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Zusammenfassung

Die vorliegende Arbeit beschäftigt sich mit der statistischen Modellierung und Inferenz
genetischer Netzwerke. Assoziationsstrukturen und wechselseitige Einflüsse sind ein
wichtiges Thema in der Systembiologie. Genexpressionsdaten weisen eine hohe Di-
mensionalität auf, die geringen Stichprobenumfängen gegenübersteht (“small n, large
p”). Die Analyse von Interaktionsstrukturen mit Hilfe graphischer Modelle ist dem-
nach ein schlecht gestelltes (inverses) Problem, dessen Lösung Methoden zur Regulari-
sierung erfordert. Ich schlage neuartige Schätzfunktionen für Kovarianzstrukturen und
(partielle) Korrelationen vor. Diese basieren entweder auf Resampling-Verfahren oder
auf Shrinkage zur Varianzreduktion. In der letzteren Methode wird die optimale Shrink-
age Intensität analytisch berechnet. Im Vergleich zur klassischen Stichprobenkovarianz-
matrix besitzt speziell diese Schätzfunktion wünschenswerte Eigenschaften im Sinne
von gesteigerter Effizienz und von kleinerem mittleren quadratischen Fehler. Außer-
dem ergeben sich stets positiv definite und gut konditionierte Parameterschätzungen.
Zur Bestimmung der Netzwerktopologie wird auf das Konzept graphischer Gaußscher
Modelle zurückgegriffen, mit deren Hilfe sich sowohl marginale als auch bedingte Un-
abhängigkeiten darstellen lassen. Es wird eine Methode zur Modellselektion vorgestellt,
die auf einer multiplen Testprozedur mit Kontrolle der False Discovery Rate beruht.
Dabei wird die zugrunde liegende Nullverteilung adaptiv geschätzt. Das vorgeschla-
gene Framework ist rechentechnisch effizient und schneidet im Vergleich mit konkur-
rierenden Verfahren sowohl in Simulationen als auch in der Anwendung auf molekulare
Daten sehr gut ab.
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Summary

The present work is concerned with modeling and inferring genetic networks. Asso-
ciation and dependency structures are ubiquituous in systems biology. Current gene
expression data sets include a large number of variables, but only few samples (“small
n, large p”). Thus, the application of graphical models is an ill-posed (inverse) problem
that requires explicit regularization. In this thesis, I propose several novel estimators
of covariance and (partial) correlation. These are based on variance reduction either
by bootstrap aggregation or by shrinkage. The novel shrinkage estimator exploits an
analytic formula for determining the optimal shrinkage intensity and reveals particu-
larly distinct advantages over standard estimators: in addition to increased efficiency
and accuracy, it is always positive definite and well-conditioned. For inferring network
topology, specific focus is on graphical Gaussian models (GGMs) based on the concept
of conditional independence. A model selection procedure is introduced that employs
false discovery rate multiple testing with adaptive estimation of the null distribution.
The proposed small-sample framework is computationally efficient and performs very
favorably compared to competing approaches both in simulations as well as in applica-
tion to real expression data.
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1. Introduction

Over the past years research in the life sciences to understand complex biomolecular
mechanisms in the cell has shifted from a hypothesis-driven to a discovery-driven sci-
ence. This trend is inspired by achievements in genome sequencing and technical break-
throughs in spotting high-density hybridization probes that have led to an explosion in
the availability of expression data on a genome-wide basis. While the publication of the
draft sequence of the human genome (Sachidanandam et al., 2001; Venter et al., 2001)
marks the culmination of several decades of work, functional genomics represents a
more advanced state of genome analysis that is still in its infancy. It refers to the devel-
opment and application of global experimental approaches to assess gene function and
gain a deeper understanding of underlying cellular processes. A functional genomics ap-
proach is characterized by high-throughput or large-scale experimental methodologies
combined with statistical and computational analysis of the results. The main focus
is on expansion of the scope of biological investigation from studying single genes or
proteins to studying all genes or proteins simultaneously in a systematic fashion. How-
ever, from a statistical point of view the transformation of observed genomic data into
biological insights is a challenging task. The particular dimensionalities in current ge-
nomic data sets, namely a large number of investigated features as opposed to typically
very few samples, pose novel demands on modeling and inference in bioinformatics and
computational biology. Methods and tools, i.e. software implementing the methods, are
required to analyze responses of thousands of genes in order to identify interesting genes
or clusters of genes that may help biologists –subject to further extensive investigation–
to solve real-world problems, e.g., to identify potential drug targets.

Genome data, such as protein and nucleotide sequences, have a relatively simple
structure compared to the more and more complex data types that are currently emerg-
ing from novel high-throughput technologies (e.g., hybridization-based assays such as
microarrays, protein assays, mass spectrometry). This development goes along with
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1. Introduction

data analysis methods that are rapidly moving away from simple exploratory tools to
model-based approaches. The most striking example are microarray data for which
large-scale probabilistic models are becoming increasingly popular.

As the complex functions of a living cell are carried out through the concerted activity
of genes and gene products, the network emerges as a paradigm in molecular biology.
It is generally assumed that gene expression profiles tend to portray cellular functional
structures. The application of cluster analysis methods to expression data was initiated
in 1998 (Eisen et al.). Furthermore, gene expression is controlled as a response to in-
ternal as well as external stimuli, e.g. stress conditions. Cells’ abilities to fine-tuning
their intracellular programs in response to environmental conditions and to correcting
internal errors, such as mutations and misfolded proteins, are amazing. Thus, it is ev-
ident that the detailed inventory of genes, transcripts, proteins, and metabolites is not
sufficient to understand the cell’s complexity. For understanding biology at the system
level, structure and dynamics of cellular and organismal function need to be discussed
as pointed out by Kitano (2002b,a). The focus of the present work is on modeling and
inferring network-like interaction structures from complex high-dimensional genomic
data.

Oltvai and Barabási (2002) design the so-called complexity pyramid of life (cf.
Fig. 1.1) composed of the various molecular components of the cell – genes, transcripts,
proteins, and metabolites – that offers an even more complex perspective on cellular
organization. The different levels that administer information storage, information pro-
cessing, and execution of cellular programs appear to be integrated rather than distinct.
In other words, cellular functions are distributed among groups of heterogenous compo-
nents that interact within large networks (Jeong et al., 2000). The elementary building
blocks organize themselves in small recurrent patterns, called pathways in metabolism
and motifs in gene regulatory networks that both together set up functional modules. Hi-
erarchical nesting of modules defines the cell’s large-scale architecture that is assumed
to be shared across most species, while the degree of universality is gradually decreas-
ing from functional modules over key metabolic pathways to the precise repertoire of
components – genes, proteins, metabolites – that is unique to each organism.

The scale-free connectivity with embedded modularity, i.e. domination by a few
highly connected nodes (“hubs”) that provide the connections between modules respon-
sible for distinct functions, appears to be valid beyond the scope of cellular organization.

2



Figure 1.1.: Life’s complexity pyramid composed of the molecular components of the cell
(figure source: from Oltvai and Barabási, 2002). Net-like structures emerge on various levels of
cellular organization.
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1. Introduction

Characteristic topologic properties are shared across networks as different as social net-
works and the World Wide Web.

However, creating stochastic models for inferring large-scale gene interaction on var-
ious levels is a challenging task. In principle, statistics offers a host of suitable models
and inference approaches for learning genetic networks. Therein contained are various
multivariate approaches, e.g., clustering and dimension reduction techniques, graphical
models, time series models and many more. The big problem of eventually applying
these models in systems biology is the amount of available data. Current experimen-
tal genomic data sets are huge. However, the advance in technology has increased the
number of investigated features p while the number of samples n has not, and can not,
similarly be increased. As a result, experimental data typically comprise measurements
of between 10,000 (gene expression data) and > 1 million variables (single nucleotide
polymorphisms – SNPs) for only a handful of samples (10 – 1,000).

In order to illuminate cellular and organismal function, it is crucial to choose bio-
logically relevant models and at the same time provide methods for proper and robust
inference in a “small n, large p” setting. Typically, high-dimensional experimental ap-
proaches cause ill-posed problems in statistical analysis. Referring to this, it is gener-
ally prudent to employ sparse and simple models which leads to the problem of finding
a trade-off between the desired model complexity and analytical feasibility. Very gen-
erally, in a “small n, large p” data setup estimators benefit from using carefully regu-
larized methods and exact tests only arrive at reliable conclusions. In some situations
it may even be possible to exploit the high-dimensionality in genomic data sets, such
that a seemingly disadvantage in the analysis, namely the large number of variables p,
can effectively be turned into an advantage. Finally, it is of prime importance to make
allowance for multiplicity issues.

This work concentrates on the particular demands that small-sample genomic data
make with regard to modeling and inference. Regularization methods are of prime im-
portance in this respect. Two major concepts are considered for improving upon inac-
curate estimators of covariance and (partial) correlation matrices: bootstrap aggregation
and shrinkage. The specific bioinformatical problem that careful attention is payed to in
this work is the search for networked gene association patterns. Graphical models essen-
tially go back to Wright’s (1921) seminal work on path analysis. Subsequently, graph-
ical modeling theory has experienced various extensions – see for example Whittaker
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(1990) and Lauritzen (1996) for references – and has very generally emerged as a pop-
ular approach for elucidating stochastic associations and interdependencies in complex
highly-structured multivariate data. However, given small-sample data such as from
a functional genomics experimental approach, standard theories are no longer readily
applicable. Instead it is necessary to introduce moderation and to provide specifically
tuned methods for estimation, testing, and model selection. It is a common concern of
the present work to establish methods that are straightforward to use in practice and that
ensure feasible computational effort.

The outline of the thesis is as follows. Chapter 2 gives a brief introduction to molec-
ular biology and microarray systems. Special focus is thereby on establishing an un-
derstanding of biomolecular fundamentals and of novel high-throughput technologies
that provoke, e.g., issues of expression data pre-processing. In particular, the intention
is to stress the distinctive dimensions of functional genomics data because it is these
dimensions that motivate efforts to introduce regularization in standard modeling and
inference concepts. Following some preliminary notes on graph-theoretic terminology,
on (conditional) independence graphs, and on graphical models, in Chapter 3 a work re-
view is presented with regard to the application of graphical Gaussian models (GGMs)
in expression analysis and the various strategies that have emerged in this context in the
literature to cope with the “small n, large p” problem.

Chapter 4 gives an extensive survey over current methods of covariance matrix esti-
mation combined with the introduction and validation of new estimators of covariance
and (partial) correlation matrices. Regularization is introduced in the form of boot-
strap aggregation and of shrinkage methods combined with a recent analytic result from
Ledoit and Wolf (2003) for computing the optimal shrinkage intensity. In particular the
latter approach reveals distinct advantages in terms of efficiency and prediction accuracy
and in terms of further favorable statistical properties such as positive definiteness.

The focus of Chapter 5 is on precise GGM network selection that is cast using a multi-
ple testing procedure based on an exact correlation test for the individual edge inclusion
problems. The massively parallel structure of the problem of inferring net-like inter-
action structures from large-scale genomic data allows for employing empirical Bayes
methodology. This ensures identifiabiliy of the sampling distribution of correlation es-
timates under the null hypothesis. Similar to shrinkage, the idea of “borrowing strength
across variables” is formalized. An indispensable prerequisite in this context is recog-
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1. Introduction

nizing that biological knowledge can be exploited, namely the sparsity of molecular
networks (only very few out of all possible edges in the network are expected to be
truly present). In large-scale hypothesis testing situations where a selection effect is of
concern rather than controlling the family-wise error rate, false discovery rate criteria
are sensible. Graphical model selection using false discovery rate multiple testing con-
stitutes an heuristic, yet fast and computationally efficient alternative to proper model
search. Finally, the proposed small-sample framework for GGM network inference is
investigated in an extensive simulation study with respect to estimation accuracy, model
validation, and power analysis.

Chapter 6 introduces the lasso approach (Tibshirani, 1996) to covariance selection.
The lasso L1 penalty may cause some of the coefficients in the various neighborhood
selection regression problems to become exactly zero. Thus, the lasso does a kind of
continuous edge subset selection per node depending on the choice of the shrinkage
factor. For synthetic data, its performance is compared to the empirical Bayes GGM
network inference procedure proposed in Chapters 4 and 5.

Chapter 7 is concerned with real molecular data analysis. Firstly, the breast cancer
data set published in West et al. (2001) is reanalyzed. Secondly, the shrinkage approach
to GGM selection using empirical Bayes multiple testing (proposed in Chapters 4 and
5 of the present doctoral thesis), the lasso approach to GGM selection with choice of
the penalty as suggested in Meinshausen and Bühlmann (2005a), and the standard and
widely applied “gene relevance network” method (Butte et al., 2000) are contrasted
using exemplifying gene expression data from an E. coli experiment (Schmidt-Heck
et al., 2004). Finally, in Chapter 8 summary and discussion of the presented work lead
to an exposure of possible directions for future research.

6



2. Network Biology: Understanding

Cellular Functional Organization

Functional genomics expression profiling is promising to elucidate open problems in
the life and medical sciences. For this purpose, bioanalytical efforts are undertaken,
e.g., in order to detect diverse gene expression patterns in a simple pairwise compari-
son, comparisons under multiple conditions, or in a time course experiment. The aim
is often to determine marker genes whose expression differs between different tumor
types, for instance. By examining the level of gene expression, e.g., in cell populations
of disease and pre-disease states, investigators aim to understand the steps of disease de-
velopment and to identify the genes that are involved in it. In this context, personalized

and preventive medicine put the focus of the healthcare system back on the individual
patient. There is great diversity among human beings, and, in order to provide safe and
efficacious treatments, it is necessary to consider their particular conditions and medical
needs. For this purpose, novel biomarkers are added to the ever-increasing pharmacodi-
agnostical tool box. Disease markers allow for an early prediction and differential diag-
nosis. Efficacy and safety markers provide useful information regarding identification
of patients who are responsive to a particular compound and of patients who are prone
to serious adverse events. However, pharmacogenomics is a developing research field
that is still in its infancy. Moreover, besides the genetic background gene-environment
interactions are of prime importance, e.g. in the area of mental disorders.

2.1. Biological Background

A brief overview of the basic concepts of molecular biology that are relevant to this the-
sis stands at the beginning. Further details are referred to molecular biology textbooks
(e.g., Li and Graur, 1991; Gibson and Muse, 2002).
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2. Network Biology

Cells are the fundamental working units of every living system. All the instructions
needed to direct their activities are contained within the double-stranded DNA (deoxyri-

bonucleic acid) that can be found in the nucleus of all cells. Each of its strands consists
of a sequence of nucleotides or bases. There are four different bases: adenine (A),
thymine (T), cytosine (C), and guanine (G). The two strands of the DNA evolve from
the four bases pairing in a particular manner: adenine pairs with thymine, while cyto-
sine pairs with guanine. The human genome, for example, consists of some 3 billion
base pairs. It should be noted that all of life’s diversity results from the particular order
of nucleotides in the genome. Put differently, the DNA is the ultimate depository of
biological complexity.

The DNA is organized in physically separate molecules, the chromosomes. It contains
instructions for the synthesis and regulation of proteins that determine shape, structure,
and function of the cell. The instruction for making up a particular protein is coded on
a segment of DNA which is called a gene. Each chromosome contains many genes, the
basic physical and functional units of heredity. However, genes comprise only about
2% of the human genome, while the remainder consists of non-coding regions whose
functions may include providing chromosomal structural integrity, for example. The
human genome is estimated to contain 20,000 – 25,000 genes. However, not the number
of genes, but the regulatory program is responsible for the diversity among organisms
as different as worm and man.

Although genes get a lot of attention, it is the proteins that perform most life functions
and make up the majority of cellular structures. Proteins are large, complex molecules
made up of smaller subunits, the amino acids. Chemical properties, that distinguish 20
different amino acids, cause the protein chains to fold up into specific three-dimensional
structures. The constellation of all proteins in a cell is called its proteome. Unlike
the relatively unchanging genome, the dynamic proteome is constantly changing in re-
sponse to a multitude of intra- and extracellular signals. Chemistry and behaviour of
a protein are specified by the gene sequence and by the number and identities of other
proteins with which it associates and reacts. Studies to explore protein structure and
activities, known as proteomics, will be the focus of much research for decades to come
and will help to elucidate the molecular basis of health and disease.
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2.2. Introduction to Microarray Technology

2.2. Introduction to Microarray Technology

Microarray technology is a powerful tool to monitor expressions of hundreds or thou-
sands of genes in a single experiment. High-density array systems utilize the central

dogma of molecular biology which is a two-step process:

1. An enzyme complex, the so-called RNA polymerase, transcribes the nucleotide
sequence coding for a certain protein into single-stranded messenger RNA (mRNA)
molecules. Transcription includes splicing in the nucleus where the large intron
sequences are removed. The abundance of mRNA is widely denoted level of gene

expression.

2. The synthesis of proteins yet requires further processing of the mRNA. Ribo-
somes in the cytosol translate the mRNA into corresponding proteins.

It should be noted that effectively all steps of expression are subject to active con-
trol by regulators cooperating in a complicated combinatorial manner. The fact that
post-translational modifications are disregarded by microarray measurements is one im-
portant reason to handle these data with caution. Moreover, the modern as opposed
to the above classical view of the central dogma of molecular biology suggests several
mRNAs resulting from alternative splicing events that greatly increase the complexity
of gene expression.

The process of conducting a microarray experiment is briefly outlined in the follow-
ing. For high-density expression array production, gene specific probes are fixed on a
solid support which is usually a glass microscope slide. More specifically, a probe con-
sists of complementary DNA (cDNA) or oligonucleotides attached to the array surface.

The system of oligonucleotide expression arrays (Lockhart et al., 1996) is also known
by the trademark Affymetrix GeneChip. Each gene is represented by 16–20 pairs of
oligonucleotides with length 25 base pairs each that are referred to as probe sets. Each
pair consists of a perfect match (PM) and a mismatch (MM) probe, where in the latter
the middle base is changed with the intention to measure non-specific binding. In order
to obtain an intensity value for each probe that represents the amount of corresponding
mRNA in the original sample, a way has to be found to combine the 16–20 probe pair
intensities. Irizarry et al. (2003) discuss the problem of defining an effective measure
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2. Network Biology

of gene expression using the probe level data and introduce a summary measure that
is a robust multiarray average (RMA) of background-adjusted, normalized, and log-
transformed PM values. The necessity of pre-processing the raw expression data is
discussed in more depth later in this section.

In contrast, the underlying concept of cDNA microarrays is competitive hybridization

between a sample that is labelled with the red-fluorescent dye cyanine 5 (Cy5) and a
sample that is labelled with the green-fluorescent dye cyanine 3 (Cy3) referred to as the
two channels of the two-color microarray experiment. The pairing of target samples for
hybridization leads to a measure of relative abundance of two sets of mRNA.

For sample preparation, RNA is isolated from cells or tissues of interest, e.g., cells
that have undergone a certain treatment versus control cells. RNA quality checking is
sensible, e.g. by gel electrophoresis. Sample labeling follows, i.e. incorporation of
fluorescent dyes or radioactivity. This process usually involves a reverse transcription
step. Single color and dual color experiments are distinguished.

