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Zusammenfassung

Die vorliegende Arbeit stellt einen neuen Ansatz zur Spezifikation von mobilen

Systemen vor. Als mobiles System wird hier ein System bezeichnet, das Code

verwendet, der zur Laufzeit von einem Rechner auf einen anderenübertragen

werden kann, und dessen Ausführung auf dem neuen Rechner fortgesetzt wird.

Ein solches System wird gern als eine Hierarchie von “Orten” modelliert, deren

Struktur ver̈andert werden kann. Dies ist auch der Ausgangspunkt für unseren

Modellbegriff. Es wird eine raum-zeitliche Logik namens MTLA eingeführt,

deren temporaler Teil auf Lamports Temporal Logic of Actions (TLA) basiert.

Zus̈atzlich werden r̈aumliche Modaliẗaten definiert um die Struktur des Systems

und ihre Ver̈anderungen zu beschreiben. Geeignete Begriffe für die Verfeinerung

solcher Systeme sowie ihre Repräsentierbarkeit in MTLA werden untersucht. Des

weiteren wird den theoretischen Fragen der Axiomatisierbarkeit, der Erfüllbarkeit

und des Model Checking Problems nachgegangen.

Abstract

In this thesis we present a novel approach to the specification of mobile systems.

By mobile system we mean a system that makes use of code that can be transmit-

ted from one computer to another one at runtime, so that the execution is continued

on the new computer. Such systems are often modelled as a hierarchy of locations

whose structure can be modified. This is also the starting point for our model no-

tion. We introduce a spatio-temporal logic called MTLA whose temporal part is

based on Lamport’s Temporal Logic of Actions (TLA). In addition to the temporal

operators we define spatial modalities to describe the structure of the system and

its modifications. We study suitable notions for the refinement of such systems

as well as their representability in MTLA. Furthermore, we investigate theoretical

questions like axiomatisability, satisfiability and the model checking problem.





Chapter 1

Introduction

With the lightning progress of networking technology and the increasing use of

networks the role of systems that make use of mobile code – the term “mobile

code” signifying code that can be transmitted to remote sites, even during execu-

tion – becomes more and more important. As a particular kind of mobile systems,

mobile agent systems have arisen starting from the nineties [5, 8, 53]. A mobile

agent is a sort of mobile code with some specific properties. Simultaneously with

the development of such mobile systems, formal methods have been investigated

to support their design. In the course of these studies it has soon become clear

that traditional models of distributed systems are not adequate to capture certain

aspects of mobility.

The first formalism handling mobility that has gained wide attention and has

achieved recognition is Milner’sπ-calculus [38]. Theπ-calculus extends the pro-

cess algebra Calculus of Communicating Systems (CCS) [37] following an ap-

proach proposed by Engberg and Nielsen [17]. The main characteristic of theπ-

calculus is that names of communication channels can be transmitted as messages.

This feature allows to express the modification of the communication structure of

the system.

As Cardelli has pointed out in [9], theπ-calculus provides a good model to de-

scribe mobility of distributed systems as long as only small, local area networks

are concerned. However, in the context of wide area networks mobility itself is not

3
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the only issue that has to be taken into account. In contrast to local area networks,

mutually distrustfuladministrative domainsseparated by barriers play a promi-

nent role in the Internet. In order to adequately model mobility in large-scale

networks, the crossing of boundaries between such protected domains by mobile

code should be explicitely expressible. Following this observation, several novel

formalisms (e.g. [11, 19, 15, 52]), mainly process calculi, have been introduced,

many of them based upon theπ-calculus. A common feature of these formalisms

is the assumption that mobile systems have a hierarchical structure, and mobility

is modelled by allowing to modify this structure.

One of the best known of these calculi – and the one that has strongly influenced

and motivated our work – is the Ambient Calculus [11] by Cardelli and Gordon.

The Ambient Calculus is a process calculus where processes may reside at nodes

of an edge-labelled tree. By executing some capabilities, the processes can modify

the tree structure. The basic primitives of the Ambient Calculus are similar to

those of theπ-calculus.

For some of the above-mentioned calculi modal logics have been introduced [10,

7, 16] to express properties of mobile systems. The models of these logics are the

process terms of the respective calculi. Beside temporal modalities they addition-

ally use spatial modalities to describe modifications of the hierarchical structure

of the system. Typically, the formulas of these logics closely reflect the syntactic

structure of the process terms. In particular, they can separate terms that only dif-

fer in their structure but have the same behaviour (with respect to the operational

semantics), in other words, process terms with the same behaviour can satisfy dif-

ferent sets of formulas (cf. [47]). As a consequence, these logics do not seem to

be suitable as specification logics.

In the present thesis we suggest a different approach to specify mobile systems.

We propose a spatio-temporal logic whose semantics is based onrunsof mobile

systems, instead of a specific process calculus. In our approach – in imitation of

most of the mentioned calculi – such a run is (essentially) a sequence of finite

trees representing the topological structure of the system. However, there is a

local state at every node of the tree instead of a process. Altogether, the semantics

of our logic is based on a kind of Kripke structure, where every world has a spatial
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(tree) structure.

One of our main goals has been to define a logic that supports the specification of

mobile systems by stepwise refinement. Since in the context of the specification

of reactive systems this goal has been successfully realised by Lamport’s Tempo-

ral Logic of Actions [31], we decided to base the temporal part of the logic we

introduce upon TLA. In order to describe the system’s spatial structure and its

modification we extend TLA by spatial modalities that allow to refer to different

nodes of the trees.

The thesis is organised as follows. In chapter 2 we introduce the kernel of the

logic Mobile Temporal Logic of Actions (MTLA) and show that like TLA, it

is invariant under finite (temporal) stuttering. This is important for the logic to

support system specification by refinement. However, in the context of a spatio-

temporal logic the usual notion of stuttering invariance does not capture aspects

of refinement connected with the spatial structure of the system. Hence, we also

define a notion ofspatial stuttering invarianceand prove (an important fragment

of) the logic to have this property.

Chapter 3 discusses why the traditional notion of refinement does not suffice in the

context of mobile systems. Different notions of refinement are suggested and mo-

tivated with the help of specification examples. These new notions are connected

with spatial refinement. They are based on the idea that a high-level location

should be allowed to be implemented by several concrete locations. We show that

all the presented refinement paradigms are supported by MTLA in the sense that

on the logical level refinement can be expressed simply by implication.

Chapter 4 investigates the question of axiomatisability of the propositional frag-

ment of the logic. To keep the proofs simpler, we present a proof system called

ΣMLTL for the logic MLTL of which MTLA is a fragment and which is simply

LTL extended by the spatial modalities of MTLA. We show this system to be

sound and complete with respect to the semantics of MLTL. The completeness

proof also provides a kind of finite model property which will be helpful to prove

that the satisfiability problem is decidable.

Chapter 5 presents automata theoretical solutions of the model checking and the
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satisfiability problems for MLTL. We show how to translate a formulaϕ of MLTL

into a weak alternating automaton that accepts exactly the models ofϕ. The model

checking and the decidability problems are then reduced to the non-emptiness

problem of appropriate automata.

Chapter 6 raises certain questions that arise in connection with the dynamic cre-

ation of mobile agents. We suggest extensions of the core of the logic that may

help to solve these problems – without elaborating the new operators in such detail

like the ones belonging to the kernel of MTLA.



Chapter 2

Mobile TLA

This chapter introduces the logic Mobile Temporal Logic of Actions, MTLA for

short. MTLA is intended for the specification of systems that make use of mobile

code. It is based on Lamport’s Temporal Logic of Actions TLA [31] and extends

it by spatial operators. The first step is to fix our model notion for mobile systems.

The main features of the logic are presented informally with the help of a simple

specification example. In sec. 2.3, the formal definition of the semantics is given.

In the remainder of the chapter we study appropriate notions of temporal and

spatial stuttering and prove the logic (without one special operator) to be invariant

under finite “spatio-temporal” stuttering.

2.1 The Models

When modelling a mobile system, most existing formalisms – like the Ambi-

ent Calculus [11], KLAIM [15] or the Join Calculus [19] for instance – assume

that the system has a spatial structure (a hierarchy of locations), and mobility is

thought of as the ability to modify this structure. As an example, consider the

process termP ≡ a[b[outa.0|inc.0]]|c[0] of the Ambient Calculus. This process

can be represented graphically as a tree whose edges are labelled by names:

7
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In this process, ambientb can leave its parenta by “executing” its capabilityouta.

Subsequently, this same ambientb can use its capabilityinc and enter ambientc.

Such an evolution of the process can be illustrated by a sequence of edge-labelled

trees as shown in figure 2.1.

p pp p
pp

p
p

p
p p

p
@

@@�
��

- �
��@

@@�
��@

@@ -c a c

outa.0|inc.0

inc.0

a c

b

a

b

b . . .

Figure 2.1: A run ofa[b[outa.0|inc.0]|c[0]]

This observation suggests to describe runs of mobile systems by sequences of con-

figurations, where a configuration consists of a finite tree representing the topolog-

ical structure of the system and of an assignment that associates with every node a

local state. The nodes of the trees are labelled by unique names of a denumerable

setN, the root labelled (implicitly) by the special nameε /∈ N.

Formally, a finite, non-empty treet is given by a strict partial order(Nt ,<t) over

a finite setNt ⊂ N of names. In particular, we identify the nodes of the tree with

their labels. We defineNε
t = Nt ∪{ε} and extend the relation<t to Nε

t by requiring

a <t ε for all a ∈ Nt . Intuitively, the relationa <t b holds for two nodes if node

a is beneath nodeb. In other words,<t is the transitive closure of the successor

relation of the tree. It has to satisfy the following conditions:

1. The relation<t is irreflexive, that is, for alla ∈ Nε
t holdsa 6<t a.

2. The relation<t is transitive, i.e. for alla,b,c ∈Nε
t holds: ifa <t b andb <t c,

thena <t c.

3. For alla,b,c ∈ Nε
t holds: ifa <t b anda <t c, then eitherb <t c or c <t b.
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Conditions 1. and 2. express that<t is a partial order. The third condition makes

sure that the relation gives rise to a tree structure by requiring that two nodes

which have a common “descendant” have to be on the same path.

The empty tree, i.e. the tree which does not have any node, is denoted byempty.

Note that this tree is different from the treet = ( /0,<t) since the latter has a node

(exactly one), namelyε.

The subtree of a treet = (Nt ,<t) rooted at noden is denoted byt↓n. Formally,

for anyn ∈ N it is defined as

t↓n =

 ({m ∈ N|m <t n},<′t)

empty

if n ∈ Nt

otherwise

where<′t denotes the restriction of<t to {m ∈ N|m <t n}×{m ∈ N|m <t n},
that is, it equals<t ∩ ({m ∈ N|m <t n}×{m ∈ N|m <t n}).

We extend this definition to paths: for a sequenceα ∈ N∗ of names,t↓α is defined

inductively by

t↓ε = t

t↓α.n = (t↓α)↓n .

A configurationis defined with respect to a non-empty universe|I| and a setVf

of (flexible) variables: it is a pair(t ,λ) wheret = (Nt ,<t) is a finite, non-empty

tree andλ : Nε
t×Vf → |I| assigns a value to every variable inVf at every location

n ∈ Nε
t .

Infinite sequences of such configurations will serve as models for MTLA.

Figure 2.2 shows the graphical representation of (the prefix) of a run. An expres-

sion like z = “go” at nodeb in the first configuration indicates that the value of

variablez at nodeb equals“go”, or more precisely, thatλ0(b,z ) = “go”, where

“go” is an element of the universe|I|.

Notation By ω we denote the set of the natural numbers including 0.
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q qqq
q

q
q q

q q q
- -

................................................

................................................

................................................

................................................

................................................ a

b b

a c da

b
z = “go”

. . .x = 7 z = −17
168

y =−1.315 z = 4
√

5

(t0,λ0) (t1,λ1) (t2,λ2)

Figure 2.2: Prefix of a run

For sequencesσ,τ, the concatenation ofσ andτ is denoted byσ◦τ. We write finite

sequences as〈a0 . . .an〉, infinite sequences asa0a1 . . .. For an infinite sequence

σ = a0a1 . . . and a natural numberi ∈ ω, the suffixaiai+1 . . . of σ is denoted by

σ|i .

2.2 Example of a Mobile Agent

As our first simple specification example, we consider an agent that collects offers

for flights in a network. In order to model the network, we assume a finite, fixed

setNet of (immobile) network nodes withhome ∈Net denoting the agent’s home

location. The (mobile) agent is represented by the nameag /∈ Net . Its local state

is described by the variablesctl , item andfound . Variablectl specifies the agents

control state, with“idle” and“busy” as possible values. While the agent is active,

the variableitem contains what the agent is currently looking for: its value is a

pair (d , t), d denoting a destination andt some time period. The variablefound

stores the set of flights collected by the agent.

The MTLA-specification of such an agent is given in fig. 2.3. In order to avoid

parenthesis, we follow Lamport’s way [30] to write long conjunctions and dis-

junctions as a list whose items are labelled with∧ and∨, respectively.

Before turning to the details of the definition of the logic, we give an informal

explanation of this specification.

The agent’s initial state is described by the formula

Init ≡ home.ag〈true〉∧ag .ctl = “idle”
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Init ≡ home.ag〈true〉∧ag .ctl = “idle”

Network ≡
V

n,m∈Net 2n〈m[false]〉∧2
[
false

]
n.id

Prep(d , t) ≡ ∧ ag〈true〉∧ dag〈true〉
∧ ag .ctl = “idle”∧ag .ctl ′ = “busy”

∧ ag .item ′ = (d , t)∧ag .found ′ = /0

∧ UNCHANGED res

GetFlightn ≡ ∧ n.ag〈true〉∧ dn.ag〈true〉
∧ ag .ctl = “busy”∧ag .item ∈ n.flights

∧ ag .found ′ = ag .found ∪getFlight(ag .item,n.flights)

∧ UNCHANGED ag .ctl ,ag .item,home.res

Moven,m ≡ ∧ n.ag〈true〉∧ dm.ag〈true〉
∧ ag .ctl = “busy”∧ keepag

∧ UNCHANGED ag .ctl ,ag .item,ag .found ,home.res

Deliver ≡ ∧ ag〈true〉∧ dag〈true〉
∧ ag .ctl = “busy”∧ag .ctl ′ = “idle”

∧ res ′ = res ∪ag .found

HomeActs ≡ (∃d , t : Prep(d , t))∨Deliver

vars ≡ 〈ag .ctl ,ag .item,ag .found ,home.res〉
FlightAgent ≡ ∧ Init

∧ Network

∧ 2
[
home[HomeActs]∨

W
n∈Net GetFlightn

]
vars

∧
V

n∈Net 2[
W

m∈Net Moven,m ]−n.ag

Figure 2.3: MTLA-Specification of a Flight Agent

which claims thatag initially resides at its home locationhome and is in its“idle”

state. MTLA provides formulas of the formn[F ] for every namen ∈ N; the

informal interpretation of such a formula is thatF holds at noden provided that

such a node exists;n〈F 〉 abbreviates¬n[¬F ], that is, it means the same asn[F ]
but it additionally requires the existence of a node with namen; home.ag〈F 〉 is

an abbreviation ofhome〈ag〈F 〉〉. The network is described by

Network ≡
^

n,m∈Net

2n〈m[false]〉∧2
[
false

]
n.id

.

As in TLA, a formula of the form2[A]v , wherev is some variable, asserts that
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whenever the value ofv changes during a transition, the formulaA – that describes

a transition – holds. Hence, formulaNetwork expresses that the network nodes

are present forever, that they are not nested, and that theirids never change.

The third conjunct describes which transitions and in which way can change the

system’s variables. These are on the one hand the actions that can be performed

only at the home location: either the agent is given a task in the form of a des-

tinationd and a time periodt as expressed by formula∃d , t : Prep(d , t), or the

agent delivers the offers it has found at its home locationhome as described by

Deliver . On the other hand, the agent can collect offers for flights at any network

locationn as expressed byGetFlightn . Note that as in TLA, the value of a term

t in the next state is written as the “primed” versiont ′ of t . The value of a term

t at a noden different from the root is denoted byn.t . Similarly, n.t ′ denotes

the value of the termt at noden in the next state. For termst1, . . . , tk the for-

mulaUNCHANGED t1, . . . , tk says that the value of neither of these terms changes

during the transition.

The last conjunct in the formulaFlightAgent specifies the agent’s possible move-

ments between the network nodes. In MTLA, a formula of the form2[A]−S

means thatA holds whenever formulaS becomes false during a transition. In

our case, the formula asserts that whenever a formulan.ag , which abbreviates

n.ag〈true〉, becomes false (that is, wheneverag leaves locationn), this is due

to one of the actions described by the formulasMoven,m . The formulaMoven,m

claims thatag is at locationn, it is active and it has already checked the flight

offers at this location and that after the transition, it is at locationm as expressed

by em.ag〈true〉 and its local variables and tree structure do not change during the

transition: this is expressed by the conjunctUNCHANGED . . . and by the formula

keepag .

An important feature of TLA as well as of MTLA is that the same formalism can

be used to specify systems and to describe their properties. This enables express-

ing the assertion that a system specified by formulaSpec has the property given

by formulaProp by the implicationSpec⇒ Prop. For example, the property that

the agent is always located at one of the network nodes, can be expressed by the
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following formula:

FlightAgent ⇒2
_

n∈Net

n.ag〈true〉 .

The proof of the validity of such a formula would be based on two kinds of steps.

First it has to be proven that initially the system has the desired property, i.e. that

the implicationInit ⇒
W

n∈Net n.ag〈true〉 is valid. After that, one has to prove

that formula
W

n∈Net n.ag〈true〉 is invariant under all possible transitions of the

system.

The formal definition of the syntax and semantics of MTLA-formulas is given in

the next section.

2.3 Simple MTLA

In the following we present the logic Simple MTLA – this is the kernel of MTLA

and will later be extended by different quantifiers. For the sake of brevity, we will

refer to Simple MTLA as MTLA whenever it is clear from the context that only

the quantifier-free part of the logic is meant.

MTLA extends the logic TLA∗ by spatial operators. TLA∗ [34] is a variant of

Lamport’s TLA [31]. It generalises TLA by allowing temporal operators to occur

in the description of transitions while preserving TLA’s – from the specification

point of view crucial – feature of being invariant under finite stuttering.

Assume given a signature of first-order logic with equality and denumerable sets

Vf andVr of flexible and rigid variables withVf ∩Vr = /0 as well asN∩Vf = /0
andN∩Vr = /0. The lettersv ,w ,vi ,wi , . . . will denote flexible,x ,y ,xi ,yi rigid

variables. Further, we assume a first-order interpretationI of the function- and

predicate symbols in a non-empty universe|I| containing a special “null” value

dI ∈ |I|. A configurationis a pair(t ,λ) as described in section 2.1 on page 9, that

is, it consists of a treet = (Nt ,<t) and a mappingλ : Nε
t ×Vf → |I| assigning to

every node of the tree a local state. Arun is an infinite sequence of configurations

σ = (t0,λ0)(t1,λ1) . . .
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The (pure and impure) terms and formulas of MTLA are given by the following

grammar:

t ::= x | v | f (t1, . . . , tk ) | ιx : F

u ::= t | f (u1, . . . ,uk ) | ιx : A

F ::= P(t1, . . . , tk ) | ¬F | F0⇒ F1 | ∃x : F | m[F ] | 2F | 2[A]t | 2[A]S

A ::= F | ¬A | A0⇒ A1 | ∃x : A | m[A] | eF | keepm

wheret , ti denote pure,u,ui impure terms,F ,Fi pure andA,Ai impure formulas,

f a function- andP a predicate symbol. Furthermore,S denotes a pure “spatial”

formula, that is, a pure formula built without temporal operators. Our term forma-

tion rules include the definite description operatorιx : F . Its interpretation is “the

uniquex for whichF holds” if there is exactly one such value and the null value

dI otherwise (cf. [42]). The precise definition of the semantics of the formulas

and terms is given as follows.

Definition 2.1 Let σ = (t0,λ0)(t1,λ1) . . . be a run whereti = (Ni ,<i) are finite

trees andλi : Nε
i ×V → |I| valuations, and letn ∈ Nε. The semantics of MTLA-

formulas is defined as follows:

• σ(n,ξ)(x ) = ξ(x ) for x ∈ Vr

• σ(n,ξ)(v) =

 λ0(n,v) if n ∈ Nε
0

dI otherwise

 for v ∈ Vf

• σ(n,ξ)(f (t1, . . . , tk )) = I(f )(σ(n,ξ)(t1), . . . ,σ(n,ξ)(tk ))

• σ(n,ξ)(ιx : A) =


d ∈ |I| if σ,n,ξ[x := d ] |= A and

σ,n,ξ[x := e] 6|= A for all e ∈ |I| \ {d}

dI otherwise

• σ,n,ξ |= P(t1, . . . , tk ) iff (σ(n,ξ)(t1), . . . ,σ(n,ξ)(tk )) ∈ I(P)

• σ,n,ξ |= ¬A iff σ,n,ξ 6|= A
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• σ,n,ξ |= A⇒ B iff σ,n,ξ 6|= A or σ,n,ξ |= B

• σ,n,ξ |= ∃x : A iff σ,n,ξ[x := d ] |= A for somed ∈ |I|

• σ,n,ξ |= m[A] iff m 6<0 n or σ,m,ξ |= A

• σ,n,ξ |= 2F iff for all i ∈ ω, n /∈ Nε
j for somej ≤ i or σ|i ,n,ξ |= F

• σ,n,ξ |= eF iff n /∈ Nε
1 or σ|1,n,ξ |= F

• σ,n,ξ |= 2[A]t iff for all i ∈ ω, n /∈ Nε
j for somej ≤ i

or σ|(n,ξ)
i (t) = σ|(n,ξ)

i+1 (t) or σ|i ,n,ξ |= A

• σ,n,ξ |= keepm iff t0↓n.m = t1↓n.m

• σ,n,ξ |= 2[A]S iff for all i ∈ ω, n /∈ Nε
j for somej ≤ i

or (σ|i ,n,ξ |= S iff σ|i+1,n,ξ |= S ) or σ|i ,n,ξ |= A

As it is apparent from the definition, the interpretation of a Simple MTLA-formula

is relative to a locationn. For σ,n,ξ |= A we say thatformula A holds for the

modelσ at locationn under the valuationξ. Validity is defined with respect to

the root of the trees. We say that a formulaF is valid over a runσ if and only

if σ|i ,ε,ξ |= F for all i ∈ ω and all valuationsξ. A formulaF follows froma set

F of formulas, written asF |= F iff F is valid over all behaviours over which all

formulas inF are valid. A formulaF is valid, written as|= F , iff F is valid over

all behaviours.

A formula of the formm[F ] means, roughly speaking, that formulaF holds at

locationm, provided that a location with namem exists in the first configuration

of the run. In modal logical terms,m[ ] is the box operator with respect to the

relation that connects a noden of a treeti with another node of the same tree iff

the latter has namem and is “below” noden in ti , that is, ifm <i n holds.

The interpretation of the always modality is more complicated than usual, because

locations may disappear, and we want to consider later reappearances of a name

as new names. Intuitively, formula2F holds forσ at locationn iff F holds for

every suffixσ|i at locationn as long asn exists. Figure 2.4 shows the “lifeline”
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of a namen. For the run there, it holds for example2(v ≥ 0) at noden (and it

would hold even if in the next treen reappeared, andv had a value less than 0

there).
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Figure 2.4: Lifeline of a locationn

The “keep”-operatorkeepm states that the structure of the subtree below location

m at the current state does not change during the transition, i.e. this subtree and the

subtree belowm at the next instant are equal. This kind of transition formulas will

be used to describe the movements of agents between different network locations.

For a termt and an (impure) formulaA, the semantics of formula2[A]t is de-

fined as for TLA, that is, it asserts that whenever the value of termt changes

during a transition, this is due to an “action” described by the (impure) formulaA.

Therefore, formulas of this form are used to describe the allowed changes of local

states. For a spatial formulaS and an (impure) formulaA, formula2[A]S asserts

that whenever the truth value of formulaS changes during a transition, formulaA

has to hold. Such formulas allow to describe structural modifications of trees.

We will use many derived operators. Beside the standard abbreviations liketrue,

∧, ∨ and∀ we introduce abbreviations specific to MTLA. We writem〈F 〉 for

¬m[¬F ]. Hence, the operatorsm〈 〉 can be regarded as the strong counterparts

of the modalitiesm[ ], since the formulam〈F 〉 asserts that there is a location

with namem and that at this location formulaF holds. For a namem we

sometimes write simplym instead ofm〈true〉. In order to save brackets, for

namesm1, . . . ,mi ∈ N we usually writem1. · · · .mi [F ] for m1[· · ·mi [F ] · · · ] and

m1. · · · .mi〈F 〉 for m1〈· · ·mi〈F 〉 · · ·〉.

Forn ∈ N and an (im)pure termu, letn.u denote the (im)pure termιx : n[x = u],
that is, its interpretation is the value ofu at noden. For a pure termt , let t ′

abbreviate the termιx : e(t = x ), that is, its value equals the value oft in the next

state. For pure termst1, . . . , tk we write, in accordance with TLA’s convention,
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UNCHANGED t1, . . . , tk to abbreviate the (impure) formulat ′1 = t1∧ . . .∧ t ′k = tk .

For an impure formulaA and pure terms or spatial formulasa1, . . . ,ak we write

2[A]a1,...,ak
for 2[A]a1∧ . . .∧2[A]ak

.

Further useful abbreviations are2[A]−S for 2[S ⇒ A]S as well as2[A]+S for

2[¬S ⇒A]S . For instance,2[A]−b stands for2[b〈true〉⇒A]b〈true〉, and it states

that whenever a nodeb “disappears” during a transition, this is due to the “action”

described byA.

We also adopt the usual abbreviations familiar from LTL like e.g.3F , which is

defined as¬2¬F and asserts the existence of a future state for whichF holds.

Further, we let�F ≡ ¬ e¬F , that is,� is the strong counterpart of the next-

time operator. Since runs are infinite and all trees are assumed to be non-empty,

the weak and the strong next-time operator coincide at the root, but evaluated

at a nodem ∈ N different fromε the strong operator also asserts the existence

of a node with namem in the next state, whereasσ,m,ξ |= eF holds trivially

wheneverm /∈ Nt1 holds.

2.4 Temporal stuttering

The particular suitability of TLA as a basis for system development by refinement

is strongly connected with the fact that TLA-formulas are invariant under finite

stuttering. Stuttering invariance means, roughly speaking, that (finite) repetition

of the same state in a run has no influence on the set of formulas that hold for

the run. The effect of this is that refinement can be expressed in TLA simply

by implication: if Spec is an abstract specification of the system andImpl is a

finer grained one, then the fact thatImpl is a correct implementation ofSpec

corresponds to the validity of the implicationImpl ⇒ Spec.

We show that (pure) formulas of (Simple) MTLA are also invariant under finite

stuttering. For the sake of simplicity, we only consider the propositional fragment

of the logic. However, note that all results presented in this chapter can be proved

in an analogous way for first order MTLA.

In order to define propositional MTLA, pMTLA for short, we assume a denumer-
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able setV of propositional variables withV ∩N = /0. The sets of pure and impure

formulas of pMTLA are given by

F ::= v ∈ V | ¬F | F ⇒G | m[F ] | 2F | 2[A]S (pure formulas)

A ::= F | ¬A | A⇒ B | m[A] | keepm | eF (impure formulas)

wherem ∈N is a name andS a pure formula built without any temporal operators.

In the context of pMTLA, a run is an infinite sequenceσ = (t0,λ)(t1,λ1) . . . of

finite treesti = (Ni ,<i) endowed with valuationsλi : Nε
i → 2V that assign to

every node a set of propositional variables. The semantics of pMTLA-formulas is

defined with respect to such runs and to a noden ∈ Nε.

Definition 2.2 Let σ = (t0,λ0)(t1,λ1) . . . be a run as described above with finite

treesti = (Ni ,<i) and valuationsλi : Nε
i → 2V , and letn ∈ Nε. The semantics of

pMTLA-formulas is defined inductively as follows:

• σ,n |= v iff n ∈ Nε
0 andv ∈ λ0(n)

• σ,n |= ¬A iff σ,n 6|= A

• σ,n |= A⇒ B iff σ,n 6|= A or σ,n |= B

• σ,n |= m[A] iff m 6<0 n or σ,m |= A

• σ,n |= 2F iff for all i ∈ ω eithern /∈ Nε
j for somej ≤ i or σ|i ,n |= F

• σ,n |= eF iff n /∈ Nε
1 or σ|1,n |= F

• σ,n |= keepm iff t0↓n.m = t1↓n.m

• σ,n |= 2[A]S iff for all i ∈ ω eithern /∈ Nε
j for somej ≤ i or

(σ|i ,n |= S iff σ|i+1,n |= S ) or σ|i ,n |= A

Now we turn to the definition of the notions connected with stuttering invari-

ance. In the next chapter, where we will discuss refinement principles for mobile

systems, we will recall the connection between stuttering invariance and system

refinement.
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First we definetemporalstuttering equivalence. It is essentially the notion known

from TLA [31], the difference is that the locations of the variables play a role as

well. Later we also will introducespatialstuttering equivalence.

Definition 2.3 (Stuttering equivalence)LetV ⊆ {n.v |n ∈ Nε,v ∈ V }.

