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ZusammenfassungIn dieser Arbeit werden Pr�azisionsrehnungen f�ur die Prozesse  ! 4Fermionen undH!WW=ZZ! 4Fermionen vorgestellt.An einem -Collider werden wegen des gro�en Wirkungsquershnitts genaue theo-retishe Vorhersagen f�ur die Prozesse  !WW! 4f ben�otigt. Mittels dieser Prozesselassen sih unter anderem die Eihboson-Kopplungen WW und WW messen. Au�er-dem wird �uber virtuelle geladene, massive Teilhen die Reaktion  ! H!WW=ZZ!4f erm�ogliht. Auf diese Weise l�a�t sih die Kopplung H messen, und relativ shwereHiggs-Bosonen k�onnten erzeugt werden.F�ur Massen MH >� 135GeV zerf�allt das Higgs-Boson haupts�ahlih �uber W- undZ-Bosonen in vier Fermionen. Bei der kinematishen Rekonstruktion dieser Zerf�alle spie-len Quanten-Korrekturen, insbesondere Photon-Bremsstrahlung, eine wihtige Rolle. DieEinbeziehung der Zerf�alle der Eihbosonen in Fermionen ist zum einen wihtig, weil unter-halb vonMH � 2MW=Z "o�-shell\-E�ekte der Eihbosonen ber�uksihtigt werden m�ussen.Zum anderen lassen sih mit Hilfe von Winkel- und Energie-Verteilungen der Fermionender Spin und die CP-Eigenshaften des Higgs-Bosons bestimmen.Besonders geeignet f�ur den Vergleih theoretisher Vorhersagen mit experimentellenDaten sind Monte-Carlo-Generatoren. F�ur die Prozesse  ! 4f und H ! WW=ZZ !4f werden solhe Programme konstruiert. Sie liefern zum einen die kompletten Vorher-sagen in niedrigster Ordnung der St�orungstheorie. Zum anderen enthalten sie Quanten-Korrekturen, die sih unterteilen lassen in reelle Korrekturen, welhe durh Photon-Bremsstrahlung gegeben sind, und virtuelle Korrekturen. W�ahrend die virtuellenQuanten-Korrekturen zu  ! WW ! 4f in der Doppel-Pol-N�aherung berehnet wer-den, in der nur die doppelt resonanten Beitr�age ber�uksihtigt werden, werden zu denProzessen H ! WW=ZZ ! 4f die kompletten Quantenkorrekturen der Ordnung O(�)berehnet. F�ur die Behandlung der in den virtuellen und reellen Korrekturen auftretendeninfraroten Divergenzen ("soft\ und "ollinear\) wird wahlweise die Dipol-Subtraktions-Methode oder die Phase-Spae-Sliing-Methode verwendet. Niht bei allen Observablenm�ussen sih die bei kollinearer Photon-Abstrahlung auftretenden Massen-Singularit�atengegenseitig aufheben. Um auh solhe niht-kollinear-sihere Observablen untersuhen zuk�onnen, wird die Dipol-Subtraktions-Methode diesbez�uglih erweitert.Die Diskussion der numerishen Ergebnisse umfasst den Einuss eines realistishenPhoton-Spektrums auf die Wirkungsquershnitte, das Potential eines -Colliders, Gren-zen an anomale Eihboson-Kopplungen zu setzen, sowie vershiedene Verteilungen in derInvarianten Masse, in der Energie und in Winkeln, die f�ur eine Rekonstruktion der Eih-bosonen und die Bestimmung der Eigenshaften des Higgs-Bosons genutzt werden k�onnen.iv



AbstratIn this work we provide preision alulations for the proesses  ! 4 fermions andH!WW=ZZ! 4 fermions.At a  ollider preise theoretial preditions are needed for the  ! WW ! 4fproesses beause of their large ross setion. These proesses allow a measurement ofthe gauge-boson ouplings WW and WW. Furthermore, the reation  ! H !WW=ZZ ! 4f arises through loops of virtual harged, massive partiles. Thus, theoupling H an be measured and Higgs bosons with a relatively large mass ould beprodued.For masses MH >� 135GeV the Higgs boson predominantly deays into W- or Z-bosonpairs and subsequently into four leptons. The kinematial reonstrution of these deays isinuened by quantum orretions, espeially real photon radiation. Sine o�-shell e�etsof the gauge bosons have to be taken into aount below MH � 2MW=Z, the inlusion ofthe deays of the gauge bosons is important. In addition, the spin and the CP propertiesof the Higgs boson an be determined by onsidering angular and energy distributions ofthe deay fermions.For a omparison of theoretial preditions with experimental data Monte Carlo gener-ators are useful tools. We onstrut suh programs for the proesses  !WW! 4f andH ! WW=ZZ ! 4f . On the one hand, they provide the omplete preditions at lowestorder of perturbation theory. On the other hand, they ontain quantum orretions, whihan be lassi�ed into real orretions, onneted with photon bremsstrahlung, and virtualorretions. Whereas the virtual quantum orretions to  !WW! 4f are alulatedin the double-pole approximation, i.e. only doubly-resonant ontributions are taken intoaount, we alulate the omplete O(�) orretions for the H ! WW=ZZ ! 4f pro-esses. The infrared (soft and ollinear) divergenes in the virtual and real orretionsare treated either with the dipole-subtration method or with the phase-spae sliingmethod. The mass singularities that our due to ollinear photon emission do not anelfor all observables. In order to treat also suh non-ollinear-safe observables we apply anextension of the dipole-subtration method.The disussion of numerial results omprises the impat of a realisti beam spe-trum on ross setions, the potential of a  ollider to onstrain anomalous ouplings,and various angular, energy, and invariant-mass distributions, whih an be used for akinematial reonstrution of the gauge bosons and for determining the properties of theHiggs boson. v





Chapter 1Introdution1.1 Outline of the thesisIn the introdution we will give an overview of the onstrution and the essentialingredients of the Standard Model (SM) of elementary partiles, whih desribes all fun-damental partiles that we know today and the interations between them. In addition,we will mention some remaining questions, espeially the existene of the Higgs boson,and the reasons why there should be physis beyond the SM. In this ontext we will stressthe importane of quantum orretions in the searh for the Higgs boson and for newphysis.The next hapter starts with a brief desription of the  ollider, an optional experi-ment at the International e+e�-Linear Collider (ILC), and some interesting proesses thatould be studied there. Fousing on four-fermion prodution, espeially through W-bosonpair prodution, we desribe the strategy for performing a preision alulation for theseproesses. To this end, also subtleties ourring in the treatment of unstable partilesare disussed. The pole expansion is presented as a means of introduing the width of anunstable partile in a gauge-invariant way and for alulating quantum orretions in aneonomi manner. In Chapter 4 the results will be used in order to alulate quantumorretions to  !WW! 4f in the double-pole approximation.In Chapter 3, whih is mainly based on Ref. [ 1℄, we present the lowest-order results for ! 4f(), �rst in the SM and then inluding anomalous ouplings, whih parametrizepossible new physis phenomena. As a preparation for the next hapter, the double-poleapproximation is applied to the lowest-order alulation and ompared to the ompleteresult. After disussing the appearane of a Higgs boson as s-hannel resonane, webriey desribe how the onvolution over the photon spetrum is performed. We onludethe hapter with a disussion of numerial results that inlude integrated ross setions,distributions, the inuene of the Higgs resonane, and the potential of the  ollider toset bounds on anomalous ouplings.In Chapter 4, whih is mainly based on Ref. [ 2℄, quantum orretions to the proess ! WW ! 4f are alulated in the double-pole approximation, whih lassi�es thevirtual orretions into fatorizable and non-fatorizable orretions. The infrared diver-genes ourring in the virtual and real orretions are treated either with the dipole1



2 Introdutionsubtration or with the phase-spae sliing method, whih are explained in some detail.For the ase of non-ollinear-safe observables these methods are generalized. The numeri-al impat of the results is disussed in terms of integrated ross setions and distributions.This also inludes an estimate of the remaining theoretial unertainty and a ompari-son with an improved Born approximation, whih only ontains universal e�ets of thequantum orretions.In Chapter 5 we disuss the Higgs-boson deays into W or Z bosons, whih are themost relevant deay hannels for MH >� 140GeV. This deay type is, of ourse, not onlyimportant for the  ollider but also for the LHC and the e+e� mode of the ILC. Afterhaving presented the analytial formulae for the lowest-order proesses H!WW=ZZ!4f(), the omplete virtual O(�) orretions are alulated in the omplex-mass sheme,whih allows a gauge-invariant treatment of width e�ets of the gauge bosons. Theimplementation into a Monte Carlo generator proeeds along the same lines as for theproesses  ! 4f(). The hapter onludes with a presentation of deay widths anddistributions that an be used to determine the properties of the Higgs boson suh as spinand parity.In the appendies we explain how the phase-spae integration over the momenta of the�nal-state partiles is done with the multi-hannel Monte Carlo method. Furthermore, wepresent the struture of the infrared (soft and ollinear) singularities, whih are similar forboth proesses  !WW! 4f and H!WW=ZZ! 4f . Finally, some details that areneessary for a stable evaluation of the virtual orretions to  !WW are presented.The numerial alulations in this thesis have been performed using Fortran, and manyof the algebrai alulations were done using the program Mathematia. The omputerodes are available so that they an be used for experimental studies or as a referene forfuture Monte Carlo generators.1.2 The Standard Model of elementary partile physisIn this setion we will give a brief aount of the SM. More details an, for example,be found in Ref. [ 4℄.The SM is a quantum �eld theory in whih interations between partiles are gov-erned by gauge (or loal) symmetries. It is most onveniently formulated in terms ofthe Lagrange formalism, i.e. all the ingredients of the theory, suh as kineti, mass, andinteration terms of the �elds, are inorporated into a single loal funtional, the La-grangian density. Integrating the Lagrangian density over spae-time yields the ation ofthe theory. The form of the Lagrangian density is ditated by symmetry priniples andthe requirement of renormalizability.A quantum �eld theory is alled renormalizable if all ultraviolet divergenes an beabsorbed into a rede�nition of the parameters and �elds of the Lagrangian. Ultravioletdivergenes may appear if observables are alulated by a perturbative expansion. Thehigher-order terms of this expansion usually involve loop integrals that do not yield a UV-�nite result. The proedure of regularizing these UV divergenes, e.g. by alulating theintegrals inD 6= 4 dimensions, and absorbing them into the parameters of the Lagrangian,is alled renormalization. The rede�nition of the bare parameters of the Lagrangian results



The Standard Model of elementary partile physis 3in so-alled ounterterms. Power ounting shows that all operators in the Lagrangianthat have four or less mass dimensions are renormalizable, i.e. the divergenes an beanelled by ounterterms that also have four or less dimensions. However, the Lagrangianinluding the ounterterms has to obey the underlying symmetries restriting the formof the ounterterms. Nevertheless, it an be shown that non-abelian gauge theories withspontaneous symmetry breaking, and hene the SM, are renormalizable [ 5℄.One lass of symmetries are spae-time symmetries. For example, the SM is invariantunder Poinare transformations (exluding time and spae inversions). Mathematially,these transformation form the Poinare group, whih is made up of Lorentz boosts, ro-tations, and translations in the Minkowski spae. All irreduible representations of thePoinare group an be lassi�ed by a real positive number m and a half-integer s thatan be identi�ed with mass and spin of a given partile type.On the other hand, there are internal symmetries, whih are symmetries among the�elds. The Lagrangian density of the SM is invariant under the transformations of thegroup SU(3) 
 SU(2)W 
 U(1)Y . These transformations are loal, i.e. they may dependon spae-time. When hanging a symmetry from a global to a loal symmetry, new �eldshave to be introdued in order to keep the Lagrangian density invariant. The reason isthat the Lagrangian density of a quantum �eld theory ontains derivatives of �elds. Sinethe derivatives behave di�erently under loal transformations than the �elds themselves,a ovariant derivative is de�ned by minimal substitution as�� ! D� = �� � igsGa�ta � igWW i�I i + igYB�Y2 ; (1.2.1)where ta = �a2 , I i, and Y are the generators of the orresponding Lie group of the SM,and gs, gW , and gY are onstants. The new vetor �elds Ga�(a = 1; ::; 8), W i�(i = 1; 2; 3),and B� that have to be introdued in order to onstrut a loally symmetri theory arealled gauge �elds. They transform in the adjoint representation of the gauge group ofthe SM. Thus, kineti terms for fermions an be onstruted that are gauge invariant, i.e.invariant under the SM group transformations. These kineti terms readLfermioni = �	lLi�D�	lL + �	qLi�D�	qL+ �	eRi�D�	eR + �	uRi�D�	uR + �	dRi�D�	dR; (1.2.2)where the summation over the three generations is suppressed in the notation. Thefermion �elds, whih are lassi�ed into leptons and quarks, are summarized in Table 1.1.They are haraterized by their transformation properties under the SM group. Withrespet to SU(3), leptons are unharged, and quarks transform in the fundamental repre-sentation, i.e. they have three so-alled olour degrees of freedom whih we also suppressin the notation. With respet to SU(2)W the fermions are left-hiral doublets 	L orright-hiral singlets 	R. In the massless ase they an be identi�ed with left-handedand right-handed partiles. The orresponding quantum numbers of SU(2)W , the thirdomponent of the weak isospin I3, and of U(1)Y , the weak hyperharge Y , are given inTable 1.1. The weak hyperharge is �xed by the identi�ation of the photon in the theory,as explained below.



4 IntrodutionI3 Y Qleptons 	lL 0� �ee 1AL 0� ��� 1AL 0� ��� 1AL 12�12 �1�1 0�1	eR eR �R �R 0 �2 �1quarks 	qL 0� ud1AL 0� s1AL 0� tb1AL 12�12 1313 23�13	uR uR R tR 0 43 23	dR dR sR bR 0 �23 �13Table 1.1: Fermions of the SM and their quantum numbers weak isospin I3, weak hyper-harge Y , and eletromagneti harge Q.After introduing a loal symmetry, the Lagrangian density (1.2.2) also ontains in-teration terms between fermions and gauge �elds in addition to the purely kineti termsof the fermions. This is the guiding priniple in the onstrution of gauge theories.Besides the kineti terms of the fermions, gauge-invariant kineti terms of the gauge�elds an be onstruted from the �eld-strength tensorsGa�� = ��Ga� � ��Ga� � gsfabGb�G�; (1.2.3)W i�� = ��W i� � ��W i� � gW �ijkW j�W k� ;B�� = ��B� � ��B�;where fab and �ijk are the struture onstants of the Lie algebras su(3) and su(2), respe-tively. The �eld-strength tensors an be expressed in terms of the ommutator [D�; D�℄,whih transforms ovariantly. Taking the trae of the squared �eld strengths, a gauge-invariant Lagrangian density an be onstruted asLYM = �14Ga��Ga;�� � 14W i��W i;�� � 14B��B�� : (1.2.4)It ontains kineti terms (hene, the gauge �elds are propagating physial �elds), and, inthe ase of the non-abelian groups, also interation terms among the gauge �elds.However, there are no mass terms in the theory yet, beause these terms would vio-late gauge invariane. A solution is provided by the Higgs mehanism for spontaneoussymmetry breaking. To this end, the Higgs �eld,�(x) = 0��+(x)�0(x) 1A ; (1.2.5)is introdued, whih has a weak hyperharge Y = 1 and transforms as an SU(2)W doublet.Its ontribution to the Lagrangian density readsLHiggs = (D��)y(D��) + �2(�y�)� �4 (�y�)2; �2; � > 0: (1.2.6)



The Standard Model of elementary partile physis 5The last two terms onstitute the most general form of a renormalizable self-interation.For the lassial ground state �0 of the Higgs �eld we havejh�0ij2 = 2�2� = v22 ; (1.2.7)i.e. the Higgs �eld aquires a non-vanishing vauum expetation value, whih breaks theSU(2)W 
 U(1)Y symmetry. Aording to the Goldstone theorem, there is a masslessboson for every spontaneously broken ontinuous symmetry. These Goldstone bosonsappear in an expansion of the Higgs �eld around its vauum expetation value,� = 0� �+v+H+i�p2 1A ; �� = (�+)y: (1.2.8)The �elds �+, ��, and � an be eliminated by a suitable gauge transformation, and are,thus, unphysial degrees of freedom (would-be Goldstone bosons). However, they deliverthe longitudinal degrees of freedom of the three massive gauge bosons orresponding tothe broken symmetries of SU(2)W 
 U(1)Y .Inserting Eq. (1.2.8) into Eq. (1.2.6), we observe that the vauum expetation valueof the Higgs �eld gives rise to mass terms for the eletroweak gauge bosons. However, the�elds that orrespond to mass eigenstates are mixtures of the �elds W i� and B� and anbe obtained by diagonalizing the mass matrix,W�� = 1p2(W 1� � iW 2�);0�Z�A� 1A = 0� os �W sin �W� sin �W os �W 1A0�W 3�B� 1A ; (1.2.9)with w � os �W � gWqg2W + g2Y ; sw � sin �W � gYqg2W + g2Y ; (1.2.10)where �W is alled weak mixing angle. Sine after spontaneous symmetry breaking aU(1) symmetry with the generator Q = I3 + Y2 remains unbroken, one gauge boson staysmassless. This is the �eld A�, whih an be identi�ed with the photon. Aording to(1.2.2) its oupling to fermions is proportional to eQ with the elementary hargee � p4�� � gWgYqg2W + g2Y : (1.2.11)The fermion harges relativ to the elementary harge, whih are the eigenvalues of theharge operator Q, are given in Table 1.1. To summarize, the eletroweak gauge bosonsonsist of two eletrially neutral gauge bosons A and Z and two harged gauge bosonsW�. Their masses readMW� = 12vgW ; MZ = 12vqg2W + g2Y ; MA = 0: (1.2.12)



6 IntrodutionThe mehanism of spontaneous symmetry breaking also allows for inorporating thefermion masses into the theory. A naive onstrution of fermion-mass terms m( �	L	R +h::), where h:: denotes the hermitian onjugate expression, is not possible, beause left-and right-hiral fermions belong to di�erent representations of the gauge group and havedi�erent quantum numbers. However, fermion mass terms an be obtained by ouplingthe fermions to the Higgs �eld. The vauum expetation value then yields the desiredmass terms. The orresponding ontribution to the Lagrangian density readsLYukawa = �Xl;e �	lLGle	eR��Xq;d �	qLGqd	dR��Xq;u �	qLGqu	uR ~� + h::; (1.2.13)where ~� = i�2�� is the harge onjugate Higgs �eld 1. The oupling onstants thatare ontained in the matries Gle; Gqd, and Gqu are alled Yukawa ouplings. The masseigenstates of the fermions are obtained by diagonalizing these matries via �eld trans-formations. For massless neutrinos the diagonalization matries an be absorbed intothe �elds so that there is no di�erene between mass eigenstates and eigenstates of theweak interations. However, for quarks the hange from the weak eigenstates to the masseigenstates is desribed by the Cabibbo-Kobayashi-Maskawa (CKM) matrix. If the quarkmasses are negleted, the CKM matrix an be set to the unit matrix in most appliations.Finally, in order to quantize the theory in the path-integral formalism, a gauge has tobe spei�ed to avoid an integration over equivalent �eld on�gurations. This is ahievedby adding gauge-�xing terms to the Lagrangian density. In an R� gauge, gauge-�xingfuntionals are hosen asFG = 1p�G��Ga�; FW� = 1p�W1 ��W�� � iMWq�W2 ��;FA = 1p�A��A�; F Z = 1p�Z1 ��Z� � iMZq�Z2�; (1.2.14)where the ase of �G = �A = �W = �Z = 1 is alled 't Hooft{Feynman gauge. Theorresponding ontributions to the Lagrangian density areL�x = �12 jF �j2; (1.2.15)where we impliitly sum over the parameter �. The gauge �xing as it is done in Eq. (1.2.15)hanges the measure of the path integral, whih an be aounted for by introduinganother term in the Lagrangian density,LFP = ��u�(x) ÆF �Æ��(x)u�(x); (1.2.16)where u�(x) are alled Faddeev{Popov ghosts, and Æ��(x) denotes an in�nitesimal gaugetransformation. The Faddeev{Popov ghosts represent unphysial degrees of freedom and1In priniple it is possible to inlude also right-hiral neutrinos in Table 1.1 and to add a orrespondingYukawa oupling in Eq. (1.2.13). Also a Majorana mass term is then possible, beause the right-hiralneutrinos are unharged under the SM group. In fat, neutrino osillation experiments have shown thatneutrinos have a mass. However, their mass is very small and an be negleted in this ontext.



Open questions and the role of quantum orretions 7anel the degrees of freedom of the gauge bosons that were over-ounted by the gauge�xing.From the Lagrangian density Feynman rules for alulating sattering amplitudes per-turbatively an be inferred. For example, the ouplings of the fermions to the eletroweakgauge bosons V = ;Z;W are obtained by inserting the above de�nitions into Eq. (1.2.2).With the operators !� = 12(1 � 5), whih projet onto the right- and left-handed om-ponents of the fermions, respetively, the orresponding Feynman rule readsi�V �f1f2� = ie�(g+V �f1f2!+ + g�V �f1f2!�) (1.2.17)with g� �ff = �Qf ; g�Z �ff = �swwQf + I3fwsw Æ��; g�W�ff 0 = 1p2sw Æ��; (1.2.18)where f and f 0 denote the two omponents of an SU(2)W doublet. In our alulationswe adopt the partile masses as input parameters, from whih we derive the weak mixingangle via the on-shell ondition s2w = 1� 2w = 1� M2WM2Z : (1.2.19)The Feynman rule for the oupling of the gluon to quarks readsi�g �fifj� = igs��aij2 ; (1.2.20)where i and j are olour indies and �a are the Gell-Mann matries. From Eq. (1.2.6) weobtain the oupling of the gauge bosons to the Higgs boson,i�HV V�� = ieg��gHV V ; (1.2.21)with gHZZ = MWsw2w ; gHWW = MWsw : (1.2.22)The other Feynman rules that are relevant for this thesis an, e.g., be found in Ref. [ 6, 7℄.1.3 Open questions and the role of quantum orretionsThe most obvious question onerns the existene of the Higgs boson. Determiningwhether the Higgs mehanism or some other model to introdue partile masses is realisedin nature is one of the most outstanding questions in high-energy physis. The LargeHadron Collider (LHC), whih will start operation in 2007 at CERN, will probably settlethis issue. The LHC is able to disover the Higgs boson for the whole range of massesthat are theoretially oneivable. This mass range is determined by a lower bound ofMH > 114:4GeV at 95% on�dene level [ 8℄ by the diret searhes at the previousexperiment at CERN, LEP, and an upper bound by eletroweak preision observables of



8 IntrodutionMH <� 260GeV at 95% on�dene level [ 9℄ and the observation that unitarity would beviolated for a Higgs mass of MH >� 1TeV [ 10℄.However, the SM, as formulated in the previous setion, annot be an ultimate theory,beause it does not inorporate gravity. It might be possible to formulate a theory thatdesribes the phenomena at very high energies, lose to the Plank sale, where thegravitational fore beomes as strong as the fores of the SM.But there are also other reasons why there should be new physis, i.e. physis beyondthe SM. For example, the SM is not able to explain the dark matter of the universe.Furthermore, as already mentioned in the previous setion, neutrinos have a very smallmass whose origin is not lear up to now.Besides these obvious problems, there are oneptual problems suh as the ques-tion why the Higgs mass is so small ompared to the Plank sale (hierarhy problem).And also the origin of other SM parameters, espeially the fermion masses, is unlear.The fermion masses have to be inserted \by hand" through the Yukawa ouplings inEq. (1.2.13). However, their values di�er by several orders of magnitude from eah other.This immediately rises the question where this hierarhy omes from. Moreover, it is notlear why there are exatly three generations of quarks and leptons.Many models have been onstruted that an solve some of these problems, suh assupersymmetry or models with new gauge groups or extra dimensions. A ommon featureof these models is that they ontain the SM as an e�etive theory that is valid at least upto the eletroweak sale. At some higher energy the preditions of the new models deviatefrom the SM preditions. This is one reason why preise theoretial preditions are soimportant. If the energy of a ollider is not large enough to diretly see new partiles, itmight still be possible to see a deviation from the SM predition in ertain observables.However, this is only possible if the auray of experimental and theoretial results ishigh enough.Preise theoretial preditions for sattering proesses are usually obtained by a pertur-bative expansion in the oupling onstants. The expansion an be visualized by so-alledFeynman diagrams, whih are lassi�ed into tree-level diagrams and loop diagrams. Thehigher-order ontributions of the expansion are alled quantum (or radiative, or loop)orretions.For the LHC the quantum orretions of QCD are the most relevant ones. They makeup a substantial part of the preditions. In some ases the lowest-order unertainty an beup to 100%, but the next-to-leading order redues it to the order of some 10% or better.For the ILC the situation is di�erent. Quantum orretions are typially smaller, and theexperimental environment is muh leaner allowing for a muh higher preision. The ILCan be seen as a window to higher energies beause of virtual e�ets of heavy partileswhih only our in quantum orretions.During the past years a lot of progress has been made in the alulation of quantumorretions. For example, the alulation of one-loop orretions to 2 ! 2 proesses hasbeome a standard task, and various tools exist for this purpose. However, many thingsremain to be done. On the one hand, two-loop or even three-loop orretions are neededfor many high-preision observables. On the other hand, most searhes for new physisinvolve proesses with many partiles in the �nal state so that orretions to 2 ! 3 or



Open questions and the role of quantum orretions 92 ! 4 proesses have to be alulated. Usually, this is not possible by a brute foreomputer alulation, but new tehniques have to be developed. This is the ase, e.g., forthe redution of tensor integrals, for the phase-spae integration, and for the treatmentof soft and ollinear divergenes. But also oneptual problems arise, e.g., the questionhow to treat resonanes of unstable partiles.This thesis will touh some of these issues, and the hosen solutions will be presented.



Chapter 2Four-fermion prodution at the ollider2.1 The  olliderAs a design option at the ILC, a photon (or ) ollider found onsiderable interest inreent years. The idea, though, was already disussed more than 20 years ago (see, e.g.,Refs. [ 11, 12℄ and referenes therein). High-energy photons an be produed by fousinga laser beam on the eletron beam. The photons, whih have an energy at the order of1 eV, are Compton baksattered, and most of the energy of the eletrons is transferredto the photons. Detailed simulations of the resulting energy spetra of polarized photonshave been performed in Ref. [ 13℄. Based on these simulations and assuming that the luminosity spetrum an be written as the produt of the two photon-energy spetra, aparametrization of the photon-energy spetra has been suggested in Ref. [ 14℄. We will usethe omputer ode CompAZ, introdued in this referene. For an eletron beam energy of250GeV the photon energy spetrum is shown in Figure 2.1, where the laser polarizationis P = �1 and the eletron polarization �e = +0:85. For �eP < 0, the high-energypeak of the spetrum is very pronouned. Apart from the simple Compton sattering,whih gives rise to the peak at E=Ee � 0:8, di�erent ontributions an be seen. Thesmall high-energy end of the spetrum is due to the sattering of two inoming photonsat one eletron, whereas as the low-energy part is dominated by seondary sattering ofeletrons.There is a vast number of phenomena that ould be studied at the  ollider, and theinformation that ould be obtained is omplementary to the e+e� mode in many ases.One of the most interesting reations is  ! H, i.e. the prodution of a Higgs boson asan s-hannel resonane, whih extends the disovery reah of the linear ollider for heavyHiggs bosons. It also allows a diret measurement of the H oupling. This oupling isloop indued (i.e. due to quantum orretions) in the SM and sensitive to heavy hargedpartiles that reeive their mass through the Higgs mehanism and that might not beprodued diretly.Another intriguing property of the  ollider is the large ross setion for pair pro-dution of harged partiles. This espeially applies to W-boson pair prodution so that10
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0Figure 2.1: Photon energy spetrum obtain with the program CompAZ for a laser polar-ization P = �1 and an eletron polarization �e = +0:85.the  ollider an be onsidered as a W-boson fatory. For instane, it an be used forpreision tests of the gauge setor of the SM. While the reation e+e� ! WW dependson the gauge-boson ouplings ZWW and WW, the orresponding reation at a  ol-lider,  ! WW, is sensitive to the gauge-boson ouplings WW and WW. At ane+e� ollider the oupling WW is only diretly aessible through the bremsstrahlungproess e+e� ! WW, whih is suppressed by a fator �(0)=� w.r.t. the non-radiativeproess e+e� ! WW. Therefore, the sensitivity to the anomalous WW oupling inthe  mode is expeted to be an order of magnitude better than in the e+e� mode. Thepreision for the measurement of the WW oupling is omparable in both modes [ 15℄.2.2 Four-fermion prodution in  ollisions2.2.1 Preision alulations for  !WW! 4fSine W bosons deay into fermion{anti-fermion pairs, the atually observed �nalstates of  ! WW involve four fermions. A theoretial predition an be obtained bymultiplying the ross setion for the proess  !WW with the orresponding branhingratios for the two W-boson deays. This approah is alled narrow-width approximation(NWA), beause it is assumed that the W bosons are stable, i.e. that they have a neg-ligible width (the NWA is atually a zero-width approximation). If more informationthan the total ross setion is needed, the kinematis and spin orrelations between theW-boson prodution and the subsequent deays have to be taken into aount. Thisan be done, e.g., in the leading-pole approximation. However, this proedure negletsterms that are of the order O( �WMW ), where �WMW � 2:6%. A theoretial unertainty of atleast 2:6% is learly not suÆient. Consequently the full proess  ! 4f should be



12 Four-fermion prodution at the  ollideronsidered, whih involves not only the so-alled \signal diagrams" but also \bakgrounddiagrams". The former are related to the proess  !WW! 4f , where two W bosonsan beome resonant for a spei� region in phase spae. The latter involve only one orno W resonane. Compared to the doubly-resonant diagrams, suh singly-resonant andnon-resonant diagrams are suppressed by roughly a fator �W=MW and (�W=MW)2, re-spetively. Lowest-order preditions for  ! 4f proesses (with monohromati photonbeams and leptoni or semi-leptoni �nal states) were disussed in Refs. [ 16, 17℄.In addition to the \bakground diagrams" from the full four-fermion proess, whih areof the order O( �WMW ), there are radiative orretions to the \signal diagrams", whih are ofthe orderO(�). Sine � � �WMW , the size of both ontributions is omparable. This suggeststo alulate the full four-fermion lowest-order ross setion and the O(�) orretions to theresonant parts of the W-pair proess in order to obtain a preise theoretial desriptionof the proess  ! WW ! 4f . The resulting theoretial unertainty is O(�� �WMW ),beause radiative orretions to the bakground diagrams are negleted. Introduing asafety fator for possibly enhaned higher-order ontributions, the remaining theoretialunertainty is <� 0:5%. For the similar proess e+e� ! WW ! 4f this programmehas been arried through in Refs. [ 18, 19, 20, 21, 22, 23℄ by applying the double-poleapproximation (DPA). The error estimate of 0:5% was on�rmed in Ref. [ 24℄ througha alulation of the full O(�) orretions to e+e� ! 4f . Calulating the full O(�)orretions to  ! 4f learly exeeds the sope of this work, beause the ourringtensors integrals an have an even higher rank than in e+e� ! 4f . Furthermore, due tothe omplexity of suh a alulation, the run-time of the orresponding omputer odewould be rather long. Therefore, a alulation of the O(�) orretions in DPA is a valuablestep in a preise desription of the proess  !WW! 4f .Close to the prodution threshold of W pairs, the error estimate of 0:5% is not reliableanymore, beause the bakground diagrams are not suppressed by �=MW with respet tothe signal diagrams anymore. Hene, in this region the DPA annot be trusted. Belowthe threshold, only one W-boson propagator an beome resonant. Thus, a single-poleapproximation ould be used. However, sine the ross setion is relatively small in thisregion, we only use an improved Born approximation for the orretions. The exat detailswill be given in Chapter 4.Calulating the O(�) orretions to the resonane proess  ! WW ! 4f is, how-ever, not straightforward. First of all, this would mean singling out a spei� set ofdiagrams whih auses a violation of gauge invariane, and, thus, a violation of Wardidentities. In priniple, these e�ets are of higher order, but they an be enhaned, be-ause the unitarity anellations are spoiled. This is a problem espeially at large energies,beause of the appearane of ratios of di�erent sales, suh as a momentum of the sat-tering proess and a mass [ 18, 25, 26℄. A solution is provided by the DPA in whih onlythe leading ontribution of an expansion around the resonanes of the propagators (poleexpansion) is taken into aount. This expansion also provides a natural way for imple-menting the width of the W bosons, a problem that will be disussed in the next setion.The pole expansion will be explained in Setion 2.4 while the details of the alulation ofthe radiative orretions to  !WW! 4f in DPA will be given in Chapter 4.



