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i.  Abstract 

The genome of mammals harbors chemical modifications at some cytosine 

residues in the form of a methyl group.  These modified residues, termed 5’-

methylcytosines, have been discovered more than 50 years ago (Hotchkiss 1948) and 

have since been shown to play important roles in the regulation of gene expression and 

in the execution of developmental programs.  Patterns of cytosine methylation (also 

referred to as DNA methylation) are carefully set and preserved during cellular expansion 

and global methylation levels are well regulated throughout development.  Changes in 

methylation patterns and levels have been associated with disease progression and 

death (Li et al. 1992; Okano et al. 1999; Ehrlich 2002).  Specifically, elevated levels of 

global genomic methylation have been shown to play a role in the inactivation of tumor 

suppressor genes in many types of cancer (Ehrlich 2002).  In contrast, reduced levels of 

methylation have been observed in a wide variety of tumors and complete 

demethylation in vivo causes embryonic death (Li et al. 1992; Ehrlich 2002). 

 

 

In an effort to study the effect of changed methylation levels in vivo and its effect 

on disease progression, we developed a genetic approach to study the effect of 

hypomethylation during embryogenesis and adulthood.  DNA methyltransferase 1 

(Dnmt1) is the major methyltransferase in mammals and genetic inactivation of the 

Dnmt1 gene causes demethylation that results in cell death in tissue culture and 
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embryonic lethality of homozygous mutant mice at E8.5 (Li et al. 1992).  In a first step, 

the 5’ end of the Dnmt1 gene was characterized to determine the structure of a new 

oocyte-specific isoform found in oocytes and early embryos.  Upon elucidation of the 

structure of this isoform, assays were developed to test its function in vivo.  Loss of this 

oocyte-specific isoform protein resulted in hypomethylation of an IAP reporter element 

suggesting a role for this protein in early development.  In contrast, the somatic Dnmt1 

isoform, which is present in all somatic cells, was important for maintaining this IAP 

element methylated following implantation of the embryo and throughout adulthood.  

Reduced levels of Dnmt1 in adults caused global hypomethylation and resulted in the 

development of thymic lymphomas which displayed a duplication of chromosome 15 

(trisomic 15).  The c-myc oncogene, which resides on chromosome 15, was 

overexpressed, and a gene expression array analysis revealed that another oncogene, 

Notch-1, was also overexpressed in all tumors.  Cooperation between those oncogenes 

has been previously shown to induce thymic lymphomas.  Analysis of the Notch-1 locus 

demonstrated the presence of IAP insertions upstream of the oncogenic cytoplasmic 

domain capable of activating transcription of truncated oncogenic Notch-1.  IAP elements 

were shown to be activated by hypomethylation albeit not as much as traditional 

mutagenic retroviruses.  These results thus show that hypomethylation may induce 

tumorigenesis in this model following two mechanisms.  First by inducing chromosome 

instability and second by creating insertional mutagenesis of defective retroviral 

elements such as IAPs.  These results demonstrate for the first time that 

hypomethylation can directly induce tumorigenesis in mice and induce chromosome 

instability. 
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1.1. A fifth DNA base 

 

Developmental stages in mammals are established by genetic and epigenetic 

programs.  Epigenetic information is defined as those marks which are inherited through 

mitosis or meiosis but are independent of the DNA sequence.  They constitute signals 

that are interpreted to regulate gene expression and cellular differentiation. The most 

common of these marks is DNA methylation, which consists in the addition of a methyl 

group to the 5’ carbon of cytosine residues (Figure 1).  Cytosine-5 methylation is present 

in vertebrates, vascular plants and other eukaryotes and prokaryotes.   

   

 

 
Figure 1. The methylation reaction.  The enzyme first binds covalently to the 6’ carbon of the 
cytosine ring via a cysteine thiol group on the enzyme.  The binding causes an electron transfer 
from the C-5/C-6 double bond to the 5’ carbon.  The energetic doublet on the 5’ carbon then 
attacks the carbon from the methionine moiety of S-adenosyl L-methionine, resulting in the 
transfer of a methyl group from SAM to the 5’ carbon of the cytosine and the release of S-
adenosyl-L-homocysteine.  The release of the enzyme is achieved by the attack and capture of a 
proton on C-6 by a base, recreating the C-5/C-6 double bond and resulting in 5-methyl cytosine 
(Gerlt and Gassman, 1993).   

 

 

The biological significance of this epigenetic modification was established in 1992 

when the gene responsible for maintaining cytosine methylation was inactivated in mice, 
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resulting in genomic demethylation and death of the embryo at day E10.5 (Li,,et al. 

1992). Subsequent knockout of methyltransferase family members in mice have resulted 

in embryonic lethal phenotypes and early post-natal death, consistent with a crucial 

function for cytosine methylation in developmental regulation (Okano et al. 1999).   

 

DNA methylation has been shown to play an important role in the suppression of 

many genes including tissue-specific genes, imprinted genes and genes of the inactive X 

chromosome (Keshet et al. 1986; Becker et al. 1987; Li, Beard et al. 1993; Panning and 

Jaenisch 1996).  In addition, methylation can silence endogenous proviruses including 

SINES, LINES, IAPs and other proviruses so as to prevent insertional mutagenesis 

(Jaenisch et al. 1985; Walsh et al. 1998).  It has also been shown that methylation provides 

additional stability to the genome, perhaps by providing a more tightly packed 

chromatin that is less prone to recombination events (Colot et al. 1996; Chen et al. 1998; 

(Hashimshony et al. 2003). 

 

Cytosine methylation normally occurs in the context of the palindromic 5’-CG-3’ 

(CpG) dinucleotide (Holliday and Pugh 1975; Bird 1978).  About 70% of CpGs in 

mammalian genomes are methylated (Ehrlich et al. 1982), most of which at repetitive 

elements scattered throughout the genome (Yoder et al. 1997; Baylin and Bestor 2002).  

An interesting characteristic of CpGs is that they are greatly under-represented in the 

genome (Sved and Bird 1990).  The higher spontaneous deamination rate of 5-

methylcytosine compared to cytosine might account for this observation.  In addition, 5-

methylcytosine deaminates to thymine causing a C⇐T mutation whereas deamination of 

 12



cytosine creates a uracil residue that is efficiently removed by the DNA repair machinery 

thus making the former a more likely mutation site.  CpGs are mutation hotspots that 

contribute to 30% of all point mutations in the germline (Cooper and Youssoufian 1988; 

Jones et al. 1992; Laird and Jaenisch 1994).  Surely, since DNA methylation poses such a 

substantial mutagenic burden on the genome, it must contribute a strong selective 

advantage, perhaps by presenting an efficient means of regulating transcription of 

complex genomes.  

 

Several models have been proposed to explain the evolutionary advantage of 

methylation, of which two hypotheses stand out.  One hypothesis suggests that DNA 

methylation works as a silencer of background “transcriptional noise” (Bird 1995).  This 

hypothesis is supported by the fact that 1) it is restricted to large genome organisms but 

practically absent from species with smaller genomes such as Drosophila melanogaster and 

Caenorhabtidis elegans, 2) it is largely confined to intergenic, non-coding and repetitive 

regions and 3) it is absent from the promoter regions of active genes.  The other 

hypothesis argues that DNA methylation functions mainly as a defense system by 

silencing parasitic elements throughout the genome (Yoder et al. 1997). It has been 

shown that methylation silences expression of retroviral elements in somatic cells 

(Jaenisch et al. 1985; Walsh et al. 1998).  However, this hypothesis fails to explain why 

undifferentiated cells of the early embryo are hypomethylated and retroviral elements 

such as IAPs are expressed in them (Kuff and Lueders 1988; Poznanski and Calarco 

1991), leaving a possibility for these elements to become active and cause insertional 

mutagenesis.  Therefore if DNA methylation constituted a defense system uniquely in 
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somatic cells, it would not be subject to evolutionary selection because mutations 

occurring late in development would be confined to a few subset of clonal cells, making 

it unlikely to operate as an efficient defense mechanism. 

In any case, changes in patterns of methylation have been associated with disease 

progression such as ICF syndrome and cancer.  Importantly, DNA methylation is a 

stable modification that is reversible, making it ideal for regulation of developmental 

programs. Understanding the mechanisms that regulate it will provide a unique 

opportunity for therapy and intervention. 

 

 

1.2. Enzymes of DNA methylation 

 

DNA methylation patterns vary significantly throughout development.  These 

changes involve both methylation as well as demethylation activities.  While it is still 

unclear which components play an active role in genomic demethylation, cytosine 

methylation is established and maintained by DNA methyltransferases whose 

expression is tightly regulated during development.  These enzymes catalyze the 

transfer of a methyl moiety from S-adenosyl-L-methionine to the 5’ carbon of a cytosine 

pyrimidine ring (Wu and Santi 1987).  There are two distinct DNA methyltransferase 

activities: de novo methylation and maintenance methylation (Figure 2).   
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Figure 2.  Changes of methylation patterns during development.  The levels of methylation are 
relatively high in both mature gametes.  After fertilization, a global wave of passive 
demethylation takes place until implantation of the embryo after which a wave of 
remethylation occurs and somatic cells become highly methylated by EXXX.  In contrast, 
primordial germ cells remain demethylated until the beginning of gametogenesis when they 
differentiate and become methylated.  Recent findings argued that primordial germ cells are 
methylated after implantation and soon followed by a wave of demethylation (REF) but these 
results have yet to be replicated. 

 

 

1.2.1. Methylation of unmethylated DNA 

 

The methylation of previously unmethylated DNA, referred to as de novo 

methylation, is carried by two enzymes in mammals: Dnmt3a and Dnmt3b (Figure 2).  

