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2. Gutachter: Prof. Ivo Sachs

Datum der mündlichen Prüfung: 13.12.2005



Zusammenfassung

In dieser Arbeit betrachte ich Geometrien von Hintergründen, welche aus Kompaktifizierun-
gen der Stringtheorie abgeleitet werden können. Im besonderen untersuche ich mittels klas-
sischen und verallgemeinerten G-Strukturen supersymmetrische Vakuum-Räume von Super-
gravitationstheorien und topologisch getwisteten Sigma-Modellen.

Im ersten Teil kompaktifiziere ich aus phenomenologischen Gründen die 11d Supergravitation
auf sieben-dimensionalen Mannigfaltigkeiten. Eine bestimmte Anzahl von Supersymmetrien
zwingen den internen Hintergrund eine klassische SU(3)- or G2-Struktur zu tragen. Im
besonderen Fall eines vier-dimensionalen maximal symmetrischen Raumes und eines vier-
Form Flusses berechne ich die Beziehung zur intrinsischen Torsion.

Der Hauptteil gliedert sich in zwei Abschnitte: Als erstes stelle ich fest, daß die verallgemein-
erten Geometrien auf sechs-dimensionalen Mannigfaltigkeiten eine natürliche Umgebung bi-
eten, um T-Dualität und Mirror-Symmetrie zu studieren. Dies gilt vor allem, wenn auch das
B-Feld involviert ist. Ich gebe eine explizite Mirror-Abbildung an und wende diese Idee auf
das topologisch getwistete Sigma-Modell an, welches verallgemeinert formuliert wird. Ver-
schiedene Studien zur Mirror-Symmetrie hinsichtlich der Observablen und der topologischen
A- und B-Branen werden gemacht.

Als zweites zeige ich, daß sieben-dimensionale NS-NS Hintergründe der Type II Supergravita-
tionstheorien mit verallgemeinerten G2-Strukturen beschrieben werden können. Eine Kom-
paktifizierung auf sechs-dimensionale Mannigfaltigkeiten führt zu einer neuen Struktur. Ich
nenne diese Struktur eine verallgemeinerte SU(3)-Struktur. Ich untersuche die Beziehung
zwischen verallgemeinerten SU(3)- und G2-Strukturen auf sechs- und sieben-dimensionalen
Räumen und generalisiere die Hitchin-Fluss-Gleichungen. Zum Schluss zeige ich, wie man das
bekannte Variationsprinzip für verallgemeinerte SU(3)- und G2-Strukturen mittels Zwangs-
bedingungen weiterentwickeln kann und dadurch die verbleibenden physikalischen R-R Felder
beschreibt.



Abstract

In this thesis we consider background geometries resulting from string theory compactifica-
tions. In particular, we investigate supersymmetric vacuum spaces of supergravity theories
and topological twisted sigma models by means of classical and generalised G-structures.

In the first part we compactify 11d supergravity on seven-dimensional manifolds due to phe-
nomenological reasons. A certain amount of supersymmetry forces the internal background
to admit a classical SU(3)- or G2-structure. Especially, in the case that the four-dimensional
space is maximally symmetric and four form fluxes are present we calculate the relation to
the intrinsic torsion.

The second and main part is two-fold. Firstly, we realise that generalised geometries on
six-dimensional manifolds are a natural framework to study T-duality and mirror symmetry,
in particular if the B-field is non-vanishing. An explicit mirror map is given and we apply
this idea to the generalised formulation of a topological twisted sigma model. Implications
of mirror symmetry are studied, e.g. observables and topological A- and B-branes.

Secondly, we show that seven-dimensional NS-NS backgrounds in type II supergravity theories
can be described by generalised G2-geometries. A compactification on six manifolds leads to
a new structure. We call this geometry a generalised SU(3)-structure. We study the relation
between generalised SU(3)- and G2-structures on six- and seven-manifolds and generalise the
Hitchin-flow equations. Finally, we further develop the generalised SU(3)- and G2-structures
via a constrained variational principle to incorporate also the remaining physical R-R fields.
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Chapter 1

Introduction

1.1 Preliminaries

The present Standard Model of particle physics is based on fundamental particles that come
in two classes - quarks and leptons. Those can be gathered into three families and the
interactions can be described by gauge bosons that are associated to the Standard Model
group SU(3)×SU(2)×U(1). This model agrees very well with a huge amount of experiments.
However, there are seminal remaining questions. Why do there exist precisely three families?
Can we explain the various parameters of the Standard Model and why do the parameters
have just these measured values? Another fundamental question concerns the gravititional
interaction that is not captured by the Standard Model. Gravity is described by general
relativity, which is a classical theory in the sense that it has no adequate quantum mechanical
extension. Furthermore, general relativity faces the problem of singularities. And since
the theory is based on the geometrical idea of manifolds it cannot deal with them. Thus,
discussing particle scenarios nearby a black hole, where the space-time is highly curved, it
becomes obvious that the Standard Model and general relativity should be treated within
one consistent framework.

The most promising theory up to know that incorporates all four fundamental forces is
called string theory [70, 88, 42, 43, 75, 76]. This setup is based on the assumption that
the fundamental objects are no longer point particles as in the Standard Model but one-
dimensional extended objects, the so-called strings. This generalisation, however, leads to a
model that deals from the beginning with a lot of additional properties. One new feature
is that strings can be open and closed, i.e. the ends for a closed string are glued together,
and reflects that strings can sweep out topologically non-trivial two-dimensional surfaces in
space-time. At low energies we find the graviton of spin two that realises the gravitational
interaction. By taking the possible field theory limit, the length of the strings can be neglected
and physics can again be described by a usual quantum field theory.

After quantising the string it turns out that the model has to be formulated in ten space-time
dimensions. Moreover, the procedure of building an adequate supersymmetric string theory
is not unique and therefore five superstring theories can be consistently formulated, namely
type IIA, type IIB, type I and two heterotic theories. Those can be non-trivially related to
each other by duality maps [78].
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Everyday life experience tells us that our real world should be modeled by four large di-
mensions only. On the other side string theory predicts space-time to be ten-dimensional.
However, this is not in contradiction since we did not specify the space-time to have ten
large dimensions. We resolve this problem by allowing for a large four-dimensional space
and assume the remaining six-dimensional space to be invisibly tiny. This assumption is
called compactification and, unfortunately, we have to do it by hand, i.e. it is not proven if
string theory does prefer specific spaces. We are faced even with a further problem, because
the amount of supersymmetry in four dimensions cannot be derived from string theory and
has to be assumed in addition. With respect to the present status of measurements we do
not have supersymmetry in our real world and can argue that it is in principle realised at
higher energies and broken at enegies relevant for our life. We therefore mostly assume the
presence of minimal supersymmetry in four dimensions. Furthermore, we first investigate
the so-called vacuum or background, which is a supersymmetric manifold that allows only
bosons. So, we are interested in phenomenological motivated backgrounds, i.e. we compact-
ify the ten-dimensional space-time and its bosons to obtain a four-dimensional space that
admits a minimal amount of supersymmetry.

The first approach to tackle this problem was done in 1981 by Witten [85]. He realised that
the amount of supersymmetry in the external four-dimensional space can be captured by
investigating the supersymmetry variations of supergravity - being the low energy effective
description of string theory. He splitted the ten-dimensional variations into an external
and an internal part and found out that the external supersymmetry is governed by the
number of internal covariantly constant spinors. In 1985 Candelas, Horowitz, Strominger
and Witten [18] compactified the supergravity descriptions of the heterotic theories on six-
dimensional spaces. Assuming minimal supersymmetry in the external space and setting all
internal physical fields to zero lead to internal spaces with SU(3) holonomy - Calabi-Yau
manifolds.

1.2 Classical geometries

Strominger [80] developed the idea further (see also [59]) by focusing on the space-time
supersymmetry variations of the appropriate action which are formulated via spinors. Super-
symmetry can be achieved if the variations vanish. Additionally, he took all NS-NS bosons
into account, i.e. the internal metric g, the dilaton function φ and the 3-form flux H (neglect-
ing the gaugino condensate). These objects appear as extra terms in the two supersymmetry
variations which are relevant for the vacuum. The first variation is a Killing spinor equation
where the metric corresponds to the Levi Civita connection whereas H can be understood as
a modification. The second variation is a differential condition for the dilaton φ. Using spin
geometry Strominger found that the additional H term can be captured by the torsion tensor.
With the idea of torsion and the supersymmetry variations one can search for background
solutions that allow for a specific amount of supersymmtry in the external space.

It is this claim for supersymmetry that constraints, in general, the internal physical fields.
Gauntlett et al. [39, 38] and Cardoso et al. [20] realised for heterotic and type II theories that
the participating internal fields can be characterised by means of G-structures (see also [34]).
This mathematical tool allows to adjust the number of parallel spinors with respect to a
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special group G and considers the physical objects as representations of this group. If one
assumes G = SU(3) and that all physical fields but the metric vanish the structure becomes
torsion-free and brings us back to the abovementioned Calabi-Yau spaces. In this thesis we
refer to G-structures as classical structures. I.e. the parallel transport of all objects on the
manifold is governed by a single connection that is associated to the structure group G.

In 1978 Cremmer, Julia and Scherk [25] discoverd a further supergravity theory that is called
11d supergravity and is formulated on an 11-dimensional space-time manifold. Since the
graviton, which realises the gravitational interaction, has spin two and the fact that we do
not allow for higher spin fields, the dimension of the supergravity theory can at most be
eleven. This theory, as it is believed today, appears as the low energy limit of the mostly
unknown fundamental M-theory. Since the five known string theories are only defined in the
perturbative regime they should also appear as different limits of the underlying M-theory.

In chapter 2 of this thesis we apply the above ideas to 11d supergravity and study compact-
ifications on seven-dimensional spaces, such that the corresponding external space is four-
dimensional. The field content of the considered theory is given by a metric, a gravitino (spin
3/2) and a 3-form potential with associated 4-form field strength. The supersymmetry vari-
ations for all fields are given in [25]. Since we are interested in the vacuum only the bosons
are present and thus only the gravitino variation remains. According to Witten’s idea [85]
the amount of supersymmetry in four dimensions can be adjusted by the number of internal
spinors. We adopt the idea of G-structures and study supersymmetric compactifications on
seven dimensions, or in other words, phenomenologically interesting background manifolds.

The compactification program for of 11d supergravity was first done by Candelas and Raine [19].
They chose the eleven-dimensional space-time to be a direct product of Minkowski space an
internal space and allowed for internal 4-from fluxes. This assumptions turned out to be very
restrictive and force the internal four form flux to vanish. Thus, the Levi Civita connection
in the internal supersymmetry variation is not modified and should parallel transport pre-
cisely one spinor in order to preserve minimal supersymmetry in the external space. These
seven-dimensional spaces are the spaces analogous to Calabi-Yau manifolds in dimension six
and are called G2-manifolds. The structure is torsion-free and G = G2.

After the idea of G-structures was introduced in string theory [39, 38, 20, 34] it became clear
that one can even handle, in principal, internal 4-form fluxes in 11d supergravity. An obvious
next step to obtain these fluxes is that some of the assumptions made bei Candelas and Raine
can be relaxed. Work in this direction was done by e.g. [68, 14, 5, 1, 26, 27, 2, 7, 71], see
also [6, 29, 30, 28]. In chapter 2 we follow [8, 9, 10, 11] and compactify in the first part the
gravitino variations where we introduce additional objects: a warp function, a one-parameter
external 4-form flux and allow the external space to be maximally symmetric, e.g. Minkowski,
dS or AdS. Also direct and non-direct spinor decompositions are taken into account.

Considerations of this setup lead to algebraic constraints and relations between the involved
fields in the external part of the gravitino variation. The internal part, however, does not
result in the obstruction that all participating fields, as for instance the 4-form flux, have
to vanish. We implement the external algebraic constraints into the internal Killing spinor
equation and provide solutions by using G-structures.

Before we discuss explicit solutions we give an introduction to G-structures. This theory deals
with two pictures. The spinor picture that also appears in the supersymmetry variations and
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the equivalent form picture. In principle, the group G is the structure group and measures
roughly how ”flat” the manifold is, i.e. how many spinors are parallel. Once the group is
fixed and only the metric as a physical field is present the object that is responsible for the
parallel transportation is the Levi Civita connection. In the case where the torsion tensor
is non-vanishing the Levi Civita connection gets modified and the additional torsion must
be decomposed into G-representations in order to provide that the spinors are still parallel.
The G-structure allows to measure torsion, e.g. fluxes, by means of torsion classes that are
G-representations in the form picture. It is important to note that this does not mean that we
only have to decompose fluxes into G-representations within the spinor picture and compare
if the same representations appear as a torsion class in the form picture. This is in general not
true and therefore we have to translate the spinor picture into the form picture via fierzing
to make a serious comparison. We review useful results of G2- and SU(3)-structures.

We first discuss G = G2 and get again hard obstructions since only the external 4-form flux
parameter combined with a non-flat four-dimensional space can appear in the torsion class.
In mathematical terms, the background admits a weak G2-structure (see also [14]). Using
the compactification method we usually decompose the supersymmetry parameter, that is
a space-time spinor, into a direct product. An expansion of the internal part into invariant
G2-structure forms is done but it is proven that the space of solutions cannot be extended in
this way.

Furthermore, we give some unpublished results, where we only consider the metric in the
internal Killing spinor equation, i.e. we start with a G2-manifold. The authors in [69] showed
that the Levi-Civita connection of this manifold can get modified by α�-corrections since the
curvature gets modified by these corrections. We prove that the modifications of the new
connection can be fully classified via G2 torsion classes. The result is that α�-corrections will
never allow for weak G2-manifolds but all remaining three classes pick up contributions and,
moreover, the resulting G2-structure becomes non-integrable in general.

For the case of a G = SU(3)-structure, which we consider as two perpendicular G2-structures
on the internal manifold, supersymmetry allows for a richer physical background. In this
framework, besides a non-vanishing warp-factor and general external spaces, also the internal
fluxes are present. The participating fields are classified within G2-structures but it turns out
that it is more convenient to characterise them directly by SU(3)-torsion classes, e.g. [26].

1.3 Generalised geometries and mirror symmetry

We now introduce a new mathematical structure and show its physical relevance by discussing
T-duality, mirror symmetry, twisted topological models and type II supergravity theories.

One of the key statements we learned from G-structures is that we can understand flux mod-
ifications of the Levi Civita connection in terms of torsion classes. This picture is obviously
useful but a couple of questions still remain, which we address in the following. In general,
torsion is a (1, 2)-tensor, i.e. an object in the space Λ1⊗Λ2. The H-flux, however, is a 3-form
and we manage the correspondence to the torsion tensor by choosing the latter totally skew
symmetric. Taking as a next step also the remaining R-R bosons into account [13], which are
given by forms of all degrees, we also have to measure them with the torsion tensor. This can
be done in principle, since the G-structure measures only G-representations of the R-R fields
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that fit into torsion classes. But this would immediately imply from a G-structure point of
view that the torsion classes are blind with respect to their origin, i.e. they treat NS-NS fluxes
and R-R fluxes on equal footing. This point of view is too rough from a physical perspective
since physics does distinguish the NS-NS and R-R sectors. We come back and resolve this
puzzle within a new framework later on.

Furthermore, we know that different string- and supergravity theories are connected to each
other by duality maps. By means of G-structures we can characterise the background mani-
folds of e.g. type IIA and type IIB and, moreover, these backgrounds should correspond to
each other via T-duality or mirror symmetry [58]. This duality is geometrical. We note that
the T-duality rules (or Buscher rules) are known, see e.g. [64], but not geometrically well
understood. From Strominger, Yau and Zaslow [81, 58] we know that mirror symmetry is
T-dualtiy and that the two algebraic structures, the complex- and the symplectic structure,
on the two involved spaces get exchanged. Note that mirror symmetry works for T 3-fibred
manifolds where T-duality can act on. The complex structure is characterised via the holo-
morphic (3, 0)-form. In [32] it was shown how to mirror dualise the NS-NS backgrounds
of type IIA to type IIB in a two step process: firstly, characterise the background by a G-
structure and, secondly, apply the T-duality rules. In other words, the G-structure is not
powerful enough to provide maps that transform backgrounds to each other and keep the
property of the G-structure. In view of mirror symmetry, the demanded map must exchange
complex- and symplectic structures.

We will briefly sketch why G-structures will not motivate dualities. In principle, the real part
of a holomorphic (3, 0)-form reduces the structure group to SL(3,C), whereas the symplectic
structure reduces the structure group to Sp(6,R). Relating the two structures algebraically
reduces the structure group to the common group SU(3). Let us use this understanding
to focus once more on mirror symmetry. The mirror map transforms the SU(3)-structure,
viewed as the intersection of two structures, to its mirror SU(3)-structure, where the involved
holomorphic (3, 0)-form and the symplectic form get exchanged. This implies that the duality
map should act on the complex- and symplectic structure in a setup where they are considered
on equal footing. However, the G-structures cannot achieve this, because they treat them as
different. This demanded ”generalisation” is provided by the so-called generalised structures
which goes back to the seminal work of Hitchin [55] and will us occupy us next.

The basic idea in the author’s articles [60, 23] is to work within the generalised structures to
find a geometrical description of mirror symmetry and verify it by applications. In mathe-
matics G-structures were introduced in the problem of parallel transporting a tangent vector,
i.e. an element in T . The group G ⊂ SO(n) measures the difference of the initial and final
vector when parallel transported along a closed curve on an oriented n-dimensional manifold.
We now want to parallel transport elements in the space T ⊕ T ∗. In an informal way we can
think about this as a ”doubling” of the tangent space. And since this space has a natural
metric of signature (n, n) the structure group will be SO(n, n). This group has dimension
2n and its Lie algebra decomposes into three different pieces, where one part is given by a
2-form. This intrinsic 2-form, as one can show, behaves like the B-field given in string theory.
We therefore call the mathematical 2-form the B-field b. Moreover, the B-field has an even
more special property. In the generalised structure the Lie-bracket, being diffeomorphism
invariant, gets substituted by the Courant bracket [55, 57], which is even invariant under
B-field transformations. This implies that, once we found an integrable structure, a further
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action of the B-field will not violate integrability.

We introduce some more refinements. It is also possible to endow the generalised man-
ifold with a generalised metric G on T ⊕ T ∗ [45], which is completely characterised by
the Riemannian metric and the B-field. This generalised metric decomposes SO(n, n) to
SO(n) × SO(n) and, moreover, the space T ⊕ T ∗ decomposes in a direct product of two
n-dimensional spaces, a space- and light-like . An even dimensional generalised manifold
also allows for a generalised complex structure (GCS) J , which is a map from T ⊕ T ∗ to
T ⊕ T ∗ and has the properties of being complex and symplectic. It reduces the structure to
U(n2 ) × U(n2 ). A generalised Kähler structure (GKS) admits two GCSs that are compatible
with the generalised metric. Naturally, a usual Kähler structure (g, J, ω) can be discussed
in the generalised picture and is a special case of a GKS, where g is the metric, J is the
complex structure and ω is the symplectic form. We embed these by using matrices that act
on T ⊕ T ∗,

JJ =

(
J

−JT
)
, Jω =

(
−ω−1

ω

)
. (1.1)

A generalised Calabi-Yau metric admits an SU(n2 )× SU(n2 )-structure.

We investigate mirror symmetry by embedding a usual Calabi-Yau structure into the GKS.
Since mirror symmetry uses T 3-fibred spaces we discuss in section 3.2.1 the example of a
six-torus. The key idea is to split the indices of the participating structures into base and
fibre type, i.e. the (2, 2)-matrices in (1.1) become (4, 4)-matrices. We define a mirror mapM
such that it acts only in the fibre and interchanges the T -fibre part with the T ∗-part of the
structures. This might seem simple, but it is precisely this action which we prove to exchange
the complex with the symplectic structure. By also involving the B-field, which can be done
by matrix multiplication, the GCSs become more complicated but the mirror map M acts
in the same way and the results are the following: On the mirror side the B-field vanishes
and it is completely absorbed in the Riemannian mirror metric. We get as a result that the
mirror complex- and symplectic structures are precisely determined by the initial structures
that resolve a puzzle in the literature [46]. The mirror metric is exactly the same as the T-
duality rules [64] demand. We verify this by using the more involved pure spinor line picture.
The idea of the mirror map M suggests that this procedure is true for more complicated
manifolds and has been proven by the mathematician Ben-Bassat [12]. The basic result is
that generalised structures provide us with a framework where we can have G-structure and
also duality properties.

We use the generalised structures and show that they are a natural framework for twisted
topological models. The six-dimensional target space geometry for an N = (2, 2) non-linear
sigma model admits a bi-hermitian structure, i.e. it allows for two independent almost com-
plex structures, as was proven by Gates, Hull and Rocek [37] in 1984. This model investigates
all possible embeddings of the two-dimensional string into the target space. The fields which
appear in the action are the bosonic embedding coordinate X and two other objects ψ±,
which are spinors on the worldsheet, and, additionally, carry a target space index. The two
complex structures are associated to ψ+ and ψ−. Due to the lack of understanding of the
general bi-hermitian structure, the two complex structures were identified and the resulting
Kähler manifolds were discussed over a long time in the literature. Based on that, Wit-
ten [86] twisted the world-sheet fermions with the axial/vector R-currents and observed that
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the ”fermions” become world-sheet scalars and 1-forms. He furthermore considered only the
scalars and realised that the two twists reduce the model to two topological subsectors called
A- and B-model. Kapustin discussed in [65] T-duality properties of the two topological mod-
els and found out that it is necessary to allow for two independent structures. He treats
them in the sense of GCSs in a generalised description. It was proven by Gualtieri [45] that
bi-hermitian structures are equivalent to GKSs.

Motivated by the seminal work of Kapustin [65](see also [66]) we adopt the idea and discuss
the twisted A- and B-model [86] on general target spaces, where we use GKSs. Kapustin
discussed in [65] the B-model and we extend this to the A-model and call them generalised
topological A- and B-model [23]. Guided by the mirror symmetry results for GKS [60, 12]
we discuss the mirror map M on T 6 for GCSs, which is characterised by two independent
complex structures [45]. Gualtieri proved that the T⊕T ∗ bundle of a GKS decomposes under
the two GCSs into four subbundles. Since the mirror map acts on these subbundles it is shown
how sections of these bundles transform, which gives a deeper understanding of the properties
of mirror symmetry [23]. The two GCS of the GKS gets interchanged by M [12]. Having
this at hand we mirror transform the observables, the instantons and the generalised first
Chern class and make contact with the literature. Note, it is argued that the observables are
elements in a BRST-complex. This complex is isomorphic to a generalised complex which is
governed by a Lie-algebroid structure (see also [65]). Zabzine [87] formulated the topological
A- and B-branes by means of GCSs and we show that the mirror map M transforms them
into each other [23]. Furhermore, we allow for a 2-form F on the brane. In case the brane
has at least a two-dimensional fibre part, we realise that the fibre part of F gets mapped
via M to a new object - a bi-vector - that could suggest a non-commutative structure. It is
also valuable to mention that there exists, apart from the know A-branes, also co-isotropic
branes [67] and isotropic branes [22].

It was suggested [31] that the target space of Witten’s B-model can equivalently be captured
by the classical Hitchin functional [53], that defines at its critical point a holomorphic (3, 0)-
form sitting inside a certain cohomology class. The authors [74] proved for the B-model, that
the genus one free energy does not coincide with the one-loop free energy of the quantised
classical Hitchin functional. They checked this by evaluating the Ray-Singer torsion for the
quantised classical Hitchin functional and compared it to the known result from the B-model.
Furthermore, they substituted the classical Hitchin functional by the generalised Hitchin
functional [55], quantised it and realised that the one-loop free energy matches precisely
the known B-model results. This result not only suggests that generalised geometries are
preferable and convenient, it proves that these geometries are even necessary at 1-loop level.

1.4 Generalised geometries and type II theories

We argue that generalised structures are the proper setup to characterise supersymmetric
type II supergravity backgrounds. The low energy limit of type II string theories is given
by type IIA and type IIB supergravity. A supersymmetric vacuum background for type II
theories consists of bosons that come in two flavours; the NS-NS fields and the R-R fields.
To the former class belong the metric g, the B-field b and the scalar field φ - the dilaton.
The latter class is given by differential forms of degree p, the R-R fields F p, which satisfy
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the duality relation F p = �̂F 10−p, where ∧ is a sign changing operator depending on p.
The space-time supersymmetry is realised by two supersymmetry parameters ε1,2, which are
independent spinors and non-physical.

The theory is said to be of type IIA or IIB, if ε1,2 are of opposite or equal chirality.
The background is supersymmetric if these spinors satisfy additional conditions, namely
the vanishing of the supersymmetry variations. In the so-called democratic formulation of
Bergshoeff et al. [13], the vanishing of these is equivalent to

0 =
(∇X +

1
4
X H · P)(ε1, ε2) +

1
16
eφF ev,od ·X · Pev,od(ε1, ε2)

0 = (dφ ·+1
2
H · P)(ε1, ε2)∓ 1

8
eφ
(
5F ev,od −

∑
p=ev,od

pF p
)
· Pev,od(ε1, ε2), (1.2)

where H is the field strength of the B–field and P and Pev,od are certain projection operators.
Note that in type IIA, only R-R–fields of even degree are present, while in type IIB they are
odd.

We compactify type II theories on seven-dimensional spaces to find backgrounds that de-
scribe solutions of wrapped NS5-branes as was shown by Gauntlett et al. [38]. The explicit
compactification is done in absence of R-R fields, so only the NS-NS fields occur. We as-
sume the following: the ten-dimensional space-time is a direct product of a three-dimensional
Minkowski space and a seven-dimensional internal space, the H-field and the dilaton live only
on the internal space, the internal space allows for two independent spinors only. Requiring
that the vanishing of the supersymmetry variations (1.2) (see also [50, 51, 52]) vanish leads
only to internal equations, and we realise in [61], that they are equivalent to a generalised G2-
structure with structure group G2×G2. Witt introduced these structures in [84, 83], showed
that all NS-NS fields appear and proved that they completely characterise the so-called topo-
logical data. The generalised G2-structures arise as critical points of a purly topological
variational principle in dimension seven. The resulting critical points realise the integrability
conditions in the form picture. The structure forms are of mixed degree which is in contrast
to structure forms for G-structures. Moreover, Witt proved a one-to-one correspondence of
the integrability conditions to a spinor picture. The special feature is that the two spinors
are independent and can even coincide over a subset of the manifold which is not allowed
in terms of G-structures. Moreover, the property of independence is essential and thus each
spinor reduces the structure group independently which, roughly, results in the structure
group G2×G2. It is precisely this spinor picture that is identical with the internal supersym-
metry conditions. So, with the physical assumptions given above, we completely characterise
the topological data of the internal background. Alternatively we can say that the realisa-
tion of supersymmetry is achieved if the form picture is integrable. Note that the internal
supersymmetry variations already appeared in Gauntlett et al. [38] but there the solution
was given within classical G-structures. We show that these solutions appear as a special
case within the generalised G2-structures, namely, by forcing the two spinors to be globally
orthogonal the structure becomes effectively a classical SU(3)-structure.

Next we review and explain important facts about generalised G2-structures [84, 83]. Since
we learned that a compactification on seven manifolds leads to a generalised structure we
do afterwards an analogous compactification on six-dimensional manifolds. The resulting
internal supersymmetry variations look similar to the seven-dimensional case but there was no
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comparable generalised structure for this six-dimensional case in the mathematical literature.
We argued that the proofs of Witt [84, 83] can be adjusted to the case of a SU(3)× SU(3)-
structure group and define what we call a generalised SU(3)-structure [61]. Having the
generalised SU(3)- and G2-structures in dimension six and seven at hand we study their
relation. With the inclusion SU(3) ⊂ G2 it is possible to study classical SU(3)- and G2-
structures on six- and seven-dimensional manifolds [24]. Motivated by this we realise the
inclusion SU(3)×SU(3) ⊂ G2 ×G2 and investigate the relation between generalised SU(3)-
and G2-structures in dimension six and seven. After we discuss the general embedding we
specialise to the following example. A six-dimensional manifold is endowed with a generalised
SU(3)-structure and we let it flow over a line to obtain on the seven-dimensional total space
a generalised G2-structure. This generalises the so-called Hitchin flow equations [53].

It is also interesting to consider D-branes and we give here unpublished results. Within a pure
geometrical description these D-branes can be viewed as submanifolds and in case the space
admits a certain G-structure, the consistent submanifolds are not arbitrary. By assuming to
have supersymmetric branes it is well-known that they have to wrap calibrated cycles. In
case of a classical G2-structure the supersymmetric three-dimensional submanifolds can be
calibrated by the G2 three-from ϕ [49, 63]. We will sketch how D-branes can be calibrated in
the presence of a generalised G2-structure. The method we develop is perfectly general and
does not rely on the specific dimension. The idea is that a generalised G2-structure admits
two G2 three forms ϕ± which can, naively, calibrate the same three-dimensional submanifold
differently. We prove that this is not the case and show explicitly that the two calibrations,
when restricted to the submanifold, can be related to each other via the physical gluing
matrix R. This gluing matrix can even be understood as an object that defines the Dbrane.
Strictly speaking, our result gives a conditon on R with respect to ϕ± and thus singles out
calibrated D-branes. If a Dbrane is calibrated with respect to, say ϕ+, a calibration with the
pullback R∗ϕ− must be identical.

We showed that the internal space and their NS-NS fields of type II backgrounds can be com-
pletely characterised by generalised SU(3)- and G2-structures. But what about the remaining
R-R fields that additionally appear in the supersymmetry variations given in (1.2)? A few
unproven statements are already given in [41]. Recall that we first did a compactification
and figured out the internal spinor equations. We compared these with the mathematical
literature. In the same line of arguing we can also incorporate the R-R fields but here a
problem arises. A comparison with the mathematical literature cannot be done since the
generalised SU(3)- and G2-structures only capture the NS-NS fields. Even more is true.
Witt showed that the topological data is already exhausted by the NS-NS fields and so these
generalised structures do not provide further degrees of freedom to allow for R-R fields as
well. In other words, to make a serious comparison of the internal supersymmetry equa-
tions we have to work on the mathematical side first. This means that we have to extend
the generalised structures from a non-topological point of view. Remember, the generalised
structures appear as a critical point of a variational principle. We start here and modify this
principle to a constrained variational principle. This constraint is purely geometrical and can
be achieved by an even or odd form F ev/od. It modifies the former integrability condition
in a way that F ev/od appears as an inhomogeneous part. One might guess now that F ev/od

of the constraint are the R-R fields? The answer is ”yes”, but this has to be proven in a
rigorous manner [62]. In this mathematical article we prove that the modified integrability
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condition translates one-to-one to a modified spinor picture. Having now this mathematical
spinor picture at hand we can do again a serious comparison with the result we derived from
the compactification. The basic result is that the spinor pictures are precisely the same,
i.e. we have now a full picture of the physical NS-NS and R-R fields in terms of extended
generalised SU(3)- and G2-structures (we omit in the following the word extended). So, the
NS-NS fields characterise the topological data and the R-R fields are responsible for the geo-
metrical data. Note that a classical torsion-free G2-manifold is governed by the differential
conditions dϕ = 0 and d � ϕ = 0. In case the manifold picks up torsion the equations get
modified to dϕ = T1 + T7 + T27 and d � ϕ = T7 + T14, i.e. the specific torsion classes Ti
appear as inhomogeneous terms. The same situation appears in the just discussed case of
generalised geometries and we therefore call the R-R fields the generalised torsion. By using
G×G-representations it must be possible to establish generalised torsion classes but this is
for future work. As an application of this we study T-duality for generalised structures with
an S1-fibration.
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Chapter 2

Classical geometries and
supergravity in 11d

It is believed that the five existing 10d superstring theories are all ruled by a 11d theory,
called M-theory. This theory is in principle not known but the low energy formulation goes
under the name of 11d supergravity and was found by Cremmer, Julia and Scherk [25] in
1978.

We assume that 11d supergravity is formulated on a spinnable manifold (M1,10, g(11)) of
Minkowski signature. The theory involves the 3/2-spin gravitino ΨX ∈ ∆ ⊗ TM , where ∆
denotes the spin bundle, the metric g(11) and a 3-form potential C ∈ Λ3M . The field strenght
of C is the 4-form F̂ ∈ Λ4M . For the bosonic action we write

S ∼
∫ √

gR− 1
2
F̂ ∧ �F̂ − 1

6
C ∧ F̂ ∧ F̂ .

In the following we are only interested in the background manifold - the vacuum - and so
allow only the metric g(11) and the 3-form potential C to be present.

