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Abstract

The subject of this thesis is the muonic hydrogen (µ−p) Lamb shift experiment being

performed at the Paul Scherrer Institute, Switzerland. Its goal is to measure the 2S − 2P

energy difference in µp atoms by laser spectroscopy and to deduce the proton root–mean–

square (rms) charge radius rp with 10−3 precision, an order of magnitude better than

presently known. This would make it possible to test bound–state quantum electrody-

namics (QED) in hydrogen at the relative accuracy level of 10−7, and will lead to an

improvement in the determination of the Rydberg constant by more than a factor of

seven. Moreover it will represent a benchmark for QCD theories.

The experiment is based on the measurement of the energy difference between the

2SF=1
1/2 and 2P F=2

3/2 levels in µp atoms to a precision of 30 ppm, using a pulsed laser tunable

at wavelengths around 6 µm. Negative muons from a unique low–energy muon beam are

stopped at a rate of 70 s−1 in 0.6 hPa of H2 gas. Highly excited µp atoms are formed, and

most of them promptly deexcite to the ground state within ∼100 ns. However, there is a

roughly 1% probability that long–lived µp2S atoms with a lifetime of 1.3 µs are formed.

An incoming muon triggers a pulsed, multi–stage laser system which delivers 0.2 mJ

per pulse at λ ' 6 µm with 55 s−1 repetition rate. It consists of two XeCl excimer lasers

followed by dye lasers which pump an oscillator–amplifier frequency–controlled Ti:Sa laser.

Its 6 ns long pulse at 708 nm is then frequency shifted to 6 µm via third Stokes production

in a Raman cell filled with hydrogen. The laser pulse has a delay of about 1.5 µs with

respect to the prompt muon cascade.

If the laser is on resonance, it induces 2S−2P transitions. The subsequent deexcitation

to the 1S state emits a 1.9 keV Kα x ray which is detected by large area avalanche

photodiodes. The resonance frequency, and hence the Lamb shift and rp, are determined

by measuring the intensity of these x rays as a function of the laser wavelength.

A search for the 2S−2P resonance line was performed in November 2003 when a broad

range of laser frequencies was scanned (49.7409 − 49.8757 THz), corresponding to proton

radii between 0.844 and 0.905 fm. The result of the data analysis is that no significant

2S − 2P resonance was observed. The negative result is with high probability due to the

low statistics and not to an incorrect search region.

The first part of this thesis reports on the present status of the Lamb shift theory in

µp. Following, there is a detailed description of the apparatus and analysis of the data.

An estimate of the present and future laser–induced event rates are given, together with a

study of the present and future background. In the Appendices are discussed: the energy

levels in H, the proton radius definition, the relevance of this experiment, the 2S state

population and lifetime, and the spectroscopic properties of the 2S − 2P transition.
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Chapter 1

Overview of the muonic hydrogen
Lamb shift experiment

The goal and the principle of the muonic hydrogen Lamb shift experiment being performed
at the Paul Scherrer Institute (Switzerland) are described in this Chapter. Muonic hydro-
gen (µ−p) is a two–body Coulomb bound system formed by a negative muon and a proton.
The goal of this experiment is to measure the energy difference ∆E(2P F=2

3/2 − 2SF=1
1/2 ) by

laser spectroscopy to a precision of 30 ppm and to deduce the root–mean–square (rms)
proton charge radius rp with 10−3 relative accuracy. The rms charge radius is defined by
r2
p =

∫
dr r2ρ(r) where ρ(r) is the proton charge distribution (cf. Appendix D). The ex-

traction of the proton radius from the measured transition frequency in muonic hydrogen
is given by the relation (cf. Chapter 2)

∆E(2P F=2
3/2 − 2SF=1

1/2 ) = 209.968(5) − 5.2248 · r2
p + 0.0347 · r3

p [meV] (1.1)

where rp is expressed in fm. In terms of frequency this energy splitting is about 50 THz,
corresponding to a wavelength of about 6 µm. The main contribution in Eq. (1.1) is
given by vacuum polarization effects calculable in the framework of bound–state quantum
electrodynamics (QED). The 2S hyperfine splitting is 23 meV, the 2P fine and hyperfine
splittings are a few meV, i.e., much smaller than ∆E(2P F=2

3/2 −2SF=1
1/2 ). Nevertheless these

splittings are large compared to the natural linewidth of the 2S − 2P transition which
is essentially given by the 2P lifetime (~Γ2P = 0.077 meV). The six allowed 2S − 2P
transitions are therefore well separated. The particular transition (Eq. (1.1)) chosen for
this experiment is the one with the largest matrix element. The relative contribution of the
proton size to the 2S − 2P energy splitting is 1.8%. Therefore already a measurement of
the corresponding transition frequency (∼ 50 THz) with a moderate accuracy of 1.5 GHz,
which corresponds to about ∼ 10% of the naturalline width, leads to a improvement of
an order of magnitude in the determination of the rp value compared to the present value
extracted from the Lamb shift in “electronic” hydrogen and electron–proton scattering
experiments.

This radius is being recognized as a basic property of the simplest nucleus, the proton,
and treated in the recently published 2002–CODATA [1] adjustment as a fundamental
physical constant. The most precise and reliable value of rp is derived from spectroscopic
data on hydrogen and deuterium due to a significant reduction of the uncertainty of the
relevant bound–state QED theory in the last few years [2–4]. This is achieved by comparing
the measured 1S Lamb shift (2× 10−6 relative accuracy [1, 5]) with the theoretical value
which has a relative accuracy of 5 × 10−7 when terms related to rp are not considered.

1



2 Overview of the muonic hydrogen Lamb shift experiment

The rms–radius, extracted from these spectroscopic data using a least square adjustment
method, is rp = 0.8736(77) fm which has the largest weight on the current CODATA value
of rp = 0.8750(68) fm [1]. This value is mainly limited by the experimental uncertainty
of the 1S Lamb shift. It also relies on the assumption that the related bound–state
QED calculations are correct which is justified at the level of the present experimental
accuracy. However, when the experimental uncertainty will be reduced by measuring,
e.g., the 1S − 3S transition frequency, the theoretical uncertainty related to the two–loop
self–energy may be the limiting factor in the extraction of the rp value.

Knowledge of rp which does not depend on bound–state QED calculations comes from
electron–proton scattering experiments which have a long history. A recent reevaluation
of all available scattering data yields a value of rp = 0.895(18) fm [6]. The resulting
uncertainty in rp is as large as 2%, mainly associated with normalization and fitting
procedures.

A precise knowledge of rp from the µp Lamb shift experiment would make it possible to
test bound–state QED in hydrogen on the level of the quoted experimental and theoretical
uncertainties. A comparison of the predicted (using the rp value from µp spectroscopy
or electron scattering) with the measured H(1S) Lamb shift leads to a bound–state QED
test, whereas a subtraction of the predicted 1S Lamb shift from the measured 1S − 2S
transition frequency in hydrogen [7] leads to a better determination of the Rydberg con-
stant R∞ (cf. Appendix B). The 2% uncertainty of the rp value extracted from scattering
experiments limits the bound–state QED test to a relative accuracy of 7 × 10−6. If rp

will become known with 10−3 relative accuracy from µp spectroscopy, bound–state QED
calculations can be tested with a relative accuracy of 2×10−6, limited by the experimental
uncertainty in hydrogen spectroscopy. A value of 3× 10−7 may be reached in future when
an increased accuracy of other transition frequencies in hydrogen or other atomic systems
reduces the Rydberg constant uncertainty by a factor of ten. In contrast, the rms radius
extracted from µp spectroscopy can be combined with the measured 1S − 2S transition
frequency in hydrogen to reduce the uncertainty of R∞ by a factor of six [8] if bound–state
QED calculations are assumed to be correct.

To sum up, µp spectroscopy offers the possibility to determine rp with 10−3 precision
which would lead to a test of bound–state QED and to an improved determination of the
Rydberg constant. Interest in the rp value comes also from the QCD community, since it
would serve as an important benchmark for effective field and lattice theory calculations
(rp = 0.88(3) fm [9]).

Muonic hydrogen is an exotic atom. An exotic atom is an atom with an electron
replaced by a heavy negative particle such as a muon µ− with mass 207me (muonic
atom), a pion π− with mass 273me (pionic atom), a kaon K− with mass 966me (kaonic
atom), or an antiproton p̄ with mass 1836me (antiprotonic atom). The common feature of
these particles is that they are much more massive than the electron. The atomic binding
energy is proportional to the reduced mass of the system and thus increases with increasing
orbiting particle mass. The characteristic energy and size of exotic atoms lie in the energy
gap between atomic and nuclear physics as shown in Fig. 1.1, and offer the possibility to
study and measure a variety of basic physical phenomena and quantities related to atomic
or nuclear physics such as the proton radius, the pion mass, strong interaction scattering
lengths and so on. The orbits of the µ− in muonic hydrogen lie 186 times closer to the
nucleus compared to the electron orbits in hydrogen since

〈rorbit〉 ' ~

Zαmrc
n2 , (1.2)
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Figure 1.1: Characteristic energy and size of exotic atoms. aµ and ae are the ground state Bohr
radii of muonic and “normal” hydrogen, respectively (Courtesy of V. Markushin).

where 〈rorbit〉 is the characteristic distance of the orbiting particle, mr the reduced mass
of the system, ~ the Planck constant, c the speed of light, Z the nuclear charge, and n the
principal quantum number. Hence exotic atoms are much more sensitive to the nuclear
structure than normal atoms. The leading finite size effect is proportional to the square
of the wave function at the nucleus position and depends therefore on the mass of the
orbiting particle as

∆Efinite size(nl) =
2(Zα)4c4

3~2n3
m3

r r2
p δl0 , (1.3)

where l is the orbital quantum number. The nuclear structure effects scale with the
reduced mass of the system as m3

rr
2
p. Thus the relative contribution of the proton size

to the Lamb shift in muonic hydrogen is rather large (1.8 × 10−2), much more than the
corresponding value of 1.4× 10−4 for normal hydrogen.

The principle of the µp Lamb shift experiment is summarized in the following. Very
low–energy (few keV) negative muons from an specifically designed muon beam at the Paul
Scherrer Institute are stopped in 0.6 hPa of hydrogen gas at a rate of 70 s−1. After µ−

atomic capture, µp atoms in highly excited states are formed, and most of them deexcite
(“muonic cascade”) to the ground state within 100 ns, with emission of Lyman–series
x rays such as Kα, Kβ, and so on (see Fig. 1.2 (left)). About ∼ 1% of the µp atoms form
long–lived µp2S atoms with a lifetime of 1.3 µs at 0.6 hPa [10, 11]. A short laser pulse
with a wavelength around 6 µm is sent into a mirror cavity and illuminates the muon stop
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Figure 1.2: (Left): A very simple sketch of the muon cascade in hydrogen. The muon is captured in
an highly excited state (n ∼ 14). With ∼ 99% probabilty the muon deexcites down to the ground
state causing the emission of a 2 keV x ray. About 1% of the stopped muons end in a long–lived
µp2S state having the lifetime of about 1.3 µs at 0.6 hPa H2 gas pressure. (Right): Basic idea of
the µp2S Lamb shift experiment. A short laser pulse drives the 2S − 2P transition. When a µp
atom is excited to the 2P state it immediately decays (2P lifetime ∼ 10−11 s−1) to the ground
state emitting a 1.9 keV Kα x ray.

volume in order to drive the 2S − 2P transition. The laser system is triggered by the
muons entering the apparatus, and the light pulse has a delay of ∼ 1.5 µs relative to the
muons stop. A shorter delay of a few hundreds ns would be optimal, but the present value
is limited by the time needed by the laser system to produce the light pulse after it has
been triggered. When on resonance, the laser induces the transition to the 2P state. The
2P state decays with a lifetime of 8.5 ps to the ground state emitting a 1.9 keV Kα x ray
(see Fig. 1.2 (right)). These x rays are detected with large area avalanche photodiodes
(LAAPDs) placed above and below the muon stop volume. To ensure that the Kα x rays
originate from a muonic atom the detection of the muon decay electron is also required,
i.e., the detection of the electron originated by the muon decay µ− → e−νµν̄e (the muon
lifetime is 2.2 µs). This reduces the background at times when the laser induces the
transition by an order of magnitude.

The signature of a laser–induced 2S− 2P transition is therefore the detection of a Kα

x ray in time coincidence with the light of the laser illuminating the stop volume, followed
by an electron from muon decay. The resonance frequency, and hence the Lamb shift and
the proton charge radius, is determined by measuring the rate of laser–induced x rays as
a function of the laser frequency.

The 2S lifetime is limited essentially by two processes: muon decay and collisional
2S quenching [10, 12, 13], and this puts particular requirements on both the muon beam
and the laser system. Single muons entering the apparatus at random times trigger the
pulsed laser and the data acquisition system. The laser has to have therefore a short
response time, i.e., a short delay time between muon trigger and laser pulse, so that a
good amount of µp2S atoms are still available when the laser pulse illuminates the target
volume. This short delay is the most severe requirement for the laser system. No pre–
synchronization of the laser with the muon is possible since muons enter the apparatus at
random times. Such a pre–synchronization is possible at a pulsed muon beam available at
other accelerator facilities. This would eliminate the problem related to the delay of the
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laser system but would considerably worsen the background since it prevents the correct
pairing of x rays and electrons. Moreover those sources have much lower integral muon
intensities and are therefore not suitable for this experiment which has to be performed
at low gas pressure.

Since the fastest laser delay achievable with our system was ∼ 1.5 µs, we had to
reduce the target gas pressure to 0.6 hPa (at room temperature), to have a 2S lifetime
of the order of the laser delay. Such a low gas pressure makes it difficult to stop muons
efficiently in a small volume which can be illuminated by the laser light with sufficiently
high intensity. A new low–energy negative–muon beamline was developed at PSI which
yields an order of magnitude more muon stops in a small low–density (hPa) gas volume
than a conventional muon beam. Even with this dedicated muon beam the longitudinal
stop distribution is ∼ 20 cm. To prevent the low–energy muon beam to blow up due to
multiple scattering in the low hydrogen gas pressure, the target is placed in a strong axial
magnetic field (5 Tesla). The magnetic field limits the choice of x-ray detectors, and the
size of the superconducting coils required to generate this magnetic field limits the volume
of the target and detectors. Fortunately the strong magnetic field does not affect in a
remarkable way the 2S − 2P transition frequency in muonic hydrogen (cf. Appendix F).

The Lamb shift measurement requires a complex laser system which provides typically
0.2 mJ pulse energy tunable at 6 µm wavelength with a short delay time. Such a system
is not commercially available and thus a home–made multistage laser system has been
developed (cf. Chapter 4). The pulse delivered by the laser system is confined inside a new
type of multipass cavity which provides the large illumination volume (7× 25× 170 mm3)
required to cover the muon stop volume.

All parts of the apparatus were taken into operation during a long beam period (“run”)
in 2003. In November 2003 the 2S−2P resonance frequency was searched in a range from
49.7409 THz to 49.8757 THz, corresponding to rp values between 0.844 and 0.905 fm. The
laser was shot at fixed frequency values spaced by about 10 GHz, in accordance with the
natural linewidth of the 2S − 2P transition of 18.6 GHz at FWHM. A new sophisticated
method to analyze the data, in particular the LAAPD pulse shapes, was developed in
2004. No resonance line was observed, and this negative results has to be attributed to
the lack of statistics. Although only about 0.5 background events per hour have been
measured, the event rate was not sufficient due to the limited measuring time ranging
from 5 to 10 hours per measured frequency point. The statistics were too low to exclude
the existence of the resonance line in the above–mentioned scanned region. A signal rate
of only 0.5 events per hour (on resonance) was achieved. However, for the future, several
improvements of the apparatus are planned and partially already realized. The future
event rate is expected to be 24 times larger than the present one, and this should lead to
a successful search of the resonance. Additionally the laser uptime should increase by a
factor of 2.

More than 106 x rays from µp Kα, Kβ, and Krest transitions at 1.898, 2.249, and
2.46 keV, respectively, have been detected in the 2003–run. This is much more than
in any muonic hydrogen experiment performed at low gas density. Despite the failure
in the search of the resonance line, new physical results about the µp cascade and the
2S quenching have been obtained from a detailed analysis of the large number of data.
For the first time the “short–lived” component of the 2S state was directly observed. It
corresponds to µp2S atoms with a kinetic energy of a few eV which undergo collision–
induced 2S − 2P transitions with subsequent deexcitation to the ground state. The other
µp2S atoms are decelerated by elastic collision below 0.31 eV which corresponds to the
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2S−2P energy threshold in the laboratory system. Collisional excitation to the 2P state is
forbidden for these atoms. These “long–lived” atoms were found in previous experiments to
deexcite at a slower rate (relative to the “short–lived” component) via a resonant formation
of excited muonic molecules and a subsequent nonradiative dissociation to the ground
state [10,11]. Combined with the total population of the 2S state, (2.49±0.17%) [14], the
new measurement of the short–lived component is an indirect determination of the long–
lived component which represents the relevant population for the laser experiment. Both
the indirect and the direct determination (independent measurements) of the long–lived
µp2S population are in agreement, i.e., they predict a long–lived population of ∼ 1% at
0.6 hPa (cf. §G.4).

Three theses have been written on the subject of the muonic hydrogen Lamb shift
experiment. The thesis of L. Fernandes [15] of Coimbra University describes the develop-
ment of LAAPDs as 2 keV x ray detectors. The thesis of L. Ludhova [16] is devoted to the
analysis of the data and reports on the first observation of µp cascade time, together with
the population and the lifetime of the 2S short–lived component. This thesis describes
the present status of the µp Lamb shift experiment with emphasis on the spectroscopic
part.



Chapter 2

Present status of the 2S − 2P
Lamb shift in muonic hydrogen

Since the muon mass is about 200 times larger than the electron mass, the muon wave–
function overlaps with the proton (mµ/me)

3 ∼ 107 stronger than that of the electron
(in hydrogen), leading to an increased sensitivity to the hadronic structure of the nu-
cleus (charge and magnetic moments, nuclear polarizability). The leading finite size ef-
fect in muonic hydrogen contributes to about 2% to the 2S − 2P Lamb shift, i.e., to
−3.979(62) meV for rp =0.8750(68) fm [1] and to −4.16(17) meV for rp =0.895(18) fm [6],
whereas it contributes only to 1.4 × 10−4 in the 1S Lamb shift in hydrogen. The Lamb
shift measurement in muonic hydrogen aims to improve the precision of the proton radius
by a factor of 20 compared to the value extrapolated from electron–proton scattering data.
Therefore a calculation of all other contributions to a precision considerably better than
0.17/20 meV is required, i.e., ∼0.001 meV.

S states of µp differ from those of ordinary hydrogen atom mainly in two respects: the
vacuum polarization effect is the most important QED contribution, and there is a higher
sensitivity to the nuclear structure. The role of the vacuum polarization contribution
in the energy spectrum of µp atoms is increased by the decrease of the atomic radius.
The electron Compton wavelength (λe) which approximately describes the size of charge
distribution of the e+e− pairs produced by the vacuum polarization, is of the same order
as the muonic Bohr radius (aµp

0 ):

aµp
0

λe/2π
=

~
2/mre

2

~/mec
' 285 fm

386 fm
' 0.74 , (2.1)

and therefore the S-state muonic wave–functions overlap strongly with the charge distri-
bution of the virtual e+e− pairs.

In the following the present status of the theoretical prediction of the muonic hy-
drogen Lamb shift is presented. Different methodologies and results of various authors
are presented in order to better point out the uncertainties of the various contribu-
tions and the problems. The majority of the contributions are treated in the papers
of K. Pachucki [17, 18] and M. I. Eides et al. [19]. A compilation of all terms known in
2002 are given by P. Indelicato and E. -O. Le Bigot [20]. Interesting new aspects are
presented in a recent paper of E. Borie [21]. For a comprehensive but not updated review
the reader is referred to the work of E. Borie and G. A. Rinker [22]. It is interesting
to note that very recently some contributions to the Lamb shift have been computed by
A. Pineda [23] starting from heavy–barion effective field theory, which gives a method-
ologically more independent cross check of the predictions. For an introduction about

7
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Figure 2.1: Schematic representation of the n = 2 energy levels in electronic hydrogen (left) and
muonic hydrogen (right). Note the different energy scales for the two atoms. The indicated 4 µeV
energy difference corresponds to the “classical” Lamb shift, dominated by the self–energy terms.
The vacuum polarization in muonic hydrogen attracts the 2S state below the 2P state. The laser
transition is indicated in red.

bound–state energy levels the reader is referred to Appendix A. This Appendix gives a
definition of Lamb shift, and presents the various contributions to the 1S Lamb shift in
hydrogen with emphasis on the self–energy and nuclear finite–size corrections.

2.1 Vacuum polarization

In the perturbative approach, QED corrections to the Dirac energy levels are derived
from the scattering approximation using Feynman diagrams. The scattering amplitudes
in momentum space are computed using Feynman rules. The Fourier transform of the
scattering amplitude which corresponds in coordinate space to the potential V (r) (in
first Born approximation) is then used to compute the energy level shift given by ∆E =
〈Ψ̄(r)|V (r)|Ψ(r)〉 where Ψ describes the atomic wave–function.

This approach is used to compute the effect of the vacuum polarization (VP). The
Feynman amplitude S corresponding to a one–photon Coulomb scattering of a lepton
with initial four–momentum p and final four–momentum p′ by an infinitely heavy nucleus
with form factor F (q2) is [22]

S = −u†(p′)u(p)V (q)(2π)4 δ4(p′ − p− q) (2.2)

where q is the four–momentum transfer and

V (q) = −4πZα
F (q)

q 2
=

∫
d3r V (r)e−iqr (2.3)

The Fourier transform for a point–like nucleus (F (q2) = 1) gives the Coulomb potential
V (r) = Zα/r. The effect of the vacuum polarization is best described by the modification
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Figure 2.2: Vacuum polarization insertion in the photon propagator.

of the photon propagator as shown in Fig. 2.2, which can be expressed using the Feynman
rules as

1

q 2
−→ 1

q 2
+

1

q 2
Π(q2)

1

q 2
+ · · · . (2.4)

The vacuum polarization potential VVP in first order (Uehling potential) can be then
expressed in momentum space as

VVP(q) = −4πZα
F (q2)

q 2

Π(q2)

q2
. (2.5)

In perturbation theory the energy shift due to the vacuum polarization potential is

EVP =

∫
d3q

(2π)3
−4πZαF (q2)

q 2

Π(q2)

q 2

∫
d3r |Ψ(r)|2e−iqr . (2.6)

The leading–order contribution to the 2S − 2P energy–shift is then

E(2P − 2S) =

∫
d3q

(2π)3
−4πZαF (q2)

q 2

Π(q2)

q 2

∫
d3r (|Ψ2P (r)|2 − |Ψ2S(r)|2)e−iqr . (2.7)

Two different approaches are followed by Borie [21] and Pachucki [17, 18]: the first
works with relativistic and the second with nonrelativistic wave–functions. Borie has cal-
culated the value of Eq. (2.7) for both the point–like nucleus (F (q2) = 1) with nonrelativis-
tic and relativistic point–like wave–functions, and for an extended nucleus (F (q2) 6= 1)
for point–like relativistic wave–functions (cf. with results of Refs. [17, 18]). Results are
given in Table 2.1. The effect of finite proton size on the VP contribution is the difference
between the values of the Uehling contribution calculated with point–like and finite size
nucleus. From Table 2.1 it is −0.0083 meV which may be parametrized as −0.0109 r2

p.
This finite size correction to the VP is diagrammatically represented by the first graph in
Fig. 2.3. An additional finite–size with VP correction is given by the second diagram of
Fig. 2.3 which contributes for about −0.0164 r2

p ' −0.0128 meV [17, 19].

Table 2.1: Uehling and Källen–Sabry contributions for different wave–functions: nonrelativis-
tic/relativistic point–like/extended nucleus. The values for an extended nucleus were the same for
the different structure functions, provided these functions have the same rms–radius. The values
reported are calculated for the 2S1/2 − 2P1/2 transition and are expressed in meV. The values are
taken from Ref. [21].

Contribution Uehling Källen–Sabry

Point nucleus/nonrelativistic 205.0074 1.5080
Point nucleus/relativistic 205.0282 1.50814
rp =0.875 fm/relativistic 205.0199 1.50807
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Figure 2.3: The first diagram is the correction of finite–size to VP. This is already accounted in the
last row of the Uehling contribution with finite-size of Table 2.1. The second graph is a correction
of combined VP and finite–size. The last two terms are finite size contributions to order (Zα)5

and have been computed in [17].

Figure 2.4: The first two graphs are the double and triple vacuum polarization (termed two and
three iterations in [21]) corrections. The last three graphs on the right are the two–loop vacuum
polarization insertion also named Källen–Sabry corrections.

Table 2.1 also shows results for the Källen–Sabry contributions which are diagrammat-
ically represented by the last three graphs in Fig. 2.4. Since the VP is such a large effect
in µp it is required to calculate effects represented by the double and triple VP shown in
the first two graphs of Fig. 2.4. These contributions are termed by Borie “ iteration VP”.
They have been calculated by Pachucki and Kinoshita to contribute to 0.151 meV [17,24].
An additional higher iteration including finite size and VP was already accounted for
in the second graph of Fig. 2.3. To reach the required accuracy the following contribu-
tions have been evaluated [21]: Wichmann–Kroll (−0.00103 meV) and virtual–Delbrück
(+0.00135(15) meV) shown in Fig. 2.5. No calculation exists for the light–by–light contri-
bution but it is expected to be of the same order, i.e., (±)0.001 meV [25]. This represents
one of the most significant unknown corrections to the µp Lamb shift.

A number of other radiative corrections corresponding to the graphs depicted in Fig. 2.6
have been computed. Contrarily to the hydrogen case, the one–loop self–energy contributes
only to about 0.3% to the µp Lamb shift. The one–loop muon self–energy and muon
vacuum polarization have been calculated using the corresponding formulas in normal
hydrogen and their sum is −0.667 88 meV [17, 21] (first two graphs in Fig. 2.6). The
two–loop self–energy contributions which play an important role in hydrogen are here
negligible, being estimated to be −0.000 06 meV [17] (not shown in Fig. 2.6, but treated
in detail in Appendix A for the hydrogen case).

Figure 2.5: The first term is the light–by–light term α3(Zα), the second the Wichmann–Kroll
α(Zα)3 and the third the virtual Delbruck effect α(Zα)3.
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Figure 2.6: Other radiative corrections. Left to right: muon self–energy, muonic VP, mixed e− µ
two–loop VP, three–loop VP which is one of the many sixth–order VP corrections [24], one–loop
hadronic VP, and corrections to the muon self–energy due VP insert in external and radiative
photon, respectively.

The mixed electron–muon two–loop VP is 0.00007 meV [21] and the rather difficult
sixth–order VP contribution has been calculated by Kinoshita and Nio [24] with the result
of 0.0076 meV. The hadronic VP amounts to about 0.011 meV [19,26,27]. Borie pointed
out that these results have been calculated assuming the fact that the proton does not
strongly interact with the hadrons in the virtual hadron loop. An estimation of this
omission is difficult but she concluded that it could change the correction up to 50%.
Additionally as previously mentioned Eides et al. [19] pointed out that the whole graph
related to the hadronic VP could also contribute to the proton radius. It is not clear
where this contribution should be assigned. Other authors [28–30] are of the opinion
that corrections caused by the strong interaction between hadronic loop and proton are
automatically considered in the definition of the proton radius and should not be treated
separately. Note that very recently Pineda in the framework of heavy–barion effective
theory has obtained a hadron polarization value for S states of 0.09039/n3 meV [23]
which is in good agreement with the above given values.

The electron loop in the radiative photon (included in “fourth–order electron loops”
by Borie) has been computed to be −0.00169 meV [21, 31] and is represented by the last
but one graph of Fig. 2.6. Pachucki has estimated the contribution corresponding to a
vacuum polarization insert in the external photon given by the last graph of Fig. 2.6 to
be −0.005 meV [17].

2.2 Finite nuclear size

In muonic hydrogen the nuclear finite size effects give the second largest contribution to
the energy levels. The main contributions related to the the proton finite size (cf. §A.8)
are given by Ref. [32]

EFS = −2Zα

3

(
Zαmr

n

)3 [
r2
p −

Zαmr

2
〈r3

p〉(2) + (Zα)2
(
FREL + m2

rFNR

)]
. (2.8)

The leading order finite size gives a correction of

−5.1975 r2
p = −3.979 meV (2.9)

if rp=0.875 fm. The second term in Eq. (2.8) represented by the two last diagrams in
Fig. 2.3 accounts for two–photon exchange, and contributes to [21]

−0.0347 r3
p = −0.0232 meV (dipole form factor)

−0.0317 r3
p = −0.0212 meV (Gaussian form factor) .

(2.10)
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This differs slightly from the value given by Pachucki. The dipole form factor which corre-
sponds to an exponential charge distribution is more realistic since it is in fair agreement
with the scattering data. However a comparison between the values obtained with the
dipole form factor and the Gaussian form factor (which has not any physical meaning)
shows the sensitivity of the energy levels on the charge distribution (proton shape). The
uncertainty of the 2S − 2P transition energy related to the proton shape model is esti-
mated to be of the order ±0.002 meV, provided the different parameters describing the
proton charge distribution are adjusted to reproduce the measured rms radius. Note that
Sick and Friar are working to determine this third Zemach moment using only the world
data on elastic electron proton scattering. Their results should be model independent.

The third term of Eq. (2.8) contributes to about 0.00046 meV [21]. For muonic hydro-
gen the relativistic corrections of order (Zα)6 are smaller than the two–photon exchange
corrections of order (Zα)5, whereas the opposite is valid for hydrogen. As previously
mentioned there are two finite size corrections to the VP represented by the two graphs
of Fig. 2.3 which can be parametrized as −0.0109 r2

p − 0.0164 r2
p. Additionally there is a

recoil correction of 0.013 meV to the 2S − 2P energy difference [32].

The second largest Lamb shift uncertainty is given by the proton polarization. Rosen-
felder [33] gives a value of 0.017(4) meV, Pachucki [18] 0.012(2) meV, and Faustov and
Martynenko [34,35] 0.016 meV. The 20− 25% uncertainties are dominated by the experi-
mental errors of the ratio of the longitudinal to transverse polarized photon cross section,
the parametrization of this ratio in function of Q2, and the uncertainty in the measured
inelastic structure function. We assumed an averaged value of 0.015(4) meV with the
largest quoted uncertainty. New measurements of the e+e− → hadrons cross section in
Frascati may lead to a better determination of the proton polarizability [36]. Presently this
term is the limiting factor in the prediction of the Lamb shift (proton radius excluded).
An effort is in progress [37] aiming to calculate the polarizability contribution in muonic
hydrogen starting from heavy–barion effective theory. It may lead to a model–independent
(not dependent on the phenomenological dipole parametrization) value of the polarizabil-
ity contribution, leading to an even more model–independent value of the proton radius
which can be extracted from our experiment.

For a point–like proton the contribution of the proton self–energy to the Lamb shift
of S states is clear [38], but the problem is that the proton self–energy is modified by,
and modifies as well, the finite size–effect. To avoid double counting of corrections (in the
self–energy and in the finite–size) a preciser definition of the nuclear rms charge radius
is necessary. Usually the rms charge radius is defined via the Sachs form factor (see Ap-
pendix D) which, according to Pachucki, is not correct at our level of precision, because
the radiative corrections to GE are infrared divergent and therefore they have to be reg-
ulated [18]. Pachucki has proposed a better definition of the proton charge radius via the
low–energy behavior of two–photon scattering amplitude which lead to a clear separation
of proton self–energy and finite–size contributions. The proton self–energy was computed
to be −0.0099 meV [18].

2.3 Relativistic recoil corrections

As mentioned previously very different approaches have been developed by Borie and
Pachucki to treat relativistic and recoil corrections. Borie computes the one–photon recoil
corrections starting from the Dirac equation. An effective potential which replaces the
external field Coulomb potential is constructed by writing the one–photon fermion–boson
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scattering amplitude [22]

S = −Ze2ū(p3)γ
µu(p1)

F (q2)

q2

(p4 + p2)µ

(4E2E4)1/2
, (2.11)

where p1, p3 are the initial and final four–momentum of the fermion, and p2, p4 the initial
and final four–momentum of the “boson”. By expanding the nucleus (“boson”) energies
E2 and E4 as Ei 'M +p2

i /2M , an effective potential can be constructed which takes into
account recoil corrections to leading order in 1/M :

S ' u+(p3)
Ze2

q2
F (q2)

[
1 +

α · (p3 + p1)

2M

]

︸ ︷︷ ︸
Veff

u(p1) . (2.12)

The effective potential Veff is then inserted into the two–body Hamiltonian

H = α · p + βm +
p2

2M
+ Veff (2.13)

where p = −p3 since we are in the center–of–mass system. This leads to a one–photon
recoil correction for the 2S − 2P state of −0.00419 meV.

On the contrary Pachucki includes relativistic and recoil correction via the Breit–
Hamiltonian [39]

HB =
p2

2m
+

p2

2M
+ V + δH (2.14)

where

δH =− p4

8m3
− p4

8M3
+

1

8m2
∇V +

(
1

4m2
+

1

2mM

)
V ′

r
L · σ

+
1

2mM
∇2

[
V − 1

4
(rV )′

]
+

1

2mM

[
V ′

r
L2 +

p2

2
(V − rV ′) + (V − rV ′)

p2

2

]
.

(2.15)

The prime represents the derivative with respect to r. If only the Coulomb interaction is
included in V , the matrix element of the Breit Hamiltonian gives the correction to order
(Zα)4 given by Eq. (A.12), which is 0.0575 meV [21,39]. If both Coulomb and VP poten-
tials are accounted in V , an additional term of 0.00169 meV results [39]. Summing up the
one–photon recoil calculated by Borie and the difference of the Uehling potentials calcu-
lated with relativistic and nonrelativistic wave–functions, gives a total recoil–relativistic
correction of 0.00166 meV. Recoil and relativistic corrections for one–photon exchange
computed by Borie and Pachucki agree therefore very well with each other. Evaluating the
two–photon recoil for the 2S−2P transition gives a value of−0.04497 meV [17,19]. Higher–
order radiative–recoil corrections give an additional contribution of −0.0096 meV [19].

Borie pointed out [25] that the two–photon recoil corrections need to be revised and
that the next order recoil (m/M)2 corrections have to be taken into account. A general
algorithm has been developed by Czarnecki, Blokland, and Melnikov [40,41] which permits
an expansion of the energy level of a bound–state with two constituents of masses m and
M in powers of m/M and (1−m/M). The developed method is applicable for pure recoil
with several exchanged photons but also radiative–recoil corrections with several loops. It
could be adapted to improve the recoil corrections in muonic hydrogen [28].
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2.4 Fine and hyperfine structure

The determination of the “pure” Lamb shift from the 2S − 2P transition frequency mea-
surement requires the knowledge of fine and hyperfine structure contributions to the n = 2
state. In hydrogen the measurement of the hyperfine splitting overcame the theoretical
accuracy. Hence the 1S Lamb shift in hydrogen is extracted using the measured value. For
the muonic case no measurement of the hyperfine and fine splitting is up to now available
and therefore the subtraction of the hyperfine and fine splitting to get the “pure” Lamb
shift has to rely on the theoretical predictions. It should be mentioned that in a second
stage of this experiment a second transition between the 2S to the 2P states can be mea-
sured. The measured second transition will be then used to extract the “pure” Lamb shift
instead of using the theoretical predictions of the fine and hyperfine contributions.

The hyperfine energy shifts for the 2S states (F = 0, 1) are given by the Fermi energy
EFermi corrected for radiative, recoil, and finite–size contributions [42]

Ehfs(2S) = EFermi

(
1 + δQED + δFS + δpol

) [δF1 − 3δF0]

4
(2.16)

where

EFermi =
(Zα)4m3

r

3mM
(1 + κp)(1 + aµ) . (2.17)

with κp and aµ the anomalous magnetic moment of the proton and the muon, respec-
tively. δQED ' 0.7% represents the QED contributions dominated by the electronic VP
contributions, δFS ' −0.7% is the correction related to the finite size of the nucleus which
is dominated by the order (Zα)5 (two–photon exchange), that is by the Zemach radius,
and δpol ' 0.04% is the proton polarizability correction. The result for the hyperfine
splitting given by Borie is Ehfs(2S) = 22.7806 meV [21] whereas A. P. Martynenko gives
Ehfs(2S) = 22.8148(78) meV [42]. Borie neglects a recoil correction of 0.038 meV [17]
and the proton polarizability of 0.011(2) meV [34, 42], but still both values are in slight
disagreement.

For the fine and hyperfine contributions to the 2P state there is agreement between
authors. They account for Uehling, Källen–Sabry, recoil and higher order anomalous
magnetic moment corrections to the hyperfine splitting.

2.5 The ∆E(2P F=2
3/2

− 2SF=1
1/2

) energy splitting

All the known contributions to the 2SF=1
1/2 − 2PF=2

3/2 energy difference in muonic hydrogen
are summarized in Table 2.2. They account for an energy splitting of

∆E(2P F=2
3/2 − 2SF=1

1/2 ) = 209.968(5) − 5.2248 r2
p + 0.0347 r3

p [meV]

= 50.7700(12) − 1.2634 r2
p + 0.00839 r3

p [THz]

= 205.991(5)(62) meV

= 49.8084(12)(150) THz

(2.18)

with rp = 0.8750(68) fm. The first error refers to the uncertainty of the theory which
is dominated by the proton polarizability and the second error refers to the uncertainty
related to the proton radius. The above errors have to be compared with the aimed
experimental precision of 6× 10−3 meV corresponding to 1.5 GHz. A proton radius with
about 10−3 relative precision can therefore be extracted if the 2S−2P transition frequency
with a precision of ∼ 1 GHz is measured.
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Table 2.2: Summary of all contributions to the ∆E(2P F=2
3/2
− 2SF=1

1/2
) energy difference in muonic

hydrogen. The finite size corrections are given for rp= 0.8750(68) fm [1]. The values for the
estimated uncertainties are given only when they exceed 5 × 10−4 meV. The uncertainties in
parentheses are dominated by the rp uncertainty. When not stated the values are taken from
Ref. [21]. The first uncertainty for the total Lamb shift refers to the theory, mainly given by
proton polarizability, whereas the second uncertainty is related to the uncertainty of the rp value.
The light–by–light term is yet uncalculated.

Contribution Value Uncertainty
[meV] [10−4 meV]

Uehling 205.0282
Källen–Sabry 1.5081
VP iteration 0.151
Mixed µ− e VP 0.00007
Hadronic VP [21, 23] 0.011 20
Sixth order VP [24] 0.00761
Whichmann–Kroll −0.00103
Virtual Delbrück 0.00135
Light–by–light − 10

Muon self–energy and muonic VP (2nd order) −0.66788
Fourth order electron loops −0.00169
VP insertion in self energy [17] −0.0055 10
Proton self–energy [18] −0.0099

Recoil [17, 43] 0.0575
Recoil correction to VP (one–photon) −0.0041
Recoil (two–photon) [19] −0.04497
Recoil higher order [19] −0.0096
Recoil finite size [32] 0.013 10

Finite size of order (Zα)4 [32] −5.1975(1) r2
p −3.979 (620)

Finite size of order (Zα)5 0.0347(30) r3
p 0.0232 (20)

Finite size of order (Zα)6 −0.0005
Correction to VP −0.0109 r2

p −0.0083

Additional size for VP [19] −0.0164 r2
p −0.0128

Proton polarizability [18, 33] 0.015 40

Fine structure ∆E(2P3/2 − 2P1/2) 8.352 10

2PF=2
3/2 hyperfine splitting 1.2724

2SF=1
1/2 hyperfine splitting [42], (−22.8148/4) −5.7037 20

Sum of corrections to Lamb shift 209.968(5) − 5.2248 r2
p + 0.0347 r3

p

= 205.991(5)(62) meV
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Chapter 3

Muon beam, target, and
electronics

This Chapter deals with the muon beam line for the production of ultra–low energy neg-
ative muons, and the detector ensemble which records the physical signals, mainly low
energy x rays and high energy electrons associated with the formed µp atoms.

The experiment is performed at the proton accelerator facility of the Paul Scherrer
Institute (PSI). A high power 590 MeV proton beam with a beam current of about 2 mA
(∼ 1.2 MW) is transported to a meson production target, a rotating carbon wheel, and
secondary beams of pions and muons are generated. Our experiment is installed at a low
momentum (10 − 120 MeV/c) pion beam line (πE5) which is viewing the target with a
rather large solid angle at 175◦ with respect to the primary proton beam. This beam line
provides the worldwide highest intensity of low energy pions and muons.

The µp Lamb shift experiment requires to stop negative muons in a low pressure
hydrogen target (0.6 hPa) to have long–lived µp2S atoms. Only muons with kinetic energies
below ∼ 5 keV are stopped in a reasonably sized target vessel (e.g., 20 cm length in beam
direction), but the lowest beam momentum ever achieved at this channel was 10 MeV/c,
corresponding to 500 keV energy. Reducing this beam energy by simple moderators is
very inefficient. It was therefore necessary to develop an ultra–low energy muon beam.
Section 3.1 describes this dedicated beam. In §3.2 the hydrogen target with its various
components is described with focus on the detectors. The electronics system used for the
data acquisition and its triggering system is briefly presented in §3.3.

3.1 Low–energy muon beam

To obtain a sufficiently high rate of laser–induced 2S−2P transitions, the 2S state lifetime
has to be at least of the order of the laser delay time. To reduce collisional quenching
of the 2S state (cf. §G.4), the negative muons are stopped in hydrogen gas at pressures
below 1 hPa (0.6 hPa in the 2003–run). In order to efficiently stop muons at this ultra–
low gas pressure and within the small target volume required for efficient laser–excitation,
their initial kinetic energy has to be below 5 keV. The essential problem to design a low
energy muon beam comes from the fact that muons are produced at MeV energies and
that the deceleration process down to keV energies has to occur within the muon lifetime
(2.2 µs). The simplest way to achieve this, is decelerating muons by energy loss in matter,
but the efficiency of moderating a conventional muon beam to keV energies is rather poor
due to energy straggling and angular scattering. A particular method adapted to positive
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Figure 3.1: Lay–out of the muon beam, with cyclotron trap CT, muon extraction channel MEC
and 5 Tesla solenoid.

muons [44] cannot be used for negative muons since they are forming exotic atoms.

The beam line producing the ultra–low energy negative muons consists of the cyclotron
trap (CT) [45–47] for the production of low energy muons, the muon extraction channel
(MEC) for their transport and selection, and a 1 m long 5 T solenoid with two transmission
detectors for the muon trigger (see Fig. 3.1). The solenoid also encloses the hydrogen gas
target with its detectors. The features of these three components of the beam line, which
provide a ultra–low energy muon beam with small transverse size and low background are
explained in the following sections. A photo of the PSI πE5 area with the muon beam
line is shown in Fig. 3.2.

3.1.1 Cyclotron trap

The cyclotron trap developed by L. Simons is a magnetic trap produced by two super-
conducting ring coils at a distance of about 40 cm giving a magnetic field of 2 T in the
median plane and 4 T at the coil centers (see Fig. 3.3). Negative pions (108 s−1) with a
momentum of 102 MeV/c with a momentum spread of ∆p/p = ±6% (FWHM) from the
πE5 channel are tangentially injected in the median plane of the trap where they hit a
moderator. The position (radial: r ∼ 10 cm) and thickness (5.4 g/cm2) of the moderator
are chosen such that the pions have a precession trajectory when they exit the moderator
which minimizes the chance of a second hit on the moderator. After moderation the pions
have a momentum of 40−60 MeV/c, i.e., near the “magic momentum” of 40 MeV/c which
is optimal for the generation of muons at low energy. This feature maximizes the number
of axially extracted muons.

About 30% of the moderated pions decay in flight into muons before returning back to
the moderator or hitting the wall of the target vessel. Only a few percent of these muons
have suitable momenta and angles accepted by the magnetic quasi–potential–well (radial
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Figure 3.2: Photo of the PSI πE5 area. Hidden behind the concrete block in the upper part of the
picture there is the CT. Partially visible is only the liquid helium vessel (metallic cylinder) for the
superconducting coils. The curved structure composed by 17 ring coils is the MEC, which connects
the CT with the 5 T solenoid (metal cylinder in right front). The dimensions of the apparatus
may be compared with the size of the large concrete block which is 2 × 2 × 1 m3. The function
of this concrete block is to shield the detectors mounted inside the bore-hole of the solenoid from
neutrons originating mainly from the region around the CT.

and axial) formed by the CT field. Muons confined radially and axially are moderated
when crossing a thin Formvar foil (cf. §3.2.4) of 20 µg/cm2 (160 nm) thickness and 17 cm
diameter placed in the median plane of the CT (see Fig. 3.3). On average the foil is
crossed several hundred times. Muons produced at kinetic energies of a few MeV are
thus decelerated within their lifetime to 10 − 50 keV where axial extraction occurs. The
axial magnetic confinement can be described by a quasi–potential which decreases with
decreasing particle momentum and has a minimum in the median plane of the CT, as
shown in Fig. 3.3. The Formvar foil is kept at negative high voltage. At sufficiently low
muon energies, the electric force dominate over the magnetic confinement, and the muons
leave the CT axially. A more quantitative discussion of this process is given below.

Inside the CT there is a high flux of neutrons, gamma rays etc. produced by pions
stopping in the walls. This is a motivation for a concept where the muons, after moderation
to keV energy, are extracted from the CT and guided to a separate measuring region, before
they form muonic atoms.

In a uniform magnetic field a muon spirals along the magnetic field lines with a ra-
dius a [48]

a =
p⊥
eB

(3.1)

where p⊥ is the transverse momentum of the particle and B the magnetic field. It can be
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Figure 3.3: (Left): Schematic view of the CT for a plane containing the trap axis along which the
muons are extracted. A thin foil (20 µg/cm2) is used to slow down the muons during their lifetime
and to produce an axial electric field for extraction. (Right): Principle of the axial extraction of the
muons from the CT trap. The quasi–potential Ui(z) depends on the transverse momentum. The
potential related to the electric field caused by the foil in the center of the CT is q(V (z)− V (0)).
The sum of the quasi–potential and the electrostatic potential is Utot(z) = U(z) + q(V (z)−V (0)).
On the top figure the extraction does not occur due to magnetic reflection, whereas it occurs in
the bottom figure (U2 < U1). Note that the plotted q(V (z) − V (0)) potential do not represent
the real situation but MC simulations show that the resulting number of extracted muons is not
affected by this simplification.

shown (see for example Ref. [48]) that for slowly varying fields the magnetic flux through
the orbit of a particle is an adiabatic invariant. This constancy of flux can be expressed
in several ways, e.g.,

Ba2

p2
⊥/B

}
= constant . (3.2)

The axial (parallel) momentum at any position along the z-axis can be determined by
combining the second equation and the fact that the momentum of a particle in a magnetic
field is constant,

p2
‖(z) = p2(0)− p2

⊥(0)
B(z)

B0
(3.3)

which leads to the axial quasi–potential

U(z) =
1

2

p2
⊥(0)

mB(0)
B(z) . (3.4)

This means that with increasing magnetic field the axial kinetic energy T‖ = p2
‖/2m is

converted into transverse energy T⊥ = p2
⊥/2m, until T‖ vanishes, and the particle turns

then back in the opposite direction (reflection). The CT is therefore a trap for particles



3.1 21

which satisfy the condition

∣∣∣∣
p‖(0)

p⊥(0)

∣∣∣∣ <

(
Bmax

B(0)
− 1

)1/2

. (3.5)

The basic idea of the extraction developed by L. Simons, F. Kottmann, and D. Taqqu,
is to add an axial electric field E, parallel to the magnetic field in the central region of
the CT. To produce the required DC electric field the Formvar foil is made conductive
by sputtering on its surface a 3 nm thick layer of nickel, and is kept at a high voltage of
V = −19 kV (the CT walls are at ground potential).

