Towards a Mobile Temporal Logic of Actions

Julia Zappe

Dissertation an der Fakdilt fir Mathematik, Informatik und Statistik der
Ludwig-Maximilians-Universit Minchen

vorgelegt von Qlia Zappe

Minchen, den 8.7.2005

Erstgutachter: Prof. Dr. Fred Kger
Zweitgutachter: Dr. Stephan Merz

Externer Gutachter: Prof. Dr. Holger Schlingloff
Tag der niindlichen Piafung: 22.9.2005

Acknowledgements

| would like to thank my supervisor Fred &ger. He was willing to discuss at

any time, and | could always rely on his full support. | am also thankful to him
for his encouragement, especially in some of the rather dragging phases of my
work. | am particularly grateful to Stephan Merz. Without his constant support
and admirable patience throughout the whole period of writing | probably would
not have been able to finish this thesis. | have not only benefited from his extraor-
dinary professional competence, but have also taken advantage of his exceptional
human qualities. | also would like to express my gratitude towards Martin Wirs-
ing for providing me with a pleasant working environment by taking me into his
group. He always has shown much interest in my work. The idea for the subject
of this thesis was initiated by him and Stephan Merz.

| feel a need to thank all my friends and my family for not leaving me alone, not
even in times when | tended to be almost unbearable... | am aware that | have
demanded much of you by asking to share the burden with me. Thank you for not
running away!

Contents

1 Intr Ion 3
[2__Mobile TLA] 7
21 TheModels 7
[2.2 Example ofa Mobille Agent. 10
23 SimpleMTLA. 13
[2.4 Temporal stuttering L. 17
[2.5 Spatial stuttering oo 23
3__Refinement 29
[3.1 Operationrefinement 30
[38.2 Spatialextension Lo 33
[3.2.1 Spatial extension without distribution of variables33

[3.2.2 Spatial extension with distribution of variables 35

3.3 Virtualisation of focatiods 37
4__Axiomatisation 45
M1 Theproofsyste®g|. 46

Vi Contents

[4.2 Axiomatisation of propositional MLTIL 62
4.2.1 Theproofsystemy, | 62
M2.2 Theproof SyStemmiTL] - - « « = « v v v v v v v v e 74
[> Model Checking & Decidabllity]| 85
(.1 Background 85
B2 Bilchiautomata 86
[5.3 Alternating Automata on Infinte Worids 88
[5.4 Alternating Automaton for propositional MLTL 103
[>.5 Applications to decision problems 107
6 _EXxtensions of MILAI 111
[6.1 Dynamic creationotagents 111
[6.2 Dynamic creation of arbitrarily many agents 117
[6.3 Rigid quantification overnames 118
[6.4 Hiding of anonymous agents 122
/__Conclusion 125
|A " Auxiliary derivations | 127

Bibliograp 133

Contents 1

Zusammenfassung

Die vorliegende Arbeit stellt einen neuen Ansatz zur Spezifikation von mobilen
Systemen vor. Als mobiles System wird hier ein System bezeichnet, das Code
verwendet, der zur Laufzeit von einem Rechner auf einen andéreriragen
werden kann, und dessen Aukfung auf dem neuen Rechner fortgesetzt wird.
Ein solches System wird gern als eine Hierarchie von “Orten” modelliert, deren
Struktur veandert werden kann. Dies ist auch der Ausgangspuinkumseren
Modellbegriff. Es wird eine raum-zeitliche Logik namens MTLA einigfett,
deren temporaler Teil auf Lamports Temporal Logic of Actions (TLA) basiert.
Zusatzlich werden @aumliche Modali&ten definiert um die Struktur des Systems
und ihre Veanderungen zu beschreiben. Geeignete Begiiifelie Verfeinerung
solcher Systeme sowie ihre Rapentierbarkeit in MTLA werden untersucht. Des
weiteren wird den theoretischen Fragen der Axiomatisierbarkeit, delllgafkeit

und des Model Checking Problems nachgegangen.

Abstract

In this thesis we present a novel approach to the specification of mobile systems.
By mobile system we mean a system that makes use of code that can be transmit-
ted from one computer to another one at runtime, so that the execution is continued
on the new computer. Such systems are often modelled as a hierarchy of locations
whose structure can be modified. This is also the starting point for our model no-
tion. We introduce a spatio-temporal logic called MTLA whose temporal part is
based on Lamport’s Temporal Logic of Actions (TLA). In addition to the temporal
operators we define spatial modalities to describe the structure of the system and
its modifications. We study suitable notions for the refinement of such systems
as well as their representability in MTLA. Furthermore, we investigate theoretical
guestions like axiomatisability, satisfiability and the model checking problem.

Chapter 1
Introduction

With the lightning progress of networking technology and the increasing use of
networks the role of systems that make use of mobile code — the term “mobile
code” signifying code that can be transmitted to remote sites, even during execu-
tion — becomes more and more important. As a particular kind of mobile systems,
mobile agent systems have arisen starting from the nineties[[5] 8, 53]. A mobile
agent is a sort of mobile code with some specific properties. Simultaneously with
the development of such mobile systems, formal methods have been investigated
to support their design. In the course of these studies it has soon become clear
that traditional models of distributed systems are not adequate to capture certain
aspects of mobility.

The first formalism handling mobility that has gained wide attention and has
achieved recognition is Milners-calculus [38]. Thetcalculus extends the pro-

cess algebra Calculus of Communicating Systems (CCS$S) [37] following an ap-
proach proposed by Engberg and Nielsen [17]. The main characteristic f the
calculus is that names of communication channels can be transmitted as messages.
This feature allows to express the modification of the communication structure of
the system.

As Cardelli has pointed out in|[9], the-calculus provides a good model to de-
scribe mobility of distributed systems as long as only small, local area networks
are concerned. However, in the context of wide area networks mobility itself is not

3

the only issue that has to be taken into account. In contrast to local area networks,
mutually distrustfuladministrative domainseparated by barriers play a promi-
nent role in the Internet. In order to adequately model mobility in large-scale
networks, the crossing of boundaries between such protected domains by mobile
code should be explicitely expressible. Following this observation, several novel
formalisms (e.g.[[11, 19, 15, 52]), mainly process calculi, have been introduced,
many of them based upon tiecalculus. A common feature of these formalisms

is the assumption that mobile systems have a hierarchical structure, and mobility
is modelled by allowing to modify this structure.

One of the best known of these calculi — and the one that has strongly influenced
and motivated our work — is the Ambient Calculusl[11] by Cardelli and Gordon.
The Ambient Calculus is a process calculus where processes may reside at nodes
of an edge-labelled tree. By executing some capabilities, the processes can modify
the tree structure. The basic primitives of the Ambient Calculus are similar to
those of thatcalculus.

For some of the above-mentioned calculi modal logics have been introduced [10,
7,/16] to express properties of mobile systems. The models of these logics are the
process terms of the respective calculi. Beside temporal modalities they addition-
ally use spatial modalities to describe modifications of the hierarchical structure
of the system. Typically, the formulas of these logics closely reflect the syntactic
structure of the process terms. In particular, they can separate terms that only dif-
fer in their structure but have the same behaviour (with respect to the operational
semantics), in other words, process terms with the same behaviour can satisfy dif-
ferent sets of formulas (cf. [47]). As a consequence, these logics do not seem to
be suitable as specification logics.

In the present thesis we suggest a different approach to specify mobile systems.
We propose a spatio-temporal logic whose semantics is basatesnf mobile
systems, instead of a specific process calculus. In our approach — in imitation of
most of the mentioned calculi — such a run is (essentially) a sequence of finite
trees representing the topological structure of the system. However, there is a
local state at every node of the tree instead of a process. Altogether, the semantics
of our logic is based on a kind of Kripke structure, where every world has a spatial

1. Introduction 5

(tree) structure.

One of our main goals has been to define a logic that supports the specification of
mobile systems by stepwise refinement. Since in the context of the specification
of reactive systems this goal has been successfully realised by Lamport’s Tempo-
ral Logic of Actions [31], we decided to base the temporal part of the logic we
introduce upon TLA. In order to describe the system’s spatial structure and its
modification we extend TLA by spatial modalities that allow to refer to different
nodes of the trees.

The thesis is organised as follows. In chapier 2 we introduce the kernel of the
logic Mobile Temporal Logic of Actions (MTLA) and show that like TLA, it

is invariant under finite (temporal) stuttering. This is important for the logic to
support system specification by refinement. However, in the context of a spatio-
temporal logic the usual notion of stuttering invariance does not capture aspects
of refinement connected with the spatial structure of the system. Hence, we also
define a notion o§patial stuttering invariancand prove (an important fragment

of) the logic to have this property.

Chaptef B discusses why the traditional notion of refinement does not suffice in the
context of mobile systems. Different notions of refinement are suggested and mo-
tivated with the help of specification examples. These new notions are connected
with spatial refinement They are based on the idea that a high-level location
should be allowed to be implemented by several concrete locations. We show that
all the presented refinement paradigms are supported by MTLA in the sense that
on the logical level refinement can be expressed simply by implication.

Chaptef 4 investigates the question of axiomatisability of the propositional frag-
ment of the logic. To keep the proofs simpler, we present a proof system called
>mutL for the logic MLTL of which MTLA is a fragment and which is simply

LTL extended by the spatial modalities of MTLA. We show this system to be
sound and complete with respect to the semantics of MLTL. The completeness
proof also provides a kind of finite model property which will be helpful to prove
that the satisfiability problem is decidable.

Chaptef b presents automata theoretical solutions of the model checking and the

satisfiability problems for MLTL. We show how to translate a formpulaf MLTL

into a weak alternating automaton that accepts exactly the modglsidie model
checking and the decidability problems are then reduced to the non-emptiness
problem of appropriate automata.

Chaptef b raises certain questions that arise in connection with the dynamic cre-
ation of mobile agents. We suggest extensions of the core of the logic that may
help to solve these problems — without elaborating the new operators in such detail
like the ones belonging to the kernel of MTLA.

Chapter 2

Mobile TLA

This chapter introduces the logic Mobile Temporal Logic of Actions, MTLA for
short. MTLA is intended for the specification of systems that make use of mobile
code. It is based on Lamport’s Temporal Logic of Actions TLAI[31] and extends
it by spatial operators. The first step is to fix our model notion for mobile systems.
The main features of the logic are presented informally with the help of a simple
specification example. In sdc. P.3, the formal definition of the semantics is given.
In the remainder of the chapter we study appropriate notions of temporal and
spatial stuttering and prove the logic (without one special operator) to be invariant
under finite “spatio-temporal” stuttering.

2.1 The Models

When modelling a mobile system, most existing formalisms — like the Ambi-
ent Calculus[[11], KLAIM [15] or the Join Calculus [19] for instance — assume
that the system has a spatial structure (a hierarchy of locations), and mobility is
thought of as the ability to modify this structure. As an example, consider the
process ternP = a[b[outa.0|in ¢.0]]| c[0] of the Ambient Calculus. This process
can be represented graphically as a tree whose edges are labelled by names:

7

8 2.1. The Models

a

o

b

outa.0linc.0

In this process, ambiemntcan leave its parentby “executing” its capabilityuta.
Subsequently, this same ambiérntan use its capabilitin ¢ and enter ambient.

Such an evolution of the process can be illustrated by a sequence of edge-labelled
trees as shown in figufe 2.1.

outa.0linc.0

Figure 2.1: A run ofa[b]outa.0lin ¢.0]| ¢[O]]

This observation suggests to describe runs of mobile systems by sequences of con-
figurations, where a configuration consists of a finite tree representing the topolog-
ical structure of the system and of an assignment that associates with every node a
local state. The nodes of the trees are labelled by unique names of a denumerable
setN, the root labelled (implicitly) by the special narag N.

Formally, a finite, non-empty treeis given by a strict partial ordéN;, <;) over

a finite setN; C N of names. In particular, we identify the nodes of the tree with
their labels. We definB} = N, U {€} and extend the relatio, to N% by requiring

a <y € for all a € N;. Intuitively, the relationa <; b holds for two nodes if node

a is beneath nodé. In other words<; is the transitive closure of the successor
relation of the tree. It has to satisfy the following conditions:

1. The relation<; is irreflexive, that is, for alk € N§ holdsa £ a.

2. The relation<; is transitive, i.e. for alk, b, c € N¢ holds: ifa <; b andb <; c,
thena <; c.

3. Foralla,b,c e N§ holds: ifa <; banda <; ¢, then eitheth <; c or ¢ <; b.

2. Mobile TLA 9

Conditions 1. and 2. express that is a partial order. The third condition makes
sure that the relation gives rise to a tree structure by requiring that two nodes
which have a common “descendant” have to be on the same path.

The empty tree, i.e. the tree which does not have any node, is denotecbby
Note that this tree is different from the trée-= (0, <;) since the latter has a node
(exactly one), namely.

The subtree of a tree= (N4, <;) rooted at node: is denoted by | n. Formally,
foranyn € Nitis defined as

({meN|m <;n}, <)) ifneN
tin =

empty otherwise

where </, denotes the restriction &f; to {m € N|m <; n} x {m € N|m <; n},
thatis, it equals<; N ({m € N|m <; n} x {m € N|m <; n}).

We extend this definition to paths: for a sequeaceN* of namesy | a is defined
inductively by

tle = t
tla.n = (tla)ln

A configurationis defined with respect to a non-empty univef3eand a setl;
of (flexible) variables: it is a paift,A) wheret = (N, <;) is a finite, non-empty
tree and\ : N¢ x 7 — |J| assigns a value to every variableff at every location
n € N§.

Infinite sequences of such configurations will serve as models for MTLA.

Figure[2.2 shows the graphical representation of (the prefix) of a run. An expres-
sion like z = “go” at nodeb in the first configuration indicates that the value of
variablez at nodeb equals‘go”, or more precisely, thato(b, z) = “go”, where

“go” is an element of the universg).

Notation By w we denote the set of the natural numbers including O.

10 2.2. Example of a Mobile Agent

Figure 2.2: Prefix of a run

For sequences, T, the concatenation @f andt is denoted by o 1. We write finite
sequences a8y ... a,), infinite sequences aga; For an infinite sequence
0 = apaz ... and a natural numbere w, the suffixae;a;.1... of o is denoted by
0|z’-

2.2 Example of a Mobile Agent

As our first simple specification example, we consider an agent that collects offers
for flights in a network. In order to model the network, we assume a finite, fixed
setNet of (immobile) network nodes withome € Net denoting the agent’'s home
location. The (mobile) agent is represented by the nagng Net. Its local state

is described by the variable#l, item andfound. Variablect! specifies the agents
control state, wittfidle” and“busy” as possible values. While the agent is active,
the variableitem contains what the agent is currently looking for: its value is a
pair (d,t), d denoting a destination andsome time period. The variabfeund
stores the set of flights collected by the agent.

The MTLA-specification of such an agent is given in fig.]2.3. In order to avoid
parenthesis, we follow Lamport’s way [30] to write long conjunctions and dis-
junctions as a list whose items are labelled withndV, respectively.

Before turning to the details of the definition of the logic, we give an informal
explanation of this specification.

The agent’s initial state is described by the formula

Init = home.ag(true) A ag.ctl = “idle”

2. Mobile TLA 11

Init = home.ag(true) A ag.ctl = “idle”
Network = N, mene: On(mlfalse) A O [false}n
Prep(d,t) = A ag(true) A Oag(true)

.id

A ag.ctl = “idle” A ag.ctl’ = “busy”
A ag.item’ = (d,t) A ag.found' =0
/N UNCHANGED res
GetFlight, = A n.ag(true) AOn.ag(true)
A ag.ctl = “busy”’ A ag.item € n.flights
A ag.found' = ag.found U getFlight(ag.item,n.flights)
A UNCHANGED ag.ctl, ag.item, home.res
Move, ,, = A n.ag(true) A Om.ag(true)
A ag.ctl = "busy” Akeep,,
A UNCHANGED ag.ctl, ag.item, ag.found, home.res
Deliver = A ag(true) A Oag(true)
A ag.ctl ="busy”’ A ag.ctl’ = “idle”
A res’ = resU ag.found
HomeActs = (3d,t: Prep(d,t))V Deliver

vars = (ag.ctl, ag.item, ag.found, home.res)
FlightAgent = A Init
A Network

A O[home[HomeActs|V \/ ¢ yor GetFlighty,

vars

A /\nENet D[\/meNet Moven,m]—n,ag

Figure 2.3: MTLA-Specification of a Flight Agent

which claims thatg initially resides at its home locatiobtvme and is in its‘idle”
state. MTLA provides formulas of the form[F’] for every namen € N; the
informal interpretation of such a formula is th&tholds at node: provided that
such a node exists;(F') abbreviates-n|[-F], that is, it means the same ag|
but it additionally requires the existence of a node with naméome.ag(F) is
an abbreviation ofiome(ag(F)). The network is described by

Network = /\ On(ml[falsg) A O |false|
n,meNet

.id

As in TLA, a formula of the form3[A],, wherewv is some variable, asserts that

12 2.2. Example of a Mobile Agent

whenever the value afchanges during a transition, the formula- that describes
a transition — holds. Hence, formuléetwork expresses that the network nodes
are present forever, that they are not nested, and thatitiseirever change.

The third conjunct describes which transitions and in which way can change the
system’s variables. These are on the one hand the actions that can be performed
only at the home location: either the agent is given a task in the form of a des-
tination d and a time period as expressed by formuldd, ¢ : Prep(d,t), or the
agent delivers the offers it has found at its home locatiome as described by
Deliver. On the other hand, the agent can collect offers for flights at any network
locationn as expressed b§etFlight,. Note that as in TLA, the value of a term

t in the next state is written as the “primed” versigrof ¢. The value of a term

t at a noden different from the root is denoted hy.t. Similarly, n.t’ denotes

the value of the ternmt at noden in the next state. For terms,..., . the for-
mMulaUNCHANGED 13, ..., t; says that the value of neither of these terms changes
during the transition.

The last conjunct in the formulBlight Agent specifies the agent’s possible move-
ments between the network nodes. In MTLA, a formula of the farfd]_g
means thatd holds whenever formul& becomes false during a transition. In
our case, the formula asserts that whenever a formula, which abbreviates
n.ag(true), becomes false (that is, whenever leaves locatiom), this is due

to one of the actions described by the formuldsve,, ,,,. The formulaMove,, ,,
claims thatag is at locationn, it is active and it has already checked the flight
offers at this location and that after the transition, it is at locatioas expressed
by Om.ag(true) and its local variables and tree structure do not change during the
transition: this is expressed by the conjunstCHANGED ... and by the formula
keep,,-

An important feature of TLA as well as of MTLA is that the same formalism can

be used to specify systems and to describe their properties. This enables express-
ing the assertion that a system specified by fornfiglec has the property given

by formula Prop by the implicationSpec = Prop. For example, the property that

the agent is always located at one of the network nodes, can be expressed by the

2. Mobile TLA 13

following formula:

FlightAgent = 0 \/ n.ag(true)
neNet

The proof of the validity of such a formula would be based on two kinds of steps.
First it has to be proven that initially the system has the desired property, i.e. that
the implication/nit = \/,,cne: n-ag(true) is valid. After that, one has to prove
that formulaV/,,c y.: n.ag(true) is invariant under all possible transitions of the
system.

The formal definition of the syntax and semantics of MTLA-formulas is given in
the next section.

2.3 Simple MTLA

In the following we present the logic Simple MTLA — this is the kernel of MTLA
and will later be extended by different quantifiers. For the sake of brevity, we will
refer to Simple MTLA as MTLA whenever it is clear from the context that only
the quantifier-free part of the logic is meant.

MTLA extends the logic TLA by spatial operators. TLA[34] is a variant of
Lamport’s TLA [31]. It generalises TLA by allowing temporal operators to occur
in the description of transitions while preserving TLA’s — from the specification
point of view crucial — feature of being invariant under finite stuttering.

Assume given a signature of first-order logic with equality and denumerable sets
vy and 7. of flexible and rigid variables witly N 1, = 0 as wellalNN 7 = 0
andNN %, = 0. The lettersv, w, v;, w;, ... will denote flexible,z, y, z;, y; rigid
variables. Further, we assume a first-order interpretatiofn the function- and
predicate symbols in a non-empty univef3econtaining a special “null” value

dy € |3]. A configurationis a pair(t,\) as described in sectipn 2.1 on page 9, that
is, it consists of a tree= (N, <;) and a mapping : N} x 7y — |J| assigning to
every node of the tree a local staterun is an infinite sequence of configurations

o = (fo,No)(t1,A1) ...

14 2.3. Simple MTLA

The (pure and impure) terms and formulas of MTLA are given by the following
grammar:

t o= x|v|f(ta,....t) |1 F
u = t|f(ug,...,u) |1z A

= P(t1,....t) | ~F | Fo=Fy|3z: F | m[F]|OF | O[A]: | O[Als
A = F|-A|Ao= A1]|3z:A| m[A] | OF | keep,,

wheret, t; denote purey, u; impure terms/f’, F; pure andA4, A; impure formulas,

f a function- andP a predicate symbol. Furthermorgdenotes a pure “spatial”
formula, that is, a pure formula built without temporal operators. Our term forma-
tion rules include the definite description operator F'. Its interpretation is “the
uniquez for which F' holds” if there is exactly one such value and the null value
dy otherwise (cf.[[42]). The precise definition of the semantics of the formulas
and terms is given as follows.

Definition 2.1 Leto = (#,Ao)(t1,A1) ... be a run wheret; = (N;, <;) are finite
trees and\; : N® x 7/ — |J| valuations, and let» € N®. The semantics of MTLA-
formulas is defined as follows:

= &(z) forz e v,
) if n. e N§
° (n,v) it n forve 1}
otherwise
. [t t) = (@8 (1),...,0"8) (1))
de|J| ifo,n,&lz:=d] = Aand
e omV(1z: A) = o,n, &z :=¢| = Aforall e € |J|\{d}
dy otherwise

e On &l P(t,.... 1) iff (0D (1),...,008) (1)) € I(P)

e 0,n,& A iff o,nEFEA

2. Mobile TLA 15

e 0,n,{ A= B iff o,n,{}EAoro,n,§ =B

e 0,n,&=3dx: A iff 0,n,&z:=d|E Aforsomed € |J|

e 0,n,§=m[A] iff m£onoro,mE=A

e 0,n,& =0F iff forall i € w, n ¢ N; for somej <iorof;,n,§ = F
e 0,n,{=0F iff n¢Njoro|,n&=F

e 0,n,& = 0[A], iff forall i € w, n ¢ N for somej <

"8 oroli,n,E = A

&
oro"¥(1) = of\}

e 0,n,§ = keep,, iff toln.m=1t|n.m

e 0,n,& = 0[A]g iff forall i € w, n ¢ N; for somej <
or (al;,n,& = Siff o|;y1,n,& = S)oral;,n,& = A

As it is apparent from the definition, the interpretation of a Simple MTLA-formula
is relative to a locatiom. Foro,n,& = A we say thaformula A holds for the
modelo at locationn under the valuatior§. Validity is defined with respect to
the root of the trees. We say that a formuldas valid over a runo if and only

if o];,&,& = F for all i € wand all valuationg. A formula F' follows froma set

F of formulas, written agf = F iff F is valid over all behaviours over which all
formulas in¥ are valid. A formulaF' is valid, written as= F, iff F' is valid over

all behaviours.

A formula of the formm[F] means, roughly speaking, that formufaholds at
locationm, provided that a location with name exists in the first configuration
of the run. In modal logical termsy|_| is the box operator with respect to the
relation that connects a nodeof a treet; with another node of the same tree iff
the latter has name and is “below” noden in ¢;, that is, if m <; n holds.

The interpretation of the always modality is more complicated than usual, because
locations may disappear, and we want to consider later reappearances of a name
as new names. Intuitively, formulaF' holds foro at locationn iff F' holds for

every suffixal; at locationn as long as: exists. Figur¢ 2]4 shows the “lifeline”

16 2.3. Simple MTLA

of a namen. For the run there, it holds for examplgv > 0) at noden (and it
would hold even if in the next tree reappeared, and had a value less than 0
there).

n

n2

Figure 2.4: Lifeline of a locatiom

The “keep”-operatokeep,,, states that the structure of the subtree below location

m at the current state does not change during the transition, i.e. this subtree and the
subtree belown at the next instant are equal. This kind of transition formulas will

be used to describe the movements of agents between different network locations.

For a term¢ and an (impure) formulal, the semantics of formula[A4]; is de-

fined as for TLA, that is, it asserts that whenever the value of tehanges
during a transition, this is due to an “action” described by the (impure) forchula
Therefore, formulas of this form are used to describe the allowed changes of local
states. For a spatial formuthand an (impure) formulal, formulaD[A]s asserts

that whenever the truth value of formufachanges during a transition, formufa

has to hold. Such formulas allow to describe structural modifications of trees.

We will use many derived operators. Beside the standard abbreviationeukke

A, V andV we introduce abbreviations specific to MTLA. We write(") for
—m[-F]. Hence, the operators(_) can be regarded as the strong counterparts
of the modalitiesm|_|, since the formulan(F) asserts that there is a location
with namem and that at this location formul& holds. For a namen we
sometimes write simplyn instead ofm(true). In order to save brackets, for
namesmy,...,m; € N we usually writemy.---.m;[F| for my[---m;[F]---] and
my.---.mi(F) for my(---m;(F)---).

Forn € N and an (im)pure term, let n.u denote the (im)pure termx : n[z = u],
that is, its interpretation is the value ofat noden. For a pure termt, let ¢/
abbreviate the terny: : O(¢ = z), that is, its value equals the valuetah the next
state. For pure terms,...,t. we write, in accordance with TLA’s convention,

2. Mobile TLA 17

UNCHANGED 11,..., 1 to abbreviate the (impure) formuta =ty A ... At = 1.
For an impure formulad and pure terms or spatial formulas, ..., a; we write
O[A]qy,....q, fOr O[A]g A ... ADO[A]4, .

Further useful abbreviations argA] ¢ for O[S = A]g as well asO[A], ¢ for
O[—S = Als. Forinstanceid[A] , stands fod[b(true) = A] ey, and it states
that whenever a node“disappears” during a transition, this is due to the “action”
described byA.

We also adopt the usual abbreviations familiar from LTL like &g, which is
defined as-O—F and asserts the existence of a future state for whidolds.
Further, we leto FF = —-O—F, that is, ® is the strong counterpart of the next-
time operator. Since runs are infinite and all trees are assumed to be non-empty,
the weak and the strong next-time operator coincide at the root, but evaluated
at a nodem € N different frome the strong operator also asserts the existence
of a node with namen in the next state, whereas m,§ = OF holds trivially
whenevern ¢ Ny, holds.

2.4 Temporal stuttering

The particular suitability of TLA as a basis for system development by refinement
is strongly connected with the fact that TLA-formulas are invariant under finite
stuttering. Stuttering invariance means, roughly speaking, that (finite) repetition
of the same state in a run has no influence on the set of formulas that hold for
the run. The effect of this is that refinement can be expressed in TLA simply
by implication: if Spec is an abstract specification of the system dngh/ is a

finer grained one, then the fact thatpl is a correct implementation dfpec
corresponds to the validity of the implicatidmpl = Spec.

We show that (pure) formulas of (Simple) MTLA are also invariant under finite
stuttering. For the sake of simplicity, we only consider the propositional fragment
of the logic. However, note that all results presented in this chapter can be proved
in an analogous way for first order MTLA.

