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Summary 

 
Channels of the plastid and mitochondrial outer membranes facilitate the turnover of 

molecules and ions via these membranes. Although channels have been studied many 

questions pertaining to the whole diversity of plastid and mitochondrial channels in 

Arabidopsis thaliana and Pisum sativum remain unanswered. In this thesis I studied OEP16, 

OEP37 and VDAC families in two model plants, in Arabidopsis and pea. 

The Arabidopsis OEP16 family represents four channels of α-helical structure, similar to the 

pea OEP16 protein. These channels are suggested to transport amino acids and compounds 

with primary amino groups. Immunoblot analysis, GFP/RFP protein fusion expression, as 

well as proteomic analysis showed that AtOEP16.1, AtOEP16.2 and AtOEP16.4 are located 

in the outer envelope membrane of plastids, while AtOEP16.3 is in mitochondria. The gene 

expression and immunoblot analyses revealed that AtOEP16.1 and AtOEP16.3 proteins are 

highly abundant and ubiquitous; expression of AtOEP16.1 is regulated by light and cold. 

AtOEP16.2 is highly expressed in pollen, seeds and seedlings. AtOEP16.4 is a low expressed 

housekeeping protein. Single knockout mutants of AtOEP16.1, AtOEP16.2 and AtOEP16.4, 

and double mutants of AtOEP16 gene family did not show any remarkable phenotype. 

However, macroarray analysis of Atoep16.1-p T-DNA mutant revealed 10 down-regulated 

and 6 up-regulated genes. 

In contrast to the α-helical OEP16 proteins, the OEP37 and VDAC proteins are of β-barrel 

structure. The PsOEP37 and AtOEP37 channel proteins form a selective barrier in the outer 

envelope of chloroplasts. Electrophysiological studies in lipid bilayer membranes showed that 

the PsOEP37 channel is permeable for cations. Specific expression profiles showed that 

AtOEP37 and PsOEP37 are highly expressed in the entire plant. 

The isolated PsVDAC gene encodes a protein, which is located in mitochondria. In 

Arabidopsis gene database, five Arabidopsis genes, which code for VDAC-like proteins were 

announced. One gene was not detected, whereas four of these genes expressed in leaves, 

roots, flower buds and pollen.  
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Zusammenfassung 

Kanäle in den äußeren Hülmembranen von Chloroplasten und Mitochondrien ermöglichen 

den Transport von Molekülen und Ionen über diese Membranen. Trotz intensiver Forschung 

an vielen Kanälen bleiben einige Fragen, die plastidäre und mitochondriale Kanäle betreffen, 

offen. In dieser Arbeit habe ich Kanäle der OEP16, OEP37 and VDAC-Familien in zwei 

Modellpflanzen Arabidopsis und Erbse untersucht.  

Die OEP16 Familie aus Arabidopsis umfasst vier Kanäle mit vorwiegend α-helikaler Struktur. 

Auch die Struktur von OEP16 aus Erbse ist vorwiegend α-helikal. Putative Substrate dieser 

Kanäle sind Aminosäuren und andere Stoffe mit primären Aminogruppen. Immunoblot 

Analysen, GFP/RFP-Fusionen sowie Proteom-Analysen zeigen, dass AtOEP16.1, AtOEP16.2 

und AtOEP16.4 in dir äußeren Membran von Plastiden lokalisiert ist, während AtOEP16.3 in 

der äußeren Membran von Mitochondrien zu finden ist. Geneexpressionstudien und 

Immunoblot Analysen machen deutlich, dass AtOEP16.1 und AtOEP16.3 stark exprimiert 

werden und in allen Geweben vorhanden sind. Die Expression von AtOEP16.1 wird durch 

Licht und Kälte reguliert. AtOEP16.2 wird stark in Pollen, Samen und Keimlingen exprimiert. 

AtOEP16.4 ist überall nur schwachexprimiert. Knock-out Mutanten von AtOEP16.1, 

AtOEP16.2 und AtOEP16.4 und Doppelmutanten der AtOEP16-Familie zeigen keinen 

Phänotyp. Macroarray-Analysen von AtOEP16.1 T-DNA-Insertionsmutanten ergaben 10 

Gene, deren Expression herunterreguliert war und 6 Gene, deren Expression hochreguliert 

war. 

Im Gegensatz zu den α-helikalen OEP16 Kanälen, bestehen die OEP37 und VDAC Kanäle 

vorwiegend aus β-Faltblättern. OEP37 Proteine aus Pisum sativum und Arabidopsis thaliana 

bilden eine selektive Barriere in der äußeren Membran von Chloroplasten. 

Elektrophysiologische Messungen von PsOEP37 zeigen, dass OEP37 einen Kation-selectiven 

Kanal bildet. Expressionstudien ergaben, dass AtOEP37 und PsOEP37 in allen pflanzlichen 

Organen stark exprimiert werden. 

Das isolierte PsVDAC Gen kodiert für ein Protein, das in der äußeren Hüllmembran von 

Mitochondrien lokalisiert ist. In der Arabidopsis Gendatenbank gibt es fünf Gene, die für 

VDAC-ähnliche Proteine kodieren. Wärend bei einem Gen der Ort der Expression bis jetzt 

nicht nachgewiesen werden konnte, wurde für die vier anderen die Expression in Blättern, 

Wurzeln, Blütenknospen und Pollen nachgewiesen.  
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Abbreviations 
35S  35S promoter from Cauliflower Mosaic Virus 

DLD  dihydrolipoamide dehydrogenase 

mSSU  mature form of SSU 

No RT  no reverse transcription 

OEP  outer envelope protein 

ON   over night 

ORF  open reading frame 

PCR  Polymerase Chain Reaction 

PEG  polyethylene glycol 

RT  room temperature 

SSU  small subunit of ribulose 1,5 biphosphate carboxylase-oxygenase (RuBisCo) 

VDAC  voltage-dependent anion channel 

 

Plant yeast and bacterial species: 

At  Arabidopsis thaliana 

Bi  Bromus intermis 

Col-0 Columbia-0 ecotype of Arabidopsis 

E. coli Escherichia coli 

Hv  Hordeum vulgaris 

Os  Oryza sativa  

Ps  Pisum sativum 

Sc  Saccharomices cerevisae 

WS Wasilevskiya ecotype of Arabidopsis 
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1. Introduction 
 

Biological membranes are built as lipid bilayers. Lipid bilayers show little permeability for 

hydrophilic solutes. Therefore, membranes contain channel-forming proteins, which allow 

transmembrane passage of molecules. Among the outer membrane proteins of Gram-negative 

bacteria are channels, which transport molecules up to 600 Da of size (Delcour, 2002, 2003; 

Robertson and Tieleman, 2002; Philippsen et al., 2002; Nikaido 2003; Nestorovich et al., 

2003). A nonspecific channel forming protein, porin from the outer membrane of Salmonella 

typhimurium, was discovered in 1976 (Nakae, 1976) and the word “porin” was proposed for 

this class of proteins forming nonspecific diffusion channels. Now, several families of 

bacterial porins are known: (i) General diffusion pores (OmpF, OmpC, and PhoE from E. 

coli), which show general preferences for charge and size of the solute. While OmpF and 

OmpC prefer cations over anions, PhoE is anion-selective. Furthermore, OmpF allows the 

permeation of slightly larger solutes than OmpC (Watanabe Y et al., 2005). (ii) Slow porins 

(OprF from E. coli) which allow a much slower diffusion of small solutes, e.g. the influx of 

arabinose was 50 times slower via OprF than through the OmpF channel (Nestorovich et al., 

2003). (iii) Ligand-gated pores, e.g. E. coli ferric enterobactin channels (FepA), providing 

energy-dependent uptake of iron into bacteria (Jiang et al., 1997). 

Many outer membrane proteins in Gram-negative bacteria are known to form β-barrels. As 

shown by X-ray crystallography, these β-barrels are oligomeric, often trimeric structures. 

(Hancock et a., 1990; Jeanteur et al., 1991). In contrast to proteins located in outer envelope 

membranes, those of inner membrane are mostly α-helical (Sukharev at al., 1997; 

Bhattacharjee et al., 2000; Gier 2005). 

The ancestral relation between mitochondria and plastids with Gram-negative bacteria 

(Osteryoung, 1998) suggests the presence of multiple channel proteins in the chloroplast and 

mitochondria outer membranes. Chloroplasts and mitochondria as well as Gram-negative 

bacteria, are both surrounded by two membranes, which separate the organelles from the 

cytosol and which allow solute translocation between these compartments and the import of 

nuclear-encoded proteins. 

The outer envelope membrane of chloroplasts has been assumed earlier to be freely permeable 

for molecules with a weight up to 10 kDa, whereas the inner envelope membrane of 

chloroplasts has been shown to be a main selective barrier for exchange of metabolites 

(Flugge et al., 1998). This idea was based on the identification of specific carriers in the inner 

envelope membrane, whereas an unselective large conductance allowing the diffusion of 
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molecules was measured in the outer envelope membrane. However, recently, several 

channels of the outer envelope of chloroplasts have been characterized at the molecular level. 

These channels were named according to their location and their molecular weight. The outer 

envelope protein of 16 kDa (OEP16), isolated from pea, is a cation-selective high 

conductance channel with permeability to amino acids and compounds with primary amino 

groups (Pohlmeyer et al., 1997). OEP21 forms an anion-selective channel with permeability 

to triosephostates (Bölter et al., 1999). The OEP24 protein is a non-selective channel, similar 

to the general diffusion pores of Gram-negative bacteria (Pohlmeyer et al., 1998). Although 

slightly cation-selective, the channel allows the passage of triosephosphates, ATP, PPi, 

dicarboxylate, and positively or negatively charged amino acids in a reconstituted system. 

OEP37 is a newly identified β-barrel protein from pea of still unknown function (Schleiff et 

al., 2003). All chloroplastic channels are encoded in the nucleus. 

Porins in the mitochondrial outer membrane show permeability for hydrophilic molecules up 

to a molecular mass of 4-5 kDa. They are called voltage-dependent anion-selective channels 

(VDAC; Schein et al., 1976; Schein et al., 1976; Colombini, 1979; Benz, 1985). Isolation and 

reconstitution of the mitochondrial porins from protist Paramecium (Schein et al., 1976), 

yeast (Forte et al., 1987; Ludwig et al., 1988), rice (Colombini et al., 1980), and pea (Schmid 

et al., 1992) led to a detailed analysis of their biochemical and biophysical properties. At low 

membrane potentials, VDACs are weakly anion-selective in the "open" state. At voltages 

higher than 20 mV, the pore switches to the cation-selective "closed" state. The large, water-

filled pore is probably built up by 16 membrane-spanning antiparallel β-strands. The N 

terminus of the protein and the large extramembrane loops are located at the cytosolic side of 

the membrane (De Pinto et al., 1991). The mitochondrial porins are encoded in the nucleus 

without any cleavable N-terminal extensions, similar to chloroplastic outer envelope channels. 

Surprisingly to that postulate that VDACs are mitochondrial porins, Fischer et al., (1994) 

showed the presence of a VDAC-like porin of 30 kDa in pea root plastids. In vitro synthesized 

protein was analyzed in import studies into different plastids and found to be specifically 

imported into non-green plastids but not into chloroplasts. 

Despite isolation of some genes and proteins of the outer envelope of pea chloroplasts, the 

question, whether outer envelope of chloroplasts is a selectivity barrier or not, is still under 

doubt. Therefore, the goal of this work was to study the proteins localized in the outer 

envelope of chloroplasts, OEP16, OEP37 and VDAC. 
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2      Materials and Methods 

2.1    Bacterial strains 

For general cloning techniques, the E. coli strains DH5α, TOP10 and TOP10F' (Novagen) and 

for overexpression of recombinant proteins E.coli BL21 (DE3) (Novagen) strain were used. E. 

coli strains were transformed with use of a heat shock method according to Hanahan (1988). 

For stable transformation of Arabidopsis plants, Agrobacterium tumefaciens strain GV3101 

containing the binary vector pMP90 (Clough and Bent, 1998) was used. 

 

2.2 Plant material 

Two different plants Arabidopsis thaliana and Pisum sativum were used to study the function 

or regulation of gene promoters or genes coding for proteins in the outer envelope of 

chloroplasts and mitochondria. Growth chambers were supplied with artificial light at a long 

day cycle (16-h light / 8-h dark regime) for Arabidopsis thaliana and a 14-h light / 10-h dark 

cycle for Pisum sativum. The temperature was maintained at 21°C (day), 16°C (night), unless 

stated otherwise. The Arabidopsis ecotypes Columbia (Col-0) and Wasilevskiya (WS) were 

used as wild-type (Lehle seeds, USA). Seeds of Arabidopsis were sterilized by rinsing them in 

70% (v/v) ethanol for 1 min followed by a rinse in 0.05% (v/v) Triton X-100 for 5 min and 

100% ethanol for 10 min. Before plating the seeds on 1 x Murashige Skoog medium (Sigma) 

containing 0.5% (w/v) sucrose, 1 x vitamins (Sigma) and 0.8% agar, seeds were washed 5 

times with autoclaved ddH2O. Then seed dormancy was broken at 4°C for 3 days. 

Germinating seedlings were grown for two weeks on medium before transferring them to soil. 

The pea (Pisum sativum L.) cultivar “Golf” (Raiffeisen Nord AG, Kiel) was grown in 

vermiculite. 

 

2.3    DNA methods 

PCR fragment isolations were made by the NucleoSpin Extract Kit (Qiagen GmbH, Hilden) 

according to the manual. Plasmid DNA isolations were made by the Plasmid Mini Kit or 

Plasmid Midi Kit (Qiagen GmbH, Hilden) following the manufacturers instructions. DNA 

was sequenced using the automated ABI377 sequencing equipment in the lab of Prof. Dr. 

Hermann (Botanik I, Botanisches Institut, LMU, München). 
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2.3.1   Isolation of genomic DNA from Arabidopsis thaliana 

The rapid plant DNA extraction was carried out according to Edwards et al (1991). One leaf 

(~100 mg) was ground in 450 µl extraction buffer containing 200 mM Tris, pH 7.5, 250 mM 

NaCl, 25 mM EDTA and 5% SDS and was incubated at 37°C for 5 min. Cell debris was 

pelleted by centrifugation for 10 min in a table centrifuge at maximum speed. Then 300 µl 

isopropanol was added to 300 µl of the supernatant, transferred to a fresh tube, and DNA was 

precipitated for 5 min at room temperature. The DNA precipitate was then sedimented by 

centrifugation for 10 min at full speed in a table centrifuge, once washed with ice-cold 

ethanol, dried and resuspended in 50 µl H2O. 5 µl were used for PCR experiments. 

 
2.3.2 Polymerase Chain Reaction 

PCR was done using Taq DNA polymerase (Eppendorf) with program according to the 

manufacturers manual instructions with an annealing temperature 5°C below melting 

temperature for primers. The elongation time was calculated by taking 1 min for 1000 bp. 

Products of PCR were resolved electrophoretically on 1% agarose gel in TAE buffer. The 

synthesis of the oligodesoxyribonucleotids was done in MWG Biotech AG, München. 
 

2.3.3   Southern blotting 

Southern blotting was performed for AtOEP16.1 knockout mutant screen. For Southern 

hybridizations, PCR products were separated electrophoretically in a 1% agarose gel, which 

was after depurination in 0.25 N HCl transferred onto a Hybond-N+ nylon membrane 

(Amersham-Pharmacia) using alkali capillary blots (0.4 M NaOH) for 16 hours. 

Pre-hybridization was carried out (to prevent non-specific hybridization) at 68°C for 30 min 

in prehybridization solution (6xSSC, 10xDenhards, 0.5% SDS, 0.1 mg/ml denaturated salmon 

sperm DNA). A DIG-labeled probe for the AtOEP16.1 gene was generated by PCR using Taq 

DNA polymerase (Eppendorf) and DIG-11-dUTP as described in Roche Applied Science DIG 

System User's Guide for Filter Hybridization. Primers for PCR were At2gN and At2gC (see 

primer sequences in Appendix). The DIG-labeled probe was denaturated by boiling and added 

in fresh hybridization solution to the blot and hybridized at 68°C overnight. Then the 

membrane was washed twice with 2xSSPE/0.1% (w/v) SDS at room temperature (RT), twice 

with 1xSSPE/0.1% (w/v) SDS at RT, and once with 0.5xSSPE/0.1% (w/v) SDS at 68°C for 

15 min each. After blocking for 30 min in buffer 1, containing 100 mM maleic acid, 150 mM 

NaCl, pH 7.5/NaOH, 2.5 % (w/v) milk powder, the membrane was hybridized with Anti-
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DIG-AP Fab fragments in dilution 1 to 5000 in the buffer 1 at RT for 1 h. After washing in 

buffer 1 additionally containing 0.3 % (v/v) Tween 20 the membrane was developed using 

NBT and BCIP reagents according to manufacturers instructions. 

 

2.4   Cloning 

2.4.1  Conventional cloning 

The standard molecular cloning methods (restriction digestion, ligation) were performed 

according to Sambrook et al., (1989). All DNA fragments were separated on 1% agarose gels 

stained with ethidium bromide (0.5 mg/ml), electrophoresed in TAE buffer (50 x TAE buffer: 

242 gm Tris base, 57.1 ml acetic acid, 100 ml 0.1 M EDTA for 1 L ddH2O) and visualized 

with an UV transilluminator. 

 

2.4.2  Site directed mutagenesis 

To obtain single tryptophan mutants of PsOEP16, polymerase chain reaction (PCR)-based site 

directed mutagenesis was used. In the first step, two separate PCR reactions were performed 

for each mutant. The OEP16 cDNA inserted in the PET21b expression vector was used as a 

template. The primers were, for PsOEP16W77/F mutant, (i) OEP16W77/FN and T7 promoter 

primer and (ii) OEP16W77/FC and T7 terminator primer. For PsOEP16W100/F mutant, (i) 

OEP16W100/FN and T7 promoter primer and (ii) OEP16W100/FC and T7 terminator primer. 

The fragments for the W77F and W100F mutants were then annealed together in a second 

PCR step to amplify the complete mutated gene using T7 promoter and terminator primers. 

The resulting PCR products were digested with NdeI and XhoI restriction enzymes and ligated 

into the corresponding sites of the pET21b expression vector. They were named W77F-

pET21b and W100F-pET21b, respectively. The correct mutations were confirmed by 

sequencing. 

 

2.4.3 GATEWAY cloning 

For GATEWAY (Invitrogen) cloning attB-PCR products were generated by a two-step 

adaptor PCR. The first-step PCR was performed with 10 cycles using primers designed to 

have flanking regions with the part of attB recombination sequences, a ribosome-binding site, 

the Kozak sequence and the gene-specific open reading frame or promoter region for gene of 

interest. Second-step PCR was done for 15 cycles using short attB1adapter and attB2adapter 



 12

primers containing attB recombination sequences. The attB recombination sequences 

conferred directionality to the PCR product. The resulting attB-PCR product was 

recombinated with pDONR201 vector (Invitrogen) using BP Clonase (Invitrogen) according 

to the instructions of manufacturers. After selection, purification and sequencing, the resulting 

clone was then recombinated with a desired binary destination vector with LR Clonase 

(Invitrogen). The expression clones were used (i) for the transient expression of the 

fluorescent reporter GFP protein fused to the C-terminal part of investigated proteins directed 

by 35S CaMV promoter and (ii) for Agrobacterium-mediated stable transformation of plants 

for promoter-GUS analysis (see in Appendix list of clones). 

 

2.5  RNA methods 

2.5.1  RNA isolation from plant material 

Total RNA isolation was performed using RNeasy Plant Mini Kit (Qiagen GmbH, Hilden) 

according to the manual's instructions. 

 

2.5.2 cDNA synthesis 

cDNA was synthesized using MMLV reverse transcriptase (Promega) and SMART RACE 

5'CDS primer for 1,5 h at 42°C with 2 µg total RNA (secondary structure was denaturated for 

2 min at 70°C) as a template. 

 

2.5.3 Semi-quantitative RT-PCR 

For quantification of all transcripts, RT-PCR was performed with gene-specific primers with 

SuperScript One-Step RT-PCR kit (Invitrogen). Total RNA or mRNA was used as a template. 

Transcript levels were normalized using actin 2 (At3g18780), actin2/7 (At5g09810) or 18S 

rRNA (At2g01010) genes as internal control. 

 

2.5.4 cDNA macroarray analysis of wild-type and Atoep16.1-p knockout 

mutant 

Experiments were done during my stay in the lab of Dr. Schäffner (GFS Forschungszentrum, 

München) within the DFG SPP 1108 project. The macroarray filters containing 600 ESTs 

clones of Arabidopsis membrane proteins were supplied by Dr. Schäffner. 
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The cDNA was synthesized using Superscript II RTase (Invitrogen) and mRNA from leaves 

of 4-week-old Arabidopsis, isolated using Oligo (dT)25 Dynabeads (Invitrogen), followed by 

conventional random primed labelling using DNA labelling kit (Fermentas) with [α-33P]dATP 

(50 µCi) according manufacturers protocols. After pre-hybridisation of the cDNA filters for 

2,5 hours at 42° C in buffer containing 20x SSC, 100x Denhardt, 20% SDS, 10 mg/ml Salmon 

Sperm DNA, the hybridisation of the labeled cDNA to cDNA filters was carried out in the 

same buffer at 42 °C over night. Then filters were washed shortly in 2x SSC/0,1% SDS at RT, 

followed by 30min in 2x SSC/0,1% SDS at 42°C, shortly in 0,2x SSC/0,1% SDS, 30 min in 

0,2x SSC/0,1% SDS at 42°C. Then filters were exposed to an imaging plate ON (Fuji Film). 

The radioactive images were obtained with a high-resolution Storm scanner. The mean pixel 

intensity within a defined area around each spot was collected using ArrayVision (Amersham 

Biosciences). Enhanced or repressed genes in Atoep16.1-p leaves compared with wt leaves 

were detected by the Aida program (Tusher et al., 2001). 

 

2.5.5 Affymetrix gene chip analysis 

Affymetrix gene chip analysis was done by Dr. Rowena Thomson within DFG 

“Schwerpunktprogramm” SPP-1108 “Dynamik und Regulation des pflanzlichen 

Membrantransport bei der Ausprägung zell- und orhanspezifischer Eigenschaften”. mRNA 

was extracted from leaves and roots of 4-week-old wild-type Arabidopsis plants. 