From a phenomenological perspective we want to compactify the theory on a seven-dimensional
internal Riemannian manifold (M7, h), i.e. M1,10 = M1,3 ×M7. This was first discussed by
Candelas and Raine [19] in the presence of 4-form fluxes and by assuming that the exter-
nal space is not warped. A further assumption arise by claiming to preserve a minimal
amount of supersymmetry in the external 4-dimensional space (M1,3, g). This constraint can
be achieved by bringing the supersymmetry variations of the fields into play. Since we are
interested in the vacuum manifold we only have to focus on the supersymmetry variation of
the gravitino [25],

0 = δηΨX = ∇g(11)X η +
1

144

(
X ∧ F̂ · − 8X F̂ ·

)
η , X ∈ TM , (2.1)

where · and means Clifford multiplication and contraction. The supersymmetry parameter
η ∈ ∆ is a Majorana spinor, globally defined and not a physical field. The first solutions for
N = 1 supersymmetry appeared in [6, 29].

To become more explicit with the compactification we introduce a non-trivial warping and
the 4-dimensional external space (M1,3, g) admits a Minkowski signature. Since our 4-form
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flux should be consistent with the maximally symmetric external space the most general F̂
is given by the well known Freund-Rubin Ansatz [33],

ds2 = e2A( g(4) + h(7)) ,
F̂ = dC = m vol4 + F ,

(2.2)

where A ∈ C∞(M7) is a warp function on the 7-manifold (M7, h), m is the Freund-Rubin
parameter and F ∈ ΛM7.

We specified the dimension of the 7-manifold by hand with the experience that we live in
4-dimensions. The internal 7-dimensinal space is argued to be (mostly) compact and invisibly
tiny. Furthermore, physics lack up to now of a satisfactory mechanism to adjust the right
amount of supersymmetry - so we have to specify it by hand. Since we do not experience
supersymmetry in everyday life but strongly believe in its existence we assume here (at least)
minimal supersymmetry.

Before we start with our main discussion in the next section we want to give the reader a
first flavour of the problem to find physically relevant minimal supersymmetric vacua. The
external space is choosen to be 4d-Minkowski R1,3. Let us set for convenience the warp
factor A and the 4-form field strength F̂ to zero. We attack the given compactification by
decomposing the 11d spinor η such that η = ε ⊗ θ, where ε ∈ ∆R1,3 and θ ∈ ∆M7 . We
note that ∆M7 is eight dimensional and real. By taking all the given data into account we
treat (2.1) by seperating it with respect to the external and internal part. The external part
for X ∈ TR1,3 is trivially satisfied since for R1,3 we have ∇g(4)X ε = 0, i.e.

δηΨX = ∇g(4)X η = ∇g(4)X (ε⊗ θ) = (∇g(4)X ε)⊗ θ = 0 .

The internal part for X ∈ TM7 yields

δηΨX = ∇hXη = ∇hX(ε⊗ θ) = ε⊗ (∇hXθ) = 0

and implies that we can solve the present problem by only focusing on the internal space.
Since we want to have minimal supersymmetry, i.e. four unbroken supercharges in 4d, there
must be precisely one internal covariantly constant spinor. Or in other words, if we parallel
transport eight independent spinors with respect to ∇h over all possible loops only one spinor
should remain the same. The discrepancy of the initial and final spinors, after the parallel
transport around the closed loop, can be measured by group theory and goes under the name
of holonomy theory or the notion of G-structures. The G refers the the structure group. In
our simple example the holonomy group is G2.

This chapter is mainly based on the author’s articles [8, 9, 10, 11]. We first seperate the
11d supersymmetry variations (2.1) into an external and an internal part. The external
part leads only to algebraic relations on the involved physical fields, e.g. the 4-form F̂ .
However, the internal equation is a Killing spinor equation that mainly characterises the
internal background manifold. This characterisation is governed by assuming supersymmetry.
The amount of supersymmetry we claim is equivalent to the question of the number of
parallel spinors on the 7-fold with respect to the connection. Note, this is not the Levi Civita
connection since we assume non-vanishing fluxes.
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We tackle this problem by first reviewing some fundamental facts about G-structures that
provide us to find solutions to our physical problem. We explicitly discuss G2- and SU(3)-
structures. This brings us in the position to classify the internal manifolds and thus we give
solutions to the initial problem (2.1). The basic result is that the internal 4-form flux F , the
Freund-Rubin parameter m and the differential of the warp-factor dA can be captured by
various torsion classes of the underlying G-structure. We also ask the question if different
11d spinor decompositions can drop some constraints on the fluxes but the answer here is
negative.

In addition, we provide some unpublished results. Let us focus only on the internal Killing
spinor equation where we set all physical fields but the metric to zero. So, we deal with the
Levi Civita connection like the above given example and the 7-space is a torsion-free G2-
manifold. The authors in [69] showed that the connection of a torsion-free G2-structure can
pick up α�-corrections, since the curvature gets modified by these corrections. We prove that
the modifications of the initial connection can be completely captured by G2 torsion classes.
As a result we obtain that α�-corrections will never lead to a weak G2-manifold but all
remaining three classes get contributions. It is even possible that the resulting G2-structure
becomes non-integrable.

2.1 Compactification of 11d supergravity

In the following we suppress the explicit notation of eleven-, seven- and four-dimensional
objects which should be clear from the context. We also prefer the index free notation of
Clifford multiplication, i.e.

F̂ · ≡ F̂MNPQΓMNPQ , (X F̂ )· ≡ XM F̂MNPQΓNPQ .

Choosing the diagonal metric η and using the convention {X,Y } = 2η(X,Y ) with η =
diag(−,+,+ . . .+), we decompose the 11d Γ-matrices as usual

Γµ = γ̂µ ⊗ I , Γa+3 = γ̂5 ⊗ γa ,
where µ = {0, 1, 2, 3} and m = {1, 2, . . . 7}. The 4-d γ̂µ-matrices are real and γ̂5 as well as
the 7-d γa-matrices are purely imaginary. We also denote

γ̂5 = i vol4· , vol7· = −i I (2.3)

which implies the following identities in components [5]

iγ̂5γ̂µ =
1
3!
εµνρλγ̂νρλ ,

i

3!
εabcdmnpγmnp = γabcd .

Having this in hand we write the 4-form field F̂ as

F̂ · = −im γ̂5 ⊗ I + I⊗ F ·
and we also denote

(X F̂ )· = 1
4 imγ̂

5X · ⊗I, X ∈ TM1,3,

(X F̂ )· = γ̂5 ⊗ (X F )·, X ∈ TM7.
(2.4)
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Since our metric is warped, we use

ds2 = e2Ad̃s
2 → ∇X = ∇̃X +

1
2
(X ∧ dA)· , X ∈ TM11.

According to our initial example we consider the gravitino variation (2.1) and split it in an
external part, X ∈ TM1,3,

0 =
[
∇X ⊗ I +X · γ̂5 ⊗

(
1
2 dA ·+ im

36

)
+ 1

144e
−3AX ⊗ F

]
η , (2.5)

and an internal part, X ∈ TM7,

0 =
[
I⊗
(
∇X + 1

2X ∧ dA ·+ im
144 X

)
+ 1

144e
−3A γ̂5 ⊗

(
X · F · −12 (X F ) ·

)]
η , (2.6)

where we used: ΓMΓN1···Nn = Γ N1···Nn
M + n δ

[N1

M ΓN2···Nn].

By calculating the external Dirac operator D = γ̂µ∇µ from (2.5) and multiplying this equa-
tion by 1

4 γ̂
5⊗X·, X ∈ TM7, we can eliminate the term ∼ X ·Fη from the internal gravitino

variation and obtain,

0 =
[
I⊗
(
∇X − 1

2
dA ·+ im

48
X ·
)
− 1

4
γ̂5D ⊗X · − 1

12
e−3A γ̂5 ⊗X F ·

)]
η . (2.7)

The next step in solving the external and internal equation is that we decompose the 11d
Majorana spinor η and discuss possible geometrical Ansätze for the external equation. This
will occupy us in the next section.

2.2 Decomposition of the 11d spinor

We decompose from a phenomenological point M11 into M1,3 ×M7 and also split the 11d
Γ-matrices. It is obvious that we also should decompose the 11d Majorana spinor. Since the
Spin(7) module on a 7-manifold has dimension eight, dim(∆) = 8, we can choose a basis θi
in ∆M7 and expand the 11d Majorana spinor by

η =
dim(∆)∑
i=1

(εi ⊗ θi + cc) , (2.8)

where εi ∈ ∆M1,3 and θi (eventually complexified) denote the 4- and 7-d spinors and are
globally defined. Note, the spin module of M1,3 does not have dimension eight. For example,
in case of F̂ = 0, A = 0 and by further assuming the 11-manifold to be flat, all θi are
covariantly constant with respect to the Levi-Civita connection. Therefore, dim(∆) = 8
gives the resulting extended supersymmetries in four dimensions. In general, if we allow more
structure not all θi are any longer parallel with respect to the Levi-Civita connection. But it
can be possible that we can find a different connection by that we are able to parallel transport
at least a fraction of eight. And this number with respect to a general connection gives a
classification of the internal space and counts the number of unbroken supersymmetries in
four dimensions. On the other side, to preserve at least a minimal amount of supersymmetry
it is necessary to find a connection which parallel transport at least one spinor. We address
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this classifying problem in the next sections and solve it with the mathematical theory of
G-structures, i.e. we classify the problem from a group theoretical point of view. We can
also ask about parallel spinors in 4d. Here we will make a geometical Ansatz by means of
the Killing spinor equation in 4d to discuss also non-Minkowski spaces. If the 4-d spinors are
covariantly constant, the resulting vacuum will be a 4-d flat Minkowski space, but for an anti
deSitter vacuum the spinors satisfy

∇Xεi ∼ X · (W1 + iγ̂5W2)εi , X ∈ TM1,3 ,

where W1/2 ∈ End(∆). Note, in case that W1/2 are just functions the resulting 4-d cosmolog-
ical constant will be −|W |2. In [9, 10, 11] the object W is considered as the superpotential.
In what follows we only refer to W in a geometrical sense. If there is only a single spinor
that is Majorana on the internal 7-manifold , i.e. i only has value equal to one, this equation
simplifies to

∇Xε ∼ X · (W1 + i γ̂5W2) ε , X ∈ TM1,3 ,

where W1/2 are now functions and ε is a Majorana spinor. In case of two internal spinors or
equivalently of having one complex (and conjugate) spinor the external spinor ε is a complex
Weyl spinor. We obtain

∇Xε = X · W̄ ε�

where W = W1 + iW2. Plugging these 4d Ansätze in the 11d framework we have

[
∇X ⊗ I

]
η = (X · ⊗I)η̃ where : η̃ =

{
[(W1 + i γ̂5W2)⊗ I] η M
Wε⊗ θ� + cc W

(2.9)

where M/W refers to a 4-d Majorana or Weyl spinor ε. In what follows we only discuss
the two cases where the internal 7-spinor is either real or complex which corresponds to
the external Ansätze M(ajorana) or W(eyl). Until now we do not even know if such cases
are mathematical well defined, e.g. if we investigate the most trivial case by having a 4d
Minkowski space, W1 = W2 = 0, vanishing flux F̂ = 0, and warp factor, A = 0. The external
equation is satisfied trivially. However, the internal equation reduces effectively to a equation
on the 7-manifold but stays non-trivial. This is because supersymmetry tells us that we want
to find a solution for exactly one real or complex spinor. The question thus reduces to the
problem: Do there exist 7-manifolds that admit precisely one real or complex parallel spinor
(to a certain connection)? How is such a space characterised. We want to address these
questions in the following section.

2.3 G-structures

We investigate the M/W case in the following section and show that the external equation
(2.5) leads only to an algebraic constraint for the flux, the differential of the warp factor and
W1, W2. But from the internal part (2.7) we get a complicated differential equation for the
involved spinors where the number of parallel spinors predicts the number of supersymmetry.
Since the number of supersymmetries cannot be derived from the physical theory we will fix
it by hand. We will introduce the mathematical theory of G-structures to solve the Killing
spinor equation for a fixed number of parallel internal spinors.
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Let us consider the phenomenological Ansatz M1,3×M7 that is accompanied by the splitting
of the 11d spinor (2.8). Moreover, the internal space is supposed to be very tiny (roughly at
Planck scale) and compact.

We want to collect some known facts about those internal spaces from the mathematical
literature e.g. [34, 36, 17, 77]. Since we assume to have a compact, spinnable manifold M7 it
admits a Spin(7)-structure. This spin bundle ∆ has real dimension equal eight, dim(∆) = 8.
We therefore often use the notation ∆ = 8. The biggest compact subgroup of SO(7) is
G2 which appears in representations e.g. 1, 7, 14 and 27. Since G2 sits also in Spin(7) a
reduction of the structure group to G2 is equivalent to the decompositon 8 → 1 ⊕ 7. Let
us call the singlet spinor θ. Furthermore, on an orientable compact 7-manifold there exist a
nowhere vanishing vector field X from a topologically point of view [82]. And since the map
X · θ ∈ ∆ is an isomorphism the spinors θ, X · θ are linearly independent in any point on
M7 and define a topological SU(3)-structure. Note that there exists also a second linearly
independent vector field that even defines a topological reduction to a SU(2)-structure.

This only means that having a compact, spinnable 7-manifold we have a topological reduction
even to a SU(2)-structure but this does not imply that we always have a geometrical reduction
to the structure group SU(2). The geometrical reduction can only be achieved by satisfying
certain differential conditions for the participating spinors. For instance, we have a topological
reduction to SU(2) but by imposing only differential conditions for the G2-spinor θ we can
have at most a geometrical G2-structure. If θ also satisfies the differential constraint then we
have precisely a G2-reduction. The geometrical reduction is achieved if the internal Killing
spinor equation preserves the number of singlet spinors. In other words the singlet spinors
must exist globally on M7 to reduce the structure group geometrically. Before we analyse
the complicated Killing spinor equations given by 11d supergravity we collect facts from the
mathematical theory of G-structures that are useful for our following investigations.

2.3.1 The mathematical idea of G-structures

We introduce the mathematical concept of holonomy or G-structures and find it useful to
motivate and discuss it in a naive and informal way. The precise definitions and proofs can
be found e.g. in [34, 36, 17, 77, 63, 24].

Let M be a generic, oriented n-dimensional manifold and let 
v be a specific vector at x ∈M .
We parallel transport 
v (with respect to a certain connection ∇) around a closed curve γ. In
general, this transport does not bring it back to itself (see figure 2.1). A deeper investigation
of the initial vector 
vi and the final vector 
vf yields the basic result that the final vector 
vf is
the image of the initial vector 
vi under certain transformations that depend on the the curve
γ and even on x ∈ M . Since we only deal here with connected manifolds we can drop the
dependence of x ∈M . It is a basic result that these transformations satisfy the axioms of a
Lie group. We will call this Lie group the holonomy group Hol(∇). For a general oriented
n-manifold we have Hol(∇) = SO(n). For instance, the holonomy group of Rn is simply the
identity. Furthermore, SO(n) preserves the length of the vector 
v that is parallel transported
and so does the holonomy group. In case of having a Riemannian manifold (M,g), i.e. M
also admits a metric g, there is a natural parallel transport that is given by the Levi-Civita
connection ∇LC . This connection is special since it has the property ∇LCg = 0.
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Figure 2.1: Parallel transport

In 1955 Berger proved that only certain Lie groups can appear in special dimensions as
holonomy groups. The possible holonomy groups are shown in the following list [63], e.g.

SO(n) in general ,
U(m) ⊂ SO(n) n = 2m > 2 ,
SU(m) ⊂ SO(n) n = 2m > 2 ,
Sp(k) ⊂ SO(n) n = 4k > 4 ,
G2 ⊂ SO(7) n = 7 ,
Spin(7) ⊂ SO(8) n = 8 ,

This list only proves that these groups could appear as holonomy groups in principle but
Berger did not prove if they really occur. For instance, Bryant [16] discoverd no more than
1987 the existence of metrics with holonomy of G2 and Spin(7).

We mentioned that the existing holonomy groups are Lie groups and are contained in SO(n).
This implies that the concept of holonomy can neatly be formulated in the notian of principle
fibre bundles. In general, the base space is the manifold itself and the fibre over x ∈ M is
isomorphic to the Lie group G that denotes the structure group. Roughly speaking, the
structure group is the group that characterises how to glue the patches of the manifold
together. So we can say that the holonomy group is the ”minimal” structure group. For
instance, let us take the manifold Rn. The principle fibre bundle has structure group e.g.
G = SO(n) but the ”necessary” structure group, the holonomy group, is the identity. In the
following we always identify G with Hol(∇) and talk about manifolds having a G-structure.

Let us go back to the idea of parallel transporting a vector over a loop by using now the
principle fibre bundle picture. In figure 2.2 we parallel transport an object over the closed
path γ. This path can be lifted via a connection to define a horizontal path γ∗ in the principle
fibre bundle. Let us parametrise the curves γ and γ∗ by t = [0, 1], where γ(0) and γ(1) are
identified in case of a closed path γ. Remember, γ is a path on M whereas we can denote γ∗

(in a local trivialisation) by (γt, g(γt)), g ∈ SO(n). We assign to the point γ(t) ∈M precisely
one group element of g ∈ SO(n). This picture illustrates that the lifted path γ∗ does not
close in general and the discrepancy is also captured by a group element of G that maps γ∗(1)
to γ∗(0). In case we only need a subgroup g ∈ G ⊂ SO(n) to achieve g · γ∗(1) = γ∗(1) for all
γ the structure group is reduced to G. The manifold admits a G-structure.

Until now we gave a very abstract and formal picture of G-structures in terms of a principle
fibre bundle. The question that arise is: How can we geometrically characterise the cases
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Figure 2.2: Lift of a curve γ from the base space

G ⊂ SO(n) - situations where the structure group is a proper subgroup of SO(n), e.g.
G = G2? The basic idea is the following. We can associate to a principle fibre bundle several
bundles, e.g. the tangent bundle, the bundle of 3-forms or even the bundle of all exterior-
forms Λ•Mn. If we assume that the manifold is spinnable we can lift the general structure
group SO(n) to Spin(n). Therefore we can also associate the spinor bundle ∆ to the principal
fibre bundle. This implies that we can parallel transport by a given connection not only a
vector but also e.g. a spinor or a tensor. The fundamental observation is that certain tensors
or spinors are invariant under a proper subgroup G ⊂ SO(n). This means that G ⊂ SO(n)
stabelises specific objects. Or the other way round, if we know that a manifold has parallel
sections of a certain associated bundle then the structure group is probably reduced. E.g.
G = G2 stabelises a certain 3-form ϕ or equivalently exactly one spinor θ. In other words,
by claiming ∇ϕ = 0 we reduce the structure group to G2.

We are now in a position to look back to our initial problem (2.1) and the subsequent discussed
example (M1,10 = R1,3×M7, F̂ = 0, dA = 0). Here it becomes immediately clear that we want
to parallel transport spinors and the number of independent spinors that solve the equation
predicts the number of supersymmetry. Regarding our example, if we are able to classify
all possible parallel spinors solutions we thus have all supersymmetry results. This question
reduces at first to the decomposition of the spinor bundle ∆ under possible subgroups of
SO(7) or rather Spin(7). Let us denote the common result for M7 that is useful for us later,

∆

G2 ∆R = 1⊕ 7
SU(3) ∆C = 1⊕ 1⊕ 3⊕ 3

where we note that ∆R = ∆⊗ R = 8 and ∆C = ∆⊗ C = 4⊕ 4.

The question that will occupy us next is: What will happen to the holonomy group if we add
terms to the Levi-Civita connection, e.g. flux terms in (2.1)?
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Let us now motivate how to bring the flux F̂ in (2.1) into the game of G-structures. By
assuming M1,10 = M1,3×M7 we splitted (2.1) in an external (2.5) and an internal part (2.7).
Later on we solve the external equation by pushing it to an algebraic constraint for the flux.
Taking this into account the interesting part is given by the internal equation. There is not
only the Levi-Civita connection involved but also additional flux terms appear. If we assume
to have an internal spinor θ ∈ ∆M7 we schematically will obtain for a pure internal equation,

0 = ∇Xθ + (flux-terms)(X) · θ . (2.10)

Strominger [80] observed for a similar situation (G = SU(3), heterotic theory) that the
shape of the flux term can be captured by the torsion term. Later it was realised that the
mathematical framework of G-structures deals with the similar equation,

0 = ∇Xθ + (X T ) · θ ,

where, in general, the torsion tensor T is an object in the space Λ1 ⊗ Λ2. This is the crucial
idea that we will pick up in the following, i.e. we want to achieve a equivalence between the
physical flux terms and the mathematical torsion tensor. This correspondence can be seen
by solving a 2-fold problem that we address now.

Firstly, one part of the flux terms is given by the 4-form F . Let us suppress for the moment
the terms that are given e.g. by dA. We can make contact with the flux F to the torsion by
first assuming T to be totally skew symmetric, i.e. T ∈ Λ3 ⊂ Λ1⊗Λ2. Secondly, since we are
on M7 we could treat instead of F ∈ Λ4 the hodge dual �F that is a 3-form like T .

This results on M7 (having the above assumptions) in the following possible interpretation

flux ↔ torsion ↔ geometry .

Let us focus once more on general mathematical aspects of G-structures and consider the
reduction of the structure group from SO(n) to G, where we denote the Lie algebras by
so(n) and g. Since so(n) ∼= Λ2, a structure group reduction to G is given by

so(n) = g ⊕ g⊥ .

Note, that g⊥ is in general not G-invariant and characterises the torsion by T ∈ Λ⊗ g⊥. But
since we want to have parallel spinors also T must be G-invariant. The idea of torsion-full
G-structures is to decompose T into G-modules, i.e. irreducible G-representations, that are
called torsion classes Ti,

T ∈ Λ⊗ g⊥ =
⊕
i

Ti . (2.11)

Remember, we are nevertheless intersted in having a skew-symmetric torsion tensor.

The parallel spinors we are now looking for are no longer parallel with respect to the Levi-
Civita connection but instead must be parallel by the equation (2.10). We want to regard the
additional flux (or the torsion) as a deformation of the Levi-Civita connection and introduce
a new (torsion-full) connection ∇̃ by

0 = ∇̃X = ∇Xθ + (flux-terms)(X) · θ .
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So, we are interested in parallel spinors with respect to the connection ∇̃. This means that
the basic question about parallel spinors remain and only the connection changed. E.g. space
time supersymmetry is only sensible to parallel spinors and not in a certain connection. In
the next sections we discuss more explicit the groups G2 and SU(3) and give useful algebraic
relations.

2.3.2 G2-structure

A topological reduction to a G2-structure allows for exactly one singlet in the spinor bundle
8→ 1⊕ 7. Let us define this G2-spinor by

θ = eZ θ0 ∈ 8 , Z ∈ C∞,

where θ0 has norm one with respect to the metric q on the spin bundle 8, i.e. q(θ0, θ0) = 1.

The corresponding 11d spinor η is thus given by η = eZ ε⊗ θ0, where ε is a Majorana spinor
in 4d. Since η is globally defined so is ε and θ0. By the well known procedure of fierzing
we can produce differential forms Ω ∈ Λ• of certain degrees. The coefficients of the forms
Ω ∈ Λ• can be computed by

g(Ω, eI) = q(eI · θ0, θ0),
where I denotes a multi-index, q is the metric in the spin bundle and g here is the extended
metric in the bundle of exterior forms. The only G2-invariant forms we can produce are
1 ∈ Λ0, ϕ ∈ Λ3, ψ ∈ Λ4 and volg ∈ Λ7. In components we have (the gamma matrices on the
7-manifold are chosen imaginary)

1 = q(θ0, θ0) ,

i ϕabc = q(θ0, γabcθ0) ,

−ψabcd = q(θ0, γabcdθ0) ,

i εabcdmnp = q(θ0, γabcdmnpθ0) .

(2.12)

It is also possible to construct out of the G2 3-form ϕ the metric on the 7-manifold. By
using the metric g we can calculate the hodge dual of ϕ and find �ϕ = ψ ∈ Λ4. Similarly,
�1 = volgΛ7. Since we learned that the Lie algebra so(7) is isomorphic to Λ2 and a reduction
of the structure group on a general M7 from SO(7) to the subgroup G2 implies the following
splitting:

so(7) = g2 ⊕ g⊥2 .

This induces a decomposition of the space of 2-forms Λ2 in the following irreducible G2-
modules, Λ2 = Λ2

7 ⊕ Λ2
14, where the subscripts denote G2 representations, e.g. 1, 7, 14 and

27. Some usefull identities in components are given by

γabθ0 = iϕabcγ
cθ0 ,

γabcθ0 =
(
iϕabc + ψabcdγ

d
)
θ0 ,

γabcdθ0 =
(− ψabcd − 4iϕ[abcγd]

)
θ0 .

(2.13)

By using the spin picture and the identities (2.13) we can calculate the decomposition of the
exterior forms and get
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• Λ0 = C∞(M7) ,

• Λ1 = Λ1
7 = TM7 ,

• Λ2 = Λ2
7 ⊕ Λ2

14, where

Λ2
7 = {w ϕ|w ∈ Γ(TM7)} = {α ∈ Λ2 | � (ϕ ∧ α)− 2α = 0} , (2.14)

Λ2
14 = {α ∈ Λ2 | � (ϕ ∧ α) + α = 0} ∼= g2 , (2.15)

• Λ3 = Λ3
1 ⊕ Λ3

7 ⊕ Λ3
27, where

Λ3
1 = {f · ϕ|t ∈ C∞(M7)} , (2.16)

Λ3
7 = {w ψ|w ∈ Γ(TM7)} , (2.17)

Λ3
27 = {α ∈ Λ3|α ∧ ϕ = α ∧ ψ = 0} , (2.18)

where by hodge duality e.g. �Λ3
k = Λ4

k.

We already mentioned that a geometrical reduction to a G2-structure comes along by a
differential equation on the spinor θ0 ∈ ∆ or equivalently for the 3-form ϕ. Let us now
recapitulate the ideas given in [34]. We are interested in the connection

∇̃ ≡ ∇LC +
1
4
(X T )· ,

where T is the torsion that measures the failure of the connection to be Levi-Civita.

In [34] the authors showed that in case of a totally skew symmetric torsion the connection
is unique and can be characterised from a group theoretical point of view by T ∈ Λ1 ⊗ g⊥2 .
These components decompose under G2, by using Λ1 ∼= g⊥2 ∼= 7, as

Λ1 ⊗ g⊥2 = 7⊗ 7 = 1 + 7 + 14 + 27 = T1 + T7 + T14 + T27 (2.19)

where the subscript in Ti denotes the dimension of the G2-modules.

The parallel transport via ∇̃ does not violate the spinor decomposition 8 = 1⊕ 7 globally iff
the G2-structure is integrable. The G2-structure is integrable iff T14 vanishes [35].

Since the spinor θ ∈ ∆ defines ϕ and ψ, these torsion classes Ti can be measured by dϕ and
dψ (see e.g. [34]) as follows

dϕ ∈ Λ4 = Λ4
1 ⊕ Λ4

7 ⊕ Λ4
27 ,

dψ ∈ Λ5 = Λ5
7 ⊕ Λ5

14 ,
(2.20)

where the 7 in Λ4
7 is the same as in Λ5

7 up to a multiple.

The different G2-invariant torsion modules can be explicitly extracted from the forms dϕ and
dψ by,

T(1) ←→ ψ dϕ ,

T(14) ←→ ∗dψ − 1
4 (∗dψ) ψ ,

T(7) ←→ ϕ dϕ ,

T(27) ←→ (dϕcde{aψb}cde)0 ,
(2.21)

where in (·)0 the trace is removed. T14 and T27 have to satisfy: ϕ3 ∧ Λ3
27 = 0.
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2.3.3 SU(3)-structure

The existence of two globally defined real spinors which are perpendicular reduce topologically
the structure group to SU(3). By the topological fact of having a nowhere vanishing vector
field v ∈ TM7 on a spinnable compact 7-manifold we can also start from a G2-structure by
using the singlet spinor θ0. We construct a second perpendicular spinor by the isomorphism
v · θ0. Since we have chosen the gamma matrices to be purely imaginary the spinor v · θ0 is
imaginary and no longer an object in the real spin module ∆. We define the complex (and
the complex conjugate) spinor θ to be an object in ∆⊗ C by

θ =
1√
2
eZ (I + v·)θ0 , Z ∈ C∞(M7), (2.22)

where the vector field v has norm one, ‖v‖ = 1. Thanks to that property and since the vector
field v is globally well-defined we get a foliation of M7 by a 6-manifold M6. We can also
think about the vector field v to serve as a complex structure of the complexified spin module
∆⊗ C1. In general the complexified spin bundle can be decomposed as ∆⊗ C = 4⊕ 4̄ that
is the spin representation of Spin(6) = SU(4). The spinor θ and its complex conjugate θ�

are therefore chiral spinors on M6, induce e.g. the decomposition 4 = 1⊕ 3 and reduce the
structure group to SU(3).

We write the 11d Majorana spinor in case of an internal SU(3)-structure by the folloiwng
decomposition

η = ε⊗ θ + ε� ⊗ θ� , (2.23)

where ε and ε� are two 4-d Weyl spinors of opposite chirality.

Due to the choice of a globally non-vanishing vector field v we induced a splitting in the 7d
tangent space such that TM7 = TM6⊕R · v. In other words we obtain a SU(3)-structure on
TM6 that we lift via v to a G2-structure on TM7.

Before we talk about the embedding of the structures we first clarify the properties and the
notation of SU(3)-structures on 6-manifolds [53]. It is usefull to understand the appearance
of the SU(3)-structure group from the following arguments. Let M6 be a 6-manifold. On
one hand the existence of a complex structure J reduces the structure group from SO(6) to
SL(3,C) and on the other hand the choice of a symplectic form ω forces the structure group
to reduce to Sp(6,R). The intersection of the two groups is U(3) = SL(3,C) ∩ SP(6,R) if
we can construct a positive definite metric g by g = ω J and ω lives in Λ1,1 only. Using the
induced metric g we can measure the lenght of forms. A holomorphic (3, 0)-form Ω(3,0) has
real dimension two and can be written by the real 3-from ψ+ such that Ω(3,0) = ψ+ + iJψ+.
By forcing the real form ψ+ to have unit length the structure reduce from U(3) to SU(3).

Let us introduce two standart notations [77, 24] in the mathematical literature that deals with
complex representations. Let TM6 be the real tangent space of a 6-manifold. By the choice
of a complex structure we can introduce complex coordinates z1, z2, z3 and complexified
forms ⊕3

k=0Λ
k ⊗ C. The k-forms decompose such that ⊕k=p+qΛp,q and have the property

Λp,q = Λq,p. Let V be a complex representation space and V its complex conjugate. In case
V is given by the complexification of a real vector space then we denote it by [V ], i.e.

[V ]⊗ C = V.

1This can be easily seen if one chooses the 7d-gamma matrices real.
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As complex representations we have the property V ∼= V and Λp,p is an example. An instance
where V � V is given by TM6 ⊗ C = Λ1,0 ⊕ Λ0,1. Here we obtain a real vector space �V � if
we forget the complex structure. We get the property �V � = �V � and the complexification is

�V �⊗ C = V ⊕ V .

For the above example we thus get TM6 = �Λ1,0�.

The exterior forms decompose at each point under SU(3) and can be denoted in real repre-
sentations, e.g.

Λ1 = �Λ1,0� ,

Λ2 = �Λ2,0�⊕ [Λ1,1
0 ]⊕ Rω ,

Λ3 = Rψ+ ⊕ Rψ− ⊕ �S2,0�⊕ �Λ1,0� ,

(2.24)

where [Λ1,1
0 ] ∼= su(3) and �S2,0� ∼= �Λ2,1

0 �.

The forms ω, ψ+ and ψ− satisfy the relations

ω ∧ ψ± = 0 ,
ψ+ ∧ ψ− = 2

3ω
3 .

(2.25)

One can now follow the same arguments as for the G2-structure to analyse the differantial
conditions for the structure forms. Since we do not need the explicit form of the five SU(3)
torsion classes we suppress here the detailed formulas and go over to discuss the embedding of
the SU(3)-structure into a G2-structure. We use later on the G2 torsion classes to characterise
M7.