Four-fermion prodution in  ollisions 13In applying the DPA we basially follow the strategy of Ref. [ 19℄, i.e. we alulateonly the virtual orretions in DPA, and use the exat matrix elements for the lowestorder and for the real orretions. On the one hand, this requires the alulation of theomplete lowest-order matrix elements of the proess  ! 4f. On the other hand,it avoids the distintion between di�erent regions of photon momenta. For example, ifE � �W a photon that is emitted from a resonant W boson might lead to two over-lapping resonanes, and it is diÆult to estimate the resulting theoretial unertainty.Furthermore, depending on the de�nition of the observable, the photoni orretions anbe large so that a alulation of them without approximation is desirable.2.2.2 Anomalous ouplingsThe proess  ! WW o�ers the possibility to measure the gauge ouplings WWand WW very preisely. Thus, it is possible to searh for the e�et of new physis atan energy � that is larger than the eletroweak sale. The inuene of the high-energytheory an be desribed by an e�etive theory that is valid at the energy sale that an beaessed by olliders. This e�etive theory would break down at the energy � so that itneed not be renormalizable and an ontain higher-dimensional operators. Not knowingthe high-energy theory, a reasonable approah is to guess these new operators, guided bysymmetry priniples, and to put limits on the size of the ouplings in these operators.The orresponding ouplings are alled anomalous ouplings as they deviate from the SMouplings.With the exeption of Ref. [ 27℄, the existing analyses on anomalous ouplings at a ollider, whih fous on anomalous triple gauge-boson ouplings (ATGC) [ 15, 28℄, onanomalous quarti gauge-boson ouplings (AQGC) [ 29, 30℄, on CP-violating gauge-bosonouplings [ 31℄, and on e�ets of strongly interating longitudinal W bosons [ 32℄, treatW bosons as stable. In the above studies radiative orretions were not fully taken intoaount either.In our alulation anomalous ouplings are introdued in the lowest-order matrix el-ements for the proesses  ! 4f . The oeÆients of the orresponding anomalousoperators are already onstrained from the LEP2 analysis to be small. Therefore, the in-lusion of anomalous ouplings an be viewed as an expansion in these oeÆients whihare of O(�).2.2.3 Higgs produtionAs already mentioned in Setion 2.1, the proess  ! H is one of the most inter-esting proesses at a  ollider. For Higgs masses of MH >� 135GeV, the Higgs bosondominantly deays into W and Z bosons. Thus, the proesses  ! H!WW=ZZ! 4fan be observed. In Setion 3.3 we take this reation into aount in our lowest-orderalulation by de�ning an e�etive H oupling that is derived from the loop-induedSM vertex. On the other hand, the proess  ! H!WW is ontained in the one-looporretions to  ! WW, whih will be disussed in Chapter 4. In Setion 4.2.2.4 wedesribe how the Higgs resonane is separated in a gauge-invariant way allowing for theinlusion of higher-order orretions to the Higgs signal in the future.



14 Four-fermion prodution at the  ollider2.3 Problems with unstable partiles in �eld theoryAn overview of unstable partiles in �eld theory an be found in Ref. [ 33℄. In thefollowing we will sketh the issue of unitarity, the de�nition of the mass and width of anunstable partile, the implementation of the width in perturbative alulations, and thepole expansion.The �rst problem that an be enountered with unstable partiles is the validity ofunitarity, and related to this, of ausality. The sattering of partiles is desribed by theS-matrix Sfi = h	�f j	+i i; (2.3.1)whih is related to the probability amplitude for an \in" state j	+i i to evolve to an \out"state j	�f i. These asymptoti states are de�ned via the limitj	�� i = limt!�1U(t; t0)jp�i (2.3.2)with the time-evolution operator in the interation piture U(t; t0) and the momentumeigenstates jp�i. The origin of the problem obviously lies in the fat that unstable par-tiles annot be de�ned as asymptoti states. Hene, unstable partiles should only beonsidered as virtual intermediate states, and should not be ontained in the Hilbert spaeof asymptoti states. In Ref. [ 34℄ it was shown that suh a theory respets unitarity andausality.Another problem is the �nite width of unstable partiles. The propagator of an unsta-ble partile involves a fator 1=(p2�m2), where p is the momentum and m the mass of thepartile. If p2 is not �xed but must be integrated over like in the proess  !WW! 4f ,this would lead to an in�nite result at lowest order of perturbation theory. This an beured by inluding higher-order ontributions from the self-energy �(p2) of the unstablepartile. Performing a Dyson summation, i.e. summing up the self-energies to all orders,the propagator of a salar partile beomesP (p2) = ip2 �m2 1Xn=0 ��(p2)p2 �m2!n= ip2 �m2 + �(p2) : (2.3.3)Close to the resonane, the self-energy behaves as �(p2) � im�. The onstant � an beviewed as width of the partile. This beomes lear when squaring the propagator,jP (p2)j2 gp2!m2 1(p2 �m2)2 +m2�2 ; (2.3.4)whih yields a Breit-Wigner pro�le. When the Fourier transform is taken, an exponentialdeay an be observed jP (x)j2 / exp(�m�Ep t); (2.3.5)where Ep is the energy of the partile.



Problems with unstable partiles in �eld theory 15Using the Dyson summation of Eq. (2.3.3) mixes di�erent orders of perturbation the-ory. In the beginning of this setion we already mentioned that seleting spei� diagramsof the O(�) orretions to the proess  ! 4f potentially violates gauge invariane. Thisis also the ase if the width is inluded by a Dyson summation. A possible solution isprovided by taking into aount even more higher-order terms in order to obtain a gauge-invariant set of diagrams. In Ref. [ 25℄ it was noted that the ontribution to the imaginarypart of the gauge-boson self-energy near the resonane and, hene, to the width, origi-nates from fermion loops. Consequently, also vertex orretions with losed fermion loopswere taken into aount whih leads to a gauge-invariant result. In a more general waythis an be done in the bakground-�eld method [ 7, 35℄ so that also bosoni loops anbe taken into aount. The drawbak of this method is the large alulational e�ort thatis neessary, beause the width alulated at n-loop level only yields a desription of theresonane that is aurate at the (n� 1)-loop level.A simpler way is provided by the naive �xed-width sheme, were a �xed width isinluded in all propagators, also in spae-like propagators. In priniple, it is not nees-sary to inlude a width in spae-like propagators. However, ompared to the step-widthsheme, where the width is only inluded in time-like propagators, the �xed-width shemehas the advantage that it respets U(1) gauge invariane. Both shemes violate SU(2)symmetry and the orresponding Ward identities. A more aurate desription of theself-energy lose to resonane is provided by the running-width sheme, where im� isreplaed by ip2(�=m)�(p2). The step funtion indiates that the width is only introduedin time-like propagators. This sheme also violates both U(1) and SU(2) invariane, andnow these e�ets an even be enhaned by the fator p2 at large energies. Examples forthis phenomenon were found, e.g., in Refs. [ 18, 25, 26℄.Finally, the omplex-mass sheme [ 18℄, where the mass is replaed bym!pm2 � im�at the level of the Lagrangian density, respets all Ward identities. At lowest oder thissheme is similar to the �xed-width sheme. The only di�erene is that the width alsoappears in other quantities that are de�ned through the mass, suh as the weak mixingangle.The appliation of the �xed-width, the step-width, the running-width, and the omplex-mass sheme for the lowest-order proesses  ! 4f() will be disussed in Setion 3.1.4.For the proesses e+e� ! 4f() this has, e.g., been done in Ref. [ 18℄. In Chapter 5 thegeneralization of the omplex-mass sheme to the one-loop order [ 24℄ will be used for thealulation of the O(�) orretions to H!WW=ZZ! 4f without resonane expansion.Until now, we did not speify how to renormalize the mass of an unstable partile. Thiswill be important for the next setion, where we need the onept of the omplex-pole massin ontrast to the more ommon on-shell mass. In Eq. (2.3.3) the ultraviolet divergeneof the self-energy has to be absorbed into a rede�nition of the mass. However, the exatform of the rede�nition involves some arbitrariness, whih is �xed by a renormalizationondition. In the ase of stable partiles, where the self-energy is a real quantity nearp2 = m2, the square of the mass is de�ned as the loation of the pole of the propagator.



16 Four-fermion prodution at the  olliderIn analogy, the on-shell mass for an unstable partile is de�ned as the zero of the realpart of the inverse propagator, m2OS = m20 � Re�(m2OS); (2.3.6)where m0 is the bare mass. The orresponding on-shell width is obtained from the prop-agator in Eq. (2.3.3),P (p2) = i 1 + Re�0(m2OS)p2 �m2OS + i Im�(p2)1+Re�0(m2OS) +O(p2 �m2OS); (2.3.7)as mOS�OS = Im�(mOS)1 + Re�0(m2OS) : (2.3.8)Alternatively, the omplex pole position an be used as renormalization ondition,resulting in M2 = m20 � �(M2); M2 = m2pole � impole�pole; (2.3.9)where mpole is alled pole mass and M is the omplex-pole mass. Sine the loation ofthe omplex pole is a property of the S-matrix, the pole mass is gauge invariant, whereasthe on-shell mass beomes gauge dependent beyond one-loop order [ 36℄. Unfortunately,mOS is sometimes alled pole mass in the literature. It is, however, important to note,that mOS and mpole in fat di�er by 2-loop terms. This an be seen by expanding the realand omplex parts of Eq. (2.3.9) separately in terms of � � mpoleO(�), resulting inm2pole = m20 � Re�(m2pole)�mpole�pole Im�0(m2pole) +O(�3);mpole�pole = Im�(m2pole)�mpole�poleRe�0(m2pole) +O(�3): (2.3.10)We an now determine the di�erene of the on-shell and the pole mass,m2OS = m2pole + Im�(m2pole) Im�0(m2pole) +O(�3)� m2pole + �2pole +O(�3): (2.3.11)In the seond line it is assumed that the main ontribution to the width originates fromlight fermions. For the W boson the di�erene orresponds to mOS �mpole � 28MeV.2.4 The pole expansionThe pole expansion is an expansion around the pole of the propagator. It an beviewed as an expansion in terms of �=m. Performing a alulation in the double-poleapproximation (DPA) means to alulate the �rst term of a (double-)pole expansion. Asalready mentioned in the previous setions, the reason to use the DPA to alulate theradiative orretions to the proess  ! WW ! 4f is twofold. Sine eah term of thepole expansion is gauge invariant, the DPA provides a means of alulating a redued setof diagrams, the W-pair signal diagrams in our ase, in a gauge-invariant way. Seond,



The pole expansion 17
prodution deayFigure 2.2: A generi fatorizable diagram.the pole expansion naturally enables us to inorporate also the �nite gauge-boson widthin a gauge-invariant way.The terms with the highest degree of resonane in the pole expansion an be expressedby the omplex pole position and the residue at this pole, whih are properties of the S-matrix, and they are therefore gauge invariant. The resonant terms onsist in two di�erentkinds of ontributions. First, there are fatorizable ontributions. The orrespondingdiagrams fatorize into the prodution proess of the unstable partile and the subsequentdeay proess. The generi struture is shown in Figure 2.2.After Dyson summation the matrix elements of the fatorizable diagrams an be ex-panded around the square of the omplex-pole mass M2 asMfat = W (p2)p2 �m2 + �(p2) = !(M2)p2 �M2 + n(p2); (2.4.1)with w(M2) = W (M2)1 + �0(M2) ; (2.4.2)where W (p2) ontains the parts of the matrix elements that are related to the produtionand the deay proesses. Equation (2.4.1) separates resonant and non-resonant terms ina gauge-invariant way. Yet, the de�nition of W (M2) is unlear, beause with a omplexargument it would involve omplex momenta. This problem an be irumvented by analternative expansion around a real mass m. If m is the pole mass, the following relationshold exatly, otherwise they hold up to higher-order terms. Assuming that this mass hasbeen renormalized, the expansion readsM = W (p2)p2 �m2 1Xn=0 ��(p2)p2 �m2!2 = �N(p2) + W�1(m2)p2 �m2 + 1Xn=2 W�n(p2 �m2)n ; (2.4.3)with W�1(m2) =W (m2) + 1Xn=1 1n! " dn(dp2)nW (p2) ���(p2)�n#p2=m2 : (2.4.4)The quantities �N(p2) and W�n an be de�ned aordingly. In Ref. [ 37℄ it was shown toall orders that !(M2) = W�1(m2); n(p2) = �N(p2): (2.4.5)With this relation we are now able to alulate the one-loop orretions to the �rst termof the pole expansion,W (1)�1 (m2) =W (1)(m2)�W (0)(m2)�(1) 0(m2)�W (0)0(m2)�(1)(m2); (2.4.6)
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prodution deay

q
Figure 2.3: A manifestly non-fatorizable diagram.where the supersripts denote the order of perturbation theory. The seond term orre-sponds to the wave-funtion renormalization of the resonant �eld. Sine the last term ofEq. (2.4.6) is already ontained in the omplete leading order result, we an write thefatorizable one-loop orretions in the pole approximation asMPA;fat = W (1)(m2)p2 �M2 � W (0)(m2)�(1) 0(m2)p2 �M2= Xpol 1p2 �M2 �M(1)produtionM(0)deay +M(0)produtionM(1)deay� ; (2.4.7)where we sum over the polarizations of the unstable partile. The matrix elementMPA;fatdepends on the omplete on-shell matrix elements for the prodution and the deay, whihare gauge invariant, and on the omplex pole position M2. Consequently, it is also gaugeinvariant.Seond, there are non-fatorizable diagrams where the prodution and deay proessesare linked by a massless partile like the photon in our ase. A generi diagram of thiskind is shown in Figure 2.3. If this linking partile was massive, the position of theresonane in phase spae would be hanged with respet to the lowest-order diagram.After squaring the matrix element, these diagrams do not ontribute to the �rst termsin the pole expansion. For the same reasoning only soft photons ontribute, so that thenon-fatorizable ontributions an be written as a orretion fator times the leading-order resonant ross setion. Power ounting reveals that in the limit p2 ! m2 andq ! 0, where q is the photon momentum, the non-fatorizable diagrams develop a linearsingularity (a quadrati singularity in the ase of two resonanes). Remote from theresonane, the singularity is mitigated to a logarithmi singularity. Hene, the linearsingularity is harateristi for the ontribution of the non-fatorizable diagrams to the�rst term in the pole expansion and an be used to split o� non-resonant terms.But there are also diagrams that ontain both a fatorizable and a non-fatorizableontribution. An example is shown in Figure 2.4, where the photon is attahed to theresonant partile and an external partile. Alternatively, it may be emitted and reab-sorbed by the resonant partile. Taking the on-shell limit (p2 ! m2 everywhere but inthe resonant propagator) before � ! 0, where � is the photon mass, obviously yields afatorizable ontribution. However, these two limits do not ommute, and performing ano�-shell alulation with � ! 0 and then taking p2 ! m2 gives a di�erent result. This
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prodution deay

q
Figure 2.4: A diagram that ontains both fatorizable and non-fatorizable ontributions.shows that these diagrams, whih are neither manifestly fatorizable nor manifestly non-fatorizable, ontain both types of ontributions. We also arrive at this onlusion whenwe try to de�ne a gauge-invariant ontribution from the non-fatorizable diagrams. Thisan be done by subtrating the fatorizable resonant ontribution (de�ned by p2 ! m2)from the omplete resonant ontribution. Sine these terms are both gauge invariant,as explained above, the result is gauge invariant as well. While the diagram depited inFigure 2.4 reeives ontributions from the whole range of the photon momenta q, aftersubtrating the fatorizable ontribution, only soft photons ontribute. Thus, the non-fatorizable ontribution, de�ned in this way, an still be written as a orretion fator tothe Born ross setion.In Ref. [ 38℄ the possible impat of non-fatorizable ontributions was disussed. Itwas proven that for inlusive quantities their e�et is suppressed by �=m. Inlusive inthis ontext means, that the invariant mass of the unstable partile has to be integratedover ompletely. Sine we only take into aount the �rst term of the pole expansion, thenon-fatorizable ontributions vanish for inlusive quantities in the pole approximation.However, they beome important, e.g., in invariant-mass distributions of the unstablepartile.



Chapter 3Lowest-order preditions for ! 4f()3.1 Analytial results for amplitudes in the Standard Model3.1.1 Notation and onventionsWe onsider reations of the types(k1; �1) + (k2; �2) ! f1(p1; �1) + �f2(p2; �2) + f3(p3; �3) + �f4(p4; �4); (3.1.1)(k1; �1) + (k2; �2) ! f1(p1; �1) + �f2(p2; �2) + f3(p3; �3) + �f4(p4; �4) + (p5; �5): (3.1.2)The arguments label the momenta ki, pj and heliities �k, �l (whih take the values �1=2in the ase of fermions and �1 in the ase of photons) of the orresponding partiles.We often use only the signs to denote the heliities. The fermion masses are negletedeverywhere assuming that all mass singularities are avoided by appropriate phase-spaeuts. In Setion 4.3.2, however, we will restore the mass logarithms for non-ollinear-safeobservables.For the Feynman rules we follow the onventions of Ref. [ 6℄. We extend the usual lin-ear gauge-�xing term (1.2.15) in the 't Hooft{Feynman gauge by a term that is non-linearin the gauge �elds aording to Refs. [ 18, 39, 40℄. In this way the vertex W� vanishes,where � are the would-be Goldstone bosons orresponding to the W bosons. Note thatthis also a�ets the gauge-boson ouplings WW and WW. The orresponding Feyn-man rules relevant for  ! 4f() in lowest order an be found in Ref. [ 18℄. Sine weneglet fermion masses, the would-be Goldstone bosons do not ouple to fermions and donot our in the Feynman graphs of the SM amplitudes to  ! 4f(), whih leads to aonsiderable redution of the number of Feynman diagrams.3.1.2 Classi�ation of �nal states for  ! 4f()The �nal states for  ! 4f and  ! 4f an be lassi�ed similarly to the proessese+e� ! 4f and e+e� ! 4f [ 18℄. In the following, f and F are di�erent fermions(f 6= F ), and f 0 and F 0 denote their weak-isospin partners, respetively. We distinguishbetween states that are produed via harged-urrent (CC, orresponding to W bosons),20



Analytial results for amplitudes in the Standard Model 21via neutral-urrent (NC, orresponding to photons or Z bosons) interations, or via bothinteration types:(i) CC reations: ! f �f 0F �F 0 (CC31 family),(ii) NC reations:(a)  ! f �fF �F (NC40 family),(b)  ! f �ff �f (NC2�40 family),(iii) Mixed CC/NC reations: ! f �ff 0 �f 0 (mix71 family).The radiation of an additional photon does not hange this lassi�ation. FollowingRef. [ 41℄ we give the names of the proess families in parentheses where the numbersorrespond to the number of Feynman diagrams involved in unitary or non-linear gauge(for proesses without neutrinos in the �nal state, not ounting gluon-exhange diagrams).Sine the matrix elements depend on the olour struture of the �nal state, we furtherdistinguish between leptoni, semi-leptoni, and hadroni �nal states. Keeping in mindthat we neglet fermion masses, omitting four-neutrino �nal states, and suppressing re-ations that are equivalent by CP symmetry we end up with 17 di�erent representativeproesses whih we have listed in Table 3.1.Sine the photons are polarized after Compton baksattering, �nal states that areavour equivalent up to a CP transformation need not neessarily yield the same rosssetion if the onvolution over a realisti photon beam spetrum is inluded. However,as we neglet fermion masses, this is only relevant for the semi-leptoni CC proesses ! e���eu�d() and  ! �ee+d�u().3.1.3 Lowest-order amplitudes for  ! 4f3.1.3.1 Constrution of matrix elementsThe amplitudes for the proesses  ! 4f are onstruted by attahing the twoinoming photons in all possible ways to the orresponding diagrams with four externalfermions as shown in Figure 3.1. The matrix element of the generi diagram in Figure 3.1,where two fermion lines are linked by a gauge boson V , an be written asM�1�2�3�4�1�2;V (ki; pj; Qj) = 4e4Æ�1;��2Æ�3;��4 g�1V �f1f2g�3V �f3f4A�1�3�1�2;V (ki; pj; Qj); (3.1.3)where ki, pj, and Qj (i = 1; 2; j = 1; ::; 4) stand for the momenta and relative eletriharges of the partiles, respetively. The oupling fators g have been introdued in(1.2.18). For the gluon oupling we de�neg�g �fifi = gse : (3.1.4)



22 Lowest-order preditions for  ! 4f()�nal state reation type  !leptoni CC e���e���+NC(a) e�e+�����e�e+���+NC(b) e�e+e�e+CC/NC e�e+�e��esemi-leptoni CC() e���eu�dNC(a) �e��eu�u�e��ed�de�e+u�ue�e+d�dhadroni CC u�ds�NC(a) u�u�NC(a) u�us�sNC(a) d�ds�sNC(b) u�uu�uNC(b) d�dd�dCC/NC u�ud�dTable 3.1: Set of representative proesses for  ! 4f().Quark mixing is negleted everywhere, i.e. we set the CKM matrix equal to the unitmatrix. The auxiliary funtions A�1�3�1�2;V are alulated within the Weyl{van-der-Waerden(WvdW) formalism following the onventions of Ref. [ 42℄. The WvdW spinor produtsare de�ned byhpqi = �ABpAqB = 2pp0q0  e�i�p os �p2 sin �q2 � e�i�q os �q2 sin �p2 !; (3.1.5)where pA, qA are the assoiated momentum spinors for the momentap� = p0(1; sin �p os�p; sin �p sin�p; os �p);q� = q0(1; sin �q os�q; sin �q sin�q; os �q): (3.1.6)Moreover, we de�ne the shorthandshpiPkpji = pi; _AP _ABk pj;B = pi; _Ap _Ak pBk pj;B = hpipki�hpjpki;hpi[Pl + Pm℄pji = hpiPlpji+ hpiPmpji; (3.1.7)where pk;l;m are light-like momenta, i.e., p2k = p2l = p2m = 0. In the following, thedenominators of the gauge-boson propagators are abbreviated byPV (p) = 1p2 �M2V ; V = ;Z;W; g; M =Mg = 0: (3.1.8)
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f3�f4V f1�f221Figure 3.1: Generi diagram for the proess  ! 4f where the photons 1; 2 ouple tothe fermions f1; : : : ; �f4 and the gauge boson V in all possible ways.The introdution of the �nite width is desribed in Setion 3.1.4 below.The auxiliary funtions A�1�3�1�2;V expliitly readA��++;V (ki; pj; Qj) = (hp2p4i�)2� (�Q21 hp1p2i�hp3p4iPV (p3 + p4)hk1p1i�hk1p2i�hk2p1i�hk2p2i� �Q1Q3 (p1 + p2 � k1)2PV (p1 + p2 � k1)hk1p1i�hk1p2i�hk2p3i�hk2p4i�+Q3(Q1 �Q2)PV (p1 + p2)� "�hp2p4i�hp1p2i+ hk1p4i�hk1p1iM2V PV (p1 + p2 � k1)hk1p2i�hk1p4i�hk2p3i�hk2p4i� + (k1$ k2)#+ (Q1 �Q2)2PV (p1 + p2)PV (p3 + p4) "�hp2p4i� hp2p4i�hp1p2ihp3p4i+M2V hp1p3i2hk1p2i�hk1p4i�hk2p2i�hk2p4i�+ M2V PV (p1 + p2 � k1) hk1p1ihk2p3ihk1p2i�hk2p4i�#+ �fp1; Q1; p2; Q2g$fp3; Q3; p4; Q4g�);A��+�;V (ki; pj; Qj) = Q21PV (p3 + p4)hp2p4i�hk1p1ihk2[P2 + P4℄p3ihk1p1i�hk2p1i(p2 + p3 + p4)2+Q22PV (p3 + p4)hk2p2i�hp1p3ihp4[P1 + P3℄k1ihk1p2i�hk2p2i(p1 + p3 + p4)2+Q1Q2PV (p3 + p4)hp2[K1 � P1℄p3ihp4[K1 � P3℄p1ihk1p1i�hk1p2i�hk2p1ihk2p2i+ (Q2 �Q1)PV (p3 + p4) hp2p4i�hp1p3ihk1p2i�hk2p1i "Q2 hp4[K1 � P3℄p1ihk1p4i�hk2p2i +Q1 hp2[K1 � P1℄p3ihk1p1i�hk2p3i #+ 12(Q2 �Q1)2PV (p1 + p2)PV (p3 + p4)� hp2p4i�hp1p3i�hp2[K1 � P1℄p3ihp4[K1 � P3℄p1i �M2V hp2p4i�hp1p3i�hk1p2i�hk1p4i�hk2p1ihk2p3i



24 Lowest-order preditions for  ! 4f()+ [�Q1 + (Q1 �Q2)2(k1p1)PV (p1 + p2)℄ [Q4 + (Q3 �Q4)2(k2p4)PV (p3 + p4)℄� (hp2[K1 � P1℄p3i)2PV (p1 + p2 � k1)hk1p1i�hk1p2i�hk2p3ihk2p4i+ �fp1; Q1; p2; Q2g$fp3; Q3; p4; Q4g�: (3.1.9)The other auxiliary funtions A�1�3�1�2;V follow from the relationsA��1;�3�1�2;V (ki; pj; Qj) = hA�1�3�1�2;V (ki; pj; Qj)ifp1;Q1g$fp2;�Q2g ;A�1;��3�1�2;V (ki; pj; Qj) = hA�1�3�1�2;V (ki; pj; Qj)ifp3;Q3g$fp4;�Q4g ; (3.1.10)and A��1;��3��1;��2;V (ki; pj; Qj) = hA�1�3�1�2;V (ki; pj; Qj)i� : (3.1.11)The last relation expresses a parity transformation. Note that the operation of omplexonjugation in Eq. (3.1.11) must not a�et the gauge-boson widths in the propagatorfuntions PV whih will be introdued in Setion 3.1.4.The alulation of the heliity amplitudes for  ! 4f proeeds along the same lines.The result, however, is quite lengthy so that we do not write it down expliitly.3.1.3.2 Squared amplitudes for leptoni and semi-leptoni �nal statesThe result for leptoni and semi-leptoni �nal states follows immediately from thegeneri amplitude (3.1.3). The gauge boson annot be a gluon in this ase, and the sumover the olour degrees of freedom in the squared matrix elements trivially leads to theglobal fators N lept = 1 and N semilept = 3. Note that for NC diagrams the result for theamplitude is muh simpler than for CC diagrams, sine all terms in Eq. (3.1.9) involvinga fator (Q1 � Q2) or (Q3 � Q4) drop out. Most of these terms originate from diagramswhere a photon ouples to a virtual W boson.The expliit results for the olour-summed squared matrix elements readXolour jMCCj2 = N jMWj2; (3.1.12)Xolour jMNC(a)j2 = N  jMNCj2 ; (3.1.13)Xolour jMNC(b)j2 = N  ���MNC � [MNC℄fp1;Q1;�1g$fp3;Q3;�3g���2 ; (3.1.14)Xolour jMCC=NCj2 = N  ���MNC � [MW℄fp1;Q1;�1g$fp3;Q3;�3g���2 ; (3.1.15)where we use the shorthand MNC = XV=;ZMV (3.1.16)and suppress the heliity indies and the dependene on momenta and relative harges.The relative signs aount for interhanging external fermion lines.



Analytial results for amplitudes in the Standard Model 253.1.3.3 Squared amplitudes for hadroni �nal statesNext we onsider purely hadroni �nal states, i.e., the ases where all �nal-statefermions are quarks. This renders the summation of the squared matrix elements over theolour degrees of freedom non-trivial, and in addition gluon-exhange diagrams appear.Sine gluon-exhange diagrams require two quark{anti-quark pairs in the �nal state theydo not appear in CC proesses. For CC proesses there is only one possibility for theolour ow, and the summation over the olour degrees of freedom leads to an overallfator N had;CC = 32 = 9 to the squared matrix elements as given in Eq. (3.1.12).For NC reations we have to ompute the sum of pure eletroweak (ew) and gluon-exhange (QCD) matrix elements,M1234had =M1234had;ew +M1234had;QCD; (3.1.17)where i denotes the olour indies of the quarks. The eletroweak diagrams are diagonalin olour spae and therefore readM1234NC(a);had;ew = MNCÆ12Æ34 ;M1234NC(b);had;ew = MNCÆ12Æ34 � [MNC℄fp1;Q1;�1g$fp3;Q3;�3g Æ32Æ14: (3.1.18)The gluon-exhange diagrams are obtained from the generi formula (3.1.3) by insertingthe orresponding generators, �a=2, of the gauge group SU(3),M1234NC(a);had;QCD = Mg 14�a12�a34 ;M1234NC(b);had;QCD = Mg 14�a12�a34 � [Mg℄fp1;Q1;�1g$fp3;Q3;�3g 14�a32�a14 : (3.1.19)The matrix element Mg is de�ned by Eq. (3.1.3) with V = g.Carrying out the olour sum using the ompleteness relation for the Gell-Mann ma-tries, �aij�akl = �23ÆijÆkl + 2ÆilÆjk; (3.1.20)yieldsXolour jMNC(a);hadj2 = 9jMNCj2 + 2jMgj2;Xolour jMNC(b);hadj2 = 9jMNCj2 + 9 ���[MNC℄fp1;Q1;�1g$fp3;Q3;�3g���2 + 2jMgj2+ 2 ���[Mg℄fp1;Q1;�1g$fp3;Q3;�3g���2 � 6RenMNC [M�NC℄fp1;Q1;�1g$fp3;Q3;�3go+ 43 Re�Mg hM�gifp1;Q1;�1g$fp3;Q3;�3g�� 8Re�MNC hM�gifp1;Q1;�1g$fp3;Q3;�3g�� 8RenMg [M�NC℄fp1;Q1;�1g$fp3;Q3;�3go : (3.1.21)All squared matrix elements of this setion have been ompared numerially withresults obtained with the program Madgraph [ 43℄ at several phase-spae points, andperfet agreement has been found.



26 Lowest-order preditions for  ! 4f()3.1.4 Implementation of �nite gauge-boson widthsWe have implemented the �nite widths of the W- and Z-boson propagators1 in fourdi�erent ways:� �xed width in all propagators:PV (p) = 1p2 �M2V + iMV �V ; (3.1.22)� step width (�xed width in time-like propagators):PV (p) = 1p2 �M2V + iMV �V �(p2) ; (3.1.23)� running width in time-like propagators:PV (p) = 1p2 �M2V + ip2(�V =MV )�(p2) ; (3.1.24)� omplex-mass sheme [ 18℄: omplex gauge-boson masses are used everywhere, i.e.qM2V � iMV �V instead of MV in all propagators and ouplings. This results in aonstant width in all propagators,PV (p) = 1p2 �M2V + iMV �V ; (3.1.25)and in a omplex weak mixing angle2w = 1� s2w = M2W � iMW�WM2Z � iMZ�Z : (3.1.26)The virtues and drawbaks of the �rst three shemes were mentioned in Setion 2.3and are disussed in more detail in Ref. [ 25℄. All but the omplex-mass sheme, ingeneral, violate SU(2) gauge invariane, the step- and the running-width shemes alsoviolate eletromagneti U(1)em gauge invariane, whih is preserved by using a �xed width.As known from many examples in e+e� physis [ 18, 25, 26℄, gauge-invariane-violatinge�ets, in partiular when enhaned by fators p2=M2V as in the running-width sheme,an lead to totally wrong results. Furthermore, the violation of U(1)em gauge invarianealso auses a dependene of matrix elements and ross setions on the gauge hosen forexternal photons. In e+e� ! 4f and e+e� ! 6f this problem does not our sine noexternal photons are involved.1We have also supplemented the expliit gauge-bosonmasses appearing in the numerators of Eq. (3.1.9)by the orresponding widths, beause these mass terms originate from denominators upon ombiningdi�erent diagrams.