In order to define propositional MTLA, pMTLA for short, we assume a denumer-

18 2.4. Temporal stuttering

able setl/ of propositional variables with’ "N = 0. The sets of pure and impure
formulas of pMTLA are given by

F = veV|-F|F=G|m[F]|OF|O[A]ls (pureformulas)
A = F|-A| A= B|m[4]]|keep,, |OF (impure formulas)

wherem € N is a name and' a pure formula built without any temporal operators.
In the context of pMTLA, a run is an infinite sequence= (#,A)(#1,A1) ... of

finite treest; = (N;,<;) endowed with valuationa; : N — 27 that assign to
every node a set of propositional variables. The semantics of pMTLA-formulas is
defined with respect to such runs and to a nedeN®.

Definition 2.2 Leto = (fo,Ao)(?1,A1) ... be a run as described above with finite
treest; = (N;, <;) and valuations\; : N¢ — 27, and letn € NE. The semantics of
pPMTLA-formulas is defined inductively as follows:

e 0,n=v iff neN§jandv € Ag(n)

e o,nk=-Aiff o,nEA

e o,n=A=DRB iff o,nlEFAoro,nE=B

e o,n=m[A] iff mfonorompEA

e 0,n[=0F iff forall i€ w eithern ¢ N for somej <ioral;,n = F

e 0,n=0F iff n¢g¢Njora|y,nE=F

e 0,n |=keep,, iff ftoln.m=1t|nm

e 0,n=0[A]g iff forall i € w eithern ¢ N for somej < i or

(Gli,n |: S iff 0]i+1,n }: S) or 0"1‘,71): A

Now we turn to the definition of the notions connected with stuttering invari-
ance. In the next chapter, where we will discuss refinement principles for mobile
systems, we will recall the connection between stuttering invariance and system
refinement.

2. Mobile TLA 19

First we defindemporalstuttering equivalence. It is essentially the notion known
from TLA [31], the difference is that the locations of the variables play a role as
well. Later we also will introducespatial stuttering equivalence.

Definition 2.3 (Stuttering equivalence)Let V C {n.v|n € N&, v € V}.

1. Two configurationgs, A), (¢,) with s = (Ng, <) andt = (N¢, <;) are called
V-similar, written (s,A) ~y (¢, 1), iff the following hold:

@ s=t

(b) forall n.v € V with n € N& holds: v € A(n) iff v € p(n).

Two runso = (sp,Ao)(s1,A1)... and T = (fp,Ho)(t1,)... are called V-
similar iff (s;,A;) ~v (¢,) holds for alli € w.

2. V-stuttering equivalengevritten as~ y/, is the smallest equivalence relation
on (finite or infinite) sequences of configurations that identifies the sequences
po{((s,A\))ocoandpo((t,1)(u,Vv)) o0, for any finite sequence of configura-
tionsp, finite or infinite sequence of configuratiomsand pairwiseV -similar
configurations(s,A), (¢, 1), (u,Vv).

3. Stuttering equivalence, written, is the smallest equivalence relation on runs
that identifiegpo ((s,A)) oo andpo ((s,A)(s,A)) o o for any finite sequence
of configurations, infinite sequence of configuratioosand configuration
(s,A).

Figure[2.5 gives an example of (fragments of) tjvgy.item, ag. ctl}-equivalent
runs. To see that they are indegd;.item, ag.ctl }-equivalent, observe that

(307)\0) = (th “0)7 (507)\0) ~{ag.item,ag.ctl} (317)\1)
(527)\2) = (tla I-'ll)v (tla Ul) ~{ag.item,ag.ctl} (t2,|~12)

An immediate consequence of the above definitions isthat ~ ; holds when-
ever W C V holds for setsV, W C {n.v|n € N&,v € V},

20 2.4. Temporal stuttering

(s0,A0) (s1,A1) (s2,A2)
home /m| home nl home /nq ny
offers = {01, 02} oﬁers = oﬁers ={o17}
agi ag
ctl = |d|e ctl = |d|e ctl = “busy”
item = budapest “june”) item = budapest “‘june”) item = (“rome”,“may”)
dest = “paris” dest = “prague” dest = “rome”
(t1,) (t2, ko)
home /ny| home /ny home /nq no
offers = {01, 02} oﬂers ={o17} oﬁers ={os}
agi ag agi ag
ctl = |d|e ctl = busy ctl = “busy”
item = budapest “june)” item = (“rome”,“may”) item = (“rome”,“may”)
dest = “paris” dest = “rome” dest = “marseille”

Figure 2.5: Example of ag.item, ag.ctl}-equivalent runs
In the following we will refer to the elements of the det.v|n € N&,v € 1V} as
localised variables

For every (impure) formula, we define a finite set FLAM) of localised variables
as follows:

FLV(v) = {e.v}
FLV(=4) = FLV(A)
FLV(A= B) = FLV(A)UFLV(B)
FLV(m[A]) = {m.v|e.v e FLV(A)}U{n.v|n.v € FLV(A),n # €}
FLV(OF) = FLV(F)
FLV(OF) = FLV(F)
FLV (keep,,) = 0
FLV(O[A]s) = FLV(A)UFLV(S)

Intuitively, FLV(A) contains all variables occurring i “prefixed” by the loca-
tion the variable belongs to. For example, for= m[v A n[—v V w]] = O(v A w)
we have FL\(F') = {m.v,n.v,n.w,€.v,€.w}.

The following lemma will be useful for the proof of the (temporal) stuttering in-
variance of propositional MTLA. All the assertions are easy to prove.

2. Mobile TLA 21

Lemma 2.4 Let V C {n.v|n € N,,v € V} ando = (s0,A0)(s1,A1) ... as well as
T = (to,Ho)(t1, 1) ... runs witho ~y T.

1. (s0,A0) ~v (to, Ho)
2. For everyi € w there exists somg¢ € w such thata|; ~y 1|; as well as

((50,M0) .- (5i,Mi)) =v ((fo,Ho) - - - (tj, 1))
3. For everyi € wwith (s;,A;) v (si+1,Ai+1) there is some € w such that
the following hold:
(@) ol ~=v 1;
(b) Olit1~v 141
(©) ((s0,A0)- - (5i,Ai)) =v ((to,Ho) --- (4,).

Now we are able to prove the main theorem about the stuttering invariance of
MTLA-formulas. For the sake of uniformity, we identigjA] with A.

Theorem 2.5 (Stuttering invariance) Let F' be a pure,A an impure formula,
n €Nt o= (80,)\0)(81,)\1) ...andt = (to,l,lo)(tl, },ll) ... runs.

1. If 0 ~Fpy(nr)) T, theno,n = Fiff T,n = F.

2. If 0 ~ppy(pa)) T @NAO[1 =y (p1a)) Tla, theno, n = Aff T,n = A

Proof. We prove the two assertions simultaneously by induction on the structure
of (impure) formulas. Since the assertions are symmetricalandr, it suffices
to show one direction of the equivalences.

Case:v € V. Since in this case 1. implies 2., we only prove the first assertion.
Note that FLMn[v]) = {n.v}. Hence, because dko,A0) ~FLv(n[v)) (f0;Ho)
holdsn € N, iff n € N, and if n € Ny, thenv € Ag(n) iff v € Yo(n), that is,
o,nEviff t,nEwv.

Case:—A. We only show 1., assertion 2. can be shown in an analogous manner.
So assume that is a pure formula and ~gy,[- 1)) T ando, n = —A, thatiis,

22 2.4. Temporal stuttering

o,n = A. As FLV(n[-A]) = FLV(n[A]), the induction hypothesis for 1. and
A can be applied, and we conclude: [~ A, i.e.T,n = - A.

Case: A = B. Also in this case, the proofs of 1. and 2. use the same ar-
guments, so we only show 1. and assume thand B are pure formulas
and thato ~pyy(,[4— p)) T holds. By the definition of FLV, it is obvious that
FLV(n[A]),FLV(n[B]) C FLV(n[A = BJ]). Hence, it followso >~ y(,4)) T
ando ~pyy,p]) T This fact and the induction hypothesis imply the assertion.

Case: m[A]. Again, we only show 1., the proof of 2. being analogous, and
assume thatl (and thus alson[A]) is a pure formula.
ASSUMED ~F iy (n[m[4))) T @NAD, n = m[A], thatism £, n oro,m = A.

Case:m £, n. By assumption and by lemra 2.4 holds= o, in particular
m £, n. Hencex, n = m[A] holds trivially.

Case:o,m = A. As FLV(n[m[A]]) = FLV(m|[A]), by assumption we have
O ~FLy(m[4]) T, hencetr, m = A by induction hypothesis.

Case:0F. Assumeo,n = OF. We want to show,n = OF, i.e. foralli € w
eithern ¢ Ny, for somej < i ortj;,n = F. So leti € w be such that € Ny,
for all j <. Lemm@,z. implies that there is some w with n € N,; for
all j <k ando|y ~ppy(nop)) Tli- Latter is equivalent to|; ~rpyn(r))) T, as
FLV(n[OF]) = FLV(n[F]). Sincen € N, for all j < &, by assumption holds
o|x,n = F and therefore|;, n = F by induction hypothesis.

Case:O[A]s. Assumeo,n = O[A]g. We have to show, n = O[A]g, i.e. for
everyi € w either there is somg< i with n ¢ Ny, ort;,n = Aortj;,n =S

iff 1];+1,n = S. Leti € wsuch thaty € Ny, for all j <. We distinguish two
cases.

Case: (ti, i) ~rrv(nojals)) (Lit1, Mit1)-

Since FLMn[S]) C FLV(n[0[A]s]), it holds obviouslyt|; ~g v (,s)) Tli+1,
and so by induction hypothesi§, n = S iff 1];11,n = S.

Case: (i, i) #FLv(nojagg]) (ti+1,Hit1)

By lemmd 2.4,3. there exists sorhes w such that

L Tl ~Fiv(niofars)) Ok,

2. T|i+1 ~FLv(n[ojAlg)) Olk+1 and

2. Mobile TLA 23

3. {(50,A0) -+ (885 M%) ~=FLv(n[o[a)s)) ((To;sHo) - - (T, 1))
Sincen € Ny, for all j < 7, condition 3. implies: € Ny, for all [< k. From
conditions 1. and 2. together with the induction hypothesis for assertion 2.
of the theorem for the impure formuld it follows t|;,n = A. (Note that
FLV(n[A]) C FLV(n]|O[A]s]) and therefore it follows from 1. and 2. that

Ok ~FLv(n[4)) Tli @NAO| k11 =F1v(n]a)) Tlit1.)
Now we prove the remaining cases of assertion 2.

Case: keep,,,. By definition, o, n |= keep,, holds iff so|n.m = s1|n.m. By
assumption we have ~p T ando|; ~¢ T|1, in particularsyp = tp ands; = t1.
The assertion trivially follows from this.

Case:OF'. By assumption holds|y ~Fyy o)) T|1- We distinguish two cases:

Case: n ¢ Ny,. Then it also holds: ¢ N4, and it followst,n |= OF by
definition.

Case:0|1,n = F. Because of FLVn[F]) = FLV(n[OF]) it follows by the
induction hypothesis for 1. and fdf thatt|1,n = F, hencet,n =OF. W

2.5 Spatial stuttering

Until now we only have considered a variant of the “usual” notion of stuttering
invariance, that is, invariance with respect to temporal stuttering. In the context of
a spatio-temporal logic it also makes sense to talk about “spatial” stuttering.

Definition 2.6 (Spatial stuttering equivalence)Let M C N be a set of names.
Two configurationgs,A\) and (¢,) are called M -equivalentff the following con-
ditions are satisfied:

1. NsOM =N M.

2. Forall m,n e NgNM: m <g niff m <; n.

24 2.5. Spatial stuttering

3. Forall n e NsnM: A(n) =p(n).

In this case we writ€s,\) >~/ (¢,).
Two runso = (sp,A0)(s1,A1) ... andt = (fo, W) (t1,) . . . are called) -equivalent
iff (s5,A;) >~ (¢, 1) forall i € w.

It is obvious that-;, is an equivalence relation on the set of runs. It also follows
immediately from the definition that for two sets of namdésand N with M/ C N

we have~ C~,,. Furthermore, ifo andt are M -equivalent runs, thea|; and

1|; are M -equivalent, too, for every € w.

Intuitively, two configurationgs,A) and(¢, 1) are M -equivalent, ift arises froms
by inserting and removing names that do not occuv/inwhile keeping the order
between the names i/, and if the valuationa andp agree on all names if/.
Figure[2.6 shows an example of tWao, 71 }-equivalent states.

ng ~ n/ \no

{v,w} —{no,m} {v,w}
g m
olm

Figure 2.6: Two{ ng, n1 }-equivalent states

A nice property of the logic would be if a formul& was not able to distinguish
between runs that ar&¥-equivalent wheréV is the set of all names occurring in
F'. Unfortunately, this is not the case if we allow for the “keep”-operators, be-
causekeep,, restricts every name below although they do not occur keep,,,.
However, this “spatial stuttering invariance” property holds for pMTLA without
the “keep”-operators.

For a formulaA let nm(A4) denote the set of names occurringAn Again, we
identify €[A] with A.

Theorem 2.7 (Spatial stuttering invariance) Let A be an impure pMTLA-formu-
la built without any of the formulageep,,,. Further, leto = (so,Ao)(s1,A1) ... and
T = (to,Mo)(t1,H1) - .. be runs, and letr € NE,

2. Mobile TLA 25

If o “nm(n[4)) T theno, n): Aiff T,n): A.

Proof. We prove the assertion by induction on the structure of the (impure) for-
mulas A. By symmetry, in all cases, it is enough to show one direction of the
equivalence.

Case:v. Assumeo ~,, T ando,n |= v, thatis,n € N§ andv € Ag(n). By
assumption we hav@o, Ao) >, (to, lo), hencen € N§ andpo(n) = Ao(n), in
particularv € pp(n), thatis,t,n = v.

Case: ~A. ASSUMED ~n(y-4)) T @Nd0O,n = —A, that is, 0, n K= A. Since
nm(n[-A]) = nm(n[A]), by induction hypothesis it follows, n [~ A, that is,
n }: —A.

Case:A = B. ASSUMED =~ (4= p)) TaNAO,n = A = B.

Case: o,n f= A. As nm(n[4]) C nm(n[A = B]), it follows from the as-
sSuUMptiono ~ny(,(4)) T- Hence, by induction hypothesis we have: = A
and therefora,n = A = B.

Case:o,n = B. Again, we haves ~,,)) T by assumption. By induction
hypothesis it follows, » |= B and sot,n = A = B.

Case:m[A]. ASSUMED =~y (n(m(4])) T &NAT, n = m[A].

Case:m £, n. Sincem € nm(n[m[A]]) and(s0,A0) ~nm(n[m[a])) (f0;Ho)

by assumption, the definition ain(n[m[A]])-equivalence implies: £, n,
hencet, n = m[A].

Case:o, m = A. Note thathm(m|[A]) C nm(n[m[A]]) and therefore it holds

0 ~nm(m[4]) T DY @assumption. Hence, by induction hypothesis we conclude
T,m = A.

Case:OF. Assumeo,n = OF.

Case:n ¢ Ng,. In this case by assumption holdst Ny, hencet, n = OF.
Case:0|1,n = F. Asnm(n[OF]) = nm(n[F]) andd|1 ~ymmoF)) T1, by
induction hypothesis it follows|1, n = F.

Case:OF. Assumeo, n = OF and leti € w be arbitrary.

26 2.5. Spatial stuttering

Case:Thereis g <isuchthat ¢ N,,. Then it holds by assumption¢ N,
and sot,n =0F.

Case:0l;,n |= F. Sinced|; ~nm(yor)) Tli andnm(n[DF]) = nm(n[F]), it
follows t|;, n = F by the induction hypothesis.

Case:0[4]g. Assume agaio, n = O[A]s and leti € w be an arbitrary natural
number.

Case: There is & < i with n ¢ N,,. The assertion follows by exactly the
same arguments as in the previous case.

Case:0l;,n = A. We can conclude by the assumption and by the induction
hypothesis that|;, n = A.

Case:0|;,n = S iff 0|,+1,n = S. By induction hypothesisy|;, n |= S iff
1|;,n = S holds for everyj € w. This impliest|;,n |= S iff T/;;1,n=S5. W

In theorenT 2.6 and in theorem P.7 we have shown that MTLA-formulas which
do not contain the keep-operators are invariant under finite temporal and spatial
stuttering. These two results can be combined in an obvious way. We first combine
the notions of spatial and temporal stuttering equivalence.

Definition 2.8 Let M C N be a set of names antl C {n.v|n € N®,v € 7} a
set of localised variables(M, V)-equivalencgwritten >~ v, is the smallest
equivalence relation on runs that contains beth, and~ .

Now we can state a theorem about the “spatio-temporal” stuttering invariance of
MTLA without keep,,.

Theorem 2.9 Let F' be a pure formula of propositional MTLA built without any
of the formulaskeep,,,. Leto = (so,A0)(s1,A1)... and T = (o, o) (1, 1) ... be
runs, and letn € N&.

If O ~(nm(n[F)) FLv(n[F)) T theno,n = Fiff T,n = F.

2. Mobile TLA 27

Proof. Let M and V' abbreviatenm(n[F]) and FLM(n[F]), respectively. By
definition,o ~(, /) T means that there are rups, ..., py, with

0 ~5,Po=~=s P1 "+ Pr—175, Pk =5, T

andS; € {M, V}. Hence, the assertion follows immediately from thm] 2.5 and
thm.[2.T. u

Chapter 3
Refilnement

One of the reasons to choose TLA as the basis of our logic was its particular
suitability for system development by stepwise refinement. As we have shown in
the previous chapter, MTLA also has the property of invariance under finite stut-
tering, which is important in the context of refinement. However, the notion of
refinement established in the context of reactive systems, that is operation refine-
ment, does not suffice when systems relying on mobile code are concerned. For
instance, in the course of system development, one may decide to implement a
single high-level agent by several agents that “imitate” the behaviour of the orig-
inal agent. Therefore, refinement principles that include the modification of the
system’s spatial structure are needed.

This chapter attempts to explore this question and to find suitable refinement no-
tions for mobile systems. Besides operation refinement, we will describe the fol-
lowing concepts:

e Spatial extensionA single locationn can be extended by sub-locations that
implement different aspects of the behavioumofin general, the local vari-
ables atn will be distributed among the new locations. In this case, all these
variables have to be hidden from the high-level interface.

¢ Virtualisation of locations:This principle allows to implement a high-level
location by an arbitrary location hierarchy, even with a different name. In this

29

30 3.1. Operation refinement

case, the name of the “virtualised” location must be hidden.

The different principles will be illustrated with the aid of our first specification
example of a simple flight agent presented in chggter 2. We show that refinement
can be expressed in MTLA by implication, that is, the fact that a low-level spec-
ification Impl is a refinement of an abstract specificati§gec means essentially

the validity of the formulalmpl = Spec.

3.1 Operation refinement

First we consider the usual refinement of operations. Examples of operation re-
finement are: a high-level operation is implemented by a sequence of low level
operations, or a high-level operation is restricted by strengthening its “precondi-
tions”. In the case of the flight agent (cf. pagé 11,[fig] 2.3), one could require that
the agent is not allowed to go home before it has found a certain number of offers.
To express this restriction in the MTLA-specification, we have to modify the for-
mulas Movey, home for everyn € Net. The altered formulas of the specification

appear in fig. 3]1

MoveHome, = A n.ag(true)AOhome.ag(true)
A ag.ctl = “busy” A |ag.found| > 5
A UNCHANGED ag.ctl, ag.item, ag.found, home.res

RestrAgent

/AR

A /\neNet U [MoveHomen N \/mENet\{home} MO’Uemm],n.ag

Figure 3.1: Flight Agent with restricted moves

It holds obviously that= MoveHome, = Movey, hom. fOr every namen € Net,
so it follows easily from the monotonicity of the operatorg]s that

RestrAgent = FlightAgent

is a valid MTLA-formula. This means that every run of a system satisfying spec-
ification RestrAgent is also a run of a system specified BYightAgent. Hence,
RestrAgent is a possible implementation éflight Agent.

3. Refinement 31

The restricted agent is an example of strengthening the precondition of an action.
As another example of operation refinement we consider a variant of the flight
agent that receives the componedtand ¢ of the item(d,¢) separately. The
interesting parts of specificatiofepAgent are given in fig[3.2. The formulas
whose definitions do not appear in the figusegDeliver, SepGetFlight,, etc.)

are like the formulaeliver, GetFlight,, etc., but complemented with a con-
JUNCtUNCHANGED ag.ctly, ag.ctl, ag.dest, ag.time to make sure that they do not
modify the new variables.

FormulasChooseDest(d) and Choose Time(t) describe the actions of choosing a
destination and a time period, respectively. The agent’s control state depends, in
addition toctl, on two further local variablestl; andctl;; ctl; has valueidle” as

long as no destination is chosen. When destinatios chosen, variabletl; is

set to‘ready”, and variablelest to d. The meanings of the variables; and¢ime

are similar.

The overall “preparation” of the agent is given by form@le Prep. This action
can be performed as soon as both, a destinatiemd a time period are chosen, as
indicated by the values of the variables ctl; andag.ctl;. Variableag.ctl is setto
“busy”, and the agent obtains its task, expressedgitem’ = (ag.dest, ag.time).

Intuitively, it is clear that specificatioSepAgent should be a correct implemen-
tation of the abstracklightAgent: the steps of choosing the destinatiband the
time periodt are internal steps. These actions together WihPrep implement
the FlightAgent’s single “preparation actionPrep(d,t). The internal actions
3d : ChooseDest(d) and 3t : ChooseTime(t) are not visible forFlightAgent
(they correspond tstuttering steps as they do not modify any of the variables
occurring in formulaFlightAgent nor the respective order of the locations. On
the other handSepPrep implies3d, ¢ : Prep(d,t), as the variablesg.dest and
ag.time supply the witnesses faf andt required by the existential quantifier.

Technically speaking, the implication
= SepAgent = FlightAgent

holds, due to the stuttering invariance of MTLA-formulas. A proof would be

32 3.1. Operation refinement

Seplnit = A ...
A ag.ctly = “idle” A ag.ctl, = “idle”
ChooseDest(d) = A ag(true) A Oag(true)
A ag.ctl = “idle” A ag.ctly = “idle”
A ag.dest’ = d A ag.ctl), = “ready”
A UNCHANGED wars, ag.time, ag.ctl
ChooseTime(t) = A ag(true) A Oag(true)
A ag.ctl ="idle” A ag.ctl, = “idle”
A ag.time' =t A ag.ctl, = “ready”
A UNCHANGED vars, ag.dest, ag.ctly
SepPrep = A ag(true) A Oag(true)
A ag.ctl ="idle” A ag.ctly = “ready” A ag.ctl; = “ready”
A ag.item’ = (ag.dest, ag.time) A ag.found' = 0
A ag.ctl’ = “busy”
A UNCHANGED ag.dest, ag.time, home.res
SepHomeActs = V (3d : ChooseDest(d))V (3t : ChooseTime(t))
V SepPrep V SepDeliver
sepVars = (ag.ctl, ag.item, ag.found, ag.ctly, ag.ctly,
ag.time, ag.dest, home.res)
SepAgent = A Seplnit
VAN
A Olhome[SepHomeActs|V \/ e et Sep GetFlighty] sepvars
/AN

Figure 3.2: Flight Agent with separate preparation steps

based mainly on instances of usual TLA rules like

(Avz' =z)= (BVy =y)
O[A], = O[B],y

3. Refinement 33

as well as on the validity of the formulas

home[3d : ChooseDest(d)] = UNCHANGED vars
home[3t : ChooseTime(t)] = UNCHANGED vars
home|SepPrep] = home[3d,t : Prep(d,t)]

and

n[AV B] < n[A]V n[B]

3.2 Spatial extension

During the stepwise refinement of a mobile system one may decide to implement
a single location of the abstract specification by a whole hierarchy of locations —
network nodes may be equipped with sub-locations for different purposes, agents
may have sub-nodes to store certain informations etc. When refining a location
to several locations, in general the state of the high-level location is distributed
among the new sub-locations. In the following we illustrate this refinement prin-
ciple. We consider the — simpler — case when the variables of the original locations
are not distributed separately.

3.2.1 Spatial extension without distribution of variables

In the context of the flight agent specification, one may wish that mobile agents

are received inside a specific sub-location instead of directly beneath the network
node. The visiting agent could be put first into a sub-nodeof the location, to

go through certain security checks, for example. Then it goes to a locéatiép

where the actual interaction takes place and finally, before leaving the network

location, it has to visit theut, sub-location.

Figure[3.3 illustrates the extension of a network nagéy the new sub-nodes.

Figure 3.4 shows the relevant parts of specificaffanked Agent of such a docked
flight agent. The remaining formulas are the same as in specificatigit Agent.

34 3.2. Spatial extension

home ny ny home ny np
docky, ~1ny, ouly,
498 41 = “busy” ' '
ag
ctl = “busy”

Figure 3.3: Spatial extension of node

DockedInit
DockedNetwork

home.dockpome-ag(true) A ag.ctl = “idle”

/\n,meNet A Dn<m[fa|SQ>

A On(ing (true) A docky, (true) A outy, (true))

A D[falSEﬂn.id
SendAgent, = A n.dock,.ag(true) A On.out,.ag(true)

A UNCHANGED vars

DockedMovey, 1, = A n.outy.ag(true) A om.ing,.ag(true) Akeep,,
A UNCHANGED vars
RevAgent, = A n.ing,.ag(true) A on.dock,.ag(true)
A UNCHANGED vars
DockedAgent = A DockedInit

VAN
A Anenes N B[SendAgenty,] dock,,.ag
A O[RcvAgent,]—in, .ag

A OV pene: DockedMovey, 1) - out, .ag

Figure 3.4: A docked flight agent

Formula DockedInit says that the agent initially resides at the home location’s
sub-locationdocky,m.; formula DockedNetwork requires every network node

to have sub-locations:,, dock,, andout, that cannot “disappear”. The actions
SendAgent,, RcvAgent, and DockedMowve, control the agent's movements be-
tween the different sub-locations and network nodes, respectively.

Observe thaSendAgent,, and RcvAgent,, do not change any of the (interesting)
variables, and that the agent stays below locationFrom this, and from the

3. Refinement 35

fact that the operators[_| refer not just to the immediate successors of a node,
but look arbitrarily deep inside the tree, it follows that the transitions described
by SendAgent, and RcvAgent,, respectively, cannot be observed by formula
FlightAgent (that is, they correspond to stuttering steps of the original specifi-
cation). Altogether, this specification is again a refinement of the original flight
agent specification, and it holds indeed that

= DockedAgent = FlightAgent

Let us emphasise once again that for the validity of this implication it is crucial
that the operators|_] refer to sub-nodes arbitrarily deep below the root, or more
formally, that the following holds:

= n[F] = m[n[F]]

This interpretation of.[_] enables spatial extension to be represented by implica-
tion in MTLA.

3.2.2 Spatial extension with distribution of variables

In the case of the docked agent, refinement could be expressed simply by im-
plication because the new locations,, dock,, andout, did not have any local
variables. In general, the refined location’s local state will be distributed among
the new sub-nodes.

