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1. Summary 
 
The application of global gene expression profiling allows to obtain detailed 
molecular fingerprints of underlying gene expression in any cell of interest. In 
this work gene expression profiles were generated from a comprehensive 
cohort of leukemia patients and healthy donors referred to and diagnosed in the 
Laboratory for Leukemia Diagnostics, Munich, Germany, which is a nation-wide 
reference center for the diagnosis of hematologic malignancies. Thoroughly 
characterized clinical samples were analyzed by high-density microarrays 
interrogating the expression status of more than 33,000 transcripts. 

In one specific aspect of this work the potential application of gene 
expression signatures for the prediction and classification of specific leukemia 
subtypes was assessed. Today the diagnosis and subclassification of 
leukemias is based on a controlled application of various techniques including 
cytomorphology, cytogenetics, fluorescence in situ hybridization, multiparameter 
flow cytometry, and PCR-based methods. The diagnostic procedure is 
performed according to a specific algorithm, but is time-consuming, cost-
intensive, and requires expert knowledge. Based on a very low number of 
candidate genes it is demonstrated in this work that prognostically relevant 
acute leukemia subtypes can be classified using microarray technology. 
Moreover, in an expanded analysis including 937 patient samples representing 
12 distinct clinically relevant acute and chronic leukemia subtypes and healthy, 
non-leukemia bone marrow specimens a diagnostic prediction accuracy of 
~95% was achieved. Thus, given these results it can be postulated that the 
occurring patterns in gene expression would be so robust that they would allow 
to predict the leukemia subtype using global gene expression profiling 
technology. This finding is further substantiated through the demonstration that 
reported differentially expressed genes from the literature, namely pediatric 
gene expression signatures representing various acute lymphoblastic leukemia 
(ALL) subtypes, can be used to independently predict the corresponding adult 
ALL subtypes. Furthermore, it could be demonstrated that microarrays both 
confirm and reproduce data from standard diagnostic procedures, but also 
provide very robust results. Parameters such as partial RNA degradation, 
shipment time of the samples, varying periods of storage of the samples, or 
target preparations at different time points from either bone marrow or 
peripheral blood specimens by different operators did not dramatically influence 
the diagnostic gene expression signatures. 

In another major aspect of this work gene expression signatures were 
examined in detail to obtain new insights into the underlying biology of acute 
promyelocytic leukemia (APL) and t(11q23)/MLL leukemias. In APL, 
microarrays led to a deeper understanding of morphological and clinical 
characteristics. Firstly, genes which have a functional relevance in blood 
coagulation were found to be differentially expressed when APL was compared 
to other acute myeloid leukemia (AML) subtypes. Secondly, a supervised 
pairwise comparison between the two different APL phenotypes, M3 and its 
variant M3v, for the first time revealed differentially expressed genes encoding 
for biological functions and pathways such as granulation and maturation. With  
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respect to 11q23 leukemias it could be demonstrated that leukemias with 
rearrangements of the MLL gene are characterized by a common specific gene 
expression signature. Additionally, in unsupervised and supervised data 
analysis algorithms ALL and AML cases with t(11q23)/MLL segregated 
according to the lineage, i.e., myeloid or lymphoid, respectively. This 
segregation could be explained by a highly differing transcriptional program. 
Through the use of biological network analyses essential regulators of early B 
cell development, PAX5 and EBF, were shown to be associated with a clear B-
lineage commitment in lymphoblastic t(11q23)/MLL leukemias. Also, the 
influence of the different MLL translocation partners on the transcriptional 
program was directly assessed. But interestingly, gene expression profiles did 
not reveal a clear distinct pattern associated with one of the analyzed partner 
genes. Taken together, the identified molecular expression pattern of MLL 
fusion gene samples and biological networks revealed new insights into the 
aberrant transcriptional program in t(11q23)/MLL leukemias. In addition, a 
series of analyses was targeted to obtain new insights into the underlying 
biology in heterogeneous B-lineage leukemias not positive for BCR/ABL or MLL 
gene rearrangements. It could be demonstrated that the genetically more 
heterogeneous precursor B-ALL samples intercalate with BCR/ABL-positive 
cases, but their profiles were clearly distinct from T-ALL and t(11q23)/MLL 
cases. 

In conclusion, various unsupervised and supervised data analysis 
strategies demonstrated that defined leukemia subtypes can be characterized 
on the basis of distinct gene expression signatures. Specific gene expression 
patterns reproduced the taxonomy of this hematologic malignancy, provided 
new insights into different disease subtypes, and identified critical pathway 
components that might be considered for future therapeutic intervention. Based 
on these results it is now further possible to develop a one-step diagnostic 
approach for the diagnosis of leukemias using a customized microarray. 
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2. Introduction 
 
2.1 Microarrays and the era of functional genomics 

Both biology and medicine are undergoing a revolution that is based on the 
accelerating determination of DNA sequences, including the completion of 
whole genomes of a growing number of organisms (Wheeler et al., 2004). In 
parallel to the sequencing efforts, a wide range of technologies with tremendous 
potential has grown that can take advantage of the vast quantity of genetic 
information that is now available. The field of functional genomics seeks to 
devise and apply these technologies, such as microarrays, to analyze the full 
complement of genes and proteins encoded by an organism in order to 

understand the functions of genes and proteins (Fields et al., 1999).  
 
Microarrays for gene expression monitoring 
The interval between the first draft assembly (Lander et al., 2001; Venter et al., 
2001) and the closure of the human genome announced in April 2003 has seen 
big increases in human mRNA coverage, expressed sequence tags (EST) 
production, and continual refinement of automated genome annotation. The 
available data today are converging to a basal number of well below 30,000 
protein-coding genes, which could even be as low as 25,000 (Southan, 2004). 
However, still with the sequence information alone it will not be possible to fully 
understand gene function, expression and regulation. Cellular processes are 
governed by the repertoire of expressed genes, and the levels and timing of 
their expression. Microarrays are a suitable tool to measure the expression of a 
large number of mRNAs in parallel (Young, 2000).  

The basic concept behind microarrays is the precise positioning of DNA-
probes that are designed to specifically monitor the mRNA abundance of genes 
of interest in a highly parallel manner on a solid support so that they can act as 
molecular detectors (Holloway et al., 2002). This determination of the relative 
concentration of mRNAs is based on hybridization of entire mRNA populations 
to high-density arrays of oligonucleotides and results in the generation of 
specific gene expression signatures, i.e., groups of genes with similar patterns 
of expression across a set of samples (Staudt, 2003). Common to all gene 
expression profiling approaches is the heteroduplex formation: Structural 
features of nucleic acids enable every nucleic acid strand to recognize 
complementary sequences through base pairing (Southern et al., 1999). After 
the process of hybridization, complementary and fluorescently tagged 
nucleotides can be detected. As such, microarrays allow the reproducible and 
quantitative monitoring of the expression levels of very large numbers of genes 
and provide a molecular fingerprint of the transcriptome (Lockhart and Winzeler, 
2000). 

Principally, in microarray experiments, the DNA probes are deposited, 
i.e., arrayed, on a substrate such as a glass slide, nylon membrane, or silicon 
wafer (Bowtell, 1999). The cDNA or cRNA target, generated from a sample 
input RNA that has been labeled, is hybridized to the microarray. A scanner 
then measures fluorescence at the site of each unique probe. Two major types 
of microarray technologies exist (Figure 1). The first is based on standard 
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microscopic glass slides on which cDNAs or long oligonucleotides (typically 60-
mers) have been deposited (spotted) (Duggan et al., 1999). The second is 
based on photolithographic techniques to synthesize 25-mer oligonucleotides 
on a silicon wafer and constitutes the patented technology of Affymetrix, Inc. 
(Lockhart et al., 1996). These differences can impact experimental design and 
interpretation, but it is becoming clear that robust and reproducible gene 
expression data can be generated on multiple platforms (Wright et al., 2003). 
During the past few years powerful algorithms have been developed and 
adapted to mine microarray data. More recently, also applications to interpret 
gene expression signatures in terms of pathways and networks have evolved 
(Slonim, 2002). 
 

patient sample

mRNA transcripts

DNA-oligonucleotide
microarray

sample RNA

cDNA spotted
microarray

preparation   and labeling

sample RNA control RNA

patient sample

mRNA transcripts

DNA-oligonucleotide
microarray

sample RNA

cDNA spotted
microarray

preparation   and labeling

sample RNA control RNA

 
 
Figure 1. Different types of microarray platforms. Microarray platforms vary according to: (A) 
the solid support used (such as glass slides or silicon wafers), (B) the surface modifications with 
various substrates, (C) the type and length of DNA fragments on the array (such as cDNA or 
oligonucleotides), (D) whether the gene fragments are presynthesized and deposited or 
synthesized in situ, (E) the machinery used to place the fragments on the array (such as ink-jet 
printing, spotting, mask or micromirror-based in situ synthesis), and (F) the method of sample 
preparation. Currently, combinations of these variables are used to generate two main types of 
microarrays: in situ synthesized DNA-oligonucleotide arrays (left), and spotted glass slide arrays 
(right). 

 
Glass slide microarrays 
Glass slide microarrays were first produced in Patrick Brown's laboratory at 
Stanford University (Schena et al., 1995). In glass slide microarray studies RNA 
species from the test sample and from the reference sample are pairwise 
studied as an equivalent mixture in which the control RNA is the reference for 
expressing the gene transcript levels in the target sample (Figure 1). Various 
direct and indirect labeling methods for the sample have been developed 
(Holloway et al., 2002). The majority of expression analysis labeling protocols 
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are based on the reverse transcription of mRNA, either from highly purified 
poly(A) mRNA, or total RNA extracts and often include amplification steps (Van 
Gelder et al., 1990). In most protocols, one sample is labeled with the Cy3 
(green) fluorochrome, the other with Cy5 (red). The labeled cRNA molecules 
hybridize to the corresponding cDNA or long oligonucleotides, of which the 
exact position on the array is known. The binding of the target to the probe is 
detected by scanning the array, typically using either a scanning confocal laser, 
or a charge coupled device (CCD) camera-based reader. After scanning, 
software calculations provide the ratios between green and red fluorescence for 
each spot, corresponding to the relative abundance of mRNA from a particular 
gene in the target sample vs. the reference sample (Duggan et al., 1999). 

However, the technical difficulties in the reproducible production of glass 
slide microarrays should not be underestimated (Holloway et al., 2002). Much of 
this variation is introduced systematically during the spotting of the DNA onto 
the slide surface (Rickman et al., 2003) and many of the initial cDNA clone sets 
were compromised by contamination with T1 phage, by multiple clones in 
individual wells, and by incorrect sequence assignment (Halgren et al., 2001). 
Thus, given the lack of a gold standard for the production of glass slide 
microarrays using current technologies, there is a high degree of variation in the 
quality of data derived from glass slide microarray experiments. This poor 
reproducibility not only adds to the cost of a given study, but also leads to data 
sets that are difficult to interpret (Holloway et al., 2002). 
 
DNA-oligonucleotide microarrays 
Microarrays manufactured by Affymetrix, Inc., also known as the so-called 
GeneChips, use only one color and generate a gene expression profile of one 
sample in each analysis (Figure 2). The results obtained from these absolute 
expression analyses are conductive to building large databases. 

GeneChip probe arrays are manufactured in a series of cycles that are 
highly reproducible and can be performed in a controlled environment through a 
technology that combines photolithography and solid-phase DNA synthesis 
(Lockhart et al., 1996). Each surface-bound oligonucleotide (probe) is located in 
a specific area on the array called a probe cell. Each probe cell contains 
millions of copies of a given oligonucleotide. Initially, a silicon wafer is coated 
with linkers containing photolabile protecting groups. Then, a photolithographic 
mask is applied that exposes selected portions of the probe array to ultraviolet 
light. Illumination removes the photolabile protecting groups enabling selective 
nucleoside phosphoramidite addition only at the previously exposed sites. Next, 
a different mask is applied and the cycle of illumination and chemical coupling is 
performed again. By repeating this cycle, a specific set of oligonucleotide 
probes is synthesized with each probe type in a known location. Thus, given a 
reference sequence, a probe array can be designed that consists of a highly 
dense collection of complementary probes with virtually no constraints on 
design parameters. The amount of nucleic acid information encoded on the 
array in the form of different probes is limited only by the physical size of the 
array and the achievable lithographic resolution (Lipshutz et al., 1999). Target 
mRNAs present at a frequency of 1:300,000 are unambiguously detected. The 
detection is quantitative over more than three orders of magnitude (Lockhart et 
al., 1996). 
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Figure 2. Fluorescence image of a microarray 
(Affymetrix U133A). The microarray contains 
more than 500,000 different 25-mer 
oligonucleotide probes in an area of 1.28 x 1.28 
cm. The represented probe sets interrogate more 
than 22,000 human transcripts. The image of the 
global expression profile was obtained after 
overnight hybridization of an amplified and labeled 
human mRNA. After the washing and staining 
procedures, the microarray was scanned with a 
laser. The amount of light emitted at 570 nm is 
proportional to the bound target at each location 
on the probe array. 

 
 
 

 
The mRNA abundance of a gene of interest is interrogated by a combination of 
a pair of 25-mer probes that span specific parts of the gene, mostly located at 
the 3´ end (Figure 3). A first group of 25-mer oligonucleotides are called perfect 
match oligonucleotides (PM). In addition to these perfect match 
oligonucleotides, each 25-mer comes with a negative control oligonucleotide 
that contains a mismatch at central position (MM). This single base mismatch is 
sufficient to destabilize the hybridization. The MM probes are effective internal 
controls. They will hybridize to non-specific sequences as effectively as their 
counterpart PM probes. As a result, unpredictable background signal variations 
associated with samples from different sources as well as from cross-
hybridization can be quantified and subtracted (Hubbell et al., 2002). This probe 
strategy addresses the issue to discern between specific and non-specific 
binding and offers the balance of high sensitivity and specificity in the presence 
of a complex background (Liu et al., 2002). The integration of the expression 
intensities for each of the PM-MM sets generates a value for the expression of a 
particular gene (Hubbell et al., 2002). Various types for probe level analyses 
exist. Both simple statistics as well as more sophisticated model-based 
approaches have successfully been applied to extract signals from the raw data 
(Schadt et al., 2000; Li and Wong, 2001; Irizarry et al., 2003). 

 
Figure 3. Affymetrix chip 
design. (A) Typical U133 chip 
design probe sets contain 11 
probe pairs designed to 
detect a specific target 
sequence. Probe pairs 
comprise two probe cells, 
designed as perfect match 
(PM) and its corresponding 
mismatch control (MM). (B) 
Intensity bar graphs for the 
calculated signals for each 
probe cell. Using statistical 
algorithms a signal intensity 
and detection call for each 
probe set is provided. 
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Comparable to the glass slide microarrays, mRNA from a given sample is 
reverse transcribed into cDNA, which is subsequently used as a template in an 
in vitro transcription reaction which incorporates biotinylated ribonucleotides into 
the cRNA. The cRNA, referred to as the target, is hybridized to the 25-mer 
oligonucleotides on the GeneChip and is subsequently stained with streptavidin-
phycoerythrin (SAPE). Thus, the major difference between the two types of 
DNA microarrays lies in the method to assess the transcript levels: quantitation 
via pairwise comparisons (ratios) for glass slides, or quantitations in arbitrary 
(but well-defined) expression units in the case of Affymetrix microarrays 
(Lockhart and Winzeler, 2000). Besides its high technical reproducibility, the in 
situ synthesized oligonucleotide technology offers several advantages over 
glass slide technology. It is well suited for comparisons of multiple samples 
because no ratios are used, making it a suitable platform for large series of 
clinical samples without the need of pairwise analyses. In addition, for most 
applications glass slides require more input RNA than Affymetrix microarrays, 
which can be problematic, particularly for clinical research with patient samples. 
 
2.2 Leukemia 

Malignant diseases that arise in cells of the hematopoietic system are as varied 
as the individual lineages that comprise this tissue, and can be broadly 
categorized into leukemias, myelodysplastic and myeloproliferative syndromes, 
Hodgkin’s disease, and the non-Hodgkin's lymphomas (Downing and Shannon, 
2002). Leukemias are generally classified into four different groups or types: 
acute myeloid (AML), acute lymphoblastic (ALL), chronic myeloid (CML) and 
chronic lymphatic leukemia (CLL). Acute leukemias are a heterogeneous group 
of malignant diseases of hematopoietic progenitor cells with different molecular 
genetic abnormalities, clinical characteristics, and variable outcomes with 
currently available treatments. As a result of recent advances in understanding 
of both normal hematopoietic development and the molecular pathology of 
hematopoietic malignancies, significant improvements have occurred in the 
ability to accurately diagnose, subclassify, and treat these cancers (Gilliland and 
Tallman, 2002). Especially cloning of recurring chromosomal translocation 
breakpoints has provided valuable insights into disease mechanisms, as well as 
identification of therapeutic targets (Rowley et al., 1977; Rowley, 1990; Rowley, 
2001). These genetic alterations contribute to the leukemic transformation of 
hematopoietic stem cells or their committed progenitors by changing cellular 
functions (Gilliland, 1998; Ferrando and Look, 2000). They alter key regulatory 
processes by maintaining or enhancing an unlimited capacity for self-renewal, 
subverting the controls of normal proliferation, blocking differentiation, and 
promoting resistance to death signals (Pui et al., 2004). 
 
Diagnosis and classification 
Different classification schemes have been proposed over the years to assist in 
accurately diagnosing clinically relevant leukemia subtypes (Bennett et al., 
1976; Bene et al., 1995; Jaffe et al., 2001). A comprehensive and standardized 
algorithm for a diagnostic workflow and an effective and carefully designed 
combination of methods is essential to guarantee that all of the required 
diagnostic information is obtained (Haferlach and Schoch, 2002).  
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Initially, the diagnosis of acute leukemias requires the preparation and 
interpretation of peripheral blood smears, accompanied by bone marrow 
cytology (Löffler et al., 2004; Theml et al., 2004). The morphologic evaluation is 
based on the FAB classification, which was proposed by the French-American-
British co-operative group in 1976 (Bennett et al., 1976). The FAB classification 
is based on cytomorphology and cytochemistry to separate leukemia subgroups 
(e.g., M0 – M7 in AML) according to the morphological appearance of blasts. In 
certain instances, leukemia subtypes can be diagnosed by cytomorphology 
alone, but this typically requires that an expert reviews the smears. Often, 
cytomorphology is combined with cytochemistry and multiparameter flow 
cytometry in order to ascertain the correct entity (Bennett et al., 1985). The 
latter is particularly important in the subclassification of patients with ALL and to 
separate very undifferentiated AML from ALL (Bene et al., 1995; Campana and 
Behm, 2000). Using these techniques in combination, leukemias can be 
stratified in a first approach into CML, CLL, ALL, and AML. Within the latter 
three disease entities, several prognostically relevant subtypes have been 
identified (Lowenberg et al., 1999; Dohner et al., 2000; Pui et al., 2004). This 
further subclassification is based mainly on genetic abnormalities of the 
leukemic cells. Especially in AML, cytogenetic aberrations are the most 
important independent prognostic factors regarding response to therapy, as well 
as survival (Grimwade et al., 1998). 

As a consequence, the new World Health Organization (WHO) 
classification of hematological malignancies, established in 2001, incorporated 
cytogenetics, molecular genetics, as well as morphologic and 
immunophenotypic findings not previously described (Jaffe et al., 2001). The 
diagnosis of AML is now established when at least 20% of the cells identified in 
the blood or bone marrow are a clonal expansion of blasts of myeloid origin 
(Smith et al., 2004). With respect to the classification of AML, the current WHO 
proposal encompasses four major categories in order to define biologically 
homogeneous entities which have clinical relevance. The first category is 
described as AML with recurring genetic abnormalities, including the following 
subcategories: i) AML with t(8;21)(q22;q22); fusion transcript AML1/ETO, ii) 
AML with abnormal bone marrow eosinophils inv(16)(p13q22) or 
t(16;16)(p13;q22); fusion transcript CBFB/MYH11, iii) AML with 
t(15;17)(q22;q12); fusion transcript PML/RARA and variants, so-called acute 
promyelocytic leukemia (APL) and iv) AML with t(11q23)/MLL abnormalities; 
various fusion transcripts. The other three categories are described as AML with 
multilineage dysplasia, therapy-related AML, and AML not otherwise 
categorized, respectively. 

With respect to the classification of ALL, the immunophenotypic 
determination of surface antigens expressed on leukemic blast cells has 
important implications for treatment and prognosis of T- and B-lineage 
subtypes. But also recurrent chromosomal translocations and imbalances are 
defining molecular features of ALL and these oncogenic events identify clinically 
distinct subgroups of patients (Staudt, 2002). Although the frequency of 
particular genetic subtypes differs in children and adults (Downing and 
Shannon, 2002), the general mechanisms underlying the induction of ALL are 
similar. They include the aberrant expression of proto-oncogenes (MYC, TAL1, 
LYL1, and HOX11), chromosomal translocations that create fusion genes 
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encoding active kinases and altered transcription factors (BCR/ABL, TEL/AML1, 
E2A/PBX1, and MLL gene fusions), and hyperdiploidy involving more than 50 
chromosomes (Pui et al., 2004). 

Given the various types of leukemia-specific fusion genes, RT-PCR is the 
method of choice in detecting the aberrant transcripts. RT-PCR not only 
confirms the diagnosis, but is also used for therapy stratification. Moreover, 
minimal residual disease (MRD) monitoring using sensitive RT-PCR-based 
amplification and real time quantification of specific fusion gene transcripts has 
led to the development of a new powerful prognostic score predicting relapse 
(Schnittger et al., 2003). Recently, new techniques have begun to enter the field 
of diagnosis and classification of leukemias (Mathew and Raimondi, 2003): 
Fluorescence in situ hybridization (FISH) allows for rapid testing for specific 
chromosomal translocations in both metaphase and interphase cells. Spectral 
karyotyping (SKY) and multiplex-FISH (M-FISH) both are using 24 different 
fluorescently labeled chromosome painting probes to generate an automated 
color display of all chromosomes, enhancing accuracy and sensitivity of 
cytogenetic analysis, especially with complex karyotypes in myeloid leukemias 
(Schrock et al., 1996; Speicher et al., 1996). Comparative genomic hybridization 
(CGH) provides a sensitive method for identification of regions of genomic 
deletion or amplification and may identify new disease genes at these loci 
(Gilliland and Tallman, 2002). However, a drawback of many of the methods 
that are used today is the requirement of viable cells. For example, the cells 
used for genetic analyses need to divide in vitro in order to obtain metaphases. 
Another problem is the long lag period (>72 hours) that typically occurs between 
the receipt of the specimens to be analyzed in the laboratory and the generation 
of results. Also, a great experience in preparing chromosomes and analyzing 
karyotypes is needed to obtain correct results. 
 
Therapeutic consequences 
This complex workflow for subclassification of leukemias is not only necessary 
to correctly diagnose and stratify leukemia samples, but also results in major 
clinically relevant treatment decisions (Grimwade et al., 2001; Haferlach et al., 
2004). The importance of this highly specific disease classification may be 
illustrated for AML as a very heterogeneous group of malignancies. Patients 
with AML whose leukemic cells have translocations t(15;17), t(8;21), or inv(16) 
have a favorable outcome with induction chemotherapy and intensive 
postremission consolidation chemotherapy (Schoch et al., 2003; Smith et al., 
2004). In contrast, patients with abnormalities of chromosomes 5, 7, 11q23 or 
complex karyotypes have a very poor outcome with currently available induction 
and postremission chemotherapy (Schoch et al., 2003). Patients with a normal 
karyotype or with trisomy 8 have an intermediate prognosis (Schoch et al., 
1997). 

The prime example for this strong link between a comprehensive 
diagnostic algorithm and a consequential disease-specific treatment approach 
has been the use of all-trans retinoic acid (ATRA) in patients with acute 
promyelocytic leukemia (APL). APL represents one subtype with specific 
morphology and with a characteristic cytogenetic aberration, namely the 
translocation t(15;17)(q22;q12), which fuses the PML gene to the retinoic acid 
receptor alpha gene (RARA) (Reiter et al., 2004). According to the FAB 
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classification, APL can be separated into two distinct subtypes based solely on 
morphology (Bennett et al., 1976; Bennett et al., 1980a; Bennett et al., 1980b): 
AML M3 and AML M3 variant (M3v). The latter is also called microgranular APL 
in the new WHO classification (Jaffe et al., 2001). Both the correct diagnosis 
and the efficacy of the specific anti-leukemia treatment are based on the 
presence of the translocation t(15;17) and of the corresponding PML/RARA 
fusion gene (Warrell, Jr. et al., 1991; Warrell, Jr. et al., 1993; Tallman et al., 
1997). The introduction of all-trans retinoic acid (ATRA) has improved the 
outcome in this subgroup of patient from about 50% to 85% long-term survivors 
(Lengfelder et al., 2000; Degos and Wang, 2001). In both APL subtypes the 
fusion protein PML/RARA induces an arrest on different stages of granulocytic 
differentiation. In the presence of high concentrations of all-trans retinoic acid 
the differentiation stop is overcome leading to maturation of the abnormal 
promyelocytic blasts to polymorphonuclear cells and finally inducing apoptosis 
(Tallman, 2004a). 

Although it did not yet result in the development of a targeted drug 
therapy the assured diagnosis of AML with a complex aberrant karyotype is 
highly relevant for the management of the patient. Depending on the age of the 
patient, this very dismal diagnosis is the basis for the decision to apply 
allogeneic stem cell transplantation very early or to even withhold any anti-
leukemic therapy (Grimwade et al., 1998; Lowenberg et al., 1999; Schoch et al., 
2001; Grimwade et al., 2001). 

Similarly, the recent introduction of the therapeutic drug Imatinib (Glivec) 
into the therapeutic management of patients with CML has revolutionized the 
treatment strategies in this disease and may change therapeutic concepts also 
for BCR/ABL-positive ALL in the near future (Druker et al., 2001; Kantarjian et 
al., 2002; Goldman and Melo, 2003; Hughes et al., 2003; O'Brien et al., 2003; 
Pui et al., 2004). Repeatedly, the basis for both the correct diagnosis and the 
specifically targeted therapy is the presence of a specific genetic alteration, 
translocation t(9;22). In patients treated with this new drug, the therapy 
response is dramatically higher as compared to all other drugs that had been 
previously used. In addition, quantification of the BCR/ABL fusion gene 
transcripts at diagnosis and during treatment is increasingly used to sensitively 
assess response to therapy (Scheuring et al., 2003). 
 
Reproducibility of methods for the diagnosis of leukemias 
The methods that are used today for the diagnosis of leukemias would benefit 
from standardized operating procedures. In 2001, a German network of experts 
in cytomorphology performed interlaboratory tests to assess the reproducibility 
of morphological classifications in AML. As exemplarily demonstrated in Figure 
4, video prints were sent to 13 experts. However, a disagreement in defining 
percentages of blasts was observed. This is in line with previous interlaboratory 
tests, where even experts from the FAB group itself observed a low inter-
observer concordance in their evaluations of bone marrow smears from patients 
with different AML subtypes (Bennett and Begg, 1981; Argyle et al., 1989). This 
disagreement appeared to be based on the subjectiveness of the interpretation 
and also on the variability in determining percentages of cell types present (Dick 
et al., 1982). 
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Figure 4. Interlaboratory tests in cytomorphology. In the German network “Akute und 
chronische Leukämien“ 13 experts evaluated the percentage of blasts on given video prints 
(left). As represented by bar graphs for each individual reviewing hematologist, the percentage 
of designated leukemic blast cells differ significantly between the experts (right). More 
information can be found online (http://leukaemie.krebsinfo.de/). 

 
Also in flow cytometry variations between results from different laboratories are 
observed. As demonstrated for the assessment of CD34+ stem cells absolute 
counts, the European Working Group on Clinical Cell Analysis has attempted to 
standardize the flow cytometry protocol across 24 clinical sites. However, 
despite a reduction of the interlaboratory variation from 23.3% in trial 1 to 10.8% 
in trial 3, after the use of a common standardized protocol and targeted training, 
still large variations CD34+ cell count enumeration exist (Barnett et al., 2000). In 
another study including 35 laboratories performing CD4 or CD8 counts, it was 
shown that laboratories which do not use standardized gating strategies 
(CD45+ leukocytes) are more likely to return an unacceptable result. After 
laboratories had switched from a non-CD45 gating technique to the use of 
CD45 gating, their results significantly improved (Gelman and Wilkening, 2000). 

With respect to cytogenetics, one has to consider that the percentages of 
evaluable cases in clinical studies are varying drastically. Often, up to 20% of all 
entered cases can not be evaluated and large discrepancies can be observed in 
the detection of cases with a normal karyotype (Grimwade et al., 1998; Slovak 
et al., 2000; Grimwade et al., 2001). Mainly, karyotypes are not available 
because cytogenetic analyses were either not performed, failed, were yielding 

no analyzable mitoses, or were deemed inadequate because the quality of 
banded chromosomes was poor (Byrd et al., 2002). However, the performance 
of cytogenetic analyses in a centralized laboratory accounted for reference 
protocols, such as the Laboratory for Leukemia Diagnostics, Munich, Germany,  
can help in increasing the percentage of evaluable cases up to 98.2% (Schoch 
et al., 2003). 

For the detection of the BCR/ABL fusion gene, detailed interlaboratory 
tests have been performed. A first series of analyses addressed the quality and 
sensitivity of RT-PCR reactions in 27 different laboratories from Germany, 
mainly departments of hematology of university hospitals (Burmeister et al., 
2000). The three most prevalent BCR/ABL transcripts were cloned from patient 
material and diluted in genomic DNA prepared from healthy donors (six defined 
plasmid concentrations). Of 594 samples analyzed, both false negative (n=10) 
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and false positive (n=11) results were observed. Also, in 11 cases wrong 
transcripts were detected. In summary, 14.8% of the participants had false 
negative results, 29.6% had false positive results, 18.5% had detected wrong 
transcripts (Burmeister et al., 2000). In a second series of analyses a defined 
amount of BCR/ABL-positive cells from cell lines were diluted in leukocytes from 
healthy donors and samples with four defined cell counts as well as negative 
controls were shipped to the participants on dry ice. Again, a large number of 
false negative results (14.2%) and false positive results (6.3%) were obtained. 
The discrepancies in these interlaboratory tests can be explained by 
contaminations of the PCR reaction mix, the use of inappropriate primers, or 
lack of efficiency in RNA isolation protocols (Burmeister et al., 2000). In Spain, 
an interlaboratory program was performed to compare the results in detecting 
the PML/RARA fusion gene transcript in patients with APL (Bolufer et al., 1998). 
Here, cDNA samples obtained by reverse transcription of RNA from bone 
marrow samples from patients with APL were sent to 12 participating 
laboratories. Only in 83% of the analyses concordance between laboratories 
was obtained. The discrepancies in 17% of the analyses were attributable to 
low sensitivity or inadequacy of the procedures that were used (Bolufer et al., 
1998). Thus, despite the widespread use of RT-PCR in molecular laboratories 
most methods are not yet standardized. The implementation of an external 
quality assessment scheme with regular participation would ensure the 
accuracy of results. Taken together, given the properties of the oligonucleotide 
microarray technology like the high reproducibility and quality of the 
manufacturing process, the existing standardization of laboratory protocols, and 
the objectiveness of the results, it may very well be applicable for usage in 
clinical diagnostic procedures. 
 
2.3 Gene expression profiling in the field of hematology 

Global gene expression analyses have become an important part of biomedical 
basic and clinical-orientated research. The joint collaboration of biologists, 
physicians, and statisticians has created a fertile intellectual environment for the 
development of genomic approaches to questions of biological and clinical 
relevance. Over the past years especially hematologic malignancies have been 
an attractive field for a genomic approach to a heterogeneous disease (Ebert 
and Golub, 2004). 

It all began with a study demonstrating that AML can be separated from 
ALL based on distinct gene expression signatures (Golub et al., 1999). The 
distinction of ALL and AML is routine daily practice and necessary for 
therapeutic decisions. Golub and colleagues showed for the first time that this 
distinction is also possible solely on the basis of gene expression profiles. In 
bone marrow samples from 27 patients with ALL and 11 patients with AML a 
group of only 50 discriminatory genes were presented to allow the separation of 
these heterogeneous entities from each other. In 36 out of 38 cases the 
molecular diagnosis of leukemia was made correctly based on the gene 
expression profile that was analyzed using a microarray representing ~6,000 
transcripts. In a further set of 34 unknown samples, which had not been used 
for the training of the classification model, the prediction was made correctly in 
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29 cases. These analyses represented the first and major step towards a 
molecular classification of acute leukemias. 

Many studies followed the pivotal work of Golub and colleagues. These 
analyses provided not only a “class prediction“, i.e., the prediction of a tumor 
entity based on specific gene expression patterns, but demonstrated also the 
feasibility of “class discovery“, i.e., the discovery of new subentities within 
groups formerly regarded as homogeneous entities. This discovery often is not 
limited to the pure identification of new biological tumor entities, but also 
includes the definition of prognostically different groups which is anticipated to 
influence future therapeutic strategies. 

Consequently, gene expression signatures were evaluated for the 
correlation with cytogenetics. Virtaneva and colleagues had compared the 
expression status of 6,606 genes of AML blasts with normal cytogenetics and 
trisomy 8 as the sole abnormality (Virtaneva et al., 2001). In their study normal 
CD34+ cells clustered into a distinct group, whereas AML with trisomy 8 and 
AML with normal karyotype intercalated with each other. The microarray 
analyses further showed an overall increased expression of genes located on 
chromosome 8, suggesting a gene-dosage effect. In pediatric ALL, samples 
with MLL gene translocations were demonstrated to be distinct from other 
precursor B-ALL cases or AML (Armstrong et al., 2002).  

The feasibility of class discovery has been impressively demonstrated for 
diffuse large B cell lymphoma (DLBCL). Based on distinct gene expression 
signatures Alizadeh and colleagues had subdivided an entity previously 
considered homogeneous by various pathological methods into two, not only 
new, but also prognostically highly relevant subgroups (Alizadeh et al., 2000). 
The distinctive gene expression signatures were further postulated to be able to 
formulate a molecular predictor of survival after chemotherapy for DLBCL 
(Rosenwald et al., 2002). 

In a cohort of 360 pediatric ALL patients the ground-breaking study from 
the St. Jude Children’s Research Hospital, Memphis, TN, USA identified each 
of the prognostically important ALL subtypes, including precursor T-ALL, 
t(1;19)(q23;p13.3) (E2A/PBX1), t(12;21)(p13;q22) (TEL/AML1), rearrangements 
in the MLL gene on chromosome 11, band q23, t(9;22)(q34;q11) (BCR/ABL), 
and hyperdiploid karyotypes (i.e., >50 chromosomes). A closer examination of 
the distinct gene expression signatures led also to the identification of a novel 
ALL subgroup. Moreover, within some genetic subgroups, expression profiles 
identified those patients that would eventually fail therapy (Yeoh et al., 2002). 
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2.4 Questions addressed in this work 
In the present work gene expression profiles were generated from a 
comprehensive cohort of leukemia patients and healthy donors referred to and 
diagnosed in the Laboratory for Leukemia Diagnostics, Munich, Germany. 
Thoroughly characterized clinical samples were analyzed by high-density 
microarrays interrogating the expression status of more than 33,000 transcripts. 
The application of global gene expression profiling allows to obtain molecular 
fingerprints of underlying gene expression in distinct leukemia types and gives 
new insights into the biology of this heterogeneous disease. Moreover, this 
technology possibly leads to the identification of novel diagnostic markers. 
 
Gene expression profiling in AML 
Initial experiments were related to distinct prognostical and therapeutical 
relevant AML subtypes with the specific genetic alterations t(15;17), t(8;21), and 
inv(16). Further analyses were performed to elucidating the underlying biology 
in the two APL subtypes FAB M3 and its variant FAB M3v. 
 
Gene expression profiling in ALL 
In ALL, a cohort of patients was analyzed to further obtain new insights into four 
distinct subtypes frequently occurring in adults, namely t(9;22), t(8;14), 
t(11q23)/MLL, and T-ALL. Furthermore, as a previous study reported difficulties 
in separating precursor B-ALL with t(9;22) from precursor B-ALL without t(9;22), 
a series of detailed analyses addressed the discovery of similarities or 
differences in these precursor B-ALL subtypes. 
 
Gene expression profiling in t(11q23)/MLL leukemias 
Four types of analyses may help in obtaining new insights into the underlying 
biology of acute leukemias with MLL gene rearrangements: (1) Identification of 
t(11q23)/MLL leukemia signatures compared to numerous specific subtypes of 
other acute leukemias, (2) discrimination of t(11q23)/MLL-positive AML from 
t(11q23)/MLL-positive ALL, (3) investigation of signatures correlated with 
MLL/AF9 and other MLL partner genes, and (4) deciphering common biological 
networks. It is of specific interest to address the question how the differing MLL 
partner genes influence the gene expression signatures and whether pathways 
could be identified to explain the molecular determination of MLL leukemias. 
 
Gene expression profiling as a potential diagnostic platform 
To investigate whether distinct expression signatures also correlate with 
standard diagnostic methods a comparison to data on cytomorphology and 
immunophenotyping was performed. Also, the gene expression signatures of an 
adult cohort of patients were compared to published results on pediatric 
patients. Similarly, various parameters that can potentially influence the pattern 
of a diagnostic gene expression signature were evaluated. As a final aim of this 
work, a multi-class situation was tested where expression signatures of 12 
different leukemia subtypes and from a control group of healthy donors were 
evaluated to perform the diagnosis of leukemia solely on the basis of gene 
expression data as assessed by microarrays. 
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3. Methods and Protocols 
 
3.1 Description of patient samples 

All leukemia patient samples included in this study were referred to the 
Laboratory for Leukemia Diagnostics, Munich, Germany, between December 
1998 and February 2004. As a nation-wide reference center for the diagnosis of 
hematologic malignancies, the laboratory received patient samples from all over 
Germany, either from local hospitals or via express mail. At the time point of 
diagnosis the patients provided bone marrow aspirates or peripheral blood 
samples. In addition, bone marrow aspirates provided from healthy control 
subjects were included. Prior to therapy, all patients gave their informed 
consent for participation in the current evaluation after having been advised 
about the purpose and investigational nature of the study as well as of potential 
risks. The studies were conducted according to the rules of the local internal 
review board and the tenets of the revised Helsinki protocol. All samples 
underwent a standardized diagnostic processing (Haferlach and Schoch, 2002). 
All relevant clinical parameters, as well as detailed diagnostic reports, were 
entered in a specific leukemia database (Dugas et al., 2001). During the 
process of diagnosis mononuclear cells from the biopsy were purified by Ficoll-
Hypaque density centrifugation. Aliquots of 5 x 106 cells were subsequently 
lysed using a guanidine isothiocyanate buffer (Qiagen, Hilden, Germany). The 
stabilized lysates were stored at -80°C until preparation for microarray analyses. 
 
3.2 Diagnostic procedures 
Following a strict algorithm (Haferlach and Schoch, 2002), the routine 
diagnostic procedure was performed using an individual combination of 
cytomorphology, cytogenetics, fluorescence in situ hybridization (FISH), 
immunophenotyping and molecular genetics: 
 
Cytomorphology 
The routine diagnostic cytomorphology procedure included May-Grünwald-
Giemsa (MGG) staining, myeloperoxidase reaction, and non-specific esterase 
reaction using alpha-naphthyl-acetate. The staining was routinely performed 
according to standard procedures (Löffler et al., 2004). The cytomorphologic 
diagnosis followed the criteria of the FAB classification and the new World 
Health Organization classification (Bennett et al., 1976; Bennett et al., 1985; 
Jaffe et al., 2001). 
 
