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1. Introduction 

Canine gastrointestinal diseases are among the most common disorders encountered in veterinary 

practice, and pancreatitis in particular is found in dogs at a high incidence (Hänichen and Minkus, 

1990). Factors incriminated in the pathogenesis of pancreatitis are numerous, including nutritional 

imbalances, drugs, pancreatic ischaemia, infectious diseases and hyperlipidemia. Based on the high 

prevalence of pancreatitis in the Miniature Schnauzer, several authors have also postulated a genetic 

predisposition for pancreatitis in this breed (Zawie, 1996). Hereditary pancreatitis is a well-known 

disease in human beings. A variety of different genes can be involved in the development of 

pancreatitis in humans. The present study evaluated the role of the lipoprotein lipase gene in the 

development of pancreatitis and hyperlipidemia in the Miniature Schnauzer.  

Lipoprotein Lipase (LPL) is one of the key enzymes within the lipid turnover in the blood. In 

humans, malfunction of the LPL results in decreased clearance of lipoproteins from the blood leading 

to hyperlipidemia and pancreatitis. According to the high incidence of idiopathic hyperlipidemia in 

Miniature Schnauzers in the United States a disruption within the lipid metabolism was proposed to 

be the inciting event of the disease process in Miniature Schnauzers rather than a pancreatic disease 

itself (Williams, 1996).  

This study used the lipoprotein lipase gene as a candidate gene to identify mutations causing 

hyperlipidemia and pancreatitis in Miniature Schnauzers  
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2. Literature Review 

 

2.1. Lipoprotein Lipase 

 

2.1.1. Introduction 

 

In 1943 Paul Hahn first postulated the existence of a heparin-releasable clearing factor. He noticed 

that injection of heparin abolished lipemia after a fatty meal (Hahn, 1943). In 1955 this clearing 

factor could then be further characterized as a heparin-responsive lipase, termed clearing factor 

lipase (Afinsen and Boyle, 1952; Korn, 1955). Apolipoprotein C2 (apo C2) was identified as part of 

very low density lipoproteins in 1966 (Scanu, 1966) and was shown to be an important co-factor for 

clearing factor lipase. Subsequently, clearing factor lipase was renamed as lipoprotein lipase (EC 

3.1.1.34; LPL). The enzyme consists of 3 major domains that are responsible for the interaction with 

different molecules. The catalytic function of the enzyme is dependant on interactions with 

proteoglycans of the capillary endothelium as well as lipoproteins and apolipoprotein C2 present in 

blood (Cryer, 1981; Wang and Hartsuck, 1992). 

This chapter describes the structure and function of lipoprotein lipase, which is a key enzyme of lipid 

turnover in the body. 

 

2.1.2. Function of the LPL 

 

Triacylglycerols (TAGs) are transported in the blood as a component of chylomicrons and very low 

density lipoproteins (VLDL). Dietary TAGs are absorbed by the small intestine and packed into 

chylomicrons in the intestinal epithelial cells, whereas TAG that is synthesized in the liver is released 

into the blood stream as a part of VLDL. TAGs are transported to peripheral tissues. Lipoproteins are 

too large to cross the capillary endothelium and LPL hydrolyzes TAG thus making non-esterified 

fatty acids and monoacylglycerol available for tissue uptake.  

Further functions of the LPL are facilitation of monocyte adhesion (Mamputu and Desfraits, 1997), 
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promotion of the proliferation of vascular smooth muscle cells (Mamputu and Desfraits, 2000), and 

induction of the expression of the tumor necrosis factor-α gene (Renier and Skamene, 1994). 

 

2.1.3. Molecular Interaction and Hydrolysis 

 

The physiological site of action of LPL is the luminal surface of capillary endothelial cells. The 

adhesion of the enzyme is facilitated by highly charged, membrane bound heparan sulfated 

proteoglycans (HSPG) (Cryer, 1981; Wang and Hartsuck, 1992). This interaction can be competed 

out by heparin. Apolipoprotein C2 is part of VLDL and chylomicrons and facilitates the interaction 

with LPL and also serves as an important co-factor for the hydrolytic action of LPL (Cryer, 1981; 

Wang and Hartsuck, 1992). After lipoproteins attach to LPL it undergoes a conformational change 

thereby exposing it’s hydrolytic site. Through this action of LPL TAG is separated from the 

lipoprotein particle and hydrolyzed into non-esterified fatty acids and 2-monoacyl glycerides 

(Mahmood Hussain and Kancha, 1996), which are now available for tissue utilization. In adipose 

tissue fatty acids are re-esterified for energy storage. In the heart muscle fatty acids are oxidized to 

serve as an energy source (Cryer, 1981). Remnants of chylomicrons are transported to the liver where 

one of their components, apolipoprotein E (apo E), regulates their uptake into hepatocytes. Twelve to 

fourteen hours after a meal all chylomicrons are cleared from the blood stream (Mahmood Hussain 

and Kancha, 1996). Remnants of VLDL are called low density lipoproteins (LDL). They contain 

cholesterol, play an important role for cell membrane stability and are an important source of 

cholesterol for the synthesis of steroids and bile acids (Fielding and Fielding, 1991). Hydrolysis of 

lipoproteins is the result of a series of attachments and detachments of LPL to the lipoprotein particle 

(Eisenberg and Rachmilewitz, 1975). At each locus of attachment up to 40 LPL molecules may act 

simultaneously on a lipoprotein substrate, maximizing the rate of hydrolysis (Scow and Olivecrona, 

1977). In addition, it has been shown, that LPL itself can dissociate from the endothelium or may 

remain attached to the remnant particle (Saxena and Witte, 1989; Vilella and Joven, 1993). This 

displacement of functional LPL prevents an oversupply of fatty acids to peripheral tissues under 

conditions of excessive biolysis (Braun and Severson, 1992). 
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2.1.4. LPL Gene 

 

Lipoprotein lipase is an extra hepatic enzyme synthesized in adipose tissue, heart muscle, skeletal 

muscle, and the lactating mammary gland (Braun and Severson, 1992; Camps and Reina, 1990; 

Camps and Reina, 1991). The genetic sequence of the LPL gene shares many similarities with genes 

encoding for classical pancreatic and hepatic lipase, and it is hypothesized that all 3 derive from a 

common ancestral gene (Hide et al., 1992). 

The LPL gene has been sequenced in a number of species including human, guinea pig, mouse, rat, 

chicken, baboon, ox, sheep, pig, and fish (Enerback and Gimble, 1993; Oku and Ogata, 2002; 

Raisonnier and Etienne, 1995). Homology of the primary protein sequence of LPL between different 

mammalian species is in excess of 90%, except in the case of the guinea pig, where the homology 

with LPL in other mammalian species is 80%. Comparison of the avian and mammalian sequence of 

LPL shows a slightly lower degree of homology of 70%. On the basis of nucleotide sequence, the 

homology of the LPL gene among different species of mammals is 77–82% and that between birds 

and mammals 61% (Enerback and Gimble, 1993; Raisonnier and Etienne, 1995). 

The LPL gene consists of ten exons and nine introns. The size of the individual exons is highly 

conserved across species (Enerback and Gimble, 1993; Raisonnier and Etienne, 1995). The human 

LPL gene is more than 30kb long and is situated on chromosome 8p22 

(www.ncbi.nlm.nih.gov/entrez). The major part of the genetic sequence is formed by the nine introns 

with a 9kb intron being one of the longest introns (fig. 2.1). Exon 1 – 9 encode for a protein with 475 

amino acids, whereas exon 10 forms the untranslated 3’ end. 

 

Figure 2.1: Structure of the human LPL gene: Exons 1 - 10 are interrupted by introns of various sizes 
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2.1.5. Synthesis and Structure of Lipoprotein Lipase 

 

Although LPL-mediated hydrolysis occurs at the capillary endothelium no mRNA could be identified 

within endothelial cells. However, mRNA was present in many other cell types, such as adipose 

tissue, skeletal muscle, heart muscle, and the lactating mammary gland (Braun and Severson, 1992; 

Camps and Reina, 1990; Camps and Reina, 1991). LPL is also synthesized by hepatocytes during the 

fetal stage, but its production is suppressed shortly after birth (Staels and Auwerx, 1992). Therefore, 

LPL is referred to as an extra hepatic enzyme. 

The initial step in LPL synthesis is the transcription of the LPL gene in the nucleus of parenchymal 

cells. Translation of the LPL mRNA into a nascent polypeptide occurs in the rough endoplasmatic 

reticulum (ER), followed by post-translational processing. During translation of the polypeptide 

chain, glycosylation is initiated. During transport of the protein to the Golgi apparatus this 

oligosaccharide is further modified. N-linked glycosylation is crucial for the catalytic activity of the 

mature enzyme. After sorting of the enzyme in the Golgi apparatus the peptide is directed to 

secretory vesicles, from where it either gets passed on to lysosomes for degradation or to the 

parenchymal cell surface where it binds to HSPG (Ben-Zeev and Mao, 2002; Braun and Severson, 

1992). LPL is ultimately translocated to HSPG binding sites on the luminal surface of the capillary 

endothelium. Two complex oligosaccharide chains form the majority of the carbohydrates of the 

mature enzyme, which has an overall carbohydrate content of 12 % (Masuno and Schultz, 1991; 

Vannier and Ailhaud, 1989). 

The three dimensional structure of LPL has been modeled based on the crystal structure of classical 

pancreatic lipase (Van Tilbeurgh et al., 1994; Winkler and D'Arcy, 1990). In its active form, human 

lipoprotein lipase is a homo dimer and consists of 448 amino acids. The enzyme contains a large N-

terminal domain (312 amino acids) and a small C-terminal domain (135 amino acids) that are 

connected by a flexible region. Binding to the lipoprotein substrate is mediated by the C-terminus, 

whereas catalysis is a function of the N–terminal portion of the enzyme. Functionally important are 

the highly conserved active site triad (Ser 132, Asp 156, His 241), the oxyanion hole (Trp 55, Leu 

133), a polypeptide lid (residues 216-239) and a β5 loop (residues 54-64) (Dugi and Dichek, 1992; 

Faustinella and Smith, 1992). Based on these findings Mead et. Al. derived a model, in which the 
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access of the substrate to the catalytic site is blocked by the polypeptide lid. When the lipoprotein 

substrate binds to LPL a conformational change is induced that leads to an opening of the lid. 

Additionally, the β5 loop folds back, making the active site even more accessible and also bringing 

the oxyanion hole into position. These changes increase the hydrophobicity of the catalytic triad 

attracting fatty acid side chains of potential substrate molecules. The conformation of LPL forces 

TAG into a position that makes the glycerol backbone accessible to the oxyanion hole for hydrolysis 

(Mead et al., 2002). Similar models have been described for classical pancreatic lipase as well as 

other lipases (Derewenda and Brzozowski, 1992; Grochulski and Li, 1993). 

Several heparin binding sites have been identified in both subunits of the enzyme. Most important 

sites in the N-terminus are in the regions 279–282 and 292–304. About 50 different binding sites 

have been identified in the C-terminal region with Lys 319, Lys 403, Arg 405, Lys 407 and Lys 413 

being most important (Berryman and Bensadoun, 1993; Hata and Ridinger, 1993; Lookene and 

Nielsen, 2000). 

For maximal activity LPL requires apolipoprotein C2 (apoC2) as a co-factor. A charge/charge 

interaction has been proposed between the two proteins (Fielding and Fielding, 1976). The apoC2 

binding site is located at Lys 147/Lys 148 in the N-terminal subunit (Murthy et al., 1996; Yang and 

Gu, 1989). 

Five disulfide bridges are formed by ten cysteine residues (Cys 27 - Cys 40, Cys 216 - Cys 239, Cys 

264 - Cys 283, Cys 275 - Cys 278, Cys 418 - Cys 438 ) (Raisonnier and Etienne, 1995). Other amino 

acids important for dimerisation of LPL are Ala 176, Gly 188, and Gly 195 (Hata and Ridinger, 

1992; Keiper and Schneider, 2001). 

Mutations of the LPL gene in regions encoding for most of these functional domains can lead to LPL 

malfunction. The following section explores the effect of LPL gene mutations on the lipid turnover. 

 

2.1.6. Regulation of LPL Gene Expression 

 

LPL tissue expression is regulated based on specific metabolic demands. During lactation LPL 

expression is shifted from the adipose tissue to the lactating mammary gland, whereas feeding results 

in an increase in enzyme synthesis in adipose tissue and a decreased synthesis in muscular tissue 
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(Hamosh and Clary, 1970; Lithell and Boberg, 1978). A variety of hormones are responsible for 

changes in LPL expression and activity, including insulin, catecholamines, growth hormone, and 

estrogen. 

Altered LPL expression is also found in patients with certain disease states, such as atherosclerosis, 

diabetes, cachexia, or infection (Beauchamp and Renier, 2002; Michaud and Renier, 2001; 

Sartippour and Lambert, 1998).  

 

2.1.7. Pathophysiological Importance of LPL 

 

Due to its central role in the lipid turnover LPL is involved in the pathogenesis of several diseases. 

Hyperlipidemia is characterized by insufficient clearance of lipoproteins from the blood. Increased 

serum concentrations of TAGs result in clinical abnormalities, such as abdominal pain or 

hepatomegaly, or clinical syndromes such as pancreatitis, xanthoma, and/or lipemia retinalis. Major 

causes include familial LPL deficiency, untreated diabetes mellitus, certain pharmaceutical agents, 

and alcohol abuse (Santamarina-Fojo, 1998). 