In order to illustrate this form of refinement, we consider again the example of the
flight agent. Imagine that the offers at a network nedare kept in a database
placed in a sub-locatiorb,, of n. A part of the specification of such an agent —
showing only the modified actions — appears in[fig] 3.5.

For this specification does not hold thatDBAgent = FlightAgent, because the

new agent draws the information about the offers from the varidhlefiights,
whereas in the case of the original agent the flights are stored in the variable
n.flights. However, the implication holds if we “hide” these variables. Hiding

of state components is expressed, as in TLA, by existential quantification over

36 3.2. Spatial extension

DBNetwork = A, cne n-dby (true) AO[falsel_,, ap, n.id
DBGetFlight, = A ...
A ag.ctl ="busy” A ag.item € db,.flights
A ag.found’ = ag.found U getFlight(ag.item, dby,.flights)
A UNCHANGED ag.ctl, ag.item, ag.dests, home.res
DBAgent = A Init
A DBNetwork
A O[home[HomeActs]V \/ ye ney DBGetFlight, |

vars

A /\nENet u [\/mENet Moven,m]—n.ag

Figure 3.5: Network nodes with database sub-locations

flexible variables. We extend the definition of MTLA-formulas by the following
clause:

Am.v: F

is a pure formula, where: € N denotes a name, € 7} a flexible variable and"’
a pure MTLA-formula.

The definition of the semantics of existential quantification over flexible variables
requires some preparation. The difficulty is to define it in a way that stuttering
invariance is preserved.

We first define what it means that two runs amailar up tov at m for a flexible
variablev and a locationn € N&. Recall the definition of stuttering equivalence

~ (cf. p[19, def[2.B).

Definition 3.1 1. Two runso = (sp,Ao)(s1,A1) ... andt = (o, Ho) (?1, 1) . .. are
called equal up tov at m, writteno =, , T, iff s; = ¢; for all i € w and
Ai(n,w) = W(n,w) forall (n,w) # (m,v).

2. Similarity up tov atm, denoted by, ,,, is the smallest equivalence relation
that contains both-,, , and~.

3. Refinement 37

Now we can define the semantics of the flexible existential quantifier:
o,n,§ =3Am.v: F iff thereexistsarun ~,,, ocwitht,n,§}=F

Intuitively, formula3m.v : F' asserts that we can find values foat m for which
F holds (cf. [31]).

For our specification holds
= DBAgent = Ang.flights ... ny. flights : FlightAgent

where{ny,...,n;} = Net. The proof of the validity of this formula would rely on
an axiom

(3-1) F[t/nv]=3Anw:F

whereF'[t/n.v] denotes the “localised” substitution ofor v atn in formula F'.
Informally, the localised substitutioR[¢/n.v] replaces all top-level occurrences
of v in sub-formulas:[F] (that is, occurrences that are not in the scope of further
spatial modalities) by. The precise inductive definition is given in fig. 3.6] p| 38,
which also introduces a corresponding auxiliary noti¢ry ».v] of localised sub-
stitution in a ternv-.

In our case, the “witness” terms are the variablég.ts at the database locations:
it is easy to see that the implication

DBAgent = FlightAgent|[dby,.flights /ny.flights, ..., dby, .flights /. flights]

is valid.

3.3 Virtualisation of locations

The last and probably most radical refinement principle that we consider is what
we callvirtualisation of locations This form of refinement allows locations of an
abstract specification to be implemented by a structurally different location hier-
archy. For example, the flight agent specified by formidlghtAgent in fig.[2.3,

38

3.3. Virtualisation of locations

w(t/n.v]

{t if w=vandn=c¢

w otherwise

z[t/n.v] x
(lz 1 A)[t/n.v] lz: Alt/n.v]
f(re,...,me)[t/n.v] f(rit/n.v],... e[t/ n.v])
P(r1,...,m)[t/n.v] P(ri[t/n.v],...,rx[t/n.v])
(A= B)[t/n.v] Alt/n.v] = B[t/n.v]
(—A)[t/n.v] —A[t/n.v]
m[A] ifn=c¢
(m[A][t/n.v] m[A[t/ev]] i m=n
m[A[t/n.v]] otherwise
(Fx: A)[t/n.v] dz @ Alt/n.v)
(OF)[t/n.v] OF[t/n.v]
(OF)[t/n.v] OF[t/n.v]
keep,,[t/n.v] keep,,
@A])[t/no] = OA[/n0]lms
@Al)[t/ne] = DAL/ nollse/ma

Figure 3.6: Localised substitution

p.[13, could be implemented by several agents. However, in order to be a correct
implementation, the (name of the) original agent has to be hidden from the high-
level interface, intuitively meaning that the system with several agents befisives

if there wasan agentug satisfying specificatiottlight Agent.

In the following we present the MTLA-specification of such a possible imple-
mentation ofFlight Agent and use it to discuss the notions of virtualisation and of
hiding of locations.

Figure[3.T shows specificatiaiuitiAgent, for the sake of brevity with only two
agentsago andags.

3. Refinement

39

MAInit

MAPrep(d,t)

MAMovey, i

MAGetFlight,, ;

MA Deliver;

Merge

MAHomeActs

Next
Varsy
Varsy

VaATrShome
MultiAgent

AL_oA home.ag;(true) A ag;.ctl = “idle”
A home.return; = “false”
1 oA home.ag;(true) A Ohome.ag; (true)
A ag;.ctl = "idle” A ag;.ctl’ = “busy”
A ag;.item’ = (d,t) A ag;.found =0
A UNCHANGED va7Shome
A n.ag;(true) A Om.ag;(true)
A ag;.ctl = "busy” Akeep,,
A UNCHANGED warsg, varsi, VarsShome
A n.ag;(true)on.ag; (true)
A ag;.ctl =“busy” A ag.item € n.flights
A ag;.found' = ag;.found U getFlight(ag;.item, n.flights)
A UNCHANGED ag;.ctl, ag;.item, varsi—;, Varspome
A home.ag;(true) A Ohome.ag;(true)
A agi.ctl = “busy” A ag;.ctl’ = “idle”
A home.return] = “true” A home.res, = ag;.found
A UNCHANGED varsy_;, home.res, home.resi_;
A UNCHANGED home.returny_;
A home.returng = “true” A home.returng = “true”
A home.res' = home.resgU home.resq
N home.returny = “false” A home.return] = “false”
A UNCHANGED warsp, varsy
V (3d,t: MAPrep(d,t))V Merge
V MADelivergV MADeliver,

MAHomeActs V' \ e net(MAGetFlight, oV MAGetFlight,, 1)

(ago.ctl, ago.item, ago.found)
(agy.ctl, agr.item, agy.found)

(home.res, home.resy, home.resy, home.returng, home.returny)

N MAInit

A Network

A O[Next]varsyome, varso,varsy

A NneNet D[VmeNet MAMOUen,m,O]fn.ago
A Anenet BIV me Net MAMOWn,m,l]*n‘agl

Figure 3.7: Specification of the “multi agent”

40 3.3. Virtualisation of locations

The initial configuration of the system is given ByA Init. This formula asserts
that in the beginning both agents are at their home location, their control state
being“idle” and that they are not returned yet. Actidfd Prep(d,t) sets both
agents’item to (d,t), the variablesfound to 0, and additionally it requires the
home location’s local state to remain unaltered.

FormulaMAMowve,, , ; controls agentg;’s movements. Actiom/ADeliver; is
a slight modification ofDeliver, ag; substituted forag: it additionally sets vari-
able home.return; to “true”, and instead of changing variableme.res directly,
home.res; IS set toag;. found.

FormulaMerge describes the uniting of the offers collected by the different agents.
As the results should not be combined before both agents are back, this action has
the preconditiorhome.returng = “true” A home.returny = “true”.

We claim that this specification is a correct implementationFtfhtAgent if
agentag is hidden from the interface.

We discuss now what “hiding” of a location means.

The hiding of a location is technically realised by existential quantification over
names. We extend the syntax definition of MTLA by the following clause:

dm: F
is a pure formula for a pure formuld and a namen € N.

Intuitively, a runo satisfies3dm : F' iff there is a runt for which F' holds and

that arises frono by extending the trees by nameat every configuration aof.

The precise definition of the semantics of this (flexible) name quantifier is rather
involved and requires some preparation.

For finite treess andt and a name, € N the relations <,, ¢ is defined by
s<pt iff Ng=Ng;\{n}and(a <, biff a <; bforall a,b e Ny)
This relation is extended to configurations by

(s,A) <n (t,p) iff s<,tandA(m,v)=p(m,v)forall m e Ny andv € V}

3. Refinement 41

Figure 3.8: Tree extension

Figure 3.8 shows an example of tree extension.

The relation is extended to runs like expected:

(50,M0)(51,A1) ... <p (to,Mo)(t1,M1) ... iff (si,A;) <p (ti, 1) forall i €

Now we have all ingredients to define the semantics of the name quantifier.

o,n,§=3Im: F iff there exist runsp,T such thato ~ p, p <; T, and
1,n,& = F[l/m] for a namel that occurs neither in
Fnorino

SpecificationMultiAgent in fig.[3.7 is indeed a refinement éfightAgent if lo-
cationag is hidden. Logically, this means the validity of the implication

MultiAgent = A ag : FlightAgent . (3.1)

In order to see why this formula is valid, consider a asatisfying specification
MultiAgent. At any configuration we have to find the place where to put the
“witness” agent — let’s call itvitness — and to decide how to set its local variables.

First observe that the two agents’ actions are never performed simultaneously. So
wheneverg; executes an action at a network noedegentwitness should be put
atn and its local state should change in accordance witis variables.

If witness has to imitatengg at ng at some instant andg; at ny in the next step,
then we have to add a stuttering step in order to move it frgno n;.

Consider for example the following situation. First, agestis at locationn; and
performs actionM/AGetFlight,, ,. At the next momentago, located at network
locationnp, executes\IAGetFlight,, o. In this casewitness has to be at; first.

42 3.3. Virtualisation of locations

As variableag; . found changes by adding a new offer to it, the same should happen
to witness.found. Now we have to introduce a stuttering step so that the “virtual”
agentwitness can be moved frommy to np, by executing action/ove,, ,, of
specificationFlightAgent. When MAGetFlight,, o is performed in the original
run, witness.found is set in accordance with the changeagh.found: the same
new offer is added tavitness.found as toago.found. At any instant, the value

of witness.found should be the union of the valuego.found and agi.found,
witness.ctl equalstbusy” iff at least one of the agents is busyitness.item is the
same asigo.item (= agi.item).

Fig.[3.9 illustrates how to construct from a run satisfying specificati@ftiAgent
another one for which holdBlight Agent [witness/ag]. The first line shows a part

of a runc where first MAGetFlight,, 1 and thenMAGetFlight,, o iS executed.
First, we add a stuttering step to the original run (we will need this additional step

(tisNs) (ti+1:Nit1) (ti+2,Niv2)
ny n2
ag ag1 ago
found =M found =N found found = N found = M' found = N’
(ti-Ai) (ti+1.Niv1) (ti+1,Nix1) (ti+2,Nit2)
n1 R ny no ny ny
agi ago agi ago agi ago
found =M found =N found = M' found =N found = M' found = N found = M’ found = N’
o\ i
t)\ 1+1 1+1 z+1 1+l z+2)\7+2)
np _
ago
witness found =N, itness found=N found =M’ witness Tovrnd=M" | iness
found = M UN found = M'U N found = M'U N found = M'U N’

Figure 3.9: lllustration td\fultiAgent

to move the abstract agent from siigto n) and obtain a rup with p ~ o. Then
we extend every configuration hwitness. We put it below the agent whose action
it has to imitate. In this way we get a rawith p <,ness T. The local variables at

3. Refinement 43

witness are set as described above. The (piece of the) run we obtain corresponds
to the following sequence of high-level actions:

GetFlight,, [witness [ag], Moven, n,[witness/ag], GetFlight,[witness/ag]

Formal proofs of formulas with hidden names make use of introduction axioms of
the form

(3-ref) Fln/m,ty/m.v1,....ts/m.vp] =3Im F

(3-sub n(true) = Im: n.mitrue) (m#n)

Axiom (3-ref) corresponds to axiond¢l) in sec[3.2.R. In order to conclude a
formuladm : F, it calls for witnesses forn as well as for the local variables
v1,...,v, at m. The second axiom allows to extend a locatiotby a “virtual”
sub-location.

In our example, we would use axiord {ref) with the substitutions

ag.found «— ago.found U agy.found ag.item < ago.item
ag.ctl < if home.returng = “false” A home.returny = “false” then “idle”

else“busy”

complemented with a “spatial refinement mapping” that retusgsor ag;, de-
pending on which one of the implementation level agents is performing an action.
As this cannot be determined in terms only of the current state, additional auxil-
lary — in this case prophecy — variables [2] will be needed.

Here, the implication can be proved without using axiansub), but it will be
needed in many situations, in particular to prove refinement when a high-level
specification that uses mobile agents is implemented by other techniques than
mobility.

Let us emphasise once again that the above-mentioned rules for the name quanti-
fier are not complete, and that in general additional history and/or prophecy vari-
ables will have to be introduced.

Chapter 4

Axiomatisation

In this chapter we examine the axiomatisation of propositional MTLA. This logic
can be regarded as a fragment of a spatio-temporal logic whose spatial operators
are those of MTLA, but in which there is no distinction between pure and im-
pure formulas and the next-time and always operators can be applied to arbitrary
formulas. Sinceél[A]g is then equivalent withd(AV (S < OS)), MTLA can be
understood as a fragment of the spatial part of the logic together with the temporal
operatorkeep,,,, © andO. As this is just LTL extended by MTLA's spatial opera-

tors, we will call this logic (propositional) MLTL, or pMLTL for short. Formally,

the language of pMLTL is given by the following:

veEV|F= G|-F|m[F]|keep,, | OF | OF

The semantics of these formulas is defined as for (propositional) MTLA:

Definition 4.1 Leto = (fo,Ao), (t1,A1) ... be a run witht; = (N;,<;) as defined
in sec[2.B. The semantics of pMLTL formulas is defined as follows.

e O,nf=v iff neN§andv e Ao(n)
e O,nf=—F iff onlEF
eo,n=F=G iff oonftForonkECG

45

46 4.1. The proof system g

o,nfE=m[F] iff m£onoro,mpE=F

o,n = keep,, iff fln.m=t|n.m

o,nfE=OF iff n¢Njoraoly,n=F

o,nf=0F iff forall i > 0eithern ¢ N; for somej <iorol;,n|=F

In the following we introduce a proof systehy . and show that it is sound and
complete with respect to the semantics of propositional MLTL. We have decided
to present the axiomatisation and the proofs for MLTL instead of MTLA for the
sake of simplicity. The proof system can be adapted to MTLA along the lines of
[34].

In order to deal with the different difficulties separately, the axiomatisation is
divided in three parts. In the first step we only consider the spatial part (called SL,
for spatial logic) of the logic and provide a sound and complete axiomatisation
>g. for it. Completeness is proven by showing how to construct a model — in
this case a configuratioft,A) in the sense of sef. 2.3 — for a given finite and
consistent set of formulas in the spatial fragment of pMLTL. The second step
is to extend the proof system by axioms and rules that characterise the temporal
operators andd and their interplay with the spatial operators. The completeness
proof consists again in the construction of a model for a given finite and consistent
set ¥ of formulas, that is, of a ruo for which o,€ = F holds for everyF € .

The last step is to present axioms specific to the formkdas,, and to extend the
completeness proof accordingly.

4.1 The proof systemg,

Let 7/ be a denumerable set of propositional variablessaadienumerable set of
names with?’’ NN = 0. Let SL denote the “spatial part” of propositional MLTL,
that is, its language contains the following formulas:

vEVI|F= G|—-F|m[F]

4. Axiomatisation 47

We will use the abbreviations introduced for MLTL whenever applicable, that is,
we will write m(F) for -m(=F), ny.--- .n;[F] for ng[---n;[F]---], n1.--- .n; (F')
for ny(---n;(F')---) and sometimes simply,.--- .n; instead ofn;. - - - .n;(true).

The semantics of SL is defined in terms of finite trees whose nodes have unique
names and are labelled by sets of propositional variables. Formally, it is defined
as follows:

Definition 4.2 Let t = (N;, <;) be a finite tree;n € N€ and A : N¢ — 2% a la-
belling. The semantics of SL is defined inductively:

t,A,nkE=v iff neNiandveA(n)

tL,AnfE-F iff tAnEF

tAnEF=G iff t,A\nEFort,AnEG

t,A,n =Em[F| iff mZ£;nort,A\,mEgF

We call a formular' valid and write|= F' iff for all finite non-empty treeg and
all assignmenta : N§ — 2V holds: ¢, \, € EF.

Let the proof systeriis| be defined as given in figure 4.1.

(ax0) F F if F'is tautological (axn0) F n[F] if F is tautological
(axl) FalF = G]= (a[F]= a[G]) (axnl) Fnl[a[F = G]= (a[F]= a[G])]
(ax2) t+ a[F]= bla[F]] (axn2) + n[a[F] = bla[F]]]
(ax3) F —a[F] = a[~F]
(ax4) + ala[falsd]
(ax5) F(a1.bAap.b)= (a1.a2V az.a1) (for aq # ap)
FF=G FF
FG

(mp)

Figure 4.1: The proof systely, .

48 4.1. The proof system g

We write- F iff F'is derivable inzg; for a set¥ of formulas we writeF + F iff
F'is derivable inzg| possibly using assumptions from the get For a finite set
F of formulas we also usg to denote the conjunction of all formulas h

In our derivations we will write (prop) to indicate the use of propositional reason-
ing. Consistency of a set of formulas is defined as usual:

Definition 4.3 Afinite setf of formulas in SL is calledonsisteniff t/ =% holds.
Otherwise it is callednconsistent

Let us have a look at the axiomsB§_. The first axiom (ax0) is clear; (ax1) is the
usual K-axiom for modal logics; (ax2) ensures that the spatial operatdrean

look arbitrarily deep inside the tree; axiom (ax3) asserts that there is at most one
“a-successor”; (ax4) claims that two nodes with the same name must not occur on
the same path. Axiom (ax5) describes the tree structure of the model: whenever
nodeb is belowa; as well as below:,, the two nodes have to be on the same path.

The axioms (axn0) - (axn2) are “boxed” versions of axioms (ax0) - (ax2) express-
ing that the logic works at any nodein the same way as at the root. Note that
we do not provide axioms corresponding to the axioms (ax3) - (ax5) put inside the
spatial operators|_] even though those formulas are valid. The reason is that one
can derive them using the axioms listed in figurg 4.1. The derivations are given in
the appendix. Observe that instead of the axioms (axn0) - (axn2) we could have
provided a generalisation rule

FF
— 4.1
for every namen. Although this would be a sound rule for SL, we refrain from
taking itintoZg, , because it is not sound with respect to propositional MLTL. For
details on this we refer to sec 4.2. We will show that](4.1) is derivablssin but

first we derive a few useful formulas.

Proposition 4.4 Let F, G denote formulasg, b,c € N names andx,B,y € N*
non-empty sequences of names.

1. (TO) F alF] = a.a[F]

4. Axiomatisation 49

N

. (T1) F—a[F] = a[~F]

3. (@) (T2) Fa[F = G] = (a[F] = a[G])
(b) (T3) F (a[F]=a[G]) = a[F = {]

4. (T4) If F = G is tautological, ther- a[F] = a[G]
5. (T5) F a(—F) < —a[F]
6. (T6) F a(F) < (a[F] Aaftrue))
7. (T7) F a.pltrue) AB.y(F) < a.By(F)
8. (T8) F a.b.c(F) = a.c(F)
9. (a) (T9a) F a[F'V G] < a[F]V a[G]
(b) (TOb) I a[F A G] < a[F] A a[C]

Proof.

1. The assertion is easy to prove by induction on the lengthh ahd by using
(ax2) and propositional reasoning.

2. If ais of length one, then this is simply (ax3). Otherwisedet (.o with
B € N*. We can derive the formula as follows:

(1) —B.a[F] = —a[F] (T0),(prop)

(2) —a[F]= a[~F] (ax3)

3) a[~F]= B.a[-F] (TO)

(4) —B.a[F]= B.a[~F] (1),(2),(3).(prop)

3. (a): We prove the assertion by induction on the length of the patli o has
length 1, then it is (ax1). So we can assume that B.» with B € N and
that the assertion is already proved for

50 4.1. The proof system g

(1) B[b[F = G] = b[F] = b[G]]

(2) B[b[F = G]=b[F] = b[G]] =
(B.0o[F = G| = B[b[F] = b[G]]) I.H.

(3) B[b[F]= b[G]] = (B.b[F] = B.b[G]) I.H.

(4) B.O[F = G]= (B.b[F] = B.b[G]) (1).(2),(3).(prop)

(axn1),(T0),(mp)

(b): Using (a), we are able to give a derivation of the other implication, too:

(1) a[-F=(F= G)]

[(axn0),(T0),(mp)
(2 alG=(F=G)

[

[

(axn0),(TO),(mp)
(1),(T2),(mp)
(2),(T2),(mp)
(T1),(3),(prop)
(4).(5).(prop)

(3) a[~F]=a[F = G|

(4) a[G]=a[F = G]

(5) —a[F]|=a[F = G]

(6) (a[F]=0a[G])=a[F = G]

4. (1) a[F = G]
(2) alF]=alG]

(axn0),(T0),(mp)
(1),(T2),(mp)

5. Since——F < F is tautological, this follows directly from (T4) and the defi-
nition of a(_).

6. (1) —a[-F]< —(a[F = fals€) (T4),(prop)
(2) a[F = falsd < (a[F] = a|falsd) (T2),(T3)
(3) (a[F]=a[falsg) < (—a[F]V alfalsd]) (ax0)
(4) a(F) <« (a[F] Aa(true)) (1),(2).(3).(prop)
7. (1) By(F) = BIVF)] (T1),(T4),(prop)
(2) BIV(F)] = a.Bly(F)] (T0)
(3) a.Btrue) Aa.Bly(F)] = a.B.y(F) (T6).(prop)
(4) a.B(true) AB.y(F) = a.B.y(F) (1).(2).(3).(prop)
(5) o.p[fals€ = a.Bly[—F]] (T4)

4. Axiomatisation

51

(6)
(7)
(8)
(9)

8. (1)
(2)
©)

a.B.y(F) = a.B(true)

B.Y[-F] = a.By[~F]

a.B.y(F) = B.Y(F)

a.B(true) AB.Y(F) < a.B.y(F)

a[c[-F] = b.c[~F]]
a.c[-F] = a.b.c|~F]
a.b.c(F) = a.c(F)

9. First we derive (T9a):

(1)
(@)
3)
(4)
()
(6)
(7)
(8)
(9)

a[FV G| = a[-F = G|
a[-F = G| = (a[-F] = a[G])
—a[F] = a[F]
a[-F = G| = (-
a[FV G] = a[F]
a[F] = alFV G]
[
al

a[F] = a[G])
Va[G]

a|G] = a[FV G]
Fva[G] = a[FV G]
a[FV G] < a[F]Va[G]

This result helps us to derive (T9b):

1)
(2)
3)
(4)
(5)
(6)
(7)
(8)
(9)

a[F A G| = a[F] N\ a|G]

[F]Aa[G] = (a(F) A a(G))V alfalsg
(F)Na(G) = =(a[~F]V a[=G])
—(a[~F]V a[~G]) = —a[-F V(]
—a[-FV-=G] = a[~(-FV-G)]
a[~(=FV-G)] = a[F ANG]
(a{F)Na(G))= alF NG]

alfalsg = a[F A G]

a[F NG| < a[F]Aa|G]

=)

a

(5).(prop),(T5)

(TO)
(7),(prop),(T5),(T4)
(4),(6).(8),(prop)

(axn2)
(1).(ax1),(mp)
(2).(T5),(prop)

(T4)

(ax1)

(ax3)
(2),(3),(prop)
(1).(2).(4).(prop)
(T4)

(T4)
(6).(7).(prop)
(5).(8).(prop)

(T4),(prop)
(T6),(prop)

(ax0)

(T9a),(prop)

(ax3)

(T4)
(3).(4).(5).(6).(prop)
(T4)
(1).(2).(7).(8).(prop)

52 4.1. The proof system g

Now we show that the generalisation rules|4.1) are derivaligjin

Lemma 4.5 Let F' be a formula derivable ixs.. Thenn[F] can also be derived
in 2sL.

Proof. Assume that F'. The proof runs by induction on the assumed derivation
of F.

Case: F' is one of the axioms (ax0)..,(ax5). The axioms (axn0) - (axn2)
correspond to (ax0) - (ax2). All the other derivations appear in the appendix.

Case: I' = m[(] is one of the axioms (axn0), (axnl) and (axn2). Because of
Fm[G] = n[m[G]] by (ax2), we obtaitr n[F] by (mp).

Case: + F'is a conclusion of (mp) with premises = F' and G, that is, we
havel- G = F andt G. By the induction hypothesis follows n[G = F] as
well ast- n[G]. Hence, we can derive[F'] as follows:

(1) n[G= F] I.H.

(2) n|G] I.H.

(3) n[G = F]= (n|G] = n[F]) (ax1)

(4) n[G]= n[F] (mp),(3),(1)

(5) n[F] (mp).(4).(2) u

Note that the rule is only correct without any premises, that is, it fails to hold
FEF

FtnlF]
as one can see by letting= {v} and ¥’ = v, for example. However, the result of
lemmg 4.5 can be generalised to
FEF
n[F|F n[F]
wheren[F] = {n[F]|F € ¥} for a set¥ of formulas. An instance of this is a rule
n[F = G|,n[F]F n[G] corresponding to modus ponens.

Before turning to the completeness proof we show Hatis sound with respect
to the semantics of pMLTL.

4. Axiomatisation 53

Lemma 4.6 (Soundness afg) Let ¥ be a set of formulas iLg, and letF be
aformula. If ¥ - F', then¥ = F.

Proof. The assertion is proven by induction on the derivatiorr F'. We only
consider a few cases.

Case:F' = a[G = H| = (a[G] = a[H]) and F - F by (ax1). Lett = (N¢, <;)
be a tree and a labelling such that,A, € = «[G = H], that is eithera ¢ N,
ort,A\,a = G = H. We have to show, A, = a[G] = a[H]. Assume that
t,\,€ = a[G], i.e. thata ¢ Ny or t,A\,;a |= G. If a & Ny, thent, A\ e = a[H]
by definition. If a € N, thent,A\,a = G = H andt¢,A,a = G. Hence, by
definition we obtairt, A, a = H, thatist, A, € = a[H].

Case:F = a[G] = b[a[G]] and F F F by (ax2). Lett = (N4, <;) be a tree and
A a labelling witht, A€ = a[G], i.e.a ¢ Ny or t,A,a = G. We have to show
thatt,\,e = b[a[G]]. Only the case that <; b is interesting. Then it holds in
particulara € N¢, hence we have A, a = G by assumption and sinee<; b,
we obtaint, A, b = o[G] and hence, A, € |= b[a]G]].

Case: F = a[al[falsg] and F - F by (ax4). Lett be an arbitrary tree ankla
labelling. If a ¢ Ny, thent, A € |= a[a[fals€] holds trivially.

If a € N¢, thent, A e = a[a[fals€] holds again as it holds, A, a = a[fals€
because of the uniqueness of the names.