When crossing this foil the muons lose momentum without changing their direction,
i.e., after each foil pass the ratio of p‖(0)/p⊥(0) remains constant (neglecting angular
scattering). In the axial direction the field acts as a magnetic bottle, where the relevant
criterion is the angle of the momentum vector relative to the magnetic field lines, and not
its absolute value. However the presence of the electric field leads to a dependency on the
absolute momentum. Particles are extracted from the magnetic trap when [47]

T‖(0) > T⊥(0)

(
Bmax

B0
− 1

)
− qV . (3.6)

where T‖(0), T⊥(0) and B0 ' 2 T are respectively the axial kinetic energy, the transverse
kinetic energy and the magnetic field in the trap center, Bmax ' 4 T the maximal mag-
netic field which is reached at the coil centers, V ' −19 kV the high voltage on the foil
and q = −e the muon charge (qV > 0). With decreasing energy the probability to turn
the momentum vector out of the confinement regime into the loss (extraction) cone will
increase. Muons having left the foil with low total kinetic energy will gain enough mo-
mentum in axial direction to leave through the loss cone. The muons exit the collimator
in the axial bore hole (20 × 18 mm2) of the trap at low energy because the electric force
wins over the confining force of the magnetic mirror, when the (transverse) kinetic energy
is low. The majority of the muons are extracted with 20 − 50 keV energy. The minimal
kinetic energy is given by the high voltage applied to the thin foil, i.e., Tmin ' 20 keV.

However, a fraction of the muons is extracted also when no electric field is applied,
because the momentum vector is turned by angular scattering (within the foil) into the
magnetic loss cone which in our case has an opening angle of ∼ 45◦. Most of these muons
are ejected at energies of a few keV since angular scattering increases with decreasing
kinetic energy, but a few muons leave the trap at much higher energies of a few hundreds
keV. The choice of the metalized Formvar foil was motivated not only by mechanical
properties but also by its low–Z material composition (C, H, O and Ni) which leads to
a small probability for large angle scattering, and therefore to a relatively low number of
muons extracted at high energies.

A foil thickness of 20 µg/cm2 is expected to be the optimum. A thinner foil does
not sufficiently decelerate the muons during their lifetime, whereas thicker foils absorb
too many low–energy muons before they may be extracted. Simulations predict that a
stack of thinner foils kept at different potentials may lead to a better deceleration and
less absorption of the muons. Such a configuration was tested in 2002 but its operation
was unsuccessful due to plasma formation and hence discharge between the foils. Plasma
formation is caused by traps formed by the combined effect of electric and magnetic fields.

The number of muons extracted (and detected) as function of the foil HV is given in
Fig. 3.4. In the measuring period in 2003 only one foil was used in order to avoid plasma
formation. Special care was taken in the design of the mechanical assembly of electrodes,
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Figure 3.4: Number of “useful” extracted muons detected with the stack detectors (cf. §3.2) as
function of the HV (negative value) on the foil placed in the center of the CT trap. Each signal in
S1 in coincidence with a signal in S2 (with the correct time–of–flight delay corresponding to muon
which stop in the hydrogen gas target) is considered a muon. The efficiency of this muon detection
is approximately 35%. The measurements have been performed for a single foil of 20 µg/cm2

thickness.

insulators, and HV cables, to avoid plasma discharges in the CT. For a single foil of
20 µg/cm2 thickness, more than 800 s−1 muons have been measured to enter the target
with energy between 2− 6 keV through a 16× 6 mm2 collimator.

3.1.2 Muon extraction channel

The extracted low–energy muon beam is highly contaminated with keV energy electrons
(produced when charged particles spiraling in the CT cross the extraction foil), neutrons
(produced by pions hitting the CT walls), high energy electrons from muons decay and
muons with energies above 50 keV. Therefore a toroidal assembly of coils was constructed
(see Figs. 3.1 and 3.2) in order to transport the “good” muons with 20 − 40 keV energy
from a region of high radiation to the 5 T solenoid where the laser experiment is performed.
The toroidal MEC acts as momentum filter which has a high transmission for particles
with momenta around 2 MeV/c corresponding to muons with 20 keV energy. It is made
from 17 identical coils forming a toroidal magnetic field with 130◦ curvature and 1 m
curvature radius with an average magnetic induction of 0.15 T.

If the magnetic field is radially symmetric it can be shown that the spiral center of
a charged particle follows the magnetic field lines. Since the MEC magnetic field has a
“small” horizontal gradient (toroidal shape), charged particles follow only approximately
the magnetic lines. In our geometry the charged particles undergo a small vertical drift
(out of the plane in Fig. 3.1) relative to the magnetic field lines. Particles with different
momenta undergo different vertical drifts and thus momentum selection can be achieved
by placing collimators at the correct vertical positions. This vertical drift caused by the
gradient of the magnetic field in horizontal direction can be understood qualitatively as
being the consequence of different gyration radii a as the particle moves in and out of
regions of larger than average and smaller than average field strengths. Since a ∼ p⊥,
higher momentum particles having larger gyration radii probe regions which have a larger
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magnetic field differences relative to lower energy particles, and therefore undergo a more
pronounced vertical drift. Similarly since a ∼ 1/B a smaller magnetic field induces larger
vertical drifts. Monte Carlo simulations showed that 2 MeV/c particles undergo a maximal
vertical drift relative to the magnetic field lines of about ∼ 4.5 cm, whereas the high flux
of keV energy electrons (low momentum pe ∼ 0.14 MeV/c for 20 keV energy) have an
almost negligible vertical drift.

To keep the trajectory of the 2 MeV/c muons in a horizontal plane the 17 solenoids
producing the toroidal field are tilted by ∼ 4◦ from the vertical axis. The magnetic field
is kept at a relatively low level (0.15 T) for optimum filtering, i.e., to enhance the drift
of the particle. Consequently special care was taken to obtain adiabatic field gradients
in the transition zones between CT and MEC, and between MEC and 5 Tesla solenoid.
To guarantee adiabatic transport of the muons from the CT to the MEC two additional
solenoids of 0.45 T and 0.25 T respectively have been inserted as shown in Fig. 3.1. No
additional coils are required between the MEC and the 5 T solenoid which has no iron
return yoke, contrary to the CT.

In summary the MEC acts as a cleaning filter separating muons with the desired mo-
mentum from the high flux of gamma rays, neutrons, electrons and too energetic muons
which are present at the CT exit. Charged particles with momenta above 5 MeV/c (and
neutral particles) are not transported through the curvature, and electrons of few keV
energies are separated vertically from the muons by several cm in the toroidal field. Parti-
cles with about 2 MeV/c momentum are transported to the solenoid with 90% probability,
regardeless of their masses. The majority of the electrons exiting the CT have momenta
much higher than 2 MeV/c, e.g., the fraction of muon decay electrons with energies below
5 MeV is only 2× 10−3. The 90% transport probability from CT to 5 T solenoid does not
take into account muon decay. The corresponding muon time of flight is typically 1 µs.

A 1 m thick concrete block is inserted between the CT and the solenoid to absorb
neutrons originating in the CT which do not stop in the CT walls and could reach the
various detectors in the solenoid producing background (see Fig. 3.2).

3.1.3 The 5 T solenoid with the muon detector

The muon stop volume has to be kept as small as possible in order to match the re-
quirements of high laser–induced transition probability and large solid angle for the x-ray
detection. At a given gas density, the axial dimension of the stopping volume is deter-
mined by the muon energy distribution. In practice, the required muon energies have to
be a few keV. To have a small transverse dimension of the stopping volume the gas target
with x-ray detectors and cavity mirrors is mounted inside a superconducting solenoid (1 m
long, 20 cm bore hole, 5 T magnetic field). The 5 T magnetic field ensures a small beam
size since the particles follow the magnetic field lines and since their gyration radii are
reduced accordingly to Eq. (3.1). Additionally the high magnetic field guarantees that
the beam size defined by collimators (16 × 6 mm2) is kept constant along the following
beam path, in particular in the gas target where large angle scattering occurs. Before
entering the hydrogen target, muons are slightly compressed in phase space, decelerated
to 3− 6 keV, and detected to trigger the laser and the data acquisition system.

The apparatus mounted inside the solenoid is shown in Fig. 3.5. The muons first
cross a transmission detector (S1). It is a nontrivial task to detect keV energy muons
(which have a range of only ∼ 20 µg/cm2) without stopping them. The detector consists
of several rings defining a potential with an “uphill” and a “downhill” region for the
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Figure 3.5: Schematic view of the apparatus mounted inside the 5 T axial solenoid. The picture is
not to scale. The muons enter from the left and cross two stacks of ultra–thin carbon foils, S1 and
S2, which act together with PM1 and PM2 as two muon detectors. The ~E× ~B filter (shown in side
view) separates µ− from e−. The gas target is filled with 0.6 hPa hydrogen gas and it is separated
by the vacuum of the muon beam line by a 30 nm thick Formvar foil (F). The laser cavity mirrors
(shown in top view) are placed sideways of the muon stop volume. The 6 µm laser light enters
the vacuum vessel and the gas target and reaches the multipass mirror cavity (M1, M2) through a
hole in M1. The detector D3 detects muons which did not stop in the hydrogen gas. Two LAAPD
arrays are mounted above and below the muon stop volume (not shown in the picture).

negatively charged muons (see Fig. 3.6). Five of these rings are used as a support for
ultra–thin conducting carbon foils with 4 µg/cm2 thickness, the so called “stack of C-
foils”. These five rings are kept at typical high voltage of −12.5, −10.7, −8.9, −7.1
and −5.3 kV, respectively. The resulting axial electric field between foils accelerates the
charged particles. This acceleration partially compensates for the muon energy loss in the
foils, decreasing therefore the probability that a muon is absorbed in the (following) foils.

Moreover when muons cross the C-foils, secondary electrons are emitted and are accel-
erated by the stack electric field towards a downstream plastic scintillator connected with
an external photo multiplier tube (PM1) via a long Lucite light–guide (Fig. 3.5). Between
stack and scintillator an E ×B filter induces a velocity dependent transverse drift. The
drift velocity

vD =
E

B
(3.7)

leads to a drift of

xD =
E

B

l

v‖
(3.8)

where l = 29 cm is the axial length of the electric field, and v‖ the axial speed of the
charged particle. The electric field is produced by a 29 cm long plate capacitor held at
−3 and +6 kV at a distance of 2 cm. Muons of about 8 keV energy exiting S1 are shifted
vertically by xD ' 8 mm, and therefore pass the scintillator. On the contrary the much
faster electrons released in the stack foils are not noticeably shifted by the electric field
(xD ' 0.6 mm) and therefore hit the scintillator producing a S1 signal. Note that the E×B

filter is acting as a mass filter for particles with the same momentum. The S1 foil stack
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Figure 3.6: Muon kinetic energy between the CT trap and the hydrogen gas target. The position
of the several foils is marked (blue lines) on the z-axis. On top are shown S1, E×B and S2. When
muons cross the 30 µg/cm2 foil in the center of the CT, they lose 20− 50 keV energy, depending
on energy and angle. From the CT center they undergo an axial acceleration which is sufficient for
extraction. In the magnetic field of the MEC the muon kinetic energy does not change. Similar
as in the CT, the increase of magnetic field experienced by the particles leaving the MEC and
entering in the 5 T solenoid does not change the total particles energies. However a conversion
of translational (axial) kinetic energy into energy of rotation (transverse) occurs. Since the first
foil of S1 is at a voltage of −12.5 kV, the muons loose 12.5 keV kinetic energy before reaching
the first carbon foil. The 4 µg/cm2 thickness (∼ 20 nm) of these foils causes an energy loss of
about 2.5 keV. The muons are then accelerated towards the remaining foils which are held at
progressively lower potentials (−10.7, −8.9, −7.1, −5.3 kV respectively). Further downstream the
muons enter into a region of transverse electric field produced by two parallel plates held at +6
and −3 kV, respectively. Muons traveling in the central plane between the two plates experience
an increase of potential of +1.5 kV. Before being stopped in the hydrogen gas target the muons
cross the S2–foil and the 4 µg/cm2 target window (Formvar (F)). In the target they progressively
loose energy with an average stopping power of 2 × 10−15 eV cm2/atom. Some muons reach the
gold surface at the target end which partially acts as a reflector.

acts simultaneously as a detector for keV–muons, reduces the muon energy (energy loss
in foils) and reduces the phase space volume of the muon beam by frictional cooling [49].

Further downstream the muon crosses a second stack (S2) with only one C-foil, placed
in front of the target (see Figs. 3.5 and 3.8). The released secondary electrons are ac-
celerated upstream (anti–parallel to the muon beam) and detected by another plastic–
scintillator assembly, providing a second muon signal S2.

Muon detection efficiencies of 88% and 42% are measured for the first and the second
stack, respectively. This difference is given by the different number of carbon foils and
the different muon kinetic energies. The stack detectors have time resolutions better than
10 ns.

Muons leaving the second stack cross the target window (F) which separates the vac-
uum from 0.6 hPa of hydrogen. At the end of the gas target a LYSO (Lutetium Yt-
trium Orthosilicate doped with Cerium) scintillator read out with a photomultiplier (D3

in Fig. 3.5), is installed as anti–detector for muons which do not stop in the gas (cf. §3.2.3).
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The evolution of the muon kinetic energy from the CT until it is stopped in the hydrogen
gas target is plotted in Fig. 3.6.

If a muon induces a signal in both S1 and S2 detectors with the correct time delay
(TOF corresponding to axial kinetic energies of muons which efficiently stop in our target),
there is a “good” muon entering the target. If in addition, no signal is detected in D3,
the muon is accepted and a trigger for the pulsed laser and the data acquisition system
is delivered. Hence these S1·S2 · D̄3 signals, properly anti–gated by the laser dead time,
provide an electronic trigger signal for the laser.

The rate of muons detected as S1·S2 coincidence within a TOF–interval corresponding
to kinetic energies of 3−6 keV, is 320 s−1. It drops to 240 s−1 when the D3 anti–coincidence
is active. In summary a muon stopping rate of 70 s−1 is achieved for a hydrogen gas
pressure of 0.6 hPa, in a stop volume of 5 × 15 × 194 mm3, with a muon energy in front
of the target window of 3 − 6 keV. The difference between the S1·S2 · D̄3 signal rate and
the muon stopping rate has several reasons: muon stop in the S2 foil or entrance window,
muon decay before muon stop, and inefficiency of the D3 detector.

3.2 Gas target

The hydrogen gas target with the 2 keV x-ray detectors and the multipass cavity for the
laser light is located inside the PSC solenoid which is kept under vacuum. A schematic
view of the target assembly is shown in Fig. 3.7. Muons with a few keV energy cross
the entrance window (19 × 8 mm2), a thin foil of 4 µg/cm2 supported by gold–plated
tungsten wires (15 µm diameter, 0.4 mm spacing), separating 0.6 hPa of hydrogen gas
from the vacuum of the muon beam line. They stop in a volume of 5 × 15 × 194 mm3

which is elongated in direction of the muon beam because of the low hydrogen pressure.
Two rows of 10 LAAPDs (13.5× 13.5 mm2 active area each) as detectors for 2 keV x rays
are mounted at the top and bottom side of the muon stopping volume, and two mirrors at
the left and right side to enhance the laser light intensity for the 2S − 2P transition. The
laser light illuminates the stop volume transversely, because it is not possible to mount
laser mirrors on the muon beam axis. The vertical dimension of the laser mirrors is made
as small as possible since the x-ray detectors have to be positioned as close as possible to
the muon beam to enhance solid angle. A mirror height of 12 mm turned out to be large
enough to illuminate a 7 mm high volume, and the LAAPDs are at a distance of 8 mm
from the muon beam axis. In front of the LAAPDs 2 µm thick polypropylene foils are

LAAPD

LAAPD

µ− M2M1

LAAPDs

LAAPDs

220 mm

D3µ−

F
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Figure 3.7: (Left): Schematic view of the target for a plane perpendicular to the muon beam axis.
(Right): Schematic view of the target for a vertical plane containing the muon beam axis. Cyan:
muon stopping volume, Red: electron paddles, Black: LAAPDs, Blue: entrance (Formvar, F) and
LAAPDs (polypropylene) windows, Dark red: D3 detector, Gold: M1, M2 laser cavity mirrors.
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installed as vacuum windows with a good transparency (∼ 94%) for 2 keV photons.

Laser light enters the target via a CaF2 window. It is then focused by an off–axis
parabolic mirror into a small hole of 0.6 mm diameter in one of the cavity mirrors. The light
then spreads out between the two mirrors, illuminating the muon stop volume. Fig. 3.8
shows the target chamber (opened) used in the 2002 beam time (with only 6 LAAPDs per
side).

3.2.1 Detectors for the 1.9 keV energy x rays: the LAAPDs

Our experiment requires the detection of laser–induced 1.9 keV x rays of the muonic
hydrogen Kα transition. There are several critical constraints restricting the possible
choice for the x-ray detector. The x-ray detector has to be compact (the whole target
assembly with cavity mirror and detectors has to fit in the 20 cm diameter bore hole of
the 5 T solenoid) and has to be insensitive to the strong magnetic field. It has to reach
an energy resolution of 30% and a time resolution below 50 ns for 1.9 keV photon energy
in order to keep the background at a low level. Due to the low signal rate, the solid angle
for x rays has to be maximized, i.e., the detector has to have a large area and has to be
mounted as near as possible to the volume where the muonic hydrogen atoms are formed.
Additionally the detector is mounted in vacuum and in an environment with a rather high

µ− Parabolic mirror

Muon entrance 

carbon foils
Stack 2

(25 nm)

Cavity mirror

6   m laserµ

window (30 nm) LAAPD

Figure 3.8: Picture of the open target for the beam time 2002. Muons stop between the mirrors of
the laser cavity (golden surface) which are 190 mm long. A laser pulse is reflected and focused by
the parabolic mirror, and is injected into the multipass cavity via a hole in one of the mirrors. The
light homogeneously spreads out between the two mirrors. The laser–induced events are detected
by the LAAPDs (black round spots). In the beam time 2003 we have replaced the 12 round shaped
LAAPDs [50] with 20 square shaped LAAPDs [51] to enhance solid angle for x-ray detection.
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Figure 3.9: Schematic view of an LAAPD with its electric field distribution. X rays absorbed in
the first protective layer of the LAAPD (SiO2) do not give any signal. Only x rays absorbed in
region (B) can undergo a full gain amplification. For x rays absorbed in region (A) a fraction of
the generated primary charge is lost before the multiplication region is reached, whereas x rays
absorbed within the amplification region (C) undergo only partially the multiplication process.
Eth is the threshold electric field above which charge amplification occurs.

level of neutron–induced radiative processes as well es electromagnetic and acoustic noise.
Large area avalanche photodiodes (LAAPDs) have been chosen as x-ray detectors [52–56].

LAAPDs are silicon photodiodes (p-n junctions) with internal gain. This gain (< 103)
is obtained applying a high reverse bias voltage to the photodiode, which establishes an
intense electric field inside the LAAPD. Figure 3.9 represents schematically a LAAPD
section and the electric field inside the photodiode. Electron–hole pairs are produced by
the impinging radiation (light, x rays, charged particles). The number of those pairs scales
linearly with the energy of the absorbed particle. The primary electrons are accelerated
by the electric field. The energy reached by the accelerated electrons in the p-n junction
is sufficient to ionize silicon atoms, producing new electron–hole pairs. The produced
secondary electrons are also accelerated by the field, producing an avalanche process which
is then collected at the cathode.

The active zone can be divided into three different regions (see Fig. 3.9), with different
time and amplitude responses to the absorbed x ray. X rays absorbed in the drift region
(A) produce electrons that drift slowly towards the depletion region (B) due to the weak
electric field. When those electrons reach the depletion region they are quickly conducted
to the multiplication region (C) where the amplification occurs. Due to the slow drift
in the drifting region electrons may be captured. The possible electron capture causes a
decrease of the pulse amplitude. If the x rays are absorbed in the depletion region (B), the
produced electrons rapidly move towards the multiplication region where they undergo an
amplification equal to the photodiode gain. The amplitude of this pulses follow a Gaussian
distribution. X rays absorbed in the multiplication region (C) produce electrons that will
be only partially amplified. The amplitude of these pulses varies continuously down to
zero. The signal arising for an x ray which is absorbed behind the multiplication region is
given only by the primary generate charge. X rays of a few hundred keV energy absorbed
in this region (with very low probability) may generate pulses similar to a 2 keV x ray
undergoing an amplification process.

X rays may be absorbed in any of the three regions giving rise to an energy spectrum
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Figure 3.10: Measured energy spectrum when the LAAPD is irradiated by a 55Fe source (5.9 keV).
The peak arises from x rays absorbed in region (B) whereas the tail originates from zone (A) and
mainly (C). On the right side there is a peak which arises from a pulse generator. To its width
contributes only the electronic noise (mainly preamplifier) but not any physical processes in the
LAAPD.

(amplitude distribution) as shown in Fig. 3.10 for a measurement of the 5.9 keV energy
transition of an iron source. The tail in the lower energy side is associated with pulses
originated in zone (A) and (C). This tail to lower energy represents a source of background
for our experiment. In fact any particle with energy higher than 2 keV may induce a signal
in the LAAPDs which fake a 2 keV particle. As will be seen later background processes
are given by µC lines with energy between 5 to 90 keV (see Table H.1). Since the LAAPDs
thickness that is useful for x-ray detection is only a few tens of micrometers, their detection
efficiency decreases rapidly for x-ray energies above 5 keV (see Fig. 5.10). X rays with
energies above 5 keV are predominately absorbed in region (C) since it is the thicker region
and therefore they shows a large tail in the 2 keV region.

The dark current of the LAAPD–preamplifier system limits the achieved detector en-
ergy resolution and the “minimum detectable energy”. Dark current results mainly from
the thermal generation of electron–hole pairs in the LAAPD and in the FET (field ef-
fect transistor) at the preamplifier input, and therefore the dark current is strongly re-
duced with decreasing temperature of the detector and the preamplifier. Additionally
the LAAPDs gain strongly increases with decreasing temperature since the resistivity of
crystalline silicon decreases with decreasing temperature. We have therefore cooled and
stabilized (±0.1 K) the whole LAAPD–preamplifier system to −30◦C by circulating cold
ethanol through a small heat exchanger which was in thermal contact with the LAAPD
mount.

At low gain values the energy resolution improves with increasing gain, up to a gain
around 200 where the optimum is obtained for the 5.9 keV x rays. Higher gain increases
the effect of spatial non–uniformity of the LAAPD gain and also the dark current. However
we have operated our LAAPDs at gains of 200 − 400 to ensure that the amplitude of the
1.9 keV x ray signal is sufficiently above the noise level without worsening the resolution.
The resolution (FWHM) obtained for 5.9 keV x rays was 11% for the best LAAPDs and
15% on average, whereas for the µp Kα x rays the measured average value was of 32% [52]
(cf. §5.3). The above results are obtained with RMD LAAPDs [51]. At the preamplifier’s
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output, the height of a 1.9 keV x–ray signal is about 2 mV. The signal rise time was of
the order of 100 ns. After further amplification the signals were sent from the beam line
region to the counting room (40 m distance) and stored in an 8 bit wave–form digitizer
(“Flash ADC”, FADC), operated at 140 MHz.

3.2.2 Electron detectors

About 0.5 laser–induced events per hour are expected on resonance (cf. §6.5). As only a
small fraction of the triggers can result in a 2S − 2P transition, the background has to
be kept very low. This is achieved by requiring the detection of the muon decay electron
(µ− → e−νµν̄e) after the detection of the 1.9 keV Kα x ray. The signature of the laser–
induced transition is given by the detection of a 2 keV x ray in the laser time window,
i.e., at times where the laser is illuminating the muonic atom. Requiring the detection of
a delayed electron (with respect to the x ray) ensures that the measured x ray signal is
correlated with a muonic atom deexcitation and reduces therefore the background in the
laser time window.

Four plastic scintillator plates (”electron paddles”, 250 × 60× 5 mm3) mounted in an
X-shape (see Fig. 3.7) are dedicated for this purpose. They are grouped in two pairs, each
one connected with a PMT via a Lucite light–guide. Muon decay electrons spiraling in the
magnetic field hit these scintillators and deposit up to MeV energy. Additionally also the
LAAPDs and the D3 detector contribute to the detection of the electrons giving a total
electron detection efficiency of 65.4% in a time interval 0.1 − 7.1 µs relative to the 2 keV
x-ray time [16].

3.2.3 Anti–coincidence detector

An anti–coincidence detector (D3) for muons entering the target but not stopping in the
hydrogen gas was implemented. For the trigger of the laser and data acquisition system,
additional to the S1·S2 coincidence, it is required that D3 does not detect any signal. Thus
the laser and the data acquisition system are triggered only for muons which have crossed
S1 and S2 but did not reach D3 (see Fig. 3.7). The implementation of D3 in the 2003 run
allowed us to lower the hydrogen gas pressure from 1.4 hPa (in 2002) to 0.6 hPa, at a
comparable event rate, since this rate is mainly limited by the laser repetition rate and
not by the muon stopping rate.

The B-field of the solenoid keeps the transverse muon beam size to the value given
by the collimator, and therefore muons not stopping in the gas target hit a small area at
the end of the target vessel. The D3 detector is made by a ∼ 0.12 µm thick layer of gold
evaporated on one side of a LYSO scintillator crystal (34 × 24 × 20 mm3). The opposite
side is glued on a Lucite light–guide which transports the scintillation light to a PMT.

When a muon impinges on the gold surface of the D3 detector, it is either captured by
the high–Z gold atoms, or it is back–scattered into the gas. If the muon is absorbed in the
gold, a muonic cascade immediately occurs which produces x rays from a few hundreds
keV to several MeV energy, and Auger–electrons of keV energy. The x rays in the hundred
keV region are optimally detected since they escape from the gold layer and are absorbed
(∼ 50% solid angle) in the scintillator. Part of the MeV energy x ray escape the LYSO
scintillator since the attenuation length of 1.15 cm at 511 keV is of the order of the crystal
dimension. The probability that a muon transfered to gold is detected is expected to be
close to unity.
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If the muon is not absorbed in gold it is back–scattered into the hydrogen gas. At
our conditions a reflection probability of about 60–80% was deduced from the data [16].
Therefore the anti–coincidence detector not only increases the trigger quality, i.e., the
fraction of muon stops per trigger, but due to its reflection property it increases also the
absolute number of muon stops.

A disadvantage of the anti–coincidence detector is that it introduces an additional
delay between µp formation and arrival time of the laser pulse. The trigger for the laser
being S1·S2 · D̄3, an additional delay of 200 ns relative to the S1·S2 coincidence has to be
introduced, corresponding to the maximum time required for a muon to travel from S2 to
D3.

3.2.4 Intermezzo about foils

Several types of foils have been used in our target and beam line; specifically the Formvar
foil in the CT, the carbon foils in the stack detectors, the Formvar foil of the target muon
entrance window, and the polypropylene and lithium foils in front of the LAAPDs.

– Polypropylene foil in front of the LAAPDs: These foils placed in front of the LAAPDs
separate the hydrogen gas target from the vacuum system. Their thickness is about
2 µm (200 µg/cm3). They also stop µp1S atoms drifting towards the detectors which
could produce a dangerous background.

If µp atoms strike the LAAPD material (Si), muon transfer from the proton to the
Si atoms occurs, and µSi is formed in a highly excited state. The following muonic
cascade would represent a dangerous source of background at the time where the
laser events are expected. Especially refilling of the possible K-electron vacancies
produces x rays of 1.74 keV energy (with 75% yield) which would fake laser–induced
Kα x rays.

Fortunately no muon transfer to Si but to C occurs, because the µp1S atoms hit
the polypropylene (∼ (CH2)n) windows in front of the LAAPDs. The related µC∗

deexcitation is also a source of background (cf. Chapter H). However it generates
much less background for three reasons. First, the yields for x rays with energies in
the 2 keV region are reduced due to Auger emission (see Table H.1). Second, the
Auger electrons emitted with energies from few keV to few tens of keV do not reach
the detector surface, since their gyration radius is < 0.1 mm, in the magnetic field,
whereas the distance foil–detector is ∼ 1 mm. Moreover, refilling of the K-vacancies
originate x rays of 0.28 keV energy which are not seen in the LAAPD.

The µp → µC transfer cross section is σexp
transfer = 3 × 10−19 cm2 for µp atoms with

2 eV kinetic energy [57]. This energy represents approximately the maximal kinetic
energy of the µp atoms hitting the foils at the time when the laser enters the mirror
cavity. Taking into account the angle and kinetic energy distributions of the µp
atoms imping on the foil surface and possible scattering processes, a foil of 3 µm
thickness is expected to absorb the majority of the µp.

– Li foils and radioactive coating of the enhancement cavity. We anticipate at this
point (cf. § 4.11) that the mirrors of the laser cavity (M1 and M2 in Fig. 3.7) have 26
layers of ZnSe and ThF4 as dielectric coating. The LAAPDs are therefore exposed to
α particles produced by Thorium decay if they were not protected by Li foils mounted
in front of the polypropylene windows. Figure 3.11 shows the energy spectrum of the
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Figure 3.11: Energy spectrum of the α particles emitted by the Th present in the dielectric coating
of the 6 µm cavity mirrors. The short vertical lines represent the expected energies of the α
particles. The energy loss of the α particles when crossing material is leading to this structure.
Those α particles which need to cross only one ZnSe layer cause the peaks numbered 1. ZnSe is
the outermost layer of the coating. The peaks No. 2 are caused by α particles which have to cross
two ZnSe and one ThF2 layer, and so on.

emitted alpha particles measured by a Germanium detector. The problem is that
α particles cause very large signals attributed to plasma discharge in the avalanche
region which led to instabilities in the LAAPDs operation. Two out of 12 API
LAAPDs [50] were even destroyed after a week of irradiation during the 2002–run.

To avoid the risk of LAAPD damage or slow deterioration, we shielded the LAAPDs
during the data taking in 2003 with a 175 µm thick lithium sheet. The lithium was
sandwiched between two 1 µm thick polypropylene foils in order to avoid oxidation
(when exposed to air during installation) and placed at the inner side of the window
foils. No chemical reaction of Li with (0.6 hPa) hydrogen gas was observed after
several weeks of operation.

The Li sheet turned out to be sufficiently thick to absorb the α particles. Unfortu-
nately Li also partially absorbs the Kα x rays. About 60% of the 1.9 keV x rays
are absorbed by the various layers which are placed in front of the LAAPDs (see
Fig. 5.10).

– Formvar foil in the CT, and target entrance window: The characteristic of these foils
is that they are very thin. They have been produced in our group by dissolving Form-
var (82% poly–vinyl–acetat, ∼C5O2H8) in 1,2–Dichlorethan, and by homogeneously
spreading this solution over a water surface [58]. The solvent immediately evaporates
and a thin foil is left on the water surface which can be carefully fished out. For the
CT, foils with 17 cm diameter and thicknesses down to about 10 µg/cm2 (∼ 80 nm)
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have been produced which have been made conductive by successive sputtering of
a 3 nm thick layer of nickel. The muon entrance window (19 × 8 mm2 surface) is
made by a Formvar foil (without any Ni layer) of 4 µg/cm2 (∼ 30 nm) thickness.
Windows foils with thickness down to 2 µg/cm2 have been produced.

3.3 Electronics of the data acquisition system

A brief overview of the ideas underlying the electronic system used for the data acquisition
of the µp Lamb shift experiment is given here. For a detailed description of the whole
system see Ref. [16].

– Event gate: If a muon crossing S1 generates a signal with amplitude above threshold
a S1G gate of 80 ns width is opened. Similarly if the muon causes a signal above
threshold in S2 a short pulse S2D (10 ns width) is generated. If S2D overlaps in
time with the S1G gate a coincidence signal T1 is generated. The width of the S1G
gate is given by the TOF interval for muons stopping with high probability in the
hydrogen gas. If the muon reaches D3 and generates a signal a 230 ns gate D3G
is opened. A coincidence between T1 (delayed by 200 ns) and the anti–D3G gate
produces the MUON–STOP signal. The delay of 200 ns corresponds to the maximal
time required for a muon leaving S2 to reach D3.

– Laser trigger: The MUON–STOP signal fires both excimer lasers under the condition
that they are ready. This condition is achieved by requiring the laser to be triggered
by the MUON–STOP signal in anti–coincidence with a 14 ms long gate generated
when the laser is fired. If this gate is on, it means that the laser is recovering from
the previous shot and is not yet ready to be triggered again. The excimer lasers
have been electrically decoupled from the electronics using two fast (5 ns reaction
time) opto–couplers to avoid large pick–up signals induced by the discharges of the
excimer lasers, traveling back from the excimer laser to the data acquisition system.

– Computer trigger: The MUON–STOP signal generates a 12 µs long “event gate”
(EVG). This gate defines the time window where signals from the various detectors
are considered. Each LAAPD signal is split into two: one is fed to a waveform
digitizer (WFD), and the other to a shaping amplifier (200 ns integration time)
followed by a discriminator. If the signal from an LAAPD exceeds the discriminator
threshold, corresponding to ∼ 1 keV x-ray energy pulses a gate is opened indicating
that this LAAPD contains data worth to be read out.

– Data reading and clearing: Reading of the data, i.e., transfer from the CAMAC
units to the computer, starts at the end of the EVG under the condition that at
least one LAAPD had a signal. MIDAS is used as data acquisition system [59].
Various ADCs, TDCs and WFDs record the signals from LAAPDs, electron and
laser detectors. The total read out time is up to a few ms, depending on the number
of WFDs which have shown a signal. At the end of the read–out process a clear
signal is sent to reset the ADCs and TDCs in order to accept a new trigger signal.
If no relevant signal is detected within the EVG a clear signal is immediately sent.
Resetting is achieved within 10 µs, i.e., it is much faster than data reading. In the
time between the S1 signal and the end of the reset process no other muon events
are accepted by the trigger electronic.
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Within the 14 ms laser dead time, on average three more muons are detected to enter the
apparatus. No laser trigger is generated in such cases, but an EVG is opened in order to
collect as many x-ray events as possible, including background, which can thus be studied
with 3− 4 times more statistics than for laser events alone.

Timing and amplitude information are required for all detectors, i.e., for the muon
detectors (S1, S2 and D3), the x ray detectors (LAAPDs), the electron detectors (electron
paddles, LAAPDs, D3), and various detectors monitoring the laser system. The LAAPDs
and two laser photo–detectors signals are recorded with WFDs. The use of WFDs offers
the possibility for an accurate and flexible offline analysis of the signals. The most relevant
times are recorded by TDCs and PTDCs (Pipeline TDC). While TDCs can record only
the first signal within an EVG, the PTDCs we used were able to record up to 16 signals
within one EVG. The PTDCs are crucial for the detection of so called second muons which
enter the apparatus within the EVG triggered by a so called first muon (cf. §5.4).



Chapter 4

The laser system

In this Chapter the laser system that fulfills the requirements of our experiment is de-
scribed [60]. A multistage laser system has been developed which provides 0.2 mJ pulse
energy tunable at 6 µm wavelength. The laser is triggered at a maximum 60 s−1 repetition
rate by muons entering the apparatus at random times. A new type of multipass cavity
has been developed to provide a homogeneously illuminated volume (7× 25× 170 mm3).

The requirements on the laser system are summarized in Table 4.1. The most stringent
requirement is a short delay between laser trigger and output 6 µm pulse. The laser has
to be triggerable upon muon entry to the apparatus (rate of 240 s−1) in a stochastic way,
with a short delay . 1.5µs (due to the 1.3 µs lifetime of the 2S state at 0.6 hPa pressure),
and has to have the shortest achievable dead time between two shots. A determination of
the 2S− 2P line position with 30 ppm uncertainty corresponds to an accuracy of 1.5 GHz
for the laser frequency. The laser bandwidth has to be small compared to the natural
linewidth of 18.6 GHz and the required tunability of ∼ 250 GHz is determined by the
uncertainty of the rms proton charge radius.

Muonic hydrogen has a reduced mass 186 times that of normal hydrogen causing
oscillator strengths 1/(186)3 times weaker than the corresponding ones in hydrogen. The
energy density required to saturate the 2S−2P transition is 16.5 mJ/cm2 (cf. Appendix E).
This fluence has to be obtained in the atom–laser interaction volume of 17× 7× 170mm3.
This is achieved if the 6 µm laser system provides pulses with ∼0.2 mJ energy. Reliability
of the whole system during the measuring time of about 200 hours during the beam time
period of few weeks is essential.

For reasons we will discuss below we developed a laser system whose main components

Table 4.1: Requirements on the laser system for the muonic hydrogen 2S − 2P Lamb shift mea-
surement.

Requirements Comments

Frequency 50 THz Corresponding to λ = 6µm
Bandwidth < 2 GHz Γ2S−2P = 18.6 GHz (FWHM)
Tunability 250 GHz Large rp uncertainty
Energy/pulse & 0.2 mJ Illuminated volume 25× 7× 170mm3

Triggerability Stochastic µ−p formation time is random
Repetition rate 100 s−1 100 s−1 results in 1 event/hour
Delay . 1.5µs 1.3µs lifetime of the 2S state
Reliability 108 shots Many days with 100 s−1 shots

35
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are shown in Fig. 4.1. Two high power XeCl excimer lasers provide the pumping energy
(320 mJ each) for the whole system. Their pulses have a 1.2 µs delay relative to the
trigger signal. No other laser with such a short delay and large pulse energy is commer-
cially available. Each excimer pumps a two–stage multimode nontunable dye laser which
converts the 308 nm excimer laser pulses to 47 mJ pulses at 540 nm. They in turn pump
an injection–seeded oscillator–amplifier titanium sapphire (Ti:Sa) laser system which de-
livers 12 mJ at 708 nm. The wavelength tunability and bandwidth of the Ti:Sa oscillator,
and therefore of the subsequent amplifier and 6 µm light, are controlled by a single–mode
cw–Ti:Sa laser stabilized on a calibrated Fabry–Perot (FP) cavity.

Wavelength conversion from the visible to the infrared is made by a third–Stokes
Raman shifter operated with 14 bar H2 gas. For our conditions, efficient Raman conversion
needs the TEM00 mode and pulse length less than 10 ns, which is obtainable with a short
cavity length Ti:Sa oscillator. The third–Stokes Raman shifter converts the wavelength
from 708 nm to the 6 µm region yielding a pulse energy of 0.2 mJ.

The infrared light is transported over a 12 m long path to the mirror cavity surrounding
the muon stop volume. Two mirrors located on the left and right side of the muon stop
volume form a nonresonant 6 µm multipass cavity. One of the mirrors has a hole of
0.6 mm diameter where the laser light is focused and enters the cavity. The light then is
reflected back and forth between the two mirrors, and spreads out almost homogeneously
illuminating the whole muon stop volume. The part of the confined light which is reflected
back at the hole position escapes from the multipass cavity and is detected by a fast
infrared photo–detector. This provides a diagnostics for the light circulation inside the
multipass cavity.

This laser scheme was developed since in the 6 µm region, there exist no commercially
available tunable and rapidly triggerable lasers which provide sufficient energy. However,
a tunable 6 µm laser can be realized by using a tunable laser in the visible region (e.g.,
Ti:Sa) pumped by a high–power laser. Its wavelength can then be converted (frequency
mixing, OPO, Raman) to 6 µm. Stochastic triggering and short delay excludes the use
of a standard high–power low–repetition–rate (< 100 Hz) Nd:YAG laser as they require
around 100 ms for inversion buildup. Continuously pumped Q–switched YAG lasers can
possibly provide the necessary pulses but available commercial models have too low pulse
energy and too long delay times (2 µs) due to the use of AOM switching and low gain
per pass. Hence we decided to use excimer lasers which can be triggered within 1 µs and
provide sufficient energy to fulfill our requirements. For efficient down–conversion to the
6 µm wavelength, we used a H2 Raman cell with low threshold and high efficiency. Possible
alternative schemes could be constructed using an OPO–based HgGaS2 crystal [61] or by
frequency mixing methods [62] but the reliability at relatively high repetition rates has
not yet been demonstrated.

4.1 Excimer lasers

The most restrictive requirement on the laser system is the short delay between muon
arrival and laser pulse. Two commercial Lambda Physik series LPX200 XeCl excimer
lasers [63] are used.

The active medium of these lasers is a diatomic excited molecule termed excimer (in our
case XeCl∗). Since excimer molecules have a lifetime as short as a few nanoseconds they
require a fast excitation mechanism. The excitation process is provided by a fast electric
discharge applied to a gas mixture that in our case is made of Xe (60 hPa), HCl (80 hPa)
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Figure 4.2: Principle arrangement of the main components of the LPX200 excimer laser. VDR:
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and Ne (2900 hPa). These diatomic molecules are bound only in excited states, while
their ground state is repulsive, implying high gain and high energy capability. Because of
these characteristics, excimer–laser deliver high energy pulses with short delay relative to
the electronic trigger.

A schematic of the electrical discharge circuit of the LPX lasers is shown in Fig. 4.2. To
ensure adequate population of the excited state, about 1015 cm−3 electrons are required,
which corresponds to a current density of about 103 A/cm2. The discharge operates
therefore at very high peak currents and very short rise times.

Thyratrons are used as high voltage switches. The thyratron is basically a capacitor
filled with H2 gas with a grid between the electrodes (see Fig. 4.2). Its cathode is a con-
tinuous electron emitter. The electron emission rate is given by the cathode temperature
which is resistively warmed–up and controlled by an external voltage (T, in Fig. 4.2). A
small negative voltage of −200 V on the grid is sufficient to prevent the emitted electrons
to reach the anode. However a fast switch of this voltage to a positive value of the order of
600 V opens the way for the acceleration of the emitted electrons from the cathode to the
anode with formation of an avalanche in the H2 gas, and a discharge of the energy stored
in the thyratron. The avalanche formation depends also on the H2 gas pressure which is
controlled by a second voltage (P) acting on a gas reservoir.

The released thyratron current pulse is compressed in the saturable magnetic switch
inductance (MSC) and rapidly switched into the low impedance gas. Excimer discharges
have very low impedance (∼ 10−1Ω). The energy stored in the capacitors finds then its way
to ground via the gas discharge which terminates after approximately 30−50 ns. Large and
homogeneous cross–section of high voltage discharges require a start–up electron density
of 107 to 108 cm−3 which is provided by pre–ionization. For a LPX200 excimer laser the
gas volume used for the discharge is 25×10×1500 mm3, i.e., a pulse top–flat cross–section
of 25× 10 mm2.

To shorten the delay of the commercial laser three changes have been studied. First the
electronics providing the fast switch of the grid voltage from −200 to 600 V was modified.
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Its delay time was shortened from 230 to 120 ns. Second, the number of varistors (Voltage
Dependant Resistor VDR) between the thyratron grid and the ground have been reduced
by a factor 2. The grid voltage can therefore reach a higher positive value which leads
to an additional decrease of the thyratron switching time of about 200 ns (from 300
to 100 ns). Finally the MSC was removed and the resulting effects were studied on a
LPX300 excimer laser during the beam time 2002. The MSC switch is unidirectional and
blocks current reversal from the discharge which damages especially the thyratron. This
removal therefore had to be accompanied by a reduction of the bulk capacitance in order
to reduce the circuit mismatch, i.e., the current reversal. A decrease of the total delay
of about 600 ns with only a small (< 10%) output pulse energy decrease was obtained.
However some damages at the electrodes of the laser tube have been observed, which may
be explained by an incomplete compensation of the circuit mismatch. Therefore for the
beam time 2003 we have not undertaken any removal of the MSC inductance. In summary,
only the trigger electronics of the LPX200 excimer lasers was modified for the beam time
in 2003, and the resulting total internal delay was 1.2 µs.

Between consecutive pulses the active laser gas volume has to be exchanged totally to
avoid discharge instabilities. This is achieved by a high–flow gas circulating system. No
measurable energy variations were noticed between 10 and 100 Hz repetition rate. The
time necessary to recharge the laser capacitors is the limiting factor in the laser firing rate;
10 ms are required and during this time, termed “dead time”, the laser is inoperable.

The laser amplification in the discharging gas is very high (∼ 10% cm−1), leading
to saturation after only a few resonator round trips, which reduces the optical feedback
requirement. Simple uncoated CaF2 or MgF2 windows have been used as outcoupler.
Together with a high–reflector they formed a flat–flat 1.5 m long cavity. A laser pulse
width of about 30 ns has been measured, which is essentially given by the time necessary
to discharge the capacitors, due to the fast optical pulse buildup (high gain).

With each discharge a small amount of the halogen forms a stable metal–chloride
molecule. This leads to a reduction of the output pulse energy, which may be attributed
to a reduction of the number of lasing molecules, but also to the fact that these metallic
molecules stick to the laser optics causing absorption of the circulating laser beam. Gas
purifier and electrostatic filters are used to partially clean the gas mixture. During beam
time the gas mixture and the optics of the excimer laser needed to be changed once a
day. Special care was undertaken to prevent air to enter the laser head during window
exchange (fast change with laser head continuously flushed) since any contaminant may
be burnt on the laser electrodes causing its degradation. After every window exchange the
laser head was cleaned by purging the laser head with several bar of high purity helium
gas. Cleaning and passivation of the electrodes by firing the laser with 1 bar of He or a
mixture of HF (100 hPa) and He (2.5 bar) was undertaken when for some reason there
was a long beam break.

To avoid electrical pick–up caused by the fast electrical discharge, the excimer lasers
are enclosed in a double Faraday cage. The electrical noise (transported mainly by the
ground line) produces a pick–up signal in the LAAPDs exactly in the time interval where
the laser induced events are expected. To minimize this noise the discharge formation
was continuously kept at optimal conditions by replacing the excimer gas mixture and
by optimizing the thyratron cathode and H2 gas temperatures (P,T), or by replacing
the whole thyratron. The LAAPDs pick–up signal (which is superimposed on the laser
induced 2 keV signal) recorded in the FADCs was thus kept at a tolerable level, and could
be eliminated by a suitable subtraction procedure in the offline analysis.
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Summarizing two commercial Lambda Physik series LPX 200 XeCl excimer lasers are
used, each of which delivers 320 mJ output energy at 308 nm with a maximal repetition
rate of 100 Hz. The trigger electronics of the excimer lasers was modified to decrease
the internal delay to 1.2 µs. The time necessary to recharge the laser capacitor bulk is
10 ms, and during this dead time the laser is inoperable. When the laser is stochastically
triggered the dead time has to be enlarged to 14 ms to avoid intolerable energy and profile
fluctuations of the dye laser output pulse. A muon trigger rate of 240 s−1 and a laser dead
time of 14 ms results in an average laser repetition rate of 55 s−1 ' (1/240+0.014)−1 s−1.
This means that the laser is fired on average for every fourth detected muon which enters
the target.

4.2 Dye lasers

Each of the two excimer lasers pumps its own dye laser oscillator–amplifier system. The
oscillator is a 10 cm long linear flat–flat resonator. Each resonator has a T = 10% output–
coupler, an 8–element–Brewster–plate polarizer, and a Bethune dye cell. The Bethune
(prism) cell depicted in Fig. 4.3 allows homogeneous transverse pumping, yielding a nearly
Gaussian transverse profile [64]. The oscillator resonator length is made as short as possible
to maximize the time overlap between the oscillator pulse and the excimer pulse within
the dye amplifier cell. The dye laser oscillators are pumped with 12% of the available
excimer laser light and deliver 20 ns long pulses (see Fig. 4.8) with 5 mJ at 540 nm.
These pulses are then amplified to 45 mJ, leading to an optical–to–optical efficiency of
14%. Pulse to pulse energy fluctuations are about 10% and strongly depend on the time
between successive pulses (these typical values are measured with new dye solutions and
at a stochastic rate of 55 s−1).

