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Summary

As measurement of gene expression using microarrays has become a standard high through-
put method in molecular biology, the analysis of gene expression data is still a very active
area of research in bioinformatics and statistics. Despite some issues in quality and repro-
ducibility of microarray and derived data (Michielis et al., 2005; Marshall, 2004), they are
still considered as one of the most promising experimental techniques for the understanding
of complex molecular mechanisms.

This work approaches the problem of expression data analysis using contextual infor-
mation. While all analyses must be based on sound statistical data processing, it is also
important to include biological knowledge to arrive at biologically interpretable results.

After giving an introduction and some biological background, in chapter 2 some stan-
dard methods for the analysis of microarray data including normalization, computation
of differentially expressed genes, and clustering are reviewed. The first source of context
information that is used to aid in the interpretation of the data, is functional annotation
of genes. Such information is often represented using ontologies such as gene ontology
(The Gene Ontology Consortium, 2001). GO annotations are provided by many gene and
protein databases and have been used to find functional groups that are significantly en-
riched in differentially expressed, or otherwise conspicuous genes. In gene clustering ap-
proaches, functional annotations have been used to find enriched functional classes within
each cluster. In chapter 3, a clustering method for the samples of an expression data set
is described that uses GO annotations during the clustering process in order to find func-
tional classes that imply a particularly strong separation of the samples. The resulting
clusters can be interpreted more easily in terms of GO classes. The clustering method was
developed in joint work with Henning Redestig.

More complex biological information that covers interactions between biological objects
is contained in networks. Such networks can be obtained from public databases of metabolic
pathways, signaling cascades, transcription factor binding sites, or high-throughput mea-
surements for the detection of protein-protein interactions such as yeast two hybrid ex-
periments. Furthermore, networks can be inferred using literature mining approaches or
network inference from expression data. The information contained in such networks is
very heterogenous with respect to the type, the quality and the completeness of the con-
tained data. ToPNet, a software tool for the interactive analysis of networks and gene
expression data has been developed in cooperation with Daniel Hanisch (Hanisch et al.,
2004). The basic analysis and visualization methods as well as some important concepts
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of this tool are described in chapter 4.
In order to access the heterogeneous data represented as networks with annotated ex-

perimental data and functions, it is important to provide advanced querying functionality.
Pathway queries (Sohler et al., 2004; Sohler and Zimmer, 2005) allow the formulation of
network templates that can include functional annotations as well as expression data. The
pathway search algorithm finds all instances of the template in a given network. In or-
der to do so, a special case of the well known subgraph isomorphism problem has to be
solved. Although the algorithm has exponential running time in the worst case, some im-
plementation tricks make it run fast enough for practical purposes. Often, a pathway query
has many matching instances, and it is important to assess the statistical significance of
the individual instances with respect to expression data or other criteria. In chapter 5
the pathway query language and the pathway search algorithm are described in detail and
some theoretical properties are derived. Furthermore, some scoring methods that have
been implemented are described. The possibility of combining different scoring schemes
for different parts of the query result in very flexible scoring capabilities.

In chapter 6, some applications of the methods are described, using public data sets
as well as data sets from research projects. On the basis of the well studied public data
sets, it is demonstrated that the methods yield biologically meaningful results. The other
analyses show how new hypotheses can be generated in more complex biological systems,
but the validation of these hypotheses can only be provided by new experiments.

Finally, an outlook is given on how the presented methods can contribute to ongoing
research efforts in the area of expression data analysis, their applicability to other types of
data (such as proteomics data) and their possible extensions.



Zusammenfassung

Während die Messung von RNA-Konzentrationen mittels Microarrays eine Standardtech-
nik zur genomweiten Bestimmung von Genexpressionswerten geworden ist, ist die Analyse
der dabei gewonnenen Daten immer noch ein Gebiet äußerst aktiver Forschung. Trotz
einiger Probleme bezüglich der Reproduzierbarkeit von Microarray- und davon abgeleit-
eten Daten werden diese als eine der vielversprechendsten Technologien zur Aufklärung
komplexer molekularer Mechanismen angesehen.

Diese Arbeit beschäftigt sich mit dem Problem der Expressionsdatenanalyse mit Hilfe
von Kontextinformationen. Alle Analysen müssen auf solider Statistik beruhen, aber es
ist außerdem wichtig, biologisches Wissen einzubeziehen, um biologisch interpretierbare
Ergebnisse zu erhalten.

Nach einer Einleitung und einigem biologischen Hintergrund werden in Kapitel 2 einige
Standardmethoden zur Analyse von Expressionsdaten vorgestellt, wie z.B. Normalisierung,
Berechnung differenziell exprimierter Gene sowie Clustering. Die erste Quelle von Kon-
textinformationen, die zur besseren Interpretation der Daten herangezogen wird, ist funk-
tionale Annotation von Genen. Solche Informationen werden oft mit Hilfe von Ontologien
wie z.B. der Gene Ontology (The Gene Ontology Consortium, 2001) dargestellt. GO An-
notationen werden von vielen Gen- und Proteindatenbanken zur Verfügung gestellt und
werden unter anderem benutzt, um Funktionen zu finden, die signifikant angereichert sind
an differenziell exprimierten oder aus anderen Gründen auffälligen Genen. Bei Cluster-
ingmethoden werden funktionale Annotationen benutzt, um in den gefundenen Clustern
angereicherte Funktionen zu identifizieren. In Kapitel 3 wird ein neues Clusterverfahren für
Proben in Expressionsdatensätzen vorgestellt, das GO Annotationen während des Clus-
tering benutzt, um Funktionen zu finden, anhand derer die Expressionsdaten besonders
deutlich getrennt werden können. Die resultierenden Cluster können mit Hilfe der GO An-
notationen leichter interpretiert werden. Die Clusteringmethode wurde in Zusammenarbeit
mit Henning Redestig entwickelt.

Komplexere biologische Informationen, die auch die Interaktionen zwischen biologi-
schen Objekten beinhaltet, sind in Netzwerken enthalten. Solche Netzwerke können aus
öffentlichen Datenbanken von metabolischen Pfaden, Signalkaskaden, Bindestellen von
Transkriptionsfaktoren, aber auch aus Hochdurchsatzexperimenten wie der Yeast Two Hy-
brid Methode gewonnen werden. Außerdem können Netzwerke durch die automatische
Auswertung wissenschaftlicher Literatur oder Inferenz aus Expressionsdaten gewonnen wer-
den. Die Information, die in solchen Netzwerken enthalten ist, ist sehr verschieden in Bezug
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auf die Art, die Qualität und die Vollständigkeit der Daten. ToPNet, ein Computerpro-
gramm zur interaktiven Analyse von Netzwerken und Genexpressionsdaten, wurde gemein-
sam mit Daniel Hanisch entwickelt (Hanisch et al., 2004). Die grundlegenden Analyse-
und Visualisierungsmethoden sowie einige wichtige Konzepte dieses Programms werden in
Kapitel 4 beschrieben.

Um auf die verschiedenartigen Daten zugreifen zu können, die durch Netzwerke mit
funktionalen Annotationen sowie Expressionsdaten repräsentiert werden, ist es wichtig,
flexible und mächtige Anfragefunktionalität zur Verfügung zu stellen. Pathway queries
(Sohler et al., 2004; Sohler and Zimmer, 2005) erlauben die Beschreibung von Netzwerk-
mustern, die funktionale Annotationen sowie Expressionsdaten enthalten. Der pathway
search Algorithmus findet alle Instanzen des Musters in einem gegebenen Netzwerk. Dazu
muss ein Spezialfall des bekannten Subgraph-Isomorphie-Problems gelöst werden. Obwohl
der Algorithmus im schlechtesten Fall exponentielle Laufzeit in der Größe des Musters hat,
läuft er durch einige Implementationstricks schnell genug für praktische Anwendungen. Oft
hat eine pathway query viele Instanzen, so dass es wichtig ist, die statistische Signifikanz
der einzelnen Instanzen in Hinblick auf Expressionsdaten oder andere Kriterien zu bestim-
men. In Kapitel 5 werden die Anfragesprache pathway query language sowie der pathway
search Algorithmus im Detail vorgestellt und einige theoretische Eigenschaften gezeigt.
Außerdem werden einige implementierte Scoring-Methoden beschrieben. Die Möglichkeit,
verschiedene Teile der Anfrage mit verschiedenen Scoring-Methoden zu bewerten und zu
einem Gesamtscore zusammenzufassen, erlaubt äußerst flexible Bewertungen der Instanzen.

In Kapitel 6 werden einige Anwendungen der vorgestellten Methoden beschrieben, die
auf öffentlichen Datensätzen sowie Datensätzen aus Forschungsprojekten beruhen. Mit
Hilfe der gut untersuchten öffentlichen Datensätze wird gezeigt, dass die Methoden biolo-
gisch sinnvolle Ergebnisse liefern. Die anderen Analysen zeigen, wie neue Hypothesen in
komplexeren biologischen Systemen generiert werden können, die jedoch nur mit Hilfe von
weiteren biologischen Experimenten validiert werden könnten.

Schließlich wird ein Ausblick gegeben, was die vorgestellten Methoden zur laufenden
Forschung im Bereich der Expressionsdatenanalyse beitragen können, wie sie auf andere
Daten angewendet werden können und welche Erweiterungen denkbar und wünschenswert
sind.



Chapter 1

Introduction and Concepts

1.1 Introduction

The recent advent of new high-throughput experimental techniques has changed research
in molecular biology in many aspects. Whole-genome sequence data for many organisms,
and most importantly for human, have become available as well as a mass of data on gene
expression and protein-protein interactions. Other high-throughput methods, for instance
for the detection of protein-DNA interactions or silencing of genes via RNA interference
are being established.

These new technologies have been connected with many promises regarding human
health. A better understanding of complex diseases as well as improved diagnostic pos-
sibilities and individualized treatments have been envisioned. But so far, most of these
promises could not be fulfilled as the underlying biological systems have eluded a compre-
hensive analysis due to the prohibitive complexity of these systems and their dynamics.

The analysis of the new wealth of data poses new challenges to biological and phar-
maceutical researchers. While the results of traditional small-scale experiments can be
analyzed manually by biological experts, large-scale experiments require at least some au-
tomatic preprocessing to extract and highlight important aspects of the resulting data. The
manual evaluation of experimental data has the advantage that the same researchers who
designed and conducted the experiment can perform the analysis of the results. This en-
sures that no false assumptions about the experimental set-up are made and that detailed
background knowledge about the relevant biology is available for the analysis. Computer
programs carrying out at least part of the analysis usually cannot take advantage of such
background knowledge. The basic assumption of this work is that in order to gain new
insights from biological experiments, background knowledge about the investigated biolog-
ical questions is as important as the collected data themselves. Thus, the goal is to bring
biological data and background knowledge together in computational approaches. The first
questions that have to be answered include:

• How can biological knowledge be represented to make it accessible for computational
analyses?
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• What sources for biological knowledge are available?

• How can different sources of biological knowledge and data be integrated?

• How can a researcher include his own knowledge and expectation in an automatic
analysis?

Knowledge representation is an important topic in other fields of computer science like
databases, data mining and artificial intelligence. Knowledge bases, as they are used in
logic programming, are composed of facts and rules. Using different principles of logical
reasoning, new facts can be derived, or explained by the given rules. As it is difficult to
deal with the uncertainties and incompleteness of biological knowledge using such classical
knowledge bases, their use in molecular biology has been restricted to rather small examples
so far (Tran et al., 2005; Baral et al., 2004; Zupan et al., 2003).

The so-called semantic web is another field of computer science that deals with knowl-
edge representation. The goal of the semantic web is to annotate documents in the world
wide web with semantic information and provide tools for the processing of this informa-
tion by computers. The knowledge representation language proposed for the semantic web
is the resource definition framework (RDF). Many of the techniques and tools developed
for the semantic web could have applications in bioinformatics.

Ontologies constitute another important means to represent knowledge; they formalize
a certain domain by describing all relevant entities and relationships in that domain as well
as rules on these entities and relationships, therefore providing a controlled vocabulary as
well as the possibility to reason about terms from the ontology. Gene Ontology (GO) is
widely used in computational biology (The Gene Ontology Consortium, 2001). It contains
descriptions of the function of a gene product and connects these functions using two
different relationships, is-a and part-of. GO has three different parts: biological process,
molecular function and cellular component, therefore these three different aspects of a gene
product’s function can be described using terms from GO.

But functional annotations cover only a small part of the available biological knowledge.
Relationships between genes or proteins such as protein-protein interactions also constitute
relevant information. Such information can be represented in networks of genes or proteins,
for instance as metabolic networks, signaling pathways or protein interaction networks. In
order to describe the relationships between biological entities within a network, again
ontologies or at least some controlled vocabularies are needed.

After we have seen some possible representations of biological knowledge, the next
question is, if such knowledge is already available and which formats are actually used
by biologists and bioinformaticians. Many gene and protein databases like Swissprot1

(Boeckmann et al., 2003) or Entrez Gene2 (Maglott et al., 2005) contain GO annotations
for the objects described in those databases. And there are also databases of pathways
and networks that contain interaction information for genes and proteins and describe

1http://www.expasy.ch/sprot/
2http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=gene

http://www.expasy.ch/sprot/
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=gene
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these interactions in various levels of detail. Network formats range from tabular files
with simple controlled vocabularies to complex description languages, allowing to specify
complex issues like the conditions for an interaction to occur, the experiment that was used
to find that interaction, or kinetic parameters.

Another important source of information is the collected scientific literature. The Med-
line database contains abstracts of millions of scientific publications in the area of medical
and biological research. If it was possible to automatically extract information from these
abstracts, this would constitute an extremely rich and detailed source of biological knowl-
edge. Therefore text mining has become an important discipline in bioinformatics as can
be seen at international conferences where separate sessions on text mining are often em-
ployed. Text mining basically addresses the problem of generating formal representations
of knowledge that is given in free text form, thus making it accessible for automatic anal-
ysis systems. Specific problems range from the identification of biological entities in free
text (Hanisch et al., 2003; Krauthammer et al., 2000) over the extraction of interactions
and relationships between such entities (Daraselia et al., 2004) to the extraction of correla-
tions that are not explicit in a single document but can be inferred from many documents
(Smalheiser and Swanson, 1998; Srinivasan and Libbus, 2004). Results of text mining tools
are often represented as networks, especially when the goal was the identification of inter-
actions; but networks can also be generated from occurrences of biological entities in texts.
In that case an edge is introduced between two objects if they occur together in a sentence
or an abstract of a publication. We will call such networks co-occurrence networks.

In practice, biological background knowledge is usually available for computational
purposes in gene, protein or network databases and is represented using various standard
and non-standard formats. These formats apply ontologies, controlled vocabularies or even
free text annotations. Such background knowledge in its currently available representation
is the basis of this thesis. The integration of different sources of background knowledge as
biological context for the interpretation of experimental data is the main goal.

On the one hand, the integration task poses technical problems like cross-linking databases
or identifying redundancies in different databases. For some of these problems approaches
were developed and implemented for this thesis, but this will not be discussed in detail.
On the other hand, there are also interesting problems concerning the analysis of the re-
sulting heterogeneous data sets. The main emphasis of this work lies on this second type
of problems.

It is also assumed that data analysis depends strongly on what the researcher is actually
interested in. Therefore, fully automatic algorithms can only deliver solutions for rather
special problems. Semi-automatic tools are needed where the user can direct the analyses
performed into a direction of interest.

In this thesis, the data under investigation are restricted to gene expression data; net-
work data (from curated databases as well as high-throughput experiments and text min-
ing) and functional annotations are considered as context information. Gene expression
data play a special role in molecular biology because they can be collected cheaply us-
ing microarrays and provide a genome-wide snapshot of a cell population under a certain
experimental condition. Genome-scale measurements of protein levels are still infeasible,
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therefore microarrays provide a unique look into the state of a cell.
Early prominent applications of microarray technologies include Spellman et al. (1998)

who identified cell-cycle regulated genes by expression profiling or DeRisi et al. (1997) who
analyzed the regulation of the yeast metabolism during the diauxic shift, i.e. during the
shift from fermentation to respiration that occurs when glucose becomes unavailable to
the yeast. Both works could provide hints for the function of many previously uncharac-
terized genes. These early successes increased the popularity of microarrays significantly.
Today, microarrays are used routinely in biological and pharmaceutical research in order to
measure gene expression levels on a genomic scale under different experimental conditions.

The analysis of gene expression data is a very active area of research in bioinformatics
and statistics. While some basic analyses, like normalization and calculation of fold changes
and differentially expressed genes, can be performed without background knowledge, more
detailed analyses require the inclusion of such knowledge. After some basic analysis steps,
the resulting lists of statistically relevant features is often returned to the researcher who
then tries to answer biological questions using these processed data. Such questions could
cover the biological mechanism that causes the observed regulation as well as the effect that
it has on certain biological processes like the metabolism of the organism under study. For
the first question, it would be useful to investigate the data in context of a model for gene
regulation. If, for instance, pathway models along with their target genes are known, it is
possible to come up with hypotheses about the pathways involved in an observed pattern
of gene regulation. For the second question a model of the metabolism should provide
valuable insight. For instance, it is possible to identify metabolites whose synthesis or
degradation could be defective by looking at the expression levels of enzymes needed for
the corresponding reactions.

In summary, this thesis is concerned with the analysis of gene expression data under
the following two assumptions:

1. Context knowledge must be included in an advanced analysis of gene
expression data.

2. The researcher must be able to direct the computational analysis toward
specific questions about the data and possible conclusions.

We consider context in the form of functional annotations to genes and proteins and in
the form of networks that specify interactions between genes and proteins. The second
assumption requires interactivity, therefore most methods have been implemented within
an interactive tool for network analysis, called ToPNet – Toolbox for protein networks.
Furthermore, pathway queries are developed as a method specifically designed to let the
user look at certain aspects of the data by specifying network templates that represent
relevant context for the research question under investigation. Pathway queries are also
implemented within ToPNet, thus allowing further exploration of the results. With these
approaches we address the fact that different questions require different views on the mea-
sured data. If in pharmaceutical research the goal is to find a possible target gene for
novel disease-modifying drugs, it will be of high interest to understand the mechanism
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that causes the observed altered regulation in a disease. This goal requires looking at
regulatory molecules and mechanisms like transcription factors, signaling molecules and
pathways. In a more fundamental investigation on the metabolism of a model organism, it
could be interesting to understand changes in the metabolism that result from the observed
regulation. Here, knowledge about enzymes and metabolic pathways will be very helpful.
These examples demonstrate that the incorporation of background knowledge is crucial for
the specific problems arising in the analysis of expression data.

1.2 Biological background

In order to motivate and explain many methods in this work, a basic understanding of some
concepts of molecular biology is required. First, the most important biological entities
are introduced, then the central dogma of molecular biology is explained, and finally a
few examples of biological regulation are discussed that should give an impression of the
complexity of the biological systems under consideration.

1.2.1 Biological Entities

Deoxyribonucleic acid (DNA) is a molecule that comprises a long chain of nucleotides
which in turn are composed of a nucleobase, the sugar deoxyribose and a phos-
phate. The nucleobases can be cytosine, thymine, adenine and guanine, the two
former called pyrimidines and the latter purines. Usually, DNA is found in a double-
stranded form where each nucleotide binds its complementary nucleotide according
to the pairing rule: adenine binds thymine and guanine binds cytosine and vice
versa. The DNA molecule forms the well-known double-helix structure as discovered
by Watson and Crick (1953). The complete genetic information of an organism is
stored in every cell nucleus in the form of double-stranded DNA that is coiled up to
build the chromosomes. For computational purposes, DNA can be viewed as a long
string from the alphabet {A, C, G, T}, denoting the four nucleobases.

Ribonucleic acid (RNA) is similar to DNA, but it contains ribose as sugar and usually
exists in single-stranded form. Furthermore the nucleobase thymine is replaced by
uracil. RNA can fulfill different functions; we will be mostly concerned with messen-
ger RNA (mRNA) which transports genetic information within the cell. The function
of mRNA will be explained in detail in section 1.2.2.

Genes still elude a general definition. We will consider a gene a piece of DNA in the
genome that is transcribed to build a functional product. Such a product can be
functional RNA or a protein. The definition of genes becomes quite problematic
when start and end of a gene should be defined because there can be different gene
products starting and ending at different positions in the genome.
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Proteins are another type of chain molecules, the constituting elements being the 20 nat-
urally occurring amino acids. Proteins form complex and versatile three dimensional
structures, giving rise to many functions. They can for instance function as struc-
tural constituents of the cell, enzymes or signaling molecules. Proteins can interact
with other proteins, with RNA, DNA or metabolites. They constitute more than
half of a cell’s dry weight and carry out most cellular functions.

Pathways comprise molecules that work together in a defined spatio-temporal order to
carry out a particular function. Metabolic pathways contain enzymes and their sub-
strates and products and describe how metabolites are consumed and produced.
Regulatory pathways contain signaling proteins that transduce a signal to turn on or
off certain cellular functions, for instance the transcription of particular genes.

The cell is the basic functional unit of higher organisms. It contains all necessary parts
to produce proteins, be metabolically active, and communicate with other cells. A
cell is separated from its environment by the plasma membrane, which is a lipid bi-
layer membrane. The membrane is the communication channel for a cell, it contains
proteins that take up or release metabolites from or into the extracellular space, and
other proteins that recognize signaling molecules from other cells. That way, cells
can react to changes in their environment. Inside of the membrane, the cell contains
various organelles serving different purposes.

In principle, every cell is built up from the same ingredients. All information neces-
sary for any cellular function is encoded in the genome that is located in the nucleus
of each cell. But still, cells differentiate irreversibly in order to serve special pur-
poses. In fact, cells differ in morphology, metabolism, gene expression and protein
production. In terms of regulation and dynamics, two cell types from one mammal
can be as different as two unrelated bacteria.

1.2.2 The Central Dogma of molecular biology

The central dogma of molecular biology states that DNA is transcribed to RNA which is
in turn translated to form proteins. Figure 1.1 gives a schematic overview of the central
dogma and, additionally, the DNA replication, which is central for cell division. In the
first step of the protein production, DNA is transcribed multiple times by a multi-protein
complex known as RNA-polymerase. The resulting mRNA is translated into a chain of
amino acids at the ribosome, a cellular structure that is formed by ribosomal RNA and
proteins. Translation obeys the genetic code, which is universal across all species and
assigns each triplet of nucleotides one amino acid. On a molecular level, the genetic code
is realized with tRNAs, RNA molecules that can recognize nucleotide triplets and bring
the corresponding amino acid to the ribosome where it is attached to the growing protein
chain.

The three most well known -omics disciplines in bioinformatics, namely genomics,
transcriptomics and proteomics are related to the three stages mentioned by the central
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The Central Dogma of Molecular Biology
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Figure 1.1: The central dogma of molecular biology.
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dogma. Genomics is concerned with the sequence and structure of the genome, i.e. the
DNA, transcriptomics covers the investigation of transcript data (mRNA), and finally,
proteomics deals with the analysis of the proteome, the static description and dynamic
behavior of proteins that can be found in an organism.

As proteins are the main active players in most cellular processes, it is their working and
regulation that we need to understand ultimately. If the translation of mRNA to protein
was one-to-one, proteomics would be much easier. The number of mRNA molecules of
a particular gene would be a precise indicator of the number of proteins after translation
(assuming also that there is no regulation of protein degradation). Unfortunately, there are
several mechanisms for the regulation of protein concentration and activity before and after
the transcription step. Thus, all -omics have to play together to gain a deep understanding
of the regulation of cellular functions. In order to demonstrate that necessity, we give some
examples of known regulation mechanisms to demonstrate the complexity of the cellular
system.

1.2.3 Regulation mechanisms

DNA methylation: DNA methylation describes the ‘tagging’ of nucleotides with a methyl
group. In mammals, these methyl tags are usually attached to cytosine nucleotides.
Methylated DNA can silence transcription in at least two ways: By direct inter-
ference with transcription factors whose binding sites contain cytosines or indi-
rectly by recruiting methyl-binding proteins that also act as transcriptional repressors
(Scarano et al., 2005).

Chromatin structure and modification: Throughout most of the cell cycle, DNA is
organized in tightly packed chromatin. Chromatin is made up of nucleosomes, con-
sisting of a DNA stretch of 147 base pairs wrapped around a core of eight histone
proteins. These nucleosomes bind each other, linker histones, or DNA, to form fibers
which again fold into higher order structures. Histones are modified by different
proteins, e.g. histone acetyltransferases. This modification influences the structural
properties of the chromatin and can lead to the unfolding of chromatin fibers, making
genes and their promoter regions accessible to the transcriptional machinery of the
cell. Horn and Peterson (2002) review the current knowledge on chromatin structure
and its influence on transcription. Another review on chromatin remodeling and
relations to transcription factor binding sites is given in Urnov (2003).

Transcription factors: The regulation of transcription is controlled by cis-acting DNA
elements and trans-acting factors, of particular importance are transcription fac-
tors. The definition of a transcription factor given in the TRANSFAC database
(Wingender et al., 2000) is as follows: A transcription factor is a protein that regu-
lates transcription (after nuclear translocation) by sequence-specific interaction with
DNA or by stoichiometric interaction with a protein that can be assembled into a
sequence-specific DNA-protein complex. The RNA-polymerase, which constitutes
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the general transcription machinery, binds rather unspecifically and with low affin-
ity to DNA. Transcription factors are required to locate the RNA polymerase to
the promoter regions of genes that should be transcribed. Transcription factors can
also act as repressors by blocking promoter sites for the RNA polymerase or other
activating transcription factors. Often, many transcription factors, both activating
and repressing, regulate the transcription of a gene coordinately. An example are
the ternary complex transcription factors (TCFs) (Buchwalter et al., 2004). These
proteins can form a complex with the serum response factor (SRF) over the serum
response element (SRE), a sequence motif that can be found in the c-fos promoter.
Conformational changes of the TCFs induced by phosphorylation as well as interac-
tions with other proteins can induce activation or shut-down of target genes. Tran-
scription factors not only bind DNA at the promoter region in the proximity of the
transcription start site, but also at sites far away from the gene, the so-called en-
hancers. Enhancers usually contain many binding sites for different transcription
factors. Important for the detailed regulation by enhancers are also the boundary
elements which can block the influence of enhancers on promoter sites. A review on
enhancers and boundary elements can be found in Blackwood and Kadonaga (1998)
and Bell et al. (2001), respectively.

Alternative splicing: After transcription, the pre-mRNA is processed to remove non-
coding parts, the so-called introns. This process is called splicing. In some cases
not all of the coding regions, the exons, are kept in the transcript. They may be
removed or even reordered. If there is more than one possible final product, this is
called alternative splicing, which is also subject to regulation.

MicroRNAs: Recently, so-called microRNAs have received some attention as another
type of regulatory molecule. MicroRNAs are transcribed from DNA that does not
code for proteins, and regulate protein expression through inhibition of translation
or degradation of mRNAs. It is speculated that they play a considerable role for the
regulation of higher organisms (Bartel, 2004). For instance, it has been shown that
they are essential in the development of Drosophila (Leaman et al., 2005).

Translation: A regulation mechanism that is not very well known is the regulation of the
translation which can be accomplished by proteins binding to transcripts of other
genes. This can be found for instance in the Drosophila embryo, where Bicoid and
Nanos, two proteins encoded by maternally provided transcripts, bind mRNA from
caudal and hunchback, respectively, and thus, regulate the spatial distribution of
those proteins.

Protein modification: There are several forms of protein modification such as phospho-
rylation, ubiquitination or cleavage. Phosphorylation of proteins often leads to their
activation, while ubiquitination (the binding of ubiquitin) serves as a signal that
starts the degradation process of the marked protein.
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Protein localization: Some proteins are only functional at certain cellular locations. E.g.
the transcription factor NF-κB (prototypically consisting of the two subunits p50,
encoded by NFKB1, and p65/RELA) in its inactive form is located in the cytoplasm
of a cell and bound by IκBα. When IκBα is phosphorylated, it gets ubiquitinated
and degraded, thus releasing the NF-κB complex which is then translocated to the
nucleus where it can transcribe various target genes (Chen and Greene, 2004).

Signaling: Signaling pathways are regulatory units that make use of many of the mecha-
nisms already discussed. Figure 1.2 shows the IL1 receptor signaling pathway. This
pathway contains instances of phosphorylation, protein cleavage, translocation, and
finally DNA-binding of transcription factor complexes.

Figure 1.2: The IL1 receptor pathway as found at Biocarta (http://www.biocarta.com).

The regulatory mechanisms described here are interconnected in many ways. The
first four examples all influence transcription, the others are more concerned with the
translation or the activity of proteins, but this activity can often result in transcriptional
effects again, e.g. by producing metabolites which in turn induce a transcriptional response.
Signaling of course influences transcription directly again, as the activated proteins are
often transcription factors that activate or inhibit the transcription of target genes.

http://www.biocarta.com
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1.3 Data used in this thesis

As explained in section 1.1, this thesis deals with the analysis of gene expression data in
the context of functional annotations and biological networks. These two data types will
be introduced in this section.

1.3.1 Gene expression data

The term gene expression data refers to the measured abundances of mRNA of a subset or
all genes in the genome of an organism. Such measurements are usually performed using
microarrays, a description of the experimental techniques will be given in chapter 2. As it
was discussed in section 1.2.3, mRNA abundances only reflect one out of many mechanisms
that are important in the regulation of biological processes in a living cell. Through the
advances of the microarray technology, collecting gene expression data on a genome-wide
scale has become affordable, providing a unique possibility to gain insight into a cell’s state.

For computational purposes, expression data can be viewed as a simple matrix, where
rows correspond to genes and columns to samples. A matrix element contains the measured
expression value or a derived statistic for the corresponding gene and sample.

1.3.2 Biological networks and annotations

We consider any collection of relationships between biological entities a biological network.
Most common examples are protein-protein interaction networks, metabolic networks or
genetic regulatory networks. While the first two types describe physical relationships, a
regulatory network can also contain more abstract interactions. A relation like ‘gene A
regulates gene B’ does not necessarily imply any physical interaction between the genes
or their products. Even more abstract networks are co-occurrence networks derived from
the literature where an interaction between two biological objects means that the names
of these objects have been found together in a scientific publication.

Metabolic networks describe the metabolism of an organism in terms of metabolic re-
actions and participating enzymes and metabolites. Metabolic networks are usually
divided into pathways, which contain all reactions required for a certain biological
process, such as the biosynthesis of an amino acid or the production of fatty acids.

Protein-protein interaction networks contain information on physical interactions be-
tween proteins. Such networks can be assembled manually from results of small-scale
experiments, as they are presented in the scientific literature, in which case the qual-
ity of the data is usually very high. Otherwise, the information may come from one
of the different high-throughput methods that are available today. The probably
most prominent of such methods is the yeast two-hybrid system (Fields and Song,
1989; Fields and Sternglanz, 1994). This method uses a transcription factor (usually
GAL4) that is composed of a binding domain (BD) and an activation domain (AD)
to construct two fusion proteins as depicted in Figure 1.3. If two proteins X and Y
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Figure 1.3: The yeast two-hybrid system. Only if the two proteins X and Y bind to each
other, a functional transcriptional activator containing the binding domain (BD) and the
activation domain (AD) is formed and can transcribe the reporter gene.

should be tested for an interaction, in the first fusion protein X is attached to BD
and in the second Y is attached to AD. This construct ensures that BD and AD can
interact and induce transcription if X and Y bind to each other. Thus, the reporter
gene for the transcription factor is only transcribed if there is an interaction between
X and Y.

Another important high-throughput technique for the identification of protein-protein
interactions, and especially complex formation, is the tandem affinity purification
(TAP). TAP was introduced by Rigaut et al. (1999) and is combined with mass
spectrometry in order to purify and identify protein complexes at natural expression
levels.

Protein-DNA interaction networks capture information on gene regulation mediated
by the binding of regulatory proteins to DNA. Such networks can be derived from
so-called genome-wide location analysis or ChIP on chip data. ChIP on chip means
Chromatin Immunoprecipitation (Orlando, 2000) on microarrays (DNA chips) and
was first described in Ren et al. (2000). The idea is to induce fixation of bindings
of proteins to DNA using formaldehyde cross-linking and extract protein-DNA com-
plexes after sonification by immunoprecipitation with antibodies directed against the
proteins of interest. Next, the crosslinks are released and the DNA is amplified, la-
beled and hybridized on a microarray together with DNA that was not enriched by
immunoprecipitation. That way, spots containing sequences that are often bound by
the proteins of interest will appear overrepresented on the microarray.
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1.4 Definitions and notation

1.4.1 Statistical tests and significance

For many applications in computational molecular biology, statistical tests are used, and
their significance must be computed. Usually, such a significance is given in the form of a p-
value which denotes the probability of an observed event under a null model. For instance,
a p-value for differential expression of a gene under two different conditions is usually
defined as the probability of observing some measured data in the two conditions, given
that the gene is expressed at the same level under both conditions. In order to compute
such a probability, a probabilistic null model must be defined that captures fluctuations
of the measurement process in a reasonable way. A low p-value casts doubt on the null
hypothesis. In our example, this could mean that the two genes are indeed differentially
expressed, i.e. have different levels of expression in the two conditions. On the other hand,
it could also mean that the null model does not appropriately reflect the experimental
conditions. There could be an experimental bias that has not been accounted for.

Following Casella and Berger (2002), p-values can be defined mathematically as a cer-
tain kind of test statistic:

Definition 1.4.1. Two complementary hypotheses in a hypothesis testing problem are
called the null hypothesis and the alternative hypothesis. They are denoted as H0 and H1,
respectively.

Let X be a test statistic that is distributed with P0 under the null hypothesis H0. A
p-value p(X) is a test statistic satisfying 0 ≤ p(x) ≤ 1 for every sample point x. Small
values of p(X) give evidence that H1 is true. A p-value is valid if, under H0 for every
0 ≤ α ≤ 1,

P0(p(X) ≤ α) ≤ α. (1.1)

Two tests that will be used several times in this work, are Fisher’s exact test and
the Mann-Whitney-Wilcoxon test. Both can be used to test the enrichment of certain
features within a subset of observations. A third test that is commonly used, e.g. for the
computation of differentially expressed genes, is the student’s t-test or a variation thereof.

Fisher’s exact test

Fisher’s exact test (FET) is most often used in the context of 2x2 contingency tables,
i.e. with two random variables which are both two-valued. The test is applied to identify
dependencies between the two variables. The method was first proposed by Fisher (1932)
and has been used in a wide range of settings.

For our purposes, FET can be nicely explained using an urn model. Consider an
urn containing k red and N − k black balls. Now, n balls are drawn from the urn without
replacement. In the null model, the drawing is done without ‘looking’, i.e. without knowing
anything about the color of the drawn balls. Therefore, the number S of red balls drawn
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should be distributed hypergeometrically:

P (S = s) =
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The numerator gives the number of possibilities to draw n−s black balls times the number
of possibilities to draw s red balls. The denominator counts the total number of possibilities
to draw n from N balls.