These proteins contain well conserved motifs in the catalytic domain that are present in 

all DNA methyltransferases.  Inactivation of  Dnmt3a and Dnmt3b by gene targeting in 

ES cells abolishes the ability of these cells to de novo methylate foreign DNA (Okano et 

 15



al. 1999).  Both proteins are essential for normal development as Dnmt3a knockout mice 

become runted after birth and die after 4 weeks of age and Dnmt3b knockout induces 

various embryonic defects and causes death before E15.5.  Animals homozygous mutant 

for both Dnmt3a and Dnmt3b die before E11.5, a phenotype that is more severe than any 

individual phenotype, suggesting an overlapping function for these proteins in 

embryogenesis (Okano et al. 1999).  Double mutant embryos are also unable to de novo 

methylate genomic DNA following implantation of the embryo like wild-type embryos 

do.  Both de novo methyltransferases are expressed at various levels in adult somatic 

tissues suggesting that they may have distinct roles at that stage.   

 

De novo methylation may play an important function in organizing and 

compartmentalizing the genome during somatic differentiation so that genes are 

expressed in the proper sequence and cell types.  In humans, cells from ICF syndrome 

patients were shown to contain mutations in DNMT3B, and DNMT3B mutant cells were 

found to contain chromosomal abnormalities.  Additionally, several groups have 

reported overexpression of Dnmt3a and Dnmt3b in various tumors (Robertson et al. 

1999; Girault et al. 2003).  Tissue-specific inactivation and overexpression of these 

enzymes will be necessary to elucidate their function in mature organs, tissues and in 

tumorigenesis.   
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1.2.2.  Maintenance of DNA methylation patterns 

 

Following replication when the newly synthesized DNA strand is unmethylated, 

an enzyme binds to hemimethylated sites and catalyzes the transfer of a methyl group 

on the daughter strand to restore the palindromic methyl CpG configuration (Figure 2).  

This activity is catalyzed by Dnmt1, the first mammalian methyltransferase 

characterized more than 10 years ago and has been referred to as maintenance methylation.  

This methylation activity ensures that established patterns of methylation are preserved 

over many cell generations and provides a mean for heritable transcriptional control 

during development.  The somatic form of Dnmt1 contains 1581 amino acid residues, 

consisting of a regulatory N-terminus of ~1000 amino acids that is linked by a segment 

of 12 alternating glycyl and lysyl residues to a C-terminus catalytic domain of ~ 500 

amino acids that is closely related to prokaryotic cytosine methylases (Bestor et al. 1988).  

The regulatory domain contains a cysteine-rich region capable of binding zinc ions 

(Bestor 1992), a proliferating cell nuclear antigen (PCNA) binding domain (Chuang et al. 

1997), several nuclear localization sequences (Cardoso and Leonhardt 1999), a 

polybromo homology domain (Liu et al. 1998) and a targeting sequence controlling 

subnuclear localization (Leonhardt et al. 1992) whereas the catalytic domain contains the 

conserved methyltransferase motifs. Several interactions have been described between 

DNMT1 and different chromatin-associated proteins and cell cycle regulators such as 

pRb, HDACs, MeCP2, SUV39H1 and HP1-beta, and PCNA (Chuang et al. 1997; 

Robertson et al. 2000; Rountree et al. 2000; Fuks et al. 2003; Kimura and Shiota 2003).  

Homozygous gene inactivation of Dnmt1 results in demethylation in the embryos and 
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death by E9.5.  Inactivation of Dnmt1 in T cells in vivo causes a depletion of this cell type 

in the animal (Lee et al. 2001) and inactivation in fibroblasts caused cellular death after 2 

weeks in vitro (Jackson-Grusby et al. 2001) suggesting that maintenance methylation is 

necessary for cellular differentiation and expansion of differentiated cells.  Dnmt1 was 

shown to possess a maintenance activity in vivo in concert with Dnmt3a but no de novo 

activity (Lyko et al. 1999).  Interestingly, Dnmt1 null ES cells grow normally in the 

absence of Dnmt1 and primordial germ cells do not contain Dnmt1, suggesting that this 

protein is not always necessary for cell division and survival (Li et al. 1992). 

 

Dnmt1 is expressed during much of embryonic development and in the adult and 

exists as two isoforms in vivo.  A shorter isoform is present in oocytes and early embryos 

and a longer isoform is expressed in postimplantation embryos and in somatic cells.  The 

levels of the shorter isoform are very high in the oocyte and the fertilized egg and 

progressively decrease together with global methylation until embryonic implantation. 

The expression of the protein goes up again soon after implantation of the embryo 

together with the wave of de novo methylation, and remain present at various levels in 

adult tissues.  In addition, Dnmt1 overexpression has often been linked to tumorigenesis 

(Robertson et al. 1999). 
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1.2.3. Are there additional mammalian DNA methyl-

transferases? 

 

 A gene containing all the highly conserved catalytic domain methyltransferase 

motifs was identified and was termed Dnmt2 (Okano et al. 1998; Van den Wyngaert et 

al. 1998; Yoder and Bestor 1998).  However, no methyltransferase activity was found for 

this protein when it was overexpressed from a baculovirus expression vector.  In 

addition, Dnmt2 knockout in ES cells did not affect their de novo or maintenance 

methyltransferase activities (Okano et al. 1998) and genetic inactivation of Dnmt2 in mice 

did not result in any detectable phenotype.  The function of Dnmt2 remains to be 

determined.  A protein called Dnmt3L was isolated and was found to play a role in the 

setting of imprints in oocytes.  This protein does not contain the conserved 

methyltransferase motifs and has no known enzymatic activity.  The genome of 

primordial germ cells becomes methylated as the gametes differentiate.  In addition, 

genomic imprints are known to be set in the gametes, but the factors necessary to 

conduct these functions remain to be identified (Margot et al. 2003; Bourc’his et al. 2001).  

 

1.2.4. Genomic demethylation 

 

Passive demethylation of the DNA can occur when methyl groups fail to be 

added onto the new DNA strand following DNA replication.  This can happen when 

proper cellular maintenance methyltransferase activities are impaired such as when 5-
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azacytidine is present (Jones 1984) or when a loxed (Cre/ lox) Dnmt1 gene is looped out 

and inactivated in tissue culture (Jackson-Grusby et al. 2001).  Such demethylation was 

shown to cause the activation of retroelements and developmentally regulated genes in 

the cultured cells (Jackson-Grusby et al. 2001).  In addition, passive demethylation is 

thought to occur in early embryogenesis when the levels of Dnmt1 decrease and become 

mostly localized in the cytoplasm (Carlson et al. 1992; Rougier et al. 1998; Cardoso and 

Leonhardt 1999).  Active demethylation (independent of DNA replication) has been 

shown following induction of the vitellogenin gene in chick liver (Wilks et al. 1984) or of 

the globin gene in erythroleukemia cells (Razin et al. 1984) and has also been observed in 

transiently transfected myoblasts (Paroush et al. 1990), in postmeiotic spermatocytes 

(Trasler, Hake et al. 1990) and in preimplantation mouse embryos (Kafri et al. 1993). 

Recently, active demethylation has been shown to occur on the paternal genome soon 

after fertilization (Mayer et al. 2000; Oswald et al. 2000) by an unknown mechanism.  It 

has been suggested that active demethylation is at least partly mediated by an RNA 

component and that demethylation occurs by the removal of DNA nucleotides after their 

conversion to RNase-sensitive molecules (Weiss et al. 1996). Surely, additional 

components remain to be identified.  More recently, active demethylation of the Il-2 

promoter was shown in T cells following their activation (Bruniquel and Schwartz 2003).  

The mechanism of demethylation in this case is unknown and research is intensifying to 

characterize components responsible for these activities. 
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1.3. Dynamics of DNA methylation 

changes during development 

 

Overall degrees of genomic methylation vary substantially during development 

and methylation level changes are well coordinated with developmental stages.  In early 

embryogenesis, the levels of genomic methylation progressively decrease until 

implantation, and shortly thereafter are increased until the DNA is highly methylated in 

somatic cells.  In contrast to embryogenesis, the levels of methylation in somatic lineages 

remain fairly stable throughout development.  The significance of these global changes 

of methylation during embryogenesis are unknown but may serve as a way to 

reprogram the genome to suppress early developmental gene expression after 

implantation and to make accessible the loci needed for subsequent lineage-specific 

differences (Figure 3). 
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Figure 3.  Regulation of DNA methylation by DNA methyltransferases.  The major de novo 
methyltransferases Dnmt3a and Dnmt3b can use unmethylated CpG as substrates to create a double-
stranded methylated CpG dinucleotide.  This pattern is lost following DNA methylation as the newly 
synthesized strand is unmethylated.  This hemimethylated CpG becomes a substrate for the 
maintenance methyltransferase Dnmt1 soon after replication of the DNA strand and restores the fully 
methylated configuration. 

 

 

1.3.1.  Changes of DNA methylation levels during gameto-

genesis 

 

As gametogenesis begins, the demethylated primordial germ cells undergo a wave of 

methylation that coincide with cellular differentiation.  During this process, imprinted patterns are 

established in both parental gametes.  During gametogenesis, the genome becomes methylated 

and imprinted gene methylation is set.  An enzyme that bears resemblance to Dnmt3 (termed 
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Dnmt3L for Dnmt3-like) is expressed at that time and is responsible for setting the imprints in 

oocytes (Howell et al. 2001). Imprinted genes are genes whose allelic expression is determined by 

the parental origin (Bartolomei and Tilghman 1997; Jaenisch 1997).  Dnmt3L lacks the highly 

conserved methyltransferase motifs and has no enzymatic activity.  Dnmt1 is present at high 

levels in mature oocytes and is sequestered in the cytoplasm and it is not clear whether it has a 

function in setting the imprints.  Dnmt3L is also expressed in the male gamete and Dnmt3L 

homozygous knockout is incompatible with spermatogenesis (Howell et al. 2001).  In contrast, 

the mature sperm is devoid of Dnmt1 but although Dnmt1 is found in the nucleus of leptotene to 

pachytene stage spermatocytes (Mertineit et al. 1998). A few loci have been described that escape 

this global wave of reprogramming.  For example, the methylation status of the mouse Aiapy allele 

can be inherited in the next generation.  This event, termed transgenerational inheritance of 

epigenetic states, has been observed in mice at a variety of loci and circumstantial evidence 

suggests that this process may also occur in humans (Morgan et al. 1999; Greally 2002).  