Obesity is a complex disorder that involves multiple factors including genetic, metabolic, and 

behavioral factors. The central role of LPL in lipid metabolism and it’s effect on energy storage and 

utilization have been described by various authors (Eckel, 1989; Greenwood, 1985; Kern, 1997), 

indicating that LPL is one of several factors in this multifactorial disorder of obesity. 

Alzheimer’s disease, atherosclerosis, as well as dyslipidemia associated with diabetes mellitus, 

insulin resistance, infection, or cancer are other disease conditions where LPL is thought to play an 

important role (Baum and Chen, 1999; Hardardottir and Grunfeld, 1994; O'Brien and Gordon, 1992; 

Renier and Skamene, 1993; Tisdale, 1999).  

 

2.1.8. Mutation of the LPL Gene and Familial LPL Deficiency 

 

A total of 107 different mutations of the LPL gene have been described in humans, with 71 of these 

mutations resulting in complete absence of LPL activity and the other 36 leading to partial LPL 

deficiency with less severe hyperlipidemia (Human Gene Mutation Database (HGMD), 
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http://archive.uwcm.ac.uk/uwcm/mg/hgmd0.html). Nonetheless, complete LPL deficiency is a rare 

condition (1/1 Mio worldwide) in humans. Partial LPL deficiency on the other hand is common (3 – 

5%) in populations of European descent and due to alterations in the lipid profile may, as was 

mentioned earlier, lead to conditions such as atherosclerosis (Bijvoet and Gagne, 1996; Jukema, 

1996; Reymer and Gagne, 1995). The majority (79) of these 107 mutations are missense or nonsense 

substitutions, 7 substitutions affect splicing, and while others are characterized as deletions or 

insertions. Mutations have been identified all across the LPL gene (fig. 2.2) with a tendency to 

cluster within regions encoding for the major protein domains. 

 

Figure 2.2: Mutations of the human LPL gene superimposed on the LPL amino acid sequence (HGMD 2005) 

 

 

Familial LPL deficiency refers to a condition, where the genetic cause of LPL deficiency can be 

traced back within a certain pedigree. Several of the above mentioned mutations can represent an 

inherited defect. Familial LPL deficiency has been shown to follow an autosomal recessive trait and 

is characterized by hyperlipoproteinemia, recurrent acute pancreatitis, exocrine pancreatic 

insufficiency, diabetes mellitus, and xanthomas (Murthy et al., 1996).  

Animal models for LPL deficiency have been developed in the mouse and the cat. Transgenic and 

gene-targeted mice have been engineered to study the role of LPL in lipid metabolism, and have been 

proven to be a useful model. But mice homozygous for an LPL defect do not survive beyond the first 

day of life (Coleman and Seip, 1995; Weinstock, 1995). However, a population of cats with 

heterozygous as well as homozygous carriers of LPL deficiency has been successfully established. 

The LPL deficiency in these cats results in a lipid and lipoprotein phenotype that predominantly 

parallels human LPL deficiency (Ginzinger and Clee, 1999). 
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2.2. Canine Genetics 

 

2.2.1. Genetic Defects in the Dog 

 

Molecular genetics are now widely used to identify the genotypic background for certain phenotypic 

expressions in dogs. This includes traits such as coat color, but also a variety of diseases. Naturally 

occurring genetic disorders are believed to be more common in dogs than in any other non-human 

species (Dukes-McEwan, 2002; Patterson, 2000). There are documented breed predispositions for 

various diseases, which are believed to occur due to unique breed population structures (Ostrander 

and Galibert, 2000). The separation of dogs into different breeds with closed studbooks has created a 

barrier against the mixing of genes, resulting in isolated breeding populations, in which certain 

genetic defects can accumulate(Dukes-McEwan, 2002). Another reason for this accumulation is the 

so called “popular sire effect”, where dogs carrying a genetic defect may be bred repeatedly because 

of their outstanding conformity to breed standards (Ostrander, 2000). However, the documented 

multi-generational pedigrees available for the dog provide a statistical advantage for genetic studies, 

and since many genetic diseases in the dog resemble those in humans, the dog has become an 

attractive model for research on hereditary diseases in humans (Dukes-McEwan, 2002; Galibert, 

1998). Veterinary clinicians commonly encounter diseases that are associated predominantly with a 

specific breed. More than 450 hereditary diseases have been described in the dog, and approximately 

half of them model a human disease (Online Mendelian Inheritance in Animals: 

www.angis.org.au/omia). Most of these diseases follow a recessive trait, are a consequence of 

genetic homogeneity in purebred dog populations, and constitute a major health problem in purebred 

dogs (Dukes-McEwan, 2002; Patterson, 2000). Unlike in humans, most autosomal dominant diseases 

in the dog are not propagated because breeders choose not to breed affected dogs. In contrast, 

recessive diseases are much more difficult to control because breeders are generally unable to 

distinguish between normal dogs and asymptomatic carriers or breeders underestimate the 

significance of breeding an asymptomatic carrier. 

Hereditary diseases are a major concern for breeders of purebred dogs (Mellersh and Langston, 

1997). Thus veterinarians are frequently consulted for advice. The veterinary practitioner should 
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therefore be able to discuss available screening methods and how they can best be used to benefit the 

individual dog as well as the breeding population (Metallinos, 2001). 

 

2.2.2. Genetic Analysis in the Dog 

 

2.2.2.1. Genetic Markers 

A genetic marker is like a fixed landmark that helps a geneticist to determine certain positions on the 

genome and is not necessarily linked to a disease. The genetic markers most commonly used are 

microsatellites. Microsatellite markers are widely distributed throughout the entire genome and 

consist of a repeating DNA sequence (e.g. CAACAACAA). While the pattern of each microsatellite 

stays the same, each marker can show significant variation in size due to a variable number of 

repeats between individuals (e.g. CAACAACAA vs. CAACAACAACAACAACAACAA). The 

different sizes in which a specific marker appears are the so called alleles of that marker(Lewin, 

1997). When performing a whole genome screen, known markers are evaluated and the allele of each 

marker is determined for each dog. Since evaluating all of the 3,270 markers of the canine genome 

that have been described to date is impractical, the canine genetics community has developed two 

Minimal Screening Sets (MSS-1 and MSS-2) (Guyon, 2003). The MSS-1 consists of 172 

microsatellite markers, while the MSS-2 is composed of 327 microsatellite markers (Richman et al., 

2001). By performing polymerase chain reactions (PCRs) using genetic material (i.e. DNA) extracted 

from dogs with a known phenotype (e.g. pancreatic acinar atrophy) each marker-allele is determined. 

Evaluating several microsatellites within the same PCR reaction can accelerate data analysis and is 

called “multiplexing”. Reports concerning the use of multiplexing are available for both the MSS-1 

and the MSS-2 (Clark L et al., 2004, in press; (Cargill et al., 2002)). Both the multiplexed MSS-1 

and MSS-2 are now widely used to perform whole genome screens in dogs.  

Sequencing of the canine genome, termed canine genome project, is currently under way by 

Ostrander et. al. This project will offer new possibilities, for example the identification of new 

genetic markers such as SNPs (single nucleotide polymorphisms). This work will also allow high 

resolution mapping of the canine genome for certain diseases (Kirkness and Bafna, 2003). 
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2.2.2.2. Linkage Analysis 

 

Linkage analysis is one form of genetic analysis. The first successful linkage analysis for a canine 

genetic disease was carried out by Yuzbasiyan-Gurkan et al., who identified a marker for copper 

toxicosis in the Bedlington Terrier (Yuzbasiyan-Gurkan, 1997). The basic concept of linkage 

analysis is that a genetic marker close to or within a disease gene is inherited along with that gene. 

Whenever a mutation is present in the gene of interest the marker also shows a different allele. The 

geneticist then tries to identify a correlation between the appearance of a certain marker allele and the 

disease without looking at the gene itself. 

A whole genome screen is one approach to carry out linkage analysis. For example, the MSS-1 and 

MSS-2 are used to analyze known genetic markers in the genome of a given pedigree(Dukes-

McEwan, 2002; Greer et al., 2003; Richman et al., 2001). Statistical methods are then used in order 

to identify one or more markers with an allele that is significantly correlated with a specific disease 

phenotype. The position of this linked marker on a physical map of the canine genome can then be 

determined and the gene segregating with the marker can be identified in some cases. 

A slightly different approach is used if a multigenerational pedigree cannot be established. By using 

linkage disequilibrium analysis the individuals are divided into two groups: affected and unaffected. 

Once again, a whole genome scan is performed to identify a marker allele that segregates with the 

affected group of dogs. However, this method is statistically not as informative as linkage 

analysis(Greer et al., 2003). 

 

2.2.2.3. Candidate Gene Approach 

The most direct method for genetic analysis is the candidate gene approach, where a selected number 

of genes are evaluated. A candidate gene is chosen either based on its role for an analogous disease 

in another species, based on pedigree-analysis, and also based on the phenotype of affected and non-

affected individuals. (Greer et al., 2003; Kijas and Miller, 2003). The gene is then evaluated either by 

direct sequencing and identification of specific mutations or by linkage analysis with an associated 

marker.  

An example for a successful candidate gene approach is the evaluation of the canine rhodopsin gene 
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to determine the genetic cause of progressive retinal atrophy in the English Mastiff (Kijas and Miller, 

2003). 

 

2.2.2.4. The LPL Gene as a Candidate Gene for Pancreatitis in the Miniature Schnauzer 

This work focuses on the evaluation of the LPL gene and its role in the development of 

hyperlipidemia and pancreatitis in the Miniature Schnauzer. The LPL gene has been chosen as a 

candidate gene for the following reasons. 

First, based on the high prevalence of hyperlipidemia and chronic pancreatitis in the Miniature 

Schnauzer, several authors have postulated a genetic predisposition for pancreatitis in this breed 

(Hänichen and Minkus, 1990; Williams, 1996). One genetic study has been carried out already to 

identify the genetic basis for chronic pancreatitis in this breed, excluding the cationic trypsinogen 

gene as a possible cause for this condition (Bishop and Steiner, 2002). Thus, additional genetic 

studies are warranted. 

Second, and as mentioned earlier, mutations of the LPL gene have been shown to result in 

hyperlipidemia and pancreatitis in humans, cats, and mice. Phenotypes resulting from LPL mutations 

are very similar among these species (Ginzinger and Clee, 1999), and parallel the condition found in 

Miniature Schnauzers. Due to the similarities in the phenotype we propose that mutations of the LPL 

gene are the underlying cause for hyperlipidemia and pancreatitis in the Miniature Schnauzer. 

Third, the LPL gene has been shown to be well conserved between mammalian species. Therefore, 

mutations of the LPL gene in Miniature Schnauzers are expected to result in similar phenotypes as 

found in familial LPL deficiency in humans, cats, and mice. 
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2.3. The Exocrine Pancreas of the Dog 

 

2.3.1. Anatomy 

 

The pancreas of dogs consists of two lobes that diverge from the vicinity of the pylorus. Both lobes 

are connected by a small central body. The left lobe is directed caudo-medially and follows the 

pyloric part of the stomach. It is situated in the deep leaf of the greater omentum with direct contact 

to the liver and the transverse colon (Dyce, 1996; Evans and Christensen, 1979; Schummer et al., 

1979). The longer right lobe is directed caudo-dorsally and accompanies the dorsal surface of the 

descending duodenum. It is situated in the mesoduodenum and makes contact to the liver. The 

pancreas develops from the ventral and dorsal primordia that arise from the embryonic small 

intestine and can be viewed as an extension of the duodenal glandular mucosa (Schummer et al., 

1979). Two secretory ducts form the remnant connection between the pancreas and the duodenum. 

The duct of the ventral primordium develops into the pancreatic duct and joins the bile duct on the 

major duodenal papilla, 3 to 6 cm distal to the pylorus. The accessory pancreatic duct, which serves 

as the main secretory channel in the dog, emerges from the dorsal primordium. It opens on the minor 

duodenal papilla 3 to 5 cm further distal into the duodenum (Dyce, 1996). The color of the pancreas 

depends on the amount of blood it contains and ranges from pale pink during the fasting state to dark 

red following a meal (Bernard, 1985). The exocrine tissue accounts for more than 98 % of the 

pancreas and is mainly composed of acinar cells that are responsible for the synthesis and storage of 

the digestive enzymes. Additional components of the exocrine pancreas are the branching duct 

system, blood vessels arising from the celiac and cranial mesenteric arteries, veins draining into the 

portal vein, and nerve fibers derived from the vagus and splanchnic nerves (Holst, 1993; Williams 

and Goldfine, 1993). 

 

2.3.2. Physiology 

 

The pancreas synthesizes and secretes a fluid that is rich in digestive enzymes into the duodenum to 

facilitate the digestion of proteins, lipids, and polysaccharides. There is a wide variety of pancreatic 
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enzymes secreted by pancreatic acinar cells, including trypsin, chymotrypsin, elastase, 

carboxypeptidase, phospholipase A2, pancreatic lipase, and colipase (Rinderknecht, 1993). To 

prevent autodigestion some of these enzymes are synthesized and secreted as catalytically inactive 

zymogens, and stored in zymogene granules within the acinar cells. Activation of trypsinogen, the 

zymogen of trypsin, occurs after secretion into the duodenum through cleavage of trypsinogen 

activation peptide by another enzyme, enteropeptidase. Once trypsin is activated an activation 

cascade is initiated, resulting in sequential activation of other digestive zymogens through trypsin. 