Large values of S cast doubt on the null hypothesis, as it is unlikely to draw many red
balls without knowing anything about the color in advance. A one-sided p-value connected
to FET is the probability that S is greater or equal the observed value:

p(s) = P (S ≥ s) =

min{n,k}
∑

i=s

P (S = i) (1.3)

In many cases, it is more intuitive to consider FET as a test that assesses the size of the
overlap of two subsets. Given a set M and two subsets T1 and T2, the significance of the
size of their intersection can be computed using FET. If both subsets are drawn randomly
and independently, the size of their intersection is hypergeometrically distributed.

In this thesis, FET is only used for the case described above. It can be generalized to
bigger contingency tables with variables having more than two possible values.

Mann-Whitney-Wilcoxon test

The Mann-Whitney-Wilcoxon test (MWWT) can be used to assess the enrichment of a
subset of objects with respect to a numerical feature. Such a feature is used to sort all
objects and compute a statistic based on the ranks of the subset of interest. We will state
the formal description of the test similarly to Rohatgi and Saleh (2001). Consider m + n
observations X1, X2, . . . , Xm and Y1, Y2, . . . , Yn from two continuous distribution functions,
fX and fY , respectively. The Wilcoxon statistic is given by

W =

n
∑

i=1

Qi, (1.4)

where Qi denotes the rank (in ascending order) of observation Yi among all m+n observa-
tions. The null hypothesis is that fX = fY , the alternative could be one- or two-sided. If
for instance the alternative is that fX ≥ fY then large values of W support the alternative.
The corresponding p-value is defined as

p(w) = P (W ≥ w), (1.5)

where the right-hand side denotes the probability under the null model. In order to compute
that probability for small values of m and n a difference equation can be used. For large
values, the following normal approximation is available:

(W − n(n+1)
2

)/(mn) − 1
2

√

(m + n + 1)/(12mn)

d
→ N (0, 1) (1.6)
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This approximation works well for m, n > 8. If both m, n ≤ 8 we can easily compute the
exact probability by enumerating all possible permutations or using a difference equation.
If only n is small and m is large (or vice versa) the computation is more difficult. So-called
network algorithms can still do the exact computation in reasonable time while brute force
algorithms are too slow.

Student’s t-test

The t-test is one of the most commonly used tests in statistics and exists in a number of
variations. Given a sample from a normal distribution, it tests if the expectation value of
the underlying normal distribution is equal to (or less or greater than) a given value (or the
mean of the underlying normal distribution of another sample). For instance, the t-test
can be used to test two samples against the null hypothesis that the underlying normal
distributions have the same expectation value.

Multiple testing

In many applications, we will use one of the described tests many times in order to identify
certain objects that are significant with respect to the test out of many such objects. Let
us assume that n tests are executed independently, and that the null hypothesis is true
for all tests. Then the probability to get some p-value p < p̂ in at least one of the tests is
1− (1− p̂)n, as p-values are uniformly distributed under the null hypothesis. For instance
with p̂ = 0.05 and n = 100 this probability is 0.9941, i.e. even if the null hypothesis
holds, it is almost certain to find a ‘significant’ p-values (less than 0.05) during 100 tests.
Obviously, the p-value is not a very objective measure, if the number of independent tests
is not taken into account. Several procedures have been developed to compute p-values or
other statistics that are independent of the number of tests performed. One possibility is
to use the formula given above, which computes a corrected p-value p̄ as

p̄(p, n) = 1 − (1 − p)n. (1.7)

An approximation for that formula is the well-known Bonferroni correction

p̄(p, n) = np. (1.8)

This approximation is reasonably good for very small p. For instance, if p = 0.001 and
n = 50, the exact formula computes p̄ = 0.0488, whereas the Bonferroni procedure results
in p̄ = 0.05. But the Bonferroni correction is more than an approximation to equation 1.7.
It results in a valid p-value even if there are dependencies between the tests. To prove
that, let us denote with Ei the event that test i passes given the null hypothesis. Now, the
probability that any of the n tests passes is P (∪n

i=1Ei). Following Bonferroni’s inequalities,
we have P (∪n

i=1Ei) ≤
∑n

i=1 P (Ei). Therefore, if we choose our tests (or the thresholds on
the tests) such that P (Ei) = p = p̄

n
, the probability to get at least one passing result

is P (∪n
i=1Ei) ≤

∑n

i=1 P (Ei) ≤ np = p̄. Bonferroni’s method is usually considered too
conservative. Less stringent methods were developed subsequently for instance in Holm
(1979); Hochberg (1988) and Hommel (1988).
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Computation of the hypergeometric distribution

In order to compute p-values for FET, the hypergeometric distribution has to be computed.
If the calculations are performed näıvely, e.g. as provided by the COLT3 library that we
use for other numerical computations, the occurring binomial coefficients can become very
large, leading to numerical problems. Starting from the hypergeometric distribution

P (S = s) =

(

N−k

n−s

)(

k

s

)

(

N

n

) , (1.9)

we get the following equations:

P (S = s) =
(N − k)!k!n!(N − n)!

(N − k − n + s)!(n − s)!s!(k − s)!N !
(1.10)

=
(N − k)!k!n!(N − n)!

(N − k − n + s)!(n − s)!s!(k − s)!N !
(1.11)

=
s−1
∏

j=0

(n − j)(k − j)

j

∏k−s−1
j=0 N − n − j
∏k−1

j=0 N − j
(1.12)

=
s−1
∏

j=0

(n − j)(k − j)

j(N − j)

k−s−1
∏

j=0

N − n − j

N − s − j
(1.13)

This can be easily translated into two loops that calculate results with good precision even
for quite large parameter values.

1.4.2 Graphs and Petri nets

As most parts of this work deal with biological networks, a computational representation
is needed. Graphs are a well-studied data structure in computer science and are well
suited to represent biological networks. A graph consists of vertices and edges; in many
applications vertices represent some kind of objects, and edges describe relationships among
those objects.

In our case, vertices will most of the time correspond to biological entities, mainly genes
and proteins, while edges represent interactions between those entities. In some cases, a
different representation is advantageous, where we have two different sets of vertices, one of
which describes the biological entities and the other one their interactions. Edges in that
kind of graph can only occur between the two types of vertices, defining which biological
entities participate in which interaction. This can be useful for instance in metabolic
networks where interactions correspond to chemical reactions with several participating
metabolites and enzymes. A graph with two sets of vertices and edges only between those
sets is called a bipartite graph.

The formal definition of a graph is as follows.

3http://dsd.lbl.gov/˜hoschek/colt/index.html
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Definition 1.4.2. A graph G is a tuple of vertices and edges, G = (V, E). In a directed
graph, the edges are ordered pairs of vertices E ⊂ V × V ; in an undirected graph, the
edges are unordered pairs E ⊂ {{u, v} : u, v ∈ V }.

A subgraph G′ of G is a graph G′ = (V ′, E ′) with V ′ ⊂ V and E ′ ⊂ E. An induced
subgraph is defined by selecting only a subset of vertices, while the edges are the same as
in the original graph, but restricted to the selected set of edges: V ′ ⊂ V and ∀v, w ∈ V ′ :
(v, w) ∈ E ′ if and only if (v, w) ∈ E.

In chapter 5, an algorithm will be introduced that is related to the subgraph isomor-
phism (SI) problem, which is defined as the following decision problem: Given two graphs
G1 and G2, is there a (not necessarily induced) subgraph G′

1 of G1 that is isomorphic to
G2? A graph G = (VG, EG) is isomorphic to another graph H = (VH , EH) if and only if
there is a one-to-one map f between VG and VH such that for all pairs of vertices v, w ∈ VG

the following condition is fulfilled:

(v, w) ∈ EG ⇔ (f(v), f(w)) ∈ EH (1.14)

Sometimes a variant of this problem is considered which is called the induced subgraph
isomorphism problem. In this variant, the problem is to decide if G2 is isomorphic to an
induced subgraph of G1.

A Petri net is a bipartite graph with one set of vertices called places and the other set
of vertices called transitions. Petri nets are used to study the dynamics of complex systems
such as metabolic networks using so-called tokens that are used to describe for instance
the concentrations of metabolites. A function giving the number of tokens for each place
is then called a marking of the Petri net. Although we do not investigate the dynamics of
networks in this work, we will adopt the Petri net terminology of places and transitions,
when we deal with bipartite graphs.
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Chapter 2

Expression Data Analysis

The term gene expression data refers to the abundances of messenger RNA transcribed
from different genes that can be found within a cell under a certain experimentally con-
trolled condition. Methods for measuring these abundances include serial analysis of
gene expression (SAGE) (Velculescu et al., 1995), cDNA library sequencing (Adams et al.,
1991), cDNA subtraction (Bautz and Reilly, 1966; Muerhoff et al., 1997), quantitative
real time polymerase chain reaction (RT-PCR) (Bustin, 2000), and northern blotting
(Parker and Barnes, 1999). Today, gene expression data are usually collected using DNA
microarrays which are capable of measuring tens of thousands of mRNAs simultaneously.
As microarray measurements are often impaired by strong noise, classical small-scale meth-
ods are still important for the validation of results from microarray analysis or for a more
exact quantification of expression levels of single genes. Of high interest for the applica-
tion of microarrays are also statistical and computational methods for the analysis of the
raw microarray data. This chapter first reviews the microarray technology and then the
problems arising from the data analysis task together with some algorithms that have been
developed for these problems.

2.1 Areas of application

Gene expression measurement using DNA microarrays has many applications in biology
and medicine. An overview of applications and technology can be found in Stoughton
(2005). Emphasis on medical application or drug discovery is put in Petricoin III et al.
(2002) or Stoll et al. (2005), respectively.

The most common set-up for microarray experiments is the comparison of two biological
conditions, for instance comparing diseased with healthy tissue. The goal is to find out
more about the disease on a molecular level, or – more concretely – to find potential
drug targets among genes that are up- or down-regulated in the disease sample. Even if
the regulated genes are no suitable drug targets, they could still be useful as diagnostic
markers.

Time series measurements are used to gain an understanding of the dynamics of cel-
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lular processes. In an early study that uses a time series of microarray measurements
Spellman et al. (1998) investigate changes of gene expression during the yeast cell cycle.

Although the dominant application of microarrays today is the measurement of mRNA
concentration, microarrays are not limited to expression profiling. When the sequences
deposited on the microarray (the probes) correspond to other genetic features, they can
also be utilized for genotyping and help identifying novel genes, transcription factor binding
sites, alternative splicing, and exon structure.

2.2 Microarray technology

A microarray is a small slide that is designed as a sensor for many nucleotide sequences.
Each microarray contains many spots organized in a two-dimensional grid, where each
position corresponds to one specific nucleotide sequence. There are several microarray
technologies, the two prevalent types today are cDNA spotted arrays and oligonucleotide
arrays. Reviews of microarray technologies can be found for instance in Venkatasubbarao
(2004), Southern (2001), Schena (2000), Coe (2003), Duggan et al. (1999) or Hardiman
(2002). All microarrays rely on the ability of complementary DNA strands to bind to each
other, as cDNA from a labeled sample hybridizes to the complementary strand deposited on
the array; the amount of the hybridized molecules is measured using a microarray scanner.
The amount of hybridized cDNA is supposed to be roughly proportional to the amount
of cDNA in the sample, as the DNA on the array is available in much greater abundance,
so first-order kinetics can be assumed (Duggan et al., 1999). The measured signal should
therefore be roughly proportional to the amount of cDNA in the sample as well.

Oligonucleotide and cDNA arrays differ mainly in the DNA that is deposited on the
array and how it was attached. Spotted cDNA arrays are constructed with cDNA samples
from clone libraries that are amplified using PCR and then spotted on the array using
spotting robots most of which employ contact printing techniques. For the construction
of oligonucleotide arrays, DNA oligonucleotides of length 25-75 base pairs are synthesized
directly onto the array using photolithography. The latter approach results in spots with
good hybridization targets, as the short chains are in a defined state and accessible to the
probes at every nucleotide. Furthermore, oligonucleotide arrays show very little variation
between the slides. DNA spotted on cDNA arrays, instead, is in an ill-defined state. Only
part of it is single-stranded, it contains intra-strand cross-links and multiple contacts to the
slide material (Duggan et al., 1999). On the other hand, spots on cDNA arrays are more
specific due to the greater length of spotted sequences; cDNA arrays are more affordable
and can be customized more easily.

Due to the greater spot variability, hybridizations from different slides of a cDNA
microarray cannot be compared directly. Therefore, cDNA that was reverse transcribed
from mRNA from two different biological sources and labeled with two different dyes, is
hybridized on a single array. The array is then scanned by a laser scanner to measure
dye fluorescence. The resulting intensities of the two different colors can be compared, as
fluctuations in the spotting procedure apply to both colors in the same way.
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For oligonucleotide arrays on the other hand, cDNA from only one source is hybridized
against the oligonucleotides on the slide. The spot variability is low enough that data from
two different slides can be compared directly. Variations occurring due to differences in
sample preparation, amplification, labeling, or the external conditions during hybridization
apply to both types of arrays and must be dealt by appropriate normalization methods.

The market for oligonucleotide microarrays is dominated by Affymetrix GeneChips.
Affymetrix uses oligonucleotides of length 25, which are organized in probe cell pairs con-
sisting of a Perfect Match (PM) and a Mismatch (MM) cell. The PM cell contains a specific
sub-sequence of its target, in the MM cell one nucleotide of that sequence is exchanged.
With the help of the MM cells, the amount of unspecific binding can be estimated. The
current GeneChip for the human genome (U133 plus 2.0) contains more than 54,000 probe
sets with each probe set containing 10-20 probe cell pairs.

2.3 Analysis methods

As microarray measurements have become a standard procedure in many areas of biomed-
ical research, analysis methods for the ever-growing amounts of data become more and
more important. Quackenbush (2002) provides a review of normalization methods while
Slonim (2002) covers analysis techniques that succeed the normalization of the raw data.
Both reviews are from a Nature Genetics supplement issue that contains a lot of inter-
esting information on analysis of microarray data and applications. The problems under
investigation in microarray data analysis include the following:

Image analysis: The data that are directly measured are images produced by scanners
for the microarrays. These images can be quite noisy, the exact shape and intensity
of the spots has to be determined and extracted from the background. Therefore,
powerful image analysis software is required to extract good quality data from the
images. Figure 2.1 shows background images extracted by an image analysis software.
Some artifacts can easily be determined. Spots in the corresponding regions should
be analyzed very carefully. Mostly, such spots are flagged by the image analysis
software, and flagged values are ignored by later analysis programs.

Normalization of the raw data: The next step after the image analysis is the normal-
ization of the data. The goal of normalization is to remove from the data systematic
effects that are caused by the technical procedure rather than biological differences.
In general, normalization consists of different steps: background correction, probe-
level analysis (for oligonucleotide arrays), within-array normalization (for cDNA ar-
rays), and between-array normalization. A review on microarray data normalization
can be found in Quackenbush (2002).

One effect that is often observed with two-color cDNA arrays is a dependency of
the ratio between the two channels from the average intensity. A second problem
for normalization is the high variance that is often observed for ratios of spots in
the low-intensity area. Figure 2.2 shows an M vs A plot of expression data from a
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Figure 2.1: Image of the red (left) and green (right) background of a cDNA microarray
as determined by an image analysis software. Some artifacts can easily be determined by
visual inspection. Image analysis software and the experimenter have to make sure that
such artifacts are corrected or at least marked in the data (flagged). Data are taken from
a publicly available study on prostate cancer (Lapointe et al., 2004).
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cancer study (Lapointe et al., 2004) before and after (within-array) normalization.
M denotes the logarithm of the expression ratio of the two channels while A denotes
the logarithm of the average intensity.

Computation of differentially expressed genes: For many research questions, it is
of interest to find differentially expressed genes between two states. For instance,
in pharmaceutical research expression levels for diseased and normal tissue samples
are measured. The first apparent question is, which genes show different expression
behavior between the sample groups. This problem boils down to distinguish random
noise in the measurements from real biological differences. Furthermore, when the
data are not or inappropriately normalized, systematic differences between arrays
can arise. Thus, the computation of differentially expressed genes depends on the
normalization step.

Clustering of genes or samples: Since the famous work by Eisen et al. (1998), cluster-
ing of genes or samples is another standard procedure for the analysis of microarray
data. Generally, clustering of objects can provide a visualization of distances in high-
dimensional spaces, e.g. as a dendrogram, and exhibit subgroups (clusters) where
objects within subgroups are more similar to each other than objects from different
subgroups. Clustering of genes organizes genes into groups with similar expression
profiles. Often, these genes are functionally related (Eisen et al., 1998). Furthermore,
clusters with profiles showing changes in regulation contain genes that are important
in the experimental conditions under investigation. Clustering of samples can for
instance exhibit disease subgroups with clinical relevance.

Sample classification: Sample classification provides a method for diagnosis of diseases.
Often, samples are classified using differentially expressed signature genes, therefore
providing hints to the biological processes connected to the classification. Popu-
lar techniques for classification include support vector machines and decision trees.
Sample classification for disease diagnosis is of particular interest when it can be
performed in early disease stages and when samples can be obtained by non-invasive
methods such as blood samples.

Enrichment analysis: Enrichment analysis provides a simple and powerful method to
exploit context information in the form of predefined gene sets. Such a set could
represent all proteins in a pathway or all genes that play a role in a certain biological
process. The goal of the analysis is to identify gene sets that are enriched in genes
that show an interesting expression pattern, for instance genes that are differentially
expressed. This is usually accomplished by statistical tests, most often by Fisher’s
exact test or a χ2-test.

For all of these problems a wealth of methods has been proposed in journals or at
conferences of the computational biology and statistics community. In the following, some
of these methods, which are particularly popular or of importance for later chapters, will
be presented.
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Figure 2.2: MA-plot of expression data from the same study as the data in Figure 2.1
before (left) and after (right) normalization. In the unnormalized data, spots with low
intensities tend to have a lower ratio as well. In the normalized data, this bias has been
removed.
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2.3.1 Image analysis

The two most popular image analysis programs for microarray data, apart from the
Affymetrix GeneChip software, are probably Spot, distributed by CSIRO Mathemati-
cal and Information Sciences, Australia, and GenePix, by Axon Instruments, which also
sells microarray scanners and other related hard- and software. GenePix includes not
only the image analysis but also software for the control of the scanning process and
has more or less become an industry standard. While GenePix is a stand-alone software
that runs only on Windows platforms, Spot is a package for the R statistics environment
(R Development Core Team, 2004). This allows an easy integration of results from the
Spot software into other statistical methods implemented in R. There are many more soft-
ware packages for the analysis of microarray images. A short comparison of such packages
can by found on Y. F. Leung’s functional genomics website1.

The main tasks for the image analysis software is to correctly estimate the shape and
intensity of the spots as well as the background intensity. A review on image analysis
methods can be found in Yang et al. (2001).

2.3.2 Normalization

Background correction

The image analysis software usually returns foreground- and background values for each
spot. It is assumed that the foreground consists of two components, the signal from the
bound cDNA molecules and noise from natural fluorescence, unspecific binding and the
imaging process. The noise can be estimated from the background where no DNA was
spotted. The simplest and most commonly used method for background correction is
subtraction of the background intensities from the foreground intensities. Unfortunately,
this leads to an increase of variance (fore- and background measurements both have vari-
ance, the sum has a greater variance) and many negative intensity values that can not
be handled by some subsequent methods. Therefore, other methods try to minimize the
number of negative values and use more sophisticated methods for background correction.
Kooperberg et al. (2002) for instance use a Bayesian method, while Edwards (2003) use
background subtraction if the difference between foreground and background intensities is
large and uses a smooth monotonic and positive function when the difference is small or
negative.

Alternatively, the background correction step can simply be skipped which can of course
lead to biased ratios in cDNA arrays if the background differs in the two channels.

Lo(w)ess normalization

The lowess or loess method can be employed to remove intensity-dependent biases from
two-channel microarray data. The name is derived from the term “locally weighted

1http://ihome.cuhk.edu.hk/˜b400559/arraysoft image.html
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scatterplot smoothing”, as the method uses locally weighted regression to smooth data.
A short introduction to smoothing that covers some additional approaches besides local
regression can be found in Gentle et al. (2004). The lowess method was proposed by
Cleveland (1979) and can be used for many different kinds of data that come in the form
of one or more predictor variables and a response variable. It is based on the following
principles:

• For each data point (the focal point), a polynomial fit on the local neighborhood is
computed.

• The neighboring points are weighted according to their distance from the focal point
for the fit.

• The value of the fitted polynomial is computed for the focal point as the “smoothed”
value.

• Points with high residuals are iteratively down-weighted, as outliers should not affect
the fit to a large degree.

The points used for the local fit can be specified by an absolute distance to the focal
point or by the fraction of points that should be used. In the first case, the number of
points can vary with the focal point, in the latter case, the specified number of nearest
neighbors is used.

The points are weighted with a tri-cubic function:

wi = (1 − (di/maxdist)3)3,

where di denotes the distance of the i-th point from the focal point and maxdist is the
maximal allowed distance. Next, the polynomial is fitted using a least-squares approach.
With that approach, outliers can have a large influence on the fit. In order to achieve
a more robust fit, a re-weighting procedure was suggested, down-weighting points with
large residuals. With these additional weights, the fit is re-computed and the procedure is
iterated a specified number of times. The effect of down-weighting and choice of polynomial
degree is demonstrated in Figure 2.3.

The use of lowess for the normalization of microarray data was proposed by Yang et al.
(2002).

Oligonucleotide array normalization

For the normalization of oligonucleotide arrays like the Affymetrix GeneChips, it is nec-
essary to estimate the expression level for the probe sets from the measurements of the
probe cell pairs. Rajagopalan (2003) compares three different statistical methods to esti-
mate these levels and the expression ratios between different experiments. Among those
methods is the MAS5 algorithm that is implemented in the Affymetrix software. The most
basic feature of these algorithms is the present-call for each probe set giving an estimate
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Figure 2.3: Robust and least squares lowess fit with polynomial degrees 1 and 2. Obviously
the least squares fit without iterative down-weighting is much more vulnerable with respect
to outliers.
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whether the corresponding RNA was present in the sample or not. In MAS5, this present-
call is based on a p-value computed by a Wilcoxon rank test that is based on the difference
of the PM and MM cells.

Between-array normalization

Variations between arrays are usually not only due to the different conditions under study,
but also due to differences in sample preparation, hybridization, and chip manufacturing.
Between-array normalization is necessary in order to eliminate these effects as far as pos-
sible. In principle, the same methods can be used for oligonucleotide and cDNA arrays,
but usually between-array normalization for cDNA arrays tries to retain the distribution
of expression values for each array as far as possible and adjust only a few values like
the median and the deviation using for instance a scale normalization (Yang et al., 2002).
The reason for this difference is that many biases are already removed during within-array
analysis.

For oligonucleotide arrays, it has to be decided, if the normalization is carried out
on the cell intensities or on the summarized probe set values. The simplest between-array
normalization is a global scaling to a common target mean value. This global normalization
on the probe set values is the standard procedure in the Affymetrix software.

Bolstad et al. (2003) compare different between-array normalization methods for oligonu-
cleotide arrays. They suggest several new methods, some of which are based on an MA-plot
for pairs of arrays, i.e. treating two different arrays like the two channels of a cDNA array.
One of these methods is the cyclic lowess normalization, which computes a lowess fit for
all pairwise comparisons, adjusts the expression values according to a combination of the
resulting lowess curves and iteratively repeats the process until the changes are very small.

In general, between-array normalization methods adjust the data such that some statis-
tics become similar or equal for all arrays. As shown by Fundel et al. (2005), the effects
of these normalizations can be drastic and should be checked manually or using automatic
methods to check the stability of the final results for example by sub-sampling from the
available replications.

2.3.3 Differentially expressed genes

One of the most common tasks in the analysis of microarray data is the identification
of differentially expressed genes between different biological conditions, each of which is
represented by one or more samples. In the first studies using microarrays this was usually
done by computing a fold change, i.e. the ratio of expression levels in two samples, from a
single two-channel microarray, as a replication of the microarray experiments was too costly
(DeRisi et al., 1997; Chu et al., 1998). Genes with a fold change above a certain threshold
were then considered differentially expressed. Today, replicate measurements are in most
cases available, and differentially expressed genes are normally computed using statistical
tests like the t-test or the Wilcoxon rank test. The most popular test is probably the
t-test. More recently, special tests for microarray data have been developed. For instance,
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significance analysis of microarrays (SAM) is a method based on a modified t-statistic and
computes p-values using a re-sampling algorithm (Tusher et al., 2001). Classical linear
models combined with empirical Bayes analysis represent a method that can be used to
compute differentially expressed genes in a wide range of experimental settings (Smyth,
2004).

Statistical tests

In order to determine differentially expressed genes with statistical tests, one computes a
gene-wise test statistic and considers genes differentially expressed if the value of the test
statistic exceeds a threshold value. The test statistics that are used take into account the
variation of the expression values over some control experiments or replicates. Usually,
a p-value can be computed for the test statistic, giving the probability of observing an
equally or more extreme value of the test statistic, given that the gene is not differentially
expressed.

In most cases, the experimental set-up aims at a comparison of two biological conditions
represented by two groups of replicated measurements. The question of interest is if a
gene is differentially expressed between the two conditions. The multivariate case with
more than two conditions is usually addressed with methods based on analysis of variance
(ANOVA). Here, only the case of two conditions is covered.

The earliest and probably still the most popular test is the t-test or one of its variations,
as described in 1.4.1, testing if the means of the two sample groups are different. The
problem with this test is that it assumes a normal distribution of the expression values
of each sample group, which often seems inappropriate or at least hard to justify. There
are several approaches to remedy that problem. One is to compute p-values by a re-
sampling strategy like it is done in the SAM, another one is to use distribution-free tests
like the Mann-Whitney-Wilcoxon test described in 1.4.1. This test results in a significance
value for the difference of the medians of the two sample groups. As it uses only the
ranks of the expression data and not the values themselves it is independent of a concrete
distribution. On the other hand, using only ranks can also be a drawback. For instance, if
the expression values of some disease samples are for one gene just a little higher than those
of the normal samples, the resulting p-value will be the same as for another gene with a
much larger difference between the groups. Thus, the p-value only reflects the consistency
of the difference between the sample groups but not the extend of the difference.

Significance analysis of microarrays (SAM)

Significance analysis of microarrays, introduced by Tusher et al. (2001), is a popular method
to detect differentially expressed genes. The method is based on a new statistic, the rela-
tive difference, which is related to the t-statistics. The relative difference basically denotes
the difference of the expression means for the two groups divided by the empirical devi-
ation within the groups. The difference to the usual t-statistic is that a small constant
term is added to the denominator (the variance). Therefore, genes with small fold change
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and small variance do not appear as significant as with a t-test. Furthermore, the null
distribution of the statistic is empirically determined. An expected value for this statistic
is computed by gene-wise averaging over the relative differences calculated with permuted
group labels. A threshold on the difference between the relative difference and its expected
value is then introduced to identify differentially expressed. The same thresholds are then
applied to the permuted data sets in order to estimate the number of false positive calls
that can be expected. The method appears to be quite robust due to the heavy use of
re-sampled data sets. Furthermore, there are nice ways to visualize the results that provide
some possibility for plausibility checks.

2.3.4 Clustering and visualization

Since the paper of Eisen et al. (1998), clustering has become a standard analysis method
for expression data analysis. Often, clustering is done only to provide a visualization of
the measured data. A large matrix of expression data can be displayed as a so-called heat
map, where the genes, and sometimes the samples as well, have been ordered according to
a dendrogram that results from an agglomerative clustering. This heat map can sometimes
exhibit interesting features that would not have been apparent if the matrix had not been
re-ordered.

Especially in the case of time series experiments it can also be interesting to display
the prototypic time course for each cluster.

Principle component analysis

Principal component analysis (PCA) is a dimension reduction technique. Given a set of
points from a high-dimensional space, PCA projects these points onto a lower-dimensional
subspace such that a maximal amount of variance is retained. If the main source of
variance is the signal of interest, this approach can help reducing noise. Furthermore,
when the dimension of the subspace is chosen to be three or less, visualization of the data
is possible.

PCA is also mentioned in this section, as it is used for visualization purposes and
one of the most important applications is to visually identify outliers in the experiments.
Sometimes, also clusters are identified by simple visual inspection of a PCA plot.

Agglomerative clustering

In agglomerative clustering, a dendrogram is built in a bottom-up fashion. Given a set
of objects and a distance matrix, an agglomerative clustering algorithms starts by joining
the two closest objects. Then, in each step, the two closest clusters are joined to form a
new cluster. Agglomerative clustering methods mostly differ in their definition of distance
between clusters. In single linkage clustering, the distance of two clusters is the minimum
distance of two objects within the clusters, in average linking, it is the average distance of
object pairs, and in complete linkage it is the maximum distance. These definitions all rely
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on the distance matrix between objects, which for gene expression data is usually based
on Pearson or rank correlation, or euclidean distance.

K-means clustering

The k-means algorithm iteratively calculates cluster means, given the cluster assignments
of all objects, and then re-assigns the objects to the cluster with the closest mean. While
k-means usually gives nice and stable clusters, the problem is that the number of clusters
must be determined in advance. Alternatively, the clustering algorithm can be executed
for different values of k, and the best value is chosen afterward using some quality measure
for the resulting clustering.

Self-organizing maps

Self-organizing maps (SOMs) have been suggested very early for the analysis of gene ex-
pression data (Tamayo et al., 1999; Törönen et al., 1999) and still constitute a popular
tool. Originally proposed by Kohonen (1988), they can identify clusters of genes with
similar expression profiles when applied to gene expression data. SOMs impose a topology
on the identified clusters, which is probably the method’s biggest strength. Neighboring
clusters in that topology are similar with respect to their expression profile.

Bi-clustering

Bi-clustering looks for subsets of genes and conditions in a matrix of expression data, such
that the expression data in that sub-matrix are coherent according to some measure. The
reasoning behind this approach is that genes might be co-regulated under some conditions
while under other conditions they might be regulated independently. A nice review of
bi-clustering algorithms can be found in Madeira and Oliveira (2004).

2.3.5 Sample classification

Classification of tissue samples using gene expression data is considered a promising new
method for diagnosis of complex diseases, especially cancer and cancer subtypes. A clas-
sifier can be trained from labeled data, i.e. using gene expression data from samples with
known diseases; afterward, the classifier can be applied to new data, e.g. for diagnosis.

Three classifiers that have been applied to microarray data will be described here.

Decision trees

One important aspect of classifiers is their interpretability. While the main goal of a
classifier is the correct labeling of samples, it is also important to know on which basis
the label is selected. If the classification is based on a single gene or a small number of
genes, this has an immediate biological interpretation. Decision trees have this property
of interpretability which is one of their major strengths.
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Decision trees classify data according to rules that are attached to the nodes of the
tree. As they only depend on one feature at a time decision trees become interpretable, a
desirable property that sometimes lets them appear advantageous even when other methods
yield superior classification performance (Krishnan and Westhead, 2003). Decision trees
represent a supervised classifier, i.e. labeled training data are necessary. In order to learn
decision tree rules, the training data is repeatedly split into subsets in a way that optimally
separates the known classes.

Support vector machines

Support vector machines are among the most popular machine learning tools today. In
their simplest version, support vector machines learn the separation of two classes from
labeled training data. Support vector machines represent linear classifiers that maximize
the margin of the hyperplane that separates the two classes. Such classifiers were suggested
by Boser et al. (1992). The theory of support vector machines is laid out in detail in Vapnik
(1998).

Support vector machines have been used for the analysis of expression data early on
(Brown et al., 2000; Furey et al., 2000), for the classification of genes as well as for samples.

StAM

Structured analysis of microarrays (StAM) was proposed by Lottaz and Spang (2005) and
aims at providing focused classifiers that are based on relevant biological processes only.
The idea is that there may be disease subgroups that can be classified according to different
gene sets. Biologically, this corresponds to different molecular mechanisms that appear in
disease subtypes. Therefore, classifiers should be derived that classify accurately at least a
subgroup of the disease samples and are based on a focused set of genes belonging to one
biological process.

The method uses GO annotations in order to define the biological processes each gene
participates in. Classifiers are built for all leaf nodes of the GO hierarchy, using only genes
annotated with the respective GO term. Next, these classifiers are propagated to higher
nodes in the GO hierarchy using some combination rules. A scoring method is applied to
highlight GO terms with associated classifiers that can identify at least a sample subgroup
with high accuracy. An overall classifier is available at the root node.

2.3.6 Enrichment analysis

Given a predefined list of gene sets and expression data, the goal of enrichment analyses
is to identify sets that contain many genes that show an interesting expression pattern.
This approach can be used to identify pathways or functional classes of genes that are
significantly regulated. If, for instance, a library of metabolic pathways is used to define the
gene sets, it is possible to find pathways that are up- or down-regulated in the experimental
conditions under study.
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Very commonly, Fisher’s exact test is used to calculate p-values for the over-representation
of significantly regulated genes in the predefined gene sets. First of all, significantly regu-
lated genes have to be detected, usually by defining a threshold on a previously computed
p-value for differential expression. Then the resulting set of regulated genes is compared
with each of the predefined gene sets. As described in 1.4.1, Fisher’s exact test computes
the significance of the overlap of the two sets. For large sample sizes, a χ2-test is often
used. Of course, it is possible to look at other features than differential regulation, and
other tests can be used as well, for instance the Wilcoxon-Mann-Whitney rank test or the
t-test.

A review on tools for enrichment analysis, focusing on Gene Ontology, can be found
in Khatri and Draghici (2005). The authors list several tools and describe the statistical
models used. Unfortunately, they describe Fisher’s exact test and the hypergeometric
model as different methods, which is a common misconception in many publications in
bioinformatics journals. In an earlier work, Draghici et al. (2003) describe the methods in
detail, giving mathematical formulas. Here, a little calculation shows that the models are
indeed mathematically equal.

Recently, a new method for the identification of significant gene sets in expression
profiling studies has been proposed by Tian et al. (2005). Their approach is based on a
rank test, but they take the correlation structure of genes into account by determining the
null distribution through a sampling approach. Furthermore, they compute q-values to
correct for multiple testing.
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Chapter 3

Unsupervised Decision Trees

3.1 Introduction

Clustering of microarray gene expression data is performed routinely, for genes as well as for
samples. Clustering of genes can exhibit functional relationships between genes; clustering
of samples on the other hand is important for finding e.g. disease subtypes, relevant patient
groups or related treatments. Unfortunately, most sample-wise clustering methods do not
facilitate the biological interpretation of the results. In this chapter a novel approach for
clustering samples from gene expression data sets is proposed that makes use of available
functional annotations for genes. The method computes dendrograms with Gene Ontology
terms annotated to each splitting node. These dendrograms resemble decision trees with
simple rules at each node which can help to find biologically meaningful differences between
the sample groups. We have applied our method to a public gene expression data set
from a study of prostate cancer. The original clustering which contains clinically relevant
features is well reproduced, but in addition the decision tree rules give hints for a biological
explanation of the clusters. In particular, the root node, which separates tumor from non-
tumor samples are based on Gene Ontology terms such as reproduction, monosaccharide

metabolism, lipid biosynthesis and transmission of nerve impulse. The described method
can be useful for discovering gene classes that are particularly good at dividing a set of
microarray samples into a hierarchical structure. These gene classes can give valuable
indications about biological processes that diverge between sample groups.