Using the internal spinors we can fierz certain differential forms Ω, Ω̃ ∈ Λ• invariant under
the structure group SU(3). We obtain the coefficients of the forms Ω, Ω̃ ∈ Λ• by

g(Ω, eI) = q(eI · θ, θ�) ,
g(Ω̃, eI) = q(eI · θ, θ) ,

where I denotes a multi-index and g denotes the extended metric in Λ•. The forms are given
by

Ω0 = e2Re(Z) ,

Ω1 = e2Re(Z) v ,

Ω2 = i e2 Re(Z) v ϕ = i e2Re(Z) ω ,

Ω3 = i e2 Re(Z)
[
v ∧ (v ϕ)

]
= i e2 Re(Z) v ∧ ω ,

Ω4 = −e2Re(Z)
[
ψ − v ∧ (v ψ)

]
= −1

2e
2 Re(Z) ω ∧ ω ,

Ω̃3 = i e2 Re(Z)
[
e2i Im(Z)

(
ϕ − v ∧ ω − i v ψ

)]
= i e2Re(Z) Ω(3,0)

Ω̃4 = e2Re(Z)
[
v ∧ (v ψ)− i v ∧ ϕ] = −i e2 Re(Z)v ∧ Ω̄(3,0) .

(2.26)

where we used for Ω4 the identity,

−ψ + v ∧ (v ψ) = −1
2

(v ϕ) ∧ (v ϕ) .
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We used the SU(3)-structure forms, i.e. the symplectic two-form ω and the holomorphic (3, 0)-
form Ω(3,0). We constructed these by using the vector field v and the underlying G2-structure
forms ϕ and �ϕ. This means on the other side that we can thus embed the SU(3)-structure
(not uniquely) in the G2-structure. Setting Z = 0 we write

ϕ = ψ+ + v ∧ ω ,

�ϕ = ψ− ∧ v + 1
2ω

2 ,
(2.27)

where the identities (2.25) are satisfied,

Ω(3,0) ∧ ω = (ψ+ + i ψ−) ∧ ω = 0 ,
ψ+ ∧ ψ− = 2

3 ω
3 ,

and we defined Ω(3,0) = ψ+ + i ψ−.

Finally, we give the following identities by which we can simplify later calculations,

γaθ = eZ√
2
(γa + va + iϕabcv

bγc)θ0 ,

γabθ = eZ√
2
(iϕabcγc + iϕabcv

c + ψabcdv
cγd − 2v[aγb])θ0 ,

γabcθ = eZ√
2
(iϕabc + ψabcdγ

d + 3iv[aϕbc]dγd − ψabcdvd − 4iϕ[abcγd]v
d)θ0 ,

γabcdθ = eZ√
2
(−ψabcd − 4iϕ[abcγd] − 5ψ[abcdγe]v

e

−4iv[aϕbcd] − 4v[aψbcd]eγe)θ0 ,

γabcdeθ = eZ√
2
(−5ψ[abcdγe] − iεabcdefgγgvf − 5v[aψbcde] − 20iv[aϕbcdγe])θ0 ,

γabcdefθ = eZ√
2
(−iεabcdefgγg + εabcdefgvhγjϕ

ghj − iεabcdefgvg) θ0 .

(2.28)

2.4 The Killing spinor equation

Let us come back to our initial problem in solving the external and internal Killing spinor
equations (2.5),(2.7). We also take into account the geometrical Ansätze (2.9) for the two
cases of having one real or one complex spinor on the 7-manifold. But these two cases which
we have seen in the last chapter correspond either to a G2- or a SU(3)-structure on M7.
Therefore, we want to distinguish these two cases in the sequel by using the language of
structures.

Before we discuss the two structures independently we can find for the external equation

0 = η̃ +
[
γ̂5 ⊗ (1

2
dA+

im

36
)

+
1

144
e−3A (I⊗ F )

]
η (2.29)

and defining η̂ = e−
A
2 η, the internal equation (2.7) yields

0 = I⊗ (∇X +
im

48
γa
)
η̂ − e−A

2 γ̂5X · η̃ − 1
12
e−3A γ̂5 ⊗ (X F )η̂ . (2.30)

where we distinguish the spinors η, η̃ and η̂.
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Since η̃ includes only W1,W2 and by considering dA as a vector field we only get algebraic
constraints from the external equation (2.29) which we can use to solve the internal differential
equation.

Since we analyse the two structures in the following two sections separately we should also
mention that by reducing the structure group to G also the exterior forms decompose into
G-modules. E.g. by having a G2-structure the 4-forms decompose into

Λ4 = Λ4
1 ⊕ Λ4

7 ⊕ Λ4
27 (2.31)

where the subscript indicates the G2 representations. This also implies that the 4-form flux
on the 7-manifold M7 splits into three G2-invariant parts,

F ∈ Λ4 −→ F (1) ⊕ F (7) ⊕ F (27) , (2.32)

where obviously e.g. F (7) ∈ Λ4
7.

Let us spend some words about the three different representations which we can consider from
two points of view. Firstly, we can project out of the general 4-form the specific modules or
secondly we can ask about embeddings of the modules into the 4-form.

One can extract the components F (1),F (7),F (27) of the modules from the 4-form by using
the structure forms ϕ,ψ,

F (1) ←→ ψ F ∈ Λ4
1 ,

F (7) ←→ ϕ F ∈ Λ4
7 ,

F (27) ←→ ψ F − tr ∈ S2
0

(2.33)

where S2 denotes the symmtric 2-tensors and (·)0 indicates that the trace, tr, is removed. It
should be clear from the context how many legs were contracted, e.g. ψ F ∈ S2 means in
components Fcde{aψ cde

b} which is an symmetric 2-index object. This becomes plausible since
the symmetric 2-tensors decompose under G2 by S2 → S2

0 ⊕ tr. Note, by the projection onto
the 2-forms we obtain

ψ F ∈ Λ2 ←→ F (7) ϕ ∈ Λ2 (2.34)

We can also embed the modules of interest into the 4-form by

F = F (1) ψ + F (7) ∧ ϕ+ F (27) . (2.35)

Here the symbol F (27) indicates already the embedding into the 4-froms, F (27) ↪→ Λ4
27, which

can be achieved by (in components) F (27)
k[a ψkbcd].

2.4.1 G2-manifolds

Direct product spinor

The solution we try to figure out is based on the fact that the internal manifold M7 admits
exactly one spinor θ ∈ ∆ and we characterise the result by a geometrical G2-structure. The
11d spinor we use is a direct product spinor, η = ε⊗ θ.
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Since we introduced in the last section the decomposition of the internal flux into G2-modules
we now can use this splitting to derive the algebraic constraints from the external equation
(2.29). Making extensively use of the decomposition we also use the identities (2.13) to obtain

F · θ0 =
(
F (1) + iF (7) ·

)
θ0 ,

(X F ) · θ0 =
(
−F (1)X ·+ iX F (7) + X (F (7) ϕ) ·+X F (27) ·

)
θ0 ,

(2.36)

where we suppressed the numerical pre-factors.

We attack the external equation (2.29), involve the first identity in (2.36) and recapitulate
that the 4d spinor ε is of Majorana type. This implies that the terms O(ε) and O(γ̂5ε) have
to vanish separately,

O(γ̂5ε) : 0 =
(
iW2 + 1

2dA ·+ im
36

)
θ0 ,

O(ε) : 0 = W1θ0 − 1
6e

−3A
(
F (1) + iF (7) ·

)
θ0 .

Due to the independence of the terms O(θ0) and O(X · θ0), the final solution for the external
equation is

A = const. , m = −36W2 F (7) = 0 ,
e−3A

6
F (1) = W1 . (2.37)

For the internal equation (2.30) we can procede in a similar way and include also the just
derived algebraic constraints (2.37),

O(ε) : 0 =
(
∇X + i 7m

144 X ·
)
eZ θ0 , X ∈ TM7 ,

O(γ̂5ε) : 0 =
(
W1 − 2

7 e
−3AF (1)

)
X ·+1

2 e
−3AX F (27) · θ0 , X ∈ TM7 .

(2.38)

The second equation yields an algebraic constraint which must be satisfied for all X ∈ TM7.
Taking (2.37) into account we obtain 0 = W1 = F (1) = F (27) and thus the internal 4-form
flux has to vanish identically,

0 = F ∈ Λ4 . (2.39)

The equation which is left comes from the O(ε) constraint and it is not difficult to see that
also dZ = 0, we furthermore choose Z = 1. This remaining differential equation of the spinor
θ0 ∈ ∆ characterises a 7-manifold admitting a nearly parallel (or weak) G2-structure (see
also [14]). Such a manifold has torsion only in the singlet which in our case is given by
the parameter of the external 4-form flux m or equivalently by W2. It is thus possible to
solve the 11d Killing spinor equation by having a non-trivial Freund-Rubin parameter but,
additionally, this forces the 4d external space to be non-Minkowskian. Note, the non-trivial
parameter W2 measures the non-flatness of the curvature in 4d.

The differential condition of the spinor can also be re-formulated in terms of differential forms
where the non-trivial torsion classes can be figured out easily,

dϕ = −7m
18

ψ , dψ = 0 (2.40)

i.e. using (2.21) only T (1) is non-zero. A further differentiation of the first equation in (2.40)
yields 0 = ddϕ ∼ dm ∧ ψ by which we conclude that the Freund-Rubin paramter m has to
be constant over the 7-manifold.
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Non-direct product spinor

In the last section we used a specific Ansatz for the 11d spinor to solve the Killing spinor
equations. Let us go back again before we used this Ansatz and consider again the external
and internal equations (2.29),(2.30). Both equations can be seperated in terms including the
operator γ̂5 or not. This formal seperation becomes manifest for the external and internal
equations by using the direct product Ansatz as done in the last section. This is due to the
fact that the 4d spinor is Majorana and thus the terms O(ε) and O(γ̂5ε) become independent.
In other words the direct spinor Ansatz does not mix terms, including γ̂5 or not, within the
Killing spinor equations. The just mentioned mixing can only be achieved by using a spinor
Ansatz for η that contains at least one γ̂5-term. For the remainder of this section we want
to discuss a non-direct product Ansatz which give rise to a mixing.

Let Ω ∈ Λ• be a formal sum of exterior forms Ω(n) ∈ Λn on M7 accompanied by constants cn,
where n labels the degree of the forms, n ∈ {0, . . . , 7}. By Clifford multiplication we obtain
the non-direct product spinor Ansatz,

η̂ = Ω · ε⊗ θ (2.41)

Since we want to classify the 11d Killing spinor equations with respect to a G2 structure the
internal spinor and also the forms Ω ∈ Λ• must be G2-invariant. This restricts the formal
sum to be

Ω = c0 ⊕ c3ϕ⊕ c4ψ ⊕ c7 vol7 (2.42)

where ϕ,ψ are the G2 structure forms.

This yields the 11d spinor η̂,

η̂ = (c0 + c3ϕ+ c4ψ + c7 vol7) · ε⊗ θ ,
=
(
c0(I⊗ I) + c3(γ̂5 ⊗ ϕ·) + c4(I⊗ ψ·) + c7(γ̂5 ⊗−iI)

)
, ε⊗ θ (2.43)

where we used (2.3), vol7· = −i, in the last term. By a further short computation using
(2.13) we find

η̂ =
[
(c0 − 7c4)(I⊗ I)− i (c7 − 7c3)(γ̂5 ⊗ I)

]
ε⊗ θ (2.44)

where we finally have the 11d non-direct product spinor Ansatz. The two terms which appear
are responsible for the above mentioned non-trivial mixing of the terms.

We use this spinor in the following to investigate a modified 11d Killing spinor equation
with respect to (2.29),(2.30). Firstly, we take the 4d space to be Minkowski which implies
that W1 = W2 = 0, set the Freund-Rubin parameter m to zero and use a more complicated
(compare with (2.45)) 11d metric by,

ds2 = e2A g(4) + e−2B h(7) , (2.45)

where A,B ∈ C∞(M7) are functions on the 7-manifold (M7, h).

For convenience we denote the modified external equation,

0 = ∂Xη + 1
2e
A+B
[
X · γ̂5 ⊗ dA ·+ 1

72e
3B X ⊗ F

]
η , X ∈ TM1,3, (2.46)

29



and the internal equation , where X ∈ TM7,

0 =
[
I⊗
(
∇X − 1

2X ∧ dB ·
)

+ 1
144e

3B γ̂5 ⊗
(
X · F · −12 (X F ) ·

)]
η . (2.47)

Since the external 4d space is Minkowski the integrability condition for the spinor η must
vanish, [

∇X ,∇Y
]

=
[
∂X , ∂Y

]
= 0 , X ∈ TM1,3, (2.48)

which yields using (2.46) the condition,

0 =
[
‖dA‖(I ⊗ I)− 1

9
e3B(I⊗ F 2·) +

1
9
e3B(γ̂5 ⊗ dA F ·)

]
η . (2.49)

This constraint can be in components re-written in the following more convenient form

0 =
[
(I⊗ γpq)∂qA− 1

12
e3B γ̂5 ⊗ F p

]
γpγm

[
(I⊗ γmn)∂nA+

1
12
e3B γ̂5 ⊗ Fm

]
η , (2.50)

which can be solved by

0 =
[
I⊗X ∧ dA · ± 1

12
e3B γ̂5 ⊗X F ·

]
η , X ∈ TM7. (2.51)

Attacking this condition by X ∈ TM7 via Clifford multiplication and plugging it back into
the external equation we obtain, ∂Xη = 0. This just means that the 11d spinor η has to be
constant on M1,3 and we can drop the term ∂Xη from the external equation (2.46) which
yields,

0 =
[
γ̂5 ⊗ dA ·+ 1

72e
3B I⊗ F

]
η . (2.52)

Next we have to solve the internal equation (2.47) where we follow [5]. Note, in this equation
there appear the two flux terms containing F and X F but with the two above equations
(2.52) and (2.51) we can substitute these by using only the warp factor A.

The final internal equation becomes,

0 = I⊗
(
∇X − 1

2
X ∧ d(A+B) ·

)
η̂ , X ∈ TM7, (2.53)

where we also rescaled the spinor by η = e
A
2 η̂ and only took the +-equation of (2.51) into

account.

So far, we derived the algebraic constraints from the external equation and differential con-
dition from the internal equation. But before we want to apply the 11d non-direct spinor we
want to see how the 11d direct spinor Ansatz behaves under the modified situation compared
to the last section. Since the external spinor ε is Majorana the external constraint (2.51)
yields,

O(ε) : 0 = X ∧ dA · θ , X ∈ TM7 ,

O(γ̂5ε) : 0 = X F · θ , X ∈ TM7 ,
(2.54)

which must be satisfied for all X ∈ TM7. We immediately get dA = 0 and thanks to (2.36)
also F = 0. But we still have the function B which remains unconstraint. If we identify
B = −A we also have dB = 0 and get back to the result of the last section. But this is
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not necessary and thus the internal equation become (∇X − 1
2X ∧ dB·)θ , X ∈ TM7. Such

a internal 7-manifold admits a so-called conformal G2-structure. This structure carries only
the Lee-one-form torsion class, T (7). And in the above case the Lee-form is also exact, dB.
In other words we can always start from the more general metric Ansatz from above (2.45)
but this only results in a exact Lee-form which modifies the torsion class T (7).

We want to investigate the non-direct product spinor (2.44) in the following. Let us analyse
first the algebraic constraint (2.51). We obtain,

O(ε) : (c0 − 7c4)(X ∧ dA) · θ = ±i 1
12(c7 − 7c3)e3B(X F ) · θ ,

O(γ̂5ε) : i(c7 − 7c3)(X ∧ dA) · θ = ± 1
12(c0 − 7c4)e3B(X F ) · θ , (2.55)

for all X ∈ TM7.

By means of (2.36) a short calculation shows that the flux F ∈ Λ4 and the differential of the
function A ∈ C∞(M7) have to vanish identically. We conclude that also for the non-direct
spinor Ansatz it is only possible to have a non-trivial function B. This function is responsible
that a torsion-free G2-holonomy manifold picks up a exact Lee-one-form and jumps to the
class of conformal G2-structures having torsion in T (7) only.

2.4.2 A note on α�-corrections

The correction and the curvature

In this chapter we discussed so far compactifications of 11d supergravity on 7-dimensional
spaces. These 7-manifolds have a certain G-structure to capture the right amount of super-
symmetry. But we also know that in general supergravity theories are the low-energy limits
of string and M-theory. Let us consider string theory from an effective action point of view.
An expansion in powers of the inverse string tension α� then yields the supergravity as its
leading term by having integrated out the massiv modes.

We are given for this section with a supergravity theory compactified on a 7-dimensional
space M7 having exactly one parallel spinor and no fluxes at all. Since we assume the
external space to be Minkowski and set the warp factor to zero the internal space is torsion
free and has G2-holonomy. A further property of a precise G2-manifold is the Ricci-flatness.
The idea of the authors in [69] (see also [79]) is based on the fact that at tree level in string
perturbation theory the Ricci tensor can pick up corrections. It is known that the first non-
trivial contribution can be captured by calculating amplitudes with four external gravitinos
that is of order α�3. The authors [69] showed on one hand that the correction of the Ricci
tensor of a G2-manifold given at d=10 string tree-level is equal to a deformation of 11d M-
theory. On the other hand the authors explicitly calculated the α�3 correction and formulated
it via the curvature tensor R as an additional term that has to be added to the internal Killing
spinor equation,

Di = ∇LCi − 3
4
α′3 (∇jRikm1m2)Rjlm3m4 R

kl
m5m6 Γm1m2m3m4m5m6 . (2.56)

We have to keep in mind that we started with a G2-holonomy manifold that means that the
curvature tensor R is not perfectly general. Let us shortly discuss the curvature properties
of G2-manifolds where we follow strictly [17].
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The curvature tensor R in general is given by a 4-tensor where two pairs of components, the
first and second and the third and forth, are antisymmetric. Due to the fact that these two
pairs are symmetric the curvature tensor R is an element in R ∈ S2(Λ2). Moreover, under
the torsion free G2-structure the tensors decompose into G2 representations that means to
the curvature tensor R,

R ∈ S2(Λ2) ∼= 1⊕ 27⊕ 77 ∼= Scal⊕ Ric0 ⊕ S
where we called Scal the scalar curvature and Ric0 the trace free Ricci-curvature. It is also
a common fact [17] that the curvature R can be written as

Rijkl = Sijkl + ϕij
p Tpkl

where T originates from derivatives of the torsion only i.e. non vanishing torsion does never
affect the S-term in R. The property of S given by ϕmijSijkl = 0 reflects the fact that the
first pair of components are restricted from Λ2 = Λ2

7 ⊕ Λ2
14 → Λ2

14 i.e. S ∈ g2 ⊗ Λ2 ∩ S2(Λ2).

By means of the Bianchi-identity we have to put 28 constraints on Tpkl. The Ricci-tensor
Ric = Scal ⊕ Ric0 ∈ S2(Λ1) can be derived as usual from the curvature tensor R by the
contraction Ricij = Rkikj and measures the symmetric part 1⊕ 27 of R. We write,

Ricij = ϕpqiTpqj.

This equation proves what we already mentioned above. A G2-holonomy manifold is torsion
free has vanishing Ricci-tensor. This yields that the curvature tensor of a G2-holonomy
manifold is given by

Rijkl = Sijkl.

If we substitute this back into (2.56) we get as a first result the actual curvature contribution
since we are interested in the correction of a G2-holonomy manifold, i.e.

Di = ∇LCi − 3
4
α′3 (∇jSikm1m2)Sjlm3m4 S

kl
m5m6 Γm1m2m3m4m5m6 .

The authors in [69] also showed that it is possible to express (2.56) by means of the G2-
invariant 3-form ϕ,

Di = ∇LCi − i

2
α′3 ϕikl∇kZ lj Γj , (2.57)

Z ∈ S2(Λ1), where the Bianchi identity implies ∇iZij = 0.

Expression (2.57) has the advantage that it does not involve complicated contractions as it
is the case in (2.56). On one side it remains a highly non-trivial object since it includes
derivatives of Z but on the other side a group theoretical analysis is now more convenient.

The basic idea is to carefully analyse the correction term given in (2.57) in terms of G2-
representations and achieve a relation to G2-torsion. We show that (2.57) can be fully cap-
tured by distinct torsion classes. We started with a torsion free G2-manifold and found that
Tpkl = 0. But since we prove that the correction means torsion the object Tpkl gets modified
by α�3 and is no longer zero. This immediately yields to a contribution to the Ricci-tensor
as well. In other words, the corrected 7-manifold is no longer Ricci-flat at tree-level that was
also found by [69]. We are interested in the following only in the group theoretical analysis
of (2.57) and relate it to G2-structures.
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The correction and torsion classes

Let us denote the correction term given in (2.57) by Q. Becoming more precise, we consider

DX = ∇LCX +Q(X)·
where ∇LC is the Levi-Civita connection in the spin-bundle. The object Q(X) is a vector and
can be considered as the map Q : TM7 → TM7. Equivalently, Q is an object in Λ1 ⊗ TM7

and is at most an element in the space

Λ1 ⊗ TM7 ∼= 7⊗ 7 ∼= 1⊕ 7⊕ 14⊕ 27

But on the other side we know from (2.19) that a manifold admitting a G2-structure has
torsion in the space

(so(7)/g2)⊗ R7 ∼= g⊥2 ⊗ 7 ∼= 7⊗ 7 ∼= 1⊕ 7⊕ 14⊕ 27 (2.58)

This means that we can interpret the (1, 1)-tensor Q as an object describing torsion. Let us
investigate Q(X)·,

Qi
jΓj = − i

2
α′3 ϕikl∇kZ lj Γj

from a group theoretical perspective only, where Z ∈ S2(Λ1) and ϕ ist the G2-3-form.

By using G2-modules we attack ∇kZ lj and compute

Λ1 ⊗ S2(Λ1) ∼= 7⊗ (1⊕ 27) , (2.59)
∼= 77⊕ 27⊕ 2 · 7⊕ 64⊕ 14 , (2.60)

where we note that the multiplicity of 7 is 2 but one can easily show that one is coming from
the derivative of the singlet while the other arise from the derivative of 27. We write,

∇kZ lj ∈ 77⊕ 27⊕ 2 · 7⊕ 64⊕ 14.

We can represent the two high dimensional G2-modules on the 3-tensors where we use [17].
The representation of 64 on the 3-tensors is given by having the first two indices antisym-
metric while the last two are symmetric. A totally symmetric G2-invariant tensor represents
the 77. The contraction by ϕ maps 64 and 77 to the space of 2-tensors. Since we do it with
the G2-equivariant map ϕ ∈ Λ3

1 this is an isomorphism. But the 2-tensors are represented
by 1 ⊕ 7 ⊕ 14 ⊕ 27 only i.e. the 64 and 77-module drops out that can also be seen by the
Lemma of Schur.

The remaining G2 modules are 7, 14 and 27 which can be represented on the 2-tensors.
We collect them together in F ∈ S2

0(Λ1) ⊕ Λ2. Let us now embed F = F 7 ⊕ F 14 ⊕ F 27
0

into the space Λ1 ⊗ S2(Λ1) given by ∇kZ lj, where the second and third index is symmetric.
This is achieved by the formula ϕi{jrFk}r. After doing the contraction by ϕ we find for
Q = Q7 ⊕Q14 ⊕Q27,

Q ∼= 2 · Λ2
7 ⊕ Λ2

14 ⊕ S2
0(Λ1).

We want to be more explicit and give a full description for Q(X)·. Let us use (2.14) and
(2.15) for a representation of the two-forms and write F 27

0 for the symmetric and traceless
matrix. The result is given by,

Q(X)· ∼= X (F 7 ϕ) · +X F 14 · +X F 27· , (2.61)
∼= Xa (ϕabc (F 7)b γc + (F 14)ab γb + (F 27

0 )ab γb ) . (2.62)
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We give several comments,

• Q lacks of having a singlet that is due to that fact that the singlet torsion class vanishes
i.e. the correction will never lead to a weak G2-structure.

• We actually have two 7 representations. But since one is coming from the derivative of
the singlet (2.59), say a function f , we write F 7 = df + w, where w ∈ Λ1.

• The correction term Q can be interpreted as torsion but it is not possible to characterise
it by a totally skew symmetric torsion 3-form [34, 35], because it is not possible to
embed F 14 into Λ3. Furthermore the appearance of F 14 prevents the G2-structure
being induced by α�3-corrections to be integrable [35].

2.4.3 SU(3)-manifolds

In the last section the 11d Killing spinor equation was solved by using a G2-structure. But
for this case it was not possible to have a non-trivial F ∈ Λ7. In this section we want to
reduce the structure group further to SU(3) and try to charactrise solutions admitting a non
vanishing 4-form flux F ∈ Λ4. The explicit reduction to obtain the SU(3)-structure can be
claimed by the assumption of having two globally defined spinors being perpendicular. In
section 4.4 we gave a complex formulation and the corresponding explicit construction (2.22).
Remember, we defined the 11d spinor Ansatz in (2.23) by

η = ε⊗ θ + ε� ⊗ θ� , (2.63)

where the 4d Weyl spinors ε, ε� have opposite chirality. We use (1− γ̂5)ε = 0.

Let us first consider the external equation (2.29) by using the above spinor (2.63) and also
the W-Ansatz from (2.9). The external equation can be decomposed into the terms O(ε) and
O(ε�). Due to having the property (O(ε))� = O(ε�) it is sufficinet to consider the algebraic
constraints coming from

O(ε) : 0 = eK/2Wθ� +
( im

36
+

1
2
∂A+

1
144

e−3A F
)
θ , (2.64)

where we also introduced a Kähler potential by the substitution W → eK/2W .

The following analysis is based on the fact that we consider the SU(3)-structure in such a
way that it is build up by the G2 spinor θ0 and the vector field v ∈ TM7 via the spinor (2.22).
Thus, we can use the methods of a G2-structure but additionally have to involve differential
and algebraic constraints for the non-vanishing v making the reduction to SU(3) manifest.

Therefore, equation (2.64) yields eight algebraic conditions on the components of θ in the
compexified spin module ∆⊗C. It decomposes into the independent terms O(θ0),O(X · θ0),
where X ∈ TM7, and can furthermore seperated into real and imaginary parts,

O(θ0) : 0 = eK/2W1 − 1
6 e

−3A F (1) + 1
2dA(v) ,

0 = eK/2W2 + m
36 − 1

6 e
−3A F (7)(v) ,

O(X · θ0) : 0 = [−eK/2W1 + 1
42 e

−3AF (1)] v + 1
2dA− 1

3 e
−3A F (27)(v) ,

0 =
[− eK/2W2 + m

36

]
v + 1

6 e
−3A F (7) + 1

2ϕ(dA, v) ,

(2.65)
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where we abused notation in the last equation.

Contracting the last two equations by v and appropriately adding and substracting them
from the first two equations we conclude,

W = W1 + iW2 =
1
6

(4
7
F (1) −F (27)(v, v) + iF (7)(v)

)
(2.66)

m = 0 ,

where we identified K = −6A. The conditions on the flux become,

F (7) −F (7)(v)v = d(e3A) ϕ(v) , (2.67)
= 2F (27)(v) ϕ(v) , (2.68)

2F (27)(v) =
(
− 3

7
F (1) + F (27)(v, v)

)
v + d(e3A) . (2.69)

For the internal equation (2.30) we take the 11d spinor (2.63) into account and note that it
is sufficient to consider,

O(ε) : 0 = ∇X θ̂ − eK/2W X · θ̂� − 1
12 e

−3A (X F ) · θ̂ , (2.70)

where θ̂ = 1√
2
e−

A
2

+Z(I + v)θ0.

The last term including the internal flux F ∈ Λ in the just obtained equation (2.70) can be
decomposed under G2 by using (2.31), F = F (1) + F (7) + F (27) ∈ Λ4,

X F (1) · θ̂ = 24
7 F (1)(X −X·)θ0 ,

X F (7) · θ̂ = 3
[
2iF (7)(X) − ϕ(X, v,F (7))− ϕ(X,F (7))·
− i (X v)F (7) · −iF (7)(v)X ·

]
θ0 ,

X F (27) · θ̂ = 6
[
−X F (27)(v) ·+X F (27) ·+iϕ(X, v) F (27)·
− iF (27)(v) ϕ(X) ·

]
θ0 .

where we suppressed the function 1√
2
e−

A
2

+Z .

Due to the fact that we can embed the strict SU(3)-structure into a G2-structure (2.27) we
can calculate the torsion classes of this G2-structure T (i), i ∈ {1, 7, 14, 27},

T (1) ←→ W2 ∈ Λ0 ,

T (7) ←→ 48W1 v − 24
7 F (1) v − 3

2 ϕ(v,F (7)) + 27F (27)(v) ∈ Λ1 ,

T (27) ←→ F (7) � v − 2F (27) ϕ(v) ∈ S2
0 ,

T (14) ←→ ψ(v,F (7)) + 4F (7) ∧ v − 2F (27)(v) ϕ − 12F (27) ϕ(v) ∈ Λ2 ,

where the contractions are done in the obvious way and � denotes the symmetric product.
We also used here the constraint

0 = d[−A+ 2Re(Z)] ,
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which can be derive by calculating the differential of the norm of θ̂ ∈ ∆⊗ C,

d‖θ̂‖ = e−A+2Re(Z) d[−A+ 2Re(Z)] =
[
(∇aθ̂)T θ̂∗ + θ̂T∇aθ̂∗

]
dxa = 0

Due to the fact that the underlying structure is effectively characterised by SU(3) the just
derived four torsion classes T (i), i ∈ {1, 7, 14, 27} does not give the full characterisation of
the 7-manifold. It is shown in [24] that the four G2 torsion classes can be re-constructed by
using the five SU(3) torsion classes. Thus, the above four G2 invariant torsion classes can
be decomposed under SU(3) or on the other side one can directly calculate the five SU(3)
torsion classes to give the actual classification of the 7-manifold with respect to the structure
group. Work in this direction was first done by [26] where the assumption of the external
space being Minkowski was made, i.e. W = 0.

In the sequel of this section we only calculate the differential of v ∈ TM7 and re-write the
algebraic constraints from above by using SU(3)-structure invariants.

The differential condition for the normalised vector field v ∈ TM7, necessary for reducing
the structure group geometrically to SU(3) is given by,

d(e3Av) = 0 .

This result can be obtained by re-writting the object dv using the spinor language, the
corresponding covariant derivative given in (2.70) and certain algebraic constraints from
above. Compare also [26, 68], but there the authors used a 11d metric Ansatz where the
function A only appears in front of the external metric.

Let us now re-formulate the algebraic constraints of W,A and the 4-form flux F ∈ Λ4M7

given in (2.66-2.69). This we will do by considering the 7-manifold as a foliation by the
normalised vector field v ∈ TM7 and the associated 6-manifold M6. Therefore, we split the
algebraic constraints in a part parallel to v and in a horizontal part restricted to M6. Since
we are not focusing in the following on F ∈ Λ4M7 with respect to the G2 decomposition we
split the 4-form flux in horizontal parts,

F ∈ Λ4M7 −→ v ∧H +G , (2.71)

where v F = H ∈ Λ3M6, F |M6 = G ∈ Λ4M6, and decompose the 3-form H and the 4-form
G under SU(3), we use (2.24)

H ∈ Λ3M6 = Rψ+ ⊕ Rψ− ⊕ �S2,0�⊕ �Λ1,0� ,

G ∈ Λ4M6 = �Λ2,0�⊕ [Λ1,1
0 ]⊕ Rω .

(2.72)

We are now investigating how the algebraic constraints give conditions on the horizontal
fluxes H,G. The contraint of W given in (2.66) can alternatively be calculated by attacking
the external equation (2.64) with respect to q(θ, ·), where we also use Ω̃4 from (2.26) and
(2.71),

W =
i

36
Ω̄(3,0) H ,

which identifies W1,2 of W with the part of H given by Rψ+⊕Rψ−. We also make extensively
use of (2.26) in the following.
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Similarly, we can hit the external equation (2.64) by q(θ�, ·) to obtain the contribution of dA
in the direction parallel to v,

v d(e3A) =
1

144
ω2 G ,

which re-phrases the constraint given in (2.69), v d(e3A) = 3
7F (1) + F (27)(v, v). Moreover,

this implies that the SU(3)-module R of G is given by v d(e3A) since the 4-form ω2 is a
basis for this module.