Another defense mechanism against autodigestion is the cosynthesis, costorage, and cosecretion of 

pancreatic secretory trypsin inhibitor (PSTI), which is synthesized, stored, and secreted along with 

pancreatic enzymes. PSTI inhibits active trypsin to prevent initiation of the activation cascade within 

the pancreas, and therefore prevents self digestion of the organ (Eddeland and Ohlsson, 1976; 

Laskowski and Kato, 1980; Rinderknecht, 1998). Pancreatic juice is also a major source of 

bicarbonate necessary for adjustment of the pH in the duodenal lumen. It is secreted by the 

centroacinar cells of the pancreatic duct system. A variety of nervous and hormonal mechanisms 

regulate pancreatic secretion in response to cephalic stimulation in anticipation of food, as well as 

gastric and intestinal stimulation in the presence of food (Chey, 1993; Singer, 1993). Pancreatic 

secretion is biphasic with a first peak after one to two hours after feeding and a second peak after 

eight to eleven hours after feeding. Pancreatic juice is rich in enzymes during the first peak, and rich 

in bicarbonate during the second peak (Singer, 1993). 

 

2.3.3. Diseases of the Exocrine Pancreas 

 

2.3.3.1. Pancreatitis 

Pancreatic inflammation in the dog can be acute or chronic. Acute pancreatitis is characterized as a 

sudden onset of pancreatic inflammation that may continue to occur in repeated bouts. If 

inflammation persists leading to permanent morphological changes and impairment of organ 

function, the condition is referred to as chronic pancreatitis (Banks, 1994; Bradley, 1993; Sarner, 

1993). Depending on the severity of the disease the affected pancreas appears edematous and 

swollen. Also, accumulation of fluid may be found within the peritoneal cavity. Areas of hemorrhage 
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and chalky fat necrosis also can be found in the pancreas as well as the surrounding area. Fibrous 

adhesions to adjacent organs may be present (Jubb et al., 1985). Inappropriate proenzyme activation 

and auto digestion are believed to be the underlying mechanisms for pancreatitis (Reber et al., 1993; 

Steer and Saluja, 1993). Pancreatic elastase and phospholipase A promote coagulation necrosis and 

vascular injury, while trypsin and chymotrypsin promote pancreatic edema and proteolysis and 

further aggravate the activation cascade. Proteolytic enzymes also spill into the vascular space, where 

plasma protease inhibitors act as scavengers of these proteases. However, an oversupply of 

pancreatic enzymes may lead to depletion of these protease inhibitors, leading to unbound proteases 

in the vascular space that can activate the kinin, coagulation, fibrinolytic, and complement cascade 

systems resulting in disseminated intravascular coagulation and shock (Lasson, 1984; Lasson and 

Ohlsson, 1984; Ohlsson et al., 1971). 

The inciting events resulting in acute and chronic pancreatitis usually remain unknown. However 

several potential factors have been identified. Ingestion of a high fat meal and concurrent 

hyperlipidemia can trigger the disease. It has been suggested, that abnormally high TAG 

concentrations may lead to the release of toxic fatty acids, resulting in damage of pancreatic 

capillaries (Guzman et al., 1985; Pitchumoni and Scheele, 1993; Saharia et al., 1977). Hypercalcemia 

due to hyperparathyroidism has been associated with the development of pancreatitis in some dogs 

(Simpson, 1993). Certain drugs such as azathioprine, thiazide diuretics, sulfonamides, tetracyclines, 

L-asparaginase, and potassium bromide are also suspected to cause pancreatitis in dogs (Gaskell et 

al., 1975; Mallory and Kern, 1980). Pancreatitis can be induced experimentally by pancreatic duct 

obstruction, pancreatic trauma, duodenal reflux, and pancreatic ischemia. However, their importance 

in the development of spontaneous disease remains unknown (Jacobs et al., 1985; Lerch and Adler, 

1994; Westermarck and Saario, 1989). Furthermore, bacterial, viral, mycoplasmal, and parasitic 

infections may be associated with pancreatitis (Steer, 1986). 

The clinical picture of acute pancreatitis is characterized by a sudden onset of vomiting, anorexia, 

depression, dehydration, abdominal pain or discomfort, and in some cases diarrhea. Abdominal 

discomfort may only be evident upon abdominal palpation. In dogs with systemic involvement, signs 

of shock, respiratory distress, bleeding disorders, and cardiac arrhythmias may also be present. Signs 

of chronic pancreatitis are more variable and non-specific (Pidgeon, 1987b; Rutgers et al., 1985).  
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Diagnostic imaging studies can include radiography, ultrasonography, or computed tomography of 

the abdomen. Radiographic signs of pancreatitis include dilated intestinal loops, an increased 

density, diminished contrast, and granularity in the right cranial abdomen, and transposition of 

abdominal organs. However, these findings are not very sensitive or specific. In contrast, abdominal 

ultrasonography is highly specific for pancreatitis if stringent criteria are applied (Steiner, 2003). 

Pancreatic enlargement alone is not sufficient to make a diagnosis of pancreatitis, because pancreatic 

edema can also be observed in other conditions. The pancreas may appear hypoechoic when 

pancreatic necrosis is present and may appear hyperechoic in cases where pancreatic fibrosis has 

developed (Hess et al., 1998). Also, pancreatitis is often associated with various degrees of 

peripancreatic fluid accumulation. A loss of echodensity is indicative of pancreatic necrosis (Nyland 

et al., 1983). Serum chemistry findings may vary and usually include leucocytosis, an increased 

packed cell volume, azotemia, hypercholesterolemia, and fasting hypertriglyceridemia (Hill and Van 

Winkle, 1993; Schaer, 1979). Additionally, the release of high concentrations of toxic substances 

from the pancreas into the portal blood may result in increased hepatic enzyme activities (Jacobs et 

al., 1985). Necrotizing pancreatitis in dogs is often accompanied by hyperglycemia, potentially in 

response to stress-related increases in catecholamines and cortisol (Hill and Van Winkle, 1993).  

Serum lipase activity has been used for the diagnosis of pancreatitis for several decades but is neither 

very sensitive nor very specific for the diagnosis of pancreatitis in the dog (Strombeck et al., 1981). 

Measurement of serum pancreatic lipase immunoreactivity is the most sensitive and specific 

diagnostic test for canine pancreatitis currently available. This assay is now widely used for the 

diagnosis of pancreatitis in the dog (Steiner et al., 2003). 

Withholding oral intake of food and water for 3 to 5 days has been recommended as standard therapy 

of pancreatitis in the dog. However, recent studies in human patients with pancreatitis would suggest 

that this practice may not only be unnecessary but detrimental to the patient (Kahl et al., 2003). If the 

patient is vomiting such practice may be justified and slow introduction of a low-fat maintenance 

diet should be attempted after the animal stops to vomit. If drugs or other agents are suspected to be 

the cause of the condition, these substances should be withdrawn and replaced by alternative agents. 

Fluid therapy over several days is required to counterbalance dehydration as well as fluid and 

electrolyte losses (Drazner, 1986; Pidgeon, 1987a).  
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2.3.3.2. Chronic Pancreatitis in the Miniature Schnauzer 

 

The clinical picture in this breed is characterized by recurrent signs of pancreatitis (Lasson and 

Ohlsson, 1984; Rogers et al., 1975), and based on the high prevalence of pancreatitis in the 

Miniature Schnauzer (Williams, 1996), several authors have also postulated a genetic predisposition 

for pancreatitis in this breed (Zawie, 1996). Hereditary pancreatitis is a well-known disease in 

humans. Genes involved in the development of chronic pancreatitis are the cationic trypsinogen gene 

(Whitcomb, 2000), lipoprotein lipase gene (Peterson and Amir, 2002), cystic fibrosis gene (Sharer 

and Schwarz, 1998) and pancreatic secretory trypsin inhibitor gene (Hirota and Kuwata, 2003). The 

role of the cationic trypsinogen gene in Miniature Schnauzers with chronic pancreatitis has been 

evaluated (Bishop et al., 2004), however, no evidence was found that mutations within that gene 

were responsible for the disease in Miniature Schnauzers. As mentioned earlier mutations within the 

human LPL gene can cause changes at the major binding sites of the enzyme, thereby leading to a 

lack in lipase activity of LPL. Humans having these mutations showed severe hyperlipoproteinemia 

and pancreatitis (Peterson and Amir, 2002). According to the high incidence of idiopathic 

hyperlipidemia in Miniature Schnauzers in the United States a disruption within the lipid metabolism 

was proposed to be the inciting event of the disease process in Miniature Schnauzers rather than a 

pancreatic disease itself (Williams, 1996; Zawie, 1996). 

 

2.3.3.3. Exocrine Pancreatic Insufficiency (EPI) 

The pancreas is known to have a large functional reserve, and clinical signs due to exocrine 

pancreatic insufficiency do not occur until a significant portion of pancreatic function, approximately 

90%, has been lost (DiMagno et al., 1973). The most common cause of EPI in the dog is pancreatic 

acinar atrophy, whereas EPI due to chronic pancreatitis, which is the most common cause of EPI in 

people, occurs less commonly in the dog (Holroyd, 1968; Rimaila-Pärnänen and Westermarck, 

1982). Pancreatic acinar atrophy (PAA) is most commonly recognized in German Shepherd dogs 

(GSDs) and rough-coated Collies, but other breeds may also be affected. The prevalence of PAA in 

the German Shepherd dog is higher than in any other breed (Westermarck et al., 1989; Westermarck 

et al., 1993). Initial studies evaluating several pedigrees suggested an autosomal recessive mode of 
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inheritance (Westermarck, 1980). Recently, statistical analysis has been carried out in 2 unrelated 

multigenerational pedigrees of 135 German Shepherd dogs and the results strongly suggest an 

autosomal recessive mode of inheritance in these pedigrees (Moeller et al., 2000). However, after 10 

years of follow up only 2 of 6 dogs from a litter bred from 2 affected parents developed PAA (Elias 

Westermarck , personal communication, 2004), observations that are not consistent with such a 

mode of inheritance. Thus the trait of PAA, at least in some lines, may well be polygenic. Linkage 

studies using the MSS-1 and the MSS-2 are under way in order to identify a genetic marker for PAA 

in the German Shepherd dog (Clark et.al., personal communication, 2004).  

PAA is characterized by progressive atrophy of pancreatic acinar tissue along with scattering and 

disorganization of pancreatic acinar cells (Westermarck et al., 1993). Islets of Langerhans are 

disorganized, but remain otherwise unaffected. Concurrent diabetes mellitus is not a feature of dogs 

with PAA. 

There is considerable evidence that immune-mediated mechanisms play a major role in the 

pathogenesis of PAA (Wiberg et al., 1999). Once acinar cell atrophy is almost complete, the lack of 

digestive enzymes results in malabsorption and eventually the classical clinical signs of EPI. Not 

only are pancreatic enzymes crucial for nutrient digestion, but they also affect small intestinal 

mucosal function, brush border enzyme activity, and the small intestinal microflora. Concurrent 

small intestinal bacterial overgrowth (SIBO) is observed in more than 70% of the German Shepherd 

dogs diagnosed with PAA (Sorensen et al., 1988; Williams et al., 1985). 

At the time of diagnosis dogs are usually between 1 and 5 years of age. Feces are soft and 

voluminous with a grey-yellowish color, and borborygmus and flatulence may be marked. Severe 

weight loss and polyphagia are common findings in cases that are not diagnosed early in the disease 

process. Additionally, vomiting and bouts of anorexia have been reported in some GSDs with PAA 

(Raiha and Westermarck, 1989; Rogers et al., 1983; Westermarck et al., 1989).  

Canine trypsin like immunoreactivity (cTLI) is the diagnostic test of choice for diagnosing EPI 

(Williams and Batt, 1988). Recently, an assay for the measurement of elastase in feces has been 

developed, but this assay has a poor positive predictive value for canine EPI (Spillmann et al., 1998). 

Affected dogs generally respond well to supplementation of the diet with powdered pancreatic 

extract (2 tsp/20 kg/meal) (Pidgeon and Strombeck, 1982). Additionally, supplementation with 



 
 19 

vitamin E (400-500 IU/20 kg once daily with food for 1 month initially) and cobalamin (250-1000 

µg SC once a week for 4-6 weeks initially) should be considered, since deficiencies of these vitamins 

are common, may not resolve with enzyme supplementation alone, and yet are safely and 

inexpensively supplemented. Additional therapeutic measures are required in a minority of patients 

(Sarner, 2003). 

 

2.3.3.4. Pancreatic Neoplasia 

Pancreatic neoplasia is uncommonly diagnosed in dogs and is mainly found in older animals. 