 

 

1.3.2.  Changes of DNA methylation levels during embryo-

genesis  

 

After fertilization, the paternal genome soon becomes actively demethylated 

(Mayer et al. 2000; Oswald et al. 2000) followed by passive demethylation of both the 

maternal and paternal genomes (Monk et al. 1987; Kafri et al. 1992; Rougier et al. 1998).  

This demethylation occurs in the bulk DNA which consists of repetitive elements and 

most gene sequences.  This period is associated with a progressive loss of Dnmt1 and by 

its localization in the cytoplasm the vast majority of the time.  The embryo becomes 
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further demethylated until the postimplantation stage when a wave of remethylation 

occurs as a result of the expression of the de novo methyltransferases Dnmt3a and 

Dnmt3b and the maintenance methyltransferase Dnmt1.  The levels of methylation 

remain high in somatic cells except in the germ cell lineage where the degree of 

methylation stays low until gametogenesis.  

 

In contrast to bulk DNA, the methylation of imprinted genes and CpG islands are 

affected quite differently.  The methylation of imprinted genes is established during 

gametogenesis and remain resistant to demethylation or de novo methylation in 

embryogenesis and in adulthood.  The only exception is the differentiating germ cells 

which have the ability to reprogram imprinted genes (Tucker et al. 1996). CpG islands 

are unmethylated in normal cells except on the inactive X chromosome of female cells 

(Bird 1987).  They reside in the proximity of promoters or first exons, are usually 1-2 k 

long, and are associated with housekeeping genes (Bird 1987).  These islands are 

estimated at 45 000 copies, are associated with 60% of genes (Gonzalgo and Jones 1997) 

and contain the predicted frequency of CpGs of 12.5%, representing 15% of all CpG sites.  

They have an open chromatin structure that is deficient in the linker histone H1 and 

contain nucleosomes enriched in acetylated forms of histones H3 and H4 that are 

associated with active chromatin.  It has been suggested that transcriptional silencing 

may be necessary for DNA methylation to occur and that genes containing CpG islands 

are not silenced in post-implantation embryogenesis when the embryo becomes 

methylated, making them resistant to DNA methylation (Bird 2002). CpG islands can be 

classified in three categories.  
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The CpG islands associated with housekeeping genes on chromosome X are 

methylated upon inactivation of the chromosome and those patterns of methylation are 

stably inherited after each cell division.  The CpG islands associated with tumor 

suppressor genes are unmethylated in normal tissues but often become methylated as 

tumors develop (Laird and Jaenisch 1994; Baylin et al. 1998) and may play a role in 

tumorigenesis (Myohanen et al. 1998).  All other CpG islands are unmethylated during 

development.  This resistance to methylation was shown to be dependent on an intact 

Sp1 binding site within CpG islands (Brandeis et al. 1994).  In addition to housekeeping 

genes which contain CpG islands, about 50% of tissue-specific genes also contain CpG 

islands (Jones, P.A. 1999). 

 

1.4. Interpretation of DNA methylation 

signals 

 

The most common effect of DNA methylation is gene silencing.  This process 

represents a unique mechanism of gene regulation because it is both reversible and 

stable.  Patterns of methylation can be modulated through development resulting in 

activation or inactivation of proper developmental programs.  The stability of this 

modification makes it quite energy-efficient as they can be inherited though mitotic cell 

division.  In fact, cell culture experiments have shown that the stability of the 

 25



modification approaches the genetic point mutation frequency of DNA (Harris 1982; 

Holliday 1990).  The silencing of gene expression by DNA methylation is achieved by a 

number of proteins including methyl-binding proteins and chromatin remodeling 

proteins that can read the methylation status and alter gene transcription.  

 

1.4.1. Numerous genes and elements are regulated by DNA 

methylation 

 

The expression of many genes and DNA elements is modulated by DNA 

methylation.  For example, imprinted genes possess DNA methylation marks that allow 

allele-specific expression (Bartolomei and Tilghman 1997; Jaenisch 1997).  These marks 

are set during gametogenesis and are maintained throughout life.  Failure to properly 

maintain methylation patterns at imprinted gene loci results in either biallelic expression 

or complete loss of expression (Li et al. 1993; Tucker et al. 1996; Caspary et al. 1998).  The 

expression of the Xist gene, which is involved in chromosome X inactivation, also 

correlates with DNA methylation.  Demethylated Dnmt1 mutant embryos activate Xist 

which induces inactivation of the active X chromosome, resulting in silencing of both X 

chromosomes (Panning and Jaenisch 1996).  Proper regulation of X inactivation is very 

important to compensate for the different dosage of X-linked genes between males and 

females and is achieved by the random inactivation of an X chromosome in females.  In 

addition to these genes, the expression of many tissue-specific genes correlates with the 

methylation status of their promoters regions (Eden and Cedar 1994).  Methylation 

generally correlates with gene silencing whereas demethylation is associated with 
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transcriptional activation.  Finally, endogenous retroviruses and other transposable 

elements are also silenced by methylation (Jähner 1984).  These sequences are normally 

methylated and transcriptionally silent.  Hypomethylation induced by hypomethylating 

drugs or by genetic inactivation of Dnmt1 results in the activation of endogenous viruses 

in vitro and in vivo (Jaenisch et al. 1985; Walsh et al. 1998). 

 

While it is widely known that methylation can affect gene expression, the 

mechanisms by which methylation exerts its effect on transcriptional activity has become 

more clear only recently.  Methylation signals can be interpreted through several 

mechanisms to inhibit specific genes or genomic regions so as to signal specific cellular 

or developmental programs. 

 

1.4.2.  DNA methylation can prevent the binding of trans-

cription factors to their recognition sequence 

 

Methylation can physically prevent transcription factors from binding to their 

recognition sequences (Watt and Molloy 1988) although this type of regulation is rather 

uncommon in vivo (Takizawa et al. 2001).  For example, the glial fibrillary acidic protein 

(GFAP) gene is activated during astrocyte differentiation by the demethylation of a CpG 

dinucleotide located in a STAT3 (signal transducer and activator of transcription 3) –

binding element (Takizawa et al. 2001).  While the end result of methylation is generally 

transcriptional silencing, methylation of repressor protein-binding elements in the 

imprinted insulin-like growth factor 2 (Igf2) gene can increase its expression (Eden et al. 
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2001; Murrell et al. 2001).  In addition, methylation of a CTCF binding site on the 

paternal allele of Igf2 prevents the binding of the repressor protein and allows the H19 

enhancer to promote Igf2 transcription.  In contrast, hypomethylation of the CTCF 

binding site on the maternal allele allows binding of the repressor to this site and isolates 

the H19 enhancer, resulting in Igf2 silencing (Bell and Felsenfeld 2000; Hark et al. 2000).  

In any case, methylation of such recognition sites does not necessarily prevent target 

proteins from binding to the DNA (Brandeis et al. 1994; Macleod D et al. 1994). 

 

1.4.3.  Transcriptional repressors can bind to methylated DNA 

and induce chromatin remodeling 

 

Methylation signals can be interpreted directly by methyl-CpG-binding proteins 

(MeCPs) that can alter gene transcription.  There are 5 known MeCPs in mammals (Nan 

et al. 1993; Cross et al. 1997; Hendrich and Bird 1998; Prokhortchouk et al. 2001).  Four of 

these proteins, MeCP2, MBD1, MBD2 and MBD4 bind methyl-CpGs through a 

conserved protein motif called the methyl-CpG binding domain (MBD, (Nan et al. 

1996)).  Another MeCP, Kaiso, differs from the other 4 by binding to methyl-CpGs 

through a zinc finger binding domain (Prokhortchouk et al. 2001). MBD3 also contains 

the MBD but does not have the ability to bind to methylated DNA (Hendrich and Bird 

1998).  All MeCPs except MBD4 have been shown to act as transcriptional repressors in 

vitro (Hendrich and Bird 1998). In contrast, MBD4 has been implicated in DNA repair 

(Bellacosa et al. 1999; Hendrich et al. 1999) and may act to minimize mutations at 5-

methylcytosine.  The repression activity of MeCPs is largely achieved by their interaction 
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with histone deacetylase complexes (Prokhortchouk et al. 2001) that help condense the 

chromatin into higher order structures that are transcriptionally silent.  For example, 

MeCP2 forms a complex with histone deacetylases and the co-factor protein Sin3a to 

repress transcription after binding methyl-CpG (Nan, X., et al, Nature, 393, p.386, 1998; 

Jones, P.L. et al, Nature Genet., 19, p.187, 1998).  Another complex made of the methyl-

CpG-binding protein MBD2 and the multisubunit NuRD (previously known as MeCP1) 

can repress transcription in a similar fashion.  The NuRD complex contains the ATP-

dependent chromatin remodeling protein Mi-2 and histone deacetylases (Wade et al. 

1999; Zhang, Ng et al. 1999).  MBD3 was also shown to be a structural component of the 

NuRD complex (Zhang et al. 1999).  In addition to suppress transcription of methylated 

promoters, this complex can also remodel methylated chromatin (Ng et al. 1999; Feng 

and Zhang 2001).  These two methyl-CpG-binding complexes provide a link between 

DNA methylation-mediated transcriptional repression, histone deacetylation and 

chromatin remodeling. 

 

1.4.4.  Packaging of transcriptionally silent methylated 

chromatin 

 

The significance of the global waves of demethylation and remethylation is not known.  