Cytogenetics 
Chromosome analyses were performed on bone marrow and/or peripheral 
blood samples. Cells were cultured in RPMI 1640 medium (Gibco, 
Gaithersburg, MD, USA) with 20% fetal calf serum and the addition of 
antibiotics and antimycotics. Four cultures were set up in parallel for each 
patient: two cultures without further supplements and two cultures with the 
addition of a cytokine cocktail (CC) containing erythropoietin, G-CSF, GM-CSF, 
SCF and IL-3. One plain culture (R24) and one stimulated culture (R24+CC) 
were cultivated for 24 h, colcemid was added for 2 h followed by standard slide 
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preparation. The other two cultures were cultivated for 24 h without colcemid 
and then another 24 h after the addition of colcemid (R24 HMF 24, R24+CC 
HMF 24) followed by standard slide preparation (Schoch et al., 2002b). 
Metaphases were analyzed for G-bands using a modified GAG-banding 
technique as described elsewhere (Fonatsch et al., 1980). A median of twenty 
metaphases were analyzed. The procedure was judged as not evaluable if less 
than 10 metaphases without clonal karyotype abnormalities were available for 
analysis. The chromosomes were interpreted according to the International 
System for Human Cytogenetic Nomenclature (ISCN) (Mitelman, 1995). 
 
Fluorescence in situ hybridization (FISH)  
FISH was performed on interphase nuclei and/or metaphases depending on the 
diagnostic algorithm. For interphase-FISH bone marrow and/or peripheral blood 
smears were processed. Metaphase-FISH was carried out on slides prepared 
for chromosome analysis. For interphase-FISH at least 100 interphase nuclei 
were evaluated (Schoch et al., 2002b). For metaphase-FISH an area of 18 x 18 
mm was hybridized. FISH was performed using commercially available loci-
specific probes (Vysis, Downers Grove, IL, USA) and whole chromosome 
painting probes (MetaSystems, Altlussheim, Germany). The signals were 
viewed with a Zeiss Axioskop microscope (Zeiss, Jena, Germany). The results 
were documented using the ISIS analyzing software (MetaSystems). 
 
Multiparameter-immunophenotyping 
Flow cytometry analyses were performed on cells isolated from bone marrow by 
Ficoll-Hypaque density gradient centrifugation as described (Kern et al., 2003b; 
Kern et al., 2004). Triple stainings, isotype controls, and monoclonal antibodies 
against 39 antigens were used in the following combinations as designed for 
diagnostic purposes and monitoring of MRD. 
 
Antibody combinations for diagnostic antigens (triple stainings) 
CD34/CD2/CD33 CD7/CD33/CD34 CD34/CD56/CD33 CD11b/CD117/CD34 
CD64/CD4/CD45 CD15/CD13/CD33 HLA-DR/CD33/CD34 CD65/CD87/CD34 
CD34/CD135/CD33 CD34/CD116/CD33 CD34/NG2/CD33 CD38/CD133/CD34 
CD90/CD117/CD34 CD61/CD14/CD41 CD36/CD235a/CD45 CD9/CD33/CD34 
CD97/CD33/CD34 CD34/CD10/CD19 CD5/CD19/CD20 CD2/CD1a/CD3 
CD3/CD4/CD8 MPO/LF/cyCD15 † TdT/cyCD22/cyCD3 † TdT/cyCD79a/cyCD3 † 

† cy: cytoplasmic antigen 
 
All antibodies conjugated with the fluorochromes fluorescein isothiocyanate 
(FITC), phycoerythrin (PE), and phycoerythrin cyanine 5 (PC-5), respectively, 
were purchased from Immunotech (Marseilles, France), except for CD64 and 
CD15 (Medarex, Annandale, NJ, USA), CD133 (Milteny Biotech, Bergisch 
Gladbach, Germany), and MPO and LF (Caltag, Burlingame, CA, USA). The 
respective combinations of antibodies were added to 1 x 106 cells (volume, 100 
µl) and incubated for 10 min at room temperature. The samples then were 
washed twice in phosphate buffered saline (PBS) and resuspended in 0.5 ml 
PBS. For the analysis of cytoplasmic antigens cells were fixed and 
permeabilized with Fix & Perm reagent (Caltag). Data acquisition was 
performed on a FACSCalibur four-color, dual-laser, flow cytometer (Becton 
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Dickinson, San Jose, CA, USA). List-mode data files were analyzed using the 
CellQuest Pro software, Version (Becton Dickinson). 

In order to acquire data on the same cells for both flow cytometry and 
microarray analysis, i.e., all nucleated cells of each sample, the analysis gate 
was set in a forward-scatter/side-scatter plot and included lymphocyte, blast, 
monocyte, and granulocyte populations. Antigen expression was rated positive 
at a cut-off level of 20% of the cells within the mononuclear gate for membrane 
proteins and at a cut-off level of 10% for cytoplasmic antigens, as compared to 
isotype controls (in patients with analysis of isotype controls). Mean 
fluorescence intensity values were calculated for all events with fluorescence 
values higher than isotype controls. In 117 samples, a total of 39 
genes/antigens were analyzed in parallel. The congruence of positivity and 
negativity of the expression of the respective genes as determined by flow 
cytometry and microarray analysis was analyzed for each gene in each 
individual patient. Comparisons of microarray hybridization signals with flow 
cytometry intensities were performed by Mann-Whitney U-test. Analyses for 
bivariate correlations of mRNA and protein expression levels were performed by 
Pearson’s correlation using SPSS, Version 10.0.7 (Chicago, IL, USA). 
 
Reverse transcriptase-polymerase chain reaction (RT-PCR) 
In the years 1998 – 2000 total RNA was extracted from 1 x 107 mononuclear 
cells, purified by Ficoll-Hypaque density gradient centrifugation, using the 
RNeasy Mini kit protocol (Qiagen, Hilden, Germany). Since January 2001, 
mRNA was extracted from 5 x 106 mononuclear cells with the MagnaPureLC 
mRNA kit I (Roche Applied Science, Mannheim, Germany). The cDNA 
synthesis of 1-2 µg total RNA or mRNA from an equivalent of 5 x 105 cells was 
performed in a 50 µl reaction using 300 U Superscript II enzyme (Invitrogen, 
Karlsruhe, Germany) and random hexamer oligonucleotide primers (Pharmacia, 
Freiburg, Germany). In all cases with balanced translocations the corresponding 
fusion transcript was verified as described, i.e., PML/RARA for t(15;17), 
AML1/ETO for t(8;21), CBFB/MYH11 for inv(16)/t(16;16) (Schnittger et al., 
2003). MLL fusion transcripts were amplified and further verified by sequencing 
as previously described (Schoch et al., 2003). Detection of specific BCR/ABL 
fusion genes was performed as described (Maurer et al., 1991). For each 
sample a cABL-specific RT-PCR was performed to control the integrity of RNA 
(Schoch et al., 2002a). Strict precautions were taken to prevent contamination. 
Water instead of cDNA was included as a blank sample in each experiment. 
Amplification products were analyzed on 1.5% agarose gels stained with 
ethidium bromide according to standard protocols (Sambrook et al., 1989). 
 
Quantification of fusion gene transcripts by quantitative RT-PCR  
Each quantitative RT-PCR was carried out in a 20 µl reaction volume with 0.5 
µM of forward and reverse primer, 0.25 µM Hyb-Probes, 4 mM MgCl2, and 2 µl 
LightCycler-FastStart DNA Master Hybridization Probes (Roche Applied 
Science, Mannheim, Germany) (Emig et al., 1999; Schnittger et al., 2003). Each 
20 µl reaction contains 2 µl cDNA, which corresponds to an equivalent of about 
30,000 cells at diagnosis. LightCycler data were analyzed using the LightCycler 
3.0 software and the second derivative maximum method (Roche Applied 
Science). 
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3.3 Microarray target preparation 
Between June 2001 and February 2004 gene expression analyses using 
microarrays were successfully performed in patients with newly diagnosed 
leukemia and normal bone marrow. Figure 5 outlines the major steps of the 
procedure for gene expression profiling analyses as performed in this work. 
 

Figure 5. Gene expression 
analysis overview. The gene 
expression profiling analysis starts 
with the sample target preparation. 
The target is the labeled nucleic 
acid that is being interrogated. It is 
hybridized to the probes on the 
array. For the respective samples, 
double-stranded (ds) cDNA is 
synthesized from total RNA isolated 
from mononuclear cells. An in vitro 
transcription (IVT) reaction is then 
done to produce biotin-labeled 
cRNA from the cDNA. After 
fragmentation a hybridization 
cocktail is prepared, including the 
fragmented target, probe array 
controls, bovine serum albumin, 
and herring sperm DNA. The 
cocktail is hybridized to the probe 
array during a 16-hour incubation. 
Immediately following hybridization, 
the probe array undergoes an 
automated washing and staining 
protocol on the fluidics station. After 
scanning the array the raw data is 
analyzed for probe signal intensities 
and all results are reported in 
tabular and graphical formats. Then 
the data set is prepared for detailed 
statistical analyses. 

 
 
Notes: 
• Throughout all steps powder-free gloves were worn. All steps to minimize 

the introduction of exogenous nucleases were taken. Water used in the 
protocols is molecular biology-grade. Proper storage and handling of all 
reagents was done according to the manufacturer’s recommendations. All 
steps were performed in nuclease-free 1.5 ml reaction tubes. 

• The whole sample target preparation procedure was performed in two 
working days taking the assay’s safe stopping points into account. Day 1 
included isolation of total RNA, synthesis of ds cDNA, cleanup of ds cDNA, 
and ethanol precipitation over night. The IVT reaction, cRNA cleanup, 
quantification, and fragmentation were performed on the second day. After a 
hybridization cocktail had been prepared, it was either subsequently 
hybridized to a probe array, or stored at -20°C for later use. 

3‘ TTTTT – 5‘1.   primer hybridization
AAAAA  3‘

total RNA
5‘

2.   reverse transcription 
first-strand cDNA synthesis

AAAAA  3‘5‘

AAAAA  3‘5‘

AAAAA  3‘5‘
3‘ TTTTT – 5‘

3‘ TTTTT – 5‘

3‘ TTTTT – 5‘

3.   second-strand cDNA 
synthesis

4. cleanup of ds cDNA

5.   amplification and biotin 
labeling of antisense cRNA

U
C

biotinylated 
ribonucleotides

UUUUU  5‘3‘

UUUUU  5‘3‘

UUUUU  5‘3‘

6.   cleanup of biotinylated cRNA

7.   fragmentation

8.   hybridization

9.   washing and staining

10. scanning
RNA

DNA
T7 primer
biotin

Legend:

3‘ TTTTT – 5‘3‘ TTTTT – 5‘1.   primer hybridization
AAAAA  3‘

total RNA
5‘ AAAAA  3‘

total RNA
5‘

2.   reverse transcription 
first-strand cDNA synthesis

AAAAA  3‘AAAAA  3‘5‘

AAAAA  3‘5‘ AAAAA  3‘5‘

AAAAA  3‘5‘
3‘ TTTTT – 5‘

AAAAA  3‘5‘
3‘ TTTTT – 5‘3‘ TTTTT – 5‘

3‘ TTTTT –3‘ TTTTT –TTTTT – 5‘

3‘ TTTTT – 5‘3‘ TTTTT – 5‘TTTTT – 5‘

3.   second-strand cDNA 
synthesis

4. cleanup of ds cDNA

5.   amplification and biotin 
labeling of antisense cRNA

UU
CC

biotinylated 
ribonucleotides

UUUUU  5‘3‘ UUUUU  5‘3‘

UUUUU  5‘3‘ UUUUU  5‘3‘

UUUUU  5‘3‘ UUUUU  5‘3‘

6.   cleanup of biotinylated cRNA

7.   fragmentation

8.   hybridization

9.   washing and staining

10. scanning
RNA

DNA
T7 primer
biotin

Legend:



Methods and Protocols 19

3.3.1 Isolation of total RNA 
Isolation of total RNA from frozen lysates of mononuclear cells was performed 
according to the RNeasy Mini Kit protocol (Qiagen, Hilden, Germany) including 
an initial homogenization step. In this protocol, a specialized high-salt buffer 
system allows up to 100 µg of RNA longer than 200 bases to bind to the 
RNeasy silica-gel membrane. The biological samples were first lysed and 
homogenized in the presence of a highly denaturing guanidine isothiocyanate 
(GITC)-containing buffer, which immediately inactivates RNases to ensure 
isolation of intact RNA. Then ethanol was added to provide appropriate binding 
conditions and the sample was applied to a RNeasy mini column where the total 
RNA binds to the membrane and contaminants are efficiently washed away. 
The RNA is subsequently eluted in 40 µl of nuclease-free water. Normally, eight 
individual samples were processed in parallel. All steps of the protocol were 
quickly performed at room temperature. All centrifugation steps were performed 
in a standard microcentrifuge (Eppendorf, Hamburg, Germany). Wash buffer 
RPE is supplied as a concentrate. Before using it for the first time, four volumes 
of absolute ethanol (Roth, Karlsruhe, Germany) were added to obtain a working 
solution. A 70% ethanol solution was prepared in 2.0 ml caps using absolute 
ethanol and nuclease-free water. 
 
Equipment and solutions: 
 
 

• RNeasy Mini Kit (Qiagen) 
• QIAshredder columns (Qiagen) 
• Nuclease-free water (Ambion) 
• Ethanol (Roth) 
• Heat block, 45°C 

 
 
Method: 
1. Thaw frozen cell lysates of individual patient samples (stored at -80°C) on 

ice. Then incubate samples for 4 min at 45°C. 
 
2. To homogenize the sample, pipet the lysate directly onto a QIAshredder spin 

column, placed in a 2 ml collection tube, and centrifuge for 2 min at 
maximum speed. 

 
3. Add 1 volume (usually 350 µl) of 70% ethanol to the homogenized lysate in 

the collection tube and mix well by pipetting. Do not centrifuge. Apply the 
sample, including any precipitate that may have formed, to a RNeasy mini 
column placed in a 2 ml collection tube. Close the tube gently and centrifuge 
for 15 s at 8000 x g (10,000 rpm). Discard the flow-through. Transfer the 
column into a new 2 ml collection tube. 

 
4. Add 700 µl washing buffer RW1 to the column. Close the tube gently, and 

centrifuge for 15 s at 8000 x g (10,000 rpm). Discard the flow-through and 
collection tube. Transfer the column into a new 2 ml collection tube. 
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5. Pipet 500 µl washing buffer RPE onto the column. Close the tube gently, 
and centrifuge for 15 s at ≥ 8000 x g (≥ 10,000 rpm). Discard the flow-
through. Transfer the column into a new 2 ml collection tube. 

 
6. Add another 500 µl washing buffer RPE to the column. Close the tube 

gently, and centrifuge for 2 min at ≥ 8000 x g (≥ 10,000 rpm) to dry the 
membrane. Subsequently, to eliminate any chance of possible washing 
buffer RPE carryover, place the column in a new 2 ml collection tube, and 
discard the old collection tube with the flow-through. Centrifuge in a 
microcentrifuge at full speed for 1 min. 

 
7. Remove the column from the collection tube carefully so the column does 

not contact the flow-through as this will result in carryover of ethanol. 
Transfer the column to a new 1.5 ml collection tube and proceed with elution 
of total RNA. 

 
8. Pipet 40 µl nuclease-free water directly onto the membrane. Close the tube 

gently, incubate for 1 min and centrifuge for 1 min at 8000 x g (10,000 rpm) 
to elute. 

 
Store the isolated total RNA on ice while aliquots are pipetted for quantification 
and the subsequent cDNA synthesis protocol. The concentration of RNA was 
determined by measuring the absorbance at 260 nm (A260) in a Ultrospec 3000 
spectrophotometer (Amersham Biosciences, Freiburg, Germany) using UVette 
cuvettes (Eppendorf, Hamburg, Germany). In general, to ensure significance, 
readings should be between 0.10 and 1.0. An absorbance of 1 unit at 260 nm 
corresponds to 40 µg of RNA per ml. For the measurement the isolated total 
RNA was diluted 1:50 in nuclease-free water (2 µl total RNA, 98 µl water). 
 
 
Notes: 
• The initial sample homogenization is necessary to reduce the viscosity of the 

cell lysates. Homogenization shears the high-molecular-weight genomic 
DNA and other high-molecular-weight cellular components to create a 
homogeneous lysate. Incomplete homogenization results in inefficient 
binding of RNA to the silica-gel membrane, and therefore significantly 
reduced yields. 

• It is important to completely dry the silica-gel membrane before the elution 
step since residual ethanol may interfere with downstream enzymatic 
reactions. 
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3.3.2 Synthesis of ds cDNA 
For the synthesis of ds cDNA the one-tube double-stranded cDNA Synthesis 
System (Roche Applied Science, Mannheim, Germany) has been used. This 
system has been designed according to the method of Gubler and Hoffmann ( 
1983) and is optimized to reduce manipulation steps allowing the rapid and 
reliable synthesis of full length cDNAs, especially from total RNA. During the 
first-strand reaction AMV reverse transcriptase is used. The initiation of the first-
strand synthesis depends upon hybridization of an oligo [(dT)24 T7promotor]65 
primer to the mRNA, usually at the poly(A) tail. This primer also contains a 
promotor for the T7 RNA polymerase, which enables a subsequent in vitro 
transcription reaction. The first and second-strand syntheses are performed in 
the same tube which speeds the synthesis procedure and maximizes recovery 
of cDNA. Synthesis for the second-strand takes place using the DNA/RNA 
hybrid as substrate. Mild treatment with RNase H inserts nicks into the RNA, 
providing 3‘ OH-primers for DNA polymerase I present in the second-strand 
enzyme cocktail. The 5‘ - 3‘ exonuclease activity of DNA polymerase I removes 
the primer stretches in the direction of synthesis, which are then replaced with 
new nucleotides by the polymerase activity. E. coli ligase links the gaps to a 
complete ds cDNA strand. The last step in the cDNA synthesis is to ensure that 
the termini of the cDNA are blunt. This is done by adding T4 DNA polymerase 
which does remove any remaining overhanging 3‘ ends on the ds cDNAs. 
 
Equipment and solutions: 
 

• cDNA Synthesis System Kit (Roche Applied Science) 
• Nuclease-free water (Ambion) 
• EDTA, 0.5 M (Sigma) 
• Heat block, various temperatures (Eppendorf) 

 
Method: 
1. Thaw all necessary components and place them on ice. Pipet the following 

components in a sterile 1.5 ml reaction tube (40 µl total RT reaction volume): 
 
First-strand cDNA synthesis initiation 
Component Volume Final concentration 
total RNA variable 1 – 10 µg 
oligo[(dT)24 T7 promotor]65 primer 2 µl 200 pmol 
water add to 21 µl  
final volume 21 µl 

 
2. Incubate 10 min at 70°C (Eppendorf Thermostat Plus; also used for all 

following downstream incubations), then place the tube immediately on ice. 
Add the following components, mix gently, and incubate 60 min at 42°C. In 
the meantime thaw all required components for the second-strand synthesis 
reaction, mix them and place on ice. 
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First-strand cDNA synthesis reaction 
Component Volume Final concentration 
RT-buffer, 5X concentrated 8 µl 1X 
DTT, 0.1 M 4 µl 10 mM 
AMV, 25 U/µl 2 µl 50 U 
RNase inhibitor, 25 U/µl 1 µl 25 U 
dNTP-mix, 10 mM each 4 µl 1 mM each 
total final volume 40 µl 

 
3. After 60 minutes place the tube 5 min on ice to terminate the reaction. 

Continue immediately with the second-strand reaction. Pipet directly into the 
first-strand reaction tube the following components, mix gently, and incubate 
2 h at 16°C. 

 
Second-strand cDNA synthesis reaction 
Component Volume Final concentration 
2nd strand buffer, 5X concentrated 30 µl 1X 
dNTP-mix, 10 mM each 1.5 µl 1 mM each 
2nd strand enzyme blend 6.5 µl  
water 72 µl  
total final volume 150 µl 

 
4. After 2 hours incubation, add 20 µl (20 U) T4 DNA polymerase and incubate 

5 min at 16°C. Then stop the reaction by adding 6.8 µl EDTA (0.5 M, pH 
8.0). 

 
5. Subsequently, digest residual total RNA. Add 1.5 µl (15 U) RNase I and 

incubate 30 minutes at 37°C. Add 5 µl (3 U) proteinase K to the reaction and 
incubate another 30 minutes at 37°C. 

 
6. Add 153.5 µl water to the cDNA. The final volume now is 330 µl and the 

cDNA is ready for the subsequent cleanup step. 
 
 
Note: 
• In order to obtain sufficient quantity of labeled cRNA for target assessment 

and hybridization to GeneChip probe arrays, Affymetrix recommends 
starting the cDNA synthesis protocol with a minimum of 5 µg of total RNA at 
a minimum concentration of 0.5 µg/µl. 
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3.3.3 Cleanup of ds cDNA 
The cDNA cleanup step was performed using 1.5 ml Phase Lock Gel (PLG) 
technology caps (Eppendorf). PLG is a product which eliminates interface-
protein contamination during the phenol extraction. Upon centrifugation, the gel 
migrates to form a tight seal between the phases of an aqueous/organic 
extraction. The organic phase and the interface material are effectively trapped 
in or below the barrier. This allows the complete and easy transfer of the entire 
aqueous phase containing the cDNA species by simply pipetting. The risk of 
contaminating the sample with interface material is eliminated. 
 
Equipment and solutions: 
 

• Phase Lock Gel light (Eppendorf) 
• Nuclease-free water (Ambion) 
• Ammonium Acetate, 7.5 M (Sigma) 
• Glycogen (20 mg/ml) (Roche Applied Science) 
• Ethanol, absolute (stored at -20°C) (Roth) 
• Ethanol, 80% solution (stored at -20°C) 
• Phenol/Chloroform/Isoamylalcohol (25:24:1) (Ambion) 

 
Method: 
1. Add 330 µl phenol/chloroform/isoamylalcohol (25:24:1) to the cDNA solution, 

vortex 10 s and transfer the supernatant to a 1.5 ml PLG tube. Centrifuge 2 
min at maximum speed. Transfer supernatant to a new tube. 

 
2. Repeat cleanup but now add 310 µl phenol/chloroform/isoamylalcohol 

(25:24:1), vortex 10 s and transfer supernatant to a 1.5 ml PLG tube. 
Centrifuge 2 min at maximum speed. Transfer supernatant to a new tube. 

 
3. Repeat cleanup but now add 290 µl phenol/chloroform/isoamylalcohol 

(25:24:1), vortex 10 s and transfer supernatant to a 1.5 ml PLG tube. 
Centrifuge 2 min at maximum speed. Transfer supernatant to a new tube. 

 
4. In this new tube, now containing the purified cDNA, precipitate the ds cDNA 

by adding 175 µl ammonium acetate (7.5 M), 0.5 µl glycogen (20 mg/ml) and 
1000 µl of absolute ethanol. Store over night or longer at -20°C. 

 
5. Pellet the ds cDNA by centrifugation at maximum speed for 30 min, discard 

the supernatant carefully. Wash the pellet by overlaying with 500 µl 80% 
ethanol. Centrifuge at maximum speed for 15 min. Then discard the 
supernatant carefully. 

 
6. Wash the ds cDNA pellet by overlaying with 500 µl 80% ethanol. Centrifuge 

at maximum speed for 15 min. Then discard the supernatant carefully. 
 
7. Wash the ds cDNA pellet by overlaying with 500 µl 100% ethanol. Centrifuge 

at maximum speed for 15 min. Then discard the supernatant carefully. 
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8. Air dry the pellet by evaporating residual ethanol. This takes approximately  
5 – 10 min. 

 
9. Dissolve the cDNA pellet in 22 µl nuclease-free water and vortex 10 s. 

Continue immediately with the in vitro transcription procedure. 
 
 
Notes: 
• It is important to use phenol for the cleaning procedure, i.e., to safely 

eliminate the RNase I and proteinase K used in the cDNA synthesis method. 
• An addition of a carrier, e.g., in this work 0.5 µl glycogen (20 mg/ml), to 

nucleic acid precipitations aids in visualization of the pellet and may increase 
recovery. 
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3.3.4 Synthesis of biotin-labeled cRNA 
After the ds cDNA has been purified, it is transcribed in vitro to generate more 
than 400 biotinylated cRNA molecules for each ds cDNA molecule. Adequately 
intact input RNA should result in an expected yield of biotinylated cRNA of 
between 4- and 10-fold greater than the total RNA input (Hoffmann, 2004). 
 
Equipment and solutions: 
 

• Enzo BioArray HighYield RNA Transcript Labeling Kit (Affymetrix) 
• Nuclease-free water (Ambion) 
• 1.5 ml Safe-Lock tubes (Eppendorf) 
• Heat block, 37°C (Eppendorf) 

 
Method: 
1. Pipette the template cDNA and reaction components from the RNA 

transcript labeling kit to RNase-free microcentrifuge tubes. Perform all steps 
at room temperature to avoid precipitation of DTT. 

 
In vitro transcription reaction 
Component Volume 
reaction buffer, 10X concentrated 4 µl 
DTT, 10X concentrated 4 µl 
RNase inhibitor mix, 10X concentrated 4 µl 
biotin-labeled ribonucleotides, 10X concentrated 4 µl 
T7 RNA polymerase, 20X concentrated 2 µl 
template ds cDNA variable 
water variable (to give a final volume of 40 µl) 
final volume 40 µl 

 
2. Carefully mix the reagents and collect the mixture in the bottom of the tube 

by brief centrifugation (5 seconds). Then place the reaction tube in a 37°C 
incubator and incubate for 5 hours. After the IVT immediately proceed with 
the purification of the biotin-labeled cRNA. 

 
 
Notes: 
• Depending on the input total RNA used for cDNA synthesis, the amount of 

template cDNA used for each IVT reaction was determined as follows: 
 
Template cDNA used for each IVT reaction 
µg total RNA Volume cDNA Volume H2O 
5 µg or less 22 µl - 
6 µg 20 µl 2 µl 
7 µg 18 µl 4 µl 
8 µg 16 µl 6 µl 
9 µg 13 µl 9 µl 
10 µg 11 µl 11 µl 
final volume 22 µl 
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3.3.5 Cleanup of biotin-labeled cRNA 
After the IVT reaction, cleanup of biotinylated cRNA was performed according 
to the RNeasy Mini Kit protocol (Qiagen). GITC-containing lysis buffer and 
ethanol were added to the sample to create conditions that promote selective 
binding of the cRNA to the silica-gel membrane in the RNeasy mini column. The 
cRNA binds to the membrane, contaminants are efficiently washed away, and 
purified cRNA is eluted in water. Normally, eight individual samples were 
processed in parallel. All steps of the RNeasy protocol were quickly performed 
at room temperature. All centrifugation steps were performed in a standard 
microcentrifuge. Wash buffer RPE is supplied as a concentrate. Before using it 
for the first time, 4 volumes of absolute ethanol were added to obtain a working 
solution. According to the manufacturer’s recommendation, buffer RLT was 
prepared freshly for each clean up procedure (10 µl 2-mercaptoethanol per 1 ml 
buffer RLT; mixed in a 15 ml Falcon tube). 
 
Equipment and solutions: 
 

• RNeasy Mini Kit (Qiagen) 
• Nuclease-free water (Ambion) 
• Ethanol (Roth) 

 
Method: 
1. Adjust the sample to a volume of 100 µl with water. Therefore, add 60 µl 

water to the 40 µl cRNA reaction volume. 
 
2. Add 350 µl buffer RLT and mix thoroughly. The total volume now is 450 µl. 
 
3. Add 250 µl absolute ethanol to the diluted cRNA, and mix thoroughly by 

pipetting. Do not centrifuge. The total volume now is 700 µl. 
 
4. Continue immediately to apply the sample to an RNeasy mini column placed 

in a 2 ml collection tube. Close the tube gently, and centrifuge for 15 s at 
8000 x g (10,000 rpm).  

 
5. Apply the flow-through again to the same column placed in a new 2 ml 

collection tube. Close the tube gently, and centrifuge for 15 s at 8000 x g 
(10,000 rpm). Now discard the flow-through. Transfer the RNeasy column 
into a new 2 ml collection tube. 

 
6. Pipet 500 µl Buffer RPE onto the column. Close the tube gently, and 

centrifuge for 15 s at 8000 x g (10,000 rpm) to wash the column. Discard the 
flow-through. Transfer the column into a new 2 ml collection tube. 

 
7. Add another 500 µl Buffer RPE to the column. Close the tube gently, and 

centrifuge for 2 min at ≥ 8000 x g (≥ 10,000 rpm) to dry the membrane. 
Place the column in a new 2 ml collection tube, and discard the old 
collection tube with the flow-through. Centrifuge in a microcentrifuge at full 
speed for 1 min. 
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8. To elute, transfer the column to a new 1.5 ml collection tube (Eppendorf). 

Pipet 40 µl nuclease-free water directly onto the membrane and incubate for 
1 minute. Close the tube gently, and centrifuge for 1 min at 8000 x g (10,000 
rpm) to elute. 

 
Store the isolated cRNA on ice while aliquots are pipetted for downstream 
applications. The concentration of cRNA was determined by measuring the 
absorbance at 260 nm (A260) in an Ultrospec 3000 spectrophotometer 
(Amersham Biosciences) using UVette cuvettes (Eppendorf). In general, to 
ensure significance, readings should be between 0.10 and 1.0. An absorbance 
of 1 unit at 260 nm corresponds to 40 µg of RNA per ml. For the measurement 
the isolated cRNA was diluted 1:50 in nuclease-free water (2 µl total RNA, 98 µl 
water). The A260/A280 ratio should be close to 2.0 (ratios between 1.9 and 2.1 
are acceptable). 
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3.3.6 Fragmenting the cRNA 
After elution and quantification of the biotinylated cRNA, an aliquot of 15 µg is 
fragmented. The full-length cRNA is broken down to 35 – 200 base fragments 
by metal-induced hydrolysis. The final cRNA concentration in the fragmentation 
mix was usually adjusted to 0.5 µg/µl. The following procedure gives an 
example of a fragmentation reaction for 15 µg cRNA at a final concentration of 
0.5 µg/µl. 
 
Equipment and solutions: 
 

• Biotinylated cRNA  
• Fragmentation buffer, 5X concentrated 
• Nuclease-free water (Ambion) 
• Heat block, 94°C 

 
Method: 
1. Add 2 µl of 5X fragmentation buffer for every 8 µl of cRNA plus water. The 

cRNA is fragmented in the same tube which is later used for preparation and 
storage of the hybridization cocktail. 

 
Fragmentation reaction 
Component Volume 
15 µg cRNA up to 24 µl 
5X fragmentation buffer 6 µl 
water to 30 µl 
final volume 30 µl (0.5 µg/µl cRNA) 

 
2. Incubate at 94°C for 35 minutes. 
 
3. Cool the fragmented cRNA on ice. Immediately proceed with the completion 

of the hybridization cocktail. 
 
 
Notes: 
• Fragmenting the cRNA target before hybridization to GeneChip probe arrays 

has been shown to be critical in obtaining optimal assay sensitivity. 
Affymetrix recommends that the cRNA used in the fragmentation procedure 
should be sufficiently concentrated to maintain a small volume during the 
procedure. This will minimize the amount of magnesium in the final 
hybridization cocktail. Thus, the cRNA should reach a minimum 
concentration of 0.6 µg/µl. 

• Typically, an IVT reaction starting with 5.0 µg of total RNA input for cDNA 
synthesis yielded between 35 and 50 µg biotinylated cRNA. Then, remaining 
undiluted and not fragmented cRNA was deposited for long-term storage at  
-80°C. 
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3.3.7 Target hybridization 
After fragmenting the cRNA, a hybridization cocktail is prepared, including the 
fragmented target, probe array controls, acetylated bovine serum albumin 
(BSA), and herring sperm DNA. It is then hybridized to the probe array during a 
16-hour incubation. A GeneChip probe array chip comes mounted in a plastic 
package to form a cartridge. The chip contains a collection of oligonucleotide 
probes that have been arrayed on the inner glass surface. A chamber in the 
plastic package directly under the chip acts as a reservoir where hybridization 
and subsequent washing and staining steps occur. 
 
Equipment and solutions: 
 

• Eukaryotic Hybridization Control Kit (20X stock solution) (Affymetrix) 
• Control oligonucleotide B2 (3 nM) (Affymetrix) 
• Herring sperm DNA (10 mg/ml) (Sigma) 
• Acetylated BSA (50 mg/ml) (Sigma) 
• Hybridization buffer, 2X concentrated 
• Hybridization buffer, 1X concentrated 
• Nuclease-free water (Ambion) 
• Heat block, 45°C 
• Heat block, 99°C 
• Hybridization oven, 45°C (Affymetrix) 

 
 
Method: 
1. Mix the following components for each target cRNA as given below. 

Standard format microarrays require a 300 µl volume cocktail preparation. 
Hybridization cocktails can be stored at -20°C for later use or subsequently 
be hybridized. 

 
Components for the hybridization cocktail 
Component Volume Final concentration 
fragmented cRNA 15 µg 0.05 µg/µl 
control oligonucleotide B2 (3 nM) 5 µl 50 pM 
eukaryotic hybridization controls, 20X 15 µl 1.5, 5, 25, 100 pM, respectively 
herring sperm DNA (10 mg/ml) 3 µl 0.1 mg/ml 
acetylated BSA (50 mg/ml) 3 µl 0.5 mg/ml 
hybridization buffer, 2X concentrated 150 µl 1X 
water add to 300 µl  
final volume 300 µl  

 
2. Equilibrate the microarray to room temperature. 
 
3. Heat the hybridization cocktail for 5 min to 99°C. Then incubate it for 5 min 

at 45°C. Subsequently, spin hybridization cocktail 5 min at maximum speed 
in a microcentrifuge to pellet any insoluble material from the hybridization 
mixture. 
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4. Meanwhile, wet the microarray by filling it through one of the septa with 200 
µl 1X hybridization buffer using a micropipettor and appropriate tips (Rainin). 
Incubate the filled microarray in the hybridization oven for 15 min at 45°C 
with constant rotation (60 rpm). 

 
5. After 15 minutes, remove the buffer solution from the microarray cartridge 

and fill with 200 µl of the clarified hybridization cocktail, avoiding any 
pelleted, insoluble matter at the bottom of the tube. 

 
6. Place the microarray into the hybridization oven and incubate for 16 hours at 

45°C with constant rotation (60 rpm). 
 
 
Notes: 
• Each eukaryotic GeneChip microarray contains probe sets for several 

prokaryotic genes as controls. Biotinylated hybridization control nucleic 
acids, bioB, bioC, bioD, and cre are provided in the “GeneChip Eukaryotic 
Hybridization Control Kit” that contains a 20X concentrated, pre-mixed 
control reagent. BioB, bioC, and bioD are genes of the biotin synthesis 
pathway from the bacteria E. coli, and cre is the recombinase gene from the 
P1 bacteriophage. A ready-prepared mixture of these biotinylated controls at 
staggered concentrations is added with the labeled target cRNA to hybridize 
to the microarray. Signal intensities obtained on these transcripts provide 
information on how well the hybridization, washing, and staining procedures 
have performed. 

• The control oligonucleotide B2 hybridizes to features along the outer edge of 
all expression microarrays and to the checkerboard pattern in each corner. 
These predefined patterns provide signals for the analysis software to 
perform automatic grid alignment during image analysis. If required, they 
can also be used by the operator to align the grid manually. 

 



Methods and Protocols 31

3.3.8 Microarrays 
Two types of gene expression microarrays were used in this study, the HG-
U95Av2 microarray and its successor, the U133 set (HG-U133A and HG-
U133B). A more detailed description on microarray design, especially sequence 
and probe selection is available as technical note from the manufacturer 
(www.affymetrix.com). 
 
HG-U95Av2 
The human genome U95Av2 microarray, the first array in the set of 5 arrays 
(U95A-E), contains primarily full-length genes. It represents ~12,000 sequences 
previously characterized in terms of function or disease association. The 
represented sequences are derived from sequence clusters in Build 95 of the 
UniGene database (sequences in UniGene Build 95 are from GenBank 113 and 
dbEST, October 2, 1999). UniGene clusters are represented by one or more 
consensus sequences derived directly from cluster members. The probe 
selection strategy was based on heuristic rules. It is manufactured as standard 
format array with a feature size of 20 µm and uses 16 probe pairs per 
sequence. The oligonucleotide length is 25-mer. 
 
HG-U133A and HG-U133B 
The U133 two-array set provides comprehensive coverage of well-substantiated 
genes in the human genome. It can be used to analyze the expression level of 
39,000 transcripts and variants. The two arrays comprise more than 45,000 
probe sets and 1,000,000 distinct oligonucleotide features. The sequences from 
which these probe sets were derived were selected from GenBank, dbEST, and 
RefSeq. The sequence clusters were created from the UniGene database (Build 
133, April 20, 2001) and then refined by analysis and comparison with a number 
of other publicly available databases, including the Washington University EST 
trace repository and the University of California, Santa Cruz Golden-Path 
human genome database (April 2001 release). In addition, an advanced 
understanding of probe uniqueness and hybridization characteristics allowed an 
improved selection of probes based on predicted behavior. The U133 chip 
design uses a multiple linear regression model that was derived from a 
thermodynamic model of nucleic acid duplex formation (Mei et al., 2003). This 
model predicts probe binding affinity and linearity of signal changes in response 
to varying target concentrations. The two arrays are manufactured as standard 
format arrays with a feature size of 18 µm and use 11 probe pairs per 
sequence. The oligonucleotide length is 25-mer. 
 
 
Notes: 
• As in the HG-U95 Set, the A array of the HG-U133 Set was designed to 

contain probe sets for the well-annotated genes. The vast majority of full-
length mRNA sequences are contained on the HG-U133A array. In contrast, 
the majority of the EST-only clusters are represented by probe sets found on 
the HG-U133B array. 
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• GeneChip human genome microarrays include a set of 100 human 
maintenance genes to facilitate the normalization and scaling of array 
experiments. These probe sets are identical on all human genome arrays 
and serve as a tool to normalize and scale the raw expression data prior to 
performing interarray comparisons. These maintenance genes show 
consistent levels of expression over a diverse set of tissues (Warrington et 
al., 2000). 

• A major advance in the HG-U133 design is the use of genomic sequences to 
verify sequence selection, sequence orientation, and the quality of sequence 
clustering. All input sequences were aligned to the draft assembly of the 
human genome (April 2001 release). Only high quality regions of genome 
alignment were used to annotate and analyze the input sequences. In 
addition, the portion of a mRNA sequence adjacent to a poly(A) site is most 
efficiently converted into labeled target. Great care was therefore taken to 
identify polyadenylation sites, since optimal probes are generally located 
within 600 bp upstream of the site. 

• An advantage of the U133 chip design model-based probe selection system 
is that it provides a physical and mathematical foundation for systematic and 
large-scale probe selection. It utilizes both sequence and empirical 
information to predict optimal probes for array-based gene expression 
analysis. A second advantage is that the system allows simultaneous 
optimization of probe selection for a number of parameters, such as linear 
response to target concentration, independence of probes within a set, and 
probe sequence uniqueness. 

