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Summary 
 

Cytokinesis is the process that divides the cytoplasm of a parent cell into two. In animal 

cells, cytokinesis requires the formation of the central spindle and the contractile ring 

structures. The onset of cytokinesis is marked during anaphase with the specification of 

the division site, followed by cleavage furrow formation and ingression, midbody 

formation and abscission. The astral microtubules that originate from the centrosomes 

and the anti-parallel microtubules of the central spindle are proposed to determine the site 

of cleavage furrow formation (Bringmann and Hyman, 2005). The acto-myosin based 

contractile ring assembles at the division site and constricts the cytoplasm which is 

supported by the fusion of membrane vesicles to the ingressing plasma membrane. All 

these processes together result in the formation of two daughter cells.  

The small GTPase RhoA is one of the most upstream regulators of contractile ring 

assembly at the cortex. Rho proteins are activated by GEF’s (guanine nucleotide 

exchange factors) and one GEF that is required for cytokinesis is Ect2 (epithelial cell 

transforming protein2) (Tatsumoto et al., 1999).  

The Drosophila pebble (pbl) gene product is the founding member of the Ect2 

protein family and has been shown to be required for cytokinesis (Lehner, 1992). In 

mammals, Ect2 was originally identified as a transforming protein in an expression 

cloning assay (Miki et al., 1993) and subsequently shown to be essential for cytokinesis. 

In this study, we have explored the temporal and spatial mechanisms that regulate Ect2 

function. In agreement with previous studies, we show that Ect2 is a cell cycle regulated 

protein and is phosphorylated during mitosis. We identify a number of potentially 

interesting endogenous phosphorylation sites in Ect2, including potential Plk1 and Cdk1 

sites. Although we have not been able to determine the function of these phosphorylation 

sites, their strong conservation among different species implies that they accomplish 

evolutionarily conserved roles.The identification of these phosphorylation sites sets the 

stage for future functional analyses. 

In complementary studies, we have shown that the central spindle and cell cortex 

localizations of Ect2 are facilitated by the BRCT and PH domains, respectively. The 
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targeting of Ect2 to the central spindle is mediated by the MKlp1/MgcRacGAP and 

MKlp2/Aurora-B complexes. Of the two complexes, we show that Ect2 interacts and 

colocalizes only with the MKlp1/MgcRacGAP complex in telophase and propose that 

this interaction is mediated by a phosphorylation dependent docking mechanism that 

targets Ect2 to the central spindle. Interestingly, the displacement of Ect2 from the central 

spindle did not prevent cytokinesis, suggesting that localized GEF activity is not 

absolutely essential for cleavage furrow ingression and cytokinesis. 

In the second part of this thesis, we have explored the role of Ect2 during 

cytokinesis and show that, in Ect2 depleted cells, levels of RhoA and Citron kinase are 

diminished at the cleavage site, concomitant with the impairment of cleavage furrow 

formation and ingression. Additionally, overexpression of appropriate amino-terminal 

Ect2 fragments in cells also hinders cytokinesis. In these cells, RhoA and Citron kinase 

localize to the cortex and cleavage furrow ingression occurs, but, the subsequent 

abscission fails. Taken together, these results suggest that proper function of Ect2 is not 

only important for cleavage furrow ingression, but also for cell abscission. Finally, we 

investigate the overexpression phenotypes of different Ect2 truncation mutants. We show 

that abscission failure correlates with the persistence of amino-terminal Ect2 fragments at 

striking ring-like structures surrounding the midbody, indicating that completion of cell 

division requires the displacement of Ect2 from the contractile ring and its re-import into 

the reforming cell nucleus. Collectively, our data indicate that multiple mechanisms 

cooperate to regulate Ect2 in a spatial-temporal manner.  
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1.0 Introduction 

 
1.1 Overview of the cell cycle 
 

The ‘cell theory’ states that all organisms are composed of similar units of organization, 

called cells. This was formally articulated in 1839 by Schleiden and Schwann and has 

ever since remained as the foundation of modern cell biology. The correct interpretation 

for the formation of cells was first phrased by Rudolph Virchow in the form of a 

powerful dictum, ‘Omnis cellula e cellula’, which means that each cell can only arise 

from a pre-existing cell (Virchow, 1854). Cells are generated by means of cell division 

and, whereas in bacteria and yeast a single round of cell division is enough to give rise to 

a new complete organism, in higher eukaryotes more complex rounds of cell division 

occur for various purposes such as replenishing old cells, growth of an organism or 

wound healing. The detailed mechanisms of cell division vary from organism to 

organism, but the most fundamental and conserved aspect of cell division is to pass on 

the genetic information to the newly formed daughter cell. In order to accomplish this, 

the genetic material of the existing cell is first duplicated and then equally segregated 

between the two daughter cells during the process of division so that each cell retains a 

single copy of the genetic material. 

The eukaryotic cell cycle is divided into four phases: G1 (Gap phase1), S 

(Synthesis phase), G2 (Gap phase2) and M (Mitosis and cytokinesis) phase (Fig. 1). DNA 

synthesis occurs in S phase, which lasts about half of the time of the mammalian cell 

cycle. In M phase, a series of events take place beginning with nuclear envelope 

breakdown, chromosome condensation, chromosome alignment, sister chromatid 

segregation and reformation of the new nuclei in the daughter cells. Apart from DNA 

synthesis and chromosome segregation, the cell has to increase its mass and double its 

organelles. This occurs primarily during G1 phase (between M phase and S phase) and 

G2 phase (between S phase and M phase). The length of G1 phase varies depending on 

external conditions and signals from other cells. For example, if the conditions are 

 3



Introduction 

unfavourable for continued proliferation, cells delay progression through G1 phase and 

may even enter into a resting phase termed G0. However, if the conditions are 

favourable, cells complete G1 phase passing through a point called start in yeast or 

restriction point in mammalian cells after which cells are committed to S phase. 

 

 

 

 

 

 

 

 

 

 

 

Figure 1. Schematic illustration of different 

phases of the cell cycle. Interphase is 

divided into G1, S and G2 phases. M phase 

is further divided into mitosis (nuclear 

division) and cytokinesis (cytoplasmic 

division). Image adapted from Alberts et al, 

Molecular Biology of the Cell, fourth 

edition, 2002. 

 

 

 

 

1.1.1 An overview of mitosis 
 

M phase is the most remarkable event of the cell cycle. Although it lasts only about 1 

hour in human somatic cells, essential steps of the cell cycle like equal segregation of 

genetic and cytoplasmic material occur during this phase. All important steps of mitosis 

were already described more than 100 years ago by the German anatomist, Walther 

Flemming (Flemming, 1882)(more reading in (Paweletz, 2001)). In brief, mitosis is 

divided into prophase, prometaphase, metaphase, anaphase and telophase (Fig. 2). During 

prophase, the interphase chromatin compresses to form condensed chromosomes. The 

previously duplicated centrosomes, the major microtubule-organizing centres (MTOC) in 

animal cells, increase the nucleation of highly dynamic MTs (microtubules) resulting in 

spindle aster formation (Doxsey, 2001; Meraldi and Nigg, 2002; Paoletti and Bornens, 

1997). During prometaphase, MTs are captured by dense proteinaceous material called 
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kinetochores situated on the centromeres of the mitotic chromosomes. The capture of 

MTs emanating from opposite poles to sister chromatids is essential for the congression 

of chromosomes to an equatorial plane termed the metaphase plate. This results in the 

formation of the characteristic bipolar mitotic spindle. A surveillance mechanism, the 

spindle checkpoint, ensures that chromosome segregation can only occur when all 

chromosomes have attached to MTs in a bipolar manner (Rieder et al., 1995; Rudner and 

Murray, 1996; Wells, 1996). Sister chromatids are held together by a protein complex 

consisting of cohesin proteins (Hagstrom and Meyer, 2003). Sudden loss of cohesin 

between sister chromatids marks the onset of anaphase-A, during which sister chromatids 

are pulled towards the poles by shortening of kinetochore MTs (Hauf et al., 2001; Page 

and Hieter, 1999). Then, the poles move towards the cell cortex during anaphase-B 

assisting further sister chromatid separation. During anaphase, the mitotic spindle is 

transformed into a centrally located structure consisting of non-kinetochore, anti-parallel 

MTs called the central spindle (Burgess and Chang, 2005; Glotzer, 2001). During 

telophase and cytokinesis, chromatin de-condensation begins and the nuclear envelope 

reforms.  

 

 

 

 

 

 

 

 

 

 

   

 Astral MTs 
Central spindle 

 

 

 

Figure 2. M phase progression in animal somatic cells. 

Schematic representation of different stages of mitosis and cytokinesis. Mitosis is broadly divided into 

prophase, prometaphase, metaphase, anaphase and telophase. Cytokinesis is intimately linked to 

mitosis. The colours shown here are brown for DNA, light green for centrosomes and dark green for 

MTs. Image adapted from Alberts et al, Molecular Biology of the Cell, fourth edition, 2002. 
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1.1.2 An overview of cytokinesis 
 
Cytokinesis is the process of partitioning cellular contents such as chromosomes, 

cytoplasm and organelles into two daughter cells (Fig. 2). Cytokinesis is intimately linked 

to mitosis. Cytokinesis begins at the onset of anaphase-A with the specification of the 

cleavage site. The mitotic spindle plays a key role in determining the site of cleavage 

furrow formation which generally occurs equatorially in animal cells. The cleavage 

furrow contains actin, myosin and other proteins that are organized into a contractile ring-

like structure called the actomyosin ring. Upon ingression, the cleavage furrow constricts 

the components of the central spindle into a focussed structure called the midbody. In the 

final cytokinetic event called abscission, the furrow seals generating two separated cells. 

A more detailed discussion of cytokinesis follows in the next chapter. 

 

 

1.1.3 Regulation of M phase progression 
 

Progression through different mitotic stages is predominantly regulated by two post-

translational mechanisms: protein phosphorylation and proteolysis. These two 

mechanisms are interdependent as the proteolytic machinery is controlled by 

phosphorylation and many mitotic kinases are downregulated by degradation (Nigg, 

2001). 

Out of a handful of known mitotic kinases, Cdk1 (Cyclin dependent kinase1) is 

considered as the master kinase involved in the regulation of mitotic progression 

(Morgan, 1997; Murray, 2004; Nigg, 1995). In general, the Cdks (Cyclin dependent 

kinases) are a family of heterodimeric serine/threonine protein kinases each consisting of 

a catalytic Cdk subunit and an activating cyclin subunit (Hunt, 1991; Nigg, 1995; Pines, 

1993a). The levels of cyclin subunits are extensively controlled by regulated proteolysis 

(Evans et al., 1983). The destruction of mitotic cyclins is important for the onset of 

telophase, as well as for the preparation for the next cell cycle (King et al., 1996). 

Moreover, each Cdk catalytic subunit binds to only a subset of cyclins facilitating the 

controlled and cyclin regulated progression of the cell cycle. For example, Cdk2 interacts 
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with cyclin E at the beginning of S phase to induce the initiation of DNA synthesis, and 

then binds cyclin A throughout S phase (Morgan, 1997). Cdk1 interacts with cyclin A 

and contributes to the preparation for mitosis (Edgar and Lehner, 1996; Nigg, 1995), and 

then with cyclin B to form the Cdk1-cyclin B complex for the initiation of mitosis (Pines, 

1993b).  

Cdks are regulated by several processes. When first synthesized, the catalytic 

Cdk1 subunit has no detectable activity. Furthermore, the Cdk1/cyclin A/B complex is 

only partially active because the Cdk1 subunit is subject to negative regulation by 

phosphorylation on two inhibitory residues in the ATP-binding site (threonine 14 and 

tyrosine 15) due to the activity of the kinases Wee1 and Myt1, respectively (Endicott et 

al., 1994). Inactivation of the Cdk1/cyclin B complex by phosphorylation on tyrosine 15 

is important for the control of initiation of mitosis (Gould and Nurse, 1989). The Cdk1-

cyclin A/B complex is activated by the dephosphorylation of these two residues by the 

dual-specificity phosphatase Cdc25C (Coleman and Dunphy, 1994). Moreover, complete 

activation of the Cdk1 kinase is accomplished by phosphorylation of threonine 161on the 

T-loop of Cdk1 (Nigg, 1996) by the Cdk-activating kinase (CAK) (Harper and Adams, 

2001). This results in additional conformational change of Cdk1 to open the catalytic 

center for substrates (Russo et al., 1996). Once activated, the Cdk1-cyclin A/B complex 

phosphorylates numerous substrates, such as nuclear lamins for nuclear envelope 

breakdown (Nigg, 1995), microtubule-binding proteins for spindle assembly (Andersen, 

1999), Golgi matrix proteins for Golgi fragmentation (Lowe et al., 1998)and condensins 

for chromosome condensation (Kimura et al., 1998). Furthermore, the activity of the 

Cdk1-cyclin A/B complexes is tightly regulated by the anaphase-promoting 

complex/cyclosome (APC/C), a core component of the mitotic ubiquitin-dependent 

proteolytic machinery (Peters, 2002). The timely degradation of cyclin B by APC/C 

results in the inactivation of Cdk1, and consequently Cdk1 substrates are 

dephosphorylated by counteracting phosphatases. Then cells exit mitosis with the 

decondensation of chromosomes and reformation of the nuclear envelope. 

Another mitotic kinase termed polo-like kinase1 (Plk1) is named after the 

Drosophila polo gene. The Plk family of protein kinases is conserved in all eukaryotes 

and bear a catalytic domain at the amino-terminus and a conserved motif, called the polo-
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box domain (PBD), in the carboxyl-terminal region (Nigg, 2001). The PBD has been 

shown to constitute a phosphopeptide binding domain and to interact with a number of 

proteins only after these have been phosphorylated on specific sites (Elia et al., 2003). 

The PBD targets Plk1 to several mitotic structures including spindle poles, kinetochores, 

and to the central spindle structures, the midzone and the midbody (Hanisch et al., 2005; 

Seong et al., 2002). Plk1 is a critical cell cycle regulator and its depletion in human cells 

results in a prometaphase-like arrest (van Vugt et al., 2004). Plk1 is required for 

centrosome maturation, bipolar spindle formation and chromosome congression (Hanisch 

et al., 2005; Lane and Nigg, 1996). Evidence for the requirement of Plk1 in cytokinesis 

comes from studies in Drosophila (Carmena et al., 1998) and yeast (Ohkura et al., 1995; 

Song and Lee, 2001). In Drosophila, polo1 allele mutants are viable although the 

spermatocytes of these mutants have cytokinesis defects. 

Aurora kinases were first identified in Drosophila, in a screen for genes that 

regulate the structure and function of the mitotic spindle (Fig.3). Of these, Aurora-A was 

found to be associated predominantly with the centrosomes from prophase to telophase 

(Berdnik and Knoblich, 2002). It has been shown that the activity of Aurora-A correlates 

with the maturation of mitotic centrosomes. The foremost function of Aurora-A is to 

assist in the maturation of duplicated centrosomes by recruiting proteins such as γ-tubulin 

(Berdnik and Knoblich, 2002), D-TACC (Drosophila-Transforming, Acidic, Coiled Coil 

containing protein) (Giet et al., 2002), SPD-2 (Kemp et al., 2004), centrosomin (Hannak 

et al., 2001; Terada et al., 2003) and chTOG (colonic and hepatic tumour overexpressed 

protein) and, consequently, to participate in spindle assembly and stability.   

Another Aurora family member, Aurora-B, localizes to kinetochores from 

prophase to metaphase, and to the central spindle and midbody in anaphase and telophase 

(Carmena and Earnshaw, 2003), and is therefore called a chromosomal passenger protein 

(Adams et al., 2000; Kaitna et al., 2000) (Fig.3). In mammalian cells, Aurora-B is part of 

a larger complex comprising INCENP, survivin and Borealin (Gassmann et al., 2004; 

Sampath et al., 2004). INCENP is a substrate of Aurora-B and binding of Aurora-B to 

INCENP activates the Aurora-B kinase activity (Bishop and Schumacher, 2002; Honda et 

al., 2003; Yasui et al., 2004). Aurora-B is required for spindle checkpoint signaling as 

depletion of Aurora-B or inhibition of Aurora-B results in the inhibition of spindle-
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checkpoint function (Giet and Glover, 2001). Moreover, the Aurora-B kinase is required 

for central spindle formation and cytokinesis (Giet and Glover, 2001). A number of 

substrates of Aurora-B have been discovered including CENP-A required for 

chromosome condensation (Zeitlin et al., 2001), MCAK (mitotic centromere associated 

kinesin) required for correcting the improper attachment of MTs to kinetochores 

(Andrews et al., 2004; Lan et al., 2004), MgcRacGAP, a GTPase activating protein 

required for cytokinesis (Hirose et al., 2001; Minoshima et al., 2003) and MKlp1 (mitotic 

kinesin-like protein) which is also required for cytokinesis (Guse et al., 2005). These data 

demonstrate that Aurora kinases have multiple roles during mitosis.  

Figure 3. Role of mitotic kinases at different stages of mitosis. Image adapted from Nigg, Nature Reviews, 

Molecular Cell Biology, Volume 2, January, 2001. 
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1.2 Cytokinesis 
 

1.2.1 Cytokinesis in yeasts and plants 
 

Although the basic concepts of cell division are conserved among eukaryotes, the exact 

processes involved in cytokinesis vary in different organisms (Balasubramanian et al., 

2004). This is partially due to the different structural organization of cells from different 

organisms, like animals, plants and yeasts. Yeast genetics have been a powerful tool to 

investigate cell division, and the observations made in yeast and plants will be briefly 

discussed before elaborating animal cytokinesis in more detail.  

In the budding yeast, Saccharomyces cerevisiae, the division plane is determined 

in late G1 and reflects the position of the previous division site (bud scar) (Fig. 4A). 

Whereas haploid cells undergo axial budding in which the bud forms adjacent to the 

previous bud, in diploid cells a bipolar budding pattern can be observed in which the new 

bud forms opposite to the previous bud. These two different ways of division site 

determination are thought to be mediated by axial-specific (Bud3p, Bud4p, Axl1p) and 

bipolar-specific (Bud8p, Bud9p) cortical landmarks (Casamayor and Snyder, 2002; 

Chant, 1999; Lord et al., 2002). These landmark proteins interact with the Rsr1p GTPase 

module which controls polarized growth and organizes the actin cytoskeleton and septin 

ring at the bud neck. Septins are a family of GTP binding proteins that can assemble into 

filamentous structures and form a ring-like structure at the budneck. Septins are 

conserved from yeast to human, but are absent in plants (Gladfelter et al., 2001; Longtine 

and Bi, 2003; Trimble, 1999). In budding yeast, septins are essential for cytokinesis and 

are involved in bud-site selection (Casamayor and Snyder, 2002; Chant, 1999; Harkins et 

al., 2001). Surprisingly, however, the actomyosin ring is not absolutely essential for 

cytokinesis in budding yeast, in clear contrast to animal cells (Sanders and Field, 1994). 
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 (a) 
 

 

 

 

 

 
(b)  

 

 

 

 
(c)  

 

 

 

 

 

 

 
Figure 4. Cytokinesis in yeast and plants. 

(a) In budding yeast, the previous bud site is marked on the mother cell cortex by a bud scar. Near the 

bud scar, a ring containing septins is formed, which marks the site of the new bud. Polarized growth 

causes the new bud to grow outwards from the mother cell cortex. Image adapted from Guertin et al, 

Microbiology and Molecular Biology Reviews, June 2002, p155-178. 

(b) In fission yeast, the position of the nucleus determines the division site. Mid1p is initially in the 

nucleus in interphase. Before division, it exits the nucleus and marks the division site by associating with 

the cortex adjacent to the nucleus. Then, actin polymers are recruited to the division site. Image adapted 

from Guertin et al, Microbiology and Molecular Biology Reviews, June 2002, p155-178. 

(c) In higher plants, a phragmoplast is formed at the shortest nucleus-cortex distance, which then 

positions the medial ring like structure called preprophase band (PPB). This marks the division site in 

plants. Image adapted from Alberts et al, Molecular Biology of the Cell, fourth edition, 2002. 
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Whereas S. cerevisiae divides by budding, the fission yeast Schizosaccharomyces 

pombe divides by septum formation (Fig. 4B). In S. pombe, the division site is 

determined in G2 phase and reflects the position of the interphase nucleus. Cells with 

disrupted MTs have problems in the medial placement of the division plane, however the 

role of MTs in this process might be indirect as their primary function is to place the 

nucleus. Moreover, mutants that are defective in spindle assembly have minor defects in 

contractile ring assembly and its placement (Chang et al., 1996). Recent 

micromanipulation experiments to physically manipulate the nucleus by cell 

centrifugation (Daga and Chang, 2005) showed that the nucleus actively induces 

formation of the contractile ring during metaphase which is much earlier than in animal 

cells. Although it is not exactly clear how the nucleus positions the contractile ring, one 

candidate protein that is thought to appear first at the cleavage site is Mid1p (Bahler et 

al., 1998; Sohrmann et al., 1996). Mid1p is predominantly localized in the nucleus of 

interphase cells, but upon entry into mitosis it relocates to the cytoplasm in a reaction 

dependent on Plo1p (S. pombe polo-like kinase) which is the upstream component of the 

so called septation initiation network (SIN). In addition to Mid1p regulation, plo1p also 

has additional functions for actomyosin ring placement since Mid1p derivatives lacking a 

nuclear localization signal are unable to rescue the ring-positioning defect of plo1-1 

mutants (Paoletti and Chang, 2000). Cytoplasmic Mid1p forms a ring at the cortex 

around the equator of the cell division site. Moreover, Anillin, a mammalian orthologue 

of Mid1p also has properties of a ring organizer, but does not seem to be vital for 

cleavage furrow formation in animal cells (Oegema et al., 2000). Mid1p physically 

interacts with type II myosin heavy chain, Myo2p, and promotes the medial accumulation 

of actomyosin ring components including Myo2p, Rng2p (IQGAP), Cdc15p (PCH) and 

Cdc12 (formin), independently of actin (Balasubramanian et al., 1998; Kitayama et al., 

1997; Motegi et al., 2004; Mulvihill et al., 2000; Rajagopalan et al., 2003). Subsequently, 

actin, Cdc8p (tropomyosin) and Ain1p (α-actinin) are recruited, leading to the formation 

of the contractile ring (Wu et al., 2003). Septins do not seem to be important for 

contractile ring formation in S. pombe and only appear later in anaphase (Glotzer, 2001). 

This contractile ring finally constricts the plasma membrane and at the same time cell 

wall material is produced to form a septum across the division site.  
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One major difference between both types of yeast and animal cells is that the 

nuclear envelope of yeast does not breakdown during mitosis. As a result, the anti-

parallel MTs that are present in animal cells in the form of the central spindle (described 

later) are compartmentalized away from the cortex by the nuclear envelope in yeast. 

Therefore it might not be surprising that, in contrast to animal cells, these anti-parallel 

MTs are not important for cytokinesis in yeasts.  

Cytokinesis in plants is different from yeast and animal cells. Unlike these 

organisms which divide the cytoplasm from “outside in”, the cytoplasm in plant cells is 

partitioned from “inside out” by the formation of a new cell wall, called the cell plate, 

between the daughter cells (Jurgens, 2005; Tabata, 2000) (Fig. 4C). In plant cells, at 

some point in G2, the cortical MTs and the actin filaments rearrange to form a band, 

termed preprophase band that encircles the cell, just below the plasma membrane. The 

preprophase band determines where the new cell plate will join the mother cell wall when 

the cell divides. During telophase and cytokinesis, the phragmoplast is formed by the 

overlap of spindle MTs (Lloyd and Hussey, 2001). Golgi-derived vesicles carrying the 

cell-wall precursors associate with these MTs, accumulate in the equatorial region, and 

fuse to form the early cell plate (Otegui et al., 2001; Segui-Simarro et al., 2004; 

Steinborn et al., 2002). Subsequently, new Golgi-derived vesicles are recruited to this 

region further extending the cell plate outwards and completeing the new cell wall.  
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1.3 Cytokinesis in mammalian cells 
 

1.3.1 Division site determination in mammalian cells 
 

In animal cells, the cell division site is determined during the transition from metaphase 

to anaphase. Early studies using either MT inhibitors or cold treatment to depolymerize 

MTs established that proper positioning of the cleavage furrow requires MTs (Burgess, 

1977). Naturally, asymmetrical placement of the mitotic apparatus leads to cell cleavage 

in the vicinity of the mitotic spindle as observed in Caenorhabditis elegans, amphibian 

zygotes, sea urchin embryos (during formation of micromeres) and oocytes (during 

formation of polar body and polar lobe) (Burgess, 1977; Conrad and Williams, 1974; 

Sawai and Yomota, 1990; Schroeder, 1987). Together with a large number of other 

experiments, it is now well established that the position of the cytokinesis furrow is 

specified by the position of the mitotic spindle in animal cells. This determnation of the 

cell division site by the mitotic spindle provides an elegant way to spatially and 

temporally coordinate cell division with chromosome segregation. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.  MTs of the mitotic apparatus. 

MTs here are named after their geometrical 

relationships rather than their biochemical 

properties. Image adapted from Burgess et al, 

Trends in Cell Biology, vol.15, No.5, March 2005.
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The anaphase mitotic spindle is comprised of different MTs, but which MTs 

determine the place of cell division still remains unclear. Based on their geometrical 

placement, rather than their biochemical properties, the following nomenclature has been 

proposed for these MTs (Burgess and Chang, 2005) (see Fig. 5); kinetochore MTs 

emanate from centrosomes and attach to the kinetochores at the chromosomes, spindle 

midzone MTs are anti-parallel MTs that are not associated with kinetochores and are 

situated between the segregating chromosomes. Furthermore, there are two types of astral 

MTs, depending on their proximity to the cleavage furrow. Equatorial astral MTs 

emanate from the centrosomes towards the future cleavage furrow whereas polar astral 

MTs emanate from centrosomes towards the polar cell surface and away from the 

equatorial cortex (Fig. 5).  
 

 

1.3.2 Models for the roles of MTs in cleavage furrow formation 
 

A large number of studies have been conducted to reveal which MTs are important for 

cleavage furrow formation. Based on these studies, at least three (partly contradicting) 

models have been suggested (Fig. 6). According to the equatorial stimulation model, 

equatorial astral MTs determine the site of cleavage furrow formation (Fig. 6). This 

model was first proposed by Rappaport and co-workers and is based on easily 

manipulatable echinoderm eggs. For example, blocks (glass beads or oil droplets) were 

introduced to prevent putative MT signals from reaching the cortex. Only the blocks 

between asters and the equatorial region prevented cleavage furrow formation, but the 

blocks between asters and poles had little effect (Rappaport, 1968; Rappaport, 1982). 

Furrows were formed at sites that lack chromosomes, spindle midzone MTs and at 

regions where astral MTs of different poles overlapped. Based on these results it was 

suggested that determination of the cleavage furrow site is dependent on overlapping 

astral MTs and independent of central spindle MTs and chromosomes (Fig. 7a-7d).  