 

2.6 Overexpression and purification of recombinant proteins 

To obtain antisera against the respective OEP16 and OEP37 proteins, recombinant proteins 

were overexpressed in E. coli and purified by affinity chromatography. 

A 363 bp region of the AtOEP16.1 gene, corresponding to the N-terminal 131 amino acid 

residue part of the protein, was amplified by PCR with flanking restriction sites for EcoRI (5’) 

and XhoI (3’) and ligated into the pET21b plasmid vector (Novagen). pET21b possesses a C-

terminal tag, consisting of six consecutive histidine residues to facilitate protein purification. 

After overexpression in BL21(DE3) E. coli cells (Novagen, see 2.6.2), the AtOEP16.1 protein 

was recovered in the form of inclusion bodies (see 2.6.3). It was then denaturalised in a buffer 

containing 8 M Urea and the pure protein was isolated using affinity chromatography (see 

2.6.4). 

The coding sequence of the full-length AtOEP16.2 in pET21d was heterologously 

overexpressed in BL21(DH3E) E. coli cells and the protein was purified as described for 
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AtOEP16.1. This purified protein was used for antisera generation as well as for 

electrophysiological studies in lipid-bilayers. 

The overexpression of the full length coding sequence of AtOEP16.3 and AtOEP16.4 (in 

pET21b) in BL21 (DE3) E. coli cells could not be obtained. Therefore, different strains of E. 

coli cells and different conditions were tested to get the overexpressed proteins. The E. coli 

strains, BL21 Star, BL21 Rosetta and BL21 pMICO (Novagen) were grown at 37°C and 

induced at 12°C, 20°C, 37°C with 1mM IPTG. These conditions also failed to overexpress the 

proteins. Then the synthesis of proteins in a cell free system using the rapid translation system 

RTS 100 E. coli HV kit (Roche) was tested without any success. Therefore, antibodies 

directed against peptide of AtOEP16.3 and AtOEP16.4 proteins were raised. The protein 

sequences of synthesized peptides (Pineda, Antikörper Service, Berlin) were as follows, (i) 

PRVERNVALPGLIRT and (ii) TRVDNGREYYPYTVEKRAE for AtOEP16.3; and for 

AtOEP16.4, (i) 15 amino acid residues from the N-terminus starting methionine, 

(MEEELLSAVPCSSLT), (ii) 15 amino acid residues from the C-terminus 

(VLANCTRTENPNNTN) and (iii) a mixture of both. 

For subcloning of PsOEP37, which was originally cloned in pBluescript vector (Schleiff et 

al., 2003), a PCR using the forward primer 37peaNdeIf incorporating a NdeI restriction site at 

the N terminus and the reverse primer 37peaBamHIr incorporating a BamHI restriction site at 

the C-terminus was performed. The resulting fragment was digested with NdeI and BamHI 

and ligated into the NdeI-BamHI-digested plasmid vector pET14b (Novagen) containing N-

terminal tag consisting of six consecutive histidine residues (6-His) to facilitate purification. 

The plasmid was named PsOEP37/pET14b. The cDNA of AtOEP37 was cloned using the 

forward O37araXhoIs and reverse O37araNcoIr primers into pRSETA vector with an N-

terminal 6-His-tag between XhoI (5’) and NcoI (3’) sites for restriction enzymes. The coding 

sequence of full-length PsOEP37 in pET14b (Novagen) with a N-terminal 6-His-tag and of 

AtOEP37 in pET21b (Novagen) were heterologously overexpressed in BL21(DH3E) E. coli 

cells. The proteins were purified as described for AtOEP16.1. 

 

2.6.1 Heterologous expression of proteins in E. coli 

The liquid LB broth (3ml, appropriate antibiotic) was inoculated with a single colony of E. 

coli BL21(DE3) cells, harbouring the respective plasmid construct and incubated at 37°C with 

shaking at 250 rpm for about 3h. Then 1 ml of the culture was inoculated into 500 ml LB 

media and shaken at 37°C at 250 rpm for about 3 h to reach an OD600 of 0.8. The expression 

of recombinant proteins was induced with 1 mM isopropyl-1-thio-β-D-galactoside (IPTG) for 
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3 hours. Afterwards, bacteria were placed on ice for 5min and harvested by centrifugation at 

10000 rpm for 10 min at 4 °C. 

 

2.6.2 Inclusion bodies preparation 

Lysis buffer (50 mM TRIS/HCl pH 8.0, 25% (w/v) sucrose, 1 mM EDTA) was added to the 

bacterial pellet and resuspended cells were passed through a French Press and three times for 

20 sec sonificated. The inclusion bodies were separated from bacterial debris by 

centrifugation for 15 min at 20,000 rpm at 4°C and washed once in buffer, containing 20 mM 

NaCl, 20 mM TRIS/HCl pH 7.5, 2 mM EDTA, 0.07% (v/v) β-mercaptoethanol, 25 mM 

MEGA 9 and twice in buffer, containing 1 mM EDTA, 20 mM TRIS/HCl pH 7.5, 0.07% 

(v/v) β-mercaptoethanol, 25 mM MEGA 9. Washing was performed by vortexing for 5 min 

and centrifugation at 10,000 rpm for 5 min at 4°C. The detergent was removed by washing of 

the inclusion bodies for four times in buffer containing 50 mM TRIS/HCl pH 8.0, 1 mM 

EDTA, 10 mM DTT. 

 

2.6.3 Purification of overexpressed protein 

The inclusion bodies of a protein having a 6-His-tag on its C- or N-terminal end were 

solubilised in the loading/washing buffer containing 20 mM TRIS pH 8.0, 100 mM NaCl, 8 

M Urea. After 5 min centrifugation in a table centrifuge at maximum speed, the supernatant 

was loaded onto a TALON column (Clohtech), pre-equilibrated with the same buffer. The 

bound protein was washed with 10 ml of loading/washing buffer and eluted with a buffer 

containing 20 mM TRIS pH 8.0, 100 mM NaCl, 6 M Urea and 100 mM Imidazole. Purified 

proteins were tested by SDS PAGE gel analysis. 

 

2.6.4   Antibody production 

Antibodies against all purified proteins or peptides were produced in rabbit by Pineda, 

Antikörper Service, Berlin. Antibodies were obtained as polyclonal serum of 61-220 days 

after immunization and tested by western blotting on the respective antigen or plant tissue. 
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2.7 GFP, RFP-fusion protein analysis 

2.7.1 Cloning of constructs with the C-terminal reporter protein fusions 

The full length AtOEP16.1 was cloned in two plasmid vectors, pOL-GFP and pOL-RFP 

(Asseeva et al., 2004) with a conventional cloning procedure. For PCR, two primers with (i) 

5’-introduced site for SpeI restriction (oep16araSpeI) and (ii) 3’-containing site for SalI 

(oep16araSalIr) and AtOEP16.1/pCRII as a template were used. 

The full length AtOEP16.2 was cloned in pK7FWG2 plasmid vector (Karimi et al., 2005), 

which contains C-terminal GFP fusion. It was performed a GATEWAY cloning (see 2.4.3). 

As a template for the first round of adaptor PCR, the AtOEP16.2/pET21d plasmid and 

16seedGATf and 16seedGAT-stopR were used. 

The full length AtOEP16.3 was conventionally cloned into pOL-GFP vector using PCR with 

cDNA from Arabidopsis as a template and forward 42210SpeIf primer with restriction sites 

for SpeI on 5’ end of PCR product and reverse 42210SalIr primer with sites for SalI 

restriction. 

The full length AtOEP16.4 was cloned in pK7FWG2 plasmid vector using GATEWAY 

cloning procedure. For first round of adaptor PCR, an AtOEP16.4/pET21b template and 

62880GATf and 62880GAT-stopR primers were used. 

The full length VDAC from pea was cloned into the pOL vector by conventional cloning. For 

PCR, a VDAC-GFP2 plasmid (Clausen et al., 2004) as a template and primers introducing (i) 

SpeI restriction site on 5’-terminal (VDACSpeIf) of the PCR product and (ii) SalI restriction 

site on 3’-terminal (VDACsalIr) were used. See sequences of primers in Appendix. 

 

2.7.2 Biolistic bombardment 

2.7.2.1 DNA coating on the gold particles 

Gold particles (Biorad) with a diameter of 0.6 micron were suspended at 60 mg/ml in 100% 

ethanol and vortexed for 1 min to resuspend and disrupt agglomerated particles. A 35 µl 

aliquot of the gold particles was then pelleted at 14,000 rpm for 10 sec in a microcentrifuge, 

was washed 2 times in distilled water (with centrifugation steps 14 000 rpm for 1 min) and 

mixed with 245 µl DNA of a total concentration of 25-50 µg, 50 µl spermidin  (0.1 M) and 

250µl CaCl2 (2.5 M). Afterwards, the DNA mixture was continuously vortexed for 30 min at 

4°C. The gold with coated DNA was washed two times in 70% ethanol by vortexing for 1 min 

and centrifugation for 1 min at full speed in a microfuge and finally resuspended in 72 µl of 

100% ethanol. 7 µl aliquots were used for biolistic DNA bombardment. An aliquot of gold 
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coated with DNA was pipetted in the centre of a macrocarrier (Biorad) and left until the 

ethanol evaporated. 

 

2.7.2.2 DNA bombardment 

The roots of 5-day-old P. sativum plants cut into pieces of 2 cm length and placed on pre-

wetted 1 MM Whatmann paper were bombarded with DNA-gold particles using the Biorad 

Biolistic PDS-1000yHE Particle Delivery System. Optimised biolistic parameters were with a 

target distance of 6 cm and 1100-psi particle acceleration pressure. After the bombardment 

the roots were incubated in the dark at 21°C for 24 hours. Before fluorescent microscopy 

roots were fixed in 4% glutaraldehyde (Serva) for 15 min. 

 

2.7.3 Arabidopsis protoplasts isolation and PEG-mediated DNA 

transformation 

Mesophyll protoplast isolation and transient transformation with plasmid DNA were 

performed from leaves of 4-6-week-old Arabidopsis as described in Koop et al., (1996). The 

intactness of the protoplasts was controlled by fluorescence microscopy using the chlorophyll 

fluorescence as an indicator. 

 

2.7.4 Fluorescent microscopy 

The epi-fluorescence microscope (Polychrome IV System, Photonics GmbH) was used for 

detection of the GFP fluorescence observed at excitation with the monochromatic laser light 

at 470 nm and GFP TILL filter set. Fluorescence of the RFP having constructs and 

Mitotracker Orange signals were measured with the monochromatic laser light at 554 nm or 

551 nm, respectively, and Phodamine TILL filter set. Pictures were taken using an IR CCD 

Camera (Polychrome IV System, Photonics GmbH) mounted on the microscope and operated 

by the TILLvisION 4.0 software (Photonics GmbH). 
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2.8     Promoter-GUS analysis 

2.8.1 Construction of plasmids 

1.5 kb promoter fragments of the AtOEP16.1, AtOEP16.4, AtOEP37 genes and a 0.728 kb 

promoter fragment of the AtOEP16.2 gene were amplified by adaptor PCR (see 2.4.3). For 

first round of PCR, next primers were used: (i) 16GUSgateF and 16GUSgateR for the 

AtOEP16.1 promoter region, (ii) SeedGUSgateF and SeedGUSgateR for the AtOEP16.2 

promoter region, (iii) 62GUSgateF and 62GUSgateR for the AtOEP16.4 gene 5’ upstream 

region, and (iv) 37GUSgateF and 37GUSgateR for the AtOEP37 promoter region. Primers for 

the PCR amplification of the promoter region are listed in Appendix. PCR products cloned by 

GATEWAY technology with BP clonase mix into the pDONR201 (Invitrogen) vector 

followed by LR clonase recombination with the pKGWFS7 binary destination vector (Karimi 

et al., 2005). The resulting AtOEP16.1/pKGWFS7, AtOEP16.2/pKGWFS7, 

AtOEP16.4/pKGWFS7 and AtOEP37/pKGWFS7 expression clones possess C-terminal coding 

sequence of GUS and GFP. 

 

2.8.2 Transformation of Agrobacterium tumefaciens 

Chemically competent Agrobacterium tumefaciens, strain GV3101, possessing the disarmed 

Ti plasmid pMP90, were prepared according to Clough et al., (1991). Therefore, inoculated 

with GV3101, 5 ml of LB broth supplemented with antibiotics (0,15 mg/ml rifampycin, 15 

µg/ml gentamycin) was grown to early saturation stage (1 day) at 28°C with shaking at 200 

rpm. Then 2 ml of the culture was inoculated into 50 ml LB broth (0,1 mg/ml rifampycin, 15 

µg/ml gentamycin). After the cell density reached OD600 of 1.0 (approximately 4h), the 

culture was harvested by centrifugation at 3,000 g for 15 min. The bacterial pellet was 

resuspended in 1 ml ice-cold 10 mM CaCl2, aliquoted (100 µl) and frozen in liquid N2. The 

cells were stored at – 80°C. 

For transformation 1 µg plasmid DNA was pipetted on top of 100 µl frozen agrobacteria and 

after 5 min incubation at 37°C, 1 ml LB medium supplemented with rifampycin was added 

and the cells were placed on shaker for 3-4 hours at 28°C. Then the Agrobacteria were 

pelleted for 2 min at 12,000 g, resuspended in 100 µl LB, plated on LB-rifampicin-

gentamycin-spectinomycin media and grown at 28°C for 3 days. To verify the intactness of 

the insert in the binary vector, plasmid mini-prep on the Agrobacterium clone was done and 

DNA was then transformed into E. coli DH5α cells. Mini-prep of plasmid from E. coli was 
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used for a control PCR by taking the plasmid specific primers. The prepared glycerol stocks 

from the positive clones were used for the transformation of Arabidopsis plants. 

 

2.8.3   Stable transformation of Arabidopsis with floral dip method 

The respective transformed Agrobacteria cells were grown at 28°C with 200 rpm shaking in 

YEB-rifampycin-kanamycin-spectinomycin media. 25 ml of media was inoculated with 50 µl 

glycerol stock culture and was grown overnight. 5 ml overnight culture was transferred into 

500 ml broth and was shaken till an OD600 value of 1,2 –1,5 was reached. Then bacteria were 

centrifuged for 10 min at 14,000 rpm and the pellet was resuspended in 100 ml inoculation 

medium containing 5.0% sucrose and 0.05% (i.e. 500 µl/L) surfactant Silwet L-77 (OSi 

Specialties, Inc., Danbury, CT, USA). After growth of Arabidopsis plants for three weeks, the 

emerging bolts were cut to induce the growth of secondary bolts. One week after the clipping, 

the plants possessing numerous unopened floral buds were submerged into inoculation 

medium of Agrobacterium tumefaciens, containing a vector with a promoter of interest. The 

plants were then placed on their side and kept at high humidity under plastic wrap. After 24h, 

they were uncovered and set upright. Harvested seeds were grown on kanamycin (100 µg/ml) 

containing media to select transformants. The presence of transformed T-DNA insertion in 

selected transgenic plants was confirmed by PCR. For the GUS-analysis plants of T-2 and T-3 

generations were used. 

 

2.8.4 GUS - staining 

Plant material was prefixed for 15 minutes in 0.3% paraformaldehyde in X-gluc buffer 

containing 100mM NaH2PO4 (pH 7.2), 10mM Na2EDTA, 0.5mM K ferrocyanide, 0.5mM K 

ferricyanide and 0.0025% Triton X-100. Tissue was rinsed once with X-gluc buffer and then 

stained in 2 mg/ml 5-bromo-4-chloro-3-indoyl glucuronide (X-gluc) in X-gluc buffer. Triton 

X-100 for 6-18 hours until the desired intensity of staining was achieved. Stained samples 

were rinsed with X-gluc buffer and fixed in 4% paraformaldehyde for 15 min. After rinsing 

twice with X-gluc buffer, the samples were incubated in 70% ethanol to remove chlorophyll. 

 

2.8.5 In vitro pollen tube germination 

Freshly anther-containing flowers were dipped onto the surface of agar plates (35 mm 

diameter Petri dishes) with a thin layer of medium for in vitro pollen germination, containing 

5 mM MES (pH 5.8 adjusted with TRIS), 1 mM KCl, 10 mM CaCl2, 0.8 mM MgSO4, 1.5 mM 
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boric acid, 1% (w/v) agar, 16.6% (w/v) sucrose, 3.65% (w/v) sorbitol, and 10 µg ml-1 myo-

inositol to transfer the pollen grains (based upon Fan et al., 2001). Following pollen 

application, the dishes were immediately transferred to a chamber at 21 °C with 100% relative 

humidity in the light. Germinated pollen were stained for GUS analysis as described in 2.8.4. 

 

2.9   Isolation of organelles and suborganellar fractions 

2.9.1  Isolation of intact chloroplasts from Arabidopsis 

During the isolation procedure, plant material was kept at 4°C according to Aronsson et al., 

(2002). About 10 g of leaves of Arabidopsis seedlings grown for 10 days on plates with MS 

media and 0.5% (w/v) sucrose were homogenised 5 times in a polytron in 20 ml isolation 

buffer (0.3 M sorbitol, 5 mM MgCl2, 5 mM EGTA, 5 mM EDTA, 20 mM HEPES/KOH, pH 

8.0, 10 mM NaHCO3, 50 mM ascorbic acid) with a subsequent filtration of homogenate 

through a double layer of Miracloth. Then the homogenate was centrifuged at 1000 g for 5 

min (brake on) and the resuspended chloroplasts were loaded on a two-step gradient which 

consisted of a bottom layer (3 ml) comprising 2.55 ml percoll solution (95% (w/v) percoll, 3% 

(w/v) PEG 6000, 1% (w/v) ficol, 1% (w/v) BSA) and 0,45 ml gradient mixture (25 mM 

HEPES-NaOH, pH 8.0, 10 mM EDTA, 5% (w/v) sorbitol) and the top layer (7 ml) 

comprising 2.94 ml percoll solution and 4.06 ml gradient mixture. The two-step gradients 

were centrifuged in a swing-out rotor at 1,500 g for 10 min (brake off). Intact chloroplasts 

(the band that appeared between the phases) were recovered using a 1-ml Gilson pipette tip, 

cut at the end. Then chloroplasts were washed in buffer containing 50 mM HEPES/KOH, pH 

8.0, 3 mM MgSO4, 0.3 M sorbitol, 50 mM ascorbic acid) and centrifuged in a swing –out 

rotor at 1,000 g for 5 min (brake on). The supernatant was decanted and discarded, and the 

pellet was resuspended in the residual washing buffer. 

 

2.9.2 Isolation of mitochondria from Arabidopsis 

Mitochondria were isolated from 50 g of leaves of 10-days-old Arabidopsis by grinding with 

mortar and pestle as outlined in Day et al., (1985). 
 

2.9.3   Isolation of chloroplastic fractions from pea 

Chloroplasts compartments from pea were purified as described in Schleiff et al., (2003). 

Therefore, pea leaves were harvested and minced in 15 liter of buffer A (20 mM Mops, 13 
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mM Tris, 0.1 mM MgCl2, 330 mM sorbitol, 0.05% BSA, 0.1 mM PMSF, 2 mM β-

mercaptoethanol, pH 7.9) using a blender. The cell fragments were removed by passing the 

solution through four layers of cheesecloth and one layer of 25 µm gaze. The suspension was 

pelleted at 1,500 g for 5 min at 4° C. The supernatant was centrifuged again for 5 min at 1,500 

g at 4° C, and both pellets were thoroughly resuspended in buffer A, combined and adjusted 

to 680 ml. The suspension was layered on top of 34 Percoll gradients formed by 12 ml of 40% 

and 7 ml of 80% Percoll in 330 mM sorbitol, 50 mM Mops, 0.1 mM PMSF, 2 mM β-

mercaptoethanol, pH 7.9, and centrifuged for 10 min at 5,000 g. Chloroplasts on top of the 

80% Percoll layer were combined and diluted to 1 liter using 330 mM sorbitol, 0.1 mM 

PMSF, 2 mM β-mercaptoethanol, pH 7.6. Chloroplasts were repelleted at 2,250 g for 5 min at 

4° C. The pellet was resuspended again in 1 liter of buffer, and the process was repeated. 

Pellets were resuspended to a final volume of 240 ml in 0.65 M sucrose, 10 mM Tricine, 1 

mM EDTA, 0.1 mM PMSF, 2 mM β-mercaptoethanol, pH 7.9, and kept on ice for 10 min. 

Chloroplasts were ruptured by 50 strokes in a Dounce homogenizer. The volume was then 

adjusted to 720 ml by slow addition of buffer B (10 mM Tricine, 1 mM EDTA, 0.1 mM 

PMSF, 2 mM β-mercaptoethanol, pH 7.9), and the suspension was centrifuged for 10 min at 

4,000 g at 4° C. The volume of supernatant was adjusted again using buffer B to 720 ml and 

centrifuged for 30 min at 30,000 g and 60 min at 150,000 g at 4° C. The pellet was carefully 

washed to resuspend the envelopes present on top of the thylakoids. The envelope suspension 

was diluted to 120 ml using buffer B, and 10-ml fractions were layered on top of a sucrose 

step gradient (8 ml 0.465 M sucrose, 10 ml 0.8 M sucrose, and 8 ml 0.996 M sucrose in buffer 

C [10 mM sodium phosphate, 1 mM EDTA, 2 mM β-mercaptoethanol, pH 7.9]). The 

gradients were centrifuged for 3 h at 100,000 g at 4° C. The layer on top of the 0.8 M sucrose 

layer contained the outer envelope. The chloroplast fractions were collected, diluted three 

times using buffer C, and pelleted by centrifugation for 1 h at 100,000 g at 4° C. The pellet 

was resuspended in 3 ml of buffer C, directly frozen in liquid nitrogen, and stored at –80° C 

for further use. The amount of the outer envelope membranes was determined using the Bio-

Rad protein assay (BioRad, Germany; Bradford 1976). 

 

2.9.4 Isolation of membrane fraction proteins from pea and Arabidopsis 

Plant material (100 mg) was grinded in liquid nitrogen and the proteins were extracted by 

vortexing for 30 s and incubation for 15 at 4°C in buffer containing 0,05 M TRIS/HCl pH 8.0, 

2% LDS and 0,1 mM PMSF. The soluble membrane fraction was separated from cell debris 
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by centrifugation for 15 min at 15000 rpm at 4°C. Protein concentration of membrane fraction 

were estimated using the Biorad protein assay reagent (BioRad, Germany; Bradford, 1976), 

and 50 mM EDTA and 0,15% DTT (final) were added to rest of the sample which was stored 

at – 80°C. 