In contrast to the oscillator, the amplifier cells are not Bethune cells, but are trans-
versely pumped from one side only, which results in a nonuniform illumination over the
cross section of the excited volume. The highest gain occurs right on the inner face of the
cuvette side, causing diffraction effects. A reduction of these effects and an enhancement
of the dye lifetime are accomplished by reducing the solvent viscosity, increasing the dye
solution flow, and decreasing the dye concentration. For the same reason, the output
energy and profile quality progressively decreases with increasing repetition rate. Several
dyes were tested which have an emission band that overlaps with the absorption band of

y

xz

Transverse cellBethune cell

Figure 4.3: Schematic view of the Bethune and transversely pumped dye cell. The excimer laser
pump pulse propagates along the x-axis. The Bethune cell is a prism with a hole (2.5 mm diameter,
4 cm long) in which the dye solution flows. Both dye laser light and dye flow propagate along the
z-axis. The hole position is chosen such that the excimer light pumps the dye solution almost
homogeneously. In the transverse cell used for the amplifiers the dye solution flows as indicated
by the arrow, whereas the dye laser light is emitted in z-direction. The excimer light pumps the
dye solution only from one side.
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Figure 4.4: (Left): Efficiencies and lifetimes of several dye solutions. The dye–laser efficiency is
plotted as function of the time when pumped by 308 nm light from an excimer. The dye–laser used
for this measurement is different from the laser used in our experiment. (Right): Comparison of
the Coumarin 153 lifetimes for different solvents: methanol, ethanol and propylene–carbonate, for
the laser used in the search for the resonance. The dye–laser was operated at 50 Hz with 390 mJ
pump energy (308 nm). When dissolved in propylene–carbonate the lifetime of Coumarin 153 is
reduced by almost a factor of three when compared to methanol or ethanol. The measurements
shown on the right can not be directly compared with those on the left since the setup is different.

Ti:Sa [65, 66]: Coumarin 102, pure and mixed with DABCO (a triplet quencher), pure
Coumarin 307, Coumarin 153 mixed with DABCO, and Rhodamine 6G, pure and mixed
with DABCO. We found that the combination of Coumarin 153 with DABCO has the
longest lifetime under the intense UV irradiation of our XeCl excimer lasers, and it was
therefore used. Some of the test results are shown in Fig. 4.4.

Propylene–carbonate, methanol, and ethanol were tested as dye solvents. Methanol
and ethanol show similar behavior and, when compared with propylene–carbonate, give
a factor of three longer dye lifetime and 20% more output energy at 50 Hz. Moreover,
at 50 Hz repetition rate, relative to 1 Hz, the output energy is decreased by about 30%
for propylene–carbonate and 15% for ethanol and methanol. A further factor of two
enhancement of the dye lifetime is achieved by dissolving the triplet quencher DABCO in
the dye solution. The dye–lasers used in the resonance experiment had 5.5 ` dye solution
each (Coumarin 153+DABCO+methanol) and showed an energy output decrease of 13% in
4 hours when operated at 50 Hz (Fig. 4.4). Methanol is used in the amplifier cells, whereas
the oscillators are operated with the more expensive ethanol solvent because methanol
produces a white coating on the Bethune cell tube. This layer, which dramatically reduces
the energy output, is strongly dependent on the surface quality of the tube walls, and does
not occur with ethanol. Methanol is used in the amplifier cells which have better surface
quality and do not exhibit this effect. The dye mixture of the oscillator consists of 0.8 g
Coumarin 153 and 1.6 g DABCO per liter of ethanol, whereas the amplifier mixture
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consists of 1.0 g dye with 2.0 g DABCO per liter of methanol.

During data taking the dye solutions were changed on average 2− 3 times a day, that
is about 30 ` of dye solution are used per day (15 hours of operation). As said above
the typical efficiency with new dye is about 14% whereas the dye was exchanged when its
efficiency was around 12%. The gas mixtures of the excimer lasers are exchanged once per
day, and the excimer laser optics are cleaned at the same time.

The output pulse energy was found to be independent on the polarization of the ex-
cimer laser light, which was achieved by using a polarization–dependent high–reflector
in the excimer laser. Naively thinking a pump beam polarized along the y-axis would be
preferable because the induced dipole moment radiates mainly in the z-direction. However
the polarization independent results show that there are collisional depolarization effects
in the dye solution on a sub–nanosecond time scale.

4.3 Continuous wave Ti:Sa laser

The wavelength of our 6 µm source is controlled by a continuous wave (cw) Ti:Sa laser
at 708 nm [67, 68]. Its amplifying medium is a Brewster–cut Ti:Sa crystal (15 mm long,
water cooled) which is pumped by 5 W of green light from a multi–lines Ar+ laser. At
708 nm an output power of 400 mW was routinely achieved. The laser is tunable from 690
to 750 nm. The lower wavelength limit is given by the spectral gain profile of the Ti:Sa
medium which peaks at 780 nm, whereas the maximal wavelength is presently given by
the reflectivity of the mirrors M3 −M5 (see Fig. 4.5). The laser is operated single–mode
using several wavelength selective elements. When the laser is locked and stabilized on
an external stable Fabry–Perot cavity (FP) the laser bandwidth is about 1 MHz. The
absolute frequency of the cw Ti:Sa laser has an uncertainty of 100 MHz which is given by
the uncertainty related to the calibration of this FP (cf. §4.9). This uncertainty is smaller
than needed for the 2S − 2P experiment, and no attempt was made to improve the FP
calibration.

The cavity is formed by 2 curved (M1, M2) and four flat mirrors (M3 −M6). The
spherical mirrors of 15 cm curvature radius are placed near the Ti:Sa crystal. M1 is
dichroic (maximal reflectivity for 690 − 820 nm and maximal transmission for the pump
beam) allowing the pump beam to be precisely overlapped with the red beam inside the
Ti:Sa crystal. The incidence angle on M1 and M2 is chosen in order to compensate the
astigmatism originated by the Brewster–cut Ti:Sa crystal.

The principle of the selection of the direction of lasing inside the ring cavity is the
following. A Faraday rotator (birefringent plate in magnetic field) is placed inside the
cavity. It induces a rotation of the laser polarization by an angle Θ which depends only on
the direction of the magnetic field. The polarization is therefore rotated independently of
the direction of lasing of the beam in the laser cavity. Except between M4−M5−M6, the
beam path is in the horizontal plane. The mirror M5 is placed above this plane. Hence
the system of mirrors M4 −M6 induce a polarization rotation of ±Θ depending on the
way of rotation of the circulating light inside the laser cavity. For one way of rotation
therefore the system of mirrors compensates the effect of the Faraday rotator, whereas for
the other way the polarization is rotated by 2Θ per round trip. Since the laser is equipped
with several Brewster–cut plates only one way of rotation is then selected.
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4.3.1 Wavelength control

We will describe the wavelength selective elements in the order of increasing selectivity.
The Lyot filter which is composed of three birefringent plates with different thicknesses,
has a spectral selectivity of about 0.4 nm. It is placed close to Brewster–angle and can be
rotated by a servo motor.

A thin silicon plate (thin etalon) of 0.7 mm thickness is acting as a two–wave inter-
ference filter with a free spectral range of about 150 GHz. The horizontal incidence angle
between the laser beam and the plate is also controlled by a servo motor. A rotation of
this plate relative to the direction of the laser beam causes a change of the apparent plate
thickness, leading to a different wavelength selection.

The thick etalon is made of two prisms with an air gap of 8 mm, corresponding to
a free spectral range of 19 GHz. The prism surfaces forming a Fabry–Perot cavity have
been made reflective with a reflectivity of about 30% whereas the other planes are almost
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at Brewster–angle. A piezo–electric transducer (PZT) connected to one of the prisms is
used to change the prism spacing leading to a frequency sweep of about 400 GHz.

Finally the cavity length can be changed using two Galvo driven tilt plates of 10 mm
thickness inserted close to the Brewster angle, and moved by a motor in a symmetrical
way. The 1.6 m cavity length corresponds to cavity modes of about 200 MHz spacing.
This length can be stabilized by a PZT element mounted on the cavity mirror M4.

4.3.2 Frequency stabilization

The laser is made mono–mode with the thick etalon locked on the cavity mode which gives
the maximal output power. The prism mounted spacing is modulated at a frequency of
2.2 kHz. This causes an intensity modulation of the laser output which is detected by a
photodiode and used to lock the prisms spacing to maximum output power. The laser
can then be tuned while remaining on the selected cavity mode. The frequency stability
is achieved by locking the laser cavity length on a stable external FP cavity (cf. §4.9).
This cavity has a free spectral range (FSR) of 1.56 GHz and the finesse of 310. Thus the
corresponding FP fringe linewidth is about 5 MHz. The laser cavity length is modulated at
100 kHz by a cavity mirror (M4) mounted on a PZT element. The laser light transmitted
through the external FP cavity is detected. Again a lock–in system is used to produce the
dispersion shape and to maintain the cw–Ti:Sa laser resonant with the FP interferometer.
As previously anticipated the resulting laser bandwidth is estimated to be 1 MHz.

Both thin etalon and Lyot filter are equipped with motors. To continuously tune the
laser on a large range without mode hopping it is necessary to lock also the Lyot filter and
the thin etalon. The principle of this lock–in is to compare two intensities detected with
photodiodes. For example the reflection of the laser beam circulating in the cavity from
the slightly tilted thin etalon is used to lock the thin etalon. The reflected intensity is
locked on a side of the cosine–shaped fringe (close to the minimum) by comparing it with
a reference intensity. The difference between the two signals is kept to zero by adjusting
the angle of the plate with the motor.

When the Lyot filter is tuned a small rotation of the output laser polarization is
induced. Therefore the difference signal for the Lyot filter lock–in loop is obtained from a
polarization analysis of the Ti:Sa laser output.

When the cavity length is changed with the motorized Galvo plates, with all other
elements locked, a tuning range of more than 250 GHz without mode jumps was routinely
reached also in the noisy environment of our laser hut. This feature is not mandatory
for the search for the 2S − 2P resonance since it is searched by locking the cw–laser on
the external FP transmission fringes. However it is used to calibrate the FP at 708 nm
by recording simultaneously a large iodine absorption spectrum and a FP transmission
spectrum.

4.4 Pulsed Ti:Sa oscillator and amplifier

4.4.1 Oscillator

The resonator arrangement of the pulsed Ti:Sa oscillator is presented in Fig. 4.6. The
design maximizes the output pulse energy, minimizing the output pulse duration. The
short optical resonator length of 7 cm results in a short output delay (56 ns) relative to
the pump pulse, and creates a short pulse length (7 ns). The Brewster–cut Ti:Sa crystal
(15 mm length, α = 1.8cm−1, with a figure of merit > 300 [69]) is placed in a flat–concave
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Figure 4.6: Pulsed Ti:Sa oscillator. HR: High reflector: PZT, Piezoelectric element, D1 and D2:
photodiodes.

(4 m radius of curvature) stable resonator. At 708 nm, the gain in the Ti:Sa crystal is
half that of the maximum [66], so that an equilateral flint prism, inserted at minimum
deviation angle, is needed to force the oscillation at 708 nm. The oscillator frequency is
precisely controlled by injection seeding from the above described cw Ti:Sa laser.

At a stochastic rate of 55 s−1, the Ti:Sa oscillator delivers 1.2 mJ per pulse at 708 nm
when pumped with 15 mJ from one dye laser (cf. §7.1 for a YAG laser as pump laser).
Between 10 s−1 and 60 s−1 a 20% decrease in pulse energy at 708 nm is observed that
can be attributed to a deterioration of the dye laser beam quality. The beam energy and
profile of the 540 nm pump laser deteriorates as the delay time between pulses shortens.

4.4.2 Injection seeding

Injection–seeding is chosen for wavelength selection and tuning of the pulsed oscillator.
The simplicity and precision of the cw–laser frequency control is directly transferred to the
pulsed oscillator. Beside the prism no other wavelength selective elements are needed in
the oscillator which minimizes optical losses within the resonator, maximizing the output
energy.

The 708 nm cw–light is resonantly coupled into the oscillator cavity via reflection on
the prism surface (see Fig. 4.6). Light incident on the prism at the minimum deviation
angle αmin = 53.72◦ (αBrewster = 58.19◦) is partially reflected towards the high reflector
(HR). The low coupling efficiency (0.23%) requires a large cw power of 300 mW, but has
the advantage that there is only weak optical feedback (cw and pulsed) to the cw–cavity.
Because of its unidirectional ring cavity geometry, the cw–Ti:Sa laser is highly insensitive
to any feedback, but a Conoptic 713 Faraday isolator (see Fig. 4.1) is used to further
reduce feedback, mainly because of the wavemeter.

The cavity length of the pulsed 708 nm oscillator is servo–locked to the cw–laser
frequency. This is achieved by modulating the cavity length at 78 kHz and detecting
the transmitted intensity with D1. The lock–in system stabilizes the cavity length to
have maximum transmission. Proper operation of the injection seeding is monitored by
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Figure 4.7: Oscillator output pulse when the oscillator is properly seeded. The signature of proper
injection seeding is the appearance of a double peak structure. The relative amplitude of the two
pulses depend on the alignment. The first pulse originates from injection–seeding photons, whereas
the second pulse originates from noise photons in the oscillator crystal.

observing the temporal profile of the pulse on the fast photodiode D2 as shown in Fig. 4.7
and monitoring the oscillator pulse wavelength with a spectrometer. A double pulse
structure appears when the oscillator is properly injected. The first pulse originates from
the photons which were circulating inside the oscillator cavity before the pump pulse
produces population inversion in the gain medium. Thus the first pulse is present only
when the oscillator is properly seeded. The second pulse has its origin from spatial hole
burning and different transverse mode distributions between pumping and injection–seeded
lasing. This second pulse is not affecting the amplification process of the first pulse (in
the Ti:Sa amplifier) because it is entering the Ti:Sa amplifier only when the first pulse
has already finished the last pass. The population inversion left by the first pulse when
the second one enters the amplifier is not sufficient for amplification. Therefore this
second pulse, which wavelength is not well defined, is not above the Raman threshold, and
therefore does not reach the 6 µm cavity.

4.4.3 Chirp in the Ti:Sa oscillator

As will be further discussed in §4.8 the calibration of the whole laser system is performed
directly at 6 µm. However this occurs only a few times during data taking. In between,
the frequency of our laser source is controlled by the cw Ti:Sa laser at 708 nm with the
help of a calibrated FP. The frequency of the cw Ti:Sa laser and the frequency of the 6 µm
pulse are related by

νcw −K = ν6 µm (4.1)

The constant K is mainly given by three times the Stokes shift. A small contribution to
this constant is also given by chirping effects in the Ti:Sa oscillator and amplifier during
the pulse formation. For our experiment it is essential that K does not vary in time
and does not depend on frequency since we can determine K only during some special
calibration runs. A variation of K caused by a variation of the chirping effect will thus
lead to a small error in the determination of the output frequency at 6 µm. The chirp
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occurring in the Ti:Sa oscillator is studied in order to determine the size of this frequency
shift variation.

Ideally, the oscillator frequency should be equal to that of the seed cw laser and its
bandwidth given by the Fourier transform of its pulse length. However, some frequency
shift and additional broadening occur due to time dependent changes in the Ti:Sa crystal
refractive index caused by optical and thermal effects during the pulsed pumping and
the lasing process [70]. We developed a simple model to describe the frequency changes
during the pulse formation.

The frequency is defined as the time derivative of the phase Φ of the electromagnetic
field

ν(z, t) = − 1

2π

dΦ

dt
= − 1

2π

d

dt
(kz − ωt) (4.2)

where k is the wave vector and ω the angular frequency. When a laser beam traveling in
z-direction in a medium extending from z0 to z1 experiences a time-dependent refractive
index n, its instantaneous frequency ν at z (z0 < z < z1) is [71]

ν(z, t) = ν(z0, t0)−
1

λ
(z − z0)

dn

dt
, (4.3)

where λ is the wavelength inside the medium. The frequency shift ∆ν per round trip
experienced by a wave traveling inside the oscillator cavity is given by Eq. (4.3) [71]:

∆ν = −2Lc

λ

∆n

∆t
(4.4)

where ∆n is the refractive index change in ∆t and Lc the crystal length. Note that the
variation of the refractive index in time occurs only in the Ti:Sa crystal, and that the
variation of the crystal length due to thermal expansion can be neglected in the ns time
scale of the pulse formation.

There are two sources causing a change of refractive index during the pulse buildup:
one related to the excited population density N exc and the other one related to the crystal
temperature T , both of which vary during the pulse formation. The pumping and lasing
processes dynamically affect the population inversion, inducing a change of the refractive
index which is [72]1

∆nopt = Copt N exc with Copt = (1.4± 0.6) × 10−24 cm3 . (4.5)

This has to be attributed to the susceptibility difference between the excited and ground
state of the Ti3+ ions. In addition, there is an increase of the crystal temperature ∆T
during pumping (phonon relaxation between excited states) and lasing (phonon relaxation
to the ground state). The resulting T -induced change in refractive index can be calculated
using ∆ntherm = (dn/dT )∆T with dn/dT = 12.6× 10−6 K−1 [69].

Knowing the rates of absorbed and emitted photons during the pulse formation is
possible to calculate the change of population inversion and the heat deposited in the
crystal. Therefore the pulse formation inside the cavity was simulated and compared with
measurements in order to trace the rate of absorbed (pump) and emitted (oscillator output
pulse) photons.

1The C value given in Ref. [72] takes into account not only the purely optical change of refraction index,
but also the thermal contribution by lasing. Associated with each photon emitted from the excited state
there is a relaxation phonon in the ground state. From Fig. 2 of the cited article, the thermal component
can be extracted and subtracted from the value C = (1.1 ± 0.5) × 10−24 cm3 to give the purely optical
component Copt = (1.4 ± 0.6) × 10−24 cm3.
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Figure 4.8: Time distributions of measured and simulated pulse intensities and frequency shift for
the Ti:Sa oscillator. (Top): Measured pump pulse intensity (A), measured output pulse intensity
(B), and simulated output pulse intensity (C). (Bottom): Simulated oscillator frequency shift
versus time caused by the thermal effect (D), optical effect (E), and the sum (F).

The elementary rate equations for the number of photons m(t) inside the cavity and
the inverted population N exc(t) are used to model the pulse formation in the oscillator
cavity [73]:

dm(t)

dt
+ γcm(t) = +KN exc(t)m(t) (4.6)

dN exc(t)

dt
+ γ2N

exc(t) = −KN exc(t)m(t) + P (t) (4.7)

where γc is the total cavity decay rate, γ2 and P the decay and pumping rate of the inverted
population and K is the coupling coefficient between photons and atoms describing the
stimulated emission.

Numerical integration of Eq. (4.6) and Eq. (4.7) permits tracing the pulse formation
m(t) and the evolution of the population inversion N exc(t) during the pulse buildup.
The pump intensity time profile and the pump–to–output pulse delay are taken from
measurements. Only the absolute value of the pump energy density is assumed to be a
free parameter since the pump beam size at the crystal surface is poorly known. It is
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Figure 4.9: Frequency scan of the cw Ti:Sa master laser (full red circles) and pulsed oscillator
slave laser (empty black squares) over an iodine absorption line. In both cases the detuning of the
master laser relative to a FP fringe defines the frequency axis.

tuned to have a pump–to–output pulse delay equal to the experimentally determined one
(see Fig. 4.8).

Pulse length and energy of the oscillator pulse m(t) resulting from the model reasonably
reproduce the measured values. Moreover N exc(t) and dN exc(t)/dt combined with Eq. (4.5)
and the dn/dT value, predict the time evolution of the refractive index. The frequency shift
is then determined using Eq. (4.4) and is plotted in Fig. (4.8). The frequency changes from
a value of about −170 MHz (relative to the cw) at the pulse’s leading edge to −85 MHz at
the pulse tail. A mean chirp shift with respect to the cw–seeder of ∆ν = −(110±30) MHz
and a broadening of δνchirp = (65 ± 30) MHz (FWHM) are therefore expected. The
uncertainty is dominated by the error in Copt.

The frequency shift between the cw–injected light and the pulsed output light is mea-
sured by scanning the I2 absorption line labeled “430” in Ref. [74]. Both pulsed and
cw–laser light are injected into a 50 cm long cell operated at an I2 gas pressure of 2 hPa,
and a temperature of 365◦C. Their transmission curves are shown in Fig. 4.9. The asym-
metric line shape is caused by the underlying unresolved components of the transition.
The transmitted cw light is fit using a phenomenological model with seven Gaussian func-
tions, which defines the reference absorption line shape. The absorption measurement of
the pulsed light is fit with the reference line shape convoluted with an additional Gaus-
sian which describes the pulsed laser spectral distribution. The position of the additional
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Gaussian gives the mean frequency shift whereas its width gives the laser bandwidth. A
simultaneous fit of both absorption measurements is performed (χ2 = 83 for 80 degrees
of freedom). The laser shift and width uncertainty extracted from the fit procedure are
conservatively enlarged by a factor of 2 to take into account possible inaccuracies of the
line–shape model. A (−110 ± 10) MHz red shift of the pulsed light relative to the seed
laser frequency is measured, in good agreement with the above chirp model. A laser width
of (130 ± 120) MHz (FWHM) is measured which is in agreement with the theoretically
estimated width (Fourier–limit ∼ 125 MHz (FWHM), frequency chirp ∼ 65 MHz). The
chirping might cause lasing at a second longitudinal mode. A scan over a frequency range
of ±3 GHz has hence been performed but no evidence for a second longitudinal mode was
seen.

The simple model developed above to estimate the frequency shift predicts a depen-
dence of the frequency shift on the pump pulse energy (see also Fig. (6) in Ref. [70]). The
pulse–to–pulse dye energy fluctuations and slow variations (due to dye and excimer gas
degradation) cause frequency shift variations of about 20 MHz. The dependence of the
frequency shift on the laser frequency due to a different heat deposition is negligible at our
level of precision. Concluding the oscillator output pulse frequency is shifted on average
by (110±10) MHz from the frequency of the cw laser. This shift takes into account pulse–
to–pulse energy fluctuation when the measurement was performed, but does not account
for slow dye degradation and renewal. However the simulations predict that the deviation
of the dye pulse energy from the value when the chirping measurements was performed,
causes chirping shifts which differs less than 20 MHz from the measured value.

4.4.4 Ti:Sa amplifier

The oscillator output pulse (1.2 mJ at 708 nm) is amplified roughly by a factor of ten in
an eight–pass amplifier (see Fig. 4.1). The beam is refocused on each pass. The amplifier
crystal is pumped longitudinally from both sides, and water cooled to 10◦C. In 2003–run
the maximum optical–to–optical energy conversion efficiency was 18%, but the routine
operating conditions are normally 14% (cf. §7.1 for updated values).

The amplification process is more efficient for the leading edge of the pulse and thus
a pulse shortening is expected. A reduction of pulse width from 7 ns to 6 ns (FWHM)
between input and output pulse is measured. Similar to the oscillator, the amplifier
introduces some frequency chirp. The resulting frequency shift per pass ∆ν pass is

∆νpass = −LcC

λ

∆N exc

∆t′
(4.8)

where ∆N exc is the change of inversion population in the time ∆t′ necessary to cross
the crystal. The experimental relation ∆n = CN exc with C = (1.1 ± 0.5) × 10−24 cm3

is used [72] 2. The pumping process does not induce any frequency shift because the
crystal is pumped before the red pulse from the oscillator reaches it. Only the change of
population inversion caused by the red pulse amplification leads to a frequency shift. The
chirp resulting from the eight–pass amplifier is estimated to be (20 ± 15) MHz, which is
negligible in the context of our experiment.

2In contrast to the oscillator case, the constant C of Ref. [72] can be inserted directly here.
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Figure 4.10: Simplified representation of the sequential Raman scattering for the production of the
third Stokes radiation at 6 µm when a pump pulse of 708 nm is injected into a cell filled with H2.
At each Stokes conversion a hydrogen molecule is excited from the ground to the first vibrational
level. The virtual level (dashed line) is associated with the much higher lying electronic excited
state not shown in the picture. Therefore this nonresonant Raman laser will be broadly tunable
without large changes in gain.

4.5 Raman cell

Sequential vibrational Raman scattering in H2 in a multiple–pass–cell (MPC) [75] is used
to convert the 708 nm pulse to the 6 µm region as depicted in Fig. 4.10. Hydrogen is
ideally suited for this purpose since it not only provides reasonable gain at modest pump
intensities, but also has the largest Stokes shift (Q01(1) = 4155.2 cm−1)3. The nth Stokes
wavenumber ν̄n is related to the pump wavenumber ν̄p (= ν̄Ti:Sa) by

ν̄n = ν̄p − nQ01(1) (4.9)

with ν̄ = 1/λ = ν/c, where ν̄ is the wavenumber, λ the wavelength and ν the frequency.
Three sequential Raman shifts convert an input wavenumber of 14128 cm−1 (corre-

sponding to 708 nm) by 3×4155.2cm−1, to 1662 cm−1 (which is 6.02 µm) passing through
1.00 µm (first Stokes) and 1.72 µm (second Stokes). Any tuning of the input frequency
tunes the output frequency by the same amount, since

δνn = δνp . (4.10)

The plane–wave Raman gain coefficient for a Stokes field Es is computed by inserting
in the wave equation describing the propagation of the Stokes field a driving polarization
at the Stokes frequency given by Ppol = iε0χ

′′
r |Ep|2Es where χ′′

r is the Raman susceptibility
and Ep the electric field of the pump beam. The plane–wave Raman gain gplane is found
to be [76]

gplane =
4πPχ′′

r

λsnsnpε0c
= GP , (4.11)

where λp and λs are the pump and Stokes wavelengths, P the pump power, χ′′
r the Raman

susceptibility, np and ns the indices of refraction at pump and Stokes frequencies, c the

3Notation relative to Qνν′(l): this vibrational Stokes shift (Q) occurs between rotational–vibrational
levels from a state with initial vibrational quantum number ν to a state with final vibrational quantum
number ν′. l is the rotational quantum number.
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speed of light, and ε0 the free space permittivity. In the absence of pump depletion the
power Ps of the Stokes waves along the propagation axis is then

Ps(z) = Ps(0)e
GPz (4.12)

The input power of the Raman cell Ps(0) is usually provided by the spontaneous Raman
noise.

The optical function of the multipass cell is to provide an extended interaction volume
(⇒ large z) for the stimulated Raman scattering by periodically refocusing the pump
(⇒ large P ) and Raman radiation in such a manner that the confocal parameter of both
waves remain unchanged. This is accomplished by mode matching and injecting the pump
radiation along a specific off–axis path of the MPC [77].

The Stokes gain (exponent) per transit g, for a Gaussian intensity pump profile of
confocal parameter bp and Stokes intensity profile of confocal parameter bs is found to
be [78]

g =
8PG

(λp + λs)

√
bpbs

(bp + bs)
tan−1

(
L√
bpbs

)
, (4.13)

where L is the length of the gain medium (mirror spacing of the Raman cavity). The
maximum power gain per transit occurs when both pump and Stokes beams have equal
confocal parameter bs = bp = b = 2πωp0/λp where ωp0 is the minimum pump spot size at
the focus. For sufficiently tight focusing the factor tan−1 (L/b) asymptotically approaches
π/2, and the Raman gain becomes pump power dependent instead of intensity dependent.
Combining Eq. (4.11) with Eq. (4.13) results in a Stokes gain coefficient per pass for pump
and Stokes beam with the same confocal parameter b of [75]

g =
16πPχ′′

r

(1 + λp/λs)λ2
snsnpε0c

tan−1

(
L

b

)
. (4.14)

Several conclusion can be drawn. First the Raman gain is maximized by tight focusing.
Beyond this, the only way to increase the gain further is to increase the pump power or by
repeated focusing in the active medium. The overall–gain per transit (between the Raman
cell mirrors) is proportional to [(1 +λp/λs)λ

2
s]
−1. The rapid decrease in Raman gain with

increasing pump and Stokes wavelength makes stimulated Raman scattering more difficult
in the infrared region.

Relaxation of the requirement for high pump power is achieved by repeated focusing
in the active medium. The Raman gain enhancement is accomplished through the use
of a multiple–pass cell using curved mirrors. The net gain exponent gn after n transits
through the cell is given by [76]

gn = g
1−Rn

p

1−Rp
+ n ln(Rs) (4.15)

where Rp and Rs are the mirror’s reflectivity for pump and Stokes beam, respectively. The
first term accounts for reflection losses of the pump beam, and the second for reflection
losses of the generated Stokes pulse.

The multipass geometry is achieved using a Herriott–type [79] spherical interferometer
at other than confocal spacing. The off–axis injected radiation (through an off–axis hole in
one mirror) can be made to execute a path producing a circular pattern of equally spaced
spots on each of the reflectors. By also requiring that the beam pattern closes itself after
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m passes, one is assured of maximum utilization of the MPC volume. The angular rotation
of the spot pattern at each pass is given by [77]

Θ = cos−1 (1− L/ρ) (4.16)

where ρ is the mirror curvature radius, and L the mirror spacing. The confocal parameter
b of the structure can be expressed as [77]

b = ρ sinΘ . (4.17)

The closure condition requires that

mΘ = 2νΘ = 2πµ (4.18)

where 2ν is the number of passes to closure, and µ is an integer equal to the number of
azimuthal revolutions that the propagating beam makes around the MPC optical axis.

The Raman cell, a ∼ 2.5 m long steel tube, is filled with 14 bar of H2 (< 0.1 ppm
impurities). It encloses two spherical silver–coated copper mirrors (1 m radius of curvature,
12.7 cm diameter, with dielectric protection layers [80]) and a measured reflectivity of
R = 97.7% at 708 nm. The mirror spacing is 1.9325 m giving a confocal parameter
b = 36.1 cm and a 33 passes configuration with Herriott’s parameters µ = 14, ν = 17.
Both mirrors have a 12.7 mm diameter off–axis hole for injection and extraction of the
light beam 50.5 mm from the axis. The mirror with the hole for the extraction of the
light can be rotated, enabling adjustment of the number of passes, providing the means
to optimize the number of passes to a given Stokes order. Pulse extraction has to occur
before ray path closure. Light at 708 nm is mode matched to the confocal parameter with
a telescope. This also guarantees that the beam has the same diameter after each round
trip. Perfect mode matching is not necessary, since small fluctuations in spot size can
usually be tolerated.

For a pulse at 708 nm with 12 mJ energy and 6 ns length, Eq. (4.14) indicates that the
gain from noise will produce the first Stokes in the first half pass, and the second Stokes
within the second pass. For the third Stokes production with g = 0.4, the remaining 31
passes are essential. Even if the reflectivity at 1.7 µm is larger than at 708 nm as one
would expect for Ag, the resulting gain is not sufficient to explain the obtained output
energy at 6 µm (g31 → 12 for Rp → 1). This can therefore be explained only if four–wave
mixing which initializes the third Stokes radiation is taken into consideration [76], [81].
The equation governing both four–wave mixing and stimulated Raman scattering is given
for the third Stokes field by [82]

∂ES3

∂z
= − ωS3

2cnS3
χ′′

R(|ES2|2ES3 + EpES1ES2e
i∆kz) (4.19)

where ESn in the nth Stokes electric field and ∆k = −(kp−kS1)+(kS3−kS2) is a measure
of the linear dispersion of the medium (H2 gas has a small dispersion). Similar equations
may be written for all four fields. The first term leads to the stimulated Raman scattering
and the power gain described in Eq. (4.11), whereas the second term describes the four–
wave mixing. The stimulated Raman scattering requires initial photons which can be
provided by the noise (as in the production of the first and second Stokes) or by four–wave
mixing which depends on the other three beams. Initially the third Stokes production is
dominated by four–wave mixing since all pump, first and second Stokes beams are present.
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Figure 4.11: Measured quantum efficiency (photons out/photons in) for production of first Stokes
(0.97 µm) second Stokes (1.62 µm ), and third Stokes (5 µm) radiation as a function of the injected
pump energy (690 nm) for a pulse length of 7 ns (Courtesy P. Rabinowitz [75]).

When sufficient 3rd Stokes power is available then the stimulated Raman gain overtakes
the four–wave mixing.

A measurement of the conversion of the pump radiation into first, second and third
Stokes as a function of the input energy has been measured by Rabinowitz et al. for
the same Raman cell as used in our experiment and is shown in Fig. 4.11. Note how-
ever that this was performed at a pump wavelength of 690 nm, corresponding to a third
Stokes shift to 5 µm. A model incorporating four–wave mixing and including anti–Stokes
production reproduces the measured efficiencies [75]. Since the gain scales linearly like
[(1 + λp/λs)λ

2
s]
−1 the threshold for the production of the third Stokes at our wavelengths

is the threshold inferred from Fig. 4.11 properly scaled for the wavelengths dependency:
E 6 µm

th = E 5 µm
th × 1.45 = 6.5 mJ.

Figure 4.12 shows the 6 µm output of the Raman cell plotted as a function of the 708 nm
input pulse energy. A threshold pump energy of 6.5 mJ is visible which corresponds to
the expected value. With an average input energy of 12 mJ, a mean output energy of
0.2 mJ at 6 µm is measured which corresponds to a quantum efficiency of 14%. An input
pulse length of 6–7 ns, the shortest pulse length delivered by the Ti:Sa laser, is chosen to
maximize the Raman efficiency. In the steady state regime the Raman gain scales with the
pump power (see Eq. (4.14)), favoring short pulses, whereas the gain decreases for very
short pulses when the transient regime becomes dominant [83]. Measurements in Ref. [84]
show that the transient regime for Q01(1) Stokes production at 14 bar of H2 is approached
for pulses below 5 ns.

Measurements of the transverse distribution of the Stokes beam showed that more than
98% of its energy is in the lowest order Gaussian mode [75]. Consequently an efficient
Raman process requires pump light in the TEM00 mode in order to maximize the overlap
between pump and Stokes beams. The TEM00 mode of each Stokes order ensures matched
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Figure 4.12: Measurements of the Raman conversion efficiency. Plotted is the third Stokes (6 µm)
output energy versus the 708 nm pump pulse energy.

reflection at the mirrors, reducing resonator losses [85].

Because of water absorption in the second and third Stokes region, the cell is equipped
with a gas circulating system connected to a LN2 cold trap which removes water from
the amplifying medium. Pump photons (708 nm), first Stokes (1.00 µm), second Stokes
(1.72 µm), first rovibrational Stokes (1.07 µm), second rovibrational Stokes (1.91 µm) and
weaker first (547 nm) and second (446 nm) anti–Stokes together with the 6.02 µm third
Stokes photons exit the Raman cell. A CaF2 prism is used to separate the 6 µm light, and
two AR–coated (5 − 8 µm) Ge–plates remove all parasitic light remaining on the 6 µm
beam axis.

4.6 Q01(1) Stokes–shift in H2

Equation (4.9) leads to a determination of the Q01(1) Stokes–shift in H2 when the pump
frequency νp and the 3d Stokes ν3 frequency are measured (cf. §§4.8 and 4.9). A comparison
between ν3 measured using a water line absorption and the related cw–laser frequency
measured with the FP at 708 nm gives a value of Q01(1) = 4155.219(1) cm−1 for the
Stokes–shift in H2 at 295 K and 14.0(1) bar. Corrections for the chirps of (−110±10) MHz
measured in the Ti:Sa oscillator, and of (20 ± 15) MHz calculated for the amplifier are
taken into account.

The Stokes shift depends on the H2 pressure and temperature. It may be expressed
as [86]:

νR = νR(0) + αρ + βρ2 , (4.20)

where νR(0) = 4155.2547(1) cm−1 [87] is the zero pressure Raman shift transition fre-
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quency, ρ the density expressed in amagat4 and α, β are coefficients which depend only
on the temperature. Using an averaged β value of 0.14(1) MHz/amagat2 [88, 89] a value
α = −85(3) MHz/amagat can be extracted from our measured Stokes–shift value. Other
measured values are −90(3) MHz/amagat [90] and −98(1) MHz/amagat [86].

However this discrepancy between the values for the Stokes shift is not affecting the
accuracy of our experiment since our frequency measurement relies only on 6 µm water
lines and the FP fringes spacing, as discussed in the next section. Nevertheless it is
important to notice that a change of the Raman cell pressure or temperature has the
effect to change the Stokes shift. A possible pressure or temperature–induced Stokes shift
variation may be corrected using Eq. (4.20). A change of 1 bar of the Raman cell pressure,
for example, will induce a Stokes shift variation smaller than 100 MHz which means a
change of the 6 µm frequency smaller than 300 MHz. The above cited values of α can be
used to correct for this pressure variation. The difference between the various values of
α leads to a difference of about 40 MHz in the frequency determination of 6 µm pulses if
the Raman cell is operating at a pressure which differs by 1 bar from the pressure when
the laser source was calibrated (cf. §4.8). But we kept the pressure stable to < 0.1 bar

We anticipate at this point that the bandwidth of the 6 µm light measured at the
Raman cell exit is (680± 140) MHz (cf. §4.8). Hence it is much broader than the 708 nm
Ti:Sa pulse which is measured to be (130 ± 120) MHz (cf. §4.4.3). It can be concluded
that the Raman gain process contributes a broadening of about 650 MHz. This number
can be compared to the upper limit of the broadening given by the spectral width of the
Raman gain, which at our conditions is 690 MHz (see Eq. (1) in Ref. [86]). The maximum
expected broadening for the three sequential Stokes shifts is therefore about 2 GHz. This
value is reduced to the measured 650 MHz by gain narrowing processes occurring during
the Stokes pulse buildup.

4.7 Water absorption

In the 6 µm region of our interest the water molecule exhibits several rovibrational lines
as shown in Fig. 4.13. The absorption of 6 µm light in air is given by

I(z) = I(0) e−az (4.21)

where a is the absorption coefficient shown in Fig. 4.13 which was calculated for 50%
relative humidity. For example consider the water line shown in Fig. 4.13 (middle) which is
in the frequency region where the 2S−2P transition is expected. If the laser is on resonance
with this line only e−az = e−72 ' 5× 10−32 of the 6 µm light reach the target (12 m beam
path from Raman cell to muon beam line, 50% humidity). To reduce absorption of the
6 µm light is therefore necessary to reduce the water vapor content on the 6 µm path.
This was achieved by surrounding the beam path with boxes and pipes and flushing them
with dry nitrogen (boil–off from LN2 vessel). An intensity reduction by less than 10% was
measured at the entrance of the target when the laser light was on resonance or not with
the water line, which mean that the water vapor was diluted by about 1000 times.

A systematic shift may be caused if the water absorption line is within the 2S − 2P
resonance, since the laser intensity seen at different frequencies will be different. However
the possible systematic shift is minimized by placing the 6 µm photo–detector which

41 amagat is the density of a gas at 273 K and 1 atm. 14.0 bar at 295 K corresponds to 12.8 amagats.
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Figure 4.13: Water absorption coefficient as a function of the frequency for a relative humidity of
50% (which corresponds to 10 hPa of H2O in 105 Pa of air at room temperature). These data have
been extracted from the HITRAN database [91].

measures the 6 µm pulse energy close to the muon beam line where the laser beam enters
the vacuum system enabling the possibility for correcting this shift when data are analyzed.

Nevertheless the presence of water lines in the region of the 2S−2P muonic resonance
line, whose absolute positions are known with 2 MHz accuracy, is very advantageous for
wavelength calibration of our laser system. This will be the topic of the next section.

4.8 Frequency calibration of the 6 µm light

Calibration of the 6 µm wavelength is performed by measuring a water absorption line.
The line at 6.014 µm (1662.80968(7) cm−1) labeled “37” in Ref. [92] is scanned by tuning
the cw–laser at 708 nm. The cw–laser is referenced to a calibrated FP cavity with a free
spectral range of 1.5 GHz [93] (cf. §4.9). A wavemeter is used to unambiguously determine
the FP fringe number.

The absorption measurements were made by having the 6 µm light traverse a 37 cm
long cell filled with 55 hPa of air at 35% humidity (T = 23 ◦C). Additional desorption
from the walls results in a H2O partial pressure of 1.0(5) hPa. Similar measurements are
performed at 20 and 3 hPa total pressure. The 6 µm beam line is flushed with dry N2
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Figure 4.14: Wavelength calibration of the 6 µm light by scanning a water line. The intensity
transmitted through a 37 cm long cell filled with 55 hPa air is plotted versus frequency relative
to a Fabry–Perot fringe at 708 nm. The centroid position is −470 MHz from the FP fringe with
fringe number NH2O (∆νcal = −470 MHz).

gas to avoid absorption by water vapor in the ambient air. Averaging over 128 pulses per
point is necessary because of the intensity fluctuations of the 6 µm laser. Figure 4.14 shows
the transmitted 6 µm laser beam intensity versus the cw–Ti:Sa laser frequency referenced
relative to one FP fringe with fringe number NH2O. The errors are estimated based on
the scatter of multiple measurements at a subset of frequency points.

The absorption curve is fit with the function

F laser(ν)⊗ (1− e−Lpressure(ν) ⊗ GDoppler(ν)) (4.22)

where ⊗ represent the convolution operator, and F laser is the laser spectral distribution
with amplitude, position and width as free parameters. Lpressure describes the pressure
broadening (Lorentzian with Γ = 325 MHz [91]), and GDoppler the Doppler broadening
(Gaussian with 150 MHz at FWHM) of the water line. The statistical error in the de-
termination of the line–center position is 10 MHz. This error was enlarged to 50 MHz
to accommodate for systematics caused by a possible laser frequency drift since the laser
is not locked to the FP during the scan. The gain narrowing process in the Raman cell
may cause F laser to be different from a Lorentzian corresponding to a pressure broad-
ened Raman transition. The absorption measurement is fit for the two extreme cases of
a purely Lorentzian and a purely Gaussian laser spectral distribution. The resulting laser
bandwidths are (540± 30) MHz and (820± 40) MHz (FWHM), respectively. We assumed
an average value of (680 ± 140) MHz at FWHM.
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4.9 FP calibration and stability

The frequency of our laser source is controlled by the cw Ti:Sa laser at 708 nm. When
searching the 2S − 2P resonance the cw–Ti:Sa laser is locked on a transmission fringe of
the FP. It is therefore necessary to calibrate our FP as well as to check its long term
stability.

The flat–concave (60 cm radius of curvature) FP cavity is made of mirrors optically
contacted on a Zerodur spacer of about 10 cm and maintained under vacuum (7×10−6 hPa)
by an ion getter pump. The vacuum cell is inserted in a heavy brass box to attenuate
mechanical vibrations and fast thermal fluctuations. The reflectivity of each dielectric
mirror is 99.5% in the 700 − 800 nm range corresponding to a finesse of ∼ 310.

The FP free spectral range, defined as the frequency difference between two successive
transmission peaks, is

IFP =
c

2L
(4.23)

where c is the speed of light and L the mirror spacing. The FP transmission peaks
frequency is then given by

νFP = N · c

2L
(4.24)

where N is an integer (fringe number).

In a first stage IFP was roughly measured with the help of a wavemeter. This was
achieved by locking the cw–laser on FP transmission peaks distributed approximately
according to a geometrical progression (N, N +1, N +2, N +4, N +8, N +16 · · · ) in the
708 nm region and by measuring its frequency with a wavemeter. At each step the IFP

is determined with such an accuracy which enables to determine unambiguously the FP
fringe of the successive step relative to the initial arbitrary fringe number N . A relative
accuracy of 10−5 was reached with this method. This precision is insufficient to determine
unambiguously the absolute fringe number N with the wavemeter.

This FP was also used for another experiment in Paris [94]. The calibration was there
made with three Rb lines around 780 nm known with an accuracy better than 1 MHz.
Two Ti:Sa and one diode laser were operated at 780 nm. One laser was locked on the FP
while other one was locked on a Rb line. The frequency difference between the two lasers
was measured with beat frequency techniques (see Fig. 4.15). The frequency νL of the
laser locked on a FP fringe with frequency νFP is related to the beat frequencies νbeat and
the frequency of the atomic transitions νRef via

νL = νFP = νRef ± νbeat . (4.25)

The absolute frequencies of the Rb lines are thus related the laser locked on the FP, and
consequently to the FP itself. Hence the frequencies of three FP fringes close to the three
Rb lines were determined in this way.

For the 708 nm region only one laser was available and therefore the beat technique
was not applicable. As the iodine lines are wide and known with an accuracy of only
220 MHz [74] the absolute calibration is done simply by recording simultaneously the
transmission through the FP and an iodine absorption cell when the laser is scanned. The
calibration performed in the 780 nm region is sufficiently precise to determine any iodine
line in the 708 nm region without any ambiguity. Six FP fringes’ frequencies close to
six iodine lines were determined with this method. Moreover to make sure of the iodine
line identification several long frequency scans of about 250 GHz range (without mode
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Figure 4.15: Schematic view of the apparatus used to calibrate the FP with Rb lines. Beat
frequency technique is used to determine the frequency of the FP transmission peak whose position
lies closely to a Rb line.

hopping) have been performed in the 700−708 nm region (the 700 nm region is important
for the second transition frequency in muonic hydrogen and for muonic deuterium).

In the following we will consider two corrections to the simple expression of Eq. (4.24):
the Fresnel dephasing and a frequency dependent change of the cavity length due to the
use of a dielectric mirror coating. The Fresnel dephasing ΦFresnel is related to the curvature
of the mirror, and is expressed by

ΦFresnel =
1

π
arccos [(1− L/R1)(1− L/R2)]

1/2 (4.26)

where R1, R2 are the curvature radius of the FP mirrors. This dephasing depends only
on the cavity geometry and not on the laser frequency.

A frequency dependent dephasing is caused by the dielectric coating of the mirror.
With increasing frequency the average reflection position is shifted deeper into the dielec-
tric structure of the coating. Therefore the effective cavity length L experienced by the
laser light is slightly frequency dependent and may be described by [94]

L = L0(1 + εN) (4.27)

where L0 is the average “zero–order” FP length, N (which is linearly proportional to
the frequency) is the fringe number on which the laser is locked and ε is a dimensionless
parameter which takes into account the small change of cavity length. Inserting Eq. (4.27)
in Eq. (4.23) gives

IFP ' IFP
0 (1− εN) (4.28)

where IFP
0 = c/2L0. The resonance condition is then

νL ' NIFP
0 (1− εN) + IFP

0 ΦFresnel . (4.29)

The Fresnel dephasing can be eliminated by making the difference of two measured fre-
quencies

νL1
− νL2

' IFP
0 (N1 −N2)(1− ε(N1 + N2)) . (4.30)
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Figure 4.16: Measurement of the drift of a FP transmission peak’s frequency at 780 nm. The
beat frequency between a laser locked on a 87Rb line at 385 THz and a second laser locked to a
FP transmission peak close to this line is measured for one week. The rapid variations have to
be attributed to temperature variations (day–night oscillations) which cause a change of the FP
length.