3.2 Background

Clustering of genes or samples is a standard procedure performed for the analysis of gene
expression data. While gene-wise clustering can bring functionally related genes together,
clustering of samples can provide insight into disease subtypes or patient groups. This is
of particular importance when subgroups can be linked to clinically relevant features such
as recurrence or severity of disease.

Many different clustering algorithms have been applied to microarray data, including
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agglomerative hierarchical clustering with distances based on Pearson correlation (Eisen et al.,
1998) as well as more sophisticated methods such as self-organizing maps (Tamayo et al.,
1999). These methods are usually applied on all measured genes or those satisfying some
filtering criteria in order to obtain a grouping of the samples, often in the shape of a
dendrogram. This study only covers clustering of samples, but as the formal question of
grouping similar objects remains the same, most clustering methods can be applied on
samples and genes alike.

In general, the resulting groups or dendrograms do not provide any hints about biolog-
ical processes in which the samples were particularly different between clusters, an obvious
question to ask from a biological point of view. This issue is commonly addressed by identi-
fying significantly differentially expressed (DE) genes using statistical tests (Tusher et al.,
2001; Gentleman et al., 2005; Lönnstedt and Speed, 2002) and then detect over/under-
representations of positive genes within pre-defined functional classes (Palenchar et al.,
2004; Al-Shahrour et al., 2004). Other approaches include gene-list based methods such
as iterative group analysis (iGA) (Breitling et al., 2004), LACK (Kim and Falkow, 2003)
and various resampling based methods that find e.g. significantly high pairwise gene cor-
relations, high learnability (Pavlidis et al., 2002), or conspicuousness (Zien et al., 2000).

An aspect shared by all the methods based on DE genes is that they are uni-variate,
i.e. they cannot address dependencies between genes as they work one gene at a time. For
each gene, the association of the expression measurement with the sample label is assessed,
and afterwards the distribution of the outcome is investigated. Since genes work together
and are highly dependent of each other, this approach does not reflect the complexity of
real biological systems. The resampling based methods do better in this aspect but as they
do not consider all genes simultaneously they cannot discover more general tendencies in
the data.

Using a standard clustering approach and looking for DE genes associated with a sec-
ond variable, e.g. disease severity, is thus based on two disparate concepts. The clustering
usually works on all genes simultaneously, mixing information from a large and heteroge-
nous set of biological processes; identification of DE genes on the other hand does not take
dependencies between genes into account at all.

Our approach instead includes information on predefined gene classes that represent
different biological processes, in this case a mapping of genes to Gene Ontology (GO)
(The Gene Ontology Consortium, 2000), directly in the clustering procedure. For each
such gene class, a single feature is computed using principal component analysis (PCA).
Then, the features that support a clear grouping of the samples are selected. These should
give an indication on the biological processes in which the sample groups differ the most.
Thus, we identify differentially expressed gene classes instead of differentially expressed
genes and simultaneously compute a clustering that makes use of these known gene classes.

Similar to our approach, Lottaz and Spang (2005) take advantage of functional gene
classes, introducing a classification method that combines expression values of genes that
are a priori known to be related. Our goal is instead to use such information in clustering
methods.

Using models based on biological processes, we propose a new clustering method and
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call it GO unsupervised decision trees (GO-UDTs), as it results in decision tree-like struc-
tures. On a publicly available expression dataset from a prostate cancer study, our method
exhibits similar clusters as were shown in the original publication by Lapointe et al. (2004);
in addition it provides valuable indications for a biological interpretation.

3.2.1 Unsupervised Decision Trees

Our goal is to remedy one major drawback of current clustering methods – their lack
of interpretability. In order to reach that goal, we borrow from methods known from
classification theory (Quinlan, 1993) and adapt decision trees to our clustering problem.

Conventional decision trees need to be trained on labeled data which is not available in
an unsupervised setting like clustering. Having no labeled data, an algorithm that deter-
mines splits and corresponding rules in an unsupervised way is needed. Such algorithms
have been developed previously in the form of UDTs and used for clustering (Karakos et al.,
2005; Basak and Krishnapuram, 2005; Bellot and El-Bèze, 2000). UDTs are constructed
like conventional decision trees by splitting the data into subsets, selecting a simple feature
and a cut-off as a rule for each split. Instead of using labeled training data to determine a
split, UDTs make use of an objective function that measures the quality of the resulting
clustering. To our knowledge UDTs have not been used for the analysis of biological data
before.

3.2.2 GO-UDTs

In order to make UDTs applicable to the clustering of samples from gene expression data,
we have designed two new objective functions using features based on functional gene
classes. The intuition behind these functions is to score the quality of a split using a
measure of the separation of the resulting groups. Each feature used for splitting the data
is based on genes from a single functional class. The GO-UDT algorithm computes a
dendrogram in a top-down manner, in each step dividing the samples into subsets that
exhibit large differences at least in some gene classes. Given a subset of the samples, the
following steps are performed to determine the gene classes that imply the optimal split
at a tree node.

1. For each gene class, compute a single feature by

• selecting all genes belonging to that class,

• summarizing the data matrix built up with the genes from that gene class using
PCA and

• selecting the first principal component (PC).

2. Cluster the samples according to each gene class using the computed feature.

3. Score gene classes according to an objective function which measures the quality of
the separation of the resulting clusters.
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4. Select a set of high scoring gene classes that imply a similar clustering.

5. Recursively re-partition the resulting sample subsets until some stopping condition
is fulfilled.

At each inner node of the tree, the samples are split into two groups. Using only the first
PC of a gene class, a global optimum for the clustering can be achieved using algorithms
like K-means or partitioning around medoids (PAM) (Kaufman and Rouosseeuw, 1990).

Two different objective functions, described in Section 3.3.3, were used for evaluating
the obtained clusters. The first is called the model comparison (MC) score and is based on
the comparison of a uni-modal to a bimodal model. The second, weighted silhouette (WS),
is based on a well known characteristic of clusterings; the Silhouette index (Rousseeuw,
1987). Using any of these, the best clustering is chosen and the node is annotated with
the gene class that was used for the split.

This way, functional classes are identified which most strongly exhibit natural partition-
ings. Furthermore, the labels of these classes are expected to carry relevant information
about the reason for that partitioning.

3.3 Methods

3.3.1 Data

The investigated expression data set contains measurements from 41 normal prostate spec-
imens, 62 primary prostate tumors and nine lymph node metastases and has therefore a
sufficiently large amount of samples. Importantly, the original publication showed that
relevant sample groups could be discovered using hierarchical clustering.

The first identified subgroup consists of samples from healthy patients. Tumor subgroup
I was identified as the clinically least aggressive whereas subgroups II and III contain
samples from more ill-prognosed tumors. Furthermore, subgroup III was found to be
similar to the lymph node metastases and contain most of eight of them. These are the
subgroups we expected to rediscover with the addition of attaching a set of relevant labels
of biological processes at each split in the data.

The used cDNA microarrays had ∼38,000 spots representing ∼24,000 unique UniGene
cluster identifiers (genes) and were cross hybridized with a common reference of pooled
mRNA from eleven established human cell-lines.

Normalization, pre-processing

The raw data was downloaded from SMD and processed with R (R Development Core Team,
2004) using the LIMMA library (Smyth, 2004) which is part of the Bioconductor project
(Gentleman et al., 2004). Arrays were print-tip-loess normalized (Yang et al., 2002) and
gene-wise median centered within each of the three different print runs to minimize the
otherwise strong experimental bias. The arrays were finally normalized between each other
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using the scaling technique also described by Yang et al. (2002). Missing values coerced
from background correction were imputed using the K-nearest neighbor algorithm provided
by the R library impute (Troyanskaya et al., 2001). Expression values of each gene were
mean-centered and scaled to unit-variance.

Proceeding only with genes associated with a Locuslink identifier and median replace-
ment of duplicate spots, 13,365 genes were left for further examination. Since no analysis
was made using all genes simultaneously, no filters were applied as these will inevitably
remove some information and the vulnerability to the noising effect of many genes with
low intensity is controlled by a priori dimension reduction instead.

3.3.2 Gene class models

A well covering Locuslink to GO mapping was obtained from ErmineJ (Pavlidis, 2005).
Using that mapping, all GO terms that are annotated to at least ten and at most three-
hundred genes in our dataset were selected, as we hypothesize that bigger classes are likely
to resemble a random sampling of all genes, and smaller classes are vulnerable to noise in
the data. Genes with a GO term in common, either by direct annotation or by implication
from the GO tree structure, comprise the gene class corresponding to that term.

For each of the classes a PCA was performed using the singular value decomposition
based function prcomp in R and the first PC was selected as the feature representing that
gene class. Using only this feature, the samples were divided into two groups and a quality
score was attached to the split as described in the next section.

3.3.3 Scoring and clustering

Two different measures for assessing the separation of clusters were applied: the model
comparison (MC) score and the weighted silhouette (WS) score. When computing the MC
score, the clusters are assigned implicitly; for the Silhouette score, clusters are computed
using PAM. In both cases, we allow only two clusters.

Let X = {x1, . . . , xn} be the set of all sample points, projected onto the first PC of a
gene class. The two scores are then defined as follows:

1. Model comparison: The idea behind the model comparison scoring scheme is
to measure the bimodality of the data. Two models are fitted: a single Gaussian
denoted by p1, and a mixture of two Gaussians denoted by p2 = qg1 + (1 − q)g2.
For the fit of the mixture model, the Mclust algorithm from the MCLUST package
(Fraley and Raftery, 2002) was deployed, which uses an EM algorithm to fit the
different models. The score is then defined as the average log-likelihood ratio of the
data:

SMC =
1

n

n
∑

i=1

log
p2(xi)

p1(xi)
. (3.1)

2. Silhouette Index: Let C1, C2 be a partition of X, as computed by PAM. Silhouette
values are defined for every point x ∈ X of a cluster as the difference of the average
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distance between x and all points from the closest of all other clusters, and the average
distance between x and all other points from the same cluster. In the two-cluster
case, the Silhouette value for point x in Cluster 1 is defined as follows:

a(x) =
1

|C1| − 1

∑

x′∈C1\{x}

d(x, x′) (3.2)

b(x) =
1

|C2|

∑

x′∈C2

d(x, x′) (3.3)

s(x) =
b(x) − a(x)

max{a(x), b(x)}
. (3.4)

The silhouette value for points in Cluster 2 is defined analogously.

In order to compute a single value for the clustering, the silhouette values of all points
are averaged.

Ssilhouette =
1

n

∑

x∈X

s(x) (3.5)

This score is somewhat sensitive to outliers, as it is based on the relative distance
between the observed clusters. Therefore, often clusterings with unbalanced cluster
sizes are picked. This is avoided by weighting the score with the entropy of the
clustering, as that gives a moderate bias towards balanced clusters. Thus the final
weighted silhouette score is defined as

Sws = −

(

|C1|

n
log

|C1|

n
+

|C2|

n
log

|C2|

n

)

Ssilhouette. (3.6)

3.3.4 Selecting a good split

Obviously, one gene class will have the best score and could be the one finally chosen to
split the data, but since small changes in the clustering vector will have large impact further
down the tree, a higher amount of stability on the chosen gene class was desired. Therefore
a heuristic was applied, choosing a gene class, only if the implied split is supported by other
high scoring classes as well.

More precisely, a split for gene class c1 can only be made if there are at least A different
gene classes among the T highest scoring classes that imply similar clusters to a minimum
threshold of S, where all of these gene classes must satisfy a maximal dependence level
d(c1, ·) < D. The similarity of clusterings C(1) and C(2) and the dependency of gene classes
c1 and c2 are defined as follows:

s(C(1), C(2)) =
1

2

(

|C(1)
1 ∩ C

(2)
1 |

|C(1)
1 ∪ C

(2)
1 |

+
|C(1)

2 ∩ C
(2)
2 |

|C(2)
2 ∪ C

(2)
2 |

)

(3.7)
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and

d(c1, c2) =
|c1 ∩ c2|

|c1|
. (3.8)

Still, the top scoring gene class fulfilling these conditions is not necessarily chosen; instead,
we require the A supporting gene classes to have minimum average rank.

For visualization, the supporting terms were also added to the node, as they could be
biologically relevant as well. A maximum of ten terms were added to each node.

If no A supporting gene classes can be found, the expansion of the tree is discontinued.
Since (3.1) is only relevant for fairly big cluster sizes, another stopping condition was added,
stating that nodes with less than five members should not be created.

Both the generated trees in this study was computed setting A = 2, D = 0.5, S = 0.75
and T = 30. The graph drawing program dot from the graphviz package (Gansner et al.,
2002) was used for the visualization.

3.4 Results

In the publication of Lapointe et al. (2004) three subgroups of cancer samples were identi-
fied which are linked to relevant clinical features. Although the discovered grouping is not
necessarily the best possible, we will consider it as a basis for comparison with our results.

See Section 3.3.1 for a detailed description of the data, data pre-processing, and cancer
subgroups.

GO-UDTs of the expression data were generated using both the proposed goodness
measures; the result is shown in Figure 3.1 and 3.2.

Both generated trees reconstruct the subgroups identified in the original paper well, but
on slightly different terms. The MC based score groups five tumors with the non-tumors
which is three more than in the original publication. The WS score performs slightly
worse, grouping eight tumors erroneously. The first node is very similar between the two
measures; seven of the ten best gene classes are the same.

Both methods find lipid metabolism as particularly differential between tumor and non-
tumor samples, this was also pointed out in the original publication by looking at key-genes
such as acetyl-coenzyme A carboxylase α and α-methylacyl-CoA racemase. The same way,
metabolic activity was found to be higher in subgroup III by looking at ATP5D, DCI and
DECR2. The first node in our trees indicates that these are features that also discriminate
well generally between tumor and non-tumor as it also contains terms such as monosac-

charide metabolism and one-carbon compound metabolism. Notably, also transmission

of nerve impulse is good for this separation supporting the well-known tight interaction
between prostate tumors and nerve cells (Ayala et al., 2004).

After the first node, the two trees diverge from each other. The WS score isolates
subgroup II mixing it with three members of other subgroups, whereas the MC score
separates thirteen subgroup III members to a pure leaf with six of the nine lymph node
metastases. The WS score later creates a nearly identical leaf sharing actin filament based

process with the MC score as motivation for doing so. A member of this class is actinin-4
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Figure 3.1: An unsupervised decision tree of the Lapointe prostate cancer dataset com-
puted using the model comparison scoring method. GO terms are ranked (column Rank)
according to the score of their induced split (column S ) and then a set of GO terms with
similar splits and minimum average rank is selected at each node. The column Size denotes
the number of genes in each gene class. The root node indicates that genes associated with
reproduction and metabolism are good at separating the non-tumor from tumor samples.
Dephosphorylation separates thirteen of the nineteen samples from subgroup II from the
others, and detection of abiotic stimulus and fatty acid metabolism gather nearly all sam-
ples from subgroup II to a mixed leaf slightly enriched with advanced grade tumors. PT153
and PT110 were grouped with the non-tumor samples in the original publication as well.
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Figure 3.2: An unsupervised decision tree of the Lapointe prostate cancer dataset com-
puted using the weighted Silhouette scoring method. The first node splits the data using
monosaccharide metabolism resulting in eight tumors being grouped with non-tumor sam-
ples. Regulation of lymphocyte proliferation is good at enriching lymph node metastases,
and synaptic vesicle transport distinguishes the less aggressive tumors from subgroup I
from a mixture of samples from subgroups II and III.
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which is a biomarker for cancer invasion and metastatic capability (Honda et al., 2005).
Other terms found by the WS score is the highly relevant induction of apoptosis and
regulation of cell proliferation. tRNA modification indicates differential protein synthesis
in III versus I and II, something the original publication also pointed out but by instead
looking at the key-genes RPL13, RPS15 and RPS9.

The MC score separates II from I well using detection of abiotic stimulus and the more
relevant term fatty acid metabolism (Rossi et al., 2003). The resulting leaf containing
subgroup II is also slightly enriched with advanced grade tumors (p = 0.04, Fisher’s exact
test).

The non-tumor samples were also separated into a series of subgroups. Even if these
subgroups did correspond to some relevant variable, e.g. age, that subtree was left out as
this is only speculative. Furthermore, GO-UDTs represent a kind of clustering technique
and as such it can find groupings in the data regardless if they are meaningful or not.

Looking at the data displayed by the first two principal components using only genes
from reproduction, two clear clusters are visible separating tumor from non-tumor sam-
ples. This motivates the simplified method of only considering the first PC, as the second
provides little extra information for that split. Instead the second PC separates subgroup
II from III but this direction changes expectedly to the first in the second node when all
non-tumor samples have been removed, see Figures 3.3 and 3.4.

3.4.1 Over-representation of DE genes

As comparison to more well-known ways of testing functional classes for importance, we
performed an over-representation analysis. First, DE genes between tumor and non-
tumor/metastasis samples were identified using LIMMA to resemble the first split in
the MC based tree. Dichotomizing the data on q = 0.05, with q-values defined as in
Storey and Tibshirani (2003), the classes with the unlikeliest rate of DE genes were iden-
tified by computing Fisher’s exact test p-values. The best class, nerve ensheathment had
ten out of twelve genes identified as DE, p = 0.0005. Transmission of nerve impulse which
was identified by both of the proposed scoring methods was also significant, p = 0.01 along
with actin filament-based process, p = 0.04. None of the other mentioned terms had sig-
nificant over-representation on α = 0.05. Analogously, the most over-represented classes
were not highly scored by our measures, the reason is clearly seen in Figure 3.5 showing
the confounded score plot on nerve ensheathment. Examining one gene at a time can not
reveal any synergistic effects; an argument that does not speak against over-representation
analysis, it just indicates that other measures also should be considered.

3.5 Conclusions

Clustering via GO-UDTs is an interesting and novel approach for constricting clustering to
be done on a one-feature-at-a-time basis in order to increase the interpretability of the final
output. In this study, we investigated if GO-UDTs are useful for sample-wise clustering
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Figure 3.3: The score plot of the first two PCs (19% of the total variance) of the expres-
sion data matrix built up using genes from the class reproduction. This was the highest
scoring gene class according to the model compairson measure. The first component allows
separation between tumor and non-tumor samples, the second finds the subgroups within
the tumor samples. The density plot at the bottom indicates that the data shows strong
bimodality on the first PC.
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Figure 3.4: The score plot of the first two PCs (19% of the total variance) from the gene
class dephosphorylation. All non-tumor samples have been removed along with tumor
samples PT318, PT153, PT195, PT110 and PT21. This class received the highest score
according to the model comparison score. The first PC shows a strong separation of
subgroup III from I and II.
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Figure 3.5: The score plot of the gene class with the largest fraction of differently expressed
genes between tumor and non-tumor samples – nerve ensheathment. Even though the
enrichment of differentially expressed genes in this class is highly significant, the sample
groups are mixed on the first principal component and any clustering attempt would result
in highly heterogeneous clusters.
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of microarray experiments as a method for discovering the reasons for divergence between
sub-groups of patients.

We restricted our trees to binary splits for simplicity and stability and tried two different
ways of scoring these splits. The two propoposed scores seemed to perform equally well,
overlapping strongly in the classes identied as relevant in the root node. Further down the
trees the two methods started to diverge as differences get magnified rapidly.

Our main objective for the GO-UDT approach was to increase interpretability. We
were not looking for better clusters but for a better biological explanation for clusters.
This goal would have been well-fulfilled if it was possible to draw conclusions such as
“protein biosynthesis was higher in the samples going left compared to those going right”.
Such inference can not be made using our trees. This does however merely reflect the
complexity of gene expression data and biology as such. Single gene expression patterns,
and possibly even short well-defined pathways, can be observed to be up or down regulated.
Gene classes on the other hand are still quite heterogeneous and since they usually do not
describe a well-defined biochemical event, the direction a specific process can go is not
limited to up or down but is better viewed as being divergent or differential between
samples. GO-UDTs can identify such divergent gene classes using expression data. Our
analysis shows that these gene classes are indeed biologically relevant and can point to
possible refined analyses and further experiments.



Chapter 4

Interactive Exploration of
heterogeneous Data with ToPNet

ToPNet is a software tool for the analysis of biological data in form of networks and
associated annotations. It was developed in joint work with Daniel Hanisch and pub-
lished by Hanisch et al. (2004). Over the last years, the software company BioSolveIT
GmbH, St. Augustin, has joined the development with one developer, Sabine Trochim, and
now distributes ToPNet. Further contributions come from two students at the Ludwig-
Maximilians-Universität at Munich, Maria Piskarev and Theresa Niederberger.

ToPNet provides methods for exploring biological networks with heterogenous anno-
tations. The paradigm that guided the development of ToPNet was that the analysis of
complex biological systems cannot be done completely automatically. Besides high quality
networks and annotations, a human expert is necessary to direct the analysis. Therefore,
besides the development of new algorithms for the analysis of biological data, visualization
methods for networks and annotated data as well as an appropriate user interface were
desired.

4.1 ToPNet Concepts

ToPNet was designed to handle several networks from multiple sources which can be re-
stricted according to user-specified criteria and manipulated using a simple graph editor.
Properties of the networks (e.g. color, size and hyperlinks) can be associated with an-
notation data (e.g. expression data or functional annotations) via mappings of names or
identifiers. Figure 4.1 shows how these components work together to provide a useful
visualization of networks and annotation data.

4.1.1 Representation of networks

Networks are implemented in the form of bipartite graphs in which one set of nodes (termed
places) represents molecules (e.g. proteins or metabolites) and the other set of nodes
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Figure 4.1: Visualization of a network with annotations. Each node (corresponding to a
gene) is mapped to several identifiers linking it to relevant annotations. Annotations are
displayed as properties of the network (e.g. size and color of nodes).

(called transitions) defines relationships among these molecules. This representation is
valuable when complex reactions are considered. For instance, in metabolic networks
places represent metabolites and enzymes. One metabolic reaction is then represented by a
transition vertex which is connected via edges to the participating molecule places (Figure
4.2). Other network types include regulatory, protein-protein interaction and literature
networks.

4.1.2 Network sources

Databases with information on biological networks become more and more abundant. At
the moment, networks from KEGG (Kanehisa, 1996), TRANSFAC (Wingender et al.,
2000), TRANSPATH (Schacherer et al., 2001), and DIP (Xenarios et al., 2000) can be
imported. Furthermore, automatically generated text-mining networks are provided, as
described in Hanisch (2004).

For KEGG, a graphical interface is provided that allows the user to download and
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Figure 4.2: Petri Net visualization of regulatory and metabolic reaction where places are
displayed as ellipses and transitions as rectangles. In yeast, the transcription factor BAS1
regulates ADE6 and ADE8 which participate as enzymes in two reactions of the purine
metabolism pathway.

update pathways and appropriate mappings for any organism provided by the database.
KEGG pathways can then be displayed in the original layout, as the necessary information
is encoded in the KEGG markup language (KGML) files that are provided.

4.1.3 Visualization of networks

Visualization of networks is important to present biological models and algorithmic results
in a concise way. A good visualization of a biological network has to serve several purposes:

• Provide a good overview of the molecules and their relationships in the network.

• Show important data and annotations.

• Provide a context and facilitate interpretation.
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Network layout

In order to attain the first goal, the network has to be laid out clearly with few intersecting
edges and overlapping nodes. In ToPNet, this is achieved using layout algorithms like
the Fruchtermann-Rheingold spring embedding algorithm (Fruchtermann and Reingold,
1991). Spring embedding algorithms treat edges as springs and iteratively optimize the
layout of a network by applying a force to each pair of connected nodes that is proportional
to the deviation from the optimal distance. Additionally, a repulsive force is introduced
for each pair of nodes. In each iteration, all forces affecting a node are summed up and
the node is displaced in the direction of the resulting force by an amount proportional to
the magnitude of the force.

Data visualization

First of all, the biological objects represented by the nodes have to be recognizable for
the user, i.e. annotated with names that are known to the user. In ToPNet, the user can
choose between several available database identifiers or a common name to be attributed
to a node.

All additional data and annotations are visualized via a standardized procedure that
will be described in the next section.

Cellular compartments as context

One suitable context to display networks in, is the natural layout of the cell. We have
developed a graph layout that uses the GO annotations for the cellular component to split
the graph into several compartments. In each compartment, all proteins from the cor-
responding cellular component are drawn. The layout is then optimized using the spring
embedding algorithm subject to the constraint that nodes cannot leave their compartment.
We use the compartments extracellular, plasma membrane, other, nucleus, and unknown.
The compartment other contains proteins that are present in the cell, but not within the
nucleus or the membrane. This is mostly the cytoplasm or organelles like the Golgi ap-
paratus or the ribosome. The compartments extracellular, plasma membrane, and nucleus
contain proteins that are annotated with the respective GO terms or any term below these
in the GO hierarchy. If a protein’s annotation does not provide a unique assignment, it
is put into the compartment that contains most neighbors. If that is still not unique, or
if proteins have no annotation at all, they are assigned to the unknown compartment. A
typical result of the cellular layout algorithm is displayed in Figure 4.3. The extracellular
compartment contains for instance several collagens, the nucleus compartment contains
mainly cell cycle-related genes in this case. Depending on how the network was generated,
a signal flow from the ligands to the transcription factors could be hypothesized.
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Figure 4.3: The cellular layout algorithm. The display is divided into four different areas
representing cellular localizations. Gene ontology annotations are used to assign each
displayed protein to one of the fields. If no annotations are available, the protein is assigned
to a special area representing the unknown class.
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4.1.4 Annotations for networks: data maps

Data maps handle annotation data in ToPNet by providing standardized information about
their content. Data from data maps can be displayed as a textual description in the node
labels or tool tips, as node size, as color, and as hyperlinked web sites. For example, ex-
pression data is often available in tabular format where rows represent genes and columns
correspond to specific experimental conditions. The table itself contains e.g. probability
values or fold changes quantifying differential expression. A data map then provides in-
formation for a gradient color coding of corresponding genes on a linear or logarithmic
scale, for the size property of displayed molecules and annotation with the corresponding
value as a tool-tip. As another example, terms from GO can be treated as a data map in
ToPNet, thereby associating a set of GO terms with each gene. This data map provides,
besides direct annotation of places with terms, the useful possibility to directly link to
the corresponding entries in the GO hierarchy via a web browser. Table 4.1 shows some
available general data types in ToPNet and their visualization.

Data type Color Size Label/Tool-tip Hyperlink

Expression data
p-values

color gradient size gradient value -

Expression data
ratios

color gradient size gradient value -

GO annotations colored if available - GO term Amigo GO
browser

Database IDs colored if available - Database ID Corresponding
database web site

Pubmed IDs colored if available - Pubmed ID Articles in
Pubmed

Table 4.1: Some available data types and their visualization with the corresponding data
maps in ToPNet.

4.1.5 Providing the link: mappings

To connect annotation data to network properties, a mapping is essential. As several major
gene and protein databases exist and a general nomenclature for protein and gene names
is still missing, ToPNet is able to handle sets of mappings for different sets of identifiers.
Such mappings are defined using a simple tabular file format, allowing easy generation of
custom mappings. They can be imported interactively and are then available through a
special user interface. This interface allows to activate or inactivate mappings, such that
there is a very flexible user control over the set of mappings that is used for a certain task.
ToPNet builds a mapping graph (Figure 4.4) from the active mappings, and searches for
paths in this graph if a mapping is required that is not directly available. Thus, the set of
possible mappings is given by the transitive closure of the mapping graph.
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As most gene and protein databases provide links to some other database (usually
a well known standard database) but not to all databases that might be of interest to
the user, a combination of different mappings is often necessary. For instance, it might
be desired to map expression data collected from a disease model in mice to a human
protein-protein interaction network. Such a task requires mapping of the identifiers of the
respective microarray to a mouse gene database and then to orthologous human genes and
finally to a human protein database. In a bachelor’s thesis, Travis Holton implemented
a database and user interfaces that are capable of computing transitive mappings accord-
ing to different rules and user requirements (Holton, 2003). This database was used to
generate specialized mappings that can then be imported into ToPNet. In recent years,
the situation has improved a lot due to standardization efforts by large institutions like
the National Center for Biotechnology Information (NCBI) of the United States National
Institutes of Health (NIH). They provide mapping information between many heavily used
databases. Furthermore, microarray manufacturers usually provide mappings of their spot
identifiers to databases from NCBI or other standard databases. Still, mappings can con-
tain errors, for instance if they are generated automatically using sequence alignments or
other approaches. For specialized tasks, like mappings covering ortholog relationships or
common names, transitive mappings are still necessary.

A similar approach to that of Holton (2003) was taken by Iragne et al. (2004). Their
alias server is available via a web interface1 and a SOAP API. The server takes a database
identifier of a protein and a species code (taxonomic identifier) and returns identifiers of
the same protein from other databases. We have implemented a mapping class that uses
the SOAP API of the alias server. This class can be used like any other mapping (that
relies on tables on the file system), but it is not used for transitive mappings. Thus, we
have access to an externally maintained server for mappings and all aliases available from
that server. In principle that could significantly reduce the manual efforts necessary to
generate new mappings and keep old ones up-to-date. Unfortunately, a single call to the
SOAP API takes approximately one second, rendering it useless for anything but very
small graphs.

Because of the multitude of different possible links, such as orthology, genes encoding
proteins, etc., and the huge number of possible combinations of such mappings, a database
for mapping information remains useful, but the design in Holton (2003) and Iragne et al.
(2004) has to be improved in several ways. Most importantly, different mapping types must
be supported. The simplest type of mapping is the mapping of different identifiers for the
same object. Other types could include mappings for genes encoding proteins, homology,
orthology, splice variants etc. It should be useful to develop an ontology covering possible
mapping relationships between genes and proteins. Such an ontology should contain iden-
tity, similarity, and transformation relationships and information about the method that
was employed to infer the links. It could be incorporated in a general ontology of gene and
protein relationships, unifying network and mapping information in a graph view of the
data. Specialized transitive mappings could then be expressed as paths between objects

1http://cbi.labri.fr/outils/alias/
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Figure 4.4: An example of a mapping graph. Here, mappings were imported connecting
Swissprot and IPI with several other databases.

connected by certain mapping information. Such a design could be utilized immediately
by special pathway queries, which will be described in chapter 5.

4.1.6 Network exploration

For interactive exploration of the data, gene sets can be selected according to user-defined
criteria. These criteria are specified via boolean functions defined on data maps. For
example, given that probability values and GO annotations are available, the following ex-
pression would select all apoptosis-related genes with a significant p-value: GO biological
process like apoptosis & pValue ≤ 0.05.
We call this kind of query basic query, they will be discussed in detail in chapter 5. Selected
gene sets can be visualized as a network or further extended by graph operations. These
operations include computing hulls around nodes, i.e. exploring the neighborhood of bio-
logical objects, or computing all shortest paths among selected nodes. In conjunction, the
selection, manipulation and visualization options provide the basis for efficient interactive
exploration of the gene expression data in the context of the given network.

4.1.7 Data Integration

One important goal in the development of ToPNet was to provide a tool for the integration
of different data and annotation types in biological networks. In the preceding sections,
the mechanisms used in ToPNet have been explained. Taken together, these mechanisms
provide a powerful environment that allow algorithm developers as well as users to easily
access heterogeneous data. For instance, it is possible for a user to visualize a graph using
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several different annotations like expression values to color the nodes, GO annotations as
tool-tips and hyperlinks to a protein database like Swissprot.

A developer can implement a new data type and provide the methods necessary for its
visualization. The new data type can then be visualized by all users and it can also be
used for custom algorithms that rely on special properties of that data type.

Figure 4.5 illustrates how ToPNet handles requests for a certain data type for a node
in a graph: The user requests a customized visualization or an analysis algorithm which
needs data from a certain data map for a graph node. The data map specifies for what
kind of database identifier it contains the required information. The graph node itself
contains a set of identifiers from different databases. Thus, a mapping from any of the
available database identifiers to the database required by the data map is necessary. If
such a mapping exists, it is used, otherwise it is attempted to build a transitive mapping
by searching shortest paths in the mapping graph. If no such path exists, the mapping
procedure fails, and the requested data cannot be provided. When a suitable mapping was
found or generated, the identifiers from the graph node are mapped to the database that
is required by the data map. The data map then provides the annotations according to
the mapped identifiers. If there is more than one resulting annotation, e.g. if the mapping
is not unique, a data map can apply a specific aggregation function. Such an aggregation
function can simply result in all annotations being displayed or in some real aggregation,
like the computation of a mean value for numerical data. The generated annotation is then
passed on to the vizualisation or analysis algorithm, which requested it.

4.1.8 Scripting

ToPNet is mainly intended to serve as an interactive tool, but it was also desired to include
some scripting capabilities in order to automate certain processes and add functionality
without much programming effort. Therefore, we have provided an interface to the Bean
Shell2, a Java source interpreter, allowing a user to write scripts interactively using Java
syntax and the full ToPNet API. Scripts can also be stored in a special directory and then
become available via the scripting menu in the ToPNet main window.

A special application of these scripting capabilities are the scriptable data maps, which
allow customization of data maps using scripts. For instance, it is possible to create a data
map that behaves exactly like the standard GO data maps, but in addition displays all
nodes belonging to a certain GO class in a specified color.

4.2 Algorithms

The goal of ToPNet is to facilitate the generation and verification of biological hypothe-
ses. Besides the visualization of annotations, ToPNet provides several means to restrict
networks to interesting regions with respect to experimental data.

2http://www.beanshell.org
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Figure 4.5: The mapping algorithm and how it works together with visualization and
analysis requests. Such a request requires annotations from a certain data map to be
mapped on a network. The data map in turn requires certain object identifiers (database
keys) in order to find the requested annotation. If the identifiers available at the network
nodes do not contain the required types, a mapping is constructed using shortest paths in
the mapping graph. Then, annotations are produced and aggregated if necessary. These
annotations are returned to the visualization or analysis algorithm for processing.
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4.2.1 Significant Area Search

The Significant Area Search algorithm developed by Daniel Hanisch (Sohler et al., 2004;
Hanisch, 2004) aims at detecting connected parts of the network, which are significant
according to specified p-values. These might correspond to co-regulated pathways in
metabolic networks or functionally related proteins in literature networks. The algorithm
selects a set of seed genes according to a specified threshold and starts a greedy expansion
by including the most significant neighboring molecule in each step. The significance of
the selected gene set is quantified by combination of individual p-values using Fisher’s in-
verse chi-square method (Fisher, 1932), which quantifies the probability that all individual
values result from their respective null distributions. The individual p-values are adjusted
for greedy selection based on local graph topology. This avoids the construction of subnet-
works which are connected only via unspecific high-degree nodes. The detected significant
areas are collected and pruned for highly overlapping redundant graphs. The resulting
graphs are reported to the user in order of decreasing significance for further interactive
exploration.

