order of millimeters [138]). Beside biopolymers, synthetic polymers,
carbon nanotubes and stiff viruses are important examples. Usually these rods are investi-
gated in solution, which is mainly water. The size of these rods insures that low-Reynolds
number physics is a good approximation. Often these rod-like particles are moved relative to
the fluid by some external field, which can be the the electric field or the gravitational field
in a sedimentation or ultracentrifugation experiment.

Optical methods like birefringence and dichroism [48] measurements are widely used to
determine the average orientation of these particles. Electric birefringence has been applied to
Tobacco Mosaic virus (TMV) [130], fd-virus [81, 82], different synthetic polyelectrolytes [89,
136] and actin filaments [78, 79]. Restricting oneself to electrostatic phenomena, an orientation
with the direction of the largest polarizability parallel to the electric field is favored. An
important contribution to the polarizability comes from the easily deformable counterion
cloud accompanying each charged particles which is maximal along the long axis of the particle
[122, 190]. The resulting parallel orientation is called normal birefringence.

Anomalous birefringence, i.e. perpendicular orientation, is sometimes observed for semidi-
lute particle concentrations [69, 82, 136], low salt or rods with high aspect ratio. It is at
present only understood for certain special situations [22]. This chapter aims at presenting
an additional and so far overseen mechanism for anomalous birefringence of semiflexible rods
that is based on the coupling of elastic and hydrodynamic degrees of freedom.

3.1 Modeling hydrodynamics of flexible objects

3.1.1 Rigid body motion

A rigid object moving relative to a homogeneous low Reynolds number flow experiences a
torque only if it has a certain degree of asymmetry either in its shape (and hence the ap-
plication of hydrodynamic stress) or with respect to the application of external forces: e.g.
homogeneous bodies of revolution with fore-aft symmetry (like ellipsoids or cylinders) do not
turn at all under the influence of the gravitational field. The argument rests on the linearity
of the flow equation and thus need not be valid for intermediate or high Reynolds numbers.
More formally, there is a linear relation between the total force F and torque TP that act on
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a rigid body on the one side, and its linear velocity and angular velocity, vP and ω, on the
other side [63]:

(

F

TP

)

=

[

ζtt ζtr
P

ζtr †
P ζrr

P

](

vP

ω

)

. (3.1)

P is a point at the surface of that body, vP the velocity of P , and TP is determined relative
to P (the total force and angular velocity obviously do not depend on P ). ζtt

P and ζtr
P etc.

are constant 3 × 3 generalized resistance matrices that only depend on the origin P and the
particle shape. There exists a unique point P , the center of reaction, at which ζtr

P is symmetric.
For bodies with three mutual perpendicular symmetry planes (orthotropic bodies) ζtr

P even
vanishes at this point. It is then called the center of hydrodynamic stress.

In Brownian Dynamics simulations, one is more interested in the inverse relation
(

vP

ω

)

=

[

µtt
P µtr

P

µtr †
P µrr

](

F

TP

)

. (3.2)

Again there exists a unique point, the center of diffusion, at which µtr
P is symmetric. It is

in general different from the center of reaction [180]. In a bead model, one can - given the
position of all particles and assuming them being fixed with respect to each other - calculate
the instantaneous general mobility matrix with a procedure presented in the appendix [50, 54].

If the coupling term µtr †
P is non-zero then one obtains rotational motion of the body even for

vanishing TP .
The orientational distribution function of rigid cylinders and ellipsoids is uniform as shown

above; no orientational angle with respect to the external field is favored. For elastic rods,
however, hydrodynamic effects may reduce the symmetry of the particle via bending and
other deformation modes [36]; the translational-rotational coupling becomes finite. It will
be shown that rods with a small elasticity tend to orient perpendicularly to the direction of
motion. Since all materials have finite elastic moduli, this mechanism is universal, and its
magnitude will be the subject of the following section.

3.1.2 Bead model

To demonstrate this effect, I will look at a specific model, a long neutral chain composed of
spherical subunits, interacting via elastic potentials and hydrodynamically with each other.
Scaling relation for the mean bending, orientation and relaxation times are derived as a
function of the elastic parameter, chain length and driving field. Hydrodynamic simulations
confirm theses predictions and at the same time provide the prefactors, which are often very
different from unity. Analytical calculations for a three-bead chain will further support these
findings.

In the simulations we model an elastic rod as a chain of N = M + 1 connected monomers
which are numbered from i = 0 to i = M . M is therefore the number of bonds. The elastic
potential U is the discrete version of the extensible worm-like chain model [97]

U({rk}) =
M−1
∑

i=0

[

γ

4a
[ri i+1 − 2a]2 +

ε

2a
[1 − cos ϑi]

]

(3.3)

where ϑi is the angle between neighboring bonds ri−1 i and ri i+1 . Here ε and γ are the bending
and stretching moduli, respectively, and a denotes the sphere radius. In the continuum limit
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this corresponds to

U =
1

2

∫ L

0
ds
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(3.4)

which is similar to the model of Soda [166] and allows fluctuations around the unstretched
chain. t̂(s) is the unit tangent vector at position s. s does not necessarily correspond to
the arc length along the chain if stretching is allowed, but rather to a continuous monomer
number with the dimension of length. In the limit γ → ∞ eq. (3.3) gives the discretized
Kratky-Porod model [83].

The persistence length follows as

ℓP = ε/kBT . (3.5)

For an isotropic elastic cylinder with radius a, bending and stretching moduli are determined
by Young’s modulus EY as [91] ε = EY πa

4/4 and γ = EY πa
2 which gives the relation

ε/γ = a2/4 . (3.6)

The time evolution is governed by a Langevin equation of the type eq. (2.10)

ṙi(t) =
M
∑

j=0

µij ·
[

−∇rj
U + qE

]

+ ξi(t) (3.7)

where the external field E is constant (for convenience pointing in z-direction) and acts
similarly on all spheres. It can be gravitational or electric; in the first case q is the mass of
one sphere, in the latter its charge. µij is given by the Rotne-Prager expressions eqs. (2.13),
(2.14) and (2.15). The vectorial random displacements ξi(t) furnish the coupling to a heat
bath and are given by eqs. (2.11) and (2.12). Eq. (3.7) is iterated with a time step ∆t.

For a wider applicability all quantities are rescaled (denoted with a tilde). The typical
length scale is the monomer radius a. One could also use the chain contour length L; but
since I am interested in the explicit length dependence L/a the former rescaling seems to be
more convenient. Different from later chapters of this thesis, the energy scale will not be kBT
but rather qE a. The reason for this is that always an external field is present, but for the
stability analysis the stochastic displacements are neglected. A natural time scale is the time
needed for an isolated sphere of radius a to drift the distance a under the influence of E,
viz. µ0 qE/a. One is then left with the following rescaled parameters (besides the monomer
number N)

γ̃ =
γ

qE
(3.8)

ε̃ =
ε

qE a2
(3.9)

Ẽ ≡ β̃ =
qE a

kBT
(3.10)

∆̃ = ∆t
qEµ0

a
. (3.11)

In order to avoid inaccuracies and spurious oscillations for very stiff chains around their
proper positions (see appendix A for a discussion) I chose the rescaled time step ∆̃ in the
range 10−3−10−5. Output values were calculated every 100 to 1000 steps; the total simulation
time was in the range 107 to 109 steps depending on the number of monomers and the elastic
parameters.
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Figure 3.1: Stationary deformation of an isotropic elastic rod at zero temperature. a) Snapshots for
M = 19 and ε∗=0.03, 0.3 and 3 (from top to bottom) of a rod moving downwards. b) Rescaled mean
curvature K/M (open symbols) and alignment parameter (χ + 0.5)/M2 as a function of the rescaled
rigidity ε∗ confirming scaling predictions, eqs. (3.22) and (3.23) (broken lines with slopes -1 and -2).

3.2 Zero temperature results

The magnitude of the noise
〈

ξ(t) · ξ(t′)
〉

= 2 kBT δ(t− t′)µ0 (3.12)

is proportional to the temperature, which means that it can be neglected in the limit Ẽ → ∞.
The rescaled deterministic equation reads

r̃(t̃+ ∆̃) = r̃(t̃) +
M
∑

j=0

µij

µ0

·
[

−∇r̃j
Ũ + 1

]

∆̃ . (3.13)

Physically the neglect corresponds to large objects due to the rescaling with the monomer
radius a or to very strong fields, e.g. the gravitational force in an ultracentrifuge. But one
can also see this as a stability analysis to which temperature effects are added later.

3.2.1 Deformation

A measure of the mean chain bending is

K =
1

2
|r̂01 − r̂N−1 N | = sin(θ) (3.14)

where θ is the bending angle of the terminal chain segment (see fig. 3.1a) and r̂01 = r01/r01.
The orientation parameter measures the overall rod orientation and reads

ψ =
3

2

[

Re

Re
· E

E

]2

− 1

2
=

3

2
sin2(α) − 1

2
(3.15)

where Re ≡ rN−1−r0 is the end-to-end vector of the chain, and the orientation angle α is
defined in fig. 3.4a. The electric birefringence signal is proportional to the alignment parameter
[36]

χ =
1

M

M−1
∑

i=0

{

3

2

[

ri i+1

|ri i+1|
· E

E

]2

− 1

2

}

(3.16)
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and is a measure of the orientation of the individual bonds of the chain.
In this bead model the contour length L could be either the number of monomers N times

their diameter or the sum of all M = N − 1 bonds. It turns out that the latter gives a much
better scaling for short chains so that I set

L = 2M a . (3.17)

Throughout this chapter an isotropic elastic material is assumed, i.e. ε and γ are related by
eq. (3.6). In the continuum limit, one lets M → ∞ and a→ 0 while keeping L = 2Ma fixed.
To remove the dependence on the a I express the results as a function of

ε⋆ =
ε

qE L2
= ε̃

a2

L2
. (3.18)

In stationary motion, the velocities of all parts of the rod have to be same. The external
force E drives all monomers in the same way, but the hydrodynamic thrust coming from the
external forces alone, viz.

∑

µij · qE , is larger in the middle of the rod than at its ends,
as can be seen from eq. (3.13): The middle receives thrust from both sides of neighboring
segments. This has to be balanced by elastic force −∇rj

U that then result in a deformation
of the rod. Fig. 3.1a shows the bending of a 20 subunit chain for different elastic parameters.
On the scaling level, the elastic torque of a rod of length L bent by an angle θ is

Tθ ∼ ε θ

L
(3.19)

and has to balance the torque that arises from the inhomogeneity of the hydrodynamic thrust
acting on the driven rod,

TE ∼ qE L2

a
. (3.20)

The last relation can be derived as follows: If only the external force and no elastic forces are
present the velocity difference ∆v(r) between the middle monomer and a monomer at a dis-
tance r from it scales like ∆v(r) ∼ µ0 qE ln[L2/(L2−4r2)] where the Oseen tensor is used. Ne-
glecting the logarithmic term, which is at most of the order ln[L/a], the monomer at distance
r gives a contribution to the hydrodynamic torque, ∆TE(r), of ∆TE(r) ∼ ∆v(r) r/µ0 ∼ qE r.
Adding the torque contributions of all N ∼ L/a monomers yields eq. (3.20).

Equating Tθ ∼ TE gives a stationary bending angle

θ ∼ qE L3

a ε
. (3.21)

In fig. 3.1b the numerically determined rescaled chain bending (or mean curvature) K/M2

(open symbols) and bond alignment (χ+ 1/2)/M4 (closed symbols) are shown as a function
of the inverse driving field ε⋆. In agreement with the scaling prediction, data in the range of
small bending are well described by the laws [153]

θ ≈ K = 1.1 × 10−3qEL3/aε (3.22)

θ2 ≈ χ+ 1/2 = 1.1 × 10−6(qEL3/aε)2 , (3.23)

except for logarithmic corrections. It is seen that the numerical prefactors deviate largely
from unity, which makes the simulation necessary.
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Figure 3.2: Distribution of elastic forces Fe(i) along a chain moving parallel to external field E
obtained from eqs. (3.25) and (3.26). The insets are blow-ups of the end and the middle part.

In principle, the hydrodynamic thrust from the elastic forces, −∑µiJ ·∇rj
U , should also

be included in TE . But for small bending, i.e. large elastic moduli, the elastic forces Fe are
just proportional to E and independent of ε: From eq. (3.3) and using ϑi ∝ 1/ε we find

Fe ∝ ε ϑi ∝ ε/ε . (3.24)

ϑi is the typical bending angle of two adjacent segments. Thus at the scaling level, eq. (3.20)
is still valid.

The independence of the elastic forces of ε also justifies the use of bead models for the
treatment of rigid bodies since the limit ε→ ∞ can safely be taken. How are - in this limit -
the elastic forces Fe(i) (with i the monomer number) distributed along the chain, when it is
sedimenting as in fig. 3.1a ? One has to solve the following linear set of equations

N
∑

j=0

µij [Fe(j) + qE] = vz (3.25)

N
∑

i=0

Fe(i) = 0 (3.26)

for the N + 1 unknowns Fe(i) and vz. Fe(i) and E point in z-direction; the velocities of
all beads vz are the same. Simulations of course would do the same but are less efficient.
The result is shown in fig. 3.2 for long chains N ≥ 50. One can see that elastic forces are
mainly distributed at the end of the chain, which is expected from the analysis before. In the
limit N → ∞ the rod becomes infinitely thin and its velocity diverges logarithmically [172].
Therefore, not all features of the continuum limit can be obtained within this bead model.

3.2.2 Orientation

As explained above, the reduction of symmetry by deformation can lead to an orientation
of the rod. Fig. 3.3 illustrates this mechanism. A stiff cylinder experiences no orientational
torque (a). For longitudinal (b) and transverse (c) deformation modes the orientational
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Figure 3.3: Schematic drawing of three deformation modes and their respective orientational tendency.
a) Cylinder: no orientation but sideward motion. b) Stretched rod at one end: coupling tensor ζtr

R

might vanish at center of reaction (CR); but mean force applies at a different point (center of mass /
charge). c) Bent rod: ζtr

R is always non-zero. Also shown the center of diffusion (CD), see appendix.

tendency is parallel and perpendicular, respectively. For isotropic elastic media only the
second is relevant. The dashed line in fig. 3.4a gives the time evolution of χ ≈ ψ of a 20-
bead initially nearly parallelly oriented rod (ψ(0) = 0.9995) that turns thereby adjusting
its deformation (see snapshots). The solid lines include noise and are discussed later. The
deformation represented by the mean curvature K relaxes much faster than the orientation,
ψ and χ, as can be seen in fig. 3.4b: K approaches its constant value in about t̃ ∼ 10 while
the orientation is completed in t̃ ∼ 100. This time scale separation makes it possible to treat
the rod as semi-rigid.

3.3 Full temperature results

After the general features of this hydrodynamic orientation have been laid down, I now
want to present the main results of this chapter, which of course have to take temperature
into account. The rescaled temperature will be denoted by 1/Ẽ, since in experiments the
temperature is usually given, while the field E can be varied.

3.3.1 Stationary motion

For finite temperature the orientation is not complete and subject to thermal fluctuations. If
the orientation angle α defined in fig. 3.4 is small enough the orientating torque is proportional
to α, the bending angle θ and the driving torque

Tα ∼ αθ TE . (3.27)

For low temperatures and therefore small fluctuations, the average orientational energy
αTα equals thermal energy,

αTα ∼ kBT . (3.28)
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Figure 3.4: Dynamic orientation of an isotropic elastic rod. Driving field is turned on at time
t̃ = tµ0qE/a = 0 and turned off at t̃ = 450. a) Time evolution of the alignment parameter χ of a
chain with bending modulus ε̃a/L = 10.5 and length M = 19 with initial orientation χ = 0.25 and
χ = 0.9995 . The dashed line is at zero temperature Ẽ = ∞ while solid lines are for Ẽ = 20. Thin
solid lines are single trajectories while thick solid lines are averages over 10 individual runs. Snapshots
are obtained for Ẽ = ∞ and initial orientation ψ = 0.9995 for times i) t̃ = 90, ii) 180, iii) 260, and iv)
400. b) Same data as in a) for Ẽ = ∞ and initially χ = ψ = 0.25 (corresponding to an angle α = 45◦).
Shown are the curvature K, alignment χ and orientation ψ.

Solving eqs. (3.27) and (3.28) for α2 gives a mean-square orientational fluctuation of

2

3
(ψ + 1/2) ≃ 〈α2〉 = 6.1 × 103

(

kBT

qE a

)2 a4ℓP
L5

(3.29)

where eq. (3.5) has been used. The prefactor is determined numerically in fig. 3.5 for a fixed
rigidity ε̃ a/L = ℓP/L = 100.

Within linear-response theory, the orientational fluctuations are governed by a quadratic
form proportional to the coupling constant J , yielding the expectation value

〈sin2 α〉 = − ∂

∂(J/2)
ln

[

∫ π/2

−π/2
dα cosαe−(J/2) sin2α

]

. (3.30)

For low temperatures (high J-values) one can extend the integration boundaries to infinity
and compute the Gaussian integral to obtain

〈α2〉 ≃ 〈sin2 α〉 = 1/J , (3.31)

which together with eq. (3.29) fixes the coupling constant J .
In the high-temperature regime (small J), the rod orientation distribution is almost isotropic.

Expanding the exponential eq. (3.30) gives

〈sin2 α〉 ≃ 1/3 − 2J/45 + O(J2) , (3.32)

from which with the definition of ψ, eq. (3.15), the final result is obtained [153]

ψ ≃ −J/15 = −1.1 × 10−5
(

qE a

kBT

)2 L5

ℓP a4
. (3.33)
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Figure 3.5: a) Rescaled orientational parameter (ψ+0.5)M4 as a function of the rescaled temperature
kBT/(qEa) = 1/Ẽ for fixed rigidity ε̃ a/L = 100 in agreement with the low-temperature scaling pre-
diction eq. (3.29) (broken line). b) Same data plotted as −ψ/M4 compared with the high-temperature
scaling prediction eq. (3.33).

This scaling law including the numerical prefactor is confirmed in fig. 3.5b (broken line). It
is the limit most relevant for experiments. Note that the solvent viscosity only enters the
rescaled time scale ∆̃ and thus does not influence the stationary behavior.

3.3.2 Dynamics

In transient electric birefringent experiments (TEB) [48] the time dependence of the orienta-
tional response is measured after the electric driving field is suddenly turned on or off. Coming
back to fig. 3.4a, the time evolution of the alignment parameter χ for zero and finite tempera-
ture (broken and solid lines, respectively) is displayed for two different initial orientations. For
finite temperature averages (thick lines) over 10 individual trajectories (thin lines) are shown.
The hydrodynamic response time is roughly of the order of τ̃HD = τHDµ0 qE/a ∼ 100. In fig.
3.6a the alignment parameter χ of an isotropic ensemble of 150 chains is shown for a few differ-
ent rescaled temperatures. The orientational response for Ẽ = 1 (top curve) is fitted to a pure
exponential χ(t) = −0.38 [1− exp(−t̃/τ̃HD)] (broken line) with the response time τ̃HD = 62.2.
It can also be seen that there is no significant dependence of the initial decay rate on temper-
ature. The response after the field is turned off is fitted to χ(t) = −0.447 exp(−[t̃− 450]/τ̃D)
where the orientational diffusion time τ̃D = τD qEµ0/a = 218 is given by the perturbative
expression for the rotational diffusion constant of a rigid cylinder [172]

D =
1

6 τD

=
18kBT µ0 a

L3

[

ln
L

2a
− 0.662 + 0.917

2a

L
− 0.05

(

2a

L

)2
]

. (3.34)

On the scaling level, the decay of the orientation angle α in an applied electric field is
governed by the differential equation

α̇ ∼ −DTα/kBT (3.35)

where Tα ∼ αθ TE is the aforementioned orientational torque. The hydrodynamic orientation
time can be read off to be

τHD ∼ kBT

D θ TE
∼ a ε

µ0 q2E2L2
. (3.36)
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Figure 3.6: a) Time evolution of the alignment parameter χ for an ensemble of 150 rods with initially
isotropic distribution for ε̃a/L = 10.5, M = 19 and different rescaled fields (increasing from top to
bottom) Ẽ = 1, 5,∞. For t̃ > 450 and in the inset only the data for Ẽ = 1 are shown, exhibiting
an over-shoot right after turning off the field. The dashed lines are exponential fits. b) Rescaled
orientational speed |ψ̇| for initially α = 45◦ as function of chain length M for fixed Ẽ = ∞ and
various bending moduli. The dashed line is a fit a0M ln[a1M ] with the parameters a0 = 0.00183 and
a1 = 3.45. The inset shows same data for ψ as in fig. 3.4b (solid line) for M = 19 and ε̃ a/L = 10.5 .
|ψ̇| is obtained from this curve as the intermediate-time slope (dotted line) which is given by ψ(t) ≃
0.25 − 0.0154t̃.

In fig. 3.6b, the orientational speed ψ̇ for various bending rigidities is determined at zero
temperature, for the ease of calculation. The numerical data exhibit pronounced logarithmic
corrections, which are missed by the scaling analysis, and can be fitted to (broken line)

τHD =
820

ln[1.725L/a]

a ε

µ0 q2E2L2
. (3.37)

For the ratio of the diffusional relaxation and hydrodynamic orientation time scales one
obtains the relation

τD

τHD

= 1.1 × 10−5 L5q2E2

a2 ε kBT
. (3.38)

The strong length dependence makes the orientational process much faster for long rods, in
agreement with experiments [136]. For charged rod-like objects the hydrodynamic orienta-
tion mechanism competes with the counterion polarization mechanism which favors parallel
orientation. The orienting polarization torque is

TP
α ∼ α ǫ0E

2L3 (3.39)

where ǫ0 is the dielectric constant (shifting the dispute about the L-dependence of the polar-
izability [190] to chapter 7). The characteristic orientation time due to electric polarization,
τP , follows from the same differential equation as eq. (3.35),

τP ∼ kBT

D

α

TP
α

∼ 1

µ0 a ǫ0E2
, (3.40)

and thus is independent of the length. For long polymers one has

τD > τP > τHD . (3.41)



3.4 Anisotropic materials 23

a) b)

10 100 1000 10000

γ
-0.5

-0.25

0

0.25

0.5

0.75

1

ψ

M=9, E= ∞
M= 9 , E= 500

M=9,   E= 100

M=9,  E= 20

M=19,E= 5

M=9,  E= 5

0 .1 1 10 100

ε  

1

10

100

1e+03

1e+04

γ  

M= 2
M= 5

M= 9
M= 9,   E= 20

M= 19
M= 19, E= 5

M= 49
M= 99

parallel

perpendicular

*

~

~

~

~

~

~

~

~

~

~

,  E= ∞~

,  E= ∞~

,  E= ∞~

, E= ∞~

, E= ∞~

, E= ∞~

Figure 3.7: a) Orientation parameter ψ of an anisotropic elastic chain as a function of the rescaled
stretching modulus γ̃ = γ/(qE) for various rescaled inverse temperatures Ẽ = qE a/(kBT ) and chain
lengths. The rescaled bending modulus ε⋆ = ε/(L2 qE) = 5.56 is kept constant. b) Phase diagram
of chain orientation as a function of the rescaled bending modulus ε⋆ and stretching modulus γ̃ for
various lengths and temperatures. The solid line is given by eq. (3.46).

The hydrodynamically induced anomalous birefringence is the fastest process of all. Interest-
ingly, the overshoot of the signal in fig. 3.6a after the electric field is turned off is commonly
seen in experiments [94, 136]. It is caused in the simulations by a quick straightening of the
bent and perpendicularly oriented chain after the strain field disappears [36]. This would also
explain why AC fields tend to yield larger anomalous birefringence signals [136].

3.4 Anisotropic materials

So far it was always assumed that both elastic parameters, γ and ε, are related by ε/γ = a2/4.
It is interesting to explore also anisotropic materials which, in the simplest case, are described
by two parameters. As anticipated in fig. 3.3, for very stretchable rods parallel orientation is
obtained; one can therefore expect that a transition between these two orientational tendencies
occurs at a certain ratio of γ and ε.

In the limit of zero temperature, i.e. Ẽ = ∞, the only parameters are γ̃, ε̃ and L/a. In
the continuum limit one expects scaling relations to become independent of the chain radius
a, and the proper scaling variables are γ̃ and ε⋆ = ε̃a2/L2. Fig. 3.7a displays the chain
orientational parameter ψ as a function of γ̃ for fixed ε⋆ = 5.56 at various temperatures.
Indeed, ψ changes sign at a constant value of γ̃. In the linear-response regime the location
of the transition should be independent of the driving field strength. This suggests a linear
dependence γ̃ ∼ ε⋆.

Fig. 3.7b shows the transition γ̃(ε⋆) for various chain lengths with and without tempera-
ture. Even a 3-bead chain is already close to the continuum value M → ∞ if the definition
L = 2M a is taken. For this reason, the transition line in this “phase diagram”is determined
analytically for three spheres in a perturbative way up to O(E2):

Expanding the positions of the centers of the three spheres i = 1, 2, 3

ri = r(0)

i + r(1)

i + r(2)

i + O(E3) (3.42)
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and inserting them into the forces and the mobility tensor

Fi = F(1)

i + F(2)

i + O(E3) (3.43)

µij = µ(0)

ij + µ(1)

ij + O(E2) (3.44)

gives
∑

j

[

µ(0)

ij · F(1)

j + µ(0)

ij ·F(2)

j + µ(1)

ij · F(1)

j

]

+ O(E3) = v + vrot

i . (3.45)

v is the common translational velocity, vrot

i the rigid body rotation. The zeroth order of the
forces, of course, vanishes in equilibrium. From the condition vrot

i = 0 it follows that

γ̃ ≈ 23.44 ε⋆ . (3.46)

The calculation is presented in appendix B.2. The result eq. (3.46) is shown in fig. 3.7b as a
solid line and gives a good fit also for M ≫ 1.