Fitting the nine measured FP transmission frequencies (three close to Rb and six close
to I2 lines), with Eq. (4.30), both the zero order free spectral range IFP

0 and the phe-
nomenological parameter ε can be extracted. It was found that IFP

0 = 1497.46(6) MHz
and ε = 1.5(8) × 10−10. 5 Note that N ∼ 3 × 105. The relatively large errors associated
with IFP

0 and ε are due to their strong correlation, but this does not affect the precision of
the absolute positions of the FP transmission peaks. The absolute frequency of the laser
stabilized on a FP fringe is calculated using

νL = νRb − IFP
0 (NRb −N)(1− ε(NRb + N)) (4.31)

where νRb is the frequency of a FP peak close to a precisely known Rb atomic line. The
frequency gap between the Rb reference line and νRb was determined with beat frequencies
techniques as described above.

We conclude that any FP transmission peak around 708 nm is known with an absolute
precision better than 100 MHz. The distance between two transmission peaks at 708 nm
is known with a precision better than 1 kHz.

To measure the long–term stability of our FP we used the same apparatus as depicted
in Fig. 4.15 and determined the beat frequency between one laser stabilized on a FP
fringe and another stabilized on an atomic line. Any FP cavity drift would cause a change
of the beat frequency. In Fig. 4.16 the beat frequency is plotted as function of time.
The fast changes of the beat frequency which are visible in the figure are attributed to

5For the FP with metallic mirrors used in the 1S − 3S hydrogen experiment α = 1.4 × 10−14 [95] was
found. This is much smaller than our value for dielectric mirrors since the reflection on a metallic mirror
occurs at the surface.
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periodic temperature variations in the laboratory in the night–day succession (∼ 0.5 K).
The stability of the laser locked on a FP fringe was found to be better than 10 MHz over
several weeks. Its stability and bandwidth is therefore sufficient for our purpose.

4.10 Summary of the frequency control of our laser system

In Fig. 4.17 all the properties of our laser system with regards to the wavelength control
are summarized. The cw Ti:Sa laser, when locked on a FP fringe, has a bandwidth of
1 MHz. Since the frequency of the FP transmission fringes are known with an accuracy of
100 MHz in the 708 nm region, the cw laser frequency is also known with this accuracy. A
wave–meter which has an accuracy of about ±400 MHz is sufficiently accurate to enable
an unambiguous determination of the FP fringe number on which the laser is stabilized.
The wave–meter is a moving Michelson interferometer which is referenced to a temper-
ature stabilized He:Ne laser. The refractive index of the air is corrected for humidity,
temperature and pressure in order to reach the 400 MHz accuracy.

Apart from a small frequency chirp of about −90(20) MHz the frequency of the pulsed
Ti:Sa laser (oscillator+amplifier) corresponds to the frequency of the cw–Ti:Sa laser due
to injection seeding. The control of the proper injection seeding is achieved by monitoring
the delay of the oscillator output pulse relative to the pumping pulse (dye pulse), by the
double peak structure of the output pulse and by a spectrometer. The excimer–dye laser
system has no influence on the wavelength of the 6 µm source since it just provide the
pump energy. The Raman process shifts the frequency by a constant amount given by
three times the Stokes frequency. Since the absolute frequency at 708 nm and the Stokes
shift (including pressure and temperature corrections given in Eq. (4.20)) are known, the
frequency of the 6 µm pulse may be deduced. However a preciser calibration of the 6 µm
pulse is achieved using water absorption lines available in the 6 µm region which are known
with a precision better than 2 MHz. The frequency of the cw Ti:Sa laser relative to a FP
fringe is measured when the 6 µm pulse is resonant with a water line (cf. §4.8).

To search for the 2S−2P line the laser needs to be detuned from the water line. Since
a water line is present right in the middle of the search range which is ∼ 250 GHz wide,
the cw Ti:Sa laser has to be detuned by up to hundred FP fringes from the one related
to the water line (NH2O). When we search and scan for the muonic resonance we lock the
cw Ti:Sa laser on FP fringes. The frequency of the 6 µm pulse is then

νL = νH2O − IFP
0 (NH2O −N)(1 − ε(NH2O + N)) + ∆νcal (4.32)

where NH2O is the FP fringe number used for the water line calibration measurement, νH2O

the water line frequency and ∆νcal = (470 ± 50) MHz the frequency difference between
this reference FP peak and the corresponding position of the water line in the 708 nm
region (see Fig. 4.14).

Since the FP fringe spacing is known with an accuracy of better than 1 kHz it follows
that the 6 µm light is known with an accuracy which is resulting from the quadratic sum
of 50 MHz (δ∆νcal), (NH2O − N) × 1 kHz ' 0.1 MHz (FP peak spacing accuracy) and
2 MHz (water line position) which is 50 MHz. Note that for the precise determination of
the frequency of the 6 µm pulse we don’t need to make use of the absolute frequency of
the FP transmission peaks and of the Stokes shift value.

Small systematic shifts may occur which worsen the accuracy of the frequency of
our laser between the time of the frequency calibration and the measuring time. Chirp
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Figure 4.17: Frequency control of our 6 µm laser source. The cw–Ti:Sa laser is locked on the
external FP. Apart from a chirp effect which is measured via I2 absorption, the pulsed Ti:Sa laser
has the same frequency as the cw one. The 6 µm source is precisely calibrated using a H2O line.
The I2 line is also used to calibrate the FP whereas the Lambda-meter is used to determine the
FP fringe number. The beams shown with dashed lines are used only during frequency calibration
measurements.

variations in the Ti:Sa laser, pressure and temperature variations in the Raman cell and
FP length variation contribute to this uncertainty. The variation of the chirp effect due
to energy variations of the dye laser pulses is about ±20 MHz (cf. §4.4.3). A variation of
the pressure and temperature of the Raman cell leads to a variation of the Stokes shift
which may be corrected with a precision better than 10 MHz if the pressure in the Raman
cell changes by 0.25 bar (cf. §4.6). The frequency of a FP peak in the 780 nm region was
measured to drift less than 10 MHz in several weeks (see Fig. 4.16). Since for the precise
determination of the 6 µm frequency we make use only of the FP spacing, the drift caused
by systematic variations of the FP are 100/(3 × 105) · 10 MHz, i.e., totally negligible.

In conclusion the frequency of our 6 µm source is known over the whole required
searching range and for all the time necessary to search the resonance line with an accuracy
of 55 MHz. This value accounts for all possible systematic drifts of our apparatus.
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4.11 The 6 µm multipass cavity

The 6 µm light is coupled into an intensity enhancement cavity placed inside the hydrogen
target for the excitation of the 2S − 2P transition. Figure 4.18 shows the geometry of
the multipass mirror cavity. The muon stop volume (5 × 15 × 194 mm3) is elongated
in direction of the muon beam (z-axis) because of the low hydrogen pressure. The laser
light illuminates the stop volume transversely, because it is not possible to mount laser
mirrors on the muon beam axis. Therefore rather long laser mirrors left and right of the
muon beam are used. Above and below the muon beam, the x-ray detectors have to be
positioned as close as possible to the muon beam for solid angle efficiency (see Fig. 3.7.
Hence the vertical dimension of the laser mirrors is made as small as possible. 12 mm high
mirrors turned out to be large enough to illuminate a 7 mm high volume.

Laser light enters the cavity through a 0.63 mm diameter hole in mirror M1 and is
reflected between the two mirrors on the order of a thousand times. The cylindrical mirror
M2 confines the light in the vertical direction, whereas the two cylindrical pieces glued to
the main flat piece of mirror M1 guarantee the confinement in the horizontal ẑ direction.
The radius of curvature R1 of the additional cylindrical pieces is made four times the mirror
spacing d (R1 = 4d = 100 mm), as for this value the reflection conserves the incoming
horizontal angles, in order to avoid an increase of the mean horizontal reflection angle.
Simultaneously, the radius of curvature R2 of the cylindrical mirror M2 has to be different
from R1, to avoid undesired resonant effects: R2 is chosen to be 110 mm. Because of its
unusual shape, the mirror M1 is manufactured in three separate substrate pieces (the flat
part and two cylindrical end parts) and then glued together [96]. Fused silica is chosen
as substrate material, and a broadband reflectivity of 99.97% at 6 µm is achieved using
a 26 layer dielectric coating of ZnSe and ThF4 [97]. The 6 µm light is transported to
the multipass cavity by Cu mirrors and CaF2 lenses and windows (see Fig. 4.20). The
12 m long optical beam line is surrounded by boxes and tubes flushed with dry N2 gas
in order to avoid laser light absorption in water. The light is bent by 90◦ and focused
in the mirror hole center. The beam has a minimum waist of 0.1 mm in the hole and
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Figure 4.18: Sketch of the 6 µm multipass cavity. The figure is distorted to visualize details. All
dimensions are given in mm.
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Figure 4.20: Monitoring system for the 6 µm cavity. Before entering the vacuum system, part of
the 6 µm light is reflected by a 45◦ CaF2 plate and focused on a fast infrared detector V1. The
transmitted pulse crosses the vacuum and target windows and enters the cavity. Part of the light
escaping from the entrance hole travels back on the same axis as the incoming light and is detected
with a second infrared detector V2.

a confocal parameter of 10 mm. To optimize the illuminated volume and minimize the
losses through reflection from mirror M2 back out the injection hole, the light is introduced
at horizontal and vertical angles relative to the injection hole axis of α = 40 mrad and
β = 65 mrad, respectively. In practice, the beam is first aligned on axis, i.e.,, the light
entering the cavity is directly reflected back out through the hole. The beam impinging
on the paraboloid is then parallel shifted by 2 mm horizontally and 3 mm vertically, which
results in a change of the cavity beam entrance angles of the values noted above. The
coupling scheme guarantees low losses, uniform filling of a large and elongated volume,
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Figure 4.21: Simulated light intensity distribution inside the 6 µm multipass cavity, with projec-
tions. The intensity step visible in the y–projection is a consequence of the injection scheme. This
asymmetry is washed out in the z-projection due to a larger number of round trips oscillating in
y–direction between the two mirrors (Courtesy R. Pohl).

and robustness against cavity and injection misalignment. Mirror tilts as large as 7 mrad
(vertically) and 0.5 mrad (horizontally) are tolerable.

One of the major characteristic of this cavity and its injection is its stability. The
cavity is first aligned when the target is open and at air pressure as in Fig. 3.8. Then
the target is closed, the 5 T solenoid moved and connected to the muon beam line, and
then the whole beam line and target are pumped to vacuum. The magnetic field and the
LAAPDs cooling is switched on and the hydrogen gas is flushed through the target. After
four weeks of measuring time the cavity resulted to be still aligned. No PZT or other
remote control of the cavity was necessary.

Figure 4.21 shows the simulated intensity distribution inside the cavity using ray trac-
ing. The resulting spatial intensity distribution shows a 30% non–uniformity in the trans-
verse direction whereas it is quite uniform longitudinally. Using Gaussian optics for the
y–direction gives very similar results. Losses due to the (measured) mirror reflectivity
of 99.97% and back reflection via the 0.63 mm diameter hole are taken into account, as
well as losses due to light “spillover” in y or z-direction caused by cavity and/or injection
misalignments.

The main cavity losses are given by the non–ideal reflectivity of the mirrors and by
the light escaping from the coupling hole. The escaping light is used to monitor the time
distribution of the intensity inside the cavity which depends on the overall cavity and
injection alignment. It is separated from the entering light with a tilted CaF2 plate and
is focused on a fast infrared detector (Hg–Cd–Zn–Te semiconductor [98]) as shown in
Fig. 4.20.
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Figure 4.22: Time distributions of the light escaping the cavity. The mean lifetime of 140 ns
corresponds to 1700 reflections between the two mirrors.

Typical measured and simulated intensity time distributions of the escaping light are
shown in Fig. 4.22. From these time distributions an average lifetime of about 140 ns for
the light in the cavity is deduced. Taking into account the distance between the cavity
mirrors (25 mm), that corresponds to 1700 reflections between the two mirrors. The
number of reflections N between the two cavity mirrors can be expressed as

N =
1

(1−R) + L
(4.33)

where R = 99.97% is the measured reflectivity and L represents other losses. Losses
of laser light through the coupling hole can be estimated by assuming a homogeneous
6 µm intensity distribution in the illuminated volume. The average relative loss (through
the hole) per reflection is given by the ratio of hole surface Ahole = 0.632 · π/4 mm2 to
illuminated transverse area Alight = 170× 7 mm2

Lhole =
1

2

Ahole

Alight
' 1.3× 10−4 . (4.34)

The factor 1/2 takes into account the fact that the light impinges on the mirror with the
hole only every second reflection. Additional losses Ladd ' 0.02% are required in order to
explain the measured mean average number of reflections via Eq. (4.33), L = Lhole +Ladd.
This additional loss may be attributed to an increased scattering from the 10 µm thick
regions where the two cylindrical end–parts of M1 are glued to the flat part. The elaborate
cavity simulation with input reflectivity R = 99.95% predicts a lifetime of 140 ns and
losses through the coupling hole of about 16–19%. Our simple model predicts escape
losses Lhole/((1−R) + Lhole + Ladd) ' 20%, which is in good agreement with the detailed



68 Laser system

calculation. The slightly lower losses found by the simulation may be attributed to the
lower light intensity at the hole position (see z-projection of the light distribution in
Fig. 4.21) compared to the simple model based on a homogeneous distribution.

Since the time–integrated spatial intensity distribution of the light inside the cavity is
relatively homogeneous, the fluence F is given approximately by

F ' Elaser
in nrefl

Acav
, (4.35)

where Elaser
in is the pulse energy entering the cavity, nrefl = 1700 the measured average

number of reflections, and Acav = 17 × 0.7 cm2 the illuminated transverse cavity area. A
6 µm laser pulse energy of 0.12 mJ is therefore sufficient to saturate the 2S−2P transition
(corresponding to a fluence of F ' 16.5mJ/cm2). A µp2S atom which has survived to the
time the laser enters the cavity has thus a probability of (1 − e−1) to be excited to the
2P state if the laser is resonant with the transition and is providing a pulse with 0.12 mJ
energy (cf. Appendix E). The detailed simulations confirmed this, leading to a value of
0.1 mJ. Taking into account various losses on the beam path from the Raman cell to the
cavity, about 0.2 mJ are required at the Raman cell exit to saturate the transition.

The ripple structure — visible in Fig. 4.22 — of the back–reflected light corresponds to
a space–time correlation of the light intensity distribution in the cavity directly following
the injection. Its period is approximately given by the average time needed for the light to
reach the cylindrical end part of the cavity and return to the entrance hole, which is ∼16 ns
for a mean horizontal injection angle of 40 mrad. At later times, the ripple structure
is washed out due to the angular divergence of the injected beam and the imperfect
conservation of the horizontal angle at each end–part reflection. The simulation reproduces
the main characteristics of the light leaving the cavity. The precise position and intensity
of the individual peaks of the ripple structure depends on the injection angle and cavity
misalignment. No attempt was made to try to precisely reproduce the measured time
spectrum since each Monte Carlo simulation.

4.12 Summary

We have developed a powerful, fast triggerable, 6 µm laser beam with 55 s−1 (stochastic)
repetition rate. Two excimer pumped dye lasers operating at 540 nm are used to pump
an oscillator–amplifier Ti:Sa laser. A reliable and simple injection seeded Ti:Sa oscillator
has been developed. An output pulse of 1.2 mJ energy, 7 ns width at 708 nm is achieved
(without the use of Q-switching methods), with a pump energy of 15 mJ. The simulated
oscillator characteristics (pulse length, energy output and frequency chirp) are in good
agreement with the measured values. The 8–pass Ti:Sa amplifier delivers a pulse energy
of 12 mJ at 708 nm which is converted to 6 µm via a Raman shifter. The Raman cell
produces 0.2 mJ of 6 µm light corresponding to a quantum efficiency of 14%.

The total delay of the 6 µm pulse from trigger to multipass cavity entry is 1.6 µs,
corresponding to the sum of the following delays: excimer–dye laser (1220 ns), Ti:Sa
oscillator (55 ns), Ti:Sa amplifier (45 ns), Raman cell (200 ns) and various beam paths
(80 ns). The laser tunability is between 5.5 and 7 µm. The maximal wavelength is
limited by the Raman gain which decreases at longer wavelengths (see Eq. (4.14)) whereas
the minimal wavelength is limited by the spectral profile of the Ti:Sa gain. The absolute
frequency of the tunable 6 µm source stabilized on an external FP is deduced from a water
line absorption measurement with an accuracy of 55 MHz; the bandwidth is 680 MHz.
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To enhance the intensity of the 6 µm light, a multipass cavity providing a large illumi-
nated volume (7× 25× 170 mm3) has been developed. The multipass cavity confines the
6 µm light with a lifetime of 140 ns which corresponds to about 1700 reflections between
the cavity mirrors. An output pulse energy of 0.2 mJ from the Raman cell is found to
be sufficient to saturate the 2S − 2P transition. The 6 µm source, the multipass cavity
and associated diagnostics meet the requirements for the muonic hydrogen 2S Lamb shift
experiment and have been operated continuously for 4 weeks during the search for the
2S − 2P resonance in 2003–run.



70 Measurements



Chapter 5

Measurements

This Chapter describes how the data recorded by the various detectors are identified,
merged in distributions and analyzed. Section 5.1 describes the technique with which the
LAAPD signals recorded in the WFD (wave form digitizer) are processed. How various
signals are identified and the events classified is described in §5.2. The most important
spectra are presented in §5.3, §5.4 and §5.5 together with the relevant cuts which are
used all through the analysis of the data. Timing calibration of the whole apparatus and
detection efficiency for the x rays are given in §5.6 and §5.7, respectively. This overview
is rather detailed because this knowledge is important not only for the analysis of the
resonance data described in Chapter 6, but also for the background study presented in
Appendix H.

5.1 Analysis of the waveform digitizer signals

The 8-bit WFD records the whole time evolution of a LAAPD signal (0 − 255 dynamic
range) during ∼ 14.3 µs (2048 channels of 7 ns) like an oscilloscope. The diversity of the
WFD signals which have been recorded is demonstrated in Fig. 5.1. A standard WFD
spectrum has a flat baseline with superimposed negative–going, single (a–d) or multiple
(e–g) pulses. Each individual pulse represents the LAAPD response to an x ray or an
electron. The LAAPD detection efficiency for high energy x rays is small and therefore
there is a trend that small amplitude pulses are induced by x rays and large amplitude
pulses by electrons. The maximal full dynamic range available for the pulse corresponds
to an incident x-ray energy of 8 − 13 keV, depending on the LAAPD. Higher amplitude
pulses are out of the WFD dynamic range as shown in (d–g). Such signals will be referred
to as “saturated signals”.

The analysis of the WFD spectra first eliminates non–physical signals and then identi-
fies the time and the energy of the pulse(s) inside a single WFD record. A negative–going
edge corresponds to a normal pulse due to an x ray or an electron (i, j). A periodically
oscillating pulse structure (“ringing”) is attributed to plasma discharges in the LAAPDs
mainly caused by alpha particles or large–amplitude signal caused by electrons. A positive
pulse (overshoot) is attributed to crosstalk between LAAPDs in time coincidence with a
large signal in one LAAPD (h). The maximum possible number of pulses of our interest
is three and corresponds to the physical case, that a 2 keV µp x ray, delayed 4.9 keV µC
x ray and a muon decay electron are detected in the same LAAPD (g). This corresponds
to the signature of a known background event (cf. Appendix H). The maximum allowed
number of positive–going edges is one, corresponding to a possible crosstalk (h). There-
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Figure 5.1: Examples of typical WFD spectra (7 ns/channel, total time range 14.3 µs). (a, b, c, d)
Single pulse spectra: signals due to x rays with energy of ∼ 2 keV from (a) a high quality LAAPD
and (b) from a noisy LAAPD; (c) higher amplitude signal within the WFD dynamic range, (d)
saturated high–amplitude signal out of this dynamic range, most probably from an electron. (e)
Double pulse spectrum: first pulse from a 2 keV µp x ray, second pulse due to a muon–decay
electron. (f, g) Triple pulse spectra: (f) two 2 keV µp x rays and an electron signal, (g) 2 keV
µp x ray signal, followed by a delayed second pulse due to a 4.9 keV µC x ray and third pulse
from a muon decay electron. (h, i, j, k, l) Other types of WFD spectra: (h) an overshoot due to
crosstalk, (i, j) ringing, (k) pulse superimposed over a steep baseline, (l) an example of an irregular
structure (Courtesy L. Ludhova).

fore, if the number of identified negative–going edges is larger than three or the number
of positive–going edges is larger than one, the spectrum is identified as ringing and the
whole event is discarded.

Otherwise, when an edge is found, the corresponding pulse is fit using a standard
pulse leaving as free parameters the amplitude and the time when the pulse starts. The
standard pulse is obtained for each one–hour run and each LAAPD by averaging a set of
measured 2 keV pulses. The fitted amplitude and beginning of the pulse lead respectively
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to the energy and the time of the detected radiation. When the first pulse is identified it
is subtracted from the measured WFD spectrum, and the procedure is iterated in order
to identify successive pulses.

5.2 Event classification

As previously explained the signals measured by the various detectors (LAAPDs, electron
paddles, S1, S2, D3 and laser diodes) during an EVG are recorded. Energy and time
information of all detectors are required. For the LAAPDs this information is extracted
from the fitting procedure of the pulses in the waveform digitizer, whereas the other
detector signals have been recorded with TDCs and ADCs.

5.2.1 Signal versus particle identification

Photons of less than 10 keV energy interact with matter by the point–like photo–effect
where only one detector is affected, whereas electrons deposit energy along their path.
In the 5 T magnetic field the muon decay electrons have a maximal gyration radius of
3.5 cm and may therefore hit several detectors. If a pulse in a LAAPD is detected in
time–coincidence with any pulse in another LAAPD or electron detector, this signal is
classified as an electron. If several LAAPDs show a signal in time coincidence and the
sum of their energies is above a certain threshold value, the ensemble of these signals is
identified as an electron. However it is possible than an electron induces a signal only in
one LAAPD and is not detected by any other detector.

The identification of single pulses in one LAAPD relies on the amplitude of the signal.
For energies above Ehi

x ' 8 keV the single signal is classified as electron, for intermediate
energies between E low

x ' 1 keV and Ehi
x the signal is classified as x ray, whereas below

Elow
x it is classified as neutron (E low

x and Ehi
x is chosen individually for each LAAPD).

Pulses with an amplitude below E low
x can not arise from x rays of that energy since the

absorption layer in front of the LAAPDs excludes the possibility to detect such low–energy
x rays. Some of this pulses may be correlated with neutrons.

It should be emphasized that this signal classification relies on an average behavior of
the particles interacting with the detectors. It may occur that an electron deposits such a
low energy in the LAAPD that it is identified as an x ray, or that a high energy x ray, e.g.,
from a µC transition, is classified as an electron. Signals detected by the electron paddles
are classified as electron because x rays and neutrons have a small reaction probability in
the plastic scintillator material. In addition, D3 signals with large amplitudes (D3

hi) are
also classified as electron because x rays have either smaller energies or are not absorbed
in the LYSO crystal.

5.2.2 Event construction

All signals detected within one EVG are classified as described above and ordered in time.
Different event classes have been constructed, describing the time sequence of x rays (x) and
electrons (e) within the EVG. The largest fraction (70%) of the measured events contains
only one electron, i.e., corresponds to the e event class which is not further considered
in the analysis. The second largest contribution is the xe event class, that is, an x ray
followed by an electron signal. This category accounts for 12% of the total number of
events and is the class which is used for the search of the laser resonance. This choice was
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motivated by the fact that the requirement of a delayed electron considerably reduces the
background (see next section). The x event class accounts for 8% of the total number of
events. A comparison between the number of events in the x and xe event classes leads
immediately to a rough estimate of the electron detection efficiency of about 60%. All
other event classes like xx, xxx, xxe, xee, ee, eee, ex, exe . . . are helpful for background
studies. The xx and xee classes (0.1% and 0.9%, respectively) are also considered for the
resonance search.

5.3 X-ray and electron energy spectra: Kα energy cut and
delayed electron cut

In order to study the LAAPD response to electrons, energy spectra of LAAPD signals
in time coincidence with electron detectors (paddle+D3

hi) are constructed. As is clearly
visible in Fig. 5.2 the electron energy distribution is mainly concentrated in two regions
which may be explained as follows. If the electron is striking an LAAPD at the margin
of its active region, where only a part of the created charge is collected or the gain is
small, it will give rise to the low energy component of the spectrum. The majority of the
electrons on the contrary cross the active area of the LAAPD and give rise to the high
energy component of the spectrum. There is a non–Gaussian tail towards higher energies.
More energy is deposited at increasing electron incidence angles (relative to the normal of
the detector). The angle distribution of the electron impinging on the LAAPDs leads to
the tail at higher energy.

As previously mentioned, signals in the LAAPDs with an energy below Ehi
x ' 8 keV

are considered as x ray, under the condition that they are not in time coincidence with
another signal in any other detector. In contrast, for the construction of the spectrum in
Fig. 5.2 a signal in the LAAPDs was required in time coincidence with another signal in the
electron detectors. However it may occur that an electron crosses one LAAPD producing
a low–energy signal but does not hit any other detector. This signal would be classified
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Figure 5.2: An example of an LAAPD electron energy spectrum.



5.3 75

10

10 2

10 3

10 4

10 5

-1 0 1 2 3 4 5 6 7 8

Time [µs]

E
ve

nt
s/

 5
0 

ns
 b

in
s

Time [µs]

R
at

io

 Normalized to
 prompt peak

0

2

4

6

8

-1 0 1 2 3 4

Figure 5.3: Demonstration of the DELE cut effectiveness. (Top): 2 keV x-ray time spectrum for
the xe event class (red) compared to the x-ray time spectrum where no delayed electron is required,
given by the sum of the x, xe, xee, xx and xxe event classes (black). (Bottom): Normalized ratio of
the above plotted histograms. At time zero corresponding to the “prompt” peak the ratio is one
(due to normalization). At delayed times it increases showing that the DELE cut strongly reduces
the number of delayed 2 keV x rays. In the laser time window (t ∈ [1.5, 1.7 µs]), represented by
the two dashed vertical lines, the xe event class shows a factor of four less background. The peak
at negative times has to be attributed to electrons from muon decay in flight before muon capture
occurs. The large fluctuations for times larger than 3 µs are caused by statistics.

as an x ray although it originates from an electron. This represents a dangerous source
of background events if the so called “delayed electron” cut (DELE) was not introduced.
The requirement of the delayed electron which satisfies te − tx ∈ [0.1, 7.1 µs] corresponds
to the DELE cut.

In order to ensure that the detected x ray is not faked by an electron (which represents
the largest event class), a detection of a delayed (with respect to the x ray) electron is
required. Moreover the requirement of a delayed electron further increases the probability
that the detected x ray is correlated with the muon, reducing the misidentification of
possible uncorrelated background. Therefore for the laser experiment only the xe class of
events was taken into account.
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Figure 5.4: Example of an x-ray energy spectrum with DELE cut. Only the 10 LAAPDs with the
best energy resolution are considered. The total fit function (red solid line) is the sum of: µp Kα

peak (black solid line) and its tail (black dotted), µp Kβ (magenta dotted) and µp Krest (magenta
solid), µN transitions (green and yellow solid) and in blue µO transitions (Courtesy L. Ludhova).

A demonstration of how DELE cut reduces the relevant background is given in Fig. 5.3
where the x-ray time spectrum for xe events is compared with the time spectrum of all
2 keV events (given by the sum of all accepted event classes having as a first signal an
x ray). The peak at time zero originates from the deexcitation process following the µp
formation, i.e., it correspond to the Lyman–series deexcitation occurring in the “prompt”
cascade. Its width is mainly given by the distribution of muon stopping times. The
laser induced events are expected to appear in the laser time window between 1.5 to
1.7 µs. However no such events can occur in these graphs since only no–laser events were
considered here. Therefore the tail at delayed times corresponds to the background for
the laser experiment, and it is essential for the laser experiment to reduce this tail. As
can be extracted from the bottom graph, the detection of a delayed electron improves the
signal/background ratio in the laser time window by almost a factor of four.

The x-ray energy spectrum has a peak at 2 keV which originates from the deexcitation
process following the µp formation (see Fig. 5.4). As previously explained 99% of the
formed µp atoms emit a Lyman–series x ray within 100 ns after muon capture (“prompt”
deexcitation). The energies and yields of the Kα, Kβ , and Krest x rays are given in
Table 5.1. The resolution of the detector is not sufficient to clearly separate the various
Lyman–transitions. The x ray spectrum is fit with three lines. Each line is described
by a Gaussian and a tail toward low energy. Mathematically this tail is described by
a “Gaussian complementary error function”, i.e., the integral from the right to the left
of a Gaussian. Physically this tail arises from x rays absorbed in region (A) where the
produced charge may be partially captured before it reaches the amplification region and
in region (C)(see Fig. 3.9). The resulting energy resolution is ∼ 27% (FWHM) for the Kα

peak [16].

Since the signature for a laser–induced transition is the emission of a Kα x ray, only
x rays with an energy from approximately 1.5 to 2.5 keV are considered during the search
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Table 5.1: Energies and measured relative yields (interpolated for 0.6 hPa) of the µp K-series
[14,99,100]. Kα and Kβ are the 2P → 1S and 3P → 1S transitions, respectively. Krest represents
the sum of all transitions from nP states with n > 3 down to the 1S state. Ytot is the total K–yield,
Ytot = YKβ + YKα + YKrest ≤ 1.

Transition Energy [keV] Relative yield YK/Ytot

2→ 1 Kα 1.898 0.821(12)
3→ 1 Kβ 2.249 0.061(9)

(> 3)→ 1 Krest 2.45(2) 0.118(11)

of the resonance. The values for this Kα energy cut are adjusted for each LAAPD indi-
vidually, depending on its energy resolution in order to optimize the Kα peak detection
while discarding x rays having other energies (background reduction).

5.4 Second–muon cut

There is a small but not negligible probability that during an EVG a second muon enters
the target at random times, slows down and forms a µp atom. Such a muon is termed
second muon whereas the muon opening the EVG is termed first muon. A 2 keV µp x ray
related to a second muon may occur at laser time and thus fake a laser induced event.

The time difference between a muon crossing S1 and the detection of the “prompt”
deexcitation after the µp formation is measured to be in the interval 350 − 850 ns. This
time window is given by the time required by the muon to reach the target, to slow down,
to be captured and deexcite to the ground state. If there is a second muon detected in
S1 350 − 850 ns before a measured x ray, the event is rejected. Since the S1 signal is fed
also to a PTDC which can register multiple hits, several muons can be recorded within
the same EVG. In a similar way, the S2 detector can be used to detect a second muon
entering the target, but this possibility was precluded due to a large pickup noise of the
excimer lasers in the S2 detector.

The effectiveness of the second muon cut is demonstrated in Fig. 5.5. The red line
represents the background at delayed times which can not be eliminated by applying both
the DELE and second muon cut. X rays correlated to second muons can be eliminated
with an efficiency corresponding to the efficiency of the S1 detector, i.e., 85%. The delayed
background which can not be eliminated by the second muon cut has its origin mainly
from muon transfer to carbon (cf. Appendix H). When the µp1S atoms drift and reach the
polypropylene foils in front of the LAAPDs muon transfer occurs (µp + C→ (µC)∗ + p).
The peak visible in the spectrum at 4.9 keV arises from the µC4→3 radiative transitions.
The continuous background is always flat at energies above 6 keV and raises toward lower
energies. The flat part corresponds to the tails (represented in §5.3 by complementary
error functions) from µC3→2 (14 keV), µC2→1 (75 keV), and other Balmer and Lyman µC
transitions. The origin of the low energy part is not fully understood. It may be caused
by x rays absorbed in the LAAPDs drift region and/or behind the multiplication region
with gain∼ 1 (cf. §3.2.1). This transfer–induced background can not be eliminated by the
second muon cut since it is caused by the first muons which drift to the target walls. The
DELE cut can also not eliminate these background events since the muon lifetime in µC
is very similar as in µp.
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Figure 5.5: Demonstration of the “second muon” cut effectiveness for delayed x rays. (Top): energy
spectra of x rays with tx later than the “first muons” µp “prompt” peak. The solid–black and
dashed–red spectra are without and with the “second muon“ cut, respectively. The 2 keV peak is
due to the “second muon” µp x ray. (Bottom): The difference of the black and the red spectra
shown in the top part normalized in a way that 4.9 keV µC peak disappears.

5.5 Electron time spectrum

Energy and time spectra of the signals from the electron paddles are considered here.
The 2D-histogram in Fig. 5.6 shows the energy Ee versus the time te of electron signals
detected in the electron paddles. The time distribution of the events with energies above
the plotted line have an exponential decaying time distribution with a decay constant
corresponding approximately to the muon lifetime. Events with energies below that line
have a higher level of time–independent background with respect to those above this
line. This flat time distribution below the line corresponds to single photo–electron noise
generated at the PMT cathode and neutron induced signals in the paddles scintillators
and light–guides. In the search of the laser resonance it is important to accumulate all
possible statistics. Therefore also signals below the single photo–electron line have been
accepted. The acceptance of this low energy signals is motivated by the fact that also a
large amount of muon–correlated signals have been detected below this line. Probably this
single–photon signals arise from C̆erenkov light produced by electrons striking the large
Lucite light–guides but not the scintillators. These light–guides mounted down–stream are
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Figure 5.6: 2D spectrum of time te and energy Ee of the signals detected in the electron paddles.
Similar result for the other paddle. Single photo–electron signals are expected to be below the
solid horizontal line.

transporting the light produced in the paddle scintillators to the PMTs which are placed in
a region of low magnetic field. The one–dimensional projection of the above 2D-histogram
for energies below the solid line is shown in the top part of Fig. 5.7. As can be inferred
from the histograms the number of detected “good” electrons is increased by 35% when
the C̆erenkov are included. As will be explained later in Appendix H, the inclusion of the
noise in the paddle PMTs causes an increase of about 60% of the background events in
the laser time window. At our low event rates due to Poisson statistic it is advantageous
to increase the rates at a slightly worse signal–to–background ratio.

The time distribution shown in the bottom part of Fig. 5.7 for signals above the solid
line — originated by muon decay electrons — should have an exponential time distribution
with a lifetime of 2.197 µs (muon lifetime). A deviation from this behavior is observed
which has to be attributed to the time–dependent drift of the µp atoms in the hydrogen
gas. Two effects lead to the deviation from the expected behavior. First, while the µp
atoms move toward the walls of the gas target, the electron efficiency increases due to an
increase of solid angle because the µp atom is approaching the detectors. Second, when the
µp atoms impinge on the target walls muon transfer to an atom of the walls occurs. The
muon lifetime in such atoms changes because of nuclear capture process (µ−+p→ n+νµ)
which increases approximately as Z4 for light elements. If the muon is transfered to the C
atoms of the polypropylene foils this effect is small, the muon lifetime is ∼2.0 µs instead
of ∼ 2.2 µs [101]. However if transfer occurs to Zn or Se atoms which are the coating
material of the cavity mirrors the muon lifetime is reduced to 160 ns. This will cause a
time–dependent reduction of the number of measured electrons. At late times when all
muons have transferred to the walls, the lifetime should be the µC lifetime since the muons
captured in higher Z materials have already disappeared.

This time behavior of the electron detection is shown in Fig. 5.8 using the event class
xe. The distribution of the time difference te − tx is plotted. This distribution is similar
to the time distribution of the electrons in the electron paddles. This time spectrum is
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Figure 5.7: (Top): Time spectrum of electron paddle signals below the line plotted in Fig. 5.6
corresponding to single photo–electrons. The exponential part has to be attributed to C̆erenkov
light produced in the light–guides whereas the flat component arises from the single photo–electron
noise. (Bottom): Time spectrum of the corresponding signals above the line. The different shape
of the two peaks has to be attributed to variations of the detection efficiencies as a function of
time, caused by the drift of the µp atoms in the gas target. Only the xe event class is considered
in these spectra.

shown since, as will be later described, it can be used also for a timing calibration of our
detectors. Moreover it includes contributions of the electron detection in all the electron
detectors, LAAPDs and D3 included. As will be explained later various background effects
have a similar time distribution (cf. Chapter H).

It has to be noticed that this spectrum is constructed releasing the definition that a
coincidence signal has to be attributed to an electron. Any LAAPD signal with energy
below Ehi

x classified here as x ray, while the electron signal from any other detector may
occur simultaneously. The sharp peak at time te − tx = 0 is due to (physical) electrons
detected at least in two detectors, one in an LAAPD where it deposits a low energy signal
which is considered as an x ray.

As can be seen from Fig. 5.8, the electron detection probability increases at early times
(100− 400 ns) which has to be attributed to the drift of µp atoms to the target walls. At
medium times (0.8 − 2 µs) the decay time is considerably faster than the muon lifetime.
This is caused by the fact that about 30% of the µp atoms drift to the ZnSe surface of
the cavity mirrors, where most of the muons undergo nuclear capture without emitting
a high–energy electron. The number of electrons from muon decay is correspondingly
decreased in this time interval. Only at later times, the measured slope corresponds to
the µC lifetime if a flat background is taken into account. This flat background is caused
by the paddles noise.
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Figure 5.8: Time spectrum of the time differences te − tx for the xe event class. The time 0
represent the time of x–ray detection. No DELE cut is applied. The sharp peak at time 0 is due
to the electrons detected at least in two detectors; once also in an LAAPD, where the electron
deposited an energy below the Ehi

x threshold, and therefore is considered as an x ray. The two
dashed vertical lines represent the DELE cut time window usually applied (not for this histogram)
for the analysis of the data. The data are fitted for times larger than 2 µs with an exponential
function with 2.0 µs lifetime (corresponding to the µC lifetime) and a flat background from paddles
noise (red functions). The blue curve represents the time spectrum if transfer to the wall would
not occur.

A detailed analysis of the time integrated electron detection efficiency for the various
detectors has been reported in Ref. [16]. The total probability to detect a muon–decay
electron is ∼66% for te − tx ∈ [0.1, 7.1 µs]. An exclusive contribution of the electron
detectors (paddles+D3) is ∼35%, and for the LAAPDs ∼13%. The remaining ∼18% are
detected in both detector types.

5.6 Time calibration and resolution

The time difference between events measured by the same detector is directly measurable.
However to compare the time difference between signals from different detectors the rela-
tion between the two detector time scales has to be known and constant. Beam particles or
suitable radioactive sources may produce time–coincident signals in two or more detectors
and are therefore usually used to perform time calibration and time resolution measure-



82 Measurements

ments. In our case, the time calibration of the LAAPDs is based on muon decay electrons
crossing at least one LAAPD and one electron detector. It is the 5 Tesla magnetic field
forcing the muon to spiral around a magnetic field line which enhances the probability
that a single electron hits several detectors. The electron time–of–flight between different
detectors is negligibly short on our time scale.

The relative time between LAAPDs and electron detectors is defined with respect to
one paddle detector. Histograms of the time differences between signals in one LAAPD
and in the reference paddle are constructed for each LAAPD individually. These spectra
show a peak which is caused by the physical coincidences (see Fig. 5.8). The delay offsets
of each LAAPD are adjusted such that all resulting time difference spectra show the peak
at the same position. The width of these peaks is related to the time resolution of the two
detectors, LAAPD and electron paddle. An average time resolution of ∼20 ns between
LAAPDs and reference electron paddle is measured. The same procedure can be applied
to align the other electron detectors relative to the reference paddle.

In this way the relative time calibration of LAAPDs and electron detectors is achieved.
However for the laser experiment it is crucial to know also the relative timing between
the LAAPDs signals and the laser pulse entering the multipass mirror cavity. Special
runs have been dedicated to the calibration of this relative timing where visible light (in
time coincidence with the 6 µm pulse) was sent into the laser cavity. The visible light is
detectable by the LAAPDs but not the 6 µm light. When searching for the resonance no
visible light must enter the target, but for the calibration runs a visible light pulse from the
Ti:Sa laser was transmitted through the Raman cell and sent to the target bypassing the
Ge plates. The visible light from the Ti:Sa laser and the infrared light from the Raman
cell are in physical coincidence and are detected by the LAAPDs and by the infrared
detectors (V1, V2) respectively. The light intensity was chosen such that the amplitudes
of the LAAPDs signals correspond to 2 keV x rays.

The time differences ∆tcali between the signals recorded in the WFD and TDC fed
from the LAAPDs and laser–light detectors (i = V1, V2, D2 . . . ) are recorded during
these time calibration runs:

∆tcali = tlight
LAAPD − tlight

i . (5.1)

Since the excimer laser delay varies in function of time, the arrival time of the laser pulse
in the cavity is shifted accordingly. However the difference ∆tcal

i does not depend on the
excimer delay. Therefore during the search for the resonance the laser pulse enters the
cavity at the LAAPD time given by

tlaser(LAAPD) = tlight
i + ∆tcali (5.2)

where tlight
i is the time measured by the laser detectors on a pulse–to–pulse basis, whereas

∆tcali is fixed and was measured only during the time calibration runs. ∆tcal
i is known

with an accuracy of about ∼15 ns.
As shown in Fig. 5.9 the total laser delay fluctuates up to 200 ns for different runs.

This variation is caused by fluctuations of the internal delay of the excimer laser which
pump the Ti:Sa oscillator. The large decrease of delay time visible in the central part of
the figure is caused by a change of the thyratron.

In the time calibration runs, the resulting time difference between a muon stop (or,
more precisely, the emission of a 2 keV x ray) and the arrival of the laser pulse in the
cavity is typically 1.5 µs. This number agrees with the sum of the total laser delay of
∼1.6 µs and the time needed to generate the S1·S2 · D̄3 laser trigger signal of ∼0.32 µs
reduced by the average muon slowing–down and cascade time of ∼0.44 µs.
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Figure 5.9: Timing of the V2 signal as a function of run number. Each point represents a mean
value for one run. In the middle of the data taking period the internal delay of the excimer laser
was reduced by ∼ 200 ns. The error bars corresponds to the standard deviations measured on a
pulse–to–pulse basis.

5.7 LAAPDs x-ray efficiency

The total detection efficiency of LAAPDs for x rays may be expressed as

ηx = Ω εx (5.3)

where Ω is the solid angle and εx the detector efficiency which is energy dependent. In the
following it is described how to infer Ω, εx and ηx from measurements and Monte Carlo
simulations.

5.7.1 Detector efficiency εx

The detector efficiency (including windows etc.) in function of the x-ray energy can be
inferred by considering energy spectra of µp, µO and µN atoms [16]. Oxygen and nitrogen
are contaminants of the hydrogen gas target on the few per mil level. The absolute x-ray
light yields of the corresponding muonic cascades are known from measurements at low
densities where no collisional interactions take place during the muonic cascade [57, 102].

We consider first the measured energy spectrum in the 2 keV region as shown in
Fig. 5.4, composed mainly of µp(Kα), µp(Kβ) and µp(Krest) transitions. This spectrum is
fit with three Gaussians and related tails as discussed in §5.3. The relevant free parameters
are the three amplitudes Ai and the position of the Kα and Krest–lines, whereas the Kβ–
position was related to Kα according to the known energies (cf. Table 5.1). The fitted
amplitudes Ai have to be proportional to the yields Yi multiplied by the detector efficiency
at the corresponding transition energy εi (i = Kα, Kβ and Krest):

Ai ∼ Yi εi . (5.4)

The ratio of the amplitudes are

AKα

AKβ
=

YKα

YKβ

εKα

εKβ

AKα

AKrest
=

YKα

YKrest

εKα

εKrest

AKβ

AKrest
=

YKβ

YKrest

εKβ

εKrest
. (5.5)
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Therefore three detector efficiency ratios εKα/εKβ, εKα/εKrest and εKβ/εKrest are ob-
tained.

To have additional efficiency values at different energies the circular transitions of µN
and µO have been examined. The subsequent circular deexcitations µN6→5, µN5→4 and
µN4→3 at energies of 1.67, 3.08 and 6.65 keV, respectively, are emitted simultaneously,
and pairs of two coincident transitions could be measured with sufficiently high statistics.
This time coincidence is crucial in order to distinguish the low–intensity µN transitions
from other processes of comparable intensity. For example consider the events with two
x rays in time coincidence, where one energy is between 2.7 to 3.5 keV (corresponding to
µN5→4). The energy spectrum of the second x ray contains the peaks corresponding to
the µN6→5 and µN4→3 transitions. The ratio of the µN6→5/µN4→3 amplitudes leads to
the efficiency ratio ε6.7 keV/ε1.7 keV in a much similar way as Eq. (5.5) for the µp atoms.
Further pairs lead to additional efficiency ratios.

Only ratios of efficiencies are extracted from these measurements. To infer absolute
values of the detector efficiency as function of energy three scaling factors have been intro-
duced which define an absolute normalization for each of the three groups of measurements,
µp, µN and µO. These factors have been adapted to a theoretical function describing the
absorption probability of an x ray in the active zone of the LAAPDs and considering ab-
sorption losses in the various foils placed in front of the LAAPDs: polypropylene and Li
foils as well as a Si layer (dead zone) of the LAAPD itself which is preceding the active
zone of the LAAPD:

εx = exp

(
− d̄Li

λLi

)
exp

(
− d̄CH2

λCH2

)
exp

(
− d̄dead

λSi

) [
1− exp

(
− d̄active

λSi

)]
(5.6)

where λLi, λCH2
λSi are the energy dependent attenuation length respectively in Li,

polypropylene, Si [103], and the d̄’s represent the average length of the x rays paths
in the corresponding foils and detector layers. The last term accounts for the probabil-
ity that the photon is absorbed in the active layer whereas the first three terms describe
absorption losses. The average length d̄ is related to the thickness of the corresponding
layers as d̄ = d/ cos ᾱ, where ᾱ is the average incident angle of x rays and d the layer
thickness.

The average incident angle is computed with a Monte Carlo simulation for two phys-
ically possible angular distributions of the emitted x rays. The angular distribution for
x ray which are not correlated with the laser light is isotropic, whereas laser induced x rays
show a correlation with the direction of the laser polarization. For laser light polarized
along the z-axis the angular distribution is [104]

D(θ) = 1.175 − 0.525 cos2 θ (5.7)

where θ is the azimuthal angle relative to the laser polarization. The radiation is rotational
symmetric around the z-axis. This angular distribution has a minimum in the direction of
the laser polarization and a maximum at 90◦ relative to the polarization axis. Therefore we
have chosen to enter the target with laser light polarized in the direction of the beam axis,
to slightly enhance the probability to detected the laser–induced x ray. The effect of this
angular correlation affects negligibly the number of x rays pointing on the LAAPDs and
slightly the mean angle with which the x ray strikes the LAAPDs. It is found that the solid
angle to detect an x ray in the LAAPDs originated in the µp formation volume is 31% for
both isotropic and polarization–correlated distributions. However the mean incident angle
on the detectors shows a small difference for the two distributions which corresponds to an
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Figure 5.10: LAAPDs x-rays detection efficiency as a function of the x-ray energy. This efficiency
accounts also for absorption losses in the foil preceding the LAAPDs. The measurements have
been extracted from µp Lyman–series deexcitations (red bars), circular transitions in µN (green
full circles), and circular transitions in µO (blue empty circles). The solid curve representing the
“theoretical” expectation and the data points have been optimized to each other to have the best
agreement.

average path length in the foils of d̄ = 1.57 d for the polarization–correlated distribution,
and d̄ = 1.68 d for the isotropic distribution. Laser–induced x rays experience on average
about ∼ 7% less absorbing material than x rays from the “prompt” cascade.

An optimization procedure is performed in which the three scaling factors and the
thickness of the various layers are optimized to have the best agreement between scaled
measurements and the theoretical function of Eq. (5.6). The values of the various foil
thicknesses have been allowed to slightly vary since they are not precisely known. The
best agreement between data and scaled measurements is given in Fig. 5.10 which shows
the LAAPD detection efficiency as a function of the x ray energy. The resulting thickness
values are in agreement with the expectations [16].

