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Zusammenfassung

In dieser Doktorarbeit werden Eichtheorien und Gravitation auf nichtkommu-
tativen Raumen studiert. Am Anfang werden die der Konstruktion von Feldthe-
orien auf nichtkommutativen Rdumen zu Grunde liegenden Konzepte eingefiihrt.
Unter einem nichtkommutativen Raum verstehen wir eine nichtkommutative Al-
gebra, welche die Algebra der Funktionen auf gew6hnlicher Raumzeit ersetzt. Wir
konstruieren Ableitungen und deformierte Symmetrien (“Quanten Gruppen” Sym-
metrien), welche auf nichtkommutative Rdume wirken. Aus Konsistenzgriinden
muss die Wirkung auf ein Produkt von Darstellungen abgeéndert werden (“de-
formierte Koprodukte”); dies fiihrt insbesondere zu deformierten Leibnizregeln.
Auflerdem zeigen wir wie ein nichtkommutativer Raum und die Generatoren von
deformierten Symmetrien, die auf diesen Raum wirken, auf der gewohnlichen
Funktionenalgebra dargestellt werden kénnen; das punktweise Produkt wird durch
ein nichtkommutatives, ein sogenanntes “Sternprodukt”, ersetzt.

Eine Mdoglichkeit Eichtheorien auf nichtkommutativen Raumen zu konstru-
ieren ist gegeben durch sogenannte “Seiberg—Witten Abbildungen”. Dieser Zu-
gang macht es mdéglich, alle nichtkommutativen Felder durch ihre kommutativen
Entsprechungen auszudriicken. Wir veranschaulichen dieses Verfahren an zwei
Beispielen, der zweidimensionale ¢-deformierte Euklidische Raum und die
r-deformierte Minkowski Raumzeit. Dariiber hinaus werden Eichtheorien auf
“fuzzy” S% x S? als Multi-Matrixmodell studiert. Wir zeigen, dass das vorgestellte
Modell in einem bestimmten Limes zur Eichtheorie auf dem nichtkommutativen
R* {ibergeht. Auch ein neuer Zugang zu deformierten Eichtheorien mittels “twist’-
deformierten Eichtransformationen wird eingefiihrt. In diesem Zusammenhang
treten zusdtzlich zu den gewohnlichen Eichfeldern neue Felder auf. Die Ein-
fiihrung dieser Felder ist notwending, um konsistente Bewegungsgleichungen und
erhaltene Strome zu erhalten. Dies ist das erste Mal, dass Erhaltungsgesetze von
verallgemeinerten Symmetrien gegeben durch Quanten Gruppen abgeleitet wer-
den konnten.

Ein Hauptteil dieser Arbeit befasst sich mit der Konstruktion von deformierten
infinitesimalen Diffeomorphismen. Darauf basierend fiihren wir deformierte Grav-
itation als eine hinsichtlich dieser Diffeomorphismen kovariante Theorie ein. Dies
fiihrt zu deformierten Einsteingleichungen. Fiir “kanonisch” deformierte Raume
kann sogar eine Deformation der Einstein-Hilbert Wirkung gefunden werden.
Diese geht im kommutativen Grenzfall zur gewonlichen Einstein—Hilbert Wirkung
iiber. Zudem werden alle relevanten Grofen bis zur zweiten Ordnung im Defor-
mationsparameter expandiert.






Abstract

In this thesis gauge-field theories and gravity on noncommutative spaces are
studied. We start with an introduction to the concepts underlying the construc-
tion of field theories on noncommutative spaces. By a noncommutative space
we mean a noncommutative algebra, which replaces the algebra of functions on
ordinary space. We construct derivatives and deformed symmetries (“Quantum
Group” symmetries) acting on noncommutative spaces. Consistency requires us
to change the action on a product of representations (“deformed coproducts”);
this gives rise in particular to deformed Leibniz rules. We also show how a non-
commutative space and the generators of deformed symmetries acting on it can
be represented on the ordinary algebra of functions; the commutative, point-wise
product is substituted by a noncommutative one (“star-product”).

One possible way to define gauge-field theories on noncommutative spaces is
to construct “Seiberg-Witten maps”. In this approach it is possible to express all
noncommutative quantities in terms of their commutative counterparts. We illus-
trate this by two examples, the two-dimensional ¢-deformed Euclidean plane and
the k-deformed Minkowski space-time. In addition gauge-field theory on “fuzzy”
S? x S? is discussed as a multi-matrix model. We show that this model reduces
in an appropriate limit to gauge-field theory on noncommutative R%. We also
present a new approach to deformed gauge theories, which is based on “twisted”
gauge transformations. In this setting new fields occur in addition to the usual
gauge fields. Consistent equations of motion and conserved currents are obtained.
This is the first time that conservation laws have been derived from a generalized,
Quantum Group symmetry.

We discuss in detail how to construct deformed infinitesimal diffeomorphisms
by deformations via generic “twists”. Then we construct gravity as a theory, which
is covariant with respect to these diffeomorphisms. This leads to a deformation
of Einstein’s equations. For canonically deformed spaces, a deformed Einstein—
Hilbert action can be even defined. It reduces to the usual Einstein—Hilbert action
in the commutative limit. All relevant quantities are expanded in terms of the
usual, commutative fields up to second order in the deformation parameter.






Acknowledgements

Many colleagues contributed to the success of this thesis. First of all, I would like
to thank my supervisor Julius Wess. He gave me the opportunity to work in in-
teresting collaborations on many challenging and intriguing research projects. He
taught me many things about the fundamental concepts of theoretical physics. 1
consider myself very fortunate to have had the opportunity to appreciate his expe-
rience, physical intuition and creativity in many hours in front of the blackboard
or while having dinner or a beer in Munich’s beer-gardens. Also, I would like to
express my thanks to my collaborators and colleagues Paolo Aschieri, Wolfgang
Behr, Christian Blohmann, Marija Dimitrijevi¢, Lutz Moller, Stefan Schraml, Pe-
ter Schupp, Harold Steinacker and Andreas Sykora for fruitful collaborations. I
would like to thank Luis Alvarez-Gaumé and Miguel Vazquez-Mozo for many in-
teresting discussions and fruitful collaboration during my stay at CERN. There
are numerous colleagues, among them Branislav Jurco, John Madore and George
Zoupanos, which deserve my special thanks for many useful discussions and for
always answering patiently my questions. Furthermore I would like to thank all
the members of the group for the congenial, enjoyable and productive atmosphere.
I am very grateful to the Max-Planck institute for financial support during the
last three years and in particular for supporting my stay at CERN.

Finally, special thanks go to Walkiria for all her patience and love. She steadily
supported me in spite of many sacrifices.



10




11

Contents

1 Introduction

2 Deformed Spaces and Deformed Symmetries

2.1

2.2

2.3

Noncommutative Spaces . . . .. ... ...
2.1.1 6O-deformed spaces . . . . . . ... ..
2.1.2 k-deformed spaces . ... ......
2.1.3 The fuzzy sphere . . . ... ... ..
2.1.4 qg-deformed Euclidean space . . . . .
2.1.5 The problem of broken symmetries .
Derivatives . . . . . . . . .. ... ... ..
2.2.1 0-deformed spaces . . . . . ... ...
2.2.2 k-deformed spaces . ... ......
2.2.3 q¢-deformed Euclidean plane . . . . .
Deformed Symmetries . . . ... ... ...
2.3.1 Hopf algebras and Quantum Groups

2.3.2 Deformations of Hopf algebras . . . .

3 Star-Products and Star-Representations

3.1
3.2

3.3
3.4

f-Deformed Spaces . . . . ... ... ....
k-Deformed Spaces . . . . . ... ... ...
3.2.1 The normal ordered star-product I .
3.2.2 The normal ordered star-product 11
3.2.3 The normal ordered x-product for the
SPACE . . . . e e e e e

generic k-deformed

13

21
21
22
23
24
25
25
26
29
29
30
31
31
37

a0

3.2.4 The Weyl-ordered x-product for the generic k-deformed space 52

3.2.5 Equivalence between x,, and %y . . .
g-Deformed Euclidean Space . . . . . . . ..
Star-products from Commuting Vector Fields

26



12 CONTENTS

3.5 Star-representations . . . . . . . .. ... .. L. 57
4 Deformation by Twists 59
5 Gauge Theories on Noncommutative Spaces 65
5.1 Gauge-Field Theory on the E,(2)-Covariant Plane . . . . . . . .. 69
5.2 Noncommutative Gauge Theory on the g-Deformed Euclidean Plane 99
5.3 Gauge Theories on the x-Minkowski Spacetime . . . . . . . . . .. 107
5.4 Deformed Spaces, Symmetries and Gauge Theories . . . . . . .. 119
5.5 Twisted Gauge Theories . . . . . . . .. ... ... ... .. ... 135
5.6 Gauge Theory on Fuzzy S? x S? and Regularization on Noncom-
mutative R* . . . . ... 147
6 Gravity on Noncommutative Spaces 187
6.1 Noncommutative Spaces and Gravity . . .. .. .. .. ... ... 189
6.2 A Gravity Theory on Noncommutative Spaces . . . . . ... ... 209
6.3 Noncommutative Geometry and Gravity . . . . .. .. ... ... 233
6.4 A Gravity Theory on Noncommutative Spaces . . . . . ... ... 265

7 Summary and Conclusions 273



13

Chapter 1

Introduction

It is plausible to assume that space-time at very short distances changes its na-
ture in a fundamental way. Our experience with the developments in theoretical
physics suggests this point of view. In Newton’s mechanics time and metric are
absolute quantities. In quantum mechanics time is no longer an observable and
general relativity teaches us that the space-time metric itself is a dynamical vari-
able. We observe that absolute quantities are more and more replaced by relative
or dynamical variables. However, the concept of a differentiable space-time struc-
ture remains preserved in all established theories (see also the table below!'). It
is compelling to assume that the idea of space-time described as a differentiable
manifold does not survive in physics beyond Einstein’s theory of gravity. A quan-
tum theory of gravity should only be compatible with a space-time of quantum
nature.

Topology,
Time | Metric | Differentiable Structure
Newtonian Mechanics + + +
Quantum Mechanics - + +
General Relativity - - +
Quantum Gravity - - -

Another argument supporting this conclusions was brought forward in [1].
The authors argue that trying to measure very short distances implies using test

IThis table is taken from a talk given by J. Ehlers in Oviedo at the Spanish Relativity
Meeting 2005 (as mentioned there it was first used by Trautman in 1972).
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particles with very short wave lengths, i.e. very high energies. If the amount of
energy in a very small region of space-time becomes too high, a black hole will be
created and measurement below the horizon of this black hole will be impossible.
A differentiable space-time looses its operational meaning below Planck-scale. It
is therefore reasonable to assume that the nature of space-time at very short
distances should change in a way, which reflects this fact. This is a very old
idea. It is amazing that already Riemann argued in this direction. In his famous
inaugural lecture 1854 he said*:

"Now it seems that the empirical notions on which the metric determinations of
Space are based, the concept of a solid body and a light ray, lose their validity in the
infinitely small; it is therefore quite definitely conceivable that the metric relations
of Space in the infinitely small do not conform to the hypothesis of geometry; and
wn fact, one ought to assume this as soon as it permits a simpler way of explaining
phenomena...

... An answer to these questions can be found only by starting from that con-
ception of phenomena which has hitherto been approved by experience, for which
Newton laid the foundation, and gradually modifying it under the compulsion of
facts which cannot be explained by it. Investigations like the one just made, which
begin from general concepts, can serve only to ensure that this work is not hindered
by too restricted concepts, and that the progress in comprehending the connection
of things is not obstructed by traditional prejudices”.

One way to change the nature of space-time is to make it noncommutative.
The concept of a differential space-time manifold is substituted by the algebra
generated by noncommutative coordinates 2, which are subject to commutation
relations of the type

(24, 3] = 0" (7). (1.1)

This proposal has a long history. In 1930 Heisenberg wrote in a letter to Peierls |2]
that he considers the assumption of non-commuting coordinates and the “corre-
sponding uncertainty relations for quite reasonable”. However, he was not able
to give such relations a mathematical meaning and in this letter he therefore
asked Peierls and Pauli for help. The ideas of non-commuting coordinates was
worked out in detail for the first time in 1947 by Snyder, a student of Oppen-
heimer. He used noncommutative coordinates in order to regularize the divergent
electron self-energy [3]. The fact that mathematical tools to treat such spaces
were still not at hand and the progress in the development of Quantum Field
Theories and their renormalization made the idea of noncommutativity disappear

2We would like to thank Jose Adolfo de Azcarraga for drawing this reference to our attention.
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for quite some time. Developments in mathematics during the last twenty years
and the persisting absence of a consistent formulation of quantum gravity revived
the concept of noncommutativity and noncommutative geometry [4-6]. Recently,
even a connection between noncommutative geometry and string theory could
be found [7-9]. In this scenario the endpoints of open strings on D-branes in a
background B-field behave in a noncommutative way. This raised the interest

in noncommutative gauge-field theories on canonically deformed spaces where in
(1.1) o € R.

The approach studied in this thesis relies mainly on two recent developments
in mathematics. Around twenty years ago, Drinfel’ld and Jimbo constructed
g-deformations of the universal enveloping algebras of semisimple Lie algebras
[10,11]. In this way they showed that a continuous deformation of Lie algebras in
the category of Hopf algebras is possible. Physicists interpreted these deformed
Hopf algebras (also called Quantum Groups) as generalized, deformed symmetries,
and it was found that they consistently act on noncommutative spaces [12-15].
This thesis does not only deal with the construction of such deformed symme-
tries acting on particular or even whole classes of noncommutative spaces, but
we shall also show how to construct field theories and gauge-field theories in the
noncommutative setting. The second important input comes from deformation
quantization [16]. The construction of star-products (x-products) enables us to
study the effects of noncommutativity perturbatively in orders of a deformation
parameter. Star-products are associative deformations of the usual, commutative
point-wise product of functions on a manifold. The zeroth order in the defor-
mation parameter reproduces the ordinary point-wise product and higher orders
are given in terms of bidifferential operators. Star-products can be used in order
to represent noncommutative space-time algebras on the space of ordinary func-
tions on a manifold by equipping it with a new, noncommutative product, the
star-product. In this way it is possible to construct noncommutative field theo-
ries using the fields of the commutative theory; noncommutative quantities can
be expressed in terms of their commutative counterparts by constructing order
by order an explicit map, called Seiberg-Witten map, between commutative and
noncommutative gauge theories [9]. In this context, noncommutative gauge trans-
formations are induced by ordinary gauge transformations applied to the gauge
fields of the commutative theory. Seiberg-Witten maps were first constructed for
canonically deformed spaces [17-19]. The field content remains unchanged but
additional terms in the action lead to new phenomena. Such contributions can
be determined order by order in the deformation parameter by expanding the
star-products. In the framework of a noncommutative standard model [20] new
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phenomena such as usually forbidden couplings and decays have been studied
intensively [21-30]. Recently, star-products were obtained for arbitrary Poisson
manifolds [31] and Seiberg—Witten maps were constructed in this general setting
based on the concept of covariant coordinates |32,33|. However, the solutions for
the gauge field, for instance, are proportional to the Poisson structure itself, and
therefore vanish in the commutative limit. In order to obtain solutions with the
right commutative limit, derivatives instead of coordinates have to be gauged.
In the case when 6" = const. the problem arises that in general derivatives act
via a deformed Leibniz rule and are not derivations on the star-product alge-
bra. As a consequence derivative valued gauge fields have to be introduced as
we shall see when we construct Seiberg-Witten maps for x-deformed spaces in
Section 5.3, [34]. A possibility to avoid this conclusion is by gauging derivations
of the noncommutative algebra induced by commuting frames. This was first
proposed in [35,36] (Section 5.1-5.2) where gauge-field theories via this kind of
Seiberg-Witten map are constructed in detail for the g-deformed Euclidean plane
(see also [37]). A generalization of these concepts to star-product algebras, which
possess a commuting frame, can be found in [38].

Another, new approach to gauge theories on noncommutative spaces is given
by twisted gauge transformations. We introduce this approach in Section 5.5,
[39], see also [40,41]. By twisting the coproduct for gauge transformations, we
can construct gauge invariant quantities. This kind of gauge transformations are
compatible with the deformed diffeomorphisms constructed in [42,43]. We derive
consistent equations of motions and conserved currents. This is the first time
that conservation laws for theories invariant with respect to deformed, generalized
symmetries in the framework of Quantum Groups could be obtained. The usual
derivation via Noether does not work in these cases since a deformed Leibniz rule
has to be taken into account.

There is also a class of noncommutative spaces, which retain the undeformed
symmetries of their classical analogues. Those spaces, known as fuzzy spaces, arise
when quantizing symplectic manifolds given by coadjoint orbits of Lie groups.
This leads to fuzzy manifolds, which in case of semi-simple Lie groups are given
by finite dimensional algebras [44|. The most famous examples for fuzzy spaces
are the fuzzy sphere S%, [45-47| and fuzzy C'P™ [48-50]. The description of fuzzy
spheres in terms of finite dimensional matrix algebras makes it possible to con-
struct gauge theories on fuzzy spheres as random matrix models [51]. In this
thesis we propose a four-dimensional model and construct gauge theories on fuzzy
S? x S2. This finite matrix model reduces in the commutative limit to Yang-Mills
theories on S? x S2. Moreover, a double scaling limit is found such that gauge
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theories on fuzzy S? x S? reduce to noncommutative gauge theories on the four-
dimensional canonically deformed space Rj. Therefore we can use this model as
a regularization of noncommutative gauge theories. A class of topologically non-
trivial solutions (instantons) on fuzzy S? x S? reduces in this limit to instantons
on Rj. The recovered instantons correspond to a generalization of the instantons
constructed for noncommutative gauge theories in two dimensions [52-54].

A main part of this thesis is devoted to the formulation of gravity on noncom-
mutative spaces and to deformations of Riemannian geometry. Noncommutative
spaces break diffeomorphism invariance. We propose a new approach to non-
commutative gravity based on a deformation of diffeomorphisms. For related
approaches see [4,6,55-62]. A first construction is given for canonically deformed
spaces. In this case translational invariance is not broken and integration can
be defined without further problems. We obtain a deformation of the Einstein—
Hilbert action [42]. In [43,63] the construction is generalized to deformations of
the universal enveloping algebra of vector fields by generic twists. This work is of
particular interest since, as we shall see in Chapter 4, the class of noncommutative
spaces defined by twists is very rich. It contains many interesting examples as, for
instance, noncommutative spaces, which possess indeed a lattice-like structure. It
is in particular for these discrete noncommutative space-times that we expect a
regularization behaviour. The quantum properties of gravity on such lattice-like
spaces still has to be investigated. What we end up with in this thesis is a defor-
mation of gravity for a large class of noncommutative spaces. If it was possible to
study the quantum behaviour for this whole class of gravity theories, renormal-
izable points may be found within this class. In this way renormalizability may
select out particular examples of noncommutative spaces.

This thesis is organized as follows: In the following three chapters we intro-
duce the fundamental concepts associated with noncommutativity and present
the tools necessary to construct physical theories on noncommutative spaces. In
Chapter 5 and 6 models for gauge-field theories and gravity theories on noncom-
mutative spaces are constructed in detail. These two chapters contain the main
part of this thesis. They consist of the publications [34-36,39,42,43,63-66]. The
publications [37,67,68| were also written in the framework of this thesis. Their
content is basically covered by the publications already included here. The aim
of Chapters 2—4 is to provide the non-expert among the readers with a detailed
introduction, which may help to understand better the arguments and derivations
brought forward in Chapters 5-6.

In the second chapter we give an algebraic definition of noncommutative spaces
and provide some examples. We also construct derivatives on noncommutative
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spaces and introduce deformed symmetries (Quantum Groups) [69-73]. They are
constructed by deforming universal enveloping algebras of Lie algebras that pos-
sess a natural Hopf algebra structure. Noncommutative spaces are interpreted as
module algebras with respect to such Quantum Groups [12,13]. The necessary
mathematical tools are presented in detail. We end this section discussing ex-
amples of Quantum Group symmetries, which act on the noncommutative spaces
introduced in the first section of Chapter 2.

The third chapter is devoted to a detailed study of star products (x-products)
and x-representations of operators. We give explicit examples for star-products in
the canonical case, k-deformed case and for the ¢-deformed Euclidean plane. The
construction of star-products corresponding to normal ordering and symmetric
ordering is presented in all detail for xk-deformed spaces.

The forth chapter is devoted to deformations by twists [70, 74, 75]. Twists
provide a convenient way to deform Hopf algebras and their corresponding module
algebras. We shall often consider the algebra of functions on a manifold as module
algebra with respect to an appropriate Quantum Group. Using a twist, its product
can be deformed by introducing a star-product. The cocycle condition satisfied
by the twist guarantees associativity of this star-product. By twisting a Hopf
algebra acting on the usual algebra of functions we obtain a deformed symmetry,
which acts consistently on the twisted noncommutative space of functions. This
procedure can be applied in order to construct a deformed Poincaré symmetry
acting on canonically deformed spaces. By deforming the universal algebra of
vector fields we construct deformed diffeomorphisms.

The fifth chapter treats various models of gauge-field theories on noncom-
mutative spaces. Section 5.1-5.2 are devoted to the construction of gauge-field
theories on the g-deformed two-dimensional Euclidean plane [35,36]. The formal-
ism is based on a commuting frame. A Seiberg-Witten map is constructed and
all relevant quantities including the action are expanded up to first non-trivial
order in the deformation parameter. Section 5.3 and 5.4 contain the construc-
tion of gauge theories on x-deformed space-time and were published in [34, 64].
We admit derivative valued gauge fields. In this way Seiberg—Witten maps can be
constructed and the noncommutative fields can be expressed in terms of their com-
mutative counterparts. The physical field strength can be defined by projecting
out the curvature like contribution of the commutator of two covariant derivatives
and neglecting torsion like terms. Consistency with x-Poincaré transformations
is also shown. Section 5.5, [39], treats a different approach to deformed gauge
theories. We consider the canonically deformed space and deform gauge transfor-
mations by twisting the coproduct. The Lie algebra generating gauge transforma-
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tions is extended by translations. Gauge invariant quantities and gauge covariant
Lagrangians are constructed. The field equations are consistent if we choose the
gauge-field in the enveloping algebra. This leads to new fields in addition to the
usual gauge field. Their number is finite if we use finite dimensional represen-
tations of the enveloping algebra. These fields reduce in the commutative limit
to free fields and couple only weakly via the deformation parameter . The new
fields depend on the representation chosen. We also derive conserved currents.
In the last section we present a model for gauge theories on fuzzy S? x S? [65].
We construct U(n) gauge theories where fluctuations of the covariant coordinates
correspond to gauge fields. The action reduces to Yang-Mills theories on ordinary
S? x 8% in the commutative limit. Moreover, we present a gauge fixed action with
BRST symmetry. The quantization of the model is given by convergent integrals
over the matrix degrees of freedom. We explicitly define a double scaling limit,
in which gauge theory on fuzzy S? x S? reduces to gauge theory on the noncom-
mutative, f-deformed four-dimensional space. A class of topologically non-trivial
solutions on fuzzy S? x 52, which can be interpreted as U(1) instantons, reduces
to U(1) instantons on Rj.

The sixth chapter is devoted to gravity on noncommutative spaces. We start
this chapter in Section 6.1 with a lecture given at the I Modave Summer School
in Mathematical Physics [63] in order to introduce to the publications [42,43] (see
also [67,68]). In the following section, [42], we present in detail the construc-
tion of a gravity theory on canonically deformed spaces. It is based on deformed
infinitesimal diffeomorphisms, which are constructed by deforming the universal
enveloping algebra of vector fields. The coproduct is deformed. With respect
to these deformed infinitesimal diffeomorphisms, a whole tensor calculus is es-
tablished. Based on these structures we construct a theory of gravity via the
Einstein formalism. This leads to a deformation of the Einstein—Hilbert action.
It reduces to the usual Einstein-Hilbert action in the commutative limit. The
dynamical field is the vierbein or the metric as in the commutative theory. All
relevant quantities are expanded up to second order in the deformation parameter.
The action is constructed as an invariant under deformed infinitesimal diffeomor-
phisms. In Section 6.3, [43], we generalize the construction of [42]. By means of
generic twists, the universal enveloping algebra of vector fields is deformed such
that it acts consistently on twisted spaces. Tensors and forms are introduced as
module algebras of this twisted Hopf algebra. Einstein equations, which are co-
variant with respect to twisted infinitesimal diffeomorphisms are formulated. The
last section provides a short summary of our results about deformed gravity.

We finish this thesis in Chapter 7 with a short summary and discuss some
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open questions and current as well as future research projects.
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Chapter 2

Deformed Spaces and Deformed
Symmetries

2.1 Noncommutative Spaces

In field theories one usually considers differential space-time manifolds. In the
noncommutative realm, the notion of a point is no longer well-defined and we
have to give up the concept of differentiable manifolds. However, the space of
functions on a manifold is an algebra. A generalization of this algebra can be
considered in the noncommutative case. We take the algebra freely generated by
the noncommutative coordinates z*, which respect commutation relations of the

type

24, 3] = O" () £ 0. (2.1)

We don’t want to care too much about convergence and therefore take the space
of formal power series in the coordinates z* and divide by the ideal generated by
the above relations

A=Ca° ... &) /([&", 2] — C*™ (7).

The function C*”(Z) is unknown. For physical reasons it should be a function
that vanishes at large distances where we experience the commutative world and
may be determined by experiments. However, we can consider a power-series
expansion

O (&) = i +iC™ 30 + (R™ py — 8401)3°37 + ... |
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where 0, C*”, and R",, are constants, and study cases where the commuta-
tion relations are constant, linear or quadratic in the coordinates. At very short
distances these cases may provide a reasonable approximation for C**(z). We are
led to the following three structures

1. canonical or #-deformed case:

[z, 2] = 0" . (2.2)

2. Lie algebra case:
[zH, 27 = iCH 2P (2.3)

3. Quantum Spaces:
Y = R 217, (2.4)

We denote the algebra generated by noncommutative coordinates z#, which are
subject to relations of the above type, by A. We shall often refer to it as the algebra
of noncommutative functions. Commutative functions will be denoted by A. In
the following we want to give some examples for noncommutative spaces. Later we
shall study deformed symmetries, which act consistently on these noncommutative
spaces.

2.1.1 6O-deformed spaces

The easiest example of a noncommutative space is given by commutation relations
of the type
[zH, 2] = 0", (2.5)

where 0" is an arbitrary anti-symmetric, constant tensor. #-deformed spaces can
be defined for any dimension. However, we shall often consider the case of four
dimensions. Then, using suitable rotations, #*”can always be cast in the following
form:

0 6 0 0
g _ | 00 00
00 0 4
0 0 —0 0

We see that the algebra (2.5) in four dimensions is nothing but two copies of the
Heisenberg algebra. This implies that the eigenvalue spectrum of the noncom-
mutative coordinates is continuous. Hence, this noncommutative space does not



2. Deformed Spaces and Deformed Symmetries 23

provide a lattice-like structure of space-time. However, the commutation relations
(2.5) express an uncertainty in the measurement of two space-time coordinates.
The assumption of such an uncertainty leads to new physical implications. The in-
terest in f-deformed spaces rose when it was discovered that gauge theories on this
particular noncommutative space appear in an appropriate limit of String The-
ory [7-9]. It is still subject of intense research, see for instance [17,19,42, 76-78|
and references therein. For its simplicity it is very-well suited to study many
features of noncommutativity.

2.1.2 k-deformed spaces

There is a well-known example for noncommutative spaces of the Lie algebra
type (2.3): k-deformed spaces. For a long time they were believed to be the
only example of this type, which admit the action of a quantum group symmetry
(the so-called x-deformed Poincaré algebra [79-81], see also Section 2.1.2). Recent
investigations, however, have given rise to a whole class of noncommutative spaces
obtained by generic twists [43]. We shall learn about this in Chapter 4. Among
this class also new examples for noncommutative spaces of Lie-type could be
found [82]. These spaces still have to be studied in more detail and we focus our
considerations on x-deformed spaces. This example is of particular interest since
it also appears as a low energy limit of loop quantum gravity [83].

r-deformed spaces are generated by coordinates, which are subject to the
commutation relations

[z, 2] = i(a"2” —a"2"), p,v=0,1,...,n, (2.6)

where a" are constants. Indices are raised and lowered with the usual Minkowski
metric " = diag(1,—1,...,—1) and its inverse. The constant vector a* can be
transformed by convenient linear transformations on the coordinates to the form
a* = 6" a such that the algebra becomes

(2", 2" = iad’

[2',27] = 0, i,j=0,...,n—1. (2.7)
Note that we label the n commuting coordinates Z* (i = 0,...,n — 1) by Latin
letters ¢, 7, k, . ... The noncommutative coordinate is always taken to be z". Greek
indices are meant to run always over all (n + 1)-coordinates, u,v,...=0,...,n.

The deformation parameter a is related to the frequently used parameter x by

CL:l.
K
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2.1.3 The fuzzy sphere

The fuzzy sphere was introduced about 15 years ago by John Madore [6,46]. It
is another example for a noncommutative space of Lie-type (2.3). The algebra
of functions on the fuzzy sphere is the finite algebra S% generated by Hermitian
operators r; = (x1, oo, x3) satisfying the defining relations

[z, 2] = iAnejrar (2.8)
i+ al+ad =R, (2.9)
They are obtained from the N-dimensional representation of su(2) with generators
Ai (i =1,2,3) and commutation relations
N%Z -1
4

3
i=1

by identifying
2R

T
The noncommutativity parameter Ay is of dimension length. The algebra of
functions S%; therefore coincides with the simple matrix algebra Mat(N, C). The
normalized integral of a function f € S% is given by the trace

4 R?
/f: “ (). (2.12)
S

The functions on the fuzzy sphere can be mapped to functions on the commutative
sphere S? using the decomposition into harmonics under the action

Jif =[N, f] (2.13)

of the rotation group SU(2). One obtains analogues of the spherical harmonics
up to a maximal angular momentum N — 1. Therefore S% is a regularization of
S? with an UV cutoff, and the commutative sphere S? is recovered in the limit
N — .

The fuzzy sphere is of particular interest since it retains the rotational sym-
metry of the classical sphere. It is fuzzy in the sense that a precise localization of
points is not possible. The construction of more general fuzzy spaces relies on the
fact that coadjoint orbits of Lie groups (for semisimple Lie groups these are the
same as adjoint orbits) are symplectic manifolds. These manifolds can be quan-
tized under certain conditions, giving rise to fuzzy spaces, see [44] and references
therein. The most famous examples are the fuzzy sphere and fuzzy CPY.
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2.1.4 ¢-deformed Euclidean space

Examples of noncommutative spaces with commutation relations of type (2.4) are
provided by ¢-deformed spaces. We want to introduce a simple example of such
a space. Let us consider the algebra generated by coordinates 2,%, which are
subject to the commutation relations

57 = ¢*23, (2.14)

where ¢ € R. This noncommutative space is called the ¢-deformed two-dimensional
Euclidean space [35,84-86]. Defining real coordinates Z,y by 2 = & + iy and
Z = & — iy the commutation relation (2.14) yields

A A _‘(92—1) A2 | A2
[z,7] = zm(x +97). (2.15)

2.1.5 The problem of broken symmetries

It is important to make the following observation: Noncommutative spaces break
symmetries. The commutation relations respected by the noncommutative co-
ordinates are in general not invariant with respect to symmetries, which are an
invariance of the underlying undeformed space. The above examples for deformed
spaces (except for the fuzzy sphere, which retains undeformed rotational sym-
metry) illustrate this. For instance, the usual Minkowski space is invariant with
respect to Poincaré transformations. However, the noncommutative space

@+, 2] = i,

where e.g.
0 ¢ 0 0
g -6 0 0 0
0 0 0 ¢
0 0 —6 0

breaks Poincaré invariance down to invariance with respect to translations to-
gether with SO(1,1) x SO(2) (respectively SO(2) x SO(2) for Euclidean signa-
ture). Analogue considerations hold for the other examples. The construction of
field theories is based on symmetries. Dealing with noncommutative spaces there
are basically two possible ways to proceed: The first is to construct field theories
in the usual way but based on a smaller symmetry group, which remains an invari-
ance group of the noncommutative space [78]. The second way to proceed is to
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look for possible deformations of symmetries considered in the commutative case.
A deformed symmetry is required to reduce to the original, undeformed one in
the commutative limit and has to act consistently on the noncommutative space.
Such deformations exist indeed and will be introduced in the following sections.

2.2 Derivatives

In order to study the dynamics of fields we need derivatives acting on the non-
commutative algebra A. Derivatives are maps on the deformed coordinate space
[87-89] R
Dy A— A.

This means that they have to be consistent with the commutation relations of
the coordinates or, differently said, they have to map the ideal generated by the
commutation relations of the coordinates to itself (“zero” has to be mapped to
“zero”). Since we made the experience that it is often not clear to physicists what
this is supposed to mean, we shall illustrate this in detail. Consider a commutative
space in two dimensions

[z,y] =0.
We can introduce partial derivatives d,,J, by the commutation relations
(O, 2] =1 [0y, 2] =0
[0, y] =0 [0y, y] =1 (2.16)
[0z, 0y] =0
These are consistent commutation relations. If we commute, for instance, a partial
derivative with 0 = xy — yx using (2.16)
D(zy —yz) = y+ a0y —yoyx
= y+ayd, —y — yxo,
= (zy —y2)0,
we end up with an expression proportional to zero. We can also see this on the

level of the action. The commutation relations (2.16) imply the following action
of the derivatives on coordinates’

(Opz) =1 (Oyz) =0 (2.17)
(0zy) =0 (Oyy) =1

We use brackets to distinguish the action of a differential operator from the multiplication
in the algebra of differential operators.
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together with the Leibniz rule

9:(fg) = (0uf)g+ f(rg)
9y(fg) = (0yf)g+ f(9y9). (2.18)

This action is consistent with the commutation relations [z,y] = 0 since for ex-
ample

0 = Oulovy —yx) = (0:2)y + 2(02y) — (02y)x — y(0u)
= ly—yl=0,

where we used (2.17) and (2.18). The ideal generated by zy—yz is mapped to itself
by 0, (“zero” is mapped to “zero”). Now consider for instance a noncommutative
space defined by

Ty = qyT .
It is called the Manin plane [13]. Defining derivatives 390,33, by the action on
coordinates as in (2.17) and the Leibniz rule as in (2.18) is not consistent. We
would have

0 = &f(a}g — qg)@ ) )
= ly—qyl=(1-q)y,

which is only satisfied if ¢ = 1, i.e. in the commutative limit. In order to obtain
a consistent calculus for the case ¢ # 1 we have to modify the definitions of the
action and the Leibniz rule. We have to find consistent commutation relations for
coordinates and derivatives.

To construct such a calculus for an arbitrary noncommutative space one usu-
ally proceeds as follows: Partial derivatives &L are introduced as new elements by
defining commutation relations with the noncommutative coordinates and among
themselves. These commutation relations are required to satisfy the following two
conditions:

1. They have to be consistent with the commutation relations of the noncom-
mutative space.

2. They should reduce in the commutative limit to the undeformed commuta-
tion relations

>

[ mi,u] comm_.limit [aw I/] — 5;
[éuv él/] - [auv 81/] =0
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such that the derivatives constructed are indeed a deformation of the usual,
undeformed ones.

To find commutation relations satisfying the above conditions, one usually starts
with a general ansatz

0,87 = On 4> Awng, .0, (2.19)

n

~

[éﬂ/’ é'/] = O + Z BZ}/.“U”LéUI o aU'm ’

where the coefficients AP B7l "™ may also depend on the noncommutative
coordinates but have to vanish in the commutative limit in order to meet the
second condition. In general, the solution is not unique. By restricting the ansatz
(2.19) looking, for example, for solutions, which contain at most terms linear in
the derivatives, it is possible to find finitely many classes of solutions. Different
solutions can often be mapped to each other [87,90]

E: éu — é/; = E(éy)pé

n
where E¥, are functions, which reduce in the commutative limit to the Kronecker

delta. So far, we have simply enlarged the algebra A by adding in a consistent
way new elements 3;“ which reduce to usual derivatives in the commutative limit.
We still have to retrieve from the commutation relations (2.19) the action of
derivatives on coordinates respectively functions and the way they act on products
of functions in the noncommutative algebra A (Leibniz rule). The action on a
coordinate is given by the terms on the right-hand side of the commutator [(i, V],
which do not contain derivatives. Comparing with (2.19) we read off

(0u8") = 6% + A
Here A} vanishes in the commutative limit and implements a possible deformation
of the action. The remaining coefficients in (2.19), A}, AyP72, ..., determine the
deformed Leibniz rule. It can be deduced by calculating the commutator first on
the product of coordinates
[0y, &3"]
and then on the product of ordered monomials. The results can be generalized

to the product of two functions. What we obtain will be in general a deformed
Leibniz rule

Oo(F9) = Dp )3+ F(99) + D C P D+ D f) (D -+ 03 )

n,m

where again C’;‘l"'o‘"ﬁl”'@” are coefficients that vanish in the commutative limit.
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2.2.1 6-deformed spaces

In the f-constant case consistent derivatives can be defined very easily by
0,37 = 6" (0,3") =6,
[0,,0,] =0. (2.20)

These equations are undeformed. Let us show in a short calculation that these
derivatives are indeed consistent with the commutation relations

(24, 3] = 6 |

We compute using (2.20)

~

D([", 3] — i) = O,(#"3" — iVi" — i)
= (0F+3"0,)3" — (8% + 270,)2" — i0™ 9,
= MR — VEM — 0" O, + @ (0) + 3¥0,) — 27 (01 + 3%0))
= ([&",2"] — i6")0,.
An analogue calculation shows that
# (104, 0,)) = ([0, D)3

and consistency is shown. The above definitions (2.20) yield the usual Leibniz
rule for the derivatives 0,

(0uf9) = (0,1)5 + F(9u9) (2.21)
This is a special feature of the fact that 6** are constants. In more complicated

cases this undeformed Leibniz-rule cannot be preserved and has to be substituted
by a deformed one [88], as we shall see in the following examples.

2.2.2 rk-deformed spaces

Differential calculi on x-deformed space with commutation relations, which are at
most linear in the derivatives, are constructed and classified in detail in [90-93].
One possible solution for the derivatives is given by

[0, &) = o

0,37 = iad;

[0n,2'] = 0 (2.22)
[0,, 2" 1
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and o
[0,,0,] =0. (2.23)

Let us show how to check consistency of these commutation relations with (2.7)
by exhibiting one example: We calculate

>

<

2" = ia0;i" 4+ 2708

>

<
=
=
3
I
—
N
_I._
=>
<
bQD)
~
>
3

@-z’aii = '&CL((SZ + i’léj s
which yields
9; (2" — #i" — iad’) = (23 — 22" — iad')d; .
From the commutation relations (2.22) we see that the action on single coordinates
remains undeformed R

(0u2") = 0,

but the Leibniz rule, the way we have to act on a product of function, is deformed.
We obtain

>
>

>

(f9) = (Dif)g + (€ )(:9). (2.24)

2.2.3 ¢-deformed Euclidean plane

Differential calculi on ¢-deformed spaces are studied in [88]. A detailed derivation
of a differential calculus for the ¢-deformed Euclidean plane is given in [35,86,94].
There derivatives are defined by the following commutation relations
0:2=1+ q_zéag 82% = q_%&g
(9%;3 = q228% (9%% =1+ q%@;
and
8585 = qzagag .

Also in this case the derivatives act via a deformed Leibniz rule

0:(f3) = (9:1)g+ fla*2,47%2)(0:9)

0:(f9) = (9:1)9+ f(¢*2,4°2)(0:9) -
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2.3 Deformed Symmetries

We have seen in the previous section that in general deformed spaces break sym-
metries. The question arises whether we can deform a symmetry in such a way
that it acts consistently on the deformed space and such that it reduces to the
undeformed symmetry in the commutative limit. The answer is yes: Lie algebras
can be deformed in the category of Hopf algebras [69-73] (deformations of Hopf
algebras coming from a Lie algebra are also called Quantum Groups)?. Through-
out this thesis an important question will be how to construct such deformed
symmetries. In a second step we propose models of field theories, which are co-
variant with respect to these generalized symmetries. In this section we introduce
the fundamental concepts and mathematics and present useful examples.

2.3.1 Hopf algebras and Quantum Groups

This section is devoted to some important facts about Hopf algebras and Quantum
Groups and their interplay with physics. The reader who is less interested in
mathematical facts and their derivations may concentrate on the last paragraph
of this section where the most important statements are summarized.

The Hopf algebra axioms

A Hopf algebra H over the field C is an algebra over C together with the algebra
homomorphisms

A: H—-H®H, ¢: H-—C, (2.25)

i.e. A, e are well-defined C-linear maps satisfying for all £,{ € H
AL =AOA[C); Al)=1®1 (2.26)
e(¢Q) =e(§)e(¢) ; (1) =1, (2.27)

and with the C-linear map
S:H— H, (2.28)

satisfying the following properties V¢, ( € H
(A ®id)A(&) = (id @ A)A(E) (2.29)

2To be more precise the universal enveloping algebra of a semisimple Lie algebra can be
deformed. Since semisimple Lie algebras form a discrete set, a continuous deformation is not
possible within this set.
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(e ®@id)A(E) = ([d®@e)A(E) =¢ (2.30)
p(S ®id)A(E) = pid ® S)A(E) = (€)1 (2.31)

where 1 is the multiplication map p(§ ® ¢) = £(. From these axioms we deduce
[70]:

S(£¢C) = S(Q)5(€) 5 A[S(E)] = o(S©A(E); e[S =e(§); S(1) =1 (2.32)

where 0(£®() := (®¢ is the flip map. Written in Sweedler notation (see e.g. [72]),
where we write {; ® & as a symbolic notation for A(¢), the above axioms and
properties reed

(€ @ (En)2 = &1 @ Eamp (2.33)

§1, 81,0 =6®&, ®&, =6 QLR E (2.34)
e(&1)éa = & = &1e(&2) (2.35)

S(€1)6a = e(§)1 = 615(6) ( )

S(€)1 ®8(8)2 = S(&2) ® (&) (2.37)

The following lemma is very useful for checking whether an algebra is a Hopf
algebra.

Lemma 1. Let H be an algebra. If X C H is a set of algebra generators and if
A:H—H®H,e: H— C are algebra homomorphisms and S : H — H is an
anti-algebra homomorphism, then H is a Hopf algebra if for all x € X holds:

Ax1) ® x4 = 1 ® A(xg) (2.38)
(1) m; = r1€(2) (2.39)
r1S(xe) =e(x)l = S(x1)z2, (2.40)

where again x; @ x5 is a short hand notation for A(z).

Proof. Note that
(Aid)A:H—->HQ®QH®H (2.41)

and
(dAA:H—->H®QH®H (2.42)

are both algebra homomorphisms since id is an algebra homomorphism and A is an
algebra homomorphism by assumption. Moreover, two algebra homomorphisms
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¢1: A— A and ¢, : A — A’ are equal if and only if they are equal on a set of
algebra generators of the algebra A. Therefore

(A ®id)A(€) = (id @ A)A(E) (2.43)

for all £ € H since the equality holds by assumption on all generators r € X.
Analogue arguments show that

(e ®@id)A(E) = (id®e)A(§) =¢ (2.44)

is satsified for all £ € H. Tt remains to show that S is an antipode. This can be
seen as follows: We define

H' = {he H|mS(hy) = e(h)1}, H" :={he H|S(h)hs =c(h)1}  (2.45)

and first show that H’ and H” are subalgebras of H. Then the claim follows since
we have X C H’ respectively X C H” such that we conclude H = H' = H" (X
generates H), which means that S is an antipode. To see that H’ is indeed a
subalgebra of H we have to show that yz € H' ify,z € H":

Y1215 (Yaz2) = 11215(22)S(y2) = 116(2)1S(y2) = e(y)e(2)1 = e(y2), (2.46)

where we used in the last step that ¢ is an algebra homomorphism. The same
way one shows that H” is a subalgebra of H. O

This lemma means in practise that in order to show whether H is a well-defined
Hopf algebra it is enough to check the axioms (2.29-2.31) on the generators of the
algebra H ones one has verified that A, ¢ are algebra homomorphisms and that S
is an anti-algebra homomorphism. In the next subsection we will use this to show
that the universal enveloping algebra of a Lie algebra is indeed a Hopf algebra.

Universal Enveloping Algebras of Lie Algebras

In our context, a special class of Hopf algebras is of particular interest: The uni-
versal enveloping algebra of any Lie algebra g over the field C is a Hopf algebra
equipped with a natural Hopf algebra structure. Deformations of such Hopf alge-
bras give rise to what are often called deformed symmetries in physics, see next
subsection. First let us recall how the universal enveloping algebra of a Lie algebra
is defined. Given a Lie algebra g over C with Lie bracket

[J:gxg — g (2.47)
(9,9) = l99]
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and basis g;, i € J, where [g; g;] = >, o!;g9; with structure constants a}; € C,
its universal enveloping algebra Ug is given by the algebra C(g;|i € J) freely
generated by the basis elements g; modulo the ideal I generated by the set of
elements

{9i9; — 99— Y_ asaquli.j € J}, (2.48)
lel
i.e.
Ug := Clgsli € J)/1. (2.49)

The universal enveloping algebra Ug realizes the Lie bracket of g as a commutator:
In Ug we have

l991=99 —99=19,9] (2.50)
for all g, ¢’ € g. It is called "universal" since it has the following universal prop-
erty [95]:

UNIVERSAL PROPERTY OF Ug:

Let g be a Lie algebra and Ug its universal enveloping algebra. Then for all alge-
bras A and any Lie algebra homomorphism f : g — A (here any algebra A is a Lie
algebra via the Lie structure given by the usual commutator) there exists a unique
algebra homomorphism ¢ : Ug — A such that the following diagram commutes:

9—f>A

can (b]\

Ug

Here, can : g — Ug denotes the canonical map g — g. Usually we identify g with
g.
We claim that Ug possesses a natural Hopf algebra structure induced by
Ag = gR1+1®yg
eg) = 0 (2.51)
S(g) = —g

for all g € g. The maps A, € and S satisfy the following relations

A(g)A(h) = A(h)A(g) = [g,h]©1+1&[g,h] = Allg, h]) ,

e(g)e(h) —e(h)e(g) = &(lg, hl)
S(h)S(g) = S(9)S(h) = hg —gh = 5([g,h]) (2.52)
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for all g, h € g. This allows us to extend A and ¢ as algebra homomorphisms and S
as anti algebra homomorphism to the full enveloping algebra®, A : Ug — Ug®Ug,
e:Ug— Cand S:Ug— Ug,

A(uwv) = A(u)A(v)
e(uv) = e(u)e(v)
S(uv) = S)S(u), (2.53)

for all u,v € Ug. To show that (2.51) induces indeed a Hopf algebra structure on
Ug we can use Lemma 1 such that we have to show the remaining Hopf algebra
axioms only on a set of generators, e.g. g. We have for all g € g

(A®id)Ay = (ARid)(¢e1+1xyg)
gR1R1+1®09g01+1®1®g
= (ld®A)Ag,

(e@id)Ag = (e®id)(gR1+1®¢g) =g
= (id®e)Ag

and

p(S@id)Ag = u(—g®1+1®g)=0
= &(g) = p(id® S)Ag,

which proves that Ug is a Hopf algebra.

Module algebras

In this subsection we review the definition of module algebras. Module algebras
are representations of Hopf algebras. In the framework of this thesis we will
study several examples of module algebras, which are interesting for physical
applications.

Let H be an algebra. Then a vector space A is a left H-module if the algebra
H acts (from the left) on A, i.e. for all a € A and £,&’ € H we have

(6€)(a) = &(€'(a)
1

(a) = a.

3This follows for example from the universal property of Ug.
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If H is a Hopf algebra and A is an algebra, then A is called a H-module algebra if
the module structure is compatible with the algebra structure of A and the Hopf
algebra structure of H. This means that for all ¢ € H and a,b € A

§(ab) = po A(§)(a ®@b) = &1(a)é2(b) (2.54)

and
§(1) =e(§)1.

Equation (2.54) is very important: It tells us that the coproduct defines the way
we act on a product of representations. This is usually known as the Leibniz
rule. In Section 2.2 we have already seen examples for deformed Leibniz rules.
Later we will see that such deformed Leibniz rules can be derived from non-trivial
coproducts.

It is useful to give an example. Consider the Poincaré algebra as Lie algebra
g. Let us denote the generators of Lorentz transformations by d,,, where w = w,,,
are antisymmetric 4 x 4-matrices, and the generators of translations by d,. They
enjoy the algebra relations

[duu 5w’] = 5[w,w’}
[a/u 50.)] = _wuuau (255)
[0,,0,] = 0,

where |w,w'] denotes the commutator of matrices. From above we know that
the universal enveloping algebra corresponding to the Poincaré algebra is a Hopf
algebra with canonical structure maps induced by

Ab, =6, @1+1®0b,, c(b.,)=0, S(@.)= 0.,
A, =0,01+1®0,, £(d,) =0, S(0,)=—0,. (2.56)

An example for a module algebra with respect to this Hopf algebra is the algebra
of functions f(z). The action of the generators on functions is defined by

5wf = _xﬂw,uy(&/f)
auf = (&Lf)

The Leibniz rules of the differential operators z*w,"d, respectively d,, reflect the
coproducts defined in (2.56)

ou(fg) = —a2"w,"(0,fg) = —2tw,”(0,f)g — fr'w,”(Ovg) = po Ad,(f @ g)
au(fg) = (8uf)9 + f(8u9> = o Aau(f ® g) .
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In the next section we shall see how to deform Lie algebras in the category of
Hopf algebras.
Let us summarize what we have learned so far

e Hopf algebras H are algebras with additional structures. For instance, they
possess in addition to the algebra product also a coproduct map denoted by
A: H— H®®H.

e Important examples for Hopf algebras are given by universal enveloping
algebras of Lie algebras. Deformations of these Hopf algebras are also called
Quantum Groups.

e In this setting the coproduct defines how the symmetry generators (e.g.
generators of Poincaré transformations) act on a product of representations.
It is the generalization of the Leibniz rule.

e This is why the mathematical structures of Hopf algebras are always present
in physics. Always when we multiply representations of a Lie algebra, for
instance dynamical fields, we act on this product via the usual Leibniz rule.
This can be interpreted as coming from the coproduct corresponding to a
Hopf algebra, the universal enveloping algebra of the considered Lie algebra.

e Noncommutative spaces are in general not covariant with respect to unde-
formed symmetries where the action of the symmetry generators and the
way acting on products, the Leibniz rule, is undeformed.

e As we shall see in the next section it is possible to deform action and Leibniz
rule in such a way that a consistent action can be defined. This is done by
deforming the underlying Hopf algebra.

e Based on these generalized, deformed symmetries we shall construct field
theories.

2.3.2 Deformations of Hopf algebras

In the previous section we have learned that the universal enveloping algebra of a
Lie algebra acting on commutative functions is a Hopf algebra. Here we shall see
how to deform this setting. Noncommutative spaces will arise as module algebras
with respect to deformed universal enveloping algebras of Lie algebras.
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Important examples of such deformations are g-deformations: Drinfel’d and
Jimbo showed that there exists a ¢-deformation of the universal enveloping al-
gebra of an arbitrary semisimple Lie algebra [10,11]. Module algebras of these
g-deformed universal enveloping algebras give rise to noncommutative spaces with
commutation relations of type (2.4) [12-15]. There exists also a so-called x-
deformation of the Poincaré algebra |34, 79, 80,91, 96|, which leads to a non-
commutative space of Lie- type (2.3). A Hopf algebra symmetry acting on the
f-deformed space was for a long time unknown. But recently also a #-deformation
of the Poincaré algebra acting on the space (2.2) was constructed [40,42,87,97,98]|.
Deformation by generic twists [42,70,75] leads to a large class of deformed Hopf
algebras and their corresponding noncommutative spaces. We shall treat twist
deformation separately in Chapter 4. In the following we list important examples
of Quantum Groups, which underly the constructions of gauge theories and field
theories in Chapter 5-6.

f-deformed Poincaré algebra

The Hopf algebra defined in (2.55) and (2.56) can be deformed as follows: We
denote the generators of the f-deformed Poincaré algebra [42,87,97,98] by 0., 0,,.
The algebra relations remain undeformed

[

>

~

Y

] = O (2.57)

~

W = w0,
] = 0

Q_)> Q)>E
Q)) Q’DE

[0
[0,
but the coalgebra sector is deformed

Dby = S, @1+100, + 56 (w0, ® Oy + 0, ® w,*d,)

A, = 0,1+1®0,. (2.58)

Antipode and counit map remain undeformed, too

£(6,) =0
e@) =0 , S, =-0,.

In analogy to what we have learned in Section 2.3.1 it is not difficult to show
that the above definitions induce a well-defined Hopf algebra. This Hopf algebra
acts on the f-deformed space Ay defined by (2.5), i.e. the #-deformed space is a
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module algebra with respect to the f-deformed Poincaré algebra. The operators
8 can be represented on the algebra of noncommutative functions f e Ay by the
undeformed derivatives introduced in (2.20)

[0, 3] = 8. (2.59)

This is obviously consistent with the undeformed coproduct and commutation
relations for the derivatives in (2.57) and (2.58). The operators ¢, are represented
by the differential operator

~ Xy = =W, D, + %ep"w,féyéo . (2.60)

It is straightforward to check that the operators X, indeed satisfy the Lie algebra
(2.57), i.e o A
[Xu.n Xw’] = X[w,w’} .