Analytial results for amplitudes in the Standard Model 27The omplex-mass sheme, whih was introdued in Ref. [ 18℄ for tree-level alula-tions, preserves gauge invariane and thus all Ward identities whih rule gauge anella-tions. Its appliation is partiularly simple for  ! 4f() in the non-linear gauge. Inthis ase, no ouplings involving expliit gauge-boson masses appear, and it is suÆientto introdue the �nite gauge-boson widths in the propagators [f. Eq. (3.1.25)℄ and tointrodue the omplex weak mixing angle (3.1.26) in the ouplings.For CC proesses  ! 4f() with massless fermions, the �xed-width (FW) approahin the non-linear gauge and the omplex-mass sheme (CMS) are pratially equivalent,beause all Feynman graphs are proportional to e4=s2w (e5=s2w) and gauge-boson massesappear only in propagator denominators. In this ase the orresponding amplitudes inthe two shemes di�er only in the global fator s2w;FW=s2w;CMS, where sw;FW and sw;CMSare the values of sw in the di�erent shemes, i.e., sw;FW is derived from the ratio of realgauge-boson masses and sw;CMS from omplex masses. Thus, both squared amplitudesare gauge invariant and are equal up to the fator jsw;FW=sw;CMSj4 whih is equal to 1 upto terms of O(�2W=M2W).For NC and CC/NC proesses a similar reasoning an be used to show that the �xed-width approah does not violate gauge invariane in  ! 4f() for massless fermions.The trik is to apply the above argument to gauge-invariant subsets of diagrams. For NCdiagrams with photon exhange, whih is the (gauge-invariant) QED subset of diagrams(Figure 3.1 with V = ), there is nothing to show. The sum of NC diagrams of type NC(a)with Z-boson exhange (Figure 3.1 with V = Z) again involves w and sw only in a globaloupling fator (per heliity hannel); the remaining dependene on the gauge-bosonmasses is loated in the propagator denominators. Thus, the subamplitudes of the �xed-width and the omplex-mass sheme are again idential up to a global fator and bothpreserve gauge invariane and Ward identities. For NC proesses of type NC(b) a seondlass of diagrams exists (Figure 3.1 with V = ;Z and external fermions interhanged).This new lass of diagrams forms a gauge-invariant subset beause of the di�erent ow offermion numbers. Thus, the reasoning for type NC(a) applies to both lasses of diagramsof NC(b) reations. The same argument is also valid for the subset of CC diagrams inmixed CC/NC reations.In summary, we have argued that the use of naive �xed gauge-boson widths does notlead to gauge-invariane violations in amplitudes for  ! 4f() as long as fermions aremassless and the non-linear gauge with vanishing W� oupling (or the omplex W-bosonmass in this oupling if the 't Hooft{Feynman gauge is hosen) is used. The orrespondingsquared amplitudes agree with the ones of the (gauge-invariant) omplex-mass sheme upto terms of O(�W=MW), for CC proesses even up to terms of O(�2W=M2W).3.1.5 W-pair signal diagrams and double-pole approximationThe diagrams to CC and CC/NC proesses omprise graphs with two, one, or nointernal W-boson lines that an beome resonant, similar to the situation for e+e� !WW ! 4f (see Refs. [ 44, 45℄ and referenes therein). It is interesting to investigatethe possibility to de�ne an amplitude for the W-pair signal based on doubly-resonantontributions only, beause suh an amplitude is muh simpler than the full amplitudes



28 Lowest-order preditions for  ! 4f()for four-fermion prodution and is universal (up to olour fators) for all relevant 4f�nal states. Moreover, this study is an important exerise for the alulation of radiativeorretions to  !WW ! 4f in the double-pole approximation (DPA), whih is donein the next hapter. Taking simply all doubly-resonant diagrams, of ourse, yields a resultthat is not gauge invariant. Nevertheless in the e+e� ase the lowest-order ross setionbased on suh a gauge-dependent amplitude (de�ned in the 't Hooft{Feynman gauge),known as \CC03 ross setion", is a very useful quantity that is very lose to the full4f alulation if both W bosons are lose to resonane. The CC03 amplitude an berendered gauge invariant upon deforming the momenta of the four outgoing fermions insuh a way that the intermediate W-boson states beome on shell, beause the residuesof the W resonanes are gauge-invariant quantities. This \on-shell projetion" is part ofthe pole expansion (2.4.1) and is needed in the onstrution of the DPA. The de�nition ofthe \on-shell projetion" involves some freedom, and di�erent versions, whih have beendesribed in Refs. [ 20, 22℄, di�er by ontributions of relative order O(�W=MW), whih isthe unertainty of the DPA for leading-order preditions.We want to perform the exerise to study the usefulness of a possible \CC03"2 o�-shell ross setion for  ! WW ! 4f . To this end, we de�ne the amplitude for theo�-shell W-pair signal by evaluating the three W-pair diagrams in the non-linear gaugewith polarization vetors "i(ki) for the inoming photons, whih obey the gauge onditions"1(k1) � k2 = "2(k2) � k1 = 0: (3.1.27)In terms of WvdW spinors, this means that the gauge spinors g1 and g2 of the photonsare identi�ed with the spinors of the momenta k2 and k1, respetively. With this hoiethe auxiliary funtions for the matrix elements (3.1.3) readA��++;WW(ki; pj; Qj) = PW(p1 + p2)PW(p3 + p4) hp2p4i�hk1k2i�� (hPW(p1 + p2 � k1)i�W=0"hk2p1ihk2p3ihk2[P1 + P2℄k1i+ hk1p1ihk1p3ihk1[P3 + P4℄k2i+ hp1p3ihk1k2i� hk2[P1 + P2℄k1ihk1[P3 + P4℄k2i � 2(k1 � k2)hk1p1ihk2p3i#� 12hp1p3ihk1k2i)+ (k1$ k2);A��+�;WW(ki; pj; Qj) = PW(p1 + p2)PW(p3 + p4)� hPW(p1 + p2 � k1) + PW(p1 + p2 � k2)i�W=0� (hk2[P1 + P2℄k1i"hk2p2i�hk2p4i�hp1p3ihk1k2i� � hp2p4i�hk1p1ihk1p3ihk1k2i #� hp2p4i�hp1p3i2(k1k2) hk2[P1 + P2℄k1i2 + hk2p2i�hk2p4i�hk1p1ihk1p3i): (3.1.28)2The name also �ts to the  ase where three W-pair diagrams exist in unitary or non-linear gauge.



Inlusion of anomalous gauge-boson ouplings 29Note that A�1�3�1�2;WW do not oinide with the parts of the funtions A�1�3�1�2;W of Eq. (3.1.9)that are proportional to PW(p1 + p2)PW(p3 + p4) beause the derivation of Eq. (3.1.9)involves rearrangements of various singly-resonant ontributions. We point out that thede�nition (3.1.28) is neither independent of the gauge �xing used to de�ne gauge-bosonpropagators nor of the gauge of the external photons. The de�nition is gauge invariantafter the outgoing fermion momenta pi are on-shell projeted as desribed above, whileleaving the resonant propagators PW(p1 + p2)PW(p3 + p4) untouhed. This de�nes thelowest-order amplitude in DPA. Finally, we stress that the t- and u-hannel W propagatorsin Eq. (3.1.28) do not reeive a �nite W width; otherwise the gauge invariane of the DPAwould be spoiled.3.2 Inlusion of anomalous gauge-boson ouplingsIn this setion we introdue the most important anomalous gauge-boson ouplingsaessible by the proess  ! 4f and give expliit analytial results for the orrespondingheliity amplitudes.3.2.1 The e�etive LagrangiansFirst we onsider anomalous triple gauge-boson ouplings (ATGC) in the harged-urrent setor, i.e., anomalous WW and the related WW ouplings. Instead of usingrather general parametrizations of non-standard ouplings [ 46℄, we follow the approahalready used at LEP2 to redue the number of free parameters by requiring that allsymmetries of the SM are respeted. From the resulting operators we only keep thosethat appear in the lowest-order ross setion of  ! 4f . Spei�ally, we start from thegauge-invariant CP-onserving e�etive Lagrangian with dimension-6 operators [ 47℄LATGCCC = igY �B�M2W (D��)yB��(D��) � igW �W�M2W (D��)y� �W��(D��)�gW �W6M2W W�� � (W�� �W��); (3.2.1)where � is the Higgs doublet �eld andB�� = ��B� � ��B�;W�� = (W ��1 ;W ��2 ;W ��3 ) = ��W� � ��W� + gWW� �W� (3.2.2)are the �eld strengths of the U(1) and SU(2) gauge �elds, respetively. The Pauli matriesare ombined into the vetor � = (�1; �2; �3), and the parameters gY , gW denote the gaugeouplings.3 Inserting the vauum expetation value of the Higgs �eld �, we an relatethe oeÆients �B�, �W�, and �W to the oeÆients of the Lagrangian onsidered in theLEP2 analysis [ 47℄,�gZ1 = �W�2w ; �� = �2ws2w (��Z ��gZ1 ) = �W� + �B�; � = �Z = �W: (3.2.3)3In order to be ompatible with the onventions of Ref. [ 6℄ used for the SM amplitudes above, wehad to hange the sign of the SU(2) oupling gW w.r.t. Ref. [ 47℄.



30 Lowest-order preditions for  ! 4f()In ontrast to the pure anomalous WW oupling [ 46℄, the SU(2)�U(1) symmetry of thee�etive Lagrangian (3.2.1) indues additional anomalous WW and W� ouplings.The orresponding Feynman rules arei�W+W���� (k0; k+; k�) = �ie(��(k0�g�� � k0�g��)� �M2W "k+�k��k0� � k��k+�k0� + g��(k��(k+k0)� k+�(k�k0))+ g��(k0�(k+k�)� k��(k+k0)) + g��(k+�(k�k0)� k0�(k+k�))�);i�W+W����� (k1; k2; k+; k�) = �ie2 �M2W(g��g��(k1 + k2)2 + g��g��(k2k+ + k1k�)+ g��g��(k1k+ + k2k�) + g��h(k1 + k2)�k+� + (k1 + k2)�k��i+ g��h(k+ + k�)�k1� + (k+ + k�)�k2�i+ g��h(k1 � k2)�k+� � k1�k+� � k1�k��i+ g��h(k1 � k2)�k�� � k1�k�� � k1�k+�i + g��h(k2 � k1)�k+� � k2�k+� � k2�k��i+ g��h(k2 � k1)�k�� � k2�k�� � k2�k+�i);i�W��� (k0; kW; k�) = �ie��MW �(k�k0)g�� � k�;�k0;��; (3.2.4)where all �elds and momenta are onsidered inoming. Note that the neglet of theontribution to the quarti oupling WW, whih is proportional to �, would lead toa violation of eletromagneti gauge invariane in preditions for  ! WW(! 4f). Inontrast, negleting the W� oupling, whih is proportional to ��, would not spoil theeletromagneti gauge invariane of the preditions.Next we onsider anomalous triple gauge-boson ouplings involving only the neutralgauge bosons  and Z. Assuming Lorentz invariane and eletromagneti gauge invariane,the most general e�etive dimension-6 Lagrangian for Z, ZZ, and ZZZ ouplings anbe written as [ 48℄4LATGCNC = eM2Z�[f 4 (��F ��)� fZ4 (��Z��)℄Z��Z� + [f 5 (��F ��)� fZ5 (��Z��)℄ ~Z��Z�+ [h1(��F ��)� hZ1 (��Z��)℄F��Z� + [h3(��F ��)� hZ3 (��Z��)℄ ~F��Z�� (3.2.5)with the abelian �eld-strength tensorsF �� = ��A� � ��A�; Z�� = ��Z� � ��Z�; (3.2.6)and the dual �eld-strength tensors (�0123 = +1)~F �� = 12�����F��; ~Z�� = 12�����Z��: (3.2.7)4Note that our onventions di�er from those of Ref. [ 48℄ by a minus sign in the Z-boson �eld.



Inlusion of anomalous gauge-boson ouplings 31(a)12 WW f1�f2f3�f4
(b)12 WWW

f1�f2f3�f4
()f1�f2 1 f3�f42W W

(d)12 WWW
f1�f2f3�f4

(e)12 W�W
f1�f2f3�f4Figure 3.2: Representative diagrams with anomalous WW and WW ouplings (blakblobs) ontributing to CC proesses  ! 4f .An operator induing a  oupling does not appear in Eq. (3.2.5) sine it violateseletromagneti gauge invariane.Apart from the WW oupling whih is indued by symmetries in the Lagrangian(3.2.1), we also inlude genuine anomalous quarti gauge-boson ouplings (AQGC) inour analysis, whose lowest dimension is 6. In Refs. [ 49, 50℄ all genuine dimension-6AQGC that involve photons and that are allowed by eletromagneti gauge invarianeand ustodial SU(2) have been lassi�ed; more general AQGC have been disussed inRef. [ 51℄. Following Ref. [ 50℄ we use the e�etive LagrangianLAQGCV V = � e216�2�a0 F ��F��W�W� + a F ��F��W�W� + ~a0 F �� ~F��W�W�� (3.2.8)with the de�nitionW� = �W 1�;W 2�;W 3�� =  1p2(W+ +W�)�; ip2(W+ �W�)�; 1wZ�! : (3.2.9)The sale of new physis, �, is introdued in Eq. (3.2.8) to render the oupling oeÆientsa0; a; ~a0 dimensionless. The e�etive Lagrangian LAQGCV V ontains WW and ZZ ou-plings, whose Feynman rules an be found in Ref. [ 50℄. The other oupling struturesLn and ~Ln onsidered in Ref. [ 50℄ indue ZWW ouplings that are not relevant for ! 4f .3.2.2 Amplitudes with triple gauge-boson ouplingsBefore we write down the heliity amplitudes inluding ATGC expliitly, we disuss theimpat of these ouplings w.r.t. the SM ross setion. The diagrams ontaining ATGC and



32 Lowest-order preditions for  ! 4f()the orresponding quarti ouplings in CC diagrams are shown in Figure 3.2. We quantifythe size of the anomalous ontributions in terms of powers of anomalous oupling fators(generially denoted by a3) or suppression fators �W=MW. Considering the SM proess ! WW ! 4f as the leading ontribution, i.e., regarding anomalous-oupling e�etsas small, we get non-standard ontributions to CC and CC/NC ross setions from CCATGC of the following orders:� O(a3):The matrix elements of diagrams (a) and (b) in Figure 3.2 involve one power of a3.Both diagrams are not suppressed by �W=MW sine they are doubly resonant.� O(a3�W=MW):The diagram () of Figure 3.2 has one power of a3 and one resonant W-boson prop-agator, i.e., it is only singly resonant. Thus, it is of O(a3�W=MW).� O(a23):The diagrams (d) and (e) of Figure 3.2 involve two anomalous ouplings a3 andare doubly resonant. Therefore, they are of O(a23). Note that the squares of thediagrams (a) and (b), as well as their produts with one another, are of the sameorder as the interferene of diagrams (d) and (e) with the SM amplitude.There are no diagrams ontaining CC ATGC for NC proesses.Next we onsider the impat of NC ATGC, as de�ned in the e�etive Lagrangian(3.2.5). The by far largest SM ross setions of the proess lass  ! 4f belong todiagrams with two resonant W bosons in CC and CC/NC reations. Thus, the largeste�et of NC ATGC ould be expeted from an interferene of \anomalous diagrams" withthe SM amplitude for CC or CC/NC proesses. The only andidate of this kind is adiagram where an o�-shell s-hannel Z boson is produed by an anomalous Z ouplingthat subsequently produes a W-boson pair. However, the e�etive Z oupling ofEq. (3.2.5) vanishes for two on-shell photons, so that this diagram does not ontribute.No other CC diagram exists that inludes a NC ATGC.We now turn to the e�ets of NC ATGC in NC amplitudes, i.e., in diagrams withoutW bosons. The orresponding SM amplitudes involve at most a single resonane of theZ boson, whih leads already to a suppression of NC ross setions w.r.t. CC ross setionsby a fator (�Z=MZ)2. This suppression is learly visible in the numerial results presentedin Setion 3.5.2.1 below. Diagrams with one NC ATGC also possess at most one resonantZ boson and, therefore, show a suppression by a fator a3(�Z=MZ)2 w.r.t. the CC signaldiagrams. This suppression is not hanged by interferenes with doubly-resonant CCdiagrams in CC/NC proesses beause the Z- and W-boson resonanes are loated atdi�erent regions in phase spae and do not enhane eah other. Diagrams with two NCATGC an involve two Z-boson resonanes resulting in a suppression of O(a23�Z=MZ),whih is also small ompared to the CC ase owing to the squared ATGC. In summary,we onlude that the sensitivity of the proesses  ! 4f to NC ATGC is muh smallerthan to CC ATGC. Therefore, we restrit our investigation on ATGC to CC ouplings inthe following.



Inlusion of anomalous gauge-boson ouplings 33As explained above, the diagrams of Figure 3.2 indue ontributions to the amplitudethat are either linear or quadrati in the CC ATGC. We give the expliit ontributionsto the heliity amplitudes in a way similar to the SM ase (3.1.3),M�1�2�3�4�1�2;CCATGC(ki; pj; Qj) = e4Æ�1;�Æ�2;+Æ�3;�Æ�4;+ g�W�f1f2g�W�f3f4 Æ3A�1�3�1�2(ki; pj; Qj) (3.2.10)with the auxiliary funtions Æ3A�1�3�1�2 . The generi amplitude M�1�2�3�4�1�2;CCATGC is oherentlyadded to the SM amplitude M�1�2�3�4�1�2;W of Eq. (3.1.3). The olour summation of thesquared amplitudes for the various proess types proeeds as desribed in Setions 3.1.3.2and 3.1.3.3.The terms in Æ3A�1�3�1�2 that are quadrati and linear in ATGC expliitly readÆ3A��++���quad = �PW(p1 + p2)PW(p3 + p4)PW(p1 + p2 � k1)hk1p1ihk2p3i� (��2�hp2p4i�hk1k2i+ 12M2W hp1p2i�hp3p4i�hk1p1ihk2p3i�+�� �M2W �hp1p2i�hp3p4i��hk1p3ihk2p1i � hk1k2ihp1p3i�+ hk1k2i�hp3p4i�hk1p2i�hk1p3i � hp1p2i�hk2p4i�hk2p1i��+ �2M4W hp1p2i�hp3p4i�12(p1 + p2 � k1)2�hk1p3ihk2p1i � hk1k2ihp1p3i�)+ (k1$ k2);Æ3A��+����quad = �PW(p1 + p2)PW(p3 + p4)PW(p1 + p2 � k1)hk2p4i�hk1p1i� (���2�hk2p2i�hk1p3i+ 12M2W hp1p2i�hk2p4i�hk1p1ihp3p4i�+�� �M2W ��2(p1 + p2 � k1)2hk2p2i�hk1p3i+ hp2[K2 �K1℄p3ihk2[P1 + P2℄k1i � hp1p2i�hk2p4i�hp3p4ihk1p1i�+ �2M4W hp1p2i�hp3p4i��12(p1 + p2 � k1)2hk2p4i�hk1p1i+ hp4[K2 � P3℄k1ihk2[K1 � P2℄p1i�)+�fp1; Q1; p2; Q2g$fp3; Q3; p4; Q4g�;Æ3A��++���lin = 2PW(p1 + p2)PW(p3 + p4)hk2p1ihk2p3i� hp2p4i�hk1p2i�hk1p4i� ���hp2p4i� � �M2W hp3p4i�hp1p2i�hp1p3i�+ (2(Q4 �Q3) [�Q1 + (Q1 �Q2)2(k1p1)PW(p1 + p2)℄PW(p3 + p4)



34 Lowest-order preditions for  ! 4f()� PW(p3 + p4 � k2)hk2p3ihp2[P1 �K1℄k2ihk1p1i�hk1p2i�� ���hp2p4i� + �M2W hp3p4i�hp2[P4 �K2℄p3i�+ �fp1; Q1; p2; Q2g$fp3; Q3; p4; Q4g�)+ (k1$ k2);Æ3A��+����lin = �2PW(p1 + p2)PW(p3 + p4)hp1p3ihk1p1ihk1p3ihk2p1ihk2p3i� ����hp2p4i� + �M2W �hp1p2i�hk2p4i�hk2p1i � hp3p4i�hk2p2i�hk2p3i+ hp1p2i�hp3p4i�hp1p3i��� (2(Q1 �Q2)PW(p1 + p2)�[Q4 + (Q3 �Q4)2(k2p4)PW(p3 + p4)℄� PW(p1 + p2 � k1)hk1p1ihk1p3ihk2p3ihk2p4i����hp2[P4 �K2℄p3i+ �M2W hp1p2i�hp1p3i(p3 + p4 � k2)2��+ �fp1; Q1; p2; Q2g$fp3; Q3; p4; Q4g�)+ �.. and fp1; Q1; p3; Q3; k1g$fp2; Q2; p4; Q4; k2g�; (3.2.11)where \.. and f: : :g$f: : :g" indiates that the omplex onjugate of the preedingexpression has to be added after some substitutions. The auxiliary funtions for theremaining polarizations follow from the relations (3.1.10) and (3.1.11).In order to hek our results, we have implemented the ATGC of the e�etive La-grangian (3.2.1) into the program Madgraph [ 43℄ and ompared our amplitudes withtheMadgraph results for various phase-spae points. We found perfet numerial agree-ment.3.2.3 Amplitudes with genuine quarti gauge-boson ouplingsFigure 3.3 shows the only diagram with an AQGC (generially denoted by a4) thatontributes to  ! 4f . For CC proesses the \anomalous diagram" ontributes inO(a4) to the ross setion, beause it is (as the SM ontribution) doubly resonant. ForNC proesses, the diagram involves one power of a4 and two Z-boson resonanes andinterferes with the singly-resonant SM amplitude. In this ase, the ontribution to theorresponding ross setion is suppressed by a4�Z=MZ w.r.t. CC ross setions, i.e., thesuppression fator involves one fator in the anomalous oupling or in �Z=MZ less than weounted for NC ATGC. In the following we take both CC and NC AQGC into aount.



E�etive H oupling and Higgs resonane 3512 fW;ZgfW;Zg
f1�f2f3�f4Figure 3.3: Diagram with AQGC (blak blob) ontributing to  ! 4f .The AQGC ontributions to the amplitudes readM�1�2�3�4�1�2;V V = e48�2 Æ�1;��2Æ�3;��4 gV V g�1V �f1f2g�3V �f3f4PV (p1 + p2)PV (p3 + p4)� Æ4A�1�3�1�2(k1; k2; p1; p2; p3; p4) (3.2.12)with gWW = 1; gZZ = 12w (3.2.13)and Æ4A��++(k1; k2; p1; p2; p3; p4) = (4a0 � 4i~a0 + a)hp2p4i�hk1k2i2hp1p3i;Æ4A��+�(k1; k2; p1; p2; p3; p4) = �2ahk2p2i�hk2p4i�hk1p1ihk1p3i: (3.2.14)The remaining auxiliary funtions Æ4A�1�3�1�2 an be obtained via the substitutionsÆ4A�1;+�1�2(k1; k2; p1; p2; p3; p4) = Æ4A�1;��1�2(k1; k2; p1; p2; p4; p3);Æ4A+;�3�1�2(k1; k2; p1; p2; p3; p4) = Æ4A�;�3�1�2(k1; k2; p2; p1; p3; p4);Æ4A�1�3�1�2(k1; k2; p1; p2; p3; p4) = �Æ4A��1;��3��1;��2(k1; k2; p1; p2; p3; p4)�� : (3.2.15)The generi amplitudeM�1�2�3�4�1�2;V V is oherently added to the SM amplitudeM�1�2�3�4�1�2;V ofEq. (3.1.3) for V = W;Z, respetively. The olour summation of the squared amplitudesfor the various proess types proeeds as in the SM ase.Again we have heked the amplitudes against results obtained with Madgraph, asexplained at the end of the previous setion.3.3 E�etive H oupling and Higgs resonaneIn order to inorporate a possible Higgs resonane in  ! H ! V V ! 4f withV = W;Z, as depited in Figure 3.4, we onsider an e�etive oupling of the Higgs bosonto two photons. In the SM this oupling is mediated via fermion (mainly top-quark) andW-boson loops. We de�ne the e�etive Lagrangian for the H vertex [ 52℄ byLH = �gH4 F ��F��Hv ; (3.3.1)



36 Lowest-order preditions for  ! 4f()
12 H fW;ZgfW;Zg

f1�f2f3�f4Figure 3.4: Diagram with e�etive H oupling (blak blob).where v = 2MWsw=e is the vauum expetation value of the Higgs �eld H. Up tonormalization, LH is the lowest-dimensional, CP-onserving, eletromagnetially gauge-invariant operator for two photons and the salar �eld H. The orresponding Feynmanrule reads i�H�� (k1; k2; kH) = igHv [g��(k1k2)� k1;�k2;�℄ ; (3.3.2)where k1; k2 are the inoming photon momenta. Comparing this Feynman rule to theloop-indued SM vertex with the external �elds on shell, whih has, e.g., been given inRefs. [ 39, 52℄, we obtaingH���SM = ��(6M2WM2H + 1 + 6M2WM2H (2M2W �M2H)C0(MH;MW)� 2Xf N fQ2f m2fM2H h2 + (4m2f �M2H)C0(MH; mf )i); (3.3.3)where the olour fator N f in the sum over all fermions f is equal to 3 for quarks and 1for leptons. The salar 3-point integral C0 is given byC0(MH; m) = 12M2H ln2  �m + 1�m � 1! ; �m = s1� 4m2M2H + i0: (3.3.4)The omplete matrix elements for the diagrams with a Higgs resonane (as shown inFigure 3.4) an then be written asM�1�2�3�4�1�2;HV V = � e42s2w Æ�1;��2Æ�3;��4 gH gV V g�1V �f1f2g�3V �f3f4PV (p1 + p2)PV (p3 + p4)�M2HPH(k1 + k2) ÆHA�1�3�1�2(k1; k2; p1; p2; p3; p4) (3.3.5)with gV V de�ned in Eq. (3.2.13) andÆHA��++(k1; k2; p1; p2; p3; p4) = hk1k2ihk1k2i� hp2p4i�hp1p3i; ÆHA�1�3�� = 0: (3.3.6)The other expressions for ÆHA�1�3�1�2 follow in the same way as desribed in Eq. (3.2.15) forÆ4A�1�3�1�2. The width in the Higgs-boson propagator PH is introdued in the same way asin Setion 3.1.4 for the gauge bosons.



Phase-spae integration and onvolution over the photon spetrum 373.4 Phase-spae integration and onvolution over the photon spetrumThe squared matrix element is integrated over the phase spae following the strat-egy desribed in Refs. [ 18, 26, 53℄, where the multi-hannel Monte Carlo tehnique [ 54℄was applied. This method ures problems that our due to the very omplex peakingstruture of the integrand indued by various diagram types. More preisely, appropri-ate mappings of the pseudo-random numbers into the momenta of the outgoing partilesare onstruted and ombined in suh a way that the integrand is widely smoothenedeverywhere. The details are presented in App. A.The onvolution over the photon spetrum is given byd� = Z 10 dx1 Z 10 dx2 f(x1) f(x2) d�(x1P1; x2P2); (3.4.1)where d� is the di�erential  ross setion. The funtion f(xi) denotes the proba-bility density for obtaining a photon with momentum ki = xiPi, and Pi is the eletronmomentum before Compton baksattering. In order to redue the statistial error ofthis integration we use a simple way of strati�ed sampling. The integration region for xiof eah photon spetrum is divided into a �xed number of bins. We hoose bin i witha probability �i and divide the orresponding weight by �i. In this way the integrationremains formally unhanged if we normalize Pi �i = 1. The parameters �i an be usedto improve the onvergene of the numerial integration. By hoosing the �i proportionalto the ross setion of the orresponding bin i, more events are sampled in regions wherethe photon spetrum is large. Care has to be taken that the �i do not beome too smallbeause this might lead to rare events with very large weights that render the error es-timate unreliable. This optimization typially redues the Monte Carlo integration errorby a fator 2{5.3.5 Numerial results3.5.1 Input parametersWe use the following set of input parameters [ 55℄:MW= 80:423GeV; �W= 2:118GeV;MZ= 91:1876GeV; �Z= 2:4952GeV;MH= 170GeV; �H= 0:3834GeV;�(0)= 1=137:03599976; �s= 0:1172;G�= 1:16639� 10�5GeV�2; (3.5.1)where the Higgs mass is hosen well above the W-pair threshold so that intermediateHiggs bosons deay rapidly into W pairs; the orresponding deay width �H has beenobtained with the program HDECAY [ 56℄.



38 Lowest-order preditions for  ! 4f()Furthermore, we apply the separation utsE > 10GeV; �(; beam)> 5Æ; �(l; )> 5Æ; �(q; )> 5Æ;El> 10GeV; �(l; beam)> 5Æ; �(l; l0)> 5Æ; �(l; q)> 5Æ;Eq > 10GeV; �(q; beam)> 5Æ; m(q; q0)> 10GeV; (3.5.2)where q and l denote quarks and harged leptons, respetively, andm(q; q0) is the invariantmass of an outgoing quark pair. The energies EX and angles �(X; Y ) are de�ned in thelaboratory frame. Using these uts all infrared, i.e., soft or ollinear, singularities areremoved from the phase spae.In order to aount for leading universal orretions, we use two di�erent values forthe oupling onstant � = e2=(4�). Sine on-shell photons ouple to harged partileswith the oupling onstant �(0) (e�etive eletromagneti oupling at zero-momentumtransfer), we take this oupling for eah external photon in the proesses  ! 4f and ! 4f. For CC reations, the remaining ouplings orrespond to Wf �f verties. Forthese verties a large part of the eletroweak radiative orretions [ 57℄ (the running ofthe eletromagneti oupling and the universal orretions related to the � parameter) areabsorbed into an e�etive eletromagneti oupling �G� whih is derived from the Fermionstant G� by �G� = p2G�M2Ws2w� : (3.5.3)Therefore, in the following numerial studies, we replae �4 by �(0)2�2G� for the proesses ! 4f and �5 by �(0)3�2G� for  ! 4f.For the evaluation of the photon spetrum we use the program CompAZ [ 14℄ withthe polarization of the laser beams �1 (i.e. photon heliity �1)5 and the polarization ofthe eletron beams +0:85. This hoie for the relative signs in the polarizations yieldsa sharper peak at the upper end of the photon spetrum. Results for monohromatiphoton beams are shown for unpolarized photons if not stated otherwise.The results are obtained in the �xed-width sheme, exept from Setion 3.5.2.5, wherewe ompare di�erent shemes.The numerial integration over the phase spae is arried out applying the multi-hannel Monte Carlo tehnique as desribed in App. A. We use 107 events leading to aruntime of our Monte Carlo program on a PC with 2GHz that varies from 30 minutes to6 hours depending on the onsidered proess.3.5.2 Results for integrated ross setions3.5.2.1 Survey of ross setionsIn order to illustrate the reliability of our Monte Carlo generator we ompare ourresults on ross setions for a representative set of the proesses  ! 4f and  !4f with the results obtained with the Monte Carlo program Whizard (version 1.28)5Internally in CompAZ the polarization of the laser light is de�ned as the negative of the photonheliity.
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present work Whizard/Madgraph ! �4f [ fb℄ �4f [ fb℄(onv) �4f [ fb℄ �4f [ fb℄(onv)e���e���+ 826.47(21) 190.87(10) 826.39(26) 191.05(16)e�e+����� 1.75460(62) 0.90525(61) 1.75518(78) 0.9050(11)e�e+���+ 19.400(33) 19.129(61) 19.342(21) 19.188(48)e�e+e�e+ 9.469(17) 9.357(32) 9.453(11) 9.383(25)e�e+�e��e 828.34(21) 191.72(10) 828.29(26) 191.55(17)e���eu�d 2351.11(68) 565.05(33) 2351.79(84) 565.07(51)�ee+d�u 2350.84(68) 558.39(32) 2353.21(84) 558.41(50)�e��eu�u 1.19761(50) 0.61256(50) 1.19684(57) 0.61083(71)�e��ed�d 0.095981(44) 0.049092(45) 0.096011(48) 0.049118(57)e�e+u�u 14.036(21) 10.597(26) 14.016(15) 10.574(21)e�e+d�d 4.7406(29) 2.6614(32) 4.7377(28) 2.6651(38)u�ds� 6659.6(2.1) 1603.8(1.0) 6663.5(2.7) 1605.0(1.5)u�u� 10.469(14) 6.111(12) 10.4531(88) 6.113(10)with QCD 1543.6(2.9) 1071.3(2.9) | |u�us�s 3.3282(21) 1.6569(18) 3.3310(20) 1.6595(23)with QCD 412.97(75) 288.79(72) | |d�ds�s 0.49807(29) 0.23232(24) 0.49804(30) 0.23252(32)with QCD 96.34(18) 66.80(18) | |u�uu�u 5.1846(69) 3.0298(57) 5.1900(45) 3.0419(53)with QCD 772.6(1.5) 538.9(1.4) | |d�dd�d 0.24683(15) 0.11581(12) 0.24665(17) 0.11579(17)with QCD 48.252(96) 33.685(88) | |u�ud�d 6663.5(2.3) 1606.1(1.1) 6664.8(2.8) 1604.6(1.6)with QCD 7075.8(3.7) 1896.4(2.9) | |Table 3.2: Total ross setions for  ! 4f at ps = 500GeV for various �nal states withand without onvolution over the photon spetrum.
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present work Whizard/Madgraph ! �4f [ fb℄ �4f [ fb℄(onv) �4f [ fb℄ �4f [ fb℄(onv)e���e���+ 39.234(44) 6.188(11) 39.218(29) 6.2040(87)e�e+����� 0.10157(10) 0.028612(40) 0.101556(88) 0.028548(52)e�e+���+ 1.0567(35) 0.5083(28) 1.0547(20) 0.5091(29)e�e+e�e+ 0.5085(18) 0.2433(13) 0.5091(10) 0.2461(12)e�e+�e��e 39.301(46) 6.213(11) 39.332(30) 6.2069(89)e���eu�d 96.61(13) 14.216(27) 96.575(75) 14.159(21)�ee+d�u 96.60(13) 15.459(30) 96.520(76) 15.429(22)�e��eu�u 0.030818(35) 0.008640(14) 0.030756(28) 0.008609(16)�e��ed�d 0.00061753(75) 0.00017313(31) 0.00061731(56) 0.00017358(34)e�e+u�u 0.6446(17) 0.25463(99) 0.6477(10) 0.2579(10)e�e+d�d 0.26653(36) 0.08137(17) 0.26689(28) 0.08166(21)u�ds� 229.86(36) 32.621(81) 229.52(19) 32.531(49)u�u� 0.30556(69) 0.10718(34) 0.30563(47) 0.10836(43)with QCD 34.73(14) 13.801(77) | |u�us�s 0.08791(13) 0.026278(59) 0.087935(98) 0.026271(65)with QCD 6.362(23) 2.493(13) | |d�ds�s 0.0046253(71) 0.0014842(37) 0.0046191(52) 0.0014832(36)with QCD 0.5427(22) 0.2165(11) | |u�uu�u 0.15081(33) 0.05301(16) 0.15082(21) 0.05332(16)with QCD 17.377(71) 6.964(35) | |d�dd�d 0.0022893(37) 0.0007421(21) 0.0022878(25) 0.0007398(18)with QCD 0.2716(11) 0.10863(53) | |u�ud�d 229.86(40) 32.85(15) 229.65(19) 32.518(51)with QCD 236.31(42) 35.14(11) | |Table 3.3: Total ross setions for  ! 4f at ps = 500GeV for various �nal stateswith and without onvolution over the photon spetrum.



