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Zusammenfassung 

 

Scherviskosität, Dichte, thermische Ausdehnung und spezifische Wärmekapazität sind 

einige aus einer ganzen Reihe von Faktoren, die das rheologische, morphologische und 

texturelle Erscheinungsbild von vulkanischen Laven beeinflussen. Diese physikalischen 

Eigenschaften einer Silikatschmelze hängen von ihrer chemischen Zusammensetzung, ihrem 

Gehalt an Wasser, Kristallen und Blasen und letztlich auch von dem auf sie ausgeübten Stress 

ab. In den letzten Jahren wurde erkannt, dass gerade der angelegte Stress eine wichtige Rolle 

bezüglich des Glasübergangsbereiches von silikatischen Schmelzen spielt. Diese kinetische 

Grenze zwischen duktilem und sprödem Verhalten hat einen wesentlichen Einfluss auf das 

eruptive Verhalten eines Vulkans. 

Genaue Kenntnis der ablaufenden physikalischen Prozesse ist sehr wichtig für die im 

Falle eines Ausbruchs verantwortlichen Stellen. Nur so können Zivilschutz oder ähnliche 

Stellen angepasstes Risikomanagement betreiben und die Verluste an Menschenleben und 

Sachwerten zu minimieren versuchen. Darüber hinaus stellen natürliche magmatische 

Gesteine den Hauptrohstoff für die Produktion von Mikrofasern und Endlosfasern dar. Im 

Vergleich zu "normalen" Glasfasern (z.B. CAS) haben Gesteinsfasern (in der Regel 

basaltische Zusammensetzung) eine bemerkenswert hohe thermische Stabilität (  

Brandschutz), Säure- und Laugenresistenz sowie Wärme- und Schallisolierfähigkeit. 

Derartige Gesteinsfasern können Metall und Holz ersetzen und werden in Zukunft wohl in 

zunehmendem Maße verbaut werden. Darüber hinaus können natürliche basaltische Gesteine 

als Beimengung von Zement, für den Unterbau von Eisenbahngleisanlagen, bei der 

Herstellung von Geotextilien, Fliesen, säureresistenten Werkzeugen für die Schwerindustrie, 

Gesteinswolle, flexiblen Rohren sowie Materialverstärkung, Dachfilzen („Ruberoid“), 

Laminaten (als Schutzüberzug) und Dämmmaterialien verwendet werden. 

 

Seit Bottinga und Weill (1970) vorgeschlagen hatten, die Dichte einer Silikatschmelze 

in 2- oder 3-Elementsystemen zur Bestimmung des partiellen Molvolumens einer 

Oxidkomponente heranzuziehen, wurden in der einschlägigen Literatur mehrere Modelle 

diesbezüglich vorgestellt. Darauf aufbauend wurde die Dichte von 8 Zink-haltigen 

Silikatschmelzen im Temperaturintervall von 1363 bis 1850 K ohne Schutzatmosphäre 

bestimmt. Die gewählten Schmelzzusammensetzungen (Natrium-Di-Silikat [NS2] - ZnO; 

Anorthit-Diopsid [im 1 atm-Eutektikum-Verhältnis] - ZnO; und Diopsid-Petedunnit) wurden 
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auf Grundlage des existierenden, experimentellen Datensatzes, ihrer petrologischen Relevanz 

und des unterschiedlichen strukturellen Zustands des ZnO ausgewählt. Die ZnO-

Konzentration betrug bis zu 25 mol % für Natriumdisilikat und Petedunnit sowie 20 mol % 

für die Anorthit-Diopsid-Mischung. Das molare Volumen und der Ausdehnungskoeffizient 

wurde für alle Proben bestimmt. Erstere nehmen mit zunehmendem ZnO-Gehalt ab. Das 

partielle Molvolumen von ZnO, bestimmt über volumetrische Untersuchungen, war für alle 

Proben innerhalb der Fehlergrenzen konstant und wurde bei 1500 K mit 13.59 +/- 0.55 

cm3/mol bestimmt. Die Ergebnisse der volumetrischen Untersuchungen lieferten keinen 

Hinweis auf einen Einfluss des Alkalien- oder Aluminiumgehalts auf die Koordination von 

ZnO. 

Das hier bestimmte partielle Molvolumen von ZnO kann in Mehrelementmodelle 

eingebunden werden, die zur Vorhersage des Volumens einer Silikatschmelze herangezogen 

werden. Hochtemperaturdichtebestimmungen ZnO-haltiger Silikatschmelzen zeigen, dass ein 

einzelner Wert ausreicht, um die volumetrischen Eigenschaften dieser Komponente zu 

beschreiben. Die Anwesenheit von Alkalien und/oder Aluminium scheint das partielle 

Molvolumen von ZnO innerhalb des untersuchten Temperaturintervalls nicht zu 

beeinträchtigen. Weiterhin gibt es keinen volumetrischen Hinweis auf eine 

zusammensetzungsabhängige Veränderung der Strukturelle Rolle von ZnO. 

Als weitere physikalische Eigenschaft wurde im Rahmen der vorliegenden Arbeit die 

thermisch bedingte Ausdehnung von 10 Schmelzzusammensetzungen innerhalb des Anorthit-

Wollastonit-Gehlenit (An-Wo-Geh)-Dreiecks untersucht. Da bis dato keine experimentellen 

Daten der thermischen Expansivität im Temperaturfeld unterkühlter Schmelzen existierten, 

konzentrierte sich diese Arbeit auf die Untersuchung dieses Parameters mittels einer 

Kombination kalorimetrischer und dilatometrischer Methoden. 

Die Volumina bei Raumtemperatur wurden nach dem Tauchprinzip von Archimedes 

bestimmt. Hierfür wurden bei 298 K Gläser verwendet, die zuvor mit einer Abkühlrate von 10 

K/min abgeschreckt worden waren. 

Der thermische Ausdehnungskoeffizient des Glases im Temperaturintervall von 298 K 

bis zum Glasübergang wurde mit einem Dilatometer gemessen, die Warmkapazität zwischen 

298 und 1135 K mittels dynamischer Differenzkalorimetrie. Der thermische 

Ausdehnungskoeffizient und die spezifische Wärme wurden bei einer Aufheizrate von 10 

K/min an Gläsern gemessen, die vorher mit derselben Rate abgekühlt worden waren. Die 

Dichte der unterkühlten Schmelze, das molare Volumen und die molare thermische 

Ausdehnung wurden indirekt durch dilatometrische und kalorimetrische Messungen 
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bestimmt, unter der Annahme, dass die Kinetik der Enthalpie- und der Volumen- Relaxation 

gleich sind. 

Die für die unterkühlten Schmelzen ermittelten Daten wurden verglichen mit Werten, 

die die Modelle von Lange & Carmichael (1987), Courtial und Dingwell (1995) und Lange 

(1997) vorhergesagt hatten. Der beste lineare Fit kombiniert die im Rahmen dieser Arbeit 

experimentell ermittelten Werte und die Vorhersagen des Modells von Courtial & Dingwell 

(1995). 

Die Kombination dilatometrischer und kalorimetrischer Meßmethoden zur 

Bestimmung der thermischen Ausdehnung unterkühlter Schmelzen vergrößert das abdeckbare 

Temperaturintervall beträchtlich und verbessert dadurch die Präzision und das Verständnis 

der thermodynamischen Prozesse in Ca-Al-Si-Schmelzen. Diese erhöhte Genauigkeit liefert 

klare Hinweise auf eine Temperaturunabhängigkeit der Schmelzausdehnung im System An-

Wo-Geh. Dies steht im deutlichen Gegensatz zu den ermittelten Ergebnissen im Anorthit-

Diopsid-System und wirft die Frage auf, welchen kompositionellen bzw. strukturellen 

Ursprung die Temperaturabhängigkeit der thermischen Ausdehnung in mehrelementigen 

Silikatschmelzen hat. 

Darüber hinaus wurden das partielle Molvolumen und die thermische Ausdehnung von 

10 Proben der An-Wo-Geh-Mischkristallreihe bestimmt. Die gewonnenen Ergebnisse sind in 

existierende Mehrelement-Modelle zur Vorhersage des Volumens von Silikatschmelzen 

eingeflossen. Die ermittelten Volumina unterkühlter Schmelzen bei 

Glasübergangstemperaturen (1135-1200 K) und darüber wurden so kombiniert, dass man die 

thermische Ausdehnung temperaturunabhängig ermitteln konnte. 

Aufbauend auf den ermittelten Ergebnissen und in der Literatur genannter Werte ist 

der Schluss zulässig, dass die thermische Ausdehnung von Schmelzen sowohl binärer als auch 

ternärer Systeme bei Atmosphärendruck temperaturunabhängig ist. Wenn man 

Hochtemperatur-Dichtedaten aus der Literatur mit Ausdehnungsdaten bei Tsc kombiniert, 

kann man ein großes Temperaturintervall abdecken. Im An-Wo-Geh-System gibt es in diesem 

Temperaturintervall keinen volumetrischen Hinweis auf eine temperaturunabhängige 

thermische Ausdehnung. 

 

In einer weiteren Versuchsreihe wurde zum ersten Mal überhaupt die thermische 

Ausdehnung dreier natürlicher, magmatischer Proben im Temperaturbereich von 298-1803 K 

bestimmt. Die Proben stammen vom Vesuv (Tephriphonolit, Ausbruch von 1631), Ätna 

(Trachybasalt, Ausbruch von1992) und Slapany (Basanit, oligozäner-miozäner Lavastrom). 
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Die Niedrigtemperatur-Volumina wurden durch Dichtemessungen an Gläsern bestimmt, die 

mit 5 K/min auf 298 K abgekühlt worden waren. Die thermische Ausdehnung der Gläser 

wurde oberhalb 298 K bis zum jeweiligen Glasübergangsintervall bestimmt. Das Volumen 

der unterkühlten Schmelzen und die molare thermische Ausdehnung wurden durch 

dynamische Differenzkalorimetrie und dilatometrische Messungen bestimmt. Zu diesem 

Zweck wurde angenommen, dass sich die Enthalpie-Kinetik und die Scherrelaxation 

entsprechen (Webb, 1992). Die Hochtemperaturdichte wurde nach dem Prinzip von 

Archimedes mit einem Platin-Lot gemessen. Zusätzlich wurde der Oxidationsgrad von Eisen 

nasschemisch bestimmt. Zu diesem Zweck wurden in regelmäßigen Temperaturabständen 

während der Dichtemessung kleine Schmelztropfen durch kurzes Eintauchen einer Al2O3-

Stange entnommen. Die gemessenen Dichtewerte wurden verglichen mit Werten, die mit dem 

Modell von Lange & Carmichael (1987) und Lange (1997) berechnet worden waren. 

Die ermittelten Werte für das Volumen einer Flüssigkeit nahe des Glasübergangs (993 

- 1010 K) und bei Temperaturen von unterkühlten Schmelzen (1512 - 1803 K) wurden 

zusammengefügt, um den Einfluss der Temperatur auf das Ausdehnungsverhalten im 

Temperaturbereich von unterkühlten und stabilen Flüssigkeiten zu veranschaulichen. Die 

vorliegenden Ergebnisse bestätigen die Untersuchungen von Knoche et al. (1992a, 1992b), 

Toplis & Richet (2000), Liu & Lange (2001) und Gottsmann & Dingwell (2002). Die 

Molvolumina weisen in der Regel auf eine negative Abhängigkeit der Ausdehnung von der 

Temperatur hin. Die thermische molare Ausdehnung der Gläser nimmt mit steigendem SiO2-

Gehalt (Basalte/Basanite bis Tephri-Phonolite) zu, wobei dieser Anstieg im selben Maße für 

unterkühlte Schmelzen wie für die dazugehörigen Gläser zu beobachten ist. Im Gegensatz 

dazu nimmt die molare thermische Ausdehnung der Schmelzen oberhalb des Liquidus mit 

zunehmendem SiO2-Gehalt ab. Oberhalb des Glasübergangs konnte für alle untersuchten 

Proben eine nicht-lineare Abhängigkeit des Molvolumens festgestellt werden. Die 

entsprechenden Werte zwischen Temperaturen knapp oberhalb des Glasübergangs bis etwa 

1873 K können mit einer nicht-linearen logarithmischen Kurve vorhergesagt werden. 

Im Rahmen der vorliegenden Arbeit wurden die Ausdehnung und das Molvolumen 

relativ basischer Proben untersucht. Die Untersuchung von SiO2-reicheren Proben ist 

experimentell sehr schwierig, da die hohe Viskosität die Verwendung von Immersions-

Meßmethoden erschwert oder unmöglich macht. Man kann das Problem umgehen, indem man 

die Hochtemperatur-Dichte an Proben misst, die in einem Magnetfeld oder heißen Gas- oder 

Luftstrom schweben. Derartige Untersuchungen sollten in Zukunft mit Nachdruck betrieben 

werden, da sie wichtige Informationen liefern würden, die zu einem besseren Verständnis des 
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Verhaltens hochviskoser Flüssigkeiten beitragen würden.  

 

Abschließend wurde eine neue Methode zur Viskositätsmessung wasserfreier Proben 

mit großer kompositioneller Bandbreite entwickelt. Sie erlaubt die Untersuchung von 

Ryolithen, Trachyten, Moldaviten, Andesiten, Latiten, Pantelleriten, Basalten und Basaniten. 

Mit Hilfe der Mikropenetration und der konzentrischen Zylinder-Viskosimetrie kann eine 

Viskositätsbandbreite von 10-1 bis 1012 Pas und eine Temperaturbandbreite von 973 bis 1923 

K abgedeckt werden. Zusammen mit Literaturwerten bilden die so ermittelten Ergebnisse nun 

eine große Datenmenge von ca. 800 Datenpunkten von 44 gut untersuchten 

Schmelzzusammensetzungen. Mit dieser Datenmenge konnte das Modell von Giordano & 

Dingwell (2003a) zur Vorhersage der Viskosität natürlicher silikatischer Schmelzen verfeinert 

werden. Die vorliegenden neuen Ergebnisse zeigen deutlich, dass 

1) die Abhängigkeit von Viskosität und Temperatur mit der VFT-Gleichung über den 

gesamten untersuchten Bereich an chemischer Zusammensetzung sehr gut nachvollzogen 

werden kann, 

2) die Verwendung eines konstanten Wertes „A“ der VFT-Gleichung bei hohen 

Temperaturen von den experimentellen Ergebnissen bestätigt wird, 

3) die Viskosität stark von der chemischen Zusammensetzung abhängt und eine 

Einteilung der untersuchten Proben in 3 Gruppen (peralkalisch, metaluminös, peraluminös) 

zur Folge hat, und 

4) die Viskosität einer metaluminösen Schmelze sehr gut mathematisch mit einen 

kompositionellen Parameter (SM) beschrieben werden kann. Dies gilt nicht im gleichen Maße 

für peralkalische und peraluminöse Proben. Für Letztere wurde ein temperaturabhängiger 

Parameter auf Grundlage des Alkalienüberschusses (relativ zu Aluminium) in das Modell 

aufgenommen. Daraufhin konnten sämtliche experimentellen Ergebnisse mit einem Fehler 

von weniger als 5 % reproduziert werden. 

Auf Grundlage der umfassenden Datenbank aus eigenen und Literaturwerten wurde 

die Temperaturabhängigkeit des Viskosität Verhaltens von „langen“ und „kurzen“ Schmelzen 

über eine große kompositionelle Bandbreite bestimmt. Es konnten drei unterschiedliche 

Probengruppen mit unterschiedlichen Verhalten bestimmt werden: peralkalisch, metaluminös, 

peraluminös. 

Diese Daten erlauben eine Verfeinerung des Modells von Giordano & Dingwell (2003a) 

durch  

1) eine größere, dem Modell zugrunde liegende Datenmenge,  
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2) eine Ausweitung der kompositionellen Bandbreite,  

3) eine Ausweitung der Temperaturbandbreite, und 

4) die Erkenntnis, dass der präexponentielle Faktor A (und damit die Viskosität der 

Schmelze) bei unendlich hohen Temperaturen unabhängig von der chemischen 

Zusammensetzung einen gemeinsamen, bisher unbekannten Wert (A = -4,07) annimmt.  

Die Datenmenge für peralkalische und peraluminöse Proben im Temperaturintervall 

949 - 2653 K wurde stark vergrößert. Es zeigte sich weiterhin, dass die vereinfachende 

Annahme eines zusammensetzungsunabhängigen Wertes für "A" zulässig ist. Diese 

Verbesserung zeigt die starke Verknüpfung der einzelnen Datenreihen und vergrößert damit 

die Gesamtaussagekraft. Es konnte gezeigt werden, dass der strukturelle Parameter SM 

(Giordano & Dingwell, 2003a) nur auf metaluminöse, nicht aber auf peralkalische und 

peraluminöse Proben angewendet werden kann. Dies lässt den Schluss zu, dass Unterschiede 

im rheologischen Verhalten auf grundlegende strukturelle Unterschiede in diesen drei 

Schmelzzusammensetzungen zurückzuführen sind. Deshalb wurde ein weiterer 

kompositioneller Parameter (AE) in das "SM-Modell" (Gleichung 7.7) eingeführt, um den 

Einfluss des Alkalienüberschusses in Bezug auf den Aluminiumgehalt auszudrücken. Dieses 

Modell reproduziert die gesamte experimentelle Datenmenge innerhalb des statistischen 

Qualitätsfaktors RMSE von 0,45 logarithmischen Einheiten. Das vorliegende Modell eignet 

sich daher sehr gut zur Vorhersage der Viskosität wasserfreier Silikatschmelzen.
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Abstract 

The shear viscosity, density, thermal expansivity and specific heat capacity are 

important factors controlling the morphology, rheology, and texture of volcanic flows and 

deposits. These physical properties of silicate melts largely depend on chemical composition, 

water content, crystal content, bubble content and stress applied to the melt. Recently, it has 

been recognized that the applied stress plays an important role in the so called “glass 

transition” area of silicate melts. This kinetic boundary between brittle and ductile behavior 

affects the eruptive style. Thorough knowledge of the physical processes that occur at this 

brittle/ductile transition can affect the decision making of governments during volcanic crises 

and help to reduce and/or avoid loss of life and assets. Scientific knowledge from this 

research can be directly applied to the geomaterial industry. In addition, natural magmatic 

rocks are the major raw material in the production of microfibres and continuous fibres. 

Compared to normal glass fibres, rock fibres have a remarkable high temperature endurance, 

acid and alkali resistance and anti-heat impact. Rock products can be used as substitutes for 

metal and timber. They are likely to become more widely used in the near future. Further use 

for natural magmatic rocks include crushed stone, concrete aggregate, railroad ballast, 

production of high quality textile fibres, floor tiles, acid-resistant equipment for heavy 

industrial use, rockwool, basalt pipers, basalt reinforcement bars, basalt fibre roofing felt 

(ruberoid), basalt laminate (used as a protective coating), heat-insulating basalt fibre materials 

and glass wool (fibre glass). 

 

Since Bottinga and Weill (1970) first suggested that the density of melts in two or 

three component systems could be used to determine partial molar volumes of oxide 

components in silicate liquids, several models based upon this approach have been proposed 

in the Earth sciences literature. Considering that knowledge the densities of 8 Zn-bearing 

silicate melts have been determined, in equilibrium with air, in the temperature range of 1363 

to 1850 K. The compositional joins investigated [sodium disilicate (NS2)- ZnO; anorthite-

diopside 1 atm eutectic (AnDi)-ZnO; and diopside-petedunnite] were chosen based on the 

pre-existing experimental density data set, on their petrological relevance, and in order to 

provide a test for significant compositionally induced variations in the structural role of ZnO. 

The ZnO concentrations investigated range up to 25 mol% for sodium disilicate, 20 mol% for 

the anorthite-diopside 1 atm eutectic, and 25 mol% for petedunnite. Molar volumes and 

expansivities have been derived for all melts. The molar volumes of the liquids decrease with 
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increasing ZnO content. The partial molar volume of ZnO derived from the volumetric 

measurements for each binary system is the same within error. A multicomponent fit to the 

volumetric data for all compositions yields a value of 13.59(0.55) cm3/mol at 1500 K. I find, 

no volumetric evidence for compositionally induced coordination number variations for ZnO 

in alkali-bearing vs. alkali-free silicate melts nor for Al-free vs. Al-bearing silicate melts.  

The partial molar volume of ZnO determined here may be incorporated into existing 

multicomponent models for the prediction of silicate melt volume. High temperature density 

determinations on ZnO-bearing silicate melts indicate that a single value for the partial molar 

volume of ZnO is sufficient to describe the volumetric properties of this component in silicate 

melts. The presence of alkalies and Al does not appear to influence the partial molar volume 

of ZnO within the temperature range investigated here. There is no volumetric evidence 

across this temperature range presented for composition to influence the coordination 

polyhedron of ZnO in silicate melts.  

 

The next physical property to be studied was thermal expansivity. Ten compositions 

from within the anorthite-wollastonite-gehlenite (An-Wo-Geh) compatibility triangle were 

investigated. Due to the lack of information about the thermal expansivities at supercooled 

liquid temperatures this study focused on the measurement of thermal expansivity using a 

combination of calorimetric and dilatometric methods. 

The volumes at room temperature were derived from densities measured using the 

Archimedean buoyancy method. For each sample density was measured at 298 K using glass 

that had a cooling-heating history of 10-10 K min-1.  

The thermal expansion coefficient of the glass from 298 K to the glass transition interval was 

measured by a dilatometer and the heat capacity was measured using a differential scanning 

calorimeter from 298 to 1135 K. The thermal expansion coefficient and the heat flow were 

determined at a heating rate of 10 K min-1 on glasses that were previously cooled at 10          

K min-1. 

Supercooled liquid density, molar volume and molar thermal expansivities were 

indirectly determined by combining differential scanning calorimetric and dilatometric 

measurements assuming that the kinetics of enthalpy and shear relaxation are equivalent. 

The data obtained on the supercooled liquids were compared to high-temperature predictions 

from the models of Lange and Carmichael (1987), Courtial and Dingwell (1995) and Lange 

(1997). The best linear fit combines the supercooled liquid data presented in this study and the 

high temperature data calculated using the Courtial and Dingwell (1995) model. 
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This dilatometric/calorimetric method of determining supercooled liquid molar 

thermal expansivity greatly increases the temperature range accessible for thermal expansion. 

It represents a substantial increase in precision and understanding of the thermodynamics of 

calcium aluminosilicate melts. This enhanced precision demonstrates clearly the temperature 

independence of the melt expansions in the An-Wo-Geh system. This contrasts strongly with 

observations for neighboring system such as Anorthite-Diopside and raises the question of the 

compositional/structural origins of the temperature dependence of thermal expansivity in 

multicomponent silicate melts. 

In addition, the partial molar volumes and the thermal expansivities of 10 samples 

from within the An-Wo-Geh compatibility triangle have been determined. They have been 

incorporated into existing multicomponent models in order to predict silicate melt volume. 

The resulting supercooled liquid volumes near glass transition temperatures (1135 - 1200 K) 

and at superliquidus temperature were combined to yield temperature independent thermal 

expansivities over the entire temperature range.  

In light of results presented in this study, together with the published data, it seems 

that binary and ternary systems have temperature independent thermal expansivities from the 

supercooled liquid to the superliquidus temperature at 1 atmosphere. By combining the high 

temperature densitometry data (i.e., above liquidus) from the literature with volume and 

expansivity data obtained at Tsc, a wide temperature range is covered. There is no volumetric 

evidence across this temperature range for temperature independent thermal expansivities in 

the An-Wo-Geh compatibility triangle. 

 

Furthemore, the thermal expansivities of three multicomponent glasses and liquids 

have been obtained over a large temperature interval (298 - 1803 K) which involved 

combining the results of low and high temperature measurements. The sample compositions 

investigated were derived from three natural lavas; Vesuvius 1631 eruption, Etna 1992 

eruption and an Oligocene-Miocene lava flow from Slapany in the Bohemian massif. The 

original rocks are tephri-phonolite, trachybasalt and basanite, respectively. This is the first 

time this calorimetric/dilatometric method has ever been applied to natural magmatic melts. 

The low temperature volumes were derived from measurements of the glass density of each 

sample after cooling at 5 K.min-1 at 298 K, followed by measurements of the glass thermal 

expansion coefficient from 298 K to the samples´ respective glass transition interval. 

Supercooled liquid volumes and molar thermal expansivities were determined by combining 

scanning calorimetric and dilatometric measurements, assuming that the kinetics of enthalpy 
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and shear relaxation are equivalent (Webb, 1992). High temperature densities were measured 

using Pt double bob Archimedean densitometry. In addition, the oxidation state of iron was 

analyzed using a wet chemistry method. Small amounts of samples were taken from the 

liquids using a “dip” technique at regular temperature steps during high temperature 

densitometry. The measured high temperature densities have been compared with predicted 

densities across the same temperature interval calculated using the multicomponent density 

models of Lange and Carmichael  (1987) and Lange  (1997).  

The resulting data for liquid volumes near glass transition temperatures (993 - 1010 K) 

and at super-liquidus temperatures (1512 - 1803 K) are combined to yield temperature 

dependant thermal expansivities over the entire supercooled and stable liquid range. These 

results confirm the observation of Knoche et al. (1992a); Knoche et al. (1992b); Toplis and 

Richet (2000); Liu and Lange (2001); Gottsmann and Dingwell (2002) of the temperature 

dependence of thermal expansivity. The molar volumes indicate, in general, a significant 

negative temperature dependence of the expansivity. The thermal molar expansivity of the 

glasses increase from SiO2-poor (basalt-basanite composition) to relatively SiO2-rich melts 

(tephri-phonolite composition). The thermal molar expansivity at supercooled liquid 

temperatures increases in the same manner as the glasses. In contrast, the thermal molar 

expansivity of the superliquidus liquid decrease from SiO2-poor to relatively SiO2-rich melts. 

Non-linear dependency of molar volume has been observed for all studied samples above the 

glass transition area. Molar volume from just above the glass transition area to about 1873 K 

can be predicted by a non-linear logarithmic curve.  

This study examined the expansivities and molar volumes of relatively basic 

compositions. Extending such a study to more SiO2-rich, but still geologically relevant, 

compositions remains a challenge, because the high viscosities of such melts preclude the use 

of immersion techniques. This problem can be solved using a high temperature densitometry 

where the volume is measured on levitated sample. I would like to urge studies of this sort in 

the future. Results from such studies should provide important information regarding a 

number of geological processes, which occur in such extremely high viscous liquids. 

 

A new viscosity measurement for melts spanning a wide range of anhydrous 

compositions including: rhyolite, trachyte, moldavite, andesite, latite, pantellerite, basalt and 

basanite are discussed in the last chapters. Micropenetration and concentric cylinder 

viscometry measurements cover a viscosity range of 10-1 to 1012 Pas and a temperature range 

from 973 to 1923 K. These new measurements, combined with other published data, provide a 
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high-quality database comprising ~800 experimental data on 44 well -characterized melt 

compositions. This database is used to recalibrate the model proposed by Giordano and 

Dingwell [Giordano, D., Dingwell, D. B., 2003a. Non-Arrhenian multicomponent melt 

viscosity: a model. Earth Planet. Sci. Lett. 208, 337–349] for predicting the viscosity of 

natural silicate melts. The recalibration shows that: 

a) the viscosity (η)–temperature relationship of natural silicate liquids is  very well 

represented by the VFT equation [log η=A+B/ (T−C)] over the full range of viscosity 

considered here, 

b) the use of a constant high-T limiting value of melt viscosity (e.g., A) is fully consistent 

with the experimental data. 

There are 3 different compositional suites (peralkaline, metaluminous and 

peraluminous) that exhibit different patterns in viscosity, the viscosity of metaluminous 

liquids is well described by a simple mathematical expression involving the compositional 

parameter (SM) but the compositional dependence of viscosity for peralkaline and 

peraluminous melts is not fully controlled by SM. For these extreme compositions we refitted 

the model using a temperature-dependent parameter based on the excess of alkalies relative to 

alumina (e.g., AE/SM). The recalibrated model reproduces the entire database to within 5% 

relative error. 

On the basis of this extended database the T-variation of the viscous response of 

strong and fragile liquids within a wide range of compositions shows three clearly contrasting 

compositional suites (peralkaline, metaluminous and peraluminous). As a result, I present an 

extended model to calculate the viscosity of silicate melts over a wide range of temperatures 

and compositions. This model constitutes a significant improvement with respect to the 

Giordano and Dingwell (2003a) study in that:  

1) The number of experimental determinations over which the model is calibrated is larger.  

2) The range of investigated compositions is larger. 

3) The investigated temperature range is larger. 

4) The assumption is made that at infinite temperature, the viscosity  of  silicate melts 

converges to a common, but unknown value of the pre-exponential factor (A=−4.07, Equation 

(7.1)). In particular the compositional range involves a large number of viscosity 

determinations for peralkaline and peraluminous compositions in a temperature interval 

between 949 and 2653 K. Furthermore, it is shown that the assumption of a common value of 

the pre-exponential parameter A produces an equally good representation of the experimental 

data as that produced by each melt having its own specific A-value. This optimization also 
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induces a strong coupling between data sets that stabilizes the range of solutions and allows  

the different rheological behaviour of extreme compositions (peralkaline and peraluminous 

vs. metaluminous) to be discriminated. It was demonstrated that, although the parameter SM 

(Giordano and Dingwell, 2003a) can be used to model compositional controls on the 

viscosities of metaluminous liquids, it does not capture the viscosity of peralkaline and 

peraluminous liquids. The differences in the rheological behaviour of these extreme 

compositions reflect important differences in the structural configuration of metaluminous, 

peralkaline and peraluminous melts. Subsequently, a second regression of the experimental 

data was performed involving a second compositional parameter (AE) that accounts for the 

excess of alkali oxides over the alumina. Incorporating this temperature-dependent 

compositional parameter (i.e., AE) into the SM-based model (Equation 7.7) appears to 

account for the anomalous rheological behaviour of peralkaline and peraluminous liquids. The 

resulting model reproduces the entire experimental database to within an average RMSE of 

0.45 log units. The model presented here is recommended for the estimation of the viscosity 

of anhydrous multicomponent silicate melts of volcanic interest. 
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1.  Introduction 

A molecular liquid below its melting point will crystallize if the process of cooling is 

relatively slow. At a certain temperature, the average kinetic energy of molecules no longer 

exceeds the binding energy between neighbouring molecules and growth of an organized 

solid crystal begins. Formation of an ordered system takes a certain amount of time since 

molecules must move from their current location to energetically preferred point at crystal 

nodes. However, the cooling process can also be relatively fast and as temperature falls, 

molecular motion slows down. So called supercooled liquid appears at temperature above the 

glass transition. It is formed by the process of fast cooling of the liquid below its melting  

point, without it becoming solid. If the fast cooling process continues, molecules never reach 

their destination - the substance enters into dynamic arrest and a disordered, glassy solid 

forms. Such arrest apparently takes place across a range of temperatures, which is called the 

glass transition interval, Tg. Glass is a uniform amorphous solid material, usually produced 

when the viscous molten material cools to below its glass transition temperature, without 

sufficient time for a regular crystal lattice to form. Glass in its pure form is a transparent, 

strong, hardwearing, essentially inert, and biologically inactive material which can be formed 

with very smooth and impervious surfaces. However, glass is brittle and will break into sharp 

shards. This property of glass was observed by Humans at very early stage of our history. 