The probability to detect a Kα x ray is (38 ± 4)% whereas the probability to detect
the 4.9 keV transition of carbon is (88±5)%. The average detection efficiency for Kα, Kβ

and Krest is (42 ± 4)%. Since high energy x rays mainly cross the active region without
being absorbed, the efficiency at high energy decreases. The decrease at low energy, on
the contrary, has to be attributed to absorption losses in the foils. The validity of these
values for the detector efficiency is confirmed by the measurement of the total detection
efficiency ηx which is presented in the next section.

5.7.2 Total efficiency ηx

The measurement of the total detector efficiency is inferred by the study of the following
process. A µp atom is created and deexcites to the ground state emitting a 2 keV photon
which may be detected. The µp1S drift to the detector window foils, muon transfer to
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carbon occurs which leads to the formation of µC atoms in excited state. µC4→3 x rays
of ∼ 5 keV energy may be emitted at delayed times corresponding to the time–of–flight
needed for the µp atoms to drift to the target walls. Finally the muon decay electron may
be detected.

We consider the following two event classes:

– delayed 5 keV followed by a muon decay electron (class: 5− e) (no x ray preceding
the 5 keV photon is detected)

– prompt 2 keV, followed by a delayed 5 keV and a muon decay electron (class: 2−5−e)

Both event classes originate from the physical process described above, but for the first
class the 2 keV photon is not detected. A comparison between the number of events in
the 5 keV peak of these two event classes leads to a measurements of the total detection
efficiency for 2 keV x rays. In order to reduce correlations between the detection of 2 keV
and 5 keV photons which will distort the extraction of the 2 keV detection efficiency from
these measurements, the time between 2 keV and 5 keV x ray was required to be larger
than 800 ns. The total number of events in the 5 keV peak of the class 5 − e (N5−e) is
proportional to (1− ηx) whereas for the 2− 5− e (N2−5−e) event class is proportional to
ηx (where x = 2 keV) and thus

N2−5−e

N5−e
=

ηx

1− ηx
. (5.8)

For this measurement the energy acceptance includes all µp(Kα), µp(Kβ) and µp(Krest)
x rays, leading to an averaged efficiency at 2 keV. For 2 keV energy x rays the resulting
measured efficiency is therefore

ηexp
x = (11.0 ± 1.0)% . (5.9)

For comparison, the solid angle Ω = (30.9 ± 1.0)% has been computed with a Monte
Carlo simulation which accounts for the stop volume of the muons. Combined with the
previously extracted “pure” detection efficiency ε2−keV = (42 ± 4)% which is an average
value for the Kα Kβ and Krest x rays it gives the total detector efficiency of

ηMC
x = Ω ε2−keV = (13.0 ± 1.3)% (5.10)

which is in reasonable agreement with measurements.



Chapter 6

Search for the 2S − 2P resonance

This Chapter is devoted to the analysis of the data recorded during four weeks of beam
time at PSI in November 2003 to search for the 2S − 2P resonance. Particular details of
the analysis not presented in the previous Chapter are given here. No resonance line was
found, and this is attributed to the lack of statistics, i.e., to a too small laser–induced
event rate, rather than a wrong frequency searching range. Some problems causing a lower
signal rate than planned are presented in §6.4. An estimate of the laser–induced event
rate and a measurement of the background rate are presented in §6.5.

6.1 “Laser ON” and “Laser OFF” data

A low–energy muon which fulfills the correct S1–S2–TOF condition and which stops in
the hydrogen gas induces a trigger signal S1·S2 · D̄3 under the condition that the data
acquisition system is ready to accept such a muon event (MUON–STOP). This trigger
signal opens a 12 µs long event gate (EVG) and triggers the laser system under the
condition that the laser is ready. If within the EVG any signal above a set threshold
is detected in the LAAPDs, the event is recorded, otherwise it is discarded. The trigger
electronics is conceived in such a way that priority is given to events where the laser is fired,
i.e., the data acquisition system is always ready when the laser is ready to fire. The events
are classified according to whether the laser system is fired (“Laser ON”) or not (“Laser
OFF”). Only “Laser ON” events were analyzed in the search of the resonance whereas
“Laser OFF” events are used to study the background and to calibrate the detectors.

In order to consider an event to be a “Laser ON” event, it is important to ensure
that the laser system not only fired but also that the 6 µm pulse had an acceptable
energy. Therefore, for each “Laser ON” event it is checked that V2 detects a reasonable
signal. Since the laser system is triggered with the average rate of only 55 s−1 whereas the
EVG could be opened with the average rate of 200 s−1, additional “Laser OFF” events are
recorded between two laser shots, i.e., during the laser “dead time”, in order to accumulate
more statistics for the determination of the background. Additional “Laser OFF” data
were taken during laser maintenance. The “Laser ON” events are further subdivided
according to the laser frequency.

6.2 2 keV x-ray energy and time spectra

For the search of the resonance the event class xe composed of a µp Kα x ray (x) followed
by an electron (e) is studied since the signature of a laser–induced event is the following:

87
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– a muon (MUON–STOP) triggers the laser and data acquisition system.

– no signals are detected in any LAAPD or electron detector in the time interval
preceding the arrival of the laser light in the cavity.

– in the laser time window (when the laser light is illuminating the µp atom) a x ray
in the Kα energy cut is detected.

– a muon decay electron is detected in a delayed (relative to the x ray detection) time
window.

The appropriate energy cuts for the Kα x rays were studied, and the values applied are
shown in Fig. 6.1. The low–energy cut is in the interval from 1.3 to 1.6 keV, chosen for each
LAAPD individually in order to accept as few low–energy background signals as possible,
the level for which varied for each detector. The upper–energy cut is set for all LAAPDs
to 2.6 keV which includes most of the 1.9 keV x-ray signals even for LAAPDs with poor
energy resolution. The energy cut interval include more than 80% of the Kα transitions.
The energy cuts are set asymmetric with respect to the 1.9 keV Kα line because the
relevant background at delayed time increases toward lower energies (see Fig. 5.5). The
x-ray energy spectrum of Fig. 6.1, which is summed up for all LAAPDs, can not be fit
with a simple sum of three Gaussian distributions representing the Kα, Kβ, and Krest

transitions since the various LAAPDs have different energy resolutions.

The background at delayed times is substantially reduced by requiring an electron
from muon decay in the time interval between 0.1 to 7.1 µs relative to the x-ray time
(see Fig. 5.8). The lower limit of this time window is given by the time resolutions of
x-ray and electron detectors whereas its width is set rather large to maximize the electron
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Figure 6.1: X-ray energy spectrum at 0.6 hPa hydrogen gas pressure from the xe event class. The
higher statistics histogram (1.07× 106 events) is the sum of “Laser OFF” and “Laser ON” events,
whereas the lower statistics histogram shows only “Laser ON” data. The vertical lines indicate the
energy cuts used in the search of the laser–induced µp Kα x rays. The two dashed lines represent
the spread of the low–energy cut for different LAAPDs summed up for all 20 LAAPDs, while the
solid line marks the high–energy cut common for all diodes.
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Figure 6.2: Time spectrum of 2 keV x rays (50 ns/bin). The “prompt” x rays appear around t = 0.
The laser–induced events are expected in the time interval 1.52 − 1.72 µs, indicated by vertical
lines. No visible laser effect is expected for this spectrum where data taken at all laser wavelengths
and without laser are summed up. The total number of “prompt” events is 7.8× 105. The laser
was fired for ∼30% of the events. The number of delayed events at laser time is 215, corresponding
to a background ratio “delayed/prompt” of 2.8× 10−4. The gas pressure was 0.6 hPa.

detection probability. In order to accept as many LAAPD signals arising from muon–
decay electrons as possible, the parameter Ehi

x defining the energy above which a certain
LAAPD signal is identified as electron, is set as low as possible. The lower limit is given
by the µC4→3 transition centered at 4.9 keV which represents the major background at
delayed times. Signals up to 6.0 keV are therefore considered as x rays, and above this
threshold as electrons. Further background suppression is realized by the second muon
cut, i.e., by suppressing events where a second muon is recorded in S1 350− 850 ns before
a delayed x ray in the LAAPDs (cf. §5.4).

For the search of the 2S − 2P resonance, in addition to the xe event class which
represents 92% of the total events used in the analysis, two other classes are considered:
xee and xx which contribute respectively to 7% and 1%. The xee class is caused by a good
events, i.e., an event of the class xe followed by a second electron signal. The additional
electron is not correlated with the first muon and is mainly due to electrons originating
from a second muon. This second muon may form a µp atom where the K x ray is in
most cases not detected (11% detection efficiency), but its decay–electron is detected (66%
probability). If this happens after the detection of the µp x ray associated with the first
muon, there is no reason to refuse such an event. The other relevant class xx corresponds
to a Kα x ray followed by an electron which deposits less than 6 keV in the LAAPDs,
and is therefore identified as a second x ray rather than an electron. The detailed analysis
performed by L. Ludhova showed that these three event classes have a sufficiently low
background level at delayed times to accept all of them for the search of our resonance.

Figure. 6.2 shows the Kα x-ray time distribution summed up for all LAAPDs and
“Laser OFF” and “Laser ON” events, regardless of the laser frequency. The Kα energy,
second muon and delayed electron cuts are applied. The peak is caused by the “prompt”
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Figure 6.3: An example of a “shifted” time spectrum (50 ns/bin) of a the x rays with the µp Kα

energy cut for all LAAPDs, measured for a particular laser frequency corresponding to the Fabry–
Perot fringe number “282843”. Laser–induced events are expected in the time interval [0−200 ns],
indicated by the two dotted lines. The number of “prompt” events is 2.1× 104.

µp K–transitions. A fraction 1 − ε2S = 97.5% of all formed µp atoms directly reach
the ground state and about 1.5% of the atoms belong to the radiatively quenched 2S
short–lived component with ∼ 150 ns decay time (see §G.3). The width of the peak of
about 180 ns (FWHM) and its asymmetric shape are mainly given by the muon stop time
distribution. The 2 keV events detected at times above 1 µs can not be explained by µp2S

radiative deexcitation (see Appendix H for its explanation). The slow µp2S component
(∼ 1% population) decays radiationless to the ground–state — via formation of excited
molecules with subsequent auto–dissociation — and does not contributes to the measured
2 keV time spectrum.

According to the time calibration between laser pulse and LAAPDs, the laser induced
events are expected to be approximately in the time window between 1.5 to 1.7 µs shown
in Fig. 6.2. It is approximate because the laser time varied up to 200 ns for different
runs and has to be considered for each event individually. A width of 200 ns was chosen
for this time window in accordance with the confinement time of the light inside the
cavity (∼ 140 ns) and the time resolutions (∼ 35 ns FWHM for the LAAPDs) and small
systematic uncertainties in the timing of the various detectors. One cannot expect to see
an increase of the 2 keV x-ray signal in this spectrum since it contains “Laser OFF” and
“Laser ON” events at all laser frequencies. However this figure is interesting because it
shows the low background level: 215 background events in the laser time window between
1.52 to 1.72 µs for 7.8 × 105 prompt events corresponding to a “delayed/prompt” ratio
of 2.8 × 10−4. With currently ∼ 2000 “prompt” 2 keV events per hour with “Laser ON”
condition, this corresponds to a rate of 0.5 background events per hour.

To search for the resonance, a set of 2 keV time spectra has to be generated at different
laser frequencies, in order to observe the number of laser–induced 2 keV x rays in function
of the laser frequency. For each of the 15 measured laser frequencies a spectrum of time
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differences tx − tlaser between the 2 keV x-ray and the laser time was generated. Each
event in these time spectra was corrected for the true arrival time of the laser pulse in the
target cavity so that laser–induced events are expected in the laser time window between
0 and 200 ns. The start of the laser time window tlaser (in the LAAPD time reference
system) corresponds to the time when the 6 µm pulse enters the mirror cavity (Eq. (5.2)).

An example of a tx−tlaser spectrum is shown in Fig. 6.3 for a laser frequency correspond-
ing to the 282 843 transmission peak number of the FP cavity used for laser–stabilization.
For this spectrum the delayed electron, the second muon and the µp Kα energy cuts are
applied. The laser–induced Kα x rays are searched for in the laser time window between
0 and 200 ns. The “prompt” peak is positioned at around −1.5 µs. For a measuring time
of 10.5 h, 2.1× 104 events in the prompt peak and only 6 events in the laser time window
have been measured. The “delayed/prompt” ratio is 2.9× 10−4 which is compatible with
the corresponding value extracted from the spectrum of Fig. 6.2, that is, this measurement
is compatible with background.

6.3 Resonance line

Since the search for the resonance was performed for different laser frequencies at different
conditions (measuring time, laser performance, muon beam rate) an appropriate normal-
ization is required in order to compare the number of events measured in the laser time
window for different frequencies. For each frequency the number of events measured in
the laser time interval is divided by the number of “prompt” events, thereby normalizing
to the true number of useful laser shoots at this frequency. Only events where the 6 µm
pulse energy was above a threshold value are accepted in these spectra. Fig. 6.4 shows
the normalized number of Kα x rays in the laser time window in function of the laser
frequency which is expressed in terms of FP fringe numbers. The measured points cover a
frequency interval of about 135 GHz around the frequency predicted using the rms proton
radius value of the CODATA group [1]. The frequency of the most left point in Fig. 6.4
is 49.7409 THz, corresponding to a proton radius of 0.905 fm (cf. Eq. (2.18)), whereas
the outermost point at the right side is at a frequency of 49.8754 THz, corresponding to
0.844 fm. Steps of 10.5 GHz (7 FP–numbers separated by 1.5 GHz each) were typically
used for the frequency scan, to be compared with a linewidth of ∼ 20 GHz (power broaden-
ing included). The expected number of the background level is given by the “Laser OFF”
measurements and is shown as the “Avg. laser OFF” line. The lines “90% CL” and “99%
CL” indicate the 90 and 99% confidence level for the hypothesis that the data contain
only background. These CL are calculated using the measured averaged background level
and the measurement time at each point to obtain the mean value of the corresponding
Poisson distribution.

All data points are compatible with the average background level. No resonance line
is seen in Fig. 6.4. Such a line is expected to have an amplitude of 2.5 × 10−4 (see §6.5)
and a full–width at half–maximum of 14 in units of FP fringe numbers, i.e., at least two
data points should be higher than the average.

On the other hand, the statistics is too low to exclude the existence of a resonance effect
in the frequency range of our measurements. This is illustrated in Fig. 6.5 which shows a
Monte Carlo simulation of the search of the resonance line at our experimental conditions
in 2003, i.e., at a background rate of 0.5 events per hour (measured), at an estimated
signal rate of 0.5 events/hour (cf. §6.5) for an average measuring time of 7 hours at each
FP fringe (see Fig. 6.4 (Top)). The most favorable case is assumed where the centroid of
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Figure 6.4: Result of the search for the 2S − 2P resonance line. Black dots are the number of
measured events in the 200 ns wide laser time window normalized to the number of “prompt”
events. The FP fringe number (with an offset of 282 000) is a measure of the laser frequency. The
scanned region (49.7409 − 49.8757 THz) corresponds to rms proton charge radii in the interval
from 0.844 to 0.905 fm. The confidence levels (CL) are calculated for the hypothesis that only
background is present, with the Poisson distribution. The upper plot shows the approximate
measuring time at each frequency.

the resonance line is on a measured FP peak. Only a quarter of the spectra shows a clear
unique peak, whereas half of them have two or more candidates, and one quarter shows
even no resonance, comparable to our data. We conclude that the statistics (number of
events) collected in the measuring time 2003 was too low to make any positive or negative
statement.

6.4 Problems during 2003–run

When the experiment was planned (1998) an event rate of about 5 events per hour was
expected. As will be discussed in detail in the next section this rate dropped to 0.5 per
hour at the condition of the 2003–run. This difference is attributed mainly to a too long
laser delay (expected 700 ns, reached 1600 ns) and to the radioactive coating of the cavity
mirrors.

Some of the LAAPDs were unexpectedly destroyed when irradiated by the few alpha
particles per second emitted by the ThF4 dielectric coating of the 6 µm cavity mirrors.
Therefore we had to install a 175 µm thick lithium foil in front of the LAAPDs which
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Figure 6.5: Sixteen simulated examples of the resonance search for a signal rate of 0.5 events per
hour, a signal to background ratio of 1, and a measuring time of 7 hours at each point corresponding
to the average value of the 2003 beam time. The resonance is assumed to be centered on the central
FP. More than half of the spectra show no clear resonance effect.

absorbed the alpha particles, but also about 50% of the 1.9 keV x rays. This has lead to
a reduction of the expected event rate by approximately a factor of 2.

To partially compensate for the long laser delay the target pressure was reduced in
the 2003–run from the planned 1 hPa to 0.6 hPa. No problem with respect to the trigger
quality and the number of stopped muons has been encountered because this pressure
decrease was accompanied by the introduction of the anti–coincidence detector D3 which
enhances the trigger quality and the absolute number of muon stops (it reflects ∼ 70% of
the muons). However the fact that the µp atom may drift out of the laser–illuminated
volume was underestimated.

Muonic hydrogen is formed in a volume of 5×15×194 mm3 corresponding to the muon
stop volume. In the time between µp formation and the arrival of the laser pulse (which
is of about 1.5 µs) the µp atom may leave the volume of 7 × 25 × 170 mm3 illuminated
by the laser light. In addition both solid angle and transmission probability through the
various foils in front of the LAAPDs for Kα x ray emitted by the µp2S atom depend on
the distance of the µp2S atom from the target axis, which increases with time.

The total detection efficiency for Kα x rays in function of time is therefore computed
with a Monte Carlo simulation which traces the diffusion of the µp2S atoms in the hydrogen
gas and the probability that laser–induced x rays reach the LAAPDs active region. Only
µp2S atoms which do not leave the laser illuminated volume contribute to this efficiency.
The initial kinetic energy of the µp2S atom is taken from measurements [10]. Both elastic
and inelastic collision [13] with hydrogen molecule are taken into account to compute the
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Figure 6.6: (Left): Simulated total detection efficiency as a function of time for laser–induced
2 keV x rays emitted isotropically by µp2S atoms diffusing in hydrogen gas of 0.6 hPa pressure.
The higher lying curve is computed assuming no absorption losses in the layers in front of the
active region of the LAAPDs, whereas the lower lying curve accounts for absorption losses. The
latter is normalized at time zero (“prompt” times) using the measured detection efficiency of 42%
for 2 keV x rays (weighted average extracted from Fig. 5.10). The black circle represents the total
efficiency at our conditions (laser delay and pressure) which is 5.2%. (Right): Total detection
efficiencies for laser induced 2 keV x rays for various absorption losses normalized at time zero,
i.e., when µp2S atoms are formed. The relative decrease of detection efficiency caused by the drift
is approximately independent on the absorption losses. At a delay of 1.6 µs corresponding to the
mean time of the laser time window the drift process has reduced the detection efficiency of the
laser–induced 2 keV x rays to 40% of the initial value.

drift of the µp2S in hydrogen gas. The position where the x ray is emitted is given by
the µp2S atom position and the angle distribution is assumed to be isotropic (the small
correction related to the polarization–dependent angular distribution is accounted by a
separate factor).

The probability to detect Kα x rays emitted by µp2S atoms which are in the laser
illuminated volume (7 × 25 × 170 mm3) as a function of time is shown in Fig. 6.6. The
simulation predicts that for 0.6 hPa hydrogen pressure the total detection efficiency drops
from 13.0% at the µp formation time to 5.2% at the mean average time the laser is
confined in the cavity. The µp2S lifetime and the laser–induced transition probability are
not included in these values. A small enhancement of the detection probability from 5.2%
to 5.6% is expected for laser–induced x rays due to laser polarization–dependent angle
distribution. On the right graph of Fig. 6.6 the total detection efficiency is shown as a
function of time normalized to the detection efficiency when µp atoms are formed. In the
laser time window the detection efficiency has drop to about 40% of its initial value. This
time behavior is found to be almost independent of the absorption losses.
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6.5 Event and background rate in 2003 beam time

In the analysis of the data, the delayed laser–induced events are treated essentially as
the “prompt” µp K-lines, i.e., the same event classes with the same cuts are considered.
Beam rate, detectors and cut–efficiencies are about the same. It is therefore possible
to calculate the number of expected laser–induced events (on resonance) relative to the
number of measured prompt K-lines transitions. The prompt 2 keV x ray are emitted at
time tx ∼ 0 with a total yield Y2 keV ' 0.99 that we approximate to 1. The expected rate
for laser–induced events (on resonance), relative to the “prompt” ones, can be calculated
as the product of the following numbers:

– relative 2S state population (0.011 ± 0.002):
Only 1% of the total formed µp atoms reach the 2S long–lived state, whereas all the
other contributes to the “prompt” deexcitation (cf. §G.4).

– population of F = 1 hyperfine level (0.65 ± 0.05):
Assuming a statistical distribution of the initial 2S population, 3/4 of it is useful
for the laser experiment since we excite only transition starting from the triplet
state. However at thermal equilibrium the Boltzmann distribution predicts a triplet
population (PF=1) relative to the total population (Ptot = PF=1 + PF=0) in the 2S
state of

PF=1

Ptot
=

3e−∆Ehfs/kT

1 + 3e−∆Ehfs/kT
' 0.55 (6.1)

where ∆Ehfs = 0.023 eV is the 2S hyperfine splitting, and kT = 0.026 eV. When
formed the µp2S sublevels are statistically populated. No cascade process is known
which may favor the population of the triplet or singlet state. Since no cross sections
for the spin flip processes (µpF=1

2S +H2 ←→ µpF=0
2S +H2) are available for the 2S state,

is not possible to trace the time evolution of the population in the triplet–singlet
system. We assume a triplet state population of 0.65 — between the statistical and
thermal value — in the laser time. This is a conservative assumption because spin–
flip processes requires “hard” collisions which have relatively small cross sections,
resulting in small spin–flip rates at 0.6 hPa gas pressure.

– 2S survival probability when laser pulse enters the cavity (0.32 ± 0.06):
Using the measured collisional quenching rate of λ2S

quench = 5.1+2.4
−2.1 · 105 s−1× p [hPa]

[11] a 2S lifetime of τ long
2S = (1.32±0.24) µs is expected at 0.6 hPa (cf. §G.4). It follows

that the survival probability when the laser pulse enters the cavity (tlaser = 1.52 µs)
is

e−tlaser/τ long
2S = e−1.52 µs/1.32 µs = 0.32 (6.2)

– 2S − 2P transition probability in the mirror cavity (0.30 ± 0.10):
The transition probability was numerically computed (see Fig. E.2) assuming a
0.2 mJ pulse at the exit of the Raman cell, a light intensity in the cavity with
exponential decay constant of 140 ns, and for an observation time (laser the win-
dow) of 180 ns. Instead of the 200 ns laser time window used in the analysis a shorter
time window is used which take into account the fact that the coupled light needs
about 20 ns to fill homogeneously the volume. A transition probability of 0.5 results
when the laser frequency is on resonance.
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Additional losses due to lower pulse energies (energy fluctuations) and not optimally
filling of the cavity volume (cavity injection misalignment) have been estimated to
be of the order of 40%. The resulting transition probability is 0.5× (1− 0.4) = 0.3

– Decrease of detected laser–induced x rays caused by the µp2S drift (0.40 ± 0.10):
This factor was computed using the cross sections of T. Jensen and the measured µp
kinetic energy distribution shown in Fig. G.3. The initial stopping volume and the
laser illuminated volume were assumed to be 5×15×194 mm3 and 7×25×170 mm3

respectively.

– Decrease of laser–induced event rate (relative to “prompt” x rays) caused by the
muons stop distribution (0.9±0.05): It was measured that the muon stop distribution
has its maximum close to the gold surface of the D3 detector [16], i.e., in a region
which can not be illuminated by the laser light.

The resulting ratio for the number of expected laser–induced events (on resonance),
relative to the number of prompt events, is therefore 0.011×0.65×0.32×0.30×0.4×0.9 =
(2.5 ± 1.2) × 10−4. As seen in Fig. 6.2, the measured number of background events in a
200 ns wide laser time interval, relative to the number of prompt events, is 215/(7.8×105) =
2.8× 10−4. This ratio is 2.6× 10−4 when the timing of each individual event is corrected.

Based on the estimated signal and the measured background rates a “signal/background”
ratio of approximately one is expected in the laser time window. About 2000/h prompt
2 keV events (with the cut–conditions mentioned above) were measured. The rate ex-
pected for laser events “on resonance” is therefore ∼ 2000 × (2.5 × 10−4) = (0.5 ± 0.2)/h
which was not sufficient for the search of the resonance line (see Fig. 6.5).



Chapter 7

Future improvements of the
apparatus

The experience from the 2003 measuring time is that the basic concepts of muon beam,
detectors and laser system are sound and that the apparatus worked reliably. However, the
event rate was too low. Future improvements will therefore concentrate on a substantial
enhancement of this rate which will be achieved mainly by replacing the excimer–dye
laser complex with cw–diode pumped Yb:YAG “thin–disk” laser which has a much higher
repetition rate and smaller delay, and by removing the Li sheets in front of the LAAPDs.
Section 7.1 presents the new technology of the thin–disk laser together with the first results
achieved with a prototype adapted for our experimental conditions. In §7.2 the estimated
improvement of event rate due to the apparative improvement is presented. Although
the background level is already quite low, i.e., 0.5 background events per hour, small
apparative changes, based on the understanding of the various background components
described in Appendix H, have been planned to strongly reduce the background level.
This will be discussed in §7.4 and finally possible future extension of the experiment will
be presented.

7.1 Thin–disk laser

The main improvement of the apparatus foreseen for a future beam period is to replace
the two excimer and dye lasers by a laser with a shorter internal delay time and higher
repetition rate. The new laser is based on the technology of so called “thin–disk” solid
state lasers [105–109]. Thin–disk lasers have recently been incorporated into industrial
welding and cutting equipment, demonstrating the efficiency and robustness of this tech-
nology [110]. Besides the outstanding properties of the thin–disk laser for cw–operation
it is also well suited for pulsed laser systems with acousto–optical switching.

The thin–disk laser is a special kind of diode–pumped high–power laser. The difference
to conventional rod lasers is the geometry of the gain medium: it is a thin disk, where
the thickness in beam direction is considerably smaller than the laser beam diameter,
and the generated heat is carried off dominantly through one end face, rather than in
the transverse direction. The cooled end–face has a dielectric coating reflecting both the
laser and the pump radiation which leads to a cavity scheme as shown in Fig. 7.1. Due
to the small thickness of the disk (e.g., 100 − 200 µm for Yb:YAG), the temperature
rise during laser action is small. In addition, the temperature gradients are dominantly
in the direction perpendicular to the disk surface, because the disk is cooled and also
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Figure 7.1: Principle of the thin–disk laser. The active laser medium (e.g.,Yb:YAG) is a disk
with typically less than 200 µm thickness and a diameter of several mm (depending on the output
power). The crystal is optically pumped from the front side of the disk by cw–laser diodes laser in
a quasi–end–pumped design. An indium layer on the back plane of the crystal thermally connects
the disk with a water–cooled heat sink.

optically pumped (quasi–end–pumped configuration) in axial direction. This results in a
very good beam quality due to the weak thermal beam distortions (thermal lensing effect)
and high efficiency since the temperature rise remains small (Yb:YAG has a quasi–three–
level–scheme; pump absorption decreases with increasing temperature).

The small thickness of the disk leads to inefficient pump absorption in a single or
double pass even for highly doped (typically 8% for Yb:YAG) crystals. Depending on the
thickness and the doping level of the crystal, only a small fraction of the pump radiation
is absorbed in the laser disk. Most of the incident pump power leaves the crystal after
being reflected at the back side. The absorption is increased by successive redirecting
and imaging of the pump beam on the crystal by a multipass arrangement composed of a
parabolic mirror and a retro–reflector as shown in Fig. 7.2.

The good cooling capability of the thin–disk laser makes it possible to have a quasi–
three–level–system as active material. Three–level–systems are highly efficient but require
high pump power densities to reach the threshold. Yb:YAG is particularly suited for high
power lasers since it is a quasi–three–level–system, which can be pumped with commer-
cially available InGaAs–diode lasers at 940 or 970 nm and is lasing at 1030 nm. Its Stokes
efficiency — defined as ε = λpump/λemitted — is therefore very high which implies a small
heat deposition in the crystal. Moreover the long lifetime of its upper state (∼ 1 ms)
and the small emission cross–section (2× 10−20 cm2) offers the possibility to store a large
amount of energy.

Pulsed Q-switched thin–disk lasers are developed since few years. Presently there
are tests with a prototype version of a pulse laser which is adapted to our experimental
requirements: a delay time from trigger to output pulse shorter than 1 µs, and an energy
per pulse of about 50 mJ at 515 nm (after frequency doubling) for a repetition rate larger
than 200 Hz. Figure 7.3 illustrates the schematic arrangement of the prototype Q-switched
thin–disk laser. Besides the thin disk the cavity contains a thin–film polarizer (TFP) used
as a polarization dependent outcoupler and a Pockels cell (PC) for Q-switch operation
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Figure 7.2: Optical pump design for the thin–disk laser with 16 pump beam passes. The radiation
of the laser diodes is first homogenized and then focused by the parabolic mirror onto the disk.
The power that is not absorbed is re–imaged several times on the crystal to optimize the pump
efficiency. The light exiting the diode stack impinges on the parabolic mirror at position (1). After
reflection on the disk (red circle) it reaches position (2). The folding mirror’s system causes a
rotation of the light on the parabolic mirror. When back reflected on the parabolic mirror (3) the
pump light is again focused on the disk and reflected at position (4). When position (8) is reached
a simple mirror reflects the light which then follows the same path backwards.

which induces polarization changes of the light circulating in the cavity. The thin–disk
concept leads to a quite compact cavity design which is necessary to have a short laser
delay.

The fundamental dynamics of the pulse formation in this Q-switched laser cavity is the
following. The thin–disk is continuously pumped by the laser diodes. At times preceding
the trigger pulse the laser is operating on a pre–lasing mode, i.e., the Pockels–cell and
λ/4–plate are adjusted such that the laser operates (in cw mode) close to the threshold.
This is a kind of self–injection–seeding process. The pre–lasing ensures that a large number
of photons is always circulating in the cavity resulting in a shorter pulse buildup time.
When triggered, the PC first induces a rotation of the polarization in such a way that
no light is transmitted through the thin film polarizer. The cavity is closed and thus the
photons confined inside the cavity undergo an amplification process at low losses. When
the population inversion has been removed by the circulating photons, the voltage on
the PC is changed in such a way that the cavity is opened and the circulating power is
extracted.

In first tests, the prototype laser has demonstrated to deliver 20 mJ at 1030 nm up to

E=20 mJ

R=+3 m

R=−2 m

λ=1030 nm
PC λ/2 TFPλ/4

Thin−disk

Figure 7.3: Schematic representation of the Q-switched laser resonator. TFP: thin–film–polarizer,
PC: Pockels–cell. The beam size on the crystal is ∼4 mm in diameter and the cavity 68 cm long.
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Figure 7.4: Measured output energy at 1030 nm of the thin–disk Q-switched Yb:YAG laser as a
function of the laser repetition rate for 260 W of pump power.

400 Hz repetition rate with a pulse length of 25 ns (FWHM) and a total delay of 650 ns
when pumped by 260 W. The measured output energy as function of the repetition rate
is shown in Fig. 7.4. The decrease of the output energy starts at repetition rates above
400 Hz, i.e., at a pulse–to–pulse time difference below 2.5 ms which is 2.5 times larger
than the upper level lifetime.

The measured delay may be further reduced by optimizing the trigger electronics of the
PC, and by shortening the optical pulse build–up reducing the cavity length. In addition
the configuration of the cavity may be rearranged such that per round trip the crystal is
crossed several times rather than once as in the present configuration. A crude estimate
predicts that the pulse build–up time may be reduced to 550 ns.

In the first test mentioned above it was found that proper operation of the laser
critically depends on the quality of the thin disk. A small impurity or crystal defect leads
immediately to a damage of the crystal when operated in pulsed regime. For this reason
the laser is assembled and operated in a clean room environment. For pulsed operation, a
special effort has to be made to increase the optical damage threshold by increasing the
quality of the beam circulating in the cavity (no hot spots) and by carefully studying the
Q-switching dynamics to optimally extract the energy without damaging the crystal.

High laser output power can be achieved from one single disk by increasing the pump
spot diameter while keeping the pump power density constant [107]. In the cw–regime the
slope efficiency and the optical efficiency have been shown to be nearly independent of the
pump spot diameter. The thin–disk laser presently in construction will be pumped with
diodes delivering 800 W at 970 nm. With such a pump power and some improvements
of the laser efficiency the aimed 90 mJ energy per pulse at 1030 nm should be reached.
After external frequency doubling in a LBO crystal, 50 mJ at 515 nm can be expected
(the measured spectral width of the pulse is 0.8 nm at FWHM).

The 50 mJ pulse energy at 515 nm are sufficient to pump the Ti:Sa laser. This pump
energy has not to be as high as for the excimer–dye laser (90 mJ) due to the stability of
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the disk–laser. A higher Ti:Sa pump efficiency can thus be realized. Very recently the
Ti:Sa laser shown in Fig. 4.1, but pumped with a frequency–doubled Nd:YAG laser, has
demonstrated to deliver 13 mJ energy when pumped with 50 mJ of green light. This was
converted in the Raman cell to about 0.25 mJ energy at 6 µm. The Ti:Sa oscillator was
pumped with a stable pulse of 12 mJ and delivered 2 mJ at 708 nm (with a pulse length of
6 ns) corresponding to an efficiency of 15%. The Ti:Sa amplifier was pumped with 38 mJ
and delivered 13 mJ at 708 nm which corresponds to an efficiency of 29%.

7.2 Future event rate

Replacing the excimer–dye laser stage with the proposed thin–disk laser will result in a
much higher laser repetition rate (triggered by muons) and a shorter laser delay time.
The shortening of the delay time makes it possible to raise the hydrogen gas pressure. An
estimate of the future event rate is given in the following which takes into account the new
laser features, the higher gas pressure, the removal of the Li protective sheets in front of
the LAAPDs, and the increase of the LAAPDs active area. The expected future rate is
calculated relative to the event rate in the 2003–run.

– The 2S–survival probability at laser times will increase by a factor of (1.2 ± 0.1):
Replacing the excimer laser (1200 ns internal delay) by the disk laser ((550±100) ns
delay) will shorten the total delay time from muon stop to laser light by 650 ns, i.e.,
from the present value of ∼1.5 µs to (0.85± 0.10) µs. The shorter laser delay makes
it possible to raise the hydrogen gas pressure from 0.6 to, e.g., 1.4 hPa. The 2S
lifetime is therefore shortened from τ long

2S = 1.32 µs to 0.86 µs. Note that the muon
slowing–down time will be also shortened from about 500 to 300 ns at the higher
pressure, but this is compensated by a reduction of the time needed to produce the
laser trigger from 400 to 200 ns. As a matter of fact, at pressure above 1 hPa there is
no need to wait for a D3 signal since only few muons are not stopped before reaching
the end of the target. Therefore the D3 detector will be excluded from the muon
trigger. The factor exp(−tlaser/τ

long
2S ), which is relevant for the event rate, improves

by a factor 1.2.

– The average laser repetition rate will increase by a factor (3.0 ± 0.4): The average
laser repetition rate when the laser is triggered by muons entering the apparatus at
random times is given by

nlaser =
(
tdead +

1

nmuon

)−1
(7.1)

where nmuon is the rate of muons trigger (S1·S2 · D̄3) and tdead the laser dead time.
This muon rate will increase from the measured value nmuon = 240 s−1 (S1·S2 ·D̄3) at
0.6 hPa to the measured value nmuon = 320 s−1 (S1·S2) at the higher pressure. The
laser dead time for optimum operation of the excimer–dye laser in the 2003–run was
tdead = 14 ms, whereas for the thin–disk laser, it will be 2.85 ms (corresponding to
350 Hz repetition rate). The average repetition rate will thus increases from 55 s−1

to 167 s−1.

– The excitation and detection of laser–induced x rays will increase by a factor (3.4±
0.5): The calculated loss of event rate connected with the drift of the µp2S atoms
takes into account both the fact that the µp2S atoms leave the laser–illuminated
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volume and the loss of detection probability when the µp atoms move away from
the target axis. The drift of the µp2S atoms will be reduced by the higher pressure
and shorter laser delay. The detection efficiency of laser–induced x rays is reduced
to 67% of the value if µp atoms would not drift. In run 2003 this reduction of
detection efficiency was 40% at 1.6 µs laser average delay time and 0.6 hPa gas
pressure (cf. Fig. 6.6).

Additionally a removal of the Li protective layer is planned since the radioactive
coating of the cavity mirrors is foreseen to be replaced. The detection efficiency will
be enhanced by a factor 1.9.

– Optimization of muon stop volume (1.2 ± 0.1): At 0.6 hPa hydrogen pressure the
maximum of the muon stop distribution was near the gold surface of the D3 detector
where no LAAPD detectors are placed. At 1.4 hPa this distribution will be centered
near the middle of the target where the x ray detection efficiency is larger. An
increase of the x ray detection efficiency of about 20% is expected.

– Shortening of slowing down time (1.1): The increase of pressure reduces the time
required for the muons to slow down by about 200 ns. The possible muon decay
before µp formation is reduced by about 10% at 1.4 hPa relative to 0.6 hPa pressure.

– Optimization of the light distribution inside the 6 µm cavity (1.2 ± 0.1): A proper
on–line monitoring system of the cavity alignment will be developed in order to
ensure that the laser illuminates optimally the muon stop volume.

– Optimization of laser stability (1.1±0.1): Due to the absence of dye and excimer gas
degradation and pulse–to–pulse fluctuations related with these lasers, the stability
of the disk–laser guarantees a higher percentage of laser shots with a reasonable laser
pulse energy. A 20% increase of “useful” laser shots is assumed.

– Increase of LAAPD active surface (1.35 ± 0.1): New LAAPDs with larger active
surface will increase the 2 keV detection solid angle, and will slightly reduce the
losses related to the µp2S drift.

The average event rate expected in the measuring time planned in 2006 will therefore
be improved by a factor (29 ± 7) compared with the event rate in 2003. The expected
event rate is thus (15± 6) per hour. Additionally the excimer–dye system required many
hours of maintenance per day during which laser operation was not possible. The up–time
of the laser system will therefore increase from 40% to approx. 80%.

7.3 Background rate

Table 7.1 summarizes the estimated background which can be extrapolated from Fig. H.5
since the relevant background processes are essentially pressure independent. Only the
background related to the radiative deexcitation of the short–lived 2S state has to be
corrected to account for its pressure dependence. The number of background events (pro
formed atom) at 1.4 hPa in a time window t ∈ [0.85−1.05 µs] is estimated to be 5.2×10−5

events per formed µp atoms. It is important to notice that the background does not depend
on the Li sheets, since it is caused by high energy x rays and electrons. Therefore the
removal of the Li sheets is essential in order to increase the signal rate without increasing
simultaneously the background rate. Since the background rate scales linearly with the
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Table 7.1: Summary of the various background contributions (cf. Appendix H) expected in the
laser time window, i.e., at time t ∈ [0.85− 1.05 µs], for a pressure of 1.4 hPa, extracted from the
time dependence shown in Fig. H.5.

Contribution B(t ∈ ∆tlaser) Solution to reduce
[events/µp atoms] the background

transfer to LAAPDs window 41× 10−6 gold layer on foils
electron correlated

2 keV correlated to muon decay 10× 10−6 increase threshold in paddles,
electron from paddle noise additional scintillator

2 keV from second muon 1× 10−7 use also S2 as
electron from second muon second muon detector

2 keV from neutron 3× 10−7 —
electron correlated —

short–lived 2S tail 1× 10−7 decreases with
increasing pressure

sum 5.2× 10−5

number of “Laser ON” events, to deduce the background rate at the planned experimental
conditions the increase in number of “Laser ON” events has to be considered. It follow
that at the future conditions the background rate is given by the measured background
rate in 2003 run (0.5 bg events/h) properly scaled:

Btot(t ∈ [0.85 − 1.05µs]) ' (5.2× 10−5)

(1.9× 10−5)
× 3.0× 1.2 × 1.1 × 1.1× 1.35 × 0.5 [bg events/h]

'(8.0± 2.0) [bg events/h] .

(7.2)

The first term is the ratio of the total background given in Table 7.1 and Table H.2,
and the last term is the background rate measured in 2003. The other terms takes into
account the increase of laser triggers (×3.0), the optimization of stopping volume (×1.2),
the increase of “good” laser shots which increase the number of events classified as “Laser
ON” events (×1.1), the shortening of the muon slowing down (×1.1), and the increase of
LAAPDs active area (×1.35).

7.4 Possible background reduction

The signal rate expected for the future experiment will increase by a factor of 29 and the
ratio “signal/background” by a factor of 29/16=1.8. Nevertheless some relatively small
apparative changes have been planned which should substantially reduce the background.

– The energy threshold for the the electrons detected in the paddles was set in the
2003–run to a very low value in order to be able to detect also the C̆erenkov light
originated in the Lucite light–guides. This led to an increase of electron detection
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in the paddles of 35%. However the background was also increased by a factor of
1.6. It is planned to cover the light–guides by plastic scintillators to obtain a better
detection of those electrons which in 2003–run were producing C̆erenkov light. All
electron signals are then expected to have amplitudes above the threshold line plotted
in Fig. 5.6. The discriminator threshold can thus be set above the one photo–electron
peak, and the background will be reduced without loosing signal rate.

– By evaporating a thin layer of gold on the polypropylene foils the transfer–induced
background may be strongly reduced. (µAu)∗ will be formed instead of (µC)∗ atoms.
Several x rays and Auger electrons may be emitted during the µAu cascade. Since the
muon lifetime in gold is strongly reduced by nuclear capture (τ Au

µ = 73 ns [101]), the
DELE time window can be chosen in such a way that the electrons from muon decay
in gold are not detected while reducing the detection efficiency for delayed electrons
from µp by only 5− 10%. Therefore the background connected with the transfer to
carbon can be eliminated. However it has to be noted that the deexcitation in gold
will probably induce signals in the LAAPDs which sometimes may be identified as
2 keV x rays. It is therefore important that the accidental rate in the paddles is
lowered (as discussed above) to avoid fake electron signals.

The thickness of the gold layer required to absorb µp1S atoms preventing them to
reach the polypropylene foils depends on µp kinetic energy. Monte Carlo simulations
show that in the laser time window from 850 to 1050 ns most of the µp1S atoms
reaching the wall have kinetic energies below 5 eV. The cross section for muon
transfer to gold (µp + Au→ p + µAu) calculated by Bracci and Fiorentini is [111]

σµp→µAu '
0.42 × 10−16

√
Ekin

[cm2] (7.3)

where Ekin is the kinetic energy expressed in eV. The absorption length of µp1S

atoms is defined as l = 1/nσµp→µAu where n = 6× 1022 cm−3 is the density of gold
atoms. Its value is hence

l ' 4
√

Ekin(eV) [nm] . (7.4)

A layer of about 25 nm turns out to be sufficient to stop most of the impinging
µp atoms (the effective average thickness seen by µp atoms is about 1.6 dAu which
is further increased by scattering in Au). Compare this value with the range of a
1.9 keV x ray in gold of about 400 nm. Only 10% of the 2 keV x ray are absorbed
by the 25 nm gold layer.

With these small apparative changes we hope to reduce the background rate by an order
of magnitude whereas the signal rate will be reduced by only 20%.

7.5 Measuring time and search of the resonance

As previously mentioned the signal rate (Stot) is expected to increase by a factor of (29±7)
and the background rate (Btot) by a factor of (16± 4):

Stot(t ∈ [0.85 − 1.05 µs]) ' 0.5 [events/h] × 29 =(15 ± 6) [events/h]

Btot(t ∈ [0.85 − 1.05 µs]) ' 0.5 [events/h] × 16 =(8± 2) [events/h]
(7.5)

The background rate given here does not take into account the above described possible
background reduction. Note also that the background and signal rates are very often



7.5 105

0
20
40
60

-50 0 50

0
20
40
60

-50 0 50

0
20
40
60

-50 0 50

0
20
40
60

-50 0 50

0
20
40
60

-50 0 50

0
20
40
60

-50 0 50

0
20
40
60

-50 0 50

0
20
40
60

-50 0 50

0
20
40
60

-50 0 50

0
20
40
60

-50 0 50

0
20
40
60

-50 0 50

0
20
40
60

-50 0 50

0
20
40
60

-50 0 50
0
20
40
60

-50 0 50
0
20
40
60

-50 0 50
0
20
40
60

-50 0 50

Frequency [GHz]

E
ve

nt
s

Figure 7.5: Simulated examples of the 2S − 2P resonance search for a signal rate of 15 events
per hour, a background rate of 8 events per hour and for a measuring time per point of 2 hours
corresponding to approximately 3 days of beam time. The number of events is plotted as a function
of the detuning relative to the line centroid position. This simulation was performed assuming the
resonance to be centered on the central Fabry–Perot fringe. Comparable statistical power results
if the resonance if placed in between two measurement points.
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Figure 7.6: Simulated examples of the 2S − 2P resonance search. Same conditions as for Fig. 7.5,
but for a measuring time at each point of 5 hours corresponding to one week of measuring time.
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correlated, i.e., an increase (decrease) of the signal rate often corresponds to an increase
(decrease) by the same amount of the background rate.

With these expected signal and background rates the search for the resonance will take
approximately 3 days since about 20 different wavelengths (corresponding to a scan range
of 200 GHz) for about 2 hours each have to be measured. This results in 46 ± 7 events
on resonance (signal+background) and of 16 ± 4 for each point outside the resonance
line (background). The here given uncertainty is only the statistical uncertainty. The
Monte Carlo simulations of Fig. 7.5 demonstrates the search of our resonance for 3 days of
measuring time assuming the signal and background rates given in Eq. (7.5). It is found
that one week of measuring time is then sufficient to find the resonance (see Fig. 7.6). The
remaining beam time which will be of the order of 4 weeks will be used to measure the
position of the resonance line to the proposed accuracy of 30 ppm.

7.6 Future extension of the experiment

The 2SF=0
1/2 − 2PF=1

3/2 transition in muonic hydrogen where the initial state corresponds to
the lower 2S hyperfine level could be also measured. There is a considerable theoretical
uncertainty related with the 2S hyperfine splitting (cf. Table 2.2), whereas the 2P fine
and hyperfine splitting can be predicted exactly. A suitably weighted superposition of the
2SF=1

1/2 − 2PF=2
3/2 with the 2SF=0

1/2 − 2PF=1
3/2 Lamb shift measurements will give the “pure”

2S−2P Lamb shift in muonic hydrogen, removing the uncertainty related to the theoretical
prediction of the hyperfine splitting (especially Zemach radius and proton polarizability
contributions to the hyperfine splitting).

A measurement of the Lamb shift in muonic deuterium (µd) would lead to a test of the

polarizability calculations to a precision near 1%. The laser wavelength for the 2S
F=3/2
1/2 −

2P
F=5/2
3/2 transition in µd is λ = 5.90 µm, corresponding to a Ti:Sa laser wavelength of

706 nm. From the theoretical side the µd polarization shift has been calculated with 2%
precision [112]. To test the polarizability contribution in deuterium it is necessary to know
the deuteron charge radius. This is achieved by deducing the proton radius from muonic
hydrogen spectroscopy and combining it with the measured isotopic shift in ep–ed [113].