The so-called target cDNAs can hybridize to the complementary probe strand in com-
pliance with the base pairing rules. Hybridization takes place during incubation of the
microarrays for several hours with a hybe-mix containing the labeled cDNAs. Strin-
gency washes to remove non-specific binding follow. After drying the array, laser
scanning and quantification techniques yield an intensity value for each spot, i.e. for
each gene represented on the array. The observed intensity is supposed to represent the
mRNA concentration in the original sample. However, array and sample preparation
as well as hybridization and subsequent steps are subject to introducing error. As a re-
sult, the noise level intrinsic to genomic data is high. Systematic errors can be reduced
by an appropriate data “normalization” method. This aspect of expression analysis is
addressed in the next section.

The problem of how to design a microarray experiment is of vital importance in order
to ensure that the resulting data are amenable to statistical analysis and suitable for an-
swering the scientific question of interest (e.g., Yang and Speed, 2002; Churchill, 2002).
As a consequence, careful allocation of available ressources is necessary. Key issues in-
clude differentiation of sources of variation, namely between biological and technical

variation. Biological variation is intrinsic to all organisms. It may be influenced by ge-
netic or environmental factors. Thus, biological replicates are essential in order to draw
conclusions that are valid beyond the scope of the particular samples that are assayed in
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the experiment. The common practice of pooling mRNA samples prior to hybridization
profoundly affects biological variation. Contrariwise, technical variation is introduced
during extraction, labeling, and hybridization of samples. Technical replicates, in turn,
increase the precision of the results obtained. The ability mentioned before to directly
compare two samples on the same microarray slide is a unique feature of the two-color
microarray system. The repeated dye-swap experiment, where two arrays are used to
compare two samples, is useful for reducing technical variation. On array 1, the control
sample is assigned to the red dye, and the treatment sample is assigned to the green dye.
On array 2, the dye assignments are reversed. Otherwise, when comparing treatment
samples to a reference sample using microarrays each with the same orientation of dye
labeling, dye effects are confounded with treatment effects. In general, choice of the
reference RNA is a crucial issue to decide on.

Technical variation evolves from further sources: in array production, clone quality
is one key issue (Halgren et al., 2001). Pre-screening of non-sequence verified clones is
reasonable in order to eliminate contaminated clones from the probe set in cDNA mi-
croarray manufacturing. cDNA probe amplification (polymerase chain reaction – PCR)
does not work for some clones resulting in too low concentrations of the PCR prod-
ucts. Furthermore, during the spotting process pin printing failures may lead to varying
spot sizes and probes mixing on the slides, i.e. bad spot morphologies. Scratches, dust
or other contaminations give rise to an inhomogenous array surface coating. Finally,
choice of a quantification method that is not appropriate for the specific spot character-
istics may result in systematically biased expression intensities.

Commercial microarray solutions are standardized with respect to array production
and experimental protocols, i.e. they are subject to quality controlling. However, as
these commercial solutions are expensive and nevertheless inflexible, because only stan-
dard sets of arrays are available, it is not uncommon that users opt for in-house microar-
ray laboratories where each adheres to its own experimental protocol.

2.3. Calibration and Data Transformation

Due to the various sources of variation discussed in the previous section, the raw data
are not the intended mRNA concentrations and can not directly be analyzed. Array
and sample manufacturing, labeling and hybridization efficiencies, as well as further

11
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processing steps that finally yield intensity values are “not perfect”. However, the main
problem is that these steps vary from array to array, i.e. experiment to experiment.

Systematic variation is characterized through similar effects regarding many mea-
surements. Appropriate correction parameters can be estimated from the observed data.
This procedure is denoted calibration, sometimes also “normalization”. In contrast,
stochastic variation is too random to be explicitly accounted for.

Huber et al. (2002, 2003), e.g., provide a data pre-processing strategy that proceeds
as follows to form a basis for statistical inference from microarray data.

• Firstly, each sample (array) is calibrated by an affine transformation, where it is
possible to stratify the transformations within arrays. Stratification may be useful
for spotted arrays, e.g., according to print-tip groups, and for oligonucleotide ar-
rays, e.g., according to physico-chemical properties of the probe level data. The
underlying assumption in the latter case is that probes of different sequence com-
position attract systematically different levels of (background) signal. The sim-
plest case of only one stratum amounts to assuming that the data of one sample,
i.e. all probes on an array, were subject to the same systematic effects, such that
an array-wide calibration is sufficient.

• Secondly, the whole data are transformed by a variance-stabilizing transforma-
tion.

After these calibration and variance-stabilization steps, systematic array- or dye-biases
should be removed, and the variance should be approximately independent of the mean
expression intensity.

More specifically, if yki is the matrix of uncalibrated data, with k, k = 1, . . . , n, index-
ing the samples and i, i = 1, . . . , p, the genes, then the calibrated and variance-stabilized
data hki are obtained through the parametric form

hki = arsinh (ask + bskyki), (2.1)

where s ≡ s(i) is the stratum for probe i. ask and bsk are the combined calibration
and transformation parameters for probes from stratum s and sample k, i.e. off-set
and proportionality factor, that account for non-specific and specific signal contribu-
tions, respectively. These parameters are estimated with a robust variant of maximum
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likelihood estimation (Huber et al., 2002, 2003). Finally, it should be noted that the
approach assumes that the majority of genes is not differentially transcribed across the
experiments. This needs to hold if the method is to produce meaningful results. Soft-
ware is publicly available as the R package “vsn” through the Bioconductor project
(http://www.bioconductor.org).

2.4. Cellular Networks

The behaviour of complex cellular and organismal systems emerges from the concerted
activities of many interacting components such as genes and gene products. At a highly
abstract level, the cooperating components can be considered as a set of vertices that are
connected to each other, with links (edges) representing pairwise interactions. Vertices
and edges together form a network or more formally a graph (cf. Section 3.1).

In practise, when the fairly fuzzy term of a “genetic network” is used, one of the
following three types of cellular networks is meant.

Physical networks describe interactions between molecules, such as protein–protein,
protein–nucleid-acid and protein–metabolite interactions that can easily be con-
ceptualized within a graph theoretic description. Typically, in physical networks
experimental approaches allow for determining the precise topology.

Metabolic networks, such as biochemical pathways, usually involve more complex
functional interactions. However, they can also be looked at using the simplifying
vertex-edge nomenclature. For example, substrates can be visualized as the nodes
of the metabolic network, where edges represent enzyme-catalysed reactions that
transform one metabolite into another. Metabolic networks are often modeled
using differential equations.

In genetic regulatory networks, nodes represent individual genes and the respective
links are derived, e.g., from (partial) correlation coefficients computed from ob-
served microarray expression data. Special focus is on elucidating functional in-
teraction structures and regulatory mechanisms.

In this work modeling and inferring genetic regulatory networks is considered. This
type of network is also investigated by, e.g., Friedman et al. (2000), Hartemink et al.
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2. Network Biology

(2002), and Dobra et al. (2004).
Networks can be directed as well as undirected. In directed networks, the interaction

between any two nodes has a well-defined direction, which represents, for example,
the direction of material flow from a substrate to a product in a metabolic reaction, or
the direction of information flow from a transcription factor to the gene that it regulates
(cited from Barabási and Oltvai, 2004). In contrast, in undirected networks, links are not
assigned a direction. At first sight, this may seem less natural. However, consider as an
example for the biological relevance of undirected network models protein interaction
networks, where edges represent mutual binding relationships.

Despite the diversity of cellular networks, they all share a number of architectural
features and are governed by a few fundamental principles that are valid even beyond
the scope of network biology and equally apply to technological and social systems.
Barabási and Albert (1999) introduce the concept of scale-free networks. The notion
“scale-free” is meant to indicate the absence of a representative node in the network that
can be used to characterize all nodes. The most elementary characteristic of any node
in a network is its degree, i.e. connectivity k, that indicates the number of links the node
has to other nodes. The degree distribution P(k) gives the probability that a selected
node has k links. For example, in random networks the node degree follows a Poisson
distribution. Thus, most nodes have approximately the same number of links, whereas
highly connected nodes, also known as hubs, are extremely rare. In contrast, power-law
degree distributions with P(k) ∼ k−γ, where γ is the degree exponent, are characterized
by a few hubs that hold together numerous small nodes. The node connectivity in cel-
lular networks typically follows a power-law degree distribution with γ in the order of
2 < γ < 3. Moreover, Hartwell et al. (1999) strongly argue for modularity in cellular
functional organization. Scale-free network topology and modules, that are responsible
for different processes in the cell, seamlessly integrate to hierarchical systems (Ravasz
et al., 2002).
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Gene Dependency Networks

From the previous section it becomes obvious that modeling and inferring network-
like structures from genomic data is of prime importance in systems biology (cf. also
Fig. 1.1). Very generally, complex stochastic associations and interdependencies can
be described using graphical models (Whittaker, 1990; Lauritzen, 1996). These are
parametric families of probability distributions for multivariate random vectors that
obey certain (conditional) independence restrictions inherent in an independence graph.
Graphical models are promising tools for the analysis of gene interaction because they
allow the stochastic description of networked association and dependency structures in
complex highly structured data. At the same time, graphical models offer an advanced
statistical framework for inference. In theory, this makes them perfectly suited for mod-
eling biological processes in the cell such as biochemical interactions and regulatory
activities.

Consequently, many in part very complicated graphical models such as Bayesian net-
works (e.g., Friedman et al., 2000; Segal et al., 2003; Friedman, 2004), auto-regressive
models (e.g., Yeung et al., 2002; De Hoon et al., 2003), state-space models (e.g., Mur-
phy, 2002; Rangel et al., 2004), and graphical Gaussian models (e.g., Kishino and Wad-
dell, 2000; Toh and Horimoto, 2002a; Wu et al., 2003; Dobra et al., 2004) have already
been applied to genomic data and put to use in expression analysis.

3.1. Conditional Independence Graphs

In this section the requisite terminology and conventions concerning graphs are intro-
duced that are relevant to this thesis. Special attention is given in Section 3.1.2 to con-
ditional independencies reflected by graphical properties.
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Very generally, for three random variables X,Y, and Z it is of interest to see wether
dependence holds for one of them fixed in order to be able to distinguish direct from
indirect dependencies. X and Y are conditionally independent given Z if and only if the
density function of X conditional on Y and Z, fX|YZ, satisfies

fX|YZ(x; y, z) = fX|Z(x; z)

for all values of x and y and for all z with fZ(z) > 0. This is written as X ⊥⊥ Y | Z and
intuitively interpreted as follows: knowing Z renders Y irrelevant for predicting X.

An equivalent characterization of X ⊥⊥ Y | Z is that the joint density fXYZ(x, y, z)
can be factorized into the product of two factors, one not involving x and the other not
involving y, i.e.

fXYZ(x, y, z) = g(x, z)h(y, z), (3.1)

where g and h are some functions.

3.1.1. Graph Theory

A graph G = (V, E) consists of a finite set of vertices V = {1, . . . , p} and a set of edges
E ⊆ V × V corresponding to (conditional) dependencies. X = (Xv, v ∈ V) are the
associated labeled variables. For i, j ∈ V, i , j, unordered pairs {i, j} are distinguished
from ordered pairs (i, j). While the former are connected through an undirected edge
(“line”), the latter are connected through a directed edge (“arrow”), i −→ j. Although
directed graphs look more intuitive, they turn out rather more subtle and complicated
than undirected graphs.

A conditional independence graph G = (V, E) is undirected if it has only undirected
edges and {i, j} is not in the edge set if and only if Xi⊥⊥X j | XV\{i, j}.

Including directed edges in graph-theoretic descriptions along with studying condi-
tional density functions is a natural way to portray asymmetries in the roles of interact-
ing variables. A graph G = (V, E) is directed if it has only directed edges.

For A ⊂ V , let XA = (Xv, v ∈ A) and Xv the state space of Xv. Similarly, xA = (xv, v ∈

A) ∈ XA = ×v∈AXv. The induced subgraphGA is defined as (A, EA) with EA = (A×A)∩E.
A graph G is complete if all pairs of vertices are adjacent, i.e. joint by an undirected or
directed edge. A maximally complete subgraph is denoted clique. Furthermore,
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• the set nb(A) = {k ∈ V \ A | ∃ j ∈ A : { j, k} ∈ E} is called the neighbors of A.

• the set pa(A) = {k ∈ V \ A | ∃ j ∈ A : (k, j) ∈ E} is called the parents of A.

• the set ch(A) = {k ∈ V \ A | ∃ j ∈ A : ( j, k) ∈ E} is called the children of A.

• the set bd(A) = pa(A) ∪ nb(A) is called the boundary of A.

• the set cl(A) = bd(A) ∪ A is called the closure of A.

• the set an(A) = {k ∈ V \A | ∃ j ∈ A with a path from k to j} is called the ancestors

of A.

• the set de(A) = {k ∈ V \ A | ∃ j ∈ A with a path from j to k} is called the descen-

dants of A.

• the set nd(A) = V \ (de(A) ∪ A) is called the non-descendants of A.

• if bd(A) = ∅, then A is called ancestral. An(A) = an(A)∪ A is the ancestral set of
A including A.

An ordered (m+1)-tuple ( j0, . . . , jm) of distinct vertices is called a path of length m from

j0 to jm if { ji−1, ji} ∈ E or ( ji−1, ji) ∈ E for all i = 1, . . . ,m. It is called undirected if
{ ji−1, ji} ∈ E ∀ i = 1, . . . ,m. It is called semidirected if ∃ i : { ji−1, ji} < E and directed

if the latter holds for all i = 1, . . . ,m. A path of length m with j0 = jm is called a cycle.
Undirected, semidirected and directed cycles are defined analogously to the above path
definitions.

However, directed cycles, that can be considered as modeling “feed-back”, are not al-
lowed because there is no well defined density function for this situation. Consequently,
G is a directed acyclic graph (DAG) if it has only directed edges and no directed cycles.
This is equivalent to presupposing the existence of a complete ordering of the vertices
that provides each variable with a past, present and future. In the moral graph Gm of G
parents of common children are linked and all edges are made undirected.

Finally, non-adjacent vertices i and j are separated by S ⊂ V if and only if every path
between i and j contains at least one element of S . It is tempting to conclude that the
associated variables are independent conditional on the separating set alone. Theoretical
justification for this intuitive interpretation establishes the global Markov property. For
the multivariate normal distribution the proof is given by Speed and Kiiveri (1986).
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3.1.2. Markov Properties

Markov properties relate graphical separations and conditional independencies inherent
in the statistical model for a system V of labeled random variables X = (Xi, i ∈ V).

Markov properties for undirected graphs. Let G = (V, E) an undirected graph and
X = (Xi, i ∈ V) a random vector with joint density function fX. Say fX satisfies
(P) the pairwise Markov property if

for any non-adjacent i, j ∈ V =⇒ Xi⊥⊥X j | XV\{i, j};

(L) the local Markov property if

for any i ∈ V =⇒ Xi⊥⊥XV\cl(i) | Xbd(i);

(G) the global Markov property if

for any disjoint A, B, S ⊂ V such that S separates A and B in G =⇒

XA⊥⊥XB | XS .

It is a remarkable fact that the three Markov properties: pairwise Markov, local Markov
and global Markov, are equivalent, when f (x) > 0.

For C ⊆ V , ψC(x) denotes a non-negative potential function that depends on XC only.
The density of X factorizes with respect to G or satisfies (F) if

f (x) =
∏
C∈C

ψC(x), (3.2)

where C is the collection of cliques in G.
In the case of positive density, f (x) > 0 for all x, Eq. 3.2 coincides with the three

Markov properties:
(F)⇐⇒ (G)⇐⇒ (L)⇐⇒ (P).

It is noteworthy that a directed independence graphG possesses the Markov properies
of its associated moral graph, Gm (Whittaker, 1990).

Markov properties for directed acyclic graphs. Let G = (V, E) a DAG and X = (Xi, i ∈
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V) a random vector with joint density function fX. Say fX satisfies
(P) the pairwise (directed) Markov property if

for any non-adjacent i, j ∈ V with j ∈ nd(i) =⇒ Xi⊥⊥X j | nd(i) \ { j}

(L) the local (directed) Markov property if

for any i ∈ V =⇒ Xi⊥⊥nd(i) | pa(i)

(G) the global (directed) Markov property if

for any disjoint A, B, S ⊂ V such that S separates A and B in Gm
An(A,B,S ) =⇒

XA⊥⊥XB | XS .

3.2. Covariance Graphs

In order to elucidate functional gene interaction, as well as in order to form a basis for
subsequent clustering and refined network inference, an intuitive and simple idea is to
look at the sample correlation between any two genes. If the computed Pearson’s or
Spearman’s correlation coefficient, e.g., exceeds a certain a priori specified threshold
(say 0.8), then an edge is drawn between the appropriate genes with the vague aim to
exclude spurious edges. This approach is widely applied in the bioinformatics com-
munity, and the resulting graph is often called a relevance network (Butte et al., 2000).
In statistical terminology it is known as covariance graph where missing edges denote
marginal independence.

However, for understanding gene interaction this approach is only of limited use. For
instance, a high standard correlation coefficient between two genes may be indicative
of either (i) direct interaction, (ii) indirect interaction, or (iii) regulation by a common
gene. In learning a genetic network from data we need to be able to distinguish among
these three alternatives.
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3.3. Graphical Gaussian Models

For constructing a gene association network where only direct interactions among genes
are depicted by edges, another framework provides a better option. Graphical Gaussian

models (GGMs), also known as covariance selection or concentration graph models,
have recently become a popular tool to study gene dependency networks. The key idea
behind GGMs is to use partial correlations as a measure of conditional (in)dependence

between any two genes. This makes it straightforward to distinguish direct from indirect
interactions. However, it should be noted that partial correlations are related to the
inverse of the correlation matrix.

The best starting place to learn about GGMs is the paper that introduced this concept
in the early 1970s (Dempster, 1972). Further details can be found in the books by
Whittaker (1990) and by Edwards (1995).

GGMs are similar to the more widely known Bayesian networks in that the under-
lying concept is conditional independence. However, in contrast to Bayesian networks
GGMs contain only undirected rather than directed edges. This makes graphical Gaus-
sian interaction modeling on the one hand conceptually more simple, and on the other
hand also potentially more widely applicable. For example, the conditional indepen-
dence properties inherent in a Bayesian network model are reflected through graphical
separations in the corrsponding directed acyclic graph: modeling feed-back loops is not
possible.

Under the GGM approach the data X are assumed to be mutually independent and
p-variate normally distributed Np(µ,Σ) with some mean vector µ = (µ1, . . . , µp)T and
positive definite variance-covariance matrix Σ = (σi j), where 1 ≤ i, j ≤ p. Via σi j =

ρi jσiσ j the covariance matrix can be decomposed into variance components σ2
i , i =

1, . . . , p, and Pearson’s correlations P = (ρi j).