Naturally occurring glass, such as obsidian, has been used since the Stone Age to make 

primitive stone tools. As time passed, it was discovered that if glass is heated until it becomes 

semi-liquid, it can be shaped and left to cool in a new, solid shape. Glass making instructions 

were first documented in Egypt around 1500 BC when glass was used as a glaze for pottery 

and other items. In the first century BC at the eastern end of the Mediterranean the technique 

of blowing glass was developed. During the Roman Empire many forms of glass were 

created, usually for vases and bottles where the glass was made from sand, plant ash and lime. 

Our ancestors quickly realized that glass is strong, unreactive and, in general, a very useful 

material. Today, we tend to take glass for granted. Many household items are made from 

glass, such as drinking glasses, bowls, bottles, windows, light bulbs, mirrors, cathode-ray 

tubes and flat screens of monitors, televisions and mobiles. In science, flasks, test tubes, 

lenses and many other essential pieces of laboratory equipment are made of glass.  

Clearly, there is a need for detailed studies and analyses of the behavior and properties 

of glass. Numerical or analytical models are frequently applied to predict these properties.  
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In this study I have characterized and parameterized physico-chemical properties of 

silicate melts and glasses. The aim of this study was to contribute in determining the V-T 

(volume-temperature) and T-t (temperature-time) relationships relevant during technological, 

petrological and volcanological processes using thermoanalytical techniques. Dilatometry and 

calorimetry are applied to determine the volume-temperature dependence of silicate liquids 

within the anorthite-wollastonite-gehlenite compatibility triangle. A new density model for 

CAS system is introduced.  

Furthemore, the thermal expansivities of three multicomponent glasses and liquids 

have been obtained over a large temperature interval. Physical and chemical properties of 

glass can be modified or changed with the addition of other compounds. Taking into account 

this knowledge and based on the assumption that the density of silicate melts in two or three 

component system could be used to determine partial molar volumes of oxide component, an 

8 Zn-bearing silicate melts densities were synthesized and measured. The derived partial 

molar volume of ZnO may be incorporated into existing multicomponent models for the 

prediction of silicate melt volume. 

Understanding how the magma below an active volcano evolves with time is crucial 

for hazard assessment and risk mitigation in these areas. The viscous response of magmatic 

liquids to stresses applied to the magma body controls the fluid dynamics of magma ascent. 

Approximately half a billion people live in close proximity to a historically active volcano. 

Catastrophic volcanic crises have occurred in historic and even recent times all around the 

word (e.g., Vesuvius, 79 A.D. [Italy], Laki, 1792-94 [Iceland], Mt. Unzen, 1792 and 1990-95 

[Japan], Tambora, 1815 and Krakatao, 1883 [Indonesia], Mt. Pelee, 1902 [France], Mt. St. 

Helens, 1980 [USA], El Chichon, 1982 [Mexico], Nevado del Ruiz 1986 [Colombia],  

Pinatubo, 1991 [Phillipines], Soufriere Hills, 1995-2002 [Montserrat, U.K.], etc.). Clearly 

there is a need for detailed studies and analysis of the eruptive record of volcanoes adjacent to 

populated areas to assess hazards and risks during potential volcanic crises. 

However, the current viscosity models for describing magmas rheology are still poor 

and limited to a very restricted compositional range. Therefore, new viscosity measurements 

for melts spanning a wide compositional range were performed. On the basis of an extended 

database comprising the viscosity of natural multicomponent silicate melts a new viscosity 

model is introduced in the last chapter. 
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2.  Theoretical Background 

2.1. Relaxation theory 
It is crucial that the enthalpy relaxation processes at the glass transition interval are 

understood, in order to interprete the results derived from dilatometry and differential 

scanning calorimetry measurements. However, initially we need to consider the evolution of 

enthalpy in a glass-forming liquid as it is cooled to form the glass state, in order to understand 

what we are measuring when we reheat the sample from the glass state back across the glass 

transition. 

The work presented here deals with two properties, the volume and enthalpy of 

structurally relaxed and un-relaxed silicate melts. The transition between these two states is 

known as the glass transition. The glass transition is the temperature interval over which the 

properties of a melt change from a liquid-like state to a solid-like (glassy) state (Dingwell and 

Webb, 1989; 1990; Moynihan, 1995). In terms of rheology this is the brittle-ductile transition, 

a change from an elastic response to stress and strain to a viscous response. In glassy lava 

flows this transition represents the freezing, or cessation of flow. The glass transition 

temperature interval can be recognised by comparing the rate at which a property re-

equilibrates at a new temperature after a change in temperature cooling, with the rate at which 

it was cooled. The timescale (τ) for structural relaxation of a given property (e.g. enthalpy) 

can be approximated using the Maxwell (1867) relationship: 

∞

=
G

Nητ            (2.1) 

 

where G∞ is the shear modulus with a value of log10(Pa) = 10 ± 5 (Dingwell and Webb, 1990) 

and ηN is the Newtonian shear viscosity. The cooling of a silicate liquid can be viewed as a 

series of temperature steps ∆T followed by isothermal holds with a duration of ∆t. In the 

liquid field (equilibrium conditions) the value of τ for enthalpy is orders of magnitude smaller 

than ∆t resulting in instantaneous re-equilibration of the property upon cooling. As the 

temperature decreases during further cooling the viscosity increases and as a result τ increases 

until at a given temperature τ exceeds ∆t. At this point enthalpic relaxation is unable to run to 

completion in the time available and the system deviates away from the equilibrium 

conditions and enters into the glass transition temperature interval (Figure 2.1). As the 

temperature decreases further τ becomes increasingly greater than ∆t until a temperature is 
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reached where the configuration of the enthalpy is frozen into the glass state. The temperature 

at which the enthalpy is frozen into the glass state is known as the limiting fictive temperature 

and it defines the low temperature end of the glass transition (Figure 2.1.). 

 

The fictive temperature (Tf) concept was introduced by Tool (1946) in order to 

describe the evolution of a property that depends on the structural configuration during the 

heating or cooling of a glass or a liquid. In the liquid field at high temperatures, above the 

glass transition, the system is at equilibrium, so Tf = T. As the system is cooled into the glass 

transition interval Tf gradually evolves away from equilibrium until it becomes constant (Tf = 

constant) and is at disequilibrium in the glass field (Figure 2.2). It is this constant Tf that is 

frozen into the glass state and is known as the limiting Tf. The temperature at which Tf evolves 

away from equilibrium depends on the rate of cooling (Narayanaswamy, 1971; 1988; DeBolt 

et al., 1976; Scherer, 1986). If the cooling rate is rapid the departure from equilibrium occurs 

at higher temperatures and as a result a higher limiting Tf is frozen into the glass state. At 

slower cooling rates the system remains in equilibrium to a lower temperature and thus a 

lower limiting Tf  results. 

FIGURE. 2.1.  The evolution of Tf of a silicate melt upon cooling from equilibrium (the liquid state where Tf
= T) to disequilibrium (the glass or solid state where Tf = constant).  This constant temperature is frozen into
the glass structure and is known as the limiting Tf.  The deviation from equilibrium is dependent on the
cooling rate.  Upon reheating across the glass transition the evolution of Tf displays a hysterisis whose path is
dependent on the heating rate, the cooling rate, the temperature-dependent structure and its temperature
dependent relaxation time. 
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In principle, there are two cooling scenarios of the silicate liquid. The property of 

silicate liquid is at equilibrium during slow cooling until it reaches its melting temperature. At 

this temperature liquid starts to crystallize which corresponds to the discontinuities in first 

(enthalpy, volume, entropy) and second order (heat capacity, thermal expansion coefficient) 

thermodynamics properties (Figure 2.1). If cooled rapidly the liquid may not crystallize, even 

at tens or hundreds degrees below the melting temperature. Instead the properties reach a 

supercooled liquid just above the glass transition temperature. On entering the glass transition 

interva the cooling path shows a sudden change in first and second order properties. The glass 

property Φ (e.g., volume, enthalpy) strongly depends on the thermal history (Figure 2.2). 

 

Now we can consider the evolution of Tf as the glass is reheated across the glass 

transition and then apply it to the process of enthalpic relaxation. Upon reheating of the glass 

Tf deviates away from the limiting Tf at the low-temperature onset of the glass transition and 

evolves back to equilibrium (Tf = T) in the liquid field.  However, there is a hysteresis 

between the cooling and heating curves (Figure 2.1).  The heating curve is dependent on the 

reheating rate, the cooling rate, the temperature-dependent structure and its temperature 

dependent characteristic relaxation time (DeBolt et al., 1976; Moynihan et al., 1976). The 

changes in fictive temperature as a function of temperature (∆Tf/∆T) can be monitored 

through measuring the first derivative of enthalpy (∆H/∆T), which is the heat capacity at 

T
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FIGURE 2.2. Schematic diagram showing the path of first order properties path with temperature. Cooling a
liquid “rapidly” below the melting temperature Tm may results in the formation of a supercooled (metastable)
or even disequilibrium glass conditions. The first order phase transition corresponding to the passage from a
liquid to crystalline phase is also shown. The transition from metastable liquid to glassy state is marked by the
glass transition that can be characterized by a glass transition temperature Tg. The vertical arrow in the picture
shows the first order property variation accompanying the structural relaxation if the glass temperature is hold
a T1. 
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constant pressure (cp). The cp of a material can be measured using a calorimeter and the 

method is outlined in Chapter 2.2.2. 

 

2.2. Structure of silicate melts 
The main building block in a silicate melt is SiO4

4- tetrahedra where Si4+ is in four-fold 

coordination. If the SiO4
4- tetrahedra are linked to each other by Si-O-Si linkages where one 

oxygen connects two neighbouring SiO4
4- tetrahedra, than the oxygen is defined as bridging 

(BO). A bridging oxygen can also bridge to tetrahedrally coordinated cations such as Al3+, 

Fe3+, B3+, Ti4+,Ge4+or P5+ which are called a network forming cations. However Al3+, Fe3+ and 

B3+ must be charge-balanced by either alkali or alkaline earth elements when they act as 

network formers. When an oxygen connects with a cation that is not tetrahedrally coordinated, 

then it is called a non-bridging oxygen (NBO). In addition to network forming, cations are 

also network modifiers or act to charge-balance in silicate melts. Network modifiers are K+, 

Na+, Ca2+, Mg2+ and Fe2+, which are octahedrally coordinated except when they charge-

balance for either Al3+, Fe3+ or B3+. When these cations charge-balance, they should not be 

viewed as a network modifier (Mysen, 1988). Furthermore, Al3+, Fe3+ and B3+ can also act as 

network modifiers. This occurs in the structure of the melts or glasses when there is an excess 

of Al3+, Fe3+ or B3+ to the amount of charge-balancing cations. These charge-balancing 

cations are in higher coordination and they are known as network intermediates.  

FIGURE 2.3.  The variation of the temperature derivative of fictive temperature ∆Tf/∆T through the glass
transition interval.  ∆Tf/∆T can be directly correlated to the temperature derivative of enthalpy ∆H/∆T; cp.  The
geometry of the reheating path depends on the prior cooling rate and it is this path that it is modelled in order to
determine this curve.  The temperature at which the peak of this path occurs is used to define the glass transition
temperature (Tg). 
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FIGURE 2.4. Schematic figure showing how to deal with
residual charges of oxygen. a) Two tetrahedra are ionically
bonded to a 2+ cation between them. b) The second way of
dealing with the negative charge on an oxygen is to
covalently bond it to a second silicon, thereby using the
oxygen at the corner of two different tetrahedra. The
dotted oxygen atom in diagram is thereby shared between
two adjacent tetrahedra. One of the extra electrons of the
shared oxygen is used by one silicon, the other electron is
used by the other. 

The results from the spectroscopic studies (e.g., NMR, Mössbauer, FTIR, RAMAN) 

show us that the structure of the melts and glasses is more or less polymerised. The degree of 

polymerisation is a function of the ratio of bridging to non-bridging oxygen. The number of 

NBO per tetrahedrally coordinated cation (NBO/T) can quantify the degree of polymerisation:  

 

tionpolymeriza
T

NBO
∝ degree       (2.2) 

A melt is fully polymerised when NBO/T = 0, and with increasing NBO/T the melts 

become gradually more depolymerised. The degree of polymerisation is calculated as: 

 

(2.3) 
 

where T is the total atomic abundance of tetrahedrally coordinated cation, Mi is the proportion 

of metal cation, after the proportion required for charge-balancing is subtracted, and n is the  

electrical charge of this cation (Mysen, 1988). 

 As the SiO4
4- tetrahedra are treated as a near rigid units, the properties and structural 

changes in silicate melts are mainly controlled by the changes of the angle in the T - O - T and 

by changes in the bond length and the bond strength between tetrahedral and polyhedral units. 

Therefore, the properties of silicate materials vary with these parameters. The knowledge of 

these parameters is essential in order to understand silicate melt and glass structure. 
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2.3. Viscosity 
Viscosity (η) is defined by Newton as the internal resistance to flow and assumed to be 

the proportionality between shear stress (τ) and strain rate (γ) (τ =ηγ). A silicate melt behaves 

Newtonian when the viscosity at a certain temperature is independent of changes in shear 

stress or strain rate. If the viscosity depends on the shear stress or strain rate, the melt behaves 

non-Newtonian. Silicate melts behaves non-Newtonian, only when the shear rate approches 

the relaxation rate. The viscosity is a function of temperature, pressure and bulk composition. 

For certain compositions it can also depend on the oxygen fugacity (Dingwell and Virgo, 

1987 and Mysen, 1988). At a fixed temperature it varies by orders of magnitude as a function 

of composition (Richet, 1984). An increase in temperature decreases the viscosity  since the 

structural rearrangements in the melt are easier because both the free volume and the 

configurational entropy increases (Richet, 1984). Most silicate melts show a non-Arrhenian 

behaviour, reflecting a non-linear relation between the logη vs. 1/T. In  general the viscosity 

at the glass transition is approximately equal to 1012 Pa s . 

Many attempts have been made to predict the viscosity as a function of both 

composition and temperature (e.g., Vogel, 1921; Tammann and Hesse, 1926; Fulcher, 1925; 

Bottinga and Weill 1972; Adam and Gibbs, 1965; Angell, 1985; Neuville et al., 1992; Richet 

and Bottinga, 1995; Richet et al., 1996; Dingwell et al., 1996; Hess et al., 1995; Hess et al., 

1996; Giordano and Dingwell, 2000). However, the mechanism for viscous flow of silicate 

melts is not fully understood. 

This study provides new viscosity measurements for melts spanning a wide range of 

anhydrous compositions, viscosities (10-1 to 1012 Pas) and temperatures (973 to 1923 K). 

These new measurements, combined with other published data, provide a high-quality 

database comprising ~ 800 experimental data on 44 well-characterized melt compositions. 

This database is used to recalibrate the Giordano and Dingwell (2003a) model for predicting 

the temperature-dependent viscosity of natural silicate melts over a much wider range of 

temperatures (949 - 2653 K) and melt compositions (e.g., strong to fragile behaviour). 

Micropenetration and concentric cylinder viscometry were used in this study. A detailed 

description of both techniques follow in the next chapter. The results and application of the 

new model proposed in this study are described in Chapter 7. 
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FIGURE 2.5. An altered
vertical dilatometer (Bähr®
DIL 802V and sketch of
iridium indenter is shown
on left. 

2.4. Experimental methods and analytical hardware  
2.4.1. Low temperature viscometry 

Micropenetration viscometry was applied to determine the low-viscosities of the lavas. 

The technique and hardware are described in detail by Hess et al. (1995) and Hess (1996). 

The quantification of the penetration of an iridium hemisphere into the sample allows the 

viscosity  to be calculated in the range 108.5 to 1012 Pa s via   

         (2.4) 

 

 

where 0.1875 is a geometric constant, r the 

radius of the hemisphere, P the applied force, 

a the penetration depth and t the experimental 

run time. The viscometer is calibrated against 

a lead-silica glass of the National Bureau of Standards (NBS 711) 

and a sodium-calcium-silica glass of the Deutsche Glastechnische 

Gesellschaft (DGG 1). 3 mm thick double polished glass disks 

were used for viscosity determinations. The accuracy of 

micropenetration viscosimetry is ±log10 0.23 Pa s, the precision of 

the measurements lies within ± log10 0.06 Pa s. 

 

 

2.4.2. High-temperature viscometry 

High-temperature viscosity determinations were performed in a DelTech® DT-31-RS 

box furnace heated by MoSi2 elements at air atmosphere. The sample was housed in a 

crucible, which was inserted into an alumina-silicium ceramic pedestal that ensured the 

sample was in the “hot zone” of the furnace. The height of the pedestal or the depth of the 

hole in which the crucible sat could be adjusted. The temperature profile of the final 

configuration was determined using a S-TYPE (Pt/Pt90-Rh10) thermocouple (shielded with 

platinum pipe-lid sheath), which was inserted directly into the  melt sample. Stable, vertical 

and radial temperature gradient of 1.8 °C.cm-1 were recorded. 

Viscosity was measured at a pressure of 1 bar in air with the concentric cylinder method. The 

samples were contained in cylindrical Pt80Rh20 crucible, 5.1 cm in height, with a 2.56 cm 

inner diameter and 0.1 cm wall thickness. The viscometer head, with which the viscosities 
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were measured, was a Brookfield model RVDT (Rotary Variable Displacement Transducer) 

with a full range torque of 7.2 x 10-2 N.m. In this study two types of spindles were used. Both 

were made from Pt80Rh20 with a circular cross-section and a 0.24 cm diameter stem. For more 

viscous melts the spindle had a diameter of 1.44 cm, a length of 3.32 cm and 45° conical ends 

to reduce end effects. For less viscous melts the spindle was 0.24 cm in diameter, 4.63 cm in 

length and did not have conical ends. The viscometer head drives the spindle at the range of 

constant angular velocity (0.5 to 100 rpm) and digitally records the torque exerted on the 

spindle by the sample. 

The spindle and head were calibrated for viscosity measurements using NSB SRM 711 

lead-silica glass for which the viscosity-temperature relationship is very well known. The 

precision of viscosity determination for this apparatus (±3% at the 2σ level, Dingwell, 1986) 

was derived from replication of viscosity determination of NSB SRM 711 involving 

successive immersions of the spindle and reoccupation of the temperature settings. The 

sample-bearing crucible was loaded through the bottom of the box furnace into the ceramic 

pedestal, such that one third of the crucible was within the pedestal. The viscosity spindle was 

connected to the reading head and lowered by a rack and pinion mechanism into the sample. 

The viscometry determinations were initiated by equilibrating the melt sample with 

air. The rotation speeds of the spindle required to reach equilibration for each sample were 20 

or 40 rpm depending on initial viscosity. The equilibration of melt sample was continuously 

monitored with a chart recorder that recorded the torque measured by the viscometer head as a 

function of time. For each sample, viscosity determination were initiated at the highest 

temperature and then made at successively lower temperatures. One hour was sufficient for 

equilibration of the sample over each 25-50 °C temperature decrease. During the decreasing 

temperature steps the thermal equilibrium was monitored with the chart recording of the 

sample viscosity. At the end of each step, when thermal equilibrium was reached, the melt 

glass were sampled using the “dip” technique (∼150 mg). The samples were quenched in 

water for further iron oxidation and structural state and compositional investigation.  

Torque measurements were made over a range of angular velocities for each sample. 

The obtained viscosities were independent of angular velocity in all cases. The measurements 

were continued with decreasing temperatures in steps until crystallization occurred or the 

limit of the apparatus was achieved. Crystallization during the final cooling step for each 

sample resulted in erratic viscosity readings and was easily confirmed by inspection of 

samples recovered at those times.  
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MoSi2 - element

Pt crucible

The last measurement of viscosity was always a redetermination of the highest 

temperature determination to test for experimental drift as a consequence of possible 

movement of pedestal, crucible or spindle, chemical change (loss of water, volatiles) and, last 

but not least, the decrease of surface inside the crucible by dip technique. No difference was 

observed between first and last high-temperature determinations. That indicates that no 

compositional or instrumental drift occurred during the viscosity measurement. 

After all measurements the investigated sample was either poured out and quenched 

on an iron plate or the whole crucible, containing the analysed sample, was rapidly quenched 

in water. From this glass material cylinders 8 mm in diameter were cored for container based 

dilatometry or low temperature viscometry (micropenetration). 
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FIGURE 2.6. Schematic diagram of the concentric cylinder apparatus. The heating system Deltech furnace,
position and shape of one of the 6 MoSi2 heating elements is illustrated in the figure. Details of the Pt80Rh20
crucible and the spindle shape are shown on the left. The viscometer Brookfield RVTD stirring head is coupled to
the spindle through a hinged connection which can be seen on the photograpf on the left. 
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2.4.3. Low temperature densitometry 

The room temperature densities of the glass samples were obtained by employing an 

Archimedean-based technique using a SARTORIUS MC-210P microbalance and density 

determination kit with ethanol as the immersion liquid. The measurements were performed on 

the samples after the second run of dilatometry. All the samples had the same thermal history, 

matching cooling and heating rates. The weight of each sample was measured in air and then 

entirely submersed in ethanol. Densities of glass samples (ρglass) were calculated using the 

relationship: 

      (2.5) 

 

where mair and methanol are the weights of the glass sample in air and submersed in ethanol, 

respectively. To account for the temperature-dependence of the density of ethanol ρethanol(T) 

the temperature of the immersion liquid was monitored carefully during the measurements. At 

least three individual measurements were conducted on the same piece of sample used to 

derive a standard error. The accuracy (< 0.3 %) of the room temperature densitometry was 

established by replicate measurements of commercially available standard crystals (i.e. 

enstatite, diopside, periclase, quartz and sapphire) and comparing them to the density data 

published in the literature (Cameron et al., 1973; Haermon, 1979; Hazen, 1976; Lepage et al., 

1980 ; Sasaki et al., 1982). 

 

2.4.4. High temperature densitometry 

The melt densities were determined using the double-bob Archimedean technique. The 

apparatus used is based on the concept of (Bockris et al., 1956). The technique used here has 
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FIGURE 2.7. Photograph and illustration of the microbalance SARTORIUS MC-210P together with density
determination kit.  
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been outlined previously (Dingwell and Brearley, 1988; Dingwell et al., 1988). The 

previously fused starting materials were re-melted into rigid, cylindrical, Pt80Rh20 crucibles 

(5.1 cm height, 2.56 cm inner diameter with 0.2 cm wall thickness) and bottom-loaded into a 

vertical alumina muffle tube furnace. The samples were supported in the hot zone of the 

furnace by an alumina-silica ceramic pedestal with a centred drilled hole for setting an S-type 

(Pt-Pt90Rh10) thermocouple. Hot zone temperature was maintained with an electronic set-point 

controller and a B-type (Pt94Rh06-Pt70Rh30) control thermocouple and monitored with a S-type 

thermocouple. The measuring alumina thermocouple was additionally sheathed in a Pt sleeve 

and immersed in the melt sample before and after each density determination. A 75 kg 

weighing table above the tube furnace supports an X-Y stage designed to position the 

weighing balance over the furnace. The balance employed is digital model METTLER 

AE100. The automatic tare feature of this balance was used to obtain direct buoyancy 

readings. Dingwell et al. (1988) tested the precision of this technique, which they estimated to 

be better than 0.2%, by determining the density of molten NaCl. The protocol of the present 

measurements is described in detail by Courtial et al. (1999) and briefly outlined here. The 

experiments were conducted in a set of three immersions for two bobs of different volumes, in 

order to compute a mean and the standard deviation of the replicate buoyancy determinations. 

The liquid density was calculated from the buoyancy data via: 

(2.6) 

 

where B1 and B2 are the buoyancies, and V1 and V2 are the submerged volumes of the large 

and small bobs, respectively. For each composition, the temperature of the melt was measured 

after the last buoyancy determination by dipping a Pt-sheathed thermocouple (S-type) into the 

crucible containing the melt. A second thermocouple (B-type) recorded the temperature 

during the calibration phase as well as during the buoyancy measurements. A calibration 

temperature curve (i.e., temperature of the melt vs. temperature of the crucible at the bottom) 

was determined for the temperatures of the melt during the buoyancy measurements, where 

direct temperature measurements of the melt are not possible. Temperature homogeneity was 

within ± 1 K during the buoyancy measurements or between the different immersions of the 

bobs at the same temperature. Temperature uncertainties, including contributions from 

thermal gradients and time fluctuations, are estimated to contribute an imprecision of less than 

0.1% to the experimental density data, since the thermal expansivities of the samples are 

rather small (Courtial et al., 1999). The densities were determined in individual runs of 

decreasing temperature steps. The samples were held at each measurement temperature for at 
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least 30 min to allow the melt equilibrate with the atmosphere inside the furnace. After this 

isothermal hold the buoyancy was measured over 15 min at the given temperature. At the end 

of each isothermal hold, the liquid was sampled by inserting an alumina rod into the melt and 

withdrawing approximately 150 mg, which was then quenched in water. In the case of Fe-

bearing samples, glasses obtained in this way were than used to determine the oxidation state 

of iron, using the wet chemistry method, and in all cases to measure the chemical 

composition, using electron microprobe. The density was determined three times for each Pt-

bob in the same manner. At the end of the last cycle the crucible 

containing the sample was removed from the furnace and quenched 

in water. A cylinder of glass 6 mm in diameter was drilled from 

this final product of the high temperature densitometry. Parts of 

this cylinder were then used for calorimetric and dilatometric 

measurements.  

 

 

 

2.4.5. Calorimetry 

The specific heat capacities of the investigated samples were determined using a 

differential scanning calorimeter (DCS Netzsch 404C, STA Netzsch 449C). The 

measurements involve a baseline measurement (two empty Pt-Rh crucibles, 6 mm in 

diameter, 0.1 mm wall thickness covered with a lid), sapphire standard measurement (with 

one crucible containing the standard and the other empty) and sample measurement (with one 

crucible containing the sample and the other empty). The glass sample was polished to within 

1µm to ensure an accurate fit with the bottom of the Pt-crucible and to reach a mass 

comparable to that of the sapphire standard (55.85 mg). Calorimetry was performed under a 

constant argon flow. The calorimeter was calibrated within the temperature range from 293 K 

to 1263 K. The heat capacity (cp) data were calculated using all the heat flow data (i.e., 

baseline, standard and sample) sample and standard weight and the known heat capacity of 

sapphire standard was taken from Robie et al. (1979). The precision of the heat capacities was 

±0.7 % for the glassy values and ±2% for the supercooled liquid values. The accuracy of the 

heat capacity of the glassy values was ±1%,  and for  the  supercooled  liquid  values ±3%. 

FIGURE 2.8. Photograph of the alumina tube furnace with digital balance
METTLER AE100 above.  
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FIGURE 2.9. Photographs of the differential scanning calorimeters (i.e., STA Netzsch 449C Jupiter and  DCS
Netzsch 404C Pegasus) used during this study. 

Measured heat capacity of the glasses (in J g-1 K-1) were fitted using a third order Maier - 

Kelley (1932) equation (cp=a+bT+cT-2). Two calorimetric measurements were made for each 

composition using a heating rate of 10 K.min-1, in case of Fe-bearing samples using a heating 

rate of 5 K.min-1. The first run was performed in order to relax the sample, 65 to 80 K above 

the glass transition temperature (Tg), and then cool the sample at a known rate. The second 

run was made to determine Tg and the heat capacity where both cooling and heating rates 

were identical. Tg values, obtained during the second run, were taken as the peak of the 

specific heat capacity curve. 

FIGURE 2.10. Schematic cross-section of the differential scanning calorimeter STA Netzsch 449C Jupiter with
microbalance together with details of the sample holder and four different crucible types. Two Pt crucible with Pt
shielded sample holder was used during this study. 
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2.4.6. Dilatometry 

Cylindrical, bubble-free glass samples (6 mm in diameter and 17 mm in length) were 

used for dilatometric investigations, the ends of which were grounded and polished to within 

1 µm to ensure plane parallel surfaces. The measurements were performed using a Netzsch® 

DIL 402C dilatometer with a horizontal alumina-push rod.  

The sample assembly is supported on an alumina base connected to a measuring head. 

The push rod sits horizontally and is in contact with the side of the sample assembly and is 

also manufactured from alumina. The relative length change of the sample and alumina rod is 

monitored by a linear variable displacement transducer (LVDT), which is calibrated against a 

standard single crystal of sapphire. The reference expansivity data are taken from the National 

Bureau of Standards. The precision of the expansivity is <±0.1%, the accuracy is <±0.2% for 

temperatures up to 1263 K. All experiments were conducted under an inert gas (Ar, the purity 

of Ar gas was 5.0, i.e. 99.99999 %) atmosphere using a constant argon flow. 

For each composition, two runs were made using identical heating and cooling rates as 

for previously conducted calorimetrical measurements. The sample was heated to tens of 

Kelvin above Tg, which corresponds to the dilatometric softening point. As with the DSC 

measurement the role of the first run was to relax the sample and then cool it at a known rate 

(e.g., 10 K min-1). Tg and the molar thermal expansion were found based on the results of the 

second run where both the cooling and heating rates were known. Tg was taken as the 

inflection point of the relative length change (∂L/L0) curve during the second run. The 

inflection point corresponds to the peak point of the linear thermal expansion coefficient alpha 

(αlinear) curve as well as to the peak point of the ∂V/∂T curve. The αlinear is defined as the 

fractional increase in length (linear dimension) per unit rise in temperature. Horizontal 

FIGURE 2.11. Schematic illustration of the horizontal dilatometer Netzsch® DIL 402C together with tube-type
sample holder with alumina push rod was used during this study. 
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dilatometry provides ∂L/L0 (where ∂L is the increment of the change in length at a given 

temperature, T, and L0 is an initial length, in cm, of the sample), as a function of temperature. 