Next we consider equation (2.67) where we use the definition of F (7) given in (2.33) and
(2.71),

F (7)|M6 =
1
6

(
− (χ+) G+ 3ω H

)
= d(e3A) ω (2.73)

We use also the definition (2.33) of F (27) when investigating (2.68),

F (7)|M6 = 2F (27)(v) ω =
1
6

(
(χ+) G+ 3ω H

)
(2.74)

The last two equations imply immediately (χ+) G.

In the same vain, we also attack (2.69) and get

2v F (27)|M6 = −1
6

(
(χ−) G+

1
2
H ω2

)
= d(e3A)|M6 (2.75)

which finally results in the constraints

Ω(3,0) G = 0 , and
1
2
ω H = d(e3A) ω . (2.76)

The first constraint set the �Λ2,0� part of G to zero and the second condition identifies the
non-primitive part �Λ1,0� of H with the horizontal part of dA, d(e3A)|M6 .

Since we already put all conditions on the fluxes into game the primitive part �S2,0� of H and
the [Λ1,1

0 ] part of G remains unconstrained. However, one can show that the [λ1,1
0 ]-module

appears in the symmetrised version of the covariant derivative of v. One can also prove that
the 6-manifold M6 is also not complex.

Let us schematically summarise the conditions on the fluxes H,G,

H ∈ Λ3M6 = (W1,W2) ⊕ �S2,0� ⊕ d(e3A)|X6 ,

G ∈ Λ4M6 = [Λ1,1
0 ] ⊕ v d(e3A) .

(2.77)
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Chapter 3

Generalised geometries, mirror
symmetry and topological models

In the last chapter we used the technique of G-structures to obtain non-trivial solutions for the
11d supergravity Killing spinor equation. The 4-form flux was interpreted as torsion and with
respect to the G-structure we decomposed F into G-modules. We characterised the solutions
by asking about the number of space-time supersymmetry. This question, as we showed,
can be rephrased: For a given connection, what is the holonomy group that leaves invariant
exactly e.g. one spinor? In our previous discussion we asked for covariantly constant spinors,
but originally, the concept of holonomy or G-structures deals with the parallel transport of
vectors, i.e. elements in T . We attacked this by introducing the abstract theory of principal
fibre bundles and considered several associated bundles, in particular, the tangent bundle
where the vector fields live in. Let us consider a G-structure as the classical structure and
let us introduce a new type of structure that goes under the name of a generalised structure
and was introduced by Hitchin [55].

The principle idea is that we want to parallel transport not only elements in T , but elements
in T ⊕ T ∗. The dimension of this space is 2d and, as we will see later on, this bundle admits
a signature of type (d, d), where d is the dimension of the manifold [55]. By considering
once more the principle fibre bundle picture the group of our present interest (for an oriented
manifold) is SO(d, d). For usual vector fields we use the Lie bracket to ask about integrability.
In the T ⊕ T ∗ case the Lie bracket will be substituted by the Courant bracket [55], which is
not only invariant under diffeomorphisms but also under a 2-form B, that appears naturally
in the Lie algebra of SO(d, d). We refer to this object as the B-field. Furthermore, it is
possible to twist the Courant bracket by a closed 3-form H.

Remember, that the general structure group on 6-manifolds is SO(6). Introducing an alge-
braic structure such as an almost complex structure J ∈ End(T ) and/or a symlectic structure
ω : T → T ∗ the group SO(6) will be reduced to either U(3), Sp(6) or even SU(3).

For generalised geometries one can also introduce an algebraic structure, called a generalised
complex structure (GCS) J [45], which is a map J : T ⊕ T ∗ → T ⊕ T ∗. But in this case
one crucial property occurs. The classical algebric structures J and ω appear as two special
cases of GCSs. This is why the formalism is called generalised. By further introducing a
generalised metric G on T ⊕ T ∗ it is possible to define a second GCS. This setup goes under
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the name of a generalised Kähler structure (GKS). It was proven by Gualtieri [45] that this
structure is equivalent to a bi-hermitian geometry that consists of a hermitian metric g, a
closed 3-form H and two almost complex structures J+ and J− that are both compatible
with the metric.

The authors in [37] proved already in 1984 that the target space of a non-linear sigma model in
two dimensions admits a bi-hermitian structure. The model describes all possible embeddings
of a two dimensional string into a 6-manifold, requiring a certain amount of worldsheet
supersymmetry. But since the bi-hermitian structure was only poorly understood physicists
used Kähler manifolds to handle the target space. Based on this assumption Witten [86]
introduced a neatly twist of the worldsheet fermions with the axial/vector R-currents. The
resulting ”fermions” are scalars and 1-forms and by further neglecting the 1-forms Witten
defined two distinct topological field theories - the A- and B-model. One might guess that
the twisted models are physically irrelevant and serve only as a toy model but there are
observables, the Yukawa couplings, that coincide for the twisted (unphysical) and untwisted
(physical) models. First Kapustin [65] realised from the physical perspective that the twisted
non-linear sigma model can be formulated via generalised geometries. He even showed that
T-duality arguments come along with a GKS structure. Moreover, the A-model and the
B-model can be mapped onto each other via mirror symmetry.

What is mirror symmetry? Let the target 6-manifold be T 3-fibred. As was proven by Stro-
minger, Yau and Zaslow (SYZ) [81], mirror symmetry is T-duality in case we apply T-duality
only in the fibre. It is known that mirror symmetry exchanges all observables and ensures
that the two involved target spaces, one for each topological model, are mirror pairs. Fur-
thermore, mirror symmetry relates the involved complex and symplectic structures of the
two mirror target spaces to each other. There was no simple and appropriate tool to describe
this exchange since there was no mathematical theory that considers the two structures on
equal footing. But generalised structures can achieve that [60, 23, 12, 32].

This chapter is based on the author’s articles [60] and [23]. We introduce the idea of gener-
alised geometries, characterise some basics and define the notion of a GKS. Subsequently, we
use this type of manifolds and assume that the 6-manifolds are T 3-fibred. As a toy model
we take a 6-torus. We define the mirror map M, by using pure differential geometry only.
Applying this map to a usual Kähler manifold, described in terms of a GKS, the underlying
GCSs are interchanged. This happens even if the B-field enters the game and verifies the
already known Buscher rules (see for instance [64]). In case of a non-trivial GKS, i.e. having
independent I+ and I−, the GCSs get also mapped into each other. We also discuss this in
terms of involutive subbundles inside T ⊕ T ∗ and thus understand in more detail the mirror
map. Having this at hand we discuss the twisted topological models within the generalised
setup and study various aspects of mirror symmetry, e.g. observables, the anomaly and also
topological branes.

3.1 Mathematical preliminaries

The theory of generalised complex (and Calabi-Yau) structures was introduced by Hitchin [55].
Based on this seminal work, Gualtieri [45] introduced the notion of generalised Kähler struc-
tures (GKS) in his thesis where he discussed also integrability conditions and torsion. In

39



what follows we will stick (almost) to the definitions given there. In the following we will
remember the concepts we use later on.

3.1.1 Basic definitions

Let T be a 6-dimensional real vector space and T ∗ its dual. Since we are basically interested
in manifolds we also use (in abuse of notation) the same symbols for the (co-)tangent bundle.
By introducing local coordinates and using the canonical basis for T and T ∗ we have the
natural pairings,

dxµ(∂ν) = δµν , ∂µ(dxν) = δµ
ν . (3.1)

Using this fact we define the non-degenerate, symmetric bilinear form of signature (6, 6) on
the vector space T ⊕ T ∗ by

〈X + ξ, Y + η〉 =
1
2
(ξ(Y ) + η(X)) , (3.2)

where X,Y ∈ T, ξ, η ∈ T ∗. The group preserving this bilinear form and the orientation is the
non-compact special orthogonal group SO(6, 6). The Lie algebra so(6, 6) can be decomposed
into a direct sum of three terms, so(6, 6) = End(T ) ⊕ Λ2T ∗ ⊕ Λ2T , and an element is given
by

g =

(
A β

B −A∗

)
, (3.3)

A ∈ End(T ), B ∈ Λ2T ∗, β ∈ Λ2T . We observe that there exists an intrinsic two-form which
we will further call the (physical) B-field. The B-transformation is given by

eB =

(
1
B 1

)
, (3.4)

which acts as: exp(B)(X + ξ) = X + ξ + X B. Correspondingly, we obtain for the β-
transformation

eβ =

(
1 β

1

)
, (3.5)

where: exp(β)(X + ξ) = X + ξ + ξ β.

3.1.2 Spinors and associated bilinear form

Let us act with X + ξ ∈ T ⊕ T ∗ on ϕ ∈ ΛT ∗ by

(X + ξ) · ϕ = X ϕ+ ξ ∧ ϕ (3.6)

and note that (X + ξ)2 · ϕ = 〈X + ξ〉ϕ, where we used (3.2). In other words, this action
means Clifford multiplication for a T ⊕T ∗ element and the corresponding spin representation
is the exterior algebra ΛT ∗. Shortly, forms are spinors in the T ⊕ T ∗ language. Taking the
argument of dimension and signature into account the spin representation splits into two
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chiral irreducible parts S = S+ ⊕ S−. We consider elements of S+(S−) as even(odd) forms.
Let us define an invariant bilinear form on the spinor bundles S±

〈 · , · 〉 : S ⊗ S → detT ∗. (3.7)

Because we are dealing with manifolds of real dimension n = 6 the bilinear form is skew-
symmetric

〈ϕ,ψ〉 = (ϕ̂ ∧ ψ)top , (3.8)

where we used the involution ∧ by

pmod4 0 1 2 3
∧ + − − +

.

3.1.3 Purity

In this subsection we introduce (less familiar for physicists) the powerfull tool of pure spinors.
Let Lϕ ⊂ T ⊕ T ∗ be defined by using the Clifford multiplication such that

Lϕ = {X + ξ ∈ T ⊕ T ∗|(X + ξ) · ϕ = 0} . (3.9)

It can be easily checked that Lϕ is isotropic. Spinors having an associated maximally isotropic
annihilator Lϕ (or null space) are called pure, i.e. ϕ is pure when dim(Lϕ) = 6. The power
of pure spinors comes into play by using the fact that every maximal isotropic subspace of
T⊕T ∗ is generated by a unique pure spinor line. Using the bilinear form on the spinor bundle
we can distinguish two maximal isotropics Lϕ, Lψ:

Lϕ ∩ Lψ = 0 ⇔ 0 �= 〈ϕ,ψ〉 = (ϕ̂ ∧ ψ)top (3.10)

where ϕ,ψ are pure spinors. Note that every maximal isotropic subspace L of type k has the
form

L(E, ε) = {X + ξ ∈ E ⊕ T ∗ : ξ|E = ε(X)} , (3.11)

where E ⊂ T , ε ∈ Λ2T ∗ and k is the codimension of its projection onto T . In what follows
we only consider the special case when ε = B and only introduce the extremal isotropics
of lowest and highest type. It is possible to extend our previous facts by complexification
to (T ⊕ T ∗) ⊗ C. This provides us also with the action of complex conjugation. We are
now prepared to define one of the important tools we use later on to construct generalised
Calabi-Yau structures: The complex maximal isotropic subspace L(E,B) ⊂ (T ⊕T ∗)⊗C (E
denotes its projection on T ⊗C) is defined by the complex spinor line UL ⊂ Λ(T ∗⊗C) which
is generated by

ϕL = c · exp(B + i ω)θ1 ∧ . . . ∧ θk, (3.12)

where c ∈ C, (B+i ω) ∈ Λ2(T ∗⊗C) and θi are linearly independent complex one-forms. Note:
If θ1 ∧ . . . ∧ θk is pure then one can easily check that Clifford multiplication by exp(B + i ω)
respects the property of purity. Obviously, we may single out different isotropics. The reader
might wonder if the real form ω ∈ Λ2T ∗ can be the symplectic form. The answer in our case
is ’yes’. Later on we define two spinors, one of type k = 0 (symplectic type) and one of type
k = 3 (complex type). We do not need here non-extremal types.
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3.1.4 Integrability

In the ordinary sense (at least in differential geometry) we call a structure integrable if smooth
vector fields are closed under the Lie bracket. The structure of the Lie bracket, however, is
invariant only under diffeomorphisms. The situation changes if we ask for integrability of
smooth sections of (T ⊕ T ∗) ⊗ C. The answer to this question is the Courant bracket. Our
main concern are smooth sections of maximal isotropic sub-bundles which are closed under
this bracket. Hitchin showed [55] that the Courant bracket is additionally invariant under
B-field transformations iff dB = 0. Clifford multiplication of X + ξ ∈ T ⊕ T ∗ on a spinor is
a map taking Λev/od → Λod/ev (see (3.6)), i.e. we map ev/od forms to od/ev forms. Also the
exterior derivative is such a map. There is the following correspondence between isotropic L
being involutive (closed under the Courant bracket) and smooth sections of the spin bundle:

Lρ is involutive ⇔ ∃(X + ξ) ∈ C∞(T ⊕ T ∗)⊗ C : dρ = (X + ξ) · ρ (3.13)

for any local trivialization ρ. We can also extend this definition by twisting the Courant
bracket with a gerbe [57]. Integrability forces the substitution of the ordinary differential
operator d by the twisted differential operator dH :

d · → dH · = d ·+H ∧ · (3.14)

where H ∈ Λ3T ∗ is real and closed.

3.1.5 Generalised Kähler structures

Remember, that a manifold often admits additional structures, e.g. a metric, an almost com-
plex structure or a symplectic form. We consider these structures usually from the tangent
bundle point of view. In case that the structures exist globally, the structure group reduces
to SO(6), U(3) or Sp(6). In this section we define similar structures in the T ⊕ T ∗ bundle
and show how the structure group O(6, 6) can be reduced.

Consider the natural indefinite metric (3.2) on T ⊕T ∗. In what follows we are interested not
only in involutive but additionally in positive(negative) definite subbundles, called C±. This
forces the structure group to reduce globally to the maximal compact subgroup O(6)×O(6).
Therefore we get the splitting T ⊕ T ∗ = C+ ⊕C−. This serves to define the positive definite
metric G on T ⊕ T ∗. The metric G has two properties, it is symmetric (G∗ = G) and it
squares to one (G2 = 1). (Note that G is an automorphism).

Let us do this more explicit (in the complexified case) by using the projectors P± = 1
2(1±G),

where the associated subbundles C± ⊗ C,

(T ⊕ T ∗)⊗ C = (C+ ⊕ C−)⊗ C , (3.15)

have eigenvalues ±1 and carry a positive/negative definite metric (see figure 3.1). We will
give an explicit formulation in (3.23).
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x ∈M6

T ⊕ T ∗

C+ C−

Figure 3.1: The positive and negative definite subbundles C±

A generalised complex structure (GCS) is an endomorphism J on T ⊕T ∗ which commutes (is
compatible) with G. So C± is stable under the action of J . It satisfies J 2 = −1 and its dual
J ∗ is symplectic (J ∗ = −J ). Using the properties of G and J we can define another GCS.
Additionally, requiring that the two commuting GCSs are integrable we have a generalised
Kähler structure (GKS) and G is given by

G = −J1J2. (3.16)

This reduces the structure group to U(3)× U(3).

Let us now explain the relation between the structures G,J1,J2 of the generalised Kähler
geometry with the pure spinor lines (defining the maximal isotropics). This we will explain
for the case of having a usual Kähler manifold that is endowed by a metric g, a complex
structure J and a symplectic form ω satisfying ω = gJ . In this case, we have the additional
identities,

Jω−1 = g−1 and JTω = g . (3.17)

We embed the complex and symlectic structures in the GCSs by defining

JJ =

(
J

−JT
)
, Jω =

(
−ω−1

ω

)
. (3.18)

Both algebraic structures, JJ ,Jω, have the properties of a GCS. Using the above identities
(3.17) we can calculate the metric G in the T ⊕ T ∗ bundle by,

G = −JJJω =

(
g−1

g

)
. (3.19)

The triple (JJ ,Jω, G) provides us with a simple example of a GKS.

We also want to include the B-field, which turns out to be simple, since we only have to
multiply matrices,

(J BJ ,J Bω , GB) = (eB JJ e−B , eB Jω e−B , eB Ge−B) (3.20)
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where eB acts via (3.4). This provides us with the generalised complex structures [45]

J BJ =

(
J

BJ + JTB −JT
)
, J Bω =

(
ω−1B −ω−1

ω +Bω−1B −Bω−1

)
, (3.21)

and the generalised metric

GB =

(
−g−1B −g−1

g −Bg−1B Bg−1

)
. (3.22)

The generalised metric GB motivates the orthogonal spaces C+ and C−,

C+ = {X + (B + g)X|X ∈ T} , C− = {X + (B − g)X|X ∈ T} . (3.23)

In other words, if we are given with a section X in T , we can construct the T ∗-part by setting
(b± g)X ∈ T ∗ and get in this way the full element in C±.

Example 3.1.1. Let ψ+ ∈ T and ψ− ∈ T be two sections. We define the ± signs such that
the two sections originate from the T -part of two sections in C±. This means that we can
seperate the two independent sections ψ± in T by lifting them into the two orthogonal bundles
C+ and C−. See figure 3.2.

x ∈M6

T T ∗

ψ−

ψ+

B ± g

x ∈M6

T ⊕ T ∗

C+ C−

Figure 3.2: The positive and negative definite subbundles C±

For the above GCSs, (JJ ,Jω), we have two corresponding spinor lines (ϕJ , ϕω). Thus, the
maximal isotropics (LϕJ

, Lϕω) are stable under (JJ ,Jω) and are generated by the pure spinor
lines (ϕJ , ϕω),

LϕJ
: stable under JJ and generated by ϕJ = Ω(3,0) , (3.24)

Lϕω : stable under Jω and generated by ϕω = ei ω , (3.25)

where
LϕJ

= T 0,1 ⊕ T ∗1,0, and Lϕω = {X − iX ω : X ∈ T ⊗ C} . (3.26)

A generalised Calabi-Yau structure (GCYS) is a GKS with the following additional constraint
for the generating spinor lines,

(ϕ̂1 ∧ ϕ̄1)top = c · (ϕ̂2 ∧ ϕ̄2)top for each point , (3.27)
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where c ∈ R . We can understand the constraint by first remembering that the property

(ϕ̂1/2 ∧ ϕ̄1/2)top �= 0 (3.28)

trivialises each determinant bundle of the involved pure spinors. And via the constraint (3.27)
the two determinant bundles are equal up to a constant at any point. This also reduces the
structure group to SU(3)× SU(3).

If we take the above generating spinor lines ϕJ , ϕω we obtain according to (3.27)

ω3 =
i 3!
23

Ω ∧ Ω̄ , (3.29)

where c = 1.

In this section we have shown how a usual Kähler structure can be naturally embedded into
a GKS. But note that this is a very specific case since the framework of generalised Kähler
geometry is much richer. We will see later that the most general framework is equivalent to
a bi-hermitian geometry [45]. A bi-hermitian geometry appears in physics by treating a full
non-linear sigma model [37] and is characterised by the fact that the target manifold allows
for two independent complex structures.

3.2 Mirror symmetry

The puzzle of having several distinct, but physically relevant, superstring theories formulated
in R1,9 was solved by duality maps. Let us consider for a moment type II superstring the-
ories, i.e. IIA and IIB, each compactified on a Calabi-Yau 6-manifold. Using moduli space
investigations of D-branes, it was conjectured by Strominger, Yau and Zaslow (SYZ) [81] that
these theories are mirror symmetric to each other if the Calabi-Yau spaces are T 3 fibered.
The crucial idea is that mirror symmetry is just a T-dualtiy transformation in the fibre. The
basic message can be denoted by - mirror symmetry is T-duality (in the fibre T 3). This
means that only a very restricted subspace of the huge moduli space of Calabi-Yau spaces is
relevant (being compatible with the duality). It is known that mirror symmetry exchanges
topological data, e.g. h1,1 and h1,2. And since also the complex and symplectic structures
of the two involved Calabi-Yaus get mapped onto each other, one often uses this property
to define mirror symmetry. In the following it might be comfortable to think about mirror
symmetry in a purely geometrical picture that interchanges algebraic structures.

During the last years mirror symmetry was often studied by Calabi-Yaus. But this is a
simplification of the actual full physically interesting problem. In principle one should also
take e.g. the background fluxes into account, i.e. the B-field and the Ramond-Ramond fields.
Note, already the Calabi-Yau case is difficult enough since the exchange of the participating
algebraic structures can neither be motivated nor understood from a pure G-structure point
of view. In other words, there did not exist a more abstract theory that, firstly, can handle
complex and symplectic structures on equal footing and, secondly, allow them to transform
into each other. Generalised structures will close that gap.

Let us pick up this last thought and consider the physical perspective. Physicists are able to
partly characterise with the help of G-structures, even in case of background fluxes, the target
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space. We know that different string theories and their target spaces can be mapped to each
other via duality transformations. Until know these dualtiy maps are not connected to G-
structures and are therefore unrelated distinct tools. Furthermore, the duality level remained
up to now only on a physical concept with no fundamental mathematical background. This
is why it was difficult to find a simple and neatly mirror map during the last years that solves
relevant problems. This immediately implies that studying generalised structures could be a
first step towards a better understanding of T-duality (see also [65]). Generalised geometries
have the power of the already known classical structures but moreover they are also able to
capture two known geometries - the complex and the symplectic.

We argued that a GCS can model both, an almost complex structure and a symplectic
structure. The main idea for a better understanding of mirror symmetry is to use the concept
of a GKS on a 6-manifold that is T 3-fibered. The mirror map M, which we conjecture and
explicitly construct, is given by interchanging the T and T ∗ part of the fibre. Performing
this map M the two GCSs, given by a GKS, get interchanged and the Buscher rules are
reproduced. Note, the Buscher rules tell us how the NS-NS fields - the metric g, the B-field
and dilaton φ - and the R-R fields that are forms get mapped under T-duality. Note, NS-NS
and R-R denotes two different sectors in string theory, where NS stands for Neveau-Schwarz
and R stands for Ramond. Furthermore, the Buscher rules only mix the NS-NS fields, but
never the R-R degrees of freedom, i.e. the R-R fields get only mapped into each other.
This means that T-duality conserves the degrees of freedom of the NS-NS and R-R sector
separately. Since the metric, the B-field and the dilaton transform non-trivially, the Buscher
rules look quite messy in the tangent space picture, compare for instance [64]. But in the
T ⊕T ∗ picture, i.e. within generalised geometries, we will see that these rules can be achieved
and understood more systematically [60, 23, 12, 32]. Moreover, on the mirror side it was not
quite clear if the complex structure is completely fixed by the data of the original one (see
e.g. [46]). Our construction of the mirror map resolves this puzzle.

In this section we explicitly construct the mirror mapM in the T ⊕T ∗ setup. We apply it to
the toy manifold of T 6 and argue to hold for more general T 3-fibred Calabi-Yau manifolds.
By including also the B-field the Buscher rules can be found. We further introduce the mirror
map for pure spinors and show how the Calabi-Yau relevant pure spinor lines eiω and Ω3,0

get mapped to each other. Afterwards we perform the mirror map to non-trivial GCSs, i.e.
GCS that are not usual Kähler structures. We will use them to study mirror symmetry for
twisted topological models in the next section. Finally, via the GCS one can decompose the
bundle T ⊕ T ∗ into four subbundles and investigate the influence under the mapM.

3.2.1 The mirror map M and the T-duality rules

Let us define a six-torus T 6 endowed with the triplet (g, J, ω) and a vanishing B-field. We
consider this manifold as a trivial fibration of T 3 ↪→ T 6 over the base space B = T 3. Later
on we investigate manifolds having also non-trivial T 3 fibrations (and also a non-vanishing
B-field). The basic idea is to embed the given structures into generalised ones and consider
their behavior under a special map, the mirror symmetry map M.

Because we are interested in dealing with the generalised tangent bundle T ⊕ T ∗, it was
natural to denote the GCSs in (3.18) by (2× 2) matrices. But since we furthermore split the
tangent bundle (and similar the co-tangent bundle) into a base B and fibre F part we also
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denote the usual algebraic structures (g, J, ω) by (2× 2)-matrices. Therefore, the GCSs have
the shape of (4× 4) matrices.

In local coordinates we have

g =

(
δij

δαβ

)
, g−1 =

(
δij

δαβ

)
, (3.30)

where (yi, xα) ((i, α) ∈ {1, 2, 3}) denotes the coordinates on the base B and fibre F , respec-
tively.

The complex and symplectic structures we use are choosen to be trivial, which is already
sufficient to see the properties we are looking for. Therefore we denote,

J =

(
−δαi

δi
α

)
, JT =

(
δαi

−δiα

)
, (3.31)

and

ω =

(
−δαi

δiα

)
, ω−1 =

(
δαi

−δiα
)
. (3.32)

By using (3.18) we embed the objects into generalised geometry and the just defined space
admits a trivial GCYS.

This fixes our setup and we are now prepared to define a map M which assigns to a GKS
another GKS. Since we specialise only on spaces which are T 3 fibrations over the base B
and act only on the fibre, we will call this map M a mirror symmetry map. This map is an
isomorphism of the bundle T ⊕T ∗ and also transforms the triple (JJ ,Jω, G) in a well defined
way. This means that on the mirror side this triple is completely fixed.

Let the mirror map M : T ⊕ T ∗ → T ⊕ T ∗ be given by

M =

⎛⎜⎜⎜⎜⎝
1

1
1

1

⎞⎟⎟⎟⎟⎠ , (3.33)

where we distinguish the vielbeins (as above) in T and T ∗, more precisely,

M : TB ⊕ TF ⊕ T ∗
B ⊕ T ∗

F → TB ⊕ T ∗
F ⊕ T ∗

B ⊕ TF . (3.34)

This is simply a map that acts on the base as the identity and on the fibre as a “flip”. Note:
The identity maps inM are tensors of adequate type to makeM a well defined isomorphism.
The propertyM =M−1 makes the mirror map an involution, M2 = 1.

The action of the mirror map on a GKS (JJ ,Jω, G) is defined by,

(ĴJ , Ĵω, Ĝ) =M (JJ ,Jω, G)M−1 . (3.35)
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Let us act by M on the generalised structures defined on the T 6. Note also the property
M =M−1. We obtain the mirror metric Ĝ as,

Ĝ =MGM−1 =

⎛⎜⎜⎜⎜⎝
δij

δαβ

δij

δαβ

⎞⎟⎟⎟⎟⎠ . (3.36)

The Riemannian mirror metric ĝ on the tangent bundle is therefore given by

ĝ =

(
δij

δαβ

)
, (3.37)

where we have the inverse metric in the trivial fibre, which is expected using the Buscher
rules (see [64]). This result suggests strongly that we have found a way to reproduce the
Buscher rules by multiplying matrices only. Or in other words, to do a mirror transformation
we do not have to take the Buscher rules explicitly into account, they are included already in
the matrix multiplication, i.e. using Buscher rules is nothing else but matrix multiplication.
As the mirror transformation of (JJ ,Jω) we get

(ĴJ , Ĵω) = (MJJM−1,MJωM−1) , (3.38)

where we obtain

ĴJ =

⎛⎜⎜⎜⎜⎝
−δαi

δiα

−δαi
δiα

⎞⎟⎟⎟⎟⎠ , Ĵω =

⎛⎜⎜⎜⎜⎝
−δαi

δi
α

−δαi
δiα

⎞⎟⎟⎟⎟⎠ . (3.39)

Considering these structures as an embedding of usual complex and symplectic structures
(acting in the tangent bundle) we see immediately that ĴJ is of pure symplectic type (k = 0)
while Ĵω is of pure complex type (k = 3). This verifies the well known statement that mirror
symmetry exchanges the complex and symplectic structures:

JJ ↔ ĴJ = Jω ,

Jω ↔ Ĵω = JJ ,

gB + gF ↔ gB + g−1
F ,

trivial GCYS ↔ trivial GCYS .

(3.40)

We verify (for T 6) therefore the work of [12, 32]. In [32] the authors had to use the Buscher
rules explicitly for there construction, in contrast to the mappings above, where these rules
are intrinsically included.

As a next step let us introduce a globally defined and flat B-field. We are considering only
a closed B-field and therefore we do not affect integrability. The presence of a B-field can
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be well understood by focusing on the B-transformed generalised metric GB . It is not hard
to see that all elements of C± are captured taking an arbitrary element X ∈ T , whereas
the elements in T ∗ are already given by (B ± g)X. Or in other words, C± is the graph
of B ± g : T → T ∗, i.e. including a B-field only ”rotates” the positive/negative definite
subspaces C± inside T ⊕ T ∗.

We do not consider general B-fields in the following. Let B = Biαdy
i ∧ dxα be the B-

transformation of our interest:

eB =

⎛⎜⎜⎜⎜⎜⎝
1

1

Bαi 1

Biα 1

⎞⎟⎟⎟⎟⎟⎠ , e−B =

⎛⎜⎜⎜⎜⎜⎝
1

1

−Bαi 1

−Biα 1

⎞⎟⎟⎟⎟⎟⎠ . (3.41)

The B-transformed metric G of the T 6 can be computed via (3.20) to be

GB = eB Ge−B , (3.42)

by a subsequent mirror transformation of this metric we obtain

ĜB =MGBM−1, (3.43)

where we suppress the explicit form. We only note that it is completely off-diagonal. One
can prove that it is again a generalised metric. More important, it is of pure Riemannian
type, i.e. not B-transformed, and thus can be constructed by embedding of a Riemannian
metric ĝ only,

ĝ =
(
gB −Bg−1

F B Bg−1
F

−g−1
F B g−1

F

)
, (3.44)

where gB = δij is the metric in the base B and gF = δαβ denotes the metric in the fibre F .
These transformation rules do verify the Buscher rules exactly and mean that on the mirror
side there exists no B̂-field and the old one is completely absorbed into the metric ĜB (or ĝ).

Example 3.2.1. Let B = (Biαdyi) ∧ dxα (in local coordinates) only depends on coordinates
y on the base. The mirror metric ĝ has a shape of the following form

ĝ = (gB)ijdyidyj + (g−1
F )αβ(dxα +Aα)(dxβ +Aβ) , (3.45)

where A is a local connection-one-form. Thus, the B-field transforms into the metric and
re-appears in a non-trivial fibration.

Moreover, because ofM being an isomorphism and an involution, we can reverse this proce-
dure. The initial data, a non-trivial fibration and vanishing B-field, produces a trivial fibred
T 6 with non-trivial B-field as it’s mirror. Naturally, the combination of both “effects” is
possible and independent of each other.

The B-field transformation of the GCSs (JJ ,Jω) can be calculated by (3.20)

(J BJ ,J Bω ) = (eB JJ e−B , eB Jω e−B) , (3.46)
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which are no longer diagonal/off-diagonal, respectively. An action of the mirror map M on
these is given by

(ĴJ , Ĵω) = (MJ BJ M−1,MJ Bω M−1). (3.47)

It can also be shown that the mirror structures are GCSs and become again completely
off-diagonal/diagonal, or equivalently, structures of pure symplectic and complex type (see
also [12]). The embedded structures are given in components by

Ĵ =
(

δB −δ
Bδ−1B + δ −Bδ−1

)
, ω̂ =

(
Bδ + δB −δ

δ 0

)
. (3.48)

We used a condensed notation where δ denotes the appropriate tensors (see (3.31),(3.32))
and we also suppressed the identity maps coming fromM. Note: The object Ĵ is embedded
in Ĵω (which makes it a complex structure of type k = 3) and should therefore not be mixed
up with the subscript ω which denotes the symplectic form on the original T 6.

The concept we explained above holds in more generality, and we applied it only to a simple
example to clarify the mappings of the generalised structures (see also [12]). One can imme-
diately use this framework for more complicated generalised structures, what we will do later
on. We will applyM to GCSs that describe two usual but independent complex structures.

We also have to discuss integrability in more detail. Focusing on the cases considered above,
these are obviously integrable and torsion-less and so is its mirror. The case of non-vanishing
NS-NS fluxes was at first worked out in [32], where the authors also used the generalised
concept but they used the Buscher rules explicitly. There it was shown how torsion-full 6-
manifolds are interchanged, and the authors gave a precise description of each SU(3) torsion
component.