1. Two configurations(s,λ),(t ,µ) with s = (Ns ,<s) andt = (Nt ,<t) are called

V -similar, written(s,λ)∼V (t ,µ), iff the following hold:

(a) s = t

(b) for all n.v ∈ V with n ∈ Nε
s holds: v ∈ λ(n) iff v ∈ µ(n).

Two runsσ = (s0,λ0)(s1,λ1) . . . and τ = (t0,µ0)(t1,µ1) . . . are calledV -

similar iff (si ,λi)∼V (ti ,µi) holds for alli ∈ ω.

2. V -stuttering equivalence, written as'V , is the smallest equivalence relation

on (finite or infinite) sequences of configurations that identifies the sequences

ρ◦ 〈(s,λ)〉 ◦σ andρ◦ 〈(t ,µ)(u,ν)〉 ◦σ, for any finite sequence of configura-

tionsρ, finite or infinite sequence of configurationsσ, and pairwiseV -similar

configurations(s,λ),(t ,µ),(u,ν).

3. Stuttering equivalence, written', is the smallest equivalence relation on runs

that identifiesρ◦ 〈(s,λ)〉 ◦σ andρ◦ 〈(s,λ)(s,λ)〉 ◦σ for any finite sequence

of configurationsρ, infinite sequence of configurationsσ and configuration

(s,λ).

Figure 2.5 gives an example of (fragments of) two{ag .item,ag .ctl}-equivalent

runs. To see that they are indeed{ag .item,ag .ctl}-equivalent, observe that

(s0,λ0) = (t0,µ0), (s0,λ0)∼{ag .item,ag .ctl} (s1,λ1)

(s2,λ2) = (t1,µ1), (t1,µ1)∼{ag .item,ag .ctl} (t2,µ2) .

An immediate consequence of the above definitions is that'V ⊆'W holds when-

everW ⊆ V holds for setsV ,W ⊆ {n.v |n ∈ Nε,v ∈ V }.
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Figure 2.5: Example of{ag .item,ag .ctl}-equivalent runs

In the following we will refer to the elements of the set{n.v |n ∈ Nε,v ∈ V } as

localised variables.

For every (impure) formulaA, we define a finite set FLV(A) of localised variables

as follows:

FLV(v) = {ε.v}

FLV(¬A) = FLV(A)

FLV(A⇒ B) = FLV(A)∪FLV(B)

FLV(m[A]) = {m.v |ε.v ∈ FLV(A)}∪{n.v |n.v ∈ FLV(A),n 6= ε}

FLV(2F ) = FLV(F )

FLV( eF ) = FLV(F )

FLV(keepm) = /0

FLV(2[A]S ) = FLV(A)∪FLV(S )

Intuitively, FLV(A) contains all variables occurring inA “prefixed” by the loca-

tion the variable belongs to. For example, forF ≡m[v ∧n[¬v ∨w ]]⇒ e(v ∧w)
we have FLV(F ) = {m.v ,n.v ,n.w ,ε.v ,ε.w}.

The following lemma will be useful for the proof of the (temporal) stuttering in-

variance of propositional MTLA. All the assertions are easy to prove.
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Lemma 2.4 LetV ⊆ {n.v |n ∈ Nε,v ∈ V } andσ = (s0,λ0)(s1,λ1) . . . as well as

τ = (t0,µ0)(t1,µ1) . . . runs withσ'V τ.

1. (s0,λ0)∼V (t0,µ0)

2. For every i ∈ ω there exists somej ∈ ω such thatσ|i 'V τ|j as well as

〈(s0,λ0) . . .(si ,λi)〉 'V 〈(t0,µ0) . . .(tj ,µj )〉.

3. For everyi ∈ ω with (si ,λi) 6∼V (si+1,λi+1) there is somej ∈ ω such that

the following hold:

(a) σ|i 'V τ|j
(b) σ|i+1'V τ|j+1

(c) 〈(s0,λ0) . . .(si ,λi)〉 'V 〈(t0,µ0) . . .(tj ,µj )〉.

Now we are able to prove the main theorem about the stuttering invariance of

MTLA-formulas. For the sake of uniformity, we identifyε[A] with A.

Theorem 2.5 (Stuttering invariance) Let F be a pure,A an impure formula,

n ∈ Nε, σ = (s0,λ0)(s1,λ1) . . . andτ = (t0,µ0)(t1,µ1) . . . runs.

1. If σ'FLV(n[F ]) τ, thenσ,n |= F iff τ,n |= F .

2. If σ'FLV(n[A]) τ andσ|1'FLV(n[A]) τ|1, thenσ,n |= A iff τ,n |= A.

Proof. We prove the two assertions simultaneously by induction on the structure

of (impure) formulas. Since the assertions are symmetrical inσ andτ, it suffices

to show one direction of the equivalences.

Case:v ∈ V . Since in this case 1. implies 2., we only prove the first assertion.

Note that FLV(n[v ]) = {n.v}. Hence, because of(s0,λ0) ∼FLV(n[v ]) (t0,µ0)
holdsn ∈ Ns0 iff n ∈ Nt0 and if n ∈ Ns0, thenv ∈ λ0(n) iff v ∈ µ0(n), that is,

σ,n |= v iff τ,n |= v .

Case:¬A. We only show 1., assertion 2. can be shown in an analogous manner.

So assume thatA is a pure formula andσ'FLV(n[¬A]) τ andσ,n |= ¬A, that is,
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σ,n 6|= A. As FLV(n[¬A]) = FLV(n[A]), the induction hypothesis for 1. and

A can be applied, and we concludeτ,n 6|= A, i.e.τ,n |= ¬A.

Case: A ⇒ B . Also in this case, the proofs of 1. and 2. use the same ar-

guments, so we only show 1. and assume thatA and B are pure formulas

and thatσ 'FLV(n[A⇒B ]) τ holds. By the definition of FLV, it is obvious that

FLV(n[A]),FLV(n[B ]) ⊆ FLV(n[A⇒ B ]). Hence, it followsσ 'FLV(n[A]) τ
andσ'FLV(n[B ]) τ. This fact and the induction hypothesis imply the assertion.

Case: m[A]. Again, we only show 1., the proof of 2. being analogous, and

assume thatA (and thus alsom[A]) is a pure formula.

Assumeσ'FLV(n[m[A]]) τ andσ,n |= m[A], that ism 6<s0 n or σ,m |= A.

Case:m 6<s0 n. By assumption and by lemma 2.4 holdss0 = t0, in particular

m 6<t0 n. Hence,τ,n |= m[A] holds trivially.

Case:σ,m |= A. As FLV(n[m[A]]) = FLV(m[A]), by assumption we have

σ'FLV(m[A]) τ, henceτ,m |= A by induction hypothesis.

Case:2F . Assumeσ,n |= 2F . We want to showτ,n |= 2F , i.e. for all i ∈ ω
eithern /∈ Ntj for somej ≤ i or τ|i ,n |= F . So leti ∈ ω be such thatn ∈ Ntj

for all j ≤ i . Lemma 2.4,2. implies that there is somek ∈ ω with n ∈ Nsj for

all j ≤ k andσ|k 'FLV(n[2F ]) τ|i . Latter is equivalent toσ|k 'FLV(n[F ])) τ|i , as

FLV(n[2F ]) = FLV(n[F ]). Sincen ∈ Nsj for all j ≤ k , by assumption holds

σ|k ,n |= F and thereforeτ|i ,n |= F by induction hypothesis.

Case:2[A]S . Assumeσ,n |= 2[A]S . We have to showτ,n |= 2[A]S , i.e. for

everyi ∈ ω either there is somej ≤ i with n /∈ Ntj or τ|i ,n |= A or τ|i ,n |= S

iff τ|i+1,n |= S . Let i ∈ ω such thatn ∈ Ntj for all j ≤ i . We distinguish two

cases.

Case:(ti ,µi)∼FLV(n[2[A]S ]) (ti+1,µi+1).
Since FLV(n[S ]) ⊆ FLV(n[2[A]S ]), it holds obviouslyτ|i 'FLV(n[S ]) τ|i+1,

and so by induction hypothesisτ|i ,n |= S iff τ|i+1,n |= S .

Case:(ti ,µi) 6∼FLV(n[2[A]S ]) (ti+1,µi+1).
By lemma 2.4,3. there exists somek ∈ ω such that

1. τ|i 'FLV(n[2[A]S ]) σ|k ,

2. τ|i+1'FLV(n[2[A]S ]) σ|k+1 and
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3. 〈(s0,λ0) . . .(sk ,λk )〉 'FLV(n[2[A]S ]) 〈(t0,µ0) . . .(ti ,µi)〉.

Sincen ∈ Ntj for all j ≤ i , condition 3. impliesn ∈ Nsl for all l ≤ k . From

conditions 1. and 2. together with the induction hypothesis for assertion 2.

of the theorem for the impure formulaA it follows τ|i ,n |= A. (Note that

FLV(n[A]) ⊆ FLV(n[2[A]S ]) and therefore it follows from 1. and 2. that

σ|k 'FLV(n[A]) τ|i andσ|k+1'FLV(n[A]) τ|i+1.)

Now we prove the remaining cases of assertion 2.

Case: keepm . By definition,σ,n |= keepm holds iff s0↓n.m = s1↓n.m. By

assumption we haveσ ' /0 τ andσ|1 ' /0 τ|1, in particulars0 = t0 ands1 = t1.

The assertion trivially follows from this.

Case: eF . By assumption holdsσ|1'FLV(n[ eF ]) τ|1. We distinguish two cases:

Case: n /∈ Ns1. Then it also holdsn /∈ Nt1, and it followsτ,n |= eF by

definition.

Case:σ|1,n |= F . Because of FLV(n[F ]) = FLV(n[ eF ]) it follows by the

induction hypothesis for 1. and forF thatτ|1,n |= F , henceτ,n |= eF . �

2.5 Spatial stuttering

Until now we only have considered a variant of the “usual” notion of stuttering

invariance, that is, invariance with respect to temporal stuttering. In the context of

a spatio-temporal logic it also makes sense to talk about “spatial” stuttering.

Definition 2.6 (Spatial stuttering equivalence)Let M ⊆ N be a set of names.

Two configurations(s,λ) and(t ,µ) are calledM -equivalentiff the following con-

ditions are satisfied:

1. Ns ∩M = Nt ∩M .

2. For all m,n ∈ Ns ∩M : m <s n iff m <t n.
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3. For all n ∈ Ns ∩M : λ(n) = µ(n).

In this case we write(s,λ)'M (t ,µ).
Two runsσ = (s0,λ0)(s1,λ1) . . . andτ = (t0,µ)(t1,µ1) . . . are calledM -equivalent

iff (si ,λi)'M (ti ,µi) for all i ∈ ω.

It is obvious that'M is an equivalence relation on the set of runs. It also follows

immediately from the definition that for two sets of namesM andN with M ⊆N

we have'N⊆'M . Furthermore, ifσ andτ areM -equivalent runs, thenσ|i and

τ|i areM -equivalent, too, for everyi ∈ ω.

Intuitively, two configurations(s,λ) and(t ,µ) areM -equivalent, ift arises froms

by inserting and removing names that do not occur inM , while keeping the order

between the names inM , and if the valuationsλ andµ agree on all names inM .

Figure 2.6 shows an example of two{n0,n1}-equivalent states.q
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Figure 2.6: Two{n0,n1}-equivalent states

A nice property of the logic would be if a formulaF was not able to distinguish

between runs that areN -equivalent whereN is the set of all names occurring in

F . Unfortunately, this is not the case if we allow for the “keep”-operators, be-

causekeepm restricts every name belowm although they do not occur inkeepm .

However, this “spatial stuttering invariance” property holds for pMTLA without

the “keep”-operators.

For a formulaA let nm(A) denote the set of names occurring inA. Again, we

identify ε[A] with A.

Theorem 2.7 (Spatial stuttering invariance) LetA be an impure pMTLA-formu-

la built without any of the formulaskeepm . Further, letσ = (s0,λ0)(s1,λ1) . . . and

τ = (t0,µ0)(t1,µ1) . . . be runs, and letn ∈ Nε.
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If σ'nm(n[A]) τ, thenσ,n |= A iff τ,n |= A.

Proof. We prove the assertion by induction on the structure of the (impure) for-

mulasA. By symmetry, in all cases, it is enough to show one direction of the

equivalence.

Case:v . Assumeσ '{n} τ andσ,n |= v , that is,n ∈ Nε
s0

andv ∈ λ0(n). By

assumption we have(s0,λ0)'{n} (t0,µ0), hencen ∈ Nε
t0

andµ0(n) = λ0(n), in

particularv ∈ µ0(n), that is,τ,n |= v .

Case:¬A. Assumeσ 'nm(n[¬A]) τ andσ,n |= ¬A, that is,σ,n 6|= A. Since

nm(n[¬A]) = nm(n[A]), by induction hypothesis it followsτ,n 6|= A, that is,

τ,n |= ¬A.

Case:A⇒ B . Assumeσ'nm(n[A⇒B ]) τ andσ,n |= A⇒ B .

Case: σ,n 6|= A. As nm(n[A]) ⊆ nm(n[A⇒ B ]), it follows from the as-

sumptionσ 'nm(n[A]) τ. Hence, by induction hypothesis we haveτ,n 6|= A

and thereforeτ,n |= A⇒ B .

Case:σ,n |= B . Again, we haveσ'nm(n[B ]) τ by assumption. By induction

hypothesis it followsτ,n |= B and soτ,n |= A⇒ B .

Case:m[A]. Assumeσ'nm(n[m[A]]) τ, andσ,n |= m[A].

Case: m 6<s0 n. Sincem ∈ nm(n[m[A]]) and(s0,λ0) 'nm(n[m[A]]) (t0,µ0)
by assumption, the definition ofnm(n[m[A]])-equivalence impliesm 6<t0 n,

henceτ,n |= m[A].

Case:σ,m |= A. Note thatnm(m[A])⊆ nm(n[m[A]]) and therefore it holds

σ 'nm(m[A]) τ by assumption. Hence, by induction hypothesis we conclude

τ,m |= A.

Case: eF . Assumeσ,n |= eF .

Case:n /∈ Ns1. In this case by assumption holdsn /∈ Nt1, henceτ,n |= eF .

Case: σ|1,n |= F . As nm(n[ eF ]) = nm(n[F ]) andσ|1 'nm(n[ eF ]) τ|1, by

induction hypothesis it followsτ|1,n |= F .

Case:2F . Assumeσ,n |= 2F and leti ∈ ω be arbitrary.
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Case:There is aj ≤ i such thatn /∈Nsj . Then it holds by assumptionn /∈Ntj ,

and soτ,n |= 2F .

Case:σ|i ,n |= F . Sinceσ|i 'nm(n[2F ]) τ|i andnm(n[2F ]) = nm(n[F ]), it

follows τ|i ,n |= F by the induction hypothesis.

Case:2[A]S . Assume againσ,n |= 2[A]S and leti ∈ ω be an arbitrary natural

number.

Case: There is aj ≤ i with n /∈ Nsi . The assertion follows by exactly the

same arguments as in the previous case.

Case:σ|i ,n |= A. We can conclude by the assumption and by the induction

hypothesis thatτ|i ,n |= A.

Case: σ|i ,n |= S iff σ|i+1,n |= S . By induction hypothesis,σ|j ,n |= S iff

τ|j ,n |= S holds for everyj ∈ ω. This impliesτ|i ,n |= S iff τ|i+1,n |= S . �

In theorem 2.5 and in theorem 2.7 we have shown that MTLA-formulas which

do not contain the keep-operators are invariant under finite temporal and spatial

stuttering. These two results can be combined in an obvious way. We first combine

the notions of spatial and temporal stuttering equivalence.

Definition 2.8 Let M ⊆ N be a set of names andV ⊆ {n.v |n ∈ Nε,v ∈ V } a

set of localised variables.(M ,V )-equivalence, written'(M ,V ), is the smallest

equivalence relation on runs that contains both'M and'V .

Now we can state a theorem about the “spatio-temporal” stuttering invariance of

MTLA without keepm .

Theorem 2.9 Let F be a pure formula of propositional MTLA built without any

of the formulaskeepm . Let σ = (s0,λ0)(s1,λ1) . . . and τ = (t0,µ0)(t1,µ1) . . . be

runs, and letn ∈ Nε.

If σ'(nm(n[F ]),FLV(n[F ])) τ, thenσ,n |= F iff τ,n |= F .
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Proof. Let M andV abbreviatenm(n[F ]) and FLV(n[F ]), respectively. By

definition,σ'(M ,V ) τ means that there are runsρ0, . . . ,ρk with

σ'S0 ρ0'S1 ρ1 · · · ρk−1'Sk
ρk 'Sk+1 τ

andSi ∈ {M ,V }. Hence, the assertion follows immediately from thm. 2.5 and

thm. 2.7. �





Chapter 3

Refinement

One of the reasons to choose TLA as the basis of our logic was its particular

suitability for system development by stepwise refinement. As we have shown in

the previous chapter, MTLA also has the property of invariance under finite stut-

tering, which is important in the context of refinement. However, the notion of

refinement established in the context of reactive systems, that is operation refine-

ment, does not suffice when systems relying on mobile code are concerned. For

instance, in the course of system development, one may decide to implement a

single high-level agent by several agents that “imitate” the behaviour of the orig-

inal agent. Therefore, refinement principles that include the modification of the

system’s spatial structure are needed.

This chapter attempts to explore this question and to find suitable refinement no-

tions for mobile systems. Besides operation refinement, we will describe the fol-

lowing concepts:

• Spatial extension:A single locationn can be extended by sub-locations that

implement different aspects of the behaviour ofn. In general, the local vari-

ables atn will be distributed among the new locations. In this case, all these

variables have to be hidden from the high-level interface.

• Virtualisation of locations:This principle allows to implement a high-level

location by an arbitrary location hierarchy, even with a different name. In this

29
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case, the name of the “virtualised” location must be hidden.

The different principles will be illustrated with the aid of our first specification

example of a simple flight agent presented in chapter 2. We show that refinement

can be expressed in MTLA by implication, that is, the fact that a low-level spec-

ification Impl is a refinement of an abstract specificationSpec means essentially

the validity of the formulaImpl ⇒ Spec.

3.1 Operation refinement

First we consider the usual refinement of operations. Examples of operation re-

finement are: a high-level operation is implemented by a sequence of low level

operations, or a high-level operation is restricted by strengthening its “precondi-

tions”. In the case of the flight agent (cf. page 11, fig. 2.3), one could require that

the agent is not allowed to go home before it has found a certain number of offers.

To express this restriction in the MTLA-specification, we have to modify the for-

mulasMoven,home for everyn ∈ Net . The altered formulas of the specification

appear in fig. 3.1

MoveHomen ≡ ∧ n.ag〈true〉∧ dhome.ag〈true〉

∧ ag .ctl = “busy”∧|ag .found | ≥ 5

∧ UNCHANGED ag .ctl ,ag .item,ag .found ,home.res

RestrAgent ≡ ∧ . . .

∧
V

n∈Net 2[MoveHomen ∨
W

m∈Net\{home}Moven,m ]−n.ag

Figure 3.1: Flight Agent with restricted moves

It holds obviously that|= MoveHomen ⇒Moven,home for every namen ∈ Net ,

so it follows easily from the monotonicity of the operators2[ ]S that

RestrAgent ⇒ FlightAgent

is a valid MTLA-formula. This means that every run of a system satisfying spec-

ification RestrAgent is also a run of a system specified byFlightAgent . Hence,

RestrAgent is a possible implementation ofFlightAgent .
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The restricted agent is an example of strengthening the precondition of an action.

As another example of operation refinement we consider a variant of the flight

agent that receives the componentsd and t of the item(d , t) separately. The

interesting parts of specificationSepAgent are given in fig. 3.2. The formulas

whose definitions do not appear in the figure (SepDeliver , SepGetFlightn , etc.)

are like the formulasDeliver , GetFlightn , etc., but complemented with a con-

junctUNCHANGEDag .ctld ,ag .ctlt ,ag .dest ,ag .time to make sure that they do not

modify the new variables.

FormulasChooseDest(d) andChooseTime(t) describe the actions of choosing a

destination and a time period, respectively. The agent’s control state depends, in

addition toctl , on two further local variablesctld andctlt ; ctld has value“idle” as

long as no destination is chosen. When destinationd is chosen, variablectld is

set to“ready”, and variabledest to d . The meanings of the variablesctlt andtime

are similar.

The overall “preparation” of the agent is given by formulaSepPrep. This action

can be performed as soon as both, a destinationd and a time periodt are chosen, as

indicated by the values of the variablesag .ctld andag .ctlt . Variableag .ctl is set to

“busy”, and the agent obtains its task, expressed byag .item ′= (ag .dest ,ag .time).

Intuitively, it is clear that specificationSepAgent should be a correct implemen-

tation of the abstractFlightAgent : the steps of choosing the destinationd and the

time periodt are internal steps. These actions together withSepPrep implement

the FlightAgent ’s single “preparation action”Prep(d , t). The internal actions

∃d : ChooseDest(d) and ∃t : ChooseTime(t) are not visible forFlightAgent

(they correspond tostuttering steps), as they do not modify any of the variables

occurring in formulaFlightAgent nor the respective order of the locations. On

the other hand,SepPrep implies∃d , t : Prep(d , t), as the variablesag .dest and

ag .time supply the witnesses ford andt required by the existential quantifier.

Technically speaking, the implication

|= SepAgent ⇒ FlightAgent

holds, due to the stuttering invariance of MTLA-formulas. A proof would be
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SepInit ≡ ∧ . . .

∧ ag .ctld = “idle”∧ag .ctlt = “idle”

ChooseDest(d) ≡ ∧ ag〈true〉∧ dag〈true〉

∧ ag .ctl = “idle”∧ag .ctld = “idle”

∧ ag .dest ′ = d ∧ag .ctl ′d = “ready”

∧ UNCHANGED vars,ag .time,ag .ctlt

ChooseTime(t) ≡ ∧ ag〈true〉∧ dag〈true〉

∧ ag .ctl = “idle”∧ag .ctlt = “idle”

∧ ag .time ′ = t ∧ag .ctl ′t = “ready”

∧ UNCHANGED vars,ag .dest ,ag .ctld

SepPrep ≡ ∧ ag〈true〉∧ dag〈true〉

∧ ag .ctl = “idle”∧ag .ctld = “ready”∧ag .ctlt = “ready”

∧ ag .item ′ = (ag .dest ,ag .time)∧ag .found ′ = /0

∧ ag .ctl ′ = “busy”

∧ UNCHANGED ag .dest ,ag .time,home.res

SepHomeActs ≡ ∨ (∃d : ChooseDest(d))∨ (∃t : ChooseTime(t))

∨ SepPrep ∨SepDeliver

sepVars ≡ 〈ag .ctl ,ag .item,ag .found ,ag .ctld ,ag .ctlt ,

ag .time,ag .dest ,home.res〉

SepAgent ≡ ∧ SepInit

∧ . . .

∧ 2[home[SepHomeActs]∨
W

n∈Net SepGetFlightn ]sepVars

∧ . . .

Figure 3.2: Flight Agent with separate preparation steps

based mainly on instances of usual TLA rules like

(A∨ x ′ = x )⇒ (B ∨y ′ = y)

2[A]x ⇒2[B ]y
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as well as on the validity of the formulas

home[∃d : ChooseDest(d)]⇒ UNCHANGED vars

home[∃t : ChooseTime(t)]⇒ UNCHANGED vars

home[SepPrep]⇒ home[∃d , t : Prep(d , t)]

and

n[A∨B ]⇔ n[A]∨n[B ] .

3.2 Spatial extension

During the stepwise refinement of a mobile system one may decide to implement

a single location of the abstract specification by a whole hierarchy of locations –

network nodes may be equipped with sub-locations for different purposes, agents

may have sub-nodes to store certain informations etc. When refining a location

to several locations, in general the state of the high-level location is distributed

among the new sub-locations. In the following we illustrate this refinement prin-

ciple. We consider the – simpler – case when the variables of the original locations

are not distributed separately.

3.2.1 Spatial extension without distribution of variables

In the context of the flight agent specification, one may wish that mobile agents

are received inside a specific sub-location instead of directly beneath the network

node. The visiting agent could be put first into a sub-nodeinn of the location, to

go through certain security checks, for example. Then it goes to a locationdockn

where the actual interaction takes place and finally, before leaving the network

location, it has to visit theoutn sub-location.

Figure 3.3 illustrates the extension of a network noden1 by the new sub-nodes.

Figure 3.4 shows the relevant parts of specificationDockedAgent of such a docked

flight agent. The remaining formulas are the same as in specificationFlightAgent .
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Figure 3.3: Spatial extension of noden1

DockedInit ≡ home.dockhome .ag〈true〉∧ag .ctl = “idle”

DockedNetwork ≡
V

n,m∈Net ∧ 2n〈m[false]〉

∧ 2n〈inn〈true〉∧dockn〈true〉∧outn〈true〉〉

∧ 2[false]n.id

SendAgentn ≡ ∧ n.dockn .ag〈true〉∧ dn.outn .ag〈true〉

∧ UNCHANGED vars

DockedMoven,m ≡ ∧ n.outn .ag〈true〉∧ dm.inm .ag〈true〉∧ keepag

∧ UNCHANGED vars

RcvAgentn ≡ ∧ n.inn .ag〈true〉∧ dn.dockn .ag〈true〉

∧ UNCHANGED vars

DockedAgent ≡ ∧ DockedInit

∧ . . .

∧
V

n∈Net ∧ 2[SendAgentn ]−dockn .ag

∧ 2[RcvAgentn ]−inn .ag

∧ 2[
W

m∈Net DockedMoven,m ]−outn .ag

Figure 3.4: A docked flight agent

FormulaDockedInit says that the agent initially resides at the home location’s

sub-locationdockhome ; formulaDockedNetwork requires every network noden

to have sub-locationsinn , dockn , andoutn that cannot “disappear”. The actions

SendAgentn , RcvAgentn andDockedMoven control the agent’s movements be-

tween the different sub-locations and network nodes, respectively.

Observe thatSendAgentn andRcvAgentn do not change any of the (interesting)

variables, and that the agent stays below locationn. From this, and from the
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fact that the operatorsn[ ] refer not just to the immediate successors of a node,

but look arbitrarily deep inside the tree, it follows that the transitions described

by SendAgentn and RcvAgentn , respectively, cannot be observed by formula

FlightAgent (that is, they correspond to stuttering steps of the original specifi-

cation). Altogether, this specification is again a refinement of the original flight

agent specification, and it holds indeed that

|= DockedAgent ⇒ FlightAgent .

Let us emphasise once again that for the validity of this implication it is crucial

that the operatorsn[ ] refer to sub-nodes arbitrarily deep below the root, or more

formally, that the following holds:

|= n[F ]⇒m[n[F ]] .

This interpretation ofn[ ] enables spatial extension to be represented by implica-

tion in MTLA.

3.2.2 Spatial extension with distribution of variables

In the case of the docked agent, refinement could be expressed simply by im-

plication because the new locationsinn , dockn , andoutn did not have any local

variables. In general, the refined location’s local state will be distributed among

the new sub-nodes.

In order to illustrate this form of refinement, we consider again the example of the

flight agent. Imagine that the offers at a network noden are kept in a database

placed in a sub-locationdbn of n. A part of the specification of such an agent –

showing only the modified actions – appears in fig. 3.5.

For this specification does not hold that|= DBAgent ⇒ FlightAgent , because the

new agent draws the information about the offers from the variabledbn .flights,

whereas in the case of the original agent the flights are stored in the variable

n.flights. However, the implication holds if we “hide” these variables. Hiding

of state components is expressed, as in TLA, by existential quantification over



36 3.2. Spatial extension

DBNetwork ≡
V

n∈Net n.dbn〈true〉∧2[false]−n.dbn ,n.id

DBGetFlightn ≡ ∧ . . .

∧ ag .ctl = “busy”∧ag .item ∈ dbn .flights

∧ ag .found ′ = ag .found ∪getFlight(ag .item,dbn .flights)

∧ UNCHANGED ag .ctl ,ag .item,ag .dests,home.res

DBAgent ≡ ∧ Init

∧ DBNetwork

∧ 2
[
home[HomeActs]∨

W
n∈Net DBGetFlightn

]
vars

∧
V

n∈Net 2[
W

m∈Net Moven,m ]−n.ag

Figure 3.5: Network nodes with database sub-locations

flexible variables. We extend the definition of MTLA-formulas by the following

clause:

∃∃∃∃∃∃m.v : F

is a pure formula, wherem ∈ N denotes a name,v ∈ Vf a flexible variable andF

a pure MTLA-formula.

The definition of the semantics of existential quantification over flexible variables

requires some preparation. The difficulty is to define it in a way that stuttering

invariance is preserved.

We first define what it means that two runs aresimilar up tov at m for a flexible

variablev and a locationm ∈ Nε. Recall the definition of stuttering equivalence

' (cf. p.19, def. 2.3).

Definition 3.1 1. Two runsσ = (s0,λ0)(s1,λ1) . . . andτ = (t0,µ0)(t1,µ1) . . . are

called equal up tov at m, written σ =m.v τ, iff si = ti for all i ∈ ω and

λi(n,w) = µi(n,w) for all (n,w) 6= (m,v).