However, recent developments suggest that demethylation in cleavage embryos could 

serve to decondense the chromatin to facilitate the expression of genes necessary for 

early development. In addition, the opening of the chromatin allows for repackaging 

into a “non-pluripotent conformation” that may act as a silencing mechanism for early 
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development and pluripotent genes.  The wave of remethylation that follows 

implantation is coordinated with chromatin condensation and somatic differentiation. 

DNA methylation at this stage may act as a mark to initiate chromatin assembly and 

help to maintain this structure during mitotic inheritance (Hashimshony et al. 2003).  

 
 DNA methylation patterns are read by methyl-binding transcriptional repressors 

that interact with histone deacetylase complexes that help remodel the chromatin into 

transcriptionally silent units.  The regulation of chromatin packaging involves a number 

of histones that can be selectively modified at their amino terminus.  These reversible 

reactions involve many histone modification enzymes and are very complex.  For 

example, acetylation of core histones can occur on lysine residues number 9, 14, 18 and 

23 of H3, lysines 5, 8, 12 and 16 of H4 and lysines of H2A and H2B.  The status of 

acetylation of histones has been shown to set the level of transcriptional activity of the 

chromatin (Strahl, B.D. and Allis C.D. 2000) and knockout of the Hdac1 gene, which 

encodes a histone deacetylase (HDAC), result in embryonic death at day E9.5 (Lagger, G. 

et al. 2002).  Interestingly, it has been shown that Dnmt1 and Dnmt3a can interact with 

HDACs and repress transcription (Burgers, W.A. et al. 2002).   

 

In addition to acetylation, methylation can occur on lysine residues 4, 9 27 and 79 

and arginines 2, 17 and 26 of H3 and lysine 20 and arginine 3 of H4.   However, less is 

known of the function of histone methylation but the evidence suggests that it may 

influence transcriptional activity.  Genetic knockout of the histone methyltransferases 

G9a and Suv39h1/  Suv39h2 results in embryonic lethality at day E9.5 and E14.5 

respectively (Peters et al. 2001).  G9a -/- mutant embryos have a loss of H3-K9 methylation 
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in euchromatin (decondensed, transcriptionally active regions) whereas Suv39h1/  

Suv39h2 double mutant embryos have a loss of H3-K9 methylation in heterochromatin 

(contains repetitive elements and other protein-coding genes and is generally 

transcriptionally silent) (Peters et al. 2001).  H3-K9 methylation has been associated with 

transcriptional silencing whereas H3-K4 methylation (as achieved by H3K4 histone 

methyltransferases such as MLL and SET7) has been correlated with active gene 

expression (Jenuwein and Allis 2001; Zhang and Reinberg 2001).  The identification of 

several H3-K9 methyltransferases in mammals indicate that specific histone 

methyltransferases may be targeted to different regions in the genome. 

 

All modifications of DNA and histones require that the chromatin be accessible.  

ATP-dependent chromatin remodeling proteins with DNA helicase activities are present 

in mammalian cells and are necessary to give accessibility of DNA to DNA 

methyltransferases (Gibbons et al. 2000).  These enzymes use the energy from the 

hydrolysis of ATP to induce twists into the DNA that results in the formation of 

nucleosomes (Peterson 2002).  For example, genetic knockout of the lymphoid-specific 

helicase (Lsh), a member of the SNF2/ helicase family, results in global demethylation of 

genomic DNA at embryonic day E13.5 and post-natal death (Dennis et al. 2001).  Other 

studies have shown that chromatin-remodeling proteins play a very important role in 

mammalian development as demonstrated by several gene knockouts that result in 

lethal phenotypes at various stages of development (Li 2002).  The specific mechanisms 

that regulate the interaction between chromatin remodeling, histone modification and 

DNA methylation remain to be elucidated.   
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 Histone modifications may act to modify the structure and chemical reactivity of 

histones making them amenable for interactions with regulatory proteins such as HP1 

which binds to H3K9, (Lachner et al. 2001), the Polycomb repressor which binds to 

H3K27, (Cao et al. 2002) as well as transcriptional regulators which binds bromodomains 

of acetylated histones, (Jacobson et al. 2000; Owen et al. 2000). 

 

Although evidence is lacking in mammals, studies to date showed a link between 

histone methylation and DNA methylation in the filamentous fungus Neurospora crassa 

and Arabidopsis thaliana (Tamaru and Selker 2001; Jackson et al. 2002).  Specifically, 

functional mutations of histone methyltransferases resulted in loss of DNA methylation.  

In addition, Suv39h-mediated methylation of H3K9 directs DNA methylation to major 

satellite repeats at pericentric heterochromatin in mammals (Lehnertz et al. 2003).  It is 

still unclear how histone methylation may regulate DNA methylation.  Interestingly, 

reduction of cytosine methylation leads to an increase of H3K9 and H3K14 acetylation 

and H3K4 methylation while causing a decrease in H3K9 methylation in mammals 

(Nguyen et al. 2001; Bachman et al. 2003).  The potential cross-regulation and inter-

dependence between DNA methylation and histone methylation remains to be clarified. 

 

1.4.5.  Is there a histone code? 

 

There is considerable evidence supporting the histone code hypothesis.  The 

identification of proteins capable of writing a potential code on histone tails and factors 
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capable of reading this code and influence gene transcription strongly support this idea.  

This hypothesis has generated considerable interest and effort is on-going to decipher 

the code so that histone tails can be read with reasonable predictability outcomes in any 

region of the genome.  The complete elucidation of the code will, however, take 

significantly more understanding of the complex dynamics of histone modification in 

gene regulation.  Such an understanding will be important to develop treatment for 

diseases stemming from defects in histone modifications and of transcriptional regulator 

proteins interacting with these factors.    

 

 

1.5. Methylation and disease 

 

A number of disorders have been associated with methylation-related 

abnormalities. Such diseases can be classified into methylation pathways deficiencies 

such as methyltransferase mutations or into deficiencies related to target genes of 

methylation such as imprinted genes and tumor suppressor genes.  Methylation 

aberrations have also been observed in a wide variety of cancer types and may play a 

role in disease progression through various mechanisms. 
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1.5.1.  Deficiencies of methylation pathways 

 

A number of diseases are caused by genetic mutations in enzymes that play key roles in 

methylation pathways.  These include ICF, Rett and fragile X syndrome.  The ICF 

syndrome (immunodeficiency, centromeric region instability, and facial anomalies 

syndrome) is a rare autosomal recessive disease.  In addition to the many developmental 

defects and mental retardation, an interesting characteristic is the presence of 

multibranched, deleted or duplicated chromosome arms, and centromeric breakage. 

 These regions are normally heavily methylated in somatic cells but are hypomethylated 

in ICF cells suggesting that methylation is important for centromeric structure and 

stability.  It has been shown that ICF syndrome is linked to a null mutation in the 

DNMT3B gene which may be important to maintain methylation at centromeres.   

 

The Rett syndrome (RTT) is an X-linked dominant disorder and is a very common 

cause of mental retardation in females (1/ 10 000).  A large proportion of Rett patients 

are heterozygous for mutations in the MECP2 gene, which encodes a methyl CpG-

binding protein that is X-linked (Guy et al. 2001).  Females develop normally until 6 to 18 

months of age but then lose speech, voluntary movements and hand skills (Guy et al. 

2001).  Knockout of MeCP2 in post-natal brains results in a phenotype similar to that of 

Rett syndrome (Chen et al. 1998; Chen et al. 2001; Guy et al. 2001).  However, the 

mechanism responsible for this phenotype is unknown.   
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The Fragile X syndrome is the most common form of inherited mental retardation 

(1/ 5000 in males) after Down syndrome and affects mostly males (Kooy et al. 2000). 

 The syndrome is defined by cognitive impairment, enlarged testes and behavioral 

hyperactivity.  The gene associated with the syndrome, FMR1 (Fragile X Mental 

Retardation-1), contains a CGG repeat in the 5’ untranslated region (UTR) that is greatly 

amplified in the syndrome (more than 200 repeats compared to 5-50 in normal patients) 

(Verkerk et al. 1991). Expansion of the repeat causes methylation (Pieretti et al. 1991) and 

deacetylation (Coffee et al. 1999) of the repeat and surrounding sequences, including the 

FMR1 promoter, resulting in transcriptional suppression of the FMR1 gene. So the effect 

is indirect in this case.  Knockout of Fmr1 in mice results in mild, but consistent 

abnormalities, analogous to the clinical and pathological symptoms observed in human 

patients (Kooy 2003).  The product of the FMR1 gene is a ubiquitously expressed RNA-

binding protein that may be involved in selective RNA trafficking between the 

cytoplasm and the nucleus.  The connection between the function of the FMR1 protein 

and the syndrome is unclear and Fmr1 mouse models will be very useful in that respect 

(Kooy 2003). 

 

1.5.2.  Imprinted genes disorders 

 

Imprinted genes have been implicated in several diseases.  The Beckwith-

Wiedemann syndrome (BWS) is a clinical condition associated with somatic fetal 

overgrowth and variable predisposition to cancer.  The most common molecular 

abnormality in this syndrome is biallelic expression of the imprinted gene insulin 
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growth factor-2 (Igf2 – an important fetal growth factor) which occurs in 80 % of all 

patients without cytogenetic abnormalities (Weksberg et al. 1993).  Overexpression of 

Igf2 in transgenic mice confers most of the phenotype of BWS suggesting a direct role for 

elevated Igf2 levels in BWS.  Experiments suggest that mutations in some of the 

imprinted genes surrounding Igf2 may act as transcriptional activators of this gene in 

BWS (Reik and Maher 1997).  

 

The Prader-Willi syndrome (PWS) is another condition which is linked to 

abnormal imprinted gene expression.  It is a developmental and behavioral disease 

linked to de novo intrachromosome deletions within an imprinted domain that causes 

altered expression of multiple contiguous imprinted genes.  The end result is generally a 

loss of expression of paternally inherited alleles.  It is characterized by hypotonia, 

respiratory distress, hyperphagia, small hands and feet and mental retardation, temper 

tantrums, and obsessive-compulsive mannerisms (Nicholls and Knepper 2001). 