 

2.10    PAGE and Immunoblotting 

Proteins were separated on a 12.5% (w/v) SDS-polyacrylamide gel electrophoresis. Samples 

were visualised either by Coomassie blue staining or by Western blotting. After 

electrophoresis, proteins were transferred in blotting buffer (0.25 M Tris, 0.192 M glycine, 

20% methanol, 0.1% SDS) to a nitrocellulose membrane (Schleier&Schuell) at 300 mA for 1 

h. The membrane was blocked using 3% Milk Powder, 0.1% Tween 20 in TN buffer (10 mM 

Tris pH 8, 150 mM NaCl) for 1 h at RT to prevent non-specific binding of the antibody, 

followed by overnight incubation at 4°C in an 1:1,000 dilution of the primary antibody. After 

three washes with 0,1% Tween 20 in TN buffer, the membrane was incubated in TN buffer 

containing 3% Milk Powder, 0,1% Tween 20 with secondary antibodies (anti-mouse or anti-

rabbit alkaline phosphatase conjugate, Amersham) for 1 h at RT in an 1:20,000 dilution. Then 

the blot was washed for three times with TN buffer, and protein/antibody complex bands were 

visualized by detection of alkaline phosphatase activity using 5-bromo-4-chloro-3-indolyl 

phosphate/nitroblue tetrasolium as a precipitating substrate (Sigma) in AP buffer (0.1 M Tris, 

0.1 M NaCl, 5 mM MgCl2, pH 9.5). 

 

2.11 T-DNA knockout mutants 

2.11.1 Screening of the Atoep16.1-p knockout mutant 

An Atoep16.1-p knockout mutant was found in the 72960 lines T-DNA library (basta 

population) generated in the Rick Amasino lab (Gene Knockout Service Facility of the 

AFGC, Biotechnology Center of the University of Wisconsin, USA). The T-DNA library was 

generated by transformation of Arabidopsis plants (ecotype WS) with an activation-tagging 

vector pSKI015 (GenBank accession AF187951) containing the BAR gene conferring the 

basta resistance for plan selection in soil. 

The screen of the T-DNA insertion library was performed in two “PCR rounds” (Sussman et 

al., 2000), which involved PCR and southern blot analysis of the PCR products. The PCRs 

were carried out in the Gene Knockout Service Facility, University of Wisconsin. For 

reaction, the pooled Arabidopsis genomic DNA isolated from mutants of the T-DNA insertion 
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library was used as a template. One of two AtOEP16.1 gene-specific primers (forward, 

At2gN, or reverse, At2gC) and the T-DNA left border-specific primer JL202 were used to 

amplify junction sequence between the T-DNA left border (LB202) and the disrupted 

AtOEP16.1 gene. 

In the first round, the PCR was performed on genomic DNA of 30 super-pools. The PCR 

products, obtained from Wisconsin, were hybridisized with a digoxigenin-labeled probe, 

which was amplified from genomic DNA of wild-type Arabidopsis using the gene-specific 

primers At2gN and At2gC for AtOEP16.1. Results of the southern blot analysis of the first 

“PCR round” are presented in Fig. 2.1 A. Several high-size-bands, detected on the blot, 

represented the PCR products, which have a T-DNA insert outside of the AtOEP16.1 gene. 

Only two PCR band hits were of appropriate size for the mutant of interest: 1200 and 1100 bp 

(24-th and 39-th super-pools, respectively). The At2gN and At2gC primers were designed to 

anneal near the start of the first exon and the end of the last exon of AtOEP16.1 gene, and the 

size of genomic DNA between these primers is 1036 bp. Therefore, the mutant genome of the 

identified positive hits would have a T-DNA localized close to the ATG start codon of the 

AtOEP16.1 open reading frame. 

 
Fig. 2.1 T-DNA screen of an AtOEP16.1 knockout mutant in the T-DNA library of Rick Amasino 

(Gene Knockout Service Facility, Wisconsin, USA). 

A. First „PCR round“: southern blot analysis of the PCR products amplified from 30 super-pools of the 

T-DNA library. Two positive hits (24 and 39) of the appropriate size are shown with the arrows. B. 

Second „PCR round“: southern blot analysis of the PCR products amplified from 24-th and 39-th pools 

of 225 of the T-DNA library. The positive hits in 24 pool are shown with the arrows. 
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These two super pools (samples 24 and 39) were chosen for a second “PCR round” of the T-

DNA screen. Subsequently, PCR products of the second “PCR round” were used for southern 

blot analysis, which resulted in 2 hits of about 1200 bp (Fig. 3.23 B). Unfortunately, the PCR 

product corresponding to pool 39 was absent on the blot. Sequencing of the two positive 1200 

bp PCR products with the JL202 primer showed that these products represent one identical 

line with a T-DNA localized 68 bp upstream of the first ATG codon in the open reading frame 

of AtOEP16.1. Therefore, seeds of one mutant line (24-th super pool, 9-th row, G column, P45 

plate) were ordered from the Gene Knockout Service Facility, Wisconsin and were used in 

further experiments. That mutant line was named Atoep16.1-p. 

 

2.11.2   Conventional screening of the Arabidopsis knockout mutants 

Arabidopsis knockout mutant database (SIGnAL with SALK, SAIL, GABI lines) were 

searched for lines containing T-DNA insertion in the genes of interest. Seeds of the chosen 

lines were ordered and plants were grown, followed by DNA analysis experiments for the 

determination of T-DNA presence in the gene of interest. A second knockout mutant of the 

AtOEP16.1 locus was found in the T-DNA insertion mutant SALK database. This mutant 

line, SALK_024018, was generated by transformation of Arabidopsis plants with the binary 

T-DNA vector pROK2, harboring kanamycin resistance to allow the selection of mutants in 

Col-0 background. An Atoep16.2 knockout mutant was found by the web search in the 

Syngenta’s T-DNA insertion library, which was created by Arabidopsis transformation with 

pDAP101 vector (basta resistance) in Col-0 background. Two mutants of AtOEP16.4 locus 

were screened, one in SALK database (SALK_109275), and another in Syngenta database 

(Garlic 769 E11). A search in the GABI T-DNA insertion library revealed a knockout mutant 

line GABI 722C01 (Col-0 background) in the AtOEP37 locus (GABI-Kat, Rosso et al., 2003). 

Information about lines, which were used in this work, is summarized in Table 1.1. 

 

Table 1.1 Arabidopsis knockout mutants. 

Gene name, T-DNA knockout mutant name; source of mutant line (-1); plasmid, which was used for T-

DNA mutant generation (-2) are given. 

 gene mutant name source1 plasmid2 

1 AtOEP16.1 Atoep16.1-p Gene Knockout 
Service Facility pSKI015 

2 AtOEP16.1 Atoep16.1-e SALK pROK2 
3 AtOEP16.2 Atoep16.2 Syngenta pDAP101 
4 AtOEP16.4 Atoep16.4-e Syngenta pDAP101 
5 AtOEP16.4 Atoep16.4-i SALK pROK2 
6 AtOEP37 Atoep37 GABI PGABI1 
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2.11.3   Arabidopsis double knockout mutant generation 

For crossing of two individual single knockout lines the female and male parent flowers were 

chosen. Flowers of the female parent were not yet self-fertilized, although the stigma was 

mature. This was achieved by choosing flowers in which the sepals are still closed, and a 

stigma is protruding from the end of the flower. The sepals, petals and stamens were stripped 

away from the chosen flowers, leaving the pistil. 4-5 flowers on the same inflorescence was 

castrated and crossed. Flowers of the male parent were full-blown with visible pollen on the 

anthers. For crossing, the removed whole male flower was dabbed at the stigma of the 

castrated female flower. Generated double mutants were named according to the single 

mutant names in the following order: female parent/ male parent. The F1 and F2 generation of 

the double mutants were tested with PCR for presence T-DNA in both genes, followed by 

screening homozygous double knockout lines. 

 

2.12   In silico analysis 

Arabidopsis web sites  TAIR  http://www.arabidopsis.org/ 

    MIPS  http://www.mips.biochem.mpg.de/proj/thal/ 

    NASC  http://nasc.nott.ac.uk/ 

Homology search  Blast P  http://searchlauncher.bcm.tmc.edu/ 

Secondary structure,  PROFsec http://cubic.bioc.columbia.edu/predictprotein/ 

domains   THMM http://www.CBS.dk/ 

 Prosite  http://au.expasy.org/prosite/ 

Subcellular location  Target P http://www.cbs.dtu.dk/services/TargetP/ 

    Predator http://www.inra.fr/predator/ 

    Aramemnon http://www.aramemnon.botanik.uni-koeln.de/ 

    Cloro P http://www.cbs.dtu.dk/services/ChloroP/ 

cis-elements    NSITE-PL http://www.softberry.com/ 
Mutant search   SIGnAL (SALK, GABI, SAIL lines) http://signal.salk.edu/ 

Expression   NASCArrays, AtGenExpress     

    http://affymetrix.arabidopsis.info/narrays/experimentbrowse.pl 

• Smith - Gene expression and carbohydrate metabolism through the diurnal cycle. 

• Nover - Stress treatments (cold stress). 

• Honys - Transcriptome analysis of Arabidopsis microgametogenesis. 

• Bergua - Functional genomics of shoot meristem dormancy. 
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3. Results 

3.1  Characterization of the OEP16 protein family 

3.1.1   The OEP16 protein from Pisum sativum 

OEP16, the 16-kDa transmembrane outer envelope protein of chloroplasts, was first identified 

in Pisum sativum (Pohlmeyer et al., 1997). PsOEP16 represents a channel, facilitating 

metabolic communication between cytosol and chloroplasts, namely by the transport of amino 

acids and compounds with primary amino groups via the outer envelope (see Introduction). 

PsOEP16 is a cation-selective, high-conductance channel most likely forming dimers for its 

function (Pohlmeyer et al., 1997, Steinkamp et al., 2000). 

 

3.1.1.1 Decomposition of fluorescence spectra of the PsOEP16 protein 

The open reading frame of the PsOEP16 gene contains two nucleotide triplets encoding for 

the aromatic amino acid tryptophan (Trp-77 and Trp-100), which contribute to the intrinsic 

fluorescence of the refolded protein by excitation at 280 nm. The emission spectrum of the 

tryptophan residues is usually highly dependent on the polarity of the surrounding 

microenvironment. Therefore, a study of the contribution of both tryptophan residues in the 

fluorescence spectrum of PsOEP16 was performed to elucidate the local tryptophan 

environment. For this purpose, two single mutants of PsOEP16 with substitution of the 

tryptophans by a phenylalanin residue, Trp-77→Phe-77 (W77F) and Trp-100→Phe-100 

(W100F), were constructed by using recombinant PCR and subsequent subcloning into the 

pET21b expression vector (see 2.4.2). Then the wild-type PsOEP16 and mutants in pET21b 

were overexpressed in BL21 E.coli cells. After reconstitution in a buffer containing 20 mM 

HEPES/KOH pH 7.6, 1 mM EDTA, and 0.03% octaethyleneglycol-monododecylether 

(C12E8), the refolded proteins were used for fluorescence spectra measurements. All 

fluorescence spectra, circular dichroism and stopped flow measurements were done by Dirk 

Linke, Max Volmer Laboratorium, Institut für Chemie der Technischen Universität Berlin, 

Berlin. 

The results show that the wild-type spectrum has its fluorescence maximum at 336 nm (Fig. 

3.1). In contrast to this, the emission spectra of the mutants have shifts; W77F has a peak at 

340 nm and W100F at 333 nm. 
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Fig. 3.1 Protein fluorescence of 

PsOEP16 (Linke et al., 2004). 

WT (A) and tryptophan mutants W100F 

(B) and W77F (C), and the sum of B+C 

(D). 

 

 

 

According to a classification of tryptophan fluorophores in proteins depending on their 

emission maxima (Burstein et al., 2001; Reshetnyak and Burstein, 2001), Trp-77 belongs to 

class I fluorophores, which are buried in the nonpolar lipid bilayer environment of the protein. 

In contrast, Trp-100 represents a fluorophore of II class and is exposed to boundary water. 

When summing up the two mutant spectra at equal protein concentrations, the calculated 

spectrum is almost identical in shape to the wild-type spectrum, even though its intensity is 

stronger (Fig. 3.1 (D)). Thus, two tryptophan residues contribute independently to the wild-

type spectrum, and their contribution can be detected in the single-tryptophan mutants. 

Tryptophan fluorescence assays (Fig. 3.1) suggest that Trp-77 is embedded between 

hydrophobic residues in helix II, whereas Trp-100 is located adjacent to helix III in the loop 

region. 

 

3.1.1.2 Topology model of PsOEP16 

The determination of conformation of the refolded recombinant wild-type and tryptophan 

mutants of PsOEP16 (Linke at al., 2004), as well as hydrophobic cluster analysis and 

mutagenesis experiments (Steinkamp et al., 2000) led to the topology model of PsOEP16 

(Fig. 3.2). It is suggested that the protein is purely α-helical, consisting of four 

transmembrane helices, which have an amphipathic character and form a water-filled pore by 

formation of dimers. 
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Fig. 3.2 Topology model of PsOEP16 insertion in the lipid membrane (Linke et al., 2004). 

The tryptophan residues 77 and 100 (W) are highlighted, as are charged residues within predicted 

transmembrane α-helices. Helix I contains charged residues in a central position, helices II and IV 

have similar patterns of charged residues at their ends. IMS, intermembrane space, and cytosol are 

indicated. According to Pohlmeyer (1997), the N-terminus is located in the cytosol.

 
On one hand, the transmembrane domains contain stretches of hydrophobic amino acids 

which have contact with the lipid membrane, on the other hand the α-helices I, II and IV 

contain charged residues (glutamate, aspartate and lysine). In a functional channel these 

charged amino acids are most probably coordinated in a fashion such that positively charged 

sidegroups on one helix have their negatively charged counterparts on another helix. 

However, the proportion of the negatively charged amino acids is higher and therefore this 

could determine the selectivity of PsOEP16 for cations. 

 

3.1.2 The OEP16 protein family from Arabidopsis thaliana 

In Pisum sativum only one OEP16 gene has been identified so far. In the Arabidopsis 

genome, which tends to have predominance of small multigene families, one could expect to 

find several genes encoding orthologous proteins with common features (Cooke et al., 1997). 

Indeed, a BLASTP analysis of PsOEP16 against the Arabidopsis genome revealed high 

IMS

cytosol

IMS

cytosol



 29

similarities to four proteins. On the amino acid level, PsOEP16 showed highest identity to the 

gene product of At2g28900 (62%), followed by At4g16160, At3g62880 and At2g42210 (27-

34%). In the following these genes were named AtOEP16.1 (At2g28900), AtOEP16.2 

(At4g16160), AtOEP16.3 (At2g42210) and AtOEP16.4 (At3g62880). Table 3.1 summarizes 

the obtained BLAST results. In the following these genes were selected for the study as 

possible ion channels transporting amino acids across the outer envelope of chloroplasts in 

Arabidopsis. 

 
Table 3.1 The genes identified by BLASTP search of the PsOEP16 orthologs in Arabidopsis. 

AGI code from the MIPS database, GenBank accession number, amino acid identity and similarity to 

PsOEP16 are listed for AtOEP16.1, AtOEP16.2, AtOEP16.3 and AtOEP16.4. 

 

 

 

3.1.2.1  In silico protein sequence analysis of Arabidopsis OEP16 orthologs 

To predict membrane topology and structure of the above-mentioned proteins, several 

approaches were used: an alignment of the protein sequences of PsOEP16 and all four 

orthologues from Arabidopsis (Fig. 3.3), the secondary structure prediction (see methods). 

It is very likely that all AtOEP16 family proteins are composed of 4 α-helical transmembrane 

domains, which are connected by soluble loops exposed to the cytoplasm or intermembrane 

space of chloroplasts. Secondary structure analysis showed that the predicted alpha-helical 

transmembrane regions of the AtOEP16.1-4 proteins have amphiphilic nature. The N-terminal 

soluble regions of AtOEP16.1-4 are predicted to be located in the cytoplasm. The N-termini 

vary in length, e.g. 10 (AtOEP16.4), 15 (AtOEP16.3), 24 (PsOEP16 and AtOEP16.1) and 27 

(AtOEP16.2) amino acid residues. 

46%48%50%79%Amino acid similarity 
to PsOEP16

27%34%30%62%Amino acid identity to 
PsOEP16

CAB83138AAM63925.1AAM65873.1AAM60853.1GenBank accesion 
number

At3g62880At2g42210At4g16160At2g28900AGI code

AtOEP16.4AtOEP16.3AtOEP16.2AtOEP16.1

46%48%50%79%Amino acid similarity 
to PsOEP16

27%34%30%62%Amino acid identity to 
PsOEP16

CAB83138AAM63925.1AAM65873.1AAM60853.1GenBank accesion 
number

At3g62880At2g42210At4g16160At2g28900AGI code

AtOEP16.4AtOEP16.3AtOEP16.2AtOEP16.1
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Fig. 3.3 Multiple alignment of the PsOEP16 protein sequence with its orthologs in Arabidopsis. 

The α-helical transmembrane domains are numbered I- IV, the loop region I is boxed. Identical amino 

acids are indicated in black background, similar amino acids are shown in gray background. 

The first and the second α-helical transmembrane regions of the AtOEP16s are connected by 

a long soluble loop I, which consists of 28 amino acid residues in AtOEP16.1 and 

AtOEP16.4, 29 amino acid residues in AtOEP16.3, while this region contains 36 residues in 

AtOEP16.2. This variety in the length of loop I could discriminate gating and selectivity of 

the channels, representing different family members. 

A BLASTP search of PsOEP16 against GenBank revealed orthologous proteins from different 

plant species, e.g. barley (accession no. CAA09867.1), rice (accession no. BAB89876.1 and 

BAB93165.1), Bromus intermis (accession no. AAL23749.1). 

A search for the domain structure using the SMART program showed that the OEP16 proteins 

from Arabidopsis and Pisum sativum contain Rassow consensus, similar to the 

TIM17/TIM22/TIM23 family proteins, which facilitates pre-protein translocation from the 

cytosol via the inner envelope of mitochondria (Rassow et al., 1999). To check whether the 

OEP16s and Arabidopsis proteins of the TIM17/TIM22/TIM23 family indeed exhibit 

evolutionary relations with OEP16, a phylogenetic analysis was conducted. As shown in Fig. 

3.4, the analysed proteins are located in four significantly separated branches of the 

phylogenetic tree. TIM17, TIM22 and TIM 23 orthologs form three different clusters, and 
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PsOEP16, AtOEP16.1, AtOEP16.2 and AtOEP16.4 fall into fourth evolutionary group. 

AtOEP16.3 does not display high similarity to the tested proteins. 

 

 

Fig. 3.4 Phylogenetic tree of OEP16 and TIM 17, TIM 22 and TIM 23 proteins from Arabidopsis. 

Analysis was done using the Vector NTI program with the Kimura correction, ignoring positions with 

gaps, and blosum62mt2 score matrix. Accession numbers for proteins are given. 

 

 

3.1.2.2 Isolation of AtOEP16.1, AtOEP16.2, AtOEP16.3 and AtOEP16.4 

As predicted by the Arabidopsis genome project (TAIR database), the genomic sequence of 

AtOEP16.1 contains six exons and five introns, an exon-intron structure which is very similar 

to that of AtOEP16.2. AtOEP16.4 consists of five exons and four introns. AtOEP16.3 in 

contrast to the other AtOEP16s contains only two exons and one intron (Fig. 3.5). 
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Fig. 3.5 Genomic organisation of AtOEP16.1, AtOEP16.2, AtOEP16.3 and AtOEP16.4. 

The 5’ and 3’ untranslated regions (5’ UTR and 3’ UTR, respectively) and several sites for restriction 

enzymes are illustrated. Exons are shown as black arrows, introns in grey lines. 

 

The coding regions for AtOEP16.1, AtOEP16.3 and AtOEP16.4 were amplified by PCR from 

cDNA synthesized using reverse transcription of total RNA from whole 4-week old 

Arabidopsis plants. The PCR primers were designed to introduce appropriate sites for 
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ClaI (1972)

Eco RI (1767)HindIII (543)

Hind III (744) HindIII (1710)5' UTR

3' UTR

3' UTR5' UTR
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restriction enzymes to facilitate the subsequent cloning into different plasmid vectors. 

AtOEP16.2 was originally obtained from Dr. T. Kavanagh (Department of Genetics, 

University of Dublin, Dublin) as a full-length cDNA clone containing 5' and 3' untranslated 

regions cloned between EcoRI (5') and XhoI (3') sites in the pBluescript SK vector. 

AtOEP16.2 was subsequently subcloned into the pET21d expression vector. The cloning 

strategy and destination vectors for AtOEP16.1-4 are summarized in Table 3.2. 

 

Table 3.2 Strategy for of cloning of AtOEP16.1, AtOEP16.2, AtOEP16.3 and AtOEP16.4. 

The template for cloning, restriction sites for digestion of the inserts and destination vectors, the 

names of the PCR primers, which were used for the PCR amplification of the cDNA and, the names of 

destination vectors and constructs are presented. 
 

 
 
 
The fidelity of the PCR amplifications was verified by sequencing. The AtOEP16.1 cDNA is 

447 bp in length with an open reading frame that codes for a protein with 148 amino acid 

residues, a calculated molecular mass of 15.5 kDa. AtOEP16.2 has an open reading frame of 

531 bp and encodes a protein of 160 amino acids with a predicted molecular mass of 16.9 kDa 

AtOEP16.3 has an open reading frame of 480 bp and encodes a protein of 159 amino acids 

with a predicted molecular mass of 17 kDa. AtOEP16.4 has an open reading frame of 411 bp 

and encodes a protein of 136 amino acids with a predicted molecular mass of 14 kDa. All 

AtOEP16s have a theoretical pI in the basic range (Table 3.3). 

 

 

AtOEP16.4/pET21bAtOEP16.3/pET21bAtOEP16.2/pET21dAtOEP16I.1/pCRIIName of 
construct

pET21bpET21bpET21dpCR IIVector
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Table. 3.3 Characteristics of the AtOEP16 orthologue proteins. 

Amino acid length (Amino acid), predicted molecular mass (kDa), theoretical isoelectric point (pI) are 

shown for AtOEP16.1, AtOEP16.2, AtOEP16.3 and AtOEP16.4 proteins. 