2. Similarity up tov atm, denoted by≈m.v , is the smallest equivalence relation

that contains both=m.v and'.
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Now we can define the semantics of the flexible existential quantifier:

σ,n,ξ |= ∃∃∃∃∃∃m.v : F iff there exists a runτ≈m.v σ with τ,n,ξ |= F .

Intuitively, formula∃∃∃∃∃∃m.v : F asserts that we can find values forv atm for which

F holds (cf. [31]).

For our specification holds

|= DBAgent ⇒∃∃∃∃∃∃n1.flights . . .∃∃∃∃∃∃nk .flights : FlightAgent

where{n1, . . . ,nk}= Net . The proof of the validity of this formula would rely on

an axiom

(∃∃∃∃∃∃ -I) F [t/n.v ]⇒∃∃∃∃∃∃n.v : F

whereF [t/n.v ] denotes the “localised” substitution oft for v atn in formulaF .

Informally, the localised substitutionF [t/n.v ] replaces all top-level occurrences

of v in sub-formulasn[F ] (that is, occurrences that are not in the scope of further

spatial modalities) byt . The precise inductive definition is given in fig. 3.6, p. 38,

which also introduces a corresponding auxiliary notionr [t/n.v ] of localised sub-

stitution in a termr .

In our case, the “witness” terms are the variablesflights at the database locations:

it is easy to see that the implication

DBAgent ⇒ FlightAgent [dbn1.flights/n1.flights, . . . ,dbnk
.flights/nk .flights]

is valid.

3.3 Virtualisation of locations

The last and probably most radical refinement principle that we consider is what

we callvirtualisation of locations. This form of refinement allows locations of an

abstract specification to be implemented by a structurally different location hier-

archy. For example, the flight agent specified by formulaFlightAgent in fig. 2.3,
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w [t/n.v ] =

t if w = v andn = ε

w otherwise

x [t/n.v ] = x

(ιx : A)[t/n.v ] = ιx : A[t/n.v ]

f (r1, . . . ,rk )[t/n.v ] = f (r1[t/n.v ], . . . ,rk [t/n.v ])

P(r1, . . . ,rk )[t/n.v ] = P(r1[t/n.v ], . . . ,rk [t/n.v ])

(A⇒ B)[t/n.v ] = A[t/n.v ]⇒ B [t/n.v ]

(¬A)[t/n.v ] = ¬A[t/n.v ]

(m[A])[t/n.v ] =


m[A] if n = ε

m
[
A[t/ε.v ]

]
if m = n

m
[
A[t/n.v ]

]
otherwise

(∃x : A)[t/n.v ] = ∃x : A[t/n.v ]

(2F )[t/n.v ] = 2F [t/n.v ]

( dF )[t/n.v ] = dF [t/n.v ]

keepm [t/n.v ] = keepm

(2[A]r )[t/n.v ] = 2[A[t/n.v ]]r [t/n.v ]

(2[A]S )[t/n.v ] = 2[A[t/n.v ]]S [t/n.v ]

Figure 3.6: Localised substitution

p. 11, could be implemented by several agents. However, in order to be a correct

implementation, the (name of the) original agent has to be hidden from the high-

level interface, intuitively meaning that the system with several agents behavesas

if there wasan agentag satisfying specificationFlightAgent .

In the following we present the MTLA-specification of such a possible imple-

mentation ofFlightAgent and use it to discuss the notions of virtualisation and of

hiding of locations.

Figure 3.7 shows specificationMultiAgent , for the sake of brevity with only two

agentsag0 andag1.
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MAInit ≡
V1

i=0∧ home.agi〈true〉∧agi .ctl = “idle”

∧ home.returni = “false”

MAPrep(d , t) ≡
V1

i=0∧ home.agi〈true〉∧ dhome.agi〈true〉
∧ agi .ctl = “idle”∧agi .ctl ′ = “busy”

∧ agi .item ′ = (d , t)∧agi .found ′ = /0
∧ UNCHANGED varshome

MAMoven,m,i ≡ ∧ n.agi〈true〉∧ dm.agi〈true〉
∧ agi .ctl = “busy”∧ keepagi

∧ UNCHANGED vars0,vars1,varshome

MAGetFlightn,i ≡ ∧ n.agi〈true〉 dn.agi〈true〉
∧ agi .ctl = “busy”∧ag .item ∈ n.flights

∧ agi .found ′ = agi .found ∪getFlight(agi .item,n.flights)

∧ UNCHANGED agi .ctl ,agi .item,vars1−i ,varshome

MADeliveri ≡ ∧ home.agi〈true〉∧ dhome.agi〈true〉
∧ agi .ctl = “busy”∧agi .ctl ′ = “idle”

∧ home.return ′i = “true”∧home.res ′i = agi .found

∧ UNCHANGED vars1−i ,home.res,home.res1−i

∧ UNCHANGED home.return1−i

Merge ≡ ∧ home.return0 = “true”∧home.return1 = “true”

∧ home.res ′ = home.res0∪home.res1

∧ home.return ′0 = “false”∧home.return ′1 = “false”

∧ UNCHANGED vars0,vars1

MAHomeActs ≡ ∨ (∃d , t : MAPrep(d , t))∨Merge

∨MADeliver0∨MADeliver1

Next ≡ MAHomeActs ∨
W

n∈Net(MAGetFlightn,0∨MAGetFlightn,1)

vars0 ≡ 〈ag0.ctl ,ag0.item,ag0.found〉
vars1 ≡ 〈ag1.ctl ,ag1.item,ag1.found〉

varshome ≡ 〈home.res,home.res0,home.res1,home.return0,home.return1〉
MultiAgent ≡ ∧MAInit

∧ Network

∧ 2[Next ]varshome ,vars0,vars1

∧
V

n∈Net 2[
W

m∈Net MAMoven,m,0]−n.ag0

∧
V

n∈Net 2[
W

m∈Net MAMoven,m,1]−n.ag1

Figure 3.7: Specification of the “multi agent”
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The initial configuration of the system is given byMAInit . This formula asserts

that in the beginning both agents are at their home location, their control state

being “idle” and that they are not returned yet. ActionMAPrep(d , t) sets both

agents’item to (d , t), the variablesfound to /0, and additionally it requires the

home location’s local state to remain unaltered.

FormulaMAMoven,m,i controls agentagi ’s movements. ActionMADeliveri is

a slight modification ofDeliver , agi substituted forag : it additionally sets vari-

ablehome.returni to “true”, and instead of changing variablehome.res directly,

home.resi is set toagi .found .

FormulaMerge describes the uniting of the offers collected by the different agents.

As the results should not be combined before both agents are back, this action has

the preconditionhome.return0 = “true”∧home.return1 = “true”.

We claim that this specification is a correct implementation ofFlightAgent if

agentag is hidden from the interface.

We discuss now what “hiding” of a location means.

The hiding of a location is technically realised by existential quantification over

names. We extend the syntax definition of MTLA by the following clause:

∃∃∃∃∃∃m : F

is a pure formula for a pure formulaF and a namem ∈ N.

Intuitively, a runσ satisfies∃∃∃∃∃∃m : F iff there is a runτ for which F holds and

that arises fromσ by extending the trees by namem at every configuration ofσ.

The precise definition of the semantics of this (flexible) name quantifier is rather

involved and requires some preparation.

For finite treess andt and a namen ∈ N the relations <n t is defined by

s <n t iff Ns = Nt \{n} and(a <s b iff a <t b for all a,b ∈ Ns) .

This relation is extended to configurations by

(s,λ) <n (t ,µ) iff s <n t andλ(m,v) = µ(m,v) for all m ∈Ns andv ∈Vf .
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Figure 3.8: Tree extension

Figure 3.8 shows an example of tree extension.

The relation is extended to runs like expected:

(s0,λ0)(s1,λ1) . . . <n (t0,µ0)(t1,µ1) . . . iff (si ,λi) <n (ti ,µi) for all i ∈ ω .

Now we have all ingredients to define the semantics of the name quantifier.

σ,n,ξ |= ∃∃∃∃∃∃m : F iff there exist runsρ,τ such thatσ ' ρ, ρ <l τ, and

τ,n,ξ |= F [l/m] for a namel that occurs neither in

F nor in σ .

SpecificationMultiAgent in fig. 3.7 is indeed a refinement ofFlightAgent if lo-

cationag is hidden. Logically, this means the validity of the implication

MultiAgent ⇒∃∃∃∃∃∃ag : FlightAgent . (3.1)

In order to see why this formula is valid, consider a runσ satisfying specification

MultiAgent . At any configuration we have to find the place where to put the

“witness” agent – let’s call itwitness – and to decide how to set its local variables.

First observe that the two agents’ actions are never performed simultaneously. So

wheneveragi executes an action at a network noden, agentwitness should be put

atn and its local state should change in accordance withagi ’s variables.

If witness has to imitateag0 at n0 at some instant andag1 at n1 in the next step,

then we have to add a stuttering step in order to move it fromn0 to n1.

Consider for example the following situation. First, agentag1 is at locationn1 and

performs actionMAGetFlightn1,1. At the next moment,ag0, located at network

locationn2, executesMAGetFlightn2,0. In this case,witness has to be atn1 first.
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As variableag1.found changes by adding a new offer to it, the same should happen

to witness.found . Now we have to introduce a stuttering step so that the “virtual”

agentwitness can be moved fromn1 to n2, by executing actionMoven1,n2 of

specificationFlightAgent . WhenMAGetFlightn2,0 is performed in the original

run, witness.found is set in accordance with the change ofag0.found : the same

new offer is added towitness.found as toag0.found . At any instant, the value

of witness.found should be the union of the valuesag0.found andag1.found ;

witness.ctl equals“busy” iff at least one of the agents is busy;witness.item is the

same asag0.item (= ag1.item).

Fig. 3.9 illustrates how to construct from a run satisfying specificationMultiAgent

another one for which holdsFlightAgent [witness/ag ]. The first line shows a part

of a runσ where firstMAGetFlightn1,1 and thenMAGetFlightn2,0 is executed.

First, we add a stuttering step to the original run (we will need this additional step
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Figure 3.9: Illustration toMultiAgent

to move the abstract agent from siten1 to n2) and obtain a runρ with ρ' σ. Then

we extend every configuration bywitness. We put it below the agent whose action

it has to imitate. In this way we get a runτ with ρ <witness τ. The local variables at
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witness are set as described above. The (piece of the) run we obtain corresponds

to the following sequence of high-level actions:

GetFlightn1[witness/ag ],Moven1,n2[witness/ag ],GetFlightn2[witness/ag ] .

Formal proofs of formulas with hidden names make use of introduction axioms of

the form

(∃∃∃∃∃∃ -ref) F [n/m, t1/m.v1, . . . , tk/m.vk ]⇒∃∃∃∃∃∃m : F

(∃∃∃∃∃∃ -sub) n〈true〉 ⇒ ∃∃∃∃∃∃m : n.m〈true〉 (m 6= n) .

Axiom (∃∃∃∃∃∃ -ref) corresponds to axiom (∃∃∃∃∃∃ -I) in sec. 3.2.2. In order to conclude a

formula ∃∃∃∃∃∃m : F , it calls for witnesses form as well as for the local variables

v1, . . . ,vk at m. The second axiom allows to extend a locationn by a “virtual”

sub-location.

In our example, we would use axiom (∃∃∃∃∃∃ -ref) with the substitutions

ag .found ← ag0.found ∪ag1.found ag .item← ag0.item

ag .ctl ← if home.return0 = “false”∧home.return1 = “false” then “idle”

else“busy”

complemented with a “spatial refinement mapping” that returnsag0 or ag1, de-

pending on which one of the implementation level agents is performing an action.

As this cannot be determined in terms only of the current state, additional auxil-

iary – in this case prophecy – variables [2] will be needed.

Here, the implication can be proved without using axiom (∃∃∃∃∃∃ -sub), but it will be

needed in many situations, in particular to prove refinement when a high-level

specification that uses mobile agents is implemented by other techniques than

mobility.

Let us emphasise once again that the above-mentioned rules for the name quanti-

fier are not complete, and that in general additional history and/or prophecy vari-

ables will have to be introduced.





Chapter 4

Axiomatisation

In this chapter we examine the axiomatisation of propositional MTLA. This logic

can be regarded as a fragment of a spatio-temporal logic whose spatial operators

are those of MTLA, but in which there is no distinction between pure and im-

pure formulas and the next-time and always operators can be applied to arbitrary

formulas. Since2[A]S is then equivalent with2(A∨ (S ⇔ eS )), MTLA can be

understood as a fragment of the spatial part of the logic together with the temporal

operatorskeepm , eand2. As this is just LTL extended by MTLA’s spatial opera-

tors, we will call this logic (propositional) MLTL, or pMLTL for short. Formally,

the language of pMLTL is given by the following:

v ∈ V | F ⇒G | ¬F | m[F ] | keepm | eF | 2F .

The semantics of these formulas is defined as for (propositional) MTLA:

Definition 4.1 Let σ = (t0,λ0),(t1,λ1) . . . be a run withti = (Ni ,<i) as defined

in sec. 2.3. The semantics of pMLTL formulas is defined as follows.

• σ,n |= v iff n ∈ Nε
0 andv ∈ λ0(n)

• σ,n |= ¬F iff σ,n 6|= F

• σ,n |= F ⇒G iff σ,n 6|= F or σ,n |= G

45
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• σ,n |= m[F ] iff m 6<0 n or σ,m |= F

• σ,n |= keepm iff t0↓n.m = t1↓n.m

• σ,n |= eF iff n /∈ N1 or σ|1,n |= F

• σ,n |= 2F iff for all i ≥ 0 eithern /∈ Nj for somej ≤ i or σ|i ,n |= F

In the following we introduce a proof systemΣMLTL and show that it is sound and

complete with respect to the semantics of propositional MLTL. We have decided

to present the axiomatisation and the proofs for MLTL instead of MTLA for the

sake of simplicity. The proof system can be adapted to MTLA along the lines of

[34].

In order to deal with the different difficulties separately, the axiomatisation is

divided in three parts. In the first step we only consider the spatial part (called SL,

for spatial logic) of the logic and provide a sound and complete axiomatisation

ΣSL for it. Completeness is proven by showing how to construct a model – in

this case a configuration(t ,λ) in the sense of sec. 2.3 – for a given finite and

consistent set of formulas in the spatial fragment of pMLTL. The second step

is to extend the proof system by axioms and rules that characterise the temporal

operatorseand2 and their interplay with the spatial operators. The completeness

proof consists again in the construction of a model for a given finite and consistent

setF of formulas, that is, of a runσ for which σ,ε |= F holds for everyF ∈ F .

The last step is to present axioms specific to the formulaskeepm and to extend the

completeness proof accordingly.

4.1 The proof systemΣSL

Let V be a denumerable set of propositional variables andN a denumerable set of

names withV ∩N = /0. Let SL denote the “spatial part” of propositional MLTL,

that is, its language contains the following formulas:

v ∈ V | F ⇒G | ¬F | m[F ] .
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We will use the abbreviations introduced for MLTL whenever applicable, that is,

we will write m〈F 〉 for ¬m〈¬F 〉, n1. · · · .ni [F ] for n1[· · ·ni [F ] · · · ], n1. · · · .ni〈F 〉
for n1〈· · ·ni〈F 〉 · · ·〉 and sometimes simplyn1. · · · .ni instead ofn1. · · · .ni〈true〉.

The semantics of SL is defined in terms of finite trees whose nodes have unique

names and are labelled by sets of propositional variables. Formally, it is defined

as follows:

Definition 4.2 Let t = (Nt ,<t) be a finite tree,n ∈ Nε and λ : Nε
t → 2V a la-

belling. The semantics of SL is defined inductively:

• t ,λ,n |= v iff n ∈ Nε
t andv ∈ λ(n)

• t ,λ,n |= ¬F iff t ,λ,n 6|= F

• t ,λ,n |= F ⇒G iff t ,λ,n 6|= F or t ,λ,n |= G

• t ,λ,n |= m[F ] iff m 6<t n or t ,λ,m |= F

We call a formulaF valid and write|= F iff for all finite non-empty treest and

all assignmentsλ : Nε
t → 2V holds:t ,λ,ε |= F .

Let the proof systemΣSL be defined as given in figure 4.1.

(ax0) ` F if F is tautological (axn0) ` n[F ] if F is tautological

(ax1) ` a[F ⇒G ]⇒ (a[F ]⇒ a[G ]) (axn1) ` n[a[F ⇒G ]⇒ (a[F ]⇒ a[G ])]

(ax2) ` a[F ]⇒ b[a[F ]] (axn2) ` n[a[F ]⇒ b[a[F ]]]

(ax3) ` ¬a[F ]⇒ a[¬F ]

(ax4) ` a[a[false]]

(ax5) ` (a1.b ∧a2.b)⇒ (a1.a2∨a2.a1) (for a1 6= a2)

(mp)
` F ⇒G ` F

`G

Figure 4.1: The proof systemΣSL.
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We write` F iff F is derivable inΣSL; for a setF of formulas we writeF ` F iff

F is derivable inΣSL possibly using assumptions from the setF . For a finite set

F of formulas we also useF to denote the conjunction of all formulas inF .

In our derivations we will write (prop) to indicate the use of propositional reason-

ing. Consistency of a set of formulas is defined as usual:

Definition 4.3 A finite setF of formulas in SL is calledconsistentiff 6` ¬F holds.

Otherwise it is calledinconsistent.

Let us have a look at the axioms ofΣSL. The first axiom (ax0) is clear; (ax1) is the

usual K-axiom for modal logics; (ax2) ensures that the spatial operatorsn[ ] can

look arbitrarily deep inside the tree; axiom (ax3) asserts that there is at most one

“a-successor”; (ax4) claims that two nodes with the same name must not occur on

the same path. Axiom (ax5) describes the tree structure of the model: whenever

nodeb is belowa1 as well as belowa2, the two nodes have to be on the same path.

The axioms (axn0) - (axn2) are “boxed” versions of axioms (ax0) - (ax2) express-

ing that the logic works at any noden in the same way as at the root. Note that

we do not provide axioms corresponding to the axioms (ax3) - (ax5) put inside the

spatial operatorsn[ ] even though those formulas are valid. The reason is that one

can derive them using the axioms listed in figure 4.1. The derivations are given in

the appendix. Observe that instead of the axioms (axn0) - (axn2) we could have

provided a generalisation rule

` F

` n[F ]
(4.1)

for every namen. Although this would be a sound rule for SL, we refrain from

taking it intoΣSL, because it is not sound with respect to propositional MLTL. For

details on this we refer to sec 4.2. We will show that (4.1) is derivable inΣSL, but

first we derive a few useful formulas.

Proposition 4.4 Let F ,G denote formulas,a,b,c ∈ N names andα,β,γ ∈ N+

non-empty sequences of names.

1. (T0) ` a[F ]⇒ α.a[F ]
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2. (T1) ` ¬α[F ]⇒ α[¬F ]

3. (a) (T2) ` α[F ⇒G ]⇒ (α[F ]⇒ α[G ])

(b) (T3) ` (α[F ]⇒ α[G ])⇒ α[F ⇒G ]

4. (T4) If F ⇒G is tautological, theǹ α[F ]⇒ α[G ]

5. (T5) ` α〈¬F 〉 ⇔ ¬α[F ]

6. (T6) ` α〈F 〉 ⇔ (α[F ]∧α〈true〉)

7. (T7) ` α.β〈true〉∧β.γ〈F 〉 ⇔ α.β.γ〈F 〉

8. (T8) ` a.b.c〈F 〉 ⇒ a.c〈F 〉

9. (a) (T9a) ` a[F ∨G ]⇔ a[F ]∨a[G ]

(b) (T9b) ` a[F ∧G ]⇔ a[F ]∧a[G ]

Proof.

1. The assertion is easy to prove by induction on the length ofα and by using

(ax2) and propositional reasoning.

2. If α is of length one, then this is simply (ax3). Otherwise letα = β.a with

β ∈ N+. We can derive the formula as follows:

(1) ¬β.a[F ]⇒¬a[F ] (T0),(prop)

(2) ¬a[F ]⇒ a[¬F ] (ax3)

(3) a[¬F ]⇒ β.a[¬F ] (T0)

(4) ¬β.a[F ]⇒ β.a[¬F ] (1),(2),(3),(prop)

3. (a): We prove the assertion by induction on the length of the pathα. If α has

length 1, then it is (ax1). So we can assume thatα = β.b with β ∈ N+ and

that the assertion is already proved forβ.
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(1) β[b[F ⇒G ]⇒ b[F ]⇒ b[G ]] (axn1),(T0),(mp)

(2) β[b[F ⇒G ]⇒ b[F ]⇒ b[G ]]⇒

(β.b[F ⇒G ]⇒ β[b[F ]⇒ b[G ]]) I.H.

(3) β[b[F ]⇒ b[G ]]⇒ (β.b[F ]⇒ β.b[G ]) I.H.

(4) β.b[F ⇒G ]⇒ (β.b[F ]⇒ β.b[G ]) (1),(2),(3),(prop)

(b): Using (a), we are able to give a derivation of the other implication, too:

(1) α[¬F ⇒ (F ⇒G)] (axn0),(T0),(mp)

(2) α[G ⇒ (F ⇒G)] (axn0),(T0),(mp)

(3) α[¬F ]⇒ α[F ⇒G ] (1),(T2),(mp)

(4) α[G ]⇒ α[F ⇒G ] (2),(T2),(mp)

(5) ¬α[F ]⇒ α[F ⇒G ] (T1),(3),(prop)

(6) (α[F ]⇒ α[G ])⇒ α[F ⇒G ] (4),(5),(prop)

4. (1) α[F ⇒G ] (axn0),(T0),(mp)

(2) α[F ]⇒ α[G ] (1),(T2),(mp)

5. Since¬¬F ⇔ F is tautological, this follows directly from (T4) and the defi-

nition of a〈 〉.

6. (1) ¬α[¬F ]⇔¬(α[F ⇒ false]) (T4),(prop)

(2) α[F ⇒ false]⇔ (α[F ]⇒ α[false]) (T2),(T3)

(3) (α[F ]⇒ α[false])⇔ (¬α[F ]∨α[false]) (ax0)

(4) α〈F 〉 ⇔ (α[F ]∧α〈true〉) (1),(2),(3),(prop)

7. (1) β.γ〈F 〉 ⇒ β[γ〈F 〉] (T1),(T4),(prop)

(2) β[γ〈F 〉]⇒ α.β[γ〈F 〉] (T0)

(3) α.β〈true〉∧α.β[γ〈F 〉]⇒ α.β.γ〈F 〉 (T6),(prop)

(4) α.β〈true〉∧β.γ〈F 〉 ⇒ α.β.γ〈F 〉 (1),(2),(3),(prop)

(5) α.β[false]⇒ α.β[γ[¬F ]] (T4)
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(6) α.β.γ〈F 〉 ⇒ α.β〈true〉 (5),(prop),(T5)

(7) β.γ[¬F ]⇒ α.β.γ[¬F ] (T0)

(8) α.β.γ〈F 〉 ⇒ β.γ〈F 〉 (7),(prop),(T5),(T4)

(9) α.β〈true〉∧β.γ〈F 〉 ⇔ α.β.γ〈F 〉 (4),(6),(8),(prop)

8. (1) a[c[¬F ]⇒ b.c[¬F ]] (axn2)

(2) a.c[¬F ]⇒ a.b.c[¬F ] (1),(ax1),(mp)

(3) a.b.c〈F 〉 ⇒ a.c〈F 〉 (2),(T5),(prop)

9. First we derive (T9a):

(1) a[F ∨G ]⇒ a[¬F ⇒G ] (T4)

(2) a[¬F ⇒G ]⇒ (a[¬F ]⇒ a[G ]) (ax1)

(3) ¬a[F ]⇒ a[¬F ] (ax3)

(4) a[¬F ⇒G ]⇒ (¬a[F ]⇒ a[G ]) (2),(3),(prop)

(5) a[F ∨G ]⇒ a[F ]∨a[G ] (1),(2),(4),(prop)

(6) a[F ]⇒ a[F ∨G ] (T4)

(7) a[G ]⇒ a[F ∨G ] (T4)

(8) a[F ]∨a[G ]⇒ a[F ∨G ] (6),(7),(prop)

(9) a[F ∨G ]⇔ a[F ]∨a[G ] (5),(8),(prop)

This result helps us to derive (T9b):

(1) a[F ∧G ]⇒ a[F ]∧a[G ] (T4),(prop)

(2) a[F ]∧a[G ]⇒ (a〈F 〉∧a〈G〉)∨a[false] (T6),(prop)

(3) a〈F 〉∧a〈G〉 ⇒ ¬(a[¬F ]∨a[¬G ]) (ax0)

(4) ¬(a[¬F ]∨a[¬G ])⇒¬a[¬F ∨¬G ] (T9a),(prop)

(5) ¬a[¬F ∨¬G ]⇒ a[¬(¬F ∨¬G)] (ax3)

(6) a[¬(¬F ∨¬G)]⇒ a[F ∧G ] (T4)

(7) (a〈F 〉∧a〈G〉)⇒ a[F ∧G ] (3),(4),(5),(6),(prop)

(8) a[false]⇒ a[F ∧G ] (T4)

(9) a[F ∧G ]⇔ a[F ]∧a[G ] (1),(2),(7),(8),(prop)
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Now we show that the generalisation rules (4.1) are derivable inΣSL.

Lemma 4.5 LetF be a formula derivable inΣSL. Thenn[F ] can also be derived

in ΣSL.

Proof. Assume that̀ F . The proof runs by induction on the assumed derivation

of F .

Case: F is one of the axioms (ax0), . . . , (ax5). The axioms (axn0) - (axn2)

correspond to (ax0) - (ax2). All the other derivations appear in the appendix.

Case:F ≡ m[G ] is one of the axioms (axn0), (axn1) and (axn2). Because of

`m[G ]⇒ n[m[G ]] by (ax2), we obtaiǹ n[F ] by (mp).

Case:` F is a conclusion of (mp) with premisesG ⇒ F andG , that is, we

have` G ⇒ F and` G . By the induction hypothesis follows̀n[G ⇒ F ] as

well as` n[G ]. Hence, we can deriven[F ] as follows:

(1) n[G ⇒ F ] I.H.

(2) n[G ] I.H.

(3) n[G ⇒ F ]⇒ (n[G ]⇒ n[F ]) (ax1)

(4) n[G ]⇒ n[F ] (mp),(3),(1)

(5) n[F ] (mp),(4),(2) �

Note that the rule is only correct without any premises, that is, it fails to hold

F ` F

F ` n[F ]

as one can see by lettingF = {v} andF ≡ v , for example. However, the result of

lemma 4.5 can be generalised to

F ` F

n[F ] ` n[F ]

wheren[F ] = {n[F ]|F ∈ F } for a setF of formulas. An instance of this is a rule

n[F ⇒G ],n[F ] ` n[G ] corresponding to modus ponens.

Before turning to the completeness proof we show thatΣSL is sound with respect

to the semantics of pMLTL.
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Lemma 4.6 (Soundness ofΣSL) Let F be a set of formulas inLSL and letF be

a formula. IfF ` F , thenF |= F .

Proof. The assertion is proven by induction on the derivationF ` F . We only

consider a few cases.

Case:F ≡ a[G⇒H ]⇒ (a[G ]⇒ a[H ]) andF ` F by (ax1). Lett = (Nt ,<t)
be a tree andλ a labelling such thatt ,λ,ε |= a[G ⇒ H ], that is eithera /∈ Nt

or t ,λ,a |= G ⇒ H . We have to showt ,λ,ε |= a[G ]⇒ a[H ]. Assume that

t ,λ,ε |= a[G ], i.e. thata /∈ Nt or t ,λ,a |= G . If a /∈ Nt , thent ,λ,ε |= a[H ]
by definition. If a ∈ Nt , then t ,λ,a |= G ⇒ H and t ,λ,a |= G . Hence, by

definition we obtaint ,λ,a |= H , that ist ,λ,ε |= a[H ].

Case:F ≡ a[G ]⇒ b[a[G ]] andF ` F by (ax2). Lett = (Nt ,<t) be a tree and

λ a labelling witht ,λ,ε |= a[G ], i.e. a /∈ Nt or t ,λ,a |= G . We have to show

thatt ,λ,ε |= b[a[G ]]. Only the case thata <t b is interesting. Then it holds in

particulara ∈ Nt , hence we havet ,λ,a |= G by assumption and sincea <t b,

we obtaint ,λ,b |= a[G ] and hencet ,λ,ε |= b[a[G ]].

Case:F ≡ a[a[false]] andF ` F by (ax4). Lett be an arbitrary tree andλ a

labelling. If a /∈ Nt , thent ,λ,ε |= a[a[false]] holds trivially.

If a ∈ Nt , then t ,λ,ε |= a[a[false]] holds again as it holdst ,λ,a |= a[false]
because of the uniqueness of the names.

Case:F ≡ (a1.b ∧ a2.b)⇒ (a1.a2∨ a2.a1) with a1 6= a2 andF ` F by (ax5).

Let t = (Nt ,<t) be a tree andλ a labelling witht ,λ,ε |= a1.b ∧ a2.b, that is,

b <t a1 andb <t a2. Since the names int are unique,a1 6= a2 and sincet is a

tree it must hold eithera2 <t a1 or elsea1 <t a2, i.e. t ,λ,ε |= a1.a2∨a2.a1. �

For SL holds the following deduction theorem:

Theorem 4.7 (Deduction theorem)For a setF of formulas and formulasF and

G we haveF ∪{F} `G iff F ` F ⇒G .
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Proof. Only if: We prove the assertion by induction on the assumed derivation

of F ∪{F} `G .