For isotropic rods the relation

γ̃ = 16

(

L

2a

)2

ε⋆ (3.47)

holds, so that for aspect ratios L/(2a) slightly greater than one the rods are always in the
perpendicular phase. In a sense, this also justifies the use of the (unstretchable) Kratky-Porod
chain [83] for semiflexible biopolymers: Even though most of these polymers are approximately
isotropic elastic (see e.g. [165] for DNA) and the inextensibility constraint (γ → ∞) cannot
be assumed from the beginning, the above analysis shows that for long chains the bending
modes are responsible for hydrodynamic orientation and stretching can safely be neglected.



3.5 Discussion 25

3.5 Discussion

All our results are valid only for low Reynolds numbers. Orientation of cylindrical objects
at high Reynolds numbers is also possible, for example by streaming of the fluid along the
surface of the body [90]. Is the hydrodynamic orientation mechanism discussed in this paper
compatible with the low-Reynolds number assumption? Consider a cylinder of length L
moving at velocity v. Its velocity scales as u ∼ F/(ηL) where the total force F is given by
F ∼ qEL. The condition Re ≡ ρL v/η ≪ 1 is equivalent to

L

a

qEa

kBT
∼ NẼ ≪ η2

ρ kBT
≈ 1011 , (3.48)

where the density and viscosity of water is used. The requirement is easily fulfilled, and the
model is thus consistent.

3.5.1 Hydrodynamic orientation in the literature

Hydrodynamic effects as a possible source for birefringence were considered already nearly
hundred years ago for vanadium oxide sols [49]. It received some attention in the context of
birefringence experiments on TMV [66, 93, 130], but explanations were based only on vague
statements: Heller [66] gives a survey over possible hydrodynamic orientation mechanisms
from “electrophoretic orientation” to turbulence. O’Konski and Zimm [130], and O’Konski
and Haltner [132] discard hydrodynamic orientation on the basis of the cylindrical symmetry
assumed for TMV particles. Like Kobayasi [79], they mention “perpendicular hydrodynamic
orientation” without reference to any theory. It might therefore be just an experimental
fact. Later O’Konski and Krause [133] try to support it by a two-dumbbell model but their
reasoning is wrong. Finally, Grossman and Soane [62] regard it as an high-Reynolds number
effect which is negligible. Interestingly, they cite [63] for this statement. It seemed therefore
worthwhile to clarify this issue within a simple bead model.

Elvingson [36, 37] performed Brownian dynamics simulations including hydrodynamic
effects and bending elasticity. Although it can be concluded indirectly from his results, that
his chains get sometimes hydrodynamically oriented perpendicular to the field, ψ < 0, he only
discusses bond orientation, i.e. the effects on χ (cf. eq. (3.16)), but not the orientation of the
polymer as a whole. Only for rigid rods these two parameters coincide; otherwise a non-zero χ
is a combined effect of an orientation ψ and a deformation. The former is a second order, the
latter a first order effect in E and therefore more important for small fields. Nevertheless, one
can only speak of a coupling between hydrodynamics and elasticity if one also examines how
this hydrodynamically induced deformation in return leads to a hydrodynamic orientation.

Several authors investigated the orientation of kinked rods or arc-shaped molecules as
models for short DNA [13, 141, 181] based on the hydrodynamical coupling between transla-
tional and rotational motion [63]. The thermal average of the bending angle of the semiflexible
chain is used as input for the rigid angle. Bertolotto et al. [14] calculated the birefringence
as a function of the bending angle θ and then integrated over a distribution of θ which was
obtained by solving the Focker-Planck equation of θ of a hinged bent rod. This elastic rod
consisted of two rigid arms with an harmonic elastic potential, which had its minimum at
θ = π. The influence of the orientation on the deformation θ was neglected.
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3.5.2 Comparison with experiments

Experimental situations where this hydrodynamic orientation can be observed as well as
already existing evidence is now be presented.

fd-virus

Fd-viruses are semiflexible particles having a length of L ≈ 880 nm, a diameter of 2a ≈ 9 nm
[125] and a persistence length of ℓP ≈ 2200 nm [31]. The total net charge is roughly 500 e− so
that the charge per length 2a is about q = 5 [81]. For a typical electric field of E = 105 V/m
the rescaled field strength Ẽ = aqE/kBT is Ẽ ≈ 0.1 . Eq. (3.33) gives ψ ≈ 60 meaning that
complete perpendicular orientation should occur were there not electrostatic effects. Solutions
of fd-virus show anomalous birefringence in certain situations [69, 82]. This will be discussed
in chapter 7.

For the sedimentation case, the reduced driving field acting on the monomers is

Ẽ ≃ 4πa4ρ g G

3 kBT
(3.49)

where G = 9.81m/s2 is the gravitational acceleration, g is the g-factor of a centrifuge, and
ρ ≈ 103 kg/m3 is the density difference between the sedimenting particle and the solvent.
For the parameters of the fd-virus one gets Ẽ ≃ 10−8g. To obtain ψ ≃ 1, one would need a
g-factor of g ≈ 106 which is large but can still be reached in an ultracentrifuge without much
effort.

Tobacco mosaic virus

The tobacco mosaic virus (TMV) is a rod-shaped macromolecule with a length of L ≈ 300 nm
and a diameter of 2a ≈ 15 nm [48]. The length is calculated from a rotational diffusion
constant Dr = 333 s−1 [131] using Broersma’s cylindrical rod model [20]

DBr

r =
3kBT

πηL3

[

− 1.57 + ln(L/a) + 7
( 1

ln(L/a)
− 0.28

)2]

, (3.50)

or from direct electron microscope observations. Its persistence length is at least ℓP > 10L
[47]. At slightly alcaline pH TMV has a charge of approximately -6000e [132] some of which
might be compensated by close counterions. The hydrodynamic orientation is much weaker
due the smaller aspect ratio and larger persistence length, but might still be measurable:
Assuming the same reduced charge density as for the fd-virus and ℓp = 10L one still finds
ψ ≃ 0.1 . Positive electric birefringence signals of dilute TMV solutions are usually attributed
to an orientation of the stiff macromolecule parallel to the applied electric field (this can
be checked by flow birefringence), while negative birefringence seems to be a low-field effect
[5, 130]. O’Konski et al. [130, 132] favor induced dipole moments caused by polarization of the
counterions adjacent to the macromolecule as orientation mechanism. While this mechanism
certainly plays the dominant role one can still ask for the orientation caused by hydrodynamic
forces.
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f-actin

One of the best candidates for hydrodynamic orientation is possibly f-actin. It is a semiflexible
polymer with a variable length of up to L ≈ 10µm, a diameter of 2a ≈ 8 nm and a persistence
length of ℓP ≈ 17.7µm [57]. Eq. (3.33) shows that for L = 10µm filaments g-factors of
less than 105 are sufficient to achieve ψ ≃ 1. Kobayasi et al. [78, 79] measured negative
birefringence of in electric fields as well during ultracentrifugation. The latter might provide
an unambiguous demonstration of the above effect. Unfortunately, the experiment was done
already more than forty years ago and has not been reproduced later. It should be noted that
Dr. M. Claessens (TU München) plans to perform an ultracentrifugation experiment with a
dilute solution of actin so that this issue might be clarified soon.

Short DNA

Antosiewicz and Porschke [4] reported an amplitude inversion in the electric dichroism decay
of 179 to 256 bp DNA strands at small field strengths. It was subsequently explained either
with an apparent permanent dipole moment perpendicular to the long axis of the chain
which should be caused by bending [4, 12] or with an hydrodynamic orientation mechanism
[14, 36, 141]. Using L = 60nm (179 bp), 2a = 2nm, ℓP = 50nm and a pulsed electric field
with amplitude E = 106 V/m, eq. (3.33) gives ψ ≃ 30; for L = 20nm chains one still gets
ψ ≃ 0.1 showing that the presented mechanism is of great relevance.

Neutral rods

Neutral boehmite rods have the great advantages that investigations are not complicated by
charge effects, and that its lengths can be varied. Buitenhuis and Philipse [21] studied sedi-
menting rods of length L ≈ 250 nm and diameter 2a ≈ 9 nm in dilute solution. Centrifuged
with g ≈ 800 the sediments show domains in which the rods are aligned perpendicular to the
sedimentation velocity. Assuming ℓP = 10L one finds ψ ∼ 10−9 for this small g. Thermal
wash-out represses the above orientation mechanism. It is more likely that interactions with
the wall cause the observed orientation different from an earlier expectation [153]. Never-
theless, for larger particles and higher g-factors boehmite rods should be a promising model
system.



28 3. Sedimentation of Semiflexible Rods



Chapter 4

Driven Rotation of a Semiflexible

Filament

The last chapter provided a very simple example of the coupling between hydrodynamics and
flexibility. The following example is similar in spirit and of great importance for propulsion at
the nano- and micrometer scale. Here some external torque is applied to the base of an end-
grafted elastic filament, and the resulting angular velocity is determined as a function of this
torque and the elastic parameters. Different approximations to describe the hydrodynamic
interactions are checked. Allowing the filament to move, the translational velocity caused by
this rotation and the propulsion efficiency is calculated. The inclusion of flexibility leads to
the noteworthy result that forward motion is achieved irrespective of the sense of rotation,
different from rigid rods (where no net propulsion results) or helices (which move according
to their sense of rotation).

The main idea and many of the results are presented in [105, 106]. Nonetheless, this
chapter differs from our publication in two respects: Firstly, I concentrate on the large-force
regime in which the external torque M ≫ kBT . This is indeed the case for most bacterial
motors [96]. One can therefore neglect temperature effects as done in section 3.2, which not
only speeds up the simulation considerably but also states the problem more clearly. Secondly,
the dependence of the propulsion on elasticity will be investigated to a broader extend.

The first section gives an introduction into the mathematical modeling and the biological
background of bacterial motility in order to motivate the investigation and places it within
the field. The second one deals with the deformation of the rod while the last one comes back
to the main topic of propulsion with this rotating rod.

4.1 Modeling bacterial motility

Propulsion at low Reynolds number is essentially different from the one we are used to at
high Reynolds number since inertia effects do not play a role [24, 95, 145]. For objects at
the scale of 1 µm or less and typical swimming speeds in water Stokes flow dynamics is a
very good approximation. This means that propulsion based on inertia, as well-known from
the ordinary macroscopic world, is hopelessly inefficient: Moving an oar slowly forward and
quickly backward will not generate a forward thrust [145]. The dynamics are governed by
a first-order differential equation in time that is symmetric with respect to time reversal,
and therefore moving an appendix back and forth the same path even with different velocities
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Figure 4.1: Left picture: Transmission electron micrograph showing bundling of the flagella of a
E. coli bacterium during chemotaxis. Right picture: Pseudomonas putida bacterium with six flagella.
Taken from the ASM Microbe Library (www.microbelibrary.org).

renders the self-propelled object at its original point after one cycle. Different mechanisms are
required for Stokesian swimmers, among them the beating of rod-like cilia and the rotation
of helical flagella.

Lighthill [96] gives an overview of the vast variety of microorganisms with flagella. One
can classify them into eukaryotic and prokaryotic organisms; and skimming over many details
one may say that there are two major kinds of microorganisms with flagella, (eukaryotic)
sperms and (prokaryotic) bacteria. The former have one flagellum, with ∼ 0.25µm diameter
in the case of the sea urchin sperm, consisting of the axoneme (the core of the flagellum)
enclosed by an extension of the cell membrane. The cross-section of the axoneme has the
so-called “9+2” pattern of nine doublets of microtubules along the outer circle and two single
microtubules in the center. It seems now very clear that these microtubules can slide along
each other so that the flagellum can be actively bent by the sperm thereby propagating a wave
along the flagellum [96].

Bacteria - here I concentrate on escherichia coli (E. coli) - are usually much smaller with
a cell body of O(1µm) and one or several flagella. The flagella are semiflexible intrinsically
bent helical filaments with a diameter of ∼ 20 nm and a length of O(10µm) [76] each of which
is driven by a rotary motor [10]. The motor turns at roughly 100 Hz. When rotated counter-
clockwise the flagella form a bundle, and the bacterium moves, while clockwise rotation causes
the bacterium to “tumble” resulting in a random change of the direction of motion, which
is essential for chemotaxis. The flagella are thus passively bent by the motion through the
viscous fluid while driven at one end. This chapter is motivated by the study of bacterial
flagella, as well as by nano-motors that mimic bacterial propulsion.

Earlier investigations of propulsion at low Reynolds number [95] mostly concentrated on
the motion of rigid objects for their easier analytical tractability. Often, the flagellum is
replaced by a slender, i.e. one-dimensional, object such that it can be represented by a line of
Stokeslets [98], which is just another name for the Green’s function of the Stokes equation and
the Oseen tensor. Distribution of Stokeslets not on the centerline but on the surface of the
flagellum is in general a unsurmountable task [143]. Resistive-force theory [61] replaces the
long-ranged hydrodynamic interactions by local friction coefficients that differ in tangental
and normal direction along the slender body. These coefficients are obtained by cutting the
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Figure 4.2: a) Illustration of the resistive-force theory for a rotating helix. The cylindrical segment
moves with velocity v in tangential direction to axis of rotation. The components of v and the
frictional force on the segment F parallel and perpendicular to the cylinder axis are shown. The larger
friction coefficient in perpendicular direction results in an increased component F⊥. Integration over
all cylinder segments of the helix gives a frictional force on the fluid acting to the left, or vice versa
a thrust on the helix to the right. b) Flagellum (dashed lines) and its centerline (solid line) in the
slender-body theory. The given forces per length f(s) that originally act on the surface of the flagellum
are placed on the centerline. In the near region the flagellum is approximately straight and only the
component f⊥ influences the fluid velocity u(s).

flagellum into cylindrical segments. Some arbitrariness is involved in how long these cylinders
should be although some optimal choice has been proposed [95]. Resistive-force theory gives
an intuitive explanation how propulsion can work at low Reynolds number: When e.g. a helix
is rotated by a bacterial motor the cylindrical segments are inclined with respect to their local
motion leading to a thrust along the rotational axis (see fig. 4.2a).

To incorporate hydrodynamic interactions Lighthill [96] splits the flagellum into a near
and a far region to obtain the fluid velocity at a point r(s) along the centerline (with arc
length s) for a given force per length distribution f(s)

u(s) ≈ f⊥(s)

4π η
+

∫

|r(s)−r(s′)|>a
√

e/2

H
(

|r(s) − r(s′)|
)

· f(s′) ds (4.1)

where f⊥ is the normal component of the force, a is the radius of the flagellum and e is
Euler’s number. This approach is often called slender-body theory and valid in the limit of
long flagella neglecting end effects. The actual calculation proceeds as follows: A rigid slender
body is moved with a prescribed velocity. This gives the frictional forces on the surface of the
flagellum. After angular averaging the force per length f(s) is obtained which is used as input
for eq. (4.1). For slender bodies the fluid velocity at the surface of the flagellum for a given s
is nearly independent of the position on the circumference. It can thus be represented by the
fictitious velocity at the centerline u(s). Slender-body theory differs from bead models [53]
mainly by the diagonal term and the cutoff distance a

√
e/2. A realistic theory must include

the cell body which not only provides a frictional center for the translational and rotational
flow but also balances the torque of the rotating flagellum by counter-rotation [67].

Bacterial flagella are by far not rigid and undergo a series of shape transformations [173].
Flagellar bundling has been investigated in numerous articles [45, 77, 142]; nonetheless no
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Figure 4.3: a) Sketch of the filament before (1/ε⋆ = 0.3 , right) and after (1/ε⋆ = 0.45 , left) the
shape transition for case A. The tilt angle θ1 is included. Note that the configuration is in 3D with the
right filament pointing out of the x-z-plane. b) Evolution of the center-of-mass angle θCM and angular
velocity ω (multiplied by 2000) with time for 1/ε⋆ = 0.39 and case A. At t̃ ≈ 12 000 , θCM decreases
dramatically, and as a result of the reduced moment of inertia ω̃ jumps up.

work has yet been attempted to tackle the full problem including long-ranged hydrodynamics,
several flagella, elasticity and torsion in a direct and simple way [45]. As a first step that
deserves interest not only for its application in bacteria propulsion one can look at an elastic
filament rotated at one end [183, 187], which will be the subject of this chapter.

4.2 Shape transition of the rotating rod

An elastic rod is studied that is driven at its base by some external torque generated by a
microscopic motor. As in the previous chapter the filament is described by a bead model whose
time evolution is given by a Langevin equation. An isotropic elastic medium is assumed, eq.
(3.6). The elastic energy is given by eq. (3.3), except that for the angle at the second sphere
from the base θ1 a fixed tilt angle of 45◦ is taken, yielding a term of

ε

2a
[1 − cos(θ1 − 45◦)] (4.2)

in U (see fig. 4.3). Twist and torsional degrees of freedom are omitted. A constant external
torque M = M êz is applied to monomer 2 (third from the bottom) which is generated by a
force

Fext
2 =

M × r12

r212
. (4.3)

Again hydrodynamic interactions are treated on the Rotne-Prager level, and monomers are
numbered from 0 to N−1. Except for fig. 4.5, thermal noise is omitted, and the time evolution
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Figure 4.4: a) Terminal angular velocity ω̃ as a function of 1/ε⋆ starting from a straight (circles) and
from a folded configuration (squares), showing a hysteresis cycle. b) Same plot as a) for a straight
initial configuration for all 4 cases A-D. Hydrodynamic interactions are thus not a prerequisite for this
wrapping transition.

becomes deterministic. Energies are rescaled by T , and lengths and times as before. For non-
zero temperatures M̃ ≡M/kBT is defined. Similar to eq. (3.18) I set

ε⋆ =
ε

M L
(4.4)

where L is the length of the rotating part of the chain, that is for N = 30 used in this
simulation, L = 58 a . 1/ε⋆ is proportional to the torque if the elastic parameters are fixed.

The filament is thought to be attached at its base to a hypothetical cell body. In the
stalled case the first two monomers are fixed by virtual forces; in the moving case virtual
forces are applied to the first two monomers only laterally which are otherwise free to move
in the z-direction. The following cases are investigated:

• A: The first two monomers are fixed by virtual forces, but the virtual forces have no
hydrodynamic effect on the other monomers. The remaining hydrodynamic interactions
are taken into accout. It is chosen to illustrate the influence of the hydrodynamic effects
from the virtual forces, and also because it shows the strongest shape transition effects.

• B: The stalled case with full hydrodynamic interactions where the virtual forces also
act hydrodynamically on the other monomers. Every time step a 6 × 6 matrix has to
be inverted to find the virtual forces.

• C: The free draining case. If the shape transition comes about due to a coupling
between hydrodynamics and flexibility then no effect should be seen here.

• D: The moving case with full hydrodynamic interactions. The x and y velocities of the
first two monomers are fixed by virtual forces. The simulation proceeds as in case A
such that every time step a 4 × 4 matrix is inverted.

In the simulation a rescaled time step of the order of 10−3 is chosen, and a total simulation
time up to 108 steps. Fig. 4.3b shows the center-of-mass angle θCM as a function of time as
well as the angular velocity for 1/ε⋆ = 0.39, which is slightly above the transition value. θCM

is defined as the angle which the line from the center of mass of the filament RCM to r1 forms
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with the axis of rotation êz. Here and in fig. 4.4a, case A is chosen, but cases B-D give similar
results. Starting from a straight configuration, θCM = 45◦, the rod bends while the upper end
lags behind, and after roughly two full turns, t̃ ≈ 12 000 , the filament folds itself around the
z-axis and θCM decreases. Due to the reduced friction of the folded state the angular velocity
ω̃ increases considerably. It will therefore be a useful parameter describing this dynamical
transition.

Fig. 4.4a shows the terminal angular velocity as a function of the inverse elastic parameter
1/ε⋆ for a straight and a folded initial configuration. Below a critical 1/ε⋆ the filament is only
moderately deformed; ω̃ stays nearly constant. For higher values ω̃ increases nearly abruptly
by a factor of more than ten. After the transition the filament continues to deform but at
a much slower rate which is reflected by the slowly increasing ω̃. A hysteresis is seen in this
zero temperature case. In fig. 4.4b the “up” part of the hysteresis, i.e. the runs starting from
a non-folded straight configuration, is shown for the four cases A-D. B and D lie nearly on
top of each other. In the free draining case C, the transition occurs at the highest torque or
smallest bending modulus ε, respectively. One can see that hydrodynamic interactions are not
necessary for this effect, but greatly enhance it. It is of purely elastic origin. In the following,
simulations always start from the unfolded configuration. Qualitatively, the transition takes
place when the bending radius R gets of the order of the filament length, R ∼ L. Balancing
the bending torque due to deformation, ε sin θ1/R, and the external torque M one finds

ε⋆ =
ε

M L
= sin θ1 (4.5)

which is correct within twenty percent for the cases B-D (fig. 4.4b). The critical value of 1/ε⋆

in case A is about a factor of four too small. In the case of non-zero temperature eq. (4.5)
becomes

ℓP
L

=
M

kBT
sin θ1 (4.6)

which is plotted in fig. 4.5 for several M/kBT and shows that the transition is not modified
by the inclusion of a heat bath.
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Figure 4.6: Angular and translational velocity of the filament in the moving case D across the critical
1/ε⋆. At the transition a jump not only of ω but also of Vz takes place. For rigid rods, 1/ε⋆ → 0, the
propulsion velocity vanishes.

A similar elastic instability was described in the presence of twist and at higher threshold
critical angular frequencies [187], or using resistive-force theory [142]. The importance of
the above phenomenon is that it can serve as a new propulsion mechanism at low Reynolds
number [105], which will be studied next. It might also be a method of determining the
bending modulus. For bacteria torsional stiffness should certainly be included in the analysis.
However, artificial motors have been developed that have freely rotating backbones [33] which
are well described by our bead model.

4.3 Propulsion efficiency

So far hydrodynamic interactions were not essential. This changes when the filament is allowed
to move, viz. case D. In that case, the rotating filament moves in negative z-direction, i.e.
in the direction of the cell body. For a rigid straight rod, 1/ε⋆ → 0, a vanishing propulsion
velocity Vz is expected from the analysis of the first section, using e.g. the Gray-Hancock
argument [61]. Indeed, a strong decrease of −Ṽz can be seen in fig. 4.6. Finite elasticity
leads to forward thrust irrespective of the sense of rotation. The setup can function as force-
rectifying device: A randomly turning motor will always move in one direction, which is not
the case for a rigid helix. At the critical 1/ε⋆ the absolute value of Ṽz increases by more than
a magnitude. One can envision a motor that can slightly change its torque thereby switching
between very different velocities.

To be more realistic, the cell body also adds some load to the self-propelling object. The
load force FL points in positive z-direction, i.e. is opposed to the swimming velocity V . For
rigid propellers the linear relation [63]

(

Vz

ω

)

=

[

µtt µtr

µrt µrr

](

FL

M

)

. (4.7)

holds with constant µtt, µtr and µrr. For flexible objects the matrix elements depend also on
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Figure 4.7: a) Propulsion velocity as a function of the load force FL for 1/ε⋆ below (circles) and above
the transition (diamonds). The lines are linear fits. b) Efficiency of the power converter as defined in
eq. (4.9). The lines are parabolic fits with the maxima occurring at FL = Fstall/2.

M and FL. It will be shown, however, that eq. (4.7) is still approximately valid, except at
the transition. One can see from fig. 4.6 that µrr ≈ const, and from fig. 4.7a that µtt ≈ const,
with different values below and above the transition. It was checked that for ε⋆ not to far
from the transition also µtr ≈ const. The load force at which the velocity for a given torque
gets zero is called the stall force Fstall. From eq. (4.7) one finds

Fstall = −µ
tr

µtt
M . (4.8)

The lines in fig. 4.7a are given by Ṽz = −1.6 × 10−4 + 0.14 F̃L for 1/ε⋆ = 0.97 , and Ṽz =
−0.0013 + 0.165 F̃L for 1/ε⋆ = 1.81 . The abscissae and slopes of these fits yield µtr and µtt

for the two values of 1/ε⋆ from which rescaled stall forces of Fstall = 0.0011 and Fstall = 0.0079
follow.

One can define the efficiency of the power converter as the propulsive power output per
rotary power input,

η =
−Vz FL

ωM
, (4.9)

Inserting eq. (4.7) gives

η(FL) = − µtr FLM + µtt F 2
L

µrrM2 + µrt FLM

≈ −µ
tr FLM + µtt F 2

L

µrrM2
(4.10)

since it was checked numerically that for the values investigated

µrr M ≫ µrtF . (4.11)

η is thus a quadratic function of FL with its maximum at FL = Fstall/2 (see fig. 4.7b). The
quasi-rigid approximation thus holds.



4.3 Propulsion efficiency 37

The efficiencies displayed in fig. 4.7b are quite low whereat the folded filament performs
better than the one in the normal state. A rigid helix has a propulsive efficiency at the percent
level [24, 145], which is at least a magnitude better than the rotating rod. On the other hand,
as Purcell [145] pointed out, efficiency is not really an issue for bacteria. The higher power
consumption of the presented mechanism will be compensated by a greater flexibility of use.
Summarizing, a rotating elastic filament thus offers an alternative to a rotating quasi-rigid
helix (as assumed for bacterial flagella) or beating cilia [183].