3.2.2 The mirror map M and pure spinors

As we learned in (3.9), for a pure spinor ϕ there exists an associated maximal isotropic L.
We defined this by using Clifford multiplication. We use [44] (see also [45]) and denote the
graded Clifford algebra by CL(T ⊕ T ∗). The objects CLk are generated by products of k
elements of (T ⊕T ∗)⊗C. Moreover, if we have a GCS it is known that the space (T ⊕T ∗)⊗C
decomposes as,

(T ⊕ T ∗)⊗ C = L⊕ L∗ ,

where L∗ is the dual. Using this fact we can use now the Clifford algebra and the pure spinor
ϕ to obtain an alternative grading for all differential forms Λ•T ∗ ⊗ C. Let us spend a few
words about the ’alternative’ in the last sentence.

Usually, differential forms are elements of a graded exterior algebra and we have the degree
k of the form as an index of the graduation. Here we use a different concept, i.e. the index
k do not denote the degree of the form. Let us build up the graduation by starting with
the pure spinor line which we take to sit inside U0 and to be of even or odd degree. U0

denotes the canonical bundle. Since it is pure L ⊂ (T ⊕ T ∗)⊗C annihilates U0. So, the only
non-vanishing objects we can generate are L∗ ·U0 = U1. We can proceed in the obvious way,
consequently Uk = ΛkL∗ · U0 for k = 1, . . . , 6,

Λ∗T ∗ ⊗ C = U0 ⊕ U1 ⊕ · · · ⊕ U6. (3.49)
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Note also that by Clifford multiplying U0 ⊂ Λod/ev ⊗C by an element CLod/ev we get CLod ·
U0 ⊂ Λev/od ⊗ C, whereas CLev · U0 ⊂ Λod/ev ⊗ C. Furthermore, we also have the property
Uk = U6−k and using the generalised metric we can identify L = L∗.

There is a correspondence between the just introduced index k for Uk and eigenvalues of
the GCS. We can see this if we act on the GCS via the Lie algebra representation on differ-
ential forms, i.e. spinors. This action associates to each Uk the eigenvalue i(3 − k). Since
k = 0, . . . , 6, this makes clear that we can also use U3−k for the graduation which is more
convenient in what follows, i.e. the notation of (3.49) becomes

Λ∗T ∗ ⊗ C = U3 ⊕ U2 ⊕ U1 ⊕ U0 ⊕ U−1 ⊕ U−2 ⊕ U−3. (3.50)

Let us discuss this in more detail for the case of having a usual complex structure J on
the 6-manifold which we embed into a GCS using (3.18). The generating spinor line is
just the holomorphic (3, 0)-form Ω3,0, which we can denote in local coordinates choosing
zi = dxi + idyi, i = 1, . . . 3 by,

Ω3,0 = (dx1 + idy1) ∧ (dx2 + idy2) ∧ (dx3 + idy3) = z123 ,

where the maximal isotropic is L = T 0,1 ⊕ T ∗1,0 (L = T 1,0 ⊕ T ∗0,1).

Using J = i∂zi ⊗ dzi − i∂zī ⊗ dz ī, we act via the generalised structure JJ on Ω3,0 by

JJ ·Ω3,0 = −J∗ · Ω3,0 = idzi ∧ (∂zi Ω3,0)− idz ī ∧ (∂zī Ω3,0) = 3 iΩ3,0 ,

which means that Ω3,0 ∈ U3. This shows immediately that the eigenvalue counts the number
of holomorphic minus anti-holomorphic indices. E.g. all forms α ∈⊕3

p=0 Λp,p have eigenvalue
equal to zero, i.e. U0 =

⊕3
p=0 Λp,p, see figure 3.3. We also want to mention that starting

with Ω3,0 ∈ U3 we can generate all elements in Uk, k = −3, . . . , 3 by Λ3−kL · Ω3,0.

In case of a symplectic structure on a 6-manifold we can also embed the usual symplectic
form ω according to (3.18) into a GCS Jω. The corresponding pure spinor line is the even
form eiω. Also in this case the differential forms, i.e. the spinors, decompose under the spin
action of

Jω ·ϕ = (ω ∧ −ω−1 )ϕ , (3.51)

where ϕ ∈ Λev,od. This is a more complicated decomposition and according to [56] Uk is
isomorphic to Λ3+k. If we consider a GKS the two GCSs commute and we can first decompose
the spinors with respect to JJ and further split Uk by Jω to get Uk,j, where k, j ≤ −3, . . . , 3.

We are now prepared to develop the mirror map M for pure spinors. Let us kick of by
choosing, for convenience only, the same setup as in section (3.2.1), i.e. a T 6 and a vanishing
B-field. The local coordinates in the base B and the fibre F are given by yi, xα, where
i, α = 1, . . . 3.

We conjecture the mirror map M : Λev/od → Λod/ev for pure spinor lines ϕ by (given in real
local coordinates),

M · ϕ =
3∏

α=1

(∂Xα + dxα) · ϕ , (3.52)

= (∂X3 + dx3) · (∂X2 + dx2) · (∂X1 + dx1) · ϕ , (3.53)
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Figure 3.3: The space of differential forms on M6 decompose under the almost complex
structure J . We visualise this by the hodge diamond. Let J be embedded into a generalised
complex structure JJ . All differential forms on M6 decompose under the Lie algebra action
of JJ into Uk-spaces, where the eigenvalue k counts the number of holomorhphic minus
anti-holomorphic indices.

where in complex coordinates this reads

M· ϕ =
3∏
i=1

(∂zi + ∂zī
+

1
2
dzi +

1
2
dz ī) · ϕ . (3.54)

The mapM acts only in the fibre and we will show in the following that it exchanges the two
pure spinor lines responsible for a usual Kähler 6-manifold. We can check this by defining
the pure spinors in real local coordinates by

Ω(3,0) = (dx1 + i dy1) ∧ (dx2 + i dy2) ∧ (dx3 + i dy3) , (3.55)

ei ω = 1 + i dxidyi + dx12dy12 + dx23dy23 + dx13dy13 + i dx123dy123 , (3.56)

and in local complex coordinates,

Ω(3,0) = dz123 , (3.57)

ei ω = 1 +
1
2
dz īi +

1
4
(dz3̄2̄23 + dz3̄1̄13 + dz2̄1̄12) +

1
8
dz3̄2̄1̄123 , (3.58)

where ω = − i
2dz

īi = − i
2(dz1̄1 + dz2̄2 + dz3̄3).

Let us verify this for the pure spinor Ω3,0 = dz123 first. Note, that the maximal isotropic for
this spinor is given by T 0,1⊕T ∗1,0 and therefore the mirror mapM condenses toM·dz123 =
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Figure 3.4: The form Ω(3,0) sits in U3 with respect to JJ . The action of the mirror map M
is a mechanism to transport e.g. Ω(3,0) via three single Clifford multiplications to a form in
⊕pΛp,p. This resulting form is precisely ei ω and sits in U0.

∏3
i=1 (∂zi + 1

2dz
ī) · dz123 and so we obtain,

M· dz123 =
3∏
i=1

(∂zi +
1
2
dz ī) · dz123 , (3.59)

= (∂z3 +
1
2
dz3̄) · (∂z2 +

1
2
dz2̄) · (dz23 +

1
2
dz1̄123) , (3.60)

= (∂z3 +
1
2
dz3̄) · (dz3 +

1
2
dz2̄23 +

1
2
dz1̄12 +

1
4
dz2̄1̄123) , (3.61)

= ei ω . (3.62)

We have found that Ω3,0 gets mapped to ei ω under the mirror map M, see figure 3.4.
Furthermore, we see thatM changes the eigenvalue by 3 with respect to JJ , due to Ω3,0 ∈ U3

and ei ω ∈ U0. This is obvious, since we constructed the mirror map such thatM ∈ Λ3L. A
further short calculation shows thatM· ei ω = −Ω3,0. This completes the proof that the two
spinor lines get exchanged (up to a sign).

3.2.3 The mirror map M and Generalised Complex Structures

In this section we further develop the investigations done in section 3.2.1. There we used
the GKS framework for a usual Kähler structure on a 6-manifold. Now we want to start by
using the full setup given by a GKS setup [45], while setting the B-field to zero. Note that
the target space geometry of (2, 2)-supersymmetric non-linear sigma model is determined by
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a bi-hermitian geometry [37]. In [45] the author proved that the data of a GKS, (G,J1,J2),
is equivalent to a bi-hermitian structure, (g, J+, J−), i.e. we can use the generalised Kähler
geometry to discuss properties of the target space of a (2, 2)-non-linear sigma models (even
in the topological twisted case).

Generically, the two GCS of a GKS are given in the T ⊕ T ∗ basis by [45]

J1/2 =
1
2

(
J+ ± J− −(ω−1

+ ∓ ω−1
− )

ω+ ∓ ω− −(JT+ ± JT−)

)
, (3.63)

where the complex structures J+ and J− are independent sections (∀p ∈M6) in the twistor
space ZM6. Note that we assume in the following integrability for the two complex struc-
tures. We can also define a generalised metric by G = −J1J2.

Since our interest is to show how certain properties of the two GCS behave under the mir-
ror map, a specific bundle isomorphism, we do not need general 6-manifolds and choose once
more (3.2.1) the manifold to beM6 = T 3⊕T 3 (with fibreF = T 3 over the base space B = T 3).

Therefore we have the following splitting of the generalised tangent space:

(T ⊕ T ∗)⊗ C = (TB ⊕ TF ⊕ T ∗
B ⊕ T ∗

F )⊗ C. (3.64)

This choice is for computational convenience, but one can consider a more general M6 as a
nontrivial T 3 torus fibration over a general three dimensional base space without changing
the essence of our argument [81]. Furthermore, we want to consider only GCS which are
adapted in the sense of [12], i.e.

J1/2 : TF ⊕ T ∗
F → TB ⊕ T ∗

B . (3.65)

Respecting additionally the algebraic properties of GCS (3.1.5) we take

J+ ± J− =
( −(J̃+ ± J̃−)
J̃+ ± J̃−

)
, (3.66)

ω+ ∓ ω− =
( −(ω̃+ ∓ ω̃−)
ω̃+ ∓ ω̃−

)
. (3.67)

Note that J̃+, J̃− and ω̃+, ω̃− are not complex structures and Kähler forms and, moreover, to
satisfy the properties I2± = −1 and ωT± = −ω± one has to require Ĩ2± = 1 and ω̃T± = ω̃±.

We are now prepared to write the specific GCS by

J1/2 =
1
2

⎛⎜⎜⎝
−(J̃+ ± J̃−) −(ω̃−1

+ ∓ ω̃−1
− )

J̃+ ± J̃− ω̃−1
+ ∓ ω̃−1

−
−(ω̃+ ∓ ω̃−) −(J̃T+ ± J̃T−)

ω̃+ ∓ ω̃− J̃T+ ± J̃T−

⎞⎟⎟⎠ , (3.68)
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where the transpose and inverse operation only indicate that the indices are up/down, ap-
propriately.

Let us now apply the mirror map M, given in (3.33), to get the conjugated GCS in the
following way:

Ĵ1/2 =M◦J1/2 ◦M−1 : TB ⊕ T ∗
F ⊕ T ∗

B ⊕ TF → TB ⊕ T ∗
F ⊕ T ∗

B ⊕ TF . (3.69)

Applying this construction explicitly we get

Ĵ1/2 =
1
2

⎛⎜⎜⎝
−(ω̃−1

+ ∓ ω̃−1
− ) −(J̃+ ± J̃−)

ω̃+ ∓ ω̃− J̃T+ ± J̃T−
−(J̃T+ ± J̃T−) −(ω̃+ ∓ ω̃−)

J̃+ ± J̃− ω̃−1
+ ∓ ω̃−1

−

⎞⎟⎟⎠ . (3.70)

To compare Ĵ1/2 with J1/2 we reinterpret Ĵ1/2 as a map TB⊕TF⊕T ∗
B⊕T ∗

F → TB⊕TF⊕T ∗
B⊕T ∗

F
instead of (3.69). We then use the fiber metric gF and its inverse and we write them back
into Ĵ1/2. By using the identity ω = gI, we get finally

Ĵ1/2 =
1
2

⎛⎜⎜⎝
−(J̃+ ∓ J̃−) −(ω̃−1

+ ± ω̃−1
− )

J̃+ ∓ J̃− ω̃−1
+ ± ω̃−1

−
−(ω̃+ ± ω̃−) −(J̃T+ ∓ J̃T−)

ω̃+ ± ω̃− J̃T+ ∓ J̃T−

⎞⎟⎟⎠ , (3.71)

where now Ĵ1/2 are again maps

Ĵ1/2 : TB ⊕ TF ⊕ T ∗
B ⊕ T ∗

F → TB ⊕ TF ⊕ T ∗
B ⊕ T ∗

F . (3.72)

These are the mirror transformed GCSs. In the following we will denote by M the mirror
map, which is the combined operation of M and the reinterpretation of maps. We see
immediatley that mirror symmetry interchanges the two GCSs:

J1/2 ←→ Ĵ1/2 = J2/1

(J+, J−) ←→ (Ĵ+, Ĵ−) = (J+,−J−) .
(3.73)

When M6 is a nontrivial torus fibration, using the same remark above, also the mirror man-
ifold M̂6 is a nontrivial torus fibration.

Let us assume for the moment that we have a generic GKS (B = 0) on a 6-manifold M6 with
two generic commuting (integrable) GCS (see 3.63), J1/2. Using the generalised metric G and
the two GCSs we get a decomposition of (T ⊕ T ∗)⊗C into a direct sum of four subbundles,
as it is shown in [45]. Let us shortly review this decomposition to understand how these
subbundles get mapped under the mirror mapM.

We already mentioned in section 3.1.5 that the generalised metric G gives a decomposition
into two subbundles of dimension 3C each, i.e. by using the projectors P± = 1

2 (1 ± G) we
obtained the two subbundles (having eigenvalues ±1) C± ⊗ C,

(T ⊕ T ∗)⊗ C = (C+ ⊕ C−)⊗ C . (3.74)
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It can be shown that elements of C± ⊗ C can be written as (B = 0)

C+ ⊗ C = {X + gX|X ∈ T ⊗ C} , C− ⊗ C = {X − gX|X ∈ T ⊗ C} , (3.75)

where the generalised metric G is purely Riemannian,

G =
(

g−1

g

)
. (3.76)

Moreover, since the GCS commute with G, we can also decompose the generalised tangent
bundle with respect to the GCS J1/2. This we will do by the useful formulae,

J1 = π|−1
C+

J+ π P+ + π|−1
C− J− π P− ,

J2 = π|−1
C+

J+ π P+ − π|−1
C− J− π P− ,

(3.77)

where π : C± → T is a projection. Note, by explicitly using the projectors P±, π and the
generalised metric G in (3.76), we can reconstruct, via (3.77), the generic GCS given in (3.63).
Strictly speaking, (3.63) is equal to (3.77).

We will denote the i eigenbundle of J1/2, or equivalently the graphs of the maps −iJ1/2, by
L1/2,

L1 = {X + gX|X ∈ T 1,0
+ } ⊕ {X − gX|X ∈ T 1,0

− } ,
L2 = {X + gX|X ∈ T 1,0

+ } ⊕ {X − gX|X ∈ T 0,1
− } .

(3.78)

The generalised tangent bundle decomposes therefore in

(T ⊕ T ∗)⊗ C = L1 ⊕ L1 = L2 ⊕ L2. (3.79)

Since the two GCS commute we can decompose L1/2 further by J2/1. We indicate with ±
the eigenvalues ±i corresponding to the second splitting, e.g.

L1 ⊕ L1 = L+
1 ⊕ L−

1 ⊕ L+
1 ⊕ L−

1 , (3.80)

where
L+

1 = {X + gX|X ∈ T 1,0
+ } , L−

1 = {X − gX|X ∈ T 1,0
− } ,

L+
2 = {X + gX|X ∈ T 1,0

+ } , L−
2 = {X − gX|X ∈ T 0,1

− } .
(3.81)

We see that L2 = L+
1 ⊕ L−

1 and

C± ⊗ C = L±
1/2 ⊕ L±

1/2 . (3.82)

In (3.73) we summarised how the GCSs of a GKS behave under mirror symmetry. Let us take
this result and the above observations of the subbundles into account. Thus, by changing
J− → −J− we do not affect the C+-bundle and moreover only exchange in the C−-bundle
holomorphic with anti-holomorphic objects with respect to J−. Thus, mirror symmetry
interchanges the subbundles L−

1 ↔ L−
1 . See figure 3.5.

In the last section we already derived that maximal isotropics are associated to pure spinor
lines. Using the mirror map M for spinors is therefore equivalent to mirror map the associ-
ated maximal isotropics. In the remainder of this section we shortly verify the just derived

56



x ∈M6

T ⊕ T ∗

L+
1 L−

1L+
1 L−

1

Figure 3.5: The mirror map M is effective only in C−. It exchanges the bundles L−
1 ↔ L−

1

and means the interchange of holomorphic and anti-holomorphic partners.

results by the picture of pure spinor lines.

The maximal isotropics L1, L2 are basically given by the isotropics L+
1 , L

−
1 and their complex

conjugated partners. We will use in the following the complex conjugated objects L+
1 , L

−
1 ,

which can be described by the following four pure spinor lines φi, i ∈ {1, . . . , 4}, schematically,

0 = L+
1 · φ1 = L+

1 · Ω(3,0)
+ , 0 = L−

1 · φ2 = L−
1 · Ω(3,0)

− ,

0 = L+
1 · φ3 = L+

1 · ei ω+ , 0 = L−
1 · φ4 = L−

1 · e−i ω− ,
(3.83)

where Ω(3,0)
± ∈ Λod are holomorphic top degree forms with respect to I+, I− and ω± ∈ Λev

are the Kähler forms.

Before we can apply the mirror map M to the spinors we first choose local coordinates to
write down the spinor lines explicitly. Let us identify the spinors Ω(3,0)

+ and ei ω+ with those
given explicitly in (3.55). Let us construct Ω(3,0)

− and ei ω− for the case J− = −J+ where we
use (3.55) once more.

We apply the mirror map M (3.52) to the pure spinor lines φi to get

φ̂1 = M· Ω(3,0)
+ = ei ω+ , φ̂2 = M· Ω(3,0)

− = ei ω− ,

φ̂3 = M· ei ω+ = −Ω(3,0)
+ , φ̂4 = M · e−i ω− = −Ω(3,0)

− .
(3.84)

Let us now focus on the isotropics which are associated to these mirror transformed pure
spinor lines φ̂i, i ∈ {1, . . . , 4}. We see immediately that L+

1 is untouched by the mapM but
in the C−-bundle it interchanged L−

1 with L−
1 . Thus, we verified our previous result exactly.
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3.3 Topological models and generalised Kähler geometry

In 1984 Gates, Hull and Rocek [37] investigated the enhancement of (1, 1) world sheet su-
persymmetry to (2, 2) in the non-linear sigma model for a 6-dimensional target space X.
The sigma model describes maps φ : Σ → X from the Riemann surface Σ to the target
space X. They showed that the additional supercharges can be constructed using a complex
structure on the target space X. Moreover, they recognised that it is possible to achieve
the enhancement of supersymmetry by treating the left and right moving supercharges dif-
ferently. Strictly speaking, they introduced two independent complex structures, one for the
left moving and one for the right moving sector. Since both almost complex structures must
be compatible with the metric g on the target space X, the geometry is called bi-hermitian
and is denoted by the triple (g, J+, J−). Since the integrable model also allows for the skew-
symmetric part of the metric, the B-field b (being a 2-form), and a additional 3-form field
strenght H the data can be enhanced to be (g, J+, J−,H + db).

Since bi-hermitian geometry was almost unknown at that time, even for mathematicians,
people usually treated this model afterwards by identifying the two indepentent complex
structures J+ = J− and used the well known Kähler geometry. Even in this simplified
version, the model stayed quite complicated until Witten introduced the topological twist [86]
in 1988. He still kept the property of identifying the two complex structures, but the big step
was that he twisted the worldsheet fermions by the axial/vector R-currents to end up with
worldsheet scalars and 1-forms. By focusing only on the constructed scalars the model turned
out to solely describe the topological sector of the field theories. Having those topological
field theories at hand it was possible to explicitly construct physically relevant objects, e.g.
observables, which proved to be useful even in the untwisted theory.

In the original work Witten twisted the N = (2, 2) sigma model in two different ways. He
introduced the topological A/B model by twisting with the vector/axial current. In case
of Kähler geometry the A model localises on holomorphic maps and depends only on the
Kähler moduli of the target space X. The B model localises on constant maps from Σ to a
Calabi-Yau manifold X and depends only on the complex moduli of X. Note that one has
to restrict in the B-model the target space geometry from Kähler to Calabi-Yau, which is
necessary to cancel the axial anomaly.

Since mirror symmetry exchanges symplectic and complex structures of two different mani-
folds, as we already explained in former sections, it is obvious to ask, if the topological A and
B model are mirror duals? We learned from [45] that bi-hermitian geometry is equivalent
to generalised Kähler geometry. Thus, we can alternatively use the GKS by also relaxing
the constraint J+ = J− to J+ �= J− that was already done by Kapustin [65]. He introduced
the generalised twisted B-model. The advantage of using the GKS picture and not the bi-
hermitian geometry picture becomes evident since we know form the previous section how to
explicitly do mirror symmetry for GCS (3.73).

We kick of this section to provide the reader with the basic definitions of a topological twisted
(2, 2) non-linear sigma model. Since we use a GKS we formulate the generalised topological
A and B model and define the corresponding BRST operators QA/B and their variations in
the T ⊕ T ∗ picture. These objects depend in a given model only on one of the two present
GCSs. A mirror symmetry consideration shows that the two generalised topological models
get interchanged. We verify that by focusing on the observables, the instantons, the anomalies
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and the branes. We make contact to Witten’s A/B models by identifying the two independent
complex structures J+ and J− appropriately.

Before we start let us spend a view words about the observables of the A and B model of
Witten [86]. In the A and B model he constructed the observables out of the BRST invariant
field configurations. He explicitly used the BRST invariant field configurations as a base
and introduced the corresponding coordinate functions. Due to the nilpotence property of
the BRST variations one establishes a BRST complex for the observables. The associated
cohomology is called BRST cohomology. The basic idea is that Witten found a map from
the BRST complex of the A or B model to more convenient complexes. He achieved this
correspondence since he assumed that the coordinate functions of the observables are also
coordinate functions for other objects. For the A model these objects are just the usual
differential forms and for the B model these objects are given by elements of the space ΛqT 1,0⊗
Λ0,pT ∗, i.e. (0, p) forms with values in the qth power of the holomorphic tangent space. The
BRST operator translates therefore for the A model to the usual differential operator d and for
the B model to the Dolbeault operator ∂̄. Witten showed that the observables are elements of
the BRST complex, i.e. they are closed, iff they are also closed in the related complex. Thus,
the A model BRST cohomology is isomorphic to the deRham cohomology and the B model
BRST cohomology is isomorphic to the Hochschild cohomology ⊕p,qHp(M6,ΛqT 1,0) (roughly,
a extended Dolbeault cohomology). Since we consider the observables in the generalised setup
it is convenient to introduce the notion of a Lie algebroid. We will see that this is the proper
tool to capture the complexes for both - the old A and B model.

3.3.1 Introduction of the generalised A and B model

We start with the nonlinear sigma model formulated in the N = (1, 1) superfield formalism:

S =
1
2

∫
d2σ d2θ (g +B)(D+Φ,D−Φ), where (3.85)

D± =
∂

∂θ±
+ iθ±∂± ; ∂± := ∂0 ± ∂1 . (3.86)

The N = (1, 1) SUSY transformations are generated by Q±, defined as

Q
(1)
± :=

∂

∂θ±
− iθ±∂± , (3.87)

and the chiral superfield can be expanded in components as

Φ = φ+ θ+ψ+ + θ−ψ− + θ−θ+F. (3.88)

An additional supersymmetry can be defined by [37]

Q
(2)
± := J±D±. (3.89)

This is a well defined (1,1) supersymmetry, if J± is a pair of integrable almost complex
structures on the tangent space T and the metric g is hermitian with respect to both J+ and
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J−. Furthermore the almost complex structures have to be covariantly constant with respect
to covariant derivatives with connection:

Γa±bc := Γabc ± gadHdbc, (3.90)

where Γ is the Levi-Civita connection and H is the 3-form field strenght associated to B. We
get the following relation between the two connections

Γa+ bcψ
b
+ψ

c
− = −Γa− bcψ

b
−ψ

c
+ . (3.91)

The variations of the superfield (3.88) can be written in components as

δ
(1)
+ φ = ψ+ , δ

(1)
− φ = ψ− ,

δ
(1)
+ ψ+ = −i∂+φ , δ

(1)
− ψ+ = F ,

δ
(1)
+ ψ− = −F , δ

(1)
− ψ− = −i∂−φ ,

δ
(2)
+ φ = J+ψ+ , δ

(2)
− φ = J−ψ− ,

δ
(2)
+ ψ+ = iJ+∂+φ , δ

(2)
− ψ+ = J−F ,

δ
(2)
+ ψ− = −J+F , δ

(2)
− ψ− = iJ−∂−φ .

(3.92)

We can integrate out the auxiliary field F using the equations of motion

F a = Γa+bcψ
b
+ψ

c
−. (3.93)

Furthermore, we define combinations of the supersymmetry generators

Q+ = 1
2(Q(1)

+ − iQ(2)
+ ) , Q+ = 1

2 (Q(1)
+ + iQ

(2)
+ ) ,

Q− = 1
2(Q(1)

− − iQ(2)
− ), Q− = 1

2 (Q(1)
− + iQ

(2)
− ) .

(3.94)

With these we make contact to the definitions of [58].

We are now prepared to define the generalised topological A/B model. We twist the spin of
the fermionic fields by the vector/axial U(1) current. The charges of the fields are given in
the following table,

qV qA J JA JB
P+ψ+ −1 −1 −1

2 −1 −1
P+ψ+ +1 +1 −1

2 0 0
P−ψ− −1 +1 +1

2 0 +1
P−ψ− +1 −1 +1

2 +1 0

(3.95)

where qV/A indicate the vector/axial charge. J and JA/B = J+qV/A/2 define the spins before
and after the twist and we used projectors on the (anti-)holomorphic parts of the fields with
respect to J±,

P± =
1
2
(1− iJ±), P± =

1
2
(1 + iJ±). (3.96)

As BRST operators for the generalised A/B model we take1

QA := Q+ +Q−, QB := Q+ +Q−, (3.97)
1Note that [86] uses a different definition for the world sheet fermions, which leads to a different BRST

operator for the A model, QA = Q+ + Q−.
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which act on the scalar fields of the twisted models like

δAφ = P+ψ+ + P−ψ− , δBφ = P+ψ+ + P−ψ− ,
δAP+ψ+ = Γ+P+ψ+P−ψ− , δBP+ψ+ = Γ+P+ψ+P−ψ− ,
δAP−ψ− = Γ−P−ψ−P+ψ+ , δBP−ψ− = Γ−P−ψ−P+ψ+ .

(3.98)

3.3.2 Generalised A and B models and mirror symmetry

In section (3.2.3) we investigated mirror symmetry with GCSs from a mathematical point of
view. In this section we apply the results to generalised topological sigma models as defined
in section (3.3.1).

We start by rewriting the BRST operators defined in (3.97) in the T ⊕ T ∗ bundle. Let us
define the fermionic basis

ψ := (ψ+ + ψ−) ∈ T, ρ := g(ψ+ − ψ−) ∈ T ∗, Ψ :=
(
ψ
ρ

)
, (3.99)

where we stress that ψ± are the resulting fermionic scalars coming from the twist and are
furthermore independent sections in T . This definition corresponds to the previous given
example 3.1.1. Then the BRST operators of the generalised A and B model take the form [65]

QA =
〈(

∂1φ
g∂0φ

)
, (1 + iJ2)Ψ

〉
,

QB =
〈(

∂1φ
g∂0φ

)
, (1 + iJ1)Ψ

〉
, (3.100)

where 〈 , 〉 is the natural metric on T ⊕ T ∗ (3.2). It is necessary to note the following. The
generalised B model yields the old B and A models under the identifications J+ = J− and
J+ = −J−. Under the same identifications the generalised A model yields the old A and B
model.

We can reformulate the BRST variations (3.98) in the T ⊕ T ∗ basis. The BRST variations
which vanish because of the property (3.91) are the following

δA
1
2
(1 + iJ1)Ψ = 0, δB

1
2
(1 + iJ2)Ψ = 0 . (3.101)

The classical U(1)A/V symmetry can be broken by quantum effects. This anomaly is given
in terms of the first Chern class of the L1/2 bundle for the B/A model [66]. The cancel-
lation of this anomaly constraints the target space geometry via c1(L1/2) = 0. Remember,
in the Witten model the first Chern class is calculated in the tangent bundle. But since
we deal here with its extension to T ⊕ T ∗ the relevant first Chern class is in principle given
by c1(T ⊕T ∗,J ) = c1(C+)⊕c1(C−) [45], i.e. there are two classes (compare also with (3.82)).

We are now in the position to show how the relevant quantities of the generalised B model
with the target space M6 (being actually T 6) are mapped to the ones of the generalised A
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model2 with the mirror target space M̂6. From section 3.2.3 we know that M : J1 → J2 so
that M : QB → QA. We also know that (J+, J−) is mapped to (J+,−J−) under the mirror
map and equation (3.81) tells us that M : L1 → L2. Therefore, M : c1(L1) → c1(L2) and
the anomaly cancellation condition of the generalised B model gets mapped to that of the
generalised A model.

The next step is to show that the observables of the generalised B and A model are mirrors
of each other. We show this for the local observables of the closed topological sector, but
first let us remember how they were constructed in [65](see also [66]). Following [86], one has
to construct scalar BRST invariant field configurations. Writing the BRST variations in the
T ⊕ T ∗ bundle, we get3

δB/AΦ = Ψ1/2 :=
1
2
(1 + iJ1/2)Ψ ∈ L1/2 , Φ :=

(
φ
gφ

)
. (3.102)

The nilpotence properties δ2B/A = 0 of the BRST variations then yield δB/AΨ1/2 = 0, which
was also obtained in (3.101). Thus, Ψ1/2 are the configurations we are looking for in the

generalised B/A model. Explicitly, we have Ψ1 = L1 = L+
1 ⊕L−

1 and Ψ2 = L2 = L+
1 ⊕L−

1 (see
figure 3.6).

x ∈M6

T ⊕ T ∗

L+
1 L−

1L+
1 L−

1

x ∈M6

T ⊕ T ∗

L+
1 L−

1L+
1 L−

1

a)Ψ1 for the generalised B-model b)Ψ2 for the generalised A-model

Figure 3.6: The field configurations for the generalised B/A model are given by Ψ1/2 ∈ L1/2.
The relevant subbundles for Ψ1/2 are gray colored. Mirror symmetry exchange Ψ1 ↔ Ψ2.

Before we proceed, we introduce the notion of a Lie algebroid [45]. Remember: Let T be the
tangent bundle (being a vector bundle). By taking the dual T ∗ we can generate the associ-
ated exterior k-forms, being elements in ΛkT ∗, which we can differentiate by the differential

2This choice is of course arbitrary, one could as well start with the generalised A model on M6 and map it
to the B model on M̂6

3This Φ is an element of T⊕T ∗ and should not be confused with the chiral superfield defined in section 3.3.1.
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operator d. We can measure the topological non-triviality of the manifold by using exterior
forms and set up, due to d2 = 0, the deRham complex.

We generalise this setup and define a Lie algebroid L to be a vector bundle on a mani-
fold that comes together with a Lie bracket [ , ] on L. The manifold also admits a smooth
map a : L → T , called the anchor, which is a homomorphism and satisfies for a function
f ∈ C∞(M) the Leibniz rule [X, f Y ] = f [X,Y ] + (a(X)f)Y, ∀X, Y ∈ C∞(L).

The corresponding first order Lie algebroid derivative dL : C∞(ΛkL∗) → C∞(Λk+1L∗) is
defined by

(dLα)(X0, . . . ,Xk) =
∑
i

(−1)i a(Xi)α(X0, . . . , X̂i, . . . ,Xk)

+
∑
i<j

(−1)i+jα([Xi,Xj ],X0, . . . , X̂i, . . . , X̂j , . . . ,Xk) ,

where α ∈ C∞(ΛkL∗), Xi ∈ C∞(L). Shortly, we differentiate the coordinate functions α
(depending on the coordinates only) by a(X) ∈ T , since X ∈ C∞(L). For instance, if L = T
and a = id then dL is the usual deRham differential operator and we have the deRham com-
plex. When L = T 0,1 and a is the inclusion map then the corresponding forms are elements
in ΛkT ∗0,1 and dL = ∂̄, i.e. we have the Dolbeault complex.