Numerial results 41[ 58℄ whih uses the matrix-element generator Madgraph [ 43℄6. In Tables 3.2 and 3.3we list the results for the 17 di�erent �nal states de�ned in Table 3.1. The numbersin parentheses orrespond to the Monte Carlo error. For the �nal states that an beprodued via intermediate gluons we ompute the ross setion both with and withoutgluon-exhange ontributions. Sine the version ofMadgraph implemented inWhizardis not able to deal with interferenes of eletroweak and QCD diagrams, we give only thepure eletroweak Whizard/Madgraph results for these proesses. Furthermore, welist the orresponding ross setions with and without onvolution over the photon beamspetrum. For this study, we have implemented the program CompAZ into Whizard.As explained in Setion 3.1.2, the ross setions for the CP-equivalent �nal statese���eu�d() and �ee+d�u() are not idential if the onvolution over the photon beam spe-trum is arried out. Therefore, we give results for both �nal states. In all other ases, theross setions for a given �nal state and for the CP-onjugated one oinide.CC and CC/NC proesses possess the largest ross setions beause of the dominaneof W-pair prodution. The onvolution over the photon spetrum redues these rosssetions signi�antly sine low-energy photons annot produe on-shell W pairs. NCproesses are a�eted less, and in some ases, suh as  ! e+e��+��, the ross setionis only slightly redued. Owing to the olour fators of the quarks, hadroni and semi-leptoni ross setions di�er by roughly a fator 3, hadroni and leptoni ross setionsby roughly a fator 32 = 9. For CC proesses  ! 4f we obtain a rough estimateof the ross setions by multiplying the ross setion of  ! WW with the branhingratios of the W bosons into leptons or quarks depending on the �nal state. Note that thisestimate, whih is only good within 10�20%, does not take into aount ontributionsfrom bakground diagrams, width e�ets, and uts on �nal-state fermions. The di�ereneof ross setions for CC proesses and the orresponding proesses of mixed type reetsthe size of the bakground ontributions indued by NC diagrams.The results ofWhizard, whih are also generated with 107 events, and of our programtypially agree within 1{2 standard errors. The size of the statistial errors obtained withWhizard and our program is omparable. The runtime ofWhizard is usually somewhatbigger than the one of our program. Depending on the proess lass, the speed of ourprogram is 1�7 times higher, where the largest di�erene ours for NC proesses.3.5.2.2 Energy dependene of integrated ross setionsIn Figure 3.5 we show the ross setions for the proesses  ! e���eu�d() as a funtionof the entre-of-mass (CM) energy ps with and without onvolution over the photonspetrum. Here and in the following, with onvolution over the photon spetrum psstands for the CM energy psee of the inoming eletron beams, without onvolution itis the CM energy ps of the inoming photons. In the ase without photon spetrum,the rise of the ross setion is learly visible at the W-pair threshold, ps >� 160GeV.For  ! e���eu�d the ross setion inreases roughly proportional to � = q1� 4M2W=s6For a tuned omparison we resaled the Whizard/Madgraph results by a fator �(0)2�2G�=�4 for ! 4f and �(0)3�2G�=�5 for  ! 4f.
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1Figure 3.5: Integrated ross setions of the proesses  ! e���eu�d() with and withoutonvolution over the photon spetrum as a funtion of the CM energy ps.above the threshold, as expeted from the two-partile phase spae of the W pairs. For ! e���eu�d the rise of the ross setion is not as steep beause of the higher-dimensionalWW phase spae. The onvolution over the photon spetrum redues the availableenergy for W-pair prodution and shifts the onset of the ross setion to higher CMenergies.The ross setions for  ! 4f as well as  ! 4f derease at high energies, eventhough the total ross setion of the  ! WW proess approahes a onstant in thehigh-energy limit if no uts are imposed, i.e., if the W bosons are allowed to go in thebeam diretions. At high energies, however, forward and bakward sattering of W bosonsis restrited due to the uts applied to the outgoing fermions, beause the deay fermionsmainly follow the diretion of the deaying W boson.3.5.2.3 Contributions from CC, NC, and gluon-exhange diagramsIn Figure 3.6 we show the impat of CC, NC, and gluon-exhange diagrams on theCC/NC proesses  ! u�ud�d and  ! u�ud�d. We do not inlude the photon spetrumin this analysis. Above the W-pair threshold, ps > 160GeV, the CC diagrams arelearly dominating, while the ontributions from gluon-exhange diagrams are one ortwo orders of magnitude smaller. The impat of the gluon-exhange diagrams stronglydepends on the hoie of the invariant-mass ut between two quarks, and gluon-exhangediagrams are more important if the invariant-mass ut is small. The ontributions frompure NC diagrams are totally negligible as long as W-pair prodution is possible.
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1001010:10:01Figure 3.6: Di�erent ontributions to the integrated ross setions for the proesses  !u�ud�d() as a funtion of the CM energy without photon spetrum.3.5.2.4 W-pair signal diagrams and double-pole approximationIn Figure 3.7 the ross setions of the W-pair signal diagrams and the DPA for  !WW ! 4f (see Setion 3.1.5 for de�nitions) are ompared with the omplete lowest-order ross setion for several proesses. The plots on the l.h.s. show the ross setionsfor various �nal states alulated from the full set of (eletroweak) diagrams, from thesignal diagrams only, and in DPA separately for hadroni, semi-leptoni, and leptoni �nalstates, while the plots on the r.h.s. show the relative deviation from the orrespondingDPA. We do not inlude the onvolution over the photon spetrum and gluon-exhangediagrams in this analysis so that e�ets of the approximation are learly visible. Forenergies not too lose to the W-pair threshold, the DPA agrees with the full lowest-orderross setion within 1{3%, whih is of the expeted order of �W=MW. Near threshold,i.e. for ps � 2MW = O(�W), the reliability of the DPA breaks down, sine bakgrounddiagrams beome more and more important and small sales , suh as qs � 4M2W, aninrease the naive error estimate from �W=MW to �W=. The ross setions of the W-pairsignal diagrams, however, shows large deviations from the full  ! 4f ross setions forthe whole energy range, in partiular, at high energies. As explained in Setion 3.1.5, theW-pair signal diagrams are not gauge invariant, and thus the reliability and usefulnessof the resulting preditions should be investigated arefully. The results of Figure 3.7learly show that a naive signal de�nition is a bad onept for  ! WW ! 4f , sinedeviations from the full proess  ! 4f even reah 5{10% in the TeV range. This isin ontrast to the situation at e+e� olliders where the naive W-pair signal (de�ned in't Hooft{Feynman gauge) was a reasonable approximation (see, e.g., Ref. [ 44℄).
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Figure 3.7: Cross setions of various proesses inluding all diagrams, only W-pair signaldiagrams, and in DPA as a funtion of the CM energy (l.h.s.), and the orrespondingrelative deviations from the DPA (r.h.s.); photon spetrum and gluon-exhange diagramsare not inluded.



Numerial results 45�( ! e���e���+)ps [ GeV℄ 500 800 1000 2000 10000�xed width 826.40(21) 788.35(21) 746.94(21) 500.70(20) 31.745(68)step width 827.45(22) 789.34(21) 748.17(23) 501.41(21) 31.746(68)running width 827.43(23) 789.29(21) 748.11(23) 501.32(21) 31.715(68)omplex mass 826.23(21) 788.18(21) 746.78(21) 500.59(20) 31.738(68)�( ! e���e���+)ps [ GeV℄ 500 800 1000 2000 10000�xed width 39.230(45) 47.740(73) 49.781(91) 43.98(18) 4.32(23)step width 39.253(45) 47.781(73) 49.881(96) 44.01(18) 4.31(24)running width 39.251(49) 47.781(74) 49.898(95) 44.48(22) 10.83(28)omplex mass 39.221(45) 47.730(73) 49.770(91) 43.97(18) 4.31(23)Table 3.4: Cross setions for the proesses  ! e���e���+ and  ! e���e���+ forvarious CM energies and various width shemes without onvolution over the photonspetrum.The failure of the naive W-pair signal de�nition for  ollisions was also pointed outin Refs. [ 16, 17℄ before. In Ref. [ 17℄ an \improved narrow-width approximation" waspresented whih provides another variant for a gauge-invariant W-pair signal de�nition.It is based on the fatorization of prodution and deay matrix elements, while retainingW-spin orrelations.3.5.2.5 Comparison of shemes for introduing �nite gauge-boson widthsIn this setion we ompare the di�erent implementations of gauge-boson widths de-sribed in Setion 3.1.4 numerially. As explained in Setion 3.1.4, the omplex-masssheme is the only sheme that yields gauge-invariant results in general, but for the pro-ess lasses  ! 4f() the �xed-width approah (in the non-linear gauge) also yieldsamplitudes that respet Ward identities and gauge anellations. Table 3.4 lists the rosssetions for the proesses  ! e���e���+ and  ! e���e���+ obtained with the �xedW width, the step-width, the running-width, and with the omplex-mass sheme. Theresults of all four shemes for the proess  ! e���e���+ agree within the expeted a-uray of O(�W=MW) up to energies in the TeV range. However, for  ! e���e���+the running-width sheme yields totally wrong results for several TeV, while the othershemes are still in good agreement. Although the gauge-invariane-breaking e�ets inthe running-width sheme are formally of O(�W=MW), they are enhaned by spoilinggauge anellations, thereby ruining the reliability of the predition ompletely.



46 Lowest-order preditions for  ! 4f()�e Ee[ GeV℄ �++[ fb℄ ! e���eu�d  ! �ee+d�u1Æ 10 2557.2(1.6) 2618.6(1.6)5Æ 10 2492.0(1.6) 2505.6(1.6)10Æ 10 2413.2(1.6) 2258.5(1.5)5Æ 1 2611.4(1.6) 2505.7(1.6)5Æ 10 2492.0(1.6) 2505.6(1.6)5Æ 20 2181.1(1.4) 2505.1(1.6)Table 3.5: Polarized ross setions for the proesses  ! e���eu�d and  ! �ee+d�uwithout onvolution over the photon spetrum at ps = 500GeV for di�erent angularand energy uts of e� and e+.For the semi-leptoni  ! 4f proess it was already observed in Ref. [ 17℄ thatthe ross setion does not vary signi�antly if the �xed-width, the running-width, or aso-alled \fudge-fator" sheme is used for introduing �nite widths.3.5.2.6 E�et of phase-spae uts on  ! e���eu�d and  ! �ee+d�uAs observed in Setion 3.5.2.1, the CP-related �nal states e���eu�d and �ee+d�u do notyield the same ross setion if the photon spetrum is inluded. A CP transformation notonly transforms the two �nal states into eah other, but also ips the polarization of thephotons. Thus, for unpolarized photons the two proesses have the same ross setion.However, the photon spetrum indues an e�etive polarization of the photons so thatCP invariane does not require the two ross setions to be equal anymore. Whih rosssetion is larger in this ase depends on the applied phase-spae uts [ 17℄.In fat, there are two ompeting inuenes. On the one hand, there is the angularut of e� and e+ w.r.t. the beam axis, on the other hand, the ross setions are sensitiveto the energy ut of e� and e+. In this ontext it is important to note that two photonswith polarization (�1�2) = (++) mainly produe W bosons with heliities (++) (see,e.g., Refs. [ 17, 59℄). Sine W bosons deay into left-handed partiles and right-handedanti-partiles, heliity onservation requires that the largest part of the ross setion (forpositive photon heliities) omes from a region of the phase spae where the ��e in the �nalstate e���eu�d is emitted in the diretion of ight of the W� boson. In the rest frame of theW boson the e� is emitted in the opposite diretion. However, the uts are applied in thelaboratory frame so that the Lorentz boost tends to push the e� out of the angular utw.r.t. the beam axis (remember that the W bosons are preferably produed in a diretionlose to the beam axis). For the ��e no uts are applied, thus, the Lorentz boost of the ��edoes not have any e�et. In the proess  ! �ee+d�u the e+ is emitted in the forwarddiretion of the W+ boson, while the �e is emitted in the bakward diretion. In this ase,more events are subjet to the phase-spae ut. As a result, the angular ut of e+=e�
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Figure 3.8: Invariant-mass distribution of the W+ boson reonstruted from the u�d quarkpair (l.h.s.) as well as its prodution-angle distribution (r.h.s.) in the reation  !e���eu�d at ps = 500GeV with and without onvolution over the photon spetrum.redues the ross setion of the proess  ! �ee+d�u more than the ross setion of theproess  ! e���eu�d. This is illustrated in Table 3.5, where we ompare the polarizedross setions for both proesses for di�erent values of the angular ut.On the other hand, the ross setions also depend on the energy ut that is appliedto e� and e+. As explained above, the largest part of the ross setion for  ! e���eu�domes from a phase-spae region where the ��e is emitted parallel to the W� boson andthe e� anti-parallel. Sine the ��e arries most of the energy of the W� boson and the e�only a small fration, the energy ut of e� disfavours this proess. For the CP-onjugate�nal state �ee+d�u the energy ut has almost no e�et on the ross setion, beause thee+ arries most of the energy and the �e is not subjet to an energy ut. This situationis also illustrated in Table 3.5, where we show the ross setions for di�erent energy and�xed angular ut in the lower part of the table.3.5.3 Results for di�erential ross setions3.5.3.1 Invariant-mass and angular distributions for W bosonsIn Figure 3.8 we show the invariant-mass and angular distributions of the intermediateW+ boson for the proess  ! e���eu�d at ps = 500GeV. The momentum of the W+boson is reonstruted from the outgoing quark pair in the deay W+ ! u�d. Figure 3.8also illustrates the e�et of the onvolution over the photon spetrum.The resonane in the invariant-mass distribution (l.h.s. of Figure 3.8) has the typi-al Breit-Wigner shape and an be used to determine the W-boson mass and width ata  ollider. Moreover, owing to its large ross setion, the W reonstrution in this



48 Lowest-order preditions for  ! 4f()reation seems to be a promising possibility for detetor alibration at a  ollider. Sim-ilarly to the integrated ross setions disussed in the previous setions, the onvolutionqualitatively resales the distribution by roughly a fator 4.The r.h.s. of Figure 3.8 shows the distribution in the angle �u�d between the W+ bosonand the beam axis. Sine the inoming  state is symmetri w.r.t. interhange of the twophotons, the angular distribution is symmetri in the prodution angle �u�d. W bosons arepredominantly produed in forward or bakward diretion owing to diagrams with t- andu-hannel exhange of W bosons. For the proess  ! WW with on-shell W bosons,the forward and bakward peaks are integrable and lead to a onstant ross setion inthe high-energy limit. As already pointed out in Setion 3.5.2.2, the angular uts (3.5.2)restrit the available phase spae of the intermediate W bosons and lead to a redutionof the forward and bakward peaks for high energies. Note that the redution induedby the onvolution over the photon spetrum is not uniform, but tends to atten theshape of the angular distribution slightly. This is mainly due to the redued CM energyin the photon spetrum, leading to a less pronouned peaking behaviour in the forwardand bakward diretions.3.5.3.2 Energy and prodution-angle distributions of fermionsIn Figure 3.9 we show the energy and angular distributions of the outgoing fermionse�, u, and �d in the reation  ! e���eu�d at ps = 500GeV with and without onvolutionover the photon spetrum.For monohromati, unpolarized inoming  beams (i.e. without onvolution over thephoton spetrum), the energy distributions (l.h.s. of Figure 3.9) of the fermions e�, u, and�d almost oinide and are maximal at their largest and smallest kinematial limits. Theseregions are dominated by the situations where the respetive W boson emits the onsideredfermion parallel or anti-parallel to its diretion of ight. The onvolution over the photonspetrum hanges the shapes of the energy distributions onsiderably. Sine the photonspetrum falls o� rapidly for energies above 80% of the inoming eletron energy, energiesof the �nal-state fermions larger than 200GeV beome pratially impossible. For fermionenergies below 200GeV the shapes of the distributions of the outgoing fermions e� andu look rather di�erent from the one for the anti-fermion �d. This e�et is due to thee�etive  beam polarization in the photon spetrum; for unpolarized  beams the energydistributions would look almost idential. In detail, the e�etive polarization of the system is mainly (�1�2) = (++), leading predominantly to W+W� prodution withe�etive heliities (++). Following the line of thought of Setion 3.5.2.6 W bosons withheliity +1 annot deay into fermion{anti-fermion pairs with a fermion (whih must haveheliity�12) parallel to the ight diretion of the W boson. Thus, muh more anti-fermions(whih have heliity +12) than fermions follow the diretions of the deaying W bosons,whih qualitatively explains the redution (enhanement) of the fermion (anti-fermion)energy distributions at the upper kinematial energy limit. The above arguments areniely illustrated in Ref. [ 17℄, where the fermion energy distributions are shown for fullypolarized, monohromati photon beams.
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50 Lowest-order preditions for  ! 4f()The r.h.s. of Figure 3.9 shows the distributions in the angles �f of the (anti-)fermionsf = e�; u; �d to the beam axis. Beause of the symmetry of the inoming  state w.r.t.interhange of the two photons, the angular distribution is symmetri in �f . The forwardand bakward peaks originate from two soures. The by far largest ontribution to thedi�erential ross setion omes from signal diagrams and thus from on�gurations wherethe W bosons as well as the deay fermions are nearly parallel to the beam. The seondsoure, whih is widely suppressed by the applied uts, is related to ollinear singularitiesof bakground diagrams where an inoming photon splits into an fermion{anti-fermionpair f �f , with the fermion or anti-fermion diretly going into the �nal state. If the phasespae of the outgoing (anti-)fermion is not restrited by uts, suh ollinear or masssingularities lead to logarithms of the form ln(s=m2f ), where mf is the fermion mass. Sineour alulation is done for massless fermions, the ollinear singularities must be exludedby phase-spae uts and the fermion mass in ln(s=m2f ) is replaed by the orrespondingut parameter.The photon spetrum redues the di�erential ross setion over the whole range andagain attens the angular distributions, espeially in the ases of outgoing fermions. Thesigni�ant di�erene between the outgoing fermions and anti-fermions is again due to thee�etive  polarization in the photon spetrum. As explained above, more anti-fermionsthan fermions follow the ight diretions of the W bosons, whih are mainly produed inthe forward and bakward diretions. This is the reason why the �e� and �u distributionsare attened, while the peaking behaviour in the ��d distribution is more pronouned afterthe onvolution over the photon spetrum.3.5.3.3 Higgs-boson resonaneIn Figure 3.10 we show the invariant-mass distribution of the Higgs boson for theproess  ! H !WW ! u�ds� for a Higgs mass of MH = 170GeV. The CM energy ofthe eletron beams is hosen to be psee = 260GeV whih maximizes the  luminosityin the region ps � MH. The invariant mass Mu�ds� of the Higgs boson is reonstrutedfrom its deay produts whih are the four outgoing quarks. This means that Mu�ds� isequal to the photoni CM energy, Mu�ds� = ps. Thus, the shape of the distributiondepends on the form of the photon spetrum very strongly. The e�etive H ouplingis set to the SM value (3.3.3). For omparison the situation without Higgs resonane isalso inluded in Figure 3.10, illustrating the signi�ane of the Higgs signal. The di�erentpeak heights in the two plots simply result from di�erent bin sizes.3.5.4 Anomalous ouplingsIn this setion we study the impat of possible anomalous gauge-boson ouplings onCC ross setions of the proess lass  ! 4f . In order to estimate the full sensitivity ofa future  ollider, suh as the  option at the ILC, on anomalous ouplings, in additiondi�erential distributions and realisti event seletions should be taken into aount. Suha study goes beyond the sope of this work, but our Monte Carlo generator an serve asa tool in this task.
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302520151050Figure 3.10: Invariant-mass distribution of the four-quark �nal state for the proess  !u�ds� at psee = 260GeV inluding onvolution over the photon spetrum.We onsider only semi-leptoni �nal states, sine these have the leanest experimentalsignal. The ross setion for semi-leptoni �nal states is obtained from the sum over allreations  ! l���lq�q0, with q = u;  and l = e; �; � , and their orresponding harge-onjugated proesses  ! �ll+q0�q. The results are shown in Figure 3.11 for ATGC andin Figure 3.12 for AQGC. In the left plot of Figure 3.11 and the upper plot of Figure 3.12we show the ross setion as a funtion of the anomalous oupling onstant normalizedto the SM ross setion. As an be seen in the insert of Figure 3.11, the minimum inthe �� urve is shifted to negative values whih is aused by ontributions to the rosssetion that are linear in �� . These ontributions result from the interferene betweenmatrix elements linear in the ATGC �� with the SM amplitude. On the other hand,the interferenes for the ATGC � are small. In the ase of AQGC, suh interferenes arerelatively large for a.In order to examine the sensitivity of a linear ollider to anomalous ouplings, weonsider a  ollider with an integrated luminosity of L = 100 fb�1 and a CM energy ofpsee = 500GeV [ 11℄. We de�ne�2 � (N(ai)�N)2N with N = �SML; N(ai) = �(ai)L; (3.5.4)where N is the expeted number of events in the SM and N(ai) the number of events inthe SM extended by the non-standard ouplings. In Figures 3.11 and 3.12 the 1� ontoursorresponding to �2 = 1 are shown. Note that the 1� ontour an result from N(ai) > Nand N(ai) < N . While �2 = 1 with N(ai) > N is always possible for suÆiently largeanomalous ouplings, �2 = 1 with N(ai) < N requires large interferene e�ets of matrixelements with anomalous ouplings. In our ase, both branhes of the 1� ontours are
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54 Lowest-order preditions for  ! 4f()of the ellipsoid does not shrink for larger luminosity, only the thikness of the shell willderease. This means that the size of the projetions shown in the lower left plot ofFigure 3.12 will not redue for larger luminosity. Thus, using only information on anintegrated ross setion (for a �xed energy) ould not improve the bounds on AQGCw.r.t. the ones resulting from e+e� ! WW ! 4f [ 50℄. However, the thinness ofthe shell of the ellipsoid, as illustrated in the lower right plot of Figure 3.12, shows thatthe bounds an be drastially tightened if the orrelation between the three AQGC isresolved. Di�erential distributions will ertainly provide this information, so that a ollider should be able to onstrain AQGC by an order of magnitude better than an e+e�ollider operating at omparable energy.



Chapter 4Quantum orretions to !WW! 4f in double-poleapproximation4.1 Strategy of the alulationWe onsider the proess(k1; �1) + (k2; �2) ! W+(k+; �+) +W�(k�; ��)! f1(p1; �1) + �f2(p2; �2) + f3(p3; �3) + �f4(p4; �4); (4.1.1)where ki and pi denote the momenta and �i and �i the heliities of the orrespondingpartiles.The lowest-order ross setion d�!4fBorn , based on the omplete matrix elementsM!4fBorn with massless fermions, has been disussed in the previous hapter. Suppressingthe averaging over the photon polarizations and the spin and olour summation for the�nal state in the notation, it readsZ d�!4fBorn = 12s Z d�4f jM!4fBorn j2; (4.1.2)with s = (k1 + k2)2; sij = (pi + pj)2; i; j = 1; 2; 3; 4: (4.1.3)The variables sij are introdued for later use.In the following we fous on the radiative orretions of O(�) whih onsist of vir-tual orretions d�!4fvirt to the proess (4.1.1) and real-photoni orretions d�!4f ,originating from the proess(k1; �1) + (k2; �2) ! W+(k+; �+) +W�(k�; ��) (+  )! f1(p1; �1) + �f2(p2; �2) + f3(p3; �3) + �f4(p4; �4) + (k; �): (4.1.4)Combining the di�erent ontributions we obtain the O(�)-orreted predition for theross setion, Z d� = Z d�!4fBorn + Z d�!4fvirt + Z d�!4f : (4.1.5)55



56 Quantum orretions to  !WW! 4f in double-pole approximationThe real-photoni orretions d�!4f are based on the full lowest-order matrix elementsM!4fBorn of the proess  ! 4f for massless fermions, whih were alulated in theprevious hapter . In the limit of vanishing photon momentum k (soft limit) or whenthe photon beomes ollinear to an external harged fermion (ollinear limit), the rosssetion diverges. Considering the proess  ! 4f with a visible photon (whih isneither soft nor ollinear), these soft and ollinear singularities are removed by imposingappropriate phase-spae uts whih are justi�ed by the �nite experimental resolution.For preditions of the  ! 4f() proesses, i.e. with or without photon radiation, thesingular phase-spae regions of soft or ollinear emission have to be integrated over. In thisase the real orretions are ombined with the virtual orretions whih ontain exatlythe same singularities with opposite sign. The regularization of the singularities in thereal orretions by small photon and fermion masses, � and mf , as well as the mathingwith the singularities in the virtual orretions, is desribed in detail in Setion 4.3. Thestarting point is a separation into a �nite and a singular part,d�!4f = d�!4f�nite + d�!4fsing ; (4.1.6)where the soft and ollinear singularities appear in d�!4fsing as ln� and lnmf terms,respetively.The virtual orretions to the proess (4.1.1) are alulated in the DPA, whih isexplained in Setion 4.2. Sine the real orretions are based on omplete  ! 4fmatrix elements (i.e. they are not alulated in DPA), the anellation of soft and ollinearsingularities in Eq. (4.1.5) requires partiular are. To this end, we apply the DPA onlyto the �nite part of the virtual orretions,d�!4fvirt ! d�!WW!4fvirt;�nite;DPA + d�!4fvirt;sing: (4.1.7)Tehnially this is ahieved by subtrating the singular part in DPA from the DPA virtualorretions and adding the exat singular part d�!4fvirt;sing. Of ourse, this proedure involvessome freedom, beause �nite terms an be shifted between d�!4fvirt;�nite;DPA and d�!4fvirt;sing.This arbitrariness is, however, of the order of the unertainty O(��W=(�MW)) of ouralulation. In the e+e� ase this has been heked numerially in Ref. [ 19℄.Inserting these rearrangements into Eq. (4.1.5) we obtainZ d� = Z d�!4fBorn + Z d�!WW!4fvirt;�nite;DPA + Z d�!4fvirt+real;sing + Z d�!4f�nite ; (4.1.8)where R d�!4fvirt+real;sing = R d�!4fvirt;sing + R d�!4freal;sing does not ontain any dependene on thephoton mass anymore. Collinear singularities, appearing as lnmf terms, also anel ifthe observable is suÆiently inlusive. Suh ollinear-safe observables result if photonswithin ones ollinear to any outgoing harged fermion are treated inlusively, i.e. if theyare not separated from the nearly ollinear fermion by any phase-spae or event seletionuts. For non-ollinear-safe observables logarithms of the fermion masses remain in the�nal result. This ase demands a speial treatment of the singular terms. We elaboratemore on this issue in Setion 4.3.2.
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On-shell prodution On-shell deaysFigure 4.1: Generi Feynman diagram of the virtual fatorizable orretions to  !WW ! 4f . The shaded blobs stand for loop orretions to the prodution and deayproesses.4.2 Virtual orretions4.2.1 Conept of the double-pole approximationIn Setion 2.4 we desribed how to onstrut a pole expansion around a resonant prop-agator. In order to obtain the �rst term of this expansion fatorizable and non-fatorizableontributions have to be alulated. In the following, we apply the results to the aseof two resonant propagators, i.e. we expand the matrix element for  ! 4f around thepoles of the two resonant W propagators. For more details of the DPA, espeially howa gauge-invariant deomposition into fatorizable and non-fatorizable ontributions isobtained, we refer to Refs. [ 19, 37, 60, 61℄.The generi Feynman diagram for the fatorizable orretions is shown in Figure 4.1.It fatorizes into the on-shell W-pair prodution, the o�-shell W-boson propagators, andthe subsequent on-shell W deays. The orretions an be attributed to either of thesesubproesses. When integrating over the full 4f phase spae, the W bosons usually are noton shell. However, a gauge-independent evaluation of the matrix elements for produtionand deay requires on-shell momenta for the W bosons. Therefore, we have to perform anon-shell projetion, i.e. the momenta of the fermions are deformed in suh a way that theW bosons beome on shell. The deformation involves a ertain freedom and introduesan error of O(��W=(�MW)). We de�ne the on-shell projetion by �xing the diretionsof the W+ boson and of the fermions f1 and f3. The expliit formulas an be found inAppendix A of Ref. [ 19℄. For later use, we label the new momenta k̂� and p̂i and de�nethe kinemati invariantst̂ = (k1 � k̂+)2 = (k1 � p̂1 � p̂2)2; û = 2M2W � s� t̂: (4.2.1)Apart from the fatorizable orretions there are additional doubly-resonant ontribu-tions. In the orresponding diagrams subproesses are linked by a photon. These diagramsbeome doubly resonant in the limit of vanishing photon momentum, as an be seen fromthe soft-photon approximation in whih the orretion is proportional to the lowest-orderross setion. The relative orretion fator for these so-alled non-fatorizable orre-tions is, thus, not dependent of the atual prodution mehanism of the W pairs, but



58 Quantum orretions to  !WW! 4f in double-pole approximation(a) type (mf 0) WWW(k1)
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(d) type (mf)  WWW(e) type (mm) W W WWFigure 4.2: A representative set of diagrams ontributing to the virtual non-fatorizableorretions. The shaded blobs stand for all tree-level strutures ontributing to  !WW.only on the eletri harges and kinematis of the external partiles of the proess. Thenon-fatorizable orretions were alulated in Refs. [ 60, 61℄ for e+e� !WW! 4f . Wean transfer the results for the e+e� ase by simply omitting all ontributions in whihthe exhanged photon is linked to an e� from the initial state. The di�erent types ofrelevant diagrams are depited in Figure 4.2. The �rst two diagrams, labelled (a) and(b), are manifestly non-fatorizable, i.e. the photon links di�erent subproesses so thatthe propagators in the diagrams annot be fatorized anymore. The diagrams (), (d),and (e) ontain both fatorizable and non-fatorizable ontributions. Their fatorizableparts are de�ned as the residues for on-shell W bosons times the o�-shell W-boson prop-agators; note that this proedure introdues arti�ial soft IR divergenes onneted withthe on-shellness of the W bosons in the loops. The non-fatorizable parts of the diagramsare obtained from the di�erene of the doubly-resonant ontribution of the full diagrams



Virtual orretions 59and their fatorizable parts; the arti�ially introdued IR divergenes of the fatorizableparts are, thus, ompensated by orresponding terms in the non-fatorizable parts.Following this strategy, the virtual orretions in DPA an be written asd�!WW!4fvirt;DPA = 12s Z d�4f�2RefÆMvirt;fatM�Born;DPAg+ Ævirt;nfatjMBorn;DPAj2 + jÆMHiggsj2�; (4.2.2)where MBorn;DPA denotes the tree-level matrix element in DPA and Ævirt;nfat ontainsthe non-fatorizable orretions. The fatorizable orretions ÆMvirt;fat also ontain aontribution of the s-hannel Higgs resonane, ÆMHiggs. In order to desribe this resonaneproperly, it is not suÆient to inlude the interferene of ÆMHiggs with the Born matrixelement, but the square of this matrix-element ontribution has to be taken into aount inaddition. To this end, ÆMHiggs has to be de�ned in a gauge-invariant way. Our treatmentof ÆMHiggs is desribed in Setion 4.2.2.4 in detail.4.2.2 Fatorizable orretions4.2.2.1 Calulation of the one-loop amplitudesThe fatorizable orretions omprise the orretions to the on-shell prodution of theW bosons and their on-shell deay and an be expressed asÆMvirt;fat = X�+;�� 1K+K� �ÆMWWMW+!f1 �f2Born MW�!f3 �f4Born+MWWBorn ÆMW+!f1 �f2MW�!f3 �f4Born+ MWWBorn MW+!f1 �f2Born ÆMW�!f3 �f4� ; (4.2.3)where we introdued the abbreviationsK� = k2� �M2W + iMW�W; (4.2.4)and ÆM denote one-loop matrix elements. Note that all matrix elements on the r.h.s. ofEq. (4.2.3) depend on the on-shell projeted momenta, but the momenta in K� remainunhanged. The results for the di�erent one-loop orretions to the prodution [ 39, 59, 62℄and the deay [ 57℄ are already known in the literature. Combining them in Eq. (4.2.3) is,however, non-trivial sine the polarizations of the W bosons have to be de�ned onsistentlyin a ommon referene frame.The one-loop orretions ÆMW!fi �fj to the W deays are rather simple. In the masslesslimit they are proportional to the respetive Born matrix elements MW!fi �fjBorn ,ÆMW!fi �fj (�W; p̂i; p̂j) = ÆW!fi �fj MW!fi �fjBorn (�W; p̂i; p̂j); (4.2.5)where ÆW!fi �fj is a onstant orretion fator that neither depends on the kinematis noron the heliity �W of the deaying W boson.