Can this effect be observed? For the macroscopic scale model of [76] with a filament
length of L = 24 cm and a bending modulus ε of the order of 10−2 Nm2 eq. (4.5) yields a
critical torque of about M = 0.05 Nm. Hence, it should be no problem to test the prediction
of this chapter quantitatively. The flagellar motor of E. coli generate torques of the order
of M = 103 kBT [11]. Using a filament length of L = 10µm and a persistence length of
ℓP = 2.5mm for the flagellum [76] one gets ℓP /L = 250 which is well below M/kBT = 103.
For actin with a similar length but a much smaller persistence length of ℓP ∼ O(10µm) [57]
torques of a few kBT should be sufficient. The effect should therefore easily be observed for
straight biopolymers attached microscopic motors.
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Chapter 5

Sedimentation of Flexible Polymers

The importance of (long-ranged) hydrodynamic interactions (HI) for various quantities in ex-
ternal fields constitutes a major thread in this thesis. This chapter demonstrates once more
that a hydrodynamic description within the Oseen framework as compared to a local or preav-
eraged one leads to qualitatively different results. The classical problem of a flexible polymer
in a homogeneous flow [74] is revisited and applied to ultracentrifugation and electrophoresis.
In a sedimentation velocity experiment (as compared to a sedimentation equilibrium exper-
iment) the moving boundary of the investigated substance with time is recorded to obtain
the sedimentation coefficient S (defined as the radial velocity per centrifugal acceleration)
[64]. In sufficiently dilute solutions interactions between the macromolecules are negligible,
and the mass and conformation determine S. In a series of classical papers, dilute solutions
of long DNA (> 108 Da) showed a concentration independent decrease of S with increasing
rotor speed [26, 151]. This was explained by Zimm [191] through a deformation of the poly-
mer coil to a more ellipsoidal form caused by the inequality of the friction in the center and
at the boundary of the coil: The middle part receives greater hydrodynamic shielding while
the ends lag behind. In order to solve the problem analytically a preaveraged form of the
hydrodynamic interaction tensor was used which was able to correctly predict the trend for
linear polymers but could not achieve quantitative agreement with experiments [26]. Further,
polymer rings are not deformed within Zimm’s theory contrary to experiments [146].

Ignoring complications due to backflow (for not infinitely dilute systems) and interactions
with the ultracentrifuge tube boundary the centrifugal force per monomer G can be written
as

G = mω2RAUC (1 − ρsol ν̄p) (5.1)

wherem is the mass per monomer, ω the angular velocity andRAUC the radius of the analytical
ultracentrifuge (AUC) at which the probe is placed. ρsol is the mass density of the solvent
and ν̄p the partial specific volume of the polymer which accounts for the buoyancy. The
sedimentation coefficient or rate reads

S′ =
Vp

ω2RAUC

(5.2)

where Vp is the radial velocity of the polymer. Since masses do not appear in this low-Reynolds
number description I will use a slightly different definition,

S =
Vp

G
, (5.3)
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Figure 5.1: a) Test of the γ → ∞ limit for the numerical implementation of the FJC: Rescaled
sedimentation coefficient S, radius of gyration R̃g and average bond length b̃ for a N = 60 chain

at G̃ = 0.5 . It can be seen that γ̃ = 200 (filled symbols) is a good compromise between accuracy
and numerical efficiency. b) Test of Zimm’s theory for linear N = 40 chains: Relative approximate
sedimentation coefficient S̄/S̄0, eq. (5.6), for a self-avoiding FJC (squares), eq. (5.9), and self-avoiding
(triangles) and ideal (circles) Gaussian chains, eq. (5.8). White symbols are for Rotne-Prager HI, black
ones for preaveraged HI. The solid line is Zimm’s calculation for preaveraged Gaussian ideal chains,
eq. (5.7). For Gaussian chains γ̃ = 3/2, for the FJC γ̃ = 200 is chosen.

which will subsequently called the sedimentation coefficient in this chapter. It will be rescaled
by the mobility of a single bead,

S̃ = S/µ0 . (5.4)

Due to the overlap of the flow fields of the individual beads, S depends strongly on the config-
uration and is roughly determined by the largest length scale of the chain. Ultracentrifugation
is therefore a sensitive method to measure changes of the chain configuration under strong
homogeneous external forces.

5.1 Comparison of different models and approximations

Starting point is Zimm’s Gaussian ideal chain model with a preaveraged Oseen tensor which
is widely used to describe velocity sedimentation data of long (chromosomal) DNA [26, 146,
151, 192]. It will be investigated whether his predicted rotor speed dependence is a general
feature of flexible polymers, and whether relaxing some of his approximations can lead to new
effects of possibly great experimental relevance. In the later sections I will then concentrate on
swollen (excluded volume) chains where the hydrodynamics are treated on the Rotne-Prager
level. In that case both a compactification or an unfolding can arise depending on G and N
where as usual N is the number of monomers per chain.

Preaveraging replaces the distance dependent mobility tensor by its equilibrium value:

µij =
I

2ηa
√

6π3|i− j|
(5.5)

Monte Carlo studies showed that the error by this approximation is usually less than twenty
percent [193]. Since the sedimentation velocity becomes independent of the configuration
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Figure 5.2: Low field configurations of a N = 40 chain with G̃ = 0.2 for ideal Gaussian chains with
PA and RP, a self-avoiding Gaussian chain with PA, and a self-avoiding FJC with PA (from left to
right), i.e. the cases 1, 2, 3 and 5. In a)-c) γ̃ = 3/2, in d) γ̃ = 200. Here and in the following snapshots,
the sedimentation force points upwards.

if approximation eq. (5.5) is used Zimm looks instead at the approximate sedimentation
coefficient

S̄ =
3

4

µ0

N

∑

i6=j

〈

1

rij
+
z2
ij

r3ij

〉

(5.6)

where the brackets denote the average over the perturbed configurations. It is obtained from
the Oseen tensor if the diagonal elements and elastic forces are neglected.

Normal mode analysis of the Smoluchowski equation for the monomer positions [32] with
the mobility tensor replaced by its approximate form of eq. (5.5) yields the distribution
functions necessary to evaluate the averages in eq. (5.6). Expanding 〈1/rij〉 and 〈z2

ij/r
3
ij〉

with respect to the sedimentation field leads to [191, 192] (corrected by [26])

S̄

S̄0

≈ 1 − 2.9 × 10−2 [0.039N3/2 G̃]2 + 2.1 × 10−3 [0.039N3/2 G̃]4 (5.7)

for small G̃ = Ga/kBT . S̄0 is the value of S̄ at G̃ = 0.

This approximation is tested with simulations using the elastic potential of a Gaussian
chain

U({rk}) = ǫLJ

∑

i<j

Θ(2a−rij)

[

(2a)12

r12ij

− 2 (2a)6

r6ij
+ 1

]

+
N−1
∑

i=1

γ

4a
|ri i+1|2 (5.8)

or a freely jointed chain (FJC)

U({rk}) = ǫLJ

∑

i<j

Θ(2a−rij)

[

(2a)12

r12ij

− 2 (2a)6

r6ij
+ 1

]

+
N−1
∑

i=1

γ

4a
[ri i+1 − 2a]2 . (5.9)

In the first model, γ = 3kBT/(2a) is always chosen to give a an average bond length of b = 2a.
In the second model, the stretching modulus γ is chosen high enough such that measurable
quantities like the sedimentation velocity or the radius of gyration Rg,

Rg =

(

∑

i

〈(ri − RCM)2〉/N
)1/2

, (5.10)
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Figure 5.3: Typical configurations for long chains at high fields for ideal Gaussian chains (a and b),
and self-avoiding FJC (c - e). Parameters: a) PA, N = 40, γ̃ = 3/2 and G̃ = 1. b) RP, N = 40,
γ̃ = 3/2 and G̃ = 0.7 . c) PA, N = 40, γ̃ = 400 and G̃ = 2. d) RP, N = 40, γ̃ = 1600 and G̃ = 8. e)
Freely jointed circular chain with RP, N = 140, γ̃ = 400 and G̃ = 2 (see section 5.3).

are nearly independent of it, usually γ̃ ≥ 400 G̃ (see fig. 5.1a). RCM =
∑

i ri/N denotes the
center of mass. In eq. (5.8) ǫLJ = 0 is set for the ideal and ǫLJ = kBT for the self-avoiding
chain.

The following cases are investigated (in eq. (5.9) only the case ǫLJ = kBT is considered):

• 1: Ideal Gaussian chain with preaveraged hydrodynamic interactions (PA). This is used
in Zimm’s calculation.

• 2: Ideal Gaussian chain with Rotne-Prager hydrodynamics (RP).

• 3: Self-avoiding Gaussian chain with PA.

• 4: Self-avoiding Gaussian chain with RP.

• 5: Self-avoiding FJC with PA.

• 6: Self-avoiding FJC with RP. This is the standard in most simulations if not otherwise
mentioned. This case will also be used for circular chains.

Fig. 5.1b shows these six cases in the limit of small G̃: For ideal Gaussian chains the
preaveraging approximation induces only a minor change in S̄/S̄0. A monotonic decrease as
calculated by Zimm can be seen. Self-avoiding chains, on the other hand, pass through a
maximum before they also decrease. The maximum is more pronounced if the Rotne-Prager
tensor is used. An even more drastic effect is seen for self-avoiding FJC.

Configurations at low field, G̃ = 0.2 , are shown in fig. 5.2. The ideal Gaussian chain
with PA (a) is compared with chains in which one of the following parameters is changed:
ǫLJ = kBT (b), RP (c), and self-avoiding FJC (d). For PA both ends point downward while
for RP also an unfolding can occur.
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Figure 5.4: Self-avoiding FJC with N = 40: S/µ0 (circles), S̄/µ0 (squares) and N/R̃h (triangles)
- defined in eqs. (5.3), (5.6) and (5.11) - for preaveraged (black symbols) and Rotne-Prager hydro-
dynamics (white symbols). For preaveraged HI the rescaled sedimentation coefficient is constant by
construction, S/µ0 ≈ 10.46 . The dashed line is the G→ 0 limit of N/R̃h.

For higher fields the difference between PA and RP becomes more visible (see fig. 5.3a-d).
PA chains approach a double-strand configuration, RP chains a “tadpole” structure with a
dense head and an unfolded tail. Fig. 5.3e shows a circular chain for which Zimm’s model
predicts no rotor speed dependence [146, 191]. It will be considered in more detail later. In
the following I will concentrate on linear self-avoiding FJC with RP. This will be henceforth
called the standard type.

Whether S and S̄ are related is tested in fig. 5.4 for self-avoiding FJC. Snapshots of
the two chains are presented fig. 5.3, (c) and (d). Also shown is the inverse hydrodynamic
(Kirkwood) radius [32]

1

Rh
=

1

N2

∑

i6=j

〈

1

rij

〉

(5.11)

which is the angular average of S̄/(µ0N). In the limit G̃ → 0, S̄/µ0 and N/R̃h are therefore
the same; for higher fields G̃, S̄/µ0 lies above N/R̃h. For Rotne-Prager HI (white symbols)
S/µ0, S̄/µ0 and N/R̃h show the same trend, whereas for preaveraged HI (black symbols)
S̄/µ0 increases while N/R̃h decreases. The sedimentation coefficient S is independent of G̃,
viz. S/µ0 ≈ 10.46 . Eq. (5.5) is derived for an ideal chain, S is thus much larger than for this
swollen chain. In eq. (5.6) both the largest dimension of the chain, 〈1/rij〉, and its orientation,
〈z2

ij/r
3
ij〉, contribute: In fact, in fig. 5.2d the Kirkwood hydrodynamic radius Rh increases with

G̃ although S̄ does not decrease (see fig. 5.4).

Summarizing, all types of flexible chains show a qualitatively different behavior at high
rotor speeds when hydrodynamic interactions are taken into account on a non-preaveraged
level. This means that results for the sedimentation coefficient are highly model dependent,
and the universality hypothesis according to which the Gaussian model correctly captures
large-scale and long-time properties is violated in this far-from-equilibrium situation.
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Figure 5.5: a) Sedimentation coefficient of a self-avoiding linear FJC for several monomer numbers
(legend in b) over four decades of G̃. The broken line connects the points with N = 200. b) Reduced
radius of gyration for the same chains using ν = 0.588 [32]. Some points are connected for better
visibility.

5.2 Compactification of short chains

In the next two sections I will only investigate the self-avoiding linear FJC, i.e. the standard
type. Circular chains are treated in section 5.3. Fig. 5.5a shows S/µ0 over four decades
of G̃ for linear chains with N = 10 to N = 200 monomers. With the exception of the
two shortest chains, the sedimentation coefficient S(G̃) displays a non-monotonic behavior:
For small fields, S increases slightly; the polymer coil gets more condensed. After passing
through a maximum, S drops considerably until it saturates at a much lower value than for
the unperturbed (G→ 0) chain. It is interesting to note that the longest chain with N = 200
is the envelope of the other chains, which is indicated by connecting the symbols with a
broken line. Curves of long chains seem not to cross each other, different from short chains
(see N = 40). Two critical centrifugal field values characterize the curves: G̃⋆ where the
chains start to unfold and G̃⋆⋆ where - if present - they start to form a dense globule.

Close to equilibrium, i.e. G̃ = 0, hydrodynamic interactions lead to a crumpling of the front
part (in the direction of motion) of the chain, which eventually leads to a prolate spheroid.
Fig. 5.5b shows the field dependence of the radius of gyration, Rg, divided by the swollen
chain prediction for G = 0, Rg ∼ Nν with ν = 0.588 [32]. Irrespective of N , Rg decreases
from unity until it abruptly increases again at G⋆(N). For N = 20 and N = 10 G⋆ is either
not yet reached in this simulation, or the chains are too short for this long-chain behavior to
take place.

What is the mechanism for the compactification of the chains before they unfold? Mono-
mers in the center of the coil move faster than those outside. This leads to an internal
recirculation of the chain with a velocity that scales as v ∼ µ0GNa/Rg, where it is assumed
that Rg scales like hydrodynamic radius of the chain. This gives a recirculation time scale of

τc ∼ Rg/v ∼
R2

g

µ0GNa
. (5.12)

In order to compress the chain, the recirculation time scale τc needs to be shorter than the
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Figure 5.6: Typical configurations of a self-avoiding FJC for N = 100 (a-c), N = 140 (d, f), and
N = 200 (e, g) for case 6 and γ̃ = 200, except for (c) where γ̃ = 400. Circles represent the estimated
blob size ξ.

coil relaxation time τR ∼ R3
g/(µ0 kBT a), which gives the scaling

G̃⋆⋆ ∼ N−1−ν . (5.13)

When G̃ > G̃⋆⋆ , the chain with monomer number N begins to collapse.
It is interesting to note that the chains of different length show the same behavior at small

fields G̃ (see fig. 5.5b). Before the transition the curves of R̃g/N
ν lie nearly on top of each

other; the contraction is small and seems to be scale invariant. It can be accounted for by
extending the recirculation picture by a blob argument: It is assumed that for small fields
the chain is still self-avoiding on small length scales. As a whole it consists of a globule (or
an elongated string) of blobs in which the chain is self-avoiding. The blob size ξ decreases
when G is raised. Below G̃⋆⋆, the blob size is larger than the chain, ξ > Rg, and the scaling
behavior is unchanged. If G̃ is raised above G̃⋆⋆ , the chains collapses on smaller and smaller
scales. The collapsing starting from large scales is intuitively clear as the velocity difference is
greatest between the center and the outer boundary of the coil; neighboring monomers move
with nearly the same speed. The argument proceeds as before but on the scale of a blob:
The recirculation time τc and coil relaxation time τR for the blob are τc ∼ ξ Rg/(µ0GNa) and
τR ∼ ξ3/(µ0 kBT a) , respectively. This leads to a blob size of

ξ ∼
(

Rg a

G̃N

)1/2

. (5.14)

For G̃ = G̃⋆⋆ the blob size is ξ ∼ (Rg aN
ν)1/2 ∼ Rg as anticipated.

According to the blob picture with an overall globular structure, the size Rg of the chain
is Rg ∼ ξ (N/n)1/3 where n is the number of monomers inside one blob, i.e. n ∼ (ξ/Rg)

3N .
With eq. (5.14) one arrives at

Rg ∼ aN
1−ν
3ν+1 G̃

1−3ν
3ν+1 , G̃ > G̃⋆⋆ . (5.15)
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Figure 5.7: a) N -dependence of the maximum extension at three different field strengths. The lines
have slopes one and 1/7, respectively. b) Relative root mean square maximum extension in field
direction, Rz/L, as a measure for the unfolding of the linear chains.

For self-avoiding chains one has ν ≈ 3/5 and thus

Rg ∼ aN1/7 G̃−2/7 , G̃ > G̃⋆⋆ , (5.16)

and
ξ ∼ aN−3/7 G̃−9/14 . (5.17)

The scaling of eq. (5.16), Rg ∼ N1/7, is only valid until the blob size ξ is of the order of
the monomer radius a. For longer chains or higher fields, the radius of gyration scales like a
compact object, Rg ∼ N1/3. This scaling is not reached for long chains because they unfold
before appreciable compactification sets in.

Fig. 5.6 shows typical configurations for different field strengths and chain lengths. The
dashed circles show the estimated blob sizes ξ that scale approximately as in eq. (5.17). In
(a) the whole chain is inside one blob, the compactification is small. In (b) and (e) the chain
consists of a string a unperturbed pieces. The global structure can be a globule, as assumed
in equations (5.14) to (5.17) and displayed in (a), (d) and (e) for a rescaled field strength of
G̃ = 0.01 , or already partially unfolded as in (b), (f) and (g) for G̃ = 0.1 . Fig. 5.6c shows
the nearly completely unfolded state at G̃ = 1 .

For long chains, the unfolding starts before the globular structure is reached on small
length scales. The hydrodynamic forces that lead to the recirculation at small fields also
elongate the chain at higher field strengths. To that end another chain length is defined, the
root mean square of the maximum extension in z-direction

Rz =
(

〈max2[ri,z − rj,z]〉
)1/2

. (5.18)

In the extreme case of straight chain of blobs, the argument above with the maximum extension
Rz instead of the radius of gyration as the relevant length scale leads to

Rz ∼ aN G̃1/4 (5.19)

ξ ∼ a G̃−3/8 (5.20)

where logarithmic factors are neglected and assuming a scaling of the center-of-mass velocity
of v ∼ µ0GNa/Rz . The blob size is nearly independent of the chain length, and the extension
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Figure 5.8: a) Sedimentation coefficient as a function of monomer number for γ = 200G in the
zero-temperature limit. Circles show the deterministic case starting with a straight chain at an angle
of 45◦ to the G. The dashed line is eq. (5.23) with c = 0.48. The solid line is the long-tail limit
S/µ0 = (3/2) ln(N). Triangles are the values for G̃ = 100 from fig. 5.5a. b) Field strength where the
unfolding starts, G̃ obtained graphically from the maxima of S/µ0 in fig. 5.5a (triangles) and from the
points in fig. 5.5b where the sudden rise of Rg begins (circles). The line is G̃⋆ = 4000N−12/5.

Rz rises with increasing field strength. The real situation is in-between these two extremes,
eq. (5.16, 5.17) and eq. (5.19, 5.20), respectively (see fig. 5.6b). Fig. 5.7a shows how the
maximum extension Rz scales with the monomer number. For small fields the blob argument
is valid; the exponent of N is between eq. (5.16) and eq. (5.19) and the overall shape neither
globular not elongated. For higher fields, the unfolding sets in and the recirculation alone
cannot explain the scaling.

5.3 Unfolding transition

5.3.1 Linear chains

Up to now no explanation has been given why the polymer unfolds. As depicted in fig. 5.3d,
the chain approaches a “tadpole” configuration for G > G⋆. To demonstrate the unfolding
more clearly, the relative maximum extension in z-direction, Rz/L, is plotted in fig. 5.7b.
For small G a slight elongation of the coils can be seen. Above the field strength G⋆(N), the
elongation Rz/L rather smoothly crosses over to its final value at infinite G. L = 2a (N − 1)
is the contour length.

In order to derive scaling relations for the onset of unfolding it is important to know
the limiting values at G → ∞. A similar (but not completely equivalent) procedure is to
express the internal energies in units of G, viz. γ = 200G and ǫLJ = Ga, and omit the random
displacements ξi as done in eq. (3.13), which amounts to taking the zero-temperature limit
(cf. section 3.2). In that case, a complete sampling of the phase space is not done, and the
final configuration depends on the initial conditions. Often a spinning motion is obtained as
the terminal state. The ξi = 0 case might be illuminating as it describes how the tadpole
formation is purely hydrodynamically driven. To be specific, a straight chain at an angle of
45◦ to the centrifugal field G is chosen as starting configuration and the resulting S shown in
fig. 5.8. All chains, even N = 10, deform to a two-dimensional tadpole where the size of the
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head increases only marginally with N . The solid line is the (approximate) prediction for a
completely unfolded chain, S/µ0 = (3/2) ln(N), see eq. (B.30).

On the scaling level, one can model the chain as a spherical head of N0 beads with mobility
c/Nν

0 and a tail of N−N0 beads with mobility (3/2) ln(N−N0)/(N−N0). c is a fit parameter
and ν is in the range between 1/3 and 3/5 depending on whether the head is a globule or a
coil during unfolding. The distance between the points where the forces on the head and the
tail apply is approximately L/2, which gives an Oseen type HI between these two degrees of
freedom of the order of (3/2)/(N − N0). The equation of motion for this system neglecting
elastic forces,

(

v

v

)

= µ0

[

cN−ν
0

3
2 (N −N0)−1

3
2 (N −N0)

−1

3
2 ln(N −N0) (N −N0)−1

]

(

N0G

(N −N0)G

)

, (5.21)

is solved for the common velocity v and the number of monomers of the N0. Assuming ν = 1/3
and N ≫ N0, one gets to lowest order

N0 ∼ [(3/2c) (lnN − 1)]3/2 (5.22)

and

S/µ0 ∼ (3/2) lnN + 81 [lnN − 1]3/(32c3N2) . (5.23)

The dashed line in fig. 5.8 shows this prediction for c = 0.48 . Also shown are values for
G̃ = 100 taken from fig. 5.5 approaching this limiting prediction.

What is the field strength necessary to fully unfold the chain? It will be used to estimate
the field G⋆ where the unfolding starts assuming that both display the same scaling with N .
A slight backfolding from the tadpole state, i.e. changing N0, creates a force on the tail that
is proportional to the velocity difference ∆v of head and tail. From eq. (5.21) it is clear that
the primary change in the velocity difference in the limit N ≫ N0 comes from the velocity
of the head. If N⋆

0 denotes the number of monomers in the head in the tadpole state and



5.3 Unfolding transition 49

a) b)

N = 200
N = 140
N = 100
N = 80
N = 60
N = 40
N = 20
N = 10

G
∼

G
∼

0.01 0.1 1 10 100
0.5

1

1.5

2

0.01 0.1 1 10 100
1

1.5

2

2.5

3

S
N2/5µ0

S
ln Nµ0

Figure 5.10: Same data as in fig. 5.5 but rescaled with the low and high field prediction, S/µ0 ∼ N2/5

and S/µ0 ∼ ln(N), respectively. The short chains are omitted in (b).

∆N0 = N0−N⋆
0 then the velocity difference forN⋆

0 ≪ ∆N0 ≪ N scales like ∆v ∼ µ0G∆N1−ν
0 .

The force f that the tail acts on the head is thus

f(∆N0) ∼ µ−1
0 ∆v (N −N0) ∼ G∆N1−ν

0 (N − ∆N0) . (5.24)

Integrating f(∆N0) from a value close to zero up to N/2 gives the work with respect to
the head of going from the tadpole ground state to the halfway backfolded state, which we
demand to equal thermal energy. In principle, this work should be calculated with respect
to the center of resistance, but on the scaling level the difference does not matter. The field
strength below which thermal fluctuations destroy the tadpole shape follows as

G̃⋆ ∼ N−3+ν . (5.25)

If the head is a coil at the beginning of unfolding, ν = 3/5, which is the case for long
polymers, then G̃⋆ ∼ N−12/5. Figure 5.9 demonstrates that the curves for different N can be
approximately described by a single curve in the high field limit if one plots them with an
argument G/G⋆ instead G̃. The scaling is not perfect because the size of the head N⋆

0 is not
negligible for the chains under investigation. R∞

z and S∞ are the values in the limit G̃→ ∞
of Rz and S, respectively. The line in fig. 5.9a the function Rz/R

∞
z = 1 − 500 [G̃ N12/5]−5/7

where the factor 500 is fitted to N = 100. The scaling 1−Rz/R
∞
z ∼ G̃−5/7 is again obtained

from integrating equation (5.24) up to a fraction of N .
The data of fig. 5.5a are replotted in fig. 5.10 and divided by the low and high field

scaling, S/µ0 ∼ N2/5 and S/µ0 ∼ ln(N), respectively. The curves collapse within a factor of
approximately ten percent for chain length above N = 60.

So far it was tacitly assumed that elastic forces can safely be neglected on the scaling level.
In principle one should add the direct force between head and tail to the right hand side of eq.
(5.21). This is conceptionally important because the balance of the head and tail velocities
does not require the head to move first. If the tail is shorter than the value determined by eq.
(5.22) an elastic (stretching) force due to the velocity difference appears that slows down the
head and accelerates the tail. In addition, the force unwinds the head making the tail longer
and reducing thereby the difference in velocity. An estimate for the force that opposes the
unwinding is the force that causes the crumpling of the head by recirculation, which scales
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like the number of head monomers times the velocity:

Fhead ∼ GN2−ν
0 . (5.26)

In eq. (5.24) the force on the tail due to the velocity difference is estimated under the as-
sumption N⋆

0 ≪ ∆N0 ≪ N . In the opposite limit, ∆N0 ≪ N⋆
0 ≪ N , one finds ∆v ∼

µ0G∆N0 (N⋆
0 )−ν and thus for the force on the tail:

Ftail ∼ GN ∆N0 (N⋆
0 )−ν . (5.27)

Equating both, Fhead ∼ Ftail ∼ Fel, and using ∆N0 ≪ N⋆
0 gives in the case of ν = 1/3:

∆N0 ∼ N−1 (lnN − 1)3, and hence

Fel ∼ G (lnN − 1)5/2 . (5.28)

Plugging Fel into eq. (5.21) does not change the scaling, equations (5.22) and (5.23). The
configuration, in which the tail moves before the head, is instable as can be seen from the
following: If the tail is slightly longer than the velocity balance it moves faster pulling the
slower head that hence even more unwinds and shrinks.

It remains to be shown that the scaling eq. (5.25) also describes the beginning of the
unfolding. Fig. 5.8b shows G̃⋆ defined by two different ways as a function of the monomer
number. In both cases the fit function to eq. (5.25),

G̃⋆ = 4000N−12/5 , (5.29)

describes the data quite.