 

 

3.1.2.3 Intracellular distribution of the AtOEP16 proteins 

Within the last few years proteomic analysis of leaf chloroplasts and mitochondria have been 

performed in Arabidopsis (Ferro at al., 2003; Froehlich et al., 2003; Heazlewood et al., 2004). 

Here, the AtOEP16.1 protein has been detected in outer envelope membranes of chloroplasts, 

whereas AtOEP16.3 appeared in mitochondria. Neither AtOEP16.2 nor AtOEP16.4 have been 

identified in chloroplasts or mitochondria in these studies. 

For in silico analysis of the intracellular localization of AtOEP16 proteins, the prediction 

programs TargetP (Emanuelsson et al., 2000), Predator, CloroP (Emanuelsson et al., 1999) 

and the Aramemnon database have been used. As a result, the AtOEP16 proteins, similar to 

PsOEP16 and other outer envelope channel proteins, were predicted to have no defined 

location within the cell, mostly because of the absence of a classical chloroplast transit signal 

in their sequences. 

 

A)    Intracellular localisation via GFP-protein fusion 

In a first approach, plasmids encoding C-terminal GFP and RFP fusions to these four OEP16 

proteins were constructed and gold particles coated with plasmid DNA were bombarded into 

5-day-old pea roots. Simultaneously, a control for targeting into plastids, pSSU-dsRED and 

mitochondria, VDAC-RFP, was co-bombarded in the same sample. 

In a second approach, Arabidopsis protoplasts were isolated from mesophyll tissue of leaves, 

and then transformed with AtOEP16.1-4 GFP fusion constructs via polyethylene glycol 

(PEG). 

9.017.938.089.16pI

141716.915.5kDa

136159160148Amino acids

AtOEP16.4AtOEP16.3AtOEP16.2AtOEP16.1

9.017.938.089.16pI

141716.915.5kDa

136159160148Amino acids

AtOEP16.4AtOEP16.3AtOEP16.2AtOEP16.1
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The co-bombardment of AtOEP16.1-GFP and pSSU-dsRED showed after 24 hours, bright 

green and red fluorescence in spots within several cells of the root tissues sample. Merging of 

the GFP and dsRED fluorescence images showed co-localization of AtOEP16.1 and pSSU 

(Fig. 3.6 A). Hence, another control experiment with the mitochondrial localised protein 

VDAC was done. The transient co-expression of VDAC-RFP and AtOEP16.1-GFP did not 

show any co-localisation (Fig. 3.6 B). Thus, the AtOEP16.1-GFP fusion protein, like SSU, is 

embedded in the plastids of the pea root. 

 

 

 
Fig 3.6 Transient expression of AtOEP16.1-GFP in pea root cells. 

A. Fluorescence of biolistic co-bombarded AtOEP16.1-GFP, pSSU-dsRED and merged picture. Scale 

bar = 10 µm. B. Fluorescence of co-bombarded AtOEP16.1-GFP, VDAC-RFP and merged picture. 

Scale bar = 10 µm. 

 

The co-bombarded of AtOEP16.2-GFP revealed co-localisation with the plastid marker 

protein SSU in pea root cells (Fig. 3.7 A). Surprisingly, co-bombardment of AtOEP16.2-GFP 

and VDAC-RFP showed fluorescence in the same spots as well (Fig. 3.7 B). To elucidate 

these controversial results, additional experiments by co-bombarding of AtOEP16.1-RFP with 

AtOEP16.2-GFP were done. About 24 hours after biolistic bombardment, emitted red and 

green fluorescence was detected. About 80% of the green fluorescence was found overlaid 

with red fluorescence and the residual 20% of green fluorescence, was localised in another 

region (Fig. 3.7 C). These results suggest that AtOEP16.1-GFP and AtOEP16.2-GFP are 

localised in plastids but that AtOEP16.2-GFP fusion protein is localised both in plastids and 

in mitochondria. 

A

B

AtOEP16.1                                 SSU                   Merged

AtOEP16.1                            VDAC                       Merged

GFP                                        RFP

A

B

AtOEP16.1                                 SSU                   Merged

AtOEP16.1                            VDAC                       Merged

A

B

AtOEP16.1                                 SSU                   Merged

AtOEP16.1                            VDAC                       Merged

GFP                                        RFP

A

B

AtOEP16.1                                 SSU                   Merged

AtOEP16.1                            VDAC                       Merged

GFP                                        RFP

A

B

AtOEP16.1                                 SSU                   Merged

AtOEP16.1                            VDAC                       Merged

A

B

AtOEP16.1                                 SSU                   Merged

AtOEP16.1                            VDAC                       Merged

GFP                                        RFP



 36

 

 
Fig. 3.7 Transient expression of AtOEP16.2-GFP in Pisum sativum root cells. 

A. AtOEP16.2-GFP, pSSU-dsRED fluorescence and merged picture. Scale bar = 10 µm. B. 
AtOEP16.2-GFP, VDAC-RFP fluorescence and merged picture. Scale bar = 10 µm. C. AtOEP16.2-

GFP, AtOEP16.1-RFP fluorescence and merged picture. Scale bar = 10 µm. 

 

Fig. 3.8 shows the results of the fluorescence of AtOEP16.3 fused to the GFP reporter. In 

these experiments, two different tissue samples were used, (i) Arabidopsis protoplasts, and (ii) 

pea root tissue. The PEG-mediated transformation of Arabidopsis protoplasts with the 

AtOEP16.3-GFP plasmid revealed that AtOEP16.3-GFP fusion proteins are not associated 

with chlorophyll autofluorescence (Fig. 3.8 A). In the next experiments of co-bombardment of 

AtOEP16.3-GFP with the targeting control genes in pea root cells, the AtOEP16.3-GFP 

fusion protein was co-localised with VDAC-RFP but not with pSSU-dsRED (Fig. 3.8 B and 

C), suggesting that AtOEP16.3-GFP fusion is localised in the mitochondria. 
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Fig. 3.8 Transient expression of AtOEP16.3-GFP. 

A. AtOEP16.3-GFP fluorescence, chlorophyll autofluorescence and merged picture of PEG-

transformed Arabidopsis thaliana protoplasts. Scale bar = 10 µm. B-C. Pisum sativum root cell. B. 
AtOEP16.3-GFP, VDAC-dsRED fluorescence and merged picture. Scale bar = 10 µm. C. AtOEP16.3-

GFP, pSSU-dsRED fluorescence and merged picture. Scale bar = 10 µm. 

 

The green fluorescence of the transiently expressed AtOEP16.4-GFP in Arabidopsis 

protoplasts had a punctuate shape surrounding the autofluorescence red light coming from the 

chlorophyll (Fig. 3.9 A). The co-bombardment of AtOEP16.4-GFP and pSSU-dsRED in the 

pea roots showed the overlap of green and red signal in the merged picture (Fig. 3.9 B). But 

A

B

C

AtOEP16.3                VDAC                  Merged

AtOEP16.3                 SSU                    Merged

AtOEP16.3            chlorophyll             Merged

GFP                       

GFP                         RFP

A

B

C

AtOEP16.3                VDAC                  Merged

AtOEP16.3                 SSU                    Merged

AtOEP16.3            chlorophyll             Merged

GFP                       

GFP                         RFP

A

B

C

AtOEP16.3                VDAC                  Merged

AtOEP16.3                 SSU                    Merged

AtOEP16.3            chlorophyll             Merged

GFP                       

GFP                         RFP

A

B

C

AtOEP16.3                VDAC                  Merged

AtOEP16.3                 SSU                    Merged

AtOEP16.3            chlorophyll             Merged

GFP                       

GFP                         RFP



 38

the co-bombardment of AtOEP16.4-GFP with the mitochondrial control also showed the 

same pattern (Fig. 3.9 C), suggesting a dual localization for AtOEP16.4. 

 

 

 

 
Fig. 3.9 Transient expression of AtOEP16.4-GFP. 

A. AtOEP16.4-GFP fluorescence, chlorophyll autofluorescence and merged picture of PEG-

transformed Arabidopsis thaliana protoplasts. Scale bar = 10 µm. B-C. Pisum sativum root cell. Scale 

bar = 10 µm. B. AtOEP16.4-GFP, pSSU-dsRED fluorescence and merged picture. C. AtOEP16.4-

GFP, VDAC-dsRED fluorescence and merged picture. 
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B)  Immunoblot analysis of subcellular localization of the AtOEP16 family 

To obtain further insight into the subcellular localization of the Arabidopsis OEP16 orthologs, 

antisera were generated against these proteins, and immunoblot analysis of proteins of 

chloroplasts and mitochondria isolated from Arabidopsis leaves was performed. 

As shown in Fig. 3.10 A, the anti-AtOEP16.1 antiserum detected a protein with an apparent 

molecular mass of 16 kDa in the chloroplast sample prepared from leaves of 6-week-old 

Arabidopsis plants, whereas the anti-AtOEP16.2 antiserum did not recognise any protein in 

chloroplasts or mitochondria. The AtOEP16.3 protein was present in mitochondria. The anti-

AtOEP16.4 antibodies did not detect any band in the tested samples. 

 
Fig. 3.10 Immunoblot analysis of the subcellular localization of members of AtOEP16 family in 

Arabidopsis. 

A. 100 µg total protein from chloroplasts (line C) and mitochondria (line M) purified from leaves of 6-

week-old Arabidopsis plants were separated on 12.5% SDS-Gel followed by immunoblotting. B. 

immunodetection of the AtOEP16.4 protein; ENV, envelope fraction of leaf chloroplasts (10 µg 

protein), M, leaf mitochondria (100 µg protein) purified from leaves of 6-week-old Arabidopsis. C. 

Localisation of the AtOEP16.2 protein in different tissues of Arabidopsis; 100 µg total protein was 

immunoblotted. Leaves and roots were harvested from 6-week-old plants. D. Localisation of the 

AtOEP16.2 protein in Arabidopsis plants possessing 2 cotyledons and 2 primary leaves in chloroplasts 

(C) and in mitochondria (M); 100 µg total protein was immunoblotted. 
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As control for the purity of isolated chloroplasts and mitochondria, immunodetection of 

chloroplastic proteins OEP21, mSSU and the mitochondrial protein, VDAC, was performed 

(Fig. 3.10 A). 

Absence of the AtOEP16.2 and AtOEP16.4 proteins could be because of low levels of these 

proteins in vivo. Therefore, a fraction of envelope membrane proteins was purified from 

Arabidopsis chloroplasts derived from leaves of 6-week-old plants and used for immunoblot 

analysis. Subsequent immunoblotting showed that the AtOEP16.4 protein of apparent 

molecular mass of 14 kDa is located to the envelope of chloroplasts (Fig. 3.10 B). The 

AtOEP16.2 protein was not detected in this assay. Therefore, to elucidate an Arabidopsis 

tissue abundant for the AtOEP16.2 protein, fractions of total membrane proteins from leaves, 

roots, flowers and seeds were isolated and used for western blot analysis. Here, this protein 

with an apparent molecular mass of 17 kDa was found to be expressed in seeds only (Fig. 

3.10 C). Unfortunately, chloroplasts and mitochondria cannot be prepared from these organs, 

therefore all tissues of Arabidopsis were analysed for presence of the AtOEP16.2 RNA with 

Digital Northern (see Discussion). Since AtOEP16.2 is expressed in cotyledons, Arabidopsis 

plants at the cotyledon stage (2 cotyledons + 2 rosette leaves) were used for chloroplast and 

mitochondria isolation followed by immunoblot analysis. Western blot analysis with the anti-

AtOEP16.2 antiserum revealed a band of apparent molecular mass of 17 kDa in the 

chloroplast sample, suggesting that AtOEP16.2 is localised in the chloroplasts (Fig. 3.10 D). 

The summarized results of the analysis of the subcellular localization of OEP16 family in 

Arabidopsis are presented in Table 3.4. 

 
Table 3.4 Summary of results focused on subcellular distribution of AtOEP16 orthologs. 

Results of proteomic analysis, GFP protein fusion experiments and immunoblot analysis were 

summarized. Ch – chloroplasts; mit – mitochondria. 

 

 

chch/mitAtOEP16.4

mitmitmitAtOEP16.3

chch/mitAtOEP16.2

chchchAtOEP16.1

Immunoblot 
analysisGFP fusionProteomics

chch/mitAtOEP16.4

mitmitmitAtOEP16.3

chch/mitAtOEP16.2

chchchAtOEP16.1

Immunoblot 
analysisGFP fusionProteomics
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3.1.2.4 Gene expression patterns of the AtOEP16 family 

A)  Affymetrix analysis of the AtOEP16 family. 
With the knowledge that the PsOEP16 protein is expressed in the whole pea plant in equal 

amounts (Pohlmeyer et al., 1997), the attention was first turned to the transcript content of the 

Arabidopsis OEP16s genes in photosynthetic (leaf) and non-photosynthetic (root) tissues. For 

this purpose, Affymetrix gene chip analysis on mRNA samples purified from 4-week old 

Arabidopsis leaves and roots was performed. Experiments were done by Dr. Rowena 

Thomson (Department Biologie I, Botanik LMU, München) within the DFG SPP-1108 

project. 

 

 

 
Fig. 3.11 Affymetrix Arabidopsis genome microarray analysis of the AtOEP16.1, AtOEP16.2, 
AtOEP16.3 and AtOEP16.4 mRNA levels in leaves and roots of 4-week-old Arabidopsis plants. 
mRNA levels are depicted in arbitrary units. Error bars denote standard deviation SD of n=3 biological 

replicas (Dr. Thomson, Dept. Biologie, LMU, München, DFG SPP-1108 project) 

 

Under standard 16-h-photoperiod growth conditions, the AtOEP16.1 and AtOEP16.4 genes 

were expressed in relatively same levels in leaves and roots (Fig. 3.11). A signal for the 

transcript of the AtOEP16.2 gene in the tested tissues could not be detected, suggesting that 

AtOEP16.2 mRNA is absent in leaves and roots of 4-weeks old plants. These results are in 

line with immunoblot analysis results (Fig. 3.10). The amount of AtOEP16.3 mRNA was 

about 8-10-fold higher than for the AtOEP16.1 and AtOEP16.4 transcript levels and was of 

811 ± 50 signal level in leaves and 869.36 ± 56 signal level in roots. 
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B) RT-PCR analysis of the AtOEP16.1, AtOEP16.2 and AtOEP16.4 

distribution in Arabidopsis. 

Since the current study was aimed to investigate the chloroplast localised OEP16 genes, all 

following experiments concentrated on the AtOEP16.1, AtOEP16.2 and AtOEP16.4 genes and 

gene products. To confirm the results from Affymetrix microarray analysis, RT-PCR assays 

on total RNA, isolated from leaves and roots of 4-week-old plants and from flowers and 

siliques, was performed. RT-PCR results represent end-point PCR with the quantification not 

as exact as Affymetrix. 

 

Fig. 3.12 RT-PCR analysis of the AtOEP16.1, AtOEP16.2 and AtOEP16.4 mRNA in Arabidopsis. 

For one-step RT-PCR analysis, 20 ng of total RNA isolated from 4-week-old Arabidopsis was used. 

Primers for assay were next: o16araClaIa and o16araXhoIr (for AtOEP16.1), oep16SNBamH1-1 and 

oep16scPst1-2 (for AtOEP16.2), 62880XhoIR and 62880EcoRIF (for AtOEP16.4) and 18SF and 18SR 

(for 18S rRNA, house-keeping control). 

 

The analysis showed the presence of specific PCR product bands of 400 bp size, 

corresponding to the AtOEP16.1, AtOEP16.2 and AtOEP16.4 mRNA (Fig. 3.12). The signal 

of the AtOEP16.1 PCR products was strong in roots, leaves, flowers and siliques. The 

AtOEP16.2 mRNA amplification gave weak signals in the flowers and siliques only. The 

presence of the AtOEP16.4 PCR product was detected in all tissues. In roots, leaves and 

flowers the AtOEP16.4 signals were weak, whereas in siliques it was strong. 18S rRNA was 

used as a house-keeping control in this assay. These results confirmed the Affymetrix results 

and revealed expression of AtOEP16.2 in flowers and siliques. 
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C)   Promoter-GUS analysis of AtOEP16.1, AtOEP16.2 and AtOEP16.4 

For further analysis, the expression patterns and functional role of the AtOEP16s promoters 

were examined. For this purpose the promoter regions of AtOEP16.1, AtOEP16.2 and 

AtOEP16.4 were fused to the b-glucuronidase (GUS) reporter gene uidA in the pKGWFS7 

vector (Karimi et al., 2005). Plasmid DNA was then transferred to Arabidopsis plants via floral 

dip infiltration, mediated by Agrobacterium tumefaciens to allow expression of the 

promoter::GUS fusion protein under control of the respective OEP16 promoters. 

Histochemical staining of 8 independent transgenic Arabidopsis lines of T1 and T2 progeny 

harboring the AtOEP16.1 promoter::GUS construct gave intensive blue staining in the 

different organs of the plant at different developmental stages (Fig. 3.13). In the flowers GUS 

expression was detected in the vegetative tissues, e.g. in the flower stalks of the flower buds 

(Fig. 3.13 A, B), in the filaments of the stamens (Fig. 3.13 C), in the carpels but not in the 

stigma (Fig. 3.13 D), in the siliques (Fig. 3.13 E, F) and in the abscission zone of the petals 

and sepals (base of the silique) (Fig. 3.13 E). In the developing and germinating seeds the 

GUS staining was observed in the cotyledons of the embryo (Fig. 3.13 G, H). No GUS 

activity was detected in the radicle. After germination for 3 days in the light, Arabidopsis 

seedlings showed GUS expression in the cotyledons and the primary root, but not in the root 

tip (Fig. 3.13 I, J). In older plants, the GUS staining was observed mostly in the hydatodes of 

leaves as shown in Fig. 3.13 K-N. 
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Fig. 3.13 β-glucuronidase staining of Arabidopsis transformants harboring AtOEP16.1 
promoter::GUS construct. 
A, B, flower bud(s); C, flower with flower stalk; D, the part of pistil with stigma; E, silique; F, opened 

silique with seeds; G, seed with seed coat (stage 0.10), imbibition in water for 3 days; H, seed without 

seed coat (stage 0.10), imbibition in water for 3 days; I, J, seedling (stage 1.0), 3 days of imbibition in 

water + 3 days of growth in light; K, Arabidopsis plant, stage 1.04; L, leaf of plant in K; M, leaf, 

hydatode region. Growth stages are given according to Boyes et al., 2001. Scale bars for A-J and L, N 

= 1 mm, for K = 1 cm. 
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The GUS expression under control of the AtOEP16.2 gene promoter region, monitored by 

histochemical GUS analysis of the several individual lines of T1 and T2 progeny, transformed 

with AtOEP16.2 promoter::GUS construct, showed blue staining in the flowers first when 

their stamens are developed (Fig. 3.14 A, B). Here signals were found in the anthers, this blue 

staining further could be specified to pollen grains. Observation by microscopy of the flower 

staining showed that GUS activity around the carpel stigmas in the flowers and the stigma in 

the siliques was due to pollen attached to the stigmas rather than to the stigmas themselves 

(Fig. 3.14 J). In the in vitro germinating pollen, AtOEP16.2-GUS expression was detected 

also in the emerging and pollen tube (Fig. 3.14 K-N). 

The developing and germinating seeds of transgenic plants harboring AtOEP16.2 promoter-

GUS construct were tested for GUS activity. GUS staining was not detected during early 

embryogenesis (Fig. 3.14 O), i.e. before pattern formation was completed (Goldberg et al., 

1994). Transformants showed intense staining in maturing embryos or in desiccating seeds 

(Fig. 3.14 P, R). Germinating seeds showed the same embryo-staining patterns (Fig. 3.14 S, 

T). A significant level of GUS staining was detectable in seeds after imbibition on water 

medium at 4° C for 3 days. No staining was observed in the seed coat of developing or 

germinating seeds. After germination the 2-cotyledon-seedlings and plants of next 

developmental stages express GUS in the cotyledons and hypocotyl (Fig. 3.14 U-W). No 

GUS activity was detected and rosette or cauline leaves nor in roots (Fig. 3.14 V). Therefore, 

AtOEP16.2 expression was regulated in a tissue- and time- dependent manner. 

Several independent lines of Arabidopsis transformants harboring the 1500 bp promoter 

region of the AtOEP16.4 gene, fused to GUS reporter gene, exhibited no GUS staining in all 

tissues (data not shown). An analysis of the 1500 bp upstream sequence of the AtOEP16.4 

gene revealed a putative TATA box in position of –1242 and several predicted cis-acting 

elements, but it seems likely that transcription of AtOEP16.4 gene in Arabidopsis is too low 

to detect its with GUS-staining assay. 
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Fig. 3.14. Histochemical GUS staining of Arabidopsis transformants harboring AtOEP16.2 
promoter::GUS construct. 
A, flower buds; B, inflorescence; C, flower buds with developing anthers; D, flower; E, anther; F, 

stamen; G, pollens; H, stigma with pollens; I, silique; J-N, germinating pollen grains; N, pollen tube; O, 

P, developing seeds; R, developing embryo; S-T, seed imbibition in water for 3 days; S, seeds; T, 

seed without seed coat; U, 6-day-old seedling; V, Arabidopsis, stage 1.04; X, close-up of the section of 

the cotyledon. Scale bars for A, C, D, I, S, U = 1 mm, for B, V = 1 cm, for E-H and J-R, T, W = 0,1 mm. 
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3.1.2.4 T-DNA knockout mutants of AtOEP16s 

To investigate the role of the AtOEP16 proteins in plant metabolism and development, a T-

DNA insertion library and public available T-DNA insertion mutant databases were screened 

for AtOEP16 knockout mutants. 

 

A) Isolation and characterisation of Arabidopsis OEP16.1 knockout mutants 

A PCR-based reverse-genetics screen of a T-DNA collection, generated by Rick Amasino’s 

lab (Gene Knockout Service Facility of the AFGC, the Biotechnology Center of the 

University of Wisconsin, USA), resulted in the isolation of one Arabidopsis mutant, harboring 

a T-DNA insertion in the AtOEP16.1 gene (WS ecotype, see 2.11).  

The PCR experiments on genomic DNA isolated from the Atoep16.1 mutant line with T-

DNA-specific and AtOEP16.1-specific primers showed that T-DNA is localized 68 bp 

upstream of the first methionine in the open reading frame of AtOEP16.1 (Fig. 3.15 A). In the 

following this mutant line is designed Atoep16.1-p (p:- “in promoter”).  