• Due to the dynamic nature of the public databases and improvement of 
probe selection for the array design, probe sets between different versions 
of a product family, such as the human genome U95A and U133A arrays are 
not identical. In some cases the same sequences will be represented by 
completely different probe sets, creating a challenge when comparing data 
sets generated on different generations of a product family or in different 
laboratories. However, despite changes in sequence and probe selection 
methods for the HG-U133 set, there remains a relatively high level of 
concordance to its predecessor, the HG-U95 set. For example, a total 
number of 10,507 probe sets found on the HG-U95Av2 array have a 
corresponding probe set represented on the HG-U133A array. In order to 
search for the identifier of the probe sets that are most closely related to 
another Affymetrix has made comparison spreadsheets available. These 
spreadsheets allow some level of data comparison as the product line 
evolves. The respective comparison spreadsheets are available as 
downloads from the Affymetrix website. In this work, the stringent “Human 
Genome U95 to Human Genome U133 Best Match comparison 
spreadsheet” was used to determine the best corresponding U133 design 
counterparts for the given U95Av2 probe sets. 
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3.3.9 Microarray washing and staining 
After hybridizing for 16 hours at 45°C, the microarray is ready for washing and 
staining. GeneChip probe arrays are processed by the Fluidics Station 400 
instrument, which contains four modules with each module processing one 
microarray cartridge. 
 
Equipment and solutions: 
 
 

• Streptavidin-Phycoerythrin (SAPE) staining solution 
• Antibody staining solution 
• Non-stringent washing buffer 
• Stringent washing buffer 
• Sodium hypochlorite solution (0.525%) 

 
Method: 
 
1. Use the Microarray Suite software and define an experiment for each array 

to be processed (*.exp extension). Perform a priming protocol to ensure that 
the wash lines are full of the appropriate buffer and that the fluidics station is 
ready to process a cartridge. 

 
2. In the meantime, after 16 hours of hybridization, remove the hybridization 

cocktail from the probe array and fill the probe array completely with non-
stringent wash buffer. 

 
3. Insert the probe array into the designated module of the fluidics station, 

select the correct experiment name in the drop-down experiment list, and 
start the protocol for washing and staining of expression microarrays. 
Standard format microarrays were processed using the EukGE-WS2v4 
signal amplification protocol. 

 
 
Fluidics protocol for antibody amplification for eukaryotic targets 
Step Details 
Post Hyb Wash #1 10 cycles of 2 mixes/cycle with non-stringent wash buffer A at 25°C 
Post Hyb Wash #2 4 cycles of 15 mixes/cycle with wash buffer B 
1st Stain Stain the probe array for 10 minutes in SAPE solution at 25°C 
Post stain wash 10 cycles of 4 mixes/cycle with wash buffer A at 25°C 
2nd stain Stain the probe array for 10 minutes in antibody solution at 25°C 
3rd stain Stain the probe array for 10 minutes in SAPE solution at 25°C 
Final wash 15 cycles of 4 mixes/cycle with wash buffer A at 30°C. 
Protocol EukGE-WS2v4 

 
4. When the LCD window indicates, place the microcentrifuge vial containing 

600 µl of the respective staining solution into the sample holder. Verify that 
the metal sampling needle is in the vial with its tip near the bottom. 
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5. At the end of the run, remove the probe arrays from the fluidics station 
modules and check the probe array window for large bubbles or air pockets. 
If the probe array has no large bubbles, it is ready to be scanned. Otherwise 
fill the array manually with non-stringent wash buffer. 

 
 
Notes: 
• Streptavidin-Phycoerythrin (SAPE) should be stored in the dark at 4°C. The 

SAPE stain solution has always to be prepared immediately before use. 
• As recommended by the manufacturer, to ensure proper functioning of the 

fluidics station, shutdown protocols and periodic maintenance protocols 
were performed. The shutdown protocol will prevent salt crystals from 
forming within the fluidics system. Weekly and monthly bleach protocols with 
a sodium hypochlorite solution eliminate any residual SAPE-antibody 
complex that may be present in the fluidics station tubing and needles. 

• Labeled cRNA targets can be reused. The same hybridization cocktail can 
be hybridized to a new probe array up to 5 times. In this work, most of the 
targets were hybridized first to U133A and then to U133B arrays. Some of 
the cocktails had previously also been hybridized to U95Av2 microarrays. To 
prevent leaking of fluids from the cartridge during hybridization and 
scanning, glue dots were applied to each of the two septa on the cartridge. 
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3.3.10 Microarray scanning and image analysis 
After the wash and staining protocols are complete, the probe array was 
scanned using the Agilent GeneArray scanner. The laser excitation enters 
through the back of the glass support and focuses at the interface of the array 
surface and the target solution. Then, fluorescence emission is collected by a 
lens and passes through a series of optical filters to a sensitive detector. This 
results in a quantitative two-dimensional fluorescence image of hybridization 
intensity. Each completed probe array image is stored in a separate image data 
file identified by the experiment name (*.dat extension). Then, the software 
defines the probe cells by grid alignment and computes an intensity for each 
probe cell (*.cel extension). After the raw image is obtained, the algorithms in 
the Microarray Suite software were applied to process the raw probe set data to 
generate expression values (signal intensities), detection calls (absent, 
marginal, present), and associated p-values for every transcript, represented on 
the arrays (*.chp extension). These files are used to generate detailed reports 
on the sample quality and technical parameters (*.rpt extension). 
 
Method: 
1. In the Microarray Suite software select the experiment name that 

corresponds to the probe array to be scanned. A dialog box appears 
prompting to load an array into the scanner. Use default settings for pixel 
values and wavelength of the laser beam (pixel value =  3 µm, and laser 
wavelength = 570 nm). 

 
2. The scanner begins scanning the probe array and acquiring data. After the 

scan has been completed an image file containing the raw expression data 
in an uncompressed format is stored, i.e., individual pixels per probe cells. 

 
 
Notes: 
• Make sure the laser is warmed up prior to scanning by turning the laser on 

at least 15 minutes before use. 
• Although the inner glass surface is protected, any contamination or 

scratches on the outer surface of the glass can compromise the integrity of 
the scan. It should be avoided to touch the surface of the chip with a bare 
hand as skin oils and other substances, such as lotions or ink, can fluoresce. 
If the surface of the probe array chip is noticeably dirty, it should carefully be 
cleaned with a nonabrasive laboratory tissue. 
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3.3.11 Quality assessment 
Quality assessment is critical in obtaining reproducible microarray results. 
Series of quality control (QC) procedures were performed at various key 
checkpoints during the gene expression profile analysis and included both 
monitoring of sample-related parameters and technical features. 
 
• In a selected set of samples gel electrophoresis according to standard 

protocols (Sambrook et al., 1989) has been performed to detect any 
degradation of input total RNA. 

• After the IVT and cleanup of the cRNA the ratio of 260/280 absorbance 
values was assessed by spectrophotometer measurements. Good quality 
cRNA should demonstrate ratios of 1.9 to 2.1. Low cRNA yield can be a 
sensitive indicator of problematic labeling procedures and/or starting 
material. 

• Basic microarray image analyses included visual array inspections (*.dat file) 
and check for correct grid alignment at each of the four corners and the 
center of the array. 

• Basic raw data analyses included parameters to monitor the overall 
background intensity, scaling factor, percentage of present called genes 
(%P), and 3’/5’ ratio for the GAPD gene. 

 
In this work, a technically acceptable gene expression profile is defined 
according to the following characteristics: ≥ 1.0 µg of input total RNA resulted in 
sufficient cRNA yield (≥ 20.0 µg), concentration (≥ 0.6 µg/µl), and ratio of 
absorbance at 260 nm/280 nm (~2.0). The scanned array image should not 
show largely visible artifacts and have a correct grid aligned for feature 
extraction. After adjusting the scanned image to common target intensity, the 
scaling factor within a project should lie within two standard deviations of the 
mean. When analyzing Affymetrix A-series microarrays the %P called probe 
sets should be ≥ 30.0%. The 3’/5’ ratio for GAPD should be ≤ 3.0. Although, if 
the 3’/5’ ratio is >3.0, but still >30.0% of the genes were called present, the 
profile may be rated as acceptable. But, in this work, in most cases with 3’/5’ 
ratio >3.0, also the %P was <30.0%. Then, also the data had to be normalized 
with higher scaling factors outside of an acceptable range. As a consequence, a 
sample failed if, in combination, a low 3’/5’ ratio, high percentage of %P probe 
sets, and comparable range of scaling factors was missed. Accordingly, these 
gene expression profiles should not be used for gene selection or training of a 
classification engine. Most of these metrics directly follow the recommendations 
of the “Tumor Analysis Best Practices Working Group” for Affymetrix MAS 5.0 
probe set algorithms and data analyses. This working group has recently been 
established to develop recommendations for experimental design, data analysis 
algorithms, signal-to-noise assessments, and biostatistical methods (Hoffmann, 
2004). 
 
 
Notes: 
• In addition to the conventional probe sets designed to be within the most 3’ 

end (~600 bases of a transcript), additional probe sets in the 5’ region and 
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middle portion (M) of the transcript are also represented for certain 
housekeeping genes, including GAPD. The signal intensity ratio of the 3’ 
probe set over the 5’ probe set is often referred to as the 3’/5’ ratio. This 
ratio gives an indication of the integrity of the starting RNA, efficiency of first-
strand cDNA synthesis, and/or in vitro transcription of cRNA. As 
recommended by the manufacturer there is no single threshold cutoff to 
assess sample quality. Routinely, most users refer to a threshold ratio of 
less than 3.0 for the most common tissues. 

• A high background implies that impurities, such as cell debris and salts, are 
binding to the microarray in a nonspecific manner, and that these 
substances are fluorescing at the scanning wavelength. This nonspecific 
binding causes a low signal-to-noise ratio (SNR), meaning that genes for 
transcripts present at very low levels in the sample may be incorrectly called 
as absent transcripts. Thus, high background creates an overall loss of 
sensitivity in the experiment. 

• Scaling factors, i.e., the multiplication factor applied to each signal value on 
an array, will vary across different samples and there are no set guidelines 
for any particular sample type. However, if they differ by too much within a 
set of experiments, this indicates wide variation in the underlying image files 
and, therefore, the analyzed data should be treated with caution. 
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3.3.12 Data sets and scaling procedure 
For all patient gene expression profiles master data tables were maintained. In 
these tables rows represent all genes for which data has been collected, and 
columns represent microarray experiments from individual patients. Each cell 
represents the measured fluorescence intensity from the corresponding target 
probe set on the microarray. If not indicated otherwise, each patient has been 
measured once. In addition, due to the dynamic nature of public databases 
probe set annotations were frequently updated using the NetAffx analysis 
center (Liu et al., 2003b). Before analyzing the data it is a routine procedure to 
normalize the data (Quackenbush, 2002). This is a mandatory step in the data 
mining process in order to appropriately compare the measured gene 
expression levels. 

U95Av2 microarray raw expression intensities were scaled using the 
Affymetrix Microarray Suite 5.0 software global scaling parameter. With the 
global scaling method an arbitrary target intensity is selected and the average 
intensity of all genes (minus the highest 2% and lowest 2% signal intensity 
values) on each array within a data set is scaled to that number. This enables to 
comparing multiple arrays within a complex data set. Here, the selected global 
target intensity was 50. 

U133 set microarray signal intensity values were calculated by scaling 
the raw data intensities to a common target intensity using a recommended 
mask file (U133A/B mask file; selected global target intensity value: 5,000). 
 
 
Notes: 
• As an alternative means to relate signal values between arrays, a set of 100 

maintenance genes were represented on recent expression microarrays 
(probe set identifiers from 200000_s_at to 200099_s_at). These 
normalization controls were originally identified from a data set of HG-
U95Av2 hybridizations representing a large number of different tissues and 
cell lines. The data on these probe sets shared the common characteristic of 
consistently being called present (P) while exhibiting relatively low signal 
variation over different sample types (Warrington et al., 2000). Therefore, 
when scaling data between the HG-U133A and B arrays, an algorithm 
against these normalization controls, which are represented on both arrays, 
avoids a skewing of the data and provides an improved alternative tool to 
global scaling. Specific mask files for these probe sets are available online 
(www.affymetrix.com). 

• Probe sets representing well-annotated genes are found primarily on the 
HG-U133A array, and as such, tend to produce higher signal values on 
average when compared to the HG-U133B array. Therefore, strategies to 
normalize array data, such as global scaling, are not always appropriate. In 
some instances these methods may artificially increase the actual signal 
values of probe sets if a common global scaling value is used, especially if 
overall intensities of the arrays being normalized are quite different. 
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3.4 Microarray data analysis 
A wide range of approaches are available for gleaning insights from the data 
obtained from transcriptional profiling (Slonim, 2002). In this work, data 
analyses were performed by two different approaches, i.e., the supervised 
approach and the unsupervised approach (Figure 6). Unsupervised analyses 
were used to test the hypothesis whether specific characteristics, e.g., genetic 
aberrations, would also be reflected at the level of gene expression signatures. 
Supervised analyses were used to identify a minimal set of genes which could 
be used to stratify those patients after a training of classification engines. The 
gene lists from supervised analyses were also further interpreted in terms of 
biology. 
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Figure 6. Overview about the data analysis workflow. After preparation of corresponding 
data sets from the main master table the data was analyzed either unsupervised or supervised. 
Unsupervised analyses were performed by hierarchical clustering or principal component 
analysis. In the supervised analyses, differentially expressed genes were identified by various 
methods and selected for further interpretations, e.g., visualization by hierarchical clustering, 
principal component analysis, plotting as bar graphs, or generation of biological networks. In 
addition, differentially expressed genes were selected for classification tasks where several 
different machine-learning approaches were applied. 
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3.4.1 Identification of differentially expressed genes 
In microarray experiments a common goal is to detect genes that show 
differential expression across two or more biological conditions. Therefore, 
multiple hypothesis testing algorithms were performed on all genes 
simultaneously to determine whether each one is differentially expressed. The 
null hypothesis is that there is no change in expression levels between various 
leukemia subclasses. The alternative hypothesis is that there is significant 
differential gene expression (Tusher et al., 2001). The analyses were performed 
either between two distinct classes (pairwise comparisons; subtype A vs. 
subtype B), or between one distinct class and all other remaining classes in a 
one-versus-all (OVA) approach. 
 
Weighted voting algorithm 
This algorithm identifies differentially expressed genes following the supervised 
class prediction methodology using a modified t-test-statistic as described by 
Golub and colleagues (Golub et al., 1999; Pomeroy et al., 2002). When 
comparing two groups of microarray experiments, this method sorts the genes 
with respect to the signal-to-noise ratio of gene x: Sx = (µ1-µ2)/(σ1+σ2), where 
µk and σk denote the mean expression and standard deviation of gene x in 
group k. According to a specified number of "informative" genes the best 
discriminating genes are selected. Because the number of informative genes, 
which are required to discriminate between samples, is unknown, this method 
was applied for different numbers of informative genes (range: 2 to 200). 

For each informative gene a decision limit is calculated as bx = 
(µ1+µ2)/2. To classify a new sample, the gene expression levels of informative 
genes are taken and for each gene x and sample y a so-called vote is 
calculated as Vx = Sx (gxy - bx), where gxy denotes expression level of gene x 
in sample y. The votes of all informative genes are summed up (weighted 
voting), and depending upon the sign of this sum the new sample is classified 
as group 1 or group 2. The confidence in the prediction is calculated as |Σ Vx / 
Σ |Vx| |. Prediction strength values range between 0 and 1 and values >0.45 
demonstrated statistical significance. To assess the significance of each gene, 
a permutation-based neighborhood analysis is performed, which determines 
signal-to-noise ratios when class labels are permutated randomly (100 cycles). 
Only those genes that were contained in all cross-validation (CV) classifiers 
were considered important. For each selected gene, the significance level p 
was 1% (p ≤ 0.01), and only when comparing small groups (n1 + n2 ≤ 15) and 
very small groups (n1 + n2 ≤ 10) a significance level of 2% (p ≤ 0.02) and 5% (p 
≤ 0.05), respectively, was chosen. 

However, when the standard deviation of expression levels within the two 
groups are very different the decision limit is biased towards the group with the 
higher standard deviation. By systematically determining classification 
accuracies for a set of possible decision limits, an optimal decision limit can be 
calculated. Thus, an optimal decision limit was selected from the following set of 
decision limits Lx: Lx = {(gxy+ gxy-1)/2 | 1 < y <= n} where gxy denotes 
expression level of gene x in sample y, n denotes the total number of samples 
in the training set. As a consequence, a further improved algorithm consists of 
the following steps: (i) Calculate the top 20 discriminating genes according to 
the signal-to-noise ratio (both pairwise and OVA). (ii) Calculate classification 
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accuracy and confidence based on optimal decision limits for each of the top 20 
genes. (iii) Select the gene which provides best classification accuracy and 
confidence out of step 2. (iv) Test for each of the remaining 19 genes, whether 
adding this gene to the model improves accuracy and confidence. If the gene 
improves accuracy and confidence, it is added to the weighted voting model, 
otherwise it is discarded. To assess the robustness of the classifier, a leave-
one-out cross-validation (LOOCV) is performed. The resulting accuracy is the 
rate of correctly classified test samples. 
 
Significance Analysis of Microarrays (SAM) 
Additionally, supervised data analyses were performed using the SAM software. 
SAM is a statistical technique for finding significant genes in large-scale 
microarray-based gene expression profiles and correlates gene expression data 
with an external variable, e.g., the leukemia subclass or karyotype information. 
The SAM software is an Add-in package for Microsoft Excel and analyzes 
statistical significance of the changes in gene expression from repeated 
permutations. It was proposed by Tusher and colleagues (Tusher et al., 2001). 
SAM identifies genes with statistically significant changes in expression by 
assimilating a set of gene-specific t-tests. Each gene is assigned a score on the 
basis of its change in gene expression relative to the standard deviation of 
repeated measurements for that gene. Genes with scores greater than an 
adjustable threshold are deemed potentially significant. The cutoff for 
significance is determined by the tuning parameter delta, chosen by the user 
based on the false discovery rate (FDR). The FDR, i.e., the percentage of 
genes identified by chance, is estimated by analyzing repeated permutations of 
the data. 
 
Two-sample t-test for equal means 
As a second supervised approach, differentially expressed genes were 
identified by means of the t-test-statistic. In all possible combinations of one-
versus-all and pairwise comparisons the two-sample t-statistic score with 
correction for unequal variances was performed (Altman, 2004). The analysis 
was programmed using R (version 1.7.1; www.r-project.org/). 
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Statistical significance 
Microarrays can measure the expression of thousands of genes to identify 
expression changes between different biological states. Methods based on 
conventional t-tests provide the probability (P) that a difference in gene 
expression occurred by chance. Although P < 0.01 is significant in the context 
of experiments designed to evaluate small numbers, a microarray experiment 
for more 10,000 genes would identify 100 genes by chance (Tusher et al., 
2001). Thus, methods are needed to determine the significance of these 
changes while accounting for the enormous number of genes. 

In this work to address the multiple testing problem, false discovery rates 
(FDR) of genes were calculated according to a statistical method adapted 
specifically for microarrays (Storey and Tibshirani, 2003). As it takes 
automatically the fact into account that thousands of genes are simultaneously 
being tested the concept of the FDR is a widely accepted method to measure 
statistical significance in genome-wide studies. A measure of statistical 
significance called the q-value is associated with each tested feature. Similarly 
to the p-value, the q-value gives each measured gene its own individual 
measure of significance. Whereas the p-value is a measure of significance in 
terms of the false positive rate, the q-value is a measure in terms of the false 
discovery rate (FDR). In a microarray data set the q-value of a particular feature 
is the expected proportion of false positives incurred when calling that feature 
significant (Storey and Tibshirani, 2003). In this work q-values were used as an 
exploratory guide for which features to investigate further, e.g., through the use 
of pathway applications or classification engines.  
 
 
Note: 
• When calling features significant, the false positive rate is the rate that truly 

null features are called significant. That means, that for a false positive rate 
of 5%, on average 5% of the truly null features in the data set will be called 
significant. The false discovery rate (FDR) is the rate that significant features 
are truly null. A FDR of 5% means that among all features called significant, 
5% of these are truly null on average. 
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3.4.2 Estimation of prediction performance 
The generalization performance of the different algorithms was estimated by 
performing cross-validation methods (CV). These methods are based on the 
idea that the most unbiased test of the predictive error is by applying it to data 
that was not used in the building of the initial predictive model. A common 
application is to partition a dataset into two parts, to fit the model on the first 
part, and to assess the predictive capability of that model on the second part. 
Depending on the CV method, the complete data set is split into different 
proportions of a training set and a test set. Each approach is performed to 
determine the accuracy, i.e., the probability of correct classification of a 
previously unknown sample. 
 
Leave-one-out cross-validation  
The leave-one-out cross-validation (LOOCV) method is one of several 
approaches to estimating how well a model that was trained on training data is 
going to perform on future as-yet-unseen data. LOOCV was used to evaluate 
the prediction performance of algorithms used for the U95Av2 data sets. 
LOOCV implies that one sample is excluded from the complete data set n and 
the remaining samples are used for training. This training and prediction 
process is repeated n times to include predictions for each sample (so that each 
sample is classified once in the n iterations). 
 
10-fold CV 
10-fold CV was the second method used to estimating the apparent accuracy, 
i.e., the overall rate of correct predictions of the complete data set. This 
classification task means that the data set was divided into 10 equally sized 
subsets, balanced for the respective subclasses of the data. Then, differentially 
expressed genes were identified in the training set (9 subsets) and a model was 
trained based on the top genes that demonstrate differential expression 
between each of the respective subclasses in the training set. This model was 
used to generate predictions for the remaining subset. This training and 
prediction process was repeated 10 times to include predictions for each subset 
(so that each sample is classified once in the 10 iterations). 
 
Resampling analysis 
The resampling approach was performed to assess the robustness of class 
predictions of U133 set profiles. Here, the data set again was randomly, but 
balanced for the respective subtypes, split into a training set, consisting of two 
thirds of samples, and an independent test set with the remaining one third. 
Differentially expressed genes were identified in the training set, an SVM-model 
was built from the training set, and predictions were made in the test set. This 
complete process was repeated 100 times. By this means, also 95% confidence 
intervals for accuracy, sensitivity and specificity were estimated. Sensitivity and 
specificity were calculated as follows: 
 
Sensitivity = (number of positive samples predicted)/(number of true positives) 
Specificity = (number of negative samples predicted)/(number of true negatives) 
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3.4.3 Hierarchical clustering 
Two-dimensional hierarchical cluster analysis is a popular method of organizing 
expression data, i.e., arranging genes and patients according to similarity in 
pattern of gene expression (Figure 7). This method helps to organize but not to 
alter tables containing the primary expression data. The output format is a 
graphic display which allows to conveying the clustering and the underlying 
expression data in an intuitive form to biologists (Eisen et al., 1998). By 
adopting a mathematical description of similarity the object of this algorithm is to 
compute a dendrogram that assembles all elements into a single tree. In this 
work, for any set of n genes, an upper-diagonal similarity matrix is computed by 
the Euclidean distance metric, which contains similarity scores for all pairs of 
genes. The matrix is scanned to identify the highest value which represents the 
most similar pair of genes. Then a node is created joining these two genes, and 
a gene expression profile is computed for the node by averaging observation for 
the joined elements. The similarity matrix is updated with this new node 
replacing the two joined elements, and the process is repeated n-1 times until 
only a single element remains. 
 

Figure 7. Hierarchical cluster 
analysis workflow. The primary 
expression data is graphically 
represented. Each data point is 
represented with a color that 
quantitatively and qualitatively 
reflects the original measured 
fluorescence intensity. One can 
look at such images, identify 
patterns or branches of the 
dendrogram of interest, and readily 
zoom in on the detailed expression 
patterns and identities of the genes 
contributing to these patterns 
(Eisen et al., 1998). 

 
 
 
 
 

Any unsupervised gene expression analysis begins with a definition of similarity 
between expression patterns, but with no prior knowledge of the true functional 
classes of the genes, or patients, respectively. For visualization of unsupervised 
data analyses a variation filter was applied. This filter aimed at removing probe 
sets that demonstrated minimal variation across the complete data set. 
Practically, for each gene the standard variance was calculated across all 
samples. Then the data matrix was sorted according to the standard variances 
and probes demonstrating a low variance were excluded from the subsequent 
analysis. This is the method of choice when one has no or little a priori 
knowledge of the complete repertoire of expected gene expression patterns. 
However, no information about the statistical significance is provided. In 
contrast, using hierarchical clustering in a supervised approach helps to 
visualize differential gene expression of an already preselected set of genes. 
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3.4.4 Principal component analysis 
The need to visualize large amounts of data in many dimensions occurs 
frequently in bioinformatics. Commonly, principal component analysis (PCA) is 
used in statistics to extract the main relations in data of high dimensionality 
(Jolliffe, 2002). It is a useful tool for categorization of multidimensional data 
such as gene expression studies, since it separates the dominating features in 
the data set. The background mathematical technique used in PCA is called 
eigen analysis. PCA reduces the dimensionality of the data set while retaining 
most of the information contained therein via the construction of a linear 
transformation matrix. This transformation matrix is composed of the most 
significant eigenvectors of the covariance matrix of the input matrix of feature 
vectors. The principal components (PC) are the projections of the data on the 
eigenvectors. These vectors give the directions in which the data cloud is 
stretched most. The significance of an eigenvector is defined by its variance, 
which is equivalent to its corresponding eigenvalue. Eigenvalues give an 
indication of the amount of information the respective PC represent. PCs 
corresponding to large eigenvalues represent much information in the data set 
and thus can tell much about the relations between the data points (Jolliffe, 
2002). Since the original data’s variation can be retained and explained by a 
smaller number of transformed variables, a PCA projects the data into a new 
two- or three-dimensional space and may provide valuable insight into the data 
(Figure 8). In this work, PCA was applied to visualize large data sets from 
leukemia types and subclasses. The PCA plots were generated through the use 
of the GeneMaths XT software (Applied Maths, Belgium). 
 

Figure 8. Principal 
component analysis 
workflow. The multi-
dimensional data is 
reduced by transformation 
to a new set of variables, 
the principle components 
(PCs). The traditional is to 
use the first few PCs 
since they capture most 
of the variation in the 
original data. In the final 
graph, data points with 
similar characteristics will 
cluster together. Each 
patient’s expression 
pattern is represented by 
a color-coded sphere. 

 
 
Notes: 
• It has to be emphasized that PCA is not a learning algorithm. The 

classifications of the samples (e.g., according to leukemia subclasses) does 
not affect their location in two- or three-dimensional space. A respective 
coloring of the spheres by classification is done after the samples are plotted 
and is therefore somewhat arbitrary. 
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3.4.5 Classification of samples based on gene expression patterns 
For class prediction, the weighted voting procedure (see 3.4.1), multiple-tree 
models, and support vector machines (SVM) were used. 
 
Multiple decision trees 
Multiple-tree models were computed to discriminate between three different 
AML subclasses in the initial U95Av2 data (n=37 samples). To avoid overfitting 
of a singular tree model, a multiple-tree model was developed using an 
iteratively reduced set of genes. The trees were restricted to contain no more 
than k-1 nodes to discriminate between k classes. Genes whose expression 
values were selected for the nodes of the tree were then eliminated from the 
original data set, and a new tree was calculated based on the truncated data 
set. This was iterated until a predetermined number of trees were reached. To 
determine how many trees should be incorporated in the model 
misclassification rates were calculated for models containing 1 to 25 trees. The 
data set was randomly split into a training set (n=24) and a test set (n=8). Within 
the range tested, 15 trees were calculated to be optimal, both avoiding 
overfitting and reduced classification accuracy. The final class assignment was 
decided by applying a vote-by-majority rule to the outputs of the 15 single trees. 
Equal votes for two of the three classes are counted as misclassification. The 
generalization properties of the classifier are judged by 10-fold CV and by a test 
set of 5 samples that were not used for classification training. Multiple-tree 
models for classification were developed at the Intelligent Bioinformatics 
Systems division at the German Cancer Research Center (DKFZ), Heidelberg 
and were calculated using the C5.0 algorithm as implemented in SPSS 
(Quinlan, 1993). A schematic summary is given in Figure 9. 
 

Figure 9. Multiple-tree 
model computation. The 
entire data set was 
normalized and differentially 
expressed genes were 
identified (1). A blinded 
validation set of five samples 
was excluded from further 
analysis for final evaluation 
of the constructed classifier. 
The remaining samples were 
then randomly split into 
training and test sets (2), and 
the optimal number of trees 
was determined (3). Then, 
the final classifier was built 
using this number through an 
iterative process (4) to 
construct the multiple-tree 
model (5). The independent 
test set error was calculated 
on the initially excluded 5 
samples (6). Independently, 
the prediction error has been 
estimated by 10-fold CV (7). 

37 samples
(32 training/testing
and 5 validation)

12,625 genes

1. Normalization and
pre-selection

32 training samples
1,174 genes

3/4
training

1/4
test

random
subsampling (10x)

2. construct multiple-
tree classifiers

with 1 … 25 trees ( )        
n

3. estimate optimal
number of trees n

predict

4. calculate decision tree
with 2 nodes (3 classes)

5. remove discriminatory
genes

32 training samples
(1,174 – 2i ) genes

repeat (n-1)
times

n decision
trees

6. predict 5
validation samples

error on
blinded test set

(0%)

7. construct 10 multiple-
tree classifiers, each

containing n trees

cross-validation error
(0%)

10-fold CVmultiple-tree classifier

37 samples
(32 training/testing
and 5 validation)

12,625 genes

1. Normalization and
pre-selection

32 training samples
1,174 genes

3/4
training

1/4
test

random
subsampling (10x)

2. construct multiple-
tree classifiers

with 1 … 25 trees ( )        
n

3. estimate optimal
number of trees n

predict

4. calculate decision tree
with 2 nodes (3 classes)

5. remove discriminatory
genes

32 training samples
(1,174 – 2i ) genes

repeat (n-1)
times

n decision
trees

6. predict 5
validation samples

error on
blinded test set

(0%)

7. construct 10 multiple-
tree classifiers, each

containing n trees

cross-validation error
(0%)

10-fold CVmultiple-tree classifier



Methods and Protocols 47

SVM-based classification 
For classification of U133 set microarray data the support vector machine 
(SVM) algorithm was used. SVMs are learning machines that can perform 
binary classification tasks (Vapnik, 1998; Guyon et al., 2002; Schölkopf and 
Smola, 2002). In this work, a classification task involves training and testing 
gene expression profiles which consist of some data instances. Each instance 
in the training set contains “target values” (class labels, i.e., leukemia classes) 
and several “attributes” (features, i.e., genes). The goal of this approach is to 
produce a model which predicts target values of data instances in the testing 
set which are only given the attributes. Applied to gene expression data, an 
SVM would begin with a set of genes that have a common function, e.g., genes 
that demonstrate differential expression between distinct leukemia subtypes. 
After non-linearly mapping the n-dimensional input space into a high 
dimensional feature space a linear classifier is constructed in this high 
dimensional feature space (Figure 10). 
 

Figure 10. Concept of SVM-
based classification. The 
SVM operates by mapping 
the given training set into a 
possibly high-dimensional 
feature space and by 
attempting to locate in that 
space a plane that separates 
positive from negative 
samples. The hyperplane, a 
plane in a space with more 
than 3 dimensions, corres-
ponds to a non-linear decision 
boundary in the input space. 

 
Using this training set, an SVM would learn to discriminate between the types 
and subtypes of leukemias based on expression data. Having found such a 
plane, the SVM can then predict the classification of an unlabeled new sample 
by mapping it into the feature space and asking on which side of the separating 
plane the example lies (Figure 11). Then a label is assigned according to its 
relationship with the decision boundary. In this work, multi-class SVM classifiers 
were built with linear kernels using the library LIBSVM version 2.36 
(www.csie.ntu.edu.tw/~cjlin/libsvm/) (Chang and Lin, 2001). 

 
Figure 11. Classification task. The 
SVM separates a given set of binary 
labeled training data with a hyperplane 
that is maximally distant from them 
(maximal margin). The middle black 
line is the decision surface defining the 
borderline between the area of 
prediction of type I samples (red) and 
type II samples (blue). The outer lines 
precisely meet the constraint. Support 
vectors marked to be critical for the 
classification task are the points that lie 
closest to the separating hyperplane 
(Schölkopf and Smola, 2002). 
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3.4.6 Functional gene annotation 
NetAffx database 
In this work the NetAffx database was used to functionally annotate the probe 
sets represented on the corresponding microarrays. The NetAffx Analysis 
Center (www.affymetrix.com/analysis/) is an integrated, freely available online 
resource created by Affymetrix (Liu et al., 2003b). This web-based application 
enables researchers to correlate results from experiments with array design and 
annotation information. It is a dynamic tool and provides access underlying to 
array content and the design of GeneChip probe arrays, including probe 
sequences and extensive gene annotations from both Affymetrix and the public 
domain. As such, it allows the user to search array contents for sequences of 
interest, review gene and protein characterizations for represented probe sets 
and sort transcripts by functional group, metabolic pathway, or disease 
association. For each cataloged Affymetrix GeneChip microarray, an anchoring 
databank summarizes all the annotations for the probe sets. The information 
provided for each probe set falls into two categories: sequence annotations and 
static information. Sequence annotations refer to the information about the 
representative sequence for a probe set including functional annotations for 
gene title, gene symbol and cytogenetic bands. The static information for each 
probe set details the probe sequences, accession numbers, textual description 
and describes what the probes were designed to interrogate. The static probe 
set data is also depicted graphically (Liu et al., 2003b). 
 
Gene Ontology annotation 
The Gene Ontology (GO) project (www.geneontology.org/) provides structured, 
controlled vocabularies and classifications that cover several domains of 
molecular and cellular biology and are freely available for community use in the 
annotation of genes, gene products and sequences (Ashburner et al., 2000). 
This vocabulary that can be applied to all organisms even as knowledge of 
gene and protein roles in cells is accumulating and changing. GO provides 
three non-overlapping structured networks of defined terms, the ontologies, to 
describe gene product attributes (Harris et al., 2004). The three principles of 
organization and possibilities for the annotation are based on the description of 
the molecular function of the gene product (e.g., carbohydrate binding or 
ATPase activity), of the biologic process in which one or more molecular 
functions are involved (e.g., mitosis or purine metabolism), and on an 
assignment of the cellular component (e.g., nucleus or integral membrane 
protein). Within each ontology, terms have free text definitions and stable 
unique identifiers. In addition, detailed hierarchical models are provided, e.g., 
the metabolism of DNA is further separated into replication and repair of DNA. 
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3.4.7 Network analysis 
Biological networks have been generated through the use of Ingenuity 
Pathways Analysis, a web-delivered application that enables biologists to 
discover, visualize and explore networks significant to experimental results. 

Firstly, genes were identified whose expression was significantly 
differentially regulated between the respective leukemia subtypes of interest. 
Next, a data set containing those gene identifiers in probe set format and their 
corresponding statistical parameters, e.g., p-value or fold change, was 
uploaded as a tab-delimited text file into the Ingenuity Pathways Knowledge 
Base. Then each probe set was automatically mapped by the application to its 
corresponding database gene object to designate the so-called focus genes. 
Focus genes are genes from the analysis input data file that meet both of the 
following criteria: These genes have been designated as being of interest, i.e., a 
level of significance at a certain FDR. Additionally, they directly interact with 
other genes in the Ingenuity global molecular network, which consists of direct 
physical, enzymatic, and transcriptional interactions between mammalian 
orthologs from the published, peer-reviewed content in Ingenuity’s Pathways 
database. To start building the networks, the application queries the Ingenuity 
Pathways database for interactions between focus genes and all other gene 
objects stored in the knowledge base, and generates a set of networks with a 
network size of 35 genes. The application then computes a score for each 
network according to the fit of the user’s set of significant genes. The score is 
derived from a p-value and indicates the likelihood of the focus genes in a 
network being found together due to random chance. A score of 2 indicates that 
there is a 1 in 100 chance that the focus genes are together in a network due to 
random chance. Therefore, scores of 2 or higher have at least a 99% 
confidence of not being generated by random chance alone. Biological 
functions are then calculated and assigned to each network.  

The networks are displayed graphically as nodes using various shapes 
that represent the functional class of the gene product. Edges are displayed 
with various labels that describe the nature of the relationship between the 
nodes (Figure 12). The length of an edge reflects the evidence supporting that 
node-to-node relationship, in that edges supported by more articles from the 
literature are shorter. 
 
Figure 12. Network details on node shapes, edge labels, and types. 
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3.4.8 Software 
Software packages from Affymetrix were used for principal data acquisition 
(MAS5), storage (MicroDB), and analysis (DMT). Individual gene expression 
profiles were further prepared as Microsoft Excel tables. 
 
Software Source Internet 
MAS5 Affymetrix, Inc. www.affymetrix.com/support/ 
MicroDB Affymetrix, Inc. www.affymetrix.com/support/ 
DMT Affymetrix, Inc. www.affymetrix.com/support/ 

 
The following packages were applied for identification of differentially expressed 
genes and classification: 
 
Software Source Internet 
SAM Stanford University www-stat.stanford.edu/~tibs/SAM/index.html 
Bioconductor open source www.bioconductor.org 
q-value University of Washington faculty.washington.edu/~jstorey/qvalue/ 
LIBSVM National Taiwan University www.csie.ntu.edu.tw/~cjlin/libsvm/ 

 
With the exception of SAM, which is available as Microsoft Excel Add-in, all 
other applications were integrated into the Gene Analysis Management System 
(GAMS), developed by PD Dr. Martin Dugas, Department of Medical 
Informatics, Biometrics and Epidemiology, Ludwig Maximilians-University, 
Munich, Germany. GAMS is a generic concept for large-scale microarray 
experiments dedicated to medical diagnostics. This system is capable of 
handling several 1000 microarrays per analysis and more than 100 clinical 
response variables and was designed to use a standardized workflow for quality 
control, data calibration, identification of differentially expressed genes, and 
estimation of classification accuracy. It is based on MySQL for data storage, 
R/Bioconductor for data analysis and scripting language PHP for a web-based 
front-end for the exploration of microarray data and analysis results. 
Bioconductor is an open source and open development software project for the 
analysis and comprehension of genomic data (Dudoit et al., 2003). The 
Bioconductor packages used in this work provided statistical and graphical 
methodologies for analyzing genomic data. LIBSVM (Version 2.6) is a software 
solution for SVM-based classification. The q-value software takes a list of p-
values resulting from the simultaneous testing of many hypotheses and 
estimates their q-values (Storey and Tibshirani, 2003). 
 
In addition, further 3rd party software packages were used for statistical 
analyses and data visualization: 
 
Software Source Internet 
SPSS SPSS Inc. www.spss.com/ 
Pathways Analysis Ingenuity Systems www.ingenuity.com 
GeneMaths Applied Maths, Inc www.applied-maths.com 
J-Express MolMine AS www.molmine.com/ 
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4. Results 
 
4.1 Gene expression profiling in AML 

An initial investigation was to answer the question whether a leukemia-specific 
genotype is associated with a distinct gene expression profile. 
 