A very challenging experiment is in progress at MPQ Garching aiming to measure
the 1S − 2S transition frequency of (trapped) He+ ions with a frequency comb laser
operated in the extreme ultraviolet (60 nm) [114]. Since the gross–structure of the energy
levels scales as Z2 (see Eq. (A.3)) and the Lamb shift as Z4 (see Eq. (A.21)), the He+

energy levels are much more sensitive to bound–state QED corrections than hydrogen. In
particular the two–loop terms which presently have the largest uncertainty are of order
Z6. The high resolution spectroscopy of He+ will therefore provide an enhanced test of
bound–state QED. As for muonic hydrogen, the spectroscopy of muonic helium can be
used to determine the nuclear size, i.e., the 4He– and 3He–nucleus rms charge radii may
be deduced if the Lamb shift in muonic helium is measured. This measurement may
also be useful for the search of the resonance line in He+. The spectroscopy of muonic
helium can be performed with basically the same apparatus as described in this thesis.
The lifetime of the µHe2S atoms is longer at higher gas densities compared to µp2S (e.g.,
1.6 µs at 10 hPa [115,116]) and its transition frequency corresponds, e.g., to a wavelength
of 812 nm (2S1/2 − 2P3/2 in µ4He), which is optimal for the Ti:Sa laser (no need of any
Raman shift).



Appendix A

Theory of hydrogen energy levels

The determination of the rms proton charge radius from the µp Lamb shift experiment
is essential for comparing the measured 1S Lamb shift in hydrogen with its theoretical
prediction. A short overview of the basic ideas, challenge and problems related to the
theory of hydrogen energy levels is given in this Appendix without the presumption to
be complete. An accurate description of the energy levels over the range of 14 order
of magnitude is necessary in order to reach the experimental accuracy of the 1S − 2S
transition frequency. There are many corrections to the Dirac energies which contribute
at this level of precision: radiative (QED), recoil (finite nuclear mass), recoil–radiative
and nuclear structure corrections (finite nuclear size, nucleus polarizability).

In this Appendix focus is given to the problems related to the calculation of the one–
and two–loop self–energy terms and to the effects related to the nonpoint–like nature of
the nucleons. This may be justified since the one–loop self–energy represents the major
contribution to the Lamb shift whereas the two–loop and finite size effects dominate the
uncertainty in the prediction of the Lamb shift. The basic ideas and the theoretical status
up to the year 2001 can be found in the overview article of Eides et al. [19].

A.1 Bohr energy levels

Since the electron to proton mass ratio is very small m/M ' 1/2000, it can be assumed
as a first approximation that the mass of the nucleus is infinitely large. Hence the nucleus
is considered as a static source of the Coulomb field. The Hamilton operator H for an
electron of mass m and charge −e in the field of a infinitely heavy Coulomb center with
charge Ze is given by (SI units)

H =
p2

2m
− Ze2

4πε0r
, (A.1)

where ε0 is the free space permittivity and r the electron–proton distance. In first approx-
imation the hydrogen energy levels are described by the stationary Schrödinger equation

H Ψnlm(r) = En Ψnlm(r) , (A.2)

where Ψnlm is the electron wave function with n being the principal quantum number, l
the orbital angular momentum and m the magnetic quantum number. The Bohr’s energy
levels corresponding to the energy eigenvalues En of this equation depend only on n and
are

En = −R∞ hc
Z2

n2
= −mc2 (Zα)2

2n2
, (A.3)
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where c is the speed of light in vacuum, h the Planck constant, α = e2/(2ε0hc) ' 1/137
the fine structure constant and

R∞ =
me4

8ε2
0h

3c
= α2 mc

2h
(A.4)

the Rydberg constant. Finiteness of the nucleus mass can be included introducing the
reduced mass mr of the two–body system which is defined as

mr =
mM

m + M
. (A.5)

For hydrogen mr ' 0.9995m. In the nonrelativistic case the introduction of mr fully
describes the two–body system. The hydrogen energy levels for a finite proton mass are
described by Eq. (A.3) substituting mr to m. The energy levels for an infinitely heavy
proton and one with mass M differ about 0.05%.

The energy of an absorbed or emitted photon hν is the energy difference between two
levels hν = En −En′ . Its spectrum is described by

1

λ
=

ν

c
= R∞

mr

m

(
1

n2
− 1

n′2

)
, (A.6)

where n, n′ are the principal quantum numbers of the two involved energy levels, λ and ν
are the wavelength and the frequency of the photon, respectively. From now on through
the text natural units ~ = c = ε = 1 are used when not explicitly written.

A.2 Dirac energy levels

A better description of the hydrogen energy levels is given by the Dirac equation. It takes
into account both the relativistic energy dependence of an electron on its momentum
(E =

√
p2c2 + m2c4) and the 1/2 electron spin. Again in first approximation we consider

the nucleus as an infinitely heavy static Coulomb source with charge Ze. In this a case an
exact solution of the Dirac equation exists with energy eigenvalues (see, e.g., Ref. [117])

Enj = mc2 f(n, j) , (A.7)

where

f(n, j) =


1 +

(Zα)2
(

n− j − 1
2 +

√(
j + 1

2

)2 − (Zα)2
)2




− 1
2

(A.8)

and j is the sum of orbital and spin angular momentum of the electron. States with the
same principal quantum number n but different angular momentum j are split into n
components of the fine structure. Expanding f in powers of Zα leads to [38]

Enj ' mc2 −mc2 (Zα)2

2n2
−mc2 (Zα)4

2n3

(
1

j + 1
2

− 3

4n

)

−mc2 (Zα)6

8n3

[
1

(j + 1
2)3

+
3

n(j + 1
2)2

+
5

2n3
− 6

n2(j + 1
2)

]
+ . . .

(A.9)
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The first term describes the relativistic mass energy and the second is the Bohr energy
(cf. with Eq. (A.3)). The first, second, and the third term in the relativistic energy
expansion

E =
√

m2c4 + m2p2 ' mc2 +
p2

2m
− p4

8m3
+ . . . . (A.10)

contributes respectively to the first, second, and third term in Eq. (A.9). The expan-
sion in powers of p2/2m corresponds to an expansion in (Zα)2 and hence the relativistic
corrections are given by an expansion over even powers of Zα. Corrections of the Dirac
eigenvalues that take into account the finiteness of the nucleus mass can not be fully ac-
commodated as in the nonrelativistic case only by substituting m by the reduced mass
mr. The first term in Eq. (A.9) already has the correct mass dependence whereas the
second term should be modified by a factor mr/m to reproduce the Bohr’s energy level.
The electron motion in the Coulomb field is essentially nonrelativistic.

As starting point of a two–body relativistic theory one usually considers the Bethe–
Salpeter equation [118]. Unfortunately it is very difficult to handle. This equation contains
an infinite sum of all interaction kernels of the system. An approximation can be performed
by truncating this infinite sum. The kernel which describes the dominant binding between
the two particles is retained and is used to construct the effective Dirac equation whereas
the remaining are evaluated in the framework of perturbation theory. The effective Dirac
Hamiltonian HDirac obtained by retaining only the one–photon exchange kernel between
electron and nucleus (no radiative corrections) is [119]

HDirac = α · (p− eA) + βm + V +
p2

2M
, (A.11)

where p2/2M is the term describing the kinetic energy of the nucleus, V = −Zα/r is the
Coulomb potential and A the Breit potential. (V,A) is the four–potential caused by the
proton at the electron position. The proton is considered to be spin–less. This equation is
referred to as the external–field approximation since it is only a one–particle Hamiltonian.
A general expression for the atomic energy levels resulting from Eq. (A.11) which takes
into account the largest corrections caused by the finite mass M of the nucleus is [38]

Enjl = mc2 + Mc2 + (f(n, j)− 1) mrc
2

− (f(n, j)− 1)2
m2

rc
2

2(m + M)
+

1− δl0

(j + 1/2)(2l + 1)

(Zα)4m3
rc

2

2n3M2
.

(A.12)

The third term corresponds to the Dirac energy for a static Coulomb source corrected by
the reduced mass to take into account the finite nucleus mass. The two last terms are
recoil corrections. The last term is responsible for a small breaking of the l degeneracy
of the Dirac eigenstates. The third and forth term are correct for all order in Zα for one
photon exchange, whereas the last term is correct only to the first order in Zα.

A.3 The Lamb shift

According to the Dirac equation with static Coulomb source the energy levels with same
quantum numbers n and j are degenerate. Lamb and Retherford have measured in 1947
an energy splitting (called Lamb shift) of about 1 GHz between the 2S1/2 and the 2P1/2

energy levels. This energy difference is not the tiny l dependence in Eq. (A.12) which
accounts for 2 kHz for the 2S1/2−2P1/2 energy splitting. This discovery together with the
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discovery of the electron’s anomalous magnetic moment has triggered the development of
quantum electrodynamics (QED).

Generally speaking the “Lamb shift” is any deviation from the energy level predicted by
the Dirac equation (partially corrected for the finite nucleus mass). In some application [19]
the Lamb shift Lnjl is defined as the sum of all contributions to the energy levels beyond
the first four terms in Eq. (A.12) averaging over (or without considering) the hyperfine
splitting 1 contributions Ehfs

njlF

Etot
njlF = mc2 + Mc2 + (f(n, j)− 1) mrc

2

− (f(n, j)− 1)2
m2

rc
2

2(m + M)
+ Lnjl + Ehfs

njlF

(A.13)

where Etot
njlF is the total binding energy of the level characterized by the n, j, l, F quantum

numbers, F being the total angular momentum. The first two terms always cancel out
when energy differences between two levels are measured. The third term contributes
about 2.5 × 103 THz to the 1S − 2S energy splitting in hydrogen, while the forth term
(recoil) contributes about 22 MHz. The difference of 1S and 2S level Lamb shifts is about
L1S−L2S ' 8−1 = 7 GHz. The hyperfine splitting of the 1S state is E tot

1S(F=1)−Etot
1S(F=0) '

1420 MHz. In muonic hydrogen the hyperfine structure is considered as a part of the Lamb
shift.

This gives an overview of the size of the various contributions. Noticeable is the size of
the main finite mass correction (mr instead of m in the third term) of about 1 THz relative
to the size of the Lamb shift of about 7 GHz. It is desirable that as much as possible of
the correct mass dependence is included in the effective Dirac equation in order to avoid
treating all effects of the motion perturbatively.

The Lamb shift does not arise in the framework of quantum mechanics with a potential
but it requires field–theoretical methods which can be written in terms of Feynman graphs.
This quantum electrodynamic (QED) corrections to the energy levels can be written in
the form of a power series expansion in three small dimensionless parameters: α, Zα,
and m/M . These parameters, in particular α and Zα, enter the wave function and the
particle propagator (via the energy, see Eq. (A.18) in the next section) in a nonperturbative
way. Although bound–state QED is nonperturbative, it is possible to make use of these
small parameters to develop expressions in increasing order of smallness. However the
nonperturbative nature of this expansion shows up in the coefficients of the power series.
Some of these coefficients are not constants but slowly varying functions (e.g., ln (Zα)−2

in Eq. (A.22)) of the expansion parameters. Hence the energy shift caused by a given
kernel can not be estimated by simply counting the powers in α and Zα it contains.

It is convenient to classify the various contributions to the Lamb shift in accordance
with the small parameters they depend on. They may be classified in four groups which
are listed in decreasing size: radiative, recoil, radiative–recoil, and finite nuclear size and
structure corrections.

Radiative corrections : They take into account pure QED effects like self–energy and
vacuum polarization for an electron in a Coulomb potential of an infinitely heavy
and point–like nucleus. These contributions depend only on α and Zα.

1The Dirac equation with a Coulomb source takes into account the electron spin but does not include
the magnetic moment of the heavy nucleus, and hence the hyperfine contributions has to be taken into
account separately.
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Table A.1: Theoretical expectation (not updated) of the 1S and 2S Lamb shifts taken from
M. Niering’s thesis [120]. Note that uncertainty related to proton radius extracted from scattering
experiment [121] has been underestimated. The first uncertainty of the summed contributions refers
to the pure theoretical uncertainty and the second to the uncertainty caused by the uncertainty of
the proton radius.

Contribution 1S state Uncertainty 2S state Uncertainty
[kHz] [kHz] [kHz] [kHz]

radiative (one–loop) 8 181 285.5 0.2 1 046 061.43 4× 10−2

radiative (two–loop) 721 24 90.2 3× 10−1

recoil 2 402.118 0.002 340.3646 3× 10−4

radiative–recoil −12 777.97 0.04 −1.635.437 5× 10−3

finite nuclear size 1167 32 145.8 4

sum 8172 798(32)(24) 1045 002.4(4.0)(0.3)

Recoil corrections : They describe corrections due to the finite mass of the nucleus,
apart for the two larger finite mass contributions which are already included in the
third and forth term of Eq. (A.13), without considering any QED correction. These
contributions arise from the fact that the introduction of the reduced mass can not
account for all recoil corrections in a relativistic two–body system. They depend
simultaneously only on Zα and m/M .

Radiative–recoil corrections : They take into account mixed radiative and recoil con-
tributions, e.g., recoil contributions with one or more photon loops on the fermion
line. They depend simultaneously on α, Zα, and m/M .

Finite nuclear size corrections : The assumption that the nucleus is point–like is re-
leased. The extension of the nuclear charge causes a deviation of the (1/r) Coulomb
potential. An additional contribution comes from the nucleus polarization which
arises from the interaction of the electron with the nucleus excited in a virtual state.

It is fortunate that the different physics involved can be largely compartmentalized, e.g.,
the recoil and nuclear structure corrections can be neglected when treating the main ra-
diative corrections and vice versa. Nevertheless, the actual level of precision (experimental
and theoretical) has reached a point where some corrections have to be treated together as
the recoil–radiative corrections. Table A.1 summarizes the contributions to the hydrogen
Lamb shift for the 1S and 2S state according to the groups defined above. Note that
the reported values refer to the status in the year 1999. As will be explained later the
theoretical uncertainty has been reduced in the past five years by an order of magnitude,
whereas the uncertainty related to the proton radius from electron scattering experiments
has been underestimated (cf. Eq. (A.38)). In the following, for brevity, it was chosen to
report some details only for the radiative and the nuclear finite size corrections. This is
justified since the radiative corrections are the largest ones and their uncertainty domi-
nates the theoretical uncertainty of the Lamb shift besides the finite size effect. The finite
size corrections contributes only 1.4 × 10−4 to the Lamb shift, but contain the largest
uncertainty caused by the uncertainty of the rms proton radius extracted from electron
scattering experiments.
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p

k

q = p− k

Figure A.1: Self–energy graph for a free (left) and a bound (right) electron. Single and double
straight lines represent the free electron propagator and the bound electron propagator respectively.

= + + + + . . . . . .

Figure A.2: Expansion of the bound self–energy in terms of Coulomb fields. The “X” represents
the nucleus.

A.4 Radiative corrections

The main contribution to the radiative corrections and also to the Lamb shift is the electron
self–energy. Its physical origin is the emission and re–absorption of a virtual photon by
the electron, which is given schematically by the Feynman diagram in Fig. A.1. The
modification of the Feynman propagator Σ(1)(p) caused by the one–loop self–energy can
be calculated using the Feynman–law for vertexes (−ieγµ), photon (iDµν(k)) and electron
(iSF (q)) propagator [122]

−iΣ(1)(p) =

∫
d4k

(2π)4
iDµν(k)(−ieγµ)iSF (p− k)(−ieγν) (A.14)

This integral is linearly divergent. Details of regularization and mass renormalization
connected with this divergence are not reported here. The free–electron propagator SF

represented by a straight simple line in Fig. A.1 is

SF (q) =
1

q/−m
. (A.15)

where q/ = γµqµ with γµ being the four Dirac γ-matrices. Since the electron in hydrogen is
bound to the nucleus a better starting point for the evaluation of the self–energy corrections
is the Dirac equation which includes the external Coulomb potential V . Correspondingly
the bound–electron propagator SB (Dirac–Coulomb propagator) which is represented by
a double straight line in Fig. A.1 (left), is

SB(q) =
1

q/−m− γ0V
. (A.16)

Generally speaking the Dirac–Coulomb propagator contains corrections to the free propa-
gator which can be developed in Zα. In fact, it is possible to expand the Dirac–Coulomb
propagator for large virtual photon energies in powers of the potential V [122]. This
expansion makes use of the relation

1

X − Y
=

1

X
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1

X
+ · · · (A.17)
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With the abbreviation D = q/−m the electron propagator can be expanded as [122]

1

q/−m− γ0V
=

1

D − γ0V
=

1

D
+

1

D
γ0V

1

D
+

1

D
γ0V

1

D
γ0V

1

D
+ · · · (A.18)

An expansion in V corresponds to an expansion in (Zα)2 since V = Zα/r and r scales
like Zα. The Feynman graphs corresponding to Eq. (A.18) are shown in Fig. A.2. Adding
a photonic line to a graph increases its order by Zα. Its contribution to the energy level
is then about a factor Zα smaller.

The hydrogen energy level shift caused by the one–loop self–energy is given in first
order by

∆E
(1)
SE = 〈Ψ̄|Σ(1)

bound|Ψ〉 , (A.19)

where Σ
(1)
bound is the renormalized propagator modification caused by the one–loop self–

energy for bound states. Σ
(1)
bound is obtained by re–normalizing Eq. (A.14) evaluated for

the Dirac–Coulomb propagator given by Eq. (A.16) instead of Eq. (A.15). Hence [122]

∆E
(1)
SE = ie2

∫
d4k

(2π)4
Dµν(k)〈Ψ̄|γµSB(p)γν |Ψ〉 − 〈Ψ̄|δm|Ψ〉 , (A.20)

where the term with δm represents the counter–term connected with the renormalization
of the mass. The evaluation of Eq. (A.20) can be accomplished in two different ways:
expanding SB in powers of Zα as expressed in Eq. (A.18), that is in a perturbative way,
or by treating SB exactly.

A.5 Perturbative and all–order approaches to the self–energy

In the non–recoil limit two types of expansion (in α and Zα) can be carried out in the
evaluation of the radiative bound–state QED corrections. The first expansion in the
number of loops present in the Feynman diagrams is governed by powers of α/π. In the
bound–state QED problem every coefficient of the α/π expansion is developed in powers
of Zα as shown for the one–loop self–energy in Eq. (A.18) and Fig. A.2. Every additional
photonic line connecting the electron to the nucleus generates an additional power in Zα.

The one–loop corrections (order of α/π) are by several orders of magnitude the largest
contributions to the Lamb shift and are given by the electron self–energy and the vacuum
polarization. In the following, focus is given on the evaluation of the self–energy term
which is the most problematic and largest contribution to the Lamb shift. The vacuum
polarization is discussed in the context of muonic hydrogen (cf. §2.1) where it plays the
dominant role. Some of the two–loop corrections (order of (α/π)2) are diagrammatically
shown in Fig. A.3. Following the same procedure that has lead to Eq. (A.20), similar
expressions can be written for the two–loop self–energy diagrams (see e.g., Refs. [123–125]).
Because of the approximate (Zα)4/n3 scaling law of the self–energy level shift,2 it is

2The additional (Zα)3/n3 term in Eq. (A.21) has it origin from the square of the electron wave–function
at the origin |Ψn(0)|2. The continuous emission and re–absorption of virtual photons by the electron results
in a spread of its electric charge over a finite volume with radius 〈r2

el〉. This finite radius is generating a
correction to the Coulomb potential which is δV ∼ 〈r2

el〉δ(~r). The energy shift ∆E calculated in first order
perturbation theory for S state levels is then given by ∆E = 〈nS|δV |nS〉 ∼ |Ψn(0)|2〈r2

el〉. Similarly, the
vacuum polarization and the nucleus finite size effect modify the Coulomb potential which can be described
by a δ-function in the space representation, which leads to a dependence of the energy shift on |Ψn(0)|2.
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Figure A.3: The Feynman diagrams contributing to the two–loop QED energy. The first row
represents the two–loop self–energy and are the most problematic terms. The double line denotes
the bound–state electron propagator, i.e., it includes all Coulomb interactions.

convenient to express the shift of each state as

∆E
(1)+(2)
SE = m

α

π

(Zα)4

n3
Fn(Zα) + m

(α

π

)2 (Zα)4

n3
Gn(Zα) (A.21)

where Fn(Zα) is a slowly varying function associated with the one–loop (α/π), and Gn(Zα)
with the two–loop (α/π)2 corrections. As previously anticipated there exist two ways to

calculate the integrals associated to ∆E
(1)+(2)
SE . The first relies on a perturbative expansion

of the Dirac–Coulomb propagator on Zα, i.e., the coupling constant to the external field [2,
3,124,126,127], and the second one treats the Dirac–Coulomb propagator exactly [4,123,
125,128–130]. The coupling constant Zα for heavy elements (e.g., for uranium Zα ' 0.67)
is not really small compared to 1. For high Z nuclei the semi–analytical expansion of
Fn(Zα) and Gn(Zα) in terms of Zα and ln (Zα) no longer converges, and in that case
Fn(Zα) and Gn(Zα) must be evaluated with the numerical all–order exact method. Hence
the perturbative method is valid only for low–Z (Z ≤ 5 for the one–loop self–energy)
systems. On the contrary the exact approach in the past has been predominantly used for
the description of high–Z (Z ≥ 40) hydrogen-like ions due to high numerical cancellations
at low–Z.

However the numerical all–order (non perturbative) treatment of the one–loop self–
energy for Z = 1 has nowadays overcome the limitations of the perturbative approach in
Zα [129]. Recently the two–loop self–energy has been computed in the all–order approach
for ions with Z ≥ 10 [130]. An extrapolation to Z = 1 is possible [3, 130] as shown in
Fig. A.7.
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A.6 One–loop self–energy

In the perturbative approach the dimensionless quantity Fn(Zα) can be expressed as a
semi–analytical expansion over Zα and ln (Zα), 3

Fn = A40 + A41 ln (Zα)−2 + (Zα)A50

+ (Zα)2
[
A62 ln2 (Zα)−2 + A61 ln (Zα)−2 + GSE

] (A.22)

The first index of the A coefficients gives the power of Zα (including the (Zα)4 pre–factor
in Eq. (A.21)), whereas the second index corresponds to the power of the logarithm.
Fn = Fn(nlj, Zα) and Apq = Apq(nlj) depend on the atomic state with quantum numbers
n, l, j. The work involved in calculating the A constants in Eq. (A.22) has involved many
physicists and has extended over more than five decades. A complete list of the A coef-
ficients is given in [1]. A40 contains the Bethe–logarithm ln (k0(nl)), and the self–energy
remainder function GSE(Zα) contains the higher order contribution in Zα to the one–loop
self–energy and can be semi–analytically expanded as [131]

GSE(Zα) = A60 + (Zα)
[
A71 ln (Zα)−2 + A70

]

+ (Zα)2
[
A83 ln3 (Zα)−2 + A82 ln2 (Zα)−2A81 ln (Zα)−2 + A80

]
.

(A.23)

The higher–order terms in the potential expansion of the Dirac–Coulomb propagator and
the relativistic corrections to the wave–function both generate higher order terms in Zα
which are manifest in Eqs. (A.22) and (A.23).

Since the binding Coulomb field enters in a nonperturbative way and no closed–form
expression for the Dirac–Coulomb propagator exists, already the calculation of corrections
of (Zα)2 relative order is a highly non trivial task. The one–loop electron self–energy
contributes to all orders in Zα, and the separation in (Zα)2 relative contribution involves
hundreds of terms. Additionally the series expansion in Zα is slowly convergent. The best
evaluation of the GSE term is hence based on a direct all–order numerical evaluation of
the bound–electron propagator [132]. Calculating Fn in the all–order exact method and
subtracting from it all the other contribution related to the A coefficients of Eq. (A.22)
gives GSE. The uncertainty of the one–loop self–energy to a given energy level arises
entirely from the uncertainty of the GSE.

The nonperturbative results are consistent with the results of the Zα–expansion but are
orders of magnitude more precise. The numerical uncertainty of the all–order calculation
is 0.8 × Z4 Hz [129], whereas the uncertainty related to the perturbative method is of
28 kHz, due to the truncation of the Zα expansion (unevaluated higher order terms).

A.7 Two–loop self–energy

Similar to the one–loop self–energy, the two–loop self–energy contributions to the Lamb
shift, shown diagrammatically in the first row of Fig. A.3, can be expressed in the pertur-
bative approach as

Gn = B40 + (Zα)B50

+ (Zα)2
[
B63 ln3 (Zα)−2 + B62 ln2 (Zα)−2 + B61 ln (Zα)−2 + Gh.o

]
,

(A.24)

3The dominant effect of nucleus finite mass on the self–energy corrections can be incorporated by
multiplying each term of Fn(Zα) by the reduced mass factor (mr/m)3, except for the magnetic moment
term in A40 which is multiplied only by (mr/m)2 [38].
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where Gh.o. = B60+(Zα)(. . . ). The calculation of the B coefficients [2,124,126,133–135] is
at present one of the most challenging problems in bound–state QED, and it is the limiting
factor of the theory. B40 which is the leading–order correction is quite small, B40(ns) =
1.409244, whereas B50 was surprisingly found to be large, B50(ns) = −24.2668(31). This
indicates a very slow convergences or even a nonperturbative behavior of the two–loop
contributions. Insertion of the calculated B’s values in Eq. (A.24) for the 1S state gives a
more complete overview of this slow convergence:

Gn = 1.409 − (Zα) 24.267 + (Zα)2[−0.296L3 − 0.640L2 + 49.838L − 61.6 + · · · ] + · · ·
= 1.409 − 0.177 + [−0.015 − 0.003 + 0.026 − 0.003 + · · · ] + · · · ,

(A.25)

where L = ln (Zα)−2 and the B values are taken from Ref. [130]. The B coefficients are
large and tend to grow with increasing order. Hence the estimation of uncertainty of higher
order effects is rather problematic. Because of the large absolute magnitude of higher–
order coefficients many terms have to be included for a reliable theoretical prediction.
Higher order corrections in Zα are required, but the complexity of calculations of order
α2(Zα)7 does not seem to make it feasible in the near future. A nonperturbative approach
in the parameter Zα is therefore desirable even for hydrogen (Z = 1), but up to now this
numerical approach is reliable only for ions with Z ≥ 10.

The two–loop Bethe–logarithm, which forms the dominant part of the problematic
coefficient B60, has being evaluated for more than three decades. The most recent pertur-
bative evaluation by K. Pachucki and U. Jentschura [2] gives B60 = −61.6(3) ± 15% for
the 1S and B60 = −53.2(3) ± 15% for the 2S state. The 15% error is an estimate of the
uncalculated terms (regions) and diagrams.

In the all–order calculation the reducible part of the loop after loop correction, the
nested and overlapping diagrams of the two–loop self–energy are considered simultane-
ously. The first attempt to evaluate them to all orders was made by S. Mallapani and
J. Sapirstein [123]. The contributions are rearranged in 3 groups referred as M, P, and

−−

−−

−+

−∆ESE ×

Figure A.4: Diagrammatic representation of the M terms. ∆ESE is the first–order self–energy
correction [4].
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−− 2

−

− −

Figure A.5: Diagrammatic representation of the P terms [4].

F terms which are shown in Figs. A.4–A.6. This rearrangement is artificial since all 3
terms are divergent and a proper treatment has to consider them simultaneously. The
M terms are made ultraviolet (UV)–finite by subtracting diagrams with some Dirac–
Coulomb propagator replaced with the free propagator. The subtraction diagrams are
chosen such that each of the 3 rows in Fig. A.4 is UV–finite. The diagrams are made UV–
finite by subtracting diagrams with some Dirac–Coulomb propagators replaced by free
propagators. Next the subtracted terms have to be accounted (in the P terms). Those
who contain only free–electron propagators can be immediately evaluated with standard
Feynman–parametrization techniques in momentum space, whereas the other ones are
made UV–finite by subtracting another set of graphs where the Dirac–Coulomb propaga-
tors are again replaced by free propagators. This subtraction eliminates the overlapping
UV–divergences which was caused from a UV–divergent subgraph and a bound–electron
propagator in the same graph. Finally in the F term the last set of subtraction which
contains only free electron propagators are collected. Different numerical methods are
applied to the M, P, and F terms justifying this rearrangement [4].

∆ESE ×

Figure A.6: Diagrammatic representation of the F terms. The rightmost diagrams in the first two
rows should be counted twice, accounting for two equivalent diagrams [4].
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F

Figure A.7: B60 term for hydrogenic atoms with nuclear charge number Z calculated in the all–
order approach (full circles). The extrapolation to Z = 1 gives a value of B60 = −127± 30% [130].
The value computed with the perturbative approach shown with a star is B60 = −61 ± 15% [2]
(Courtesy E. Le Bigot).

The evaluation of Gn in all–order becomes problematic very fast as Z decreases, due
to significant numerical cancellations. Up to now Gn is reliably calculated in the all–order
approach only for ions with Z ≥ 15 (see Fig.A.7). However an extrapolation to Z = 1
can be performed [3, 130]. Subtracting from the extrapolated Gn(Z = 1) the values of
all the calculated B coefficients in Eq. (A.24) results in Gh.o.(1α) = −127 ± 30% [130],
which is significantly different from the value calculated from the perturbative approach.
This difference leads to a difference in the 1S Lamb shift of 7 kHz. The error bar is
dominated by the extrapolation procedure. Presumably the difference of the Gh.o values
calculated with perturbative and with the all–order approach has to be attributed to the
incompleteness of the B61 and B60 coefficients. We assume therefore an averaged B60 for
the 1S state of (−95± 35) which leads to a frequency shift of about (−10± 4) kHz. The
two–loop self–energy contributions are quite significant when compared with the accuracy
of 46 Hz for the measured 1S − 2S transition frequency.

A.8 Finite nuclear size and nuclear structure corrections

Although the characteristic atomic size of the order of the Bohr radius is orders of mag-
nitude larger than the nucleus, the actual theoretical and experimental level of precision
is sensitive to the nuclear structure. The nuclear contributions to the energy shifts are
conventionally divided into two categories: those that directly involve only the properties
of the nucleus in the ground state (e.g., rms–radius), and those that involve virtual excited
states (e.g., polarizability). Presently both the finite size and the structure of the proton
can not be calculated ab initio from QCD with sufficient precision necessary for a test
between the theoretical prediction and measured Lamb shift. Fortunately to some degree
of accuracy both the finite size and structure of the proton can be inferred from other
measurements. The nuclear rms radius can be extracted from electron–proton scattering
experiments and muonic hydrogen whereas the proton polarizability can be calculated us-
ing the photo–absorption cross section γ +p→ X [33] measured in scattering experiments
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e + p→ e′ + X.
The typical wavelength for an atomic electron is so large compared to the nuclear size

that only (the first) moments of the nucleus come into play. The nuclear charge form
factor F1(q) is given by the Fourier transform of the nuclear ground state charge density
ρ

F1(q) =

∫
d3r ρ(r)eiq·r ' Z

(
1− q2

6
r2
p + · · ·

)
− 1

2
qαqβQαβ + · · · , (A.26)

where q is the momentum transfer from the electron to the nucleus, and Qαβ the nuclear
quadrupole–moment tensor. Due to the finite size effect the electric potential V (r) of the
nucleus differs from that of a point–like nucleus by

δV (r) = V (r)−
(
−Zα

r

)
. (A.27)

In momentum space this perturbation takes the form

δV (q) =
4πZα

q2
(1− F1(q)) ' 2π(Zα)

3
r2
p − 2πZα

qαqβ

q2
Qαβ . (A.28)

These moments should dominate the nuclear corrections to atomic energy levels due to
the low momentum of the photon exchanged in atomic systems. Transforming back in
coordinate space gives [136]

δV (r) =
2π(Zα)

3
r2
p δ(r) − Qα

2r3

3(S · r̂)2 − S2

S(2S − 1)
+ · · · , (A.29)

where S is the nuclear spin operator and Q the nuclear quadrupole moment. For spin 0
and 1/2 nuclei Q = 0. The hydrogen level energy shift given by ∆E = 〈Ψ̄(r)|δV |Ψ(r)〉 is
then

∆E =
2π(Zα)

3
r2
p |Ψn(0)|2 =

2(Zα)4

3n3
m3

r r2
p δl0 ' 1162(51)

δl0

n3
kHz. (A.30)

where in the last equation it was made use of the nonrelativistic Schrödinger wave–function
and of rp = 0.895(18) fm. The largest corrections caused by the nonpoint–like nature of
the nucleus is proportional to the second moment of the charge distribution, that is to the
rms charge radius of the proton. The finite size contribution is non–vanishing only for S
states. Since the proton charge is smeared out over a finite volume, the electron which is
within this volume experiences a smaller attraction compared to the point–like case. This
explains the up–wards energy shift caused by the proton finite size contribution. While in
principle this shift should have some dependence on the detailed distributions (ρi(r)) of
the charge inside the nucleus, that dependence is negligible as long as the rms radius of
these distributions is the same (r2

p =
∫

dr r2ρi(r)). Equation (A.30) assumes a spherical
charge distribution.

The Dirac wave–function Ψ(r) which takes into account corrections to the Schrödinger–
Coulomb wave–function ΨSchr(r) of relative order (Zα)2 is [32]

|Ψ(r)|2 = |ΨSchr(r)|2
{

1− (Zα)2
[
ln

2mrZα

n
+ Ψ(n) + 2γ +

9

4n2
− 1

n
− 11

4

]}
(A.31)

where Ψ(n) is the digamma function and γ the Euler’s constant. The additional contri-
bution to the energy shift is therefore

∆E =
2(Zα)6

3n3
m3

r r2
p

[
〈ln 2mrZα

n
〉+ Ψ(n) + 2γ +

9

4n2
− 1

n
− 11

4

]
(A.32)
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Figure A.8: Finite nuclear size contributions to the Lamb shift. The bold dot corresponds to the
form factor slope F1(q

2) whereas the empty dots correspond to (F1(q
2)− 1). The first term is the

leading proton radius contribution in order (Zα)4, the second and third terms represent the nuclear
size correction to order (Zα)5m with one and two form factors insertion. The last two diagrams
are also of order (Zα)5m but they consider virtual excitation of the proton, i.e., its polarizability.

which is about 0.7 kHz [137] for the 1S state in hydrogen.
The leading finite size correction corresponding to Eq. (A.30) is graphically represented

by the first diagram in Fig. A.8. The Feynman rule describing the interaction vertex
between a low momentum photon and a nonpoint–like proton with finite mass is given by

γµ

(
1− q2

[
1

8M2
+
〈r2

p〉E
6

])
(A.33)

where 〈r2
p〉E is the charge radius defined via the Sachs form factor GE ' 1− 〈r2

p〉E
6 q2 (see

Appendix D for further details). The term proportional to 〈r2
p〉E gives the energy shift

of Eq. (A.30) whereas the other term proportional to 1
8M2 gives rise to the δl0 term in

Eq. (A.12) called the Darwin term (recoil correction).
Corrections of order (Zα)5 connected with the nonpoint–like nature of the proton are

generated by the exchange of two photons diagrammatically represented by the second and
third graph in Fig. A.8. The total contribution of order (Zα)5 with elastic intermediate
states may be expressed as [32]

∆E = −m(Zα)5

3n3
m3

r〈r3
p〉(2), (A.34)

where 〈r3
p〉(2) is the third Zemach moment defined as

〈r3
p〉(2) ≡

∫
d3r1 d3r2 ρ(r1)ρ(r2) |r1 − r2|3. (A.35)

The third Zemach moment can not be directly measured like the proton radius which is
directly connected with the low–momentum behavior of the form factor. Numerically this
elastic contribution of the order (Zα)5 is −35.9 Hz for the 1S state [19, 32], i.e., smaller
than the contributions in (Zα)6 given by Eq. (A.32).

The intermediate state of the proton in the two–photon interaction may be excited in
virtual states. The electron is polarizing the nucleus (similarly the moon is influencing the
tides on the earth), and this induced dipole is causing an additional attractive potential
between nucleus and electron which shifts the energy level down. For hydrogen the nuclear
polarization shift obtained in [138] is

∆E = −0.070(13)
δl0

n3
kHz (A.36)

whereas a slightly different result was obtained in [33]

∆E = −0.095(7)
δl0

n3
kHz (A.37)
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Figure A.9: Radiative corrections of order α(Zα)5m〈r2
p〉m3

r to the finite size effect. The first
row accounts for radiative corrections of the electron line whereas the second row accounts for
polarization correction of the Coulomb line.

although they both make use of the same data for the proton polarizability. The polar-
izability contribution to the nS energy level represents the largest nuclear structure and
size uncertainty, beyond the leading order.

Higher order radiative corrections of order α(Zα)5r2
p m3

r represented in Fig. A.9 con-
tribute to the finite–size energy shift by −0.138 kHz for the 1S state in hydrogen [19].

A.9 Summary

The uncertainty related with the two–loop self–energy is the main source of uncertainty
in the prediction of the Lamb shift, besides the uncertainty related to the finite size of the
proton. The resulting theoretical value is

Lthe
1S = 8172 901(51)(4) kHz (A.38)

where the first error comes from the current uncertainty in the proton charge radius rp

=0.895(18) fm, and the second one from QED theory (mainly two–loop self–energy). This
Lamb shift value was taken from [2] corrected for the averaged value of the B60 term
as discussed in §A.7 and the new rms radius value from scattering experiment [6]. This
can be compared with the experimental value deduced from frequency measurements of
hydrogen transitions [5, 7]

Lexp
1S = 8172 840(22) kHz . (A.39)

The uncertainty caused by the uncertainty of the proton rms radius prevents a precise
comparison between the QED predicted and the experimentally determined Lamb shift.
An improvement of the 1S Lamb shift knowledge by measuring the proton radius and by
reducing the experimental error will serve as a consistency check between two different
approaches to bound–state QED: perturbative and all–order numerical (in Zα).



122 Bound–state QED test and extraction of R∞



Appendix B

Bound–state QED test and
extraction of Rydberg constant

This Appendix describes the achievable improvement of bound–state QED test and the
improvement in the determination of R∞ if the rms proton radius is extracted from the
measurement of the 2S − 2P Lamb shift in muonic hydrogen.

Quantum electrodynamics for free particles is one of the best tested theories in physics,
e.g., the calculation of the anomalous magnetic moment is advanced including hundreds
of loops up to the 5–loop level. The theoretical value of the anomalous magnetic moment
of the electron is tested to a level of 3.8 × 10−9 [1] and the comparison with experiment
is limited by the experimental accuracy. Despite the enormous success of QED for free
particles, the theory is less precise and less well tested for bound–states. Bound state
QED deals mainly with one– and two–loop diagrams but for particles which are not free,
i.e., for particles bound by the Coulomb field. The limiting factor for comparison of
bound–state QED predictions in hydrogen with measurements is the uncertainty related
to the rms charge radius of the proton. New interest for bound–state QED which is essen-
tially non–perturbative in the binding potential, comes from the development of quantum
chromodynamics (QCD) where hadrons are bound–states of quarks. Bound–state QED
can therefore serve as a platform to develop techniques for bound–states theories. In
recent years, new techniques in non–perturbative studies have been very successful not
only in the precision of calculations, but also in expanding the practical range of appli-
cability, particularly to highly ionized atoms and inner shell levels of heavy atoms [139].
The non–perturbative calculation in hydrogen can be considered as a testing ground for
bound–state QCD as well as for the QED of electrons in high electric and magnetic fields
where deviations from the standard QED will be more pronounced.

The measurement of the rms proton radius with 10−3 relative precision via the 2S−2P
µp Lamb shift opens the way to test bound–state QED to a relative accuracy of 3× 10−7.
An exact calculation of the precision of the bound–state QED test and the determination of
R∞ requires a least square adjustment of all measured and calculated transition frequencies
in hydrogen and deuterium which is beyond the scope of this work. However a simplified
model to extract the experimental Lamb shift (Lexp

1S ) is presented here. It accounts only
for the measured 1S − 2S and 2S − 8S transition frequencies in hydrogen and uses a
simplified model for the energy levels

E(nlj) ' ηR∞
1

n2
+ L(nlj, α) , (B.1)

where η = mr/m. For our purpose we can neglect small or precisely known contributions,

123
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like the first recoil and relativistic corrections, because they are theoretically well known,
or the hyperfine contributions since they are inferred from the very precise measurement
of the hyperfine splitting [140].

B.1 Bound–state QED test

The standard way to extract the 1S Lamb shift Lexp
1S relies on combinations of measured

transition frequencies in hydrogen and deuterium. For simplicity we consider here only
the measured 1S − 2S and 2S − 8S transition frequencies in hydrogen (see Eq. (B.1)):

ν1S−2S ' ηR∞(1− 1/4) +L1S − L2S

ν2S−8S ' ηR∞(1/4− 1/64) +L2S − L8S

L2S = 1/8L1S + ε .

(B.2)

In our simplified approach we can neglect L8S and ε = L1S−8L2S = −187 231(5) kHz [141].
Solving for L1S , eliminating R∞ and L2S , gives

Lexp
1S ' 2.1 ν1S−2S − 6.7 ν2S−8S . (B.3)

Since ν1S−2S and ν2S−8S are known with a precision of 46 Hz [7] and 8.6 kHz [5], respec-
tively, the Lexp

1S uncertainty is given by

∆Lexp
1S ' −6.7∆ν2S−8S ' 57 kHz . (B.4)

Including all other transition frequency measurements in hydrogen and deuterium (2S −
8D, 2S − 4S, 1S− 3S, 2S − 6S, and 2S − 12S/D) this uncertainty is reduced to ∆Lexp

1S =
22 kHz [5]:

Lexp
1S = 8172 840(22) kHz (B.5)

whereas the theoretical value is (cf. §A.9)

Lthe
1S = 8172 901(4)(51) kHz (B.6)

for rp =0.895(18) fm. The uncertainty of Lexp
1S is caused by the uncertainty in the measure-

ment of the transitions frequencies (the 1S − 2S excluded). The first error in Lthe
1S refers

to the theoretical accuracy, whereas the second one comes from the current uncertainty of
rp determined via electron–proton scattering experiments.

The relative accuracy of the comparison between theory and experiment (T the−exp)
depends on their uncertainties and may be expressed as

T the−exp =

√
(∆Lexp

1S )2 + (∆Lthe
1S )2

Lexp
1S

. (B.7)

We assume that the uncertainties can be quadratically added. Presently this comparison
is limited by the poor knowledge of the proton radius,

T the−exp =

(√
222 + 512 + 42

)
kHz

8 172 840 kHz
' 56 kHz

8 172 840 kHz
' 7× 10−6 . (B.8)
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A measurement of rp from the µp Lamb shift will reduce the uncertainty related to the
proton radius by about a factor of 20. Bound–state QED calculations can then be tested
to a relative precision of

T the−exp =

(√
222 + (51/20)2 + 42

)
kHz

8 172 840 kHz
' 23 kHz

8 172 840 kHz
' 3× 10−6. (B.9)

The limiting factor is then the uncertainty related with the experimental determination
of the Lamb shift.1 However the groups of F. Biraben at LKB in Paris and T. W. Hänsch
at MPQ in Garching are presently remeasuring the 1S − 3S transition which will lead
to a decrease of ∆Lexp

1S . The measurement of the proton radius in µp with 10−3 relative
accuracy will thus open the way for a comparison of bound–state QED calculations in
hydrogen with experiments at a level of

T the−exp ' 51/20 kHz

8 172 840 kHz
' 3× 10−7 (B.10)

which is a factor of 20 more accurate than presently possible.

B.2 Rydberg constant

Similar to the Lamb shift, the Rydberg constant R∞ can be extracted by combining
differences of measured transition frequencies. For simplicity we consider again only the
1S − 2S and 2S − 8S transitions. Solving Eq. (B.2) as function of R∞ gives

R∞ = (7ν2S−8S − ν1S−2S)
64

57η
. (B.11)

Its uncertainty is then given by

∆R∞ '
7 · 64
57η

∆ν2S−8S ' 46 kHz (B.12)

which leads to a relative uncertainty of

∆R∞

R∞
' 1.8 · ∆ν2S−8S

ν2S−8S
' 2× 10−11 , (B.13)

where ν2S−8S=770 649 350.0120(86) MHz [5]. When all transitions measured in hydrogen
and deuterium are accounted for in a least square adjustment, R∞ is extracted with a
relative accuracy of 7.7× 10−12 equivalent to an absolute uncertainty of 16 kHz [5]. Note
that R∞ extracted from deuterium and hydrogen are compatible.

R∞ can be determined in an independent way if the proton radius is measured in
muonic hydrogen,and by making use of the predicted Lthe

1S . It can be extracted by sub-
tracting from the measured 1S−2S transition frequency the expected Lamb shift (Lthe

1S ) for
the rms radius measured in muonic hydrogen. Consider the 1S− 2S transition frequency:

ν1S−2S =
3

4
ηR∞ +

7

8
L1S . (B.14)

1The uncertainty of Lexp

1S implicit in the 2002–CODATA adjustment is 18.5 kHz, which leads to
T the−exp = 2 × 10−6.
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Solving this equation for R∞ gives

R∞ =
4

3η
· ν1S−2S −

7

6η
· L1S (B.15)

and hence

∆R∞ '
7

6η
·∆L1S '

7

6η
·
(√

(51/20)2 + 42
)

kHz ' 5 kHz (B.16)

The measurement of the proton radius will hence lead to an improvement of the R∞

accuracy by a factor of 16 kHz/5 kHz ' 3 limited by the uncertainty of the QED theory.
Presently the least square adjustment of the CODATA group predicts an improvement by
a factor of 6 of the R∞ determination if the radius is measured in µp [142] .

B.3 Lamb shift and R∞ uncertainty related to α and m/M

Up to now we have assumed all constants describing the hydrogen energy level to be
known infinitely precisely except for R∞ and rp. In the following we consider briefly
what is the error in the prediction of the Lamb shift caused by the current uncertainty
of α = 7.297 352 568(24) × 10−3 [1] and the uncertainty of R∞ caused by the current
uncertainty of the electron to proton mass ratio m/M = 5.446 170 2173(25) × 10−4 [1].

B.3.1 Lamb shift uncertainty caused by α

The main contribution to the Lamb shift is given by the one–loop self–energy of Eq. (A.21):

E
(1)
SE = m

α

π

(Zα)4

n3
F (Zα) . (B.17)

A variation of α by a standard deviation ∆α will causes a variation of the self–energy of

∆E
(1)
SE

E
(1)
SE

= 5
∆α

α
+

F ′∆α

F
< 2× 10−8 (B.18)

where F ′∆α = −9 × 10−9 [129]. The prime represents the derivative with respect to
α. This means that the bound–state QED test is limited by the uncertainty of the fine
structure constant to a level of 2× 10−8 which is beyond the target accuracy of 3× 10−7

achieved when rp is measured with a relative accuracy of 10−3.

B.3.2 Uncertainty of R∞ caused by the uncertainty of m/M

We can write η as

η =
mr

m
=

mM

m(M + m)
' 1−m/M . (B.19)

In Eq. (B.16) the R∞ uncertainty was calculated assuming η to be exactly known. Re-
leasing this assumption the uncertainty of R∞ starting from Eq. (B.15) takes the form

∆R∞ = − 4

3η2
ν1S−2S ·∆η − 7

6η
·∆L1S +

7

6η2
L1S ·∆η +

4

3η
·∆ν1S−2S . (B.20)
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The last two terms are negligible and the second term corresponds to Eq. (B.16). The
first term takes into account the main uncertainty to R∞ originated by the uncertainty of
the electron to proton mass ratio which may be expressed has

(
∆R∞

R∞

)( m
M

)

' ∆η

η
' ∆(m/M)

η
' 2.5× 10−13 . (B.21)

This mean that the uncertainty of the m/M ratio affects the uncertainty of the Rydberg

constant at a level of ∆R
(m/M)
∞ ' 0.6 kHz which has to be compared with Eq. (B.16).