Our aim in the following is to achieve a correspondence between the BRST complex and
the Lie algebroid complex. This will be useful since a Lie algebroid complex can be handled
much easier. We do this explicitly by using the coordinate functions α for both complexes.
Let us now apply the Lie algebroid picture to the BRST invariant configurations Ψ1/2 ∈ L1/2

(in the B/A model). We associate to them a Lie algebroid L1/2 where the anchor is the
projection π : L1/2 → T . Let αk ∈ C∞(ΛkL∗

1/2) and let us use the derivative dL1/2
to setup

a L1/2-complex, since d2
L1/2

= 0. Note also that ΛkL∗
1/2 � ΛkL1/2.

We use the coordinate functions α to define the space of observables by

(Oα)B/A = αa1···an(φ)Ψa1
1/2 · · ·Ψan

1/2 . (3.103)

If we now perform the BRST variation of the observables, where we make use of the Lie
algebroid derivative, we realise that

δB/A(Oα)B/A = (OdL1/2
α)B/A. (3.104)

This implies that the observables are closed under the BRST variation iff αk ∈ C∞(ΛkL∗
1/2)

is closed under the Lie algebroid derivative dL1/2
, i.e. the BRST-complex is isomorphic to

the L1/2-complex.

We can even be more precise, which we sketch roughly in the following. Actually, we do have
two GCSs on the manifold. According to section 3.2.3, the vector bundle L1/2 and so the Lie
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algebroid decomposes further with respect to J2/1, L1/2 = L+
1/2 ⊕ L−

1/2. Let us also define

Λp,qL∗
1/2 = ΛpL+∗

1/2 ⊗ ΛqL−∗
1/2, where the Lie algebroid derivative can be denoted by [45]

dL1/2
= ∂+

L1/2
+ ∂−

L1/2
, (3.105)

due to the fact that L±
1 is closed under the Lie bracket. For instance, in the generalised B

model L1 equals L+
1 ⊕L−

1 and the differential operator becomes ∂+
L1

+ ∂−
L1

. This means that

we (schematically) differentiate the coordinate functions of α by, π(L+
1 ⊕L−

1 ) = ∂+
z̄ + ∂−z̄ , i.e.

both zs are ’bared’. Here we used the explicit notation given in (3.81). For the generalised A
model we have π(L+

2 ⊕ L−
2 ) = ∂+

z̄ + ∂−z , where in this case only one z is ’bared’. Note, that
one has to distinguish the ”bars” on top of z which correspond to the appropriate complex
structures J±. We can easily recover Witten’s old B and A model results, where we take the
generalised B model and do the identifications J+ = J− and J+ = −J−. For instance, for
the old A model (J = J+ = −J−) we obtain L1 = L+

1 ⊕ L−
1 ,

L+
1 = {X + gX|X ∈ T 0,1}J+=J , L−

1 = {X − gX|X ∈ T 1,0}J−=−J . (3.106)

The Lie algebroid derivative becomes π(L+
1 ⊕L−

1 ) = ∂+
z̄ +∂−z , where now the local coordinates

z correspond to only one complex structure J . Witten denoted this Lie algebroid derivative
by the usual deRham operator d and found the deRham complex for his A model. Note that
we have nevertheless two independent sections ψ± ∈ T .

Coming back to our initial interest in mirror symmetry we get as a final result for the observ-
ables: SinceM : L1 → L2, the cohomologies of the differential complexes for the generalised
A and B models are mirror pairs.

We want to do the same for the generalised instantons [65]. The instantons are the fixed
points of the BRST transformations. Performing the Wick rotation ∂0φ → i∂2φ on the
Riemann surface, one gets the instanton equations

δB/AΨ = (1− iJ1/2)
(
i∂2φ
g∂1φ

)
= 0 . (3.107)

These equations tell us that the instantons of the generalised B model are mapped to those
of the generalised A model under the mirror map.

3.3.3 Topological branes and their mirrors

In this section we want to investigate how topological branes behave under the mirror map
M. We will strongly follow the notation and conventions used in [87] and references therein.

Branes in the topological A/B model (A/B branes) can be defined by a gluing matrix R :
T → T , which encodes information about the mapping of left- and right-moving fermions at
the boundary ∂Σ [3, 4]. The gluing conditions read

ψ− = Rψ+ . (3.108)
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In the generalised picture this translates to [87]

R : T ⊕ T ∗ → T ⊕ T ∗, RΨ = Ψ , (3.109)

where Ψ is defined in (3.99). Locally we can write R in adapted coordinates,

R =
(
r
−rt
)
, where r =

(
1N

−1D

)
. (3.110)

We denoted the identity matrices for the Neumann- and Dirichlet boundary conditions by 1N
and 1D. One important property of the gluing operator R is that it singles out the generalised
tangent bundle of the p-dimensional submanifold D by RΨ = Ψ, i.e. we have p Neumann
directions that define the brane. We will later see which p-submanifolds can appear in the
generalised topological A/B model.

Furthermore, R respects the natural metric 〈·, ·〉 on T ⊕ T ∗, squares to one, i.e. R2 = 1, and
anticommutes with G, i.e. GR+RG = 0.

In the (physical) gluing framework the operator R contains the information about Dirichlet
and Neumann boundary conditions (bc). It defines a smooth distribution D ⊂ T which has
rank equal to the dimension of the brane. In case of an integrable distribution we even have
(Frobenius) a maximal integral submanifold D.

From a different point of view, the above properties of R serve to consider the projection
operator 1

2(1 + R) to define a special almost Dirac structure τ0
D (a real, maximal isotropic

sub-bundle),
τ0
D = TD ⊕Ann(TD) ⊂ T ⊕ T ∗ , (3.111)

which is (Courant) integrable iff D is integrable.

The extension of R by a closed two-form F ∈ Ω2(D), dF = 0, on the submanifold D corre-
sponds to [87]

τFD = { 1
2
(1 + R)(X + ξ) = (X + ξ) : (X + ξ) ∈ TD ⊕ T ∗M |D , ξ|D = X F } (3.112)

and is equivalent to the definition of a generalised tangent bundle given in [45]. This gluing
matrix is given by

R =
(

1
F 1

)(
r
−rt
)(

1
−F 1

)
=
(

r
F r + rt F −rt

)
. (3.113)

We use the above observations to define submanifolds for the generalised topological A and
B model. Submanifolds for the A/B model are called A/B branes and are characterised by
the the U(1) currents j± = ω±(ψ±, ψ±), ψ± ∈ T , where ω± are the symplectic forms. Here
we used the common notation from the literature that is a little bit sloppy. The two sections
we plugged in have actually to be different ones. In a precise way it is better to think about
two sections X±, Y± ∈ T and write j± = ω±(X±, Y±).

The U(1) currents have to fulfill the matching conditions

0 = j+ ± j− =
1
2
〈
Ψ ,J2/1Ψ

〉
(3.114)
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for the A/B model.

Combining this with the gluing conditions for the fermions (3.109), we obtain a stability
condition for R, or equivalently, a stability condition for τFD . Using also {G,R} = 0, one
gets:

A branes: RJ1 = −J1R and RJ2 = J2R
B branes: RJ1 = J1R and RJ2 = −J2R . (3.115)

We will call the (anti)commuting constraints ∓-stability with respect to a certain GCS. Thus,
the A/B model is J−

1/2/J +
2/1 stable. This reflects the fact that the generalised tangent bundle

τFD in the A/B model splits into ±i eigenbundles of J2/1, or in other words, it becomes a
stable subbundle of L2/1 ⊕ L2/1, respectively:

A/B model: τFD = τF +
D ⊕ τF −

D , with respect to L2/1 ⊕ L2/1 . (3.116)

We are now prepared to apply the mirror map M to the branes we just introduced. The
gluing operator R gets mapped to R̂ =MRM−1 and one can show that the properties for
R̂ are the same as they were for R. As before, we take M6 which has a T 3 fibration, then
mirror symmetry interchanges Neumann bc with Dirichlet bc in the fibre4. Remember that
under mirror symmetry the GCS (also the A/B model) gets interchanged. Therefore it is
easy to see that the U(1) current conditions get mapped to each other and A/B branes get
naturally mapped to B/A branes. But note that on the mirror side the stability conditions
are formulated with R̂.

Furthermore, in case of non-vanishing F ∈ Ω2(D), let us focus on the part of (3.113), where
only F appears. Then, applying M, we obtain the following symbolical shape of R̂

R =
(
r
� −rt

)
−→ R̂ =

(
r̂ �

−r̂t
)

(3.117)

with a bi-vector β = F−1 in the upper triangular part. Thinking of F in components this
means that the indices get raised. We will denote this by

τβD̂ = { 1
2
(1 + R̂)(X + ξ) = (X + ξ) : (X + ξ) ∈ TM̂ |D̂ ⊕N∗D̂ , X|ND̂ = β(ξ) }, (3.118)

where N∗D̂ is the conormal bundle to D̂. For example, if we start with a brane which has
only a worldvolume in the fibre directions and a non-vanishing two-form F , it will be mapped
to a brane which corresponds to a “point”. But on the mirror side F disappears and we find
a bi-vector β in the fibre directions instead. This can be interpreted as a noncommutative
deformation of M̂ , as has been argued in [65].

This brings us immediately to the proposal to investigate the case of having at the same
time both independent structures, a two-form and a bi-vector. This would correspond to B
and β transformations in the sense of [45] and therefore we get a natural extension of the
generalised tangent bundle.

4The mirror map M is only a special case of the more general T-duality transformation and therefore this
statement can be extended.

66



Chapter 4

Generalised geometries and
supergravity in 10d

From a duality and a phenomenological point of view, the idea of compactifying supergravity
theories is a rather appealing one. It also points to interesting geometrical issues as requiring a
certain amount of supersymmetry to be preserved puts constraints on the internal background
geometry and thus leads to special G-structures. As we already discussed in the first chapter,
a compactification of 11d supergravity on 7-manifolds in conjunction with a single internal
single parallel spinor leads to G2-structure spaces.

Supergravity theories are physical concepts that describe the low energy effective action
of the corresponding superstring theories. The five existing theories are the most promising
canditates for a unified description of all physically fundamental forces. In the present chapter
we investigate 10d type IIB supergravity vacua by compactifying on seven and six dimensional
manifolds. We shall focus on the geometrical structure of the vacuum space admitting a
certain amount of supersymmetry in the external space, which can be achieved by a spinorial
formulation of the supersymmetry variations. An additional analysis of the equations of
motion single out the physical vacua.

The situation where only the massless bosonic fields are present at low energies characterises
what is called the vaccum. The fundamental bosonic objects that appear come in two flavours:
the NS-NS fields and the R-R fields. The NS-NS fields consist of a metric g, a 2-form B-field
b and the dilaton function φ. The odd/even forms Cod/ev describe the R-R potentials in type
IIA/B and the corresponding field strength tensors can be denoted by F ev/od. In type II one
further imposes that the 10d R-R fields have to be anti-self-dual with respect to �M1,9 , i.e.

F ev/od = −�M1,9F ev/od. (4.1)

The field content of the NS-R and R-NS fields is purely fermionic and is given by the gravitino
ΨX (spin 3/2) and the dilatino λ (spin 1/2). Although these fermionic fields being absent in
the vacuum the supersymmetry variations are non-vanishing. A supersymmetric vacuum can
be achieved in case the fermionic supersymmetry variations of the gravitino ΨX and dilatino
λ, that depend on the two bosonic sectors and two independent spinors ε = (ε1, ε2), vanish,

δεΨX = 0, δελ = 0 .
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The spinors ε1/2 are non-physical and represent the globally well defined parameters necessary
to establish supersymmetry.

This chapter reviews the authors’ results given in [61, 62]. We first discuss the case of
vanishing R-R fields by doing an explicit supersymmetric compactification on 7-manifolds.
In general, the two 10d supersymmetry parameters result in precisely two internal spinors
on the 7-manifold and induce a topological generalised structure. This is due to the 10d
supersymmetry parameters being independent and this property can be transported to the
internal space. We furthermore discuss a solution where we have two real spinors onM7. Since
the two spinors are independent each spinor reduce the structure group to two distinct G2s,
say G2±. The supersymmetry variations ask for integrability of this topological structure and
thus achieve the geometrical reduction. This correspondence - the physical supersymmetry
constraint versus the mathematical reduction of the structure group - can be seen on the
spinorial level since the physical supersymmetry variations are formulated from this point of
view. By relating the spin picture to the picture of mixed degree forms one even obtain the
opportunity to characterise the supersymmetry conditions in the language of forms.

By calculating the supersymmetry constraints for the internal space we observe that the
resulting two spinorial 7d equations, the gravitino and the dilatino equation, are precisely the
equations that characterise what is called a generalised G2-structure. This type of structures
were first defined in mathematics by F. Witt [84, 83]. This means that the structure group
reduces from R0 × SO(7, 7) to G2 × G2 and all internal defined NS-NS degrees of freedom
can be modeled by this geometrical structure.

A short review about generalised G2-structures is given. Here we also point on the fact that
generalised structures can be understood as the holonomy theory for elements in T ⊕ T �.
Since this space naturally admits a signature of (7, 7) it becomes obvious that, in general,
one has to deal with the structure group SO(7, 7). Remember, in the classical case one
parallel transports elements in T and here the interesting holonomy groups are subgroups
of SO(7). The two internal spinorial equations were also derived by Gauntlett et al. [38]
from the perspective of wrapped NS5-branes in IIB supergravity. There, the authors found a
solution by assuming that the two real internal spinor are globally orthogonal and therefore
this corresponds to a classical SU(3)-structure. We rederive this result as a special case
within the generalised structures.

We further do the analogous compactification on a 6-manifold and assume to have two
complex internal spinors. We introduced this new structure in the literature under the
name of a generalised SU(3)-structure [61] and here the structure group is SU(3) × SU(3).
The basic ideas of the generalised G2-structures can also be applied here. The inclusion
SU(3) ⊂ G2 relates SU(3)- to G2-structures on 6- and 7-manifolds. This motivates to con-
sider SU(3)×SU(3) ⊂ G2×G2 and we investigate the connection between generalised SU(3)-
and G2-structures in dimension six and seven. We discuss the general setup and explitly cal-
culate the case where the generalised SU(3)-structure on the 6-manifold is fibred over a line
to obtain on the 7-dimensional total space a generalised G2-structure. Our result generalises
the well known Hitchin flow equations.

It is also interesting to ask about submanifolds on generalised structure spaces. Since a
generalised G2-structure admits two independent spinors they also define two independent G2

3-forms ϕ±. It is known for classical G2-structures that those are calibration forms. Strictly
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speaking, they measure e.g. the volume of a 3-submanifold and judge if it is supersymmetric.
This property is essential if supersymmetric branes are considered from a geometrical point
of view. We develop a dimension independent view on those submanifolds within the setup of
generalised G2-structures. It turns out that the two calibrations restricted to the submanifold
can be related to each other via the physical gluing operator R and must coincide. This verifies
the naive understanding that the submanifold can be calibrated by both forms ϕ± but they
measure the same volume of this space. Or in other words, the data of the submanifolds are
encoded in R and we only allow for those R, i.e. for those submanifolds, that ensure that the
two calibrations are identical up to B- or F -field transformations.

At the end of this chapter we also take the R-R fields into account. But there is one crucial
discrepancy. In the physical supersymmetry variations both, the NS-NS and R-R fields, ap-
pear while in mathematics only the the NS-NS fields can be described in terms of a generalised
geometry. More concretely, in mathematics the NS-NS fields characterise the topological data
of the generalised structure and their integrability conditions are governed by the variational
principle that is purely topological. All degrees of freedom that the generalised structure
provides are fully occupied by the NS-NS fields, so there are no degrees of freedom left to
implement the R-R fields too. We therefore extend the generalised geometries in dimension
six and seven by also including the R-R sector and give them a mathematical meaning in
terms of an extendend generalised SU(3)- and G2-structure. The result is 4-fold. Firstly,
the basic idea is to introduce the R-R fields as a constrained variational principle that gen-
eralises the results of [53, 55, 84, 83]. Secondly, the critical points of the functional define
the integrability condition of generalised structures including the R-R fields. Thirdly, these
new integrability conditions were translated to the classical spinor picture and result in the
gravitino and dilatino equation where now the R-R fields appear. Fourthly, we compactify
type IIA/B supergravity given in the democratic formulation of Bergshoeff et al. [13] and
prove the equivalence of the internal equations to those we found from pure mathematics.

4.1 Supersymmetry variations of type II theories

We want to use this section to set up the basic definitions of the 10d supersymmetry variations
for type II theories. We follow the democratic idea given in [13] and therefore consider the
R-R fields for the type IIA/B theory as even/odd, F ev/od. For the vacuum background the
two supersymmetry variations, one for the gravitino ΨX and one for the dilatino λ, are given
by

δεΨX =
(
∇X +

1
4
X H · P

)
ε+

1
16
eφF ev/od ·X · Pev/od ε , (4.2)

δελ =
(
dφ ·+1

2
H · P

)
ε∓ 1

8
eφ
(
5F ev/od −

∑
ev/od

pF p
)
· Pev/od ε , (4.3)

where ε (also ΨX and λ) is a vector that includes the two supersymmetry parameters for
the type II theories, and X ∈ TM1,9. For instance, in type IIB spinorial parameters are
non-chiral, Γ11ε = ε. We define the operators P for the ev/od (or IIA/B) case as Γ11/−σ3
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and for Pev/od =
∑

ev/od Pp we write

p mod 4 0 1 2 3
Pp σ1 i σ2 Γ11σ1 σ1

where we used the Pauli matrices

σ1 =
(

0 1
1 0

)
σ2 =

(
0 −i
i 0

)
σ3 =

(
1 0
0 −1

)
.

Having these variations in hand we can figure out the space-time supersymmetric vacuum
background by claiming

0 = δεΨX , 0 = δελ . (4.4)

We will develop a first solution to these equations by ignoring the R-R fields, i.e. we set all
R-R fields to zero. Later on we also take these fields into account. Another step in finding
a solution to the supersymmetry variations (4.4) is that we use the tool of compactification.
This means, we assume that M1,9 is given either by R1,3 × M6 or by R1,2 × M7 where
the internal spaces M6 and M7 are very tiny (say of order Planck length) in case of being
compact.

4.2 Compactification on M7

In this section, we explicitly compactify type IIB on a 7-manifold M7, that is we consider
the direct product model R1,2 ×M7 where H and φ take non-trivial values only over M7

and we set all R-R fields to zero, F od = 0. We want to determine the constraints on the
underlying geometry of the internal spaceM7 imposed by the vanishing of the supersymmetry
variations (4.4).

To that end, we are given the supersymmetry parameters ε = (ε+, ε−), where ε± ∈ ∆+
M1,9

since Γ11ε = ε. We decompose them accordingly, that is

ε± =
∑
N

ξN± ⊗ ηN± ⊗
(

1
0

)
,

where N ≤ dim8 = 8 and ξ and η live in the irreducible spin representation ∆R1,2 and 8 of
Spin(1, 2) and Spin(7) respectively.

We fix the 10-dimensional space-time coordinates XM (M=0,. . . ,9) and assume the back-
ground fields to be independent of Xµ (µ = 0, 1, 2). Coordinates on the internal space will
be labeled by Xa for a = 3, . . . , 9. We use the convention

{ΓM ,ΓN} = 2ηMN I32×32

with signature (−,+, . . . ,+). We choose the explicit gamma matrix representation

ΓM =
{
γµ ⊗ I8×8 ⊗ σ2 : µ = 0, . . . , 2
I2×2 ⊗ γa ⊗ σ1 : a = 3, . . . , 9
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where the (8× 8)-matrices γa are imaginary. The SO(1, 2) gamma matrices γµ are given by

γ0 =
(

0 −1
1 0

)
γ1 =

(
0 1
1 0

)
γ2 =

(
1 0
0 −1

)
.

Furthermore, we note the relations∏
µ

γµ = −I2×2

∏
a

γa = −i I8×8.

The chirality operator Γ11 is therefore Γ11 = I2×2 ⊗ I8×8 ⊗ σ3.

With these splittings at hand we want to carry out the supersymmetry variations (4.2)
and (4.3). The external part of the dilatino variation vanishes trivially. For the internal part,
we first note the useful identity

ΓM1M2M3HM1M2M3 = (I2×2 ⊗ γabc ⊗ σ1)Habc

by means of which we immediately obtain the dilatino variations

δε±λ = I2×2ξ
N
± ⊗ (γa∂aφ∓ 1

2
γabcHabc)ηN± ⊗ σ1

(
1
0

)
.

The condition δε±λ = 0 is then equivalent to

(
γa∂aφ∓ 1

2
γabcHabc

)
ηN± = 0. (4.5)

Next we focus on the variation of the gravitinos δε±ΨM . The flatness of R1,2 implies

∇µξN± = 0.

This solves the external part, and consequently we are left with

δε±Ψa = I2×2 ξ
N
± ⊗
(
∇a ∓ 1

4
Habcγ

bc
)
ηN± ⊗

(
1
0

)
.

Imposing the condition δε±ΨX = 0 finally yields(
∇a ∓ 1

4
Habcγ

bc
)
ηN± = 0. (4.6)

In this article we shall deal with the case N = 1, i.e. with exactly two internal spinors η±.
Hence a solution consists of the internal background data (M7, g,H, η±, φ) satisfying (4.5)
and (4.6), where g is a metric, H is a closed 3-form, η± are two unit spinors in the associated
irreducible spin representation 8 and φ is a scalar function.

Note that the considerations above can be easily modified to tackle the case of non-chiral
type IIA theory which results in similar geometric conditions.
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4.3 Generalised G2-structures

In the previous section we derived from the physics point of view the data and constraints
that fully characterise the geometry of the internal space M7. We achieved this by using the
language of spin geometry. The same characterisation of the above geometry appeared also
in the mathematical literature, where Frederik Witt introduced the theory of generalised G2

structures [83] (see also [84]). We merely outline here the definitions and results given there,
being essential in the following. For further results, details and examples the reader should
consult [83].

Let us start by considering the data of the previous section, that is a spinnable Riemannian
7-manifold (M7, g) admitting two unit spinors η+ and η− in the spin bundle ∆ = 8, the
irreducible Spin(7)-representation. It is well-known in the theory of G-structures, that each
spinor induces a reduction of the structure group G to G2. Since we have two indepen-
dent spinors η± ∈ 8, we denote the associated structure groups by G2±. Note, by assuming
the spinors to be globally orthogonal we effectively have a global SU(3)-structure. Strictly
speaking, we can only treat the spinors η± as independent if we have the possibility of two G2

copys, say G2±. A basic instance of such an effective SU(3)-structure was considered in [38].
As usual in physics, the authors constructed via fierzing all possible forms of pure degree,
i.e. η−γijk...η+. In mathematical language this means that one fierzes the tensor product of
the spinors, η+⊗ η−, and project onto ΛpT ∗7. The differential conditions on the spinors then
translate into differential conditions on the forms and characterise the specific torsion classes
of the underlying SU(3)-structure. We will generalise this procedure in the following and
show that two new features arise. These ingredients are essential and bring us to the theory
of generalised G2-structures.

Firstly, let us consider the most general setup, where we have two independent and globally
defined unit spinors and their associated structure groups G2±. Altough the spinors induce
in general an SU(3)-structure, since SU(3) = G2+ ∩ G2− = G2, it can break down over
some subset on the manifold, where the two spinors coincide, i.e. the SU(3)-fibre bundle
becomes singular. In other words, over the subset we only have one G2-structure, since here
G2 = G2+ = G2−, see schematical figure 4.1. This feature does not appear in the case
of having two orthogonal spinors, because they define a global SU(3)-structure. Note, the
subset can be measured by the zero locus of a certain vector field.

Secondly, let us fierz the tensor product η+ ⊗ η− and collect all even(odd) forms together
in one abstract form of mixed even(odd) degree. We always think about the tensor product
η+ ⊗ η− as a collection of even or odd forms and denote it by (η+ ⊗ η−)ev,od. Moreover,
since we identify the tensor product η+ ⊗ η− with an even or odd form ρev,od0 , we can re-
gard it as a spinor for T 7 ⊕ T 7∗. In the case of generalised 6-manifolds we also considered
forms as spinors, see section 3.1.2, and therefore we take over some arguments for 7-manifolds.

Let us consider the T ⊕ T ∗-bundle on M7, that admits a natural inner product of signature
(7, 7) and a spinnable SO(7, 7)-structure. An element X ⊕ ξ ∈ T ⊕ T ∗ acts on a form τ ∈ Λ∗
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SU(3)

G2− G2+

x ∈M7

G2− = G2+

SU(3) is singular

x̂ ∈M7

Figure 4.1: Let there be given two independent spinors η±. Each spinor reduces the structure
group to a certain G2, say G2+ and G2−. In general, as can be seen on the left hand side,
the groups intersect in SU(3) at x ∈ M7. It can happen that the two spinors coincide, e.g.
at x̂ ∈ M7, as can be seen on the right hand side. This results in G2+ = G2− and the
SU(3)-fibre becomes singular. Such a scenario is typical for generalised structures.

by
(X ⊕ ξ) • τ = X τ + ξ ∧ τ. (4.7)

As this squares to minus the identity,1 we obtain an isomorphism between Cliff(T ⊕ T ∗) and
End(Λ∗). Since we also allow for a metric g, the structure group reduces to SO(7)× SO(7),
and, moreover, the irreducible spin representations of Spin(7)× Spin(7) are given by

S± = Λev,odT ∗.

The given metric g also induces a generalised metric G, compare with the GKS section 3.1.5
on a 6-manifold, and therefore the orthogonal splitting T ⊕ T ∗ = C+ ⊕ C− is given by,

C+ = {X ⊕ (b− g)X|X ∈ T} , C− = {X ⊕ (b+ g)X|X ∈ T} . (4.8)

Note, we have different signs compared to section 3.1.5, since our natural metric is defined
here by the mathematical convention. With the same spirit as for 6-manifolds, we consider
the 2-form b, sitting inside the Lie algebra so(7, 7), as a B-field. It acts on S± by wedging
with the exponential eb • τ = (1 + b+ b2/2 + . . .) ∧ τ .

Having a metric g, we identify the tangent vector X with its dual and act on a form τ by
X τ +X ∧ τ . We can also act with tangent vectors and their duals, via the usual Clifford
multiplication, on the spinors η± ∈ 8, and, moreover, on the tensor product η+ ⊗ η−. The
tensor product can be considered, via fierzing, as an even or odd form. As a next step, it
is obvious that we compare the two actions on 8 ⊗ 8 and S±. For the comparison we take
X,Y ∈ T and use the fact, that one can lift them isomorphically via (4.8) into the subbundles
C±. We write2

Cliff(T, g)⊗̂Cliff(T,−g) = Cliff(T ⊕ T ∗) (4.9)

1We follow the usual convention in mathematics where unit elements in the Clifford algebra square to −1,
cf. the definition (3.2) for 6-manifolds.

2The symbol �⊗ means the tensor product of Z2-graded Clifford algebras.
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where the isomorphism is given by extension of the map

X⊗̂Y �→ (X ⊕−X g) • (Y ⊕ Y g), (4.10)

and • now also denotes multiplication in Cliff(T ⊕ T ∗). Let · denote Clifford multiplication
on 8. One can show that

(X · η+ ⊗ η−)ev,od = X⊗̂1 • (η+ ⊗ η−)od,ev

(η+ ⊗ Y · η−)ev,od = ±1⊗̂Y • (η+ ⊗ η−)od,ev
(4.11)

for any η+, η− ∈ 8. Hence the G2+×G2−-invariant tensor product η+⊗ η− induces elements
ρev,od0 ∈ S± whose stabiliser inside Spin(7, 7) is conjugate to G2 ×G2.

Conversely, a G2 × G2-invariant spinor ρ in S+ (or S−) can be uniquely written (up to a
sign) as

ρev,od = e−φeb ∧ (η+ ⊗ η−)ev,od ∈ S±. (4.12)

We call the pair (M7, ρ) a generalised G2-structure, i.e. the structure group of T ⊕ T ∗ inside
R0 × Spin(7, 7) is precisely G2 ×G2. This definition uses the form-picture and is equivalent
to the data (M7, g, b, η±, φ). Since our background manifold of interest is characterised by
the latter data, the vaccum space can be modeled by a generalised G2-structure. We will
postpone the discussion about the differential conditions to the end of this section. Usually,
we assume the G2 ×G2-invariant spinor ρ to be even and write ρb = eb ∧ (η+ ⊗ η−)ev and ρ0

if b = 0.

Let us make a comment that does not concern our investigations later on. Hitchin [53] showed
that certain geometries appear as critical points of a variational principle. This principle
only involves the topological data. Therefore, the variational principle for non-generalised
structures gained some attraction with a view towards a topological M-theory [31, 73]. In [74]
the authors showed, that it is even necessary to use the quantised generalised framework for
6-manifolds to capture the genus one free energy of the B-model. Let us focus on 7-manifolds.
Note that the

g : 28, b : 21, η+ : 7, η− : 7, φ : 1

degrees of freedom sum to 64 = dim Λev,od, so that this data effectively parametrises the
open orbit of a G2 ×G2-invariant form under the action of R>0 × Spin(7, 7). Following the
language in [53] such a spinor is called stable. Stability is the key feature for the variation of
the spinors and therefore allows us to consider a certain variational principle introduced by
Hitchin [53] and formulated for generalised G2-structures by Witt [83].

After these more abstract definitions let us focus next on the practical techniques that we
extensively use afterwards. Firstly, let us derive an explicit description of ρev,od in terms of
the underlying G2+ ×G2−-invariants. The coefficients of the form η+⊗ η− can be computed
by

g(η+ ⊗ η−, eI) = q(eI · η+, η−), (4.13)

where q denotes a suitably scaled Spin(7)-invariant inner product on 8 and eI = ei1...ip is an
orthonormal basis for ΛpT ∗. In physics language this means, using eI · = ei1...ip · = γi1...ip , that
we define the components of the form η+⊗ η− by calculating bi-linears, i.e. (η+⊗ η−)i1...ip =
ηT−γi1...ipη+. More explicitly, we can also decompose η− = cos(a)η+ + sin(a)η⊥+ , where η+
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and η⊥+ are perpendicular to each other and a = �(η+, η−) describes the angle between the
spinors. Since Spin(7) acts transitively on the set of pairs of orthonormal spinors, we may
choose an orthonormal basis in 8 such that

η+ = (1, 0, 0, 0, 0, 0, 0, 0, 0)T , and η− = (cos(a), sin(a), 0, 0, 0, 0, 0, 0)T .

If the spinors η+ and η− are linearly independent, their isotropy groups G2+ and G2− in-
tersect in SU(3), which act on T 7 by leaving invariant a 1-form α, a symplectic form ω and
two 3-forms ψ+ and ψ− which are the real and the imaginary part of the SU(3)-invariant
holomorphic (3, 0)-form given in section 2.3.3 (see also [24]). We then find

ρev0 = c+ sω − c(ψ− ∧ α+
ω2

2
) + sψ+ ∧ α− sω

3

6
, (4.14)

ρod0 = sα− c(ψ+ + ω ∧ α)− sψ− − sω
2

2
∧ α+ c volg, (4.15)

where c and s are shorthand for cos(a) and sin(a). Let us write this in the shape

ρev0 = f0 + α ∧ f1 , ρod0 = g1 + α ∧ g0 ,

where we set
f0 = c+ sω − cω2

2 − sω
3

6 = Re(e−iaeiω) ,
f1 = cψ− − sψ+ = Im(e−iaΩ) ,

(4.16)

and
g1 = −cψ+ − sψ− = −Re(e−iaΩ) ,
g0 = s− cω − sω2

2 + cω
3

6 = − Im(e−iaeiω) .
(4.17)

by means of

e−iaΩ = (c − i s) · (ψ+ + i ψ−) ,

= (cψ+ + sψ−) + i(cψ− − sψ+) ,

e−iaeiω = (c − i s) · (1 + iω − ω2

2 − i ω
3

6 ) ,

= (c+ sω − cω2

2 − sω
3

6 ) + i(−s+ cω + sω
2

2 − cω
3

6 ) .