60 Quantum orretions to  !WW! 4f in double-pole approximationThe one-loop orretion ÆMWW to the W-pair prodution proess ontains the om-pliated part. Our alulation is based on the results of Ref. [ 39℄. As in the previoushapter whih use a non-linear gauge �xing term, so that the vertex W� of a photon, aW boson, and the would-be Goldstone boson of the W boson vanishes. This redues thenumber of diagrams ompared to the onventional 't Hooft{Feynman gauge.In the following we desribe an eÆient way for alulating the ontribution ofÆMWW to ÆMvirt;fat of Eq. (4.2.3), taking into aount all spin orrelations. As de-sribed in Ref. [ 39℄, the matrix element ÆMWW for on-shell W-pair prodution is de-omposed into a sum of produts of form fators Fj, whih only depend on the kinemativariables s and t̂, and a set of standard matrix elements (SME) MWWj , whih ontainthe polarizations and momenta of the external photons and W bosons,ÆMWW(k1; k2; �1; �2; k̂+; k̂�; �+; ��)= 36Xj=1Fj(s; t̂)MWWj (k1; k2; �1; �2; k̂+; k̂�; �+; ��): (4.2.6)The SME MWWj are obtained from the 83 basi matrix elements given in Setion 2of Ref. [ 39℄ whih are redued to 36 matrix elements as desribed there1. The deaymatrix elements MW!fi �fjBorn , whih multiply ÆMWW in Eq. (4.2.3), an be inluded byreplaing the W polarization vetors "�� in the de�nitions of the SMEMj by the \e�etivepolarization vetors""̂��+ = ep2sw 1K+ �u(p̂1)�!�v(p̂2); "̂��� = ep2sw 1K� �u(p̂3)�!�v(p̂4); (4.2.7)where �u(p̂i) and v(p̂i) are the Dira spinors of the fermions and anti-fermions and !� =12(1�5) is the left-handed hirality projetor. The e�etive W-polarization vetors "̂�� areformal shorthands for the W propagators and the tree-level deay matrix elements, whihinvolve the usual SU(2) gauge oupling e=sw. Upon substituting "�� ! "̂�� in the SME foron-shell W-pair prodution, we obtain a new set of SME Mj that orretly transfer theW polarization to the deay,Mj(k1; k2; �1; �2; k2+; k2�; fp̂ig) = MWWj (k1; k2; �1; �2; k̂+; k̂�; �+; ��)���"��!"̂��= X�+;�� 1K+K� MWWj (k1; k2; �1; �2; k̂+; k̂�; �+; ��)�MW+!f1 �f2Born (�+; p̂1; p̂2)MW�!f3 �f4Born (��; p̂3; p̂4):(4.2.8)The new SME Mj an be easily evaluated with spinor methods, as e.g. desribed inRef. [ 42℄.1The on-shell momenta k̂� and the heliities �� of the W bosons are denoted k3;4 and �3;4 in Ref. [ 39℄.



Virtual orretions 61In summary the fatorizable part of the virtual orretion takes the formÆMvirt;fat = 36Xj=1Fj(s; t̂)Mj(k1; k2; �1; �2; k2+; k2�; fp̂ig)+ �ÆW+!f1 �f2 + ÆW�!f3 �f4�MBorn;DPA(k1; k2; �1; �2; k2+; k2�; fp̂ig): (4.2.9)4.2.2.2 Details of the numerial evaluationThe formulas for the oeÆient funtions Fj are rather lengthy and ontain many one-loop integrals, whih in turn involve many dilogarithmi funtions, et. Thus, to speedup the numerial evaluation it is desirable not to evaluate the Fj at eah phase-spaepoint. Moreover, numerial instabilities our at the boundary of the phase spae wherethe sattering angle � between the W bosons and the beam axis tends to 0 or �. This isdue to the inverse Gram determinants appearing in the Passarino{Veltman redution [ 63℄of the tensor integrals. The problems of speed and stability an be solved by expandingthe funtions Fj(s; t̂) in terms of a generalized Fourier series in the variable t̂ for �xedvalues of s. The oeÆients of this expansion are alulated before the Monte Carlointegration. An appropriate system of orthogonal funtions in the variable x = os �,whih is equivalent to a funtion of t̂ for �xed s, is provided by the Legendre polynomialsPl(x) = 12ll! dldxl h(x2 � 1)li ; l = 0; 1; ::: : (4.2.10)For this basis funtions, the oeÆients readj;l(s) = 2l + 12 Z +1�1 d os � (t̂�M2W)(û�M2W)Fj(s; t̂)Pl(os �); (4.2.11)where we have introdued the fator (t̂ �M2W)(û �M2W) in order to atten the t- andu-hannel poles in the funtions Fj. This improves the eÆieny of the expansion. Theintegration in Eq. (4.2.11) is arried out using Gaussian integration. With 40 integrationpoints the region of instability is not entered (for energies up to a few TeV), and theintegration is suÆiently preise. During the Monte Carlo integration the oeÆientfuntions are reovered by the generalized Fourier seriesFj(s; t̂) = 1Xl=0 1(t̂�M2W)(û�M2W) j;l(s)Pl(os �): (4.2.12)In Ref. [ 19℄ the same onept was used to evaluate the fatorizable orretions toe+e� !WW ! 4f ; there it was suÆient to use the Legendre polynomials up to l = 20for a good auray. In the ase of  !WW, however, the oeÆient funtions involveinverse Gram determinants 1=(t̂û � M4W) / 1= sin2 � whih appear in the Passarino{Veltman redution of the tensor integrals. As eah step in this reursive redution involvessuh an inverse determinant, 1=(t̂û�M4W) an appear up to the fourth power. At os � ��1 this fator leads to a behaviour of the Fj(s; t̂) that is not well approximated by theLegendre expansion. Using higher-order Legendre polynomials is not a solution sine this



62 Quantum orretions to  !WW! 4f in double-pole approximationinreases the alulation time and also requires more integration points for the Gaussianintegration. The more points are used in the Gaussian integration, the loser some of thesepoints approah the integration boundary where the numerial stability of the oeÆientfuntion breaks down. Therefore, we follow a di�erent strategy based on the fat that theheliity amplitudes for the on-shell proess  !WW are smooth funtions of os �, apartfrom the t- and u-hannel poles. Thus, within the full amplitude the fators 1=(t̂û�M4W)have to anel between ontributions of di�erent oeÆient funtions. To make use of thisfat we hange the basis of SME by a linear transformation in suh a way that the newoeÆient funtions orrespond to heliity amplitudes of the on-shell proess  !WW.Some details of this transformation an be found in App. C. After this transformationthe unertainty of the approximated matrix elements in Eq. (4.2.6) is well below 10�4with respet to the Born matrix elements for all values of os �.In ontrast to the e+e� ase, the CM energy ps of the photons is not �xed. Thus, wehave to perform the Legendre expansions for di�erent values of s. During the Monte Carlointegration we derive an approximate value of the oeÆients j;l(s) by interpolation. Sinethe Fj(s; t̂) depend on s very smoothly, it is suÆient to alulate the j;l(s) at intervalsof �s <� 1GeV. In these intervals we then interpolate with a polynomial of third order.We have heked that, up to 1TeV, this yields a suÆient auray (i.e. better than theauray of the Legendre expansion).4.2.2.3 Renormalization and imaginary parts of virtual orretionsFor on-shell W-pair prodution, whih was onsidered in Ref. [ 39℄, imaginary parts ofounterterms, if inluded, do not inuene the orretion to the matrix element square.The reason is that for the 2! 2 sattering proess  !WW all SME, and thus also theBorn matrix element, an be taken real by appropriate phase hoies. Thus, the operationof taking the real part in the interferene term 2RefMtM�Borng of the ountertermontribution Mt to the one-loop amplitude with the Born amplitude e�etively ats onthe renormalization onstants themselves. The same argument shows that also imaginaryparts of loop integrals drop out. These arguments are no longer true if the deay of theW bosons is taken into aount, beause the SME and the Born matrix elementMBorn;DPAbeome neessarily omplex. Thus, imaginary parts of renormalization onstants and ofloop integrals in general matter. Considering the W-deay amplitudes in the DPA inmore detail, as e.g. done in Ref. [ 22℄ for the e+e� ase, one an see that imaginary partsaverage to zero after the azimuthal deay angles of the W-deay produts are integratedover.We have alulated the virtual orretions taking into aount the imaginary partsof all loop integrals. Comparing the virtual orretions with a seond, independent al-ulation in the 't Hooft{Feynman gauge [ 6℄ and in the bakground-�eld gauge [ 7℄, we�nd agreement between the results obtained in these di�erent gauges. This is, however,only true if we also take into aount the imaginary parts of the loops that ontributeto renormalization onstants. In order to explain this fat, we onsider the ountertermontributions to the one-loop matrix element in more detail.



Virtual orretions 63Following Ref. [ 39℄, we write the Born matrix element in DPA asMBorn;DPA = 8��( sM2W � t̂M0;t + sM2W � ûM0;u � ("1"2)("̂�+"̂��)) ; (4.2.13)where M0;t and M0;u are abbreviations for spei� ombinations of momenta and po-larization vetors de�ned as in Eq. (22) of Ref. [ 39℄ for on-shell W-pair prodution. Inthe 't Hooft{Feynman gauge, the ounterterm ontribution to the prodution part of thefatorizable orretion readsÆMtHFt;prod = MBorn;DPA �2ÆZe + ÆZW + ÆZAA � wsw ÆZZA�� 8�� sÆM2W(t̂�M2W)2M0;t + sÆM2W(û�M2W)2M0;u!� 4�� ("1"̂�+)("2"̂��)(t̂�M2W) + ("1"̂��)("2"̂�+)(û�M2W) ! 2ÆM2W + M2Wsww ÆZZA!+ 4��eMW2sw  ("1"̂�+)("2"̂��)(t̂�M2W)2 + ("1"̂��)("2"̂�+)(û�M2W)2 ! Æt; (4.2.14)where we adopt the onventions of Ref. [ 6℄ for the renormalization onstants ÆZe, ÆZW ,et. The expliit alulation of the onstants in terms of self-energies is also desribedthere. The ounterterm ontribution in the bakground-�eld gauge [ 7℄ an be obtainedfrom ÆMtHFt;prod by simply omitting the ÆZZA terms, beause ÆZZA vanishes owing to thebakground-�eld gauge invariane. In the non-linear gauge the ounterterm ontributionreads ÆMNLt;prod = MBorn;DPA �2ÆZe + ÆZW + ÆZAA � wsw ÆZZA�� 8�� sÆM2W(t̂�M2W)2M0;t + sÆM2W(û�M2W)2M0;u! ; (4.2.15)as desribed in Ref. [ 39℄, whih is di�erent from its ounterpart in 't Hooft{Feynmangauge. Note also that the expliit expressions of the renormalization onstants in thedi�erent gauges are in general di�erent.Imaginary parts of loop and ounterterm ontributions that are proportional to theBorn matrix element, ÆM = MBorn, annot inuene matrix element squares, beause2RefÆMM�Borng = 2RefgjMBornj2. Thus, the W-mass renormalization onstant ÆM2Wis the only renormalization onstant whose imaginary part plays a role, sine the tadpoleounterterm Æt is a real quantity. From Eqs. (4.2.14) and (4.2.15), we see that ÆM2W,whih is equal in all three onsidered gauges, enters the ounterterm ontributions in the't Hooft{Feynman gauge and in the non-linear gauge in di�erent ways. In fat, we haveheked numerially that the virtual orretions in these two gauges are di�erent (though�nite) if the usual on-shell presription ÆM2W = Ref�WT (M2W)g (see e.g. Ref. [ 6℄) is ap-plied, where �WT (k2) is the transverse part of the W-boson self-energy with momentumtransfer k. If we, on the other hand, use the de�nition ÆM2W = �WT (M2W), i.e. without



64 Quantum orretions to  !WW! 4f in double-pole approximationtaking the real part of the self-energy, we �nd agreement for the results from the di�erentgauges. This learly shows that the imaginary part of a one-loop amplitude is in gen-eral gauge dependent if imaginary parts in renormalization onstants are not taken intoaount. The reason for this fat, in other words, is that the deomposition of a renor-malized transition matrix element into genuine loop parts and ounterterm ontributionsdepends on the gauge �xing. A onsistent renormalization presription with omplexrenormalization onstants naturally leads to omplex masses for unstable partiles. Suha renormalization sheme was proposed in Ref. [ 24℄ in the ontext of a full O(�) alu-lation for e+e� ! 4f . We will apply this sheme in the next hapter for the alulationof the omplete one-loop orretions to the proess H!WW=ZZ! 4f .In our Monte Carlo generator we have taken into aount the imaginary parts of thevirtual orretions (inluding the ones from ounterterms); more preisely they an beswithed on and o� optionally. As explained above, they ould only a�et observablesthat are sensitive to the azimuthal deay angles of the fermions. In our numerial results,we ould, however, �nd no signi�ant e�ets.4.2.2.4 Higgs resonaneThe loop-indued Higgs resonane,  ! H ! WW ! 4f , belongs to the lass offatorizable ontributions. Nevertheless, its treatment, espeially the question of gaugeinvariane when inluding the Higgs deay width, deserves some are. In Ref. [ 39℄ thediagrams with an s-hannel Higgs resonane were deomposed into a gauge-invariantresonant part and a gauge-dependent non-resonant part. If we write the ontribution ofthe Higgs-exhange diagrams asÆMH = FH(s)s�M2H ("1"2)("̂�+"̂��); (4.2.16)with FH(s) given in Setion 4.3 of Ref. [ 39℄, and "1 and "2 being the polarization vetorsof the photons, then the Higgs deay width an be introdued by replaingÆMH !  FH(M2H)s�M2H + iMH�H + FH(s)� FH(M2H)s�M2H ! ("1"2)("̂�+"̂��): (4.2.17)As the residue FH(M2H) is gauge independent, we have introdued the Higgs deay width�H in a gauge-invariant way. Reall that the hoie of the polarization vetors of thephotons is suh that they obey "ikj = 0; i; j = 1; 2: (4.2.18)Close to the resonane, the ontribution of the Higgs-exhange diagrams is stronglyenhaned. This is why we also take into aount the square of the resonant part inEq. (4.2.2), ÆMHiggs = FH(M2H)("1"2)("̂�+"̂��)s�M2H + iMH�H : (4.2.19)



Virtual orretions 65In this approah only the leading ontribution to the Higgs resonane is taken intoaount. However, the gauge-invariant separation of ÆMHiggs from the remaining one-loopamplitude easily allows for spei� improvements in preditions for the Higgs-produtionsignal in the future. To this end, a pole expansion about the Higgs resonane wouldbe an adequate �rst step. Coneptually this expansion again leads to fatorizable andnon-fatorizable ontributions, but the orresponding ingredients are not all available yetand their alulation is beyond the sope of this work. It should be mentioned that boththe O(�) eletroweak and O(�s) QCD virtual fatorizable orretions to (on-shell) Higgsprodution  ! H an be dedued from the orresponding two-loop alulations [ 64℄(see also referenes therein) for the deay H! .4.2.3 Non-fatorizable orretionsAs explained in Setion 4.2.1, we make use of the result for the non-fatorizable or-retions to e+e� ! WW ! 4f . Aording to Refs. [ 19, 61℄ we write the orretionfator to the lowest-order ross setion as a sum over ontributions that are assoiatedwith di�erent pairs of fermions,Ævirt;nfat = Xa=1;2 Xb=3;4(�1)a+b+1QaQb�� Re n�virt(k+; pa; k�; pb)o : (4.2.20)The funtion �virt reeives ontributions from the di�erent types of diagrams in Figure 4.2,�virt = �virtmf0 +�virtff0 +�virtmm0 +�virtmf +�virtmm; (4.2.21)for whih the results were given in terms of salar integrals in Ref. [ 19℄. The �nal resultfor a = 2; b = 3 (all other ontributions an be derived by appropriate substitutions) is�virtmf0 +�virtff0 +�virtmf� � K+K�s23 det(Y0)det(Y ) D0(�p4; k+ + p3; p2 + p3; 0;M;M; 0)� K+ det(Y3)det(Y ) F3 � K� det(Y2)det(Y ) F2 + ln �2M2W! ln � s23M2W � i�! ;�virtmm0 � (2M2W � s)�C0(k+;�k�; 0;M;M)� C0(k+;�k�; �;MW;MW)���k2�=M2W� ;�virtmm � 2 ln �MW�K+!+ 2 ln �MW�K�!+ 4; (4.2.22)where the sign \�" indiates that the limit k2� !M2W and �W ! 0 is arried out wheneverthis does not lead to a singularity. The matries Y0, Y2, Y3, and Y arise from the redutionof 5-point funtions and an be found in Setion 3.1 of Ref. [ 61℄. The funtions F2 andF3 are de�ned in Setion 4.2, and the C0 and D0 funtions in Appendix C.1 of the samereferene. The ontribution �virtmm0 ontains the di�erene of the full o�-shell and on-shellCoulomb singularity, as desribed there in detail.The full orretion fator Ævirt;nfat does not ontain fermion-mass singularities [ 19℄, butinvolves IR-singular terms ln�, as expliitly visible in Eq. (4.2.22). The latter originate
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−2Figure 4.3: Relative orretion fator of the non-fatorizable virtual and real orretionsto the invariant-mass distribution of the d�u pair in the reation  ! �ee+d�u for variousCM energies ps .from the subtration of the virtual fatorizable orretion, whih involves the one-loopmatrix elements for  !WW and W ! f �f 0 with on-shell W bosons, from the doubly-resonant part of the matrix element for the full  ! 4f proess. Spei�ally, theln� terms stem from diagrams with photon exhange between an on-shell W boson andanother on-shell partile. As already explained in Setion 4.2.1, these singularities anelin the sum of fatorizable and non-fatorizable ontributions, sine they are arti�iallyintrodued in the orresponding deomposition of the virtual orretion. The expliitformulae for the soft and ollinear singularities of the fatorizable and non-fatorizableontributions will be given in App. B.In Setion 2.4 we mentioned that the non-fatorizable orretions vanish if the invari-ant mass of the W bosons is ompletely integrated over. However, they beome importantin invariant-mass distributions for the W bosons, whih are needed for the kinematialreonstrution of the event. In order to demonstrate the size of the orretions we showthe relative orretion fator for the invariant-mass distribution of the d�u pair in the re-ation  ! �ee+d�u for the input parameters spei�ed in Setion 4.4.1. Sine the virtualnon-fatorizable orretions are infrared divergent, we also inluded the orrespondingnon-fatorizable real orretions. Note that this is only done in Figure 4.3. Later wewill employ the real orretions based on the omplete lowest-order matrix elements for ! 4f. The non-fatorizable real orretions originate from interferenes of diagramswhere soft photons are emitted from di�erent subproesses. As in the ase of the virtualorretions, there are diagrams that ontain both fatorizable and non-fatorizable or-retions. Their lassi�ation proeeds along the same line as for the virtual orretions.In Ref. [ 60℄ it was shown that all non-fatorizable orretions onneted with the initial



Virtual orretions 67state drop out in the sum of virtual and real orretions. Hene, we an simply take overthe orretion fator that was alulated in Ref. [ 61℄ for the proess e�e+ !WW! 4f .Figure 4.3 shows that the orretions beome larger for dereasing CM energy reahingalmost 2% for ps = 170GeV. If a photon is emitted from the �nal state the invariantmass of the d�u pair is smaller than the invariant mass of the resonant W boson. There-fore, the orretions result in a rearrangement of events in the resonane region. This alsoshows that a realisti predition of the orretions very muh depends on how the photonsin the �nal state are treated experimentally. In the following, instead of employing thenon-fatorizable real orretions in DPA, we will make use of the omplete matrix ele-ments for  ! 4f as de�ned in Setion 4.1. The experimental treatment of the photonsan then be spei�ed in the Monte Carlo generator. This issue will be disussed in moredetail in Setion 4.4.4.2.4 Leading universal orretions and input-parameter shemeWe parametrize the ross setion in suh a way that the universal orretions arisingfrom the running of the eletromagneti oupling � and from the �-parameter are absorbedin the lowest order. In Setion 3.5.1 we argued that the relevant oupling for the  !WW prodution proess is the �ne-struture onstant �(0), beause the external on-shellphotons do not indue any running in their oupling to the W bosons. For the deay of theW bosons, it is, however, appropriate to derive � from the Fermi onstant G� aordingto Eq. (3.5.3).The de�nition of the eletromagneti oupling � has impliations on the renormaliza-tion. For the  !WW prodution proess we an perform the on-shell renormalizationpreisely as desribed in Refs. [ 6℄. For the deay of the W bosons, however, the modi�-ation of the oupling in the G� sheme indues an additional �nite ontribution to theharge renormalization onstant,ÆZejG� = ÆZej�(0) � 12�r; (4.2.23)where ÆZej�(0) is the harge renormalization onstant of the on-shell renormalizationsheme [ 6℄ with �(0) as renormalized oupling. The quantity �r ontains the radiativeorretions to muon deay; expliit expressions for �r an, e.g., be found in Refs. [ 6, 65℄.In summary, our lowest-order ross setion sales like �(0)2�2G� . For the relative O(�)orretions we use �(0), whih is the orret e�etive oupling for real photon emission, sothat the orreted ross setion sales like �(0)3�2G� . For the loop-indued Higgs resonanewe exeptionally take the saling fator �(0)2�3G�, whih aounts for the two \photoni"and the three \weak" ouplings in the orresponding diagrams. We perform this resaling,of ourse, only in the gauge-invariant resonant part ÆMHiggs of the one-loop amplitude,as de�ned in Eq. (4.2.19).4.2.5 Improved Born approximationThe motivation for alulating the virtual orretions in DPA lies in the domi-nane of doubly-resonant diagrams. At threshold, however, singly-resonant and non-resonant diagrams beome equally important, thus, rendering the naive error estimate of



68 Quantum orretions to  !WW! 4f in double-pole approximationO(��W=(MW�)) unreliable. As a onsequene, we deided to use the DPA only for a CMenergy ps > 170GeV when integrating over the photon spetrum. Forps < 170GeVwe make use of an improved Born approximation (IBA), i.e. we approximate the O(�)orretions by universal ontributions without any expansion about the W resonanes.Assuming that the IBA aounts for all O(�) orretions with pronouned enhanementfators, the relative unertainty of the IBA is about � �2%. For the orrespondinge+e� reation this expetation was on�rmed by the full O(�) alulation [ 24℄ for 4fprodution.In detail, we start from the Born ross setion based on the full set of  ! 4fdiagrams, whih is parametrized as desribed in the previous setion. We denote the re-sulting matrix element that inludes the Higgs resonane with SM ouplings, as desribedin Setion 3.3, \Born+Higgs". In addition, we dress the resulting ross setion with theo�-shell Coulomb singularity,Z d�!4fIBA = 12s Z d�4f (1 + Æoul)jM!4fBorn+Higgsj2: (4.2.24)The orretion fator Æoul for the Coulomb singularity was alulated in Ref. [ 66℄ toÆoul = �(0)�� Im(ln � +�� ��� +�+ ��!) ; (4.2.25)with the abbreviations�� = 1sqs2 + (k2+)2 + (k2�)2 � 2sk2+ � 2sk2� � 2k2+k2�;� = s1� 4(M2W � iMW�W)s ; � = jk2+ � k2�js : (4.2.26)4.3 Treatment of soft and ollinear photon emissionWe alulate the real photoni orretions from the full lowest-order matrix elementof the proess (4.1.4) without any expansion about the W-boson resonanes. They arealulated from the integralZ d�!4f = 12s Z d�4f jM!4fj2�(�4f); (4.3.1)where we have made the implementation of phase-spae uts expliit by inluding the stepfuntion �(�4f), whih is equal to 1 if an event passes the uts and 0 otherwise. Sinewe evaluate the real matrix element M!4f with massless partiles, the phase-spaeintegral diverges in the soft and ollinear regions, where the emitted photon is either softor ollinear to an outgoing external harged fermion. In these regions we reintrodue aformally in�nitesimal photon mass � and small fermion masses mf as regulators.To this end, we apply two di�erent methods: the dipole subtration and the (two-uto�) phase-spae sliing methods. In the ase of ollinear-safe observables we loselyfollow the approah of Ref. [ 19℄ and only give a brief desription in Setion 4.3.1 sinethe proedure is very similar to the e+e� ase. In Setion 4.3.2 we desribe how the twomethods are extended to non-ollinear-safe observables.



Treatment of soft and ollinear photon emission 694.3.1 Collinear-safe observables4.3.1.1 Phase-spae sliingIn the phase-spae sliing approah the phase spae is divided into regions wherethe integrand is �nite and an, thus, be integrated numerially, and regions where theintegrand beomes singular. In the singular regions the integration over the photon phasespae is arried out analytially in the approximation that the photon is soft and/orollinear to a harged fermion.The singular regions onsist of two parts one of whih ontains a soft photon (k0 < �E)and the other a photon that is ollinear but not soft (k0 > �E and �f < ��, where �fis the angle between the photon and a harged fermion). Thus, the real orretions aredeomposed aording toZ d�!4f = Z d�soft + Z d�oll + Z d�!4f�nite ; (4.3.2)where the uto� parameters �E and �� are de�ned in the CM system of the inomingphotons. Both in the soft and ollinear regions the squared matrix element jM!4fj2fatorizes into the squared lowest-order matrix element jM!4fBorn j2 and a universal fatorontaining the singularity. The �ve-partile phase spae also fatorizes into a four-partilephase spae and a photon part, so that d�soft and d�oll an be integrated over the photonmomentum. Taking over the results from Ref. [ 19℄ yieldsd�soft = d�!4fBorn �(�4f ) �� 4Xi=1 4Xj=i+1(�1)i+jQiQj (2 ln�2�E� � "1� ln sijmimj!#� ln 4p0i p0jmimj!+ ln2  2p0imi !+ ln2  2p0jmj !+ �23 + Li2  1� 4p0i p0jsij !) (4.3.3)andd�oll = d�!4fBorn �(�4f ) �2� 4Xi=1Q2i("32 + 2 ln �Ep0i !#"1� 2 ln �� p0imi !# + 3� 2�23 );(4.3.4)where Qi and mi denote the relative eletri harge and mass of fermion fi, respetively.The step funtion �(�4f ) indiates that both d�soft and d�oll are de�ned on the four-partile phase spae of the lowest-order ross setion, so that the singular partd�!4fsing = d�soft + d�oll (4.3.5)an be loally ombined with the singular part of the virtual orretions, whih are de�nedon the same phase spae. In the result d�!4fvirt+real;sing all dependenes on the photon andfermion masses anel.While d�!4fvirt+real;sing depends on the uto� parameters �E and �� analytially, the�nite real orretions R d�!4f�nite only show this dependene upon the uts in the numerialintegration. Nevertheless, the uto� dependene has to anel in the full result in the limit



70 Quantum orretions to  !WW! 4f in double-pole approximation�E;�� ! 0. This is illustrated on the l.h.s. of Figures 4.4 and 4.5 where the relativeorretion fator Æ = �=�Born � 1 of the 4f part (R d�!4fvirt;�nite;DPA + R d�!4fvirt+real;sing) andof the 4f part R d�!4f�nite is shown as a funtion of the uto� parameters �E and ��.The anellations of the uto� dependene of the two ontributions is shown on a smallersale on the r.h.s. of Figures 4.4 and 4.5. While terms of O(�E=Ebeam) and O(��)beome visible for large values of the uto� parameters, for smaller values a plateau isreahed. The integration error inreases with dereasing uto� values, until for too smallvalues the integration error is usually underestimated. As a result, we deided to take�E=Ebeam = 10�3 and �� = 10�2 as default values.4.3.1.2 Dipole subtration methodIn a subtration method an auxiliary funtion is onstruted that ontains the samesingularities as the real orretions. Subtrating this funtion from the real orretions,this di�erene an be integrated numerially. The next step is to perform the singularintegration of the auxiliary funtion over the photon momentum analytially and to readdthe result to the virtual orretions. In our ase where soft and ollinear singularitiesoriginate from �nal-state radiation only, the soft and ollinear singularities ompletelyanel against their ounterparts in the virtual orretions for ollinear-safe observables.In the dipole subtration method [ 53, 67℄, whih was originally proposed for QCD[ 68℄, the auxiliary funtion onsists of di�erent ontributions labelled by all orderedombinations of two harged fermions i and j, whih are alled emitter and spetator.These ontributions ontain the singularities onneted with the emitter i. Sine thereare only harged partiles in the �nal state in  ! 4f , the situation is simpler than fore+e� ! 4f . Expliitly the auxiliary funtion, whih is subtrated from the spin-summedsquared bremsstrahlung matrix element, readsjMsubj2 = 4Xi;j=1i6=j jMsub;ijj2;jMsub;ij(�4f)j2 = �(�1)i+jQiQje2g(sub)ij (pi; pj; k)jM!4fBorn (~�4f;ij)j2: (4.3.6)Adopting the formulation of Ref. [ 67℄2, the soft and ollinear divergenes are ontainedin the funtiong(sub)ij (pi; pj; k) = 1(pik)(1� yij) " 21� zij(1� yij) � 1� zij# (4.3.7)with yij = pikpipj + pik + pjk ; zij = pipjpipj + pjk : (4.3.8)The embedding of the 4f phase spae ~�4f;ij into the 4f phase spae �4f is de�ned as~p�i = p�i + k� � yij1� yij p�j ; ~p�j = 11� yij p�j ; (4.3.9)2The formulation of Ref. [ 53℄ di�ers from that by the regular fator 1=(1� yij) in Eq. (4.3.7), so thatthe readded singular ontributions of Refs. [ 53℄ and [ 67℄ di�er by non-singular �nite parts.
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72 Quantum orretions to  !WW! 4f in double-pole approximationwith all other momenta unhanged, ~pk = pk; k 6= i; j. Subtrating the auxiliary funtionfrom the real orretions enables us to arry out the numerial integration,Z d�!4f�nite = 12s Z d�4f 264jM!4fj2�(�4f)� 4Xi;j=1i6=j jMsub;ijj2�(~�4f;ij)375 ; (4.3.10)whih does not ontain any soft or ollinear divergenes by onstrution of jMsubj2 forollinear-safe observables. In this ontext, it is important to notie the di�erent argumentsof the step funtions � whih aount for phase-spae uts. Sine for a generi point in4f phase spae eah ij ontribution orresponds to a di�erent point in phase spae, thereis in general no orrelation between the values of the di�erent step funtions. For ollinear-safe observables, however, we have �(�4f) = �(~�4f;ij) in the soft region (k ! 0) and inthe region where the photon momentum k is nearly ollinear to the emitter momentumpi (pik ! 0). The ollinear safety an, e.g., be enfored by photon reombination, asdisussed in the next setion in more detail.In order to ombine the subtration funtion with the virtual orretion, it has to beintegrated over the photon momentum, yieldingZ d�!4fsing = � �2� 4Xi;j=1i6=j (�1)i+jQiQj 12s Z d�4f G(sub)ij (sij)jM!4fBorn (�4f )j2�(�4f ):(4.3.11)The singularities are ontained in the funtionG(sub)ij (sij) = L(sij; m2i )� �23 + 32 (4.3.12)with L(sij; m2i ) = ln m2isij ! ln �2sij!+ ln �2sij!� 12 ln2  m2isij !+ 12 ln m2isij ! : (4.3.13)We have heked numerially that these soft and ollinear divergenes are ompletelyanelled by their ounterparts in the virtual orretion.4.3.2 Non-ollinear-safe observablesIn the previous setions the mathing of real and virtual orretions was desribedfor ollinear-safe observables. We speak of ollinear-safe observables if a nearly ollinearsystem of a harged fermion and a photon is treated inlusively, i.e. if phase-spae seletionuts (or histogram bins of distributions) depend only on the sum pi + k of the nearlyollinear fermion and photon momenta. In this ase the energy frationzi = p0ip0i + k0 (4.3.14)of a harged fermion fi after emitting a photon in a suÆiently small one around itsdiretion of ight is fully integrated over, beause it is not onstrained by any phase-spae



Treatment of soft and ollinear photon emission 73ut (or histogram bin seletion in distributions). Thus, the KLN theorem [ 69℄ guaranteesthat all singularities onneted with �nal-state radiation anel between the virtual andreal orretions, even though they are de�ned on di�erent phase spaes. A suÆientinlusiveness is, e.g., ahieved by the photon reombination desribed in Setion 4.4.1,whih treats outgoing harged fermions and photons as one quasi-partile if they are verylose in angle.In the previous setion we ould, therefore, integrate the subtration funtion jMsubj2and the sliing ontribution d�oll over zi analytially. In this setion we are onerned withnon-ollinear-safe observables, i.e. the fermion{photon system is not treated inlusivelyand fermion-mass singularities an beome visible. As the integration over zi now isonstrained by phase-spae uts (or histogram bins), we have to modify the methodsdesribed in the previous setion in suh a way that the integration over zi is part of thenumerial phase-spae integration.4.3.2.1 Phase-spae sliingIn the sliing method the proedure is straightforward. The numerial integration overz = zi in the ollinear parts readsd�oll = d�!4fBorn (~�4f ) �2� 4Xi=1Q2i Z 1��E=~p0i0 dz��pi = z~pi; k = (1� z)~pi; f~pj 6=ig�� (Pff (z) "2 ln �� ~p0imi z!� 1#+ (1� z)); (4.3.15)with the splitting funtion Pff (z) = 1 + z21� z : (4.3.16)The Born ross setion and the logarithm still depend on the momenta of the 4f phasespae ~�4f whih are labelled ~pi. In the ut and reombination funtion �, however, themomentum ~pi of the fermion i (before photon emission) is distributed to the fermion mo-mentum pi and the photon momentum k. For ollinear-safe observables, as e.g. ahievedby photon reombination, the � funtion e�etively only depends on the sum pi + k = ~piof the ollinear momenta, whih is independent of z. In this ase, the � funtion beomes�(~�4f ), and the z-integration an be easily arried out analytially yielding Eq. (4.3.4).4.3.2.2 Dipole subtration methodIn the ase of the dipole subtration method the generalization to non-ollinear-safeobservables is more ompliated than in the sliing approah, sine the integration overthe photon momentum is more involved. Here, we ollet the formulas relevant for ouralulation. Details on their derivation are given in Appendix A of Ref. [ 2℄.In order to keep the information on the energy fration z in eah part of the subtrationfuntion, the �nite part of the real orretions is modi�ed toZ d�!4f�nite = 12s Z d�4f"jM!4fj2�(�4f)



74 Quantum orretions to  !WW! 4f in double-pole approximation� 4Xi;j=1i6=j jMsub;ijj2��pi = zij ~pi; k = (1� zij)~pi; f~pk 6=ig�#: (4.3.17)It is easily seen that the variable zij, whih is de�ned in Eq. (4.3.8), plays the role of theenergy fration zi in the ollinear limit for eah dipole ij. Again, in the ollinear-safease the � funtions of the subtration funtion depend only on the sums pi + k = ~pi ofollinear momenta; in this ase we reover Eq. (4.3.10).In the integration of the subtration funtion over the photon phase spae, we now haveto leave the integrations over zij open. The resulting zij dependene of the integrand ismost onveniently desribed with a [:::℄+ presription3, whih separates the soft singularityat zij = 1. The endpoint part at zij = 1, whih results from the full integration over zij,exatly orresponds to the ontribution of G(sub)ij (~sij) for the ollinear-safe ase, as givenin Eq. (4.3.12), where ~sij = 2~pi~pj. The ontinuum part in zij involves an integral overh �G(sub)ij (~sij; zij)i+ with�G(sub)ij (~sij; z) = Pff(z) "ln ~sijzm2i !� 1#+ (1 + z) ln(1� z) + (1� z): (4.3.18)The total integrated subtration part expliitly readsZ d�!4fsing = � �2� 4Xi;j=1i6=j (�1)i+jQiQj 12s Z d~�4f;ij jM!4fBorn (~�4f;ij)j2(G(sub)ij (~sij)�(~�4f;ij)+ Z 10 dz h �G(sub)ij (~sij; z)i+��pi = z~pi; k = (1� z)~pi; f~pk 6=ig�): (4.3.19)Owing to the [:::℄+ presription, the ontinuum part is zero if the full integration over zis arried out, thereby reovering the ollinear-safe ase (4.3.11).4.4 Numerial results4.4.1 Input parameters and setupWe use the same input parameters as in the previous hapter. In addition, we haveto speify the fermion masses ontained in the fermioni loop orretions. The ompletelist of input parameters is [ 55℄G�= 1:16639� 10�5GeV�2; �(0)= 1=137:03599976; �s= 0:1172;MW = 80:423GeV; �W= 2:118GeV;MZ= 91:1876GeV; �Z= 2:4952GeV;me= 0:510998902� 10�3GeV; m�= 0:105658357GeV; m� = 1:77699GeV;mu= 0:066GeV; m= 1:2GeV; mt= 174:3GeV;md= 0:066GeV; ms= 0:15GeV; mb= 4:3GeV; (4.4.1)3We use the de�nition R 10 dx [f(x)℄+ g(x) � R 10 dx f(x) [g(x)� g(1)℄.