5.3.2 Circular chains

The question arises whether the described behavior is specific to linear chains. Within a
preaveraging approach this cannot be decided [146, 191]. Ralston and Schumaker [146] showed
that circular DNA has a similar sedimentation speed dependence as linear DNA with half the
length. Indeed, the curves for the speed dependence of S in fig. 5.11b show a similar trend
as those in fig. 5.5a. The maximum extension in field direction, which is approximately the
length of the tail, of a circular N = 200 chain shows very similar behavior for large G as a
linear N = 100 chain. The explanation can be found by looking at fig. 5.3e: Circular chains
form a two-strand tail the length of which determines the mobility in the unfolded state.
However, the sedimentation velocity of a circular N = 200 is nearly a factor of two higher
than that of a linear N = 100 chain in the limit G̃ → ∞ (see fig. 5.11b). The reason is that
the twofold number of monomers (and thus the twofold total centrifugal force) is contained
in the tail of the circular N = 200 chain compared to the linear N = 100 chain, although
the lengths and thus the mobilities are nearly equal. At small field strengths circular chains
with the same number of monomers are only slightly faster than linear ones. The maximum
of S(G̃) is more pronounced than for linear chains, which can be ascribed to the additional
topological constraint of a closed chain that hinders the unfolding.

Linear chains and circular chains both show only a logarithmic length dependence of the
sedimentation velocity at high fields, but the difference between these two classes is about
factor of two. This fact can be exploited to separate linear and circular chains of the same
molecular weight. The method should be quite efficient because a factor of two can be easily
resolved in an ultracentrifugation experiment, and therefore only short runs are necessary.
Closed polymer chains are also relevant in the context supercoils [128] where a strong rotor
speed dependence has been observed.
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Figure 5.11: Sedimentation of circular (white symbols) and linear chains (black symbols). a) Rela-
tive maximum extension: The black circles are divided by a factor of 2. b) Rescaled sedimentation
coefficient: The legend is in part (a).

5.4 Discussion

Unfolding in elongational and shear flow has long been investigated [162]; unfolding in ho-
mogeneous flow has not been considered probably due to its smallness compared to the other
types of flow at typical shear rates. Historically, the ultracentrifugation studies of flexible
polymers were partially motivated by the length separation of very long DNA [151, 192]. To
avoid the rotor speed dependent decrease of the sedimentation coefficient and obtain well-
defined results, the sedimentation field may not be too large for chromosomal DNA, which
makes this separation method less attractive. Our simulations suggest that above a certain
monomer number and for a given field strength, longer chains are faster than shorter one,
different from [192]. Mass separation is therefore possible at all rotor speeds though difficult.
In addition, it allows to separate circular from linear polymers.

There are accounts for an increase of the sedimentation coefficient with rotor speed, as for
certain chaperones [18], which can be explained by a deformation of the protein decreasing its
dimensions. Rotor speed effects are also observed under theta conditions, as for polystyrene
in cyclohexane [28]; the decrease of the sedimentation coefficient is small and approximately
in the range of Zimm’s theory.

The presented transition might be important in the context of electrophoresis and electric
birefringence if strong enough electric fields lead to fast electrophoretic motion. Here a second
unfolding mechanism due to dipoles takes place [122] where the critical field strength E⋆ scales
as E⋆ ∼ N−1/2, that is with a much smaller power than the proposed unfolding mechanism
of this chapter.

It is interesting to ask which birefringence signals correspond to the different stages of the
configurational changes in the external field. Fig. 5.12a shows the birefringence parameter χ,
see eq. (3.16), as a function of field strength. As expected for system with many degrees of
freedom, there are several regimes with different scaling: The low field regime, i.e. a slight
deformation of the chain, is only reached for short chains. It is characterized by χ ∼ G̃.
In the range where the sedimentation coefficient S(G̃) exhibits a maximum, viz. around
G̃ = 0.1 for N = 100, the birefringence χ increases more steeply, until χ starts to saturate
when the chain is unfolded and begins to straighten. The unfolding is less abrupt than in the
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dipole orientation case [122] which should manifest itself also in the field dependence of the
birefringence.

In fig. 5.12b the persistence length is changed from flexible to rod-like for a N = 100
chain at a finite field, G̃ = 1. The limit of ℓP = 0 is depicted in fig. 5.6c, the opposite limit,
ℓP ≫ L, was described in detail in chapter 3. The sedimentation coefficient and birefringence
parameter show a non-monotonic behavior at G̃ = 1. For a ≪ ℓP ≪ L the head is more
extended than in the completely flexible case. At ℓP ∼ L the head unfolds, and the chain
approaches an bent perpendicular oriented arc. For G̃→ 0, S is proportional to the diffusion
constant of a neutral semiflexible chain discussed in chapter 6, which monotonically crosses
over from the swollen to the rod behavior. The high field case yields a mobility that is about a
factor of two higher in the flexible than in the rod-like limit because in the former the tadpole
rods point in field direction and in the latter perpendicular to it. The last figure suggests
that an analytical ultracentrifuge can be used to determine the persistence length and other
elastic parameters if the rotor speed can be tuned over a wide range.



Chapter 6

Salt Dependent Diffusion of

Semiflexible Polymers

So far the problem was completely hydrodynamical. The systems were neutral and infinitely
dilute: Electrostatic interactions, counterions, salt and other polymers were not taken in
to account. From now on I will also consider charged polymers, i.e. polyelectrolytes, which
introduces two additional lengths to the system, the screening length κ̃−1 and the box size B as
a measure for the semi-diluteness of the polymer solution. In this chapter I will be concerned
with the diffusion and small-field sedimentation of semiflexible and rod-like polymers in an
electrolyte solutions. It is in some sense complimentary to the last chapter that concentrated
on strong fields and flexible polymers.

The long-time translational diffusion constant of the center of mass RCM of a microscopic
object is defined as

D = lim
t→∞

〈[RCM (t) − RCM(0)]2〉
6 t

. (6.1)

By virtue of the fluctuation-dissipation theorem [88], it is equal to the linear response with
respect to an external force FG, called the sedimentation force, acting only on this object and
not on e.g. the small ions:

D = kBT lim
FG→0

(ṘCM)z
FG

(6.2)

where it is assumed that FG points in z-direction. Since for most experimental situations the
sedimentation force can be considered as weak (with respect to kBT divided by the typical
particle dimension) both problems will be treated interchangeably.

A related transport process is electrophoresis of semiflexible polymers for which there ex-
ists a considerable number of publications, both experimentally [68] and theoretically [6, 108].
Since the electric field moves the polyelectrolyte and the counterions in opposite directions
hydrodynamic interactions are screened over distances much larger than the Debye-Hückel
screening length, resulting in a logarithmic dependence of the electrophoretic mobility on the
ionic strength for long polymers. On the other hand, the literature dealing with the effect
of the ionic strength on the sedimentation and diffusion of dilute polymer solutions is rather
sparse. In the last few years experimental methods have become available to investigate
polymer diffusion on the single molecule level [86]. Understanding salt dependent diffusion
may help to resolve discrepancies of diffusion measurements in different buffer solutions, and
is relevant for many biological processes on the intracellular level. It may also clarify the
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Figure 6.1: a) Radius of gyration versus monomer number for freely-jointed chains with (circles) and
without hydrodynamic interactions (black triangles), semiflexible chains with ℓP = 10a (squares) and
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Flory parameter P of a FJC with excluded volume for ℓP = 0 (circles) and ℓP = 10a (squares). The
lines are guides to the eye.

applicability of the Nernst-Einstein equation which recently caused some confusion in the
literature [170].

6.1 Diffusion of neutral semiflexible chains

Before turning to the salt dependence I briefly address the diffusion of a neutral semiflexible
chain where the flexible and the rod-like limits are well investigated. Analytical treatments for
the intermediate regime [65, 189] neglect the self-avoidance of the chains and yield complicated
expressions not very practical for a comparison with experiments. For this reason I propose
a heuristic interpolation formula that serves as a reference state for the salt dependence of
the diffusion constant but might also be important in its own right.

Flexible chains

The flexible regime is determined by ℓP ≪ L. For a realistic treatment excluded volume
effects need to be taken into account. Polymers with monomer radius is larger or equal than
the persistence length, ℓP ≤ a, are well described by the freely jointed chain (FJC). In the
simulations, the FJC is again realized with a potential eq. (5.9) where γ̃ = 360. In the case
of a < ℓP , the diffusion constant also depends on the persistence length. Short chains show
an ideal behavior; for longer chains excluded volume effects become important. Ideal chains
scale as Rg ∼ Re ∼ N1/2 in the long chain limit where Rg is the radius of gyration and Re

the end-to-end distance, self-avoiding chains as Rg ∼ Re ∼ Nν with ν ≈ 0.588 [32]. For our
purpose ν = 3/5 is sufficient.

The prefactors of the diffusion constants of these chains are not analytically known. In the
case of the self-avoiding FJC the prefactor will be determined by simulations. For semiflexible
chains with a≪ ℓP , the prefactor of the radius of gyration is obtained by matching the FJC
value at ℓP = a, see equations (6.7) and (6.10). To derive the diffusion constant, the known
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value of the Flory parameter P defined as [51]

P =
kBT√

6 η DRg

(6.3)

is used, which relates the diffusion constant to the radius of gyration, and which is assumed
to be universal for each class of chains.

The use of the Flory parameter is illustrated in the case of Zimm’s ideal Gaussian chain
with preaveraged hydrodynamic interactions of chapter 5. One finds [32] a diffusion constant
of

DZimm =
4kBT

3
√

6π3/2 η aN1/2
(6.4)

which together with Rg = 2aN1/2/
√

6 (note that the Kuhn length is 2a and the end-to-end
radius is given by Re = 2aN1/2) gives

PZimm = 3
√

6π3/2/8 ≈ 5.11 . (6.5)

For an ideal semiflexible chain with separated length scales satisfying a ≪ ℓP ≪ L , one has
[189]: R2

g = L ℓP/3 and obtains by an explicit calculation on the Zimm level

Zimm
WLC =

kBT

3πηL

4

3

√

6

π

(

L

2ℓP

)1/2

. (6.6)

This result can also be obtained from eq. (6.4) by replacing the Kuhn length 2a by twice the
persistence length, 2ℓP . The Flory parameter P thus turns out to be the same as in eq. (6.5),
as expected based on the universality hypothesis.

In the case of a self-avoiding freely-jointed chain obtained in the simulation by setting
ℓP = 0 one finds by fitting the prefactor to the asymptotic behavior (see fig. 6.1a):

Rg = 0.96 aN3/5 , (6.7)

Both, hydrodynamic and free draining results are used for the fitting and show no difference
as expected for equilibrium properties. The diffusion constant follows from fig. 6.2b as

DFJC = 1.68
kBT µ0

N3/5
. (6.8)

The last two equations give a Flory parameter P = 4.8 ± 0.3 which is reproduced in fig.
6.1b although the large error bars make the extrapolation N → ∞ difficult. Garćıa Bernal et
al. [52] find a value of P = 5.3±0.2 for a FJC with a Lennard-Jones radius slightly larger than
the bead radius a using Monte Carlo simulations and rigid-body hydrodynamics, in which the
velocity of the chain is calculated from the configuration according to the equations (3.25)
and (3.26).

For long self-avoiding (SA) semiflexible chains satisfying a ≪ ℓP ≪ L, one expects
more complicated behavior, as the spatial size under good solvent conditions scales as Rg ∼
(a ℓP )1/5L3/5 and thus shows a weak dependence on the persistence length [124]. It is obtained
from minimizing the free energy F with respect to the radius Rg:

F ≃
R2

g

ℓP L
+ v2R

3
g

(

L

ℓP R3
g

)2

(6.9)
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where the first term is the entropic elastic energy associated with the swelling of the semi-
flexible polymer chain to a radius Rg and the second term is the second-virial repulsive energy
proportional to the (excluded volume) coefficient v2, where v2 ∼ ℓ2P a, and the segment density
squared, integrated over the volume R3

g [124]. The prefactor is matched with eq. (6.7) for
ℓP = a, which corresponds to an effective Kuhn length 2a,

Rg = 0.96/23/5 (a ℓP )1/5L3/5 ≈ 0.63 (a ℓP )1/5L3/5 , (6.10)

and is consistent with the simulated data (see fig. 6.1a). In fig. 6.1b the Flory parameter P
for self-avoiding chains with ℓP = 0 and ℓP = 10a is presented. For N → ∞ both chains
approach approximately the same value within their error bars. Table 6.1 summarizes the
values for the ratios of the three characteristic radii, the end-to-end radius, the radius of
gyration, and the hydrodynamic radius, expressed by R2

e/R
2
g and P . It is assumed that these

ratios are universal for each of the four classes of chains.
The diffusion constant in this asymptotic regime is thus determined by the radius of

gyration and scales as D ∼ µ0 kBT (a4/ℓP )1/5L−3/5. To obtain the prefactor D is matched
with eq. (6.8) for ℓP = a:

DSA = 1.68 × 23/5 µ0kBT
a4/5

ℓ
1/5
P L3/5

= 2.55µ0kBT
a4/5

ℓ
1/5
P L3/5

. (6.11)

The self-avoidance is only effective above the length LSA which is defined as

LSA = ℓ3P /a
2 . (6.12)

It is proportional to the square of the inverse excluded volume fraction, LSA ∼ ℓP (ℓ3P /v2)
2.

Below LSA the chain is ideal:
Rg = (2ℓP L/6)

1/2 . (6.13)

The relation is tested in fig. 6.1a for ℓP = 10a which corresponds to LSA = 1000a: The
radius of gyration first increases nearly linearly with N as expected for rodlike chains, crosses
over to a Rg ∝ N1/2 behavior for L ≫ ℓP , until self-avoidance effects become important for
L ≫ ℓ3P /a

2. Good agreement with the intermediate ideal regime is visible, the self-avoiding
regime is not reached in fig. 6.1a. Using the numerically determined P = 6.0 for the ideal
FJC [55], the diffusion constant for the ideal semiflexible chain in the regime a < ℓP and
L ≪ ℓ3P /a

2 is obtained from Rg = 2aN1/2/
√

6 where the prefactor is again given by the
matching at ℓP = a:

Dideal = 2.22µ0 kBT
a

(ℓP L)1/2
. (6.14)

It replaces the estimate eq. (6.6) derived in the preaveraging approximation for a Gaussian
chain.

Rod-like chains

In the rod-like case, L≪ ℓP , the numerical result for a cylinder model by Tirado et al. [172]
with length L and radius a,

Dcyl(L, a) =
kBT

3π η L

[

ln

(

L

2a

)

+ 0.312 + 0.565

(

2a

L

)

− 0.1

(

2a

L

)2
]

, (6.15)
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ideal Gaussian ideal FJC self-avoiding FJC rod-like rod with O(L/ℓP )

R2
e/R

2
g 6 6 6.4 ± 0.1 12 12 − 8L/(5ℓP )

P 5.11 6.0 ± 0.1 4.8 ± 0.3 0 0

Table 6.1: Theoretical predictions for the squared ratio of the end-to-end radius to the radius
of gyration, and the Flory parameter P . The ideal Gaussian chain is Zimm’s preaveraging
value [32], the ideal FJC is the Monte Carlo result of [55], and the self-avoiding FJC shows
the limiting value of fig. 6.1b. The Flory parameter vanishes logarithmically in the N → ∞
limit for a rod.

is taken, which is compared with simulations and other numerical and analytical results in
appendix B.3. Tirado’s model seems to be best suited to describe short rod-like chains. The
radius of gyration is simply

Rg = 4
√

3 aN . (6.16)

Wormlike chains

Two approximate analytical results for the whole range of flexibility, L/ℓP , are presented:
Harnau, Winkler and Reineker [65] use preaveraged hydrodynamic interactions and a global
inextensibility constraint to derive

D =
kBT

3πη L

{

1 +

√

6

π

∫ L

2a

L− s

L
√

f(s)
e−6a2/f(s) ds

}

(6.17)

where f(s) is given by

f(s) = 2 ℓP s− 2 ℓ 2
P [1 − exp(−s/ℓP )] (6.18)

and is in fact the squared distance of two points with contour length difference s for a given
persistence length ℓP , in particular f(L) = R2

e . It correctly describes the trend (see fig.
6.2a) and gives D ∼ 1/

√
L for ℓP ≪ L, and D ∼ lnL/L for ℓP ≫ L, but it has the

following shortcomings: The result is not explicit and does not take excluded volume effects
into account; the use of the global inextensibility constraint is questionable [87]; and the
rod-like limit is only reproduced up to

√

6/π.

Yamakawa and Fujii [189] calculate a series expansion for the mean reciprocal distance
〈1/Re(s)〉 between two points along a wormlike cylinder using a preaveraged Oseen tensor both
for small and large contour lengths (with respect to the persistence length) and determine
the coefficients such that the first and second derivatives with respect to s are the same
at s = 4.556 ℓP , where s is the contour length difference between these two points. The
transition point, s/ℓP = 4.556 , also follows from the requirement of the continuity of the first
two derivatives and has no further meaning. The diffusion constant is then given by

D =
kBT

3πη L

∫ L

0

L− s

L

〈

1

Re(s)

〉

. (6.19)

The resulting formula is presented in the appendix B.4. The limiting form for ℓP ≫ L≫ a,

D(L, a, ℓP ) =
kBT

3π η L

[

ln

(

L

2a

)

+ 0.386 +
1

2

(

2a

L

)

+
1

12

(

L

ℓP

)]

, (6.20)
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is very similar to eq. (6.15) and gives in addition the first order correction for a weakly bending
rod. The flexible limit, ℓP ≪ L, including the first order corrections in ℓP/L is given by

D =
4
√

6 kBT

9π3/2η
(2ℓP L)−1/2

{

1 −
√

3π

4
(ℓP /L)1/2

}

. (6.21)

The main objection is that excluded volume effects are again neglected and that the series is
badly converging thus rendering the comparison with experimental results difficult.

Interpolation formula

It is therefore desirable to find a simpler fitting formula for the semiflexible chain even if
no physical derivation can be given. It will be useful for the later investigations of the salt
dependence. The three regimes, diffusion of rod-like chains, eq. (6.15), ideal flexible chains,
eq. (6.14), and swollen flexible chains. eq. (6.11), are included.

In a first step a correction to the rod limit for finite persistence length is presented: A
weakly bending rod has an end-to-end distance Re of Re = L [1−L/(6 ℓP )] which follows from
eq. (6.18) by expansion with respect to L/ℓP . As seen from the last column of table 6.1, the
radius of gyration (and thus also the hydrodynamic radius) need not have the same O(L/ℓP )
correction to the rigid rod limit. Only in the limiting case ℓP → ∞, the radius of gyration
and the diffusion constant can be directly infered from the end-to-end distance. A qualitative
understanding of the correction term L/(12ℓP ) in eq. (6.20) is possible from the following
argument: The diffusion constant is approximately given by the Kirkwood hydrodynamic
radius [32], D ∼ ∑〈1/rij〉/N2, where rij is the distance between the two frictional elements
i and j. Neglecting discretization and end effects this amounts to calculating (see also eq.
(6.17))

D ∼ 1

L2

∫

(L− s)

〈

1

rs

〉

ds ∼ 1

L2

∫

L− s

s
ds +

1

L2

∫

L− s

6 ℓP
ds (6.22)

where 〈1/rs〉 ∼ 1/f(s) ≈ [1 − s/(6ℓP )]/s has been used (cf. eq. (6.18)). The first term gives
the usual rod limit, while the second gives, integrated from zero (or the small distance cutoff)
to L, a term of L/(12 ℓP ). It is precisely the O(L/ℓP ) term in eq. (6.20). This motivates the
following modification of Tirado’s formula, eq. (6.15), for weakly bending rods (WBR):

DWBR =
kBT

3π η L

[

ln

(

L

2a

)

+ 0.312 + 0.565

(

2a

L

)

− 0.1

(

2a

L

)2

+
1

12

(

L

ℓP

)

]

. (6.23)

The interpolation between the ideal and swollen flexible regimes is done on the level of
the (exact) hydrodynamic radius RD, defined by

RD =
kBT

6πη D
, (6.24)

which should be distinguished from the Kirkwood hydrodynamic radius Rh, eq. (5.11), that
is just an approximation to it. In the flexible regime this interpolation reads

R
(flex)
D = 0.45 (ℓP L)1/2

[

1 + 0.25
v2
ℓ3P

(

L

ℓP

)1/2
]1/5

= 0.45 (ℓP L)1/2

[

1 + 0.5

(

L

LSA

)1/2
]1/5

(6.25)
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Figure 6.2: a) Simulation of a neutral N = 10 chain with γ̃ = 360 (triangles) compared with the
predictions of Yamakawa et al., eq. (6.20) (dotted-dashed), Harnau et al., eq. (6.17) (dashed line),
and the interpolation, eq. (6.30), with α = 3 or α = 4, respectively (upper and lower solid lines). b)
Neutral chains with γ̃ = 360: Flexible (ℓP = 0, circles), semiflexible (ℓP = 10a, squares) and stiff
chains (ℓP /L = 5, stars). Respective theoretical predictions: DFJC, eq. (6.8), (dotted-dashed line);
Dflex, eq. (6.29), with ℓP = a (dotted line); Dint, eq. (6.30), with ℓP = 10a and α = 3 (solid line); and
Dcyl, eq. (6.15), (dashed lines).

where LSA is defined in eq. (6.12) and v2 is the second virial coefficient of the excluded volume
interactions that is given by [124]

v2 = ℓ2P 2a . (6.26)

The interpolated radius of gyration and end-to-end radius read

Rg = 3−1/2 (ℓP L)1/2

[

1 + 1.59

(

L

LSA

)1/2
]1/5

(6.27)

Re =
√

2 (ℓP L)1/2

[

1 + 1.87

(

L

LSA

)1/2
]1/5

. (6.28)

In the limits L/LSA → 0 and L/LSA → ∞, the diffusion constant Dflex given by

Dflex =
kBT

6πη Rflex
D

= 2.22µ0 kBT (ℓP L)−1/2

[

1 + 0.5

(

L

LSA

)1/2
]−1/5

(6.29)

reduces to DSA, eq. (6.11), and Dideal, eq. (6.14), respectively.
Surprisingly, the simple heuristic expression

Dint(ℓP /L) = (Dα
cyl +Dα

flex)
1/α (6.30)

that interpolates on a logarithmic scale between the flexible, eq. (6.29), and the rod limit, eq.
(6.15), gives a good description of the Brownian dynamics data (see solid lines in fig. 6.2).
α is a fit parameter for which α = 3 turns out to give good numerical agreement. If not
otherwise mentioned, α = 3 is chosen.

Fig. 6.2a shows a comparison of the predictions of Yamakawa et al., eq. (B.38) and (B.39),
and Harnau et al., eq. (6.17), together with the interpolation formula, eq. (6.30), for α = 3
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and α = 4. Simulation results for N = 10 show the validity of the choice of α. γ̃ is chosen
large enough that the influence of the stretching on the diffusion is small; γ̃ = 360 seems to
be sufficient.

In fig. 6.2b, the persistence length ℓP is fixed (ℓP = 0, ℓP = 10a and ℓP = 5L, respectively),
and the length N is changed. The transition from a lnN/N to a N−3/5 behavior is well
reproduced. It can also be seen that DFJC describes the simulation data for flexible chains
only from a certain length onward while Dcyl already includes corrections for short chains.
Also Dflex introduces corrections for short flexible chains. Although no physical insight can
be gained from such a fit, it is quite helpful to separate electrolyte friction from the effects
on D due to conformational changes. It can be used to obtain an effective total persistence
length (including electrostatic stiffening).

6.2 Salt dependence of polymer diffusion

6.2.1 Method of investigation

As before, the time evolution of the charged system is modeled by a Langevin equation

ṙi(t) =
2N+2Ns
∑

j=1

µij(|ri − rj|)
[

−∇rj
U({rk}) + hj

]

+ ξi(t) (6.31)

with the main difference that the constant external field hj only acts on the monomers,
hj = h êz for j < N and zero otherwise. Comparison with eq. (6.2) gives FG = N h . Eq.
(6.2) is much more convenient than eq. (6.1) from a numerical point of view. The potential U
consists again of an elastic, a Lennard-Jones and an electrostatic part. The screening length
κ−1 includes 2Ns salt and N counterions:

κ

a
=

(

4π ζ (N + 2Ns)

(B/a)3

)−1/2

(6.32)

and is varied by changing the box size B, keeping Ns approximately constant. Except for
very low salt concentrations, B is well above κ−1. The coupling parameter ζ is defined in eq.
(2.26).

In fig. 6.3 it is checked that the external field h̃ = 0.05 is small enough that the fraction of
bound counterions φ, defined as the fraction of counterions that are within a distance of 2a
to a monomer, and the mean orientation ψ do not deviate much from their limiting values,
and that the inferred diffusion constant D is close to its limiting value at h → 0. At very
low salt concentrations (fig. 6.3a) the counterion distribution, which is here characterized by
φ, is sensitive to even small fields h. But in that case D is not very dependent on the form
of the counterion cloud any more and already close to the limiting diffusion constant at zero
salt concentration D0. The overestimation will therefore be small. Further checks were made
for the radius of gyration Rg and the current divided by the sedimentation field,

σ =
∑

i

si żi /h (6.33)

where the sum runs over all particles and si = ±1.
The time step ∆̃ is chosen of the order of 10−3. It is also important to check the box

size dependence, which is a measure for the semidiluteness of the polymer solution. It has
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Figure 6.3: Test of the linear response regime for N = 20, Ns = 40 and ℓP /L = 10 by looking at
the field dependence of the rescaled diffusion constant D̃, the fraction of bound counterions φ and the
mean orientation ψ. a) Low salt conditions (κ−1/L = 224.1). b) High salt (κ−1/L = 0.238). Except
for the fraction of close counterions φ in a) h̃ = 0.05 seems to be a sensible value.

been shown [115, 184] that even small volume fractions can markedly affect the diffusion. In
fig. 6.6a, the diffusion constant and rescaled current σ̃ is plotted against the box size B for
κ̃−1 = 126.9 showing that the condition B > 2κ−1 + L is often already sufficient to obtain
results characteristic for the infinite-box-size limit.

