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Abstract

In this thesis the decoherence properties, gate performance, control of solid-state quantum
bits (qubits), and novel design proposals for solid-state qubits analogous to quantum optics
are investigated. The qubits are realized as superconducting nanocircuits or quantum dot
systems. The thesis elucidates both very appealing basic questions, like the generation and
detection of deeply nonclassical states of the electromagnetic field, i.e., single photon Fock
states, in the solid-state, but also presents a broad range of different strategies to improve
the scalability and decoherence properties of solid-state qubit setups.

Solid-state qubits are promising candidates for the realization of quantum computing.
They are potentially scalable to a quantum processor, the building block of a quantum
computer. However, decoherence due to the many degrees of freedom of a solid-state envi-
ronment usually considerably impairs their behavior. Thus, in order to develop a working
quantum computer it is of crucial importance to analyze the different decoherence sources
that affect the qubit. Additionally, most solid-state qubits are pseudo-spin qubits, where
the qubit levels are separated from the other energy levels in the much larger complete
system Hilbert space by an energy gap. The population of these leakage levels of the system
Hilbert space is particularly important for quantum computation.

We are specifically interested to identify the most important decoherence mechanisms
in these solid-state qubit systems to then propose possible improvements in the design
and operation of experimentally available devices, which are operated at low cryogenic
temperatures 7' ~ 10 mK smaller than the qubit energy scale, which is typically E,/h =~ 10
GHz, corresponding to 7 ~ 0.5 K. Yet, temperature effects play an important role in the
solid-state qubits.

The decoherence of a single qubit has already been intensely studied. In two coupled
qubits, entanglement can be realized and a far more involved decoherence model appears.
From the detailed analysis of multiple qubits, possible improvements in the design and
operation of experimentally available devices are proposed. The decoherence of systems
of coupled qubits is studied from the master equation that describes the time evolution
of the qubit system including the effects of the coupling to the hostile environment. The
symmetries of the qubit-environment coupling help to understand decoherence in these
systems, and the admissible degree of symmetry breaking in experiments is determined.

Once the main decoherence sources and their effects are understood, it is important
to develop strategies to minimize or even avoid the impact of decoherence. Here, a De-
coherence Free Subspace (DFS) encoding for coupled superconducting qubits is presented



XVvi Abstract

and its performance with respect to different error sources is evaluated. A DFS encoding
for capacitively coupled flux qubits is given, which completely decouples the logical qubits
from the noise originating in the coupling elements and collective flux noise. This is due to
the encoding and a restricted phase space of the logical qubits. Optimum control theory
is used as a tool to find pulse shapes that drastically reduce the overall time needed for a
quantum gate operation and dramatically improve the performance of the quantum gate
operation at given decoherence. Further on, no harmful leakage to other states of the
pseudo-spin system is introduced.

Finally, quantum optics concepts will be applied to qubits in the solid-state domain.
A scheme to generate and detect single microwave photons is presented. This analysis is
complemented by the calculation of the properties of a flux qubit inside a single mode
microstrip resonator, i.e. a cavity. This setup also effectively decouples the qubit from the
most important environmental sources of relaxation. The readout of the flux qubit can be
performed directly via a quantum non-demolition (QND) measurement of the cavity field.



Outline

The content of this thesis is divided into three major parts. In the first part of the thesis, a
basic general introduction to quantum computation, the different realizations of solid-state
qubits, and the description of the electromagnetic field in quantum optics is given. The
second, main part, of the thesis is divided into several studies,

(i
(i

) Decoherence and gate performance of systems of multiple solid-state qubits,
)
(iii) DFS encoding of superconducting qubits,
)
)

Design of coupling elements for superconducting flux qubits,
(iv) Optimum control of superconducting qubits,

Generation, decoherence and tomography of maximally entangled Einstein-Podolsky-
Rosen pairs in superconducting charge qubits

(v

(v) Circuit-QED for superconducting qubits and the deterministic generation and detec-
tion of single microwave photons in superconducting solid-state circuits.

For each of these studies, an introduction is given and then the corresponding preprint
or paper is attached at the end of the chapter. In the third part, the appendix, several
calculations and technical details are summarized that have been of relevance to this thesis.
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General Introduction






Chapter 1

Introduction

Denn es ist ausgezeichneter Menschen unwiirdig, gleich Sklaven Stunden zu

verlieren mit Berechnungen. i
Gottfried Wilhelm von Leibniz, 1865

Basic calculating machines for the processing of information have already been en-
visoned by Leonardo da Vinci. But the first sophisticated mechanical calculators were
invented in the 17th century, the Pascaline by Blaise Pascal, and the Stepped Reckoner by
Leibniz. These machines, as well as current computers, store classical information. The
classical information is normally desired to be in exactly one out of two well defined states
“off” and “on” or “0” and “1”. This classical information for example can be stored and
processed by classical transistors, which are present in modern microprocessors.