Case: F = (a1.b A ap.b) = (a1.a2 V ap.a1) With a; # ap and F + F by (axb).
Let t = (Ny,<;) be a tree and a labelling with¢,A, € |= a1.b A ap.b, that is,
b <y ag andb <; ap. Since the names ihare uniquega; # az and sincet is a
tree it must hold eitheti; <; a1 or elsea; <; ap, i.e.t,\,€ = aj.a2V ap.a;. A

For SL holds the following deduction theorem:

Theorem 4.7 (Deduction theorem)For a set¥ of formulas and formulag’ and
G we haveFU{F}+Giff T+-F=G.

54 4.1. The proof system g

Proof. Only if: We prove the assertion by induction on the assumed derivation
of FU{F}F G.

Case:lf G is an axiom orG € ¥, then the claim holds obviously.

Case:If G = F, thenF = @ is tautological, hence the assertion follows by
(ax0).

Case:If the last step in the derivation is an application of (mp) to some formulas
H = GandH with FU{F}+ H = G and¥ U{F} F H, then we obtain by
induction hypothesis thaf - F = (H = G) as well as¥ + F = H hold.
From this it follows by propositional reasoning that- F' = G holds.

If: Assume¥ + F = (. Then we also havé U{F} - F'= G. On the other it
holds trivially thatF U{F'} - F', hence, by (mp) it followsF U{F'} - G. [

Our goal is to show thakg, is a complete proof system for SL, that is, that
every valid SL-formula can be derived ¥y, . In order to prove this, we follow

the classical way: we show that every finite and consistent set of formulas has a
model.

In the present case this means to construct a finitettre€N,, <;) and assign to
every node a set of propositional variables, that is, to find a mapping — 2V,

for a given finite and consistent s¢tof formulas, such that the resulting tree is a
model of ¥, that is, thatt,A, € = F holds. First we give an informal explanation
of how the construction works.

In order to define the structure of the model we proceed as follows: for every
set{as,...,a,} Of pairwise distinct names occurring ¥ we decide whether
a1.--- .ap(true) should or should not hold for our model — in other words, whether
a, <¢ ... <t ag holds for the tree that we want to construct — by completing

in the sense that for every such det, ..., a,} we add eithery. - .a, (true)

or a1.--- .ap[falseg to the set, paying attention that consistency is preserved. In
order to decide which propositions should hold at a given nodé our model,

we look, roughly speaking, at the formulas of the foufi¥'] and decide for all
sub-formulasG of F whethera[G] or —a[G] should hold, by “completing” the

4. Axiomatisation 55

set ¥ by the corresponding sub-formulas. We assign to a nodgactly those
propositionsy € ¥ for which a[v] belongs to the completed set.

Now we turn to the formalisation of this construction.
For every formulal’ we define a set(F') of formulas inductively as follows:
(o) = {v}
1(=F) = {-F}UT(F)

(F=G) = {F=GIUut(F)Ut(G)
WmlF]) = {m[G]|G et(F)}UTL(F)

For a set¥ of formulast(¥) denotes the sé/p.+T(F). For a formulal’ let
nm(F') denote the set of names occurringfin Formally, this set is defined as

nm(v) =0 nm(—F) =nm(F)
nm(F = G)=nm(F)Unm(G) nm(al[F]) ={a}Unm(F)

Accordingly, for a setF of formulasnm(¥) denotes the s&lj - » nm(F').

Now we define the set(F) as follows:
K(F):=FuUular--- .a,(true)|a; € nm(F),a; # a; fori # 5} .
This set will help us to decide which paths should be contained in the model.

Observe that neither of the mappingandk produces new names, hence for every
setF of formulas holds that

nm(F)=nm(TIK(F)) . 4.2)

Definition 4.8 Let ¥ be a set of SL-formulas.

1. ¥ is calledcompleteiff for all /' € TK(¥) either F' € F or —=F € ¥ holds.

56 4.1. The proof system g

2. Let ¥ be finite and consistent. A sgtof SL-formulas is called aompletion
of 7 iff

(@ F<gq,
(b) G is complete and consistent, and

(€) G CTIK(F)U—-TK(F).

where—~F = {-F|F € ¥} for any set¥ of formulas.

Proposition 4.9 Let F be a finite and consistent set of SL-formulas. Tiemas
at least one, and only finitely many completions.

Proof. Observe first that for a consistent geind A € tk(F) eitherF U{ A} or
FU{-A} is consistent. As neitharnork produce new names (cf. (4.2)), it also
holds thatktk(F) = TK(F). Further, it is easily shown by structural induction
that the mapping is idempotent, thus it followsktk () = k(). From these
facts it follows that¥ has a completion.

Since for a finite setf, the settk(F) is also finite, it is clear thaf has only
finitely many completions. |

Remark 4.10 Let a, € N* denote non-empty sequences of nanies; for-
mulas and¥ a set of formulas. We make the following observations about the

mappingt:

1. If a[-F] € 1(F), thena[F] € T1(F).
2. Ifa[F = G| € 1(¥), thena[F],a[G] € T(F).

3. Ifa.B[F] € 1(F), thenB[F] € T(F).
Proof. The first three claims follow immediately from:

1. If a[-F] €1(H), thena[F]| € T1(H).

2. Ifa[F = G) €1(H), thena[F],a[G] € T(H).

4. Axiomatisation 57

3. Ifa.B[F] et(H), thenB[F] € T(H).

Each of these assertions can be easily shown by induction on the structure of the
formula H. [|

Proposition 4.11 Let ¥ be a finite, consistent and complete set of formulas;
formulas,a, b, c € N names andi € N* a finite sequence of names.

1. If Few(¥)and+ F = F, thenF € ¥.

2. If a[F] € Ik(F) anda(true) ¢ F, thena[F] € F.

3. If a.b(true) € F andb.c(true) € F thena.c(true) € F.

4. If a.a(true) € F, thena(true) € 7.
Proof. To 1: The assertion follows immediately from the consistency and the
completeness of .

To 2: Assumeq|F]| € TK(F) and a(true) ¢ F. Sincea € nm(F) as stated in
(@.2), it follows thata[falsg € 7, hence ¥ = a[F] by (T4). The assertion
follows now by 1.

To 3: Assume thata.b(true), b.c(true) € F. By using (T7) and (T8) we can
conclude- F = a.c(true). Since¥ is consistent, it holds # ¢ by (ax4). Hence,
a.c(true) € TIK(F). By 1. follows a.c(true) € 7.

To 4: Assumen.a(true) € F. Sincea € nm(F), it follows thata(true) € k(7).
Furthermore, by (TO) we have F = a(true). By 1., we obtain:(true) ¢ 7.

Lemma 4.12 Let ¥ be a complete and consistent set of formukas;; formulas
anda € N a name.

1LIfF=Gew(¥F), thenF=GeFiff F¢ ForGeT.

2. If a[F = G] € IK(F), thena[F = G] € Fiff a[F| ¢ F or a[G] € F.

58 4.1. The proof system g

3. If a.b[F] € TK(F), thena.b[F] € F iff a.b(true) ¢ F or b[F] € ¥F.

4. If a[-F] € IK(F), thena[-F] € F iff a(true) ¢ F or a[F| ¢ F.

Proof. The proof of 1. is standard.

To 2:

If: Assume thau[F| ¢ F or a[G] € F, which means-a[F] € F ora|G] € F
(since ¥ is complete and[F] € TK(¥F) by the definition oft). In particular, it
holds- F = (a[F] = a[G]). Due to (T3), this implies- ¥ = a[F = G]. By
prop[4.11,1. we obtain the assertion.

Only if: This implication follows using (T2) and from the assumption t#at
complete and consistent.

To 3:

If: We first consider the case thath(true) ¢ F. There are two possibilities:
eithera = b or a # b. In both cases follows # = a.b[falsg — in the first

case by axiom (ax4), in the second casg|falsg € F by the definition of a
complete set of formulas and sineeb € nm(¥). Using (T4), we conclude
F F = a.b[F] and so by proposition 4.1.1,1. we obtairb[F] € F.

Now we assume thdt F'| € #. By axiom (ax2) follows- ¥ = a.b[F], hence

a.b[F] € F by propositior 4.111,1.

Only if: Assume that.b[F| € and thata.b(true) € ¥ hold. By (T6), we

obtaink F = a.b(F). On the other hand we can conclude using (ax2) and
(ax3) that~ a.b(F') = b[F], hence- F = b[F|. Sinceb[F] € TK(¥) by the
definition oft, the claim follows by proposition 4.11,1.

To 4:

If: If a(true) ¢ 7, thena[falsg € ¥, asa € nm(F) and sincef is complete.
Hence, by (T4) we conclude ¥ = a[-F] and by proposition 4.11,1. we obtain
a[-F] € F. So we assume[F] ¢ F which implies, since:[F'] € TK(F) by
the definition oft, that—a[F] € F. By axiom (ax3) we obtair ¥ = a[-F],
hence it follows that[—~F] € ¥ by propositior} 4.111,1.

4. Axiomatisation 59

Only if: Assumea|[—F] € F anda(true) € F. It follows - F = a(—F) by
(T6), hence- F = —a[F] by (T5). As¥ is consistent, this implies[F'| ¢ 7.1

Let ¥ be a finite, consistent and complete set of formulas. Now we show how to
construct a mod€(t,A) of F. Let (N, <;) be defined as

N; :={a € N|a(true) € 7} .
and
a<yb iff b.a(true) e F

(Note that<; is indeed a binary relation ox; as fromb.a(true) € ¥ it follows
a(true), b(true) € F.)

The assignmeri : N§ — 2" is defined by

AE) = Fnv
Aa) = {veV]av]e F} .

Before proving thatz,A) is a model of7, we show that is a tree.

Lemma4.13 Let ¥ be a finite, consistent and complete set of formulas and let
t = (N¢,<;) be defined as above. Thers a tree.

Proof. In order to show that is a tree, we have to prove the following three
properties:

1. The relation<; is irreflexive.
2. The relation<; is transitive.

3. Foralla,b,c e N%: if a# b, c <; a@andc <; b, then eithers <; borb <; a
holds.

To 1.: Since- —a.a(true) by (ax4) and because of the consistencyofe obtain
a.a(true) ¢ F for all a € Ny, hencea £, a for all a € N;. By the definition of
<, it obviously holds that £; €.

60 4.1. The proof system g

To 2.: Leta <; b andb <; c. It follows thata,b # €. If ¢ = ¢, then the rela-
tion a <; ¢ follows immediately from the definition o&;. So leta,b,c # €. It

follows by the definition ok ; thatb.a(true) € F andec.b(true) € F. By propo-
sition[4.1],3. we obtain thata(true) € 7, thatis,a <; c.

To 3.: The case ifa =€ or b = € is trivial. So we assume that,b € N;. By
the definition of<; we know thatu.c(true) € F andb.c(true) € F. Assume that
a.b(true) ¢ F andb.a(true) ¢ ¥, i.e. (sincea # b by assumptiony.b[falsg € F
andb.a[falsg € F because of the completenessfof. Together with (ax5) this
produces a contradiction to the consistencyrof |

Theorem 4.14 Let ¥ and (¢,A\) be defined as above. Then for all names N
and all SL-formulag it holds the following:
1. If Fetwk(F), then Fe Fiff t, \;e=F.

2. If a[F] € tk(F),then a[F] € Fiff a¢N;ort,N\al=F.

Proof. We prove the two assertions simultaneously by inductioi’'on

Case:v € V.

1. The assertion follows immediately from the definition(ofA).
2. This follows from the definition of¢,A) and from propositiop 4.11,2.

Case: l' = (.

1. LetF = G € IK(F).

By lemma[4.1R,1.F = G € ¥ is equivalent withF' ¢ ¥ or G € F. As
F,G e 1K(¥), we can use the induction hypothesis and conclude that this
is equivalent with {, A\, e |= F' ort,\,e = G), hence, witht, A\, e = F = G.

2. By lemma[4.1R,2. we have[F = G] € F iff a[F| ¢ ¥ or a[G] € ¥.
Hence, the induction hypothesis fofF'] anda[G] implies the assertion.

Case:—F.

4. Axiomatisation 61

1. Let—F € K(F).

Since ¥ is complete~F € F iff F ¢ F. By the induction hypothesis, this
is equivalent withi, A, € [~ F', that is, witht, A, e = - F.

2. Leta[~F] € K(F).

By lemm&4.1P,4. and by the definition &fit holdsa[—~F] € F iff a ¢ N,
or a[F] ¢ F. By induction hypothesis, this is equivalent withZ N; or
t,A,a = F, thatis, witha ¢ Ny or t,\,a = - F.

Case:b[F].

1. Letb[F] € TK(F).

By the induction hypothesis for 2o/ F| € F iff b ¢ N or t,A,b = F. By
definition, this is equivalent with, A, € = b[F].

2. Leta[b[F]] € TK(F).
Only if: Assume that[b[F]] € F and thata € N;. We have to show
t,A\,a = b[F], that is, b £; a or t,A,b = F. Assumeb <; a, that is,
a.b{true) € 7. By lemma[4.1R,3., it follows thak[F] € F. By induc-
tion hypothesis, this implies A, b = F', as we haveé € N; by assumption.
If: If a ¢ Ny, thena(true) ¢ F by definition. Hencea[b[F|] € F by
propositior] 4.1/1,2. So assume= N; andt, A, a = b[F].

Case:b £ a. Then by the definition ok, it holdsa.b(true) ¢ ¥, hence

it follows a[b[F]] € F by lemmd 4.1P,3.

Case:b <; a andt,A, b = F. Sinceb[F] € Tk(F), by induction hypo-

thesis we obtai[F] € ¥ and therefore:[b[F]] € ¥ by lemmd 4.1P,3.
[

With the aid of this theorem we can prove the weak completeneEs,oin the
usual way:

Theorem 4.15 Let F be an SL-formula. If= F', then- F.

62 4.2. Axiomatisation of propositional MLTL

Proof. Assume that/ F. Then it holds als¢/ ——F, that is, the se{—F} is
consistent. By theorefn 4]14,1., there is a made\l) with ¢,A,e = —F, hence
t,\,€ & F and this prove$- F. |

Note that strong completeness does not hold for SL. In order to see why this is
the case, consider the following infinite set of formul#s:= {a(true)|a € N}.

Since the models of the logic are finite trees, it is clear thatan not have any
model, that is, thatf |~ false holds. On the other hand it is easy to show that
we can not derivdalse from ¥: assumef + false Then there is a finite sub-
set{as(true), ..., a,(true)} of F such thats(true),..., a,(true) - false holds.

By the deduction theorem (thin. 4.7), this implies: (a1 (true) A... A a,(true)).
However, since the formulay (true) A ... A a, (true) obviously has a model, this

is a contradiction to the soundnes=aj .

4.2 Axiomatisation of propositional MLTL

4.2.1 The proof systen®,, 1 -

In sec[4.1l we have introduced the proof systesn and proved it to be sound
and complete with respect to the spatial part of propositional MLTL. Now we
are going to extend this system in order to obtain a complete axiomatisation for
PMLTL. First we only consider the logic pMLTL without the operatdesep,,

and define a proof system that we will cal, 1, -. Later on in this chapter we

will extend this system to a systexy 1. which will provide axioms also for the
“keep’-operators. The axioms and rulesXjf, | - are collected in figurg 4.2.
Note that all the formulas (TO) - (T9b) can still be usedgsT - extendszg .

Intuitively, (ax6) means that time is linear=¢") and infinite (“<”). Axiom (ax7)
is the usual K-axiom of modal logics, (ax8) and (axn8) are the fix-point charac-
terisations of the always operator.

Note that the “boxed” version of the axiom (ax7) anf-OF = O—F| (boxed
version of one direction of (ax6)) can be derivedp 1, -. The derivations are
given in the appendix.

4. Axiomatisation 63

(ax0) + F if F tautological (axn0) n[F] if F tautological
(axl) FalF = G]= a[F]= a|[G] (axnl) F n[a[F = G]= a[F]= a[G]]
(ax2) F al[F]|= b[a[F]] (axn2) F nla[F] = b[a[F]]]
(ax3) F —a[F] = a[-F]
(ax4) F ala[falsé]
(ax5) F (a1.bAa.b) = (a1.a2V ap.a1) (for ag # ap)
(ax6) F —OF & O-F
(ax7) Fo(F = G)= (oF = 0QG)
(ax8) FOF = FAOOF (axn8) F n[OF < FAOOF]
(ax9) F-m[oF] = O0—m[F]
(ax10) - =m[~OF| = om|[F]
(ax11) F Om[F] = m[OF]

FF=G FF FFE

(mp) (nex)
FG FoF

FF=O0F FF=d
FEF=0G

(ind)

Figure 4.2: The proof systelty, 1, -

As already mentioned in the previous section, the generalisation rules of the form

FF
F n[F]

are not sound with respect to the semantics of pMLTL. One counterexample
is (ax6), which is, as we will show in the soundness theorem, a valid pMLTL-
formula, butn[0—F = —OF] is not. For a counterexample, consider a cuas

given in fig[4.3.

As the namen does not appear in the second tree, it hads = O—F as well
asao,n = OF for an arbitrary formulaF’. As the latter just means, n [~ —OF,
we haveo,n = O—F = —OF. Since node: occurs in the first tree, this means
0,€ = n[O—F = —OF].

64 4.2. Axiomatisation of propositional MLTL

m/\“ . ”0/\”1 .,

OF
O-F
—|(O—\F = —\OF)

Figure 4.3: Counterexample to the generalisation rule

We list some useful theorems of pMLTL. Their derivations are collected in the
appendix.

(T10) FO(FAG) < (OF NOG) (T11) - FAOOF = OF

HF

(T12) Fn[OF] < (n[F]An[COF]) (alw) CoF

For %, 1. - we have the following deduction theorem:

Theorem 4.16 (Deduction Theorem)Let ¥ be a set of formulas and', G for-
mulas. ThenlF U{F} - G ifandonly if F - OF = G.

Proof. If: Assume thatf - OF = G. Thenithold¥ U{F}+ OF = G and
FU{F}F F. By the derived rule (alw) it follows tha¢ U{F} - OF, hence
FU{F}+ G by (mp).

Only if: The assertion is shown by induction on the assumed derivatiGhfaim
assumptions from the sg¢tU { F'}.

Case: G € ¥ or G is one of the axioms af,, 1, -. Then we haveF - G and
F+ G= (OF = @) by (ax0), hencef - OF = G by (mp).

Case:G =F. Then¥ - 0OG = G by (ax8) and (prop).
Case: G is a conclusion of (mp) with premisé$ = G andH, that is, we have
FU{F}+H= Gand¥ U{F}F H. Since these derivations are shorter, the

induction hypothesis can be applied and we concladeO F = (H = G) and
F+OF = H. By (prop), we obtainf - OF = G.

Case: G = OH is a conclusion of (nex) with premis#, i.e. FU{F}+ H,
hence by the induction hypothesis it follow/s- OF = H. Now we give a

4. Axiomatisation

65

derivation of O F = OH from this:

(2) OF = H assumption
(2) o(OF = H) (nex),(2)

3) OOF = OH (ax7),(2),(mp)
(4) OF = OOF (ax8),(prop)
(5) OF = OH (3),(4),(prop)

Case: G = (1 = OG> is a conclusion of (ind) with premiseS; = G» and
G1 = 0G1. ThenF +HOF = (G1 = G2) and ¥ + OF = (G1 = 0Gy) by
induction hypothesis. We give a derivationof’ = (G1 = OGy):

(2) OF = (G1= G2) assumption

(2) OF=(Gi1=0G1) assumption

@) DOFAGL= G (1).(prop)

4) OFANGL=0Gy (2),(prop)

(5) OF = OOF (ax8),(prop)

(6) OF A\ Gy= OOFANOG (4),(5),(prop)

(7 OOF NOG1 = O(OF A Gr) (T10),(prop)

(8) DOFAGL=O(0FAG) (6).(7).(prop)

99 OFAGL=0G, (ind),(3),(8)

(10) OF = (G1=0Gy) (prop),(9) [|

With the aid of the deduction theorem, the following theorems can be derived. For
the proofs we refer again to the appendix.

(T13) FO(F = G)= (OF = 0G)
(T14) FO(FAG) < OFANDOG
(T15) FoOF & OOF

Now we show that all axioms and rules Bf;, 1, - are sound with respect to the
semantics of pMLTL.

66 4.2. Axiomatisation of propositional MLTL

Lemma 4.17 (Soundness) et F' be a formula andf a set of formulas such that
FFF.Then¥ = F.

Proof. As usual, soundness is proved by induction on the derivatidn fodbm
F. We only consider a few cases.

Case: F =n|0G < GAOOG] and ¥ + F by (axn8). Leto be a run and

n € No. We have to show,n =0G < G AOCOQG.

“=". Assumeo,n = OG, i.e. for all 7 > 0 holds that either there isia< i
with n ¢ Ny or o|;,n = G. Sincen € Nq it follows in particularo,n = G. If

n ¢ N1, theno, n = 0OG by the definition of the semantics of the next-time
operator. Ifn € N1 thenol1, n = OG by the definition of the semantics of.
‘<" Assume thato,n = G AOOG, that is,o,n = G and eithern ¢ Ny or
o|1,n = OG. By the semantics dfl follows o,n = OG.

Case:F = —-m[0G] = O0—-m[G] and ¥ + F' by (ax9). Leto be a run for which
it holdso, € = —-m[0G], thatis,m € Ng ando, m [~ OG, which impliesm € N1
ando|1, m = —~G. By definition, this is equivalent withy, € = 0—m|[G].

Case:F' = —-m[-0G] = Om|G] and¥ F F by (ax10). Leto be a run with and
0,€ = —-m[-OG], thatis,m € Ng ando, m |= OG, thatis,m € Ng andm ¢ N1
or o|1,m = G. The latter means exactly|1,& = m[G], hence it follows that
0,€ =om[G].

Case: F = Om[G] = m[OG] and F + F by (ax11). Leto be a run with
0,€ = Om|[G], thatis, for alli € wit holdsol;,€ = m[G], thatis,ol;,m = G
for all : € wwith m € N;. This implieso, m = OG by the semantics afl and
so we haves, € = m[OG]. |

In order to prove thak,, 1, - is a complete axiomatisation of pMLTL without the
“keep’-operators we follow again the traditional method of constructing a model
for a finite and consistent set of formulas. We first have to extend the mapping
of the previous section to the formulas of the whole logic. (Here we also consider
the operatorgeep,,,.)

For every formula?’ we define a set(F') of formulas inductively as given in

figure[4.4.

4. Axiomatisation 67

) = {v}

) = {~F}ut(F)

) = {F=G}UT(F)UT(G)
t(m[F]) = {m[G]|G e1(F)}UT(F)
) = {keep,}

) = {oF}

) = {BFUT(F)

Figure 4.4: Definition oft

For a set? of formulas, the set(¥) is defined in the same way as in the case of
the spatial logic, that is

K(F):=FU{ar.-- .a,(true)|a; € nm(F),a; # a; fori # 5}
where the functiomm is extended to pMLTL as expected:
nm(OF) =nm(OF) =nm(F) nm(keep,,) ={m} .

The notions of complete set of formulas and completion are defined exactly as for
SL. Inthe same way as for SL it can be shown that every finite and consistent set of
formulas has a completion and that it has only finitely many different completions.
All the propositions and lemmas proved in 4.1 hold als& gk, - and for

T extended to formulas of pMLTL.

Lemma 4.18 Let ¥ be a finite set of formulas and 1614, ..., F,, be all its differ-
ent completions. Then ¥ = F1V...V F,.

Proof. The assertion can be shown by simple propositional reasoning. One
proof can be found ir [29], there for LTL. [|

For a setf of formulas, the se() is defined by the following:

8
6(F) = J6i(¥)
i1=1

68 4.2. Axiomatisation of propositional MLTL

where®; is defined as given in figufe 4.5.

01(F) ={F|oF € ¥} 02(F) = {—~F|-OF € ¥}

03(F) ={OF|OF € ¥} 04(F) = {-OF|-0F € ¥ andF € T}
65(F) = {a[F][a[oF], altrue) € F} B6(F)={-a[F][-a[oF] € T}
67(%) = {a[OF][a[OF], a(true) € 7}

Og(F) = {—a[OF]|~a[OF],a[F] € 7}

Figure 4.5: Definition 0By, ...,0g

The mapping has the following properties:

Proposition 4.19 Let ¥ be a finite set of formulas of pMLTL.

1. - F = 08(F).

2. If F is consistent, then so & 7).
Proof.

1. Since¥ is finite and sincé O(F A G) < (OF ANOG) by (T10), it is enough to
show that- ¥ = OF for everyF' € 6(F). To prove this we have to distinguish
the different cases in the definition 6fF).

- F € 01(%): by definition we have F' € F, hence the assertion follows by
(ax0).

- F'=-G € 02(F): then-OG € F by definition, so the assertion follows
by (ax6).

- F=0G € 03(F): by definition we havelG € #. By (ax8) and (prop)
this implies- 7 = 00OG.

- F'=-0G € 84(F): by the definition ofé, we have- ¥ = -0OG A G,
hence the assertion follows fromOG < G ACOG, (ax6) and proposi-
tional logic.

4. Axiomatisation 69

- F =a|G] € 65(F): by definition we have- F = a[OG] A a(true). (T6)
impliesk- ¥ = a(0G), so the assertion follows by (ax10).

- F'=-a[G] € B6(F): By the definition of6g we have-a[0G] € F. The
assertion follows immediately from (ax9).

- F=a[0G] €67(F): by (T6) we have- ¥ = a(OG), hence the assertion
follows byt «(O0G) < (a{G) A a(0OG)) (cf. (T6)) and (ax10).

- F =-a[0G] € 8g(F): by definition we have-a[0G], a[G] € F. Since
Fa[OG] < a[G)Aa[0OG] by (T12), we obtain by propositional reasoning
F F = —a[0OG]. The assertion follows now by (ax9).

2. Assume tha®(¥) is not consistent, that is; =6(). With (nex) we obtain
F 0=8(¥), hence with (ax6)- —~08(F). By 1. we have- —F, that is, ¥ is
inconsistent. |

Given a finite and consistent sétof formulas, let the grapi () be defined as
follows:

- The roots of7 (F) are the different completions ¢f.

- If G isanode ofT (F), then its successors are the completion8(af).
Obviously, the nodes of the graph(#) are finite, consistent and complete sets

of formulas. Note that the sub-graph®f ¥) that consists of all nodes reachable
from the successors of a nodgis exactly the same a5(0(G)).

Lemma 4.20 Assume thafF is a finite and consistent set of formulas.

1. The graphZ (¥) has only finitely many different nodes.
2. Assume thaf1,..., ¥, are all different nodes of (F).

(@) |—f]'—1\/...\/f]'—n:>0(f]:1\/...\/f}—n).
(b) FF=0(F1V...VT,).

70 4.2. Axiomatisation of propositional MLTL

Proof.

1. The completions of a finite se&f are subsets ofk(G) which is a finite set.
Further, if F' is a formula inB(G) that does not occur i, then there are
the following possibilitiesOoF € G, F = -G and—0G € G, F = o[G] and
a[0G] € G or F = —a[G] and—a[OG] € G. In each of these cases holds
that the number of the next-time operators decreases which is only possible
finitely many times. Hence, there are only finitely many formulas that occur
in the graphZ (G) and‘Z (G) can contain only finitely many different nodes.