The linear thermal expansion coefficient can be calculated from these dilatometric data as the 

relative length change of the sample per Kelvin. It is difficult to measure the relative volume 

expansion, therefore the linear thermal expansion coefficient is calculated as the relative 

change in the length across temperature interval (∂T): 

T
L

Llinear ∂
∂

=
0

1α          (2.7) 

The volume thermal expansion coefficient (αvolume) is 3 times αlinear (=1/L0(∂L/∂T)) as glasses 

are isotropic, the linear and volume thermal expansion coefficients can be determined from 

one thermal expansion measurement.  The thermal expansion coefficient strongly depends on 

the composition and temperature. The thermal expansion coefficient above the glass transition 

is 3 to 5 times larger than the one below the glass transition. The initial length and radius (r) 

of each sample was measured, in cm, using a micrometer, together with their mass (m) after 

the first dilatometric measurement (i.e., after heating and cooling at known rate, 10 K min-1) 

at room temperature (Troom). Using this data the length of the sample (L(T)) at temperature T 

can then be calculated by: 

 0)( LLTL +∂=          (2.8) 

and the volume (V(T), cm3)  of the sample at temperature, T, by: 

)()()( TATLTV =          (2.9) 

where A(T)=πr2 (cross-section area of the cylindrical sample with radius, r, at temperature, 

T). Density (ρ, g cm-3) of the sample at temperature, T, is then calculated by: 

)(TV
m

=ρ           (2.10) 

where m is the initial mass of sample (g).  

Molar volume ( )(T
molV , cm3 mol-1) at temperature, T, can be expressed as: 

m
gfwTVV T

mol )()( =          (2.11) 

where gfw is gram formula weight calculated from the composition. 

The change in the molar volume of the glass with temperature is calculated at constant 

pressure using the molar thermal expansion coefficient ( )(T
molα ), which can be determined 

using: 
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where )(
_

T
glassmolV  is the molar volume of the glass at temperature, T, and 

T
Vglass

∂

∂
is the molar 

thermal expansivity of the glass. The temperature dependence of the )(T
molα  can be expressed 

empirically: 

TT
mol 10

)( ααα +=          (2.13) 

where α0 and α1 are the empirical parameters. Equation 2.13 assumes a linear dependency 

and is only a first approximation and not intended as a perfect description of the data. To 

obtain the temperature dependence of the molar volume of the glass, Equation 2.12 is 

integrated between temperature, T, and 298 K using Equation 2.13, one obtains Equation 

2.14: 
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where )298(
glassV  is the molar volume of the glass at room-temperature. 

 

2.4.7. Electron microprobe 

The composition of the samples that had been used in this study were measured by 

electron microprobe (CAMECA SX 50) operating under following conditions: 15 kV 

acceleration voltage, 10nA beam current, 20 µm defocused beam diameter, counting time 20 s 

on the peak and 10 s on the background. A ZAF correction was undertaken. The calibration 

was based on mineral standards including albite (Na), wollastonite (Ca, Si), cordierite (Al), 

orthoclase (K), illmenite (Mn and Ti), hematite (Fe), periclase (Mg), apatite (P), sphalerite 

(Zn). The reason for using a defocused beam was to ensure a non-destructive analytical 

procedure especially concerning the volatilization of sodium and potassium-rich glasses. 

During microprobe analyses no loss of volatile elements was detected. 

 

2.4.8. Potassium dichromate titration 

Potassium dichromate titration was used to determine Fe(II) for all Fe-bearing 

samples. This method requires the use of concentrated sulphuric (H2SO4) and hydrofluoric 

acids (HF). A ∼75.00 ± 0.01 mg of powder was placed in a Teflon crucible and covered with  

a Teflon lid. The lid has two holes, one for the inflow of CO2 protective gas and the second 
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for the outlet of vapour and excess CO2. Initially a geochemical rock standard was analyzed 

(BHVO-1 standard from US Geological Survey, which is a Hawaiian lava of known FeO 

concentration - 8.58 wt% ).  

Approximately 3 ml of deionised H2O was added to the sample powder, than 10 ml of 

a solution of concentrated H2SO4, HF and deionised H2O, in proportion of 1:0.8:3. The 

covered crucibles were moved to hot plate and left to simmer for 30 minutes under CO2 gas 

protection, which was bubbled through the solution. Then the crucibles were placed in a water 

bath to cool, during which time they were continuously under CO2 gas. After approximately 

10 minutes, the crucible walls were washed down with deionised H2O and 10 ml of boric acid 

(H3BO3) was added. All samples disintegration was conducted in a fume cupboard. Each 

crucible was transported to potentiometric titration with potassium dichromate (K2Cr2O7). 

The K2Cr2O7 titrant with concentration of abut 0.01N was prepared and place in a 500 

ml volumetric flask. One of the most important types of analytical titrations involves 

oxidation-reduction reactions. In this experiment we titrated Fe(II) solutions with a standard 

solution containing potassium dichromate ion to determine the percentage of iron in the iron 

containing sample. The solution was then titrated with a standard potassium dichromate 

solution (0.01 mol.dm-3) with titration rate 1.00 ml min-1. Similarly, the potential values were 

recorded automatically when the potential change were within ±2 mV.min-1 for each 

additional. All potentiometric titrations were performed at 20 °C using a Metrohm Dosimat 

665 automatic titrator and E 649 Magnetic Swing-out Stirrer with electrode holder.  

The overall reaction is: 

6 Fe2+ + Cr2O7
2- + 14 H+ <--> 2 Cr3+ + 6 Fe3+ + 7 H2O 

This reaction can be separated into two half-reactions. Dichromate ion acts as the oxidizing 

agent and its reduction can be written: 

Cr2O7
2- + 14 H+ + 6 e- <--> 2 Cr3+ + 7 H2O 

The iron(II) ion is oxidized to the iron(III) state by the dichromate ion: 

Fe2+ <--> Fe3+ + e- 

As the titration proceeds the sample solution will turn green due to the presence of 

Cr3+. The endpoint is reached when the very fine yellow colour (at the beginning of titration 

curve) of the Cr6+ titrant appears (at the end of titration curve). For a redox titration, one 

equivalent of an oxidizing agent (Cr2O7
2-) reacts with one equivalent of a reducing agent 

Fe(II). From the half reaction for dichromate it can be seen that one mole of dichromate ion 

requires six moles of electrons.  

 



 44

Calculation of ferric iron has been provided by following manner. To calculate the 

amount of Fe2O3 in own sample (not Fe2O3Tot), the computation is as follows: Weight % of 

Fe2O3Tot (from microprobe analysis) divided by 1.111348 is equal to weight % of FeOTot. 

Total weight % FeOTot minus % FeO (± titrated value) is equal to the amount of iron in the 

sample which really exists as Fe2O3 (ferric iron). This needs to be multiplied by 1.111348 to 

re-convert back to the ferric oxide state (Fe2O3). 

 

2.4.9. X-Ray analysis 

The possibility of crystallisation in the glassy samples has been evaluated in the 

samples prior to, and after, calorimetry and dilatometry measurements. Crystals have not been 

observed in any of the analyzed glasses. Peaks were not apparent within the spectra obtained 

using the DRON 2 X-ray diffractometer with Bragg Bertrand focusing and a Cu-K α as X-ray 

source with Ni filter. The measurements were performed in the range of 3 to 60º of the 

diffraction angle 2θ within step regime of 0.05 º and a measurement time of 3 sec at each step. 

The spectrum was interpreted using the program ZDS with data base PDF-2. 

FIGURE 2.12.All potentiometric titrations were performed using a Dosimat
665, Metrohm automatic titrator, with a combination of the platinum electrode
(reference electrode is a silver-silver chloride) and E 649 Magnetic Swing-out
Stirrer. 
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3. History of Density and Expansivity Determination at 

Supercooled Liquid Temperature 

 

Knowledge of the thermal expansivity of silicate liquids is essential for the calculation 

of melt densities over the wide range of temperatures relevant for magmatic processes 

(Bottinga et al., 1983). Like other thermodynamic properties, the density of melts vary 

significantly with chemical composition as well as temperature and pressure. Thus, accurate 

data on the thermal expansivity of magmatic melts may play an important role in construction 

of PVT equations of state. Since Bottinga and Weill (1970) first suggested that the density of 

melts in two or three component systems could be used to determine partial molar volumes of 

oxide components in silicate liquids, several models based upon this approach have been 

proposed in the Earth science literature (Bottinga and Weill, 1970; Nelson and Carmichael, 

1979; Bottinga et al., 1982; Lange and Carmichael, 1987; Courtial and Dingwell, 1995; 

Lange, 1997; Courtial and Dingwell, 1999). 

Accurate determination of liquid densities and expansivities have proved difficult 

owing to experimental limitations. In high-temperature buoyancy-based density 

measurements only restricted ranges of temperature are accessible. This is variably due to the 

high liquidus temperature or high superliquidus viscosity of the melt. Restricted temperature 

ranges result in a large uncertainty in expansivity. An example is provided by the systems 

Na2O-SiO2 and CaO-Al2O3-SiO2, where, with increasing silica content, the combination of 

decreasing accessible temperatures and decreasing expansivities, results in error of up to 

several hundred percent for expansivity (Bockris et al., 1956; Courtial and Dingwell, 1995; 

Courtial and Dingwell, 1999). The uncertainties associated with thermal expansion of silicate 

liquids have been emphasized in the last few decades by several authors (e.g., Bockris et al., 

1956; Bottinga, 1985; Herzberg, 1987; Lange and Carmichael, 1987; Webb, 1992; Knoche et 

al., 1992; Knoche et al., 1994; Lange, 1996; Lange, 1997; Gottsmann et al., 1999; Toplis and 

Richet, 2000; Ghiorso and Kress, 2004, Gottsmann and Dingwell, 2000; Liu and Lange, 2001; 

Tangeman and Lange, 2001; Gottsmann and Dingwell, 2002). 

Both in industry and in nature, several processes (e.g. crystallization, crystal-melt 

fractionation, fragmentation of magma) occur at temperatures where a melt phase persists in 

metastable equilibrium at subsolidus temperatures. Dilatometry is one of the techniques which 

can yield expansivity, and density data, at such temperatures. However, direct determination 
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of the expansivity of cylindrical samples just above the glass transition is difficult, since the 

sample will collapse under its own gravitational body forces at temperatures where the 

viscosity is less than 1011 Pa s. (e.g., Tool and Eichlin, 1931; Toplis and Richet, 2000). To 

predict supercooled liquid expansivites from dilatometric data on cylindrical samples requires 

a procedure, that removes the gravitational deformation effect from the dilatometric traces.  

The first method was introduced by Webb et al., (1992). Supercooled liquid volumes 

and molar thermal expansivities are determined using scanning calorimetric and dilatometric 

measurements in the glassy region and at the glass transition. The extraction of supercooled 

liquid molar thermal expansivities from dilatometry/calorimetry is based on an assumed 

equivalence of the relaxation of volume and enthalpy at the glass transition. Using this 

technique, Knoche et al., (1992) first reported the temperature dependent expansivity of 

silicate melt. Recently, Sipp and Richet (2002) have provided compelling evidence in favour 

of the equivalence of enthalpy, volume and structural relaxation for a wide range of silicate 

liquid compositions. However, this procedure has met some scepticism, given that volume 

and enthalpy relaxation are not necessarily equivalent (Moynihan et al., 1976).  

The existence of this problem led Lange (1996; 1997) to introduce an alternative 

method. In this method, the volume of the sample is determined at the limiting fictive 

temperature and combined with measurements made on the same material at superliquidus 

temperature. However, the calculation of molar thermal expansivity and molar volume in this 

way is critically dependent on precise determination of the limiting fictive temperature of the 

glass. In addition, Lange´s method is based on indirect measurement of expansivity in the 

glass transition range and the values were derived from just a single V-T coordinate. 

More recently, Gottsmann et al. (1999) developed a direct method to observe the 

thermal expansivity of a silicate melt in the relaxed liquid state. A sample is inserted within a 

metal container composed of a hollow cylinder and two solid circular end pieces, which is 

then placed inside a dilatometer. The change in length of the assembly during the dilatometric 

measurement includes contributions from the liquid volume expansion, as well as two 

correction terms, one each for the expansion of the enclosing hollow cylinder and the end 

pieces. The reported precision of this method is about 3.5%. 

Most recently, Toplis and Richet (2000) used a dilatometry technique, which was 

previously developed and described by (Sipp, 1998; Sipp and Richet 2002), to determine the 

melt expansivity. In their study the cylindrical glassy samples were annealed isothermally 

until relaxation occurred with time at constant temperature. The annealing temperatures were 

the temperatures at which the viscosity of the samples was high enough to support the rod 
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with which expansivity is measured. The lower part of the SiO2 rod was in contact with the 

surface of the measured sample. A second SiO2 rod was placed on a reference SiO2 standard 

and the principle of differential dilatometry was applied. Despite the narrow temperature 

range (about 40 K), the melt expansivities were determined with a precision to within 3% and 

their results point to temperature dependent thermal expansivities of silicate liquids. 

The results of the methods of Webb et al., (1992), Gottsmann et al. (1999) and Toplis 

and Richet (2000) are all in excellent agreement. 

 
3.1. Combining dilatometric/calorimetric methods - Webb et al., (1992) 
method 
Direct observation of thermal expansivity in supercooled liquids is impossible because 

of viscous deformation (the sharp drop in the dilatometric trace above the peak value shown 

in Figure 3.1b. In this study, the molar volume of the supercooled liquid and the molar 

thermal expansion of each sample across the glass transition region were calculated based on 

an assumed equivalence of the relaxation of volume and enthalpy at the glass transition region 

(i.e., Webb et al., 1992). The derivative properties (e.g., heat capacity, molar thermal 

expansivity) are used to reconstruct the temperature derivative of fictive temperature (Tf). Tf is 

defined as the contribution of the structural relaxation process to the property of interest (H or 

V) expressed in temperature units and may be considered as a measure of the order parameter 

associated with the structural relaxation process (Moynihan et al., 1976). To reconstruct the 

temperature derivative of Tf of any property in the glass transition interval (e.g., enthalpy, 

volume) the properties are normalized with respect to the temperature derivative of the liquid 

and glass. This normalized temperature derivative (equal to dTf /dT) has a value of zero for the 

glass (i.e. Tf is constant) and 1 for the equilibrium liquid (i.e. Tf  equals T). The normalized 

calorimetric trace is used to extend the dilatometric data of the glass into the supercooled 

liquid temperature range and to determine the molar thermal expansivity of the supercooled 

liquid across the glass transition region. An assumption of equivalent relaxation behaviour 

and relaxation times for different properties has been employed and is validated by the 

consistency between my results and results obtained using the methods of Gottsmann and 

Dingwell (2000) and Toplis and Richet (2000). The observation that the peak temperature 

values from the calorimetric data coincide with the molar thermal expansivity calculated from 

dilatometric measurements dictates that insignificant viscous deformation is recorded by the 

dilatometer at the temperature up to the peak temperature value (Figure 3.1b). The derivative 
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properties, P, (e.g., heat capacity, molar expansivity) are used to reconstruct the temperature 

derivative of Tf  by: 
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where the subscripts e and g represent the liquid (equilibrium) and the glassy values of the 

property, respectively (Moynihan et al., 1976). In the present study, the enthalpy H and 

volume V are used as the macroscopic properties. Given the equality of the relaxation times of 

volume and enthalpy, Equation 3.1 can be rewritten as 

( )

f

ff

T

T
g

T
e

T

T
g

T

T
pg

T
pe

T
pg

T
p

T

f

T
V

T
V

T
V

T
V

cc
cc

dT
dT

∂
∂

−
∂

∂

∂
∂

−
∂

∂

=
−

−
= )()(

)()(

)()(

)(

       (3.2) 

for heat capacity, cp, and molar thermal expansivity, ∂V/∂T. The behaviour of Tf in the glass 

transition region can be generalized to all properties with identical relaxation times for which 

sufficient glassy and liquid data exist. The relaxed value of the molar thermal expansivity can 

now be calculated from Equation 3.2. 

The molar volume at the supercooled liquid temperature ( Tsc
molV ) just above the glass transition 

temperature was calculated using: 

T
T
VVV

Tsc

Troom
glass

Tsc
mol ∂

∂
∂

+= ∫)298(          (3.3) 

where )298(
glassV  is molar volume of the sample at Troom. Tsc is the supercooled liquid temperature 

obtained by calorimetry and is the temperature at which stable cp was first achieved, 

indicating the liquid was relaxed (Figure 3.1a). The molar volume at the supercooled liquid 

temperature ( Tsc
molV ) is equal to the molar volume of the glass at Troom ( )298(

glassV ) and the area 

between the ∂V/∂T curve and inserted zero line at temperature range between Troom and Tsc. 

This volume increase was calculated in a step-by-step manner (i.e. 0.2 K).  

An example comparing normalized relaxation in the dilatometric and calorimetric 

traces is illustrated in Figure. 3.1. 
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FIGURES 3.1. The normalization procedure to derive supercooled liquid expansivity using the Webb et al. (1992)
method. The normalized specific heat capacity (a) where supercooled liquid (Tsc) is directly observable and the
normalized thermal expansivity (b) data where Tsc is not observable due to viscose deformation of the sample (i.e.,
drop). Both traces were derived upon reheating the sample at matching heating rate. Specific heat capacity and
thermal expansivity measurements were provided on the samples which exhibit the same thermal history. The glass
data are normalized to zero and the peak values (Tg) are normalized to 1. Tsc is the temperature of the supercooled
liquid where its expansivity can thus be predicted from the calorimetric trace (c). 
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4.  A Partial Molar Volume for ZnO in Silicate Melts 

Trace elements in igneous petrology have, in comparison with major elements, a 

relevance in the petrogenetic modelling of magmatic differentiation that far outweighs their 

relative abundance. Optimal use of the information contained in trace element variations 

within igneous phases requires an accurate description of their partitioning behaviour as a 

function of phase composition and structure, as well as temperature and pressure. In this 

manner, the partial molar thermodynamic properties of trace elements in silicate melts may 

contribute to the petrogenetic modelling of such systems. With this in mind, a series of 

investigations into the partial molar properties of trace elements in silicate melts was carried 

out in recent years (Courtial et al., 1999; Holzapfel et al., 2001; Courtial and Dingwell, 2004). 

The volumetric properties of silicate liquids influence a wide range of processes which result 

in igneous differentiation in nature. Need for the quantification of such processes has spurred 

research into the density of silicate melts which has, as a result, been the subject of repeated 

experimental investigations in the second half of the last century (Bockris et al., 1956; Lange 

and Carmichael, 1987; Dingwell and Brearley, 1988; Dingwell et al., 1988; Knoche et al., 

1992a; Knoche et al., 1992b; Knoche et al., 1994; Toplis et al., 1994; Lange, 1996; Lange, 

1997; Toplis and Richet, 2000). The general approach to the volumetric description of silicate 

melts has involved the construction of multicomponent models whose compositional 

dependence of melt volume is cast as a set of partial molar volumes of individual oxide 

components, together with, where necessary, excess volumes of mixing (Bottinga and Weill, 

1970; Lange and Carmichael, 1987; Knoche et al., 1995). These models have generally been 

restricted to the major and minor oxide components present in naturally-occurring igneous 

rocks. 

This chapter extend this work to the analysis of the volumetric properties of ZnO in 

silicate melts. The densities of 8 Zn-bearing silicate melts were determined, in equilibrium 

with air, in the temperature range of 1363 to 1850 K. The compositional joins investigated 

(sodium disilicate (NS2) - ZnO; anorthite-diopside 1 bar eutectic (AnDi) - ZnO; and diopside 

- petedunnite) were chosen based on the pre-existing experimental density data set, on their 

petrological relevance and in order to provide a test for significant compositionally-induced 

variations in the structural role of ZnO. The ZnO concentrations investigated range up to 25 

mol% for sodium disilicate, 20 mol% for the anorthite-diopside 1 atm eutectic and 25 mol% 

for petedunnite. 
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4.1. Background 
Zinc containing glasses have been intensively studied using X-ray absorption 

spectroscopic  methods in the last three decades. EXAFS, XANES and WAXS data exist for 

alkali silicate, alkali borate and borosilicate melts (e.g. Hurt and Phillips, 1971; Dumas and 

Petiau, 1986; Rosenthal and Garofalini, 1987; Calas et al., 2002;  Galoisy et al., 2001). In Zn-

poor alkali silicate glasses (<5 wt% ZnO) zinc improves mechanical properties, as well as 

chemical durability (Della Mea et al., 1986). In addition, zinc has a nucleating role in 

alkaline-earth silicate and aluminosilicate glasses (Dumas and Petiau, 1986). In alkali silicate 

glasses, zinc has been proposed to occur in tetrahedral and octahedral coordination (referred 

to as [4]Zn and [6]Zn, respectively), with a marked preference for tetrahedral coordination. The 
[4]Zn/[6]Zn ratio derived from molecular dynamics computer simulations increases as the 

Zn/Na or alkali ratio decreases, the sodium ions or alkalis compensating the charge deficit of 

the ZnO4 tetrahedra (Hurt and Phillips, 1971; Rosenthal and Garofalini, 1987). The EXAFS 

data of Le Grand et al. (2000), obtained for aluminoborosilicate glasses, yield average Zn–O 

distances of ~1.96 Å and Zn coordination numbers of 3.8 to 4.7, consistent with a four-fold 

coordination of zinc. These data illustrate that the Zn-Si distance of 3.20 ± 0.03 Å is 

consistent with corner-sharing ZnO4 and SiO4 tetrahedra. The same samples later investigated 

by Calas et al. (2002), reveal two distinct local structures of the zinc K-edge EXAFS spectra 

for a Zn-containing glass (see Figure 3. in Calas et al., 2002). This local configuration 

satisfies one of Pauling´s rules: A coordination polyhedron of anions is formed around each 

cation, with the cation-anion distance being determined by the radius sum and the 

coordination number of the cation, and the cation by the radius ratio. In this case, zinc is in a 

network-forming position and oxygen triclusters are also present. Calas et al. (2002) used a 

visual bond-balance model which reveals that ZnO4 tetrahedra are copolymerised with the 

silicate network. The visual bond-valence model shows that the Zn-O distances derived from 

EXAFS data are close to the equilibrium value when considering that, for example, two Na+ 

ions charge compensating each oxygen are bound to both Zn and Si (Calas et al., 2002). The 

network-forming position of zinc can explain the improvement of the mechanical properties, 

durability and glass thermal stability induced by the presence of low zinc contents in 

borosilicate glasses containing low-field strength cations (Na, K, Cs, Rb etc.). The presence of 

zinc may contribute to the decrease of the effective network modifier concentration, as more 

alkalis are involved in charge compensation (Della Mea et al., 1986; Calas et al., 2002). In 

addition, similar Zn-Si distances have been found in cordierite glasses and in mixed alkali 



 53

borosilicate glasses, by EXAFS (Dumas and Petiau, 1986) and WAXS (Ennas et al., 1990), 

respectively. Finally, similar Zn-O distances (values of about 1.99 Å), have been found in low 

Zn-bearing magnesium aluminosilicate glasses (Dumas and Petiau, 1986). 

Zinc, as a network-forming divalent cation, has been studied widely from a 

mineralogical point of view. The stability and chemographic relations of phases within the 

system CaO-ZnO-SiO2 are relevant to the genesis of Zn-rich skarns and calc-silicate rocks. 

These rock types are present in the old cratons of current continental shield crust and are 

economically important sources of metal ores. Furthermore, zinc-bearing crystalline phases 

are also present in blast furnace slags in the refining of Pb ores. Experiments at variable P-T 

conditions to obtain stability fields of crystalline phases within  the above mentioned ternary 

system have been provided by  (e.g., Segnit, 1954; Doroshev et al., 1983; Essene and Peacor, 

1987; Fehr and Hobelsberger, 1997). At low to intermediate pressures Zn2+ enters tetrahedral 

sites in crystalline silicate structures such as those of hardystonite, hemimorphite Zn-feldspar, 

willemite, and staurolite. Hendricksite is the only mineral that exhibits Zn2+ in octahedral sites 

at low pressures, but this site is strongly distorted. High pressures are required to force Zn2+ 

into large octahedral sites like the M1 site in petedunnite (P > 1GPa) or the M2 site in Zn 

clinopyroxene (P > 3 GPa). Zn-feldspar is restricted not only to low pressure but also to low 

temperatures, as indicated by its stability field (Fehr and Huber, 2001). 

 

4.2. Experimental methods 
4.2.1. Sample preparation 

The synthetic materials investigated in this study were series of liquids synthesized by 

the addition of ZnO to base melt compositions corresponding to sodium disilicate (NS2) and 

to the anorthite-diopside 1 atm eutectic composition (AnDi), respectively. Additionally, the 

diopside composition has been modified via the exchange operator ZnMg-1 to generate 

CaZnSi2O6 (petedunnite glass). Starting sodium disilicate was synthesized from SiO2 (Alfa 

Aesar, 99.9% -Ign. loss < 0.3%) and Na2CO3 (Merck, 99.9%) mixes. Starting anorthite-

diopside 1 atm eutectic was synthesized from SiO2 (Alfa Aesar, 99.9% -Ign. loss < 0.3%), 

CaCO3 (Merck, 98.5%), MgO (Riedel-de Haen, 97%) and Al2O3 (Merck, 99.9%).  All these 

powders were dried at 120 ºC at least for 24 hours prior to weighing. They were ground, 

mixed and then fused in a platinum crucible for 3 hours in a MoSi2 box furnace at 1000 ºC 

and 1500 ºC in the case of NS2 and AnDi, respectively. The melts were poured from high 

temperature onto a stainless steel plate for cooling. A comparison between the weight of the 

samples before and after the melting serves as a check for the complete volatilization of CO2 
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from Na2CO3 and CaCO3 powders. A cycle of grinding and fusion was repeated three times to 

ensure homogeneous starting Na-disilicate and AnDi glasses. ZnO (Merck, 99.99%) which 

was previously dried overnight at 120 ºC, was added in various proportions to finely ground 

fractions of the starting NS2 and AnDi glasses. These newly synthesised NS2-based, Zn-

bearing liquids were then melted in air for ca. 2 hours between 1050 and 1300 ºC in platinum 

crucibles and the AnDi-based, Zn-bearing liquids were melted in air for ca. 2 hours between 

1550 and 1600 ºC in platinum crucibles, in order to obtain the melts investigated 

volumetrically in this study. About 75 g were used for each high-temperature densitometry 

experiment. The quenched glasses were analysed by electron microprobe in order to check 

their composition and their homogeneity. The electron microprobe analyses of the materials 

prior to the experiments are presented in Table 4.1. In addition, the analyses of the samples 

after the high-temperature density experiments are also included in Table 1. (Note that NS2-

based samples are hygroscopic and they have been kept in a desiccator prior to their 

analyses). The analyses of the starting material after the syntheses as well as after the high-

temperature experiments differ only slightly from the nominal compositions. During the 

different high-temperature stages of this study, the glasses were kept in air. No change in the 

colour of these materials has been observed between the starting and the final glasses. All Zn-

containing glasses exhibit the same light yellow colour. Zinc is present under these conditions 

in a 2+ oxidation state.  

 

4.2.2. Room temperature densitometry 
The room temperature (Troom) densities of three glassy chips of each composition were 

obtained employing an Archimedean based technique a SARTORIUS MC-210P 

microbalance and density determination kit with ethanol as the immersion liquid. The chips 

were previously heated and cooled at 5 K.min-1 from approximately 80 K above the glass 

transition temperature (i.e., from the relaxed liquid state). The glass transition temperature 

(Tg) was defined as the temperature where the viscosity of my sample (unpublished data) 

equals to 1011.22 Pa.s  (Webb and Knoche, 1995).  The sample weight was measured in air and 

subsequently in ethanol. Densities of glass samples at Troom were calculated using the 

Equation 2.5 For a detailed description of the room temperature densitometry and the 

accuracy of this method see also Chapter 2.4.3.  
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4.2.3. High temperature densitometry 
The melt densities were determined using the double-bob Archimedean technique 

above the superliquidus temperatures. The protocol of the present measurements is described 

in detail in Chapter 2.4.4. The liquid density was calculated using the Equation 2.6. 

 

4.3. Results 
4.3.1. Room temperature densitometry 

The room-temperature densities of the present Zn-containing Na-disilicate, AnDi and 

petedunnite glasses were measured on the glassy samples that experienced a 5 K/min 

heating/cooling thermal history. The individual errors were obtained from three replicate 

measurements performed on each chip and range from 0.004 to 0.09% and the mean error is 

about 0.025%. The room-temperature density of these glasses, (listed in Tables 2 and 3) varies 

from 2.516 to 3.024 g.cm-3 and from 2.796 to 3.219 g.cm-3 for the NS2-ZnO and for the 

AnDi-ZnO glasses, respectively. In addition, the room-temperature density of petedunnite 

glass is 3.303 g.cm-3. 

 

4.3.2. High temperature densitometry 
The results of the high-temperature density measurements are listed in Tables 2 and 3 

and are plotted as functions of temperature in Figures 4.1a, 4.1b and 4.1c. Within the 

uncertainties, the experimental density data can be described as a linear function of 

temperature (Figs. 1a - 1c). The parameters and the correlation coefficients which return from 

these linear fits are reported for each composition in Table 4. Within the temperature range 

investigated, the density varies from 2.26 to 2.99 g.cm-3 and from 2.62 to 3.06 g.cm-3 for the 

Zn-bearing NS2 and for the AnDi melts, respectively, where it increases with increasing ZnO 

contents (Figures 4.1a and 4.1c).  

The high temperature densities within the investigated temperature range for  

petedunnite vary from 3.04 to 3.13 g.cm-3. The Zn-bearing AnDi melts exhibit a greater 

density than the Zn-bearing NS2 melts at equivalent molar concentrations of Zn, which is 

resulting from their different base compositions (NS2 vs. AnDi). Furthermore, the addition of 

ZnO to both base compositions results in a nearly parallel shift of the density vs. temperature 

lines in each system (NS2 and/or AnDi). This result suggests that the thermal expansion does 

not change with the addition of ZnO within the temperature range investigated. The individual 

errors (calculated based on the standard deviation of the three replicate buoyancy 

measurements for each bob) range from 0.1 to 0.5% and are reported in Tables 4.2 and 4.3 
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FIGURES 4.1. (a.,b,c) Compilation of the high-
temperature density data of (a) Anorthite-Diopside 1 atm
eutectic(An42Di58), (b) Sodium disilicate (NS2) systems
containing different amount of ZnO as function of
temperature and (c) Diopside - Zn-diopside
(petedunnite) system. The error bars correspond to
standard deviation in the buoyancy determination
propagated through Equation (2). Black circles represent
calculated densities of each end-member (i.e. AnDi, NS2
and diopside) using (Lange and Carmichael, 1987)
model. In a, the AnDi 1 atm eutectic results have been
compared with data published by (Holzapfel et al., 2001)
(open circles). In b,. the pure NS2 results have been
shown as a data published by Courtial et al. (1999) (grey
circles). In c, the pure diopside results have been shown
as a data published by Knoche et al., (1992b) (open
circles with error bars). 

and plotted in Figures 4.1a - 4.1c for each temperature and composition. The largest errors, 

generally in AnDi and NS2 melts, are for the most viscous melts. NS2-ZnO melt 

determinations yield higher precision, half that of the AnDi-ZnO melts. The mean error, 

which derives from the replicate buoyancies determinations of all the measurements 

conducted in this study is ca. 0.3%. 