The algorithm described in Hanisch (2004) has been extended, such that it can now
handle fold changes or any ordered values if no p-values are available. In order to do so,
a new data map is generated that computes p-values according to the rank of the original
data. If the original data are given as a function f on a graph with vertices V , the generated
data map described by g is defined for each graph node v ∈ V as

g(v) =
|{w : f(w) ≤ f(v)}|

|V |
(4.1)

Now, the Significant Area Search algorithm can be called with the function g providing
the p-values. If f contains fold changes, the modified Significant Area Search algorithm
will extract sub-networks with predominantly down-regulated genes. The ≤ operator in
equation 4.1 can also be replaced by the ≥ operator, in which case the algorithm will
extract up-regulated sub-networks.

4.2.2 Enrichment analysis

Two methods for detecting different kinds of enrichment have been implemented in ToPNet.
The first one is based on Fisher’s exact test as defined in 1.4.1: Given two sets of molecules
with an intersection of size n in a network, the algorithm computes the probability of
observing an overlap of size greater than or equal to n by chance. One convenient way to
use this analysis, is to formulate two basic queries, compute the sets of matching molecules
and a p-value for the size of the overlap. For instance, one could select molecules that
are significantly up-regulated as the first set and molecules from a certain GO-class as the
second set.

The second method takes a set of molecules and a data map that contains data that
can be ordered (such as any numerical data). All molecules are ordered with respect
to the data map, then a rank test (Wilcoxon-Mann-Whitney test, see 1.4.1) is used to
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compute a p-value for finding molecules as far up or down the list by chance. This method
is especially tailored for the use with raw expression data, if no p-values for differential
expression are available. The algorithm can compute a meaningful p-value for any subnet
and corresponding expression data. The subnet can be the result of prior analyses as long
as those did not select molecules according to the expression values.

It is also possible to apply these enrichment analyses on lists of pathways in order to
find out if there are pathways that are enriched with respect to a feature that can be
described by a basic query. The most intuitive example is to look for pathways that are
enriched in differentially expressed genes.

4.2.3 Pathway Query Language and Pathway Search

Pathway queries are another means to identify pathways or subnetworks that are inter-
esting with respect to experimental data. Users from different areas of application will
have specific restrictions as to what they consider interesting. For instance, in pharma-
ceutical research focus may be on pathways containing ’druggable’ targets like kinases or
phosphatases. A kinase could be considered interesting only if it phosphorylates a tran-
scription factor which regulates genes that show a significant change in their expression
pattern in a certain experiment.

To allow for such complex queries, we have developed an XML-based query language.
In this language, pathway templates can be formulated as graph-like structures where ver-
tices describe properties of the genes or proteins (e.g. must be a kinase or a transcription
factor), and edges pose restrictions on the connections (e.g. the path between the kinase
and the transcription factor must not be longer than two, or it must involve a phosphory-
lation). This language, the corresponding pathway search algorithm, scoring schemes, and
visualization of the results will be described separately in chapter 5.



Chapter 5

Generating Contexts and Testing
Hypotheses with Pathway Queries

5.1 Introduction

The methods introduced in chapters 2 and 3 attempt to analyze expression data using
no additional context information or, as the unsupervised decision trees, using functional
annotations. Including that kind of categorical data in the analysis is a very popular
and fruitful approach, partly because of its conceptual clarity and the simplicity of the
occurring statistical and algorithmic problems. Many biological phenomena, however, can-
not be appropriately described in terms of functional annotations to genes or proteins;
a representation as a network is much more natural. Such networks can represent very
detailed information about the interplay of biological entities and make that knowledge
available for the analysis of measured data. Using detailed network models for expression
data analysis makes it possible to come up with very specific hypotheses about the data.
Biological networks can be represented computationally as graphs, which is a well-studied
data structure in computer science. Therefore, many basic graph algorithms, like path
and distance computations, are readily available for the analysis of biological networks. In
chapter 4, ToPNet was introduced, which provides many of these basic graph algorithms
and some special algorithms for the analysis of expression data. This chapter is dedicated
to a novel approach for exploiting network information in the analysis of expression data.
The idea of this approach is to query existing networks representing biological knowledge
in combination with experimental data. Before this approach is explained in detail, it is
put into context with existing network-based analysis methods.

Special bioinformatics algorithms that work with expression data and biological net-
works can be classified using the following four categories according to their purpose:

1. Inference of regulatory networks from expression data

2. Refinement of biological network models or adding annotations

3. Interpretation of expression data using network information
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4. Understanding and simulation of network dynamics

Algorithms of the first category aim at discovering regulatory relationships between genes
and proteins with little or no prior knowledge about such relationships. The methods used
range from simple graph algorithms (Wagner, 2001) to statistical methods like Bayesian
network inference. Prominent works on network reconstruction include Friedman et al.
(2000), the first work that proposed Bayesian network inference for the analysis of gene
expression data. After introducing their model for expression data in the framework of
Bayesian networks, the authors propose suitable learning algorithms and demonstrate the
applicability of their methods on publicly available expression data from the yeast cell cycle.
A review on network inference with graphical models can be found in Friedman (2004). A
recent review on network reconstruction methods that also covers experimental methods
is given by Lee (2005). A new approach for the reconstruction of signaling pathways was
proposed recently by Markowetz et al. (2005). Here, measurements from RNA interference
experiments were exploited in order to find interactions within signaling pathways where
no transcriptional effects can be seen. While the results appear promising, the amount of
data necessary makes the method practical only for small pathways. But it is also possible
to use the method to extend pathways where most interactions are known before-hand.
This set-up is of much practical importance and places the method also in the second
category, which is explained next.

The second category deals with the refinement of biological networks based on experi-
mental data like gene expression data. The goal is similar to the goal of the first category:
To find a network that explains the given data best. But the advantage is obvious: As
a part of the network is already given, the search space for the best network is greatly
reduced. Furthermore, the search is directed toward biologically reasonable solutions, as
the starting network represents biological knowledge. Tanay and Shamir (2001) define a
fitness function based on expression measurements and propose an algorithm that finds an
expansion of a given core pathway that is optimal with respect to the fitness function. A
very recent, promising approach was suggested by Gat-Viks et al. (2005). They use fac-
tor graphs to model biological systems, show how existing knowledge can be represented
in such factor graphs, and propose learning algorithms to refine the given models using
expression data. Factor graphs have also been used by Yeang and Jaakola (2003) for an-
notating a given interaction network with directions and modes of regulation (activation
or inhibition).

The third category is concerned with a somewhat less ambitious goal. Instead of find-
ing new regulatory mechanisms, the goal is to use current knowledge on such mechanisms
(or any kind of interactions between biological entities) and guide the researcher toward
hypotheses about active pathways, relevant biological processes or simply interesting sub-
networks. This is more promising than trying to infer complete networks or new mech-
anisms if the measured data is not abundant enough to support such new findings. The
first step in that direction is to map the measured expression data on known pathways
and score and visualize the pathways according to these data. Grosu et al. (2002) iden-
tify metabolic pathways with a significant number of regulated genes using Fisher’s exact
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test. Technically, the graph representation is used for visualization purposes only. The
computation relies on the annotation of pathways to genes without considering the graph
structure. If predefined pathway annotations are unavailable or inappropriate, it can be
necessary to construct pathways from the given networks and select interesting ones using
expression data. Zien et al. (2000) propose a method to generate interesting metabolic
pathways using expression data. They use a metabolic network to enumerate all pathways
satisfying certain completeness constraints and then score these pathways according to the
expression data. Similarly, Steffen et al. (2002) propose a method to infer signaling path-
ways from interaction networks built from high throughput experiments and expression
data. They enumerate all paths in the network that start at a membrane protein and end
at a transcription factor. The candidate pathways are then scored using a clustering of
genes based on expression data. If the genes on a candidate pathway cluster together in
the given clustering, the pathway receives a high score, if the genes are spread over many
clusters, the score will be low. With this approach, the authors can reconstruct some
signaling pathways in yeast with good accuracy.

The two previously described methods have in common that they first generate path-
ways using only the network data, and then apply a scoring function that is based on
expression data to identify interesting pathways. Other algorithms use expression data
and graph structure simultaneously for determining interesting subnetworks. For instance,
the Significant Area Search algorithm (Sohler et al., 2004; Hanisch, 2004) implemented in
ToPNet detects connected sub-networks significantly enriched with regulated genes. Co-
clustering (Hanisch et al., 2002) finds groups of genes with similar expression profiles and
small distance in the network. Ideker et al. (2002) introduced another method for identi-
fying sub-networks exhibiting significant changes of expression.

The last category covers the dynamics and simulation of biological networks. Today,
this is considered a part of the field of systems biology, which has become very popular, re-
cently. Websites like systems-biology.org1 provide an overview over available resources
including lists of publications, free and commercial software, common standards like the
systems biology markup language (SBML), and databases of network models for biological
systems like regulatory or metabolic pathways. Especially for metabolic networks, dynam-
ics have been studied for a long time, although gene expression data are not often taken
into account. Schuster et al. (1999) review the use of elementary flux mode analysis in
metabolic networks. This is often termed a static analysis of metabolic network because
it can be performed on static data only (stoichiometric structure and reversibility of re-
actions). But elementary modes correspond to steady states of the network fluxes, i.e.
states where no internal metabolites are consumed or produced, therefore, we will consider
it an analysis technique of network dynamics. In Schwarz et al. (2005) flux analysis is
combined with gene expression data to find the fluxes of a network with the correspond-
ing gene expressions. Voit and Radivoyevitch (2000) apply biochemical systems theory to
the analysis of gene expression data in metabolic networks. Biochemical systems theory
is based upon differential equations that describe the properties of enzymatic reactions.

1http://www.systems-biology.org/
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Other simulation methods make use of hybrid Petri nets, e.g. the Genomic Object Net
software (Matsuno et al., 2000; Nagasaki et al., 2004).

The methods presented here belong to the third category. We are interested in a
detailed interpretation or mechanistic explanation of expression data. Network information
in combination with associated annotations such as pathways or functional annotations
are used to find biological contexts that appear conspicuous or significant with respect to
the expression data or that can provide a hypothesis for a causative mechanism for the
expression data.

If context information is not taken into account, analysis methods typically result in a
list of genes that exhibit a relevant expression behavior in the experiment under consider-
ation. While this is an important first step in understanding the data, it does not reveal
the causative biological mechanism of the observed gene expressions. For pharmaceutical
applications for instance, it could be interesting to measure the expression profile of an
in vitro or in vivo disease model and compare it to a healthy expression profile. First of
all it is necessary to find genes that are differentially expressed between the healthy and
diseased states. However, a more interesting goal for the development of disease modifying
drugs is finding the molecular mechanism that causes the observed changes in gene ex-
pression. Unfortunately, this mechanism does not need to be reflected by changes of gene
expression; gene regulation often relies on molecular events other than transcription, such
as protein modification (phosphorylation, cleavage), translocation, DNA methylation, etc.
Thus, the causative mechanism cannot be identified using gene expression data alone. But
if a hypothesis about the relevant mechanism is available, it can be tested on the basis of
expression data and prior knowledge in form of a network model. Such a hypothesis could
be that a certain kinase is active and phosphorylates one or more transcription factors
which cause the observed differences in the expression profiles. This hypothesis can be
visualized as a small network as shown in Figure 5.1. We call such network templates
pathway queries and have developed a language for their specification and an algorithm to
find specific instances in a given network representing prior knowledge.

Recently, a similar approach has been taken up by Leser (2005) who proposes a pathway
query language to describe graph templates and find these in a graph database. While their
approach is also aimed at life science applications, it is more concerned with the technical
questions arising when implementing such a system within a database management system
and when querying large databases. Our focus instead is on the biological applications,
integration of different data sources and statistical scoring of the results.

5.1.1 A language for network-based hypotheses in molecular bi-
ology

The pathway query language allows specifying templates for biological networks using func-
tional annotations of genes or proteins and their interactions. In many cases it is possible
to translate hypotheses about the biological processes relevant for the measured data into
such network templates. E.g. finding an instance of the template described in Figure 5.1
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Kinase X
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genes
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Figure 5.1: Example of a simple pathway query. This query describes sub-networks con-
taining differentially expressed genes regulated by the same transcription factor that can
be phosphorylated by a certain kinase X.

can be evidence for the hypothesis that the differentially expressed genes found in that
instance are regulated by the corresponding transcription factor which might be activated
or inhibited by the kinase X. In other cases, the pathway query may simply be viewed as a
definition of the context in which the expression data should be analyzed. For instance, it
is possible to define a pathway query that matches all sets of proteins that are connected
to a certain protein of interest P in a text-mining network by at most two edges and share
a common function (e.g. as annotated by GO). Instances of that query could be viewed as
representing the P and related proteins in the context of the given function.

Given a pathway query and a biological network, we enumerate all instances of the
query in the network using the pathway search algorithm which solves a special version
of the subgraph isomorphism problem. In many situations it is necessary to examine
rather unspecific queries so that many matching instances may be found. Therefore, the
statistical significance of each instance has to be assessed. As the pathway query defines an
individual context for the data, the scoring function may have to be defined individually
as well. Some generally applicable scoring schemes have been implemented for pathway
queries and will be described in Section 5.4. These scoring schemes can be combined in
order to define versatile custom scoring methods. Furthermore, it is easy to implement
new scoring methods based on the ToPNet API, which can then be used in all pathway
queries and again combined with other scorings.

In general, conducting an analysis with pathway queries on a new data set involves four
steps:

1. Develop a pathway query that describes the hypothesis or context.
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2. Assemble networks that contain the relevant information.

3. Devise a scoring scheme to identify significant instances.

4. Run the pathway search algorithm and evaluate the results.

All of these steps are critical for a successful analysis. The first step can best be done
by a biological expert. Steps two and three will in most cases need the cooperation of
a computer scientist and a biologist, although some predefined scoring schemes can be
specified in the pathway query and some general networks can be easily supplied. The
pathway search algorithm is implemented in ToPNet. After all necessary data is imported,
it can be started on a selected pathway query. All instances will be listed together with
the computed score. The pathway query language also provides special elements for layout
information that will be used by ToPNet when specific instances are visualized. That way,
the user can quickly get an overview of an instance because it is displayed in a well-defined
way. Therefore, the evaluation of instances is facilitated as no time and effort is lost by
restructuring the layout.

5.1.2 Some possible applications

Identifying relevant pathways

If some constraints about pathways relevant for the expression data are known, a pathway
query could generate pathway hypotheses for the data. Figure 5.1 constitutes a simple
example of that kind of query, but many variations are possible, either going further up-
stream or including additional constraints like feedback loops, significant expression values
on signaling molecules or restrictions on the target genes. Besides signaling pathways, it
is also possible to design pathway queries for metabolic pathways.

Linking measurements to known relevant processes

In the common case where expression measurements were taken from diseased tissue or
a disease model and compared to normal tissue, it is of interest to find links between
genes with conspicuous gene expression and known disease-relevant processes. If genes
are annotated with associated diseases, a pathway query could find all paths between
conspicuous genes and genes annotated with the disease of interest and thus provide a
possible link.

Finding evidence in text mining networks

Another interesting application of pathway queries is in conjunction with text-mining net-
works such as co-occurrence networks. In a co-occurrence network there is an edge between
two nodes representing biological entities if these entities appear together in a sentence
or an abstract in a given body of scientific literature (e.g. all abstracts in the Medline
database). The generation of such networks is described in Hanisch (2004). Although
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the number and size of curated databases describing all kinds of molecular interactions is
steadily growing, most of the relevant knowledge is only available in textual form in scien-
tific journals. Therefore, the most comprehensive network available is often a text mining
network derived from the scientific literature. Using pathway queries on a co-occurrence
network can help finding relevant literature for the data under investigation. While the
interactions between genes or proteins in such a network are usually quite unspecific, the
number of possible meanings can often be narrowed down a lot by putting them into a
biological context. For instance, evidence for regulation through a certain transcription
factor can be found by identifying regulated genes that are connected to that transcription
factor in a literature network and a predicted binding site. This approach was used in
Gebauer et al. (2005) where the transcription factor NF-κB was shown to be important
for IL-1β-induced gene expression in two different cell types. The main results of that
paper will be discussed in chapter 6.

5.2 Description of the query language

In this section, we specify the pathway query language, the language that is used to de-
scribe the network templates (pathway queries), and its semantics, i.e. which instances will
be matched by a query. The pathway query language is based on the extensible markup
language (XML) and was designed to allow easy description of biological network tem-
plates in the ToPNet framework. It contains elements that allow for selecting places and
transitions and paths between these. In order to give a first idea of the pathway query lan-
guage, Figure 5.2 shows a simplified version of the most important elements in extended
Backus-Naur-form.

First, we define the search graph on which the pathway search algorithm works. The
search graph is represented as bipartite graph G = (P, T, E) with places P representing
genes, proteins or other molecules and transitions T specifying relationships between the
molecules. The edges E are used to define which molecules participate in an interaction
and (if appropriate) the direction of the interaction.

A pathway query is a network template that describes a context of interest as a small
sub-network which should be found in G. Formally, a pathway query is described as a
labeled graph Q = (N, C). Nodes n ∈ N represent subgraphs defined by another pathway
query or single places defined by basic queries, which are defined below; edges c ∈ C
represent paths between places. We divide the set of nodes N into two subsets N = Nr⊕Ns

where Nr stands for recursive and Ns for simple nodes. All nodes n ∈ Nr are labeled with
a pathway query denoted by ν(n). All other nodes n ∈ Ns are labeled by a basic query that
is also denoted by ν(n). In the simplest and most common case, Nr is empty, so all nodes
in the pathway query represent simple nodes. For simplicity, we will assume that we have
N = Ns and describe the changes that occur when recursive nodes are introduced later.
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Subnet = SubnetName PathwayNode
| SubnetName Subnet {Subnet} {Connection}

PathwayNode = BasicQuery [BooleanOperator BasicQuery]
BasicQuery = DataMap Operator Literal
Connection = ’From:’ SubnetName

‘To:’ SubnetName
PathRestrictions

PathRestrictions = ’Places:’ PathwayNode
‘Transitions:’ PathwayNode
‘Max Length:’ Number

Figure 5.2: A simplified version of the pathway query language in extended Backus Naur
form. This definition is not complete and serves only as a quick overview. More details
(e.g. on basic queries and the restrictions that can be associated to a path) can be found
in the text. A complete definition of the grammar is given as an XML schema in appendix
A.

Query String Numerical data Ontology data Strings
‘A < B’ math. A ∈ subtree(B) A before B in alphanumerical order
‘A > B’ math. B ∈ subtree(A) A after B in alphanumerical order
‘A = B’ math. A equals B A equals B
‘A like B’ undefined undefined A matches regular expression B

Table 5.1: Semantics of operators for basic queries.

5.2.1 Specification of places, paths, and networks

The constructs used in the pathway query language to restrict sets of places or interactions
are basic queries which can represent constraints like

( GO molecular function like Kinase ) & ( fold change > 2 ). (5.1)

In this example, all kinases that are up-regulated more than twofold would be selected.
Formally, a basic query q encodes a boolean function ξ(q, .) that evaluates to true if and
only if the argument is a place in the search graph that satisfies the conditions specified
by q. In the pathway query language a basic query is represented by the Query tag which
can contain multiple BasicQuery tags connected by boolean operators. The BasicQuery

in turn has three elements: the MapName, the Operator and the Value elements. The
MapName must refer to a data map available in ToPNet (e.g. expression data or functional
annotations). The operator can be one of <, ≤, =, >, ≥ or like. While it is possible
to redefine the meaning of these operators when a data map is implemented, they are
supposed to follow standard semantics whenever possible. This standard is given in Table
5.1. The basic query described above is shown in its XML representation in Figure 5.3.

An edge c ∈ C in Q corresponds to paths in G. These paths can be restricted in three
different aspects. The places on that path must match a basic query associated with c,
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1 <Query>

<Query1>
3 <BasicQuery Negated=”false”>

<MapName>GO: molecular function</MapName>
5 <Operator>like</Operator>

<Value>Kinase</Value>
7 </BasicQuery>

</Query1>
9 <Operator>and</Operator>

<Query2>
11 <BasicQuery Negated=”false”>

<MapName>fold change</MapName>
13 <Operator>gt</Operator>

<Value>2</Value>
15 </BasicQuery>

</Query2>
17 </Query>

Figure 5.3: The basic query from the expression (5.1) in XML representation. This basic
query selects all kinases that are up-regulated more than twofold.

Symbol Description
ν(n) Basic query associated with query node n
ξ(q, .) Boolean function that is true if and only if the basic query q is satisfied for the argument.
η(c) Maximum number of steps allowed for a path that represents the query edge c.
γP (c) The basic query associated with the places on a path representing c.
γT (c) The basic query associated with the transitions on a path representing c.

Table 5.2: Summary of symbols used to describe places and paths in a pathway query.
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denoted by γP (c). The transitions must match another basic query called γT (c) and the
length of the path is limited by η(c). Note that there can be more than one edge between
two nodes in the query. This is important if we look for instances that have more than one
path between two proteins, e.g. different signaling cascades leading from one extracellular
input to the same transcription factor. For simplicity however, we will only consider single
edges between query nodes in this description. In an instance of query Q, a connection is
represented by all shortest paths that satisfy the restrictions specified in the query. There
are two reasons for computing shortest paths only: It is computationally more efficient
than computing all paths of a given maximum length, and in most cases a large number of
additional nodes is introduced that would make the results to hard to interpret. Table 5.2
summarizes the symbols introduced so far for the formal description of pathway queries.
The following definition formally describes the paths that match an edge in the query
graph.

Definition 5.2.1. A legal path for an edge c = (n1, n2) in a pathway query is a path
p1, t1, . . . , pl, tl, pl+1 in G such that

1. ξ(ν(n1), p1) = true

2. ξ(ν(n2), pl+1) = true

3. l ≤ η(c)

4. ∀i, 1 ≤ i ≤ l : ξ(γP (c), pi) = true

5. ∀i, 1 ≤ i ≤ l − 1 : ξ(γT (c), ti) = true

A legal path for an edge c = (n1, n2) is a valid path for that edge, if no shorter legal path
for that edge exists.

Thus, a legal path for an edge c is a path that contains only places and transitions
that fulfill the conditions specified in the basic queries annotated to c, and that is also not
longer than the specified maximal length. A valid path is a shortest legal path. Now, a
first definition for sub-graphs matching a pathway query can be given.

Definition 5.2.2. A subgraph G′ = (P ′, T ′, E ′) of the search graph G is a simple instance
of a pathway query Q = (N, C) if there exist a function ιG′ : N → P ′ and another function
κG′ : C → Paths(G′), where Paths(G′) denotes the set of all paths in G′, such that:

1. ∀n ∈ N : ξ(ν(n), ιG′(n)) = true.

2. ∀c = (n1, n2) ∈ C : κG′(c) is a valid path for c in G′ with starting point ιG′(n1) and
end point ιG′(n2).

3. G′ is completely covered by the image of ιG′ and κG′ .

If p = ιG′(n) we say that p instantiates n in G′. Analogously, we say that a path pt
instantiates c if pt = κG′(c).
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In a simple instance, each node in the pathway query must be matched by a single place
and edges in the pathway query are matched by a single valid path. There are no nodes in
the instance that do not instantiate a part of the query.

5.2.2 Aggregation of instances

Finding simple instances in the search graph is a very intuitive graph matching problem.
It corresponds to finding sub-graphs that look exactly like the query, except that edges of
the query can be represented by paths in the simple instance. The problem can be solved
algorithmically using standard approaches, but it is computationally hard.

The main problem, however, is that in most cases the enumeration of all simple instances
is not desired. Instead, we would like to aggregate many of the simple instances into a
combined result. There are two reasons to do so: Firstly, the resulting instances should
represent sensible biological units. Such a unit could be a kinase, a transcription factor
and all its targets as in our first query example (Figure 5.1). As the number of targets is
not known a priori, it should be possible to indicate in the query that all matching targets
should be included in a matching sub-graph. More generally, the query language should
allow to formulate queries containing all matching places for a query node. In our example,
the query still contains only three nodes, but the node representing the transcription factor
targets is annotated such that an instance should contain all matching targets. If we can
find that kind of aggregated instances, the results will correspond to the biological contexts
that the user is interested in. This will also allow to develop sensible scoring methods that
reflect properties of the biological contexts as a whole.

The second reason for the aggregation of instances is that the number of simple instances
may be exceedingly large. If with our example query, we find 10 matching kinases, each
of which is connected to 10 transcription factors, each of which in turn has 100 targets,
the number of simple instances is 10000. It is impossible for a user to inspect such a
large number of instances manually. If all instances with the same transcription factor and
kinase are merged together, i.e. if for a kinase and transcription factor all matching targets
are aggregated, the number of instances drops to 100, a number that is still manageable.
Simple instances as defined above also contain only a single valid path for each edge in the
query. Thus, the number of instances becomes even higher when there are multiple valid
paths.

The aggregation mechanism available in the pathway query language is controlled by
the multiplicity attribute µ(n) ∈ {0, 1} for each query node. We call nodes n with
µ(n) = 0 simple nodes, Ns the set of all simple nodes, and Nm = {n ∈ N : µ(n) = 1} the
set of all merge nodes. If µ(n) = 0 the resulting instances will have exactly one place (or
sub-graph) instantiating n. Otherwise, one instance will contain all places that are possible
in that role, effectively merging all instances that are equal except for the instantiation of
n (see Figure 5.4). Furthermore, we will generally assume that an edge in the query can
be represented by many paths in an instance.

In order to cover these aggregation mechanisms, we have to extend the definition of
matching instances.
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Figure 5.4: The multiplicity attribute in pathway queries. Setting the attribute to 1
effectively merges all instances that differ only with respect to that query node.

Definition 5.2.3. A sub-graph G′ of the search graph G is a merged instance of the pathway
query Q if it is a union of simple instances G′ =

⋃

i G
′
i under the following conditions:

1. ∀i : G′
i is a simple instance of Q.

2. ∀n ∈ Ns ∃p ∈ P∀i : ιG′

i
(n) = p.

A maximal merged instance for Q is a merged instance that is no proper sub-graph of
another merged instance.

Thus, a merged instance is a union of simple instances that have the same instantiation
for all simple nodes. This definition is quite intuitive and solves the problems with aggre-
gation. A maximal merged instance for the example query in Figure 5.1 is exactly what
we have been looking for. It contains a single kinase, a single transcription factor, and all
of the transcription factor’s targets if the multiplicity attribute of the query nodes is set
accordingly. In order to illustrate merged instances, Figure 5.5 shows two pathway queries
containing merge nodes, simple instances and the resulting maximal merged instances. The
definition can also be turned into an algorithm to find all maximal merged instances when
a method for finding simple instances is given. All simple instances can be enumerated
and merged whenever the instantiations of simple nodes coincide. The problem with that
approach is that it still requires the enumeration of all simple instances. In order to avoid
that enumeration, we give another alternative definition that is the basis of a more efficient
matching algorithm and show that this definition is equivalent to the merged instances in
most cases.
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Figure 5.5: Two pathway queries containing merge nodes, corresponding simple and merged
instances. On the left-hand side the pathway queries are depicted, simple nodes (A) are
colored in blue, merge nodes (B,C) in green. In the middle, a number of simple instances
is shown, which are merged into the merged instance on the right. In these examples there
is only one merged instance, because a1 is the only instantiation of the single node A.
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Definition 5.2.4. A sub-graph G′ of the search graph G is a matching instance of a
pathway query Q if there exist functions ιG′ : N → P(P ) and κG′ : C → P(Paths(G′))
(where P(X) denotes the power set of X) satisfying the following conditions:

1. ∀n ∈ N ∀p ∈ ιG′(n) : ξ(ν(n), p) = true.

2. ∀c = (n1, n2) ∈ C ∀P ∈ κG′(c) : P is a valid path for c in G′ with starting point
p1 ∈ ιG′(n1) and end point p2 ∈ ιG′(n2).

3. ∀n ∈ Ns : |ιG′(n)| = 1.

4. ∀n ∈ Nm : |ιG′(n)| ≥ 1.

5. ∀c ∈ C : |κG′(c)| ≥ 1.

6. ∀p1 ∈ P ′ ∀c = (n1, n2) ∈ C :
p1 ∈ ιG′(n1) ⇒ ∃p2 ∈ P ′ such that ιG′(n2) = p2 and there is a valid path P ∈ κG′(c)
with start point p1 and end point p2.

7. ∀p2 ∈ P ′ ∀c = (n1, n2) ∈ C :
p2 ∈ ιG′(n2) ⇒ ∃p1 ∈ P ′ such that ιG′(n1) = p1 and there is a valid path P ∈ κG′(c)
with start point p1 and end point p2.

8. G′ is completely covered by the image of ιG′ and κG′ .

A maximal matching instance is a matching instance that is no sub-graph of another
matching instance.

In comparison to the definition of simple and merged instances, definition 5.2.4 is not
very intuitive, but it allows us to develop an efficient matching algorithm. The reason is
that the conditions are more local, as they only refer to single nodes in the query graph or
instance, while the condition for a merged instance is a global one. It must be a combination
of sub-graphs that must be simple instances. Furthermore, the following theorem shows
that for most pathway queries, matching instances and merged instances are the same.

Theorem 5.2.5. A merged instance for a pathway query Q is also a matching instance
for Q. If Q does not contain circles consisting only of merge nodes (Q is µ-circle-free), a
matching instance is also a merged instance.

Proof. By definition, a merged instance is a combination of simple instances with the same
instantiation for simple nodes. Therefore, we have to show that (1) the union of simple
instances results in a matching instance and (2) all instantiating places and valid paths in
a matching instance are also part of a simple instance if Q is µ-circle-free. Without loss of
generality, we can assume that Q is connected. Otherwise, we can apply the proof to each
connected component separately.
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1. If a set of simple instances {I1 . . . Ik}, k > 1 is merged, we get a new graph H and
define the functions ιH and κH as follows:

ιH(n) =

k
⋃

i=1

ιIi
(n)

κH(c) =
k
⋃

i=1

κIi
(n)

With these definitions the conditions 1 and 2 of definition 5.2.4 hold as these are
conditions on the elements of κH(c) and ιH(n), which are fulfilled as the elements
come from simple instances. Condition 3 holds because for all simple nodes n ∈ Ns,
their instantiation in the simple instances ιIi

(n) is the same for all i according to the
definition of a merged instance (5.2.3, condition 2). Conditions 4 and 5 obviously
hold because k > 1. If there is an edge c = (n1, n2) in the query and p1 ∈ ιH(n1) then
there is a simple instance Ii with ιIi

= p1. This instance must contain a valid path
for c with start point p1. This path is also present in the merged instance. Therefore,
condition 6 holds. Condition 7 can be verified analogously. Finally, condition 8 is
true because the simple instances Ii are completely covered by the image of ιIi

and κIi

and their images are added to the image of ιH and κH . Thus, every merged instance
is a matching instance.

2. Let Q be a µ-circle-free query and H a matching instance for Q. As H is completely
made up of places that are instantiations of query nodes and valid paths, we only have
to show that any such place or path can be extended to a simple instance contained
in H . First, we build a spanning tree T for Q, such that none of the remaining edges
connects to merge nodes. This can be easily achieved by starting with all edges that
connect two merge nodes. The resulting graph is a forest, as Q is µ-circle-free. Then
we use the remaining edges to complete the spanning tree.

Now, let p ∈ ιH(n). We construct a simple instance G′ for Q with ιG′ = p along
the spanning tree T . We use an arbitrary tree traversal algorithm starting at node
n to determine the order of query nodes that will be used to build the tree. Let this
order be given by (n, n1, . . . , n|N |). At the i-th step of the construction we add a
node nj and an edge c = (ni, nj) or c = (nj , ni) with j < i. According to conditions
6 and 7 of definition 5.2.3, there must be a valid path P in H that connects ιG′(nj)
to a place pi ∈ ιH(ni). We add P to G′ and set ιG′(ni) = pi and κG′(c) = P . After
the traversal of T , we have instantiations of all query nodes and all edges in T . To
complete G′, valid paths for the remaining edges must be found. Let c = (n1, n2) be
such an edge. Due to the construction of T , either n1 or n2 must be a simple node.
We assume without loss of generality that n1 is a simple node. We have to show
that H contains a valid path for c with start point ιG′(n1) and end point ιG′(n2).
According to condition 7 of definition 5.2.4 there must be a valid path P for c with
some start point p1 ∈ ιH(n1) and end point ιG′(n2). As n1 is a simple node, ιH(n1)



76 5. Pathway Queries

Figure 5.6: A pathway query and a matching instance that is not a merged instance. If
all nodes of the query shown on the left are merge nodes, the graph on the right is a
matching instance. However, it is not a merged instance as there is no complete triangle
for instantiations of the three query nodes.

contains only one place, which must be ιG′(n1) = p1. Thus, we can add P to G′ and
after processing all remaining edges G′ is a simple instance of Q and a sub-graph of
H that contains p with ιG′(n) = p, the place that we started from. In the same way,
we can start from an arbitrary valid path in H to construct a simple instance that
contains that path.

For pathway queries that are not µ-circle-free, it is easy to find examples where matching
instances exist that are not merged instances. Figure 5.6 shows such a query and a matching
instance: a triangle of merge nodes is instantiated by a graph that does not contain a
triangle. This demonstrates the locality of the definition of matching instances. It requires
only that the neighborhood of each instantiating place must fulfill the conditions of the
query. Larger structures such as the triangle in the example are not considered. Theorem
5.2.5 shows that the more local definition is sufficient as long as the query graph is µ-circle-
free. From theorem 5.2.5 directly follows

Corollary 5.2.6. A maximal matching instance for a µ-circle-free pathway query Q is
also a maximal merged instance for Q and vice versa.

In section 5.3 an algorithm for finding maximal matching instances will be introduced.
This algorithm is more efficient than the näıve approach for finding merged instances as
it does not require the enumeration of all simple instances. Instead, only partial simple
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instances are enumerated, containing instantiations of all simple nodes of the query. Then,
these partial instances are extended to maximal matching instances.

For the user, it is only important to understand the definition of merged instances, and
that queries containing circles of merge nodes may produce something slightly different
and should, if possible, be avoided.

In summary, we have developed two different notions of aggregation of instances. The
first one can be understood intuitively and reflects the goal of the aggregation mechanism.
The second notion, called matching instances, leads to an efficient algorithm, and we could
show that in most cases the two notions are equivalent. Only when the pathway query
contains circles of merge nodes, differences can arise.

5.2.3 XML Representation

The pathway query language is defined using the XML schema language. XML schemata
describe the ‘grammar’ of an XML document. The main advantage of schemata as com-
pared to the more conventional Document Type Definitions (DTDs) is the possibility to
define data types. Thus, many errors in XML documents can be caught by automatic
validation software. For instance, the choice and exact spelling of certain operators for
pathway queries is defined in the XML schema. A user writing a pathway query can detect
a mistake in his use of operators without trying to run a pathway search using validation
tools. Another advantage of an XML schema-based language is that XML has become
a standard for data interchange on the Internet. Thus, for instance a web service that
executes pathway queries on a server with a network database can be provided easily.