6.2.2 Charged spheres

Most of the analytical work for salt-dependent diffusion has been done for charged colloidal
spheres with [16, 80, 129] and without [29, 114, 115, 159] hydrodynamic interactions. The
free-draining results were also extended to spheroids [3, 176]. Schurr [159], and Medina-
Noyola and coworkers [29, 114] calculate approximately the fluctuating electrostatic force of
the small ions on the central sphere in the free draining case. The different approximation
schemes in these calculations are summarized in [29]. They all agree that D equals its value
for an uncharged sphere at very high and very low salt concentrations but has a minimum
at κ−1 ≈ R where R is the radius of the sphere. Booth [16] and Ohshima [129] use a
hydrodynamic continuum ansatz starting with a diffusion equation for the small ions, the
Stokes equation for the fluid and the Poisson equation, and solve the coupled set of partial
differential equation for small sedimentation velocities. In the limit of small surface charges
one finds for the diffusion constant divided by its value for a neutral sphere, denoted by D0

[16, 56]

D

D0

≡
[

1 + ∆ζel
D0

kBT

]−1

=

[

1 +
Z2 ℓB ai

12R2
fB(κR)

]−1

(6.34)

where Z and R are the valency and radius of the colloidal sphere, and ai is the hydrodynamic
radius of the small ions, which are assumed to be equal in valency and size. ∆ζel is termed
electrolyte friction. The dimensionless function

fB(x) =
1

(1 + x)2

(

1

5
x2 − 1

2
x+

3

2
− 21

4
x−1 − 39

2
x−2
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Figure 6.4: Isotropical elastic rod with N = 10 and ℓP = 5L. a) Simulations with ζ = 5 (squares)
and analytical results (6.40 - 6.42) for N = 1, 5, 10 and 20 (solid lines from top to bottom). b)
Simulations with coupling parameters ζ = 5 (squares) and ζ = 2.5 (triangles) compared with eq.
(6.44) with f = 0.5 in both cases. The equivalent radius is given by eq. (6.43).

+
2

3

[

1

16
x3 (x2 − 12)T (x) +

2

3
(1 + x−1)

]2

+
1

15
x2 (4x5 − 90x+ 180)T (2x)

)

(6.35)

with

T (x) = x−1 − x−2 + 2x−3 − 6x−4 − ex
∫ ∞

x

e−t

t
dt (6.36)

displays a bell-like curve on a log-linear scale with a maximum of fB ≈ 0.1 at κR ≈ 0.3 . The
width of the curve is about one decade. ∆ζel is much smaller than in the treatments of Schurr
and Medina-Noyola et al. As pointed out in [56, 161] these two approaches are in some sense
complimentary.

This point could be further clarified by Nägele and coworkers [80, 113] using a mode-
coupling approximation including both Rotne-Prager level hydrodynamic interactions and
fluctuating electrostatic forces. Their result is close to the formula of Booth, eq. (6.35).
which means that the influence of the direct fluctuating forces on the electrolyte friction is
greatly reduced by the hydrodynamic interactions. Experiments [157] seem to support their
results up to a certain degree, showing that the approximations made in the derivation (lowest
order mode-coupling, Debye-Hückel electrostatic interactions) are still quite strong.

For κR ≪ 1, the Onsager limiting behavior

fB(κR) ∼ κR (6.37)

is recovered by Booth’s dimensionless function; in the opposite limit κR≫ 1 one finds

fB(κR) ∼ κ−4 . (6.38)

In the non-hydrodynamic theory of Schurr the salt dependence of D can also be expressed in
the form of eq. (6.34) but with a different function

fS(x) =
1

x

(

1 − [1 + 2x] e−2x
)

(6.39)
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which shows the same κR ≪ 1 asymptotics, but fS(κR) ∼ κ−1 in the limit κR ≫ 1. In the
following it is investigated whether this behavior can also be found for non-spherical objects,
especially for semi-flexible polymers.

6.2.3 Rod-like polymers

The method of Medina-Noyola et al. can be extended to prolate ellipsoids [3, 176] by treating
parallel and perpendicular friction separately. In the bead model of this thesis the ratio of
the major semiaxis a> to the minor semiaxis a< is given by N . Denoting by γ = 1 the
perpendicular and by γ = −1 the parallel case, and defining cN =

√
N2 − 1 the following

expressions for the electrolyte friction coefficients are obtained [176]:

∆ζγ
el =

6πη ai Z
2 ℓB

12a>

3N

4κa<

∫ 1

0
du

1 + γ + u2 (1 − 3γ)

1 + (cNu)2
(

1 −
[

1 + 2κa<

√

1 + (cNu)2
]

e−2κa<

√
1+(cNu)2

)

. (6.40)

With the salt-free friction coefficients [139]

ζγ
0 =

16πη(N2 − 1) a>
[

N2 (3 − γ) − 1
2 (5 + γ)

]

N (N2−1)−1/2 ln(N+
√
N2 − 1) − 1

2(1 − 3 γ)N2
(6.41)

one finally gets

D

D0

=
2
[

ζ⊥0 + ∆ζ⊥el
]−1

+
[

ζ
‖
0 + ∆ζ

‖
el

]−1

2/ζ⊥0 + 1/ζ
‖
0

. (6.42)

where the notation ζ(1) = ζ⊥ and ζ(−1) = ζ‖ is used. In the bead model, ai = a< = a and
a> = Na, and therefore µ0 = 1/(6πη ai).

The simulations are done with N = 10 monomers and Ns = 40 pairs of salt ions. The
persistence length is chosen ℓP = 5L with L = 2a(N−1). Due to the electrostatic contribution
to the persistence length [104, 127, 163] this is sufficient for the polymers to be rod-like. An
isotropic elastic medium is assumed, eq. (3.6). Fig. 6.4 shows the rescaled diffusion constant
D/D0 as a function of the rescaled screening length. Starting at infinite dilution (of polymer
and salt concentration) D decreases until κ−1 ≈ L and then begins to increase again. The
simulation data are rescaled with the cylinder value of eq. (6.15), i.e. D0 = Dcyl. In fig. 6.4a
the ζ = 5 result is compared with the prolate ellipsoid model (6.40 - 6.42) for aspect ratios
N = 1, 5, 10 and 20. A qualitatively similar trend in κ can be seen, but the minimum is much
too deep. Even an improved treatment [3] does not alleviate this disagreement. As already
announced for spherical objects, hydrodynamics seem to be essential for a proper description
of electrofriction. The theory of Schurr and Medina-Noyola is therefore discarded in this
work. It is interesting to note that according to their results the influence of electrofriction
gets stronger for larger aspect ratios.

Since no hydrodynamic theory for non-spherical objects is available the rod-like polymer
is treated as an effective sphere with equivalent radius R which is derived from the cylinder
model eq. (6.15),

R =
1

6πη Dcyl

, (6.43)
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Figure 6.5: a) Diffusion constant (multiplied by N for better visibility) as a function of screening
length for several N . Parameters: ℓp/L = 0.22, γ = 120 kBT/a and ζ = 5. Most of the time Ns = 40
is used, and κ̃−1 changed by varying the box size. b) Same data but D measured in multiples of Dcyl,
eq. (6.15), and κ̃−1 in multiples of L. Error bars are - if not shown - of the order of the symbol sizes.

and compared with the theory of Booth which in rescaled units reads

D

D0

=

[

1 +
f ζ N2 (ai/a) fB(κR)

12 R̃2

]−1

. (6.44)

Here, f is a fit parameter to account for the non-sphericity. The factor ai/a is included in
case that the effective radius of the small ions, ai, is different from the monomer radius. In
the simulations, ai = a always holds. Reasonable matching with the simulation data can be
achieved with f = 0.5 for both ζ = 5 and ζ = 2.5 . The trends in κ and ζ as well as the
position of the minimum seem to be correctly described; the dependence of f on the various
parameters needs of course further investigation.

6.2.4 Semiflexible polymers

In the last section it was checked that many features of the ionic strength dependence of
diffusion also apply to non-spherical rigid objects. I will now move to the main topic of
the chapter, the diffusion of slightly semiflexible polymers. The motivation for this is an
experiment with 394 bp DNA strands conducted by J. Bayer at the LMU München [8, 154].
Assuming a bare DNA persistence length of 30 nm and a rise per base pair of 0.34 nm one
finds

ℓP = 0.22L . (6.45)

Electrostatic effects on the persistence length that lead to ℓP ≈ 50 nm under physiological
conditions are taken into account explicitly since all monomers and ions are charged. Since
DNA is approximately isotropic elastic [165] a relation like eq. (3.6) seems at first to be
appropriate. But due to the finite external field h and the repulsive Lennard-Jones potential
this would lead to contour length fluctuations by more than 20% and strongly affect the
mobility of the chain. For this reason γ was arbitrarily set to the value

γ = 120 kBT/a (6.46)
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Figure 6.6: N = 10 chain with γ̃ = 120 and ℓP = 0.22L; ζ = 5. a) Test of the box size dependence
for κ−1 = 7.05L. b) Qualitative explanation of the minimum: D̃ (circles), 1/R̃c (triangles) and
σ̃ = σ/(N µ0) (squares).

at which D starts to become independent of γ for the chain lengths under investigation,
N ≤ 40.

Fig. 6.5a shows the result of such a simulation. As before D̃ ≡ D/(kBT µ0). For κ−1/a < 1
the system becomes very dense due the finite ion sizes so that hard core repulsion becomes the
dominant interaction. Hence, this region cannot be investigated. For better comparison of
the various curves, D is rescaled with the diffusion constant of a cylinder, eq. (6.15), which is a
good reference value at low salt even for the persistence lengths chosen, since charges increase
the effective persistence length. The diffusion constant D exhibits a shallow minimum at a
screening length intermediate between monomer size a and polymer length L. As seen in
fig. 6.5b, the rescaling results in a collapse of the curves for large and small κ̃−1/L but does
not completely eliminate the N -dependence of the position and depth of the minimum. I
attribute this mainly to the fact that increasing N while keeping L constant not only changes
the aspect ratio of the polymer but also its total charge, since we keep

ζ =
z2 ℓB
a

= 2z τ ℓB = 5 . (6.47)

τ is the linear charge density along the chain and z the valency of the ions and monomers. In
principle one needs three different ζ parameters, one for monomer-monomer, for monomer-ion
and for ion-ion interactions. If one considers the interaction between the monomers and the
counterions the most relevant then for DNA and monovalent ions one gets ζ = 8.2 which is
close enough to the chosen one. Writing Z = Nz, the total charge of the polymer, one finds

Z =

√

ζL

2ℓB
N and z =

√

ζL

2ℓB N
. (6.48)

Hence, one cannot fix the total polymer charge and the valency of the small ions at the same
time within this approach. N is therefore more than just a discretization of the chain with
given length L. On the other hand, present day computers make it nearly impossible to
simulate the correct number of ions even for our short 394 bp strand. More than qualitative
agreement cannot be expected.
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What is the mechanism behind this decrease of D ? Fig. 6.6b shows for N = 10 the
diffusion constant as well as the rescaled current σ̃ = σ/(N µ0), and the root mean square
radius Rc of the N counterions which are closest to the polymer (and which form the neu-
tralizing counterion cloud). At the evaluation times, for every counterion i the distance rij to
its nearest monomer j is determined. The counterions are sorted with respect to rij so that

Rc =

〈

N
∑

i=1

r2ij

〉1/2

. (6.49)

At infinite dilution of ions, i.e. κ̃−1 ≫ L, the current equals the diffusion constant, σ/(N µ0) =
D̃, in other words, the number of counterions that are dragged along with the polymer goes
to zero and the diffusion becomes quasi-free. The decrease of the current for decreasing
screening length indicates coupling of counterion motion to polymer motion, resulting in
increased hydrodynamic drag and thus a decrease of diffusivity. Upon further decrease of the
screening length, 1/R̃c , which is a measure for the hydrodynamic mobility of the neutralizing
counterion cloud, starts to increase. The polymer diffusion constant depends on both the
fraction of counterions dragged along and the hydrodynamic mobility of the neutralizing
cloud. The minimum occurs when the two competing effects are of the same order. For very
high salt concentration, the counterion cloud collapses around the polymer, and the polymer
diffusivity almost approaches the bare polymer value (modulo the effective increase of the
polymer radius due to adsorbed ions).

It may seem at first surprising that not all counterions are moving with the rod, even
in the linear response limit. It is checked that this is not an artifact due to finite box size,
i.e. finite polymer concentration (see fig. 6.6a). It appears that - depending on κ - only a
part of the counterion cloud is bound strongly enough to the polymer such that it will follow
its motion if a small perturbation h is applied.

The dependence of σ on κ−1/L deserves some comments: The simulation corresponds to
a semi-dilute polymer solution where the volume fraction is determined by B. The system is
let to equilibrate before a small external perturbation in form of the field h is applied to the
polymer. During the relaxation to the new stationary state only some finite fraction α(κ) of
the N counterions, which would neutralize the polymer, follow its motion. The rest is left
behind. The ion cloud is nevertheless only slightly distorted as salt ions continuously stream
around the polymer. For a finite box size some positive charge (if the counterions are assumed
to be positive) will re-enter the box from the opposite side. This leads in the reference frame
of the moving polymer to a non-zero flux of positive ions in the negative h-direction, which
seems unphysical for very dilute polymer solutions. This effect of course disappears in the
limit B → ∞. It turns out that is has a negligibly small effect even for the box sizes chosen
(see fig. 6.6a).

This transient finite current that persists until the polymer has settled to the bottom of
the sedimentation vessel - the polymer plus its co-moving counterions are not charge-neutral
- can also be expected from Onsager’s reciprocity relations [85]:

jel = L11E + L12 h

jpol = L21E + L22 h . (6.50)

jel is the electric current, jpol the mass current of the polymer, which is proportional to its
velocity, and L11 etc. are constant coefficients with L12 ∝ L21. Since L21 is proportional to
the electrophoretic mobility also the induced current from the sedimentation cannot be zero.
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Figure 6.7: Diffusion for N = 10. a) ℓp/L dependence for neutral (κ−1 → ∞, ζ = 0 and γ̃ = 360;
triangles) and charged polymers (κ−1 → ∞, ζ = 5 and γ̃ = 360; squares) at zero salt concentration,
as well as close to the minimum (κ−1/L = 0.42, ζ = 5 and γ̃ = 120; circles). The solid and the
dotted-dashed lines are eq. (6.30) with α = 3, in the second case an effective persistence length of
5.5 ℓP is used. The dashed line is again eq. (6.17). b) D/Dint at ζ = 5 for ℓP /L = 5 (squares) and
ℓP /L = 0.22 (circles) - data taken from fig. 6.4a and fig. 6.5b - compared with the inverse (Kirkwood)
hydrodynamic radius divided by its limiting value 1/R0

h for κ−1 → ∞, R0

h/Rh, of the ℓP /L = 0.22
data set (triangles).

The analysis neglects of course configurational changes of the semiflexible and slightly
extensible polymer: The counterions very close to the polymer screen the electrostatic repul-
sion between the charged monomers and lead to an increased coiling of the polymer chain
that raises D slightly. Nevertheless, configurational changes of the chain do not dominate
the dependence of D on κ̃−1 at ℓP/L = 0.22 since the curves for rods (fig. 6.4b) and semi-
flexible chains (fig. 6.5b) are quite similar. The rescaled diffusion at κ−1/L = 0.42 , which is
approximately the minimum of D(κ−1/L), shows only a slight decrease with ℓP/L (fig. 6.7a,
circles). At vanishing ionic strength, a similar trend is observed (squares). Since electrostatic
stiffening makes the chain more rod-like, also the ζ = 0 case (triangles) is shown together
with the interpolation eq. (6.30). The limiting cylinder behavior (6.15) is reached within a few
percent. The dotted-dashed line is the same interpolation with an effective persistence length
of 5.5 ℓP . The effective persistence length is merely a fit parameter to obtain closed-form
solutions for charged chains at zero salt which will be used in fig. 6.7b. One can see that the
correction for the flexibility at zero salt is in fact rather small for ℓP/L = 0.22 ; this is the
reason why in fig. 6.5 and fig. 6.8 the established Dcyl is used for the rescaling.

How much of the decrease of D/D0 can be attributed to electrolyte friction and what is due
to bending? Fig. 6.7b plots again the diffusion constants already shown in fig. 6.4a and fig. 6.5b
for N = 10 and ζ = 5, but in this case rescaled by Dint with α = 3 and an effective persistence
length of 5.5 ℓP . By this procedure, chains with different persistence lengths are much easier
compared. Also shown is the relative increase of the inverse (Kirkwood) hydrodynamic radius
Rh with respect to its numerically determined limiting value at κ−1 → ∞. In the preaveraging
approximation, the inverse hydrodynamic radius 1/Rh is a measure of the diffusion constant
influenced by the configuration of the polymer alone. Adding salt therefore gives rise to two
effects which cancel each other partially, electrolyte friction and coiling. This also shifts the
minimum slightly.
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compared with the fit function of a). For the rescaling a rise per base pair of 0.34 nm and an effective
diameter of 3.49 nm is used.

It might be useful to have a fit function for the semiflexible polymer diffusion. Instead
of fitting to an equivalent sphere, eq. (6.44), and using the approximations of Booth as done
in fig. 6.4, a simple fit function is presented which gives the same asymptotic behavior, eq.
(6.37) and eq. (6.38), as well as the position of the minimum:

D

D0

=

[

1 +
f1 ζ (ai/a)

12

κR

(1 + f2 κR)5

]−1

. (6.51)

The high exponent of 5 is a result eq. (6.38). The minimum of x/(1 − f2 x)
5 occurs at

x = 1/(4f2) which fixes f2 ≈ 0.8 to give Booth’s position of the minimum. One fitting
parameter remains: f1 = 5.3 if fitted to N = 10 and ℓP /L = 0.22 (cf. fig. 6.8). f1 has only
a small N dependence. It can also be seen that rescaling with R instead of L gives a better
collapse of the minima but a different κ−1 → 0 behavior.

6.3 Discussion and comparison with experiments

Among the plethora of measurements of the diffusion constant of semiflexible polymers there
are only few that consider both, systematically varying the ionic strength and measuring at
very low polymer concentration. Dynamic Light Scattering (DLS) experiments have mainly
probed the semidilute polymer regime [126, 177]; extrapolating these results to infinite dilution
gave at most a small ionic strength dependence for rod-like polymers. Using Fluorescence
Correlation Spectroscopy (FCS) [8, 71, 184] or the stopped migration method in capillary
electrophoresis [169, 170], polymer self-diffusion constants in very high dilution could be
determined.

Diffusion of semiflexible polymers

Fig. 6.8b shows the diffusion constant of a 395 bp DNA fragment with a covalently bound
dye determined by FCS (data taken from [154]) for two types of salt, NaCl and CaCl2. The
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Figure 6.9: a) Diffusion data of [8] for intercalating and covalently labeled DNA (squares and circles)
as well as data of [170] (triangles) compared with the cylinder prediction, eq. (6.15) (dashed line), and
the interpolation formula, eq. (6.30) (solid line). b) Rescaled TMV diffusion data [158] fitted to eq.
(6.51) (solid line) and compared with eq. (6.44) (dashed line).

statistical errors of the experiment are too large to resolve a systematic variation of D with
ionic strength. Nevertheless, an upper bound of approximately 10% to this variation can be
given, consistent with the theoretical result of eq. (6.51).

Fig. 6.9a displays the diffusion constant of double-stranded DNA as function of the number
of base pairs. Squares and circles are FCS measurements at an ionic strength of 75 mol/l [8],
triangles are obtained from the stopped migration method [170] at an ionic strength of 40
mol/l. The values for DNA labeled with a covalently bound dye are slightly lower owing to
the larger hydrodynamic diameter which is estimated by 3.49 nm. To compare experimental
and theoretical results, a rise per base pair of 0.34 nm, a diameter of 2 nm and an effective
persistence length of ℓp =50 nm is assumed. The dashed line is again the cylinder prediction,
eq. (6.15), the solid one the interpolation formula eq. (6.30). Reasonable agreement with fig.
6.2b is obtained.

Rod-like macromolecules

The only systematic measurement for rod-like macromolecules I am aware of is that for to-
bacco mosaic virus (TMV) by Schumacher and van de Ven [158]. They extrapolated DLS
results to infinite dilution and changed the KCl concentration over a range of two decades.
Their data are shown in fig. 6.9b with error bars indicating reproducibility within 95% confi-
dence. They fitted their experimental results with the theory of Vizcarra-Rendón et al. [176],
eq. (6.40), using the TMV charge Ze as adjustable parameter. Although the data can be de-
scribed very well by this curve, the fitted κ-dependent charge, the maximal value of which is
120 e, is much too low as they admit. It is checked whether the data can instead be described
with Booth’s theory using an equivalent sphere, eq. (6.44). For the TMV a length of L = 300
nm, a diameter of 15 nm, an effective charge of Z = 415 [158] is assumed, and for the ions
an effective radius of ai = 0.2 nm. An equivalent radius of the macroion of R = 45 nm is
calculated using eq. (6.43). The fit parameter f accounting for the non-sphericity should be
of the order of one and is set f = 0.5 as in the simulations. The resulting curve (dashed
line) is not able to describe the experimental data. Especially the experimental minimum
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occurs at κ−1 ≈ R. This is surprising since spheres can be well described by Booth’s formula
where the minimum occurs at κ−1/R ≈ 3 [157]. The data points are also parametrized by
eq. (6.51) with f1 = 0.116 and f2 = 0.253 (solid line). Summarizing one can say that the
non-hydrodynamic theories overestimate the magnitude while the hydrodynamic ones, which
only exist for spheres so far, predict a wrong position of the minimum. Nevertheless, Booth’s
theory cannot be ruled out completely since the DLS diffusion data are obtained indirectly
by extrapolation and contain large error bars. Further measurement would be required.

Flexible polymers

Polylysine diffusion was investigated by DLS [159] and FCS [71]. In the first case, D/D0

decreases from one at 1 mol/l NaCl to zero at 0.01 mol/l, in contradiction to the FCS mea-
surements. The DLS data were explained by electrofriction in which case the polymer coil
was represented by a charged permeable gel sphere. In the FCS experiment a minimum is
seen at κ−1 ≈ Rg but the authors did not consider electrofriction.

Conclusions

No theory exists so far that can satisfactorily describe the salt dependence of semiflexible or
even rod-like polymers. The only analytical treatment of prolate objects I am aware of is
that presented in section 6.2.3. Simulations may provide an alternative although Brownian
dynamics quickly reach their limits due to the great number of small ions required for a
realistic treatment. As pointed out in [174], page 78, much more papers have concentrated on
the secondary effect of double layers on the concentration dependence of diffusion coefficients,
than on the primary effect which double layers have on isolated particles. The last chapter
collects different approaches to electrofriction as well as experimental results that are scattered
around the literature and attempts to extract common features that could be used in a
heuristic description of semiflexible polyelectrolyte diffusion. Simulation were carried out to
test the speculations. Nevertheless a unified description is still missing.



Chapter 7

Electrophoresis of Charged Rods

The last chapter of this work deals with external electric fields and thereby completes the
problem of chapter 3 where rod-like particles in an external field were investigated under
the neglect of electrostatic interactions. It is organized as follows: In the first part effects
which are first order in the electric field E are discussed. The field-induced parallel and
perpendicular components of the dipole moment of the polymer including its counterion
cloud are determined as a function of polymer length, salt and polymer concentration with
and without hydrodynamic interactions. The second part deals with the orientation of the
rods resulting from the distortion of the ion cloud. Here I concentrate on the Kerr limit, i.e. on
effects quadratic in E. It will be contrasted with the hydrodynamical orientation mechanism
of chapter 3. Special emphasis is paid to anomalous birefringence which is usually caused by
a perpendicular orientation of the rod-like particles with respect to the electric field. Five
scenarios in which anomalous birefringence might be caused by hydrodynamic orientation
are presented: High electric fields, very low and very high salt concentrations, overlapping
counterion clouds in semi-dilute polymer solutions, and high aspect ratios L/(2a). Limitations
of the system size make some of the analysis indirect: A decrease of the polarizability will
often be interpreted as a sufficient hint for anomalous birefringence without actually showing
that perpendicular orientation occurs, which in many cases is unfeasible with present-day
computers. In some extreme cases, nevertheless, a direct observation of the transition to
anomalous birefringence is presented.

The emphasis of the first part is on the mechanism that leads to the observed dielectric
increment, i.e. the change of the frequency dependent dielectric constant of the polymer so-
lution with respect to the pure salt solution, by induced dipoles and to electric birefringence
and dichroism. Electric birefringence is the difference of the refractive index between two
beams in the directions parallel and perpendicular to the electric field, electric dichroism the
difference of the absorbance. Existing models are presented and extended. Experiments are
discussed together with the simulation results where three main open questions encountered
in the literature are tackled: Is the dependence of the polarizability α on the rod length given
by L3 or a smaller power law [190]? How does the salt concentration [89] and polymer concen-
tration [81] affect the results? Is birefringence mainly an effect of the condensed counterions
or of the dilute counterion cloud [89]? The second part deals with complications of this simple
picture and concludes with a discussion for both parts.
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7.1 Polarizabilities of ion clouds

Polarizabilities of aqueous polymer solutions are conventionally measured by dielectric spec-
troscopy [17, 19]. It amounts to determining the impedance at frequencies from the kHz
regime up to several GHz from which the complex permittivity is obtained. While the high-
frequency range (GHz) is dominated mainly by the orientation of the water molecules it is
believed that at intermediate (1-100 MHz) and low frequencies “free” counterions may play
an important role [17, 103]. The dielectric increment at low frequencies is often associated
with “bound” counterions [135] where of course the distinction between “free” and “bound”
counterions needs some clarification. The explanation of the polarization mechanism is by far
not conclusive [17] which can be seen from the great number of recent publications dealing
with the subject [39, 89, 179]. Electric birefringence and dichroism provide another method
to determine polarizabilities. In this case the polarizability is obtained only indirectly from
the mean orientation of the particles, and the results are sometimes complicated by other
processes.