An alternative view is that MTs themselves are sufficient for cleavage furrow 

formation. This is based on micromanipulation experiments in grasshopper spermatocytes 

in which centrosomes and chromosomes were removed (Alsop and Zhang, 2003). In 
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these cells some MTs formed bundles and some partial furrow ingression was observed, 

even though no real cleavage furrowing occurs. This rather artificial situation suggested 

that MTs are important, but did not provide evidence as to which MTs induce cleavage 

furrowing in an unperturbed situation (Fig. 7e-7h).   

More recently, monastrol, an inhibitor of the Eg5 kinesin motor, was used to 

generate monopolar spindles (Canman et al., 2003) (Fig. 7i-7l). Inhibition of the spindle 

checkpoint in these cells resulted in the induction of a cleavage furrow distal to the 

chromosomes where equatorial astral MTs interact with the cell cortex. This experiment 

suggested that the equatorial astral MTs themselves can provide the signal and that it is 

not necessary to have astral MTs coming from opposite poles as suggested by Rappaport 

and co-workers. In addition, the authors showed that the plus ends of these MTs were 

slightly more stable at the future cleavage site, which indicates that factors at these 

microtubule plus ends might contribute to the furrowing process (Canman et al., 2003). 

The exact mechanism, however, remains elusive. 

   
 

 

 

        Equatorial stimulation                                 Polar relaxation                                             Spindle midzone model       

 
Figure 6. Different models for the roles of MTs in cleavage furrow induction. 

Equatorial stimulation model: Here, the overlapping equatorial MTs from opposite poles impart a 

positive signal (red arrows) for cleavage furrow induction at the equatorial cortex. 

Polar relaxation model:  The cortical tension of the polar cortical region is relieved by the polar astral 

MTs (red arrows), resulting in increased tension and cleavage furrow induction at the equatorial cortical 

region, only. 

Spindle midzone model:  Proteins associated with the spindle midzone MTs move towards the cell cortex 

or send signals that induce cleavage furrow formation.   

Image adapted and modified from Burgess et al, Trends in Cell Biology, Vol.15, No.3, March, 2005 
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Figure 7. Micromanipulation experiments performed to uncover the structures important for cleavage 

furrow induction. 

Panels a–d show the experiment performed by Rappaport in sand dollar eggs. 

 A glass bead is pressed through the centre of a sand dollar egg to generate a doughnut-shaped cell. (a) 

The first cell cleavage generates a horseshoe-shaped cell. Two spindles are present during the second cell 

division, one in each arm of the horseshoe. (b) During the second cell division, cleavage furrows that bisect 

each spindle are formed. (c, d) In addition to the cleavage furrows bisecting the two spindles, a third 

furrow appears between the two aster poles. Image adapted from Maddox et al, Nature Cell Biology, vol. 5, 

No.9, September 2003. 

Panels e–h summarize the experiments of Alsop and Zhang in grasshopper spermatocytes.  

(e, f) The centrosomes (blue) and chromatin (grey) are removed from a metaphase grasshopper 

spermatocyte using a micromanipulation needle. (g) The spindle collapses, leaving only dynamic MTs in a 

disorganized array. (h) After a delay variable duration, some MTs have self-assembled into a bundle. An F-

actin-enriched furrow (thickened black line) ingresses in proximity to the centre of this bundle. Image 

adapted from Maddox et al, Nature Cell Biology, vol. 5, No.9, September 2003.  
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Panels i–l summarize the experiments of Canman and co-workers in Ptk1 cells. 

 (i) Centrosome separation in a Ptk1 cell is inhibited with monastrol, resulting in a monopolar spindle. (j) 

The spindle checkpoint is overridden by injection of reagents that inhibit checkpoint components. The cell 

then enters into anaphase. (k) In anaphase, a sub-population of stable MTs (solid yellow lines) that 

originate in the vicinity of chromosomes and terminate at the cortex are observed. (l) In telophase, the cell 

furrows (thickened black lines) where the stable MTs make contact with the cortex. Chromosomal 

passenger proteins (red dots) are observed in the region of the furrow. Stable MTs are shown as solid lines, 

whereas more dynamic MTs are indicated with dashed lines. Image adapted from Maddox et al, Nature 

Cell Biology, vol. 5, No.9, September 2003. 

 

 

Another model, the polar relaxation model, suggests an alternative mechanism, 

namely that MTs interacting with the cortex inhibit cleavage furrow formation (Fig. 6). 

This model is based on the observation that equatorial astral MTs in eggs are less dense at 

the cortex of the future cell division site than polar astral MTs at polar regions (Asnes and 

Schroeder, 1979; Dechant and Glotzer, 2003; White and Borisy, 1983; Yoshigaki, 2003). 

This lower MT density at the cell equator is thought to induce a relaxing effect for the 

invagination of the cleavage furrow.  

 Currently, one of the most attractive models is the spindle midzone model, which 

is supported by an increasing amount of genetic evidence, as discussed below (Glotzer, 

2001). According to this model, the anti-parallel central spindle MTs are required for 

cleavage furrow formation (Cao and Wang, 1996; Wheatley and Wang, 1996) (Fig. 6). 

Disruption of the central spindle by either micromanipulation or genetic approaches 

cause varying degrees of cytokinesis defects (Bonaccorsi et al., 1998; Cao and Wang, 

1996; Dechant and Glotzer, 2003). Moreover, as discussed below, a number of central 

spindle localized proteins are required for proper cytokinesis. Nevertheless, there is also 

some evidence that cleavage furrow formation is not entirely dependent on the central 

spindle. It has been shown that in cells depleted of the central spindle protein PRC1, 

central spindle formation is severely affected, but cleavage furrowing still occurs 

(Mollinari et al., 2005). However, it cannot be excluded that some central spindle like 

MTs are sufficient to induce cleavage furrowing in these cells.  

A recent report by Bringmann et al (Nature 2005) suggested that the cytokinesis 

furrow is positioned by two consecutive signals. They examined the relative contributions 
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of astral and spindle midzone MTs to position the cytokinetic furrow in the C.elegans 

zygote. By using an ultraviolet laser, they ablated one aster and could show that the 

cytokinesis furrow is first positioned by a signal determined by microtubule asters, and 

later a second signal is derived from the spindle midzone (Bringmann and Hyman, 2005). 

Thus, the equatorial stimulation and spindle midzone model seems to co-operate in this 

system to form a proper cleavage furrow. In eggs unlike mammalian somatic cells, the 

central spindle is relatively small compared to the whole cell volume and only occupies a 

small region within the egg. Therefore, in an egg, initial cleavage furrow formation might 

depend on astral MTs that contact the cell cortex. Once the initial cleavage furrow 

approaches the neighbourhood of the central spindle, the central spindle dominates 

further cleavage furrow ingression. Whether this also holds true for mammalian somatic 

cells is not yet clear. In mammalian somatic cells, as the central spindle is in close 

proximity of the cell cortex, the initial contribution of astral MTs may not be as dominant 

as in eggs. All together, these results show that different experiments in diverse cell 

types, using various techniques, have revealed alternative answers as which MTs are 

important for cleavage furrow ingression. This is partly owing to the diversity in biology, 

differences in experimental approaches and multiple or redundant mechanisms. 
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1.4 Central spindle and contractile ring formation 
 

1.4.1 The central spindle and its components 
 

Cytokinesis is a complex process and involves numerous proteins (Table.1). One of the 

structures important for cytokinesis is the central spindle which is formed upon the 

metaphase to anaphase transition. At this point, the chromosomes start to seperate on 

shrinking kinetochore MTs, and anti-parallel microtubule bundles are formed between 

the segregating chromosomes. As mentioned above, the central spindle complex is 

composed of anti-parallel MTs to which a variety of proteins associate that regulate its 

structure and function. Among these proteins are the kinesin motor proteins, MKlp1 

(Kuriyama et al., 2002), MKlp2 (Neef et al., 2003) and Kif4 (Lee and Kim, 2004), the 

mitotic protein kinases Plk1 and Aurora-B (Barr et al., 2004; Giet et al., 2005), structural 

proteins like PRC1 (Jiang et al., 1998), a GTPase activating protein termed MgcRacGAP 

(Hirose et al., 2001) and the guanine nucleotide exchange factor (GEF), Ect2 (Tatsumoto 

et al., 1999).  

PRC1 has been shown to form a complex with Kif4, CENP-E and MKlp1 

(Kurasawa et al., 2004). MKlp1 also forms a complex with MgcRacGAP (a complex also 

termed central spindlin) (Mishima et al., 2002) whereas MKlp2 associates with Plk1 and 

Aurora-B (Gruneberg et al., 2004; Neef et al., 2003). Depletion of PRC1 by small 

interfering RNA (siRNA) almost completely abolishes central spindle formation and the 

depletion of the other subcomplex components also strongly affect central spindle 

formation resulting in cytokinesis failure (Mollinari et al., 2005). Only mammalian Plk1 

was not fully investigated in this regard, since depletion or inactivation of this kinase by 

antibody microinjection results in a prometaphase like arrest (Lane and Nigg, 1996; van 

Vugt et al., 2004) and therefore its exact role in later mitotic stages has been difficult to 

study in mammalian cells. However, over expression studies indicate a role for Plk1 in 

cytokinesis (Meraldi et al., 2002; Mundt et al., 1997). Moreover, investigations of Plk1 

homologues in yeast (Ohkura et al., 1995; Song and Lee, 2001)and Drosophila (Carmena 

et al., 1998) have shown that Plk1 indeed plays an important role in cytokinesis. How 

these complexes contribute to central spindle formation remains unclear, but at least in 
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vitro these complexes have strong MT bundling activity, suggesting that these complexes 

can bundle anti-parallel MTs in vivo. Interestingly, the formation and microtubule 

bundling activity of complexes comprising MKlp1 and PRC1 are regulated by reversible 

phosphorylation (Mishima et al., 2004; Mollinari et al., 2002). Mutations of Cdk1 

phosphorylation sites in PRC1 result in premature bundling of spindle MT before the 

onset of anaphase (Mollinari et al., 2002). Similarly, MKlp1 phosphorylation by Cdk1 

prevents the association of MKlp1 with the metaphase spindle and thus inhibits the 

bundling of MTs nucleated at this stage of the cell cycle (Mishima et al., 2004). Only 

upon transition from metaphase to anaphase, when Cdk1 activity drops, these proteins are 

dephosphorylated and therefore able to localize to the central spindle and to function in 

bundling the anti-parallel MTs of the central spindle. Thus, the formation of the central 

spindle is intimately linked to Cdk1 inactivation. How MKlp1 and PRC1 central spindle 

complexes contribute to cytokinesis is not yet clear. On the one hand, the cytokinesis 

defect may simply be a reflection of their essential role in proper central spindle 

formation, on the other hand it is also tempting to assume that these proteins could signal 

to the cell cortex. The latter hypothesis is especially attractive because these central 

spindle complexes contain signal transduction proteins like the kinases Plk1 and Aurora-

B, the GTPase activating protein, MgcRacGAP and the guanine nucleotide exchange 

factor, Ect2.  

 

 

1.4.2 Cleavage furrow determination 
 

At the cortex, the small GTPase RhoA seems to be one of the most upstream components 

required for cleavage furrow positioning, contractile ring formation and contraction 

(Glotzer, 2001). RhoA exists in two different forms; the GDP bound form of RhoA in an 

inactive state and the GTP bound form of RhoA in its active form. Binding of GTP to 

RhoA results in a conformational change of the protein, exposing structural domains 

required for the interaction with downstream target proteins. RhoA-GTP positively 

regulates the actin network and appears to carry out three different functions, namely 

actin polymerization, actomyosin bundle formation and generation of contractility at the 
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cleavage furrow (Glotzer, 2001). Kishi et al, 1993 and Mabuchi et al, 1993 provided the 

first evidence that RhoA is involved in cytokinesis in Xenopus embryos and sand dollar 

eggs, respectively (Kishi et al., 1993; Mabuchi et al., 1993). Moreover, when cells were 

either treated with the RhoA specific inhibitor C3 exoenzyme or subjected to RhoA 

specific siRNA mediated depletion, they became multinucleated (Aktories and Hall, 

1989). 

More recently, Bement et al, used four-dimensional microscopy and a probe 

recognizing active RhoA, consisting of an EGFP-rhotekin fusion protein (Bement et al., 

2005). Rhotekin is a RhoA-GTP target and specifically binds only the active, i.e. GTP-

bound form of RhoA (Kimura et al., 2000). Fertilized sea urchin eggs were microinjected 

with the mRNA encoding this fusion protein and the localization of active RhoA during 

cell cleavage was indirectly visualized by monitoring the EGFP signal. This revealed that 

active RhoA concentrated in a precisely defined zone at the cleavage furrow before 

cytokinesis. To confirm if EGFP-rhotekin labelled specifically active RhoA, fertilized sea 

urchin eggs were also microinjected with C3 exoenzyme, a specific inhibitor of RhoA in 

vertebrates and echinoderms. These cells failed to divide and did not show zones of 

active RhoA. Treatment of sea urchin eggs with cytochalasin dramatically reduced F-

actin and furrows failed to develop, nevertheless the active RhoA zone formed at the 

equator. Thus, RhoA can localize to the site of future cleavage furrow in the absence of 

actin. However, treatment of sea urchin eggs with nocodazole to depolymerize MTs 

before furrow formation prevented both RhoA zone formation and furrowing (Bement et 

al., 2005). Thus, MTs are essential for localizing RhoA and hence for determining the 

site of cleavage furrow formation. In another experiment, embryos were first treated with 

cytochalasin to permit anaphase onset and RhoA zone formation followed by treatment 

with nocodazole. In contrast to embryos treated with cytochalasin alone, which showed 

zones of active RhoA, in eggs treated subsequently with cytochalasin and nocodazole, 

RhoA active zones disappeared 5-10 min after nocodazole exposure. Together, these 

results confirmed the presence of a microtubule-dependent signal for cytokinesis and 

revealed the important sequence of events for cytokinesis. Firstly, furrowing occurs in the 

region that coincides with the zone of active RhoA. Secondly, RhoA zone formation 

precedes furrowing by up to several minutes. Thirdly, active RhoA zone formation occurs 
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not only during cytokinesis in blastomeres, but also in much smaller epithelial cells of 

Echinoderm and Xenopus blastulae and gastrulae. Fourthly, active RhoA zone forms 

despite the disruption of actin cytoskeleton. Finally, RhoA zone formation is controlled 

by MTs (Bement et al., 2005). 

 

 

1.4.3 The contractile ring and formation of the cleavage furrow  
 

The cleavage furrow is often described as an actin rich "purse string" that draws tight to 

complete cytokinesis and to separate daughter cells. Early work established that the 

contractile ring consists of filaments (Schroeder, 1968), which were later identified as 

being composed of actin (Perry et al., 1971; Schroeder, 1978) and myosin II (Fujiwara 

and Pollard, 1976). Treatment of cells with actin depolymerizing drugs delays cells in 

cytokinesis (Bluemink, 1971; Schroeder, 1978) and sliding of the actin filaments was 

found to be critical for cytokinesis since perturbations of myosin II prevented furrow 

ingression (Guo and Kemphues, 1996; Mabuchi and Okuno, 1977; Young et al., 1993). 

Therefore, it has been suggested that the mechanical force required for cleavage furrow 

ingression is provided by the mechanochemical enzyme myosin II. The force producing 

ability of myosin II is regulated by phosphorylation, particularly by the phosphorylation 

of myosin regulatory light chains (MRLC) (Trotter and Adelstein, 1979). It was reported 

that the activating phosphorylation sites serine 18 and 19 in MRLC are 

hypophosphorylated during metaphase but becomes rapidly phosphorylated upon mitotic 

exit (Yamakita et al., 1994). Not surprisingly, therefore, overexpression of non-

phosphorylatable mutants of MRLC also causes cytokinesis defects (Komatsu et al., 

2000). The above data indicate that assembly and function of the contractile ring requires 

phosphorylation of MRLC. 

 The contractile ring protein Anillin has been shown to bind and bundle actin 

filaments. Anillin is a PH (Plekstrin Homology) domain containing protein that localizes 

to the cleavage furrow during cytokinesis. Anillin has been shown to be required for 

cytokinesis as microinjection of anti-Anillin antibodies into cells result in cytokinesis 

defects (Oegema et al., 2000). Localization of Anillin is dependent on the actin ring as 
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cells treated with actin depolymerizing drugs, such as latrunculin-A, were devoid of 

Anillin at the cleavage furrow (Coue et al., 1987). Anillin binds to nonmuscle myosin II 

and this interaction is regulated by myosin light chain phosphorylation (Straight et al., 

2005). Human cells depleted of Anillin fail to properly regulate contraction of myosin II 

late in cytokinesis and also fail cell abscission (Straight et al., 2005). 

The GTPase RhoA is the key regulator of the contractile ring, and active RhoA 

targets many downstream components during cytokinesis, including Rho kinase (ROCK), 

Citron kinase, formin homology proteins and a regulatory subunit of the myosin 

phosphatase. In fibroblasts, activation of RhoA induces the formation of stress fibres 

which are composed of large actin bundles. The structural similarities between the stress 

fibres and the cleavage furrow raise the possibility that similar proteins might be involved 

to induce the formation of these structures (Glotzer, 2001).  

Formins are RhoA targets in budding yeast (Evangelista et al., 1997), fission 

yeast (Chang et al., 1997), Aspergillus (Harris et al., 1997) and animal cells (Castrillon 

and Wasserman, 1994; Swan et al., 1998; Watanabe et al., 1997). These are multidomain 

proteins that govern dynamic remodelling of the cytoskeleton and can also function as 

actin nucleators in the formation of new filaments. Formins exert their effects on the actin 

and microtubule networks during meiosis, mitosis and trafficking (Watanabe and 

Higashida, 2004). Mutations in the Drosophila formin gene diaphanous and the 

nematode formin gene cyk-1 lead to cytokinesis defects (Castrillon and Wasserman, 

1994). Also mammalian mDia1 and mDia2 are essential for cytokinesis, and, moreover, 

localize to the cleavage furrow (Tominaga et al., 2000; Wasserman, 1998; Watanabe et 

al., 1997).  

RhoA also regulates actin dynamics via ROCK and Citron kinase, which were 

reported to associate with RhoA during cytokinesis (Kosako et al., 2000; Madaule et al., 

1998). ROCK concentrates at the cleavage furrow and phosphorylates myosin light chain 

in vitro (Amano et al., 1996; Kosako et al., 2000). ROCK inhibits myosin phosphatase 

thereby inhibiting MRLC dephosphorylation (Amano et al., 1996; Kawano et al., 1999). 

However, an inhibitor of ROCK, Y-27632, blocks neither the initiation nor the 

completion of cytokinesis in HeLa cells, although it slows down cleavage contraction 

(Kosako et al., 2000; Madaule et al., 1998). Also, in Drosophila, a ROCK mutation does 
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not seem to affect cytokinesis, in the examined tissues of wings and eyes (Shandala et al., 

2004; Winter et al., 2001). Mammalian cells have two isoforms of ROCK, ROCK-I (also 

called as Rok β) and ROCK-II (also called Rok α and Rho-kinase). Recent studies in 

mice indicate that knocking out the ROCK-I and ROCK-II genes individually manifests 

prenatal problems but those mice that survive develop in an apparently normal manner to 

adulthood and were not reported to show any cytokinesis defects (Shimizu et al., 2005; 

Thumkeo et al., 2003).  

Citron kinase, another target of active RhoA, also phosphorylates MRLC but does 

not inhibit myosin phosphatase (Yamashiro et al., 2003). Citron kinase was identified in a 

screen for proteins specifically binding to GTP bound RhoA (Madaule et al., 1998) and 

inhibition of RhoA by C3 exoenzyme in HeLa cells abolishes the transfer of Citron 

kinase from the cytoplasm to the cleavage furrow (Eda et al., 2001; Sarkisian et al., 

2002). This suggests that RhoA dependent signalling via Citron kinase is required for 

cytokinesis. In spite of this, it has been reported that Citron kinase knockout mice are 

viable and showed cytokinesis defects only in specialized cell types, notably proliferating 

neuronal and spermatogenic precursors (Cunto et al., 2002; Di Cunto et al., 2000). 

Recently, however, Paolo D’Avino et al showed that the Citron kinase homologue of 

Drosophila, called Sticky, is present in all post embryonic proliferating tissues (D'Avino 

et al., 2004). Moreover, mutations in Sticky lead to defective formation of the contractile 

ring (D'Avino et al., 2004). These apparantly contradicting data sets from mouse 

knockout studies and Drosophila mutants leaves open the question of whether Citron 

kinase is an essential downstream target of RhoA during cytokinesis.  
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Table 1.  Different genes required for cytokinesis and their homologues in different species. Table adapted 

from Balasubramanian et al, Current Biology, Vol.14, September, 2001. 
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1.5 Ect2  
 

1.5.1 Ect2, a Rho family GEF required for cytokinesis 
 

As described above, activation of RhoA in a MT dependent manner at the cell cortex is 

one of the first events that determine cleavage furrow formation and positioning. 

Activation of Rho proteins is mediated by guanine nucleotide exchange factors (GEFs) 

and one GEF that has been discovered to be essential for cytokinesis is Ect2. This GEF, 

which localizes to the central spindle, could therefore be an excellent candidate for 

signalling from the central spindle to the cell cortex.  

The Drosophila pebble (pbl) gene product is the founding member of the Ect2 

protein family (Lehner, 1992; Prokopenko et al., 1999). In Drosophila embryos, the first 

13 mitotic cycles occur in a syncytial cytoplasm without cytokinesis. At the onset of 

anaphase-B in cycle 14, cytokinesis is initiated. Pbl mutant embryos proceed through the 

first 13 syncytial mitoses and cellularize normally during the G2 phase of cell cycle 14. 

However, these embryos fail to undergo cytokinesis during subsequent cell division 

cycles (Lehner, 1992). Analysis of wild type embryos with anti-pbl antibodies in 

Drosophila at the mitotic cycle 14 revealed that pbl was expressed dynamically during 

mitosis (Prokopenko et al., 1999). Pbl protein was first detected in late anaphase of the 

mitotic cycle 14, when it colocalized with the separating sister chromatids. No pbl protein 

was detected during late prophase, metaphase and early anaphase of the mitotic cycle 14 

in Drosophila embryos. The highest level of pbl protein was detected in telophase nuclei 

and this staining persisted during interphase of the following cycle. Moreover, at the end 

of the mitotic cycle 14, pbl accumulated at the equator between dividing cells and in the 

nuclei of the daughter cells. In subsequent divisions, initiation of cytokinesis was marked 

by the appearance of the cleavage furrow and coincided with the accumulation of pbl at 

the cleavage furrow. Therefore, pbl might be required for the initiation of cytokinesis. 

Most interestingly, pbl interacted genetically with Rho1 (a Drosophila orthologue of 

mammalian RhoA), but not with Rac1 and Cdc42. Furthermore, pbl and Rho1 interaction 

was observed in a yeast two hybrid assay. Similar to mutations in pbl, loss of Rho1 or 

expression of a dominant negative form of Rho1 blocked cytokinesis. These results 
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identify pebble as a RhoGEF specifically required for cytokinesis, linked by Rho1 

activity to the reorganization of the actin cytoskeleton at the cleavage furrow 

(Prokopenko et al., 1999). 

Mammalian Ect2, the Drosophila pebble homologue, was originally identified as 

a transforming protein in an expression cloning assay (Miki et al., 1993). The carboxyl-

terminal fragment of Ect2 was able to transform mouse fibroblasts. By the use of 

antibody microinjection experiments and overexpression of an amino-terminal fragment, 

also a role for mammalian Ect2 in cytokinesis has been established (Tatsumoto et al., 

1999). Human Ect2 was shown to catalyze the guanine nucleotide exchange on small 

GTPases like RhoA, Rac1 and Cdc42, at least in vitro (Tatsumoto et al., 1999). 

Moreover, Ect2 expressed from recombinant baculovirus was able to bind with high 

specificity to Rho and Rac proteins, but surprisingly not to Cdc42 (Miki et al., 1993). 

Ect2 is phosphorylated during G2/M phases of the cell cycle and this phosphorylation has 

been suggested to be required for Ect2’s guanine nucleotide exchange activity 

(Tatsumoto et al., 1999). 

 

 

1.5.2 Other functions of Ect2 
 

In addition to the established role in cytokinesis, other functions for Ect2 have also been 

proposed. This includes a role in the regulation of cell polarity. Cell polarity is an 

important biological phenomenon that governs diverse cell functions, including the 

localization of embryonic determinants and the establishment of tissue and organ 

architecture. Although the detailed signalling events are not known, the polarity complex 

Par-6/Par-3 (partition-defective)/atypical protein kinase C and the Rho family GTPases 

play a key role in this signalling pathway (Cox et al., 2001; Drubin and Nelson, 1996). It 

has been shown that Ect2 plays a role in the activation of this polarity complex (Liu et 

al., 2004). Ect2 interacts with Par-6/Par-3 and PKC-ζ. Co-expression of Ect2 and Par-6 

efficiently activates Cdc42 in vivo. Moreover, overexpression of Ect2 stimulates PKC-ζ 

activity, whereas the dominant-negative form of Ect2 inhibits the Par-6 mediated 

stimulation of PKC-ζ activity. Furthermore, Ect2 can be detected at cell-cell contacts as 
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well as in the nucleus in MDCK cells and both the expression and localization of Ect2 are 

regulated by calcium, a critical regulator of cell-cell adhesion. This indicates that Ect2 

regulates the activity of the polarity complex Par-6/Par-3/PKC-ζ (Liu et al., 2004). 

Also, a role for Ect2 in kinetochore microtubule attachment has been suggested. 

In the absence of Ect2, cells are delayed in prometaphase and, moreover, show abnormal 

chromosome segregation and low levels of active GTP bound Cdc42. Furthermore, 

inhibition or depletion of Cdc42 affects microtubule-kinetochore attachments (Oceguera-

Yanez et al., 2005). Cdc42 seems to regulate the formin homology domain protein 

mDia3, which localizes to kinetochores only in the presence of active GTP bound Cdc42 

via interaction with CENP-A (Yasuda et al., 2004). Depletion of mDia3 results in an 

increase in prometaphase cells, in which many chromosomes fail to attach to kinetochore 

MTs. Thus, Ect2 has been proposed to regulate mDia3, via Cdc42, which could be 

important for proper microtubule-kinetochore interactions (Oceguera-Yanez et al., 2005). 

Tatsumoto et al, 2003 identified XEct2 (Xenopus Ect2) and showed that it is 

required for cytokinesis. Like human Ect2, XEct2 is also phosphorylated during mitosis. 