Also, they act on a product of functions via a deformed Leibniz rule, which reflects
the deformed coproduct (2.58)

A~

% £ AP Y VPN i o via A\(A N 7 ~
Xo(f9) = (X f)g + f(Xog) + 507{wy" (0, )(069) + wo"(0,£)(0,9)} -
This can be seen as follows: First note that [2#,2¥] = i0*” implies
f@

[, f(@)] = 16" (0, f(2*)).

Moreover, we conclude from (2.59) that [9,,, f] = (9,f) (the derivatives are un-
deformed). Using this we calculate the commutator with the product of two
functions

[iﬂwuyéy’ .]Eg] = [i-ﬂwul’éy’ .]E]g + f[:'%“w,uyélh g]

and

[——9“% 0,0, f9) = —50"w,{(9.,0,1)§ + £(9.9,9)
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such that we obtain altogether the deformed Leibniz rule
A TN Fryv oA i via £\(A A via A\(AQ A
(Xofg) = (Xuf)g+ f(Xug) + §9up{wu (0,)(0,9) +w,"(0,f)(0ug)} - (2.61)

Comparing with (2.58) this yields that the -deformed Poincaré algebra as defined
in (2.57) and (2.58) is represented on functions f € A by the differential operators
X,, and &L. The noncommutative space (2.2) is a module algebra with respect to
0-deformed Poincaré transformations defined in (2.57) and (2.58).

r-deformed Poincaré algebra

The r-deformed Poincaré algebra was first introduced in [79,80]. It acts consis-
tently on x-deformed space-time, which we introduced in Section 2.1.2 (meaning
that x-deformed space-time is a module algebra with respect to the x-deformed
Poincaré algebra). Field theories on x-deformed spaces have been studied ex-
tensively [34,91-93,96,99-103|. The generators of Lorentz transformations are
denoted by M #v. the generators of translations are denoted by éu- Again we use
the convention that Latin letters ¢, ,... run from 0 to n —1, Greek letters u, v, . ..
run from 0 to n and n** = diag(1, —1,...,—1) denotes the usual Minkowski met-
ric. The defining algebra relations are

[ M/W’ MPU] = g MYP + nP Mo nHe Mo — n’’ Wik
(MY,0,] = md" —n,d
“rin A i62mén_1 W0 ma | A
[M™,0;] = an — 5%8 Oy + 1ad"0; (2.62)
[Mi", Op) = o'

0,,0,] = 0.
We see that the Lorentz algebra part remains undeformed. However, the cosector
is deformed also for the Lorentz generators M™
AMY = MY @1+1® MY
AM’ln _ Mzn®1+eza8n®Mzn+Zaék®Mzk
AJ;, = 0 @1+ @0, (2.63)
A, = 0,1+1®0,.

Counit and antipode are given by

e(M™) = ¢(9,)=0
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S(NIY) = —21¥

S(M™) = —Mmema9n 4 igN*dpe=%n 4+ ja(n — 1)d e i%n
S0, = —o,

S(d;) = —dje i

In order to verify that this defines a Hopf algebra the axioms (2.29)—(2.31) have
to be checked on the generators as explained in Section 2.3.1.

The generators 9, can be represented by the derivatives introduced in (2.22)
and (2.23). The generators M can be represented as differential operators with
respect to these derivatives. We find [34, 91|

MY = P -0

as .1—e2iaén A 14 - ~r A

M"™ = e — 3"+ —13'0'0,. 2.64

T Tt proa (2:64)

They have a well-defined action on the x-deformed space (2.7). Using the com-
mutation relations for coordinates and derivatives, (2.7), (2.22) and (2.23), it is
possible to check that the differential operators defined in (2.64) satisfy the algebra
relations (2.62). Moreover, we can derive their action on functions by calculating
the commutator with ordered monomials and obtain

(MYfg) = (MYf)g+ f(M"g) (2:65)
(M™fg) = (M™f)g+ (e f)(M™g) + ia(dpf)(M*) .

We see that these deformed Leibniz rules reproduce the coproducts (2.63) such
that the differential operators given in (2.64) represent indeed the generators M
on functions on k-deformed spaces; «-deformed space-time is a module algebra
with respect to the x-Poincaré algebra.

g¢-deformed Euclidean algebra

The only ¢-deformed Quantum Group that we shall present is the g-deformed
Euclidean algebra in two dimensions. It is a rather simple example and very illus-
trative. It was first constructed in [84] as the dual Hopf algebra to the quantum
E(2) group introduced by Woronowicz [104].

The Quantum Group U,(e(2)) is a deformation of the universal enveloping
algebra of the Euclidean Lie algebra in two dimensions. It is generated by 7,7, .J
with the following commutation relations and structure maps

TT = ¢TT [JT) = T [JT] = —iT
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AT) = Te¢@?+10T AT = Te¢d’+1aT (2.66)

A(J) = IJ1+10J &T) = eT) = ¢J) = 0

S(T)y = -Tq¢ % ST = -Tq¢?* S(UJ) = —J,

where ¢ € R. The commutation relations reduce to the Lie algebra relations for
the Euclidean algebra in two dimensions in the limit ¢ — 1. This quantum group
acts from the right on functions on the two-dimensional g-deformed space, which
we introduced in Section 2.2.3 (the action is denoted by the symbol <)

24T =1  2<4T =0
sad =iz z<4J=-—iz
ZaT =0 z<aT =—¢*.

For further details see [35,86].
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Chapter 3

Star-Products and
Star-Representations

The constructions given in the previous chapters involve abstract operators. It
is, however, our aim to develop theories, which lead to physical predictions. It is
therefore necessary to study representations of the introduced operators. A con-
venient way to do this is provided by star-products (x-products) [16,31,105-107|.
As we shall see, it is possible to equip the commutative algebra of functions with
a new, noncommutative product, which is a deformation of the usual point-wise
product. This product is called x-product and implements the noncommutativity
on the algebra of functions depending on commutative coordinates. For a nice
introduction to deformation quantization and x-products see [108,109] and refer-
ences therein. In a second step it is also possible to represent the operators acting
on the noncommutative space (e.g. the generators of the corresponding Quantum
Group) by means of differential operators acting on the ordinary functions on a
manifold.

The construction of x-products starting from a noncommutative space-time al-
gebra Alis always possible if the algebra A has the Poincaré-Birkhoff-Witt (PBW)
property. The PBW-property states that the space of polynomials in noncommu-
tative coordinates of a given degree is isomorphic to the space of polynomials
in commutative coordinates of the same degree. Such an isomorphism between
polynomials of a fixed degree is given by an ordering prescription. An example is
the symmetric ordering W (symmetric ordering is also called Weyl ordering since
it corresponds to Weyl’s quantization prescription [110]), which assigns to every
monomial the totally symmetric ordered one

W:A — A
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- gt (3.1)

Later we shall also study other ordering prescriptions. By means of this vector
space isomorphism it is possible to “pull back” the noncommutative product of A
to A. We define a new product by

*x: Ax A — A
(f.9) — frg:=WTW(HW(g)).

Associativity of the x-product follows then from the associativity of the algebra
product in A:!

frlgxh) = fx (W HW(g)W(h))
' (

= WHW(H(W(9)W (h)))
= W H(W(H)W(g)W(h))
= (fxg)xh

In the following we give explicit examples of x-products corresponding to the
noncommutative spaces introduced in Section 2.1.

3.1 6-Deformed Spaces
Star-products for #-deformed spaces
[z, 7] = 60"

are well-known and their construction can be found in many places [17,86,108,111].
The *-product corresponding to symmetric ordering is also know as the Moyal—
Weyl product [112]

frg=poet %%ty (3.2)

where u(f ® g) := fg is the multiplication map. Here, we want to do without
a derivation of the Moyal-Weyl product. It can be found, for instance, in the

'In general, x-products can be constructed for any Poisson-manifold [31]. In this framework
it is usually quite difficult to show associativity of the x-product. If we introduce a x-product
by an ordering prescription, associativity follows immediately.
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above references. In the next chapter we shall exhibit in detail the construction
of star-products for x-deformed spaces instead.

The Moyal-Weyl product has the convenient property that usual complex con-
jugation is an involution (we also say that the Moyal-Weyl product is a hermitian
*-product)

frg=g*F,

which follows immediately from the definition.

3.2 ~kr-Deformed Spaces

In this section we shall construct explicitly the normal ordered and Weyl-ordered
*-product for k-deformed spaces, see also [90,92,93|. The construction is presented
in all detail and is quite elucidating.

3.2.1 The normal ordered star-product 1

Let us consider the two-dimensional algebra generated by the coordinates z, 9y
satisfying the commutation relation

(9, &] = iad . (3.3)

We want to derive the normal-ordered star-product. Normal ordering is defined
by all ’s standing on the left.
We obtain from (3.3) for all £ > 1

ihg = gat + (2%, 9] = g2t + [N 912 + 252, 9] = 9aF — daka® . (3.4)
From this we immediately deduce:
9P = gk + [2F 019 + gz, 9]
= %" — 2kiayi® + k*(ia)?2* (3.5)
* = 3% — Biaky?a® 4 3(ia)? kgt — k3 (ia)32" . (3.6)
This suggests the following claim:

Claim 1. z
l
~kal o l—m m -k
Ty = (m)(mk‘) gt (3.7)

m=0
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Proof. We will prove this claim by induction over I: Equations (3.4), (3.5) and
(3.6) show that the claim is true for [ = 1,2, 3. Let us now suppose that equation
(3.7) is true up to an arbitrary [ > 1. We have

i,kgl-i—l _ (fi'

m=0
(3:4) i ! (_Zak)l—mgm—i-lAk + i ! (—iak)l_m+1 ~m sk
=0 m =0 m
I+1 !
_ Z [ (—iak)l_m“ymik—i-z ( iak)l—m—l—lgmi,k
=\ m-— 1 -
_ l ( ! n [ )(—iak)Hi-mgmak
—\ M- 1 m
I\ s [ . .
+ ( I TR ( 0 ) (—mk)”lxk
I+1
_ ( [+1 ) (_iak)l—m+lgmik’
m=0

0

(ata) ()= (501):

Thus, equation (3.7) is proven by induction.

where the last line follows with ( J ) =1 for all j (0! := 1) and with

O

Using the above formula we can now deduce the explicit expression for the
normal ordered x-product of arbitrary monomials. Let us write for the normal
ordered x-product *, in order to distinguish it from the Weyl ordered one. By
definition, the x-product is the algebra product pulled back to the space of com-
mutative functions

Fxng =, (on(n(9))

where p,, denotes normal ordering. It is defined on monomials as follows

pn 'y — gl
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This yields

(@°y") %0 (") =

(3.7 1

tasgtak)

zl:( ) —ias) "My

=0

_ Z( ) _Z'as)l—mgt-i-mi,s-i-k)

— i( : )(—ias)l_mxSJ“kyter. (3.8)
m

m=0

<

@>

The expression for the normal ordered x-product given as a bidifferential oper-
ator has to reproduce (3.8) when applied to monomials x°y' and z*y'. On the
other hand, such a bidifferential operator is uniquely determined by its action on
arbitrary monomials in each argument. We easily check that

[e.e] m

Frogew) =3 T @,y (10,7 (9) = o 00 g (39

m=0

reproduces (3.8) if we substitute f = z°y’ and 2*y':

S T o () (@) (o)

— m!
~ (—ia)"
= D @Y= (= m ()
m=0 ’
l l
_ Z(-Z&S)m ( o ) xs—l—kyt—i-l—m
m=0
l z l z
_ Z%(_ms)l—n ( . ) xs—l—kyt—i-n _ ZO(_msy—n < . ) xs+kyt+n.

It therefore provides an expression for the normal ordered *-product, which is
valid for arbitrary functions.

This expression can be generalized without problems to the case of n commut-
ing and one non-commuting coordinates

", 3] = iad’
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where ¢ = 0,...,n — 1. Then the normal ordered x-product reads
Froo) =3 C @0, (1) (0.0 (0) = po e P f g, (3.10)
m=0

3.2.2 The normal ordered star-product 11

Another way to map a commutative function to the noncommutative algebra of
functions is to consider its Fourier transformation

fla) = — /ﬁ”%awﬂﬂm

(2m) "

and to order with respect to e+*". We defined normal ordering as the ordering
prescription where all 2™ stand on the left. Thus, the noncommutative function
corresponding to f(x) is given by

1

F) = G [ @t e i

in this ordering. Let us calculate the product of two arbitrary functions in order
to deduce the normal ordered x-product:

FraNAln 1 n n iPnd" i z nE™ z 3k
F@(0) = G [T gen ont ens o ) @
1 ipnE™ _iqnd™ | —iqni™ ip;i? z z" z ik
— (27T>n+1 /dn‘i‘lpdn‘i'lqelpnw €Qn e dn epj dn dk f( ) ( )

The commutation relations of the x-deformed space
[, 2] = iad’
(25,27 = 0
yield the following result for the adjoint action of e~%*" on #7:

P, e m g .
e~ lnE" 37 lan®" _ o—iqn[8" ] 50— padn 5

From this we obtain

e—iqnin ipjfcj iqnz™ __ eipje“q”fcj

(& (&

If we insert this result in expression (3.11) we find

URUDT |
f(:r;)g(x) _ (27T)"+1

[ gt o g0 ).
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Now we can read off the expression for the normal ordered x-product explicitly
because all 2" stand on the left. This yields

]_ : meog eddn _1\gk 7 ~
Froala) = g [ A pd g om0 g
= exp(a s (7~ 1) F (e (3.12)

We obtained two expressions for the normal ordered star-product, equation
(3.9) and (3.12). Both expressions correspond to normal ordering and are therefore
equal although they may look quite different at first glance. This is clear by
construction. However, we shall show explicitly that (3.9) and (3.12) define equal
*-products. This may make things more transparent for the reader and also
provides a good check for our calculations.

Since all coordinates 2’ commute, we can consider without loss of generality
the two-dimensional case with coordinates z,y, where [y * =] = iax for both x-
products. In order to distinguish both x-products, let us denote the x-product
defined in (3.9) by *, and the x-product defined in (3.12) by x/,. We apply both

star products to two arbitrary monomials and compare the results in both cases.

1. For %, :
~ ()"
(@°y") #n () = T (@0.)" () (9y)" (2"y')
n=0 ’
: (—ias)"
= Y =1 (=t atyaty
n!
n=0
: z
= (—ias)"” < n ) ziylakytn (3.13)
n=0
2. For «:

(2%y") *, (2¥y') = eXp(anz(ﬁ’_ma“. — ) (2*y") (@ ") | )= ()
= y'(exp(zd. (e % — 1))(2°)(t")] (z0) (.9)) "
=yl yhatk . (3.14)

From the definition for x/, (3.12) it follows immediately that

s __ / /
=Tk, ..k, T,

—_——

s
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such that we obtain (x/, is associative)

s 1 1 / / !
Tk, Yy =Tk, ...%5, Tx,Y .

—_——

s

Moreover, the explicit expression for +/, yields that for an arbitrary function h(z, y)
the following holds

x+ h(z,y) = ze”“h(z,y),
which implies
oK xx h(x,y) = 2 (e ) h(z,y) .
—_————

s

Thus, we conclude that

x5 *;L yl — xs(e—iasay)(yl)

- ( ! ) (—ias) "y (3.15)

Finally, we obtain from (3.14), (3.15) and (3.13)

l
S / - n l S —n
@) ) = s (] )y

n=

[e=]

k

»

= (@) xn (2"Y).

Hence, both x-products are equal applied to arbitrary monomials, and thus x, =

/
x.

3.2.3 The normal ordered x-product for the generic x-deformed

space

Let us now consider the algebra generated by coordinates 2* satisfying the defining
commutation relations of the generic x-deformed space

[##,3"] = ia"3” — ia” 3" . (3.16)
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If we make the following redefinitions

A 1
. o A
U = aa Napd
Xf = PP,

where a? := a®n,,a", a == Va? and

afat
Ppu = 5p1/ - 7“#1/7 (317)

then the commutation relations (3.16) become
U,X?] = iaX”
[(X?, X = 0.

It is easy to check that P is indeed a projector, i. e. P? = P and P’,a" = 0.
Moreover, we recover the coordinates z* by
~ al ~
¥ =X"+—U. (3.18)
a
Thus, the coordinates U, X* generate the same algebra (3.16). We can define
normal ordering in the generic x-deformed setting by ordering all U to the left. In
order to deduce the normal ordered x-product we proceed in analogy to Section
3.2.2: We Fourier-transform a function depending on z

1 in ot 1 n i wyaly
f($) _ (271-)717“ /dn-i-lpelpux f(p) — (QW)nTH /d +1pepu(X +5 U)f(p) .

The noncommutative analogue of f(x), i.e. its image under the normal ordering
prescription, is given by:

A 1 WP o~
f(&) = (2m)*= / et lem X f(p).
T
Multiplication of two functions leads to
BrAN Al 1 n n ipp LU _ippXP iqe = U iqo X (. \ =
f(ﬁ)g(;p) = (27-[- — /d +1pd +1qepp a U€ prpe 9o =g Ue o X f(p)g(q)
_ 1 dn+1 dn+1 ipp%f] iqg%(j
(27 pa-—qe €

Xe_iqa%Ueiprpeiqo%UechrXa f(p)é(q) .
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Again, we can calculate the adjoint action
e_ZqUTUXpeZqUTU — eGQUTXp — eqaa Xp,

which yields

—ia. 20 ip. XP
4o ipp

ia. 2 [ in edoca’ Xp
e a’e oo ¥ = e'Pr€ .

e

By inserting this in the above equation we obtain

F(#)g(2)
1 ; a a? \fr . O . oa’ > ~ ~
= @ [ parg e S e 05 g
1

i(pp L 440 VU i P ipp(edoa” —1)PPL &Y F(, \ ~
T 2m / d"lp A" Pt U et an) XY e (T SO () g (q)

We have ordered the product of two functions in the noncommutative algebra
by commuting U to the left. To obtain the expression for the normal ordered
x-product we have to apply p.! (p, denotes normal ordering) to the above ex-
pression. We find

frng = pi' (f(2)5(2))
1 . R o
— dn—l—l dn—l—l ez(pu—l—q#)m“ ipp(eto® —1)PP x ~
G [ ‘ Fw)it)

= exp(P?a" Dy (e %" — 1)) f(4)9(2)]yoe. (3.19)
This is the normal ordered x-product for the generic x-deformed space-time. As
a short consistency check, we note that we recover indeed the expression (3.12)
for the special choice a* = ad”. Moreover, we obtain from the above expression

* %, ¥ = 2tx¥ — ia" P* a®

Hence, we indeed reproduce the algebra relations defining the generic x-deformed
space-time
[zt *p 2] =datx” —ia" 2" .

3.2.4 The Weyl-ordered x-product for the generic xk-deformed
space

Let us now construct the Weyl ordered x-product for the generic x-deformed space,
which we want to denote by xy,. We will proceed in the following way: First we
determine

o s g(x) (3.20)
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for an arbitrary function g. The star-product is fully determined by (3.20): If f
is a polynomial then f xy g follows from 27 % ¢ by induction? over the degree
of f. To derive the expression for xy, we use the following convenient form of the
Baker-Campbell-Hausdorff formula (BCH) [113]

A+L o -B+(L A coth(L -B+---
eAeB — o 4 ( 4 ( %))

(3.21)

This expression contains all contributions linear in B. By L4 we denote the
Lie derivate L4 - B = (A - B) = [A, B] and the hyperbolic cotangent has to be
understood in terms of its power series expansion, where

cLyn-B=c(A"-B):=c[A, A [ ..,[A,Bl...]]]

g
n

forn > 1.
In order to calculate x* %y, g for an arbitrary function g, we consider

A=1q,2" , B=1ip,2".
By inverting the formula (3.21) we obtain

B A A+L A-B+(L pcoth(L 4))-B
e 2 2 2

e’e’ = ,

which contains all terms linear in B. Since by Fourier-transformation p, becomes
—10, this is all we need in order to calculate x* xy g(x) to all orders (we shall
comment on this below). The commutation relations in the algebra (3.16) lead to

_Z.B=]-

A A
2 2

1 -1
Bl = Gaua) B+ (Gpa)d =abB+ed,

where ¢; = %qua“ and ¢y = %pya”. Applying —% n-times to B we find
A n n n—1
(—5) -B=c|B+c{T A, n>1. (3.22)

By definition 1 acts trivially, i.e.

1-B:=B. (3.23)

2This is true since W (z° ---2%") = %:E("l ...2°"), where W denotes symmetric ordering,

and therefore 271 - - - 27n = L1 w5 o),



54 3. Star-Products and Star-Representations

Let f be a function of —%, which can be expanded in a Taylor-series

D) = w0 =+ Y () = o+ (-5

Then equations (3.22) and (3.23) yield

f(—g) B = f(c))B+ fler)ei A
= f(Cl)B + f(01>cl_102A — U(]Cl_102A . (324)

Using this result we can calculate

=y (3.25)
(&1

(E_%coth(ﬁ_é)) - B = ¢ycoth(cr) B + cacoth(cq) A —
where we note that formula (3.24) is applicable because the function xcoth(z) =
1+ “’%—2 + --- can be expanded in a Taylor-series.

Let us gather all results in order to determine e”e” explicitly

B A A+L A-B+(L acoth(L a))-B
e € = e 2 2 2

(822),(3.25) exp(A + ¢1 B 4+ c2A + cicoth(cy) B + cacoth(c) A — ?A)
1

exp(A+ B + (1B + czA)(1 + coth(c;)) — 2A — B).

C1

By inserting the explicit expressions for A, B, ¢; and ¢, given above we obtain

atp,,
aﬁ—qpq” —p)) -

(3.26)
This equation contains all contributions linear in p,. This is sufficient in order to

calculate x? x g because we have that

o 1 1 1
e el — exp(id (p,,+qy+(§a“qupl,—§a“pﬂq,,)(1+coth(§a“qu))+

o () = explga* (=0, ~i0) f)g() s

where the function h, is defined by

o giapdt _ iz’ (putaut5he(pa))
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If the function f is linear in z#, only terms, which are at most linear in p,, will
contribute. Equation (3.26) yields

2

—1
= 2%g(x) + (793"@”% +

i : : -
27w g(x) = exp(gah, (=i, =10:))y’g(2)]y:—a
{

2ot”:c“@u)(l + coth(%za“@u))g(x)

(o

v a_ .0
+0"0, ag(@) = 27g(a)

o

—i i i o a
= (=2%a"0, + 0 x"0,)(1 + coth(Ta“@M))g(x) +x 8,,apapg(x)

2
, 1a'0, o, V0, izto,
=z Wg(f) +a (apﬁp = Giaro, _ 1)9(95)- (3.27)
Here, the last line follows because 1 + coth(%) = —=2+.

Since the *-product is entirely determined by (3.27) we just have to find an
explicit expression for fx*y g, which recovers equation (3.27) for f = z° and which
is associative. Both requirements are satisfied by

a0y . A% (O + Oy) €770 _ 1
g = esp{a (0.0 o NS ) )
(3.28)
To prove the associativity of this x-product is not obvious. In the next section
we give an explicit expression for an equivalence transformation from the normal
ordered x-product to the Weyl ordered x-product as defined in (3.28). Associa-
tivity of the product (3.28) follows then from associativity of the normal ordered
x-product. In [92], equation (A.2), another expression for the symmetric ordered
x-product in the generic x-deformed case, which equals ours given above in (3.28),
can be found. The simpler expression (3.28) can be obtained from (A.2) in [92]
using that

y —ia% 0,0
x,ua _Za'y(ayu + 82") —iakaz)\ e v —1
yH 6_iav(8y~/+8zw) -1 —iapayp
B aaﬁza —’iau(ayu + 8ZV) —ia*d e_iaaaya —1
- " - 2
4 aﬁﬁyﬁ e Oy +9v) _ —iaP 0,
. _ 5O _iaA
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—ia™d
a® P G,Vayu &V(ayv + 821/) e %N — 1

) -
= X 89“ aﬁﬁyﬁ (1 aﬁazp e_i‘ﬂ(ay”‘i'aﬂ) —1 apazp ) .

See also [92] for an explicit calculation showing that equation (3.28) reproduces
(3.27).

3.2.5 Equivalence between x, and xy

In the previous sections we derived the explicit and closed expressions for the
normal ordered and Weyl-ordered x-products in the generic k-deformed case. Both
*-products are equivalent, i.e. there exists an equivalence transformation S such
that

frw g =871 (S(f) % S(9)).
The corresponding equivalence transformation is given by

1 — e—mpazp
S = exp(P“Vy”axu(f — 1))|y—>x .
107 Oyo

Noting that [a”0,, P*,x"] = 0 it is straightforward to show that S indeed me-
diates between the normal ordered star product in (3.19) and the Weyl-ordered
star product in (3.28). The associativity of xy in (3.28) then follows from the
associativity of x,. This result for S for the generic x-deformed case is a gen-
eralization of the equivalence transformation 77! found in [92], equation (2.40),
for the algebra (2.7). There, also an explicit calculation showing that 7! is an
equivalence transformation can be found.

3.3 g¢-Deformed Euclidean Space

Star-products for the g-deformed Euclidean space defined in (2.14) were studied
in [86]. For completeness we repeat some expressions here: The normal ordered
*-product reads

fxng=poe MCHERE)(fq) (3.29)

k. Another x-product corresponding to a g-symmetric ordering is

where ¢ = e
defined by
frqg = po ORISR0 (f @ g). (3.30)

This x-product is hermitian. In the next section we will see how these x-products
and those presented before can be treated in a more general framework.
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3.4 Star-products from Commuting Vector Fields

It is possible to construct a class of x-product, which, as we shall see, contains the
x-products of the previous sections. In [114,115] it was shown that given a set of
commuting vector fields X,

[Xa, Xp) =0, (3.31)

*-products are obtained by
frg=poe” Xt Nfgy, (3.32)

where 0% are arbitrary constants. Associativity follows using (3.31). Although
the requirement of commuting vector fields is quite restrictive, this class contains
many interesting examples. The Moyal-Weyl product (3.2), for instance, is obvi-
ously obtained from the commuting vector fields X, = 0, by setting in the above
definition 0*” = £0*°. Furthermore the normal ordered *-product for x-deformed
space-time (3.10) is a *-product obtained from commuting vector fields®, where

X, =2'0;, Xy = —iad, (3.33)

0 1
00
Euclidean plane are also given in terms of commuting vector fields. In this case
they read

and o =

). The *-products (3.29) and (3.30) defined for the g-deformed

Xl = z@z, X2 = 5&2 (334)

Commuting vector fields yield an elegant way to construct x-products cor-
responding to many noncommutative spaces [82,114,115]. However, given a x-
product coming from commuting vector fields representing a given noncommuta-
tive space, it is in general not clear, to which ordering prescription it corresponds.
Knowing the ordering prescription can be useful, see for instance Section 3.5. In
Section 4 we shall see how it is possible to deform gravity even without knowing
the ordering prescription by starting from quite a large class of x-products, which
contains x-products coming from commuting vector fields.

3.5 Star-representations

Given an ordering prescription underlying the construction of a x-product corre-
sponding to a noncommutative space A, we can also construct x-representations of

3If we consider the expression (3.12), which, as we have seen, provides a different way to
write the normal ordered x-product, this conclusion is not obvious.
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differential operators acting on the noncommutative space. The x-representation
is nothing but the representation of these operators as pseudo-differential oper-
ators acting on the algebra of functions depending on commutative coordinates
A. It can be obtained as follows: Let D be a differential operator acting on A
(this could for instance be a partial derivative éu or a generator of a Quantum
Group symmetry acting on .»Zl) and p an ordering prescription used to construct
a #-product for A (often this will be the Weyl ordering). Then we define the
x-representation D* of D by

where f = p(f) € A. Hence
(D*f):=p "o Dop(f).

For instance, let us determine the x-representation for the partial derivatives
éu acting on the f-deformed space as defined in (2.20). In this case we simply
have

95 =0y,
which is nothing but another way to say that the derivatives defined for the 6-
deformed space are undeformed. In order to give a non-trivial example, let us
consider the derivatives defined in (2.22) for x-deformed spaces. In this case the
derivatives are indeed deformed and we end up with [91]

a = 0,
eiaﬁn -1

D —

! 1a0,

The derivatives 9, (we also call them x-derivatives) act on a x-product of functions
via the Leibniz rule (2.24)

o(fxg) = (Ohf)xg+ f*(0,9)
O (fxg) = (O f)*g+ (€% f)x(0}g). (3-35)

In [34,90,91] the x-representations of all generators of the k-deformed Poincaré
algebra can be found.
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Chapter 4

Deformation by Twists

This chapter is devoted to deformation by twists [42,70,74,75,116|, which un-
derlies the construction of gauge and gravity theories on noncommutative spaces
presented in Chapter 6 and Section 5.5, see also [39,42,43,63,87,97]. We shall see
that by means of generic twists we obtain quite a large class of deformed spaces.
At the same time Quantum Group symmetries acting on these spaces can be con-
structed. We shall furthermore see that the formalism presented here generalizes
in some sense the constructions of the previous chapters: all the noncommutative
spaces introduced in Section 2.1 can be obtained by twists and we will give explicit
examples for such twists.

In particular, the construction of gravity on canonically deformed spaces [42],
which we present in Section 6.2, can be understood in the framework of twists.
This makes it possible to generalize this construction to a large class of noncom-
mutative spaces, those defined by a generic twist, see Section 6.3, [43].

Deformation by twists

Let H be a Hopf algebra and A an H-module algebra (see Section 2.3.1). In this
thesis H will always be the universal enveloping algebra of a Lie algebra. This is
a Hopf algebra as we saw in Section 2.3.1. A can be for instance the algebra of
functions (but also other module algebras as the algebra of forms or tensor fields
are of interest for physical applications). A twist F is defined as follows

Definition 1. A twist F is an element F € H ® H, which is invertible and that
satisfies
Fr2(A @ id)F = Fos(id @ A)F (4.1)

(e®id)F=1=(ild®e)F, (4.2)
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where Fio = F ® 1 and Foz = 1 Q@ F.

In our context we in addition require
F=1®1+0(\). (4.3)

Property (4.1) states that F is a two cocycle, and it will turn out to be responsible
for the associativity of the *-products to be defined. Property (4.2) is just a
normalization condition. From (4.3) it follows that F can be formally inverted as
a power series in \.

Given a twist we can deform the algebra A. Let us denote by A, the algebra
with the new, twisted product

axb=p(a®b):=poF Hax®D) (4.4)

for all a,b € A. The associativity of (4.4) follows from the cocycle condition (4.1),
see also [43]. The algebra A is a module algebra with respect to the Hopf algebra
H. This is not the case anymore for the algebra A,. However, it is possible to
twist the Hopf algebra H such that A, becomes a module algebra with respect
to this twisted one. The resulting twisted Hopf algebra is denoted by H” and is
defined as follows:

e As algebra H* = H, i.e. no deformation takes place on the level of the
multiplication in H.

e The counit ¢ remains unchanged, ¢ = «.
e The coproduct is deformed by conjugation with F
AT HY — H” @ H”
h w— AF(h) = FAR)F . (4.5)

e The antipode S is deformed by conjugation with the invertible element y :=
po(id® S)F
SF(h) :=xS(h)x*. (4.6)

It is a standard proof to show that H” defined as above is a Hopf algebra and we
present it in detail in Section 6.3, [43].
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Module algebras
For us the following theorem is very important:

Theorem 1. Let A be an H-module algebra. Then A, is a H" -module algebra,
where A, and H” are defined as above.

Since this basic theorem underlies our constructions in [42, 43|, and in order
to make the reader familiar with the formalism, we present a proof.

Proof. From the definition of a module algebra given in Subsection 2.3.1 we recall
that A, is a H¥-module algebra, if

h(a*b) = p, o A7 (h)(a ® b)

and if
h(1) =¥ (n)1

for all a,b € A,, h € H”, and where p,(a ® b) = axb. The second condition
follows immediately since A is a H-module algebra and ¢ = <. In order to see
that the first requirement is satisfied we make a short calculation

h(axb) = h(poF '(a®0b))
= poAR)F ' (a®b)
= Mof_lfA(h)f_l(CL@b)
= o FAL)F Ha®0b)
= oA (h)(a®b).

O

This formalism gives rise to a quite general construction of Quantum Group
symmetries for noncommutative spaces: Let us assume that we are interested out
of physical reasons in studying a noncommutative space A defined by commu-
tation relations for the noncommutative coordinates z*. Let us denote a star-
product representing the noncommutative product of A on the algebra of com-
mutative functions A by *. If this x-product is defined by a twist F, we may use
this twist in order to construct a Quantum Group symmetry acting on A. Using
Theorem 1 this is always possible if the twist lives in the tensor product of an
interesting Hopf algebra, for instance the universal enveloping algebra of a Lie
algebra acting on A. Let us assume for example that the x-product corresponding
to A is given by a twist

FelUgeUg,
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where Ug is the universal enveloping algebra of a Lie algebra g. Then Theorem 1
tells us that we obtain a deformed symmetry acting on A by twisting Ug to the
Hopf algebra Ug”.

This may seem quite restrictive but we will see how actually some of the cases
discussed in Section 2.1 fit in this context. As first example let us consider the
Moyal-Weyl *-product (3.2). It can be interpreted as coming from a twist

frg=poF ' (f®y),

where .
F = 29" 0u@0

This twist involves only generators of translations d,. Therefore we have that
F € Ug®Ug for any Lie algebra g, which contains translations. Such a Lie algebra
is for example the Poincaré algebra and if we look carefully at the equations in
(2.57) and (2.58), which define what we called in Section 2.3.2 the 6-deformed
Poincaré algebra, then we see that the #-deformed Poincaré algebra is obtained
from the universal enveloping algebra of the Poincaré algebra by twisting with
F = 2?00 [97].

Translations are also contained in the Lie algebra of vector fields = such that
we can use the twist F = e2”%®% 3ls0 in order to deform the universal en-
veloping algebra of vector fields U=. As vector fields generate general coordinate
transformations, we can construct a f-deformed theory of gravity based on this
deformed Hopf algebra [42]. Actually, it is not difficult to see that

ab —_— —_—
F =" X c UE@ UE,

where X, is a set of commuting vector fields [X,, X;] = 0, is a twist [43]. Conse-
quently all x-products constructed using commuting vector fields provide us with
a twist that can be used to twist U= in order to obtain a deformed Hopf algebra,
which acts consistently on the x-product algebra. This class of x-products was
introduced in Section 3.4 and we saw there that x-products for x-deformed spaces
such as defined in (3.9) as well as x-products for the ¢g-deformed Euclidean plane
(3.30) are contained in this class. Thus, we could take the twists F = 7" X®Xe
corresponding to the sets of commuting vector fields (3.33) and (3.34) in order
to construct a deformation of U=, which acts consistently on xk-deformed spaces
respectively the g-deformed space (2.14). More examples for twist deformations
can be found in [82,115].

Theorem 1 suggests also another conclusion: It offers a possible way to gener-
alize the concepts proposed and studied in Section 2.1. We may detach ourselves
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from considering noncommutative spaces defined as coset spaces only, i.e. those,
which are given by taking the algebra generated by the noncommutative coordi-
nates 2* modulo the ideal generated by their commutation relations. Instead we
may consider the algebra of functions equipped with an arbitrary x-product as
the fundamental object. Generic twists F € U=® U= define already quite a large
class of such spaces (which, as we have seen, contain many of our noncommutative
spaces from Section 2.1). The twisted Hopf algebra U=" enables us to construct
deformed gravity for this whole class of noncommutative algebras of functions [43].
The next step would be to treat even arbitrary Kontsevich x-products [31] for the
algebra of functions on a Poisson manifold. This is work in progress and in fact
it turns out that many steps towards a deformation of gravity can be done even
in this general setting [117].



64

4. Deformation by Twists




65

Chapter 5

(Gauge Theories on
Noncommutative Spaces

In the previous chapters we have introduced in detail the concepts underlying the
construction of physical theories on noncommutative spaces. In this chapter we
shall see how these concepts can be applied in order to construct gauge theories.

It consists of four publications: The first one treats gauge theories on the
g-deformed plane and was published together with Harold Steinacker in the In-
ternational Journal of Modern Physics A [35]. The first part of this publication,
the algebraic construction of a covariant differential calculus together with a set
of commuting frames and the construction of an integral that is invariant with
respect to the action of the g-deformed Euclidean algebra is already contained
in [86]. New results, which are not contained in [86], are additional results con-
cerning integration and the construction of an invariant metric. Moreover, gauge
theories on the ¢-deformed plane are constructed by gauging the basis elements
of a commuting frame of one forms. In this way Seiberg-Witten maps are con-
structed, which reduce in the commutative limit to the usual gauge fields. In gen-
eral this is a subtle point, since solutions to Seiberg-Witten maps for the gauge
fields proposed for arbitrary Poisson structures [33] are proportional to the Pois-
son structure itself and therefore do not reduce to the commutative gauge fields
when the noncommutativity vanishes. If the Poisson structure is non-constant it
would have to be inverted in a complicated way without spoiling gauge covari-
ance [86]. By constructing Seiberg—Witten maps gauging the commuting frame
we circumvent this problem. The commuting frames give rise to derivations on
the noncommutative space and derivative valued gauge fields as in [34] respec-
tively Section 5.3 can be avoided. It is the first time that the construction of
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gauge theories on non-trivial noncommutative spaces such as ¢-deformed space
via gauging the commuting frame was proposed and we exhibit this procedure in
detail. All noncommutative fields are expressed in terms of their commutative
counterparts and in the commutative limit all fields reduce to the commutative
ones. Furthermore, we propose an U(1)-gauge invariant action, which reduces in
the classical limit to the usual, undeformed action!. The fields and the action
are expanded up to the first non-trivial order in the deformation parameter. A
generalization of these ideas to arbitrary noncommutative spaces, which possess
a commuting frame, can be found in [38,114,118].

As second publication we present a contribution to the Proceedings of the 9-
th Adriatic Meeting 2003 in Dubrovnik, Croatia, published together with Harold
Steinacker in the Springer Proceedings series. It summarizes a talk given by the
author about gauge theories on the g-deformed Euclidean plane [36].

The third publication treats gauge theories on k-deformed spaces. It was
published together with Marija Dimitrijevi¢, Lutz Moller and Julius Wess in the
European Physical Journal C [34]. There, a Seiberg-Witten map is constructed for
non-abelian gauge theories on x-deformed space-time. It is based on the concept
of derivative valued gauge fields. All noncommutative quantities are expanded
up to first order in the deformation parameter a. At the end, consistency of the
gauge transformations with x-Poincaré transformations is shown.

The fourth publication deals with gauge theories on fuzzy S? x S? and was
published together with Wolfgang Behr and Harold Steinacker in the Journal of
High Energy Physics [65]. We have seen in Section 2.1.3 that fuzzy spaces retain
undeformed rotational symmetry. Hence, this is an example of gauge theories
on a noncommutative space, which possesses an undeformed symmetry. Gauge
theories on fuzzy S? have been studied in detail in recent years [44,51,119-122].
In order to construct a four-dimensional model, we investigate gauge theories on
fuzzy S* x S2. We define U(n) gauge theory as a multi-matrix model. Moreover
we show that our model reduces to noncommutative gauge theories on the 6-
deformed space (2.5) in a double scaling limit. This model can therefore be used
as a regularization of gauge theories on the #-deformed plane. Monopole solutions
are constructed on fuzzy S? x S?, which are mapped in the double scaling limit
to instanton solutions of gauge theories on #-deformed spaces.

n the case of g-deformed spaces, it turns out that a measure function has to be introduced
in order to guarantee cyclicity of the integral and this way gauge invariance of the action. This
measure survives in the commutative limit. We show that it is possible to add a term in the
action, which cancels the measure function in the commutative limit but which does not break
gauge invariance.
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In [39] we propose gauge theory on noncommutative spaces based on twisted
gauge transformations. We construct gauge invariant Lagrangians and derive
consistent equations of motions. This leads to conserved currents. Consistency
of the equations of motion requires us to choose the gauge field in the enveloping
algebra. This gives rise to additional, new fields, which reduce in the commutative
limit to free fields and which couple weakly via the deformation parameter 6 to
the usual gauge fields. The number of the new fields is finite if we choose a finite
dimensional representation of the enveloping algebra.
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Gauge theory on the g-deformed two-dimensional Euclidean plane Rg is studied using two
different approaches. We first formulate the theory using the natural algebraic structures
on RZ, such as a covariant differential calculus, a frame of one-forms and invariant
integration. We then consider a suitable star product, and introduce a natural way to
implement the Seiberg—Witten map. In both approaches, gauge invariance requires a
suitable “measure” in the action, breaking the Eg4(2)-invariance. Some possibilities to
avoid this conclusion using additional terms in the action are proposed.

Keywords: Noncommutative gauge theory; Seiberg—Witten map; quantum groups.

1. Introduction

Gauge theories provide the best known descriptions of the fundamental forces in
nature. At very short distances however, physics is not known, and it is plausible
that space—time is quantized below some scale. This idea has been contemplated for
quite some time, and gauge theory on noncommutative spaces has been the subject
of much research activity, see e.g. Ref. 8 for a review.

There are several different approaches to gauge theories on noncommutative
spaces: First, one can formulate the theory in terms of the algebraic structures which
define the noncommutative space, such as the noncommutative algebra of functions,
its modules, and differential calculi. Gauge transformations can then be defined by
unitary elements of the algebra of functions. Examples of noncommutative gauge
theories using this formulation can be found in Refs. 14, 7 and 8. While it is certainly
very natural, this approach seems to be restricted to unitary gauge groups, and
the set of admissible representations of the associated matter fields is also quite
restricted.

Another approach has been developed following the discovery that string theory
leads to noncommutative gauge theories under suitable conditions, as explained in
Ref. 21. This lead to a technique expressing the noncommutative fields in terms of

3349
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commutative ones, and writing the Lagrangians in terms of ordinary (commutative)
fields and star products. It allows to formulate models with general gauge groups
and representations, including the standard model.> However, the Lagrangians
become increasingly complicated at each order in the deformation parameter, and
there is generally a large amount of arbitrariness in these actions. Moreover, the
formulation of gauge theories on general noncommutative spaces with nonconstant
Poisson structure is less clear. In particular, no satisfactory formulation of gauge
theory on spaces with quantum group symmetry has been given; see e.g. Ref. 18
for a clear manifestation of this problem. It seems that in general, a satisfactory
implementation of generalized symmetries (quantum group symmetries) in noncom-
mutative field theory is yet to be found.

In the present paper, we apply these different approaches to gauge theory on
2, which is covariant under the g-deformed two-
dimensional Euclidean group E,(2). This is one of the simplest quantum spaces
with a nontrivial quantum group symmetry, and scalar field theory on R§ has

the Euclidean quantum plane R

already been studied in Ref. 5. It seems therefore well suited to gain some insights
into gauge theory on spaces with quantum group symmetry.

We first try to formulate (Abelian) gauge theory on R?I using an algebraic
approach, taking advantage of the covariant differential calculus on ]Rg. This leads
very naturally to a definition of gauge fields and their field strength, with gauge
transformations being the unitaries of the algebra of functions. This field strength
reduces to the usual one in the commutative limit. However, the definition of an
invariant action turns out to be less clear: if one uses the natural invariant integral
on Rg, one must add a nontrivial “measure function” in order to obtain a gauge
invariant action. This measure function explicitly breaks translation invariance,
which seems to be a generic feature of gauge theory on spaces with quantum group
symmetry. Hence gauge invariance appears to be in conflict with quantum group
symmetry. However, we point out some ways to avoid this conclusion. We pro-
pose a model with an additional scalar (“Higgs”) field with a suitable potential,
which is manifestly gauge invariant and restores the formal E,(2)-invariance while
spontaneously breaking gauge invariance.

In the second part of this paper, we apply the star product approach to gauge
theory on ]Ri, expressing all fields in terms of commutative ones. We first construct
a suitable star product, and study its properties and the relation with the integral.
The gauge theory is then formulated using this star product in close analogy to the
algebraic approach. In particular, the noncommutative calculus suggests a definition
of the field strength in terms of a “frame,” which ensure the correct classical limit.
This is somewhat different from other approaches proposed in the literature.'® The
corresponding Seiberg—Witten maps are solved up to first order. The formulation
of a gauge invariant action requires again a nontrivial measure function, which is
essentially the same as in the algebraic approach. While it cannot be canceled as
in the algebraic approach by introducing a Higgs field, we show how the action can
be modified in order to obtain the correct commutative limit.
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2. The g-Deformed Two-Dimensional Euclidean Group and Plane

2.1. The dual symmetry algebras E4(2) and Ug(e(2))

3351

We start by reviewing the quantum group E,(2), which is a deformation of the
(Hopf) algebra of functions on the two-dimensional Euclidean group E(2). Tt is

generated by the “functions” n, v, n, v with the following relations and structure

maps20
v =vv =1, nn =nn, un = qnu,
nv = qun, vn = qnu, nv = qun,
An)=n®t+v®n, Al =vQwv, AR)=nuv+0Qn,
A(v) =00 e(n) =¢e(n)=0, ev)=c¢v)=1,
S(n) = —q"'n, Sw) =v,
S(n) = —qn, 5(v) = v,

where ¢ € R. This is a star-Hopf algebra with the conjugation

* *

n o =n, v=0.
In terms of the operators 0, ¢, ¢t defined by?°
v=e3’ t=nv, t=on

(2)

(3)

(note that v is unitary and can therefore be parametrized by a Hermitian element

0* = 0), the coproduct of ¢ and t reads

A)y=t®14+e%®t, Al)=tl+e?Pxt.

(4)

It is often convenient to consider also the dual quantum group. The dual Hopf
algebra Uy (e(2)) of E,4(2) is generated by T, T, J with the following commutation

relations and structure maps2%:?

TT =¢*TT, [J,T)=4T, [J,T)=—iT,
AT)=TR¢@7 +10T, AT =T +1aT,
A)=J®1+1xJ, e(T)=¢e(T)=¢(J)=0,

S(T)=-Tq*7, S(T)=-Tq™*7, S(J)=-J,
where the dual pairing on the generators is given by
(T, 0'171%) = 600100k, (T,078*) = —¢*50i0001% »

This is again a star-Hopf algebra with the conjugation

J=—J, T*=T.

aQur generators are related to the generators u, v, € in Ref. 20 by u =T, —¢>v =T, ¢ = J.

<J, tgitj{k> = 511'50]'50]6 .

(6)
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2.2. The E,(2)-covariant Euclidean plane R3

Hopf algebras can be used to define generalized symmetries. There are two equiv-
alent, dual notions. A Hopf algebra H coacts on an algebra A if A is a left (or
right) H-comodule algebra (see App. A) via a left coaction p: A - H® A. In
particular, every Hopf algebra H admits a comodule structure on itself in virtue of
the comultiplication

ArH—-HOH. (7)

Observing that the subalgebra of E,(2) generated by ¢, ¢ is a E,(2)-module sub-
algebra, we can obtain the E,;(2)-symmetric plane by renaming t — z, ¢ — z. Hence
Rg is the E,4(2)-comodule algebra with generators z, Z and commutation relations

2Z=q°zz. (8)

We will also allow formal power series, and define the algebra of functions on the
E,(2)-covariant plane®
2. - S 25
Ry = R{2,2) /(22 — ¢°22) . 9)
By construction, it is covariant under the following left E,(2)-coaction
p(z)=e?Rz+t1,
. _ (10)
p(z)=ePRz+t®l.

More formally, we have a coaction p : RZ — E,(2) ® R2. From now on, functions
are considered to be elements of this algebra.

In general, a left comodule algebra A under H is also a right H’-module algebra,
using the dual pairing between H and its dual H’. Explicitly, the right® action
4: A®H — Aof H on A is given by

FaX = (X,)®id)op(f) = (X.fn)fo. XeH, feA. (1)

Applied to the present situation using the coaction (10) and the dual pairing (6),
we obtain an action of U, (e(2)) on R2. It is compatible with the conjugation z* = z
in the sense

(faX)" = f"aS7HX") (12)

for any f € R and X € U,(e(2)). To calculate the action of U,(e(2)) on formal
power series in z, Z, it is useful to note that any formal power series f(z,Z) can be
written as

f(z2) =Y 2" fm(27). (13)

meEZ

bSimilarly one gets a left action via a dual pairing from a right coaction.



5. Gauge Theories on Noncommutative Spaces

75

Gauge Field Theory on the E4(2)-Covariant Plane 3353

The action on terms of this form is calculated in App. A:

k—1
HP(:2) 9T = 75 (f@*22) ~ a7*f(2)),
2Kf(z2)<T = 1 q4q2 Pt 1(z2) 7;;((17222) ) (14)

2P f(zz)ad =ik2F f(22)

Y

which has again the above form.

2.3. Covariant differential calculus on ]Rg

A differential calculus is useful to write down Lagrangians. A covariant differential
calculus over R? is a graded bimodule €} = ©,7 over R? which is a Uy(e(2))-
module algebra, together with an exterior derivative d which satisfies d2 = 0 and
the usual graded Leibniz rule. Its construction?3°
in order to establish the notation. We start by introducing variables dz and dZ,
which are the g¢-differentials of z and Z. These are noncommutative differentials
which do not commute with the space coordinates z, zZ. Covariance and d(1) = 0
implies the coaction

is reviewed here for convenience,

p(dz) = e @ dz,
. (15)
p(dz) = e @ dz,
and the commutation relations between coordinates and their differentials must be
zdz = ¢ 2dz z, Zdz=q %dzZ,
(16)
2dZ = ¢*dz z, Zdz =q%dzz.

To see that d : R? — Q) is well-defined, we have to verify that it respects the
commutation relations of the algebra, i.e.

d(zz — ¢?22) = 0, (17)

which is easy to see. To obtain a higher order differential calculus, we apply d on
the commutation relations (16), which gives

dzdz = —q* dz dz (18)
and
(dz)? = (dz)® = 0.

This defines a star-calculus (i.e. with a reality structure), where the star of forms
and derivatives is defined in the obvious way. One can now introduce ¢-deformed
partial derivatives by

d=:d2'9; =dz9, +dz0,, (19)
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as in the commutative case. This defines the action of 9, and 95 on functions. One

can also introduce the algebra of differential operators with generators 9., 0z, z, Z.
In order to distinguish the generators 9., in this algebra from their action on a
function, we denote the latter by

0.(f) and 0:(f),

whereas we will not use brackets if 0., J; are interpreted as part of the algebra of
differential operators.

The derivatives 0,, 0; satisfy a modified Leibniz rule. It can be derived from
the Leibniz rule of the exterior differential together with the commutation relations
of differentials and coordinates as follows: On the one hand, we have

d(fg) = (df)g + f(dg)
=dz" 0;(f)g + fdz" 9;(g)
= dz 0;(f)g + dz f(q %2,q 22)0.(g)
+dz f(¢2.4°2)0:(9) (20)
using the commutation relations

f(z,2)dz = dz f(q 2z,q%2),

f(z,2)dz = dz f(¢*z, ¢°2) 21
which follow from (16). On the other hand, we have
d(fg) = dz 0:(fg) + dz0:(fg) .
and together with (20) we obtain the ¢-Leibniz rule
9:(fg) = 0:(f)g + fla~?2,47*2)0.(g), (22)
9:(fg) = 0:(f)g + f(a°=2,4%2)0:(g) - (23)

Applying this to the functions zf resp. Zf, one obtains the following commutation
relations:

0,2 =1+q220,, 0.2 = q 220, ,
(24)
822 = qzzag s 822 =1 + q2262 .
Furthermore, applying 0,0 on the function zZz we find
d.0. = q*0.0. . (25)

For completeness we also give the commutation relations for differentials and
derivatives:

0.dz = ¢*>dz0,, 0,dz =q%dz0,,
(26)
0.dz = q¢*>dz0,, 0,dz =q%2dz0,.

Clearly, the ¢-differentials and g-derivatives become the classical differentials resp.
derivatives in the limit ¢ — 1.
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2.3.1. The frame

On many noncommutative spaces,'®? there exists a particularly convenient basis of
one-forms (a “frame”) ¢ € Q!, which commute with all functions. They are easy
to find here: consider the elements

0=0":=2'2dz, 0=07:=dzzz". (27)

Then the following holds:

Lemma 1.
for all functions f € R; and

00 = —¢*00. (29)
Proof. Easy verification using the above commutation relations. O

It is even possible to find a one-form © which generates the exterior differential:
consider the following “duals” of the frame,

A= g _1q_2z*1, (30)
Az = =1 71q72z’1 (31)
and define
0:=0'\
Then we have
Lemma 2. The anti-Hermitian one-form ©* = —O generates the exterior dif-
ferential by
df =10, f1= [\, 10" (32)
for all f € Rg. Similarly,
do ={0,a} (33)

for any one-form «. Here {-,-} denotes the anticommutator. Furthermore,
de =0%=0. (34)
Proof. Equations (32) and (34) are shown in App. A.3. Equation (33) then follows

easily noting that {©,af} = {©,a}f — a[O, f] and {©, fa} = [0, fla + f{O,a}
for arbitrary functions f and one-forms a. O
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2.4. Invariant metric

A relation between the algebra, the differential calculus and the geometry on non-
commutative spaces was proposed in Ref. 15. We briefly address this issue here,
arguing that ]Rg is flat. This can be seen as follows. According to Ref. 15, “local”
line elements must have the form

ds®> = 0" ® 07 g;; (35)

where ¢;; must be a central (i.e. numerical, here) tensor, and 6" is the frame intro-
duced above. The symmetry of g;; is expressed in the equation

9P =0, (36)
where P(*)g is the antisymmetrizer defined by the calculus
okgLp()7 = i (37)
If we require furthermore that ds? be invariant under E,(2), it follows that
ds’ =00+ @*000=q¢2dz®dz+¢*dz®dz. (38)
This is certainly a flat metric, and for ¢ — 1 reduces to the usual Euclidean metric

on R2.