Thus the uncertainty related to m/M does not affect the determination of R∞ when rp is
measured with 10−3 relative accuracy.
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Appendix C

Electron–proton scattering
experiments

Independent of hydrogen spectroscopic measurements, size and charge distribution of the
proton have been determined in the past from electron–proton scattering experiments.
This Appendix presents a short sketch how to extract the proton radius from scattering
experiments. The formalism required to describe these experiments is used to define the
proton form factors and charge radius. The usual approach to extract the proton rms
radius can be divided in three steps:

– Calculate the most accurate electron–proton differential cross sections at low mo-
mentum transfer which includes recoil and radiative corrections.

– Nuclear structure contributions are extracted by comparing measured and calculated
cross sections.

– The resulting nuclear structure data are then fit with an appropriate function to get
the rms charge radius.

C.1 Elastic scattering cross sections

The covariant four–vector proton current is [117]

jµ = eū(k′)
[
γµF1(q

2) +
κ

2M
F2(q

2)iσµλqλ

]
u(k)e−i(k′−k)·x , (C.1)

where γµ and σµλ are Dirac matrices, κ the proton anomalous magnetic moment, M the
proton mass, F1,2 the proton form factors with F1(0) = F2(0) = 1, q = k′ − k is the four–
momentum transferred to the proton, and u, ū are Dirac spinors. This is the most general
four–vector form that can be constructed from k, k ′ and q. There are only two independent
terms γµ and σµλqλ, and their coefficients are functions of q2 which is the only independent
scalar variable at the proton vertex. Hence F1 and F2 are two independent form factors.
They parametrize our ignorance of the detailed structure of the proton. If the proton
would be a point–like particle, then κ = 0 and F1(q

2) = 1 for all q2. Because q2 < 0 for
scattering kinematics, it is convenient to use the variable Q2 ≡ −q2. The differential cross
section which describes the electron–proton elastic scattering in the laboratory frame is
then
(

dσ

dΩ

)

Rosenbluth

= σMott frecoil

[(
F 2

1 +
κ2Q2

4M2
F 2

2

)
cos2 θ

2
+

Q2

2M2
(F1 + κF2)

2 sin2 θ

2

]

(C.2)
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Figure C.1: Diagrams contributing to elastic e−p scattering up to order α3 in the cross section.

where θ is the scattering angle, σMott the cross section for a spin–less point–like particle
and frecoil = [1 + 2Ei sin (θ/2)/M ]−1 the recoil factor. F2, which primarily describes the
magnetic properties of the nucleon, also contributes (in a minor way at small Q2) to the
charge distribution. In practice it is therefore better to use linear combinations of F1 and
F2, and so the Sachs charge and magnetic form factors, GE and GM , are introduced [143]:

GE = F1(Q
2)− κQ2

4M2
F2(Q

2)

GM = F1(Q
2) + κF2(Q

2) .

(C.3)

No interference term GEGM occurs in the cross section and Eq. (C.2) becomes

(
dσ

dΩ

)

Rosenbluth

= σMott frecoil

{
A0(Q

2) + B0(Q
2)

[
1

2
+

(
1 +

Q2

4M2

)
tan2 θ

2

]}
, (C.4)

where

A0(Q
2) =

G2
E(Q2)

1 + Q2

4M2

≡ G̃E(Q2)

B0(Q
2) =

Q2

2M2

G2
M (Q2)

1 + Q2

4M2

≡ Q2

2M2
G̃M (Q2) .

(C.5)

The form factors G̃E/M have been proposed long ago but never popularly adopted. A0

is associated only with the charge distribution whereas B0 is associated only with the
magnetic distribution.

The Feynman graphs contributing up to order α3 to the elastic scattering cross sections
are shown in Fig. C.1. In the leading order approximation (first diagram in Fig. C.1 which
is proportional to α2 in the cross section), the elastic electron–proton cross section in the
laboratory frame, is given by Eq. (C.4). Calculations of the remaining diagrams of Fig. C.1
leads to corrections in order α. The total elastic cross section takes the form [144]

(
dσ

dΩ

)

elastic

=

(
dσ

dΩ

)

Rosenbluth

(1 + αR) (C.6)

where R represents the radiative corrections which depends on the initial and final mo-
menta of electron and proton.

Internal Bremsstrahlung processes which are diagrammatically shown in Fig. C.2 have
to be taken into account. In electron–proton scattering soft photons may be emitted,
with such a low energy (infrared divergence) that they are not detectable. The energy
resolution ∆Eres of the detector used to measure the scattered electron energy decides if
this emission of a soft photon has to be considered as an elastic or an inelastic process.
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Figure C.2: The first four graphs represent internal Bremsstrahlung whereas the last describes
the external Bremsstrahlung. Thin and thick straight line represent the electron and the proton,
respectively.

The Bremsstrahlung cross section for the emission of a soft photon in the strong field of
an external static field may be expressed as [144]

(
dσ

dΩ

)

Bremsstrahlung

= αBint

(
dσ

dΩ

)

Rosenbluth

(C.7)

where Bint = Bint(∆Eres) depends also on the detector resolution. The measured cross
section is hence the incoherent (distinguishable process) sum of elastic and internal Brems-
strahlung processes for photons emitted with energy less than ∆E:

(
dσ

dΩ

)

exp

=

(
dσ

dΩ

)

elastic

+

(
dσ

dΩ

)

Bremsstrahlung

=

(
dσ

dΩ

)

Rosenbluth

[1 + α(R + Bint)] .

(C.8)

Since the photon is massless both terms R and Bint are divergent. However these diver-
gences cancel out in the sum R+Bint which is always finite and defined. It was customary
(see e.g., Refs. [145, 146]) to generalize Eq. (C.8) to approximately account for all orders
in α [147] (

dσ

dΩ

)

exp

=

(
dσ

dΩ

)

Rosenbluth

eα(R+Bint) . (C.9)

This generalization is not accepted by all authors. Only for the infrared part it is correct.
For the vacuum polarization in order α2 the uncertainty of this generalization may be of
the order of 20% [29]. This is causing an increase of the uncertainty of the proton radius
extracted from scattering experiments.

C.2 Measurements and extraction of the nuclear structure

Experimentally electrons are scattered by a target of liquid hydrogen. Initial momentum
p and momentum of the scattered electron (p′) are measured together with the deflection
angle θ. Since the position of the elastic peak is well defined, W 2 ≡ (k′)µ(k′)µ = M2, both
the number of events N(∆p′,∆θ) and the acceptance function F (∆p′,∆θ) were converted
to functions of the single variable W 2 = M2+2Mν−Q2 where ν = p0−p′0. The differential
cross section is then calculated in terms of measured quantities and correction factors as
follows [145]: (

dσ

dΩ

)

meas

=
1

Qeff

1

n

Xres

Rcorr

∫ W 2
cutoff N(W 2)

Facc(W 2)
dW 2 (C.10)

where Qeff gives the effective incident electron charge per kinematic point, and n the
number of target nuclei per cm2. The integral over W 2 gives the total number of detected
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electrons, with the spectrometer acceptance up to an arbitrary cutoff value W 2
cutoff . This

cutoff is set large enough to include as much as possible of the elastic peak, yet small enough
to avoid background from other processes. Facc is the event acceptance function which
account for various physical apertures, software cuts etc.. The factor Xres ' 1 corrects
for the number of events expected to be above W 2

cutoff due to finite energy resolution
of the detectors. The factor Rcorr = eα(R+Bint+Bext) represents the radiative corrections.
It includes the QED and internal Bremsstrahlung corrections above discussed, but also
corrections due to external Bremsstrahlung Bext (not discussed above). This external
Bremsstrahlung shown in Fig. C.2 can be understood as the straggling of the electron
before and after the actual electron–proton scattering.

The size of the radiative corrections is Rcorr ∈ [0.7 − 0.85] [145] depending on energy
(1.5− 8 GeV) and scattering angle. Additionally in the recent reevaluations of scattering
experiments by Rosenfelder [148] and Sick [6], Coulomb corrections ∆C calculated to the
second order Born approximation are included. These Coulomb corrections take into
account the distortion of the plane wave in the electrostatic field of the proton. The
Coulomb corrections are small and positive, ranging from (0.4 − 0.9)% which is roughly
the size of the experimental errors, and its inclusion increases the deduced proton radius
by about 0.01 fm.

The interpretation of electron–nucleon scattering data in form of form factors is based
on the one–photon exchange approximation. The measured cross sections are corrected
for higher order contributions via Rcorr leading to the measured one–photon exchange
contribution, which can be compared with the Rosenbluth formula including Coulomb
corrections [148]
(

dσ

dΩ

)

meas

= σMott frecoil

{
A0(Q

2) + B0(Q
2)

[
1

2
+

(
1 +

Q2

4M2

)
tan2 θ

2

]}
(1 + ∆C) .

(C.11)

C.3 Structure functions

Model–independent or model–dependent proton structure functions have been used to
extract the rms–radius. The Standford rms radius of 0.805 fm [149] was extracted using
an (“invalid”) dipole form factor for low and high momentum data. Extraction of rms–radii
which are model–independent is possible when expanding GE(Q2) in terms of moments
〈r2〉, 〈r4〉 . . .,

GE(Q2) = 1 +
Q2〈r2〉

6
− Q4〈r4〉

120
+ · · · . (C.12)

At very small Q2 in principle one could hope to neglect the Q4 and higher terms, so
that the 〈r2〉–term can be determined without a specific form factor model. However
small systematic errors in the normalization of the measured cross sections have a strong
influence on the extraction of the rms–radius. The measured cross section leads to the
unnormalized expansion

GE(Q2) = a0 + a1Q
2 + a2Q

4 + · · · (C.13)

with a0 ' 1, but not exactly equal to 1 (e.g., a0(Mainz) = 1.0014 [121], a0(Orsay) =
1.020 [150], and a0(Saskatoon) = 1.008 [151]). The true value of the proton radius has
then to be defined as

r2
p = 〈r2〉 =

a1

6a0
. (C.14)
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The normalization problems are experimentally connected with the uncertainty of the
density of scattering centers n in Eq. (C.10), which varies also as a function of the incident
electron beam current (target heating).

To reduce the influence of the normalization in the determination of the proton rms–
radius it is necessary to include data at higher Q2 which are sensitive to higher moments.
For an exponential charge distribution of the proton the higher moments are increasing
with order, 〈r4〉 = 2.5 〈r2〉2, 〈r6〉 = 11.6 〈r2〉3, giving large contributions to GE(Q2).

There is no region in Q2 space where the 〈r2〉 term dominates the finite size to be able
to extract the proton radius with, say, a 2% accuracy. Similarly there is no region in Q2

space where the 〈r4〉 moment can be determined without going into difficulty with the
〈r6〉 term, and so on. The convergence radius of this polynomial expansion is limited by
Q < 1.4 fm−1 [6].

To reduce these difficulties related to higher moments of the model–independent form
factor, in the recent reanalysis of all scattering data Sick [6] made use of the continuous–
fraction (CF) expansion

GE(Q2) =
GM (Q2)

µp
=

1

1 +
Q2b1

1 +
Q2b2

1 + · · ·

(C.15)

where µp = 2.793 is the proton magnetic moment. The CF expansion was introduced to
find a function in terms of its moments and to accelerate the problem of poorly converging
series. The coefficient of the polynomial expansion ai are related to the coefficients of the
CF expansion bi by a0 = b2

1, a1 = b2
1 + b1b2, . . ..

The determination of the rms radius by Sick used “all” the world electron–proton
scattering data for Q < 4 fm−1. Both charge and magnetic form factors GE/M have
been parametrized with Eq. (C.15) with 5 parameters bi, and the cross sections were
corrected for Coulomb distortion. The final result of the rms charge radius of the proton
is rp = 0.895(18) fm. The uncertainty of±0.018 fm accounts for the systematic uncertainty
(±0.013 fm) dominated by the normalization, and for the fitting uncertainty (±0.010 fm).
The fitting uncertainty is related to statistics and to the error from the CF expansion
which depends on the number of parameters and the size of the Q-region used.
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Appendix D

Proton radius

In the first part of this Appendix we want to check if the definition of the proton radius
used in scattering experiment is consistent with the definition in atomic physics. The
reference source for these considerations is the article of Friar et al. [152]. The second part
points out some problems related with the definition of the proton radius.

D.1 Proton radius in scattering experiments

We have seen in §C.1 that there are several options to describe the proton structure in
terms of form factors: (F1, F2) in Eq. (C.1), (GE , GM ) in Eq. (C.3) and (G̃E , G̃M ) in
Eq. (C.5). The rms charge proton radius is defined in the Breit frame by [153]

〈r2〉ch =

∫
dr r2ρ(r) (D.1)

where ρ is the 0th component of the four–vector jµ defined in Eq. (C.1). The various
charge mean square radii corresponding to the various form factors are given by

〈r2〉ch = −6G̃′
E(0)

〈r2〉E = −6G′
E(0)

〈r2〉F = −6F ′
1(0) ,

(D.2)

where the prime represents the derivative in d/dQ2. The various mean square radii differ by
amounts of the order (1/M 2) ∼ 0.044 fm, and are formally identical in the nonrelativistic
limit. Comparing the definition of the various form factors gives

〈r2〉ch = 〈r2〉E +
3

4M2

〈r2〉E = 〈r2〉F +
3κ

2M2 .
(D.3)

〈r2〉E is often called the proton radius. The difference between 〈r2〉ch and 〈r2〉E is given
by the so called Darwin–Foldy term (EDF = 3/(4M 2)). Although this term is part of the
charge density it is by convention considered as a kinematic factor.
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D.2 Proton radius in atomic hydrogen

The hydrogen energy level described by Eq. (A.12), contains a contribution which is pro-
portional to δl0

(Zα)4m3
r

2n3M2
δl0 . (D.4)

This expression has to be compared with the contribution which describes the leading–
order nuclear–size correction:

2(Zα)4m3
r

3n3
〈r2〉δl0 . (D.5)

Replacing 〈r2〉 by 3
4M2 in Eq. (D.5) gives Eq. (D.4). This means that the Darwin–Foldy

term in the hydrogen atom is by convention considered not as a part of the finite size but
as a recoil correction.

Therefore both in the scattering experiment and in the atomic system the charge radius
is defined in a consistent way with respect to each other: by convention, it neglects the
Darwin–Foldy term. Hence rp which is used all through this work is meant to be

r2
p ≡ 〈r2〉E = 〈r2〉ch −

3

4M2
. (D.6)

D.3 Problems related to the definition of the proton radius

QED corrections make the definition of the proton radius questionable. The electron
may be considered to have also a finite size due to QED corrections. It is customary
to separate the various contributions which may be calculated in the framework of QED
from the definition of the proton radius, e.g., the proton self–energy may be considered
to contribute to a part of the proton charge radius, or may be considered as a QED
correction. Sometimes a clear separation and definition of corrections which have (or not)
to be included in the form factors, i.e., in the rms charge radius is a problem, in particular
for the hadronic corrections.

A measurement of the proton radius with an accuracy better than 1% poses some
theoretical questions about the definition of the proton radius. The problem of a proper
definition of the proton radius was discussed by Pachucki in Ref. [18]. It resulted that a
definition of rp via the Sachs form factor is problematic since it define rp only in leading
order of the electromagnetic coupling α. Beyond this order, the form factor becomes
infrared divergent. Very recently this problem was addressed by Pineda [23] within an
effective field theory framework, connecting the physics at the hadronic scale (heavy–
barion effective theory) with the physics at the atomic scale (potential non–relativistic
QED). A natural definition of the proton radius can be given as a matching coefficient of
the effective field theory, which does not depend on the scheme and scale on which the
computation is performed. This results in a clear dependence of any observable on rp.

The general conclusion is: what is considered contributing to the form factors and
what is considered a QED correction has to be consistently treated in hydrogen, muonic
hydrogen and scattering experiments.



Appendix E

2S − 2P transition probability

In this Appendix the probabilities for the various dipole transitions between the 2S and the
2P states of muonic hydrogen (see Fig. 2.1) are calculated, in order to chose the transition
with the largest transition probability and to deduce the required laser intensity.

E.1 2S − 2P transition probabilities and matrix elements

The transition between atomic states with absorption or emission of a photon is described
by quantum mechanics. To calculate the rate of absorption of light with frequency ω from
an initial state |a〉 with energy Ea to a final state |b〉 with energy Eb, we may use the
“golden rule”:

Wab =
2π

~
|〈b|Hint|a〉|2 ρ(ω) (E.1)

with

ρ(ω) =
1

~

(
Γ

2π

)
1

(ω − ω0)2 + (Γ/2)2
(E.2)

where Γ = Γa + Γb is the total transition width and ω0 = (Eb − Ea)/~ the resonance
frequency. The Hamilton operator Hint which describes the muon–photon field interaction
is

Hint = − e

mc
p ·A +

e2

2mc
A2 (E.3)

Since the laser electric field is small compared to the atomic field the second term (order
A2) can be neglected. In dipole approximation (wavelength of the transition much greater
than the atomic size) the matrix element takes the form

|〈b|Hint|a〉|2 = 2π~α I |〈b|ε · r|a〉|2 (E.4)

where ε is the laser polarization, r is the coordinate operator of the muon, α the fine
structure constant and I the laser intensity. Inserting Eqs. (E.4) and (E.2) in Eq. (E.1)
gives a transition probability of

Wab =
2π

~
αI0

Γ

(ω − ω0)2 + (Γ/2)2
|〈b|ε · r|a〉|2 . (E.5)

The atomic states |a〉 and |b〉 are eigenstates of the total angular momentum F = L + S + I

where L is the orbital momentum, and S, I are the muon and proton spin, respectively.
These eigenstate may then be expressed as

|β, F,M〉 =
∑

MS MI ML

CG · |S,MS〉 |I,MI〉 |n,L,ML〉 (E.6)
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where β = (n,L, S, I), |n,L,ML〉 = RnL(r)YLML
(θ, φ) is the Schrödinger wave–function

corresponding to the state described by the quantum numbers n,L,ML which factorize
in a radial RnL(r) and a spherical YLML

(θ, φ) component, and CG are Clebsch–Gordan
coefficients. In the following we want to calculate the transition probability between
eigenstates of the total angular momentum F ′ and F ,

W (F ′, F ) =
2π

~
αI0

Γ

(ω − ω0)2 + (Γ/2)2
|〈F |ε · r|F ′〉|2 . (E.7)

Since the Zeeman component of the transition are not individually resolved the transition
probability between the initial and final state has to take into account all possible tran-
sitions between Zeeman sublevels. Thus the probability of a transition F ′ → F can be
obtained by summing Eq. (E.7) with respect to M and averaging over M ′

W (F ′, F ) =
1

N(F ′)

∑

M,M ′

N(F ′M ′)W (F ′M ′, FM) (E.8)

where N(F ′) is the total population of the initial state and N(F ′M ′) the population of
the initial state sublevels. For statistical population of the M ′-sublevels it follows that

W (F ′, F ) =
1

2F ′ + 1

∑

M,M ′

W (F ′M ′, FM) . (E.9)

Combining Eq. (E.9) with Eq. (E.5) it may be shown that

|〈F |ε · r|F ′〉|2 =
1

2F ′ + 1

∑

M,M ′

|ε· 〈βFM |r|β ′F ′M ′〉|2 . (E.10)

With the aid of the Wigner–Eckart theorem, we can factorize any matrix element for any

tensor operator Q
(λ)
m of order λ

〈βFM |Q(λ)
m |β′F ′M ′〉 = (F ′M ′, λm|FM)√

2F + 1
〈βF ||Q(λ)||β′F ′〉

= (−1)J−M

(
F λ F ′

−M m M ′

)
〈βF ||Q(λ)||β′F ′〉 ,

(E.11)

where (F ′M ′, λm|FM) are Clebsch–Gordan coefficients which can be written as 3j–
symbols, and 〈βF ||Q(λ)||β′F ′〉 is the reduced matrix element. Using the orthogonality
properties of the 3j–symbols we obtain

∑

MM ′

|〈βFM |Q(λ)
m |β′F ′M ′〉|2 = |〈βF ||Q(λ)||β′F ′〉|2

∑

MM ′

(
F λ F ′

−M m M ′

)2

=
1

2λ + 1
|〈βF ||Q(λ)||β′F ′〉|2 .

(E.12)

Expression (E.12) does not depend on the choice of m, i.e., it is valid for any component
of the dipole vector r which means that this result is independent of laser polarization.
Since r commutes with I and S it can be shown that

|〈βF ||Q(λ)||β′F ′〉|2 = (2F + 1)(2F ′ + 1)(2J + 1)(2J ′ + 1)
{

J F I
F ′ J ′ λ

}2 {
L J S
J ′ L′ λ

}2

|〈βL||Q(λ)||β′L′〉|2
(E.13)



E.2 139

where the brackets represent the 6j–symbols. The reduced matrix element in L-basis can
be expressed as (Wigner–Eckart theorem)

〈βL||Q(λ)||β′L′〉 =

√
2L + 1

(L′M ′
L, λm|LML)

〈βLML|Q(λ)
m |βL′M ′

L〉 . (E.14)

The matrix element on the right side of Eq. (E.14) can be immediately calculated. The

dipole operator r has rank 1 and for m = 0 is Q
(1)
0 = z, and hence

〈βLML|Q(1)
0 |β′L′M ′

L〉 = 〈nLML|z|n′L′M ′
L〉 =

∫
d3r ΨnLML

(r) z Ψn′L′M ′

L
(r) . (E.15)

Following the various steps from Eq. (E.10) to Eq. (E.15) the matrix element |〈F |ε · r|F ′〉|2
can be calculated for all 2S − 2P transitions. The results are given in Table E.1.

However Eq. (E.13) is valid only if both F and J are good quantum numbers. This
is the case for F = 2 and F = 0 states. For states with F = 1 the value of the matrix
elements given in Table E.1 has to be multiplied by the factor Φ0 [104] since J is not a
good quantum number. Mixing occurs within states with F = 1.

For our experiment we have chosen the 2SF=1
1/2 −2PF=2

3/2 transition since both the initial

population (2F ′+1) and the matrix element are favorable relative to the other transitions.
The initial state being a triplet state assures that 3/4 of the population of the 2S state are
at disposition for the laser experiment. This assumes that the population is statistically
distributed among the 2S substates (more details are given in §6.5).

E.2 2S − 2P linewidth

The transition linewidth Γ = Γa+Γb is given by the sum of the individual states linewidth,
given by the lifetimes of the corresponding states. The total probability for a spontaneous
transition from |a〉 to |b〉 is in the dipole approximation [154]

Aab =
4

3

e2ω3
ab

~c3
|〈b|r|a〉|2 . (E.16)

Summing Eq. (E.16) over all states |b〉 which have energy less than that of the initial state
|a〉 one arrives at a total probability per unit time that the state is vacated through light

Table E.1: Matrix elements in dipole approximation for the various possible 2S−2P transitions in
muonic hydrogen. The last column represents a multiplicative factor Φ0 given in Ref. [104] which
considers possible mixing between states with the same F but different J .

Initial state Final state |〈F |ε · r|F ′〉|2 Φ0

2SF=0
1/2 → 2PF=1

1/2 3a2
µ 0.47

2PF=1
3/2 6a2

µ 1.27

2SF=1
1/2 →

2PF=0
1/2 a2

µ —

2PF=1
1/2 2a2

µ 0.47

2PF=1
3/2 a2

µ 1.27

2PF=2
3/2 5a2

µ —
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emission

Aa =
∑

Eb<Ea

4

3

e2ω3

~c3
|〈b|r|a〉|2 . (E.17)

If one adds the intensities of the transitions from a certain state |n′F ′M ′〉 to all sub–states
|nFM〉 disregarding the direction of polarization of the emitted photon, one finds that the
sum is independent of M ′:

∑

Mm

|〈nFM |Q1
m|n′F ′M ′〉|2 = |〈nF ||Q1||n′F ′〉|2

∑

Mm

(
F 1 F ′

−M m M ′

)2

= |〈nF ||Q1||n′F ′〉|2 1

2F ′ + 1

(E.18)

where we made use of the Wigner–Eckard theorem and the orthogonality properties of the
3j–symbols.

We consider in the following spontaneous decay from the initial state with F ′ = 2. Since
Aab ∼ ω3

ab, the spontaneous transition rate from the 2P state to the 2S state is negligible
compared to a transition rate from the 2P state to the ground state. The selection rules
∆F = 0,±1, ∆M = 0,±1 (with F +F ′ > 1) predict that starting from F ′ = 2 only decays
to states with F = 1 are allowed. Combining Eq. (E.13) with Eq. (E.18), calculating
the reduced element in L–basis and inserting the numerical values related to the the
2PF=2

3/2 − 1SF=1
1/2 transition, results in

∑

Mm

|εm 〈n = 1, F = 1,M |rm|n′ = 2, F ′ = 2,M ′〉|2 =
1

3
(R10

21)
2 =

1.67

3
a2

µ (E.19)

where (Rnl
n′l′)

2 = (
∫

dr RnlRn′l′ r
3)2 [154] is the integral over the radial component of

the Schrödinger wave function. Note that this result is equivalent if fine and hyperfine
structure would have been neglected. The total transition probability of Eq. (E.17) for
the 2P F=2

3/2 state is then

A2P =
4

3

αω3

c2

1.67

3
a2

µ ' 117× 109 s−1 . (E.20)

This corresponds to a 2P lifetime τ2P and a linewidth Γν at FWHM of

τ2P ' 8.5× 10−12 s (E.21)

Γν =
A2P

2π
' 18.6 GHz (E.22)

The spontaneous transition rate of 1.5×103 s−1 [155] from the 2S state is negligible since
it can decay only via a two–photon decay. For comparison the 2P state in hydrogen has
a linewidth of 99.8 MHz.
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E.3 Laser intensity

In this section the required laser intensity is calculated. The transition rate (transition
probability per unit time) is given by Eq. (E.5) where the matrix element for the 2SF=1

1/2 −
2PF=2

3/2 transition is |〈b|ε · r|a〉|2 = 5 a2
µ (see Table E.1) and Γ = 2πΓν = 117× 109 s−1. On

resonance the transition rate is then

Wab =
40π

~
α

I

Γ
a2

µ . (E.23)

For Γ � Wab (no Rabi oscillations), and short laser illumination time compared with
the 2S lifetime, the probability that after an illumination time t the transition already
occurred (wab(t)) is given by the following differential equation

dwab(t)

dt
= Wab

(
1− wab(t)

)
(E.24)

with initial condition wab(0) = 0, since we assume that we start with one atom in the
initial state. For a constant laser intensity I of time duration T

wab(T ) = 1− e−Wab T . (E.25)

It is of practical use to introduce the laser fluence defined as

F =
E

A
=

∫ T

0
I(ω, t) dt (E.26)

where A is the beam surface and E the laser energy. The transition probability may be
expressed as function of the fluence as

wab(T ) = 1− eF/Fs (E.27)

with

Fs =
~

8πα

Γ

5a2
µ

= 16.5 mJ/cm2 . (E.28)

The required fluence to induce a transition with a probability of wab = 1− e−1 ' 63% is
given by Fs. In this work we call Fs the saturation fluence.

The saturation energy which is inversely proportional to the transition strength de-
pends on the mass of the orbiting particle m of the atomic system as

Fs ∼
Γ

a2
µ

∼ m

1/m2
= m3 . (E.29)

The muonic transition is hence a factor 107 weaker than the corresponding transition in
hydrogen.

E.4 Two–level system

The starting point for the calculation of the transition probability in §E.1 was given by
the golden rule. In this section we start from the time–dependent Schrödinger equation
which allows us to follow the evolution of both the 2S and 2P states as function of time.
Rabi oscillations as well as lifetimes of the concerned levels are taken into account in this
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model. In the rotating wave approximation (terms with eω0+ω are neglected, see below) the
solution of the time dependent Schrödinger equation leads to the two following differential
equations for the amplitudes a and b [156]

ȧ = −1

2
γaa +

V ∗

~i
eiΩtb

ḃ = −1

2
γbb +

V

~i
e−iΩta

(E.30)

with

ω0 = ωb − ωa = (Eb −Ea)/~

Ω = ω − ω0

V = 〈b|Hint(0)|a〉
= −i

√
2π~αI0〈b|ε · r|a〉

where V is the matrix element, γa and γb the decay constants of the states |a〉 and |b〉,
respectively. The measured laser bandwidth of 0.7 GHz (cf. §4.8) is small compared to the
atomic linewidth. The assumption of monochromatic laser light assumed in Eq. (E.30) is
therefore justified. These are the basic equations which have to be solved to obtain the
population amplitudes a(t) and b(t). The probability to find an atom after the time t in
state |a〉 or |b〉 is then |a(t)|2 or |b(t)|2, respectively.

Equations (E.30) have been numerically integrated for a fully occupied 2S state at
time t = 0, i.e., for initial conditions a(0) = 1, b(0) = 0. The intensity of the laser light is
assumed to have an exponential decay time τ = 140 ns. As shown in §4.11 this roughly
corresponds to the intensity time distribution of the light which illuminates the muonic
atom. The observation of the 1.9 keV photon which corresponds to the 2P −1S transition
is considered in the analysis as laser–induced x ray only if it occurs within a given time
window termed “laser time window”(cf. §6.2). Figure E.1 (Left) shows the probability that
the laser light induces a 2S−2P −1S transition as function of the laser detuning for a laser
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Figure E.1: (Left): 2S − 2P resonance curve. The transition probability is plotted versus laser
detuning for various laser fluences (top to bottom: 45.6 mJ/cm2, 22.8 mJ/cm2 and 11.4 mJ/cm2)
and a laser time window of 200 ns. (Right): 2S− 2P linewidth for various fluences and for a laser
time window of 200 ns.
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Figure E.2: (Left): 2S − 2P transition probability as a function of the laser fluence for three
different illumination times, 150, 200 and 250 ns, for zero detuning. (Right): 2S − 2P transition
probability as a function of the observation time for four different laser fluences and zero detuning.

time window of 200 ns and for various fluences. Figure E.1 (Right) shows the saturation
broadening, i.e., the width of the 2S−2P resonance as a function of the laser light fluence.
With decreasing fluence the linewidth is approaching the natural linewidth of 18.6 GHz.
In Fig. E.2 (Left) the 2S − 2P transition probability is plotted as a function of the laser
fluence for various laser time windows. The laser is assumed to be on resonance. The right
side of Fig. E.2 shows the complementary, i.e., the probability for the 2S − 2P excitation
versus the laser time window for various fluences. The numerical results which account for
the intensity time distribution of the light (exponential with τ = 140 ns) and the 2 keV
observation time (laser time window of 200 ns) predict that 52% of the 2S atoms are
excited to the 2P state when the laser fluence is 16.5 mJ/cm2. The laser intensity and the
laser time window needed to optimize the determination of the 2S − 2P line position has
to take into account the increase of line broadening with increasing fluence and laser time
window, the increase of background for increasing laser time window, and the increase of
signal with increasing laser intensity and laser time window.

E.5 Summary

In Table E.2 some properties of the 2SF=1
1/2 − 2PF=2

3/2 transition are summarized. The

transition with maximum initial population (initial state is a triplet state) and with the

Table E.2: Spectroscopic properties of the 2SF=1
1/2 − 2PF=2

3/2 transition.

2S lifetime (0.6 hPa) 1.3× 10−6 s
2P lifetime 8.5 × 10−12 s
|〈b|r|a〉|2 5a2

µ

transition frequency/wavelength 50 THz / 6 µm
linewidth (FWHM) 18.6 GHz
saturation fluence 16.5 mJ/cm2
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largest matrix element was chosen. The population of the triplet state is 3 times larger
than that of the singlet state assuming the 2S state to be statistically populated. All
2S − 2P transitions have the same sensitivity to finite size effects but the transition with
F + 1 initial state is a factor of 3 less sensitive to the uncertainty of the 2S hyperfine
splitting. The chosen transition is also free from complications by state–mixing as for the
2PF=1

J states.
The fluence required to induce a transition with (1−e−1) probability is Fs = 16.5 mJ/cm2.
The transition width of 18.6 GHz (FWHM) is given by the 2P lifetime. The laser band-
width has to be small compared to the transition width, i.e., no more than 1 − 2 GHz.
The measured laser width of 0.7 GHz (cf. §4.8) fulfills this requirement.



Appendix F

2S − 2P transition systematics

In this Appendix possible systematic effects which shift or broaden our 2S−2P transition
line are studied. Doppler and Zeeman effect, and pressure shift are considered since µp
atoms are formed in H2 gas at 0.6 hPa at room temperature and in a 5 T magnetic field.
Generally speaking, muonic hydrogen atoms are quite insensitive to these effects due to
their small size, and the resulting shift turns out to be totally negligible whereas the
corresponding broadening is still much smaller than the natural linewidth.

F.1 Doppler broadening

The Doppler effect is causing a broadening of the 2S−2P transition of 0.5 GHz (FWHM)
if the µp2S atoms would be thermalized. However the µp2S atoms may not be fully
thermalized at the time of the laser transition. The measured lifetime of the short–lived
2S component of 150 ns [16] shows that 150 ns after the formation of the 2S state, the µp
atoms have an average kinetic energy smaller than 0.31 eV, i.e., are below the threshold
energy for radiative quenching. When the laser transition takes places (1.6 µs after the µp
formation) the thermal energy of the µp atoms is therefore below 0.3 eV. A Monte Carlo
simulation which traces the slowing down of the µp atoms in the hydrogen gas predicts
that at laser time the average kinetic energy of the µp atoms is below 0.1 eV [157].
This simulation considers the energy–dependent elastic and inelastic cross sections for
µp(2S) + H2 collisions calculated by T. Jensen. In conclusion a Doppler broadening of
approximately 1 GHz is expected which is small compared to the natural linewidth of
18.6 GHz.

F.2 Zeeman effect

A 5 T magnetic field is used to keep the size of the muon stop volume small. The µp
atoms can thus be effectively illuminated by the laser pulse. The effect of this rather
high magnetic field on the 2S − 2P energy difference is treated in this section. First the
relevance of the quadratic Zeeman effect compared to the linear term is considered. The
effect of the magnetic field on the 2S level is then calculated in first order perturbation
theory (Zeeman effect) and compared to the exact Breit–Rabi solution. The 2P Zeeman
shift is calculated in first order perturbation theory. The observable effect of the magnetic
field on the 2S − 2P transition is given by the different Zeeman corrections for the upper
and the lower levels of the transition.

145
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F.2.1 Linear versus quadratic Zeeman effect

Consider the Hamiltonian H of a charged particle with mass m, charge e and spin S in
an external constant magnetic field B:

H =
1

2m

(
p− e

c
A
)2
− e

mc
S ·B

A =
1

2
r×B .

(F.1)

The first term accounts for the interaction between charge and electromagnetic field, and
the second one represents the interaction of the particle magnetic moment with the mag-
netic field. Inserting the definition of the field A and that of the angular momentum
L = p× r gives

H =
p2

2m
− e

mc
(p ·A + S ·B) +

1

2m

e2

c2
A2

=
p2

2m
− e

mc

(
1

2
L ·B + S ·B

)
+

p2

2m

e2

c2

1

4
(r×B)2

=
p2

2m
− e~

2mc
(lz + 2sz) B +

e2

8mc2
r2B2 sin2 θ

(F.2)

where ~lz and ~sz are the eigenvalues of the operator Lz and Sz, respectively. The ratio
of the quadratic to the linear term in the 5 T magnetic field turns out to be of the order
of 10−10 and consequently the quadratic term may be neglected. Thus the magnetic field
dependent part of the Hamiltonian takes the simplified form

HB =
e~

2mc
(Lz + 2Sz)B . (F.3)

F.2.2 Orbital and spin magnetic moments

The atomic interaction with an external magnetic field B can be described by the Hamilton
operator of Eq. (F.3) applied to both particles forming the atomic system

HB =
(
gµ
L µµ

B L + gp
L µp

B L + gµ
S µµ

B S + gI µp
B I
)
· B

~

=

(
gµ
L Lz + gp

L

µp
B

µµ
B

Lz + gµ
S Sz + gI

µp
B

µµ
B

Iz

)
µµ

B B .
(F.4)

where gµ
L, gp

L, gµ
S and gI are respectively the muon orbital, the nuclear orbital, the muon

spin, and nuclear “g-factors”. L stands for the orbital momentum of the orbiting particle
which is the same as the orbital momentum of the nucleus, S the muon spin and I the
nucleus spin.

The muon magnetic moment is defined as µµ
B = e~

2mc where m is the muon mass, and
the proton magnetic moment is µp

B = e~

2Mc where M is the proton mass. The magnetic
field is assumed to be in z-direction. The source of the orbital magnetic moment is given
by the orbital angular momentum of the moving particle. A fraction m/(m + M) of
the total orbital momentum of an atom is contributed by the motion of the nucleus and
the fraction M/(m + M) by the orbiting particle. The muon’s contribution to the orbital
angular momentum, and hence to the orbital gyromagnetic factor, is reduced by the factor
M/(m + M) to

gµ
L = 1 · M

m + M
' 0.90 . (F.5)
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The motion of the nucleus gives rise to an orbital g-factor of

gp
L = 1 · m

m + M
' 0.10 (F.6)

which is negligible since gp
L µp

B ' m2

M2 gµ
L µµ

B. The spin component of the muon magnetic
moment for a free muon is given by the Dirac value, corrected for small QED contributions

gµ
S = 2 (1 +

α

2π
+ · · · ) ' 2 (1 + 0.001) ' 2 . (F.7)

Additional corrections to the muon g-factor are known which account for the fact that the
muon is in a bound system and not a free particle. These corrections which are mainly of
kinematic origin affect the g-value below the 10 ppm level [29] and are therefore negligible.
The measured proton gyromagnetic factor is gI ' −5.58.

Compared to hydrogen, muonic hydrogen shows a decrease of the spin and orbital
magnetic moments of the orbiting particle by a factor of about 200 due to the mass ratio
of the orbiting particles.

F.2.3 Zeeman effect of the hyperfine levels

If the energy shift due to the magnetic field is small compared to the fine–structure split-
ting, then J (J = L+S) is a good quantum number (hyperfine interaction neglected) and
the Hamiltonian can be written as

HB =

(
gJJz + gI

µp
B

µµ
B

Iz

)
µµ

B B (F.8)

where

gJ = gL
J(J + 1)− S(S + 1) + L(L + 1)

2J(J + 1)
+ gS

J(J + 1) + S(S + 1)− L(L + 1)

2J(J + 1)
(F.9)

The small orbital component of the proton magnetic moment is neglected. Similarly if
the energy shift due to the external magnetic field is small compared to the hyperfine
splitting then F (F = J + I) is a good quantum number and the interaction Hamiltonian
HB becomes

HB = gF µµ
B B

Fz

~
(F.10)

where the hyperfine Landé g-factor is

gF = gJ
F (F + 1)− I(I + 1) + J(J + 1)

2F (F + 1)
+ gI

µp
B

µµ
B

F (F + 1) + I(I + 1)− J(J + 1)

2F (F + 1)
(F.11)

For weak magnetic fields the interaction Hamiltonian HB perturbs the zero–field eigen-
states of Hhfs. To lowest order the levels split linearly according to

∆EB = gF µµ
B mF B (F.12)

where the gF values are given by combining Eq. (F.11) with Eq. (F.9) and ~mF is the
eigenvalue of Fz. Inserting the gyromagnetic values of §F.2.2 with gL = gµ

L gives

gF = 0.99 for 2SF=1
1/2 states

gF = 0.94 for 2P F=2
3/2 states .

(F.13)
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Table F.1: Zeeman shift in a 5 T magnetic field for the three allowed 2SF=1
1/2
− 2PF=2

3/2
transitions

in muonic hydrogen for light linear polarized along the magnetic field.

2SF=1
1/2 → 2PF=2

3/2 Energy shift [meV] Frequency shift [MHz]

mF = 1 −0.8× 10−4 −20
mF = 0 0 0

mF = −1 0.8 × 10−4 20

For a 5 T magnetic field the g-values for the lower and upper states cause a Zeeman shift
of

∆EB = 1.40 × 10−6 mF (eV) for 2SF=1
1/2 states

∆EB = 1.32 × 10−6 mF (eV) for 2P F=2
3/2 states .

(F.14)

Since the laser light inducing the transition is linearly polarized parallel the B-field (atomic
quantization axis) only transitions with ∆mF = 0 are allowed by selection rules. This
reduces the effect of the magnetic field on the transition frequency since only the difference
between the upper and lower level shift is observed which is an order of magnitude than
the shifts themselves. Table F.1 shows the energy shifts for the 3 allowed transitions
between the triplet 2S state and the 2P state with F = 2. The average shift resulting
in the 5 T magnetic field is zero because the Zeeman shift is opposite for the mF = ±1
transitions and zero for the mF = 0 transition (the mz sublevels are equally populated).
However these Zeeman shifts cause, in principle, a broadening of our resonance line of
order 40 MHz/18.6 GHz∼ 0.25% (relative to the natural linewidth), which is negligible.

F.2.4 Anomalous Zeeman effect versus Breit–Rabi solution

An exact solution of the magnetic field effect on the atomic levels is given by finding the
energy eigenvalues of the Hamiltonian:

H =
∆Ehfs

2~2
I · J +

(
gJJ + gI

µp
B

µµ
B

I

)
· µ

µ
B

~
B . (F.15)

The I · J coupling (hyperfine) has to be taken into account because the external field is
affecting the coupling within the various atomic magnetic moments. Contrary to the per-
turbative approach of the previous section, this approach (Breit–Rabi) is valid regardless
of the magnetic field amplitude. Using the relation J± = Jx ± Jy and I± = Ix ± Iy the
Hamiltonian H may be written as

H =
∆Ehfs

2~2
(I+J− + I+J− + IzJz) +

(
gJ Jz + gI

µp
B

µµ
B

Iz

)
µµ

B

~
Bz (F.16)

For S states (L = 0), the elements of the Hamiltonian may be easily calculated using the
relations

J±|J, Jz〉 = ~

√
J(J + 1)− Jz(Jz ± 1) |J, Jz ± 1〉

I±|I, Iz〉 = ~

√
I(I + 1)− Iz(Iz ± 1) |I, Iz ± 1〉

(F.17)

Since [H,Fz ] = 0, mF is a good quantum number. It is therefore justified to consider only
the subspace spanned by

{
|mI = mF − 1/2,mJ = 1/2〉, |mI = mF + 1/2,mJ = −1/2〉

}
(F.18)
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The Hamiltonian in this basis is expressed as the following 2× 2 matrix (m ≡ mF ):




∆Ehfs

2

(
m− 1

2

)
+
[

gJ

2
− gI

µp

B

µµ

B

(
m− 1

2

)] µµ

B

~
B ∆Ehfs

2

√
I(I + 1)−

(
m− 1

2

) (
m− 1

2

)

∆Ehfs

2

√
I(I + 1)−

(
m− 1

2

) (
m− 1

2

)
−∆Ehfs

2

(
m + 1

2

)
+
[
−gJ

2
− gI

µp

B

µµ

B

(
m + 1

2

)] µµ

B

~
B




Diagonalizing this matrix leads to the eigenvalues and hence the energy levels

E±
m = −∆Ehfs

4
− gI µp

B mB ± ∆Ehfs

2

√
1 + 4mx + x2 (F.19)

whit

x =

(
gµ
J + gI

µp
B

µµ
B

)
µµ

B B

∆Ehfs
. (F.20)

This formula describes exactly the effect of the magnetic field. For B = 0 the usual
hyperfine structure of the S states is found, with the triplet states shifted upward by
1/4∆Ehfs and the singlet state shifted downward by −3/4∆Ehfs.

It turns out that for a 5 T magnetic field the perturbative results of Eq. (F.14) are
equivalent to the Breit–Rabi solution. Linearizing the Breit–Rabi equation as a function
of the magnetic field gives the first order perturbation Zeeman shift. Linearizing is a
legitimate approximation for x � 1, which is equivalent to low magnetic fields. For the
2S1/2 state x ∼ 10−4, and for the 2P3/2 state x ∼ 10−3, which means that the perturbation
theory is a good approximation of the exact solution and therefore the level shifts caused
by the magnetic field are the ones shown in Table F.1.

F.3 Collisional shift and broadening

Since muonic hydrogen is formed in hydrogen gas the effect of collisions with the sur-
rounding hydrogen gas has to be considered. An estimate for collisional–induced line shift
and broadening is presented in this section. A simple model was developed in the impact
theory framework, which takes into account the effects of the H2 molecular properties.

F.3.1 Model

Let us consider an atomic oscillator moving in a gas. The frequency of its emitted or
absorbed radiation changes gradually when a surrounding gas molecule is approached.
We consider only adiabatic perturbations, neglecting transitions between different states
of the atom. Let V (r) be the transition energy shift (interaction potential) caused by the
colliding hydrogen molecule, then the time evolution of the oscillator can be expressed in
the form [158]

f(t) = exp (−iω0t + iη(t))

η(t) =

∫ t

−∞
dt′ V (r(t′))/~ ,

(F.21)

where ω0 is the unperturbed transition frequency, η(t) the phase of the oscillator caused
by the interaction, and r(t) the trajectory of the oscillator in the hydrogen gas. Since
inelastic channels are neglected the phase η is a real number. The power spectrum of the
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emitted and absorbed radiation is given by the Fourier transform of the function f(t). It
can be derived that [158]

∆νbroadening = nv̄

∫ ∞

0
2πb db [1− cos (η)] (F.22)

∆νshift = nv̄

∫ ∞

0
2πb db sin (η) (F.23)

η =

∫ ∞

−∞
dt V

(√
b2 + v̄2t2

)
(F.24)

where ∆νbroadening is the collisional broadening, ∆νshift the collisional line shift, and b
the impact parameter. A precise derivation of this formula requires the introduction of
the correlation function, its expansion at low density and several averaging procedures.
It assumes a spherically symmetric interaction and an average over all possible classical
rectilinear atomic trajectories supposing that each atom is not deflected by the collision
(r(t) = r0+vt). Moreover only the mean velocity v̄ is used instead of the detailed velocity
distribution. The phase of Eq. (F.24) is computed for a collision with a single molecule at
a fixed impact parameter. Equations (F.22) and (F.23) are an average over all possibles
trajectories.

The validity conditions for these impact approximations are considered here. We define
τc as a representative duration of collision, and τcc as a mean time between collisions. The
impact approximation is valid when τc � τcc, implying that the total absorbed energy
comes from the interval between collisions. τc ' b/v̄ and τcc ' 1/nv̄πa2, where n is
the density of hydrogen molecules and a (Weisskopf radius) the impact parameter for
which the collisional phase shift is one radian. We estimate a to be near 2.5a0 and taking
b ' 2a we have τc/τcc = 2πa3n = n/(0.7 × 1023 cm−3). Note that 1 hPa corresponds to
n ' 2.8×1016 cm−3 and therefore this model is applicable for our experimental conditions.

F.3.2 2S − 2P energy shift

The energy levels of the µp n = 2 manifold are affected by the Stark effect where the
related electric field originates from the colliding molecules. Let’s consider the effect of an
electric field on the four–level system with n = 2 in the |nLm〉 notation (fine and hyperfine
structure neglected):

|2S0〉, |2P1〉, |2P−1〉, |2P0〉 . (F.25)

The |2Pm〉 states are degenerate, and lie 0.2 eV above the |2S0〉 state. The perturbation
Hamiltonian for an electric field E in z-direction is:

H1 = eEz (F.26)

where e is the electric charge and z the space operator in z-direction. The energy eigen-
values of the perturbed system are

E± =
1

2

[
(ES + EP )±

√
(EP −ES)2 + 4|HSP |2

]
(F.27)

HSP = 3eaµ | ~E| (F.28)

where ES , EP are the energy eigenvalues of the unperturbed 2S and 2P states, respectively,
and aµ = ~

2/mµe2 is the Bohr radius for µp atoms. For vanishing perturbation (H1 → 0),
E+ reduces to EP and E− to ES .
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The interaction potential which describes the transition energy shift during the collision
is then given by

V (r) = (E+ −E−)− (EP −ES)

=

√
(EP −ES)2 + 4 |HSP |2 − (EP −ES) .