Numerial results 75where the masses of the light quarks are adjusted to reprodue the hadroni ontributionto the photoni vauum polarization of Ref. [ 70℄. If not stated otherwise, the Higgs massis MH = 170GeV. In some ases we alternatively use MH = 130GeV. The orrespondingvalues for the Higgs-boson deay width �H, whih have been obtained with the programHDECAY [ 56℄, are given by�H (MH = 170GeV) = 0:3834GeV; �H (MH = 130GeV) = 0:004995GeV: (4.4.2)We set the quark-mixing matrix to the unit matrix throughout, but in the limit of masslessexternal fermions a non-trivial quark-mixing matrix an be inluded by a simple resalingof the ross setions.Furthermore, we apply a set of reombination and separation uts:(i) Bremsstrahlung photons that are loser than 5Æ to a harged fermion or have lessenergy than 1GeV are reombined with the harged fermion that is losest in angle.This means that in this ase before evaluating distributions or applying phase-spaeuts the momenta of the photon and the fermion are added and assoiated with thefermion, while the photon is disarded.(ii) The separation uts, whih are applied to the momenta de�ned after a possiblereombination, are the same as the uts we used in the previous hapter for thetree-level ross setion of  ! 4f . Expliitly, they readEl> 10GeV; �(l; beam)> 5Æ; �(l; l0)> 5Æ; �(l; q)> 5Æ;Eq > 10GeV; �(q; beam)> 5Æ; m(q; q0)> 10GeV; (4.4.3)where an obvious notation for energies E:::, angles �(: : :), and invariant massesm(: : :) for leptons l and quarks q is used.Sine the separation uts and input parameters are the same as in the previous hapterfor the proesses  ! 4f , the Born ross setions of both hapters oinide. In partiular,we exlude forward and bakward sattered harged fermions, beause they ause ollinearsingularities. While for �nal-state quarks these singularities signal a non-perturbativeregime, for leptons they are in priniple ured by �nite-mass e�ets. However, we exludethis region by demanding that leptons appear in the detetor with �nite prodution angleand energy. Compared to Ref. [ 19℄ we use di�erent reombination uts, beause, inontrast to e+e� ollisions, the reombination riterion based on invariant masses doesnot lead to ollinear-safe observables. This is due to the ollinear singularity that arisesif a harged fermion is ollinear to the beam. Even though an appropriate ut on theangle between harged fermions and the beam is imposed, it might happen that a photonwith relatively high energy is reombined with a low-energy fermion that is lose to thebeam. Thus, after reombination, the fermion almost follows the diretion of the photonand is not a�eted by the angular ut. Suh events are avoided by taking a reombinationondition based on the angle.For the evaluation of the lowest-order matrix elements of  ! 4f and  ! 4f, weuse the �xed-width sheme as de�ned in Eq. (3.1.22). The photon spetrum is aounted



76 Quantum orretions to  !WW! 4f in double-pole approximationfor by using the parametrization of the program CompAZ [ 14℄, as desribed in Setion 3.4.In order to distinguish the ases with and without onvolution over the photon spetrum,we write psee and ps for the CM energies in these ases, respetively.In the numerial integration we generate 2 � 107 events for the plots showing the in-tegrated ross setions, and 5 � 107 events for distributions and for the integrated rosssetions in Table 4.1. If not stated otherwise, the shown results are based on the subtra-tion method, but have been ross-heked with the sliing approah.4.4.2 Integrated ross setionsIn Table 4.1 we present a survey of integrated ross setions for a leptoni, a hadroni,and two semi-leptoni �nal states, as obtained with the subtration and sliing methods.The ross setions of the semi-leptoni �nal states di�er beause of the e�etive polar-izations of the photons resulting from the Compton baksattering (f. Setion 3.5.2.6).Final states that di�er only in the fermion generation (i.e. in their mass values) reeive thesame radiative orretions, sine our preditions are based on the massless limit for theexternal fermions and mass singularities anel after performing a photon reombination.The results obtained with the two methods for treating the real orretions, subtration(\sub") and sliing (\sli"), are in good agreement. Note that they both are implemented inthe same Monte Carlo generator, whih, thus, yields idential results for ps < 170GeVwhere the IBA is used. This is the reason why the \sub" and \sli" numbers are identialin the ase of psee = 200GeV with  spetrum, where only the range ps < 170GeV isrelevant in the onvolution.In Figure 4.6 the integrated ross setion for  ! �ee+d�u inluding radiative or-retions is ompared with the Born ross setion as a funtion of the CM energy formonohromati photon beams. The \best" urves orrespond to the O(�)-orreted rosssetions. A Higgs boson of MH = 170GeV produes a sharp peak in the ross setion atps = 170GeV, while for larger energies the orretions are almost independent of theHiggs mass. The relative orretions Æ = �=�Born� 1 in the four lower plots of Figure 4.6behave roughly like the orretions to on-shell W-pair prodution [ 39, 59, 62℄. Close tothe W-pair prodution threshold the orretions are dominated by the Coulomb singular-ity. For higher energies the orretions derease until they reah about �7% at 1TeV. Inthis region they are dominated by large logarithms from the Regge and Sudakov domains.In Figure 4.6() we also show the omparison with the IBA for a Higgs mass of MH =130GeV. Sine lose to the W-pair prodution threshold the bulk of the orretions isdue to the Coulomb singularity and sine there are no other pronouned orretions, theagreement between the two urves is quite good. The very good agreement of the DPAand the IBA at ps � 170GeV both for semi-leptoni and for hadroni �nal states (inboth ases the di�erene is well below 0.1%) is of ourse aidental. For the leptoni �nalstate the di�erene is about 0.7%.As explained in Setion 4.2.5, the intrinsi unertainty of the IBA is about � �2%,while the DPA auray is up to <� 0:5% where it is appliable. Sine the onvolutionof the hard  ross setion, in general, involves both the IBA (in the low-energy tail)and the DPA (for ps > 170GeV), the unertainty of our ross-setion predition is in
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�[ fb℄ �Born[ fb℄CM energy �nal state subtration sliing (sub{sli)/sli�ee+����� 581.403(67) 581.41(16) 575.628(64) 0.00(3) %ps = 200GeV �ee+d�u 1734.02(23) 1735.26(43) 1716.10(22) { 0.07(3) %without  spetrum u�de���e 1734.24(23) 1734.32(43) 1716.06(22) 0.00(3) %u�ds� 4931.01(76) 4935.0(1.0) 4878.67(73) { 0.08(3) %�ee+����� 801.21(11) 801.57(20) 826.620(91) { 0.05(3) %ps = 500GeV �ee+d�u 2278.50(34) 2279.96(51) 2351.37(30) { 0.06(3) %without  spetrum u�de���e 2278.45(34) 2278.84(48) 2351.39(30) { 0.02(3) %u�ds� 6452.2(1.0) 6452.8(1.2) 6662.25(96) { 0.01(2) %�ee+����� 696.25(15) 696.68(17) 746.995(93) { 0.06(3) %ps = 1000GeV �ee+d�u 1836.31(43) 1836.96(45) 1979.92(29) { 0.04(3) %without  spetrum u�de���e 1836.37(42) 1836.95(42) 1979.95(29) { 0.03(3) %u�ds� 4892.2(1.2) 4891.4(1.1) 5300.97(90) 0.02(3) %�ee+����� 0.073205(44) 0.073205(44) 0.072009(44) 0psee = 200GeV �ee+d�u 0.33129(21) 0.33129(21) 0.32601(21) 0with  spetrum u�de���e 0.39204(25) 0.39204(25) 0.38593(24) 0u�ds� 1.24460(79) 1.24460(79) 1.22537(78) 0�ee+����� 190.757(60) 190.835(96) 190.816(45) { 0.04(6) %psee = 500GeV �ee+d�u 559.18(18) 559.63(24) 558.50(14) { 0.08(5) %with  spetrum u�de���e 564.58(18) 564.79(25) 565.05(14) { 0.04(5) %u�ds� 1604.92(54) 1605.60(59) 1603.80(45) { 0.04(5) %�ee+����� 165.759(91) 165.604(81) 170.588(41) 0.09(7) %psee = 1000GeV �ee+d�u 461.02(20) 461.34(23) 474.81(12) { 0.07(7) %with  spetrum u�de���e 472.10(19) 471.61(24) 485.65(13) 0.10(7) %u�ds� 1296.49(52) 1295.29(62) 1335.13(38) 0.09(6) %Table 4.1: Integrated ross setions for di�erent �nal states and energies with and withoutonvolution over the photon spetrum. The third olumn shows the result obtained withthe subtration method and the fourth with the sliing method. The last two olumnsshow the Born ross setion and the relative di�erene between subtration and sliing.
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Numerial results 79psee=GeV 200 240 260 280 300 500 1000TU 2.0% 1.9% 1.3% 0.8% 0.7% 0.5% 0.5%Table 4.2: Estimates of the TU (4.4.4) for theO(�)-orreted ross setion of  ! �ee+d�uat various CM energies psee.the range 0:5�2%, depending on the ontribution of the IBA part to the full onvolution.Denoting the IBA and DPA parts of the full ross setion as ��IBA and ��DPA (bothinluding the orresponding lowest-order ontribution, so that ��IBA +��DPA = �), wean estimate the theoretial unertainty (TU) of the orreted ross setion � toTU = ��IBA� � 2% + ��DPA� � 0:5%: (4.4.4)Table 4.4.2 illustrates this estimate for a few CM energies psee for  ! �ee+d�u. Forpsee <� 230GeV our predition possesses a TU of � 2%, beause it is mainly based on theIBA, but already forpsee >� 300GeV (500GeV) the IBA ontribution is widely suppressedso that the DPA unertainty of <� 0:7% (0:5%) sets the preision of our alulation. Wenote, however, that the overall unertainty of our alulation ertainly beomes worse assoon as TeV energies for ps are dominating beause of the relevane of high-energylogarithms beyond O(�).In Figure 4.6(e) the omparison of the full orretion with the IBA is shown for aHiggs mass of MH = 170GeV. The IBA inludes the Higgs resonane via an e�etiveoupling and reets the shape of the resonane quite well.The ross setion inluding the onvolution over the photon spetrum as a funtion ofCM energy is shown in Figure 4.7 for a Higgs mass of MH = 130GeV and in the lowerleft plot also for MH = 170GeV. In the upper plots the integrated ross setions areshown, and in the lower plots the orretions relative to the Born ross setion. Reallthat we use the IBA below ps = 170GeV. This means, in partiular, that the Higgsresonane is alulated from the e�etive oupling and not from the full DPA in thisregion. The interesting struture in the lower left plot reets the shape of the photonspetrum onvoluted with the Higgs resonane. Sine the Higgs resonane is very narrow,a sizable ontribution is only possible if x1x2see � M2H where x1 and x2 are the energyfrations arried by the photons. The orretion is very small at low psee where x1 andx2 have to be so large in order to math this ondition that the orresponding spetrumis extremely small. Inreasing psee allows for lower values of x1 and x2. For instane,for MH = 130GeV, the rise at psee � 180GeV results from a region where both x1and x2 are in the high-energy tail of the spetrum whih is produed by multiple photonsattering. The peak atpsee � 200GeV is aused by events where one photon omes fromthe high-energy tail and one from the dominant peak in the photon spetrum. Finally,at psee >� 210GeV both x1 and x2 originate from the dominant photon-spetrum peakwhih auses the steep rise until psee � 220GeV.
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Numerial results 814.4.3 Di�erential ross setionsIn Figure 4.8 we show the invariant-mass distributions for the �ee+ and d�u pairs in theproess  ! �ee+d�u, both with and without onvolution over the photon spetrum. Theupper plots show the absolute preditions, and the lower plots the orretions normalizedto the Born preditions. Sine we use ps = 500GeV orpsee = 500GeV, the orretionsare shifted upwards when inluding the photon spetrum, beause the e�etive energy ofthe photons is lower (f. Figure 4.6). The shape of the orretions, however, is hardlyhanged by the onvolution over the photon spetrum. As the shape of the orretionsdetermine a possible shift of the peak of the invariant-mass distribution, it is of partiularimportane in the determination of the W-boson mass. The measurement of the W-bosonmass an, e.g., be used for understanding and alibrating the detetor of a  ollider.The distribution in the W-boson prodution angle is sensitive to anomalous ouplings.In order to set bounds on these ouplings it is mandatory to know radiative orretions,beause both anomalous ouplings and radiative orretions typially distort angular dis-tributions. The orresponding angular distribution of the d�u system, whih is equal withinthe statistial error to the distribution of the �ee+ system, is shown in Figure 4.9. Whilethe orretion without the photon spetrum is about �9% for W bosons emitted perpen-diular to the beam, the orretions are rather small when inluding the photon spetrum.As already explained above, the ross setion is dominated by a region where the  CMenergy is smaller. In fat, the relative orretion Æ is aidentally small at psee � 500GeV[f. Figure 4.7(d)℄ and might also beome larger if other uts or event seletion proeduresare applied.Figure 4.10 shows the energy distribution of e+ and d for the proess  ! �ee+d�u.The harateristis of the Born ross setion, espeially the inuene of the e�etivepolarization of the photons after Compton baksattering, were explained in detail inSetion 3.5.3.2. The relative orretions shown in the lower plots amount to a few per ent.For very low and very high energies, where the Born ross setion is very small, the relativeorretions in DPA are not reliable anymore. In this region the assumption that doubly-resonant diagrams dominate is not ful�lled. The angular distributions for e+ and d areshown in Figure 4.11. The shape of the Born ross setion and the inuene of the photonspetrum were also explained in Setion 3.5.3.2. Similar to the angular distributions ofthe �ee+ and d�u systems, the orretions are maximal in a region where the fermions areemitted perpendiular to the beam. However, after inluding the photon spetrum, theorretions almost anel as an be antiipated from Figure 4.7(d) whih shows that theorretions to the integrated ross setion are almost zero at psee � 500GeV.Finally, the energy distribution of the photon in the proess  ! �ee+d�u+ is shownin Figure 4.12. The distribution is dominated by the soft-photon pole at k0 ! 0 anddereases rapidly at higher energies. Comparing the distributions with and without on-volution over the photon spetrum, the onvolution shifts the urve to lower energies,beause the initial-state photons already have less energy.
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−10Figure 4.9: Angular distribution of the W� boson reonstruted from the d�u pair in theproess  ! �ee+d�u at ps = 500GeV.4.4.4 Non-ollinear-safe observablesAs explained in Setion 4.3.2, the treatment of ollinear singularities in non-ollinear-safe observables deserves some are. Applying the generalizations of the subtration andthe sliing methods desribed above, we now turn to observables without photon reombi-nation. Apart from that, the same phase-spae uts are applied as before. In Figure 4.13we show the distributions of the �ee+, ���+, and d�u pairs in the proesses  ! �ee+d�u,���+d�u. With photon reombination the leptoni invariant masses of the two proessesreeive the same radiative orretions sine the reombination guarantees the neessaryinlusiveness so that all mass singularities anel. If the reombination is not applied,the distributions hange drastially. Note, however, that the reombination is mainlya rearrangement of events, and omitting the reombination a�ets the integrated rosssetion by less than 0:5%. With dereasing invariant masses the relative orretions rise,while they are smaller at large invariant masses. The reason is that without reombination�nal-state radiation (whih is enhaned by mass logarithms) redues the invariant mass ofthe reonstruted W boson, thereby shifting events from the dominating resonant regionto lower invariant mass values. The reombination brings most of these events bak tothe resonane region, beause it prevents momentum loss from �nal-state radiation. Thel.h.s. of Figure 4.13 also shows a hierarhy in the mass e�ets of the outgoing leptons asthe slope for the �ee+ pair is muh steeper than the slope for the ���+ pair due to thesmaller mass of e+. The plot on the r.h.s. shows that the orretions for the d�u pair arenot as large as for the ���+ pair on the l.h.s., beause the remaining mass terms behavelike Q2f lnmf , where Qf denotes the harge of the fermion f . We also note that the or-
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Chapter 5The Higgs-boson deaysH!WW=ZZ! 4fThe primary task of the LHC will be the detetion and the study of the Higgs boson.If it is heavier than 140GeV and behaves as predited by the Standard Model (SM),it deays dominantly into gauge-boson pairs and subsequently into four light fermions.From a Higgs-boson mass MH of about 130GeV up to the Z-boson-pair threshold 2MZ,the deay signature H(!WW)! 2 leptons + missing pT [ 71℄ has the highest disoverypotential for the Higgs boson at the LHC [ 72℄. For higher Higgs masses, the leadingrole is taken over by the famous \gold-plated" hannel H ! ZZ ! 4 leptons, whih willallow for the most aurate measurement of MH above 130GeV [ 73℄. More details andreent developments onerning Higgs studies at the LHC an be found in the literature[ 74, 75, 76℄. At a future e+e� linear ollider [ 77, 78, 79℄, the deays H! 4f will enablemeasurements of the H!WW=ZZ branhing ratios at the level of a few to 10% [ 80℄.A kinematial reonstrution of the Higgs boson and of the virtual W and Z bosonsrequires the study of distributions de�ned from the kinematis of the deay fermions.In doing so, it is important to inlude radiative orretions, in partiular real photonradiation. In addition, the veri�ation of the spin and of the CP properties of the Higgsboson relies on the study of angular, energy, and invariant-mass distributions [ 81, 82℄.In partiular, the sensitivity of the angle between the two Z-deay planes in H ! ZZ!4 leptons has been frequently emphasized in the literature. As a onsequene a MonteCarlo generator for H ! WW=ZZ ! 4 fermions inluding eletroweak orretions isneeded.The theoretial desription of the deays of a SM Higgs boson into W- or Z-boson pairsstarted with lowest-order formulas for the partial deay widths. The �rst alulations [ 83℄that inlude o�-shell e�ets of the gauge bosons made the approximation that one of theW or Z bosons was still on shell, an approximation that turns out to be not suÆient.Later alulations [ 84℄ dealt with the situation of two intermediate o�-shell gauge bosons.The various approahes are ompared, e.g., in Ref. [ 85℄. We note that the programHDECAY [ 56℄, whih is frequently used in pratie, alulates the partial deay widthsfor H ! WW=ZZ with on- or o�-shell gauge bosons depending on MH. Distributions88



Lowest-order results 89of the deay fermions have been onsidered in Refs. [ 81, 82℄, but still in lowest order ofperturbation theory.In the past the eletroweak O(�) orretions to deays into gauge bosons, H !WW=ZZ, were known [ 86, 87℄ only in narrow-width approximation (NWA), i.e. for on-shell W and Z bosons. In this ase, also leading two-loop orretions enhaned by powersof the top-quark mass [ 88℄ or of the Higgs-boson mass [ 89, 90℄ have been alulated.However, near and below the gauge-boson-pair thresholds the NWA is not appliable, sothat only the lowest-order results exist in this MH range.In this hapter we desribe the alulation of the eletroweak O(�) orretions tothe full proesses H ! WW=ZZ ! 4f with o�-shell gauge bosons and of the inludedimprovements beyond this order. The involved Feynman diagrams are losely related tothe ones of the prodution proess e+e� ! ���H, whose eletroweak O(�) orretionshave been evaluated in Refs. [ 91, 92℄. Therefore, onerning the algebrai redution ofthe one-loop diagrams we proeed as desribed in Ref. [ 92℄. On the other hand, theresonane struture of the deays H ! WW=ZZ ! 4f is pratially the same as ine+e� !WW! 4f , whih was treated at the one-loop level in Ref. [ 24℄. Thus, we applythe \omplex-mass sheme" [ 24℄, where gauge-boson masses are onsistently treatedas omplex quantities. This proedure fully maintains gauge invariane at the prie ofhaving omplex gauge-boson masses everywhere, i.e. also in ouplings and loop integrals.For a numerially stable evaluation of the latter we employ the methods desribed inRefs. [ 93, 94℄. Sine the �nal state oinides with the �nal state of  !WW! 4f andsine there are no infrared singularities onneted with the initial state, the ombinationof virtual and real photon orretions is performed in the same way as desribed inSetion 4.3.5.1 Lowest-order resultsWe onsider the lowest-order proessesH(p) �! f1(k1; �1) + �f2(k2; �2) + f3(k3; �3) + �f4(k4; �4); (5.1.1)where the momenta and heliities of the external partiles are indiated in parentheses.The heliities take the values �i = �1=2, but we often use only the sign to indiate theheliity. The masses of the external fermions are negleted whenever possible; they areonly taken into aount in the mass-singular logarithms originating from ollinear �nal-state radiation (FSR). The matrix elements an be onstruted from the generi diagramshown in Figure 5.1.The relevant ouplings were already introdued in Eqs. (1.2.18) and (1.2.22). However,using the omplex-mass sheme we have to replae real gauge-boson masses by omplexmasses everywhere, M2V ! �2V = M2V � iMV �V ; V = W;Z; (5.1.2)
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H(p) VV

fa(ka; �a)�fb(kb; �b)f(k; �)�fd(kd; �d)Figure 5.1: Generi lowest-order diagram for H! 4f where V = W;Z.where MV and �V denote the real pole-mass and width parameters. Aordingly the sineand osine of the weak mixing angle are �xed by2w = 1� s2w = �2W�2Z : (5.1.3)More details about the omplex-mass sheme are desribed in Setion 5.2.2.2.The generi lowest-order amplitude readsMV V;�a�b��d0 (ka; kb; k; kd) = 2e3g�aV fafbg�V ffdgHV V Æ�a;��bÆ�;��dAV V�a�(ka; kb; k; kd);(5.1.4)or more spei�ally for the ase of Z-mediated and W-mediated deaysMZZ;�a�b��d0 (ka; kb; k; kd) = 2e3g�aZfafbg�Zffd�W2wsw Æ�a;��bÆ�;��d AZZ�a�(ka; kb; k; kd);MWW;�a�b��d0 (ka; kb; k; kd) = e3�Ws3w Æ�a;�Æ�b;+Æ�;�Æ�d;+AWW�� (ka; kb; k; kd): (5.1.5)The auxiliary funtions are expressed in terms of WvdW spinors following the notationof Setion 3.1.3.1,AV V��(ka; kb; k; kd) = hkbkdi�hkaki[(ka + kb)2 � �2V ℄[(k + kd)2 � �2V ℄ ;AV V+�(ka; kb; k; kd) = AV V��(kb; ka; k; kd);AV V�+(ka; kb; k; kd) = AV V��(ka; kb; kd; k);AV V++(ka; kb; k; kd) = AV V��(kb; ka; kd; k); (5.1.6)and obey the relationsAV V��a;��(ka; kb; k; kd) = �AV V�a�(ka; kb; k; kd)������V!��V ;g!g�;AV V��a;�(ka; kb; k; kd) = AV V�a�(kb; ka; k; kd);AV V�a;��(ka; kb; k; kd) = AV V�a�(ka; kb; kd; k);AV V�a;�(ka; kb; k; kd) = �AV V��a(kd; k; kb; ka)������V!��V ;g!g�;AV V�a�(ka; kb; k; kd) = AV V��a(k; kd; ka; kb): (5.1.7)



Lowest-order results 91The relations between the A:::::: funtions that di�er in all heliities result from a P trans-formation. Those where only one fermion heliity is reversed are related to C symmetry.The last but one is due to CP symmetry, and the last one results from a symmetry underthe exhange of the two fermion pairs. The replaements �V ! ��V in (5.1.7) ensure thatthe vetor-boson masses remain una�eted by omplex onjugation, and g ! g� indi-ates that this substitution impliitly also applies to oupling onstants that may beomeomplex via mass fators.From the generi matrix element MV V;�a�b��d0 (ka; kb; k; kd) the matrix elements forthe spei� proesses an be onstruted as follows. To write down the expliit matrixelements for the di�erent �nal states, we denote di�erent fermions (f 6= F ) by f and F ,and their weak-isospin partners by f 0 and F 0, respetively.� H ! f �fF �F : M�1�2�3�40 (k1; k2; k3; k4) = MZZ;�1�2�3�40 (k1; k2; k3; k4): (5.1.8)� H ! f �f 0F �F 0:M�1�2�3�40 (k1; k2; k3; k4) = MWW;�1�2�3�40 (k1; k2; k3; k4): (5.1.9)� H ! f �ff �f : M�1�2�3�40 (k1; k2; k3; k4) = MZZ;�1�2�3�40 (k1; k2; k3; k4)�MZZ;�1�4�3�20 (k1; k4; k3; k2): (5.1.10)� H ! f �ff 0 �f 0:M�1�2�3�40 (k1; k2; k3; k4) = MZZ;�1�2�3�40 (k1; k2; k3; k4)�MWW;�1�4�3�20 (k1; k4; k3; k2): (5.1.11)The relative signs between ontributions of the basi subamplitudes to the full matrixelements aount for the sign hanges resulting from interhanging external fermion lines.The matrix elements of (5.1.8) and (5.1.9) an be extended to the ase of semi-leptonior hadroni �nal states by simply multiplying the squared matrix element by a olourfator 3 or 9, respetively. Note that are has to be taken in the ases of (5.1.10) and(5.1.11) for hadroni �nal states (semi-leptoni �nal states do not exist) owing to thenon-trivial olour interferenes. Summing over the olour degrees of freedom, we have� H ! q�qq�q:jM�1�2�3�40 (k1; k2; k3; k4)j2 =9 ���MZZ;�1�2�3�40 (k1; k2; k3; k4)���2 + 9 ���MZZ;�1�4�3�20 (k1; k4; k3; k2)���2�6Re nMZZ;�1�2�3�40 (k1; k2; k3; k4) �MZZ;�1�4�3�20 (k1; k4; k3; k2)��o : (5.1.12)



92 The Higgs-boson deays H!WW=ZZ! 4f� H ! q�qq0�q0:jM�1�2�3�40 (k1; k2; k3; k4)j2 =9 ���MZZ;�1�2�3�40 (k1; k2; k3; k4)���2 + 9 ���MWW;�1�4�3�20 (k1; k4; k3; k2)���2�6Re nMZZ;�1�2�3�40 (k1; k2; k3; k4) �MWW;�1�4�3�20 (k1; k4; k3; k2)��o : (5.1.13)Having onstruted the matrix elements, we an write the lowest-order deay width�0 as �0 = 12MH Z d�0 X�1;�2;�3;�4=� 12 jM�1;�2;�3;�40 j2; (5.1.14)where the phase-spae integral is de�ned byZ d�0 =  4Yi=1 Z d3ki(2�)32k0i ! (2�)4Æ(4) p� 4Xi=1 ki!: (5.1.15)5.2 Virtual orretions5.2.1 Survey of one-loop diagramsThe virtual orretions reeive ontributions from self-energy, vertex, box, and pen-tagon diagrams. The strutural diagrams ontaining the generi ontributions of vertexfuntions are summarized in Figure 5.2. Here and in the following we omit all diagramsthat vanish in the limit of vanishing external fermion masses from the beginning. Forharged-urrent proesses the generi �eld V stands for the W-boson �eld, for neutral-urrent proesses we have V = Z; , where the photon is of ourse absent in ouplingsto the Higgs boson. The generi diagrams over all strutures relevant for eletroweakorretions to arbitrary four-fermion �nal states, inluding quarks. Note, however, thatsome four-quark �nal states reeive orretions from diagrams with intermediate gluonson tree-like lines (quark-loop-indued Hgg vertex). Possible QCD orretions for quarksin the �nal state will not be onsidered in the following lists of diagrams.The pentagon diagrams are shown in Figures 5.3 and 5.4, respetively. The spei�subdiagrams of loop-indued 4-point funtions have been shown in Ref. [ 92℄, where theproess lass e+e� ! ���H was analyzed at one loop. They involve 4-point vertex funtionsof the type �l��lZH, �l��lH, l�l+ZH, l�l+H, and l� (�)� l W+H with l = e; �; � denotingany harged lepton. The 3-point loop insertions in the H�l��l, Hl�l+, HWW, and HZZverties have also been listed there; the one-loop diagrams for the HZ and H vertiesfollow from the HZZ ase by obvious substitutions and omissions. Most of the diagramsfor the self-energies and the �l��lZ, e�e�Z, and l�(�)�eW vertex funtions an be found inRef. [ 95℄.
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H fa�fbf�fdVV V H fa�fbf�fdVV V H fa�fbf�fdVV H fa�fbf�fdVV
H fa�fbf�fdVV H fa�fbf�fd

Vfd H fa�fbf�fdVf H fa �fb f�fdVfa
H fa�fb f�fdVfb H fa�fbf�fdV H fa�fbf�fdV H fa�fbf�fdFigure 5.2: Generi ontributions of di�erent vertex funtions to H!WW=ZZ! 4f .5.2.2 Calulation of the one-loop orretions5.2.2.1 Algebrai redution of diagrams and standard matrix elementsThe algebrai part of the two alulations has been arried out in the same way asin the one-loop alulation of e+e� ! ���H desribed in Ref. [ 92℄. This means that weseparate the fermion spinor hains from the rest of the amplitude by de�ning standardmatrix elements (SME). To introdue a ompat notation for the SME, the tensors�ab;�f�;��g = �vfa(ka) f�; ��g!�u �fb(kb);�d;�f�;��g = �vf(k) f�; ��g!�u �fd(kd) (5.2.1)are de�ned with obvious notations for the Dira spinors �vfa(ka), et., and !� = (1�5)=2denote the right- and left-handed hirality projetors. Here and in the following, eahentry in the set within urly brakets refers to a single objet, i.e. from the �rst line in
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ZZ f ; ZF H f�f

F �FWW f 0 WF 0Figure 5.3: Pentagon diagrams for H ! ZZ ! f �fF �F , where f and F are di�erentfermions with respetive weak-isospin partners f 0 and F 0.
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WW f ;ZFFigure 5.4: Pentagon diagrams for H ! WW ! f �f 0F �F 0, where f and F are di�erentfermions with respetive weak-isospin partners f 0 and F 0.