 

 

4.3.3. Molar volumes of liquids 
The molar volume can be calculated using Equation 4.1: 

(4.1) 

 

where ρ  is the measured density of the liquid at a temperature (T), gfw is gram formula 

weight and V is molar volume at T. The molar volumes for all investigated samples are plotted 

as functions of temperature in Figures 4.2a - 4.2 c. 
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The temperature dependence of liquid density can be expressed empirically using Equation 

4.2: 

(4.2) 

 

The least square fit parameters Adensity and Bdensity of Equation 4 are listed in Table 4.4. 

The change with temperature of the molar volume of the liquid is expressed at constant 

pressure by Equation 4.3:  

(4.3) 

 

The least square fit parameters avol  and bvol within the investigated temperature range ∆T are 

listed in Table 4.5. The mean error for the high-temperature density determination is 0.3%. 

Here, it should be noted slightly different analysed composition results (AS and HT in Table 

4.1). These differences in composition will contribute, however, to an error less than 0.1 % on 

the molar volume. We can thus estimate that the mean error in the precision of the 

experimental measurements and additional analytical errors originate in minor deviation of 

the compositions propagate into a combined error of less than 0.5% in the molar volumes of 

the present liquids.  

 

4.3.4. Compositional dependence of the molar volume of the 

present liquids 
The influence of ZnO on the volumetric properties of  both AnDi and NS2 base 

composition is plotted in Figures 4.3 and 4.4 as function of transition metal oxide content. In 

these figures, it can be seen that the molar volume of these liquids diminishes gradually from 

the base composition (i.e. AnDi and NS2) down to the most ZnO-rich compositions (i.e., 20 

and 25 mol% of ZnO, respectively). The influence of ZnO on the molar volumes of measured 

samples can be expressed linearly and this trend remains valid within the volume 

uncertainties. Therefore, from the data plotted in Figures 4.3 and 4.4 it can thus be concluded 

that, within the experimental uncertainties, the molar volume of the Zn-containing liquids 

behaves ideally within the composition and temperature ranges investigated. In addition, 

molar volumes at 1450 K and 1800 K for diopside and petedunnite are plotted in Figure 4.5 as 

a function of ZnMg-1 content, respectively. Petedunnite exhibits a larger molar volume than 

diopside at 1800 K. 

 

)()( KTbaTV volvolliquid +=

)()( KTBAT densitydensity
liquid +=ρ
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4.3.5. Partial molar volume of ZnO 
The compositional dependence of the liquid molar volume can be, in general, 

expressed by Equation 4.4. 

  (4.4) 

 

where Vliquid is measured liquid molar volume, Xi the mole fraction of the oxide (i), and Vi the 

partial molar volume of the oxide (i). The molar volumes of the present ZnO-bearing liquids 

were independently analysed using Equation 4.5: 

(4.5) 

 

 

where Vliquid  is the measured liquid molar volume, Xi the average of the mole fraction 

analysed of the end-member (i),  Vi(1500) the partial molar volume of the pure end-member (i) 

and (∂Vi/∂T) the thermal molar expansivity of the pure end-member (i) at 1500 K. From 

Equation 7, the partial molar volume of each end-member component was obtained (i.e., NS2 
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FIGURES 4.2 (a, b, c) Molar volume determined from
high-temperature density measurements from Zn-
containing (a) Anorthite - Diopside 1 atm eutectic (b)
Sodium-disilicate (NS2) and from (c) Diopside - Zn-
diopside (petedunnite) liquids. In a, the AnDi 1 atm
eutectic results have been compared with AnDi eutectic
data published by Holzapfel et al. (2001) (open circles).
In b, the pure NS2 results have been shown as a data
published by Courtial et al. (1999a, grey circles). In c,
the pure diopside results have been shown as a data
published by Knoche et al. (1992b, open circles with
error bars). Symbols without error bars fitted with linear
doted lines represent calculated molar volumes of each
end-member (i.e. AnDi, NS2 and diopside) using Lange
and Carmichael (1987) and Lange (1997) models,
respectively. 
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and ZnO for the first regression, AnDi and ZnO for the second one). The Equation 4.4 can be 

used if the molar volume has a linear variation with the temperature. Courtial and Dingwell 

(1995) demonstrated that the molar volume does not behave ideally in the CaO-Al2O3-SiO2 

system, implying at least one excess term. Equation 4.4 thus needs to be rewritten in form: 

     (4.6) 

 

where XS is the excess volume term corresponding to the possible interactions between SiO2 

and CaO; SiO2 and Al2O3; CaO and Al2O3. Courtial and Dingwell (1995) identify an excess 

volume term between SiO2 and CaO (XSSiO2 CaO) within the compositional range investigated 

which was defined as:  

    (4.7) 

 

where
2SiOX and XCaO are the molar fraction of SiO2 and CaO respectively, and CaOSiOV

2
 the 

corresponding excess volume term. These authors tested several alternative regression 

equations involving an ideal model, an excess term between one of each pair of oxides, two 

excess terms between two of each pair of oxides and three excess terms for each pair of 

oxides. Based on statistical criteria, Courtial and Dingwell (1995) recommended use of a  

model including an excess term between SiO2 and CaO: 

 

(4.8) 

Here, the molar volumes of the present ZnO-bearing liquids were independently analysed 

using a regression of Equation 4.8 to obtain partial molar volumes of individual oxides and 

ZnO (i.e., a multicomponent model for the third regression). Note that the partial molar 

volumes (Vi) and thermal molar expansivities (∂Vi/∂T) for the multi-component system were 

calculated using all my high-temperature density data (i.e., NS2-ZnO, AnDi-ZnO and 

petedunnite) and the high-temperature density data from Lange and Carmichael, 1987 (i.e., 

samples LC2-15) and all high-temperature density data from Courtial and Dingwell 1995, 

1999a. In doing so, the partial molar volumes for SiO2, Al2O3, MgO, CaO and Na2O were 

better constrained. Nevertheless, we obtained the same VZnO and ∂VZnO/∂T as the VZnO and 

∂VZnO/∂T as those obtained by applying the end-member regression to all my data (within 

uncertainty of the regression). Only the molar expansivity of ZnO obtained from AnDi-ZnO 
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FIGURE 4.4. Molar volume calculated at 1350 and
1550 K from the individual fits of Table 5  plotted
as a function of ZnO content in the sodium disilicate
(NS2) system. 

FIGURE 4.5. Molar volume calculated at 1450 and 
1800 K from the individual fits of Table 5  plotted 
as a function of the diopside - petedunnite binary 
system. 

regression appears to be larger. 

The reference temperature 1500 K was chosen to be within the temperature range 

where high-temperature densitometry was performed. The regressions as a function of 

composition and temperature were made simultaneously on the ZnO-bearing liquids over the 

temperature range from 1350 to 1550 K in the NS2 system, and from 1500 to 1850 K in the 

AnDi and in the multicomponent systems, respectively. The results of these regressions 

following the model of Equation 4.5 and 4.8 are reported in Table 4.6. In Table 4.6, the fit 

parameters for NS2 and AnDi obtained for both fits are also listed since I used this 

composition as an end-member for my fits. The difference between the calculated molar 

volumes of NS2 using the parameters listed in Table 4.6 and the molar volume determined 

from the parameters given in Table 4.5 is less than 0.64 % for temperatures ranging from 

1350 to 1550 K. In addition, the difference between the calculated molar volumes of AnDi 

using the parameters listed in Table 4.6 and the molar volume determined from the parameters 

FIGURE 4.3. Molar volume calculated at 1500 
and 1800 K from the individual fits of Table 5 
plotted as a function of ZnO content in the 
anorthite - diopside (AnDi) 1 atm eutectic system.
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given in Table 4.5 is less than 0.45% for temperatures ranging from 1500 to 1850 K. The 

uncertainties in and the quality of these fits are indicated by the standard error of each fit 

coefficient (in parentheses in Table 4.6). The relative standard error of the fit, when compared 

with the experimental uncertainties, indicates whether the fit can adequately reproduce the 

data within the best estimate of experimental uncertainties. The coefficient of determination 

(R2), the adjusted R2 statistic (the adjusted R2 is most often used in multiple regressions 

because it accounts for the number of variables in the regression equation), the relative 

standard error of the fit (S) are also included in Table 4.6. 

 

4.4. Discussion 
4.4.1. Comparison with the previous literature data 

To the best of the authors knowledge, volumetric data on Zn-containing silicate liquids 

are absent from the literature to date. High temperature density data from (Toyoda et al., 

2003) have been obtained on 50ZnO-50P2O5 glass melts. Na-silicate melts have been more 

widely investigated (Stein et al., 1986; Knoche et al., 1994). Here, I will compare my results 

to those of (Bockris et al., 1956), who have measured the molar volume of melts at 1673 K 

along the Na2O-SiO2 binary join. Interpolation of (Bockris et al., 1956) results to Na-disilicate 

composition obtained by (Courtial et.al., 1999) exhibits an excellent agreement at 1673 K 

(i.e., 0.6%). In addition, the molar volumes of Na-disilicate and AnDi melts were calculated 

using the revised model of (Lange, 1997),  which reproduces (Courtial et. al., 1999) 

measurements on Na-disilicate and my measurements on AnDi within errors estimated from 

the standard deviation of three replicate mass determination using buoyancy measurements.  

Partial molar volumes of transition metals, metals and metalloids in silicate melts of 

fourth row of the periodic table of elements have been studied by several authors (i.e. Lange 

and Carmichael, 1987; Dingwell and Brearley, 1988; Dingwell et al., 1988; Dingwell, 1991; 

Dingwell, 1992; Lange, 1997; Courtial et al., 1999; Holzapfel et al., 2001). Inspection of the 

partial molar volumes of the transition metals obtained from silicate melts at 1500 K (1 atm) 

yields: (TiO2 (~25 in Na2SiO3 and CaSiO3 melts), FeO (12-23 a large compositional 

variation), CoO (~15.89), NiO (~13.39), ZnO (~13.59-this study) and for Ga2O3 (~35.87 in 

AnDi melt and ~50.92 in NS2 melt). In addition, the partial molar volume of GeO2 , has been 

proposed by Holzapfel et al. (2001) to be ~29.46 in NS2 melt and ~29.69 in AnDi melt at 

1400 K They calculated the partial molar volume of GeO2 from 1800 to 1400 K and showed 

that across the whole range it varied less than their stated uncertainties. We extrapolated their 
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data to 1500 K to permit comparison with the partial molar volumes of other transition metals, 

which gives an average partial molar volume for GeO2 of  ~ 29.64 for NS2 and AnDi melts. 

Partial molar volume of the transition metal oxides likely depends, amongst other 

factors, on the number of oxygens which are bound with each element. If the basic molecule 

has a form XO, where X is a transition metal and O is oxygen, then partial molar volume 

should follow the general trend of bond radii or atomic radii observed within the transition 

metals. The atomic radii and the bond radii in (Å) for the transition metals are as follows 

(Element (atomic radius; bond radius): Ti(2;1.32) > Fe(1.72;1.17) > Co(1.67;1.16); 

Ni(1.62;1.15) > Zn(1.52;1.25) > Ga(1.81;1.26) > and Ge(1.52;1.22). The general trend of the 

atomic radius (bond radius) within transition elements is Sc > Ti > V > Cr > Mn > Fe > Co > 

Ni> Cu > Zn. Although there is a slight contraction at the beginning of the series, the atoms 

are all near the same size. The size is determined by the 4s electrons. The attraction of the 

increasing number of protons in the nucleus is approximately offset by the extra screening due 

to the increasing number of 3d electrons. Today, the valence bond model has largely been 

supplanted by the molecular orbital model. In this model, as atoms are brought together, the 

atomic orbitals interact so as to form a set of molecular orbitals, which extend over the entire 

molecule. Half of these orbitals tend to be bonding orbitals, while the other half are anti-

bonding orbitals. Electrons in bonding orbitals result in the formation of a chemical bond, 

while those in anti-bonding orbitals prevent bonding. Electrons may also occupy non-bonding 

orbitals, which are neither bonding nor anti-bonding. The formation of a chemical bond is 

only possible when more electrons occupy bonding orbitals than anti-bonding orbitals.  

Unfortunately, few data are available in the literature on the molar volume of silicate 

melts at temperatures in the glass transformation range. Across the results and the temperature 

range examined in this study, we cannot exclude that there is a possibility that the thermal 

expansivity is temperature dependent, particularly when extrapolating down to Tg. However, 

low temperature density data (i.e., above Tg) would be necessary to test for temperature 

dependency. 

Based on the unpublished viscosity data, where crossovers have been observed 

between high temperature viscosity and viscosity measured above the glass transition 

temperature, I cannot rule out that changes in coordination number of ZnO occur over this 

wide temperature range. The possible evidence for two or more coordination states of zinc in 

silicate melts, whose proportions might vary as a function of temperature, pressure and 

composition, remains to be investigated. 
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Amongst other possible causes, such the detailed coordination number of each 

element, uncertainties of high temperature densitometry, error from chemical analyses, 

variable valence state we cannot rule out the possibility that there may be some nonideal 

volumetric behaviour for transition metal-bearing silicate melts as a possible explanation of 

why the partial molar volumes of the transition metals do not follow the sequence  FeO - CoO 

- NiO - ZnO. 
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5.  Temperature Independent Thermal Expansivities of Calcium 

Aluminosilicate Melts between 1150 and 1973 K in the System 

Anorthite-Wollastonite-Gehlenite (An-Wo-Geh): A density 

model 

 

This chapter concentrates on the quantification of expansivities and molar volumes of 

supercooled silicate melts. The Webb et al. (1992) method was adopted to determine 

expansivity and volume of the calcium aluminosilicates just above the glass transition 

temperature. This study has focussed on this system because these oxides are present in all 

natural volcanic melts and glasses and the CAS system serves as a model for experimental 

petrology. Horizontal dilatometry has been used to determine the density and expansivity of 

glassy samples, which have the same thermal history (10 K min-1 cooling/heating rate). 

Archimedean-based densitometry on separate aliquots of the samples was used to determine 

sample density at room-temperature. The Lange and Carmichael (1987), Lange (1997) and 

Courtial and Dingwell (1995) models have been used to calculate the densities of the 

investigated samples at superliquidus temperatures. Combining all these methods allows us to 

cover a wide temperature range in order to predict the molar thermal expansivity of the 

investigated calcium aluminosilicates. 

Previous investigations of the compositional dependence of melt properties in the 

CaO-Al2O3-SiO2 (CAS) system have been focused primarily on the metaluminous join SiO2-

CaAl2O4 which is highly polymerised with a nominal number of non-bridging oxygen equal to 

zero.  In addition, recent work by Solvang et al. (2004; 2005) and Toplis and Dingwell (2004) 

all concentrate on the “peralkaline” field.  The calcium aluminosilicate melts are important for 

the glass fibre industry, especially the stone wool industry (they make up to 80% of both stone 

wool fibres and E-glass). Understanding the physico-chemical properties and thermodynamics 

of the calcium aluminosilicate is crucial for optimizing the production procedures as well as 

for predicting fiber quality, fiber drawing ability, bio-solubility, mechanical strength of fibers 

and other important parameters.  

The density and expansivity of 10 calcium aluminosilicate melts included in the 

anorthite (An) - wollastonite (Wo) - gehlenite (Geh) (CaAl2Si2O8-CaSiO3-Ca2Al2SiO7) 

compatibility triangle (Figure 5.1) have been investigated over a large temperature range. This 



 66

study focuses on the “peralkaline” field by studying the compositional dependence of melt 

properties along the lines with NBO/T=0.5 and 1. This allows us to study the effect of 

composition on the density and expansivity at a constant degree of polymerization and to 

explore the structural changes along and between the lines. So far the densities and 

expansivities of the melts with compositions in the An-Wo-Geh compatibility triangle have 

not been systematically studied. 

 
5.1. Experimental methods 

5.1.1. Sample preparation 
Melts were synthesized from SiO2 (Alfa Aesar, 99.9 % -Ign. loss < 0.3 %), CaCO3 

(Merck, 98.5 %), and Al2O3 (Merck, 99.9 %) mixes (Figure 5.1). The powders were dried at 

393 K for at least 24 hours prior to weighing. They were ground, mixed and then fused in a 

platinum crucible for 3 hours in a MoSi2 box furnace at 1898 K. The melts were poured from 

high temperature onto a stainless steel plate for cooling. A comparison between the weight of 

the samples before and after the melting serves as a check for the complete volatilization of 

CO2 from CaCO3 powder. The high temperature viscosity was measured on the samples from 

FIGIRE 5.1. Phase diagram of the CaO-Al2O3-SiO2 (CAS) system (after Ehlers, 1972; Gentile and Foster,
1963; Osborn and Muan, 1960). The investigation deals with compositions in the anorthite-wollastonite-
gehlenite (An-Wo-Ge) compatibility triangle. The compositions are in wt %. The line between CAS1 and
CAS5 are the samples with NBO/T = 1 and the line between CAS6-CAS9 are the samples with NBO/T = 0.5.
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FIGURE 5.2.  dL/L0 curves of investigated samples obtained from scanning dilatometry.

1316 to 1849 K at ambient pressure (Solvang et al., 2004). Then cylindrical bubble free glassy 

samples, 6 mm in diameter were drilled out from the viscometer crucible. From these 

cylinders glass samples for differential scanning calorimetry (DSC), dilatometry and X-ray 

fluorescence spectroscopy measurements were prepared and stored in a desiccator until use 

(Solvang et al., 2004). The compositions determined by XRF (Philips 1404) are presented in 

Table 5.1. In addition, the composition of the samples that had been used in the calorimetry 

and dilatometry  were measured by electron microprobe (CAMECA® SX 50). There were no 

significant differences between the composition obtained by XRF and electron microprobe 

analyses, both with no change from the nominal compositions (Table 5.1). During the various 

high-temperature stages of study (Solvang et al., 2004), the melts were kept in air, whereas 

during the low temperature experiments (i.e., DSC, dilatometry) the samples were held in a 

protective Ar atmosphere. There was no observable difference between the colour of the 

starting and the final products. 

 

5.1.2. Low temperature dilatometric/calorimetric method  
Both dilatometric and calorimetric measurements were conducted applying matching 

thermal cycles; i.e., the glasses heated at rates of 10 K/min were previously cooled at 10 

K/min. The dilatometric measurements were performed using a Netzsch® DIL 402C 

dilatometer with a horizontal alumina-push rod on cylinders carefully drilled from the 

synthesized glassy block (see Chapter 2.4.6). Tg and the molar thermal expansion were found 

based on the results of the second run where both the cooling and heating rates were known. 

Tg was taken as the inflection point of the relative length change (∂L/L0)  curve during the 

second run (Figure 5.2). The inflection point corresponds to the peak point of the linear 

thermal expansion  
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coefficient alpha (αlinear) curve as well as to the peak point of the ∂V/∂T curve as shown in 

Figure 5.3a., 5.3b and 5.5. The specific heat capacities of the investigated samples were 

determined using a differential scanning calorimeter (STA Netzsch 449C) using a procedure 

described by Chapter 2.4.5. in detail. Measured heat capacity of the glasses (in J g-1 K-1) were 

fitted using a third order Maier - Kelley (1932) equation (cp=a+bT+cT-2) (Table 5.3) and were 

compared with existing model of Richet (1987). The calculated values are consistent with 

measured cp values (within uncertainty of DSC). The calculated cp of glasses are higher of 

about 1% (absolute) for all samples except the temperature interval slightly below (~300K) 

the onset temperature, where rapid increases of cp trace can occur. The predicted cp values are 

lower (~2-5%) than the measured cp in that temperature range. An example of the predicted 

and measured cp of the glass is shown on pseudo-wollastonite, CAS6 and CAS9 samples in 

(Figure 5.4). The horizontal line in Figure 5.4, at a value of 3R, is a theoretical upper limit to 

glassy heat capacity at constant volume (cv), where R is the ideal gas constant. This line 

represents theoretical limit for a mole of isolated simple harmonic oscillators that have only 

vibrational degree of freedom (i..e., in the solid state). Silicate glasses have relatively small 

thermal expansivity, thus cp and cv differ by less then 1%, so this harmonic limit should also 

apply to cp (i.e., heat capacities of the glasses). 

Supercooled liquid density, molar volume and molar thermal expansivities were 

indirectly determined by combining differential scanning calorimetric and dilatometric 

measurements assuming that the kinetics of enthalpy and shear relaxation are equivalent. The 

applied Webb et al. (1992) method is described in Chapter 3.1. 

FIGURE 5.3. (a, b) Comparison of the variation of linear thermal expansion alpha coefficient curves as a function
of temperature obtained using scanning dilatometry during the second run at a heating rate of 10 K min-1 for (a)
samples with NBO/T = 1 (CAS1-CAS5) and (b) samples with NBO/T = 0.5 (CAS6-CAS9 and pseudo-
wollastonite. 
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FIGURE 5.4. Variation of heat capacity during heating
across the glass transition. An examples  for pseudo-
wollastonite, CAS6 and CAS9. The glass transition
temperature (Tg) is defined as the temperature at which
the peak in heat capacity (cp) in the glass transition
occurs. The heat capacity of the glass was fitted using a
third order Maier-Kelley equation, cp=a+bT+cT-2 (Maier
and Kelley, 1932) The heat capacity of the supercooled
liquid (cp at Tsc) is taken as a last few points on the cp
curve, where the cp is constant. The horizontal line, at a
value of 3R, is a theoretical upper limit to glassy heat
capacities. Bold grey curve shows the calculated cp of
the glass by Richet (1987). 

 

5.1.3. Room temperature densitometry 
The densities at Troom of the CAS glasses from this study were measured after the 

dilatometric measurements. As a results, all the samples had the same cooling history (10 

K.min-1). The room temperature densities of the glass samples were obtained by employing an 

Archimedean-based technique using a SARTORIUS MC-210P microbalance with density 

determination kit. A detailed description of the room temperature densitometry was already 

given in Chapter 2.4.3.  

 

5.1.4. Partial molar volumes  
The compositional dependence of the liquid molar volume is, in general, expressed by:  

     (5.1) 

where Vliquid is the measured liquid molar volume, Xi the mole fraction of oxide, i, and Vi the 

partial molar volume of the oxide, i.  This equation is valid  if  the  molar volume  has  a  

linear variation with temperature. Courtial and Dingwell (1995) demonstrate that the molar 

( )TVXTV iiliquid ∑=)(
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FIGURE 5.5. The method of normalization of
calorimetric and dilatometric traces illustrated for the
pseudo-wollastonite sample. Tg is the glass transition
temperature and Tsc is the  temperature of the
supercooled liquid. 

 volume exhibits non-ideal behaviour in the 

CaO-Al2O3-SiO2 system, implying at least one 

excess term. Equation 5.1 thus needs to be 

rewritten: 

(5.2) 

 

where XS is the excess volume term corresponding to the possible interactions between SiO2 

and CaO, SiO2 and Al2O3, CaO and Al2O3. An excess volume term between SiO2 and CaO 

(XSSiO2 CaO) was identified and defined as: 

     (5.3) 

 

where
2SiOX and XCaO are the molar fraction of SiO2 and CaO respectively, and CaOSiOV

2
 is an 

excess term of these two oxides. Courtial and Dingwell, (1995) tested several regression 

equations on the dependence of the molar volume in the CaO-Al2O3-SiO2 system on 

temperature. These included an ideal model and one with one, two and three binary excess 

terms. The authors recommended use of the following model, which includes an excess term 

between SiO2 and CaO:  

 

(5.4) 

The molar volumes of the liquids in this study were independently analysed using this 

equation.  

The partial molar volume, molar thermal expansivity of each individual oxide and an 

excess term between SiO2-CaO were obtained from two independent regressions following 

the model of Equation 16.  The reference temperature (1200 K) was chosen with respect to the 

temperature range investigated in this study. The first regression was performed on the 

samples used in this study. The second regression covered all the samples used in this study, 

together with all the CAS samples from Courtial and Dingwell (1995) and those samples with 

compositions relevant to the CAS system from Lange and Carmichael (1987) (samples LC3-
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LC8). All the samples used in the second regression contain only CaO, Al2O3 and SiO2. 

 
5.2. Results 

5.2.1. Room temperature densitometry 
The density at Troom of samples with NBO/ T = 1 (CAS1-CAS5) range from 2.8325 to 

2.9062 g cm-3 and for samples with NBO/T = 0.5 (CAS6-CAS9) range from 2.7627 to 2.8395 

g cm-3. In addition, the density of pseudo-wollastonite at Troom was determined to be  2.9128 g 

cm-3. Results from room temperature densitometry are presented in Table 5.2, showing that 

the density decreases greatly with increasing SiO2 content for each of the NBO/T lines. The 

individual errors derived from those replicate measurements on each sample range from 0.08 

to 0.19%, with the mean error being 0.12%. 

 

5.2.2. Molar volume of glasses (low temperature densitometry) 
The dilatometric technique allows the expansivity of the glassy samples to be 

measured up to the glass transition temperature.  

Figure 5.2 shows the second run of the dilatometric measurements as ∂L/L0 for the 

investigated sample. The linear thermal expansion coefficient curves for all samples were 

obtained from the data collected during the second run of dilatometric measurements and are 

shown in Figures 5.3a and 5.3b. The dilatometric and calorimetric glass transition 

temperatures, and the linear fit parameters adila and bdila, which were obtained across the 

temperature interval ∆T, are reported in Table 5.4. Importantly both dilatometry and 

calorimetry give the same glass transition temperatures within experimental error (± 3 K). 

 In addition, the variation of the molar volume of the glass may be approximated as a 

linear function of temperature, providing an average value of the molar thermal expansivity of 

the glass, TV glass ∂∂ /  (Table 5.5). The variable TV glass ∂∂ /  is equal to the regression 

parameter corresponding to the slope of the molar volume of the glass as a function of 

absolute temperature. The molar volume of the glass at Troom ( )298(
glassV ) was calculated using 

Equation 2.11. In addition, the molar volume of the glass at the given temperature T 

( )(
_

T
glassmolV ) up to onset of the glass transition area is described by Equation 2.14. The 

parameters α0  and αl were obtained as the regression parameters of Equation 2.14 by fitting 

the molar volume of the investigated glasses as a function of absolute temperature. Values of 
)298(

glassV , TV glass ∂∂ / , α0 and α1 are listed in Table 5.5 for all the glasses.  
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The molar volume at Troom of samples with NBO/ T = 1 (CAS1-CAS5) range from 

21.833 to 22.347 cm3 mol-1 and for samples with NBO/T = 0.5 (CAS6-CAS9) range from 

23.532 to 23.881 cm3 mol-1 (Table 5.5). A systematic increase in molar thermal expansivity 

with decreasing SiO2 content was observed for all samples irrespective of their NBO/T. Molar 

thermal expansivity range from 5.268 x 10-4 to 6.346 x 10-4 cm3 mol-1 K-1 for all CAS samples 

(Table 5.5). Additionally, pseudo-wollastonite, which does not contain Al2O3 in the structure, 

has the lowest molar volume at Troom (19.953 cm3 mol-1) but the highest molar thermal 

expansivity (6.472 x 10-4 cm3 mol-1 K-1), relative to the other investigated compositions. 

 

5.2.3. Molar volume of liquids 
The molar volume of the fully relaxed supercooled liquid just above the glass 

transition range was obtained for all investigated samples. The results derived from the 

normalization procedure of Webb et al. (1992) are reported in Table 5.6 for the Tsc 

temperature slightly higher (65 - 80 K) than Tg. A systematic increase in Tg with decreasing 

SiO2 content is observed for both NBO/T-sets of samples. The molar volumes of the samples 

with the NBO/T = 1 at Tsc range from 22.485 cm3 mol-1 to 23.010 cm3 mol-1 for CAS1 and 

CAS5, respectively. The same trend of systematic increase in Tg with decreasing SiO2 was 

also observed for samples with NBO/T = 0.5, with their molar volume ranging from 24.12 

cm3 mol-1 to 24.50 cm3 mol-1 for CAS6 and CAS9, respectively. In addition, pseudo-

wollastonite has the lowest molar volume at Tsc. The molar thermal expansivities of the 

samples with NBO/T =1 are identical to within error. They have an average value of 17.30 

cm3 mol-1 K-1. The samples with NBO/T =0.5 have a slightly lower average value of 14.20 

cm3 mol-1 K-1. In contrast, the molar thermal expansivity of pseudo-wollastonite is higher 

(20.62 cm3 mol-1 K-1). The molar thermal expansion coefficients ( )(Tsc
molα ) of all the samples 

with NBO/T=1 are roughly the same (within 0.32%) at Tsc, with an average of 75.954 K-1. 

The )(Tsc
molα  for samples with NBO/T=0.5, similarly do not vary greatly, but are slightly 

smaller, with an average of 58.436 K-1. The individual errors of the Tsc
molV  and )(Tsc

molα  

determinations range from 0.04 to 0.05% and from 0.79 to 4.44%, respectively for all samples 

used in this study, with mean errors of 0.04 and 2.9%,  

respectively. 

The high temperature (HT) molar volume of the investigated samples were calculated 

using the Lange and Carmichael (1987), Lange (1997), Courtial and Dingwell (1995) and 

Toplis and Richet (2000) models across the valid temperature range. The low- and high-

temperature datasets were combined in order to determine the molar volumes of the samples 
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FIGURE 5.6. Molar volume as a function of temperature for all investigated samples over the wide temperature range.

over a very large temperature range (i.e., from the supercooled liquid up to the superliquidus 

liquid). The combination of the measured molar volumes at Tsc and the calculated molar 

volumes at superliquidus liquids is shown in Figure 5.6. Linear predictions of the molar 

volumes at Tsc have been provided for all presented liquids using these three models. The 

molar volume predicted by the Courtial and Dingwell (1995) model at Tsc are in excellent 

agreement with the data derived for all samples from combining dilatometry and calorimetry.  

The molar volumes can be expressed empirically using a linear equation (Vmol_liq = a + bT(K)) 

within the temperature interval ∆T. The fit parameters a and b, together with ∆T are listed in 

Table 5.7. 
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FIGURE 5.6. (continued) 

 

The Courtial and Dingwell (1995) model is based on ten measurements of liquids 

which cover almost the entire CAS compositional  range. The accessible range was controlled 

by the temperature of the liquidus surface and by the area of immiscibility. Their four liquid 

measurements are within the An-Wo-Geh system and the other three lie just outside of the
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 system. In practice, partial molar properties are difficult to determine, especially in systems 

containing many components. The other models (i.e., Lange and Carmichael, 1987 and Lange, 

1997) underestimate the molar volumes at Tsc. This results in these models overestimating the 

densities at Tsc. Only for the three compositions CAS2, CAS6 and pseudo-wollastonite does 

the Lange (1997) model predict the molar volume at Tsc to within the uncertainty of the 

measurements. The Toplis and Richet (2000) model is based on two liquids (i.e., anorthite and 

diopside) where the authors have enough volumetric data to describe them as a linear function 

of the logarithm of absolute temperature. The authors make the assumption that, to a first 

approximation, this form of temperature dependence is valid for a volumes of all liquids in the 

system K2O-Na2O-CaO-MgO-Al2O3-SiO2. This model does not take into account 

compositional and temperature dependency of Tf . The molar volumes of samples were 

calculated using the Toplis and Richet (2000) model (Figure 5.6). This model overestimates 

the molar volumes of An-Wo-Geh melts at superliquidus temperatures. Only for the two 

compositions CAS4, CAS9 does the Toplis and Richet (2000) model predict the molar 

volume at Tsc or Tf within the uncertainty of the measurements. The individual errors of the 

molar volume predictions at Tsc range from 0.04 to 2.44% and from 0.03 to 2.59%, for the 

Lange and Carmichael (1987) model and for the Lange (1997) model, respectively. 