A second knockout mutant (SALK_024018) of the AtOEP16.1 locus was found in the T-DNA 

insertion mutant SALK database (Col-0 background). The PCR experiments on genomic 

DNA showed that the AtOEP16.1 locus in this line possessed a T-DNA insert within exon 2. 

Here the T-DNA element disrupts AtOEP16.1 protein synthesis after Asp-48. This mutant 

was named Atoep16.1-e (Fig. 3.15 A). To screen for homozygous Atoep16.1-p and Atoep16.1-

e plants, selection for the mutated AtOEP16.1 alleles was performed by PCR analysis with 

two sets of primers: (i) T-DNA-specific and AtOEP16.1-specific, and (ii) two gene-specific 

primers. Genomic DNA extracted from wild-type Arabidopsis was used for control. The PCR 

results are shown in Fig. 3.15 B. In Atoep16.1-p line, the bands of 1200 bp (with first set of 

primers) and the absent product of 1550 bp (with second set of primers) were detected in 

contrast to wild-type plants and designate the homozygous line. In Atoep16.1-e line the band 

of 300 bp (with first set of primers) and absence of a band of 1550 bp (with second set of 

primers) were detected in contrast to wild-type plants and identified this line as homozygous. 
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Fig. 3.15 The Atoep16.1-p and Atoep16.1-e knockout mutants identification and analysis. 

A. Schematic diagram of the T-DNA insert localization (i) at position –68 upstream of the first putative 

start codon in the open reading frame of AtOEP16.1 in Atoep16.1-p mutant and (ii) in the second exon 

of AtOEP16.1 in Atoep16.1-e mutant. T-DNA disrupts ORF after Asp*48 in Atoep16.1-e mutant. For 

the T-DNA orientation, position of left (LB) and right (RB) borders is shown. The ORF for the 

AtOEP16.1 gene is depicted in bold. Positions of JL202, At2gC, 28900Fbeg primers are shown. Exons 

are shown as black arrows. B. PCR analysis of wild-type and Atoep16.1-p and Atoep16.1-e individual 

homozygous lines using following primers pairs for Atoep16.1-p (i) T-DNA specific JL202 and gene-

specific At2gC, and (ii) gene-specific 28900Fbeg and At2gC; and for Atoep16.1-e (i) T-DNA specific 

LBb1ROK2 and gene-specific 28900Fbeg, and (ii) gene-specific 28900Fbeg and At2gC. Mut, mutant; 

WT, wild-type. 
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RT-PCR analysis of the Atoep16.1-p and Atoep16.1-e homozygous lines was performed to 

check the influence of the promoter- and exon-inserted T-DNA element on the AtOEP16.1 

mRNA level in mutant plants compared with wild-type Arabidopsis. As shown in Fig. 3.16 A, 

leaves of the homozygous Atoep16.1-p line had no PCR-product band of 340 bp, which 

corresponds to the PCR product, amplified from wild-type AtOEP16.1 mRNA. 

 

 

 
Fig. 3.16 RT-PCR and immunoblot analyses of the Atoep16.1-p and Atoep16.1-e knockout 

mutants. 

A. 100 ng of total RNA from leaves of 4-week-old Arabidopsis plants was used as template for the 

one-step RT-PCR analysis of Atoep16.1-p T-DNA mutant. Primer pairs o16araEcoRIF and 

o16araXhoIr, 62880SF and 62880R, and 18SF and 18SR were used for amplification of AtOEP16.1, 

AtOEP16.4, 18S rRNA, respectively. The 18S rRNA gene (At2g01010) was amplified as house-

keeping control. As negative control for this assay, No RNA and No RT controls were used. B. 100 ng 

of total RNA from leaves of 4-week-old Arabidopsis plants was used as template for one-step RT-PCR 

analysis of Atoep16.1-e T-DNA mutant. Primer pairs 28900lcf and 28900lcr, and actin2lcf and actin2lcr 

were used for RT-PCR analysis of AtOEP16.1 and Actin 2 genes, respectively. The Actin 2 gene 

(At3g18780) was amplified as a house-keeping control. As negative control for this assay, No RNA 

and No RT controls were used. C. Immunoblot analysis of AtOEP16.1 in leaves of 4 week old 

Atoep16.1-e and wild-type plants. 20 µg membrane fraction proteins were loaded on a 12% 

polyacrylamide gel. Proteins were blotted on a nitrocellulose membrane, and immunodetection was 

performed with antisera against AtOEP16.1. 
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To test whether the disruption of AtOEP16.1 gene expression affects the mRNA level of the 

AtOEP16.4 gene, the closest relative to AtOEP16.1, RT-PCR analysis of AtOEP16.4 in the 

homozygous Atoep16.1-p line was performed. The RT-PCR analysis showed that the 

knockout line and wild-type plants possessed a 240 bp band of almost the same intensity, 

representing AtOEP16.4 mRNA. RT-PCR of the 18S rRNA gene was used as a house-keeping 

control in this assay.  

As shown in Fig. 3.16 B, representing results of RT-PCR analysis of Atoep16.1-e knockout 

mutant, wild-type plants possessed a amplified PCR product band of 275 bp, which is the 

expected size of the AtOEP16.1 PCR product with amplification with two AtOEP16.1 gene-

specific primers. The Atoep16.1-e homozygous plants possessed no detectable PCR product 

band of the same size. RT-PCR of the Actin2 gene was used as a house-keeping control in this 

assay. 

To analyze the effect of the T-DNA insertion on the production of the AtOEP16.1 

polypeptide, proteins were extracted from leaves of 4-week-old plants of Atoep16.1-e 

homozygous as well as wild-type plants. These proteins were tested in an immunoblot with 

polyclonal antibodies raised against the AtOEP16.1 protein. As shown in Fig. 3.16 C, the 

antibodies recognized an intense AtOEP16.1 protein band in wild-type plants. Homozygous 

plants for the AtOEP16.1 knock out possessed no detectable AtOEP16.1 polypeptide band. 

The phenotype of the homozygous Atoep16.1-p and Atoep16.1-e knockout mutants was 

inspected and compared with wild-type under standard growth conditions. No detectable 

difference was observed at any growth stage, including seed germination, plant morphology 

and growth, flowering time, fertility, silique development, and seed dormancy (data not 

shown). Cold stress (4°C for 3 days) also did not influence the phenotype of the knock out 

mutants as well. 

 

B) cDNA macroarray analysis of the Atoep16.1-p knockout mutant 

To compare gene expression in leaves of 4-week-old Atoep16.1-p knockout mutant plants 

with gene expression in leaves in wild-type, cDNA macroarray analysis on membranes with 

spotted cDNAs, was conducted during my stay in the lab of Dr. Schäffner (GSF 

Forschungszentrum, München) within the DFG SPP 1108 project. This macroarray consists 

of 700 membrane transporter cDNAs (Clomibitza et al., 2004). 

When hybridized to an array (Fig. 3.17 A, B), 16 genes showed changes in expression more 

than 2.5-fold higher or lower. Several channels were down-regulated in the Atoep16.1-p 

knockout mutant (Table 3.4). The mRNA level of LHT1 (At5g40780), amino acid permease,  
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Fig. 3.17 Macroarray analysis of Atoep16.1-p knockout mutant. 

A. Hybridization of mRNA extracted from leaves of 4-week-old wild-type Arabidopsis plants. B. 
Hybridisation of mRNA extracted from leaves of homozygous 4-week-old Atoep16.1-p Arabidopsis 

plants. 

 

which transports lysine and arginine, was decreased 3.58-fold compared with wild-type. The 

transcript levels of a putative cyclic nucleotide-regulated cation channel (At2g46430, 3.57-

fold), two putative sugar transporters At4g04750 (3.38-fold) and ERD6 (At1g08930, 3.27-

fold), a putative ABC transporter (At1g59870, 3.1-fold) (Martinoia et al., 2002) and ALA11, 

a putative calcium-transporting ATPase (At1g13210, 2.74-fold) were down-regulated. The 

level of the chloroplast-localized ATP sulfurylase precursor (At5g43780) mRNA in leaves of 

the Atoep16.1-p knockout mutant was 3.55-fold lower than in wild-type. ATP sulfurylase 

precursor is an enzyme, which is involved in glutathione and cysteine synthesis. The mRNA 

level of a catalase (At1g20620) decreased 2.82-fold in contrast to wild-type. The mRNA 

content of acyl hydrolase SAG101 (At5g14930), which is involved in leaf senescence 

decreased 2.59-fold. The transcript amount of the extra-large G-protein AtXLG1 (At4g34390, 

Lee and Assmann, 1999) was 3.75-fold lower in knockout in contrast to the wild-type. 

Three genes contributing to amino acid metabolism and transport were up-regulated in leaves 

of the 4-week-old Atoep16.1-p T-DNA mutant. The mRNA level of naringenin-chalcone 

synthase (At5g13930), an enzyme of biosynthesis of L-phenylalanine and L-tyrosine 

derivatives, increased 2.87-fold compared with wild-type. The transcript amounts of S-

adenosylmethionine synthase 2 (At4g01850) and a putative proline transporter (At2g36590) 

increased as well (3.06 and 3.48-fold, respectively). The mRNA content of two aquaporins 

(At5g47450 and At1g80760) and a nodulin intrinsic, plasma membrane targeted protein 

(At5g37810) increased 2.91, 3.77 and 2.91-fold, respectively. 

 

A BA BWT Atoep16.1-pA BA BWT Atoep16.1-p
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Table 3.4 Macroarray analysis of Atoep16.1-p knockout mutant 

List of down- and up-regulated genes in leaves of homozygous 4-week-old Atoep16.1-p knockout 

mutant. AGI code of gene, changing of mRNA levels, encoded protein and comments (from TAIR web 

site) are listed. 

 

 AGI code -fold Encoded protein Comments 

Down-regulation, WT/mutant ≥ 2,5 

1 At5g14930 2.59 SAG101, acyl hydrolase Involved in leaf senescence 

2 At1g13210 2.74 
ALA11, putative calcium-

transporting ATPase 

P-type ATPase, targeted to 

mitochondria 

3 At1g20620 2.82 catalase Decomposition of hydrogen peroxide 

4 At1g59870 3.1 putative ABC transporter Targeted to chloroplasts 

5 At1g08930 3.27 putative sugar transporter Electrochemical potential dependent 

6 At4g04750 3.38 putative sugar transporter 
C-compound and carbohydrate 

transporter 

7 At5g43780 3.55 ATP sulfurylase precursor 
Targeted to chloroplasts. Glutathione 

and cysteine synthesis 

8 At2g46430 3.57 
putative cyclic nucleotide-

regulated cation channel 
Calmodulin regulated 

9 At5g40780 3.58 LHT1, amino acid permease Lysine and histidine transporter 

10 At4g34390 3.75 extra-large G-protein – like  

Up regulation, mutant/WT ≥ 2,5 

1 At5g13930 2.87 naringenin-chalcone synthase 
Biosynthesis of L-phenylalanine and L-

tyrosine derivatives 

2 At5g47450 2.91 aquaporin Targeted to tonoplast 

3 At5g37810 2.91 
plasma membrane integral 

protein 
Nodulin intrinsic protein 

4 At4g01850 3.06 S-adenosylmethionine synthase 2 Amino-acid biosynthesis 

5 At2g36590 3.48 putative proline transporter  

6 At1g80760 3.77 aquaporin Tonoplast targeted 

 
 

C) Isolation and characterisation of an Arabidopsis OEP16.2 knockout 

mutant. 

The AtOEP16.2 knockout mutant (SAIL 1334_672_D04, Col-0 background) was found by 

the web search in the Syngenta’s T-DNA insertion library. The PCR experiments on genomic 

DNA showed that the T-DNA element in this mutant is inserted in the 3-rd intron of the 
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AtOEP16.2 locus. A schematic diagram of the T-DNA insert location and orientation is 

shown in Fig. 3.18 A. The T-DNA junction was amplified with the left border T-DNA 

specific primer and with the gene-specific primer. Homozygous mutant lines were screened 

with the two gene-specific primers (Fig. 3.18 B). 
 
 

 
 
 
 
Fig. 3.18 Screening and analysis of the Atoep16.2 T-DNA mutant. 

A. Schematic diagram of the T-DNA element localization in the third intron of AtOEP16.2 locus. For T-

DNA the orientation of left and right borders are shown. Exons are shown as black arrows. B. PCR 

analysis of the individual homozygous lane of the Atoep16.2 knockout mutant and wild-type (Col-0) 

using (i) T-DNA specific LB3 and gene-specific At4gN, and (ii) two gene-specific At4gN and At4gC 

primers. Mut, mutant; WT, wild-type. C. RT-PCR analysis of the Atoep16.2 T-DNA mutant. 100 ng of 

total RNA from siliques from Atoep16.2 and wild-type (WT) Arabidopsis plants was used for one-step 

RT-PCR with primers 16160lcf and 16160lcr for AtOEP16.2, and actin2lcf and actin2lcr for Actin 2 

gene, which was used as a house-keeping control in this assay. As negative control for the assay, No 

RNA and No RT controls were used. 
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To test the effect of T-DNA insertion into intron 3 of the AtOEP16.2 gene on the mRNA 

level, RT-PCR analysis of homozygous Atoep16.2 plants compared with wild-type 

Arabidopsis was performed. Since expression of the AtOEP16.2 is seed specific (see 3.1.2.4 

C), total RNA was isolated from developing siliques. As shown in Fig. 3.18 C, wild-type 

plants possessed a PCR product band of 270 bp. This band corresponds to AtOEP16.2 

mRNA. In contrast to wild-type, no band was detected in the Atoep16.2 T-DNA mutant. As 

internal control, the amplification of Actin 2 was used in this assay. 

The phenotype of the homozygous Atoep16.2 knockout mutant was observed under standard 

growth conditions and compared with wild-type. No detectable difference was found at any 

growth stage, including seed germination, plant morphology and growth, flowering time, 

fertility, silique development, and seed dormancy (data not shown). 

 

D) Isolation and characterisation of Arabidopsis OEP16.4 knockout mutants 

To obtain an Arabidopsis OEP16.4 knockout mutant, we screened T-DNA insertion mutants 

of the SALK database. One candidate knockout line, SALK 109275, was found. The PCR 

experiments on genomic DNA with the left-border T-DNA specific and gene-specific primers 

were performed to characterize the genomic region of the AtOEP16.4 mutant locus. The 

sequencing showed that the AtOEP16.4 locus in this line possessed a T-DNA insert within 

intron 3. Therefore, this mutant was named Atoep16.4-i. A second Atoeop16.4 knockout 

mutant (Garlic 769 E11) was found by the web search in the Syngenta’s T-DNA insertion 

library. The PCR experiments on genomic DNA in this mutant line with the left border T-

DNA specific and with gene-specific primers showed that the T-DNA element is inserted in 

the last exon of the AtOEP16.4 locus, therefore this mutant line was named Atoep16.4-e. A 

schematic diagram of the T-DNA location and orientation in the AtOEP16.4 gene of these T-

DNA mutants is shown in Fig. 3.19 A. 

To screen for homozygous Atoep16.4-i and Atoep16.4-e mutant plants, PCR analysis was 

performed. Two sets of primers were used (i) the T-DNA left border specific primer and 

gene-specific primer, and (ii) two gene-specific primers. The PCR results are shown in the 

Fig. 3.19 B and C, respectively. In the Atoep16.4-i line the band of 1200 bp (with first set of 

primers) and absence of the 800 bp band (with second set of primers) were detected in 

contrast to wild-type plants. In Atoep16.4-e line the band of 400 bp (with first set of primers) 

and absence of a band of 800 bp (with second set of primers) were detected in contrast to 

wild-type plants and identified this line as homozygous. 
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Fig. 3.19 Screening of the Atoep16.4-i and Atoep16.4-e T-DNA mutants.

A. Schematic diagram of the T-DNA insert localization in the third intron of AtOEP16.4 locus in the 

Atoep16.4-I mutant and in the last exon of AtOEP16.4 locus in the Atoep16.4-e mutant. For T-DNA the 

orientation of left (LB) and right (RB) borders are shown. Exons are shown as black arrows. Positions 

of primers for PCR are depicted. B. PCR analysis of the individual homozygous lane of the Atoep16.4-

i knockout mutant and wild-type (Col-0) using (i) T-DNA specific ‘35Spromoter’ and gene-specific 

62880SR and (ii) two gene specific At3gN and At3gC primers. Mut, mutant; WT, wild-type. C. PCR 

analysis of the individual homozygous lane of the Atoep16.4-e knockout mutant and wild-type (Col-0) 

using (i) T-DNA specific LB3 and gene-specific At3gC and (ii) two gene specific At3gN and At3gC 

primers. Mut, mutant; WT, wild-type. 
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To test the effect of T-DNA insertion in AtOEP16.4 locus on mRNA level in Atoep16.4-i and 

Atoep16.4-e knockouts, one-step RT-PCR analysis was performed. Total RNA was extracted 

from leaves of 4-week-old mutant and wild-type plants. As shown in Fig. 3.20 A and B, 

leaves of Atoep16.4-i and Atoep16.4-e do not possess the AtOEP16.4 bands in contrast to 

wild-type, suggesting absence of AtOEP16.4 mRNA in these mutants. 

 
Fig. 3.20 RT-PCR analysis of the Atoep16.4-i and Atoep16.4-e T-DNA mutants. 

A. 100 ng of total RNA from leaves from Atoep16.4-i and wild-type (WT) Arabidopsis plants was used 

for one-step RT-PCR with primers 62880lcf and 62880lcr for AtOEP16.4, and 18SF and 18SR for 18S 

rRNA gene, which was used as a house-keeping control in this assay. As negative control for the 

assay, No RNA and No RT controls were used. B. 100 ng of total RNA from leaves from Atoep16.4-e 

and wild-type (WT) Arabidopsis plants were used for one-step RT-PCR with primers 62880SF and 

62880R for AtOEP16.4, and 18SF and 18SR for 18S rRNA gene, which was used as a house-keeping 

control in this assay. As negative control for the assay, No RNA and No RT controls were used. 

 

To check whether the disruption of AtOEP16.4 gene expression affects the mRNA level of the 

AtOEP16.1 gene, the closest relative to AtOEP16.4, RT-PCR analysis of AtOEP16.1 in the 

homozygous Atoep16.4-i line and wild-type plants was additionally performed. As shown in 

Fig. 3.20 A, intensity of the bands, corresponding to the AtOEP16.1 mRNA, was not changed 

in the knockout mutant in comparison to the wild-type. 

The RT-PCR of the 18S rRNA gene was used as a house-keeping control in RT-PCR assays. 

The phenotype of the homozygous Atoep16.4-i and Atoep16.4-e knockout mutants was 

inspected and compared with wild-type under standard growth conditions. No detectable 

difference was observed at any growth stage, including seed germination, plant morphology 

and growth, flowering time, fertility, silique development, and seed dormancy (data not 

shown). 
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E) Double knockout mutants 

While the T-DNA knockout mutants on single AtOEP16 genes have not exhibited any 

phenotype, several double knockout mutants were constructed. For this purpose two 

homozygous single mutants were crossed by applying pollen of one plant to the stigma 

surface of another. The following double mutants were produced: Atoep16.4-i x Atoep16.1-e, 

Atoep16.4-e x Atoep16.1-p, Atoep16.4-i x Atoep16.2 and Atoep16.4-e x Atoep16.2. The 

presence of the T-DNA in both locuses in the F1 progeny was confirmed by PCR analysis. 

Plants of the F2 progeny were screened for homozygous and wild-type lines by PCR analysis. 

For the procedure and primers compare single mutants analysis 2.1.2.6 A), C) and D). Only 

the double Atoep16.4-e x Atoep16.2 mutant had shorter siliques and less seeds per silique in 

contrast to wild-type plants. The double knockout mutants are under further detailed analysis. 

 

3.1.2.4 Electrophysiological analysis of the recombinant AtOEP16.2 protein 

To explore whether the AtOEP16.2 protein, sharing 50% similarity with the porin OEP16 

from pea, forms a functional channel as well, electrophysiological studies on AtOEP16.2 were 

conducted. Therefore, AtOEP16.2 was overexpressed with a C-terminal 6-His-tag in E. coli 

cells, recovered from insoluble inclusion bodies, and purified to homogeneity by affinity 

chromatography (for details see 2.6). Electrophysiological measurements were carried out in 

lab of Prof. R. Wagner (Biophysik, Universität Osnabrück, FB Biologie/Chemie, Osnabrück). 

After fusion of AtOEP16.2 liposomes with planar bilayers, voltage-dependent single-channel 

currents were observed (Fig. 3.21 A). The AtOEP16.2 protein exhibited a conductivity with a 

reversal potential of Vrev  = 43.7 ± 1.23 mV (VK
+ = 60 mV) (Fig. 3.21 B). This shows that the 

AtOEP16.2 is a channel with cation selectivity (PK+/PCl- = 6.5). AtOEP16.2, similar to 

PsOEP16, was permeable to amino acids with the highest permeability to 

glutamate/glutamine and aspartate/asparagine (data not shown). 
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Fig. 3.21 Reconstituted AtOEP16.2 constitutes a voltage-sensitive, cation-selective pore. 

A. Liposomes containing E.coli-overexpressed AtOEP16.2 were fused to black lipid membranes. The 

cis chamber contained 250 mM KCl and the trans chamber 20 mM KCl. A current from bilayer 

containing 3 active pores (3 solid lines) is shown. B. Current-voltage relationship from the data 

presented in A (n=3±SD). The electrophysiological experiments were carried out in lab of Prof. R. 

Wagner (Biophysik, Universität Osnabrück, FB Biologie/Chemie, Osnabrück). 

 

3.2 OEP37 in Pisum sativum and in Arabidopsis thaliana 

PsOEP37 (Pisum sativum outer envelope protein, 37 kDa) protein from pea chloroplast outer 

envelopes was described in Schleiff et al., 2003. The PsOEP37 gene has an open reading 

frame of 990 bp encoding a protein comprising 329 amino acid residues with a predicted 

molecular mass of 37,5 kDa and a pI of 8.2. 

 

3.2.1 Isolation of OEP37 from Arabidopsis 

A BLASTP search analysis in GenBank revealed only one orthologue of PsOEP37 in 

Arabidopsis. This protein is named AtOEP37, which is encoded by the At2g43950 gene. The 

AtOEP37 gene lies on chromosome 2 and has 6 exons and 5 introns. A schematic diagram of 

the gene organisation is given in Fig.3.22 A. 