 

 A closely linked disorder, the Angelman syndrome (AS), also results in 

intrachromosomal deletions within the same region linked to PWS but is in contrast 

associated with losses of maternally inherited alleles.  Evidence indicates that the 

disorder results from disrupted expression of the maternal UBE3A brain-specific 

expression. (Nicholls and Knepper 2001).  The syndrome is characterized by 

developmental delay, severe mental retardation with a lack of speech, movement ataxia, 

hyperactivity, seizures, aggressive behavior and excessive inappropriate laughter (Jiang 
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et al. 1999).  While PWS and AS result most frequently from LOH of the functional allele, 

a number of other cases appear entirely epigenetic.   

 

1.5.3.  Methylation and cancer 

 

Methylation has been postulated to play a role in cancer for many decades.  DNA 

methylation patterns are significantly altered in many tumor types and include both 

hypermethylation and hypomethylation.  The former is usually localized to specific 

regions surrounding gene promoters while the latter is genome-wide. Promoter 

hypermethylation is the most well categorized epigenetic change to occur in tumors.  It 

is found in virtually every type of human neoplasm and is associated with inappropriate 

gene silencing. A large number of tumor-suppressor genes have been shown to be 

silenced by hypermethylation in cancer and include RB (Greger et al. 1989), VHL 

(Herman et al. 1994) and p16ink4a (Gonzalez-Zulueta et al. 1995; Merlo et al. 1995) as 

well as DNA repair genes such as MLH1 (Baylin et al. 2001).  Interestingly, promoter 

silencing by hypermethylation is at least as common as the disruption of classic tumor-

suppressor genes in human cancer by mutation.  Another effect of hypermethylation 

besides gene silencing is the higher frequency of point mutations that results from 

increased deamination of 5’-methylcytosine to uracil, resulting in a C⇐T mutation after 

the subsequent round of DNA replication (Jones et al. 1992; Laird and Jaenisch 1994).   

Indeed, CpG to TpG mutations account for many acquired somatic mutations that lead 

to cancer.  For example, the p53 gene displays such mutations in 50% of all inactivating 
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mutations in colon cancer and in 25% of cancers in general despite having only 4% of 

methyl CpG in its sequence (Rideout et al. 1990).   

 

The evidence linking hypomethylation to tumorigenesis also includes a 

considerable body of literature.  A large variety of different tumor types in mammals 

have been shown to be hypomethylated, in many cases in conjunction with local 

hypermethylation although the evidence that the two mechanisms are independent of 

each other is lacking (Ehrlich 2002).  Hypomethylation is as prevalent as 

hypermethylation in cancers but its potential role in tumorigenesis has not been well 

studied.  It is generally observed at repeated sequences such as LINES and other 

retrotransposons, centromeric repeats and to a lesser extent to specific genes (Ehrlich 

2002).  It has been suggested that reduction in S-adenosyl-L-methionine metabolism may 

induce hypomethylation and play an important role in carcinogenesis (Chiang et al. 

1996).  For example, reduced supply of methionine, folate and choline in rats, all 

precursors of S-adenosyl-L-methionine, leads to genomic hypomethylation, 

overexpression of c-H-ras, c-jun and c-myc and results in liver tumors (Simile et al. 1994).  

Similarly, methyl donor deficiencies is correlated with liver and colon tumors in humans 

(Giovannucci et al. 1993).  These experiments suggest a link between dietary factors and 

cancer and argue that hypomethylation may play a role in tumorigenesis.  It has been 

suggested that hypomethylation represents an early stage in the development of some 

tumors (Goelz et al. 1985). Surprisingly, hypomethylation reduces tumor number in 

APCmin mice suggesting a protective role against tumor formation (Laird et al. 1995). 

 While hypermethylation generally silences gene expression, it is unclear what the result 
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of hypomethylation might be in cancer development. Demethylation of genes silenced 

by methylation has not been frequently reported and evidence is lacking to support this 

mechanism.  Many experiments have suggested that hypomethylation promotes 

genomic instability.  It has been shown that hypomethylation in ES cells causes an 

increase in mutation rate and LOH by mitotic recombination (Chen et al. 1998).  In a 

sterile hybrid obtained from two species of kangaroos, global hypomethylation was 

linked to chromosomal rearrangements including telomere elongation and various 

translocations (O'Neill et al. 2001).  In addition, in the fungus Neurospora crassa, knockout 

of the main DNA methyltransferase (dim-2) resulted in chromosome instability (Foss et 

al. 1995).  The association of hypomethylation with histone acetylation favors an open 

chromatin conformation which might render the genome more prone to recombination 

events than tightly packed DNA.  To date, no clear evidence exists to suggest that 

hypomethylation leads to genomic instability in  vivo. 

 

 

1.5.4. Altered hypomethylation in cancer: cause or consequence?  

 

Despite all the evidence linking changes of methylation patterns and 

tumorigenesis, it is unknown whether methylation plays a causal role in cancer 

development.  Hypomethylating agents have been shown to induce tumorigenesis in 

rodents but most of these compounds are mutagenic, making it difficult to attribute a 

phenotype to the hypomethylated state or to mutations induced by the drug itself. To 

establish a causal relationship between hypomethylation and cancer, a genetic approach 
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resulting in global hypomethylation in vivo must be developed.  So far, null mutations 

for all methyltransferases have resulted in death during embryogenesis or soon after 

birth, making it difficult to engineer an experimental model of hypomethylation.  A T 

cell-specific knockout of Dnmt1 was studied in mice and caused death of all mature T 

cells (Lee et al. 2001).  In addition, knockout of Dnmt1 in mouse embryonic fibroblasts 

also caused cell death (Jackson-Grusby et al. 2001).  These results are consistent with 

methylation being required for somatic differentiation and begs for a new strategy for 

the design of an animal model of hypomethylation. 

 

1.6.  Study of the role of hypomethylation in development and 

cancer 

 

 The body of this thesis project aimed at developing a genetic system to study the 

effect of hypomethylation in development and cancer.  A strategy was designed to 

generate a hypomorphic allele of the maintenance methyltransferase Dnmt1 to be used 

in a new experimental model.   

 

The Dnmt1 gene can produce two different protein isoforms.  The shorter isoform 

is present in oocytes and early embryos whereas the longer isoform is present in 

postimplantation embryos and in adult tissues.  While it has been demonstrated that the 

longer isoform is required for embryonic development and survival (Li et al. 1992), the 

exact structure and function of the shorter isoform is unknown. Therefore, structural and 

functional analyses of this protein was undertaken.  Results showed that this shorter 
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isoform was generated from an ATG translational start site in exon 4 of the Dnmt1 gene 

and was capable of remethylating Dnmt1 null ES cells (Chapter 2).   

 

Experiments were designed to specifically address the effect of reduced levels of 

the Dnmt1 gene products in vivo.  Mice containing a weak Dnmt1 allele were engineered.  

The lower Dnmt1 levels in the animals were found to cause global genomic 

hypomethylation.  The effect of hypomethylation on development and cancer was 

studied using two approaches.   

 

In a first approach, we studied the effect of reduced levels of both Dnmt1 isoform 

on genomic methylation during embryogenesis by using a methylation-sensitive 

reporter allele (Chapter 3).  These results showed that the shorter maternal Dnmt1 

isoform was important to maintain the methylation of this reporter allele in cleavage 

embryos.  In contrast, the longer Dnmt1 isoform was important in maintaining 

methylation patterns in postimplantation embryogenesis.  Furthermore, changes in 

methylation patterns resulting from lower levels of either isoform were stably inherited 

in the adult.  Thus, interference with methylation pathways during gestation such as 

with dietary factors may result in permanent changes that may affect gene expression 

(Wolff  et al. 1998).   

 

In the second approach, the effect of hypomethylation on disease was 

investigated by aging Dnmt1 hypomorphic mice and monitoring their health for 

symptoms manifestation (Chapter 4).  After a few months of age, the vast majority of 
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these hypomethylated mice developed aggressive thymic lymphomas, demonstrating 

that hypomethylation can cause cancer.  The mechanism of tumor formation was further 

investigated and whole chromosome 15 duplications were implicated as one of the steps 

leading to tumorigenesis.   The oncogene c-myc, which is present on chromosome 15 was 

activated in these tumors.  In contrast, in tumors where chromosome 15 was not 

duplicated, c-myc was not overexpressed suggesting that c-myc overexpression was 

caused by chromosome 15 duplication.  Additional analyses of these tumors using gene 

expression arrays showed that another oncogene, Notch-1, was also overexpressed in all 

tumors.  The mechanism of Notch-1 activation was found to be an IAP insertion near the 

transmembrane region of the Notch-1 gene.  Insertion of these IAP caused the expression 

of truncated transcripts of Notch-1 that are known to carry oncogenic properties.  

Consistent with these findings, c-myc and Notch-1 have been shown to collaborate to 

induce the formation of thymic tumors in vivo (Pear et al. 1996).  Thus, hypomethylation 

can induce tumorigenesis by at least two mechanisms: insertional mutagenesis of weak 

retroviral elements and whole chromosome instability.  The effect of hypomethylation 

on chromosome stability was also shown in a different study in which the hypomorphic 

Dnmt1 allele was introduced in a tumor prone mouse strain (Annex).  In this case, 

hypomethylation accelerated tumor formation and whole chromosome loss was shown 

to contribute to the disease phenotype. 