Adenocarcinomas originating from acinar or duct cells have both been described, and the Airedale 

terrier appears to have an increased incidence for pancreatic adenocarcinomas (Withrow, 1996). At 

the time of diagnosis metastases are usually present in the duodenum, the liver, and/or the local 

lymph nodes. Clinical signs are mainly nonspecific and may include weight loss, anorexia, 

depression, and vomiting. Additionally, metastases obstructing the bile ducts or pancreatic ducts 

might result in icterus and/or EPI (Bright, 1985). Abdominal radiographs and ultrasonic imaging are 

helpful to identify pancreatic masses. However, pancreatic biopsy is required for a definitive 

diagnosis. The prognosis for animals with carcinomas of the exocrine pancreas is extremely poor 

(Banks, 1993), and supportive therapy should be targeted at associated conditions, such as diabetes 

mellitus and EPI (Bright, 1985). 
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3. Materials and Methods 

 

3.1. Study Subjects 

 

The database of the Gastrointestinal Laboratory at Texas A&M University was screened for 

Miniature Schnauzer dogs for which a serum sample was available. Serum sample were available 

from 170 Miniature Schnauzers and serum cPLI concentrations were measured in each sample using 

an in-house ELISA (Steiner et al., 2003). Serum cPLI exclusively measures lipase that originates 

from the exocrine pancreas. Serum cPLI has been shown to be specific for exocrine pancreatic 

function in the dog and is also highly sensitive for canine pancreatitis (82%). Serum cPLI is the most 

sensitive and specific diagnostic test currently available for the diagnosis of canine pancreatitis. A 

serum cPLI concentration above 200.0 µg/L was considered diagnostic for a diagnosis of 

pancreatitis. A value of 102.1 µg/L and below was considered normal and dogs with serum cPLI 

concentrations below this value served as control dogs.  

Two study groups were established. The first group consisted of 12 affected dogs based on a serum 

cPLI concentration above 200.0 µg/L, a clinical history compatible with pancreatitis and a serum 

triglyceride concentration above the upper limit of the reference range. Also, 9 healthy control dogs 

were chosen based on a serum cPLI concentration of 102.1 µg/L or less, a lack of clinical signs 

compatible with pancreatitis, and a serum triglyceride concentration within the reference range. 

DNA was then collected from these 21 dogs using DNA extraction techniques as described below. 

 

3.2. Isolation of DNA 

 

3.2.1. DNA Extraction from White Blood Cells 

 

DNA extraction from white blood cells using whole blood samples was performed using Puregene 

DNA Purification Kit (Gentra Systems, Minneapolis, MN, USA) according to manufacturer’s 

instructions. Briefly, a 300 µl peripheral blood sample was taken from the jugular vein and 
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anticoagulated in EDTA. Red blood cell lysis solution (Puregene, Gentra Systems), 900 µl, was 

added and the sample was incubated at room temperature for 10 min, then centrifuged for 30 seconds 

at 15,000 x g (Centrifuge 5417C, Eppendorf). The supernatant was discarded and the pellet was 

vigorously vortexed to resuspend the white blood cells. The cells were lysed by addition of 300 µl 

cell lysis Solution (Puregene, Gentra Systems). The protein was then precipitated by addition of 100 

µl protein precipitation solution (Puregene, Gentra Systems) followed by vigorous vortexing for 20 

sec and centrifugation for 3 min at 15,000 x g. The resulting supernatant, containing the DNA, was 

retained and transferred into a new tube. DNA was precipitated by addition of 300 µl isopropanol 

(100%), followed by centrifugation for 4 min at 15, 000 x g. The resulting DNA pellet was dried by 

addition of 300 µl ethanol (70 %) followed by centrifugation for 2 min at 15,000 x g. Samples were 

air dried for 15 min. The DNA was rehydrated by incubation of the sample with 100 µl of DNA 

Hydration Solution (Puregene, Gentra Systems) overnight at room temperature. The DNA samples 

were stored at -20ºC until use. 

 

3.2.2. DNA Extraction from Mucosal Cells 

 

DNA extraction from buccal mucosal cells was performed using Puregene DNA Purification Kit 

(Gentra Systems) according to the manufacturer’s instructions. Briefly, samples were collected by 

rolling cytology brushes (CytoSoft, Medical Packing Corporation) over the buccal mucosa of the 

dogs. Four samples were collected from each dog. The brush was placed into a tube and 300 µl of 

Cell Lysis Solution (Puregene, Gentra Systems) and 1.5 µl Proteinase K (20 mg/ml) (Puregene, 

Gentra Systems) were added. The tube was inverted several times to ensure distribution of the 

solution over the entire brush, and the sample was incubated over night at 55˚C (Branson 2210, 

Branson Ultrasonic Corp., CT, USA). The brush was removed and 100µl protein precipitation 

solution (Puregene, Gentra Systems) were added and votexed for 20 sec prior to incubation for 15 

min at -20˚C. The sample was centrifugation for 5 min at 15, 000 x g. The resulting supernatant, 

containing the DNA, was retained and transferred into a new tube. The DNA was precipitated by 

addition of 500 µl isopropanol (100%) and 4 µl glycogen (12 mg/ml; Purescript, Gentra Systems), 

followed by 30 min incubation at -80˚C and centrifugation for 5 min at 15, 000 x g. The resulting 
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DNA pellet was dried by addition of 300 µl ethanol (70 %), followed by centrifugation for 2 min at 

15,000 x g. Samples were air dried for 15 min. The DNA was rehydrated by incubation of the sample 

with 40 µl of DNA Hydration Solution (Puregene, Gentra Systems) overnight at room temperature. 

The DNA samples were stored at -20ºC until use. 

 

3.2.3. Quality Control and DNA Concentration 

 

Gel electrophoresis 

Gel electrophoresis was used to estimate the DNA yield and quality. One µl of each sample was run 

on a 2.5 % agarose gel (Agarose Low EEO, Fisher Scientific, Hampton, NH, USA) prepared in TAE 

– buffer (Tris – Acetate – EDTA Buffer, Sigma-Aldrich, St.Louis, MO, USA) in an electrophoresis 

chamber (BioMax MP1015, Kodak, Rochester, NY, USA) for 90 min at 90 volt (Model 300 Power 

Supply, VWR Scientific, West Chester, PA, USA). The gel was stained in an ethidium bromide (0.5 

µg / ml) bath for 10 min, followed by a de-staining for 25 min in water. The DNA was cross-linked 

by exposure to UV light for 1 sec and its banding pattern was documented with a digital camera.  

Samples that exhibited degradation were not included in the analysis. An estimate of the sample 

concentration was made based on the comparison with a reference sample (2 – log Ladder, BioLabs 

Inc., Beverly, MA, USA).  

 

Spectrophotometry 

To standardize amplification the DNA was quantified by spectrophotometry. The extinction for each 

probe was measured at a wavelength of 260 nm (E
260

) for DNA and 280 nm (E
280

) for protein 

(Ultrospec 2000, Pharmacia/Pfizer, New York, NY, USA). Calculation of the DNA concentration: 

 

    CDNA  =  E
260

  x  50 ng/µl  x  35 

 

Samples were diluted or reconcentrated to 100 ng/µl. Protein contamination has the potential to 

interfere with amplification. Therefore, samples showing a high protein content (E
260

 / E
280

 ratio ≤ 
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1.5) underwent on additional step of protein precipitation (see 3.1.1.). If protein content remained 

high after the second precipitation the samples were not included in the analysis. 

 

The collected DNA samples were then used to determine the nucleotide sequence of the LPL gene in 

the 21 canine subjects. Sequences were analyzed and compared between the affected dogs and the 

healthy control dogs to determine if sequence differences correlate with the affected phenotype. The 

methodology used is described in detail in the following section. 

 

3.3. Primer Design 

 

3.3.1. Nucleotide Sequence of the Canine LPL Gene 

 

The nucleotide sequence of the lipoprotein lipase gene (LPL) has been published for a variety of 

species, but not for the dog. Therefore, coding DNA sequences of the human  

(www.ncbi.nlm.nih.gov/entrez, NM_000237), bovine (www.ncbi.nlm.nih.gov/entrez, AY216661, 

M16966), porcine (www.ncbi.nlm.nih.gov/entrez, NM_214286), murine 

(www.ncbi.nlm.nih.gov/entrez, M63335) and avian (www.ncbi.nlm.nih.gov/entrez, NM_205282) 

LPL gene were used for reference in this study. The LPL gene is very well conserved among species 

(see 2.1.4.). By comparing (ClustalW, www.ebi.ac.uk/clustalw/) the cDNA of the non-human species 

against the human exons, it was possible to clearly identify the respective exonic regions within the 

other species (fig. 3.1). The same approach was used to identify the unknown sequence of exon 1 – 9 

in the canine genome. Human LPL cDNA was used as a reference. The complete sequence of the 

canine genome has recently been identified and is available in an on-line database (Trace Archive, 

www.ncbi.nlm.nih.gov/Traces/trace.cgi). However, the majority of canine genes, including the LPL 

gene, had not been characterized at the beginning of this study. Each exon of the human LPL gene 

was compared with the canine genome to identify clones of high homology with the respective exon. 

Specifically, the on-line service Megablast (www.ncbi.nlm.nih.gov/BLAST/mmtrace.shtml) was 

used to screen the Trace Archive database and retrieve the sequence for exon 1 through 9 of the 

canine LPL gene. 
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Figure 3.1: Example of a multiple sequence alignment among the different species 

 

 

The results were then compared to the entire NCBI database (www.ncbi.nlm.nih.gov) using 

Megablast to exclude the possibility that the identified nucleotide sequences encode for similar genes 

(e.g. pancreatic lipase, hepatic lipase) instead of the LPL gene. 

 

3.3.2. Identification of Primer Sites 

 

The Trace Archive blast provided a variety of canine clones for each exon as well as the neighboring 

intronic regions of the canine LPL gene. The respective clones of each exon were compared in a 

multiple sequence alignment (ClustalW, www.ebi.ac.uk/clustalw/) to verify the given sequence and 

to exclude amplification and sequencing errors. The intronic regions surrounding each exon were 

then searched for suitable sites for primer design. Regions with repetitive sequence motives were 

avoided. Goal of the primer design was to obtain primers that could be used to amplify the complete 

exon as well as the exon/intron boundaries, which give additional information about splicing sites.  
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3.3.3. Primer Design 

 

The on-line software Netprimer (www.premierbiosoft.com/netprimer/index.html) was used for 

primer design for identified sites. Netprimer combines primer design algorithms with a web-based 

interface allowing the user to analyze primers over the Internet. All primers are analyzed for melting 

temperature (Tm) using the nearest neighbor thermodynamic theory to ensure accurate Tm prediction. 

Primers are analyzed for all secondary structures including hairpins, self-dimers, and cross-dimers in 

primer pairs. This ensures the availability of the primer for the reaction, as well as, minimizing the 

formation of primer dimers. Table 3.3 shows the designed primer pairs including their respective 

comprehensive analysis report. The following variables were used as the main decision making 

criteria. 

 

Rating 

The rating of a primer allows for simplified identification of the predicted efficiency of a primer as 

well as choosing between closely matched primers; the higher the rating of a primer, the higher is it’s 

amplification efficiency. The rating of individual primers is based on the stability of its secondary 

structures and was calculated as: 

Rating = 100 + (∆G (Dimer) * 1.8 + ∆G (Hairpin) * 1.4) 

 

Melting Temperature (Tm) 

The melting temperature was calculated using the formula based on the nearest neighbor 

thermodynamic theory and is defined as the temperature at which half of the oligonucleotides are 

bonded (Freier et al., 1986). Tm was calculated as: 

Tm = ∆H / (∆S + R * ln(C/4)) + 16.6 log ([K+] / (1 + 0.7 [K+])) - 273.15 

 ∆H = enthalpy for helix formation 

 ∆S = entropy for helix formation 

 R = molar gas constant (1.987 cal/°C * mol) 

 C = the nucleic acid concentration 

 [K+] is the potassium salt concentration 
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GC% 

GC% is the percentage of G and C of the primer. It is calculated by dividing the sum of G and C with 

the total number of bases present in the primer. An optimal value of 50 – 60 % has been suggested. 

 

3' end stability 

The stability of the primer determines its false priming efficiency. An ideal primer has a stable 5' end 

and an unstable 3' end. If the primer has a stable 3' end, it may anneal to a site, which is 

complementary to, but different from the target with its 5' end unattached. This may lead to 

amplification of unwanted sequences. 

Primers with low stability at the 3' ends function well because the 3' end annealing to false priming 

sites are too unstable to extend. The 3' end stability is expressed by the ∆G value of the 5 bases of the 

primer taken from its 3' end. The lower this value, numerically, the more liable the primer is to show 

secondary bands. 

 

Free Energy (∆∆∆∆G)    

∆G is the free energy of the primer calculated using the nearest neighbor method (Breslauer et al., 

1986). ∆G is calculated by the formula ∆G = ∆H - T∆S. Here ∆H is the enthalpy of primer, T is the 

temperature, ∆S is the entropy of primer. T is set to 25ºC.  

 

∆∆∆∆H    

∆H is the enthalpy of the primer as calculated by the nearest neighbor method (Table 3.1) (Breslauer 

et al., 1986). ∆H is calculated from the nucleotide sequence. For example ∆H for a pentamer 

ATGCA is calculated as follows:    

∆H (ATGCA) = ∆H (AT) + ∆H (TG) + ∆H (GC) + ∆H (CA) 

 

 

 

 

 



 
 27 

Table 3.1: Enthalpy values ∆H of a nearest neighbor nucleotide (in -cal/°K/mol) 

Second Nucleotide → 
First Nucleotide ↓ 

dA dC dG dT 

dA 9100 6500 7800 8600 

dC 5800 11000 11900 7800 

dG 5600 11100 11000 6500 

dT 6000 5600 5800 9100 

    

∆∆∆∆S    

∆S is the entropy of the primer as calculated by the nearest neighbor method ( Table 3.2) (Breslauer 

et al., 1986).  