Total RNA from roots, leaves, flowers and siliques was isolated and analyzed by one-step 

RT-PCR with 20 ng of total RNA as a template. Fig. 3.22 B shows, that RT-PCR with 

primers specific for the AtOEP37 gene gave a PCR product bands of 1200 bp in all tested 

organs with the highest level in leaves. This RT-PCR product was used for a full-length  
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Fig. 3.22 OEP37 in Arabidopsis. 

A. Schematic diagram of the AtOEP37 gene structure. The initiator ATG and terminator ATT codons, 

as well as 5’ and 3’ untranslated regions (5’ UTR and 3’ UTR, respectively) and several sites for 

restriction enzymes are illustrated. Exons are shown as black arrows, introns in grey lines. B. One-

step RT-PCR analysis of AtOEP37 in different tissues of Arabidopsis. 20 ng of total RNA was used for 

reaction with the o37aXhoIr and o37araXbaIs primers for AtOEP37, and 18SF and 18SR for the 

house-keeping control, 18S rRNA. As negative control for this assay, No RNA control was used. 

 

cDNA cloning. The cDNA has a 1032 bp open reading frame for a protein of 343 amino acid 

residues with a deduced molecular mass of 38,8 kDa and a pI of 9,16. The protein sequence 

alignment showed that the PsOEP37 and the AtOEP37 proteins share 60% identity and 75% 

similarity over their entire sequence length (Fig. 3.23). 

 
Fig. 3.23 Protein sequence alignment of PsOEP37 and AtOEP37

Identical amino acids are shown in black background, similar amino acids are indicated in gray 

background. 
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Modelling of the channel topology (Schleiff et al., 2003) revealed that the AtOEP37 and 

PsOEP37 proteins are transmembrane proteins composed of 12 β-sheets, which form a β-

barrel within the membrane (Fig. 3.24). The proteins contain large soluble domains at both 

sides of the outer envelope membrane. 

 

 

 
Fig. 3.24 The topological model of AtOEP37 (Schleiff et al., 2003). 

The AtOEP37 protein represents a β-barrel channel-forming protein, and the proposed topology is 

shown. A black line presents the amino acid sequences connecting the transmembrane β-sheets (gray 

boxes). Cytosol and intermembrane space and N (NT) and C terminal (CT) of protein are indicated. 

 

3.2.2 Subcellular and suborganellar localization of the AtOEP37 and 

PsOEP37 proteins 

To identify the subcellular localization of the AtOEP37 protein, chloroplasts and 

mitochondria from 10-day-old Arabidopsis seedlings were isolated and immunodetection was 

performed. Fig. 3.25 shows that polyclonal antibodies against the AtOEP37 protein 

recognised a band of approximately 40 kDa in chloroplasts. For control of chloroplasts and 

mitochondria purity, immunodetection of VDAC, OEP21, and mSSU with corresponding 

antisera was performed. 

 

 

 

NT CTNT CT
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Fig. 3.25 Subcellular localization of AtOEP37. 

Chloroplasts (C) or mitochondria (M) (60 µg protein) were loaded on a 12% polyacrylamide gel. 

Proteins were blotted on a nitrocellulose membrane, and immunodetection was performed with 

antisera against the AtOEP37, VDAC, OEP21, and SSU proteins. 

 

Schleiff et al. (2003) showed, that PsOEP37 is localized in chloroplasts in pea. For 

investigation of the localization of PsOEP37 within chloroplasts, isolated pea chloroplasts 

were fractionated into outer, inner envelope membranes, thylakoids and stroma, followed by 

immunoblotting. Immunoblotting with the polyclonal antiserum, raised against the PsOEP37 

protein, demonstrated the presence of approximately 37 kDa band in the outer envelope 

membrane fraction, suggesting that the PsOEP37 protein is localized to the outer envelope of 

chloroplasts (Fig. 3.26). No cross-reacting proteins were detected in the inner envelope 

membrane, thyladoids or stroma of chloroplasts. 

 

 
Fig. 3.26 Immunoblot analysis of the PsOEP37 protein in chloroplasts. 

1, outer envelope; 2, inner envelope; 3, thylakodis; 4, stroma. 20 µg proteins were loaded on a 12% 

polyacrylamide gel. Proteins were blotted on a nitrocellulose membrane, and immunodetection was 

performed with antisera against PsOEP37. 

 

To gain insight into the nature of the membrane association of PsOEP37, the outer envelope 

membrane vesicles were treated with 1 M NaCl, 4 M Urea or 0,1 M Na2CO3 (pH 11). The 

insoluble membrane and soluble fractions were assayed for the presence of PsOEP37 using 

the anti-PsOEP37 antibody. As shown in Fig. 3.27, the PsOEP37 protein remained in the 
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membrane fraction but not in the soluble fraction. Since these procedures are known to strip 

peripheral proteins from membranes, it is suggested that PsOEP37 is an integral membrane 

protein. 

 

 

Fig. 3.27 Immunoblot analysis of chloroplastic outer envelope membrane vesicles.

Outer envelope membrane vesicles (20 µg protein) were untreated (oe) or treated with NaCl, Urea or 

Na2CO3 and then separated into the membrane (M) and soluble (S) fractions. After blotting reacted 

with a polyclonal rabbit antiserum against the recombinant PsOEP37 protein.

 

3.2.3 OEP37 expression analysis 

3.2.3.1  AtOEP37 mRNA distribution within the Arabidopsis plant 

To investigate the distribution of AtOEP37 within the Arabidopsis plant, monitoring of the 

AtOEP37 mRNA content in various organs was done using several approaches. First, mRNA 

from leaves and roots of 4-week-old plants was extracted and Affymetrix genome array 

analysis was performed (Dr. Rowena Thomson, Dept. Biologie, LMU, München, DFG SPP-

1108 project). As shown in Fig. 3.28, the AtOEP37 transcript levels in Arabidopsis were low 

in the tested organs. The leaves possessed 153 ± 16 of the AtOEP37 transcript, whereas the 

roots contained 91 ± 9 of mRNA (n=3). 

 

Fig. 3.28 Affymetrix Arabidopsis genome array 
analysis of AtOEP37 mRNA levels in leaves and 
roots of 4 weeks old Arabidopsis plants. 
mRNA levels are depicted in arbitrary units. Error 

bars denote standard deviation SD of n=3 biological 

replicas (Dr. Rowena Thomson, Dept. Biologie, 

LMU, München, DFG SPP-1108 project). 
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3.2.3.2  The AtOEP37 gene expression in leaves depending on plant age 

To check the AtOEP37 mRNA levels in leaves in dependence of plant age, total RNA from 

leaves of 1 to 7-week-old Arabidopsis plants (1 week step) was used for one-step RT-PCR 

analysis. As shown in Fig. 3.29, RT-PCR with the AtOEP37 specific primers gave the PCR 

product bands of 550 bp in leaves of 1-7 week-old Arabidopsis in equal intensity. RT-PCR of 

Actin 2/7 was used as a house-keeping control in this assay. The RNA levels did not change 

significantly within the first to seven weeks of development. 

 

 
Fig. 3.29 One-step RT-PCR analysis of 1-7-week-old Arabidopsis plants. 

50 ng total RNA was used for RT-PCR. Primers for AtOEP37 were 037araSR and o37araXbaIs; for 

Actin 2/7 were Actin2/7F and Actin2/7R. As negative control for this assay, No RNA control was used. 

 

3.2.3.3 AtOEP37 promoter::GUS analysis 

The expression pattern of AtOEP37 with respect to specific tissues and developmental stages 

was examined by fusing 1.5 kb of the AtOEP37 upstream promoter region with GUS and 

transformation in Arabidopsis plants as described in Methods (see 2.4.3 and 2.8). Two 

positive independent plants of T1 and T2 progeny were analysed for GUS activity by staining 

various organs of the plants (Fig. 3.30). 

In the seeds, which were imbibed before germination, GUS staining was observed in the 

hilum, attaching seed to placenta in the siliques (Fig. 3.30 A). No blue staining was detected 

in embryos (Fig. 3.30 B). In 3- and 7-day-old seedlings, GUS staining was detected in 

cotyledons, roots, including meristematic, vascular, cortical cell types the transition zone (Fig. 

3.30 G- I) and epidermally derived hair roots (Fig. 3.30 C-F). No staining was observed in the 

root cap (Fig. 3.30 G). In the etiolated 7 day-old seedlings, GUS staining was observed only 

in cotyledons (Fig. 3.30 J). In 2 to 3-week old juvenile plants, weak level of staining was 

observed only in aerial portions: in cotyledons, rosette leaf primordium in the subepidermal 

and cortical cells (shoot apex), and expanded rosette leaves (Fig. 3.30 K-M). No GUS 
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expression in roots was detected with that method in contrast to more sensitive RT-PCR and 

Affymetrix analyses. In inflorescence, blue staining was observed in flower stalks and petals 

(Fig. 3.30 N and O, respectively). 
Fig. 3.30 GUS staining of the va-

rious organs/tissues of the 

Arabidopsis plants expressing 

AtOEP37::GUS construct. 

A, seed imbibed at 4°C for 3 days. 

B, embryo prepared from seeds in 

A. C, D, 3-day old seedlings. E-I, 7-

day-old light-grown seedlings: E, 

seedling; F, cotyledons of E; G, 

root with root cap; H, middle portion 

of root; I, transition zone of root. J, 

7-day-old etiolated seedling. K-O 2- 

to 6-week-old Arabidopsis. K, 

seedling; L, shoot apex; M, portion 

of rosette leaf; N, inflorescence; O, 

petal. Scale bars for A, B, L, M = 

0,1 mm, for C-J = 0,5 mm, for K, N 

= 0,5 cm, for O = 1 mm. 

 
 

3.2.3.4 Tissue-specific expression of the PsOEP37 protein 

To investigate the distribution of the PsOEP37 protein in Pisum sativum plants, membrane 

fractions of proteins were isolated from roots, rosette and cauline leaves, flowers, siliques and 

seeds of pea. Western blot analysis was performed with these protein fractions. 

 
Fig. 3.31 Immunoblotting of PsOEP37 localization in Pisum sativum plants. 

60 µg of membrane fraction proteins isolated from roots (1), rosette (2) and cauline (3) leaves, flowers 

(4), siliques (5) and seeds (6) were loaded on a 12% polyacrylamide gel and blotted against the anti-

PsOEP37 antibodies. 
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Immunoblotting with the polyclonal antiserum against the PsOEP37 protein demonstrated the 

presence of a 37 kDa protein in all tested organs, with the highest level in roots, rosette 

leaves, siliques and seeds (Fig.3.31). The lowest levels of PsOEP37 were detected in cauline 

leaves and flowers. 

 

3.2.4 Isolation and characterization of an AtOEP37 knockout mutant 

A search in the GABI T-DNA insertion library revealed one candidate line GABI 722C01 

(GABI-Kat, Rosso et al., 2003) for a knockout mutant in the AtOEP37 locus (Col-0 

background). Amplification of the T-DNA flanking genomic fragment with the left border T-

DNA specific and the AtOEP37 gene-specific primers gave a 1000 bp PCR product, which 

was sequenced. Sequencing showed that the T-DNA insert is localized in the end of exon 2, 

interrupting the ORF at the last amino acid of exon 2. A schematic diagram of T-DNA 

element localisation and orientation in the AtOEP37 gene is shown in Fig. 3.32. 

 
Fig. 3.32 The Atoep37 T-DNA insertion knockout mutant. 

Schematic diagram of T-DNA insert localization in the AtOEP37 locus. T-DNA disrupts ORF after 

Tyr*168. For T-DNA element, the orientation of left (LB) and right (RB) borders is shown. Primer 

annealing positions are depicted. 

 

A homozygous Atoep37 line was identified by PCR analysis with two sets of primers: (i) T-

DNA specific and the AtOEP37 gene-specific primers, and (ii) two AtOEP37 gene-specific 
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primers (Fig. 3.33). The phenotype of the homozygous Atoep37 knockout mutant was 

inspected and compared with wild-type under standard growth conditions. No detectable 

difference was observed. 

 
 
Fig. 3.33 PCR analysis of individual 
homozygous line Atoep37 and wild-type 
(Col). 
For PCR next primers were used: (i) T-DNA 

specific pGABI1 and gene-specific o37araSR, 

and (ii) two gene-specific o37araXhoIs and 

o37araSR. Mut, mutant; WT, wild-type. 

 

3.2.5 Electrophysiological analysis of the recombinant PsOEP37 protein 

Overexpression of the PsOEP37 protein was performed in E. coli BL21(DH3) cells after 

IPTG-induction of T7 promoter in the PsOEP37/pET14b plasmid (see 2.6). To check protein 

overexpression, the E. coli cells, harvested before and 3 hours after IPTG induction were 

lysed and proteins were separated on PAGE. Fig. 3.34 A shows that the IPTG-induced E. coli 

lysat contained a 37 kDa band corresponding to the overexpressed PsOEP37. The E. coli 

cells, harvested before IPTG induction, did not possess this band. The recombinant PsOEP37 

protein was purified in form of inclusion bodies and Ni-affinity chromatography of the urea-  

 

Fig. 3.34 PAGE analysis of overexpressed and purified of the PsOEP37 protein. 

A. Overexpression of PsOEP37 in E. coli cells BL21(DH3). 1 and 4, protein marker; 2, E. coli lysat 

before induction; 3, E. coli lysat after IPTG induction. B. Purification of the recombinant PsOEP37 

protein using affinity chromatography. 1, protein marker; 2, eluted recombinant PsOEP37 protein. 
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denaturated protein (see 2.6 and Fig. 3.34 B). To explore the PsOEP37 channel activity, 

electrophysiological studies were conducted on the purified recombinant protein. All 

electrophysiological measurements were curried out by Tom Götze in lab of Prof. R. Wagner 

(Biophysik, Universität Osnabrück, FB Biologie/Chemie, Osnabrück). 

Recombinant AtOEP37 was solubilized in MEGA-9 and reconstituted into lipid vesicles. 

After fusion of AtOEP37 liposomes with planar bilayers, voltage-dependent single-channel 

currents were observed (Fig. 3.35 A). Multiple channel copies were detectable in the bilayer, 

which opened or closed in voltage-dependent manner. In asymmetric KCl solutions (250:20 

mM KCl) the PsOEP37 protein exhibited conductivity with a reversal potential of Vrev  = + 49 

mV (VK
+ = 60 mV, Fig. 3.35 B). This shows that the PsOEP37 is a channel selective for 

monovalent cations (PK+/PCl- = 14:1, Fig. 3.35 C). As obvious from Fig. 3.35 C, the PsOEP37  

 
Fig. 3.35 Conductance properties of the PsOEP37 channel. 
A. Current voltage relation of the PsOEP37 channel deduced from the fully open channel in 250 mM 

KCl, 10 mM Mops/Tris pH 7 (symmetrical cis/trans). B. Current recording in response to an applied 

voltage ramp from Vm=0 to + 100 mM and Vm=0 to – 100 mV from bilayers containing a single 

PsOEP37 channel. The bath solution contained 250/20 mM KCl, 10 mM Mops/Tris pH 7 (cis/trans). 

Zero current crossing at Vrev = 49 mV. C. Selectivity of the PsOEP37 channel. Zero current potentials 

Vrev were measured for the given ionic gradients and the permeability ratios were calculated according 

to the GHK constant field approach. Measurements and analysis were done in lab of Prof. R. Wagner 

(Biophysik, Universität Osnabrück, FB Biologie/Chemie, Osnabrück). 
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channel is permeable to monovalent cations but does not show any remarkable selectivity for 

divalent cations at all. 

 

3.3 VDAC in Pisum sativum and Arabidopsis thaliana 

3.3.1 Pea and Arabidopsis VDAC orthologous proteins 

During a screen of a cDNA library derived from leaves of 5-day-old light-grown pea 

seedlings, a cDNA that encoded for a VDAC-like protein (voltage-dependent anion channel) 

was isolated (Clausen et al., 2004). Comparison of the deduced sequence with sequences in 

the database showed that it was identical to a cDNA (Gen Bank Acc. No. Z25540) isolated 

from a library prepared from the envelope of non-green plastids of pea root (Fischer et al. 

1994). Pea root VDAC was thought to be present only in non-green plastids but absent in 

chloroplasts. However, the presence of a cDNA in a library that contained only mRNA from 

green tissue suggested that VDAC might also be present in chloroplasts. Therefore in this 

thesis subcellular localization and expression profile were analyzed in more details. 

In Arabidopsis, five different VDAC isoforms are present, which are encoded by the genes 

At5g15090, At3g01280, At3g49920, At5g67500 and At5g57490. The alignment of the 

deduced amino acid sequences of pea and Arabidopsis VDACs indicated high levels of 

similarity, ranging from 85% to 50%, which are evenly distributed along the sequences 

(Fig.3.36 A, B). 

The pea VDAC sequence together with five the Arabidopsis VDAC sequences were used to 

construct a phylogenetic tree. As shown in Fig. 3.36 C, the VDAC family splits in three 

different significantly separated branches of the tree. VDAC from pea, At5g15090 and 

At3g01280 fall in one group whereas two other Arabidopsis VDAC orthologs, At3g49920 

and At5g67500 fall in a second subgroup. The At5g57490 VDAC isoform forms the third 

subgroup. 
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Fig. 3.36  VDAC orthologs in pea and Arabidopsis. 
A. Amino acid alignment of VDAC from Pisum sativum with VDAC isoforms from Arabidopsis. Identical 

amino acids are boxed in black; similar exchanges are shaded in grey. B. Identity and similarity of the 

Arabidopsis VDAC proteins with pea VDAC. C. Phylogenetic tree of VDAC from Pisum sativum 

(VDAC) and five VDAC isoforms from Arabidopsis (Atg numbers from TAIR database are given). Tree 

was constructed using Multalin 5.4.1 program (blosum62, F.Corpet, 1988). 

 

50%31%At3g49920

66%44%At5g57490

69%49%At5g67500

80%64%At5g15090

85%69%At3g01280

Similarity (%)Identity (%)

50%31%At3g49920

66%44%At5g57490

69%49%At5g67500

80%64%At5g15090

85%69%At3g01280

Similarity (%)Identity (%)
VDAC

At5g15090

At3g01280

At3g49920

At5g67500

At5g57490

10 PAM

VDAC

At5g15090

At3g01280

At3g49920

At5g67500

At5g57490

10 PAM

A

B C

50%31%At3g49920

66%44%At5g57490

69%49%At5g67500

80%64%At5g15090

85%69%At3g01280

Similarity (%)Identity (%)

50%31%At3g49920

66%44%At5g57490

69%49%At5g67500

80%64%At5g15090

85%69%At3g01280

Similarity (%)Identity (%)
VDAC

At5g15090

At3g01280

At3g49920

At5g67500

At5g57490

10 PAM

VDAC

At5g15090

At3g01280

At3g49920

At5g67500

At5g57490

10 PAM

A

B C



 70

3.3.2  Subcellular localization of the VDAC protein 

As described earlier, VDAC isoform might also be present in non-green plastids (Fischer et 

al. 1994). In order to test this, a construct with a C-terminal fusion of GFP to the open reading 

frame of the pea VDAC gene was generated. For transient expression, the GFP-fusion protein 

was bombarded in pea roots. The GFP-signal was monitored by fluorescence microscopy. Pea 

root cells were transformed either with a single plasmid expressing VDAC–GFP or were co-

transformed with two different plasmids, one expressing VDAC–GFP and a positive control 

of the chloroplast-targeted ps-ds-Red (Jach et al. 2001). As shown in Fig. 3.37 A, the VDAC–

GFP fusion protein localized only to mitochondria, which were visualized by staining with 

Mitotracker. In contrast to this the ps-ds-Red fusion protein was targeted into a compartment 

that is clearly distinct from mitochondria, i.e. no overlap between VDAC–GFP and ps-ds-Red 

fluorescence occurred (Fig. 3.37 B). The ps-ds-Red-labeled compartments are most likely 

non-green plastids. 

 
Fig. 3.37 Subcellular localization of VDAC–GFP and ps-ds-Red in pea root cells. 

Segments of 5-day-old pea roots were bombarded either with VDAC–GFP alone (A) or co-bombarded 

simultaneously with ps-ds-Red (B). Localization of mitochondria was visualized by staining with 

Mitotracker. Scale bar = 10 µm. 
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Since the VDAC orthologs from pea and Arabidopsis share a high homology in protein 

sequence, antibodies raised against pea VDAC were used in immunoblot analysis with 

Arabidopsis samples, fractionated to chloroplasts and mitochondria. In attempt to find a 

VDAC isoform, which is located in chloroplasts of Arabidopsis. 
 

Fig. 3.38 Localization of VDAC in Arabidopsis. 

100 µg total protein from chloroplasts (line C) and mitochondria 

(line M) purified from leaves of 6-week-old Arabidopsis plants 

were separated on 12.5% SDS-Gel followed by 

immunoblotting. 

 

As shown in Fig. 3.38, in Arabidopsis mitochondria a single band of apparent molecular 

weight of 29 kDa was identified, suggesting that, are located to mitochondria, but not to the 

chloroplasts. At3g49920 is predicted to have a lower molecular weight than other four 

AtVDACs and one could expect additional band on immunoblot in mitochondria or 

chloroplasts fraction. The absence of this band is probably due to the very low levels of 

At3g49920 protein or due to the wrong prediction of the ORF. 
 

3.3.3 The VDACs mRNA levels in leaves and roots in Arabidopsis 

The distribution of the VDAC mRNA between green (leaf) and non-green (root) tissues in 

Arabidopsis was investigated using two approaches. First, to examine tested tissues for 

expression of the Arabidopsis VDAC genes, RT-PCR analysis was performed using cDNA 

from leaves and roots of 4-week-old plants.                                                                                                          
Fig. 3.39 RT-PCR analysis of the Arabi-
dopsis VDAC genes in leaves and roots. 
100 ng total RNA was used for RT-PCR. 1, 

leaves; 2, roots; 3, No RNA; 4, No RT leaves; 

5, No RT roots. Actin 2 was used as a house-

keeping control. As negative control, No RNA 

and No RT controls were used. Next primers 

were used for RT-PCR: At3g01280 LCfw and 

At3g01280 Lcrev; At5g15090 LCfw and 

At5g15090 Lcrev; At5g57490 LCfw and 

At5g57490 Lcrev; At5g67500 LCfw and 

At5g67500 Lcrev. Band corresponding to 

At3g49920 was not detected. 
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As shown in Fig. 3.39, the RT-PCR resulted in the single PCR product bands for the VDAC 

genes both in leaves and roots, while one gene, At3g49920, was absent (not shown). 