2.5. Representations of R2

In the following we will only need representations of the algebra Rg, not including
2 = 2% is formally Hermitian,
we assume that it can be diagonalized. The commutation relations then imply that

derivatives or forms. They are easy to find:® Since r

z and Z are rising resp. lowering operators which are invertible,
TZ |n>T0 = r%q2n ‘ n>7‘0 9
ZInYry = roq™ N+ )0y s (39)
2| nYry = roq" "t n — 1)y, .

We will denote this irreducible representation with L,,, where ry can be either
positive or negative. The representations with ro and —rg are equivalent. The irre-
ducible representations are labeled by ro € [1,q). It follows that z~! and z~! are
well-defined on L,, unless rg = 0.

3. Invariant Integration
3.1. Integral of functions

In order to define an invariant action, we need an integral on Rg which is invariant
under E,(2). In general, an integral (i.e. a linear functional) is called invariant
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with respect to the right action of U,(e(2)) if it satisfies the following invariance
condition

/qf(z,z)qng(X) /qf(z,z) (40)

for all f € RZ and X € U,(e(2)). Here e(X) is the counit. Such an integral was
found in Ref. 13; however, we want to determine the most general invariant integral
here. Since ¢ is an algebra homomorphism, it is sufficient to check the condition
(40) for the generators 7', T" and J. Let us first consider functions of the type

2" f(22), (41)

where f(r?), 72 = 2z can be considered as a classical function in one variable. We
can choose it such that the integral will be well defined. Invariance under the action
(14) of J implies

/q 2" f(22) = m,0<f(7"2)>r ) (42)

where (f(r?)), is a “radial” integral to be determined. Invariance under the action
of T and T then leads to the following algebraic condition

(@) —a2f () =0 (43)

on the radial part of the integral. This condition is satisfied for

o0

PO =13 = 1) > (7)), (44)

k=—o0
for any ry € R. Notice that the integral can then be written as “quantum trace”
(or Jackson-sum) over the irreducible representation L,, defined in (39):

q,(To)
/ F(22) == (@® = 1) Trng (3£ (2, 2)) (45)

where Tr, is the ordinary trace on L,,; note that Tr,, (2™ f(r?)) = 0 for m # 0.
If we allow superpositions of this basic integral (resp. direct sums of irreps of Rg),
then we can take an arbitrary superposition of the form

e = [ " dro p(ro)(f (), (46)

with arbitrary (positive) “weight” function u(r) > 0. If x(r) is a delta-function, this
is simply the above Jackson-sum. For u(rg) = m, one obtains the classical
radial integral

/qf(z,z):[qdrom/%(m)fo(zz):/OOO dr rfo(r2) (47)

for f(z,z) =3, 2™ fm(r?), assuming ¢ > 1. Any of these integrals reduces to the
usual (Riemann) integral on R? for ¢ — 1, using the obvious mapping from Rg to
R? induced by (13).
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It is quite remarkable that the classical radial integral is indeed invariant,
cf. Ref. 22. This will be useful in the star product approach in Sec. 6. Nevertheless,
the invariant integrals are not cyclic in the ordinary sense:

Lemma 3. For any invariant integral (40) the following cyclic property holds:

(i) For any functions f, g, we have

[ o= [ oo, (48)

where D is the algebra homomorphism defined by
D(z™) = q "™, D(z™) = ¢*™z™. (49)
(ii) D is an inner automorphism:
D(f(z,2) = 22f(2,2)z ‘2. (50)

Proof. Easy verification using the commutation relation (8). |

A similar cyclic property for invariant integrals on a SO,(N)-covariant space
was found in Ref. 22.

3.2. Integral of forms

Since any two-form o ¢ Q2 can be written as a® = {00 and 60 is invariant, we

define
/qa@):/qfeé;:/qf. (51)

For one-forms «, 8 we then obtain the following cyclic property:

[as=— [ s, (52)

where D is defined on forms as above. Noting that D(0) = O, this immediately
yields Stokes theorem:

Theorem 1. Let o be a one-form. Then
q
/ do=0. (53)

Proof. Since da = {0, a} due to (33), we get with (52)

/qda:/q{@,a}zo. .
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4. Gauge Transformations, Field Strength and Action

We consider matter fields as functions in Rg. An infinitesimal noncommutative
gauge transformation of a matter field ¢ is defined as'®

51 = iAep (54)

while of course §z¢ = 0. We introduce the “covariant derivative” (or rather a co-
variant one-form)

D:=0—iA, (55)

which should be an anti-Hermitian one-form. Requiring that D (z) transforms
covariantly, i.e.

0D = iA Dy
leads to
0D =i[A, D], (56)

which using (32) implies the following gauge transformation property for the gauge
field A

0A =[0,A] +i[A, A] = dA +i[A, A]. (57)
This suggests to define the noncommutative field strength F' as
F:=iD? = F;;0'0"
which is a two-form transforming as
OAF =i[A, F]. (58)
Since ©2 = 0 and {©, A} = dA we obtain the familiar form
F=dA—iA?, (59)

which shows that F' reduces to the classical field strength in the limit ¢ — 1. To
write it in terms of components, it is most natural to expand the one-forms in the
frame basis 6" = (0, ), because then no ordering prescription is needed. Hence we
can write

A= A0 =0"A;, (60)
and the field strength is
F = (NAj+ A\ —iAA))0'07
= (MAz —q 2 Ao — ¢ P A
+ Ay — 1AL Ag +iqg 2 A AL)00 (61)
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where A\; = (A., A.). Notice that this is written in terms of the components of the
frame, not of the differentials dz, dz. In order to understand its classical limit, it is
better to write®

A=A, dz+ Asdz, (62)
and we recover from (59) the classical field strength
T (0,4 — 9:4,)dz dz . (63)

In order to write down a Lagrangian for a Yang—Mills theory, we also need the
Hodge dual +y F of F. This is easy to find: since any two-form F' can be written as

F=f00=q2%fdzdz

for some function f, we define xy on two-forms as
1
xgF = 3 f. (64)

This is the correct definition because dzdZ is invariant under U,(e(2)) transforma-
tions, hence the Hodge dual satisfies

(xpF)<du=xpg(F<u) (65)

for all u € Uy(e(2)). We can now write down the following action using one of the
invariant integrals found in Subsec. 3.1:

q a1 _
s;:/ F(*HF)z*z*l:/ 5#71[199. (66)

The factor 271271 is required by gauge invariance under (57), using the property

/q fgz 2t = /q gfz 'zt (67)

which follows from Lemma 3. In the classical limit we obtain

q—1
-

% (0.A, —0,A,)* 2tz dzdz.
The “measure factor” z~ 127! breaks the E,(2)-invariance explicitly. Unfortunately,
it is required by gauge invariance. In other words, the invariant integral seems
incompatible with this kind of gauge invariance, and one is faced with the choice of
giving up either gauge invariance or E,(2)-invariance.¢ In this paper, we will insist
on gauge invariance.

There are several possibilities how this problem might be avoided. One may try
to modify the gauge transformation, e.g. by using some kind of ¢-deformed gauge
invariance as in Ref. 10. Unfortunately we were not able to find a satisfactory

®This is not natural for g # 1, since then dz,dz do not commute with functions.

dIn the classical limit, the measure function can be written as 2~z 1dzdz = % (rdrdy) =
d(Inr)dp, which is the volume-form on a cylinder. Therefore this action could be interpreted as
Yang-Mills action on a quantum cylinder. However this is not the aim of this paper.
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prescription here.!” Alternatively, we will propose in the next section a mechanism
using spontaneous symmetry breaking, which yields an E,(2)-invariant action for
low energies. In any case, the above action is certainly appealing because of its
simplicity, and the gauge transformations (56) are very natural. This problem may
also be a hint that the quantum group space—time-symmetry has not been correctly
implemented in the field theory, beyond a formal level. A proper treatment would
presumably require a second quantization, such that the E,(2)-symmetry acts on
a many-particle Hilbert space and the quantum fields, as in Ref. 9.

Let us briefly discuss the critical points of the above action. The absolute minima
are given by solutions of the zero curvature condition F' = 0. In terms of the
coordinates D = D;#* this leads to

Dng = q2D1D2 .

This is the defining relation of the deformed Euclidean plane with opposite mul-
tiplication. One solution is of course D = O, and we get all possible solutions in
terms of the automorphisms of ]Rg.

5. Restoring E,4(2)-Invariance Through Spontaneous
Symmetry Breaking

The explicit “weight” factor 271271 in (66) is rather unwelcome, because it ex-
plicitly breaks the F;(2)-invariance of the action, which was the starting point for
our considerations. One could in principle interpret it as some kind of additional
“metric” term in the action, which is required by gauge invariance. However, it
is also possible to cancel it by the vacuum-expectation value (VEV) of a suitable
scalar field: Consider the action

a
Sy = / F(xgF)e?z 271, (68)

This is gauge invariant if ¢ transforms in the adjoint:
¢ — i[A, ¢]. (69)

We can then add an action for ¢, such as
q

so= [ Vi@t (70)
where V(z) is an ordinary function, which is again gauge invariant. If we could

find a potential V (¢) which has e? = 2% as solution, we would obtain the following
“low-energy” action

s, = [ FenF) (71)
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replacing ¢ by its VEV (¢). This is formally invariant under E,(2), while the gauge
invariance is spontaneously broken rather than explicitly. To find such a potential
V', consider the equation of motion

ssalo] = [ Sevi(@)z e =0 (72)

using the cyclic property of the integral, where V' denotes the ordinary derivative of

the power series V' (z). We therefore need a potential V' (z) such that V'(In(zZ)) = 0.

For a given irrep L,, labeled by rg as in (39), the eigenvalues of 2z are r3¢*® =

e2nn(a)+2n(ro) for yn ¢ 7. Therefore

V! (2nIn(q) +2In(ro)) =0, neZ. (73)
This certainly holds for V! () o sin (QW%), thus
x—21In(r
ero (l') = _% COS (27‘-qu0)) (74)

is a possible potential. Hence we will use the representation L,,, and the quantum
trace [ () on L,, as invariant integral for the action. Note furthermore that

5481 =0 (75)

for F = 0, therefore e® = 2z, F' = 0 is indeed a possible “vacuum” of the combined
action

q,(ro)
S=5+5= / (F(*HF)€¢ + V(QS))271271 . (76)

Replacing ¢ — (¢) = In(22), it reduces to

a,(ro)
/ F(xgF)+ const, (77)

as desired. The fluctuations in ¢ are suppressed if V} is chosen large enough. Of
course there are other solutions for ¢, which would give a nontrivial “effective
metric” e{®?z=12~" in the action. This is somewhat reminiscent of the low-energy
effective actions in string theory, where the dilaton enters in a similar way.

For reducible representations of Rg one could still find such potentials, but if
we take continuous superpositions as in (47) in order to have the classical integral
(as in the Seiberg—Witten approach below), this is no longer possible.

6. Star Product Approach

We now want to study gauge theory on Rg using the star product approach, which
was developed in Refs. 1 and 16. We will denote classical variables on R? by greek
letters ¢, ¢ in this section, in order to distinguish them from the generators z, Z of
the algebra R?.
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A star product corresponding to ]R?I is defined as the pull-back of the product
in R2 via an invertible map

p: R¢, CNA] — RS (78)
of vector spaces,
fxg=p"p(f)r(g)), (79)
where
qg=-el. (80)

For example, the star product corresponding to normal ordering in Rz (i.e. com-
muting all z to the left and all Z to the right) reads'®

forng=poe M%) (fgg). (81)
For our purpose the following star product will be more useful

[ g g = po e COEPC8D) (1 ) g)

= [9+hC(DcfOzg — e fOcg) + O(h?), (82)
because it is Hermitian, i.e. fx,9 = g% f, and satisfies other nice properties

as shown in Lemma 4 (see Eq. (88) below). The corresponding Poisson structure
reads®

0% = —2i¢le" . (83)
This star product is equivalent to the normal ordered one (81) via the equivalence
transformation

T := ¢ hC0Coc

To see this, we first note that
Cacgag op=po (C@ggag ®id +id ® C@CE(‘?E +(0¢ ® 565 + 685 ® (o).
This leads to
T(fxqg9) = e M0l o ) o h(CO®CO~C0:CDe) (f ) g)
=po @7h(<acfaf®id+id ®49c585+48<®585+§85®¢84)
o eh((6<®§8<*56<®48<)<f ? g)

=po 672}1(566@(84) (ethaCEf)Ef@ e*h((’)czag—q)

=T(f)*n T(g),
hence 1" is indeed an equivalence transformation from %, to x,. If we denote

the normal ordering by p,,, this new star product can be obtained by f x, g :=
pq_l(pq( f)pq(g)) in terms of an “ordering prescription” p, given by

pg:=pnoT.

©The Poisson structure is given by [f *¢ g] = ih0%0;f0;9 + O(h?).
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For illustration we give the image of p, of some simple polynomials:

¢ 2,
M 2", (84)
(€™ = a " (z2)".

Moreover, %, is compatible with J:

(frqg)d =(fad)*qg+ f*q(gad), (85)

where the action of J on R? is the obvious one.
One can easily extend the star product formalism to include differential forms,
which will be useful in Subsec. 6.3. We simply use the invertible map

QF — Qy,
f:f(CaE) '_)pq(f)a
(T1d¢ = 9,
(¢T'dC 0
(extended in the obvious way) from the differential forms on R? to the calculus €2}
defined in Subsec. 2.3, and define the “star-wedge” A, on 2 as the pull-back of
Q. Using the same notation § = (7'¢d(, § = ((~'d( as in the noncommutative

algebra, one has for example 0/\,15 = fq207/\q0 in Q% as in Q. Clearly Ox, f = fx,0
in self-explanatory notation, and we will omit the star in this case from now on.

(86)

6.1. E4(2)-invariance of the Riemann integral

Since there exists an integral on the commutative space, it is natural to use the
isomorphism p (78) corresponding to the star product, and define

/ " iz = / o ()G O)dCdC (87)

In general, one should not expect that the integral defined in this way is invariant
under F,(2). Nevertheless, for the star product %, defined by p,, this integral is
indeed invariant, i.e. (40) is satisfied. We want to explain this in detail. Consider

o)

f(z,2) = Z 2" fn(22) € Rg.
n=—o00
Applying p,* gives

Pt ()= 3 g ()

n=—oo
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On the other hand, we can write the function p; L(f) in polar coordinates, and
expand it in a Fourier series with r-dependent coefficients

bl ()= Y man(r).

n=—oo

Then

:27r

a(r) = = / "o ()6

Since ¢ = re’® and p, '(fn(r?)) = fn(qr?) is a function of r? by (84) and using the
fact (85) that %, is compatible with J, it follows that

ao(r) = pg ' (f0)(r*) = folgr?).
Therefore

/ P71 (£)(C, O)dC dE = 2 / dr v fo(ar)

This agrees essentially with (47), which is indeed invariant under U,(e(2)) trans-
formations as was shown there.

From now on, we will use the Riemann integral (87) in this context, and omit
the superscript p = p, for brevity.

6.2. Trace property and measure

The Riemann integral does not possess the trace property, i.e. star multiplication
is not commutative under the integral. However the trace property is necessary to
obtain a gauge invariant action. We therefore look for a measure (¢, ¢) such that

[ 160w 916, Outc.Odcdc = [ (6,0)y £(6.n(C. g e
Such a measure function can indeed be found.

Lemma 4. Let f, g be two arbitrary functions which vanish sufficiently fast at
infinity. Then

_ -1 _ _ -1 _
/ (60w 0(C.8) g dC = / 9¢.0) %0 F€.O) ZpdC dE
- / £C.O9(C E)édCdé . (88)
Proof. See App. A.4. O

Equation (88) has also an analog on the canonical quantum plane Rg, see e.g.
Ref. 8.
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A small puzzle arises here: since the Riemannian integral is invariant under
E,(2) as we argued above, we also have the following cyclic property

/ FC ) g 96O %g T wg ¢ dC dC

- / (G0 %g (GO %g %y ¢ dCdE (89)

because of Lemma 3. These two cyclic properties are in fact equivalent, because
- _ B - 1 _
[ 60 @ r ¢ hicdl = a7t [ GOz (90)

To see this, note that the second equality in (88) implies

/ G(C,T) g T g ¢ 1 dC AT = / (G, Q) g T kg € ) g €O) C%dC . (91)

With ¢ = ¢~ ¢ %4 ¢ which is easy to verify, it follows that

/ G(C,E) g C g ¢ dCdE = g~ / GG, 0) édc i (92)

using the associativity of the star product. This shows the equivalence of the cyclic
properties (88) and (89).

6.3. Seiberg— Witten map

The map p,; defines a one-to-one correspondence between noncommutative and
commutative functions, and we can identify f with p;l (f). We construct a Seiberg—
Witten map for the noncommutative fields expressing them by their commutative
counterparts:2!

A= Aa[ai] ;
Ai = A,-[ai] s
U= ‘Il[w7al] .

Here a; is the classical gauge field, « the classical gauge parameter and ¢ a classical
matter field. The noncommutative gauge transformations are defined as in Sec. 4
and will be spelled out below. We assume that it is possible to expand in orders of h

Anla;] = a+ hAL[a;]) + R2AZ[a;] + -,
‘I’[’(/}7 ai] = w + h\pl[w7 ai] + hQ\IJQ[w7 ai] +eee

The explicit dependence on the commutative fields can be obtained by requiring

the following consistency condition'6

(0005 — 0500)¥ = 0_i0,3 ¥ & i0alg —i0Aa + [Aa 7 Ag] = iA 0., (94)
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which amounts to requiring that the noncommutative gauge transformations are
induced by the commutative gauge transformations of the commutative fields:

A;la;] + oaAilai] = Asla; + daai],

(95)
‘I’W), a’i] + 6A‘IJ[¢7 ai] = ‘IJW + 6a'¢)a a; + 6aai] .
The consistency condition has the well-known solution*?
1 .
Aafai] = o+ h07 diaa; + O(h?). (96)

This solution is Hermitian for real gauge parameters « and for gauge fields a;
corresponding to the Hermitian connection form a = a¢ d¢ + a, dC. As usual, this
solution is not unique. Solutions to the homogeneous part of the corresponding
Seiberg-Witten equation may be added leading to field redefinitions.!*

The crucial point of our approach is that we will essentially work with one-forms
and their components A; w.r.t the frame % = (6, 6),

A=Al =0'A; = A d2 (97)

and that we are gauging the one-form © as in Sec. 4. In this way we naturally obtain
a noncommutative gauge field and field strength, with the correct classical limit.
This is not the case if one introduces covariant coordinates to define gauge fields and
field strengths,'?'7 because % is not constant here. Using [©, f] = df = [\i, f]6",
this led to the gauge transformation law in the noncommutative algebra

where
1, 1,
)\z = mz and Ag = mz

Since the commutator with \; satisfies the usual Leibniz rule we do not have to intro-
duce a “vielbein” field that transforms under gauge transformations as in Ref. 19.

In order to translate the above gauge transformation law to the star product
approach, we simply have to apply pq’l. This leads to

OrNA; = [)\z *a A] + Z[A *a Al] s (99)
where we note that
Py () =G
Furthermore, we remark that

1 1
= (1+h+OMH?
=7 = g (1 00

such that to zeroth order we have for the gauge field
SaA) = (¢ t0ca. (100)
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An analogous calculation for A9 leads to the solution
AY = cia;, (101)
where
ce=¢C* and e =("1¢C. (102)

This is the solution for the gauge field, written in the basis (6,0) = (cgldc, cgldf)
of one-forms (cf. (27)). To obtain the components in the more familiar basis (d¢, d¢)
we have to multiply the above solution by c;” ! and we indeed obtain the classical
gauge field a; in zeroth order:

AV =a;. (103)
Defining ¢; =: #li, ie lg:=( ' and [z := —( !, we obtain to first order the
equation
1 1,
5041421 = 59“8]@[1'(%[\(136 — Hklakaal(ciai) + 5 leakli(’)la, (104)
which admits the solution
-1 1
A% = <70klak(81ai + Fg)) ~3 Hklakal(ci)ai + cia;, (105)

where
0 ._ 9.4 (L
F = 0ia; — Oja;

is the usual, commutative field strength. This solution satisfies Al = A} AL = Al
We now define the noncommutative field strength as in Sec. 4,

F=(NikqgAj+ Aixg N\j —iAixg Aj)O N 07 = fO N O (106)

using the “star-calculus” defined by (86), because it satisfies the correct transfor-
mation law

5f =i[A f]. (107)
The above solution then leads to
f= Fiy + h{Fiy + 0 (FLo Fiy — acOgFiy + agdc Fiy)
+ 0c0™ (acdzag + agdzac + 2a:0caz)
+ 970" (acOcaz + agOcac + 2aczac) } + O(h?). (108)

We can now write down the following action using the classical integral:

1 1 —
S::§/f*qf§dgd{. (109)
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Recall that the measure function p(¢, () = - is necessary to ensure gauge invari-

¢¢
ance of the action, using the trace property of the integral by Lemma 4. This action

can be written in terms of commutative fields using the above result:

-1 (1
5= [dcai {3 Fyry + 1(r Y

+ 912(F102F102F102 - aCF1026§F102 + aEFl()QacFloz)

+ 85912F102 (2a<85a¢ + a<8¢a§ + agacac)
+ 8491217102 (2a58<a5 + agagag + acaqac))} + O(h2) . (110)
Observe that this action is also the Seiberg—Witten form of (66), because
1 1 - q 1 1 =
5—5 f*qf&dcdc—§ Jrq [rq (€7 g ¢0)dCdC (111)

using (90). We see that as in the algebraic approach of Sec. 4, gauge invariance
requires a measure function u(¢,¢) = édg d¢ which breaks translation invariance.

However, one should realize that even without this measure function, this “classical”
action would not be invariant under F(2), because the star product is not com-
patible with the symmetry (only for rotations (85) holds). This would only be the
case if one could find a star product on Rg which is compatible with the coproduct
of E4(2), cf. Refs. 2 and 9.

6.4. The classical limit and the measure function

The measure function u(¢,¢) = éd{ d¢ survives in the classical limit ¢ — 1. If
we want a deformation of the classical theory, this should not be the case. We
therefore would like to get rid of this measure function in the classical limit. This
can be achieved by multiplying the action with a gauge-covariant expression,’ which
in the classical limit exactly cancels the measure function u. For this purpose we

introduce covariant coordinates:®

Here A; should not be confused with A;. The one-form 4,6’ is a noncommutative
analog of the classical gauge field, because its gauge transformation law (99) is the
noncommutative generalization of the classical gauge transformation law. Indeed,
we recovered the classical gauge field a; with respect to the basis d¢, d¢ (103) in
zeroth order of h. In contrast, the covariant coordinates are used here just as a
quantity which transforms covariantly and reduces to the usual coordinates in the
classical limit, in order to cancel the measure function. We will see that A; does not

fThis was suggested by Peter Schupp.
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reduce to the classical gauge field for ¢ — 1. Requiring the covariant transformation
rule §Z; = i[A "¢ Z;] leads to the following gauge transformation rule for A;

6A; =[G 7 Al +i[A 7 A (113)

As before we can express A; in terms of commutative fields by solving the corre-
sponding Seiberg—Witten equations. This gives'?

A" =ho7a; + hZ%leal(ak(Gijaj) — 07 F)) + O(h?). (114)

In principle, covariant coordinates may be used to define noncommutative gauge
fields and covariant expressions such as field strength.'®1” However, the above equa-
tion shows that gauge fields and field strengths defined in that way do not lead to
the classical gauge field a; and field strength FZ% in the limit A — 0 whenever the
Poisson-structure is not constant and not invertible, as is the case here.®& Neverthe-
less they are a convenient tool for our purpose, because they satisfy

Zxg Z—(C (115)
for ¢ — 1, and
§(Zxq 2) =i[A "¢ Z %, Z]. (116)

Now we can define a gauge-invariant action with the correct classical limit:
1 -1 -
S'::—/f*qf*qZ*qZ—_dCdC. (117)
2 ¢
Expanded up to first order of h we obtain
~1
S = /dC d¢ B FroFy + h<F102F102 + 0P (Fly Fy FYy — a¢F10285F102 + aZFP2aCF102)
+ 85912}7102 (2a<85a< —I—agagaf + afagag) + (9(912}7102 (2a58<a5 + afagag +a<85a5)

1 - _
+ §912F102F102(<a<—Cac)—F102F102+C8§(F{)2F102)—CaC(FPQFl()2>> +O(h?).
(118)

This reduces indeed to a Yang—Mills theory in the classical limit. However, choosing
Z *q Z is only one possibility to cancel é There are other expressions which are

gauge-covariant, and lead to the same classical limit. Our choice is motivated by
simplicity.

8To obtain in the classical limit the classical gauge field a; we have to invert #% and write %G;lej.
This is only defined if 6 is invertible, and even then it spoils the covariant transformation property
whenever 6 is not constant. To maintain covariance one has to “invert 6 covariantly” as done in
Ref. 17, leading to complicated expressions. The approach that we propose in Subsec. 6.3 does
not have these problems. Gauging the one-form © instead of the coordinates leads very naturally
to a noncommutative gauge-field (99) and field strength (106). Compare also with Ref. 19, where
a different approach using a “vielbein” is discussed.
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Appendix A. Mathematical Appendix
A.1. Coaction and action
Definition A.1. A left coaction of a Hopf algebra H on an algebra A is a linear
mapping

prA—-H®A, (A1)
which satisfies

(idep)op=(A®id)op, (e®id)op=id,
plab) = p(a)p(b), p(1) =11,

In Sweedler notation, one writes

(A.2)

pla) =: a—1) ® a) -
A is then called a left H-comodule algebra.

Definition A.2. A Hopf algebra H is acting on an algebra A from the right if A
if there is an action < : A ® H — A which satisfies

ab<sh=(a®b)<1A(h) = (a<huy)(bdhp), and 1<ah=c(h)1 (A.3)
for any h € H and a, b € A. A is then called a right H-module algebra.

By (11), these two notions are dual to each other. There are obvious analogs
replacing left with right everywhere.
For the action of J, T and T on the generators z, Z, we obtain
24T =1, zaT =0, zalJ =iz,

z2aT =0, z2<T =—¢*, zaJ=—iz.

The action on arbitrary functions is calculated in the following subsection.

A.2. The right action of Ug(e(2)) on ]R%

Knowing the structure maps (5) for J, T, T € U,(e(2)) and their action on z, z
given above, we can determine the action of J, T, T on arbitrary functions using
(zy) <U = (z <9 Uq))(y <« Ugy) for arbitrary =, y € R2, U € Uy(e(2)). Since an
arbitrary function f(z,z) € R§ can be written as f(2,2) = Y ;5 2k fr(22), it is
sufficient to know the action on the terms

2 f(22),
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where f is a formal power series in zz. We will derive the formulas even for negative

powers of 2z, i.e. f(22) = 3., wi(22)". We start with the action on z*:

Claim A.1. For k € Z we have

1— —2k
2k qT = 7(12:’“1,
1—q2
daT =0, (A4)

2FaJ=ikzk.

Proof. The first equation can be shown by induction, using z<7 = 1 and 2~ 1<T =

—q%22, which follows from

0=14T=(z"12)<aT = (" <aD)(za¢®) + 272 aT) = (27 aT)g 22+ 27 .

The last two equations finally follow immediately with z <7 = 0, 2 <J = iz and

AT)=T®¢" +1xT. i
The action on f(2z) = Y,., ai(22)" follows from

Claim A.2. Forl € Z we have

1 —21
(22)' < T = ¢? = (z2)"1z
- 1—q% .
(zz)l<1T:—q21_(22 (22) 12, (A.5)
(z2) < J = (22)".
Proof. The last equation follows immediately with z<J = iz, 2<J = —iz. The

first equation follows again by induction, starting with (22)<7T = (z<T)(2<1¢*/) +
2(2<T) = ¢*2, and concluding inductively

(22)71 T = ((22) «T)((22) < ¢*) + (22)'((22) <« T)

= Pl (:9) () + (22)

for { > 0. If [ =0, then 1 <97 = 0, which is consistent with the claim. To derive the

action of T on (2z)~! we calculate

0=((22)"'(22)«T
= ((z2) ' aT)zz + (22) ' ((22)<T)
= ((22) 1 <aT)zz + (22) 1%z

hence
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consistent with (A.5). For [ < 0 the claim follows similarly by induction, and the
second equation follows also inductively. O

Putting these results together and using f(2z) = >, ai(22)" we obtain
2f(22) 9T = (28 aT)(f(22) a¢®) + 25 (f(22) <1T)

1—g % k1 k1 201 !
=T, [+ Zalq — _261(7)(25)
1 lez

Zk*l

- m(f(qzzi) —q * f(22)).

A similar calculation finally leads to (14).

A.3. Proof of Lemma 2

Proof. Since the % commute with all functions, we have

1©.4] :9[1—1q 1’4 _9[1—161 1’4'

Plugging in the explicit expressions (27) for § we find

CHIES dzzlz{l —1q*2271’ f} —dzzz ! L _1q2zl,f} )
using the commutation relations (16). Taking f = z and f = Z we get
—2
zlz{#zl,z} = 1 71q72 - 1 z qu =1 (A6)
and
-1 1 -1
ZZ [1_(122 ,z} =0. (A.7)

Thus [O, z] = dz, and similarly [0, zZ] = dZ. Hence the claim is true on the generators
of the algebra of functions, and since [0, ] is a derivation we can conclude that

df =0, f]
for all functions f.
To show dO© = ©2 = 0, consider

(1-¢2)0)2 =0z -0 = (¢ %2 dz — 2+ dz)?
=—q¢ 22 dzz " dz -z dzq %2 d2
=—q¢ 2z dedz — 77 2 dzd2z =0,
using the commutation relations (10), (16) and (18). Furthermore,
(1-q¢2)d0 =d(qg 22 dz— 27 dz) = —q¢ *22dzdz + ¢°2 2dzdz =0,

where we used d(z7!) = “2dz and d(z71) = fq z72dz, which follows from
the g-Leibniz rule applied to 0 =dl =d(zz71) =d(zz71). O
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A.4. Proof of Lemma 4

Proof. We have
g Al L[ S
/cch /cc"‘”/CE’“‘;n!

2
x ( Z ll]lcll ?“ ®Cj1 a?ﬁ)

i1,J1=1

2 e O 9
><< Z Ezjzcz(acu@gﬂzacjz)...

i2,j2=1

2
X( > Ei"j"c"agz Cha@ >(f®9)'

in,jn=1

Consider the nth term of the sum on the right-hand side:

d¢ ¢ hr 2 0D
/TJNC’( > gm e a@1>

i1,J1=1

2 7 i a 1 a : ingn /~t 8 j a
X< Z 2_]2C2 <12®<J2a<—j2>“.< Z EnJRCnaC_iTL@CJ"aCjn)(f@g).

i2,j2=1 in,jn=1

Introducing the short hand notation

2 0 0
f’ ®g/ — < Z zzjzczz 302 ®<]2 8(j2>

i2,j2=1

2
x ( Z gindn in 30 ® ¢ eI )(f®9)a

invjn=1
the nth term of the sum can be written as
2

d¢d¢ h" i iy O
/TFN < Z ¢ 01@( 8{JI>(f® ")

i1,J1=1

i 9
:—/d(d( Z et 6(“ 3<j1(g)'

i1,j1=1

For n > 0, this leads after partial integration (assuming that the functions vanish
at infinity) to

f—/dCdC Z S e a?jl( ) =

i1,J1=1
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This is valid for any summand corresponding to n > 0, so that only the zeroth
order term does not vanish. Hence we find indeed

dg d¢ d¢ d¢
— fx, 9= / — fg. O
/ ¢ ¢
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1 Introduction

The physical nature of space at very short distances is still not known. Already
Heisenberg proposed in a letter to Peierls [1] that spacetime is quantized below some
scale, suggesting that this could help to resolve the problem of infinities in quantum
field theories. With this motivation, there has been a lot of work and progress in
the formulation of quantum field theory on quantized or noncommutative spaces.
Noncommutativity is implemented by replacing a differentiable space-time manifold
by an algebra of noncommutative coordinates

[o', @] = 6 (z) # 0. (1)

The simplest case is the so-called canonical quantum plane Ry, where 6% is a
constant tensor independent of x. This is the space which is usually considered
in the literature [2]. However, most of the rotational symmetry is lost on Rg. On
the other hand, there exist quantum spaces which admit a generalized notion of
symmetry, being covariant under a quantum group. Not much is known about field
theory on this type of spaces.

One of the simplest spaces with quantum group symmetry is the Euclidean
quantum plane Rﬁ. It is covariant with respect to the g-deformed two-dimensional
Euclidean group E,(2). We report here on our work [3], proposing a formulation of
gauge theory based on the natural algebraic structures on this spaces and using a
suitable star product.

2 The E,(2)-Symmetric Plane

The E4(2)-Symmetric Plane is generated by the complex coordinates z, Z with the
commutation relation
= 2
2Z=q Zz. (2)

We consider formal power series in these variables z, z as functions on this space,

R = R((z, 2))/ (2% - ¢°22). 3)

Notice that the simple commutation relation (2) are inconsistent with the usual
formulas for differentiation and integration. We should therefore first discuss the
appropriate differential calculus and invariant integration. Finally, to get physical
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predictions i.e. real numbers from the abstract algebra, we also need either a rep-
resentation of the noncommutative algebra, or a realization of the algebra using a
star product.

2.1 Covariant Differential Calculus

It is natural to require that there exist deformed spaces of k-forms .Qé“ which are
covariant with respect to E,(2), and that the exterior differential d : 2F — QF*!
satisfies the usual Leibniz-rule as well as d*> = 0. One can show that there exists a
unique covariant differential calculus with these properties [4]:

zdz = q 2dzz, Zdz = q 2dzz
2dz = ¢°dzz, 7Zdz = ¢°dzz

(4)
The following result is particularly useful for the construction of gauge field theories
on R2:
Lemma 1. Consider the one-forms

0=0":=2""zdz , 0=0" :=dzzz " (5)
and define

1 _
1_q_2z L (6)

@ = Hi)\i, where A\, 1= 72_1, Az = —
1—¢g2

Then for all functions f € Rg and one-forms c, the following holds:

6./1=6,f=0 7
af = [0, f] =[x, f16 ®)
da = {0,a} 9)

denoting with {-,-} the anti-commutator.

2.2 Invariant Integral

In order to define an invariant action, we need an integral on R which is invariant
under quantum group transformations. This means that

/q F(23) X = &(X) /q £(2,3) (10)

for all f € R, and X € Ug(e(2)). Here U,(e(2)) is the g-deformed universal en-
veloping Lie algebra of the two-dimensional Euclidean group, < denotes the right
action of U,(e(2)) on R} and &(X) is the counit. Now any function in RZ can be
decomposed as f(2,2) =Y, oz 2™ fm(2Z). It can be shown that (10) is satisfied for
the following discrete quantum traces [5]

q,(r0) 0
/ fem) =@ =1 Y fola™rd), (11)

k=—o0
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where ro € R labels the irreducible representations of R . The most general invariant
integral is given by superpositions of these integrals,

INCEE / dron(ro) [ " ) (12)

with arbitrary ”weight” function u(r) > 0. It is quite remarkable and useful that

for the special choice u(ro) = 7‘0(q1T1)’ one recovers the usual Riemannian integral,

which is therefore also invariant under U, (e(2)) [3].

3 Star Product Approach

3.1 The Star Product

The noncommutative algebra R] can be realized on the algebra of commutative
functions on R? using a new, noncommutative product, called star product. Let us
denote the commutative variables on R? by greek letters ¢,{ to distinguish them
from the generators z, %z, and let ¢ =: e". Then a hermitian star product for RZ is
given by

frg 1= poeEPIED) fog) = fa+h(T(D foa—0:f0cg) + O(RY). (13)

3.2 Noncommutative Gauge Transformations

The formalism of covariant coordinates was established in [6] for an arbitrary Pois-
son structure. This leads to problems in the semi-classical limit®. Therefore we
propose the following approach, taking advantage of the frame 6,8 which com-
mutes with all functions and the generator @ of the exterior differential. We define
infinitesimal gauge transformations of a matter field as

Sp=idxy, 8¢ =0. (14)
Let us introduce the ”covariant derivative” (or covariant one-form) as
D:=0—-iA. (15)
Then requiring that D transforms covariantly, i.e.
SD x ) = iA* D x (16)
leads to the following gauge transformation property for the gauge field A:
JA=[05 A +i[AF Al=dA+i[A % A]. (17)
We define the field strength as the two-form

3 To obtain in the classical limit the classical gauge field a; we have to invert %,
This is only well-defined if 8 is invertible, and even then it spoils the covariant
transformation property whenever 6 is not constant. To maintain covariance one
has to ”invert 6 covariantly” as done in [7], leading to complicated expressions.
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F:=DnNy D (18)
where A, the star-wedge [3]. Then

OF =i[A % F). (19)

As a two-form, the field strength can be written as F' = f6 A, d. Since the frame
0,0 commutes with functions, f transforms covariantly as well:

Sf=1dA%f]. (20)

We note that all transformations have the correct classical limit as ¢ — 1.

3.3 Seiberg-Witten Map

The Seiberg-Witten map [8] allows to express the noncommutative gauge fields in
terms of the commutative ones. Hence the noncommutative theory can be inter-
preted as a deformation of the commutative theory. Its physical predictions can be
explicitly obtained by expanding in the deformation parameter h, and the commu-
tative theory is reproduced in the limit A — 0. The Seiberg-Witten map is based
on the following requirement:

— The consistency condition:

(8a05 — 8500)W = O_ifa,)¥ (21)
& i0aAp —ibgAa + [Aa T Ap] =iA_i4 g,

— Noncommutative gauge transformations are related to commutative ones:
Ailai] + 04 4Ai[ai] = Aifai + daai] (22)
V[, ai] + 6aTp, ai] = Tlp + bath, ai + daai] .

Solving these conditions in our case, we obtain the following expression for the field
strength expanded in powers of h:

f=Fiy +h{Fls + 0" (Fi2 Fi> — acOsFs + azdc Fiz) + 0c6'*(acdzaz  (23)
+azdzac + 2a70;a7) + 65012(%64% + azdca¢ + 2a¢dza¢)} + oh?),

where a, is the classical gauge field and Fy; = ¢, a; — O¢;ai is the classical field
strength.

3.4 The Action

To define a gauge-invariant action, we need an integral which is cyclic with respect
to the star product, since the field strength transforms in the adjoint. The invariant
integrals (11) do not have this property, which can be restored by introducing a
measure function g. It can be shown that for the measure function p := é, we can
even drop the star under the integral:

/ dCdCpf g = f d¢dCpfg = f dcdlug (24)
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Putting all this together, we can now define a gauge invariant action:

S = %/dgd@f*f. (25)

Gauge invariance is guaranteed because of (20). Moreover, the classical action for
abelian gauge field theory is reproduced in the classical limit A — 0 because of (23).
Another possibility is to replace the measure function u by a scalar “Higgs” field
¢, which transforms such that it restores the gauge invariance of the action. One
can in fact find a suitable potential for ¢ which admits a solution (¢) = p = é,
leading to a E4(2)-invariant action through spontaneous symmetry breaking.
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Abstract. This study of gauge field theories on k-deformed Minkowski spacetime extends previous work on
field theories on this example of a non-commutative spacetime. We construct deformed gauge theories for
arbitrary compact Lie groups using the concept of enveloping algebra-valued gauge transformations and
the Seiberg—Witten formalism. Derivative-valued gauge fields lead to field strength tensors as the sum of
curvature- and torsion-like terms. We construct the Lagrangians explicitly to first order in the deformation
parameter. This is the first example of a gauge theory that possesses a deformed Lorentz covariance.

1 Introduction

The best known description of the fundamental forces of
nature is given by gauge theories. Nevertheless intrinsic
difficulties arise in these theories at very high energies or
very short distances. Physics is not very well known in this
limit. This has lead to the idea of modifying the structure
of spacetime at very short distances and to introduce un-
certainty relations for the coordinates to provide a natural
cut-off (for reviews of this wide field see [1,2]). It is expected
that gauge theories still play a vital role in this regime.

We expect especially interesting new features of gauge
field theories formulated on spaces with a deformed space-
time symmetry. Here we concentrate on the x-deformed
Poincaré algebra (introduced in [3-5]!). The spacetime
which is covariant with respect to this deformed symmetry
algebra is called the x-deformed quantum space.

In a previous paper [6] deformed field theories on a
k-deformed quantum space have been constructed. The
techniques necessary for such a construction have been
thoroughly discussed there. In this paper we show how the
deformation concept can be applied to a gauge field the-
ory. We construct deformed gauge theories for arbitrary
compact Lie groups. “Deformed” does not mean that the
Lie groups will be deformed, however, the transformation
parameters will depend on the elements of the x-deformed
coordinate space. This implies that Lie algebra gauge trans-
formations are generalized to enveloping algebra-valued
gauge transformations.

e-mail: dmarija@theorie.physik.uni-muenchen.de
e-mail: meyerf@theorie.physik.uni-muenchen.de

e-mail: lmoeller@theorie.physik.uni-muenchen.de
e-mail: wess@theorie.physik.uni-muenchen.de

! For additional references concerning this model see [6].
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This is possible by making use of the Seiberg Witten
map [7-9]. This is a map that allows one to express all
elements of the non-commutative gauge theory by their
commutative analogs. It follows that a deformed gauge
theory can be constructed with exactly the same number
of fields (gauge fields, matter fields) as the standard gauge
theory on undeformed space.

Of special interest is the interplay of the gauge
transformations with the x-deformed Lorentz transforma-
tions. Gauge theories are based on the concept of covariant
derivatives constructed with gauge fields. Covariance now
refers both to the gauge transformations and to the -
Lorentz transformations.

Theories like the one presented here can be used to
deform the standard model (compare with the approach
in [10,11]). For example, new coupling terms in the La-
grangian arise. This has experimental consequences and
the model can be tested phenomenologically. We exhibit
these terms for an arbitrary gauge group to first order in
the deformation parameter. These models should be under-
stood in such an expansion; it renders an infrared cutoff.
We do not assume that these models should be used to
describe physics at large distances.

To obtain phenomenologically interesting results we de-
velop the theory on a space-like k-deformed spacetime with
Minkowski signature (in [6] x-deformed Euclidean space-
time was discussed).

This paper is organized as follows: In the first sec-
tion we present a compilation of all relevant formulae for
r-Minkowski spacetime. To derive and understand these
formulae, [6] is essential. In the second section we inves-
tigate covariant derivatives for enveloping algebra-valued
gauge transformations. Attention is given to the k-Lorentz
covariance as well as to gauge covariance. For this purpose
the enveloping algebra-valued gauge formalism is devel-
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oped and the transformation property of the gauge field is
derived. This leads to the new concept of derivative-valued
gauge fields. The field strength tensors, defined by commu-
tators of covariant derivatives, are derivative dependent as
well. We expand them in terms of covariant derivatives and
show that each expansion coefficient is a tensor by itself; we
call them torsion-like tensors. The derivative-independent
term is a deformation of F,?V and is used in the construction
of Lagrangians.

In the third section we construct the Seiberg—Witten
map. We use the x-product formalism and expand in the
deformation parameter. All gauge and matter fields of the
deformed theory can be expressed in terms of the standard
Lie algebra gauge fields and the standard matter fields.
This allows for the construction of a Lagrangian in terms
of the standard fields.

In the fourth section we discuss the interplay of k-
Lorentz and gauge transformations. We show that gauge
transformations and k-Lorentz transformations commute
and that the k-Lorentz transformed gauge transformation
reproduces again the algebra. This can be implemented in
a more abstract setting, but we discuss this issue explicitly
in order to become familiar with the comultiplication rules
and their consequences.

2 The x-Minkowski space

In a previous paper we discussed the k-Euclidean space [6]
(introduced in [3,4]) and argued that the generalization to
a Minkowski version is straightforward. We introduce here
this space-like k-deformed Minkowski spacetime, which is
more interesting for phenomenological applications. First
we present the relevant formulae.

Coordinate space

We start from the same algebra as in [6]:

[@*,2"] = i(a"3” — a”3"), vy =0,1,....n, (1)
but the metric ¥ = diag(1,—1,...,—1) and its inverse
are used to raise and lower indices. Space-like deformation
will be achieved by assuming a* to be space-like. The n-
direction is rotated in the direction of a”, a" = a, @’ =
0. We label the n commuting coordinates with z* (i =
0,...,n — 1) as opposed to ™ and obtain the following
commutation relations:

[&",47] =iaz?, [,49]=0, i,j=0,1,...,n—1. (2)
The parameter a is related to the frequently used param-
eter k:

3)

1
a=—.
K
The k-deformed Lorentz algebra

The formulae for the transformation of the spacetime coor-
dinates are the same as for the Euclidean space, replacing

M. Dimitrijevié et al.: Gauge theories on the k-Minkowski spacetime

6" with n*¥ and paying attention to upper and lower in-
dices:

[M,34) = i — i,
(M, &4 = &t — 8" + M, (4)
1 =0,1,...,n. These relations are consistent with the al-

gebra (2) and they lead to the undeformed algebra relations
of the generators M*" of the Lorentz algebra so(1,n):

[]\/[;u/’ ]\Jﬁd] — 77;1,0]\’[1//) + T]Vp]\/[y,o _ 77;1,/7]\'11/0 _ ,,71/0]\/[;1/)_

(5)
As in [6], this is again the undeformed algebra [5]. How-
ever, the generators act in a deformed way on products of
functions (i.e. they have a deformed coproduct)

MY(f-g) = (MYf)- g+ f - (M7g),
M (f-g) = (M7 f)- g+ (@ f)- (M) (6)
+ia(Df) - (M*g).
In this paper we adopt the convention that over double

Latin indices should be summed from 0 to n — 1 and over
double Greek from 0 to n.

2.1 Derivatives

We introduce derivatives in such a way that they are con-
sistent with (2):

[énv ) =mnt,
[0:,34] = " — ian""d;. (7)

Derivatives naturally carry a lower index. It is possible to
derive from (7) the Leibniz rule (i.e. the coproduct):

>

: (én{:’)
(" f) - (9:). 8)

The derivatives are a k-Lorentz algebra module:

O (f-9)=(0uf) -3

[]\Jijs é}t] = Ujuéi - ni,téj,

(M, 0,] = 0", 9)
in A ce¥edn 1 g oo s
(M 0]'] = Ulj %ia - 57’]1]-0101 +ia0"0;.

The part of M*” that acts on the coordinates and deriva-
tives can be expressed in terms of the coordinates and
the derivatives:

NI — 50— 99,
. ] _ o2iad, SRS P
M= Iiia e gml . (10)
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Dirac operator The derivatives
The k-deformed Dirac operator has the components: Onf(x) = Onf(z),
. . . eiaan -1 .
D, = %sin(a@n) — galﬁle’iaa", 95 f(z) = Wdt f@) (16)
N — éiefiaa (11) have the Leibniz rule
[M", D,] =", D — 1, D”. (12) O (f(z) * g(2))
It can be seen as a derivative as well and satisfies the = (Ouf (@) g(x) + f (@) x (Frg(x)),
Leibniz rule: 5 (f(x) * g(z)) (17)
Do(f-§) = (Duf) - (€799 9) + (€% f) - (Do) = (97 f(2)) % g(x) + (€% f(2)) » (9] g(x)) .
—1a(f)zo‘“é" f) (D), (13)  The Dirac operator
Di(f-9) = (Bif) - (7 05) + - (Dig). D) = (& sngann) 8 10,01 1o,
That the Dirac operator really acts as a derivative fol- iad,, "
lows from the commutation relations, when we expand the D f(z) = ¢ — 1 Oif(x) (18)
square root: ! —iad,
[ D, #] = —ia i, has the following Leibniz rule:
N — D (f(x)*g(z
[Dy,&"] = /14 a?D*D,,, ( (* ) *9()) o o X
= (D f(@)) » (e g(x)) + (% f () % (D;g())
D,il] = 0, (—iaDn + /1 + a2Di T N .
e ) e o e
[Di,#"] = 0. Di(f(z)* g(x))
= (D; f(2)) % (e “%ng(z)) + f(x) x (Dig(x)).  (19)
*-product

In the *-product formulation (explained in detail in [6])
all the elements of the coordinate algebra can be realized
as functions of commuting variables. Derivatives and the
k-Lorentz algebra generators can be realized in terms of
commuting variables and derivatives. On the %-product of
functions they act with their comultiplication rules without
seeing the z and derivative dependence of the x-product.

Here we present for convenience a compilation of the
relevant formulae used in the rest of this paper.

The x-Minkowski spacetime (2) can be considered as
a Lie algebra with CY” = a(n*,n% — n%,n") as structure
constants. These structure constants appear also in the
expansion of the symmetric x-product:

f*g(x)

= lim eXp( O 9, ® 0,

- %ﬁcg”(z}naﬂ ® 0y — 0, ©0ndy) + .. )
xf(y) ® g(2)

= f(x)g(z) + f:v](f?nf( )9;9(x) — 9; f(2)0ng(x))
o (15)

The generators of k-Lorentz transformations, acting on
coordinates and derivatives,

M f(z) (20)

1(16,1 -1

— [ i _ " i i ;17
(LB 0" +2'0,0 %,

y o o @0n + (el — 1)
+ 20,0 T ar I (@),
M4 f(z) = (2'0" — 279" f(x),

have the following coproduct:
M (f(2) > g(x))
= (M () % gla) + (475 () ) 5 (M "g())

+ia (05 f(x)) x (M*9g(x)),
M7 (f(x) x g(x))
= (M*7f(z)) x g(x) + f(z) x (M g(z)). (21)

Thus, the entire calculus developed in the abstract algebra
can be formulated in the x-product setting. For applications
in physics this is of advantage because functions of com-
muting variables x are suitable representations of physical
objects like fields.
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3 Covariant derivatives

Gauge theories will be formulated with the help of co-
variant derivatives. We shall demand covariance under the
k-Lorentz algebra as well as covariance under the gauge
group. Gauge fields have to be vector fields that transform
like the Dirac operator under the deformed Lorentz algebra
to render a covariant theory.

k-Lorentz covariance

We start from the definition of a scalar field. In an un-
deformed theory this would be ¢/(z') = ¢(z). For non-
commuting variables we try however to avoid #’. Note that

Y £ (1 + eﬂ,,,]vf“'”)i“i”. (22)
Therefore we replace ¢/ (#') with (1 +eWJ\7[W)¢’(i), where
M acts on the coordinates and the derivatives and has

been defined in (10). The defining equation for a scalar
field will take the form

(1+ € M™)§' (2) = 6(2), (23)
with the immediate consequence
(&) = B2) — e MM (). (24)

To compute the transformation law of a derivative of a
scalar field we calculate (1€, M*”)D,¢' (&) that replaces

D¢/ (&"):
(1 + €., M"™)D, ¢ (&) (25)
= Dp(1 + € M"™)§ (&) + €, [M*, D,|¢' (2)

= Dpd(@) + e (", D" — 1, D") ().

We have used (23) to obtain this result and the fact that
the second part on the right-hand side is already e-linear.

The transformation law of a derivative of a scalar field
is used to define the transformation law of a vector field:

(1+ € M)V () = V() + e (', V' =1, V). (26)

Thus, the derivative

S
I
S

(27)

is k-Lorentz covariant.

Gauge covariant derivatives

Gauge theories are based on a gauge group. This is a com-
pact Lie group with generators 7%:

[T, T = ife® T°. (28)

M. Dimitrijevié et al.: Gauge theories on the k-Minkowski spacetime

Fields are supposed to span linear representations of this
group. Infinitesimal transformations with constant param-
eters o are

dotp = ia),

ai=Y 0T =a I (29)
a

Asusual, a is Lie algebra-valued and the commutator of two
such transformations closes into a Lie algebra-valued trans-
formation:

(6005 —030a)0 = [, Bl = 1aaBpf " T = baxpti. (30)

The symbol a x 3 is defined by this equation and it is
independent of the representation of the generators 7.

We generalize the gauge transformations (29) by consid-
ering -dependent parameters ¢, (). Whereas for commut-
ing coordinates Lie algebra-valued transformations close in
the Lie algebra, this will not be true for non-commuting co-
ordinates. This effect of non-commutativity leads to a gen-
eralization of Lie algebra-valued gauge transformations |8,
9.

There are exactly two representation-independent con-
cepts based on the commutation relations (28). These are
the Lie algebra and the enveloping algebra. The envelop-
ing algebra of the Lie algebra is defined as the free algebra
generated by the elements 7% and then divided by the ideal
generated by the commutation relations (28). It is infinite-
dimensional and consists of all the (abstract) products of
the generators modulo the relations (28)2. Two elements of
the enveloping algebra are identified if they can be trans-
formed into each other by the use of the commutation
relations (28).