The root node of a pathway query is TheNet which can contain Subnet and Connection

nodes. A Subnet can either contain more Subnet and Connection nodes or a single
PathwayNode. Therefore, in the easiest and most common case a pathway query is simply
a collection of PathwayNodes and Connections. A PathwayNode describes a single node in
the query; it contains a basic query as described above and the multiplicity attribute.
A Connection describes a path between two Subnets, usually PathwayNodes. If there
is a Connection between two Subnets, each conforming instance must include a path
between the instances of the two Subnets that satisfies the three conditions specified in
the Connection: The maximum path length is specified in the attribute maxEdges, the
conditions on the places on the path are specified in an optional element PlacesQuery

and the conditions on the transitions must satisfy the basic query specified by the element
TransitionQuery.

We have also developed a simple cascading style sheet (CSS) to display pathway queries
in a convenient manner. Figure 5.7 shows the visualization of a pathway query in a web
browser.

The XML schema for pathway queries and the corresponding style sheet are listed
completely in Appendix A.
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Figure 5.7: Visualization of a pathway query in a web browser using the cascading style
sheet for pathway queries.
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Graph buildInstanceGraph(Query q, Graph searchGraph) {
for (Node n : q.nodes()) {

instances = n.findInstances(searchGraph);
instanceGraph.add(instances);

}
for (Connection c : q.connections()) {

paths = c.findPaths(instanceGraph, searchGraph);
instanceGraph.addEdges(paths);

}
}

List buildPathways(Graph instanceGraph) {
findSimpleNodeCliques(instanceGraph);
return extendCliques();

}

List findPathways(Query q, Graph searchGraph) {
inst = buildInstanceGraph(q, searchGraph);
return buildPathways(inst);

}

Figure 5.8: Overview of the pathway search algorithm. Given a search graph and a pathway
query it returns all subgraphs (instances) that match the query.

5.3 The pathway search algorithm

The search algorithm is basically an algorithm for the Subgraph-Isomorphism (SI) problem
on labeled graphs (see section 1.4.2). This problem is known to be NP-complete in its
decision version, and therefore no polynomial algorithm is known (Garey and Johnson,
1979). Subgraph-Isomorphism can be reduced elegantly to a Clique Search problem using
a compatibility graph (also called association graph or product graph). The pathway search
algorithm is also based on this approach. The main difference to the classical SI problem
is that pathway queries are not simply subgraphs of the search graph:

• Edges in the query can correspond to paths in the search graph.

• Merge nodes in the query can correspond to more than one place in the search graph.

The pathway search algorithm is summarized in Figure 5.8. First we build the instance
graph, which corresponds to the compatibility graph in the classical algorithm. A node in
the instance graph corresponds to a place in the search graph taking the role defined by
a query node (e.g. c-Jun in the role of the transcription factor in Figure 5.1). An edge is
added between two nodes if the corresponding places can be in their respective roles in one
instance. E.g. if there is a protein in the role of the kinase and another protein in the role
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of the transcription factor, the kinase must be known to phosphorylate the transcription
factor if that is required by the query.

A clique in the instance graph that contains nodes for all query nodes is then a simple
instance of the query.

The construction of the instance graph Π = (N̂ , Ê) can be formalized as follows: Π
contains a node n̂ = (n, p) if and only if

ξ(ν(n), p) = true, (5.2)

i.e. a place p can take the role of query node n if it satisfies the conditions made by the
basic query ν(n). Let RQ be a function that recovers the corresponding query node from
a node in the instance graph and RG a function that recovers the corresponding place in
the search graph. All nodes in the instance graph corresponding to a query node n are
denoted by Ξ(n) = {n̂ ∈ N̂ : ξ(ν(RQ(n̂)), p) = true}.

Then there is an edge ê between two nodes n̂1 and n̂2 if one of the following two
conditions is true:

1. There is no edge in the query between RQ(n̂1) and RQ(n̂2).

2. There is an edge c = (RQ(n̂1), RQ(n̂2)) and there exists a valid path for c starting at
RG(n̂1) and ending at RG(n̂2).

To keep the instance graph small, we do not explicitly add an edge (n̂1, n̂2) if there is
no edge in the pathway query between RQ(n̂1) and RQ(n̂2). Still, n̂1 and n̂2 are compatible
as they may appear together in a valid pathway instance. Therefore, we define a function
θ to represent the compatibility of two nodes in the instance graph:

θ(n̂1, n̂2) =



















1 (n̂1, n̂2) ∈ Ê,

or (RQ(n̂1), RQ(n̂2)) 6∈ C,

orRQ(n̂1) = RQ(n̂2) and µ(RQ(n̂1)) = 1

0 otherwise.

(5.3)

Using the compatibility function instead of explicit edges can save a lot of memory
when queries have many unspecific nodes and only few edges. For instance, a linear query
with ten nodes that have 100 possible instantiating proteins could have up to 500,000 edges
most of which will be present as there are no conditions associated with them. Using the
compatibility function reduces the number of edges to at most 50,000 and each one is
subject to a condition.

For all pairs of places that have to be connected according to the query, all valid paths
between these places must be found. An edge ê = (n̂1, n̂2) in the instance graph should
represent all valid paths for the corresponding edge in the query graph RQ(ê), i.e. RG(ê)
should be the sub-graph that consists of all valid paths for RQ(ê) between RG(n̂1) and
RG(n̂2). In order to achieve this, we build a subgraph S = (PS, TS, ES) of the search
graph for each edge c = (n1, n2) of the query graph with PS = {p ∈ P : ξ(γP (c), p) =
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true} ∪ Ξ(n1) ∪ Ξ(n2), TS = {t ∈ T : ξ(γT (c), t) = true} and ES all edges between places
and transitions in PS and TS. If, for instance, the PlacesQuery of the connection requires
that places on the path are all in a certain biological process, the subgraph S will contain
only such places. With the TransitionQuery it is possible to restrict the transitions on
the path, e.g. to protein-protein interactions only. Given the two sets of nodes in the
instance graph Ξ(n1) and Ξ(n2), we use breadth first searches (BFS) on S starting at each
p1 ∈ Ξ(n1) to find paths to places p2 ∈ Ξ(n2). During the searches, the discovery time of
each node is recorded. Then, the valid paths can be backtracked from each place in Ξ(n2)
and the sub-graph containing all valid paths can be determined and annotated at each ê.
Thus, RG(ê) for ê = (n̂1, n̂2) is the sub-graph of G that consists of all valid paths for the
corresponding query edge RQ(ê) between the places RG(n̂1) and RG(n̂2).

As a certain area around the places from Ξ(n1) must be explored, we always start the
BFS at the smaller set of places. This can make the search much faster if the size of the
sets is unbalanced. Suppose n1 has hundreds of instances and n2 has only a few instances.
If we look for paths of length two between those sets and start with n1, we have to visit all
places that have a distance of two or less from those hundreds of places that are instances
of n1. If the search is started at the instances of n2, much fewer places will be visited,
assuming that the connectivity of nodes is similar around the two sets.

In order to avoid unnecessary path computations, we drop nodes from the instance
graph as soon as they lack a required connection. Thus, we do not need to check other
connections for that node and keep the graph as small as possible.

Building the pathway instances from the instance graph requires an extended clique
search consisting of a standard clique search algorithm for all simple nodes and a subsequent
extension step. The clique search uses a rather simple backtracking algorithm. A candidate
clique C and a set Si of all nodes compatible with C are maintained during the search. In
the beginning S0 is set to N̂ . In each subsequent step i, C is expanded by a node n̂ ∈ Si−1

with µ(RQ(n̂)) = 0 and Si is updated as Si = Si−1 ∩ {m̂ ∈ Si−1 : θ(m̂, n̂) = 1}. Omitting
all nodes from Si−1 that are not compatible with n̂, i.e. nodes m̂ with θ(m̂, n̂) = 0, ensures
that Si contains only nodes that are compatible with the candidate clique. When no node
n̂ with µ(RQ(n̂)) = 0 exists, all remaining nodes are added to C. At this point, we have a
candidate instance that contains instantiations for all simple nodes and candidates for the
instantiation of all merge nodes. These candidates are compatible with the instantiations
of all simple nodes, but we have not checked if all required connections between merge
nodes are present. Therefore, we iterate through all places and check if they have at least
one neighbor for each incident edge of the query. Places lacking a neighbor are dropped
and the process is repeated until the instance does not change any more.

Effectively, we search only for cliques in the subgraph of Π containing all nodes n̂
with µ(RQ(n̂)) = 0. All remaining compatible nodes are first added, then the connections
between merge nodes are verified. When the resulting candidate instance contains nodes
representing each query node, it is returned as a maximal matching instance.

In the last step of the algorithm, the instance is built from C by recovering the places
and transitions in the search graph that correspond to nodes and edges in C.
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Theorem 5.3.1. The sub-graphs identified by the pathway search algorithm represent
maximal matching instances of the query, and all maximal matching instances are found
by the algorithm.

Proof. First, we have to validate if all conditions of definition 5.2.4 are met for an identified
sub-graph H . We define the functions ιH and κH as follows:

ιH(n) = {p ∈ P : ∃ n̂ with RQ(n̂) = n and RG(n̂) = p}

κH(c) = {P ∈ Paths(H) : ∃ ê with RQ(ê) = c and P is a valid path in RG(ê)}

From the construction, it is immediately clear that conditions 1 and 2 are true. Further-
more, conditions 3-5 are true because we require the instance to have instantiations of all
query nodes, and two nodes in the instance graph corresponding to the same query node are
never compatible. Conditions 6 and 7 are ensured by the extension step, when nodes that
do not fulfill these conditions are eliminated. Condition 8 is clear from the construction of
the functions ιH and κH . Thus, H is a matching instance for the query. Furthermore, it is
maximal: The path search algorithm ensures that for each edge in the query all shortest
paths are found, and the extension algorithm starts from all nodes compatible with the
partial instance representing the simple nodes and then only eliminates nodes that can not
be part of this instance.

Finally, it is also clear that all maximal matching instances are found: A maximal
matching instance is uniquely defined by the instantiation of all simple nodes. As the
applied clique search algorithm is exhaustive, all possible combinations are discovered and
are then extended to a maximal matching instance as described above.

5.3.1 Hierarchical pathway queries

So far, only pathway queries were considered where a node n represents a single place; this
is the case, if in the XML representation each Subnet element contains a PathwayNode

element. But Subnet elements can contain complete pathway queries in form of further
Subnet and Connection elements. In that case, the pathway search algorithm runs recur-
sively, building the instances of the innermost Subnet elements first, and then finding paths
between these instances according to the corresponding Connection elements. This recur-
sive approach can speed up the search significantly, as the cliques that must be searched are
much smaller than from the complete query. This fact can be made clearer by investigating
the complexity of the different steps of the pathway search algorithm.

5.3.2 Complexity of the pathway search algorithm

As was already mentioned, the subgraph isomorphism problem is NP-hard, therefore our
algorithm will have a running time that is exponential in the size of the query graph. NP-
hardness can easily be shown by reducing the clique search decision problem to subgraph
isomorphism. To answer the question if there is a clique of size k, we build a query graph
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that is such a clique. Then there is a clique of size k in the search graph if and only if
an instance of the query can be found. The decision problem is also in NP, as it is easy
to verify in polynomial time if a given node mapping is indeed one-to-one and maps the
query graph to an isomorphic subgraph of the search graph.

Nevertheless, we investigate the complexity of the algorithm in some more detail in order
to find out more about possibly difficult queries and how to optimize those. Furthermore,
we demonstrate the advantage of the pathway search algorithm over the näıve approach of
enumerating all simple instances and merging these instances when the instantiation of all
simple nodes is the same.

The pathway search algorithm has three parts, building the instance graph, enumerating
partial pathway instances by a clique search algorithm, and finally extending the cliques
to maximal matching instances.

For the analysis, let Q be a pathway query with k sub-queries Qi having si, 1 ≤ i ≤ k
instances that have already been computed. Without loss of generality, let Q1 to Qk′ have
multiplicity 0 and Qk′+1 to Qk multiplicity 1. For a connection c let cin and cout be
the indices of the connected sub-queries.

As we assume that the instances of the sub-queries have already been computed, the
algorithm only has to check the connections. For a query edge c between the i-th and the
j-th sub-query, shortest paths between each instance of Qi to each instance of Qj have to
be computed. For each instance Rl, 1 ≤ l ≤ si of Qi we build a subgraph S as described
above and search for paths to all instances of Qj . S can be computed with a breadth
first search checking if places and transitions satisfy the restrictions of the Connection.
The search can be aborted after the number of steps is as large as the maximal allowed
length of paths for c. Within that graph, all shortest paths between Rl and all instances
of Qj have to be found. This is accomplished with a breadth first search starting from
each Rl again, marking all visited nodes with their discovery time. From all instances of
Qj we then find the paths back to Rl by another breadth first search where in every step
only nodes with a discovery time one less than the discovery time of the current node are
included. The graph of all nodes visited in that last backtracking step is the graph of all
shortest paths. The whole path computation is based on breadth first searches which can
be bounded in total by the size of the search graph G, i.e. by O(|P | + |T | + |E|). For
all paths from one instance Rl to instances of Qj the backtracking procedure has to be
repeated sj times. The total running time for paths between instances of Qi and Qj is
therefore bounded by O(sisj(|P |+ |T | + |E|)). This path computation has to be done for
all connections in the query, thus, the total running time for building the instance graph
is O(|C|maxi{s2

i }(|P | + |T | + |E|)). We will summarize this result in

Lemma 5.3.2. Building the instance graph in the pathway search algorithm takes
O(|C|maxi{s2

i }(|P | + |T | + |E|)) time. More precisely, it can be bounded by
O(
∑

c∈C scin
scout

(|P | + |T | + |E|)).

When the instance graph is built, a clique search for the instances of Q1 to Qk′ has to
be executed. The clique search algorithm is a branch and bound algorithm that computes
all cliques of all sizes in its basic version without bounds. As we are only interested in
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cliques of size k′ and these are the maximum possible cliques (not taking into account
nodes representing sub-queries with multiplicity 1), we can abort the search as soon as
the candidate set does not contain instances for all remaining sub-queries. Nevertheless,
in the worst case, all combinations of instances from the sub-queries are cliques and must
be enumerated. At each expansion step for a clique, a set operation has to be performed
that can be computed in O(|N̂ |) in order to update the candidate set. This is done for
each clique encountered during the search.

Let nc be the number cliques in the instance graph. Then we can state the next Lemma:

Lemma 5.3.3. The clique search during the pathway search algorithm runs in O(|N̂ |nc)
time. This can be bounded by O(|N̂ |Πk′

i=1si) in the worst case.

After the cliques of size k′ have been identified, the instances are extended for merge
nodes. During the clique search, nodes that are not compatible with all nodes of the
clique have already been eliminated, but it has not been tested if the remaining nodes
have all required connections, i.e. the edges between merge nodes have not been verified.
Therefore, all nodes that do not have all required neighbors are eliminated. This can cause
other nodes to lose required neighbors, so the process is repeated until the set of remaining
nodes does not change any more.

Lemma 5.3.4. For a µ-circle-free query, the number of iterations in the extension step is
not greater than the length of the longest path in the query that contains only merge nodes.

Proof. As all nodes left in the candidate instance are compatible to all simple nodes, we
are only concerned with merge nodes and edges between merge nodes. If a node n̂ = (n, p)
of the candidate instance is eliminated, it can cause another node, say n̂2, to get eliminated
as well, if there is an edge in the query between n and RQ(n̂2) and n̂ is the only neighbor
of n̂2 that instantiates the query node n in the candidate instance. Thus, there is a flow of
information along the edges of the query graph. But the flow can not travel back and forth.
When n̂2 is eliminated it can not cause another node m̂ instantiating n to be eliminated.
This could only happen if m̂ was a neighbor of n̂2. In that case, the elimination of n̂ would
have no consequences for n̂2. Thus, the information can only travel in one direction, and in
each iteration it is passed along one edge. If there are no circles, the number of iterations
can therefore be no greater than the longest path of merge nodes.

Checking all nodes of the candidate for their required neighbors takes O(|N̂ | + |Ê|)
steps. As shown in Lemma 5.3.4, the number of iterations is at most as high as the length
of the longest path of merge nodes in the query graph. This can be bounded by the
total number of merge nodes |Nm|. The extension has to be performed for all candidate
instances. Therefore, we get the following Lemma for the running time of the extension
step:

Lemma 5.3.5. The extension step of the pathway search algorithm requires
O(ncand|Nm|(|N̂ | + |Ê|) steps, where ncand denotes the number of candidate instances, i.e.
the number of maximal cliques of simple nodes.
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The last part missing in the complexity analysis is the computation of instances for
non-recursive Subnet elements. These elements consist only of a single PathwayNode,
therefore the computation of instances involves only checking a basic query for all places
in the search graph. Thus, the running time is O(|P |), assuming that a basic query can be
checked in O(1). From this and the preceding lemmas directly follows

Theorem 5.3.6. Given a query Q with a set of sub-queries R and the definitions from
above, the running time T (Q) of the pathway search algorithm can be bounded by the
following recursive formula:

T (Q) = O

(

∑

c∈C

scin
scout

(|P | + |T | + |E|) + |N̂ |Πk′

i=1si + ncand|Nm|(|N̂ | + |Ê|)

)

+
∑

Qr∈R

T (Qr)

(5.4)
If the set R is empty, Q consists only of a single PathwayNode element and its instances,
i.e. instantiating places in the search graph, can be computed in O(|P |).

This estimation can be used to formulate a strategy for query optimization. The running
time to compute the instance graphs depends mainly on the number of instances of the
sub-queries. This number can be minimized by careful query formulation. Additionally,
the number of nodes that can be eliminated from the instance graph after each path
computation depends on the order of the path computations. One simple optimization
that appears promising is to sort the query edges such that connections between subnets
with few instances are processed first. This is done in the pathway search algorithm and
does not require a different query formulation.

In the clique search, nothing can be done about the number of maximal cliques, as
this corresponds to the number of valid pathways, which of course have to be enumerated
eventually. But the number of non-maximal cliques that have to be enumerated depends
strongly on the query formulation. It grows with the number of simple nodes in the query
k′ and their instances si, as can be seen from Lemma 5.3.3. Thus, a possible strategy to
minimize this number is to formulate a query such that it contains only few sub-queries, and
these should result in as few instances as possible. The latter condition is also important
for the running time of the path computations, as already mentioned. As a rule of thumb,
queries with few sub-queries with few instances can be achieved by splitting a query into
sub-queries that are as densely connected as possible. As an example, consider a linear
query consisting of five nodes n1 . . . n5 where ni is connected to ni+1 for 1 ≤ i ≤ 4. All
triples of nodes representing n1, n3 and n5 are valid cliques as there are no connections
and, thus, no restrictions between them, and they might have to be enumerated during
the clique search algorithm. We try to avoid this by our branch and bound method, but
in the worst case all cliques are enumerated. If the query is restructured into sub-queries
consisting of pairs of nodes, or adding one node in each recursion layer, no such unrestricted
tuples of nodes will be considered.

A second conclusion can be drawn from the run time analysis of the pathway search
algorithm. The aggregation strategy chosen here is much more efficient than merging
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instances after enumerating them completely. The latter approach increases the running
time of the clique search immensely, as bigger cliques have to be found. The worst-case
running time would be Πk

i=1si, as all query nodes would be treated as simple nodes first.
This increases the running time by a factor of Πk

i=k′+1si as compared to an additive increase

of ncand|Nm|(|N̂ | + |Ê|) for the pathway search algorithm. These observations only deal
with the worst-case complexity, but the practical improvement is immense as well. Usually,
merge nodes are used when there are many possible instantiations of a query node that
should be summarized. Especially when multiple merge nodes are connected, the number
of resulting simple instances instances can be enormous. Avoiding the enumeration of these
instances is crucial and furthermore allows a better presentation of the results to the user
and meaningful statistical scoring methods as will be demonstrated in the next section.

5.3.3 Summary of the pathway search algorithm

The basic idea of the pathway search algorithm is rather simple and follows standard
approaches. A compatibility graph is built from the graph template and the biological net-
work. Then a clique search retrieves sub-graphs matching the template. The aggregation
feature, which first of all serves the purpose of increasing the expressiveness of the pathway
query language, gives rise to an improvement in the running time for queries containing
merge nodes. The possibility of aggregating instances allows to formulate queries that
represent meaningful biological contexts, and the pathway search algorithm can efficiently
enumerate the instances of such contexts.

5.4 Scoring pathway queries

There are two reasons why it is necessary to assign scores to the instances of a pathway
query. Sometimes a pathway query results in many instances and manual inspection of all
results becomes infeasible. In that case, a ranking is needed, so the user can work down a
sorted list, starting with the best scoring (usually the most significant) results.

But even if only few instances are available, it is often useful to assign a significance
score to the instances to help the user assessing the results.

Scoring methods can be indicated in the PathwayNode or Connection elements of a
pathway query. In every instance, these partial scores are computed and then combined
to a total score. Combining scores requires certain properties of the scores. The pathway
query language and the implemented scoring mechanism allow for scores that are additive
or scores that are valid p-values.

5.4.1 Map scores

The easiest way to compute a score for a single node in a pathway instance is to refer to
a data map. Every data map that provides p-values can be used as a score for a part of
a pathway instance. For instance, a p-value for differential expression available in a data
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map could be a good score for a gene if this p-value is not used in the query to select
the gene. On the other hand, it does not make sense to select genes according to their
p-value and then score the pathway instances using the same p-value on these genes. For
instance assume a query like the one depicted in Figure 5.1: If the regulated genes are
selected according to their significance of differential expression, using the same p-value
to score the instances will result in overly significant p-values for the instances. Using the
expression p-value to score the transcription factor on the other hand is a valid method if
the transcription factor has been selected only because of its function and its connection
to regulated genes.

5.4.2 Enrichment scores

Using enrichment or over-representation analysis, we can assign scores to instances of a
common kind of pathway queries where we have two nodes n1 and n2 with µ(n2) = 1 and
an edge c = (n1, n2). The question we would like to answer is: Given a pathway instance
with places p1 and p2i

, 1 ≤ i ≤ k, how likely is it to find a pathway instance with at least
k instances of n2? Obviously this depends on the number of places in the search graph
that satisfy the basic query in n2 and on the number of edges of p1. Thus, the question
can be formulated more precisely: Are the instances of n2 over-represented in the set of
neighbors of p1? One way to compute a p-value for the over-representation in such a set-up
is Fisher’s Exact Test, which uses the hypergeometric distribution.

Let N be the set of places for which the basic query ν(n2) is applicable and n the set
of neighbors of p1 in G. A pathway query instance I including k places as instances of n2

is assigned the p-value

pFET(I) =

min{|n|,|Ξ(n2)|}
∑

i=k

(

|Ξ(n2)|
i

)(

|N |−|Ξ(n2)|
|n|−i

)

(

|N |
|n|

) (5.5)

or the corresponding FET score

SFET(I) = − log10 pFET(I). (5.6)

Another enrichment score is based on Wilcoxon rank scores. Let us again assume a
query with two nodes n1 and n2 with µ(n2) = 1 and an edge c = (n1, n2). If there is a
function f : P → X (implemented by a data map) where X is a completely ordered set,
e.g. X = R, we can compute the ranks of all instances p2i

, 1 ≤ i ≤ k of n2 compared to
all places in the graph with respect to the function f .

Using these ranks, we can apply the Wilcoxon-Mann-Whitney test (WMWT) as de-
scribed in 1.4.1. Let WI denote the Wilcoxon score (the sum of the ranks) of the current
instance I, then the p-value prank is defined as

prank(I) = 2 min{P (W > WI), P (W < WI)} (5.7)

and the rank score is
Srank(I) = − log10 prank. (5.8)



88 5. Pathway Queries

The WMWT tests the null hypothesis that the values from places representing query
node n2 have the same distribution as the values from all other places in the search graph.
In addition, when the null hypothesis is rejected, the magnitude of the Wilcoxon score tells
us if the tested values are generally higher or lower than the rest. We call it an enrichment
score because the null hypothesis is rejected when the tested places are enriched in high or
low values.

5.4.3 Scoring transcription factors and kinases

The enrichment scores SFET and Srank can be used to find regulators that are relevant for a
set of expression data where the regulators themselves do not exhibit significant expression
values. Transcriptional regulators like transcription factors, kinases and signaling molecules
are not necessarily regulated transcriptionally. Especially in higher organisms, other modes
of regulation, e.g. by phosphorylation or translocation, and combinatorial interaction
with other regulators, are more important. Thus, the activity of a regulator cannot be
estimated by its expression level alone, but must include the expression levels of its potential
regulatory targets.

In order to compute the FET score for the relevance of a transcription factor or any
other regulator F as described above, we need the number of potential target genes t(F ).
Let r(F ) be the number of significantly regulated genes in that set. Then SFET can be
computed as

SFET(F ) = − log10

min{R,t(F )}
∑

k=r(F )

((

R

k

)(

N−R

t(F )−k

)

(

N

t(F )

)

)

, (5.9)

where N is the total number of measured genes and R the number of genes that are
significantly regulated.

The rank score Srank(F ) can be computed using the gene expression levels of all potential
targets of F and compare them to the expression levels of all other measured genes using
the rank sum test as described in section 5.4.2.

When the expression data reflect a change of expression (e.g. ratios or p-values for dif-
ferential expression), we call the scores SFET(F ) and Srank(F ) activity scores of F , although
they actually represent a change of activity. These scores are high when a significantly
large number of the regulator’s potential targets is differentially expressed in the experi-
ment under consideration.

Of course, it is crucial to have high quality sets of potential targets. To extract these
from the network, we use pathway queries, but first the knowledge about the targets has to
be encoded in the network. Such networks can be built from databases like TRANSFAC
(Wingender et al., 2000); we have also used a network containing co-occurrence edges and
binding site predictions to compute potential targets (Gebauer et al., 2005). In another
application we computed binding site predictions incorporating information about the con-
servation of non-coding sequences using multiple alignments between different species.

The pathway queries that extract the necessary information on the targets from the
network are particularly simple. For transcription factors, there are only two query nodes,



5.4 Scoring pathway queries 89

the first representing the transcription factor itself, the second representing the targets. The
connection must not be longer than a single transition which should be labeled ‘regulates’.
We run the query with no restriction on the expression data of the targets to select all
potential targets. Then, for each expression measurement, we select all targets that have
a p-value of less than 0.01.

For kinases, we use a pathway query that is a little more complicated. We need the first
node to represent the kinase which should also be at least slightly regulated, so we require
it to have a p-value of less than 0.1. It must be connected via at most one more kinase
to a transcription factor. The transcription factor is again connected to regulated target
genes. The reason for requiring the kinase to be differentially regulated is that otherwise
too many instances are found that differ only in the kinase. One way to select kinases
that are especially interesting is to require differential expression. Both pathway queries
are visualized in Figure 5.9.

5.4.4 Power of enrichment scores

In statistics, the power of a test is defined as the probability that the null hypothesis is
rejected if indeed an alternative hypothesis is true. In this section, some related properties
of the proposed enrichment scores are investigated.

In order to find out if the described scoring methods are applicable to biological data
containing errors and noise, some experiments on simulated data were performed. In
particular, it was intended to get a rough quantification of the method’s robustness with
respect to the amount of errors in the prediction of a regulator’s targets and the difference
in expression between the regulated genes and non-regulated genes. Therefore, a model for
expression data and the detection of target genes was defined as follows, and random data
were generated according to that model. These simulations provide us with data, of which
we know that an alternative hypothesis is true. Thus, we can estimate, how sensitively the
enrichment scores detect such an alternative hypothesis.

Let us assume we have gene expression data for n genes and we are interested in the
activity of a regulator R. The regulator R has k targets, l of which are indeed regulated
in the data. There are another m genes that are also regulated but are not targets of the
regulator under consideration. Our method for determining targets of a regulator (e.g.
predicting transcription factor binding sites) is supposed to miss a target with probability
pFN and erroneously classify a random gene as a target with probability pFP . Now we need
to define a model for the gene expression data for regulated and non-regulated genes. We
simply assume that the expression levels of unregulated genes follow a standard normal
distribution and the regulated genes are all up-regulated and can be modeled by a normal
distribution with mean s and standard deviation 1. Thus, we have two classes of gene
expression data, corresponding to regulated and unregulated genes and separated by s
standard deviations. The parameters of the model are summarized in Table 5.3.

Figure 5.10 shows a typical histogram of simulated expression data generated with
parameters n = 10000, m = 250, k = 100, l = 25 and s = 4. Although the distributions
of targets and non-targets are clearly different, this observation is actually based on only
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…

max. distance: 1,

regulation

Molecular function: Kinase

Molecular function:

Transcription Factor

Differentially 

expressed genes:

p-value < 0.01

…

max. distance: 2, 

Transitions: Mode: interact

Places: Molecular function: kinase

max. distance: 1,

regulation

Differentially 

expressed genes: 

p-value < 0.01

Molecular function:

Transcription Factor

Figure 5.9: Pathway queries used to find relevant transcription factors (top) and regulated
kinases (bottom). With these simple network templates, regulated genes can be put into
context with their regulating transcription factors and kinases.
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Parameter Value Description
n 10000 Total number of genes
m 250 Number of regulated genes that are not targets
k 100 Total number of target genes
l 25 Number of regulated target genes

pFP 0.01 Probability for false positive targets
pFN 0.3 Probability for false negative targets
s 4 Separation of expression means between regulated and unregu-

lated genes
t 1.5 Threshold for detection of regulated genes (for FET score only)

Table 5.3: Parameters of the model for gene expression data and target finding. Values
indicate standard parameter values that were used in experiments where nothing else was
specified.

few data points, since there are only 100 targets with only 25 of these regulated, i.e. being
in the class of genes with higher expression values. Furthermore, in this histogram the
possibility of false negative and false positive targets is not taken into account. The arising
question is if the scores are powerful enough to recognize this difference of distributions
even in the presence of false positive and false negative targets.

Scores based on rank test

For random data generated with the same parameters as in Figure 5.10 and target assign-
ments with pFP = 0.01 and pFN = 0.3, the average score Srank from 50 test runs was 4.1
(corresponding to a p-value of 10−4.1), the histogram of the p-values is shown in Figure
5.11.

In order to estimate how the score depends on the separation of the two classes of
expression values and on the specificity of target detection, the parameters s and pFP were
systematically varied. The results of these variations are shown in Figure 5.12. The shape of
the contour lines suggests that there is an approximately logarithmic dependency between
the false positive rate of the target detection and the resulting activity scores, while the
dependency between separation and scores is linear. A saturation occurs at scores around
eight. Furthermore, it is clear from the almost rectangular shape of the contour lines
that both a good separation of expression values and a low number of false positives is
required to get good scores. While a sufficiently good separation of expression values can
be expected in real biological data, the identification of target genes can be a problem. If
it is necessary to infer target genes using binding site prediction in genomic sequences, a
higher false positive rate is to be expected for typical approaches using position-specific
weight matrices (Stormo, 2000). In that case we will use different methods to minimize
the number of false positives in the applications that will be discussed in chapter 6.
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Figure 5.10: Histogram of simulated expression data. Blue bars indicate the frequencies of
expression values of non-targets while red bars represent frequencies of expression values of
target genes multiplied by 100 (in order to have the same total number). There are 10000
genes, 100 of which are targets. 25 of the targets are regulated and 250 of the non-targets.
The separation of the regulated and unregulated genes is four standard deviations.

0 0.2 0.4 0.6 0.8 1
0

5

10

15

20

25

30

P−value of rank test

F
re

qu
en

cy

Figure 5.11: Histogram of rank p-values computed on 50 sets of simulated expression data
with the same parameters as in Figure 5.10 and pFP = 0.01 and pFN = 0.3. For most of
the data sets, the enrichment can be detected with highly significant p-values.
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Figure 5.12: Rank activity scores on simulated data over a range of parameters s and pFP

(separation of expression values between regulated and unregulated genes and probability
for false positive targets respectively).
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Figure 5.13: FET activity scores on simulated data over a range of parameters s and pFP

(separation of expression values between regulated and unregulated genes and probability
for false positive targets, respectively). Threshold t for defining the set of regulated genes
in FET was set to s/2 (left) or to 1.5 (right).
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Figure 5.14: FET activity scores on simulated data over a range of parameters s and t
(separation of expression values between regulated and unregulated genes and threshold
for the definition of regulated genes, respectively).
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Scores based on Fisher’s exact test

For similar analyses for the score SFET, a threshold t has to be defined above which an ex-
pression value is considered significant. A good threshold should be the midpoint between
the means of the two normal distributions used to model the expression values. Unfortu-
nately, the separation of regulated genes from the unregulated genes is not known in real
applications. In that case one would usually choose a fixed value, maybe one or two stan-
dard deviations from the mean. The resulting scores for a fixed threshold of t = 1.5 and
a variable threshold t = s/2 are shown in Figure 5.13. Using the variable threshold, much
more significant scores can be attained at high separation values. With the more realistic
fixed threshold, the results look very similar to what was observed for the rank score. In
order to get a more complete overview of the effects of changing the threshold, another
contour plot was created with pFP = 0.001 and varying threshold (Figure 5.14). This plot
clearly suggests that the choice of the threshold t is important, but with greater separation
between regulated and unregulated genes, the range of values that yield significant scores
becomes quite big. Furthermore, a threshold of 1.5 or 2 seems to produce good results for
the complete range of separation values.

Of course, other parameters also play an important role, but they do not change the
shape of the contours in the previous figures. Let rT be the ratio of regulated to unregulated
genes among the targets and rN the same ratio among the non-targets. The enrichment
of regulated genes among the target genes can then be defined as the ratio rT

rN

. The null
hypothesis for the rank test is the equality of medians, and the null hypothesis for Fisher’s
exact test is that rT ≤ rN . Therefore, it is crucial that there is an enrichment in the target
genes. Otherwise the tests cannot find significant differences. Making rT and rN more
similar by changing the parameters for the number of regulated genes m and l accordingly
will result in generally lower scores, making the difference larger will result in higher scores.
The dependency of the FET score from the enrichment is illustrated in Figure 5.15 with
parameters n = 10000, m = 1000, k = 100, pFN = 0.3, pFP = 0.001, t = 2, and various
values of l and s. Clearly, if the enrichment is less than 2-fold, almost no significant scores
can be found, even if the expression values are well separated.

Increasing the number of targets l also produces more significant scores, since with
more samples even a small enrichment can be detected confidently. Finally, a higher false
negative rate for target identification also decreases the resulting scores, as this basically
changes only the ratio of regulated to unregulated targets (dividing the number of regulated
targets l by 2 has almost the same effect as doubling the probability for false negative
targets pFN).