Unsupervised analysis of AML with recurring genetic abnormalities 
Initially, from the first WHO category 37 AML patient samples with thorough 
diagnostic documentation were selected: Cases with AML and t(8;21) had AML 
FAB M2 and all cases with AML and inv(16) had AML FAB M4eo. The cases 
with AML and t(15;17) showed FAB M3 as well as M3v characteristics. All 
patients showed these balanced abnormalities as the sole karyotype change. 
Firstly, the question whether recurrent chromosomal aberrations can be 
correlated with specific gene expression signatures was addressed using 
hierarchical clustering, a useful exploratory technique for an unsupervised 
analysis of the data. Global gene expression signatures from 37 patients were 
analyzed using U95Av2 microarrays. Figure 13 is a graphic display from an 
unsupervised hierarchical clustering. Each data point is represented by a color 
that quantitatively reflects the original experimental observations. It is clear that 
when the algorithm orders genes and patients according to similarity in patterns 
of gene expression three major branches can be observed. The dendrograms 
reflect underlying biology. Each one of the three branches from the top 
dendrogram contains exclusively samples of the specific AML subtypes 
t(15;17), t(8;21), or inv(16), respectively. Therefore, an unsupervised analysis 
algorithm correctly identifies biologically distinct AML subtypes. Specific 
chromosomal rearrangements translate into dramatic changes on the gene 
expression level. As represented in the left dendrogram, a large number of 
genes are differentially expressed between these three AML subclasses. It is 
not simply a list of genes and their associated expression signature, but rather it 
represents a comprehensive view of the state of the cell, its molecular 
fingerprint. 
 

Figure 13. Unsupervised hierarchical 
clustering of AML with t(15;17), 
t(8;21), and inv(16). The unsupervised 
hierarchical cluster analysis is based on 
U95Av2 microarray expression data of 
37 adult AML samples (columns) and a 
subset of 2,000 genes (rows) which 
showed the largest variance across all 
patients. The normalized expression 
value for each gene is coded by color 
(standard deviation from mean). Red 
cells indicate high expression and green 
cells indicate low expression. AML 
patients with t(15;17) (n=17) are colored 
blue, t(8;21) (n=10) red, and inv(16) 
(n=10) yellow, respectively. 
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As visualized in Figure 14 an additional unsupervised method called Principal 
Component Analysis (PCA) was applied to confirm the previous finding. The 
t(15;17) patient samples clearly cluster distinct from AML with t(8;21) or inv(16). 
The three cytogenetically defined AML subtypes can repeatedly be separated 
based on their underlying differing gene expression profiles. In conclusion, two 
different approaches of unsupervised data analysis methods separated 
biologically distinct AML subtypes based on underlying differing gene 
expression signatures. 
 

t(15;17)

t(8;21)

inv(16)

 
 
Figure 14. Unsupervised PCA of AML with t(15;17), t(8;21), and inv(16). This unsupervised 
analysis is based on U95Av2 microarray expression data of 37 adult AML samples and a set of 
2,000 genes which showed the largest variance across all patients. AML patients with t(15;17) 
(n=17) are colored blue, t(8;21) (n=10) red, and inv(16) (n=10) yellow, respectively. 

 
Supervised analysis of AML with recurring genetic abnormalities 
Firstly, the supervised analyses were performed with the SAM software. SAM is 
an application for finding significant genes in a set of microarray experiments. In 
this application gene expression data was correlated with an external variable, 
i.e., the AML subtype karyotype information. A statistic for each gene was 
computed, measuring the strength of the relationship between the gene 
expression and a response variable, i.e., the respective chromosomal 
aberration. At a tuning parameter delta of 0.47254 n=1,004 probe sets were 
called significant (Figure 15A). The median number of false significant called 
probe sets was n=4. This set of significant genes was further evaluated. As 
visualized in Figure 15B, when analyzing the gene expression space of these 
top 1,000 differentially expressed genes, they clearly discriminate the three 
AML subtypes. In the top dendrogram three distinct groups of patient samples 
can be observed, each corresponding to the different cytogenetic AML classes. 
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Figure 15. Supervised analysis of AML with t(15;17), t(8;21), and inv(16). The three AML 
subtypes were analyzed in a supervised way by the multiclass parameter of the SAM software. 
(A) The SAM plot represents a display of observed significant U95Av2 probe sets (n=1,004), 
given as red dots, and informs about the median number of false significant calls (n=4). (B) 
Hierarchical clustering visualizing the top 1,000 probe sets from the supervised analysis. AML 
patients with t(15;17) (n=17) are represented by blue, t(8;21) (n=10) by red, and inv(16) (n=10) 
by yellow dots, respectively. 

 
Minimal set of genes for classification 
In total, gene expression profiles from 37 AML samples were evaluated. Thirty-
two hybridization cocktails with optimal cRNA quality (3'/5' ratio of GAPD probe 
sets less than 3.0) were chosen for training of the class prediction model: 
t(8;21) (n=7), t(15;17) (n=16), and inv(16) (n=9). Five cases were excluded from 
the training set (3'/5' GAPD ratios ranging between 3.9 and 5.4) and were used 
for a subsequent validation of the prediction models: t(8;21) (n=2), t(15;17) 
(n=2), and inv(16) (n=1). 

Thirteen genes were sufficient to separate these AML subtypes with 
optimal classification accuracy and highest prediction strength (Table 1). All 
samples from the training cohort were successfully assigned to their 
corresponding cytogenetic subtype (accuracy estimated by leave-one-out cross-
validation). The prediction strength values ranged from 0.91 to 0.98. 
Subsequently, the 5 primarily excluded samples were tested. Despite their non-
optimal cRNA quality, all five cases were correctly classified with high prediction 
strength values (0.76, 1.00, 1.00, 1.00, and 1.00). This finding may indicate that 
the 3.0 cutoff for the 3'/5' ratio of GAPD probe sets is somewhat arbitrary. 
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Table 1. Minimal set of 13 genes sufficient for accurate class prediction. As calculated from 
pairwise comparisons, for each gene positive P(g,c) values indicate a higher expression in the 
first class listed, negative P(g,c) values indicate a higher expression in the second class listed, 
respectively. 

 
Classes t(15;17) vs. 

t(8;21) 
t(15;17) vs. 

inv(16) 
inv(16) vs. 

t(8;21) 
inv(16) vs. 
remainder 

t(8;21) vs. 
remainder 

t(15;17) vs. 
remainder 

Accuracy 1.00 1.00 1.00 1.00 1.00 1.00 
Prediction strength 0.91 0.96 0.93 0.95 0.98 0.91 
Symbol Public ID P(g,c) P(g,c) P(g,c) P(g,c) P(g,c) P(g,c) 
PRKAR1B M65066    -1.52   
GNAI1 AL049933      -2.12 
PRODH AF010310      1.89 
CDW52 N90866      -2.34 
KRT18 M26326 2.85    -2.56  
CLIPR-59 N99340   8.43    
CLU M25915      1.63 
MYH11 AF013570  -6.84 7.78 6.99   
PTGDS AI207842 3.08 3.08    3.08 
HOXB2 X16665   6.56 6.56   
CLECSF2 X96719      -2.36 
CTSW AF013611 2.68      
S100A9 W72424      -2.05 

 
A PCA further illustrates these results. The three-dimensional plot given in 
Figure 16 clearly demonstrates the capacity of this subset of 13 genes to 
separate the AML cases according to their cytogenetic abnormality. This finding 
underlines that class prediction of a chromosomal aberration in AML is feasible 
solely based on gene expression data of a very low number of candidate genes. 
 

t(15;17)

t(8;21)

inv(16)

 
 
Figure 16. PCA of three AML subtypes based on 13 genes. The PCA visualizes U95Av2 
microarray expression data of 37 adult AML samples. This analysis is based on a subset of 13 
genes which were identified through the weighted voting algorithm. AML patients with t(15;17) 
(n=17) are colored blue, t(8;21) (n=10) red, and inv(16) (n=10) yellow, respectively. 
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Discrimination by decision trees 
The weighted voting algorithm indicated that expression signatures would allow 
a discrimination of AML subtypes based on only 13 genes. In order to confirm 
this finding a multiple-tree model for classification was computed as a second 
and independent methodological approach to discriminate between the different 
AML subclasses. As demonstrated in Figure 17 the classifier used the 
expression values of 29 genes to discriminate between t(15;17), t(8;21), and 
inv(16) (Table 2). The prediction accuracy for both the training set (32 samples) 
and the independent test set (5 samples) was 100%. The average accuracy 
assessed by 10-fold CV also was 100%. Thus, each patient sample was 
accurately given the correct cytogenetic label. 
 

Figure 17. Multiple-tree 
classifier for AML with 
t(15;17), t(8;21), and inv(16). 
Schematic representation of the 
15 decision trees (A through O) 
used in the multiple-tree 
classifier for U95Av2 data. 
Arrows indicate high (arrow up) 
or low (arrow down) expression, 
0 and + denote absence or 
presence of a gene (represented 
by public accession numbers). 
As an example, in tree A, the 
low expression of X96719 
(CLECSF2) indicates AML with 
t(15;17), whereas the high 
expression of X96719 
(CLECSF2) indicates AML with 
inv(16) or AML with t(8;21). The 
latter two entities are 
distinguished by X53742 
(FBLN1): lack of expression 
identifies AML with inv(16) and 
positive expression predicts 
AML with t(8;21). Nodes are 
represented as ovals and leaves 
as rectangles. Classes are 
referred to as t(15;17), t(8;21), 
or inv(16). 

 
 
 
 
 

 
In conclusion, this section demonstrates that cytogenetically defined AML 
subtypes can adequately be classified on the basis of gene expression 
signatures. In summary, 36 genes were specified by two independent class 
prediction methodologies (Table 2). Six genes were overlapping in both 
approaches, seven were found exclusively in the minimal set according to the 
weighted voting algorithm, and another 23 genes through the use of multiple-
tree classifiers. 
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Table 2. Identified genes for the classification of AML with t(15;17), t(8;21), and inv(16). 

 
Symbol & Accession number Description Weighted 

voting 
Multiple-

trees 
PRKAR1B M65066 protein kinase, cAMP-dependent, regulatory, type I, beta X  

GNAI1 AL049933 guanine nucleotide binding protein (G protein), alpha inhibiting 
activity polypeptide 1 X  

PRODH  AF010310 proline dehydrogenase (oxidase) 1 X  

CDW52  N90866 CDW52 antigen (CAMPATH-1 antigen) X  

KRT18 M26326 keratin 18 X X 

CLIPR-59 N99340 CLIP-170-related protein X X 

CLU M25915 clusterin (complement lysis inhibitor) X  

PTGDS AI207842 prostaglandin D2 synthase 21kDa (brain) X  

HOXB2  X16665 homeo box B2 X X 

CLECSF2  X96719 C-type lectin (calcium dependent, carbohydrate-recognition 
domain), superfamily member 2 (activation-induced) X X 

CTSW AF013611 cathepsin W (lymphopain) X X 

S100A9 W72424 S100 calcium binding protein A9 (calgranulin B) X  

MYH11 AF013570 smooth muscle myosin, heavy polypeptide 11,  X X 

MYH11 AF001548 smooth muscle myosin, heavy polypeptide 11,   X 

FBLN1 X53742 fibulin 1  X 

ADD3  U37122 adducin 3 (gamma)  X 

ADRA2C J03853 adrenergic receptor alpha-2C  X 

ALCAM Y10183 CD166, activated leukocyte cell adhesion molecule  X 

PLXNB2 AB002313 plexin B2  X 

ARHGAP4 X78817 Rho GTPase activating protein 4  X 

SERPING1 X54486 serine (or cysteine) proteinase inhibitor, clade G (C1 inhibitor), 
member 1  X 

AHR L19872 aryl hydrocarbon receptor  X 

ITGB2 M15395 
integrin, beta 2 (antigen CD18 (p95), lymphocyte function-
associated antigen 1; macrophage antigen 1 (mac-1) beta 
subunit) 

 X 

RGS10 AF045229 regulator of G-protein signalling 10  X 

CBFA2T1 D43638 ETO, core-binding factor, runt domain, alpha subunit 2; 
translocated to, 1; cyclin D-related  X 

SELL M25280 selectin L (lymphocyte adhesion molecule 1)  X 

DKFZP564K0822 W25986 hypothetical protein DKFZp564K0822  X 

BZRP M36035 Benzodiazepine receptor, peripheral type  X 

POU4F1 X64624 POU domain, class 4, transcription factor 1  X 

CEACAM6 M18728 carcinoembryonic antigen-related cell adhesion molecule 6 
(non-specific cross reacting antigen)  X 

TGFBI M77349 transforming growth factor, beta-induced, 68kDa  X 

AHNAK M80899 AHNAK nucleoprotein (desmoyokin)  X 

CD74 M13560 CD74 antigen  X 

HLA-DMA X62744 major histocompatibility complex, class II, DM alpha  X 

HLA-DRB1 M32578 major histocompatibility complex, class II, DR beta 1  X 

HLA-DPA1 X00457 major histocompatibility complex, class II, DP alpha 1  X 

HLA-DRA J00194 major histocompatibility complex, class II, DR alpha  X 
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These 36 genes are further visualized in a hierarchical cluster representation in 
Figure 18A. Intriguingly, the classifiers contained genes already known to be 
primarily involved in the pathogenesis of the respective entities, namely MYH11 
and ETO (CBFA2T1) (Look, 1997). The other genes identified belong to various 
functional categories (Table 2). Their potential pathogenic significance in AML 
has yet to be clarified. Moreover, it is interesting to note that for most of these 
candidates the pattern is almost like an on/off situation. In one cytogenetic 
subtype the gene is not expressed or demonstrates very low signal intensity 
while in other subtypes the gene is calculated as present with very high signal 
intensity. The genes CTSW, MYH11, and POU4F1 are given as bar graphs to 
illustrate that finding (Figure 18B). This further supports the idea of a possible 
application of these candidates for a diagnostic usage. 
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Figure 18. Hierarchical clustering using 36 genes from both classifiers. (A) The hierarchical 
cluster analysis is based on U95Av2 microarray expression data of 37 adult AML samples 
(columns) and 36 genes (rows) which were identified by using two independent methodologies 
for class prediction in cytogenetic AML subtypes. The normalized expression value for each 
gene is coded by color (standard deviation from mean). Red cells indicate high expression and 
green cells indicate low expression. AML patients with t(15;17) (n=17) are colored blue, t(8;21) 
(n=10) red, and inv(16) (n=10) yellow, respectively. (B) Bar graphs for three differentially 
expressed genes: CTSW, MYH11, and POU4F1. 
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Transition from U95Av2 microarrays to the U133 chip design 
Firstly, the question was addressed whether differentially expressed genes from 
the previous U95Av2 analyses would also allow an accurate separation of the 
patients when measured with U133 design microarrays. The search for 
corresponding probe sets representing the genes correlated with the AML 
subtypes t(15;17), t(8;21), or inv(16) resulted in a total number of 59 best match 
U133A counterparts for the 37 designated U95Av2 probe sets. Secondly, the 
genes could also be validated on new, independent patient samples which had 
not been used in the previous gene identification study. Thus, all previously 
used hybridization cocktails and additional samples for each leukemic 
subgroup, respectively, were hybridized to the newly designed and improved 
U133 microarrays. As shown in Figure 19, based on the U133 microarray 
expression data and also including new samples of each of the distinct AML 
subgroups, all 129 cases were repeatedly separated according to their 
underlying chromosomal aberration. In conclusion, the previously identified 
genes had been successfully validated on a different microarray design. 
Moreover, when additional patient samples were included in the analysis these 
new samples were also accurately assigned. Therefore, this work proceeded 
with the transition from U95Av2 arrays to the U133 set of microarrays. 
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Figure 19. Transition from U95Av2 arrays to the U133 array design. Analysis of 42 AML with 
t(15;17) (blue), 38 t(8;21) (red), and 49 inv(16) (yellow), respectively. This analysis is based on 
U133A gene expression data and includes patients that had been hybridized to U95Av2 arrays 
in a previous analysis and were rehybridized to U133A microarrays, as well as new patient 
samples that were directly hybridized to U133A microarrays. (A) Hierarchical clustering using 
only the significant minimal set of genes that was identified using the previous cohort of patients 
and U95Av2 microarrays. (B) Also in the PCA genes corresponding to probe sets from the 
U95Av2 study were selected and used to project the samples into a three-dimensional space 
based on U133A microarray data. New and previous patient samples for each of the three AML 
subtypes are accordingly indicated by different colors. 
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Gene expression profiling and morphology in APL 
So far, no single cytogenetic or molecular genetic marker has been identified to 
clearly distinguish between the two morphologically highly different subtypes of 
APL. The previous microarray analyses could demonstrate that AML with 
t(15;17) are clearly distinct from AML with t(8;21) or inv(16) with respect to their 
transcriptome. Thus, as a next step, global gene expression profiles of APL 
were further investigated and M3 cases were directly compared to M3v patient 
samples. Cytomorphology of APL blasts is obviously different in both subtypes 
although few patients show features in peripheral blood or bone marrow of both 
phenotypes. In M3 the abnormal promyelocytes show a heavy granulation and 
bundles of Auer rods, whereas M3v blasts have a non- or hypogranular 
cytoplasm or contain fine dust-like cytoplasmic granules that may be 
unapparent by light microscopy. Furthermore, M3v blasts show a typical bilobed 
nuclear configuration (Figure 20). 
 

A B C

 
 
Figure 20. Morphology of APL samples. Three Pappenheim stainings of bone marrow smears 
from APL patients (Figures were kindly provided by H. Löffler, St. Peter, Germany). Light 
microscopic view at 630-fold magnification of: (A) Typical FAB M3 case with heavy granulation 
and bundles of Auer rods. (B) Case demonstrating a mixture of the two morphological 
phenotypes. (C) Typical FAB M3v case with non- or hypogranular cytoplasm and bilobed 
nuclear configuration. 

 
Discrimination of APL from other genetically defined AML subgroups 
Firstly, an unsupervised class discovery approach aimed at separating patients 
with APL from three other AML subgroups with recurrent chromosomal 
aberrations, i.e., AML with t(8;21), inv(16), and t(11q23)/MLL. The respective 
global gene expression profiles derived from these samples were presented to 
the algorithm without any class information attached. As visualized in the PCA 
in Figure 21A, APL samples clearly cluster distinct from AML with t(8;21), 
inv(16), or t(11q23)/MLL. A second step was intended to investigate whether 
the APL patients would also be distinct from AML patients with normal 
karyotype. Here, an unsupervised approach demonstrated that APL profiles are 
clearly distinct from AML with normal karyotype (Figure 21B). Thus, these AML 
subclasses were discovered by analysis of their global gene expression 
signatures in an unsupervised way. 
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Figure 21. Class discovery: APL vs. other AML subclasses. Without any gene selection or 
filtering each patient’s global gene expression pattern is represented by a single color-coded 
sphere. An unsupervised PCA discovers AML subclasses and segregates 35 APL samples from 
(A) AML with t(8;21) (n=35), inv(16) (n=35), or t(11q23)/MLL (n=35), or (B) AML with normal 
karyotype (n=50). 

 
Next, a supervised algorithm was applied to identify the differentially expressed 
genes. The APL samples were compared to the cases with recurrent 
chromosomal aberrations (AML with t(8;21), inv(16), and t(11q23)/MLL), as well 
as to AML with normal karyotype. When both lists containing the top 1,000 
differentially expressed probe sets were matched, 505 probe sets were 
overlapping. When this list of APL-specific genes was imputed into a network 
analysis software a known finding could be reproduced, i.e., that genes with 
functional relevance in MHC-II antigen presentation are lower expressed in APL 
(Figure 22) (Watts, 1997; Villadangos and Ploegh, 2000; Masternak et al., 2000; 
Orfao et al., 2004). 
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Figure 22. Network visualizing differences when comparing APL to other AML 
subclasses. The network with a score of 13 is graphically displayed with genes/gene products 
with functional relevance in MHC-II antigen presentation as nodes and the biological 
relationship between the nodes as edges. The intensity of the node color indicates the degree 
of differential gene expression. Green intensities correspond to a lower expression in APL 
cases compared to AML with t(8;21), inv(16), t(11q23)/MLL, or AML with normal karyotype 
(downregulated). Red intensities correspond to a higher expression in APL cases (upregulated), 
respectively. Note: Focus genes were included in the original text format file derived from the list 
of differentially expressed genes (n=505 overlapping APL-specific probe sets). Non-focus genes 
were derived from queries for interactions between focus genes and all other gene objects 
stored in the Ingenuity knowledge data base. 
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Signatures of genes with functional relevance in blood coagulation 
Both APL subtypes are frequently associated with severe bleeding episodes 
characterized by a combination of disseminated intravascular coagulation and 
hyperfibrinolysis. Thus, further analyses were targeted at gene expression 
signatures from candidates with functional relevance in blood clotting. Using the 
NetAffx database the probe sets were functionally annotated and grouped 
according to their biological function, i.e., using the Gene Ontology process 
descriptions. A total number of 132 microarray probe sets, representing 61 
genes, corresponded to the Biological Process GO category blood coagulation 
(accession number GO:0007596). When the 35 APL patients were compared to 
other AML subclasses with recurrent chromosomal aberrations, i.e., 35 cases 
each with t(8;21), inv(16), or t(11q23)/MLL, all APL cases can be separated 
based on their specific expression pattern on the basis of genes correlated with 
coagulation (Figure 23A). Also, when compared to 50 AML cases with normal 
karyotype, only on the basis of genes involved in blood coagulation, two distinct 
clusters were observed in the PCA (Figure 23B). Thus, in both types of 
comparisons, based on a preselected set of genes with functional relevance in 
blood clotting, all APL samples demonstrated a distinct expression pattern 
different from all other AML subclasses. To validate these findings AML M3 
samples were compared to AML M3v samples using the same genes encoding 
for clotting relevant proteins. As anticipated, no clear distinction was observed 
between both groups as patients with both subtypes suffer from severe bleeding 
disorders at diagnosis (Figure 23C). 
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Figure 23. PCA based on genes from the GO category blood coagulation. The three-
dimensional PCA feature space visualizes measured U133 set expression data on genes from 
the Gene Ontology Biological Process category blood coagulation (accession number 
GO:0007596). (A) Analysis of APL patients vs. AML with t(8;21), inv(16), or t(11q23)/MLL. (B) 
Analysis of APL patients vs. AML cases with normal karyotype. (C) Analysis of M3 vs. M3v 
samples. 
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Supervised comparison of FAB M3 to FAB M3v samples 
Of 35 patients with t(15;17) and confirmed PML/RARA fusion genes detailed 
diagnostic reports on the morphology were available for 19 AML M3 and 16 
AML M3v. Thus, it was possible to address the question whether gene 
expression profiling might also help to dissect this morphological phenomenon 
and help to increase the understanding of these two leukemia entities. In a next 
step, genes differentially expressed between both morphological APL subtypes 
were identified through a supervised data analysis approach. The morphological 
classification had been done in routine at diagnosis by the same expert and no 
further re-evaluation was performed before the samples were processed for this 
analysis. This was decided although some rare cases showed a mixture of the 
two morphological phenotypes (similar to Figure 20B). The total number of 19 
AML M3 profiles were directly compared to 16 AML M3v cases and the false 
discovery rate (FDR) was estimated. Then several lists of differentially 
expressed genes were visualized. 

Firstly, a FDR of 5% (q-value < 0.05) was chosen, i.e., among all 
features called significant 5% are truly null on average. A total number of 186 
probe sets demonstrated this level of significance. Figure 24A shows a PCA 
using these 186 probe sets. The M3 samples cluster distinct from the M3v 
cases with few exceptions. Next, a more stringent criterion was applied, i.e., a 
false discovery rate of 1%. The number of significant probe sets shrunk down to 
14. As given in Figure 24B now all M3 cases can be separated robustly from the 
M3v samples based on the expression pattern of those 14 probe sets. They 
were representing the genes ANXA2, CAP1, CAPN2, CD97, GLUD1, LGALS1, 
LMNA, MMP19, PLXNB2, S100A10, TAGLN2, and TGFB1. All genes 
demonstrated a higher expression in the M3v samples (Figure 24C). 
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Figure 24. Supervised analysis to discriminate APL subtypes. After a supervised 
comparison of M3 vs. M3v samples (U133 set), differentially expressed genes at differing false 
discovery rates are visualized. (A) Visualization of data based on 186 probe sets discovered at 
5% FDR. (B) Visualization of data based on 14 probe sets discovered at 1% FDR. (C) For a 
selection of top differentially expressed genes the absolute level of expression is represented by 
bar graphs. The 19 M3 cases are colored red, the 16 M3v cases are represented by blue bars, 
respectively. 
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Subsequently, a machine learning algorithm (SVM) was applied to test the 
accuracy when predicting the respective morphological APL subtype based on 
differentially expressed genes. Therefore, the complete data set was randomly, 
but balanced by the morphological APL subtypes split into training and 
independent test cohorts. Then differentially expressed genes were identified in 
the training set, calculated by means of t-test-statistic, and a SVM model was 
built based on the top 50 genes that demonstrate differential expression 
between FAB M3 and FAB M3v subtypes in the training set. This SVM model 
was used to predict samples in the test cohort. Using a 10-fold CV approach 
(9/10 for training and 1/10 for testing, 10 iterations) morphological APL subtypes 
were predicted based on their gene expression signature with a median of 
accuracy of 91%. In order to assess robustness of this class prediction a 
resampling approach was applied, i.e., the complete classification procedure 
was repeated for 100 times (training set: 2/3 of patients, test set 1/3). By this 
means 95% confidence intervals were estimated. The data demonstrate that 
morphological APL subtypes can be predicted based on their gene expression 
signature with a median of accuracy of 91% (95% confidence interval of 
accuracy: [73%; 100%]). 

In detail, the algorithm selected the following genes in more than 90% of 
the runs: S100A10, TAGLN2, LGALS1, CAP1, GLUD1, ANXA2, TGFB1, LMNA, 
and MMP19. From the morphological and clinical point of view differences 
between typical APL and its variant are known in granulation pattern, WBC 
count, Auer rods, and especially the frequency of faggot cells or the detection of 
length mutations of the FLT3 gene (FLT3-LM). In this respect, all AML M3 
(n=118) and AML M3v cases (n=46) which were diagnosed by morphology, 
cytogenetics, and molecular genetic techniques in the Laboratory for Leukemia 
Diagnostics, Munich, Germany, between December 1998 and February 2004 
were analyzed. Data of these 164 APL patients are shown in Table 3. In all 
cases no further mutations (i.e., KIT or partial tandem duplication of the MLL 
gene) were detected.  
 
Table 3. Morphological and genetic differences in the APL cohort. 

 
 AML M3 (n=118) AML M3v (n=46) p = 

Age (median, range) 51.4 (17-82) 47.9 (18-83) n.s. 

Male/female 59/59 21/24 n.s. 

WBC count at diagnosis (G/l) 1,400 (200-70,900) 15,300 (500-332,000) 0.000000005 

Hemoglobin (g/dl) 9.4 (4-15) 9 (4.8-14.1) n.s. 

Platelets (µ/l) 31,000 (7,000-187,000) 26,000 (8,000-115,000) n.s. 

Auer rods leading to faggot cells 58/66 (87.8%) 20/31 (64.5%) 0.0055 

Additional chromosomal aberrations  46/118 (39%) 17/46 (37%) n.s. 

FLT3 length mutation 20/80 (25%) 34/46 (73.9%) < 0.0001 

FLT3 tyrosine kinase domain mt. 3/66 (4.5%) 4/41 (10.8%) n.s. 

NRAS mutation 3/63 0/30 n.s. 
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In order to prove that the genes identified to distinguish between AML M3 and 
AML M3v are not simply related to FLT3-LM or to the WBC count, which both 
are known to be different between both disease subtypes, linear regression 
analyses were performed for each of the top 20 genes considering AML M3v, 
FLT3-LM, and WBC count as covariates. The results indicate that for nearly all 
of the top 20 genes the relation is strongest to AML M3v (Table 4). Significant 
relations to FLT3-LM and WBC count were present for only two and six genes, 
respectively. Therefore, the identified genes not simply reflect the WBC count or 
the occurrence of FLT3-LM, but truly are related to the presence of AML M3 
and AML M3v morphology. 
 
Table 4. Linear regression analyses for top 20 discriminative genes (M3 vs. M3v). 

 
CovariatesGene AML M3v WBC count FLT3-LM 

NFE2L1 0.004 n.s. n.s. 
S100A10 0.00006 0.002 n.s. 
TAGLN2 0.00007 n.s. n.s. 
GLUD1 0.0004 n.s. n.s. 
LGALS1 0.0001 0.005 0.034 
ANXA2 0.00001 0.025 n.s. 
CD97 0.00004 n.s. n.s. 
TGFB1 0.0001 n.s. n.s. 
LMNA 0.018 0.010 0.025 
MMP19 0.00002 n.s. n.s. 
CRIP1 0.0003 0.00002 n.s. 
CAPN2 0.00001 n.s. n.s. 
CDC42 0.0002 n.s. n.s. 
PLXNB2 0.00002 n.s. n.s. 
ANXA2 0.00006 n.s. n.s. 
LMNA 0.0004 0.034 n.s. 
ANXA2 0.00002 n.s. n.s. 
CAP1 0.00005 n.s. n.s. 
MGC10997 0.0001 n.s. n.s. 
CAMK1D 0.001 n.s. n.s. 

(p-values are given; n.s.= not significant) 
 
Granulation pattern and stage of maturation in APL 
It has been shown that different patterns of granulation are associated with 
different levels of defensin and transcobalamin (Jandl, 1996). Therefore, genes 
were evaluated that are known to be relevant for granulation. Interestingly, 
higher expression levels of defensin alpha 1, DEFA1, were observed in M3 
cases in concordance with a higher number of primary granules in these 
samples. On the other hand, transcobalamin II, TCN2, a member of cobalamin 
transport proteins, is found higher expressed in secondary granules. Consistent 
with this finding TCN2 was detected elevated in cases with M3v morphology. In 
addition, genes involved in maturation were found to be differentially expressed. 
An elevated expression in FAB M3v cases compared to the M3 samples was 
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observed for PTPRC (CD45 antigen), ALOX5, involved in leukotriene pathway, 
and interleukin-3 receptor alpha chain, IL3RA. A differing gene expression was 
further detected for CD2 positivity, namely being higher expressed in M3v and 
its intracellular binding protein 2 (CD2BP2). Figure 25 visualizes the absolute 
expression signal intensities for a selection of these genes. 
 

Figure 25. Differences in 
expression of genes with 
function in granulation or 
maturation in APL. For 
each gene the absolute 
level of expression is 
represented by bar graphs 
in each patient (U133 set). 
The 19 M3 cases are 
colored red, the 16 M3v 
cases are represented by 
blue bars, respectively. 
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4.2 Gene expression profiling in ALL 

U95Av2 microarray data on four subtypes of adult ALL 
Firstly, U95Av2 gene expression profiles were analyzed to accurately identify 
the known prognostically important adult leukemia subtypes, i.e., B-lineage 
leukemias that contain t(9;22), t(11q23)/MLL (all t(4;11)-positive), or t(8;14), as 
well as T-lineage leukemias, respectively. In total, ten comparisons within the 
four groups were performed (pairwise and OVA). Using leave-one-out cross- 
validation, all samples were correctly classified on the basis of 17 genes 
represented by 19 probe sets. The corresponding cluster dendrogram is given 
as Figure 26.  
 

Figure 26. Analysis of 
adult ALL samples using 
U95Av2 microarrays. 
Hierarchical clustering 
based on U95Av2 
expression data of 17 ALL 
samples (columns) from the 
subgroups t(11q23)/MLL 
(n=4), t(9;22) (n=7), t(8;14) 
(n=3), and precursor T-ALL 
(n=3) vs. a minimal set of 
17 informative genes 
represented by 19 probe 
sets (rows). The normalized 
expression value for each 
gene is coded by color. Red 
cells represent high 
expression and green cells 
represent low expression. 

 
 
 
 
 

 
To further demonstrate that the presented genes were characteristic for the 
respective leukemia subtype, also the analyses of ALL subtypes were extended 
to the U133A microarray. Thus, all previously used 17 hybridization cocktails 
and two additional samples for each subgroup, respectively, were rehybridized 
to the U133A microarray. Again, a stringent search determined for the 
presented U95Av2 probe sets their best corresponding U133A counterparts. As 
shown in Figure 27, now based on U133A microarray expression data and 
including two new samples of each of the distinct subgroups, all adult ALL 
cases were repeatedly separated according to their underlying chromosomal 
aberration or immunophenotype. Taken together, this section successfully 
demonstrates a subclassification of ALL samples based on gene expression 
profiling. It could be shown that only a small set of differentially expressed 
genes was necessary to correctly discriminate the different ALL subtypes. New 
differentially expressed genes were identified and defined as potential 
diagnostic markers. 

60 70 80 90 10
0

t(8;14) t(11q23) BCR/ABL T-ALL

HELO1
TRB
CD3D
ANXA5
SIT
LYN
CCL3
VLDLR
FLJ12443
CTNNA1
CTNNA1
CTGF
NR3C1
ADA
MYB
MYB
MME
MONDOA
KIAA0870



Results 68

 
Figure 27. Analysis of 
adult ALL samples using 
U133A microarrays. 
Hierarchical clustering 
based on U133A 
expression data of 25 ALL 
samples (columns) 
comprising the subgroups 
t(11q23)/MLL (n=6), 
t(9;22) (n=9), t(8;14) 
(n=5), and precursor T-
ALL (n=5) vs. 17 
informative genes (rows). 
New patient samples 
which were not previously 
hybridized to U95Av2 
arrays are accordingly 
marked (asterisks). The 
normalized expression 
value is coded by color. 

 
Analysis of heterogeneous precursor B-ALL cases 
After obtaining these results that specific signatures are also observed in adult 
ALL subtypes the analyses were extended to expression profiles of 
heterogeneous precursor B-ALL cases not positive for t(9;22) or t(11q23)/MLL. 
Therefore, in addition 7 precursor B-ALL patients (c-ALL and Pre-B-ALL) were 
hybridized to obtain new insights into the molecular features of these cases. 
This additional cohort included patients who showed a normal karyotype (n=2) 
or a variety of different karyotype abnormalities (n=5). 

Firstly, an unsupervised analysis, i.e., hierarchical clustering and PCA of 
the complete data set was performed. However, this analysis did not reveal 
informative structures. Therefore, a supervised analysis by use of the SAM 
software was performed to identify differentially expressed genes correlated 
with T-ALL, BCR/ABL, and t(11q23)/MLL cases. A selection of the top 510 
genes accurately separated the latter three ALL subtypes (Figure 28A). Next, 
the 7 precursor B-ALL samples without BCR/ABL or t(11q23)/MLL 
chromosomal aberrations were added to the data set and all cases were 
projected into the space of the 510 ALL subtype relevant genes. As shown in 
Figure 28B, the other precursor B-ALL samples (yellow spheres) intercalate 
with BCR/ABL-positive samples (red spheres). 
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Figure 28. PCA including heterogeneous precursor B-ALL cases. The PCA is based on 510 
differentially expressed genes that were identified by use of the SAM software to separate T-
ALL (n=9), t(11q23)/MLL (n=10), and BCR/ABL (n=15) cases (U133A). (A) T-ALL, t(11q23)/MLL 
and BCR/ABL samples can accurately be separated using the three components capturing 
most of the variance in the data set. (B) When added to the data set, profiles from 7 
heterogeneous precursor B-lineage ALL samples (yellow spheres) intercalate with BCR/ABL-
positive samples (red spheres). 

 
Thus, the other precursor B-ALL share similar characteristics with BCR/ABL-
positive ALLs. This is in line with the definition and subclassification of precursor 
B-ALL according to EGIL, which is based on the immunophenotype and 
distinguishes Pro-B-ALL, common ALL, and Pre-B-ALL (Bene et al., 1995). 
Most importantly, both other ALL cases and BCR/ABL cases belong to the 
common ALL and Pre-B-ALL groups and are thus anticipated to have common 
gene expression profiles. This finding can also be visualized by use of the 
hierarchical clustering technique. 
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As shown in Figure 29, due to inherent similarities in their expression profiles 
three major branches of the top dendrogram can be observed. The 
t(11q23)/MLL and T-ALL samples are accurately grouped. The more 
heterogeneous precursor B-ALL cases are exclusively distributed in the branch 
containing all BCR/ABL patient samples. Several subtrees in the left 
dendrogram indicate co-expression of genes for the distinct ALL subtypes. 
 

Figure 29. Hierarchical 
clustering including hetero-
geneous precursor B-ALL 
cases. Hierarchical cluster 
analysis of T-ALL (n=9), 
t(11q23)/MLL (n=10), 
BCR/ABL (n=15), and 
heterogeneous precursor B-
ALL (n=7) patients. This 
analysis is based on 510 
differentially expressed genes 
(rows) which have been 
identified in a supervised 
approach to separate the 
three entities BCR/ABL, T-
ALL, and t(11q23)/MLL, 
(U133A). When analyzed with 
this set of genes, profiles from 
7 heterogeneous precursor B-
ALL samples intercalate with 
BCR/ABL-positive samples. 
The normalized expression 
value for each gene is coded 
by color. Red cells indicate 
high expression and green 
cells indicate low expression. 
Five subtrees with interesting 
differentially expressed genes 
are marked on the right. 

 
 
 
 
 
 
 

 
Subtree 1 contains genes overexpressed in T-ALL: TRB, CD3D, CD3E, CD2, 
CD6, MAL, LCK, ITM2A, and SH2D1A. A large number of these genes and 
additional candidates like transmembrane adapters (LAT, TRIM), further CD3 
complex signal transducing members (CD3G, CD3Z), CD8A coreceptor, and 
ZAP70 tyrosine kinase can be correlated with a functional role in the class I 
MHC-restricted T cell receptor signalosome (Leo et al., 2002). Subtrees 2 and 4 
group genes with high expression in MLL gene rearranged ALL cases: 
ADAM10, BLK, CD72, CD79A, CSPG4, HOXA9, HOXA10, IGHM, LGALS1, 
LMO2, MBNL, MEF2A, PPP2R5C, PTPRC, and VLDLR. Subtree 3 contains 
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mainly genes with functional role in immune response. BLNK, BRDG1, CD24, 
MHC2TA, CD74, HLA-DMA, HLA-DMB, HLA-DPA1, HLA-DRA,  HLA-DPB1, 
HLA-DQB1, HLA-DRB1, HLA-DRB3, HLA-DRB4, and TNFRSF14 demonstrate 
similar patterns for BCR/ABL, t(11q23)/MLL and the more heterogeneous 
precursor B-ALL cases. 