Case:If G is an axiom orG ∈ F , then the claim holds obviously.

Case: If G ≡ F , thenF ⇒ G is tautological, hence the assertion follows by

(ax0).

Case:If the last step in the derivation is an application of (mp) to some formulas

H ⇒ G andH with F ∪{F} ` H ⇒ G andF ∪{F} ` H , then we obtain by

induction hypothesis thatF ` F ⇒ (H ⇒ G) as well asF ` F ⇒ H hold.

From this it follows by propositional reasoning thatF ` F ⇒G holds.

If: AssumeF ` F ⇒ G . Then we also haveF ∪{F} ` F ⇒ G . On the other it

holds trivially thatF ∪{F} ` F , hence, by (mp) it followsF ∪{F} `G . �

Our goal is to show thatΣSL is a complete proof system for SL, that is, that

every valid SL-formula can be derived inΣSL. In order to prove this, we follow

the classical way: we show that every finite and consistent set of formulas has a

model.

In the present case this means to construct a finite treet = (Nt ,<t) and assign to

every node a set of propositional variables, that is, to find a mappingλ : Nε
t → 2V ,

for a given finite and consistent setF of formulas, such that the resulting tree is a

model ofF , that is, thatt ,λ,ε |= F holds. First we give an informal explanation

of how the construction works.

In order to define the structure of the model we proceed as follows: for every

set {a1, . . . ,an} of pairwise distinct names occurring inF we decide whether

a1. · · · .an〈true〉 should or should not hold for our model – in other words, whether

an <t . . . <t a1 holds for the tree that we want to construct – by completingF
in the sense that for every such set{a1, . . . ,an} we add eithera1. · · · .an〈true〉
or a1. · · · .an [false] to the set, paying attention that consistency is preserved. In

order to decide which propositions should hold at a given nodea of our model,

we look, roughly speaking, at the formulas of the forma[F ] and decide for all

sub-formulasG of F whethera[G ] or ¬a[G ] should hold, by “completing” the
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setF by the corresponding sub-formulas. We assign to a nodea exactly those

propositionsv ∈ V for whicha[v ] belongs to the completed set.

Now we turn to the formalisation of this construction.

For every formulaF we define a setτ(F ) of formulas inductively as follows:

τ(v) = {v}
τ(¬F ) = {¬F}∪ τ(F )

τ(F ⇒G) = {F ⇒G}∪ τ(F )∪ τ(G)

τ(m[F ]) = {m[G ]|G ∈ τ(F )}∪ τ(F ) .

For a setF of formulasτ(F ) denotes the set
S

F∈F τ(F ). For a formulaF let

nm(F ) denote the set of names occurring inF . Formally, this set is defined as

nm(v) = /0 nm(¬F ) = nm(F )

nm(F ⇒G) = nm(F )∪nm(G) nm(a[F ]) = {a}∪nm(F ) .

Accordingly, for a setF of formulasnm(F ) denotes the set
S

F∈F nm(F ).

Now we define the setκ(F ) as follows:

κ(F ) := F ∪{a1. · · · .an〈true〉|ai ∈ nm(F ),ai 6= aj for i 6= j} .

This set will help us to decide which paths should be contained in the model.

Observe that neither of the mappingsτ andκ produces new names, hence for every

setF of formulas holds that

nm(F ) = nm(τκ(F )) . (4.2)

Definition 4.8 Let F be a set of SL-formulas.

1. F is calledcompleteiff for all F ∈ τκ(F ) eitherF ∈ F or ¬F ∈ F holds.
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2. Let F be finite and consistent. A setG of SL-formulas is called acompletion

of F iff

(a) F ⊆ G ,

(b) G is complete and consistent, and

(c) G ⊆ τκ(F )∪¬τκ(F ).

where¬F = {¬F |F ∈ F } for any setF of formulas.

Proposition 4.9 Let F be a finite and consistent set of SL-formulas. ThenF has

at least one, and only finitely many completions.

Proof. Observe first that for a consistent setF andA∈ τκ(F ) eitherF ∪{A} or

F ∪{¬A} is consistent. As neitherτ nor κ produce new names (cf. (4.2)), it also

holds thatκτκ(F ) = τκ(F ). Further, it is easily shown by structural induction

that the mappingτ is idempotent, thus it followsτκτκ(F ) = τκ(F ). From these

facts it follows thatF has a completion.

Since for a finite setF , the setτκ(F ) is also finite, it is clear thatF has only

finitely many completions. �

Remark 4.10 Let α,β ∈ N+ denote non-empty sequences of names,F ,G for-

mulas andF a set of formulas. We make the following observations about the

mappingτ:

1. If α[¬F ] ∈ τ(F ), thenα[F ] ∈ τ(F ).

2. If α[F ⇒G ] ∈ τ(F ), thenα[F ],α[G ] ∈ τ(F ).

3. If α.β[F ] ∈ τ(F ), thenβ[F ] ∈ τ(F ).

Proof. The first three claims follow immediately from:

1. If α[¬F ] ∈ τ(H ), thenα[F ] ∈ τ(H ).

2. If α[F ⇒G ] ∈ τ(H ), thenα[F ],α[G ] ∈ τ(H ).
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3. If α.β[F ] ∈ τ(H ), thenβ[F ] ∈ τ(H ).

Each of these assertions can be easily shown by induction on the structure of the

formulaH . �

Proposition 4.11 LetF be a finite, consistent and complete set of formulas,F ,G

formulas,a,b,c ∈ N names andα ∈ N∗ a finite sequence of names.

1. If F ∈ τκ(F ) and ` F ⇒ F , thenF ∈ F .

2. If a[F ] ∈ τκ(F ) anda〈true〉 /∈ F , thena[F ] ∈ F .

3. If a.b〈true〉 ∈ F andb.c〈true〉 ∈ F thena.c〈true〉 ∈ F .

4. If α.a〈true〉 ∈ F , thena〈true〉 ∈ F .

Proof. To 1: The assertion follows immediately from the consistency and the

completeness ofF .

To 2: Assumea[F ] ∈ τκ(F ) anda〈true〉 /∈ F . Sincea ∈ nm(F ) as stated in

(4.2), it follows thata[false] ∈ F , hence` F ⇒ a[F ] by (T4). The assertion

follows now by 1.

To 3: Assume thata.b〈true〉,b.c〈true〉 ∈ F . By using (T7) and (T8) we can

concludè F ⇒ a.c〈true〉. SinceF is consistent, it holdsa 6= c by (ax4). Hence,

a.c〈true〉 ∈ τκ(F ). By 1. followsa.c〈true〉 ∈ F .

To 4: Assumeα.a〈true〉 ∈ F . Sincea ∈ nm(F ), it follows thata〈true〉 ∈ τκ(F ).
Furthermore, by (T0) we havèF ⇒ a〈true〉. By 1., we obtaina〈true〉 ∈ F . �

Lemma 4.12 Let F be a complete and consistent set of formulas,F ,G formulas

anda ∈ N a name.

1. If F ⇒G ∈ τκ(F ), thenF ⇒G ∈ F iff F /∈ F or G ∈ F .

2. If a[F ⇒G ] ∈ τκ(F ), thena[F ⇒G ] ∈ F iff a[F ] /∈ F or a[G ] ∈ F .
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3. If a.b[F ] ∈ τκ(F ), thena.b[F ] ∈ F iff a.b〈true〉 /∈ F or b[F ] ∈ F .

4. If a[¬F ] ∈ τκ(F ), thena[¬F ] ∈ F iff a〈true〉 /∈ F or a[F ] /∈ F .

Proof. The proof of 1. is standard.

To 2:

If: Assume thata[F ] /∈ F or a[G ] ∈ F , which means¬a[F ] ∈ F or a[G ] ∈ F
(sinceF is complete anda[F ] ∈ τκ(F ) by the definition ofτ). In particular, it

holds` F ⇒ (a[F ]⇒ a[G ]). Due to (T3), this implies̀ F ⇒ a[F ⇒ G ]. By

prop. 4.11,1. we obtain the assertion.

Only if: This implication follows using (T2) and from the assumption thatF is

complete and consistent.

To 3:

If: We first consider the case thata.b〈true〉 /∈ F . There are two possibilities:

eithera = b or a 6= b. In both cases follows̀ F ⇒ a.b[false] – in the first

case by axiom (ax4), in the second casea.b[false] ∈ F by the definition of a

complete set of formulas and sincea,b ∈ nm(F ). Using (T4), we conclude

` F ⇒ a.b[F ] and so by proposition 4.11,1. we obtaina.b[F ] ∈ F .

Now we assume thatb[F ] ∈ F . By axiom (ax2) follows̀ F ⇒ a.b[F ], hence

a.b[F ] ∈ F by proposition 4.11,1.

Only if: Assume thata.b[F ] ∈ F and thata.b〈true〉 ∈ F hold. By (T6), we

obtain` F ⇒ a.b〈F 〉. On the other hand we can conclude using (ax2) and

(ax3) that` a.b〈F 〉 ⇒ b[F ], hencè F ⇒ b[F ]. Sinceb[F ] ∈ τκ(F ) by the

definition ofτ, the claim follows by proposition 4.11,1.

To 4:

If: If a〈true〉 /∈ F , thena[false] ∈ F , asa ∈ nm(F ) and sinceF is complete.

Hence, by (T4) we concludèF ⇒ a[¬F ] and by proposition 4.11,1. we obtain

a[¬F ] ∈ F . So we assumea[F ] /∈ F which implies, sincea[F ] ∈ τκ(F ) by

the definition ofτ, that¬a[F ] ∈ F . By axiom (ax3) we obtaiǹ F ⇒ a[¬F ],
hence it follows thata[¬F ] ∈ F by proposition 4.11,1.



4. Axiomatisation 59

Only if: Assumea[¬F ] ∈ F anda〈true〉 ∈ F . It follows ` F ⇒ a〈¬F 〉 by

(T6), hencè F ⇒¬a[F ] by (T5). AsF is consistent, this impliesa[F ] /∈F .�

Let F be a finite, consistent and complete set of formulas. Now we show how to

construct a model(t ,λ) of F . Let (Nt ,<t) be defined as

Nt := {a ∈ N|a〈true〉 ∈ F } .

and

a <t b iff b.a〈true〉 ∈ F

(Note that<t is indeed a binary relation onNt as fromb.a〈true〉 ∈ F it follows

a〈true〉,b〈true〉 ∈ F .)

The assignmentλ : Nε
t → 2V is defined by

λ(ε) := F ∩V

λ(a) := {v ∈ V |a[v ] ∈ F } .

Before proving that(t ,λ) is a model ofF , we show thatt is a tree.

Lemma 4.13 Let F be a finite, consistent and complete set of formulas and let

t = (Nt ,<t) be defined as above. Thent is a tree.

Proof. In order to show thatt is a tree, we have to prove the following three

properties:

1. The relation<t is irreflexive.

2. The relation<t is transitive.

3. For alla,b,c ∈ Nε
t : if a 6= b, c <t a andc <t b, then eithera <t b or b <t a

holds.

To 1.: Since`¬a.a〈true〉 by (ax4) and because of the consistency ofF we obtain

a.a〈true〉 /∈ F for all a ∈ Nt , hencea 6<t a for all a ∈ Nt . By the definition of

<t , it obviously holds thatε 6<t ε.
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To 2.: Let a <t b andb <t c. It follows thata,b 6= ε. If c = ε, then the rela-

tion a <t c follows immediately from the definition of<t . So leta,b,c 6= ε. It

follows by the definition of<t thatb.a〈true〉 ∈ F andc.b〈true〉 ∈ F . By propo-

sition 4.11,3. we obtain thatc.a〈true〉 ∈ F , that is,a <t c.

To 3.: The case ifa = ε or b = ε is trivial. So we assume thata,b ∈ Nt . By

the definition of<t we know thata.c〈true〉 ∈ F andb.c〈true〉 ∈ F . Assume that

a.b〈true〉 /∈F andb.a〈true〉 /∈F , i.e. (sincea 6= b by assumption)a.b[false]∈F
andb.a[false] ∈ F because of the completeness ofF . Together with (ax5) this

produces a contradiction to the consistency ofF . �

Theorem 4.14 Let F and (t ,λ) be defined as above. Then for all namesa ∈ N

and all SL-formulasF it holds the following:

1. If F ∈ τκ(F ), then F ∈ F iff t ,λ,ε |= F .

2. If a[F ] ∈ τκ(F ), then a[F ] ∈ F iff a /∈ Nt or t ,λ,a |= F .

Proof. We prove the two assertions simultaneously by induction onF .

Case:v ∈ V .

1. The assertion follows immediately from the definition of(t ,λ).
2. This follows from the definition of(t ,λ) and from proposition 4.11,2.

Case:F ⇒G .

1. Let F ⇒G ∈ τκ(F ).

By lemma 4.12,1.,F ⇒ G ∈ F is equivalent withF /∈ F or G ∈ F . As

F ,G ∈ τκ(F ), we can use the induction hypothesis and conclude that this

is equivalent with (t ,λ,ε 6|= F or t ,λ,ε |= G), hence, witht ,λ,ε |= F ⇒G .

2. By lemma 4.12,2. we havea[F ⇒ G ] ∈ F iff a[F ] /∈ F or a[G ] ∈ F .

Hence, the induction hypothesis fora[F ] anda[G ] implies the assertion.

Case:¬F .
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1. Let¬F ∈ τκ(F ).

SinceF is complete,¬F ∈ F iff F /∈ F . By the induction hypothesis, this

is equivalent witht ,λ,ε 6|= F , that is, witht ,λ,ε |= ¬F .

2. Let a[¬F ] ∈ τκ(F ).

By lemma 4.12,4. and by the definition oft , it holdsa[¬F ] ∈ F iff a /∈ Nt

or a[F ] /∈ F . By induction hypothesis, this is equivalent witha /∈ Nt or

t ,λ,a 6|= F , that is, witha /∈ Nt or t ,λ,a |= ¬F .

Case:b[F ].

1. Let b[F ] ∈ τκ(F ).

By the induction hypothesis for 2.,b[F ] ∈ F iff b /∈ Nt or t ,λ,b |= F . By

definition, this is equivalent witht ,λ,ε |= b[F ].

2. Let a[b[F ]] ∈ τκ(F ).

Only if: Assume thata[b[F ]] ∈ F and thata ∈ Nt . We have to show

t ,λ,a |= b[F ], that is, b 6<t a or t ,λ,b |= F . Assumeb <t a, that is,

a.b〈true〉 ∈ F . By lemma 4.12,3., it follows thatb[F ] ∈ F . By induc-

tion hypothesis, this impliest ,λ,b |= F , as we haveb ∈ Nt by assumption.

If: If a /∈ Nt , thena〈true〉 /∈ F by definition. Hence,a[b[F ]] ∈ F by

proposition 4.11,2. So assumea ∈ Nt andt ,λ,a |= b[F ].

Case:b 6<t a. Then by the definition of<t it holdsa.b〈true〉 /∈F , hence

it follows a[b[F ]] ∈ F by lemma 4.12,3.

Case:b <t a andt ,λ,b |= F . Sinceb[F ] ∈ τκ(F ), by induction hypo-

thesis we obtainb[F ] ∈ F and thereforea[b[F ]] ∈ F by lemma 4.12,3.

�

With the aid of this theorem we can prove the weak completeness ofΣSL in the

usual way:

Theorem 4.15 LetF be an SL-formula. If|= F , then` F .
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Proof. Assume that6` F . Then it holds also6` ¬¬F , that is, the set{¬F} is

consistent. By theorem 4.14,1., there is a model(t ,λ) with t ,λ,ε |= ¬F , hence

t ,λ,ε 6|= F and this proves6|= F . �

Note that strong completeness does not hold for SL. In order to see why this is

the case, consider the following infinite set of formulas:F := {a〈true〉|a ∈ N}.
Since the models of the logic are finite trees, it is clear thatF can not have any

model, that is, thatF |= false holds. On the other hand it is easy to show that

we can not derivefalse from F : assumeF ` false. Then there is a finite sub-

set{a1〈true〉, . . . ,an〈true〉} of F such thata1〈true〉, . . . ,an〈true〉 ` falseholds.

By the deduction theorem (thm. 4.7), this implies` ¬(a1〈true〉∧ . . .∧an〈true〉).
However, since the formulaa1〈true〉∧ . . .∧an〈true〉 obviously has a model, this

is a contradiction to the soundness ofΣSL.

4.2 Axiomatisation of propositional MLTL

4.2.1 The proof systemΣMLTL −

In sec. 4.1 we have introduced the proof systemΣSL and proved it to be sound

and complete with respect to the spatial part of propositional MLTL. Now we

are going to extend this system in order to obtain a complete axiomatisation for

pMLTL. First we only consider the logic pMLTL without the operatorskeepm

and define a proof system that we will callΣMLTL−. Later on in this chapter we

will extend this system to a systemΣMLTL which will provide axioms also for the

“keep”-operators. The axioms and rules ofΣMLTL− are collected in figure 4.2.

Note that all the formulas (T0) - (T9b) can still be used asΣMLTL− extendsΣSL.

Intuitively, (ax6) means that time is linear (“⇒”) and infinite (“⇐”). Axiom (ax7)

is the usual K-axiom of modal logics, (ax8) and (axn8) are the fix-point charac-

terisations of the always operator.

Note that the “boxed” version of the axiom (ax7) andn[¬ eF ⇒ e¬F ] (boxed

version of one direction of (ax6)) can be derived inΣMLTL−. The derivations are

given in the appendix.
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(ax0) ` F if F tautological (axn0) ` n[F ] if F tautological

(ax1) ` a[F ⇒G ]⇒ a[F ]⇒ a[G ] (axn1) ` n[a[F ⇒G ]⇒ a[F ]⇒ a[G ]]

(ax2) ` a[F ]⇒ b[a[F ]] (axn2) ` n[a[F ]⇒ b[a[F ]]]

(ax3) ` ¬a[F ]⇒ a[¬F ]

(ax4) ` a[a[false]]

(ax5) ` (a1.b ∧a2.b)⇒ (a1.a2∨a2.a1) (for a1 6= a2)

(ax6) ` ¬ dF ⇔ d¬F
(ax7) ` d(F ⇒G)⇒ ( dF ⇒ dG)

(ax8) `2F ⇒ F ∧ d2F (axn8) ` n[2F ⇔ F ∧ d2F ]

(ax9) ` ¬m[ dF ]⇒ d¬m[F ]

(ax10) ` ¬m[¬ dF ]⇒ dm[F ]

(ax11) `2m[F ]⇒m[2F ]

(mp)
` F ⇒G ` F

`G
(nex)

` F

` dF
(ind)

` F ⇒ dF ` F ⇒G

` F ⇒2G

Figure 4.2: The proof systemΣMLTL−

As already mentioned in the previous section, the generalisation rules of the form

` F

` n[F ]

are not sound with respect to the semantics of pMLTL. One counterexample

is (ax6), which is, as we will show in the soundness theorem, a valid pMLTL-

formula, butn[ e¬F ⇒¬ eF ] is not. For a counterexample, consider a runσ as

given in fig. 4.3.

As the namen does not appear in the second tree, it holdsσ,n |= e¬F as well

asσ,n |= eF for an arbitrary formulaF . As the latter just meansσ,n 6|= ¬ eF ,

we haveσ,n 6|= e¬F ⇒ ¬ eF . Since noden occurs in the first tree, this means

σ,ε 6|= n[ e¬F ⇒¬ eF ].
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¬( d¬F ⇒¬ dF )

n

Figure 4.3: Counterexample to the generalisation rule

We list some useful theorems of pMLTL. Their derivations are collected in the

appendix.

(T10) ` e(F ∧G)⇔ ( eF ∧ eG) (T11) ` F ∧ e2F ⇒2F

(T12) ` n[2F ]⇔ (n[F ]∧n[ e2F ]) (alw)
` F

`2F

For ΣMLTL− we have the following deduction theorem:

Theorem 4.16 (Deduction Theorem)Let F be a set of formulas andF ,G for-

mulas. ThenF ∪{F} `G if and only if F `2F ⇒G .

Proof. If: Assume thatF ` 2F ⇒ G . Then it holdF ∪{F} ` 2F ⇒ G and

F ∪{F} ` F . By the derived rule (alw) it follows thatF ∪{F} ` 2F , hence

F ∪{F} `G by (mp).

Only if: The assertion is shown by induction on the assumed derivation ofG from

assumptions from the setF ∪{F}.

Case:G ∈ F or G is one of the axioms ofΣMLTL−. Then we haveF ` G and

F `G ⇒ (2F ⇒G) by (ax0), henceF `2F ⇒G by (mp).

Case:G ≡ F . ThenF `2G ⇒G by (ax8) and (prop).

Case:G is a conclusion of (mp) with premisesH ⇒G andH , that is, we have

F ∪{F} ` H ⇒ G andF ∪{F} ` H . Since these derivations are shorter, the

induction hypothesis can be applied and we concludeF `2F ⇒ (H ⇒G) and

F `2F ⇒ H . By (prop), we obtainF `2F ⇒G .

Case: G ≡ eH is a conclusion of (nex) with premiseH , i.e. F ∪{F} ` H ,

hence by the induction hypothesis it followsF ` 2F ⇒ H . Now we give a
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derivation of2F ⇒ eH from this:

(1) 2F ⇒ H assumption

(2) e(2F ⇒ H ) (nex),(1)

(3) e2F ⇒ eH (ax7),(2),(mp)

(4) 2F ⇒ e2F (ax8),(prop)

(5) 2F ⇒ eH (3),(4),(prop)

Case: G ≡ G1⇒ 2G2 is a conclusion of (ind) with premisesG1⇒ G2 and

G1⇒ eG1. ThenF ` 2F ⇒ (G1⇒ G2) andF ` 2F ⇒ (G1⇒ eG1) by

induction hypothesis. We give a derivation of2F ⇒ (G1⇒2G2):

(1) 2F ⇒ (G1⇒G2) assumption

(2) 2F ⇒ (G1⇒ eG1) assumption

(3) 2F ∧G1⇒G2 (1),(prop)

(4) 2F ∧G1⇒ eG1 (2),(prop)

(5) 2F ⇒ e2F (ax8),(prop)

(6) 2F ∧G1⇒ e2F ∧ eG1 (4),(5),(prop)

(7) e2F ∧ eG1⇒ e(2F ∧G1) (T10),(prop)

(8) 2F ∧G1⇒ e(2F ∧G1) (6),(7),(prop)

(9) 2F ∧G1⇒2G2 (ind),(3),(8)

(10) 2F ⇒ (G1⇒2G2) (prop),(9) �

With the aid of the deduction theorem, the following theorems can be derived. For

the proofs we refer again to the appendix.

(T13) `2(F ⇒G)⇒ (2F ⇒2G)

(T14) `2(F ∧G)⇔2F ∧2G

(T15) ` e2F ⇔2 eF
Now we show that all axioms and rules ofΣMLTL− are sound with respect to the

semantics of pMLTL.
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Lemma 4.17 (Soundness)LetF be a formula andF a set of formulas such that

F ` F . ThenF |= F .

Proof. As usual, soundness is proved by induction on the derivation ofF from

F . We only consider a few cases.

Case: F ≡ n[2G ⇔ G ∧ e2G ] and F ` F by (axn8). Letσ be a run and

n ∈ N0. We have to showσ,n |= 2G ⇔G ∧ e2G .

“⇒”: Assumeσ,n |= 2G , i.e. for all i ≥ 0 holds that either there is ak ≤ i

with n /∈ Nk or σ|i ,n |= G . Sincen ∈ N0 it follows in particularσ,n |= G . If

n /∈ N1, thenσ,n |= e2G by the definition of the semantics of the next-time

operator. Ifn ∈ N1 thenσ|1,n |= 2G by the definition of the semantics of2.

“⇐”: Assume thatσ,n |= G ∧ e2G , that is,σ,n |= G and eithern /∈ N1 or

σ|1,n |= 2G . By the semantics of2 follows σ,n |= 2G .

Case:F ≡¬m[ eG ]⇒ e¬m[G ] andF ` F by (ax9). Letσ be a run for which

it holdsσ,ε |=¬m[ eG ], that is,m ∈N0 andσ,m 6|= eG , which impliesm ∈N1

andσ|1,m |= ¬G . By definition, this is equivalent withσ,ε |= e¬m[G ].

Case:F ≡¬m[¬ eG ]⇒ em[G ] andF ` F by (ax10). Letσ be a run with and

σ,ε |= ¬m[¬ eG ], that is,m ∈ N0 andσ,m |= eG , that is,m ∈ N0 andm /∈ N1

or σ|1,m |= G . The latter means exactlyσ|1,ε |= m[G ], hence it follows that

σ,ε |= em[G ].

Case: F ≡ 2m[G ]⇒ m[2G ] and F ` F by (ax11). Letσ be a run with

σ,ε |= 2m[G ], that is, for alli ∈ ω it holdsσ|i ,ε |= m[G ], that is,σ|i ,m |= G

for all i ∈ ω with m ∈ Ni . This impliesσ,m |= 2G by the semantics of2 and

so we haveσ,ε |= m[2G ]. �

In order to prove thatΣMLTL− is a complete axiomatisation of pMLTL without the

“keep”-operators we follow again the traditional method of constructing a model

for a finite and consistent set of formulas. We first have to extend the mappingτ
of the previous section to the formulas of the whole logic. (Here we also consider

the operatorskeepm .)

For every formulaF we define a setτ(F ) of formulas inductively as given in

figure 4.4.
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τ(v) = {v}
τ(¬F ) = {¬F}∪ τ(F )

τ(F ⇒G) = {F ⇒G}∪ τ(F )∪ τ(G)

τ(m[F ]) = {m[G ]|G ∈ τ(F )}∪ τ(F )

τ(keepm) = {keepm}
τ( eF ) = { eF}
τ(2F ) = {2F}∪ τ(F )

Figure 4.4: Definition ofτ

For a setF of formulas, the setκ(F ) is defined in the same way as in the case of

the spatial logic, that is

κ(F ) := F ∪{a1. · · · .an〈true〉|ai ∈ nm(F ),ai 6= aj for i 6= j}

where the functionnm is extended to pMLTL as expected:

nm( eF ) = nm(2F ) = nm(F ) nm(keepm) = {m} .

The notions of complete set of formulas and completion are defined exactly as for

SL. In the same way as for SL it can be shown that every finite and consistent set of

formulas has a completion and that it has only finitely many different completions.

All the propositions and lemmas proved in sec. 4.1 hold also forΣMLTL− and for

τ extended to formulas of pMLTL.

Lemma 4.18 Let F be a finite set of formulas and letF 1, . . . ,F n be all its differ-

ent completions. TheǹF ⇒ F 1∨ . . .∨F n .

Proof. The assertion can be shown by simple propositional reasoning. One

proof can be found in [29], there for LTL. �

For a setF of formulas, the setθ(F ) is defined by the following:

θ(F ) =
8[

i=1

θi(F )
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whereθi is defined as given in figure 4.5.

θ1(F ) = {F | dF ∈ F } θ2(F ) = {¬F |¬ dF ∈ F }

θ3(F ) = {2F |2F ∈ F } θ4(F ) = {¬2F |¬2F ∈ F andF ∈ F }

θ5(F ) = {a[F ]|a[ dF ],a〈true〉 ∈ F } θ6(F ) = {¬a[F ]|¬a[ dF ] ∈ F }

θ7(F ) = {a[2F ]|a[2F ],a〈true〉 ∈ F }

θ8(F ) = {¬a[2F ]|¬a[2F ],a[F ] ∈ F }

Figure 4.5: Definition ofθ1, . . . ,θ8

The mappingθ has the following properties:

Proposition 4.19 Let F be a finite set of formulas of pMLTL.

1. ` F ⇒ eθ(F ).

2. If F is consistent, then so isθ(F ).

Proof.

1. SinceF is finite and sincè e(F ∧G)⇔ ( eF ∧ eG) by (T10), it is enough to

show that̀ F ⇒ eF for everyF ∈ θ(F ). To prove this we have to distinguish

the different cases in the definition ofθ(F ).

- F ∈ θ1(F ): by definition we haveeF ∈ F , hence the assertion follows by

(ax0).

- F ≡ ¬G ∈ θ2(F ): then¬ eG ∈ F by definition, so the assertion follows

by (ax6).

- F ≡ 2G ∈ θ3(F ): by definition we have2G ∈ F . By (ax8) and (prop)

this implies` F ⇒ e2G .

- F ≡ ¬2G ∈ θ4(F ): by the definition ofθ4 we have` F ⇒ ¬2G ∧G ,

hence the assertion follows from̀2G ⇔ G ∧ e2G , (ax6) and proposi-

tional logic.
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- F ≡ a[G ] ∈ θ5(F ): by definition we havè F ⇒ a[ eG ]∧ a〈true〉. (T6)

implies` F ⇒ a〈 eG〉, so the assertion follows by (ax10).

- F ≡ ¬a[G ] ∈ θ6(F ): By the definition ofθ6 we have¬a[ eG ] ∈ F . The

assertion follows immediately from (ax9).

- F ≡ a[2G ] ∈ θ7(F ): by (T6) we havè F ⇒ a〈2G〉, hence the assertion

follows by` a〈2G〉 ⇔ (a〈G〉∧a〈 e2G〉) (cf. (T6)) and (ax10).