In Xenopus extracts, Ect2 seems to be required for the formation of the metaphase bipolar 

spindle. When compared to control extracts, which showed bipolar spindles, addition of 

anti-XEct2 antibodies resulted in the appearance of abnormal spindles including 

monopolar and multipolar spindles as well as bipolar spindles with misaligned 

chromosomes. Furthermore, a dominant negative form of Cdc42, but not of RhoA and 

Rac1 strongly inhibited spindle assembly in vitro (Tatsumoto et al., 2003). This indicates 

that Ect2 and Cdc42 contribute to the formation of spindles atleast in Xenopus egg 

extracts.  

 

 

1.5.3 Ect2 structure: different domains of Ect2 
 

The carboxyl-terminal domain of Ect2 that results in cellular transformation upon 

overexpression harbours the GEF (Guanine nucleotide Exchange Factor) domain (Fig.8). 

This GEF domain is also termed DH domain, which stands for Dbl homology domain 

(Zheng, 2001). Dbl was the first Rho GEF that was identified as a transforming gene 
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from diffuse B-cell-lymphomas (hence its name) (Srivastava et al., 1986). Most GEFs 

have a DH catalytic domain (69 members in humans), but there are also a few bonafide 

GEFs (e.g. Dock1, Dock2) that have a catalytic domain that is, at least at the primary 

sequence level, unrelated to DH domains (Cote and Vuori, 2002). The DH domain 

consists of about 200 residues and family members comprising this domain show 

catalytic activity to one or more Rho family members. The DH domain is composed of 11 

α-helices that are folded into a flattened, elongated α-helix bundle in which two of the 

three conserved regions, conserved region 1 (CR1) and conserved region 3 (CR3), are 

exposed near the centre of one surface. CR1 and CR3, together with a part of α-6 and the 

DH/PH junction site (Plekstrin homology), constitute the Rho GTPase interacting pocket 

(Liu et al., 1998; Worthylake et al., 2000). In Drosophila, mutations within the catalytic 

DH domain in the most highly conserved region (CR3) inactivate pbl function (e.g. the 

pbl5 allele that carries the V531D mutation) and abolish pbl interaction with Rho1 

(Prokopenko et al., 1999). Mutation of this conserved residue also dramatically reduces 

the catalytic activity in other GEF’s (Liu et al., 1998). 

In most GEFs, the DH domain is associated with a carboxyl-terminally located 

Plekstrin homology (PH) domain, and this is also true for Ect2 (Fig. 8). The PH domain 

which consists of a stretch of 100-120 amino acids was originally identified in Plekstrin 

from platelets and neutrophils (Tyers et al., 1988). It has now been found in many 

proteins and constitutes the 11th most common domain in the human genome.  PH 

domains are known for their ability to bind to phosphoinositides, but also functions in 

protein-protein interactions have been reported (Lemmon, 2004). The PH domain is 

found in a multitude of intracellullar proteins with widespread functions. Many of the PH 

domain containing proteins participate in signalling cascades, but there are also other 

classes of proteins such as cytoskeletal proteins (Spectrin), which carry a PH domain 

(Hyvonen et al., 1995). The PH domain family is very divergent at the sequence level; 

the average pair wise identity is below 20%. Although the PH domain is almost 

invariably present carboxyl-terminal to DH domains, its exact function in these GEFs is 

still not resolved. Different functions have been proposed, including membrane targeting, 

protein-protein interactions and allosteric regulation all of which are likely to be GEF 

specific (Blomberg et al., 1999). 
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Figure 8. Schematic representation of the primary structure of human Ect2. 

Human Ect2 comprises two BRCT (BRCA1 Carboxy-Terminal) repeats (in orange) spanning residues

143-313, a bipartite nuclear localization signal (NLS) between residues 346-374, a Rho GEF domain 

(in blue) spanning residues 425-605 and a PH (Plekstrin Homology) domain (in brown) spanning 

residues 636-763. 
 

 

Whereas the Ect2 catalytic centre is located in the carboxyl-terminus, a supposed 

egulatory domain is present in its amino-terminus. This domain comprises two tandem 

RCT (BRCA carboxyl-terminal) repeats and is, therefore, termed the BRCT domain 

Fig. 8) (Callebaut and Mornon, 1997; Koonin et al., 1996). This domain was originally 

dentified in BRCA1 (Breast Cancer gene1), a tumour suppressor gene involved in breast 

nd ovarian tumour formation. BRCA1 is inactivated in more than 50% of the hereditary 

reast cancers (Easton et al., 1994). The carboxyl-terminal (BRCT domain containing) 

alf of BRCA1 is important for tumour suppression and this region has been proposed to 

ave evolved through an internal duplication. Sequence analysis using hydrophobic 

luster analysis revealed the presence of 50 copies of the BRCT domain in 23 different 

roteins including BRCA1, 53BP1 (p53 Binding Protein), RAD9, XRCC1 (X Ray Repair 

ross Complementing), RAD4, Ect2, RAP1 (Repressor Activator Protein), terminal 

eoxynucleotidyl transferases (TdT) and three eukaryotic ligases. Most of these proteins 

ave been implicated in DNA repair and are associated with cell cycle checkpoint 

unctions (Bork et al., 1997). Although the BRCT domain is located in the carboxyl-

erminus of BRCA1, it is not limited to the carboxyl-termini. It can also be found in 

ultiple copies or as a single copy, as in RAP1 and TdT, respectively, suggesting that it 

ould constitute an autonomous folding unit of approximately 90-100 amino acids 

Callebaut and Mornon, 1997). In human Ect2, a tandem BRCT repeat is present in the 

mino-terminal half of the protein. 
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Signalling through phosphorylation is a central theme in biology. Like the PBD 

domain (Polo Box binding Domain of Plk1), 14-3-3 proteins and R-Smads (Wu et al., 

2001; Yaffe and Elia, 2001; Yaffe and Smerdon, 2001), the BRCT domains have recently 

been implicated in phosphopeptide binding (Clapperton et al., 2004; Manke et al., 2003; 

Williams et al., 2004; Yu et al., 2003). The identification of BRCT repeats as general 

phosphopeptide binding modules nicely complements the need of DNA damage-induced 

signalling, which relies on specific phosphorylation and recruitment of multiple DNA 

damage-responsive proteins (Caldecott, 2003).  It has been shown that the BRCA1 BRCT 

repeats recognize proteins that have pSer-X-X-Phe residues where X indicates any 

residue (Manke et al., 2003). The signalling specificity of the binding of BRCT domain 

to phosphopeptides is guaranteed by the distinct preferences for amino acids flanking the 

phosphoserine residue. Different BRCT motif-containing proteins were found to prefer 

different phosphopeptides with the strongest selection at the +3 position of the 

phosphopeptide (Manke et al., 2003; Rodriguez et al., 2003). 

 

 

1.5.4 Regulation of Ect2 during mitosis 
 

In eukaryotes, reduction of Cdk1/cyclin B activity is a prerequisite for completion of 

cytokinesis, and this allows the timely coordination of chromosome alignment and 

segregation with cytokinesis (Echard and O'Farrell, 2003). This is nicely exemplified by 

Drosophila cyclin B and B3 mutant embryos in which the cytokinesis furrow appears at 

an earlier stage during mitosis. Moreover, stable cyclin B prevents cytokinesis in these 

cells, and expression of stable cyclin B3 delays cytokinesis. Reduction of pebble (pbl) 

function also delays cytokinesis and incomplete furrows are finally aborted in these cells. 

Genetic interaction studies with pbl and cyclin B3 mutant flies showed that there is a 

synergetic inhibition of cytokinesis by stable cyclin B3 expression and pbl mutations. 

Moreover, cyclin B and cyclin B3 inhibit the contribution of the pebble pathway to 

cytokinesis. From these data it is tempting to suggest that phosphorylation by 

Cdk1/cyclin B or B3 might negatively regulate pebble function (Echard and O'Farrell, 

2003).   
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 In mammalian cells, mitotic Ect2 has a retarded electrophoretic mobility on SDS-

PAGE gels, which is a result of hyperphosphorylation. This hyperphosphorylated Ect2 

form, isolated from mitotically (prometaphase) arrested cells showed activity towards 

Cdc42, RhoA and Rac in in vitro GTP loading assays. Dephosphorylation of mitotic Ect2 

resulted in a strong reduction in its GEF activity. Thus, according to these results, Ect2 

seems to be highly active already during prometaphase and phosphorylation positively 

influences its activity (Tatsumoto et al., 1999). This is somewhat surprising, considering 

that Cdk1/cyclin B inhibits cytokinesis, which in Drosophila is at least partly mediated 

via pebble. Moreover, bulk measurements of an active GTP bound RhoA, using a GST 

tagged GTP-RhoA binding domain of rhotekin, showed that maximal levels of GTP 

bound RhoA were present 90 min after release from a nocodazole block (Kimura et al., 

2000). This most likely reflects the time when cells undergo cytokinesis. Therefore, the in 

vivo regulation of Ect2 might be more complex and probably also requires timely 

targeting to its sites of action.  

The targeting of Ect2 to the central spindle is mediated via its amino-terminal 

BRCT-containing domain. In Drosophila, a two hybrid interaction between pebble and 

RacGAP50C (the Drosophila orthologue of human MgcRacGAP) was observed (Somers 

and Saint, 2003). This interaction was mapped to the first BRCT repeat of pebble and the 

amino-terminal coiled coil domain of RacGAP50C. Like in C. elegans, Drosophila 

RacGAP50C interacts with the kinesin Pavarotti (the Drosophila orthologue of MKlp1) 

forming the central spindlin complex (Mishima et al., 2002; Somers and Saint, 2003). 

Also, in Drosophila, it was proposed that the MT bound RacGAP50C-Pavarotti complex 

travel on cortical MTs to the cell equator and associates with pebble thereby activating its 

GEF activity to position the contractile ring (Somers and Saint, 2003).  

The amino-terminal domain of Ect2 is not only important for its proper 

localization, but has also been suggested to regulate the function of Ect2.  It was shown 

that Ect2 normally exists in an inactive conformation, whereby the amino-terminus of 

Ect2 interacts in an intramolecular fashion with the carboxyl-terminus of Ect2 (Saito et 

al., 2004). Overexpression of amino-terminal Ect2 containing the BRCT domains 

apparently resulted in reduced RhoA-GTP levels during the time of cytokinesis, 
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suggesting that the amino-terminus of Ect2 might negatively regulate GEF activity (Kim 

et al., 2004; Kimura et al., 2000). 

                           

 

1.6 Goal of my research 
 

Previous studies of Ect2 have revealed that Ect2 localizes to the central spindle and is 

required for cytokinesis (Tatsumoto et al., 1999). However, the exact mechanisms that 

regulate central spindle targeting of Ect2 and its role during cytokinesis have remained 

elusive. Furthermore, the role of the different Ect2 domains (BRCT, GEF and PH 

domains) is still unknown. Although Ect2 is phosphorylated in mitosis (Tatsumoto et al., 

1999), the role of phosphorylation of Ect2 and its function during cytokinesis still 

remained unknown. Therefore, I set out to explore the mechanism for targeting of Ect2 to 

the central spindle and to identify the molecular interactions with other central spindle 

components in this process. I also aimed at identifying the residues phosphorylated on 

Ect2 in mitosis and discovering the upstream kinase(s) responsible for the various 

phosphorylations.  
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2.0 Results  

 
2.1 Mitotic phosphorylation of human Ect2 
 

2.1.1 Production of polyclonal Ect2 antibodies 
 

In order to explore the function of human Ect2, polyclonal antibodies were raised in 

rabbits against an amino-terminal fragment of Ect2 (residues 1-388) (Fig. 9A). This 

fragment was expressed as a polyhistidine-tagged fusion protein in E.coli and purified 

using Ni-NTA agarose beads. This resulted in a relatively pure Ect2 protein fragment as 

revealed by Coomassie Blue staining of a SDS-PAGE gel (Fig. 9B). After preparative gel 

isolation of this protein fragment it was used for immunization of rabbits. Two rabbits 

were boosted several times and the immune sera were tested by Western blot analysis 

performed on cell extracts from exponentially growing U2OS cells. Whereas with serum 

of rabbit 762 a band could be detected migrating at around 100 kDa, the expected size of 

Ect2, no specific signal was observed with serum of rabbit 763 (Fig. 9C). Nevertheless, 

after immunopurification, using the Ect2 fusion protein immobilized on nitrocellulose, 

purified antibodies from sera of both rabbits 762 and 763 detected a similar band at 

around 100 kDa on Western blots (Fig. 9C). The absence of reactivity with the serum of 

rabbit 763 is therefore most likely a result of a low titre in this serum, which is in 

agreement with the observation that only low amounts of specific Ect2 antibodies could 

be isolated from this serum. No specific signals were observed with the pre-immune sera, 

attesting to the specificity of these antibodies. Moreover, the specificity of the antibody 

762 (763 not tested) was further confirmed by immunoprecipitations and by siRNA 

depletion of Ect2, as described later. Therefore, for all subsequent experiments affinity 

purified specific Ect2 antibodies from serum of rabbit 762 were used.  
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Figure 9. Production of rabbit polyclonal anti-Ect2 antibodies. 

(A) Schematic representation of the amino-terminal Ect2 1-388 protein fragment used for raising 

polyclonal antibodies in rabbits. 

(B) Coomassie Blue stained gel containing samples from different purification steps of His6-Ect2 1-388 

protein expressed in E.coli strain JM109. The lanes represent: U, uninduced bacteria; I, bacteria induced 

with IPTG; E1 and E2, Ni-NTA eluted His6-Ect2 1-388 fusion protein.  

(C) About 20 µg of U2OS whole cell lysates were separated by SDS-PAGE and transferred onto 

nitrocellulose membranes. These membranes were probed with: lane1, pre-immune serum (1:2000 

dilution); lane2, immune serum (1:2000 dilution); lane3, affinity purified Ect2 antibodies (1 µg/ml) from 

the serum of rabbit 762 (left) and rabbit 763 (right), respectively.
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2.1.2 Ect2 is phosphorylated during early mitosis 
 

To analyze cell cycle dependent changes in Ect2, HeLa S3 cells were synchronized using 

a drug arrest-release protocol. HeLa S3 cells were first synchronized at the G1/S phase 

boundary using aphidicolin, a drug that inhibits DNA-polymerases (Heintz et al., 1983). 

After 14 hours incubation, cells were released from the aphidicolin block by washing out 

the drug and were subsequently blocked in M-phase using low doses of nocodazole, a 

drug that depolymerizess MTs, resulting in the activation of the spindle checkpoint (De 

Brabander et al., 1986). Mitotic cells were collected by shake off and subsequently 

released into nocodazole free medium. Cell samples for immunofluorescence microscopy 

inspection, FACS and Western blot analysis were collected every 20 min. FACS analysis 

of the propidium iodide stained cell samples confirmed proper synchronization of the 

cells and showed that cells entered interphase about 100 min after release from the 

nocodazole block (Fig. 10A). This was further confirmed by counting of DAPI stained 

cells, using immunofluorescence microscopy (Fig. 10B). Moreover, the latter analysis 

revealed that cells entered anaphase between 60 and 80 min after the nocodazole release 

(Fig. 10B). Western blot analysis showed that Ect2 protein levels were relatively constant 

throughout the cell cycle. Ect2 showed, however, a retarded electrophoretic mobility 

during early stages of mitosis (0-60 min), as compared to Ect2 from asynchronously 

growing cells. This change in electrophoretic mobility of Ect2 has been described before 

and has been attributed to mitotic phosphorylation (Tatsumoto et al., 1999). This retarded 

electrophoretic mobility paralleled the presence of cyclin B during this stage of mitosis 

and moreover shows that Ect2 became dephosphorylated upon meta- to anaphase 

transition. This indicates that Cdk1 could be responsible for the observed Ect2 

phosphorylation. The mitotic kinase Plk1 has also been shown to be cell cycle regulated, 

but its levels clearly fluctuated less strongly than cyclin B levels and no direct correlation 

between Plk1 protein levels and Ect2 phosphorylation could be observed.  
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Figure 10. Changes in Ect2 electrophoretic 

mobility during mitotic progression. 

Mitotic HeLa S3 cells were released from a 

nocodazole block and samples were taken at the 

indicated time intervals (min). As a control, cells 

from asynchronously growing cultures (Asn) were 

used. (A)  Ethanol fixed cell samples were stained 

with propidium iodide and analyzed by FACS. (B) 
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time point. (C) Cell extracts were separated by 

SDS-PAGE and proteins were transferred onto 

nitrocellulose membranes. Western blots were 
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(2nd panel), anti-Cyclin B (3rd panel) and anti-α-
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2.1.3 Identification of multiple phosphorylation sites in mitotic Ect2 

 
Our cell cycle analysis confirmed mitosis dependent changes in the Ect2 phosphorylation 

state. Since many mitotic proteins are regulated by post-translational modifications, 

notably reversible phosphorylation, it is tempting to believe that Ect2 functions could be 

regulated by phosphorylation. In fact, it has been suggested that Ect2 GEF activity might 

be regulated by reversible phosphorylation (Tatsumoto et al., 1999). To identify putative 

regulatory phosphorylation sites, Ect2 was immunoprecipitated from HeLa S3 cells using 

our purified rabbit polyclonal Ect2 antibody (762). HeLa S3 cells were grown in spinner 

culture flasks and synchronized using a sequential aphidicolin/nocodazole block release 

protocol, as described above. Cells were released for about 60 min from the nocodazole 

block before harvesting. Since spinner culture cells need a longer recovery time than 

attached cells, most cells were still in a prometaphase state at this time point (as checked 

by microscopy). In parallel, cells were arrested with aphidicolin and released for 60 min 

into S phase. Highly concentrated cell extracts were prepared from these mitotic and S 

phase HeLa S3 cells for immunoprecipitation using purified polyclonal anti-Ect2 

antibodies bound to affiprep protein A beads (Biorad) and as a control, pre-immune IgG 

antibody beads were used. The immunoprecipitates were separated on a 4-12% NuPAGE 

gradient gel (Invitrogen) and upon Coomassie Blue staining revealed a specific protein in 

the Ect2 immunoprecipitates, migrating at approximately 100 kDa (Fig. 11A). This 

protein showed a retarded electrophoretic mobility in immunoprecipitates from mitotic 

cells as compared to immunoprecipitates from interphase cells (Fig. 11A). The gel bands 

were excised in a dust free environment and tryptic digestion was performed. Using 

matrix-assisted laser desorption/ionization time of flight (MALDI-TOF) mass 

spectrometry (MS) the protein in these bands was identified to be Ect2. No Ect2 was 

detected in corresponding gel slices from control pre-immune IgG immunoprecipitates. 

 For identification of phosphorylation sites within these tryptic digests 

(Shevchenko et al., 1996), phosphorylated peptides were first identified by MALDI-TOF 

mass spectrometry (Brucker Daltonik, Bremen, Germany) and subsequently confirmed 

by post source decay (PSD) (Hoffmann et al., 1999). 
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Figure 11.   Mass-spectrometry identification of mitotic Ect2 phosphorylation sites.   

 (A) Anti-Ect2 and pre-immune immunoprecipitates from S- and M-phase HeLa S3 cell extracts were 

separated by SDS-PAGE gel and stained with Coomassie Blue. Ect2, as identified by MS analysis is 

indicated. IgG HC and IgG LC, indicate antibody heavy chains and light chains, respectively. 

 (B) Fragmentation of the phosphorylated peptides 14TSLADSSIFDSK25 and 334SVSMLSLNTPNSNR347 by 

nanospray ionization Q-TOF (quadrupole-time of flight) mass spectrometry in positive ion mode. Arrows 

marked in red indicate phosphorylated fragments and arrows in black indicate unphosphorylated 

fragments.  

(C) Schematic representation of the identified mitosis specific phosphorylation sites in Ect2 and their 

respective localization within Ect2.   
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With the latter method, peptides showing losses of 98 mass units (phosphoric acid) and 

80 mass units (phosphate group) were considered as phosphopeptides. The exact 

localization of the phosphorylated residues within the peptides was determined by MS-

MS based sequencing using a quadrupole time-of-flight (QTOF) mass spectrometer. The 

phosporylation pattern of tryptic peptides of Ect2 protein from mitosis specific samples 

was compared to that of interphase specific samples. In this way we could map six 

phosphorylation sites in six different Ect2 peptides that were specifically present in 

mitotic Ect2 (Fig. 11C, Table 2). All the phosphorylation sites mentioned here were from 

mitosis specific samples. As an example, the fragments of two phosphorylated peptides, 
14TSLADSpSIFDSK25 and 334SVpSMLSLNTPNSNR347, are schematically depicted in Fig. 11B. 

Bioinformatic analysis of the evolutionary conservation of these sites showed that five 

out of these sites were conserved among human (Homo sapiens), mouse (Mus musculus), 

frog (Xenopus leavis), fish (Takifugu rubripes) and fruitfly (Drosophila melanogaster) 

(Table 2, Fig. 12A). This suggests that these five phosphorylation sites could constitute 

important regulatory sites. Three of the identified conserved sites matched Cdk1 and 

MAPK consensus phosphorylation sites (pS/pT P), suggesting that Cdk1 or MAPK might 

be responsible for creating these phosphosites. 

 

 

 

 

 

Table 2. Summary of the phosphorylation sites identified in mitotic endogenous Ect2, in recombinant Ect2 

phosphorylated by Plk1 in vitro and in recombinant Ect2 purified from okadaic acid (OA) treated Sf9 insect

cells. Two other Ect2 phosphorylation sites, S411 and S417, have been reported to be phosphorylated in 

interphase cells (Beausoleil et al, 2004). T815 was mentioned to be phosphorylated in vitro by Cdk2/Cyclin 

A kinase (Stefan Geley, personal communication). The phosphorylated residues are indicated in red. 
 
 
 
 
 

 

S.No Residue Peptide In vivo Plk1  
in vitro 

OA in Sf9 
cells 

Others 

1 S20 TSLADSpSIFDSK  √   √ √  
2 S40 ENLLIGSTpSYVEEEMPQIETR  √   √   
3 T328 ANpTPELK  √    
4 S336 SVpSMLSLNTPNSNR    √   
5 S366 ETDVpSPFPPR  √   √  
6 S685 pSPHGQTRPPASLK  √   √  
7 S811 AFpSFSK  √   √ √  
8 S411, S417 SpSTPVPpSK     Nuclear 
9 T815 AFSFSKpTPK    Cdk2/cyclin A 
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1-70                         S20(in vivo/Plk1)    S40(in vivo/Plk1) 
Hs       MAENSVLTSTTGRTSLADSSIFDSKVTEISKENLLIGST-SYVEEEMPQIETRVILVQEAGKQEELIKAL 
Mm       MADDSVLPSPSEITSLADSSVFDSKVAEMSKENLCLAST-SNVDEEMPQVEARVIMVQDAGKQEELLKAL 
Xl MGDNSMLAQIAGKSLLADSSVFDSKITETSKDNLFAGS--ADIDEEMPQIETRVVLVEDAGRNEELIKAL 
Tr    MADSSILTLGTARSLLVDSSVCDSRIAETTKDHLFLGMACEDGEDMLPKVETRVVLVGEVGRNGALLKAL 
Dm   ----------MEMETIEEQSKCEMSITTLP---------------------TRICLVGGVGQDADTLQAA 
 
310-378                     T328(in vivo) S336(Plk1)              S366(in vivo) 
Hs        IQMDARAGETMYLYEKANTPELKKSVSMLSLNTPNSNRKRRRLKETLAQLSRETDVSPFPP-RKRPSAEH 
Mm        IQMDARAGETMYLYEKANTPELKKSVSLLSLSTPNSNRKRRRLKETLAQLSRETDLSPFPP-RKRPSAEH 
Xl        IQMDARAGETMYLFEKNESPALKKSVSLLTLNTPSSNRKKRRLKDTLAQFTRETDLTPFPP-RKRPSAEH 
Tr        IQMDARAGESMYLYEKNDSPAMKKAVSLLSLTTPNSNRKRRRLKDTLAQLTKETEISPFPPPRKRPSAEH 
Dm        IQN-GYANEMDYLFGDYLDSITNTPNTDRRDSLPISFNKRKRKRFSQRIQLEGTPLGSGKR-RSSVSDAG 
 
658-727                              S685(in vivo) 
Hs        GEQVTLFLFNDCLEIARKRHKVIGTFRSPHGQTRPPASLKHIHLMPLSQIKKVLDIRETEDCHNAFALLV 
Mm        GEQVTLFLFNDCLEIARKRHKVIGTFRSPHDRTRPPASLKHIHLMPLSQIKKVLDIRETEDCHNAFALLV 
Xl        GEQVTLFLFNDCLEIARKRHKVIGAFKTLHGHTRPPACLKHICLMLLSQIKKVLNVKDTEECHNAFALVV 
Tr        GENVTLFLFNDCLEIARKRHKVINTFKSPMGQTRPPPSLKHIALMPLSQIRRVLDLQDTEGDMRAF---- 
Dm        GDSLVLYLFSDSIELCKRRSKGFNTAKSPS--T--AKTHKHLKLISLNTIRLVIDISDSPRAFGLLLR— 
 
797-865                 S811(in vivo/Plk1) 
Hs        RAIKKTSKKVTRAFSFSKTPKRALRRALMTSHGSVEGRSP-SSNDKHVMSRLSSTSSLAGIPSPSLVSLP 
Mm        RAIKKTSKKVTRAFSFSKTPKRALRMALSSSH-SSEGRSP-PSSGKLAVSRLSSTSSLAGIPSPSLVSLP 
Xl        RAIKKTSKKVTRAFSFTKTPKRALQRALMVQN--ADGRSPGPSNEGFASCRMPSTSSLAAVPSPSLVNLS 
Tr        RAIKKTSKKVR----FSS---------------------------------------------------- 
Dm        KLAAKTRLKVGRAFSFNKTPNKLKRAVSTMMTSPFGSTNSLTPASQLAQMRLASCTNINEVDDEDCASMR 
                           (T815- Cdk2/cyclin A) 

 

 

 

 

 

 

Figure 12. Multiple sequence alignment of Ect2 and its homologues in other species. 

(A) Clustal-W sequence alignment of Ect2 and its homologues in different species. Only parts of the 

sequences representing the phosphorylation sites are shown. The phosphorylated peptides identified by 

MALDI-TOF mass spectrometry are depicted in green colour and the phosphorylated residues are 

depicted in red colour. The abbreviations indicate: Hs (Homo sapiens), Mm (Mus musculus), Xl 

(Xenopus laevis), Tr (Takifugu rubripes) and Dm (Drosophila melanogaster).   

 

 

2.1.4 Plk1 can phosphorylate Ect2 in vitro   
 

To investigate which kinase(s) could be responsible for the phosphorylation of Ect2 

during mitosis, in vitro kinase assays were performed. For this, a GST-tagged 

recombinant Ect2 protein was produced in Sf9 insect cells using a recombinant 

baculovirus expression system (Pharmingen). As shown in Fig. 13A, a considerable 

amount of soluble GST-Ect2 could be produced in Sf9 insect cells and isolated with 

glutathione sepharose beads (Fig. 13A). Since a PreScission protease site was engineered 
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between the GST-tag and the Ect2 protein, we could remove the GST-tag by incubation 

of GST-Ect2 protein with PreScission protease (Amersham), resulting in the isolation of 

GST-tag free recombinant Ect2 protein (Fig. 13A).  
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Figure 13. Purification of recombinant human Ect2 from Sf9 insect cells. 