The multivariate normal density is given as

f (x) = (2π)−p/2 |Σ|−1/2 exp
{
−(x − µ)TΣ−1(x − µ)/2

}
, (3.3)

where µ and Σ are called the moment parameters. In exponential family terminology,
alternative parametrization is given through canonical parameters that are defined as
Ω = Σ−1 and β = Σ−1µ. Then the multivariate normal density from Eq. 3.3 can be
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rewritten as

f (x) = exp
{
α + βT x − xTΩx/2

}
= exp

α + p∑
i=1

βixi −

p∑
i=1

p∑
j=1

ωi jxix j/2

 , (3.4)

where α is the normalizing constant. Ω = (ωi j) is called precision or concentration ma-
trix. Using the factorization criterion (Eq. 3.1) it becomes obvious that the interrelation
between Xi and X j given the remaining p − 2 variables is entirely dictated by ωi j = 0 or
not.

In the GGM framework the strength of direct pairwise correlation is characterized
by the partial correlation matrix P̃ = (ρ̃i j). These coefficients describe the correlation
between any two genes i and j conditional on all the remainder of the genes. Standard
graphical modeling theory (e.g. Edwards, 1995) shows that the matrix P̃ is related to
the inverse of the covariance matrix Σ. This leads to a straightforward procedure to
compute P̃ via the relations

Ω = Σ−1 = (ωi j) (3.5)

and
ρ̃i j = −ωi j/

√
ωiiω j j. (3.6)

It should be noted that in the inversion step (Eq. 3.5) it is equally valid to use the correla-
tion matrix P instead of the covariance matrix Σ. Random variables i and j are partially
uncorrelated for given V \ {i, j} if

ωi j = 0 and ρ̃i j = 0,

respectively.

Put differently, the partial correlation between random variables i and j conditional
on V \ {i, j} is the correlation between their residuals after linearly regressing i and j,
respectively, on V \ {i, j}:

Corr
{
Xi − E(Xi | XV\{i, j}), X j − E(X j | XV\{i, j})

}
.

Equivalently, the partial correlation between random variables i and j conditional on
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V \ {i, j} is defined as

ρ̃i j = sign(β( j)
i )

√
β

( j)
i β

(i)
j , (3.7)

where β(i)
j denotes the regression coefficient of predictor variable X j for the response

Xi, when linearly regressing each variable i ∈ {1, . . . , p} on the remaining set of p − 1
variables. Note that while in general β( j)

i , β
(i)
j the signs of two non-zero coefficients are

identical as β(i)
j = ωi j/ωii.

Partial correlation coefficients allow for a number of further interpretations. As the
multivariate normal distribution is closed under marginalization and conditioning, the
partial correlation ρ̃i j is the correlation coefficient of the conditional bivariate distri-
bution for genes i and j. Furthermore, assuming normality it can be shown that two
variables are conditionally independent given the remaining variables if and only if the
corresponding partial correlation vanishes. Equivalently, the conditional independence
graph of a jointly normal set of random variables is determined by the location of zeros
in the inverse covariance matrix Ω (Whittaker, 1990).

In order to reconstruct a GGM network from a given data set one typically employs
the following procedure.

• Firstly, an estimate of the covariance matrix Σ is obtained, usually via the unbi-
ased sample covariance matrix S = (si j).

• Secondly, estimates of partial correlation coefficients are computed from the sam-
ple covariance matrix using Eq. 3.6.

• Thirdly, statistical tests are employed to determine which entries in the estimated
partial correlation matrix ˆ̃P = R̃ are significantly different from zero.

• Fourthly, the inferred conditional independence structure is visualized by a graph,
with edges corresponding to non-zero partial correlation coefficients.

The likelihood function relates the information content in an observed sample to the
unknown parameters of the statistical model under consideration. It enables us to assess
which parameter values are well supported by the observed data, and which are not.
Standard results and techniques of maximum likelihood estimation and likelihood ratio
tests can be found in the book by Cox and Hinkley (1974). Recall that for the multivari-
ate normal distribution, Np(µ,Σ), inherent (conditional) independencies are expressed
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by the covariance matrix Σ or its inverse Ω. Naturally, either parameterization can be
used as the correspondence between Σ andΩ is one to one. Overall, there are p(p+1)/2
free parameters of which p are concerned with scale and p(p − 1)/2 with interaction. It
is predominantly these interaction parameters that are interesting to the graphical mod-
eller. By contrast, the mean value, µ, is not at all important and thus, it is allowed to be
entirely arbitrary. Let us consider a given conditional independence graph where each
pairwise conditional independence constraint generates a constraint on the parameters,
namely a zero in the corresponding entry of Ω. Note that the same constraint expressed
in terms of the covariance parameter σi j is substantially more complicated. Speed and
Kiiveri (1986) describe an iterative proportional fitting procedure for computing the
maximum likelihood estimate S subject to the constraints that determine the putative
graphical model. A natural way to measure the overall goodness of fit, and to compare
two competing models when one is nested in the other, is the deviance. Its sampling
distribution under the null hypothesis of the considered independence structure follows
an asymptotic chi-squared distribution with degrees of freedom given by the number of
constraints set on Σ and Ω, respectively.

3.4. Addressing the “Small n, Large p” Problem

Data dimensions peculiar to functional genomics approaches are challenging for statisti-
cal modeling and inference. Unfortunately this implies that, although graphical models
are promising for the analysis of gene interaction, their practical application is currently
strongly limited by the amount of available experimental data. At first, this may seem
paradoxical given today’s high-throughput facilities. It should be noted however, while
these technologies now allow to investigate experimentally a greatly increased number
of features (genes), the number of available samples has not, and can not, similarly
be expanded. As a result, in a typical microarray data set the number of genes p will
exceed by far the number of sample points n. This poses a serious challenge to any
statistical inference procedure, and also renders estimation of genetic networks an ex-
tremely hard problem. This is corroborated by a recent study on the popular Bayesian
network method where Husmeier (2003) demonstrated that this approach tends to per-
form poorly on sparse microarray data.

Motivated by these challenges, great efforts are now being undertaken to further

23



3. Graphical Models for Describing Gene Dependency Networks

extend the theory of graphical models to allow their large-scale application on small-
sample data (e.g., Wong et al., 2003; Dobra et al., 2004). In this section several recently
developed approaches to small-sample inference of graphical Gaussian modeling are re-
viewed and strategies to cope with the high dimensionality of functional genomics data
are discussed. In my understanding, all of these papers fit in one of three categories:
(i) classic GGM theory, (ii) analysis using limited order partial correlations, and (iii)
application of regularized GGMs.

Kishino and Waddell (2000) were the first to propose GGMs as suitable statisti-
cal models for association structures among genes. However, a number of difficulties
arise when the graphical Gaussian modeling concept is applied to the analysis of high-
dimensional data such as from a microarray experiment. Firstly, standard GGM theory
(Whittaker, 1990) can only be applied when n > p, because otherwise the sample co-
variance and correlation matrices are not positive definite, which in turn prevents the
computation of partial correlations. Moreover, there are often additional linear depen-
dencies between the variables, which leads to the problem of multicollinearity. This,
again, renders standard theory of graphical Gaussian modeling inapplicable to microar-
ray data. Secondly, the statistical tests widely used in the literature for selecting an
appropriate GGM (e.g. deviance tests) are valid only for large sample size, and hence
are inappropriate for the very small sample sizes present in microarray data sets. In this
case, instead of asymptotic tests an exact model selection procedure is required.

Moreover, it should be noted that the “small n, large p” problem affects both GGMs
and relevance networks. Although less obvious in the latter case, it should not be over-
looked that standard correlation estimates are not reliable for small sample size n. How-
ever, this fact appears to have gone largely unnoticed in the bioinformatics community.

3.4.1. Dimension Reduction Prior to Classic GGM Analysis

In order to avoid the dimensionality problems mentioned above, the most obvious and
simplest approach is to restrict graphical Gaussian modeling to assess relationships
among either a rather small number of genes (Kishino and Waddell, 2000; Waddell and
Kishino, 2000; Bay et al., 2002; Wang et al., 2003) or among a small number of clusters
of genes (Toh and Horimoto, 2002a,b; Wu et al., 2003). The number p of selected genes
or gene clusters has to be chosen such that it does not exceed the sample size n.
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3.4. Addressing the “Small n, Large p” Problem

However, this strategy is unsatisfying for a variety of reasons. Primarily, it is a matter
of on-going debate how to choose reasonable (meta)-genes for inclusion in the reduced
data set. The restriction to a limited number of genes risks that the estimated network
topology is seriously distorted because important genes may have been excluded from
the analysis. Furthermore, the resulting partial correlation coefficients for gene clusters
and the corresponding conditional dependence properties are hard to understand. For
instance, typically, not all the genes of one cluster will interact with all the genes of
another cluster, which renders conditional dependence properties among clusters mean-
ingless. In addition, information regarding quality and strength of the association on the
gene level is lost when only clusters of genes are considered.

3.4.2. Limited Order Partial Correlations

Another possibility to tackle the “small n, large p” problem is to compute partial cor-
relation coefficients of limited order. For instance, de la Fuente et al. (2004) propose
to calculate partial correlation coefficients up to second-order only, i.e. to condition the
partial correlations not on all other p−2 genes as in a full GGM but only on two genes at
most. Similar strategies, based on first-order conditional dependence, are also employed
by Wille et al. (2004),Wille and Bühlmann (2005), and Magwene and Kim (2004).

From a statistical point of view the resulting gene network constitutes something in-
between a full GGM and a relevance network model based on standard correlations. It
therefore remains unclear whether missing edges indicate conditional or marginal in-
dependence. A measure of distance in networks is the path length that indicates the
number of links between two selected nodes. The mean path length represents the av-
erage over the shortest paths between all pairs of nodes and offers a measure of overall
navigability. In genetic networks, interactions are likely to be short range. Thus, we
believe that the above methods may provide a good approximation.

3.4.3. Regularized GGMs

In my opinion the statistically and also biologically most sound way to marry GGMs
with small-sample modeling is to introduce regularization and moderation. In the first
instance, this boils down to finding suitable estimates for the covariance matrix and its
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3. Graphical Models for Describing Gene Dependency Networks

inverse when n is smaller than p. This can either be done in a full Bayesian, or in an
empirical Bayesian manner. A further possibility constitutes the explicit frequentist pe-
nalization of the number of free parameters in P̃. Typically, once regularized estimates
of partial correlation are available, heuristic or stochastic model searches need subse-
quently to be employed in order to find an optimal graphical model or set of models.

Outside a genomic context using regularized GGMs was first proposed by Wong et al.
(2003). For gene expression data this strategy is pursued in the paper by Dobra et al.
(2004) who describe a variant of Bayesian covariance selection. However, it should be
noted that full Bayesian Markov chain Monte Carlo methods such as in Dobra et al.
(2004) are computationally very expensive. As efficient alternative Meinshausen and
Bühlmann (2005a) employ lasso regression for covariance selection. Further details
on the lasso approach to high-dimensional GGM selection are referred to Chapter 6.
In Chapter 5, an empirical Bayes approach to large-scale GGM selection using false
discovery rate multiple testing is proposed after introducing novel regularized estimates
of covariance and (partial) correlation in the next chapter.
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4. Regularized Large-Scale

Covariance and (Partial)

Correlation Matrix Estimation

The simple solution to obtain an accurate and reliable estimate of the population covari-
ance matrix is to rely either on the maximum likelihood estimate SML or on the related
unbiased empirical covariance matrix S = n

n−1SML, with entries defined as

si j =
1

n − 1

n∑
k=1

(xki − x̄i)(xk j − x̄ j), (4.1)

where x̄i =
1
n

∑n
k=1 xki and xki is the k-th observation of the variable Xi. However, un-

fortunately both S and SML exhibit serious defects in the “small n, large p” data setting
commonly encountered in functional genomics problems. Specifically, in this case the
empirical covariance matrix can not anymore be considered a good approximation of
the true covariance matrix. It should be noted that this is true already for moderately
sized data with n ≈ p.

For illustration consider Fig. 4.1 where the conventional sample covariance S is com-
pared with an alternative estimator S? developed in Subsection 4.1.3 and summarized in
Tab. 4.1. Fig. 4.1 shows the sorted eigenvalues of the estimated matrices in comparison
with the true eigenvalues for fixed p = 100 and various ratios p

n . It becomes evident that
for small n the eigenvalues of S (thin black line in Fig. 4.1) are severely distorted. In
addition, for n < p (bottom row in Fig. 4.1) S looses its full rank as a growing number
of eigenvalues become zero. This has several undesirable consequences. Firstly, S is not
positive definite any more, and secondly, it can not be inverted as it becomes singular
(e.g., Friedman, 1989; Hastie and Tibshirani, 2004). Now contrast the poor performance
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Figure 4.1.: Ordered eigenvalues of the sample covariance matrix S (thin black line) and of an
alternative estimator S? (fat green line, for definition see Tab. 4.1), calculated from simulated
data with underlying p-variate normal distribution, for p = 100 and various ratios p/n. The true
eigenvalues are indicated by a thin black dashed line.
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“Small n, Large p” Covariance and Correlation Estimators S? and R?:

s?i j =

sii if i = j
r?i j
√siis j j if i , j

and

r?i j =

1 if i = j
ri j min(1,max(0, 1 − λ̂?)) if i , j

with

λ̂? =

∑
i, j V̂ar(ri j)∑

i, j r2
i j

,

Table 4.1.: Small-sample shrinkage estimators of the unrestricted covariance and correlation
matrix, where sii and ri j denote the empirical variance (unbiased) and correlation, respectively.
For details of the computation of V̂ar(ri j) see the main text. Further variants of these estimators
are discussed in Subsection 4.1.3.

of S with that of S? (fat green line in Fig. 4.1). This improved estimator exhibits none of
the defects of S, in particular it is more accurate, well conditioned and always positive
definite – even for small sample size. Nevertheless, S? can be computed in only about
twice the time required to calculate S. These are good reasons against the blind use of
the empirical covariance matrix S in data situations where it is not appropriate – noting
that this affects many current application areas in bioinformatics.

The incontrovertible fact that the two widely-employed estimators of the covariance
matrix, i.e. the maximum likelihood estimator SML and the related unbiased sample
covariance S, are both statistically inefficient in small samples, has long been known.
In a nutshell, it can be explained as the so-called “Stein phenomenon” discovered by
Stein (1956) in the context of estimating the mean of a multivariate normal distribution.
Stein demonstrated that in high-dimensional inference problems it is often possible to
improve (sometimes dramatically!) upon the maximum likelihood estimator. This result
is at first counterintuitive, as maximum likelihood can be proven to be asymptotically
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4. Regularized Estimation

optimal, and as such it seems not unreasonable to expect that these favorable properties
of maximum likelihood also extend to finite data. However, further insight into the
Stein effect is provided by Efron (1982) who points out that one needs to distinguish
between two different aspects of the maximum likelihood principle. Firstly, maximum
likelihood as a means of summarizing the observed data and producing a maximum

likelihood summary (MLS). Secondly, maximum likelihood as a procedure to obtain
a maximum likelihood estimate (MLE). The conclusion is that maximum likelihood is
unassailable as a data summarizer but that it has some clear limitations as an estimating
procedure.

This applies directly to the estimation of covariance matrices: SML constitutes the
best estimator in terms of actual fit to the data. However, for medium to small sample
sizes it is far from being the optimal estimator for recovering the population covariance
as is well illustrated by Fig. 4.1. Fortunately, the Stein theorem also demonstrates that
it is possible to construct a procedure for improved covariance matrix estimation. In
addition to increased efficiency and accuracy, it is desirable for such a method to exhibit
the following characteristics not found in S and SML:

1. The estimate should always be positive definite, i.e. all eigenvalues should be
distinct from zero.

2. The estimated covariance matrix should be well-conditioned.

The positive definiteness requirement is an intrinsic property of the true covariance ma-
trix that is satisfied as long as the considered random variables have non-zero variance.
If a matrix is well-conditioned, i.e. if the ratio of its maximum and minimum singular
value is not too large, it has full rank and can be easily inverted. Thus, by producing
a well-conditioned covariance estimate one automatically also obtains an equally well-
conditioned estimate of the inverse covariance – a quantity of crucial importance, e.g.,
in classification problems and in graphical models (cf. Section 3.3).

A rather naive strategy to obtain a positive definite estimator of the covariance matrix
runs as follows: take the sample covariance S and apply, e.g., the algorithm by Higham
(1988). This will adjust all eigenvalues to be larger than some prespecified threshold ε
and thus guarantee positive definiteness. However, the resulting matrix will not be well
conditioned.
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4.1. Ledoit-Wolf-Type Shrinkage

4.1. Shrinkage Combined With Analytic

Determination of the Intensity According to the

Ledoit-Wolf Theorem

“Shrinkage” or more general “biased estimation” (e.g., Hoerl and Kennard, 1970b,a;
Efron, 1975; Efron and Morris, 1975, 1977; Tikhonov and Arsenin, 1977) as a means
of improvement upon unreliable estimates is investigated. From the well-known bias-
variance decomposition of the mean squared error (MSE) for the sample covariance,
i.e.

MSE(S) = Bias(S)2 + Var(S), (4.2)

it becomes evident that in small samples a variance-reduced biased estimator for the
covariance may outperform the unbiased unconstrained classical estimator S. Put differ-
ently, sacrifying a little bit of bias in order to reduce the variance of the estimated high-
dimensional parameter, may improve overall estimation accuracy. The most widely
applied shrinkage method is ridge regression, also known as Tikhonov regularization.
The ridge regression solution adds a positive constant to the diagonal of XT X before
inversion. This makes the problem nonsingular, even if XT X is not of full rank, and
was the main motivation for ridge regression when it was first introduced in statistics
(Hoerl and Kennard, 1970b). The complexitiy parameter that controls the amount of
shrinkage is typically chosen by cross-validation. A recent analytic result from Ledoit
and Wolf (2003) is considered here for determining the shrinkage intensity that allows
to construct an improved estimator of the covariance matrix Σ that is not only suitable
for small sample size n and large number of variables p but at the same time is also
completely inexpensive to compute.

4.1.1. Outline of Shrinkage Estimation and the Lemma of

Ledoit-Wolf

In the following the general principles behind shrinkage estimation are reviewed and
an analytic approach by Ledoit and Wolf (2003) for determining the optimal shrinkage
intensity is discussed. It should be noted that the theory outlined here is not restricted to
covariance estimation but applies generally to large-dimensional estimation problems.
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4. Regularized Estimation

Hence, letΨ = (ψ1, . . . , ψp) denote the parameters of the unrestricted high-dimensional
model of interest, and Θ = (θi) the matching parameters of a lower dimensional re-
stricted submodel. For instance, Ψ could be the mean vector of a p-dimensional mul-
tivariate normal, and Θ the vector of a corresponding constrained submodel where the
means are all assumed to be equal, i.e. θ1 = θ2 = . . . = θp. By fitting each of the two dif-
ferent models to the observed data associated estimates U = Ψ̂ and T = Θ̂ are obtained.
Clearly, the unconstrained estimate U will exhibit a comparatively high variability due
to the larger number of parameters that need to be fitted, whereas its low-dimensional
counterpart T will have lower variance but potentially also considerable bias when taken
as an estimator for the true Ψ.