Virtual orretions 95the equation above we have �ab;�� = �vfa(ka)�!�u �fb(kb), et. Furthermore, symbols like�p are used as shorthand for the ontration �� p�. We de�ne the 52 SMEM̂abd;��f1;2g = �ab;�� �d;�;f�;�kakbg; M̂abd;��f3;4g = �ab;��kkd �d;�;f�;�kakbg;M̂abd;��f5;6g = �ab;�k �d;�;fka;kbg; M̂abd;��f7;8g = �ab;�kd �d;�;fka;kbg;M̂abd;��f9;10g = �ab;���k �d;�;f��ka;��kbg; M̂abd;��f11;12g = �ab;���kd �d;�;f��ka;��kbg;M̂abd;��13 = �ab;��� �d;�;��: (5.2.2)The SME are evaluated within the WvdW spinor tehnique, similar to the lowest-orderamplitudes desribed in the previous setion. The tree-level and one-loop amplitudesMabd;��0 and Mabd;��1 , respetively, for the generi four-fermion �nal state fa �fbf �fd anbe expanded in terms of linear ombinations of SME,Mabd;��n = 13Xi=1 F abd;��n;i M̂abd;��i ; n = 0; 1; (5.2.3)with Lorentz-invariant funtions F abd;��n;i . In this notation the lowest-order amplitudes(5.1.5) readMZZ;�a�b��d0 (ka; kb; k; kd) = e3g�aZfafbg�Zffd�W2wsw Æ�a;��bÆ�;��d� 1[(ka + kb)2 � �2Z℄[(k + kd)2 � �2Z℄ M̂abd;�a�1 ;MWW;�a�b��d0 (ka; kb; k; kd) = e3�W2s3w Æ�a;�Æ�b;+Æ�;�Æ�d;+� 1[(ka + kb)2 � �2W℄[(k + kd)2 � �2W℄ M̂abd;��1 : (5.2.4)For the one-loop amplitudes in general all invariant funtions reeive ontributions. Inpartiular, they ontain the loop integrals. The one-loop amplitudes for the various �nalstates are onstruted from the amplitudes for H ! f �fF �F and H ! f �f 0F �F 0 as desribedin (5.1.8) to (5.1.11) for the lowest order. The one-loop orretion to the partial deaywidths, �nally, reads�virt = 12MH Z d�0 X�1;�2;�3;�4=� 12 2Re fM�1;�2;�3;�41 (M�1;�2;�3;�40 )�g : (5.2.5)The alulation of the one-loop diagrams, whih have been generated with FeynArts[ 96℄, has been arried out in the 't Hooft{Feynman gauge and has been repeated usingthe bakground-�eld method [ 7℄, where the individual ontributions from self-energy,vertex, and box orretions di�er from their ounterparts in the onventional formalism.The total one-loop orretions of the onventional and of the bakground-�eld approahwere found to be in perfet numerial agreement.



96 The Higgs-boson deays H!WW=ZZ! 4f5.2.2.2 Gauge-boson resonanes and omplex-mass shemeAs desribed in Setion 2.3 the desription of resonanes in (standard) perturbationtheory requires a Dyson summation of self-energy insertions in the resonant propagatorin order to introdue the imaginary part provided by the �nite deay width into the prop-agator denominator. This proedure in general violates gauge invariane, i.e. destroysSlavnov{Taylor or Ward identities and disturbs the anellation of gauge-parameter de-pendenes, beause di�erent perturbative orders are mixed.In our alulation we employ the so-alled \omplex-mass sheme", whih was intro-dued in Ref. [ 18℄ for lowest-order alulations and generalized to the one-loop level inRef. [ 24℄. In this approah the W- and Z-boson masses are onsistently onsidered asomplex quantities, de�ned as the loations of the propagator poles in the omplex plane.To this end, bare real masses are split into omplex renormalized masses and omplexounterterms. Sine the bare Lagrangian is not hanged, double ounting does not our.Perturbative alulations an be performed as usual, only parameters and ounterterms,in partiular the eletroweak mixing angle de�ned from the ratio of the W- and Z-bosonmasses, beome omplex. Sine we only perform an analyti ontinuation of the param-eters, all relations that follow from gauge invariane, suh as Ward identities, remainvalid. As a onsequene the amplitudes are gauge independent, and unitarity anella-tions are respeted. Moreover, the on-shell renormalization sheme an straightforwardlybe transferred to the omplex-mass sheme [ 24℄.The use of omplex gauge-boson masses neessitates the onsistent use of these om-plex masses also in loop integrals. The salar master integrals are evaluated for omplexmasses using the methods and results of Refs. [ 97, 98, 99℄.5.2.2.3 Numerially stable evaluation of one-loop integralsThe one-loop alulation of the deay H! 4f requires the evaluation of 5-point one-loop tensor integrals. We alulate the 5-point integrals by diretly reduing them to �ve4-point funtions, as desribed in Refs. [ 93, 94℄. Note that this redution does not involveinverse Gram determinants omposed of external momenta, whih naturally our in thePassarino{Veltman redution [ 100℄ of tensor to salar integrals. The latter proedureleads to serious numerial problems when the Gram determinants beome small.Tensor 4-point and 3-point integrals are redued to salar integrals with the Passarino{Veltman algorithm [ 100℄ as long as no small Gram determinant appears in the redution.If small Gram determinants our, the methods that were developed in Ref. [ 94℄ areapplied. In partiular, we evaluate a spei� tensor oeÆient, the integrand of whih islogarithmi in Feynman parametrization, by numerial integration. Then the remainingoeÆients as well as the standard salar integral are algebraially derived from thisoeÆient.The whole proedure for the evaluation of the salar and tensor one-loop integrals hasbeen taken over from the one-loop alulation of e+e� ! 4 fermions [ 24℄.



Real photon orretions 975.2.3 Leading two-loop orretionsSine orretions due to the self-interation of the Higgs boson beome important forlarge Higgs masses, we have inluded the dominant two-loop orretions to the deayH! V V in the large-Higgs mass limit whih were alulated in Refs. [ 89, 90℄. They areof order O(G2�M4H) and read�G2�M4H = 62:0308(86) G�M2H16�2p2!2 �0; (5.2.6)where the numerial prefator has been taken from Ref. [ 90℄. The error of this fator isfar beyond other unertainties and, thus, ignored in the numeris.5.3 Real photon orretions5.3.1 Matrix element for H! 4fThe real photoni orretions are indued by the proessH(p) �! f1(k1; �1) + �f2(k2; �2) + f3(k3; �3) + �f4(k4; �4) + (k; �); (5.3.1)where the momenta and heliities of the external partiles are indiated in parentheses.As for the lowest-order proess, we onsistently neglet fermion masses whenever pos-sible. However, we restore the mass-singular logarithms appearing in ollinear photonemission as desribed in Setion 4.3 improved by higher-order �nal-state radiation as de-sribed in Setion 5.3.3.The matrix elements for the radiative proess an be onstruted in the same way asfor the lowest-order proess (5.1.1) from the set of generi diagrams that is obtained fromFigure 5.1 by adding a photon line in all possible ways to the harged partiles. We haveevaluated the generi heliity matrix elements M�a�b��d� (ka; kb; k; kd; k) of this proessagain using the WvdW spinor tehnique in the formulation of Ref. [ 42℄. The amplitudesgenerially readMV V;�a�b��d� (Qa; Qb; Q; Qd; ka; kb; k; kd; k) = (5.3.2)2p2e4 g�aV fafbg�V ffdgHV V Æ�a;��bÆ�;��d AV V�a��(Qa; Qb; Q; Qd; ka; kb; k; kd; k);or more spei�ally for the ase of Z-mediated and W -mediated deaysMZZ;�a�b��d� (Qa; Qb; Q; Qd; ka; kb; k; kd; k) =2p2e4g�aZfafbg�ZffdMW2wsw Æ�a;��bÆ�;��d AZZ�a��(Qa; Qb; Q; Qd; ka; kb; k; kd; k);MWW;�a�b��d� (Qa; Qb; Q; Qd; ka; kb; k; kd; k) =p2e4MWs3w Æ�a;�Æ�b;+Æ�;�Æ�d;+AWW���(Qa; Qb; Q; Qd; ka; kb; k; kd; k): (5.3.3)



98 The Higgs-boson deays H!WW=ZZ! 4fThe auxiliary funtions are given byAV V���(Qa; Qb; Q; Qd; ka; kb; k; kd; k) =hkbkdi�" hkakbi�hkaki+ hkkbi�hkki[(ka + kb + k)2 �M2V ℄[(k + kd)2 �M2V ℄� Qahkkai�hkkbi� + Qa �Qb(ka + kb)2 �M2V hkkaihkkbi�!� hkkdi�hkkai+ hkkdi�hkkai[(ka + kb)2 �M2V ℄[(k + kd + k)2 �M2V ℄� Qhkki�hkkdi� + Q �Qd(k + kd)2 �M2V hkkihkkdi�!+ Qa �Qb[(ka + kb)2 �M2V ℄[(k + kd)2 �M2V ℄ hkbkdi�hkakihkkbi�hkkdi� �;AV V+��(Qa; Qb; Q; Qd; ka; kb; k; kd) = AV V���(�Qb;�Qa; Q; Qd; kb; ka; k; kd);AV V�+�(Qa; Qb; Q; Qd; ka; kb; k; kd) = AV V���(Qa; Qb;�Qd;�Q; ka; kb; kd; k);AV V++�(Qa; Qb; Q; Qd; ka; kb; k; kd) = AV V���(�Qb;�Qa;�Qd;�Q; kb; ka; kd; k);AV V�a�+(Qa; Qb; Q; Qd; ka; kb; k; kd; k) =�AV V��a;��;�(Qa; Qb; Q; Qd; ka; kb; k; kd; k)�����MV!M�V ; (5.3.4)and obey the relationsAV V��a;��;��(Qa; Qb; Q; Qd; ka; kb; k; kd; k) =�AV V�a��(Qa; Qb; Q; Qd; ka; kb; k; kd; k)�����MV!M�V ;AV V��a;�;�(Qa; Qb; Q; Qd; ka; kb; k; kd; k) =AV V�a��(�Qb;�Qa; Q; Qd; kb; ka; k; kd; k);AV V�a;��;�(Qa; Qb; Q; Qd; ka; kb; k; kd; k) =AV V�a��(Qa; Qb;�Qd;�Q; ka; kb; kd; k; k);AV V�a;�;��(Qa; Qb; Q; Qd; ka; kb; k; kd) =��AV V��a�(Qd; Q; Qb; Qa; kd; k; kb; ka; k)�����MV!M�V ;AV V�a;�;�(Qa; Qb; Q; Qd; ka; kb; k; kd) =AV V��a�(Q; Qd; Qa; Qb; k; kd; ka; kb; k): (5.3.5)The relations between the A:::::: funtions that di�er in all heliities result from a P trans-formation. Those, where only one fermion heliity is reversed are related to C symmetry.The last but one is due to CP symmetry, and the last one results from a symmetry underthe exhange of the two fermion pairs. The harges of the fermions are related byQa �Qb +Q �Qd = 0: (5.3.6)



Real photon orretions 99For the Z-mediated deays, where Qa = Qb and Q = Qd, the auxiliary funtion (5.3.4)simpli�es toAZZ���(Qa; Qa; Q; Q; ka; kb; k; kd; k) =hkbkdi�" hkakbi�hkaki+ hkkbi�hkki[(ka + kb + k)2 �M2V ℄[(k + kd)2 �M2V ℄ Qahkkai�hkkbi�� hkkdi�hkkai+ hkkdi�hkkai[(ka + kb)2 �M2V ℄[(k + kd + k)2 �M2V ℄ Qhkki�hkkdi� �: (5.3.7)From the generi matrix element MV V;�a�b��d�(ka; kb; k; kd; k) the matrix elementsfor the spei� proesses an be onstruted in omplete analogy to the proess withoutphoton as in (5.1.8){(5.1.11).The squares of the matrix elements (5.3.2) have been suessfully heked against theresult obtained with the pakage Madgraph [ 43℄ numerially.The ontribution � of the radiative deay to the total deay width is given by� = 12MH Z d� X�1;�2;�3;�4=� 12 X�=�1 jM�1;�2;�3;�4;� j2; (5.3.8)where the phase-spae integral is de�ned byZ d� = Z d3k(2�)32k0  4Yi=1 Z d3ki(2�)32k0i ! (2�)4Æ(4) p� k � 4Xi=1 ki!: (5.3.9)5.3.2 Treatment of soft and ollinear divergenesThe struture of soft and ollinear singularities of the deay H ! 4f is exatly thesame as in the proess  !WW! 4f , beause both proesses involve the same patternof harged partiles in the initial and �nal states. Consequently, apart from obvious sub-stitutions for the ux fators all formulas given in Setion 4.3 for ross setions literallyarry over to the deay widths. The agreement of the dipole-subtration method and thephase-spae sliing method is illustrated in Figures 5.5 and 5.6 for the widths of the twodeay hannels H! �ee+����� and H! e�e+���+. For dereasing auxiliary parameters�E and ��, the sliing result reahes a plateau, as it should be, until the inreasing sta-tistial errors beome large and are eventually underestimated. In the plateau region thesliing and subtration results are ompatible within statistial errors, but the subtrationresult shows smaller integration errors although the same number of events is used.5.3.3 Higher-order �nal-state radiationPhotons that are emitted ollinear from a harged fermion give rise to orretionsthat are enhaned by large logarithms of the form � logm2f=Q2, where mf is a fermionmass and Q is some typial energy sale. If the photons are treated fully inlusively,as it is the ase if the photons are reombined with the orresponding fermion, theselogarithms anel due to the KLN theorem [ 69℄. If, however, distributions like in the
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Real photon orretions 101invariant mass of two fermions, as disussed in Setion 5.5.3, are to be onsidered withoutreombining ollinear photons, then these logarithms do not anel and yield large e�ets.Thus, orretions of this origin beyond O(�) should be taken into aount. This an beahieved in the struture-funtion approah [ 101℄ whih is based on the mass-fatorizationtheorem. Aording to this theorem the deay width inluding the leading-logarithmiFSR terms an be written asZ d�LLFSR = YiQi 6=0 �Z 10 dzi �LLii (zi; Q2)� Z d�0�ut(fzjkjg): (5.3.10)The funtion �ut(fzjkjg) generially denotes all histogram routines or phase-spae uts.It depends on the fermion momenta zjkj whih, in the ase of harged fermions, maybe redued by the fator zj due to ollinear photon emission. For neutral fermions wehave zj = 1. The struture funtions inluding terms up to O(�3), improved by theexponentiation of the soft-photoni parts, read�LL;expii (z; Q2) = exp ��12�iE + 38�i�� �1 + 12�i� �i2 (1� z)�i2 �1 � �i4 (1 + z)� �2i32�1 + 3z21� z ln(z) + 4(1 + z) ln(1� z) + 5 + z�� �3i384�(1 + z) h6 Li2(z) + 12 ln2(1� z)� 3�2i+ 11� z �32(1 + 8z + 3z2) ln(z) + 6(z + 5)(1� z) ln(1� z)+ 12(1 + z2) ln(z) ln(1� z)� 12(1 + 7z2) ln2(z)+ 14(39� 24z � 15z2)�� (5.3.11)with E and �(y) denoting Euler's onstant and the Gamma funtion, respetively. Themass-singular logarithm �i = 2�(0)� "ln�Q2m2i �� 1# (5.3.12)involves a sale Q2, whih is not �xed in leading logarithmi order and should be set toa sale typial for the proess under onsideration. We use Q2 = M2H in our evaluations.As the funtion (1� z)�i2 �1 is diÆult to integrate numerially, an appropriate mappinghas to be hosen in pratie.In order to study the inuene of the higher-order terms we alternatively expandedthe exponential up to terms of O(�3), yielding�LLii (z; Q2) = "1 + �2  9128 � �248!+ �3  �(3)24 � �2128 + 91024!# Æ(1� z)+ "�i4 1 + z21� z + �2i16  31� z + 4ln(1� z)1� z !



102 The Higgs-boson deays H!WW=ZZ! 4f+ �3i768 11� z (27� 8�2 + 72 ln(1� z) + 48 ln2(1� z))#+� �2i32�1 + 3z21� z ln(z) + 4(1 + z) ln(1� z) + 5 + z�� �3i384�(1 + z) h6 Li2(z) + 12 ln2(1� z)� 3�2i+ 11� z �32(1 + 8z + 3z2) ln(z) + 6(z + 5)(1� z) ln(1� z)+ 12(1 + z2) ln(z) ln(1� z)� 12(1 + 7z2) ln2(z)+ 14(39� 24z � 15z2)��; (5.3.13)where � labels the Riemann �-funtion.Sine we already aounted for the lowest-order term and the O(�) term whih isontained in the omplete O(�) orretions, we have to subtratZ d�LLFSR;1 = Z d�0 + Z d�0Xi Z 10 dzi �LL;1ii (zi; Q2)�ut(ziki; fkj 6=ig); (5.3.14)i.e. the leading logarithmi terms up to O(�), from R d�LLFSR. They are de�ned by�LL;1ii (z; Q2) = �i;G�4  1 + z21� z !+ : (5.3.15)Note that the leading-logarithmi terms sale with �(0). Therefore, we have to subtratthe O(�) terms aording to the sheme that is applied for the virtual orretions. Sinewe work in the G� sheme, �i;G� is proportional to �G� , as de�ned in Eq. (3.5.3).5.4 Improved Born ApproximationSome loop diagrams involving top quarks lead to orretions that are enhaned by alarge oupling fator G�m2t in the limit of a large top-quark mass mt. For the generiamplitudes of H ! 4f the leading mt-dependent orretions in the heavy-top limit read(in the G�-sheme)MZZ;�1�31 ���G�-sheme gmt!1 �4�s2w " 18 � 3w4sw  Qf1g�1Zf1f1 + Qf3g�3Zf3f3!! m2tM2W� Qf1g�1Zf1f1 + Qf3g�3Zf3f3! 3� 2s2w3wsw ln mtMW #MZZ;�1�30 + O(m0t );MWW1 ���G�-sheme gmt!1 � 5�32�s2w m2tM2W MWW0 + O(m0t ); (5.4.1)where we use the real W-boson mass MW, and the terms proportional to a harge fatorQf are absent if f is a neutrino. The leading m2t -enhaned terms of the WW hannel



Improved Born Approximation 103agree with the terms derived for the HWW vertex [ 88℄, sine in the G�-sheme allleading m2t ontributions related to the W-boson oupling to fermions are absorbed in�G� . In the ZH hannel, m2t -enhaned terms do not only result from the HZZ vertex, butthere are also remnants originating from the renormalization of the Z-boson ouplings tofermions. In ontrast to the WW hannel, in the ZZ hannel there are also logarithmiterms lnmt for a large top-quark mass. For the WW hannel and for the ZZ hannel withone Z boson deaying into neutrinos and the other into harged leptons, the orretionterms in (5.4.1) agree with the orresponding results given in Ref. [ 92℄ for the produtionproess e+e� ! ���H.Inluding also the one-loop orretions / G�M2H and the two-loop orretions /(G�M2H)2 from Refs. [ 89, 90℄ we de�ne the matrix elements for an improved-Born ap-proximation (IBA) for the non-photoni ontributions asMZZ;�1�3IBA;non-photoni = MZZ;�1�30 "1� G�m2t2p2�2  18 � 3w4sw  Qf1g�1Zf1f1 + Qf3g�3Zf3f3!!� G�M2W2p2�2  Qf1g�1Zf1f1 + Qf3g�3Zf3f3! 3� 2s2w3wsw ln mtMW+ G�M2H16�2p2  5�26 � 3p3� + 192 + i�(2 ln 2� 5)!�  G�M2H16�2p2!2 �34:4082(43) + 21:0031(62) i�#;MWWIBA;non-photoni = MWW0 "1� 5G�m2t16p2�2+ G�M2H16�2p2  5�26 � 3p3� + 192 + i�(2 ln2� 5)!�  G�M2H16�2p2!2 �34:4082(43) + 21:0031(62) i�#; (5.4.2)where we suppress some polarization indies in the lowest-order matrix elements that werede�ned in Setion 5.1. Sine our lowest-order matrix element M0 is omplex, owing tothe propagator width, both the imaginary part of the G�M2H term and the imaginary partof the (G�M2H)2 term ontribute when taking the absolute square of the matrix elements.Finally, we de�ne the IBA for the partial deay widths H ! WW ! f1 �f2f3 �f4 andH! ZZ! f1 �f2f3 �f4 as�H!ZZ!4fIBA = 12MH Z d�0 X�1;�3=� jMZZ;�1�3IBA;non-photonij2;�H!WW!4fIBA = 12MH Z d�0 jMWWIBA;non-photonij2� h1 + ÆCoul �M2H; (k1 + k2)2; (k3 + k4)2� g( ��)i ; (5.4.3)



104 The Higgs-boson deays H!WW=ZZ! 4fwhih is then onvoluted with the FSR as given in (5.3.10). The phase-spae integral wasde�ned in (5.3.9), and the e�et of the Coulomb singularity is inorporated inÆCoul(s; k2+; k2�) = �(0)�� Im(ln � � �� +�M� + �� +�M !) ;�� = qs2 + k4+ + k4� � 2sk2+ � 2sk2� � 2k2+k2�s ;� = s1� 4�2Ws ; �M = jk2+ � k2�js ; (5.4.4)with the �ne-struture onstant �(0). The auxiliary funtiong( ��) = �1� ��2�2 (5.4.5)restrits the impat of ÆCoul to the threshold region where it is valid.The IBA for the �nal states f �ff �f and f �ff 0 �f 0 are de�ned via the orresponding matrixelements as in (5.1.10) and (5.1.11), respetively. However, the orretion fator ÆCoul isonly multiplied to the squared harged-urrent matrix element jMWWIBA;non-photonij2, beausethe interferene term turns out to be very small.5.5 Numerial results5.5.1 Input parameters and setupWe use the following set of input parameters [ 9℄G�= 1:16637� 10�5GeV�2; �(0)= 1=137:03599911; �s= 0:1172;MW = 80:425GeV; MZ= 91:1876GeV;me= 0:51099892MeV; m�= 105:658369MeV; m� = 1:77699GeV;mu= 0:066GeV; m= 1:2GeV; mt= 178GeV;md= 0:066GeV; ms= 0:15GeV; mb= 4:3GeV: (5.5.1)For the top-quark mass mt we have taken the value from Ref. [ 102℄.By applying the G� sheme a large part of the O(�) orretions is absorbed into thelowest order predition as desribed in Setion 3.5.1. In partiular, the eletromagnetioupling onstant is derived from the Fermi onstant aording to Eq. (3.5.3), so that ourlowest-order results sale with �3G� and the radiative orretions with �4G�The widths of the gauge bosons W and Z, �W and �Z, are alulated from the above in-put inludingO(�) orretions, but using real mass parameters everywhere. Alternatively,the experimental widths ould be used, but the proedure pursued here ensures that the\e�etive branhing ratios" of the W's and Z's, whih result from the integration over theirdeays, add up to one if all deay hannels are summed over. The gauge-boson widthsdepend on the Higgs mass only weakly. For the Higgs masses MH = 140; 170; 200GeV



Numerial results 105the orresponding values are given in Table 5.1. These values are used everywhere, i.e.we also apply the O(�)-orreted W and Z widths for the lowest-order preditions.The angular distributions in Setion 5.5.4 are de�ned in the rest frame of the Higgsboson. All observables are alulated without applying phase-spae uts, and, if notstated otherwise, a photon reombination is performed. More preisely, if the invariantmass of a photon and a harged fermion is smaller than 5GeV, the photon momentum isadded to the fermion momentum in the histograms. If this ondition applies to more thanone fermion the photon is reombined with the fermion that yields the smallest invariantmass.All but the lowest-order preditions ontain the higher-order FSR, as desribedin Setion 5.3.3, as well as the two-loop orretions proportional to G2�M4H given inSetion 5.2.3. The phase-spae integration is performed using the multi-hannel MonteCarlo tehnique, whih is desribed in App. A. The numerial results presented belowhave been obtained using 5 � 107 events exept for the plots showing the deay width as afuntion of the Higgs mass whih were alulated using 2 � 107 events per point. Sine thevirtual orretions (rendered �nite by adding the soft and ollinear singularities from thereal orretions), and also their statistial error, are at least a fator 10 smaller than thelowest-order values for moderate Higgs masses, we only evaluated the virtual orretionsevery 100th time, whih improves the run-time of the program but does not deterioratethe overall statistial error.5.5.2 Results for the partial deay widthIn Table 5.1 the partial deay width inluding O(�) orretions is shown for di�erentdeay hannels and di�erent values of the Higgs mass. In brakets the statistial error ofthe phase-spae integration is shown, and Æ = �=�0�1 labels the relative orretions. The�rst two hannels, e�e+���+ and e�e+e�e+ result from the deay H ! ZZ ! 4f . Theorresponding lowest-order matrix elements are given in (5.1.8) and (5.1.10), respetively.The width orresponding to the latter hannel is typially smaller by a fator 2, beausethe deay H! e�e+e�e+ proeeds via two Feynman diagrams with small interferene inlowest order and requires a fator 1=4 for idential partiles in the �nal state. The hannel�ee+����� (5.1.9) results from the deay H!WW! 4f , while the last hannel �ee+e���e(5.1.11) reeives ontributions from the deay into W and into Z bosons. The larger theHiggs mass, the larger is the deay width, beause the available phase spae grows.In the two upper plots of Figure 5.7 we show the partial deay width for the �nalstate �ee+����� as a funtion of the Higgs mass. The lower plots show the orretionsrelative to the lowest-order result. As already explained, we always normalize to thelowest-order result that already inludes the O(�)-orreted width of the gauge bosons.A large fration of the O(�) orretions is transferred to the lowest-order deay width byapplying the G� sheme. Thus, the orretions are at the order of 2{8% for moderateHiggs masses. However, for large Higgs masses the orretions beome larger and reahabout 13% at MH = 700GeV. In this region the leading two-loop orretions alreadyamount to about 4%. Around 160GeV the Coulomb singularity, whih originates fromsoft-photon exhange between the two slowly moving W bosons, is reeted in the shape
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Numerial results 107MH[ GeV℄ 140 170 200�W[ GeV℄ 2:09273::: 2:09275::: 2:09276:::�Z[ GeV℄ 2:50548::: 2:50557::: 2:50563:::H ! �[MeV℄ Æ[%℄ �[MeV℄ Æ[%℄ �[MeV℄ Æ[%℄e�e+���+ orreted 0.0012582(5) 2.2 0.020056(7) 2.7 0.8183(2) 4.4lowest order 0.0012310(4) 0.019529(5) 0.78408(8)e�e+e�e+ orreted 0.0006667(2) 2.0 0.010292(3) 2.7 0.40930(8) 4.4lowest order 0.0006534(2) 0.010026(2) 0.39217(4)�ee+����� orreted 0.04789(2) 3.6 4.2962(9) 6.1 12.484(3) 4.9lowest order 0.04623(1) 4.0491(7) 11.899(2)�ee+e���e orreted 0.04896(2) 3.7 4.329(1) 6.1 14.114(3) 5.0lowest order 0.04722(2) 4.0804(8) 13.446(2)Table 5.1: Partial deay widths for H! 4 leptons inluding O(�) orretions and relativeorretion for various deay hannels and di�erent Higgs masses.of the urve. The inuene of diagrams with a Higgs boson splitting into Z-boson pair(\normal ZZ threshold") is visible atMH � 2MZ. At about 2mt the t�t threshold is visible.For stable W or Z bosons, i.e. in the limit �V ! 0 (V = W;Z), it is possible tode�ne a narrow-width approximation (NWA) where the matrix elements fatorize intothe deay H ! V V and the subsequent deay of the gauge bosons into fermions. Byde�nition the NWA is only appliable above the WW or ZZ threshold. However, itsanalytial struture and evaluation is onsiderably simpler than in the ase of the fulldeay H ! WW=ZZ ! 4f with o�-shell gauge bosons. Therefore, above threshold theNWA allows for an eonomi way of alulating O(�) orretions to the integrated deaywidth, while the lowest-order ontribution may, of ourse, still take into aount unstablegauge bosons. Following this line of thought, we de�ne�NWA = �0 �NWA1�NWA0 ; (5.5.2)with �NWA1 = �HV V;1 �V f1 �f2;1�V f3 �f4;1�V;1�V;1 ; (5.5.3)and �NWA0 = �HV V;0 �V f1 �f2;0�V f3 �f4;0�V;1�V;1 : (5.5.4)The indies \0" and \1" label lowest-order and O(�)-orreted results, respetively. TheHiggs-mass-enhaned two-loop terms, desribed in Setion 5.2.3, have also been inludedin �HV V;1. In order to be onsistent we again use the O(�)-orreted total width for thegauge bosons in �NWA0 . We note that we have rederived all neessary O(�) orretions