(A) Different cell fractions and GST-Ect2 isolation steps of Sf9 insect cells infected with a GST-Ect2 

recombinant baculovirus were separated on a SDS-PAGE gel and stained with Coomassie Blue. 

For in vitro kinase assays recombinant human GST tagged Plk1 WT (wild type) 

and Plk1 KD (catalytically impaired, K82R) were produced in Sf9 insect cells, according 

to standard isolation procedures present in the laboratory (Casenghi et al., 2003). A GST-

Aurora-B WT/INCENP complex and Aurora-B KD (K106R)/INCENP complex 

produced in Sf9 insect cells were a kind gift from Dr. Reiko Honda (Honda et al., 2003) 

and recombinant Cdk1/cyclin B, also purified from Sf9 insect cells, was kindly provided 

by Dr. Rüdiger Neef. In vitro kinase assays with radioactive [γ32-P]-ATP were performed 

for 20 min at 30oC with recombinant Ect2 as a substrate in the presence of the different 

kinases mentioned above. As a negative control, Ect2 was also incubated in the kinase 

buffer without the addition of exogenous kinase. Proteins in the different samples were 

then separated by SDS-PAGE and phosphorylation of Ect2 was determined by 
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autoradiography of the Coomassie Blue stained gels.  As shown in Fig. 14A and 14B, a 

substantial amount of radioactive phosphate was already incorporated into Ect2 in the 

absence of exogenously added kinases. This suggests that although the isolated Ect2 

protein looked relatively pure (Fig. 13A), contaminating kinase(s) were present in the 

Ect2 isolate resulting in a significant background phosphorylation. Additional wash steps 

(with higher salt concentrations) during the purification of recombinant Ect2 did not 

significantly improve this background problem. Nevertheless, incubation of Ect2 with 

Plk1 resulted in a strong increase in Ect2 phosphorylation, and, moreover, this resulted in 

a retarded mobility of Ect2 on a SDS-PAGE gel.    
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Figure 14. In vitro phosphorylation of Ect2 by mitotic kinases. 

(A) Recombinant Ect2 protein was incubated with the different, indicated, mitotic kinases in the presence of 

[γ32-P]-ATP for 20 min.  Proteins were subsequently separated by SDS-PAGE and the Coomassie Blue stained 

gel was then subjected to autoradiography. 

(B) The Coomassie Blue stained gel corresponding to the autoradiography in A is shown. Note the retarded 

mobility of Ect2 phosphorylated by Plk1 (lane 2).  

(C) Different exogenous substrates were incubated with the indicated mitotic kinases in the presence of [γ32-

P]-ATP.  Phosphorylation of these proteins was determined by autoradiography as in (B). 
 44
1-Ect2+Cdk1/cyclin B 
2-Ect2+Plk1 WT 
3-Ect2+Plk1 KD 
4-Ect2+Aurora-B WT/INCENP 
5-Ect2+Aurora-B KD/INCENP 
6-Ect2 alone 
7-Cdk1/cyclin B+Histone 1 
8-Plk1 WT+Casein 
9-Plk1 KD+Casein 
10-Aurora-B WT/INCENP+Histone 3 
11-Aurora-B KD/INCENP+Histone 3 
MW-Molecular Weight marker 
Histone H
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Some increase in Ect2 phosphorylation was also observed in the presence of the 

catalytically impaired Plk1 (K82R) mutant, which is probably a result of low residual 

kinase activity of this mutant kinase. Surprisingly, no obvious increase in Ect2 

phosphorylation was observed upon incubation with Cdk1/cylin B or Aurora-B/INCENP. 

This was not a result of the absence of kinase activity, because these kinases readily 

phosphorylated other exogenous substrates (Fig. 14C). Because of the high background 

activity with Ect2, it cannot be ruled out that low amounts of phosphate are incorporated 

into Ect2 by these kinases in vitro.  In particular, as some of the consensus Cdk1/cyclin B 

sites on Ect2 were phosphorylated in vivo, we assume that Ect2 might be phosphorylated 

by Cdk1/cyclin B at least in vivo. An alternate possibility to be tested for reducing the 

background activity of Ect2 is to treat the recombinant Ect2 with protein phosphatases 

prior to performing in vitro kinase assays. 

Since Ect2 was phosphorylated by Plk1 in vitro, resulting in a retarded 

electrophoretic mobility of Ect2, we wondered if Plk1 could be responsible for the 

phosphorylation of some of the identified endogenous Ect2 phosphorylation sites. To 

investigate this, non-radioactive kinase assays were performed with recombinant Ect2 in 

the presence or absence of exogenous Plk1. After separation on a SDS-PAGE gel, the 

Ect2 protein bands were excised and processed for mass spectrometry analysis as 

described in the previous section. In total, four Plk1 specific phosphorylation sites were 

identified in recombinant Ect2 (Table 2, Fig. 12). Of these, three did correspond to 

endogenous Ect2 phosphorylation sites, strongly arguing that Plk1 might be responsible 

for the phosphorylation of these sites in vivo. Interestingly, one of the identified sites S20 

is a putative PBD (Polo-Box Domain) docking site. The PBD is located in the carboxyl-

terminal half of Plk1 and has recently been shown to bind to phosphorylated peptides 

containing the consensus sequence X-S-pS/pT-P/X. To investigate if phosphorylation of 

these sites was responsible for the marked upshift of Ect2 in mitosis, we depleted Plk1 

from HeLa S3 cells by siRNA. Depleted cells were then arrested in interphase 

(aphidicolin) and in mitosis (nocodazole), respectively. As a control, cells were treated 

with siRNA duplex against the luciferase gene (GL2) (Elbashir et al., 2001). Cell lysates 

were subsequently separated by SDS-PAGE and transferred onto nitrocellulose 

membranes. As shown in Fig. 15A, Western blot analysis revealed that Ect2 was clearly 
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upshifted in mitotic control (GL2) cells, but also in Plk1 siRNA treated cells. The 

effective depletion of Plk1 in these cells was confirmed by Western blot analysis (Fig. 

15A). Therefore, Plk1 seems not to be the only kinase that is responsible for the upshift 

of Ect2 in vivo.  Alternatively, it cannot be excluded that low residual levels of Plk1 

might be sufficient for effective Ect2 phosphorylation. 

 

 Figure 15. Retarded Ect2 electrophoretic mobility is 

also observed in mitotic Plk1 depleted cells. GL2 

and Plk1 siRNA oligo duplexes were transfected 

into HeLa S3 cells. These cells were subsequently 

arrested in interphase (I-phase) with aphidicolin 

and in mitosis (M-phase) with nocodazole. Protein 

extracts of these cells were separated by SDS-PAGE 

and transferred onto nitrocellulose membranes. The 

Western blots were probed with the indicated 

antibodies. 
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.1.5 No obvious interaction between Ect2 and Plk1 kinase 

s described above, the PBD of Plk1 has recently been shown to bind to phosphorylated 

eptides containing the consensus site X-S-pS/pT-P/X (Barr et al., 2004; Elia et al., 

003). One of the identified Ect2 sites (S20) matches this consensus site and hence Plk1 

ight bind directly to Ect2. Indeed Anja Hanisch in our laboratory could show that 

ndogenous Ect2 from human cells binds to the wild type PBD of Plk1 but not to a 

hosphopeptide binding mutant of the PBD. We therefore tested if Ect2 could co-

recipitate endogenous Plk1 from mitotic cell lysates. As shown in Fig. 16A, we could 

eadily precipitate Ect2 from mitotic cells, but Plk1 was not present in these cell lysates. 

oreover, the over expressed flag-tagged amino-terminal domain of Ect2 (1-333) could 

ot be identified in immunoprecipitates of the myc-Plk1 precipitated using anti-myc 

E10 antibodies from mitotic HeLa S3 cells (Fig. 16B). Thus, although we cannot 
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exclude the possibility that our antibodies interfere with the Plk1-Ect2 interaction, so far 

there is no clear evidence that this S20 site is a functional Plk1 docking site. Furthermore, 

as shown below, no obvious phenotype could be detected with the S20 mutants.  
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Figure 16.  No in vivo interaction was observed between Ect2 and Plk1 kinase. 

(A) HeLa S3 cells were synchronized either with thymidine-aphidicolin or with aphidicolin-nocodazole 

block release protocols to enrich cells in interphase (I) and mitosis (M), respectively. Endogenous Ect2 

was immunoprecipitated from these cell extracts. These immunoprecipitates (IP) were separated by 

SDS-PAGE and transferred onto nitrocellulose membranes. The blots were probed with anti-Ect2 and 

anti-Plk1 antibodies. 

(B) HeLa S3 cells were transfected with myc-Plk1 and flag-Ect2 (1-333) constructs for 36 hours and 

myc-Plk1 was immunoprecipitated using anti-myc beads. The immunoprecipitates (IP) were separated 

by SDS-PAGE and transferred onto nitrocellulose membranes and probed with anti-myc and anti-flag 

antibodies. 
                    

                                         
.1.6 Analysis of Ect2 phosphorylation site mutants 

o explore the physiological significance of the identified Ect2 phosphorylation sites, site 

irected mutagenesis was performed. The identified phosphorylated serine and threonine 

esidues were singly mutated to alanine residues, thus mimicking an unphosphorylated 

tate, and into aspartic acid residues, which can sometimes mimic a phosphorylated state. 
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In addition, all alanine mutations (except the non-conserved S40A) were also combined 

into one construct and the same was done with the aspartic acid mutations.  

We first analyzed the overexpression phenotype of wild type and mutant myc-

tagged Ect2 constructs. Again these constructs were transiently expressed in HeLa S3 

cells and 48 hours after transfection, cells were analyzed by immunofluorescence 

microscopy. Since Ect2 is required for cytokinesis we particularly investigated the 

presence of binucleated cells, an indication of cytokinesis failure. Expression of wild type 

Ect2 resulted in a clear increase in the number of binucleated cells, as compared to 

control myc-Tlk1 (Tousled Like Kinase) transfected or untransfected cells (Fig. 17) 

(Sillje et al., 1999). Thus, high levels of Ect2 interfered with proper cytokinesis. We next 

analyzed the percentages of binucleated cells expressing mutant Ect2 proteins. As shown 

in Fig. 17A, expression of some of the alanine mutants (especially S20) resulted in a 

higher percentage of binucleated cells, as compared to the wild type. However, 

expression of the Ect2 mutant form with all six residues mutated into alanine residues 

showed an almost similar increase in binucleated cells as wild type Ect2.  
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Figure 17. Increase in the number of 

binucleated cells with overexpressed myc-

tagged wild type and mutant Ect2 proteins. 

The indicated myc-tagged proteins were 

overexpressed in HeLa S3 cells for 48 hours. 

Cells were then fixed and stained with anti-

myc (9E10) antibody to identify the 

transfected cells. Cells were counterstained 

with DAPI for the determination of the 

percentage of binucleated cells. This 

experiment was done in duplicates and 

always the difference of values between the 

two experiments was not more than 10%.   

(A) Analysis of cells expressing the alanine 

mutant Ect2 proteins. As a control, myc-Tlk1 

was used.  

(B) Analysis of cells expressing the aspartic 

acid mutantEct2 proteins. 
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The low numbers of Ect2 transfected cells could possibly be the reason for the 

strong variation in the number of binucleated cells which we obtained with the different 

mutants, and these numbers must hence be interpreted with caution. Cells expressing the 

mutant Ect2 forms in which the phosphorylated residues were mutated to aspartates, all 

showed percentages of binucleated cells as was observed with wild type Ect2 (Fig. 17B). 

Under the conditions tested here, we could not obtain a clear indication whether the 

mutant Ect2 proteins showed an effect on cytokinesis, which was different from that of 

the overexpressed wild type Ect2 protein. 

To analyze if the localization of these mutant Ect2 proteins to the central spindle 

was altered, the myc-tagged wild type and mutated full length constructs were transfected 

into HeLa S3 cells and their localization was analyzed by indirect immunofluorescence, 

using anti-myc (9E10) antibodies. As shown in Fig. 18A, wild type myc-tagged Ect2 

localized to the central spindle in anaphase and to the midbody in telophase cells, in 

agreement with previous reports (Tatsumoto et al., 1999) and data shown below (see 

chapter 2.2). Similarly, all mutant Ect2 proteins tested localized to these spindle 

structures, suggesting that central spindle and midbody localization of Ect2 is not 

regulated by reversible phosphorylation of these specific residues. An example of one 

Ect2 mutant (S20A) localizing to the central spindle is shown in Fig. 18A.  
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        Figure 18. Localization of myc-

tagged Ect2 wild type and myc-

Ect2S20A to the central spindle. 

(A) The indicated myc-Ect2 proteins 

were transiently overexpressed in 

HeLa S3 cells for 36 hours and fixed 

and permeabilized with 

paraformaldehyde/Triton X-100. 

These cells were stained with anti-

myc (9E10) antibodies (red), anti-α-

tubulin antibodies (green) and DNA 

was labelled with DAPI (blue). 

Scale bar 10 µm. 
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Ect2 is a GTP exchange factor and hence we next tested Ect2 GEF activity. Except for 

one publication (Tatsumoto et al., 1999), showing Ect2 GEF activity towards RhoA, 

Rac1 and Cdc42 small GTPases, no other studies on Ect2 GEF activity have been 

reported. As this is not an assay commonly used in our laboratory, we asked Dr. Anja 

Schmidt from Prof. Allan Hall’s laboratory to help us with these assays. Since 

immunoprecipitations from cells only resulted in the purification of low amounts of Ect2 

we decided to use recombinant Ect2 purified from Sf9 insect cells. To obtain 

phosphorylated Ect2 from Sf9 insect cells we treated these cells with Okadaic acid (OA), 

a PP1A and PP2 (Protein Phosphatase) phosphatase inhibitor (Cohen et al., 1990), which 

has been shown to result in a mitosis-like phosphorylation of many proteins. For 

example, OA is generally used to produce phosphorylated active recombinant Plk1 kinase 

(Jackman et al., 2003). Using the recombinant GST-Ect2 encoding baculoviruses 

described above we generated recombinant Ect2 from untreated and OA treated Sf9 

insect cells and removed the GST- tag using PreScission protease. As shown in Fig. 19A, 

OA treatment resulted in an upshift of recombinant Ect2 on a SDS-PAGE gel, similar to 

what has been observed in mitotic cell extracts. Moreover, MS/MS analysis of this 

protein revealed that at least four of the five identified conserved endogenous Ect2 

phosphorylation sites (S20, S366, S685 and S811) were specifically phosphorylated in 

this recombinant protein isolated from OA treated Sf9 insect cells. Thus, the 

phosphorylation pattern of this recombinant Ect2 is similar to the phosphorylation pattern 

of endogenous mitotic Ect2. Since only RhoA has been implicated to be essential for 

cytokinesis, we tested the GEF activity of these recombinant Ect2 proteins with RhoA as 

the substrate (performed by Dr. Anja Schmidt). Equal amounts of recombinant Ect2 

protein treated with and without OA were used for GEF assays. For measuring the 

exchange activity, Ect2 together with [γ32-S]-GTP was added to the pre-loaded GDP-

RhoA. Samples were then collected every five min and the reactions were terminated by 

addition of ice-cold termination buffer, followed by filtration through nitrocellulose 

filters. Filters were washed once with the termination buffer and radioactivity was 

measured using a liquid scintillation counter. Initial experiments with 50 pmol Ect2 in the 

reaction assays did hardly show any GEF activity. Only when the amount of Ect2 was 

increased to 150 pmol some GEF activity could be measured, but this was clearly much 
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less as compared to a positive SopE GEF control (Fig. 19B). SopE is a GEF from 

Salmonella typhimurium that is often used as a positive control in GEF assays (Rudolph 

et al., 1999). Unfortunately, no significant differences in activity between 

hypophosphorylated recombinant Ect2 [no OA treatment] and phosphorylated-Ect2 (OA 

treated) were observed in this assay. Since this assay required high amounts of Ect2, it 

was not possible to analyze the mutant proteins isolated from transiently transfected cells. 

This would require additional efforts, including the generation of recombinant 

baculoviruses. Since the obtained results were not very promising we have not further 

followed up this line of investigation.  
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Figure 19. In vitro GEF assay of recombinant Ect2 proteins on RhoA. 

(A) GST-Ect2 protein bound to glutathione sepharose beads was purified from Sf9 insect cells, which were 

either treated with OA or left untreated. Note the retarded mobility shift of phosphorylated GST-Ect2 

purified from OA (okadaic acid) treated Sf9 insect cells compared to GST-Ect2 purified from untreated 

cells. 

(B) Based on the gel shown in A, the concentrations of GST cleaved recombinant Ect2 proteins isolated 

from non-treated (Ect2) and OA treated (P-Ect2) Sf9 insect cells were normalized and equal amounts were 

used for in vitro GEF assays with RhoA in the presence of [35S]-GTPγS. As a positive control, recombinant 

SopE GEF was used. Samples were taken every five min, filtered and measured by liquid scintillation. 

Results are plotted in a graph. 
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2.1.7 Conclusion: 
  
In this part of the study, we demonstrated that Ect2 becomes hyperphosphorylated during 

early mitosis and is dephosphorylated upon metaphase to anaphase transition. Using mass 

spectrometry we could identify conserved mitosis specific phosphorylation sites in 

endogenous Ect2 as well as in recombinant Ect2 phosphorylated by Plk1 kinase in in 

vitro kinase assays. Upon site directed mutagenesis of these phosphorylation sites, no 

clear functions could be attributed to individual sites. In particular, we could not 

determine any significant difference in activity between hypophosphorylated and 

phosphorylated Ect2 in in vitro GEF assays. This result is contradictory to the report 

made by Tatsumoto et al (Tatsumoto et al., 1999) who claimed that Ect2 becomes active 

only upon phosphorylation. Future studies will be required to resolve the function of 

these phosphorylation sites and will probably require improved protocols to analyze the 

GEF activity of these mutant proteins. 
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2.2 Regulation of Ect2 localization 
 

2.2.1 Ect2 localizes predominantly to the central spindle and cell cortex 
 

To examine the exact localization of Ect2 in HeLa S3 cells, indirect immunofluorescence 

microscopy was performed with anti-Ect2 antibodies. These antibodies predominantly 

stained the central spindle and midbody in mitotic cells (Fig. 20A, upper two rows) in 

accordance with a previous report (Tatsumoto et al., 1999). In addition, however, we 

could observe cortical staining of Ect2 throughout mitosis. In interphase cells Ect2 

localized predominantly to the nucleus, but also a weak cortical staining could be 

observed especially at cell-cell contacts (data not shown). No such staining was observed 

with pre-immune IgG attesting to the specificity of the used anti Ect2-antibodies (data not 

shown).    

To further confirm that this staining was specific for Ect2 protein, we depleted 

Ect2 in HeLa S3 cells by siRNA duplex specifically targeting Ect2 and indirect 

immunofluorescence microscopy was performed. In Ect2 siRNA transfected cells (48 

hours), the central spindle, midbody and cell cortex staining was strongly reduced and 

also nuclear staining was clearly diminished in interphase cells (Fig. 20A bottom two 

rows). To confirm efficient depletion of Ect2, cell extracts were prepared from control 

(GL2) and Ect2 siRNA treated HeLa S3 cells after 24 and 48 hours of transfection. These 

cell extracts were separated by SDS-PAGE and after Western blotting, the membranes 

were probed with anti-Ect2 antibodies. As compared to the control (GL2), Ect2 levels 

were clearly diminished in Ect2 siRNA treated cells (Fig. 20B upper panel). As a loading 

control, α-tubulin was detected with anti-α-tubulin antibodies (Fig. 20B lower panel). 
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Figure 20.  Ect2 localizes to the central spindle, midbody and cell cortex during mitosis. 

(A) HeLa S3 cells were treated with GL2 or Ect2 siRNA duplexes for 48 hours and were subsequently 

fixed and permeabilized with paraformaldehyde/Triton X-100. These cells were stained with anti-Ect2 

antibodies in red (left),anti-α-tubulin antibodies in green (middle) and DNA was labelled with DAPI in 

blue. Merged images are shown at the right. Scale bar 10 µm.  

(B) HeLa S3 cells were transfected with GL2 or Ect2 siRNA duplexes and after 24 hours and 48 hours of 

transfection, Hepes lysis buffer extracts were made. Proteins were separated by SDS-PAGE and 

transferred onto nitrocellulose membranes. These membranes were probed with anti-Ect2 antibodies 

(upper panel) and, as a loading control, with anti-α-tubulin antibodies (lower panel). 
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cell cortex. Amino-terminal Ect2 fragments containing the full BRCT domain (two 

BRCT repeats, residues 1-420 and 1-333) also localized to the central spindle, but were 

absent from the cell cortex (Fig. 21B). However, another amino-terminal construct 

encoding myc-Ect2 1-288, which has a truncated second BRCT repeat, did not localize to 

the central spindle in anaphase cells (Fig. 21B, lower panel). This strongly suggests that 

an intact BRCT domain, consisting of two BRCT repeats, is required for targeting Ect2 to 

the central spindle.  

Whereas the amino-terminal half of Ect2 was sufficient for central spindle 

targeting, the carboxyl-terminal half of Ect2 strongly associated with the cell cortex, but 

was absent from the central spindle (Fig. 21C). The carboxyl-terminus of Ect2 consists of 

a DH domain (Dbl Homology) which is a Rho GEF domain, followed by a PH domain 

(Plekstrin Homology). Further truncation analysis revealed that the PH domain was 

essential for targeting Ect2 to the cell cortex (Fig. 21C). Considering that PH domains 

constitute lipid-binding motifs (Blomberg et al., 1999), it is attractive to postulate that the 

cortex association of Ect2 reflects a direct interaction with the plasma membrane. The PH 

domain has been shown to be essential for the cell transforming activity of Ect2 in 

NIH/3T3 cells by an yet unknown mechanism (Miki et al., 1993; Solski et al., 2004), 

suggesting that the cortex-associated pool of Ect2 is critical for its oncogenic potential. 

 

 

2.2.3 Ect2 is targeted to the central spindle via the MKlp1/MgcRacGAP 

and Aurora-B/MKlp2 complexes 

 

The central spindle is composed of non-kinetochore, anti-parallel MTs and many proteins 

required for cytokinesis are localized to this structure. Therefore we next asked which 

central spindle proteins were required for targeting Ect2 to the central spindle. 

Specifically, we depleted the kinesins MKlp1 and MKlp2, the mitotic kinase Aurora-B 

and the GTPase activating protein MgcRacGAP from HeLa S3 cells, using previously 

validated siRNA duplexes. In agreement with previous reports (Kitamura et al., 2001; 

Matuliene and Kuriyama, 2002; Neef et al., 2003; Terada et al., 1998), depletion of all 
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these proteins resulted in a significant increase in binucleated cells, indicative of 

cytokinesis defects (data not shown).  
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Western blotting 

igure 22. Ect2 requires the MKlp1/MgcRacGAP and Aurora-B/MKlp2 complexes to localize to the 

entral spindle. 

A) HeLa S3 cells were transfected with siRNA duplexes against MKlp1, MgcRacGAP, Aurora-B and 

Klp2 genes for 36 hours and were subsequently fixed and permeabilized with 

araformaldehyde/Triton X-100. These cells were stained with anti-Ect2 antibodies in red (left), anti-α-

bulin antibodies in green (middle) and DNA was labelled with DAPI in blue. Merged images are 

hown at the right. Scale bar 10 µm.  

B) HeLa S3 cells were transfected with an Ect2 siRNA duplex for 36 hours and were subsequently 

xed and permeabilized with paraformaldehyde/Triton X-100. These cells were stained with anti-

Klp1, anti-MgcRacGAP (Cyk4), anti-Aurora-B and anti-MKlp2 antibodies in red (left), anti-α-tubulin 

ntibodies in green (middle) and DNA was labelled with DAPI in blue. Merged images are shown at the 

ight. Scale bar 10 µm. 
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(C) HeLa S3 cells were transfected with siRNA duplexes against GL2, MKlp1, MgcRacGAP, MKlp2, 

Aurora-B and Ect2 genes for 36 hours. Cell extracts were made in Hepes lysis buffer and after SDS-PAGE, 

the separated proteins were blotted onto nitrocellulose membranes and probed with anti-Ect2 antibodies 

(upper panel) and anti-α-tubulin antibodies (lower panel) as loading control.  

 

In MKlp2 and Aurora-B depleted cells, the central spindle was often strongly deformed, 

missing many of the anti-parallel MTs in this region. Also in MKlp1 and MgcRacGAP 

depleted cells central spindle formation was affected, but to a lesser extent than in 

Aurora-B and MKlp2 depleted cells. At present it is not clear if this reflects a stronger 

dependency of central spindle formation on MKlp2 and Aurora-B or if this reflects the 

efficiency of the depletion. These data are consistent with the view that all the above 

proteins contribute to central spindle formation (Fig. 22A). Importantly, depletion of each 

of these four proteins abolished the interaction of Ect2 with residual central spindle and 

midbody structures, but did not affect its localization to the cell cortex (Fig. 22A and data 

not shown). Since the absence of Ect2 from central spindle and midbody could not be 

explained by diminished Ect2 levels (Fig. 22B), we conclude that MKlp1, MKlp2, 

Aurora-B and MgcRacGAP were all required for proper localization of Ect2 to these 

structures. In Ect2 depleted cells, on the other hand, MKlp1, MKlp2, Aurora-B and 

MgcRacGAP localization to the central spindle was not affected. These results strongly 

suggest that Ect2 acts downstream of MKlp1, MKlp2, Aurora-B and MgcRacGAP and 

merely uses the central spindle to position itself.  

We could not directly compare the respective localization of these endogenous 

proteins at the central spindle as most antibodies were generated in rabbits. Hence, we 

could only determine co-localization at the central spindle of all these proteins with Plk1 

which was detected with a mouse monoclonal antibody. Although MKlp1, MKlp2, 

Aurora-B, MgcRacGAP, Plk1 and Ect2 all co-localize at the central spindle during early 

anaphase (Fig. 23A), close examination of late stage dividing cells revealed distinct 

localization patterns for some of these proteins. In late anaphase and telophase cells, 

MKlp2 co-localized with Aurora-B and Plk1 in two bands adjacent to the midbody 

structure (Fig. 23B), consistent with the notion that MKlp2 interacts with these two 

kinases (Gruneberg et al., 2004; Neef et al., 2003). In contrast, both MKlp1 and 

MgcRacGAP localized more closely to the midbody structure (Fig. 23B), in line with 
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their ability to form a stable complex, called central spindlin (Mishima et al., 2002; 

Mishima et al., 2004). When Ect2 localization was analyzed carefully, it clearly matched 

the localization of the MKlp1/MgcRacGAP complex near the midbody (Fig. 23B), 

suggesting that this complex could be involved in targeting Ect2 to the central spindle 

and midbody. 
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Figure 23. Ect2 co-localizes with MKlp1 and MgcRacGAP 

in telophase. 