2. (@) Leti €{1,...,n}. Since all completions d®(¥;) are among the sets
F1,..., Fn, we obtain by lemmpa 4.18 and by simple propositional rea-
soning that- 6(¥;) = F1V...V ¥,. Using (nex), (ax7) and (mp)
it follows thatt OB(F;) = O(F1 V...V F,). On the other hand, by
proposition[4.19 we have F; = 08(F,) for i € {1,...,n}. Alto-
gether, we obtai- ¥, = O(F1V...V F,) for everyi € {1,...,n},
hence- F1V...VF,=0O(F1V...V F,) by (prop).

(b) By (ind) and (a) we have F1V...VF, = 0(F1V...V F,). Since
the completions off are amongfy,..., ¥ ,, the assertion follows with
lemmd4.1B. |

Apath 1, F»,...in the graphZ (F) is calledcompletéff it satisfies the follow-
ing conditions:

- If -0OF € ¥, then—F ¢ ¥, for somej > i.
- If —a[OF] € F;, thenthereisa > i s.t.—a[F] € ¥, and forallk € {i,...,j}

holdsa(true) € .

Lemma 4.21 Let ¥ be a finite and consistent set of formulas. THe{¥) con-
tains a complete path starting at some root.

4. Axiomatisation 71

Proof. We first prove that for every nodg in 7 (¥) and every formula’ with
{-0OF,F} C G thereis anode{ in 7 (F) accessible fron; such that-F € #.
Suppose that this is not the case. SiB¢€) contains—OF by definition and
sinceF € tkB(G), it follows in particular that?' € # for every successat of
G, hence{-OF,F} C H for every successaH of G. Inductively, it follows
that {-OF, F'} C A for every node accessible frod. Let G, ..., G, denote
all nodes accessible frog — that is, all nodes of the graph(6(G)) — and let
J denote the formulas; v ...V G,. By (ax0) holds obviously- 3 = F', hence
03 = OF by (alw) and (T13). Since 8(G) = 07 by lemmg 4.2D,2(b), we
obtain-6(G) = OF'. Since-OF € 6(G), we also havé- 6(G) = —OF. Thisis
a contradiction to the consistency&(fG).

Next we show that for every nod#p with —a[OF] € #, there is a finite path
Ho,...,H; in T(F) such thata(true) € #; for ¢ < j and—a[F] € #;. Sup-
pose that there is no such path. Sireg0F] € Hy, we also have:(true) € Hy
(cf. proposition] 4.111,2.), hencea[F] ¢ Ho by assumption (otherwise the path
Hy of length 1 would satisfy the required condition). Sineg] € K (%),
this impliesa[F] € Ho. By the definition off it follows that —a[OF] € 8(Hp),
hence{—a[OF],a(true)} C G for all successorg; of Hy. Using the same ar-
guments as above, we obtain again that] € G. In this way we show that
{—a[OF],a[F]} C H holds for all nodesH accessible fron¥f. Let G, ..., G,
denote all nodes in the subgrafit{Hp). We have just shown thata[OF] € G;
and thata[F] € G; hold for i € {1,...,n}. By (ax11l) and (prop) it follows
FGiV...V G, = —-0Oa[F], hence alsé 6(#Hp) = —Oa[F]. On the other hand, by
lemmd 4.2D,2(b) it follows 8(Hp) = O(G1 V...V Gy), hence- 8(%Hp) = Oa[F).

This is a contradiction to the consistencyBgfH).

Observe that for every finite patho, ..., 7, in T (F) with =a[OF] € Foit holds
thatif —a[F] ¢ F; forall i < n, then{a[F],—a[OF],altrue)} C F; forall i < n.
In other words, it holds on every path that as long as the conditian?] € 7"
for a complete path is not satisfied, the condition thetrue) € #; for all j <"
is not violated, that is¥o, ..., ¥, is a "potential prefix” of a complete path.

A complete path can be built now in the same way as in the case of LTL, described
for example in[[29]. |

72

4.2. Axiomatisation of propositional MLTL

Lemma 4.22 Assume thatf is a finite and consistent set of formulas and that
Fo, F1,...isacomplete path if (F). For every: € w, the following hold:

1.

2.

3.

4.

If OF € TK(?}), thenoF € F, iff F € Fiv1.
If OF € K(¥;),thenOF € F; iff F € F; forall j > i.
If a[OF] € TK(F;), thena[OF] € F; iff a(true) ¢ F,; or a[F] € Fit1.

If o[OF] € K(F;), thena|OF] € F, iff for all j > i: either a(true) ¢ Fy
for somek € {i,...,j} or a[F]| € F;.

Proof.

1.

If OF € F;, thenF € 6(F;) by definition, hence"” € F,;,1. Assume that
F € F;+1. Because 0O F € 1k(F;), we have eithepF' € F; or -OF € ¥,.
By the definition of6, -OF € ¥, would imply - F € F,.1, in particular the
inconsistency off ;1. Hence, we have F' € ;.

. Assume firstthal ' € F ;. SinceF; is consistent and’ € Tk (¥), it follows

by (ax8) thatF' € F ;. By the definition o® it follows thatO F' € F,, 1. Using
the same arguments, we obtain tlihae 7,.1 andOF € F,.2. Inductively,
we obtainF' € F; for all j > i.

Conversely, assume thatt’ ¢ ¥, thatis,~OF € F;. By the definition of a
complete path it follows the existence of an index for which —F ¢ ¥
holds.

. If a[OF] € F; and a(true) € F;, then by the definition 0865 follows that

alF| € Fiy1, asF i1 is a completion oB(¥ ;). For the converse, assume
a[OF] ¢ F,. Then—a[OF| € F; as¥; is complete, hence(true) € ¥, by
propositior] 4.111,2. aneha[F] € F ;11 by the definition of6. Since ;.1 is
consistent, this implies the assertion.

Only if: Assume that[OF] € F; and letj > ¢ be a natural number such that
a(true) € F forall k € {1,...,5}. We have to show that[F'] € 7. Observe
first thata[OF], a(true) € F; impliesa[OF] € F,,1 by the definition ofo,

4. Axiomatisation 73

hence it follows thau[OF] € Fy for all k£ € {i,...,5}. On the other hand,
we have- o[0F] = a[F] by (T12), hence:[F] € F; by propositior 4.1]1,1.

If: Assumea|OF] ¢ F;, i.e.—a|0F] € F;. The assertion follows from the
definition of a complete path. [|

Now we are able to construct a model 6f based on a complete path. Let
Fo,F1,... be a complete path in the graph(¥). Let o := (#,Ao)(t1,A1) ...
where for every; € w the pair(¢;,A;) is defined as described in s4.1 starting
with the set#; (cf. pagd 5P). Note that this construction is independent of the
presence of temporal operators. In the following theorem we showotligia
model for .

Theorem 4.23 Let ¥ be a finite, consistent and complete set of formulas. Let
Fo,F1,... be a complete path i (F). Further, leto := (#,Ao)(t1,A1) ... be

the run constructed from the path as described above tyith(N;, <;). Then the
following hold for alli € w:

1. If Fetw(¥F;), then F e F,iff o|;,e = F.

2. If a[F] € tK(F;), then a[F| € F;iff a ¢ N; or0l;,a = F.

Proof. Asintheoren 4.74, we prove the assertions simultaneously by induction
on the formulaF'. The first cases are proven in the same way as in the proof of
theorenj 4.74. Now we consider the temporal operators.

Case:OF.

1. By lemmdg 4.2R,1. we havel’ € ¥, iff F € ¥,.1. By induction hypothesis,
this is equivalent t@|,,1,€ |= F, hence, by definition, to|;,& = OF.

2. By lemmd 4.2R,3. itholds[OF] € ¥, iff a(true) ¢ F; or a[F] € F;41. By
induction hypothesis and by the definition#fthis is equivalent withu ¢ N;
or a ¢ N;;+1 Or 0l;+1,a = F. By the definition of the semantics of pMLTL,
this means: ¢ N; org|;, a = OF .

74 4.2. Axiomatisation of propositional MLTL

Case:OF.

1. This follows easily from lemm@ 4.22,2.

2. By lemma[4.2P,4. and the definition of «[OF] € F; iff a ¢ N; or for all
j > eithera ¢ Ny, for somek € {i,...,5} or a[F] € F;. By induction
hypothesis, this is equivalent to¢ N; or (for all j > i : eithera ¢ N;, for
somek € {i,...,j} oral;,a = F),i.e.toa ¢ N; orol;,a =0OF. |

4.2.2 The proof systen®y 1.

Now we extend the proof systely, 1 - by axioms that characterise the “keep”-
operators and call the new system .. The additional axioms are drawn to-
gether in figur¢ 4]6. We already have defined in the previous section the mappings
T andk for all pMLTL-formulas. All the lemmas proved there concerning these
mappings hold also for pMLTL.

All axioms and rules ok, 1 -

(ax12)F keep, = (a.a0 < Oa.0) fora € N*

(ax13) keep, A a.b = keep,

(ax14)l- a[fals€ A Oalfalse = keep,

(ax15)F alkeepy| A a.b = keep, AOa.b

(ax16)l keep, A a.b A Oa.b = alkeepy]

(ax17)k a.b[falsg A 0a.b[falsd = alkeep,]

(ax18)F a(keepy) A a.blfalsg = Oa.bfalse

Figure 4.6: The systeBv.tL

We want to show thaly, 1 is a complete axiomatisation for pMLTL. Again, we
assume a finite and consistent set of formulas and construct a model for it. First
we extend the mappingin the following way:

15
o(7) = Jei(#)
=1

4. Axiomatisation 75

whereb;, .. .,0g are defined as before afd, ..., 015 as given in fig[4.7.

Bo(F) = {a.a(true)lkeep, € F anda.a(true) € ¥}
010(F) = {a.a[fals€|keep, € F anda.afalsd € F}
011(F) = {b(true)|-keep,,b[falsg € F}

= {a.b.a[fals€|alkeep,], atrue), a.b.a[falsg € F}
= {a.b(true)|—alkeep,], a.b[falsg € F}

(F)
(%)
(F)
012(F) = {a.b.a(true)|alkeep,], a(true), a.b.atrue) € ¥}
(%)
(%)
(F) = {a.b[falsd|a.b(true), keep,, ~alkeep,] € F}

Figure 4.7: Definition 0Bq,...,015

In the next proposition we show that prgp. 4.19 holds also for the extethded
Proposition 4.24 Let ¥ be a set of formulas. Then the following hold:

1. - F = 08(F).

2. If F is consistent, then so & 7).

Proof. The proof is the same as for propositfjon 4.19, we only need to consider
the new cases in the definition &f

- F' = a.a(true) € B9(F): by definition we have- F = keep, A a.a(true),
hence by (ax12) it follows that ¥ = Oa.a(true).

- F = a.affalsg € 810(F): using axiom (ax12),(T5) and the definition @&, we
conclude- ¥ = —Oa.a(true). The assertion follows with the aid of (ax6) and
(T5).

- F'=b(true) € B11(F): by the definition 0®11 holds—keep,, b[falsg € F. By
(ax14), (prop) and (ax6) it followls ¥ = O—b[fals€, hence- F = Ob(true).

76

4.2. Axiomatisation of propositional MLTL

- F =a.b.a(true) € 812(F): Observe that.b.a(true) € F andalkeep,] € F
by the definition 0®12. We give a derivation off = Oa.b.q.

(1) F = a.b.aftrue) def. 0fB12

(2) F = a.b(true) (1),(T7),(prop)

(3) ¥ = b.aftrue) (Q),(T7),(prop)

(4) F = alkeep,] def. 0f612

(5) F = keep, (ax15),(4),(2),(prop)
(6) F = Oa.b(true) (ax15),(4),(2),(prop)
(7) ¥ = ob.aftrue) (ax12),(3),(5).(prop)
8) F=0(a.bNb.0) (6),(7),(T10),(prop)
9 abAb.Oa= a.b.a (T7),(prop)

(10) O(a.bAb.a) = Oa.b.a (nex),(9).(ax7),(prop)
(11) ¥ = Oa.b.aftrue) (8),(10),(prop)

- F = a.b.alfalsg € 613(F): Note thatalkeep,], a(true), a.b.afalsg € F by
the definition of013. We give a derivation off = Oa.b.a[falsd:

(1) ¥ = a(keepy) A a.b.affalsg def. of812,(T6),(prop)
(2) a(keepy) A a.b[falsg = Oa.b[falsg (ax18)

(3) a.b[fals€g = a.b.a[fals€ (T7),(T5),(prop)

(4) Oa.b[falsg = Oa.b.afalsé (3),(nex),(ax7),(prop)
(5) ¥ Aa.blfalsg = Oa.b.a[falsé (1),(2),(4),(prop)

(6) a(keepy) A a.b(true) = keep, (ax15),(prop)

(7) a.b{true) A a.b.alfalsd = b.a[falsé
(8) keep, A b.affalsg = Ob.afals€

(9) Ob.affalsg = Ca.b.alfals€

(10) 7 Aa.b(true) = Oa.b.a[false

(11) ¥ = Oa.b.alfalsg

(T5),(T7).(prop)
(ax12),(prop)
(ax2),(nex),(ax7),(prop)
(1).(6).(7),(8).(9),(prop)
(5),(10),(prop)

- F =a.b(true) € B14(F): we have-alkeep,], a.b[falsg € F by the definition
of 814. By (ax17) it follows that- 7 = —Oa.b[fals€, hence- F = Oa.b(true)
by (ax6), (T5), (nex) and (ax7).

4. Axiomatisation 77

- F = a.b[falsg € B15(F): then it holdsa.b(true), keep,,~alkeep,] € F by
the definition of@;5. By (ax16) and by propositional reasoning it follows that
F F = —0Oa.b(true), hence- Oa.b[false by (ax6), (T5), (nex) and (ax7). &

The graphZ (F) is redefined: the successors of a node are defined with respect to
the newB. The notion of a complete path is unchanged.

As our next step, we are going to construct a run based on a complete path
Fo,F1...inthe graphZ (F). Leto’ denote the sequen¢g, Ay)(t1,A]) ... where
(t/,N}) is defined as in se¢. 4.1, starting with the ggt Note that this run is

in general no model for the s¢f, as formulas of the form-keep, are not ne-
cessarily satisfied. In order to see this, consider for example the following set:
F = {—keep,, a(true),Oa(true)}. Let G denote an arbitrary completion gf. A

possible complete path () is the following:

G,{a(true)},0,0...

The construction yields the following rumm

R al R . R

Obviously, foro does not hold the formutakeep,,. The problem is that a formula

of the form—keep, possibly requires the existence of some new name that does
not occur in# whereas in the rug only names occur that occur in some formula

in .

To solve this problem, we have to modify the trees of the run based on a complete
path slightly. For every name for which —keep, € U;>0 ¥, let n, € N be a
name that does not occur in any of the formulag jp.o 7, with n, # n; for

a # b. Note that it is possible to choose such nameg,Jag ¥ is a finite set.
Intuitively, the namen,, will have to ensure that the formulakeep, holds: if
—keep, has to hold for a sub-rua|; and the name,, does not occur ir;, then

ngq 1S put below the name in the treet; . 1. Conversely, ifn, is already int;, then

it must not appear im; 1. This idea is formalised in the following definition.

78 4.2. Axiomatisation of propositional MLTL

We define the ruro = (#p,Ao)(%1,A1) ... by induction on: € w. We let again

0’ = (ty,Ap)(t1,A]) ..., with ¢/ = (N}, <!), be the run based on a complete path
Fo,F1, ... as described above and [g§,Ao) = (t5,Ap). Leti € wand assume
that(#p,No),-- -, (%i,A;) are already constructed.

Nit1:=Nj, 4 U{n4|—keep, € Fi,a € Nj,a € Nj , andn, ¢ N;}
U {nq|nq € N; andkeep, € F; for someb with n, <; b}

and the binary relatior:; 1 onN,,1 is defined as follows:

(/ : /
a<;q1b ifabeN;
a<'/ .b if beN ,anda = ngforsomea N
a <Z+1 b e < i+1 _ i+1 a _

a<i ,b if aeN; ;andb=nj;forsomebecN

[a<j b ifa=ngb=nyanda <] 4 b

The assignments; are defined by
N.(a) ifaeN,
)\Z(a) - ’L() (3 _
0 if a = ng for somea € N
Informally, this definition indicates that, is put immediately below:. To illus-
trate the construction, we consider a sequehgef 7, ... wheref(is some com-
pletion of o = {Oab(true),Oc(true), ~keep,,Okeep,,O—keep,} and F;_ , is
some completion 08(#7). The prefix of one possible resulting run — first only
applying the original definition from selc. 4.1, that is, without the described modi-
fication — is the following:

a c a c a c a c
b b b b

This is obviously not a model gf o, as the formulaskeep, andO—keep,. are not
satisfied. The modification according to our definition yields the following run:

a C a C a C a C
b b Ne b b T
ny ny

4. Axiomatisation 79

The first trees are identical. Then the names put below the namé as well

as the name,. below ¢ in order to satisfy formulaskeep, andO—keep,. In the
next stepn. disappears as required by formtla-keep,., but noden;, is still kept

as required byeep, € ¥; (this follows fromOkeep, € o) anda.b(true) € F3.

In the last treeu;, does not appear (the auxiliary nodes are not kept if not explicitly
required by some keep operator) whereaseappears due tekeep, € F5.

We show that; is a tree.

Lemma 4.25 Lett; = (N;, <;) be defined as described above. Thgis a tree.
Proof. In order to prove the claim we have to show that

1. the relations<; are irreflexive.
2. the relations<; are transitive.

3.ifa,b,cEN;,a#b, c<;aandc<; bthen eithera <; b orb <; a.
To 1.: Assume that: <; a. We have to distinguish two cases.

Case:a € N,. Thena <) a by definition in contradiction to the irreflexivity of
the relation<’,.

Case:a = ng for somea € N,. Thena </, o by definition, hence we obtain the
same contradiction as above.

To 2.: Assume that <; b andb <; ¢. We have to show that <; ¢. Again, we
have to distinguish different cases.

Case:a,b,c € N,. Thena < b andb </, ¢ by definition, hence: <, ¢ by the
transitivity of </. By the definition of<; this means: <; c.

Case: a,b € N, and ¢ = ng for somec € N;. Thena </ b andb </, ¢, hence
a <!, c. Latter impliesa <; c.

Case: a,c € N, and b = nj for someb € N. Thena </ b and b </ ¢ by
definition, hence: <! ¢ and soa <; ¢ by the definition of<;.

80 4.2. Axiomatisation of propositional MLTL

Case:b, c € N}, anda = ng for somea € N;. Thena <’ b andb </, c. It follows
a < ¢, henceng <; ¢ by definition.

Case:a € N, b = ny andc = ng for someb, ¢ € N. Thena < b andb <, ¢
by definition. It followsa </, ¢, hencea <; c.

Case:b € N, a = ng andc = ng for somea, c € N;. Thena </ b andb </, ¢ by
definition. This impliess <, c as</, is transitive, hence <; ¢ by definition.
', o= ng andb = nj for somea, b € N'. Thend <, b andb </ ¢
by definition. Hence: </, ¢ which impliesa <; c.

Case:c € N’

Case:a = ng, b = ny andc = ngfor somea, b, ¢ € N,. Thena </, b andb </, ¢
by definition, hence: </, ¢. From this followsa <; ¢ by the definition of<;.

To 3.: Again, different cases have to be considered.

Case:a,b,c € N,. Thenc <) a andc </, b by definition and a$t;, </) is a tree
it follows a < b or b </, a. Hence,a <; borb <; a.

Case:a,b € N, and ¢ = ng for somec € N,. Thenc </ a andc </ b, which
impliesa <, b or b <, a. Hence,a <; b or b <; a by the definition of<;.

Case:c € N, a = ng andb = ny for somea, b € N, with @ # b (@sng # nj
by assumption). Then </, a andc </, b by the definition of<;, hencea </ b
or E<’i a. In the first case it follows:. <; b, in the second case<; a by the
definition of <;.

Case: a,c € N, and b = nj for someb € N;. Thenc <! a and ¢ <} b by
definition. It followsa < b or b </, a, hencea <; b or b <; a. Sincea # b by
assumption, the assertion follows.

Case:b,c € N, anda = ng for somea € N/. This case is symmetrical to the
previous case.

Case:a € N/, b= nj andc = ng for someb, z € N/.. Thenc </, a andé </, b. If
¢ = a then we have: <, b by the latter. Otherwise we obtain<’, b or b </, a,
hencea <; b or b <; a by definition.

Case:b € N}, a = ng andc = ng. for somea, ¢ € N). This is symmetrical to
the previous case.

4. Axiomatisation 81

Case:a = ng, b = nj andc = ng for somed, b, ¢ € N/. Then we have: </ @
andc </, b by definition, hence. </, b or b </, a ast/ is a tree. It followsa <; b
or b <; a by the definition of<;. [|

We prove the following lemma about the sequeace

Lemma 4.26 Leto = (#p,Ao)(?1,A1) ... be defined as above and let w be ar-
bitrary. Then the following holds:

1. If keep, € TK(F;), then keep, € F; iff ¢;1b=1t;11]b.

2. If a[keepb] S TK(}—Z‘), then a[keepb] e F,;iff a ¢ N; ort;la.b= t¢+1la.b.
Proof.

1. Only if: Letkeep, € F;. First we show that;|b =t ,|b. To this end, it is
enough to prove that for all, c € N holds the following:

(@ a<jbiff a<i, 40

(b) If a < b, thenc < aiff c <), a

To a): By the definition of the relations; we have to show.a(true) € 7;
iff b.a(true) € F,,1. Sincekeep, € ¥, and sincef ;.1 is a completion of
B(F), this follows from the definition 06.

To b): Leta <’ b, i.e.b.a(true) € F;. We have to show that.c(true) € F,
iff a.c(true) € Fii1.

Only if: Assumea.c(true) € F;. Observe that, b, ¢ are pairwise distinct
and hencé.a.c(true) € tk(F;). By (T7) it follows - F; = b.a.c(true),
henceb.a.c(true) € ; by propositiorf 4.111,1. By the definition 6fit fol-
lows thatb.a.c(true) € F;,1. Sincet b.a.c(true) = a.c(true) by (T0O),
it follows thata.c(true) € F ;1.

4.2. Axiomatisation of propositional MLTL

If: Assumea.c(true) € F,;+1. Sincea, b, c are pairwise distinct and as
b.a(true) € F;11 by a), it follows as above thak.a.c(true) € F;11. As
a,b,c € nm(¥F;), we haveb.a.c(true) € tk(F;). By the definition ofo

it follows that b.a.c[fals€ ¢ F,, henceb.a.c(true) € F,. The assertion
follows now as in the previous case.

Now we consider the “auxiliary” names.. From the definition of the trees
t; it follows directly that if a noden. occurs int;, then its position is imme-
diately below the node. Hence, it suffices to show for every thatn. <; b
iff Ne <i4+1 b.

Only if: Assume first thak,. <; b. Sincekeep, € ¥, by assumption, the
definition of ;.1 implies thatn. € N; 1. Furthermore, by the definition of
<41 itfollows thatn, <;11 b, thatis,n. <;11 b.

If: For the converse, assume that<; 1 b. Thenc <;.1 b by definition,
that is, eitherc = b or b.c(true) € F ;1.

Case: ¢ = b. Sincekeep, € F,; andn, € N;;1, the definition oft; 1
impliesn;, € N;. By the definition of<; it follows n; <; b.

Case: ¢ <;4+1 b. By definition, this mean$.c(true) € ;1. Since
keep, € F;, by the definition of® it follows b.c(true) € F;. Hence,
F Fi = keep, by (ax13), in particular-keep, ¢ F;. Again, it follows
by the definition oft; 1 thatn. € N;. As ¢ <; b (sinceb.c(true) € F,),
we concluden, <; b by the definition of<;.

If: Assume thakeep, ¢ ¥, thatis, asF; is complete;-keep, € F;.

Case:ny ¢ N;. There are two possibilities. EithérZ N; or b € N;.

In the first case we havigfalse € F;, henceb(true) € F,.1 by the defi-
nition of 8. Henceb ¢ N; butb € N, 1, in particular,t; | b # t;+1]b.

If b€ N; andb ¢ N;;1, then we already havg | b # ¢;.1]b since latter
is the empty tree whereas the first is not. blE N;;1, thenn;, € N;;1

by the definition oft;; 1, hencen;, <;;1 b. It follows ¢;|b # t;+1] b Since
ny <ij+1 b butn, <; b.

Case:n, € N;. Assumen;, € N,;;1. By the definition oft; 1, this is only
possible if there is a namewith keep,. € #; andn;, <; c. By the definition

4. Axiomatisation 83

of <; itfollows b <; ¢, thatis,b = c or c.b(true) € F;. It follows in both
cases - in the latter by (ax13) and by lemima #.13 - ithdt; = keepy, in
contradiction to the consistency 6f;.

2. Only if: Assume that[keep,| € F; anda(true) € ;.

Case: b <; a, that is, a.b(true) € F,. By (ax15) and (prop) it follows
that+ F,; = keep, holds. Askeep, € TK(¥;), it holdskeep, € F; by
propositior] 4.1[1,1. Further, agkeep;], a.b(true), a(true) € F;, we have
a.b({true) € F,.1 by the definition 0B, henceb <, 1 a by the definition of
ti+1. Inparticulart; |b=t;]a.bandt; ;1] a.b =t;11]b. Sincekeep, € ¥,
this implies by 1. that; | a.b = t;11] a.b.

Case:tj|a.b =empty, thatis,b £; a, thatis,a.b(true) ¢ F;. If a = b, then
a.b({true) ¢ F,.1 because of the consistency $f.1, henceb £;.1 a. If
a # b, thena.b[falsg € F; since¥; is complete, hence.b[fals€ € F;.1
by the definition o®, henceb £;.1 a, thatis,t; 1] a.b = empty.

cLett;la.b=1t;11]a.b.

Case:t;|a.b =empty andt; 11| a.b = empty, that isa.b(true) ¢ ¥, and
a.b{true) ¢ Fii1.

Case:lf a = b, then- a.b[falsg A Oa.b|falsg by (ax4), (nex) and (prop),
hence- alkeep,] by (ax17), i.e.alkeep,] € F; by propositior 4.1]1,1.
Case: If a # b, thena.b[falsg € F; because of the completeness of
Fi. Assuming—alkeep,] € F; would imply a.b(true) € F,.1 by the
definition 0fB14, in contradiction to the assumption. Hence, it holds that
alkeepy] € Fi.

Case: tjla.b = ti11]a.b # empty, that is, a.b(true), a.b(true) € F,11
and alsot; | b = ;] a.b as well ast;1]b = t;11]a.b, hence in particular
tilb=1ti+1]lb. Sincekeep, € TK(F;), it follows by 1. thatkeep, € F;. By
the definition of@15 and sinces.b(true) € F ;1 we have-alkeep,| ¢ ¥,
hencea keep,| € F;. [|

84 4.2. Axiomatisation of propositional MLTL

Theorem 4.27 Let F be a finite and consistent set of pMLTL-formulas and let
0 = (to,Ao)(t1,A1) ... be the run defined as described above. Letw. Then the
following holds:

1. If F e(¥F;), then F e ¥,iffol;,e=F.

2. If a[F| € Ik(F;), then a[F] € F;iff a ¢ N, or 0|;,a = F.

Proof. The proof extends the proof of theorém 4.23. Note that also for the mo-
dified trees and all names b € nm(¥;) holds the following:

a € N; iff a(true) € 7, and a <; biff b.a(true) € F;

Using this observation, it is easy to see that the proof of thegrem 4.23 works
also for the modified ruw. The additional case of the move operators follows
immediately from lemmpa 4.26. |

With the aid of this theorem — more precisely, using the proof of the theorem —we
can show that every satisfiable pMLTL-formula has a “finite” model in the sense
as stated in the following corollary.