In the following I will concentrate on the stationary case, i.e. the low frequency limit.
The modulation of the electric field E(t) is assumed to be slow enough for all double layer
processes to have relaxed and to attain a stationary state, but fast enough to avoid electrical
breakdown at high voltages; in the simulation the electric field is just constant.

7.1.1 Method of investigation and definitions

The Langevin equation (2.22) together with the potential eq. (2.23) and (3.3) is the gen-
eral starting point. The elastic parameters γ and ε are always large enough to assure that
the chains are rod-like, usually ℓP = 10L. The dimensional parameters are rescaled as in
equations (3.8-3.11) where now

q = z e . (7.1)

If E points in z-direction then the dipole moment and the polarizability are defined as

P =
∑

i

si z e ri (7.2)

α = lim
E→0

∑

i

si z e
ri · E
E2

. (7.3)

The sum runs over all monomers and ions. The definition is independent of the origin of the
coordinate system since the total system is neutral. Rescaling P by ze a and α by 4πǫǫ0a

3

gives

P̃ =
∑

i

si r̃i (7.4)

α̃ = ζ
∑

i

si
r̃i · Ẽ
Ẽ2

(7.5)

where Ẽ = qEa/(kBT ). Note the extra factor of ζ in α̃. The motivation for this rescaling is
that P̃ is just a convenient auxiliary variable measuring the displacement of charge while α̃
is compared with experiments for which reason is it useful to remove the implicit dependence
on the ion valencies.
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Figure 7.1: a) Linear response regime for N = 10 rod with Ns = 10, B̃ = 54.3 and ζ = 5, i.e. κ̃−1 =
9.2 . The lines have slope unity. b) E-field dependence of the fraction of bound counterions φ: Upper
set of curves show κ̃−1 = 7.98 , ζ = 20 and Ns = 0, i.e. 43 ≤ B̃ ≤ 78.3 depending on N ; lower set of
curves same parameters except κ̃−1 = 15.96 and ζ = 5.

α‖ and α⊥ denote the polarizabilities of a system where the long axis of the rod Re is fixed
parallel or perpendicular to the electric field. The orientation of the rod due to this induced
dipole mechanism is just of the order O(E2) in the limit of E → 0. Hence, at small fields the
particles are randomly oriented and thus

α =
1

3
(α‖ + 2α⊥) . (7.6)

To calculate α‖ and α⊥ one could determine at each sampling time the components of P and
E parallel and perpendicular to Re and divide them by each other, e.g. α‖ = P‖/E‖. It turns
out that the statistics are too bad to make this procedure feasible. On the other hand, fixing
the rod in space requires virtual forces that hydrodynamically influence all particles in the
system, i.e. inverting a N ×N matrix every time step (see section 4.2), which is also hardly
possible for long rods with the workstations available. I will therefore use a third alternative.
The rod is free to orient but the electric field follows its motion. E(t) is either parallel to
Re(t) or in that direction perpendicular to it that lies in the x-y plane:

E‖(t) = E
Re(t)

Re(t)
(7.7)

E⊥(t) = E
(Re,y,−Re,x, 0)
√

R2
e,x +R2

e,y

. (7.8)

This method is especially efficient for long rods which have long orientational diffusion times
τD ∝ L3. It is always checked that for the separately measured α, α‖ and α⊥ eq. (7.6) holds
within ten percent. As before the rod length is defined as L = 2a(N − 1).

Fig. 7.1a shows the range of the linear response regime, where P ∝ E holds, for the
example of N = 10 and Ns = 10 with rescaled box size B̃ = 54.3. Relevant for birefringence
is the difference

∆P = P‖ − P⊥ (7.9)

∆α = α‖ − α⊥ . (7.10)
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Figure 7.2: a) Dipole moment in field direction of a pure salt solution, i.e. N = 0 , for 10 and 20 pairs
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power law fits with slopes 3/2 and 5/3, respectively.

which is also shown. The range of the linear response turns out to be κ-dependent; more
extended clouds are more easily destroyed. For each set of parameters at least three Ẽ-values
are simulated to be sure to probe the linear regime and to estimate the error. Usually 107

to 108 steps with a rescaled time step ∆̃ of the order of 10−3 are needed to get reasonable
accuracy.

For the later investigations I define the ”close layer”of counterions as the set of all counte-
rions that lie within a cutoff distance of 4a to the polymer center line. These counterions will
also be called “bound” later on and their number be denoted by Nb. This is a more neutral
term than “condensed” which refers to Manning’s counterion condensation [110]. The fraction
of bound counterions, i.e. the fraction of neutralized charge on the polyion, is denoted

φ =
Nb

N
(7.11)

and gives a characterization of the double layer. φ decreases with Ẽ as seen in fig. 7.1b giving
another upper limit of the linear response regime. The dipole moment containing only those
ions and the polymer,

α̃b = ζ
∑

i

si(ri − RCM ) · Ẽ

Ẽ2
, (7.12)

depends on the origin chosen, which is in this case the center of mass of the polymer, RCM ,
since the polymer-condensed ions complex is not neutral.

The polarizability can also be determined at equilibrium using the fluctuation-dissipation
theorem [88]:

α̃ =
ζ

3
〈P̃ 2〉 . (7.13)

Fig. 7.2a shows the dipole moment of a pure salt solution (N = 0) at small values of the electric
field. As a result of the minimal image boundary conditions the dipole moment is zero within
error bars. Simulating a polymer solution it is often a good check for the error of the dipole
moment to redo the simulation with a pure salt solution and the same random numbers. The
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mean square dipole moment of a pure salt solution is plotted for several coupling parameters
ζ (fig. 7.2b). For a non-interacting gas (ζ = 0) of constant density one expects a scaling

〈P 2〉 ∼ NsB
2 ∼ N5/3

s . (7.14)

It can be understood as a random walk with Ns steps of the center-of-mass position of the
positive particles with respect to center of mass of the negative particles, where the step
size is of the order of the box size B. Since the particles are non-interacting the steps are
independent of each other. The dipole moment P is the sum of all steps, so that its mean
square displacement is given by eq. (7.14). For interacting particles (ζ > 0) in a dilute solution
the exponent is slightly smaller, 〈P 2〉 ∼ N1.5

s . Since the background zero-field polarizability
(of the salt) is quite high, calculating the (excess) polarizability of the polymer solution via
eq. (7.13) at zero field amounts to subtracting two large numbers and renders this method
impractical. I therefore use finite fields. In the salt-free case, however, it was successfully
used in a recent Monte Carlo study [179].

If the rod has different optical polarizabilities parallel and perpendicular to its long axis
then the birefringence ∆nθ at an angle θ = arccos[Re ·E/(Re E)] is related to the saturation
birefringence ∆ns of complete orientation by [48]

∆nθ = ∆ns ψ (7.15)

where ψ = 3 cos2 θ/2 − 1/2, as in the chapter 3. With the energy of the induced dipoles in
the electric field

U =
1

2
∆αE2 cos2 θ (7.16)

the mean birefringence is given by

∆n = ∆ns
∆αE2

15 kBT
, (7.17)

which follows from integrating eq. (7.15) over all orientations with a Boltzmann weight de-
termined by eq. (7.16). Defining a modified Kerr constant by

K ′ = lim
E→0

∆n

∆nsE2
(7.18)

one finds

∆α = 15kBT K
′ = 15 kBT lim

E→0

ψ

E2
(7.19)

or in rescaled units

∆α̃ = 15 K̃ ′ = 15 ζ lim
Ẽ→0

ψ

Ẽ2
(7.20)

where K̃ ′ = K ′ kBT/(4πǫǫ0 a
3). The wavelength and saturation birefringence dependence

have been included in the definition of K ′ as these quantities are outside the scope of this
investigation. 15 K̃ ′ may have other contributions than ∆α̃, e.g. hydrodynamic orientation.
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7.1.2 Analytical calculations

Overview of existing work

Several models have been presented to explain the large induced dipole moment of elongated
polyelectrolytes in solution. Schwarz [160] and later Mandel [102] considered the longitudinal
movement of counterions bound to the rod-like molecule. Mandel’s model is a one-dimensional
rod of length L to which the counterions are confined, together with a weak periodic potential
coming from discrete charges of the monomers. Applying an external electric field and using
Boltzmann statistics he obtains

α‖
Mandel =

Nb (ze)2 L2

12kBT
= 4πǫǫ0 ζ

Nb aL
2

12
. (7.21)

Nb is the number of “bound” counterions as above. Interactions between the counterions are
neglected. If Nb ∝ N = L/2a then the polarizability is proportional to the cube of the rod
length. This L3-dependence seems to be a general feature of systems with tightly bound
counterions where L is the relevant length scale, and will also be reproduced in the following
analysis.

Oosawa [135] calculated the equilibrium counterion density fluctuation along a one-dimen-
sional rod to obtain the mean square dipole moment. If Uk is the kth Fourier mode of the
counterion interaction potential the polarizability reads

α‖
Oosawa = 4πǫǫ0 ζNb aL

2 1

2π2

∞
∑

k=0

1

k2

[

1 +
NbUk

2kBT

]−1

(7.22)

which reduces to Mandel’s result in the limit of Uk → 0 (since
∑

k 1/k2 = π2/6). Due to the
factor 1/k2 only the long-wavelength modes contribute significantly. For weak interactions
the power law is thus unchanged.

The above theories are incomplete insofar that they use the number of bound counterions
Nb as an input. Manning [107] used counterion condensation theory to fix Nb . He also
calculated a correction factor to eq. (7.21) for finite κ. Since in his result, α‖ decreases with
decreasing κ, which is contrary to the experiments [89] I am going to describe, his approach
will not be further pursued. In a later publication Mandel and co-workers [175] used a two-
state model which allows exchange between the bound and unbound counterions with a rate
constant K. It predicts a cross-over from α‖ ∼ L3 for weak exchange to α‖ ∼ l2 L for very
strong exchange in which case the new length scale l is given by

l =
√

µ0kBT/K (7.23)

where µ0 is the counterion mobility.

To include the ionic strength dependence on a more systematic level Rau and Charney [147]
investigated a thin long cylinder with counter- and coions using the Smoluchowski equation
for both species and the Debye-Hückel approximation. The resulting α‖(L, κ, a) is presented
in form of a Fourier series which becomes independent of the diameter for a → 0. For
a≪ L < κ−1 they numerically find α‖ ∼ L1.85κ−1.15, and α‖ ∼ Lκ−2 for a≪ κ−1 ≪ L . But
as criticized in [109] they mix terms of different order of the electric potential. Nevertheless,
the result shows the importance of including the ion cloud.
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For completeness the result of Fixman [41] valid for thin double layers is also presented.
For monovalent counter- and coions the polarizability parallel to the rod axis is

α‖
Fixman = 4πǫǫ0

C(L, a)L

2γ2

[

1 − tanh(γL/2)

γL/2

]

(7.24)

where

C(L, a) =
3

2
[2 ln(2L/a) − 7]−1 (7.25)

and

γ = [4π C(L, a)Lcs/Nb]
1/2 . (7.26)

The formula has been specialized to the case of excess salt with concentration cs. Depending
on γL, the length dependence crosses over from L3 to L. In a later paper Fixman and
Jagannathan [43] tried to relax the thin double layer approximation using a variational method
[42]. They included the convective polarization coming from the relative electrophoretic
motion of the macroion with respect to the small ions and tabulated their numerical results.
They conclude that the outer parts of the ion cloud which are very susceptible to convective
effects give the dominant contribution to the polarizability unless L≫ κ−1.

Among the more recent results are Manning’s linear analysis (in E and the electric field
of the macroion) [109] and the work by Mohanty and Zhao [117] which is an extension of
Mandel’s result. Manning’s motivation was to get some understanding of the underlying
physics in Fixman’s numerical analysis by linearizing the fields and ion fluxes but it turned
out that the convection-free polarizability is isotropic within this linear analysis contrary
to the expectation that it should be much larger parallel to the long axis of the rod than
perpendicular. Higher order terms are thus necessary for a proper description.

It is also worth mentioning some simulation results. Yoshida et al. [190] used a Metropolis
Monte Carlo method to calculate the counterion distribution of a fixed rod neglecting hydro-
dynamic interactions and salt ions. They showed that their method is equivalent to Brownian
dynamics for a constant external electric field so that they could obtain the polarizability from
the relation α = P/E. Bound and free counterions are distinguished by a cutoff distance from
the rod. One of their main results is that at constant counterion concentration (varying the
cell size) α‖ ∝ L3 holds, while at constant cell size (increasing the counterion concentration
with L) the polarizability α‖(L) seems to saturate when L is increased. The polarizability
coming just from the polymer plus bound counterions is always proportional to the cube of
the length irrespective of the cell size. No explanation for this behavior could be given.

Washizu and Kikuchi also used Monte Carlo simulations to calculate the equilibrium
fluctuations of the dipole moment to obtain the polarization tensor. They propose a criterion
to define bound or “condensed” counterions which yield fractions of condensed counterions
for short DNA strands that are close to Manning’s prediction [179]. It will be discussed in
section 7.1.5. α‖ and α⊥ decrease with increasing polymer concentration. For the molecular
weight dependence only three rod lengths were investigated; the somehow tentative results
are: α‖ ∝ L2 and α⊥ ∝ L. Adding salt to the solution results [178] in a decrease of the
anisotropy

∆α = α‖ − α⊥ . (7.27)

Despite the voluminous literature on this subject it fair to say that many issues are still
only partly understood.
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Figure 7.3: a) Vertical density of counterions (red) and coions (blue), and total charge density ρz(z)
(black) at equilibrium (solid lines) and at a Ẽ = 0.05 (broken line) within free-draining. The N = 10
polymer is fixed a the center of the cell (which has the dimensions 54.3a × 54.3a × 108.6a) with its
long axis in the z-direction. κ̃−1 = 10.1 corresponding to ζ = 5 and Ns = 20. The two verticals
bars at z̃ = ±10 show the extension of the polymer. b) Charge density (red, after a low pass filter
to reduce the noise), ∆ρz (black) and −∆ρz z (blue) for the system on the left at Ẽ = 0.01 . The
dashed lines mark the position of the polymer. The green line shows ∆ρz for a cell with dimensions
54.3a× 54.3a× 217.2a but the same κ = 10.1 .

One-dimensional continuum model

A simple model is presented that gives α‖ and α⊥ as a function of L, a and κ−1. It is not
attempted to derive it from fundamental equations which has already been done twenty years
ago [41, 43] but did not yield explicit results. Hydrodynamic interactions and electrophoretic
motion are not taken into account.

Guidance is sought from free-draining (FD) Brownian dynamics simulations in which the
rodlike polymer is fixed at the center of the simulation cell with its long axis either parallel
or perpendicular to the external field

E = E êz . (7.28)

Virtual forces to fix the polymer are unnecessary within FD; the polymer motion need not
be simulated and acts merely as a boundary condition. Fig. 7.3a shows the vertical densities,
defined as the number of particles per z-interval, for the counterions and coions for a rod with
Re|| êz and ζ = 5. The charge density divided by the ion valency, ρz, is just the difference
of these two densities. The origin of the coordinate system is placed at the center of mass of
the polymer. As expected, the coion density is lower and the counterion density higher than
their respective bulk values at the cell boundary. The simulation box has a lateral extension
of B = 54.3 a so that most of the ions in [−10a ; 10a] are not in close vicinity of the rod. The
charge density decays exponentially with z for |z| > 10a. A small electric field of Ẽ = 0.05
slightly shifts ρz(z) without destroying the the ion cloud. ρz can be directly used to calculate
the total dipole moment as done in fig. 7.3b. Since at non-zero E, ρz increases for z < 0 and
decreases for z > 0 with respect to its equilibrium value at E = 0 it is useful to define

∆ρz(z) = ρz(z) − ρz(−z) , (7.29)

which is the contribution to the charge asymmetry at a given |z|. Integration gives the total
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Figure 7.4: a) Charge density in the free-draining case at Ẽ = 0.01 for N = 10, ζ = 5 and a box as
in fig. 7.3 for different screening lengths (corresponding to Ns = 0, 10 and 40). The long axis of the
rod is parallel to the field. b) N = 10 rod perpendicular to E in a 46a× 46a× 46a cell with Ns = 0
and Ns = 40.

dipole moment of the cell,

P̃ = −
∫ 0

−B̃
∆ρz(z̃) z dz̃ . (7.30)

∆ρz is shown for two different box sizes but the same screening length κ̃−1 (black and green
lines; ∆ρz is only defined for z < 0.). Both lines lie nearly on top of each other indicating
that there is no appreciable box size dependence. ∆ρz follows the trend of ρz (red line). It
is maximal at the ends of the rods as already predicted in [147]. The increment of the dipole
moment at |z| is given by −∆ρz(z) z (blue line). It is greatest at a certain distance away from
the polymer although the polymer is highly charged (ζ = 5), underlining the importance of
the diffusive double for the polarizability. Fluctuations at large |z| have a great impact on P
as they are multiplied by z; this makes the simulation of the B → ∞ limit numerically very
demanding.

The influence of the screening length for a given box size is presented in fig. 7.4 for parallel
and perpendicular orientation of the rod to E. ρz attains a finite value at the cell boundary
for salt-free solutions; adding salt continuously decreases this value to zero. For small systems
even accumulation of coions at the boundary are possible with a strong influence on the box
size dependence of the dipole moment.

To partially mimic the above charge distribution and - at the same time - get simple power
law results the following form of ρ(z) in the parallel case for small E is assumed:

ρz(z) = ρ0
z(z) + λ z for |z| < L

2
+

3

2
κ−1 (7.31)

and zero otherwise. ρ0
z is the distribution at zero field and λ a small parameter proportional

to E. This means that ∆ρz, which first linearly increases for |z| < L/2 and then exponentially
decreases (see fig. 7.3b), is replaced by just a linear function but over a wider range, ∆ρz(z) =
2λ z. The reason for using 3κ−1/2 instead of κ−1 as the extension of the ion cloud is arbitrary.
In principle any number of the order of κ−1 is as good within this scaling model but it turns
out that the additional factor of 3/2 gives a better comparison with the data. A calculation
for a more realistic form of ρz has also been also done but the result, beside being more
complex, did not yield further insight.
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The most severe assumption is probably that a truly one-dimensional interaction potential
is taken,

Ui = kBT
ζ a

2

∫ ∫

ρz(z) ρz(z
′)

|z − z′| dz dz′ . (7.32)

The integrals extend over the whole space except that the region |z−z′| < a is excluded. The
energy gain in the electric field is

UE = −qE
∫

z ρz(z) dz . (7.33)

q is the charge of an ion since ρz is just a number density. Plugging in eq. (7.31) and
minimizing Ui + UE with respect to the distortion parameter λ gives to lowest order in a/L

λ =
3 qE

2kBT ζ a

[

3 ln

(

1

a
(L+ 2κ−1)

)

− 7

]−1

, (7.34)

and thus

α‖
1D = −q

∫

z (λ z) dz = 4πǫǫ0
1

8

(L+ 2κ−1)3

3 ln [(L+ 2κ−1)/a] − 7
. (7.35)

In the derivation the symmetry arguments
∫

ρ0
z(z) z dz = 0 and (7.36)

[

d

dλ
Ui

]

λ=0
= 0 (7.37)

are used, which mean that only the interactions between the perturbations of the density
by the electric field are relevant for the polarizability. The equilibrium charge distribution
ρ0

z is unimportant. Eq. (7.35) is justified only for long rods, L ≫ a, and thin double double
layers since otherwise the lateral dimension becomes important, and an one-dimensional model
becomes dubious.

So far κ−1 only entered in the extension of the ion cloud. It could also affect the inter-
particle potential directly:

U ′
i = kBT

ζ a

2

∫ ∫

ρz(z) ρz(z
′) e−κ |z−z′|

|z − z′| dz dz′ . (7.38)

The same method as above leads in the limit κL≫ 1 to

α‖
1D′ ≈ 4πǫǫ0

L3

24Ei(−2aκ)
(7.39)

where Ei is the exponential integral function. Hence, strong screening does not change the
approximate cubic length dependence. In the limit a ≪ κ−1 ≪ L, the exponential inte-
gral function gives a logarithmic dependence of α‖

1D′ on κa, while in eq. (7.35) the parallel
polarizability depends on log(L/a) in the same limit.

In the perpendicular case, the long axis of the rod is placed in x-direction, the field again
in z-direction, and the origin is the center of mass. A two-dimensional charge density (number
per area) of the following form is assumed:

ρxz(x, z) = ρ0
xz(x, z) + λ′ z for |z| < a+κ−1 and |x| < L/2 +κ−1 (7.40)
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Figure 7.5: a) Parallel polarizability for N = 10 and ζ = 5 and various box sizes. κ̃−1 is changed by
adding salt ions to the system. The thick broken line is eq. (7.35). b) Position of the maximum κ̃−1

max

as a function of the box size. The line is eq. (7.44).

and zero otherwise. If the double layer is reasonably thin one can set

Ui ≈ kBT
ζ a

2

∫

ρxz(x, z) ρxz(x
′, z′)

|x− x′| dx dx′ dz dz′ (7.41)

UE = −qE
∫

z ρxz(x, z) dx dz . (7.42)

Following the above procedure and assuming further κ−1 ≫ a one finds

α⊥
2D = 4πǫǫ0

1

9

(2a+ 2κ−1)2 (L+ 2κ−1)

ln [(L+ 2κ−1)/a] − 1
. (7.43)

Summarizing the model, the parallel polarizability scales with the longest dimension L+
2κ−1 cubed, the perpendicular polarizability linearly. The aspect ratio L/(2a) has only a
logarithmic influence.

7.1.3 Effects of polymer and salt concentration

The scaling predictions are now tested with simulations as described in section 7.1.1. Fig.
7.5a is one of the main results of this section. For given box sizes (in this case for N = 10 and
ζ = 5), α‖ is a non-monotonic function of κ−1 which is defined by eq. (2.28). The rightmost
point for a given B is always the Ns = 0 case, the leftmost point corresponds to 60 − 80 salt
molecules. For κ−1 ≪B−L α‖ is nearly independent of the box size. It increases with κ−1

until it reaches a maximum when the counterion cloud reaches the bounding box. The dilute
polymer solution behavior, B ≫ κ−1, is well described by eq. (7.35). It is noteworthy that eq.
(7.35) appears to be a good description even for κ−1 ≈ L albeit it is derived for thin double
layers. For higher values of κ−1 , α‖ decreases again. The counterion cloud is disturbed by
the potential of the polymers in the neighboring boxes. It is - in a sense - an effect of the
semidiluteness of the polymer solution and causes the strong dependence of α‖ on B. The
graphically determined position of the maximum of α̃‖, κ̃

−1
max, fits well to a straight line:

κ−1
max ≈ 0.25 (B − L) . (7.44)
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Figure 7.6: Box size dependence of the parallel polarizability of a N = 10 rod. a) Simulations at
three different screening lengths compared with the limiting values from eq. (7.35) for κ̃−1 = 5 and
κ̃−1 = 11.3. b) Effect of the number of polymers Np at κ̃−1 = 12.1. c) Same as b) but plotted as a

function of the effective cell size Beff = B/N
1/3

p .

Eq. (7.35) suggests that there exists a finite limiting value at infinite dilution B̃ → ∞ but
constant κ̃−1. Free draining ion distributions (see fig. 7.3) show a quick decay of the charge
asymmetry ∆ρz towards the cell boundary which is probably exponential due to screening for
large enough systems. In fig. 7.6a one can see that that the simulation data including HI are
consistent with a saturation of α‖ at value approximately that predicted by eq. (7.35) though
the error bars become quite large. Including more than one polymer in the simulation cell
also reduces α‖ (b), which justifies the interpretation of B−3 as the polymer concentration
cp. The results are plotted as a function of the effective cell size

Beff = B/N1/3
p (7.45)

in (c). It makes thus a difference if all polymers are placed on a regular lattice with spacing B
as in the case of Np = 1 or if some are allowed to move with respect to each other (Np > 1).
The qualitative behavior, i.e. the overlapping of the counterion clouds, is, however, the same.

Fig. 7.7 shows the perpendicular polarizability and the Kerr constant as function of κ̃−1

for different B̃. For L + 2κ−1 ≪ B both quantities increase with κ−1 and follow thus the
same trend as α̃‖. A decrease of the electric birefringence upon adding salt for a polymer
solution well below the overlap concentration has been observed for fd-virus particles [82] and
poly(p-phenylene) rods (PPP) [89] of lengths of the order of 10 nm: The birefringence signal
nearly vanishes for κ−1 ≪ L. The box size dependence of K ′ is much smaller than that of
the polarizabilities, which is a result of the partial canceling of the dependencies from α̃‖ and
α̃⊥. ∆α̃ - being the difference of two quantities with large error bars - is not shown as the
simulation results were not accurate enough to display a systematic trend. A check of the
relation 15K̃ ′ = ∆α̃ is done in fig. 7.8a.

7.1.4 Length dependence

Earlier in this chapter several theoretical works dealing with the dependence of the polar-
izability on the length of the rod-like particles were listed. To reduce them to a common
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Figure 7.7: a) Screening length dependence of the polarizability perpendicular to the long axis. Since
the statistical errors are quite large only two box sizes have been simulated. The broken line is the
B̃ → ∞ prediction eq. (7.43). b) The rescaled Kerr constant which should be equal to ∆α̃ shows a much
weaker dependence on B̃. ∆α̃ is the difference of two quantities with large error bars; simulations were
not accurate enough to display a systematic trend of ∆α̃ with κ̃−1, only three special cases obtained
from long-run simulations are shown in fig. 7.8a.

denominator, a cubic length dependence of α‖ is expected if the counterions are close to the
polymer, whereas for more extended diffusive clouds the exponent may be smaller than three.
α⊥ is believed to be smaller than α‖ so that the birefringence is approximately proportional
to α‖.