(A) HeLa S3 cells were fixed and permeabilized with 

paraformaldehyde/Triton X-100 and stained with anti-Plk1 

antibodies in red (left) and anti-Aurora-B, anti-MKlp2, 

anti-Ect2, anti-MKlp1 and anti-MgcRacGAP antibodies in 

green (middle). DNA was labelled with DAPI in blue. 

Merged images are shown at the right. Scale bar 10 µm. 

(B) HeLa S3 cells were fixed and processed as in A and 

stained with the above mentioned antibodies. Midbody 

structure localization at telophase is shown. Scale bar 3.3 

µm. 
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2.2.4 Ect2 interacts with the MKlp1/MgcRacGAP complex via the amino-

terminal BRCT domain 
  

Since Ect2 localization to the central spindle is dependent on the MKlp1 and 

MgcRacGAP proteins and Ect2 co-localizes with these proteins at the midbody, we next 

asked whether these proteins exist in a complex. To determine whether Ect2 interacts 

with the MKlp1/MgcRacGAP complex, co-immunoprecipitation experiments were 

performed. HeLa S3 cells were synchronized by an aphidicolin/nocodazole block release 

protocol and harvested when most cells were present in anaphase or telophase. 

Endogenous Ect2 was then immunoprecipitated using anti-Ect2 antibodies or pre-

immune antibodies for control (Fig. 24A). The resulting immune complexes were probed 

after Western blotting for the presence of various central spindle components. The 

mitotic kinesin MKlp1 (Kuriyama et al., 2002; Matuliene and Kuriyama, 2002) and the 

GTPase activating protein MgcRacGAP (Hirose et al., 2001) could readily be detected in 

Ect2 immunoprecipitates, whereas the mitotic kinase Aurora-B (Terada et al., 1998) and 

the mitotic kinesin MKlp2 (Hill et al., 2000; Neef et al., 2003) were absent, and none of 

these proteins were observed in control immunoprecipitates (Fig. 24A). These data 

indicate that Ect2 interacts specifically with the MKlp1/MgcRacGAP complex. These 

results are in agreement with the dependency of Ect2 on MKlp1 and MgcRacGAP 

proteins for its central spindle and midbody localization (Fig. 22A). In addition, these 

results suggest that MKlp2 and Aurora-B might have an indirect regulatory function in 

targeting Ect2 to the central spindle. 

Since Ect2 localization is mediated via the amino-terminal BRCT domain (Fig. 

21B), we next investigated whether this domain could directly interact with the 

MKlp1/MgcRacGAP complex. To investigate this possibility, different amino-terminal 

myc-tagged fragments were transiently expressed in HeLa S3 cells and 

immunoprecipitated using anti-myc (9E10) antibodies after synchronization, as described 

above. As shown (Fig. 24B), the amino-terminal fragments comprising residues 1-420 

and 1-333 were able to co-precipitate MKlp1 and MgcRacGAP. A smaller fragment with 

a truncated BRCT domain (residues 1-288) on the other hand was unable to co-

precipitate MKlp1 and MgcRacGAP and the same was true for an unrelated control 

 60



Results                               
 

protein, hWW45 (Fig. 24B and 25C) (Chan et al., 2005; Valverde, 2000). In agreement 

with Ect2’s requirement to localize to the central spindle (Fig. 21A and 21B), the 

minimal domain identified here that could still bind to the MKlp1/MgcRacGAP complex 

comprised again the complete BRCT domain. These results show that targeting of Ect2 to 

the central spindle is mediated via the interaction of its BRCT domain with the 

MKlp1/MgcRacGAP complex. 
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Figure 24. The MKlp1/MgcRacGAP complex co-immunoprecipitates with Ect2. 

(A) Hepes lysis buffer extracts were made of HeLa S3 cells synchronized in anaphase and telophase 

stages by an aphidicolin-nocodazole block and release protocol. Immunoprecipitation experiments were 

performed on these extracts using anti-Ect2 antibodies and IgG pre-immune antibodies as a control. 

These immunoprecipitates were separated on SDS-PAGE, transferred onto nitrocellulose membranes and 

probed with anti-Ect2, anti-MKlp1, anti-MgcRacGAP, anti-Aurora-B and anti-MKlp2 antibodies.  

(B) HeLa S3 cells were simultaneously synchronized and transfected with myc-Ect2 1-420, myc-Ect2 1-

333, myc-Ect2 1-288 and myc-hWW45 as a control. Immunoprecipitation experiments were done as 

described above with anti-myc antibodies. Blots were then probed with anti-myc, anti-MKlp1 and anti-

MgcRacGAP antibodies.  
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2.2.5 The interaction between the BRCT domain of Ect2 and the 

MKlp1/MgcRacGAP might be phosphorylation dependent 

 
Recently, it was shown that the BRCT domain of BRCA1 constitutes a phosphopeptide-

binding domain (Clapperton et al., 2004; Manke et al., 2003; Williams et al., 2004; Yu et 

al., 2003). The crystal structure of the BRCA1 BRCT domain in complex with the 

BACH1 (BTB and CNC homology 1) phosphopeptide has been determined (Fig. 25A). 

This structure revealed that two amino acid side chains of S1655 and K1702 in the BRCT 

domain directly interact with the phosphate group of the phosphopeptide and another 

direct interaction was made with an amide bond of glycine residue G1656. Given that the 

two side-chain interactions critical for phosphoprotein binding in BRCA1 are present and 

highly conserved in Ect2 (T153, K195), we considered the possibility that the interaction 

of Ect2 with the MKlp1/MgcRacGAP complex could require a phosphorylated docking 

site. Also, the Clustal-W sequence alignment of the first Ect2 BRCT repeat with BRCT 

repeats of BRCA1, BARD1, XRCC1, RFC1 and PTIP revealed that although the primary 

sequence of BRCT repeats is not well conserved, the critical residues that have been 

implicated in phosphopeptide binding are conserved in all the BRCT repeats analyzed 

(Fig. 25B). Therefore, we mutated the two highly conserved residues (T153, K195) in the 

Ect2 1-333 BRCT domain to alanine residues (Fig. 25B) (Clapperton et al., 2004; 

Williams et al., 2004). This myc-tagged mutant fragment (1-333, T153A/K195A) was 

transiently overexpressed in HeLa S3 cells and immunoprecipitated after synchronization 

in ana- and telophase of the cell cycle. As shown in Fig. 25C, the wild type 1-333 

fragment readily co-precipitated MKlp1 and MgcRacGAP, but only low levels were 

bound to the mutant BRCT (T153A/K195A) domain. Immunofluorescence microscopy 

analysis revealed that the BRCT T153A/K195A mutant fragment was only present at low 

levels at the central spindle, in accordance with its weak interaction with the 

MKlp1/MgcRacGAP complex (Fig. 25D). Together, these data strongly suggest that the 

localization of Ect2 to the central spindle could be mediated via the BRCT dependent 

binding to the MKlp1/MgcRacGAP complex and probably involves a phosphorylation-

site specific docking mechanism. 
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Figure 25. The MKlp1/MgcRacGAP complex interacts with the BRCT domain of Ect2 possibly in a 

phosphorylation dependent manner. 

(A) Schematic representation of BACH1 phosphopeptide (blue) contacts with the tandem BRCT domains 

of BRCA1. The residues marked in red coloured boxes within the BRCT domain are highly conserved 

throughout the whole family of BRCT domains (see arrows in Fig. 25B). Dashed lines, hydrogen bonds; 

pink crescent, van der waals interactions; green circles, water molecules.Image adapted and modified 

from Clapperton et al, Nature Structural and Molecular Biology 11, 512-518 (2004). 

(B) Clustal-W sequence alignment of the first Ect2 BRCT repeat with BRCA1 (Breast Cancer Carboxyl 

terminal), BARD1 (BRCA1 associated ring domain1), XRCC1 (X-ray repair complementing defective 

repair in chinese hamster cells 1), RFC1 (replication factor C1) and PTIP (pax transactivation domain-

interacting protein). The BRCT domain number indicates the BRCT repeat used for alignment out of the 

total number of BRCT repeats present in each protein. Arrows indicate the highly conserved residues in 

this alignment. 
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(C) HeLa S3 cells were simultaneously synchronized and transfected with myc-Ect2 1-333, myc-Ect2 1-

333 T153A/K195A and myc-hWW45 (as a control), respectively. Anti-myc antibodies coupled to protein 

G sepharose beads were used to immunoprecipitate these proteins from cell extracts of cells 

synchronized in anaphase and telophase of the cell cycle. The immunoprecipitates were separated by 

SDS-PAGE, blotted and probed with anti-myc, anti-MKlp1 and anti-MgcRacGAP antibodies.  

(D) U2OS cells were transfected with myc-Ect2 1-333 and myc-Ect2 1-333 T153A/ K195A plasmids for 

36 hours and were subsequently fixed and permeabilized with paraformaldehyde/Triton X-100. These 

cells were stained with anti-myc in red (left) and anti-α-tubulin antibodies in green (middle). DNA was 

labelled with DAPI in blue. Merged images are shown at the right. Scale bar 10 µm. 

 

 

 

 

 

 

 

 

 

2.2.6 Ect2 central spindle localization is not essential for cytokinesis  
 

As shown above, the intact BRCT domain is necessary and sufficient for central spindle 

localization of Ect2. We next wondered if overexpression of this domain could displace 

endogenous Ect2 from the central spindle. To examine this, an antibody that detects a 

carboxyl-terminal epitope in Ect2 recognizing only endogenous Ect2 protein was used. 

Examination of cells overexpressing the amino-terminal fragments (1-333 and 1-420) 

showed that endogenous Ect2 was indeed displaced from the central spindle by these 

fragments (Fig. 26A). Expression of a shorter amino-terminal fragment (1-288) with a 

truncated BRCT domain (1-288) that does not localize to the central spindle did not 

interfere with endogenous Ect2 localization. This indicates that the BRCT domain is able 

to displace endogenous Ect2 from the central spindle, most likely as a result of 

competition with endogenous Ect2 for binding to the MKlp1/MgcRacGAP complex.  

Despite displacement of endogenous Ect2 from the central spindle by the large 

amino-terminal Ect2 fragment (1-420), these cells did not show obvious cytokinesis 

defects (Fig. 26, right panel) as revealed by their mononuclear appearance (data not 

shown). This suggests that Ect2 central spindle localization is not absolutely required for 

cytokinesis and that the cortical pool of Ect2 might be sufficient to carry out cytokinesis 

in these cells. Surprisingly, though, cells expressing the smaller BRCT containing Ect2 

fragment (1-333) became binucleated after 48 hours of expression, indicative of a 

cytokinesis failure in these cells (Fig. 26, right panel). Since both BRCT domain-
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containing fragments displaced endogenous Ect2 equally well (Fig. 26), the cytokinesis 

defect upon overexpression of the 1-333 fragment is unlikely to be a result of Ect2 central 

spindle displacement.  
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Figure 26. Exogenously expressed myc tagged Ect2 fragments at the central spindle displaces 

endogenous Ect2.  

(A) HeLa S3 cells were grown on cover slips and transiently transfected with myc-Ect2 1-420, 

myc-Ect2 1-333 and myc-Ect2 1-288 constructs for 36 hours and were simultaneously fixed and 

permeabilized with formaldehyde/Triton X-100. These cells were stained with anti-Ect2 

antibodies recognizing a carboxyl-terminally located Ect2 epitope in red (left) and anti-myc 

9E10 antibodies in green (middle). DNA was labelled with DAPI in blue. Merged images are 

shown at the right. Scale bar 10 µm. 

 

 

 

 

 

 

 

 

 

 

 

 

 65



Results 

2.2.7 Conclusion: 

 
In this part of the study, we examined the localization of endogenous Ect2 in human cells 

and, moreover, identified the domains and interacting proteins that control the subcellular 

localization of Ect2. We show that Ect2 localizes both to the central spindle and the cell 

cortex during mitosis. The central spindle localization is dependent on the amino-

terminally located BRCT domain, whereas the cell cortex localization is mediated by the 

carboxyl-terminal PH domain. Although the central spindle targeting of Ect2 requires 

both the MKlp1/MgcRacGAP and MKlp2/Aurora-B complexes, only the former complex 

directly interacts with Ect2. We also show that targeting of Ect2 to the central spindle 

requires the interaction of its BRCT domain to the MKlp1/MgcRacGAP complex and is 

probably mediated by a phosphorylation dependent docking mechanism. Finally, we 

show that Ect2 central spindle localization is not absolutely essential for cytokinesis, 

indicating that localized GEF activity is not critical for cytokinesis. Taken together, these 

data show that although the targeting of Ect2 to the central spindle is mediated by protein 

complexes through phosphorylation dependent docking mechanism, other unknown 

mechanisms operate in the cell to faithfully complete cytokinesis in the absence of 

localized Ect2 at the central spindle.  
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2.3 Requirement of Ect2 in cytokinesis 
 

2.3.1 Ect2 controls both early and late cytokinesis events  
 

Cytokinesis involves several steps including cleavage furrow specification, contractile 

ring formation, cleavage furrow ingression and abscission. To explore the role of human 

Ect2 in this process we investigated the cytokinesis defects in Ect2 depleted cells, as well 

as in cells expressing the BRCT domain containing amino-terminal Ect2 fragment (1-

333) in more detail.  For the latter, a stable tetracycline inducible HeLa S3 cell line was 

generated. Addition of tetracycline to this cell line for 24 hours resulted in a strong 

induction of this myc-tagged Ect2 fragment as determined by Western blotting (Fig. 

27A).  About 50 % of the cells became binucleated within this 24 hours induction period, 

confirming that this fragment strongly interfered with cytokinesis. 

To analyze and compare the cytokinesis defects in Ect2 depleted and amino-

terminal Ect2 (1-333) overexpressing cells, spindle formation in these cells was analyzed. 

In cells expressing the amino-terminal Ect2 fragment (1-333), normal central spindle 

formation, midbody formation and cleavage furrow ingression were observed (Fig. 27B, 

upper panel). Despite this, these cells finally failed cytokinesis at a late stage during 

cytokinesis and became binucleated. In Ect2 depleted cells, bipolar spindle formation and 

initial central spindle formation looked apparently normal (Fig. 27B, middle panel). This 

is in clear contrast to what was observed after depletion of other central spindle proteins 

and suggests that Ect2 is not required for central spindle formation per se.  Nevertheless, 

in most late anaphase cells, spindles were aberrant in that they were very voluminous and 

MTs were present all over the equatorial cortical region. The cause of this is most likely 

the absence of cleavage furrow ingression. As a result of this ingression defect, 

midbodies were practically absent in Ect2 depleted telophase cells and instead an 

abnormal spindle-like structure was present between the two reforming nuclei. Finally, 

the interphase microtubule structure was reformed in these cells without having 

undergone any form of cytokinesis. Thus, in contrast to cells expressing the BRCT-

 67



Results 

containing fragment, cells depleted of Ect2 were not even able to form a proper cleavage 

furrow to start ingression.  
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To confirm the distinct phenotypes of cells overexpressing the amino-terminal 

Ect2 fragment and cells depleted of Ect2, live-cell imaging was performed. In cells 

expressing the amino-terminal fragment, cleavage furrow formation and ingression was 

observed (Fig. 27C, upper panel). However, this was accompanied by extensive 

membrane blebbing during metaphase to anaphase transition in more than 50% of the 

cells. The cause of this blebbing is not clear, but we like to note that blebs are caused by 

rupture of the plasma membrane from the cytoskeleton, suggesting that these cells have 

problems with cytoskeleton rearrangements during this phase of mitosis (Charras et al., 

2005). The time spent in mitosis was highly variable and it seemed that cells often had 

difficulties to position the cleavage furrow properly. Only at a very late stage during 

cytokinesis the cleavage furrow regressed, finally resulting in one cell with two nuclei. 

We often observed that one cell had already flattened on the culture dish surface, whereas 

the other cell was still rounded up, suggesting that the cytoplasmic contents of these cells 

were practically separated. However, these cells finally regressed and fused to form one 

cell, suggesting that these cells exhibited a late cytokinesis defect and that abscission 

failed. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 27. Requirement of Ect2 during cytokinesis. 

(A) Western blots analysis of lysates from myc-Ect2 1-333 expressing stable cell line before and after 

induction with tetracycline for 24 hours are shown. Blots were probed with anti-myc and anti-α-tubulin 

antibodies (as a loading control). 

(B) HeLa S3 cells were treated for 24 hours with GL2 (control) and Ect2 siRNA duplexes and the inducible 

myc-Ect2 1-333 stable cell line was induced for 24 hours with tetracycline. After fixation and 

permeabilization with paraformaldehyde/Triton X-100, the myc-Ect2 1-333 expressing cells were stained 

with anti-myc 9E10 antibodies (red), α-tubulin antibodies (green) and with DAPI (blue) and the siRNA 

treated cells were stained with anti-Ect2 antibodies (red), anti-α-tubulin antibodies (green) and DNA was 

labelled with DAPI (blue). Images are projection of deconvolved images of a series of Z stacks. Scale bar 10 

µm. 

(C) Live-cell imaging of myc-Ect2 1-333 expressing cells (upper panel), Ect2 depleted HeLa S3 cells 

(middle 2 panels) and cells treated with GL2 control oligos (lower panel). Images were made every two min 

and only representative frames are shown. In the myc-Ect2 1-333 expressing cell line time ‘0’ is the last 

time frame for the cell on the right side, in which the cell still showed an interphase appearance. In Ect2 

depleted cells and control cells (cells treated with GL2 oligos), time ‘0’ is the last time frame for both cells 

that still showed an interphase appearance. Scale bar 10 µm. 
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In contrast, in most of the Ect2 depleted cells no obvious cleavage furrow formation or 

ingression could be observed and cells exited mitosis without showing any signs of 

cytokinesis (Fig. 27C, 2nd panel). These cells spent about 100 min in mitosis, which is 

similar to control cells (Fig. 27C, lower panel). Only a small number of Ect2 depleted 

cells showed signs of furrow formation and ingression, but then failed cytokinesis at later 

stages of cytokinesis. This late stage cytokinesis defect was more prominent, when cells 

were treated with less efficient siRNA duplex (Fig. 27C, 3rd panel). 

Together, these results show that Ect2 is required for cleavage furrowing, but that 

overexpression of the amino-terminal Ect2 fragment affected predominantly cell-

abscission. 

 

 

2.3.2 RhoA and Citron kinase are not targeted to the cleavage furrow in 

Ect2 depleted cells 
  
One of the early critical steps during cytokinesis is the activation of RhoA (Bement et al., 

2005). This GTPase then controls several proteins that regulate the dynamics of the actin 

cytoskeleton, leading to contractile ring formation and contraction (Glotzer, 2001). A 

recent study in Drosophila showed that both Rho1 (RhoA) and one of the downstream 

targets, Sticky (Citron kinase), required pebble (Ect2) for proper localization to the 

contractile ring (Shandala et al., 2004). In Drosophila, both Rho1 and Sticky are required 

for cytokinesis, but in mammalian cells the role of Citron kinase in cytokinesis has 

remained controversial (Cunto et al., 2002; Di Cunto et al., 2000). To examine this issue, 

we used siRNA to deplete Citron kinase and monitored HeLa S3 cells for the formation 

of binucleated cells, implying cytokinesis defects. As shown in Fig. 28A, in cells 

depleted of Citron kinase a strong increase in binucleated cells was observed and the 

effective depletion of Citron kinase was confirmed by Western blot analysis (Fig. 28B). 

Thus, Citron kinase is clearly essential for cytokinesis in HeLa S3 cells.  
We next analyzed the localization of RhoA and Citron kinase during cytokinesis 

in human cells. In undisturbed cells, both proteins localized to the contractile ring during 

cytokinesis (Fig. 28C, 28D, upper panels), confirming previous results (Eda et al., 2001; 
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Mabuchi et al., 1993; Madaule et al., 1998). The localization was more difficult to 

analyze in Ect2 depleted cells, as most of these cells do not form a cleavage furrow at all. 

However, in those Ect2 depleted cells that showed some cleavage furrow formation both 

RhoA and Citron kinase was strongly diminished at this site (Fig. 28C and 28D, middle 

panels), confirming and extending recent observations (Yuce et al., 2005). Therefore, 

these data indicate that Ect2 regulates RhoA, as well as its target Citron kinase, also in 

human cells. 

In contrast to the situation in Ect2 depleted cells, RhoA and Citron kinase could 

readily be detected at the cleavage furrow in cells expressing the amino-terminal Ect2 

fragment (Fig. 28C and 28D, bottom panels). This result falls in line with the observation 

that these cells showed cleavage furrow formation and ingression (Fig. 27C). Taken 

together, our data indicate that the inability to target RhoA and Citron kinase to the 

cleavage furrow may constitute the main reason for the cytokinesis defects observed in 

Ect2 depleted cells. On the other hand, since RhoA and Citron kinase were properly 

targeted to the cleavage furrow in cells expressing the amino-terminal Ect2 fragment, it 

follows that cytokinesis failure in these latter cells must result through another 

mechanism. 
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Figure 28. Ect2 targets RhoA and Citron kinase to the cleavage furrow. 

(A) HeLa S3 cells were treated with siRNA duplexes against GL2 and Citron kinase for 48 hours and

subsequently fixed and permeabilized with paraformaldehyde/Triton X-100. These cells were stained

with anti-α-tubulin antibodies (green).  DNA was labelled with DAPI (blue). Scale bar 10 µm.  

B) Same as in A, but now Hepes lysis buffer extracts were made and the proteins were separated by

SDS-PAGE, blotted and probed with anti-Citron kinase antibodies and anti-α-tubulin antibodies (as

loading control).  

C) HeLa S3 cells were treated for 36 hours with control (GL2) and Ect2 siRNA duplexes and the myc-

Ect2 1-333 expressing stable cell line was induced for 36 hours with tetracycline. After fixation and

permeabilization with 10% TCA/Triton X-100, siRNA treated cells (upper and middle panels) were

stained with anti-Ect2 (left) in red, anti-RhoA (middle) antibodies in green and DNA was labelled with

DAPI in blue. Merged images are shown on the right. The stable cell line (lower panel) was stained

with anti-myc 9E10 (left) in green, anti-RhoA (middle) antibodies in red and DNA was labelled with

DAPI in blue. Merged images are shown on the right. Scale bar 10 µm.  

D) HeLa S3 cells were treated for 36 hours with control (GL2) and Ect2 siRNA duplexes and the myc-

Ect2 1-333 expressing stable cell line was induced for 36 hours with tetracycline. After simultaneous

fixation and permeabilization with paraformaldehyde/Triton X-100, siRNA treated cells (upper and

middle panels) were stained with anti-Ect2 (left) in red, anti-Citron kinase (middle) antibodies in green

and DNA was labelled with DAPI in blue. Merged images are shown on the right. The stable cell line

(lower panel) was stained with anti-myc 9E10 (left) in green, anti-Citron kinase (middle) antibodies in

red and DNA was labelled with DAPI in blue. Merged images are shown on the right. Scale bar 10 µm.
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2.3.3 Nuclear targeting of the amino-terminal Ect2 (1-333) fragment can 

prevent cytokinesis defects 
 

The above results clearly revealed why in Ect2 depleted cells cleavage furrow ingression 

is impaired, but do not explain why overexpression of the Ect2 1-333 fragment interfered 

with cell abscission. Whereas overexpression of full length Ect2 and the larger Ect2 

amino-terminal fragment (1-420), hardly interfered with cytokinesis and localized to the 

nucleus during interphase, this smaller fragment localized to the cytoplasm (Fig. 30, data 

not shown). This is in agreement with the presence of two potential nuclear localization 

signals (NLS) or alternatively one bipartite NLS between residues 346-374. Based on this 

observation it is tempting to speculate that nuclear translocation of Ect2 during telophase 

could be essential for cell abscission.  
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We therefore analyzed additional myc-tagged Ect2 truncation fragments and observed 

that myc-tagged Ect2 fragments 1-360 and 1-370, which localized both to the cytoplasm 

and the nucleus during interphase, resulted in a clear increase in binucleated cells, 

whereas the amino-terminal fragment 1-388, which localizes predominantly to the 

nucleus resulted only in a small increase in the number of binucleated cells (Fig. 29). 

Thus, only those fragments that do not have an intact NLS and hence localize 

predominantly to the cytoplasm affect proper cytokinesis. To further examine the 

requirement of nuclear translocation, we generated a construct that could express the Ect2 

1-333 fragment with three SV40 NLS sequences tagged to its amino-terminus. Analysis 

of cells transiently expressing this NLS-Ect2 (1-333) fragment revealed that this fragment 

now localized predominantly to the nucleus in interphase cells, although some weak 

cytoplasmic staining could sometimes be observed (Fig. 30). Interestingly, this fragment 

was much less potent in generating binucleated cells (30 % as compared to 80 % with the 

fragment lacking the NLS). These results show that nuclear translocation of this Ect2 

fragment during late telophase can prevent cytokinesis failure. 

To further investigate the requirement of nuclear translocation, the NLS´s in full 

length Ect2 and in the 1-388 fragment were removed by mutating lysine residues in the 

NLS sequences to aspargine residues and arginine residues to glutamine residues 

(348KRR350
 to 

348NQQ350
 and 371RKR373

 to 371QNQ373) (Robbins et al., 1991). 

Overexpression of these mutated Ect2 proteins in HeLa S3 cells showed that both 

mutants localized to the cytosol in interphase cells (data not shown). Overexpression of 

the NLS mutant version of myc-Ect2 did, however, not result in an increase in 

binucleated cells as compared to cells overexpressing wild type Ect2 (measured values 

being 12% and 17%, respectively). However, although the NLS mutated 1-388 fragment 

did localize to the cytoplasm, its overexpression only marginally increased the formation 

of binucleated cells when compared to its nuclear counterpart (25% to 9%, respectively). 

Thus, although the NLS motifs contribute to determine the extent of cytokinesis failure 

produced by various Ect2 fragments, additional sequences flanking the central Ect2 NLS 

region also appear to be important. 
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.3.4 The amino-terminal BRCT-containing fragment (1-333) mislocalizes 

s a stripe perpendicular to the midbody during cytokinesis. 

Figure 30. Effects of cytoplasmic and nuclear localization of the Ect2 fragments 1-333 and 1-388 on 

proper cytokinesis. 

(A) HeLa S3 cells were transfected with myc-Ect2 1-333 and 3x-NLS-myc-Ect2 1-333 constructs for 36 

hours and subsequently were fixed and permeabilized with paraformaldehyde/Triton X-100. These cells 

were stained with anti-myc antibodies in red, anti-α-tubulin antibodies in green and DNA was stained 

with DAPI in blue. Merged images are shown at the right. Scale bar 10 µm. 