Instead of choosing between one of these two extremes, the linear shrinkage approach
suggests to combine both estimators in a weighted average

U? = λT + (1 − λ)U, (4.3)

where λ ∈ [0, 1] denotes the shrinkage intensity. It should be noted that for λ = 1 the
shrinkage estimate equals the shrinkage target T whereas for λ = 0 the unrestricted esti-
mate U is recovered. The key advantage of this construction is that it offers a systematic
way to obtain a regularized estimate U? that outperforms the individual estimators U
and T both in terms of accuracy and of statistical efficiency.

A key question in this procedure is how to select an appropriate value for the shrink-
age intensity λ. In some instances, it may suffice to fix the intensity λ at some given
value, or to make it depend on the sample size according to some simple function. Of-
ten more appropriate, however, is choosing the parameter λ in a data-driven fashion by
explicitly minimizing the expectation of a suitable loss function (risk function)

R(λ) = E(L(λ))

= E

 p∑
i=1

(u?i − ψi)2


= E

 p∑
i=1

(λti + (1 − λ)ui − ψi)2

 ,
(4.4)

here for example the mean squared error (MSE).
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4.1. Ledoit-Wolf-Type Shrinkage

One common but computationally intensive approach is to estimate the minimizing
λ? by cross-validation – for an example see Friedman (1989) where shrinkage is applied
in the context of regularized classification. Another widely applied route to determining
λ views the shrinkage problem in an empirical Bayes context. In this case the quantity
E(T) is interpreted as prior mean and λ as a hyper-parameter that may be estimated from
the data via optimizing the marginal likelihood (e.g., Morris, 1983; Greenland, 2000).

It is less well known that the optimal regularization parameter λ? may often also be
determined analytically. Ledoit and Wolf (2003) recently derived a simple theorem
that guarantees minimal MSE without the need of having to specify any underlying
distributions, and without requiring any computationally expensive procedures such as
MCMC, the bootstrap, or cross-validation. Assuming that the first two moments of the
distributions of U and of T exist, the expected squared error loss from Eq. 4.4 may be
expanded as follows:

R(λ) =
p∑

i=1

Var
(
u?i

)
+

[
E(u?i ) − ψi

]2

=

p∑
i=1

Var (λti + (1 − λ)ui) +
[
E(λti + (1 − λ)ui) − ψi

]2

=

p∑
i=1

λ2 Var(ti) + (1 − λ)2 Var(ui) + 2λ(1 − λ) Cov(ui, ti)

+ [λE(ti − ui) + Bias(ui)]2 .

(4.5)

Analytically minimizing this function with respect to λ gives, after some tedious alge-
braic calculations, a simple expression for the optimal value

λ? =

∑p
i=1 Var(ui) − Cov(ti, ui) − Bias(ui) E(ti − ui)∑p

i=1 E
[
(ti − ui)2] , (4.6)

for which minimum MSE R(λ?) is achieved. It can be shown that λ? always exists and
that it is unique. If U is an unbiased estimator of Ψ, i.e. E(U) = Ψ, this equation
reduces to

λ? =

∑p
i=1 Var(ui) − Cov(ti, ui)∑p

i=1 E
[
(ti − ui)2] , (4.7)

which is – apart from some further algebraic simplification – the expression given in
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Ledoit and Wolf (2003).
Closer inspection of Eq. 4.6 yields a number of insights into how the optimal shrink-

age intensity is chosen:

1. The smaller the variance of the high-dimensional estimate U, the smaller becomes
λ?. Therefore, with increasing sample size the influence of the target T dimin-
ishes.

2. λ? also depends on the correlation between estimation error of U and of T. If both
are positively correlated then the weight put on the shrinkage target decreases.
Hence, the inclusion of the second term in the numerator of Eq. 4.6 adjusts for
the fact that the two estimators U and T are both inferred from the same data set.
It also takes into account that the “prior” information associated with T is not
independent from the given data.

3. If the unconstrained estimator is biased, and the bias points already towards the
target, the shrinkage intensity is correspondingly reduced.

4. With increasing mean squared difference between U and T (in the denominator
of Eq. 4.6) the weight λ? also decreases. Note that this automatically protects the
shrinkage estimate U? against a misspecified target T.

Furthermore, it is noteworthy that variables that by design are kept identical in the con-
strained and unconstrained estimators (i.e. ti = ui) play no role in determining the
intensity λ?, as their contributions to the various sums in Eq. 4.6 cancel out.

Further generalization is possible by allowing for multiple targets or different shrink-
age intensities. This is especially appropriate if there exists a natural grouping of pa-
rameters in the investigated high-dimensional model. In this case one simply computes
the individual targets and applies Eq. 4.6 to each group separately. Partitioning into a
small number of groups, e.g., would be conceivable according to the variables’ vari-
ances Var(ui) – this is typically the predominant term in determining the shrinkage level
according to Eq. 4.6.

Finally, it is important to consider the transformation properties of the shrinkage pro-
cedure. From Eq. 4.6 it is clear that λ? is invariant against translations. For instance, the
underlying data may be centered without affecting the estimation of the optimal shrink-
age intensity. However, λ? is not generally invariant against scale transformations. This
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4.1. Ledoit-Wolf-Type Shrinkage

dependence on the absolute scales of the considered variables is a general property that
shrinkage shares with other approaches to biased estimation, such as ridge regression
and partial least squares (e.g. Hastie et al., 2001). Ultimately, it is a consequence of the
selected risk function (MSE).

4.1.2. Estimation of the Optimal Shrinkage Intensity

For practical application of Eq. 4.6 one needs to obtain an estimate λ̂? of the optimal
shrinkage intensity. In their paper Ledoit and Wolf (2003) emphasize that the param-
eters of Eq. 4.6 should be estimated consistently. However, this is only a very weak
requirement, as consistency is an asymptotic property and a basic requirement of any
sensible estimator. Furthermore, specific focus is on small sample inference. Thus, in
order to compute λ̂?, it is suggested that all expectations, variances, and covariances in
Eq. 4.6 are replaced instead by their unbiased sample counterparts. This leads to

λ̂? =

∑p
i=1 V̂ar(ui) − Ĉov(ti, ui) − B̂ias(ui) (ti − ui)∑p

i=1(ti − ui)2
. (4.8)

It should be noted that in finite samples λ̂? may exceed 1 and in some cases it may
even become negative. Therefore, in order to avoid overshrinkage or negative shrinkage
λ̂?? = max(0,min(1, λ̂?)) is employed when constructing the shrinkage estimator via
Eq. 4.3.

It is also noteworthy that Eq. 4.8 is valid regardless of the sample size n at hand. In
particular, n may be substantially smaller than p.

4.1.3. Shrinkage Estimation of the Covariance Matrix

Estimation of the unrestricted covariance matrix requires the determination of (p2+p)/2
free parameters, and thus constitutes a high-dimensional inference problem. Conse-
quently, application of shrinkage offers a promising approach to obtain improved esti-
mates.

Daniels and Kass (2001) provide a fairly extensive review of empirical Bayes shrink-
age estimators proposed in recent years. Unfortunately, most of the suggested estima-
tors appear to suffer from at least one of the following drawbacks, which renders them
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unsuitable for the analysis of genomic data:

1. Typically, the application is restricted to data with p < n, in order to ensure that
the empirical covariance S can be inverted. However, most current genomic data
sets contain vastly more features than samples (p � n).

2. Many of the suggested estimators are computationally expensive due to, e.g., be-
ing based on MCMC sampling, or they require specific distributional assump-
tions.

These difficulties are elegantly avoided by resorting to the (almost) distribution-free
Ledoit-Wolf approach to shrinkage.

In a matrix setting the equivalent to the squared error loss function is the Frobenius
norm. Thus,

L(λ) = ||S? − Σ||2F
= ||λT + (1 − λ)S − Σ||2F

=

p∑
i=1

p∑
j=1

(
λti j + (1 − λ)si j − σi j

)2
(4.9)

is a natural quadratic measure of distance between the true and the estimated covariance
matrix, Σ and S?, respectively. In this formula the unconstrained unbiased empirical
covariance matrix S replaces the unconstrained estimate U of Eq. 4.3.

Selecting a suitable empirical covariance target T = (ti j) requires some diligence. In
general, the choice of the target should be guided by the presumed lower-dimensional
structure in the data as this determines the increase of efficiency over the sample covari-
ance. However, it is also a remarkable consequence of Eq. 4.6 that in fact any type of
shrinkage will lead to a reduction in MSE, albeit only a minor one in case of a strongly
misspecified target. Then S? will simply reduce to the unconstrained estimate S.

Six commonly used covariance targets are compiled in Tab. 4.2, along with a brief
description, the dimension of the target, and the resulting estimate λ̂?. It is notewor-
thy that the resulting shrinkage estimators S? all exhibit the same order of algorithmic
complexity as the standard estimate S.

In order to estimate the optimal shrinkage intensity λ̂? (Eq. 4.8) for the various struc-
tured covariance targets listed in Tab. 4.2, it is necessary to obtain unbiased estimates
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4.1. Ledoit-Wolf-Type Shrinkage

Target A: “diagonal, unit variance” Target B: “diagonal, common variance”
0 estimated parameters 1 estimated parameter: v

ti j =

1 for i = j
0 for i , j

ti j =

v = avg(sii) for i = j
0 for i , j

λ̂? =
∑

i, j V̂ar(si j)+
∑

i V̂ar(sii)∑
i, j s2

i j+
∑

i(sii−1)2 λ̂? =
∑

i, j V̂ar(si j)+
∑

i V̂ar(sii)∑
i, j s2

i j+
∑

i(sii−v)2

Target C: “common (co)variance” Target D: “diagonal, unequal variance”
2 estimated parameters: v, c p estimated parameters: sii

ti j =

v = avg(sii) for i = j
c = avg(si j) for i , j

ti j =

sii for i = j
0 for i , j

λ̂? =
∑

i, j V̂ar(si j)+
∑

i V̂ar(sii)∑
i, j(si j−c)2+

∑
i(sii−v)2 λ̂? =

∑
i, j V̂ar(si j)∑

i, j s2
i j

Target E: “perfect positive correlation” Target F: “constant correlation”
p estimated parameters: sii p + 1 estimated parameters: sii, r̄

ti j =

sii for i = j
√siis j j for i , j

ti j =

sii for i = j
r̄√siis j j for i , j

fi j =
1
2

{√
s j j

sii
Ĉov(sii, si j) +

√
sii
s j j

Ĉov(s j j, si j)
}

λ̂? =
∑

i, j V̂ar(si j)− fi j∑
i, j(si j−

√sii s j j)2 λ̂? =
∑

i, j V̂ar(si j)−r̄ fi j∑
i, j(si j−r̄√sii s j j)2

Table 4.2.: Six different shrinkage targets for the covariance matrix and associated estimators
of the optimal shrinkage intensity. In general, target D is recommended – see the main text for
discussion. Abbreviations: v, average of sample variances; c, average of sample covariances; r̄,
average of sample correlations.
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for the variance and for the covariance of the individual entries in the matrix S = (si j).
Let xki be the k-th observation of the variable Xi and x̄i =

1
n

∑n
k=1 xki its sample mean.

Now set wki j = (xki − x̄i)(xk j − x̄ j) and w̄i j =
1
n

∑n
k=1 wki j. Then the unbiased empirical

covariance equals
Ĉov(xi, x j) = si j =

n
n − 1

w̄i j

and, correspondingly, the variance is

V̂ar(xi) = sii =
n

n − 1
w̄ii.

The empirical unbiased variances and covariances of the individual entries of S are
computed in a similar fashion.

V̂ar(si j) =
n2

(n − 1)2 V̂ar(w̄i j) =
n

(n − 1)2 V̂ar(wi j) =
n

(n − 1)3

n∑
k=1

(wki j − w̄i j)2. (4.10)

Similarly,

Ĉov(si j, slm) =
n

(n − 1)3

n∑
k=1

(wki j − w̄i j)(wklm − w̄lm). (4.11)

Moments of higher order than V̂ar(si j), in particular variances and covariances of aver-

ages of si j, are neglected in estimating the optimal λ̂? in Tab. 4.2.

Probably the most commonly employed shrinking targets are the identity matrix and
its scalar multiple. These are denoted in Tab. 4.2 “diagonal, unit variance” (target A)
and “diagonal, common variance” (target B). A further extension is provided by the two
parameter covariance model that in addition to the common variance (as in target B) also
maintains a common covariance (“common (co)variance”, target C). The three targets
share several properties. Firstly, they are all extremely low-dimensional (0 to 2 free
parameters). As a result they impose a rather strong structure which in turn requires
only little data to fit. Secondly, the resulting estimators shrink all components of the
empirical covariance matrix, i.e. both diagonal and off-diagonal entries.

In the literature it is easy to find examples where one of the above targets is employed
– albeit not in combination with analytic estimation of the shrinkage level. For instance,
the unit diagonal target A is typically used in ridge regression and the related Tikhonov
regularization (e.g. Hastie et al., 2001). The target B is utilized, e.g., by Friedman
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4.1. Ledoit-Wolf-Type Shrinkage

(1989) who estimates λ by means of cross-validation, by Leung and Chan (1998) who
use a fixed λ = 2

n+2 , by Dobra et al. (2004) as a parameter in an inverse Wishart prior for
the covariance matrix, and finally also by Ledoit and Wolf (2004b). The two-parameter
target C appears not to be widely used.

Another class of covariance targets is given by the “diagonal, unequal variance”
model (target D), the “perfect positive correlation” model (target E) and the “constant
correlation” model (target F) of Tab. 4.2. A common feature of these three targets is
that they are comparatively parameter-rich, and that they only lead to shrinkage of the

off-diagonal elements of S. The last two shrinkage targets were introduced with the
purpose of modeling stock returns. These tend – on average – to be strongly positively
correlated (Ledoit and Wolf, 2003, 2004a).

Special focus here is on the shrinkage target D for the estimation of covariance and of
correlation matrices arising in genomics problems. This “diagonal, unequal variance”
model represents a compromise between the low-dimensional targets A, B, and C and
the correlation models E and F. Like the simpler targets A and B it shrinks the off-
diagonal entries to zero. However, unlike shrinkage targets A and B, target D leaves
diagonal entries intact, i.e. it does not shrink the variances. Thus, this model assumes
that the parameters of the covariance matrix fall into two classes, and both are treated
differently in the shrinkage process.

This clear separation also suggests that for shrinking purposes it may be useful to pa-
rameterize the covariance matrix in terms of variances and correlations (rather than vari-
ances and covariances) so that s?i j = r?i j

√siis j j. In this formulation, shrinkage is applied
to the correlations rather than covariances. This has two distinct advantages. Firstly,
the off-diagonal elements determining the shrinkage intensity are all on the same scale.
Secondly, the (partial) correlations derived from the resulting covariance estimator S?

are independent of scale and location transformations of the underlying data matrix, just
as is the case for those computed from S.

It is this form of target D that is proposed in this work for estimating correlation
and covariance matrices. For reference, the corresponding formulae are collected in
Tab. 4.1. Note the remarkably simple expression for the shrinkage intensity

λ̂? =

∑
i, j V̂ar(ri j)∑

i, j r2
i j

(4.12)

39



4. Regularized Estimation

– see also Tab. 4.2 (Target D). The variance Var(ri j) of the empirical correlation coef-
ficients can be estimated as follows: simply apply the above formula from Eq. 4.10 to
the standardized data matrix. This procedure treats the estimated variances as constants
and hence introduces a slight but generally negligible error. The same assumption also
justifies to ignore the bias of the empirical correlation coefficients in Eq. 4.12. In this
formula a concern may be the use of the empirical correlation coefficients ri j – after all,
these are the ones that are to be improved! Thus, it seems we face a circularity problem,
namely that for an accurate estimate of the shrinkage intensity reliable estimates of cor-
relation are needed, and vice versa. However, it is a remarkable feature of target D that
it completely resolves this issue: regardless whether standard or shrinkage estimates of
correlation are substituted into Eq. 4.12 the resulting λ̂? remains all the same.

Using the target D has another important advantage: the resulting shrinkage covari-
ance estimate will automatically be positive definite. The target D itself is always posi-
tive definite, and the convex combination of a positive definite matrix (T) with another
matrix that is positive semidefinite (S) always yields a positive definite matrix. Note
that this is also true for targets A and B but not for the targets C, E, and F (consider as
counterexample the target E with all variances set equal to one).

Further variants of the proposed estimator (Tab. 4.1) are easily constructed. One pos-
sible extension is to shrink the diagonal elements as well, using a different intensity for
variances and for correlations. Shrinking the variances to a common mean is standard
practice in genomic case-control studies (e.g. Cui et al., 2005). However, in these in-
stances there is typically so little data that the gene-specific variances are difficult to ob-
tain, let alone covariances. In contrast, modeling net-like relationships strongly depends
on the correlations among genes. Consequently, network inference is a more demand-
ing task than screening for differential expression, and thus requires a correspondingly
larger sample size. As a result, for these data it would be expected that there is at least
sufficient information to correctly estimate the variances (in which case shrinking would
not be necessary).
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4.2. Estimating Partial Correlation from Small Samples

4.2. Estimating Partial Correlation from Small

Samples

In order to obtain reliable estimates of partial correlation, conceptually simple but effec-
tive variations of the standard estimate (Eq. 3.6) are considered. Firstly, when inverting
the standard correlation estimator R the Moore-Penrose pseudoinverse is employed.
Secondly, bootstrap aggregation (bagging) is used to stabilize the classical estimators
of correlation and of partial correlation, respectively. It turns out that bagging of the
sample correlation matrix R acts as an implicit regularization procedure and that the
bagged estimate is always positive definite (cf. Friedman, 1989). Thirdly, shrinkage as
outlined in the previous section is applied to improve upon the sample covariance and
correlation estimates, respectively. The resulting estimates S? and R? (Tab. 4.1) are
positive definite by construction and thus can be easily inverted.

The Moore-Penrose pseudoinverse (Penrose, 1955) is a generalization of the standard
matrix inverse that can also be applied to singular matrices and that is based on the
singular value decomposition (SVD). The correlation matrix P can be decomposed into
P = U D VT where D is a square diagonal matrix of rank m ≤ min(n, p) containing all
non-vanishing singular values. The pseudoinverse P+ is then defined as P+ = V D−1 UT

and requires only the trivial inversion of D. It can be shown that the pseudoinverse P+

is the shortest length least squares solution of PP+ = I, where I denotes the identity
matrix. Hence it reduces to the standard matrix inverse where possible. Otherwise
it amounts to simply ignoring all zero singular values and corresponds to 0th-order
regularization.

Bootstrap aggregation offers a simple and very general nonparametric approach to
variance reduction (Breiman, 1996) and thus to improve upon an unstable estimator
θ̂(y) for a given set of data y. The Monte Carlo algorithm proceeds as follows:

1. Generate a bootstrap sample y∗b with replacement from the original sample. Re-
peat this process b = 1, . . . , B times independently (e.g. with B = 1000).

2. For each bootstrap sample y∗b calculate the estimate θ̂∗b.

3. Compute the bootstrap mean 1
B

∑B
b=1 θ̂

∗b to obtain the bagged estimate.
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4. Regularized Estimation

Another interpretation of the bagged estimate is as an approximate Bayesian posterior
mean estimate (Hastie et al., 2001).