 

The work presented here further emphasizes the importance of epigenetic 

changes in development and disease, in particular since patterns of methylation can be 
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modulated by environmental factors.  The nature of DNA methylation as a reversible 

modification also makes it an interesting approach for developing new therapies.   
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In this work, the effect of hypomethylation on mammalian development and 

cancer was investigated by lowering the levels of Dnmt1 in embryogenesis and in the 

adult.  A new Dnmt1 isoform (Dnmt1o) was characterized in oocytes and cleavage 

embryos and carried DNA maintenance activity in ES cells.  Functional analysis of this 

isoform in vivo suggested a role for Dnmt1o in maintaining IAP methylation in early 

embryogenesis, whereas the longer Dnmt1 isoform was important for maintaining IAP 

methylation in postimplantation embryos.  Reduction of the activity of the Dnmt1 gene 

in adult mice, which normally expresses the longer isoform, resulted in global genomic 

hypomethylation including at IAPs and development of tumors after a few months of 

age. 

 

Thus, changes in the degree of methylation by reduction of Dnmt1 levels can 

lead to stable modifications of methylation patterns and disease.  In the case of the 

Dnmt1 chip/- mice, reduced Dnmt1 levels are present throughout the life of the animal 

and results in genomic hypomethylation.  In addition, the methylation changes 

resulting from lowered Dnmt1 levels in early or late embryogenesis resulted in 

permanent changes in methylation patterns in the adult as evidenced by the coat color 

changes.    

 

In addition to inherit such embryonic changes in methylation, mammals can also 

inherit changes in chromatin structure, as a result of altered DNA methylation.  Indeed, 

postimplantation remethylation is followed by chromatin packaging which is 
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established based on the methylation state and is then stably inherited in the adult 

(Hashimshony, Zhang et al. 2003).   Changes of methylation during the chromatin 

packaging stage or prior to that stage may impair chromatin assembly and proper 

execution of subsequent developmental programs.   

 

Since adult cells originate from a limited number of cells in the embryo, changes 

in methylation patterns early on may be more crucial than during the adult stage.  

Thus, care must be taken that the levels of Dnmt1 be well regulated throughout the 

entire life of the animal as changes as early as embryogenesis may result in permanent 

changes that may cause disease later in life. Of importance is the effect of 

environmental factors on the integrity of embryonic genomic methylation.   

 

5.1. Environmental factors influencing DNA methylation 

 

It has been shown that methylation and expression of the Aiapy locus in embryos 

is sensitive to L-methionine intake by pregnant mothers (Wolff et al. 1998; Cooney et al. 

2002).  In humans, much of the evidence linking the diet to DNA methylation changes 

has been obtained from the adult stage.  Dietary supplements such as folate or vitamins 

that affect the activity of enzymes that supply methyl groups for various cellular 

methylation processes can influence the rate of disease manifestation (Van den Veyver 

2002) and the rate of colon cancer incidence (Giovannucci et al. 1993).  Lower levels of 

folate intake has been associated with genomic instability (Blount et al. 1997; Jacob 

1999) and genomic hypomethylation (Friso et al. 2002).  Furthermore, methyl donor-
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deficient diet has been shown to induce liver cancer associated with hypomethylation 

and overexpression of c-ras, c-myc or c-fos (Poirier et al. 1990; Dizik et al. 1991; Wainfan 

and Poirier 1992).  An interesting study of the effect of diet on methylation changes in 

human pregnancy showed that during a winter famine in Holland in the Second World 

War, normal daughters born during that period were much likely to have smaller 

babies (John and Surani 1999).  The latter has been postulated to have an epigenetic 

basis and might be consistent with a transgenerational inheritance of epigenetic state of 

the same sort observed at the Aiapy locus.  A number of other diseases which are 

inherited but do not follow Mendelian inheritance have also been postulated to have an 

epigenetic component and include multiple sclerosis, diabetes, rheumatoid arthritis and 

cancer (Petronis 2001).   

 

In contrast to embryogenesis, overall methylation patterns do not vary 

significantly in the adult.  However, aging has been associated with both gains and 

losses of methylation.  General hypomethylation is normally seen in adults (Mays-

Hoopes et al. 1986; Wilson et al. 1987) and progressive losses of methylation are also 

observed in fibroblasts in vitro (Wilson and Jones 1983).  CpG islands hypermethylation 

is also observed with aging such as the estrogen receptor, IGF2 and MYOD (Issa et al. 

1994; Issa 2000).  In fact, aging is one of the most important risk factor of cancer and 

CpG island hypermethylation may play a crucial role in the development of tumors in 

some individuals (Jones and Laird 1999; Toyota et al. 1999).  Thus, while genetic 

mutations have been clearly shown to cause and explain diseases, it has never been 

shown whether epigenetic changes can actually initiate disease or whether these 
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changes simply represent a consequence of cellular malfunctions.   Because methylation 

patterns, especially during embryogenesis, are liable to be altered by the diet, an 

understanding of the impact of such changes in development and disease would be 

relevant.   Although highly speculative, it is possible that DNA methylation patterns 

may be altered by additional environmental stimuli.  For example, temperature 

influences vernalization in plants growing at high altitudes and has been suggested to 

have an epigenetic component (Sheldon et al. 1999; Sheldon et al. 2000).  Indeed, the 

FLOWERING LOCUS C (FLC) which appears to play an important role in the early 

flowering induced by low temperatures is thought to be regulated by DNA methylation 

(Sheldon et al. 1999; Sheldon et al. 2000).   

 

5.2.  DNA methylation, genomic instability and cancer 

 

It has not been established whether DNA methylation plays a causal role in any 

of these diseases or whether it reflects the cellular diseased state.  The best studied case 

in which DNA methylation abnormalities are consistently found is cancer. 

 

The link between methylation changes and cancer has been established decades 

ago.  However, it was never demonstrated whether hyper- or hypomethylation play a 

causal role in tumor formation.  The results of this work clearly show that 

hypomethylation can induce tumorigenesis in mice.  Hypomethylation induces 

chromosomal instability, resulting in the gain of chromosome 15 and additional gains 

of chromosome 14 in some tumors.  Trisomy of chromosome 15 was correlated with c-
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myc overexpression suggesting a role for this chromosome duplication in the oncogenic 

overexpression.  Gene expression array analysis of tumor RNAs showed that the 

oncogene Notch-1 was also overexpressed in all tumors.  The gene was found to 

contain IAP insertions which drive the expression of smaller species of oncogenic 

Notch-1.  Thus, hypomethylation induced tumorigenesis in this model by 2 

mechanisms: chromosomal instability and insertional mutagenesis.  The potential for 

hypomethylation to induce tumor formation by a genomic instability mechanism was 

tested in a different study where the effect of genomic hypomethylation on a previously 

described tumor-prone model was tested (see Annex part A). In this model, animals 

heterozygous for null mutations of the linked tumor suppressor genes for p53 and NF1 

(cis conformation) develop sarcomas after about 4 months of age.  The mechanism of 

tumorigenesis in these mice has been shown to be LOH of the wild-type allele of p53 

and NF1.  Because both genes are closely linked on chromosome 11, LOH at that locus 

results in the loss of both tumor suppressors genes.  Induction of hypomethylation in 

this tumor model by breeding in the Dnmt1chip and Dnmt1 null alleles resulted in a 

quicker formation of sarcomas suggesting that hypomethylation increases the rate of 

tumorigenesis in this model.  Using markers specific for either allele, the mechanism of 

tumor formation was found to be whole chromosome LOH.  To measure the mutation 

rate of tumor formation, embryonic fibroblasts were obtained from Dnmt1 chip/-; p53+/- / 

Nf1 +/- (cis) and an assay was developed to measure the rate of foci formation on agar 

plates.  The results showed that hypomethylation caused a 2 fold induction of the 

mutation rate.  The results of these experiments emphasize that hypomethylation 
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induces chromosome instability in mice and are consistent with the results obtained in 

the Dnmt1 chip/- mice. 

 

These results are consistent with the chromosomal instability observed in ICF 

syndrome where DNMT3B is mutated and centromeres becomes hypomethylated (Xu 

et al. 1999; Ehrlich et al. 2001).  Dnmt3b knockout in mice causes demethylation of the 

centromeric minor satellite repeats, suggesting that methylation of centromere repeats 

may play an important role in the maintenance of genomic stability (Okano et al. 1999).  

Similarly, induction  of demethylation in cultured cells by 5-aza-2’-deoxycitidine causes 

elongation of the centromeric or juxtacentromeric regions of the same chromosomes 

that are affected in ICF (Jeanpierre et al. 1993).  In addition, a homozygous null 

mutation of the Dnmt1 gene in ES cells causes demethylation and a 5 to 10 fold increase 

in mutation rate (Chen et al. 1998) which was attributed to a higher rate of mitotic 

recombination.   

 

5.3.  Clinical relevance 

 

Previous results have shown that in contrast to our results, hypomethylation was 

protective against tumor formation in an intestinal tumor model (Laird et al. 1995). 

 Thus, hypomethylation may protect against tumorigenesis in certain cell types but at 

the same time may promote cancer in other cell types such as T cells.  Hypomethylating 

agents such as 5-aza-2’-deoxycitidine (ex. Decitabine) have been used in the clinic and 

shown good promises for the treatment of myelodysplastic syndrome (MDS) and acute 
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myeloid leukemia (AML).  In addition, inhibitors of histone deacetylases (HDAC) have 

also shown good promises (Ex. SAHA) and several groups are actively pursuing new 

drugs. Studies also suggest that a combination treatment of both 5-aza-deoxycytidine 

and TSA (trichostatin A), a drug that inhibits HDAC activity, cause a more effective 

reactivation of silenced tumor suppressor genes (Cameron et al. 1999).  Many other 

histone- and chromatin modification enzymes have been shown to participate in 

tumorigenesis and new therapeutic approaches are being investigated. 