A basis can be chosen for the enveloping algebra; we
use the symmetrized products as such a basis and denote
elements of the basis with colons:

(T =T9,
1
(10T = E(T“T" +T°T%), (31)
ST T = ?1' > (et roten),
T oes;

Any formal product of the generators can be expressed in
the above basis by using the commutation relations (28),

e.g.

1 1 i
TOT = AT T} + ST T =TT 45 f, 2 70
(32)
The new concept is to allow gauge transformations that
are enveloping algebra-valued:

o0
/i{a}(i) = Z Z “le...nl (@) :T™ ... T": (33)
I=1 basis
=qq(2): T": +a¢211a2 (TUT? L

2 Note that the product is not the matrix product of the
generators in a particular representation.
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With this definition we write this generalized transforma-
tion law as follows:

1oyt (&) = 10y (2)1(2),

where {a} denotes the set of the coefficient functions. It
is clear that the commutator of two enveloping algebra-
valued transformations will be enveloping algebra-valued
again. The price we have to pay are the infinitely many
parameters {a}. This is too expensive. But in the next
chapter we will get a price reduction. We will find in the
next section that we may define the enveloping algebra-
valued transformation such that there will only be as many
independent parameters as there are in the Lie algebra-
valued case. Therefore it is worthwhile to pursue this idea.

It can be seen that under these generalized gauge trans-
formations a covariant derivative

Stay (Duth(@) = 1oy (@)D,(2)

(34)

(35)

has to become enveloping algebra-valued as well, by adding
an enveloping algebra-valued gauge field:

(T T (36)

Comparing with (27), the gauge field V,, has to be a vec-
tor field under x-Lorentz transformations. Therefore each
gauge field ‘/lfrﬂzl---ﬂl has to transform vector-like to guar-
antee (26).

A new feature arises due to the deformed coproducts
(13) of the Dirac operator which we used to define the
covariant derivative. We write (35) more explicitly:

= iAoy (2)(Dy = iV, )0(). (37)

Both D,, and D; act in a non-trivial way on products of
functions. For example, (35) will be satisfied for D; if
(Sray Vi) = (DiAgay)e 90 —i[V, Aoy Jib. (38)

If we want to use this formula in such a way that it is

independent of 1, we see from (38) that the gauge field has

to be derivative-valued. Only then the transformation
S(ay Vi = (Diday)e 9 — iV, Aoy, (39)

will lead to (35). For Vj, we can proceed in the same way
and find

5{(1}‘/” = (bn/i{a})eiiaé" + ((eiaé" — I)A{a}> ﬁn

121

—ia(D;e " Ag)) D —i[Vy, Apy]. (40)

The gauge fields have to be derivative-valued to accommo-
date the first three terms on the right-hand side of (40)
(first term on the right-hand side of (39)). That the gauge
fields appear as derivative-valued is a new feature and is a
direct consequence of the coproduct rules. We will discuss
more details in the next section.
The commutator of two covariant derivatives defines a
covariantly transforming object:
Fuw =1[D,,, Dy]. (41)

It will be enveloping algebra- and derivative-valued as it is
the case for the gauge field. Its transformation properties
are tensor-like:

e Futh = Oy Fu V0 + Fuubgar ¥ (42)
From the definition of the covariant derivative follows
Sy Funth = iAay Fruth (43)
= i(/i{a}]:—;w - ]:—/w/i{a})iz) + ij}/tu/i{a}i/l

Comparing this with (42) and (34) shows the covariant
transformation property of F,,:

Stay Fw = ilA(ay. Fr)- (44)

The tensor .7:',“, is derivative-valued. Instead of expanding
it in terms of the derivatives Ef)l“ we can expand it in terms
of covariant derivatives D,.

First we express O, by ﬁ“, [6]:

emiadn — —iaD, + V1+ azﬁﬂf)l‘z

Next we replace D, by D, and subtract the additional
terms introduced that way:

(45)

D, =D, +iV,. (46)
Each V;, will be derivative-valued again, but each derivative
carries a factor a and thus contributes to the next order
in a. To first order in a we obtain from (45) and (46):

e 51 _iad, =1—iaD,

=1- ia@n + aVn.

To lowest order in a (compare with (40)), V;, is not deriva-
tive-valued and contributes to the term in .7:",“, that has no
derivatives. Finally we arrive at the expression

Fuw = Fuw + T3, Dp+ o+ T 2Dy Dy 41
(47)
The colons denote a basis in the free algebra of covariant
derivatives. To each finite order in a this expansion will
have a finite number of terms. The individual terms will
transform like tensors as well:

-7:-;11/ - l[j{a} ) -7:-;1,1/]
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= i[Afay. Fu] +il4(ay, T2, Dy (48)

oot i[Apay TP i Dpy oDy i -

When we apply this to a field ¢ we find as before in (42)
to (44)

6{‘1}F‘lw = 1[/1{0}7 ﬁ}tu]7 (49)
Sy T = i Agay, T "). (50)

Thus, .7:',W can be expanded in terms of a full series
of derivative-independent tensors. For the dynamics (La-
grangian) we are only going to use the curvature-like term
FW, It transforms like a tensor and reduces to the usual
field strength F, S,, for a — 0. To first order we get one

torsion-like contribution T[Zu-

4 Seiberg—Witten map

In the previous chapter we saw that an enveloping algebra-
valued gauge transformation depends on an infinite set of
parameters. The same is true for the enveloping algebra-
valued gauge field; it depends on an infinite set of vector
fields. This gauge theory would feature an infinite number
of independent degrees of freedom.

This unphysical situation can be avoided if we make the
additional assumption that the transformation parameters
A{ay depend on the usual, Lie algebra-valued gauge field
A, [7,8]. We will find that this dependence reduces the
infinite number of degrees of freedom of the deformed gauge
theory to the finite number of degrees of freedom of the
Lie algebra gauge theory.

To find this dependence, known as the Seiberg Witten
map, we start from the gauge transformation:

Sty =id(my 9. (51)

The condition that this is actually a gauge transforma-
tion reads

(61a3018y — 0(8101a})¥ = Sfaxsy¥- (52)

We now introduce A, as opposed to Ay, referring to so-

lutions of the Seiberg—Witten map. We have to replace all
parameters in (33) by

0, (8) = @, o, (1500(2), Ay (). (53)

The parameters are functions of z, the parameters a,(z) =
a} (z) and the gauge field A, (z) as well as of their deriva-
tives. Since we define that the non-commutative gauge
parameters have a functional dependence only on com-
muting variables, we have to use the x- product formalism.
We choose as a starting point [10]

Oat) = 1Ay x )  with

((5a5ﬂ - 535a)’l/) = (Saxﬁw. (54)

M. Dimitrijevié et al.: Gauge theories on the k-Minkowski spacetime

The Lie algebra-valued gauge field A?t (in the following
we omit all explicit dependence on coordinates x):

AD = Al () = AL ()T (55)
has the transformation property
6o A = dua —i[A), o, (56)

where a = a,(2)T® is Lie algebra-valued as well.

The gauge parameter A, depends on A?L and because
of (56) doAp is not zero. We take this into account when
we write (54) more explicitly

(6a5ﬂ - 5[35&)7/)
= (Aa * /1/3 — /1/3 * Aa) * 1)+ i(6aAﬂ — (SggAa) * 1
= 5a><ﬂ7/)-

That (57) has a solution can be seen on more general
grounds [12] (also [13 15]). Here we construct a solution
by a power series expansion in the deformation parameter a:

(58)

(57)

Ao =atadl +.. 4a" A% ...

In this paper we will consider only the first-order term
in a to make the formalism transparent. Assuming a to be
small, only the leading term will be of relevance for phe-
nomenological applications. We have however calculated
all quantities also to second order and have checked the
validity of the statements made here.

We expand (57) to first order in a:

A AL+ ALAG + AD * Aoy — ARAL (59)

= ApAg = A * Agloq) +i(Gadh — 5540) = idaxs,

or, using A% = a, A% = [ and the explicit form of the
*-product,

o, 4]+ [44, 8] + 52> CL{9,0,0, B}

Hi(Badh — 6 AL) =14k, 4. (60)
To first order in a the non-commutative structure con-
tributes a term from the x-product, which forbids A}, equal
zero. Equation (60) is an inhomogeneous linear equation
in AL, with the solution
1 .
AL = jx*cf”{Ag,dy al, (61)
where C{" are the structure constants of the coordinate
algebra. More explicitly this is
1_ 2 0 0
AL = fo ({Aj, o} — {A%,0,0}) . (62)
This solution is hermitean for real fields Aga(z) and real
parameters o, (z). That this specific solution of the inho-
mogeneous equation is not unique and that it is possible
to add to it solutions of the homogeneous equation

[, AR] + [Ag, B +i(Ba Al — 0544) =idgg  (63)
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has been discussed thoroughly in many places (e.g. [10,15]).
There are no new aspects to this question in first order in
a in this particular model.

With a solution for AL at our disposition, it is possible
to express a “matter” field ¢ (i.e. field in the fundamental
representation) in terms of Aﬁ and a matter field ¢° of the
standard gauge theory

Sah® = ion)?.

Up to first order in a, (54) is solved by

1 .
¥ =10 — S LAY + gz*cf”[Aﬁ, A%y, (65)
The same way as we express 1) in terms of Ag and 10, we
can define the Seiberg Witten map for gauge fields (they
are in the adjoint representation of the enveloping algebra).
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1 v
—{40, 0}, (71)
"o . 7 0

T/ = ~2ian, FY, (72)

_ 0 10000

Fnj - Fnj - ED“ F‘/Lj

(64) 1 A 2 0 0 0 770 0
+ Z‘r Cﬁj (Q{F;JTHFV]'} + {D;LFnﬁAu}
0 0
—{A),. 0,F;}), (73)
Tf:j = 7ian’”Fl(} - ian’ﬁLFSy (74)
These quantities transform covariantly:

60Ew = I[Aa ’; -F;WL (75)
601—}7}/ = i[A(l ? T}’f}/} (76)

When we derived the respective formulae in the previous
section, we discovered that the gauge fields have to be
derivative-valued. Therefore we have to discuss solutions
of the Seiberg Witten map for the following relations:

0o Vi = (DF Ay)e™199n —i[V; * A,], (66)
and
0aVa = (D} da)e 1% + (€% —1)Aa) D,
—ia(D}e% Aq) DT —i[V;, % Aq]. (67)

It is technically not simple to solve these two equations
(especially since the second one is a sum of several terms
with different dependence on derivatives), but conceptually
there are no further problems. Without going into details
we present the solution up to first order in a:

Vi = A — 1aA%9, — %anA? - %{A%,A?}

1 v
+ 5 Y (B AV} = (A

_ A0 i A0 1a 0j _ @ 40405
Vn_AnflaAJ@jfEajAffiAjA]

A)} —{40,0,40}) . (69)

pn?

1
+Zx>‘C’§\“' ({F°

Here F), = 0,A) — 0, A%, —i[A,, AJ] is the field strength
of the undeformed gauge theory. We emphasize the depen-
dence on derivatives in the terms A9, and A%9;.

From the covariant derivative D, = D}, — iV, we can
calculate F,, = i[D,, * D,] to first order in a. As dis-
cussed in the previous section, it will be of first order in
the derivatives, the sum of a curvature-like term and a
torsion-like term:

Fuv = Fyw + T, D, (70)

The result is (up to first order in a)

_ 0 _ 10 10
Fij = Fij —iaD, Fi;

Now we have all the ingredients to construct to first order
in a a gauge theory based on the non-commutative spaces
defined by (1) in terms of the usual fields A and 7.

The dynamics of the gauge field can be formulated with
the tensor F*

Leange = ¢ Tt (F* * Fj). (77)
Note, however, that Tr (FW*F /“’) is not invariant because
the coordinates do not commute. The Lagrangian Lgauge
will render an action gauge invariant if it is formulated with
an integral with the trace property®. The trace will also
depend on the representation of the generators T* because
higher products of the generators will enter through the
enveloping algebra (for a detailed discussion of this issue,
see [17]).

To first order in a, when written in terms of A%, we
obtain the following expression for the gauge part of the
Lagrangian (choosing in analogy to the undeformed theory
c=-1)

i
Lgauge'@(u) = 7§I/\C§a

x Tx (DYFDIFY, + 5 {AD, (9, + DY) (FFL,)}

—i{F {F,. Foo 1Y) (78)
ia v ;

+ZT‘I' (DEL(FOM F‘;?u) - {D?LFO”]!FSJ}) s

where DY = 8, — iA), (or adjoint DY)- = 9, - —i[A], -]
acting on FC ). Cyeclicity of the trace allows for several

nv
simplifications on the terms on the right-hand side.

3 To attain the trace property, a measure function can be
introduced (compare [6]). Since the measure function does in
general not vanish in the limit a — 0, it should be compensated
without spoiling the gauge invariance of the action. This is
possible, leading however to additional first-order terms in the
action (compare e.g. [16]).
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The matter part of the theory will be the gauge covariant
version of the free Lagrangian as it was developed in [6]

L"matter = 7/; * (i"/”D;L - 772') 1/1 (79)

To first order in a, when written in terms of Ag and
0, we obtain

i 00 .
Lunatter|o(a) = 51"0,’,’01721/)0 DY (i D) — m) 3°

L o 0 70 0,10
— 32 OO B, DRy (50)

a - a - .
+§'1/)07JD2D?1/;0 + 51/107"D?D°J'z/)°.

These are the Lagrangians which define the dynamics
on the k-deformed Minkowski space.

5 Gauge transformations
and the k-Lorentz algebra

Our concept of gauge transformations on non-commutative
spaces rests on the Seiberg—Witten map. With the help
of this map gauge transformations can be realized in the
enveloping algebra of the Lie algebra

¢/ :¢+6a¢ = ¢+1Aa*¢
(60613 - 6ﬁ6a)¢ = axﬂ¢~
To find such a realization it turned out to be necessary that
A, depends on the standard Lie algebra-valued gauge field

Ag and its derivatives. Therefore under a gauge transfor-
mation A, will transform as well and (81) leads to

(81)

with

i(éaA,@ — 6ﬁAa) * ¢+ (AQ *Aﬁ — Aﬁ *Aa) * ¢
= o 6. (s2)

In this section we want to see how these equations behave
under the k-deformed Lorentz transformations. Only M™**™
has a deformed coproduct rule (compare with (21)):

M (f % g)
_ (M*mf) xg+ (eia(’“):f> * (M*ing)
Ha (97f) x (M™g) (83)

and therefore we will restrict our discussion to N, = ¢; M,
A scalar field transforms as follows:

b=¢—- N,

where N acts on the coordinates; compare with (23). This
transformation can be inverted, to first order in e:

¢p=¢+ N6

We assume that A, transforms like a scalar field.

(84)

(85)
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First we compute ¢/, by applying (84) to (81):

¢ =¢+ilaxd— (NI§) —iN (Ag*¢).  (86)

For evaluating the last term in (86), the coproduct (83)
has to be used. -
Next we compute ¢’ by applying (81) to (84):

' =¢— (NI¢) +ida ¢ —iN] (Ao * ¢). (87)

This shows that the two transformations commute. When
we use (85), the gauge transformation (86) can be written
as a gauge transformation on ¢:

Sad = iAaxd+idgx (NG) —iN (Ag*d).  (88)
We draw the commuting diagram to illustrate the result
¢
€l le
-5 d=¢".

(89)

The gauge transformations on é the r-Lorentz trans-
formed scalar field — is now defined by (88). It remains to
be shown that (88) realizes the gauge group as well:

((50(5,3 - 5}3504)&7 = 5a><[3(£- (90)

Tt is casier to compute 38,6 from (87) and to use (81). We
make use of (83) and after some rearrangements we obtain

(0560 — 6adp)®
= (i(0pAa — Sadp) — (Aa* Ag — Ag % Ad)) % ¢
-N? (i(‘sﬁAa - 604/1/3)
—(Aa*Ag — Ag* Aa)) *x &
—el99n (i(85 40 — 0adp)
—(Ag* Ag — Ag % A)) * N2 &
+iad7 (i(8pAa — 6adg)
— (Agx Ay — Ay % Ay)) x e, MY p.

(91)

We use the condition (82) again and obtain the result (90).
This demonstrates that (88) is a gauge transformation.

It is also possible to verify the result (90) by a direct
calculation. We start with the solution of the Seiberg—
Witten map (62)

8, a} + 0(a?)

w

Ay = a— iz)‘Céf’”{AO
=t a+ AL +0(d?) (92)

and (65)
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1
¢ = ¢ — F7"C 40,60
+ STCLT[AD, AY]¢" + O(a?)

— 6+ 6+ 0a?). (93)

We first apply M*™ to (93) and gauge transform the
undeformed fields afterwards. This has to be equal to M*"
applied to d,¢ = i, * ¢ up to first order in a. Applying
M*™ on 6,¢, the coproduct (83) has to be taken into
account and we obtain

M (Ag * )
_ (]\/[*in/la) *p+ (eiaf):/la) * (]\/[*in(b)
+ia (95 A) * (MY*).

(94)

To write this explicitly to first order we need the opera-
tors (21) expanded up to first order in a:

MM = gign — i 4 %‘lziaﬂ,a“ - %aw“aﬂrai
= My™ + My (%5)
and
M = 2] — 219 = MP” . (%)
Now we obtain from (94):

MY (Ao 9)|o(a)

. . 1 .
= i(M{"a)$? +ia(M7™¢") — ixﬂcgf’a,,(zug“la)am"

- %‘T”Cﬁ”aﬂ@o(MJi%O) + (M) gt (97)
(Mg GY) + (Mg AL)6° + 1AL (Mg ")
— aaa(M6°) — adja (M 4°).
Notice that
Sa(Mg™ ") (98)

— Mg <%zﬂrc;;0@paag¢° +ag! + A;¢0> :

since ¢! was constructed as solution for the Seiberg Witten
map (65). Besides it can be shown by direct calculation that
M7 (0)g” + ia M (¢°) (99)
=iM{ " (a¢®) — ax?9,00" " + gx“(‘)“,a(‘)“d)o
+ g at Biaaﬂgﬁo

as well as that

125
1 W po *ETL 0 1 W po *in 0

— 32 Cl70py(Mg"" )05 9" — 3¢ Cl70pa0, (M ¢")

= M (%xﬂc;;aapa@w) + %Mgi" (z")C170,a0,0°

1 ] .
- 5;5/"050 (0,(MZ™)()05¢° + 0pads (MG ¢0)) ,
(100)

where 8,(Mg™")(a) := nid"a — nrd'a. Then (98), (99)
and (100) yield

M (Ao * )l o(a)
= 8o (M °) + 00 (Mg ")

—az'9,a0"¢° + gx“’(?uaaid)o

) 1 )
+gxﬂamaﬂ,¢° + 5 Mg (@) Ch 000,60 (101)

1 . i
— 5;;c"cg” (9o (M§™)() 06 ¢” + 0,00, (MG ")) .

Calculation shows that the last terms on the right-hand
side all cancel and we end up with

(M*"3ad)|og@) = 0a(My™¢%) + 8a(Mg™¢t) . (102)
Hence we showed explicitly up to first order in a that (90)
is true.
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ABSTRACT

This contribution is based on talks given by Frank Meyer (Section 1) and Mar-
ijja Dimitrijevié (Section 2). In the first section we review the basic concepts of
deformed spaces and deformed symmetries. We discuss general features of dif-
ferential calculi, introduce the star-product and star-product representations of
differential operators. As examples we treat the canonically deformed space and
the k-deformed space. In the second section we study gauge theories on deformed
spaces. Special attention is given to gauge theory the on k-deformed space (which
was introduced as an example in the first part). Nevertheless, the analysis is done
in a rather general way such that it could also be applied to the other deformed
spaces.

1. Deformed Spaces and Symmetries

1.1. Deformed Spaces

In gauge theories one usually considers differential space-time manifolds and
fibers that admit a representation of a Lie-group. In the noncommutative
realm, the notion of a point is no longer well-defined and we have to give up

* The two talks given by the authors are based on common work with Larisa Jonke,
Lutz Méller, Efrossini Tsouchnika, Julius Wess and Michael Wohlgenannt [1].

T e-mail address: dmarija@theorie.physik.uni-muenchen.de.
! e-mail address: meyerf@theorie.physik.uni-muenchen.de .
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the concept of differentiable manifolds. However, the space of functions on
a manifold is an algebra. A generalization of this algebra can be considered
in the noncommutative case. We take the algebra freely generated by the
noncommutative coordinates Z#, u = 0...n, which respect commutation
relations of the type

[, 2"] = C* (%) # 0. (1)

Mathematically this means that we take the space of formal power series in
the coordinates # and divide by the ideal generated by the above relations

[2]:
Az = C((2°,..., &™) /([a",3"] — C* ().

This we call a deformed coordinate space.

The function C*(z) is unknown. It should be a function that vanishes at
large distances where we experience the commutative world and may be
determined by experiments. Nevertheless, one can consider a power-series
expansion

CH (&) = i 0" + Ok 3P + (qREY — §U01) P37 + ...,

where 017 C4" and q Rh, are constants, and study cases where the com-
mutation relations are constant, linear or quadratic in the coordinates. At
very short distances those cases provide a reasonable approximation for
CH* (%) and lead to the following three structures which are of particular

interest since they satisfy the so-called Poincare-Birkhoff-Witt property !

1. Canonical structure:

[ZH, 2" = 10", (2)
2. Lie algebra structure:
[2#,2"] =iChV3P. (3)
3. Quantum Space structure:
FhEY = q RbY 030, (4)

1.2. Symmetries on Deformed Spaces

In general the commutation relations (1) are not covariant with respect to
undeformed symmetries. For example the canonical commutation relations
(2) break Lorentz symmetry.

Then the question naturally arises whether we can deform the symmetry
in such a way that it is consistent with the deformed space and that it

! The PBW-property states that the space of polynomials in noncommutative coor-
dinates of a given degree is isomorphic to the space of polynomials in the commutative
coordinates.
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reduces to the undeformed symmetry in the commutative limit. The answer
is yes: Lie groups can be deformed in the category of Hopf algebras 2. The
generated objects are called Quantum Groups. To make this more explicit
we give two examples.

1.2.1. The Canonically Deformed Space
For a long time it was common belief that there does not exist a deformed
symmetry for the canonically deformed space. However, recently a quan-

tum group-symmetry was discovered [3] 3. Let us state the result without
deriving it:

9,,8,] = 0, 6. 0y) = D,
[5w7 :u] = Owxuw’ (w X w);;’/ = _(w,uaw/ay - W;L Jway)a
A, = D01+ 1®0d,, (5)

Ab, =0, @1 +1®6,+ % (0" w,f — 677w, )0, @ O,

Here the deformed generators of Lorentz-transformations are denoted by O
with constant transformation parameters w. Note that the algebra relations
are undeformed and the deformation takes place exclusively in the co-sector
of the Hopf-algebra. The coproduct Ad,* of &, contains §*¥-corrections. It
is interesting that the coproduct of d,, closes only in the Poincare-algebra
and not in the Lorentz-algebra. This may be the reason why this symmetry
remained undiscovered for such a long time. The consequences of this new
symmetry are part of future investigations by various groups.

1.2.2. x-deformed Space-time
As an example for the Lie structure we introduce the r-deformed space-

time °:

[2#,2"] =iChV3P, (6)
where Cﬁ\“’ = a(nphny —nk nf\L) and where we use the signature n#*¥ =
diag(1,—1,...,—1). In the following Latin indices always run from 0 to

n — 1 whereas Greek indices run from 0 to n. The commutation relations
(6) are covariant with respect to the rk-deformed Poincare algebra [6]. There
is a basis where the Lorentz-algebra remains again undeformed

(MM, MP7] = ' MYP P M7 — g P MY — MO, (T)

2To be more precise the algebra of functions on a Lie group can be deformed. Since
Lie groups themselves form a discrete set, a continuous deformation is not possible.

3 Actually, a deformed symmetry which is just the dual to the one given here was
already introduced some years ago in [4] but was basically unknown to the community
of physicists working in that field.

4The coproduct is a structure map of a Hopf algebra. It tells us how to act on a
product of functions.

5 The k-deformed space appears also naturally in the context of Doubly Special Rel-
ativity [5].
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but the commutators of derivatives with the generators MH*¥

(M., = nl, 0" — ', &,
[Mm7én] = éiv (8)
in 7 62mén 1 ta i AlA . AL A
[M™,0;] = 1 5ia —777]-81814—1@8@,
[0,,0,] = 0

and the co-algebra sector are deformed

AMY = M9 @1+10 MY,

AM™ — Mm@ 1 4 eiadn ® Mi™ +iady @ M*,
A(i = éi®1+€ia8"®(§i, (9)
ADp =0, 014+1®0,.

The generators M#*” and éu act as follows on the coordinates:
(M9, 3] = pigt — g,
(M 3H] = pPit — P e" +ia M™,
[éi, j#] = 775 - ia’n#néia [aATLa :%,U‘] = 775 . (]‘O)

Note that all the commutation relations reduce the classical relations in the
limit ¢ — O.

1.3. Differential Calculus

Derivatives are maps on the deformed coordinate space [7]

Such a map in particular has to map the ideal generated by the commu-

tation relations (1) into itself. If this is the case we say that the map 0
respects the commutation relations (1) or is compatible with them.

To find a suitable map it is convenient to make a general ansatz for the
commutator of a derivative and a coordinate:

(0, 3] =8+ Y AL 0,0, (11)
J

The coeflicient functions Azp 11 are of the order of the deformation pa-
rameter and vanish in the commutative limit. Requiring consistency of (11)
with the commutation relations of the deformed space leads to conditions
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. 14 o . o . .
on the coefficients Aﬂp1 7 In general a solution for those conditions is not
unique.

In the case of a canonically deformed space (1) one immediately verifies
that actually the undeformed differential calculus

[0,,,2"] == o (12)

is compatible with the commutation relations (1).

For the k-deformed space-time there exist several sets of differential calculi
which are all equivalent. The derivatives obtained by requiring that the
righthand side of (11) is at most linear in the derivatives are the ones
introduced above in Section 1.2. as part of the generators of the x-deformed
Poincare algebra. Of special interest is the following set of derivatives which
have a vector-like transformation property with respect to the x-deformed
Poincare symmetry. They will be used later on to establish a gauge theory
on the k-deformed space-time:

[M*, Dy] =1y D" —nfy D", (13)

where . )
D, = p sin(ady,) — % 0'0ye %, D; = e ", (14)

1.4. Towards a Physical Theory

So far we described how a deformed symmetry acts on a deformed space Aj;
and how we construct differential calculi. To get a physical theory which
makes predictions that can be checked by experiments we will express the
noncommutative theory in terms of the known commutative variables. This
means that the particle content does not change but the noncommutative
theory predicts new interactions [8]. This can be achieved by the following
two steps:

1. First we represent the abstract deformed space-time algebra Aj; on the
common algebra of commutative functions A, by a new product called
star-product (x-product) which is a deformation of the commutative
product of functions.

2. Then we express all noncommutative fields in terms of their commu-
tative counterparts by the Seiberg- Witten map (see Section 2.2.).

Using the results from the second step one can express the action of the
noncommutative theory in terms of commutative fields and using the star-
product from the first step we can expand this action in terms of the de-
formation parameter. The zeroth order gives back the commutative theory
and one can study corrections of it in higher orders of the deformation
parameter. Those two steps will be explained in a bit more detail in the
following sections.
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1.5. Star Product Approach

1.5.1. The Star Product

If the noncommutative algebra .Zx satisfies the PBW property (see the be-
ginning of this section), the vector space of noncommutative functions is
isomorphic (as a vector space) to the vector space of commutative func-

tions %. Let

— Az
fat) = f@")
be such an isomorphism of vector spaces.”
To render the vector space of commutative functions isomorphic as algebra

to ./Zz we just have to equip it with a new, noncommutative product. The
isomorphism p tells us how to define this new product which we call star-
product and which we denote with a *:

f(x)* g(x) = p~ (f(&) - §(2)). (15)

Again we want to give explicit examples. For the canonically deformed
space we have the well-known Moyal- Weyl product

frg=poe? 0 (fgg)
= fa+ 5 0" (0u1)(0u0) .. (16)

where u(f ® g) := fg is just the multiplication map. This star-product
corresponds to the symmetric ordering prescription.

For the k-deformed space-time we get the following more complicated ex-
pression from the symmetric ordering prescription:

—ia@zn
8” e*’iaayn 1 —€ i _ 1
Oy 1 — e—iadn

[ g(@) = lim exp <xjazj<

y—x

+ 270, (&ﬂ = 1) )f(Z)g(y)

ayn 1 — e~ tadn
= (@) gl@) + 5 CLAOuf)Bug) + . a7)

Both star-products start in zeroth order with the usual, commutative prod-
uct and are deformations of it.

61t is obvious that they are not isomorphic as algebras since one is a commutative
algebra and the other not.

7 This isomorphism is not unique and every isomorphism describes an ordering pre-
scription.
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1.5.2. The Star-Representation of Differential Operators

An operator O acting on .Zx can be represented by a differential operator
O* acting on commutative functions:
2 O  Apa
@) — O(f(%))
pt Lp™!
o* *
f@) — O*(f(x))

The star-representation of the derivatives éu for the canonically deformed
space defined in (12) is quite easy: The differential calculus in this case is

undeformed and we get
9y, = Oy (18)

In the case of k-deformed spaces things are more complicated. For instance,
the star-representation of the Dirac-derivatives introduced in (14) and their
Leibnitz-rules read:

Dif(@) = (- sinad,) — =L 50 (),
ef'iaan _
Dif@) = o ifa). (19)
DA(fa) xgla)) = (Df (@) x (e " g(a)
+ (€% f(@)) * (D3g(a) (20

—ia (D;ema"f(ac)> * (D"
Di(f(z)* g(x)) = (D f(x)) % (e “"g(x))

+ f(z) * (Dig(x)). (21)

We will see in the next section how the above star-representation of the

Dirac-derivatives will be used to establish a gauge theory on x-deformed
space-time.

9(z)),

2. Gauge Theory on Deformed Spaces

Gauge theories are based on a gauge group. This is a compact Lie group
with generators T

[T, T =i fo1°. (22)
Infinitesimal transformation of the matter field 1° is given by
5% (2) = i ax) VO (), (23)

where a(z) = a®(x) T is a Lie algebra-valued gauge parameter. Transfor-
mations (23) close in the algebra

0003 — 0800 = 0_; (6] (24)
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In this section we will generalize this concept to deformed spaces as well. We
choose to work in the x-product representation and define noncommutative
gauge transformations as

S = iAo *x (), (25)

where A, is the noncommutative gauge parameter and 1 is the noncom-
mutative matter field. Before proceeding to the standard construction of
a covariant derivative one should check if this transformations close in the
algebra (24). Explicit calculation gives

(Badp — 0300) (x) = (Ao x Ag — Mg x Ag) *
1
= 5 (1A% T ABHT" T + (ALt ABHT™TY)) . (26)

If we take A, = A2 T* that is a Lie algebra-valued gauge parameter,
algebra (24) will not close because of the first term in the last line of
(26) (anticommutator of two generators is no longer in the Lie algebra
of generators). There are two ways of solving this problem. One is to
consider only U (NN) gauge theories and that one we will not follow here. The
other one is to go to the enveloping algebra [9] approach and we continue
analysing this one.

2.1. Enveloping Algebra Approach

To start with, we define the basis in the enveloping algebra (we choose
symmetric ordering)

2T =T,
1
T = (T TP TVTY,
2T TN = l' Z(T"(al)_”TU(az))‘
l'O'ESl

Gauge parameter A, is said to be enveloping algebra-valued

Aa(z) =) agti(e) : T* ... T

[=1 basis

=a%(z): T+ o5 (x) : T T2 : +.... (27)

In this case algebra (24) will close since we work in the enveloping algebra.
Now one can proceed and define a covariant derivative D (z) = 9% (x) —
iV, %1 (z) by its transformation law

da(Dpp(x)) =i Ao * Dyip(x). (28)
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The choice of 9, will depend on the choice of a deformed space on which we

want to construct gauge theory. Since we are trying to keep the analysis as
general as possible we do not specify (yet) what is 9. The noncommutative

gauge field V,, has to be enveloping algebra-valued as well

V.= izvlialmaz T T

[=1 basis

From all this it looks like we have a theory with infinitely many degrees of
freedom. This is an unphysical situation and the solution of the problem
is given in terms of the Seiberg-Witten map [10].

2.2. Seiberg-Witten Map

The basic idea of this map is to suppose that the noncommutative gauge
parameter (field) can be expressed in terms of the commutative gauge pa-
rameter and field, for example A, = Ay (z; a,Ag). Then one uses (24) to
calculate explicitly this dependance. Inserting A, = Aq(2; v, AB) in (24)

gives®

(Ag * Ag — Aﬁ *No) *x )+ (5aA5 — (55Aa) * P =0_; [a,0] Y. (29)

What has been said up to now applies for a general deformed space since
we have not yet specified the %-product or the derivatives J;,. But the

equation (29) has to be solved perturbatively, therefore one has to expand
the x-product. Since we are mainly interested in the gauge theories on the
k-deformed space-time we use (17) and expand A, as

Ao =a+all +.. +a"AF +. ...
Up to first order in the deformation parameter a the solution of (29) is

1 v
Ao=a— YV { A, 9,0} . (30)

This solution is not unique, one can always add to it solutions of the ho-
mogeneous equation. Using (25) and solution for gauge parameter (30) one
finds solution for the noncommutative matter field as well

1 v i v
=0 — 3 2 CLY A 9,4 + 3 LY [AD, AD] ), (31)
where 9 is the commutative matter field, 5,° = i o 9)°.

If one compares *-products for the canonically deformed space (16) and
for the r-deformed space-time (17) one sees that up to first order in the

8 One should notice that now d.As # 0 because Ag depends on the commutative
gauge field A}, as well and 6o A), = Juar — i [A, a.
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deformation parameter they are of the same form (just replace 8" with
cy Y2*). Therefore it is not surprising that the solutions for A, and 1 in the
canonically deformed space can be obtained from (30) and (31) by replacing
C{"z* with 0" (and the other way around). However this analogy only

applies in first order, in second order new terms will appear in the -
deformed space-time compared to the canonically deformed space.

In order to solve the Seiberg-Witten map for the gauge field V), one first
has to choose 9;; derivatives. In the canonically deformed space 9;, = 9,

is the most natural choice. In the k-deformed space-time there are more
possibilities (see Section 1.3.). We choose Dj, derivatives because of their

vector-like transformation law (13). From D¢ = Djtp — iV}, % ¢ and
da(Dutp) =i Ao * Dytp
we get

(0aVi) * 9 = D}, (Ao *9) = Ao * (D)) + i [Aa T Vi] <
# (Do) x 0 +i[Aa ¥ V] x9.

The last line follows from the nontrivial Leibnitz rules for D}, derivatives
(20,21). In order to continue we split between n and j indices.
First we have a look at the j index.

(0aV;) %% = Di(Aa* ) — Ao x (D3) +i[Ag 3 Vi %00
= (DjAo) % e+ i[Ag 3 Vo] %0, (32)

where we have used (21). In order to solve this equation we have to allow
for V; to be derivative-valued, that is we make the following ansatz

Vi x1h = Aj % (e710nqp)

and insert it into (32). After using e (f % g) = (71 f) % (e71Ing)
and omitting e~"*%¢) we have

Jadj = (DiNa) +iAg* Aj — i Ajx (€799 A,) . (33)

This equation can be solved order by order in the deformation parameter.
The solution up to first order in a is

Vy = A) —iaA) 9, — 0,49 — T{A, A}

1 A v 0 0 0 0
+ ;K ({FM,AZ,} - {AanAj}). (34)
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For V,, one follows the same steps, using the Leibnitz rule for the D} deriva-
tive (20) this time. The solution up to first order in a is

. . 1a . a X
Vo = A —ia Y0, — 1 0;A% — 2 A0 4

1 A v 0 0 0 0
+ oK ({Fun,Ay} - {A”,aVAn}>. (35)

From (34) and (35) we see that besides being enveloping algebra-valued
(consequence of noncommutativity, that is x-product) the gauge field is
also derivative-valued. This is the consequence of special properties of k-
deformed space-time, more concretely of nontrivial Leibnitz rules for D},
derivatives.

For completeness we give here also the solution for V), in the canonically
deformed space

1 v
Vy =AY+ 0 ({ng, A0} — A9, 8,,A2}) . (36)

This solution is not derivative valued since au derivatives have undeformed
Leibnitz rule.

Having solutions of the Seiberg-Witten map at hand, one calculates the
field-strength tensor defined as

Fuw =1[D, 5D, (37)

Since the gauge field V), is derivative-valued 9 it is not surprising that
the field-strength tensor will also be derivative-valued. With a derivative-
valued field-strength tensor we do not know how to write down the action
for the gauge field. Therefore, we split the tensor ¥, into ”curvature-like”
and ”torsion-like” terms, like one usually does in gravity theories

Fuw =Fu +T5,Dp+ ... +Th " Dy ... Dyt + ... (38)

For the action we will only use the ”curvature-like” term F),, and ignore
all ”torsion-like” terms. With this we have all the ingredients to write
Lagrangian densites up to the first order in a, see [1].

2.3. Integral and the Action

To come from the Lagrangian densities to the action for noncommutative
gauge theory we need an integral. It should have the trace property

[tra=[avr. (39)

9 The following does not apply to the canonically deformed space since V, in not
derivative valued there.
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This is required by gauge invariance of the action for the gauge field and
can be used to formulate the variational principle. For the canonically
deformed space (39) is automatically fulfilled and the following analysis
is not needed there. Unfortunately, for x-deformed space-time (39) is not
fulfilled. The way to repair this is to introduce so-called measure function
p(x) such that

[t nte) (129) = [ @ uta) (g 1), (40)
From this request one gets conditions on p(z)

Onpi(x) =0, 270pu(r) = —np(z). (41)

This equation can be solved, however the solution is not unique. But this
is not the only problem. It turns out that the solution for u(x) is a inde-
pendent so it does not vanish in the limit a — 0. This means that it will
spoil the classical limit of the theory (equations of motion for example).
Also, because of its explicit z-dependence ! it will break the x-Poincaré
invariance of the integral.

On the other hand, one can construct an integral which is k-Poincaré in-
variant using quantum trace [11]. The problem with the integral obtained
that way is that it does not have the trace property, therefore it is not
convenient for analysing gauge theories.

So far there has not been a completely satisfactory answer to the question of
proper definition of the integral on x-deformed space-time. It appears that
one has to choose between having a gauge invariant theory or x-Poincaré
invariant theory. In the case of U(1) gauge theory we have been able to
write down the action using the first approach [12], but the analysis is still
far from being complete.
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1 Introduction

The aim of this work is to construct and investigate gauge theories on deformed space-
time structures that are defined by an associative but noncommutative product of C'*°
functions. Such products are known as star products; the best known is the Moyal-
Weyl product [1, 2]. In this letter we shall deal with this product exclusively.

From previous work [3, 4, 5] we know that the usual algebra of functions and the
algebra of vector fields can be represented by differential operators on the deformed
manifold. The deformed diffeomorphisms have been used to construct a deformed
theory of gravity. Here we shall show that along the same lines a deformed gauge
theory can be constructed as well. The algebra, based on a Lie algebra, will not
change but the comultiplication rule will. This leads to a deformed Hopf algebra. In
turn this gives rise to deformed gauge theories because the construction of a gauge
theory involves the Leibniz rule that is based on the comultiplication.

Covariant derivatives can be constructed by a connection. Different to a usual gauge
theory the connection cannot be Lie algebra valued. The construction of covariant
tensor fields (curvature or field strength) and of an invariant Lagrangian is completely
analogue to the undeformed case. Field equations can be derived and it can be shown
that they are consistent. This leads to conserved currents. It is for the first time that it
is seen that deformed symmetries also lead to conservation laws; note that the Noether
theorem is not directly applicable in the noncommutative context.

The deformed gauge theory has interesting new features. We start with a Lie(G)-
valued connection and show that twisted gauge transformations close in Lie(G), how-
ever consistency of the equation of motion requires the introduction of new vector
potentials so that the initial Lie(G)-valued connection becomes an hermitian matrix.
The number of these extra vector potentials is representation dependent but remains fi-
nite for finite dimensional representations. Concerning the interaction, the Lie algebra
valued fields and the new vector fields behave quite differently. The interaction of the
Lie algebra valued fields can be seen as a deformation of the usual gauge interactions;
for vanishing deformation parameters the interaction will be the interaction of a usual
gauge theory. The interactions of the new fields are deformations of a free field theory
for vector potentials; for vanishing deformation parameters the fields become free. As
the deformation parameters are supposed to be very small we conclude that the new
fields are practically dark with respect to the usual gauge interactions.

Finally we discuss the example of a SU(2) gauge group in the two dimensional
representation.

The treatment introduced here can be compared with previous ones. In [6] the non-
commutative gauge transformations for U(N) have an undeformed comultiplication.
The action is the same as in (4.19) if we restrict our discussion, valid for any compact
Lie group, to U (V) in the n-dimensional matrix representation. In other terms we show
that noncommutative U (V) gauge theories have usual noncommutative gauge trans-
formations and also twisted gauge transformations. In [7, 8, 9, 10, 11] the situation is
different because we consider field dependent transformation parameters.
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2 Algebraic formulation

A noncommutative coordinate space can be realized with the help of the Moyal-Weyl
product [1, 2]. On such a space we are going to construct gauge theories based on a
Lie algebra.

We start from the linear space of C* functions on a smooth manifold M, Fun(M).
To define an algebra Ay we shall use the associative but noncommutative Moyal-Weyl
product. The algebra defined with the usual, commutative point-wise product we refer
to as the algebra of C'*° functions.

The Moyal-Weyl product is defined as follows

fig9 € Fun(M)
frg = p{e2?"%%% f @ g} (2.1)
w{f®@gt=r-y,
where 07 = —0°” is z-independent. The x-product of two functions is a function again

[ : Fun(M) ® Fun(M) — Fun(M),
w{f ®@gt = fxg. (2.2)

Derivatives are linear maps on Fun(M)

Dp: Fun(M) — Fun(M),

f = 0,f. (2.3)
The Leibniz rule extends these maps to the usual algebra of C'*° functions
(0p(f - 9)) = (0pf) - g+ f - (0p9). (2.4)

This concept can be lifted to the algebra Ay [12]
dy [0 f=0,f
(f*9) = (O5f) * g+ [ *(9}9)- (2.5)

The last line is true because *” is z-independent.
Analogously to differential operators acting on the usual algebra of functions we
define differential operators on Ay

D s f=> d" x5 ... 05 f. (2.6)

This is well defined, x and J; always act on functions. The product of such differential
operators can be computed with the help of the Leibniz rule.
We can now define the x-product as the action of a bilinear differential operator

frg=m{F feg}, (2.7)
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with .
F = 2977000 (2.8)

This differential operator can be inverted
frg=pnl{F " fogh (2.9)
Equation (2.9) can also be written in the form [3]

fra= (S (= 1) 2o 0mon (90 ) 5,05 w0 (200

n!

Equation (2.10) shows that the point-wise product f - g can also be interpreted as the
*-action of a differential operator X;Z on g

f-9=Xjxg=(Xjxg), (2.11)
where
1 N . .
x;=% E( - 5) 0717 0P (D, D ) O, O (2.12)
n=0
From the associativity of the x-product follows immediately
f-g-h:X}*.g*h:X;*X;*h. (2.13)
The differential operators XJ*C represent the usual algebra of functions

XFx X} =X}, (2.14)

3 Gauge transformations
Ordinary gauge transformations are Lie algebra-valued

a(z) = a®(z)T*, [T* T = ifebTe. (3.1)
The gauge transformation of a field is

Oatp(x) = ia(x)(x) = ia®(x)T*(x), (3.2)
i.e. 00 =i - 1. This can be viewed as a x-action

doth = iX 0 x T = i X2 % 1h = i - 1p. (3.3)

When we deal with a gauge theory in physics we not only use the Lie algebra but also
the corresponding Hopf algebra obtained from the comultiplication rule

A(ba) (@ ®@Y) = (6a0) @Y + ¢ @ (da1)),
Abs) = 00 ® 1+ 1® b, (3.4)
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The transformation of the product of fields is

ba(@- V) = bap{d @ ¥} = pA(a) (P ®@ ). (3.5)

But there are different ways to extend a Lie algebra to a Hopf algebra. A convenient
way is by a twist F, that is a bilinear differential operator acting on a tensor product
of functions. A well known example is

F = e 20700 (3.6)

It satisfies all the requirements for a twist [13, 14] and therefore gives rise to a new
coproduct (twisted gauge transformations were also introduced in [15])

Ar () = FA(SL)F . (3.7)

This coproduct defines a new Hopf algebra, the Lie algebra is extended by the deriva-
tives, the comultiplication is deformed. This twist can also be used to deform Poincaré
transformations [16, 12, 17, 3] respectively diffeomorphisms [3, 4, 5]. In [18] gauge the-
ories consistent with twisted diffeomorphisms where constructed without deforming
the coproduct for gauge transformations.

We now look at the transformation law of products of fields based on the deformed
coproduct (3.7).

dal@ ) = mdAr(a) (0 @)}, (3.8)
where i, is defined in (2.2) and d, in (3.3). We obtain

balgx ) = iXz0  ((T°0) % ¥+ 6% (T) ). (3.9)

Note that the operator X2. is at the left of both terms, this is due to the coproduct
Az. Formula (3.9) is different from

da(p* ) = (0a0) x ¥ + ¢ % (3at)). (3.10)

It is exactly the requirement that the *-product of two fields should transform as (3.9)
that leads to the twist F. It is by the twisted coproduct that the x-product of fields
transforms like (3.3) again. The commutator of two gauge transformation closes in the

usual way o o R
0003 — 0300 = 5—i[a,6] . (3.11)

To construct an invariant Lagrangian we have to introduce covariant derivatives
Dytp = 0up — 1Ay * . (3.12)
From
bath = iX 0 % (T)
we find

ba(Dyt) = iX 30 * (T(Dyt)) (3.13)

4
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if we use the proper comultiplication for the term A, x 1 in the covariant derivative
and if the vector field transforms as follows

oA, = Qo+ iX 5 [T Al (3.14)
This can also be written in the familiar way:
daAy = O +ifa, Ay (3.15)

The transformation would take Lie algebra-valued objects to Lie algebra-valued ob-
jects. For reasons that will become clear in the following we will assume the hermitian
field A, to be n x n matrix valued where n is the dimension of the Lie algebra repre-
sentation. Formula (3.14) will still be true in that case.

The field-strength tensor can be obtained as usual

Fu =1i[D, % D,],
— 0,A, —0,A, —i[A, % A (3.16)

Using the deformed coproduct and the gauge variation of the potential we derive the
following transformation law,

ol = iXta* [T F) (3.17)

= ilo, .

4 Field equations

With the tensor F),,, and the covariant derivatives we can construct invariant La-
grangians. Starting from the usual invariant Lagrangians we replace the point-wise
product by the *-product and the comultiplication (3.5) with (3.7). We convince our-
selves that we can construct an invariant Lagrangian under the deformed Hopf algebra.
The expression F* x F),, transforms as follows

Ou(FH % F,) = iXta % [T FM % F,] (4.18)
= ila, F* % F].
This leads to an invariant and real action
Sy =c1 / d*a Te(F* % F). (4.19)
The integral introduced in (4.19) has the trace property

[t (reg) = [dar-9= [aolgep. (4.20)

Therefore we obtain the field equations by writing the varied field to the very left.
Varying with respect to the matrix algebra-valued field A, leads to the field equations

(") ap — i([Ap T F*)) 45 = 0. (4.21)
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Here A and B are matrix indices.
From the field equations and the antisymmetry of F* in p and v follows the
consistency requirement

Oy (il Au 1 F#)) = 0. (4.22)
To show (4.22) we have to use the equation of motion (4.21). We calculate
Op (A 3 F#0)) = il Ayt FH7] +i[Ay ¥ 0, ). (4.23)

In the second term we insert the field equation (4.21). In the first term we complete
0pA, to the tensor Fj,,, by adding and subtracting the respective terms. We then use

[Fup * F*] =0, (4.24)
and obtain

(i)? (i)? (i)
+ T[[Ap H Au} TFW] + T[Au H [APTFWH - T[Ap H [AM H FWH =0
for the right hand side of equation (4.23). That it vanishes follows from the Jacobi
identity. Thus, we obtained a conservation law

JP = i[A, * P, (4.25)
9,07 = 0.

From (3.16) follows that F},, is enveloping algebra valued if A, is. From the field
equation follows that A, and F), will remain enveloping algebra valued in the n-
dimensional representation of the Lie algebra. Thus, we try to replace matrix algebra
valued by enveloping algebra valued for A,. As an example we treat the case SU(2)
in the two-dimensional representation. In this representation the generators T of the
Lie algebra satisfy the relations

[T%, TP = ieteTe (4.26)
and 1
{12, T = 5541’. (4.27)

Note that (4.26) is valid for any representation. The anticommutator is represen-
tation dependent. Equation (4.27) is only true in the two dimensional representation.
In our example we can write A, as follows:

A, =B, + AT,

This is consistent with the gauge transformations; the field equations are a consequence
of (4.26) and (4.27).
The tensor F),, is easy to calculate following (3.16):

Fuy = G + FLT?,

6
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where

G = 8uB,,—8l,Bu—i[BufB,,]—i[AﬁfAff]
Bl = 0,A7 0uAL - ilBu s AL ilAL T B+ ALY ALY,

Varying the Lagrangian (4.19) with respect to B, and Aﬁ leads to the field equations

aMGMV - i[BM f Guu] [AHG T Fﬁy] =0

i
4
~ . . ~ 1 -

aﬂij —i[Ar G ] —i[BH F/jll,] + §e“bd{Az fF};,,} - 0. (4.28)

These field equations are consistent. They describe a triplet of vector fields Aﬁ as
expected and a singlet B,,. In the limit 6 — 0, B,, becomes a free field; it interacts only
via 6 and higher order terms in . The triplet Aﬁ satisfies the usual field equations
of SU(2) gauge theory in the limit # — 0. For 6 # 0 both the triplet and the singlet
couple to conserved currents but the current of B, has no f-independent term.
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ABSTRACT: We define U(n) gauge theory on fuzzy S% x S% as a multi-matrix model,
which reduces to ordinary Yang-Mills theory on S? x S? in the commutative limit N — oo.
The model can be used as a regularization of gauge theory on noncommutative ]R‘eL in a
particular scaling limit, which is studied in detail. We also find topologically non-trivial
U(1) solutions, which reduce to the known “fluxon” solutions in the limit of R, repro-
ducing their full moduli space. Other solutions which can be interpreted as 2-dimensional
branes are also found. The quantization of the model is defined non-perturbatively in
terms of a path integral which is finite. A gauge-fixed BRST-invariant action is given as
well. Fermions in the fundamental representation of the gauge group are included using
a formulation based on SO(6), by defining a fuzzy Dirac operator which reduces to the
standard Dirac operator on S? x S? in the commutative limit. The chirality operator and
Weyl spinors are also introduced.
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1. Introduction

Gauge theories on noncommutative spaces have received much attention in recent years.
One of the reasons is the natural realization of such theories in the framework of string
theory and D-branes [1], however they deserve interest also in their own right; see [2, 3] for
some reviews. One of the most remarkable new features of noncommutative gauge theories
is the fact that they can be defined in terms of multi-matrix models, which means that
the action involves only products of “covariant coordinates” X; = x; + A;, with gauge
transformations acting as X; — UX;U™L. In particular for certain quantized compact
spaces such as fuzzy spheres and tori, these X; are finite-dimensional hermitean matrices
of size N. Nevertheless, the conventional gauge theory is correctly reproduced in the limit
N — oo. This leads to a natural quantization prescription by simply integrating over
these matrices. For the much-studied case of the quantum plane Rg, the matrices X; are
infinite-dimensional, and the precise definition of the models is quite non-trivial. This is
particularly obvious by noting that the naive action for gauge theory on Rg contains sectors
with any rank of the gauge group U(n) [4]. To have a well-defined theory and quantization
prescription, a regularization of gauge theory on Rg based on the finite compact case is
therefore very desirable. Furthermore, the formulation as multi-matrix model leads to
the hope that non-trivial results may be obtained using the sophisticated techniques from
random matrix theory. We introduce in this paper such a matrix model for fuzzy S? x S2,
and study its relationship with Rg.

In the 2-dimensional case, this matrix-model approach to gauge theory has been studied
in considerable detail for the fuzzy sphere 5’12\, [5—10] and the noncommutative torus Tg [11-
14], both on the classical and quantized level. It is well-known that ]Rg can be obtained as
scaling limits of these spaces SJQV and T?V at least locally, which suggests a correspondence
also for the gauge theories. This correspondence of gauge theories has been studied in
great detail for the case of Tg — Rg [12, 15, 16] on the quantized level, exhibiting the role
of certain instanton contributions. A matching of gauge theory on the classical level can
also be seen for SJQV — Rz [17, 18], which is implicitly contained in section 7 of the present
paper.

In 4 dimensions, the quantization of gauge theory is more difficult, and a regularization
using finite-dimensional matrix models is particularly important. The most obvious 4-
dimensional spaces suitable for this purpose are T4, 5% x S? and CP2. On fuzzy (CP]%, [19—
21], such a formulation of gauge theory was given in [22]. This can indeed be used to
obtain R‘; for the case of U(2) -invariant ¢;;. The case of R? x S% as regularization of Rg
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with degenerate #;; was considered in [18, 23], exhibiting a relation with a conventional
non-linear sigma model. A formulation of lattice gauge theory for even-dimensional tori
has been discussed in [24, 25, 14]. Related “fuzzy” solutions of the string-theoretical matrix
models [26] were studied e.g. in [27, 28], see also [29].