In summary, it seems that the sensitivity of the proposed scores is sufficient for real
biological data sets; the rank score seems to be somewhat less sensitive than the FET score.
Naturally, there has to be an enrichment of regulated genes among the targets, otherwise
nothing can be detected. Furthermore, the specificity of the target detection must be quite
high which should be taken into account when conducting a study on biological data.
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5.4.5 Combining scores

Combination of scores representing p-values can be performed using a χ2 test. For each
Subnet and Connection of a pathway query that contains a Scoring element of p-value
type, the indicated method is used to compute a p-value. If these p-values P1, . . . , Pn are
independent and all originate from their respective null distributions, then

∑n

i=1 −2 log Pi

follows a χ2 distribution with 2n degrees of freedom (Fisher, 1932). This method is used
in the Significant Area Search algorithm as well, and is generally used in ToPNet for
combining p-values (see chapter 4 and Hanisch (2004)). Of course this method only works
if all single scores represent valid p-values. But in that case it is possible to create very
powerful and flexible scores for pathway queries. For instance, it is possible to score parts
of the query using p-values from a data map and other parts using one of the described
enrichment scores.

5.4.6 Implementing additional scoring methods

Through the modular architecture of ToPNet it is easy to implement further statistical scor-
ing methods. For instance, one could implement goodness-of-fit tests like the Kolmogorov-
Smirnov test, the t-test or the chi-squared test in order to compare the expression values
of two gene sets. Other interesting approaches for scoring methods could be based on
correlation coefficients between genes over a set of microarray experiments.

5.4.7 Specifying scoring methods in the pathway query

The XML element that contains scoring information is called Scoring, it can contain either
a P-Value or an AdditiveScore element.

A p-value score can be a map score or one of the enrichment scores. As an example, an
FET score can be annotated at a PathwayNode n with multiplicity 1. It is defined by a
basic query, which specifies the set of places that should be compared with the instances
of the n. Typical examples are basic queries selecting a GO class or all genes with a
maximum p-value. Besides the two sets whose overlap is to be evaluated, a superset has
to be defined for FET. This superset is either the set of all places in the graph or the set
of all places that are found in any instance of n. The latter can be specified by setting the
attribute relativeToResult to true. Figure 5.16 shows an example of a scoring element
that uses FET to compare the set of instances of a PathwayNode to the set of genes that
are differentially expressed in an expression data set on osteoarthritis.

5.5 Association rule mining in pathway instances

If a certain pathway query is run on many different data sets, it can be useful to extract
rules from the resulting instances. Association rule mining is a well known problem in
data mining. One of the most commonly used algorithms for rule mining is the Apriori
algorithm (Agrawal et al., 1993). Given many so-called transactions, which are simply sets
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<Scoring>
<P−Value>

<FETScore relativeToResult=”false”>
<Query>

<BasicQuery>

<MapName>AffyOA: p−values</MapName>
<Operator>lt</Operator>
<Value>1e−5</Value>

</BasicQuery>

</Query>

</FETScore>
</P−Value>

</Scoring>

Figure 5.16: Example of a Scoring element. This XML code describes the scoring function
at a node in a pathway query. Here, FET is used to compare the instances of the node to
all differentially expressed genes, which are defined by via a p-value in a specific data map.
The attribute relativeToResult is used to define the base set, in which the comparison
is performed. It can be either all places in the underlying network, or all places that
instantiate the query node that is being scored in any of the instances found.

of arbitrary items, the Apriori algorithm finds item sets that appear together frequently
and reports them as rules such as A, B ⇒ C, i.e. if A and B appear in a transaction, then
C also appears in that transaction (in most cases). A, B is called the antecedent of the
rule and C is called the consequent. Rules have two important properties, support and
confidence. The support of an item set is the fraction of transactions in which the items
appear. The support of a rule is the support of the antecedent. The confidence of a rule
is the support of all items in the rule divided by the support of the antecedent, i.e. the
fraction of all transactions containing the antecedent where the rule holds.

A possible application of rule mining in pathway queries is the identification of special
relationships between regulators and their targets. Let us assume a query to find tran-
scription factors and their targets as in Figure 5.9. When the pathway search algorithm is
executed with that query on many different sets of expression data, it results in a large set
of pathway instances each of which contains one transcription factor and several regulated
targets. Using association rule mining, it is possible to find genes that are only regulated
by one transcription factor, or transcription factors that always regulate a certain gene.

Association rule mining has been performed on expression data before, resulting in
rules like: “If gene A is differentially expressed then gene B is in most cases differentially
expressed as well” (Creighton and Hanash, 2003). Recently, Georgii et al. (2005) have
proposed quantitative association rule mining on expression data. Combining this new
technique with pathway queries presents an interesting extension to our analyses as the
output of the pathway search algorithm also contains partly numerical data: the scores for
instances, the number of places representing an aggregation node, and of course the expres-
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sion values on the instances. Rules on these data could possibly describe very interesting
biological facts. For instance, if we look at transcription factors and their regulated target
genes, such a rule could state that if the expression values of two transcription factors are
high, then the set of their regulated targets is usually large, i.e. the set of genes that have
binding sites for both of these factors and that are differentially expressed between two
conditions is large. It remains to be shown that such rules can indeed be supported by real
biological data.

5.6 Visualization of pathway instances

Pathway queries often have a more or less linear structure. This should be used for the
layout of the resulting instances. When formulating a pathway query a visualization at-
tribute called layer can be defined by the user for every PathwayNode and Connection.
During the pathway search a data map is constructed that assigns to each node of a path-
way instance the correct layer. For the layout itself, the display window is divided into
rectangles corresponding to the layers and all nodes are placed within their layer; then
a spring embedding algorithm is performed that optimizes the positions of the vertices
within the layers. An example output of the pathway layout algorithms is depicted in
Figure 5.17. Using this layout mechanism it is easy for the user to identify proteins that
represent certain important parts of the query even if the instance is large. For instance,
the receptors and transcription factors in Figure 5.17 can be easily spotted, while a normal
spring embedding layout without the additional layer information would put those proteins
somewhere in the middle of the bulk of regulated genes.
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Figure 5.17: Visualization of a pathway instance with four layers. The corresponding
pathway query has five nodes (receptors, kinase, transcription factor, interacting factor
and regulatees) and four connections. The connections from the receptor to the kinase
and from the kinase to the transcription factor can have intermediate nodes, therefore an
additional layer was introduced for these connections.



Chapter 6

Applications

This chapter deals with several application of network-based analysis methods for gene
expression data. First, some analyses of a publicly available expression data set for yeast
are described. This data set serves as a kind of benchmark because it has been analyzed
by many other groups, and, more importantly, much of the relevant biology is known.
Therefore, results can be validated by checking if they conform to the biological knowledge.

Next, a dataset from Drosophila is discussed. Drosophila is also a well studied model-
organism, but the regulatory processes are much more complex than in yeast. Furthermore,
the data available on transcription factor binding sites is not nearly as comprehensive as
it is for yeast.

Finally, some applications of network-based methods on osteoarthritis data are dis-
cussed. The corresponding data were collected in a BMBF-funded research project with
partners from other universities and industry.

Thus, three datasets with increasing complexity and uncertainty are considered. While
our goal for the first dataset is to recover known facts from the biology of yeast, in the
second and especially in the third dataset, the analysis is directed more towards the finding
of new hypotheses, which cannot be validated completely by existing biological knowledge.
Still, the plausibility of the results will be checked by some literature research.

6.1 Analysis of yeast compendium data

To test our network-based methods on a well-studied system, we selected the Rosetta yeast
compendium dataset (Hughes et al., 2000). It provides expression ratios as well as p-values
for differential expression for 300 measurements, 287 of which are knock-out mutations
while the last 13 are treatments with chemical compounds. The p-value for a gene in a
certain experiment quantifies the probability that the observed ratio of expression is due
to random fluctuations, although the gene is not really differentially expressed. These
fluctuations may arise in the gene expression (biological variation) or in the measurement
process (technical variation). The p-value is computed from an error model that was
calibrated using 63 control experiments where expression values for two wild type samples
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were compared.

We use a combination of two different networks that contain our prior knowledge:
The yeast subset of the DIP network of protein interactions (Xenarios et al., 2000) and a
network containing DNA binding information constructed from the genome-wide location
analysis of Lee et al. (2002), adding an edge between a transcription factor and a target
gene if the authors reported a p-value of less than 0.001 for that interaction.

Functional annotations are extracted from gene ontology (The Gene Ontology Consortium,
2001). In our examples, we only need annotations for kinases and transcription factors.
The latter could have been extracted from the location data as well; we used gene ontology
annotations for simplicity and consistency.

Pathway information from the KEGG database (Kanehisa, 1996) is used to assign to
each gene the set of pathways it participates in.

6.1.1 Enrichment analysis in KEGG pathways

The first application is the detection of significant changes within pathways for each ex-
periment. This is accomplished using Fisher’s exact test (FET) on the p-values provided
by Hughes et al. (2000) and the Wilcoxon-Mann-Whitney test (WMWT) on the corre-
sponding expression ratios as described in section 1.4. The goal of this analysis is to figure
out the effect of the observed regulation on the metabolism of the yeast. This application
has been carried out with two students at the LMU, Maria Piskarev and Theresa Nieder-
berger, and presented as a poster at the German Conference on Bioinformatics (GCB)
2005 in Hamburg.

For each experiment, all genes with a p-value less than 0.05 were selected. The signifi-
cance of the overlap with each pathway was then computed using FET. As a second method
to estimate the significance of the changes in a pathway, the rank test was employed. The
ratios of the genes in each pathway were compared with the ratios of all other genes and
the corresponding p-value computed. Figure 6.1 visualizes the results for both tests.

In order to test the performance of the methods, an automatic evaluation scheme was
devised. The problem is considered as a classification task where it has to be decided in
which pathways a knocked-out gene participates. This property has to be predicted for
each pathway/gene pair. Obviously, the participation of a gene in a pathway is not what
is measured by the statistical tests. The tests only indicate if the knock-out of a gene
influences a pathway. Still, this validation approach is used, as no other ‘hard’ information
about the relationship between genes and pathways is available. Furthermore, we assume
that in many cases where a gene is part of pathway, the knock-out of the gene should affect
that pathway.

We define a classifier that is based on the p-values from one of the two tests: A path-
way/gene pair is classified as a correct pair by the prediction method if the corresponding
p-value from FET or WMWT is lower than a given threshold. For a given threshold the
number of true positive (TP), false positive (FP), true negative (TN) and false negative
(FN) assignments can be computed. The performance of the prediction algorithm can be
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Blood group glycolipid biosynthesis−neolactoseries
Ganglioside biosynthesis
O−Glycan biosynthesis
Fatty acid biosynthesis path 2
Novobiocin biosynthesis
Oxidative phosphorylation
Benzoate degradation via hydroxylation
Fatty acid biosynthesis path 1
Androgen and estrogen metabolism
Globoside metabolism
Biosynthesis of steroids
Glutathione metabolism
Cyanoamino acid metabolism
Vitamin B6 metabolism
1− and 2−Methylnaphthalene degradation
Cysteine metabolism
Selenoamino acid metabolism
Riboflavin metabolism
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Figure 6.1: Significance values for pathways. Top: Significance values using Fisher’s exact
test. Bottom: Significance values using Wilcoxon-Mann-Whitney test. Red means up-
regulated, green means down-regulated, more significant p-values get higher intensities.
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Figure 6.2: Receiver operator curve (ROC) for the threshold classifier based on FET (left)
and WMWT (right).

visualized in an ROC plot. The ROC plot for both FET and WMWT is shown in Figure
6.2

The ROC plots seem to indicate that the classifier performance – although better than
random guessing – is not very good. But the main reason is that the evaluation does
not reflect what the method tries to identify. The tests simply find gene/pathway pairs
where the knock-out of the gene affects the regulation of the pathway. This can happen,
even if that the gene does not participate in that pathway. The effect can be indirect,
for instance, if the knock-out results in a reduced production of some metabolite, another
pathway that needs that metabolite may be down-regulated. These indirect effects can
potentially lead to many false positives that are actually correct in a biological sense.
Therefore, we manually validated some high-scoring hits that are considered false positives
in the automatic validation. As such manual validation is usually very time-consuming,
a method was desired that could ease the task of finding relevant literature. We use text
mining networks generated by ProMiner (Hanisch et al., 2003) and ToPNet to navigate
through the literature. Thus, we provide a complete workflow for identifying relevant
effects of experiments on pre-defined pathways and validate the results with the help of
text-mining tools.

The ROC plots also seem to indicate that the approach using FET works better than
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the WMWT. The reason is probably that the two tests are not based on exactly the same
information. FET uses p-values for differential expression which have been calculated
taking the fluctuations in control measurements into account. These control measurements
were not used for calculating the expression ratios that we used for the WMWT.

We have examined four examples for pathways identified as affected by a knock-out.
These examples should demonstrate the kind of information that can be gained by using
the proposed tests on known pathways. Furthermore, they should explain why there can
be significant differences between the results from the two tests and why pathways can be
affected even if the knocked-out gene is not part of it.

The Purine metabolism in the hpt1 knockout is identified as affected in the FET
approach (p-value 4.910−12, while the WMWT only results in a p-value of 0.31. In
SGD, Hpt1p is annotated with the GO term hypoxanthine phosphoribosyltransferase
activity. The corresponding EC number is 2.4.2.8. That enzyme is part of the
KEGG reference pathway for purine metabolism, but Hpt1p is not present in the
corresponding yeast pathway in KEGG. Maybe the enzymatic function of Hpt1p was
not known to the KEGG annotators when the yeast pathway was designed. Thus, in
our automatic evaluation for FET, this pathway will be counted as a false positive
due to a missing annotation in KEGG. Figure 6.3 shows the important parts of the
purine metabolism pathway with expression data from the hpt1 knockout experiment.
Hpt1p is an enzyme necessary for a step in the salvage pathway, which basically
recycles GMP. Thus, the recycling of GMP fails in the mutant, and therefore the de
novo synthesis must be up-regulated. The reason for the high p-value for WMWT is
that the complete pathway is very large and some genes are down-regulated as well.
Therefore the effects on the ranks cancel out.

The Urea cycle and amino group metabolism in the arg80 knockout appears af-
fected using both tests (p-value for FET is 2.010−12, the p-value for WMWT is 0.023).
As in the previous example, the identified pathway does not contain the knocked out
gene. But using our text mining approach, we could quickly identify the role of
arg80 for that pathway from the network around Arg80p (Figure 6.4, right-hand
side). Arg80p forms a complex with Arg81p and Mcm1p, and that complex is re-
quired for the repression of arg1, arg3, arg5,6 and arg8, which take part in the
argenine biosynthesis and for the induction of car1 and car2, which are necessary for
argenine catabolism (Turner et al., 2002). Therefore, as Figure 6.4 (left-hand side)
shows, arg1, arg3, arg5,6 and arg8 are up-regulated in the mutant and car1 and car2
are down-regulated.

The leucine biosynthesis in the gcn4 knockout gets a p-value of 2.310−6 using FET
and 9.210−6 using WMWT. Again, Gcn4p is not contained in the affected pathway.
A literature search using our text mining network reveals that Gcn4p induces Leu3p,
which is a transcriptional activator of leu1, leu2, leu4, ilv2 and ilv5 (Natarajan et al.,
2001). The corresponding proteins are all involved in the leucine biosynthesis path-
way and down-regulated in the gcn4 knockout (Figure 6.5).
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Figure 6.3: The purine metabolism with expression data from the hpt1 knockout experi-
ment. Red color indicates up-regulation in the mutant, green down-regulation.

The MAPK signaling pathway in the ste4 knockout is our only example involving
a signaling pathway. Here, the knocked out gene is part of the pathway, the p-
values for FET and WMWT are 2.310−11 and 0.02, respectively. Therefore, both
tests correctly identify the pathway as affected in the ste4 knockout. Figure 6.6
shows what is going on: The Ste4p protein is required for the signal flow from the
receptor to the central transcription factor Ste12p. As a consequence, some genes
participating in the pathway are down-regulated (the mechanism is not clear for
all genes). Although the tests correctly identify the MAPK pathway in this case, it
becomes clear that they are not quite appropriate to detect perturbations in signaling
pathways. Even though the proteins in a signaling pathway may not be regulated on a
transcriptional level, they can induce transcriptional changes in the target genes of the
pathway. Therefore, looking at the target genes may often provide more insight into
the activity of a pathway than looking at the proteins participating in the pathway.
This approach will be used in 6.1.2, where we identify relevant transcription factors
by looking at their target genes.

These examples demonstrate that the enrichment analysis on pre-defined pathways
often delivers specific and biologically relevant results. With the help of visualization and
text mining tools these results can be evaluated and interpreted by the user. On the
other hand, the restriction to pre-defined pathways seems a bit strict. Some important
links can easily be missed. Looking at metabolic pathways for instance, it is impossible to
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Figure 6.4: Left: The urea cycle and the metabolism of amino groups with expression data
from the arg80 knockout experiment. Red color indicates up-regulation in the mutant,
green down-regulation. Right: A text-mining network around the knocked out gene arg80.

Figure 6.5: The leucine biosynthesis pathway with expression data from the gcn4 knockout
experiment. Red color indicates up-regulation in the mutant, green down-regulation.
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Figure 6.6: The MAPK signaling pathway with expression data from the ste4 knockout
experiment. Red color indicates up-regulation in the mutant, green down-regulation.

find the regulatory relationships that are important for the measured expression data. In
regulatory pathways, a transcriptional regulation of the participating genes will often not
be present. Therefore, such an analysis is more suitable to characterize the effect of the
observed expression pattern than to explain the causative regulatory mechanisms.

6.1.2 Activity of transcription factors

In order to determine transcription factors that are relevant for the different expression
patterns in knock-out experiments, FET activity scores of every transcription factor were
computed for all 300 expression measurements as described in section 5.4.3. In order to
visualize the results, we constructed hierarchical clusters using the Spearman rank correla-
tion and average linkage (Figure 6.7) on the activity scores for all transcription factors with
at least one significant score. Table 6.1 lists the 25 best scoring results. For evaluation,
we manually assess some prominent features of the results and look for evidence in the
literature.

The highest value in the matrix is attained by the transcription factor Ste12p for the
dig1/dig2 mutant. All targets of Ste12p are up-regulated, as expected, since Dig1p and
Dig2p are needed for the repression of pheromone-responsive transcription (Bardwell et al.,
1998). Figure 6.9 shows Ste12p and its targets with expression data from the dig1/dig2
knockout experiment.

In addition, Ste12p is identified as the most relevant transcription factor for the kss1/fus3
knock-out. These two MAP kinases are also known to regulate transcription of pheromone
response genes through Ste12p (Tedford et al., 1997).

Bas1p has a very high score in the hpt1 experiment. As discussed in 6.1.1, hpt1 muta-
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Figure 6.7: Inferred activities of 51 transcription factors. Average linkage hierarchical
clustering was performed with spearman rank correlation on 300 expression measurements.
Values are − log10 p, where p is a p-value quantifying the significance of a transcription
factor for the expression data. The marked area contains mainly experiments that affect
the MAPK signaling pathway (e.g. knock-outs of ste4, ste5, ste7, ste12, ste18, ste24,
fus3/kss1, and dig1/dig2). The affected transcription factors are Mcm1p, Ste12p, Rlm1p,
Swi4p, Mbp1p, and Fhk2p.

tions affect the purine biosynthesis pathway, which is regulated by Bas1p (Guetsova et al.,
1997; Daignan-Fornier and Fink, 1992).

Arg80p and Arg81p are the transcription factors with the highest scores in the knockout
experiment of arg80. Figure 6.8 shows these two transcription factors with their regulated
targets in that experiment. Indeed, the transcription factor that was knocked out should
be important for the regulation. Furthermore, it is known that Arg80p and Arg81p are
necessary for the repression of anabolic genes in the argenine biosynthesis. The four targets
(Arg5,6p, Arg3p, Arg8p and Cpa1p) which are all up-regulated catalyze different steps in
that metabolic pathway.

These results demonstrate that high scoring hits indeed deliver regulatory contexts that
are important for the experiment under consideration.
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Experiment Transcription Score
Factor

dig1,dig2(haploid) STE12 23.7
fus3,kss1(haploid) STE12 17.4
hpt1 BAS1 15.7
dig1,dig2 STE12 14.0
sst2(haploid) STE12 13.3
ste18(haploid) STE12 12.9
dig1,dig2 SWI4 12.1
ERG11(tetpromoter) FHL1 11.3
kin3 SWI4 11.2
ste12(haploid) STE12 10.9
ste7(haploid) STE12 10.6
ssn6(haploid) PHD1 10.5
ste4(haploid) STE12 10.4
tup1(haploid) PHD1 10.3
FR901,228 STE12 10.1
ste5(haploid) STE12 9.9
arg80 ARG80 9.8
ste24(haploid) STE12 9.6
arg80 ARG81 9.5
ERG11(tetpromoter) SWI4 9.2
sod1(haploid) STE12 9.0
ste11(haploid) STE12 7.9
ERG11(tetpromoter) FKH2 7.7
ERG11(tetpromoter) MBP1 7.2
pep12 ARG81 7.2

Table 6.1: The 25 top scoring transcription factors together with their activity scores
as described in Section 5.4.2. The table displays the most relevant transcription factors
for individual experiments, e.g. Phd1p received a score of 10.5 in the ssn6 knock-out
experiment.
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Figure 6.8: Arg80p and Arg81p and their regulated targets in the arg80 knock-out strain.
The shade of the nodes represents the magnitude of the expression ratio (mutant vs. wild-
type). All genes except arg80 are up-regulated. Arg80p and Arg81p are the two most
relevant transcription factors for the arg80 mutant.

Transcription Transcription Spearman
Factor 1 Factor 2 Correlation
ARG80 ARG81 0.85
YAP5 GAT3 0.79
RGM1 GAT3 0.70
RGM1 GAL4 0.67
MCM1 STE12 0.66
RGM1 YAP5 0.62

Table 6.2: The six most highly correlated pairs of transcription factors. Correlation was
computed using Spearman rank correlation on the activity scores of the transcription fac-
tors. Interestingly, there are only few pairs with high correlation (see Figure 6.10), although
related transcription factors often cluster together nicely (Figure 6.7 left).

6.1.3 Correlation analysis of activity scores

So far, all results have been obtained using only one experiment from the set of expression
data at a time. In order to figure out if we can identify cooperating transcription factors,
we look at pairs of transcription factors that correlate well in their activity scores. Table
6.2 shows all pairs of transcription factors with a spearman rank correlation greater than
0.6 which corresponds to a z-score of 4.6. Figure 6.10 shows a histogram of all correlations.

Arg80p and Arg81p have the highest correlation; their role was already discussed in the
context of the best scoring single transcription factors. Next, we take a closer look at the
pair Mcm1p and Ste12p. As with Arg80p and Arg81p, these transcription factors interact
according to DIP. The experiments where they are active include knock-outs of ste4, ste5,
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Figure 6.9: Ste12p and its regulated targets in the dig1/dig2 knock-out strain. The shade
of the nodes represents the magnitude of the expression ratio (mutant vs. wild-type). All
genes are up-regulated.

ste7, ste11, ste12, ste18, ste24, fus3/kss1 and dig1/dig2.
Indeed, as these results suggest, mating functions like pheromone maturation, pheromone

response and cell fusion are cooperatively controlled by the transcription factors Ste12p
and Mcm1p (Hwang-Shum et al., 1991; Dolan et al., 1989). Interestingly, this coopera-
tive behavior could not have been identified using only the expression data of STE12 and
MCM1, as these do not correlate. On the other hand, this correlation could probably
have been predicted by looking at the target genes of Ste12p and Mcm1p. Although the
potential targets of Ste12p and Mcm1p do not overlap to a large extend (88 potential tar-
gets for Mcm1p, 51 for Ste12p and 8 overlapping), the corresponding p-value from Fisher’s
exact test for this overlap is less than 6× 10−7. Still, the combination of potential targets
and their expression data creates additional evidence and leads to the correct conclusion
(Figure 6.11).

For the other pairs we did not find additional literature evidence for a functional rela-
tionship, but we believe that this is worth investigating.

6.1.4 Activity of kinases

Using the same scoring method and the pathway query described in Figure 5.9, we computed
activity scores for kinases. Our algorithm detects much fewer high scoring kinases than
transcription factors. The ten highest scores are listed in Table 6.3.

The highest score is attained for the dig1/dig2 mutant and the MAP kinase Kss1p. As
was already mentioned, the Kss1p regulates transcription through Ste12p.

The network that constitutes the second best score contains the kinase Slt2p and its
regulated targets in the kin3 knock-out experiment (Figure 6.12). We could find evidence
that Slt2p regulates Swi4p (Baetz et al., 2001) and Rlm1p (de Nobel et al., 2000), but the
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Figure 6.10: Histogram of the correlations between the activities of transcription factors.
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Figure 6.11: Correlation of Ste12p and Mcm1p with respect to expression values and
activity score. While no correlation for the expression data can be detected, inferred
activities clearly correlate.

connection to the kin3 mutant is not clear, since not much has been published about the
function of Kin3p.

In general, the results for the kinases are harder to validate, but on the other hand, the
implied hypotheses are more detailed and more interesting.

6.1.5 Cooperating transcription factors

In section 6.1.3 we tried to identify cooperating transcription factors by correlating activity
scores of single transcription factors. We also defined another pathway query that uses the
protein interaction data from our background network to find pairs of transcription factors
that cooperatively regulate sets of genes (Figure 6.13). We computed all instances of this
pathway query with the pathway search algorithm and scored pairs of transcription factors
using the same method as before for single transcription factors. The 25 transcription
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Experiment Kinase Score
dig1,dig2(haploid) KSS1 17.0
kin3 SLT2 10.2
dig1,dig2 KSS1 9.3
ERG11(tetpromoter) DUN1 9.2
ERG11(tetpromoter) ESR1 9.2
swi4 ELM1 7.9
swi4 IPL1 7.9
ERG11(tetpromoter) MKK2 7.8
ERG11(tetpromoter) SLT2 7.8
ERG11(tetpromoter) CKB1 6.6

Table 6.3: Top 10 scores for kinases together with their activity scores as described in
Section 5.4.2. The table displays the most relevant transcription factors for individual
experiments, e.g. Kss1p was identified for the dig1,dig2 knock-out experiment.

Figure 6.12: Kinase Slt2p, interacting transcription factors and regulated genes in the kin3
mutant. The shade of the nodes represents the magnitude of the expression ratio (mutant
vs. wild-type). All genes are up-regulated.
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Figure 6.13: Pathway query for finding cooperating transcription factors. This query is
used to find interacting pairs of transcription factors that both have protein-DNA interac-
tions with a common set of regulated genes.

factor pairs with the highest scores are shown in Table 6.4. As expected from the previous
results, we could find many high scoring instances with Arg80p, Arg81p and Ste12p, Mcm1p
respectively. In addition, we found two instances with Hir1p and Hir2p which are involved
in cell-cycle regulated transcription of histone genes (Sherwood et al., 1993); the knocked-
out genes are hir2 itself and swi4 which is also a cell cycle dependent transcription factor.
The last pair in the list is Fkh2p, Mcm1p which are known to bind co-operatively to their
targets (Hollenhorst et al., 2001).

Again, these results demonstrate how our algorithm can extract relevant contexts from
the data in a very flexible way.

6.1.6 Association rule mining

In order to find transcription factors which are unique regulators for certain target genes,
or target genes that are always regulated when a transcription factor is active, we looked for
corresponding association rules using the Apriori algorithm as implemented by Borgelt and Kruse
(2002). Transactions are all instances of the pathway query for identifying active transcrip-
tion factors with a p-value of less than 0.05. Items in a transactions are genes with their role
in that instance, i.e. a gene can appear more than once in a transaction if it instantiates
more than one query node. There is a total of 557 such transactions.

First, we enumerated all rules with transcription factors as antecedent, a minimal sup-
port of 1% (six item sets) and a minimal confidence of 60%. The result is a list of tran-
scription factors and corresponding targets where the target is differentially expressed in
most cases when the transcription factor’s activity changes. Therefore, these targets can
be interpreted as a high-confidence list of targets. For instance, if a transcription factor is
necessary for the basal expression of a gene, and the transcription factor is inactivated in
many experiments, that pair would show up in the generated rules. The complete list of
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Experiment Transcription Factors Score
arg80 ARG80, ARG81 11.2
sod1(haploid) STE12, MCM1 7.7
pep12 ARG80, ARG81 7.0
vps8 ARG80, ARG81 7.0
fus3,kss1(haploid) STE12, MCM1 6.9
rtg1 ARG80, ARG81 6.7
FR901,228 STE12, MCM1 5.8
yor080w STE12 ,MCM1 5.6
AUR1(tetpromoter) ARG80, ARG81 5.6
ste18(haploid) STE12, MCM1 5.5
dig1,dig2(haploid) STE12, MCM1 5.2
yhl029c ARG80, ARG81 5.0
ste12(haploid) STE12, MCM1 4.9
erg3(haploid) ARG80, ARG81 4.7
ste24(haploid) STE12, MCM1 4.5
HMG2(tetpromoter) STE12, MCM1 4.4
hir2 HIR2, HIR1 4.4
ymr010w ARG80, ARG81 4.3
ste5(haploid) STE12, MCM1 4.1
KAR2(tetpromoter) STE12, MCM1 4.0
yjl107c(haploid) STE12, MCM1 3.9
yer044c(haploid) ARG80, ARG81 3.7
yer044c(haploid) STE12, MCM1 3.7
swi4 HIR2, HIR1 3.7
ERG11(tetpromoter) FKH2, MCM1 3.6

Table 6.4: Top 25 scores for cooperating transcription factors together with their activity
scores as described in Section 5.4.2. The table displays the most relevant transcription
factors for individual experiments, e.g. Ste12p and Mcm1p were identified for the ssn6
knock-out experiment.
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<TheNet name=”Transcription Factors in Yeast Compendium”>

<Subnet multiple=”false” name=”Transcription Factor”>
<PathwayNode name=”TF”>

<Query>

<BasicQuery Negated=”false”>
<MapName>GO: molecular function</MapName>
<Operator>like</Operator>
<Value>Transcription Factor</Value>

</BasicQuery>

</Query>

</PathwayNode>
</Subnet>

<Subnet multiple=”true” name=”Regulatee”>
<PathwayNode>

<Query>

<BasicQuery Negated=”false”>
<MapName>anp1:P−value</MapName>
<Operator>lt</Operator>
<Value>0.01</Value>

</BasicQuery>

</Query>

</PathwayNode>
</Subnet>

<Connection maxEdges=”1” undirected=”false”>
<ConnectFrom>Transcription Factor</ConnectFrom>

<ConnectTo>Regulatee</ConnectTo>

<TransitionQuery>

<BasicQuery Negated=”false”>
<MapName>InteractionMode</MapName>
<Operator>like</Operator>
<Value>regulates</Value>

</BasicQuery>

</TransitionQuery>

</Connection>

</TheNet>

Figure 6.14: A pathway query used to find transcription factors and their regulated targets
in the anp1 knock-out experiment.
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the inferred high-confidence targets is shown in Table 6.5. The rule with the highest sup-
port concerns the transcription factor Ste12p and its target sst2. The high support simply
reflects the fact that Ste12p is the transcription factor that has high activity scores most
often; it appears in 41 of the 557 transactions. Sst2p negatively regulates the pheromone
response pathway by activating the GTPase activity of Gpa1p (Apanovitch et al., 1998).
In the Saccharomyces genome database (Cherry et al., 1998), binding sites for Ste12p and
Dig1p are annotated to the upstream region of the sst2 gene, supporting a regulation of sst2
by Ste12p. This regulation constitutes a negative feedback loop for the mating response,
as the target transcription factor for the mating response pathway is Ste12p. When Ste12p
up-regulates sst2, the production of Sst2p leads to pheromone desensitization, making the
feedback loop complete (Bardwell, 2004).

Other rules are concerned with the regulation of argenine biosynthesis by Arg80p and
Arg81p or the a-cell specific genes aga1 and aga2 by MCM1.

Next, we enumerated rules with target genes as the antecedent, a minimum support
of 3% and a confidence of 100% (Table 6.6). A rule from this list means that whenever
target gene (or set of target genes) that constitutes the antecedent appears in a significant
regulation context, the corresponding transcription factor is always the one given in the
consequent, i.e. that transcription factor is probably necessary for the regulation of the
antecedents. For instance, if a transcription factor is the sole regulator for a gene, that
pair would be listed among the rules.

6.1.7 Finding signaling cascades

In some cases, if the knocked out gene is part of a signaling pathway, it can be useful
to find direct paths from that gene to a relevant transcription factor. These paths can
serve as hypotheses for the observed regulation, as the signal flow along them obviously
cannot function in the mutant. We have designed a corresponding pathway query and
applied it to some mutants from the mating pathway. The query uses the FET score
of the transcription targets to identify significant networks, i.e. everything above the
transcription factor is determined by the network structure alone and does not take the
expression values into account. Figure 6.15 shows the most significant networks that were
found using that pathway query. While the resulting networks do not show the exact
mechanism of regulation, they contain at least a part of it. The mating pathway, namely
the kinases Ste5p and Kss1p and the central transcription factor Ste12p are part of the most
significant network. As ste4 is knocked out, it appears down-regulated in the figure, and the
signaling cascade activating the transcription factor Ste12p can not take place. Therefore
the targets of Ste12p are down-regulated as well. Here it becomes obvious that networks
of high quality containing directions of signal flow and further annotations are essential to
extract detailed information. The genes upstream of Ste12p are not differentially expressed,
therefore it is impossible to determine from the expression data of a single experiment which
gene actually participates in the signaling cascade and which gene does not. The second
network contains the transcription factor Swi4p, a cell cycle regulator which is connected to
Cln2p and Slt2p, both known to be involved in cell cycle regulation as well. Furthermore,
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Target gene Transcription factor support confidence
(consequent) (antecedent)
YNL057W TF:GRF10 1.4% 62.5%

AGP1 TF:STP1 1.1% 83.3%
STR3 TF:MET31 1.3% 71.4%
HIS4 TF:GRF10 1.4% 62.5%

MCH5 TF:PUT3 2.2% 75.0%
CPA1 TF:PUT3 2.2% 66.7%

YLL066C TF:YAP5 1.1% 66.7%
HOR7 TF:EXA3 2.5% 64.3%
ARG3 TF:ARG80 4.7% 61.5%

ARG5,6 TF:ARG80 4.7% 65.4%
ARG8 TF:ARG80 4.7% 76.9%
LEU1 TF:LEU3 4.7% 73.1%
BAT1 TF:LEU3 4.7% 80.8%
ARG3 TF:ARG81 4.7% 61.5%

ARG5,6 TF:ARG81 4.7% 69.2%
ARG8 TF:ARG81 4.7% 73.1%
ADE17 TF:BAS1 4.8% 70.4%
CRH1 TF:RLM1 3.9% 68.2%
RPL25 TF:FHL1 2.0% 63.6%
SST2 TF:STE12 7.4% 65.9%
AGA2 TF:MCM1 5.9% 60.6%
STE2 TF:MCM1 5.9% 69.7%
AGA1 TF:MCM1 5.9% 72.7%

Table 6.5: High-confidence targets of transcription factors inferred using association rules.
All rules with a transcription factor as antecedent, a minimum support of 1% and a mini-
mum confidence of 60% are listed.
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Transcription factor Target genes support confidence
(consequent) (antecedent)

TF:LEU3 LEU1 3.4% 100.0%
TF:LEU3 BAT1 3.8% 100.0%
TF:SKN7 ZPS1 3.1% 100.0%
TF:BAS1 ADE17 3.4% 100.0%
TF:STE12 KAR4 3.1% 100.0%
TF:STE12 FUS1 3.6% 100.0%
TF:STE12 TEC1 4.1% 100.0%
TF:FKH2 DSE1 3.1% 100.0%
TF:SWI4 PRY2 3.2% 100.0%
TF:STE12 SST2 4.8% 100.0%
TF:STE12 FUS1, AGA2 3.1% 100.0%
TF:STE12 TEC1, SST2 3.4% 100.0%
TF:STE12 TEC1, STE2 3.1% 100.0%
TF:STE12 GPA1, SST2 3.4% 100.0%
TF:STE12 GPA1, STE2 3.1% 100.0%
TF:STE12 SST2, AGA2 3.1% 100.0%
TF:STE12 SST2, STE2 3.8% 100.0%
TF:MCM1 AGA2, AGA1 3.6% 100.0%
TF:MCM1 STE2, AGA1 3.6% 100.0%
TF:STE12 GPA1, SST2, STE2 3.1% 100.0%
TF:MCM1 AGA2, STE2, AGA1 3.1% 100.0%

Table 6.6: Necessary regulators for target genes inferred by association rules. All rules
with target genes as antecedent, a minimum support of 3% and a confidence of 100% are
listed.
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Figure 6.15: Signaling cascades explaining the effect of the ste4 knock-out. These networks
were identified using a pathway query containing the knocked out gene ste4, a connection
to a transcription factor via at most three protein-protein interactions, and genes regulated
by that transcription factor. The depicted networks were the two most significant among
five networks found by the pathway query.

it is well known that there is a connection between the mating functions and the cell cycle
as the cell cycle is arrested in G1 phase for mating. Thus, the two networks identified
using our pathway query contain a lot of relevant information and point the user toward
biologically meaningful processes and proteins.