Shrinkage estimation combined with analytic determination of the shrinkage intensity
as described above offers an appealing route to obtain reliable estimates of the covari-
ance and correlation matrix in small samples that may prove useful beyond the scope of
gene network analysis in many bioinformatical problems.

These techniques allow to construct small-sample estimators of the partial correlation
matrix P̃ = (ρ̃i j) (Eq. 3.6). In particular, in this thesis the following possibilities are
considered:

ˆ̃P
1
: Use the pseudoinverse for inverting the sample correlation matrix P̂ in order to

obtain an estimate of P̃, without performing any form of bagging
(= “pseudoinverse partial correlation”).

ˆ̃P
2
: Use bagging to estimate the correlation matrix P, then invert the bagged correlation

matrix to obtain an estimate of P̃
(= “partial bagged correlation”).

ˆ̃P
3
: Apply bagging to the estimator ˆ̃P

1
, i.e. use the pseudoinverse for inverting each

bootstrap replicate estimate P̂∗b, then average the results
(= “bagged partial correlation”).

ˆ̃P
4
: Use the shrinkage covariance estimator from Eq. 4.3 comprised by target D and the

estimated intensity λ̂? (cf. Tab. 4.1) followed by inversion to obtain an estimate
of P̃
(=“shrinkage partial correlation”).

By construction all four of these estimators can be applied to cases where the sam-
ple size is smaller than the number of variables. However, they differ drastically with
respect to accuracy as can be seen below in the section on computer simulations. More-
over, especially for the very large dimensions commonly encountered in genomics prob-
lems (often with p > 1, 000) the two bootstrap approaches are computationally very
demanding.
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Genetic Networks

In this chapter two simple approaches are considered for inferring networked depen-
dency structures from complex gene expression data, both of which require as input an
estimated large-scale covariance matrix. The first and conceptually simpler model is
that of a “gene relevance network” that was introduced by Butte et al. (2000) and that
is built in the following simple fashion. Firstly, the p × p correlation matrix P = (ρi j)
is estimated from the data. Secondly, a correlation test needs to be employed to the
individual entries and test results should become adjusted for multiplicity. Thus, rele-
vance networks represent the marginal (in)dependence structure among the p genes. In
statistical terminology this type of network model is known as “covariance graph”.

Despite the popularity of relevance networks which stems from the relative ease of
construction there are many problems connected with their proper interpretation. For
instance, the cut-off value that determines the “significant” edges is typically chosen in
a rather arbitrary fashion – often simply a large value is selected (say |r| > 0.8) with
the vague aim to exclude “spurious” edges. However, this misses the statistical inter-
pretation of marginal correlation which takes account of both direct as well as indirect
associations. As a straightforward consequence, in a reasonably well-connected genetic
network most genes will by construction be correlated with each other – for an exam-
ple see the analysis of the Escherichia coli expression data in Chapter 7. Thus, in this
case even a high observed degree of correlation will provide only weak evidence for
the direct dependency of any two considered genes. Instead, the absence of correlation

will be a strong measure of their independence. Therefore, even ignoring the difficulties
with obtaining accurate measures of correlation from small-sample data, gene relevance
networks are suitable tools not for elucidating the dependence network among genes but
rather for uncovering independence structures!
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5. Small-Sample Inference of Genetic Networks

By contrast, with the class of graphical Gaussian models (GGMs), also known as
“covariance selection” or “concentration graph” models, a simple statistical approach
exists that allows to detect direct dependencies between genes. This “gene association
network” approach is based on investigating the estimated partial correlations r̃i j for
all pairs of considered genes. In a small-sample setting both the estimation of the par-
tial correlations, i.e. connection strength in gene association networks, as well as the
subsequent model selection procedure need to be suitably modified. In the following
an empirical Bayes approach for identifying the precise network topology in graphical
Gaussian models is discussed to allow for their large-scale application on small-sample
data. The proposed network inference procedure is investigated with respect to power
and other performance criteria in an extensive simulation study.

Recall that unfortunately, the naive strategy to try all potentially adequate models and
to evaluate their goodness of fit is impossible given that the number of possible network
topologies grows super-exponentially with the number of nodes. Thus, an exhaustive
network enumeration is necessarily limited to toy cases only and by far not conceivable
for the large number of investigated features in functional genomics problems. Text-
book methods such as stepwise selection procedures traditionally based on asymptotic
edge deletion chi-squared tests, are not reliable for the small sample sizes usually en-
countered in genomics problems. As an heuristic but fast and computationally efficient
alternative to proper network selection, large-scale false discovery rate multiple testing
of all possible edges with an exact correlation test is employed.

In order to address the statistical testing problem of non-zero partial correlation

H0 : ρ̃i j = 0 versus H1 : ρ̃i j , 0, (5.1)

the sampling distribution of ˆ̃ρi j = r̃i j under the null hypothesis ρ̃i j = 0 is asked for. For
convenience, subscripts i j are dropped in the following.

From Hotelling (1953) the distribution of the sample normal correlation coefficient
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ρ̂ = r is known exactly. For ρ = 0 we have

f0(r; κ) =
(
1 − r2

)(κ−3)/2 Γ
(
κ
2

)
π

1
2Γ

(
κ−1

2

)
= |r|Be

(
r2;

1
2
,
κ − 1

2

)
,

(5.2)

where Be(x; a, b) is the Beta distribution and κ is the degree of freedom and the recipro-
cal variance of r, i.e. Var(r) = 1

κ
. For the standard correlation coefficient the degree of

freedom κ equals n − 1, i.e. is determined by the sample size n.
The sample normal partial correlation coefficient ˆ̃ρ = r̃ is distributed precisely as the

standard correlation coefficient ρ̂ = r, only that κ is reduced by the number of eliminated
variables (Hotelling, 1953). Thus, if there are p variables of which p − 2 have to be
eliminated in order to compute the pairwise partial correlation coefficients, the resulting
degree of freedom is κ = n − 1 − (p − 2) = n − p + 1. Note that this relationship implies
that n cannot be smaller than p if κ is to remain positive!

Furthermore, in a small-sample setting we cannot use the standard sample versions
of partial correlations ρ̃ (Eq. 3.6) but rather have to rely on alternative estimators such

as ˆ̃P
1
, ˆ̃P

2
, ˆ̃P

3
, and ˆ̃P

4
suggested above. Unfortunately, the sampling distributions of

these estimators cannot analytically be derived. However, it can be shown numerically
(see section Simulation Study for details) that their respective simulated sampling dis-
tributions still assume the distributional form of Eq. 5.2, albeit with a smaller variance
and hence with κ > 0 even for n < p. It should be noted that in this case the degree of
freedom κ is not a simple function of n and p but rather has to be estimated itself from
the data.

5.1. Robbins-Efron-Type Inference of Empirical Null

Distribution

In principle, given an appropriate choice of κ, Eq. 5.2 allows to compute p-values for es-
timated partial correlation coefficients and thus to perform statistical testing with regard
to the presence of edges in a GGM network.

As repeated estimates of the partial correlation coefficient per individual edge are not
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5. Small-Sample Inference of Genetic Networks

available, it is not trivial to estimate the degree of freedom κ. However, the highly par-
allel structure of the edge testing problem and the fact that biomolecular networks are
typically sparse (e.g. Yeung et al., 2002) can be utilized. In a network considering p

genes there is a large number m = p(p−1)/2 of possible edges. Only a small fraction of
these will correspond to true edges, whereas for the remaining majority the correspond-
ing true partial correlation coefficients will vanish. Therefore we may assume that the
observed partial correlation coefficients ˆ̃ρ = r̃ across all edges in the network follow a
mixture density

f (r̃) = η0 f0(r̃; κ) + (1 − η0) fA(r̃) , (5.3)

where f0 is the null distribution, η0 is the (unknown) large proportion of “null edges”
(say η0 ≥ 0.9), and fA the distribution of observed partial correlations assigned to actu-
ally existing edges that we aim to identify. The null distribution f0 is given by Eq. 5.2.
For reasons of simplicity we may assume for the distribution of partial correlation coef-
ficients of the true edges fA, e.g., a simple uniform distribution from -1 to 1. However,
for fA other more complicated distributions could easily be conceived, including non-
parametric estimates (Efron, 2005b).

Fitting this mixture density to the observed partial correlation coefficients (via opti-
mizing the corresponding likelihood or an EM-type algorithm) allows to estimate the
parameters η0 and κ. In doing so one carries out the type of empirical Bayes analysis
proposed by Robbins (1956) and Efron (2003). It is then straightforward to compute
two-sided p-values for each possible edge in the network using the exact null distri-
bution f0 with κ̂ as plug-in estimate. Alternatively, one may also be interested in the
edge-specific “local false discovery rate” (fdr)

Prob(null edge|r̃) = fdr(r̃) =
η0 f0(r̃; κ)

f (r̃)
, (5.4)

i.e. the Bayes posterior probability of an edge being absent given r̃. An edge may be
considered significant if its local fdr is smaller than 0.2 (Efron, 2005b). Closely related
to the empirical Bayes local fdr statistic is the commonplace tail area false discovery
rate (FDR) approach to multiple testing advocated by Storey (2002), also called q-value
approach, and the seminal Benjamini and Hochberg (1995) FDR rule. False discovery
rate methods are discussed in more detail in the next section. In practice it seems to
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make little difference which approach is used. However, the local fdr statistic fits more
naturally with the mixture modeling setup. Moreover, it provides a measure of belief
in the significance of an individual edge. An exemplifying estimation technique is dis-
cussed in Subsection 5.2.2 that takes account of the dependencies among the estimated
partial correlation coefficients (Efron, 2005a).

The inference approach, though new for edge detection in graphical models, is di-
rectly inspired by similar approaches to detect differentially expressed genes (Sapir and
Churchill, 2000; Efron et al., 2001; Efron, 2003). There, the mixture model represents
differentially and not differentially expressed genes presupposing that the majority of
investigated genes belong to the latter class.

A key element of this procedure is that it turns a seemingly disadvantage in the analy-
sis, namely the large number of genes p in a microarray data set, into an advantage: with
growing p the number of zero-edges η0m becomes larger, and hence it gets easier to es-
timate the null distribution from the data. Note that this “Robbins-Efron-type” inference
(see Efron, 2003) enables one to determine the sampling distribution f0 from a large-
dimensional point estimate. A further benefit of using an empirical null distribution in
a large-scale testing situation is that it additionally accounts for hidden correlations and
the effects of unobserved covariates (Efron, 2004, 2005a).

Finally, it should be noted that using the estimated degree of freedom κ̂, an effective
sample size neff = κ̂ + p − 1 can be determined. This reflects the relationship between
sample size and κ for the standard normal partial correlation coefficient, but also extends

to the case when other estimators such as ˆ̃P
1
, ˆ̃P

2
, ˆ̃P

3
, and ˆ̃P

4
are employed.

5.2. Large-Scale GGM Selection Using Multiple

Testing – Type I Error Rate Concepts

One simple strategy for choosing a GGM network consistent with the data is to test
each of the m = p(p − 1)/2 potential edges individually for presence in the final net-
work, i.e. to determine whether the corresponding partial correlation coefficients differ
significantly from zero (Whittaker, 1990; Drton and Perlman, 2004). GGM search by
multiple testing implicitly assumes that for all cliques, i.e. fully connected subsets of
nodes, of size three and more the underlying joint distribution is well approximated by
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the product of the bivariate marginal densities associated with the respective undirected
edges (Cox and Reid, 2004).

Let I ⊆ {1, . . . ,m} denote the set of indices of the true null hypotheses in the sense
that its members describe zero edges. Note that the cardinaliy of I equals η0m. In
order to address the various test problems of zero partial correlation, one may proceed
as follows: firstly, a list of p-values p1, p2, . . . , pm is calculated, where pi ∼ Un[0, 1]
if i ∈ I. Secondly, because of the large-scale parallel testing situation adjustment for
multiplicity needs to be employed – see Shaffer (1995), Pigeot (2000), or Dudoit et al.
(2003) for a review of different approaches to multiple hypothesis testing. Dudoit et al.
(2003) place particular emphasis on the context of functional genomics approaches. For
a given rejection region [0, γ], let V = V(γ) denote the number of false positives, i.e.
the number of p-values pi below γ with i ∈ I,

V(γ) =
∑
i∈I

1{pi ≤ γ}. (5.5)

In terms of this random variable, the per family error rate (PFER) is defined as E(V)
and the per comparison error rate (PCER) as alternative criterion E(V)/m. Classical
multiple testing procedures control the risk of committing a type I error within the tested
family of hypotheses (e.g., Holm, 1979; Simes, 1986; Westfall and Young, 1993). This
family-wise error rate (FWER) is defined as Prob(V ≥ 1) and is usually required in the
strong sense, i.e. under all configurations of true and false hypotheses tested. It is well
known that procedures controlling the family-wise error rate tend to have substantially
less power than procedures that do not correct for multiplicity if the number of tested
hypotheses is large. In the inference of large-scale GGM networks from small-sample
genomic data, lack of multiplicity control would be by far too permissive. Contrariwise,
full protection resulting from FWER control is too restrictive. This is valid in many
instances whenever it is primarily a selection effect that is of concern. Benjamini and
Hochberg (1995) introduce a less stringent criterion, the so-called false discovery rate

(FDR), discussed in the following.
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5.2.1. The False Discovery Rate

FDR multiple testing (Benjamini and Hochberg, 1995) has emerged as a strategy that is
particularly useful for addressing large-scale simultaneous inference problems that are
epitomized by functional genomics approaches. Very similar high-dimensional issues
arise in functional neuroanatomy. Specifically, magnetic resonance imaging (MRI) and
diffusion tensor imaging (DTI) produce maps of the inside of the human body. Brain
anatomy is one of the most interesting areas of study. Regarding the problem of finding
regions that differ between two groups of subjects, the FDR concept proves helpful
(Schwartzman et al., 2005). The FDR is defined as the expected ratio of erroneous
rejections to the total number of rejected hypotheses, E(Q), where

Q =

V/R if R > 0

0 if R = 0.
(5.6)

R = R(γ) denotes the number of hypotheses with p-values in a given rejection region
[0, γ], R(γ) =

∑
i∈{1,...,m} 1{pi ≤ γ}. It should be noted that the FDR is equivalent to the

FWER in the weak sense, i.e. if all null hypotheses are true. Otherwise it holds that
FDR ≤ FWER (Benjamini and Hochberg, 1995). As a result, multiple comparison
procedures controlling the FDR may be expected to be more powerful than the com-
monly used multiple comparison procedures based on the FWER. This makes it ideal
for screening purposes (Storey and Tibshirani, 2003). The basic algorithm is as follows:

1. Construct the set of ordered p-values p(1), p(2), . . . , p(m) with corresponding edges
e(1), e(2), . . . , e(m).

2. Let iq be the largest i for which p(i) ≤ iq/m.

3. Reject the null hypothesis of zero partial correlation for edges e(1), e(2), . . . , e(iq).

It can be shown that the procedure controls the FDR at level q for independent test
statistics and for any configuration of false null hypotheses (Benjamini and Hochberg,
1995).

FDR control at level q of the above sequential p-value method can be understood as
follows. The p-value threshold γ′ = iq/m is estimated that controls the FDR at level q
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when the number of rejected hypotheses is fixed. Thus,

q =
mγ′

i
,

i.e. the ratio of estimated type I errors to the number of rejected hypotheses. Due to
piq ≤ γ′ it holds that the estimated FDR using piq does not exceed q. The number of
tests m can be replaced by an estimator of the number of the η0m true null hypotheses.
Adaptive methods (Benjamini and Hochberg, 2000) will give sharper control of the FDR
when η0 < 1. Storey (2002) strongly argues for the same argument: using information
in the data about the number of true null hypotheses, η0m, to obtain a less conservative
estimator of the FDR. When rejecting all null hypotheses with p-values less than γ, he
proposes an estimator of the FDR given as

F̂DRλ(γ) =
η̂0(λ)mγ

R(γ)
, (5.7)

where
η̂0(λ) =

m − R(λ)
(1 − λ)m

(5.8)

with fine tuning parameter λ ∈ [0, 1) determined using bootstrap analysis. Under an i.i.d.
mixture model, the estimator from Eq. 5.7 has the property that E[F̂DRλ(γ)] ≥ FDR(γ).
Inclusion of η̂0(λ) (Eq. 5.8), subject to the reasonable constraint that η̂0 ≤ 1, is the
operational difference between Eq. 5.7 and the seminal Benjamini and Hochberg (1995)
approach. Note that for the most conservative choice η̂0 = 1, the two methods coincide.
However, from Eq. 5.7 it becomes again obvious that otherwise a gain in power can be
expected.

Moreover, in Storey (2002, 2003) it is emphasized that assuming independent tests the
FDR can be written as a Bayesian posterior probability for a given significance region
[0, γ]:

FDR(γ) =
η0γ

Prob(p ≤ γ)
. (5.9)

This comes along with the definition of the “q-value” – the FDR analogue of the p-value:

q(p) = inf
γ≥p
{FDR(γ)} = inf

γ≥p

{
η0γ

Prob(p ≤ γ)

}
. (5.10)
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The q-value is a multiple hypothesis testing quantity, whereas the p-value is a single
hypothesis testing quantity. Moreover, it becomes evident that the FDR is justified both
from a frequentist as well as from a Bayesian perspective (see also Efron et al., 2001;
Efron and Tibshirani, 2002; Efron, 2003). Finally, it is noteworthy that the original inde-
pendence assumption was substantially relaxed in later work (Benjamini and Yekutieli,
2001; Storey, 2003).

Different estimators of η0 can be used in FDR controlling procedures – for recent
developments see for example Meinshausen and Bühlmann (2005b) who propose an
estimator under general dependence structures. In our case a suitable estimate η̂0 is
available from the fit of Eq. 5.3.

5.2.2. The locfdr Algorithm for Estimating the Local fdr

The empirical Bayes methodology from Section 5.1 suggests a local version of the FDR
(Eq. 5.4). This is an interesting extension to the above basic FDR algorithm and its vari-
ations because it accounts for localities covered by the rejection tail area approach. The
close connection between the frequentist FDR rule (Benjamini and Hochberg, 1995),
its “Bayesian form” (called “q-value” in Storey (2003) – Eq. 5.10), and the empirical
Bayes methodology from Section 5.1, follows directly from Bayes theorem (Efron and
Tibshirani, 2002). This gives theoretical justification for the intuitive interpretation that
the value of the tail area false discovery rate FDR attained at a given value of the con-
sidered statistic, say Z = z, is the average of local false discovery rates fdr(Z) for Z ≤ z.

Estimating the local false discovery rate fdr(r̃) (Eq. 5.4) requires estimating the mix-
ture density f (r̃) as well as η0 f0(r̃; κ). For normalization purposes of the sampling dis-
tribution we may first apply Fisher’s (1921) z-transformation

z =
1
2

log
(
1 + r̃
1 − r̃

)
(5.11)

to the estimated partial correlation coefficients r̃ that corresponds to the inverse hyper-
bolic tangent function (atanh). The histogram of resulting z-values will reveal a normal-
shaped peak around zero representing the large majority of “null” edges, while the long
tails chart some interesting “non-null” coefficients – the ones we intend to detect.