In the present paper we give a definition of U(n) gauge theory on fuzzy S 12\, X SJQV, which
can be used to obtain any R‘; as a scaling limit. The action is a simple generalization of the
matrix model approach of [7] for fuzzy SJZ\,. It differs from similar string-theoretical matrix
models [26] by adding a constraint-term, which ensures that the “vacuum” solution is stable
and describes the product of 2 spheres. The fluctuations of the covariant coordinates then
correspond as usual to the gauge fields, and the action reduces to ordinary Yang-Mills
theory on S? x S? in the limit N — co. The quantization of the model is defined by a
finite integral over the matrix degrees of freedom, which is shown to be convergent due to
the constraint term. We also give a gauge-fixed action with BRST symmetry.

We then discuss some features of the model, in particular a hidden SO(6) invariance
of the action which is broken explicitly by the constraint. This suggests some alternative
formulations in terms of “collective matrices”, which are assembled from the individual
covariant coordinates (matrices). This turns out to be very useful to construct a Dirac
operator, and may help to eventually study the quantization of the model. The stability
of the model without constraint is also discussed, and we show that the only flat direc-
tions of the SO(6) -invariant action are fluctuations of the constant radial modes of the 2
spheres.

As a further test of the proposed gauge theory, we study in section 6 topologically
non-trivial solutions (instantons) on S% x S%. We find in particular a simple class of
solutions which can be interpreted as U(1) instantons with quantized flux, combined with
a singular, localized “flux tube”. They are related to the so-called “fluxon” solutions of U(1)
gauge theory on R‘;. Solutions which can be interpreted as 2-dimensional spherical branes
wrapping one of the two spheres are also found and are matched with similar solutions on
Rg. We then study the relation of the model on SJQV X SJQV with Yang-Mills theory on Rg, and
demonstrate that the usual Yang-Mills action on R‘; is recovered in the appropriate scaling
limit. Some aspects of U(1) instantons (“fluxons”) on R} are recalled in section 7.2, and
we show in detail how they arise as limits of the above non-trivial solutions on 512\, X SJQV.
In particular, we are able to match the moduli space of n fluxons, corresponding to their
location on Ry resp. S% x S%. We find in particular that even though the field strength
in the “bulk” vanishes in the limit of Rg, it does contribute to the action on 5’12\, X 512\] with
equal weight as the localized flux tube. This can be interpreted on Rg as a topological
or surface term at infinity. Another unexpected feature on SJQV X SJQ\, is the appearance of
certain “superselection rules”, restricting the possible instanton numbers. In other words,
not all instanton numbers on Rg are reproduced for a given matrix size A/, however they
can be found by considering matrices of different size. This depends on the precise form
of the constraint term in the action, which is hence seen to imply also certain topological
constraints. To recover the full space of ADHM solutions on ]R‘GL starting from S% x S%
remains an open challenge, which is non-trivial since the concept of self-duality does not
extend naturally to the fuzzy case.
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We should mention here that topologically non-trivial configurations have also been
discussed more abstractly in terms of projective modules using a somewhat different for-
mulation of gauge theory on fuzzy spaces, see in particular [30, 31].

Finally in section 8 we include charged fermions in the fundamental representation of
the gauge group, by giving a Dirac operator D which in the large-N limit reduces to the
ordinary gauged Dirac operator on S? x S2. This Dirac operator is covariant under the
SO(6) symmetry of the embedding space S? x S? C RS, and exactly anti-commutes with
a chirality operator. The 4-dimensional physical Dirac spinors are obtained by suitable
projections from 8-dimensional SO(6) spinors. This projection however commutes with D
only in the large-N limit, and is achieved by giving one of the 2 spinors a large mass. Weyl
spinors can then be defined using the exact chirality operator.

2. The fuzzy spaces S3 and 53, x S¥.

We start by recalling the definition of the fuzzy sphere in order to fix our conventions and
notation. The algebra of functions on the fuzzy sphere is the finite algebra .5'12\, generated
by hermitean operators z; = (z1, z2,x3) satisfying the defining relations

(@i, 2] = iAN€jpTy (2.1)
a} + a3 + a5 = R?. (2.2)

They are obtained from the N-dimensional representation of su(2) with generators \; (i =
1,2,3) and commutation relations

> N2—1
i Al =degrde, > Nk = 1 (2.3)
i=1
(see appendix A) by identifying
2R

The noncommutativity parameter Ay is of dimension length. The algebra of functions S%
therefore coincides with the simple matrix algebra Mat(N,C). The normalized integral of
a function f € 512\, is given by the trace

47 R?
[ 1= u. (2.5)
52

The functions on the fuzzy sphere can be mapped to functions on the commutative sphere
S? using the decomposition into harmonics under the action

Jif = N, f] (2:6)

of the rotation group SU(2). One obtains analogs of the spherical harmonics up to a
maximal angular momentum N — 1. Therefore SJQV is a regularization of S? with a UV
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cutoff, and the commutative sphere S? is recovered in the limit N — co. Note also that for
the standard representation (A.2), entries in the upper-left block of the matrices correspond
to functions localized at x3 = R. In particular, the fuzzy delta-function at the “north pole”
is given by a suitably normalized projector of rank 1,

N21><N21} 2.7)

where |¥> is the highest weight state with maximal eigenvalue of A3. Delta-functions

N
At R?

5 (x) =

with arbitrary localization are obtained by rotating (2.7).

The simplest 4-dimensional generalization of the above is the product 512\7L X SJQVR of
2 such fuzzy spheres, with generally independent parameters Nz r. It is generated by a
double set of representations of su(2) commuting with each other, i.e. by )\L )\R satisfying

AFAF] = derdg . NS AT = el
A AR =0

for i,5 = 1,2,3, and Casimirs

N2 - > N2 —1
Ly _ Np— 4 Ry\R _ 'R
E A7 A 1 E_ AN = R (2.8)
This can be realized as a tensor product of 2 fuzzy sphere algebras

A = A © INgxNg » (2.9)
A = 1y, © A (2.10)

hence as algebra we have SJQVL X SIQVR =~ Mat(N, C) where
N =N.Ng. (2.11)

The normalized coordinate functions are given by

2R
LR _ L.R Ly2 _ p2 _ R\2
This space! can be viewed as regularization of S? x S? C RS, and admits the symmetry
group SU(2)r, x SU(2)g € SO(6). The generators xiL’R should be viewed as coordinates
in an embedding space R®. The normalized integral of a function f € S'JQVL X 512\7R is now

given by
2 pd
[ =0 = o, (213)
SJQVLXSIQVR
where we define the volume V := 1672R*. We will mainly consider N; = Ng in the
following.

'In principle one could also introduce different radii R™® for the 2 spheres, but for simplicity we will
keep only one scale parameter R (and usually we will set R =1).
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o s 4
2.1 The quantum plane limit Ry

It is well-known [32] that if a fuzzy sphere is blown up near a given point, it can be used
to obtain a (compactified) quantum plane: Consider the tangential coordinates 2 near

the “north pole”. Setting

RQ*@

s (2.14)

they satisfy the commutation relations

[x1, 0] = 2%373 = z%URO —a? a3 = 20<1 —I—O(;f)) . (2.15)

Therefore in the large-N limit with (2.14) keeping 6 fixed, we recover? the commutation
relation of the quantum plane,
[.Tl, $2] =10 (216)

up to corrections of order 1/N. Similarly, starting with SIQVL X SJQVR and setting

NrRro
R? = " LR7LR (2.17)
2
we obtain in the large Np, Ng limit
[sza mj ] = i€ij0L ) [TzRa T?] = ieijeR
[zf,2F] = 0. (2.18)
This is the most general form of Ry with coordinates (z1,...,z4) = (21, 2&, o8, 2It) (after

a suitable orthogonal transformation). The integral of a functlon f(z) then becomes

/ f(x) — 4m*0L0Rtr(f /f (2.19)

S2, xS2
N, Np

which has indeed the standard normalization, giving each “Planck cell” the appropriate

volume.

3. Gauge theory on fuzzy S? x S?

We start with the most general case, and construct a matrix model having SJQV x S2 Ny 88
its ground state. The fluctuations around this ground state will produce a gauge theory. A
simplified and more elegant formulation in terms of “collective matrices” similar as in [7]
for the fuzzy sphere will be given later in section 4.

In the fuzzy case, it is natural to construct S% X SIQ;{ as “submanifold” of R6. We
therefore consider a multi-matrix model with 6 dynamical fields (“covariant coordinates”)

20ne could be more sophisticated and use the stereographic projections as in [32], which leads essentially
to the same results.
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BiL and BZR (i = 1,2,3), which are NV x N hermitean matrices. As action we choose the
following generalization of the action in [7, 8],
1 1
S = 2 / §Fiajbﬂ'ajb + 97+ ©F (3.1)

with a,b = L, R and ¢,j = 1,2, 3; summation over repeated indices is implied. Here ¢ g
are defined as

NZ -1 N2 —1
PL= P (BLBL T) , YR= T (BRBR RT) , (3.2)

and the terms ¢?% + (? % in the action ensure that the unwanted radial degrees of freedom
are suppressed [7, 8]. R denotes the radius of the two spheres, which we keep explicitly to
have the correct dimensions. The field strength is defined by

1
Fijo = 2 [BE Bf] + e By)
1
Firjr = 230 i[BfY, BY] + eix BiY) ,
1
Firjr = 43 i[Bf, BfY)). (3.3)

This model (3.1) is manifestly invariant under SU(2)y x SU(2)g rotations acting in the
obvious way, and U(N) gauge transformations acting as BiL A BiL =1 We will see
below that this reduces indeed to the U(1) Yang-Mills action on S? x S? in the commutative
limit. Note that if the action (3.1) is considered as a matrix model, the radius drops out

using (2.13). The equations of motion (e.o.m.) for B} are
L L pL Nl% —1 L . LnpL

+Z€Ukz[B (Bk + ZekrsBLBL)] + [B]R/ [BJRszLH =0, (34)

and those for Bf are obtained by exchanging L « R. By construction, the minimum or
ground state of the action is given by F' = ¢ = 0, hence BZ-L’R = AR asin (2.9), (2.10) u

(2
to gauge transformations; cp. [22] for a similar approach on CP?. We can therefore expand

the “covariant coordinates” BiL and BZR around the ground state
=\ + RAY, (3.5)
where a € {L, R} and A{ is small. Then AiL H transforms under gauge transformations as
AP S AP =vARRUT yUDPR U, (3.6)

and the field strength takes a more familiar form,3

Fr:r = '<_)‘L AL:| l: J AL:| AL AL>
iLjL — 1 R
([AE N
FiRjRZZ( 7 AR] - [fﬂf] [Af?‘aAf'Da
iLjR — 2 R R +[ ] ( . )

3We do not distinguish between upper and lower indices L, R.



5. Gauge Theories on Noncommutative Spaces 157

So far, the spheres are described in terms of 3 cartesian covariant coordinates each. In the
commutative limit, we can separate the radial and tangential degrees of freedom. There
are many ways to do this; perhaps the most elegant for the present purpose is to note that
the terms [ ¢ + % in the action imply that ¢y, g is bounded for configurations with finite
action. Using

oL L AP L AL
PL R +4; R + A7 A7, ( )
and similarly for ¢g it follows that
;AL + Afx; = O(—Ji) (3.9)

for finite A?. This means that A% is tangential in the (commutative) large-N limit. Al-
ternatively, one could consider ¢; = N¢r, which would acquire a mass of order N and
decouple from the other fields.* The commutative limit of (3.1) therefore gives the standard
action for electrodynamics on S? x S2,

1
S = 257 / Fl wFr
S52x 52
with a,b = L, R and ,j = 1,2,3. Here FfL iR denotes the usual tangential field strength.

This can be seen most easily noting that e.g. at the north pole :cg’R = R, one can replace

APH d
j[——, - —€ji—= 3.10
i R [ 5]a$]@R ( )

in the commutative limit, so that upon identifying the commutative gauge fields AECZ) via
ADLE o ALER (3.11)
the field strength is given by the standard expression F, iR = QLAg-Cl)R — 8JRAECZ)L etc.
U(k) gauge theory. The above action generalizes immediately to the nonabelian case,
keeping precisely the same action (3.1), (3.2) but replacing the matrices BiL oy kN x kN

matrices, cp. [7]. Expanding them in terms of (generalized) Gell-Mann matrices, the same
action (3.1) is the fuzzy version of nonabelian U(k) Yang-Mills on S? x S2.

4. A formulation based on SO(6)

The above action can be cast into a nicer form by assembling the matrices B ZL Hinto bigger
“collective matrices”, following [7]. Since it is natural from the fuzzy point of view to embed
S? x 82 C RS with corresponding embedding of the symmetry group SO(3)z x SO(3)r C
SO(6), we consider

B, = (B, BR) (4.1)

4The constraints wr., = 0 = pgr could also be imposed by hand; however the suppression through the
above terms in the action is more flexible, as we will see in section 6.
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(Greek indices p, v denoting from now on all the six dimensions) to be the 6 -dimensional
irrep of so(6) = su(4). Since (4)®(4) = (6)®(10), it is natural to introduce the intertwiners

Y = (V) = (yu)*? (4.2)

of (6) C (4)® (4). where «, 5 denote indices of (4). We could then assemble our dynamical
fields into a single 4N x 4N matrix

B = By, +const - 1. (4.3)

Of course the most general such 4N x 4N matrix contains far too many degrees of freedom,
and we have to constrain these B further. Since SU(4) acts on B as B — UT BU, the v, can
be chosen as totally anti-symmetric matrices, which precisely singles out the (6) C (4)®(4).

One can moreover impose

T =af T =, (4.4)
and
VAL = 8 + i€iiri (4.5)
%’RV]R = —byj — €ijk71§7
vAf =0,

which will be assumed from now on; we will give two explicit such representations in
(B.5), (D.2). This would suggest to constrain B to be antisymmetric. However, the
component fields B, are naturally considered as hermitean rather than symmetric matrices.
Furthermore, since the vy, = (vﬂ)a’ﬂ have two upper indices, they do not form an algebra.
There are now 2 ways to proceed. We can either separate them again by introducing two

AN x 4N matrices, '
i
2
breaking SO(6) — SO(3) x SO(3). This will be pursued in appendix B. Alternatively, we
can use the «y, with the above properties to construct the 8 x 8 Gamma-matrices

0 ~*
T = (W/fr 0 ) , (4.9)

which generate the SO(6)-Clifford algebra

’ 0 fy/'LTny + f)/VTryu/ : :

BL:_—FBiL’YiLa BR: +BZR71R7 (48)

This suggests to consider the single hermitean 8\ x 8/ matrix

L R
c—wm+%—<03>+<0 B>ecﬂvR (4.11)

BL 0 ~BE 0
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where Cy = C¥ + CE denote the constant 8 x 8-matrices

; 1(01

o= f%rfrgrg = (1 0) , (4.12)
: (01

CE = f%rfrg%r? - % (1 0) (4.13)

in the above basis. This is very close to the approach in [7], and using the Clifford algebra
and the above definitions one finds indeed

1 v
C? = B,B, + 5+ P (4.14)

Here ¥5" = —1[[',,T,], and the field strength F,, coincides with the definition in (3.3) if
written in the L — R notation,

Fiq jb = i[Bia, Bj| + dap€iji Bia -

Therefore the action

N2\? N2 —1\?
Sg = Tr((CQ — 7) ) = 8tr (BMBM - > + 4trF Fy (4.15)

is quite close to what we want. The only difference is the term (B,B, — N 2271)2 instead
2 _ 2 _

of (B;LB;r — NL4 1)2 + (BirBir — NR4 1)2, for 2N? = N2 + Nl%z- This difference is easy

to understand: since (4.15) is SO(6)-invariant, the ground state should be some S°. We

therefore have to break this SO(6)- invariance explicitly, which will be done in the next

section. However before doing that, let us try to understand action (4.15) better and see
whether it leads to a meaningful 4-dimensional field theory. We show in appendix C by
carefully integrating out the scalar components of B lL R that the SO(6)- invariant constraint
term in (4.15) induces the second term in the following effective action

1

ff
Sg ~ dtr (FWFW — (Fipwir — BR%R)M

(Firxir — FiR?CiR)) (4.16)

in the commutative limit, where F;;, = %eiijj L& etc. Comparing the second term with
Fl Flu, we see that the zero mode of the Laplace operator d,0,, can produce a contribution
that cancels the corresponding contribution from F,, F},,, but that all higher modes are
smaller by at least a factor of 2(3 — 8,0,). Therefore, the action (4.15) is positive definite
except for the obvious zero mode 6BZ-L = €, 6BiR = —e. This means that the geometry
of S% X 512{ is locally stable even with the SO(6)-symmetry unbroken, except for opposite
fluctuations of the radii.

4.1 Breaking SO(6) — SO(3) x SO(3)

To obtain the original action (3.1) for S% x S?, we have to break the SO(6)-symmetry
down to SO(3) x SO(3). We can do this by using the left and right gauge fields C'* and
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C% introduced in (4.11) separately. Their squares are

1
Ci = BiLBir + i <

) Bir + i€ BjrBir)
0
o

1 . f
C% = BirBir + 1 (76%

) (Bir +i€ijx BjrBir) -

As both 7%, 7% and 72'72 are traceless, we have

N N N2 -1 N2z —1
Shreak = <<CL 4L><CR 4R>> = 8Tl"<<BiLBiL— L4 )(BiRBiR_ R4 )) .

With these terms we can recover our action as

S = 56 - 2Sb]reak

N22 N2 N2
2 v - 2 L 'R
-n((e-5) {a-Sha- )

NZ —1\? NZ—1\%? 1
— StI‘((BiLBiL— L4 ) + (BiRBiR_ R4 ) +§F;WF;W), (4.17)

which is precisely the action (3.1) for gauge theory on SJQVL X SZQVR omitting the overall con-
stants. Hence the action is formulated as 2-matrix model, however with highly constrained
matrices Cr,Cgr. This formulation using the Gamma-matrices is very natural and useful
if one wants to couple the gauge fields to fermions, as discussed in section 8.

For simplicity, we will only consider Ny, = Ng = N from now on.

5. Quantization

The quantization of the gauge theory defined by (3.1) or its reformulation (4.17) is straight-
forward in principle, by a “path integral” over the hermitean matrices

Z[J] — /dBMeS[B”]+trB”J” ) (5‘1)

Note that there is no need to fix the gauge since the gauge group U(N) is compact. The
above path integral is well-defined and finite for any fixed N. To see this, it is enough
to show that the integral [dB, exp(—(BEfBL — (N? —1)/4)? — (BEBE — (N? — 1)/4)?)
converges, since the contributions from the field strength further suppress the integrand.
This integral is obviously convergent for any fixed N.

For perturbative computations it is necessary to fix the gauge, and to substitute gauge
invariance by BRST-invariance. Such a gauge-fixed action will be presented next.

5.1 BRST symmetry

To construct a gauge-fixed BRST-invariant action, we have to introduce ghost fields ¢ and
anti-ghost fields ¢. These are fermionic fields, more precisely N'x N — matrices with entries
which are Grassman variables.
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The full gauge-fixed action reads:

Sonst = 5+ otr (el (Bl = (0= D30 )1).

where b is an auxiliary (Nakanishi-Lautrup) field. This action is invariant with respect to
the following BRST-transformations:

sB, = [B,,d] sc=cc (5.2)
=0 sb=0 (5.3)

)]

S

(matrix product is understood), where the BRST-differential s acts on a product of fields
as follows:

s(XY) = X(sY)+ (-1 (sX)Y .

Here ey denotes the Grassman-parity of Y

- 0 Y bosonic
Y- 1 Y fermionic.

As usual, it is not difficult to check that these BRST-transformations are indeed nilpotent,
ie.
s2=0.

Integrating out the auxiliary field b leads to the following action

/ 1 1
SBRST =S + Ntr(C[Aﬂa [B;M CH - %P‘ua B/L][)‘Va BVD .

Setting o« = 1 corresponds to the Feynman gauge. This is indeed what one would obtain
by the Faddeev-Popov procedure. The action S’ is invariant with respect to the following

operations:
s’Bu = [By, ]
s'e = cc
s'e = [Au, B

Since we have used the equations of motion of b, the BRST-differential s’ is not nilpotent
off-shell anymore but still we have

2
s’ lon_shel = 0-

6. Topologically non-trivial solutions on S% x S%

In order to understand better the non-trivial solutions found below, we first note that the
classical space S? x S? is symplectic with symplectic form

w=wttwl, (6.1)
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where 1
wh = T g3 Ck T dedxk (6.2)
and similarly w®. The normalization is chosen such that
/ whB=1= / wh AWt (6.3)
S2 n 52x52
so that w”, w’ generate the integer cohomology H*(S? x S2,7). Noting that w is self-dual

while & := w’ —w? is anti-selfdual, it follows immediately that both F' = 27w and F' = 2@

are solutions of the abelian field equations. More generally, any
Fmeme) — ommp ot + 2rmpw’ (6.4)

for any integers my,mpg is a solution. In bundle language, they correspond to products of
2 monopole bundles with connections and monopole number my, r over S]% r- Following
the literature we will denote any such non-trivial solution as instanton.

6.1 Instantons and fluxons

We are interested in similar non-trivial solutions of the e.o.m. (3.4) in the fuzzy case. The
monopole solutions on the fuzzy sphere SIQV are given by representations /\fv ™ of su(2)
of size N — m [33], which lead to the classical monopole gauge fields in the commutative
limit as shown in [7]. It is hence easy to guess that we will obtain solutions on S% x S%
by taking products of these:

BE =l AV @ 1Ny, (6.5)
BE = o ly_pm, @A) ™R (6.6)

where )\fvme‘R are the N — mp r dimensional generators of su(2). It is not difficult to
verify that these are solutions of (3.4) with a®f = 1 + ZLE for my g < N, with field

strength

L R

Firjr = R TR Firjr = Y ekt Firjr =0, (6.7)

= —2mmLwl — 2rmBwk in the

/ E— (6.8)

while B- B — =1
commutative limit, so that indeed

Notice that the Ansatz (6.6) implies that all matrices have size N' = (N — mp)(N —
mpg), which is inconsistent if we require that A" = N? in order to have the original SZQV X
SIQV vacuum. Therefore it appears that these solutions live in a different configuration
space, similar as the commutative monopoles which live on different bundles. However,
the situation is in fact more interesting: the above solutions can be embedded in the same
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configuration spaces of N2 x N2 matrices as the vacuum solution if we combine them with
other solutions, which have finite action in four dimensions.> They are in fact crucial to
recover some of the known U(1) instantons in the limit S%, — RZ resp. S% x S3% — R}, as

we will see. Consider the following Ansatz

BM = diag(df, ... d" T

i1 sl

in terms of diagonal matrices (ignoring the size of the matrices for the moment). These
are solutions of (3.4) in two cases,

0, type B

i

N2_3
L,R ,L,R =, type A
Zdi,k di,k :{ 4 (6.9)

(i.e. df}fR = 0 in type B). The associated field strength is

€ijk 1.
FirjL = % diag(dgy,...,dg,),  FLr=0, (6.10)
and a similar formula for Fig;r. The constraint term is then (B - B — N 1_1) — —% for

type A, and (B- B — N24_1) — —N24_1 for type B in the large-N limit. In particular, only
the type A solutions will have a finite contribution

\%4 ( n 2nN2—3> ]2
—

St — n e 6.11
f AN \art TR 2" (6.11)

to the action,® which for N — oo is only due to the field strength. We will see below that
these type A solutions can be interpreted as a localized flux or vortex, and we will call
them “fluxons” since they will reduce in a certain scaling limit to solutions on Rg which
are sometimes denoted as such [34 —36].

One can now combine these “fluxon” solutions with the monopole solutions (6.6) in

the form
BL — ol )\i\me ® IN-mp 0
¢ 0 diag(dil, . ,diL’n) ’
N—m
ph— [ INom, ® AT 0 . (6.12)
¢ 0 diag(dfl, ... ,dﬁn)

These are now matrices of size N' = (N — mp)(N — mpg) + n, which must agree with
N = N?, say. This is clearly possible for

mp=—mpg=m, n=m?, (6.13)
while for my, # —mp the contribution from the fluxons would be infinite since n = O(NV).
To understand these solutions, we can compute the gauge field from (3.5),

1

Af = (B = WY @1y) = Af (2%, 27). (6.14)

Sas opposed to 2 dimensions, which is the reason why they were not considered in [7].

A finite action can also be obtained for the type B solution using a slightly modified action (6.19), as
discussed below.
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To evaluate this, we first have to choose a gauge, i.e. a unitary transformation U for (6.12)
which allows to express e.g. )\fv_mL ® 1 N_pm,, in terms of le X /\fv ®1x and le x IIN®/\£V.
For example, in the case my = —mpg = m this can be done using a unitary map

U: cNmecVtmgom™ oV e, (6.15)

mapping a (N —m) x (N 4+ m) matrix into a N x N matrix by trivially matching the
upper-left corner in the obvious way, and fitting C™ into the remaining lower-right corner.
With this being understood, one can write

RAF(2,28) = (AN ™™ = AV) @ Ingm + AV @ (Ingm — 1n) + (d — terms)

- Agm) (z") + sing(2% = —R, 28 = —R) (6.16)

where Agm) (z%) is indeed the gauge field of a monopole with charge m on S? in the large-
N limit, as was checked explicitly in [7]. Here sing(z{ = —R,zf = —R) indicates a
field localized at the “south pole” of S% and/or 5123 which becomes singular for large N.
It originates both from “cutting and pasting” the bottom and right border of the above
matrices using U (leading to singular gauge fields but regular field strength at the south
poles), as well as the d-block (leading to a singular field strength). To see this recall that
in general for the standard representation (A.2) of fuzzy spheres, entries in the lower-right
block of the matrices correspond to functions localized at z3 = —R, cp. (2.7). The gauge
field near this singularity will be studied in more detail in section 7.3. The field strength is

L n
m 1
FiLjL = —ﬁeijkxé + eijkﬁ Z dﬁlR (617)
i=1
in the commutative limit, where P; are projectors in the algebra of functions on S%; x S% of
rank 1; recalling (2.7), they should be interpreted as delta-functions P; = % @) (z3 = —R).
Similar formulae hold for AZL (z¥, 2) and F RjR, while Frp = 0.

We assumed above that these delta-functions are localized at the south poles x% =
:v3R = —R. However, the location of these delta-functions can be chosen freely using gauge

transformations. This can be seen by applying suitable successive gauge transformations
using N — k-dimensional irreps of SU(2) for £ = 0,1,...,m — 1, which from the classical
point of view all correspond to global rotations, successively moving the individual delta-
peaks. Therefore the solution (6.12) should in general be interpreted as monopole on
52 x §? with monopole number m; = —mpg = m, combined with a localized singular field
strength characterized by its position and a vector dﬁz We will see in section 7 that it
becomes the “fluxon” solution in the planar limit R%; we therefore also call it a “Auxon”.
The total action of these solutions (6.12) is the sum of the contributions from the
monopole field plus the contribution from the fluxons (6.11), which both give the same
contribution
Sy = 2 (2m? 4 2m?) (6.18)
(m) g2 :
in the large-N limit, using (6.13). The first term is due to the global monopole field (6.7),
and the second term is the contribution of the fluxons through the localized field strength.
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The interpretation of these solutions depends on the scaling limit N — oo which we
want to consider. We have seen that in the commutative limit keeping R = const, these
solutions become commutative monopoles on S? x S? with magnetic charges myp = —mpg,
plus additional localized “fluxon” degrees of freedom. For large R, the field strength of
the monopoles vanishes, leaving only the localized fluxons. In particular, we will see in
the following section that in the scaling limit S% x S% — R‘; only the fluxons survive and
become well-known solutions for gauge theory on Rg. Away from this localized fluxon the
gauge field becomes a flat connection, which is however topologically nontrivial. This is
very interesting as it shows that one can indeed use these fuzzy spaces as regularization
for gauge theory on RZ”.

A final remark is in order: if we fix the size N of the matrices, only certain fluxon and
monopole numbers are allowed, given by (6.13). Otherwise the number n of fluxons and
hence the action would diverge with /N. This can be seen as an interesting feature of our
model: viewed as a regularization of gauge theory on Rg, this points to possible subtleties
of defining the admissible field configurations in infinite-dimensional Hilbert spaces and
relations with topological terms in the action. On the other hand, we could accommodate
the most general solutions including also type B solutions (6.9) by modifying the action
similar as in [7]. For example,

1 4BLBL N2 —1\? 4BRBE N2 -1\ 1
= f (A8 ot VLY S (s SV L,
(6.19)

leads to the same commutative action, but with a vanishing action for the Dirac string in

the type B solutions.

6.2 Spherical branes

Consider the following solutions

L \N-m
0 diag(di1, ..., dim)

BE =1y@\V (6.20)

which are matrices of size N'= N2. The corresponding field strength is

m 1 &
Firjr = _ﬁezjkl‘# + €ijk Tpa Z di; P;
i—1

Frr = Frp=0 (6.21)

where P; are projectors in the algebra of functions on S% of rank 1 which should be
interpreted as delta-functions P; = # 6@ (z3 = —R). In particular the gauge field A
vanishes on 5’122, while on S% there is a monopole field together with a singularity at a point.
This is similar to the fluxons on the previous section, but now only on S%. This leads to
the interpretation as 2-dimensional brane wrapping on 5’12%, located at a point on S%. The
action for these solutions is infinite. In the limit S’ZQV X SZQV — Rg, the flux will be located at
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a 2-dimensional hyperplane. Such solutions for gauge theory on ]Rg were found in [37, 4],
which would be recovered in the scaling limit SZQV X SJQV — ]Rg as discussed in section 7.
In a similar way, we can interpret solutions with any my,mgr as branes wrapping on S%
and 512%.

7. Gauge theory on Rj from S} x S%_

We saw in section 2.1 that ]Rg can be obtained as a scaling limit of fuzzy sz\fL X SJZVR' Here
we will extend this scaling also to the covariant coordinates B, thereby relating the gauge
theory on SZQVL X 512\7R to that on ]R;L and hence providing a regularization for the latter. We
will in particular relate the instanton solutions on these two spaces.

On noncommutative R3, all U(1)-instantons were constructed and classified in [4].
They can be interpreted as localized flux solutions, sometimes called fluxons. One can
indeed recover these instantons from corresponding solutions on .S ]2\,, as we will show below.
However since we are mainly interested in the 4-dimensional case here, we will only present
the corresponding constructions on SZQVL X SJQVH resp. R‘; here, without discussing the 2-
dimensional case separately. It can be recovered in an obvious way from the considerations
below.

The situation on ]Rg is more complicated, and there are different types of non-trivial
U(1) “instanton” solutions on Rj. Assuming that 6, is self-dual, there are two types
of instantons: first, there exist straightforward generalizations of the localized “fluxon”
solutions with self-dual field strength. These will be discussed in detail here, and we will
show how these solutions can be recovered as scaling limits of the solutions (6.12) on
SJQ\,L X SJQVR. This is one of the main results of the present paper. In particular, the moduli
of the fluxon solutions on RJ will be related to the free parameters diL’R in (6.12). This
supports our suggestion to use gauge theory on SJQ\,L X SZQVR as a regularization for gauge
theory on R;‘. However there are other types of U(1) instantons on Rf,} which were found
through a noncommutative version of the ADHM equations [38 —43], in particular anti-
selfdual instantons which are much less localized than the fluxon solutions. To find the
corresponding solutions on SZZVL X SJQVR is an interesting open challenge.

7.1 The action

The most general noncommutative Rg is generated by the coordinates subject to the com-
mutation relations

(@, 2] =0, , (7.1)
where p,v € {1,...,4}. Using suitable rotations, #,, can always be cast in the following
form:

0 62 0 O
0 _ -6 0 0 O
e 0 0 0 05

0 0 —63 O
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We will assume that 612 > 0 and f34 > 0 for simplicity in this section. Then define

Xl’Q = A/ N—L B1L72, (72)

X34 1= N—R Ban (7.3)
N 1
it = plh ML L pliyz phRye) (7.4)
2 Nrr
which should be interpreted as a blow-up near the north pole. In the scaling limit (2.17),
, 1 1
R° = ENLQM == §NR912 — o0 (7.5)

the X will become the covariant coordinates on the “tangential” ]Rf,} as Np.r — oo, and ¢
remains an auxiliary field. To see this, we compute for the field strength

1 1
— ([BE, BE]) = X1, X tc.
RQ([ 1> 1]) 912034[ 1, 3]7 ete.,
1

L | ipl pLyy _ 1 , AN 2
 BE +ilBE BE) =\ o (X0 + X0, 07) - o X, (X))
T Ny N , Lt 2
R2 (BQ +Z[B37Bl]) - 912934R2 (X2+Z[X1,¢ } 2015 [le(XQ) ])

1 012034 01203
ﬁ 2 oL — ZRZA((XOQ + (X2)%).

. 1 .
(B +i[Bf, By]) = (012 +i[X71, Xo] +
012034

Analogous expressions hold for Bl-R. For the potential term we get

1 N2 -1 1 2 1 1
e (BEmE = TEm ) = ot (002 4 1) - o 00+ (102 +

4 4 012 R?

g (K0 (X)),

We immediately see that the only terms from action (3.1) involving ¢©%
L rye L Ry 1
il — ol =

and therefore we can integrate them out in the limit R — oo. In the leading order in R

are

the remaining terms give the standard action

! /([XIL’XV] - ie[_l,l/)Q

2929%29?%4

for a gauge theory on Rg for general 6,,,. The X, are interpreted as “covariant coordinates”,
which can be written as”

Xy =z, +10,A,.
Hence the gauge fields A, describe the fluctuations around the vacuum. In particular, note
that our regularization procedure clearly fixes the rank of the gauge group, unlike in the

naive definition on R¢ as discussed in [4]. The generalization to the U(n) case is obvious.

"We do not distinguish between upper and lower indices.
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7.2 U(1) instantons on Rj

The construction of instanton solutions for the two-dimensional noncommutative plane
given in [4] can be easily generalized to the four-dimensional case. We shall recall and
discuss these 4-dimensional “fluxon” solutions in some detail here, in order to understand
the relation with the above solutions. To simplify the following formulas, we restrict our
discussion from now on to the selfdual case

1
euu = Eguupdepa

and denote
0 := 012 = O34;

the generalizations to the antiselfdual and the general case are obvious. Then the action

for U(1) gauge theory on R} reads

(2m)?
S = Wtr(FMVF:U'V) (76)
where
Fu = i([X, X)) — i) (7.7)

is the field strength. In terms of the complex coordinates
T4y =21 T ix9 , T4g = T3 tix4,
the commutation relations (7.1) take the form
[T 4as ®—p] = 2004p , [T4a, T1p] = [T—a, 2] =0, (7.8)
where a,b € {L, R}. The Fock-space representation H of (7.8) has the standard basis
|ny,n9), ni,ne € N,
with
z_plni,ng) = V20yv/ni + 1ny + 1,na), x4r|ng,no) = V20, /milni — 1,n9)
x_glni,ng) = \/2_9\/m|n1,n2 + 1), zypglni,ne) = \/%\/n—ﬂnl,ng —1).
Similarly, using the complex covariant coordinates X,
Xip=X14+iXo, Xap=Xg+iXy (7.9)
and the corresponding field strength
Foapp = [Xaa» Xap] — 200300

with a,b € {L, R} and «, 5 € {4, —}, the action (7.6) can be written in the form

2

7T
S = 9—292 tr(Z F+a,faF+a,fa - ZF+G,+bF—a,—b) .
a

a,b
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Then the equations of motion are given by:

Z[Xaaa (Faa,ﬁb)T] =0. (710)

a,a

Let us consider a finite dimensional subvectorspace V,, of H of dimension n, which we can
assume (using a unitary gauge transformation) to be spanned by a finite set of vectors
|n1, ’I’L2> S H,

Voo = {lik,Jk); E=1,....n}). (7.11)

Following [4] one finds solutions to the equations of motion given by®

X = Say St > A liks i) i, ] (7.12)
k=1

X(+n12“: i= Sz pST+ ZV?\ik,jkﬂik,jM : (7.13)
k=1

Here yf’R € C determine the position of the fluxons, and S denotes a partial isometry from
H to H\V,, with STS =1, SST =1 — P, , where

n

P, =) ik, jk) (ik, Jk|
k=1

is the projection operator onto the subspace V;,. The field strength F),, for this solution is
Fu =P, 0.

In particular, the action corresponding to the instanton solution (7.12), (7.13) is propor-
tional to the dimension of the subspace V,,

2 2
SIX{] = 89% (P, )= .

Vi
We will see in the next section that this class of solutions can be reproduced by instanton
solutions (6.12) on 512VL X SZQVR in a suitable scaling limit. Let us stress again that this is
only one class of U(1)-instanton solutions for Ry which is called “fluxons”, since they can
be interpreted as localized flux. The localization can be seen as follows: recall [44] that
the above projection operators can be represented on the space of commutative functions
(using a normal-ordering prescription) as

_ kL kL _ k2 k2
KL, K2) (k! k2| = L <$ L) (ﬁL) (95 R) <$+R> e—“g?%—ﬁiﬂé%,
’ ’ EUE2\ /20 V20 V20 V26

Hence the above field strengths F,,, = P,, 0,,, are superpositions of Gauss-functions which

are localized in a region in space of size V.

$Note that [X'™), x "] =[x, X)) =[x, x W) =[x, x™] =0.
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7.3 Instantons on ]Rg from SJQV X SJQV

With the scaling limit of section 7.1, the gauge theory on SJQV X SJQV provides us with a
regularization for the gauge theory on Rg. Of course, such a regularization might affect the
topological features of the theory, an effect we want to investigate in this section. For this,
we will map the topologically nontrivial solutions found in section 6 on 5’12\, X 5’12\, to Rg.

Consider again the solutions (6.12) that combine the fluxon solutions with the mo-
nopoles, with the fluxons at the north pole instead of the south pole because we want to
study their structure. Their scaling limit as in (7.2) gives

20 ( diag(dk,,...,d*) 0
X’i — - ) (21 , 7.14
N ( 0 aE AN @1 (7.14)

20 [ diag(d%,,...,dR) 0
Xino = 4/ = b Ln 7.15
2 N ( 0 af 1@ ANt (7.15)

for i = 1,2. Recalling that the rescaled A2 on 512\7L X S’JQVR become the x4’s on Rg in the
scaling limit

20 \LR , .\LR
N()\l :EZAQ )_>$j:L,R7

we see that (7.14) and (7.15) become the instantons (7.12), (7.13) on R,

n
Xi+iXy = X{Y) = Say 5t + > ALk i) iy il (7.16)
k=1
n
X3 +iXq — X\ = Sz mSt+ 3" v ik, i) (in, il (7.17)
k=1

Here the (d;)-block acting on a basis |ig, ji) of V,, C H = CN becomes the projector part
of (7.16), (7.17) with

2
Al — " (7.18)

and the monopole block becomes Sz, ST where S is a partial isometry from H to H\V,,.
Note that we can recover any value for the +’s in this scaling, solving the constraint d;d; =
N24_3 for d3 ~ &. Therefore the full moduli space of the fluxon solutions (7.12), (7.13)
on R‘; can be recovered in this way. Furthermore, the meaning of the parameters vy is

easy to understand in our approach: Note first that using a rotation (which acts also on
the indices) followed by a gauge transformation, the d; can be fixed to be radial at the
north pole, df’R ~ (0,0, N/2). This is a fluxon localized at the north pole. Now apply a
“translation” at the north pole, which corresponds to a suitable rotation on the sphere.
Rotating the vector diL’R in the scaling limit amounts to a translation of the 'y,f’R according
to (7.18), which therefore parametrize the position of the fluxons.
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It has been noted [2] that the Sz ST correspond to a pure (but topologically nontrivial)
gauge, which can qualitatively be seen already in two dimensions. There, the isomorphism

S : k) — |k + n) is basically (\/;”_—_“)" ~ (x;rzy)” ~ ¢ and therefore the gauge field

A; = S0;ST has a winding number n. The topological nature of the Sz ST is even more

evident in our setting, as they are the limit of the monopole solutions (6.5), (6.6) on
S2%. x S%,. Moreover, note that their contribution to the action (6.18) survives the scaling:
even though the field strength vanishes as R — oo, the integral gives a finite contribution
equal to the contribution of the fluxon part. This topological “surface term” is usually
omitted in the literature on Rg, but becomes apparent in the regularized theory.

So it seems that we recovered all the instantons of section 7.2, but in fact there is an
important detail that we haven’t discussed jet. It is the embedding of the n-dimensional
fluxons and the (N —m)(N + m)-dimensional monopole solutions into the N2-dimensional
matrices of the ground state. Such an embedding is clearly only possible for n = m?2. This
means that the regularized theory has some kind of “superselection rule” for the dimension
of the allowed instantons, a rule that did not exist in the unregularized theory.?

One way to allow arbitrary instanton numbers is to allow the size A/ of the matrices to
vary. However, this is less satisfactory as it destroys the unification of topological sectors
which is a beautiful feature of noncommutative gauge theory. On the other hand, the type
B solutions (6.9) together with the changed action (6.19) might allow the construction of

2 — n places with d; = 0.

the missing instantons. The idea is to fill up the unnecessary m
The changed action would not suppress such solutions any more, and in fact they would
not even contribute to the action. This amounts to adding a discrete sector to the theory
which accommodates these type B solutions, but decouples from the rest of the model.
Whether or not one wants to do this appears to be a matter of choice. This emphasizes
again the importance of a careful regularization of the theory. It would be very interesting
to see what happens in other regularizations e.g. using gauge theory on noncommutative

tori or fuzzy CP2.

8. Fermions

8.1 The commutative Dirac operator on S? x S?

To find a form of the commutative Dirac operator on S? x S? which is suitable for the
fuzzy case, one can generalize the approach of [45] for S2, which is carried out in detail in
appendix E.3: One can write the flat SO(6) Dirac operator Dg in 2 different forms, using
spherical coordinates of the spheres and also using the usual flat euclidean coordinates.
Then one can relate Dg with the curved four-dimensional Dirac operator Dy on S? x S?
in the same spherical coordinates. This leads to an explicit expression for D, involving
only the angular momentum generators, which is easy to generalize to the fuzzy case. The

“Note that this is different in two dimensions. There, a rank n fluxon can be combined with a (N — n)-
dimensional monopole block and all the instantons on R3 can be recovered. Furthermore, the actions for
the fluxons and the monopoles scale differently with N. Therefore the action for the monopoles vanishes
in the scaling limit that produces a gauge theory on R2 with rescaled coupling constant.
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result is rather obvious and easy to guess:

01 01
Dy =T*"] ) =T*J, +2C 8.1
4 #+<10>+z<10> u+2Co, (8.1)

which is clearly a SO(3) x SO(3)-covariant hermitean first-oder differential operator. Here
I'* generate the SO(6) Clifford algebra (4.10), Cj is defined in (4.13), and we put R = 1 for
simplicity here. However this Dirac operator is reducible, acting on 8-dimensional spinors
Ug corresponding to the SO(6) Clifford algebra. Hence Wg should be a combination of
two independent 4-component Dirac spinors on the 4-dimensional space S? x S2. To see
this, we will construct explicit projectors projecting onto these 4-dimensional spinors, and
identify the appropriate 4-dimensional chirality operators. This will provide us with the
desired physical Dirac or Weyl fermions.

8.1.1 Chirality and projections for the spinors

There are 3 obvious operators which anti-commute with D4. One is the usual 6-dimensional
chirality operator

-1
I = iTErirIrRrirE — ( 0 ?) , (8.2)
which satisfies
{Dy,TY=0, TIfT=r, TI?2=1. (8.3)
The 8-component spinors Wg split accordingly into two 4-component spinors ¥g = (%i),
B
which transform as (4) resp. (4) under so(6) = su(4); recall the related discussion in

section 4. The other operators of interest are
xr =T andyg = I'fa;p.
They preserve SO(3) x SO(3) € SO(6), and satisfy

{Ds,x,r} =0={x1,Xr}

as well as
X%,R =1.
We will also use 1 1
which satisfies similar relations. This means that
1 )
P = 5(1 +ixLXR) (8.5)
with
P =P, P,+P =1 and PP =0 (8.6)

are hermitean projectors commuting with the Dirac operator on S? x S? as well as with T,

Pl=P, and [Py,D4=[P.,T]=0. (8.7)



5. Gauge Theories on Noncommutative Spaces 173

Therefore they project onto subspaces which are preserved by D4 and I', and are invariant
under SO(3) x SO(3). Hence the spinor lagrangian can be written as

iD= vl Do, + 0l Dyw

involving two Dirac spinors ¥ = Py Wg. In order to get one 4-component Dirac spinor,
we can e.g. impose the constraint
P g =g, (8.8)

or equivalently give one of the two components a large mass, by adding a term
M_WipP_ Wy (8.9)

to the action with M_ — oo. The physical chirality operator is now identified using (8.7)
and (8.3) as I" acting on ¥, . It can be used to define 2-component Weyl spinors on S? x S2.
To make the above more explicit, consider the north-pole of the spheres, i.e.

In the basis (4.9) for the Clifford algebra we then get explicitly

1 A ST 1
Py=_[1+i LR =-(1+03®03®03).
2 ( ( 0 'yi'y}l% 2

This means that
P, = diag(1,0,0,1,0,1,1,0)

projects onto a 4-dimensional subspace exactly as expected.

8.2 Gauged fuzzy Dirac and chirality operators

To find fuzzy analogues of (8.1) and (8.4) coupled to the gauge fields, we recall the con-
nection between the gauge theory on S? x S? and the SO(6) Gamma matrices established
in section 4. In the spirit of that section a natural fuzzy spinor action would involve

\arel (8.10)

where ¥ is now a 8N x N-matrix (with Grassman entries). Of course, (8.10) does not have
the appropriate commutative limit, but we can split C' into a fuzzy Dirac operator D and
the operator Y defined by

Xﬂ!:-%?(F“WAM——CbW), (8.11)

which generalizes (8.4); we used here the definition (4.12),(4.13) of Cy. This operator
satisfies
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and reduces to (8.4) in the commutative limit. Note also that ¥ commutes with gauge
transformations, since the coordinates A, are acting from the right in (8.11). Setting

J#\IJ - [Aﬂv \IJ] 9
we get for the fuzzy Dirac operator
N ~
D=C--—x= I‘“(J + A,)+2C, =THD, +2Cy. (8.12)
V2
Here!?
D,:=J,+ A, (8.13)

is a covariant derivative operator, i.e. U ﬁm/) D’ Ut which is easily verified using (3.6).
This D clearly has the correct classical limit (8.1) for vanishing A, and the gauge fields are
coupled correctly. In particular, this definition of D applies also to the topologically non-
trivial solutions of section 6 without any modifications. Moreover, the chirality operator I’
as defined in (8.2) anti-commutes with D also in the fuzzy case,

{D.,T} =0. (8.14)

In particular there is no need to consider e.g. fuzzy Ginsparg-Wilson operators as in the
2-dimensional case [46 —48]. However, the anticommutator of D and X no longer vanishes.

We find

{ﬁ,y}—g( 9(0\u + AT, — 24,0, + {T*, Cy}D, +2) 0(%), (8.15)

since z,.J, = O(1/N) and z,A, = O(1/N) using (3.9). Furthermore, using some identities
given at the beginning of section 4 we obtain for D?i:

D*) = (S*F,, +D,D, + {T*,Co}D, + 2)
= (UM F,, 4+ O+ 2)y, (8.16)

defining the covariant 4-dimensional laplacian O acting on the spinors. This corresponds
to the usual expression for D2 on curved spaces, and the constant 2 is due to the curvature
scalar. Since D? and XM F,, are both hermitean and commute with I' and ﬁi as defined
in (8.18) in the large-N limit, it follows that [J satisfies these properties as well. Note that
(8.16) can also be written as

~ ~ 1

(D —Co)? =X F,, +D,D, + 3 (8.17)
which mlght suggest to interpret D D as covariant laplaman however this is not correct
since ’D D does not commute with the projections Py (8.18) even in the commutative
limit. The reason for this is our formulation using spinors based on the SO(6) Clifford
algebra rather than SO(4) spinors and comoving frames. The corresponding projections to

physical Dirac- or Weyl-spinors in the fuzzy case will be discussed next.

10We set R =1 in this section for simplicity.
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8.2.1 Projections for the fuzzy spinors

For the fuzzy case, we can again consider the following projection operators

2
A N(rsziL + Cfw),
2
YrY = N(rmwm + CHw)
which satisfy
X\L,Rzla {X\IHX\R}:O'
This implies (Yr.Xr)?> = —1, and we can write down the following projection operators
N 1 o~
Py = S(1+iXLXR) (8.18)

2

which have the classical limit (8.5) and the properties (8.6). However, the projector no
longer commutes with the fuzzy Dirac operator (8.12):

[D,%1XR] = {D, R} — X2 D, Xr}
2 - . ~
=N ((2(/\iL + Air)Jip — 2Aip AL 4+ 205 T Dip + 1)Xr —

— X220\ir + Air) Jir — 24irNir + 2CE TED; 5 + 1)) ,

which only vanishes for N — oo and tangential A, (3.9). To reduce the degrees of freedom
to one Dirac 4-spinor, we should therefore add a mass term

M_WLP Wy (8.19)

which for M_ — oo suppresses one of the spinors, rather than impose an exact constraint
as in (8.8). This is gauge invariant since Py commutes with gauge transformations,

Pip — UPyt).

The complete action for a Dirac fermion on fuzzy SIQV X SIQV is therefore given by
Soivae = [ WA(D + m)¥s + M_wLP_w (5.20)

with M_ — oco. The physical chirality operator is given by I' (8.2), which allows to consider
Weyl spinors as well.

9. Conclusion and outlook

We have constructed U(n) gauge theory on fuzzy SIQV X SJQV as a multi-matrix model. The
model is completely finite, and can be considered as a regularization either of Yang-Mills
on the commutative S? x S2, or on the noncommutative Ré in a suitable scaling limit.
The quantization is defined by a finite “path” integral over the matrix degrees of freedom,
which is convergent due to the constraint term. A gauge-fixed action with BRST symmetry
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is also provided. We then discussed some topologically non-trivial solutions in the U(1)
case, which reduce to the known “fluxon” solutions on R‘g in the appropriate scaling limit,
reproducing the full moduli space. On S% x S%; they arise as localized flux tubes together
with a monopole background field. This provides a very clean non-perturbative definition
of noncommutative gauge theory with fixed rank of the gauge group U(n), and a simple
description of instantons as solutions of the equation of motion in one single configuration
space. Furthermore, we have shown how charged fermions in the fundamental representa-
tion can be coupled to the gauge field, by defining a suitable Dirac operator D. This is
easily extended to Weyl fermions using a chirality operator which exactly anticommutes
with D. All this supports the programme to formulate and study physically interesting
models on noncommutative spaces.

There are many interesting conclusions and applications to be explored. One crucial
feature is the fact that the model is completely regularized, i.e. the quantization is well-
defined without any divergences for finite N. This should allow to study suitable scaling
limits in IV in a well-defined framework, and the emergence of an interesting low-energy
limit which could be either commutative or noncommutative. Such a matrix regularization
is very interesting in view of the UV /IR mixing, which indicates a close relationship between
NC field theory and matrix models. For example, one might try to extend the results in [49]
in this context. We also explored some alternative formulations using “collective matrices”
based on SO(6). Such formulations are possible only in the noncommutative case, and lead
to the hope that new non-perturbative techniques in the spirit of random matrix theory
may be developed along these lines.