∆S is calculated based on the nucleotide sequence of the primer. For example, ∆S for a pentamer 

ATGCA is calculated as follows: 

∆S (ATGCA) = ∆S (AT) + ∆S (TG) + ∆S (GC) + ∆S (CA) 

An initiation value of 15.1 is added to the ∆S calculation. 

 

Table 3.2: Entropy values ∆S of a nearest neighbor nucleotide (in -cal/°K/mol) 

Second Nucleotide → 
First Nucleotide ↓ 

dA dC dG dT 

dA 24.0 17.3 20.8 23.9 

dC 12.9 26.6 27.8 20.8 

dG 13.5 26.7 26.6 17.3 

dT 16.9 13.5 12.9 24.0 

 

5' end stability 

Stability of the 5' terminus allows for efficient annealing of the primer to the target site. This stable 5' 

region is called the GC clamp. It ensures adequate binding of the primer to the template. Use of 

primers with optimal stability allows for the use of lower annealing temperatures without the 
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production of secondary bands. Notice that the 3' end should not be very stable and the 5' end should 

have a strong GC clamp. The GC Clamp is the ∆G value of the 5 bases of the primer taken from its 5' 

end. The lower this value, numerically, the more efficient is the primer. 

 

Repeats and Runs 

Repeats and runs increase the likelihood of false priming. Primers having 3 or more dinucleotide 

repeats or 3 or more base runs were reported.  

 

Secondary Structures of Primers 

Hairpins 

A hairpin loop is formed when primer folds back on itself and is held in place by intramolecular 

bonds. Because hairpin loop formation is an intramolecular reaction, it can occur with as few as 3 

consecutive homologous bases. The free energy represents the stability of the hairpin loop. The free 

energy of the loop is based upon the energy of the intramolecular bond and the energy needed to 

twist the DNA to form the loop. If this free energy is greater than 0, the loop is too unstable to 

interfere with the reaction. However, if the free energy is less than 0, the loop could reduce the 

efficiency of the amplification rection.  

 

Dimers and Cross Dimers 

Dimers occur when a region of homology is present within a primer (self-dimer) or between the 

sense and anti-sense primer (cross-dimer). This results in annealing of the two primers, increasing 

production of the primer dimer artifact and reducing product yields. 

This is particularly problematic when the homology occurs at the 3' end of either primer. The 3' end 

will extend readily leading to primer-dimer artifact.  
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Table 3.3: Forward and reverse primer for amplification of exon 1 of the canine LPL gene 

Oligo Name Ex1-U(2)-F Ex1-U(2)-R 

Sequence GAGTGGGAACAGTGTCAGACTCG CCAACGCCTGAGGTTCTCC 

Bases 23 19 

Rating 90 92 

Tm (°C) 61.04 60.09 

GC% 56.52 63.16 

∆G (kcal/mol) -35.99 -34.53 

3' end stability (kcal/mol) -8.13 -7.82 

∆H (kcal/mol) -157.9 -150 

∆S (kcal/mol) -0.41 -0.39 

5' end stability (kcal/mol) -6.47 -8.31 

Hairpins (kcal/mol)     

Dimers (kcal/mol) -5.52 -4.17 

Palindromes (kcal/mol)     

Repeats     

Runs GGG   

Cross Dimers (kcal/mol)   -5.86 

 
 
 
 
 
 
 
Table 3.4: Forward and reverse primer for amplification of exon 2 of the canine LPL gene 
 

Oligo Name WGS-Ex2(2)-F WGS-Ex2(2)-R 

Sequence TAGCATCGGTGGTAGTTGC TTAGATTCCACAGTCCTCACC 

Bases 19 21 

Rating 86 100 

Tm (°C) 54.17 53.97 

GC% 52.63 47.62 

∆G (kcal/mol) -31.53 -32.01 

3' end stability (kcal/mol) -8.38 -7.94 

∆H (kcal/mol) -143.9 -148.5 

∆S (kcal/mol) -0.38 -0.39 

5' end stability (kcal/mol) -7.65 -6.08 

Hairpins (kcal/mol) -1.59   

Dimers (kcal/mol) -6.09   

Palindromes (kcal/mol)     

Repeats     

Runs     

Cross Dimers (kcal/mol)   -7.37 
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Table 3.5: Forward and reverse primer for amplification of exon 3 of the canine LPL gene 
 

Oligo Name Ex-3-U(1)-F Ex-3-U(1)-R 

Sequence CAAGTTGTAAGTGGTTATTTTAGG TTATCATAATGCTGCTTTCTGG 

Bases 24 22 

Rating 92 92 

Tm (°C) 53.73 55.58 

GC% 33.33 36.36 

∆G (kcal/mol) -35.63 -34.73 

3' end stability (kcal/mol) -7.57 -8.2 

∆H (kcal/mol) -179.1 -165.2 

∆S (kcal/mol) -0.48 -0.44 

5' end stability (kcal/mol) -6.84 -5.95 

Hairpins (kcal/mol)     

Dimers (kcal/mol) -3.91 -4.38 

Palindromes (kcal/mol)     

Repeats     

Runs TTTT TTT 

Cross Dimers (kcal/mol)   -4.38 

 
 
 
 
 
 
 
Table 3.6: Forward and reverse primer for amplification of exon 4 of the canine LPL gene 
 

Oligo Name WGS-Ex4(4)-F WGS-Ex4(4)-R 

Sequence GAGTTAATTTTCAGCATTGCC TCGCTTCTGACAGTAGGTGG 

Bases 21 20 

Rating 88 100 

Tm (°C) 54.82 55.88 

GC% 38.1 55 

∆G (kcal/mol) -33.97 -32.3 

3' end stability (kcal/mol) -10.11 -9.43 

∆H (kcal/mol) -161.7 -145 

∆S (kcal/mol) -0.043 -0.38 

5' end stability (kcal/mol) -6.46 -9.92 

Hairpins (kcal/mol) -0.32   

Dimers (kcal/mol) -6.09   

Palindromes (kcal/mol)     

Repeats     

Runs TTTT   

Cross Dimers (kcal/mol)   -5.13 
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Table 3.7: Forward and reverse primer for amplification of exon 5 of the canine LPL gene 
 

Oligo Name Ex-5-U(1)-F Ex-5-U(1)-R 

Sequence GATCCAATCACTACAGAATAAGG CAAGTGCTATACATGTGACCAG 

Bases 23 22 

Rating 91 85 

Tm (°C) 53.12 53.37 

GC% 39.13 45.45 

∆G (kcal/mol) -33.46 -31.98 

3' end stability (kcal/mol) -7.57 -7.96 

∆H (kcal/mol) -163.3 -150.2 

∆S (kcal/mol) -0.44 -0.4 

5' end stability (kcal/mol) -7.69 -6.84 

Hairpins (kcal/mol)     

Dimers (kcal/mol) -4.62 -8.07 

Palindromes (kcal/mol)   ACATGT 

Repeats     

Runs     

Cross Dimers (kcal/mol)   -4.89 

 
 
 
 
 
 
 
Table 3.8: Forward and reverse primer for amplification of exon 6 of the canine LPL gene 
 

Oligo Name WGS-Ex6-F WGS-Ex6-F 

Sequence TCGAGCTGTTAACTGCCACC AGGCTGCTGCATAGAGTAGTGC 

Bases 20 22 

Rating 86 84 

Tm (°C) 58.61 59.25 

GC% 55 54.55 

∆G (kcal/mol) -34.21 -36.19 

3' end stability (kcal/mol) -9.43 -8.03 

∆H (kcal/mol) -151.8 -164.6 

∆S (kcal/mol) -0.39 -0.43 

5' end stability (kcal/mol) -8.36 -9.41 

Hairpins (kcal/mol)   -1.99 

Dimers (kcal/mol) -7.53 -7.05 

Palindromes (kcal/mol) GTTAAC   

Repeats     

Runs     

Cross Dimers (kcal/mol)   -4.3 
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Table 3.9: Forward and reverse primer for amplification of exon 7 of the canine LPL gene 

 

Oligo Name WGS-Ex7-F WGS-Ex7-R 

Sequence CTGAATTGCCTGCTTATCTGG CCTACTCTTCTTCTGTTCTAAAGACC 

Bases 21 26 

Rating 90 86 

Tm (°C) 57.79 57.25 

GC% 47.62 42.31 

∆G (kcal/mol) -35.02 -38.32 

3' end stability (kcal/mol) -8.2 -7.58 

∆H (kcal/mol) -160.3 -187.4 

∆S (kcal/mol) -0.42 -0.5 

5' end stability (kcal/mol) -7.07 -6.97 

Hairpins (kcal/mol)   -2.02 

Dimers (kcal/mol) -5.36 -6.12 

Palindromes (kcal/mol)     

Repeats     

Runs   AAA 

Cross Dimers (kcal/mol)   -4.54 

 
 
 
 
 
 
 
Table 3.10: Forward and reverse primer for amplification of exon 8 of the canine LPL gene 

 

Oligo Name WGS-Ex8-F WGS-Ex8-R 

Sequence CCTACATGCCATTGATCC GGGAGGCTCCATTATCC 

Bases 18 17 

Rating 89 86 

Tm (°C) 50.74 51.58 

GC% 50 58.82 

∆G (kcal/mol) -29.08 -29.71 

3' end stability (kcal/mol) -7.69 -7.08 

∆H (kcal/mol) -133.7 -136.6 

∆S (kcal/mol) -0.35 -0.36 

5' end stability (kcal/mol) -6.97 -9.31 

Hairpins (kcal/mol)   -1.34 

Dimers (kcal/mol) -5.62 -6.24 

Palindromes (kcal/mol)     

Repeats     

Runs   GGG 

Cross Dimers (kcal/mol)   -5.64 
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Table 3.11: Forward and reverse primer for amplification of exon 9 of the canine LPL gene 

 

Oligo Name WGS-Ex9-F WGS-Ex9-R 

Sequence GTCGCTGACCAGAATGG AGCCACAAGAATCAGTGC 

Bases 17 18 

Rating 88 91 

Tm (°C) 51.11 50.46 

GC% 58.82 50 

∆G (kcal/mol) -28.27 -28.65 

3' end stability (kcal/mol) -8.44 -8.03 

∆H (kcal/mol) -125.5 -130.8 

∆S (kcal/mol) -0.33 -0.34 

5' end stability (kcal/mol) -9.67 -9.76 

Hairpins (kcal/mol) -0.82 -0.2 

Dimers (kcal/mol) -6.02 -4.3 

Palindromes (kcal/mol)     

Repeats     

Runs     

Cross Dimers (kcal/mol)   -6.13 

 

The designed primer pairs were then used to amplify exon 1 through 9 of the LPL gene in the 21 

Miniature Schnauzers. 

 

3.4. Polymerase Chain Reaction (PCR) 

 

3.4.1. Primer Concentration 

 

The commercially produced primer (Sigma–Genosys, St.Louis, MO, USA) were reconstituted in 

TAE – buffer and used at a final primer concentration of 10 µmol/L. 

 

3.4.2. Optimization of Amplification Conditions 

 

To determine the optimal amplification conditions for each primer pair 9 different premixes (#1-9), 

containing different concentrations of buffered salt solution with nucleotides, Mg2+ and MasterAmp 

PCR enhancer with betaine, were tested at different annealing temperatures. Reactions with a total 
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volume of 25 µl were prepared on ice. A mastermix [95 µl sterile water, 10 µl forward primer 

solution, 10 µl reverse primer solution, 5 µl DNA (100 ng/µl) and 5 µl DNA polymerase mix 

(MasterAmp Extra – Long DNA Polymerase Mix; 2.5 U / µl, Epicentre, WI, USA)] was used. The 

mastermix (12.5 µl) was combined with the respective premix (12,5 µl; MasterAmp Extra-Long 

PCR 2X Premixes 1 – 9). A negative control was prepared using 10 µl sterile water, 1 µl forward 

primer solution, 1 µl reverse primer solution, 5 µl DNA polymerase mix (MasterAmp Extra – Long 

DNA Polymerase Mix; 2.5 U / µl) and 12.5 µl premix. All samples were centrifuged at low speed for 

5 sec. A Mastercycler Gradient Thermal Cycler (Eppendorf, Hamburg, Germany) was programmed 

using the following variables: 

• Initial denaturation at 94 ºC for 45 seconds. 

• Denaturation at 94 ºC for 45 seconds for 30 cycles. 

• A touchdown approach was used for annealing. The first cycle used an annealing temperature 

3ºC above the calculated primer melting temperature. During each of the following 6 cycles 

the annealing temperature was decreased by 1 ºC, and then held constant at 3 ºC below the 

calculated melting temperature for the following 23 cycles. During each cycle the annealing 

temperature was held constant for 1 min.  

• Extension at 72ºC for 2.5 min for 30 cycles. 

• Final extension at 72ºC for 18 min. 

 

Additionally, a positive contol (21 µl sterile water, 3 µl Contol Lambda DNA Template/Primer, 1 µl 

DNA polymerase mix (MasterAmp Extra – Long DNA Polymerase Mix 2.5 U / µl) for each premix 

was prepared whenever a new batch of MasterAmp Extra-Long PCR Kit was purchased. 

Amplification conditions were as follows: 

• Initial denaturation at 98ºC for 1 min 

• Denaturation at 98ºC for 20 seconds for 20 cycles 

• Annealing at 56ºC for 1 min for 20 cycles 

• Extension at 68ºC for 20 min for 20 cycles 
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An agarose gel was prepared as described in section 3.2.3. PCR tubes were put on ice, 5 µl running 

buffer (6X Type I Loading Solution, Sigma) were added and mixed with the sample. The gel was 

loaded with 17 µl of the mixture per well. A reference sample comprised of a log ladder (2 – log 

Ladder, BioLabs Inc.) was loaded into a separate well. Staining, de-staing and evaluation of the gel 

were performed as described in 3.2.3. 