The Brownian dynamics simulations applied here avoid many of the approximations made
in earlier works. Solvent flow and conduction effects are included from the beginning, no
artificial distinction between bound and free counterions needs to be made, as well as the
Debye-Hückel approximation. On the other hand, the simulations use only a small number of
ions to account for the whole cloud, and a - albeit physically motivated - finite box size. Fig.
7.8a shows the polarizabilities in both major directions, α̃‖ and α̃⊥, their difference ∆α̃, and

the modified Kerr constant K̃ ′ as a function of monomer number. ∆α̃ equals 15K̃ ′ within
error bars. For all N the same κ̃−1 and B̃ are used. It is checked that at least B̃ > L̃+ 4κ̃−1

which means according to eq. (7.44) the screening length is smaller than κ−1
max. If B̃ is too

small or even kept constant while increasing N an effective power less than three of the length
dependence of α̃ can be seen. This is exactly what is observed in figure 8 of [190].

In fig. 7.8b, the Kerr constant is shown for monomer numbers in the range from five to
forty. The ionic strength dependence is small on this logarithmic scale. I also changed the
coupling strength ζ. In the limit of L ≫ κ−1 one clearly sees the cubic behavior, K ′ ∝ N3.
For smaller N deviations due to the finite ion cloud extension occur.

Elias and Eden [35] find a cubic length dependence of the Kerr constant for DNA strands
shorter than 50 nm at 1 mM salt. For longer chains it crosses over to an approximate
quadratic dependence which they attribute to flexibility. Stellwagen [167] finds a quadratic
length dependence for DNA up to 400 nm but only after applying a correction factor which
is supposed to account for bending. Hogan et al. [70] also find a quadratic dependence
for DNA shorter than 80 nm in 2.5 mM salt, obtained from electric dichroism. The DNA
concentration was not specified which makes an interpretation difficult. These experimental



84 7. Electrophoresis of Charged Rods

5 10 20 30 40

N

10

100

1000

1e+04

1e+05

15K

ζ = 5, κ
−1

 = 29a

ζ = 5, κ
−1

 = 16a

ζ = 20, κ
−1

 = 7a

5 10 20 30

N

10

100

1000

1e+04

1e+05

α~

a) b)
α

||

 ~

α ~

∆α ~
⊥

15K
 ~

~

Figure 7.8: a) Connection between the polarizability and the Kerr constant: α̃‖ (circles), α̃⊥ (squares)

and ∆α̃ (white triangles) compared with 15K̃ ′ (black triangles). Parameters: κ̃−1 = 15.96, ζ = 5 and
B̃ = 108.6 . The dashed line is a cubic fit (same as in b). b) Rescaled Kerr constant as a function
of monomer number N for the triples of parameters: κ̃−1 = 7.98, ζ = 20 and B̃ = 108.6 (circles);
κ̃−1 = 15.96, ζ = 5 and B̃ = 108.6 (triangles); and κ̃−1 = 29.13, ζ = 5 and B̃ = 185.7 (squares).
Parameters: ℓP /L ≥ 10, and Ns adapted to κ̃−1 and B̃ (0 ≤ Ns ≤ 55). The dashed line is a cubic fit
to the combined set of points, 15K̃ ′ = 0.336N3.

results stimulated the search for models [41, 147] able to predict this exponent smaller than
three. Although I cannot explain the experimental findings the simulations make clear that it
is not just the hydrodynamic interactions and extended ion clouds that lead to the deviations
from Mandel’s scaling result.

7.1.5 Free versus bound counterions

It shall be investigated whether the close layer (to the polymer) of counterions shows dis-
tinct features with respect to polarization which are different from that of the whole cloud
as e.g. postulated in [175]. In [122] it was demonstrated that the above cutoff criterion
can qualitatively reproduce Manning’s counterion condensation behavior of an infinitely long
cylinder. In fig. 7.9b it is visible that the fraction of bound counterions only depend on the
ionic strength of the solution and not on the box size. It slightly increases for longer chains
(cf. the N = 20 case).

Washizu and Kikuchi [179] sort the counterions according to their distance from the
macromolecule. Displaying this distance as a function of the ordinal number in this list
they define the number of bound counterions as the position where the function changes its
curvature. Using extensive Monte Carlo simulations they show that the partial polarizability
coming from the n innermost counterions has a minimum approximately at n = Nb where Nb

is the number of bound counterions. Hence, Nb distinguishes not only spatial distributions of
the two kinds of counterions but also their polarization behavior.

The sheath of bound counterions in their definition is quite extended (several rod di-
ameters) and at its boundary already very diffusive, which is not what people expect from
experiments with e.g. DNA. I will thus stick to the simple cutoff criterion that defines counte-
rions within a distance of 4a to any monomer as “bound”. Fig. 7.9a shows the polarizabilities
of the bound conterions only, eq. (7.12), as a function of monomer number and for two screen-
ing lengths. The scaling is approximately α̃b

‖ ∼ N3 and α̃b
⊥ ∼ N but deviations for large N
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Figure 7.9: a) Polarizability components of the bound counterions: αb
‖ (white symbols) and αb

⊥ (black

symbols). Parameters: κ̃−1 = 15.96, ζ = 5 and B̃ = 108.6 (triangles); and κ̃−1 = 7.98, ζ = 20 and
B̃ = 108.6 (circles). The lines are cubic and linear guides to the eye, respectively. b) Fraction of bound
counterions φ as a function of the screening length for N = 10 (white symbols) and N = 20 (black
symbols). The data points for different B̃ all fit approximately to a straight line which has a slope of
−0.33 for N = 10.

are visible. The κ̃−1 = 7.98 data points are above those with κ̃−1 = 15.96 as more counterions
are included in the dipole moment.

Lachemayer and Oppermann [89] noticed in their experiments with PPP that the decrease
of the birefringence ∆n upon addition of salt is very similar to that of the conductivity con-
tribution of the polyelectrolyte. The conclude that since the conductivity contribution of the
cloud as a whole is reduced it is the ion cloud and not the condensed counterions that is
mainly responsible for polarization. Comparison of the numerical values of the polarizabil-
ity differences ∆α̃ and ∆α̃b with 15K̃ ′ in figures 7.8 and 7.9 shows that indeed the bound
counterions only give a small fraction of the total polarizability.

7.2 Electric birefringence and anomalies

Prior to an electric birefringence experiment one has to make sure that positive or normal
birefringence really corresponds to parallel orientation. This can be done by flow fields. It
turns out that all rods under investigation in this thesis belong to this class so that in the
following I will use normal birefringence and parallel rod orientation synonymously. O’Konski
and Zimm [130] were one of the first demonstrating that normal birefringence seen with
TMV is mainly caused by an orientation due to induced dipoles. Many semiflexible or rod-
like polymers posses no or only a weak permanent dipole moment, e.g. actin and fd-virus.
The ionic double layer polarizability results are therefore of central importance for these
experiments. However, several cases of anomalous birefringence have been reported where
the induced dipole orientation mechanism cannot work [48, 81, 82, 136]. Most of these cases
were explained by various polarization effects [4, 22, 69] but no unified picture could arise.
In the following I restrict myself to the proposed hydrodynamic mechanism for anomalous
birefringence and dichroism, and to dilute and semidilute polymer solution such that steric
interaction are negligible.
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Figure 7.10: a) Orientation parameter ψ (white symbols) and fraction of counterions close to the
chain φ (black symbols) for various stiffnesses ℓP /L. Parameters: N =10, ζ=20, κ̃−1 = 7.98 and no
added salt, Ns = 0, which means B̃ = 54.3 . b) Purely hydrodynamic, i.e. electrophoretic, orientation
(data taken from fig. 3.5) as function of the driving field for N = 10. Points for longer chains, N = 20
and N = 40, are rescaled to match the low field limit of N = 10. The persistence length is adapted to
Ẽ via ℓP /L = 100Ẽ.

7.2.1 Arguments for a hydrodynamic orientation

From eq. (3.33) one finds for ℓP /L = 10 and N = 10, i.e. L/a = 18, in the case of purely
hydrodynamic orientation a rescaled Kerr constant of 15 K̃ ′

H ≈ −8.7, for ℓP/L = 10 and
N = 30, i.e. L/a = 58, 15 K̃ ′

H ≈ −933.6 . These numbers are much smaller than the Kerr
constants typically obtained from polarization (see e.g. fig. 7.8b). Since ℓP /L cannot be much
less than unity for the chain to be approximately rod-like, anomalous birefringence can only
be observed if either L/a is a very large number or if the polarizability of the rod-counterion
cloud complex is drastically reduced.

Destruction of the ion cloud by high electric fields

One way of reducing the polarizability is to apply high electric field: It is commonly observed
(see e.g. [82, 167]) that the electric birefringence saturates at high fields. It can be explained
by stripping away the ion cloud from the polymer [148, 190] and is related to the Wien effect
in electrophoresis [182].

Fig. 7.10a shows the orientation parameter ψ for N = 10 and several stiffnesses ℓP/L.
Starting at random orientation, ψ(Ẽ = 0) = 0, increasing Ẽ results in a nearly complete
alignment of the rod-like polymers in the direction of the field. After passing through a
maximum ψ decreases and approaches −1/2 which corresponds to perpendicular orientation.
The maximum shifts to higher Ẽ values for greater ℓp/L. This indicates that bending and
hydrodynamic orientation are the cause for the decrease of ψ. That the counterion atmosphere
is indeed stripped away can be seen from the behavior of the fraction of close counterions
φ (black symbols, displayed only for two values of ℓP /L). The situation is complicated by
the dependence of φ on the average orientation of the rod, visible from the fact that both
curves of φ deviate from each other. For comparison, the field dependence of hydrodynamic
orientation, fig. 3.5, is replotted but in a slightly different manner in part b) of fig. 7.10.

On the scaling level, the destruction of the counterion cloud sets in when it is shifted by
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Figure 7.11: a) Contour plot of α̃‖ for a N = 10 rod as a function of polymer and salt concentration,
measured by cp/c

⋆
p and κ2 L2, respectively. The dashed contour lines do not only separate the groups

of symbols but take also the values of α̃‖ within each group into account, e.g. symbols crossed by
contour line 2000 are in the range from 1950 to 2050. b) Birefringence data of fd-virus taken from [81]
compared with the contour lines of a). The solid line is a guide to the eye separating the normal from
the anomalous birefringence regime.

a distance L away from the rod, or in terms of the dipole moment P = αE ∼ qNL. Since
α ∼ L3 the critical field E⋆

φ where the cloud is stripped away scales as E⋆
φ ∼ 1/L. From eq.

(3.33), one gets for the critical field E⋆
H necessary for complete hydrodynamic orientation:

E⋆
H ∼ (ℓP /L)1/2 /L2. The condition E > E⋆

H is not sufficient for anomalous birefringence
because the induced dipole orientation also becomes stronger with increasing E. It is thus
necessary that both conditions, E > E⋆

H and E > E⋆
φ , are fulfilled. From the different scaling

of E⋆
H and E⋆

φ one can see that for long polymers E > E⋆
φ determines the critical field strength

for anomalous birefringence.
Experimentally accessible values of Ẽ are usually below one, see e.g. the examples in

section 3.5. Kramer et al. observe a saturation of the normal birefringence at E ≈ 105 V/m
but no further decrease [82]. Instead they find anomalous behavior at low and intermediate
field strengths for particle concentrations above the overlap concentration. This so-called
low-field anomaly cannot be explained within the model presented here.

Overlapping counterion clouds

In fig. 7.11a the data of fig. 7.5a plus two additional curves at B̃ = 71.1 and B̃ = 130 are
presented in a way that is more useful for a direct comparison with experiments: The polymer
concentration is expressed in multiples of the overlap concentration,

c⋆p = 1/L3 , (7.46)

and the salt concentration by κ2 L2, which is proportional to the ionic strength of the solution.
The dashed lines are the presumed contour lines where α̃‖ = 1000, 2000 and 3000, respectively.
They are determined not only by separating the data points into groups; the values of the
simulation points at constant cp/c

⋆
p are extrapolated to high and small κ2 L2 (see also fig. 7.5a)

to give estimates of the contour lines in these regions. Points crossed by the line α̃‖ = 2000,
for instance, are in the range from from 1950 to 2050.
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b) Bending angle as a function of the screening length for N = 10, ℓP /L = 10, and Ns = 0 or Ns = 40,
respectively.

Fig. 7.11b shows fd-virus transient electric birefringence measurements (TEB) [81] at
various monovalent salt and fd-virus concentrations. For the rescaling a virus length of 880
nm is assumed. Parameters where normal birefringence occurs, possibly due to an induced
dipole orientation mechanism, are marked with a plus, anomalous birefringence with a circle.
A solid line is drawn at the boundary where normal birefringence sets in. Kramer et al. explain
anomalous birefringence with a model introduced by Hoffmann et al. [69]: In their picture,
the overlapping clouds form a three-dimensional network in which counterions can stream
along the long axes of the rods without causing any dipole moment in that direction; the
small perpendicular polarization should still be possible and be responsible for anomalous
birefringence. The simulations agree with their result that overlapping counterion clouds
should decrease the parallel polarizability but do not reproduced the perpendicular orientation
for rigid rods; only for rods with finite flexibility anomalous orientation in an external field is
observed.

I will discard this possibility of such a network formation and rather assume that perpen-
dicular orientation is caused by hydrodynamic effects formulated in chapter 3. Overlapping
clouds are merely responsible for the decrease of the parallel dipole orientation effect such
that the much weaker perpendicular hydrodynamic orientation can set in. It is conjectured
that the solid line in fig. 7.11b is given by a constant small value of ∆α̃ and thus α̃‖. To
that end the contour lines of a) are also shown. If one extrapolates these lines to cp > c⋆p one
can see that they can qualitatively describe the boundary between normal and anomalous
birefringence although their bow is somewhat steeper. This discrepancy can easily be caused
by discretization errors for these short chains (N = 10) besides the uncertainty coming from
the limited number of points in a). It may also be caused by the screening of hydrodynamic
interactions to be discussed at the end of this chapter.

Anomalous birefringence can thus be obtained in two ways: at a particle concentration
below overlap by lowering the salt concentration to a very small value (crossing the solid
line in fig. 7.11 vertically), or by raising the polymer concentration at a given salt condition
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(crossing the line horizontally).

Collapse of the ion cloud at high salt concentration

In section 7.1.3 experiments were cited [82, 89] that show a strong decrease of the birefrin-
gence signal at high salt concentrations. This decrease is also seen in simulations in fig. 7.7b
for κ−1 < 10a although the effect is small which is in part due to the finite ion sizes. Can
hydrodynamic orientation be observed under these conditions? Anomalous birefringence is
neither seen in these experiments nor in simulations. The small polarizability in the limit
κ−1 → 0, cf. eq. (7.35), is sufficient to cause parallel orientation, while hydrodynamic orien-
tation is screened due to the high salt concentration. It seems that this possibility is ruled
out.

Changing the polymer length

Eq. (3.33) states that the hydrodynamic contribution to the Kerr constant increases with the
fifth power of the rod length, beside logarithmic corrections, the polarizability only with the
third power. Long semiflexible rods that can be polymerized up to different lengths should
exhibit a transition from normal to anomalous birefringence when their length is increased.
From eq. (7.35) one finds the following condition for anomalous birefringence,

1

8
(L̃+ 3κ̃−1)3 ∼ α̃‖ ∼ ∆α̃

!∼ 15K̃ ′
H ≈ 1.6 × 10−4ζ

L5

ℓP a4
, (7.47)

which is valid in very dilute polymer solution. If κ−1 is not considerably larger than L, say
for definiteness 3κ−1 = L, the condition leads to

L/a > 102/ζ
√

ℓP /a (7.48)

Since DNA has a persistence length of 50 nm at 100 mM salt and a diameter of 2 nm the
condition can only be fulfilled if the polarizability is weakened by other factors. f-actin is
more promising: With ℓP/a ≈ 2000 one gets a minimum length of less than 1µm.

Kobayasi et al. [78] started the polymerization to f-actin by adding a small amount of
CaCl2 (0.5 to 0.7 mM) to a solution of g-actin and observed the birefringence signal over
time. A negative birefringence component appeared during this polymerization process. Per-
pendicular orientation is seen at a length of about 1.5 µm and possibly already below. With
an electric field of 3× 104 V/m, a persistence length of 17.7µm [57], a diameter of 8 nm and
a charge density of about 1e/nm equation (3.33) gives complete perpendicular orientation,
ψ = −0.5 , at a filament length of L ≈ 0.7µm. It is thus likely that Kobayasi has observed
hydrodynamic orientation.

In the simulations, fig. 7.12a, the polarizability is weakened by a strong electric field,
Ẽ = 1. When the number of monomers is increases the orientation crosses over from parallel
to perpendicular. The dependence of the crossover number on ℓP/L hints at an elastic origin.

7.2.2 Discussion

I shall list some objections to the proposition that anomalous birefringence is caused by the
coupling of hydrodynamic interactions and elasticity. An overview of electrostatic alternatives
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from the literature is given. At the end I try to arrive at a coherent picture of the different
effects contributing to perpendicular orientation.

Screening of hydrodynamic interactions

The bending discussed in chapter 3 is caused by overlap of the flow fields from different
parts of the polymeric chain and is therefore susceptible to the screening of hydrodynamic
interactions during electrophoresis at high salt concentrations. It is exactly the effect that
leads to the independence of the electrophoretic mobility of long polymers in salt solutions
[108]. Counterions move in the direction opposite to the polymer and cancel the influence of
the flow fields on length scales larger then κ−1. The polymer is essentially free draining at
high salt concentrations. Hence, if κ−1 ≪ L the hydrodynamic orientation mechanism does
not work.

It is important to check whether this screening of the hydrodynamic effects is operative
in the simulations. Fig. 7.12b shows the bending angle θ defined in fig. 3.1 as a function
of the screening length. To exactly reproduce the results of chapter 3 in the limit κ−1 →
∞ the monomer-monomer electrostatic interactions are artificially set to zero. Doing so
complications due to an effective electrostatic persistence length are avoided. Two conditions,
Ns = 0 (just counterion screening) and Ns = 40 (excess salt), are treated; the ionic strength
is changed by varying the box size. Within error bars these two conditions show no difference
in θ which is thus only determined by κ−1. The points are fitted to a parabola as motivated
by θ ∼ L2 (L/ℓP ) (cf. eq. (3.22)) if one assumes that bending occurs over a length κ−1,
i.e. replacing L by κ−1.

How many screening lengths κ−1 are necessary for a complete screening of hydrodynamic
interactions. Experimentally, a related question is: At which length does the electrophoretic
mobility of a polyelectrolyte become independent of molar mass for a given ionic strength?
For DNA Stellwagen et al. [168] observe a saturation of the electrophoretic mobility at about
150 bp if a buffer with 40 mM ionic strength is used. That is a polymer with L > 30κ−1

starts to become free-draining. Since at 150 bp the DNA is still approximately rod-like, one
can apply the result to the screening of the hydrodynamic bending: Only a κ−1 much smaller
than L prohibits this hydrodynamic orientation.

From this perspective the the upper part of phase diagram fig. 7.11b (κ2 L2 > 100)
can be understood: Positive birefringence is reduced upon the addition of salt because the
polarizability is reduced due to the shrinking counterion cloud. This is described by the
dashed lines. However, negative birefringence is suppressed due to screening; the solid line
does not show this arc-like form. For fd-virus and f-actin which have lengths of the order of one
micrometer hydrodynamic orientation is thus only conceivable at minimal salt concentration,
10−6 to 10−5 M.

Low field anomaly

Several authors have observed perpendicular orientation at small and intermediate electric
field strengths in semidilute solutions of rod-like particles using birefringence [82, 120, 136],
dichroism [140] and static light scattering [111]. In the case of fd-virus, the birefringence
signal is anomalous for electric fields below 104 to 105 V/m, depending on the polymer and
salt concentration. For higher fields the signal becomes normal. The effect clearly depends
on the overlap of the counterion clouds as it increases with the polymer concentration and
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decreases with salt concentration, i.e. when the cloud shrinks. The orientation parameter ψ
of this anomaly is on the percent level and grows approximately with the second power of
the electric field [82] so that it could be caused by hydrodynamic orientation (see estimates
in section 3.5.2).

To explain the transition to normal orientation at higher field strengths one has to assume
that either the polarizability is weakened at small and intermediate field strengths by some
unknown process, or that the perpendicular orientation is caused by a mechanism other
than hydrodynamic orientation. One such mechanism is the network model of Hoffmann et
al. already presented before [69]. Another explanation was given by Cates [22]: The polymers
together with their counterion clouds are modeled as mutually avoiding ellipsoidal particles.
At high enough polymer concentrations steric effects lead to a disk-like local order in the fluid
of ellipsoids. For weak electric fields that do not to destroy the equilibrium correlation the
disk-like clusters can only rotate as a whole. If the ellipsoids are aligned parallel to the field
the dipole moments of the rods repel each other and destabilize the configuration. On the
other hand, there is an attraction if the ellipsoids are aligned transverse to the fields, which
enhances the polarizability and stabilizes this orientation. On average the perpendicular
orientation is preferred for low fields. Higher fields destroy the local disk-like order, and
particles align parallel to the electric field.

Several authors assume a permanent perpendicular dipole orientation as cause for anoma-
lous birefringence since it is first order in the electric field [66, 78, 140]. At higher fields the
induced dipole orientation, a second order effect, dominates and causes normal birefringence.
However, the helical symmetry of many biopolymers preclude a permanent perpendicular
dipole moment. Porschke [140] presents a possible explanation for semiflexible DNA of sev-
eral hundred base pairs: Thermal bending results in a shift of the center of all charges of the
polymer with respect to the center of diffusion giving rise to an effective permanent dipole
moment perpendicular to the long axis if the configuration is frozen. He assumes transitions
barriers of the configurational changes that freeze the bent structure.

Conduction

The presence of an external field not only changes the mutual distances of all molecules and
their orientation, it also gives rise to dissipative effects like conduction. It was already argued
that even in linear response the polarizability cannot completely be described by a mere
balance of the separation due to the external electric field and the electrostatic attraction
between polymer and cloud since there is a continuous flux of ions entering and leaving the
cloud (see chapter 6). The influence of the motion of the counterions along the polymer on
the polarizability, effects like electrostatic friction [123], are not investigated in this thesis
although they are included in the simulations. Fixman and Jagannathan [43] showed that
convective effects are important for polarization. Conduction effects might therefore be a
cause for anomalous birefringence similar to what has been proposed in [69].

Conclusions

It was the goal of this chapter to investigate experimental conditions under which the hy-
drodynamically induced perpendicular orientation is observable in strong electric fields. The
results are relevant for electric birefringence and dichroism measurements, as well as for
electrophoresis since the mobility of long rods is a factor of two smaller for perpendicular
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orientation compared to parallel one. As a prerequisite, the dependence of the polarizability
on salt and polymer concentration and polymer length was investigated. It was argued that
anomalous birefringence seen with actin filaments is caused by hydrodynamic orientation,
while the anomaly observed in semidilute solutions with overlapping counterion clouds allows
for several interpretations. It is also speculated that the Wien effect in very strong fields can
lead to a perpendicular orientation.

The screening of hydrodynamic interactions limit our proposed orientation mechanism
to dilute salt solutions. It is therefore as likely that the low-field anomaly is rather due
to electrostatic and steric effects as for example in the model of Cates since hydrodynamic
effects alone cannot explain the weakening of the parallel orientation. It is conceivable that
both mechanism contribute to this anomaly in their respective limits, the clustering model of
Cates for denser systems, the hydrodynamic model for rather dilute polymer solutions and
very extended clouds.



Chapter 8

General Conclusions and Outlook

In this thesis interesting new phenomena in the context of single polymer dynamics in an
external field were presented where hydrodynamic interactions play an important role. The
chapters 3, 4 and 7 deal with rod-like chains with finite elasticity, chapter 5 with flexible chains
and chapter 6 with the intermediate semiflexible range. Electrostatic effects were included for
stiff and semiflexible chains but not for flexible ones. The reason for this neglect is that the
latter case was already recently covered for free-draining hydrodynamic interactions [122, 123]:
Strong electric fields lead to an unfolding transition that depends on the polymer length and
charge. It was checked that the use of Rotne-Prager hydrodynamic interactions does not
qualitatively change this picture.

The main results of the investigations presented here are three transitions induced by
external forces that can be easily observed in experiments: the perpendicular orientation
of a semiflexible rod in a homogeneous Stokes flow, the folding of an elastic rotating fila-
ment around its axis, and the conformational changes of self-avoiding flexible polymers to
a tadpole-shaped structure under sedimentation forces. The first and the last situation are
in fact limiting cases of the same problem, the response of an elastic object in a viscous
fluid to an external force, for very small and high persistence lengths. In addition the salt-
dependence of the diffusion and polarization of polymers was investigated to clarify several
issues controversially discussed in the literature.

Some problems had to be left out: The section on electrolyte friction of semiflexible
polymers can only serve as a first step although many features can already seen from the
special cases presented. Several conclusions for the birefringence of charged rods were only
drawn indirectly from the parallel polarizability due to limitations of the computer power; it
is hoped that later investigations can add the missing pieces.

The phenomena are not only important in their own right. Due to their strong length
dependence, the hydrodynamic orientation and unfolding mechanisms must be taken into
account when polymers are separated in solution according to their molecular weight. With
some clever design one might even be able to invent new separation techniques based on these
effects that avoid the staining of the sample and other difficulties encountered in capillary
electrophoresis [164]. The controlled compactification and unfolding of flexible polymers in an
ultracentrifuge by tuning the rotor speed has a great potential in the context of large proteins
as their function depends on the tertiary structure. It should be regarded as an alternative to
shear flow and electric methods. The difference of their sedimentation coefficients by nearly
a factor of two at high rotor speeds offers a new and unambiguous method to separate linear
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and circular polymers of the same molecular weight.