- F ≡ ¬a[2G ] ∈ θ8(F ): by definition we have¬a[2G ],a[G ] ∈ F . Since

` a[2G ]⇔ a[G ]∧a[ e2G ] by (T12), we obtain by propositional reasoning

` F ⇒¬a[ e2G ]. The assertion follows now by (ax9).

2. Assume thatθ(F ) is not consistent, that is,̀ ¬θ(F ). With (nex) we obtain

` e¬θ(F ), hence with (ax6)̀ ¬ eθ(F ). By 1. we havè ¬F , that is,F is

inconsistent. �

Given a finite and consistent setF of formulas, let the graphT (F ) be defined as

follows:

- The roots ofT (F ) are the different completions ofF .

- If G is a node ofT (F ), then its successors are the completions ofθ(G).

Obviously, the nodes of the graphT (F ) are finite, consistent and complete sets

of formulas. Note that the sub-graph ofT (F ) that consists of all nodes reachable

from the successors of a nodeG is exactly the same asT (θ(G)).

Lemma 4.20 Assume thatF is a finite and consistent set of formulas.

1. The graphT (F ) has only finitely many different nodes.

2. Assume thatF 1, . . . ,F n are all different nodes ofT (F ).

(a) ` F 1∨ . . .∨F n ⇒ e(F 1∨ . . .∨F n).

(b) ` F ⇒2(F 1∨ . . .∨F n).
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Proof.

1. The completions of a finite setG are subsets ofτκ(G) which is a finite set.

Further, ifF is a formula inθ(G) that does not occur inG , then there are

the following possibilities: eF ∈ G , F ≡ ¬G and¬ eG ∈ G , F ≡ a[G ] and

a[ eG ] ∈ G or F ≡ ¬a[G ] and¬a[ eG ] ∈ G . In each of these cases holds

that the number of the next-time operators decreases which is only possible

finitely many times. Hence, there are only finitely many formulas that occur

in the graphT (G) andT (G) can contain only finitely many different nodes.

2. (a) Let i ∈ {1, . . . ,n}. Since all completions ofθ(F i) are among the sets

F 1, . . . ,F n , we obtain by lemma 4.18 and by simple propositional rea-

soning that` θ(F i) ⇒ F 1 ∨ . . . ∨ F n . Using (nex), (ax7) and (mp)

it follows that ` eθ(F i)⇒ e(F 1∨ . . .∨F n). On the other hand, by

proposition 4.19 we havè F i ⇒ eθ(F i) for i ∈ {1, . . . ,n}. Alto-

gether, we obtaiǹ F i ⇒ e(F 1∨ . . .∨F n) for every i ∈ {1, . . . ,n},
hencè F 1∨ . . .∨F n ⇒ e(F 1∨ . . .∨F n) by (prop).

(b) By (ind) and (a) we havè F 1∨ . . .∨F n ⇒ 2(F 1∨ . . .∨F n). Since

the completions ofF are amongF 1, . . . ,F n , the assertion follows with

lemma 4.18. �

A pathF 1,F 2, . . . in the graphT (F ) is calledcompleteiff it satisfies the follow-

ing conditions:

- If ¬2F ∈ F i , then¬F ∈ F j for somej ≥ i .

- If ¬a[2F ] ∈ F i , then there is aj ≥ i s.t.¬a[F ] ∈ F j and for allk ∈ {i , . . . , j}
holdsa〈true〉 ∈ F k .

Lemma 4.21 Let F be a finite and consistent set of formulas. ThenT (F ) con-

tains a complete path starting at some root.
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Proof. We first prove that for every nodeG in T (F ) and every formulaF with

{¬2F ,F} ⊆G there is a nodeH in T (F ) accessible fromG such that¬F ∈H .

Suppose that this is not the case. Sinceθ(G) contains¬2F by definition and

sinceF ∈ τκθ(G), it follows in particular thatF ∈ H for every successorH of

G , hence{¬2F ,F} ⊆ H for every successorH of G . Inductively, it follows

that {¬2F ,F} ⊆ H for every node accessible fromG . Let G1, . . . ,Gn denote

all nodes accessible fromG – that is, all nodes of the graphT (θ(G)) – and let

I denote the formulaG1∨ . . .∨Gn . By (ax0) holds obviouslỳ I⇒ F , hence

` 2I⇒ 2F by (alw) and (T13). Sincè θ(G)⇒ 2I by lemma 4.20,2(b), we

obtain` θ(G)⇒2F . Since¬2F ∈ θ(G), we also havè θ(G)⇒¬2F . This is

a contradiction to the consistency ofθ(G).

Next we show that for every nodeH0 with ¬a[2F ] ∈ H0 there is a finite path

H0, . . . ,Hj in T (F ) such thata〈true〉 ∈ Hi for i ≤ j and¬a[F ] ∈ Hj . Sup-

pose that there is no such path. Since¬a[2F ] ∈ H0, we also havea〈true〉 ∈ H0

(cf. proposition 4.11,2.), hence¬a[F ] /∈ H0 by assumption (otherwise the path

H0 of length 1 would satisfy the required condition). Sincea[F ] ∈ τκ(H0),
this impliesa[F ] ∈ H0. By the definition ofθ it follows that¬a[2F ] ∈ θ(H0),
hence{¬a[2F ],a〈true〉} ⊆ G for all successorsG of H0. Using the same ar-

guments as above, we obtain again thata[F ] ∈ G . In this way we show that

{¬a[2F ],a[F ]} ⊆ H holds for all nodesH accessible fromH0. Let G1, . . . ,Gn

denote all nodes in the subgraphT (H0). We have just shown that¬a[2F ] ∈ Gi

and thata[F ] ∈ Gi hold for i ∈ {1, . . . ,n}. By (ax11) and (prop) it follows

`G1∨ . . .∨Gn⇒¬2a[F ], hence alsò θ(H0)⇒¬2a[F ]. On the other hand, by

lemma 4.20,2(b) it follows̀ θ(H0)⇒2(G1∨ . . .∨Gn), hencè θ(H0)⇒2a[F ].
This is a contradiction to the consistency ofθ(H0).

Observe that for every finite pathF 0, . . . ,F n in T (F ) with ¬a[2F ]∈F 0 it holds

that if¬a[F ] /∈F i for all i ≤ n, then{a[F ],¬a[2F ],a〈true〉} ⊆F i for all i ≤ n.

In other words, it holds on every path that as long as the condition ”¬a[F ] ∈ F j ”

for a complete path is not satisfied, the condition that ”a〈true〉 ∈ F j for all j ≤ i ”

is not violated, that is,F 0, . . . ,F n is a ”potential prefix” of a complete path.

A complete path can be built now in the same way as in the case of LTL, described

for example in [29]. �
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Lemma 4.22 Assume thatF is a finite and consistent set of formulas and that

F 0,F 1, . . . is a complete path inT (F ). For everyi ∈ ω, the following hold:

1. If eF ∈ τκ(F i), then eF ∈ F i iff F ∈ F i+1.

2. If 2F ∈ τκ(F i), then2F ∈ F i iff F ∈ F j for all j ≥ i .

3. If a[ eF ] ∈ τκ(F i), thena[ eF ] ∈ F i iff a〈true〉 /∈ F i or a[F ] ∈ F i+1.

4. If a[2F ] ∈ τκ(F i), thena[2F ] ∈ F i iff for all j ≥ i : either a〈true〉 /∈ F k

for somek ∈ {i , . . . , j} or a[F ] ∈ F j .

Proof.

1. If eF ∈ F i , thenF ∈ θ(F i) by definition, henceF ∈ F i+1. Assume that

F ∈ F i+1. Because ofeF ∈ τκ(F i), we have eithereF ∈ F i or¬ eF ∈ F i .

By the definition ofθ, ¬ eF ∈ F i would imply¬F ∈ F i+1, in particular the

inconsistency ofF i+1. Hence, we haveeF ∈ F i .

2. Assume first that2F ∈F i . SinceF i is consistent andF ∈ τκ(F i), it follows

by (ax8) thatF ∈F i . By the definition ofθ it follows that2F ∈F i+1. Using

the same arguments, we obtain thatF ∈ F i+1 and2F ∈ F i+2. Inductively,

we obtainF ∈ F j for all j ≥ i .

Conversely, assume that2F /∈ F i , that is,¬2F ∈ F i . By the definition of a

complete path it follows the existence of an indexj ≥ i for which¬F ∈ F j

holds.

3. If a[ eF ] ∈ F i anda〈true〉 ∈ F i , then by the definition ofθ5 follows that

a[F ] ∈ F i+1, asF i+1 is a completion ofθ(F i). For the converse, assume

a[ eF ] /∈ F i . Then¬a[ eF ] ∈ F i asF i is complete, hencea〈true〉 ∈ F i by

proposition 4.11,2. and¬a[F ] ∈ F i+1 by the definition ofθ. SinceF i+1 is

consistent, this implies the assertion.

4. Only if: Assume thata[2F ] ∈ F i and letj ≥ i be a natural number such that

a〈true〉 ∈F k for all k ∈ {i , . . . , j}. We have to show thata[F ]∈F j . Observe

first thata[2F ],a〈true〉 ∈ F l impliesa[2F ] ∈ F l+1 by the definition ofθ,
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hence it follows thata[2F ] ∈ F k for all k ∈ {i , . . . , j}. On the other hand,

we havè a[2F ]⇒ a[F ] by (T12), hencea[F ] ∈ F j by proposition 4.11,1.

If: Assumea[2F ] /∈ F i , i.e.¬a[2F ] ∈ F i . The assertion follows from the

definition of a complete path. �

Now we are able to construct a model ofF based on a complete path. Let

F 0,F 1, . . . be a complete path in the graphT (F ). Let σ := (t0,λ0)(t1,λ1) . . .
where for everyi ∈ ω the pair(ti ,λi) is defined as described in sec. 4.1 starting

with the setF i (cf. page 59). Note that this construction is independent of the

presence of temporal operators. In the following theorem we show thatσ is a

model forF .

Theorem 4.23 Let F be a finite, consistent and complete set of formulas. Let

F 0,F 1, . . . be a complete path inT (F ). Further, letσ := (t0,λ0)(t1,λ1) . . . be

the run constructed from the path as described above withti = (Ni ,<i). Then the

following hold for alli ∈ ω:

1. If F ∈ τκ(F i), then F ∈ F i iff σ|i ,ε |= F .

2. If a[F ] ∈ τκ(F i), then a[F ] ∈ F i iff a /∈ Ni or σ|i ,a |= F .

Proof. As in theorem 4.14, we prove the assertions simultaneously by induction

on the formulaF . The first cases are proven in the same way as in the proof of

theorem 4.14. Now we consider the temporal operators.

Case: eF .

1. By lemma 4.22,1. we haveeF ∈ F i iff F ∈ F i+1. By induction hypothesis,

this is equivalent toσ|i+1,ε |= F , hence, by definition, toσ|i ,ε |= eF .

2. By lemma 4.22,3. it holdsa[ eF ] ∈ F i iff a〈true〉 /∈ F i or a[F ] ∈ F i+1. By

induction hypothesis and by the definition ofti , this is equivalent witha /∈ Ni

or a /∈ Ni+1 or σ|i+1,a |= F . By the definition of the semantics of pMLTL,

this meansa /∈ Ni or σ|i ,a |= eF .
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Case:2F .

1. This follows easily from lemma 4.22,2.

2. By lemma 4.22,4. and the definition ofti , a[2F ] ∈ F i iff a /∈ Ni or for all

j ≥ i : eithera /∈ Nk for somek ∈ {i , . . . , j} or a[F ] ∈ F j . By induction

hypothesis, this is equivalent toa /∈ Ni or (for all j ≥ i : eithera /∈ Nk for

somek ∈ {i , . . . , j} or σ|j ,a |= F ), i.e. toa /∈ Ni or σ|i ,a |= 2F . �

4.2.2 The proof systemΣMLTL

Now we extend the proof systemΣMLTL− by axioms that characterise the “keep”-

operators and call the new systemΣMLTL . The additional axioms are drawn to-

gether in figure 4.6. We already have defined in the previous section the mappings

τ andκ for all pMLTL-formulas. All the lemmas proved there concerning these

mappings hold also for pMLTL.

All axioms and rules ofΣMLTL−

(ax12)` keepa ⇒ (a.α⇔ da.α) for α ∈ N∗

(ax13)` keepa ∧a.b⇒ keepb

(ax14)` a[false]∧ da[false]⇒ keepa

(ax15)` a[keepb ]∧a.b⇒ keepb ∧ da.b

(ax16)` keepb ∧a.b ∧ da.b⇒ a[keepb ]

(ax17)` a.b[false]∧ da.b[false]⇒ a[keepb ]

(ax18)` a〈keepb〉∧a.b[false]⇒ da.b[false]

Figure 4.6: The systemΣMLTL

We want to show thatΣMLTL is a complete axiomatisation for pMLTL. Again, we

assume a finite and consistent set of formulas and construct a model for it. First

we extend the mappingθ in the following way:

θ(F ) :=
15[
i=1

θi(F )
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whereθ1, . . . ,θ8 are defined as before andθ9, . . . ,θ15 as given in fig. 4.7.

θ9(F ) = {a.α〈true〉|keepa ∈ F anda.α〈true〉 ∈ F }
θ10(F ) = {a.α[false]|keepa ∈ F anda.α[false] ∈ F }
θ11(F ) = {b〈true〉|¬keepb ,b[false] ∈ F }
θ12(F ) = {a.b.α〈true〉|a[keepb ],a〈true〉,a.b.α〈true〉 ∈ F }
θ13(F ) = {a.b.α[false]|a[keepb ],a〈true〉,a.b.α[false] ∈ F }
θ14(F ) = {a.b〈true〉|¬a[keepb ],a.b[false] ∈ F }
θ15(F ) = {a.b[false]|a.b〈true〉,keepb ,¬a[keepb ] ∈ F }

Figure 4.7: Definition ofθ9, . . . ,θ15

In the next proposition we show that prop. 4.19 holds also for the extendedθ.

Proposition 4.24 Let F be a set of formulas. Then the following hold:

1. ` F ⇒ eθ(F ).

2. If F is consistent, then so isθ(F ).

Proof. The proof is the same as for proposition 4.19, we only need to consider

the new cases in the definition ofθ.

- F ≡ a.α〈true〉 ∈ θ9(F ): by definition we havè F ⇒ keepa ∧ a.α〈true〉,
hence by (ax12) it follows that̀ F ⇒ ea.α〈true〉.

- F ≡ a.α[false] ∈ θ10(F ): using axiom (ax12),(T5) and the definition ofθ10 we

concludè F ⇒¬ ea.α〈true〉. The assertion follows with the aid of (ax6) and

(T5).

- F ≡ b〈true〉 ∈ θ11(F ): by the definition ofθ11 holds¬keepb ,b[false] ∈ F . By

(ax14), (prop) and (ax6) it follows̀ F ⇒ e¬b[false], hencè F ⇒ eb〈true〉.
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- F ≡ a.b.α〈true〉 ∈ θ12(F ): Observe thata.b.α〈true〉 ∈ F anda[keepb ] ∈ F
by the definition ofθ12. We give a derivation ofF ⇒ ea.b.α.

(1) F ⇒ a.b.α〈true〉 def. ofθ12

(2) F ⇒ a.b〈true〉 (1),(T7),(prop)

(3) F ⇒ b.α〈true〉 (1),(T7),(prop)

(4) F ⇒ a[keepb ] def. ofθ12

(5) F ⇒ keepb (ax15),(4),(2),(prop)

(6) F ⇒ ea.b〈true〉 (ax15),(4),(2),(prop)

(7) F ⇒ eb.α〈true〉 (ax12),(3),(5),(prop)

(8) F ⇒ e(a.b ∧ b.α) (6),(7),(T10),(prop)

(9) a.b ∧ b.α⇒ a.b.α (T7),(prop)

(10) e(a.b ∧ b.α)⇒ ea.b.α (nex),(9),(ax7),(prop)

(11) F ⇒ ea.b.α〈true〉 (8),(10),(prop)

- F ≡ a.b.α[false] ∈ θ13(F ): Note thata[keepb ],a〈true〉,a.b.α[false] ∈ F by

the definition ofθ13. We give a derivation ofF ⇒ ea.b.α[false]:

(1) F ⇒ a〈keepb〉∧a.b.α[false] def. ofθ12,(T6),(prop)

(2) a〈keepb〉∧a.b[false]⇒ ea.b[false] (ax18)

(3) a.b[false]⇒ a.b.α[false] (T7),(T5),(prop)

(4) ea.b[false]⇒ ea.b.α[false] (3),(nex),(ax7),(prop)

(5) F ∧a.b[false]⇒ ea.b.α[false] (1),(2),(4),(prop)

(6) a〈keepb〉∧a.b〈true〉 ⇒ keepb (ax15),(prop)

(7) a.b〈true〉∧a.b.α[false]⇒ b.α[false] (T5),(T7),(prop)

(8) keepb ∧ b.α[false]⇒ eb.α[false] (ax12),(prop)

(9) eb.α[false]⇒ ea.b.α[false] (ax2),(nex),(ax7),(prop)

(10) F ∧a.b〈true〉 ⇒ ea.b.α[false] (1),(6),(7),(8),(9),(prop)

(11) F ⇒ ea.b.α[false] (5),(10),(prop)

- F ≡ a.b〈true〉 ∈ θ14(F ): we have¬a[keepb ],a.b[false] ∈ F by the definition

of θ14. By (ax17) it follows that̀ F ⇒¬ ea.b[false], hencè F ⇒ ea.b〈true〉
by (ax6), (T5), (nex) and (ax7).
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- F ≡ a.b[false] ∈ θ15(F ): then it holdsa.b〈true〉,keepb ,¬a[keepb ] ∈ F by

the definition ofθ15. By (ax16) and by propositional reasoning it follows that

` F ⇒¬ ea.b〈true〉, hencè ea.b[false] by (ax6), (T5), (nex) and (ax7). �

The graphT (F ) is redefined: the successors of a node are defined with respect to

the newθ. The notion of a complete path is unchanged.

As our next step, we are going to construct a run based on a complete path

F 0,F 1 . . . in the graphT (F ). Letσ′ denote the sequence(t ′0,λ
′
0)(t

′
1,λ
′
1) . . . where

(t ′i ,λ′i) is defined as in sec. 4.1, starting with the setF i . Note that this run is

in general no model for the setF , as formulas of the form¬keepa are not ne-

cessarily satisfied. In order to see this, consider for example the following set:

F = {¬keepa ,a〈true〉, ea〈true〉}. Let G denote an arbitrary completion ofF . A

possible complete path inT (F ) is the following:

G ,{a〈true〉}, /0, /0 . . .

The construction yields the following runσ:

q
qa

q
q q q- - -

a ε ε
. . .

Obviously, forσ does not hold the formula¬keepa . The problem is that a formula

of the form¬keepa possibly requires the existence of some new name that does

not occur inF whereas in the runσ only names occur that occur in some formula

in F .

To solve this problem, we have to modify the trees of the run based on a complete

path slightly. For every namea for which ¬keepa ∈
S

i≥0F i , let na ∈ N be a

name that does not occur in any of the formulas in
S

i≥0F i , with na 6= nb for

a 6= b. Note that it is possible to choose such names, as
S

i≥0F i is a finite set.

Intuitively, the namena will have to ensure that the formula¬keepa holds: if

¬keepa has to hold for a sub-runσ|i and the namena does not occur inti , then

na is put below the namea in the treeti+1. Conversely, ifna is already inti , then

it must not appear inti+1. This idea is formalised in the following definition.
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We define the runσ = (t0,λ0)(t1,λ1) . . . by induction oni ∈ ω. We let again

σ′ = (t ′0,λ
′
0)(t

′
1,λ
′
1) . . ., with t ′i = (N′i ,<

′
i), be the run based on a complete path

F 0,F 1, . . . as described above and let(t0,λ0) := (t ′0,λ
′
0). Let i ∈ ω and assume

that(t0,λ0), . . . ,(ti ,λi) are already constructed.

Ni+1 := N′i+1 ∪ {na |¬keepa ∈ F i ,a ∈ N′i ,a ∈ N′i+1 andna /∈ Ni}
∪ {na |na ∈ Ni andkeepb ∈ F i for someb with na <i b}

and the binary relation<i+1 on Ni+1 is defined as follows:

a <i+1 b :⇔


a <′i+1 b

ā ≤′i+1 b

a <′i+1 b̄

ā <′i+1 b̄

if a,b ∈ N′i+1

if b ∈ N′i+1 anda = nā for some ¯a ∈ N

if a ∈ N′i+1 andb = nb̄ for someb̄ ∈ N

if a = nā ,b = nb̄ anda <′i+1 b

The assignmentsλi are defined by

λi(a) :=

 λ′i(a)

/0

if a ∈ N′i

if a = nā for some ¯a ∈ N′i

Informally, this definition indicates thatna is put immediately belowa. To illus-

trate the construction, we consider a sequenceF ∗0,F ∗1, . . . whereF ∗0 is some com-

pletion of F 0 = {2ab〈true〉,2c〈true〉,¬keepb ,
ekeepa ,2¬keepc} andF ∗i+1 is

some completion ofθ(F ∗i ). The prefix of one possible resulting run – first only

applying the original definition from sec. 4.1, that is, without the described modi-

fication – is the following:

q
qq q��@@a

b

c

q
qq q��@@a

b

c

q
q q q

q
q qq@@��

-
��@@

- -
a c

b

a

b

c
. . .

This is obviously not a model ofF 0, as the formulas¬keepb and2¬keepc are not

satisfied. The modification according to our definition yields the following run:

qq
qq��@@

-

nc

a

b

c

q
q q q

q

q

q
q

qq q
qq
qq q

@@�� ��@@
- -

@@��a c

b

nb

a

b

nb

c

nc

a

b

c
. . .
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The first trees are identical. Then the namenb is put below the nameb as well

as the namenc belowc in order to satisfy formulas¬keepb and2¬keepc. In the

next stepnc disappears as required by formula2¬keepc, but nodenb is still kept

as required bykeepa ∈ F ∗1 (this follows from ekeepa ∈ F 0) anda.b〈true〉 ∈ F ∗1.

In the last treenb does not appear (the auxiliary nodes are not kept if not explicitly

required by some keep operator) whereasnc reappears due to¬keepc ∈ F ∗2.

We show thatti is a tree.

Lemma 4.25 Let ti = (Ni ,<i) be defined as described above. Thenti is a tree.

Proof. In order to prove the claim we have to show that

1. the relations<i are irreflexive.

2. the relations<i are transitive.

3. if a,b,c ∈ Ni , a 6= b, c <i a andc <i b then eithera <i b or b <i a.

To 1.: Assume thata <i a. We have to distinguish two cases.

Case:a ∈ N′i . Thena <′i a by definition in contradiction to the irreflexivity of

the relation<′i .

Case:a = nā for some ¯a ∈ N′i . Thenā <′i ā by definition, hence we obtain the

same contradiction as above.

To 2.: Assume thata <i b andb <i c. We have to show thata <i c. Again, we

have to distinguish different cases.

Case:a,b,c ∈ N′i . Thena <′i b andb <′i c by definition, hencea <′i c by the

transitivity of<′i . By the definition of<i this meansa <i c.

Case:a,b ∈ N′i andc = nc̄ for some ¯c ∈ N′i . Thena <′i b andb <′i c̄, hence

a <′i c̄. Latter impliesa <i c.

Case: a,c ∈ N′i and b = nb̄ for someb̄ ∈ N′i . Thena <′i b and b ≤′i c by

definition, hencea <′i c and soa <i c by the definition of<i .
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Case:b,c ∈N′i anda = nā for some ¯a ∈N′i . Thenā ≤′i b andb <′i c. It follows

ā <′i c, hencenā <i c by definition.

Case:a ∈ N′i , b = nb̄ andc = nc̄ for someb̄, c̄ ∈ N′i . Thena <′i b̄ andb̄ <′i c̄

by definition. It followsa <′i c̄, hencea <i c.

Case:b ∈N′i , a = nā andc = nc̄ for some ¯a, c̄ ∈N′i . Thenā ≤′i b andb <′i c̄ by

definition. This implies ¯a <′i c̄ as<′i is transitive, hencea <i c by definition.

Case:c ∈ N′i , a = nā andb = nb̄ for some ¯a, b̄ ∈ N′i . Thenā <′i b̄ andb̄ ≤′i c

by definition. Hence ¯a <′i c which impliesa <i c.

Case:a = nā , b = nb̄ andc = nc̄ for some ¯a, b̄, c̄ ∈ N′i . Thenā <′i b̄ andb̄ <′i c̄

by definition, hence ¯a <′i c̄. From this followsa <i c by the definition of<i .

To 3.: Again, different cases have to be considered.

Case:a,b,c ∈ N′i . Thenc <′i a andc <′i b by definition and as(t ′i ,<
′
i) is a tree

it follows a <′i b or b <′i a. Hence,a <i b or b <i a.

Case:a,b ∈ N′i andc = nc̄ for some ¯c ∈ N′i . Thenc̄ ≤′i a and c̄ ≤′i b, which

impliesa <′i b or b <′i a. Hence,a <i b or b <i a by the definition of<i .

Case: c ∈ N′i , a = nā andb = nb̄ for some ¯a, b̄ ∈ N′i with ā 6= b̄ (asnā 6= nb̄

by assumption). Thenc <′i ā andc <′i b̄ by the definition of<i , hence ¯a <′i b̄

or b̄ <′i ā. In the first case it followsa <i b, in the second caseb <i a by the

definition of<i .

Case: a,c ∈ N′i and b = nb̄ for someb̄ ∈ N′i . Thenc <′i a and c <′i b̄ by

definition. It followsa <′i b̄ or b̄ <′i a, hencea ≤i b or b <i a. Sincea 6= b by

assumption, the assertion follows.

Case:b,c ∈ N′i anda = nā for some ¯a ∈ N′i . This case is symmetrical to the

previous case.

Case:a ∈ N′i , b = nb̄ andc = nc̄ for someb̄, c̄ ∈ N′i . Thenc̄ ≤′i a andc̄ <′i b̄. If

c̄ = a then we havea <′i b by the latter. Otherwise we obtaina <′i b̄ or b̄ <′i a,

hencea <i b or b <i a by definition.

Case:b ∈ N′i , a = nā andc = nc̄. for some ¯a, c̄ ∈ N′i . This is symmetrical to

the previous case.
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Case:a = nā , b = nb̄ andc = nc̄ for some ¯a, b̄, c̄ ∈ N′i . Then we have ¯c <′i ā

andc̄ <′i b̄ by definition, hence ¯a <′i b̄ or b̄ <′i ā ast ′i is a tree. It followsa <i b

or b <i a by the definition of<i . �

We prove the following lemma about the sequenceσ.

Lemma 4.26 Let σ = (t0,λ0)(t1,λ1) . . . be defined as above and leti ∈ ω be ar-

bitrary. Then the following holds:

1. If keepb ∈ τκ(F i), then keepb ∈ F i iff ti↓b = ti+1↓b.

2. If a[keepb ] ∈ τκ(F i), then a[keepb ] ∈ F i iff a /∈ Ni or ti↓a.b = ti+1↓a.b.

Proof.

1. Only if: Let keepb ∈ F i . First we show thatt ′i↓b = t ′i+1↓b. To this end, it is

enough to prove that for alla,c ∈ N holds the following:

(a) a <′i b iff a <′i+1 b

(b) If a <′i b, thenc <′i a iff c <′i+1 a

To a): By the definition of the relations<′j we have to showb.a〈true〉 ∈ F i

iff b.a〈true〉 ∈ F i+1. Sincekeepb ∈ F i and sinceF i+1 is a completion of

θ(F i), this follows from the definition ofθ.

To b): Let a <′i b, i.e.b.a〈true〉 ∈ F i . We have to show thata.c〈true〉 ∈ F i

iff a.c〈true〉 ∈ F i+1.

Only if: Assumea.c〈true〉 ∈ F i . Observe thata,b,c are pairwise distinct

and henceb.a.c〈true〉 ∈ τκ(F i). By (T7) it follows ` F i ⇒ b.a.c〈true〉,
henceb.a.c〈true〉 ∈ F i by proposition 4.11,1. By the definition ofθ it fol-

lows thatb.a.c〈true〉 ∈ F i+1. Since` b.a.c〈true〉 ⇒ a.c〈true〉 by (T0),

it follows thata.c〈true〉 ∈ F i+1.
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If: Assumea.c〈true〉 ∈ F i+1. Sincea,b,c are pairwise distinct and as

b.a〈true〉 ∈ F i+1 by a), it follows as above thatb.a.c〈true〉 ∈ F i+1. As

a,b,c ∈ nm(F i), we haveb.a.c〈true〉 ∈ τκ(F i). By the definition ofθ
it follows that b.a.c[false] /∈ F i , henceb.a.c〈true〉 ∈ F i . The assertion

follows now as in the previous case.

Now we consider the “auxiliary” namesnc. From the definition of the trees

ti it follows directly that if a nodenc occurs inti , then its position is imme-

diately below the nodec. Hence, it suffices to show for everync thatnc <i b

iff nc <i+1 b.