(F.29)

Therefore the interaction potential can be computed if the external electric field is known.

F.3.3 Electric field and interatomic potential

The electrostatic potential Φ of a charge distribution can be expanded in multi–pole mo-
ments:

Φ =
q

r
+ dα

rα

r3
+

Θαβ

3r5

(
3rαrβ − r2δαβ

)
+ . . . (F.30)

where q =
∑

i ei is the total charge, dα =
∑

i eiriα the dipole moment, and Θαβ =
1
2

∑
ei(3riαriβ − r2

i δαβ) the quadrupole moment.
The charge distribution of the hydrogen molecule is not affected, in the lowest order,

by the colliding µp atom, since the µp atom is small and neutral. The µp2S atom does
become polarized, but because of the smallness of the induced electric dipole moment,
its effect may be neglected even when it is well inside the molecular orbital. Since the
hydrogen molecule is neutral (q = 0) and does not have a permanent dipole moment
(dα = 0), the relevant potential is given by the quadrupole term

Φ =
Θαβ

3r5

(
3rαrβ − r2δαβ

)
. (F.31)
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Figure F.1: Interaction potentials as a function of the distance r between the µp atom and hydrogen
molecule for two different electric field models: the one generated by the electrostatic quadrupole
moment of the hydrogen molecule, and that caused by a single hydrogen atom. The higher lying
dashed curve represents the unperturbed transition energy, and the one at the bottom represents
the aimed precision (30 ppm).
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Θαβ is a tensor having 9 components, but by a proper choice of the axes of reference, all
off–diagonal elements (Θαβ(α 6= β)) can be made to vanish. Thus three principal axes x,
y, and z are obtained with the relative quadrupole components:

Θxx =
1

2

∑

i

ei

(
3x2

i − r2
i

)

Θyy =
1

2

∑

i

ei

(
3y2

i − r2
i

)

Θzz =
1

2

∑

i

ei

(
3z2

i − r2
i

)

(F.32)

These are the principal quadrupole moments of the molecule. The sum of the above
quadrupole moments per definition gives

Θxx + Θyy + Θzz = 0 , (F.33)

so that only two of them are independent. Because the charge distribution of the hydrogen
molecule is symmetric around, say, the z-axis, there is:

Θ = Θxx = Θyy = −1

2
Θzz . (F.34)

It can be shown that the spatially averaged electric field caused by the quadrupole moment
of the hydrogen molecule is approximately

∣∣EAvg
∣∣ ' 3Θ

r4
(F.35)

where Θ = 0.6× 10−26 esu cm2 [159].
At short distances (r < a0) the hydrogen molecule can be treated as two independent

hydrogen atoms. The spherically symmetric Coulomb potential generated by the hydro-
gen atom in the region r < a0 is expanded in r. The first non–vanishing contribution
gives [160]:

|E(r)| = r−2
(
1 + 2r + 2r2

)
e−2r e

a2
0

(F.36)

where r is expressed in atomic units. Both the molecular quadrupole potential and the
atomic potential are calculated with Eq. (F.29) and shown for comparison in Fig. F.1.
The potential at large distances is dominated by the quadrupole term. At short distances
(r . 2a0) the atomic transition is so far shifted from its unperturbed value that the
exact knowledge of the potential is unnecessary for the calculation of the pressure shift.
As will be shown below only collisions with impact parameter b & 2 plays a role in the
determination of the collisional line shift.

F.3.4 Numerical results

Equations (F.22 – F.24) combined with Eqs. (F.27 – F.29), and (F.35) give the pressure
shift and broadening. The phase shift η for a complete collision has to be computed for
every impact parameter b. The functions b sin (η) and b[1− cos (η)] are plotted in Fig. F.2
versus the impact parameter b. The integrals of these two curves are proportional to the
pressure shift and broadening (see Eqs. (F.23) and (F.22)). This illustrates which impact
parameter region is relevant for the shift and the broadening. The line shift, proportional
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Figure F.2: Plotted are functions whose integral is proportional to the pressure shift (left) and
broadening (right). It shows that only soft collisions (b & 2) contribute to the shift and predomi-
nantly hard collisions (b . 2) contribute to the broadening.

to the integral of the function in Fig. F.2 (left), turns out to be determined only by
collisions with impact parameter greater than ∼ 2a0. Therefore a precise knowledge of the
interatomic potential for distances smaller than ∼ 2a0 is not required for the computation
of the line shift. At larger distances the long–range quadrupole potential turns out to
be correct and it is the relevant potential causing the pressure shift. Only soft collisions
contribute to the line shift, whereas the broadening is given by harder collisions with
impact parameters b . 2a0. At these short distances the multi–pole expansion leading
to the quadrupole potential is not valid. Hence the pressure broadening value computed
using the quadrupole potential is only qualitatively correct.

A pressure shift and broadening of

∆νshift = 1.3 MHz× p [hPa]

∆νbroadening = 2.4 MHz× p [hPa]
(F.37)

are expected. This is three orders of magnitude smaller than the accuracy in the de-
termination of the 2S − 2P centroid position we are aiming at (1.5 GHz), and therefore
completely negligible.
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Appendix G

Population and lifetime of the 2S
state

The feasibility of our experiment relies crucially on a sizable fraction of muonic hydrogen
atoms in the 2S state with sufficiently long lifetime. This Appendix is devoted to the
description of the muonic hydrogen formation in highly excited states and subsequent
deexcitation mechanisms (cascade). Focus is given to the fraction of formed µp which
reach the 2S state, to the distinction between “long–lived” and “short–lived” 2S states
and to the lifetime of the “long–lived” 2S state which corresponds to the initial state
relevant for the laser experiment.

G.1 Muonic hydrogen formation and cascade processes

A negatively charged muon introduced into H2 gas will slow down to a kinetic energy of
about 15 eV and is then captured by a hydrogen molecule. The hydrogen molecule breaks
up and muonic hydrogen is formed [161]. Deceleration of the muon is caused by inelastic
processes, i.e., by ionization and excitation of hydrogen molecules.

Based on measurements with µ− [162] and p̄ [163] the stopping power of µ− in H2 gas
for µ− energies between 1 and 5 keV ranges from S = 2.4×10−15 eV/cm2 to S = 3.7×10−15

eV/cm2, respectively. Knowing the stopping power of µ−, it is possible to calculate its
energy loss via dE/dx = −nS where n is the atomic density. The resulting range and
slowing down time until the µ− is captured is respectively 20 cm and 300 ns for a 1 keV
µ−, and 60 cm and 500 ns for a 5 keV µ− in 0.6 hPa H2 gas at room temperature, assuming
a capture energy of 15 eV [16].

As a rule of thumb, muonic hydrogen is formed in an orbit with similar energy and dis-
tance from the nucleus as the displaced electron, since then the overlap between electronic
and muonic wave function is maximal. The corresponding principal quantum number of
the initial state is then ni ∼

√
mµp

r /mep
r ∼ 14 where mµp

r and mep
r are respectively the

reduced masses of µp and H atoms.
After the formation of the µp atom in a highly excited state a number of different

processes take place until the metastable 2S or the 1S ground state are reached: radiative
transition, Auger emission, Coulomb deexcitation, Stark mixing and elastic collisions.
Figure G.1 and Table G.1 give a summary of the processes included in the present cascade
model of T. S. Jensen and V. Markushin [12, 164–169].
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Table G.1: Processes involved in the deexcitation of µp after its formation at highly excited states.

Stark mixing: (µp)nli + H2 → (µp)nlf + H2

External Auger effect: (µp)i + H2 → (µp)f + H+
2 + e

Coulomb deexcitation: (µp)ni
+ H2 → (µp)nf

+ H2 (nf < ni)

Elastic collision: (µp)nl + H2 → (µp)nl + H2

Radiative transition: (µp)nili → (µp)nf lf + γ

Weak decay: µ− → e−νµν̄e

Nuclear capture: µ− + p→ n + νµ

1. Radiative transitions: The radiative rates of muonic hydrogen are related to
those of atomic hydrogen by Γrad

nili→nf lf
(µp) = mµp

r /mep
r Γrad

nili→nf lf
(H) (as follows

from Eq. (E.16)). Only electric dipole transitions are considered in the cascade
model:

(µp)nili → (µp)nf lf + γ (G.1)

with lf = li ± 1. This is the only cascade process which does not depend on den-
sity and kinetic energy. The radiative rates strongly increase with decreasing n
due to the radiative rate dependence on the energy difference (Γrad ∼ ∆E3

nn′) and
the wave–function overlap [154]. Hence below a specific density–dependent n value
which increases with lower hydrogen density, the radiative transitions dominate the
cascade. For the same reason (Γrad ∼ ∆E3

nn′), the population of the circular states
|n, l = n − 1〉 is strongly enhanced by ∆n � 1 radiative dipole transitions since
∆l = ±1 . From such states the radiative decay can proceed exclusively via ∆n = 1
dipole transitions. Therefore the circular transitions are the most important source
feeding the 1S ground state. The 2S state is not fed via radiative transitions from
these circular states since the 2P state “always” decays radiatively to the ground
state (except at very high densities, i.e., close to that of liquid hydrogen).

2. Stark mixing: Since muonic hydrogen is neutral and rather small in the atomic
scale, it approaches closely the nuclei of neighboring atoms, experiencing their Cou–
lomb field. Hence the corresponding cross section is given by the size of the hydrogen
atom. The electric field experienced during a collision mixes the pure parity states
|nlm〉 with states of different angular momentum (linear Stark effect):

(µp)nli + H2 → (µp)nlf + H2 (G.2)

The rates of this process increase with increasing kinetic energy and principal quan-
tum number n. Radiative transitions preferably populate the circular states whereas
Stark mixing is reestablishing a statistical distribution of the orbital angular momen-
tum l. Since the radiative transition rates are pressure–independent and the Stark
mixing rate depends linearly on the pressure, an increase of the pressure will lead to
an increase of the fraction of µp atoms reaching the 2S state (see Fig. G.2).

3. Coulomb deexcitation: This process is important in the upper part of the cas-
cade n > 10 (at 0.6 hPa) and is the only process which accelerates the µp atoms
considerably,

(µp)ni
+ H2 → (µp)nf

+ H2 + kin. energy (G.3)
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Figure G.1: (Left): Schematic view of the atomic cascade in µp. The µp atom is formed in a
highly excited state with principal quantum number n ∼ 14. At ∼ 1 hPa pressure the most
important deexcitation mechanism in the upper part of the cascade is Coulomb deexcitation with
large jumps ∆n = 1 − 4. Below n ∼ 10 the radiative transitions are the dominant deexcitation
mechanism. (Right): The l-average rates at 1 eV kinetic energy for 1 hPa pressure: Coulomb
deexcitation (empty red squares), Stark mixing (full blue squares), Auger transitions (magenta
stars) and radiative deexcitation (black full circles). The two extreme cases of radiative rates are
shown: np −→ 1s and the circular n(n − 1) −→ (n − 1)(n − 2). These cross sections have been
computed by T. Jensen.

where nf < ni. The transition energy is shared between the colliding particles, i.e.,
the released energy ∆Enn′ is partially converted into kinetic energy of the µp atom
producing exotic atoms with energies E � 1 eV [10].

4. External Auger deexcitation: This is a deexcitation which occurs via ionization
of the H2 molecule in a collision:

(µp)i + H2 → (µp)f + H+
2 + e . (G.4)

In contrast to the Coulomb deexcitation, nearly all the transition energy is carried
away by the released electron, so that the recoil energy of the µp atom is rather
small. The Auger rate has its maximum at a critical level nc = 7 above which only
∆n > 1 transitions are energetically possible (to be compared with the H2 ionization
potential of 15.4 eV). Above nc therefore the cross section decreases. Below nc,
∆n = 1 transitions are possible but the probability of electron emission decreases
rapidly with n since the size of the neutral µp atoms decreases much below the size
of the electron wave–function.
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5. Elastic scattering: Elastic scattering describes the collision of µp atoms with the
H2 molecule:

(µp)nl + H2 → (µp)nl + H2 (G.5)

in which the quantum state is not changed. Together with Stark mixing (inelastic
scattering), elastic scattering is decelerating the µp atoms, counteracting the accel-
eration caused by the Coulomb deexcitation. However elastic scattering does not
dominate the evolution of the energy distribution, and when the µp atoms reach
the ground state or the 2S metastable state they are far from being thermalized.
However this process is responsible for the thermalization of the 2S state which is
of fundamental importance for the laser experiment (cf. §G.3).

The cascade model developed by Jensen and Markushin accounts also for the time evo-
lution of the kinetic energy of the µp atoms during the cascade. The present cascade
model reproduces well the measured x-ray yields [14] and kinetic energy distributions [10]
whereas it gives too long values for the cascade time [16]. The measured cascade time at
0.6 hPa is (30± 7) ns [16].

G.2 Population of the 2S state

The fraction of formed µp atoms reaching the 2S state can be determined experimentally
by measuring the Lyman–series (Kα, Kβ , . . . ) x-ray yields [14],

ε2S = 0.134YKβ + 0.144YKrest (G.6)

where it was made use of the calculated radiative branching ratios Γrad(3P → 2S)/Γrad(3P →
1S) = 0.134 and Γrad(n > 3 → 2S)/Γrad(n > 3 → 1S) = 0.144. The above expression
assumes that only radiative transitions are the processes feeding the 2S and the 1S states,
which is justified at our conditions. It will be shown below how the yields YKi are deduced
from the measured relative x-ray intensity ratios (YKj/

∑
i YKi).

As will be further discussed below, there are two classes of µp2S atoms: a component
with a long lifetime termed “long–lived” (εlong

2S ) and a component with a short lifetime
termed “short–lived” (εshort

2S ):

ε2S = εlong
2S + εshort

2S . (G.7)

At 0.6 hPa the short–lived component decays within 150 ns emitting a Kα x ray (after a
collisional excitation to the 2P state), whereas the “long–lived” component decays nonra-
diatively to the ground state with a lifetime of 1.3 µs (cf. §G.4). The sum of all radiative

K-yields is Ytot =
∑

i YKi = 1 − εlong
2S , because the long–lived component does not con-

tribute, whereas the short–lived component is practically included in the measured Kα

x-ray intensity. For hPa gas pressures between 0.06 and 64 hPa, εlong
2S was measured to be

about 1% [10]. By multiplying the measured relative yields Ykβ/Ytot and YKrest/Ytot with
Ytot ' 0.99, the absolute yields needed in Eq. (G.6) are obtained.

At 0.6 hPa a value
ε2S = (2.49 ± 0.17) % (G.8)

can be interpolated from the data shown in Fig. G.2. The initial 2S population increases
with pressure due to Stark mixing which diminishes the importance of the circular tran-
sitions, enhancing the probability that the 2S state is fed.
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Figure G.2: Fraction ε2S of muons reaching the 2S state versus gas pressure as obtained from
measurements of muonic hydrogen K-series x-ray yields. The vertical dotted line represents the
gas pressure used in the 2003 data taking period of the µp2S Lamb shift experiment (Courtesy of
R. Pohl and F. Kottmann).

G.3 Long and short–lived 2S components

In the absence of collisions the lifetime of a µp2S atom is essentially given by the muon life-
time. Two–photon transitions to the ground state occur with a rate of 1.5× 103 s−1 [155]
which is negligibly small compared to the muon decay rate of λµ = 4.55× 105 s−1 (corre-
sponding to the inverse of the muon lifetime of 2.197 µs). However in a gaseous environ-
ment the interactions with the surrounding molecules have to be taken into account.

The cross section for collisional 2S–quenching depends critically upon whether the
kinetic energy is less or greater than the 2S − 2P splitting of 0.2 eV. µp2S atoms with
kinetic energy larger than 0.2 eV in the center–of–mass system, corresponding to 0.31 eV
in the laboratory system, can undergo a Stark collision with excitation to the 2P state.
Thus deexcitation to the ground state via emission of a Kα photon occurs (predominantly
after the collision):

µp(2S) + H2 → µp(2P ) + H2 → µp(1S) + H2 + Kα . (G.9)

The µp2S atoms quenched by this process belong to the short–lived component of the 2S
state.

If the relative kinetic energy is smaller than the 2S−2P splitting, this inelastic process
is energetically forbidden. However quenching may still occur during the collision since
for this time the pure 2S state is mixed with the 2P state. An electric dipole transition
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Figure G.3: (Left): Fraction of µp2S atoms which are slowed below 0.31 eV in the laboratory
system as a function of their initial kinetic energy T for different cascade models (Courtesy of
T. Jensen). (Right): Initial (before thermalization occurs) kinetic energy distribution of the µp1S

atoms, interpolated for 0.6 hPa from measurements in Ref. [10].

may take place during the collision:

µp(2S) + H2 → µp(α|2S〉 + β|2P 〉) + H2
↗ µp(2S) + H2 (elastic: 2S → 2S)

↘ µp(1S) + H2 + Kα (deexc. during coll.) .
(G.10)

Collision times are typically of the order of τc ∼ 10−14 s, quite short compared to the
radiative lifetime of the 2P state of τ2P ∼ 10−11 s. Since this type of radiative transitions
occurs only during the collision, the corresponding cross section is reduced by a factor
τc/τ2P ∼ 10−3 relative to the inelastic cross section of Eq. (G.9) which is of the order
of the atomic size (∼ 10−16 cm2). The µp2S atoms quenched by this weaker process
(and other molecular processes which will be the subject of the next section) are termed
long–lived 2S states.

The competition between fast quenching given by the inelastic process (2S → 2P )
and slowing down caused by the elastic process (2S → 2S) determines the probability for
a µp2S atom to survive the process of slowing down and end up as a µp2S with kinetic
energy below the threshold energy for the inelastic collision. The long–lived 2S component
corresponds to µp2S atoms either formed with kinetic energies below 0.31 eV or formed
at higher kinetic energies but slowed below this threshold due to elastic collisions.

At kinetic energies below 1 eV the elastic process which slows down the µp atoms
starts to dominate over the inelastic process which quenches the 2S population. Starting
from a kinetic energy T above threshold, every elastic collision 2S → 2S decelerates the
µp2S atom, which reduces the probability for a subsequent inelastic collision. The fraction
of µp2S atoms with initial energy T which are slowed below threshold and thus belong to
the long–lived component is given in Fig. G.3. Most of these long–lived atoms reach near
thermal energies (< 0.1 eV) within a few hundreds ns [157, 172].

In the present high statistics experiment it was possible for the first time to deduce the
fraction of the short–lived component (relative to all µp atoms) and its lifetime at 0.6 hPa
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by measuring the time distribution of the Kα x rays [16]:

εshort
2S = (1.02 ± 0.21)%

τ short
2S = (148 ± 22) ns

(G.11)

G.4 Lifetime of the 2S long–lived state

The long–lived component is the population which is relevant for the laser experiment
since we need to distinguish between laser–induced Kα photons and “ordinary” Kα x rays
from the muonic cascade. As will be described below the fraction of long–lived µp2S is
about 1% at 1 hPa, but experiments searching for delayed Lyman-α originated by radiative
quenching during collisions as described by Eq. (G.10) were unsuccessful [170, 171, 173].
This implies a nonradiative deexcitation mechanism of the 2S state. Muonic hydrogen
atoms with ∼ 900 eV kinetic energy have been found which are produced via resonant
formation of excited muonic molecules with subsequent auto–dissociation

µp(2S) + H2 → {[(ppµ)+]∗pee}∗ → µp(1S) + p + kin. energy + . . . . (G.12)

The 2S−1S transition energy of 1.9 keV is shared as kinetic energy among the µp1S atom
and one proton. The resulting quenching rate was found to be [10, 11]

λ2S
quench = 5.1+2.4

−2.1 × 105 s−1 · p [hPa] . (G.13)

This nonradiative deexcitation mechanism is found to be the dominant decay channel
of the long–lived 2S component since its cross section is σ ∼ 10−16 cm2 (per hydrogen
molecule at thermal energies) whereas the cross section for radiative deexcitation during
collisions is expected to be of the order σ ∼ 10−18 cm2 [174]. The lifetime of the µp2S state
is therefore essentially given by this molecular quenching channel and the muon decay:

τ long
2S =

(
λ2S

quench + λµ

)−1
(G.14)

where λµ is the muon decay rate.
From the same data, not only the lifetime but also the population of the long–lived

component can be inferred. The values resulting at 0.6 hPa for population and lifetime of
the long–lived component are:

εlong
2S = (1.1 ± 0.2)%

τ long
2S = (1.32 ± 0.24) µs .

(G.15)

Combined with the known total population of the 2S state of 2.49% [14] (relative to the
number of µp atoms in the ground and 2S state), the new measurement of the short–lived
component is also an indirect determination of the long–lived component [16]:

εlong
2S = 2.49% − 1.02% = (1.47 ± 0.27)% (G.16)

Both the indirect value (Eq. (G.16)) and the direct determination (Eq. (G.15)) of the
long–lived µp2S population are in agreement.
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Appendix H

Background of the 2S − 2P
resonance

It is of major importance — especially for future measurements — to understand the
origin of the background, i.e., 2 keV x rays in the laser time window which do not arise
from laser–induced Kα transitions. The main background process which is muon transfer
to the polypropylene foils in front of the LAAPDs, is presented in §H.1. Section H.2
summarizes all known possible background processes and gives an estimate of their relative
intensity and time dependence. In §H.3 the expected theoretical time distribution of 2 keV
x rays is compared with the measured one, confirming the validity and completeness of
the background model presented in the previous sections.

The signature of a background event is per definition the same as that of a “good”
laser–induced event:

– a muon triggers the laser and data acquisition system;

– no signals are detected in any LAAPD or electron detector in the time interval
preceding the arrival of the laser light in the cavity;

– in the laser time window (when the laser light is illuminating the µp atoms) a signal
is detected in the LAAPDs which is classified as a 2 keV x ray;

– in a delayed time window relative to the x ray detection, a signal is detected in the
LAAPDs or electron detectors which is classified as electron.

In the following a brief overview of the various processes contributing to the background
is given:

– µp1S atoms formed in a region close to the target axis move in arbitrary direction
through the hydrogen gas and hit within typically 1 µs the foils in front of the
Li sheets. These foils are made of polypropylene (∼ (CH2)n). Muon transfer to
carbon occurs (µp + C→ (µC)∗ + p), and the (µC)∗ atoms deexcite emitting x rays
of 4.9 keV and higher energies (see Table H.1). As explained in §3.2.1 the energy
spectrum of each x ray shows a tail towards lower energies. The muon lifetime in
µC is 2.0 µs [101]. Therefore the transfer process may fake laser–induced events
since they have the same signature: x-rays signals of low energy (including 2 keV) at
delayed time (time necessary to reach the foil), followed by a muon decay electron
with approximately the same time distribution (2.0 µs lifetime instead of 2.2 µs).
Both the DELE and the second muon cut clearly do not suppress this background,
whereas the Kα energy cut strongly reduces it. The majority of the background
events has to be attributed to this process. This background is fully correlated
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Table H.1: Energies [175] and yields of radiative transitions after muon transfer from a µp to
a µC atom. The yields are calculated [176] based on the cascade model and program given in
Refs. [177,178], respectively.

Transition Energy Yield Yield
[keV] nini = 5 nini = 4

5→ 4 2.26 0.005 0
4→ 3 4.89 0.035 0.039
3→ 2 13.97 0.20 0.22
2→ 1 75.25 0.41 0.44
3→ 1 89.21 0.30 0.34

with the muon which entered the target since both x ray and electron signals are
originated by this muon.

– It may occur that a 2 keV x ray signal is generated by the muon decay electron
(cf. Fig. 5.2), whereas the signal classified as electron is uncorrelated, because it is
caused by random noise signals in the electron paddle PMTs (cf. §5.5).

– Another source of background is given by a signal which is classified as 2 keV x ray
but which is not correlated to the first muon opening the EVG, whereas the electron
signal originates from the decay electron of the first muon. Even if these x rays are
time–uncorrelated they appear to have a ∼ 2 µs decay time because they have to
precede the electron detection.

– The last and less important source of background has a flat time distribution which
means that both x ray and electron signals are not correlated with the first muon.
It may arise from second muons entering the gas target without being recorded in
S1. The deexcitation of the µp atom correlated to the second muon fakes a Kα x ray
delayed with respect to the first muon, and the electron of the second muon decay
fakes the electron of the first muon decay.

In the following the term “background events” is used to account for all events in the xe
event class (Kα energy cut, second muon cut and DELE cut applied) with x ray times
delayed relative to the “prompt” deexcitation, regardless if the x ray is detected or not in
the laser time window. Background events are therefore termed all events which contribute
to the tail towards larger times of Fig. 6.2.

H.1 Background from muon transfer to carbon

To disentangle the various contributions to the background at delayed times, a set of x-ray
energy spectra for different time windows were studied. The time interval from 0.1 µs to
6 µs after the µp1S formation is divided in 19 intervals and for each time window the
corresponding x-ray energy spectrum was generated. Only the xe event class is considered
with a delayed electron time interval from 0.1 µs to 5 µs after the x-ray detection. The
second muon cut is not applied. Three out of 19 spectra are shown in Fig. H.1.

The number of delayed events (background) is decreasing as a function of time (see
Fig. 6.2). A detailed investigation shows that the background is the sum of several compo-
nents with different time dependence. The time evolution of the 4.9 keV and 2 keV peaks
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Figure H.1: X-ray energy spectra (3 out of 19) which were studied in order to deduce the shape
of delayed background, i.e., the function B(t, Ex) (dotted black lines) discussed in the text. The
applied time cuts are indicated in the plots. The spectra are shown for the sum of LAAPDs with
the best resolution. Only the xe event class is considered, but the second muon cut is not applied.
The 2 keV peaks for the middle and bottom plot are mostly caused by Kα deexcitations of second
muon µp atoms The peak at 4.9 keV is the µC4→3 transition (dashed black line), the black solid
line represents µp Kα , while magenta lines Kβ and Krest transitions. The total fit function is
shown in red (Courtesy L. Ludhova).

can be seen in Fig. H.1. At early–delayed times (top spectrum), the 2 keV peak is caused
by the tail (in time) of the “prompt” µp cascade and radiative quenching of the short–lived
2S component (cf. §G.3). The peak at 4.9 keV energy is caused by µp atoms reaching
the polypropylene foils in front of the LAAPDs where transfer to carbon occurs. The
formed (µC)∗ atoms immediately deexcite and partially emit 4.9 keV x rays which may be
detected by the LAAPDs. At intermediate times (central spectrum), the 2 keV peak has
drastically decreased since collisional quenching of the short–lived 2S component (which
is the slowest process of the “prompt” deexcitation) has an exponential decay time of only
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∼150 ns [16]. The 4.9 keV peak, on the contrary, is still present because the µp drift time
has a broad time distribution due to the wide distribution of the µp kinetic energy and
the various trajectories of µp atoms in the target. At later times (bottom) the 4.9 keV
peak decreases since the majority of the µp atoms has already decayed or reached the
walls where muon transfer with immediate deexcitation occurs. With decreasing intensity
of the total background at late time, a small 2 keV peak becomes visible which has to be
attributed to “prompt” deexcitations of second muon µp atoms (cf. §5.4). This process
has a flat distribution in time whereas all other processes decrease with time. Note that
the second muon cut was not applied here and compare these spectra with the spectrum
of Fig. 5.5 which shows the effectiveness of the second muon cut.

As explained previously in §3.2.1, the measured energy spectrum of an x-ray transition
is composed of a Gaussian peak and a “flat” tail towards lower energies, starting from the
Gaussian peak. Compare the spectra of Fig. H.1 with the source spectrum. The tail at
energies below 4 keV has therefore to be attributed partially to 4.9 keV x rays. In addition
there is also a quasi–flat background at energies above 6 keV which did not show up in
the source spectrum of Fig. 3.9. This background corresponds to the low energy tail of
higher lying transitions which have been identified to be µC transitions: µC3→2, µC2→1

and µC3→1 (Table H.1). This identification is confirmed by the fact that the 4.9 keV
peak and the intensity of the flat background have similar time distributions, as will be
discussed below.

A simultaneous fit of all 19 energy spectra has lead to an empirical parametrization of
the continuous background as [16]

B(t, Ex) = P (t) · exp
(
− Ex

0.47

)
+ R(t) · (14.3 −Ex) (H.1)

where Ex is the x-ray energy in keV–units and R,P two time–dependent free fit parameters
shown in Fig. H.2. This parametrization does not have any physical meaning and is
valid only up to 10 keV. However it may be used to compare the time evolution of the
background with that of the 4.9 keV peak intensity, i.e., the time evolution of the transfer
process to carbon. For times between 0.3 and 1.5 µs the parameters R, P and the 4.9 keV
peak intensity have similar time dependences indicating that the main contribution to
background at these times has to be attributed to muon transfer to carbon. At times
larger than ∼ 1.5 µs, deviations between these dependences are visible indicating that
there is an additional background contribution not related to the transfer to carbon.

The arrival time distribution of the µp1S atoms reaching the polypropylene foils in
front of the LAAPDs has been computed using a Monte Carlo (MC) simulation. This MC
traces the path of the µp1S atoms from the muon stop volume to the walls. Their kinetic
energy distribution is taken from previous time–of–flight measurements [10] (see Fig. G.3)
and their formation time distribution is the measured time distribution of the Kα peak.
When µp1S atoms impinge on the polypropylene foils they are either back–reflected with
probability PR, or muon transfer to the carbon atoms occurs. No theoretical prediction nor
measurement of PR exist, and therefore the simulation has some free parameters to describe
the reflection probability which is assumed to depend on energy and incident angle. If
transfer occurs, the MC program assumes that an x ray (yield=100%) is instantaneously
emitted with isotropic distribution. This x ray is traced and if it hits an LAAPD the time
when this happens is recorded.

Two arrival time spectra for different reflection probabilities PR are plotted in Fig. H.3
together with the measured time distribution of the 4.9 keV peak . For the computation
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Figure H.2: Parameters P (top) and R (bottom) of the x-ray energy spectra background B(t, Ex)
as a function of time (red empty squares). The µC4→3 line intensity as a function of time is plotted
for comparison on both diagrams (black full circles). It is normalized such that there is optimal
superposition with the measured parameters P and R. The ordinate values refer only to the R
and P parameters but has no meaning for the µC line intensity. The dashed vertical line indicates
the average time of the µp Kα transitions.

of the curve in the left graph it is assumed that no reflection occurs (PR = 0), whereas
for the right graph a reflection probability is assumed which depends on the µp kinetic
energy T and the incident angle Θ as

PR(Θ, T ) = 0.8 e−0.3T · (1− 0.5 cos Θ) (H.2)

where T is expressed in eV units. For T = 1 eV, e.g., PR varies between ∼ 30% and
∼ 60%. The reflection probability is chosen to approximately reproduce the data in
the time interval between 0.5 and 1.5 µs while keeping the reflections probabilities at
reasonable values, i.e., well below 100%.

The simulations approximately reproduce the measured time dependence of the car-
bon peak intensity, confirming the assumption that the background originates from muon
transfer at the polypropylene foils. At times above ∼ 3 µs the measurements show a small
additional tail compared with the simulations which may be attributed mainly to electrons
detected as 5 keV x rays followed by an electron paddle noise signal.

The results of these simulations can be used to determine not only the relative but
absolute number of delayed background events arising from the transfer process. From
the background analysis shown in Fig. H.2 it follows that the 2 keV–background (in the
Kα energy cut) is in the time interval 0.4 to 1 µs almost proportional to the 4.9 keV µC
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Figure H.3: Time spectra generated by a Monte Carlo simulation of the µC x rays from muon
transfer to the polypropylene foils in front of the LAAPDs. When muon transfer occurs, it is
assumed that an x ray is emitted, and that this x ray is detected if it hits an LAAPDs. The
ordinate values correspond to the probability to detected such a x ray in a 200 ns time window
at the abscissa value. The simulation accounts also for muon decay. The measured 4.9 keV peak
intensities (black circles) are normalized in such a way that they have the same amplitude at
maximum as the simulated curves. This normalization is slightly different for the two graphs. The
simulated curve on the left assumes that the µp1S atom is not reflected by the polypropylene foils
whereas on the right the reflection probability is given by Eq. (H.2).

peak amplitude. The corresponding number of events for 2 keV–background relative to
the 4.9 keV–amplitude is R2−5 keV ' 0.2 (second muon cut applied), as can be seen, e.g.,
in Fig. H.1 (middle).

To compute the absolute number of background events as a function of time caused
by the muon transfer process, BµC(t), the probability distribution extracted from the
MC simulation P MC

drift (t) which is shown in Fig. H.3 has to be scaled with the yield of
µC4→3 radiative transitions (Table H.1) and with the probability that these x rays are
detected in the LAAPDs as a x ray within the Kα energy cut. Note that R2−5 keV includes
all possible background events related to carbon, and consequently by normalizing the
background at 2 keV to the 4.9 keV peak amplitude the tails from all higher energy µC
transitions are automatically accounted for. The efficiency to detect a 4.9 keV x ray has
to be considered (Fig. 5.10), but not the solid angle which is already included in P MC

drift (t).
Also the probability to detect a delayed electron has to be taken into account since for
the laser experiment only the xe event class is accepted. Thus the number of delayed
2 keV–background caused by a transfer process to carbon is

BµC(t) = P MC
drift (t) YµC4→3

ε5 keV R2−5 keV εfoil
e (H.3)

where YµC4→3
= (0.039 ± 0.005) is the calculated yield for the 4.9 keV µC transition

(Table H.1), ε5 keV = (0.88± 0.05) the detection efficiency for a 4.9 keV x ray, R2−5 keV =
(0.20 ± 0.05) the ratio between number of events in the Kα energy cut and number of
events in the 4.9 keV peak, and εfoil

e = (0.75 ± 0.10) the electron detection efficiency for
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Figure H.4: 2 keV–background BµC(t) due to muon transfer from µp to C–atoms in the polypropy-
lene foils in front of the LAAPDs. The ordinate value gives the probability (per formed µp atom)
to detect a signal within the µp Kα energy cuts, and a time window of 200 ns at the abscissa value,
followed by a delayed electron.

muons decaying on the polypropylene foils. Within the laser time window from 1.5 to
1.7 µs, the expected transfer–induced background events normalized to the number of
formed µp atoms is therefore

BµC(t ∈ ∆tlaser) = (1.2 ± 0.4)× 10−5 [events/µp] . (H.4)

The µp reflection probability at polypropylene is assumed to be as given in Eq. (H.2).

The time evolution BµC(t) of the transfer–induced background is plotted in Fig. H.4.
This transfer–induced background has to be compared with the total measured background
in the laser time window. As previously anticipated (cf. §6.2) the measured ratio of delayed
to “prompt” events in the laser time window corresponds to a background per formed µp
atom of

Bmeas(t ∈ ∆tlaser) = (1.9 ± 0.2) × 10−5 [events/µp] (H.5)

when the x ray and electron detection efficiencies are taken into account. This number
has to be compared with the predicted number of events caused by the transfer process
given in Eq. (H.4). In the laser time window, BµC turns out to be approximately 65% of
the total measured background Bmeas. The difference between the predicted µC transfer
background and the measured total background has to be attributed to other background
processes.

H.2 Uncorrelated background

In this section, probabilities and time dependences of other types of background events are
investigated. Most of them can be denoted as “uncorrelated” background corresponding
to a signal identified as a delayed 2 keV x ray followed by a signal identified as an electron,
in which at least one of the measured signals is not correlated to the first muon. The
following categories of events are considered:
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• Paddles noise: A muon opens the EVG and a µp atom is formed. The 2 keV K-line
x ray is not detected. However the muon decay electron induces a signal in one of
the LAAPDs which corresponds to a 2 keV x ray and no signal in any other LAAPD
or electron detector. Therefore this signal is identified as a delayed 2 keV x ray.
A following random noise signal from the electron paddles PMTs fakes an electron
signal (cf. §5.5). The probability that such an event occurs is given by the product
of the following terms:

– the probability that the “prompt” deexcitation of the formed µp atom is not
detected (1− η2 keV ' 0.9)

– the probability that the electron is detected only in one LAAPD and not in any
other LAAPD or electron paddle (0.1)

– the probability that the electron measured in a LAAPD has an energy in the
µp Kα energy cut (0.025)

– the probability that the paddle’s–PMTs deliver a noise signal in the DELE
time window. This is the product of the measured paddle–PMTs noise rate
(9× 103 s−1) with the width of the DELE time window of 7 µs.

The probability to detect such an event per formed µp atom is therefore

Bpaddles(t ∈ EVG) = 0.9× 0.1× 0.025× (9× 103)× (7× 10−6) ' 1.4× 10−4 (H.6)

The time distribution of these background events follows the time distribution of the
probability to detect the muon decay electron. The random signal from the paddles
has no influence on the x ray time. Knowing the number of background events in the
whole EVG (Eq. (H.6)) and its time distribution which correspond to time spectrum
of Fig. 5.8, it is possible to calculate the number of background events as a function
of time. The probability that a muon decays in the laser time window compared to
the total integral number is ∼ 5%. Hence the number of events in the laser time
window caused by this background class is expected to be

Bpaddles(t ∈ ∆tlaser) = (7± 2)× 10−6 . (H.7)

This represents about 35% of the measured total background (Eq. (H.5)). The sum
of this background and the transfer–induced one, Bpaddles(t ∈ ∆tlaser) + BµC(t ∈
∆tlaser) = (1.9 ± 0.5) × 10−5, approximately equals the total measured background.

• Second muon (1.2 × 10−7): A first muon opens the EVG but neither the “prompt”
x ray nor the decay electron are detected. A second muon enters the target during
the EVG. Both the 2 keV x ray and the electron of the second formed µp atom are
detected. If the second muon is not detected in S1, the signals caused by the second
muon are not eliminated by the second muon cut and are erroneously attributed to
the first muon. The x ray of the second muon µp atom thus fakes a delayed 2 keV
event. The probability that such an event occurs in the laser time window is given
by the product of the following factors:

– the probability that the Lyman–series x ray related the first muon is not de-
tected (0.9)

– the probability that the electron from the decay of the first muon is not detected
(0.3)
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– the probability to detect the Lyman–series x ray related to the second muon
(0.11)

– the probability to detect the electron from second muon decay (0.65)

– the probability that a second muon enters the target without being detected
by S1 and its “prompt” deexcitation occurs in the laser time window ∆tlaser.
This probability is the product of the muon stop rate (∼ 200 s−1), and ∆tlaser,
times the probability that the muon is not seen in S1 which is 15%. Note that
the muon stop rate considered here does not include the S1 and S2 detection
efficiencies of 85% and 42%, respectively.

Since both detected signals are caused by second muons entering the target at ran-
dom times, this background is time independent. In a time window of 200 ns a
background of 0.9× 0.3× 0.11× 0.65× 200× (200× 10−9)× 0.15 ' 1.2× 10−7 events
per formed µp atoms is expected. In the laser time window this background class is
completely negligible but it becomes visible at times larger than 8 µs after the first
muon entry (see Fig. H.5).

• Radiative quenching of short–lived 2S component (3 × 10−8): About 1% of the µp
atoms populate the short–lived 2S component (cf. §G.3) which deexcites to the
ground state via emission of a delayed Kα x ray. The corresponding time distribution
is proportional to exp(−t/τ short

2S ) where τ short
2S ' 150 ns is the measured lifetime of

the short–lived 2S component [16]. This gives rise to a background of about 3×10−8

events in the laser time window per formed µp atom, which is negligible compared
to the main background classes.

• Uncorrelated signals in the LAAPDs, supposedly neutrons (2×10−7): A muon enters
and opens an EVG. The related “prompt” µp deexcitation is not observed, but the
muon decay electron is detected. In the time interval between muon entry and decay,
a random signal is seen in the LAAPDs as a 2 keV x ray. Its origin may be attributed
to neutrons from the muon beam line.

The rate of neutron–induced signals can be estimated by considering the x-ray energy
spectra at very late times. The LAAPDs energy spectra of late events have a shape
compatible with the shape of an electron spectrum, besides a small contribution
peaking at low energy (∼ 1 keV) which may be attributed to neutrons. During the
whole measuring time about 2000 such neutron signals have been detected in total
in the LAAPDs at late times from 7 to 12 µs in the µp Kα cut interval. Only signals
which are not in time coincidence with any other in LAAPDs or electron paddles
have been accepted. Since the total number of EVGs is approximately 108 it follows
that the neutron rate is about 4 s−1.

Therefore the probability to detect such a background event in the 200 ns long laser
time window is given by the product of the following factors:

– the probability that the 2 keV x ray correlated to the first muon is not seen
(0.9)

– the probability that a neutron is seen in the LAAPDs in a 200 ns time window
(4× 200 × 10−9 )

– the probability that the muon did not decay before the laser time window
occurs, when the neutron is detected (0.45)
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Table H.2: Summary of the various contributions to the background in the laser time window
t ∈ [1.5 − 1.7 µs] and their time dependencies. The number of background events is normalized
per formed µp atoms, and t is expressed in µs.

Contribution B(t ∈ ∆tlaser) Time dependency
[events/µp atoms] at laser time

µC transfer at LAAPD windows 12× 10−6 ∼ e−t/0.5 (Fig. H.4)

2 keV correlated to µ− decay, 7× 10−6 ∼ e−t/1.6 (Fig. 5.8)
electron from paddle noise none

2 keV from second muon, 1× 10−7 none
electron from second muon, none

2 keV from neutron (uncorrelated) 2× 10−7 (none)

electron from first muon decay ∼ e−t/1.6 (Fig. 5.8)

short–lived 2S deexcitation 3× 10−8 ∼ e−t/0.15 [16]

sum 1.9× 10−5 (Fig. H.5)

– the probability to detect the muon decay electron (0.65)

In the laser time window the expected background from this class of events is there-
fore 0.9 × (800 × 10−9)× 0.45 × 0.65 ' 2× 10−7. It has the same time dependence
as the background events caused by the noise in the paddle PMTs which is a factor
of 35 larger. Hence the neutron–induced background is irrelevant at any time.

H.3 Total background

The results of the previous sections are summarized in Table H.2. The time evolution
of the various expected background classes are known. The transfer–induced background
events have a time dependence as shown in Fig. H.4. The background with the x ray signal
caused by the correlated muon decay electron and the electron signal from an uncorrelated
signal in the paddle–PMTs has a time distribution which follows the measured te − tx
time spectrum of Fig. 5.8. The background caused entirely by the second muon (totally
uncorrelated) has a flat distribution in time. The deexcitation of the short–lived 2S state
may be described by an exponential with a lifetime of τ short

2S = 150 ns [16].
The measured 2 keV background Bexp

tot (t) shown in Fig. 6.2 is therefore fit with the
following function

Btheory
tot (t) = k1 · BµC(t) + k2 · e−t/τe + c · e−t/τ short

2S + d . (H.8)

The first term accounts for the transfer–induced background which is given in Fig. H.4
and Eq. (H.3). The parameter k1 ' 1 is a free fit parameter. The second term describes
the delayed events related to the paddle’s noise. The parameter k2 is also a free fit
parameter. The electron time spectrum may be described locally with an exponential
function. Its decay time “constant” is slightly varying with time: τe(t = 1.5 µs) = 1.5 µs,
τe(t = 2.5 µs) = 1.9 µs and τe(t = 3.5 µs) = 2.0 µs. When the fit is performed τe follows the
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Figure H.5: Measured 2 keV–background x-ray time spectrum for the xe event class, with second
muon cut. The bin width is 200 ns. The ordinate gives the measuring probability per formed
µp atom. The total fit function (continuous red line) is a sum of four components (Eq. (H.8))
with fixed time dependencies: background related to muon transfer to carbon (dashed blue),
background related to paddle’s noise (dotted pink), flat background caused by undetected second
muons (dashed–dotted cyan), and radiative deexcitation of the short–lived 2S component (solid
black). The two vertical lines define the laser time window.

measured distribution until it reaches 2.0 µs (µC lifetime) as shown in Fig. 5.8. The third
term describes the contribution from the deexcitation of the short–lived 2S component.
It is relevant only at early delayed times. At such early times it is important to account
also for the stopping time distribution, i.e., the time distribution of the prompt Kα peak
which is approximately described by a Gaussian with σ = 80 ns. The time spectrum
of the short–lived 2S deexcitation results from a convolution of this Gaussian with an
exponential function of 150 ns decay constant. Since the initial population of the short–
lived 2S component is known (cf. §G.3), this background component is kept fix during the
fit procedure. The last term in Eq. (H.8) describes the flat background. This background
has been estimated in §H.2 to be d = 1.2× 10−7 (per 200 ns).

Note that in Eq. (H.8) only k1 and k2 are free parameters since the other two amplitudes
can be predicted reliably. The fit reproduces the measured data quite well as shown in
Fig. H.5. At early times the background mainly arises from transfer process to carbon
until approximately 2 µs where the background related to paddles noise starts to dominate.
The uncorrelated background is negligibly small.
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The numbers of delayed background events (per formed µp atom) in the laser time
window deduced from the values resulting for the free parameters k1 and k2 are

BµC
fit (t ∈ ∆tlaser) =(1.18 ± 0.15) × 10−5 [events/µp]

Bpaddles
fit (t ∈ ∆tlaser) =(0.72 ± 0.07) × 10−5 [events/µp]

(H.9)

which are in agreement with the estimated values given in Eq. (H.4) and Eq. (H.7). The
good quality of the fit gives confidence in our simple background model.

In summary a satisfactory model was developed which describes the measured back-
ground time spectrum of delayed 2 keV x rays valid for a time interval between 0.3 µs
and 10 µs after µp formation for a hydrogen gas pressure of 0.6 hPa. Besides the small
2S component all contributions are almost pressure–independent. 63% of the background
events in the laser time window (t ∈ [1.5− 1.7µs]) are correlated to the transfer process of
the muon to carbon when the the µp1S atoms hit the polypropylene foils in front of the
LAAPDs. The remaining 37% has to be attributed to the random signals in the electron
paddles. The identification of these main background components opens the way to reduce
the background for the future measurements (cf. §7.4).
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[173] J. A. Böcklin. Suche nach dem metastabilen 2S-Zustand im myonischen Wasserstoff
bei tiefen Gasdrucken. PhD thesis, ETHZ, Switzerland, 1982. (unpublished).

[174] J. S. Cohen and J. N. Bardsley. Radiative collisional quenching of metastable muonic
hydrogen µp2S and the metastable muonic helium ion (αµ2S). Phys. Rev. A 23

(1981), 46–51.

[175] R. Engfer, H. Schneuwly, J. L. Vuilleumier, H. K. Walter, and A. Zehnder. Charge-
distribution parameters, isotope shifts, isomer shifts, and magnetic hyperfine con-
stants from muonic atoms. At. Data and Nucl. Data Tables 14 (1974), 509–597.

[176] F. Mulhauser. Private communication.

[177] G. Holzwarth and H. J. Pfeiffer. The muonic X–ray cascade in fluorine following
the µ− transfer from hydrogen. Z. Phys. A 272 (1975), 311–313.

[178] V. R. Akylas and P. Vogel. Muonic atom cascade program. Comp. Phys. Comm. 15

(1978), 291–302.

184



Acknowledgments

I would like to thank
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