The locfdr algorithm (Efron, 2004, 2005b,a) is presented as an exemplifying ap-
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proach to local fdr estimation. Software is publicly available as the R package “locfdr”
from the CRAN archive (http://cran.r-project.org). An empirical Bayes anal-
ysis is employed of the two-class mixture model from Eq. 5.3, where f (z) is estimated
by fitting a smooth curve f̂ (z) to the histogram counts of z-values using Poisson general
linear model (GLM) methodology and thus transferring density estimation to the field
of regression theory. By contrast, η0 f0(z) is more challenging to estimate. The locfdr
algorithm fits an empirical null density in order to account for inherent dependencies
(Efron, 2004, 2005a). For this purpose, the algorithm exploits the sparsity of biomolec-
ular networks in that it assumes η0 near 1 (say η0 ≥ 0.9). Thus, using η0 = 1 would
not result in an overly conservative estimator of fdr(z). Moreover, the sparsity assump-
tion allows to estimate the scaled null distribution η0 f0(z) from the central peak in the
z-values’ histogram. Assuming normality for f0 gives

log f (z) = −
1
2

(
z − µ0

σ0

)2

+ constant

for z near 0, so that µ0 and σ0 can be estimated from the observed data by fitting a
quadratic polynomial to the central histogram counts log f̂ (z) as

µ0 = arg max{ f (z)} and σ0 =

[
−

d2

dz2 log f (z)
]− 1

2

µ0

.

These are the crucial empirical Bayes steps that together give an estimator of fdr(z), the
posterior probability of “null edge”,

f̂dr(z) = η̂0 f̂0(z)/ f̂ (z).

It should be noted that beyond the locfdr algorithm, there have recently emerged
various approaches to estimating posterior probabilities in microarray experiments with
special focus on identifying differentially expressed genes (e.g., Pan et al., 2003; Pounds
and Morris, 2003; Pounds and Cheng, 2004; Liao et al., 2004; Scheid and Spang, 2004).

While the original frequentist FDR theorem (Benjamini and Hochberg, 1995) was
proved assuming that the teststatistics are mutually independent, independence plays
no essential role in the empirical Bayes approach. Moreover, it is the intention behind
fitting an empirical null distribution to account for dependency structures. Thus it seems
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5.2. Large-Scale GGM Selection Using Multiple Testing

reasonable to expect accurate results under quite general conditions.
Using a multiple testing procedure for GGM selection has the advantage that it is

practical and computationally efficient also for a large number of genes. Nevertheless,
this is an heuristic and only an approximation to an exhaustive GGM search. However,
other heuristic searches such as backward and forward selection (Whittaker, 1990) do
not necessarily guarantee a better fit for large p than multiple testing (Drton and Perl-
man, 2004). Stochastic searches such as Bayesian Markov chain Monte Carlo sampling
of GGMs may prove more effective, see Wong et al. (2003) and Dobra et al. (2004) for
recent developments.
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5. Small-Sample Inference of Genetic Networks

5.3. Simulation Study

In a series of extensive computer simulations the proposed small-sample GGM frame-
work was investigated in terms of estimation accuracy, model validation, and model
selection performance criteria such as power and positive predictive accuracy. Special

focus is on comparing the four small-sample estimators ˆ̃P
1

(“pseudoinverse”), ˆ̃P
2

(“par-

tial bagged correlation”), ˆ̃P
3

(“bagged partial correlation”), and ˆ̃P
4

(“shrinkage”).

5.3.1. Simulation Setup

Specifically, the following algorithm is used to generate random “true” partial corre-
lation matrices P̃ that are always positive definite. It allows to control parameters of
interest such as the number of features p, and the fraction of non-zero edges ηA = 1−η0.

1. Start with an empty p × p matrix.

2. Choose randomly the off-diagonal positions corresponding to the ηAm non-zero
edges, and fill in preliminary correlation values drawn from the uniform distribu-
tion between -1 and 1.

3. Compute column-wise sums of the absolute values of the matrix entries, and set
the corresponding diagonal element equal to this sum plus a small constant (say
0.0001). This ensures that the resulting matrix is diagonally dominant, and thus
always positive definite.

4. Standardize the matrix so that the diagonal entries all equal 1 in order to obtain the
simulated “true” partial correlation matrix P̃ which in turn represents the “true”
GGM network.

An example of a simulated network model with p = 100 nodes and proportion ηA =

0.02 of non-null edges is shown in Fig. 5.1. This choice of p and ηA implies that there are
99 true edges out of 4,950 potential edges. It should be noted that even for small values
of ηA the resulting “sparse” network still looks quite dense. This is because the number
of available edges m grows with the square of the number of variables p. Unfortunately,
further structural and distributional properties are not easily specified – see for instance
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Figure 5.1.: Simulated sparse network with p = 100 nodes and 99 edges (corresponding to an
edge fraction ηA = 0.02). Note that in this figure branch lengths are purely due to the layout of
the graph and do not indicate the strength of correlation between two connected nodes. Grey
lines indicate negative partial correlation, whereas edges with positive correlation are drawn in
black.
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5. Small-Sample Inference of Genetic Networks

Hirschberger et al. (2004). This would be desirable as the present simulation algorithm
produces networks with edges that represent mostly weak links. Note that this renders
their inference disproportionally hard!

Synthetic data of desired sample size n are generated as follows: from P̃ the true
pairwise correlation matrix P is computed via reverse application of Eq. 3.6 and Eq. 3.5.
As P̃ is positive definite, so is its inverse and the corresponding matrix P. Subsequently,
n samples are drawn from the multivariate normal distribution with zero mean vector
and correlation structure P.

As a measure of accuracy for the four point estimators ˆ̃P
k

(k = 1, 2, 3, 4), the squared

error loss L( ˆ̃P
k
, P̃) = || ˆ̃P

k
− P̃||2F =

∑
i, j ( ˆ̃ρk

i j − ρ̃i j)2 is employed. The expected loss

(risk), or mean squared error (MSE), is estimated by averaging L( ˆ̃P
k
, P̃) over multiple

simulation runs.

Specifically, this simulation study’s setup fixes at p = 100, ηA = 0.04, and n =

10, 20, . . . , 200. A total of R = 200 networks, i.e. partial correlation matrices, were
randomly generated per investigated sample size n and data simulated from the cor-
responding multivariate normal distribution. From each of the R data sets the partial
correlation coefficients were estimated with the four methods “shrinkage”, “pseudoin-

verse”, ˆ̃P
2
, and ˆ̃P

3
. The number of bootstrap replications required for ˆ̃P

2
and ˆ̃P

3
is set

to B = 500.

In a similar fashion, the average number of edges detected as significant, the power,
and the positive predictive value (PPV), that is the number of correctly identified edges
among all significant findings, were determined. The criterion for GGM selection is
local fdr cut-off set to 0.2 as suggested in Efron (2005b).

5.3.2. Performance for Synthetic Data

Estimation Accuracy

In Fig. 5.2 the accuracy of the four small-sample estimators of partial correlation is con-
trasted. The shrinkage estimator outperforms all others regardless of sample size. The

estimator ˆ̃P
2

is nearly as accurate for small sample size, however, it is much more com-
puter expensive than the shrinkage estimator. Its good performance can be explained

as follows: ˆ̃P
2

is besides the shrinkage estimator – that is guaranteed to be positive
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Figure 5.2.: Mean squared error of the four small-sample estimators of partial correlation:

“shrinkage”, “pseudoinverse”, ˆ̃P
2
, and ˆ̃P

3
, in dependence of sample size n for p = 100 genes.

definite by construction – the only one of the investigated estimators that is based on
a positive definite estimate of the correlation matrix, as averaging over bootstrap sam-
ple correlation matrices P̂∗b acts as an implicit regularization procedure (cf. Friedman,
1989).

The peak at n = 100 associated with the estimator ˆ̃P
1

is a dimension resonance ef-

fect (recall that p = 100). The mean squared error of ˆ̃P
1

increases dramatically around
this region, with decreasing error when the sample size decreases. This “peaking phe-
nomenon” is well known in small-sample regression and classification problems and
is due to the use of the pseudoinverse (Raudys and Duin, 1998; Skurichina and Duin,
2002). It can be understood as follows: for n ≈ p the eigenvalues of the sample cor-
relation matrix are distorted in comparison with those of the true correlation matrix,
in particular the largest and smallest eigenvalues are highly over- and underestimated,
respectively (e.g. Friedman, 1989). This causes the corresponding SVD directions in
the pseudoinverse to become highly overestimated. Any form of regularization of the
correlation matrix (for example by bootstrap analysis) reduces this error dramatically

(Skurichina and Duin, 2002). This can be seen immediately by comparing ˆ̃P
1

with the
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Figure 5.3.: Quantile-quantile plots of the observed null distribution of the four small-sample

estimates “shrinkage”, “pseudoinverse”, ˆ̃P
2
, and ˆ̃P

3
for p = 100 genes and sample size n = 20.

two bagged estimators, ˆ̃P
2

and ˆ̃P
2
, and with the shrinkage estimator ˆ̃P

4
that demonstrate

a very good performance in the “critical n” zone with n in the order of p and exhibit a

considerably lower error than ˆ̃P
1
.

Validation of the Empirical Null Distribution

In further studies it is verified that under the null hypothesis of zero partial correlation

the proposed small-sample estimators ˆ̃P
1
, ˆ̃P

2
, ˆ̃P

3
, and ˆ̃P

4
do indeed follow the distri-

butional form suggested in Eq. 5.2 where κ̂ is used as plug-in estimate. This model
validation step is important in order to avoid systematic bias in the statistical testing of
edges.

In Fig. 5.3 example quantile-quantile plots are shown comparing the observed distri-
bution with the empirical null distribuion for small sample size (n = 20). The data are
simulated assuming p = 100 genes and an empty “network” with no edges as under-
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5.3. Simulation Study

lying model. For ˆ̃P
4

(“shrinkage”), ˆ̃P
1

(“pseudoinverse”), and ˆ̃P
3

clearly the observed
null distributions still fit the theoretical distributional form of Eq. 5.2 well. The plot for
ˆ̃P

2
however indicates a stronger curtosis and broader tails of the empirical compared to

the fitted empirical null distribution. Nevertheless, for the time being let us consider the
fit still acceptable.

It is crucial to note that in small samples the variability of estimated partial correla-
tion coefficients and thus the estimated degrees of freedom κ̂ differ considerably among

investigated estimators. Not surprisingly, for n = 20 and p = 100 the estimator ˆ̃P
4

exhibits by far the smallest variance and hence largest κ̂. Its successor in this context is
ˆ̃P

2
.

Subsequently, the fit of the mixture distribution (Eq. 5.3) was also checked in the
presence of true non-zero correlations. Results from a small-sample simulation with
n = 20, p = 100, and ηA = 0.04 are displayed in Fig. 5.4. The quantile-quantile
plots are shown of the observed distribution of partial correlation coefficients versus the
fitted empirical null. We observe slightly broader tails of the empirical as compared
to the empirical null distribution. This finding is as expected because in this case the
empirical distribution is a mixture of the null and of the alternative distribution, from
which non-zero correlations belonging to the true edges are drawn (indicated in the plots
by red cross symbols). Naturally, it is assumed that non-null edges are more dispersed
than nulls. However, it is worth remarking that the present simulation setting is very
restrictive leading to many non-nulls that are very close to nulls. The proportion of zero
edges η0 is estimated accurately, and the estimates of the degree of freedom κ of the null
distribution are similar to the corresponding estimates from Fig. 5.3.

In a similar fashion Fig. 5.5 depicts the corresponding empirical Bayes posterior prob-
abilities of an edge being absent given r̃ (Eq. 5.4). The probability of an observed par-
tial correlation to correspond to a non-existing edge is rather small for large correlation
strengths and increases – more or less quickly – for smaller absolute values. Only the
tails of the empirical mixture distribution contain the statistically significant edges. The
width of the characteristic shape of the plotted empirical Bayes posterior probabilities is
determined by the degree of freedom κ of the null distribution. It becomes evident that
using an estimator with a small variance is advantageous as this allows to identify statis-
tically significant edges even with relatively small absolute value of partial correlation.
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5.3. Simulation Study
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Figure 5.5.: Empirical Bayes posterior probabilities of an edge being truly absent given the

corresponding entry of the estimator “shrinkage”, “pseudoinverse”, ˆ̃P
2
, resp. ˆ̃P

3
(local false

discovery rate – fdr).

Note again that it is the difficulties in random sparse correlation matrix generation that
shed light on the problem of low power for small sample sizes in the present simulation
studies! Put differently, if we try to report more of the non-null edges then false dis-
covery rates grow unacceptably high, such that we would have a disproportionally high
chance of pursuing artefacts, i.e. false leads.

Sensitivity and positive predictive accuracy

Finally, a large amount of computational effort was spent on simulations to investigate
the statistical properties of GGM selection using local false discovery rate multiple test-
ing. Simulations with n ranging from 10 to 200 in steps of 10, p = 100, and ηA = 0.04
were conducted. The GGMs were inferred by multiple testing of m = 4, 950 edges with
the desired local fdr level fixed at 0.2 (Efron, 2005b).

For each inferred network, the number of true positive features T P (correctly iden-
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5. Small-Sample Inference of Genetic Networks

Table 5.1.: Definition of quantities used for assessing GGM network reconstruction.
Quantity Definition
Number of true edges: T P + FN = ηAm
Number of zero-edges: T N + FP = η0m
Significant edges: T P + FP = S
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

False positive rate: E( FP/(η0m) ) = αI

False negative rate: E( FN/(ηAm) ) = αII

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
True negative rate: 1 − αI

(specificity)
True positive rate: 1 − αII

(sensitivity, power)
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Positive predictive value: PPV = E(T P/S )Prob(S > 0)
False discovery rate: FDR = E(FP/S )Prob(S > 0)

tified edges), false positives FP (spurious edges), true negatives T N, as well as the
number of false negatives (FN) were counted. From these raw statistics, and repeated
simulations of networks and data, namely R = 200 repetitions per investigated sam-
ple size, estimates of the false positive rate (type I error rate), power (sensitivity), and
positive predictive accuracy (cf. Tab. 5.1 for the precise definitions of these quantities)

were obtained for ˆ̃P
1
, ˆ̃P

2
, ˆ̃P

3
, and ˆ̃P

4
at a given sample size n. The positive predictive

value (PPV) is defined as the expected proportion of true positives among all significant
findings.

Fig. 5.6a and Fig. 5.6b visualize the results with regard to GGM reconstruction.
Fig. 5.6a shows the number of edges that were detected as significant using each of
the four methods. For ηA = 0.04 and p = 100 there exist exactly 198 edges in any of the

simulated networks. From n ≈ p/2 the shrinkage estimator in comparison with ˆ̃P
1
, ˆ̃P

2
,

and ˆ̃P
3

typically finds the largest number of edges. The large number of significant

edges for ˆ̃P
2

for very small sample sizes with n � p is a systematic bias related to the
improper fit of the null model (Eq. 5.2).

Fig. 5.6b illustrates the corresponding power, i.e. the proportion of correctly identi-
fied edges, and positive predictive value (PPV). The latter quantity is of crucial practical
importance as it is an estimate of the expected proportion of true edges among the list
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5.3. Simulation Study
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Figure 5.6.: Performance of GGM network inference procedure: (a) Average number of edges
detected as significant. Note that there are 198 true edges in the simulated network (horizontal
dashed line). (b) Power and positive predictive value (PPV) for reconstructing the GGM network
topology. Gaps in the curves for the PPV indicate situations in which the PPV could not be
computed (no significant edges).

63



5. Small-Sample Inference of Genetic Networks

of edges returned as significant by the algorithm. For the shrinkage estimator the PPV
– where defined – is constant across the whole range of sample sizes and close to the
desired level near 1−Fdr ≈ 0.9 (Efron, 2005b). All other estimators reach the appropri-

ate level of PPV only for n > p. In terms of power, the shrinkage and the ˆ̃P
2
-bootstrap

analysis GGM approach outperform the other two investigated estimators which exhibit

reasonable power only for n > p. However, for very small samples ˆ̃P
2

liberally includes
many edges in the resulting network without adequately controlling the rate of false pos-
itives among them. Thus, its PPV drops sharply: this is due to its imperfect goodness
of fit with the theoretical distributional form (Eq. 5.2) under the null hypothesis. In the
present simulations the shrinkage estimator has non-zero power only from n ≥ 30 (for
p = 100). As discussed above this should be a consequence of the simulation setup that
produces partial correlation networks that are hard to infer. Put differently, all the simu-
lations and the resulting estimates are quite conservative. This is because true GGMs are
generated in such a way that they contain edges with both strong as well as many weak
true correlations. The latter are notoriously difficult to detect (cf. Fig. 5.4 and Fig. 5.5)
such that the test results are consequently depressed. For this reason in particular, it is
crucial to appreciate the high PPV of the shrinkage estimator that indicates that if there
is a significant edge then the probability is very high that it actually corresponds to a
true edge.

Moreover, it should be mentioned that all four small-sample estimators exhibit the
same low empirical false positive rate regardless of n (data not shown).

In summary, the obtained results particularly promote ˆ̃P
4

as estimator of choice for
the inference of GGM networks from small-sample gene expression data.
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6. Lasso Regression for Large-Scale

Covariance Selection

Alternative methodology for large-scale covariance selection is offered by penalized re-
gression that is also a shrinkage method. Particularly promising is the lasso approach
(Tibshirani, 1996) as the nature of the lasso penalty causes a kind of continuous model
selection. The approach is motivated and more details are given in the next section
followed by a presentation of the results of a simulation study that contrasts the empir-
ical Bayes approach proposed in the preceding two chapters with the lasso approach to
large-scale GGM selection from small-sample data.

6.1. Model Selection Using L1 Lasso Penalized

Regression

Partial correlations may not only be estimated by inversion of the covariance or correla-
tion matrix (Eq. 3.5, Eq. 3.6). An alternative route is offered by regressing each gene’s
expression Xi ∈ {X1, . . . , Xp} against the remaining set of p− 1 variables. The estimated
partial correlation coefficients are then determined as

r̃i j = sign
(
β̂

( j)
i

) √
β̂

( j)
i β̂

(i)
j , (6.1)

where β̂(i)
j denotes the estimated regression coefficient of predictor variable X j for the

response Xi. Note that while in general β̂( j)
i , β̂(i)

j the signs of these two non-zero
regression coefficients are identical.

This opens the way for obtaining small-sample estimates of partial correlation and
GGM inference by means of regularized regression. This avenue is pursued, e.g., by
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6. Lasso Regression for Large-Scale Covariance Selection

Dobra et al. (2004) who employ Bayesian variable selection. Another possibility to
determine the regression coefficients is by penalized regression, for instance ridge re-
gression (Hoerl and Kennard, 1970a,b; Tikhonov and Arsenin, 1977) or the lasso (Tib-
shirani, 1996). The latter approach has the distinct advantage that it will set many of
the regression coefficients (and hence also partial correlations) exactly equal to zero.
Thus, for covariance selection no additional testing is required: an edge is recovered in
the GGM network if both β̂( j)

i and β̂(i)
j differ from zero. For the standardized expression

data, the lasso estimates for each gene i ∈ {1, . . . , p} are defined by

β̂(i) = arg min
β(i)

n∑
k=1

xki −
∑
j,i

xk jβ
(i)
j


2

subject to
∑
j,i

∣∣∣∣β(i)
j

∣∣∣∣ ≤ λi.