Only if: Assume first thatnc <i b. Sincekeepb ∈ F i by assumption, the

definition ofti+1 implies thatnc ∈ Ni+1. Furthermore, by the definition of

<i+1 it follows thatnc <i+1 b, that is,nc <i+1 b.

If: For the converse, assume thatnc <i+1 b. Thenc ≤i+1 b by definition,

that is, eitherc = b or b.c〈true〉 ∈ F i+1.

Case: c = b. Sincekeepb ∈ F i andnc ∈ Ni+1, the definition ofti+1

impliesnb ∈ Ni . By the definition of<i it follows nb <i b.

Case: c <i+1 b. By definition, this meansb.c〈true〉 ∈ F i+1. Since

keepb ∈ F i , by the definition ofθ it follows b.c〈true〉 ∈ F i . Hence,

` F i ⇒ keepc by (ax13), in particular¬keepc /∈ F i . Again, it follows

by the definition ofti+1 thatnc ∈ Ni . As c <i b (sinceb.c〈true〉 ∈ F i ),

we concludenc <i b by the definition of<i .

If: Assume thatkeepb /∈ F i , that is, asF i is complete,¬keepb ∈ F i .

Case:nb /∈ Ni . There are two possibilities. Eitherb /∈ Ni or b ∈ Ni .

In the first case we haveb[false] ∈ F i , henceb〈true〉 ∈ F i+1 by the defi-

nition of θ. Hence,b /∈ Ni but b ∈ Ni+1, in particular,ti↓b 6= ti+1↓b.

If b ∈ Ni andb /∈ Ni+1, then we already haveti↓b 6= ti+1↓b since latter

is the empty tree whereas the first is not. Ifb ∈ Ni+1, thennb ∈ Ni+1

by the definition ofti+1, hencenb <i+1 b. It follows ti↓b 6= ti+1↓b since

nb <i+1 b butnb 6<i b.

Case:nb ∈ Ni . Assumenb ∈ Ni+1. By the definition ofti+1, this is only

possible if there is a namec with keepc ∈F i andnb <i c. By the definition
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of <i it follows b ≤i c, that is,b = c or c.b〈true〉 ∈ F i . It follows in both

cases - in the latter by (ax13) and by lemma 4.13 - that` F i ⇒ keepb , in

contradiction to the consistency ofF i .

2. Only if: Assume thata[keepb ] ∈ F i anda〈true〉 ∈ F i .

Case: b <i a, that is,a.b〈true〉 ∈ F i . By (ax15) and (prop) it follows

that ` F i ⇒ keepb holds. Askeepb ∈ τκ(F i), it holds keepb ∈ F i by

proposition 4.11,1. Further, asa[keepb ],a.b〈true〉,a〈true〉 ∈ F i , we have

a.b〈true〉 ∈F i+1 by the definition ofθ, henceb <i+1 a by the definition of

ti+1. In particular,ti↓b = ti↓a.b andti+1↓a.b = ti+1↓b. Sincekeepb ∈F i ,

this implies by 1. thatti↓a.b = ti+1↓a.b.

Case:ti↓a.b = empty, that is,b 6<i a, that is,a.b〈true〉 /∈F i . If a = b, then

a.b〈true〉 /∈ F i+1 because of the consistency ofF i+1, henceb 6<i+1 a. If

a 6= b, thena.b[false] ∈ F i sinceF i is complete, hencea.b[false] ∈ F i+1

by the definition ofθ, henceb 6<i+1 a, that is,ti+1↓a.b = empty.

If : Let ti↓a.b = ti+1↓a.b.

Case: ti↓a.b = empty andti+1↓a.b = empty, that isa.b〈true〉 /∈ F i and

a.b〈true〉 /∈ F i+1.

Case:If a = b, then` a.b[false]∧ ea.b[false] by (ax4), (nex) and (prop),

hencè a[keepb ] by (ax17), i.e.a[keepb ] ∈ F i by proposition 4.11,1.

Case: If a 6= b, thena.b[false] ∈ F i because of the completeness of

F i . Assuming¬a[keepb ] ∈ F i would imply a.b〈true〉 ∈ F i+1 by the

definition ofθ14, in contradiction to the assumption. Hence, it holds that

a[keepb ] ∈ F i .

Case: ti↓a.b = ti+1↓a.b 6= empty, that is, a.b〈true〉,a.b〈true〉 ∈ F i+1

and alsoti↓b = ti↓a.b as well asti+1↓b = ti+1↓a.b, hence in particular

ti↓b = ti+1↓b. Sincekeepb ∈ τκ(F i), it follows by 1. thatkeepb ∈ F i . By

the definition ofθ15 and sincea.b〈true〉 ∈ F i+1 we have¬a[keepb ] /∈ F i ,

hencea[keepb ] ∈ F i . �
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Theorem 4.27 Let F be a finite and consistent set of pMLTL-formulas and let

σ = (t0,λ0)(t1,λ1) . . . be the run defined as described above. Leti ∈ ω. Then the

following holds:

1. If F ∈ τκ(F i), then F ∈ F i iff σ|i ,ε |= F .

2. If a[F ] ∈ τκ(F i), then a[F ] ∈ F i iff a /∈ Ni or σ|i ,a |= F .

Proof. The proof extends the proof of theorem 4.23. Note that also for the mo-

dified trees and all namesa,b ∈ nm(F i) holds the following:

a ∈ Ni iff a〈true〉 ∈ F i and a <i b iff b.a〈true〉 ∈ F i .

Using this observation, it is easy to see that the proof of theorem 4.23 works

also for the modified runσ. The additional case of the move operators follows

immediately from lemma 4.26. �

With the aid of this theorem – more precisely, using the proof of the theorem – we

can show that every satisfiable pMLTL-formula has a “finite” model in the sense

as stated in the following corollary.

Corollary 4.28 Let F be a pMLTL-formula. Letnm(F ) denote the set of names

occurring inF andat(F ) the set of propositional variables occurring inF . Fur-

thermore, for everya ∈ nm(F ) let na be a name withna /∈ nm(F ) andna 6= nb

for a 6= b. If F is satisfiable, then there exists a runσ = (t0,λ0)(t1,λ1) . . . with

Ni ⊆ nm(F )∪{na |a ∈ nm(F )} andλi : Nε
i → 2at(F ) for whichσ,ε |= F holds.

Proof. Let F be satisfiable. Because of the soundness ofΣMLTL holds 6` ¬F ,

that is, the set{F} is consistent. By (the proof of) theorem 4.27, there is a model

of F as described above. �



Chapter 5

Model Checking & Decidability

5.1 Background

In this chapter we explore the model checking problem (for finite state mobile

systems) and the decidability problem for propositional MLTL.

The model checking problem is to decide for a given systemM and a formulaF

whether for all runsσ of M holdsσ |= F . One well established method to solve

this problem makes use of automata-theory. Runs of a finite state system can be

regarded as infinite words over a finite alphabet that consists of the system’s possi-

ble states. Assume now that the system we have to check is given as an automaton

AM . Further, assume thatAF is an automaton that accepts exactly the models of

the formulaF , that is,σ ∈ L(AF ) iff σ |= F . Then solving the model checking

problem is equivalent with deciding whether the languageL(AM )∩L(A¬F ), that

is, the languageL(AM ×A¬F ) is empty (whereAM ×A¬F denotes a product

automaton that accepts exactly the words that are accepted by both automata).

Hence, the model checking problem is reduced to the non-emptiness problem for

appropriate automata. Comprehensive introductions to the field of model check-

ing can be found for example in [12, 13].

The decidability problem means to decide for a given formula whether it is sat-

isfiable, that is, whether it has a model. As we have shown in corollary 4.28,

85
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propositional MLTL has the finite model property, that is, if a formula has some

model, then it has also a model over a special finite alphabet. Consequently, if we

are able to translate formulas into automata, the decidability problem for propo-

sitional MLTL can also be reduced to the non-emptiness problem: the formulaF

is satisfiable if and only ifL(AF ) 6= /0, whereAF is defined over an appropriate

alphabet.

In the following we present a translation of propositional pMLTL-formulas into

weak alternating automata. Our construction is based on the translation of LTL

into alternating automata as given in [51].

5.2 Büchi automata

Finite automata running on finite words or finite trees are well known in connec-

tion with the theory of formal languages. If verification of nonterminating systems

is concerned, it is useful to consider finite automata that run on infinite objects like

infinite words or infinite trees. As the models of pMLTL can be regarded as in-

finite words over a setS of configurations, we will only consider automata on

infinite words here.

In this section, we briefly describe non-deterministicBüchi automataand cite

some well known results that we will need later to determine upper bounds on the

complexity of different decision problems.

Definition 5.1 A non-deterministicBüchi automatonover the finite alphabetΣ is

given by a tupleA = (Σ,Q ,qI ,δ,F ) with

• Q is a finite set of states

• qI ∈Q is the initial state

• δ : Q ×Σ→ 2Q is the transition function

• F ⊆Q is the accepting condition
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A run of the automatonA on an infinite wordσ = s0s1 . . . ∈ Σω is an infinite

sequenceq0q1 . . . ∈ Qω of states such thatq0 = qI and that for alli ∈ ω it holds

qi+1 ∈ δ(qi ,si).

A run ρ = q0q1 . . . ∈ Qω is acceptingiff F ∩ Inf(ρ) 6= /0, whereInf(ρ) denotes the

set of states that occur inρ infinitely often, that is,

Inf(ρ) = {q ∈Q |∀i ∈ ω∃j ≥ i : qj = q} .

A wordσ ∈ Σω is accepted byA iff there is an accepting run of the automaton on

σ.

The definition says that an accepting run has to pass one of the accepting states

infinitely often. The language accepted by the automatonA will be denoted by

L(A).

In many applications, it is an important question whether the language accepted

by an automaton is empty. The following proposition cites the well known result

that the non-emptiness problem for Büchi automata is decidable in time linear in

the size of the automaton.

Proposition 5.2 LetA be a B̈uchi automaton withn states. The question whether

L(A) is empty can be decided in timeO(n), that is, it is linear in the size of the

automaton.

Another classical result is the construction for two Büchi automataA1 andA2 a

Büchi automaton that defines exactly the intersection of the two languagesL(A1)
andL(A2). We do not present the construction, but only record its complexity.

Proposition 5.3 Let A1 and A2 be non-deterministic B̈uchi automata over the

alphabetΣ with n1 resp.n2 states. There is a non-deterministic Büchi automaton

A with O(n1n2) states for which it holds

L(A) = L(A1)∩L(A2) .
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5.3 Alternating Automata on Infinite Words

For the translation of propositional MLTL into automata we will useweak alter-

nating automata, first introduced by Muller et al. in [41]. In our presentation of

weak alternating automata we follow [32], where, in contrast to most other defi-

nitions, runs of alternating automata are described in terms of dags with bounded

width, instead of finitely branching trees.

Alternating automata combine existential (nondeterministic) and universal branch-

ing mode. As in universal automata, several states of the automaton may be active

at the same time. Additionally, as in nondeterministic automata, when reading an

input letter, the automaton can choose from different sets of states as successors.

The different branching modes are given by the transition function that assigns to

every state/letter pair a positive boolean expression over the setQ of the automa-

ton’s states. For example,q0∨ (q1∧ q2) means that the automaton can choose

between activatingq0 or both,q1 andq2 simultaneously.

Alternating automata whose transition function is given in disjunctive normal

form, can be illustrated by hypergraphs. A hypergraph corresponding to a (weak)

alternating automaton with state setQ = {qI ,q1,q2}, initial stateqI and the fol-

lowing transition function:

δ(qI ,a) = δ(qI ,b) = qI ∨ (q1∧ q2) δ(qI ,c) = δ(qI ,d) = qI

δ(q1,a) = δ(q1,b) = q1∧ q2 δ(q1,c) = δ(q1,d) = false

δ(q2,a) = δ(q1,c) = q2 δ(q2,b) = δ(q2,d) = true

appears in figure 5.1. The numbers that appear in brackets next to the states indi-

cate theranksof the states. In weak alternating automata, every state has a rank,

and transitions are not allowed to lead to a state of higher rank.

A hyper-edge labelled by a lettera ∈ Σ indicates that on inputa the automaton

can simultaneously activate the states the hyper-edge leads to. For example, the

above automaton in its initial state can activate on inputa eitherqI , or q1 andq2

simultaneously.

A run of a weak alternating automaton on an (infinite) input words0s1 . . . is,

roughly speaking, an acyclic graph that arises if we follow the (hyper-)edges along
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Figure 5.1: Illustration of a weak alternating automaton

the input word. Figure 5.2 shows (the first segment of) a possible run of the au-

tomaton given in fig. 5.1 on the infinite worddcabbaω.
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Figure 5.2: Run of an alternating automaton

Such a run graph isaccepting, if all infinite paths in the graph satisfy the accept-

ing condition of the automaton. In the case of weak alternating automata, this

condition requires that the minimal rank occurring on the path be even.

For example, the run given in fig. 5.2 is not accepting, because the infinite path

· · ·(q2,5)(q2,6) · · · gets trapped in stateq2 which has rank one. Figure 5.3 presents

an accepting run of the same automaton (the one in fig. 5.1) on the wordaaabω.

The only infinite path finally contains only stateq1 which has rank 2.
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b
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Figure 5.3: An accepting run

After these informal explanations let us introduce all the notions in a formal way.
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For a finite setX , the set ofpositive boolean expressionsoverX is the set of all

expressions built from the elements of the setX using∧ and∨, plus the formulas

true andfalse. This set is denoted byB+(X ). We say that a subsetY satisfies

ρ ∈ B+(X ) iff the truth assignment that assignstrue to the elements inY and

falseto the elements inX \Y satisfiesρ. The set of subsets ofX which satisfy a

positive boolean expressionρ∈B+(X ) is denoted by Mod(ρ), the set of elements

x ∈ X occurring in a positive boolean expressionρ ∈ B+(X ) by at(ρ).

In the next proposition we list properties of such models. All of them are easy to

prove.

Proposition 5.4 LetX be a set andρ ∈ B+(X ). The following holds:

1. If S ∈Mod(ρ) andS ⊆ S ′ ⊆ X , thenS ′ ∈Mod(ρ).

2. If S ∈Mod(ρ) andat(ρ)⊆ S ′, thenS ∩S ′ ∈Mod(ρ).

3. If S ∈Mod(ρ1)∩Mod(ρ2), thenS ∈Mod(ρ1∧ρ2).

Now we define weak alternating automata operating on infinite words over a finite

alphabet.

Definition 5.5 A weak alternating automaton– WAA for short – on infinite words

is a tupleA = (Σ,Q ,qI ,δ,r) where

• Σ is a finite alphabet

• Q is a finite set of states

• qI ∈Q is the initial state

• δ : Q ×Σ→ B+(Q) is the transition function

• r : Q → ω is a function with the following property:

∀q ,q ′ ∈Q∀s ∈ Σ : q ′ ∈ at(δ(q ,s))⇒ r(q ′)≤ r(q)
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The numberr(q) is called therankof q .

We already gave an informal explanation of a run of a WAA. Here we present the

precise definition.

Definition 5.6 A run of an alternating automatonA = (Σ,Q ,qI ,δ,r) on a word

σ = s0s1 . . . ∈ Σω is a directed acyclic graph (dag)G = (V ,E ,vI ) that satisfies

the following conditions:

• V ⊆Q ×ω

• ((q , i),(q ′, j )) ∈ E ⇒ j = i +1

• {q ′|((q , i),(q ′, i +1)) ∈ E} ∈Mod(δ(q ,si))

• {q ′|((q , i),(q ′, i +1)) ∈ E} ⊆ at(δ(q ,si))

• vI = (qI ,0)

• (q ,0) ∈ V ⇔ q = qI

An infinite pathof a dagG is a mapπ : ω→Q ×ω such that

• π(0) = vI

• ∀i ∈ ω : (π(i),π(i +1)) ∈ E

A run dagG is calledacceptingiff for all infinite pathsπ : ω→ Q ×ω in G the

minimal rank occurring inπ, that is, min{r(q)|∃i < ω : (q , i) = π(i)}, is even.

A WAA A acceptsthe wordσ ∈ Σω iff there exists an accepting run ofA on σ.

Again, the language accepted by an automatonA is denoted byL(A).

Weak alternating automata can be translated into non-deterministic Büchi au-

tomata as stated in the next proposition.

Proposition 5.7 Let A be a WAA with n states. There is a non-deterministic

Büchi automatonAB with O(2n) states andL(A) = L(AB ).
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The translation is based on a subset construction by Miyano and Hayashi [40] and

is exponential in the size of the automaton. For WAAs in our format the translation

is described for example in [49].

The following proposition will often be used.

Proposition 5.8 Let A = (Σ,Q ,qI ,δ,r) be aWAA and σ = s0s1 . . . ∈ Σω. The

following holds:

1. If δ(qI ,s0) = true, thenσ ∈ L(A).

2. If δ(qI ,s0) = false, thenσ /∈ L(A).

Proof. To 1.: As the empty set satisfiestrue, the dag consisting only of the root

(qI ,0) is a run ofA on any word beginning withs0. This dag does not contain

any infinite path and so it is accepting.

To 2.: As falsedoes not have any model, there is no run ofA on σ. �

Now we prove several lemmas about the languages accepted by weak alternating

automata. These lemmas will be helpful to prove the correctness of our transla-

tion.

The first lemma shows how to construct for two WAAsA1 andA2, an automaton

that accepts exactly the words that are accepted by bothA1 and A2. The con-

struction is simple: the state space consists of the union of the state spaces and a

“new” initial stateqI . For all “old” states, the ranks and the transition function are

unchanged. As the automaton has to imitate both automata simultaneously, from

the initial state it can perform the transitions that are allowed for both automata in

their initial states. Technically, the transition function onqI is the conjunction of

the transition functions of the two automata on the initial states.

Lemma 5.9 Let Ai = (Σ,Q i ,q i
I ,δ

i ,r i), for i = 1,2, beWAAs such that

∀q ∈Q1∩Q2∀s ∈ Σ : (δ1(q ,s) = δ2(q ,s))∧ (r1(q) = r2(q)) .

Further, letA = (Σ,Q ,qI ,δ,r) be defined as:
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• Q = Q1∪Q2∪{qI } with qI /∈Q1∪Q2

• δ(q ,s) =

 δi(q ,s) if q ∈Q i

δ1(q1
I ,s)∧δ2(q2

I ,s) if q = qI

• r(q) =

 r i(q) if q ∈Q i

max{r1(q1
I ),r2(q2

I )} if q = qI

ThenA is aWAA and the following holds:

L(A) = L(A1)∩L(A2) .

Proof. First note thatδ andr are well defined because of the condition on the

two automata that their rank- and transition functions agree on all common states.

As the rank function is obviously ”decreasing” by the definition ofδ and r , it

follows thatA is a WAA. Now we have to prove two inclusions.

”⊆”: Let G = (V ,E ,vI ) be an accepting run ofA on σ ∈ Σω. Using this dag we

construct an accepting run forAi as follows: we replace the root(qI ,0) by (q i
I ,0)

and take the sub-graph ofG that contains only states inQ i . (Additionally, we

could remove all nodes that are not reachable from(q i
I ,0).)

More formally, let the dagsGi = (V i ,E i ,v i
I ), for i = 1,2, be defined as follows:

• v i
I = (q i

I ,0)

• V i = {v i
I }∪{(q , j )|(q , j ) ∈ V , j ≥ 1,q ∈Q i}

• E i = {(v i
I ,(q ,1))|q ∈Q i ,(vI ,(q ,1)) ∈ E}∪

{((q , j ),(q ′, j +1))|j ≥ 1,q ,q ′ ∈Q i ,((q , j ),(q ′, j +1)) ∈ E}

Figure 5.4 illustrates the definition withq2
I ,q2

2 ∈Q2 andq1
1 /∈Q2.

We want to show thatGi is an accepting run ofAi on σ for i = 1,2. In order to

see thatGi is a run ofAi on σ, it suffices to prove the following:

∀j ∈ ω∀(q , j ) ∈ V i : {q ′|((q , j ),(q ′, j +1)) ∈ E i} ∈Mod(δi(q ,sj )) .

We prove the claim forj = 0 andj ≥ 1 separately.
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Figure 5.4: Construction ofG2 from G

Case: j = 0: Observe that{q |(v i
I ,(q ,1)) ∈ E i} = {q |(vI ,(q ,1)) ∈ E}∩Q i .

SinceG is a run ofA onσ, we know that{q |(vI ,(q ,1))∈E} ∈Mod(δ(qI ,s0)).
On the other hand we know that Mod(δ(qI ,s0)) ⊆ Mod(δi(q i

I ,s0)) (cf. the

definition of δ). Hence,{q |(vI ,(q ,1)) ∈ E} ∈ Mod(δi(q i
I ,s0)). Because of

at(δi(q i
I ,s0))⊆ Q i it follows that{q |(vI ,(q ,1)) ∈ E}∩Q i ∈Mod(δi(q i

I ,s0))
by using prop. 5.4.

Case: j ≥ 1: Note first that for everyq ∈ Q i it holds δi(q ,sj ) = δ(q ,sj ) and

{q ′|((q , j ),(q ′, j + 1)) ∈ E i} = {q ′|((q , j ),(q ′, j + 1)) ∈ E}∩Q i . As for all

statesq ∈ Q i we have thatat(δi(q ,sj )) ⊆ Q i , it follows by prop. 5.4,2 that

{q ′|((q , j ),(q ′, j +1)) ∈ E i} ∈Mod(δi(q ,sj )).

Hence,Gi is a run ofAi on σ. It satisfies the weak acceptance condition, because

every infinite path corresponds to a path inG , and asG is accepting, it satisfies

the accepting condition.

”⊇”: Let Gi = (V i ,E i ,v i
I ) be an accepting run ofAi on σ, for i = 1,2. We

construct an accepting run ofA by “putting together” the two graphs. Formally,

let the dagG be defined as follows:

• vI = (qI ,0)

• V = (V 1\{v1
I })∪ (V 2\{v2

I })∪{vI }

• E = {(vI ,v
′)|(v i

I ,v
′) ∈ E i for ani ∈ {1,2}}∪

{(v ,v ′)|(v ,v ′) ∈ E i for ani ∈ {1,2},v ,v ′ ∈ V }
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Figure 5.5 illustrates the construction of the runG based on the runsG1 andG2 of

the original automata. We want to show thatG is an accepting run ofA on σ.
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Figure 5.5: Run dag of the intersection automaton

First we have to prove thatG is a run ofA on σ, that is, that the set of successors

of any vertex(q , j ) is a model ofδ(q ,sj ). Formally, this means

∀j ∈ ω∀(q , j ) ∈ V : {q ′|((q , j ),(q ′, j +1)) ∈ E} ∈Mod(δ(q ,sj )) .

Again, we examine the casesj = 0 andj ≥ 1 separately.

Case: j = 0: Let S := {q ′|(vI ,(q ′,1)) ∈ E} be the set of successors of the

root of G . Note thatS = {q ′|(v1
I ,(q ′,1)) ∈ E1}∪{q ′|((v2

I ,(q ′,1)) ∈ E2} and

that δ(qI ,s0) = δ1(q1
I ,s0)∧ δ2(q2

I ,s0). SinceGi is a run ofAi on σ, it fol-

lows that{q ′|(v i
I ,(q

′,1)) ∈ E i} ∈ Mod(δi(q i
I ,s0)). By prop. 5.4,1 it follows

that S ∈ Mod(δ1(q1
I ,s0))∩Mod(δ2(q2

I ,s0)). Hence,S ∈ Mod(δ(qI ,s0)) (cf.

prop. 5.4,3).

Case:j ≥ 1: Let (q , j ) ∈V and letS := {q ′|((q , j ),(q ′, j +1)) ∈ E}. Observe

thatS = {q ′|((q , j ),(q ′, j +1)) ∈ E1}∪{q ′|((q , j ),(q ′, j +1)) ∈ E2}. Because

of j ≥ 1 it follows thatq ∈ Q1 or q ∈ Q2. We assume w.l.o.g. thatq ∈ Q1.

Thus,δ(q ,sj ) = δ1(q ,sj ). SinceG1 is a run ofA1 on σ, it holds

{q ′|((q , j ),(q ′, j +1)) ∈ E1} ∈Mod(δ1(q ,sj )) .

Therefore,S ∈Mod(δ(q ,sj )).
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Altogether we obtain thatG is a run ofA on σ. Since every infinite path ofG
corresponds either to a path inG1 or in G2, this run is an accepting run. �

The next lemma shows how to construct the union automaton for two weak al-

ternating automata. It is similar to the previous one, the only difference is in the

transition function. As the automaton should be able choose between the two

automata, we allow a non-deterministic choice in the initial stateqI , that is, the

transition function onqI is the disjunction of the original transition functions on

the respective initial states.

Lemma 5.10 Let Ai = (Σ,Q i ,q i
I ,δ

i ,r i), for i = 1,2, beWAAs such that

∀q ∈Q1∩Q2∀s ∈ Σ : (δ1(q ,s) = δ2(q ,s))∧ (r1(q) = r2(q)) .

Let A = (Σ,Q ,qI ,δ,r) be defined as:

• Q = Q1∪Q2∪{qI } whereqI /∈Q1∪Q2

• δ(q ,s) =

 δi(q ,s) if q ∈Q i

δ1(q1
I ,s)∨δ2(q2

I ,s) if q = qI

• r(q) =

 r i(q) if qI 6= q ∈Q i

max{r1(q1
I ),r2(q2

I )} if q = qI

ThenA is aWAA and the following holds:

L(A) = L(A1)∪L(A2) .

Proof. The proof is similar to the previous one. �

Now we present a construction that will help us to translate formulas of the form

2F . By the semantics of2F , formula F will be checked only as long as the

current location of evaluation exists. Hence, the construction depends also on a

setC . For the translation, this set will contain the configurations in which the

current name does not appear.
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Let us ignore the setC for a moment, and assume that we are given a WAAA .

Our goal is to construct an automatonA ′ that accepts a wordσ iff A accepts all

suffixes ofσ. The construction works as follows: we take all the states ofA plus a

“fresh” initial stateq ′I . The transition function on the old states is unchanged. The

initial state can perform all transitions of the original initial state, but additionally

each transition fromq ′I has to activateq ′I again (in order to check the suffix). As

an infinite repetition of the initial state is desired, we assign toq ′I an even rank.

The ranks of the old states do not change.

The following lemma gives the formal definition of this construction.

Lemma 5.11 LetA = (Σ,Q ,qI ,δ,r) be aWAA and letC ⊆Σ. Let the automaton

A ′ = (Σ,Q ′,q ′I ,δ
′,r ′) be defined as follows:

• Q ′ = Q ∪̇ {q ′I }

• δ′(q ,s) =


true if q = q ′I ands ∈ C

δ(qI ,s)∧ q ′I if q = q ′I ands /∈ C

δ(q ,s) if q 6= q ′I

• r ′(q) =

 r(q) if q 6= q ′I

2dr(qI )/2e if q = q ′I

ThenA ′ is aWAA and the following holds:

L(A ′) = {σ = s0s1 . . . ∈ Σω|∀i ∈ ω : (σ|i ∈ L(A)∨∃j ≤ i : sj ∈ C )} .

Proof. Sincer ′(qI )≤ r ′(q ′I ), A ′ is a WAA (cf. also the definition ofδ′).
”⊆”: Let G ′ = (V ′,E ′,v ′I ) be an accepting run ofA ′ on σ and leti ∈ ω be an

arbitrary natural number. We have to prove the following:

σ|i ∈ L(A)∨∃j ≤ i : sj ∈ C .

Assume that∀j ≤ i : sj /∈ C . Now we have to show thatσ|i ∈ L(A).
Let V ⊆ Q ×ω andE ⊆ V ×V be the smallest sets, such that the following

holds:
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• (qI ,0) ∈ V

• ∀q ∈Q : ((q ′I , i),(q , i +1)) ∈ E ′⇒ (q ,1) ∈ V ∧ ((qI ,0),(q ,1)) ∈ E

• ∀j ≥ 1∀q ′ ∈Q :
(
(q , j ) ∈ V ∧ ((q , i + j ),(q ′, i + j +1)) ∈ E ′

)
⇒

(
(q ′, j +1) ∈ V ∧ ((q , j ),(q ′, j +1)) ∈ E

)
ThenG = (V ,E ,(qI ,0)) is a dag. Observe that the assumption∀j ≤ i : sj /∈ C

implies that(q ′I , i) ∈V ′. Figure 5.6 illustrates the construction ofG for givenG ′.

@
@
@R

@
@
@R

- - -

@
@
@R

Q
QQs

-

@
@
@R

HHHj
(q ′I ,1)

. . .

s0 s1
sisi−1

. . .

. . .

. . .

. . .(q3,1)
(q1,1) . . .

. . .

. . .

;

(q ′I ,0)G ′ :

G : (qI ,0)

(q1, i +1)
(q3, i +1)

(q ′I , i) (q ′I , i +1)

Figure 5.6: Construction ofG from G ′

In a similar way as in the proof of lemma 5.9, we can show thatG is a run ofA
on σ|i . SinceG is essentially a subgraph ofG ′, and sinceG ′ satisfies the weak

acceptance condition,G is an accepting run.

”⊇”: Let L denote the set{s0s1 . . . ∈ Σω|∀i ∈ω : (σ|i ∈ L(A)∨∃j ≤ i : sj ∈C )}.
Let σ = s0s1 . . . ∈ L, that is, for alli ∈ω eitherσ|i ∈ L(A) or there is aj ≤ i such

thatsj ∈ C is true. We have to construct an accepting run ofA ′ on σ. Let

m :=

 min{j |sj ∈ C} if ∃j ∈ ω : sj ∈ C

ω otherwise .