Another important aspect is the coupling to fermions, which could be extended to
scalars and allows to study spontaneous symmetry breaking and the possible generation of
other gauge groups in the low-energy limit. Finally, a detailed comparison with other finite
models of NC gauge theory in 4 dimensions such as [22, 24, 25] would be very desirable, to
see which features are generic and which are model-dependent.
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A. The standard representation of the fuzzy sphere

The irreducible N-dimensional representation of the su(2) algebra \; (2.3) is given by

N+1-2k
M)t = Ot ———5—— (A1)

Akt = Okr10vV (N — k)k, (A.2)

where k,l =1,...,N and Ay = A\ £ i)s.
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B. Alternative formulation using 4N x 4N matrices

Let us rewrite the action (4.17) in terms of the 4N x 4N matrices By, Bg (4.8). Noting
that

—[Br,Bg] 0
p—t B-l
CrCr+ CrCL < 0 By, Byl (B.1)
we can rewrite Sg (4.15) as
NZ\?
Sg = 2Tr <Bg - B% - 7) +2Tr ([Byr, Br]?), (B.2)

where the trace is now over 4\ x 4N matrices. Similarly

N? N?
Spreak = —2Tr <B§ - T) (—B%E - T) (B.3)
and combined we recover (3.1) as
s N?, s N? 2
S = S5 — 2Shreax = 2Tt (BL—T) —|—(—BR—T) —|—[BL,BR} . (B4)

This looks like a 2-matrix model, however the degrees of freedom Bj,Bgr are still very
much constrained and span only a small subspace of the 4N x 4N matrices. We would
like to find an intrinsic characterization without using the «y, explicitly. One possibility is
to choose the v, to be completely anti-symmetric matrices, see appendix D. However this
does not extend to B, since the B, should be hermitean and not necessarily symmetric, and
moreover the v, are not hermitean (the conjugate being the intertwiner (6) C (4) ® (4)).
Another possibility is provided by the following representation of the y-matrices:

4

'yf: = 0" ® lays , 'y}é = loyo Qic’. (B.5)

They satisfy the relations (4.4)—eqg-1-R, but are not antisymmetric. Now note that

Vi = PP (B.6)
where
1000
0010 1 . .
P = =2(1 t t B.7
0100 Lot ®ad) (B.7)
0001

permutes the two tensor factors and satisfies
P?2=1. (B.8)

Therefore we can characterize the degrees of freedom in terms of 2 hermitean 2N x 2N

matrices

< 1 < 1
Xp=Bpoi+5, Xrp=DBgoitj; (B.9)
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which are arbitrary up to the constraint that ng R= % Then
Br = X1 ® laxa, Br = iP(Xg ® lax2)P; (B.10)

they could be extracted from a single complex matrix B = (X1+iXR)®1axa. Furthermore,
matrices of the form X ® 1o are characterized through their spectrum, which is doubly
degenerate; indeed any such hermitean matrix can be cast into the above form using suitable
unitary SU(4N) transformations. Similarly, P can also be characterized intrinsically: any
matrix P written as

P=P®los+ P, ®c" (B.11)
which satisfies the constraints 1
Py=3, P’=1 (B.12)

is given by (B.7) up to an irrelevant unitary transformation U ® 1. We could therefore
write down the action (B.4) in terms of three matrices Br, —iPBrP and P, all of which
are characterized by their spectrum and constraints of the form (..)g = % The hope is
that such a reformulation may allow to apply some of the powerful methods from random

matrix theory, in the spirit of [7]. However we will leave this for future investigations.

C. Stability analysis of the SO(6)-invariant action (4.15)

Consider the action (4.15). We will split off the radial degrees of freedom for large-N by
setting R = 1 and!!
Bip = Nip + Air = Nip + Ai + 2P

requiring that A\;z.A;r = 0, and similarly for B;g, The stability of our geometry will depend
on the behavior of ®* and ®%. We calculate that

N2 -1 1
BBy ——5—= N(®p+ Pg) + PP+ PrPr + Ay A, — Ay, ALl + O<N> ,

where we used that Az Aiq, = 0 and therefore both A;qziq = O(1/N) and Ajg[Nia, - | =
O(1/N) for a = L, R. Setting

O+ Pp = Py,
O —Pp = dy
we get
N2 -1 1
BMB“ — =NO| + PP + PPy + AMAM — [)\M,AN] + 0 N . (Cl)

In the limit NV — oo we can integrate out ®1, as it acquires an infinite mass. Alternatively
we can rescale ®1 by setting ¢; = %@1. Then, all the terms involving ¢; but the first one
in (C.1) will be of order % and we can equally integrate out ¢1.

" The fact that this leads to non-hermitian fields for finite N is not essential here.
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The terms from
F,F, — [Bir, Bir)?

involving the remaining ®5 will be (in the limit N — o)
1
5‘1)2‘1)2 — Ju(®2)J,(P2) — Fipa;1Po + Firxir®o
with the tangential derivatives J;, = —i€;j57;a0kq. Calculating that
Ju @2, 80 = —0,020, P2 — 2;1.0;1, P10, P2 — 2;r0;RP27 ;RO RP
and using partial integration under the integral this gives
1
5%% — ©90,0,P2 — 71,0, P27;1.0;1.P2 — T;RO;RP27RO;RP2 — Fir ;1. P2 + FirT;rPo .
Expanding both ®5 and F' in left and right spherical harmonics as

L R L yvR
b, = E CrimnYim Yin and Fj,x;q = Z f}glmnykm}/ln

klmn klmn

we get for fixed klmn, setting ¢ = ciimn, [ = [, and p = % +1(l4+ 1)+ k(k + 1) the
following expression
1 1

—fR)2 o —(fL o fR)Q .

1

2 L R L
pc” —cf" +cft=plc— —f"+
( 2p 2p 4p

Integrating out the ¢’s and putting everything back this leaves us with the additional term

1

——————(Firzir — Firir)
4(% - 8M8u)

—(Firir, — Firxir)

in the action (4.15).

D. Representation of the SO(6)-intertwiners and Clifford algebra

We will use the Pauli matrices
ol 01 ’ o2 0 —1 ’ 53— 10 ’
10 7 0 0 -1

olod = 69 4 igiikgh (D.1)

which satisfy

With these we define the 4-dimensional antisymmetric matrices

=0'®ct, gi=0'®1l, aj=080,

Vg =i0’ @0, 7 =il®o?, vy =i0*®ac°. (D.2)
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They are the intertwiners between SU(4) ® SU(4) and SO(6) and fulfill the following rela-
tions:
()t =11,
()" =~k
and
S = 89 1 ik
Terk = =07 — 67k,
Ve val = 0.

We can now define the 8-dimensional representation of the SO(6)-Clifford algebra as

0 ~*
I# = (fym 0 > , (D.3)
with the desired anticommutation relations
At VMt 0
{FM,FV}: Yy +’77 by ot :26uu‘
0 YA 7 TAH

The chirality operator in this basis is

[ =ilir2r3rhrirs = (01 ?) .

The 8-dimensional SO(6)-rotations are generated by

s — pu puy = 1 (7T = 0 _
8 4 ’ 4 0 7#1'71’ _ nyT,Yu

E. The Dirac operator in spherical coordinates
For a general riemannian manifold with metric

g = Guvdatdx”
the Christoffel symbols are given by

- 1
I, =5

290)\ (a,ug)\u + aug)\u - 8)\gyu) . (El)

We can change to a non-coordinate basis (labeled by latin indices in contrast to the greek
indices for the coordinates) by introducing the vielbeins el with

a it _ sa
e,ueb_(sba

a b v v sab
Guv = €,,€,0ab 5 g = ebey v .
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With these, the Dirac operator is given by
. Q[ 1 a b
D = —iy ea(au + prabh/ Y D )
where the v form a flat Clifford algebra, i. e.
{74 =20, 4T =40
and the spin connection w fulfills
oue;, — F;)Ve‘/( + w#ab ef, =0. (E.2)

E.1 The Dirac operator on R® in spherical coordinates

We will now write down the flat SO(6) Dirac operator Dg by splitting RS into R% X R%
and introducing spherical coordinates on both the left and right hand side. The flat metric
becomes

g6 = 12 dO; ® dy, + r2sin? 0 dpy, © dor + drp, @ dr +
+r% dig ® dig + r%sin? Op dopr ® dor + drrp ® drg . (E.3)

Looking at the formula for the Christoffel symbols (E.1), we see that all the symbols with
both right and left indices vanish. For the symbols with only right or only left indices

we get
Fg¢ = —sinfcosf, (E.4)
6 _ cost 4
Voo = sing 997 (E5)
b = T (E.6)
bb = —rsin?4, (E.7)
1
7y = o= I, , (E.8)
1
¢ _ - _1¢
o, = - =T, (E.9)

where we have dropped the left or right subscript for simplicity. All other symbols vanish.
We want to go to a non-coordinate basis by introducing the vielbeins

1 .. 2L _ : . 3L _ 1.

gy =TL; ey =rrsinfr; eyl =1; (E.10)
1p _ . 2R _ ; . 3r _

eeR =TL; €¢R = TR sm@R, em’; = 1. (E.ll)

Calculating the spinor connection by (E.2), we again see that all the terms with both left
and right indices vanish. The terms with only left or only right indices are

w¢12 = —cosf = —w¢21 , (E.12)
w¢23 = sinf = —w¢32, (E.13)
wp'y = 1= —wp'1, (E.14)
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where we again dropped the left or right subscripts. Putting all this together we see that
Dg splits up into a left part D3y, and a right part Dsg as

D¢ = D3j, + D3g (E15)

with

_ - 1
D3y, = —zTLE <39L + Dy, — i, <<9TL + E) ,  (E.16)

=1 1 cos Ogr =2 1 -3 1
Dsp = —il'p— | 0, —ilp————04, —il'n| O — . E.17
3R ! R?”R< br + sin93> ! By psinlg 2 R( TR+7"R> ( )

cos O, =2 1
- —l'y -
sin 6, rrsinfr,

where the T' have to form a SO(6) Clifford algebra.

E.2 The Dirac operator on S? x S?

We now want to calculate the curved Dirac operator Dy on S? x S2? in the spherical
coordinates of the spheres (they are the same spherical coordinates we used before, now
restricted to the spheres). The metric on §? x S? with radii r;, and rg is

g1 = 17 dip @ dfy + 13 sin® 01 dpr, @ dor, +
+r%dir ® dig + risin® g dgr ® dog .

The metric is the same as (E.3) restricted to the spheres, so the Christoffel symbols are
the same as (E.4) and (E.5). Again introducing the vielbeins

eéi =rr; eiLL =rrsinfy; (E.18)
eég =rr; ei’; =rgsinfg, (E.19)

we see that also the spin connection is the same as (E.12), and therefore we can again split
Dy into a right part Dog and a left part Doy, as Dy = Doy, + Dog with

~ 1 cos 07, ~
Dor = —il't—(9 — ) ir2—9 E.20
2L ! LrL< 0L+sin0L> ‘ Ly siny oL ( )
~ 1 cos Op ~ 1
Dop = —ilL— ) N E.21
2R ! RTR <8€R+ sin9R> ! RTRSin9R8¢R’ ( )

where the I' form a flat SO(4) Clifford algebra.

E.3 SO(3) x SO(3)-covariant form of the Dirac operator on S? x 52

The flat SO(6) Dirac operator Dg was split into a left part D3z and a right part Dsg using
spherical coordinates in (E.15). Of course, D¢ can also be written in the usual euclidean
coordinates as

Dg = —il'*0,,

where again we can split it into a left and a right part as

D¢ = D31, + D3gr
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with

D3y = —il'yd;,  Dsg = —il'zd;, (E.22)
{Dsr, Dsr} = 0. (E.23)

We have left open which representation of the SO(6) Clifford algebra we want to use for
the T in (E.16), (E.17), but T in (E.22) is really the representation given by (4.9). We
will now relate the two expressions for the Clifford algebra and the Dirac operator by first
defining

Jir, = —i€;kT;L0kL and Jir = —i€;jLTjROKR

; 2 , 2
(%) = (%) =1. (E.24)
rL TR
We calculate that

. 2 .
IRy . Iz i.0; 1 0
( LCUJL> 1(9111 _ < ijL> (%L iL L 7L ! JiL , (E.25)
rr rr I rr \ 0 g
I'zir . Uhair\ [wirdin . i [~y O
_RTIR 7Ra’LR = R + — R i J’iR ) (E26)
TR TR TR TR 0 TR

and therefore
Dy — —i (ﬂ) (f’% - — <7L 0 ) JiL> , (E.27)
rr rr 0 g
Fj , - 7
Dsp = —i <M> (% +— (73 (2 > Jm) : (E.28)
TR TR 0 &

Comparing this with (E.16), (E.17) we see that

T — ( LIZL) and T = ( R””’R) : (E.29)

R A I
()

The curved Dirac operator D4 on S? x S? expressed in the spherical coordinates of the

and noting that

and

spheres also splits up as Dy = Dor, + Dogr with right part Dsgr and left part Doy given
in (E.20),(E.21). Comparing this with (E.16), (E.17), we see that the dependence on the
tangential coordinates is the same in both expressions. With (E.30), (E.31) we see that the
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matrices —i(? 3)?%?2 and < 01 é)f;ﬁ% for i,5 = 1,2 form a SO(4) Clifford algebra and

can therefore be used as the I'. Note that this representation is still reducible, a problem

we deal with in section 8.1.1. Now we can get a simple relation between the Dj3 restricted

01 =3
- (1 0) <ZFLLkLL%s._ ) ::LhLv
(01 =3
—ﬂ/<__1()> <2FR1)3RL@S._' ) ::l)QR-

Inserting (E.27), (E.28) and using (E.29) together with (E.24) we find that

1 . 01
Dop = — [T0 T : E.32
1 . 01
Dop = — (ToJip+i . E.33
2R T’R<R R+Z<_10>> ( )

Setting 77, = rg = 1 for simplicity, the Dirac operator Dy on S% x S? takes the form (8.1).

on the spheres and the Do

S| =

= |-
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Chapter 6

Gravity on Noncommutative Spaces

In this chapter we propose an approach to gravity on noncommutative spaces
based on deformed diffeomorphisms. We start with a contribution to the Proceed-
ings of the Modave Summer School 2005, which was held in June 2005 in Modave,
Belgium. It is available as a preprint [63]; the proceedings will appear soon. It is
a rather detailed introduction to this topic and summarizes a lecture given by the
author at this school. Although it is based on the publications [42,43], we present
it first since it may serve the reader as an introduction to the two publications to
follow, where the formalism is then presented in all detail.

We continue with a publication about gravity on #-deformed spaces, which was
published together with P. Aschieri, C. Blohmann, M. Dimitrijevi¢, P. Schupp and
J. Wess in the journal Classical and Quantum Gravity [42]. There deformed
infinitesimal diffeomorphisms and gravity covariant with respect to deformed
infinitesimal diffeomorphisms are constructed in detail. A deformed Einstein—
Hilbert action is obtained, which reduces in the commutative limit to the usual
Einstein—Hilbert action and which is invariant with respect to deformed diffeo-
morphisms.

In the following publication we generalize this construction to noncommuta-
tive spaces coming from a generic twist, see Section 4. We construct Einstein’s
equations for gravity on noncommutative algebras of functions whose product is
a *-product defined by a twist. This work was done in collaboration with P. As-
chieri, M. Dimitrijevi¢ and J. Wess and was also published in the journal Classical
and Quantum Gravity [43].

The last section consists of a contribution to the proceedings of the HEP2005
Europhysics Conference in Lisbon, Portugal, which was published in PoS (Pro-
ceedings of Science) [66] (see also [67,68]). It summarizes some main results of
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this chapter.
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Abstract

We give an introduction to an algebraic construction of a gravity theory on
noncommutative spaces which is based on a deformed algebra of (infinitesimal)
diffeomorphisms. We start with some fundamental ideas and concepts of non-
commutative spaces. Then the 6-deformation of diffeomorphisms is studied
and a tensor calculus is defined. A deformed Einstein-Hilbert action invariant
with respect to deformed diffeomorphisms is given. Finally, all noncommu-
tative fields are expressed in terms of their commutative counterparts up to
second order of the deformation parameter using the x-product. This allows to
study explicitly deviations to Einstein’s gravity theory in orders of 6. This lec-
ture is based on joined work with P. Aschieri, C. Blohmann, M. Dimitrijevi¢,
P. Schupp and J. Wess.

Based on talks given at the First Modave Summer School in Mathematical Physics,

June 2005, Modave (Belgium); HEP 2005, July 2005, Lisboa (Portugal);
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1 Noncommutative Spaces

In field theories one usually considers differential space-time manifolds. In the non-
commutative realm, the notion of a point is no longer well-defined and we have to
give up the concept of differentiable manifolds. However, the space of functions on
a manifold is an algebra. A generalization of this algebra can be considered in the
noncommutative case. We take the algebra freely generated by the noncommutative
coordinates 2* which respects commutation relations of the type

2%, 2] = C*(2) # 0. (1)

Without bothering about convergence, we take the space of formal power series in
the coordinates 2° and divide by the ideal generated by the above relations

Ay = CYE°, .. 2" (84, 8] — O™ (2)).

The function C* (%) is unknown. For physical reasons it should be a function that
vanishes at large distances where we experience the commutative world and may be
determined by experiments. Nevertheless, one can consider a power-series expansion

CH (&) = 10" + O™ 30 + (qRM ,y — 8401 EP37 + ...,

where 0*, C*, and qR‘“’pJ are constants, and study cases where the commutation
relations are constant, linear or quadratic in the coordinates. At very short distances
those cases provide a reasonable approximation for C*”(z) and lead to the following
three structures
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1. canonical or #-deformed case:

[ZH, 2¥] = 160", (2)
2. Lie algebra case:
[ZH,2"] = iCH 2P (3)
3. Quantum Spaces: R
e = qR" ,,2°2°. (4)

We denote the algebra generated by noncommutative coordinates 2# which are sub-
ject to the relations (2) by A. We shall often call it the algebra of noncommutative
functions. Commutative functions will be denoted by A. In what follows we will ex-
clusively consider the f-deformed case (2) but we note that the algebraic construction
presented here can be generalized to more complicated noncommutative structures
of the above type which possess the Poincaré-Birkhoff-Witt (PBW) property. The
PBW-property states that the space of polynomials in noncommutative coordinates
of a given degree is isomorphic to the space of polynomials in the commutative co-
ordinates. Such an isomorphism between polynomials of a fixed degree is given by
an ordering prescription. One example is the symmetric ordering (or Weyl-ordering)
W which assigns to any monomial the totally symmetric ordered monomial

W:A — A
ot - gt (5)
1

pat - S+ )

To study the dynamics of fields we need a differential calculus on the noncom-
mutative algebra 4. Derivatives are maps on the deformed coordinate space [1]

b Ao A
This means that they have to be consistent with the commutation relations of the

coordinates. In the #-constant case a consistent differential calculus can be defined
very easily by!

0,37 =684 (92") =4
[0y, 0,] = 0. (6)

'We use brackets to distinguish the action of a differential operator from the multiplication in
the algebra of differential operators.
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It is the fully undeformed differential calculus. The above definitions yield the usual
Leibniz-rule for the derivatives d,

(8uf§) = (@J)ﬁ + f(aug) (7)
This is a special feature of the fact that 6# are constants. In the more complicated
examples of noncommutative structures this undeformed Leibniz-rule usually cannot

be preserved but one has to consider deformed Leibniz-rules for the derivatives [2].
Note that (6) also implies that

(éuf) = (@Lf)- (8)
The Weyl ordering (5) can be formally implemented by the map
1

f=W(f) = 2n)? /d"k eikuiufUC)

where f is the Fourier transform of f

r 1 n —ikyxt T
F0) = oy [ e g te),

This is due to the fact that the exponential is a fully symmetric function. Using the
Baker-Campbell-Hausdorff formula one finds

ik, &M _ip, &Y

; a1 v
e e — el(kﬂ+pl‘)x le»"e pl’. (9)

This immediately leads to the following observation

A~

fg = W(HWig) =

]_ ; gl ip, TV rs ~

1 ; 5, i v ~
CLE / d"kd™p et o= k0" (1) g(p)

— W(poes” W fgg), (10)

where u(f ® g) := fg is the multiplication map. With (8) we deduce from (10) the
equation o
poe 2 S f @ 5= fqg. (11)

The above formula shows us how the commutative and the noncommutative product
are related. It will be important for us later on.

4
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2 Symmetries on Deformed Spaces

In general the commutation relations (1) are not covariant with respect to unde-
formed symmetries. For example the canonical commutation relations (2) break
Lorentz symmetry if we assume that the noncommutativity parameters 6** do not
transform.

The question arises whether we can deform the symmetry in such a way that it
acts consistently on the deformed space (i.e. leaves the deformed space invariant)
and such that it reduces to the undeformed symmetry in the commutative limit. The
answer is yes: Lie algebras can be deformed in the category of Hopf algebras (Hopf
algebras coming from a Lie algebra are also called Quantum Groups)?. Important
examples of such deformations are g-deformations: Drinfeld and Jimbo have shown
that there exists a g-deformation of the universal enveloping algebra of an arbitrary
semisimple Lie algebra®. Module algebras of this ¢-deformed universal enveloping
algebras are noncommutative spaces with commutation relations of type (4). There
exists also a so-called r-deformation of the Poincaré algebra [3,4] which leads to a
noncommutative space of the Lie type (3). A Hopf algebra symmetry acting on the
f-deformed space was for a long time unknown. But recently also a 6-deformation
of the Poincaré algebra leading to the algebra (2) was constructed [5-8].

Quantum group symmetries lead to new features of field theories on noncom-
mutative spaces. Because of its simplicity, 6-deformed spaces are very well-suited
to study those. First results on the consequences of the #-deformed Poincaré alge-
bra have already been obtained [6,8]. However, it remains unknown and subject of
future investigations in which precise way this recently discovered quantum group
symmetry restricts the degrees of freedom of the noncommutative field theory.

In the following we will construct explicitly a #-deformed version of diffeomor-
phisms which consistently act on the noncommutative space (2). Then we present a
gravity theory which is invariant with respect to this deformed diffeomorphisms [8,9].

3 Diffeomorphisms

Gravity is a theory invariant with respect to diffeomorphisms. However, to general-
ize the Einstein formalism to noncommutative spaces in order to establish a gravity

2To be more precise the universal enveloping algebra of a Lie algebra can be deformed. The
universal enveloping algebra of any Lie algebra is a Hopf algebra and this gives rise to deformations
in the category of Hopf algebras.

3Tt is called g-deformation since it is a deformation in terms of a parameter ¢.
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theory, it is important to first understand that diffeomorphisms possess more math-
ematical structure than the algebraic one: They are naturally equipped with a Hopf
algebra structure. In the common formulations of physical theories this additional
Hopf structure is hidden and does not play a crucial role. It is our aim to deform the
algebra of diffeomorphism in such a way that it acts consistently on a noncommuta-
tive space. This can be done by exploiting the full Hopf structure. In this section
we first introduce the concept of diffeomorphisms as Hopf algebra in the undeformed
setting.

Diffeomorphisms are generated by vector-fields £&. Acting on functions, vector-
fields are represented as linear differential operators £ = £#0,. Vector-fields form a
Lie algebra = over the field C with the Lie bracket given by

€n]=E&xn

where £ X 7 is defined by its action on functions

(& xn)(f) = (€"(0un") 00 — n"(8u8")0:)(f).

The Lie algebra of infinitesimal diffeomorphisms = can be embedded into its universal
enveloping algebra which we want to denote by U(Z) . The universal enveloping
algebra is an associative algebra and possesses a natural Hopf algebra structure. It
is given by the following structure maps?:

e An algebra homomorphism called coproduct defined by

A:UE) — UE)RU(E)
E3E¢ — A =¢(01+1R¢E. (12)

e An algebra homomorphism called counit defined by

e:U(E) — C
=3¢ — €& =0. (13)

e An anti-algebra homomorphism called antipode defined by
S:UE) — UE)
E3¢& — S¢)=-¢ (14)

4The structure maps are defined on the generators ¢ € = and the universal property of the
universal enveloping algebra U/(Z) assures that they can be uniquely extended as algebra homomor-
phisms (respectively anti-algebra homomorphism in case of the antipode S) to the whole algebra
UE).
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For a precise definition and more details on Hopf algebras we refer the reader to
text books [10-12]. For our purposes it shall be sufficient to note that the coproduct
implements how the Hopf algebra acts on a product in a representation algebra
(Leibniz-rule). Below we will make this more transparent. It is now possible to study
deformations of U(Z) in the category of Hopf algebras. This leads to a deformed
version of diffeomorphisms - the fundamental building block of our approach to a
gravity theory on noncommutative spaces. Before studying this in detail, let us
shortly review the Einstein formalism. This way we first understand better the
meaning of the structure maps of a Hopf algebra introduced above.

Scalar fields are defined by their transformation property with respect to infinites-
imal coordinate transformations:

00 = —§& = —E"(0u0). (15)
The product of two scalar fields is transformed using the Leibniz-rule
O¢(91) = (6¢0)V + ¢(d¢tp) = —E"(0u90) (16)

such that the product of two scalar fields transforms again as a scalar. The above
Leibniz-rule can be understood in mathematical terms as follows: The Hopf algebra
U(Z) is represented on the space of scalar fields by infinitesimal coordinate trans-
formations d¢. On scalar fields the action of d, is explicitly given by the differential
operator —¢£#9,,. Of course, the space of scalar fields is not only a vector space - it
possesses also an algebra structure - such as U(Z) is not only an algebra but also a
Hopf algebra - it possesses in addition the co-structure maps defined above. We say
that a Hopf algebra H acts on an algebra A (or more precisely we say that A is a left
H-module algebra) if A is a module with respect to the algebra H and if in addition
forall h € H and a,b € A

h(ab) = poAh(a®b) (17)
h(l) = e(h). (18)

Here p is the multiplication map defined by p(a ® b) = ab. In our concrete example
where H = U(Z) and A is the algebra of scalar fields we indeed have that the algebra
of scalar fields is a U(Z)—module algebra. This can be seen easily if we rewrite (16)
using (12) for the generators & € Z for U(Z):

0e(P) = (0e0)Y + D(dey)) = o A&(Pp ® V).

It is also evident that

7
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Now we are in the right mathematical framework: We study a Lie algebra (here
infinitesimal diffeomorphisms =) and embed it in its universal enveloping algebra
(here U(Z)). This universal enveloping algebra is a Hopf algebra via a natural Hopf
structure induced by (12,13,14).

Physical quantities live in representations of this Hopf algebras. For instance, the
algebra of scalar fields is a U(=)-module algebra. The action of ¢(Z) on scalar fields
is given in terms of infinitesimal coordinate transformations de.

Similarly one studies tensor representations of U(Z). For example vector fields
are introduced by the transformation property

5§Va = —§”(8HVQ) - (aagu)vu
0V = _5#@#‘/&) + (8/15&)‘/#-
The generalization to arbitrary tensor fields is straight forward:
OTh = =€ O ) + (0u8 )T + -+ - + (0u8 )T
(0,8 = = (0,8 ) T

As for scalar fields, we also find that the product of two tensors transforms like a
tensor. Summarizing, we have seen that scalar fields, vector fields and tensor fields
are representations of the Hopf algebra U/(Z), the universal enveloping algebra of in-
finitesimal diffeomorphisms. The Hopf algebra U(Z) acts via infinitesimal coordinate
transformations d¢ which are subject to the relations:

[0¢, 0n] = Oexny €(0¢) =0
Ade =01 4+1®@060  S(0e) = —0. (19)
The transformation operator J. is explicitly given by differential operators which

depend on the representation under consideration. In case of scalar fields this differ-
ential operator is given by —£#0,,.

4 Deformed Diffeomorphisms

The concepts introduced in the previous subsection can be deformed in order to
establish a consistent tensor calculus on the noncommutative space-time algebra
(2). In this context it is necessary to account the full Hopf algebra structure of the
universal enveloping algebra U(Z).

In our setting the algebra A possesses a noncommutative product defined by

(24, 3] = i6m, (20)

8
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We want to deform the structure maps (19) of the Hopf algebra (Z) in such a way
that the resulting deformed Hopf algebra which we denote by U (é) consistently acts
on A. In the language introduced in the previous section this means that we want
A to be a U(Z)-module algebra. We claim that the following deformation of (%)
does the job. Let Z/l(é) be generated as algebra by elements 55, ¢ € =. We leave the
algebra relation undeformed and demand

[O¢: 0g] = e (21)
but we deform the co-sector
Ade = 310770090 (5, @ 1 4 1 @ §¢)es e (22)
where

[ém 8&] = 8((%5)-

The deformed coproduct (22) reduces to the undeformed one (19) in the limit § — 0.
Antipode and counit remain undeformed

5(55) = —55 6(55) = 0. (23)

We have to check whether the above deformation is a good one in the sense that it
leads to a consistent action on .A. First we need a differential operator acting on
fields in A which represents the algebra (21). Let us consider the differential operator

~

. [e'e) 1 . R N A
Ko m ST (207 020 Dy, 0, 60,0, D (24)

This is to be understood like that: A vector-field £ = £#0, is determined by its
coefficient functions £#. In Section 1 we saw that there is a vectorspace isomorphism
W from the space of commutative to the space of noncommutative functions which is
given by the symmetric ordering prescription. The image of a commutative function
f under the isomorphism W is denoted by f

W feW(f)=].

In (24) &M is therefore to be interpreted as the image of £* with respect to W. Then
indeed we have
[Xe, Xy] = Xesn. (25)

9
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A A

To see this we use result (11) to rewrite (X¢o) :

A 1 g R A A .
(X§¢) _ Z (_é)neplal ... fPnOn (8p1 .. .8%5#)(8“601 .. .ajn d))

n!

n=0
1 . A L
Y O 0 (G5, ) B+ 00, F)
n=0
= £1(0,0) = (£0). (26)

From (26) follows

(Xe(X,8)) — (X,(Xed) = (6 m]0) = (Xesnd),

which amounts to (25) and this is what we wanted to show.
It is therefore reasonable to introduce scalar fields QAﬁ cA by the transformation
property o L
0ep = —(X¢0).
The next step is to work out the action of the differential operators X ¢ on the product
of two fields. A calculation [8] shows that

(Xe(99)) = po (7217500 (Xe 1+ 1@ Xe)et 5% 6 & )).

This means that the differential operators Xg act via a deformed Leibniz rule on the
product of two fields. Comparing with (22) we see that the deformed Leibniz rule
of the differential operator X, is exactly the one induced by the deformed coproduct
(22):

Be(d) = e300 (5 @ 1 + 1 @ & )ed07 050 (3i)) = — X > (1)),

Hence, the deformed Hopf algebra ¢/ ( ) is indeed represented on scalar fields peA
by the differential operator X¢. The scalar fields form a 2/(Z)-module algebra.

In analogy to the previous section we can introduce vector and tensor fields
as representations of the Hopf algebra U (é) The transformation property for an
arbitrary tensor reads

STt = —(XeTrmim) + (X guem )Tt + + (Xouemm) T )
—(X (g e T 1) = - = (Ko, e TH ).

Up to now we have seen the following:

10
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e Diffeomorphisms are generated by vector-fields £ € = and the universal en-
veloping algebra U(Z) of the Lie algebra = of vector-fields possesses a natural
Hopf algebra structure defined by (19).

e The algebra of scalar fields ¢ € A is a U(Z)-module algebra.

e The universal enveloping algebra /(=) can be deformed to a Hopf algebra U/(Z)
defined in (21,22,23).

e U(Z) consistently acts on the algebra of noncommutative functions A, ie. the
algebra of noncommutative functions is a ¢(=)-module algebra.

e Regarding U (é) as the underlying “symmetry” of the gravity theory to be
built on the noncommutative space A, we established a full tensor calculus as
representations of the Hopf algebra U(=).

5 Noncommutative Geometry

The deformed algebra of infinitesimal diffeomorphisms and the tensor calculus co-
variant with respect to it is the fundamental building-block for the definition of a
noncommutative geometry on #—deformed spaces. In this section we sketch the im-
portant steps towards a deformed Einstein-Hilbert action [8]. A first ingredient is the
covariant derivative f)u- Algebraically, it can be defined by demanding that acting
on a vector-field it produces a tensor-field

A~ A A ! A A A A A A A A A
0¢D,V, = —(XeD,V,) — (X(g,60)DaVi) — (X(o,60) Dy Va) (27)

The covariant derivative is given by a connection I',,”

A

DV, =0V, —T.,°V,.
From (27) it is possible to deduce the transformation property of fw,f’
0l = (Xel'w”) = (X0l a’) = (Xo,ea®) + (X(gaen) D) — (0,0,€7).

The metric GAW is defined as a symmetric tensor of rank two. It can be obtained for
example by a set of vector-fields £,%, a = 0, ..., 3, where a is to be understood as a
mere label. These vector-fields are called vierbeins. Then the symmetrized product
of those vector-fields is indeed a symmetric tensor of rank two

A 1 o o

G

w1 i(EﬂaEyb + EVbE#a)nab.

11
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Here 7,, stands for the usual flat Minkowski space metric with signature (— + ++).
Let us assume that we can choose the vierbeins E,ﬂ such that they reduce in the
commutative limit to the usual vierbeins e,*. Then also the metric Guv reduces to
the usual, undeformed metric g,, .

The inverse metric tensor we denote by upper indices

GG = 51,

We use CA?,W respectively GM to raise and lower indices.
The curvature and torsion tensors are obtained by taking the commutator of two
covariant derivatives®

A ~

[ﬁua Du]‘A/p - Rw,pava + T'U’I,O(Da‘/;)

which leads to the expressions

R/wpa = VFWU - a.UFVPU + FVpﬁFuﬁU - Fupﬁrl’b’g
T,% = T,,%-1,,°

we find an unique expression for the metric connection (Christoffel symbol) defined
by

DoGa, =0

in terms of the metric and its inverse®

~

o LA -
Lap” = 5(0aGip, +

A ~ A

5Glay — 05Glag) G

From the curvature tensor lfim,p" we get the curvature scalar by contracting the
indices
R:=G"R,,,".

R indeed transforms as a scalar which may be checked explicitly by taking the de-
formed coproduct (22) into account.

5The generalization of covariant derivatives acting on tensors is straight forward [8].
6We don’t introduce a new symbol for the metric connection.

12
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To obtain an integral which is invariant with respect to the Hopf algebra of
deformed infinitesimal diffeomorphisms we need a measure function £. We demand
the transformation property

0F = —XeE — Xo,emE. (28)
Then it follows with the deformed coproduct (22) that for any scalar field S
0eES = —9,(Xen(ES)).
Hence, transforming the product of an arbitrary scalar field with a measure function
E we obtain a total derivative which vanishes under the integral. A suitable measure
function with the desired transformation property (28) is for instance given by the
determinant of the vierbein F,*
. A 1 . . . A
E =det(E,) := 4—!5“1"'“4<€a1...a4EM“1Em”EuB“EM“‘*.
That E transforms correctly can be shown by using that the product of four EM‘”
transforms as a tensor of fourth rank and some combinatorics.
Now we have all ingredients to write down an Einstein-Hilbert action. Note that

having chosen a differential calculus as in (6), the integral is uniquely determined up
to a normalization factor by requiring” [13]

/ b,f = 0
for all f € A. Then we define the Einstein-Hilbert action on A as
Spy = /det(EM“)é + complex conj..

It is by construction invariant with respect to deformed diffeomorphisms meaning
that R

In this section we have presented the fundamentals of a noncommutative geometry
on the algebra A and defined an invariant Einstein-Hilbert action. There is however
one important step missing which is subject of the following section: We want to
make contact of the noncommutative gravity theory with Einstein’s gravity theory.
This we achieve by introducing the x-product formalism.

"We consider functions that “vanish at infinity”.

13
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6 Star Products and Expanded Einstein-Hilbert Ac-
tion

To express the noncommutative fields in terms of their commutative counterparts
we first observe that we can map the whole algebraic construction of the previous
sections to the algebra of commutative functions via the vector space isomorphism
W introduced in Section 1. By equipping the algebra of commutative functions with
a new product denoted by x be can render W an algebra isomorphism. We define

frg=WW(HW(9) =W (f9) (29)

and obtain

(A, %)~ A.

The x-product corresponding to the symmetric ordering prescription W is then given
explicitly by the Moyal-Weyl product®

[rg=poe WS f@g= fg+6"(0.f)(0g) + O(6?).

It is a deformation of the commutative point-wise product to which it reduces in the
limit 6 — 0.
In virtue of the isomorphism W we can map all noncommutative fields to com-
mutative functions in A4
F—WYF)=F

We then expand the image F' in orders of the deformation parameter 6
F=r®_4 p® L p@ 4 O(6%),

where the zeroth order always corresponds to the undeformed quantity. Products of
functions in A are simply mapped to x-products of the corresponding functions in
A. The same can be done for the action of the derivative @ and consequently for
an arbitrary differential operator acting on A [8].

The fundamental dynamical field of our gravity theory is the vierbein field E,ﬁ.
All other quantities such as metric, connection and curvature can be expressed in
terms of it. Its image with respect to W ! is denoted by F,°. In first approximation
we study the case

E,"=e,",

8This is an immediate consequence of (10).

14
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where e,® is the usual vierbein field. Then for instance the metric is given up to
second order in 6 by

1 1
G —(B," % Efr+ B % E, )Ny = 5(6,]’ *xe,’ + el % e, )Mab

5
1
= G — ggmﬁleo&& (8a18a26“a)(8B1862eyb)nab ...,

where g, is the usual, undeformed metric. For the Christoffel symbol one finds up
to second order: The zeroths order is the undeformed expression

1

F,(B/)p = Q(augw + 09y — 0v9)9"", (30)

the first order reads )
Z (63
LW = 26750007 00 (0307) (31)
and the second order
1

F/Szl/)p = = __0a1519a2ﬁ2 ((a 60[21—‘#1,0)(6,316,329 ) - 2(aalrpua)aﬁl((aGQ.gUT)<aﬁng§)g€p)

D0 (901009 (03,05,9r¢) + 97 (O Doy r) (93, 03,06

1
- 28041 ((6@9”)(5,829799”{) (8ﬁ1 gﬁﬁ)) g§p + 5 <8M(<aa18a2 eua) (8,31 8,32 eab))

+ 0,((Os Doy (95, 03,6,1)) = Oo(Ds Do, ) (0, 030,0)) g™ ). (32)
where
L), =T0%g,,. (33)

The expressions for the curvature tensor read

wvp uvp

L0 (0398,)9"" + D, ((0395,)97") + @r(%))
(0 (T (9rgr)97” = T (Dr931)9”

+0,((0195,)9") + (AT ) (34)
2) o __ 2)o 2 o 0 2)o
R® 7 = 9,03 + T 107 + 7O T

wvp
i
+26° (00 ) (35T 0°) + <6aF£(2“’><96F93">)

RW o _ _fem <(3 R©) ™) (8rgr)g"" — (8T O)B)<Fi(27(axgm)9w

2% vp B2 % iy

;9a1ﬂ1ea2ﬁ2<6 9.1 )(8 03 P ) — (p = v), (35)

15
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where the second order is given implicitly in terms of the Christoffel symbol.
The deformed Einstein-Hilbert action is given by

1
Sgg = 5/d‘iycdet*eua*RnLc.c.
1 _
- §/d‘*acdet*e#“*(RvLR)
1 _
- é/d‘Lxdet*e”“(R—l-R)

= 5O+ / d*z (dete, ) R® + (det,e, )P RO, (36)

where we used that the integral together with the Moyal-Weyl product has the prop-

erty’
/d4xf*g:/(l4xfg:/d4xg*f.

In (36) det,e,” is the x-determinant

1
a M1 4 al a2 as aq
det,e,* = 1€ EayeasCuy 't K €y K€" ke,

= dete,” + (det,e,))? + ...,

where

11
(det*)@) — _gEgalmeaQﬁzgm---MgalmM

<<6a1 acm € “ ) (6ﬁ1 6/32 €y * )em “ S “
+ 8041 8a2 (em “ €y “ ) (861 8ﬁ2 €us @ )6“4 “
Oy Do (€1, €47 €4 ) (03, 0,00,™) ). (37)

The odd orders of € vanish in (36) but the even orders of # give nontrivial contribu-
tions.

Equation (36) shows explicitly the corrections to Einsteins gravity predicted by
the noncommutative theory.

9This follows by partial integration.

16
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Remarks

For an introduction to field theories on noncommutative spaces, we recommend the
review articles [13,14]. To learn more about related approaches to noncommutative
geometry the reader is referred to [15,16|. More about Hopf algebras and Quantum
Groups can be found in [10-12]. A good pedagogical introduction to x-products can
be found in [17]. The construction of a gravity theory presented in this lecture is
based on [8,9].
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Abstract

A deformation of the algebra of diffeomorphisms is constructed for canonically
deformed spaces with constant deformation parameter 6. The algebraic
relations remain the same, whereas the comultiplication rule (Leibniz rule)
is different from the undeformed one. Based on this deformed algebra, a
covariant tensor calculus is constructed and all the concepts such as metric,
covariant derivatives, curvature and torsion can be defined on the deformed
space as well. The construction of these geometric quantities is presented in
detail. This leads to an action invariant under the deformed diffeomorphism
algebra and can be interpreted as a 9-deformed Einstein—Hilbert action. The
metric or the vierbein field will be the dynamical variable as they are in the
undeformed theory. The action and all relevant quantities are expanded up to
second order in 6.

PACS numbers: 02.40.Gh, 02.20.Uw, 04.20.—q, 04.60.—m, 11.10.Nx

1. Introduction

Several arguments are presently used to motivate a deviation from the flat-space concept
at very short distances [1, 2]. Among the new concepts are quantum spaces [3—6]. They
have the advantage that their mathematical structure is well defined and that, based on
this structure, questions on the physical behaviour of these systems can be asked. One of

0264-9381/05/173511422$30.00 © 2005 IOP Publishing Ltd Printed in the UK 3511
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the questions is if physics on quantum spaces can be formulated by field equations, how
they deviate from the usual field equations and to what changes they lead in their physical
interpretation.

Quantum spaces depend on parameters such that for a particular value of these parameters
they become the usual flat space. Thus, we call them deformed spaces. In the same sense,
we expect a deformation of the field equations and finally a deformation of their physical
predictions [7-11].

Several of these deformations have been studied [12, 13]. They are all based on nontrivial
commutation relations of the coordinates. This algebraic deformation leads to a star-product
formulation as it is used for deformation quantization [14—16]. In this paper, we start from
the star-product deformation and consider the algebraic relations as consequences. We might
not have started from the most general realization of the deformed algebra, but certainly from
the one that is very useful for physical interpretation. This way deformed gauge theories
have been constructed by the use of the Seiberg—Witten map [17-24]. Their field content is
the same as in the undeformed theory, the deformation parameters enter the deformed field
equations as coupling constants.

The question was still open if gravity theories can be treated in the same way and has been
investigated by several authors [25-39]. We present here a positive answer to this question
based on a deformed algebra of diffeomorphisms and this way avoiding the concept of general
coordinate transformations. In this presentation, we restrict ourselves to the discussion of
the canonical quantum space with 6”¥ constant. The construction is now not based on
Seiberg—Witten maps. In a forthcoming paper, we shall show how this can be generalized to
x-dependent 6/,

By outlining the content of the individual sections, we will show the strategy by which a
deformed gravity theory can be constructed.

In section 2, we give a short introduction to the 6-deformed quantum algebra defined by
the Moyal-Weyl product. Emphasis is on those concepts that shall be used in the rest of the
paper. More detailed features of this algebra can be found in the literature and we give some
relevant references.

In section 3, the concept of derivatives is introduced. It turns out that there is a natural way
to define a derivative on the quantum algebra. We investigate these derivatives as elements of
a Hopf algebra and find that the usual derivatives and the derivatives on the quantum space
represent the same Hopf algebra.

We also generalize the derivatives to higher order differential operators and define algebras
of higher order differential operators both acting on differential manifolds and acting on the
deformed space. A map from the algebra of functions on the differential manifold to the
algebra of functions on the deformed space is constructed. This map will be the basis for
the representation of the diffeomorphism algebra by an algebra of higher order differential
operators acting on the deformed space.

In section 4, we study the algebra generated by vector fields and exhibit its Hopf
algebra structure. It is the algebra of diffeomorphisms derived from general coordinate
transformations. Scalar, vector and tensor fields are representations of this algebra.

In section 5, we construct a morphism between the classical algebra of diffeomorphisms
and an algebra acting on the deformed space. At first, this is an algebra morphism but not a
Hopf algebra morphism. To find a comultiplication rule, we derive the Leibniz rule for the
deformed algebra and show that it can be obtained from an abstract comultiplication which
we construct explicitly to all orders in 6. Thus, we have constructed a new Hopf algebra of
diffeomorphisms as a deformation of the classical one. A deformed gravity theory will now
be investigated as a theory covariant under this deformed Hopf algebra.
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In section 6, we restrict the formalism developed so far to vector fields linear in the
coordinates. They form a subalgebra. The Lorentz algebra can be obtained in that way
and we find a representation of the Lorentz algebra by differential operators that act on the
deformed space. The comultiplication rule follows from the general formalism and shows that
the derivatives have to be part of the algebra. This way we have found a representation of the
Poincaré algebra with nontrivial comultiplication rule. A tensor calculus of fields is developed
for this algebra and invariant actions are constructed. All the operations in the definition of
the Lagrangian—derivatives and multiplication—are in the deformed algebra. Field equations
can be obtained that are Lorentz covariant. This by itself is an interesting result but it also
serves as a guideline for the construction of a general theory on the deformed space.

In section 7, we show that all the concepts of differential geometry such as tensor fields,
covariant derivatives, connection and curvature can be obtained by a map from the usual
commutative space to the deformed space. The relevant formulae are calculated explicitly.

In sections 8 and 9, we turn to a metric space. We define the metric as a symmetric and
real tensor that coincides with g, in the limit & — 0. All other geometrical quantities are
constructed in terms of this metric. Finally, we use the curvature scalar expressed in terms of
g to construct a Lagrangian for a deformed gravity theory.

In section 10, we expand all these quantities up to second order in . The action obtained
this way can be used to calculate some effects of the deformation. The deformation parameter
0 enters as a coupling constant as it is familiar from gauge theory.

This way it is possible to study deviations from the undeformed classical gravity due
to spacetime noncommutativity. The strategy developed here can be generalized to other
*-products which then lead to other algebraic structures of spacetime.

2. 0-deformed coordinate algebra

A simple example of a noncommutative coordinate algebra is the §-deformed or canonical
quantum algebra 4y. It is based on relations [40, 41]

[XF, xV] = i0"", 2.1

with 8*¥ constant and real.

This algebra can be realized on the linear space F of complex functions f (x) of commuting
variables. The elements of the algebra A, are represented by functions of the commuting
variables f(x) and their product by the Moyal-Wey] star-product (x-product) [14, 42]

fxg(x)=ex ii@””i fx)g(»l 2.2)
J 8 =expl 5o e ) W) ly—x. .
This *-product of two functions is again a function. The x-product defines the associative
but noncommutative algebra A,. By taking the usual pointwise product of two functions, we
obtain the usual algebra of functions. This algebra is associative and commutative. We shall
call it A;. Note that we write f(x) for elements of Ay as well as for elements of Ajy.

As far as complex conjugation is concerned, we observe that the x-product of two
real functions is not real. Denoting the complex conjugate of f by f, we find from
definition (2.2)

Trg=g*T. 2.3)
From definition (2.2), it also follows that

xPxx’ —x¥ xx? =i0"". 2.4
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These are the defining relations for the generators of the algebra .4,y. Any element of the space
of ordinary functions represents an element of 4y; there is an invertible map ¢ [43]

¢ F— Ay (2.5

If we know the elements that are represented by the functions f and g, we can ask how
the pointwise product of two functions f - g is represented in 4y by *x-products of f and g
and their derivatives. First, an example

xPoxt =xt xx¥ — %9’“’. (2.6)

This follows from (2.2). The pointwise product x* - x" as an element of .4, represents the
sum of two elements of .4y modulo relation (2.4). In general, f - g will represent a sum of
*-products of f, g and their derivatives
S iy
Fra=3(=3) 50" 0" 08y f) % (o 08)- @)

n=0
This is a well-defined formula because the derivatives of functions are functions again and
we know how to x-multiply them. Applied to x*x", equation (2.7) reproduces (2.6). The
operations on the right-hand side of (2.7) are all in .Ay. To prove (2.7), we use the x-product
in the form that makes use of the tensor product of the vector spaces F

i
fag= M{exp (Eef’“ap@ag)f@g}. 2.8)
The bilinear map u maps the tensor product to the space of functions
n:FRF = F pif®gt— f-g. (2.9)
We now use the obvious equation
i i
fog=n {exp (Eef’“ap ® aa) exp (—Eewap ® aa) r® g} : (2.10)

The first exponent will produce x-products and the second one the sum of terms in (2.7). On
the other hand, equation (2.2) expresses the x-product f % g in terms of pointwise products of
f and g and their derivatives. All these operations are in A /.

3. Derivatives on Ay

Derivatives on quantum spaces were constructed in [44, 45]. There is, however, a natural
way to introduce derivatives on 4y based on the x-product formulation. We know that the
derivative of a function f € F is again a function. This function can be mapped to Ay, the
image we call the x-derivative of f € Ay

i b
feF—— fe Ay
a, o=

(3uf) € F —2— (35 f) € Aq a1
This defines d;; acting on f € Ay
0> f = @ f). (3.2)
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Now we discuss a few properties of the x-derivatives. From definition (3.2) follows
9, >x" =47, (3.3)

a property that we demand for a reasonable definition of a derivative. As the x-product of two
functions is again a function, we can use definition (3.2) to differentiate f % g

9> (f *8) = (9 (f *8)). 34
For the x-product with x-independent 6, it follows from (2.2) that

(B (f x8)) = @uf)* g+ f*(9u8)- (3.5
Using (3.2), we obtain

> (fxg)=(3,> f)xg+ f*x(d);>8). (3.6)

In this equation, all operations, derivative and product are within Ay. We have expressed the
*-derivative acting on a x-product by the x-product of x-derivatives.
Applying this rule to (2.4), we find

8; > ([x? *x°]1—1677) = 0. 3.7
This confirms that the derivative (3.2) is a well-defined map on .4y. Moreover, from (3.2)
follows

a5 > (3> f) = (0,0, f) (3.8)
and therefore

3;|>(8;l>f):8:|>(8;>f). 3.9

The action of x-derivatives on a function is commutative.

Derivatives were defined by their action on functions but they can be seen as differential
operators as well because equation (3.6) holds for any function g. Thus, it gives rise to the
operator equation

g x f=(@0,>f)+ fx0). (3.10)

We use the » when the derivative is meant to be an operator. As for ordinary derivatives, we
can also use the bracket notation if the derivatives act on a function. To emphasize that the
action is meant, we also use the triangle notation

@, *f)=0,> f. (3.11)
Taking for f the coordinate x”, we obtain from (3.10)
(9 3 x”1= 4", (3.12)

Analogously to equation (3.7), we get
a5 * ([x” 3 x7] —i077) = ([x” T x7] —i0”7) % 9. (3.13)
Equation (3.9), valid for any function g, leads to the commutativity of x-derivative operators
(a7t a;1=0. (3.14)

The derivatives, as maps on the algebra 4, have a Hopf algebra structure [46—48].
This implies the following properties: the derivatives generate an algebra with defining
relation (3.14). The coproduct is defined as follows:

A@) =03 ®1+1®0;. (3.15)
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It is compatible with the algebra

[A(]) T A@)]=0. (3.16)
The coassociativity
(A®id)ocA=(3{1d® A)o A (3.17)

can be verified explicitly. When we apply (3.17) to 97, we obtain
(A®id) o A)(3]) = (ARId)(D, @ 1+1® )
=0, ®1+1®0)®id+id®id® J,. (3.18)
That (id ® A) o A gives the same result can easily be seen. To define a Hopf algebra, we still
need a counit and an antipode. They are given by
€(d;) =0, S, =—0a;. (3.19)
The Leibniz rule (3.6) can be obtained by applying the bilinear map . {f ® g} = f * g to the
coproduct
pAA@) > f®gh=pd@*x [l ®g+ [ ® (3, %)}
=@ > f)xg+ f*(;>g). (3.20)
The usual derivatives 9, and %-derivatives 9 are representations of the same Hopf algebra.

We are going to discuss the algebra of higher order differential operators. Acting on Ay,
elements of this algebra are

D= Zd’“"'“"(x)am By (3.21)

Acting on Ay, the elements are

D* =) dm ()8 0 (3.22)
where the coefficient function d*!"*r(x) has to be considered as an element of Ay. The
multiplication of the operators D is standard. The multiplication of x-operators can be defined
if we consider the algebra A4y extended by the derivatives. It is always possible to write such a
product in the form as in (3.22) with all derivatives on the right by using the operator equation
following from the Leibniz rule. This multiplication can essentially be obtained by replacing
the product of the coefficient functions by the x-product.

The operator D can be mapped to operators acting on .Ay. To construct such a map, we
re-examine the pointwise product of two functions (2.7) in the light of higher order differential

operators
f8=Xipg=(X}*g), (3.23)
where
1/ iy
xt=¥ — <_§) 71 0P (- By, f) % 0l - O (3.24)
n=0

This can easily be generalized to the action of differential operators on g
(Dg) =X} > g, (3.25)

where

On M

Z— (—l) 0P 0P (3, < By dMI () WY O 108 (3.26)
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Now we define a map
f= X3, D~ X3,
This map is actually an algebra map if the multiplications of differential operators are defined
as above after (3.22). From (3.25) follows
(D-D'g) = (X} *xX}) > 8. (3.28)

This is true for any function g and thus the map (3.27) can be interpreted as a morphism of
algebras.

4. Diffeomorphisms

We will develop a formalism by which the algebra of diffeomorphisms acting on Ay can be
mapped to an algebra of x-differential operators acting on Ajy.

Let us first recall the concept of diffeomorphisms as a Hopf algebra. They are generated
by vector fields acting on a differential manifold. The vector fields are defined as follows:

§E=¢&" (X)i 4.1
N dxm’ '
The commutator of two vector fields &, n is again a vector field:
[E.n1=§ xn, 4.2)
where the vector field & x 7 is given by
a
% 1 = (09 EPY — EM( NP)) — . 4.3
§xn =" (8,87 — E5(0un") 5 4.3)
From the Leibniz rule for derivatives follows the Leibniz rule for vector fields
E(f-8N=EN-g+ [ 6o 4.4

This Leibniz rule follows from an abstract comultiplication rule that defines the action of a
vector field on a tensor product

AE)=¢(Q1+1RE. 4.5)

It can be verified with (4.2) that the comultiplication (4.5) and the algebraic relation are
compatible without making use of & represented as a differential operator

[AE), Am] = AE xn). (4.6)
This defines a bialgebra. With the counit and the antipode
e() =0, SE) =—§, 4.7

it becomes a Hopf algebra. Here, £ and 1 need to be treated as abstract objects. Their product
&£n is to be viewed as an abstract product modulo the relation £n — né =& x n.”