108 The Higgs-boson deays H!WW=ZZ! 4fentering the NWA; the hard photoni orretions to the deay H ! WW have beenheked against the expression given in Ref. [ 87℄.A few GeV above the orresponding gauge-boson-pair threshold the NWA agrees withthe omplete O(�) orretions within 1%. Near MH = 180GeV the loop-indued ZZthreshold an be seen in the relative orretions to H ! WW ! �ee+����� shown inFigure 5.7. In the NWA this threshold leads to a singularity visible as a sharp peak; inthe o�-shell alulation in the omplex-mass sheme this singular struture is smearedout, beause the Z-boson width is taken into aount. Sine the ZZ threshold orrespondsto the situation where two Z bosons beome on shell in the loop, the latter desriptionwith the singularity regularized by a �nite �Z should be loser to physial reality. Asimilar situation an be seen near H = 2mt for the t�t threshold with top quarks in theloops, where we observe a sharp peak also for the omplete O(�) orretions, beause wehave not taken into aount the top deay width �t. In priniple, this is straightforwardand represents an option for a future improvement of the alulation.Although the IBA, whih is also shown in Figure 5.7 reets the shape of the Coulombsingularity around MH = 160GeV and the rise of the orretions for large Higgs massesquite well, it does not provide a good overall desription of the omplete O(�) orre-tions. Apparently, the m2t -enhaned terms do not yield the dominant e�et, but bosoniorretions ontribute a substantial part of the O(�) orretions.The plots in Figure 5.8 show the deay width and the relative orretion for the �nalstate e�e+���+. The orretion are between 2% and 4% for moderate Higgs masses andrise to more than 10% for large Higgs masses. At a Higgs mass of about 160GeV theinuene of the diagram where a W-boson loop is oupled to the Higgs boson an beobserved. As explained above, the behaviour of the orretions as a funtion of the Higgsmass is smooth, beause the gauge-boson width is also used in the loop integrals. Inontrast to the deay H! �ee+�����, there is no Coulomb singularity at around 180GeVbeause the Z boson is eletrially neutral. The NWA reprodues the omplete result upto 0:5% not too lose to the threshold, while the IBA is only good within 2%, and deviateseven more in the region MH � 2mt, where the assumption of large top mass is not valid.Preditions for the partial deay widths of the Higgs boson an also be obtained withvarious program pakages, suh as HDECAY [ 56℄, whih ontains the lowest-order deaywidth for H! V (�)V (�), and also the leading one-loop orretions / G�M2H and two-looporretions / G2�M4H. In order to obtain the deay width for H ! WW=ZZ ! 4f , wede�ne �HD = �HDHV V �V f1f2;0�V;1 �V f3f4;0�V;1 ; (5.5.5)where �HDHV V is the deay width from HDECAY. In (5.5.5) the branhing ratios of thegauge bosons are normalized in the same way (lowest order in the numerator, orretedtotal width in the denominator) as the e�etive branhing ratios of our lowest-orderpreditions for the H ! V V ! 4f partial widths; otherwise a omparison would not bevery onlusive.The omparison in Figure 5.9, where �HD is shown relative to our omplete lowest-order predition, shows that HDECAY agrees with our lowest-order predition below thedeay threshold quite well. In this region �HDHV V onsistently takes into aount the o�-shell
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Numerial results 111e�ets of the gauge bosons. Above the threshold HDECAY neglets o�-shell e�ets ofthe gauge bosons. In the threshold region, o�-shell e�ets are, however, very important.Here, the di�erene between the omplete o�-shell result and the Higgs width for on-shellgauge bosons amounts to about 10%. In detail, HDECAY interpolates between the o�-shell and on-shell results within a window of �2GeV around threshold. The maxima inthe HDECAY urves near the WW and ZZ thresholds in the upper and lower left plotsof Figure 5.9, respetively, are artefats originating from the on-shell phase spae of theW or Z bosons above threshold. These maxima have nothing to do with the maximum ofthe orretion near the WW threshold in the upper left plot, whih is due to the Coulombsingularity. For large MH HDECAY follows our orreted result within a few per ent,beause the dominant radiative orretions / G�M2H and / G2�M4H, whih grow fast withinreasing MH, are inluded in both alulations.5.5.3 Invariant-mass distributionsIn Figure 5.10 we study the invariant-mass distribution of the two fermions resultingfrom the deay of the W bosons in the deay H! �ee+�����. The plots on the l.h.s. showthe distribution for ����� inluding orretions for MH = 140GeV and MH = 170GeV,i.e. for one value of MH below and one above the WW threshold. The plots on ther.h.s. ompare the relative orretions for �ee+ and ����� both with and without photonreombination. The invariant massMf �f 0 is alulated from the sum of the momenta of thefermions f and f 0. If no photon reombination is applied, the bare momenta are taken.In the ase of photon reombination the momentum of ollinear photons is inluded inthe invariant mass.For MH = 170GeV, where both intermediate W bosons an be simultaneously reso-nant, the physial situation in Figure 5.10 is very similar to the situation for the proess !WW! 4f depited in Figures 4.8 and Figure 4.13. Again, the shape of the urvean be understood as follows. Resonant gauge bosons give a large ontribution to thewidth. If one of the deay fermions emits a photon, the invariant mass Mf �f 0 is redued,giving rise to an enhanement for small invariant masses. Without photon reombina-tion these positive orretions are large due to the appearane of logarithms of the smallfermion masses. As the eletron mass is smaller, the orresponding logarithms yield alarger ontribution. If photon reombination is applied, events are rearranged from smallinvariant masses to large invariant masses. In this ase, the observable is inlusive,i.e.the fermion mass logarithms anel due to the KLN theorem, and the �ee+ and �����distributions do not di�er.For MH = 140GeV, i.e. below the threshold, only one W boson an beome on shell.Thus, there is still a resonane around Mf �f 0 � MW, but also an enhanement below aninvariant mass of about 60GeV, where the other deaying W boson an beome resonant.Near the resonane at Mf �f 0 � MW the orretions look similar to the doubly-resonantase disussed for MH = 170GeV above. The same redistribution of events from higherto lower invariant mass due to FSR happens as explained above. Between 70GeV and60GeV in Mf �f 0 the large positive orretions derease until the broad maximum nearMf �f 0 � 54GeV is seen. In the region of this maximum the same qualitative FSR e�ets
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Numerial results 113(but of ourse muh less pronouned) are visible as in the viinity of the resonane atMW:apart from a onstant positive o�-set in the relative orretions, events a distributed fromthe right to the left of the maximum.Figure 5.11 shows the orresponding invariant-mass distributions for the deay H !e�e+���+ withMH = 170GeV and MH = 200GeV. The generi features of the plots aresimilar to the deay into W bosons. Above the ZZ threshold (MH = 200GeV), there isone resonane region around MZ, and the orretions beome large in the non-ollinear-safe ase. Photon reombination rearranges the events, so that the fermion logarithmsanel. Below the ZZ threshold (MH = 170GeV), there is an additional resonane regionfor Mf �f <� 80GeV. The shape and the large size of the orretions are due to ollinearFSR as explained above. In Ref. [ 82℄ it was pointed out that the kinematial thresholdwhere the other Z boson an beome on shell, whih is at Mf �f <� 80GeV in this ase, anbe used to verify the spin of the Higgs boson. A partile of spin 1, e.g., would at leastinvolve one power of momentum in the oupling to vetor bosons. Thus, the invariant-mass spetrum would derease more rapidly at the kinematial threshold ompared tothe SM ase. Figure 5.11 shows that the radiative orretions inuene the slope at thekinematial threshold signi�antly.Finally, in Figure 5.12 we investigate the inuene of higher-order FSR on the invariant-mass distribution of ���� and ���+ in the deays H ! �ee+����� and H ! e�e+���+.The invariant mass is de�ned via the momenta of the fermions alone, i.e. without photonreombination. If photon reombination was applied, the leading logarithmi FSR or-retions, as desribed in Setion 5.3.3, would vanish ompletely. Subtrating the O(�)terms (5.3.14) from the struture funtions yields the ontribution that is beyond O(�).In Figure 5.12 the impat of this ontribution is studied revealing orretions of up to4% in regions where the lowest-order result is relatively small. Figure 5.12 also shows theomparison between the struture funtion with and without the exponentiation of thesoft-photoni parts in (5.3.11) and (5.3.13), respetively. The di�erene is beyond O(�3)and turns out to be tiny.5.5.4 Angular distributionsThe investigation of angular orrelations between the fermioni deay produts is anessential means of testing the properties of the Higgs boson. In Ref. [ 81, 82℄ it wasdemonstrated how the spin of the Higgs boson an be determined by looking at the anglebetween the deay planes of the Z bosons in the deay H! ZZ. This angle an be de�nedas os�0 = (k+ � k1)(k+ � k3)jk+ � k1jjk+ � k3j ;sgn(sin�0) = sgnfk+ � [(k+ � k1)� (k+ � k3)℄g; (5.5.6)where k+ = k1 + k2. The l.h.s. of Figure 5.13 shows the deay width for H! e�e+���+as a funtion of �0 revealing a os 2�0 term. As was notied in Ref. [ 81, 82℄, this termwould be proportional to (� os 2�0) if the Higgs boson was a pseudo-salar.
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116 The Higgs-boson deays H!WW=ZZ! 4fNote that for non-photoni events the de�nition of �0 oinides with the de�nitiongiven in Ref. [ 19℄ where (�k� � k3) with k� = k3 + k4 was used instead of (k+ � k3).Expliitly, � was de�ned asos� = (k+ � k1)(�k� � k3)jk+ � k1jj � k� � k3j ;sgn(sin�) = sgnfk+ � [(k+ � k1)� (�k� � k3)℄g: (5.5.7)However, this de�nition yields large negative ontributions at � = 0Æ and � = 180Æ. Aswas explained in Ref. [ 19℄, this is an e�et of the suppressed phase spae of the realorretions. At � = 0Æ and � = 180Æ the phase spae for photoni events shrinks to theon�gurations where the photon is either soft or lies in the deay plane of the gauge bosons.Thus, the negative ontributions from the virtual orretions are not fully ompensatedby the real orretions. Using k+ � k3 as in (5.5.6) avoids this suppression and gives riseto a smooth dependene of the orretions on � as an be seen on the r.h.s. of Figure 5.13whih shows the relative orretions for � and �0 in the deay H! e�e+���+. Sine thedi�erene of � and �0 is only due to photons, this, again, emphasizes the large inueneof the photon treatment.In ontrast to the invariant-mass distribution of Figure 5.10, photon reombinationdoes not produe any signi�ant e�et for the observable �. This is beause adding a softor ollinear photon to a fermion momentum does not hange its diretion very muh and,thus, has only a small inuene on the angle �.The deay angle of the �� relative to the orresponding Z boson in the deay H !e�e+���+ is shown in Figure 5.14. The angle is de�ned in the rest frame of the Z bosonso that the distribution is symmetri w.r.t. os �Z�� . The relative orretions whih areshown in the plot on the r.h.s. reveal a strong enhanement in the forward and bakwarddiretion if no reombination is applied. These orretions are due to events where the�+ has only a small energy and emits a ollinear photon. Sine the momentum of theZ boson is de�ned via its deay fermions, it has almost the same momentum as the ��.After applying photon reombination, the momentum of the Z boson is de�ned via thesum of the fermion and photon momenta. Thus, the �� is not neessarily ollinear to theZ boson anymore, and large events are rearranged to smaller j os �Z�� j giving rise to aatter distribution.Next, we onsider the angle between two fermions. In the ase of H!WW the anglebetween the harged fermions an be used to disriminate the Higgs signal events frombakground events, beause the fermions are emitted preferably in the same diretion.This an be understood as follows. At leading order, the only non-vanishing heliityamplitudes for H ! WW are those with equal heliity W bosons. Sine W bosons onlyouple to left-handed partiles and due to angular momentum onservation, partiles(anti-partiles) are emitted preferably in the forward diretion of transverse W bosonswith negative (positive) heliity, and anti-partiles (partiles) in the bakward diretion.As, lose to threshold, 2/3 of the W bosons are transverse and as the W bosons y inopposite diretions, a partile and an anti-partile of their deay produts will be emittedin the same diretion.
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118 The Higgs-boson deays H!WW=ZZ! 4fIn the deay H ! �ee+����� neither the Higgs-boson nor the W-boson momenta anbe reonstruted from the deay produts. The distribution in the angle between the e+and �� an, thus, only be studied upon inluding the Higgs-prodution proess. If theHiggs boson was, however, produed without transverse momentum, or if the transversemomentum is known, the angle between e+ and �� in the plane perpendiular to the beamaxis ould be studied without knowledge of the prodution proess. For gluon{gluon and fusion into a Higgs boson, this is to some approximation the ase. We de�ne thetransverse angle between e+ and �� as�e+��;T = k2;T � k3;Tjk2;Tjjk3;Tj ;sgn(sin�e+��;T) = sgnfez � (k2 � k3)g; (5.5.8)where ki;T are the transverse omponents of the fermion momenta w.r.t. the unit vetorez. The orresponding distribution, together with the inuene of the orretions, is shownin Figure 5.15. The enhanement for small angles, whih was explained above, is trans-ferred to the distribution of the transverse angle �e+��;T. Sine the photon reombinationdoes not hange the diretion of the fermions, it does not have any visible e�et on therelative orretions.Finally, we investigate the distribution of the angle between e� and �� in the deayH ! e�e+���+. We prefer to hoose the angle between two fermions with the sameharge beause this onstitutes an unambiguous hoie in the deay H ! ���+���+.Figure 5.16 shows the tendeny that the fermions are emitted in opposite diretions forthe same reason as explained above. However, this feature is not as pronouned as inH! �ee+����� beause Z bosons do not only ouple to left-handed partiles so that one Zboson might deay into a left-handed partile and the other into a right-handed partile.
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Chapter 6Summary and onlusionsWe have performed preision alulations for the proesses  ! 4f and H!WW=ZZ!4f . Starting with the preditions in lowest order of perturbation theory, we presentedompat results for the transition amplitudes in terms of Weyl{van-der-Waerden spinorproduts. In the next step, radiative orretions in O(�), whih an be lassi�ed into realand virtual orretions, were alulated. The real orretions, originating from photonemission, are based on the omplete lowest-order matrix elements for  ! 4f andH ! WW=ZZ ! 4f. In the ase of  ! WW ! 4f virtual orretions to doubly-resonant terms were alulated in the double-pole approximation and deomposed intofatorizable and non-fatorizable orretions. For H ! WW=ZZ ! 4f we alulatedthe omplete O(�) orretions. The infrared divergenes appearing in the virtual andreal orretions due to soft or ollinear photon emission were treated in two di�erentways, using the dipole-subtration method or the phase-spae sliing method. In order toover also non-ollinear-safe observables, where mass-singularities from ollinear photonemission do not anel, extensions of these methods were used. Finally, the phase-spaeintegration over the �nal-state momenta was arried out with the adaptive multi-hannelMonte Carlo method.Speial attention was paid to the treatment of the gauge-boson width, whih hasto be implemented in order to desribe resonanes. For the lowest-order preditions for ! 4f() we ompared di�erent shemes, revealing good agreement between the gauge-invariant omplex-mass sheme and the �xed-width sheme. However, we enounteredproblems with the running-width sheme for  ! 4f, beause it does not preservegauge invariane. For the radiative orretions to  ! WW ! 4f the double-poleapproximation represents a gauge-invariant way of introduing the width. In the aseof H ! WW=ZZ ! 4f the orretions were alulated using a generalization of theomplex-mass sheme to the one-loop level, whih respets gauge invariane.Monte Carlo generators have been onstruted, alled Coffer ( ! 4f) andProphey4f (H ! WW=ZZ ! 4f), whih an be used in experimental studies. Wehave presented a variety of numerial results that were obtained with these generators:For the lowest-order proesses  ! 4f and  ! 4f and for the proesses  !WW ! 4f inluding O(�) orretions we presented a representative list of integratedross setions. For some of these proesses we showed the dependene of ross setions121



122 Summary and onlusionson the entre-of-mass energy, thereby studying the inuene of a realisti photon-beamspetrum and the size of the radiative orretions. In the W-pair threshold region theorretions are dominated by the Coulomb singularity and are, thus, positive and of theorder of a few per ent. For inreasing  sattering energies the orretions beome moreand more negative and reah about �10% in the TeV range for integrated ross setions.Various distributions were shown, espeially in the invariant mass and in the produ-tion angle of the reonstruted W bosons and in the invariant mass of a resonant Higgsboson in the loop-indued reation  ! H ! WW ! 4f . Moreover, it is shown thatthe onvolution over the photon spetrum signi�antly distorts energy and angular distri-butions due to an e�etive photon polarization. Typially, ollinear-safe observables (i.e.where mass-singular logarithms anel due an inlusive treatment of �nal-state radiation)reeive orretions of a few per ent for energies of the e�e� system before Comptonbaksattering up to 1TeV. As expeted, non-ollinear-safe observables reeive very largeorretions (tens of per ent) beause of the existene of logarithmi mass singularities.Also for large sattering angles, where the Born ross setion is relatively small, the impatof the orretions is usually larger.In addition, we examined the e�ets of anomalous triple and quarti gauge-bosonouplings on integrated  ! 4f ross setions. Sine ontributions of anomalous ou-plings to ross setions an anel in spei� on�gurations, it is neessary to take intoaount results from other observables (suh as di�erential distributions) or from otherexperiments (suh as e+e� or e� ollisions) in order to onstrain individual anomalousouplings. However, our results suggest that an analysis of the proesses  ! 4f anonstrain anomalous WW ouplings about an order of magnitude better than studyinge+e� ! 4f. The Monte Carlo generator Coffer an serve as a tool for more realististudies.At the LHC the Higgs boson deays H !WW=ZZ! 4f lead to signatures that anbe exploited for its detetion and for the subsequent study of its properties. In orderto ahieve the required auray of theoretial preditions, o�-shell e�ets of the gaugebosons and radiative orretions have to be taken into aount. Sine we alulatedthe O(�) orretions in the omplex-mass sheme, whih does not employ any type ofexpansion or on-shell approximation, our results are equally valid above, in the viinityand below the WW and ZZ thresholds. Comparing our results to an on-shell (narrow-width) approximation, we found that in the threshold region o�-shell e�ets amount toabout 10%. Treating only one gauge boson as o�-shell also leads to deviations of some10% far below this threshold. The radiative orretions to partial deay widths typiallyamount to several per ent and inrease with growing Higgs masses reahing about 10% atMH � 500GeV. In this regime also orretions beyond O(�) originating from heavy-Higgse�ets, whih we inluded in our alulation, are relevant. For angular distributions thatare important in the veri�ation of the disrete quantum numbers of the Higgs boson,we found orretions of the order of 5�10%. To onlude, the Monte Carlo generatorProphey4f will be a useful tool for the Higgs reonstrution and related studies.



AppendixA Phase-spae integrationThe squared matrix elements of the proesses  ! 4f() with n = 4(5) �nal-statepartiles are integrated over the phase spae yielding the ross setionZ d� = 12s Z d�n jMj2;Z d�n =  nYi=1 Z d3pi(2�)32p0i ! (2�)4Æ(4) k1 + k2 � nXi=1 pi! (A.1)with the inoming momenta k1; k2, the outgoing momenta pi(i = 1; ::; 4(5)), and the CMenergy ps. The orresponding relation for the deay width of H ! 4f() was given inSetions 5.1 and 5.3.1. We basially follow the strategy desribed in Refs. [ 18, 26, 53℄,whih is based on multi-hannel Monte Carlo integration.A.1 Phase-spae mappings and multi-hannel Monte Carlo integrationIn a Monte Carlo integration the integration region is overed by mapping pseudo-random numbers into the phase spae of the outgoing partiles. Eah phase-spae on�g-uration, alled event, gives a ontribution to the integral with a ertain weight. The mainhallenge of the integration arises due to the omplex peaking struture of the integrandin eight (=H ! 4f) or eleven (=H ! 4f) dimensions. This struture is induedby various diagram types with time- and spae-like propagators that peak at di�erentpoints in phase spae. As a onsequene, the statistial error of the numerial integra-tion inreases, and the numerial results may even beome unstable. As a �rst step toa solution, we employ phase-spae mappings. To this end, the integration variables arehosen suh that they ontain the kinematial invariants of the propagators. The map-pings of the pseudo-random numbers into the momenta of the outgoing partiles are thenonstruted in suh a way that their Jaobian anels or ompensates the denominatorof the propagator. Thus, more events are generated in regions where the squared matrixelement is large, so that the integrand is attened. For time-like Breit{Wigner resonanesof a partile with mass MV and width �V , an appropriate mapping to the square of thepropagator momentum p2 isp2(r) =MV �V tan�y1 + (y2 � y1)r�+M2V ; y1=2 = artan p2min=max �M2VMV �V ! : (A.2)123



124 AppendixThe orresponding Jaobian,1g(p2) = h(p2 �M2V )2 +M2V �2V i (y2 � y1)MV �V ; (A.3)anels the denominator of the squared propagator. For a propagator without width wehoose the mappingp2(r) = hr(p2max �m2)1�� + (1� r)(p2min �m2)1��i 11�� +m2; (A.4)with the Jaobian 1g(p2) = (p2 �m2)� [(p2max �m2)1�� � (p2min �m2)1��℄1� � ; (A.5)whih anels the square of the denominator of a propagator with vanishing width for� = 2. The hoie of � and m2 will be disussed in the next setion.Combining the mappings for the propagators of a given Feynman diagram we anbuild up the phase spae. This is done suessively from the subproesses of the diagram.First, time-like invariants are generated aording to Eqs. (A.2) or (A.4). Seond, the2 ! 2 partile subproesses are generated. The orresponding spae-like invariants areonly mapped for partiles with vanishing width, and the orresponding azimuthal angleis generated uniformly. Finally, the azimuthal angle and the polar angle of the 1 ! 2partile deays are generated without any mapping. In the onstrution of the phasespae, detetor uts are taken into aount as muh as possible in order to inrease theeÆieny of the Monte Carlo generator. For further details, we refer to Ref. [ 18, 53℄.Obviously, it is not possible to onstrut mappings of the pseudo-random numbers thatare adjusted for all Feynman diagrams at the same time. What an be done is to onstruta mapping for eah squared diagram following the proedure desribed above. The naiveapproah would be to hoose one of these mappings randomly at eah iteration of theintegration. However, it might happen that one mapping produes a phase-spae pointwhere another diagram beomes resonant, but the Jaobian of this mapping is small anddoes not smooth the integrand. As a solution the multi-hannel Monte Carlo tehnique[ 54℄ was developed. In this approah the mappings for the various diagrams, whih arealled \hannels", are ombined in suh a way that the integrand is smoothed everywherein phase spae (for squared propagators; interferenes of di�erent diagrams are not takeninto aount). To this end, the integration over the phase spae of n = 4(5) �nal-statepartiles is rewrittenZ d�n Pi �igigtot jMj2 =Xi �i Z 10 dr8(11) jMj2gtot ; gtot =Xi �igi; (A.6)in terms of the pseudo-random numbers r. The densities gi, whih are the produt ofthe inverse jaobians in Eqs. (A.3) and (A.5), are ombined in the total density gtot.This density smoothes the squared matrix element jMj2. The parameters �i >� 0, withPi �i = 1, denote the probability that a ertain hannel is hosen. This means that for



Phase-spae integration 125eah event a single hannel is hosen with probability �i, and the phase-spae on�gurationis determined aording to the mapping of the hannel. In addition to the density of thishannel, also the densities of all other hannels at the given phase-spae point have to bealulated in order to obtain gtot. The probability �i is optimized aording to Ref. [ 103℄to minimize the statistial error as muh as possible. This proedure, alled \adaptiveoptimization", is repeated several times during the integration.For the proess  ! 4f() the number of hannels ranges from 13(72) for  !�ee+�����() to 71(468) for  ! u�ud�d(). Generally, the number of Feynman diagramsoinides with the number of hannels. Only the diagrams with gluon exhange reeivethe same mapping as the orresponding diagrams with photon exhange. In the integra-tion over the matrix elements for H !WW=ZZ! 4f(), there are muh less diagrams,resulting in 1-10 hannels. However, below the WW and ZZ thresholds, only one propa-gator an beome on shell. Therefore, we introdue additional hannels, in whih one ofthe propagators reeives a at mapping instead of the Breit-Wigner mapping (A.2).For both proesses additional hannels are onstruted aording to Ref. [ 53℄ for theintegration of the subtration terms de�ned in Setion 4.3.1.2. These terms are integratedover the 4f phase spae �4f but also depend on the 4f phase spae �4f;ij. Therefore,the 4f phase spae is generated �rst, and from this the 4f phase spae is onstrutedwith the mappings orresponding to di�erent emitter/spetator pairs i=j.A.2 Tehnial parametersIn the Monte Carlo generator several tehnial parameters are introdued for di�erentpurposes. First, we disuss the parameters of the mappings for propagators with vanishingwidth introdued in the previous setion. Although the squared matrix element ontains afator (p2)�2, the hoie � <� 1 turns out to be more appropriate, beause the propagatoris partly anelled in the ollinear limit where p2 beomes small. The mass ould behosen m2 = 0, beause the mapping is used for photons and for fermions, whose massis negleted. However, the density gi in Eqs. (A.5) and (A.6) ould get arbitrarily largein this ase, and the mapping (A.4) produes many events with small p2 inreasing thenumber of events that have to be disarded due to numerial instabilities. Therefore,it is useful to hoose m2 = �a with a positive a. This mitigates the strong inrease ofgi for p2 ! 0. We hoose a � 10�5GeV2 for the subtration method, but hanging aover several orders of magnitude has almost no visible numerial impat. For the sliingmethod, however, a should be hosen smaller, beause many events are needed in the softand ollinear regions due to the large squared matrix elements in this region.Seond, the ut-o� parameters used in the phase-spae sliing method are hosen�EECM � 3�10�4, with CM energy ECM, and �� � 10�2 (orresponding to 1�os � > 5�10�5for non-singular events). For a suÆiently large number of events this results in anauray of O(10�3) or better as an be seen in Figures 4.4, 4.5, 5.5, and 5.6. In thesingular regions de�ned by �E and �� the matrix elements are integrated analytiallyin the soft or ollinear approximation, respetively. In order to redue the orrespondingerror, the uts have to be hosen smaller. Thus, one of the weaknesses of the sliingmethod is that for given �E and ��, the auray of the alulation annot be improved
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Figure 6.1: Comparison of the relative orretions obtained with the subtration and thesliing methods. The plot on the l.h.s. shows the distribution in the angle between thedeay planes of the Z boson in the proess H ! ZZ ! e�e+���+ and the plot on ther.h.s. shows the invariant mass distribution of the ���+ pair with and without photonreombination for MH = 170GeV.simply by inreasing the number of events. The above hoie of parameters is suh thatthe statistial error of the integration with the sliing method is generally larger than theorresponding error in the subtration method. If the desired auray is at the orderof several per mille, it suÆes to alulate with larger sliing uts. For example, thehistograms ontained in this work agree between the subtration method and the sliingmethod with �EECM = 10�3 and �� = 3 � 10�2 within the statistial error of the integration,whih is smaller in this ase. In Figure 6.1 we show the omparison for the angle betweenthe deay planes de�ned in Eq. (5.5.6) and the invariant mass distribution of the ���+pair in the proess H! ZZ! e�e+���+ .Third, we introdue parameters in order to overome numerial instabilities. Sine thepreision of variables in a numerial integration on a omputer is limited, it might happenthat in ertain kinematial regions the weight of an event is not alulated orretly. Forexample, time-like invariants an beome smaller than zero. With O(107) events thismay happen a few times. In this ase, we disard the event. In the subtration method,the bremsstrahlung matrix elements are ompletely integrated over, i.e. also over thesingular region. The subtration terms are onstruted in suh a way that they anel thesingularities. Hene, the weight should vanish in the soft and ollinear limit. However,as the terms get very large, the anellation is not aurate anymore due to the limitednumerial auray. Therefore, events with an invariant mass of a photon and a hargedfermion of m2inv < m2inv;min are disarded. We hoose m2inv;min = (10�4ECM)2, but theintegration is stable for a variation of m2inv;min over a relatively large range, beause the



Soft and ollinear divergenes 127events that are disarded have a negligible weight. This ut a�ets up to O(10�2) of theevents.Finally, numerial instabilities an our in the generation of histograms. In the sub-tration method, whih was introdued in Setions 4.3.1.2 and 4.3.2.2, the anellationbetween the bremsstrahlung matrix elements and the subtration terms is non-loal. Thebremsstrahlung matrix elements are de�ned on the 4f phase spae �4f , while the sub-tration terms are de�ned via the mapping to the 4f phase spae ~�4f;ij. For non-ollinear-safe observables the events of the subtration terms are distributed to the histogram binsaording to ��pi = zij ~pi; k = (1 � zij)~pi; f~pk 6=ig� as de�ned in Eq. (4.3.17). In the softlimit the momenta of both phase spaes oinide. Nevertheless, it may happen that loseto the singularity the two orresponding large weights, whih ompensate eah other, aredistributed into neighbouring bins of the histogram. This means that the integral fora spei� bin shows large utuations. For the proesses  ! 4f , however, numerialproblems of this kind are smaller than the overall statistial unertainty. In the ase ofH ! WW=ZZ ! 4f the statistial error of the histograms is deteriorated onsiderablydue to this non-loal anellations. Therefore, we distribute weights of the subtrationterms into the histograms aording to �(�4f), if the photon momentum is k < 10�3ECMand yij < 10�3. Equation (4.3.9) implies that the momenta ~pi of �4f;ij and pi of �4fare almost the same under this ondition. The number of events that are a�eted bythis ut is of O(10�3). Another situation where the de�nition of the histogram bins isproblemati ours in Eq. (4.3.19). For z ! 1, �G(sub)ij (~sij; z) beomes very large. Dueto the [:::℄+ presription two events with large weight, whih anel eah other in theintegrated ross setion, might be distributed to di�erent bins. Again, for the proesses ! 4f the numerial e�et is obsured by statistial unertainty of the integration.For the proesses H!WW=ZZ! 4f it turns out that a ut of (1� z) < 10�3 does nothange the distributions but improves the statistial unertainty.B Soft and ollinear divergenesIn this appendix we desribe di�erent ontributions to the soft and ollinear diver-genes that appear in the alulation of the one-loop orretions to  !WW! 4f andH!WW=ZZ! 4f .Soft divergenes in the real orretions arise if a photon with very small energy isemitted from an external partile, while ollinear divergenes arise due to ollinear photonemission from a light external partile. The orresponding soft divergenes in the virtualorretions appear when a massless partile is exhanged between two external partiles.This situation is illustrated in diagram (a) of Figure 6.2, where a photon is exhangedbetween two on-shell fermions with small masses m1 and m2. If the momentum transferof the photon tends to zero, the propagator denominators, whih an be written as q2,q2+2qp1, and q2�2qp2, ause a logarithmi singularity of the orresponding loop integral.Collinear singularities in virtual orretions arise if a massless external partile ouplesto two massless partiles. In this ase the singularity originates from a region in the loopintegral, where the momenta in the massless propagators are ollinear to the momentum ofthe external partile. In fat, diagram (a) of Figure 6.2 also ontains a ollinear singularity.



128 Appendix(a)s12 V p2; m22
p1; m21m1m2 q; � (b)s12 V m22

m21�MV m1
Figure 6.2: Two vertex subdiagrams of the proesses  ! WW ! 4f and H !WW=ZZ ! 4f , where a gauge boson V = W=Z ouples to two fermions, ontainingsoft and ollinear (mi � s12;M2V ) singularities.For q � xp1 with a onstant x, the photon is ollinear to the fermion with mass m1, andthe two orresponding propagator denominators are x2p21 and (x + 1)2p21 in the limit ofvanishing fermion mass (p21 = m21 ! 0). Consequently, the loop integral also develops alogarithmi singularity for this on�guration.In Ref. [ 104℄ an expliit formula for the soft and ollinear singularities of a general ten-sor one-loop N-point integral was presented. The appliation to the diagrams of Figure 6.2is, of ourse, partiularly simple. Deomposing the tensors and reduing them to salarintegrals, the matrix element for diagram (a) an be written in the onventions of Ref. [ 6℄as M(a) � � �2�Q1Q2MBs12(C0 + C1 + C1)� � �2�Q1Q2MB�s12C0 � B0(m21; m1; �)� B0(m22; m2; �)�� � �2�Q1Q2MB�ln �2��s12! ln�m1m2��s12 �� 14 ln2  m21��s12!� 14 ln2  m22��s12!+ ln m21m22s212 !�; (B.1)where Qi denote the relative fermion harges,MB denotes the orresponding Born matrixelement, and �s12 = s12 + i�. The sign � indiates that non-singular parts were omitted.The singularities are regulated with mass parameters for the photon, �, and for thefermions, m1 and m2 (js12j � m21;2 � � ! 0). The ollinear singularity of diagram (b)an be derived asM(b) � � �2�Q1(Q1 �Q2)MBs12C1� + �2�Q1(Q1 �Q2)MB�B0(m21; m1; �) +M2VC0�� � �2�Q1(Q1 �Q2)MB ln m21s12!�1 + M2Vs12 ln 1� �s12M2V !�: (B.2)The singularities of the diagram where the photon ouples to the fermion with mass m2is obtained by appropriate substitutions.The alulation of radiative orretions to  ! WW ! 4f in DPA inluded theorretions to the deay of on-shell W bosons. In this ase diagram (b) also develops a



Soft and ollinear divergenes 129soft singularity, as an be seen from Eq. (B.2), whih is not de�ned for s12 ! M2W. Inthis limit the singularity of diagram (b) an be written asM(b)s12!M2W � � �2�Q1(Q1 �Q2)MB�ln m21M2W!� ln�m1MW�2 � ln� m1MW��: (B.3)The singularities of the orresponding ounterterm, whih originates from the �eld renor-malization onstants of the W boson and of the fermions, readMount � � �4�MB�ln �2M2W!+ 2Xi=1Q2i �ln �2m2i !� 12 ln m2iM2W!��: (B.4)Summing up all ontributions for both W-boson deays in  ! WW ! 4f and takingalso the limit s12 ! M2W for diagram (a), the singularities an be written as a fator tothe squared lowest-order matrix element for  !WW! 4f ,Æ4fWf �f 0 � � �2�(2 ln �2M2W!+ ln �2M2W! 4Xi=1Q2i "1 + ln m2iM2W!#+ 12 4Xi=1Q2i �ln m2iM2W!� ln2  m2iM2W!�): (B.5)Similarly, the prodution proess of the on-shell W bosons aquires a soft singularity [ 39℄,Æ4fWW � ��� ln �2M2W!(1 + s� 2M2Ws� ln 1� �1 + �!); � � s1� 4M2Ws (B.6)with the CM energy ps. As explained in Setion 4.2.3 the soft singularities for photonemission o� on-shell W bosons were arti�ially introdued in the deomposition of thevirtual orretions in DPA. They anel together with the non-fatorizable orretions,Æ4fnf � �� ln �2M2W!(2 + s� 2M2Ws� ln 1� �1 + �!�Q1Q3 ln s13M2W!+Q1Q4 ln s14M2W!+Q2Q3 ln s23M2W!�Q2Q4 ln s24M2W!); (B.7)where sij was de�ned in (4.1.3). The �rst term stems from the diagrams of type (mm)depited in Figure 4.2, the seond term from the diagram of type (mm0), and the lastterms from diagrams of type (ff 0). The sum Æ4fWf �f 0 + Æ4fWW + Æ4fnf yields the ompletesingularities of the virtual orretions to  !WW! 4f ,Æ4fsing;virt � �2� 4Xi;j=1i6=j (�1)i+jQiQj�ln m2isij ! ln �2sij!+ ln �2sij!� 12 ln2  m2isij !+ 12 ln m2isij !�; (B.8)



130 Appendixwhere we used Qi = P4j=1j 6=i Qj(�1)(i+j) and the fat that in DPA after the on-shell proje-tion the invariants obey s12 = s34 =M2W. Even though Eq. (B.8) was derived in DPA, itis valid also for the omplete  ! 4f proess without on-shell projetion, as an be seenfrom the onstrution of the dipole-subtration terms in Eq. (4.3.11). In order to avoida mismath between the singularities of the virtual orretions, whih are alulated inDPA, and the singularities of the real orretions, whih are alulated without on-shellprojetion, we proeed as explained in Setion 4.1. We subtrat the singular part of thevirtual orretions, de�ned via the negative of Eq. (4.3.11) in DPA, and readd the sameexpression with o�-shell kinematis. The error introdued by this proedure is of the orderof the auray of the DPA. Note that the singularities that are subtrated and readdedin this way, should not be de�ned from the orresponding Eqs. (4.3.3) and (4.3.4) of thesliing method, beause these expressions involve the small sliing parameters �E and��. Hene, these parameters would not drop out in the �nal result.The proess H!WW=ZZ! 4f is alulated with o�-shell gauge bosons. Hene, thesingularities from vertex diagrams are given by Eqs. (B.1) and (B.2). In addition, ollineardivergenes arise from box diagrams, where a photon ouples to an external fermion andan internal gauge boson, and soft and ollinear divergenes arise from pentagon diagrams,where a photon ouples to two fermions originating from di�erent gauge bosons. Sinethe proesses  !WW! 4f and H!WW=ZZ! 4f involve the same �nal state, thesum of all ontributions is also given by Eq. (B.8).C Transformation of the oeÆient funtions FjIn this appendix we desribe the transformation of the oeÆient funtions Fj for thefatorizable virtual orretions (4.2.9) that transforms all Fj into the heliity amplitudesof the on-shell proess  !WW.The 36 SMEMWWj of Ref. [ 39℄, whih �x the oeÆient funtions Fj by Eq. (4.2.6),are de�ned for 36 di�erent heliity on�gurations whih an be enumerated with a singleindex l, MWWj (�1; �2;�+; ��) � Mjl; l = (�1; �2; �+; ��); (C.1)where j; l = 1; : : : ; 36. The 36�36 matrix M is expliitly obtained by inserting momentaand polarization vetors into the 36 independent SMEMWWj of the 83 strutures de�nedin Eqs. (5){(9) of Ref. [ 39℄.If we transform the Fj aording tôFl = 36Xj=1FjMjl; (C.2)the funtion F̂l is the heliity amplitude for the on-shell proess  !WW orrespondingto the heliity on�guration l = (�1; �2; �+; ��). As suh, it an be well approximated bythe generalized Fourier series desribed in Setion 4.2.2.2. It is important to notie thatin Ref. [ 39℄ the sattering plane spanned by the beam axes and the produed W bosonswas rotated into the (x1; x3)-plane, so that the SMEMWWj depend only on s and os �,



Transformation of the oeÆient funtions Fj 131or equivalently on s and t̂. Sine, thus, the matrix M is a funtion of s and t̂, also thenew funtions F̂l depend only on s and t̂, but not on the azimuthal angle of the satteringplane or other on kinematial variables. Aording to Eq. (C.2), the SME Mj transformas M̂l = 36Xj=1(M�1)ljMj; (C.3)where M�1 denotes the inverse matrix of M . By onstrution, the transformation de-ouples the di�erent heliity hannels of  ! WW. When inluding the W deays inthe SME, as done in Eq. (C.3), this deoupling is somewhat disguised for the W-bosonpolarizations, but still valid for the photon heliities. This means that the new SMEM̂l onsist of four subsets, eah of whih ontributes only for one of the four di�erentpolarization ombinations (�1; �2) of the photons. In pratie, we have evaluated andsimpli�ed the matrix M and the new SME M̂l analytially as muh as possible.
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