(B) HeLa S3 cells were transfected with myc-Ect2 1-333 and 3x-NLS-myc-Ect2 1-333 constructs for 48 

hours and subsequently were fixed and permeabilized with paraformaldehyde/Triton X-100. These cells 

were stained as described above and the transfected cells were analyzed for the presence of either a 

single nucleus or binucleation. The mean value of the percentage binucleated cells from two independent 

experiments is represented in the form of a histogram. 
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2.3.4 The amino-terminal BRCT-containing fragment (1-333) is 

mislocalized as a ring-like structure perpendicular to the midbody during 

cytokinesis 
 

Careful analysis of the localization of the Ect2 1-333 fragment showed that this fragment 

mislocalized as a ring-like structure perpendicular to the midbody in most telophase cells 

around the time of nuclear envelope reformation (Fig. 31A, lower panel). Co-staining 

with FITC-phalloidin, which stains the actin cytoskeleton, showed that this fragment 

partly co-localized with the contractile ring during cytokinesis (Fig. 31B). Surprisingly, 

when we analyzed MKlp1 and MgcRacGAP localization in these cells, we observed that 

those proteins also co-localized with this Ect2 fragment (Fig. 31C). MKlp1 and 

MgcRacGAP contain NLS sequences, like Ect2, and upon completion of cytokinesis, 

these proteins are translocated into the nucleus. In the presence of this amino-terminal 

Ect2 (1-333) fragment, however, MKlp1 and MgcRacGAP were partly retained at the 

midbody/contractile ring structure. This mislocalization was not observed when we 

overexpressed the larger fragments (1-420 and 1-388) and the Ect2 (1-333) fragment that 

contains the SV40 NLS sequences (Fig. 31A and data not shown). All these latter 

fragments were translocated to the nucleus during telophase and interfered only slightly 

with cytokinesis. Surprisingly, the Ect2 1-388 fragment containing the NLS mutations 

did not show this abnormal accumulation at the midbody/contractile ring (Fig. 31A), 

although it remained in the cytoplasm during telophase and, as mentioned above, it 

interfered with cytokinesis only slightly. Thus, a clear correlation exists between the 

abnormal midbody/central spindle localization of the Ect2 fragments and cytokinesis 

failure. Both nuclear translocation and sequences located between residue 333 and 388 

can prevent this abnormal localization. Although the exact nature of this mislocalization 

is still unclear, these results indicate important regulatory functions of the region between 

the BRCT domain and the GEF domain, including the targeting of Ect2 to the nucleus.  
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 A 
Figure 31. Ect2 1-333 is mislocalized as a 

ring at the cell cortex near the midbody 

during cytokinesis. 

(A) Myc-Ect2 1-420, myc-Ect2 1-333, and 

NLS-myc-Ect2 1-333 and myc-Ect2 1-388-

NLS-mutant were transiently 

overexpressed in HeLa S3 cells and grown 

for 48 hours before fixation and 

permeabilization with 

paraformaldehyde/Triton X-100 as 

described above. Cells were stained with 

anti-myc in red, anti-α-tubulin in green 

and DNA was labelled with DAPI in blue. 

Merged images are shown at the right. 

Scale bar 10 µm. 

(B) Myc-Ect2 1-333 stable cell line was 

induced for 36 hours and stained with 

FITC-phalloidin in green, anti-myc 

antibodies in red and DNA was stained 

with DAPI in blue. Merged images are 

shown at the right with scale bar 10 µm. 

 (C) Myc-Ect2 1-333 stable cell line was 

induced for 36 hours and stained with anti-

MKlp1 and anti-MgcRacGAP antibodies in 

red, anti-α-tubulin antibodies in green and 

DNA was labelled with DAPI in blue. 

Merged images are shown at the right. 

Scale bar 10 µm. 
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2.3.5 Conclusion: 
 
Although Ect2 has been shown to be required for cytokinesis, the exact mechanisms by 

which Ect2 controls cell division were not known. Here we show that depletion of Ect2 

impaired cleavage furrow formation and ingression. Concomitantly, two proteins 

required for cytokinesis, RhoA and Citron kinase, fail to accumulate at the cell cortex. 

Also, overexpression of appropriate amino-terminal Ect2 fragments blocked cytokinesis, 

but in these cells, RhoA and Citron kinase localized to the cell cortex concomitant with 

the ingression of the cleavage furrow. However, cell abscission finally failed in these 

cells. This abscission failure could be correlated with the persistence of the amino-

terminal Ect2 fragments at striking ring-like structures surrounding the midbody, 

indicating that completion of cell division requires the displacement of Ect2 from the 

contractile ring and its re-import into the reforming cell nucleus. These data show that 

interference with Ect2 function blocks cytokinesis by both impairing cleavage furrow 

formation and cell abscission. They also provide evidence that Ect2 is required 

throughout cytokinesis accompanied with multiple regulation mechanisms.  
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3.0 Discussion 
 

Cytokinesis is the process that completes the programme of cell division resulting in two 

daughter cells. This process is fundamental to life and has recently attracted a lot of 

attention, primarily because it is essential for genome maintenance, and thus its proper 

functioning is essential for human health. Despite this, relatively little is know about it, 

partly due to its complexity. Moreover, because of the low conservation of the regulatory 

processes that control cytokinesis, extrapolation from genetically tractable organisms, 

like yeasts, is often not possible. Nevertheless, in the past years a number of proteins 

have been identified that are required for proper cytokinesis in animal cells. These 

include components required for central spindle formation, assembly of the contractile 

ring, cleavage furrow ingression and addition of new membranes during the invagination 

of plasma membrane (Balasubramanian et al., 2004; Guertin et al., 2002). Here we have 

investigated the human guanine nucleotide exchange factor (GEF) Ect2, an orthologue of 

the Drosophila pebble gene, which is essential for cytokinesis. In particular, we have 

explored the potential regulatory role of Ect2 phosphorylation by mitotic kinases, its 

targeting to the central spindle and its functions during cytokinesis. 

 

 

3.1 Mitotic phosphorylation of Ect2 
 

Reversible protein phosphorylation by protein kinases is one of the main regulatory 

posttranslational mechanisms controlling mitotic progression (Nigg, 2001). 

Phosphorylation not only directs the allosteric regulation of enzyme activity, but is also 

important for controlling protein-protein interactions and regulating the subcellular 

localization of proteins. In agreement with a previous report (Tatsumoto et al., 1999), we 

could show here that Ect2 is hyperphosphorylated during mitosis indicating that Ect2 

may possibly be regulated by reversible phosphorylation. Although it has been suggested 

that phosphorylation of Ect2 is required for its maximal GEF activity (Tatsumoto et al., 

1999), this observation seemed to be somewhat controversial. In Drosophila, cyclin B 

and cyclin B3 interfered with cytokinesis in a pebble dependent manner suggesting that 
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pebble’s function is inhibited, rather than activated, by Cdk1 activity (Echard and 

O'Farrell, 2003). We observed that in human cells, Ect2 phosphorylation paralleled the 

presence of cyclin B and recent results have shown that Ect2 is rapidly dephosphorylated 

in cells upon addition of the Cdk1 inhibitor BMI-1026 (Niiya et al., 2005), suggesting 

that human Ect2 is a direct substrate of Cdk1. Since Ect2 activity is required for cleavage 

furrow formation during anaphase and telophase, a period of low Cdk1 activity, it is more 

likely that Ect2 dephosphorylation, rather than phosphorylation, could be important for 

its activation. Our attempts to investigate the effects of Ect2 GTP exchange activity on 

RhoA in vitro did not reveal a difference between phosphorylated and dephosphorylated 

recombinant Ect2 suggesting that phosphorylation might not directly regulate Ect2 

activity. These experiments were performed with recombinant Ect2 purified from Sf9 

insect cells. Although Ect2 from OA treated Sf9 insect cells showed a phosphorylation 

pattern similar to endogenous recombinant Ect2 (as determined by MS), the 

phosphorylation pattern might not be identical. Therefore, these results do not rigorously 

exclude a contribution of Ect2 phosphorylation in regulating its GEF activity. 

Alternatively, (de)phosphorylation might not directly regulate Ect2 GEF activity, but 

rather its localization or interaction with upstream and downstream binding partners as 

described below.  

To further explore the function of Ect2 phosphorylation during mitosis, we used 

mass spectrometry to identify mitosis specific phosphorylation sites in endogenous Ect2. 

In total, we could identify six sites that were specifically phosphorylated during mitosis. 

Of these, five sites are highly conserved throughout evolution, suggesting that these could 

have important regulatory functions. Three of the identified phosphorylation sites were 

followed by a proline residue, indicating that these sites were phosphorylated by proline 

directed kinases, e.g. Cdks or MAPKs. Although we could not directly demonstrate that 

Ect2 is a Cdk1 substrate in vitro, Niiya and co-workers showed that inhibition of Cdk1 

resulted in the dephoshorylation of Ect2, indicating that Ect2 is a Cdk1 substrate in vivo 

(Niiya et al., 2005). Moreover, recently an important Cdk1 phosphorylation site has been 

identified in Ect2 as described further below (Hara et al., 2005; Yuce et al., 2005). Three 

of the identified sites that were phosphorylated in vivo could also be phosphorylated by 

Plk1 in vitro suggesting that these are Plk1 sites. Indeed, one of them (S20) is located 

 80



Discussion                               
 

within the Plk1 consensus phosphorylation sequence (D/E-X-pS/pT). Thus, both Plk1 and 

Cdk1 might be prime regulators of Ect2. Unfortunately, however, our mutational analysis 

did not clearly reveal important roles for these phosphorylation sites in regulating Ect2 

function. Although some elevated increase in multinucleated cells was observed upon 

expression of the individual alanine mutants, especially S20A, the mutant form in which 

all these mutations were combined did not result in any increase in multinucleate cells 

when overexpressed. This is rather surprising, but might indicate that too many mutations 

have an adverse effect on the protein (e.g. folding problems). All Ect2 mutants still 

localized properly, indicating that the observed effect could not be attributed to improper 

targeting and suggesting that these phosphorylation sites are not required for localizing 

Ect2 to its sites of action. Since endogenous Ect2 was still present in all these cells, we 

cannot exclude the possibility that the absence of more severe phenotypes (and proper 

localization) could be a result of the presence of the endogenous protein. Ideally, these 

experiments should be performed in an Ect2 depleted cell line. However, despite the fact 

that siRNA rescue experiments are becoming more common, we were not able to perform 

such experiments with human Ect2. The main reason for this is the low transfection 

efficiencies of Ect2 encoding constructs, a problem that has also been reported by others 

(Hara et al., 2005). Thus, although we have identified a number of potentially interesting 

Plk1 and Cdk1 phosphorylation sites in Ect2, we have so far not been able to discover the 

functions of these phosphorylation sites. While one could suggest that these 

phosphorylation sites might not be important for Ect2 regulation, their strong 

conservation among different species implies that they fulfill evolutionarily conserved 

functions. Improvements of siRNA rescue experiments will hopefully reveal the function 

of these intriguing phosphorylation sites in the near future.  
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3.2 Ect2 targeting and oncogenic potential  
  

Ect2 has been shown to localize to the central spindle and the midbody during mitosis 

and we could confirm these observations (Tatsumoto et al., 1999). In addition, however, 

we observed cortical staining of Ect2 throughout mitosis. This suggests that two different 

pools of Ect2 exist, one targeted to spindle structures and the other one to the cortex. To 

further investigate the targeting of Ect2 to these structures, a number of truncation 

constructs were generated. Analysis of the localization of these truncated proteins in 

HeLa S3 cells revealed that the central spindle targeting domain was located in the 

amino-terminal half, whereas the cortical targeting was mediated by the carboxyl-

terminal domain. In particular, the central spindle localization required an intact BRCT 

domain whereas the cortical localization was dependent on the PH (pleckstrin homology) 

domain. Considering that PH domains constitute lipid-binding motifs (Blomberg et al., 

1999), it is likely that the cortex association of Ect2 reflects a direct interaction with the 

plasma membrane. The PH domain has been shown to be essential for the cell 

transforming activity of the carboxyl-terminal (GEF containing) Ect2 domain (Miki et 

al., 1993; Saito et al., 2004; Solski et al., 2004). Recent results in C. elegans indicate that 

the human Ect2 homologue in C. elegans positively regulates the Ras signalling pathway 

during vulval development in a Rho1 dependent manner (Canevascini et al., 2005). This 

raises the possibility that the transforming activity of the mammalian Ect2 could be due 

to hyperactivation of the RAS/MAPK pathway. The fact that only the carboxyl-terminal 

Ect2 fragment containing the PH domain has this potential, and not the full length 

protein, is most likely due to the reason that this fragment localizes to the cytoplasm (and 

membranes) and therefore can interact with RhoA during interphase, in contrast to full 

length Ect2 which is present in the nucleus. Accordingly, it has been shown that full 

length Ect2 lacking an NLS also has transforming potential, albeit to a lesser extent than 

the carboxyl-terminal domain (Saito et al., 2004). The requirement of the PH domain for 

the transforming activity indicates that membrane targeting of Ect2 is important for this 

activity.   
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3.3 A model for Ect2 targeting to the central spindle 
 

To explore the mechanism(s) responsible for targeting of Ect2 to the central spindle, we 

depleted the central spindle components MKlp1, MgcRacGAP, MKlp2 and Aurora-B, 

respectively. Even though MKlp1, MgcRacGAP, MKlp2 and Aurora-B complexes 

contribute to the central spindle formation, some central spindle structures were still 

present in these depleted cells, allowing us to analyze the localization of Ect2. This 

revealed that both the MKlp1/MgcRacGAP and MKlp2/Aurora-B complexes were 

required for targeting Ect2 to the central spindle. However, although both complexes 

were required for Ect2 targeting, only the MKlp1/MgcRacGAP complex showed a direct 

interaction with Ect2 in biochemical experiments. Moreover, only the 

MKlp1/MgcRacGAP complex co-localized with Ect2 at the midbody in telophase cells. 

The MKlp2/Aurora-B complex might therefore have a more indirect role in targeting 

Ect2 to the central spindle, as discussed below. The interaction of Ect2 with the 

MKlp1/MgcRacGAP complex was mediated via the Ect2 BRCT domain. The BRCT 

domains of BRCA1 have recently been shown to bind to their target proteins in a 

phosphorylation dependent manner (Clapperton et al., 2004; Manke et al., 2003) and the 

critical residues required for binding the phosphate moiety are highly conserved. The 

Ect2 BRCT domain has been shown to preferentially bind to phosphopeptides (Yu et al., 

2003) and this encouraged us to mutate the two critical phosphopeptide binding residues 

(T153A, K195A) in the Ect2 BRCT domain. Interestingly, this mutant Ect2 (1-333) 

fragment was much less efficient in co-precipitating the MKlp1/MgcRacGAP complex 

from mitotic cell lysates and only showed weak central spindle localization and was 

predominantly spread throughout the cytoplasm as compared to the wild type fragment. 

These results strongly suggest that the binding of Ect2 to the MKlp1/MgcRacGAP 

complex requires a phosphorylated docking motif within this complex. Unfortunately, so 

far, no consensus docking site for Ect2 BRCT domains has been identified and hence, the 

exact mechanism of docking of Ect2 to the MKlp1/MgcRacGAP complex is still 

unknown. However, it is interesting that the Aurora-B kinase has been shown to 

phosphorylate MgcRacGAP and, moreover, the MKlp2/Aurora-B complex is required for 

targeting Ect2 to the central spindle. It is therefore tempting to speculate that Aurora-B 
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might generate a docking site on MgcRacGAP (Fig. 32). Alternatively, Plk1, another 

mitotic kinase targeted to the central spindle via MKlp2, could be another interesting 

candidate kinase that could create a potential docking site.  

Recently, Yuce et al identified a phosphorylation site, T342, in mitotic Ect2 that 

prevents the interaction of Ect2 with MgcRacGAP in metaphase (Yuce et al., 2005). Hara 

et al independently identified the same site (although they erroneously termed it T341) by 

analyzing recombinant Ect2 protein, which was simultaneously phosphorylated in vitro 

by Cdk1 and Plk1 (Hara et al., 2005). A proline residue follows this site, indicating that it 

is a consensus Cdk1 phosphorylation site. We have not been able to identify this 

interesting site in endogenous mitotic Ect2, which might either reflect a low 

phosphorylation stochiometry in vivo, and/or the use of different MS protocols and 

possibly poor ionization or flight behaviour of this particular peptide. According to Yuce 

et al, this site becomes dephosphorylated upon metaphase to anaphase transition allowing 

interaction of Ect2 with MgcRacGAP only during ana- and telophase of the cell cycle. 

Taken together, we therefore like to propose that both Ect2 dephosphorylation (from 

metaphase to anaphase transition) and the simultaneous generation of a BRCT docking 

site on MgcRacGAP by Aurora-B (or Plk1) could be important for targeting Ect2 to the 

central spindle (Fig. 32). This dual mechanism would provide a tight regulation of the 

spatial and temporal localization of Ect2 to spindle structures. 

 

 

 

 

 

 

 

 

 

 

 

 Figure 32. Proposed model for the targeting of Ect2 to the central spindle. For details see text. 
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3.4 Ect2 targets RhoA to the cleavage furrow independently of its central 

spindle localization 
 

Several theories have been put forward for signals that determine cleavage plane 

specification (Burgess and Chang, 2005). In mammalian somatic cells, the central spindle 

and/or astral MTs are believed to be required for this specification. Spindle MTs are 

necessary for activation of RhoA and its specific targeting to the plane of future cell 

division (Bement et al., 2005). In turn, RhoA regulates the actin cytoskeleton and hence 

is required for the formation and contraction of the actomyosin based contractile ring. 

How exactly the MTs signal to RhoA has long been a mystery. The identification of Ect2 

GEF proteins in different higher eukaryotes and their essential function during 

cytokinesis provided a possible link between central spindle MTs and RhoA activation.  

Here, we could show that Ect2 is essential for RhoA targeting to the cleavage 

furrow. It has recently been shown that RhoA at the cleavage furrow is in its active state 

(GTP bound), indicating that Ect2 targets RhoA to the cleavage furrow by exchanging 

GDP for GTP on RhoA (Bement et al., 2005; Glotzer, 2005). In the absence of Ect2 

(using siRNA mediated gene silencing), RhoA was not targeted to the cortex and no 

cleavage furrow formation and ingression occurred. This resulted in the exit of mitosis, 

without any form of cytokinesis, resulting in the formation of binucleated cells. Some 

cells depleted of Ect2 still showed some signs of cleavage furrow ingression and this 

percentage increased when a siRNA duplex was used that depleted Ect2 less efficiently. 

This indicates that Ect2 is not only required for cleavage site determination, but also for 

ingression. This is in agreement with the role of RhoA in both processes.  

The striking localization of Ect2 suggested that a precisely localized population of 

Ect2 would activate RhoA locally, thereby ensuring cleavage furrow formation at a 

position determined by the central spindle. Surprisingly, however, we found that we 

could displace endogenous Ect2 from the central spindle without abolishing cytokinesis. 

This was achieved by overexpression of particular Ect2 amino-terminal fragments, which 

compete with endogenous Ect2 for binding sites on the MKlp1/MgcRacGAP complex. 

Similarly, RhoA was still targeted to the site of cleavage furrow formation in cells 

depleted of MKlp1, which also results in mislocalization of Ect2 (Yuce et al., 2005), and 
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cleavage furrow ingression still occurred in cells depleted of PRC1, which essentially 

lack central spindle structures (Mollinari et al., 2005). Although it is difficult to 

rigorously exclude that very low amounts of Ect2 might have persisted at the central 

spindle (or remnants thereof) under all these conditions, these results indicate that 

physiological levels of localized Ect2 activity are not strictly required for cytokinesis. 

These results suggest that it is not solely the localized Ect2 GEF activity that targets 

RhoA specifically to the cleavage furrow but that additional landmarks might be present 

at the cleavage furrow to which RhoA is recruited. If so, this would mean that RhoA is 

not the most upstream component at the cortex that specifies the place of cleavage furrow 

formation, but that other “earlier” factors must be involved. The placement of this 

potential landmark is, however, microtubule dependent (astral microtubules?), since in 

the absence of MTs, RhoA is not targeted to the cleavage furrow. 

Mitotic cells treated with actin depolymerizing drugs cannot undergo cytokinesis, 

because the actomyosin ring is absent and these cells delay mitotic exit. Remarkably, 

cells depleted of Ect2 cannot undergo cytokinesis either, but do not show any obvious 

mitotic delay. However, cells overexpressing the amino-terminal Ect2 (1-333) domain 

that interfered with cytokinesis did show great variations in the duration of cytokinesis. 

Although not tested, this could indicate that the presence of Ect2 is involved in delaying 

cytokinesis under unfavourable conditions. If true, this might suggest a role for Ect2 in 

some kind of cytokinesis checkpoint.   

One of the established downstream targets of RhoA is Citron kinase (Naim et al., 

2004; Shandala et al., 2004) and, in agreement, we observed that Citron kinase is targeted 

to the cleavage furrow in an Ect2 (and hence RhoA-GTP) dependent manner. The role of 

Citron kinase in cytokinesis in mammalian cells is, however, still controversial (Di Cunto 

et al., 2000; Eda et al., 2001; Madaule et al., 1998). We therefore analyzed HeLa S3 cells 

depleted of Citron kinase (using siRNA oligoduplexes) and discovered that this kinase is 

essential for cytokinesis in these cells. Since mice lacking Citron kinase display relatively 

mild phenotypes (Di Cunto et al., 2000), this either suggests that mouse cells are less 

dependent on Citron kinase or that other homologous kinases, including ROCK kinases, 

could complement this function in mice.  
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3.5 Interference with Ect2 function blocks cytokinesis by impairing both 

cleavage furrow formation and abscission 
 

It has been suggested that the cytokinesis defect in cells overexpressing the amino-

terminal Ect2 domain (1-333) could be a result of low Rho-GTP levels, because this 

domain interacts with the carboxyl-terminal half of endogenous Ect2 that harbours the 

catalytic GEF domain (Kimura et al., 2000). Our detailed analysis of the cytokinesis 

defects caused by the 1-333 fragment showed, however, that RhoA and Citron kinase 

were still targeted to the cleavage furrow. Since it is the active form of RhoA that 

localizes to the cleavage furrow, this shows that still enough active RhoA was formed in 

these cells and, in agreement, cleavage furrow formation and ingression still occured in 

these cells. Moreover, we observed extensive membrane blebbing in these cells, 

suggestive of highly dynamic cortical cytoskeletal rearrangements. Rho regulates various 

cortical activities through actin remodelling and it has been shown that depletion of 

RhoA could suppress membrane blebbing. This implies that cells overexpressing the 

amino-terminal Ect2 domain (1-333) produce sufficient amounts of mislocalized RhoA-

GTP. The membrane blebbing in these cells could therefore be caused by mislocalized 

Rho-GTP resulting from displaced Ect2. These results strongly argue against the 

hypothesis that the amino-terminal fragment induces cytokinesis failures by its effect on 

Ect2 GEF activity (Kimura et al., 2000). 

Not only the 1-333 fragment interfered with cytokinesis, but also larger fragments 

(Ect2 1-360, Ect2 1-370) resulted in cytokinesis defects (80%, 65% and 58% 

multinucleated cells, respectively), albeit to a lesser extent than the Ect2 1-333 fragment 

(80%). These larger fragments contained the T342 phosphorylation site excluding the 

possibility that it is the absence of this regulatory site that determines the potential to 

interfere with cytokinesis. Further investigations showed that all Ect2 amino-terminal 

fragments that interfered with cytokinesis lacked a proper NLS sequence and remained in 

the cytosol throughout the cell cycle. Therefore, the sustained presence of these 

fragments at the central spindle and the contractile ring during telophase could be an 

explanation why these particular fragments interfered with cell abscission. In agreement, 

addition of SV40 NLS sequences to the fragment (Ect2 1-333) that interfered maximally 
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with cytokinesis, strongly reduced the potential of this fragment to interfere with 

cytokinesis, indicating that nuclear relocalization during telophase can prevent cell 

abscission failure. However, when we mutated the NLS in full length Ect2 and expressed 

this cytoplasmic protein, it did not interfere with cytokinesis. One reason for this could be 

the low expression of full length Ect2 even when expressed from a CMV promoter. 

However, even expression of an amino-terminal fragment, Ect2 1-388, with a mutated 

NLS resulted in only a marginal increase in the number of multinucleated cells compared 

to the wild type Ect2 1-388 fragment (approximately 25% multinucleated cells compared 

to 9% multinucleate cells). Therefore, it is not only the nuclear targeting that prevents 

larger Ect2 amino-terminal fragments to interfere with cytokinesis. Instead, sequences 

around NLS might play an essential role in preventing cytokinesis. The NLS mutant 1-

388 fragment showed a normal midbody localization during telophase, in clear contrast to 

those fragments that interfered with abscission, which all showed a midbody associated 

speckled ring-like localization at the contractile ring.  

In Drosophila, pebble has been shown to localize predominantly at the site of the 

contractile ring and so far has not been reported to be present at the central spindle. 

Nevertheless, also Drosophila pebble interacts with the Drosophila homologues of 

human MgcRacGAP and MKlp1 (Somers and Saint, 2003). In Drosophila, a model has 

therefore been proposed in which the cortically localized pebble interacts with the central 

spindle associated MgcRacGAP/MKlp1 complex, and thereby forms a connection 

between the cortical ring and the central spindle (Somers and Saint, 2003). In human 

cells, a ring like Ect2 structure has not been observed, but our observation that 

overexpressed amino-terminal fragments show a ring like structure at the site of the 

contractile ring suggests that a similar structure could also be formed in human cells. 

Moreover, MgcRacGAP and MKlp1 are targeted to this structure, similar to as what has 

been shown in Drosophila.  As such a structure can only be observed in human cells 

upon overexpression of certain amino-terminal fragments, it suggest that either very low 

levels of Ect2 localize to this site or that under normal conditions this association is very 

transient in human cells. The cytokinesis defect observed with cells expressing the 

amino-terminal domain is therefore likely a result of sustained presence of this structure 

at the contractile ring. The reason why this is only observed with certain amino-terminal 
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fragments that lack NLS sequences suggest that the formation of this structure is 

negatively regulated by sequences around this NLS motif.   