Diffeomorphisms are intimately connected with general coordinate transformations
defined as follows:

xt = x* = x"* + EM(x), 4.8)
with infinitesimal £ (x).

7 In other words, we are considering the universal enveloping algebra freely generated by elements £, 7 modulo the
relation £En — né =& x 1.
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A scalar field is defined to transform under general coordinate transformations as follows:

P'(x") = (x).
For infinitesimal transformations (4.8), this becomes

3ep(x) = ¢'(x) — P (x) = —£"(3,0(x)) = —(§9(x)). (4.9)
Similarly, we define covariant vector fields

8V = —£" (0, Vi) — (9,8")V, (4.10)

and contravariant vector fields
B VI = —£P(3,V") + (9, V”. 4.11)

This can easily be generalized to tensor fields with an arbitrary number of covariant and
contravariant indices.
These transformations represent the algebra of diffeomorphisms (4.2)

[aés 81]] = 85xq, (412)
with the coproduct
Ade =6: Q1 +1® 6. (4.13)

As a consequence of (4.13), the product of two vector fields transforms like a tensor field
of second rank

8§(Vu Vo) = ﬂ{A(‘SE)Vu @V} = /‘L{(aé Vu) QV, + Vu 02y (‘SEVU)}
= —£79,(V,V,) = (3,E")(V,V,) — (3,E")(V,, V). (4.14)

This can easily be extended to the product of arbitrary tensor fields.
We summarize the Hopf algebra structure of general coordinate transformations

[867 81]] = (Séx;], 8(85) =0, S((SS) = _85’
Abe =8 @ 1+1® 6, [AG), AG)] = A(Bexy). (4.15)

This is true for any realization of §; on arbitrary tensor fields. It is a property of the abstract
Hopf algebra and not of a particular representation as differential operator.

5. Diffeomorphism algebra on Ay

We know how to map the algebra of higher order classical differential operators acting on A ¢
into the corresponding algebra acting on Ay. The relevant formulae are (3.24) and (3.26).
In the same way, the action of a vector field

§=£"0, (S.D
can be mapped to a higher order differential operator acting on .4y

E-N=Xi>f (5.2)
From (3.28) then follows

[X: 3 X1 = XZ.,- (5.3)

The operators X7 represent the algebra of vector fields. To obtain a Leibniz rule on Ay, we
apply the operator X} to the x-product of two functions

Xio (f % g) = G(f *8)). (5.4)



6. Gravity on Noncommutative Spaces 219

A gravity theory on noncommutative spaces 3519

To get a better understanding, we calculate the right-hand side of (5.4) to first order in 6
explicitly

€)= (5 (Fe+ 3070, N@0) )
= (Ef)g+ f(Eg)+ %QPU((Sapf)(Bag) + (0, f)(£0,8)) +---. (5.5)

We have to express the right-hand side entirely in terms of operations on Ay
E(f*x) =(Ef)xg+ [f*(Eg)

- %Hp”((ap(é”auf))(aag) + (0, /(05 (6"0,.8)))

+ %9”“((5“(3u3pf))(308) + (9, /) (" (0,058))) + - - (5.6)
Up to first order in 0, this is identical to [49]
Xio (f*8) = (Xix ) g+ f*(Xixg)

- %9“’([3,0,&“](3#]”)(3(78) + (0, N0, 61(0,8))
= (X; % [)xg+ [*(X[*g)

i
= 0771} T X2 x f) % (0] %8) + (0 % f) % (10] T XET 9)). 5.7
This Leibniz rule follows from an abstract comultiplication rule which reads up to first order
inf
AXD(f @9 =(Xix)®g+ [+(XI®g)

=50 (X £) © 05 )+ 0} % ) @ (X% 8))- (53)

This comultiplication rule differs from the one we obtained for the classical diffeomorphisms.
These two Hopf algebras are different although they are the same on the algebra level.
The Leibniz rule (5.7) can be calculated to all orders in 6, the result is

i
Xio (fxg) = {exp (—Eeﬂga; ® a;) (X:®1+18X})
i * *
X exp (Eewap@aa) l>(f®g)}. (5.9)

The map u, was defined in (3.20). Expanding (5.9) to first order in 6, we obtain (5.7). In
(5.9) appear x-commutators of x-derivatives and the operator Xf. A short calculation using
the explicit expression for X7 given in (3.26) yields the following equation:

107 @02 ¥ XE @11 =102t X ® 0} = X§y o) ® D7 (5.10)

Applying this equation inductively, we find an expression where the exponential functions
in (5.9) are expanded to all orders

Xio(frg)=(Xi> f)xg+fx(Xiog)

S 1 1 " a. o, *
+ Z o (_5> QPIoL ... OPn ”((X(am---a,,,,g) > f) * (301 . "3(,-,,g)

+ (B 00, ) % (XGo,, 000 > 8))- (5.11)

Note that (d,&) and all higher order derivatives of & are vector fields again.
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We outline the calculation leading to (5.9) and start from (5.4)

E(fxg))=¢&pn {eXP (%9”’8,, ® ag) f® g} i (5.12)
To commute & with u, we use
En=plf@1+1®E}, (5.13)

which can be verified directly by applying it to the tensor product of two functions. We obtain
from (5.12)

1 i\”
(é(f*g))zu{(é®1+1®€)Za(—%) 9”“’1---9'”"""(8/)1---Bp"f)®(8m---%,,g)}.

(5.14)

Next, we use the fact that £ applied to derivatives of a function can be mapped to 4y as in
(5.2) because derivatives of functions are functions again. This way we express everything in
terms of operators defined on A4g. Now we follow the step outlined in (5.7) and obtain the
result (5.9).

Let us summarize the Hopf algebra structure of the diffeomorphism algebra on .44. For
an element f of Ay, we define the transformation

Sf =-Xivf=6b/ (5.15)

This can be used to define 35 as an abstract element of an algebra independent of its
representation as a differential operator. From (5.3), the defining relation of the algebra
follows

[857 31]] = S[E,r;] = Séxna (516)

where & and 7 are vector fields and [, n] their commutator. The comultiplication from which
the Leibniz rule (5.9) follows is®

A i A A i
AGe) = exp (_Eefwa; ® a;) (8 ® 1+1®3) exp (Eeﬂ“a;; ® 3;) . (5.17)
Here, the x-commutator of a x-derivative and Sg is given by
19 1 8c1 = 8a,6). (5.18)

This is the abstract version of (5.10). We show that the above comultiplication is compatible
with the algebra

. i ) )
[AG:). AG,)] = |:exp (—59""8; ® a;) Ge@1+1®8),
) ) i
G, ®1+1®8,) exp (Eepf’a; ® a;) }
i ) ) i
= exp (—59/)08; ® 8;) (Bexn @1+ 1® bexy) exp (5990 8; ® 8;)

= A (5.19)

Coassociativity can be shown as well, counit and antipode can be defined.
Thus, we have obtained a Hopf algebra with the same algebraic relations as for the
ordinary diffeomorphism algebra, but the comultiplication is different.

8 The derivative 3; can be considered as a variation 0y, = 78; in the direction of 9,,.
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For later use, we expand the comultiplication (5.17) to first order in 6
A A N i N A
AG) =8 ®@1+1®6; — 5ep"([a*, 3|l ® 05 + 9, ® 19y, )

. A A .
=5 @1+1®5 — 0" (Bia,e) @ + 95 @ba,e) - (5.20)

6. Poincaré algebra

The classical vector fields (5.1), when linear in x, form a subalgebra of the algebra of
diffeomorphisms

é{u = xﬂw“‘)au’ [éwv éw’] = S[u),w’]s (61)

where [w, @'] is the commutator of the matrices w. The corresponding operators X are
* A * i *
X, =xtw,"d; — E@””w,,"a‘jag. (6.2)

Since &, is linear in x, this is already the exact expression to all orders in 6. The higher order
differential operators X, satisfy the same algebra as the vector fields &,,:

[X* X

LXL=X (6.3)

E{u,(u’]'
The transformation defined in (5.15) becomes
bof ==Xyo f == /) (6.4)

These transformations together with the derivatives form a Hopf algebra, the relevant algebraic
relations follow from (5.16) and (5.17) and the respective formulae for the derivatives.

Algebra:
[0%, 951 =0, 8012 801 = S1av,ar» [0, 93] = @l 0 (6.5)

wr v pow
Comultiplication:
AY; =0, ®1+1® 0,
AS,=8,01+1®38, — %eﬂ“([a*, 8,1 @3, +33 @107, 8, (6.6)
This comultiplication mixes the 5., transformations and the derivatives. The transformations

(6.4) do not form a Hopf algebra by themselves.
We can choose matrices w that represent the Lorentz algebra

[Mpa’ MKA] — npAMov( + no’KMpA _ npKMO'A _ no’)LMpK. (67)

With derivatives representing the translations, we have obtained a Hopf algebra version of the
Poincaré algebra [50-55]. The comultiplication is nontrivially deformed.

The algebra (6.5) and (6.6) can also be represented by tensor or spinor fields. Let ¥4 be
a representation of the Lorentz algebra

Sota = w," (M) P s, (6.8)

where (MM") AB as a matrix with indices A, B represents the Lorentz algebra (6.7). The
transformation 8,, can be defined by the ‘field transformations’

8ua = —X4oYa+ 0, (M), Prp. (6.9)
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With (6.9) we have established a Poincaré covariant tensor calculus on Agy. The new
comultiplication guarantees that the x-product of tensor fields transforms as a tensor.

Now we can construct Poincaré covariant Lagrangians. As an example, we discuss a
scalar field. Let ¢ be a classical scalar field

8o = — (). (6.10)

The transformation law can be mapped to .4, and we can consider ¢ as an element (field) in
Ay with the transformation law

Sup = —X: > . (6.11)
The *-derivative of a scalar field will transform like a vector field

3(0(8; >¢)=—-X) > (8; > @) — X(*a,,gu) > (8; > ). (6.12)
Thus, the Lagrangian

1 2
£=5(8;¢)*(8*"¢)—m7¢*¢—k¢*¢*¢ (6.13)
is covariant
8l ==Xt > L=—£,0:L). (6.14)

It can be expanded in 6 and to second order we obtain
1 m? LI
L= 5(3M¢)(3”¢) A St EGP 0% (0000, $) (35, 0p0" p)

2
+ ’:1—69”"9"‘ﬂ (0,009)(0,05¢9) + %AGPUHO"Sd)(BpBad))(Bg ). (6.15)

Note that a classical transformation of the fields in (6.15) will only reproduce (6.14) if 9 is
transformed as well. Due to the comultiplication rule (6.6), we do not have to transform 6 to
obtain an invariant action.

To construct an invariant action, we define the integration on .4y as the usual integration.
This integral has the cyclic property

fd"xd)*x :/d"xx*db:/d"’x(px, (6.16)

which follows by partial integration. The action

S:/d"x£

is invariant if £ transforms like (6.14).

To derive the equations of motion, we vary the action with respect to the field ¢. We use
the undeformed Leibniz rule for this functional variation and we can use property (6.16) to
cycle the varied field to the very right (or left) of the integrand. For the Lagrangian (6.13), we
obtain

84S =346 </d"x <—l¢*(3*“8*¢)—m—2¢*¢—k¢*¢*¢>)
T 2 g 2

1 2
= / d"x8pp (x) * (—25(3*“8;@ — 2m7¢ — 310 *¢) . (6.17)
This leads to the field equations
(0*0%p) +m°¢ +3hp * ¢ = 0. (6.18)
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If we expand (6.18) in 6, we obtain to second order in 6 the same field equation as from the
variation of the action corresponding to the Lagrangian (6.15)

2
S = / d"x (%@m(a“@ — ’%w — A+ %Aeﬂ"ea%(apaa@(agam)) . (6.19)

Some partial integration is necessary. This example will guide us by the construction of a
gravity action.

7. Differential geometry on .4,

Gravity theories in general rely on general coordinate transformations which are hard to
generalize to noncommutative spaces. The important concept however, on which the gravity
theories are based, is the algebra of diffeomorphisms. General relativity can be seen as a
theory covariant under diffeomorphisms. We have learned how to deform the diffeomorphism
algebra, thus we can construct a deformed gravity theory as a theory covariant under deformed
diffeomorphisms.

In section 5, we realized the algebra of vector fields on .A; on the noncommutative space
Ap. We now develop a tensor calculus for the deformed algebra in analogy to the tensor
calculus of the deformed Poincaré algebra.

We define the transformation law of a scalar field

Sep = —Xiv 9, (7.1)
of a covariant vector field

0:V, = —Xg >V, - XZBME”) >V,, (7.2)
of a contravariant vector field

0 VI = —Xg > VH+ Xzapé,t) > VP (7.3)
and of a general tensor field
N ViV * VyeVy * Vi * ViU
65 Tﬂll"'llp - _XE > Tllll"'llp o X(a/”gﬁ) > Tp'l"u'n T X(B“ﬂgp) > Tl“l'"p

* PV, . * Vi=-p
+ X(aﬂg.,l) > TH]._M + + X(a,,g,.V) > Tuf---up' (7.4)

The operators X; and X (*a £ follow from (3.26)

o0 1 . n
N RN

1oy
= Z — (_5) QPLoL . .. OPnOn (3p1 "'%SA) * 0y -0 07, (7.5)

* 1\" o 0O * *
Xien =D n! <_§> 071 0P (B, -+ 0,05 ) x5 -+ 05 (1.6)
0

The Leibniz rule that follows from (5.17) can be defined for the action of 35 on the

*-product of any of these fields

3 TV Tﬁl:sl _ igpaat o 3 1 1 8
-’3( ity * om---oc:)_'u* exXp ) p ®0;) (0 ®1+1®5)

Hritp

xexp (3079 0 8;) o (1115, © I | (7.7)
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This definition of the comultiplication ensures that the x-product Tlfllj,‘jl”[p * Tf,‘.l:;fi ' transforms
like the tensor field 7;;" %% .

Examples:
The x-product of two scalar fields is a scalar field again

Be (% Y1) = pua {exp (_%(wa; ® ag) Ge®1+1@8) exp (%9/’“3; ® a;) > ® w}
= XIo(xp). (1.8)

The proof is the same as for equation (5.9).
Repeating the same calculation, one finds that the x-product of a scalar field and a vector
field is a vector field

8e(@* V) = =Xt (P* Vi) = Xy 0> (0% V) (7.9)
and the x-product of two vector fields is a tensor field
Se(Vux V) ==Xt o (Vux V) — Xbgen & (Vo x Vo) = Xb ey > (Vi % V). (7.10)

The contraction of two indices is respected by the transformation law as well:
Sg(VM * V) = p, {exp (—%Qwap ® 80) (Sg RI+1® 35) exp (%97581, ® 85) WV, ® Vﬂ)}
==X (V,x V5. (7.11)

Similar statements are true for the x-product of arbitrary tensors. This is the basic concept of a
covariant tensor calculus. Only the derivatives have to be generalized to covariant derivatives
by demanding that the covariant derivative itself transforms like a covariant vector

8¢ DV, = =Xt > (Du Vi) — X0y o) > (D Vi) = X{y eny > (D Vp).  (7.12)

This can be achieved by introducing a connection I'jj,, and defining the covariant derivative as

D,V, := 8;>VV —Ffju*Va. (7.13)
The transformation law of the connection follows from (7.12) if we use the comultiplication
(5.17)
¢ Ffjv = —Xg > qu — X(*a“gp) > ng - X(*augp) > ng + X(*apga) > qu — 9,0,€°. (7.14)

The covariant derivative of a tensor field can be obtained by the same procedure as in the
undeformed case, too

Vv Ak vien, | pa e o Vpeemy
D*Tm---up - 8)» > Tm---up ka * Ta---u,, Fkup * Tul---a
Vi oy . Yy Vi
+FAa*Tm---up + +Fka*Tu1~-up' (7.15)

Curvature and torsion are obtained in complete analogy to the undeformed formalism
[D, ¥ Dy1*V, = Ryyp® * Vo + T," x Dy V. (7.16)
Using (7.13), one finds
Ry’ =0y el —0r Ty +T0 «T0, —TF +T7, (7.17)
I, =17, -}, (7.18)

For a connection symmetric in p and v, the torsion vanishes.
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8. Metric and Christoffel symbols

Classically, the metric is a symmetric tensor of rank 2

858;11) = _ép(apguv) - (auép)gpu - (avép)gup- (81)
This can be mapped to Ay by defining G,,, as a symmetric tensor of rank 2 in Ay
3Gy = —Xi > Guy — Xi 0y > Gpv = Xy o) > Gup, (8.2)

with the condition that

GuulO:O = 8uv- (83)

A natural choice for G, would be g, itself. It has the right transformation properties and is
f-independent.

We can also start from four vector fields E7, where p is the vector index and @ numbers
the four vector fields. These vector fields can be chosen to be real. The metric can be defined
as follows:

Guv = (E " * E,% + E," % E\%) nap, (8.4)

where 7, is the x-independent symmetric metric of the flat Minkowski space. With the
appropriate comultiplication, G, is a tensor of second rank. It is symmetric by construction
and real since £, are real vector fields. To meet condition (8.3), we take the classical vierbein
e, for £,°. Now G, is 0-dependent. The metric G, and its inverse can be used to raise
and lower indices.

In Ay, we have to construct the x-inverse of G, which we denote by G*"*

G * GP* = 80 (8.5)

The inverse metric G*'* is supposed to be a tensor but not a differential operator. To show
how such a tensor can be found, we first invert a function f € Ay. As an element of Ay, f is
supposed to have an inverse f~!

foft=1 (8.6)
We want to find an inverse of f in Ay, we denote it by f~'*
frf =1 (8.7)

Obviously, f —* will be different from f =1, For its construction, we use the geometric series.
We first invert the element

frf'=1+00), (8.8)
(frfH™M=0+fxf =D
=Y (= fxfhm (8.9)
n=0

The * on the nth power of 1 — f  f~! indicates that all the products are x-products and
therefore (8.9) is an expansion in Ay. Because of (8.8), it is also an expansion in 0

(1— f*f’l)" = 0(0"). (8.10)
From

(FrfHx(frfH=1 (8.11)
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and the associativity of the x-product follows

fr=ftw(frfhHm (8.12)

The -inverse of f  f~! has already been calculated as a power series in (8.9). Expanding
the series (8.9), we obtain the following equality which holds up to first order in 6:

=T A= fafh
=2f"" = e e (8.13)
respectively,
Fr=3f =3 T T T e T (8.14)

which is valid up to second order in @. If f transforms classically as a scalar field, f~! will
transform as a scalar field as well. With the proper comultiplication, f~'* will also be a scalar
field.

The same method can be used to find G***

G *G"* = 85. (8.15)
We first invert the matrix
Guw*G” =(GxG),» =8,+0(),

GG H="(1-GxG)™. (8.1
n=0

Here, we introduced G as the inverse of G, in Ay,
VY
Gu-G” =4/,

For G, = guv, G*¥ will be g". For G,,, 0-dependent G*” can be computed by a 6-
expansion, starting from g"" as the 8-independent part. In analogy to (8.12), we obtain

G"* =G" x (Gx G~ " (8.17)
When we expand the series 0, we get
GH™ — 2GHY _ GH 4 Gop * G‘BU, (8.18)

which holds up to first order in 6. Note that G*”* is not a symmetric tensor.
Using the proper coproduct and the fact that G*¥ transforms like a contravariant tensor of
second rank, we conclude that G*"* is a tensor of second rank as well
Q vk oy J7any * PV * JLp*
0:G" ==X > G +X(3p$“)l>G +X(3p$”)'>G . (8.19)
If we demand that the covariant derivative of the metric vanishes, we can express the
symmetric part of the connection entirely in terms of the metric and its derivatives. This is
also true in the 6-deformed case.
We shall now assume that the connection is symmetric

e, =Ty, (8.20)

and when expressed in terms of G, we shall call it the Christoffel symbol.
We demand that the covariant derivative of G, vanishes

D,Gg, =0, >Ggy — Fgﬁ * G,y — F{;V * Gg, = 0. (8.21)
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From there we proceed as in the classical case. We permute the indices in (8.21) assuming
from the very beginning that G, is symmetric and add the corresponding equations to obtain

2% Gpy = 85> Gpy + 05> Goy — 35 > Gop- (8.22)
We can *-invert G, and get the unique result
op = L@ Ggy + 95> Gy — 05> Gop) * G777, (8.23)

By a direct calculation, we can convince ourselves that I'J; has the right transformation
property (7.14) if G, and G”7°* transform like tensors. All we have used is the symmetry of
G v and its tensor properties.

9. Curvature, Ricci tensor and curvature scalar

To define the curvature tensor, we follow the standard procedure. We compute the commutator
of two covariant derivatives acting on a vector field. The covariant derivative of a vector field
was defined in (7.13)

DV, =955V, —T% x V. ©.1)

In (8.23), we have found a connection I', symmetric in x and v that can be expressed entirely
in terms of the metric. From (7.16) follows the curvature tensor, because the torsion vanishes
for symmetric I}, :

[D,*Dy1>V, = Ry° * V. 9.2)
Then, the curvature tensor in terms of the Christoffel symbols is given by (7.17)
Ry’ = 05Ty — o) eTy +T0 «T0, —Th «T7,. 9.3)

The curvature tensor is antisymmetric in the indices p and v. That the curvature tensor R,;,,°
transforms like a tensor if I'7 | has the transformation property (7.14) can be checked explicitly.
Finally, we express the Christoffel symbols in terms of the metric and obtain the desired form
of the curvature tensor in terms of the metric. Its tensor properties then follow from the tensor
property of G .

From the curvature tensor, we obtain the Ricci tensor

Ry = Ryus’. 9.4

A summation over the third index would not vanish as in the undeformed case, but it would
not reproduce the Ricci tensor in the limit § — 0 either. The curvature scalar can be defined
by contracting the two indices of the Ricci tensor with G#***

R =G"" xR,,. 9.5)
By construction, R transforms as a scalar
8¢R=—Xt> R=—£"(0,R). (9.6)

It will however not be real, as can be seen from (2.3). For the Lagrangian to be constructed in
the following, we will just add the complex conjugate.

To obtain a covariant action from a scalar that transforms like (9.6), we have to find a
measure E that transforms as

3£E = _(au(éﬂE)) = _(auéﬂ)E - é‘”(BNE). (9'7)
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This has to be mapped to Ay
S E* = —X;o E* — X{; oy > E™. (9.8)

Such an object we call a scalar x-density.
Using the comultiplication rule (5.17), we can then verify that

Sg(E* * R) = —(9,E")(E* * R) — E"(3,(E* * R))

= =0, (" (E* x R)) (9.9)
or in the language of Ay
8¢(E** R) = —0* &> (X}u » (E* x R)). (9.10)
The action
S:/d”xE**R (9.11)

will be invariant

8¢ </ d"xE**R) =0. (9.12)

In Ay, the square root of the determinant of the metric will have the transformation
properties of a scalar density. It is however complicated to map the concept of a square root
to Ay. It is easier to express the metric in terms of the vierbein as we have done in (8.4) and
then define the x-determinant.

The x-determinant can be defined as

E* = det,Ef} = &M " Mgq,.q, ED %+ x E%. (9.13)

Here, we have assumed that our space is four dimensional. The generalization to n dimensions
is obvious.

With this definition, E* has the right properties of a scalar x-density. To verify this, we
have to use the transformation properties of covariant vector fields and the comultiplication
rule (5.17). This reproduces (9.8). From the definition also follows that E* is real if the
vierbeins are real.

An invariant action on Ay will be

1
Sen = 3 / d*x(E* * R +c.c.). (9.14)
Using the reality of E* and using property (6.16) of the integral, we obtain for the action (9.14)
1 _ 1 _
Sen = E/d4xE**(R+R) = 5/d4xE*(R+R). (9.15)

This is the Einstein—Hilbert action on the #-deformed coordinate space. The field equations
can be obtained from this action in analogy to (6.17) by moving the field to be varied to the
left (or the right) and then varying it, or we could expand the x-products in (9.15) and vary the
field e, “.

10. Expansion in 0

To get a better insight into the developed formalism, it is useful to study a 0-expansion.
Already for the gauge theories, we used such an expansion for the action and considered 6 as
a coupling constant. Let us therefore list the 8-expansions of all relevant quantities. In zeroth
order, we obtain the classical expressions. We denote them with the index (0).
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The basic quantity is the vierbein
E, " =¢," (10.1)

to all orders in 6.
For the metric, we obtain

Guv = (E "% E,> + E," % E,%) tjap,

G = e, e,"Nap = guo (10.2)
and up to second order

G =8 — é@"“ﬁ‘@“ﬁﬂﬁ (3051 Boeeu")(aﬂl 8ﬂ2eub)r)ab e (10.3)

There is no contribution in the first order of 6. The reason is that 6 enters through the x-product
only. By definition, G, is real but the first order in the »-product of two real functions is
purely imaginary. Therefore, the first order has to vanish and the same will be true for all odd
orders in 6.

For G*'*, we obtain

i
G = g = 207 (08" (9p8ys)8™

1
* ggalﬂlgazﬁz ((301 aa:gw) (3/31 3/3:81/'7) +g"" (8011 3azeya) (3ﬁ1 3ﬁ:enb) Nab
— 200, (08" ) (p.875)8°) (95, 8e) ) 8™ - (10.4)

As constructed, G*¥* is neither symmetric nor real. There is no reason for the term of first
order in 6 to drop out. The same is true for the Christoffel symbol and the curvature tensor.
For the Christoffel symbol, we get the following expressions up to second order in 6: the
zeroth order reads

F;(AOBP = %(auguy + 3\)8;1)/ - ayguv)gypa (10.5)
the first order .

T = %9“’5 (3T0)7) 8or (358™) (10.6)
and the second order
F;(Lzu)p = _lgalﬂ19azﬂz((a 0o F;(xoga)(aﬂlaﬂzgap) (3061 F;(Lou)o)aﬂl((aazgar)(aﬂzgff)ggp)

F;(AOBO'((EJOQ 806 g )(3,31 aﬁzgff) + gGT (actl ad:ef )(3ﬁ13ﬁ:e§b)ﬂab

— 204, ((0:28°7) (96:.871)8™) (95, 8¢)) 8™ + 5 (3 (3o B0 (95, 9z 0”) )

+ 0y (3, ameg ) (36,95.¢")) — 85 (90, 80se”) (35, 8p2€0")) ) 1abg™),  (10.7)

where

F O, =T 240 (10.8)

For the curvature tensor, we also list the first and second orders individually. The zeroth order
is just the classical tensor expressed in the metric or the vierbein

R = —19“((8 RO ") (.8:)8"" — (8D OP) (DT (3182,)87°

F(O)U(axé’ﬁy)g +0,((0r8p,)877) + (BAFL(E"))
+ (B D) (5T (9281)8”7 = T2 (9188,)8""
+3,((9288,)8"7) + (355 7))) (10.9)
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2) o _ 2)o @y 0o Oy @0
R —3,,1"11'0. +va Fuy +va Fﬂy

Hvp
1
n Egaﬁ((aargiz)y)(aﬂr,goy)g) + (%FS(,),)V)(aﬁF,(};”))

1
- ge‘“ﬂleazﬂz (30, 00,57 ) (35,06, T D7) — (< v). (10.10)

From the curvature tensor, we obtain the Ricci tensor and the curvature scalar as outlined in
the previous section.
The curvature scalar is given by

R=RY +RD + R®, (10.11)
where R© is the classical curvature scalar and

RO = 4260 ) (DR — 8 (0 R ") Brr g™

nav

— (BT P) (T (Br.80)87" — T (38,)87 ™ + 3 (285y)8"*)
+(0T55%) + (TP ) (TR (280,87 — TV (9185,)8”"

+ 30 ((3:.85,)87) + (B,15%)))). (10.12)

R® = GO RY) + g"' R + GV RY)

+ %eaﬂ(aag““)(aﬁR;‘g) — %9“1/319“2'32 (90 00,8"") (95,95, RL)).- (10.13)
For the action, we still need the scalar x-density E*
E* = det(e}) — é%9”15'9“2528“'"'“4801...,,4((aalaazem“l)(aﬂl g, )y ey, ™
+ 0y D (€1 €% (9 O )s™ + B B (€11 €10 €™ ) (991 0ps™))-

(10.14)

The Einstein—Hilbert action was defined in (9.14). It is real by definition. Since 6 enters
only via the x-product, we expect that all terms corresponding to odd orders in € vanish. Up
to second order, we therefore get

Sen = Son + f d*x (det(e,*)R? + E*PR©V). (10.15)

In this action, the even-order expansion terms in 8 do not vanish. Equation (10.14) allows us
to study the deviation from gravity theory on a differential manifold.
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Abstract

We study a deformation of infinitesimal diffeomorphisms of a smooth manifold.
The deformation is based on a general twist. This leads to a differential
geometry on a noncommutative algebra of functions whose product is a star
product. The class of noncommutative spaces studied is very rich. Non-
anticommutative superspaces are also briefly considered. The differential
geometry developed is covariant under deformed diffeomorphisms and is
coordinate independent. The main target of this work is the construction
of Einstein’s equations for gravity on noncommutative manifolds.

PACS numbers: 02.04.Gh, 02.20.Uw, 04.20.—q, 11.10.Nx, 04.60.—m

1. Introduction

The study of the structure of spacetime at Planck scale, where quantum gravity effects
are non-negligible, is one of the main open challenges in fundamental physics. Since
the dynamical variable in Einstein general relativity is spacetime itself (with its metric
structure), and since in quantum mechanics and in quantum field theory the classical dynamical
variables become noncommutative, one is strongly led to conclude that noncommutative
spacetime is a feature of Planck-scale physics. This expectation is further supported by
Gedanken experiments that aim at probing spacetime structure at very small distances.
They show that due to gravitational backreaction one cannot test spacetime at Planck

0264-9381/06/061883+29$30.00 © 2006 IOP Publishing Ltd Printed in the UK 1883
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scale’. Its description as a (smooth) manifold becomes therefore a mathematical assumption
no longer justified by physics. It is then natural to relax this assumption and conceive
a more general noncommutative spacetime, where uncertainty relations and discretization
naturally arise. In this way, one can argue for the impossibility of an operational definition of
continuous Planck-length spacetime (i.e., a definition given by describing the operations to be
performed for at least measuring spacetime by a Gedanken experiment). A dynamical feature
of spacetime could be incorporated at a deeper kinematical level. As an example, compare
Galilean relativity to special relativity. Contraction of distances and time dilatation can be
explained in Galilean relativity: they are a consequence of the interaction between ether and
the body in motion. In special relativity they have become a kinematical feature.

This line of thought has been pursued in previous works, starting with [1, 2] and more
recently in [3-15].

Note that uncertainty relations in position measurements are also in agreement with string
theory models [16]. Moreover, non-perturbative attempts to describe string theories have
shown that a noncommutative structure of spacetime emerges [17].

A first question to be asked in the context we have outlined is whether one can consistently
deform Riemannian geometry into a noncommutative Riemannian geometry. We address this
question by considering deformations of the algebra of functions on a manifold obtained via a
quite wide class of x-products. In this framework, we successfully construct a noncommutative
version of differential and of Riemannian geometry, and we obtain the noncommutative version
of the Einstein equations.

Even without physical motivation, the mathematical structure of deformed spaces is a
challenging and fruitful research arena. It is very surprising how well x-noncommutative
structures can be incorporated in the framework of differential geometry.

The »-products we consider are associated with a deformation by a twist F of the Lie
algebra of infinitesimal diffeomorphisms on a smooth manifold M. Since F is an arbitrary
twist, we can consider it as the dynamical variable that determines the possible noncommutative
structures of spacetime.

As argued, F and its dynamics are relevant at Planck scale, however the physical
phenomena they induce can also appear at higher scales. For example, due to inflation,
noncommutativity of spacetime at inflation scale (that may be as low as Planck scale) can
induce cosmological perturbations; see for example [18]. It is then interesting to apply our
present work to study the noncommutative analogue of the Friedmann—Robertson—Walker
spacetime, as well as of other classical solutions to the Einstein equations.

In section 2, we construct the universal enveloping algebra U E of the Lie algebra of
vectorfields and we give a pedagogical description of its Hopf algebra structure. The twists
we consider are elements 7 € UE ® UE. The notion of twist of a Lie algebra is well
known [19, 20]. Multiparametric twists appear in [21]. Other examples of twists (Jordanian
deformations) are in [23-25]. In the context of deformed Poincaré group and Minkowski
space geometry, twists have been studied in [26, 27] (multiparametric deformations) and in
[28-32] (Moyal-Weyl deformations); see also [33].

In the context of Connes noncommutative geometry, the noncommutative torus, the
noncommutative spheres [34] and further noncommutative manifolds (so-called isospectral
deformations) considered in [34], and in [35, 36], are noncommutative manifolds whose

5 For example, in relativistic quantum mechanics the position of a particle can be detected with a precision at most of
the order of its Compton wavelength Ac = A/mc. Probing spacetime at infinitesimal distances implies an extremely
heavy particle that in turn curves spacetime itself. When Ac is of the order of the Planck length, the spacetime
curvature radius due to the particle has the same order of magnitude and the attempt to measure spacetime structure
beyond Planck scale fails.



6. Gravity on Noncommutative Spaces 237

Noncommutative geometry and gravity 1885

deformed algebra of functions is along the lines of Rieffel’s twists [38]; see [39] and, for the
4-sphere in [34], see [37, 40].

Our contribution in this section is to consider the notion of twist in the context of an
infinite-dimensional Lie algebra, that of vectorfields on M. Several examples of twists and
of their corresponding x-noncommutative algebra of functions are then presented. We also
extend this notion to the case where M is superspace and describe in a sound mathematical
setting a very general class of twists on superspace.

We conclude section 2 by recalling the construction of the Hopf algebra U E” [20]. This
Hopf algebra is closely related to the Hopf algebra of deformed infinitesimal diffeomorphisms.

We begin section 3 by recalling some known facts about Hopf algebra representations and
then construct the algebra U E, (with product ) as a module algebra on which U E” acts. The
space of vectorfields has a deformed Lie bracket that is realized as a deformed commutator
in U E,. We have constructed the deformed Lie algebra of infinitesimal diffeomorphisms
(infinitesimal x-diffeomorphisms). We then construct a natural Hopf algebra structure on
U E, which proves that vectorfields form a deformed Lie algebra in the sense of [41]; see also
[42, 43] and [44] p 41. It can also be proven that U E, and U E” are isomorphic Hopf algebras
[45]. In [14, 46, 47] (where 0*"-constant noncommutativity is considered), the Hopf algebra

E7 rather than U E, is used.

In section 4, we study the x-action of the Hopf algebra of infinitesimal x-diffeomorphisms
on the algebra of noncommutative functions A, = Fun,(M) and on U E,. In the same way that
A = Fun(M) and U E were deformed in section 3, we here deform the algebra of tensorfields
7T into 7, and then study the action of x-diffeomorphisms on 7,. As a further example, we
similarly proceed with the algebra of exterior forms.

We then study the pairing between vectorfields and 1-forms, and its A,-linearity properties.
Moving and dual comoving frames (vielbein) are introduced. As in the commutative case,
(left) A,-linear maps E, — A, are the same as 1-forms. More generally, tensorfields can be
equivalently described as (left) A,-linear maps.

In section 5, we define the x-covariant derivative in a global coordinate independent way.
Locally, the covariant derivative is completely determined by its coefficients I'7,.  Using
the deformed Leibniz rule for vectorfields, we extend the covariant derivative to all type of
tensorfields.

In section 6, torsion, curvature and the Ricci tensors are defined as (left) A,-linear maps
on vectorfields. The A,-linearity property is a strong requirement that resolves the ambiguities
in the possible definitions of these noncommutative tensorfields.

In section 7, we define the metric as an arbitrary *-symmetric element in the
*-tensorproduct of 1-forms €2, ®, €2,. Using the pairing between vectorfields and 1-forms,
the metric is equivalently described as an A,-linear map on vectorfields, («, v) — g(u, v).
The scalar curvature is then defined and Einstein equations on x-noncommutative space are
obtained. Again the requirement of A,-linearity uniquely fixes the possible ambiguities arising
in the noncommutative formulation of Einstein gravity theory.

In section 8, we study reality conditions on noncommutative functions, vectorfields and
tensorfields. If the twist F satisfies a mild natural extra condition then all the geometric
constructions achieved in the previous sections admit a real form.

2. Deformation by twists
2.1. Hopf algebras from Lie algebras

-

Let us first recall that the (infinite-dimensional) linear space E of smooth vectorfields on a
smooth manifold M becomes a Lie algebra through the map
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=~

[ ExE— E

(u, v) = [uv]. 2.1

The element [uv] of E is defined by the usual Lie bracket
[uv](h) = u(v(h)) — v(u(h)). (2.2)
We shall always denote vectorfields by the letters u, v, z,..., and functions on M by

f.8h, ...

The Lie algebra of vectorfields (i.e., the algebra of infinitesimal diffeomorphisms) can also
be seen as an abstract Lie algebra without referring to the smooth manifold M anymore. This
abstract algebra can be extended to a Hopf algebra by first defining the universal enveloping
algebra U E that is the tensor algebra (over C) generated by the elements of E and the unit
element 1 modulo the left and right ideal generated by all elements uv — vu — [uv]. The
elements uv and vu are elements in the tensor algebra and [uv] is an element of E. We shall
denote elements of the universal enveloping algebra UE by &, ¢, 7, . . ..

The algebra U E has a natural Hopf algebra structure [48, 49]. On the generators u € &
and the unit element 1, we define

AW =u®@1+1Qu, AD=1®1,
e(u) =0, e(l) =1, 2.3)
S(u) = —u, S(1) = 1.

Here, A is the coproduct (from which the Leibniz rule for vectorfields follows), S is the
antipode (or coinverse) and ¢ is the counit. The maps A, & and S satisfy the following
relations:

Aw)AWw) — AW)Au) = [uv]®@ 1+ 1 Q [uv] = A([uv)),

e(m)e(v) —e(v)e(u) = e([uv)), 2.4

S)Su) — S(u)SWw) = vu — uv = S([uv]).
This allows us to extend A and e as algebra homomorphisms and S as an antialgebra
homomorphism to the full enveloping algebra, A : UE — UEQ® UE,e : UE — C
and S: UE — UE,

A(EQ) == A(E)A(D),

e(§¢) == e(§)e(0), (2.5)

S(EC) = S()S(E).

There are three more propositions that have to be satisfied for a Hopf algebra (we denote the
product in the algebra by w)

(A ®Id)AE) = (id ® A)A(E),
(e ®iAE) = (Id® &) AE) =&, (2.6)
n(S ®id)A(E) = nid ® HAE) = &(6)1.

It is enough to prove (2.6) on the generators u, 1 of UE. We prove the first of them for the
coproduct defined in (2.3) using the Sweedler notation A(u#) = u; ® u, (where a sum over u;
and u; is understood), in this explicitcase A(u) = u; Quy =u @ 1+ 1 Q u,

(A ®id)AW) = Auy) @ uy
=u;, Quy, uy
—wURI+1IQuR1I+1®1Qu 2.7)
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and

(d®@ A)Au) = ur & Auz)
=u Quy Quy,
=uQIQI+1QuU®1+1Qu). (2.8)

Comparing (2.7) and (2.8), we see that the first condition of (2.6) is satisfied.

After proving the remaining conditions of (2.6) on the generators of UZE we have
constructed the Hopf algebra (UE, -, A, S, ¢), where - denotes the multiplication map in
U B; sometimes we denote it by p and frequently omit any of the symbols - and . With abuse
of notation we frequently write U E to denote the Hopf algebra (UE, -, A, S, €). This Hopf
algebra is cocommutative because A = A°? where A°®® = o o A with ¢ being the flip map
0E®L) =C®E.

We will extend the notion of enveloping algebra to formal power series in A and we will
correspondingly consider the Hopf algebra (U E[[A]], -, A, S, €). In the following for the sake
of brevity we will often denote U E[[A]] by U E.

2.2. The twist

Definition 1. A twist F is an element F € U E[[A]] ® U E[[M]] that is invertible and that
satisfies

Fi(A®@id)F = Fuid @ A)F, (2.9
(e®idF=1=(>d®e)F, (2.10)

where Fio =F Q@ land Fo3 =1 Q F.

In our context, we in addition require®
F=1®1+00). (2.11)

Property (2.9) states that F is a two cocycle and it will turn out to be responsible for the
associativity of the x-products to be defined. Property (2.10) is just a normalization condition.
From (2.11) it follows that F can be formally inverted as a power series in A. It also shows
that the geometry we are going to construct has the nature of a deformation, i.e. in the Oth
order in A we recover the usual undeformed geometry.

Using the twist F, we now proceed to deform the commutative geometry on M into the
twisted noncommutative one. The guiding principle is the observation that every time we have
alinearmap X Y — Z,oralinearmap Z — X ® Y, where X, Y, Z are vectorspaces, and
where U E acts on X, Y and Z, we can combine this map with an action of the twist. In this
way, we obtain a deformed version of the initial linear map. To preserve algebraic properties
of the original maps very particular actions of the twist F have to be used.

As an example, let X =Y = Z = A where A = Fun(M) = C®(M)[[A]] is the algebra
of smooth functions on M. The elements of UE act on A by the natural extension of the
Lie derivative. The Lie derivative on Fun(M) associated with the vectorfield v is defined as
follows:

Ly(h) =v(h) € A =Fun(M), (2.12)

6 Actually, it is possible to show that (2.11) is a consequence of (2.9), (2.10) and of F being at each order in X a
finite sum of finite products of vectorfields.
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where v € E and & € Fun(M). From equation (2.12) it follows that the map

v Ly, (2.13)
satisfies

LyLy(h) = v'(v(h)) € Fun(M) (2.14)
and therefore it is a Lie algebra homomorphism

[Ly, Lo1(h) = Ly (h). (2.15)

This implies that we can extend the Lie derivative associated with a vectorfield to a Lie
derivative associated with elements of U E by’

Lge = LeLe. (2.16)
Asin (2.12), we frequently use the notation
§(h) = Lg(h) (2.17)

for the action of UZE on Fun(M). The map we want to deform is the usual pointwise
multiplication map between functions

u: Fun(M) ® Fun(M) — Fun(M)

(2.18)
f®gr— fg.
To obtain yu,, we first apply ! and then u
]_-—]
Uy : Fun(M) ® Fun(M) — Fun(M) ® Fun(M) 5 Fun(M) (2.19)

[f®er Fl(f® P ueF ' (fg).
This product is the x-product
fre=u.f.8) =pnoF (f®g). (2.20)

We see that u, = o F~! is a bidifferential operator.
That the »-product is associative follows from (2.9); see the theorem in section 3.1 for the
proof. This is only true because we have used F~! and not F in (2.19). We also have

frxl=f=1xf (2.21)
as a consequence of the normalization condition (2.10). From (2.11) it follows that

frxg= fg+OW0). (2.22)
We have thus deformed the commutative algebra of function A = Fun(M) into the
noncommutative one

A, = Fun,(M). (2.23)

We shall frequently use the notation (sum over « understood)

F=f®f,, Fl=t"of, (2.24)
so that

frg =1 (NHl(g). (2.25)

The elements f“, f,,, fa, fy live in U E.

7 Since Ly is a differential operator, we have amap L : U E — Diff where Diff is the algebra of differential operators
from A to A. Note that this map is neither surjective nor injective.
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In order to get familiar with this notation, we will rewrite equation (2.9) and its inverse,
(A®iDF HFL = ((de A)FHFS, (2.26)
as well as (2.10) and (2.11) using the notation (2.24), explicitly

21 @ fpfy @ f, = * @ fPf,, @ fofa,, (2.27)
B @l @f, = @ Ty @i, (2.28)
e(f)f, = 1 = f%(f,), (2.29)
F=f"Qf, =10 1+00). (2.30)

2.3. Examples of twists

(1) Consider the case M = R" and the element
F=e " 5n®ny 2.31)
where 6V is an antisymmetric matrix of real numbers. The inverse of F is
Fl— odM0" et

Then we have

(A®id)F = e 10" (i ®1® 7w +1® 7 @iy
so that property (2.9) follows:
. NPT NP NS TR NP P B P B .
Fio(A @ id)F = ¢ 2V G @ar @l gr 8185w HOqm @50) — F,.(id @ A)F.

Property (2.10) trivially holds. The x-product that the twist F induces on the algebra of
functions on R" is the usual 6-constant x-product (Moyal-Weyl x-product),

(f *@)(x) =" 5707 £(x)g (1] (2.32)

(2) More generally, on a smooth manifold M consider a set of mutually commuting smooth
vectorfields {X,},a = 1,2,...,s. These vectorfields are globally defined on the
manifold M but can be zero outside a given open of M. Consider then

F =" X% (2.33)

where 0%? are arbitrary constants. The proof that F is a twist is the same as that of the

first example.

In the case that M is a Lie group (and more generally a quantum group) deformations
of the form (2.33) appeared in [21]. See also [22] where a few examples that reproduce
known g-deformed spaces are explicitly presented.

(2a) A star product that implements the quantum plane commutation relation xy = gyx
(¢ = e'*) can be obtained via the twist

i pil Fil 3 Ll
F = e POm®i vy @, (2.34)

Note that the vectorfields x% and y% vanish at the origin. In the semiclassical limit,
we have a Poisson structure, not a symplectic one.
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(2b) Consider the sphere S? and the usual polar coordinates 0 < ¢ < 2m,0 < 9 < 7. Let
f(g) and [(¥) be arbitrary smooth functions with support, for example in (—%, Z) and

(%, 3Z) respectively. Then,

F = e)»f(w)%t@l(ﬁ)% (2.35)
gives a well-defined star product on the sphere.

(3) Twists are not necessarily related to commuting vectorfields. For example, consider on
a smooth manifold M four vectorfields H, E, A, B that satisfy the Lie algebra relations

[H, E]=2E, [H,A]l = «aA, [H, B] = 8B, a+pB =2, (2.36)
[A, Bl = E, [E, A] =0, [E, B] = 0. '
Then the element

F — 1 HOMIHE) JAGB 7 (2.37)

is a twist and gives a well-defined x-product on the algebra of functions on M. These
twists are known as extended Jordanian deformations [25]. Jordanian deformations
[23, 24] are obtained setting A = B = 0 (and keeping the relation [H, E] = 2F).

2.3.1. Deformed superspace. Consider the superspace R”" with coordinates (x#, 6%) = Z4
and partial derivatives (9,,, d,) = 94 that satisfy the following (anti-)commutation relations:

4, z%1. =0, VAR
A generic derivation is of the form x = f4(Z)d,, where f4(Z) are functions on superspace.

Consider a set {x4, xe} = {xs} of even derivations x, and of odd derivations x. that are
mutually (anti-)commuting,

(X1, i1+ = 0; (2.38)
for instance one can consider the derivativations {x;} = {0,,d,} or the derivations
i} ={5%.0" 2. 0% 5%, 3. 0%55 )} (ifm > 2and n > 4).

The universal enveloping superalgebra of the Lie superalgebra (2.38) is as usual the
algebra U/ over C generated by the elements x; modulo the relations (2.38). The algebra I/
becomes a Hopf superalgebra by defining on the generators the following grade preserving
coproduct and antipode and the following counit:

A = x1 ®1+1® xu, S(x1) = —=Xxu- e(xn) =0,
where the tensorproduct ® is over C. The multiplication in ¢/ ® U is defined as follows for
homogeneous elements &, ¢, &', ¢’ € U (of even or odd degree |£], |¢], |€'], |¢'| respectively):
EQNE®)=(DIeg' @' (2.39)
The antipode is extended to all elements of ¢/ by requiring it to be linear and graded
antimultiplicative, the coproduct is linear and multiplicative (the grading being already present
in (2.39)), and the counit is linear and multiplicative:
AES) = AE)AM), SE = EDEEIS@SE), e =e@®e@).  (2.40)
We refer to [51] for a concise treatment of Hopf superalgebras.
Consider the even element in U[[A]] ® U[[1]] given by

) )
F = et n8x = ho" xa®xa o™ xe®xe! (2.41)

where {0} = {044, 0ce} are arbitrary constants (C-numbers). In order to check that F is a
. . ~ e 1 1
twist as defined in definition 1, we observe that Fjp = 27 118X @ | = *o' 118x/®1 and that

(A ®id)F = eM”(X1®1+1®Xz)®XJ_ (2.42)
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This last relation holds because A ®id : Y QU — U QU QU is multiplicative (the product in
USUU s givenby (6 ©¢ @n)(E' @' @ 1) = (—~DEIEFNICIEE @ ¢ £’ @ py). Finally,

Fio(A @ id) F = " n@n@tia ualtia @y (2.43)

because the arguments of the exponentials are even elements of U @ U @ U whose commutator
vanishes. One similarly computes F»3(id ® F).
An associative x-product on superspace is then defined by
gxh:=poF Y g®h)
= (=D () (). (2.44)
Associativity depends only on property (2.28) and not on the specific example of twists (2.41).
Associativity is explicitly proven in appendix A.3.

As particular cases of this construction we obtain the non-anticommutative superspaces
considered in [52]. For twists on superspace, see also [53] and references therein.

2.4. The deformed Hopf algebra U 2%

Another deformation via the action of F leads to a new Hopf algebra

Wer, ., a7, 87, e = We,-, A7, 7). (2.45)
As algebras U E = U E and they also have the same counit &© = ¢. The new coproduct A*
is given by
Conj
AT USF=UE -5 UE®QUE — > UEQUE=UE" QUE"

(2.46)
£ AE) > AT(E) =FAE)F.

We deform the antipode, a map from U E to U &, using an invertible element x of U E defined
as follows®:

x = fS(f,), x = ST, (2.47)
The definition of the new antipode is

STE) =xSEx " (2.43)
We follow the same steps as in subsection (2.1) to show that UE” = (UE7, -, A, §7, ¢) is
a Hopf algebra.

That A” and ¢ are algebra homomorphisms and that ¥ is an antialgebra homomorphism
follows immediately from the definition

AEH=A" N @),  FED=S® @), STED=ST0)5TE). (249
We have now to show that A* and S* fulfil the additional conditions (2.6), and therefore that
(UEB”, -, A, 87, ¢) is a Hopf algebra. This is done in appendix A.1.

The new Hopf algebra U =7 is triangular, i.e., there exists an invertible element
R € UE" ® UE” (called universal R-matrix) such that for all £ € UE,

AFPE) = RAT(ER™! (2.50)
(AT ®id)R = R13R03, (id ® A")R = Ri3R1z, (2.51)
Ry =R, (2.52)

8 See appendix A.1 for a proof that y x ! = x 1y = I.



244 6. Gravity on Noncommutative Spaces

1892 P Aschieri et al

where Ry, = o(R) € UE? ® UE”, with o the flip map, 6 (¢ ® ¢) = ¢ ® £. The two
equations in (2.51) take value in UEQ UE Q UE,and R, = R ® 1, Ry = 1 ® R, while
Ri3 € UE ® UE ® U E has the unit 1 in the middle factor. Defining

R:=FnF! (2.53)
it can be shown that equations (2.50), (2.51), (2.52) are fulfilled. The cocycle condition of F
was in this context only needed to prove (2.51).” In the following, we use the notation

R =R®R,, R'=R'QR,. (2.54)
Using the notation introduced in (2.24), we obtain
R

R=R"Q R, =f,F @ %, RI=R" @R, =T @ £,F. (2.55)

3. Representations

3.1. Module algebras

Having a Hopf algebra, its modules are certainly of interest in physics and mathematics. They
are the representations of the Hopf algebra. Here, we show that to a module algebra A of the
Hopf algebra U E there corresponds a module algebra A, of the deformed Hopf algebra U E”.

A module algebra 4 is a module .4 on which U E acts, which, in addition, has an algebra
structure that is compatible with the action of UE forallé§ € UE and a, b € A,

§(ab) = p o A(§)(a ®@b) = &i(a)é2(b), E(1)=e@)L.

(where 1 is the unit in A).

We recall a basic theorem concerning representations of twisted Hopf algebras. Given a
twist 7 € UE ® U B, we can construct a deformed algebra A,. The algebra A, has the same
vector space structure as .4 and the action of U 27 on A, is the action of UZ on A. The
product in A, is defined by

axb=poF a®b) =T (a)f,Db), (3.1)

in accordance with formula (2.20). Compatibility between the action of U 2% and the product
in A, demands

§(axb) =&, (a) x &, (D), (3.2)
where we used the notation A (§) = &), ® &,.

In order to prove associativity of the new product, we use (2.28) and compute

@by xc =TT @) = )@ @) 0 ©
= @) ([0 T) (b) (FrTp) (©)
= F @, @ 0)Fs(c) = ax (b x0).
We still have to prove (3.2):
flaxb)=EuoF @®b)=poAE)oF (a®b)
=poF o AT (E)a®b) = &i,(a) x5, (D).
Also note that if A4 has a unit element 1, then 1 xa = a x 1 follows from the normalization
condition property (2.10) of the twist F.

9 We refer to [49] (p 56). See also [50] (p 130) for a proof of (2.51) and for an introduction to twists and their
relations to Hopf algebra deformations.
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3.2. Examples of module algebras

We now apply this construction to the U E-module algebras A and U E. In both cases, the
action of U E on the corresponding module algebra is given by the Lie derivative.