The expression data from the yeast compendium data was measured in a steady state
and is not an immediate effect to some environmental change. Since the yeast was grown
as a mutant, transcriptional effects can also be indirect. For instance, the knocked out
gene might be part of a signaling pathway, and the target genes of that pathway include
other transcription factors. Then, the target genes of these transcription factors are also
expected to be regulated. Again, we have designed a pathway query that reflects this
hypothesis and applied it to the tup1 knockout data. The pathway query now contains two
transcription factors, the second of which must be a target of the first. In order to score
the resulting instances, the rank score for both target groups is calculated separately and
then the resulting p-values are combined. Figure 6.16 shows the most significant resulting
instance according to that score.

Other indirect effects are also possible. For instance in the knockout of hpt1, the indi-
rection is probably mediated via a metabolite, namely guanosine monophosphate (GMP).
As described in 6.1.1 Hpt1p is part of the purine salvage pathway. In the mutant that
pathway is not functional, therefore GMP concentrations drop, leading to an increase of
purine production via an activation of Bas1p and its targets. In order to identify such
indirections networks have to be considered that contain the corresponding information on
the metabolism and more importantly about interactions between metabolites and tran-
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Figure 6.16: Direct and indirect effects of the tup1 gene knockout. This network shows
a possible direct effect of the knockout, consisting of the regulation of target genes of the
transcription factor Phd1p. In addition, some of these targets are themselves transcription
factors, and their targets are differentially expressed as well.
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scription factors or regulatory pathways. If such networks are available, it is possible to
search for regulatory effects mediated via metabolites using pathway queries.

6.1.8 Discussion

Biologists using microarray technology are often confronted with the problem of interpret-
ing lists of regulated genes. Sorting these lists with respect to functional annotation and
identifying over-represented classes is often not sufficient to provide insight into the mech-
anisms leading to the observed expression patterns. Differentially expressed genes have
to be interpreted in context with their regulators like transcription factors and signaling
molecules in order to derive causal relationships and networks. Other interesting contexts
could include proteins from the same metabolic pathway or even metabolites. The biolog-
ical expert should be able to examine his data in a context that appears meaningful to
him.

The pathway query language provides a formalism to formulate biological hypotheses
that can provide such a context for the analysis of expression data.

In this work we have performed the necessary steps for using pathway queries in several
research questions on public data sets with encouraging results. Using a background net-
work containing protein-protein interactions and DNA binding information, we were able
to show that information on regulatory contexts can be valuable for the interpretation of
expression data. With the presented method, we could identify active transcription factors,
active interacting pairs of transcription factors and to some degree active kinases in single
expression measurements. In addition, the method can deliver a clear interpretation of the
data or at least exhibit a testable hypothesis as the results include not only the regulators
but also the regulated genes and can be visualized as networks.

Although one of the strengths of the approach is its ability to achieve results with
single or few measurements available, we could demonstrate its merits also for large scale
analyses. Correlation analysis of the computed activity scores revealed the potential to use
the method to predict interactions between transcription factors.

6.2 Activity of transcription factors in the develop-

ment of Drosophila Melanogaster

The results for the yeast compendium dataset are quite encouraging, but it remains to be
shown that regulator activity can be inferred for more complex organisms as well. Therefore
a study on five transcription factors and their activity during the Drosophila life cycle
was performed. This study was presented at the Moscow Conference on Computational
Molecular Biology 2005, and it is joint work with Jan Gewehr.



6.2 Transcription factor activity in Drosophila 125

6.2.1 Data

In Arbeitman et al. (2002) gene expression data were collected at 66 time points during
the life cycle of fruit fly Drosophila Melanogaster. The eight measurements in the adult
stage were taken for the male and the female fly; all measurements were repeated twice. In
addition, there are some measurements for mutations, yielding 182 measurements in total.
From these data, we tried to infer transcription factor activities throughout the Drosophila
life cycle. We chose five transcription factors known to be relevant in early Drosophila
development: Caudal (Cad), Bicoid (Bcd), Hunchback (Hb), Knirps (Kni), and Krueppel
(Kr). These transcription factors were studied by Berman et al. (2002) in order to find
cis-regulatory regions of DNA by looking at clusters of binding sites. In order to generate
binding site models, we extracted a set of known binding sites of the transcription factors
from that publication. Genome sequences and GO annotations were downloaded from
Ensembl using EnsMart (now called BioMart)1.

6.2.2 Binding site prediction

In order to apply the scorings for transcription factor activity introduced in section 5.4,
potential targets for the transcription factors have to be defined. As databases such as
TRANSFAC (Wingender et al., 2000) contain only few such relationships, it was decided
to rely on computational methods for binding site prediction. Using the binding sites
from Berman et al. (2002), we constructed position specific weight matrices with the pub-
licly available EMBOSS2 tool prophecy. Using another EMBOSS tool, profit, the up- and
downstream regions of all annotated Drosophila genes were scanned with resulting matrix.
As such an approach is known to produce many false positives and, as shown in 5.4.4,
good specificity is necessary for the activity prediction to be successful, different strategies
were employed to reduce the number of false positives. The first approach is based on the
assumption that many regulatory sequences contain multiple binding sites for the same
transcription factor. Therefore we consider a gene a potential target for a transcription
factor only if it has more binding sites than a predefined threshold. The second approach
takes advantage of the availability of several insect genomes in draft or completed form.
Multiple alignments between sequences of six Drosophila species (D. melanogaster, D. pseu-
doobscura, D. yakuba, D. ananassae, D. virilis, D. mojavensis) and Anopheles gambiae and
Apis mellifera were downloaded from the UCSC website3. A transcription factor’s target
is then a gene that has a binding site which is conserved in at least four of these genomes
in one of the multiple alignments. All subsequent analyses were performed for each of the
target prediction approaches.

In order to investigate combinations of transcription factors, we computed the inter-
section of target sets for each pair of transcription factors. This way, cooperation between

1http://www.ensembl.org/Multi/martview/
2http://emboss.sourceforge.net/
3http://hgdownload.cse.ucsc.edu/downloads.html#fruitfly

http://www.ensembl.org/Multi/martview/
http://emboss.sourceforge.net/
http://hgdownload.cse.ucsc.edu/downloads.html#fruitfly
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transcription factors can be identified, if the targets of either of them do not appear regu-
lated to a significant fraction, but the intersection does.

6.2.3 Predicted transcription factor activity

We computed the rank scores for the five transcription factors under consideration and
for all pairs of these transcription factors using both target prediction methods. Results
are shown in Figures 6.17 and 6.18. While the color intensities are derived from the rank
scores, each row of the depicted matrix can be interpreted as an expression profile of the
corresponding transcription factor’s targets. A bright red value, for instance, means that
these targets are strongly up-regulated. The highest scores in Figure 6.17 are attained for
Caudal in the early embryonic and the female adult experiments with a value around -3,
which corresponds to a p-value of 10−3 for down-regulation. Such scores are not significant
enough to conclude much without additional support. Still, the observed pattern for caudal
activity looks interesting since caudal is a maternally transcribed gene and, thus, in the
stages of high scores (early embryo and adult female) maternal transcript is available. On
the other hand, it is unclear why the target genes of caudal should be down-regulated in
these stages. One possible explanation could be that caudal functions as a repressor for
many of its target genes, but we could not find convincing evidence in the literature for
that hypothesis. Bicoid is another maternally transcribed transcription factor, and it is
known to inhibit the translation of caudal mRNA. As bicoid mRNA and protein levels
follow a concentration gradient from anterior to posterior, it can establish a gradient for
Caudal with high concentrations only at the posterior. Therefore, the Bicoid protein could
contribute to the observed activity pattern of caudal. But if that would be the case, we
would expect the activity pattern of Bicoid to follow its expression pattern, but it resembles
more the activity pattern of Caudal.

It is also known that the translation of maternal transcription factors like caudal and
bicoid is repressed in the unfertilized egg. This could explain the strongly negative activity
values of caudal in the adult female. After the egg is fertilized, translation of caudal starts,
but it takes some time until enough protein is produced to activate the transcription of
many target genes. Furthermore, it is believed that Caudal itself only provides a basal
level of activity; other transcription factors are required to induce expression of target
genes specifically to the required levels. Thus, the activities of other transcription factors
that were not studied here can be of importance. Such transcription factors also have to
be produced before the targets that they have in common with Caudal can be transcribed
efficiently. This could explain the slow increase of expression levels of Caudal targets during
embryogenesis.

Looking at Figure 6.18, where targets were computed using information from compar-
ative genomics, we find that scores are much higher, for Caudal ranging from -15 to +15.
The pattern for Caudal looks quite similar to the pattern observed with the other strategy
for target prediction (Figure 6.17). Only in the late embryonic stage, we get high scores
with the comparative genomics strategy where scores were close to zero before.

In order to test the hypothesis that bicoid is involved in the activity pattern observed
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E 0−1h E 4−5h E 10−11h E 18−19h L 43h L(F) 105h M 12h M 48h A(M) 10d A(F) 1dA(F−TUD) 5d
bicoid   krueppel
krueppel hunchback
bicoid   hunchback
bicoid   knirps
hunchback
bicoid
krueppel
caudal   hunchback
bicoid   caudal
caudal
caudal   krueppel
knirps   hunchback
knirps
knirps   krueppel

Figure 6.17: Predicted transcription factor activities during the Drosophila life-cycle.
Genes with multiple binding sites are considered targets of a transcription factor. Color
intensity represents the p-value from the rank test (lower p-values have higher intensities).
Green spots show down-regulation of the target genes, red spots up-regulation.

E 0−1h E 4−5h E 10−11h E 18−19h L 43h L(F) 105h M 12h M 48h A(M) 10d A(F) 1dA(F−TUD) 5d
caudal   hunchback
hunchback
bicoid   hunchback
bicoid   caudal
knirps
knirps   caudal
caudal
bicoid
knirps   krueppel
knirps   hunchback
bicoid   knirps
krueppel
krueppel caudal
krueppel hunchback
bicoid   krueppel

Figure 6.18: Predicted transcription factor activities during the Drosophila life-cycle.
Genes with binding sites conserved in multiple species are considered targets of a tran-
scription factor. Color intensity represents the p-value from the rank test (lower p-values
have higher intensities). Green spots show down-regulation of the target genes, red spots
up-regulation.

for caudal, we plotted the bicoid expression levels against the Caudal activity scores in
Figure 6.19. There is a clear correlation of the two curves. In the early embryo and in the
adult female, when bicoid message is present, the activity scores for caudal are negative.

While a concluding evaluation of the results can only be made with the help of biological
experiments, we think that at least interesting hypotheses can be generated using our
activity scores.

6.2.4 Activities in GO classes

As we model only the regulatory influence of transcription factors and ignore all other
possible mechanisms of regulation, we expect that a transcription factor works differently
on different biological processes due to regulation that is not covered in our approach. In
order to produce specific results, that can capture the effects of other regulatory mecha-
nisms, we performed the activity analysis for single biological processes. For instance, we
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Figure 6.19: Measured expression values of Bicoid and predicted activities of Caudal consid-
ering genes with multiple binding sites as targets (1) or genes with binding sites conserved
in multiple species (2).
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Transcription factor

Target genes

GO term

…

Path length unlimited,

Contains only GO terms

Figure 6.20: A pathway query that contains a transcription factor and all its targets sharing
a common GO annotation. Using this pathway query one can identify regulatory effects of
transcription factors on certain biological processes.

expect that a transcription factor can up-regulate genes from one biological process, while
its targets from another biological process are not regulated or even down-regulated due
to the activity of some other transcription factor or another regulatory mechanism that
is not mediated by transcription factors, like chromatin remodeling. Thus, we defined a
new pathway query that contains a transcription factor and all its targets from a common
biological process according to our GO annotations. If a gene is annotated with a GO term,
it is not necessarily annotated with all parent GO terms. As we would like to include such
implied annotations, we build a graph by combining the GO hierarchy with annotated
genes and the transcription factors with their targets such that each gene is connected to
all GO terms it is annotated with, and each transcription factor is connected to all its
target genes. The GO terms are connected as in the GO hierarchy. The pathway query
that then solves our task by allowing unlimited paths from GO terms to target genes is
depicted in Figure 6.20. The resulting activity scores can be interpreted as a summary of
the expression values of a transcription factor’s targets within a GO class.

Before computing the activities of transcription factors, we checked if the transcription
factor’s predicted targets are overrepresented in certain GO classes. For instance, we
expect that genes known to be involved in development (from the GO class development)
are enriched in targets of all five studied transcription factors. We computed a p-value
for that enrichment, the values are listed in table 6.7. Except for Krueppel, the p-values
are very significant, implying that our predicted transcription factor targets are indeed
enriched in the GO class development.

Next, scores were computed for all transcription factors in combination with each GO
class in the subtree below the term development. The results for the two different strate-
gies for target identification are depicted in Figures 6.21 and 6.22, respectively. Again,
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Transcription factor P-value
Caudal 1.1 × 10−23

Bicoid 4.8 × 10−13

Knirps 5.9 × 10−7

Krueppel 2.2 × 10−4

Hunchback 3.5 × 10−27

Table 6.7: Enrichment of transcription factor targets in the GO class development.

E 0−1h E 4−5h E 10−11hE 18−19h L 43h L(F) 105h M 12h M 48h A(M) 10d A(F) 1dA(F−TUD) 5d
hunchback                organogenesis
hunchback                development
morphogenesis            hunchback
neurogenesis             bicoid
morphogenesis            knirps
organogenesis            knirps
development              knirps
embryonic development    knirps
neurogenesis             knirps
902                      knirps
knirps                   regulation of cell shape
caudal                   development
morphogenesis            bicoid
organogenesis            bicoid
development              bicoid
imaginal disc developmentknirps

Figure 6.21: Predicted transcription factor activities during the Drosophila life-cycle in the
GO subtree below the term development. Genes with multiple binding sites are considered
targets of a transcription factor.

the scores are much more significant when information from different species is used to
find conserved binding sites, but the general pattern is similar. Most GO classes are up-
regulated in the late embryo and again in the late pupa independent of the transcription
factor.

6.2.5 Discussion

There is one general problem with the transcription factors that we chose for our investiga-
tion: The transcription factors, for which we computed activity scores, have been studied
extensively in the biological literature. Most of these studies deal with quite detailed local
effects of the transcription factors, for instance the establishment of concentration gradi-
ents of mRNAs or proteins in the early embryo. Such local effects cannot be discovered by
our method as the mRNA hybridizations were made from complete organisms.

As the function of the investigated transcription factors is closely related, we also do not
observe large differences between the different transcription factors. Instead, the pattern
of activity is similar for all transcription factors and is characterized by down-regulation
of the targets in the early embryo and in the adult female fly. Only the Bicoid targets are
not down-regulated in the embryonic stage.

The quality of the predicted potential transcription factor targets remains one of the
main issues. The number of binding sites that we found using the multiple alignments seems
unrealistically high. For Caudal, for instance, we found 2823 potential targets in the whole
genome. From approximately 5000 genes for which expression data are available, almost
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Figure 6.22: Predicted transcription factor activities during the Drosophila life-cycle in the
GO subtree below the term development. Genes with binding sites conserved in multiple
species are considered targets of a transcription factor.
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Figure 6.23: Predicted transcription factor activities during the Drosophila life-cycle in
the GO category biological process. Genes with binding sites conserved in multiple species
are considered targets of a transcription factor. Only GO classes with at least one score
greater than six were considered.
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1000 are predicted targets of Caudal. This does not appear plausible from a biological
point of view. Still, the strong statistical signal picked up with these targets, such as their
over-representation in the development class and the correlation of the estimated activity
with bicoid expression, suggests that the predicted targets are at least strongly enriched
with real targets of Caudal. A more detailed analysis of the predicted target set in terms
of their expression data could be helpful to improve the target prediction.

6.3 Analysis of osteoarthritis data

6.3.1 Disease models for osteoarthritis

In-vitro disease models are very important for pharmaceutical research because only with
such models several screening tasks can be performed efficiently. Target verification, for
instance, may require that the effect of inhibiting a target protein is verified. For os-
teoarthritis, it is important to understand the effect of target proteins on certain collage-
nases because those are claimed to be largely responsible for cartilage degradation. Thus,
a target validation could include measuring the amount of secreted collagenase with or
without inhibition of a candidate drug target in a model system that is similar to the
actual disease.

In a cooperation with Aventis, several model systems were established and their gene
expression profile was measured with specially designed microarrays. These profiles were
compared to actual human chondrocytes with certain stimulations or osteoarthritis. The
studied systems consist of two cell lines, SW1353 and HCS-2/8, stimulated with IL-1β
and BMP-4, respectively, primary human chondrocytes, human cartilage explants, and
arthritic chondrocytes. A first impression about the similarity of the model systems can
be gained by looking at the principal component analysis of the expression profiles depicted
in Figure 6.24. The expression values used here are the ratios of the stimulated or diseased
cells as compared to the unstimulated or healthy cells, respectively. Clearly, the data from
the arthritic chondrocytes differ most from all other systems, implying that the similarity
between model systems and the actual disease is not large in terms of gene expression.
Therefore, these systems should be used with care and probably only for certain aspects
of the disease.

The SW1353 cell line was studied in more detail, also with respect to relevant tran-
scription factors, using the scoring methods described above. The goal of the study was
to find out if SW1353 cells react to stimulation with IL-1β in a similar way as primary
human chondrocytes. The question if such a stimulation can serve as a disease model was
not addressed. The results are summarized in the following.
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Figure 6.24: Principal component analysis of several model systems for osteoarthritis and
arthritic human chondrocytes. This analysis implies that none of the model systems is
indeed similar to the diseased tissue in terms of gene expression.
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6.3.2 SW1353 cells as a model for catabolic processes in chon-
drocytes

A study was conducted by cooperation partners which investigated the gene expression
profile of the chondrosarcoma-derived cell line SW1353 in order to validate it as an in vitro
model for primary human (adult articular) chondrocytes (PHCs) (Gebauer et al., 2005).
Time series measurements after stimulation with IL-1β were collected using specifically
designed SensiChip DNA microarrays.

Experimental setup

The SensiChip technology (Qiagen, Zeptosens) is a two-color microarray platform which
was designed for high sensitivity. The arrays were spotted in duplicates with 70-mer
oligonucleotides representing the 3’-UTR of 312 housekeeping and human cartilage rele-
vant genes. Every single gene was represented by one 70-mer oligonucleotide. The SW1353
time course study consisted of 3 independent culture series of SW1353 monolayers treated
with 1 ng /ml IL-1β (Roche Diagnostics, Germany) in DMEM/F12 (Gibco BRL, Germany)
containing 0.5% lactalbumin enzymatic hydrolysate (Sigma, Germany) or control medium
(DMEM/F12 / 0.5% lactalbumin enzymatic hydrolysate) for 30 min, 6 hrs, 16 hrs, 24 hrs
and 48 hrs. From each of the 30 cultures RNA was isolated using the RNeasy Kit (Qiagen).
1 g total RNA from IL-1β-treated and control cultures was reverse transcribed in the pres-
ence of Alexa-labeled or Cy5-labeled dUTP nucleotides using the Omniscript Kit (Qiagen)
and generated cDNA was subsequently purified using the QIAquick Kit (Qiagen). Due to
limited amounts of RNA starting material, 250 ng total RNA from IL-1β-stimulated PHCs
and unstimulated controls from each time point (30 min, 6 hrs, 16 hrs, 24 hrs and 48 hrs)
was amplified and thereby labeled with Cy3-UTP and Cy5-UTP respectively (Amersham
Pharmacia) using the MessageAmp aRNA Kit (Ambion). After cRNA clean-up using the
RNeasy kit (Qiagen), 5 g of Cy3-labeled cRNA from IL-1β-stimulated chondrocytes were
mixed with 5 g of Cy5-labeled cRNA from the respective unstimulated control. cRNA
was fragmented by incubation with 40 mM TRIS-acetate, pH 8.1, 100 mM KOAc, 30 mM
MgOAc for 15 min at 95C and desalted using a Microcon YM-10 concentrator (Millipore).
600 ng of either mixed Cy-dye labeled cRNA or purified cDNA sample was hybridized
for 16 hrs on a SensiChip microarray (Qiagen, Zeptosens). Hybridization was repeated
with inversely labeled material generated by exchanging Alexa- and Cy5-labeled dUTP
nucleotides for IL-1β-treated and control sample. Inverse labeling was performed to com-
pensate for differential labeling efficiency and fluorescence intensity associated with the
two dyes.

Analysis of transcription factor activity in SW1353 cells

In order to analyze transcription factor activity from the expression data, groups of poten-
tially regulated target genes were determined for each transcription factor. The required
knowledge on transcription factors and their target genes is partially contained in databases
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Figure 6.25: A pathway query for identifying potential transcription factor targets combin-
ing different network sources.

like TRANSFAC (Wingender et al., 2000) and the scientific literature. In this study, a com-
bination of three types of evidence for the regulation of a target gene by the binding of a
transcription factor to its promoter was used: predicted binding sites, known binding sites,
and co-occurrences of transcription factors and target genes extracted from the scientific
literature. Binding site predictions for target genes were computed with the TRANSFAC
tool MATCH on sequences starting 3 kb upstream from the transcription start site and
ending 1 kb downstream. Known binding sites were extracted from TRANSFAC’s SITE
table (Wingender et al., 2000). Co-occurrences in the literature were computed using the
text-mining tool ProMiner (Hanisch et al., 2003). A gene was added to the group of poten-
tial target genes of a transcription factor (TF) if the gene contained a TRANSFAC binding
site for TF or if the gene contained both a predicted binding site of TF and a literature
co-occurrence with TF. This was achieved using the pathway query depicted in Figure 6.25.
Table 6.8 shows the evidence for the predicted target genes of RelA and c-REL. For most
of the targets additional literature evidence could be found easily. Only for some pairs,
where there are well-studied other relationships (e.g. interactions) between the proteins,
the number of documents with co-occurrences that was so large that it was not possible to
read all abstracts in order to verify the predicted transcription factor-target relationship.

Target gene groups were checked for enrichment of significantly regulated genes (p-value
< 0.01 for at least one time point) in either cell type. This enrichment was quantified by
p-values for all the TF target gene groups using Fisher’s exact test; the corresponding
”group p-value” is the probability of finding the observed number of significantly regulated
genes in the target gene group by selecting genes randomly. A group p-value lower than
0.05 was considered as significant.

The analysis of target gene groups showed IL-1β-mediated induction of five common
target genes by the transcription factor NFκB in both cell types. Both Rel proteins, c-Rel
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Figure 6.26: Expression profiles of genes in the predicted NFκB regulation context (the
only regulation context common to both systems according to our analysis) as log-ratios
of expression levels between Il-1β stimulated cells vs. untreated cells against time in hours
after the treatment. Profiles for SW1353 cells are shown as dashed lines, profiles for PHCs
as solid lines. Correlation values quantify the similarity between the two systems for each
gene. Statistical analysis showed that the correlation of the NFκB targets is significantly
higher than expected by chance (details are given in the text).
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Figure 6.27: Expression profiles of genes in the predicted ATF2 regulation context as log-
ratios of expression levels between Il-1β stimulated cells vs. untreated cells against time in
hours after the treatment. Profiles for SW1353 cells are shown as dashed lines, profiles for
PHCs as solid lines. Correlation values quantify the similarity between the two systems
for each gene. Statistical analysis showed that the correlation of the ATF2 targets is not
significant (details are given in the text).
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Transcription
Factor

Target
Gene

Predicted
Binding
Site

Transfac
Binding
Site

Literature
Co-
Occurrence

Literature Refer-
ence

RelA IL6 + + Catron et al.
(1998);
Kawashima et al.
(2001)

ICAM1 + + Catron et al.
(1998)

NFKB1 + + -
TNF + + Xu et al. (2001)

c-Rel IL6 + + Civil et al. (1999)
ICAM1 + + Spiecker et al.

(2000)
NFKB1 + + -
NFKBIE + + -

Table 6.8: Predicted targets of RelA and c-Rel, the evidence used for the prediction
and supporting literature references that were found by browsing through the list of co-
occurrences (automatically generated from text mining) or the references in the TRANS-
FAC database.

(REL) and RelA (RELA), had significant group p-values below 0.05 for PHCs and for
SW1353 cells. Their predicted group of target genes (represented on the microarrays) was
IL-6, TNF, NFKBIE (NFκB inhibitor epsilon), ICAM1 and NFKB1 (table 4). Figure 6.26
shows the expression profiles of RelA (c-Rel was not represented on the microarrays) and
the predicted target genes of RelA and c-Rel, which were similar in the two cell types.
The inter-cellular similarity for each gene of the NFκB target gene group and RelA was
measured by Pearson correlation coefficients (Fig. 6.26) of the log-ratio expression levels.
The overall similarity in the gene group is higher than expected by chance. Using the rank
sum test to compare the inter-cellular correlations (of the five genes) with all other genes,
significance at the 5% level was shown, i.e. the probability of picking five genes at random
that are similarly correlated between the two cellular model systems is below 5%. NFKBIE
is contained only in the predicted NFκB gene target group of PHCs cells but not in the
NFκB target group for SW1353 cells. NFKBIE regulation distinguishes the activity of the
transcription factor NFκB in the two cell types. Consistent with this finding, NFKBIE
showed no correlation of expression levels between the measurements. For SW1353 cells,
two other significant transcription factors were RUNX2 (regulating MMP-13, SMAD 2,
MYC, RUNX1 and RUNX2 itself) with a group p-value of 0.05 and RARA (regulating
BGLAP, ICAM1 and MYC) with a group p-value of 0.04. A second relevant transcription
factor for PHCs was ATF2 (regulating MAPK8, IL-1β, FN1, PLAT and TNF) with a
group p-value of 0.02. Figure 6.27 shows the expression profiles of the predicted ATF2
target genes. Except for IL-1β, we did not observe any correlations between the two cell
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types. In fact, ATF2, PLAT and FN1 were anti-correlated, confirming the different roles
of ATF2 in the two cell lines.

6.3.3 Analysis of patient data for osteoarthritis

Another dataset from the osteoarthritis project was collected from patient samples. Car-
tilage samples were obtained from patients suffering from OA and compared to healthy
tissue on the gene expression level using Affymetrix GeneChip microarrays (HG-U133 plus
2.0). The data set contains measurements from 13 healthy and 13 diseased samples. Ratios
and p-values for differential expression between the two groups were calculated by Katrin
Fundel using SAM (Tusher et al., 2001). Only probe sets with a present call in at least
80% of all samples in one group were included in the computation. Affymetrix probe set
identifiers were mapped to the synonym list for ProMiner with the help of Affymetrix an-
notations, resulting in 10277 synonym list entries (i.e. proteins) with associated expression
data.

Significant areas

In order to get an overview of functionally coherent sets of differentially expressed proteins,
we conducted significant area searches on a co-occurrence network that was generated using
ProMiner on the Medline database with abstracts since 1990. A co-occurrence edge between
two proteins is introduced when there are at least 5 co-occurrences of the proteins within
sentences. The resulting network contains 9763 proteins and 81330 edges (proteins without
any neighbors are not added to the network). 5209 of the proteins in the network have
associated expression data.

We performed three different significant area searches. The first one based on the p-
values, the other two based on fold changes, one searching for up-regulated sub-networks,
and one for down-regulated networks. Each of the searches resulted only in one significant
area with more than 5 proteins and a number of very small ones. The large significant
areas for the three searches are depicted in Figures 6.29 and 6.28.

First, we will discuss the significant areas found by the original method based on p-
values (Hanisch, 2004). It contains a cluster of highly up-regulated proteins from the
extracellular matrix. Among these proteins are different collagens and other matrix con-
stituents like versican (CSPG2), fibrillin (FBN1), tenascin (TNC), and thrombospondin
(THBS2). There is also one protein involved in collagen catabolism, namely ADAMTS2.
A second functionally coherent cluster contains proteins that play a role in actin filament
organization: ARPC2, ARPC5, WASL, ACTR2, DOC1, CRK, and NCK1. Exploring the
neighboring of these actin-related genes, we discovered an interesting regulatory context:
protein kinase c (PKC) is known to play a major role in the regulation of the actin cy-
toskeleton (Larsson, 2006). It can bind to integrins, modify integrin-mediated signaling
and phosphorylate the MARCKS protein and related proteins. This phosphorylation is
supposed to influence the cytoskeleton by a translocation of the phosphorylated proteins
from the membrane and a direct effect on the actin filaments. The PKC targets MARCK,
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GO class P-value
cell proliferation 5.45e-9
regulation of cell proliferation 1.26e-7
negative regulation of cell proliferation 1.09e-6
negative regulation of progression through cell cycle 1.99e-6
cell communication 2.64e-6
regulation of actin filament polymerization 2.88e-6
actin polymerization and/or depolymerization 2.98e-6
phosphate transport 3.29e-6
skeletal development 3.51e-6
actin filament polymerization 9.82e-6
cell adhesion 2.09e-5
regulation of biological process 3.27e-5
regulation of cellular process 3.92e-5
regulation of protein kinase activity 4.20e-5
regulation of transferase activity 4.29e-5
regulation of actin polymerization and/or depolymerization 4.73e-5
regulation of actin filament length 5.26e-5
actin cytoskeleton organization and biogenesis 5.87e-5
inorganic anion transport 5.90e-5
regulation of cellular physiological process 8.09e-5
actin filament-based process 8.13e-5

Table 6.9: Significant GO classes in the significant area based on p-values. The detected
classes can be divided up into several groups: cell proliferation and cell cycle, actin filament
organization, cell communication and cell adhesion, and some unspecific terms. The groups
correspond to the protein clusters in the significant area described in the text.

MacMARCKS, GAP43 and CAP23 are all strongly up-regulated in osteoarthritis accord-
ing to our data. For PKC, we only observe a weak up-regulation for the isoforms delta and
zeta. PKC change transcription through NFκB and CREB. Thus, PKC is an interesting
candidate for pathway cross-talk, connecting some of the observed regulatory effects.

Finally, there are some proteins involved in regulation of cell cycle and cell proliferation
clustered around the cyclin-dependent kinase inhibitor CDKN1A. This group contains
down-regulated proteins such as CDKN1A, CDKN2A, DDIT3, RAF1, GADD45B, and
ING1, as well as the up-regulated proteins SAS, BAX, PCNA, and S100A11. We have
analyzed the network for over-represented GO classes in the biological process hierarchy as
described in Hanisch (2004), and listed all GO classes with a p-value less than 1e-4 and at
least three genes in the network in Table 6.9. These significant GO classes coincide with
the functions of the described clusters.

The up-regulated sub-network that was found contains two dense clusters, the first one
consists of several class 2 major histocompatibility complex proteins. These proteins are
responsible for presenting antigens to T-helper-cells. They are known to be involved in
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inflammatory processes, and some of them have been associated with osteoarthritis before
(Lance et al., 1993). Their expression has even been proposed to predispose inflammatory
diseases like rheumatoid arthritis (Friese et al., 2005). Another study shows an association
between two HLA-DR alleles and distal interphalangeal osteoarthritis (Riyazi et al., 2003).
A review about associations between rheumatoid arthritis and MHC genes is presented by
Reveille (2005).

The second cluster is similar to the extracellular matrix cluster found in the p-value
based significant area. It contains different collagens as well as other extracellular matrix
proteins. Most of these proteins are either involved in proteolysis, like the collagenase 3
(MMP13), ADAMTS2, and FAP, or in cell-cell and cell-matrix adhesion, like TNC, DPT,
EDIL3, and POSTN. The proteolysis part of the cluster was not observed in the p-value
based significant area, and adds an important biological context, as proteolysis is believed
to be largely responsible for the destruction of cartilage tissue, and especially MMP13
has received much attention in osteoarthritis research (Vincenti and Brinckerhoff, 2002;
Malemud et al., 2003; Martel-Pelletier et al., 2001). The adhesion proteins could play in
role in the formation of chondrocyte clusters that has been observed in osteoarthritic
cartilage (Poole, 1997).

The down-regulated significant area does not have a very clear structure. In addition
to many cell cycle related proteins that are largely present in the p-value based significant
area as well, the most conspicuous feature is a group of three cytochrome P-450 proteins.
The P-450 complex is involved in detoxification and degradation of many drugs in the
liver. Not much has been published about P-450 in the context of arthritis. Dulos et al.
(2005) observe increased expression of the P-450 protein in fibroblast-like synoviocytes in
patients with rheumatoid arthritis, but the specific enzymes that show up in the significant
area are not mentioned. The GO analysis of the down-regulated significant area does not
show any new classes either, except the term immune response, which shows up because
of complement component 3 (C3), IL6R, and some other proteins that are not connected
within the network.