 

Although some of these drugs, such as 5-aza-dC and HDAC inhibitors have 

shown exciting promises as cancer therapeutics, caution should be exercised in using 

them as prophylactics.  While these compounds may have positive effects in treatment, 

it should be remembered that they might also have deleterious effects in other tissues 

and induce cancer.  The combination of both hypomethylating agents and compounds 

which aim at modifying chromatin associated proteins might represent a better solution 

than a single drug approach since the concentration of each drug may potentially be 

lowered to reduce toxicity and prevent the development of diseases associated with 

methylation abnormalities.  These drugs could also be used in combination with 

“smart” drugs, aimed at inhibiting specific oncogenes.  The reversibility of epigenetic 

changes makes epigenetic therapy a sensible strategy.  Although DNA 

hypomethylation agents are more likely to affect global levels of methylation, drugs 

aimed at histone modifying enzymes may display more restrained tissue-specific effects 

and therefore may prove less toxic.  The combination of both may thus help to reduce 
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toxicity, improve effectiveness and increase tissue-specificity of drugs aimed at treating 

many diseases. 

 

 

 
 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 91



5.4.  References 

 

Blount, B.C., Mack, M.M., Wehr, C.M., MacGregor, J.T., Hiatt, R.A., Wang, G., 

Wickramasinghe, S.N., Everson, R.B. and B.N. Ames (1997). Folate deficiency causes 

uracil misincorporation into human DNA and chromosome breakage: implications for 

cancer and neuronal damage. Proc Natl Acad Sci U S A 94(7): 3290-5. 

Cameron, E.E., Bachman, K.E., Myohanen, S., Herman, J.G. and S.B. Baylin (1999). 

Synergy of demethylation and histone deacetylase inhibition in the re-expression of 

genes silenced in cancer. Nat Genet 21(1): 103-7. 

Chen, R. Z., Pettersson, U., Beard, C., Jackson-Grusby, L and R. Jaenisch (1998). DNA 

hypomethylation leads to elevated mutation rates. Nature 395(6697): 89-93. 

Cooney, C.A., Dave, A.A. and G.L. Wolff (2002). Maternal methyl supplements in mice 

affect epigenetic variation and DNA methylation of offspring. J Nutr 132(8 Suppl): 

2393S-2400S. 

Dizik, M., Christman, J.K. and E. Wainfan (1991). Alterations in expression and 

methylation of specific genes in livers of of rats fed a cancer promoting methyl-deficient 

diet. Carcinogenesis 12(7): 1307-12. 

Ehrlich, M., Tsien, F., Herrera, D., Blackman, V., Roggenbuck, J. and C.M. Tuck-

Muller (2001). High frequencies of ICF syndrome-like pericentromeric heterochromatin 

decondensation and breakage in chromosome 1 in a chorionic villus sample. J Med 

Genet 38(12): 882-4. 

Friso, S., Choi, S.W., Girelli, D., Mason, J.B., Dolnikowski, G.G., Bagley, P.J., 

Olivieri, O., Jacques, P.F., Rosenberg, I.H., Corrocher, R and J. Selhub (2002). A 

 92



common mutation in the 5,10-methylenetetrahydrofolate reductase gene affects 

genomic DNA methylation through an interaction with folate status. Proc Natl Acad Sci 

U S A 99(8): 5606-11. Epub 2002 Apr 2. 

Giovannucci, E., Stampfer, M.J., Colditz, G.A., Rimm, E.B., Trichopoulos, D., Rosner, 

B.A., Speizer, F.E. and W.C. Willett (1993). Folate, methionine, and alcohol intake and 

risk of colorectal adenoma. J Natl Cancer Inst 85(11): 875-84. 

Hashimshony, T., J. Zhang, Keshet, I., Bustin, M. and Cedar, H (2003). The role of 

DNA methylation in setting up chromatin structure during development. Nat Genet 

34(2): 187-92. 

Issa, J.P., Ottaviano, Y.I., Celano, P., Hamilton, S.R., Dadidson, N.E. and S.B. Baylin 

(1994).  Methylation of the oestrogen receptor CpG island links ageing and neoplasia in 

human colon. Nat Genet 7(4): 536-40. 

Issa, J. P. (2000). CpG-island methylation in aging and cancer. Curr Top Microbiol 

Immunol 249: 101-18. 

Jacob, R. A. (1999). The role of micronutrients in DNA synthesis and maintenance. Adv 

Exp Med Biol 472: 101-13. 

Jeanpierre, M., Turleau, C., Aurias, A., Prieur, M., Ledeist, F., Fischer, A. and E. 

Viegas-Pequignot (1993). An embryonic-like methylation pattern of classical satellite 

DNA is observed in ICF syndrome.  Hum Mol Genet 2(6): 731-5. 

John, R.M. and A. Surani (1999). Agouti germ line gets acquisitive. Nat Genet 23: 254-6. 

Jones, P.A. and P. W. Laird (1999). Cancer epigenetics comes of age. Nat Genet 21(2): 

163-7. 

 93



Laird, P.W., Jackson-Grusby, L., Fazeli, A., Dickinson, S.I., Jung, W.E., Li, E., 

Weinberg, R.A. and R. Jaenisch (1995). Suppression of intestinal neoplasia by DNA 

hypomethylation. Cell 81(2): 197-205. 

Mays-Hoopes, L., Chao, W., Butcher, H.C. and R.C. Huang (1986). Decreased 

methylation of the major mouse long interspersed repeated DNA during aging and in 

myeloma cells. Dev Genet 7(2): 65-73. 

Okano, M., Bell, D.W., Haber, D.A. and E. Li (1999). DNA methyltransferases Dnmt3a 

and Dnmt3b are essential for de novo methylation and mammalian development. Cell 

99(3): 247-57. 

Petronis, A. (2001). "Human morbid genetics revisited: relevance of epigenetics." 

Trends Genet 17(3): 142-6. 

Poirier, L.A.,  Zapisek, W. and B. Lyn-Cook (1990). Physiological methylation in 

carcinogenesis. Prog Clin Biol Res: 97-112. 

Sheldon, C.C., Burn, J.E., Perez, P.P., Metzger, J., Edwards, J.A., Peacock, W.J. and E.S. 

Dennis (1999). The FLF MADS box gene: a repressor of flowering in Arabidopsis 

regulated by vernalization and methylation. Plant Cell 11(3): 445-58. 

Sheldon, C.C., Rouse, D.T., Finnegan, E.J., Peacock, W.J. and E.S. Dennis (2000). The 

molecular basis of vernalization: the central role of FLOWERING LOCUS C (FLC). Proc 

Natl Acad Sci U S A 97(7): 3753-8. 

Sheldon, C.C.,  Finnegan, E. J., Rouse, D.T., Tadege, M., Bagnall, D.J., Helliwell, C.A., 

Peacock, W.J. and E.S. Dennis (2000). The control of flowering by vernalization. Curr 

Opin Plant Biol 3(5): 418-22. 

 94



Toyota, M., Ahura, N., Ohe-Toyota, M., Herman, J.G., Baylin, S.B. and J.P. Issa (1999). 

CpG island methylator phenotype in colorectal cancer. Proc Natl Acad Sci U S A 96(15): 

8681-6.Van den Veyver, I. B. (2002). Genetic effects of methylation diets. Annu Rev Nutr 

22: 255-82. 

Wainfan, E. and L. A. Poirier (1992). Methyl groups in carcinogenesis: effects on DNA 

methylation and gene. Cancer Res 52(7 Suppl): 2071s-2077s. 

Wilson, V.L. and P.A. Jones (1983). DNA methylation decreases in aging but not in 

immortal cells. Science 220(4601): 1055-7. 

Wilson, V.L., Smith, R.A., Ma, S. and R.G. (1987). Genomic 5-methyldeoxycytidine 

decreases with age. J Biol Chem 262(21): 9948-51. 

Wolff, G.L., Kodell, R. L., Moore, S.R. and C.A. Cooney (1998). Maternal epigenetics 

and methyl supplements affect agouti gene expression. Faseb J 12(11): 949-57. 

Xu, G.L., Bestor, T.H., Bourc'his, D., Hsieh, C.L., Tommerup, N., Bugge, M., Hulten, 

M., Qu, X., Russo, J.J. and E. Viegas-Pequignot (1999). Chromosome instability and 

immunodeficiency syndrome caused by mutations in a DNA methyltransferase gene. 

Nature 402(6758): 187-91. 

 

 

 

 95



 

 

 

 

 

 

 

 

Annex 

 

 

 

 

 

 

 

 

 

 

 

 96



 

 

 

 

 

 

 

Annex - A 

 

Chromosomal Instability and Tumors 
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To look for factors that collaborate with c-myc in promoting tumorigenesis in 

Dnmt1 chip/- tumors, we compared the expression profile of RNA from these tumors to 

that of either wild-type thymus RNA or CD4+/CD8+ wild-type cells using expression 

arrays.  As expected, Dnmt1 levels were reduced (5 fold) in the hypomethylated tumors 

and c-myc was overexpressed (3 fold; Table 1).  The results further showed that Notch-

1, a protein which regulates T cell development and which has also been shown to act 

as an oncogene was one of the most overexpressed mRNA in all tumors (6-9 fold).  In 

addition, two downstream targets of Notch-1, hairpin enhancer of split (HES-1) and 

Deltex were also overexpressed.  These genes are normally activated by Notch-1 and 

their overexpression is consistent with Notch-1 overexpression.   

 

 

 
Table 1.  Relative gene expression in Dnmt1 chip/- tumors and pre-tumor thymuses.  All 
gene expression levels are relative to the levels of wild type thymuses which have been 
arbitrarily set to 1.  “Thymus mut” represents Dnmt1 chip/- pre-tumor thymuses, Dnmt1 
null Fibroblasts” are mouse embryonic fibroblasts in which Dnmt1 was looped out by 
CRE resulting in the loss of all functional Dnmt1 alleles, “Thymomas Hypo CH3a” and 
“Thymomas Hypo CH3b” represent 2 independent experiments using 4 different Dnmt1 
chip/- tumors in each case, “Thymomas Mov-1” are thymic lymphomas from viremic 
Mov-1 mice and “CD4/ CD8 WT” are CD4+/ CD8+ FACS-sorted cells from wild type 
mice.  The numbers represent an average fold induction over 4-6 samples. 
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Elevated levels of Notch-1 were further confirmed by immunoblot analysis 

(Figure 1).  In contrast, Notch-1 overexpression was not detected in hypomethylated 

pre-tumor thymuses, showing that hypomethylation by itself is not sufficient to trigger 

increased levels of Notch-1 (data not shown). 