An interesting cluster of genes is organized in subtree 5, which is 
enlarged in Figure 30. Twenty-six probe sets demonstrate similar expression 
signatures for both BCR/ABL-positive and the more heterogeneous precursor 
B-ALL cases. All candidate genes are consistently overexpressed in these 
cases compared to T-ALL and t(11q23)/MLL samples. The probe sets represent 
for example LGMN, also called asparaginyl endopeptidase (AEP), a receptor 
tyrosine kinase activated by collagen (DDR1), CD52, an excellent target for 
complement-mediated lysis and antibody-dependent cellular cytotoxicity, a 
cytokine-like protein (C17), a retinoic acid induced gene (RAI14), or the 
hypothetical protein LOC54103. 
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Figure 30. Zoomed image of subtree 5 out of Figure 29. Heterogeneous precursor B-ALL 
share similar expression patterns with BCR/ABL-positive ALLs. In this subtree, 26 probe sets 
were consistently overexpressed compared to both T-ALL and t(11q23)/MLL. The normalized 
expression value for each gene is coded by color. Red cells indicate high expression and green 
cells indicate low expression. 
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A similar distribution of the adult ALL samples can be observed when these 
cases were projected into the gene expression space of markers previously 
reported from Yeoh et al. to discriminate six distinct pediatric ALL subtypes, i.e., 
T-ALL, E2A/PBX1, BCR/ABL, TEL/AML1, t(11q23)/MLL, and hyperdiploid 
leukemias (Yeoh et al., 2002). As anticipated, genetically heterogeneous 
precursor B-ALL samples again cluster together with BCR/ABL cases 
confirming the previous observation. They do not show up as an independent 
fourth distinct cluster separated from adult T-ALL, t(11q23)/MLL, and BCR/ABL-
positive leukemias. Figure 31 visualizes the observed dendrogram structure of a 
hierarchical cluster analysis as well as a three-dimensional plot from a PCA. 
Thus, signatures, previously reported to correlate with E2A/PBX1, TEL/AML1, 
and hyperdiploid childhood leukemias could not separate these two groups. 
This is not unexpected as none of the heterogeneous precursor B-ALL showed 
one of these genetic characteristics. 
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Figure 31. Heterogeneous precursor B-ALL in the context of pediatric markers. The 
analyses are based on reported differentially expressed genes to distinguish pediatric T-ALL, 
E2A/PBX1, BCR/ABL, TEL/AML1, t(11q23)/MLL and hyperdiploid leukemias (Yeoh et al., 
2002). (A) Hierarchical clustering and (B) PCA of adult T-ALL (n=9), t(11q23)/MLL (n=10), 
BCR/ABL (n=15), and heterogeneous precursor B-lineage ALL (n=7) patients (U133A). Each 
patient sample is represented by a color-coded sphere. Heterogeneous precursor B-lineage 
ALL samples (yellow spheres) cluster together with BCR/ABL-positive samples (red spheres) 
when projected in this specific gene space. 
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4.3 Gene expression profiling in t(11q23)/MLL leukemias 

Distinct gene expression signatures in t(11q23)/MLL leukemias 
Firstly, the question was addressed whether t(11q23)/MLL-positive samples 
share also a characteristic gene expression pattern and are clearly distinct from 
other samples. Thus, the gene expression profiles of 73 adult t(11q23)/MLL-
positive samples (n=25 ALL and n=48 AML with t(11q23)/MLL) were compared 
to 204 adult myeloid and 86 lymphoblastic leukemia samples with other defined 
genetic aberrations. In a supervised data analysis approach a robust set of 
differentially expressed genes was identified which accurately stratified the 
samples according to their underlying cytogenetic and immunophenotypic 
characteristics, i.e., myeloid subclasses, precursor B-lineage, or precursor T-
lineage ALL. In detail, for lymphoblastic leukemias, t(11q23)/MLL samples 
(n=25) were accurately separated from precursor B-ALL cases with t(9;22) 
(n=42), t(8;14) (n=12), and precursor T-ALL (n=32). Figure 32A displays a PCA 
of the 111 ALL samples based on the differential expression of 262 genes. 
When projected into the expression space of these informative genes, the four 
distinct ALL subclasses accurately cluster together. 
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Figure 32. PCA including various acute leukemia subtypes. The leukemia samples are 
plotted in a three-dimensional space using the three components capturing most of the variance 
in the original data set (U133 set). (A) Adult ALL of the four subcategories precursor B-ALL 
samples comprising t(11q23)/MLL (n=25), t(9;22) (n=42), t(8;14) (n=12), and precursor T-ALL 
(n=32) are accurately separated based on 262 differentially expressed genes. (B) Adult AML 
samples including t(11q23)/MLL (n=48), t(8;21) (n=38), t(15;17) (n=42), inv(16) (n=49), and 
complex aberrant karyotypes (n=75) are accurately separated based on 416 differentially 
expressed genes. 
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Likewise, by use of the differential expression of 416 genes, the 252 AML 
samples could accurately be stratified. Specific patterns in gene expression 
were correlated with t(11q23)/MLL (n=48), t(8;21) (n=38), t(15;17) (n=42), 
inv(16) (n=49), and AML samples with complex aberrant karyotypes (n=75). 
This finding is also visualized by a principal component analysis (Figure 32B). 
Therefore, in both types of acute leukemias, t(11q23)/MLL-positive samples are 
clearly distinct from other subtypes of same cell lineage, i.e., myeloid or 
lymphoblastic. They have a characteristic underlying expression signature 
compared to other distinct acute leukemia subclasses. 

Subsequently, all samples were included into one comprehensive 
analysis. A supervised data analysis algorithm was applied to identify genes 
that separate each of the nine subtypes from the remaining classes. As shown 
in Figure 33, the nine distinct acute leukemia subtypes can accordingly be 
separated. The hierarchical clustering algorithm identified common expression 
signatures and orders the patient samples accurately by similarities. 
Interestingly, t(11q23)/MLL-positive samples are not found to cluster together, 
but rather according to the lineage they are derived from, i.e., a lymphoblastic 
t(11q23)/MLL cluster and a myeloid t(11q23)/MLL cluster can be observed. In 
the top dendrogram ALL samples with t(11q23)/MLL are grouped next to ALL 
with t(9;22) and t(8;14), and AML with t(11q23)/MLL are grouped next to AML 
with t(15;17) or AML with t(8;21) cases. 
 

Figure 33. Hierarchical 
clustering of 363 ALL and 
AML samples. The 
normalized expression 
value for each gene (given 
in rows) is coded by color 
(U133 set). Red cells 
indicate high expression 
and green cells indicate 
low expression. The 
coloring is identical to 
Figure 32. Arrows highlight 
t(11q23)/MLL leukemias. 

 
 
 
 
 

 
Common MLL target genes 
In order to identify common MLL target genes both types of t(11q23)/MLL 
leukemias were grouped together and were compared to the various types of 
precursor B- and T-lineage ALLs as well as to other cytogenetically defined 
AML subtypes. In doing so, a set of differentially expressed genes specifically 
associated with t(11q23)/MLL leukemias was specified. Relationships between 
these genes were further examined using a network analysis application. As 
given in Figure 34 HOXA9 as well as MEIS1 show up as genes with higher 
expression in both t(11q23)/MLL leukemias. Other genes with higher expression 
in this network included NICAL and chromatin remodeling actor RUNX2. 
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Downregulated genes included for example TNF-receptor superfamily members 
TNFRSF10A and TNFRSF10D, or MADH1, functioning downstream of TGF-
beta receptor serine/threonine kinases. Additional networks contain further 
genes with known relationship with t(11q23)/MLL leukemias, e.g., HOX-A 
cluster genes (HOXA5, HOXA10), as well as the Hox co-regulator PBX3, or the 
tyrosine kinase FLT3. Other target genes with higher expression in 
t(11q23)/MLL leukemias included HIP1, so far associated with prostate cancer 
progression, proto-oncogene FRAT1, TAF1B, playing a role in the 
tumorigenesis of colorectal carcinomas, and ZFHX1B, a transcriptional 
corepressor. 
 

B

E

E

B

E

E

B

B

B

B

A,E

B

B

BB

B

B

B B

B

E

B

BB

B

B

B

B

B

B

B

B

A,B

B

B
B

B
B

B

B

B

B

B

B
E

B

E

B

B

B

TNFRSF10B

MLL
+++++++++++++++++++++++++++++++++++++++++++++++++++++++

PBX2

NEDD9
++++++++++++++++++++++++++++++++++++++++++++++++++++++

TAL1

NICAL

TNFSF10

RCOR

RUNX2*
+++++++++++++++++++++++++++++++++++++++++++++++++++++++

LMO2

KIAA0601*

MADH1*
++++++++++++++++++++++++++++++++++++++++++++++++++++++

GFI1B

ZNF145

HOXA9*

UBL1

TNFRSF10D

RANBP2*
++++++++++++++++++++++++++++++++++++++++++++++++++++++

SAP30
+++++++++++++++++++++++++++++++++++++++++++++++++++++++

PML
+++++++++++++++++++++++++++++++++++++++++++++++++++++++

HOXC8

CRKL

CD34

RANGAP1

SET

TNFAIP3*
+++++++++++++++++++++++++++++++++++++++++++++++++++++++

SOD2
++++++++++++++++++++++++++++++++++++++++++++++++++++++

MEIS1

TCF7L1

TNFRSF10A*

SETBP1*

REL (v-rel homolog)
++++++++++++++++++++++++++++++++++++++++++++++++++++++

TNFRSF10C

GATA2*

IER3
 

 

Figure 34. Network distinguishing t(11q23)/MLL leukemias from other acute leukemia 
subtypes. The network with a score of 18 is graphically displayed with genes/gene products as 
nodes and the biological relationship between the nodes as edges. The intensity of the node 
color indicates the degree of differential gene expression. Green intensities correspond to a 
lower expression (downregulated) in t(11q23)/MLL cases compared to AML subtypes (inv(16), 
t(8;21), t(15;17), complex karyotypes) or ALL subtypes (t(9;22), t(8;14), T-ALL), respectively. 
Red intensities correspond to a higher expression in t(11q23)/MLL cases (upregulated). 
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Unsupervised hierarchical clustering of t(11q23)/MLL leukemias 
Next, the question was addressed whether an unsupervised analysis including 
exclusively MLL gene rearranged leukemias was also able to distinguish 
between the different lineages. Both a PCA and a two-dimensional hierarchical 
cluster analysis of 25 ALL and 48 AML with MLL gene translocation were 
performed. As demonstrated in Figure 35, although both types of acute 
leukemias are characterized by MLL gene rearrangements, an unsupervised 
data analysis approach clearly separates the samples according to their 
hematopoietic lineage, i.e., myeloid or lymphoblastic origin. 
 

Figure 35. Unsupervised PCA of adult ALL and AML with 
t(11q23)/MLL. An unsupervised analysis is based on a 
selection of 5,000 genes that showed the largest variance 
across all samples (U133 set). In the three-dimensional PCA 
plot ALL with t(11q23)/MLL samples (labeled mauve) are 
distinct from AML with t(11q23)/MLL (turquoise). 

 
 
 

 
Moreover, given the dendrogram from the unsupervised hierarchical cluster 
analysis no clear subclustering of cases with identical MLL partner genes can 
be observed (Figure 36). In ALL with t(11q23)/MLL the MLL/ENL cases 
intercalate with the MLL/AF4 samples. In AML with t(11q23)/MLL no obvious 
structure, neither according to FAB criteria, nor to the different MLL partner 
genes can be observed. The MLL/AF6, MLL/AF10, MLL/ELL samples, as well 
as rare cases (MLL/p300, MLL/AF17, MLL/SMAP1, and MLL/X) are intercalated 
between the MLL/AF9 samples. Thus, two independent unsupervised 
algorithms consistently separate MLL gene rearranged leukemias into ALL and 
AML subgroups, but not with respect to the partner genes. 
 

Figure 36. Unsupervised hierarchical clustering of adult ALL 
and AML with t(11q23)/MLL. The similarity dendrogram of an 
unsupervised hierarchical cluster analysis is based on a selection 
of 5,000 genes that showed the largest variance across all samples 
(U133 set). For each sample the respective immunophenotype, 
FAB subtype, and MLL fusion partner gene as confirmed by FISH 
and/or RT-PCR-based molecular analyses is given. MLL/X 
indicates samples with unknown partner genes. Two of the 48 MLL 
gene rearranged AML are contained in the ALL branch of the 
dendrogram. 
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Supervised analysis to discriminate t(11q23)/MLL leukemias 
Next, gene expression signatures of ALL with t(11q23)/MLL were directly 
compared to AML with t(11q23)/MLL using a supervised algorithm. Among the 
differentially expressed genes, upregulated candidates in lymphoblastic 
t(11q23)/MLL leukemias demonstrated a dominant pattern according to B-
lineage commitment. PAX5, the B cell lineage specific activator was designated 
as one of the top-ranked differentially expressed genes. In line with this finding, 
PAX5 target genes BLK and CD19 could also be confirmed upregulated in ALL 
with t(11q23)/MLL by microarray analysis. An upregulated expression of IGHM 
(encoding the IgM heavy chain), VPREB1 (surrogate light-chain, important for 
forming the pre-B cell receptor), and CD22 or CD79A further elucidates the B-
lineage commitment of ALL with t(11q23)/MLL. 

In addition, the list of differentially expressed genes was also imputed 
into a pathway analysis application. Various networks of functionally related 
genes were obtained. In Figure 37, a biological network is represented. In this 
network, LEF1, a transcriptional regulator is connected to PAX5 and its target 
CD79A, which is included in the B cell antigen receptor. These genes, as well 
as the transcriptional regulators MEF2A and TCF3 demonstrated a higher 
expression in ALL with t(11q23)/MLL profiles compared to AML with 
t(11q23)/MLL cases. In other networks, further interesting differentially 
expressed genes with higher expression in t(11q23)/MLL-positive ALL include 
BCL11A, also involved in lymphoid malignancies, transcription regulator ETS2, 
chromatin binding proteins CBX2 and CBX4, and early B cell factor EBF, who 
can restrict lymphopoiesis to the B cell lineage and works in concert with PAX5 
to activate genes required for B cell differentiation. 

Reversely, genes with higher expression in t(11q23)/MLL-positive AML 
included the transcriptional activator CEBPB, protein tyrosine kinase KIT, 
MADH2, a transcription factor binding protein and MITF, a transcriptional 
regulator (Figure 37). Also, as obtained in additional networks a myeloid 
commitment through higher expression in AML with t(11q23)/MLL could be 
demonstrated by differential expression of CEBPA (CCAAT/enhancer binding 
protein-alpha), a transcription factor required for differentiation of myeloid 
progenitors, as well as SPI1 (PU.1), a critical player in myeloid development, or 
GM-CSFR, and G-CSFR genes. Other candidates with significantly higher 
expression in t(11q23)/MLL-positive AML are FES, a tyrosine kinase oncogene, 
MNDA, encoding the myeloid cell nuclear differentiation antigen, or CITED4, a 
CBP/p300-interacting transcriptional transactivator. Also, a different repertoire 
of expression of suppressors of cytokine signaling (SOCS) family members as 
well as members of the tumor necrosis factor superfamily could be observed. 
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Figure 37. Differentially expressed genes between ALL and AML with t(11q23)/MLL. The 
biological network with a score of 42 is displayed graphically. Green intensities correspond to a 
lower expression in ALL with t(11q23)/MLL cases compared to AML with t(11q23)/MLL samples 
(downregulated). Red intensities correspond to a higher expression in ALL with t(11q23)/MLL 
cases compared to AML with t(11q23)/MLL samples (upregulated). 
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Influence of MLL translocation partners on gene expression signatures 
A following series of analyses was performed to investigate the influence of 
different MLL gene translocation partners. Firstly, within the cohort of AML with 
t(11q23)/MLL, the group of t(9;11)-positive cases (n=23) was compared to 
t(9;11)-negative samples (n=25). Neither supervised nor unsupervised analyses 
revealed a specific expression signature associated with the MLL translocation 
partner AF9. In Figure 38 SAM plots demonstrate that, compared to the 
previous analysis of ALL with t(11q23)/MLL vs. AML with t(11q23)/MLL, no 
significantly differentially expressed genes clearly correlate with t(9;11) (left 
plot). The q-values of the top differentially expressed genes ranged between 
0.75 and 0.82, i.e., calling this set of genes significant would result in a false 
discovery rate (FDR) of >75%. For comparison, a very high number of 
differentially expressed genes can be identified when comparing ALL with 
t(11q23)/MLL vs. AML with t(11q23)/MLL (right plot). 
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Figure 38. Supervised identification of differentially expressed genes in t(11q23)/MLL 
leukemias. The left plot shows a supervised analysis of AML samples comparing a group of 
t(9;11)-positive cases (n=23) to non-t(9;11)-positive samples (n=25) (U133 set). Here, no 
statistically significant differentially expressed genes were identified. The right plot shows a 
supervised comparison of ALL with t(11q23)/MLL vs. AML with t(11q23)/MLL. Red dots indicate 
genes with statistically significant higher expression in AML with t(11q23)/MLL and green dots 
indicate higher expressed genes in ALL with t(11q23)/MLL. 

 
Furthermore, as demonstrated in Figure 39, the unsupervised data analysis 
approach including all t(11q23)/MLL samples did also not reveal any specific 
patterns associated with distinct MLL partner genes. It is interesting to note that 
MLL/ENL samples, included both in the AML and ALL patient cohorts are 
separated. Four ALL cases with MLL/ENL intercalate with the MLL/AF4 
samples, two AML with MLL/ENL samples are distributed between the various 
cases in the AML cluster. 
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Figure 39. Unsupervised analysis of t(11q23)/MLL samples with various partner genes. 
The unsupervised analysis is based on 5,000 genes that showed the largest variance across all 
samples (U133 set). For each sample the MLL fusion partner gene as confirmed by FISH and/or 
RT-PCR-based molecular analyses is given. MLL/X indicates samples with unknown partner 
genes. 

 
A more detailed analysis then aimed at mining the data supervised for 
differential gene expression between various MLL partner genes. Here, six 
groups of t(11q23)/MLL patient samples were included: 23 AML cases with 
t(9;11) (MLL/AF9), 7 t(6;11) (MLL/AF6) , 4 t(10;11) (MLL/AF10), and 3 t(11;19) 
(MLL/ELL) cases, as well as 21 ALL samples with t(4;11) (MLL/AF4) and 4 
t(11;19) (MLL/ENL). In this data set no statistically significant expression 
signatures were found to be specifically correlated with one of the distinct 
partner genes. Table 5 represents a confusion matrix of t(11q23) leukemia 
subgroup predictions based on the top 100 genes that demonstrate differential 
expression between the respective subclasses (10-fold CV approach). It can be 
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observed that the classifier is good at predicting the MLL partner genes AF9 
and AF4, the two major groups in the AML and ALL patient cohorts, 
respectively. Other partner genes are not accurately identified. The 
misclassifications mainly occur in the corresponding myeloid or lymphoblastic 
compartment. Thus, there is only a strong correlation with the lineage the 
t(11q23)/MLL leukemias are derived from. The gene expression profile does not 
support the hypothesis of a clear distinct signature associated with one of the 
various partner genes that can interact with the MLL gene. 
 
Table 5. MLL partner gene confusion matrix determined by 10-fold CV. The matrix shows 
the predicted MLL fusion partner gene. Misclassified samples are given by bold red letters. For 
example, of 21 MLL/AF4 samples, 20 are accurately identified and one sample is classified as 
MLL/ENL. Likewise, MLL/AF10 or MLL/AF6 samples are classified as MLL/AF9 samples. 
 

real 
 

MLL/AF10 MLL/AF6 MLL/AF9 MLL/ELL MLL/AF4 MLL/ENL 
MLL/AF10   1    
MLL/AF6   1 1   
MLL/AF9 4 7 20 2   
MLL/ELL       
MLL/AF4   1  20 4 

predicted 

MLL/ENL     1  

 
In order to assess the robustness of partner gene prediction a resampling 
approach was applied, i.e., the complete SVM classification procedure was 
repeated for 100 times. The training set included 2/3 of patients and the test set 
1/3. Here, the test set for each of the 100 runs included 20 samples which were 
randomly chosen from the total patient cohort to include 1 MLL/AF10, 2 
MLL/AF6, 8 MLL/AF9, 1 MLL/ELL, 7 MLL/AF4, and 1 MLL/ENL sample. Given 
the differential gene expression mainly the MLL partner genes AF9 and AF4, 
dominating the patient cohort, are given correct class labels by the classification 
algorithm (Table 6). 
 
Table 6. MLL partner gene confusion matrix determined by resampling. The matrix shows 
the predicted MLL fusion partner gene as determined after 100 runs of SVM-based 
classifications. Misclassified samples are given by bold red letters. Average numbers of 
predictions per run are given. For example, 7 MLL/AF4 samples have been predicted by the 
algorithm 700 times (each sample 100 times). Of the 700 predictions the class label MLL/AF4 
has been given correctly 659 times, i.e., on average 6.59 per run. In 9 individual predictions, a 
MLL/AF4 sample has been predicted as MLL/AF9, in 1 prediction as MLL/ELL, and in 31 
predictions as MLL/ENL, respectively. 
 

real   
  MLL/AF10 MLL/AF6 MLL/AF9 MLL/ELL MLL/AF4 MLL/ENL 

MLL/AF10 0.05  0.27    
MLL/AF6  0.44 0.47 0.2   
MLL/AF9 0.95 1.55 7.09 0.8 0.09  
MLL/ELL   0.1  0.01  
MLL/AF4  0.01 0.07  6.59 0.84 

predicted 

MLL/ENL     0.31 0.16 
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4.4 Gene expression profiling as potential diagnostic method 

Pattern Robustness 
The robustness of diagnostic gene expression patterns was approached by 
visualizing gene signatures according to various parameters. Samples from 240 
untreated adult leukemia patients at diagnosis were analyzed. The diagnostic 
subclasses can be categorized as follows: AML with t(15;17) (n=42), t(8;21) 
(n=40), inv(16) (n=49), t(11q23)/MLL (n=51), inv(3) (n=22), as well as CML 
(n=36). 

Firstly, an analysis included AML cases with t(15;17), t(8;21), inv(16), 
and t(11q23)/MLL. Six different parameters were analyzed and for each 
condition, the total group of 182 patient profiles was splitted into an ideal group 
and a non-ideal group using the following criteria: (A) Duration of sample 
shipment: Samples with shipment time of ≤ 24 h were grouped as ideal cohort. 
Non-ideal patients had a shipment time of >24 h (up to four days). (B) 3´/5´ ratio 
of GAPD hybridization signals: Samples with a 3´/5´ ratio of the GAPD gene ≤ 
3.0 were grouped as ideal cohort. In non-ideal patients the 3´/5´ ratio was >3.0 
(up to 10.3). (C) Duration of sample storage time until microarray target 
preparation: Samples with <2.5 years storage time of the frozen cell lysate at     
-80°C since the individual time point of diagnosis were grouped as ideal cohort. 
Samples that were frozen for ≥ 2.5 years (up to 4.5 years) were designated as 
non-ideal cohort. (D) Date of sample target preparation: This work was 
conducted between June 2001 and February 2004. In order to monitor 
differences in the process that might be related to target preparation, array lots, 
and technical equipment, samples that were prepared within the first 2/3 of the 
study were arbitrarily grouped as “ideal” cohort. Expression profiles that were 
generated in the last third of the study were grouped as “non-ideal” cohort. (E) 
Type of specimen: The ideal cohort included gene expression profiles from 
bone marrow specimens. Peripheral blood samples were considered as non-
ideal cohort. (F) Age of the leukemia patient at diagnosis: With respect to 
stratifying the patients into two age groups current therapy protocols were 
followed which apply different treatment approaches in younger and elderly 
patients (Schoch et al., 2004a). Accordingly, the “ideal” cohort included patients 
<60 years. Patients ≥ 60 years were grouped as “non-ideal” cohort. 

As demonstrated in Table 7 gene sets identified from ideal cohorts also 
accurately classify patients from non-ideal cohorts. Each ideal group was split 
into a training set and a test set. Then, each training set was used to perform 
the gene selection (top 200 genes for each subtype) and training of the 
classification engine for each of the parameters, and the test set was used to 
assess the predictive power of the diagnostic signature, respectively. Then, the 
six SVM models (referring to parameters A through F), were also tested on the 
non-ideal group for their prediction accuracy. Thus, the respective signatures 
indeed were robust. The table represents a prediction matrix of AML subtypes 
based on their gene expression signatures of an ideal patient cohort using a 10-
fold CV (left column) and resampling approach (middle column), as well as the 
predictions of the non-ideal cohort (right column). 
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Table 7. Classification accuracies for various parameters. Distribution of the different ideal 
cohorts and non-ideal cohorts for the total group of 182 profiles of AML patients with t(15;17), 
t(8;21), inv(16), and t(11q23)/MLL. In the ideal cohort, the percentage of the classification 
accuracy is given by 10-fold CV and median accuracy and 95% confidence interval for the 
resampling analysis. In the non-ideal cohort the subtype prediction of the samples is given after 
using a classification engine which was trained on the profiles from each ideal cohort. Individual 
numbers of patients for each cohort are given in parentheses. 

 
  ideal cohort non-ideal cohort 
 parameter 10-fold CV accuracy resampling accuracy prediction 
A shipment time 98% (166/170) 98% [96%; 100%] 100%(12/12) 
B GAPD 3´/5´ ratio 99% (157/158) 100% [98%; 100%] 96% (23/24) 
C storage time 98% (161/165) 98% [95%; 100%] 100% (17/17) 
D preparation period 99% (99/100) 100% [94%; 100%] 99% (81/82) 
E specimen type 99% (171/172) 100% [97%; 100%] 100% (10/10) 
F age of the patient 99% (124/125) 100% [95%; 100%] 100% (57/57) 

 
These results can also be visualized in the gene expression clustering (Figure 
40A through F). No glaring changes occurred for the various conditions when a 
significant set of differentially expressed genes was used. The hierarchical 
cluster dendrograms group significant genes of the diagnostic signatures that 
were identified in the corresponding ideal patient cohorts. In all samples, both 
from ideal and non-ideal cohorts, AML subtypes with recurrent chromosomal 
aberrations showed homogeneous signatures for each parameter, which 
enabled an accurate prediction of the respective leukemia subtype. 
 
 
 
 
 
 
 
 
 
 
 
Figure 40. Pattern robustness in AML with recurrent chromosomal aberrations. 
Hierarchical cluster analyses of adult AML samples with recurrent chromosomal aberrations. 
The analyses visualize six different subsets of probe sets which were identified to be 
differentially expressed when analyzing AML samples with t(15;17), t(8;21), inv(16), and 
t(11q23)/MLL. For parameter (A) through (F) the total group of 182 patient profiles was splitted 
into respective ideal cohorts, used to identify the differentially expressed genes, and non-ideal 
cohorts. Only the genes (rows) were clustered by the algorithm. For each AML subtype, the 
samples (columns) are given in ascending order according to the various parameters: (A) 
Duration of sample shipment, (B) 3´/5´ ratio of GAPD signals, (C) duration of sample storage 
time until microarray target preparation, (D) date of sample target preparation within our study, 
(E) type of specimen, and (F) age of the leukemia patient at diagnosis. The normalized 
expression value for each gene is coded by color (standard deviation from mean). Red cells 
indicate high expression and green cells indicate low expression. 
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Within a larger gene expression profiling study, the handling of the samples, 
e.g., freezing of cell preparations vs. freshly prepared samples, and storage 
time of the samples at -80°C may vary. Also, differences between operators for 
sample target preparation and microarray washing and scanning procedures 
might represent interfering factors. As given in detail in Figure 41 some of the 
samples had been transferred to another laboratory in order to assess the 
influence of sample preparation operators. A different operator prepared the 
samples according to the recommended protocol and subsequently measured 
the gene expression profile. Firstly, two different patient cohorts were analyzed, 
i.e., AML with t(15;17) and inv(16). Differentially expressed genes between 
these two entities were identified based on the expression profiles according to 
the preparation of operator 1, operator 2, or including all samples from both 
operators, respectively (Figure 41A,B,C,D). No influence on the robustness of 
the signature is seen. Moreover, also expression profiles generated from a 
freshly prepared sample vs. samples which had been frozen as cell lysates for 
several days at -80°C were analyzed. Figure 41E shows that the different 
storage times also had no impact on the diagnostic signature. 

This analysis did also include sample preparations at three different time 
points from one patient with AML and inv(3), i.e., an immediate target 
preparation after the sample was obtained, and preparations after 24h and 48h 
storage of the sample at room temperature, respectively. A final step focused 
on an analysis of six CML samples which had been prepared in duplicates by 
the two operators working in different laboratories. As demonstrated in Figures 
41E,F for each sample the four individual profiles, two for each operator, cluster 
near to each other indicating the robustness of the sample preparation protocol, 
microarray platform, and resulting gene expression signature. 
 
 
 
 
 
 
 
 
 
Figure 41. Analysis of varying sample handling and operator parameters. Two different 
operators prepared samples of AML patients with t(15;17) and inv(16). Principal component 
analyses (PCA) visualize the separation of AML with t(15;17) and inv(16) using (A) the top 300 
probe sets from the data set generated by operator 1, or (B) the top 300 probe sets from the 
data set generated by operator 2. In the three-dimensional PCA plot, data points with similar 
characteristics will cluster together. Each patient’s expression pattern is represented by a single 
color-coded sphere. The labels and coloring of the classes were added after the analysis for 
means for better visualization. (C) PCA based on the top 300 probe sets from a combined data 
set containing the matrices of both operators. (D) Hierarchical clustering based on the top 300 
probe sets from a combined data set containing the matrices of both operators. (E) Differentially 
expressed genes between AML with inv(3) and CML. This analysis includes freshly prepared 
versus frozen AML with inv(3) samples. The frozen samples had been prepared after various 
storage times at room temperature. (F) Visualization of the CML samples from the previous 
analysis by PCA. Six patient samples were prepared in replicates by two different operators in 
different laboratories. 
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Correlation of microarray analysis and cytomorphology 
In order to assess the correlation of the microarray technology with a current 
diagnostic method a cohort of 130 patients representing different FAB subtypes 
was included in this analysis. All cases were characterized by cytomorphology 
and cytogenetics. As shown in Figure 42 the percentage of myeloperoxidase 
positive cells as measured by cytochemistry highly correlates to MPO 
microarray signal intensities across the different FAB subtypes (Spearman rank 
correlation r=0.803; p < 0.001). 
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Figure 42. Concordance between cytochemistry and gene expression. In 130 AML samples 
the percentage of myeloperoxidase positive cells as determined by standard cytochemistry on 
bone marrow smears in different FAB subtypes is shown. The following FAB subtypes were 
evaluated: M0 (n=8), M1 (n=23), M2 (n=28), M3 (n=10), M3v (n=9), M4 (n=13), M4eo (n=11), 
M5a (n=10), M5b (n=12), and M6 (n=6). The same patients were also analyzed using U133A 
microarrays. The mean signal intensity for the MPO (myeloperoxidase) gene is given for the 
different FAB subtypes. 
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Correlation of microarray analysis and flow cytometry 
For comparison of methods, flow cytometry and microarray analyses were 
performed in parallel in 113 patients with newly diagnosed AML, ALL, and 4 
normal bone marrow samples from healthy donors (Table 8). Protein expression 
levels of 39 relevant antigenes were correlated with the mRNA abundance of 
the corresponding probes represented on the microarray. 
 
Table 8. Patients for comparison of flow cytometry and microarray analyses. 

 
Parameter Number of samples 
AML (total) 85 

t(8;21) 5 
t(15;17) 5 
inv(16) 4 
trisomy 8 2 
normal karyotype 54 
complex aberrant karyotype 11 
other abnormalities 4 

ALL (total) 28 
t(9;22) 14 
other precursor B-ALL 9 
precursor T-ALL 5 

Normal bone marrow 4 
Percentage of blasts in bone marrow samples  
median, range 90%, 10-100% 

 
Firstly, the 2,187 comparisons of individual expression data obtained by both 
methods were analyzed with regard to positivity. As demonstrated in Table 9, of 
these comparisons, 1,512 (69.1%) revealed congruent results for positivity of 
protein expression and mRNA abundance (881 cases (40.3%) with positive 
expression and 631 cases (28.9%) with negative expression, respectively). In 
509 comparisons (23.3%) microarray analysis detected positivity for mRNA 
expression (call: present) while the results of flow cytometry indicated 
negativity. In 166 cases (7.6%) protein expression was demonstrated by flow 
cytometry while no mRNA expression was detected by microarray analysis (call: 
absent). 

Next, the degree of correlation between protein expression and mRNA 
abundance within specific leukemia subtypes, i.e., AML, precursor B-ALL, and 
precursor T-ALL, was determined. Thus, a first analysis focused on the genes 
most specific for the diagnosis of AML. In the AML cases a high correlation 
between protein expression and mRNA abundance was observed (Table 10). 

In detail, the congruence assessed was 76% for MPO, 88% for CD13, 
and 76% for CD33. However, these three genes were rated positive by 
microarray analysis and negative by flow cytometry in 24%, 10%, and 2%, 
respectively. In only 1%, 2%, and 12%, respectively, MPO, CD13, and CD33 
were rated positive by flow cytometry and negative by microarray analysis. 
Furthermore, the data are similar for most other AML-specific antigens and for 
the antigens necessary to subclassify AML. Thus, the percentages of congruent 
cases, microarray analysis positive and flow cytometry negative cases, and flow 
cytometry positive and microarray analysis negative cases are 75%, 23%, and 



Results 89

2% for CD117; 59%, 41%, and 0% for CD11b; 80%, 17%, and 3% for CD133; 
65%, 35%, and 0% for CD14; 56%, 42%, and 2% for CD15; 46%, 51%, and 3% 
for CD235a; and 67%, 33%, and 0% for CD36. 
With respect to precursor B-ALL the overall percentage of congruent cases was 
69.8% (Table 11). It was even higher for the antigens most relevant for 
establishing the diagnosis and for subclassification of ALL. In detail the 
congruence assessed was 89% for CD22, 75% for CD79A, 100% for CD19, 
83% for CD10, and 86% for TdT. 

Similar data were obtained for precursor T-ALL, although the total 
number of patients analyzed was relatively small (Table 12). The highest 
congruence was observed for CD3 and TdT (100% each). 

Importantly, the high correlations between protein expression and mRNA 
abundance were not limited to congruence in positivity but were significantly 
correlated also quantitatively. When protein expression levels and mRNA 
abundance were compared by Pearson’s correlation (Table 9), these 
comparisons revealed significant although in many cases rather low correlations 
for the fluorescence intensities for many of the analyzed genes. Figure 43 
further underlines the high coherence of expression patterns for both protein 
and mRNA of important antigens for the diagnosis of leukemias. 
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Figure 43. Protein expression and mRNA abundance in a subset of diagnostic antigens. 
Comparison of protein expression levels and mRNA abundance of 9 markers with significant 
correlations (Pearson’s correlation). Mean fluorescence intensity values obtained by flow 
cytometry were calculated for all events with fluorescence values higher than isotype controls 
using the CellQuest Pro software (Becton Dickinson) and are given on the x-axis. Average 
fluorescence intensity values obtained by U133A microarray analyses were calculated by using 
Microarray Suite software (Affymetrix) and are given on the y-axis. 
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Table 9. Comparisons of protein expression and mRNA abundance in acute leukemia. 

 
Correlation of mean fluorescence 
intensity by flow cytometry and 

average fluorescence intensity by 
microarray analysis Antigen Number of 

comparisons 
Both FC and 
MA positive* 

Both FC and 
MA negative* 

MA positive 
and 

FC negative* 

FC positive 
and MA 

negative* Coefficient of 
correlation 

(Spearman) 

Significance of 
correlation 

(Spearman) 
CD10 33 17 12 0 4 0.608 0.000 

CD116 65 29 0 35 1 0.159 0.166 

CD117 73 28 23 21 1 0.378 0.000 

CD11b 61 33 2 26 0 0.607 0.000 

CD13 75 58 5 11 1 0.590 0.000 

CD133 45 21 13 10 1 -0.135 0.272 

CD135 65 42 2 21 0 0.102 0.367 

CD14 72 17 27 28 0 0.585 0.000 

CD15 68 30 5 31 2 -0.014 0.888 

CD19 74 27 43 3 1 0.106 0.253 

CD1a 23 0 16 7 0 0.208 0.319 

CD2 73 13 9 51 0 0.109 0.248 

CD20 3 0 2 0 1 -0.500 0.391 

CD22 63 20 26 0 17 -0.379 0.007 

CD235a 61 4 24 30 3 0.092 0.358 

CD33 75 43 14 2 16 0.494 0.000 

CD34 72 45 9 17 1 0.545 0.000 

CD36 56 27 9 18 2 0.703 0.000 

CD38 60 52 1 1 6 0.612 0.000 

CD3e 69 19 20 11 19 0.119 0.296 

CD4 67 10 37 8 12 -0.196 0.040 

CD41 5 0 0 5 0 0.298 0.050 

CD45 71 71 0 0 0 0.276 0.004 

CD5 2 0 1 0 1 -0.100 0.873 

CD56 73 0 60 1 12 0.126 0.180 

CD61 63 0 56 0 7 0.041 0.679 

CD64 68 17 16 33 2 0.524 0.000 

CD7 72 12 54 0 6 0.144 0.132 

CD79a 22 6 1 0 15 -0.196 0.094 

CD87 66 15 1 50 0 0.422 0.028 

CD8a 5 0 3 2 0 0.182 0.572 

CD9 40 26 5 6 3 0.369 0.002 

CD90 60 3 42 7 8 0.029 0.842 

CD97 38 35 0 2 1 -0.253 0.041 

HLA-DR 73 63 1 9 0 0.322 0.059 

Lactoferrin 63 15 14 31 3 0.209 0.027 

MPO 74 43 2 29 0 0.057 0.558 

NG2 70 1 63 1 5 0.359 0.044 

TdT 69 39 13 2 15 0.026 0.790 

Total 2187 (100.0%) 881 (40.3%) 631 (28.9%) 509 (23.3%) 166 (7.6%) 

 1512 (69.1%) congruent 675 (30.9%) not congruent 
 

* FC= flow cytometry, MA= microarray analysis 
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Table 10. Comparisons of protein expression and mRNA abundance in AML. 

 
Antigen Number of 

comparisons 
Both FC and 
MA positive* 

Both FC and 
MA negative* 

MA positive and 
FC negative* 

FC positive and 
MA negative* 

CD10 12 3 8 0 1 
CD116 46 25 0 21 0 
CD117 48 28 8 11 1 
CD11b 41 23 1 17 0 
CD13 50 44 0 5 1 
CD133 30 15 9 5 1 
CD135 45 29 1 15 0 
CD14 49 15 17 17 0 
CD15 48 26 1 20 1 
CD19 50 6 40 3 1 
CD1a 8 0 6 2 0 
CD2 49 9 6 34 0 
CD20 0 0 0 0 0 
CD22 43 5 24 0 14 
CD235a 39 4 14 20 1 
CD33 50 36 2 1 11 
CD34 47 24 9 13 1 
CD36 39 22 4 13 0 
CD38 41 35 0 1 5 
CD3e 47 11 14 7 15 
CD4 47 10 22 6 9 
CD41 5 0 0 5 0 
CD45 48 48 0 0 0 
CD5 0 0 0 0 0 
CD56 49 0 38 1 10 
CD61 42 0 38 0 4 
CD64 49 15 7 25 2 
CD7 48 10 35 0 3 
CD79a 13 0 1 0 12 
CD87 47 13 0 34 0 
CD8a 3 0 3 0 0 
CD9 27 14 5 6 2 
CD90 41 2 29 6 4 
CD97 25 23 0 2 0 
HLA-DR 48 39 1 8 0 
Lactoferrin 44 12 12 17 3 
MPO 50 38 0 12 0 
NG2 46 0 41 1 4 
TdT 45 18 13 1 13 
Total 1459 (100.0%) 602 (41.3%) 409 (28.0%) 329 (22.5%) 119 (8.2%) 

 1011 (69.3%) congruent 448 (30.7%) not congruent 
* FC= flow cytometry, MA= microarray analysis 
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Table 11. Comparisons of protein expression and mRNA abundance in precursor B-ALL. 