 

5.2.4. Partial molar volumes and molar thermal expansivities 

The partial molar volume (Vi) and molar thermal expansivity (∂Vi/∂T) of each 

individual oxide were calculated using Equation 5.4. The results of two regressions following 

the model of Equation 5.4 are reported in Table 5.8. Both these regressions were performed as 

a function of composition and temperature on all liquids over the temperature range from 

1200 to 1873 K. The difference between the molar volumes of the samples calculated using 

the parameters listed in Table 5.7 and these calculated using  the parameters in Table 5.8 is 

less than 0.05% for temperatures ranging from 1200 to 1873 K. The uncertainties and the 

quality of these regressions are indicated by the standard error of each fit coefficient (in 

parentheses in Table 5.8). The relative standard error of the regression, when compared with 

the experimental uncertainties, indicates whether the regression can adequately reproduce the 

data within the best estimate of experimental uncertainties.  

The Vi and ∂Vi/∂T calculated using these regressions are directly compared with Vi and 

∂Vi/∂T obtained by Lange and Carmichael (1987), Lange (1997) and Courtial and Dingwell 

(1995) at the reference temperature (Tref) of 1873 K in Table 5.9. Fitted partial molar volumes 

and thermal expansivities at Tref. are listed in Table 5.9. The molar thermal expansivities of 
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SiO2 and Al2O3 are equal to zero in both provided regressions. This is in agreement with 

results given by Lange 1997 model but in contrast to the results of the Lange and Carmichael 

(1987) and Courtial and Dingwell (1995) models. The obtained partial molar volumes of CaO 

are in good agreement with results of the Courtial and Dingwell (1995) model, but higher 

from the Lange and Carmichael (1987) and Lange (1997) models. In addition, the molar 

thermal expansivities of CaO obtained in both regressions are the lowest, in comparison with 

the other models. An excess volume term between SiO2 and CaO can only be compared with 

the Courtial and Dingwell (1995)  model (see Table 5.9). 

 
5.3. Discussion 
The rheological and thermodynamic properties of aluminosilicate melts are determined 

by the arrangement of the tetrahedral structural units in the melt, which relates to the chemical 

bonding situation within a structural unit and between units. Aluminum differs from silicon, 

since tetrahedrally coordinated aluminium is charge-balanced by either one alkali cation or 

half of earth alkaline cation. The charge-balancing cations for the Al+3 tetrahedra play a large 

role in the melt structure. The structural role of the alkali or earth alkaline cations commonly 

depends on the Al+3 content of the melt (Richet et al., 1993). The short range ordering in the 

aluminosilicate network depends on the composition and the charge-balancing or network 

modifying cations. For aluminosilicates it is assumed that an energetically favourably case is 

a random occurrence of the network forming linkages Si–O–Si, Si–O–Al and Al–O–Al. 

Loewenstein (1954) introduced the principle of Al-avoidance based upon consideration of 

mineral structures. It was postulated that the Al-O-Al linkages are energetically unfavourable. 

This means that the short range ordering is not random (e.g., not totally disordered). A 

tendency towards Al-avoidance would also appear to be the case for silicate liquids as may be 

inferred from thermochemical investigations (Roy and Navrotsky, 1984), NMR spectroscopy 

(Murdoch et al., 1985; Lee and Stebbins, 1999a; 1999b) and variations of configurational 

entropy (Toplis et al.,1997). However, the presence of a small amount of Si–O–Si in glasses 

of anorthite compositions observed by triple quantum MAS NMR spectroscopy (Stebbins and 

Xu, 1997) suggests some Al–O–Al linkages (Lee and Stebbins, 1999a; 1999b).  

The investigated melts are all characterised by an excess of Ca2+ over the ions that act as 

charge-balancing for Al3+. The excess of Ca2+ acts as a network modifier (Mysen, 1988; Sato 

et al., 1991; Stebbins and Xu, 1997; Cormier et al., 2000). Toplis and Dingwell (2004) discuss 

in detail the validity of the idea that all aluminium is associated with charge-balancing cation 

in peraluminous melts (Mn+/nAl) ≥ 1. However, although Toplis and Dingwell (2004) infer 
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that aluminosilicate melts may contain a larger number of NBO than that predicted assuming 

that all Al is charge balanced (resulting in erroneous values of NBO/T). They also show that 

for calcium aluminosilicates this is only a major concern close to the metaluminous join 

where nominal NBO/T is close to zero. For the relatively depolymerised liquids considered 

here we have therefore calculated NBO/T using the standard calculation procedure of Mysen 

(1988). The deviation of NBO/T from nominal values is a complex function of the liquid 

composition,  in particular the nature of the monovalent and divalent cations.  

Solvang et al. (2004) documented a difference between the structural arrangement 

along the NBO/T lines = 0.5 and 1 for the identical composition as discussed in this study. 

The difference in structural arrangement can explain the crossover reported between the low 

(just above Tg) and the high viscosity data along the NBO/T = 0.5 and 1 lines. The charge-

balancing cation (Ca2+) have a tendency to attract the neighbouring tetrahedra of the network 

former, namely at the low temperature range, where the viscosity range from 108 to 1012 Pa s.  

Poggemann et al. (2003) confirmed that Ca2+ ions contract the channels in the glass network. 

Hence, the structural network become stronger with increasing substitution of Al3+ + 1/2Ca2+ 

for Si4+. The apparent linear dependency of the Troom density, molar volume of glasses ( 298
glassV ) 

and molar volume at Tsc ( scT
molV ) and Tg with increasing substitution of Al3+ + 1/2Ca2+ for Si4+ 

for both NBO/T lines is a direct consequence of this structural arrangement at the low 

temperature range. An increase in the molar volume at both Troom and Tsc as a function of the 

increased substitution of Al3+ + 1/2Ca2+ for Si4+ reflects that the structural units besides 

becoming stronger also favour larger clusters and hence the volume of the structural units 

become larger (Figures 5.7a and 5.7b).  

A linear temperature dependence of the molar volume between Tsc and the  

superliquidus temperature at 1 atmosphere was found for each melt. The slight increase in 

molar volume at Tsc with increasing substitution of Al3+ + 1/2Ca2+ for Si4+ for the NBO/T = 

0.5 and 1 lines, reflects increasing size of the structural units with increasing substitution, due 

to the role of Ca2+. However, both the molar thermal expansivity and the molar thermal 

expansion coefficient alpha at Tsc are independent of the substitution. Both parameters (molar 

thermal expansivity and the molar thermal expansion coefficient at Tsc) decrease with 

decreasing NBO/T along the Wo-An binary join. This is a response to the change in degree of 

polymerisation. From Wo towards CAS6 the amount of network modifying cations decreases, 

and hence the liquid molar volume increases. The formation of Al-O-Si linkages in the melt 

decreases the amount of NBO, since the Si-NBO sites bonds are replaced by the cross-linked 

Al-O-Si bonds (Mysen, 1988). The most depolymerised melt (in this case Wo) has the highest 
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FIGURES 5.7 (a, b). Molar volume as a function of (a) Ca/(Al+Ca) ratio and  (b) Si/(Si+AlCa1/2) ratio for all 
investigated samples. A linear dependence is shown for each NBO/T line at supercooled liquid (Tsc) and room 
(Troom) temperature. 

molar thermal expansivity and molar thermal expansion coefficient at Tsc, because the NBO 

sites are the weakest in the silicate network (Stebbins and Xu, 1997). With increasing 

polymerization the Al-O-Si bonds tend to strengthen the structure and the molar thermal 

expansivity decreases. The change from a temperature independent thermal expansivity for 

wollastonite to a temperature dependent thermal expansivity for diopside (Knoche et al. 

1992), despite similarity in degree of polymerisation and silica content, seems to relate to Mg 

content. A confirmation of such theory requires further investigation.  

I would like to emphasise, that the calculation of the molar volume in a binary, ternary 

or multicomponent system over a wide temperature range must be treated with caution. 

Furthermore, it should be appreciated that the thermal expansivity is a complex function of 

the composition of the liquid, in particular the nature of the cation valence. The measurements 

in this study have been performed at a pressure of one atmosphere. Several changes occur in 

the structure of silicate melts at higher pressure. For example, high coordination number of Al 

or hybrid structure in amorphous silicates are known to be favoured at higher pressure. These 

complications can cause non-ideal behaviour in the physical properties of silicate melts. As a 

results further spectroscopic studies, particularly at high temperature and pressure are 

essential. There is also lack of precise densitometry data provided on silicates with high 

viscosity and high melting point. This problem can be solved using a high temperature 

densitometry where the volume is measured on a levitated sample. Such measurements 

combined with in-situ spectroscopic measurements remain a challenge. 
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6.  Temperature Dependent Thermal Expansivities of 

    Multicomponent Natural Melts Between 993 and 1803 K 

 

A high temperature densitometry and combined dilatometric/calorimetric methods 

were provided on three multicomponent natural lavas. The sample compositions investigated 

here represent natural lavas from Vesuvius 1631 eruption, Etna 1992 eruption and an 

Oligocene-Miocene lava flow from Slapany in the Bohemian massif. The combination of the 

results from high- and low-temperature measurements cover a large temperature interval 

(298-1803 K) where the thermal expansivities of the investigated natural glasses and melts 

were obtained. High temperature densities were measured using Pt double bob Archimedean 

densitometry. across the super-liquidus temperature interval. The density values of the glassy 

samples were derived from dilatometic measurements of each sample after cooling at 5 K 

min-1
 at 298 K, followed by measurements of the glass thermal expansion coefficient from 

298 K to the samples´ respective glass transition interval. Supercooled liquid volumes and 

thermal molar expansivities were determined by combining scanning calorimetric and 

dilatometric measurements, assuming that the kinetics of enthalpy and shear relaxation are 

equivalent (Webb, 1992). The resulting data for volumes near glass transition temperature 

(993 - 1010 K) and at super-liquidus temperature (1512 - 1803 K) are combined to yield 

temperature dependent thermal expansivities over the entire supercooled and stable liquid 

range. 

 

6.1. Introduction 
Information on the density and thermal expansivity of silicate liquids is a fundamental 

prerequisite in order to derive the buoyancy forces associated with melt transport in magmatic 

processes. Thus, accurate data on the thermal expansivity of magmatic melts should play an 

important role in the construction of PVT equations of state. Expansivity data are also 

required as thermodynamic input for the calculation of physical properties, such as melt 

compressibilities from fusion curves of minerals (Bottinga, 1985; Herzberg, 1987). Such data 

are also necessary for the reduction of adiabatic wave velocity data to isothermal conditions 

(Rivers and Carmichael, 1987). The uncertainties associated with the thermal expansion of 

silicate liquids have been emphasized in numerous studies (e.g., Bouhifd et al., 2001; 

Bottinga, 1985; Herzberg, 1987; Lange and Carmichael, 1987; Lange, 1997; Gottsmann and 
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Dingwell, 2000; Gottsmann and Dingwell, 2002; Gottsmann et al., 1999; Knoche et al., 1994; 

Knoche et al., 1992a; Lange, 1996; Lange, 1997; Liu and Lange, 2001; Tangeman and Lange, 

2001; Toplis and Richet, 2000; Webb, 1992 ). 

Simple dilatometric measurements of glassy expansivity can be performed directly on 

a free standing cylindrical glass sample. However, the viscous deformation obstructs the 

direct measurement of relaxed supercooled liquid thermal expansivity. In order to use 

dilatometric data to predict the supercooled liquid expansivities of silicate melts the Web et al. 

(1992) method for removing this deformation from the dilatometric trace, was used. 

 

6.2. Experimental methods 
6.2.1. Sample preparation 

The samples investigated in this study are natural volcanic melts and glasses with high 

polymerized structure and relatively low activation energies above the superliquidus 

temperature (i.e., fragile melts). These samples have been chosen by virtue of their low 

viscosity values at superliquidus temperature (<102.5 Pa s), which allow the buoyancy-based 

high temperature densitometry to be applied. 

• Slapany (basalt/basanite), collected from the Slapany deposit situated near Cheb in the 

western part of the Bohemian massif (Czech Republic). The Slapany deposit was formed 

by simple the effusion of basalt magma. It is from the first Oligocene-Miocene 

neovolcanic phase of the Czech massif (Pacltova and Žert, 1958) and serves as the source 

for cast basalt. 

• Etna (trachybasalt), sample from lava flow of the 1992 eruption of Etna, Sicily, Italy.  

• Vesuvius (tephriphonolite), white total rock. A sample from Vesuvius-Italy, which is 

representative of the 1631 plinian eruption. 

Firstly, the natural samples were ground in an agate mortar. The resulting powders were 

melted and equilibrated in air at a temperature of 1873 K in a MoSi2 box furnace for 24 hours. 

The melts were then quenched on a stainless steel plate and broken into chips. These were 

then melted stepwise in a Pt80Rh20 rigid cylindrical crucible (5 cm height; 2.5 cm inner 

diameter and 2 mm wall thickness) for a second time in order to obtain a homogenous sample. 

This Pt80Rh20 crucible was used several times before to melt iron bearing samples which 

contained approximately the same amount of iron as the samples investigated here. The 

propensity of iron to be lost to the crucible wall has been reduced by using this crucible. 
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6.2.2. High temperature densitometry 
The high temperature melt densities were determined using the double-bob 

Archimedean technique. The apparatus used is based on the concept of Bockris et al. (1956). 

The technique and calculation of the densities used here has been outlined previously in 

Chapter 2.4.4. The densities were determined in total six individual runs of decreasing 

temperature steps. The samples was held at each measurement temperature for an one hour to 

achieve an equilibrium of the melt with the atmosphere inside the furnace. After this 

isothermal hold the buoyancy measurement follow which take usualy over 15 min at the given 

temperature. At the end of each isothermal hold, the liquid was sampled by inserting an 

alumina rod into the melt and withdrawing approximately 150 mg. This sample was then 

quenched in water. These glasses were than used to determine the oxidation state of iron, 

using the wet chemistry method (Wilson, 1960; Grillot et al., 1964), and to measure the 

chemical composition, using electron microprobe. At the end of the last cycle the crucible 

containing the sample was removed from the furnace and quenched in water. As a final 

product, a cylinder of glass 6mm in diameter was drilled from the Pt crucible. Parts of this 

cylinder were then used for calorimetric and dilatometric measurements. The authors would 

like to stress, that these cylinders, taken at the last point of the high temperature densitometry,  

FIGURE 6.1. Comparison of two alpha dilatometric heating (5 K.min-1) curves for Slapany sample. Alpha is defined
as α = 1/L (∂L/∂T), where L is the length of sample at temperature T, and ∂L/∂T is an incremental change in length
over a given small temperature interval (in this case 0.2 K). The initial drop in the 1st run curve (dotted line) followed
by a rapid increase in alpha values is common for samples which have been rapidly cooled (X00 K.min-1) from fully
relaxed liquid state through the glass transition area to the un-relaxed glassy state. This drop appears in the next
heating curve if the heating rate is about two orders of magnitude smaller than the previous rapid cooling rate. This
point (B) can be defined as the point at which the glass transition is entered. The solid curve represents the 2nd

experimental run on the sample carrying the thermal information frozen within its structure. This information has
been saved into sample structure during the 1st cooling  which started from the temperature where the structure was
fully relaxed. Solid curve does not exhibit the drop at the beginning of the glass transition area because the previous
cooling rate (5 K min-1) is equal to heating rate (5  K min-1) at which the measurement was performed. (A) is a peak
point in the alpha curve where the maximum is reached. The temperature at this point is used to define the glass
transition temperature (Tg) in this study. This peak point (Tg temperature) is easier to detect and directly corresponds
to the temperature of the peak point of the specific heat capacity curve (cp) or thermal expansivity curve (∂V/∂T), for
any given sample with identical thermal history. 
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FIGURE 6.2. dL/L0 curves of investigated samples obtained from scanning dilatometry. 

have isochemical compositions, which were determined by microprobe and wet chemistry 

analyses 

 

6.2.3. Calorimetry 
The specific heat capacities of the investigated samples were measured using a 

differential scanning calorimeter (DSC Netzsch 404C). The detailed measurement procedure 

of the heat capacity is described in Chapter 4.4.5. Here, I just state that two heat capacity 

measurements were performed for each composition at 5 K min-1 heating rate. The sample 

was heated to a temperature approximately 50 K above the glass transition temperature (Tg) 

and then cooled at 5 K min-1. The Tg given was obtained during the second run (where both 

cooling and heating rates were known) and was defined as the peak of the specific heat 

capacity curve. 

 

6.2.4. Dilatometry 
The dilatometer used during this work was a Netzsch® DIL 402C dilatometer with 

alumina-push rod in horizontal geometry. The sample assembly was supported on a alumina 

base connected to a measuring head. For each composition two heating cycles were 

performed on the same sample. The first measurement of length change (∂L/L) of the glass 

cylinders with temperature was measured with an heating rate of 5 K min-1 on the samples of 

unknown thermal history (previous cooling rate) from room-temperature up to their respective 

glass transition temperature. The measurement was provided to temperatures approximately 

40 K above Tg, which corresponds to the dilatometric softening point. The second 

measurement of length change (∂L/L) of the glass cylinders follows after the first one (Figure 

6.2).  
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FIGURE 6.3. The method of normalization of calorimetric and dilatometric traces illustrated for Etna sample.

The glass cylinders has then a known thermal history (5 K min-1) and was heated by 5 K min-1 

from room-temperature up to their respective glass transition temperature. All the measured 

(∂L/L) lie within the uncertainties of the measurements so that we will only refer to the data of 

the glasses which were heated and cooled 5 K min-1 in the rest of this paper. A linear fit of 

their length change has been carried out as a function of temperature until the occurrence of 

the onset of the glass transition. As the glass approaches the glass transition, the slope of the 

length change vs. temperature changes, as the structure of the glass relaxes upon its approach 

to the glass transition. The molar volume of the glass at room temperature, linear thermal 

expansion coefficient and empirical parameters α1 and α0 were calculated using Equations 

2.11, 2.13 and 2.14, described in Chapter 4.4.6, respectively. The thermal expansivity at 

supercooled liquids for all natural samples studied here were derived by combining 

dilatometric/calorimetric method (Webb et al., 1992) described in Chapter 3.1. An example of 

the normalization procedure of  dilatometric and calorimetric traces obtained for Etna samples 

is shown in Figure 6.3. 

 

6.2.5. Room temperature densitometry 
The room temperature density measurements were performed on the samples after the 

second run of dilatometry. All the samples have the same thermal history (5 K min-1 

cooling/heating rate). Each sample weight was measured in air and then subsequently in 
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ethanol. Densities of glass samples ( glassρ ) were calculated using the relationship 2.5 

described in Chapter 2.4.3. 

 

6.3. Results 
6.3.1. Sample composition and Fe oxidation state 

The bulk composition of samples was determined by electron microprobe CAMECA® 

SX 50. Microprobe analyses are listed in Table 6.1. No change in bulk composition was 

observed at the beginning of each cycle of HT density experiment. However, as the 

temperature changed during HT-densitometry experiments in 50 K steps, the fO2 inside of the 

furnace changed as well.  

Potassium dichromate (K2Cr2O7) titration has been applied to analyze iron, which is 

presented as Fe(II) in the withdrawn melts. As a standard has been used BHVO-1 standard 

from US Geological Survey, which is Hawaiian lava of known FeO concentration - 8.58 wt%.  

The dependence of ferric/ferrous ratio on temperature has been determined for all investigated 

samples. The parameters and the correlation coefficient derived from these linear fits are 

reported for each composition in Table 6.2. The knowledge of the sample composition at the 

given temperature is crucial for the calculation of the molar volume by using existing models 

(i.e., Lange and Carmichael, 1987, Lange, 1997).  

In addition, the possibility of crystallisation in the glassy samples has been evaluated 

in the samples obtained prior to, and after, calorimetry and dilatometry measurements. Peaks 

were not apparent within the spectra obtained using the DRON 2 X-ray diffractometer with 

Bragg Bertrand focusing and a Cu-K α as X-ray source with Ni filter. The measurements 

were performed in the range of 3 to 60º of the diffraction angle 2θ within step regime of 0.05 º 

and a measurement time of 3 sec at each step. The spectrum was interpreted using the 

program ZDS with data base PDF-2. Crystals have not been observed in any of the analyzed 

glasses. 

 

6.3.2. Room temperature densitometry 
The density at room-temperature of basalt/basanite, trachybasalt and tephriphonolite 

glasses, which had all experienced the same cooling history (5 K min-1), were 2.873±0.003,  

2.768±0.003 and 2.621±0.002 g cm-3 respectively (Table 6.3). This shows that the density 

decreases greatly with increasing SiO2 content. Replicate  measurements give individual 

errors ranging  from 0.06 to 0.09% with a mean error of about 0.07%. 
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6.3.3. Low temperature calorimetry and dilatometry 
Heat capacity of the glasses were fitted using the Maier and Kelley (1932) equation 

(i.e., Cp=a+bT+cT-2+dT0.5+eT2 ) where the first three parameters have been only used (i.e., a, 

b and c). These parameters are listed in Table 6.4. The fit parameters of the relative length 

change (∂L/L) as a function of temperature, together with the correlation coefficient (R), are 

listed in Table 6.5. The glass transition temperatures obtained from dilatometric and 

calorimetric measurements is reported in Table 6.5. Importantly both methods give the same 

glass transition temperatures within the errors involved (± 2 K). 

The molar volume of the glass at the room temperature ( )298(
_ glassmolV ) together with α0 

and α1 is listed in Table 6.6 for all glasses. α0 and α1 have been obtained by fitting the 

dilatometric data with Equation 2.14 across the temperature interval, ∆T, reported in Table 

6.6. In addition )(T
Vmolα  can also be determined by multiplying by three the term 1/L(∂L/∂T) or 

by multiplying by three the term αlinear measured by dilatometry or calculated from Equation 

2.7 since glasses are isotropic materials. The linear relationship between the molar volume of 

the glass and absolute temperature provides an approximation of the thermal molar 

expansivity of the glass (∂Vglass/∂T). ∂Vglass/∂T is equal to the regression parameter which 

corresponds to the slope of the line. The dilatometry derived values of the glassy molar 

volume provide the molar expansivites, which are 5.39±0.57x10-4 cm3 mol-1 K-1 for 

basalt/basanite, 5.83±0.50x10-4    cm3 mol-1 K-1 for trachybasalt, and 6.90±0.53x10-4 cm3 mol-1 

K-1 for tephriphonolite. 

 

6.3.4. Molar volumes of liquids 
High-temperature density measurements on natural melts are listed in Table 6.3 and 

are plotted as function of temperature in Figure 6.4a. Molar volume of the liquids have been 

calculated using Equation 2.11. Within the uncertainties, the experimental density, molar 

volume and specific volume data are linear as a function of temperature (Figures 6.4a - 6.4c). 

The parameters and the correlation coefficient derived from these linear fits are reported for 

each composition in Table 6.7. Across the temperature interval investigated, the densities 

range from 2.655±0.002 to 2.708±0.012 g cm-3 for basalt/basanite, from 2.578±0.003 to 

2.601±0.002 g cm-3 for  
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FIGURES 6.4 (a, b ,c) Compilation of the high-
temperature data of natural melts (a) temperature
dependence of density determined from the HT
densitometry (b) molar volume calculated from HT
densitometry results using real ferric/ferrous ratio
and comparison with molar volume calculated using
fixed ferric/ferrous ratio obtained at the lowest
temperature of the HT densitometry (composition
corrected to ´isochemical´ using ∆Vmolar, see text for
further discussion) and (c) specific volume
calculated from HT densitometry. 

 

trachybasalt and 2.458±0.006 from 2.467±0.002 g cm-3 to tephripholnolite. This indicates, 

that density at any given temperature decreases with increasing SiO2 contents (Figure 6.4a). 

The linear relationships between density and temperature for each sample are not parallel, 

which suggests that the thermal expansion changes with composition within the temperature 

range investigated. This has been confirmed by a linear fit of calculated molar volume of the 

samples at high temperature. The gradient of such a linear fit represents the thermal molar 

expansivity (∂V/∂T) of the sample. Thermal molar expansivities decrease with increasing SiO2 

content for the samples investigated here. The individual errors, which are calculated based on 

the standard deviation of the three replicate buoyancy measurements for each bob, range from 

0.06 to 0.24% and are reported in Table 6.3 and plotted in Figures 6.4a - 6.4c for each 

temperature and composition. The largest errors correspond generally to the most viscous 

melts, whereas the errors are smaller for the most fluid melts. The mean error, which is 

derived from the replicate buoyancies determinations of all the measurements conducted in 

this study, is about 0.19%. The high temperature densitometry derived value of liquid molar 

expansivity is 13.14±1.97x10-4 cm3 mol-1 K-1 for basalt/basanite, 11.51±0.90x10-4 cm3 mol-1 
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K-1 for trachybasalt, and  7.54±1.73x10-4 cm3 mol-1 K-1 for tephriphonolite. 

For all the natural silicates investigated in this study, the molar volume of their 

supercooled liquid and their thermal molar expansion across the glass transition region were 

calculated based on an assumed equivalence of the relaxation of volume and enthalpy at the 

glass transition region (Webb et al., 1992).  

Heat capacities (cp) of the glass and supercooled liquid are obtained using differential 

scanning calorimetry (Figure 6.5). Thermal molar expansivities (∂V/∂T) of the glass were 

calculated from the length change of the sample measured by scanning dilatometry. As noted 

above, due to the effect of viscous deformation a direct observation of thermal expansivity in 

the supercooled liquid is impossible in this scanning regime. The normalized calorimetric 

trace is used to extend the dilatometric data of the glass into the supercooled liquid 

temperature range and to determine the thermal molar expansivity of the supercooled liquid 

across the glass transition region. The molar volume of the supercooled liquid just above the 

glass transition temperature was obtained from the glass density at room temperature and the 

glass thermal expansion coefficient up to the glass transition temperature. As an example, the 

normalized comparison of relaxation in the dilatometric and calorimetric traces is illustrated 

in Figure 6.3 for the Etna-trachybasaltic composition. In Figure 6.3, the effect of viscous 

deformation on the dilatometric trace in the supercooled liquid region is clearly shown by a 

sharp drop in the trace above the peak value. The results derived from the normalization 

procedure of Webb et al. (1992) have been reported in Table 6.8 for a temperature (Tsc) 

FIGURE 6.5. Scanning calorimetric determination of heat capacity of Etna sample across the glass transition.
Bold gray curve shows the calculated cp of the glass by Richet (1987). Tsc-temperature of supercooled liquid. Tonset-
onset temperature of glass transition. 
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slightly higher than the glass transition temperature (i.e., 46, 49 or 50 K higher) for which the 

liquid was relaxed. Setting the peak values from the calorimetric and dilatometric 

measurements to be equal assumes that insignificant viscous deformation is recorded by the 

dilatometer at temperatures up to the peak temperature.  

The molar expansivity of supercooled liquid derived from combined dilatometry / 

calorimetry varies from 16.86±0.48x10-4 cm3 mol-1 K-1 for basalt/basanite, to 18.99±0.48x10-4 

cm3 mol-1 K-1 for trachybasalt, and  20.98±0.62x10-4 cm3 mol-1 K-1 for tephriphonolite. The 

molar thermal expansion coefficients of all the liquids are roughly for the same (within 3%) at 

Tsc. The individual errors for the thermal molar expansion coefficient of the different samples 

used in this study at Tsc range from 2.5 to 2.9%. Whereas, the mean error of the molar 

volume is about 0.1%. As shown in Figures 6.6a and 6.6b low- and high-temperature datasets 

were combined in order to determine the molar volumes of the liquids over a very large 

temperature range (i.e., from room temperature through the supercooled liquid up to the stable 

liquid, at temperatures at least 150 K higher than the melting point). Low- and high- 

temperature volumetric data were fitted together as a non-linear function of temperature for 

all the liquids. If the molar volume of silicate melts vary as a non-linear function of  

temperature, an appropriate mathematical form must be chosen to describe this variation. The 

equations such as V=a+b/T, V=a+b/T2, or V=a+bln(T) can describe the non-linear 

temperature dependence of volume, with only two adjustable parameters. These three 

equations have been tested by Toplis and Richet (2000). As they recommended we have used 

the equation V=a+b ln(T). The variation of molar volume as a function of the natural 

logarithm of absolute temperature for all samples is shown in Figure 6.7. The fit parameters, 

together with the correlation coefficient have been reported in Table 6.9. Note that the fits 

were made with the high- and low-temperature molar volumes. The values of ∂V/∂T 

calculated by derivation of this function (=b/T) are within 2% of the experimentally 

determined values from the supecooled temperature to superliquidus temperature. However, 

there are other equations which can describe the non-linear temperature dependency of the 

molar volume for the silicate melts. Polynomial or quadratic equations have been chosen by, 

for example, Gottsmann and Dingwell (2000) and Knoche et al. (1992b) to fit this non-

linearity, but such equations have three or even more adjustable parameters. Another problem 
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FIGURE 6.6 (a, b) Molar volume across the wide temperature range investigated (a) detail of the
corrected to ´isochemical´ Etna molar volume with description of the used methods (b) comparison of
the molar volume of all investigated ´isochemical´ samples plotted as a function of temperature. 
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FIGURE 6.7. The variation of molar volume of the liquids as a function of the natural logarithm of absolute
temperature for all samples. 

 associated with these equations is that they have innate inflection points, which increases the 

uncertainty of their extrapolation. 

It is important to note that the treatment of the calorimetric and dilatometric data has 

been successful because for each sample the composition, thermal history, and as a result, the 

limiting fictive temperature were identical for the calorimetric and dilatometric 

measurements. 