(6.2)

GGM selection using the lasso is investigated in Meinshausen and Bühlmann (2005a)
who suggest to choose the lasso penalty λi for regression against variable Xi according
to

λ̂i = 2

√
sML

ii

n
Φ−1

(
1 −

α

2p2

)
, (6.3)

where Φ(z) is the cumulative distribution function of the standard normal distribution,
α is a constant (set to 0.05 in the computations below) that controls the probability of
falsely connecting two distinct connectivity components (Meinshausen and Bühlmann,
2005a), and sML

ii is the maximum likelihood estimate of the variance of Xi. Note that this
adaptive choice of penalty ensures that for small sample variance λ̂i vanishes and hence
in this case no penalization takes place. Similarly to the shrinkage approach using target
D that I propose for network reconstruction (cf. Tab. 4.2), it is assumed that there is at
least enough data available in order to accurately estimate the variances sML

ii .

6.2. Performance for Synthetic Data

In another simulation study the shrinkage and lasso approach to GGM selection were
compared in terms of accuracy, power, and positive predictive accuracy.

Specifically, the simulation setup was again as follows:
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6.2. Performance for Synthetic Data

1. Parameters of interest are controlled such as the number of features p, the fraction
of non-zero edges ηA = 1 − η0, and the sample size n of the simulated data.
Specifically, parameters are fixed at p = 100, ηA = 0.04, and n = 10, 20, . . . , 200.

2. R = 200 random networks were generated (i.e. partial correlation matrices) and
data of size n simulated from the corresponding multivariate normal distribution.

3. From each of the R data sets the partial correlation coefficients were estimated

with methods “shrinkage”, “lasso”, and ˆ̃P
1
. Recall that for n > p the latter esti-

mate reduces to the classical estimate of partial correlation. In this analysis the

computationally inefficient bootstrap-estimators, ˆ̃P
2

and ˆ̃P
3
, were dropped as in

addition they proved to be in an inferior position compared to the shrinkage esti-
mator in the previous simulation study.

4. Subsequently, the mean squared error was computed by comparison with the
known true values.

5. Similarly, the average number of edges detected as significant, the power, and the
positive predictive value were calculated. Note that the latter is only reasonably
defined if there is at least one significant edge. The local fdr cut-off was set to 0.2
as suggested in Efron (2005b).

In order to simulate random “true” partial correlation matrices the algorithm de-
scribed in Section 5.3 producing diagonally dominant matrices was applied.

Regarding partial correlation estimation accuracy the lasso approach exhibits the
same low error as the shrinkage approach (cf. Fig. 5.2). In fact the error curves depend-
ing on sample size for “shrinkage” and “lasso” completely overlap (data not shown).

Fig. 6.1a and Fig. 6.1b summarize the results with regard to GGM selection. Fig. 6.1a
shows the number of edges that were detected as significant using each of the three
methods. For ηA = 0.04 and p = 100 there exist exactly 198 edges in any of the simu-
lated networks. The number of edges detected as significant for the shrinkage estimator

remains well below this threshold, however in comparison with ˆ̃P
1

it typically finds
the largest number of edges. In contrast, for the simulated data the lasso GGM net-
work approach recovers even for small sample size many more edges than are actually
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6. Lasso Regression for Large-Scale Covariance Selection

present. This indicates that the choice of penalization according to Eq. 6.3 may still be
too permissive.

Fig. 6.1b illustrates the corresponding power (i.e. the proportion of correctly identi-
fied edges) and positive predictive value (PPV). The latter quantity is of crucial practical
importance as it is an estimate of the proportion of true edges among the list of edges
returned as significant by the algorithm. For the shrinkage estimator the PPV is constant
across the whole range of samples sizes and close to the desired level near 1−Fdr ≈ 0.9
(Efron, 2005b). The lasso GGM estimator exhibits a very low PPV of about 0.2 only.
ˆ̃P

1
reaches the appropriate level of PPV only for n > p where classical GGM theory is

valid. In terms of power the shrinkage and the lasso GGM approach both outperform
ˆ̃P

1
which exhibits reasonable power only for n > p. The power of the lasso regression

approach is distinctly higher than that of the shrinkage estimator. However, this is due
to the fact that the former liberally includes many edges in the resulting network without
controlling the false discovery rate. The shrinkage estimator has non-zero power only
from n ≥ 30 (for p = 100). As discussed above this is very likely a consequence of
our simulation setup which produces partial correlation networks that are hard to infer.
Thus, it is crucial to note the high PPV of the shrinkage estimator indicating that if there
are significant edges, then the probability is very high that these actually correspond to
true edges.
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Figure 6.1.: Performance of GGM network inference procedure: (a) Average number of edges
detected as significant. Note that there are 198 true edges in the simulated network (horizontal
dashed line). (b) Power and positive predictive value (PPV) for reconstructing the GGM network
topology. Gaps in the curves for the PPV indicate situations in which the PPV could not be
computed (due to zero significant edges).
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7. Network Analysis of Molecular

Data

For illustration the various methodologies to estimation and inference of genetic net-
works are now applied to molecular data. Firstly, a large-scale gene expression data set
from a human breast cancer study described in West et al. (2001) is reanalyzed with
respect to elucidating association structures. Secondly, the empirical Bayes methodol-
ogy to large-scale sparse GGM selection, the lasso regression approach to covariance
selection, and the simple relevance network approach are contrasted for a microarray
experiment on the microorganism Escherichia coli conducted at the Institute of Ap-
plied Microbiology, University of Agricultural Sciences of Vienna (Schmidt-Heck et al.,
2004).

7.1. Gene Interaction Structures in Breast Cancer

The Data – Preprocessing and Calibration

The breast cancer data set from West et al. (2001) comprises 49 tissue samples. Gene ex-
pression was measured for 7129 genes/probes using Affymetrix hu6800 chips. The cor-
responding CEL data were downloaded from the Duke University Center for Genome
Technology (http://data.cgt.duke.edu/West/PNASCel1.zip). The raw data were
calibrated and normalized in order to obtain robust multi-array average (RMA) expres-
sion measures (Irizarry et al., 2003). This was done using the “affy” package in Biocon-
ductor version 1.3 (http://www.bioconductor.org).

Subsequently, all sequences were removed that varied only minimally or on low lev-
els. Specifically, genes were screened out whose expression levels across all samples
varied less than two-fold (corresponding to a RMA difference less than 1.0, as RMA is
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7. Network Analysis of Molecular Data
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Figure 7.1.: Sub-network consisting of 96 genes centered around the ESR2 gene. This net was
extracted from a global network with p = 3, 883 genes reconstructed from the breast cancer

data of West et al. (2001) using the small-sample estimator ˆ̃P
2
. For a biological interpretation of

selected genes neighboring ESR2 see the main text.
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7.1. Gene Interaction Structures in Breast Cancer

a measure on the log-base 2 scale) or whose maximum RMA intensity value was less
than 9.0. As a result of the prescreening, gene expression data for 3,883 genes across
49 samples remained for further analysis.

Inference of Global Association Network

In order to infer the global association structure and the corresponding GGM network

for all 3,883 genes, the small-sample estimator ˆ̃P
2

was employed with B = 10, 000 boot-
strap replications. The computation of the estimate of the partial correlation matrix –a
3,883 times 3,883 matrix with entries for 7,536,903 possible edges– required approx-
imately 20 hours on a standard Intel Pentium 4 workstation running under the Linux
operating system.

The subsequent fit of the mixture distribution (Eq. 5.3) resulted in an estimated degree
of freedom κ̂ = 4601.98 with η̂0 = 0.9924. Using the FDR method with a desired level
q = 0.05 88,822 significantly non-zero coefficients were determined, corresponding to
a p-value cutoff of 0.0006 and a threshold of partial correlation ˆ̃ρ > 0.051.

From a statistical perspective it must be cautioned that particularly in such an extreme
small-sample setting not all statistically significant edges will necessarily correspond to
true edges (low PPV). To be on the conservative side, we therefore advise to take the
theoretical threshold only as minimal lower bound and also to consider larger cut-off
values.

CNR2 Receptor is Most-Connected Gene

Because of the large number of nodes and edges it is difficult to visualize the resulting
global network structure (see below for a discussion of a sub-network). However, the
degree of connectivity of each gene is more easily amenable and also highly informative.

For example, in the inferred GGM network for the investigated breast cancer data
set the cannabinoid receptor 2 gene (CNR2), also known as CB2 receptor, is the best-
connected gene, as it contains significant correlations with 75 (!) other genes. The
“peripheral” cannabinoid receptor CNR2 is mostly expressed in the immune system,
and unlike the “central” CNR1 receptor it is unrelated to cannabinoid psychoactivity.

The existence of such “super hubs” in genetic networks is well known (e.g. Barabási
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and Oltvai, 2004). The interesting point about CNR2 is that it seems to be directly
involved in controlling tumor growth. It has been characterized as putative oncogene
for acute myeloid leukemia (Jorda et al., 2003). In addition, it has been shown that
targeting CNR2 can lead to induction of apoptosis in malignant lymphoblastic disease
(McKallip et al., 2002). Furthermore, stimulation of CNR2 leads to a regression of skin
cancer tumors (Casanova et al., 2003).

Sub-Network of the ESR2 Gene

For further illustration of the complexity of the inferred global network the genes in the
immediate surroundings of the ESR2 gene (the estrogen receptor 2) are now briefly de-
scribed. This gene was selected as “seed gene” for the sub-network because of its role in
the pathobiology of breast cancer tumors (e.g. West et al., 2001). In Fig. 7.1 all 95 genes
are shown that are correlated with ESR2 through at most five links. To reduce noise in
this figure only edges with partial correlations with ˆ̃ρ > 0.13 are shown. Interestingly,
many close neighbors of ESR2 in this sub-network are known to be implicated in the
development of malignant neuroplastic disease.

For example, ELK3 (also known as ERP, NET or SAP2) belongs to the Ets family of
transcription factors. Ets proteins have been implicated in regulation of gene expression
during a variety of biological processes, including growth control, transformation, and
T-cell activation in many organisms. Loss of normal control is often associated with
conversion to an oncoprotein (Wasylyk et al., 1993).

On the left to the ESR2 gene sits the human CD7 antigen (also known as gp40) which
is a cell surface glycoprotein found on thymocytes and mature T-cells. CD7 is one of the
earliest antigens to appear on cells of the T-lymphocyte lineage, and the most reliable
clinical marker of T-cell acute lymphocytic leukemia (Aruffo and Seed, 1983).

The MLL3 gene, directly linked in our network with ELK3 and LADF4, is a member
of the TRX/MLL gene family. It is associated with leukemia and developmental defects
(Ruault et al., 2002).

Further down in the network one finds LAF4, a gene responsible for lymphocyte
differentiation. Joint with MLL it is involved in lymphoblastic leukemia (von Bergh
et al., 2002).

Many more genes depicted in Fig. 7.1 are related to the development of cancer (see,
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Figure 7.2.: (a) Histogram of the estimated shrinkage correlation coefficients computed for all
102 × 101/2 = 5, 151 pairs of genes. (b) Distribution of the estimated shrinkage partial correla-
tion coefficients (green line) after Fisher’s normalizing z-transformation (atanh) was applied for
normalization purposes. Also shown are the fitted null distribution (dashed blue line) and the
alternative distribution (pink) as inferred by the locfdr algorithm (Efron, 2004, 2005b). The
black squares indicate the 0.2 local fdr cut-off values for the partial correlations.

e.g., the CancerGene database at http://caroll.vjf.cnrs.fr/cancergene/). This
justifies cautious optimism that the inferred correlation network may indeed be useful
as a starting point from which to generate further medical and biochemical hypotheses.

7.2. Stress Response of Escherichia coli

The microarray experiment conducted at the Institute of Applied Microbiology, Uni-
versity of Agricultural Sciences of Vienna (Schmidt-Heck et al., 2004) was set up to
measure the stress response of the microorganism Escherichia coli during expression
of a recombinant protein. The resulting data monitor all 4,289 protein coding genes of
E. coli 8, 15, 22, 45, 68, 90, 150, and 180 minutes after induction of the recombinant
protein SOD (human superoxide dismutase). In a comparison with pooled samples be-
fore induction 102 genes were identified by Schmidt-Heck et al. (2004) as differentially
expressed in one or more samples after induction. In the following we try to establish
the gene network among these 102 preselected genes.
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7. Network Analysis of Molecular Data

A first impression of the dependency structure can be obtained by investigating the
estimated correlation coefficients. For the shrinkage approach (Tab. 4.1) λ̂? = 0.18 is
obtained. The resulting correlation matrix has full rank (102) with condition number
equal to 386.6. In contrast, the standard correlation matrix has rank 8 only and is ill-
conditioned (infinite condition number). Thus, already for calculating the correlation
coefficients the benefits of using the shrinkage estimator are quite evident.

Fig. 7.2a shows the distribution of the estimated correlations across the 5, 151 pairs
of genes. As can be seen most estimated correlations differ from zero. This is a simple
consequence of that, marginally, all genes are either directly or indirectly associated
with each other. Thus, constructing a traditional relevance network (Butte et al., 2000)
will –at least for this data– not lead to uncovering of the dependency structure. This
is compared with the corresponding partial correlation matrix. Fig. 7.2b shows the
distribution of the Fisher-transformed coefficients (cf. Hotelling, 1953). The contrast
with the previous figure is apparent, as the distribution of partial correlations is unimodal
and centered around zero. This means that most partial correlations vanish, that the
number of direct interactions is small, and hence that the resulting gene association
network is sparse.

Fig. 7.3, Fig. 7.4, and Fig. 7.5 show the corresponding gene association and relevance
networks. The shrinkage GGM network is depicted in Fig. 7.3 and was derived by fitting

the mixture distribution defined in Eq. 5.3 to the estimated partial correlations ˆ̃P
4

with a
cut-off fdr ≤ 0.2. The network comprises 116 significant edges which amount to about
2% of the 5,151 possible edges for 102 genes. This shows that for real data – in sharp
contrast to the comparable simulations – the shrinkage estimator is powerful for small
sample size.

Several aspects of the inferred network are worth remarking. Firstly, the “hub” con-
nectivity structure for the gene sucA is recovered. Note that this gene is involved in the
citric acid cycle. The existence of these hubs is a well-known property of biomolec-
ular networks (e.g. Barabási and Oltvai, 2004). It is a strength of the present method
that these nodes can be identified without any specific additional modeling. Secondly,
the edges connecting the genes lacA, lacZ, and lacY are the strongest in the network,
with the largest absolute values of partial correlation, and correspondingly also with
the smallest local fdr values. Interestingly, these are exactly the genes on which the
experiment was based: lacA, lacY, and lacZ are induced by IPTG (isopropyl-beta-
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Figure 7.3.: Gene network inferred from the E. coli data by the shrinkage (Tab. 4.1) GGM
approach. Black and grey edges indicate positive and negative partial correlation, respectively.
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Figure 7.4.: Gene network inferred from the E. coli data by the lasso GGM approach by
Meinshausen and Bühlmann (2005a). Black and grey edges indicate positive and negative partial
correlation, respectively.
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Figure 7.5.: Gene network inferred from the E. coli data by the relevance network approach
with abs(r) > 0.8. Black and grey edges indicate positive and negative correlation, respectively.
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D-thiogalactopyranoside) dosage and initiate recombinant protein synthesis (Schmidt-
Heck et al., 2004).

For comparison, the lasso GGM network is shown in Fig. 7.4. It was computed from
the standardized E. coli data by the approach by Meinshausen and Bühlmann (2005a)
and contains 100 edges. Closer inspection of this network reveals an interesting struc-
tural bias introduced by the lasso regression for GGM inference. As can clearly be seen
in Fig. 7.4 the lasso limits the number of edges going in and out of a node. The reason
for this is that the lasso imposes sparsity on the regression coefficients per node so that
in each regression only a few non-zero coefficients exist. As a consequence, the degree
distribution of the E. coli lasso GGM network has an implicit upper bound. Thus, the
lasso prevents the identification of hubs and also excludes power-law-type connectiv-
ity patterns. Note that in contrast in the empirical Bayes GGM approach sparsity is
imposed on the network level rather than locally at node level.

Finally, Fig. 7.5 shows the relevance network obtained by applying the conventional
0.8 cut-off on the absolute values of the shrunken correlation coefficients. The resulting
network contains 58 edges and bears no resemblance to the GGM networks. As is clear
from inspecting Fig. 7.2a, there are many more genes that are strongly correlated, so
from this network the direct dependencies among genes cannot be deduced. Instead,
correlations should rather be employed for detecting independence among genes. The
corresponding null hypothesis is that the two genes are dependent. For this purpose
the mixture model of Eq. 5.3 is still applicable, except that the roles of f0 and fA are
interchanged. Thus any edge with fdr > 0.8 (defined as in Eq. 5.4!) would be considered
significant.

In the analysis it was plainly ignored that the E. coli data derive from a time series
experiment. This appears not to be too harmful for the GGM selection process – at least
part of the longitudinal correlation will be accounted for by empirically fitting the null
distribution (see also Efron (2005a)).
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Among methods for inferring networked gene interaction structures graphical Gaussian
models are becoming increasingly popular (Kishino and Waddell, 2000; Waddell and
Kishino, 2000; Bay et al., 2002; Wang et al., 2003; Toh and Horimoto, 2002a,b; Wu
et al., 2003; de la Fuente et al., 2004; Wille et al., 2004; Wille and Bühlmann, 2005;
Magwene and Kim, 2004; Dobra et al., 2004). Their advantage over simple correlation
networks, namely the ability to distinguish direct from mediated interactions, is appar-
ent. However, their application to genome data is hampered by the “small n large p”
problem which renders both estimation and inference difficult.

In this thesis a conceptually simple yet versatile and computationally fast frame-
work was introduced for estimating and inferring large graphical Gaussian models from
small-sample data. The specific bioinformatical application, that special focus is on, is
the problem of inferring genetic networks from today’s high-throughput genomic data.
These typically contain only relatively few sample points compared to the number of in-
vestigated features. This will continue to be an important issue also in the future: sample
size is primarily restricted by the availability of tissue samples, and is not necessarily
increased by improved technology.

In the literature three main strategies have emerged to circumvent these dimensional-
ity problems: dimension reduction prior to the analysis, computation of low order partial
correlation coefficients, and regularized variants of graphical Gaussian modeling. In my
understanding the latter approach is most promising.