 
Antigen Number of 

comparisons 
Both FC and 
MA positive* 

Both FC and 
MA negative* 

MA positive and 
FC negative* 

FC positive and 
MA negative* 

CD10 18 13 2 0 3 
CD116 17 4 0 12 1 
CD117 21 0 15 6 0 
CD11b 18 8 1 9 0 
CD13 21 11 5 5 0 
CD133 13 4 4 5 0 
CD135 18 11 1 6 0 
CD14 19 1 8 10 0 
CD15 17 4 2 10 1 
CD19 20 20 0 0 0 
CD1a 13 0 8 5 0 
CD2 21 2 3 16 0 
CD20 2 0 1 0 1 
CD22 19 15 2 0 2 
CD235a 18 0 8 8 2 
CD33 21 6 11 0 4 
CD34 21 18 0 3 0 
CD36 15 5 5 4 1 
CD38 17 15 1 0 1 
CD3e 19 5 6 4 4 
CD4 17 0 14 2 1 
CD41 0 0 0 0 0 
CD45 19 19 0 0 0 
CD5 1 0 1 0 0 
CD56 20 0 20 0 0 
CD61 17 0 16 0 1 
CD64 17 2 8 7 0 
CD7 20 0 19 0 1 
CD79a 8 6 0 0 2 
CD87 17 2 1 14 0 
CD8a 0 0 0 0 0 
CD9 11 10 0 0 1 
CD90 17 1 12 1 3 
CD97 11 10 0 0 1 
HLA-DR 21 21 0 0 0 
Lactoferrin 17 3 2 12 0 
MPO 20 4 1 15 0 
NG2 20 1 18 0 1 
TdT 21 18 0 1 2 
Total 622 (100%) 239 (38.4%) 195 (31.4%) 155 (24.9%) 33 (5.3%) 

 434 (69.8%) congruent 188 (30.2%) not congruent 
* FC= flow cytometry, MA= microarray analysis 



Results 93

Table 12. Comparisons of protein expression and mRNA abundance in precursor T-ALL. 

 
Antigen Number of 

comparisons 
Both FC and 
MA positive* 

Both FC and 
MA negative* 

MA positive and 
FC negative* 

FC positive and 
MA negative* 

CD10 2 1 1 0 0 
CD116 2 0 0 2 0 
CD117 3 0 0 3 0 
CD11b 2 2 0 0 0 
CD13 3 3 0 0 0 
CD133 2 2 0 0 0 
CD135 2 2 0 0 0 
CD14 3 0 2 1 0 
CD15 3 0 2 1 0 
CD19 3 0 3 0 0 
CD1a 2 0 2 0 0 
CD2 3 2 0 1 0 
CD20 1 0 1 0 0 
CD22 1 0 0 0 1 
CD235a 3 0 2 1 0 
CD33 3 1 1 0 1 
CD34 3 3 0 0 0 
CD36 2 0 0 1 1 
CD38 2 2 0 0 0 
CD3e 3 3 0 0 0 
CD4 3 0 1 0 2 
CD41 0 0 0 0 0 
CD45 3 3 0 0 0 
CD5 1 0 0 0 1 
CD56 3 0 2 0 1 
CD61 3 0 1 0 2 
CD64 2 0 1 1 0 
CD7 3 1 0 0 2 
CD79a 1 0 0 0 1 
CD87 2 0 0 2 0 
CD8a 2 0 0 2 0 
CD9 2 2 0 0 0 
CD90 2 0 1 0 1 
CD97 2 2 0 0 0 
HLA-DR 3 2 0 1 0 
Lactoferrin 2 0 0 2 0 
MPO 3 0 1 2 0 
NG2 3 0 3 0 0 
TdT 3 3 0 0 0 
Total 91 (100%) 34 (37.4%) 24 (26.4%) 20 (22.0%) 13 (14.3%) 

 58 (63.8%) congruent 33 (36.3%) not congruent 
* FC= flow cytometry, MA= microarray analysis 
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Application of pediatric expression patterns to classify adult patients 
Here, the gene expression patterns of a cohort of 100 adult ALL patients 
comprising 26 precursor B-ALLs with MLL gene rearrangements and 42 
translocation t(9;22)-positive cases, as well as 32 precursor T-ALLs were 
analyzed. The diagnostic compositions of candidate genes as reported in 
microarray studies by Yeoh and colleagues and by Armstrong and colleagues, 
respectively, were used to stratify these cases (Yeoh et al., 2002; Armstrong et 
al., 2002). The genes identified by Yeoh et al. and Armstrong et al. were 
represented on recent Affymetrix HG-U95 chip design microarrays. In this work, 
the newly designed HG-U133 array set was used. In order to achieve 
comparability of differing sets of microarray expression data the different 
Affymetrix U95A chip design and U133A chip design probe set information had 
to be compared. Briefly, as depicted in the respective original publications, the 
significant U95Av2 probe sets of interest, i.e., genes to discriminate ALL with 
t(11q23)/MLL, BCR/ABL, and T-ALL, were extracted. Unique U95Av2 probe 
sets then were functionally annotated using the NetAffx database descriptions. 
Next, for those unique U95Av2 probe sets their corresponding U133A 
counterparts were determined using the “Human Genome U95 to Human 
Genome U133 Best Match comparison spreadsheet” (www.affymetrix.com). 
This search resulted in best match U133 design counterparts for the U95Av2 
probe sets which were chosen for subsequent statistical analyses, i.e., 
predicting the ALL subtype in the independent cohort of adult ALL patients. 

Firstly, the gene expression data was compared to available expression 
signatures of the St. Jude Children’s Research Hospital childhood ALL samples 
(http://www.stjuderesearch.org/data/ALL1). Yeoh et al. had used Affymetrix 
U95Av2 oligonucleotide microarrays to analyze the pattern of genes expressed 
in leukemic blasts from 360 pediatric ALL patients. Distinct expression profiles 
identified each of the prognostically important leukemia subtypes, including T-
ALL, E2A/PBX1, BCR/ABL, TEL/AML1, t(11q23)/MLL, and hyperdiploid 
karyotypes (i.e., >50 chromosomes). They selected discriminating genes for the 
various ALL subtypes using a variety of statistical metrics. In this work, all 
significant U95Av2 probe sets specific for t(11q23)/MLL, BCR/ABL, and T-ALL 
subtypes were extracted from their publication, combined, and their 
corresponding U133A counterparts used to stratify the adult patients. The data 
presented here indicates that the genes reported by Yeoh et al. can also 
separate an independent cohort of adult ALL patient samples. Subgroup 
prediction using SVM classification algorithms demonstrated the discriminative 
properties of those candidate genes specific for T-ALL, BCR/ABL, and 
t(11q23)/MLL in adult ALL (Table 13). 
 
Table 13. Classification of three adult ALL subtypes based on pediatric markers. 

 

 SVM based on 312 probe sets 
according to Yeoh et al. 

Adult ALL subtype 10-fold CV accuracy resampling accuracy 
T-ALL 100% (32/32) 
BCR/ABL 100% (42/42) 
t(11q23)/MLL 100% (26/26) 

100% [97%; 100%] 
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A hierarchical cluster analysis and PCA of adult ALL samples using the 
preselected subset of genes specific for T-ALL, BCR/ABL, and t(11q23)/MLL 
confirms the capability of separating three ALL subtypes based on distinct 
expression signatures. As visualized in Figure 44, samples of each of the three 
distinct ALL subtypes cluster together. Based on the given preselected gene 
expression data, both algorithms accurately assign the ALL samples according 
to their underlying genetic aberration and immunophenotype, respectively. 
 

60 70 80 90 10
0

A B

adult T-ALL

adult BCR/ABL

adult t(11q23)/MLL

T-ALL BCR/ABL t(11q23)/MLL  
 

Figure 44. Pediatric markers according to Yeoh et al. can classify adult patients. The 
analysis is based on U133A microarray expression data of adult ALL samples from the 
Laboratory for Leukemia Diagnostics, Munich, using a published subset of genes identified to 
classify pediatric ALL samples from the St. Jude Children’s Research Hospital, Memphis, TN, 
USA (Yeoh et al., 2002). 312 unique best match U133A probe sets were identified to represent 
the 364 unique U95Av2 probe sets according to Yeoh and colleagues for the distinction of 
t(11q23)/MLL, BCR/ABL and T-ALL leukemias. (A) In the hierarchical clustering the normalized 
expression value for each gene is coded by color. Red cells indicate high expression and green 
cells indicate low expression. (B) In the PCA adult ALL samples of the three subtypes T-ALL 
(n=32), BCR/ABL (n=42) and t(11q23)/MLL (n=26) are accordingly distinguished. 

 
Secondly, the expression data on adult ALL was compared to available 
expression profiles of Dana-Farber Cancer Institute childhood ALL samples 
(http://research.dfci.harvard.edu/korsmeyer/MLL.htm). Armstrong et al. had 
compared the gene expression profiles of leukemic cells from individuals 
diagnosed with precursor B-ALL bearing MLL gene rearrangements to those 
from patients diagnosed with conventional precursor B-ALL that lack this 
translocation (n=44 pediatric ALL patients). They had determined whether there 
were genes correlated with the presence of a MLL translocation. That set of 
published genes was applied to distinguish between t(11q23)/MLL-positive and 
t(11q23)/MLL-negative cases in the independent cohort. By applying this 
preselected set of marker genes it is possible to robustly distinguish between 
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t(11q23)/MLL-positive and t(11q23)/MLL-negative cases in the independent 
cohort of adult patients with high accuracy (Table 14). 
 

Table 14. Prediction of t(11q23)/MLL aberrations in adult ALL using pediatric markers. 
 

 SVM based on 182 probe sets 
according to Armstrong et al. 

Adult ALL subtype 10-fold CV accuracy resampling accuracy 
t(11q23)/MLL 100% (26/26) 
non-t(11q23)/MLL 100% (74/74) 

100% [97%; 100%] 

 
As visualized in Figure 45, based on the given preselected U133 chip design 
gene expression data, two analysis algorithms accurately group the ALL 
samples into MLL gene rearrangement positive and MLL gene rearrangement 
negative cases. 
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Figure 45. Pediatric markers according to Armstrong et al. can classify adult patients. The 
analysis is based on U133A microarray expression data of adult ALL samples from the 
Laboratory for Leukemia Diagnostics, Munich, using a published subset of genes identified to 
classify pediatric ALL samples from the Dana-Farber Cancer Institute, Boston, MA, USA 
(Armstrong et al., 2002). 182 unique best match U133A probe sets corresponded to 217 
identified U95A chip design probe sets for the distinction of t(11q23)/MLL-positive and 
t(11q23)/MLL-negative samples according to Armstrong and colleagues. (A) In the hierarchical 
clustering the normalized expression value for each gene is coded by color. Red cells indicate 
high expression and green cells indicate low expression. (B) In the PCA adult ALL samples of 
the subtypes t(11q23)/MLL (n=26) and non-t(11q23)/MLL (n=74) are accordingly distinguished. 
 

Finally, it is possible to identify overlapping genes specific for t(11q23)/MLL and 
non-t(11q23)/MLL cases in both published data sets and apply this stringent 
marker selection to stratify adult patient samples. A substantial number of 
genes characterizing t(11q23)/MLL-positive patient samples are overlapping 
between the Yeoh et al. and Armstrong et al. gene lists. When tested on the 
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adult ALL microarray expression data set, the SVM classification engine 
demonstrates the accurate discriminative properties of those MLL gene 
translocation specific candidate genes (Table 15). 
 

Table 15. Prediction of MLL aberrations using overlapping t(11q23)/MLL-specific genes. 
 

 SVM based on 55 overlapping probe sets according 
to both Yeoh et al. and Armstrong et al. 

Adult ALL subtype 10-fold CV accuracy resampling accuracy 
t(11q23)/MLL 96% (25/26) 
non-t(11q23)/MLL 99% (73/74) 

97% [97%; 100%] 

 
Again, based on the given preselected gene expression data, analysis 
algorithms accurately separate the adult ALL samples into (11q23)/MLL-positive 
and t(11q23)/MLL-negative cases (Figure 46). In conclusion, in both pediatric 
and adult ALL patient cohorts, MLL gene rearrangement positive and MLL gene 
rearrangement negative cases can robustly be predicted. 
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Figure 46. Overlapping t(11q23)/MLL markers from two pediatric cohorts classify adult 
patients. The analysis is based on U133A microarray expression data of adult ALL samples 
from the Laboratory for Leukemia Diagnostics, Munich, using an overlapping subset of genes 
identified to classify pediatric ALL with and without MLL gene rearrangement. A comparison of 
both Yeoh et al. and Armstrong et al. published gene lists resulted in a number of 57 
overlapping U95Av2 chip design probe sets reported to be correlated with pediatric ALL 
carrying MLL gene aberrations (Yeoh et al., 2002; Armstrong et al., 2002). 55 unique best 
match U133A probe sets corresponded to those 57 identified U95 microarray design probe sets. 
(A) In the hierarchical clustering the normalized expression value for each gene is coded by 
color. Red cells indicate high expression and green cells indicate low expression. (B) In the 
PCA adult ALL samples of the subtypes t(11q23)/MLL (n=26) and non-t(11q23)/MLL (n=74) are 
accordingly distinguished. 
 

Taken together, the data presented in this section provide evidence that genes 
reported to classify and predict childhood ALL are also capable of distinguishing 
the respective adult ALL subentities. Thus, the gene expression signatures are 
validated and also confirmed on a truly independent cohort of patients. 
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Gene expression profiling as a novel diagnostic method  
Between June 2001 and February 2004 a total of 965 target preparations for 
gene expression profiling were performed yielding sufficient cRNA for 
hybridization to microarrays, i.e., ≥ 20 µg after the in vitro transcription. These 
samples were hybridized to U133A and U133B microarrays between March 
2002 and February 2004. Each scan was visually inspected. In 28 (2.9%) cases 
samples were excluded that did not meet a combination of the following 
stringent criteria: (i) %P called probe sets of the U133A array ≥ 30%, (ii) low 
3´/5´ ratio of GAPD probe sets (normally less than 3.0), and (iii) no scan 
artifacts detected, i.e., bubbles, scratches, high background, or comparable 
range of scaling factors. For the remaining 937 (97.1%) samples included in this 
analysis, the median value of the percentage of present called genes was 
46.3% (U133A) and 31.3% (U133B), respectively, the median 3´/5´ ratio of 
GAPD probe sets was 1.65 (U133A) and 1.87 (U133B), respectively. Table 16 
gives an overview about the samples included in this analysis. 
 
Table 16. Number of samples and patient characteristics. 

 
 Number of patients (%) median range 
Shipment time (days)  1 0-3 
Storage time at -80°C (months)  13 0-67 
Patient age (years)  57 16-90 
 AML patients  61 18-90 
 ALL patients  46 16-86 
 CML patients  49 21-82 
 CLL patients  63 36-84 
 non-leukemia cases  45 18-83 
Sex (male/female) 53%/47%   
WBC count at diagnosis (G/l)  28.8 0.4-514 
Bone marrow blasts (acute leukemias only)*  85% 10%-100% 
AML total 620 (66%)   
 t(15;17) 42 (4%)   
 t(8;21) 38 (4%)   
 inv(16) 49 (5%)   
 t(11q23)/MLL 47 (5%)   
 complex aberrant karyotype 75 (8%)   
 other abnormalities 176 (19%)   
 normal karyotype 193 (21%)   
ALL total 152 (16%)   
 Pro-B-ALL/t(11q23)/MLL 26 (3%)   
 c-ALL/Pre-B-ALL with t(9;22) 42 (4%)   
 c-ALL/Pre-B-ALL without t(9;22) 40 (4%)   
 mature B-ALL/t(8;14) 12 (1%)   
 cortical T-ALL 20 (2%)   
 immature T-ALL 12 (1%)   
CML, chronic phase 75 (8%)   
CLL 45 (5%)   
Non-leukemia 45 (5%)   

 
*Threshold for definition of AML according to the WHO classification is a bone marrow blast count of at least 20% 
(which may be even lower by definition, however, if recurrent balanced translocations are present) 

 
Besides the distinction between the four main categories of leukemia, i.e., AML, 
ALL, CML, and CLL, the acute leukemias also comprise specific subentities. 
Thus, the following 12 clinically relevant subgroups were analyzed: AML with 
t(15;17), AML with t(8;21), AML with inv(16), AML with normal karyotype or so-
called “other” cytogenetic abnormalities, AML with t(11q23)/MLL rearrangement, 
AML with complex aberrant karyotype, Pro-B-ALL/t(11q23)/MLL, mature B-
ALL/t(8;14), c-ALL/Pre-B-ALL with or without t(9;22), T-ALL, CML, CLL. 
Additionally, a group designated “non-leukemia” was included. These were 
samples obtained from healthy bone marrow donors or patients with reactive 
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bone marrow conditions, vitamin B12 or iron deficiency, or idiopathic 
thrombocytopenic purpura, respectively. 

The separation of samples with AML and normal karyotypes from those 
with AML and “other” cytogenetic aberrations was not done since the prognosis 
of both subgroups is identical. This is clearly demonstrated in Figure 47A 
showing that the overall survival is identical for these two subgroups when 
applying a standardized treatment approach (Buchner et al., 2003; Kern et al., 
2003a; Haferlach et al., 2003b). This is also true when the cohort of patients 
that were hybridized to the microarrays were compared to a control group of 
patients not included in this work (Figure 47B). Thus, at present there is no 
clinical relevance or need for the distinction between these two groups in this 
analysis. 
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Figure 47. Overall survival in cytogenetically defined AML subgroups. Patients with 
complex aberrant karyotypes and those with AML and t(11q23)/MLL have the worst prognosis, 
patients with AML and t(15;17), t(8;21), or inv(16) have a relatively good prognosis. Importantly, 
there is no difference with regard to prognosis between patients with a normal karyotype and 
those with other karyotype abnormalities, i.e., those not in the before-mentioned subgroups. (A) 
Representation of patients analyzed in this work with available follow-up data (days after 
diagnosis). (B) Representation of unselected 1,225 patients (total cohort) where follow-up data 
were available in the database from the Laboratory for Leukemia Diagnostics.  

 
Prediction of 13 subgroups 
The prediction of the respective leukemia type or subtype was approached 
using Support Vector Machines (SVM). Therefore, the complete data set was 
randomly, but balanced by the subtypes split into training and independent test 
cohorts for the 13 different subgroups. Then differentially expressed genes were 
identified in the training set and a SVM model was built based on the genes that 
demonstrated differential expression between the respective subclasses in the 
training set. This SVM model was used to predict samples in the test cohort. 
The use of the top 100 genes per group resulted in best prediction accuracies 
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(superior to top 20, 50, 150, 200, 250, and 300 genes, respectively). Table 17 
represents a confusion matrix of subgroup predictions based on their gene 
expression signature using a 10-fold CV approach. Overall, a 95.1% accuracy 
of subgroup predictions has been achieved analyzing the 13 classes. 
Specifically, the highest accuracy was achieved for seven of the 13 classes, i.e., 
AML with t(15;17), 100% accurate predictions; AML with inv(16), 98.0%; CLL, 
97.8%; CML, 97.3%; AML normal/other, 97.3%; Pro-B-ALL/t(11q23), 96.2%; 
AML with t(8;21), 94.7%. For the other six subgroups the percentage of 
accurate predictions ranged between 83.3% and 93.3%. Most of the 
misclassifications occurred in subgroups that either had relatively low sample 
numbers, or which are characterized by a high intra-subgroup biologic 
heterogeneity. The first aspect clearly applies to mature B-ALL with t(8;14) with 
a sample number of 12 and 83.3% accurate predictions. The latter aspect is 
reflected in AML with t(11q23)/MLL (89.4% accurate predictions) with balanced 
translocations involving the MLL gene and different fusion partner genes. 
Another example of biologic heterogeneity is AML with complex aberrant 
karyotype (88.0% accurate predictions). Samples in this group demonstrated a 
wide range of three to 30 chromosomal abnormalities (median, 9). As 
anticipated, most of the misclassifications of these groups (4 out of 5 for AML 
with t(11q23)/MLL and 8 out of 9 for AML with complex aberrant karyotype) 
were due to a prediction of the samples as class AML normal/other. A third 
aspect to consider is the relative similarity of distinct subgroups with regard to 
specific characteristics, e.g., the detected expression of myeloid antigens on 
immature T-ALL cases by flow cytometry (Onciu et al., 2002). Probably due to 
these complexities, 4 out of 32 cases with T-ALL were classified as AML 
normal/other. 
 
Table 17. Confusion matrix for prediction of 13 groups as determined by 10-fold CV. 

 
real 

Confusion 
matrix c-ALL/ 

Pre-B-
ALL 

Pro-B-
ALL/ 
t(11q23) 

mature B-
ALL with 
t(8;14) 

T-ALL 
AML 
with 
t(15;17) 

AML 
with 
t(8;21) 

AML 
with 
inv(16) 

AML 
with 
t(11q23) 

AML with 
complex 
karyotype 

AML 
normal/ 
other 

CLL CML non-
leukemia 

c-ALL/Pre-B-ALL 76             
Pro-B-
ALL/t(11q23)  25            
mature B-ALL 
with t(8;14) 1  10       1    

 T-ALL    28     1     
AML with 
t(15;17)     42         

AML with t(8;21)      36 1       

AML with inv(16)       48       
AML with 
t(11q23)        42  4   1 
AML with 
complex kt.      1   66 4    
AML 
normal/other 4 1 2 4  1  4 8 359 1 2 2 

CLL           44   

CML        1    73  

non-leukemia 1         1   42 

Sum (n=937) 82 26 12 32 42 38 49 47 75 369 45 75 45 
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In order to assess the robustness of these predictions a resampling approach 
was applied, i.e., the complete SVM classification procedure was repeated 100 
times. For each of the 100 runs all samples were randomly, but balanced by the 
subtypes divided into a training set (2/3 of all samples, n=625) and a test set 
(1/3 of all samples, n=312). Thus, the test set for each run contained 28 c-
ALL/Pre-B-ALL, 9 Pro-B-ALL/t(11q23), 4 mature B-ALL/t(8;14), 10 T-ALL, 14 
AML with t(15;17), 12 AML with t(8;21), 16 AML with inv(16), 16 AML with 
t(11q23), 25 AML with complex karyotype, 123 AML with normal karyotype or 
other aberrations, 15 CLL, 25 CML, and 15 non-leukemia samples, respectively. 
Table 18 gives the average number of class predictions as determined after 100 
runs of classifications. For example, 9 Pro-B-ALL/t(11q23) samples were 
predicted by the algorithm 900 times (each sample 100 times). Of the 900 
predictions the class label Pro-B-ALL/t(11q23) was assigned correctly 854 
times, i.e., on average 8.54 per run. In 2 individual predictions, Pro-B-
ALL/t(11q23) samples were predicted as c-ALL/Pre-B-ALL, and in 44 
predictions as AML with normal karyotype or other aberrations, respectively. 
 
Table 18. Confusion matrix for prediction of 13 groups as determined by resampling. 

 
real 

Confusion 
matrix c-ALL/ 

Pre-B-
ALL 

Pro-B-
ALL/ 
t(11q23) 

mature B-
ALL with 
t(8;14) 

T-ALL 
AML 
with 
t(15;17) 

AML 
with 
t(8;21) 

AML 
with 
inv(16) 

AML 
with 
t(11q23) 

AML with 
complex 
karyotype 

AML 
normal/ 
other 

CLL CML non-
leukemia 

c-ALL/Pre-B-ALL 25.77 0.02 0.85       0.27  0.07 0.14 
Pro-B-
ALL/t(11q23)  8.54            
mature B-ALL 
with t(8;14) 0.15  2.57       0.11 0.02  0.04 

 T-ALL    9.23     0.36 0.04    
AML with 
t(15;17)     14         

AML with t(8;21)      11.43 0.04       

AML with inv(16)       15.7       
AML with 
t(11q23)        13.05 0.01 1.23   0.04 
AML with 
complex kt.      0.11   21.38 1.36  0.02 0.09 
AML 
normal/other 1.43 0.44 0.36 0.77  0.46 0.26 2.71 3.14 119.1 0.36 0.8 1.02 

CLL           14.62   

CML 0.09       0.18  0.48  23.82 0.44 

non-leukemia 0.56  0.22     0.06 0.11 0.41  0.29 13.23 

Sum (n=312) 28 9 4 10 14 12 16 16 25 123 15 25 15 

 
Confirming the previous data obtained by 10-fold CV, the overall median 
accuracy amounts to 93.8% (95% confidence interval: [91.4%; 95.8%]). In 
particular and similar to the 10-fold CV approach, a very high degree of 
accurate predictions was achieved in seven of the 13 subgroups, i.e., AML with 
t(15;17), 100% median accuracy; AML with inv(16), 98.1%; CLL, 97.5%; CML, 
95.3%; AML normal/other, 96.8%; Pro-B-ALL/t(11q23), 94.9%; AML with 
t(8;21), 95.3%. For the other six subgroups the median prediction accuracies 
ranged between 64.3% and 92.3%. Thus, the results obtained for the 
subgroups by applying the resampling approach are highly consistent with 
those obtained by 10-fold CV and strongly confirm the capability of gene 
expression profiling to predict distinct leukemia subtypes. The reasons for the 
misclassifications are most likely the same as those described above, in 
particular the relatively low number of cases with mature B-ALL with t(8;14). 
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The sensitivities and specificities of the predictions for each of the 13 
subclasses are given in Table 19. According to the accuracy data given above, 
the specificity overall is very high, more than 99% for all but one subgroup. 
Since most misclassified samples were classified as AML normal/other, the 
specificity of this subgroup was slightly lower than for other subgroups and 
amounted to 93.7%. The median sensitivity ranged between 75% and 100% for 
all subgroups. 
 
Table 19. Sensitivities and specificities for leukemia classification in 13 subgroups. 

 
Sensitivity Specificity Leukemia class Number of cases (n=937) 

Median 95% confidence interval Median 95% confidence interval 

c-ALL/Pre-B-ALL 82 92.9% [82.1%; 100%] 99.7% [98.6%; 100%] 

Pro-B-ALL/t(11q23) 26 100% [77.8%; 100%] 100% [100%; 100%] 

mature B-ALL/t(8;14) 12 75.0% [25.0%; 100%] 100% [99.4%; 100%] 

T-ALL 32 90.0% [70.0%; 100%] 100% [99.7%; 100%] 

AML with t(15;17) 42 100% [100%; 100%] 100% [100%; 100%] 

AML with t(8;21) 38 100% [83.3%; 100%] 100% [99.7%; 100%] 

AML with inv(16) 49 100% [87.5%; 100%] 100% [100%; 100%] 

AML with t(11q23) 47 81.3% [62.5%; 100%] 99.7% [99.0%; 100%] 

AML with complex kt. 75 86.0% [72.0%; 96.0%] 99.7% [98.6%; 100%] 

AML normal/other 369 96.8% [94.3%; 99.2%] 93.7% [90.2%; 96.6%] 

CLL 45 100% [93.3%; 100%] 100% [100%; 100%] 

CML 75 96.0% [84.0%; 100%] 99.7% [98.6%; 100%] 

non-leukemia 45 90.0% [66.3%; 100%] 99.7% [98.3%; 100%] 
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Cluster analysis of 13 subgroups 
To further validate the findings described above cluster analyses were 
performed for the 13 groups analyzed as well as for paired comparisons of 
selected groups. Firstly, a hierarchical clustering of all of the analyzed samples 
reflects the clearly differing gene expression patterns of the 13 groups resulting 
in a highly accurate separation of this large and comprehensive series of 937 
samples (Figure 48). 
 

ALL AML CLL CML nBM

1 2 3 4 5 6 7 8 9 10 11 12 13

1: precursor B-ALL
2: ALL with t(11q23)/MLL
3: ALL with t(8;14)
4: precursor T-ALL

5: AML with complex kt.
6: AML with inv(16)
7: AML normal/other
8: AML with t(11q23)/MLL

9: AML with t(15;17)
10: AML with t(8;21)
11: CLL
12: CML

13: nBM

 
 
Figure 48. Hierarchical cluster analysis of 937 samples representing 13 classes. Analysis 
of 937 samples (columns) using a set of 1,019 differentially expressed genes (rows) (U133 set). 
The normalized expression value for each gene is coded by color (standard deviation from 
mean). Red cells indicate high expression and green cells indicate low expression. The major 
leukemia types are separated by bars. For each of the 13 classes the top 100 differentially 
expressed genes, according to t-test-statistic, were used. Of the 1,300 genes, 281 were 
repeatedly identified as important diagnostic markers and were overlapping between the 
respective top 100 gene lists. Thus, this results in a list of 1,019 non-overlapping genes. 
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When a three-dimensional PCA was performed, the power of the gene 
expression profile-based leukemia classification can be demonstrated by the 
clear separation of precursor T-ALL from c-ALL/Pre-B-ALL (with or without 
t(9;22)) (Figure 49A). Similarly, three-dimensional PCA provides a clear 
distinction between both t(9;22)-positive entities, CML and c-ALL/Pre-B-ALL 
(Figure 49B). Interestingly, the one sample of t(9;22)-positive c-ALL/Pre-B-ALL 
shown in the proximity of the CML samples is characterized by only 50% 
leukemic bone marrow infiltration. Thus, the normal hematopoiesis present in 
this sample, which is largely myelomonocytic, and the forced assignment to 
either of the two groups are the likely reasons for this result. 
 
A B

c-ALL/Pre-B-ALL with t(9;22)

CML

precursor B-ALL

precursor T-ALL  
 
Figure 49. Three-dimensional PCA visualizing distinctions of leukemia subtypes. (A) 
Distinction between precursor B-ALL and T-ALL (U133 set). The 114 ALL samples were 
projected into the feature space consisting of a combination of the top 100 differentially 
expressed genes when comparing precursor B-ALL vs. the other 12 classes or T-ALL vs. the 
other 12 classes. The 82 precursor B-ALL samples are colored blue and include 42 c-ALL/Pre-
B-ALL with t(9;22) and 40 c-ALL/Pre-B-ALL without t(9;22). The 32 T-ALL samples are colored 
turquoise. (B) Distinction between c-ALL/Pre-B-ALL with t(9;22) and CML. The 117 samples 
were projected into the feature space consisting of a combination of the top 100 differentially 
expressed genes when comparing c-ALL/Pre-B-ALL with or without t(9;22) samples vs. the 
other 12 classes and CML vs. the other 12 classes. The 42 c-ALL/Pre-B-ALL with t(9;22) 
samples are colored red, the 75 CML samples are colored green, respectively. 
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Identification of cortical T-ALL and precursor B-ALL with t(9;22) 
In order to further refine the classification capabilities of this approach an 
analysis aimed at identifying the clinically distinct entities c-ALL/Pre-B-ALL with 
t(9;22) and cortical T-ALL out of the groups classified as c-ALL/Pre-B-ALL and 
T-ALL, respectively. 

In Figure 50A a cluster analysis shows that the majority of the cases fall 
either into the branch of c-ALL/Pre-B-ALL without t(9;22), or into the branch of 
c-ALL/Pre-B-ALL with t(9;22). The remaining 21 samples (26%) fall into a third 
branch characterized by a gene expression profile clearly differing from the 
other two groups. Accordingly, the 10-fold CV analysis, allowing the separation 
into two groups only, reveals an accuracy of 82.9%. Importantly, 
misclassifications occurred in both directions, i.e., cases with t(9;22) were 
classified as without it and vice versa. Resampling of the training and test sets 
resulted in a median accuracy of 77.8% (95% confidence interval: [61.0%; 
90.8%]) and indicated that these misclassifications are not limited to distinct 
samples, i.e., the percentages of misclassifications per sample range from 3.1% 
to 88.1%, probably reflecting a significant overlap of gene expression signatures 
between both groups (Figure 50B), or being due to the presence of a clinically 
not yet identified third group of c-ALL/Pre-B-ALL. 
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Figure 50. Identification of c-ALL/Pre-B-ALL samples with or without t(9;22). Analysis of 82 
c-ALL/Pre-B-ALL samples based on a supervised identification of differentially expressed genes 
between 42 cases demonstrating a t(9;22), colored in red, and 40 cases without t(9;22), colored 
in blue, respectively (U133 set). (A) In the hierarchical cluster analysis the normalized 
expression value for each gene (given in rows) is coded by color (standard deviation from 
mean). Red cells indicate high expression and green cells indicate low expression. (B) In the 
three-dimensional PCA the c-ALL/Pre-B-ALL samples were projected into the feature space 
consisting of the top 100 differentially expressed genes when comparing t(9;22)-positive vs. 
t(9;22)-negative cases. 
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The separation of cortical T-ALL samples from immature T-ALL samples is 
shown in the corresponding cluster analysis (Figure 51A). Interestingly, two 
samples of immature T-ALL show a gene expression profile slightly different 
from the other immature T-ALL cases. In fact, these two samples are the ones 
lying nearest to the cortical T-ALL samples in the PCA (Figure 51B). According 
to the relative vicinity of these two samples to samples of cortical T-ALL, the 
accuracy of the 10-fold CV is 84% and resampling results in a median accuracy 
of 80% (95% confidence interval: [60%; 100%]). 
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Figure 51. Distinction between immature and cortical T-ALL samples. The analysis of 32 T-
ALL samples is based on a supervised identification of differentially expressed genes between 
12 immature T-ALL samples (orange) and 20 cortical T-ALL samples (purple) (U133 set). (A) In 
the hierarchical cluster analysis the normalized expression value for each gene (given in rows) 
is coded by color (standard deviation from mean). Red cells indicate high expression and green 
cells indicate low expression. (B) In the three-dimensional PCA the T-ALL samples were 
projected into the feature space consisting of the top 100 differentially expressed genes when 
comparing immature vs. cortical T-ALL cases. 

 
Taken together, it was successfully shown in an extensive analysis of leukemia 
samples that a one-step diagnostic approach for the diagnosis of leukemias is 
feasible. In 937 samples from patients with newly diagnosed leukemia and 
normal bone marrow from healthy donors all leukemic subentities which are 
clinically relevant with respect to specific treatment approaches and 
prognostication were assessed. Thus, the diagnostic accuracy and efficiency of 
current methods may be improved by the use of microarrays.  
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5. Discussion 
 
Three major questions were addressed in this thesis. Firstly, is there a specific 
gene expression signature associated with distinct leukemia types and 
subtypes? Secondly, if that is the case, can these gene expression patterns 
give new insights into the biology of the different forms of leukemia? Thirdly, are 
these signatures robust enough for diagnostic usage? To answer these 
questions samples obtained from leukemia patients, diagnosed and 
characterized in the Laboratory for Leukemia Diagnostics, Munich, Germany, 
were analyzed using high-density oligonucleotide microarrays. Various 
microarray data analysis algorithms were applied to identify minimal sets of 
genes and existing data analysis methods were adapted to assess diagnostic 
accuracies and enable a comparison to both available published microarray 
data and conventional methods used for the diagnosis of leukemias. 
 
5.1 Specific patterns in AML with reciprocal rearrangements 

The main focus of the initial analyses was the assessment of the differences 
between three highly characterized subgroups of AML defined by specific 
primary chromosome aberrations. By applying different independent 
approaches for the analysis of microarray data, it was demonstrated that AML 
samples from previously defined subtypes can be adequately classified on the 
basis of gene expression profiles. It is intriguing that there is both sufficient 
coherence in gene expression within and difference between these subtypes to 
classify them with high accuracy even though the samples derive from the same 
myeloid cell lineage. 

Firstly, unsupervised algorithms were applied and revealed that AML with 
t(15;17), t(8;21), and inv(16) are characterized by different transcriptomes. 
Unsupervised algorithms are the method of choice when one has no or little a 
priori knowledge of the complete repertoire of expected gene expression 
signatures. Cluster analyses represented complex gene expression data that, 
however, through statistical organization and graphical display, allow to explore 
the data in a natural intuitive manner. As anticipated, it was further shown that 
AML with t(8;21) and AML with inv(16), which both involve alterations of the 
core binding factor complex (Friedman, 1999), are more related to each other 
as compared to AML with t(15;17). Recently, detailed analyses have confirmed 
this finding (Ross et al., 2004). The two phenotypically different subtypes of 
AML with t(15;17), i.e., AML M3 and AML M3v, clustered within one area and 
therefore demonstrate similarities in their underlying transcriptome.  

So far, several studies confirmed that gene expression profiles can be 
used for class prediction. This has been shown for acute leukemias, round blue 
cell tumors, and malignant melanomas (Golub et al., 1999; Bittner et al., 2000; 
Khan et al., 2001), as well as for different types of solid tumors by using 
multiclass cancer classification (Ramaswamy et al., 2001). Whereas the 
selection of different subgroups in these studies was performed by using 
exclusively phenotypic criteria, other studies were based on genetically defined 
entities (Perou et al., 2000; Hedenfalk et al., 2001). In this work, for the first time 
the discrimination of three genetically defined AML subgroups was 
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accomplished. Thus, a second step of the initial analyses was to search for 
minimal gene sets using supervised algorithms and to test the possibility of 
predicting AML subtypes solely based on gene expression signatures. Two 
classifiers were developed using two independent approaches. Both classifiers 
accurately predicted the AML subtypes t(15;17), t(8;21), and inv(16). However, 
they differed in the number of genes needed for the classification task. Whereas 
classification by the weighted voting algorithm according to Golub and 
colleagues (Golub et al., 1999) allowed the discrimination between the three 
classes based on a minimal set of 13 genes, the multiple-tree classifier was 
based on 29 genes. As indicated by cross-validation, generalization properties 
are excellent for the multiple-tree classifier, i.e., it is likely to perform equally 
well on new, unseen samples. Interestingly, the classifiers contained genes 
already known to be primarily involved in the pathogenesis of the respective 
entities, namely MYH11 in AML with inv(16) (Shigesada et al., 2004) and ETO 
(CBFA2T1) in AML with t(8;21) (Peterson and Zhang, 2004). Presumably, the 
detection of overexpression of MYH11 in inv(16) cases and ETO in t(8;21) 
cases relates to the detection of the fusion gene transcripts rather than of the 
wild-type transcripts. The other genes identified belong to various functional 
categories and their potential pathogenetic significance in AML has yet to be 
clarified.  

In 2002, the U133 two-array set replaced the U95 array design and 
provided a comprehensive coverage of well-substantiated genes in the human 
genome. As the next step forward the analyses then were extended to the U133 
microarray design. Firstly, the question was addressed whether differentially 
expressed genes from the U95A study would also allow an accurate separation 
of the patients when measured with U133 design microarrays. Secondly, the 
genes were also validated on new, independent patient samples which had not 
been used in the initial gene identification study. Therefore, all previously used 
hybridization cocktails utilized in the initial profiling study and additional patient 
samples were hybridized to the improved U133A microarray. Repeatedly, the 
presented diagnostic composition of genes accurately separated the three AML 
subtypes in all 129 cases. Taken together, both the genes were successfully 
confirmed on an updated chip design, but also novel candidates which had not 
been represented on the U95Av2 microarray were identified in this analysis. As 
a consequence, further investigations proceeded with the transition from 
U95Av2 arrays to the U133 set of microarrays.  