 

A premix was chosen that resulted in one band of the desired template size (fig. 3.2). Using this 

premix, PCR reactions were performed at different temperatures to determine the optimal annealing 

temperature. These conditions were then used for large scale amplification of the samples from the 

Miniature Schnauzer. 

 

Figure 3.2: Example for PCR optimization: amplification of exon 3 using different premixes. The second 

column shows the reference sample. 

 

 

If no specific amplification could be achieved the primer pair for the corresponding exon was 

discarded and a new primer pair was designed. 
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3.4.3. Sequencing 

 

3.4.3.1. Amplification Conditions for Exon 1 - 9 

Each exon was amplified in two 50 µl reactions containing: 

• 2 µl forward primer 

• 2 µl reverse primer 

• 1.5 µl DNA 

• 19 µl sterile water 

• 1 µl Taq 

• 25 µl Premix 

 

Different conditions were used to amplify the 9 exons of the canine LPL gene (Table 3.4). 

 

                                       Table 3.12: Amplification conditions exon 1 - 9 

 Tm (°C) Premix 

Exon 1 65 2 

Exon 2 61 4 

Exon 3 58 1 

Exon 4 60 3 

Exon 5 58 4 

Exon 6 63 2 

Exon 7 61 1 

Exon 8 58 6 

Exon 9 58 9 

 

3.4.3.2. Direct Sequencing of Exon 1 - 9 

DNA fragments from PCR reactions were purified using a QIAquick PCR Purification Kit (Qiagen, 

Hilden, Germany) as specified by the manufacturer. The two identical PCR products from each exon 

were combined in this step to increase the final DNA concentration. Spectrophotometry was used to 

determine the concentration of the PCR product as specified in section 3.2.3. 

 

Sequencing reactions were carried out in 6 µl volumes containing 100 – 200 ng PCR product, 2 µl 

Big Dye® Terminator v 1.1 Cycle Sequencing Mix (Applied Biosystems, Foster City, CA, USA), 10 
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pmol primer, and sterile water. Thermal Cycling was performed on a Mastercycler Gradient Thermal 

Cycler (Eppendorf) using 30 cycles of 96ºC for 30 seconds, 55ºC for 15 seconds and 60ºC for 4 min. 

Primer, shown in Tables 3.4 through 3.11, were used for sequencing reactions of exon 2 through 9. 

No specific amplification could be achieved for exon 1 (fig 3.3). Therefore, nested primers were used 

to sequence exon 1: 

 

Ex1-S(1)-F: 5’TCTCGGAGGGAACCAGC 

Ex1-S(2)-F: 5’CGAGATGGAGAGCAGAGC 

Ex1-S(1)-R: 5’CCAACGCCTGAGGTTCTCC 

 

                                               Figure 3.3: Amplification of exon 1 

 

 

 

Reactions were purified by diluting the samples with 25 µl sterile water, adding the solution onto 

Spin-50 Mini-Columns (USA Scientific, Ocala, FL, USA) and centrifuging it for 4 min at 1000 x g. 
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Samples were then dried completely using a vacuum centrifuge (SC 210A modular multicomponent 

system, Savant Instruments, Holbrook, NY, USA). Automated sequencing was performed on an ABI 

3100 Genetic Analyzer (Hitachi, Tokyo, Japan).  
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4. Results 

 

4.1. LPL Gene Sequence in the Miniature Schnauzer 

The LPL gene was amplified and sequenced in 21 Miniature Schnauzers. 3 sequences were obtained 

from each dog. A triplicate that showed identical nucleotide sequences was compared to the other 

dogs in the study. If a triplicate was not homogeneous further sequencing was performed in order to 

verify those variations. Figures 4.1 through 4.9 show the complete cDNA sequence, the amino acid 

sequence (one letter code) and the sequence for the exon/intron boundaries (3’ and 5’ end of the 

respective intron) for the LPL gene that was common in all Miniature Schnauzers evaluated. 

 

Figure 4.1: This figure shows the nucleotide and protein sequence of exon 1 

Exon 1 
 

atggagagcagagccctactcctggtggccctgggcatgtggctgcagagtctggccgcc 

 M  E  S  R  A  L  L  L  V  A  L  G  M  W  L  Q  S  L  A  A  

gccgcccgaattccag 

 A  A  R  I  P     

 

The 14 underlined nucleotides represent the area of the sequence for primer placement. 

 
 
 
Figure 4.2: This figure shows the nucleotide and protein sequence of exon 2 

Exon 2 
 
Intron 1 (3’end):                   
                                 CAACTTTTCCTTTTTTAGGAATTCCAG 

 
Exon 2: 
gaggaaatgattttgtagatatcgaaagtaaatttgctctaaggacccctgaagacacag 

   G  N  D  F  V  D  I  E  S  K  F  A  L  R  T  P  E  D  T   

ctgaggatacctgccacctcattcccggagtgatagaatctgtggctaactgccacttca 

A  E  D  T  C  H  L  I  P  G  V  I  E  S  V  A  N  C  H  F   

atcacaccagcaagacctttgtggtgatccatggctggacg 

N  H  T  S  K  T  F  V  V  I  H  G  W  T   

 
Intron 2 (5’end): 
GTAAGACAGTTTCTTAGGGAAGGAGCAGATTGGGGTAGACCAGGCAT 
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Figure 4.3: This figure shows the nucleotide and protein sequence of exon 3 

Exon 3 
 
Intron 2 (3’end): 
             CAAGTTGTAAGTGGTTATTTTAGGAAAGCTTGTATCATCCTTTCCAG 

 

Exon 3: 
gtgacaggaatgtatgagagttgggtgccaaaacttgtggctgccctgtacaagagggaa 

 V  T  G  M  Y  E  S  W  V  P  K  L  V  A  A  L  Y  K  R  E  

ccggactccaatgtcattgtggtggactggctgtcacgagcccagcagcattatccagtg 

 P  D  S  N  V  I  V  V  D  W  L  S  R  A  Q  Q  H  Y  P  V  

tctgcagggtacaccaagctggtgggaaaagatgtggccaagttcatcaactggttggcg 

 S  A  G  Y  T  K  L  V  G  K  D  V  A  K  F  I  N  W  L  A  

 
Intron 3 (5’end):  GTAAGGACTGGGGGAAGAAGACATGTGTCCAAAACATATCTCTTCAC 
TAGTACTAAACAAAAAACTGGTTTTTATTACT 

 
 
 
Figure 4.4: This figure shows the nucleotide and protein sequence of exon 4 

Exon 4 
 

Intron 3 (3’end): 
                                AACCCCTTTTTCTTTTTCTCTTCCAAAG 

 

Exon 4: 
gaggaatttcagtatcctctggacaatgtccatcttttgggatacagccttggagcgcat 

 E  E  F  Q  Y  P  L  D  N  V  H  L  L  G  Y  S  L  G  A  H  

gctgctggcattgcaggaagtctgaccaataagaaggtcaatagaattactg 

 A  A  G  I  A  G  S  L  T  N  K  K  V  N  R  I  T     

 

Intron 4 (5’end): 
GTAAGAAGGCAATGCCAGTAGATTTATCATAGAAAAGTTGAGATGCCTGTCATTCTGAAA 

GAGAATAGGATGCTTGTCAAATTCCCATATGTATGTGATGTTCC 

 
 
 
Figure 4.5: This figure shows the nucleotide and protein sequence of exon 5 

Exon 5 
 
Intron 4 (3’ end): 
   GGACAAAATGAATGGGAATTTAAATATCTGTGAGGACTTTTTTTTCCCCCCATTAAG 

 
Exon 5: 
gtctagatccagctggacctaactttgagtatgcagaagctccaagtcgtctttctcctg 

   L  D  P  A  G  P  N  F  E  Y  A  E  A  P  S  R  L  S  P  

atgatgcagattttgtagatgtcttacacacattcacaagagggtcacctggccgaagta 

D  D  A  D  F  V  D  V  L  H  T  F  T  R  G  S  P  G  R  S   

ttggaatccagaaaccagtaggacatgttgatatttatcctaatggaggcacttttcaac 

I  G  I  Q  K  P  V  G  H  V  D  I  Y  P  N  G  G  T  F  Q   

caggatgtaacattggggaagccatccgtgtgattgcagagagaggccttggag 

P  G  C  N  I  G  E  A  I  R  V  I  A  E  R  G  L  G    



 
 41 

Intron 5 (5’ end): 
GTAACTATGATTTAGAAGTTAATTAAACTGTTTCGTTCTTAATTCTTACTGATCTAGTCT 

CCTACCCATTCCCCACAAGTAAGTAGTTTTAATATATACATTTAGCCAAGAAATG 

 
 
 
Figure 4.6: This figure shows the nucleotide and protein sequence of exon 6 

Exon 6  
 
Intron 5 (3’ end): 
TGAAACACTTATTATGGACTTTCATGGAATTGAATTTTCTTTGTGCTTCTTTCTTCCCAG 

 
Exon 6: 
atgtggaccagctagtgaaatgctcccatgagcggtccattcacctctttattgactctc 

   V  D  Q  L  V  K  C  S  H  E  R  S  I  H  L  F  I  D  S  

tgttgaatgaagaaaatccaagtaaggcctaccggtgcaactcaaaggaagcctttgaga 

L  L  N  E  E  N  P  S  K  A  Y  R  C  N  S  K  E  A  F  E  

aagggctttgcctgagttgcagaaagaaccgttgcaacaacatgggctatgagatcaata 

K  G  L  C  L  S  C  R  K  N  R  C  N  N  M  G  Y  E  I  N  

aggtcagagccaaaagaggcagcaaaatgtacctgaagactcgctctcagatgccttaca 

K  V  R  A  K  R  G  S  K  M  Y  L  K  T  R  S  Q  M  P  Y   

aag 

K  

 

Intron 6 (5’ end): 
GTAGGCTGGAGAATGTTGTGAGTAGGGAAGATCAATTTGATCCTATTTTTTTGTCATGCT 

CATTGCCTCCATGTACTGAGT 

 
 
 
Figure 4.7: This figure shows the nucleotide and protein sequence of exon 7 

Exon 7 
 
Intron 6 (3’ end): 
             TTGCATAAAAACTGATTAGCACTTGTTCCCTACATTTTCTCCCTACA 

 

Exon 7: 
gtcttccattaccaagtaaagatacatttttctgggactgagagtgatgcacagaccaac 

 V  F  H  Y  Q  V  K  I  H  F  S  G  T  E  S  D  A  Q  T  N  

caggccttcgagatctctctgtatggcactgtggctgagagtgagaacatcccttttacc 

 Q  A  F  E  I  S  L  Y  G  T  V  A  E  S  E  N  I  P  F  T  

ct 

 
Intron 7 (5’ end): 
GTGAGTAGCCACATGGTTTAACC 
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Figure 4.8: This figure shows the nucleotide and protein sequence of exon 8 

Exon 8 
 
Intron 7 (3’ end): 
   CCCAAAACAAAAAAACTTGTTTCTAAACTAACCAAATATGCTGATTTTTTTCTTCAG 

 

Exon 8: 
gcctgaagtttctgctaataagacatactcttttctaatttacacggaggtggatattgg 

  P  E  V  S  A  N  K  T  Y  S  F  L  I  Y  T  E  V  D  I  G  

agaactgctaatgttgaaactcaaatggaagagtgattcatacttcagctggtcagactg 

  E  L  L  M  L  K  L  K  W  K  S  D  S  Y  F  S  W  S  D  W  

gtggagcagccctggctttgctattgagaagatcagagtaaaagctggagagactcagaa 

  W  S  S  P  G  F  A  I  E  K  I  R  V  K  A  G  E  T  Q  K  

aaa 

   

Intron 8 (5’ end): 
GTAATTAAATTTATTTTTT 

 

 

Figure 4.9: This figure shows the nucleotide and protein sequence of exon 9 

Exon 9 
 
Intron 8 (3’ end): 
TAACCAAATCATATATTTTTTGAACAACTGTTTCTCTTTTCCCATATGACATGTTCACAT 

TCATTTTCTTCTACAG 

 
Exon 9: 
ggtaatcttctgttccagggagaaagtgtctcatctgcagaaaggaaagtcgtctgtggt 

  V  I  F  C  S  R  E  K  V  S  H  L  Q  K  G  K  S  S  V  V  

atttgtgaaatgccatgacaagtctctgaataagaagtctggctg 

  F  V  K  C  H  D  K  S  L  N  K  K  S  G     

 
Intron 9 (5’ end): 
GTGAGCATCATGGGCTAAAGTTCCTTGGGTATCCTGAGCTTGCAGTTAGGGGACACGGCT 

TTATACATTGCTCTTCATCCCATAACTTAAAGA 

 

 

A multiple sequence alignment was performed to determine the similarity of the identified sequence 

in the Miniature Schnauzer with the sequence published on the Trace Archive database obtained 

from a boxer (fig 4.10). Two variations were identified in the Miniature Schnauzer. A nucleotide 

substitution 826 C>T within exon 6 as well as an insertion of a G at the beginning of exon 7. 
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Figure 4.10: Multiple sequence alignment Trace Archive vs. Miniature Schnauzer. Please note that the 
numbers for the position of the Trace Archive nucleotides are generic and therefore do not correlate with those 
of the Miniature Schnauzer. 
 