Sinceσ∈L, it holdsσ|i ∈L(A) for all i < m. Fori < m, letGi = (V i ,E i ,v i
I ) be

an accepting run ofA on σ|i . Let V ′ ⊆Q ′×ω andE ′ ⊆V ′×V ′ be the smallest

sets with the following properties:

• (q ′I ,0) ∈ V ′
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• ∀j < m : (q ′I , j +1) ∈ V ′∧ ((q ′I , j ),(q
′
I , j +1)) ∈ E ′

• ∀j < m∀k ≥ 1 : (q ,k) ∈ V j ⇒ (q ,k + j ) ∈ V ′

• ∀j < m : (v j
I ,(q ,1)) ∈ E j ⇒ ((q ′I , j ),(q , j +1)) ∈ E ′

• ∀j < m∀k ≥ 1 : ((q ,k),(q ′,k +1)) ∈ E j ⇒ ((q ,k + j ),(q ′,k + j +1)) ∈ E ′

We give an illustration of this construction in fig. 5.7.

J
J

J
Ĵ
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Figure 5.7: Construction of the dagG ′ from G0, . . .Gm

It is not hard to prove thatG ′ = (V ′,E ′,(q ′I ,0)) is a run ofA on σ. In order

to prove that it satisfies the weak acceptance condition we distinguish the cases

m < ω andm = ω.

Case: m < ω: Every infinite path ofG ′ corresponds to a path of one of the

Gi ’s, thus it satisfies the acceptance condition. Hence,G ′ is an accepting run of

A on σ.

Case: m = ω: Let π be an infinite path inG ′. There are two possibilities.

Either there is aj < ω such thatπ(j ) = (q , j ) with q 6= q ′I andj is minimal, or

for all j < ω holdsπ(j ) = (q ′I , j ). In the first case, (a suffix of)π corresponds

to an infinite path inGj and as such it satisfies the acceptance condition. In the

second case, every node occurring in the pathπ has rank 2dr(qI )/2e, which

is even. Hence,π satisfies the acceptance condition also in this case, and it

follows thatG ′ is an accepting run ofA ′ on σ. �
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The next lemma gives the construction for the dual case of the sometime operator.

Lemma 5.12 LetA = (Σ,Q ,qI ,δ,r) be aWAA and letC ⊆Σ. Let the automaton

A ′ = (Σ,Q ′,q ′I ,δ
′,r ′) be defined as follows:

• Q ′ = Q ∪̇ {q ′I }

• δ′(q ,s) =


false if q = q ′I ands ∈ C

δ(qI ,s)∨ q ′I if q = q ′I ands /∈ C

δ(q ,s) if q 6= q ′I

• r ′(q) =

 r(q) if q 6= q ′I

2br(qI )/2c+1 if q = q ′I

ThenA ′ is aWAA and the following holds:

L(A ′) = {s0s1 . . . ∈ Σω|∃i ∈ ω : (σ|i ∈ L(A)∧∀j ≤ i : sj /∈ C )} .

Proof. The claim follows in a similar way as in the previous case. �

Finally we present the constructions for the weak and strong next-time operators,

respectively. Also in these cases, the automata depend on a setC . In our transla-

tion, this set will control whether or not the current location of evaluation exists

in the next configuration.

Lemma 5.13 Let A = (Σ,Q ,qI ,δ,r) be a WAA and C ⊆ Σ. Further, let the

automatonA ′ = (Σ,Q ′,q ′I ,δ
′,r ′) be defined as follows:

• Q ′ = Q ∪̇{q ′I }

• δ′(q ,s) =


true if q = q ′I ands ∈ C

qI if q = q ′I ands /∈ C

δ(q ,s) if q ∈Q
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• r ′(q) =

 r(q) if q ∈Q

r(qI ) if q = q ′I

ThenA ′ is aWAA and the following holds:

L(A ′) = {s0s1 . . . ∈ Σω|s0 ∈ C ∨σ|1 ∈ L(A)} .

Proof. It is easy to see thatA ′ is a WAA, so we only prove the equality of the

considered languages.

”⊆”: Let G ′ = (V ′,E ′,v ′I ) be an accepting run ofA ′ onσ = s0s1 . . .. Assume that

s0 /∈ C holds. We have to show thatσ|1 is accepted by the automatonA . Let the

dagG = (V ,E ,vI ) be defined by

• vI = (qI ,0)

• V = {(q , j )|(q , j +1) ∈ V ′}

• E = {((q , j ),(q ′, j +1))|((q , j +1),(q ′, j +2)) ∈ E ′}.

Note that it holds that(qI ,1) ∈ V ′ because of the assumptions0 /∈ C and by the

definition ofδ′. Therefore, it also holdsvI ∈ V .

The graphG basically arises formG ′ by “cutting off” the root. A picture to

illustrate the definition appears in fig. 5.8.

As every infinite path inG is a suffix of an infinite path inG ′, it follows thatG is

an accepting run.

”⊇”: Let σ = s0s1 . . . ∈ L, that is, eithers0 ∈ C or σ|1 ∈ L(A). We have to show

that σ is accepted byA ’. In the case thats0 ∈ C holds, the dag consisting only

of a root(q ′I ,0) is an accepting run ofA ′ on σ. So we assume thatσ|1 ∈ L(A).
Let G = (V ,E ,vI ) be an accepting run ofA on the suffixσ|1. We define the dag

G ′ = (V ′,E ′,v ′I ) as follows:

• v ′I = (q ′I ,0)

• V ′ = {v ′I }∪{(q , j +1)|(q , j ) ∈ V }
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Figure 5.8: Connection betweenG andG ′

• E ′ = {(v ′I ,(qI ,1))}∪{((q , j +1),(q ′, j +2))|((q , j ),(q ′, j +1)) ∈ E}

The graphG ′ is essentiallyG prefixed by the initial node(q ′I ,0). Again, fig. 5.8

shows the connection betweenG andG ′. It follows immediately from the defini-

tion of A ′ thatG ′ is a run ofA ′ on σ. As G satisfies the accepting condition, so

doesG ′. �

The last lemma presents the dual case.

Lemma 5.14 Let A = (Σ,Q ,qI ,δ,r) be aWAA andC ⊆ Σ. Let the automaton

A ′ = (Σ,Q ′,q ′I ,δ
′,r ′) be defined as follows:

• Q ′ = Q ∪̇{q ′I }

• δ′(q ,s) =


false if q = q ′I ands ∈ C

qI if q = q ′I ands /∈ C

δ(q ,s) if q ∈Q

• r ′(q) =

 r(q) if q ∈Q

r(qI ) if q = q ′I

ThenA ′ is aWAA and the following holds:

L(A ′) = {σ = s0s1 . . . ∈ Σω|s0 /∈ C ∧σ|1 ∈ L(A)} .
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Proof. The proof is similar to the previous one. �

5.4 Alternating Automaton for propositional MLTL

The aim of this section is to construct for a given pMLTL-formulaF and a name

n ∈ Nε a weak alternating automatonAF ,n that accepts exactly the runs for which

the formulaF at noden holds. The states of the automaton will be pairs of the

form (n,G) whereG is a sub-formula ofF andn is a name occurring inF or

ε. Intuitively, an accepting run onσ should exist from a state(n,G) iff σ,n |= G

holds. For technical reasons, the alphabet for the automaton will consist of pairs

of states instead of states as otherwise the transition function for the keep operator

would be rather complicated. The transition function of the automaton is defined

by induction on the structure of the formula.

In the following letS denote a finite set of states of the form(t ,λ). For a formula

F we write againnm(F ) to denote the set of names occurring inF . Clearly, this

set is finite for every formula.

For formulasG andF we writeG ≤ F iff G is a sub-formula ofF . The length

of a formulaA, that is, the number of occurrences of symbols in the formula, is

denoted by|A|.

Now we present the translation of pMLTL-formulas inpositive normal forminto
weak alternating automata. The set of pMLTL-formulas in positive normal form
is given by:

v | ¬v | keepm | ¬keepm | F ∧G | F ∨G | m[F ] | m〈F 〉 | 2F | 3F | dF | �F .

The main feature of the positive normal form is that negations can only occur in

front of propositional variables and thekeepm -operators.

Note that to every pMLTL-formulaF one can construct an equivalent pMLTL-

formulaF̃ in positive normal form with|F̃ | ≤ 2|F |.

Definition 5.15 For a pMLTL-formulaF in positive normal form and fora ∈ Nε

the weak alternating automatonAF ,a = (Σ,Q ,qI ,δ,r) is defined as follows:
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• Σ = S ×S

• Q = {(n,G)|n ∈ nm(F )∪{ε,a},G ≤ F}

• qI = (a,F )

• Lets = (t ,λ) ands ′= (t ′,λ′). The transition functionδ is defined inductively.

– δ((n,v),(s,s ′)) =

 true if v ∈ λ(n) andn ∈ Nε
t

false otherwise

– δ((n,¬v),(s,s ′)) =

 false if v ∈ λ(n) andn ∈ Nε
t

true otherwise

– δ((n,keepm),(s,s ′)) =

 true if t↓n.m = t ′↓n.m

false otherwise

– δ((n,¬keepm),(s,s ′)) =

 false if t↓n.m = t ′↓n.m

true otherwise

– δ((n,G1∨G2),(s,s ′)) = δ((n,G1),(s,s ′))∨δ((n,G2),(s,s ′))

– δ((n,G1∧G2),(s,s ′)) = δ((n,G1),(s,s ′))∧δ((n,G2),(s,s ′))

– δ((n,m〈G〉),(s,s ′)) =

 false if m 6<t n

δ((m,G),(s,s ′)) otherwise

– δ((n,m[G ]),(s,s ′)) =

 true if m 6<t n

δ((m,G),(s,s ′)) otherwise

– δ((n,2G),(s,s ′)) =

 true if n /∈ Nε
t

δ((n,G),(s,s ′))∧ (n,2G) otherwise

– δ((n,3G),(s,s ′)) =

 false if n /∈ Nε
t

δ((n,G),(s,s ′))∨ (n,3G) otherwise

– δ((n, eG),(s,s ′)) =

 true if n /∈ Nt ′

(n,G) otherwise
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– δ((n,�G),(s,s ′)) =

 false if n /∈ Nt ′

(n,G) otherwise

• The rankr((n,G)) of a state equalsα(G) whereα(G) is defined inductively

as follows:

– α(v) = α(¬v) = α(keepm) = α(¬keepm) = 0

– α(G1∧G2) = α(G1∨G2) = max(α(G1),α(G2))

– α(m[G ]) = α(m〈G〉) = α( eG) = α(�G) = α(G)

– α(2G) = 2dα(G)/2e

– α(3G) = 2bα(G)/2c+1

For a sequenceσ = s0s1 . . . ∈ S ω of states letσ̃ ∈ Σω denote the corresponding

sequence of transitions:

σ̃ = (s0,s1)(s1,s2)(s2,s3) . . .

Now we can show that the presented translation is correct with respect to pMLTL

in the sense as stated in the following theorem.

Theorem 5.16 Let σ = s0s1 . . . ∈ S ω be a run,n ∈ Nε andF a pMLTL-formula.

Let AF ,n be defined as above. Then the following holds:

σ,n |= F ⇔ σ̃ ∈ L(AF ,n) .

Proof. We prove the claim by induction on the structure of the formulaF .

Case:F = v ∈ V .

Only if: Assume thatσ,n |= v . By the definition of the semantics of pMLTL-

formulas and the definition of the transition function of the automatonAv ,n

it follows thatδ((n,v),(s0,s1)) = true. The claim follows by prop. 5.8.

If: Assumeσ̃ ∈ L(Av ,n). By the definition of the transition function of

Av ,n it follows that δ((n,v),(s0,s1)) equals eithertrue or false. Because
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of prop. 5.8 it can not befalse, so it istrue. Therefore,v ∈ λ0(n) andn ∈ Nε
0

holds. By the definition of the semantics of pMLTL it follows thatσ,n |= v

is true.

Case:F =¬v , F = keepm orF =¬keepm . In all these cases the claim follows

in a similar way as in the previous case.

Case:F = G1∧G2. The claim follows by lemma 5.9.

Case:F = G1∨G2. The claim follows by lemma 5.10.

Case:F = m〈G〉.

Only if: Assumeσ,n |= F , i. e. m <o n andσ,m |= G . It follows by the

induction hypothesis that̃σ ∈ L(AG ,m), i.e. there is an accepting runG of

AG ,m on σ̃. We obtain an accepting run ofAF ,n on σ̃ by replacing the root

((m,G),0) of G by ((n,F ),0).

If: Let G be an accepting run ofAF ,n on σ̃. It follows by prop. 5.8 and by

the definition of the transition function thatm <0 n and that we can construct

an accepting run ofAG ,m on σ̃ by replacing the root ofG with ((m,G),0).
The induction hypothesis implies thatσ,m |= G . Sincem <0 n, we obtain

σ,n |= F .

Case:F = m[G ]. The proof of this case is similar as in the previous case.

Case: F = 2G . Let C = {((t ,λ),(t ′,λ′))|n /∈ Nt}. The claim follows by

lemma 5.11.

Case: F = 3G . With C = {((t ,λ),(t ′,λ′))|n /∈ Nt}, the claim follows by

lemma 5.12.

Case: F = eG . Let C = {((t ,λ),(t ′,λ′))|n /∈ Nt ′}. The claim follows by

lemma 5.13.

Case: F = �G . Let C = {((t ,λ),(t ′,λ′))|n /∈ Nt ′}. The claim follows by

lemma 5.14. �

We give some examples to illustrate the translation. The first example, given in

fig. 5.9, is the automaton for formula3m〈2v〉 at the root. According to the

definition, the initial node is(ε,3m〈2v〉 and it has rank 1. An edge labelled by
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qm[false]
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m〈v〉

(ε,3m〈2v〉) (1)

m〈v〉 true

(m,2v) (0)

Figure 5.9: AutomatonA3m〈2v〉,ε

a (pure spatial) formulaF indicates that the transition is possible exactly for the

configuration pairs(s,s ′) with s |= F .

If m〈v〉 holds in the current configuration, then we have the choice between ac-

tivating the initial node again (m〈v〉 holds now, but maybe notm〈2v〉), or acti-

vating node(m,2v) (to prove thatm[2v ] holds for the suffix). From(m,2v),
if m[false] holds, then no state is activated, ifm〈v〉 holds, then the same state is

activated again (as in this casem occurs in the current tree, according to the def-

inition we have to prove that2v holds atm also for the suffix). In the remaining

case thatm〈¬v〉 holds, the automaton does not accept the run.

If m〈v〉 does not hold, thenm〈2v〉 cannot hold for the current inputσ, so the

initial node is activated again in order to check whether it holds for the suffixσ|1.

The rank 1 of the original formula reflects the fact that activating the initial state

again and again (i.e. postponing the proof of the eventually formula) should not

lead to an accepting run.

The second example, depicted in fig. 5.10, is the automaton that checks whether

32(v ∧m〈3w〉) holds at locationn.

5.5 Applications to decision problems

As already mentioned, theorem 5.16 enables us to solve the model checking and

the satisfiability problem for propositional MLTL.

In order to state a theorem about the model checking problem we introduce the
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(n,2(v ∧m〈3w〉) (2)

n[false]
n〈v ∧m〈¬w〉〉

Figure 5.10: AutomatonA32(v∧m〈3w〉),n

notion of aspatial transition system.

Definition 5.17 Let N be a denumerable set of names andV a denumerable set

of propositional variables. Aspatial transition systemis a tupleM = (S ,R,sI )
with

• S ⊆ {(t ,λ)|t = (Nt ,<t), finite tree overN,λ : Nε
t → 2V } is the set of states.

• R ⊆ S ×S is the transition relation.

• sI ∈ S is the initial state ofM .

A finite state spatial transition systemis a spatial transition systemM = (S ,R,sI )
with |S |< ω.

Note that such a finite state transition system can be regarded as a Büchi au-

tomaton over the alphabetS ×S , with state spaceS and with trivial acceptance

condition. We will denote this corresponding automaton byAM .

Theorem 5.18 (Model Checking)Let F be a propositional MLTL-formula in

positive normal form andM = (S ,R,sI ) a finite state spatial transition system.

The question, whether for all runsσ of M holdsσ,ε |= F , can be solved in time

O(|S | ∗2|F |
2
).
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Proof. First note that for a pMLTL-formula in positive normal form it is easy

to find a formulaG in positive normal form equivalent to¬F and of (essentially)

the same length asF : one only needs to dualise all operators. LetG be such a

formula and letn denote the length|F | of F .

Now we construct the automatonAG ,ε as defined in theorem 5.16. Its state space is

a subset of(nm(G)∪{ε})×SF(G), where SF(G) denotes the set of sub-formulas

of G . As the set of names occurring inG as well as the set of its sub-formulas are

bounded by the size ofF , this set is at most of sizeO(n2). By prop. 5.7,AG ,ε can

be translated into a B̈uchi automatonAB of size exponential in the size ofAG ,ε.

By prop. 5.3, one can construct a Büchi automatonAM ×AB with O(|S | ∗2n2
)

states and

L(AM ×AB ) = L(AM )∩L(AB ) =
(
L(AM )∩L(AG ,ε)

)
.

This language contains exactly the runs ofAM that satisfyG , that is, the runs that

do not satisfyF . Hence, all runs ofM have the property described byF iff this

language is empty. As the non-emptiness of Büchi automata can be checked in

time linear in the size of the automaton, the proof is finished. �

Using the translation, we also can show the decidability of propositional MLTL:

Theorem 5.19 (Satisfiability) LetF be a pMLTL-formula. The question, whether

F is satisfiable, can be solved in timeO(2|F |
2
).

Proof. By corollary 4.28,F is satisfiable iff there is a run

σ = ((N0,<0),λ0)((N1,<1),λ1) . . .

such thatNi ⊆ nm(F )∪{na |a ∈ nm(F )}, λi : Nε
i → 2at(F ) andσ,ε |= F . Hence, it

follows by theorem 5.16 thatF is satisfiable iffL(AF ,ε) 6= /0 where the automaton

AF ,ε is defined as in definition 5.15 over the alphabetS ×S with

S =
{
(t ,λ)|Nt = nm(F )∪{na |a ∈ nm(F )},λ : Nε

t → 2at(F ) .
}

As the state space ofAF ,ε is bounded by|F |2, the assertion follows from the fact

that the non-emptiness problem for weak alternating automata can be solved in

time exponential in the size of the automaton (via a translation to a Büchi automa-

ton with size exponential in the size of the WAA). �





Chapter 6

Extensions of MTLA

This chapter discusses limitations of the logic MTLA introduced so far in the

context of the dynamic creation of agents. We suggest possible extensions to

allow to talk about dynamically created agents. The first extension, motivated and

presented in sec. 6.2 and sec. 6.3, introduces a “rigid” quantifier for names. The

second extension given in sec. 6.4 is more radical – flexible quantification over

sets of names is allowed. This enables us to describe the hiding of dynamically

created agents. We would like to point out that the properties of the proposed new

quantifiers and the benefits they offer are not elaborated with the thoroughness as

in the case of the operators presented earlier. They are rather ad hoc suggestions

to handle the problem of the dynamic creation of mobile agents.

6.1 Dynamic creation ofk agents

In section 2.2 we have presented an MTLA-specification of a simple agent that

collects flights on behalf of a user (cf. fig. 2.3, p. 11). As a modification of this

example, we could consider a travel agent that collects offers for flights and hotels

in a network for a set of potential destinations, but this time an agent that does not

work alone. Every time it finds a flight to some destinationd , the agent produces

a new agent to collect offers for hotels ind . These agents deliver their collected

111
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offers to the home location by changing variablehome.resh . The main agent itself

collects flights and on return it puts the collected flights intohome.resf .

If we know in the beginning how many hotel agents are going to be created, we

can specify the system in MTLA without any further extension. Assume that at

mostk agents will be needed. Assume further thathag1, . . . ,hagk are pairwise

distinct names withhagi /∈ Net andhagi 6= ag for all i ∈ {1, . . . ,k}. Figure 6.1

shows the overall specification, using the actions defined in well as the definition

of the hotel agents in fig. 6.4.

Init1 ≡ ∧ home.ag〈true〉∧ag .ctl = “idle”

∧
Vk

i=1hagi [false]

Network ≡ . . .

vars ≡ 〈ag .ctl ,ag .dests,ag .time,ag .rest ,ag .found ,ag .sent〉

varshome ≡ 〈home.resf ,home.resh〉

IDynAgent1 ≡ ∧ Init1

∧
V

n∈Net 2
[W

m∈Net DynMove1n,m

]
−n.ag

∧ 2
[
DynHomeActs1∨

W
n∈Net DynActions1n

]
vars,varshome

∧
Vk

i=12
[
Create1n(hagi)

]
+hagi

DynAgent1 ≡ ∃∃∃∃∃∃hag1 . . .∃∃∃∃∃∃hagk : IDynAgent1

Figure 6.1: Dynamically created agents of bounded number

Initially, no one of the hotel agents should exists yet, expressed by the conjunct

k̂

i=1

hagi [false]

of the formulaInit1. The possible actions at the home location are similar to those

of the originalFlightAgent : the agent can be sent to search for offers, expressed

by DynPrep1(ds, t) whereds is now a list of possible destinations andt a time

period. However, we now have the additional variablesdests, for the possible

destinations,rest , that contains a destinationd iff the agent still has to look for

a flight tod , andsent that contains a destinationd iff a hotel agent has already
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DynPrep1(ds, t) ≡ ∧ home.ag〈true〉∧ dhome.ag〈true〉

∧ ag .ctl = “idle”∧ag .ctl ′ = “busy”

∧ ag .dests ′ = ds ∧ag .dest ′ = hd(ds)∧ag .time ′ = t

∧ ag .rest ′ = tl(ds)∧ag .found ′ = /0∧ag .sent ′ = /0

∧ UNCHANGED varshome

DynGetFlight1n ≡ ∧ n.ag〈true〉∧ dn.ag〈true〉

∧ ag .ctl = “busy”∧〈ag .dest ,ag .time〉 ∈ n.flights

∧ ag .found ′ = ag .found ∪{
[loc : n.id ,

dest : ag .dest ,

time : ag .time,

fl : getFlight(〈ag .dest ,ag .time〉,n.flights)]
}

∧ UNCHANGED ag .ctl ,ag .time,ag .dests,ag .dest

∧ UNCHANGED ag .rest ,ag .sent ,varshome

Create1n(hag) ≡ ∧ n.ag〈true〉∧ dn.ag〈true〉∧ag .ctl = “busy”

∧ ag .dest /∈ ag .sent ∧∃f ∈ ag .found : f .dest = ag .dest

∧ ag .sent ′ = ag .sent ∪{ag .dest}

∧ hag [false]∧ dn.hag〈true〉

∧ dHAgent(hag ,〈ag .dest ,ag .time〉)

∧ UNCHANGED ag .ctl ,ag .time,ag .dests,ag .dest

∧ UNCHANGED ag .rest ,ag .found ,varshome

NewItem1n ≡ ∧ n.ag〈true〉∧ dn.ag〈true〉

∧ ∨ ag .dest ∈ ag .sent

∨ ¬∃f ∈ n.flights : f .dest = ag .dest

∧ ag .rest 6= 〈〉∧ag .rest ′ = tl(ag .rest)∧ag .dest ′ = hd(ag .rest)

∧ UNCHANGED ag .ctl ,ag .dests,ag .found ,ag .sent ,ag .time

∧ UNCHANGED varshome

Figure 6.2: Actions of the first travel agent, part 1
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been created to look for a hotel ind . Further, the agent can deliver the offers it has

found, described byDynDeliver1 that is essentially likeDeliver in FlightAgent ,

but it puts the collected offers into variableresf instead ofres. Finally, one of the

hotel agents may come home, as expressed by

k_
i=1

DynRcv1(hagi) .

The actionsDynRcv1(hag) are similar toDynDeliver1, but they modifyresh
instead ofresf to indicate that an offer for ahotelhas been delivered. Furthermore,

agenthag is destroyed afterwards. This has the advantage that in principle the

name can be reused to create a new agent.

At a network noden, there are four different kinds of actions. The agent can

take an offer by performingDynGetFlight1n , that is essentially the same as

the actionGetFlightn of FlightAgent , but it specifies more precisely the struc-

ture of the collected offers. The second possibility is to change the item the

agent is looking for. This is described by formulaNewItem1n . It is executed

if either ag has sent a hotel agent to look for a hotel in the current destina-

tion (ag .dest ∈ ag .sent) or if there is no flight offer at the current location to

the current destination, and if the agent still has some destinations to check for

flights (ag .rest 6= 〈〉). The current destination is set to the first one of the re-

maining destinations (ag .dest ′ = hd(ag .rest)) and the old destination is removed

from ag .rest (ag .rest ′ = tl(ag .rest)). The third kind of action is the moving of

an agent from one site to another (DynMove1n,m ). It can be executed as soon

as the hotel offers for all destinations have been checked at the current location

(ag .rest = 〈〉). Apart from moving the agent it also resets the variablesag .dest

to hd(ag .dests) andag .rest to tl(ag .dests). Finally, a hotel agent can be created,

as described byCreate1n(hag). It has the preconditions thathag does not exist

yet, that no hotel agent is in charge with the current destination, and that a flight

to this destination has been found. In this case, an agent that satisfies specification

HAgent(hag ,〈ag .dest ,ag .time〉) is created. Note that we make use of MTLA’s

feature of allowing arbitrary temporal formulas to describe transitions. Further,

ag .dest is added toag .sent . This is done in order to remember that there is al-

ready a hotel agent in charge withag .dest .
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DynMove1n,m ≡ ∧ n.ag〈true〉∧ dm.ag〈true〉
∧ ag .ctl = “busy”∧ag .rest = 〈〉
∧ ag .rest ′ = tl(dests)∧ keepag

∧ ag .dest ′ = hd(dests)

∧ UNCHANGED ag .ctl ,ag .dests.ag .found ,ag .time

∧ UNCHANGED ag .sent ,varshome

DynDeliver1 ≡ ∧ home.ag〈true〉∧ dhome.ag〈true〉
∧ ag .ctl = “busy”∧ag .ctl ′ = “idle”

∧ home.res ′f = ag .found

∧ UNCHANGED home.resh
DynRcv1(hag) ≡ ∧ home.hag〈true〉∧ dhag [false]

∧ home.res ′h = home.resh ∪hag .found

∧ UNCHANGED ag .ctl ,ag .item,ag .dests,ag .rest

∧ UNCHANGED ag .found ,ag .sent ,home.resf
DynHomeActs1 ≡ ∨ (∃ds, t : DynPrep1(ds, t))

∨ DynDeliver1

∨
Wk

i=1DynRcv1(hagi)

DynActions1n ≡ ∨ DynGetFlight1n ∨NewItem1n

∨
W

m∈Net DynMove1n,m

∨
Wk

i=1Create1n(hagi)

vars ≡ 〈ag .ctl ,ag .dests,ag .item,ag .rest ,ag .found ,

ag .sent ,home.resf ,home.resh〉

Figure 6.3: Actions of the first travel agent, part 2

SpecificationHAgent(hag ,〈d , t〉) is depicted in fig. 6.4. It is – up to names and

names of variables – very similar to the specification of theFlightAgent . One

important difference is that it does not claim that variableresh can only be mod-

ified by the transitions performed by the particular hotel agenthag , because any

of the hotel agents can do this. The control overresh is taken by specification

DynAgent1 of the overall system.

The specificationIDynAgent1 in fig. 6.1 is the inner specification of the sys-

tem. It puts together the actions described above and additionally requires that the
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HInit((d , t),k) ≡ ∧ hag〈true〉∧hag .ctl = “busy”

∧ hag .found = /0∧hag .item = 〈d , t〉

GetHoteln ≡ ∧ n.hag〈true〉∧ dn.hag〈true〉

∧ hag .ctl = “busy”∧hag .item ∈ n.hotels

∧ hag .found ′ = hag .found

∪ {(n.id ,getHotel(hag .item,n.hotels))}

∧ UNCHANGED hag .ctl ,hag .item

HMoven,m ≡ ∧ n.hag〈true〉∧ dm.hag〈true〉

∧ hag .ctl = “busy”∧ keephag

∧ UNCHANGED hag .ctl ,hag .item,hag .found

HDeliver ≡ ∧ home.hag〈true〉∧ dhag [false]

∧ hag .ctl = “busy”∧hag .ctl ′ = “idle”

∧ home.res ′h = home.resh ∪hag .found

varsh ≡ 〈hag .ctl ,hag .found ,hag .item〉

HAgent(hag ,(d , t)) ≡ ∧ HInit((d , t))

∧
V

n∈Net 2
[W

m∈Net HMovem,n

]
−n.hag

∧ 2
[
HDeliver ∨

W
n∈Net GetHoteln

]
varsh

Figure 6.4: MTLA-Specification of the Hotel Agent

agentshagi can only arise by creation byag . This requirement is expressed by

the conjunct

k̂

i=1

2
[W

n∈Net Create1n(hagi)
]
+hagi

.