 

 

6.4. Discussion 
The two primary sources of thermal expansivity data are i) superliquidus liquid density 

determination by the double platinum bob Archimedean method and ii) expansivity data for 

the supercooled melt obtained by dilatometric method. The high-temperature density 

measurements are often limited by restricted ranges of temperature accessible using these 

more traditional techniques. This can result from high liquidus temperature or high 

superliquidus viscosity which result in a large uncertainty in expansivity. An example is 

provided by the systems Na2O-SiO2 and CaO-Al2O3-SiO2, where, with increasing silica 

content, the combination of decreasing accessible temperatures and decreasing expansivities 

results in an error of up to several hundred percent (Bockris et al., 1956; Courtial and 

Dingwell, 1995). Multicomponent modelling of liquid densities yields thermal expansivities 

of partial molar volumes with uncertainties up to ±100% (Lange and Carmichael, 1987).  
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During igneous petrogenesis, however, several magmatic processes (e.g., 

crystallization, crystal-melt fractionation, fragmentation of magma) occur at the temperatures 

below  the solidus where the melt remains in local disequilibrium at subsolidus temperature. 

Dilatometry is one of the techniques which can yield expansivity data at such temperatures 

provided the nature of the glass transition is properly appreciated (Dingwell and Webb 1989;  

Dingwell and Webb 1990). Attempts to determine the expansivity of the molten silicates just 

above the glass transition have been challenging. The weight of the rod used to measure 

length changes results in dilatometry, causes it to penetrate into the sample surface when the 

viscosity becomes lower then about 1011 Pa s. Even if the rod was weightless, or the 

dilatometer was arranged horizontally, there would be an upper temperature limit where the 

viscosity becomes lower then about 107 Pa s. In such conditions the sample would collapse 

under its own gravitational body forces  (e.g., Tool and Eichlin, 1931; Toplis and Richet, 

2000). In this work we recover the supercooled liquid molar expansivities from combined 

dilatometry/calorimetry method proposed by Webb et. al. (1992).  

The glassy cylinders, used for scanning dilatometry and room temperature 

densitometry, were obtained from the last temperature point of the high temperature 

densitometry and are isochemical. This was confirmed by microprobe and wet chemistry 

analyses. At higher temperatures during the superliquidus densitometry the samples have 

different compositions due to changes in fO2. The ferric/ferrous ratio is controlled by the 

redox reactions occurring within samples at HT during the superliquidus densitometry 

experiments. The temperature dependence of Fe(II) content can be expressed linearly and the 

regression parameters of these fits are listed in Table 6.2. Grams per formula weight (gfw) is 

also a temperature dependent value due to the change in the ferric/ferrous ratio. To correct for 

the effect of change in ferric/ferrous ratio on the molar volume at the higher temperature 

points (i.e., at which HT densitometry was performed) I used the Lang and Carmichael (1987) 

and Lange (1997) models with fixed ferric/ferrous (that at the lowest superliquidus 

densitometry temperature). These molar volumes were compared with molar volumes 

calculated using the Lang and Carmichael (1987) and Lange (1997) models with the actual 

ferric/ferrous ratio measured by the wet chemistry method. The difference between these two 

molar volumes gives the ∆Vmolar, which has been added to the values measured using 

superliquidus densitometry. This means that the superliquidus densitometry data are now 

´isochemical´ along with the calorimetry, dilatometry and room temperature densitometry 

(e.g. in terms of ferric/ferrous ratio, gfw). The effect of this correction on the molar volume at 

higher temperature is negligible (Figure 6.4b). The change in curvature of the logarithmic fit 
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between supercooled liquid and corrected superliquidus liquid molar volume is minor and 

cannot be detected on the scale of Figures 6.6a and 6.6b. Furthermore, the Figure 6.6a and its 

close-up shows that the linear fit of molar volume at Tsc and superliquidus values is 

insufficient for all molar volume data at superliquidus temperature range. The error of such fit 

increase from basalt/basanite to  tephriphonolite. 

In addition, other structural parameters may change with temperature in part due to 

changes in the coordination number of Fe. The Lange and Carmichael (1987) and Lange 

(1997) models require an exact composition of the sample at temperature T. Changes in gfw 

have been taken into account and the composition of all samples (at temperature T) were 

recalculated and normalized to 100%. Molar volumes at superliquidus temperature were 

calculated by both models using recalculated and normalized compositions. Both the Lange 

and Carmichael (1987) and Lange (1997) models underestimate the molar volume of  all 

samples across the HT range. Linear fits of calculated molar volumes using both models were 

extended to the supercooled liquid area. Values obtained in this way underestimate the molar 

volumes at Tsc by 1 to 2%. The error bars in Figures 6.4a - 6.4c correspond to standard 

deviation in the buoyancy determination propagated through Equation 2.6. However, both 

models are based on ideal mixing of oxide components. Furthermore, only four from total of 

twenty eight samples measured by Lange and Carmichael (1987) and Lange (1997) contain 

iron. The ferric/ferrous ratio is relatively restricted in their study. Nevertheless, authors 

claimed that the effect of iron redox state on density of variety of natural liquids are to most 

amount a variation of 1%. In addition, the Lange (1997) model did not take in to account the 

excess volume term corresponding to the possible interaction between SiO2 and CaO, 

proposed by Courtial and Dingwell (1995). There is a lack of precise densitometry data 

provided on Fe-bearing silicates provided at different fO2. This problem may be solved soon 

using new high temperature densitometry method where the volume is measured on a 

levitated sample. Such measurements may be combined with in-situ spectroscopic 

measurements.  

The kinetics of redox reactions are slower at lower temperature (e.g., Bouhifd et al., 

2004) so it is possible that some of my superliquidus densitometry steps, especially those at 

lower temperature, were not in equilibrium with air. This would not have any affect on the 

experimental results, because the HT densitometry was measured in three independent cycles 

for each Pt-bob. At the end of each cycle, when the lowest T (i.e., 1512 K for Slapany, 1571 

K for Etna and 1696 K for Vesuvius) was reached, the sample was reheated again to the 

highest temperature (i.e., 1796 K for Slapany, 1803 K for Etna and 1803 K for Vesuvius) 
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where it was held for at least 8 hours. This allowed sufficient time for equilibrium in 

ferric/ferrous ratio to be reached. This has been confirmed using the Kress and Carmichael 

(1991) and Ottonello et al. (2001) models. Therefore the samples at the beginning of each 

cycle were in equilibrium with air. The intervals during which temperature changed, the 

isothermal holds and the measurement time and temperature were the same during all 

experiments (Figure 6.8) and the composition was checked by taking small amounts of 

sample (via the “dip” technique) for wet chemistry and microprobe analyses. Furthermore, the 

samples taken at the same temperature show no evidence of compositional change due either 

to gravitational separation or loss of iron through reaction with the platinum crucible. 

FIGURE 6.8. An example of the temperature profile of the high temperature densitometry as a function of time
(Etna sample). Each temperature point has been measured three times using both small and big bob and sampled
using “dip” technique for compositional investigation. At the end of each cycle, when the lowest temperature
was reached, the sample was reheated again into the highest temperature where it remained for at least 8 hours
(usually over night) to achieve an equilibrium. The last temperature point represents the temperature at which the
sample was quenched. This glass was then drilled to provide samples for scanning dilatometry and calorimetry
(isochemical composition). 
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The measured calorimetric results were compared with existing model of Richet 

(1987). The calculated values are consistent with measured cp values (within uncertainty of 

DSC). The calculated cp of glasses are higher of about 1% (absolute) for all samples except 

the temperature interval slightly below (~80K) the onset temperature, where rapid increases of 

cp trace can occur. The predicted cp values are lower (~1%) then the measured cp in that 

temperature range. An example of the predicted and measured cp of the glass is shown on Etna 

sample in Figure 6.5. 

Some binary, ternary and quaternary systems seem to have temperature independent 

thermal expansivities from the supercooled liquid temperature to the superliquidus 

temperature. However, the AnDi system exhibits a temperature dependency of the ∂V/∂T 

(Gottsmann and Dingwell, 2000; Knoche et al., 1994; Knoche et al., 1992b; Toplis and 

Richet, 2000). Thus thermal molar expansivity of multicomponent natural melts appears to be, 

in general, temperature dependent and can be expressed by a logarithmic function. 
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7.  An Expanded non-Arrhenian Model for Silicate Melt Viscosity:  

A Treatment for Metaluminous, Peraluminous and Peralkaline 

Liquids 

 

7.1. Introduction 
The prediction of the viscosity of silicate liquids, over the range of temperatures and 

compositions encountered in nature, remains one of the most challenging and elusive goals in 

Earth Sciences. Recent work (Giordano and Dingwell, 2003a, Russell et al., 2002, 2003; 

Russell and Giordano, 2005) suggests that there are now sufficient experimental melt 

viscosity data available to create new viscosity models to replace previous Arrhenian models 

(Shaw, 1972; Bottinga and Weill, 1972). As mentioned in these works, the Arrhenian 

assumption of early models was fully consistent with the available data; however, the current 

database of viscosity measurements covers a significantly wider interval of melt compositions 

and temperatures (e.g., Richet and Bottinga, 1995; Dingwell, 1995). The new data require that 

future viscosity models accommodate strong non-Arrhenian temperature dependencies (e.g., 

Richet, 1984; Hummel and Arndt, 1985; Angell, 1985) and extend the compositional range of 

more recent non-Arrhenian models (Hess and Dingwell, 1996). 

Most recently, Giordano and Dingwell (2003 a, b) presented an empirical model for 

accurately predicting the non-Arrhenian temperature dependent viscosity and fragility of 

silicate melts over a wide range of anhydrous compositions (e.g., rhyolite to basanite). Their 

analyses covered the widest range of anhydrous natural silicate melt compositions so far 

investigated. The experimental database constitutes ~800 high quality measurements of 

viscosity on silicate melts that vary in character from strong to fragile (Angell, 1985). The 

purely empirical Vogel-Fulcher-Tamman (VFT) (Vogel, 1921, Fulcher, 1925; Tammann and 

Hesse, 1926) equation is used to accommodate the non-Arrhenian temperature dependence of 

melt viscosity (η) : 

 

log η = A + B/(T - C)          (7.1) 

 

where η is the viscosity in Pa s and T is absolute temperature T (K). The variables A, B, C are 

adjustable parameters representing the pre-exponential factor, the pseudo-activation energy, 

and the VFT-temperature, respectively (e.g., Angell, 1985). In the recalibration that I have 
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performed of this viscosity model I have also assumed that all silicate melts converge to a 

common value at high-temperature which requires that the value of A is constant and 

independent of composition (e.g., Russell et al., 2003; Russell and Giordano, 2005).  

The database of experimentally determined pairs of values of T(K) versus log η is 

substantially larger (about 800 data and 44 compositions) than originally available to 

Giordano and Dingwell (2003a) (about 800 data on 44 melt compositions vs. ~ 350 

experiments on  20 different melt compositions). Also, the calibration provided here considers 

a temperature range from 613 to 2265°C, much wider than that used by Giordano and 

Dingwell (2003a) (i.e., 700 to 1600°C). Specifically, the new database comprises peralkaline 

(A.I. = Na2O+K2O/Al2O3 > 1), metaluminous and peraluminous (P.I. = 

Al2O3/CaO+Na2O+K2O > 1) melt compositions. These data show that, compared to 

metaluminous liquids (Na2O+K2O < Al2O3 < CaO+Na2O+K2O), the peralkaline and 

peraluminous melts have lower and higher viscosities, respectively.  

Past and recent models of silicate melt viscosity have demonstrated the drastically 

different rheological behaviours of peralkaline, metaluminous and peraluminous melts. 

Multicomponent models based on the Arrhenian temperature dependence of viscosity (Shaw, 

1972; Bottinga and Weill, 1972, Persikov et al., 1990) have shown that metaluminous melts 

typically have viscosities between those of peraluminous (higher viscosity) and peralkaline 

(lower viscosity) melts. The early models adopted an Arrhenian temperature dependence, 

fully consistent with the available data at the time, which is now viewed as inadequate as 

silicate melts commonly show a pronounced non-Arrhenian temperature dependence of 

viscosity (e.g., Angell, 1985; Giordano and Dingwell, 2003b; Russell et al., 2003). The 

seminal work from Bottinga and Weill (1972) and more recent studies that have incorporated 

both dry and H2O-bearing melts (e.g. Baker and Vaillancourt, 1995; Dingwell et al., 1998, 

2000; Hess et al., 2001; Giordano et al., 2000; Witthington et al., 2000, 2001; Giordano and 

Dingwell, 2003; Bouhifd et al., 2004; Webb et al., 2004) recognized that the rheological 

behaviour of peralkaline and peraluminous melts is complicated relative to metaluminous 

melts. 

A simple recalibration of the Giordano and Dingwell (2003a) model using the 

extended database reproduces the viscosity data on metaluminous liquids very well but it is 

less accurate when predicting the viscosities of peralkaline and peraluminous melts at 

temperatures lower than 1000 °C. I accommodate the discrepancies between the model 

predictions and the observed viscosities of peralkaline and peraluminous melts using an 

empirical factor based on the ratio of excess of alkalies over the alumina (AE = Na2O+K2O-
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Al2O3) to SM, the sum of all the structure modifier oxides. SM as defined in Giordano and 

Dingwell, (2003a) is SM is the sum on a molar basis of (Na2O + K2O + CaO + MgO + MnO 

+ FeOtot/2), disregarding the contribution of charge-balancing cations. The temperature-

dependent factor allows us to reproduce the complete database of melt viscosity to within a 

RMSE (Root Mean Square Error) of 0.45 logunits.  

 

7.2. Experimental rationale 

The quality, amount and distribution of experimental data strongly affect our ability to 

create new predictive models. With this in mind the gaps in the T-X spaces were reduced, as 

previously explained by Giordano and Dingwell (2003a), by measuring additional melt 

compositions (rhyolitic, trachytic, moldavitic, andesitic, latitic, pantelleritic, basaltic and 

basanitic) and incorporating them into the existing database of silicate melt viscosities (e.g., 

Giordano et al., 2005; Mangiacapra et al., 2005a,b; Bouhifd et al., 2004; ; Giordano and 

Dingwell, 2003a; Whittington et al., 2000, 2001; Dingwell et al., 2000, 1996; Alibidirov 

1997; Richet et al., 1996; Neuville et al., 1993). It is thanks to these new viscosity 

determinations and recent advances in modelling the viscosity of silicate melts (e.g. Russell et 

al., 2002, 2003; Giordano and Dingwell, 2003a) that we are now able to generalize previous 

observations to an extended database for multicomponent silicate systems. 

The chemical composition and a description of the samples measured for this study are 

provided in Table 7.1 and Figure 7.1. The compositions of other natural and synthetic silicate 

melts for which viscosities have been measured by other research groups. The samples 
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FIGURE 7.1. Chemical compositions of the (newly) investigated products (closed symbols) compared to
compositions presented in Giordano and Dingwell (2003a) (G&D_’03) (open symbols). The chemical range
of the samples investigated is given according to the T.A.S. (Total Alkali Silica) diagram (after Le Bas et
al., 1986) reporting the values of the total alkali (Na2O+K2O) content vs. the SiO2 (wt%)s. Table 7.1 reports
the chemical compositions as determined by microprobe analysis. 
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measured in this study are derived from natural samples collected from the fallout deposits of 

the Fondo Riccio (Di Vito, 1999)(FRa) and the Campanian Ignimbrite (Civetta et al, 1988) 

(CI_OF*) plinian eruptions, at the Phlegrean Fields (PF, Italy). Other volcanic products were 

collected at Stromboli (STB*) (Italy), Monserrat (MST) (Martinique), Slapany (SLP) (Czech 

Republic) and Merapi (MRP) (Indonesia) during their last phases of activity (see Table 7.1). 

They include a range of compositions from foidite and basanite to basaltic-andesites, 

andesites, phonolite, dacite and rhyolites (Figure 7.1). 

The starting materials used for the viscosity determinations were prepared by fusion of 

the total rocks of the selected samples. The experimental techniques used to measure the 

viscosity of the multicomponent liquid investigated include: (a) high-T (1050 to 1650 °C) 

concentric cylinder techniques for viscosity determinations in a range from about 10-1 to 105 

Pa s, and (b) low-T micropenetration viscometry (676 to 919 °C) on quenched glasses to 

measure melt viscosity in the interval from about 108 to 1012 Pa s and close to the glass 

transition temperature (Hess et al., 1995; Dingwell et al., 1996). Details of these experimental 

techniques have been described extensively in previous works (e.g. Dingwell and Virgo, 
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FIGURES 7.2. (a) Viscosity data measured and analysed in this study (closed symbols) and, (b) experimental
data (open symbols) considered from Giordano and Dingwell (2003 a)(G&D_’03). Datasets are reported in the
viscosity - reciprocal temperature diagram, where viscosity is in logarithmic scale. Tables 7.1 and 7.2 report
data sources and measured viscosity data for the silicate melts investigated. 
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1988; Hess et al., 1995). The major element compositions of the glasses were determined 

using a CAMECA® SX 50 microprobe (Table 7.1). 

The viscosity data for each sample are plotted in the Arrhenian diagram (Figure 7.2). 

The complete dataset presented here includes that used by Giordano and Dingwell (2003a), as 

well as, the 157 new viscosity measurements on 8 new melt compositions reported in Table 

7.2. 

The database also uses viscosity determined for multicomponent silicate melts by 

Neuville et al. (1993), Dingwell et al. (1996), Richet et al. (1996), Alibidirov (1997), Toplis et 

al. (1997), Dingwell et al. (2000), Bouhifd et al. (2004), Whittington et al. (2000, 2001); 

Giordano et al. (2005); Mangiacapra et al. (2005a, b). Over the temperature range of about 

613 to 2265 °C, the measured compositions show a near Arrhenian to strongly non-Arrhenian 

behavior. 

 

7.3. Results and numerical strategy 
As mentioned above, the new calibration adopts a slightly different strategy from the 

Giordano and Dingwell (2003a) model for modeling the viscosity of silicate melts as a 

function of temperature and composition. Here, it is assumed that all silicate liquids converge 

to a common, high-temperature limiting value of viscosity (e.g., Russell et al., 2002; Russell 

et al., 2003; Russell and Giordano, 2005). This assumption requires the parameter A to be 
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FIGURE 7.3. Comparison between the measured values of viscosity (x-axis) and the values of viscosity
predicted by fitting the datasets for individual melts to: i) independent values of A, B and C (Equation 7.1), and
ii) independent values of B and C coupled to a common value of A (=-4.07) for all the sets of data. VFT
parameter and error analysis values are provided in Table 7.3. Parallel line indicate + 0.25 logunits. 
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constant and independent of melt composition (e.g. Angell, 1995).  

Consequently, all compositional controls must be accommodated by variations in the 

B and C terms (Russell and Giordano, 2005). This assumption is justified by theoretical 

studies (e.g. Glasstone, 1941; Myuller, 1955; Frenkel, 1959) and operationally by the fact that 

there is no statistical difference between the quality of fits of the VFT functions to individual 

data sets or to data sets coupled via a single optimized value of A (e.g. Russell et al., 2003; 

Russell and Giordano, 2005) (Figure 7.3). The main consequence of this assumption is that 

the number of variables (e.g., A, B and C) necessary to describe the T-dependence of 

viscosity for N individual melt compositions is reduced from 3N (where N is the number of 

data sets) to 2N+1.  

For each melt composition the optimum VFT coefficients (e.g., A, B and C) have been 

calculated. The data for each composition have been fited by first assuming unique values of 

A for each composition and then, assuming they share a common, but unknown, value of A. 

The parameters obtained in the two different circumstances are reported in Table 7.3 with 

their respective χ2 and the RMSE values. The results of the optimization are summarized in 

Figure 7.3a and 7.3b where the misfits between the calculated and measured values of 

viscosity are compared. For the individual fits RMSE ~ 0.24 logunits which represents the 

ability of the VFT equation to reproduce the experimental measurements. In the case of a 

common value of the A parameter an optimal value of -4.07 (in logarithmic units) is found. 

This agrees well with the pre-exponential factor (A = 10-4.5+1 Pa s) predicted by theories based 

on kinetic rate processes (e.g., Frenkel 1959; Glasstone et al., 1941) and utilized by Myuller 

(1955) for the description of the Arrhenian T-dependence of viscosity. Furthermore, the 

resulting RMSE is 0.30 logunits, which is only slightly larger than the value of 0.24 logunits 

obtained for individual values of A (and N-1 extra parameters). 

Given that A is constant and independent of composition, the compositional effects on 

melt viscosity must be completely accommodated by the values of B and C. The B and C 

parameters fitted with a constant value of A are strongly correlated and the covariation 

between the model values of B and C (Table 7.2) is illustrated in Figure 7.4. The values of B 

and C parameters describe 3 separate trends for the metaluminous, peralkaline, and 

peraluminous melt compositions, respectively. Peralkaline melts tend to have lower values of 

C at fixed values of B, peraluminous have higher values of C and metaluminous are 

intermediate.  
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In particular, B and C values appear to be correlated with the degree of melt 

polymerization expressed using the parameter SM (= Σ mole% (Na2O + K2O + CaO + MgO + 

MnO + FeOtot/2) (Giordano and Dingwell, 2003a) (Figures 7.5a and 7.5b). In fact, the values 

of B, taken separately for each compositional suite, decrease with increasing SM parameter, 

whereas an opposite trend, albeit slightly more scattered, is observed for the C parameter 

(Giordano and Dingwell, 2003b; Russell et al., 2003). At higher values of SM and increasing 

degree of depolymerization (low B and high C values) the C values for the peralkaline and the 

metaluminous melts seem to merge. For peraluminous melt compositions the C parameter 

defines a different trend. In addition, at fixed values of SM the peralkaline “suite” typically 

exhibits lower C values with respect to both metaluminous and peraluminous melts. On the 

other hand, the peraluminous “suite” has the highest C and the lowest B values. 

The SM parameter constitutes the dominant chemical control on B and C values. 

Nevertheless Figures 7.4, 7.5a and 7.5b illustrate that SM alone is not sufficient to describe 

the variations in B and C found for all melt compositions. In fact, the B and C parameters for 

melts ranging from peralkaline to peraluminous are poorly described by SM (Figures 7.5a and 

7.5b) suggesting that an additional compositional factor is required. 

The anomalous behaviour of peralkaline and peraluminous liquids in terms of their B 

and C parameters is also evident in the patterns of isothermal viscosity versus  SM parameter 

(Figures 7.6a and 7.6b). At high temperatures (> 1200 °C, Figures 7.6a and 7.6b) and low 

values of viscosity (< 105 Pa s, if pure silica is excluded) viscosity varies coherently as SM 

changes, regardless of whether the melts are metaluminous, peraluminous or peralkaline. The 

model isothermal viscosities at 1400 and 2000 °C are predicted simply as a function of the 

SM parameter. Even at 1000°C there is a coherent trend between viscosity and SM for most 
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FIGURE 7.5. Variation of the Bvft and Cvft parameters with the SM parameter (SM =
Na2O+K2O+CaO+MgO+MnO+FeOtot/2 (mole%) - Giordano and Dingwell, 2003a). To a first
approximation SM represents the “polymerization degree” of the silicate network. Symbols as in Figure 7.3.
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melts; the exceptions are two of the peralkaline composition (SFB40, SFB60), represented by 

the two crossed squares under the 1000 °C isothermal viscosity curve in Figure 7.6b. The 

discrepancies between model isothermal viscosity curves and  the measured values of 

viscosity increase as temperature decreases. The discrepancies are mainly related to the 

peralkaline and peraluminous liquids and they become substantial at temperatures below 

800°C (Figures 7.6a and 7.6b). At these low temperature, the peralkaline samples show 

viscosities significantly smaller than thet metaluminous samples, whereas the peraluminous 

samples have higher viscosities compared to the metaluminous samples. According to these 

observations it seems suitable to use the value of the difference between the alkali and the 

alumina content, on a molar basis (AE= Na2O+K2O-Al2O3) as a useful chemical parameter to 

discriminate between the compositional suites. These discrepancies can be attributable to the 

different roles played by the network modifying and network forming cations in the silicate 

network, in particular the mutual role played by the alkali and alumina. 

Figure 7.6 also shows that the isothermal curves become parallel when a critical ratio 

of network modifiers (e.g., SM) is reached. The fact that the trends of the isothermal viscosity 

versus the SM parameter are almost parallel indicate that they are insensitive to temperature, 

possibly indicating that the effect of temperature on the structural rearrangement of silicate 

melts is quite limited. This is most apparent for melts with high SM values where the system 

is very depolymerised. 

 

7.4. Viscosity model 
Following the methods of Giordano and Dingwell (2003a), the empirical equations 

were fitted to the predicted values of viscosity for all melts at specific temperatures. For each 

melt composition (N=44) were computed the viscosity at a series of temperatures using a 

value of the A of -4.07 and the appropriate values of B and C (Table 7.3). Thus, for each 

specific temperature (see Figure 7.6a) were computed 44 model values of viscosity 

corresponding to each of the different melt compositions represented by SM.  

Isothermal curves were then generated by fitting equations of the form: 

 

SMa
a*a

aηlog
3

32
110 +

+=         (7.2) 

 

to the logη - SM datasets computed for each temperature. Thus, the isothermal variation in 

viscosity is described as a function of SM by the values of a1, a2, a3 (Table 7.4). The present 
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model uses a discrete number of isothermal viscosity curves at intervals of 100 °C over the 

range 700 °C to 2000 °C plus one at 630°C. The temperature interval (630 to 2000 °C) 

investigated here is significantly larger than that used by Giordano and Dingwell (2003a). 

 

Figures 7.6a and 7.6b compare the values of viscosity (symbols) recalculated using the 

appropriate VFT functions at each temperature (630, 700, 800, 1000, 1400, and 2000 °C) to 

the model curves fitted to those data (curves) as a function of compositions (e.g., SM). The 

parameters (i.e., a1, a2, a3) used for each isothermal viscosity curve are summarized in Table 

7.4. These parameters allow melt viscosity to be predicted as a function of composition for 

specific temperatures. The values of these compositional parameters (a1, a2, a3) vary with 

temperature (Figure 7.7). This figure shows the values of these coefficients computed for 

discrete temperatures: 
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In order to compute melt viscosity as a function of temperature and composition the 

following steps are taken: i) the coefficients a1, a2, and a3 are calculated at specified 

temperatures using Equations 7.3 - 7.5; ii) the value of SM for the specific melt composition 

is calculated, and iii) the values of logη are calculated using the a1, a2, a3 and SM values in 

Equation 7.2  

Table 7.5 presents an example calculation that shows how to compute the viscosity for a fixed 

temperature and composition. 

 Figures 7.8a - 7.8c compare experimentally measured values of the viscosity and the 

values predicted by the model using 

Equations 7.2 - 7.5. The model 

reproduces the viscosities of 

metaluminous liquids with RMSE of 

0.38 logunits. However, the model is 

less accurate in reproducing the 

viscosities of peraluminous and 

peralkaline compositions with RMSE 

values of 0.66 and 1.70, respectively 

(Figures 7.9b and 7.9c). Consequently, 

the RMSE value for the entire dataset 

(e.g. 44 composition) is 0.84 logunits. 

Nevertheless, these values are 

significantly lower than the RMSE 

values associated with the original 

Giordano and Dingwell (2003a) model; 

suggesting that these modifications 

significantly improve it. 
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7.5. Extension to peralkaline and peraluminous melts 
In order to be able to apply this model to natural systems, it is critical to find a means 

of accurately predicting the viscosity for peraluminous and peralkaline melts. Figure 7.9 

shows the discrepancies from the measured values for metaluminous, peralkaline and 

peraluminous melts that the recalibrated model (Equations 7.2 - 7.6) exhibits as a function of 

the experimental reciprocal temperature. From examining Figure 7.9 the following critical 

phenomena can be observed: 1) the model overestimates the viscosity of peralkaline melts 

(negative value of the residuals), 2) the model underestimates the viscosity of peraluminous 

(positive value of the residuals), 3) the largest residuals are associated with peralkaline 

liquids, 4) metaluminous melts have very small random residuals and 5) the residuals are 

temperature dependent and their absolute values increase with decreasing temperature. Along 

with these observations I believe that the observed discrepancies are strongly governed by the 

mutual relationships between alkali and alumina. In particular, as discussed below, the 
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FIGURES. 7.8. Predicted vs. measured viscosity calculated by Equations 7.2 - 7.5. (a) metaluminous; (b)
peralkaline; (c) peraluminous liquids. 
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FIGURES 7.9. Temperature-dependence of the
residuals obtained for difference between the
viscosities calculated using Equations.7.2 - 7.5
and the measured values. Lines in the figure
constrain the 2 σ error interval. 

discrepancies were found to be related to the 

alkali excess over the alumina content (AE), 

the network modifiers content. Figure 7.9 

constitutes a first step in the analysis and 

provides a guide towards the form of the 

equation that could be used to modify the 

current model reproduces the viscosities of 

peraluminous and peralkaline melts. For 

example, on the basis of Figure 7.9 it was 

noticed that the magnitude of the misfit 

between the model and the measured data 

increases as a function of: i) increasing 

excess of alkali (AE) contents, and for melts 

having low SM, of ii) AE. The goal at this 

point is to refine the model represented by 

Equations 7.2 - 7.6 so that it can be extended 

in a “continuous” way to reproduce all of the 

experimental data. A simple temperature-

dependent parabolic equation was adopted to 

describe the residuals for the peralkaline and 

the peraluminous melts as a function of composition. Compositional variation is treated as 

different amounts of excess alkali (AE) and the number of structural modifiers (SM). The 

equation has the form: 

 







⋅−






⋅⋅+






⋅⋅−=−=

SM
AE24.337

SM
AET0.03578

SM
AET30,00001292logηlogη∆logη 2

SMmodelmeas  

(7.6) 

 

where logηmeas.is the measured value of viscosity, logηSM-model is the viscosity predicted by 

Equations 7.2 - 7.5, T is the temperature in °C, AE is the excess of alkalies over the alumina 
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and SM is the “structure modifier” parameter (Giordano and Dingwell 2003a). The resulting 

parabolic equation provides a T-dependent correction factor as a function of the ratio AE/SM 

which can be added to equation 7.4 (see Equation 7.7 below). As previously described 

equations (7.2 - 7.5) were calibrated against parameters derived for a discrete number of 

isothermal viscosity (logη) vs. SM curves (i.e., Table 7.4) over the temperature interval (630 - 

2400 °C). This temperature interval was chosen because for most of the compositions 

analysed over that interval there is a sufficient number of experimental data. At lower 

temperature only few composition were measured. 

The final regression of the experimental data for the model parameters is performed on 

the experimental database, rather than on discrete model values (e.g. Figure 7.10 and Table 

7.2). The resulting model is given by the equation: 

 

4
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32
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SMb
b*b

bηlog +
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where  

 

    
T6970.00000166T0.0022362-1

T0.0351623-33.5556b 21 ][
][=

⋅−⋅
⋅+

     (7.8) 

  
T0720.00001361 +T0.0054597-1

T0.2317411+-93.6494b 22 ][
][=

⋅⋅
⋅      (7.9) 

  
T1700.00000002-T0.0036108-1

T0.0780935-45.5755b 23 ][
][=

⋅⋅
⋅      (7.10) 







⋅⋅






⋅+⋅






⋅

SM
AE24.3366274-T

SM
AE0.03577545T

SM
AE3910,00001292- b 2
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T(°C) being the temperature in °C and AE and SM as defined above.  
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 Equation 7.11 comprised of 15 empirical parameters that reproduce very well the 

entire database of measured viscosities, including the peralkaline and peraluminous samples 

(Figure 7.10). The resulting fit has RMSE = 0.45 logunits. Figure 7.11 shows residuals as a 

function of SM. The largest differences between the observed and modelled viscosities 

(Equations. 7.7 - 7.11) are in the peralkaline melts.  