 

 

 

Figure 1.  Overexpression of Notch-1 in Dnmt1 chip/- tumor cell lines.  
Western blot using a Notch-1 antibody against protein extracts from either 
wild type thymus (WT lane) or from Dnmt1 chip/- cell lines (#15 and #18 
lanes).  The Notch-1 signal is elevated in both cell lines even if the WT lane 
was overloaded by 50% (1.5x). 
 

 

We next sought to characterize the nature of Notch-1 overexpression.  Since the 

CGH analysis of the hypomethylated tumors suggested that the copy number of 

chromosome 2 (on which Notch-1 resides) was normal (see Chapter 4), we tested 

whether the Notch-1 locus might harbor smaller genomic rearrangements, undetectable 

by CGH.  We isolated a mouse Notch-1 genomic BAC and used it as a probe against 
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interphase spreads of cell lines derived from hypomethylated tumors.  DNA FISH 

analysis revealed the presence of 2 dots per cells on average,  thus ruling out 

duplications or amplifications (Figure 2).   

 

To test whether discrete genomic rearrangements occurred at the Notch-1 locus, 

we performed a restriction mapping analysis of the genomic locus.  Southern analyses 

revealed the presence of abnormal restriction fragments in 6/19 tumors, consistent with 

genomic rearrangements (data not shown).   

 

Since the band expected from the wild-type allele was found in all of these 

samples, only one allele would be expected to contain the rearrangement.  To 

investigate whether these monoallelic rearrangements were responsible for monoallelic 

overexpression of Notch-1 expression, we performed a RNA FISH analysis of 

interphase spreads from hypomethylated tumor-derived cell lines using a Notch-1 BAC 

as a probe.  Results showed that most cells contained a weaker and a brighter 

fluorescent dot compared with wild-type cells which contain 2 weak fluorescent dots.  

These results suggest that one of the two Notch-1 alleles in the tumor cells is expressed 

at higher levels than the other, a result that is consistent with the Southern data 

showing rearrangement at only one allele.  The possibility that this rearranged allele is 

responsible for the increased expressed observed by FISH is supported by the Northern 

analyses which show that the smaller transcripts are found in larger amounts (A. Eden, 

personal communication). 
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Figure 2.  DNA and RNA FISH of Notch-1 on wild type and Dnmt1 chip/- 
tumor cells.  A BAC containing the mouse Notch-1 locus was used as a probe 
for DNA FISH (upper panels) or RNA FISH (lower panels) against wild type 
thymus cells (left) or a Dnmt1 chip/- tumor cell line (right).  On average, two 
dots of equal intensities were present in each cell nucleus in the DNA FISH.  
In contrast, Notch-1 mRNA signals were below detection in wild type cells 
but could be detected as 2 spots in the tumor cells: one weak spot and one 
brighter spot.  The width of each field (each panel) is 25 micrometer. 
 

 

To determine the nature of the transcripts resulting from these rearrangements, 

northern analyses were performed.  The results showed that most tumors contained the 

wild-type transcript and an additional species of RNA, indicating rearrangement at one 

 103



allele (A. Eden, personal communication).  In addition, these smaller RNA species were 

found in larger amounts than the endogenous transcript, suggesting that the 

rearranged allele is the one causing overexpression.  To characterize the rearrangement, 

restriction mapping was used to fine-map these new changes within a 1 kb DNA 

fragment.  A long-range PCR assay was developed to amplify this DNA segment and 

sequencing of 8 PCR-amplified DNA fragments from this rearranged region showed 

the presence of IAP insertions (A. Eden, personal communication).   
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Discussion 

 

 These results emphasize that endogenous non-replicative retroviruses may 

play a role in tumorigenesis in mice.  Although IAP insertions have been characterized 

at various locus before in the mouse genome, this is the first demonstration that 

activation of an IAP by hypomethylation may lead to insertions that may play a role in 

tumorigenesis. 

 

Induction of viremia in c-myc transgenic mice results in activation of Notch-1 in 

many cases and development of thymic tumors (1).  Notch-1 translocations into the 

TCRb locus have also been observed in tumors in humans and the break point has been 

mapped to the same region upstream of the transmembrane domain.  The region is 

very rich in non-contiguous repeats that might be less stable.  It is also possible that the 

site is not less stable but rather is selected for because insertions in that specific locus 

may give a growth advantage.  Although IAP expression is elevated in hypomethylated 

tumors, the degree of overexpression is not as overwhelming as in Dnmt1 null 

fibroblasts.  This would thus suggest that the insertion site might be preferred and 

insertions can be detected even if IAP overexpression is not very high. 

 

Insertional mutagenesis caused by retroviruses is not a common mechanism of 

tumorigenesis in humans.  Nevertheless, the human genome contains 45% of 

retrotransposon-derived sequences and hypomethylation could lead to activation of 
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non-replicative retroelements  that could participate in the tumor process or in other 

diseases.   This interesting possibility remains to be further studied.   
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Paper 1   
 

A Short DNA Methyltransferase Isoform Restores Methylation In Vivo, J. Biol. Chem., 

273, 32725 (1998), Gaudet, F., Talbot, D., Leonhardt, H., Jaenisch, R. 

 

I layed out all project aims.  I sequenced the promoter region of Dnmt1 (Fig. 1a-b) and 

identified new potential translation sites (Fig. 1c), tested the functionality of these ATG 

sites (Fig. 3a) and the ability of the Dnmt1 mutants to functionally complement Dnmt1 

null ES cells (Fig3. b), evaluated the development potential of those rescued ES cells by 

generating teratomas in vivo (Fig. 4a-b).  Finally I wrote the paper and made all the 

figures.  D. Talbot did the immunoblots on Fig. 2.  The sequencing of the N-terminus of 

Dnmt1 was performed by a core facility at MIT.   

 

 

Paper 2 
 

Dnmt1 Overexpression Causes Genomic Hypermethylation Loss of Imprinting, and 

Embryonic Lethality, Mol. Cell. Biol., 22, 2124 (2002), Biniszkiewicz, D., Gribnau, J., 

Ramsahoye, B., Gaudet, F., Eggan, K., Humpherys, D., Mastrangelo, M.A., Jun., Z., 

Walter, J., Jaenisch. 

 

I performed the immunoblots for Fig. 1b and Fig.  6b, both of which were critical to 

prove that the BACs were indeed overexpressing Dnmt1 in ES cells – a result on which 

the whole paper was based. 

 

 

Paper 3 
 

 112



Induction of Tumors in Mice by Genomic Hypomethylation, Science, 300, 489 (2003), 

Gaudet, F., Hodgson J.G., Eden, A., Jackson-Grusby, L., Dausman, J., Gray, J.W., 

Leonhardt, H., Jaenisch, R. 

 

I designed and performed the vast majority of the work on this paper.  I quantified the 

strength of the Dnmt1chip allele (Fig.1a), evaluated the effect of reduced Dnmt1 levels on 

methylation of repetitive elements in mice (Fig. 1b-d), measured weight of all mutant 

animals over the course of 5 months (Fig. 2a), sacrificed and autopsied all sick animals 

for presence of tumors (Fig. 2b), estimated tumor nature and clonality (Fig. 2c-d), 

measured relative expression of various repetitive elements in hypomethylated tumors 

(Fig. a,b, c bottom 2 panels).  Finally, I wrote the paper and made all the figures.  G. 

Hodgson performed the CGH analysis from samples that I prepared (Fig. 3d), A. Eden 

performed the PCR on figure 2c and the northern blot on Fig. 3c and L. Jackson-Grusby 

contributed scientifically. 

 

 

Paper 4 
 

Chromosomal Instability and Tumors Promoted by DNA Hypomethylation, Science, 

300, 455 (2003), Eden, A., Gaudet, F., Waghmare, A., Jaenisch, R. 

 

I developed and characterized the Dnmt1 tumor model used in this paper and 

contributed scientifically to the project in general. 

 

 

Paper 5 
 

Maintenance of IAP Methylation by Dnmt1 in pre- and postimplantation 

embryogenesis, Mol. Cell. Biol., 24, 1640 (2004),  Gaudet, F., Rideout, W.M.3rd., 

Meissner, A., Dausman, J., Leonhardt, H, Jaenisch, R. 
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I personally laid out all project aims and was the main force behind this project.  I 

designed and performed all crosses and scored all coat colors (Fig. 1, Fig. 2, Fig. 3, Fig. 

4, Fig. 5a-b).  I made the immunoblot and southern.  I did all statistical analyses. Finally, 

I wrote the whole paper and made all the figures.  B. Rideout set up the Msx2Cre cross 

(Fig. 5c-f ),  A. Meissner made panel 3c and helped out with changes to the paper 

following initial submission and J. Dausman assisted with the management of the 

mouse colony and scoring of coat colors. 

 

 

Paper 6 
 

Activation of Notch-1 by an IAP Element in Hypomethylation- Induced Tumors, in 

preparation, Eden, A.*, Gaudet, F.*, Gribnau, J., Leonhardt, H. and Jaenisch, R. 

 

I designed and performed the vast majority of experiments.  I performed the 

Affymetrix analysis on hypomethylated tumors which identified the Notch-1 pathway 

as being overexpressed in most samples, I identified DNA rearrangements within the 

Notch-1 gene, performed DNA and RNA FISH hybridization to better understand the 

nature and functionality of this rearrangement, I mapped the rearrangement to within 1 

kb of the mutation point and demonstrated that Notch-1 is upregulated by western.  A. 

Eden showed that Notch-1 transcripts are truncated and that the nature of the mutation 

is an IAP insertion. 
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