Our study strengthens the conclusion that Ect2 is a key component of the 

molecular machinery that brings about cytokinesis. We have identified both interaction 

partners and regulatory domains within Ect2 and demonstrate that the precise temporal 

and spatial regulation of this GEF is critical for cleavage furrow formation and ingression 

as well as abscission. Continued studies of the regulation and function of Ect2 will 

undoubtedly contribute to a better understanding of the regulatory circuits that control 

cytokinesis.   
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4.0 Materials and Methods 
 
4.1 Materials 
 
Chemicals were obtained from Sigma-Aldrich or Merck unless otherwise specified. Cell 

culture media and sera were obtained from Invitrogen and media for growing bacteria 

were purchased from DIFCO Laboratories or Merck. DNA primers were synthesized by 

Thermo-Hybaid and synthetic siRNA duplexes by Dharmacon research, Inc. Restriction 

enzymes were obtained from New England Biolabs, Inc., reagents for purification of 

DNA from QIAGEN, the minigel system from Bio-rad, Hoefer Semiphor blotting system 

from Pharmacia-Biotech and NUPAGE gradient gels from Invitrogen. 

 

 

4.2 Plasmid constructions and site directed mutagenesis 

 

All cloning procedures were performed according to standard techniques as described in 

Molecular Cloning, A Laboratory Manual, 2nd editition, Sambrook, J.,Fritsch, E.F., 

Maniatis, T., Cold Spring Harbor Laboratory Press 1989 and Current Protocols in 

Molecular Biology, Wiley, 1999. Restriction enzyme reactions were carried out as 

specified by the suppliers (NEB). Ligation reactions were done using T4 DNA Ligase 

(NEB) or using a Rapid Ligation Kit (Roche) as described by the manufacturer’s 

instructions. Extraction of DNA from agarose gels and preparation of plasmid DNA was 

performed using kits from QIAGEN according to the manufacturer’s instructions. For 

PCR reactions, the Pfu DNA polymerase PCR System was used as recommended by the 

manufacturer (Promega) and reactions were carried out in a Perkin Elmer GeneAmp PCR 

System 9600. All PCR products were checked by sequencing at Medigenomix or Max-

Planck In-house DNA sequencing facility. All DNA modifying enzymes including 

Klenow polymerase fragment, T4 PNK kinase and calf-intestinal phosphatase were used 

from NEB according to manufacturer’s instructions. 

Full-length human Ect2 cDNA was amplified from a HeLa S3 cDNA library 

(Clonetech Laboratories, Inc.) with primers M1451 (5’ GCT GAT TTA GAA GAA TAC 
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AAA TCA TGG CGT 3’) and M1452 (5’ TAA GAT TTT GGT AAC GCT TCA TAT 

CAA ATG 3’) using Pfu DNA polymerase. The amplified PCR product was purified and 

used as a template for primers M1386 (5’ CCG GAT CCA TCA TGG CTG AAA ATA 

GTG TAT TAA C 3’) and M1387 (5’ CCC TCG AGT CAT ATC AAA TGA GTT GTA 

GAT CTA C 3’) comprising BamHI and XhoI restriction enzymes and cloned into a 

pBSKS(+) vector. The sequence of the cDNA was confirmed by sequencing. This cDNA 

was subcloned into a pcDNA3.1/3x-myc-C vector in frame with sequences that encode 

three amino-terminal myc-tags. In addition, a series of constructs was made with different 

amino-terminal tags including EGFP (pEGFP-T7/C1), GST (pGEX-6P-3), His6 (pQE-30), 

FLAG (pcDNA3.1/Flag-C) and HA (pcDNA3.1/HA-C) vectors. For details, see the 

plasmid list (supplementary table 1). In order to create recombinant baculovirus for 

expression of GST-tagged Ect2 in Sf9 insect cells, the Ect2 cDNA was subcloned into the 

pVL13GST93 vector.  

Deletion constructs Ect2 1-420, Ect2 1-333, Ect2 320-883, Ect2 414-630 and Ect2 

753-883 were made by PCR amplification using the full-length ECT2 cDNA as a 

template and specific primers containing BamHI (5’ end) and XhoI (3’ end) sites. These 

cDNA fragments were then ligated into the pcDNA3.1/3x-myc-C vector. These 

constructs were verified by sequencing. Truncation construct Ect2 1-388 was made by 

restriction digestion of the pcDNA3.1/3x-myc-Ect2 with BamHI and EcoRV restriction 

enzymes and the excised Ect2 cDNA fragment was cloned into the pcDNA3.1/3x-myc-C 

vector. In addition, this cDNA fragment was cloned into the bacterial expression vector 

pQE-30 for the production of recombinant His6-tagged protein for generating antibodies 

in rabbits. Truncation construct Ect2 1-288 was made by restriction digestion of the 

pcDNA3.1/3x-myc-Ect2 with KpnI and BglII and the excised Ect2 cDNA fragment was 

cloned into the pcDNA3.1/3x-myc-C vector. For generating a 3x-myc-NLS-Ect2 1-333 

construct, the triple SV40T NLS sequence was excised from pEYFP-Nuc (Clonetech, a 

gift from Dr. Frauke Melchior) by BglII/BamHI digestion and the excised fragment was 

cloned into the BamHI site of the pcDNA3.1/3x-myc-Ect2 1-333 construct. The 

orientation of the fragment was confirmed by sequencing. For the 3x-myc-Ect2 1-333 

stable cell line generation, the pcDNA3.1/3x-myc-Ect2 1-333 vector was digested with 

the AflII restriction enzyme and filled in the 5’ overhangs with Klenow fragment 
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followed by subsequent XhoI restriction digestion. This excised Ect2 cDNA fragment 

was then cloned into the pcDNA4/TO puromycin vector. 

Site directed mutagenesis was performed by PCR using complementary 

oligonucleotides according to Stratagene’s quick change site directed mutagenesis 

method.  For a list of all point mutations see the plasmid list (supplementary table 1). All 

mutations were confirmed by DNA sequencing.  

An EST clone encoding the hWW45 cDNA was obtained from the Image 

consortium (IMAGp99J155583Q3, Genbank ID ai679398). This cDNA was amplified by 

PCR with primers M1770 (5’ CCG GAT CCA GGA TGC TGT CCC GAC AGA AAC 

C3’) and M1771 (5’ CCT CTA GAC TCG AGT CAA AAA TTT TTT CCA TGT TGT 

TGG GC 3’). The insert was excised using BamHI and XbaI restriction enzymes and 

cloned into a pBS-SK vector. The cDNA sequence was verified by sequencing and 

subcloned into pcDNA3.1/3x-myc-C vector using the restriction sites BamHI and XhoI. 

Wild type and mutant (K82R) Plk1 plasmids have been described before (Meraldi et al., 

2002; Smits et al., 2000).  

 

 

4.3 Antibodies 
 

For generating rabbit polyclonal antibodies against human Ect2, an amino-terminal Ect2 

protein fragment (residues 1-388) fused to a polyhistidine tag was used. Escherichia coli 

strain JM109 carrying this plasmid was grown overnight at 37oC in LB medium with 

Ampicillin and diluted (20 times) next day into 500 ml of pre-warmed LB medium with 

Ampicillin and grown for three hours at 37oC until the OD600 of the culture reached 

approximately 0.5-0.8.  At this density, the expression of the His6-Ect2 fusion protein 

was induced with 1 mM IPTG for 3-4 hours. Cells were harvested, resuspended in lysis 

buffer (150 mM NaCl, 10 mM imidazole, 0.05 % NP40, 1 mM PMSF, 0.1 mM EDTA, 5 

mM β-Mercaptoethanol, 20 mM NaH2PO4/Na2HPO4 (pH 7.8) and 0.5 mg/ml lysozyme) 

and disrupted using a sonicator at 4°C (Bandelin SONOPLUS homogenisatoren HD2070, 

HD2200). The lysate was then cleared (centrifuged at 10000 rpm for 10 min) and 

incubated with one ml of 50% Ni-NTA agarose beads (Qiagen) on a rotating wheel for 
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one hour at 4°C. Thereafter, the Ni-NTA beads were washed three times with 10 mM 

imidazole wash buffer (10 mM imidazole, 500 mM NaCl, 0.05 % NP40, 20 mM 

NaH2PO4/Na2HPO4 (pH 7.8) and 5 mM β-Mercaptoethanol) followed by two washes 

with 10 mM imidazole wash buffer containing 5 mM ATP and two washes with 20 mM 

imidazole wash buffer. The His6-Ect2 fusion protein was then eluted with three bead-

volumes of 250 mM imidazole elution buffer (250 mM imidazole, 500 mM NaCl, 0.05 % 

NP40, 20 mM NaH2PO4/Na2HPO4 (pH 7.8) and 5 mM β-Mercaptoethanol). The isolated 

fusion protein was further purified by a preparative SDS-PAGE gel. For this, the protein 

in the gel was stained with an ice cold solution of 0.25 M KCl and 1 mM β-

mercaptoethanol. The milky white band containing the fusion protein was then cut out of 

the gel and placed in the dialysis bag. The protein was eluted from the gel by 

electrophoresis at 100V for three hours in 0.5x SDS buffer in the cold room.  
This purified fusion protein fragment was then used for immunization of New 

Zealand white rabbits (Elevage Scientifique des Dombes, Chatillon sur Chalarone, 

France). In brief, about 250 µg of the His6-Ect2 1-388 protein was first injected 

subcutaneously with Freund’s complete adjuvant and three subsequent injections with 

200 µg of protein were done intramuscularly. Specific Ect2 antibodies were purified from 

the serum, using the same antigen as used for immunization, immobilized on a 0.45 µm 

nitrocellulose membrane (Schleicher & Schuell). The serum was incubated for two hours 

with the immobilized antigen and unbound antibodies were washed away with PBST 

(PBS + 0.05% Tween-20). The specifically bound antibodies were then eluted with six 

volumes of 100 mM Glycine pH 2.8 and the pH of each eluate was immediately adjusted 

to pH 8.0 by addition of 1/10 volume of 1 M Tris-HCl pH 8.0. The first three eluates 

containing the highest antibody concentrations were pooled and dialyzed overnight 

against PBST. Finally, the antibodies were concentrated (using Amicon filters) to 1 µg/µl 

and frozen as small aliquots at -80°C. 

       A rabbit polyclonal antibody against human MgcRacGAP was made using a 

carboxyl-terminal peptide (CSKSKSATNLGRQG N) of human MgcRacGAP coupled to 

keyhole limpet haemocyanin (Sigma Genosys). For affinity purification, about 167 mg of 

thiopropyl sepharose powder was added to 500 µl of double distilled water. The slurry 

was washed twice with water and then with binding buffer (100 mM Tris-HCl pH 7.5, 
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500 mM NaCl, 1 mM EDTA and 5 mM β-Mercaptoethanol). About one mg of peptide 

was added to this slurry in 750 µl of total volume and incubated for over night at 4°C on 

a rotating wheel. The supernatant was removed and the sepharose beads were washed 

once with the binding buffer and blocked with 200 mM Ethanolamine pH 8.0 in one ml 

total volume for two hours at 4°C. To isolate peptide specific antibodies, about one ml of 

serum was incubated for three hours with the peptide bound thiopropyl sepharose beads 

on a rotating wheel at 4°C. After five washes with 10 mM Tris-HCl pH 7.5, 100 mM 

NaCl, 0.1% NP40, the bound antibody was eluted with seven times 300 µl of 100 mM 

Glycine pH 2.8 and the pH of the eluates was subsequently adjusted to pH 8.0 by addition 

of 1/10 volume of 1 M Tris-HCl pH 8.0. All the eluates were pooled and dialyzed 

overnight against PBS and concentrated to 1 µg/µl.  

Affinity purified rabbit polyclonal antibodies against human MKlp1 and MKlp2 

were gifts from Stefan Huemmer and Thomas Mayer (Max Planck Institute of 

Biochemistry, Martinsried, Germany).  

 

 

4.4 Binding of antibodies to beads 
 

Polyclonal antibodies were bound to Affiprep protein A beads (Biorad), by adding 15 µg 

of antibodies to 30 µl beads and incubated for one hour at 4°C on a rotating wheel. For 

coupling monoclonal antibodies, including anti-myc 9E10, a similar procedure was 

followed, except that immunopure immobilized protein G (Pierce) resin was used, instead 

of Affiprep beads. To covalently cross-link antibodies to the used matrix, the beads were 

washed twice with 500 µl Na Borate (pH 9.0) and then incubated in the same buffer 

containing 20 mM dimethyl pimelimidate. After incubation for 30 min at room 

temperature on rotating wheel, the beads were washed once with blocking buffer (0.5 ml 

of 0.2 M Ethanolamine, pH 8.0) followed by two hours incubation in this buffer on a 

rotating wheel at room temperature. Finally, the beads were washed with PBS. 

To isolate IgGs from pre-immune sera to be used in control experiments, about 

100 µl of serum was added to 150 µl of Affiprep protein A beads (Biorad) and incubated 

on a rotating wheel for 30-60 min at 4°C. The beads were subsequently washed three 
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times with ice-cold PBS followed by elution with eight times 150 µl of 100 mM Glycine 

pH 2.8. The pH of the eluates was adjusted to 8.0 by mixing with 1/10 volume of 1 M 

Tris-HCl pH 8.0. Finally, the fractions (1-3) with the highest antibody concentrations 

were pooled and dialyzed against PBS and concentrated to 1 µg/µl. 

 

 

4.5 Generation of recombinant baculo viruses 
 

Baculogold DNA (0.25 µg) was mixed with 2.5 µl of transfer vector (BaculoGold Kit, 

Pharmingen) and incubated for five min followed by the addition of 500 µl buffer-B. In 

the mean time, the Sf9 insect cell medium of a 3 cm plate seeded with Sf9 insect cells 

was replaced with 500 µl buffer-A and the DNA mixture in buffer-B was then slowly 

added (drop by drop) to these cells. After four hours incubation at 27°C, the cells were 

washed once with 2.5 ml of insect cell medium and incubated for 2-3 days at 27°C in the 

same medium. The medium supernatant was then collected and spun for five min at 1000 

rpm and 100 µl of this cleared supernatant (Passage 0, P0) was then used to infect Sf9 

cells in a 10 cm dish. After 3-4 days, the medium culture supernatant (P1) was collected 

and used for a next amplification round. Finally, the P3 supernatant culture medium had a 

sufficient virus titer for the production of recombinant protein.  

 

 

4.6 Production of GST-Ect2 protein from sf9 insect cells 
 

About 250 µl (depending on the titre) of P3 amplified recombinant Ect2 baculovirus were 

used for transfecting Sf9 insect cells in a 15 cm dish. After 36-48 hours of transfection, 

these cells were collected by centrifugation for five min at 1000 rpm. These cells were 

washed once with PBS containing 1 mM PMSF and lysed in 500 µl lysis buffer (10 mM 

HEPES pH 7.7, 20 mM β-Mercaptoethanol, 5 mM EGTA, 150 mM NaCl, 1% NP40, 1 

mM PMSF, 5 mM NaF, 10 µg/ml each of Leupeptin, Chymostatin, Aprotinin and 0.1 

mM Na-Vandate). Extracts were passed five times through a G27 needle and incubated 
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for 15 min on ice. The lysate was cleared by centrifugation at 4°C for 15 min at 

maximum speed in table top centrifuge and about 100 µl of glutathione sepharose beads 

were then added to the extract and incubated for one hour at 4°C on a rotating wheel. The 

beads were subsequently washed twice with lysis buffer containing 300 mM NaCl and 

incubated overnight at 4°C with PreScission protease (Amersham) in cleavage buffer (50 

mM Tris HCl pH 7.0, 150 mM NaCl, 1 mM EDTA, 1 mM DTT and 0.01% NP40). Next 

day, the supernatant containing the soluble Ect2 protein without a tag was collected and 

concentrated if required. 

 

 

4.7 siRNA experiments 
 

For siRNA, the following target sequences were used: 

Ect2:                      5’AAG AGU GGU UCU GGG GAA GCA 3’,  

                              5’AAA UAC UGC UGU GAA UCU AUU 3’, 

                              5’CAA UUU AUG CAG AGA UUA AUU 3’, 

                              5’CAU UUG AUA UGA AGC GUU AUU 3’, 

MgcRacGAP:       5’AAG UGG CAG AGG ACU GAC CAU 3’;  

MKlp1:                 5’AAG CAG UCU UCC AGG UCA UCU 3’;  

MKlp2:                 5’AAC CAC CUA UGU AAU CUC AUG 3’; 

Aurora-B:             5’AAG GUG AUG GAG AAU AGC AGU 3’  

Citron kinase:      5’CAG GAT ATA CCG TAA CAC GAA 3’ 

                             5’ ATG GAA GGC ACT ATT TCT CAA 3’ 

SiRNA duplexes were transfected with oligofectamine (Life Technologies) according to 

manufacturer’s instructions. As a control, the GL-2 duplex targeting the luciferase gene 

was used (Elbashir et al., 2001).   
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4.8 Cell culture and generation of stable cell lines 
 

HeLa S3 cells were grown at 37°C under 5 % CO2 in Dulbecco’s modified Eagle’s 

medium (DMEM) (GIBCO) supplemented with 10 % heat-inactivated fetal calf serum 

(GIBCO-BRL) and penicillin-streptomycin (100 IU/ml and 100 µg/ml, respectively).  Sf9 

insect cells were grown at 27°C in TC-100 medium (GIBCO-BRL) supplemented with 

10% heat inactivated serum (GIBCO-BRL) and penicillin-streptomycin (100 IU/ml and 

100 µg/ml, respectively). Transfections of mammalian cells were performed using 

Fugene 6 reagent (Roche) according to manufacturer’s instructions.  

For the generation of tetracycline-inducible stable cell lines, about 10 µg of 

plasmid (pcDNA4T/O puromycin) encoding the myc-tagged Ect2 1-333 protein fragment 

was transfected using Fugene 6 (Roche) into HeLa S3 cells (15 cm dish) that stably 

expressed a CMV controlled tetracycline repressor gene together with a blasticidine 

resistance marker (pcDNA6/TR, Invitrogen). The transfected cell lines were grown in 

medium containing 5 µg/ml blasticidin and 36 hours after transfection 1.5 µg/ml 

puromycin was added to select the stably transfected clones. After three days, when small 

cell colonies were seen, the concentration of puromycin was reduced to 1 µg/ml. About 

two days later, 48 clones were picked and screened for the inducible expression of myc-

Ect2 1-333 protein by addition of 1 µg/ml tetracycline. After 24 hours, cells were fixed 

with paraformaldehyde and analyzed by immunofluorescence microscopy after staining 

the cells with anti-myc 9E10 antibodies. The stable inducible cell lines were selected only 

if the expression of myc-Ect2 1-333 was seen upon induction with tetracycline.  

 

 

4.9 Cell extracts, immunoprecipitations and western blot analysis 
 

To enrich cells in prometaphase and metaphase stages of the cell cycle, an aphidicolin-

nocodazole block/release protocol was used. In brief, HeLa S3 cells were first treated 

with 1.6 µg/ml aphidicolin for 17 hours, washed three times with PBS to release from the 

block and fresh medium was added without drugs for another six hours. Cells were then 
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treated with 50 ng/ml nocodazole for eight hours to arrest cells in a prometaphase like 

state. Mitotic cells were then collected by a “mitotic shake off”, washed three times with 

PBS and released in fresh medium for about 90 min (spinner culture). The mitotic cell 

cycle stage of these cells was monitored by indirect immunofluorescence microscopy of 

cell aliquots stained with 4´, 6-diamidino-2-phenylindole (DAPI). To enrich HeLa S3 

cells in metaphase of the cell cycle that transiently express recombinant proteins, cells 

were transfected with the respective plasmid constructs and simultaneously treated with 

aphidicolin. Further synchronization procedures were then similar to the one described 

above.  

For making cell extracts, cells were washed with ice cold PBS containing 1 mM 

phenylmethylsulfonyl fluoride (PMSF) and resuspended in ice cold HEPES lysis buffer 

(50 mM Hepes pH7.4, 150 mM NaCl, 0.5% Triton X-100) containing 30 µg/ml RNase A, 

30 µg/ml DNase, 1 µM Okadaic acid, 2 µg/ml Latrunculin-B and protease and 

phosphatase inhibitors (Silljé et al., 1999). After 15 min incubation on ice, extracts were 

cleared at 13000 rpm for 15 min at 4°C. Protein concentrations were determined using 

the Dc protein assay (Bio-Rad). For immunoprecipitations, about 10 µg of polyclonal 

antibodies coupled to Affi-prep protein A beads (Bio-Rad) were used. For 

immunoprecipitation of myc-tagged recombinant proteins, anti-myc 9E10 antibodies 

bound to Immunopure immobilized protein G resin (Pierce) was used. Lysates were 

incubated for four hours with the respective antibody bound resins and subsequently 

washed three times with lysis buffer. For immunoblotting, equal protein amounts were 

separated by SDS-PAGE, followed by transfer onto nitrocellulose membranes 

(Schleicher & Schuell). Membranes were incubated for one hour in blocking buffer (5% 

low-fat dry milk in PBST (PBS + 0.1% Tween-20). All antibody incubations were carried 

out in blocking buffer at 4°C for overnight.  Membranes were probed with the following 

antibodies in PBST containing 5 % milk: affinity-purified rabbit anti-Ect2 (1 µg/ml), 

chicken anti-MgcRacGAP antibodies (R&D systems, 1 µg/ml), affinity purified rabbit 

MKlp1 (0.5 µg/ml), rabbit MKlp2 serum (1:1000), monoclonal anti-myc 9E10 (1:10 

culture supernatant), monoclonal anti-Plk1 (1:20, PL2), monoclonal anti-α-tubulin 

(Sigma-Aldrich, 1:3000). Signals were detected by ECL SuperSignal (Pierce Chemical 

Co.).   
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4.10 Immunoprecipitation of endogenous Ect2 from HeLa S3 spinner 

culture cells 
 

Five flasks of HeLa S3 cells (each 175 cm2) grown to 90% confluence were trypsinized 

and and inoculated in one litre spinner culture flasks containing 500 ml DMEM + 500 ml 

RPMI1640 medium and 10% FCS and 1% penicillin-streptomycin. These cells were 

grown for 3-4 days and the medium was then removed by decanting, leaving the cell 

clumps at the bottom. These cells were washed once with PBS, trypsinized briefly (10 ml 

of trypsin was added and incubated at 37°C) to disperse the cell clumps and resuspended 

in the same medium containing either 1 mM thymidine or 75 ng/ml nocodazole to enrich 

cells in interphase and mitosis, respectively. Subsequently cells were cultured for another 

20 hours in this medium, washed three times with cold PBS and released in fresh medium 

without drugs. Cells were then harvested, washed with PBS containing 1mM PMSF and 

resuspended in 10 mM Triethanolamine pH 7.2 buffer containing 150 mM NaCl for 10 

min. These cells were centrifuged at 1000 rpm for three min and washed with 10 ml HB 

buffer (100 mM Sucrose, 25 mM HEPES pH 3.4, 2 mM EGTA, 2 mM MgCl2, 1 mM 

DTT, 1 mM PMSF, 20 mM NaF, 0.3 mM Na-Vanadate, 1 µM Okadaic acid and 1 µg/ml 

of Leupeptin, Pepstatin and Aprotinin). Finally, cells were homogenised in HB buffer 

using a douncer with pestle B. Staining cells with trypan blue monitored the efficiency of 

homogenization. The extracts were cleared by centrifugation at 10000 rpm for 10 min in 

a SS34 rotor (Beckman), followed by ultra centrifugation at 90000 rpm in a three ml 

polycarbonate TLA 100.3 Beckman tube for 15 min at 4°C in a TLA 100.3 rotor 

(Beckman). The supernatant was collected avoiding the pellet and floating lipid layer, 

and transferred into a new tube. About 0.1% NP40 was added to these lysates and 

immunoprecipitations were done by the addition of 100-300 µl of anti-Ect2 antibody 

beads or pre-immune IgGs beads. After overnight incubations at 4°C on a rotating wheel, 

these beads were washed three times with HB buffer containing 0.1% NP40 and 150 mM 

NaCl but without sucrose, leupeptin, pepstatin and aprotinin. Finally the beads were 

resuspended in 100 µl SDS-PAGE sample buffer and one-third of the immunoprecipitates 

were separated on a NUPAGE 4-12% gradient gel (Invitrogen). 
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4.11 Cell cycle profile and flow cytometry analysis 
 
Mitotic HeLa S3 cells obtained from eight triple flasks (525 cm2 each) using the 

aphidicolin/nocodazole block release protocol as described above, were released in fresh 

medium without drugs. Cells were then collected at 20 min time intervals for 140 min. 

For FACS analysis, HeLa S3 cells were fixed in 70% ethanol followed by incubation for 

30 min in PBS containing 10 µg/ml RNase A (Sigma-Aldrich) and 5 µg/ml propidium 

iodide (Sigma-Aldrich). Analysis of the stained cells was performed with a FACScan 

according to the manufacturer’s instructions and Cell Quest Software (Becton Dickinson) 

was used to analyze the data. 

 

 

4.12 Immunofluorescence microscopy 
 

Cells grown on HCl treated coverslips were fixed with 3% paraformaldehyde/2% sucrose 

for 10 min at room temperature and subsequently permeabilized with ice cold 0.5% 

Triton X-100 for five min.  For visualizing RhoA, cells were fixed with 10% TCA (Tri 

Chloro Acetic Acid) at room temperature for 15 min and permeabilized with 0.5% Triton 

X-100 for five min. To visualize Ect2 with polyclonal antibodies recognizing the 

carboxyl-terminus of Ect2 (Santa Cruz), cells were fixed and permeabilized 

simultaneously with 20 mM PIPES pH 6.8, 4% formaldehyde, 0.2% Triton X-100, 10 

mM EGTA, 1 mM MgCl2 for 10 min at room temperature. Afterwards, cells were 

incubated for 30 min at room temperature in blocking solution (PBS, 1% BSA). All 

antibody incubations were carried out for one hour at room temperature in a humidified 

chamber, followed by three washes with PBS. Primary antibodies used were rabbit 

polyclonal anti-Ect2 (762) (1 µg/ml), rabbit polyclonal anti-Ect2 raised against carboxyl-

terminal epitopes (Santacruz, 1:200), rabbit polyclonal anti-MgcRacGAP (1 µg/ml), 

chicken polyclonal anti-MgcRacGAP (R&D systems, 1 µg/ml), rabbit polyclonal anti-

MKlp1 (Santacruz, 1:200), mouse AIM-1 monoclonal anti-Aurora B (Becton Dickinson, 

1:200), mouse monoclonal anti-RhoA (Santa Cruz Biotechnology, 1:200), mouse 

monoclonal anti-Citron kinase (BD Transduction laboratories 1:200), mouse monoclonal 
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anti-Plk1 (PL2) culture supernatant 1:20, sheep polyclonal anti-MKlp2 (1:1000). Primary 

antibodies were detected with Alexa-Fluor-488- and Alexa-Fluor-555-conjugated goat 

anti-mouse or anti-rabbit IgGs (1:1000, Molecular Probes). DNA was stained with DAPI 

(2 µg/ml). Following three washes with PBS, coverslips were mounted onto slides using 

mounting medium with 80% glycerol and 3% DABCO (in PBS). Immunofluorescence 

microscopy was performed using a Zeiss Axioplan II microscope with Apochromat 40x 

and 63x oil immersion objectives, respectively. Photographs were taken using a 

Micromax CCD camera (model CCD-1300-Y, Princeton Instruments) and Metaview 

software (Visitron Systems GmbH, Puchheim, Germany). For high-resolution images, a 

Deltavision microscope on a Nikon Eclipse TE200 base (Applied Precision) equipped 

with S Fluor 40x/1.3 and Plan Apo 60x/1.4 oil immersion objectives and a photometrics 

Cool Snap HQ camera was used for collecting 0.15 µm distanced optical sections in the 

Z-axis. Images at single focal planes were processed with a deconvolution algorithm and 

then projected into a single picture using the Softworx software (Applied Precision). 