Algebra of noncommutative functions A,
We start with the U E-module algebra of functions A = A = Fun(M) and we obtain
the algebra A, = Fun,(M) with the x-product already introduced in (2.20). The algebra
A,, according to section 3.1 is a left UE”-module algebra. In particular, vectorfields
u € E C UE? act according to the deformed Leibniz rule

u(hxg) = ui(h) x u,(8), (3.3)
where

AT ) = ur, @ ua, = uf’ @ £,F5 +1°F @ fLufs. (3.4)

The algebra U E,

We next consider the case A = U E. This is a module algebra with respect to the Hopf algebra
UE. The action of U E on U E is given by the extended Lie derivative (adjoint action): the
action of £, on v is just the Lie bracket £,(v) = [uv]; the action of UE on E is obtained
from the action of vectorfields by defining £, = L¢L, (where composition of the actions L
and L, is understood); finally the action of U E on U E is obtained from the known Leibniz
rule £, (vz) = L,(v)z + vL,(z) that implies L¢ (£n) = L, ($)Le, (1).

The deformed algebra U E, equals U E as a vectorspace, but it has the deformed product

*»UEQUE - UE

€O Exg =T O
where fa(é) (and f,(¢)) is another notation for the Lie derivative L= () (and Lz (¢)). The
Hopf algebra U 2% acts on U E,, and compatibility with the x-product of U E, is

E(C*m) =81,(0) x&,(n). (3.6)

This way we have obtained from the theorem in section 3.1 the algebra U E,. We will
show in section 3.3 that it is a Hopf algebra.
In U E,, we consider the deformed commutator of the vectorfields u, v € E,

[, v, ;= u*v— R (V) * Ry (u). (3.7)
This commutator closes in &:
uxv— R () *Re(u) =T (), () — T (Ra()E, (R ()
=F WF, () — T T4 ()F, £,F ()
= (i, (v) = T, ) ()
=1 ). T, )],
(the first line uses the definition of the x-product, the second line the definition of the R-matrix,
RI'=R'QR, =T ® fafﬂ as introduced in section 2.4. The third line uses F ' F = 1).
The last term is a sum (over y) of undeformed commutators between the vectorfields i (u)

and f, (v), and therefore [u, v], € E.
We denote by E, the linear space of vectorfields E equipped with the multiplication

(3.5)

LI.: ExE—E
3.8
(u,v) = [u,vl,. G:8)
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This way E, becomes a deformed Lie algebra. The elements of &, we call x-vectorfields. It
is easy to see that the bracket [, ], has the x-antisymmetry property

[, vl = =[R" (v), R @)1 (3.9)
This can be shown as follows:
[, vl = [ (), T ()] = =[f (@), T ()] = =[R" (v), Ry (w)]..
We recall that R~ = R ® R, = FF,,' cUEQUE.
A x-Jacobi identity can be proven as well:
[, [v, 2hide = [[w, V], 2l + [RY (0), [Ro (), 2] (3.10)

A direct proof of the x-Jacobi identity can be found in appendix A.2.

Finally, we note that any sum of the products of vectorfields in U & can be rewritten as
a sum of the x-products of vectorfields via the formula uv = f*(u) » f,(v), and therefore the
*x-vectorfields generate the algebra.

Indeed we have proven (see [45]) that U E, is the universal enveloping algebra of E,.

3.3. UE, is a Hopf algebra

We have seen that U E can be equipped with the usual Hopf algebra structure (U E, -, A, S, €)
or with the twisted Hopf algebra (UE”, -, AZ, $7, &) or with a new product U E, = (U E, *).
It turns out that U E, has also a natural Hopf algebra structure,

(UEs, %, Ay, Siy €4). (3.11)

We describe it by giving the coproduct, the inverse of the antipode and the counit on the
generators u of U E,:

Av) =u® 1+ Xz ® Ry (1), (3.12)
S, ) = —R"(u) » Xz, (3.13)
e.(u) =¢e(u) =0, (3.14)

where forall§ e UE, X¢ = faéxS*I(fa). The map X : UE — UE is invertible and it can
be shown [54] that its inverse X ! is
X' =&, = D®). (3.15)

In principle one could directly check that (3.12)—(3.14) define a bona fide Hopf algebra.
Another way [45] is to show that the Hopf algebra U E, is isomorphic to the Hopf algebra
UE7. The isomorphism is given by the map D:

D x¢) = D(E)D(¢), (3.16)
A, =D '®D HYoAT oD, (3.17)
S, =D 'o8"oD. (3.18)

In particular, since U 87 is a triangular Hopf algebra, U E, is also a triangular Hopf algebra.
Its R-matrix is

R.=(D'®@ D H(R), Re =R’ Q@ R,y = Xpo ® X, . (3.19)
Explicitly, we have

APE) =R« AE)* R, (3.20)
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(A ® 1R, = Ru13 * Ru23, (1d @ AR = Rz * Ra2, (3.21)
Rao1 =R, (3.22)

where R ! is the x-inverse of R,,i.e, R;'*R, =R, *R; ! =1 ® 1.
Summarizing, we have encountered the Hopf algebras
(UE,~ A, S, e), (UE”, - A7 87 8), (UB4 %, Ay, s 8).
The first is cocommutative, the second is triangular and is obtained by twisting the first, and
the third is triangular and isomorphic to the second. The remarkable fact about U &, is the
Leibniz rule for vectorfields (3.12). We find that R, (1) is again a vectorfield so that
A(E,)CE,Q®1+UE, ® &,. (3.23)
This is a fundamental property for the construction of a deformed differential calculus in the
style of Woronowicz [41]. Note that the coproduct A7 (1) does not have this property, as can
be seen explicitly from (3.4). It is interesting to note that a Hopf algebra with comultiplication
structure (3.4) is isomorphic to a Hopf algebra with comultiplication structure (3.23). In
order to establish a gravity theory which is invariant with respect to deformed infinitesimal
diffeomorphisms, we will consider module algebras with respect to U E, and not with respect
to UET.

4. Representations of deformed infinitesimal diffeomorphisms

In section 3, we have constructed the Hopf algebra U E,. Since U E, and U =7 are isomorphic
as Hopf algebras, any U 2% -module has automatically a U E,-module structure. In particular,
A, and U E, are also U E,-module algebras.

The action £* of U E, on A, is given by combining the usual action (Lie derivative £)

with the twist F

LE(h) = L e (Lg, (W), .1)
or equivalently, recalling that D(§) = i (&)f,, we see that

E; = LD@). (42)
Similarly for the action of U E, on U E,, that we also denote by L*,

LE(©Q) = Lp ) (L, (D) = &) T (0)). (4.3)

It is easy to see that these actions are well defined: Eg o Ez = ng*g, for example, we find'°

LELL()) = LE(DE) () = (DENDE)(h) = D x &) (h) = Li, (h) (4.4)
where we used (3.16). Compatibility with the x-product in A, is also easily proven,
Li(h*g) = Lpe(hxg) = (D§)(h*g) = (DE)1,(h) * (D§)2,(8)

= D(E)(h) * DE,)(R) = L1, () * £, (2) 4.5)

where we used (3.17). One proceeds similarly for the action £* of U B, on U E,. The proofs
that this action is well defined and that it is compatible with the x-product in U E, are exactly
the same as in (4.4) and (4.5): just substitute h, g € A, with ¢, n € UE,. Here we note in
particular that the x-Lie derivative of a vectorfield on a vectorfield gives the x-Lie bracket,

L () = [u, vl.. (4.6)
Moreover, it can be shown that the x-Lie derivative of U E, on U E, equals the x-adjoint
action, L£(¢) = adf(§) = &1, x ¢ x S,(62,). In particular, the x-commutator [u«, v], is just the
*-adjoint action of u on v.

1011 [14, 46, 47], we have 4" -constant noncommutativity and differential operators X; that satisfy X » X» = X ;
the relation between X}, and £, (for the 6"'"-constant case) is (X}, » g) = u(g) = L}(M ().
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4.1. Tensorfields

Our main interest in this subsection is the deformed algebra of tensorfields. We recall that
tensorfields on a smooth manifold can be described as elements in'’

QRQ2®-- - QREQER---E 4.7)

where ® stands for ®,4. Functions are in particular type (0O, 0)-tensorfields and the
tensorproduct between a function and another tensorfield is as usual not explicitly written.
The tensorproduct is an associative product. This in particular implies T ® ht’ = th ® v’ and
h(t ® T') = (ht) ® 7’. Tensorfields are a U & module, the action of U E on 7 is obtained
via the Lie derivative on tensorfields that extends toamap £ : UE ® 7 — 7. For example,
Ly (T) = Ly(Ly(T)).

By using the theorem in section 3.1 and by setting A = 7 where 7 is the commutative
algebra of tensorfields, we obtain a deformed tensor algebra 7, with associative x-tensorproduct

TR, 7 =T (1) @, (7). (4.8)

It follows that in 7, we have in particular

TR h*xT =1xh®, T, 4.9)
hx(t®,7)=(hx1) R, 7. (4.10)

The x-product between a function and a tensor is noncommutative
Txh = L (7)Lg, (h) = L5, (h) L (T) = L= (h) * L (T) = R (h) *» Ry (2). (4.11)

We now consider the construction performed at the beginning of this section, but with 7,
instead of A, (or U E,) and obtain that 7, is a U E,-module algebra. The action of U E, on 7,
is given by the x-Lie derivative

LE(1) = Lpe(1) =T (&) (Fo(2)). (4.12)
Compatibility with the x-product in 7, is proven as in (4.5)

Li(txt) = Li (t) * L, ().
In particular, the x-Lie derivative along vectorfields satisfies the deformed Leibniz rule

Ly(hxg) = Ly(h)x g+ R () * Ly . (2), (4.13)

in accordance with the coproduct formula (3.12).

4.1.1. Vectorfields B, are an A,-bimodule. From the definition of the product of tensorfields
(4.8), considering functions and vectorfields as particular tensors, we see that we can x-multiply
functions with vectorfields from the left and from the right. Because of associativity of
the tensorproduct we see that the space of vectorfields &, is an A,-bimodule. In the
commutative case, left and right actions of functions on vectorfields coincide, uh = hu'? In
the noncommutative case, the left and right A,-actions on E, are not the same, but are related
asin (4.11).

Local coordinate description of vectorfields. In a coordinate neighbourhood U with
coordinates x*, any vectorfield v can be expressed in the 9, basis as v = v#*9,. We have a
similar situation in the noncommutative case.

1T We assume for simplicity that Q®-- - QE®---EXT(T*M®---TM ® TM ® - - - TM). That this is always the
case for a smooth manifold M (see for example [57], proposition 2.6) follows from the existence of a finite covering
of M that trivializes the tangent bundle TM and the cotangent bundle 7* M see for example [58], theorem 7.5.16.

12 Here, uh is just the vectorfield that on a function g gives («h)(g) := u(g)h. This notation should not be confused
with the operator notation u o h = u(h) + hu.
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Lemma 1. In a coordinate neighbourhood U with coordinates x", every vectorfield v can be
uniquely written as

v=ovl*09,, (4.14)

where v are functions on U.

Proof. We know that v can be uniquely written as v = v*9,,. In order to prove decomposition
(4.14), we show that the equation

vl %9, =v"9, (4.15)

uniquely determines order by order in A the coefficients v in terms of the v* ones. First, we
expand v*, vt and F~',

no__ . K n 2.1 no__ 2
v =y +Av] + A0y + -, vt = vl + Al + Al + - (4.16)

Fle=F@f,=101+A" @f, + AT ®@f, +---. (4.17)

Then from (4.15) we have

vo=vg,  vh=v —TNf, (4.18)
where f PO = £y, (d,). More generally, at order A’, we have the equation v’;d, +
Z'J:l?a'( Vi j)f d, = v}'0, that uniquely determines v,; in terms of F,v¥ and v
with j <. D

Note that this proof remains true if the local frame {0,,} is replaced by a more general (not
necessarily holonomic or A independent) frame {e,}. (Hint: e, = e * 9, 9, = ey, *xeg.)
Along these lines one can define a change of reference frame,

0, — 8, = Lo, =L, %9, (4.19)

This is a starting point in order to construct noncommutative transition functions for the tangent
bundle TM.

4.1.2. I-Forms 2,. From the tensorfield product definition (4.8), we see that the space of
1-forms is an A,-bimodule. The A,-bimodule structure explicitly reads, Vi € A,, w € €,,

wxh =L () * Ly (@) =R (h)* Ry (). (4.20)
The action of U &, on €, is given in (4.12).

Local coordinate description of 1-forms and of tensorfields

As in the case of vectorfields, we have that in a coordinate neighbourhood U with coordinates
x*, every 1-form w can be uniquely written as

o = ), *dx" (4.21)

with @7, functions on U and where {dx*} is the usual dual frame of the vectorfields frame {9, }.
We can now show

Lemma 2. In a coordinate neighbourhood U with coordinates x*, every tensorfield T79 can
be uniquely written as

P — T:;ln vll,lp *dx™ @, - dx"” @, 0y, @y - 3Uq (4.22)

V1.V,
where ‘L',(Nl___l;lp are functions on U.
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Proof. Following the proof of lemma 1 we have that t”¢ can be uniquely written as
74 = 7" ®, 9,, where 77" is a type (p,g — 1) tensor. This expression holds
for any value of ¢ and therefore (using associativity of the ®, product) 77-¢ can be uniquely

. OV vs... . .
written as 774 = ¢l Y2ty R 0y O+ -+ 8,,4. Similarly, as in formula (4.21), we find that

. . n—1,0v1va..., . .
774 can be uniquely written as 779 = rf,“ R, dxM ®, 0, @, - - dy, . This expression

holds for any value of p and ¢ and therefore (using associativity of the ®, product) we obtain
expression (4.22) and its uniqueness. O

4.1.3. Exterior algebra of forms Q, = @,Q¢. As another application of the theorem in
section 3.1 we consider the algebra of exterior forms Q" = @,Q7”, and x-deform the wedge
product into the x-wedge product,

DAY =T () AT (). (4.23)
We denote by €2; the linear space of forms equipped with the wedge product A,,
Q.= (', A)). (4.24)

As in the commutative case, it can be shown [45] that the linear space of exterior forms can
be seen as the tensor subspace of totally x-antisymmetric (contravariant) tensorfields. The
properties of the x-antisymmetrizator imply that there is a top form that has the same degree
as in the undeformed case. This is in accordance with (4.23). Explicitly, the x-antisymmetric
2-form w A, ' is defined by (cf (7.1))

OA O =0, 0 — E*E‘f (o) ®, ‘C%.a (w). (4.25)

It can also be shown [39] that the usual exterior derivative d: A — €2 satisfies the Leibniz rule
d(hxg) = dh x g+ hxdg and is therefore also the x-exterior derivative. This is so because the
exterior derivative commutes with the Lie derivative. In the case where A is a Hopf algebra,
the fact that the exterior differential on A, is not deformed was shown in [55].

4.2. x-Pairing between 1-forms and vectorfields

Following the general prescription outlined in section 2.2, we define the x-pairing between
vectorfields and 1-forms as (), := (,) o F L. Explicitly, for all £ € E,, w € 2,

(,)x 1 Bu®c Q. — A, (4.26)
¢ ) > & o) = @), ). (4.27)

We leave it to the reader to prove the following:

Lemma 3. The pairing (,). is compatible with the x-Lie derivative,
L2, )2 = (L3, W), £, (@), (4.28)

and satisfies the A.-linearity properties

(h*u,w*k), =h*(u, ), xk, (4.29)
(U, h* @), = (% h, ), = Lo (h) *<£*§m(u), ), (4.30)

so that {,), : B, ®, Q, — A.

In the commutative case, we can consider locally a moving frame (or vielbein) {e;} and a
dual frame of 1-forms w/:

(e;, ) = 8], (4.31)
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in particular (9, dx") = §,,. In the noncommutative case locally we also have a moving frame
{é;} and a dual frame of 1-forms w’:

(@, ), = 8. (4.32)
We construct it in the following way: since (e;, /) = 8ij we have (¢;, w/), = Nl-j with N
being a x-invertible matrix since Nl.j = 5{ + O()A). We denote by N1+ the *-inverse matrix of
the matrix N. We have N ' = 1 + AN; + A2N, + - - - with the generic terms N, I recursively
given by N, = _ Y Nnil,* * N; see also [14] for another equivalent explicit expression.
Then,

6 =N " x e (4.33)

satisfies (&;, w/), = 8ij as is easily seen using A,-linearity of the pairing (,),.. Of course, we
also have (e;, ®'), = §] with &/ = o* * N,:l”. We denote by {9,} the basis of vectorfields
that satisfy

(O, dx"), = 8", (4.34)

and we have 9, = N, '+ » 0, with N, = (9., dx")..

Using the pairing (, )., we associate to any 1-form w the left A,-linear map (, w),. It can
also be shown [45] that the converse holds: any left A,-linear map @ : B, — A, is of the
form (, w), for some w.

5. Covariant derivative

By now we have acquired enough knowledge of x-noncommutative differential geometry to
develop the formalism of covariant derivative, torsion, curvature and Ricci tensors just by
following the usual classical formalism.

We define a x-covariant derivative V;, along the vector field u € E to be a linear map
Vi : B, — E,suchthatforallu,v,z € B,,h € A,

*
vu+u

2=Viz+Vz, (5.1)
ViV =h* Vv, (5.2)

Vihxv) =L5(h)»v+R (h) %V (5.3)

*
Row) V"

Note that in the last line we have used the coproduct formula (3.12), A, (u) =u ® 1 + ﬁf ®
Dﬁ (u). Expression (5.3) is well defined because R, (u) is again a vectorfield.
Local coordinate description

In a coordinate neighbourhood U with coordinates x* we have the frame {éu} that is x-dual to
the frame {dx*} (cf (4.34)). The (noncommutative) connection coefficients I, are uniquely
determined by

V30 =T * 0, (5.4)
They uniquely determine the connection; indeed for vectorfields z and u we have
Viu = Vi(u, * d,)
= Lrul) 9, + R (u?) % v*ﬁa@éu

= L2(ul) % 9y + R (u¥) x Ry ()" * Vgué“

= LX) %0, + R () * Ry ()" % T',7 * 8, (5.5)
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where R, (z)" are the coefficients of Ry(z), Ry(z) = Ry (2)" * 3,1. With respect to a local
frame of vectorfields {¢;}, we have the connection coefficients

V;[ej :F,-jk*ek. (5.6)

Covariant derivative on tensorfields

We define the covariant derivative on bivectorfields extending by linearity the following
deformed Leibniz rule for all 4, v, z € E,:

Vi(v @, 2) :=V,(v) .2+ R ) ®, V*E(u)z.
We now define the covariant derivative on functions to be the x-Lie derivative,
Vi (h) = Ly(h). (5.8)

As in the commutative case we also define the covariant derivative on 1-forms €2, by requiring
compatibility with the contraction operator for all u, v € E,, w € €,,

VZ(U, (,())* = <VZ(U), (,()),, + <E0‘(U)’ v%ﬂ(u)wL

(5.7)

(5.9)

sothat (v, Vi), = Ly (Ry(V), @), — W%"(u) (R4 (v)), w),. Finally, we extend the covariant

derivative to all tensorfields via the deformed Leibniz rule (5.7) where now t, 7’ € 7.,
Vit ®.7) = V(D) @ T + R (1) ®. V% - (5.10)

6. Torsion and curvature

Definition 2. The rorsion T and the curvature R associated to a connection V* are the C-linear
maps T : B, Qc B, = B, and R* : B, Qc E, Q¢ E. — E, defined by

T(u,v) :=Viv — v*?(v)ﬁa(u) — [u, vl., (6.1)
R(l/t, v, Z) = VMVUZ - Vﬁa(u)vmw)z - V[,,U]*Z (62)

forallu, v,z € E,.

From the antisymmetry property of the bracket [], (see (3.9)) and the triangularity of
the R-matrix, it easily follows that the torsion T and the curvature R have the following
*-antisymmetry property:

T(u,v) = ~T(R" (), Ra(w)), (6.3)

R(u, v,2) = —R(R" (v), Ra(w), 2). (6.4)
It can be shown [45] that T and R are left A,-linear maps

T:E,Q®u Ex = B

R:E, Qs By ® Ex > Ei

(6.5)

and therefore that they uniquely define a torsion tensor and a curvature tensor. For the torsion,
left A,-linearity explicitly reads
T(f xu,v) = f*T(u,v), (6.6)
T(u, f*v) =T f,v) = R () » T(Ra (), v), (6.7)

and similarly for the curvature. Instead of entering the technical Hopf algebra aspects
of the proof of (6.6) and (6.7), we here present an easy intuitive argument. Recall that
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frg =R (g)*Ry(f). In other terms, the noncommutativity of the x-product is regulated by
the R-matrix. Expression R’ (g) * Ry (f) can be read as saying that the initial ordering f x g
has been inverted. Similarly, expression R'R” (h) % R’ (f)* Ry (g) equals f % g xh as is easily
seen by accounting for the number of elementary transpositions needed to permute (f, g, )

into (&, f, g). In short, R™! = =R'®R,isa representation of the permutation group on the
*-algebra of functions A, and similarly on the algebra of vectorfields U E,. The formula
L %, vl = f % [tt, vh — (Lo o 0, R () * Re0) (6.8)

can then be intuitively obtained recalling the analogue commutative formula [fu,v] =
flu, v]— (L, f)u and keeping track of the transpositions that have occurred. For example, the
‘R-matrices in the last addend agree with the reordering (f, u, v) — (v, f, u). Recalling again
that the initial ordering is (f, u, v), one similarly has

Vi Ralf 1) = f % Vi Ro() + (Lo Ro(f) * Raw).  (6.9)
The sum of (6.8) and (6.9) gives the left A, -linearity property (6.6) of the torsion. Formula (6.7)
can be similarly obtained. It also follows from the x-antisymmetry property (6.3).
Local coordinates description
We denote by {e;} a local frame of vectorfields (subordinate to an open U € M) and by {0;}
the dual frame of 1-forms:

(i, 67), = 5. (6.10)

The coefficients T; jl and R; jkl of the torsion and curvature tensors with respect to this local
frame are defined by

Tij' = (T(ei.e)). 0')., Rijt' = (Rei, e, ex), 6')..
We denote by A* the x-transposition operator; it is the linear operator given by
A (u @y v) 1= L (V) ®, E%W(u) =R (v) ®. Ra(u). (6.11)

It is easily seen to be compatible with the A,-bimodule and the U E,-module structure of

— - .
By Oy Byl

A" (hxu®,vxk) =h*xA"(u®, v)*xk, (6.12)
LE(A*(u ®, ) = A (LE(u @y ). (6.13)

(Hint: use (2.51), (2.52), and (3.20).) Because of the A,-bilinearity property (6.12), we have
that A* is completely determined by its action on a basis of vectorfields. We define the
coefficients A};' of A* by the expression

A*(e; ®. ej) = A;j“ * e Ry €.

Recalling the x-antisymmetry property of T and R (see (6.3) and (6.4)), we then immediately
have the x-antisymmetry properties of the coefficients T; j] and R,; j’ ,
I k I 1 k I
T,'j = —A:-(jm * Tem' s Rm'j = —A;jm * Rukm - (614)
In the commutative case, if the connection is chosen to have vanishing torsion, we have
the first Bianchi identities R;j;' + Rjx;! + Ry;;' = 0, where the lower indices ijk have been
cyclically permuted. There is a similar equation in the noncommutative case.
We first define the x-operation of cyclic permutation of three vectors. Recalling the

definition of the x-transposition operator we have that x-cyclic permutation of the vectors uvz
is given by

CURV®42) =U Q0 ®u 2+ AT AU Ry V@, 2) + AL AT, (U Qv ®, 2) (6.15)



254 6. Gravity on Noncommutative Spaces

1902 P Aschieri et al

where A}, = A ®, id and A%; = id ®, A. From the A,-bilinearity property of A*, we see
that also C* is A,-bilinear

Chxu®,vQ,72xk) =h*xC"(u®,v®,2) *k. (6.16)

Since any tensor in E, ®, E, ®, &, is of the form f* x ¢; ®, e; ®, e, we have that the
*-cyclic permutation operator is completely defined by its action on a basis {¢; ®. e; ®. et}
This action is completely determined by the coefficients C*m” of C*,

C*(e; @u ) ® ) = CU % €) @ e @ . (6.17)
We can now state the first Bianchi identity in the case of vanishing torsion:

C*(R(u,v,2)) =0 (6.18)
where C* denotes the x-cyclic permutation of «, v and z. In components, the Bianchi identity
reads

C*I % Ry = 0. (6.19)

The proof of the Bianchi identity follows the classical proof. Since the torsion vanishes we
have V;T(v, z) = 0 and this equation reads

ViVi(@) = ViVie o Ra(®) = Vi o Ra(u) = [u, [, 2L, (6.20)
where we have used T(u,[v,z],) = 0. We now add this equation three times, each

time x-cyclically permuting the vectors (u, v, z), so that we have the three orderings
w,v,2), R'R (), Rs(u), R,(v)) and ® @), R (2), R, R;(u)). The three addends

[u, [v, z],]+ + *-cyclic perm

vanish because of the x-Jacobi identities and the remaining addends give the Bianchi
identity. (This can be seen using (2.51), (2.52) and the quantum Yang—Baxter equation
R12R13R23 = Ra3R13R 12, that is a consequence of (2.50), (2.51), (2.52).)

We end this section with the definition of the Ricci tensor. In the commutative case, the
Ricci tensor is a contraction of the curvature tensor, Ricjy = R; jki . We define the Ricci map
to be the following contraction of the curvature:

Ric(u, v) := (0", R(e;, u, v))., (6.21)

where sum over i is understood. The contraction (,)’, is a contraction between forms on the
left and vectorfields on the right. It is defined through the by now familiar deformation of the
commutative pairing,

(@, u), = (F (), T, (u)),

= (R (), Ry (®)),- (6.22)
The pairing (,), has of course the A,-linearity properties
(h*xw,uxk), =hx{w,u), xk, (@, h*u), = (wxh,u).. (6.23)

Definition (6.21) is well given because it is independent from the choice of the frame {e;} (and
the dual frame {#'}) and because the Ricci map so defined is an A,-linear map:

Ric(f * u, v) = f = Ric(u, v), (6.24)
Ric(u, f *v) = Ric(u x f,v) = ?X(f) * Ric(Ry (1), v). (6.25)

In order to prove this statement, we consider the coefficients R/ (e;, u, v) of the vector

R(e;, u, v) = Rj(ei, u,v)*e;.
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The A,-linearity of R implies the A,-linearity of the coefficients, Ri(h * ej,u,v) =
h * R/(e;, u, v). This in turn implies (recall the end of section 4) that there exists 1-forms
w} (u, v) such that

R/ (e, u, v) = (er, whu, V), (6.26)

From R(e;, h x u, 'v) =R(e;xh,u, v), we immediately see that the 1-forms a)é(u, v) are left
linear in u, i.e., w5 (h * u, v) = h *x w}(u, v). We now have
(0, R(ei, u, v)), = (0" * R/ (e;, u, v), e},
= (0 * (s, 0h(u, V), €)))
= (0h(u, v), ¢;),
where in the first line we used (6.23). This formula implies independence from the choice of

basis {e;} and left A,-linearity of Ric.
The coefficients of the Ricci tensor are

RiCjk = RiC(ej, ek). (627)

7. Metric and Einstein equations

In order to define a x-metric, we need to define x-symmetric elements in 2, ®, 2,. In (6.11),
we have defined the transposition operator A* on the vectorfields; we can similarly define it
on the forms,

Ao ®, o) = L%: (o) R, E%w (w) = R*(0') @, Ry(w). (7.1)

We now recall that 2, ®, 2, = Q2 ® Q as vectorspaces and we note that the transposition
operator A* : 2, ®, Q2, = 2, ®, Q, is just the classical transposition operator A : Q @ Q —
Q ® Q. Indeed, we have

A ®, ) = A () @ T, (@) = (@) @F (0) = R" (0) @, Ra(@) = A (0 ®, o),

where in the first equality we have explicitly written the element w ®, @’ as an element of
Q ® Q and then in the second equality we have applied the definition of A. This implies that
(anti-)symmetric elements in Q ® € are x-(anti-)symmetric elements in 2, ®, €2,.

Since a commutative metric is a nondegenerate symmetric tensor in 2 ® €2, we conclude
that any commutative metric is also a noncommutative metric (x-nondegeneracy of the metric
is insured by the fact that at zeroth order in the deformation parameter A the metric is
nondegenerate). Contrary to [8, 56], we see that in our approach, where all (moving) frames
are on equal footing, there are infinitely many metrics compatible with a given noncommutative
differential geometry; noncommutativity does not single out a preferred metric.

We denote by g the metric tensor. If we write

9=10"®. 0 € 2 ®, 2 (7.2)
(for example, locally g = 6/ ®, 6% * g;;), then for every v € E, we can define the 1-form
(vv g)* = (U, ga)**gﬂ (73)

and we can then construct the left A,-linear map g, corresponding to the metric tensor
g€ Q, ®, Q,,as

g: B, Qs By > A,

(7.4)
(l/l, U) = g(uv U) = (l/l ®* U, g)* = (l/l, (U, g)*)*-
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The -inverse metric g~'

ueg,wet,,

€ B, ®. E, is then defined by the following equations, for all

((u, @) g "), = u, (7.5)
(o, 97", 9 = o, (7.6)

where, as in (7.3), we have defined

(@,97"), == (w,g" "), *g, " (1.7)
and we have decomposed g~ as
g'=9""®.9,' €E.® E. (7.8)

(for example, locally g~! = g"* xe ;i ®. e;). At zeroth order in the deformation parameter
A, and using local coordinates, we write g = g,,dx* ® dx" and the above definition of the
inverse metric gives g~! = 9""9y ® 9y, where g"" is the inverse matrix of g, 9""9,, = 87,
9,v9"” = 8/ For the noncommutative analogue of the relations g“g,, = 8, 9,,9" = 3y,
see the end of the following section.

Consider now the connection that has vanishing torsion and that is metric compatible,
Vg = 0. See [45], and see also [14] for the case 6-const. The scalar curvature R with respect
to this connection is given by

<M == Ric(g" ', g,") (7.9)
where g7! = g* ! ®, g, ! € E, ®, E,. Locally, we have g~! = g¥* x¢; ®, ¢; and
R = Ric(g"" *e;, ;) = g xRic(e;, ¢;)
= g xRicj;. (7.10)
We finally arrive at the noncommutative Einstein equation (in vacuum),
Ric — 1g«MR =0, (7.11)

where the dynamical field is the metric g. This equation is an equality between the left
A,-linear maps Ric and g x R, where

(@*R)(u,v) == (U Ry v, gxR) = (U Qs V, g)x xR = g(u, v) xfR.

Because of left A,-linearity, the curvature scalar must appear on the right of the metric and
not on the leftin (7.11). Applying (7.11) to the vectors ¢; and e;, we obtain the components’
equation

Ric;j — 29;j * R =0, (7.12)

where g;; = g(e;, ¢j) = (e; ®. ¢, 9). are the same coefficients appearing in the expression
g= 9j ®,, 9[ *gij'

8. Conjugation

In this section, we introduce the notion of complex conjugation on the algebra A, and we see
that we can impose reality conditions on the x-spaces of functions, vectorfields and tensorfields.

We first briefly recall the commutative *-structure. Given a smooth real manifold M, the
usual *-structure on the complex-valued functions A = Fun(M) is amap: A — A, where for
allhe Aandm e M,

h*(m) = h(m). (8.1)
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Here the bar denotes complex conjugation. This x-structure induces a x-structure on the Lie
algebra of the vectorfields by defining % : E — E, where forallu € Eand & € A,

u*(h) == (S@)(h*)* = —(u(h™)". (8.2)

It is easy to check that the x-operation so defined is antimultiplicative with respect to the Lie
bracket of E, [u, v]* = [v*, u*]. In particular, locally, we can consider the real coordinate
functions x*, then the partial derivatives 9, are pure imaginary, d; = —d,; we also have
u* = (uh9,)* = —urd,.

The *-structure on E is extended to the universal enveloping algebra U E by antilinearity
and antimultiplicativity, so that forall £, € UE, (£¢)* = ¢*&*. Applying a vectorfield v to
definition (8.2) we obtain (v*u*)(h) = (S(uv)(h*))*, and iterating we obtain that for a generic
element of U B,

§%(h) = (SE)(h™ )" (8.3)
Similarly, from u*(v) = [u*, v] = [S(u), v*]* = (S(u)(v*))*, we have

E(5) = (SEE™N" (8.4)
Finally, from the local formula (d,, dx")* = —(3;';, (dx¥)*)* we have the general formula of
compatibility between the *-structure and the pairing

(u, w)* = —(u*, ©*). (8.5)

We now study the x-operation in the noncommutative context. We define the *-structure
on A, to be the same as that on A. The requirement

(hxg)*=g*xh* (8.6)
is then satisfied if the twist F satisfies the relation (S ® S)F>; = F*®* ie.,

(S® 8)Fy! = F 1.

(8.7)

We similarly define the x-structure on U E to be the same as the undeformed one. Using
(8.4) it is not difficult to show that the x-operation is compatible with the x-product of U E,
and with the x-Lie bracket of &,,

ExO)" =" xE, [u, v].* = [v*, u*].. (8.8)

It can be shown [45] that the %x-operation is compatible with the triangular Hopf algebra
structure of U E, (a key point being that on U 7 the *-operation reads £** := x&*x ). On
tensors too the *-structure is by definition the undeformed one, and we have for all 7, ¢’ € 7,,

(T ®, )" = R (t*) @, Ry(t7). (8.9)
Finally, the two pairings (, ), and (, ), are related by the x-operation, forallu € E, and w € ,,
(u, w): = —(w*, u*).. (8.10)

In particular, if locally we consider a basis {e;} and the dual basis {67},
ei,07), =5/,
then the %-conjugate bases {e}} and {67*} are (up to a sign) dual with respect to the {, )’ pairing,
(67, ef). = =5/ 8.11)
We can now study, for example, the reality property

g“=g (8.12)
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of the metric tensor g € €2, ®, €2,. The metric tensor has a convenient expansion in terms of
the 6" and the 07* 1-forms (here J is just an index like i or j). We set
g=0"®,g;; %07 (8.13)

In this basis, the reality of the metric, and therefore of the noncommutative Einstein equations,
has a very simple explicit expression. Also the explicit expression for the inverse metric is
particularly simple in this basis.

We first study the consequences of the reality condition g = g* on the metric coefficients
9i5. From (8.9), we have

¢' =R'(0") @ Ru(07 xg}}) = K (07) @, Ru(0' xg}) (8.14)
where in the last equality we have just renamed the indices. In order to compare this expression

of g* with the expression (8.13) of g, we use the x-symmetry property of the metric, g = A*g,
to rewrite the metric as

g=0"%g;; ® 67 =R (07") @, Ra (9" » ;7).
Comparison with (8.14) gives R™ (67*) ®, Ry (0" » 9% = RY(07*) @, Ry (0" xgi7) iff g = g*.
After applying the transposition A* to this equation, we find that the reality of g reads

0" x g} @, 07 =0 xg;; ®, 6%,

ie.,
97 = 9ij- (8.15)
Concerning the inverse metric g~', we find that it is given by the expression
g'=—e®,.97 xe; (8.16)

where g'/* is the *-inverse matrix of g;7,
g’ *g;7 =34, gi7 * g’ =4
Indeed, it is not difficult to see that (8.16) satisfies (7.5) and (7.6).
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Appendix

A.l. Proof that UB” is a Hopf algebra
We start from
(e @IAT () =u = (id R &) AT (u) (A.1)
and calculate first the left-hand side
(e @id)AT (1) = (¢ ® id)(F*u, P @ fusfp)
= e(f%u %) furfy = e(f*)e(u))e (P ) fuunfy. (A.2)
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In the last line we have used that ¢ : UE — C is an algebra homomorphism. Applying
(¢ ® id) on the identity

FF'l=1®1 (A.3)
and using (2.29) gives
1= (QIDFF ' = (e ®id)(F*F’ ®f,Tp)
= e(f)e(fP)f,f5 = e(FP)f5. (A.4)
Inserting this into (A.2), we finally obtain
(e @IDAT (u) = e(u)ur = u. (A.5)

In order to calculate the right-hand side of (A.1), one proceeds in an analogous way.
Next, we prove

w(S¥ DAY (u) = e(u)1 = n(id @ YA (). (A.6)
To show this, we first have to prove that x ~' = S (fa)fa:
xx~' =S SE)f,
= e )P S ),
= PP S(F, T8 ks
=
=fS (Fz ))fy
=e(f)Hf, = 1.
In the first line we used the definitions given in (2.47). Next, we inserted 1 = fys(fy)
which we showed in (A.4). The antipode property S(£1)& = ¢(€) together with the fact
that the antlpode is an antlalgebra homomorphism leads to the next line. Then, we used
P ® fylf fp ® f fo = f ® f ® f which follows from the cocycle condition (2.28) by
multiplying both 31des of the equahty with f# ® fg ® 1. The next step uses the antipode

property & S(&,) = ¢(&). Finally, we used s(fy)fy = 1. Similarly, one shows that x 'x =1
We are now able to prove (A.6). Starting with the left-hand side, we get

u(s* @id) A" ) = u(S” (u1,) @ ua,)
= 12S(£,) S ur F) S (FP)F5f, usfs
= 17S(f,) SE 7 u, ) Ef, uofs
= S (£,)S (1 F)uofs
= 1S(fi)SE) S (u1)usly. (A7)

Here, we used that S is an antialgebra homomorphism and that FF~' = e fof, = 1®1.
Knowing that A is the coproduct in the U E Hopf algebra, we find

w(S @id)A(m) = S(upur = e(u). (A.8)
Inserting this relation into (A.7) gives
u(S” @i AT () = f*S(fa) S(F)e (s
= xx"le(w) = &), (A.9)

The right-hand side of (A.6) one proves analogously.
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A.2. x-Jacobi identity

In order to prove the x-Jacobi identity, [u[vz]. ], = [[uv]iz]. + [Ea(v)[ia (1)z]4]«, we use the

following:
Lemma.
PR @, 'R, @Twly =T LT @f, (A.10)
Proof.
PR ol PR 0F.F = PPT of PEP oF
®fo,f Ry, @fp,fp =1 715 @, f f,f & f,,fp
=TT 00T of,

where in the third line we applied property (2.28), while in the last line we used that
P @b, =F 1F=101 O

Now we observe that V€ € U E

Le([vz]) = Lg (vz) — Le(2v) = Lg, (V) L, (2) — L, (2)Le, (v) = [Le, (1) Li, (2)] (A.11)
where we used Lg (z)Lg, (v) = L, (2)Le, (v) which holds because the classical coproduct A
(see (2.3)) is cocommutative. Finally, we have the x-Jacobi identity
vzl = [ 0 [fu F (0wl )]]
= [P [ T0ko)]]
= [[[F EBEm @] + [E T [FF i @)]]
= [luvl.zl + [R" )[R (w)zl.], (A.12)

where in the second line we used property (2.28), while in the last line we used the above
lemma and the fact that U E is cocommutative.

A.3. Associativity of the x-product on superspace

First, we calculate
(gxh)*xk=pnoF (gxh®k)
=poF ((noF (g@h)®K)
—poF lo((uoF H®id)(g®h®k
=poF lo(u®ido(F'®id)(g®h k)
=po(u®id) o (AQINF o (F'®id)(g®@h k)
=po(u@id) o ((A®IDF HF,) g @h k),
where in the last line we used Lz o L; = Lg; (i.e., & o {(h) = £¢(h)) and in the next to last
line we used
Floueid)(g @ @k) = (—)"E"F gn) @F, (k)
— (_1)\?a\Ig’h’\+\fgl\g’\f‘i‘(g/)fg(h/) ® o (k')
= (uid) o (AQIDF (g N QK.
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Then, we similarly obtain

grx(hxk)=poF (g (hxk))
=poF 'g®(uoF '(h®k))
=poF lo(id®@u o(id® F Hg®hQk)
=po(d®mu o ((([deAF HF,) (g®h®k).

Using (2.26), we finally conclude that (g x 1) x k = g x (h x k) and associativity is proven.
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1. Noncommutative Spaces

It is expected that in order to obtain a better understanding of physics at short distances and in
order to cure the problems occuring when trying to quantize gravity one has to change the nature of
space-time in a fundamental way. One way to do so is to implement noncommutativity by taking
coordinates which satisfy the commutation relations

[R#, Y] = CHY(R) #0. (1.1)

The function CHY(X) is unknown. For physical reasons it should be a function that vanishes at
large distances where we experience the commutative world and may be determined by experi-
ments [1]. We denote the algebra generated by noncommutative coordinates X* which are subject
to the relations (1.1) by o (algebra of noncommutative functions). In what follows we will ex-
clusively consider the 8-deformed case which may at very short distances provide a reasonable
approximation for CHV(X)

[XH,%V] =i6"Y = const. (1.2)

but we note that the algebraic construction presented here can be generalized to more complicated
noncommutative structures of the above type which possess the Poincaré-Birkhoff-Witt (PBW)

property.

2. Symmetries on Deformed Spaces

In general the commutation relations (1.1) are not covariant with respect to undeformed sym-
metries. For example the canonical commutation relations (1.2) break Lorentz symmetry if we
assume that the noncommutativity parameters 64" do not transform.

The question arises whether we can deformthe symmetry in such a way that it acts consistently
on the deformed space (i.e. leaves the deformed space invariant) and such that it reduces to the
undeformed symmetry in the commutative limit. The answer is yes: Lie algebras can be deformed
in the category of Hopf algebras (Hopf algebras coming from a Lie algebra are also called Quantum
Groups)t. Quantum group symmetries lead to new features of field theories on noncommutative
spaces. Because of its simplicity, 8-deformed spaces are very well-suited to study those.

In the following we will construct explicitly a 6-deformed version of diffeomorphisms which
consistently act on the noncommutative space (1.2). It is possible to construct a gravity theory
which is invariant with respect to these deformed diffeomorphisms [2, 3, 4].

3. Diffeomorphisms

Diffeomorphisms are generated by vector-fields &. Acting on functions, vector-fields are rep-
resented as linear differential operators & = &Hdj,. Vector-fields form a Lie algebra = with the Lie
bracket given by

&.nl=&xn

1To be more precise the universal enveloping algebra of a Lie algebra can be deformed. The universal enveloping
alaebraof anv Lie aloebrais aHopnf aaebra and this aives rise to deformations in the cateaorv of Hopf aaebras.
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where & x n isdefi ned by its action on functions

(&> n)(f) = (&"(dun")dy —n*(3u&")dv)(f).

The Lie algebra of infinitesimal diffeomorphisms = can be embedded into its universal enveloping
algebra which we want to denote by %/ (=) . The universa enveloping algebra is an associative
algebra and possesses a natural Hopf algebra structure. The coproduct is defi ned as follows on the
generators®:

AU E) - UE) QU ()
=58 o AE)=ER1+1RE. (3.1)

For a precise defi nition and more details on Hopf algebras we refer the reader to text books
[5]. For our purposes it shall be suffi cient to note that the coproduct implements how the Hopf
algebra acts on a product in a representation algebra (Leibniz-rule). Scalar fi elds are defi ned by
their transformation property with respect to infi nitesimal coordinate transformations:
Op=—&@=—&E"(0uy). (32

The product of two scalar fi elds is transformed using the Leibniz-rule

O (oY) = (s @) + p(Os ) = —EH (Fuopy) (33

such that the product of two scalar fi elds transforms again as a scalar.
Similarly one studies tensor representations of % (=). For example vector fi eldsareintroduced
by the transformation property

OVa = —&H(0uVa) — (Ga&")Vy
BV = —EH(OV )+ (GuENWVH.

4. Deformed Diffeomorphisms

The concepts introduced in the previous subsection can be deformed in order to establish a
consistent tensor calculus on the noncommutative space-time algebra (1.2). In this context it is
necessary to account the full Hopf algebra structure of the universal enveloping algebra 7 (=).

We want to deform the structure map (3.1) of the Hopf algebra % (=) in such a way that the
resulting deformed Hopf algebra which we denote by % (é) consistently actson 7. Let % (é) be
generated as algebra by elements 35, & € =. Weleave the dgebra relation undeformed

(8.8 = 8 (4.2)
but we deform the co-sector

&g = & 2107000 (§ 014 1 &5 )e ™ %%, (42)

2The structure maps are defi ned on the generators & € = and the universal property of the universal enveloping
algebra 7 (=) assures that they can be uniquely extended as algebra homomorphisms (respectively anti-algebra homo-
morphism in case of the antinode S) to the whole alaebra 7 (=).
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where [5,\3,5;] = 5(\,%5). The deformed coproduct (4.2) reduces to the undeformed one (3.1) in the
limit 8 — 0. We need a differential operator acting on fields in <7 which represents the algebra
(4.1). Let us consider the differential operator

8

i - ~ ~ =~

5)090101...gpncn(apl...5pngu)auaol...é; )

n

Xs := ni(— (4.3)

n=!
Then indeed we have
Xe. Xg] = Xe (4.4)

It is therefore reasonable to introduce scalar fields (F € pfby the transformation property
o p=—(X9).

Let us work out the action of the differential operators X on the product of two fields. A calculation
[2] shows that

(e (@) = o (e 2077900 (% 01+ 10 X et % % g ).

This means that the differential operators )Q act via a deformed Leibniz rule on the product of two
fields. Comparing with (4.2) we see that the deformed Leibniz rule of the differential operator)@
is exactly the one induced by the deformed coproduct (4.2):

8;(6@ _ e*‘zhep"ép@éa((s} ©1+1® gf)ei—zhepoo:?F,@(A?g(a@ _ _)’(E D(é‘@

Hence, the deformed Hopf algebra ?/(E\) is indeed represented on scalar fields ¢ € gfby the
differential operator X:r The scalar fields form a %(EA)—moduIe algebra.
Up to now we have seen the following:

o Diffeomorphisms are generated by vector-fields & € = and the universal enveloping algebra
% (=) of the Lie algebra = of vector-fields possesses a natural Hopf algebra structure defined
by (3.1).

e The algebra of scalar fields ¢ € < is a % (=)-module algebra.

—~

e The universal enveloping algebra % (=) can be deformed to a Hopf algebra % (=) defined in
(4.1,4.2).

o U (EA) consistently acts on the algebra of noncommutative functions o, ie. the algebra of
noncommutative functions is a % (=)-module algebra.

e Regarding %(EA) as the underlying “symmetry” of the gravity theory to be built on the non-
commutative space o7, we established a full tensor calculus as representations of the Hopf
algebra 7 (3).
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5. Noncommutative Geometry

Based on deformed diffeomorphisms it is possible to introduce covariant derivatives, curvature
and torsion and to define a metric [2, 3, 4]. This leads to a curvature scalar. Introducing in addition
the star-determinant of the vierbein, one can construct a Einstein-Hilbert action which is invariant
with respect to deformed diffeomorphisms. It is a deformation of the usual Einstein-Hilbert action.
Using the star-product formalism it is possible to map the algebraic quantities to functions depend-
ing on commutative variables. Then it is possible to study explicitly deviations of the undeformed
theory in orders of a deformation parameter [4, 2]. Very interesting is also to study a generaliza-
tion of the above concepts to a more general class of noncommutative structures given by a twist
[3]. This class contains in particular lattice-like spacetime algebras which may indeed provide a
regularization of the field theory under consideration.
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Chapter 7

Summary and Conclusions

In this thesis we studied field theories on noncommutative spaces. We started by
introducing and reviewing the concepts underlying the construction of deformed
field theories. In Section 2.1 we presented some examples of noncommutative
spaces. We learned that noncommutative spaces are in general not covariant with
respect to undeformed symmetries and constructed in Section 2.3 deformed sym-
metries given by Quantum Groups, which act consistently on these spaces. In
Chapter 3 we saw how an abstract noncommutative space can be represented on
the more familiar, ordinary space of functions on a manifold by introducing a new,
noncommutative product, called x-product. In the same way we showed how oper-
ators acting on a noncommutative space can be represented as pseudo-differential
operators acting on this algebra of functions. In Chapter 4 we introduced defor-
mation by twists. Twists lead to quite a large class of x-products defining a rich
class of noncommutative spaces. We have seen that the noncommutative spaces
discussed in Section 2.1 belong to this class. Hence, the deformation of the alge-
bra of functions on a manifold by a x-product coming from a twist yields a way
to generalize our concept of noncommutative spaces. Furthermore, a deformed
symmetry acting on this class of deformed spaces could be introduced: For any
twist F, which is an element in UZ ® UZ, where UZ= is the universal enveloping
algebra of vector fields, we are able to construct the twisted Hopf algebra UZ”.
We often call it deformed infinitesimal diffeomorphisms since vector fields generate
diffeomorphisms.

In Chapters 5 and 6 we applied the learned tools in order to construct gauge
respectively gravity theories on noncommutative spaces. In [35,36] (Sections 5.1
and 5.2) and [34] (Section5.3) we presented two possibilities to circumvent the
problems appearing when trying to construct gauge theories via the Seiberg-
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Witten formalism on noncommutative spaces, which have non-trivial derivatives
with deformed Leibniz rules. The first possibility is to gauge the commuting
frame instead of the partial derivatives [35-37]. This is only possible if the algebra
possesses a commuting frame, which in general is not the case, see also [38]. The
second possibility proposed in [34,64]| is to consider derivative valued gauge fields.
In this approach, a Lagrangian describing the dynamics of the gauge field can be
obtained by projecting away torsion-like terms. In Section 5.6, [65], we introduced
a model for gauge theories on fuzzy S? x S?. Fuzzy spaces retain the undeformed
rotational invariance such that this is an example of a noncommutative space with
an undeformed symmetry acting on it. This model reduces in a certain double
scaling limit to noncommutative gauge theories on #-deformed spaces. It therefore
serves as a regularization of gauge theories on noncommutative R*. Nontrivial
topological solutions (instantons) become instanton solutions for gauge theories
on #-deformed R* in this double scaling limit.

Chapter 6 was devoted to a new approach towards a deformation of Einstein’s
general relativity. The construction is based on deformed infinitesimal diffeomor-
phisms. A full tensor calculus could be established, covariant with respect to
these deformed coordinate transformations. In the #-deformed case, this gives
rise to a deformed Einstein—Hilbert action [42, 63, 66—68| (Sections 6.1 and 6.2).
This action reduces in the commutative limit to the usual, undeformed Einstein—
Hilbert action. The first non-trivial contribution in the deformation parameter 0
was determined for all relevant quantities, including the action. In [43] (Section
6.3) this model was generalized. We constructed a noncommutative geometry on
noncommutative algebras of functions whose product is given by a x-product com-
ing from a twist. This leads to a deformation of Einstein’s equations for gravity
on this large class of noncommutative spaces. It is still not clear in which precise
sense a Quantum Group invariance restricts the degrees of freedom of our theory.
The physical meaning of a deformed coproduct and deformed Leibniz rules, which
make a derivation of conserved Noether currents in the standard way impossible,
is still not well enough understood. In [39] we give first answers to these questions
and show how conserved currents can be constructed for twisted gauge theories.
We start with an arbitrary Lie algebra and see that consistency of the equations of
motion requires us to choose the gauge field in the enveloping algebra. This leads
to new fields in addition to the usual gauge field, which couple only weakly via the
deformation parameter 6 and reduce in the commutative limit to free fields. The
new fields depend on the representation and their number is finite if we choose a
finite dimensional representation for the enveloping algebra. The results obtained
for the construction of twisted gauge theories enable us to introduce matter in
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the models of noncommutative gravity proposed in [42,43]|. Via the first order
formalism for gravity the construction of conserved currents should also lead to
Ward identities for such noncommutative gravity theories.

We can make out quite a progress in our understanding of physics on noncom-
mutative spaces: Whereas in first attempts to construct deformed field theories
special examples of noncommutative spaces such as the #-deformed space, the
g-deformed Euclidean plane or the x-deformed space were considered, we are now
able to understand noncommutativity on more and more general grounds. An im-
portant step in this direction was made by the construction of deformed gravity
on the class of noncommutative spaces coming form a twist. A further generaliza-
tion would be to consider the algebra of functions on arbitrary Poisson manifolds
together with a Kontsevich *x-product [31]. First results towards this aim have
already been obtained [117]. A complete construction of field theories and of
deformed gravity in this setting is part of current and future investigations.

The class of x-products obtained by twists is of particular interest since it
contains noncommutative spaces with a lattice-like structure. In the case of 6-
deformed spaces the eigenvalue spectrum of the coordinates is continuous, as the
commutation relations are given by Heisenberg algebras. However, more compli-
cated noncommutative spaces such as ¢g-deformed spaces lead to a discrete eigen-
value spectrum for the coordinates and therefore to a lattice-like space-time [123].
Such spaces are contained in the class of twist-deformed spaces and should indeed
provide a regularization of quantum field theories. On the classical level quite
some progress has been made here. However, the quantum behaviour of such
gravity theories is still completely unknown. Another compelling question, for
instance, is the relation of deformed gravity to string theory. In [9] a connection
between string theory and noncommutative gauge theories could be established.
In current investigations we aim at finding such a relation between string the-
ory and noncommutative gravity [124|. This shall provide a detailed connection
between the notion of a fundamental length encompassed in noncommutative
theories, with the ultraviolet finiteness incorporated in string theory. We expect
new insight about physics at very short distances from a better understanding
of gravity on noncommutative spaces, in particular on those with a lattice-like
structure, and its interplay with string theory. We hope that the results obtained
in the framework of this thesis will prove to be of fundamental importance for the
understanding of these issues.
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