As a first conclusion, an unequivocal association between disease-
specific genetic alterations and distinct gene expression profiles in AML was 
shown. For each of the three analyzed clearly defined subtypes of AML, i.e., 
t(15;17), t(8;21), and inv(16), signatures of gene expression were identified that 
were homogeneous within all samples of the respective subgroups, but clearly 
differed between these three subgroups. The analyzed samples represent 
disease subtypes that are defined specifically on the genetic and the phenotypic 
level by conventional diagnostics including cytomorphology, cytogenetics, and 
molecular genetics. Thus, it was expected that the extension of the gene 
expression analyses to currently less well-defined leukemia entities would 
reveal new insights into the underlying biology. 
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Reproducibility of results between laboratories 
In several laboratories, where gene expression profiles had been generated, 
distinct AML subtypes were correctly identified based on different gene 
expression patterns. It is therefore of interest to ask the question to which extent 
the genes described in this work to discriminate between AML with t(15;17), 
t(8;21), or inv(16) can also be found in other reports. Consequently, the 
reported list of 36 genes to stratify the AML subtypes t(15;17), t(8;21), and 
inv(16) was further examined. This list of genes is disclosed in the initial gene 
expression profiling analysis and was based on Affymetrix U95A microarrays 
(Table 2). It could be demonstrated that, using both independent patients and a 
new microarray with higher density (U133A), genes from that list were still 
excellent diagnostic markers (Kohlmann et al., 2003; Haferlach et al., 2003a). 
Moreover, genes from that list were also reported and confirmed by other major 
European and USA leukemia laboratories. In 2003, Debernardi and colleagues 
from the Barts and the Royal London School of Medicine and Dentistry, London, 
UK, presented data on AML subtypes with recurrent translocations (U95Av2 
microarray). Several of the markers from this work are also contained in their 
report (Debernardi et al., 2003). In 2004, some of the genes were confirmed on 
both pediatric and adult cohorts. Ross et al., from the St Jude Children’s 
Research Hospital had generated profiles from pediatric AML patients using 
U133A microarrays (Ross et al., 2004). Genes depicted in their manuscript and 
supplemental data have also been part of the list in this work. Moreover, as 
shown in the publication by Bullinger and colleagues from Stanford University, 
Stanford, CA, USA, unsupervised analyses accurately separated AML with 
t(15;17), t(8;21), and inv(16) (Bullinger et al., 2004). Signatures correlated with 
this separation also contained genes depicted in this work. Interestingly, this 
study was based on cDNA microarrays, an alternative gene expression profiling 
platform. Lastly, some of the predictors to stratify AML with specific 
translocations were also reported by Valk and colleagues from the Erasmus 
University Medical Center, Rotterdam, The Netherlands, though using a 
completely unsupervised analysis approach for their U133A microarray data 
(Valk et al., 2004). Detailed information on the genes that were confirmed is 
given in the table below (Table 20).  

Some of the genes were not contained in the reported lists from other 
groups. But, for a number of reasons, it is actually expected that gene lists from 
the numerous publications contain some discrepancies. This is due to several 
parameters that can influence gene expression profiling studies: (A) The studies 
on gene expression profiles of acute leukemias differ with respect to the 
microarray platform used and types of microarrays, i.e., the content of 
represented genes. This also may include differences in sample preprocessing 
and variations in target preparation for microarray analysis. (B) Additionally, the 
studies differ in patient cohorts. (C) Moreover, in each of the studies acute 
leukemias were compared to a variety of different leukemia types. Thus, the 
pattern of specific genes is dependent on the constellation of the data based on 
the experimental design. (D) Lastly, one can also expect to observe variances 
due to different algorithms used for data analysis. 
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Table 20. Confirmation of genes correlated with AML with t(15;17), t(8;21), and inv(16). 

 
Genes from Schoch et al., 2002 Debernardi 

et al., 2003a 
Ross et al., 
2004b 

Kohlmann et 
al., 2003c 

Bullinger et 
al., 2004d 

Valk et al., 
2004e 

ADD3 U37122    X  
ADRA2C J03853     X 
AHNAK M80899      
AHR L19872      
ALCAM Y10183  X    
ARHGAP4 X78817 X X X  X 
BZRP M36035      
CBFA2T1 D43638 X X X X X 
CD74 M13560      
CDW52 N90866  X  X  
CEACAM6 M18728      
CLECSF2 X96719 X   X  
CLU M25915      
CTSW AF013611  X X X  
DKFZP564K0822 W25986  X   X 
DKFZP586N1922 N99340      
FBLN1 X53742      
GNAI1 AL049933      
HLA-DMA X62744    X  
HLA-DPA1 X00457   X X  
HLA-DRA J00194      
HLA-DRB1 M32578      
HOXB2 X16665      
ITGB2 M15395      
KRT18 M26326  X    
MYH11 AF013570 X X X X X 
PIG6 AF010310      
PLXNB2 AB002313  X  X  
POU4F1 X64624 X X X  X 
PRKAR1B M65066      
PTGDS AI207842  X   X 
RGS10 AF045229 X X X   
S100A9 W72424  X    
SELL M25280   X   
SERPING1 X54486  X  X  
TGFBI M77349 X X   X 

 
a Compared to the 43 genes correlated with t(15;17), t(8;21), or inv(16) as disclosed in Table 2 of their manuscript. 
b Compared to the top 100 probes correlated with t(15;17), t(8;21), or inv(16) as disclosed in Supplemental Tables S7 - S9 of their manuscript. 
c Compared to the 17 genes correlated with t(15;17), t(8;21), or inv(16) as disclosed in Table 2 of the publication. 
d Compared to the top 50 up- and downregulated probes correlated with t(15;17), t(8;21), or inv(16) as listed in Supplementary Table 5 of their manuscript. 
e Compared to the top 40 genes correlated with t(15;17), t(8;21), or inv(16) clusters, given as Supplemental Table I1, Table L1, or Table M1, respectively. 

 
Gene expression signatures and morphology in APL 
A next series of analyses then focused on the investigation of the transcriptome 
of APL in more detail. It could be confirmed that APL has a specific gene 
expression signature, which is shared by AML M3 and its morphological variant 
M3v, distinguishing both APL subtypes from other genetically defined AML. An 
unsupervised data analysis approach discriminated APL (FAB M3 and M3v 
combined) from AML with t(8;21), or inv(16), or t(11q23)/MLL aberrations and 
also from AML with a normal karyotype. Thus, it could be proven repeatedly that 
PML/RARA fusion transcripts lead to a unique and highly reproducible gene 
expression signature. The differentially expressed genes from a supervised 
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analysis comparing APL to AML with t(8;21), or inv(16), or t(11q23)/MLL 
aberrations as well as to AML with normal karyotype were further examined in 
more detail. Through the use of a pathway analysis application, a phenomenon 
known from immunophenotyping of APL was visualized in a biological network, 
i.e., that genes with functional relevance in MHC-II antigen presentation are 
lower expressed in APL (Orfao et al., 2004). Other overlapping probe sets that 
were found to be consistently expressed higher in APL in these two analyses 
encoded for genes like AGRN, ANXA8, CTSW, HGF, LAMC1, LGALS12, 
MST1, PTGDS, SERPING1, SLC24A3, STAB1, or TPM4. Some of these genes 
were also listed as highly correlated with a t(15;17)-specific gene signature in a 
recent study (Valk et al., 2004). Similarly, consistently lower expressed genes in 
APL included the genes CD86, CDW52, CSPG2, CTSS, DEFA4, HOXA9, 
HOXA10, MEIS1, MARCKS, MS4A6A, S100A9, SCAP2. This confirms recent 
data regarding a global downregulation of HOX gene expression in APL 
(Thompson et al., 2003). 

Patients with APL suffer from severe bleeding episodes at diagnosis and 
had an early death rate of up to 30% before the ATRA era (Haferlach et al., 
1993) and up to 10% after ATRA was introduced into induction therapy 
protocols (Sanz et al., 1999; Fenaux et al., 2000; Lengfelder et al., 2000; Degos 
and Wang, 2001; Tallman et al., 2002). Therefore, through the use of the Gene 
Ontology annotation a supervised analysis was performed including genes 
known to be involved in blood clotting. Intriguingly, several genes such as 
ANXA5, CD59, THBS1, SERPINE1, LMAN1, and THBD were found to be 
expressed higher when comparing APL against other AML subtypes. This 
confirms a previous finding in patients with disseminated intravascular 
coagulation where elevated plasma levels of SERPINE1, also known as the 
plasminogen activator inhibitor-I (PAI1), have been reported (Watanabe et al., 
2001). 

In 56% of AML patients the WBC count at diagnosis is >10,000/µl, in 
15% it is within normal ranges, and in 29% leukocyte counts <4,000/µl were 
measured (data on 1,155 unselected AML patients). However, a striking 
difference is observed with respect to the WBC count in patients with t(15;17) 
and AML M3 vs. M3v showing leukopenia mostly in M3 and normal or elevated 
WBC count in M3v patients. This is surprising as the bone marrow also in AML 
M3 cases is mostly packed and does not demonstrate a pattern different from 
other AML subtypes or AML M3v, respectively. The phenotype in M3 
demonstrates a heavy granulation of promyelocytic blasts even in the peripheral 
blood. But the picture is much more distinct in the bone marrow with abnormal 
promyelocytes having primary granules bigger than in normal promyelocytes. In 
contrast, the granulation in the M3v cases is mostly invisible in the MGG or 
Pappenheim stain. Only in the myeloperoxidase reaction both APL subtypes are 
strongly positive. This makes it obvious that granules in M3v cases are so-
called secondary granules that can be found in more mature cells of 
granulocytic differentiation. Thus, one can speculate that both subtypes of APL 
arise on different levels of immature stem cells leading to individual 
programming and maturation controls and stops (Grimwade and Enver, 2004). 

Therefore, several genes were evaluated with respect to different stages 
of differentiation. For example, interleukin-3 receptor alpha chain, IL3RA, was 
expressed higher in M3v cases. Abnormalities of IL3RA are frequently observed 
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in AML and may contribute to the proliferative advantage of leukemic blasts 
(Testa et al., 2002; Testa et al., 2004). In another study it was demonstrated 
that activation of human interleukin-3 receptor stimulates self-renewal or 
myeloid differentiation, respectively (Evans et al., 2002). It can be hypothesized 
that, as it was observed, a reduced expression of IL3RA might therefore 
contribute to a block in M3 differentiation and a deregulated overexpression in 
M3v might lead to a more mature form of APL. Also, M3 and M3v cases might 
differ in their leukotriene pathway due to changes in ALOX5 expression and 
thereby represent different stages of myeloid differentiation (Scoggan et al., 
1996). It has also been shown that isoforms of PTPRC (CD45 antigen) play an 
important role in the proliferation and differentiation of hematopoietic cells 
(Craig et al., 1994). In AML, CD45 isoform expression characterized differential 
stages both in myelocytic and monocytic lineages (Miyachi et al., 1999). In this 
work, PTPRC demonstrated an elevated expression in M3v cases compared to 
M3 samples. In addition, differing gene expression was observed with respect 
to CD2 positivity as has been suggested by Grimwade et al. being higher 
expressed in M3v (Mistry et al., 2003; Grimwade and Enver, 2004). A similar 
pattern of expression was also detected for CD2BP2, which binds to a site 
within the cytoplasmic region of CD2 (Nishizawa et al., 1998). 

Next, the phenotypical findings were correlated with the expression levels 
of candidates that are known to be present in primary and/or in secondary 
granules. Highly significant correlations between phenotype and gene 
expression profiles were found irrespective of the shared cytogenetic genotype. 
As Auer rods are known to be fused, cylindrical stacks of abnormal primary 
granules and accordingly stain strongly positive for myeloperoxidase they are a 
hallmark for AML and are especially frequent in AML M3. It is well known that 
the overwhelming number of primary granules in this APL subtype in most 
cases leads to bundles of Auer rods in one cell, so-called faggot cells. It was 
possible to confirm this in the analyzed cohort of AML M3 cases (87.8% with 
faggot cells). This was significantly different as compared to the M3v cases, 
mostly occurring with secondary granules and faggot cells found in only 64.5%. 
Myeloperoxidase (MPO) was seen highly elevated in both subtypes, but 
differences were detected for defensin alpha 1, DEFA1, (known to be higher 
expressed in primary granules) and for transcobalamin II, TCN2, (higher in 
secondary granules) with respect to their gene expression in M3 or M3v cells. 
This demonstrates the concordance of morphology and gene expression with 
respect to phenotypical differences in APL. It also further supports the 
hypothesis that the M3v form of APL is the more mature subtype and has its 
maturation stop at a later stage in differentiation of granulopoiesis compared to 
M3. 

Another very important phenotypical difference in M3 vs. M3v is the 
shape of the nucleus. This led to the speculation that genes encoding for 
nuclear envelope proteins might be differentially expressed in the two 
morphological APL subtypes. Indeed, a close examination of an APL-specific 
biological network revealed that LMNA, a member of the intermediate filament 
family, is upregulated in M3v compared to M3 cases. Lamins are components of 
the nuclear lamina, a fibrous layer on the nucleoplasmic side of the inner 
nuclear membrane, which is thought to provide a framework for the nuclear 
envelope (McKeon et al., 1986). The fact that lamins A and C are lacking from 
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some undifferentiated cells might also point FAB M3v towards the more mature 
APL subtype (Wydner et al., 1996). 

It has been shown in animal models that the expression of PML/RARA 
alone is not sufficient to induce APL. Therefore, additional molecular genetic 
mechanism have to be proposed for full-blown leukemia (Gilliland and Griffin, 
2002; Kelly et al., 2002). Recently, a first hint of additional molecular mutations 
in APL and also for molecular differences between both subtypes has been 
identified. In comparison to classical APL, a higher frequency of FLT3 gene 
length mutations (FLT3-LM) was observed in M3v patients (75% vs. 23%) 
(Schnittger et al., 2002; Mistry et al., 2003; Grimwade and Enver, 2004). 
However, the FLT3-LM was not detected in all AML M3v cases and was also 
observed in M3. Thus, further components in a currently unknown molecular 
network have to be identified. In this work, a highly significant correlation 
between morphology, WBC count, and FLT3-LM in AML M3v and vice versa in 
AML M3 was observed. With respect to FLT3-LM a highly significant difference 
between M3 and M3v was confirmed. In order to test the independency of the 
genes identified by microarray analysis from these different aspects a linear 
regression analysis was performed and included the 20 most differentiating 
genes between M3 and M3v as well as level of WBC count and FLT3-LM 
status. Only six genes were found to be dependent on the other two 
parameters, again showing the multifactorial background of M3 and M3v 
subtypes in APL. 

In conclusion, patients with APL and t(15;17) show in comparison to 
other AML subgroups distinct gene expression signatures. Some of these APL-
specific genes can be correlated with the clotting disorder that is known to be 
highly affected in APL. Through supervised approaches AML M3 was 
discriminated from M3v with a very high accuracy based in some parts on 
genes responsible for maturation, granulation and nucleus configuration. These 
genes may therefore explain the known differences between these leukemia 
entities. Furthermore, these different expression profiles in AML M3 and M3v 
may hint to different levels of stem cells from which the two subtypes of APL are 
arising (Gilliland and Griffin, 2002; Grimwade and Enver, 2004). 
 
5.2 Molecular characterization of ALL using microarrays 
With respect to ALL, initially four differing adult ALL subtypes were analyzed. 
Precursor B-ALL with t(11q23)/MLL, BCR/ABL, or t(8;14), and precursor T-ALL 
all formed distinct clusters in various data analysis approaches which reflect 
their highly differing underlying gene expression profiles. This is in line with 
previous reports showing that pediatric ALL with t(11q23)/MLL, BCR/ABL, or 
precursor T-ALL samples, respectively, can be separated and also predicted 
with high accuracies using microarray technology (Yeoh et al., 2002; Ross et 
al., 2003). The report from Yeoh and colleagues has been a milestone in 
microarray data analysis with respect to class discovery, class prediction, and 
prediction of outcome. Their data on 360 childhood ALL analyzed by Affymetrix 
U95A arrays revealed distinct signatures for each of the prognostically 
important ALL subtypes, including T-ALL, E2A/PBX1, BCR/ABL, TEL/AML1, 
t(11q23)/MLL, and hyperdiploid karyotypes (i.e., >50 chromosomes). This has 
been confirmed in a follow-up study by Ross and colleagues using a selection 
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of the initial cohort of patients that were rehybridized to U133 set microarrays. 
Most surprisingly, however, Yeoh et al. not only predicted the therapeutic 
outcome in most children with ALL, but astoundingly also found specific genes 
in the ALL blasts at diagnosis that indicate an increased risk of developing a 
therapy-induced AML after successful treatment of ALL, which was considered 
a provocative observation by the authors themselves. 

In this work, using both U95A and U133A microarrays genes differentially 
expressed in precursor B-ALL with t(11q23)/MLL, BCR/ABL, or t(8;14), and 
precursor T-ALL contained for example candidates encoding for the T cell 
receptor beta subunit and T cell surface CD3 delta chain (TRB, CD3D). TRB 
and CD3D were identified as highly indicative for T-ALL as compared to both 
ALL with t(9;22) and all other ALL subtypes. This is in line with standard 
diagnostics of T-ALL by immunophenotyping where these antigens include the 
most specific ones (Campana and Behm, 2000). Most of the other genes 
discovered to be overexpressed in T-ALL were mainly related to a functional 
role in the class I MHC-restricted T cell receptor signalosome (Leo et al., 2002). 
Several candidates have also recently been reported by other microarray 
studies: TRB, CD3D, CD3E, CD2, CD6, MAL, LCK, ITM2A, SH2D1A (Yeoh et 
al., 2002; Ferrando et al., 2002). As such, the identification of these 
overexpressed T-ALL associated genes illustrates the power of gene 
expression profiling to elucidate complex pathways in a highly parallel manner. 
MME (formerly CD10) was highly expressed in ALL with t(9;22) only. This may 
reflect that the translocation t(9;22) is observed in common-ALL and in pre-B 
ALL only. On the other hand, these data again demonstrate that the gene used 
for diagnostic purposes in flow cytometry, MME, is highly indicative of these 
ALL subtypes in comparison to the more immature B-lineage ALL, i.e., pro-B 
ALL, as well as the mature B-ALL and the T-ALL. Furthermore, the identification 
of connective tissue growth factor (CTGF) as a specific marker for ALL with 
t(11q23)/MLL adds to previous data demonstrating its increased gene 
expression in malignant lymphoblasts of B cell origin (Vorwerk et al., 2002). 
Other genes with high expression in t(11q23)/MLL-positive ALLs and also 
recently reported by other microarray studies were: ADAM10, BLK, CD72, 
CD79A, CSPG4, HOXA9, HOXA10, IGHM, LGALS1, LMO2, MBNL, MEF2A, 
PPP2R5C, PTPRC, VLDLR (Yeoh et al., 2002; Armstrong et al., 2002; 
Rozovskaia et al., 2003). Candidate genes like IGHM, BLK, or CD79A illustrate 
the B-lineage characteristic of these cases, and an observed overexpression of 
HOX-A cluster members illustrates important components of leukemogenesis 
driven by MLL gene rearrangements (Kawagoe et al., 1999; Armstrong et al., 
2002). In addition, similar patterns were observed for all precursor B-ALL 
samples. Here, the gene cluster included candidates mainly with a functional 
role in immune response: BLNK, BRDG1, CD24, MHC2TA, CD74, HLA-DMA, 
HLA-DMB, HLA-DPA1, HLA-DRA,  HLA-DPB1, HLA-DQB1, HLA-DRB1, HLA-
DRB3, HLA-DRB4, and TNFRSF14. In detail, major components of the class II 
MHC restricted antigen presentation machinery are consistently overexpressed 
compared to the T-ALL samples: MHC2TA, interacting with MHC class II as well 
as HLA-DM and CD74 promotors, is a highly regulated transactivator governing 
all spatial, temporal and quantitative aspects of MHC class II expression 
(Masternak et al., 2000). The chaperone CD74 (invariant chain) blocks the 
peptide binding site of newly synthesized MHC class II molecules by its so-
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called CLIP fragment (Villadangos and Ploegh, 2000). HLA-DM molecules 
catalyze the exchange of CLIP for antigenic peptides derived from endosomal 
compartments. 

Secondly, a series of analyses was then targeted to obtain new insights 
into the underlying biology in heterogeneous B-lineage leukemias not positive 
for BCR/ABL or t(11q23)/MLL. In order to obtain information on the similarity of 
the heterogeneous B-lineage leukemias to any of the other analyzed ALL 
subtypes an approach was chosen which has been proposed by Ferrando and 
colleagues for discovering novel oncogenes in T-ALL (Ferrando et al., 2002). 
Following this strategy, in this work the heterogeneous precursor B-ALL 
samples were projected into an ALL subtype relevant gene space. This gene 
space was defined to include genes differentially expressed between 
t(11q23)/MLL, BCR/ABL, or precursor T-ALL. The resulting hierarchical cluster 
and principal component analyses demonstrated that the genetically more 
heterogeneous precursor B-ALL samples intercalate with BCR/ABL-positive 
cases, but were clearly distinct from T-ALL and t(11q23)/MLL profiles. Thus, 
similar expression signatures were observed for both heterogeneous precursor 
B-ALL and for BCR/ABL-positive cases. All genes in this signature were 
consistently overexpressed in both BCR/ABL-positive and the more 
heterogeneous precursor B-ALL cases compared to T-ALL and t(11q23)/MLL 
samples. In detail, this signature included LGMN (legumain), also called 
asparaginyl endopeptidase (AEP). LGMN has been reported to be critically 
involved in the processing of antigens for MHC class II presentation (Schwarz et 
al., 2002). More recently, a prodrug strategy incorporating a legumain-cleavable 
peptide substrate onto doxorubicin was developed (Liu et al., 2003a). A 
receptor tyrosine kinase activated by collagen, DDR1 (discoidin domain 
receptor 1), is represented by three probe sets. In a recent report, high-grade 
primary brain and metastatic brain tumors showed unequivocal, intense DDR1 
expression within the majority of tumor cells (Weiner et al., 2000). CDW52, an 
excellent target for complement-mediated lysis and antibody-dependent cellular 
cytotoxicity, has been identified by two probe sets. Several clinical trials have 
already been carried out with Alemtuzumab (CAMPATH-1H), a humanized 
monoclonal antibody directed against the CDW52 antigen of lymphocytes 
(Dyer, 1999). A cytokine-like protein (C17), retinoic acid induced gene (RAI14), 
or hypothetical protein LOC54103 represent further overexpressed genes. 
However, no functional gene annotation is available yet.  

Furthermore, the similarity of genetically heterogeneous precursor B-ALL 
samples to BCR/ABL cases was also confirmed in an expanded analysis based 
on published genes to discriminate six distinct pediatric ALL subtypes, i.e., T-
ALL, E2A/PBX1, BCR/ABL, TEL/AML1, t(11q23)/MLL and hyperdiploid 
leukemias (Yeoh et al., 2002). In this analysis, the genetically heterogeneous 
precursor B-ALL samples repeatedly clustered together and intercalated with 
BCR/ABL cases. 
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5.3 Novel insights into the biology of t(11q23)/MLL leukemias 

The MLL gene, also termed ALL-1, HRX, and TRX1, located at chromosome 
band 11q23 is a recurrent target of chromosomal translocations in acute 
leukemias (Figure 52) (Huret et al., 2001). Leukemias with MLL gene 
aberrations are particularly prevalent in infant leukemias and treatment-related 
secondary leukemias, and are associated with dismal prognosis (Biondi et al., 
2000; Schoch et al., 2003; Pui et al., 2004). 
 

Figure 52. Overview of MLL 
translocation partners. For 
both myeloid and lymphoblastic 
leukemias MLL gene 
rearrangements have been 
described (Huret et al., 2001). 
Reciprocal translocations 
associated with the MLL gene 
result in in-frame fusion 
transcripts with various partner 
genes from at least 50 distinct 
gene loci. 

 
 
 
 

 
Both in AML and ALL, a distinct gene expression profile for t(11q23)/MLL 
leukemias was observed. Thus, this work further aimed at identifying common 
targets of MLL chimeric fusion genes. In order to designate common target 
genes, both types of acute leukemias with MLL translocations were combined, 
and were compared to various types of other precursor B- and T-lineage ALL 
cases as well as to other cytogenetically defined AML subtypes. This 
supervised analysis resulted in a list of statistically significant differentially 
expressed genes irrespective of lineage. A closer examination of these genes 
showed that also in this data a significantly overexpressed “Hox code” was 
detectable, i.e., overexpression of HOX-A cluster gene members (Kumar et al., 
2004). Other genes with higher expression in t(11q23)/MLL leukemias have 
also been previously reported to be implicated in MLL related leukemogenesis, 
i.e., MEIS1 and PBX3 (Rozovskaia et al., 2001; Thorsteinsdottir et al., 2001). 
The t(11q23)/MLL leukemias are generally associated with a high risk of 
treatment failure and therefore novel therapeutic strategies are needed to 
improve outcome in patients with MLL abnormalities. Small molecule inhibitors 
of FLT3, a receptor tyrosine kinase, may prove to be beneficial (Gilliland and 
Griffin, 2002). It can be hypothesized that, besides the known mutations 
affecting the juxtamembrane region and receptor activation loop, a constitutive 
FLT3 signaling caused by high level expression also contributes to the 
development and maintenance of t(11q23)/MLL leukemias. In recent studies 
high levels of FLT3 expression in patients with MLL gene rearrangements have 
been identified and FLT3 has been successfully validated as a therapeutic 
target (Armstrong et al., 2002; Armstrong et al., 2003). Also in this work, an 
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overexpression of FLT3 in both t(11q23)/MLL leukemias compared to other 
acute leukemia classes was observed. 
 However, here it could further be demonstrated how the t(11q23)/MLL 
leukemia-associated genes are related to each other in a novel constellation. As 
given in biological networks consistently upregulated candidates with oncogenic 
potential included, for example, RUNX2, HIP1, FRAT1, TAF1B, and ZFHX1. 
RUNX2 normally plays a key role in osteogenesis but also a direct oncogenic 
role had been proposed (Stewart et al., 1997; Ito, 2004). HIP1 encodes an 
endocytic protein with transforming properties that is involved in a cancer-
causing translocation and which is overexpressed in a variety of human cancers 
(Hyun and Ross, 2004). Proto-oncogene FRAT1 represents the human 
homologue to mouse proto-oncogene Frat1, which promotes carcinogenesis 
through activation of the Wnt/beta-catenin/TCF signaling pathway (Saitoh et al., 
2002). TAF1B has been identified to play a role in the tumorigenesis of 
colorectal carcinomas with microsatellite instability (Kim et al., 2002). ZFHX1 
encoding Smad-interacting protein 1 (SIP1), directly represses E-cadherin gene 
transcription and activates cancer invasion via the upregulation of the matrix 
metalloproteinase gene family (Miyoshi et al., 2004). Consistently 
downregulated genes in t(11q23)/MLL leukemias included TNF-receptor 
superfamily members required in TRAIL-mediated apoptosis, TNFRSF10A and 
TNFRSF10D (Almasan and Ashkenazi, 2003), or MADH1 (SMAD1), functioning 
downstream of TGF-beta receptor serine/threonine kinases (ten Dijke et al., 
2002). However, it only can be speculated whether the deregulated expression 
of these genes confer any resistance to apoptotic stimuli. 
 
Novel insights into lineage commitment in t(11q23)/MLL leukemias 
It was further demonstrated that ALL and AML cases with t(11q23)/MLL 
segregate according the lineage, i.e., myeloid or lymphoblastic, respectively. In 
unsupervised data analyses the cases with MLL gene translocations did not 
cluster as a unique subgroup, but instead clustered according to their lineage of 
origin. This leads to the proposal that MLL aberrations translate into specific 
expression signatures but that there is a clear identification of lymphoblastic 
lineage commitment for ALL with t(11q23)/MLL. This seems to be conflictive to 
the previously reported finding that t(11q23)/MLL-positive leukemias are unique 
and should be constituted as a distinct disease (Armstrong et al., 2002). In 
contrast, this work demonstrates that this cellular differentiation can be 
explained by a specific transcriptional program and further elucidated this 
through the use of biological network analysis. Among the top ranked 
differentially expressed genes to discriminate ALL and AML cases with 
t(11q23)/MLL PAX5 was represented. PAX5 restricts the developmental options 
of lymphoid progenitors to the B cell lineage by repressing the transcription of 
lineage-inappropriate genes and simultaneously activating the expression of B-
lymphoid signaling molecules (Busslinger, 2004). Its influence can also be 
followed more downstream when focusing on PAX5 target genes that are also 
included in the list of top-ranked differential genes. It is known that, e.g., BLK or 
CD19 are controlled by PAX5. As visualized in the biological networks, these 
and other B-lineage characteristic candidates (CD79A, VPREB1, CD22) were 
grouped together, all with higher expression in MLL gene rearranged ALL 
compared to AML samples. Interestingly, not only PAX5 but also EBF, a second 
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essential regulator of early B cell development was higher expressed in ALL 
with t(11q23)/MLL. Specific activities of these proteins include roles in 
chromatin remodeling and recruitment of partner proteins (Maier and Hagman, 
2002). Taken together, a multitude of genes visualized a strong B-lineage 
commitment in lymphoblastic t(11q23)/MLL leukemias. With respect to AML 
with t(11q23)/MLL a transcriptional pattern for myeloid commitment was 
represented through the higher expression of key players in myeloid 
development, CEBPA and SPI1. The finding that C/EBPalpha binds and 
activates the endogenous SPI1 gene in myeloid cells further contributes to the 
specification of myeloid progenitors (Kummalue and Friedman, 2003). Also, 
genes encoding the receptors for granulocyte/macrophage colony-stimulating 
factor (GM-CSFR) and granulocyte colony-stimulating factor (G-CSFR) clearly 
underline a completely differing transcriptional program since it has been 
suggested that G-CSFR signals may play a role in directing the commitment of 
primitive hematopoietic progenitors to the common myeloid lineage (Richards et 
al., 2003). Also, the down-regulation of GM-CSFR represents a critical event in 
producing cells with a lymphoid-restricted lineage potential (Iwasaki-Arai et al., 
2003). Other differentially expressed genes with higher expression in 
t(11q23)/MLL-positive AML included for example FES, a tyrosine kinase 
oncogene, implicated in signaling downstream from hematopoietic cytokines 
(Sangrar et al., 2003). FES may be a key component of the granulocyte 
differentiation machinery and contributes to lineage determination at the level of 
multi-lineage hematopoietic progenitors as well as the more committed 
granulomonocytic progenitors (Kim et al., 2003). Another gene which may be 
involved in myeloid differentiation is MNDA, encoding the myeloid cell nuclear 
differentiation antigen (Cousar and Briggs, 1990). It is expressed exclusively in 
maturing myeloid cells and cell lines and is not expressed in lymphoid cells. 
Recent data suggest that there is a strong correlation between MNDA 
expression and myeloid differentiation (Asefa et al., 2004). In this work, MNDA 
expression further elucidates the myeloid lineage specificity in t(11q23)/MLL-
positive AML. Lastly, CITED4, a CBP/p300-interacting transcriptional 
transactivator is significantly higher expressed in AML with t(11q23)/MLL 
(Braganca et al., 2002). It may function as a co-activator for transcription factor 
AP-2 and possible roles for CITED4 in regulation of gene expression during 
development and differentiation of blood cells have been implied (Yahata et al., 
2002). Moreover, an exploration of the differentially expressed genes identified 
in this work may provide new insights into the altered biology of these 
leukemias and may lead to useful target genes for follow-up experiments. 
Interesting candidates with higher expression in ALL with t(11q23)/MLL for 
subsequent experimentation include CBX2 (the homologue of the murine 
polycomb-like gene M33) and CBX4 (novel human Pc homolog, hPc2), both 
components of the chromatin-associated polycomb complex. Polycomb group 
proteins assemble to form large multiprotein complexes and are thought to 
repress their targets by modifying chromatin structure (Pirrotta, 1998). It has 
been suggested that interference with CBX4 function can lead to derepression 
of proto-oncogene transcription and subsequently to cellular transformation 
(Satijn et al., 1997). 
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Influence of the different MLL translocation partners 
Another major goal of this section was to directly assess the influence of the 
different MLL translocation partners on the transcriptional program. Thus, a 
supervised comparison of MLL/AF9-positive samples against MLL/AF9-negative 
samples in AML was performed. However, no statistically significant differences 
were found. Using SAM plots to visualize the degree of differences in their gene 
expression pattern it was clear that within AML the MLL/AF9-positive samples 
were very similar compared to the MLL/AF9-negative samples. Furthermore, as 
demonstrated by an unsupervised data analysis no clear subclustering of 
MLL/AF9-positive samples was observed. Instead of being distinct from other 
AML with differing MLL gene rearrangements global gene expression patterns 
of cases with MLL/AF9 intercalated with other AML with t(11q23)/MLL. This 
transcriptional concordance is an unexpected result. However, it would correlate 
with the observation of comparable clinical outcome in those subset of AML 
patients (Schoch et al., 2003). When the algorithm was used to plot signatures 
of ALL with t(11q23)/MLL vs. AML with t(11q23)/MLL their completely differing 
underlying transcriptional profile is visible. This repeatedly reflects the previous 
finding from the unsupervised two-dimensional hierarchical clustering where 
t(11q23)/MLL samples segregated according to their lineage of origin. Also, it 
was not possible to clearly specify differentially expressed genes when six 
different MLL partner genes, i.e., AF9, AF6, AF10, and ELL in AML and AF4 as 
well as ENL in ALL, respectively, were examined. At this step no statistically 
significant expression signatures were found to be correlated with one of the 
distinct partner genes. This also explains the failure of predicting the respective 
partner gene based on differential gene expression signatures using SVMs as 
classification algorithm. It can be observed that the classifier is good at 
predicting the MLL partners AF9 and AF4. However, these sets of samples are 
the two major groups in the AML and ALL patient cohorts, respectively, and 
might mean a bias for the result. All other groups are not accurately identified. 
Misclassifications, on the other side, occur only in the corresponding myeloid or 
lymphoblastic compartment, respectively. Given the presented data the global 
gene expression profile analysis does not reveal a clear distinct pattern 
associated with one of the various partner genes in t(11q23)/MLL leukemias. 

Taken together, further experiments are required to investigate why most 
of the MLL partner genes are strictly correlated with a specific leukemia 
subtype. Gene expression is determined not only by the available combination 
of transcription factors, but also by the structure of the local chromatin, which is 
the physiological substrate for all nuclear processes including transcription and 
recombination, and the location of a gene within a chromosome territory 
(Cremer and Cremer, 2001; Busslinger, 2004). Therefore, it can be speculated 
that at the time point of the chromosomal aberration the hematopoietic 
progenitor target cell already is committed to myeloid or lymphoid lineage 
development. Given the differing chromatin structure and its accessibility to 
regulatory factors thus only certain genes would be suitable as fusion partner, 
e.g., AF4 in lymphoblastic, or AF9 in myeloid leukemias. On the other hand, if 
the progenitor target cell is not committed to a particular lineage the fusion 
partner might be able to contribute to cell-fate decisions. Then the different MLL 
fusion proteins would dictate the respective differentiation pathway by 
facilitating the establishment of lineage-specific gene expression programs. In 
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the gene expression patterns described in this work a strong association of 
lymphoid commitment in ALL with t(11q23)/MLL was observed. The 
coexpression of PAX5, the critical B-lineage commitment factor that restricts the 
developmental options of early progenitors to the B cell pathway, and early B 
cell factor EBF in these samples suggests that the leukemogenic hit did occur in 
the earliest phase of B-lymphopoiesis. 

Typically, the resultant t(11q23)/MLL leukemias display features of a 
maturation arrest at a later stage of differentiation. This has particularly been 
described by Cozzio and colleagues (Cozzio et al., 2003). In this model, purified 
progenitor subsets, i.e., hematopoietic stem cells (HSC), common myeloid 
progenitors (CMP), and the lineal descendent granulocytic/monocytic-restricted 
progenitors (GMP) were susceptible to MLL fusion protein-mediated 
transformation. Regardless of the initiating cell, targeted by a MLL/ENL 
construct, the resultant leukemias displayed immunophenotypes and gene 
expression profiles characteristic of a maturation arrest at an identical late state 
of myelomonocytic differentiation downstream of the GMP.  

In human leukemias MLL/ENL occurs in both AML and ALL. Interestingly, 
in the cohort analyzed in this work myeloid and lymphoblastic gene expression 
profiles of MLL/ENL samples were separated. The t(11;19)(q23;p13.1) 
chromosomal translocation fuses the gene encoding transcriptional elongation 
factor ENL to the MLL gene (Rubnitz et al., 1994). Recent data indicate that 
neoplastic transformation by the MLL/ENL fusion protein is likely to result from 
aberrant transcriptional activation of MLL target genes (Zeisig et al., 2004). This 
finding would further support the model of “lineage promiscuity” a mechanism 
described for mixed lineage leukemias in the context of MLL/GAS7 (So et al., 
2003). In their study, So et al. had used a retroviral MLL/GAS7 construct to 
model acute biphenotypic leukemia (ABL) in mice. Cells that were transformed 
in vitro were able to induce three different leukemias in vivo, i.e., AML, ALL and 
ABL, which also exhibited distinct gene expression profiles for a selection of 
transcripts. The progenitor cells affected by the MLL oncogene were 
phenotypically most comparable to the multipotent progenitor (MPP), the direct 
progeny of short-term HSC. When injected into sub-lethally irradiated mice the 
biphenotypic progenitors sequentially further differentiated along the myeloid or 
lymphoid lineages and induced AML or ALL, respectively. 

In conclusion, these results underline that AML with t(11q23)/MLL and 
ALL with t(11q23)/MLL are distinct entities as proposed in the current WHO 
classification of hematological malignancies (Jaffe et al., 2001). Both subtypes 
share a distinct gene expression signature with upregulation of HOX genes but 
on the other hand vary substantially in the expression of genes determining the 
lymphoid or myeloid lineage. While a clear gene expression pattern with respect 
to the lineage was identified, a specific signature associated with the different 
MLL partner genes was not observed. Microarray technology demonstrated that 
based on a cohort of thoroughly characterized leukemia samples, expression 
signatures lead to a better understanding of biological features of these specific 
acute leukemia subtypes. Novel networks of candidate genes were depicted 
and may inspire follow-up studies to elucidate the events leading to these types 
of prognostically unfavorable acute leukemias and may be exploited to identify 
new therapeutic targets. 
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5.4 Microarray technology as a potential diagnostic platform 

Diagnosing and classifying leukemias are clinically highly relevant tasks. In 
order to guarantee the appropriateness of the results a comprehensive and 
well-structured approach in the laboratory is required. Significant resources with 
regard to time, well-trained and skilled personnel, laboratory space and 
equipment are needed to cover this approach. Furthermore, the interlaboratory 
reproducibility of the currently applied diagnostic methods, i.e., cytomorphology, 
cytochemistry, cytogenetics, immunophenotyping, and molecular genetics, 
ranges only between 56% and 90%, even in experienced hands, and therefore 
clearly needs improvement (Bennett and Begg, 1981; Argyle et al., 1989; 
Grimwade et al., 1998; Lucio et al., 2001; Gleissner et al., 2001; Byrd et al., 
2002). Gene expression profiling using microarray technology has the potential 
of optimizing leukemia diagnostics and overcoming the above mentioned short-
comings of current methods. Assumptions that leukemia-specific chromosomal 
aberrations translate into dramatic changes on the transcriptional level have 
now be confirmed by several studies from various diagnostic and research 
centers. 
 