This inner specification, however, does not describe the dynamic creation of agents

as all the names are explicitely given. So as the last step, we hide the names of all

these agents, and obtain the overall specification

∃∃∃∃∃∃hag1, . . . ,∃∃∃∃∃∃hagk : IDynAgent1 .
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6.2 Dynamic creation of arbitrarily many agents

The method to create agents described in the previous section works only if we

can fix the maximal number of agents to be created. The natural way to modify

specificationDynAgent1 to allow to create arbitrarily many sub-agents would be

to replace the disjunctions in
Wk

i=1DynRcv1(hagi) and
Wk

i=1Create1n(hagi) by

existential quantifiers. This would lead to formulas like∃∃∃∃∃∃hag : DynRcv1(hag)
and∃∃∃∃∃∃hag : Create1n(hag). Unfortunately, this does not work. The problem with

this specification is that it does not guarantee authenticity of the returning hotel

agents. Note that inDynAgent1 authenticity was (essentially) ensured by the

formula

2
[Wk

i=1DynRcv1(hagi)
]
home.resh

.

If we replace the disjunction by the name quantifier, it will be impossible to distin-

guish authentic agents (created and sent byag) from intruders, basically because

formula

2
[
∃∃∃∃∃∃hag : DynRcv1(hag)

]
home.resh

does not say anything about the hidden agenthag . This has to do with the fact

that the name quantifier in a formula∃∃∃∃∃∃n : F implicitly quantifies over all local

variables at locationn.

Nevertheless, one can try to define an existential quantifier over names that allows

to control the local variables at the quantified names. This is what we are going to

do now.

SpecificationDynAgent , given in fig. 6.5, carries out this idea by using a new

existential quantifier. It uses also the formulas given in fig. 6.6 and fig. 6.7. The

omitted parts of the specification – indicated by dots – are the corresponding for-

mulas ofDynAgent1 in the previous section. The semantics of the quantifier will

be introduced in the next section. Informally, a formula∃z : F asserts the exis-

tence of an “anonymous” location, that is, of a location whose name is not known,

for whichF holds.

The main difference compared with specificationDynAgent1 is, apart from the

replacement of the disjunctions by quantifiers, the way authenticity is ensured.
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Init ≡ home.ag〈true〉∧ag .ctl = “idle”

vars ≡ 〈ag .ctl ,ag .dests,ag .time,ag .rest ,ag .found ,ag .sent ,ag .key〉
varshome ≡ 〈home.resf ,home.resh ,home.key〉

IDynAgent ≡ ∧ Init

∧
V

n∈Net 2[
W

m∈Net DynMoven,m ]−n.ag

∧ 2
[
DynHomeActs ∨

W
n∈Net DynActionsn

]
vars,varshome

Security ≡ ∀z : 2[IDynAgent [z/ag ]∨
W

n∈Net Createn(z )]+(z .key=home.key)

DynAgent ≡ ∧ Network

∧ IDynAgent

∧ Security

Figure 6.5: Agent with arbitrarily many created sub-agents

For this purpose we introduce a variablekey . The result delivered by an agent is

only accepted if the agent has the right key as asserted by the conjuncthag .key =
home.key of formulaHDeliver . This together with formulaSecurity guarantees

authenticity:Security requires that an agent that obtains the right key (whenever

formulaz .key = home.key becomes true during a transition) either behaves like

the “main” agent or like one of the hotel agents.

6.3 Rigid quantification over names

In the previous section we introduced informally a rigid name quantifier. Now we

give the precise definition of its semantics.

Technically, we have to extend the definition of MTLA as well as our model def-

inition. We assume a further denumerable setV n of name variables. We modify

the definition of formulas accordingly: for an (im)pure formulaA and a name

variablez ∈ V n we let

z [A] | ∃z : A

also be (im)pure formulas. The model notion is modified by requiring that the

valuationξ assigns to every name variable a name, i.e.ξ : Vr ∪V n → |I|∪N with
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DynPrep(ds, t) ≡ ∧ . . .

∧ ag .key ′ = home.key

∧ UNCHANGED varshome

DynGetFlightn ≡ ∧ . . .

∧ UNCHANGED . . . ,ag .key ,home.key

Createn(hag) ≡ ∧ . . .

∧ HAgent(hag ,〈ag .dest ,ag .time〉,ag .key)

∧ UNCHANGED . . . ,ag .key ,home.key

NewItemn ≡ ∧ . . .

∧ UNCHANGED . . . ,ag .key ,home.key

DynMoven,m ≡ ∧ . . .

∧ UNCHANGED . . . ,ag .key ,home.key

DynDeliver ≡ ∧ . . .

∧ UNCHANGED . . . ,home.key

DynRcv(hag) ≡ ∧ . . .

∧ home.key = hag .key

∧ UNCHANGED . . . ,ag .key ,home.key

DynHomeActs ≡ ∨ ∃ds, t : DynPrep(ds, t)

∨ DynDeliver

∨ ∃hag : DynRcv(hag)

DynActionsn ≡ ∨ DynGetFlightn ∨NewItemn

∨
W

m∈Net DynMoven,m

∨ ∃hag : Createn(hag)

vars ≡ 〈. . . ,ag .key ,home.key〉

Figure 6.6: Actions ofDynAgent

ξ(Vr )⊆ |I| andξ(V n)⊆ N. The definition of the semantics of MTLA-formulas

is extended by the following clauses:

• σ,n,ξ |= z [A] iff σ,n,ξ |= m[A] for m = ξ(z )

• σ,n,ξ |= ∃z : A iff σ,n,ξ[z := m] |= A for some namem ∈ N
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HInit((d , t),k) ≡ ∧ . . .

∧ hag .key = k

GetHoteln ≡ ∧ . . .

∧ UNCHANGED . . . ,hag .key

HMoven,m ≡ ∧ . . .

∧ UNCHANGED . . . ,hag .key

HDeliver ≡ ∧ . . .

∧ hag .key = home.key

∧ UNCHANGED home.key

varsh ≡ 〈hag .ctl ,hag .dest ,hag .found ,hag .item,hag .key〉

HAgent(hag ,(d , t),k) ≡ ∧ HInit((d , t),k)

∧
V

n∈Net 2
[W

m∈Net HMovem,n

]
−n.hag

∧ 2
[
HDeliver ∨

W
n∈Net GetHoteln

]
varsh

Figure 6.7: MTLA-Specification of the Hotel Agent

whereξ[z := m] is defined as follows:

ξ[z := m](z̃ ) =

 m if z̃ = z

ξ(z̃ ) otherwise .

We do not aim here at giving a complete proof system for the extended logic.

However, let us mention that the standard quantification rules

(∃N-I) A[m/z ]⇒∃z : A
A⇒ B

(∃N-E)
(∃z : A)⇒ B

are sound on the usual condition for (∃N-E) thatz must not have free occurrences

in B . Furthermore, as the semantics of MTLA allows only for finite trees, there

are always names that do not occur in the current tree. Hence, an axiomatisation

would have to contain an axiom like

(fin) ∃z : z [false] .

Further, most axioms ofΣMLTL could be modified by replacing every name by a

universally quantified name variable. (As usual, we write∀z : A ≡ ¬∃z : ¬A.)
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For example, (ax2) would by replaced by

∀z0,z1 : z0[F ]⇒ z1[z0[F ]] .

However, as we did not introduce equality on name variables, we cannot do the

same for

(ax5) (a1.b ∧a2.b)⇒ (a1.a2∨a2.a1) (for a1 6= a2) .

We either could keep the original axiom, or take something like

∀z ,z1,z2 :
(
(∃z0 : z1.z0∧¬z2.z0)∧ (z1.z ∧ z2.z )⇒ (z1.z2∨ z2.z1)

)
,

where the first conjunct makes sure that the two variablesz1 andz2 cannot assume

the same value.

Observe that using the name quantifier, the operatorskeepm can be defined as

follows:

keepm ≡ ∧ m〈true〉 ⇔ em〈true〉

∧ ∀z0∀z1 : ∧ m.z0〈true〉 ⇔ em.z0〈true〉

∧ m.z0.z1〈true〉 ⇔ em.z0.z1〈true〉 .

The first conjunct ensures thatm occurs either in both (the current and the next)

configurations or in neither of them. The second conjunct says that the names

beneath nodem are the same as in the next tree. The last conjunct makes sure that

also the order between these names is preserved.

We would like to point out that the concept of rigid quantification over names –

and already the keep operator - does not really fit in TLA’s philosophy, because

it destroys MTLA’s property of (spatial) stuttering invariance. However, this does

not mean that all the refinement principles presented in chapter 3 are useless now,

it just means that one cannot apply them “blindly”, but has to be careful in the

presence ofkeepm and the rigid name quantifier. For example, in our situation

it is perfectly legitimate to extend the newly created hotel agents by sub-nodes,

essentially because the following formula is valid:

∃z : z .n[F ]⇒∃z : z .m.n[F ] .
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6.4 Hiding of anonymous agents

In the previous section we presented a way to extend MTLA that enables us to de-

scribe the dynamic creation of agents. However, the specification given in fig. 6.5

does not allow for implementations where the task of the agents – searching for

offers – is realised by other techniques then by mobile agents, because the formu-

las∃hag : Createn(hag) require the presence of sub-agents. If we want to enable

such refinements, we have to be able to hide such “anonymous” agents. As their

names are not known, we cannot use the name quantifier defined in sec. 3.3 (in

connection with the virtualisation of locations) for this purpose. Instead, we allow

to hide sets of locations, and require the created locations to belong to the hidden

set.

Figure 6.8 contains a part of the MTLA-specification of a travel agent that is,

similarly to the one specified byDynAgent in fig. 6.5, able to create arbitrarily

many sub-agents to collect offers for hotels, but this time all the sub-agents are

hidden from the interface as expressed by the existential quantification over the

name set variableHAG .

Intuitively, (the value of) variableHAG contains the names of all possible sub-

agents. The inner specification is almost the same asDynAgent . The main differ-

ences are to observe when a sub-agent is created (formulaTACreaten(hag)) and

when it returns to the home location (TARcv(hag)). In both cases, we require

the name variablehag to belong to the set given by the variableHAG . Further,

we do not need thekey anymore, as the authenticity of the agents is now ensured

by the conjuncthag ∈ HAG , the additional conjunct inInit that asserts that ini-

tially no agent inHAG exists, and the last conjunct in the inner specification that

says that whenever a new agent fromHAG appears, then it behaves correctly. So

we leave out all formulas containing variablekey . In the overall specification we

have omitted some of the actions as they are almost the same as the corresponding

formulas ofDynAgent , the main difference being that no variablekey is needed.

In addition to the setsVr , Vf andV n of rigid, flexible and name variables, we

assume a setV ns of name set variablesso that all the different variable sets

are pairwise disjoint. We will denote the variables in this set by capital letters
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TAInit ≡ ∧ . . .

∧ ∀z : (z ∈HAG ⇒ z [false])

TACreaten(hag) ≡ ∧ . . .

∧ hag ∈HAG ∧ dn.hag〈true〉
∧ . . .

TARcv(hag) ≡ ∧ . . .

∧ hag ∈HAG ∧ . . .

∧ . . .

TAHomeActs ≡ ∨ ∃ds, t : TAPrep(ds, t)

∨ Deliver

∨ ∃hag : TARcv(hag)

TAActionsn ≡ ∨ TAGetFlightn ∨TANewItemn

∨
W

m∈Net TAMoven,m

∨ ∃hag : TACreaten(hag)

ITravelAgent ≡ ∧ Init

∧ Network

∧
V

n∈Net 2[
W

m∈Net TAMoven,m ]−n.ag

∧ 2
[
TAHomeActs ∨

W
n∈Net TAActionsn

]
vars

∧ ∀z ∈HAG : 2[
W

n∈Net TACreaten(z )]+z 〈true〉

TravelAgent ≡ ∃∃∃∃∃∃HAG : ITravelAgent

Figure 6.8: Travel Agent with hidden sub-agents

X ,Y ,Xi ,Yi , . . .. Further, we assume that the valuationξ provides values for the

name set variables, i.e.ξ assigns to everyX ∈ V ns a set of namesS ⊆ N.

We extend the syntax of MTLA as follows:

F ::= . . . | z ∈ X | m ∈ X | ∃∃∃∃∃∃X : F .

For the definition of the semantics we will need the following definitions. For

every setS ⊆ N of names we define a relation<S on the set of configurations.
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(s,λ) <S (t ,µ) iff Ns = Nt \S and

<s = <t ∩ (Ns ×Ns) and

λ(a) = µ(a) for all a ∈ Ns

For runsσ = (s0,λ0)(s1,λ1) . . . andτ = (t0,µ0)(t1,µ1) . . . and a set of namesS we

defineσ <S τ to hold iff (si ,λi) <S (ti ,µi) for all i ∈ ω.

The definition of the semantics of the new formulas is given in fig. 6.9.

σ(n,ξ)(X ) = ξ(X ) for X ∈ V ns

σ,n,ξ |= z ∈ X iff ξ(z ) is an element ofξ(X )

σ,n,ξ |= m ∈ X iff m is an element ofξ(X )

σ,n,ξ |= ∃∃∃∃∃∃X : F iff there are runsρ,τ and a setS ⊆ N with ρ' σ, ρ <S τ

andτ,n,ξ[X := S ] |= F

Figure 6.9: Semantics of extended MTLA

The intuitive interpretation of this existential quantifier is analogous to the one of

the (flexible) name quantifier. A formula∃∃∃∃∃∃X : F means that we can extend the

run by names so thatF holds for the extended run.



Chapter 7

Conclusion

In the present thesis we have introduced and studied a novel spatio-temporal logic

called MTLA intended for the specification and refinement of systems that make

use of mobile code. In contrast to most previous logics for similar purposes, the

semantics of our logic is based on Kripke structures instead of process algebras.

In chapter 3 we have considered different notions of refinement that we believe to

make sense in the context of mobile systems. We have shown MTLA to support

these kinds of refinement. For the sake of simplicity, we have considered the logic

MLTL of which MTLA is a fragment to carry out the theoretical work in chapter 4

and chapter 5. In chapter 4 we have presented a proof system that we have proven

to be sound and complete with respect to the (propositional fragment of the) logic

MLTL. In chapter 5 we have given a translation of MLTL into weak alternating

automata and used this result to prove the satisfiability problem to be decidable.

The same result also provided us with a solution of the model checking problem.

The last chapter has considered some rather ad hoc extensions of MTLA.

There is still work to be done on every level. We have presented only small toy

examples. In the future, we would like to validate the logic on the basis of more

realistic applications. Our axiomatisation only has considered the quantifier free

part of the logic, possible axioms for the different quantifiers have been studied

only informally. This gap has to be filled. We also plan to investigate the adequacy

of the extensions presented in chapter 6 more carefully.
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Another interesting question is the applicability of MTLA to other problems than

the specification of mobile systems. Tree structures that change over time appear

in many contexts, for example, XML documents can be regarded as trees and their

update corresponds to modification of the tree structure.



Appendix A

Auxiliary derivations

We give derivations of the theorems and rules used in chapter 4.

Boxed version of (ax3), that is,n[¬a[F ]⇒ a[¬F ]]:

(1) n[¬a[F ]]⇔ (n.a[F ]⇒ n[false]) (T2),(T3),(T4),(prop)

(2) (n.a[F ]⇒ n[false])⇔¬n.a[F ]∨n[false] (ax0)

(3) ¬n.a[F ]⇒ n.a[¬F ] (T1)

(4) n[false]⇒ n.a[¬F ] (T4)

(5) ¬n.a[F ]∨n[false]⇒ n.a[¬F ] (3),(4),(prop)

(6) n[¬a[F ]]⇒ n.a[¬F ] (1),(2),(5),(prop)

(7) n[¬a[F ]⇒ a[¬F ]] (T3),(6),(prop)

Boxed version of (ax4), that is,n[a.a[false]]:

(1) a.a[false]⇒ n[a.a[false]] (ax2)

(2) a.a[false] (ax3)

(3) n[a.a[false]] (1),(2),(mp)
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Boxed version of (ax5), that is,

n[a1.b〈true〉∧a2.b〈true〉 ⇒ a1.a2〈true〉∨a2.a1〈true〉]:

(1) n[a1.b]∧n[a2.b]⇒ n[false]∨ (n.a1.b ∧n.a2.b) (T6),(prop)

(2) n.a1.b ∧n.a2.b⇒ a1.b ∧a2.b (ax2),(prop)

(3) n.a1.b ∧n.a2.b⇒ a1.a2∨a2.a1 (ax5),(2),(prop)

(4) n.a1.b ∧a1.a2⇒ n.a1.a2 (ax2),(prop),(T7)

(5) n.a2.b ∧a2.a1⇒ n.a2.a1 (ax2),(prop),(T7)

(6) n.a1.b ∧n.a2.b⇒ n.a1.a2∨n.a2.a1 (3),(4),(5),(prop)

(7) n.a1.a2⇒ n[a1.a2] (T6),(prop)

(8) n.a2.a1⇒ n[a2.a1] (T6),(prop)

(9) n.a1.b ∧n.a2.b⇒ n[a1.a2]∨n[a2.a1] (6),(7),(8),(prop)

(10) n[a1.a2]∨n[a2.a1]⇒ n[a1.a2∨a2.a1] (T9a),(prop)

(11) n.a1.b ∧n.a2.b⇒ n[a1.a2∨a2.a1] (9),(10),(prop)

(12) n[false]⇒ n[a1.a2∨a2.a1] (T4)

(13) n[a1.b]∧n[a2.b]⇒ n[a1.a2∨a2.a1] (1),(11),(12)

(14) n[a1.b ∧a2.b]⇒ n[a1.b]∧n[a2.b] (T9b),(prop)

(15) n[a1.b ∧a2.b]⇒ n[a1.a2∨a2.a1] (14),(13),(prop)

(16) n[a1.b ∧a2.b⇒ a1.a2∨a2.a1] (15),(T3)

(T10): eF ∧ eG ⇔ e(F ∧G):

(1) e(F ⇒¬G)⇒ ( eF ⇒ e¬G) (ax7)

(2) e(F ⇒¬G)⇒ ( eF ⇒¬ eG) (1),(ax6),(prop)

(3) ¬( eF ⇒¬ eG)⇒¬ e(F ⇒¬G) (2),(prop)

(4) ¬( eF ⇒¬ eG)⇒ e¬(F ⇒¬G) (3),(ax6),(prop)

(5) eF ∧ eG ⇒ e(F ∧G) (4),(prop)

(6) e(F ∧G ⇒ F ) (ax0),(nex)
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(7) e(F ∧G)⇒ eF (6),(ax7),(mp)

(8) e(F ∧G)⇒ eG (ax0),(nex),(ax7),(mp)

(9) e(F ∧G)⇒ eF ∧ eG (7),(8),(prop)

(10) eF ∧ eG ⇔ e(F ∧G) (5),(9),(prop)

(T11): F ∧ e2F ⇒2F :

(1) e2F ⇒ e(F ∧ e2F ) (nex),(ax8),(ax7),(mp)

(2) F ∧ e2F ⇒ e(F ∧ e2F ) (1),(prop)

(3) F ∧ e2F ⇒ F (ax0)

(4) F ∧ e2F ⇒2F (ind),(2),(3)

(T12): n[2F ]⇔ (n[F ]∧n[ e2F ]):

(1) n[2F ⇔ F ∧ e2F ] (axn8)

(2) n[2F ]⇔ n[F ∧ e2F ] (ax1),(T3),(1),(prop)

(3) n[2F ]⇔ n[F ]∧n[ e2F ] (2),(T9b),(prop)

(alw): F `2F :

(1) F assumption

(2) eF (nex),(1)

(3) F ⇒ eF (prop),(2)

(4) F ⇒2F (ind),(3),(prop)

(5) 2F (mp),(1),(4)

(T13): 2(F ⇒G)⇒ (2F ⇒2G):

By the deduction theorem it suffices to showF ⇒G ,F `2G .

(1) F ⇒G assumption

(2) F assumption



130

(3) G (1),(2),(mp)

(4) 2G (alw),(3)

(T14): 2(F ∧G)⇔2F ∧2G :

(1) 2(F ∧G ⇒ F ) (alw),(ax0)

(2) 2(F ∧G ⇒G) (alw),(ax0)

(3) 2(F ∧G)⇒2F (T14),(1),(mp)

(4) 2(F ∧G)⇒2G (T14),(2),(mp)

(5) 2(F ∧G)⇒2F ∧2G (prop),(4)

(6) 2F ∧2G ⇒ e(2F ∧2G) (ax8),(prop),(T10)

(7) 2F ∧2G ⇒ F ∧G (ax8),(prop)

(8) 2F ∧2G ⇒2(F ∧G) (6),(7),(ind)

(9) 2(F ∧G)⇔2F ∧2G (5),(8),(prop)

Boxed version of one direction of (ax6), that is,n[¬ eF ⇒ e¬F ]:

(1) n〈¬ eF 〉 ⇒ e¬n[F ] (ax9),(T5)

(2) e¬n[F ]⇒ en[¬F ] (ax3),(nex),(ax7),(mp)

(3) en[¬F ]⇒ n[ e¬F ] (ax9),(ax6),(prop)

(4) n〈¬ eF 〉 ⇒ n[ e¬F ] (1),(2),(3),(prop)

(5) n[false]⇒ n[ e¬F ] (T4)

(6) n[¬ eF ]⇒ n[false]∨n〈¬ eF 〉 (T5),(T6),(prop)

(7) n[¬ eF ]⇒ n[ e¬F ] (4),(5),(6),(prop)

(8) n[¬ eF ⇒ e¬F ] (7),(T3),(prop)

Boxed version of (ax7), that is,n[ e(F ⇒G)⇒ ( eF ⇒ eG)]:

(1) n〈 e(F ⇒G)〉 ⇒ en[F ⇒G ] (ax10)

(2) n〈 eF 〉 ⇒ en[F ] (ax10)
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(3) e(n[F ⇒G ]⇒ (n[F ]⇒ n[G ])) (nex),(ax1)

(4) en[F ⇒G ]⇒ e(n[F ]⇒ n[G ]) (ax7),(3),(mp)

(5) e(n[F ]⇒ n[G ])⇒ ( en[F ]⇒ en[G ]) (ax7)

(6) n〈 e(F ⇒G)〉 ⇒ ( en[F ]⇒ en[G ]) (1),(4),(5),(prop)

(7) n〈 e(F ⇒G)〉∧n〈 eF 〉 ⇒ en[G ] (2),(6),(prop)

(8) n〈 e(F ⇒G)〉∧n〈 eF 〉 ⇒ n[ eG ] (7),(ax9),(prop)

(9) n[false]⇒ n[ eG ] (T4)

(10) n[ e(F ⇒G)]∧n[ eF ]⇒

n[false]∨ (n〈 e(F ⇒G)〉∧n〈 eF 〉) (T6),(prop)

(11) n[ e(F ⇒G)]⇒ (n[ eF ]⇒ n[ eG ]) (8),(9),(10),(prop)

(12) (n[ eF ]⇒ n[ eG ])⇒ n[ eF ⇒ eG ] (T3)

(13) n[ e(F ⇒G)]⇒ n[ eF ⇒ eG ] (11),(12),(prop)

(14) n[ e(F ⇒G)⇒ ( eF ⇒ eG)] (13),(T3),(prop)

Boxed version of (ax10), that is,n[¬m[¬ eF ]⇒ em[F ]]:

(1) n.m〈 eF 〉 ⇒m〈 eF 〉 (ax2), (prop)

(2) m〈 eF 〉 ⇒ em[F ] (ax10)

(3) e(m[F ]⇒ n.m[F ]) (nex), (ax2)

(4) em[F ]⇒ en.m[F ] (ax7),(3),(mp)

(5) en.m[F ]⇒ n[ em[F ]] (ax9),(prop)

(6) n.m〈 eF 〉 ⇒ n[ em[F ]] (1),(2),(4),(5),(prop)

(7) n[m〈 eF 〉]⇒ n[false]∨n.m〈 eF 〉 (T6),(prop)

(8) n[false]⇒ n[ em[F ]] (T4)

(9) n[m〈 eF 〉]⇒ n[ em[F ]] (6),(7),(8),(prop)

(10) n[¬m[¬ eF ]⇒ em[F ]] (9),(T3),(prop)
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(T15): e2F ⇔2 eF :

(1) e2F ⇒ e(F ∧ e2F ) (nex),(ax8),(ax7),(mp)

(2) e2F ⇒ eF ∧ ee2F (1),(T10),(prop)

(3) e2F ⇒ ee2F (2),(prop)

(4) e2F ⇒ eF (2),(prop)

(5) e2F ⇒2 eF (ind),(3),(4)

(6) 2 eF ∧F ⇒ e(2 eF ∧F ) (ax8),(prop),(T10)

(7) 2 eF ∧F ⇒2(2 eF ∧F ) (ind),(6),(prop)

(8) 2 eF ⇒ (F ⇒2F ) (7),(T14),(prop)

(9) e2 eF ⇒ e(F ⇒2F ) (nex),(8),(ax7),(mp)

(10) 2 eF ⇒ e2 eF (ax8),(prop)

(11) 2 eF ⇒ ( eF ⇒ e2F ) (9),(10),(ax7),(prop)

(12) 2 eF ⇒ eF (ax8),(prop)

(13) 2 eF ⇒ e2F (11),(12),(prop)

(14) e2F ⇔2 eF (5),(13),(prop)
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[3] Gérard Berry and Ǵerard Boudol. The chemical abstract machine.Theoret-

ical Computer Science, 96:217–248, 1992.

[4] Lorenzo Bettini, Rocco De Nicola, and Michele Loreti. Formalizing prop-

erties of moblie agent systems. InCOORDINATION’02: Proceedings of

the 5th International Conference on Coordination Models and Languages,

pages 72–87, London, UK, 2002. Springer-Verlag.

[5] Nathaniel Borenstein. Email with a mind of its own: The safe-tcl language

for enabled mail. InProceedings of the 1994 IFIP WG6.5 Conference on

Upper Layer Protocols, Architecture, and Applications, May 1994.

[6] J. Richard B̈uchi. On a decision method in restricted second-order arith-

metics. InInternational Congress on Logic, Method and Philosophy of Sci-

ence, pages 1–12. Stanford University Press, 1962.

[7] Luı́s Caires and Luca Cardelli. A spatial logic for concurrency (part I). In

Theoretical Aspects of Computer Software, Lecture Notes in Computer Sci-

ence, pages 1–37. Springer-Verlag, 2001.

133



134 Bibliography

[8] Luca Cardelli. A language with distributed scope.Computing Systems,

8(1):27–59, 1995.

[9] Luca Cardelli. Abstractions for mobile computation. In J. Vitek and

C. Jensen, editors,Secure Internet Programming: Security Issues for Mo-

bile and Distributed Objects, volume 1603 ofLNCS, pages 51–94. Springer,

1999.

[10] Luca Cardelli and Andrew D. Gordon. Anytime, anywhere. modal logics for

mobile ambients. InProceedings of the 27th ACM Symposium on Principles

of Programming Languages, pages 365–377. ACM Press, 2000.

[11] Luca Cardelli and Andrew D. Gordon. Mobile ambients.Theoretical Com-

puter Science, 240:177–213, 2000.

[12] Edmund M. Clarke, Orna Grumberg, and David E. Long. Model checking.

In Manfred Broy, editor,Deductive Program Design, volume F-152 ofNATO

ASI series, pages 305–350. Springer-Verlag, Berlin, 1996.

[13] Edmund M. Clarke and Holger Schlingloff. Model checking. In

A. Voronkov, editor,Handbook of Automated Deduction. Elsevier, 2000. To

appear.

[14] William D. Clinger. Foundations of actor semantics. Technical report, Cam-

bridge, MA, USA, 1981.

[15] Rocco de Nicola, Gian Luigi Ferrari, and Rosario Pugliese. Klaim: a ker-

nel language for agents interaction and mobility.IEEE Trans. on Software

Engineering, 24(5):315–330, 1998.

[16] Rocco de Nicola and Michele Loreti. A modal logic for Klaim. In T. Rus,

editor, Proc. Algebraic Methodology and Software Technology (AMAST

2000), volume 1816 ofLecture Notes in Computer Science, pages 339–354.

Springer-Verlag, 2000.

[17] Uffe Engberg and Mogens Nielsen. A calculus of communicating systems

with label-passing. Technical Report DAIMI PB-208, Computer Science

Departement, University of Aarhus, 1986.



Bibliography 135

[18] Cédric Fournet and Georges Gonthier. The reflexive chemical abstract ma-

chine and the join-calculus. InPOPL, pages 372–385. ACM Press, 1996.

[19] Cédric Fournet, Georges Gonthier, Jean-Jacques Lévy, Luc Maranget, and
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Actes de l’́ecole d’́et́e, pages 29–44, Nantes, July 1998. Ecole centrale de

Nantes.

[34] Stephan Merz. A more complete TLA. In J.M. Wing, J. Woodcock, and

J. Davies, editors,FM’99 — Formal Methods, volume 1709 ofLecture

Notes in Computer Science, pages 1226–1244, Toulouse, September 1999.

Springer-Verlag.

[35] Stephan Merz. Model checking: A tutorial overview. In F. Cassez et al., edi-

tor,Modeling and Verification of Parallel Processes, volume 2067 ofLecture

Notes in Computer Science, pages 3–38. Springer-Verlag, Berlin, 2001.

[36] Stephan Merz, Martin Wirsing, and Júlia Zappe. A spatio-temporal logic
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