 

 

However, a comparison of the protein sequences (Protein Id: XP_534584.1) showed 100% sequence 

homology between the two.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 
 44 

4.2 Single Nucleotide Polymorphisms (SNPs) identified in the Miniature Schnauzers 

studied 

All dogs in this study showed the nucleotide sequence shown in Figures 4.1 through 4.9. 

Additionally, 10 SNPs could be identified in exons of single dogs (Table 4.1 and Figures 4.11 

through 4.15). SNPs are DNA sequence variations that occur when a single nucleotide (A, T, C, or 

G) in the genome sequence is altered. Each individual has many single nucleotide polymorphisms 

that together create a unique DNA pattern for that individual. 

 

Table 4.1: Overview of SNPs found in exon 2, 3, 5, and 7 in 21 Miniature Schnauzers 

  SNPs 

    Exon 2 Exon 3 Exon 5 Exon 6 Exon 7 

  1           

  2           

  4 84 T>C         

  5       826 T>C   

  6       826 T>C   

Affected 8           

Dogs 15           

  16     
546 
A>C     

  17   
269 A>C, 
Lys(90)Thr       

  18     
690 
T>C     

  20     
699 
C>T     

  21           

  3           

  7   
302 A>G, 
Asp(101)Gly       

  9           

Healthy 
Control 10       

967 A>G, 
Lys(323)Glu   

 Dogs 11           

  12           

  13       957 A>G   

  14         
1057 
A>G 

  19           
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Exon 2 

A 84 T>C substitution (fig. 4.11) was found in one of the affected dogs. This allele does not lead to a 

change in the protein sequence. 

 

Figure 4.11: SNP in exon 2 

 

SNP 84 (T>C): 

gaggaaacgattttgtagatatcgaaagtaaatttgctctaaggacccctgaagacacagc 

   G  N  D  F  V  D  I  E  S  K  F  A  L  R  T  P  E  D  T  A 

tgaggatacctgccacctcattcccggagtgatagaatctgtggctaactgccacttcaat 

  E  D  T  C  H  L  I  P  G  V  I  E  S  V  A  N  C  H  F  N  

cacaccagcaagacctttgtggtgatccatggctggacg 

 H  T  S  K  T  F  V  V  I  H  G  W  T   

 

 

Exon 3 

One nucleotide polymorphism 269 A>C (fig. 4.12) was identified in one affected dog, leading to a 

single amino acid substitution; Lys(90)Thr. 

 

Figure 4.12: SNPs in exon 3 

 

SNP 269 (A>C): 

gtgacaggaatgtatgagagttgggtgccaacacttgtggctgccctgtacaagagggaa 

 V  T  G  M  Y  E  S  W  V  P  T  L  V  A  A  L  Y  K  R  E  

ccggactccaatgtcattgtggtggactggctgtcacgagcccagcagcattatccagtg 

 P  D  S  N  V  I  V  V  D  W  L  S  R  A  Q  Q  H  Y  P  V  

tctgcagggtacaccaagctggtgggaaaagatgtggccaagttcatcaactggttggcg 

 S  A  G  Y  T  K  L  V  G  K  D  V  A  K  F  I  N  W  L  A  

 

Another single nucleotide polymorphism 302 A>G was identified in one healthy control Miniature 

Schnauzer, causing a single amino acid substitution; Asp(101)Gly. 

 

SNP 302 (A>G): 

gtgacaggaatgtatgagagttgggtgccaaaacttgtggctgccctgtacaagagggaa 

 V  T  G  M  Y  E  S  W  V  P  K  L  V  A  A  L  Y  K  R  E  

ccgggctccaatgtcattgtggtggactggctgtcacgagcccagcagcattatccagtg 

 P  G  S  N  V  I  V  V  D  W  L  S  R  A  Q  Q  H  Y  P  V  

tctgcagggtacaccaagctggtgggaaaagatgtggccaagttcatcaactggttggcg 

 S  A  G  Y  T  K  L  V  G  K  D  V  A  K  F  I  N  W  L  A  
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Exon 5 

SNPs were found in three of the affected dogs. Each dog showed a different  SNP. 546 A>C, 690 

T>C, and 699 C>T (fig. 4.13) are all nucleotide substitutions that do not result in amino acid 

substitutions. 

 

Figure 4.13: SNPs in exon 5 

 

SNP 546 (A>C): 

gtctagatccagctggccctaactttgagtatgcagaagctccaagtcgtctttctcctga 

   L  D  P  A  G  P  N  F  E  Y  A  E  A  P  S  R  L  S  P  D 

tgatgcagattttgtagatgtcttacacacattcacaagagggtcacctggccgaagtatt 

  D  A  D  F  V  D  V  L  H  T  F  T  R  G  S  P  G  R  S  I  

ggaatccagaaaccagtaggacatgttgatatttatcctaatggaggcacttttcaaccag 

 G  I  Q  K  P  V  G  H  V  D  I  Y  P  N  G  G  T  F  Q  P   

gatgtaacattggggaagccatccgtgtgattgcagagagaggccttggag 

G  C  N  I  G  E  A  I  R  V  I  A  E  R  G  L  G 

 

SNP 690 (T>C): 

gtctagatccagctggacctaactttgagtatgcagaagctccaagtcgtctttctcctga 

   L  D  P  A  G  P  N  F  E  Y  A  E  A  P  S  R  L  S  P  D 

tgatgcagattttgtagatgtcttacacacattcacaagagggtcacctggccgaagtatt 

  D  A  D  F  V  D  V  L  H  T  F  T  R  G  S  P  G  R  S  I  

ggaatccagaaaccagtaggacatgttgatatttatcccaatggaggcacttttcaaccag 

 G  I  Q  K  P  V  G  H  V  D  I  Y  P  N  G  G  T  F  Q  P   

gatgtaacattggggaagccatccgtgtgattgcagagagaggccttggag 

G  C  N  I  G  E  A  I  R  V  I  A  E  R  G  L  G   

 

SNP 699 (C>T): 

gtctagatccagctggacctaactttgagtatgcagaagctccaagtcgtctttctcctga 

   L  D  P  A  G  P  N  F  E  Y  A  E  A  P  S  R  L  S  P  D 

tgatgcagattttgtagatgtcttacacacattcacaagagggtcacctggccgaagtatt 

  D  A  D  F  V  D  V  L  H  T  F  T  R  G  S  P  G  R  S  I  

ggaatccagaaaccagtaggacatgttgatatttatcctaatggaggtacttttcaaccag 

 G  I  Q  K  P  V  G  H  V  D  I  Y  P  N  G  G  T  F  Q  P   

gatgtaacattggggaagccatccgtgtgattgcagagagaggccttggag 

G  C  N  I  G  E  A  I  R  V  I  A  E  R  G  L  G   

 

 

Exon 6 

Two affected dogs showed the same nucleotide substitution 826 T>C. In one healthy control dog 

another SNP, 957 A>G (fig. 4.14), was found. None of these SNPs are associated with a change in 

the amino acid sequence. 
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Figure 4.14: SNPs in exon 6 

 

SNP 826 (T>C): 

atgtggaccagctagtgaaatgctcccatgagcggtccattcacctctttattgactctct 

   V  D  Q  L  V  K  C  S  H  E  R  S  I  H  L  F  I  D  S  L 

gctgaatgaagaaaatccaagtaaggcctaccggtgcaactcaaaggaagcctttgagaaa 

  L  N  E  E  N  P  S  K  A  Y  R  C  N  S  K  E  A  F  E  K  

gggctttgcctgagttgcagaaagaaccgttgcaacaacatgggctatgagatcaataagg 

 G  L  C  L  S  C  R  K  N  R  C  N  N  M  G  Y  E  I  N  K   

tcagagccaaaagaggcagcaaaatgtacctgaagactcgctctcagatgccttacaaag 

V  R  A  K  R  G  S  K  M  Y  L  K  T  R  S  Q  M  P  Y  K  

 

SNP 957 (A>G): 

atgtggaccagctagtgaaatgctcccatgagcggtccattcacctctttattgactctct 

   V  D  Q  L  V  K  C  S  H  E  R  S  I  H  L  F  I  D  S  L  

gttgaatgaagaaaatccaagtaaggcctaccggtgcaactcaaaggaagcctttgagaaa 

  L  N  E  E  N  P  S  K  A  Y  R  C  N  S  K  E  A  F  E  K  

gggctttgcctgagttgcagaaagaaccgttgcaacaacatgggctatgagatcaataagg 

 G  L  C  L  S  C  R  K  N  R  C  N  N  M  G  Y  E  I  N  K  

tcagagccaagagaggcagcaaaatgtacctgaagactcgctctcagatgccttacaaag 

V  R  A  K  R  G  S  K  M  Y  L  K  T  R  S  Q  M  P  Y  K  

 

One healthy control dog showed a 967 A>G substitution, leading to a single amino acid substitution, 

Lys(323)Glu. 

 

SNP 967 (A>G): 

atgtggaccagctagtgaaatgctcccatgagcggtccattcacctctttattgactctct 

   V  D  Q  L  V  K  C  S  H  E  R  S  I  H  L  F  I  D  S  L  

gttgaatgaagaaaatccaagtaaggcctaccggtgcaactcaaaggaagcctttgagaaa 

  L  N  E  E  N  P  S  K  A  Y  R  C  N  S  K  E  A  F  E  K  

gggctttgcctgagttgcagaaagaaccgttgcaacaacatgggctatgagatcaataagg 

 G  L  C  L  S  C  R  K  N  R  C  N  N  M  G  Y  E  I  N  K  

tcagagccaaaagaggcagcgaaatgtacctgaagactcgctctcagatgccttacaaag 

V  R  A  K  R  G  S  E  M  Y  L  K  T  R  S  Q  M  P  Y  K  

 

 

Exon 7 

One normal control dog showed a 1057 A>G substitution (fig. 4.15). This allele does not lead to a 

change in the protein sequence. 

 

Figure 4.15: SNP in exon 7 
 

SNP 1057 (A>G): 

gtcttccattaccaagtaaagatacatttttctgggactgagagtgatgcgcagaccaacc 

 V  F  H  Y  Q  V  K  I  H  F  S  G  T  E  S  D  A  Q  T  N  

aggccttcgagatctctctgtatggcactgtggctgagagtgagaacatcccttttaccct 

Q  A  F  E  I  S  L  Y  G  T  V  A  E  S  E  N  I  P  F  T  
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Also, variations within the adjacent intronic regions of exon 1 – 9 could be identified. Table 4.2 

shows the nature and distribution of these findings. 

 

Table 4.2: Overview of SNPs found in intron 1, 2, 3, 4, and 6 in 21 Miniature Schnauzers 

  Intronic Variations 
    Intron 1 Intron 2 Intron 3 Intron 4 Intron 6 

  1           

  2           

  4     
G>A, 27 bp 
downstream Ex3     

  5           

  6           

Affected 8           

Dogs 15           

  16 

A>G, 8bp 
upstream 
Ex2         

  17           

  18           

  20 

A>C, 8bp 
upstream 
Ex2     

T insert 31 bp 
upstream 
Ex5   

  21           

  3           

  7           

  9           

Healthy 
Control 
Dogs 10       

C>T, 12 bp 
upstream 
Ex5 

CC>TT, 5,6 
bp upstream 
Ex7 

 11     
A insert, 29 bp 
downstream Ex3     

  12 

A>C, 8bp 
upstream 
Ex2 

T>G, 36bp 
downstream Ex2       

  13           

  14           

  19           
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5. Discussion 

 

The lipoprotein lipase (LPL) gene was chosen as a possible candidate gene for the development of 

hyperlipidemia and pancreatitis in Miniature Schnauzers because of the central role of LPL in lipid 

metabolism. Also, LPL has been associated in humans affected with a similar syndrome that also 

leads to hypertriglyceridemia and chronic pancreatitis and is termed LPL deficiency. Finally, the LPL 

gene shows a highly conserved structure and function among mammals, which justified the 

evaluation of the LPL gene in the dog. Miniature Schnauzers with hypertriglyceridemia and 

concomitant pancreatitis were selected to make up the affected group. Goal was to sequence the LPL 

gene in the dog and to determine if a statistically significant difference exists in the LPL nucleotide 

sequence between affected Miniature Schnauzers and healthy control dogs. Additionally, intron/exon 

boundaries of the coding sequence were screened for nucleotide variations that could interfere with 

splicing.  

We sequenced the complete LPL cDNA from 21 dogs. When compared to other species  (fig. 5.1) 

closest similarity was found with the bovine and human sequence, as expected according to 

phylogenetic data. 

 

Figure 5.1: Phylogram tree of LPL genes in different species 

 

Exons 2 through 9 showed a conserved length among all mammalian species recorded.  Exon 1 in 

the dog showed four nucleotide deletions, resulting in a total length of 76 bp as compared to 88 bp in 

the human LPL gene. This lack of conservation can be attributed to less stringent requirements for 

this region, which is noncoding. Exon 1 of the LPL gene makes up the 5’ untranslated region (5’ 

UTR), while exon 2 starts with the initiator codon ATG (Murthy et al., 1996). Therefore, even 

though the lipoprotein lipase is very well conserved among species, sequence differences in exon 1 

can occur. 
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107 reported mutations have been linked to LPL malfunction resulting in hyperlipidemia and 

pancreatitis in humans (2.1.8). These mutations mainly cluster around regions that encode for the 

major protein domains. Exon 4, 5, and 6 of the human LPL gene show so called “hot spots” (fig. 