(4.18)

Accordingly, the normal forms (4.14) and (4.15) become

ρev0 = Re(e−iaeiω) + α ∧ Im(e−iaΩ) , (4.19)
ρod0 = −Re(e−iaΩ) − α ∧ Im(e−iaeiω) , (4.20)

and taking also the B-field b and the dilaton φ into account the most general G2×G2-invariant
spinors ρev,od are

ρev = Re(e−φ−iaeb+iω) + α ∧ Im(e−φ−iaeb ∧ Ω) , (4.21)
ρod = −Re(e−φ−iaeb ∧ Ω) − α ∧ Im(e−φ−iaeb+iω) , (4.22)

The underlying SU(3)-structure fluctuates with a and breaks down when s = 0, i.e. where
the spinors are parallel. Since sαη+ = sη⊥+, this happens precisely over the zero locus of the
vector field dual to sα. Consequently, only the forms sα, sω etc. are globally defined over
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M7 and it follows that in general the Spin(7)-structure does not reduce to a global SU(3)-
structure. Even if the SU(3)-structure is not singular it varies in general over M7 with a
parameter a and is therefore dynamical. This should be compared to the case of orthogonal
spinors of unit length, where the SU(3)-structure is even static. Moreover, at a point where
a = 0, i.e. η = η+ = η−, we have

ρev = 1− �ϕ (4.23)
ρod = −ϕ+ vol , (4.24)

with ϕ denoting the invariant 3-form of a classical G2-structure defined by η. In other words,
at certain points where the SU(3)-structure breaks down, we get a classical G2-structure
(M7, ϕ). Going one step ahead, in case of having even a = 0 globally, we get a global
classical G2-structure and the formulae (4.23) and (4.24) tells us how to embed a classical
G2-structure into a generalised one .

We already used implicitly in (4.23) our knowledge about the Hodge-operator for classical
G2-structures. This explicit description also reveals how to relate the G2 × G2-invariant
forms ρev0 and ρod0 . Let us introduce the canonical involution ∧ of a Clifford algebra, given on
elements of degree p by

pmod4 0 1 2 3
∧ + − − +

A general formula in 7d can be denoted by �(τ ev,od)∧ = (�τ ev,od)∧. Using this we obtain

�( ̂η+ ⊗ η−)ev,od = (η+ ⊗ η−)od,ev.

Next we want to explicitly verify this result by also incorporating the B-field b to consider a
general G2×G2-form ρ (4.12) where we note the identity (eb∧τ)∧ = e−b∧ τ̂ . Let us introduce
the generalised Hodge- or box operator �g,b : Λev,od → Λod,ev defined by

�g,bρ
ev,od = eb ∧ �(e−b ∧ ρev,od)∧ , (4.25)

such that
�ρev,odρev,od = ρod,ev . (4.26)

Let us check this formula by calculating �g,bρ
ev/od,

�g,bρ
ev/od = �g,b(e−φ eb ∧ ρev/od0 ) ,

= eb ∧ �(e−b ∧ (e−φ eb ρev/od0 ))∧ ,
= eb ∧ �(e−b ∧ eb e−φρev/od0 )∧ ,
= e−φ eb ∧ �(ρev/od0 )∧ ,

(4.27)

where we used e−b ∧ eb = 1. Thus, the �g,b-operator is only sensible to the normal form and
it remains to calculate �(ρev/od0 )∧. By means of

�1 = volg, �α = ω3

6 , �ω = α ∧ ω2

2 , �ω
2

2 = α ∧ ω,
�(α ∧ ψ+) = ψ−, �(α ∧ ψ−) = −ψ+, �ψ+ = −α ∧ ψ−, �ψ− = α ∧ ψ+ ,
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we obtain e.g. for �(ρev0 )∧,

�(ρev0 )∧ = �
(
c+ sω − c(ψ− ∧ α+ ω2

2 ) + sψ+ ∧ α− sω3

6

)∧
,

= �
(
c− sω − c(ψ− ∧ α+ ω2

2 ) + sψ+ ∧ α+ sω
3

6

)
,

= c volg − sα ∧ ω2

2 − c(ψ+ + α ∧ ω)− sψ− + sα ,
= ρod0 .

(4.28)

At the end of this section we come back to integrability of a generalised G2-structure. Re-
member, we already made sure that the physical data (M7, g, b, η±, φ), steming from the
Killing spinor equations which are equal to the supersymmetry variations, define a most
generic generalised G2-structure. We furher explained how this data can be rephrased in
terms of forms ρev,od, being spinors for the T ⊕ T ∗-bundle. Next we have to fully consider
the supersymmetry variations, or put differently, we must analyse the differential conditions
for the spinors η± and how these can be related to differential conditions for the spinors ρev,od.

Let us mention before we proceed that we have to make sure what the B-field physically
means. In the supersymmetry variations only the corresponding 3-form H appears and we
can think about it in two different ways. Firstly, the case if H is globally exact, i.e. globally
we have a 2 form b such that H = db. Secondly, H can only be defined locally by H = db,
implying that b is rather a connection 2-form. Both situations can be captured (even at
the same time) by the generalised framework. In case of having the B-field only defined
locally this setup goes in the mathematical literature under the name of a gerbe [54, 57].
We prefer in the following this interpretation and it can be implemented for the generalised
G2 structures by taking the twisted differential operator dH = d+H (compare with (3.14))
instead of the usual operator d. In contrast to that, i.e. if we have from a physical point of
view a globally defined B-field, we identify it with the 2-form b sitting in the Lie algebra as
already mentioned.

The detailed precise proof of the correspondence is given in [83] and is roughly based on the
fact that the twisted Dirac operator over 8⊗8 transforms into d+ d� under fierzing. A more
general argument taking into account the possible action of the B-field b, where H is the
closed NS-NS 3-form flux, can then be invoked to show that (M7, g,H, η±, φ) satisfies (4.5)
and (4.6) if and only if the corresponding G2 ×G2-invariant spinors ρ and �ρ satisfies

0 = dHe
−φρ0 = de−φρ0 +H ∧ e−φρ0 ,

0 = dH�ρ0e
−φρ0 = d�ρ0e

−φρ0 +H ∧�ρ0e
−φρ0 ,

(4.29)

If H is globally exact, i.e. H = db, (4.29) can be written in the more succinct form

0 = de−φ(eb ∧ ρ0) ,
0 = de−φ�g,b(eb ∧ ρ0) .

(4.30)

4.4 Recovering the classical SU(3)-case

Equations (4.5) and (4.6) were first derived by Gauntlett et al. [38] from a quite different point
of view. Starting with IIB supergravity they studied wrapped NS5-branes over calibrated
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submanifolds inside an internal 7-manifold with an SU(3)-structure. As an illustration of
the previous section, we reconsider their setup which turns out to be described by a “static”
generalised G2-structure with a ≡ π/2 (that is, the structure group reduces to a fixed SU(3)),
together with the closed NS-NS 3-form flux H.

Under this assumption the form ρ defining the generalised G2-structure becomes

ρ0 = ω + ψ+ ∧ α− ω3

6

with associated odd form

�ρ0ρ0 = α− ψ− − ω2

2
∧ α.

The supersymmetry equations are equivalent to

dHe
−φρ0 = 0 and dHe

−φ�ρ0 ρ0 = 0

which written in homogeneous components can then be rephrased by

dω = dφ ∧ ω ,
ψ+ ∧ dα = −dφ ∧ ψ+ ∧ α+ dψ+ ∧ α−H ∧ ω ,

1
2
dω ∧ ω2 = dφ ∧ ω

3

6
−H ∧ ψ+ ∧ α

and

dα = dφ ∧ α ,
dψ− = dφ ∧ ψ− +H ∧ α ,

dω ∧ ω ∧ α = dφ ∧ α ∧ ω
2

2
−H ∧ ψ− .

We finally conclude

d(e−φα) = 0 , d(e−φω) = 0 ,
α ∧ dψ+ = H ∧ ω , 1

3dω ∧ ω = α ∧H ∧ ψ+ ,
d(e−φψ−) = H ∧ α , dω ∧ ω ∧ α = ψ− ∧H .

(4.31)

The equations of motion are solved since H is closed, i.e. dH = 0, as proved in [38]. There-
fore (4.31) characterises the physical vacua.

4.5 Compactification on M6 and generalised SU(3)-structures

Let us use next IIB theory to make contact for phenomenogical reasons to our four dimen-
sional world. Following the procedure of section 4.2 we achieve this if we compactify on a
6-dimensional manifold M6. Also here we set the R-R fields to zero. Recall that we have
Spin(6) = SU(4) and that the irreducible spin representations of positive and negative chiral-
ity ∆± are just the SU(4)-vector representation 4 and its conjugate 4. The supersymmetry
equations compactified on M6 thus become

∇XΞ+ + 1
4X H · Ξ+ = 0, (dφ+ 1

2H) · Ξ+ = 0,
∇XΘ+ − 1

4X H ·Θ+ = 0, (dφ− 1
2H) ·Θ+ = 0,

(4.32)
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for two complex spinors Θ+,Ξ+ ∈ 4 that are related in type II theories because Θ+ and
Ξ+ are real Majorana-Weyl spinors. Note, since we work in type IIB theory both complex
spinors Θ+ and Ξ+ are of positive chirality. Similarly, we can consider type IIA theory by
choosing the spinors to be non-chiral.

Recall that SU(4)/SU(3) = S7, hence the choice of two unit spinors Θ,Ξ ∈ 4 induces a
reduction to two SU(3)±-subbundles. The SU(4)-representations ∆± decompose into 3±⊕1±
and 3±⊕1±. Consequently, we can also consider the corresponding SU(3)±-invariant spinors,
e.g. Θ− = Θ+ ∈ 4. This setup is similar to that given in section 4.3 which motivates

Definition 4.5.1. [61]
Let M6 be a 6-dimensional, spinnable manifold. A (topological) generalised SU(3)-structure
is defined by the 6-tuple (M6, g, b, φ,Ξ+,Θ+), where g is a Riemannian metric on M6, b a
2-form, φ a smooth function and Ξ+, Θ+ ∈ ∆+ are two (complex) unit spinors of positive
chirality. We denote the stabiliser of Ξ± and Θ± by SU(3)l and SU(3)r respectively.

The proofs are analogous to that given in [83] and carry over without difficulty. Again we
content ourselves with a brief outline of the corresponding results.

Rather than working with the complex spinors we will consider the real SU(4)-module S
obtained by forgetting the complex structure on 4 or 4, that is the complexification of S is
just S ⊗ C = 4 ⊕ 4. We prefer here the real objects and develop the results with the view
towards the next section. In a later section we also include the R-R fields and use complex
spinors only.

Let us define
Θ+ = ϕΘ + iϕ̂Θ ∈ 4, Θ− = ϕΘ − iϕ̂Θ ∈ 4,
Ξ+ = ϕΞ + iϕ̂Ξ ∈ 4, Ξ− = ϕΞ − iϕ̂Ξ ∈ 4,

As the Riemannian volume element volg induces a complex structure on S and acts on 4 and
4 by multiplication with i and −i respectively, we can specify ϕ̂Θ = Im(Θ) and ϕ̂Ξ = Im(Ξ)
by, e.g.

volg · ϕΘ = volg · 12(Θ+ + Θ−) =
1
2
(iΘ+ − iΘ−) = −ϕ̂Θ.

Since S carries an SU(4)-invariant Riemannian inner product, we can identify S ⊗ S with
Λ∗T 6∗ through fierzing so that (4.11) holds. This yields two forms ϕΘ ⊗ ϕΞ and ϕΘ ⊗ ϕ̂Ξ

which we can interpret as SU(3)×SU(3)-invariant spinors and which we want to decompose
into an even and an odd part. Note that under complexification of this isomorphism, the
components 4 ⊗ 4 and 4 ⊗ 4 get mapped onto odd complex forms, while the off-diagonal
components 4 ⊗ 4 and 4 ⊗ 4 become even since 4 and 4 are dual to each other. Let us
calculate the odd forms

Ξ+ ⊗Θ+ = (ϕΞ ⊗ ϕΘ − ϕ̂Ξ ⊗ ϕ̂Θ) + i (ϕΞ ⊗ ϕ̂Θ + ϕ̂Ξ ⊗ ϕΘ) ,
Ξ− ⊗Θ− = (ϕΞ ⊗ ϕΘ − ϕ̂Ξ ⊗ ϕ̂Θ)− i (ϕΞ ⊗ Θ̂Ξ + ϕ̂Ξ ⊗ ϕΘ) ,

where we see the properties

Ξ+ ⊗Θ+ = Ξ− ⊗Θ− ,
Re(Ξ+ ⊗Θ+) = Re(Ξ− ⊗Θ−) ,
Im(Ξ+ ⊗Θ+) = − Im(Ξ− ⊗Θ−) .
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Evaluating the even forms

Ξ+ ⊗Θ− = (ϕΞ ⊗ ϕΘ + ϕ̂Ξ ⊗ ϕ̂Θ) + i (−ϕΞ ⊗ ϕ̂Θ + ϕ̂Ξ ⊗ ϕΘ) ,
Ξ− ⊗Θ+ = (ϕΞ ⊗ ϕΘ + ϕ̂Ξ ⊗ ϕ̂Θ)− i (−ϕΞ ⊗ ϕ̂Θ + ϕ̂Ξ ⊗ ϕΘ) ,

we obtain the properties

Ξ+ ⊗Θ− = Ξ− ⊗ Ξ+ ,
Re(Ξ+ ⊗Θ−) = Re(Ξ− ⊗Θ+) ,
Im(Ξ+ ⊗Θ−) = − Im(Ξ− ⊗Θ+) .

Furthermore, applying these properties to e.g. ϕΞ ⊗ ϕΘ = (Ξ+ + Ξ−)⊗ (Θ+ + Θ−)/4 we get

(ϕΞ ⊗ ϕΘ)ev = ((Ξ+ + Ξ−)⊗ (Θ+ + Θ−))ev/4 ,
= (Ξ+ ⊗Θ− + Ξ− ⊗Θ+)/4 ,
= (Ξ+ ⊗Θ− + Ξ+ ⊗Θ−)/4 ,
= 1

2 Re(Ξ+ ⊗Θ−) ,

and obtain moreover

τ0 = (ϕΞ ⊗ ϕΘ)ev = (ϕ̂Ξ ⊗ ϕ̂Θ)ev = 1
2 Re(Ξ+ ⊗Θ−) ,

τ̂0 = (ϕ̂Ξ ⊗ ϕΘ)ev = −(ϕΞ ⊗ ϕ̂Θ)ev = 1
2 Im(Ξ+ ⊗Θ−) ,

υ0 = (ϕ̂Ξ ⊗ ϕ̂Θ)od = −(ϕΞ ⊗ ϕΘ)od = −1
2 Re(Ξ+ ⊗Θ+) ,

υ̂0 = (ϕΞ ⊗ ϕ̂Θ)od = (ϕ̂Ξ ⊗ ϕΘ)od = 1
2 Im(Ξ+ ⊗Θ+) ,

where we defined the four real fundamental SU(3) × SU(3)-forms τ0, τ̂0, υ and υ̂.

To see how these forms relate to each other, we note that in dimension 6 the �g,b-operator
respects the parity of the forms and satisfies �2

g,b = −Id, that is �g,b induces a complex
structure on Λ∗T ∗. We then have

�g,bτb = τ̂b, �g,bυb = υ̂b ,

where τb = eb ∧ τ0 etc.. We can write

1
2
Ξ+ ⊗Θ− = τ0 + i�g,0τ0 , (4.33)

and
1
2
Ξ+ ⊗Θ+ = −υ0 + i�g,0υ0 . (4.34)

As in section 4.3 we can compute a normal form description which we can express in terms
of the underlying SU(2) = SU(3)+ ∩ SU(3)−-invariants if the unit spinors Ξ+ and Θ+ are
linearly independent. Using again the complexified isomorphism SC ⊗ SC ∼= Λ∗T 6∗C and
decomposing Θ+ = c1Ξ+ + c2Ξ⊥

+ with two complex scalars c1, c2 ∈ C we find

Ξ+ ⊗Θ+ = iZ̄ ∧ (c1Ω + c2e
iω1) (4.35)

and
Ξ+ ⊗Θ− = eiα∧β ∧ (c̄1eiω1 + c̄2Ω) (4.36)
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where expressed in a suitable local orthonormal basis e1, . . . , e6 we have the two real 1-forms
α = e5, β = e6, the complex 1-form Z = e5 + ie6, the self-dual 2-forms ω1 = e12 + e34,
ω2 = e13 − e24, ω3 = e14 + e23 and the complex symplectic form Ω = ω2 − iω3. The normal
forms of Ξ− ⊗Θ+ and Ξ− ⊗Θ− are obtained by complex conjugation in Λ∗T 6∗C.

Let us relate the above normal forms to the special case of a classical SU(3)-structure on a
6-manifold which is equivalent to identify the spinors, η = Θ+ = Ξ+, i.e. c1 = 1 and c2 = 0.
The normal forms (4.35) and (4.36) condense to

η ⊗ η = iZ̄ ∧ Ω = ψ− + i ψ+ = iΩ3,0 , (4.37)

and
η ⊗ η = ei(α∧β+ω1) = eiω (4.38)

in the language of [24] and accordingly

υ0 = −1
2ψ− , υ̂0 = 1

2ψ+ ,

τ0 = 1
2 (1− ω2

2 ) , τ̂0 = 1
2 (ω − ω3

6 ) .
(4.39)

Finally we wish to state the supersymmetry equations (4.32) in terms of the SU(3)×SU(3)-
invariant forms τ0, τ̂0, υ and υ̂. The real version of (4.32) is given by

∇LCX ϕΞ/Θ ±
1
4
X H · ϕΞ/Θ = 0, (dφ± 1

2
H) · ϕΞ/Θ = 0

and
∇LCX ϕ̂Ξ/Θ ±

1
4
X H · ϕ̂Ξ/Θ = 0, (dφ± 1

2
H) · ϕ̂Ξ/Θ = 0.

The same computation as in the generalised G2-case shows that this is equivalent to

dHe
−φτ0 = dHe

−φτ̂0 = 0 ,
dHe

−φυ0 = dHe
−φυ̂0 = 0,

(4.40)

that is
dHe

−φΞ+ ⊗Θ+ = 0, dHe
−φΞ− ⊗Θ+ = 0.

If H is globally exact, that is H = db, we can write these equations more succinctly as

de−φτb = de−φ�g,bτb = 0 ,
de−φυb = de−φ�g,bυb = 0.

(4.41)

4.6 Dimension 6 vs. 7

The inclusion SU(3) ⊂ G2 allows one to pass from an SU(3)-structure in dim = 6 to a
G2-structure in dim = 7. In the same vein, the inclusion SU(3) × SU(3) ⊂ G2 ×G2 relates
generalised SU(3)- to generalised G2-structures. In this section we want to render this link
explicit in both the spinorial and the form picture of a generalised structure. We first discuss
the algebraic setup before we turn to integrability issues.

To start with, assume that we are given a generalised G2-structure (T, g, b, η±, φ) over the 7-
dimensional vector space T 7 = T together with a preferred unit vector α. We want to induce
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a generalised SU(3)-structure on T 6 = T̃ defined by T = T̃ ⊕Rα. Since α ·α = −1, the choice
of such a vector induces a complex structure on the irreducible Spin(7)-module 8 which is
compatible with the spin-invariant Riemannian inner product. Hence the complexification of
8 is

8⊗ C = ∆1,0 ⊕∆0,1,

where
∆1,0/0,1 = {η ∓ iα · η | η ∈ ∆}.

The choice of α also induces a reduction from SO(7) to SO(6) which is covered by Spin(6) =
SU(4), and as an SU(4)-module we have ∆1,0 = 4 and ∆0,1 = 4. We define

ψ± = η± − iα · η±
and let g̃ = g| �T and b̃ = α (α ∧ b). Then a generalised SU(3)-structure over T̃ is given by

(T̃ , g̃, b̃, ψ±, φ). Moreover, we get a (possibly zero) 1-form β = α b ∈ Λ1T̃ ∗. It is clear that
we can reverse this construction by defining a metric g = g̃ + α ⊗ α, b = b̃ + α ∧ β and two
spinors η± ∈ 8 through η± = Re(ψ±).

To see what happens in the form picture, we start with the special G2 ×G2-invariant form

ρ0 = (η+ ⊗ η−)ev = f0 + α ∧ f1,

where f0 ∈ ΛevT̃ ∗ and f1 ∈ ΛodT̃ ∗. It follows from (4.11) that

α ∧ (η+ ⊗ η−)ev,od =
1
2
(α · η+ ⊗ η− ∓ η+ ⊗ α · η−)od,ev

α (η+ ⊗ η−)ev,od =
1
2
(−α · η+ ⊗ η− ∓ η+ ⊗ α · η−)od,ev.

Therefore the forms f0 and f1 can be expressed by

f0 = α (α ∧ ρ0) =
1
2
(η+ ⊗ η− + α · η+ ⊗ α · η−)ev

and
f1 = α ρ0 = −1

2
(α · η+ ⊗ η− + η+ ⊗ α · η−)od.

Using the spinors ψ± as defined above we find

ψ+ ⊗ ψ− = (η+ ⊗ η− − α · η+ ⊗ α · η−)− i(α · η+ ⊗ η− + η+ ⊗ α · η−)
ψ+ ⊗ ψ− = (η+ ⊗ η− + α · η+ ⊗ α · η−) + i(−α · η+ ⊗ η− + η+ ⊗ α · η−).

Using the knowledge from the previous section, we have

f0 =
1
2

Re(ψ+ ⊗ ψ−) = τ0

and
f1 =

1
2

Im(ψ+ ⊗ ψ−) = υ̂0.
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In the same vein, decomposing �g,0ρ0 = g1 + α ∧ g0 yields

g0 =
1
2

Im(ψ+ ⊗ ψ−) = τ̂0

and
g1 =

1
2

Re(ψ+ ⊗ ψ−) = −υ0.

In presence of a non-trivial B-field b ∈ Λ2T ∗ we write b = b̃ + α ∧ β. Since e
�b+α∧β =

e
�b ∧ (1 + α ∧ β) we obtain for the general case the expressions

ρb = e−φτ
�b
+ α ∧ (e−φυ̂

�b
+ β ∧ e−φτ

�b
) (4.42)

and
�g,bρ = −e−φυ

�b
+ α ∧ (e−φτ̂

�b
− β ∧ e−φυ

�b
). (4.43)

Conversely, if (T, g, b, ρ0, φ) defines a generalised G2-structure and α ∈ T is a unit vector,
then the forms b̃ = α b, τ0 = α (α ∧ ρ0) and υ0 = −α �g,0ρ0 define a generalised
SU(3)-structure (T̃ , g̃, b̃, τ0, υ0, φ) with g̃ = g|T .

To see how the integrability conditions relate to each other over the manifolds M7 = M and
M6 = M̃ , consider a smooth family (g̃(t), b̃(t), τ0(t), υ0(t), φ(t)) of metrics g̃(t), of 2-forms
b̃(t), of even and odd forms τ0(t) and υ0(t) and of scalar functions φ(t) which we assume to
define a generalised SU(3)-structure for any t lying in some open interval I. Moreover, we
consider a curve of 1-forms β(t) ∈ Ω1(M̃). In order to obtain an integrable generalised G2-
structure over M̃ × I defined by (M̃ × I, g, b, ρ0, φ) where g = g̃t⊕dt⊗dt, b = b̃(t)+dt∧β(t),
ρ0 = τ0(t) + dt ∧ υ̂0(t) and φ = φ(t), we need to solve the equations

dρ = 0, d�g,bρ = 0.

We decompose the exterior differential d over M = M̃ × I into

d|Ωev,od · → d|Ωev,od · = d̃|Ωev,od · ±∂t|Ωev,od · ∧dt,

where d̃ is the exterior differential on M̃ . From (4.42) we conclude the first equation to be
equivalent to

dρ = d̃e−φτ
�b
+ dt ∧ (∂te−φτ�b − d̃e−φυ̂�b − d̃(β ∧ e−φτ�b))

so that
d̃e−φτ

�b
= 0, ∂te

−φτ
�b

= d̃e−φυ̂
�b
+ d̃β ∧ e−φτ

�b
. (4.44)

By (4.43) the second equation reads

d�ρ = −d̃e−φτ
�b
+ dt ∧ (−∂te−φυ�b − d̃e−φτ̂�b − d̃(β ∧ e−φυ�b))

and therefore yields

d̃e−φυ
�b

= 0, ∂te
−φυ

�b
= −d̃e−φτ̂

�b
+ d̃β ∧ e−φυ

�b
. (4.45)

If we let β̄(t) =
∫ s
0 β(s)ds we can bring (4.44) and (4.45) into Hamiltonian form, that is the

generalised G2-structure is integrable if and only if

d̃(e−φe�dβ̄ ∧ υ
�b
) = 0 , d̃υ̂ = ∂t(e−φe

�dβ̄ ∧ τ
�b
) ,

d̃(e−φe�dβ̄ ∧ τ
�b
) = 0 , d̃τ̂ = −∂t(e−φe�dβ̄ ∧ υ�b) .

(4.46)
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We illustrate the previous discussion by considering a classical SU(3)-structure defined by
a unit spinor η and taking the generalised SU(3)-structure given by (M6, g, η) with trivial
B-field and vanishing dilaton, i.e. b = 0 and φ = 0. Using the invariant forms given in (4.39)
then the equations (4.46) become the Hitchin flow equations

d̃ψ− = 0 , d̃ψ+ = −∂tω ∧ ω ,
d̃ω ∧ ω = 0 , d̃ω = ∂tψ− ,

which appeared in [24] and go back to [53]. Note that although equations (4.46) are, like
the Hitchin flow equations, in Hamiltonian form we have not shown yet that if the data
(g̃(t), b̃(t), τ0(t), υ0(t), φ(t)) defines a generalised SU(3)-structure at t = t0 and satisfies (4.46),
then it automatically defines a generalised SU(3)-structure for t > t0, as it is the case for
classical SU(3)-structures evolving along the Hitchin flow.

4.7 D-branes and generalised G2-structures

In case D-branes can be described by submanifolds it is well known that these objects must
minimise the energy functional [48, 47] and have to be calibrated. Let us assume to have
a generalised G2-manifold and we ask within this section about calibrated p-dimensional
submanifolds L that are compatible with the underlying G2×G2-structure. In the literature
there is so far nothing known about this problem and we sketch here an idea of how calibrated
submanifolds L can may be characterised. The idea we develop is perfectly general and can
also be applied to e.g. 6-manifolds.

A concept that is applicable in various dimensions is based on the gluing operator R given
in (3.109) and (3.113). Previously, we used it in dimension six to describe A- and B-branes.
Let us now focus on R once more and start by setting F = 0. In adapted coordinates,

R =
(
r
−rt
)
, where r =

(
1N

−1D

)
. (4.47)

We denoted the identity matrices for the Neumann- and Dirichlet boundary conditions by
1N and 1D.

It is important to remember that the properties of the gluing operator R are 2-fold. First
of all it singles out the generalised tangent bundle of the p-dimensional submanifold L by
RΨ = Ψ, i.e. we have p Neumann directions that defines the brane. Secondly, the condition
RΨ = Ψ carries more information. We denoted R : T ⊕ T ∗ �→ T ⊕ T ∗ but actually there is
also the isomorphism, see (3.108), that maps C± → C∓. Thus, if we respect the ordering,
R : C+⊕C− → C−⊕C+. This tells us in case of a vanishing field strength F that two elements
X+,X− ∈ T coming from X±±gX± ∈ C± are equal on the brane. If F �= 0 we can put all the
gluing information about F in an operator R|L living on the brane, R|L = (g+F )−1(g−F )|L,
and acting on T only, R|LX+|L → X−|L. This is precisely the general object given in (3.108).
Strictly speaking, if we have a non-vanishing F we only have to think in the T -picture about
substituting in r the identity matrix 1N by R|L.

For a classical G2-structure we know that the defining 3-form ϕ is a calibration i.e. the
restriction of ϕ to the 3-dimensional submanifold is the volume form [49]. Similar arguments
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hold for ∗ϕ and the corresponding 4-dimensional submanifolds. Equivalently, we can char-
acterise p-dimensional submanifolds by using the spinor picture. Let ξp be a p-form on a
p-dimensional submanifold and ψ ∈ 8 be a G2-spinor. The p-submanifolds, compatible with
the classical G2-structure satisfy the algebraic spinor equation

ξp · ψ = ψ . (4.48)

Let us understand this equation from a G2-representation point of view. The existence of the
G2-structure decomposes the spin bundle i.e. 8→ 1⊕7 and also the bundle of exterior forms
decompose into G2-invariant spaces, e.g. Λ3 = Λ3

1 ⊕ Λ3
7 ⊕ Λ3

27, where the subscripts denote
the dimensions of the irreducible G2-representations. Let us analyse the constraint (4.48) in
case of ξ3 where we use the identity given in (2.13).

ψ = ξ3 · ψ ,
= ξabcγabcψ ,
= ξabc

(
iϕabc + ψabcdγ

d
)
ψ .

(4.49)

It is not hard to see that the constraint forces ξ3 in Λ3
7 ⊕ Λ3

27 to vanish. In other words
(4.48) only accepts the singlet. Furthermore the length of the singlet, ξ3 ∈ Λ3

1, is forced to
one which is the calibration condition. By the same arguments we can consider all p-forms
ξp. And since we saw that the form must have a singlet part a G2-manifold can only have
submanifolds L of dimension 0,3,4 and 7.

We now want to consider submanifolds L inside 7-manifolds admitting a generalised G2-
structure. Also in this case we first focus on 3-dimensional submanifolds where in general
p-dimensional manifolds can be analysed similarly. The generalised G2-structure form is
ρev/od and we choose two 3-forms ξ3± = X± ∧ Y± ∧ Z±. One can think about e.g X± as a
dualised vector that origins from X± ∓ gX± ∈ C±. The strategy we follow is to act in a
convenient way via Clifford multiplication on ρev/od and rewrite this as an action on the two
linearly independent spinors η+ and η−. We achieve this by using the isomorphism (4.11)
and (4.10) and define the operator G,

G∓ ≡ (X+ · Y+ · Z+ · ⊗̂ 1)∓ (1 ⊗̂X− · Y− · Z−·) . (4.50)

This operator realises that we act with ξ3 via Clifford multiplication in C+ and C−. Further-
more, we apply this action to ρev/od = (η+ ⊗ η−)ev/od,

G∓ • ρev/od = ((X+ · Y+ · Z+ · ⊗̂ 1)∓ (1 ⊗̂X− · Y− · Z−·)) • (η+ ⊗ η−)ev/od ,

= (X+ · Y+ · Z+ · η+ ⊗ η− ∓ η+ ⊗±(X− · Y− · Z− · η−))od/ev .
(4.51)

We first note that this results in a parity switch of the forms and the participating 3-forms
ξ3± only act on the appropriate spinors η±. This means that we seperated the action of the
C+ and C− objects ξ3+ and ξ3−. But since we have a generalised G2-manifold we do have two
calibration forms ϕ± and the corresponding identities

γabcη± = iϕ+abcη± + ψ+abcdγ
dη±.

Also here we assume that the parts of ξ3± in Λ3±7⊕Λ3±27 vanishes that is similar to the classical
G2 case. Note, we now do not assume that the singlet of ξ has norm one and thus do not
assume to have a calibrated 3-submanifold according to ϕ± analogous to the formula (4.49).
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We apply the above identities by suppressing the imaginary unit i, take the just made as-
sumptions into account and conclude

G∓ • ρev/od = (ϕ+(X+, Y+, Z+) · η+ ⊗ η− − η+ ⊗ ϕ+(X−, Y−, Z−)η−)ev/od ,

= (ϕ+(X+, Y+, Z+)− ϕ−(X−, Y−, Z−)) · (η+ ⊗ η−)ev/od ,
(4.52)

Since the vectors X±,Y±,Z± are pullbacks to L we want to use the gluing matrix R in the
following. The matrix R does not only project onto a certain p-dimensional subbundle inside
T ⊕ T ∗ it also includes a map C± → C∓ i.e. actually we have R : C+ ⊕ C− → C− ⊕ C+.
Let us apply R to the consideration above where we prefer the R operator in T -picture given
in (3.108) instead of the R operator in the T ⊕ T ∗-picture. The vectors X±,Y±,Z± live on
the p-submanifold L but on this submanifold we can map the vectors (and the 1-forms) from
the C+ bundle to the C− bundle via the R map. I.e. in the tangent bundle we simply have
RX+ = X−|L. We conclude

G∓ • ρev/od = (ϕ+(X+, Y+, Z+)− ϕ−(RX+, RY+, RZ+)) · (η+ ⊗ η−)ev/od ,

= (ϕ+(X+, Y+, Z+)− (R∗ϕ−)(X+, Y+, Z+)) · (η+ ⊗ η−)ev/od ,

= (ϕ+ −R∗ϕ−)(X+, Y+, Z+) · (η+ ⊗ η−)ev/od ,

(4.53)

where R∗ defines the pullback of the gluing operator R on the brane. Demanding

G∓ • ρev/od = 0 (4.54)

yields the following condition:

0 = ϕ+ −R∗ϕ− , on L . (4.55)

We see that the two G2-structure 3-forms ϕ± have to be equal via R∗ on the 3-dimensional
submanifold. This means that if ϕ|L = vol then also R∗ϕ−|L = vol. It becomes now clear
that the operator G∓ applied to the G2-structure forms measures the difference between the
volume that is measured in C+ and the volume that is measured in C−. The condition says
that these two measured volumes must be identical on L.