Images were cropped in Adobe Photoshop 6.0, and then sized and placed in figures using 

Adobe Illustrator 10 (Adobe Systems Inc.). 

 

 

4.13 In vitro kinase assays 
 

In vitro kinase reactions were carried out for 30 min at 30°C in buffers supplemented 

with 10 µM ATP and 2 µCi of [γ32-P]-ATP (Amersham Corp.) For Plk1 kinase assays, 

recombinant Plk1 WT and Plk1 KD (K82R) proteins produced in insect cells were used 

and kinase activities were assayed in 20 mM Hepes (pH 7.7), 10 mM MgCl2, 1 mM 

EGTA, 5 mM NaF and 1 mM DTT with 1 µg/ml each of Leupeptin, Pepstatin and 

Chymostatin. Recombinant Cdk1/cyclin B complex was also produced in insect cells and 

kindly provided by Dr.Rudiger Neef. For measuring Cdk1/cyclin B activity, the kinase 

activities were assayed in buffer containing 50 mM Tris-HCl, pH 7.5, 10 mM MgCl2, 1 

mM DTT, 50 mM β-glycerophosphate and 10 mM NaF. GST-Aurora-B kinase WT and 

KD (K106R) in complex with His6-INCENP were kind gifts from Dr. Reiko Honda. The 

Aurora-B kinase activities were assayed in a buffer containing 50 mM Tris-HCl, pH 7.4, 
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10 mM MgCl2, 1 mM EGTA, 1 mM DTT, 5 mM NaF, 5 mM β-glycerophosphate and 5 

mM Na-Vanadate. Substrates used in these kinase assays were recombinant Ect2 (0.2 

mg/ml for all kinase assay reactions), 0.5 mg/ml casein (for Plk1), 0.4 mg/ml histone H1 

(for Cdk1/cyclin B) and 0.5 mg/ml histone H3 (for Aurora-B). Kinase reactions were 

terminated by addition of SDS-PAGE sample buffer and heating for five min at 95°C. 

After separation of the proteins by SDS-PAGE, 32P incorporation was visualized by 

autoradiography. 

 

 

4.14 Live-cell imaging 
 

For live-cell imaging, HeLa S3 cells were grown in 35 mm dishes and treated with 

aphidicolin (1.6 µg/ml) for 16 hours to arrest cells at the G1/S phase boundary. Cells 

were then washed three times with PBS, released in fresh (drug free) medium and eight 

hours later the medium was changed into CO2 independent medium without L-Glutamine 

(GIBCO). The cell culture dish was then placed on a heated (37°C) sample stage and 

live-cell imaging was performed with a Zeiss Axiovert-2 microscope with Plan Neofluar 

40x objective. Images were captured with 10 milliseconds exposure time at two minute 

intervals for 16 hours using metaview imaging software. For live-cell imaging of the 

myc-Ect2 1-333 stable inducible cell line, tetracycline (1 µg/ml) was added upon release 

from the aphidicolin block. For live-cell imaging of siRNA treated HeLa S3 cells, cells 

were simultaneously arrested with aphidicolin and transfected with siRNA oligoduplexes 

and upon release from the aphidicolin block after 16 hours, cells were again transfected 

with siRNA duplexes.   

 

 

4.15 Mass spectrometry 
 

Coomassie stained protein bands were excised from SDS-PAGE gels in a dust free 

environment and in-gel digested (Shevchenko et al., 1996) with trypsin (Promega, 

sequencing grade). Matrix-assisted laser desorption/ionization (MALDI) time-of-flight 
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(TOF) mass spectrometry (Brucker Daltonik, Bremen, Germany) was used to identify the 

phosphorylated peptides. As a matrix, 2,5 dihydroxybenzoic acid (Bruker Daltonik) or α-

cyano-4-hydroxycinnamic acid (Bruker Daltonik) were used. Subsequently, the 

phosphorylation sites were confirmed by post source decay (PSD) (Hoffmann et al., 

1999). Peptides showing the typical losses of 98 mass units (Phosphoric acid) and 80 

mass units (phosphate group) were considered as phosphopeptides. The exact localization 

of the phosphorylated residues within the peptides was determined by MS-MS based 

sequencing using a quadrupole time-of-flight (QTOF) mass spectrometer. 
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List of Abbreviations 
 

AA                                   amino acid 

ATP                                 adenosine 5´-triphosphate 

BRCT                              carboxyl-terminal domain of breast cancer susceptibility protein 

BSA                                 bovine serum albumin 

CDK                                cyclin-dependent kinase 

cDNA                               complementary deoxyribonucleic acid  

CHAPS                            3-[(3-Cholamidopropyl)dimethylammonio]-1-propanesulfonate 

Cm                                    centi-metre 

CMV                                cytomegalo virus 

CO2                                                  carbon dioxide 

DAPI                                4´,6-diamidino-2-phenylindole 

DNA                                deoxyribonucleic acid 

DTT                                 dithiothreitol 

ECL                                 enhanced chemiluminescence 

EDTA                              ethylene dinitrilo tetraacetic acid 

ELISA                             enzyme linked immunosorbent assay 

FACS                               fluorescence activated cell sorter 

FCS                                  fetal calf serum 

GDP                                 guanosine 5’-diphosphate 

GEF                                 guanine nucleotide exchange factor 

GFP                                 green fluorescent protein 

GTP                                 guanosine 5’-triphosphate 

HCl                                  hydrochloric acid 

HEPES                             N-2-Hydroxyethylpiperazine-N`-2-ethane sulfonic acid 

IgG                                   immunoglobulin G 

IP                                      immunoprecipitation                                    

IPTG                                isopropyl-beta-D-thiogalactopyranoside 

IU                                     international unit 
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KD                                  catalytically impaired 

kDa                                 kilo-daltons 

LB                                  luria-broth 

M                                   molar                       

mAb                               monoclonal antibody 

µCi                                 micro-curie 

µl                                    micro-litre 

µg                                   micro-gram 

MA                                 mitotic apparatus 

MgCl2                            magnesium chloride 

Min                                 minutes 

Ml                                   milli-litre 

Mm                                 milli-metre 

mM                                 milli-molar 

MT                                  microtubules 

MS                                  mass spectrometry 

MW                                 molecular weight marker 

NaF                                 sodium fluoride 

NaCl                                sodium chloride 

ng                                    nano-gram 

NLS                                 nuclear localization signal 

OA                                   okadaic acid 

OD                                   optical density 

PBS                                  phosphate-buffered saline 

PCR                                  polymerase chain reaction 

PH                                    plekstrin homology 

PIPES:                              1,4-Piperazinediethanesulfonic acid 

PMSF                               phenylmethylsulfonyl fluoride 

RNA                                 ribonucleic acid 

rpm                                   revolutions per minute 

RT                                    room temperature 
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SDS-PAGE                      sodium-dodecylsulfate polyacrylamid gelelectrophoresis 

siRNA                             small interference Ribonucleic Acid 

SV40T                             simian virus large T antigen 

V                                     volts 

WT                                  wild-type 
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Appendix-List of plasmids 
 

name tag gene insert species vector  
 RB    1 hww45 Full length hww45    human pCMV-Sport6  
 RB    2 hww45 Full length hww45 human pBS SK 

 RB    3 myc hww45 Full length hww45 human pcDNA3.1  
  RB    4 BD hww45  Full length hww45 human pGBD-C1   
  RB    5 His6 hww45 Full length hww45 human pQE-30  
 RB    6 GFP hww45 Full length hww45 human pEGFP-T7/C1  

 RB    7 His6 hww45 aa 1-174 human pQE-30  

 RB    8 AD hww45 Full length hww45 human pGAD-C1  
 RB    9 YFP  pEYFP-N1 human  

 RB  10 YFP α-tub human pEYFP-Tub  

 RB  11 CFP human pECFP-N1  

 RB  12 CFP H2B human pBOS    
  RB  13 Ect2                               Full length Ect2 human pBS KS 

 RB  14 myc Ect2 Full length Ect2 human pcDNA3.1 

 RB  15 GFP Ect2 Full length Ect2 human pEGFP-T7/C1  

 RB  16 His6 Ect2 Full length Ect2 human pQE-30  
 RB  17 GST Ect2 Full length Ect2 human pGEX-6P-3  
 RB  18 myc Ect2 Ect2 aa 1-387 human pcDNA3.1 

 RB  19 myc Ect2 Ect2 aa 1-288 human pcDNA3.1 

 RB  20 Ect2 Ect2 aa 1-214 human pBSKS 

 RB  21 myc Ect2 Ect2 aa 476-883 human pcDNA3.1 

 RB  22 myc Ect2 Ect2 aa 1-214 human pcDNA3.1 

 RB  23 His6 Ect2 Ect2 aa 1-387 human pQE-30  

 RB  24 His6 Ect2 Full length Ect2 human pVL1393  

 RB  25 RhoA Full length RhoA EST human pCMV Sport6 

 RB  26 GST RhoA Full length RhoA  human pGEX-6P-3  

 RB  27 His6 Ect2 Ect2 aa 476-884 human pQE-81L  

 RB  28 GFP Ect2 Ect2 aa 1-387 human pEGFP-T7/C1  

 RB  29 GFP Ect2 Ect2 aa 1-214 human pEGFP-T7/C1  
 RB  30 GFP Ect2 Ect2 aa 476-883 human pEGFP-C3  
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 RB  31 His6 Ect2 Ect2 aa 476-883 human pQE-31  

 RB  32 Ect2 Ect2 E428A human pBS KS 

  RB  33 GST Ect2 Full length Ect2 human pVL13GST93  

 RB  34 myc Ect2 Ect2 E428A human pCDNA3.1 

 RB  35 GST Ect2 Ect2 E428A human pVL13GST93  

 RB  36 His6 Ect2 Ect2 E428A human pVL1393  

 RB  37 BD Ect2 Ect2 human pGBD-C3  
 RB  38 myc Ect2  Full length Ect2  human pcDNA4/TO/myc 
  RB  39            myc Ect2                          Full length Ect2                                   human                     pcDNA4/TO/myc    
  RB  40                 Ect2                          Full length Ect2                                   human               pBSKS+ 
 RB  41 myc Ect2  Full length V566D human pcDNA 3.1 
 RB  42            GST Ect2  Full length V566D human pVL1393  
 RB  44 BD Ect2  Ect2 1-387 human pGBDΩ-C(1)  
 RB  45 BD Ect2  Ect2 476-883 human pGBDΩ-C(1)  

 RB  46 AD Ect2  Ect2 1-387 human pGAD-C(1)  
 RB  47 AD Ect2  Ect2 476-883 human pGAD-C(1)  

  RB  48 myc RhoA Full length RhoA human pcDNA 3.1 

  RB  49 myc Ect2  Ect2 S40A(undesired point mutation) human pcDNA 3.1 

 RB  50 myc Ect2  Ect2S40A human pcDNA 3.1 

 RB  51 myc Ect2  Ect2 S40D human pcDNA 3.1 

 RB  52 myc Ect2  Ect2 T815A human pcDNA 3.1   

 RB  53 myc Ect2  Ect2 T815D human pcDNA 3.1   

 RB  55 GST Myc1 Rac1 Full length Rac1 human pGEX-2T    

 RB  56 GST Myc1 Cdc42 Full length Cdc42 human pGEX-2T   
   RB  57 GST Rhotekin RBD Rhotekin RBD                       pGEX-2T  
  RB  58           GST  SopE                        SopE 78-240                                     bacteria                    pGEX-2T 
 RB  59 myc Ect2 Ect2 1-333 human pcDNA3.1  

 RB  60 myc Ect2 Ect2 T815A human pcDNA3.1  
 RB  61 myc Ect2 Ect2 T815D human pcDNA3.1  

 RB  62 GST Ect2 Ect2 BRCT domains (113-342) human pGEX-6P-3  

 RB  63 GST Ect2 Ect2 BRCT domains w211R (113-342) human pGEX-6P-3  

 RB  64 GFP Ect2 Ect2 BRCT domains (113-342) human pEGFP-T7/C1  
 RB  65 GFP Ect2 Ect2 BRCT domains w211R (113-342) human pEGFP-T7/C1  

 RB  66 myc Ect2 Ect2 BRCT domains (113-342) human pcDNA3.1  

  RB  67 myc Ect2 Ect2 BRCT domains w211R (113-342) human pcDNA3.1  
   RB 68             His  Ect2                          Ect2 BRCTdomains (113-342) human pQE-30 
 RB  69             His Ect2 Ect2 BRCT domains w211R (113-342) human pQE-30  
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 RB  70 GFP Ect2 Ect2 s40A human pcDNA3.1  
  RB  71 GFP Ect2 Ect2 S40D human pEGFP-T7/C1  
  RB  72 myc Ect2 Ect2 1-360 human pcDNA3.1  
 RB  73 myc MKlp1 Full length human pcDNA3.1  

 RB  74 GFP Ect2 Ect2 V566D human pEGFP-T7/C1  

 RB  75 GFP Ect2 Ect2 E428A human pEGFP-T7/C1  

 RB  76  Cdc42BPB (Kiaa1124) human pBSSK+ 
  RB  77  Trim56 (IMAGp958P2343) human poTB7 
  RB  78            GST Trim56                      Trim56                                             human              pGEX-6P-3  

 RB  79 myc Trim56 Trim56 human pcDNA3.1  

 RB  80 His Ect2 Ect2 349-639 human pQE-82L  

 RB  81 myc Ect2 Ect2 S20A human pcDNA3.1  

 RB  82 myc Ect2 Ect2 S366A (undesired point mutations) human pcDNA3.1  

 RB  83 myc Ect2 Ect2 S685A human pcDNA3.1  

 RB  84 myc Ect2 Ect2 S336A human pcDNA3.1  

 RB  85 myc Ect2 Ect2 S366A human pcDNA3.1  

 RB  86 myc Ect2 Ect2 S20A, S685A human pcDNA3.1  

 RB  87 myc Ect2  Ect2 S811A human pcDNA3.1  

 RB  88 myc Ect2 Ect2 S20A, S366A, S685A human pcDNA3.1  

 RB  89 myc Ect2 Ect2 S20D human pcDNA3.1  

 RB  90 myc Ect2 Ect2 S366D human pcDNA3.1 

 RB  91 myc Ect2 Ect2 S685D human pcDNA3.1  

 RB  92 myc Ect2  Ect2 S811D human pcDNA3.1  

 RB  93 Flag Ect2 WT Ect2 human pcDNA3.1/Flag-C  

 RB  94 HA Ect2 WT Ect2 human pcDNA3.1/HA-C  

 RB  95 GFP Ect2  Ect2 T815A human pEGFP-T7/C1  

 RB  96 GFP Ect2 Ect2 T815D human pEGFP-T7/C1  

 RB  97 GFP Ect2 Ect2 S20A human pEGFP-T7/C1  

 RB  98 GFP Ect2 Ect2 S336A human pEGFP-T7/C1  

 RB  99 GFP Ect2 Ect2 S366A human pEGFP-T7/C1  
 RB100 myc Ect2 Ect2 1-333 S20A human pcDNA 3.1 

 RB101 myc Ect2 Ect2 1-333 S40A human pcDNA 3.1 
 RB102 myc Ect2 Ect2 1-333 S20D human pcDNA 3.1 
 RB103 myc Ect2 Ect2 1-333 S40D human pcDNA 3.1 

 RB104 myc Ect2 Ect2 1-333 S20A S40A human pcDNA 3.1 
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 RB105            myc Ect2                          Ect2 1-333 S20D S40D human pcDNA 3.1 
   RB106 YFP                               3X-SV40NLS SV40virus pEYFP-Nuc  

 RB107 myc Ect2 3XSV40-NLS-Ect2 1-333 human pcDNA 3.1 

 RB108 myc 3XSV40-NLS SV40virus pcDNA 3.1 

 RB109 myc Ect2 Ect2 KRR→NQQ human pcDNA 3.1 

 RB110 myc Ect2 Ect2 RKR→QNQ human pcDNA 3.1 

 RB111 myc Ect2 Ect2 KRR→NQQ,RKR→QNQ human pcDNA 3.1 

 RB112 AD Ect2 Ect2 1-333 human pGAD-c(1)   
   RB113 BD Ect2 Ect2 1-333 human pGBDΩ-C(1)  

 RB114 HA-C Ect2 Ect2 1-333 human pcDNA3.1/HA-C  

 RB115 HA-C Ect2 Ect2 1-360 human pcDNA3.1/HA-C  
 RB116 Flag-C Ect2 Ect2 1-333 human pcDNA3.1/Flag-C  

 RB117 Flag-C Ect2 Ect2 1-360 human pcDNA3.1/Flag-C  

 RB118 myc Ect2 Ect2 1-333 human pcDNA4/TO   
 RB119 myc Ect2 Ect2 1-360 human pcDNA4/TO   
 RB120 myc Ect2 Ect2 336-883 human pcDNA 3.1 

 RB121 myc Ect2 Ect2 355-883 human pcDNA 3.1  
  RB122 Flag-C Ect2 Ect2 414-883 human pcDNA3.1/Flag-C  

 RB123 myc Ect2 Ect2 414-630 human pcDNA 3.1  
   RB124 myc Ect2 Ect2 753-883 human pcDNA 3.1 

 RB125 myc  Cyk4 Full length Human Cyk4 (MgcRacGap) human pcDNA3.1 

 RB126 GFP  Cyk4 Full length Human Cyk4 (MgcRacGap) human  

 RB127 myc Ect2 Ect2 S20A,S366A,S685A,S811A human pcDNA 3.1  
   RB128 myc Ect2 Ect2 S20A,S336A,S366A,S685A,S811A human pcDNA 3.1 

 RB129 myc Ect2 Ect2 S685D,S811D human pcDNA 3.1  
   RB130 myc Ect2 Ect2 S20D,S40D human pcDNA 3.1 

 RB131 myc Ect2 Ect2 S20D,S40D,S685D,S811D human pcDNA 3.1 

 RB132 myc Ect2 Ect2 S336D,S366D human pcDNA 3.1  
   RB133 myc Ect2 Ect2 S20D,S40D,S336D,S366D,S685D,S811D human pcDNA 3.1 

 RB134 myc Ect2 Ect21-388 KRR→NQQ,RKR→QNQ human pcDNA 3.1 

 RB135 myc Ect2 Ect21-477 KRR→NQQ,RKR→QNQ human pcDNA 3.1  
  RB136 myc Ect2 Ect21-569 KRR→NQQ,RKR→QNQ human pcDNA 3.1 

 RB137 myc Ect2 Ect2 414-883 human pcDNA 3.1  
   RB138 HA-C Ect2 Ect2 414-883 human pcDNA3.1/HA-C  

 RB139 Flag-C Ect2 Ect2 414-630 human pcDNA3.1/Flag-C  

 RB140 HA-C Ect2 Ect2 414-630 human pcDNA3.1/HA-C  
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 RB141          Flag-A Cyk4 Human Cyk4 human pcDNA3.1/Flag-A  
 RB142 myc-c Ect2 Ect2 1-370 human  pcDNA3.1   
  RB143 myc-c Ect2 Ect2 1-370 KRR→NQQ human pcDNA3.1    

  RB144 myc-c Ect2 Ect2 5S→5A,KRR→NQQ human pcDNA3.1 

 RB145 myc-c Ect2 Ect2 1-370 S366A human pcDNA3.1 

 RB146 myc-c Ect2 Ect2 1-370 S366D human pcDNA3.1 

 RB147 myc-c Ect2 Ect2 41-333 human pcDNA3.1 

 RB148 myc-c Ect2 Ect2 320-370 human pcDNA3.1 

 RB149 myc-c Ect2 Ect2 320-388 human pcDNA3.1 

 RB150 GFP Ect2 Ect2 1-333 human pEGFP-T7/C1  

 RB151 myc-c Ect2 Ect2 1-333 K195A human pcDNA3.1 

 RB152 His Ect2 Ect2 1-333 human pQE30  
 RB153 GST Ect2 Ect2 1-333 human pGEX-6P-3  
 RB154 GST Ect2 Ect2 1-333 K195A human pGEX-6P-3  

 RB155  Ect2 3x-myc-Ect2 1-333 K195A human pcDNA4/TO  
 RB156            GFP Ect2 Ect2 1-333 K195A                                human pEGFP-T7/C1  

 RB157 AD Ect2 Ect2 414-883 human pGAD-C1  

 RB158 AD Ect2 Ect2 414-630 human pGAD-C1  

 RB159 BD Human Cyk4 Human Cyk4 human pGBD omega C1  

 RB160 myc Ect2 Nterm 1-333+peptide human pcDNA3.1 

 RB161 myc Ect2 Full length human pcDNA3.1 

 RB162 myc Ect2 Nterm 1-333 T153A,K195A human pcDNA3.1 

 RB163 myc Ect2 Ect2 5S →5A human pcDNA3.1 

 RB164 myc Ect2 Ect2 6S →6D human pcDNA3.1 

 RB166 myc Ect2 Ect2 7S→7A human pcDNA3.1 

 RB167 myc Ect2 Ect2 8S→8D human pcDNA3.1  
   RB168 myc Ect2 Ect2 1-420 human pcDNA3.1 

 RB169 myc Ect2 Ect2 2S→2D human pcDNA3.1 

 RB170 BD Ect2 Ect2 414-883 human pGBDΩ-C1  

 RB171 myc Ect2 N-term 1-333 T153A,K195A,Q192A human pcDNA3.1 
 RB172 myc Ect2 Nterm 1-333 T153A,K195A,V281F human pcDNA3.1 
 RB173 Flag-c Ect2 Nterm 1-333 T153A,K195A human pcDNA3.1/Flag-c   

  RB174 Flag-c Ect2 Nterm 1-333 T153A,K195A,Q192A human pcDNA3.1/Flag-c  
 RB175 Flag-c Ect2 Nterm 1-333 T153A,K195A,V281F human pcDNA3.1/Flag-c  

 RB176 GST Ect2 Ect2 1-333 T153A,K195A human pGEX-6P-3  
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  RB 177                GST Ect2 Ect2 1-333 T153A,K195A,Q192A human pGEX-6P-3  
 RB178 GST Ect2 Ect2 1-333 T153A,K195A,V192F human pGEX-6P-3  

 RB179 GST Ect2 Ect2 414-630 human pGEX-6P-3  

 RB180 His Ect2 Ect2 1-333 T153A,K195A human pQE-30  

 RB181 GFP Ect2 Ect2 1-333 T153A,K195A human pEGFP-t7/C1  
 RB182 GFP Actin Actin human                     pAcGFP1  

 RB183 myc Ect2 Ect2 320-883 human pcDNA3.1 

 RB184 myc-HisA MKlp1 Full length human pcDNA4/TO/myc 

 RB185 myc Ect2 Ect2 all Alanine mutant+siRNA human pcDNA3.1/3x  

 RB186 myc Ect2 Ect2 1-333 T328A human pcDNA3.1 

 RB187 myc RhoA wildtype human pRK5myc  

 RB188 myc Rac1 wildtype human pRK5myc  

 RB189 myc Cdc42 wildtype human pRK5myc  

 RB190 myc N19RhoA Dominant negative human pRK5myc  

 RB191 myc N17Rac1 Dominant negative human pRK5myc  

 RB192 myc N17Cdc42 Dominant negative human pRK5myc  

 RB193 myc MKlp2 Dominant negative human pcDNA3.1/myc  
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Project assistant (Aug 2001-June 2002) 

I was pursuing as a project assistant for one year in Prof. Raghavan Varadarajan’s lab at the Indian 

Institute of Scineces, Bangalore, India. 

 

Masters degree (Aug1999-may2001):  

Completed Master of Science in Biotechnology at the Madurai Kamaraj University, India in April 

2001. I scored 76.4% in my master’s degree. 

 

Under graduation (1996-1999):  

Bachelor of Science in Biochemistry, Microbiology, Aquaculture from  
P. B. Siddhartha College of Arts and Science, Nagarjuna University, India. I scored 85% in my under graduation. 

 

 

Honours, Scholarships, Ranks and Prizes: 

1) In class X, I was ranked 2nd and received Rs. 300/- as prize money. 

 

2) For Intermediate course (1993-1995), I was selected for the Andhra Pradesh Residential Junior 

College, Nagarjuna Sagar, India through the entrance test conducted by the Andhra Pradesh 

State Government.   

 

3) I was selected to the MSc Biotechnology course by All India Entrance (Rank-36) conducted by 

the Jawaharlal Nehru University affiliated to 20 other universities all over India. Receiving a 

monthly studentship of Rs.400/-, this studentship is established and maintained by the 

Department of Biotechnology (DBT), Government of India. 

 

4) Apart from this, I was also selected for following universities for the Master’s degree program. 

The selection process is based on competitive written exams. 

     Jawaharlal Nehru University, New Delhi in Life Sciences, 

      Hyderabad Central University -3rd rank in Biochemistry, 

     Andhra University, Vizag - 1st in Biochemistry, 

     Nagarjuna University, Vijayawada - 3rd in Microbiology.  

 



Resume                    
 

 135

5)  In GATE 2001 exam (Graduate Aptitude Test in Engineering), I scored 94% percentile in 

biological sciences exam. This is an All India entrance exam conducted to assess the knowledge 

of students for further studies like PhD’s and M.Tech (Master of Technology) courses. 

 

6)   JRF-CSIR fellowship MAY-2001. 

       I was selected for the award, which would include a package of approximately 50,000 rupees (as 

of 2001) as a yearly grant for a period of 5 years for pursuing Ph.D. in India. The Universities 

Grant Commission, India (UGC) and the Council of Scientific and Industrial research (CSIR) are 

the key agencies to fund the Ph.D. students in India. The students for the award of fellowships are 

selected by a highly competitive National Eligibility Test (NET) examination. This examination is 

held twice during the year for selection for the award of Junior Research Fellowships (JRF). 

Nearly 50,000 applications are received annually for the two NET examinations of which nearly 

30,000 candidates take the examination and a total of 1,000 are normally selected for the grant of 

fellowship both from CSIR and UGC. I was among top 20% of the candidates qualified for Junior 

Research Fellow under CSIR in the year Dec 2000. 

         But, as I had the opportunity to pursue my PhD studies at Max Planck Institute for 

Biochemistry in the Department of Cell Biology, I came over here to be part of wonderful 

international scientific atmosphere in the department of Prof. Erich Nigg. 
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