Robustness of diagnostic gene expression patterns 
Before a new technology can be used in a diagnostic setting it has to be proven 
that the methodology can provide robust results. With respect to microarrays, 
various parameters can principally influence the measured gene expression. In 
this work it was demonstrated that for a subset of leukemias expression profiling 
is applicable in a diagnostic setting considering a variety of influencing 
parameters. 

As an example an analysis assessed the impact of different variables of 
sample manipulation in the context of a diagnostic gene expression signature. 
Using a set of predefined differentially expressed genes for AML with t(15;17), 
t(8;21), inv(16), and t(11q23)/MLL it was shown that neither the varying duration 
of sample shipment, nor the overall RNA quality as assessed by the 3´/5´ ratio 
of GAPD hybridization signals, nor the duration of sample storage time until 
microarray target preparation, nor the time point of the sample target 
preparation within the marker discovery study, nor the age of the leukemia 
patient at diagnosis, nor the type of specimen, i.e., bone marrow or peripheral 
blood impair the robustness of diagnostic gene expression patterns. The 
presented data further indicates that preparations from different operators, and 
different sample handling procedures, i.e., freezing of cell preparations vs. 
freshly prepared samples, and storage periods of the samples at -80°C also did 
not impair the robustness of diagnostic expression signatures. The results of 
these two analyses provided evidence that those homogeneous signatures 
would enable an accurate prediction when applied in a diagnostic setting. 
However, to finally address the robustness of these patterns and their 
applicability for the diagnosis of leukemias one has to enroll patients in a 
prospective study in which microarrays are tested as an additional routine 
diagnostic method in parallel to gold standard diagnostic procedures. 

It has to be noted that these analyses not directly addressed the impact 
of each of the variables involved in sample manipulation in the global pattern of 
gene expression. It is clear that global gene expression patterns can 
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dramatically change given the technical aspects of specimen sampling and 
target preparation. In order to identify the real effect of the discussed variables 
on gene expression signatures a supervised analysis of the effects of the 
different manipulation variables on the global pattern of gene expression has to 
be performed. For example, as postulated by Debey et al. one should try to 
reduce the time between biopsy and RNA isolation, as within the first 24 hours 
after sampling changes in expression levels of genes related to hypoxia, 
metabolism, or apoptosis become measurable (Debey et al., 2004). On the 
other hand, one should also consider to further investigate the issue of tumor 
load and contaminating cells that potentially contribute to the gene expression 
profiles as differences were observed between diagnosis and relapse samples 
in precursor-B ALL (Staal et al., 2003). In addition, an assessment of the impact 
of sample origin, i.e., leukemia blast cells purified from bone marrow vs. 
peripheral blood samples, would also benefit from further investigations. And 
ideally, future studies will address this question with a larger series of paired 
samples. 

However, it can be speculated that blast cells in the peripheral blood 
might very well be identical to blasts located in the bone marrow compartment 
and with respect to a diagnostic application a purity of approximately 80% blast 
cells can easily be achieved with various techniques for sample enrichment 
from both compartments. But how much purity is needed at all? A recent study 
demonstrates that for the overall gene expression profile anything above a 75% 
pure sample population was found to be indistinguishable from the pure sample 
(Szaniszlo et al., 2004).  
 
Pediatric signatures can classify adult patients 
Another aspect of this work was to test the subsets of markers from recent 
studies published by Yeoh et al. and Armstrong et al. for their accuracy to 
predict the known prognostically relevant corresponding adult ALL subclasses 
(Yeoh et al., 2002; Armstrong et al., 2002). Firstly, it could be demonstrated that 
the published expression signatures from a pediatric cohort of patients from the 
St Jude Children’s Research Hospital, Memphis, TN, USA, identified with U95A 
microarrays, also accurately stratify a respective cohort of adult ALL patients 
with T cell ALL, BCR/ABL, or t(11q23)/MLL, analyzed with U133A microarrays. 
All important U95A chip design candidate genes to discriminate ALL with MLL 
gene translocation, t(9;22)-positive ALL, and T-ALL were matched to the 
corresponding U133A probe sets from the adult gene expression profiles. Then 
the independent cohort of adult ALL patients was accurately classified using 
common machine learning algorithms. In this way, the diagnostic power of 
previously reported gene expression signatures has been validated and 
confirmed on a truly independent patient cohort across different array designs 
and age groups of patients. Another analysis further supported this finding, i.e., 
the applicability of pediatric markers to classify adult patients. In a second 
approach, published data on pediatric ALL samples from the Armstrong et al. 
study (Dana-Farber Cancer Institute, Boston, MA, USA) was compared to adult 
patients. Repeatedly, patterns from pediatric patients are intriguingly 
reproducible and precisely predict MLL gene rearrangements in adult ALLs. 
Similarly, the pediatric markers had been identified with the U95A design and 
were validated with the U133A array design. In both of these comparisons, not 
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only the type of array differed, but also parameters such as technical 
equipment, different sample handling, routine diagnostic procedures, and target 
preparation protocol for expression analysis by unrelated personnel in a 
different laboratory. Even so, the diagnostic composition of genes demonstrates 
robust and reproducible signatures. Finally, both published data sets were 
mined for overlapping genes specific for t(11q23)/MLL and non-t(11q23)/MLL 
subtypes. A substantial number of genes characterizing patient samples with 
MLL rearrangements was contained in both public available data sets and 
subsequently was used to classify the corresponding adult cases. Again, based 
on the given preselected gene expression data a SVM classification engine 
demonstrated the accurate discriminative properties of those specific candidate 
genes and accordingly separated the adult ALL samples into t(11q23)/MLL-
positive and t(11q23)/MLL-negative cases. Taken together, these observations 
now provide strong evidence that genes suitable for classification and prediction 
of childhood ALL are also capable of distinguishing the respective adult ALL 
subentities. Moreover, this is a promising finding, as new molecular targets in 
common genetic subtypes of acute leukemias identified by microarray 
technology might be common therapeutic targets for both age groups of 
patients. 

In a recent study using U133A oligonucleotide microarrays Ross et al. 
from the St Jude Children’s Research Hospital, Memphis, TN, USA, 
demonstrated that also pediatric AML share a specific gene expression 
signature (Ross et al., 2004). Their study included a representation of the 
known morphologic, genetic and prognostic subtypes of childhood AML 
samples, namely t(15;17), t(8;21), inv(16), MLL rearrangements, acute 
megakaryocytic morphology (FAB-M7), or samples lacking any of these 
features. A variety of algorithms showed that the top 50 ranked probe sets for 
each subtype tightly cluster those cases into the respective subgroups. 
Moreover, when these probe sets were used in a supervised learning algorithm 
to classify cases from a blinded test set, 100% diagnostic accuracies were 
obtained for t(15;17), t(8;21), inv(16), and FAB-M7, and 93% accuracy for cases 
with MLL rearrangement (95% confidence interval: [79%; 99%]). Optimal class 
assignment was achieved with as few as five probe sets, which is the smallest 
number they had tested, for t(15;17), t(8;21), inv(16), and FAB-M7, and 35 
probe sets for cases with MLL rearrangements. Since the incidence of AML is 
significantly higher in adults than in pediatric patients, they also assessed 
whether the specific expression patterns from their pediatric patients could be 
used to accurately diagnose these specific corresponding AML subtypes in 
adults. When the identified discriminating probe sets were used in the 
supervised learning algorithm, an available cohort of 20 adult de novo AML 
patients was classified with an overall diagnostic accuracy of 90% (95% 
confidence interval: [68%; 98%]). These data suggest that also in AML class 
discriminating probe sets selected from a cohort of pediatric cases can be used 
to accurately diagnose adult cases. However, even more interesting is the fact 
that their adult AML samples were from a different ethnic group as the samples 
were all from patients diagnosed in a hospital in Taipei, Taiwan. Therefore, the 
classification of adult AML samples is not only possible using specific gene 
expression signatures previously identified in pediatric samples, but also allows 
to predict samples from a differing ethnic group. As indicated in their study, 
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gene signatures identified in Caucasians allowed the stratification of Asian 
patients. 
 
Correlation of gene expression with conventional diagnostic methods 
In routine clinical hematology the peroxidase test is important for the 
identification of AML subtypes according to the FAB classification. The 
determination of the mean positivity of peroxidase-positive cells results in 
classifying leukemias into peroxidase-positive (myeloid or monocytic) and 
peroxidase-negative (lymphoblastic) cases (Theml et al., 2004). In this work it 
was of specific interest to investigate the correlation of gene expression data 
with results from conventional diagnostic methods. Thus, in a first approach 
gene expression data was compared to data on the percentage of 
myeloperoxidase-positive cells as measured by a standard cytochemistry 
protocol on bone marrow smears in the different FAB subtypes. In 130 samples 
representing the subtypes M0 through M6, all measured both by cytochemistry 
and microarray analysis, a high correlation of the mean signal intensity for the 
MPO gene to the percentage of myeloperoxidase positive cells was observed. 
This underlines the fact that microarray technology can reproduce the 
classification of AML FAB subtypes (Haferlach et al., 2003a). 

Multiparameter flow cytometry is a standard method for diagnosing and 
subclassifying AML and ALL. In a second aspect of this work gene expression 
data obtained by microarray analyses was compared to protein expression data 
determined by multiparameter flow cytometry. A group of 39 relevant markers in 
113 patients with newly diagnosed AML and ALL and 4 normal bone marrow 
samples were assessed and analyzed by both methods simultaneously. A high 
degree of correlation between protein expression and mRNA abundance was 
observed with regard to both positivity/negativity and quantitative data. In 1,512 
of 2,187 (69.1%) comparisons congruent results were obtained with regard to 
positivity or negativity of expression. Most importantly, in antigenes highly 
relevant for diagnosing and subclassifying AML and ALL, namely CD13, CD33, 
MPO, CD22, CD79a, CD19, CD10, and TdT, congruent results were obtained in 
75% to 100%. These data are considered as evidence that protein expression is 
highly correlated with mRNA abundance in AML and ALL. While the high 
degree of congruence of the comparisons might have been anticipated the 
incongruent cases need specific considerations. It has to be noted that the 
incongruent cases were not due to differences of cells analyzed, since both 
methods were applied to the same fractions of cells as obtained by Ficoll-
Hypaque density gradient centrifugation. 

Positive results in microarrays and at the same time negative results in 
flow cytometry most probably indicate that the abundance of the respective 
mRNA is not sufficient to result in positivity for protein expression as defined in 
these analyses, i.e., detection of protein by flow cytometry in ≥20% (≥10% for 
cytoplasmic antigens) of gated cells with limit a for positivity set by 99% of cells 
analyzed as isotype controls. It must be taken into consideration that the 
analytic strategy applied for flow cytometry included gating on all cells and 
better sensitivity is anticipated for gating on blasts or specific subpopulations. 
This, however, is not possible for microarray analysis and was not the scope of 
the present analyses.  
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On the other hand, positivity in flow cytometry and at the same time 
negativity by microarray analysis may be due to non-specific binding of 
antibodies in flow cytometry or lack of sensitivity of microarray analysis which 
cannot be further substantiated in the present setting. In addition, it is obvious 
that the results that were positive in flow cytometry and negative in microarray 
analysis mainly involved lymphoid-associated markers while the results that 
were positive in microarray analysis and negative in flow cytometry typically 
involved myeloid-associated antigens. Thus, in the latter cases microarray 
analysis might have detected mRNA from residual normal hematopoietic cells 
which account for less than 10%-20% of all cellularity in the sample and might 
be related to the lower sensitivity of flow cytometry which is at least in part 
limited in the present analyses by the placement of arbitrary cut-off levels for 
positivity. Though this is not in accordance with the consensus for diagnostic 
purposes this strategy has provided the only possibility to directly compare 
results from flow cytometry and microarray analysis with regard to positivity and 
negativity. These shortcomings must be taken into account when speculating on 
a complementary role of microarray analysis in addition to flow cytometry for 
diagnosing acute leukemias. 

However, microarray analysis may be able to detect mRNA of disease-
specific genes when flow cytometry reveals negative results and may thus 
optimize diagnostic procedures. Moreover, one can speculate that new antigens 
may be identified in the gene expression profiles, which are expressed on the 
cell surface of AML and ALL cells and which may be promising future targets to 
monitoring minimal residual disease. 
 
Global approach to the diagnosis of leukemia using expression profiling 
This work further demonstrates a very high degree of accuracy for the correct 
assignment of patient samples to all clinically relevant subgroups of leukemia 
and to normal bone marrow, respectively. A cohort of 937 patients representing 
13 distinct classes has been classified with an accuracy of 95.1%. An essential 
basis for the achievement of this accuracy was the careful and comprehensive 
use of standard methods to characterize all of the samples before they 
underwent microarray analysis. Besides the use of cytomorphology and 
cytochemistry, the samples were processed applying immunophenotyping, 
cytogenetics, and molecular genetics in order to allow the subsequent optimal 
supervised identification of pure subtype-specific gene expression patterns and 
to exclude any misclassification of samples or overlaps between the 
subcategories focused on in the microarray analyses. In total, 12 distinct 
leukemia subtypes were addressed in a multiclass classification approach. The 
relative distribution of the analyzed cases with regard to these subgroups 
reflects that there has been no selection bias. Moreover, the age distribution of 
the analyzed cohort is very similar to the true age distribution of patients with 
AML as well as with the other diseases analyzed. 

With regard to AML, more than 50 different recurrent cytogenetic 
abnormalities have been described. However, reliable data on their prognostic 
impact are available only for the most frequent ones. These include t(15;17), 
t(8;21), and inv(16), which are associated with a favorable outcome, and 
complex aberrant karyotypes and t(11q23)/MLL carrying an unfavorable 
prognosis (Grimwade et al., 1998; Schoch et al., 2001; Grimwade et al., 2001; 
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Schoch et al., 2003; Schoch et al., 2004b). The remaining cases, i.e., normal 
karyotypes and so-called other cytogenetic abnormalities, have an intermediate 
prognosis. The separation between these subgroups results in highly differing 
prognoses supporting the clinical relevance of the selection of AML subgroups 
in the present work. There are even more subgroups, in particular in AML, 
which have been suggested to feature a biologically homogeneous background 
with potential impact on the clinical course of patients being affected by these 
abnormalities (Tallman, 2004b). Examples are mutations of CEBPA 
(Preudhomme et al., 2002), length mutations of FLT3 (Schnittger et al., 2002), 
and partial tandem duplications of MLL (Schnittger et al., 2000). However, since 
this evidence is still under evaluation in clinical trials these subgroups have not 
been the focus of the present work. With regard to clinical relevance, similar 
characteristics apply to the different entities of ALL included in the analyses. 
Besides the separation of precursor T-ALL from precursor B-ALL, it is important 
to identify those with Pro-B-ALL and t(11q23)/MLL, c-ALL or Pre-B-ALL and 
t(9;22), as well as mature B-ALL with t(8;14). These subentities differ highly with 
respect to prognostic impact and require substantially differing therapies which 
is true for mature B-ALL in particular (Hoelzer et al., 1996; Pui et al., 2004). 
Because it was known that the gene expression profiles of ALL with and without 
t(9;22), respectively, are difficult to distinguish from other cases with t(9;22) it 
was not approached in the first step but in a second step of the analyses. The 
overall smaller numbers of cases with CLL, CML, and “non-leukemia” had been 
chosen because these entities are biologically and clinically more 
homogeneous as compared to the acute leukemia cases discussed above. 

In AML, the detection of six different subgroups was approached. For the 
classification of AML with t(15;17), t(8;21), and inv(16), respectively, the highest 
degree of accuracy was achieved with 42 out of 42, 36 out of 38, and 48 out of 
49 correct assignments by 10-fold CV and an average number of correct 
predictions of 14 out of 14, 11.4 out of 12, and 15.7 out of 16, respectively, by 
resampling. Accordingly, all of the median sensitivities and specificities were 
100%. This is in line with previous reports describing a unique biological 
background for these subentities (Alcalay et al., 2001; Mecucci et al., 2002; 
Tenen, 2003), which is reflected in distinct gene expression profiles. However, 
since the latter have not yet been assessed by microarray analysis in the 
context of the full spectrum of AML and the other leukemias, the present study 
adds important information by clearly demonstrating that based on their distinct 
features these subentities can be accurately predicted even in the context of the 
very heterogeneous background of other acute and chronic leukemias. The 
other three subtypes AML with t(11q23)/MLL, AML with complex karyotype, and 
AML normal/other, have a more heterogeneous biology. This is reflected by 
different partner genes of the MLL gene and an overall heterogeneity with 
regard to cytogenetic and molecular genetic aberrations, respectively. With 
these complexities in mind, it was anticipated that misclassifications would 
occur. Importantly, however, out of the 24 misclassifications (total, 491 
classifications) in these subgroups only four were misclassified into the non-
AML subgroups. As a consequence, while the median specificities for AML with 
t(11q23)/MLL and for AML with complex aberrant karyotype were very high 
(both 99.7% and 99.7%), the median specificity for AML normal/other of 93.7% 
highlights the need for further improvements of the applied methodology or for 
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the use of supplemental analyses in these cases. In particular, this is true since 
a small number of samples with ALL (n=11), CLL (n=1), CML (n=2), and non-
leukemia (n=2) were classified into this subgroup. 

With the exception of the three samples described above there have 
been no misclassifications in CLL and CML in the 10-fold CV analysis. 
Accordingly, CLL and CML were correctly assigned in 14.62 out of 15 and 23.82 
out of 25 resampling predictions, respectively. As a result, the median 
sensitivities (100% and 96.0%) and the clinically most important median 
specificities (100% and 99.7%) were very high for these distinct disease 
entities. In addition, all of the four subgroups of ALL analyzed in the present 
study could be classified with a high median accuracy (99.7% for c-ALL/Pre-B-
ALL, 100% for the other subgroups). As discussed above, most of the 
misclassifications (11 out of 13) occurred into the group AML normal/other. 
Interestingly, these cases did not feature the immunophenotype of an aberrant 
expression of myeloid antigens which is often observed in ALL cases. 

Previous studies disclosed difficulties in separating c-ALL/Pre-B-ALL 
cases with t(9;22) from other precursor B-ALL cases resulting in prediction 
accuracies of 80% (Yeoh et al., 2002). Thus, the approach in the present study 
was to include c-ALL/Pre-B-ALL cases combined as one class irrespective of 
the presence of t(9;22) into the analysis and to separate cases positive for 
t(9;22) from those without it in a second step. While the separation of c-
ALL/Pre-B-ALL cases from the other entities has been straight forward, 
difficulties in separating t(9;22)-positive from t(9;22)-negative cases were 
observed (only 82.9% accuracy). Interestingly, the corresponding hierarchical 
cluster analysis demonstrates that the majority of cases are accurately grouped 
in one of the two categories. However, a third branch becomes evident 
revealing a gene expression pattern distinct from the two categories. The 
hypothesis that a further and not yet identified genetic lesion could be 
responsible for this third branch has been abandoned due to a follow-up cluster 
analysis and classification approach which did not reveal a reproducible gene 
expression pattern different from the other two groups (data not shown). 
Furthermore, the use of a classifier with differentially expressed genes selected 
based on the comparison of only the first two more homogeneous groups did 
not result in a more accurate assignment of samples of the third group either 
(data not shown). Taken together, this supports the concept that BCR/ABL 
represents a type 1 mutation (Gilliland and Griffin, 2002) and downstream 
pathways are shared by many other master genes. Thus, the gene expression 
profile of t(9;22)-positive ALL cases is not highly specific. 

Another clinically relevant subgroup has also been approached in a 
second step. After separation of T-ALL from all other entities the subgroup of 
immature T-ALL has been discriminated from cortical T-ALL, which in the 
clinical setting is characterized by a favorable prognosis (Onciu et al., 2002). 
Again, the separation of both entities has been highly accurate with the 
exception of two samples that originally were classified by immunophenotyping 
as immature T-ALL. It is important to note that the definition of cortical T-ALL is 
based only on the positivity for antigen CD1a (Bene et al., 1995), while other T 
cell markers CD7, CD2, CD5, CD4, or CD8 may be positive in either subgroup. 
Intriguingly, while the use of CD1a is a diagnostic standard the presented 
analysis suggests that in the two misclassified cases the overall gene 



Discussion 128

expression profile is very similar to the cortical T-ALL signature. Thus, these two 
cases may be rather cortical T-ALL featuring an aberrant lack of CD1a 
expression than truly be immature T-ALL. As a consequence of this work, the 
classification of cortical T-ALL may not only be based on the positivity for CD1a, 
but also include other markers such as the differentially expressed gene PAWR 
(Johnstone et al., 1996). In this regard further implications may be gained from 
analyzing the cellular function of top differentially expressed genes when 
comparing immature T-ALL to cortical T-ALL. It is known that dexamethasone 
leads to a downregulation of CARD4 (Galon et al., 2002) which encodes a pro-
apoptotically acting protein (Bertin et al., 1999; Inohara et al., 1999). Since 
CARD4 is highly expressed in cortical T-ALL corticoid therapy may be less 
effective in this entity as compared to immature T-ALL. However, clinical studies 
are needed to prove this hypothesis. 

A particularly important issue which has not yet been substantially 
addressed in other microarray studies so far is the identification of non-leukemic 
bone marrow and its discrimination from all leukemia subtypes (Hofmann et al., 
2002; Whitney et al., 2003; Jelinek et al., 2003). In this work, 42 out of 45 non-
leukemia samples have been accurately predicted. Of the misclassifications one 
sample was classified as AML with t(11q23)/MLL and two cases as AML 
normal/other (10-fold CV). The median accuracy by resampling analysis has 
been 13.23 out of 15 independent test samples. Importantly, the median 
specificity for non-leukemia is 99.6% while the sensitivity is 90.0%. As a 
consequence, until improvements of the applied methods are achieved which 
better characterize the heterogeneous subgroup of AML normal/other it seems 
appropriate to add conventional methods, if the microarray analysis result 
assigns a sample to the latter subgroup. In contrast, due to its high specificity 
the result “non-leukemia” can be the basis to exclude the presence of leukemia 
in a given sample analyzed. 

In general, there are two strategies to handling the occurrence of 
misclassifications obtained by microarray analysis. The first one is to identify the 
most frequent false positive result, i.e., the subgroup with the lowest specificity, 
and to add conventional diagnostic procedures to confirm or revise a malignant 
diagnosis. Clearly, this applies for AML normal/other with a median specificity of 
93.7% (95% confidence interval of accuracy: [90.2%; 96.6%]). Through the use 
of cytochemistry, immunophenotyping, and cytogenetics the discrimination of 
this subgroup from c-ALL/Pre-B-ALL, AML with t(11q23)/MLL, and AML with 
complex aberrant karyotype is straight forward although obviously consuming 
significant resources. Another possible application for additional methods is the 
use of RT-PCR to identify or exclude the presence of the BCR/ABL fusion gene 
once c-ALL/Pre-B-ALL is diagnosed. The second and more promising strategy 
would be an improvement of the content on the microarray by taking advantage 
of the additional representation of oligonucleotides specific for leukemic fusion 
genes. Through this approach, many of the misclassifications should be 
avoidable, e.g., c-ALL/Pre-B-ALL with t(9;22) should be identifiable by the 
detection of BCR/ABL as should AML with t(11q23)/MLL by the detection of 
fusion genes involving MLL and various partners (Repp et al., 1995). This 
approach would potentially result in even higher accuracies in the subgroups 
discussed above as well as improving accuracies in other subgroups. 
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5.5 Concluding remarks 
In conclusion, in this work a large-scale gene expression database of distinct 
leukemia types and subtypes has been generated, analyzed, and interpreted. It 
provides a valuable resource for the forthcoming post-genomic dissection of the 
complexities of genetic networks and the biological phenotypes emerging from 
them. Furthermore, it is envisioned that this data set provides significant new 
insights into the specific genetic alterations of distinct entities. Possibly, it will 
allow the discovery of novel markers which can be targeted by RT-PCR-based 
assays and multiparameter flow cytometry. Then, given the gene expression 
signatures at the time point of diagnosis, individualized for each patient, specific 
markers might be suitable to quantify minimal residual disease during the 
course of anti-leukemic treatment. 

Hypotheses that leukemia-specific chromosomal aberrations translate 
into dramatic changes on the transcriptional level have now be confirmed by 
several studies from various diagnostic laboratories and research centers. 
Specific subtypes of acute leukemia can be classified by gene expression 
signatures with exceedingly high accuracies. The analyses presented in this 
work followed these published studies and additionally provided the opportunity, 
by focusing on all clinically relevant subtypes of chronic and acute leukemias in 
a single comprehensive approach, to build on these expression signatures and 
develop a highly accurate diagnostic tool. Also important is that the separation 
of leukemia samples from samples with non-malignant diseases and from 
healthy volunteers has been accomplished. A future scenario which may result 
from this work includes the wide-spread use of microarray technology applying 
a carefully designed and comprehensive leukemia diagnostic microarray which 
allows a significant improvement of current standard diagnostics by 
strengthening the diagnostic accuracy and by a more efficient allocation of 
resources. 

What are the next steps for the development of a diagnostic tool? Firstly, 
the costs are no longer insurmountable. Especially, new advances in gene 
expression profiling, particularly with regard to instrumentation and reliability of 
assays for sample target preparation have paved the way to now enroll patients 
in prospective multi-center trials. In these studies, microarrays can be tested as 
an additional routine diagnostic method in parallel to gold standard procedures. 
Moreover, the design of a custom array will also optimize costs and needs for 
sample material. Thus, it is more a question of when will microarrays routinely 
be used for subclassification of leukemias and what methods performed today 
can be replaced. On the other side, with respect to the development of a clinical 
diagnostic test, a smaller number of genes could also be evaluated using 
alternative technologies such as multiplexed, quantitative RT-PCR. As such, 
these prospective studies might also address the question how these findings 
will be translated into a diagnostic test, either custom-designed microarray or 
multiplexed, quantitative RT-PCR. 

Ultimately, new advances in genomic technologies, such as whole-
genome microarrays will contribute to the central goals of parsing malignancies 
into specific diagnostic categories defined by recurrent molecular abnormalities, 
and targeting the essential oncogenic pathways with specific therapies. As has 
been the case to date, this molecular reformation of oncology will likely be led 
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by hematologic malignancies (Ebert and Golub, 2004). However, one should 
always consider not focusing to early on the establishment of unstable markers 
or finalization of the technical platform. Only without compromising existing 
standards of care these new advances in genomic medicine will successfully be 
translated from a genomic dissection of a complex disease into a novel platform 
to diagnose leukemias. 

Besides the diagnostic aspect of distinct gene expression signatures 
underlying patterns in gene expression might also allow to identify new classes 
in categories which have not yet been further distinguished. For example, the 
identification of prognostic markers or marker constellations providing the 
opportunity to predict the response to anti-leukemic treatment is another highly 
relevant clinical topic which is currently evolving and will be covered by future 
microarray trials. Especially in AML, the current classification system does not 
fully reflect the molecular heterogeneity of the disease, and treatment 
stratification is difficult, e.g., for patients with intermediate-risk with a normal 
karyotype. Recently, Bullinger and colleagues had identified new molecular 
subtypes of AML, including two prognostically relevant subgroups in AML with a 
normal karyotype. Their 133-gene clinical-outcome predictor accurately 
predicted overall survival in their cohort of patients (Bullinger et al., 2004). Thus, 
the use of gene expression profiling may further result in a molecular 
prognostication. 

However, so far those findings are based on a limited number of patient 
samples or training and testing sets, respectively. More importantly, 
discriminative genes were in most studies validated using expression profiles 
generated in one specific setting of an individual laboratory or diagnostic center. 
In order to become generally accepted, either as an additional method for 
diagnosis or prognostication, the robustness of subtype-specific gene 
expression signatures for leukemia subclassification has to be proven on large 
series of independent and unselected patient samples. Thus, a prospective 
validation of the results of recent microarray studies is a challenging aspect for 
the future. In this way it will be possible to define gene expression-based 
molecular classifiers and predictors for outcome that are accurate and 
reproducible. 
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7. Appendix 
 
Reagents, components, and instruments for microarray analysis were 
purchased from the following vendors: 
 
Manufacturer Contact information Internet 
Affymetrix Santa Clara, CA, USA www.affymetrix.com 
Alexis Grünberg, Germany www.alexis-corp.com/ 
Ambion Huntingdon, United Kingdom www.ambion.com 
Amersham Biosciences Freiburg, Germany www.amershambiosciences.com
Biozym Hess. Oldendorf, Germany www.biozym.com 
Dianova Hamburg, Germany www.dianova.de 
Eppendorf Hamburg, Germany www.eppendorf.com 
Invitrogen Karlsruhe, Germany www.invitrogen.com 
Millipore Schwalbach, Germany www.millipore.com 
NeoLab Heidelberg, Germany www.neolab.de 
Nunc Wiesbaden, Germany www.nalgenunc.com/ 
Pierce Chemicals Rockford, IL, USA www.piercenet.com 
Qiagen Hilden, Germany www.qiagen.de 
Rainin Oakland, CA, USA www.rainin.com 
Roche Applied Science Mannheim, Germany www.roche-applied-science.com 
Roth Karlsruhe, Germany www.carl-roth.de 
Sigma Munich, Germany www.sigmaaldrich.com 

 
7.1 Chemicals, enzymes, and reagents 
 
Chemicals & Reagents Manufacturer 
2-Mercaptoethanol (25 ml) Sigma 
Acetic acid, glacial (100 ml) Sigma 
Ammonium acetate, 7.5 M (100 ml) Sigma 
Antifoam O-30 (100 ml) Sigma 
anti-streptavidin-PE antibody, goat, biotinylated (0.5 mg/ml) Alexis 
BSA, acetylated (50 mg/ml) Invitrogen 
DEPC-treated Water, nuclease free (10 x 50 ml) Ambion 
DEPC-treated Water, nuclease free (1000 ml) Ambion 
DEPC-treated Water, nuclease free (5 x 100 ml) Ambion 
EDTA, 0.5 M (100 ml) Sigma 
Ethanol, absolute, Rotisolv (1000 ml) Roth 
Glycogen (20 mg/ml) Roche Applied Science 
goat IgG, reagent grade (10 mg/ml) Sigma 
Herring sperm DNA (10 mg/ml) Promega 
Lauryl sulfate (100 ml) Sigma 
Magnesium acetate (100 g) Sigma 
MES, free acid monohydrate (250 g) Sigma 
MES, sodium salt (100 g) Sigma 
NaCl, 5 M (100 ml) Ambion 
PBS (1000 ml) Invitrogen 
Phenol/Chloroform/IAA, 25:24:1 (100 ml) Ambion 
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Potassium acetate (100 g) Sigma 
Sodium acetate, 3 M (100 ml) Sigma 
Sodium hypochlorite, 12% (1000 ml) Roth 
SSPE, 20X (1000 ml) Ambion 
Streptavidin R-PE (1 mg/ml)) Dianova 
TRIZMA base (100 g) Sigma 
Tween-20 (Surfact-Amps), 10% (10 ml) Pierce Chemicals 

 
Plastic ware Manufacturer 
Collection Tubes, 2 ml Qiagen 
Micro test tubes, amber, 1.6 ml Biozym 
Micro test tubes, nuclease free, 1.6 ml Biozym 
Micro test tubes, individually sealed, Biopur® Safe-Lock, 0.5 ml Eppendorf 
Micro test tubes, individually sealed, Biopur® Safe-Lock, 1.5 ml Eppendorf 
Micro test tubes, individually sealed, Biopur® Safe-Lock, 2,0 ml Eppendorf 
Pipette tips, Fine Point, aerosol resistant, 200 µl Rainin 
Pipette tips, SafeSeal, Premium, 10 µl Biozym 
Pipette tips, SafeSeal, Premium XL, 100 µl Biozym 
Pipette tips, SafeSeal, Premium, 1000 µl Biozym 
Serological pipettes, individually sealed, 10 ml Nunc 
Serological pipettes, individually sealed, 50 ml Nunc 
Stericups Filter Units, Stericup GP (1000 ml) Millipore 
UVette (80 disposable cuvettes) Eppendorf 

 
Kits Manufacturer 
cDNA Synthesis Kit (10 reactions) Roche Applied Science 
Control Oligonucleotide B2, 3 nM (150 reactions) Affymetrix 
BioArray HighYield RNA Transcript Labeling Kit (10 reactions) Affymetrix 
Eukaryotic Hybridization Control Kit (150 reactions) Affymetrix 
Phase Lock Gel, light (1.5 ml) Eppendorf 
QIAshredder Homogenizer (250 columns) Qiagen 
RNeasy Mini Kit (50 columns) Qiagen 

 
Miscellaneous Manufacturer 
Precision wipes, Kimberly-Clark Kimwipes Lite (23 x 42 cm) Roth 
RNaseZap Spray (250 ml) Ambion 
RNaseZap Wipes (100 sheets) Ambion 
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7.2 Instrumentation and technical equipment 
All laboratory equipment used to prepare the target for the microarray analysis 
was calibrated and carefully maintained to ensure accuracy. Maintenance of the 
UV spectrophotometer bulbs and scanner laser power settings was performed 
every 12 months, micropipettors were recalibrated every 9 months, respectively. 
 

Instruments & Equipment Manufacturer 
Accu-jet pipet boy, pipettor for serological pipettes NeoLab 
GeneChip System Fluidics Station 400 Affymetrix 
GeneChip System GeneArray Scanner (Agilent version) Affymetrix 
GeneChip System Hybridization Oven 640 Affymetrix 
Heat block, for 24 micro test tubes (1.5 ml) NeoLab 
Microcentrifuge 5415 R Eppendorf 
Microcentrifuge rotor F-45-24-11, for 24 tubes (1.5 ml) Eppendorf 
Micropipettor Eppendorf Reference, 0.5-10 µl Eppendorf 
Micropipettor Eppendorf Reference, 100-1000 µl Eppendorf 
Micropipettor Eppendorf Reference, 10-100 µl Eppendorf 
Micropipettor Eppendorf Reference, 2-20 µl Eppendorf 
Micropipettor Gilson Pipetman P200, 10-200 µl NeoLab 
Spectrophotometer Ultrospec 3000 Amersham Biosciences 
Thermoblock ThermoStat plus, for 24 tubes (1.5 ml) Eppendorf 
Vortex-Genie 2 NeoLab 
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7.3 Buffers and solutions 

According to the manufacturer’s recommendations the following buffers and 
solutions were prepared with RNase-free reagents and molecular biology grade 
water (Expression Analysis Technical Manual; www.affymetrix.com). 
 
12X MES stock solution 
 
12X MES stock solution (1000 ml) 

(1.22 M MES, 0.89 M [Na+]) 

Components 
70.4 g MES-free acid monohydrate 
193.3 g MES sodium salt 
800 ml of water 
Mix and adjust volume to 1000 ml. 

 
The pH should be between 6.5 and 6.7. Filter through a 0.2 µm filter. Do not 
autoclave. Store at 2°C to 8°C and shield from light. Discard solution if yellow. 
 
2X Hybridization buffer 
 

 

 
Store at 2°C to 8°C and shield from light. 
 
5X RNA Fragmentation buffer 
 
5X RNA Fragmentation buffer (20 ml) 

(200 mM Tris-acetate, pH 8.2, 500 mM KOAc, 150 mM MgOAc) 

Components 
4.0 ml 1 M Tris acetate pH 8.1 (Trizma Base, pH adjusted with glacial acetic acid) 
0.64 g MgOAc 
0.98 g KOAc 
Mix and adjust volume with water to 20 ml 

 
Mix thoroughly and filter through a 0.2 µm vacuum filter unit. This reagent was 
aliquotted (1000 µl each) and stored at room temperature. 

2X Hybridization buffer (50 ml) 

(Final 1X concentration is: 100 mM MES, 1 M [Na+], 20 mM EDTA, 0.01% Tween-20) 

Components 
8.3 ml of 12X MES stock solution 
17.7 ml of 5 M NaCl 
4.0 ml of 0.5 M EDTA 
0.1 ml of 10% Tween-20 
19.9 ml of water 
Mix thoroughly 
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Non-stringent wash buffer (Wash A) 
 
Non-stringent wash buffer (1000 ml) 

(6X SSPE, 0.01% Tween-20) 

Components 
300 ml of 20X SSPE 
1.0 ml of 10% Tween-20 
699 ml of water 
Mix thoroughly 

 
Filter through a 0.2 µm filter and then add 500 µl 5% Antifoam solution. Do not 
autoclave. Store at 2°C to 8°C. 
 
Stringent wash buffer (Wash B) 
 
Stringent wash buffer (1000 ml) 

(100 mM MES, 0.1 M [Na+], 0.01% Tween-20) 

Components 
83.3 ml of 12X MES stock solution 
5.2 ml of 5 M NaCl 
1.0 ml of 10% Tween-20 
910.5 ml of water 
Mix thoroughly 

 
Filter through a 0.2 µm filter. Store at 2°C to 8°C and shield from light. Discard 
solution if yellow. 
 
2X Stain buffer 
 
2X Stain buffer (250 ml) 

(Final 1X concentration: 100 mM MES, 1 M [Na+], 0.05% Tween-20) 

Components 
41.7 ml 12X MES stock solution 
92.5 ml 5 M NaCl 
2.5 ml 10% Tween-20 
113.3 ml water 
Mix thoroughly 

 
Filter through a 0.2 µm filter and then add 500 µl 5% Antifoam solution. Do not 
autoclave. Store at 2°C to 8°C and shield from light. Discard solution if yellow. 
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SAPE stain solution 
 
For 4 arrays that are processed in parallel prepare a 10X mastermix in a 15 ml 
Falcon tube. 
 
SAPE stain solution (600 µl) 

Components 
300 µl 2X stain buffer 
24 µl acetylated BSA (50 mg/ml) 
6 µl Streptavidin-Phycoerythrin (1 mg/ml) 
270 µl water 
Mix thoroughly 

 
Method: 
1. Combine all necessary components, mix well and divide into four 1.4 ml 

aliquots (1.5 ml amber tubes). 
 
2. Centrifuge the aliquots for 5 min to pellet insoluble complexes (maximum 

speed). 
 
3. From the supernatant carefully transfer 600 µl staining solution into a new 

amber tube. Do not disturb the pelleted insoluble complexes. 
 
Antibody solution 
 
For 4 arrays that are processed in parallel prepare a 5X mastermix in a 15 ml 
Falcon tube. 
 
Antibody solution (600 µl) 

Components 
300 µl 2X stain buffer 
24 µl acetylated BSA (50 mg/ml) 
6 µl goat IgG (10 mg/ml) 
3.6 µl biotinylated anti-streptavidin antibody (0.5 mg/ml) 
266.4 µl water 
Mix thoroughly 

 
Method: 
1. Centrifuge goat IgG and biotinylated anti-streptavidin antibody solutions for 5 

min to pellet insoluble complexes (maximum speed). Then combine all 
necessary components, mix well and divide into two 1.4 ml aliquots. 

 
2. Centrifuge the aliquots for 5 min to pellet insoluble complexes (maximum 

speed). 
 
3. From the supernatant carefully transfer 600 µl staining solution into a new 

tube. Do not disturb the pelleted insoluble complexes. 
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Antifoam solution 
 
5% (w/v) Antifoam solution  

Components 
10 g Antifoam O-30 
Mix and adjust volume with water to 200 ml 

 
10 mg/ml Goat IgG stock solution 
 
Resuspend 50 mg goat IgG in 5 ml 150 mM NaCl. Store at 4°C. 
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