The framework that is proposed in this thesis relies on three key components and
novel aspects:

• Firstly, it is recognized that small-sample inference requires explicit regulariza-
tion. Several novel estimators of covariance and (partial) correlation have been
proposed and attention has been drawn to the problem of the widespread and
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largely uncritical use of standard covariance and (partial) correlation estimators in
the analysis of functional genomics data. As a quick glance in any recent issue of
a journal such as Bioinformatics or BMC Bioinformatics will reveal, standard cor-
relation and covariance estimators are often rather blindly applied to large-scale
problems with many variables and few sample points. For instance, consider the
clustering of genes using data from a microarray experiment (e.g. Eisen et al.,
1998). In order to construct a hierarchical tree describing the functional grouping
of genes an estimate of the similarities between all pairs of expression profiles
is needed. It is typically based on a distance measure related to the sample cor-
relation. Thus, if p genes are analyzed (with p perhaps in the order of 1,000 to
10,000), a covariance matrix of size p × p has to be calculated. Furthermore, the
covariance matrix evidently plays an important role in the classification of gene
expression profiles. However, it is well known that for large-scale problems the
conventional covariance and correlation estimators are not appropriate and may
perform extremely poorly. For this reason, it is highly advisable to refrain from
using the empirical covariance in the analysis of high-dimensional data such as
from microarray or proteomics experiments.

Alternatives are readily available in the form of shrinkage estimators (e.g. Green-
land, 2000). Shrinkage formalizes the idea of “borrowing strength across vari-
ables” and has proven beneficial in the problem of differential expression (e.g.,
Smyth, 2004; Cui et al., 2005) and of classification of transcriptome data (e.g.,
Tibshirani et al., 2002; Zhu and Hastie, 2004).

The shrinkage approach of Ledoit and Wolf (2003) has particularly been high-
lighted that allows fitting of all necessary tuning parameters in a simple analytical

fashion. While this method appears to be little known, we anticipate that it will
be helpful in many “small n, large p” inference problems.

A novel shrinkage estimator for the covariance and correlation matrix (Tab. 4.1)
with guaranteed minimum MSE and positive definiteness has been introduced
that is not only perfectly applicable to “small n, large p” data but can also be
computed in time comparable to that of the conventional estimator. The theorem
of Ledoit and Wolf (2003) to estimate the optimal shrinkage intensity demands
only modest assumptions with regard to the existence of higher moments of both
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the unrestricted estimate and the selected shrinkage target. Consequently, compu-
tationally expensive procedures such as cross-validation are completely avoided.
It should be straightforward to apply this novel shrinkage covariance estimator in
different applications. For example, consider the SCRDA (“shrunken centroids
regularized discriminant analysis”) approach (Guo et al., 2004) that employs sim-
ilar regularized covariance and correlation matrices.

• Secondly, an empirical Bayes approach has been presented to detect statistically
significant edges. This allows to empirically fit from the high-dimensional point
estimate of partial correlation the null distribution needed for statistical testing in
its exact theoretical distributional form and to compute empirical Bayes posterior
probabilities, respectively. Notice that the approach exploits the known sparse
connectivity in biomolecular networks. In expression analysis similar approaches
are already successfully applied in order to detect differentially expressed genes
(e.g., Efron et al., 2001; Efron, 2004).

• Thirdly, an heuristic has been proposed to perform approximate model (network)
selection using false discovery rate multiple testing. The frequentist FDR rule
(Benjamini and Hochberg, 1995) and its variations (e.g., Benjamini and Hochberg,
2000; Storey, 2002; Storey and Tibshirani, 2003) have a Bayesian interpretation
that closely connects (Efron and Tibshirani, 2002) to the above empirical Bayes
framework: empirical Bayes posterior probabilities of “null” edges can be seen
and interpreted as local false discovery rates.

The approach may be regarded as an extension of earlier work by Waddell and Kishino
(2000), Toh and Horimoto (2002a,b), Bay et al. (2002), and Wu et al. (2003). Further-
more, extensive computer simulations have been conducted to investigate the statistical
properties of the novel estimators and the performance of the proposed GGM network
inference procedure. This type of power analysis should be done also for other net-
work inference approaches where studies of this kind appear to be notably absent as
pointed out before by Husmeier (2003). In the simulation studies it has been shown
that using regularized estimators leads to large overall gains in prediction accuracy and
in the power to recover the true network structure. This is in particular valid for the
novel shrinkage estimator. Moreover, the algorithm outperforms the lasso approach to
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regularized GGM inference in terms of positive predictive accuracy. While the lasso
approach appealingly applies shrinkage directly to the estimated partial correlations, it
introduces on the other hand some interesting structural bias: sparsity is assumed on the
individual gene connectivity rather than on the network level. Furthermore, GGM net-
work inference using the Ledoit-Wolf-type shrinkage covariance estimator combined
with heuristic model selection using false discovery rate multiple testing takes only a
few minutes even on a slow computer – thus it is offered as fast alternative to related
MCMC procedures, e.g., those by Dobra et al. (2004).

Hence, large-scale modeling and inference of graphical models, specifically GGMs,
turn out possible – even for small samples. However, the assumption of linear relation-
ships as measured by partial correlations is limiting. Non-linear interactions as well as
combinatorial effects will most likely better characterize biomolecular networks. Owing
to the sparsity of genomic data it is yet prudent to choose simple models that require few
parameters and to act on the assumption of approximate validity. This is corroborated
by several examples of successful application of graphical modeling to gene expression
data (e.g., Wille et al., 2004; Magwene and Kim, 2004; Dobra et al., 2004). Although
resulting GGM networks are not models of mechanistic interaction, but rather remain on
a phenomenological level – similar to clustering techniques, cautious optimism is indi-
cated that they may prove helpful in the context of gene network reconstruction and also
as starting point for more complex models such as dynamic Bayesian network models.

Challenges and Outlook

All approaches have their limitations and interpretation of the results needs to be done
in the light of the respective model assumptions. The proposed small-sample GGM
approach to modeling and inferring networked gene associations contains a number of
implicit assumptions that need to be critically assessed.

GGMs are based on the assumption of multivariate normality. Generally, this appears
to be unproblematic given that calibration and normalization procedures are routinely
used to preprocess gene expression measurements.

More critical is the assumption of linear relationships among the investigated vari-
ables. While this may be a good approximation in many cases, GGMs have nonetheless
limited representational power if nonlinear or combinatorial effects are present. There
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are approaches that allow to test for deviations from linear models (Cox and Wermuth,
1994) but for small samples this may turn out to be very difficult. Note that most other
statistical methods for genetic network analysis also fall into this class (e.g., D’haeseleer
et al., 2000; Bay et al., 2002; De Hoon et al., 2003; Wu et al., 2003; Rangel et al., 2004;
de la Fuente et al., 2004). Nevertheless, the important issue of regularization in the
presence of small samples has only been discussed in a handful of papers (van Someren
et al., 2001; Yeung et al., 2002; Liao et al., 2003; Dobra et al., 2004; Meinshausen and
Bühlmann, 2005a).

There may be (linear) higher-order interactions among more than two variables. GGMs
in general model higher-order dependencies via the notion of cliques (i.e. fully con-
nected groups of nodes). However, the heuristic model search using multiple testing of
partial correlations is based on evaluating pairwise interaction only. However, cliques
can still occur in the inferred network structure, hence the approach will at least approx-
imately detect higher-order effects.

In theory, Bayesian networks are superior to GGMs as the former allow to model
non-linear relationships. If a lot of data are available, this is certainly true. In practice
however, owing to the paucity of the data at hand, it is not generally possible to infer
these non-linearities nor the global network structure (Husmeier, 2003; Friedman and
Koller, 2003). Furthermore, the often exercised discretization causes information loss
and might considerably influence the obtained results. Moreover, often Bayesian net-
works are in fact also linearized, which for time series data turns them into linear state-
space models (Murphy, 2002). In order to analyze gene dependencies based on sparse
data, it appears prudent to choose a graphical model (such as a GGM) that requires very
few assumptions and only a minimal number of parameters. Note that GGMs are not
endorsed as the “true model” for genetic networks.

There are many directions that can be considered for further research. Against the
background of the present work three points appear particularly important.

• The small-sample approach to modeling and inferring gene networks needs to be
properly adopted to time series data. Nevertheless, part of the longitudinal cor-
relation across microarrays will be accounted for by the empirical fit of the null
distribution, while empirical Bayes analysis does not require independence within

a microarray (Efron, 2004, 2005a). However, explicit dynamic and temporal ele-
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ments in the model will be crucial for inferring directed relationships.

The concept of graphical Gaussian modeling has been generalized to multivariate
stationary processes in time (Brillinger, 1996; Dahlhaus, 2000). The correspond-
ing models are termed partial correlation graphs. Consider a multivariate series
X(t) = (Xi(t), i ∈ V) with components indexed by V = {1, . . . , p} and discrete
time parameter t = 0,±1, . . .. In order to define partial correlation between two
component series Xi and X j, i, j ∈ V , subprocesses are considered for which the
linear effects of the remaining component series have been removed. The residual

component series εi|V\{i, j}(t) is given as

εi|V\{i, j}(t) = Xi(t) − µ?i −
∞∑

h=−∞

∑
k∈V\{i, j}

φ?i (t − h)Xk(h)

with time lags h = 0,±1, . . ., and where µ?i , φ?i (h) are the values minimizing

E

Xi(t) − µi −

∞∑
h=−∞

∑
k∈V\{i, j}

φi(t − h)Xk(h)


2

.

Xi and X j, i, j ∈ V , are partially uncorrelated given the remaining components
XV\{i, j} if the residual component series εi|V\{i, j}(t) and ε j|V\{i, j}(t+h) are uncorrelated
at all time lags h = 0,±1, . . ..

For nonsingular spectral matrix f (λ) of the multivariate process X(t), the mini-
mizing solutions µ?i and φ?i (h) are unique (Brillinger, 1981, Theorem 8.3.1). The
entries of f (λ) are the (complex-valued) cross-spectra of the component series Xi

and X j, defined as the Fourier transform of their covariance function,

fi j(λ) =
1

2π

∞∑
h=−∞

exp{−iλh} cov
{
Xi(t + h), X j(t)

}
, −∞ < λ < ∞.

In Dahlhaus (2000) it is shown that partial spectral coherencies Ri j|V\{i, j}(λ), that
define an equivalent measure of partial correlation as a function of frequency λ,
can be obtained as the negative values of the rescaled inverse of the spectral matrix
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f (λ), i.e.
Ri j|V\{i, j}(λ) = −di j(λ)

with

d(λ) =


g11(λ)−1/2 0

. . .

0 gpp(λ)−1/2

 g(λ)


g11(λ)−1/2 0

. . .

0 gpp(λ)−1/2


and

g(λ) = f (λ)−1.

Equivalently to the above definition, Xi and X j, i, j ∈ V , are partially uncorre-

lated given the remaining components XV\{i, j} if their partial spectral coherency
Ri j|V\{i, j}(λ) vanishes for all frequencies λ (−∞ < λ < ∞).

Assuming a Gaussian process, zero partial correlation is equivalent to conditional
independence. Thus, in a partial correlation graph an edge between two vertices
i and j is defined to be missing whenever Xi⊥⊥X j | XV\{i, j} (pairwise Markov

property).

Note that in order to accomplish the above inversion step, f (λ) is required to
have full rank! Thus, in a “small n, large p” setting very similar issues regarding
modeling and inference arise as in graphical Gaussian models for i.i.d. samples
and correspondingly, similar mechanisms of regularization may prove successful
to overcome them.

• More research needs to be done in the field of model selection for gene regulatory
networks. In particular, the quality of search heuristics such as the one presented
in this work should be compared thoroughly with solutions obtained with exact
approaches (this is only possible for small examples) and with those from the
proposed stochastic searches (e.g. Wong et al., 2003).

• For evaluating statistical properties and performance of modeling and inference
approaches, procedures and algorithms are by all means desirable that allow for a
biologically more realistic simulation of random correlation structures.

87



8. Summary and Outlook

The bottom line is that modern functional genomics approaches require answers to
both large-scale modeling and inference based on small samples. This “small n, large p”
issue will continue to be important also in the future: novel molecular biology devices,
such as protein assays, even outnumber microarrays regarding the high-dimensionality
of collected data. Careful statistical reasoning is the only way to see through the haze of
randomness to the structure underneath (cited from Efron, 2005c). In this context areas
like shrinkage and empirical Bayes, that formalize the concept of “borrowing strength
across variables”, constitute promising strategies to play a role in scientific progress
in understanding cellular function at the system level and in elucidating the molecular
basis of health and disease.
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A. Available Computer Software

The approaches proposed in this thesis to regularized estimation of covariance and of
(partial) correlation matrices and to inferring gene association networks using large-
scale graphical models are implemented in the R packages “corpcor” and “GeneTS”,
respectively. Specifically, “GeneTS” allows fast model selection of graphical Gaussian
models (GGMs) via local false discovery rate multiple testing.

Both packages require a recent version of the R software (at least version 2.0.0) and
are distributed under the terms of the GNU General Public License, freely available for
download from the CRAN archive (http://cran.r-project.org) and from http:
//www.statistik.lmu.de/~strimmer/software/genets/. “GeneTS” is also
available from Bioconductor (http://www.bioconductor.org). The current version
2.8.0 of “GeneTS” requires installation of the R packages “corpcor” and “locfdr” (also
available from CRAN). These two packages must be installed, otherwise “GeneTS”
does not work.

For network visualization “GeneTS” uses the “graph” and “Rgraphviz” packages,
available from Bioconductor version 1.4 and above. However, note that installation of
these packages is optional and not necessary for any of the computational procedures
available in “GeneTS”.

All methods available in “corpcor” and “GeneTS” are described with examples in
their respective help pages.

An example session for inferring gene association networks is described in the fol-
lowing.

# load GeneTS library
> library("GeneTS")

Note that the pre-processed normalized data need to be arranged in a matrix where
each column corresponds to a gene, and where the rows correspond to the individual
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A. Available Computer Software

measurements (e.g. time points). The exemplifying data set describes the temporal ex-
pression of 102 genes of the microorganism E. coli measured at 9 time points (Schmidt-
Heck et al., 2004, cf. Chapter 7).

# load data set
> data(ecoli)

# how many samples and how many genes?
> dim(ecoli)

# define number of nodes in the network
> num.nodes <- dim(ecoli)[2]
# node labels are gene names
> node.labels <- colnames(ecoli)

GGM network inference essentially comprises three steps. Firstly, the partial cor-
relation matrix is estimated. Various novel options for estimating partial correlations
from small-sample data sets have been presented in Chapter 4. These methods are im-
plemented in the function ggm.estimate.pcor. The basic principle behind the small-
sample estimators is variance reduction, either non-parametrically (via the bootstrap)
or in a shrinkage approach. The advantages of using especially the latter approach in
comparison with the standard empirical estimates are that the shrinkage estimates are
always positive definite, well conditioned, and exhibit (sometimes dramatically) better
mean squared error. Furthermore, they are efficient to compute and independent of any
tuning parameters as the shrinkage intensity is analytically estimated from the data.

> pcor.shrinkage <- ggm.estimate.pcor(ecoli, method=“shrinkage”)

Other possibilites include

> pcor.1 <- ggm.estimate.pcor(ecoli, method = “observed.pcor”)

> pcor.2 <- ggm.estimate.pcor(ecoli, method =

“partial.bagged.cor”, R=1000)

> pcor.3 <- ggm.estimate.pcor(ecoli, method = “bagged.pcor”,

R=1000)

# choose estimator
> inferred.pcor <- pcor.shrinkage
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Secondly, statistical significance is assigned to the edges in the GGM network by
computing p-values, q-values, and posterior probabilites for each potential edge.

> test.results <- ggm.test.edges(inferred.pcor,

fA.type=“nonparametric”)

# show first 20 edges with corresponding statistics
> test.results[1:20,]

Therefore, the subroutine cor.fit.mixture fits a mixture model (Eq. 5.3) to the
vector of empirical partial correlation coefficients using likelihood maximization (note
that sm2vec puts the entries in the lower triangle of a symmetric matrix into a vector).
This allows to estimate both the degree of freedom κ in the null distribution and the
proportion η0 of null edges. The alternative distribution is either assumed to be the uni-
form distribution from -1 to 1, or an arbitrary nonparametric distribution that vanishes
for values near zero.

> c <- cor.fit.mixture(sm2vec(inferred.pcor),

fA.type=“nonparametric”)

> c$eta0

> c$kappa

Thirdly, against the background of false discovery rate control it is decided which
edges are included in the network.

# how many edges are significant based on FDR cutoff q = 0.05 ?
> significant1.idx <- test.results$qval <= 0.05
> num.significant.1 <- sum(significant1.idx)

# list significant edges with corresponding statistics
> test.results[significant1.idx,]

# how many edges are significant based on local fdr cutoff 0.2 ?
> significant2.idx <- test.results$prob > 0.80
> num.significant.2 <- sum(significant2.idx)

# list significant edges with corresponding statistics
> test.results[significant2.idx,]

91



A. Available Computer Software

The network plotting functions require the installation of the “graph” and “Rgraphviz”
R packages. These are available from the Bioconductor website. Note that it is not nec-
essary to install the complete set of Bioconductor packages, only “graph” and
“Rgraphviz” are needed by the “GeneTS” package – together with their respective de-
pendencies.

# generate graph object with all significant edges
> gr <- ggm.make.graph( test.results[significant2.idx,],

num.nodes)

> gr

# print vector of edge weights
> show.edge.weights(gr)

# plot network (cf. Fig. 7.3)
> ggm.plot.graph(gr, node.labels, show.edge.labels=FALSE)

# with partial correlations as edge labels
> ggm.plot.graph(gr, node.labels, show.edge.labels=TRUE)

Furthermore, ggm.simulate.pcor allows to randomly generate a matrix of partial
correlation that corresponds to a GGM network of a given size (num.nodes) with a
specified fraction of non-zero edges. The output is always positive definite. This is en-
sured by using a diagonally dominant matrix when generating the random GGM model.

# generate random network with 20 nodes and 10 percent edges (=19 edges)
> true.pcor <- ggm.simulate.pcor(num.nodes=20, 0.1)

# convert to edge list
> test.results2 <- ggm.test.edges(true.pcor, eta0=0.9,

kappa=1000)[1:19,]

> test.results2

# plot network
> gr2 <- ggm.make.graph(test.results2, 20)

> gr2

> ggm.plot.graph(gr2)

92



ggm.simulate.data takes a (randomly generated) positive definite matrix of partial
correlations and produces an i.i.d. sample from the corresponding standard multivari-
ate normal distribution. This allows to re-estimate partial correlations with the various
methods described above and to investiagte the respective accuracy, e.g., in terms of
squared error loss.

# generate random network with 40 nodes and 5 percent edges
> sim.pcor <- ggm.simulate.pcor(num.nodes=40, 0.05)

# simulate data set with 40 observations
> m.sim <- ggm.simulate.data(40, sim.pcor)

# simple estimate of partial correlations using the pseudoinverse
> estimated.pcor <- ggm.estimate.pcor(m.sim, method =

c("observed.pcor"))

# comparison of estimated and true model
> sum((sim.pcor-estimated.pcor)**2)

# bootstrap variance reduction
> estimated.pcor.2 <- ggm.estimate.pcor(m.sim, method =

c("bagged.pcor"))

> sum((sim.pcor-estimated.pcor.2)**2)

# shrinkage approach
> estimated.pcor.3 <- ggm.estimate.pcor(m.sim, method =

c("shrinkage"))

> sum((sim.pcor-estimated.pcor.3)**2)
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