Corollary 4.28 Let F' be a pMLTL-formula. Leam(F") denote the set of names
occurring in F andat(F') the set of propositional variables occurring i Fur-
thermore, for every, € nm(F) let n, be a name withu, ¢ nm(F) andn, # ny,
for a # b. If F'is satisfiable, then there exists a ran= (tp,Ao)(f1,A1) ... with
N; € nm(F)U{ns|a € nm(F)} andA; : N& — 22(F) for whicho, e = F holds.

Proof. Let F' be satisfiable. Because of the soundnesEgfr. holdst/ —F,
that is, the sef F'} is consistent. By (the proof of) theorém 4.27, there is a model
of F' as described above. [|

Chapter 5

Model Checking & Decidability

5.1 Background

In this chapter we explore the model checking problem (for finite state mobile
systems) and the decidability problem for propositional MLTL.

The model checking problem is to decide for a given systénand a formular
whether for all runss of M holdso = F'. One well established method to solve

this problem makes use of automata-theory. Runs of a finite state system can be
regarded as infinite words over a finite alphabet that consists of the system’s possi-
ble states. Assume now that the system we have to check is given as an automaton
A,4,. Further, assume thaty is an automaton that accepts exactly the models of
the formulaF, that is,o € L(A4p) iff 0 = F. Then solving the model checking
problem is equivalent with deciding whether the languagd,,) N L(4.r), that

is, the language.(4,, x 4-r) is empty (whered,, x 4. r denotes a product
automaton that accepts exactly the words that are accepted by both automata).
Hence, the model checking problem is reduced to the non-emptiness problem for
appropriate automata. Comprehensive introductions to the field of model check-
ing can be found for example in[12,113].

The decidability problem means to decide for a given formula whether it is sat-
isfiable, that is, whether it has a model. As we have shown in cordllary 4.28,

85

86 5.2. Biichi automata

propositional MLTL has the finite model property, that is, if a formula has some
model, then it has also a model over a special finite alphabet. Consequently, if we
are able to translate formulas into automata, the decidability problem for propo-
sitional MLTL can also be reduced to the non-emptiness problem: the forfula

is satisfiable if and only if2(A4r) # 0, where 4y is defined over an appropriate
alphabet.

In the following we present a translation of propositional pMLTL-formulas into
weak alternating automata. Our construction is based on the translation of LTL
into alternating automata as givenlin [51].

5.2 Blchi automata

Finite automata running on finite words or finite trees are well known in connec-
tion with the theory of formal languages. If verification of nonterminating systems
is concerned, it is useful to consider finite automata that run on infinite objects like
infinite words or infinite trees. As the models of pMLTL can be regarded as in-
finite words over a sef of configurations, we will only consider automata on
infinite words here.

In this section, we briefly describe non-determinidBiachi automataand cite
some well known results that we will need later to determine upper bounds on the
complexity of different decision problems.

Definition 5.1 A non-deterministiBiichi automatorover the finite alphabeX is
given by atupled = (Z, @, q1,9, F') with

e () is afinite set of states

e ¢; € () is the initial state

e 5: () x X — 29 s the transition function

e ['C () isthe accepting condition

5. Model Checking & Decidability 87

A run of the automatonq on an infinite wordo = sgsp... € Z% is an infinite
sequencepq: ... € Q@ of states such thajp = ¢; and that for all: € w it holds

Gi+1 € O(qi,5i)-

Arunp=qaq... € Q¥is acceptingff F' Ninf(p) # 0, wherelnf(p) denotes the
set of states that occur minfinitely often, that is,

Inf(p) ={qeQViewdj>ii¢g=q} .

A wordo € 2% is accepted by iff there is an accepting run of the automaton on
o.

The definition says that an accepting run has to pass one of the accepting states
infinitely often. The language accepted by the automatomill be denoted by
L(A).

In many applications, it is an important question whether the language accepted
by an automaton is empty. The following proposition cites the well known result
that the non-emptiness problem foa&hi automata is decidable in time linear in
the size of the automaton.

Proposition 5.2 Let 4 be a Bichi automaton with states. The question whether
L(A4) is empty can be decided in tint&»), that is, it is linear in the size of the
automaton.

Another classical result is the construction for twaodBi automataq; and 4, a
Buchi automaton that defines exactly the intersection of the two langusgés
and L(4). We do not present the construction, but only record its complexity.

Proposition 5.3 Let 4; and 4> be non-deterministic ichi automata over the
alphabet with n1 resp. ny states. There is a non-deterministiadhi automaton
A4 with O(nyny) states for which it holds

£(A) = L(7) N ()

88 5.3. Alternating Automata on Infinite Words

5.3 Alternating Automata on Infinite Words

For the translation of propositional MLTL into automata we will wgeak alter-
nating automatafirst introduced by Muller et al. in_[41]. In our presentation of
weak alternating automata we follow [32], where, in contrast to most other defi-
nitions, runs of alternating automata are described in terms of dags with bounded
width, instead of finitely branching trees.

Alternating automata combine existential (nondeterministic) and universal branch-
ing mode. As in universal automata, several states of the automaton may be active
at the same time. Additionally, as in nondeterministic automata, when reading an
input letter, the automaton can choose from different sets of states as successors.
The different branching modes are given by the transition function that assigns to
every state/letter pair a positive boolean expression over th@ séthe automa-

ton’s states. For examplep V (¢1 A ¢2) means that the automaton can choose
between activatingg or both,¢; and ¢ simultaneously.

Alternating automata whose transition function is given in disjunctive normal
form, can be illustrated by hypergraphs. A hypergraph corresponding to a (weak)
alternating automaton with state sgt= {qs, ¢1, g2}, initial stateq; and the fol-
lowing transition function:

O(qr,a) =08(q1,0) = V(anANg) Oq,c)=08q,d)=q
d(q1,a) =8(q1,b) = A g d(q1,c) =0(q1,d) = false
(g2, a) =0(q1,¢) = ¢ 8(g2,b) = (g2, d) =true
appears in figurg 5.1. The numbers that appear in brackets next to the states indi-

cate theranksof the states. In weak alternating automata, every state has a rank,
and transitions are not allowed to lead to a state of higher rank.

A hyper-edge labelled by a letterc Z indicates that on input the automaton

can simultaneously activate the states the hyper-edge leads to. For example, the
above automaton in its initial state can activate on inpettherg;, or g1 and ¢»
simultaneously.

A run of a weak alternating automaton on an (infinite) input wegs ... is,
roughly speaking, an acyclic graph that arises if we follow the (hyper-)edges along

5. Model Checking & Decidability 89

Figure 5.1: lllustration of a weak alternating automaton

the input word. Figurg 5|2 shows (the first segment of) a possible run of the au-
tomaton given in fig. 5]1 on the infinite worttabba®.

d c

(q1,0)4>(q1,1)—>(q1,2)§ b b a
(q1,3) <—(q1,4) < (01,5 <—(q1,6) ...
(q2,3)\(qz74)\(q2,5)>=(qz76)

Figure 5.2: Run of an alternating automaton

Such a run graph iaccepting if all infinite paths in the graph satisfy the accept-
ing condition of the automaton. In the case of weak alternating automata, this
condition requires that the minimal rank occurring on the path be even.

For example, the run given in fig. 5.2 is not accepting, because the infinite path
+-+(q2,5)(¢2,6)--- gets trapped in statg which has rank one. Figufre %.3 presents
an accepting run of the same automaton (the one i fig. 5.1) on the awabé.

The only infinite path finally contains only stagewhich has rank 2.

a

(qI,O)g’(qI,O) a a b b
N(QLZ)S(Q173)4’(Q1,4)4>(q1,5)

(42,2) (g2,3)

Figure 5.3: An accepting run

After these informal explanations let us introduce all the notions in a formal way.

90 5.3. Alternating Automata on Infinite Words

For a finite setX, the set ofpositive boolean expressionser X is the set of all
expressions built from the elements of the SetisingA andV, plus the formulas
true andfalse This set is denoted b$™ (X). We say that a subséf satisfies
p € B (X) iff the truth assignment that assigtrse to the elements irt” and
falseto the elements itk \ Y satisfiep. The set of subsets of which satisfy a
positive boolean expressigre B* (X)) is denoted by Mofb), the set of elements
z € X occurring in a positive boolean expresspa B*(X) by at(p).

In the next proposition we list properties of such models. All of them are easy to
prove.

Proposition 5.4 Let X be a set angh € B (X). The following holds:

1. If S € Mod(p) and S C S’ C X, thenS” € Mod(p).
2. If S € Mod(p) andat(p) C S/, thenSN S’ € Mod(p).

3. If S € Mod(p1) NMod(p2), thenS € Mod(p1 A p2).

Now we define weak alternating automata operating on infinite words over a finite
alphabet.

Definition 5.5 Aweak alternating automaterWWAA for short — on infinite words
isatuple4 = (Z, @, q,9,r) where

e > is afinite alphabet

@ is afinite set of states

gr € Q is the initial state

d: Q xZ— BT(Q) is the transition function

r:) — wis a function with the following property:

Vg, ¢ € QVseX: ¢ €at(8(q,s)) = r(q") < r(q)

5. Model Checking & Decidability 91

The number-(q) is called therankof q.

We already gave an informal explanation of a run of a WAA. Here we present the
precise definition.

Definition 5.6 A run of an alternating automatori = (Z, @, ¢7,9,) on a word
0= ss1... € 2% is a directed acyclic graph (dagy = (V, F, v7) that satisfies
the following conditions:

e VCQPXxXW

o ((¢,0),(d"j) eE=j=i+1

o {d|((q,4),(¢';i+1)) € E} € Mod(8(q,s:))

o {¢1((4,0),(¢,i+1)) € B} Cat(8(q,)

e vy =(q1,0)

° (¢.0)eVeqg=q
An infinite pathof a dagg is a maprt: w — ¢ x wsuch that

° T[(O) =7

o Vicw: (Mm(i),mi+1) ek

A run dagg is calledacceptingiff for all infinite pathstt: w— @ x win G the
minimal rank occurring i, that is, mi{r(¢)|3: < w: (¢,i) = (%)}, is even.
A WAA 17 acceptshe wordo € Z¥ iff there exists an accepting run of on o.
Again, the language accepted by an automatas denoted by~ (4).

Weak alternating automata can be translated into non-determinigtibi Bwu-

tomata as stated in the next proposition.

Proposition 5.7 Let 4 be aWAA with n states. There is a non-deterministic
Buichi automatorfip with O(2") states and.(4) = L(A4p).

92 5.3. Alternating Automata on Infinite Words

The translation is based on a subset construction by Miyano and Hayashi [40] and
is exponential in the size of the automaton. For WAAs in our format the translation
is described for example i [49].

The following proposition will often be used.

Proposition 5.8 Let 4 = (Z, @, q;,8,7) be aWAA ando = sps1... € Z¥. The
following holds:

1. If &(qz,s0) =true, theno € L(4).

2. If d(qr,s0) = false theno ¢ L(4).

Proof. To 1.: As the empty set satisfigsie, the dag consisting only of the root
(¢qr,0) is a run of 4 on any word beginning withy. This dag does not contain
any infinite path and so it is accepting.

To 2.: As falsedoes not have any model, there is no rumdodn o. |

Now we prove several lemmas about the languages accepted by weak alternating
automata. These lemmas will be helpful to prove the correctness of our transla-
tion.

The first lemma shows how to construct for two WAAS$ and 4, an automaton

that accepts exactly the words that are accepted by BptAnd 4,. The con-
struction is simple: the state space consists of the union of the state spaces and a
“new” initial stateq;. For all “old” states, the ranks and the transition function are
unchanged. As the automaton has to imitate both automata simultaneously, from
the initial state it can perform the transitions that are allowed for both automata in
their initial states. Technically, the transition function gnis the conjunction of

the transition functions of the two automata on the initial states.

Lemmab.9 Leta, = (£, Q", ¢}, &, r"), for i = 1,2, beWAAs such that
Vge QINQs e (8(q,5) =8(g,9) A(rt(q) = r*(q))

Further, let4 = (%, Q, ¢7, 06,) be defined as:

5. Model Checking & Decidability 93

e Q=QY'UQ?U{q} withg ¢ QTUQ?

’ S(qk,s) S (g2 s) ifg=q

" { (q) fgeq

max{ri(q}),r?(¢?)} fq=q

ThenA is aWAA and the following holds:

L£(4) = L(A) N L(A)

Proof. First note tha® andr are well defined because of the condition on the
two automata that their rank- and transition functions agree on all common states.
As the rank function is obviously "decreasing” by the definitiondo&nd r, it
follows that.2 is a WAA. Now we have to prove two inclusions.

"C" Let G = (V,FE,vr) be an accepting run o ono € Z%. Using this dag we
construct an accepting run fat; as follows: we replace the ro6i;,0) by (¢¢,0)

and take the sub-graph @f that contains only states i@*. (Additionally, we

could remove all nodes that are not reachable ftgm0).)

More formally, let the dagsy; = (V, E,v}), for i = 1,2, be defined as follows:

o Vi={v}u{(¢:)(g:5)€V,j>19€Q"}
o E'={(vf,(¢,1)lg € Q" (vr,(g,1)) € E}U
{((¢,9), (¢ i+ >1,q,¢ € Q",((¢,4),(¢", s +1)) € E}
Figurel 5.4 illustrates the definition wiyf, ¢2 € Q% andqf ¢ Q2.

We want to show thaty; is an accepting run of;; ono for : = 1,2. In order to
see thatj; is a run of4; on o, it suffices to prove the following:

vj € w¥(q.j) € V' {d|((¢,9),(¢",j +1)) € B'} € Mod(&' (g, 5;))

We prove the claim fof = 0 andj > 1 separately.

94 5.3. Alternating Automata on Infinite Words

AN

Figure 5.4: Construction afj; from G

((]22,1) ((]2272) (QZzaS)

Case:j = 0: Observe tha{q|(v},(¢,1)) € E'} = {q|(v1,(¢,1)) € E} N Q".
Sinceg is arun of4 ona, we know thaf ¢|(vz,(¢,1)) € E} € Mod(8(g7, $0))-
On the other hand we know that M@ g;, so)) C Mod(8'(q},s0)) (cf. the
definition of §). Hence,{q|(vr,(¢,1)) € E} € Mod(&(¢},s0)). Because of
at(d'(q},s0)) C Q' it follows that{¢|(vr, (¢,1)) € E}N Q" € Mod(8 (¢}, s0))
by using prop|. 5/4.

Case:j > 1: Note first that for every; € Q" it holds &' (¢, s;) = &(q, s;) and

{d1((¢,9),(¢,5+1) € B}y ={¢'|((¢,4),(¢,j + 1)) € E}NQ". As forall
statesg € Q' we have thant(d'(g, s;)) € Q°, it follows by prop[5.4,2 that

{¢1((¢,9),(¢",7+1)) € E'} € Mod(&' (g, 55)).-

Hence,G; is a run of4; ono. It satisfies the weak acceptance condition, because
every infinite path corresponds to a pathgnand asg is accepting, it satisfies
the accepting condition.

"D" Let G, = (V' E' v}) be an accepting run of; on o, for i = 1,2. We
construct an accepting run of by “putting together” the two graphs. Formally,
let the dagg be defined as follows:

® Uy = (QI,O)
o V=(VI\{vfHhu(V2\{vZ})U{vs}

o E={(v,v)|(v},v") € E'forani € {1,2}}U
{(v,v")|(v,v") € E* forani € {1,2},v,0" € V}

5. Model Checking & Decidability 95

Figure[5.5 illustrates the construction of the @based on the rung; and g, of
the original automata. We want to show tlgats an accepting run ofl ono.

G (ol mdac—(h3
| \mﬁm%@,ax
o L Nd (%2,3)

w0 |
G2 | (aF.0) — (4.)

IR
(¢5,1)—=(

Figure 5.5: Run dag of the intersection automaton

First we have to prove thaj is a run of4 on o, that is, that the set of successors
of any vertex(q,j) is a model o®(q, s;). Formally, this means

VjewV(q,7) € V: {qd'[((¢,4).(¢",j+1)) € E} € Mod(3(q, s;))

Again, we examine the casg¢s= 0 and; > 1 separately.

Case:j = 0: Let S :={¢|(v,(¢’,1)) € E} be the set of successors of the
root of G. Note thatS = {¢'|(v},(¢,1)) € E}} U{d'|((v?,(¢,1)) € E?} and
that 8(qz, so) = 8%(qt, s0) A 82(g?,50). Sinceq; is a run of 4; on g, it fol-
lows that{q'|(v},(¢’,1)) € E'} € Mod(8(q},s0)). By prop.[5.4,1 it follows
that S € Mod(8(¢?, s0)) N Mod(&%(¢?,s0)). Hence,S € Mod(3(qz, 50)) (cf.
prop.[5.4,3).

Case:j > 1: Let(q,j) € V andletS = {¢'|((¢,7),(¢’,j +1)) € E}. Observe
thatS = {¢'[((,9), (.7 +1)) € EY}U{d|((4,4),(¢',j +1)) € E?}. Because
of j > 1 it follows thatq € Q! or ¢ € Q2. We assume w.l.o.g. thate Q1.
Thus,8(q, s;) = 8(q,s;). SinceG is a run of4; ong, it holds

{d'1((¢.9).(¢',j +1)) € B'} € Mod(&(4. 5;))

Therefore,S € Mod(8(g, s;)).

96 5.3. Alternating Automata on Infinite Words

Altogether we obtain that; is a run of 4 on o. Since every infinite path of
corresponds either to a pathdi or in Gz, this run is an accepting run. |

The next lemma shows how to construct the union automaton for two weak al-
ternating automata. It is similar to the previous one, the only difference is in the
transition function. As the automaton should be able choose between the two
automata, we allow a non-deterministic choice in the initial siatehat is, the
transition function ony; is the disjunction of the original transition functions on
the respective initial states.

Lemma5.10 Let4; = (£, Q', ¢},8", "), for i = 1,2, beWAAs such that

Vge Q'nQMs ez (8'(q,s) =8%(q,5)) A(ri(q) = r?(q))

Leta = (Z,Q,qr,0,7) be defined as:

o Q=Q'UQ?U{q} whereq; ¢ Q*UQ?

3 (q,s) if g€ Q'

® 8(q,8) = _
d (gt s) V& (q?,s) ifq=q

ri(q) fa#qeqQ
max{rl(q}),r2(¢})} if¢=q

r(q) =

ThenA is aWAA and the following holds:

L(A) = L(A) U L(A)
Proof. The proof is similar to the previous one. |

Now we present a construction that will help us to translate formulas of the form
OF. By the semantics ofi ', formula F' will be checked only as long as the
current location of evaluation exists. Hence, the construction depends also on a
set C. For the translation, this set will contain the configurations in which the
current name does not appear.

5. Model Checking & Decidability 97

Let us ignore the set’ for a moment, and assume that we are given a WAA
Our goal is to construct an automatdi that accepts a word iff 4 accepts alll
suffixes ofo. The construction works as follows: we take all the stateg pfus a
“fresh” initial stateq;. The transition function on the old states is unchanged. The
initial state can perform all transitions of the original initial state, but additionally
each transition frony; has to activatey; again (in order to check the suffix). As
an infinite repetition of the initial state is desired, we assigp;tan even rank.
The ranks of the old states do not change.

The following lemma gives the formal definition of this construction.

Lemma5.11 Let4 = (Z, @, q1,0,r) be aWAA and letC' C X. Let the automaton
A" =(%,Q, q;,9,1") be defined as follows:

e Q'=QU{q}

true if g=¢;ands e C
o 8(q,5) =14 8(qr,s)N¢q, ifg=g,ands¢ C
(g, s) if ¢ # q;
r(q) if ¢ # q;

o 7'(q) = _
2[r(qr)/2] ifq=q;

Then4' is aWAA and the following holds:
L(ﬂl/) = {0': $051... € Z‘*’Nz‘ cEw: (0|z < L(ﬂ)\/ﬂj <iisj€ C)}
Proof. Sincer’(gr) <1'(q}), A" is a WAA (cf. also the definition od’).

"C” Let G’ = (V',E’,v;) be an accepting run off’ on o and leti € w be an
arbitrary natural number. We have to prove the following:

GyiEL(JZl)VajSiZSjE C

Assume that/j <i: s; ¢ C. Now we have to show that|;, € £(4).
Let VC @ xwandE C V x V be the smallest sets, such that the following
holds:

98 5.3. Alternating Automata on Infinite Words

° ((H,O) =74
e Vge Q:((qr,i),(¢,i+1) € B'=(¢,1) € VA((q1,0),(q,1)) € E
o Vi>1v¢' € Q: ((¢.5) € VA((g.i+4),(d,i+j+1) €E)

= ((¢,j+D) e VA((g.5),(¢,j+1) € E)

Theng = (V,FE,(qr,0)) is a dag. Observe that the assumptign< i : s; ¢ C
implies that(q;, i) € V’. Figurg 5.6 illustrates the construction@gffor given G'.

. 50 51 Sifl‘riiif 7151
g (q}70) 4’((1}71) T ':“/I’)Kz(fq/bzi_;)fiiT
\ \ } \(qu+1) e
: (g3, 4+1) ... |
L - - - - _

Figure 5.6: Construction of from G’

In a similar way as in the proof of lemnmia .9, we can show thas a run of4
onol;. Sinceg is essentially a subgraph ¢f', and sinceG’ satisfies the weak
acceptance conditiorg; is an accepting run.

D" Let L denote the seftsps1... € Z¥|Vi e w: (0]; € L(A)VIj<i:sj e C)}.
Leto = sps1... € L, thatis, for alli € weithera|; € £L(A4) or there is g < i such
thats; € C is true. We have to construct an accepting rurdbbno. Let

min{jls;j e C} if3ecw:sjelC
w otherwise .

Sinceo € L, itholdso|; € £(4) forall i < m. Fori < m, letG; = (V', E*,v}) be
an accepting run ol ongl;. Let V' C Q' x wandE’ C V' x V' be the smallest
sets with the following properties:

e (q;,00 eV’

5. Model Checking & Decidability 99

o Vj<m:(qj+1)€ V' A((q},5),(q},j+1) € E
o Vj<mVk>1:(q,k)€ Vi=(qgk+j)eV
o Vi <m:(v],(g,) € E = ((¢},4),(q,7 +1)) € E

o Vj<mVk>1:((q,k),(¢",k+1)) € BV = ((¢,k+4),(¢',k+j+1)) € E'

We give an illustration of this construction in fig. b.7.

S0 S1 Sm—2 Sm—1
(q7.1)

G': (4,0 \
0.1) ...

Figure 5.7: Construction of the dag from G, ... G,

It is not hard to prove that;’ = (V', E’,(¢},0)) is a run of4 on o. In order
to prove that it satisfies the weak acceptance condition we distinguish the cases
m < wandm = w.

Case: m < w: Every infinite path ofG’ corresponds to a path of one of the
Gi’s, thus it satisfies the acceptance condition. Heggés an accepting run of
4onao.

Case: m = w: Let tbe an infinite path ing’. There are two possibilities.
Either there is g < w such thatri(j) = (g¢,7) with ¢ # ¢} and; is minimal, or

for all j < wholdsT(j) = (¢7,7). In the first case, (a suffix of) corresponds

to an infinite path inG; and as such it satisfies the acceptance condition. In the
second case, every node occurring in the pattas rank 2r(q;)/2], which

is even. Hencert satisfies the acceptance condition also in this case, and it
follows thatG’ is an accepting run off’ ono. [|

100 5.3. Alternating Automata on Infinite Words

The next lemma gives the construction for the dual case of the sometime operator.

Lemma5.12 Let4 = (Z, @), q7,0,7) be aWAA and letC C Z. Let the automaton
a4 =(Z,Q',¢;,9,1") be defined as follows:

e Q'=QU{q}
false if g=¢;andse C
o 8(q,8) =19 8(qr,s)Vq, ifg=grands¢ C
8(q,s) if ¢ # q;
1 /
. 1'(q) = r(q) if g # qf

2|r(qr)/2)+1 ifqg=q;

Then4’ is aWAA and the following holds:

L(A") ={s0s1...€Z®Fi e w: (0|; € L(A)AVj <i:s; ¢ C)}
Proof. The claim follows in a similar way as in the previous case. |

Finally we present the constructions for the weak and strong next-time operators,
respectively. Also in these cases, the automata depend orCa sebur transla-

tion, this set will control whether or not the current location of evaluation exists
in the next configuration.

Lemma5.13 Let 4 = (Z,Q, q;,0,7) be aWAA and C' C Z. Further, let the
automatonq’ = (Z, @', ¢;,8, r’) be defined as follows:

o Q'=QU{q}
true if g=¢;andse C
e ¥(q,8)=¢ qr if g=¢jands ¢ C
5(¢,s) ifgeqQ

5. Model Checking & Decidability 101

. 7«/<q>{ (o) ifaeQ

r(qr) fg=gq

Then4' is aWAA and the following holds:

L£(A") = {sps1... €% sp€ CVal|1€ L(A)}

Proof. It is easy to see thafl’ is a WAA, so we only prove the equality of the
considered languages.

"C” Let g’ = (V',E’,v}) be an accepting run o’ ono = sps1 Assume that
so ¢ C holds. We have to show that; is accepted by the automatch Let the
dagG = (V, E,v;) be defined by

o vy = (q7,0)

o V={(¢:)l(¢,j+1) eV}

o E={((g.9): (¢, 5 +D((q,5+1),(¢,j+2)) € £'}.

Note that it holds thatq;,1) € V' because of the assumptien¢ C' and by the
definition ofd'. Therefore, it also holds; € V.

The graphG basically arises fornG’ by “cutting off” the root. A picture to
illustrate the definition appears in f[g. b.8.

As every infinite path inG is a suffix of an infinite path irG’, it follows that G is
an accepting run.

"D" Let 0 = sps1... € L, thatis, eithery € C oro|; € L(A4). We have to show
thato is accepted byd'. In the case thaty € C' holds, the dag consisting only
of a root(q},0) is an accepting run oft’ ono. So we assume that, € £L(4).
Let G = (V, E,vr) be an accepting run of on the suffixa|;. We define the dag
G = (V',E', v;) as follows:

e v; = (q,0)

o V'={v}U{(q,j+1)|(¢,5) € V}

102 5.3. Alternating Automata on Infinite Words

G:

Figure 5.8: Connection betweg&hand G’

o B'={(vp,(ar,1))}U{((¢,5 +1),(¢",i +2)I((2:9),(¢",7+1)) € E}

The graphg’ is essentiallyg prefixed by the initial nodéq;,0). Again, fig[5.8
shows the connection betweéhand G'. It follows immediately from the defini-
tion of 4’ that G’ is a run of2’ on 0. As G satisfies the accepting condition, so
doesg’. |

The last lemma presents the dual case.