In summary, the significant area searches in combination with GO analyses point our
attention to a couple of processes, which are mostly known to be relevant for arthritic
diseases. The ToPNet user interface allows to dive into the details by providing links to
many gene and protein databases and to journal articles that might elucidate connections
between the different processes. Nevertheless, the information we get at this point is
somewhat vague and not sufficient to derive detailed hypotheses about disease mechanisms.

Signaling pathways and transcription factors in Osteoarthritis

In order to achieve detailed interpretable results, the data should be analyzed on well
curated networks. Thus, we merged the information from the TRANSPATH and TRANS-
FAC databases into a single network and defined a pathway query as depicted in Figure
6.30, describing short pathways from a receptor via transcription factors to a set of target
genes. As scoring function we used the rank score on the target genes. The purpose of this
query was to identify signaling pathways that are involved in OA. Figure 6.31 shows the
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Figure 6.28: Significant area found using the original method based on p-values. The search
was performed on a co-occurrence network generated by ProMiner. The significant area
contains some clearly separated clusters corresponding to different functional contexts.

two most significant instances (from a total of 22 instances) for the query (p-values 0.032
and 0.033). The two instances overlap to a large extend because both connect a receptor
via CREBBP to several transcription factors. The instances represent only short pathways
as the connection between receptor and transcription factor was restricted to length two in
the query. Allowing longer paths without further restrictions leads to unspecific instances
containing many genes and receiving bad scores. Already with path length three no in-
stance with a p-value less than 0.05 can be found. Like PKC, CREBBP is an interesting
candidate for connecting some of the observed transcriptional regulations observed in os-
teoarthritis because CREBBP can interact with RelA, c-Jun, and CREB1. Furthermore,
CREBBP participates in multiple pathways: Calcium signaling pathway, Wnt signaling
pathway, Notch signaling pathway, TGF-beta signaling pathway, according to KEGG.

Next, KEGG pathways were systematically tested using the Mann-Whitney-Wilcoxon
test on the fold change data, as described in 6.1.1. Figure 6.32 shows the distribution
of p-values from these tests by plotting the sorted p-value list. If fold change values
were randomly distributed across pathways, one would expect approximately a diagonal
line in that plot since p-values are uniformly distributed when the null hypothesis holds.
The plot shows that there are about 20 pathways with very low p-values. After these
first 20 values, the distribution follows the expected behavior of a diagonal line. This
suggests that there are about 20 true positive instances of pathways with fold change
values that non-randomly high or low. Table 6.10 shows the best scoring 20 pathways.
The highest scoring pathway, ECM-receptor interaction, is not a classical pathway. It
lists proteins from the extracellular matrix and their receptors (mostly different integrins).
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Figure 6.29: Significant areas found using the method based on fold changes. The up-
regulated significant area (left) contains two tightly connected clusters. One of these clus-
ters contains proteins from the major histocompatibility complex, class 2, the second one
contains mainly proteins that are expressed in the extracellular matrix and play a role in
cartilage turnover.
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Figure 6.30: A pathway query to find signaling pathways relevant for osteoarthritis. This
pathway query is performed on a graph containing information from TRANSFAC and
TRANSPATH. Therefore, results should correspond to well characterized pathways.

Therefore it summarizes the proteins that are necessary for a communication between the
extracellular matrix and the chondrocytes. The up-regulation of many matrix proteins in
osteoarthritis is well known, and also the interplay of matrix-proteins like fibronectin with
integrins has be discussed as a disease mechanism in OA (Peters et al., 2002). Integrins
are also supposed to play a role in the transduction of signals from mechanical forces
(Millward-Sadler and Salter, 2004).

Finally, we also looked at single transcription factors and scored them using the rank
score either on the p-values or on the ratios. Potential targets of a transcription factor
were defined as all genes that have a binding site for that transcription factor according to
TRANSFAC. Here, we relied on annotated binding sites only and did not try to predict
transcription factor targets. The ten best scoring transcription factors for each of these
scoring methods are listed in Table 6.11, and Figure 6.33 shows the merged graphs of all
relevant transcription factors (p-value < 0.05) and their target genes using both p-values
and fold changes for the rank score.

The overlap between the transcription factors identified by the two methods is rather
small, consisting of RFX1 and JUND only. Nevertheless, the processes that the identified
transcription factors and their target genes are involved in, are similar, as can be seen in
the graph containing the target genes (Figure 6.33). Firstly, the Rfx transcription factors
regulate class 2 major histocompatibility complex genes, which have been observed in the
significant areas already. Their possible role in osteoarthritis was discussed in section 6.3.3.

Another relevant process is the regulation of cell cycle and proliferation that could al-
ready be identified with the help of the significant area search algorithm as well. In our
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Figure 6.31: Most significant instances of the pathway query from Figure 6.30. The in-
stances overlap to a large extend. Both contain the transcription factors CREB1, RELA,
c-JUN, NF-AT1 and their targets.
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Figure 6.32: P-values for KEGG pathways using a rank test on osteoarthritis patient data.
After the top 20-25 pathways, the plot approximates a straight line, suggesting that there
are about 20-25 true positives.

Pathway P-value Direction
ECM-receptor interaction 2.28E-12 up
Focal adhesion 1.53E-09 up
Regulation of actin cytoskeleton 3.91E-06 up
Prion disease 2.49E-05 up
Cell adhesion molecules (CAMs) based on ligands classification 5.80E-05 up
Cytokine-cytokine receptor interaction 8.69E-05 up
Neuroactive ligand-receptor interaction 9.10E-05 up
Complement and coagulation cascades 1.10E-04 up
Wnt signaling pathway 2.19E-04 up
TGF-beta signaling pathway 4.22E-04 up
Valine, leucine and isoleucine degradation 1.45E-03 down
Gap junction 1.56E-03 up
Propanoate metabolism 1.61E-03 down
MAPK signaling pathway 1.75E-03 up
Fatty acid metabolism 1.82E-03 down
Glycosphingolipid metabolism 2.76E-03 up
Glycosaminoglycan degradation 3.61E-03 up
Axon guidance 4.33E-03 up
Chondroitin Heparan sulfate biosynthesis 5.36E-03 up
Inositol phosphate metabolism 1.59E-02 down

Table 6.10: Most significant KEGG pathways with respect to osteoarthritis patient expres-
sion data as computed using the Whitney-Mann-Wilcoxon test.
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Transcription factor Score Score based on
STAT5B 0.020 p-values
RFX1 0.028 p-values
ATF1 0.029 p-values
JUN 0.029 p-values

HMGA1 0.030 p-values
JUND 0.034 p-values
CREM 0.045 p-values

TA p63 α 0.045 p-values
RXRA 0.048 p-values
EP300 0.049 p-values
RELA 0.0046 fold changes
RFX1 0.0069 fold changes
AP2α 0.012 fold changes
JUND 0.017 fold changes
NFBK1 0.018 fold changes
CREB1 0.018 fold changes
RFX3 0.020 fold changes
RFX2 0.020 fold changes

RFX5:RFXAP:RFXANK 0.020 fold changes
STAT3 0.036 fold changes

Table 6.11: Best scoring transcription factors in osteoarthritis data. Scores are rank scores
either based on fold changes or p-values for differential expression.
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Figure 6.33: All identified relevant transcription factors and their target genes in os-
teoarthritis. Relevant transcription factors were identified using the rank score based on
p-values for differential expression or fold change values. All transcription factors with a
p-value better than 0.05 are included in the graph. Node color corresponds to fold change
values.

evaluation of transcription factors we find CCDN1 (cyclin D1), which induces cell-cycle
progression from S1 to G phase, up-regulated and CDKN1A (cyclin dependent kinase in-
hibitor 1A), which inhibits the cell-cycle progression, down-regulated. Therefore, we could
expect a faster progression through the cell cycle in arthritic chondrocytes and a higher
rate of cell proliferation. This is in agreement with the finding of chondrocyte clusters in
osteoarthritic cartilage tissue (Poole, 1997; Pfander et al., 2001; Quintavalla et al., 2005).
The regulators of these cell-cycle genes include STAT3 and STAT5B as well as RELA, JUN
and JUND. But as we have seen in the significant areas, there are other differentially reg-
ulated cell cycle-related genes. Furthermore, Gómez-Camarillo and Kouri (2005) observe
a reduced rate of cell division in osteoarthritic tissue, contradicting our hypothesis. Figure
6.34 shows the cell cycle according to the KEGG database with fold changes from the os-
teoarthritis expression data. In some cases, the nodes from KEGG correspond to multiple
genes. In that case, the median expression value was used. The most strongly differen-
tially expressed genes (with the highest fold change values) are the ones observed earlier:
CDKN1A, CCND1, and GADD45B. Additionally, WEE1, which is supposed to act as a
negative regulator of entry into mitosis, is also down-regulated. This again strengthens the
hypothesis that there should be a higher cell proliferation in osteoarthritic chondrocytes.
It is also in contradiction to Gómez-Camarillo and Kouri (2005) who hypothesize that the
phosphorylation state of the mitosis-promoting factor (MTF) complex, consisting of CDK-
1 and Cyclin-B, could be a reason why the chondrocytes do not enter mitosis. WEE1 is
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one of the proteins that can phosphorylate the MTF complex. Its down-regulation should
promote the transition into mitosis. All in all, the role of disruptions of the cell cycle in
osteoarthritis is much debated. The presence of some cell-cycle markers and the finding of
chondrocyte clusters in osteoarthritis seems to imply that chondrocytes proliferate faster
in diseased than in healthy tissue. In the study of Gómez-Camarillo and Kouri (2005) on
the other hand, no proliferation of osteoarthritic chondrocytes could be detected.

Cell-cell adhesion is another process that appears regulated according to the transcrip-
tion factor data. Genes relevant for this process include VCAM1, ICAM1, PLAU and
PLAT, their regulators are NFκB (RELA and NFKB1), JUN, JUND and CREB1.

The transcription factor data generally point to the same processes that have been
identified earlier using significant area search. Much fewer differentially expressed genes are
accounted for, but on the other hand a hypothesis about the involved transcription factors
is provided. When more comprehensive data on transcription factor binding becomes
available, we expect that more differentially expressed genes will be represented in the
generated hypotheses and that there will be a stronger signal for the relevant transcription
factors.

Discussion

Osteoarthritis is a complex disease with a complex phenotype. One important part of
that phenotype is the destruction of the extracellular matrix, which is believed to be
governed by an imbalance between anabolic and catabolic activities of the chondrocytes.
The chondrocytes themselves also show specific phenotypes, e.g. a differentiation towards
hypertrophic chondrocytes or fibroblasts. There are also spatial differences in the cartilage
phenotype (Sandell and Aigner, 2001).

Taking into account the complexity of the disease, it cannot be expected that a complete
picture of the disease processes in osteoarthritis can be gained from gene expression data
alone. Nevertheless, with the network-based methods presented here, one can quickly
identify processes that appear to be relevant for the disease. Considering the expression
data in a proper context can assist in the formulation of biological hypotheses, as could
be seen in the discussion of the cell cycle regulation in osteoarthritis. Sometimes, it is also
possible to find proteins which could constitute a link between relevant processes, although
cross-talk between pathways is in general not well understood. An example for such a link
is CREBBP, which could play a role in several arthritis-related pathways.

Still, these results represent only hypotheses and ultimately, their validity can only be
tested experimentally.
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Figure 6.34: Expression of cell cycle genes in osteoarthritis. Many cell cycle related genes
are differentially expressed in osteoarthritis. While it is conspicuous that CCND1, which
is associated with cell cycle progression, is up-regulated and its antagonist CDKN1A is
down-regulated, no clear general pattern emerges.
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Chapter 7

Conclusions and Future Work

7.1 Achievements and limitations

Today, expression data are collected routinely on a genome-wide scale. A single Affymetrix
GeneChip microarray costs only a few hundred Dollars. There are easy-to-use software
tools for simple analyses of microarray data.

The ever-growing biological knowledge is documented in hundreds of scientific journals
and in indexing databases for these journals like Pubmed. Some of this knowledge also be-
comes formalized in databases about genes, proteins, pathways, genotypes and phenotypes,
and other biological topics.

Still, in most cases, the researcher performing a microarray analysis is left alone with
lists of differentially expressed genes and only his own background knowledge to guide the
interpretation. Thus, the integration of high-throughput data with biological knowledge is
an important task that can significantly improve the interpretation of the data.

As clustering of samples is performed routinely for the analysis of expression data, but
the results are often hard to interpret, we developed unsupervised decision trees that take
Gene Ontology annotations into account during the clustering process. Although in many
cases standard clustering methods with a succeeding over-representation analysis yields
similar results, the unsupervised decision trees can constitute an interesting complimentary
method.

Most parts of this thesis considered networks as a source of biological knowledge. As a
general tool for handling biological networks and expression data, ToPNet was developed
with many methods for interactive exploration and visualization of the data. ToPNet also
provides the basis to this work’s main contribution, which consists of a general framework
to query networks with associated expression data and functional annotations, the pathway
query language and the pathway search algorithm.

What was achieved through the pathway query language? With pathway queries it
is possible to formulate quite complex hypotheses and assess these with different scoring
methods. But in our applications, especially with the osteoarthritis data, it turned out that
the results are often not as specific as we would like. For instance, we can list transcription
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factors that are likely to be relevant for the observed expression data, but we cannot figure
out how these transcription factors are regulated and what their regulation has to do with
osteoarthritis. If our goal is to get from mere observation of changes in expression patterns
to an explanation of these observations, we have just made the first step. There is still
a long way to go, and that way might eventually lead to complete dynamical models of
pathways and networks as they are suggested by today’s systems biologists. The advan-
tage of methods relying on less detailed models like pathway queries together with the
suggested scoring schemes is that available knowledge can be incorporated at different lev-
els of detail and completeness. In order to build a complete dynamical model of a network,
all interactions and the corresponding parameters have to be determined experimentally,
a process that is at least costly and time-consuming and in most cases simply infeasible
with today’s methods. With pathway queries, we can make use of background knowledge
that is far less detailed. We can use pathway queries to define interesting contexts for
expression data. The search algorithm and the scoring functions provide us with instances
that appear significant with respect to that context. In principle, we could assess complex
hypotheses, but at the moment such hypotheses are often not supported by the available
network data. There is still a large gap between the detailed knowledge that can be found
in the literature and the information available in biological network databases. There are
at least two reasons for that gap:

1. Community efforts to build detailed network databases are just starting (e.g. Reac-
tome1).

2. For many important details and subtleties of biological results there is no standard
formalization available.

3. It is often difficult to estimate to what extend experimental results can be transfered
to other situations.

The efforts to create comprehensive network databases could be supported by text
mining or by journal policies that require a formalized deposition of main results in public
databases for a publication. Unfortunately, text mining approaches so far fail to extract
detailed information from the scientific literature.

For the second and third problems the question of knowledge representation has to be
reconsidered. A representation is desirable that can accommodate the need for detail for
an in-depth representation of biological facts as well as generalization in order to transfer
specific results to other contexts. Such an approach would require careful modeling of
orthology, family and other relationships that could allow to transfer properties from one
object to another. When interpreting experimental data from human, it will often be
desirable to include background knowledge available from experiments on model organisms
like mouse or rat. But transferring knowledge from one organism, cell line, or condition to
another is not only a problem of representation. Due to the complexity of many biological
systems there is no general rule when such a transfer is valid. If for instance the activation

1http://www.reactome.org

http://www.reactome.org
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of a transcription factor induces the expression of a target gene in one tissue, this might not
be the case in another tissue. It is a crucial issue to generalize experimental results as far
as possible, but the difficulty of this inductive step is one of the reasons why biology is such
a complex science. For working with pathway queries we suggest to generalize and transfer
facts liberally, so that as much knowledge as possible can be utilized for the generation of
instances. The scoring methods and manual inspection must then determine the relevant
instances.

In summary, the pathway query language allows to make use of background knowledge in
the form of networks at different levels of detail. The more detailed the available networks
are, the more specific pathway queries can be developed and analyzed. Pathway queries
are no substitute for detailed dynamical models, but they represent an efficient way of
querying available knowledge and putting it into context with experimental data.

7.2 Future challenges

Advances in biology and especially in bioinformatics are often driven by the technology of
biological measurements. Novel experimental methods often allow addressing new biologi-
cal questions and produce new types of data. Therefore, novel algorithmic techniques will
often be required as well. Thus, if we would like to know what awaits bioinformatics in
the coming years, we have to take a look at developments in biotechnology.

But not only biotechnology but also new understandings in biology can lead to new
challenges. An example for new insights in biology that raised new problems is the un-
derstanding of a gene. Not long ago it was believed that in most cases one gene would
correspond to one protein. While alternative splicing is still not well understood today, it
is generally believed that it does play a fundamental role in the generation of the great
functional diversity in the human proteome.

The analysis of biological data like sequences or mRNA expression in order to answer
specific research questions is at the core of bioinformatics. But besides this targeted data
analysis, the integration of data may allow to address new questions, which we tried to
demonstrate in this thesis. This kind of data integration is another field where many
challenges lie ahead. Especially for industrial applications of bioinformatics methods it
will be crucial to provide data from many sources together with algorithms working on
these data.

In the following, challenges arising from these different aspects will be discussed.

7.2.1 New generation of microarrays

Due to improvements in lithography technology, the main provider of high density oligonu-
cleotide microarrays, Affymetrix, can print more and more probes on a single array. The
next generation of Affymetrix microarrays will include the All-Exon arrays and Tiling ar-
rays. The All-Exon array type has recently become available and the Tiling arrays will
be available soon. Both types have several million probes on a single microarray. The
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All-Exon array has a probe set (usually consisting of four probes) for every exon supported
by an Ensembl or RefSeq transcript sequence and, in addition, many putative exons de-
rived by gene prediction software and other methods. This technology makes it possible
to discover differential splicing events, i.e. genes that are differently spliced in two experi-
mental conditions. Splicing is believed to have great influence on the functional diversity
of proteins, and differential splicing therefore represents a regulatory mechanism that for
the first time can be investigated on a large scale. The final goal of an analysis with exon
arrays is to estimate the expression level not only for genes, but for all possible transcripts.

Tiling arrays represent the complete genome sequence except repetitive elements at a
certain resolution, and thus allow for the identification of previously unknown transcribed
elements. Possible applications of tiling arrays are discussed in Bertone et al. (2005).

7.2.2 Proteomics and metabolomics

Mass spectrometry (MS) is currently the key technology for proteomics and metabolomics.
Advances in related technologies drive the development in proteomics and metabolomics.
Glinski and Weckwerth (2005) demonstrate this connection for studies in the area of plant
physiology. They also describe what can be achieved with state-of-the-art MS technology.
Fiehn (2002) provides an overview on metabolomic analysis methods, their differences and
terminology. In addition, some approaches for mining metabolite data and modeling the
metabolic behavior of an organism are described.

Today, models of the metabolism of many organisms are available at a quite de-
tailed level. The stoichiometry of most relevant reactions as well as the participating
enzymes are known. One important challenge is the integration of transcriptomic data
with metabolomic data. Such integrated models will foster the understanding of the inter-
play between metabolism and regulation of gene expression.

7.2.3 MicroRNA and epigenetics

Regulation through microRNAs and DNA methylation constitute regulatory mechanisms
that receive increasing attention in biological research. While expression regulation through
protein-DNA interaction by transcription factors is in principle quite well understood,
the importance of those two mechanisms has only recently become obvious. Large-scale
measurements for microRNAs will soon become available as they can be performed with
microarrays, for instance with the tiling arrays described above. So far, no technology for
large-scale measurements of DNA methylation states has been developed.

These two new regulatory mechanisms add a new dimension to the process of gene
and protein regulation. Since microRNA targets might be easy to identify by sequence
methods and their concentration can be measured with microarrays, it can be hoped that
their understanding will develop quickly and their influence can soon be accounted for in
regulatory models.

It is also possible to induce gene silencing with artificially introduced RNAs, which is
then called RNA interference (RNAi). Using so-called cell microarrays, genome-wide loss-
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of-function studies have become feasible with RNAi (Wheeler et al., 2005). The interfering
RNAs are spotted on a microarray and cell cultures are grown. The cultures can then be
analyzed for different phenotypes such as cell morphology, cell viability, or the expression
of a reporter gene.

7.2.4 Data integration

As mentioned above, an important challenge for future research is the improvement of
data integration. The current situation is characterized by data of different quality and
level of detail. These differences have to be accommodated for and, in addition, data from
different experimental approaches and different species should be integrated into algorith-
mic approaches that aim at improving the understanding of certain biological processes or
diseases.

Integration of data from different species is of particular importance. On the sequence
level, comparisons between different species has become a standard procedure for many
research questions as sequence conservation can often provide valuable information about
the functional significance of certain features. An example for that approach was presented
in 6.2.2, where we used sequence conservation to find functional transcription factor binding
sites. An interesting question for future research is how far this comparative approach can
be extended to other types of data such as networks or even expression data.

7.3 Final remarks

Most parts of this thesis were concerned with the integration of different data types, espe-
cially gene expression data and biological networks. As larger and better curated databases
of networks will certainly evolve, it is important to develop algorithms that can work with
these new data. At the moment, two kinds of methods are prevalent: The first one com-
prises simple querying mechanisms, usually based on keyword matching, as they can be
found in almost any web interface for a biological database. The second one covers sim-
ulation approaches, where very detailed models are needed, which are available only for
very few biological systems. Pathway queries were developed as an attempt to provide
a method that lies between these two approaches. They provide capabilities for complex
queries, taking network structure into account, as well as for basic reasoning using statis-
tical scoring methods. As the name suggests, pathway queries are still mainly a querying
mechanism. Further developments should improve the reasoning capabilities, possibly tak-
ing the dynamics of biological systems into account. Ideas for such developments could
be borrowed from simulation methods as well as classical reasoning systems. With such
an improved querying and reasoning system, it will be possible to integrate existing and
emerging biological databases much more efficiently into the task of interpreting newly
generated data.
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Appendix A

XML Schema and stylesheet of the
Pathway Query Language

A.1 Schema definition

<?xml version=”1.0” encoding=”UTF−8”?>
<xs:schema

xmlns:pw=”http://bio.informatik.uni−muenchen.de/Pathways”
xmlns:xs=”http://www.w3.org/2001/XMLSchema”
xmlns=”http://www.w3.org/1999/xhtml”
elementFormDefault=”qualified”
targetNamespace=”http://bio.informatik.uni−muenchen.de/Pathways”
version=”1.0”
xml:lang=”en”>

<xs:annotation>

<xs:documentation xml:lang=”en”>Schema for pathway queries.
A pathway query describes a template for biological networks with annotations and
experimental data.
<p>Florian Sohler, Ralf Zimmer: <cite>Identifying active transcription factors and

kinases from expression data using Pathway Queries.</cite>
Bioinformatics. 2005; 21(Suppl. 2) :ii115−ii122.
</p><p>

Florian Sohler, Daniel Hanisch, Ralf Zimmer: <cite>
New methods for joint analysis of biological networks and expression data.</cite>
Bioinformatics. 2004 Jul 1;20(10):1517−21.

</p>

</xs:documentation>

</xs:annotation>

<xs:element name=”TheNet” type=”pw:Net”>

<xs:annotation>
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<xs:documentation xml:lang=”en”>

The root element for a pathway query is TheNet.
</xs:documentation>

</xs:annotation>

<xs:key name=”SubnetKey”>
<xs:annotation>

<xs:documentation xml:lang=”en”>Names of subnet elements must be unique.
They are referred to in connection elements.</xs:documentation>

</xs:annotation>

<xs:selector xpath=”.//pw:Subnet”/>
<xs:field xpath=”@name”/>

</xs:key>

<xs:keyref name=”FromRef” refer=”pw:SubnetKey”>

<xs:selector xpath=”.//pw:Connection”/>

<xs:field xpath=”pw:ConnectFrom”/>
</xs:keyref>
<xs:keyref name=”ToRef” refer=”pw:SubnetKey”>

<xs:selector xpath=”.//pw:Connection”/>

<xs:field xpath=”pw:ConnectTo”/>
</xs:keyref>
<!−−unique name=”ConnectionKey”>

<selector xpath=”.//pw:Connection”/>
<field xpath=”@name”/>

</unique−−>

</xs:element>

<xs:complexType name=”Net”>

<xs:annotation>

<xs:documentation xml:lang=”en”>The type Net defines a network template.
It specifies subnetworks or single nodes in the subnet element and connections
(corresponding to paths in instances of the template) in the connection elements.
</xs:documentation>

</xs:annotation>

<xs:choice>
<xs:sequence>

<xs:element maxOccurs=”unbounded” minOccurs=”0” name=”Subnet” type=”pw:Net”/>
<xs:choice maxOccurs=”unbounded” minOccurs=”0”>

<xs:element name=”Connection” type=”pw:ConnectionType”/>

<xs:element name=”VirtualConnection” type=”pw:VirtualConnectionType”/>

</xs:choice>
</xs:sequence>
<xs:element name=”PathwayNode” type=”pw:PathwayNodeType”/>

</xs:choice>
<xs:attribute name=”name” type=”xs:string” use=”required”/>

<xs:attribute default=”false” name=”multiple” type=”xs:boolean”/>
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<xs:attribute name=”multipleMin” type=”xs:nonNegativeInteger”/>
<xs:attribute name=”layer” type=”xs:positiveInteger” use=”optional”/>

</xs:complexType>

<xs:complexType name=”ConnectionType”>
<xs:sequence>

<xs:element maxOccurs=”1” minOccurs=”1” name=”ConnectFrom” type=”xs:string”/>

<xs:element maxOccurs=”1” minOccurs=”1” name=”ConnectTo” type=”xs:string”/>

<xs:element maxOccurs=”1” minOccurs=”0” name=”PlaceQuery” type=”pw:QueryType”/>
<xs:element maxOccurs=”1” minOccurs=”0” name=”TransitionQuery” type=”pw:QueryType”/>

<xs:element maxOccurs=”1” minOccurs=”0” name=”Scoring” type=”pw:ScoringType”/>

</xs:sequence>
<xs:attribute default=”0” name=”minEdges” type=”xs:nonNegativeInteger”/>

<xs:attribute default=”1” name=”maxEdges” type=”xs:positiveInteger”/>
<xs:attribute default=”false” name=”intersectionAllowed” type=”xs:boolean”/>

<xs:attribute default=”false” name=”undirected” type=”xs:boolean”/>

<xs:attribute name=”layer” type=”xs:nonNegativeInteger” use=”optional”/>

</xs:complexType>

<xs:complexType name=”VirtualConnectionType”>

<xs:sequence>
<xs:element maxOccurs=”1” minOccurs=”1” name=”ConnectFrom” type=”xs:string”/>

<xs:element maxOccurs=”1” minOccurs=”1” name=”ConnectTo” type=”xs:string”/>

<xs:choice>
<xs:element name=”Comparison” type=”xs:string”/>

<xs:sequence>
<xs:element minOccurs=”0” name=”FromDynamicQuery” type=”pw:DynamicQueryType”/>
<xs:element minOccurs=”0” name=”ToDynamicQuery” type=”pw:DynamicQueryType”/>

</xs:sequence>
</xs:choice>

</xs:sequence>
</xs:complexType>

<xs:complexType name=”DynamicQueryType”>

<xs:choice>
<xs:sequence>

<xs:element maxOccurs=”1” minOccurs=”1” name=”BasicQuery” type=”pw:BasicQueryType”/>
<xs:element maxOccurs=”unbounded” minOccurs=”0” name=”DynamicParameter”>

<xs:complexType>
<xs:sequence>

<xs:element name=”MapName” type=”xs:string”/>

<xs:element name=”Node”>
<xs:simpleType>

<xs:restriction base=”xs:string”>



162 A. XML Schema and stylesheet of the Pathway Query Language

<xs:enumeration value=”from”/>
<xs:enumeration value=”to”/>

</xs:restriction>

</xs:simpleType>
</xs:element>

</xs:sequence>
</xs:complexType>

</xs:element>
</xs:sequence>
<xs:sequence>

<xs:element maxOccurs=”1” minOccurs=”1” name=”DynamicQuery1”
type=”pw:DynamicQueryType”/>

<xs:element maxOccurs=”1” minOccurs=”1” name=”Operator”
type=”pw:OperatorType”/>

<xs:element maxOccurs=”1” minOccurs=”1” name=”DynamicQuery2”
type=”pw:DynamicQueryType”/>

</xs:sequence>
</xs:choice>

</xs:complexType>

<xs:complexType name=”PathwayNodeType”>

<xs:annotation>

<xs:documentation xml:lang=”en”>Defines a node of the network template by specifying
restrictions on node annotations.</xs:documentation>

</xs:annotation>

<xs:sequence>
<xs:element maxOccurs=”1” minOccurs=”1” name=”Query” type=”pw:QueryType”/>

<xs:element maxOccurs=”1” minOccurs=”0” name=”Scoring” type=”pw:ScoringType”/>

</xs:sequence>
<xs:attribute name=”name” type=”xs:string”/>
<xs:attribute default=”1000000000” name=”maxVertices” type=”xs:positiveInteger”/>

</xs:complexType>

<xs:complexType name=”QueryType”>

<xs:annotation>

<xs:documentation xml:lang=”en”>

Combines BasicQuery elements using boolean operators.
</xs:documentation>

</xs:annotation>

<xs:choice>
<xs:element maxOccurs=”1” minOccurs=”1” name=”BasicQuery” type=”pw:BasicQueryType”/>
<xs:sequence>

<xs:element maxOccurs=”1” minOccurs=”1” name=”Query1” type=”pw:QueryType”/>
<xs:element maxOccurs=”1” minOccurs=”1” name=”Operator” type=”pw:OperatorType”/>
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<xs:element maxOccurs=”1” minOccurs=”1” name=”Query2” type=”pw:QueryType”/>
</xs:sequence>

</xs:choice>
</xs:complexType>

<xs:simpleType name=”OperatorType”>
<xs:restriction base=”xs:string”>

<xs:enumeration value=”and”/>
<xs:enumeration value=”or”/>

</xs:restriction>

</xs:simpleType>

<xs:complexType name=”BasicQueryType”>
<xs:annotation>

<xs:documentation xml:lang=”en”>Defines a query on one annotation type, e.g.
GO molecular function = transcription factor activity .</xs:documentation>

</xs:annotation>

<xs:sequence>
<xs:element maxOccurs=”1” minOccurs=”1” name=”MapName” type=”xs:string”/>
<xs:element maxOccurs=”unbounded” minOccurs=”0” name=”Parameter” type=”xs:string”/>
<xs:element maxOccurs=”1” minOccurs=”1” name=”Operator” type=”pw:MapOperatorType”/>

<xs:element maxOccurs=”1” minOccurs=”1” name=”Value” type=”xs:string”/>
</xs:sequence>
<xs:attribute default=”false” name=”Negated” type=”xs:boolean”/>

</xs:complexType>

<xs:simpleType name=”MapOperatorType”>

<xs:restriction base=”xs:string”>
<xs:enumeration value=”lt”/>
<xs:enumeration value=”gt”/>

<xs:enumeration value=”eq”/>
<xs:enumeration value=”like”/>
<xs:enumeration value=”gteq”/>
<xs:enumeration value=”lteq”/>

<xs:enumeration value=”isnull”/>

</xs:restriction>

</xs:simpleType>

<xs:complexType name=”ScoringType”>

<xs:annotation>

<xs:documentation xml:lang=”en”>Defines different scoring methods that are used to score
instances of the network template.</xs:documentation>

</xs:annotation>



164 A. XML Schema and stylesheet of the Pathway Query Language

<xs:choice>
<xs:element name=”P−Value” type=”pw:PValType”/>

<xs:element name=”AdditiveScore” type=”pw:AdditiveScoreType”/>
</xs:choice>

</xs:complexType>

<xs:complexType name=”PValType”>

<xs:annotation>

<xs:documentation xml:lang=”en”>Defines scoring types that result in a p−value.
The MapName scoring type simply refers to a ToPNet data map and gets its
result by applying the data map to the nodes of the instance.
The RankScore should only be applied to PathwayNodes with
multiplicity one. It specifies a data map to rank all nodes of the search network.
From these ranks significance values will be computed.
The FETScore works similar to the RankScore, but uses Fisher exact test to
compute p−values. A Query is performed on
all nodes in the search graph. The significance of the overlap with the instance nodes
for the given PathwayNode is computed.</xs:documentation>

</xs:annotation>

<xs:choice>
<xs:element name=”MapName” type=”xs:string”/>

<xs:element name=”MultiNode”>

<xs:complexType/>
</xs:element>
<xs:element name=”RankScore”>

<xs:complexType>
<xs:attribute name=”MapName” type=”xs:string”/>
<xs:attribute name=”tail” use=”required”>

<xs:simpleType>
<xs:restriction base=”xs:string”>

<xs:enumeration value=”high”/>

<xs:enumeration value=”low”/>

<xs:enumeration value=”both”/>
</xs:restriction>

</xs:simpleType>
</xs:attribute>

</xs:complexType>
</xs:element>
<xs:element name=”FETScore”>

<xs:complexType>
<xs:sequence>

<xs:element name=”Query” type=”pw:QueryType”/>
</xs:sequence>
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<xs:attribute name=”relativeToResult” type=”xs:boolean” default=”false”/>

</xs:complexType>
</xs:element>

</xs:choice>
</xs:complexType>

<xs:complexType name=”AdditiveScoreType”>

<xs:choice>
<xs:element name=”MapName” type=”xs:string”/>

</xs:choice>
</xs:complexType>

</xs:schema>

A.2 Stylesheet definition

TransitionQuery {
display : block;

}

Query {
display : block;

}

Query2:after {
content: ” )”;

}

Query1:before {
content: ”( ”;

}

Scoring {
display : block;
margin−top: 10pt;
margin−left: 15pt;

}

P−Value > MultiNode:before {
content: ”MultiNode”;

}

P−Value > FETScore:before {
content: ”Fisher exact test”;

}
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P−Value > MapName:before {
content: ”Map ”;

}

Scoring:before {
content: ”Scoring Method: ”;

}

ConnectTo {
color : green;

}

TheNet:before {
content: attr(name);
font−size−adjust: 0;
font−size: 20pt;

}

Subnet:before {
content: attr(name) ”: ”;
color : green;

}

ConnectFrom {
color : green;

}

ConnectFrom:after {
content: ” −> ”;

}

Connection:before {
color : rgb(153, 0, 0);
content: ”Connection (” attr(maxEdges) ” steps): ”;
margin−top: 0pt;

}

BasicQuery > Operator {
font−style: italic ;
margin−left: 5pt;
margin−right: 5pt;

}

Query > Operator, Query1 > Operator, Query2 > Operator {
font−style: normal;
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font−weight: bold;
text−decoration: underline;
margin−left: 5pt;
margin−right: 5pt;

}

Value {
}

Subnet {
display : list −item;
list −style−position: outside;
text−indent: 0pt;
margin−top: 10pt;
margin−bottom: 10pt;
margin−left: 0.9893993cm;

}

MapName {
}

Connection {
display : list −item;
list −style−position: outside;
text−indent: 0pt;
margin−bottom: 10pt;
margin−left: 0.9893993cm;
margin−top: 0cm;

}

TheNet {
}

PathwayNode {
}
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