As a second approach, Affymetrix full genome microarray for leaves and roots was performed 

by Dr. Rowena Thomson (Department Biologie I, Botanik LMU, München) within DFG SPP-

1108 project. 
Fig. 3.40 Genome expressi-
on profiles for VDAC iso-
forms in roots and leaves. 
mRNA levels are depicted in 

arbitrary units. Error bars de-

note standard deviation SD of 

n=3 biological replicas (Dr. 

Thomson, Dept. Biologie, 

LMU, München, DFG SPP-

1108 project) 

 

 

 

 

 

The results in Fig. 3.40 show that four VDAC genes are expressed to different degrees in 

leaves and roots of Arabidopsis, while the At3g49920 gene was not present on the Affymetrix 

chip. In general, these results confirm the results of the RT-PCR analysis. 

Results of subcellular localization and gene-expression experiments suggest that VDAC in 

pea and Arabidopsis are localized to mitochondria of leaves and roots. 
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4 Discussion 

Chloroplasts and mitochondria are semiautonomous organelles that are involved in different 

metabolic pathways essential for the whole plant cell. Two membranes, outer and inner 

envelopes, which separate the chloroplasts stroma and mitochondria matrix from the 

cytoplasm, surround these organelles. 

 

4.1   The OEP16 family in pea and Arabidopsis thaliana 

Pea chloroplasts so far contain one identified channel isoform protein PsOEP16 located in the 

outer envelope membrane (Pohlmeyer et al., 1997), whereas Arabidopsis possesses four 

orthologs: AtOEP16.1, AtOEP16.2, AtOEP16.3 and AtOEP16.4. The Arabidopsis OEP16 

isoforms share 79-46% homology in protein sequence with PsOEP16 and have a theoretical pI 

in the basic range suggesting chloroplast outer envelope or at least membrane location of all 

AtOEP16s. The domain structure and phylogenetic analyses revealed that the OEP16 proteins 

belong to the TIM17/TIM22/TIM23 family, which facilitates pre-protein translocation from 

the cytosol into mitochondria (Rassow et al., 1999), and form a new family of pre-protein and 

amino acid transporters, called PRAT. Although all AtOEP16 proteins of Arabidopsis are 

similar to mitochondrial TIMs, it could be shown that AtOEP16.1, AtOEP16.2 and 

AtOEP16.4 are located in chloroplasts and only AtOEP16.3 is in mitochondria (see below). 

 

4.1.1  Structure and topology of the OEP16 proteins 

All topology and structure analyses have been done on PsOEP16. Due to the high similarity, 

the same topology and structure are suggested for Arabidopsis orthologs. Based on site-

directed mutagenesis and spectrometric analyses of recombinant PsOEP16 (Linke et al., 2004) 

the topology model for OEP16 with four α-helical domains was developed (see Fig. 3.2). The 

α-helical structure is known for several membrane proteins, e.g. for the mitochondrial 

TIM17/22/23 proteins and for LivH, an amino acid transporter of the E. coli (Milisav et al., 

2001; Folsch et al., 1998; Meier et al., 2005; Nazos et al., 1986). The transmembrane α-

helices of the OEP16 proteins are encoded by a 16-22 stretch of predominantly hydrophobic 

residues.  

The transmembrane α-helix I of the OEP16 orthologs is responsible for substrate specifity 

and, together with helix II, for pore formation (Pohlmeyer et al., 1997; Steinkamp et al., 
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2000). It is amphiphilic due to its partial exposure to the water-filled pore, containing two 

charged residues in the middle of the membrane. 

Pohlmeyer et al. (1997) showed that the N-terminal part of PsOEP16 is exposed to the 

cytoplasm, therefore the hydrophilic loop domain connecting the transmembrane domains I 

and II is faced to the chloroplast interior or packed in the water-filled pore formed by the 

transmembrane regions. Similarly to PsOEP16, the AtOEP16s channels contain this soluble 

loop domain I with 28 amino acid residues in PsOEP16, AtOEP16.1 and AtOEP16.4, 29 

amino acid residues in AtOEP16.3 and 36 amino acid residues in AtOEP16.2. This loop 

region contains a high proportion of small polar residues like Ala, Ser, Gly and Thr and 

charged amino acid residues like Lys, Arg, Asp and Glu. The soluble loop domain I has no 

strong sequence similarity among the AtOEP16s and may form part of the selectivity filter or 

facilitate the gating of the OEP16 proteins. Such long soluble loop domain is common for the 

porin proteins from Gram-negative bacteria (Conlan et. al., 2000). 

In the position just before the start of the first α-helix spanning the membrane, all OEP16s 

share a conservative proline residue, which has a very rigid cyclic ring and therefore, presence 

of proline in protein sequence allows the disruption of the a-helical turn and the creation of a 

fixed kink in the beginning of the first transmembrane domain. 

The AtOEP16.1 protein contains a cysteine residue at position 71, in the beginning of the 

second transmembrane domain. This cysteine residue, having a reactive sulfhydryl group 

could be responsible for forming a disulfide bridge, which might trigger the correct folding of 

the AtOEP16.1 channel in a dimeric form in the membrane. At the same position of the 

PsOEP16 there is also cysteine residue, which was shown to form homodimers in cross-link 

experiments (Pohlmeyer et al., 1997). In contrast, AtOEP16.2 and AtOEP16.3 do not possess 

any cysteine residues. Interestingly, AtOEP16.4 contains five cysteine residues, one in the 

first and fourth transmembrane region, one in the first soluble loop and two cysteines in the 

second transmembrane segment. 

The PsOEP16 and AtOEP16.1 proteins possess histidine residues at different positions of 

their soluble loop I, whereas AtOEP16.2 has histidine residues in all the soluble parts of the 

protein sequence. The imidazole side chain of histidine has a pKa of 6.8 at the pH of 

cytoplasm. Small shifts of cellular pH change the charge of histidine side chain. Histidine is 

frequently found in protein active sites and can play a role in binding to specific amino acids, 

such as proline or other amino acids possessing an aromatic ring (Macias et al., 2002). Ability 

of the histidine residues in the soluble loop I of the AtOEP16.2 protein as well as the longest 
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length (36 residues) of this loop in contrast to other AtOEP16s might determine the selectivity 

of AtOEP16.2 protein. 

PsOEP16, AtOEP16.1 and AtOEP16.2 contain aspartate residue in transmembrane domain I 

and Lys and Glu residues in transmembrane region II. These amino acid residues might 

facilitate the selective transport of charged solutes, e.g. charged amino acids or other 

compounds with primary amino groups like it was shown for PsOEP16. 

 

4.1.2   Subcellular localization of the AtOEP16.1-4 proteins 

A combination of strategies is usually required for the determination of the subcellular 

localization of membrane proteins. In silico prediction analysis did not show any target 

organelle for the AtOEP16.1-4 proteins, since a classical N-terminal cleavable transit signal 

sequence defining a destiny organelle was not identified. 

Transient expression of the AtOEP16.1-4 proteins fused to fluorescent reporter proteins in pea 

roots and Arabidopsis protoplasts as well as immunoblot analysis revealed that AtOEP16.1, 

AtOEP16.2 and AtOEP16.4 are located in plastids, whereas AtOEP16.3 was found in 

mitochondria. 

Several mass spectrometry-based proteomic studies of Arabidopsis leaf chloroplasts and 

mitochondria have been done (Wijk et al., 2000; Millar et al., 2005; Bardel et al., 2002; Ferro 

et al., 2003; Froehlich et al., 2003) and localization of a lot of proteins was elucidated. Thus, 

AtOEP16.1 has been found in the outer membrane of plastids, whereas AtOEP16.3 was 

shown to be in mitochondria. The AtOEP16.2 and AtOEP16.4 proteins have not been 

detected, probably because of the specific (AtOEP16.2) or the low level of expression 

(AtOEP16.4) in leaf tissue (compare 4.1.4) and limitations of the above-mentioned proteomic 

studies. These results are in line with our findings. 

In summary, these results point to localization of the AtOEP16.1, AtOEP16.2 and AtOEP16.4 

proteins in plastids, while AtOEP16.3 is in mitochondria. 

 

4.1.3  AtOEP16.1-4 gene expression 

To obtain evidence about the tissue-specific distribution of the members of the OEP16 family 

in Arabidopsis, several approaches were used, namely immunoblot analysis, RT-PCR 

analysis, Affymetrix microarray analysis and analysis of Arabidopsis plants transformed with 

promoter-GUS transcriptional fusions from each gene. The data derived from these 

approaches were complemented by a sequence-based analysis of the promoter regions in an 
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attempt to identify putative cis-elements that might account for the observed expression 

patterns. 

A search in public Affymetrix microarray gene expression databases (the AtGene Express 

Project) showed that the transcript levels of the AtOEP16 orthologs are present in different 

tissues of Arabidopsis (Fig. 4.1). The AtOEP16.1 mRNA is found in all tissues throughout 

plant development with the highest levels in leaves and flowers. Expression of the AtOEP16.2 

gene was observed only in stamens of flowers, seeds and siliques with seeds at the different 

developmental stages. The highest level of AtOEP16.2 mRNA is present at the late stages of 

the seed development. 

 
Fig. 4.1 Overview of transcription levels of AtOEP16 orthologues in Arabidopsis according to 

Affymetrix microarray results of AtGene Express Project.

The transcript content is given in arbitrary units (n=3). See table for x-axis legends and link to the web 

page of the data Affymetrix microarray results in Appendix. 

 

The AtOEP16.3 and AtOEP16.4 transcripts were detected in all tested tissues. While 

AtOEP16.1-3 are expressed at high levels, AtOEP16.4 is in general 10 fold lower. These in 

silico data are consistent with the experimental results obtained (compare 3.1.2.4). 

Affymetrix microarray analysis data (NASC database: Honys) revealed that the AtOEP16.2 is 

transcribed at high levels in pollen of all developmental stages: in the unicellulate 
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microspores, the bicellular and tricellular pollen (Fig. 4.2 A). In the mature pollen the levels 

of the AtOEP16.2 gene transcript decreases. The data of the Affymetrix microarray analysis 

of the transcript levels in Arabidopsis seeds (NASC database: Bergua) showed that developed 

seeds, which were harvested from no-open yellow siliques, contain high levels of the 

AtOEP16.2 transcript (Fig. 4.2 B). The mRNA level is decreasing 3-fold with seed 

maturation. 

 
Fig. 4.2 Affymetrix microarray analysis of the AtOEP16.2 transcript levels in Arabidopsis. 
A, AtOEP16.2 transcript levels in microspores and pollen (NASC database: Honys). B, AtOEP16.2 

transcript levels in fresh (from no-open yellow siliques) and mature (2 months after harvesting) seeds 

(NASC database: Bergua). The transcript content is given in arbitrary units (n=2±SD). 

 

Considering that Arabidopsis expresses four OEP16 genes encoding proteins targeted to 

chloroplasts and mitochondria it seems likely that these orthologs carry out diverse 

physiological functions. If this is the case, one would expect to observe differences in the 

regulated expression of these proteins and their mRNAs in response to environmental stimuli. 

One such environmental stimulus tested is light, which influences expression of a multitude of 

plant genes, for example chloroplast genes, such as the small subunit of ribulose bisphosphate 

carboxylase (rbcS) (Pilgrim et al., 1993), proteins of ELIP proteins (Grimm et al., 1987; Hutin 

et al., 2003), CAB, chlorophyll a/b binding protein (Beator and Kloppstech, 1993) and POR 

proteins (Su et al., 2001). Therefore, available online data of Affymetrix microarrays analysis 

of Arabidopsis throughout the diurnal cycle were checked. 

As shown in Fig. 4.3, only the AtOEP16.1 mRNA showed a diurnal oscillation. The leaf 

AtOEP16.1 mRNA level was high in onset of dark, followed by the progressive transcript 

degradation during a 12-hours dark period and within the next two hours of the light-onset (13 
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and 14 hours time points on the plot). After following 2 hours of light, a re-accumulation of 

the AtOEP16.1 transcript started and reached a maximum at the 12-hours of light-onset. In 

contrast to AtOEP16.1, transcripts encoding AtOEP16.3 and AtOEP16.4 did not change over 

the time-course of the experiment. 

 
Fig. 4.3 Affymetrix microarray analysis of diurnal dependence of the AtOEP16.1, AtOEP16.3 

and AtOEP16.4 transcript levels in leaves of Arabidopsis. 

Leaves were harvested from Arabidopsis plants (Col-0) at growth stage 3.90 (Boyes et al., 2001) 

grown under a diurnal cycle of 12 hours dark - 12 hours light. Within this cycle, leaves were harvested 

at 0 (end of day), 1, 2, 4, 8, 12 (end of night), 13, 14, 16, 20 and 24 hours. The transcript content is 

given in arbitrary units (n=2±SD). The dark and light periods are indicated (NASC database: Smith). 

 

Another environmental stimulus, which was tested, was a cold stress. Cold temperatures 

trigger the transcription of many cold-responsive genes, which encode a diverse array of 

proteins such as enzymes involved in respiration and metabolism of carbohydrates, lipids, 

phenylpropanoids and antioxidants; molecular chaperones, antifreeze proteins (Guy 1999; Liu 

2002; Jang et al. 2004; Teige et al., 2004). Therefore, attempts to explore whether the 

transcription of the AtOEP16.1-4 genes is changed in answer to cold stress, corresponding 

Affymetrix microarray results were checked. 

As shown in Fig. 4.4, the transcript levels of AtOEP16.1 in shoots increased 2-fold after 3 

hours and drastically after 6-24 hours of cold stress. Transcript levels of AtOEP16.3 and 

AtOEP16.4 were not changed. Interestingly, that mRNA levels of cold responsive protein 
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Cor15b (At2g42530, Chinnusamy et al., 2003) and cold acclimation protein FL3-5A3 

(At2g15970, Seki et al., 2001) showed the same response patterns as well as AtOEP16.1. 

 
Fig. 4.4 Affymetrix microarray analysis of influence of cold stress (4°C) in Arabidopsis. 
The mRNA levels of AtOEP16.1, AtOEP16.3, AtOEP16.4, At2g42530 and At2g15970 in shoots after 

0.5, 1, 3, 6, 12 and 24 hours of cold stress. The transcript content is given in arbitrary units (n=2±SD). 

(NASC database: Nover). 

 

A search for cis-acting elements using the NSITE-PL program revealed the presence of 

various binding sites in the AtOEP16.1, AtOEP16.2 promoter regions, underlining the RT-

PCR, Affymetrix microarray and promoter::GUS analysis results. 

The sequence region of 1500 bp, chosen for promoter-GUS analysis of AtOEP16.1, possesses 

several putative regulatory elements (Fig. 4.5 A) involved in responses to (i) light - GT-1/16 

JJ1 (Yukio Nagano et al., 2001) and GATA box (Gilmartin et al., 1990; Reyes et al., 2004) 

and (ii) cold - DRE/CRT (Yamaguchi-Shinozaki et al., 1994) and MYC (Chinnusamy et al., 

2003). 

The sequence of the AtOEP16.2 promoter region (728 bp upstream from ATG start codon) 

contains several putative cis-acting elements (Fig. 4.5 B) responsible for (i) embryogenesis 

and seed germination - box d motif (Mena, 2002; Isabel-LaMoneda, 2003), ABRE A and 

ABRE6/2 (Bensmihen, 2002; Lopez-Molina, 2003) and (ii) pollen development - 

Pollen1LELAT52 (Bate el al., 1989) and GTGANTG10 (Rogers et al., 2001). 
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Fig. 4.5 Schematic representation of the AtOEP16.1 and AtOEP16.2 promoter region. 

0 position is depicted for A in ATG codon. Several sites for restriction enzymes, annealing position of 

primers 16GUSgateF and 16GUSgateR (for AtOEP16.1) and SeedGUSgateF and SeedGUSgateR 

(for AtOEP16.2), TATA boxes, as well as 5’ UTR are indicated. A. AtOEP16.1 promoter region. 

Putative cis-acting elements involved (i) in light response (GT-1/16 JJ1 and GATA box) are shown in 

bold, (ii) in cold stress (DRE/CRT and MYC) are underlined. B. AtOEP16.2 promoter region. Putative 

cis-acting elements involved in (i) embryogenesis and seed germination (box d motif, ABRE A and 

ABRE6/2) are in bold, (ii) pollen development (Pollen1LELAT52 and GTGANTG10) are depicted as 

Pol. 

 

4.1.4 Arabidopsis OEP16 knockout mutants 

The homozygous knockout mutants Atoep16.1-p, Atoep16.1-e, Atoep16.2, Atoep16.4-i and 

AtOEP16.4-e  were isolated. No phenotype, compared with wild-type, was observed at 

normal growth conditions. Cold stress did not cause any remarkable changes in homozygous 

Atoep16.1-p and Atoep16.1-e Arabidopsis plants. Thus, several double knockout mutants 

were produced to switch off at least two genes and to avoid possible substitution of a 
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disrupted gene with another, still functional in a single knockout mutant. The following 

double mutants were produced: Atoep16.4-i x Atoep16.1-e, Atoep16.4-e x Atoep16.1-p, 

Atoep16.4-i x Atoep16.2, Atoep16.4-e x Atoep16.2. Only the double Atoep16.4-e x Atoep16.2 

mutant had shorter siliques and less seeds per silique in contrast to wild-type plants. The 

double mutants are currently under investigation. 

To analyse the changes in gene expression in leaves of the homozygous Atoep16.1-p 

knockout plants, cDNA macroarrays have been carried out. Three genes playing a role in 

amino acid metabolism and transport were up-regulated in leaves of the 4-week-old 

Atoep16.1-p T-DNA mutant, namely (i) naringenin-chalcone synthase, an enzyme for 

biosynthesis of L-phenylalanine and L-tyrosine derivatives, (ii) S-adenosylmethionine 

synthase 2 and (iii) a putative proline transporter. Several genes were found with reduced 

expression levels, namely LHT1, an amino acid permease, which transports lysine and 

arginine; a chloroplast-localized ATP sulfurylase precursor, involved in glutathione and 

cysteine synthesis; two putative sucrose transporters. 

 

4.1.5 Proposed function of the Arabidopsis OEP16 proteins 

AtOEP16.1-4 encode α-helical pore-forming membrane proteins. Similar to PsOEP16, it is 

proposed that the AtOEP16.1 channel transports amino acids and compounds with primary 

amino groups via the outer envelope of chloroplasts. Thus, the AtOEP16.1 channel is 

involved in nitrogen assimilation and amino acid metabolism. In non-legume plants, nitrogen 

assimilation begins with the uptake of inorganic nitrogen, nitrate or ammonium, from the soil. 

Nitrate is subsequently reduced to ammonium (NH4
+) and then assimilated into an organic 

form as glutamate and glutamine. These amino acids are the nitrogen donors in the 

biosynthesis of essentially all other amino acids and other important nitrogen-containing 

compounds such as nucleic acids, chlorophyll, hormones and products of secondary 

metabolism (Oliveira et al., 2002). 

AtOEP16.1 is a highly expressed ubiquitous protein. Transcriptome analysis, using 

Affymetrix ATH1 arrays, revealed that expression of the AtOEP16.1 gene in leaves is light 

inducible and the AtOEP16.1 mRNA content is reduced in dark (Fig. 4.3). 

Additionally, Affymetrix ATH1 array analysis revealed that AtOEP16.1 expression is induced 

by cold (Fig. 4.4), therefore it is suggested that AtOEP16.1 allows the adaptation of plant to 

the cold stress, as well as cold responsive protein Cor15b (At2g42530; Chinnusamy et al., 
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2003) and cold acclimation protein FL3-5A3 (At2g15970), showing the same mRNA level 

response patterns. 

Electrophysiological studies of a second member of the AtOEP16 family, chloroplast 

localized AtOEP16.2, showed that, in lipid bilayer, AtOEP16.2 form a channel transporting 

amino acids. Structure analysis revealed that the AtOEP16.2 protein possesses a long 

intermembrane space loop connecting the first and second transmembrane domains of the 

pore. This loop is suggested to facilitate selective transport of amino acids through the 

channel, preferentially acidic amino acids, glutamate and glutamine and aspartate and 

asparagine, which make up to 64% of the total free amino acids found in leaf extracts in 

Arabidopsis (Lam et al., 1995; Schultz, 1994). 

The AtOEP16.2 is highly abundant in seeds and pollen. In seeds, the AtOEP16.2 channel 

might transport amino acids or even small peptides necessary for seed storage proteins during 

seed development as well as for mobilization during germination. The high expression of the 

AtOEP16.2 channel at all stages of the pollen maturation could function as an amino acid 

supplying source for the vegetative and/or generative pollen cells. The expression of 

AtOEP16.2 during pollen tube germination indicates the transport activities of the AtOEP16.2 

at this stage, when protein synthesis is very rapidly initiated. Interestingly, the AtOEP16.1 

channel is highly expressed in the pistil of Arabidopsis flowers. Thus, these two amino acid 

transporting channels play an important role in fertilization. 

Transcription of the AtOEP16.2 gene is directed by a divergent promoter region. 410 bp 

upstream of the ORF of the AtOEP16.2 gene is situated in “head to head” orientation an 

adjacent ORF for a gene, which codes for a plastid targeted dihydrolipoamide dehydrogenase 

(DLD) (Taylor et al., 1993; Lutziger and Oliver; 2000). This enzyme catalyzes the reduction 

of the lipoamide group in the 2-oxoacid dehydrogenase and glycine decarboxylase 

multienzyme complex, allowing the production of acetyl coenzyme A for use in fatty acids 

biosynthesis. It is possible that AtOEP16.2 and DLD, simultaneously regulated by the same 

divergent promoter, play an important role in nitrogen assimilation and amino acid re-

distribution within plant. 

AtOEP16.3, in contrast to other AtOEP16s, is located in mitochondria and supposed to be a 

highly expressed ubiquitous channel transporting amino acids in/out of mitochondria, which 

accomplish the amino acids turnover, necessary for primary and secondary metabolism. 

Several enzymes, involved in amino acid biosynthesis, have been identified in Arabidopsis 

mitochondria, e.g. glutamate dehydrogenases At5g18170 (Melo-Oliveira et. al., 1996) and 

At5g07440 (Turano et al., 1997), and an aspartate aminotransferase At2g30970 (Schultz and 
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Coruzzi, 1995). Additionally, glycine and serine are inter-converted within mitochondria by 

glycine decarboxylase and serine hydroxymethyltransferase with production of large amounts 

of photorespiratory CO2 (Bauwe and Kolukisaoglu, 2003).  