Lemmab5.14 Let 4 = (%, @, q1,0,7) be aWAA and C C %. Let the automaton
a4 =(Z,Q',¢;,9,1") be defined as follows:
o Q'=QU{q}
false if g=g¢;andse C

e ¥(g,s)=13 qr if g=q¢;ands ¢ C
0(q,s) ifqed

. r,(q){ () HtgeQ

r(qr) fqg=q;

Then4Z’ is aWAA and the following holds:

L(A) = {0 =s051... € 550 ¢ C AO|y € L(A)}

5. Model Checking & Decidability 103

Proof. The proof is similar to the previous one. |

5.4 Alternating Automaton for propositional MLTL

The aim of this section is to construct for a given pMLTL-formélaand a name

n € N® a weak alternating automataty. ,, that accepts exactly the runs for which

the formulaF at noden holds. The states of the automaton will be pairs of the
form (n, G) where G is a sub-formula of” andn is a name occurring i’ or

€. Intuitively, an accepting run oa should exist from a state:, G) iff o,n = G

holds. For technical reasons, the alphabet for the automaton will consist of pairs
of states instead of states as otherwise the transition function for the keep operator
would be rather complicated. The transition function of the automaton is defined
by induction on the structure of the formula.

In the following let$ denote a finite set of states of the fo(mA). For a formula
F we write agaimm(F') to denote the set of names occurringfin Clearly, this
set is finite for every formula.

For formulasG and F we write G < F' iff G is a sub-formula of’. The length
of a formulaA, that is, the number of occurrences of symbols in the formula, is
denoted by A|.

Now we present the translation of pMLTL-formulaspositive normal fornminto
weak alternating automata. The set of pMLTL-formulas in positive normal form
is given by:

v | —w | keep,, | —keep,, | FAG | FV G |m[F]|m(F)|OF |OF |[oF | ©F

The main feature of the positive normal form is that negations can only occur in
front of propositional variables and tlkeep,,,-operators.

Note that to every pMLTL-formul&’ one can construct an equivalent pMLTL-
formula F in positive normal form withF'| < 2| F|.

Definition 5.15 For a pMLTL-formulaF in positive normal form and fos € N&
the weak alternating automatofy , = (Z, @, s, 6, r) is defined as follows:

104 5.4. Alternating Automaton for propositional MLTL

e 2>2=6x¢§

e Q={(n,G)|nenm(F)U{e,a},G<F}

e q;=(a,F)

e Lets=(t,A) ands’ = (#',N'). The transition functiod is defined inductively.

- 0((n,v),(s,s")) = { true if v € A(n) andn € N

false otherwise

- 6((%,—%}), (57 S/)) =

false if v € A(n) andn € N§
true otherwise

true iftin.m=1=t|n.m

false otherwise

— &((n,keep,,),(s,s")) = {

- 6((”,_‘keepm),(8,5’)) _ { false iftjn.m=1t|n.m

true otherwise

- 6((”? G1V Gz), (57 SI)) = 6((”? Gl)? (57 3/)) \/6((”7 Gz), (57 SI))
- 0((n, G1 A G2),(s,5")) =08((n, G1),(s,s")) Ad((n, G2),(s,s"))
Ny false if m<£yn
- AlmmiGh), (5,8)) { o((m, G),(s,s")) otherwise
_ 5 (G]). (5.5) = true if m<Lsn
’ Y 8((m,G),(s,s")) otherwise

true if n & Ng
o((n,G),(s,s"))A(n,0G) otherwise

{ false if n ¢ NS

o((n, G),(s,8"))V(n,OG) otherwise

true if n &Ny

(n,G) otherwise

5. Model Checking & Decidability 105

(n,G) otherwise

— 3((n,®G),(s,s)) = { false if n ¢ Ny

e Therankr((n,G)) of a state equals(G) wherea (G) is defined inductively

as follows:
— d(v) =a(—v) = a(keep,,) = a(—keep,,) =0
— a(G1A G2) =a(G1V G2) = maxa(Gi),a(Gz))
— a(m[G]) =a(m(G)) =a(0G) =a(06) = a(G)
- a(0G) =2[a(G)/2]
- a(¢CG)=2/0(G)/2]+1

For a sequence = sps1... € S® of states leth € Z® denote the corresponding
sequence of transitions:

0= (So, 51)(51, 52)(82, 83) ce

Now we can show that the presented translation is correct with respect to pMLTL
in the sense as stated in the following theorem.

Theorem 5.16 Letg = sps1... € S® be arun,n € N¢ and ' a pMLTL-formula.
LetAr , be defined as above. Then the following holds:

o,n ’: F&oe L(ﬂp,n)

Proof. We prove the claim by induction on the structure of the formfila

Case:F=v e ?.

Only if: Assume thav, n = v. By the definition of the semantics of pMLTL-
formulas and the definition of the transition function of the automagnp
it follows thatd((n, v), (s, s1)) = true. The claim follows by prog. 5]8.

If: Assumed € L(4,,). By the definition of the transition function of
A, n it follows thatd((n,v), (so,s1)) equals eithetrue or false. Because

106 5.4. Alternating Automaton for propositional MLTL

of prop 5.8 it can not btalse, so itistrue. Thereforep € Ao(n) andn € N
holds. By the definition of the semantics of pMLTL it follows thatn = v
is true.

Case:F = —w, F =keep,, or I' =—keep,,. In all these cases the claim follows
in a similar way as in the previous case.

Case:F' = G1 A Go. The claim follows by lemmpa 5|9.
Case:F = G1V G». The claim follows by lemmpg5.10.
Case: ' = m(G).

Only if: Assumeo,n = F,i.e.m <, n ando,m = G. It follows by the
induction hypothesis that € L(A4¢), i.e. there is an accepting rup of
Aq.m ond. We obtain an accepting run ofz ,, on & by replacing the root
((m, G),0) of G by ((n, F),0).

If: Let G be an accepting run ofiz , on&. It follows by prop 5.8 and by
the definition of the transition function that <g » and that we can construct
an accepting run ofl; ,,, on G by replacing the root of; with ((m, G),0).
The induction hypothesis implies thatm = G. Sincem < n, we obtain
o,nkE=F.

Case: F = m[G]. The proof of this case is similar as in the previous case.

Case: F =0OG. Let C = {((¢t,N),(t,\))|n ¢ N;}. The claim follows by
lemma5.10.

Case: F = ©G. With C = {((¢t,N),(t',N))|n ¢ N;}, the claim follows by
lemma5.1P.

Case: F = 0G. Let C = {((t,N),(t,\))|n ¢ Ny}. The claim follows by
lemmd5.1B.

Case: F = ©G. Let C = {((t,N),(t,\))|n ¢ Ny}. The claim follows by
lemmd5.14. u

We give some examples to illustrate the translation. The first example, given in
fig. [5.9, is the automaton for formuk&m(Cv) at the root. According to the
definition, the initial node ige, >m(Ov) and it has rank 1. An edge labelled by

5. Model Checking & Decidability 107

Figure 5.9: Automatoris,,, o) e

a (pure spatial) formuld' indicates that the transition is possible exactly for the
configuration pairgs, s’) with s = F.

If m(v) holds in the current configuration, then we have the choice between ac-
tivating the initial node again(v) holds now, but maybe not(Ov)), or acti-
vating node(m,Ov) (to prove thatn[Ov| holds for the suffix). Fron{m,Ov),

if m[fals€ holds, then no state is activatedyif(v) holds, then the same state is
activated again (as in this caseoccurs in the current tree, according to the def-
inition we have to prove thatv holds atm also for the suffix). In the remaining
case thain(—v) holds, the automaton does not accept the run.

If m(v) does not hold, them:(Ov) cannot hold for the current inpat, so the
initial node is activated again in order to check whether it holds for the swiffix

The rank 1 of the original formula reflects the fact that activating the initial state
again and again (i.e. postponing the proof of the eventually formula) should not
lead to an accepting run.

The second example, depicted in fig. 5.10, is the automaton that checks whether
<SO(v Am{Qw)) holds at locatiom.

5.5 Applications to decision problems

As already mentioned, theorém 5.16 enables us to solve the model checking and
the satisfiability problem for propositional MLTL.

In order to state a theorem about the model checking problem we introduce the

108 5.5. Applications to decision problems

C(n, SO(v Am{Ow))

true
n{v Am(—w)) v/\m

—»@n,D(v/\m %

nlfalsd n{v Am{w))
in(v/\m(—\w
(m,Ow) (1))
mizw) |

Figure 5.10: Automatorenuam(ow)),n

notion of aspatial transition system

Definition 5.17 LetN be a denumerable set of names ardch denumerable set
of propositional variables. Apatial transition systeins a tupleM = (S, R, sy)
with

o SC{(t,N|t = (N, <y), finite tree oveN, A : N¢ — 2%} is the set of states.

e R C S x §Sisthe transition relation.

e s; € S is the initial state ofM.

A finite state spatial transition systema spatial transition syste = (S, R, s;)
with |S] < w.

Note that such a finite state transition system can be regarded ésha &u-
tomaton over the alphabétx S, with state spacé and with trivial acceptance
condition. We will denote this corresponding automatondyy.

Theorem 5.18 (Model Checking)Let F' be a propositional MLTL-formula in

positive normal form and/ = (S, R, s7) a finite state spatial transition system.
The question, whether for all rursof M holdso, € = F, can be solved in time

0(|S]+21F1%).

5. Model Checking & Decidability 109

Proof. First note that for a pMLTL-formula in positive normal form it is easy
to find a formulaG in positive normal form equivalent to /' and of (essentially)
the same length aB: one only needs to dualise all operators. IEbe such a
formula and let: denote the length?’| of F.

Now we construct the automatch, ¢ as defined in theoreﬁ_ST]l& Its state space is
asubset ofnm(G)U{e}) x SH G), where SEG) denotes the set of sub-formulas
of G. As the set of names occurring @i as well as the set of its sub-formulas are
bounded by the size df, this set is at most of siz@(n?). By prop.,ﬂlG@ can

be translated into aB:hi automatordp of size exponential in the size o .

By prop., one can construct daiéhi automatord,,, x A4 with O(|S| *2”2)
states and

L(Apr x Ap) = L(Agr) N L(AB) = (L(Aar) N L(Age))

This language contains exactly the runsdgj; that satisfyG, that is, the runs that
do not satisfyF'. Hence, all runs ofMl have the property described byiff this
language is empty. As the non-emptiness 6tBi automata can be checked in
time linear in the size of the automaton, the proof is finished. |

Using the translation, we also can show the decidability of propositional MLTL.:

Theorem 5.19 (Satisfiability) Let ' be a pMLTL-formula. The question, whether
F is satisfiable, can be solved in tingg2/F1%).

Proof. By corollary[4.28 F is satisfiable iff there is a run

0 = ((No,<0),M0)((N1,<1),A1)...
such thaN; C nm(F)U{ny|a € nm(F)}, \; : N¢ — 22(F) ando, e = F. Hence, it
follows by theoren 5.16 thdf is satisfiable iff£(Af ¢) 7 0 where the automaton
Ar ¢ is defined as in definition 5.15 over the alphabet S with

S ={(t.M)|N; = nm(F) U {na|a € nm(F)},A:NE— 22tF) 1

As the state space ¢y ¢ is bounded by F 2 the assertion follows from the fact
that the non-emptiness problem for weak alternating automata can be solved in
time exponential in the size of the automaton (via a translation tiachiBautoma-

ton with size exponential in the size of the WAA). [|

Chapter 6

Extensions of MTLA

This chapter discusses limitations of the logic MTLA introduced so far in the
context of the dynamic creation of agents. We suggest possible extensions to
allow to talk about dynamically created agents. The first extension, motivated and
presented in sef. 6.2 and 6.3, introduces a “rigid” quantifier for names. The
second extension given in s¢c.|6.4 is more radical — flexible quantification over
sets of names is allowed. This enables us to describe the hiding of dynamically
created agents. We would like to point out that the properties of the proposed new
quantifiers and the benefits they offer are not elaborated with the thoroughness as
in the case of the operators presented earlier. They are rather ad hoc suggestions
to handle the problem of the dynamic creation of mobile agents.

6.1 Dynamic creation ofk agents

In section 2.2 we have presented an MTLA-specification of a simple agent that
collects flights on behalf of a user (cf. fig. R.3[p] 11). As a modification of this
example, we could consider a travel agent that collects offers for flights and hotels
in a network for a set of potential destinations, but this time an agent that does not
work alone. Every time it finds a flight to some destinatirihe agent produces

a new agent to collect offers for hotels dn These agents deliver their collected

111

112 6.1. Dynamic creation of k agents

offers to the home location by changing variabtene.res;,. The main agent itself
collects flights and on return it puts the collected flights il@e.res;.

If we know in the beginning how many hotel agents are going to be created, we
can specify the system in MTLA without any further extension. Assume that at
most k agents will be needed. Assume further thas,..., hag, are pairwise
distinct names witthag; ¢ Net and hag; # ag for all i € {1,...,k}. Figure[6.1
shows the overall specification, using the actions defined in well as the definition
of the hotel agents in fi§. §.4.

Initl = A home.ag(true) A ag.ctl = “idle”
A AF_1 hag;[falsg
Network = ...
vars = (ag.ctl,ag.dests, ag.time, ag.rest, ag.found, ag.sent)
varspome = (home.resy, home.resp,)
IDynAgentl = A Initl

A /\neNet o [VmeNet DynMoveln,m] —n.ag
A O [DynHomeActsl V'V eNet DynActionsln]

AN O [Createl, (hag;)]

vVars,varspome

+hag;

DynAgentl = Ihagy...3hagy : IDynAgentl

Figure 6.1: Dynamically created agents of bounded number

Initially, no one of the hotel agents should exists yet, expressed by the conjunct

k
/\ hag;[fals€
i=1

of the formulalnit1. The possible actions at the home location are similar to those
of the original FlightAgent: the agent can be sent to search for offers, expressed
by DynPrepl(ds,t) whereds is now a list of possible destinations ahe time
period. However, we now have the additional variablests, for the possible
destinationsyest, that contains a destinatiahiff the agent still has to look for

a flight to d, andsent that contains a destinatiohiff a hotel agent has already

6. Extensions of MTLA 113

DynPrepl(ds,t) = A home.ag(true) A Ohome.ag(true)
A ag.ctl = “idle” A ag.ctl’ = “busy”
A ag.dests’ = ds A ag.dest’ = hd(ds) A ag.time’ =t
A ag.rest’ =tl(ds) A ag.found' = 0N ag.sent’ =0
A\ UNCHANGED varspome
DynGetFlightl, = A n.ag(true) AOn.ag(true)
A ag.ctl = “busy” A (ag.dest, ag.time) € n.flights
A ag.found' = ag.found U
{lloc: n.id,
dest . ag.dest,
time : ag.time,
f1: getFlight({ag.dest, ag.time), n.flights)] }
A UNCHANGED ag.ctl, ag.time, ag.dests, ag.dest
A UNCHANGED ag.rest, ag.sent, varspome
Createl,(hag) = A n.ag(true)AOn.ag(true) A ag.ctl = “busy”
A ag.dest & ag.sent A3f € ag.found : f.dest = ag.dest
A ag.sent’ = ag.sent U{ag.dest}
A haglfals€ A On.hag(true)
N OHAgent(hag,{(ag.dest, ag.time))
A UNCHANGED ag.ctl, ag.time, ag.dests, ag.dest
A UNCHANGED ag.rest, ag.found, varspome
Newlteml, = A n.ag(true)AOn.ag(true)
AV ag.dest € ag.sent
V =3f € n.flights : f.dest = ag.dest
A ag.rest # () A ag.rest’ =tl(ag.rest) A ag.dest’ = hd(ag.rest)
A UNCHANGED ag.ctl, ag.dests, ag.found, ag.sent, ag.time

/A UNCHANGED va7Sh0me

Figure 6.2: Actions of the first travel agent, part 1

114 6.1. Dynamic creation of k agents

been created to look for a hotel dh Further, the agent can deliver the offers it has
found, described byynDeliverl that is essentially likéeliver in FlightAgent,

but it puts the collected offers into variabtes; instead ofres. Finally, one of the
hotel agents may come home, as expressed by

k
\/ DynRcvl(hag;)
1=1

The actionsDynRcv1(hag) are similar toDynDeliverl, but they modifyresy,
instead ofres; to indicate that an offer for hotelhas been delivered. Furthermore,
agenthag is destroyed afterwards. This has the advantage that in principle the
name can be reused to create a new agent.

At a network noden, there are four different kinds of actions. The agent can
take an offer by performing@ynGetFlightl,, that is essentially the same as
the actionGetFlight, of FlightAgent, but it specifies more precisely the struc-
ture of the collected offers. The second possibility is to change the item the
agent is looking for. This is described by formulewlteml,,. It is executed

if either ag has sent a hotel agent to look for a hotel in the current destina-
tion (ag.dest € ag.sent) or if there is no flight offer at the current location to
the current destination, and if the agent still has some destinations to check for
flights (ag.rest # ()). The current destination is set to the first one of the re-
maining destinationsag. dest’ = hd(ag.rest)) and the old destination is removed
from ag.rest (ag.rest’ = tl(ag.rest)). The third kind of action is the moving of

an agent from one site to anothéynMovel, ,,). It can be executed as soon

as the hotel offers for all destinations have been checked at the current location
(ag.rest = ()). Apart from moving the agent it also resets the variahlggest

to hd(ag.dests) andag.rest to tl(ag.dests). Finally, a hotel agent can be created,

as described by'reatel, (hag). It has the preconditions thatg does not exist

yet, that no hotel agent is in charge with the current destination, and that a flight
to this destination has been found. In this case, an agent that satisfies specification
HAgent(hag, (ag.dest,ag.time)) is created. Note that we make use of MTLA’s
feature of allowing arbitrary temporal formulas to describe transitions. Further,
ag.dest is added toug.sent. This is done in order to remember that there is al-
ready a hotel agent in charge with. dest.

6. Extensions of MTLA 115

DynMovel,, .,

A n.ag(true) A Om.ag(true)

A ag.ctl =“busy” A ag.rest = ()

A ag.rest’ =tl(dests) Nkeep,,

A ag.dest’ = hd(dests)

A UNCHANGED ag.ctl, ag.dests.ag.found, ag.time
A UNCHANGED ag.sent, varspome

DynDeliverl

A home.ag(true) A Ohome.ag(true)
A ag.ctl =“busy”’ A ag.ctl’ = “idle”
A home.res; = ag.found

A UNCHANGED home.resy,

A home.hag(true) A Ohag[false

DynRcvl(hag)
N home.res; = home.res, U hag.found
A UNCHANGED ag.ctl, ag.item, ag.dests, ag.rest
A UNCHANGED ag.found, ag.sent, home.resy
DynHomeActsl = V (3ds,t: DynPrepl(ds,t))
V DynDeliverl
Vv \V¥_1 DynRcvl(hag;)

DynActionsl, = V DynGetFlightl, V Newlteml,
V'V menet DynMovel, .,
v VK| Createl, (hag;)
vars = (ag.ctl,ag.dests, ag.item, ag.rest, ag.found,

ag.sent, home.ress, home.resy,)

Figure 6.3: Actions of the first travel agent, part 2

SpecificationfAgent(hag, (d, t)) is depicted in fig] 6J4. It is — up to names and
names of variables — very similar to the specification of HightAgent. One
important difference is that it does not claim that variatilg, can only be mod-
ified by the transitions performed by the particular hotel adent because any
of the hotel agents can do this. The control ovey, is taken by specification
DynAgentl of the overall system.

The specification/DynAgentl in fig.[6.1 is the inner specification of the sys-
tem. It puts together the actions described above and additionally requires that the

116 6.1. Dynamic creation of k agents

HiInit((d,t),k) = A hag(true) A hag.ctl = “busy”
A hag.found = OA hag.item = (d, t)
GetHotel, = A n.hag(true) AOn.hag(true)
A hag.ctl = “busy” A hag.item € n.hotels
A hag.found' = hag.found
U {(n.id, getHotel(hag.item, n.hotels))}
A UNCHANGED hag.ctl, hag.item
HMovey i,

A n.hag(true) A Om.hag(true)
A hag.ctl = "busy” Akeepy,,,
A UNCHANGED hag.ctl, hag.item, hag.found
HDeliver = A home.hag(true) A Ohag|false
A hag.ctl = “busy” A hag.ctl’ = “idle”
N home.res, = home.res, U hag.found
varsy, = (hag.ctl, hag.found, hag.item)

HAgent(hag,(d,t)) = A HInit((d,t))
A Anenet B[Vimenet HMovemn] _,, 100
A O [HDeliver V'V penNet GetHoteln]

varsy

Figure 6.4: MTLA-Specification of the Hotel Agent

agentshag; can only arise by creation byy. This requirement is expressed by
the conjunct

k

/\ O [\/neNet Oreateln(hagi)} +hag;
=1

This inner specification, however, does not describe the dynamic creation of agents

as all the names are explicitely given. So as the last step, we hide the names of all
these agents, and obtain the overall specification

dhagy,...,Ahagy : IDynAgentl

6. Extensions of MTLA 117

6.2 Dynamic creation of arbitrarily many agents

The method to create agents described in the previous section works only if we
can fix the maximal number of agents to be created. The natural way to modify
specificationDynAgentl to allow to create arbitrarily many sub-agents would be
to replace the disjunctions ¥i*_; DynRcv1(hag;) and\/*_; Createl, (hag;) by
existential quantifiers. This would lead to formulas [Béag : DynRcv1(hag)
and3hag : Createl, (hag). Unfortunately, this does not work. The problem with
this specification is that it does not guarantee authenticity of the returning hotel
agents. Note that ilDynAgentl authenticity was (essentially) ensured by the
formula

O [\/le DynRcv l(hagi)]

home.resy,

If we replace the disjunction by the name quantifier, it will be impossible to distin-
guish authentic agents (created and senidyyfrom intruders, basically because
formula

O [3 hag : Dychvl(hag)}

home.resy,

does not say anything about the hidden agesnt This has to do with the fact
that the name quantifier in a formulln : F' implicitly quantifies over all local
variables at locatiom.

Nevertheless, one can try to define an existential quantifier over names that allows
to control the local variables at the quantified names. This is what we are going to
do now.

SpecificationDynAgent, given in fig.[6.5, carries out this idea by using a new
existential quantifier. It uses also the formulas given in[fig,. 6.6 and fi§. 6.7. The
omitted parts of the specification — indicated by dots — are the corresponding for-
mulas of DynAgentl in the previous section. The semantics of the quantifier will
be introduced in the next section. Informally, a formdla: F' asserts the exis-
tence of an “anonymous” location, that is, of a location whose name is not known,
for which F' holds.

The main difference compared with specificatibpnAgentl is, apart from the
replacement of the disjunctions by quantifiers, the way authenticity is ensured.

118 6.3. Rigid quantification over names

Init = home.ag(true) A ag.ctl = “idle”
vars = (ag.ctl,ag.dests, ag.time, ag.rest, ag.found, ag.sent, ag.key)
Varshome = (home.resy, home.resy, home.key)

IDynAgent = A Init
A /\nENet D[vmeNet DynMOUen,m]—n.ag
A O[DynHomeActs V' \/ e ey DynActions, vars.vars)
S@C'U/f’ity = Vz: D[IDynAgent[z/ag] \ \/nENet Createn(z)]+(z.key:home.key)
DynAgent = A Network
A IDynAgent
A Security

Figure 6.5: Agent with arbitrarily many created sub-agents

For this purpose we introduce a varialtte;. The result delivered by an agent is
only accepted if the agent has the right key as asserted by the cohjunkty =
home.key of formula HDeliver. This together with formul&ecurity guarantees
authenticity: Security requires that an agent that obtains the right key (whenever
formula z.key = home.key becomes true during a transition) either behaves like
the “main” agent or like one of the hotel agents.

6.3 Rigid quantification over names

In the previous section we introduced informally a rigid name quantifier. Now we
give the precise definition of its semantics.

Technically, we have to extend the definition of MTLA as well as our model def-
inition. We assume a further denumerable B&tof name variablesWe modify

the definition of formulas accordingly: for an (im)pure formwaand a name
variablez € 7" we let

z[A]| Tz A

also be (im)pure formulas. The model notion is modified by requiring that the
valuationg assigns to every name variable a name§i:el/, U V" — |J|UN with

6. Extensions of MTLA 119

DynPrep(ds,t) = A ...
A ag.key' = home.key
A UNCHANGED varspome

DynGetFlight, = N ...
A UNCHANGED ..., ag.key, home.key
Create,(hag) = A ...

N HAgent(hag, (ag.dest, ag.time), ag.key)

A UNCHANGED ..., ag.key, home.key
Newltem,, = A ...

A UNCHANGED ..., ag.key, home.key

DynMoven m = N ...
A UNCHANGED ..., ag.key, home.key
DynDeliver = A ...

A UNCHANGED ..., home.key
DynRcv(hag) = A ...

A home.key = hag.key

A UNCHANGED ..., ag.key, home.key

DynHomeActs = V 3ds,t: DynPrep(ds,t)

V DynDeliver

V 3hag : DynRcv(hag)
DynActions, = V DynGetFlight, vV Newltem,,

V'V menet DynMovey,

V 3hag : Create,(hag)

vars = (...,ag.key, home.key)

Figure 6.6: Actions ofDynAgent

&(7,) C|3] and&(¥™) C N. The definition of the semantics of MTLA-formulas
is extended by the following clauses:

e 0,n,§ = z[A] iff 0,n,& = m[A] form =E&(z)

e 0,n,& =3z Aiff 0,n,&[z:=m] = Afor some namen € N

120 6.3. Rigid quantification over names

HInit((d,t),k) = A ...

A hag.key =k
GetHotel,, = A ...
A UNCHANGED ..., hag.key
HMove, ;, = N ...
A UNCHANGED ..., hag.key
HDeliver = A ...

A hag.key = home.key
A UNCHANGED home.key
vars, = (hag.ctl, hag.dest, hag.found, hag.item, hag.key)
HAgent(hag,(d,t),k) = A HInit((d,t),k)
A Anenet B[Vmener HMovep ;] —n.hag
A O [HDeliver V'V penNet GetHoteln]

varsy

Figure 6.7: MTLA-Specification of the Hotel Agent
whereg[z := m] is defined as follows:
m ifz==z2
&(Z) otherwise .

We do not aim here at giving a complete proof system for the extended logic.
However, let us mention that the standard quantification rules

A= B

(Onl) Alm/2z] =321 A (3n-E)
(3z:A)=B
are sound on the usual condition faikE) thatz must not have free occurrences
in B. Furthermore, as the semantics of MTLA allows only for finite trees, there
are always names that do not occur in the current tree. Hence, an axiomatisation
would have to contain an axiom like

(fin) 3z : z[falsg -

Further, most axioms diy 1. could be modified by replacing every name by a
universally quantified name variable. (As usual, we write: A = -3z : —A.)

6. Extensions of MTLA 121

For example, (ax2) would by replaced by
V20,211 20[F] = 21[20[F]]

However, as we did not introduce equality on name variables, we cannot do the
same for

(aXS) (al.b A az.b) = (al.az V az.al) (fOI’ a; # az)
We either could keep the original axiom, or take something like
Vz,21,2: ((Elzo t21. 0N 22.20) AN (212 N 20.2) = (21.22 V 22.21)),

where the first conjunct makes sure that the two variahlesdz, cannot assume
the same value.