 

7.6. Discussion 

It is clear that the metaluminous, peraluminous and peralkaline melts analysed in this 

work, define three different domains/regimes of viscous flow. At constant T, the 

metaluminous melts are more viscous than the peralkaline and less viscous than the 

peraluminous. It is also clear that such differences are determined by how the alumina and the 

alkalies enter the silicate structure of the melts. In particular, as discussed by Dingwell et al. 

(1998), the viscosity for the haplogranitic composition (HPG8) increases with the addition of 

the first few percent of normative corundum, whereas it remains constant with further 

addition of Al2O3 (up to 5 wt%). A smooth variation of viscosity, in this compositional range, 

would require a viscosity maximum for a slightly peraluminous melt (between HPG8Al02 

and HPG8Al05). Such a maximum, shifted with respect to the metaluminous composition was 

also found along the stoichiometrically similar join in the system Na2O-Al2O3-SiO2 and was 

accounted for by the presence of triclusters in the melt (Toplis et al., 1997). 
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calculated by Equations. 7.2 –7.7 (corrected for
the compositional dependence of the residuals)
and the viscosity measured. The total RMSE
value is 0.45 logunits.
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Unfortunately, the lack of viscosity data on strongly peraluminous melts prevent me 

from investigating  the tricluster hypothesis in more detail. In contrast to what was observed 

by Toplis et al. (1997) for simple systems, I find that peralkaline melts show a more complex 

relationship between viscosity and chemical composition. The viscosity maximum is not 

shifted to the peralkaline field and the decrease in viscosity with addition of alkali is more 

pronounced than what is expected by a simple depolymerization process as defined by either 

the SM, or the NBO/T (Mysen, 1988) parameters. This decrease in viscosity correlates to the 

ratio AE/SM. 

As already argued by Giordano and 

Dingwell (2003a, b), this anomalous 

behaviour might be explained using the 

notion that percolation channels in silicate 

melts affecttheir medium-range order. This 

notion has arisen from experimental studies 

(e.g., Brown et al., 1995; Greaves and Ngai, 

1995; Poggemann et al., 2003) and supported 

by molecular dynamics simulations (e.g., 

Horbach et al., 2001; Meyer et al., 2002). It 

is possible that for strongly peralkaline 

melts, the depolymerization of the structure 

is accompanied by modifications in the 

configurations of the percolation channels 

leading to changes in the viscous regime of 

these melts. Additional data on strongly 

peraluminous natural melts and strongly 

peralkaline natural melts are necessary in 

order to further explore these interpretations. 
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8. Outlook 

Based on the previous work on volume-temperature relationships of silicate and 

borosilicate melt properties, the following steps should be undertaken to improvie our 

understanding: 

At the beginning of Chapter 4 it was discussed that existing multicomponent 

volumetric models are generally restricted to the major and minor oxide components present 

in naturally occurring igneous rocks. Clearly, there is a need for detailed studies and analysis 

of the material containing other trace elements. These elements might, for example, be useful 

in the petrogenetic modelling of magmatic differentiation where these elements are far more 

important than is apparent from their relative abundance in nature. Their partitioning 

behaviour as a function of phase composition, their temperature and pressure dependence as 

well as precise densitometry of silicates with high viscosity and high melting point, combined 

with in-situ spectroscopic measurements remain a challenge. 

The supercooled liquid volumes and expansivity determined using the combined 

dilatometric/calorimetric method have confirmed that some binary and ternary systems have 

temperature independent thermal expansivities from the supercooled liquid temperature to the 

superliquidus temperature. However, in the AnDi system and the multicomponent natural 

samples studied here ∂V/∂T depends on temperature (Gottsmann and Dingwell, 2000; Knoche 

et al., 1994; Knoche et al., 1992b; Toplis and Richet, 2000). In addition, the change from a 

temperature independent thermal expansivity for wollastonite to a temperature dependent 

thermal expansivity for diopside (Knoche et al. 1992), despite similarity in degree of 

polymerisation and silica content, seems to be related to Mg content and its position in the 

silicate structure. A structural explanation for the temperature-dependent expansivity of AnDi 

melts is not yet available, further detailed investigation is required to develop a model. 

This work also showed that there is a lack of precise densitometry data on Fe-bearing 

silicates at different fO2. I would like to urge more in-situ spectroscopic studies to be 

conducted on levitated Fe-bearing materials at different fO2 conditions. Such measurements 

might be combined with non-contact volumetric measurements. These measurements in 

scanning mode would help us to better understand the effect of the structural parameters on 

volumes and expansivities of silicate melts. 

I would like also to challenge researchers to attempt further viscosity measurements on 

silicate melts containing volatile species (e.g. CO2, SOx, F, Cl), along with measurements of 

multiphase (liquid +  crystals + vesicles) systems that are relevant in true volcanic scenarios. 
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APPENDIX 
 
TABLE 4.1. 
Analyzed compositions* of the investigated materials (wt%) 

*Analyses made with an automated Cameca SX 50 electron microprobe operated at 15 kV and 15nA with a 
defocused beam. The number within parentheses represent the error based on the standard deviation of the 
replicate analyses. 
NOM=nominal composition AS=composition after synthesis, HT= composition and after high-temperature 
densitometry experiments, The number within parentheses represent the number of analyses. 
 #gfw = gram formula weight. 
 
 
 
 

Samples SiO2 Al2O3 Na2O CaO MgO ZnO  gfw # 
NS2 (Courtial et 
al. 1999) 

       

NOM 66.37(0.44) - 31.95(0.35) - - - 60.69 
HT 66.59(0.31)  31.98(0.20)    60.69 
LT 66.44(0.41)  31.33(0.31)    60.68 
NS2+1mol%        
NOM 65.09 - 33.58 - - 1.34 60.92 
HT(9) 67.19(0.95)  31.09(0.98)   1.72(0.14) 60.94 
AS(21) 66.24(1.71)  32.32(1.69)   1.45(0.13) 60.92 
NS2+5mol%        
NOM 61.62 - 31.79 - - 6.59 61.75 
HT(30) 63.87(1.36)  29.03(1.33)   7.10(0.33) 61.78 
AS(20) 62.61(1.17)  30.57(0.86)   6.82(0.48) 61.77 
NS2+25mol%        
NOM 45.59 - 23.52 - - 30.89 65.89 
HT(39) 45.63(1.01)  24.08(0.74)   30.29(0.64) 65.79 
AS(21) 44.58(0.97)  26.081(0.61)   29.34(0.58) 65.65 
AnDi        
NOM 50.33 15.37 - 23.50 10.80 - 59.69 
HT        
AS        
AnDi+1mol%        
NOM 49.65  - 23.18 10.65 1.36 59.90 
HT(10) 50.27(0.51) 14.63(0.19)  23.24(0.22) 10.31(0.29) 1.54(0.13) 59.90 
AS(18) 50.21(0.54) 14.69(0.25)  23.33(0.21) 10.32(0.29) 1.45(0.18) 59.89 
AnDi+5mol%        
NOM 46.96 14.34 - 21.93 10.08 6.70 60.77 
HT(26) 47.60(0.51) 13.51(0.25)  21.96(0.27) 9.90(0.21) 7.02(0.55) 60.67 
AS(20) 47.61(0.51) 12.89(0.23)  22.42(0.23) 9.93(0.23) 7.15(0.32) 60.50 
AnDi+20mol%        
NOM 37.53 11.46 - 17.53 8.05 25.43 64.03 
HT(51) 38.16(0.66) 10.07(0.23)  18.01(0.23) 8.13(0.21) 25.64(0.67) 63.63 
AS(20) 38.48(1.98) 10.47(0.56)  18.14(0.94) 8.00(0.44) 24.92(3.80) 63.65 
Zn-Diopside        
NOM 46.65  - 21.76 - 31.59 64.42 
HT(10) 46.45(0.64)   21.88(0.17)  31.67(0.66) 64.42 
AS(20) 46.55(0.60)   22.03(0.31)  31.42(0.56) 64.37 
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TABLE 4.2. 

 

Sample T  
(K) 

ρ 
(g.cm-3) 

AnDi 1840 2.591  (0.010) 
 1793 2.595  (0.004) 
 1746 2.602  (0.006) 
 1696 2.613  (0.008) 
 1639 2.617  (0.012) 
 1594 2.626  (0.005) 
 1542 2.630  (0.006) 
 1496 2.648  (0.007) 
RT 297.96 2.7351 (0.0003) 
AnDi  1842 2.596  (0.008) 
(Holzapfel et al. 2001) 1793 2.601  (0.006) 
 1745 2.615  (0.006) 
 1698 2.615  (0.004) 
 1651 2.629  (0.008) 
 1605 2.6324 (0.0071) 
AnDi  1873 2.590 
(Lange & Carmichael 1987) 1773 2.605 
 1673 2.622 
 1573 2.636 
AnDi + 1mol% 1850 2.621  (0.013) 
 1653 2.648  (0.009) 
 1555 2.649  (0.007) 
 1507 2.661  (0.012) 
RT 298.65 2.7955 (0.0025) 
AnDi + 5mol% 1822 2.698  (0.009) 
 1729 2.726  (0.007) 
 1637 2.733  (0.010) 
 1501 2.751  (0.016) 
RT 298.65 2.8803 (0.0017) 
AnDi + 20mol% 1828 2.972  (0.011) 
 1733 3.006  (0.011) 
 1640 3.025  (0.011) 
 1547 3.037  (0.011) 
 1455 3.058  (0.010) 
RT 298.65 3.2185 (0.0011) 

Experimental density results (g.cm-3) of the investigated materials at room
temperature (RT) and high-temperature (stable melts). 

Note: The numbers within parentheses represent the errors based on the
standard deviation of three replicate mass determination by using buoyancy
measurements for each bob for the high-temperature densitometry. 
*Stable liquid densities of the AnDi were also calculated by using Lange and
Carmichael (1987) model and the measurements of Holzapfel et al., (2001)
are also listed. 
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TABLE 4.3. 
 

Sample T  
(K) 

ρ 
(g.cm-3) 

NS2  1637 2.226  (0.010) 
(Courtial et al.1999) 1541 2.255  (0.013) 
 1447 2.277  (0.015) 
 1400 2.285  (0.015) 
 1353 2.290  (0.019) 
RT 298 2.4915 (0.0015) 
NS2  1873 2.166 
(Lange & Carmichael 1987) 1773 2.185 
 1673 2.205 
 1573 2.225 
NS2 + 1mol%  1558 2.260  (0.005) 
 1505 2.271  (0.003) 
 1460 2.281  (0.004) 
 1412 2.294  (0.004) 
 1363 2.299  (0.005) 
RT 297.15 2.5164 (0.0008) 
NS2 + 5mol% 1556 2.325  (0.006) 
 1509 2.337  (0.009) 
 1463 2.348  (0.007) 
 1417 2.359  (0.006) 
 1371 2.363  (0.009) 
RT 297.15 2.5859 (0.0001) 
NS2 + 25mol% 1556 2.759  (0.007) 
 1509 2.770  (0.006) 
 1463 2.784  (0.005) 
 1417 2.795  (0.005) 
 1371 2.811  (0.005) 
RT 297.15 3.0243 (0.0002) 
Zn - Diopside 1816 3.045  (0.008) 
 1723 3.069  (0.009) 
 1631 3.090  (0.010) 
 1540 3.110  (0.010) 
 1450 3.132  (0.010) 
RT 298.05 3.3032 (0.0005) 

 Experimental density results (g.cm-3) of the investigated materials at room
temperature (RT) and high-temperature (stable melts). 

Note: The numbers within parentheses represent the errors based on the
standard deviation of three replicate mass determination by using buoyancy
measurements for each bob for the high-temperature densitometry.  
*Stable liquid densities of the NS2 were also calculated by using Lange and
Carmichael (1987) model and the measurements of Courtial et al. (1999) are
also listed. 
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TABLE 4.4. 
Linear fit parameters of the experimental density (g.cm-3) of the investigated melts as a function of absolute temperature 
ρliquid(T) =Adensity+Bdensity T(K) within temperature range investigated (∆T). 
 

 
 
 
 
 
TABLE 4.5.  
Linear fit parameters of the experimental molar volume of the investigated melts as a function of absolute temperature 
Vliquid(T)=avol + bvol T(K) within temperature range investigated (∆T). 

 
 
 
 

Samples 
Adensity 

(intercept 
density) 

Bdensity x 10-4 
(g.cm-3.K) R2 ∆T  

(K) 

AnDi 2.8751 -1.5554 0.96752 1840-1496 
AnDi (Holzapfel et al. 2001) 2.8913 -1.6045 0.96452 1842-1605 
AnDi (Lange & Carmichael 1987) 2.8804 -1.5479 0.99958 1773-1573 
AnDi+1mol% 2.8219 -1.0795 0.94095 1850-1507 
AnDi+5mol% 2.9864 -1.5514 0.93050 1822-1501 
AnDi+20mol% 3.3772 -2.1799 0.96961 1828-1455 
     
NS2 (Courtial et al.1999) 2.6041 -2.2872 0.97749 1637-1353 
NS2 (Lange & Carmichael 1987) 2.5312 -1.9458 0.99993 1873-1573 
NS2+1mol% 2.5860 -2.0899 0.98592 1558-1363 
NS2+5mol% 2.6569 -2.1220 0.97757 1556-1371 
NS2+25mol% 3.1923 -2.7917 0.99564 1556-1371 
     
Diopside (Knoche et al. 1992b) 2.9138 -1.6500 0.99989 1895-1695 
Diopside (Lange & Carmichael 1987) 2.9230 -1.6840 0.99874 1873-1573 
Zn-Diopside 3.4727 -2.3499 0.99928 1816-1450 

Samples 
Avolume 
(intercept 
molar volume) 

Bvolume x 10-3 

(cm3.mol-1.K) R2 ∆T  
(K) 

AnDi 20.559 1.3554 0.96906 1840-1496 
AnDi (Holzapfel et al. 2001) 20.485 1.4060 0.96440 1842-1605 
AnDi (Lange & Carmichael 1987) 20.507 1.3526 0.99949 1773-1573 
AnDi +1mol% 21.127 0.9284 0.94116 1850-1507 
AnDi +5mol% 20.164 1.2693 0.92765 1822-1501 
AnDi +20mol% 18.689 1.5349 0.96697 1828-1455 
     
NS2 (Courtial et al.1999) 22.764 2.7205 0.97544 1637-1353 
NS2 (Lange & Carmichael 1987) 23.431 2.4502 0.99994 1873-1573 
NS2 +1mol% 23.135 2.4491 0.98555 1558-1363 
NS2 +5mol% 22.831 2.3833 0.97666 1556-1371 
NS2 +25mol% 20.198 2.3726 0.99618 1556-1371 
     
Diopside (Knoche et al. 1992b) 18.406 1.3084 0.99980 1895-1695 
Diopside (Lange & Carmichael 1987) 18.361 1.3202 0.99852 1873-1573 
Zn-Diopside 18.264 1.5872 0.99897 1816-1450 
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TABLE 4.6. 
 Regression fit parameters* provided on samples molar composition (after HT measurements).  
 

Fit parameters derived from separate regressions for four liquids in the binary ZnO - Na2Si2O5 system (NS2) and four 
liquids in the binary ZnO - CaAl2Si2O8-CaMgSi2O6 system (An42Di58). Fit parameters  for multi-component system 
were calculated using all our HT density data (i.e., NS2-ZnO, AnDi-ZnO, and petedunnite) and the HT density data 
from Lange and Carmichael, (1987, i.e., samples LC2-15) and all HT density data from Courtial and Dingwell (1995, 
1999a). 
 
 
 
TABLE 5.1. 
Composition of the investigated CAS samples reported as wt% and normalized mol% of oxides. 
 

Samples SiO2 
(wt%) 

Al2O3 
(wt%) 

CaO 
(wt%) Total SiO2 

(mol%) 
Al2O3 
(mol%) 

CaO 
(mol%) 

NBO/T gfw       
(g mol-1) 

CAS1 47.7 13.5 38.1 99.3 49.44   8.25 42.31 1.03 61.843 
CAS2 43.4 16.9 39.0 99.3 45.62 10.47 43.92 1.01 62.709 
CAS3 38.8 20.2 40.4 99.4 41.28 12.66 46.05 1.00 63.544 
CAS4 34.6 23.2 41.5 99.3 37.31 14.74 47.95 0.99 64.338 
CAS5 30.3 25.6 43.3 99.2 33.02 16.44 50.55 1.04 64.943 
CAS6 45.8 23.6 30.1 99.5 49.81 15.12 35.07 0.50 65.013 
CAS7 40.0 26.8 32.6 99.4 44.09 17.41 38.50 0.54 65.833 
CAS8 35.4 30.3 33.9 99.6 39.52 19.93 40.55 0.52 66.808 
CAS9 30.6 33.6 35.0 99.2 34.81 22.53 42.66 0.50 67.809 
Wo 50.9  0.2 48.1 99.2 49.63    0.11 50.25 2.01 58.120 

The oxides were measured using XRF and are given in wt%. Data from Solvang et al. (2004 and 2005). 
 
 
 
 
 
 

i Vi, 1300 ∂Vi/∂T x10-3 
NS2 26.470 (0.061) 2.525 (0.5) 
ZnO 13.482 (0.453) 1.642 (3.7) 
R2 0.99628  
Adjusted R2 0.99140  
S 0.1240  
   
 Vi, 1300 ∂Vi/∂T x10-3 
AnDi 22.331 (0.027) 1.131 (0.1) 
ZnO 13.438 (0.248) 2.943 (0.8) 
R2 0.99436  
Adjusted R2 0.99351  
S 0.0585  
   
i Vi, 1300 ∂Vi/∂T x10-3 
SiO2 25.099 (0.356) 0.000 (1.2) 
Al2O3 39.754 (0.774) 0.000 (2.6) 
MgO 11.850 (0.700) 4.171 (2.3) 
CaO 16.540 (0.415) 4.178 (1.4) 
Na2O 29.214 (0.900) 7.176 (4.9) 
ZnO 14.141 (0.730) 2.836 (1.8) 
R2 0.96765  
Adjusted R2 0.96473  
S 0.3897  
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TABLE 5.2. 
Density (g cm-3) of the investigated materials at room temperature measured on glasses in air and ethanol. The numbers 
within parentheses represent the errors based on the standard deviation of three replicate mass determinations. 
 

 
 
 
 

 
 
 
 
 

TABLE 5.3.  
Least squares fit parameters of the heat capacity glass state curves obtained using a modified Maier-Kelley equation 
(i.e., cp=a+bT+cT-2)  

Up to three different glass samples from each composition were heated at least 65 K above their Tg  at 10 K min-1 after 
undergoing cooling at the same rate. From these data an average cp was calculated (J g-1 K-1). Regressions were 
performed on the average heat capacity curves of the glassy state for each composition. The onset of the glass transition 
area defines the high temperature end of the glassy state. ∆T is the temperature range of glassy state. 
 
 
 
 
 
 
 
 
 
 
 
 

Samples a b * 10-4 c R2 Standard 
Error 

∆T 
(K) 

CAS1 0.92762 2.36541 -23900.795 0.99866 0.0032 298-1014 
CAS2 1.00398 1.65507 -28139.408 0.99857 0.0032 298-1024 
CAS3 0.91464 3.10086 -20569.448 0.99757 0.0048 298-1034 
CAS4 0.94667 2.02091 -22136.687 0.99822 0.0034 298-1044 
CAS5 0.89349 2.54394 -19570.683 0.99647 0.0052 298-1054 
CAS6 0.95467 1.94693 -24772.988 0.99727 0.0044 298-1038 
CAS7 0.90165 2.60633 -22492.289 0.99870 0.0033 298-1043 
CAS8 0.94113 2.11327 -24194.172 0.99714 0.0046 298-1053 
CAS9 0.98702 1.31906 -27306.309 0.99858 0.0029 298-1063 
Wo 1.01636 0.59786 -33855.738 0.99901 0.0023 298-1014 

Samples Temperature (K) Density (g cm-3) 
CAS1 298.05 2.8325 (0.0023) 
CAS2 297.65 2.8504 (0.0025) 
CAS3 297.65 2.8682 (0.0016) 
CAS4 297.35 2.8857 (0.0028) 
CAS5 297.55 2.9062 (0.0052) 
CAS6 297.75 2.7627 (0.0037) 
CAS7 298.05 2.7972 (0.0035) 
CAS8 298.05 2.8186 (0.0038) 
CAS9 298.15 2.8395 (0.0042) 
Wo 298.15 2.9128 (0.0055) 
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TABLE 5.4. 
Least squares fit parameters for ∂L/L0 (cm) dilatomeric traces. Tg temperature peaks obtained by dilatometry and 
calorimetry.  
 

Samples adil x 10-3 bdil x 10-6 R2 ∆Ta 
(K) 

Tg
dil 

(K) 
Tg

cal 

(K) 
CAS1 -2.777 8.870 0.9988 298.5-1014.5 1068 1071 
CAS2 -2.785 8.969 0.9986 297.7-1024.5 1081 1082 
CAS3 -2.902 9.183 0.9987 297.7-1034.5 1092 1092 
CAS4 -2.940 9.311 0.9970 297.4-1044.5 1103 1103 
CAS5 -2.964 9.399 0.9989 297.6-1054.5 1113 1113 
CAS6 -2.420 7.422 0.9981 297.8-1038.6 1093 1096 
CAS7 -2.521 7.797 0.9986 298.1-1043.5 1103 1106 
CAS8 -2.577 7.946 0.9985 298.1-1053.5 1110 1111 
CAS9 -2.656 8.168 0.9988 298.2-1063.3 1120 1120 
Wo -3.445 10.732 0.9992 298.2-1014.4 1065 1064 

Linear fit parameters for ∂L/L0 (cm) as a function of temperature (∂L/L0 = adil + bdilT(K)), for the investigated glasses 
across the temperature interval ∆T, which were heated and cooled at 10 K min-1 together with the glass transition 
temperatures obtained by dilatometry (Tg

dil) and calorimetry (Tg
cal).  

a The upper limit of ∆T was defined by the onset of the glass transition. 
 
 
 
 
 
 
 
 
 
 
 
 
TABLE 5.5. 
The thermal expansion coefficients, α0 and α1 of the investigated glasses. 
 

Samples 
298

glassV  
(cm3 mol-1) 

α0 x 10-5 α1 x 10-9 
TV glass ∂∂ / x 10-4 

(cm3 mol-1 K-1) 
∆T 
(K) 

CAS1 21.833 2.07157 8.80637 5.847 298-1014 
CAS2 22.000 2.13776 8.35953 5.958 298-1024 
CAS3 22.155 2.07761 9.91997 6.145 298-1034 
CAS4 22.295 2.11887 9.82553 6.270 298-1044 
CAS5 22.347 2.17697 9.26436 6.346 298-1054 
CAS6 23.532 1.43553 11.4702 5.268 298-1038 
CAS7 23.535 1.60309 10.5976 5.536 298-1043 
CAS8 23.703 1.62295 10.8624 5.683 298-1053 
CAS9 23.881 1.68102 10.8296 5.887 298-1063 
Wo 19.953 2.30149 13.3134 6.472 298-1014 

These coefficients were obtained by performing a least squares fit of  Equation 2.14 in the temperature range ∆T. The 
molar thermal expansion coefficient αglass can then be expressed empirically as αglass = α0 + α1 T(K) within temperature 
range ∆T. A first approximation of the glassy molar thermal expansion TV glass ∂∂ / was obtained as a regression 
coefficient from the linear relationship between the molar volume of the glass and absolute temperature (in the 
temperature range ∆T). Precise molar thermal expansion of the glass at temperature T can be calculated using Equation 
2.12. 
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TABLE 5.6. 
Molar volume (cm3 mol-1), molar thermal expansivity (cm3 mol-1 K-1) and molar thermal expansion coefficient (K-1) of 
each melts at their supercooled liquid temperature (Tsc), the temperature at which the melt becomes relaxed, indicated 
by constant cp. 
 

Samples 
Tsc

molV  
(cm3 mol-1) 

  
T

V Tsc

∂
∂

x10-4 

(cm3 mol-1 K-1) 

)(Tsc
molα x 10-6 

(K-1) 

  Tsc  
 (K) 

Tsc- Tg 
(K) 

CAS1 22.485 (0.01) 17.10 76.051 (2.1) 1150 79 
CAS2 22.650 (0.01) 17.20 75.938 (1.7) 1150 68 
CAS3 22.790 (0.01) 17.30 75.911 (2.2) 1160 68 
CAS4 22.950 (0.01) 17.40 75.817 (0.6) 1172 69 
CAS5 23.010 (0.01) 17.50 76.054 (1.5) 1178 65 
CAS6 24.120 (0.01) 14.01 58.085 (2.0) 1170 74 
CAS7 24.130 (0.01) 14.30 59.262 (1.9) 1180 74 
CAS8 24.400 (0.01) 14.20 58.436 (2.6) 1185 74 
CAS9 24.500 (0.01) 14.20 57.959 (2.4) 1200 80 
Wo 20.620 (0.01) 20.50 99.418 (3.1) 1135 71 

The number between the parentheses is the standard deviation from repeated measurements of the samples. 
 
 
 
 

 
TABLE 5.7. 
Parameters to fit the linear relationship between liquid molar volume and temperature for all compositions which were 
obtained in temperature interval ∆T. 
 

Samples a  b x 10-3 R2 ∆T 
(K) 

CAS1 20.532 1.703 0.9999 1150-1973 
CAS2 20.690 1.704 0.9999 1150-1973 
CAS3 20.808 1.712 0.9999 1160-1973 
CAS4 20.924 1.729 0.9999 1172-1973 
CAS5 21.084 1.679 0.9990 1178-1973 
CAS6 22.486 1.396 0.9999 1170-1973 
CAS7 22.457 1.417 0.9999 1180-1973 
CAS8 22.624 1.415 0.9999 1185-1973 
CAS9 22.801 1.417 0.9999 1200-1973 
Wo 18.437 1.973 0.9994 1135-1973 

The molar volumes can be expressed empirically, using Vmol_liq = a + bT(K) in the temperature interval ∆T . 
The lower temperature limit of ∆T is defined as the temperature of the supercooled liquid, obtained from the combined 
calorimetry/dilatometry method and upper temperature limit was taken as 100 K higher then the reference temperature 
used in the model of Courtial and Dingwell (1995). 
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TABLE 5.8.  
Regression fit parameters provided using samples molar composition to calculate partial molar volume and molar 
thermal expansivity of each component (i). 
 

The fit parameters were derived from separate regressions of Eq.16 for liquids in the ternary CaO-Al2O3-SiO2 system 
(CAS). The temperature ranges from 1200 to 1873 K in steps of 100 K. Vi is the partial molar volume of component i at 
reference temperature 1200 K. ∂Vi/∂T is molar thermal expansivity of the component i. Note that the partial molar 
volumes for the first regression analysis were obtained from all our molar volume data at Tsc together with the HT molar 
volume data calculated using the model of Courtial and Dingwell (1995). In the second regression, the partial molar 
volumes of SiO2, Al2O3, and CaO were calculated using all our molar volume data at Tsc, together with the HT molar 
volume data of our samples calculated using Courtial and Dingwell (1995) model and finally all samples relevant to 
CAS system used in both models of Lange and Carmichael (1987) (LC3-LC8) and Courtial and Dingwell (1995)  (CaYX 
samples). 
 
 
TABLE 5.9. 
Comparison of the fitted partial molar volumes and molar thermal expansivities calculated from the data presented in 
this study to the models of Lange and Carmichael (1987), Lange (1997) and Courtial and Dingwell (1995) at reference 
temperature of 1873 K. 

a L&C ´87 – from Table 8 in Lange and Carmichael (1987) 
b L´97 – from Table 4 in Lange (1997) 
c C&D ´95 – from Table 5 in Courtial and Dingwell (1995) 
 
 

1st regression 
i 

Vi, 1200 
(cm3 mol-1) 

∂Vi/∂T x10-3 

(cm3 mol-1 K-1) 
SiO2 27.280 (0.234) 0.000 (0.5) 
Al2O3 36.700 (0.194) 0.000 (0.4) 
CaO 19.095 (0.228) 2.033 (0.5) 
SiO2-CaO -3.197 (0.309) 1.308 (0.6) 
R2 0.99994  
Adjusted R2 0.99993  
S 0.0092  
   
2nd regression 
i 

Vi, 1200 
(cm3 mol-1) 

∂Vi/∂T x10-3 

(cm3 mol-1 K-1) 
SiO2 27.295 (0.396) 0.000 (0.7) 
Al2O3 36.328 (0.352) 0.000 (0.6) 
CaO 19.005 (0.248) 2.778 (0.4) 
SiO2-CaO -3.056 (0.398) 0.121 (0.7) 
R2 0.99678  
Adjusted R2 0.996593  
S 0.0882  

Tref =1873K Vi (cm3 mol-1) 
∂Vi/∂T x10-3(cm3 mol-1 K-1)    

i This study 
(1st regression) 

This study 
(2nd regression) 

L&C ´87a L´97b C&D´95c 

SiO2  27.28  27.29 26.90 26.86  27.61 
  0.00  0.00 0.00 0.00  1.85 
Al2O3  36.70  36.33 37.63 37.42  36.36 
  0.00  0.00 2.62 0.00 -2.06 
CaO  20.46  20.88 17.15 17.27  20.84 
  2.03  2.78 2.92 3.74  4.33 
SiO2-CaO -2.32 -2.98 - - -8.35 
  1.31  0.12 - - -4.14 
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TABLE 6.1. 
The chemical composition of the investigated natural sample analysed by electron microprobe. 
 