AtOEP16.4 is low expressed ubiquitous protein, which is suggested to have a house-keeping 

function. 

 

4.2 OEP37 proteins in pea and Arabidopsis 

PsOEP37 and AtOEP37 channel proteins forms a selective β-barrel pore in outer envelope of 

chloroplasts. Immunoblot analysis showed expression of PsOEP37 in all tested pea organs, 

namely roots, rosette and cauline leaves, flowers, siliques and seeds. 

AtOEP37, an orthologous protein to PsOEP37, was isolated in Arabidopsis. The AtOEP37 

and PsoEP37 proteins share 60% identity and 75% similarity over their entire sequence 

length. The AtOEP37 gene is encoded by At2g43950 and represents a single copy gene in 

Arabidopsis on chromosome 2. Immunoblot analysis showed that AtOEP37, similar to 

PsOEP37, is located in chloroplasts. Expression pattern analysis using RT-PCR and 

Affymetrix microarrays revealed that AtOEP37 transcripts are ubiquitous. Abundance of low 

levels of AtOEP37 in almost all tissues suggests that AtOEP37 is a stable, house-keeping 

protein throughout the various organs and developmental stages. Analysis of Arabidopsis 

plants transformed with promoter-GUS translational fusions revealed that the AtOEP37 gene 

promoter region is active in cotyledons; meristematic, vascular, cortical tissues, the transition 

zone of roots and epidermis-derived hair roots in the 3- and 7-day-old seedlings. In 2 to 3- 

 
Fig. 4.6 Overview of transcription levels of the AtOEP37 in Arabidopsis according to Affymetrix 
microarray results of AtGene Express Project. 
The transcript content is given in arbitrary units (n=2). See table for x-axis legends and link to the web 

page of the data Affymetrix microarray results in Appendix. 
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week old juvenile plants, a weak level of staining was observed only in aerial portions: in 

cotyledons, rosette leaf primordium in the subepidermal and cortical cells (shoot apex), and 

expanded rosette leaves, flower stalks and petals. Additionally, a search in public Affymetrix 

gene expression databases (AtGene Express Project) showed that expression of AtOEP37 was 

detected in all developmental stages and tissues of the Arabidopsis plant with relatively low 

levels and with high levels in developing seeds (Fig. 4.6). 

 

4.3 VDAC proteins in pea and Arabidopsis 

Voltage-dependent anion channels (VDAC), which are found in the outer membrane of 

mitochondria from all organisms studied so far (Zalman et al., 1980; Colombini, 1980), 

represent porins permeable for hydrophilic solutes. Each channel consists of a single 

polypeptide of about 30 kDa that forms an aqueous pore of about 3 nm in diameter (Thomas 

et al., 1991). VDAC proteins contain 46-50% hydrophilic amino acid residues and form the 

pore with anti-parallel amphiphilic β-strands (Benz, 1994). 

A full length VDAC cDNA was derived from leaves of 5-day-old light-grown pea seedlings. 

Comparison of the deduced sequence with sequences in the database showed that it was 

identical to a cDNA (Gen Bank Acc. No. Z25540) isolated from a library prepared from the 

envelope of non-green plastids of pea root (Fischer et al. 1994). This protein had been shown 

to immunoreact with antibodies against mitochondrial porins. It was proposed that the 

VDAC-like porin is located in non-green plastids from roots only. However, isolation of the 

same cDNA from green seedlings suggested localization of that protein in both, green and 

non-green plastids. To test the localization of VDAC, a C-terminal fusion of VDAC to the 

reporter protein GFP was constructed and, after bombardment, transiently expressed in pea 

roots. Surprisingly, staining the pea roots, transfected by the VDAC-GFP fusion plasmid with 

a marker for mitochondria, Mitotracker, showed that the fluorescent signals detected from 

samples were co-localized, suggesting mitochondrial targeting of the VDAC protein. 

Additional experiments with a marker for plastids, ps-ds-RED, revealed that VDAC is not 

situated in plastids. In contrast to earlier results (Fischer et al., 1994) one could conclude that 

this is a classical VDAC protein located to the mitochondria but not to the plastids. 
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6 Appendix 
6.1 The primers, used for PCR

 Name of primer SEQUENCE (5‘-3‘) 
1 At2gN GCCTTCAAGCACTTCTCCGGGACTGTTA 
2 At2gC AAAGGAATCCACACCATATGAACCAAATT 
3 OEP16W77/FN GCCGGCTATAGCTCCGAAGTATGCACCTTC 

4 OEP16W77/FC GAAGGTGCATACTTCGGAGCTATAGCCGGC 

5 OEP16W100/FN CATGGCATTCTTGAACTCCCTGGTGCCACG 

6 OEP16W100/FC CGTGGCACCAGGGACTTCAAGAATGCCATG 

7 oep16araSpeIf GGACTAGTATGCCTTCAAGCACATTC 
8 oep16araSalIr ACGCGTCGACGTAGAAATAATGATTG 
9 attB1adapter GGGGACAAGTTTGTACAAAAAAGCAGGCT 
10 attB2 adapter GGGGACCACTTTGTACAAGAAAGCTGGGT 
11 16seedGATf AAAAAGCAGGCTTAGAAGGAGATAGAACCATGGAGAAGAGTGGAGGAAG 
12 16seedGAT-stopR AGAAAGCTGGGTCGAAAACGCTAGAAAGGAG 
13 62880GATf AAAAAGCAGGCTTAGAAGGAGATAGAACCATGGAGGAAGAATTGCTCTCC 
14 62880GAT-stopR AGAAAGCTGGGTCATTAGTGTTGTTTGGGTTTTCTCTCC 
15 42210SpeIf GGACTAGTATGGATCCAGCTGAAATG 
16 42210SalIr ACGCGTCGACGGGAATCAGCTTCAGCTC 
17 VDACSpeIf GGACTAGTATGGTGAAGGGTCCTGG 
18 VDACSalIr ACGCGTCGACAGGTTTGAGAGCC 
19 42210HindIIIf CCCAAGCTTATGGATCCAGCTGAAATGAG 
20 42210XhoIr CCGCTCGAGGGAATCAGCTTCAGCTCTTTTCTC 
21 62880EcoRIF CCGGAATTCATGGAGGAAGAATTGCTCTC 
22 62880XhoIR CCGCTCGAGATTAGTGTTGTTTGGGTTTTC 
23 oep16araSalIr-2 ACGCGTCGACGGTAGAAATAATGATTG 
24 o16araClaIa GGTAGCTAAATAGTGTCTTTGCCTTTCTTAC 
25 16GUSgateF AAAAAGCAGGCTTAGAAGGAGATAGAACCCCGCAAACAATCGGGTGC 
26 16GUSgateR AGAAAGCTGGGTCCTTTTCTTCTTCTTTCTTCC 
27 SeedGUSgateF AAAAAGCAGGCTTAGAAGGAGATAGAACCCTTCTCGACGGCGTGCAATG 
28 SeedGUSgateR AGAAAGCTGGGTCTTTTTTCTTTCTTTCTTCACTTGTTGC 
29 62GUSgateF AAAAAGCAGGCTTAGAAGGAGATAGAACCTTAAGAAAAGAGTTGGAAAAG 
30 62GUSgateR AGAAAGCTGGGTCCTCTGCAAAATTGAATTAGGAC 
31 37GUSgateF AAAAAGCAGGCTTAGAAGGAGATAGAACCTAGTGGACAAGATTAAGAC 
32 37GUSgateR AGAAAGCTGGGTCTGGAATTGGATTTGAGAGAATC 
33 oep16SNBamH1-1 GAAAGAAAGGGATCCATGGAGAAG 
34 oep16sPst1-2 AACTGCAGTTAGTAGACCTTTAGCGAATT 
35 28900Fbeg CACTCTCCATACTCTGGTTTG 
36 JL202 CATTTTATAACGCTGCGGACATCTAC 
37 o16araEcoRIF CCGGAATTCATGCCTTCAAGCACATTCTC 
38 o16araXhoIr CCGCTCGAGGCCTTTCTTACCAACCGCTGAG 
39 62880SF ATAGGTTTAAGCGGCGTTTCTCAGGC 
40 62880SR ATATCGTTGAAGCCCACAATGTGTC 
41 62880R TTAATTAGTGTTGTTTGGGTTTTC 
42 18SF TTGTGTTGGCTTCGGGATCGGAGTAAT 
43 18SR TGCACCACCACCCATAGAATCAAGAA 
44 LBb1pROK2 GCGTGGACCGCTTGCTGCAACT 
45 28900lcf ATCGGAGCTGTTGGAGTCA 
46 28900lcr CCTTTCTTACCAACCGCTGA 
47 actin2lcf TGGTCGTACAACCGGTATTGT 
48 actin2lcr TTCTCGATGGAAGAGCTGGT 
49 At4gN GTAATGGATGAGATAAGAAGCTTTGAGAA 
50 At4gC CTAGAAAGGAGATTAGCAGCGGTGGAAAT 
51 LB3 TAGCATCTGAATTTCATAACCAATCTCGATACAC 
52 16160lcf GGAGCTTTACAAGCCGTGTC 
53 16160lcr CTGTTCCGCCAATCATGA 
54 35Spromoter TTGGAGAGAACACGGGGGACT 
55 At3gN TGCTCTTCCCTAACCGTCGAGTCAGTTCT 
56 At3gC CTGTCCTGGTGCAATTAGCCAAAACACTA 
57 LBb1ROK2 GCGTGGACCGCTTGCTGCAAC 
58 62880lcf TTTCAATGCGGTCTTGTAAGTG 
59 62880lcr TGGTGCAATTAGCCAAAACA 
60 37peaNdeIf GGAATTCCATATGGATTCTGCTACGCGAAAC 
61 37peaBamHIr CGCGGATCCTTAAATGTCCCATCTCTTCTTAAC 



 93

 Name of primer SEQUENCE (5‘-3‘) 
62 o37araXhoIs CCGCTCGAGATGGCGGATCCATCTTCTCA 
63 o37aXhoIr CCGCTCGAGAATGTCCCATCTTTTCTTG 
64 o37araXbaIs GCTCTAGAATGGCGGATCCATCTTCTCA 
65 O37araNcoIr CATGCCATGGTCAAATGTCCCATCTTTTC 
66 18SF TTGTGTTGGCTTCGGGATCGGAGTAAT 
67 18SR TGCACCACCACCCATAGAATCAAGAA 
68 O37araSF TTACCCAAGAGCAACTCTTAAATTCCCAC 
69 037araSR GACGTTTGAGGATCCCATTAACAGATTC 
70 Actin2/7F GTCGTACAACCGGTATTGTGCT 
71 Actin2/7R GCTCGTAGTCAAGAGCGACAT 
72 pGABI1 CCCATTTGGAGGTGAATGTAGACAC 
73 pGABI2 ATATTGACCATCATACTCATTGC 
74 At3g01280 LCfw CTCTGTGAAGGCTCGT 
75 At3g01280 LCrev CTACAAATCCGGCAGG 
76 At5g15090 LCfw TGTCGGAACTCAACACG 
77 At5g15090 LCrev TACAAATCCCAACACCG 
78 At5g57490 LCfw GGATGGTGGTCCAGAG 
79 At5g57490 LCrev AAGTGATTCAATAACCCTACAAA 
80 At5g67500 LCfw CTCGACAAATGAAAACACG 
81 At5g67500 LCrev GCGGAACTATTTATTGATTCCA 

 

6.2 Legend for x-axis of Fig.4.1 and Fig. 4.10 

 Tissue 
1.  cotyledons 
2.  hypocotyl 
3.  roots 
4.  shoot apex, vegetative + young leaves 
5.  leaves 
6.  shoot apex, vegetative 
7.  seedling, green parts 
8.  shoot apex, transition (before bolting) 
9.  roots 
10.  rosette leaf #4, 1cm long 
11.  rosette leaf #4, 1cm long 
12.  rosette leaf # 2 
13.  rosette leaf # 4 
14.  rosette leaf # 6 
15.  rosette leaf # 8 
16.  rosette leaf # 10 
17.  rosette leaf # 12 
18.  rosette leaf # 12 
19.  leaf 7, petiol 
20.  leaf 7, proximal half 
21.  leaf 7, distal half 
22.  developmental drift; whole plant after 

transition, but before bolting 
23.  developmental drift; whole plant after 

transition, but before bolting 
24.  developmental drift; whole plant after 

transition, but before bolting 

25.  senescing leaves 
26.  cauline leaves 
27.  stem, 2nd internode 
28.  stem, 1st node 
29.  shoot apex, inflorescence (after bolting) 
30.  flowers stage 9 
31.  flowers stage 10/11 
32.  flowers stage 12 
33.  flowers stage 12, sepals 
34.  flowers stage 12, petals 
35.  flowers stage 12, stamens 
36.  flowers stage 12, carpels 
37.  flowers stage 15 
38.  flowers stage 15, pedicels 
39.  flowers stage 15, sepals 
40.  flowers stage 15, petals 
41.  flowers stage 15, stamen 
42.  flowers stage 15, carpels 
43.  mature pollen 
44.  siliques, w/  seeds stage 3 
45.  siliques, w/  seeds stage 4 
46.  siliques, w/  seeds stage 5 
47.  siliques, w/o  seeds stage 6 
48.  siliques, w/o seeds stage 7 
49.  siliques, w/o  seeds stage 8 
50.  siliques, w/o seeds stage 9 
51.  siliques, w/o  seeds stage 10 

 

6.3 Constructs 
Restr., restriction enzymes. Primers, primers for PCR (5’-3’). E.c. expression clone 
 
 Insert Vector Template Restr Primers Comments 

1 PsOEP16 pET21b (Pohlmeyer et al, 1997)    

2 PsOEP16 pET21b PsOEP16/pET21b NdeI (5’) 
XhoI (3’) 

OEP16W77/FN 
OEP16W77/FC W77F 

3 PsOEP16 pET21b PsOEP16/pET21b NdeI (5’) OEP16W100/FN W100F 
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 Insert Vector Template Restr Primers Comments 
XhoI (3’) OEP16W100/FC 

4 AtOEP16.1 pCRII cDNA EcoRI (5’) 
SalI (3’) 

o16araEcoRIf 
oep16araSalIr  

5 AtOEP16.2 pET21d AtOEP16.2/pBs EcoRI (5’) 
XhoI (3’) seedEcoRIfseedXhoIr  

6 AtOEP16.3 pET21b cDNA HindIII (5’) 
XhoI (3’) 

42210HindIIIf 
42210XhoIr  

7 AtOEP16.4 pET21b cDNA EcoRI (5’) 
XhoI (3’) 

62880EcoRIF 
62880XhoIR  

8 AtOEP16.1 pOL-GFP AtOEP16.1/pCRII Spe I (5‘) 
Sal I (3‘) 

oep16araSpeIf 
oep16araSalIr-2 

C-terminal 
GFP fusin 

9 AtOEP16.1 pOL-RFP AtOEP16.1/pCRII Spe I (5‘) 
Sal I (3‘) 

oep16araSpeIf 
oep16araSalIr-2 

C-terminal 
RFP fusion 

10 AtOEP16.2 pDONR202 AtOEP16.2/pET21d  

1. 16seedGATf 
16seedGAT-stopR 

2. attB1adapter 
attB2adapter 

Adapter 
PCR 

Entry clone 

11 AtOEP16.2 pK7FWG2 AtOEP16.2/pDONR202   E.c. 
GFP fusion 

12 AtOEP16.3 pOL-GFP cDNA Spe I (5‘) 
Sal I (3‘) 

422210SpeIf 
42210SalIr 

C-terminal 
GFP fusion 

13 AtOEP16.4 pDONR202 AtOEP16.4/pET21b  

1. 62880GATf 
62880GAT-STOP 
2. attB1adapter 
attB2adapter 

Adapter 
PCR. 

Entry clone 

14 AtOEP16.4 pK7FWG2 AtOEP16.4/pDONR202   E.c. 
GFP fusion 

15 VDAC pGFP2 Clausen et al, 2004    

16 VDAC pOL-RFP VDAC/pGFP2 Sal I (5‘) 
Spe I (3‘)   

17 pSSU dsRED Clausen et al, 2004    

18 AtOEP16.1 pET21b cDNA EcoRI (5’) 
XhoI (3’) 

O16araEcoRIf 
O16araXhoIr 

131 amino 
acids, for 
antibodies 

19 AtOEP16.1 
promoter pDONR202 gDNA  

1. 16GUSgateF 
16GUSgateR 

2.  attB1adapter 
attB2adapter 

Adapter 
PCR. 

Entry clone 

20 AtOEP16.1 
(promoter) pKGWFS7 AtOEP16.1 promoter/ 

pDONR202   E.c. 
GUS fusion 

21 AtOEP16.2 
promoter pDONR202 gDNA  

1. 16seedGUSgateF 
16seedGUSgateR 

2.  attB1adapter 
attB2adapter 

Adapter 
PCR. 

Entry clone 

22 AtOEP16.2 
(promoter) pKGWFS7 AtOEP16.2 promoter/ 

pDONR202   E.c. 
GUS fusion 

23 AtOEP16.4 
promoter pDONR202 gDNA  

1. 62GUSgateF 
62GUSgateR 

2.   attB1adapter 
attB2adapter 

Adapter 
PCR. 

Entry clone 

24 AtOEP16.4 
(promoter) pKGWFS7 AtOEP16.4 promoter/ 

pDONR202   E.c. 
GUS fusion 

25 AtOEP37 
promoter pDONR202 gDNA  

1. 37GUSgateF 
37GUSgateR 

2.    attB1adapter 
attB2adapter 

Adapter 
PCR. 

Entry clone 

26 AtOEP37 
(promoter) pKGWFS7 AtOEP37 promoter/ 

pDONR202   E.c. 
GUS fusion 

27 PsOEP37 pET14b PsOEP37/pBS 
(Schleiff et al., 222003) 

NdeI 
BamHI 

37peaNdeIf 
37peaBamHIr  

28 AtOEP37 pRSETA cDNA XhoI 
NcoI 

O37araXhoIs 
O37araNcoIr  

 



 95

 

Curriculum vitae 

Name   Iryna Ilkavets 

Place of birth  Pinsk, Belarus 

Date of birth  21.01.1972 

 

Education 

1991-1996 State University of Belarus, Minsk, Department of Biology 

Master of Science Degree 

Supervisor: Prof. Dr. N.M. Orel 

Research subject: Influence of SHF on metabolism in mouse brain 

 

1996-2000 Photobiology Institute of National Academy of Sciences of Belarus, 

Minsk 

   Research Scholar 

   Supervisor Prof. Dr. I.D. Volotovski 

Research subject: Influence of phytochormons on cytosolic 

concentration of calcium in aequorin-expressing Tobacco and 

Arabidopsis plants 

 

15.10.2000 –  Department of Botany, Christian-Albrechts University of Kiel 

13.12.2006  Department of Biology I, Ludwig Maximilians University, Munich 

   Supervisor Prof. Dr. J. Soll 

Research subject: Membrane proteins in the outer membrane of plastids 

and mitochondria 

 

 

 

 

 

 

 

 

 



 96

 

Publications 
 

♦ Götze T, Philippar K, Ilkavets I, J Soll, R. Wagner. OEP37 is a new member of the 

chloroplast outer membrane ion channels. Accepted in JBC.  

♦ Clausen CA, Ilkavets IA, Thomson R, Philippar K, Vojta A, Mohlmann T, Neuhaus E, 

Fulgosi H, Soll J. Intracellular localization of VDAC proteins in plants. Planta. 2004, 

220:30-37. 

 -A  authors contributed equally 

♦ Linke D, Frank J, Pope MS, Soll J, Ilkavets I, Fromme P, Burstein EA, Reshetnyak 

YK, Emelyanenko. Folding kinetics and structure of OEP16. Biophys J. 2004; 

86(3):1479-87. 

 

Selected talks and posters on meetings 
 

♦ Ilkavets I. and J. Soll. Solute channels in chloroplasts. DFG SP-1108, Hirschberg, 

2003. 

♦ Ilkavets I., Thomson R. and J. Soll. Outer membrane porins – evolution from bacteria 

to mitochondria and chloroplasts. Origin and Evolution of Mitochondria and 

Chloroplasts, FEBS Advanced Lecture Course, Hvar, Croatia, 2003. 

♦ Philippar K., Ilkavets I., Thomson R., Oster U. and J. Soll. Towards the function of 

membrane proteins in the outer envelope of Arabidopsis chloroplasts. 13th International 

Workshop on Plant Membrane Biology. Montpeller, 2004. 

♦ Thomson R., Ilkavets I., Soll J.. Die äußere Plastidenhüllmembran ist keine Sieb. 17. 

Tagung Molekularbiologie der Pflanzen, Dabringhausen, 2004. 

 

 

 

 



 97

Acknowledgements 

 
I am particularly grateful to Prof. Dr. Jürgen Soll for giving me the opportunity to join his 

research group, for his supervision, guidance, helpful and stimulating discussions, for critical 

reading of the dissertation. 

I am very grateful to Katrin for encouragement, guidance, valuable suggestions in the end of 

this work and for patience and critical reading of the dissertation. 

I am thankful to Dr. Anton Schäffner, who introduced me to macroarray analysis and to Dr. 

Engstler for introduction in fluorescent microscopy. I am thankful to Rowena for her guidance 

and for the carrying out Affymetrix gene chip analysis. 

I am thankful to Bettina, who introduced me to the project; to Ute and Enriko for helpful 

discussions. 

I am grateful to Ulrike for the constant help, discussions and moral support. I am thankful to 

Karl and Ulrika for technical assistance and discussions. I am thankful to Gisela for growing 

and watering of Arabidopsis plants. I am thankful to Lars and Andi for help with computer. I 

am thankful to Lena for “russian” talks and to Fatima, Rita, Sonmia, Marko, Friderike, 

Ahmed, Ranja, Torsten, Claudia, Eva, Lea, Alexander, Sunchana, Mislav, Tina, Dani, Manu, 

Serena for nice conversations and moral support.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 98

 

Ehrenwörtliche Versicherung 
 
Die vorliegende Dissertation wurde von Dipl. Biol. Iryna Ilkavets selbständig und ohne 

unerlaubte Hilfe angefertigt. Der Verfasser hat zuvor nicht versucht, anderweitig eine 

Dissertation einzureichen oder sich einer Doktorprüfung zu unterziehen. Die Dissertation 

wurde keiner weiteren Prüfungskommision weder in Teilen noch als Ganzes vorgelegt. 

 

 

19.12.2005 

München 