Observe that using the name quantifier, the operaesg,, can be defined as
follows:

keep,, = A m(true) < Om(true)
A V2V 210 A m.zp(true) < Om.zp(true)

A m.zg.z1(true) < Om.zg.21(true)

The first conjunct ensures that occurs either in both (the current and the next)
configurations or in neither of them. The second conjunct says that the names
beneath node: are the same as in the next tree. The last conjunct makes sure that
also the order between these names is preserved.

We would like to point out that the concept of rigid quantification over names —
and already the keep operator - does not really fit in TLA’s philosophy, because
it destroys MTLA's property of (spatial) stuttering invariance. However, this does
not mean that all the refinement principles presented in chapter 3 are useless now,
it just means that one cannot apply them “blindly”, but has to be careful in the
presence okeep,,, and the rigid name quantifier. For example, in our situation

it is perfectly legitimate to extend the newly created hotel agents by sub-nodes,
essentially because the following formula is valid:

dz:z.n[F]) = 3z z.m.n[F]

122 6.4. Hiding of anonymous agents

6.4 Hiding of anonymous agents

In the previous section we presented a way to extend MTLA that enables us to de-
scribe the dynamic creation of agents. However, the specification given(in fig. 6.5
does not allow for implementations where the task of the agents — searching for
offers — is realised by other techniques then by mobile agents, because the formu-
las3hag : Create,(hag) require the presence of sub-agents. If we want to enable
such refinements, we have to be able to hide such “anonymous” agents. As their
names are not known, we cannot use the name quantifier defined |n $ec. 3.3 (in
connection with the virtualisation of locations) for this purpose. Instead, we allow
to hide sets of locations, and require the created locations to belong to the hidden
set.

Figure[6.8 contains a part of the MTLA-specification of a travel agent that is,
similarly to the one specified bipynAgent in fig.[6.5, able to create arbitrarily
many sub-agents to collect offers for hotels, but this time all the sub-agents are
hidden from the interface as expressed by the existential quantification over the
name set variabl&/AG.

Intuitively, (the value of) variabléd/AG contains the names of all possible sub-
agents. The inner specification is almost the sam@asigent. The main differ-
ences are to observe when a sub-agent is created (forfaldacate, (hag)) and
when it returns to the home locatioi'd Rcv(hag)). In both cases, we require
the name variabléag to belong to the set given by the variabiel G. Further,

we do not need théey anymore, as the authenticity of the agents is now ensured
by the conjunctag € HAG, the additional conjunct idnit that asserts that ini-
tially no agent inHA G exists, and the last conjunct in the inner specification that
says that whenever a new agent fréfA G appears, then it behaves correctly. So
we leave out all formulas containing varialiley. In the overall specification we
have omitted some of the actions as they are almost the same as the corresponding
formulas of DynAgent, the main difference being that no variallg, is needed.

In addition to the set9/., 7 and 7" of rigid, flexible and name variables, we
assume a set’™ of name set variableso that all the different variable sets
are pairwise disjoint. We will denote the variables in this set by capital letters

6. Extensions of MTLA 123

TAlInit AR
AVz:(z € HAG = z[falsg)
TACreate,(hag) = A ...
A hag € HAG N\ On.hag(true)
A ...
TARcv(hag) = A ...
A hag € HAG A ...
AL
TAHomeActs = V 3ds,t: TAPrep(ds,t)
V Deliver
V 3hag : TARcv(hag)
TAActions, = V TAGetFlight, Vv TANewltem,,
V' Vienet TAMovey, 1,
V Jhag : TACreatey,(hag)
ITravelAgent = A Init
A Network
A Anenet BV mener TAMoven m]-n.ag
A O [TAHomeActs V'V heNet TAActionsn] vars
AVz € HAG : OV e net TACTeaten ()] 42 true)

TravelAgent = AHAG : ITravelAgent

Figure 6.8: Travel Agent with hidden sub-agents

X, Y, X;,Y;,.... Further, we assume that the valuatipprovides values for the
name set variables, i.&.assigns to every € 7" a set of names C N.

We extend the syntax of MTLA as follows:

F = ... |zeX|meX|3X F

For the definition of the semantics we will need the following definitions. For
every setS C N of names we define a relatieng on the set of configurations.

124 6.4. Hiding of anonymous agents

(s,A) <g (t,)) iff Ng=N;\S and
<s=<¢M(Ng X Ng) and
A(a) =WH(a) forall a € N

For runso = (sp,Ao0)(s1,A1) ... andt = (#p, o) (1, H1) - - - and a set of names we
defineo < T to hold iff (s;,A;) <g (&, ;) for all i € w.

The definition of the semantics of the new formulas is given ir fid. 6.9.

on8(X) = &(X) for X € V"

o,n,§ = ze X iff &(z)isanelementof(X)

o,n,§ =me X iff misanelementof(X)

o,n,§ =3 X : F iff therearerunp,tandaseS CNwithp~o,p<gt
andt,n,§[X =S| = F

Figure 6.9: Semantics of extended MTLA
The intuitive interpretation of this existential quantifier is analogous to the one of

the (flexible) name quantifier. A formuB.X : F' means that we can extend the
run by names so that holds for the extended run.

Chapter 7
Conclusion

In the present thesis we have introduced and studied a novel spatio-temporal logic
called MTLA intended for the specification and refinement of systems that make
use of mobile code. In contrast to most previous logics for similar purposes, the
semantics of our logic is based on Kripke structures instead of process algebras.
In chaptef B we have considered different notions of refinement that we believe to
make sense in the context of mobile systems. We have shown MTLA to support
these kinds of refinement. For the sake of simplicity, we have considered the logic
MLTL of which MTLA is a fragment to carry out the theoretical work in chapter 4
and chaptgr|5. In chaptef 4 we have presented a proof system that we have proven
to be sound and complete with respect to the (propositional fragment of the) logic
MLTL. In chapterl% we have given a translation of MLTL into weak alternating
automata and used this result to prove the satisfiability problem to be decidable.
The same result also provided us with a solution of the model checking problem.
The last chapter has considered some rather ad hoc extensions of MTLA.

There is still work to be done on every level. We have presented only small toy
examples. In the future, we would like to validate the logic on the basis of more
realistic applications. Our axiomatisation only has considered the quantifier free
part of the logic, possible axioms for the different quantifiers have been studied
only informally. This gap has to be filled. We also plan to investigate the adequacy
of the extensions presented in chapier 6 more carefully.

125

126

Another interesting question is the applicability of MTLA to other problems than
the specification of mobile systems. Tree structures that change over time appear
in many contexts, for example, XML documents can be regarded as trees and their
update corresponds to modification of the tree structure.

Appendix A

Auxiliary derivations

We give derivations of the theorems and rules used in chiapter 4.

Boxed version of (ax3), that is[—a[F] = a[-F]]:

(1) n[-a[F]] < (n.a[F] = n[fals€) (T2),(T3),(T4),(prop)
(2) (n.a[F]= n[fals€) < —n.a[F]V n[falsg (ax0)

(3) —n.a[F] = n.a[~F] (T1)

(4) n[falsg = n.a[-F] (T4)

(5) —n.a[F]V n[fals€d = n.a[-F] (3),(4),(prop)

(6) n[-al[F]] = n.a[-F] (1).(2),(5),(prop)

(7) n[-a[F]= a[-F]] (T3),(6).(prop)

Boxed version of (ax4), that ig[a.a[fals€]:

(1) a.a[falsg = nla.a[fals€] (ax2)
(2) a.alfalsé (ax3)
(3) nla.a[falsd] (1),(2),(mp)

127

128

Boxed version of (ax5), that is,

nlaz.b(true) A ap.b(true) = ag.ax(true) V ap.aq (true)):

(1)
(2)
3)
(4)
(5)
(6)
(7)
(8)
(9)
(10)
(11)
(12)
(13)
(14)
(15)
(16)

(T10):

(1)
(2)
3)
(4)
(5)
(6)

nlag.b] A nlap.b] = n[fals€ Vv (n.a1.b A n.ap.b)

n.a1.bAn.a.b = a1.b Nap.b
n.al.bAn.ap.b = a1.a2Vaz.aq
n.a1.b\Nar.ap = n.ar.ap
n.ap.bAap.a1 = n.ax.aq
n.al.bAn.ap.b = n.ar.apVn.az.a1
n.aj.ap = nlaj.ap)

n.ag.a1 = nlap.ai)

n.ap.b An.ap.b = nlay.ap] V nlaz.a]
nlag.a] V nlag.a1] = nlar.ap Vv az.aq)
n.ap.b An.ap.b = nlag.apV ap.aq]
n[falsg = nla1.a2 V az.a1)

nlag.b] A nlag.b] = nlai.ax V ap.a1]
nlai.b A ap.b] = nlag.b] A n[ap.b]
nla.b A ap.b] = nlag.apV ap.a]

nla1.b A ap.b = az.aaV ap.a1]

OF NOG & O(F A G):

O(F = ~G) = (OF = 0-G)
O(F = ~G) = (OF = —0QG)
—(OF = —0G) = —~O(F = ~G)
2(OF = =0G) = O0~(F = ~G)
OFANOG = O(FAG)
O(FANG=F)

(T6),(prop)
(ax2),(prop)
(ax5),(2),(prop)
(ax2),(prop),(T7)
(ax2),(prop),(T7)
(3),(4).(5),(prop)
(T6),(prop)
(T6).(prop)
(6),(7).(8).(prop)
(T9a),(prop)
(9).(20),(prop)
(T4)
(1),(11),(12)
(T9D),(prop)
(14),(13),(prop)
(15),(T3)

(ax7)
(1).(ax6),(prop)
(2),(prop)
(3).(ax6),(prop)

(4).(prop)
(ax0),(nex)

A. Auxiliary derivations

129

(7) O(FAG)=OF
8) O(FANG)=o0G
(9) O(FAG)=O0OFANOG
(10) OFAOG < O(FAG)

(T11): FAOOF = OF:

(1) oOF = Oo(FAOOF)

(2) FAOOF = O(FAOCOF)

(3) FAOOF = F
(4) FAOOF=0OF

(T12): n[OF] < (n[F]An[OOF]):

(1) n[OF & FAOOF]
(2) n][OF] < n[F AOCOF]

(3) n[OF] < n[F]An[OOF]

(aw): FEHOF:

1 F
(2) oF
(3) F=0OF
(4) F=0OF
(5) OF

(T13): O(F = G)= (OF =0G):

(6),(ax7),(mp)
(ax0),(nex),(ax7),(mp)
(7).(8),(prop)
(5),(9),(prop)

(nex),(ax8),(ax7),(mp)
(1),(prop)
(ax0)

(ind),(2),(3)

(axn8)

(ax1),(T3),(1),(prop)
(2),(T9b),(prop)

assumption
(nex),(1)
(prop),(2)
(ind),(3).(prop)
(mp),(1).(4)

By the deduction theorem it suffices to shéw=- G, F'+ OG.

(1) F=0G
(2 F

assumption

assumption

130

3)
(4)

(T14):

(1)
(2)
3)
(4)
(5)
(6)
(7)
(8)
(9)

G
oG

O(FAG)< OFADG:

OFNG=F)

FAG= Q)
FAG)=0F
FAG)=0G
OFAG)=0FADOG
OFAOG = O(OF AOG)
OFANOG=FAG
OFAOG=0(FAG)

OFAG)<O0OFADG

O

O

—_— o~ o~ o~

O

(1),(2),(mp)
(alw),(3)

(alw),(ax0)
(alw),(ax0)
(T14),(1),(mp)
(T14),(2),(mp)
(prop),(4)
(ax8),(prop),(T10)
(ax8),(prop)
(6).(7),(ind)
(5).(8).(prop)

Boxed version of one direction of (ax6), thatig,~OF = O—F:

(1)
(2)
(3)
(4)
(5)
(6)
(7)
(8)

n(—OF) = O—n|[F]
O-n[F] = On[—F]
On[—~F] = n[0-F]
n(—OF) = n[O—F]
n[falsg = n[O—F]
n[-OF| = n[O—F]

[
[
[
[

n[-OF = O—F]

—OF] = nlfalsg v n(-OF)

(ax9),(T5)
(ax3),(nex),(ax7),(mp)
(ax9),(ax6),(prop)
(1).(2),(3).(prop)

(T4)

(T5),(T6),(prop)
(4),(5),(6),(prop)
(7).(T3),(prop)

Boxed version of (ax7), that is[0(F = G) = (OF = OG)]:

(1) n(O(F = G))=Oon[F = (]

(2)

n(OF) = On[F]

(ax10)
(ax10)

A. Auxiliary derivations 131
(3) O(n[F = G]= (n[F]=nl[G)])) (nex),(ax1)
(4) On[F = G]=O(n[F] = n[G]) (ax7),(3),(mp)
() o(n[F] = n[G]) = (On[F] = On[G]) (ax7)
(6) n(o(F = G))= (on[F] = On[G]) (1).(4).(5).(prop)
(7) n{o(F = G)) An(OF) = On[G] (2).(6),(prop)
(8) n(o(F = G))An(OF) = n[0G] (7),(ax9),(prop)
(9) nlfalsd = n[oG] (T4)
(10) n[o(F = G)]An[OF] =
n[falsg vV (n(O(F = G)) An(OF)) (T6),(prop)
(11) n[o(F = G)] = (n[0F] = n[0G]) (8).(9),(10),(prop)
(12) (n[0F]= n[0G]) = n[OF = OG] (T3)
(13) n[o(F = G)] = n|[OF = O(@] (11),(12),(prop)
(14) n[o(F = G)= (OF = OG)] (13),(T3),(prop)
Boxed version of (ax10), that ig[~m[-OF] = Om|[F]]:
(1) n.m(OF)= m(OF) (ax2), (prop)
(2) m(OF)= Oom|[F] (ax10)
(3) o(m[F]= n.m[F)) (nex), (ax2)
(4) Oom[F]= On.m[F] (ax7),(3),(mp)
(5) On.m[F] = n[om[F]] (ax9),(prop)
(6) n.m(OF) = nom[F] (1).(2),(4).(5).(prop)
(7) n[m(OF)] = nlfalsg vV n.m(OF) (T6),(prop)
(8) nlfalsg = n[Om[F]] (T4)
9) n[m(OF)] = nom[F]] (6).(7).(8).(prop)
(10) n[~m[~OF] = om[F]] (9).(T3),(prop)

132

(T15):

(1)
(@)
3)
(4)
(5)
(6)
(7)
(8)
(9)
(10)
(11)
(12)
(13)
(14)

OOF < OOF:

OOF = O(F AOCOF)
OOF = OF NOOOF
OOF = ooOF

OOF = OF

OOF = OOF
OOFAF = O(OOF AF)
OOFAF = 0O(0O0OFAF)
OOF = (F =0F)
OOOF = O(F = OF)
OOF = OOOF

OOF = (OF = OOF)
OOF = OF

OoF = o0F

O0OF & OOF

(nex),(ax8),(ax7),(mp)
(1),(T10),(prop)
(2),(prop)

(2).(prop)
(ind),(3).(4)
(ax8),(prop),(T10)
(ind),(6).(prop)
(7),(T14),(prop)
(nex),(8),(ax7),(mp)
(ax8),(prop)
(9).(10),(ax7),(prop)
(ax8),(prop)
(11),(12),(prop)
(5),(13),(prop)

Bibliography

[1]

[2]

[3]

[4]

[5]

[6]

[7]

Martin Abadi and Andrew D. Gordon. A calculus for cryptographic proto-
cols: the spi calculus. IRroc. Fourth ACM Conference on Computer and
Communications Securitpages 36—47, 1997.

Martin Abadi and Leslie Lamport. The existence of refinement mappings.
Theoretical Computer Sciencgl(2):253-284, May 1991.

Gérard Berry and @rard Boudol. The chemical abstract machifibeoret-
ical Computer Scien¢®6:217-248, 1992.

Lorenzo Bettini, Rocco De Nicola, and Michele Loreti. Formalizing prop-
erties of moblie agent systems. GOORDINATION’'02: Proceedings of
the 5th International Conference on Coordination Models and Langyages
pages 72-87, London, UK, 2002. Springer-Verlag.

Nathaniel Borenstein. Email with a mind of its own: The safe-tcl language
for enabled mail. InProceedings of the 1994 IFIP WG6.5 Conference on
Upper Layer Protocols, Architecture, and Applicatioiay 1994.

J. Richard Bichi. On a decision method in restricted second-order arith-
metics. Ininternational Congress on Logic, Method and Philosophy of Sci-
ence pages 1-12. Stanford University Press, 1962.

Luis Caires and Luca Cardelli. A spatial logic for concurrency (part I). In
Theoretical Aspects of Computer Softwdrecture Notes in Computer Sci-
ence, pages 1-37. Springer-Verlag, 2001.

133

134

Bibliography

[8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

Luca Cardelli. A language with distributed scop€omputing Systems
8(1):27-59, 1995.

Luca Cardelli. Abstractions for mobile computation. In J. Vitek and
C. Jensen, editor§ecure Internet Programming: Security Issues for Mo-
bile and Distributed Objectsrolume 1603 o NCS pages 51-94. Springer,
1999.

Luca Cardelliand Andrew D. Gordon. Anytime, anywhere. modal logics for
mobile ambients. I®Proceedings of the 27th ACM Symposium on Principles
of Programming Languagepages 365-377. ACM Press, 2000.

Luca Cardelli and Andrew D. Gordon. Mobile ambientheoretical Com-
puter Sciencg240:177-213, 2000.

Edmund M. Clarke, Orna Grumberg, and David E. Long. Model checking.
In Manfred Broy, editorDeductive Program Desigiwolume F-152 oNATO
ASI seriespages 305-350. Springer-Verlag, Berlin, 1996.

Edmund M. Clarke and Holger Schlingloff. =~ Model checking. In
A. Voronkov, editorHandbook of Automated Deductidilsevier, 2000. To
appear.

William D. Clinger. Foundations of actor semantics. Technical report, Cam-
bridge, MA, USA, 1981.

Rocco de Nicola, Gian Luigi Ferrari, and Rosario Pugliese. Klaim: a ker-
nel language for agents interaction and mobililgEE Trans. on Software
Engineering 24(5):315-330, 1998.

Rocco de Nicola and Michele Loreti. A modal logic for Klaim. In T. Rus,
editor, Proc. Algebraic Methodology and Software Technology (AMAST
2000) volume 1816 ot ecture Notes in Computer Scienpages 339-354.
Springer-Verlag, 2000.

Uffe Engberg and Mogens Nielsen. A calculus of communicating systems
with label-passing. Technical Report DAIMI PB-208, Computer Science
Departement, University of Aarhus, 1986.

Bibliography 135

[18] Cedric Fournet and Georges Gonthier. The reflexive chemical abstract ma-
chine and the join-calculus. FROPL, pages 372—-385. ACM Press, 1996.

[19] Ceédric Fournet, Georges Gonthier, Jean-Jacq@sy,LLuc Maranget, and
Didier Remy. A calculus of mobile agents. Rroceedings of the 7th Interna-
tional Conference on Concurrency Theory (CONCUR/3@iges 406—-421.
Springer-Verlag, 1996.

[20] Alfonso Fugetta, Gian Pietro Picco, and Giovanni Vigna. Understanding
code mobility.IEEE Trans. on Software Engineerifigf(5):342—-361, 1998.

[21] Rob Gerth, Doron Peled, Moshe Vardi, and Pierre Wolper. Simple on-the-
fly automatic verification of linear temporal logic. Rrotocol Specification,
Testing, and Verificatignpages 3-18, Warsaw, Poland, 1995. Chapman &
Hall.

[22] Matthew Hennessy and Robin Milner. Algebraic laws for non-determinism
and concurrencyACM, 32:137-161, 1985.

[23] John E. Hopcroft and Jeffrey D. Ullmanntroduction to automata theory,
languages, and computatioAddison-Wesley, Reading, Mass., 1979.

[24] Frederick C. Knabe.Language Support for Mobile AgentsPhD thesis,
School of Computer Science, Carnegie Mellon University, Pittsburgh, Penn-
sylvania 15213, December 1995.

[25] Frederick C. Knabe. An overwiev of mobile agent programmingPio-
ceedings of the fifth LOMAPS workshop on Analysis and Verification of Mul-
tiple - Agent Languages/olume 1192 ofLecture Notes in Computer Sci-
ence Stockholm, Sweden, 1996. Springer-Verlag.

[26] Alexander Knapp, Stephan Merz, and Martin Wirsing. Refining mobile
UML state machines. In Savi Maharaj, Charles Rattray, and Carron Shank-
land, editors10th Intl. Conf. Algebraic Methodology and Software Technol-
ogy (AMAST 2004)ecture Notes in Computer Science, Stirling, Scotland,
July 2004. Springer-Verlag.

136 Bibliography

[27] Alexander Knapp, Stephan Merz, Martin Wirsing, aftialZappe. Specifi-
cation and refinement of mobile systems in MTLA and mobile UMbeo-
retical Computer Scien¢005. Special Issue AMAST 2004, to appear.

[28] Saul A. Kripke. Semantical considerations on modal logicta Philosoph-
ica Fennica 16:83-94, 1963.

[29] Fred Krdger. Temporal Logic of Programsolume 8 ofEATCS Monographs
on Theoretical Computer Scienc8pringer-Verlag, Berlin, 1987.

[30] Leslie Lamport. How to write a long formula. Research Report 119, Digital
Equipment Corporation, Systems Research Center, December 1993.

[31] Leslie Lamport. The Temporal Logic of ActionsACM Transactions on
Programming Languages and Systef(3):872—-923, May 1994.

[32] Christof Loding and Wolfgang Thomas. Alternating automata and logics
over infinite words. volume 1872 dfecture Notes in Computer Science
pages 521-535. Springer-Verlag, 2000.

[33] Stephan Merz. A user’s guide to TLA. In F. Cassez, C. Jard, O. Roux,
and B. Rozoy, editorgviodélisation et erification des processus paralés:
Actes de kecole déte, pages 29-44, Nantes, July 1998. Ecole centrale de
Nantes.

[34] Stephan Merz. A more complete TLA. In J.M. Wing, J. Woodcock, and
J. Davies, editorsFM'99 — Formal Methodsvolume 1709 ofLecture
Notes in Computer Sciencpages 1226—-1244, Toulouse, September 1999.
Springer-Verlag.

[35] Stephan Merz. Model checking: A tutorial overview. In F. Cassez et al., edi-
tor, Modeling and Verification of Parallel Processeslume 2067 of_ecture
Notes in Computer Sciengeages 3—38. Springer-Verlag, Berlin, 2001.

[36] Stephan Merz, Martin Wirsing, andilla Zappe. A spatio-temporal logic
for the specification and refinement of mobile systemsFA®E’03, Fun-
damental Approaches to Software Engineeribgcture Notes in Computer
Science. "Springer-Verlag”, 2003.

Bibliography 137

[37] Robin Milner. Communication and concurrency. Prentice Hall, 1989.

[38] Robin Milner, Joachim Parrow, and David Walker. A calculus of mobile
processes, part I/ll.Journal of Information and Computatipri00:1-77,
September 1992.

[39] Robin Milner, Joachim Parrow, and David Walker. Modal logics for mobile
processesTheoretical Computer Scienckl4(1):149-171, 1993.

[40] Satoru Miyano and Takeshi Hayashi. Alternating finite automatawven
words. Theoretical Computer Sciencg2:321-330, 1984.

[41] David E. Muller, Ahmed Saoudi, and Paul E. Schupp. Alternating automata,
the weak monadic theory of the tree and its complexityl 3th ICALR vol-
ume 226 ofLecture Notes in Computer Scieng@ages 275-283. Springer-
Verlag, 1986.

[42] Gary Ostertag, editorDefinite Descriptions: A ReadeMIT Press, Cam-
bridge, Mass., 1998.

[43] Amir Pnueli. The temporal logic of programs. Rroceedings of the 18th
Annual Symposium on the Foundations of Computer Scigracges 46-57.
IEEE, November 1977.

[44] Amir Pnueli. The temporal semantics of concurrent prograniseoretical
Computer Sciencd 3:45-80, 1981.

[45] Amir Pnueli. System specification and refinement in temporal logic. In R.K.
Shyamasundar, editdfpundations of Software Technology and Theoretical
Computer Scienge&olume 652 ot ecture Notes in Computer Scienpages
1-38. Springer-Verlag, 1992.

[46] Davide Sangiorgi. Expressing Mobility in Process Algebras: First-Order
and Higher-Order ParadigmsPhD thesis, University of Edinburgh, 1992.

[47] Davide Sangiorgi. Extensionality and intensionality of the ambient logic.
In Proc. of the 28th Intl. Conf. on Principles of Programming Languages
(POPL'01), pages 4-17. ACM Press, 2001.

138

Bibliography

[48]

[49]

[50]

[51]

[52]

[53]

[54]

[55]

Davide Sangiorgi and David WalkeiThe r-calculus: a Theory of Mobile
ProcessesCambridge University Press, 2001.

Wolfgang Thomas. Complementation ofiéhi automata revisited. In
J. Karhunéki, editor,Jewels are Forever, Contributions on Theoretical Com-
puter Science in Honor of Arto Salomgaages 109-122. Springer-Verlag,
2000.

Tommy Thorn. Programming languages for mobile cod&M Comput.
Surv, 29(3):213-239, 1997.

Moshe Y. Vardi. An automata-theoretic approach to linear temporal logic.
volume 1043 ofLNCS pages 238-266. Springer-Verlag New York, Inc.,
1996.

Jan Vitek and Giuseppe Castagna. Seal: A framework for secure mobile
computations. IRCCL Workshop: Internet Programming Languagpages
47-77, 1998.

Jim White. Telescript technology: The foundation for the electronic market-
place. White paper, General Magic, Inc., Mountain View, CA, 1994.

Jim White. Mobile agents. In J. Bradshaw, editeoftware AgentsAAAI
Press and MIT Press, 1996.

Silvano Dal Zilio. Mobile processes: A commented bibliography. pages
206-222, 2001.

LEBENSLAUF

JULIA ZAPPE

PERSONLICHE DATEN

Geburtstag: 16. Juni 1974
Geburtsort: Budapest, Ungarn
Staatsangeirigkeit: ungarisch

SCHULAUSBILDUNG UND STUDIUM

1992 Abitur am bzsef Attila Gimrazium in Budapest
1994-2000 Studium der Mathematik an der LMU inluhchen
2000 Diplom im Fach Mathematik an der LMU in tvhchen

2000-2005 Promotionsstudium im Fach Informatik
Betreuer: Prof. Dr. F. Kiger

	Introduction
	Mobile TLA
	The Models
	Example of a Mobile Agent
	Simple MTLA
	Temporal stuttering
	Spatial stuttering

	Refinement
	Operation refinement
	Spatial extension
	Spatial extension without distribution of variables
	Spatial extension with distribution of variables

	Virtualisation of locations

	Axiomatisation
	The proof system The proof system Sigma-SL
	Axiomatisation of propositional MLTL
	The proof system Sigma-MLTL-
	The proof system Sigma-MLTL

	Model Checking & Decidability
	Background
	Büchi automata
	Alternating Automata on Infinite Words
	Alternating Automaton for propositional MLTL
	Applications to decision problems

	Extensions of MTLA
	Dynamic creation of k agents
	Dynamic creation of arbitrarily many agents
	Rigid quantification over names
	Hiding of anonymous agents

	Conclusion
	Auxiliary derivations
	Bibliography