Sample / 
Oxide 

Slapany (σ) 
basanite 
(wt%) 

Etna (σ) 
trachybasalt 
(wt%) 

Vesuvius (σ) 
tephriphonolite 
 (wt%) 

    
SiO2 45.76 (0.15) 47.50 (0.81) 49.75 (0.39) 
Al2O3 12.52 (0.20) 17.39 (1.42) 19.66 (0.18) 
FeOtot 11.30 (0.13) 10.27 (0.87) 5.84 (0.20) 
TiO2 2.27   (0.06) 1.70   (0.12) 0.71 (0.05) 
MnO 0.25   (0.05) 0.21   (0.06) 0.17 (0.04) 
MgO 11.42 (0.12) 5.54   (1.05) 2.95 (0.10) 
CaO 11.45 (0.10) 10.35 (0.40) 8.79 (0.24) 
Na2O 2.65   (0.06) 3.96   (0.29) 3.81 (0.07) 
K2O 1.07   (0.04) 1.94   (0.19) 7.34 (0.13) 
P2O5 0.86   (0.06) 0.63  (0.07) 0.53 (0.06) 
Sum 99.55  (0.41) 99.49 (0.41) 99.55 (0.18) 
The numbers within parentheses represent the errors based on the standard deviation of  replicate measurements. The 
microprobe operating conditions: 15 kV acceleration voltage, 10nA beam current, 20 µm defocused beam diameter, 
counting time 20 s on the peak and 10 s on the background. A ZAF correction was undertaken. The calibration was 
based on mineral standards. 
. 
 
 
 
TABLE 6.2.  
Linear fit parameters of the measured FeO (wt%) data as a function of absolute temperature (FeO (wt%) =AFeO+BFeO 
T(K)) within the temperature range investigated ∆T. 
 

 
 

 
 
 
 
 

Samples AFeO BFeO x10-4 R2 ∆T  
(K) 

Slapany -3.006 33.681 0.999 1796-1512 
Etna   2.051   8.946 0.999 1803-1571 
Vesuvius -0.565 12.578 0.999 1803-1696 
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TABLE 6.3. 
Experimental density results (g cm-3) of the investigated materials. 
Measurement at high-temperature were performed on stable melts in air. The numbers within parentheses represent the 
errors based on the standard deviation of three replicate buoyancy measurements. 
 

 
 
TABLE 6.4. 
Fit parameters for the average heat capacity curves across the glassy state were obtained by least squares fit method of 
the Maier - Kelley equation. 

Three different glass samples from each composition were heated between 46 to 69 K above Tg  at 5 K min-1 after 
undergoing cooling at the same rate. 
 
 
TABLE 6.5. 
Linear fit parameters of the ∂L/L (cm) as a function of temperature for the investigated glasses which were heated and 
cooled at 5 K.min-1 obtained in temperature interval a∆T. (∂L/L = adil + bdilT(K)), together with the glass transition 
temperatures obtained by dilatometry (Tg

dil) and calorimetry (Tg
cal). 

 

Samples a x 10-3 b x 10-6     R2 
a∆T  
(K) 

Tg
dil 

(K) 
Tg

cal 

(K) 
Slapany -2.593 8.002 0.997 298-900 946 948 
Etna -2.566 7.994 0.997 298-886 945 947 
Vesuvius -2.771 8.752 0.999 298-878 940 942 
a The glass dilatometric data were fitted within the temperature interval ∆T, until the occurrence of the onset of the glass 
transition. 

Samples Temperature (K) Density (g cm-3) 
Slapany   
RT   298.7 2.873 (0.003) 
HT.1 1796.2 2.655 (0.002) 
HT.2 1741.2 2.663 (0.004) 
HT.3 1693.2 2.671 (0.005) 
HT.4 1642.2 2.682 (0.006) 
HT.5 1594.2 2.690 (0.003) 
HT.6 1546.2 2.700 (0.003) 
HT.7 1521.2 2.705 (0.005) 
HT.8 1512.2 2.708 (0.012) 
Etna   
RT   298.7 2.768 (0.003) 
HT.1 1803.2 2.573 (0.002) 
HT.2 1757.2 2.578 (0.002) 
HT.3 1711.2 2.583 (0.001) 
HT.4 1617.2 2.596 (0.002) 
HT.5 1571.2 2.601 (0.002) 
Vesuvius    
RT   298.7 2.621 (0.002) 
HT.1 1803.2 2.458 (0.006) 
HT.2 1757.2 2.463 (0.005) 
HT.3 1745.2 2.463 (0.005) 
HT.4 1712.2 2.465 (0.004) 
HT.5 1696.2 2.467 (0.002) 

Samples a b * 10-4 c R2 Standard Error 
Slapany 0.792 4.851 -  15513.834 0.996 0.0068 
Etna 0.812 3.980 -  16687.680 0.997 0.0053 
Vesuvius 0.859 3.908 -  19616.695 0.993 0.0078 
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TABLE 6.6. 
The thermal expansion coefficients α0 and α1 of the investigated glasses obtained as least square fit parameters of 
Equation 2.14 in the temperature range ∆T. 
 

Samples 
)298(

glassV  
(cm3 gfw-1) 

α0 x 10-5 α1 x 10-8 
∂Vglass/∂T x 10-4 
(cm3 mol-1 K-1) 

∆T  
(K) 

Slapany 21.374 1.286 1.825 5.389 298-900 
Etna 23.355 1.363 1.720 5.825 298-886 
Vesuvius 26.556 1.732 1.483 6.896 298-878 

The thermal molar expansion coefficient αglass  can be expressed empirically as αglass = α0 + α1 T(K) within temperature 
range ∆T . As a first approximation glassy thermal molar expansion (∂Vglass/∂T) was obtained  from the linear fit 
between the molar volume of the glass and the absolute temperature (in the temperature range ∆T). Precise thermal 
molar expansion of the glass (∂Vglass/∂T)  at temperature T can be calculated using Equation 11. 
 
 
 
TABLE 6.7. 
Linear fit parameters of the experimental data of the investigated melts as a function of absolute temperature (ρ =Ax+Bx 
T(K)) within the temperature range investigated (∆T). 
 

Samples Adensity Bdensity x 10-4 R2 ∆T  
(K) 

Slapany 3.001 -1.938 0.992 1796-1512 
Etna 2.800 -1.262 0.999 1803-1571 
Vesuvius 2.605 -0.813 0.986 1803-1696 

 AM.volume BM.volume x 10-3 R2 ∆T  
(K) 

Slapany 21.491 1.374 0.989 1796-1512 
Etna 23.790 1.152 0.999 1803-1571 
Vesuvius 26.394 0.754 0.980 1803-1696 

 AS.volume BS.volume x10-5 R2 ∆T  
(K) 

Slapany 0.329 2.694 0.993 1796-1512 
Etna 0.355 1.885 0.999 1803-1571 
Vesuvius 0.383 1.340 0.986 1803-1696 

x is density, molar volume or specific volume. BM.volume  parameters correspond  to the thermal molar expansivity 
(∂V/∂Τ) within temperature range ∆T. 
 
 
 
TABLE 6.8. 
Molar volume (cm3 gfw-1), thermal molar expansivity (cm3 mol-1 K-1) and molar thermal expansion coefficient (K-1) of 
the melts at their supercooled liquid temperature (Tsc). 
 

Samples a Tsc
molV  a  

T
V Tsc

∂
∂

x10-4 a )(Tsc
molα x 10-6 

b  Tsc  
  (K) 

Slapany 22.858 (0.01) 16.859 (0.48) 73.753 (2.1)   993 (46) 
Etna 24.716 (0.01) 18.996 (0.47) 76.857 (1.9)   995 (49) 
Vesuvius 26.788 (0.01) 20.981 (0.62) 78.320 (2.3) 1010 (69) 

a The number between parentheses represent the errors based on the standard deviation of replicate measurements for 
samples under the same conditions (i.e., heating/ cooling rate of 5 K min-1). 
b is defined as the temperature at which the supercooled liquid is relaxed. The number in parentheses represents the 
difference between Tsc and the glass transition temperature Tg (defined as cp peak). 
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TABLE 6.9. 
Regression coefficients from the equation: V = a + b ln(T) where T is the absolute temperature. 
 
Samples a b R2    ∆T   (K) 
Slapany   8.706 2.041 0.961    993-1796 
Etna 11.045 1.979  0.999    995-1803 
Vesuvius 14.982 1.707 1.000  1010-1803 
Use of this equation allows, the molar volume of the liquid to be calculated as a function of the natural logarithm of 
absolute temperature. 
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TABLE 7.1.  
List of samples used in this study including: rock type, sample label, composition (wt% oxides) and reference source. Compositions were measured at the IPGP (Istitut du Physique 
du Globe Parìs) using the conditions reported at the bottom of the table.   

Location Sample Composition SiO2 TiO2 Al2O3 FeOtot MnO MgO CaO Na2O K2O P2O5 SUM  SM NBO ref.  
                T   
Nyiragongo (DRC) NYI Foidite 41.07 2.75 14.97 11.99 0.32 3.72 10.39 6.89 5.61 1.22 98.93  37.10 0.73 0 Scoria from February 2002 eruption 
Stromboli, I STB* Trachybas. 49.07 0.98 16.91 8.36 0.22 5.73 10.88 2.63 2.20 0.00 96.98  31.26 0.45 * Scoria from April 2003 eruption 
Monserrat  MST Andesite 60.71 0.58 18.29 6.38 0.19 2.58 7.10 3.57 0.85 0.00 100.24  20.06 0.15 * Tephra from the 1997 vulcanian eruption 

PF, I Min2a Shoshonite 52.26 0.75 16.06 7.45 0.10 5.56 9.92 2.33 3.67 0.00 98.11  29.60 0.43 * Tephra from the (10.3 - 9.5 ky) Minopoli eruption [10] 
PF, I Min2b Shoshonite 53.72 0.64 17.47 7.22 0.17 3.78 8.07 3.63 3.53 0.00 98.23  26.11 0.30 * Tephra from the (10.3 - 9.5 ky) Minopoli eruption [10] 
PF, I Fra Latite 55.41 0.72 18.38 7.31 0.16 2.39 5.76 4.23 4.58 0.00 98.95  22.70 0.19 * Tephra from the (10.3 - 8 ky) Fondo Riccio eruption [10] 
PF, I NYT* Trachyte 58.77 0.50 18.39 4.96 0.06 1.43 4.03 3.38 7.67 0.00 99.18  19.16 0.12 * Tephra from the 15 ky Napolitean Yellow Tuff eruption [11] 
PF, I CI_OF* Trachyte 68.80 0.23 12.58 3.17 0.14 1.24 3.43 4.01 6.18 0.03 99.84  16.20 0.16 * Tephra from the 39 ky Campanian Ignimbrite eruption [12] 
Slapany, CZ SLP* Basanite 45.76 2.27 12.52 11.30 0.25 11.42 11.45 2.65 1.07 0.86 99.55  39.57 0.90 * Slapany Lava flow 
Merapi (Indonesia) MRP Andesite 53.53 0.82 18.95 9.03 0.19 3.42 9.23 3.45 1.64 0.00 100.26  25.87 0.26 * Tephra from the 1993 dome eruption 
Moldavite  MDV Moldavite 79.43 0.20 9.94 1.89 0.03 1.64 2.42 0.49 3.42 0.00 99.44  9.08 0.05 * Tectite analogue 
PF, I IGC Trachyte 60.74 0.27 19.22 3.37 0.18 0.28 2.11 5.28 6.32 0.06 97.83  15.58 0.04 1  
PF, I MNV Trachyte 63.88 0.31 17.10 2.90 0.13 0.24 1.82 5.67 6.82 0.05 98.93  15.35 0.07 1  
PF, I AMS_B1 Trachyte 60.10 0.38 18.03 3.43 0.14 0.73 2.92 4.49 7.89 0.16 98.27  17.51 0.10 1  
PF, I AMS_D1 Trachyte 59.98 0.39 18.01 3.82 0.11 0.88 2.91 4.06 8.37 0.21 98.75  17.75 0.11 1  
Vesuvius (I) Ves_W Phonolite 52.02 0.59 19.28 4.65 0.14 1.72 6.58 4.53 7.69 0.65 97.82  24.45 0.26 1  
Vesuvius (I) Ves_G Phonolite 51.24 0.58 19.14 4.55 0.12 1.71 6.51 4.60 7.99 0.71 97.14  24.80 0.28 1  
Montana Blanca E) Td_ph Phonolite 60.46 0.56 18.81 3.31 0.20 0.36 0.67 9.76 5.45 0.06 99.64  17.88 0.10 1  
Unzen (Japan) UNZ Dacite 66.00 0.36 15.23 4.08 0.10 2.21 5.01 3.84 2.16 0.14 99.13  17.03 0.14 1  
Vesuvius, I Ves_Gt Phonoteph. 49.70 0.84 16.57 7.27 0.13 5.15 10.30 2.73 6.57 0.73 99.98  31.77 0.53 1  
Vesuvius, I VesW_t Tephriphon. 51.94 0.68 18.87 6.19 0.13 2.54 7.41 3.80 8.01 0.41 99.98  26.40 0.31 1  
Povocao, P PVC Trachyte 65.26 0.45 17.30 2.60 0.14 0.32 0.85 6.46 6.52 0.09 99.98  14.63 0.06 1  
Eifel, D EIF Basanite 41.14 2.74 12.10 10.11 0.18 11.24 15.66 2.76 3.04 1.02 99.98  44.71 1.17 1  
Etna, I ETN Trachybas. 47.03 1.61 16.28 10.13 0.20 5.17 10.47 3.75 1.94 0.59 97.18  32.04 0.51 1  
PF, I ATN Trachyte 60.66 0.47 18.82 3.66 0.17 0.66 2.85 3.95 8.59 0.15 99.98  17.15 0.09 1  
Mt Peleé (Martiniq) ME1311e Andesite 62.46 0.55 20.03 0.03 0.02 3.22 9.09 3.52 0.93 0.12 99.98  19.97 0.16 2  
Mt. St Helens Wa.) MSHD Dacite 65.28 0.59 17.05 4.97 0.08 1.82 4.70 4.34 1.29 0.13 100.25  16.34 0.10 3  
 SiO2  100 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 100.00  0.00 0.00 4  
 HPG8 Haplogran. 78.60 0.00 12.50 0.00 0.00 0.00 0.00 4.60 4.20 0.00 99.90  7.73 0.02 5  
 W_T Trachytic 64.45 0.50 16.71 0.00 0.00 2.92 5.36 6.70 3.37 0.00 100.01  20.12 0.21 6a  
 W_ph Phonolitic 58.82 0.79 19.42 0.00 0.00 1.87 2.35 9.31 7.44 0.00 100.00  21.27 0.19 6a  
 W_Tf Tephritic 50.56 2.35 14.03 0.00 0.00 8.79 15.00 7.04 3.01 0.00 100.78  38.53 0.86 6b  
 NIQ Basanitic 43.57 2.97 10.18 0.00 0.00 9.17 26.07 7.59 0.96 0.00 100.51  48.93 1.51 6b  
 N_An Andesitic 62.40 0.55 20.01 0.03 0.02 3.22 9.08 3.52 0.93 0.12 99.88  19.97 0.16 7  
Stein Frentz , D SFB Tephritic 46.58 2.45 13.28 11.20 0.00 9.15 10.00 5.60 1.38 0.00 99.64  37.77 0.75 8  
Stein Frentz , D SFB5 Tephritic 48.23 2.32 13.10 10.24 0.00 8.91 10.01 5.63 1.45 0.00 99.89  36.82 0.72 8  
Stein Frentz , D SFB10 Phonoteph. 49.34 2.12 12.80 9.86 0.00 8.10 9.62 6.10 1.52 0.00 99.46  35.67 0.69 8  
Stein Frentz , D SFB20 Mugearitic 51.58 1.51 12.12 8.94 0.00 7.24 9.24 6.48 1.76 0.00 98.87  34.14 0.66 8  
Stein Frentz , D SFB40 Trachytic 58.97 1.58 9.86 7.24 0.00 4.56 5.33 8.99 2.34 0.00 98.87  27.71 0.50 8  
Stein Frentz , D SFB60 Rhyolitic 74.84 0.50 4.24 1.20 0.00 1.98 1.96 11.34 3.39 0.00 99.45  19.41 0.40 8  
 HPG8An10 Synthetic 73.60 0.00 15.60 -1.00 0.00 0.00 2.10 4.40 3.80 0.00 98.50  9.42 -0.01 9  
 HPG8An20 Synthetic 71.50 0.00 17.30 0.00 0.00 0.00 4.00 4.20 3.50 0.00 100.50  11.54 0.01 9  
 HPG8An50 Synthetic 64.00 0.00 23.10 0.00 0.00 0.00 8.70 2.60 1.90 0.00 100.30  14.46 -0.01 9  
 HPG8An75 Synthetic 56.20 0.00 27.20 0.00 0.00 0.00 13.30 1.60 1.50 0.00 99.80  18.89 0.02 9  

0.Giordano et al. (2005); 1. Giordano and Dingwell (2003a); 2. Richet et al. (1996); 3. Alibidirov et al. (1997); 4. Toplis et al. (1997); 5. Dingwell et al. (1996); 6. Whittington et 
al. (2000. 2001); 7. Neuville et al. (1993); 8. Bouhifd et al. (2004); 9. Dingwell et al. (2000); 10. Di Vito et al.. (1999); 11. Deino et al. (2003); 12. Civetta et al. (1988);  
*this study. Experimental conditions used during microprobe analysis are: 15 kv, 10nA, spot 5µm. The standard crystals and the counting time (in seconds) are as it follows: TAP 
[Si (10); Al (10)]; LIF [Fe (20); Mn(60); Ti (60)]; PET [K(10)]; TAP [Na (10); Mg (10)]. 
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TABLE 7.2.  
Measured values of viscosity for individual melt compositions at specified temperatures.  

 
Sample 
name 

T (°C) log η 
(Pa s) 

 Sample 
name 

T (°C) log η 
(Pa s) 

 Sample 
name 

T (°C) log η (Pa s) 

IGC 1495.5 2.37  STB* 1200.2 2.02  SLP* 1495.5 -0.19 
IGC 1470.9 2.49  STB* 1175.6 2.21  SLP* 1470.9 -0.12 
IGC 1446.3 2.63  STB* 1151.0 2.39  SLP* 1446.3 -0.03 
IGC 1421.7 2.77  STB* 729.5 9.35  SLP* 1421.7 0.05 
IGC 1397.1 2.92  STB* 697.9 10.51  SLP* 1397.1 0.15 
IGC 1372.5 3.08      SLP* 1372.5 0.24 
IGC 1347.8 3.24  Fra 1593.9 1.02  SLP* 1347.8 0.34 
IGC 1323.2 3.4  Fra 1569.3 1.08  SLP* 1323.2 0.45 
IGC 1298.6 3.58  Fra 1544.7 1.19  SLP* 1298.6 0.56 
IGC 1274.0 3.76  Fra 1520.1 1.29  SLP* 1274.0 0.68 
IGC 1249.4 3.94  Fra 1495.5 1.40  SLP* 1249.4 0.81 
IGC 1224.8 4.14  Fra 1470.9 1.50  SLP* 730.1 9.01 
IGC 1200.2 4.34  Fra 1446.3 1.62  SLP* 719.3 9.42 
IGC 1175.6 4.54  Fra 1421.7 1.72  SLP* 688.3 10.53 
IGC 782.5 10.83  Fra 1397.1 1.85  SLP* 696.6 10.08 
IGC 803.1 10.44  Fra 1372.5 1.97     
IGC 835.6 9.84  Fra 1347.8 2.10  MRP 1593.9 0.61 
IGC 860.7 9.32  Fra 1323.2 2.24  MRP 1569.3 0.70 
    Fra 1298.6 2.38  MRP 1544.7 0.80 
MST 1618.6 1.04  Fra 1274.0 2.52  MRP 1520.1 0.89 
MST 1593.9 1.11  Fra 1249.4 2.67  MRP 1495.5 0.99 
MST 1569.3 1.21  Fra 1224.8 2.83  MRP 1470.9 1.09 
MST 1544.7 1.32  Fra 1200.2 2.99  MRP 1446.3 1.20 
MST 1520.1 1.43  Fra 1175.6 3.16  MRP 1421.7 1.31 
MST 1495.5 1.53  Fra 1151.0 3.35  MRP 1397.1 1.43 
MST 1470.9 1.65  Fra 771.3 10.11  MRP 1372.5 1.56 
MST 1446.3 1.76  Fra 765.7 10.05  MRP 1347.8 1.68 
MST 1421.7 1.89  Fra 753.3 10.45  MRP 1323.2 1.82 
MST 1397.1 2.01  Fra 749.1 10.52  MRP 1298.6 1.97 
MST 1372.5 2.15  Fra 741.4 10.55  MRP 1274.0 2.12 
MST 1347.8 2.29  Fra 734.0 10.65  MRP 1249.4 2.28 
MST 1323.2 2.43  Fra 713.7 10.99  MRP 1224.8 2.44 
MST 1298.6 2.58  Fra 711.9 10.98  MRP 1200.2 2.62 
MST 1274.0 2.73      MRP 1175.6 2.81 
MST 1249.4 2.90  CI_OF* 1593.9 2.02  MRP 1151.0 3.01 
MST 1224.8 3.06  CI_OF* 1569.3 2.14  MRP 1126.4 3.22 
MST 1200.2 3.25  CI_OF* 1544.7 2.26  MRP 722.9 10.5 
MST 753.4 9.74  CI_OF* 1520.1 2.39  MRP 716.0 10.6 
MST 739.6 10.18  CI_OF* 1495.5 2.52     
MST 688.7 11.60  CI_OF* 1470.9 2.66  MDV 1643.2 2.83 
    CI_OF* 1446.3 2.80  MDV 1618.6 2.96 
STB* 1593.9 0.21  CI_OF* 1421.7 2.94  MDV 1593.9 3.10 
STB* 1569.3 0.28  CI_OF* 1397.1 3.10  MDV 1569.3 3.24 
STB* 1544.7 0.37  CI_OF* 1372.5 3.25  MDV 1544.7 3.38 
STB* 1520.1 0.45  CI_OF* 1347.8 3.42  MDV 1520.1 3.53 
STB* 1495.5 0.54  CI_OF* 1323.2 3.59  MDV 1495.5 3.69 
STB* 1470.9 0.64  CI_OF* 1298.6 3.76  MDV 1470.9 3.84 
STB* 1446.3 0.74  CI_OF* 1274.0 3.94  MDV 1446.3 4.01 
STB* 1421.7 0.84  CI_OF* 1249.4 4.13  MDV 1421.7 4.18 
STB* 1397.1 0.95  CI_OF* 856.3 9.00  MDV 1397.1 4.36 
STB* 1372.5 1.06  CI_OF* 836.3 9.31  MDV 1372.5 4.53 
STB* 1347.8 1.16  CI_OF* 822.8 9.56  MDV 919.6 9.43 
STB* 1323.2 1.29  CI_OF* 797.2 10.08  MDV 882.3 10.11 
STB* 1298.6 1.42  CI_OF* 780.3 10.35  MDV 864.7 10.45 
STB* 1274.0 1.56      MDV 817.8 11.20 
STB* 1249.4 1.70  SLP* 1544.7 -0.31  MDV 954.7 8.92 
STB* 1224.8 1.86  SLP* 1520.1 -0.24     
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TABLE 7.3.  
Model fits of VFT equation to individual data sets. Model parameter values are reported for independent fits of 
each melt composition (A, B, C) and fits coupled by a common value of A (-4.07) and independent values of B 
and C. Also reported N, χ2 and RMSE (Root Mean Square Error) 
 
  Single fits 

values (Eq. 1) 
     

  -7.38 27568.73 -24.48 0.07  
   Individual fit parameters  Common A parameters 
Sample N  Avft Bvft Cvft χ2 RMSE  Bvft Cvft χ2 RMSE 
             
SiO2 26  -7.38 27568.73 -24.48 0.07 0.05  16110.07 421.44 0.45 0.13 
IGC 18  -4.77 9184.30 473.71 0.12 0.08  7999.62 526.70 0.13 0.09 
MNV 19  -6.05 13653.62 165.01 0.02 0.03  9513.13 338.71 0.12 0.08 
AMS_B1 11  -3.82 9055.89 362.24 0.07 0.08  9527.53 340.61 0.07 0.08 
AMS_D1 14  -3.86 9107.49 350.21 0.09 0.08  9515.45 331.46 0.09 0.08 
Ves_W 14  -6.76 12183.32 265.80 0.09 0.08  7460.75 463.58 0.25 0.13 
Ves_G 14  -6.34 11559.47 304.76 0.35 0.16  7685.78 464.96 0.52 0.19 
Td_ph 22  -4.94 11068.55 220.81 0.02 0.03  9356.47 295.80 0.05 0.05 
UNZ 20  -3.63 6878.87 545.14 0.02 0.03  7581.79 510.68 0.03 0.04 
Ves_Gt 16  -4.98 6986.95 531.98 0.05 0.06  5591.25 601.23 0.10 0.08 
VesW_t 12  -5.05 8069.69 467.16 0.03 0.05  6410.60 546.93 0.05 0.06 
HPG8 10  -7.32 18859.18 128.39 0.01 0.04  11013.98 430.56 0.06 0.08 
PVC 25  -5.68 13003.54 205.44 0.04 0.04  9574.11 353.78 0.12 0.07 
EIF 10  -4.24 4171.47 687.90 0.05 0.07  3958.80 699.35 0.05 0.07 
ETN 10  -4.84 6019.41 602.37 0.03 0.06  4893.52 658.69 0.04 0.07 
W_T 24  -3.61 7201.13 510.12 0.02 0.03  7957.46 474.82 0.06 0.05 
W_ph 20  -3.22 7009.47 458.59 0.01 0.03  8372.12 396.59 0.14 0.08 
W_Tf 22  -3.93 4662.72 639.99 0.08 0.06  4830.22 631.92 0.08 0.06 
NIQ 20  -5.06 5289.38 605.55 0.02 0.03  4541.56 633.26 0.17 0.09 
N_An 14  -3.97 7184.27 508.67 0.03 0.05  7355.36 500.77 0.03 0.05 
ATN 17  -4.99 10078.07 382.53 0.09 0.07  8428.82 456.38 0.11 0.08 
MSHD 12  -5.08 10008.47 372.45 0.02 0.04  8093.43 461.17 0.04 0.06 
ME1311e 36  -4.36 7360.71 567.14 0.02 0.03  6905.56 588.03 0.05 0.04 
NYI 23  -3.97 4257.07 677.48 0.34 0.12  4390.20 670.42 0.34 0.12 
STB_B30 21  -3.70 4816.41 632.70 0.00 0.01  5331.53 605.24 0.02 0.03 
MST 21  -4.25 7308.32 503.02 0.02 0.03  7021.19 516.73 0.02 0.03 
Min_2a 25  -4.10 5749.19 584.80 0.16 0.08  5707.24 586.88 0.16 0.08 
Min_2b 25  -3.66 5629.01 572.09 0.03 0.04  6237.55 541.20 0.06 0.05 
FR_a 27  -4.66 7436.51 523.86 1.15 0.21  6530.46 566.17 1.20 0.21 
NYT_lm*13* 24  -3.97 7390.22 514.10 0.02 0.03  7565.79 505.75 0.03 0.03 
CI_OF104 20  -5.44 11387.42 336.00 0.02 0.03  8683.52 457.97 0.07 0.06 
Slapany 17  -4.44 4680.09 650.73 0.15 0.10  4209.57 675.93 0.17 0.10 
MRP 22  -3.84 5636.13 600.77 0.01 0.02  5976.23 583.66 0.02 0.03 
MDV_snt 17  -6.43 16039.36 184.00 0.01 0.02  10558.22 408.32 0.09 0.07 
SFB 11  -3.47 3641.66 678.94 0.04 0.06  4380.17 638.49 0.05 0.07 
SFB5 13  -3.56 4290.31 639.86 0.11 0.09  4856.70 612.16 0.18 0.12 
SFB10 14  -4.50 5635.45 573.37 0.57 0.20  5114.99 598.16 0.60 0.21 
SFB20 15  -3.41 4390.19 625.01 0.45 0.17  5138.79 587.84 0.56 0.19 
SFB40 15  -3.15 5105.35 538.97 0.01 0.02  6318.20 479.64 0.18 0.11 
SFB60 18  -1.82 4762.12 461.56 0.07 0.06  8206.66 282.26 0.96 0.23 
HPG8An10 8  -6.20 15552.56 221.44 0.01 0.03  10576.73 428.68 0.02 0.05 
HPG8An20 10  -4.37 10213.29 456.98 0.00 0.00  9631.14 483.67 0.00 0.01 
HPG8An50 12  -4.12 7235.99 636.87 0.02 0.05  7166.01 640.21 0.03 0.05 
HPG8An75 14  -4.21 6076.60 727.36 0.04 0.05  5894.99 736.49 0.04 0.05 
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TABLE 7.4.  
Isothermal viscosity curve values for the ai coefficients of Equation 7.2. 
 

T(°C) a1 a2 a3 
        
630 11.7979 17.715 3.116 
670 9.15816 17.813 4.507 
700 7.54986 17.731 5.450 
800 3.3433 17.288 9.2741 
900 1.1136 16.185 11.020 
1000 -0.3258 15.078 12.378 
1100 -1.2886 14.039 13.423 
1200 -1.9651 13.099 14.269 
1300 -2.4516 12.258 14.936 
1400 -2.8139 11.508 15.491 
1500 -3.0908 10.828 15.998 
1600 -3.3099 10.231 16.432 
1800 -3.6018 9.1890 17.058 
2000 -3.8001 8.3428 17.587 

 
 
 
 
TABLE 7.5.  
Example of viscosity calculation for the Campanian Ignimbrite sample (IGC) at 1200°C. Inputs are the 
temperature in degree Celsius and the composition in wt%. 
 

 Input values Output values    
Sample 
name 
(IGC) 

Composition 
(wt. %) 

Composition 
(moles %) 

 Calculated 
parameters 
(Eqs. 8-11) 

   

        
SiO2 60.74 70.31      
TiO2 0.27 0.24 b1 -2.115425225    
Al2O3 19.22 13.11 b2 13.12945529    
Fe2O3* 1.69 0.73 b3 14.30849252    
FeO* 1.69 1.63 b4 0.002671818    
MgO 0.28 0.48      
CaO 2.11 2.62 logη(Pas) 4.173    
Na2O 5.28 5.93      
K2O 6.32 4.67      
P2O5 0.06 0.03      
MnO 0.18 0.18      
H2O** 0.02 0.08      
sum 97.83 100.00      
        
FeOtot* 3.37   Model coefficients 
  molar 

amount 
 Eq. 7.8 Eq. 7.9 Eq. 7.10 Eq. 7.11 

SM  15.58  -33.5556 0.03516228 -0.0022362 -1.66697E-06 
AE  -2.52  -93.6494 0.2317411 -0.0054597 1.36107E-05 
AE/SM  -0.1618  45.575455 -0.0780935 -0.0036108 -2.17E-08 
T(°C) 1200   -1.29239E-05 0.03577545 -24.3366274  

* FeO and Fe2O3 are arbitrarily calculated assuming that half of the total iron FeOtot (wt. %) is partioned as FeO 
and the remaining half is partioned as Fe2O3.  
**According to the observations from Ohlhorst et al. (2001), that a residual amount of water is always present 
also in remelted liquid, we have added a fixed amount of water of 200 ppm to the chemical analysis for “virtually 
dry” samples. 
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