Appendix A

Description of the Numerical

Method

A.1 Langevin iteration

Boundary conditions

Minimal image boundary conditions are used which means that the simulation box is repeated
in all spatial directions, but interactions of a particle are restricted to particles within a box of
the size of the simulation box but centered at the particle [1]. In other words, the boundaries
of the simulation box are wrapped to form a higher dimensional torus. Two particles interact
along their shortest distance in that geometry; self-interaction is not possible. The diameter
of the box therefore defines a cutoff of the long-ranged forces which may also have a physical
meaning (see chapter 7). If one wants to preserve the long-range character of all forces and
of the hydrodynamic interactions, periodic boundary conditions with e.g. Ewald summation
techniques [1, 9] should be used, which are usually quite costly from a numerical point of
view.

Correlated random numbers

Getting the right equilibrium distribution in the presence of hydrodynamic interactions re-
quires that the correlation matrix of the Brownian random shocks be proportional to the
mobility matrix of the monomer units. This leaves one with the task of computing the square
root of positive definite symmetric matrix. Cholesky decomposition is a very stable exact
method but has a computational count of O(N3) [144]. The idea is to factorize the positive
definite symmetric H into a lower diagonal, L, and an upper diagonal part

H = L · LT . (A.1)

This can be done by the recursion

Lii =

[

Hii −
i−1
∑

k=0

Lik
2

]1/2

Lij =
1

Lii

(

Hij −
i−1
∑

k=0

Lik Ljk

)

, j > i . (A.2)
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If ∆ξG is a 3N -dimensional Gaussian random vector with zero mean and unit variance then

∆ξ = (2 kBT ∆t)1/2 L · ∆ξG (A.3)

fulfills (2.8). ∆ξ is of course not unique; any matrix L not necessarily lower diagonal with
the property (A.1) can serve. Another possible choice is for example

H = S · S (A.4)

with S = ST . Cholesky decomposition provides at the same time a good test whether the
mobility matrix fulfills the physical condition of positive definiteness. The Oseen tensor might
have negative eigenvalues even for only slightly overlapping beads, which can only be avoided
by unfeasible short time steps and very strong stretching forces. On the other hand, the
Rotne-Prager tensor which provides a first order correction for the finite bead radius [188]
is by construction positive definite. Nevertheless, the minimal image boundary condition,
i.e. a non-flat topology, may result in a no more positive definite matrix if the system is
very dense and strongly overlapping. But this is only the case for very exceptional examples:
Place for instance four unit spheres in a cubic box with edges of length 3.01 and minimal
image boundary conditions at the points (0, 1.5, 0), (1.5, 0, 0), (3, 1.5, 0) and (1.5, 3, 0).
The smallest eigenvalue of the Rotne-Prager diffusion matrix is −0.0087 ; hence the diffusion
matrix is not positive definite.

There are iterative methods reported to be faster in certain cases [41, 44, 73] which cal-
culate ∆ξ without determining L or S before: One of these is the Chebyshev polynomial
approximation method by Fixman [44] which scales roughly like N2.25. Since H is a sym-
metric, positive definite matrix it can be written in the following spectral way

H =
N−1
∑

k=0

λk |k〉 〈k| (A.5)

where for all eigenvalues λk

λmax ≥ λk ≥ λmin > 0 . (A.6)

Hence the matrix “square root” can be expressed

S =
N−1
∑

k=0

√

λk |k〉 〈k| (A.7)

since the |k〉 are orthogonal. The square root function can be approximated by a sum of
Chebyshev polynomials Cn √

λ ≈
∑

n

cnCn(aλ+ b) (A.8)

where usually a degree of O(10) is sufficient and

a =
2

λmax − λmin

(A.9)

b =
λmax + λmin

λmax − λmin

(A.10)
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Figure A.1: Test of the approximation made in the correlation of the noise: a) Time evolution of
the squared radius of gyration R2

g(t) of a N = 50 flexible chain for E = 0 and ∆̃ = 10−3 in the free
draining limit (dashed dotted line) and for the Cholesky decomposition done every (full line) and every
10th step (dashed line). b) Equilibrium (R2

g, open circles) and non-equilibrium (mobility at Ẽ = 1,
squares) quantities as a function of number of steps between two successive Cholesky decompositions.
For comparison, the free draining value of R2

g (black circle) is also shown.

to keep the argument of Cn between −1 and 1. The Chebyshev coefficients cn of the shifted
square root function have to be determined only once at the beginning of the simulation.
Plugging eq. (A.8) into eq. (A.8) yields

S ≈
N−1
∑

k=0

∑

n

cnCn(aλk + b) |k〉 〈k| =
∑

n

cn Cn(aH + b I) . (A.11)

Cn are Chebyshev polynomials of matrices and I is the unit matrix. The correlated random
number of eq. (A.3) can be written as

∆ξ = (2 kBT ∆t)1/2 S · ∆ξG

≈ (2 kBT ∆t)1/2
∑

n

cn [Cn(aH + b I) · ∆ξG]

= (2 kBT ∆t)1/2
∑

n

cn ηn (A.12)

where η is determined iteratively by

η0 = ξG (A.13)

η1 = [aH + b I] · ξG (A.14)

ηn+1 = 2 [aH + b I] · ηn − ηn−1 . (A.15)

Compared to Cholesky decomposition which scales as N3, Fixman’s method requires
O(10) multiplications of a vector times a matrix which scales just as N2. The difficulty arises
from the unknown λmax, λmin and the degree of the polynomial which have to be estimated
before the simulation. [73] gives a recipe how to do this. For polymer solutions without small
ions I find only a slight improvement in speed for the desired accuracy and less than 200
monomers. In the case of many quickly moving counterions the number of iterations per time
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step grows very large so that this alternative is discarded for charged systems. To cope with
correlated random numbers, I thus choose a cruder but more efficient approximation: In my
implementation, one iteration step scales approximately as 5N2 + N3. So for systems with
N ≤ 100 the numerical effort by including hydrodynamic interactions can be kept within
reasonable limits if the square root matrix is updated only every 10th step, which gives a
good compromise between accuracy and efficiency (see fig. A.1). The approximation shows
only minor effects in both equilibrium and non-equilibrium averaged quantities and no dis-
tinct trend. Of course, the use of numerical libraries like LAPACK [2] can raise the speed
considerably (up to fifty percent).

Choosing the right time step

It is checked that the relevant equilibrium and non-equilibrium averaged quantities like radius
of gyration and mobility do not change drastically any more if the time step ∆t is lowered.
Usually this is the case when the step sizes ∆r of each particle, ∆r = r(t + ∆t) − r(t), are
only a small fraction of the smallest length scale of the system, say one tenth of the monomer
radius a.

In the weak bending regime of chapter 3, small external forces act on a chain with large
elastic moduli. The turning speed is very small, and one would expect that ∆t could be
chosen at a moderate value to keep the monomer displacements well below a. Nevertheless
unphysical oscillations of the monomers around their proper positions occur if e.g. the rescaled
bending parameter times the rescaled time step becomes O(1) . The onset of this behavior
is very abrupt in ∆t and more or less independent of external field E and monomer number
N . I find empirically the approximate conditions γ∆t ≤ 4 a/µ0 and ε∆t ≤ 2

√
2 a3µ0 in the

case of Rotne-Prager level hydrodynamic interactions, and γ∆t ≤ a/µ0 and ε∆t ≤ a3µ0 for
the free draining case. In both cases the Lennard-Jones potential and the random shocks are
excluded. In the chapters 3 and 7, the bending modulus is chosen proportional to the polymer
contour length, ε ∝ N . This necessitates the time step changing according to ∆t ∝ 1/N

Ergodicity and variance reduction

To check that really all relevant configurations are sampled, runs involving many particles are
repeated several times with different initial conditions. This is especially important because
large systems are simulated with fewer time steps so that the total simulation time does not
exceed two weeks.

In chapter 7 the variance reduction method of [25] is sometimes applied. Two simulations
are started with the same initial condition and the same pseudo-random number seed, one with
electric field and one without. The simulation time is not very long so that at low electric
fields the trajectories of both simulations are quite similar. Quantities whose expectation
values at zero electric field vanish, like the dipole moment or the orientation parameter ψ, are
calculated by subtracting from the finite-field average the zero-field average. For very long
runs this makes no difference as the zero-field average tends to zero. On the other hand the
variance is reduced since the random parts in both simulations are close to each other.
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A.2 Data analysis

To estimate the numerical error of the observables a block-averaging method was used. It
will be briefly described. Ergodicity is always assumed and has to be checked by different
methods. Let x be a fluctuating quantity and xi its measured values. A good estimator for
the true expectation value is its average value

x̄ =
1

n

n
∑

i=1

xi . (A.16)

Since n is a large but finite number (in this thesis usually n = 104 − 105 is used) one can ask
for the error of this estimate, i.e. for the standard deviation

∆x̄ =
[

〈x̄2〉 − 〈x̄〉2
]1/2

(A.17)

which is defined with respect to the true expectation 〈..〉. The simple estimate for the error
of the mean ∆x̄,

1

n (n− 1)

n
∑

i=1

(xi − x̄)2 , (A.18)

is valid if the xi are statistically independent. Otherwise one can split the data points into m
blocks such that the simulation time of one block is much longer than the correlation time of
the observable x:

(∆x̄)2 =
1

m (m− 1)

m
∑

k=1









m

n

n/m
∑

i=1

xi



− x̄





2

. (A.19)

In this thesis m = 10 was used. The statistical independence is checked using the density-
density correlation function.

A formal way to find the optimal number of blocks is given by a method reminiscent of
real space renormalization group techniques [46]. One starts with the whole data set of n
points and transforms them in to a new (primed) set half as large:

x′i =
1

2
(x2i−1 + x2i) (A.20)

n′ = n/2 . (A.21)

With the definition of the correlation function

ck = 〈xi xi+k〉 − 〈xi〉2 (A.22)

the error of the mean can be written as

∆x̄ =
1

n

[

c0 + 2
n−1
∑

k=1

(

1 − k

n

)

ck

]

. (A.23)

Since the correlation function transforms as

c′0 =
1

2
(c0 + c1) (A.24)

c′k =
1

4
c2k−1 +

1

2
c2k +

1

4
c2k+1 , for k > 0 (A.25)
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∆x̄ and x̄ remain invariant under the “blocking” transformation. The transformation is
repeated until the estimator for c0,

1

n′ − 1

n′
∑

i=1

(xi − x̄)2 , (A.26)

does not change any more. At the fixpoint,

∆x̄ =
√

c′0/n
′ ≈





1

n′ (n′ − 1)

n′
∑

i=1

(xi − x̄)2





1/2

(A.27)

as in eq. (A.19). If ck decays faster than 1/k then it lies in the basin of attraction. At the
fixpoint all x′i are independent Gaussian variables and c′k = 0 for k > 0. If the fixpoint has
not yet been reached then eq. (A.27) is a lower bound for ∆x̄.



Appendix B

Treatment of Hydrodynamic

Orientation

B.1 Quasi-rigid bodies in the bead-model approximation

The following section applies to rigid and semi-rigid bodies, i.e. to ones that can only be
slightly deformed and for which the elastic degrees of freedom relax much faster than its
orientation to an external field1. I will restrict the discussion to a weakly bending rod. From
the positions of the monomers one can calculate the 3× 3 mobility tensors µij (Rotne-Prager
tensor) for two beads i and j and from them the translational grand mobility matrix Mtt of
eq. (2.17). The various 3 × 3 elements of eq. (3.1) with the origin O as reference point are
now given by [50]

ζtt =
∑

ij

[

(Mtt)−1
]

ij
(B.1)

ζrt †
O =

∑

ij

ri ×
[

(Mtt)−1
]

ij
(B.2)

ζrr
O =

∑

ij

− ri ×
[

(Mtt)−1
]

ij
× rj . (B.3)

ri is the position of the center of bead i, and × denotes the cross product, e.g. [a × B]αδ =
∑

3
βγ=1 εαβγ aβ Bγδ for any vector a and matrix B. The center of reaction rOR follows as

rOR = −
[

(Tr ζtt) I − ζtt
]−1

·
[

ε : ζrt †
O

]

(B.4)

where the second term on the right hand side is a double contraction with the Levi-Civita
tensor ε. Shifting the reference point in eq. (B.2) and (B.3) from the origin to the center of
reaction R yields

ζrt †
R = ζrt †

O − rOR × ζtt = ζrt
R (B.5)

ζrr
R = ζrr

O − rOR × ζtt × rOR + ζrt †
O × rOR − rOR × ζrt

O . (B.6)

One can invert the generalized friction matrix (3.1) to obtain the generalized mobility
matrix (3.2) at the center of reaction R [50]. Note that µtt

P depends on the reference point

1Bead models for rigid bodies are reviewed by Garćıa de la Torre and Bloomfield [54].
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1

Figure B.1: Sketch of the three-bead model used in B.2. Stretching occurs in ẑ-direction and bending
in the negative x̂-direction. The distance of two adjacent spheres is 2a plus perturbations.

while µrr is independent. Using the vector from point R to the center of diffusion D

rRD = − [(Trµrr) I − µrr]−1 ·
[

ε : µrt †
R

]

(B.7)

one finally arrives at [180]

µtt
D = µtt

R − rRD × µrr × rRD + µrt
R × rRD − rRD × µrt †

R (B.8)

µrt †
D = µrt †

R + µrr × rRD = µrt
D . (B.9)

Equations (B.8) and (B.9) can also be used to transform the mobility matrices to any other
point, for example to a point where the total torque vanishes.

B.2 Perturbative calculation of a three-bead rod

It is instructive to see in an explicit example how the coupling between flexibility and hydro-
dynamic interactions works in the small deformation limit. A rod composed of three beads
is placed in an external field at an angle of 45 degrees (fig. B.1). The origin is chosen to be
the middle bead, the z-axis parallel to the long axis of the rod, the x-axis perpendicular to it.
The third dimension is irrelevant by symmetry. The calculation is done on the Rotne-Prager
level.

As in eq. (3.42), I write

r0 =

(

0

−2

)

+

(

a1

b1

)

+

(

a2

b2

)

+ O(E3) (B.10)

r2 =

(

0

2

)

+

(

c1
d1

)

+

(

c2
d2

)

+ O(E3) (B.11)

which inserted into the elastic potential eq. (3.3) gives up to first order in E

F(1)

0 =

(

qE/
√

2

−qE/
√

2

)

− 1

8a

(

ε (a1 + c1)/a
2

4γ b1

)

(B.12)



B.2 Perturbative calculation of a three-bead rod 103

F(1)

1 = 3

(

qE/
√

2

−qE/
√

2

)

− F0 − F2 (B.13)

F(1)

2 =

(

qE/
√

2

−qE/
√

2

)

− 1

8a

(

ε (a1 + c1))/a
2

4γ d1

)

, (B.14)

where a is the bead radius. At first order in E, or in the inverse elastic parameters, the rod
is just translating without rotation. This leads to

∑

j

µ(0)

ij · F(1)

i = v(1) , i = 0, 1, 2 , (B.15)

where µ(0)

ij is the Rotne-Prager tensor at zeroth order. Together with the constraint
∑

i Fi = 0,

it can be solved for the unknowns F(1)

0 , F(1)

2 and v(1):

F(1)

0 = F(1)

2 =

(

216/185

−72/55

)

qE/
√

2 (B.16)

v(1) =

(

312/185

−11/55

)

µ0 qE/
√

2 . (B.17)

As before, µ0 is the Stokes mobility of a single bead. Comparison with eqs.(B.12-B.14) yields

a1 + c1
2

= −124

185

qEa3

√
2 ε

(B.18)

b1 = d1 =
34

55

qEa√
2 γ

. (B.19)

Using this relations, the mobility tensor to first order µ(1)

ij and the forces up to second

order F(2)

i are calculated and plugged into the relation

∑

j

[

µ(0)

ij · F(1)

j + µ(0)

ij ·F(2)

j + µ(1)

ij · F(1)

j

]

+ O(E3) = v(1) + v(2)

i . (B.20)

If one assumes that v(2)

i is a pure rotation of the chain around the center bead, i.e. v(2)

0 = −v(2)

2

and v(2)

1 = 0, one finds

a1 = c1 , a2 = −c2 , b2 = −d2 , (B.21)

and the final result

v(2)

0x = −v(2)

2x = µ0 (qEa)2
−139810 γ + 204833 ε/a2

1302400 γ ε
. (B.22)

The orientation is a generic second order effect in E. It vanishes if

γ =
204833

139810

ε

a2
≈ 1.456

ε

a2
, (B.23)

which leads to eq. (3.46) for L = 4a. For the Oseen tensor one finds the simpler relation

γ =
55

14

ε

a2
≈ 3.929

ε

a2
. (B.24)
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Figure B.2: a) Simulations of the diffusion constant of a neutral rod with ℓp = 5L for parallel (circles)
and perpendicular motion (triangles). Cylinder model of eq. (B.29) for parallel (upper black line) and
perpendicular motion (lower black line). Cylinder model of eq. (B.28) (blue line) and prolate ellipsoid
model of eq. (B.30) (red line) both for perpendicular motion. b) Rotational diffusion times τr with
(white symbols) and without hydrodynamic interactions for flexible (circles) and rod-like (squares)
chains. Some error bars are neglected for visibility. Solid lines display eq. (B.35) and eq. (B.37) (top
to bottom); the dashed lines are a N3 fit to the free draining simulations and eq. (B.36).

B.3 Consistency checks with analytical results

In this appendix some equilibrium and non-equilibrium quantities for a single neutral flexible
or stiff chain will be tested against known analytical results [32]. The Langevin equation (3.7)
is used which includes temperature effects. It is the aim of this section to check the simulation
results of this thesis for possible numerical artifacts.

Translational diffusion and mobility

Rod-like chains (ℓp = 5L, γ̃ = 4 ℓP /a) with various N are simulated by Brownian dynamics.
By looking at the configurations it is assured that the chains are always very prolate. After
short time intervals ∆t=0.1 a2/(µ0kBT ) (total simulation time 105∆t), the center of mass dis-

placements of the chain parallel, ∆R
‖
CM(tn) ≡ ∆RCM(tn) ·Re(tn)/Re(tn), and perpendicular,

∆R⊥
CM(tn), to its long axis (i.e. end-to-end vector Re = rN−1−r0) are calculated:

D⊥ =

(

∑

n

∆R⊥
CM(tn)

)2

/(2
∑

n

∆t) (B.25)

D‖ =

(

∑

n

∆R
‖
CM(tn)

)2

/(4
∑

n

∆t) (B.26)

DG = 1/3 (D‖ + 2D⊥)

=

(

∑

n

∆RCM(tn)

)2

/(6
∑

n

∆t) . (B.27)

n counts the 105 measurement points. The results are compared with analytical (approximate)
solutions for long cylinders of Broersma (communicated by Newman et al. [125]) where L is
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identified with the length and a with the radius of the cylinder,

D⊥ =
kBT

4πη L

[

ln(L/a) − 0.19 + 4.2 (0.39 − 1/ ln(L/a))2
]

D‖ =
kBT

2πη L

[

ln(L/a) − 1.27 + 7.4 (0.34 − 1/ ln(L/a))2
]

,

(B.28)

with the cylinder calculation of Tirado et al. [172],

D⊥ =
kBT

4πη L

[

ln(L/2a) + 0.839 + 0.185(2a/L) + 0.233(2a/L)2
]

D‖ =
kBT

2πη L

[

ln(L/2a) − 0.207 + 0.98(2a/L) − 0.133(2a/L)2
]

,

(B.29)

and with simplified estimates for ellipsoids (cf. also [139]), in which case L is identified with
the long and 2a with the short axis of the ellipsoid,

D⊥ =
kBT

4πη L
[ln(L/2a) + 0.5]

D‖ =
kBT

2πη L
[ln(L/2a) − 0.5] . (B.30)

Fig. B.2a shows good agreement of all calculations at great N but discrepancies for about
N < 10. The model of Tirado et al. seems to be best suited especially for short chains as
it includes numerical correction for end effects. The infinite chain prediction D‖/D⊥ = 2 is
approached only logarithmically as can be seen e.g. in the case of eq (B.29) from

D‖
D⊥

≈ 2

[

1 − 1.05

ln(L/2a) + 0.84

]

. (B.31)

Rotational diffusion

In terms of the time correlation function of the normalized end-to-end distance vector u :=
Re/|Re| the rotational diffusion time τr and coefficient Dr of a polymer are defined by [32],

Cuu(t) ≡ 〈u(t) · u(0)〉 = exp(−2Dr t) = exp(−t/τr) . (B.32)

In chapters 3 and 7 the total simulation time is at least an order of magnitude longer than
the rotational diffusion time of the polymer.

For a rod-like polymer the expression for birefringence (cf. chap. 3) reads

∆n ≈ ∆ns χ = ∆ns

〈3

2

[

u(t) · E

E

]2

− 1

2

〉

, (B.33)

where ∆ns is the saturation birefringence. Setting u(0) = E/E results in the rotational
diffusion time τr being one third of the slowest relaxation time τrelax of the birefringence
signal [48]

∆n = ∆ns exp(−t/τrelax)
= ∆ns exp(−3 t/τr) = ∆ns exp(−6Dr t) . (B.34)
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A typical way of obtaining τr or Dr is to plot Cuu(t) :=
∫

u(t + t0) · u(t0) dt0 versus time
on a logarithmic scale. Due to the cubic dependence of the diffusion time of stiff chains on
the length, τr ∼ N3, one is quickly led to unmanageable long simulation times. Nevertheless,
qualitative agreement between simulation and theory is achieved (fig. B.2b): For rods with
hydrodynamic interactions the cylinder model by Tirado et al. [172] is used

Dr =
1

2 τr
=

kBT

3πη L3

[

ln(L/2a) − 0.662 + 0.917 (2a/L) − 0.05 (2a/L)2
]

. (B.35)

If hydrodynamic interactions are neglected τr scales as N3 for rod-like polymer. Fig. B.2b
displays a fit to the first four data points.

Flexible chains in the free draining case are approximately described by the Rouse model,

τr =
4a2

3π2µ0kBT
N2 , (B.36)

where (among other things) the excluded volume is neglected; or by the good solvent Zimm
model (in the case of hydrodynamic interactions),

τr =
a2

6π2µ0kBT
(Rg/a)

3 , (B.37)

where Rg is taken from Fig. 6.1 and incorporates excluded volume interactions. Fig. B.2b
shows already huge error bars; also some systematic underestimation of τr for the highest N
values due to the finite stiffness might well be present. But, all in all, one can conclude that
the simulations reproduce the known analytical results.

B.4 Diffusion of semiflexible chains - some calculations

The explicit result of Yamakawa’s diffusion constant of a semiflexible chain [189] of section
6.1 for the to cases, L > 4.556 ℓP and L ≤ 4.556 ℓP , reads up to O(d/L)5 and O(d/ℓP )5

D(L > 4.556 ℓP ) =
kBT

3πη L

{

4

3

√

6

π

(

L

2ℓP

)1/2

+A2 +A3

(

L

2ℓP

)−1/2

+A4

(

L

2ℓP

)−1

+A5

(

L

2ℓP

)−3/2
}

(B.38)

D(L ≤ 4.556 ℓP ) =
kBT

3πη L

{

C1 ln

(

L

d

)

+ C2 +C3

(

L

2ℓP

)

+ C4

(

L

2ℓP

)2

+C5

(

L

2ℓP

)3

+ C6

(

d

L

)

ln

(

L

d

)

+C7

(

d

L

)

+C8

(

d

L

)2

+ C9

(

d

L

)3

+C10

(

d

L

)4
}

. (B.39)

d = 2a is the diameter of the bent cylinder. The coefficients are given by

A2 = −
[

1 − 0.01412

(

d

2ℓP

)2

+ 0.00592

(

d

2ℓP

)4
]

ln
d

2ℓP
− 1.0561 − 0.1667

d

2ℓP
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−0.19

(

d

2ℓP

)2

− 0.0224

(

d

2ℓP

)3

+ 0.019

(

d

2ℓP

)4

A3 = 0.1382 + 0.0691

(

d

2ℓP

)2

A4 = −
[

0.04167

(

d

2ℓP

)2

+ 0.00567

(

d

2ℓP

)4
]

ln
d

2ℓP
− 0.3301 + 0.5

d

2ℓP

−0.5854

(

d

2ℓP

)2

− 0.0094

(

d

2ℓP

)3

− 0.0421

(

d

2ℓP

)4

A5 = −0.03 + 0.1209

(

d

2ℓP

)2

+ 0.0259

(

d

2ℓP

)4

(B.40)

and

C1 = 1 − 0.01412

(

d

2ℓP

)2

+ 0.00592

(

d

2ℓP

)4

C2 = 0.3863 − 0.1667
d

2ℓP
− 0.0016

(

d

2ℓP

)2

− 0.0224

(

d

2ℓP

)3

− 0.0007

(

d

2ℓP

)4

C3 = 0.1667 + 0.0222

(

d

2ℓP

)2

+ 0.0017

(

d

2ℓP

)4

C4 = 0.01883 − 0.00789

(

d

2ℓP

)2

− 0.00038

(

d

2ℓP

)4

C5 = −0.002 039 + 0.000 805

(

d

2ℓP

)2

+ 0.000 017

(

d

2ℓP

)4

C6 = 0.04167
d

2ℓP
+ 0.00567

(

d

2ℓP

)3

C7 = 0.5 + 0.0786
d

2ℓP
− 0.0094

(

d

2ℓP

)2

+ 0.0107

(

d

2ℓP

)3

+ 0.0039

(

d

2ℓP

)4

C8 = −0.0625 + 0.00132

(

d

2ℓP

)2

− 0.00055

(

d

2ℓP

)4

C9 = 0.001 302
d

2ℓP
+ 0.000 181

(

d

2ℓP

)3

C10 = 0.001 953 − 0.000 064

(

d

2ℓP

)2

+ 0.000 027

(

d

2ℓP

)4

. (B.41)
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[52] J.M. Garćıa Bernal, M.M. Tirado, J.J. Freire and J. Garćıa de la Torre, Macromolecules
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1986 - 1995 Regino-Gymnasium Prüm, altsprachlicher Zweig
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