2.2). Mutations in these regions affect the enzyme function by interfering with the 3 major binding 

sites for HSPG, apo C2, and the triglyceride substrate as well as dimerization (Murthy et al., 1996).  

 

Figure 5.2: DNA sequence diversity in a 9.7-kb region of the human lipoprotein lipase gene (Murthy et al., 
1996)  

 

a) The entire gene spans approximately 30 kb of genomic DNA. b) The region sequenced in 71 individuals 
spans 9.7 kb of the LPL gene from the 3´ end of intron 3 to 5´ end of intron 9. d), The types and distribution of 
repeat sequences within the target region identified by RepeatMasker. d) The location of the 88 DNA variants 
identified by sequencing the 71 individuals across the 9.7-kb region. 
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In a study of 71 humans unselected for health status 88 sequence variations had been found in the 

LPL gene (fig. 5.2), including those that would lead to amino-acid substitutions. The amount of 

DNA variation found in LPL highlights the potential problems associated with interpreting genetic 

studies (Nickerson et al., 1998). The variation found in this gene is considerably greater than 

generally appreciated in biomedical genetics. These data suggest that the levels and patterns of 

sequence variation found in the human LPL gene could pose a challenge in identifying sites, or a 

combination of sites, that influence variation in risk of disease within and among populations. 

10 exonic SNPs and 9 intronic SNPs were identified in 21 Miniature Schnauzers. Upon analysis, 

none of the alleles identified in this study showed alterations that were associated with the disease 

status.  

 

Twenty-one study dogs were chosen from all across the United States, and therefore are likely to be 

from different pedigree lines, although they are derived from a common ancestral stock. The 

appearance of SNPs among dogs from different ancestral lines is a common phenomenon in purebred 

dog populations. Our findings suggest that the nucleotide substitutions we identified in the canine 

LPL gene are due to pedigree line differences rather than disease status. Similar to microsatellites 

(2.2.2.), SNPs are commonly used markers for certain lines of origin as well as disease traits. 

 

We also identified two differences in the LPL nucleotide sequence between the Trace Archive 

sequence derived from the Boxer and the Miniature Schnauzer. The sequence on Trace Archive has 

not yet been curated, and it is likely that these findings are due to sequences trace problems. Also, 

breed differences between the Boxer and the Miniature Schnauzer are a possible explanation. More 

importantly, upon further analysis, both nucleotide sequences resulted in the same amino acid 

sequence.  

 

In conclusion, based on the study population examined here, the syndrome of hypertriglyceridemia 

and pancreatitis in the Miniature Schnauzer is not linked to mutations in the mRNA or the splicing 

regions of the lipoprotein lipase gene. 
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6. Summary 

 

Lipoprotein Lipase (LPL) is a key enzyme in lipid transport. It catalyses the hydrolysis of the 

triacylglycerol component of chylomicrons and very low-density lipoproteins (VLDL), providing 

non-esterified fatty acids for tissue utilization. The gene encoding for LPL has already been 

identified in several species except the dog. Mutations of the human LPL-gene have been shown to 

cause partial or complete malfunction of the enzyme, resulting in accumulation of lipoproteins in the 

blood. This condition is called familial LPL deficiency. LPL malfunction results in 

hyperlipoproteinemia, recurrent acute pancreatitis, and ultimately pancreatic insufficiency. 

Several authors have postulated a genetic cause for pancreatitis in the Miniature Schnauzer. An 

idiopathic increase in serum triglyceride concentration can also be found in this breed. 

Based on these findings we were evaluating a possible role of the lipoprotein lipase gene in the 

development of pancreatitis and hyperlipidemia in the Miniature Schnauzer. First, we identified the 

genetic sequence of the LPL gene in the dog. We determined clones on the Trace Archive database 

for the canine genome project that contain the genomic sequence of a particular exon as well as its 

adjacent intronic regions. Based on these findings we designed primers for each exon using the 

software Netprimer (www.premierbiosoft.com/netprimer/index.html). Canine subjects were chosen 

from a pool of 170 Miniature Schnauzers from the database at the Gastrointestinal Laboratory at 

Texas A&M University. Based on clinical history, serum cPLI concentrations, and serum triglyceride 

concentrations 21 Miniature Schnauzers were chosen and were selected into a clinically normal 

control group (9 dogs) and an affected group (12 dogs). DNA was then collected from either white 

blood cells or mucosal cells of these dogs. After PCR optimization, exon 1 through 9 including the 

adjacent intronic regions were amplified in all dogs using MasterAmp Extra – Long PCR Kit 

(Epicentre, WI, USA) and were sequenced in triplicates. Differences in the nucleotide sequences 

were then compared among the two groups. 10 exonic SNPs and 9 intronic SNPs were identified. 

Upon analysis, none of these variations could be associated with the disease status. 

We conclude that pancreatitis associated with hyperlipidemia in the Miniature Schnauzer is not 

linked to mutations of the lipoprotein lipase gene or its splicing regions. 
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7. Zusammenfassung 

 

Die Lipoprotein Lipase (LPL) ist ein Enzym mit zentraler Bedeutung im Fettstoffwechsel. Das 

Enzym katalysiert die Hydrolyse der triglyzerid Komponente von Chylomikronen und Very Low 

Density Lipoproteinen (VLDL). Dabei werden unveresterte Fettsäuren freigesetzt, welche dann zur 

Gewebeaufnahme zur Verfügung stehen. Das Gen, welches für die LPL kodiert, wurde bereits bei 

zahlreichen Spezies identifiziert, jedoch noch nicht beim Hund. Ferner wurde gezeigt, dass 

Mutationen im humanen LPL Gen die Enzymfunktion teilweis oder vollständig einschränken, 

wodurch es zu einer Ansammlung von Lipoproteinen im Blut kommt. Dieses Krankheitsbild wird als 

familiärer LPL Mangel bezeichnet. Hyperlipoproteinämie, rezidivierende akute Pankreatitis, sowie 

im weiteren Verlauf exokrine Pankreasinsuffizienz sind die vorherrschenden Symptome dieser 

Erkrankung. Mehrere Autoren vermuten eine genetische Ursache für Pankreatitis beim 

Zwergschnauzer. Ebenso ist eine idiopathische Erhöhung der Triglyzeride im Serum bei dieser Rasse 

zu finden. Basierend auf diesen Beobachtungen haben wir das Lipoprotein Lipase Gen auf dessen 

potentielle Rolle bei der Entstehung von Pankreatitis und Hyperlipämie im Zwergschnauzer 

untersucht. 

Zuerst wurde die Basensequenz des LPL Gens beim Hund bestimmt. Hierzu wurden Klone der Trace 

Archive Datenbank des Canine Genome Projects identifiziert, welche die Basensequenz für ein 

bestimmtes Exon sowie dessen angrenzende Introns enthielten. Die so bestimmten Gensequenzen 

dienten unter Verwendung der Software Netprimer (www.premierbiosoft.com/netprimer/index.html) 

als Vorlage bei der Gestaltung von Primerpaaren für die jeweiligen Exons.  

Aus 170 Zwergschnauzern von der Datenbank des Gastrointestinal Laboratory an der Texas A&M 

University wurden anhand von klinischen Symptomen, cPLI Werten und Serum-Triglyzerid 

Konzentrationen 21 Hunde für diese Studie ausgewählt. In 12 Hunden war das Krankheitsbild 

ausgeprägt, während 9 Hunde klinisch gesund waren. Anschliessend wurde von allen Hunden DNA 

aus weissen Blutzellen oder Schleimhautzellen gewonnen. Nach Optimierung der PCR wurden under 

Verwendung eines MasterAmp Extra-Long PCR Kits (Epicentre, WI, USA) Exon 1 bis 9 

einschliesslich der jeweils angrenzenden Intron Regionen in allen Hunden amplifiziert, und 
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anschliessend dreifach sequenziert.  

Insgesamt konnten 10 SNPs in Exons, sowie 9 SNPs in den angrenzenden Intron Regionen 

identifiziert werden. Weitere Untersuchungen ergaben, dass keine dieser Variationen mit dem 

Krankheitsbild in Verbindung steht. 

Aus unseren Ergebnissen schliessen wir, dass Pankreatitis verbunden mit Hyperlipämie beim 

Zwergschnauzer nicht mit Mutationen des Lipoprotein Lipase Gens oder dessen Splicing Regionen 

in Verbindung steht. 
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Appendix 
 

A.1. List of Figures 

 
Figure 2.1: Structure of the human LPL gene: Exons 1 - 10 are interrupted by introns of various  
       sizes 
 
Figure 2.2: Mutations of the human LPL gene superimposed on the LPL amino acid sequence  
       (HGMD 2005) 
 
Figure 3.1: Example of a multiple sequence alignment among the different species 
 
Figure 3.2: Example for PCR optimization: amplification of exon 3 using different premixes.  
       The second column shows the reference sample. 
 
Figure 3.3: Amplification of exon 1 
 
Figure 4.1: This figure shows the nucleotide and protein sequence of exon 1 
 
Figure 4.2: This figure shows the nucleotide and protein sequence of exon 2 
 
Figure 4.3: This figure shows the nucleotide and protein sequence of exon 3 
 
Figure 4.4: This figure shows the nucleotide and protein sequence of exon 4 
 
Figure 4.5: This figure shows the nucleotide and protein sequence of exon 5 
 
Figure 4.6: This figure shows the nucleotide and protein sequence of exon 6 
 
Figure 4.7: This figure shows the nucleotide and protein sequence of exon 7 
 
Figure 4.8: This figure shows the nucleotide and protein sequence of exon 8 
 
Figure 4.9: This figure shows the nucleotide and protein sequence of exon 9 
 
Figure 4.10: Multiple sequence alignment Trace Archive vs. Miniature Schnauzer. Please note  
         that the numbers for the position of the Trace Archive nucleotides are generic and  
         therefore do not correlate with those of the Miniature Schnauzer. 
 
Figure 4.11: SNP in exon 2 
 
Figure 4.12: SNPs in exon 3 
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Figure 4.13: SNPs in exon 5 
 
Figure 4.14: SNPs in exon 6 
 
Figure 4.15: SNP in exon 7 
 
Figure 5.1: Phylogram tree of LPL genes in different species 
 
Figure 5.2: DNA sequence diversity in a 9.7-kb region of the human lipoprotein lipase gene  
       (Murthy et al., 1996) 
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A.2. List of Tables 

 
Table 3.1: Enthalpy values ∆H of a nearest neighbor nucleotide (in -cal/°K/mol) 
 
Table 3.2: Entropy values ∆S of a nearest neighbor nucleotide (in -cal/°K/mol) 
 
Table 3.3: Forward and reverse primer for amplification of exon 1 of the canine LPL gene 
 
Table 3.4: Forward and reverse primer for amplification of exon 2 of the canine LPL gene 
 
Table 3.5: Forward and reverse primer for amplification of exon 3 of the canine LPL gene 
 
Table 3.6: Forward and reverse primer for amplification of exon 4 of the canine LPL gene 
 
Table 3.7: Forward and reverse primer for amplification of exon 5 of the canine LPL gene 
 
Table 3.8: Forward and reverse primer for amplification of exon 6 of the canine LPL gene 
 
Table 3.9: Forward and reverse primer for amplification of exon 7 of the canine LPL gene 
 
Table 3.10: Forward and reverse primer for amplification of exon 8 of the canine LPL gene 
 
Table 3.11: Forward and reverse primer for amplification of exon 9 of the canine LPL gene 
 
Table 3.12: Amplification conditions exon 1 – 9 
 
Table 4.1: Overview of SNPs found in exon 2, 3, 5, and 7 in 21 Miniature Schnauzers 
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A.3. Abbreviations 
 
LPL:   lipoprotein lipase 
apo C2:  apolipoprotein C2 
TAG:   triacyglycerol 
VLDL:   very low density lipoprotein 
HSPG:   heparin sulfated proteo glycans 
apo E:   apolipoprotein E 
kb:   kilobase 
bp:   basepair 
ER:   endoplasmatic reticulum 
Lys:   Lysine 
Arg:   Arginine 
Cys:   Cysteine 
Gly:   Glycine 
Ala:   Alanine 
Thr:   Threonine 
Asp:   Aspartate 
Glu:   Glutamate 
HGMD:  human gene mutation database 
MSS-1/2:  minimal screening set 1/2 
PCR:   polymerase chain reaction 
SNP:   single nucleotide polymorphism 
PSTI:   pancreatic secretory trypsin inhibitor 
EPI:   exocrine pancreatic insufficiency 
PAA:   pancreatic acinar atrophy 
SIBO:   small intestinal bacterial overgrowth 
GSD:   German Shepherd dog 
cTLI:   canine trypsin like immunoreactivity 
cPLI:   canine pancreatic lipase immunoreactivity 
cDNA:   complementary DNA 
∆H:   enthalpy for helix formation 
∆S:   entropy for helix formation 
R:   molar gas constant (1.987 cal/°C * mol) 
C:   the nucleic acid concentration 
[K+]:   potassium salt concentration 
Taq:   polymerase isolated from the bacteria Thermophilus aquaticus 
Tm:   melting temperature 
A:   adenine 
G:   guanine 
T:   thymine 
C:   cytosine 
Ex:   exon 
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