In adapted coordinates and by having a vanishing F - and B-field we simply have R = I
and we conclude ϕ+ = ϕ− on the submanifold. By having a classical G2-structure, i.e.
ϕ = ϕ+ = ϕ−, the constraint is satisfied in general.

Note, if we start with G± instead of G∓ in (4.50) then we end up with 0 = ϕ+ + R∗ϕ−, on
the submanifold. But the opposite sign can be absorbed in the operator R which just means,
having even F = B = 0, that we interchange the former Neumann conditions with Dirichlet
conditions and thus do not characterise 3-submanifolds but 4-submanifolds.

4.8 Generalised geometries and R-R fields

In this section we consider the supersymmetry variations for type II theories as given in (4.2)
and (4.3) and take also the R-R fields into account. Remember, in case of vanishing R-R
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fields we compactified on a 6- and 7-manifold and found that we could capture all NS-NS
fields, i.e. the metric, the B-field and the dilaton, via generalised SU(3)- and G2-structures.
Even more is true: We found a one-to-one correspondence between the physical data and the
generalised structures. This immediately implies one important fact. By additionally taking
also the R-R fields into account we run into trouble. In the generalised picture there are no
more mathematical degrees of freedom left. Or in other words, the one-to-one correspondence
of generalised structures can only cover the NS-NS fields. This suggests that we have to work
first on the mathematical side to extend the generalised geometries where we have to find
an adequate mathematical describtion for the physical R-R fields. But before we do that
let us go back to physics. First of all we translate the 10d supersymmetry condition for the
dilatino (4.3) into a equivalent one that is called modified dilatino variation. As a next step
we give the explicit compactification on a 6-manifold where we take the R-R fields and also
the 10d Hodge duality into account. Afterwards we fix the mathematics and give the main
results.

4.8.1 The modified dilatino equation

During the last sections we achieved supersymmetry by claiming

0 = δεΨX , 0 = δελ . (4.56)

But since we take now the R-R fields into account both variations include R-R fields. The
aim of this section is to reformulate the variations such that only one includes the R-R fields.

Instead of requiring the above supersymmetry conditions we will discuss in the following the
equivalent couple of equations

0 = δεΨX , 0 =
∑
i

ei · δεΨei − δελ . (4.57)

Since we only modified the dilatino variation of (4.3) we have to calculate the additional term∑
i ei · δεΨei .

We tackle this problem by first noting three identities that we use in the following intensively,

1. X · αk · ψ = (X ∧ αk) · ψ − (X αk) · ψ
2. αk ·X · ψ = (−1)k(X ∧ αk +X αk) · ψ
3. X (αk ∧ β) = (X αk) ∧ β + (−1)kαk ∧ (X β)

where X ∈ T , αk ∈ Λk and ψ ∈ ∆.

Let us kick off our calculation of
∑

i ei · δεΨei by evaluating the two NS-NS terms first,∑
i

ei ·
(
∇ei +

1
4
ei H · P

)
ε = Dε+

1
4

∑
i

(
ei ∧ (ei H)− ei (ei H)

)
· P ε

= (D +
3
4
H P ·)ε (4.58)
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where D denotes the Dirac operator. Next we focus on the R-R part that results in∑
i

ei · F ev/od · ei · Pev/od ε =
∑
i

±ei ·
[
(ei ∧ F ev/od) · Pev/od ε+ (ei F ev/od) · Pev/od ε

]
=
[∑

i

∓ei (ei ∧ F ev/od)±
∑
i

ei ∧ (ei F ev/od)
]
· Pev/od ε .

Making use of the above third identity for the first summand∑
i

∓ei (ei ∧F ev/od) · Pev/od ε =
∑
i

∓(ei ei)∧F ev/od · Pev/od ε± ei ∧ (ei F ev/od) · Pev/od ε

yields, by noting
∑

i ei ei = dim(M1,9) = 10, for the R-R term

1
16
eφ
∑
i

ei · F ev/od · ei · Pev/od ε =
1
16
eφ
(
∓ 10F ev/od ± 2

∑
ev/od

pF p
)
· Pev/od ε

= ∓1
8
eφ
(

5F ev/od −
∑
ev/od

pF p
)
· Pev/od ε .

But this object is precisely the object that also appears in the physical dilatino variation (4.3).
This basically motivates to consider instead of δλ the equation

∑
i ei · δΨei − δλ since it does

not include R-R terms at all,∑
i

ei · δΨei − δλ = (D− dφ ·+1
4
H P ·)ε.

This equation goes in the literature under the name of a modified dilatino variation [40, 72, 41].

In summary, the supersymmetry variations of IIA/B supergravity being in our interest are
given by (4.57) and can be written as

0 =
(
∇X +

1
4
X H · P

)
ε+

1
16
eφF ev/od ·X · Pev/od ε , (4.59)

0 = (D− dφ ·+1
4
H P ·)ε , (4.60)

where X ∈ TM1,9. To find a solution to (4.59) and (4.60), we assume the space M1,9 to be
R1,3 ×M6 or R1,2 ×M7. This specific assumption is called compactification.

4.8.2 Compactification on M6

As a next step we compactify type IIB on M1,9 = R1,3 ×M6 where we suppress the IIA
case which is analogous. For a compactification on M1,9 = R1,2×M7 the tools can be found
in [61] where we drop the explicit compactification but give a few comments later on.

We choose 10d local coordinates XM (M = 0, . . . , 9) and label the external coordinates by
Xµ (µ = 0, . . . , 3) whereas the internal coordinates are denoted by Xa (a = 1, . . . , 6). Let the
10d Gamma matrix ΓM be given by

ΓM =
{
γµ ⊗ I : µ = 0, . . . , 3
γ5 ⊗ γa : a = 1, . . . , 6
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where
γ5 = i vol4 · , γ7 = −i vol6 · , (4.61)

and therefore Γ11 = vol10 · = γ5 ⊗ γ7. Note also (γ5)2 = I.

In type IIB the supersymmetry vector ε = (ε1, ε2) is chiral. In other words, the two spinors
ε1/2 are defined in ∆+M1,9 , i.e. Γ11ε1/2 = ε1/2. Since we are interested in a minimal super-
symmetric vacuum background we choose the splitting to be

ε1 = ζ+ ⊗Θ+ + ζ− ⊗Θ− , (4.62)
ε2 = ζ+ ⊗ Ξ+ + ζ− ⊗ Ξ− , (4.63)

where ζ± ∈ ∆±R1,3 and ζ− = ζ+. For the internal spinors we have Θ±,Ξ± ∈ ∆±M6 and e.g.
Θ− = Θ+.

Let us attack the 10d R-R part by introducing two sets of internal R-R fields F1 and F2 which
we combine to preserve 4d Poincar invariance,

F (p) = vol4 ∧ F (p−4)
1 + F

(p)
2 . (4.64)

Since we additionally have to satisfy the 10d hodge duality constraint (4.1) one can rephrase
it in 6d by imposing

F ev1 = �F ev2 , F̂ ev1 = −�F̂ ev2 ,

F od1 = −�F od2 , F̂ od1 = −�F̂ od2 .
(4.65)

We are now in a position where we do the explicit compactification on M1,9 = R1,3 ×M6.
Let us start with the gravitino variation (4.59) and focus on the external part first. Since we
define the H-field and the dilaton, only on the internal space the R-R part remains. E.g. we
find for R-R 1-form term

F 1 · Γµ · P1 ε = (γ5 ⊗ F 1
2 )(γµ ⊗ I)iσ2ε = (−γµγ5 ⊗ F 1

2 )iσ2ε

and the other terms follow analogously. By applying ε1 we obtain

γµζ+ ⊗
(
F 1

2 − F 3
2 + F 5

2 + i(F 1
1 − F 3

1 + F 5
1 )
)
Θ+ (4.66)

γµζ− ⊗
(
− F 1

2 + F 3
2 − F 5

2 + i(F 1
1 − F 3

1 + F 5
1 )
)
Θ− (4.67)

= −γµζ+ ⊗
(
F̂ od2 + iF̂ od1

)
Θ+ + γµζ− ⊗

(
F̂ od2 − iF̂ od1

)
Θ−. (4.68)

We can implement the 6d hodge duality constraints (4.65) and get

−γµζ+ ⊗
(
F̂ od2 − i�F̂ od2

)
Θ+ + γµζ− ⊗

(
F̂ od2 + i�F̂ od2

)
Θ−.

By considering also ε2 and claiming δεΨµ = 0 (4.57) we can summarise the external algebraic
equations to be

0 = (F od2 − i�F od2 ) · Ξ+ , 0 = (F od2 + i�F od2 ) · Ξ− ,
0 = (F̂ od2 − i�F̂ od2 ) ·Θ+, 0 = (F̂ od2 + i�F̂ od2 )Θ−.

(4.69)
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These equations do not necessarily imply constraints onto the R-R fields. But here it is the
case what we prove for, for instance, the first equation. We show this by using the identity

�α · ψ± = α̂ · vol ·ψ± = ±iα̂ · ψ± (4.70)

where α ∈ Λ•, ψ± ∈ ∆±. We use this to obtain e.g.

(F od2 − i�F od2 ) · Ξ+ = (F od2 − i � F̂ od2 ) · Ξ+ = (F od2 − iF od2 · vol ·) · Ξ+ = 2F od2 · Ξ+.

The external equations (4.69) including the ∧-operator can be considered similarly but
we note that this operator acts complex anti-linearly. Therefore, all above external equa-
tions (4.69) constrain the R-R fields. They can be summarised to

0 = F od2 · Ξ±, 0 = F̂ od2 ·Θ±.

Next we investigate the internal part of the gravitino variation. For the NS-NS part we find(
I⊗∇a +

1
4
Habcγ

bc(−σ3)
)
ε ,

where we conclude for ε1

ζ+ ⊗
(
∇a − 1

4
Habcγ

bc
)
Θ+ + ζ− ⊗

(
∇a − 1

4
Habcγ

bc
)
Θ− . (4.71)

and for ε2
ζ+ ⊗

(
∇a +

1
4
Habcγ

bc
)
Ξ+ + ζ− ⊗

(
∇a +

1
4
Habcγ

bc
)
Ξ− . (4.72)

The internal R-R part can be discussed similarly to the external part. We note that vol· =
−iγ5 and, for instance, the R-R 5-form term is given by

F 5ΓaP5 ε = (−iγ5 ⊗ F 1
1 + I⊗ F 5

2 )(ε2,−ε1) .

By gathering all R-R terms together we get

ζ+ ⊗
(
F od2 − iF od1

)
γaΞ+ + ζ− ⊗

(
F od2 + iF od1

)
γaΞ− (4.73)

= ζ+ ⊗
(
F od2 + i�F od2

)
γaΞ+ + ζ− ⊗

(
F od2 − i�F od2

)
γaΞ− (4.74)

where we also denote the ε1 part

ζ+ ⊗
(
F̂ od2 + i�F̂ od2

)
γaΘ+ + ζ− ⊗

(
F̂ od2 − i�F̂ od2

)
γaΘ−.

We are now in the position to put the the NS-NS and R-R terms of the internal gravitino
variation together. Note, for example we have to combine the NS-NS term including ε1 and
the R-R terms including ε2. This is because Pev/od switches the spinors in ε. Moreover, we
use the identity (4.70) and follow the same arguments as in the external case to finally write,

0 = ∇XΘ+ − 1
4 (X H) ·Θ+ + eφ

8 F
od
2 ·X · Ξ+,

0 = ∇XΞ+ + 1
4 (X H) · Ξ+ + eφ

8 F̂
od
2 ·X ·Θ+,

(4.75)
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where X ∈ TM6.

Next we turn to the modified dilatino equation (4.60). Remember that our external space is
R1,3, i.e. the external Dirac operator is given by

∑3
i=0 ei · ∇ei = 0. Since also the dilaton

and H is only defined on the internal space we only get an internal contribution. Thus, the
modified dilatino variation can be written by

0 = (D− dφ− 1
4H) ·Θ+, 0 = (D− dφ+ 1

4H) · Ξ+. (4.76)

Let us summarise the type IIB results. We note the external algebraic constraints

(i) 0 = F od2 · Ξ±, 0 = F̂ od2 ·Θ±,

the gravitino equations

(ii)
0 = ∇XΘ+ − 1

4(X H) ·Θ+ + eφ

8 F
od
2 ·X · Ξ+

0 = ∇XΞ+ + 1
4 (X H) · Ξ+ + eφ

8 F̂
od
2 ·X ·Θ+

(4.77)

and the modified dilatino equations

(iii) 0 = (D− dφ− 1
4H) ·Θ+, 0 = (D− dφ+ 1

4H) · Ξ+ (4.78)

where X ∈ TM6. Since we suppressed the explicit compactification for type IIA we never-
theless give the reader the results. We write the external equations by

0 = (F ev2 + i�F ev2 ) ·Θ+ , 0 = (F ev2 − i�F ev2 ) ·Θ− ,
0 = (F̂ ev2 − i�F̂ ev2 ) · Ξ−, 0 = (F̂ ev2 + i�F̂ ev2 )Ξ+.

(4.79)

For the gravitino variation we obtain

0 = ∇XΘ+ + 1
4(X H) ·Θ+ + eφ

16 (F̂ ev2 + i�F̂ ev2 ) ·X · Ξ−
0 = ∇XΞ+ − 1

4 (X H)Ξ+ − eφ

16 (F ev2 + i�F ev2 ) ·X ·Θ−
(4.80)

and for the modified dilatino variation we find

0 = (D− dφ+ 1
4H) ·Θ+, 0 = (D− dφ− 1

4H) · Ξ+, (4.81)

where X ∈ TM6. But here a problem arises since the first and second external equations
vanish on its own by using (4.70)

(F ev2 + i�F ev2 ) ·Θ+ = (F ev2 + i � F̂ ev2 ) ·Θ+ = (F ev2 + iF ev2 · vol ·) ·Θ+ = 0.

This means that the algebraic equation is satisfied trivially and does not constrain the R-R
field. Even worse, applying the same argument for the second gravitino equation the R-R
terms even drop out completely unlike the IIB case. Since we assume that the supersymmetry
variations by which we started with are basically true we strongly believe that there is only
a sign mismatch for IIA that should be put in the right order.

Let us spend a view words about the compactification on M1,9 = R1,2×M7 that we already
mentioned earlier. First of all the internal and also the external spinors are not chiral since
we are in odd dimensions. Analogous to the 6d case we start with a similar definition as
in (4.64). But here, for IIA and IIB, we have to introduce an even and an odd set of internal
RR-fields F1/2. By using (4.1) the two sets F1/2 are identified as in the 6d case via the
7-dimensional �-operator.
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4.8.3 The constrained variational principle and R-R fields

Let us go to the basics of generalised structures. In [53] Hitchin motivated that certain
classical geometrical structures can be understood as a critical point of a variational principle.
Let us roughly review how this variational principle works. Given an n-dimensional manifold
and an exterior form ρ that is invariant under a certain holonomy group that fits to n, e.g.
ϕ for G2 and n = 7. Let us assume that ρ is closed and thus fixes a certain cohomology
class [ρ]. He further showed that one can construct out of ρ the volume element ρ ∧ ρ̂. The
form ρ̂ depends on ρ and is also invariant of the stabeliser of ρ. For example, ϕ̂ = �ϕ, where
the Hodge operator �g depends on the metric. With this volume element Hitchin sets up a
variational problem where he assumes that ρ is stable, i.e. it lies in an oper orbit so that it
can be varied over this open orbit. Since we want to vary the functional we want to vary
with respect to [ρ], i.e. ρ within a fixed class. We remember that [ρ] defines the affine space
ρfix + da where we denote the fixed element by ρfix and parametrise the affine space by
the exact forms da. Hitchin showed that by varying the functional with respect to [ρ] the
relevant term in the volume element is da. Using Stokes theorem we get a critical point of
the functional if also the form ρ̂ is closed. Therefore, a certain geometric structure is given if
it is a critical point, that is, the structure forms satisfy

dρ = 0, dρ̂ = 0.

For instance, for a classical G2 holonomy manifold we have the two forms ρ = �ϕ and ρ̂ = ϕ
that satisfy d � ϕ = dϕ = 0. It is essential that the metric is not fixed beforehand. This
implies that the variational principle is purely topological. Note that it is also possible to
start with [ρ̂] and the critical point is then given by condition dρ = 0. This property is useful
with a view towards including the R-R fields later on.

This concept translates into the generalised picture as shown by Hitchin [55] and Witt [84, 83].
Furthermore the setup can be twisted by a closed 3-form H which results in the fact that
we have to substitute the usual differential operator d by the twisted differential operator
dH = d+H as already defined.

More subtle, here a couple of questions arises immediately: Are the critical points isolated?
Can the set of critical points be described by a manifold? This results in the question: What
is the moduli space of critical points? Hitchin realised that the critical points cannot be
isolated. Let us assume to have a critical point. We can always act by the diffeomorphism
group and B-field transformations to move to other critical points in the neighbourhood.
Thus, he divided these two transformation out and found that transverse to this action the
critical points are non-degenerate. He uses this to define local charts from the moduli space
of critical points to an oben set in cohomology.

Let us mention that the even and odd structure forms given by Ξ+ ⊗ Θ+, Ξ+ ⊗ Θ− and
(η+ ⊗ η−)ev/od for the already discussed generalised SU(3)- and G2-structure can define
critical points. It is important to note that ρ̂ is given by �ρ. This gives us a full picture of
the generalised structures,

• Let us have a topological generalised structure (M,g, ρ,�ρ). The variational principle
characterise the integrability condition of the underlying generalised structure by

dHρ = 0, dH�ρ = 0,
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i.e. ρ and �ρ are dH-closed.

• The structure forms ρ and �ρ are spinors for the T ⊕T ∗-bundle and represent the form
picture. In this form picture the most general structure form ρ can be fully characterised
by

ρ = e−φ eb ∧ ρ0,

where ρ0 denotes the normal form, φ the dilaton and b the B-field.

• The form picture and the integrability condition can be translated one-to-one into a
spinor picture. There we have two real or complex spinors and also the metric g,
the dilaton φ and the B-field. The integrability condition is given by a Killing spinor
equation and a dilaton equation.

We are now prepared to implement the R-R fields. As we already mentioned on the mathe-
matical side there are no degrees of freedom left to bring the R-R fields into play. We therefore
need a new mathematical object that is able to give the R-R fields a conceptual mathemati-
cal meaning. We only review the basic ideas and give the results. The precise mathematical
proofs can be found in [62]. We bring the R-R fields into the game by formulating a con-
strained variational principle. Let us assume to start with the closed real structure form e.g.
[ρev/od] as e.g. given for a generalised SU(3)-structure. The constrained is given by a real
even form F ev/od and the critical points are in principle given by d�τ ev/od = F od/ev. Observe
that �ρev/od is even/odd. Note, that it is only important to have an even/odd form as the
constraint and this implies that we can even substitute for F ev/od the form −�F od/ev . We
do this, as we will see later on, to make contact with the notation for the R-R fields in the
democratic formulation [13]. This result motivates

Definition 4.8.1. Let d� = � d�.
(i) Let (M6, ρev/od) be a generalised SU(3)-structure. The form ρev/od is real, H a 3-form
and F ∈ Ω∗(M6). The structure is said to be integrable with respect to H and F if and only
if

dHρ
ev/od = 0, d

�ρ

H ρev/od = F od/ev . (4.82)

Equivalently, we can write more succinctly by using a complex notation

dHτ = −i�τ F̃ ,

where τ = ρev − i�ρρ
ev ⊕ ρod + i�ρρ

od.

(ii) Let (M7, ρev,od) be a generalised G2-structure, H a 3-form and F ev,od ∈ Ωev,od(M). Then
the structure is said to be integrable with respect to H and F od,ev if and only if

dHρ = F od,ev,

where ρ = ρev/od ⊕ �ρev/odρ•. An integrable structure is said to be of even or odd type ac-
cording to the parity of F ev/od.

(iii) An integrable generalised G-structure is parallel if F = 0.
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We spend a view words about the notation for the 6d case. The object d� = � d� is a kind
of co-differential. Let us rewrite the second constraint of the generalised SU(3)-structure by

d�
Hρ

ev/od = � dH�ρev/od = F od/ev ,

where we use in 6d the property �2 = −1 to obtain

dH� ρev/od = −�F od/ev.

By using now the integrability conditions, i.e. dHρev/od = 0 and dH� ρev/od = −�F od/ev, we
can easily verify the complex notation by using τ . We further use the ∼-operator to write
F̃ = F ev − F od.
Since we skip afterwards the proof of the main result of this section we nevertheless point to
one ingredient that is important. We first go back to the first chapter where we compactified
11d supergravity on a 7-manifold. Remember, this theory comes with a 4-form flux F . Since
we reduced the structure group to e.g. G2 it was useful to decompose the internal F ∈ Λ4M7

into G2-irreducible parts F → F1 + F7 + F27 (2.32).

Let us adopt this idea to our forms F ev/od within the generalised geometries. In general
we now have to decompose F ev/od into G ×G-irreducible parts, where here G = SU(3), G2.
In the following we are interested to translate the integrability condition into the classical
spinor picture. This means that each of the two spinors (real or complex) reduce the structure
group. We will call these associated groups by Gl and Gr where G = SU(3), G2. It can be
shown that this observation is useful and yields in the end

F = F1 + F3l + F3r + F9, for SU(3)× SU(3),
F = F1 + F7l + F7r + F49, for G2 ×G2.

where F ∈ ∆+ ⊗ ∆− can be even or odd. The subscripts here denote the representations
with respect to the group G×G and not only to representations of Gl or Gr.

Let us now come to the case of a generalised SU(3)-structure where we have the spinors
Ξ+,Θ+ and their complex conjugates Ξ−,Θ−. By means of them we characterise

F = λFΞ+ ⊗Θ− + αF · Ξ− ⊗Θ− + Ξ+ ⊗ βF ·Θ+ + ΓF (Ξ− ⊗Θ+)

where λ ∈ C is the singlet 1. The vectors αF ∈ C3 and βF ∈ C3 determine 3l and 3r. The
sesquilinear form ΓF ∈ C3 ⊗ C3 describes the representation 9.

The similar arguments can be applied for F in case of a underlying generalised G2-structure.
We denote the two spinors by η+ and η− and use the objects λ ∈ 1, αF ∈ 7l, βF ∈ 7r and
ΓF ∈ 49 to write

F = λFη+ ⊗ η− + αF · η+ ⊗ η− + η+ ⊗ βF · η− + ΓF (η+ ⊗ η−).

We now come to the main results of this section

Theorem 4.8.1. A generalised SU(3)–structure (M6, τ) is integrable with respect to the
forms H0 and F , i.e.

dH0τ = −i�τ F̃ ,
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if and only if the following conditions hold, where τ = e−φ([Ξ+ ⊗ Θ−]b ⊕ [Ξ+ ⊗ Θ+]b) and
H = db/2 +H0.

(i) The algebraic constraints: Seen as an endomorphism ∆ → ∆, F|∆a⊗∆b
preserves the

decomposition of ∆a,b into irreducible SU(3)l,r–modules, i.e. for all combinations a, b ∈
{+,−},

(F|∆a⊗∆b
)3r,l = 0.

Moreover, the 1– and 1̂–components of F ev,od and F̂ ev,od couple via

F ev ·Θ± = F od ·Θ∓, F̂ ev · Ξ∓ = −F̂ od · Ξ∓.

(ii) The generalised Killing equations

∇XΞ+ + 1
4(X�H) · Ξ+ − eφF ev−b ·X ·Θ− + eφF od−b ·X ·Θ+ = 0

∇XΘ+ − 1
4(X�H) ·Θ+ + eφF̂ ev−b ·X · Ξ− + eφF̂ od−b ·X · Ξ+ = 0,

(iii) The dilatino equations

DΞ+ − dφ · Ξ+ + 1
4H · Ξ+ + eφF ev−b ·Θ− + eφF od−b ·Θ+ = 0

DΘ+ − dφ ·Θ+ − 1
4H ·Θ+ − eφF̂ ev−b · Ξ− + eφF̂ od−b · Ξ+ = 0.

Theorem 4.8.2. A generalised G2-structure (M7, ρod,ev) is integrable with respect to the
forms H0 and F od,ev, i.e.

dH0ρ
od,ev = F ev,od

if and only if the following conditions hold, where ρev,od = e−φ[η+ ⊗ η−]ev,odb , H = db/2 +H0

and F = F ev,od + �F ev,od.

(i) The algebraic constraints: Seen as an endomorphism ∆ → ∆, F preserves the decompo-
sition of ∆ into irreducible G2l,r–modules, i.e. F7l,r = 0.

(ii) The generalised Killing equations

∇Xη+ + 1
4 (X�H) · η+ ± eφF−b ·X · η− = 0

∇Xη− − 1
4 (X�H) · η− − eφF̂−b ·X · η+ = 0.

(iii) The dilatino equations

Dη+ − dφ · η+ + 1
4H · η+ − eφF · η− = 0

Dη− − dφ · η+ − 1
4H · η+ ± eφF̂ · η+ = 0.

Let us compare the results we got on one hand from compactifying II theories on 6-manifolds
and on the other hand from mathematics only. Here we assume that the IIA case can
be rectified. We first observe that we have to interchange F̂ ev/od and F ev/od that is just
a conventional definition. The different factors in front of the R-R fields in the gravitino
equations can be simply adjusted. One can absorb the factor 1/8 appearing in the physical
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gravitino equations into the R-R fields. The comparison of the modified dilatino equations
tell us that physics force the R-R terms in this equation to vanish. But this constraint is
exactly the external constraint we got from physics. Thus, both constraints are equivalent
and only one remains.

The external constraint implies that the singlets of the R-R fields have to vanish. In addition,
we have the constraint (F|∆a⊗∆b

)3r,l = 0 that leads to the fact that only the F9 part of the
R-R fields is present.

A compactification on 7-manifolds can be done analogously. Similar constraints can be found
by following the same arguments as given in remark 1, i.e. the vacuum background of the
internal 7-fold in presence of R-R fields can be characterised by a generalised G2-structure.

If the generalised structure is parallel, then the Theorems 4.8.1 and 4.8.2 assert the spinors
(Ξ+,Θ+) and (η+, η−) to be parallel with respect to the lift of Hitchin’s connections in
Theorem 2 of [57]. From this point of view, F is most naturally interpreted as the “torsion”
of these connections. As in the classical case, we obtain obstructions to integrability in the
form of algebraic constraints on the “torsion” components.

4.8.4 T-duality

In this section we discuss the device of T-duality and take the NS-NS as well as the R-R fields
into account. We study this within the generalised structures where the result for the NS-NS
fields was already given in [21, 84]. Remember, we already learned in the previous chapter:
T-duality is mirror symmetry. We investigated this problem in using generalised structures
and T-dualised in the T 3-fibre. Here we study T-duality in the S1-fibre.

In general, the well known T-duality rules are denoted in the literature by component notation
of the involved NS-NS and R-R fields (see e.g. [64]). Let us assume to have a manifold that
is S1-fibred and we thus decompose all components of the involved fields with respect to
this fibration. In principle, the T-duality rules show how to map the fields to the T-dual
side that is also S1-fibred space. With this notation it is simple to see that the NS-NS fields
transform only into each other and so behave the R-R fields. By investigating e.g. the NS-NS
rules further the underlying concept of the transformation was not fully understood. The
geometrical idea was first realised by [15] where the authors now focus on the integrability
conditions of the involved objects. Let us roughly summarise the result. The authors in [15]
showed that the assumption of the S1-fibration of the manifold lead to two first Chern classes.
The first is given by the S1-fibration of the manifold itself, i.e. the curvature, and the other
first Chern class is encoded in the NS-NS 3-form field strength H. Since both Chern classes
are integral the classes only specify integer numbers that represent the different topologies.
It turned out that T-duality interchange these two numbers.

Let us now discuss what T-duality means in a more abstract geometrical picture. This duality
assumes that the manifold Mn of interest is special in the way that it can be described by
a, in general, non-trivial S1-fibration over an (n − 1)-dimensional base manifold Mn−1 that
is compact. We further assume that there exists an S1-invariant generalised G-structure
(Mn, ρ). The non-triviality of the S1-fibration can be captured by the connection form θ and
we denote by Xθ the corresponding dual vertical vector field, i.e. Xθ θ = 1. The curvature of
the S1-bundle is given by ω. Moreover, assume to be given a closed, integral and S1-invariant
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3-form H such that the 2-form ωt defined by ωt = X H is also integral. Integrality of ωt

ensures the existence of another principal S1-bundle, the T-dual of the former defined by the
choice of a connection form θt with dθt = −ωt. Writing H = θ ∧ ωt +H where H ∈ Ω3(M),
we define the T-dual of H by

Ht = −θt ∧ ω +H.
Since the G × G-invariant spinor ρ is also S1-invariant, we can decompose ρ into forms ρ0,
ρ1 living on the base manifold Mn−1, ρ = θ ∧ ρ0 + ρ1. The T-dual of ρ is then defined to be

ρt = θt ∧ ρ1 + ρ0,

so T-duality is enacted by multiplication with the element Xθ ⊕ θ on ρ followed by the
substitution θ → θt. Let us note that the object Xθ ⊕ θ is an element of Pin(n, n), which
covers O(n, n) like Spin(n, n) covers SO(n, n).

The crucial feature of the just described operation is that it preserves the Spin(n, n)-orbit
structure on Λev,odTMn and in particular, ρt is also G × G–invariant. Consequently, �ρtρt

and (�ρρ)t are both G×G-invariant spinors which are therefore equal up to a universal scalar
which we henceforth ignore. In the same vein, we decompose an S1-invariant form of mixed
degree as we do in the following for the R-R fields F .

In summary, the generalised structure form ρ and the R-R-form F together with the T-dual
partners can be denoted by

ρ = θ ∧ ρ0 + ρ1 , ρt = θt ∧ ρ1 + ρ0 ,

and
F = θ ∧ F0 + F1 , F t = θt ∧ F1 + F0 .

We now formulate with the definitions above that the integrability condition can be T-dualised

Proposition 4.8.3. Let ρ and F be S1-invariant. Then

dHρ = F ⇐⇒ dHtρt = −F t.

We find it useful to provide a proof for the reader.

Proof: We start by considering the left hand side first

dHρ = dH(θ ∧ ρ0 + ρ1)
= dθ ∧ ρ0 − θ ∧ dρ0 + dρ1 + θ ∧ ωt ∧ ρ1 +H ∧ θ ∧ ρ0 +H ∧ ρ1

= θ ∧ (−dρ0 + ωt ∧ ρ1 −H ∧ ρ0) + ω ∧ ρ0 + dρ1 +H ∧ ρ1

= θ ∧ F0 + F1

that yields

F0 = −dρ0 + ωt ∧ ρ1 −H ∧ ρ0 and F1 = ω ∧ ρ0 + dρ1 +H∧ ρ1 . (4.83)

On the T-dual side we obtain

dHtρt = dHt(θt ∧ ρ1 + ρ0)
= dθt ∧ ρ1 − θt ∧ dρ1 + dρ0 − θt ∧ ω ∧ ρ0 +H ∧ θt ∧ ρ1 +H ∧ ρ0

= θt ∧ (−dρ1 − ω ∧ ρ0 −H ∧ ρ1)− ωt ∧ ρ1 + dρ0 +H ∧ ρ0

= −θt ∧ F1 − F0

where we used (4.83). �
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Corollary 4.8.4. If ρ defines an integrable SU(3)–structure with respect to H and F , then
so does ρt with respect to Ht and −F t. Similarly, if ρev,od defines an integrable G2-structure
of odd or even type with respect to H and F od,ev, then ρod,ev t defines an integrable structure
of even or odd type with respect to Ht and −F od,ev t.
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