The processing of the classical information itself is controlled by other information,
which is named a program. For these computations, Turing provided the important basic
model [1], which was motivated by results of Godel [2]. The so-called Turing machine,
which is a mathematical model for a computing machine, has been shown to be able to
solve any mathematical problem that can be solved by a certain given algorithm. Later
von Neumann and others [3, 4] developed the notion that the computer programs are also
only data or information, and that they can be manipulated by machines under the control
of other programs. The quantum Turing machine was first introduced by Benioff [5] and
further developed by Deutsch [6] and Yao [7]. A modern definition with connection to
algorithmic complexity is given in Ref. [8]. Also a quantum circuit model of computations
was introduced [9] and it was shown [7] that the quantum circuit model of computation is
equivalent to the quantum Turing machine model.

Underlining the close connection between computer science and physics, Feynman pro-
posed [10] already in 1982 to use a computer that not only obeys the laws of quantum
mechanics but also operates in a regime where quantum effects are relevant and most im-
portantly, the information is fundamentally of quantum nature. His idea was to efficiently
simulate the behaviour of quantum systems with the help of another quantum system, i.e.,

L“For it is unworthy of excellent men to lose hours like slaves in the labour of calculation [which would
safely be relegated to anyone else if machines were used].”
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a computer working in the quantum regime. However, quantum information processing has
gained great interest only recently because of the promise of up to an exponential speedup
for certain algorithmic problems, e.g., the factorization of large numbers into primes [11],
which is of central importance for secure communication. Moreover, several other quan-
tum algorithms with moderate speedups were discovered [12, 13] and in recent years the
completely new and interdisciplinary field of quantum information processing emerged.

In comparison to classical digital technology, quantum information is stored in arbitrary
superpositions of quantum mechanical states described by a wavefunction |¢)) = a |0)+3|1)
(|0) and |1) are orthonormal basis states of a Hilbert space on C), which roughly speaking
resembles an analog instrument, in contrast to the classical digital information. It is
this superposition of computational states that finally leads to an exponential speedup
for certain algorithms on a quantum computer. The basic building blocks of a quantum
computer are quantum bits, i.e., (pseudo) spin-1/2 systems. However, also three level
systems, the so-called qutrits [14], or d-dimensional bi-partite systems named qudits [14—
17], or even continuous variable multi-level systems named qunats [18, 19] could be used
for efficient quantum computation and quantum cryptography [20].

Operations on a quantum computer are described by unitary operations that can be
defined via the time evolution of a Hamiltonian [ (t) describing the system evolution, U=
Texpl(i ft’; H(t') dt'), where T is the time ordering operatOIE . Ideally, quantum computation
is reversible because of the unitary time evolution and thus it is, just like ideal classical
reversible computation, also non-dissipative. However, in reality the coherent unitary
time evolution that is required for quantum information processing is always impeded by
decoherence. (Also in the classical case of reversible computation dissipation can not be
avoided because of Godel frictionﬁ) The decoherence, i.e. energy relaxation and dephasing,
is due to the coupling of the quantum bit (qubit) to the surrounding environmental degrees
of freedom.

Solid-state quantum computers, such as semiconductor quantum dot (QD) or supercon-
ducting systems are potentially scalable. However, especially the solid-state environment
posseses many environmental degrees of freedom and usually solid-state systems suffer from
strong decoherence. Decoherence can be caused by many different mechanisms depending
on the material properties and the design of the experiment. It is one of the main goals
of this work to analyze the decoherence properties of different solid-state qubit systems
and develop design requirements which allow to reduce the amount of decoherence in these
systems. This research is at the core of condensed matter physics and includes the detailed
investigation of many body phenomena such as correlation effects, e.g., in quantum dot
qubit structures and superconducting qubits.

2The time ordering operator reorders the times of an arbitrary product of operators,
T(On(ty)---O1(t1)) = Oy, (i) Os, (t;,), where the causal order of the relabled times on the rhs is
such that ¢;, >¢;, , >--->t; [21,22].

3Godel friction refers to the dissipation of energy due to the logical incompleteness of formal mathe-
matical systems given by Godel’s incompleteness theorem, see Refs. [2, 23].
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1.1 Quantum computation

Quantum bits (qubits) can be described by spin-1/2 systems, the state of a qubit is gen-
erally expressed as a linear combination, ¢.e., a superposition of states

) =a0) +5[1),  |af*+ |6 =1, (1.1)

with a, 3 € C. The states |0) and |1) are taken as eigenstates of, e.g., the Pauli spin
operator ¢, and are called computational basis.

For a system of more than one qubit, another important ingredient of quantum compu-
tation emerges, entangled qubit states. Entangled states are states that are not separable
into single qubit states [¢1),...,|¢n), such that |[¢) = [11) @ - -+ @ |[¢n). These two ba-
sic properties of quantum bits, to be able to perform computations on a superposition of
states and the notion of entanglemenﬂZ are the basic properties leading to the speed-up of
quantum computers.

Quantum information science emerged after the discovery of algorithms that provide
a substantial (up to exponential) speed-up in comparison with classical computers. The
most important one (both regarding the funding perspectives and the speed-up that is
gained) of these algorithms is certainly Peter Shor’s factoring algorithm [11] based on the
quantum Fourier transform. Other examples are Grover’s database search algorithm [13],
the Deutsch-Josza algorithm [12] or the quantum random walk algorithm [25-27], which
has been shown to hit exponentially faster than the classical random walk. Another well
established application is quantum cryptography [28-30].

1.2 Hardware requirements

Quantum algorithms can only be performed reliably on quantum hardware that provides
a well defined and scalable Hilbert space with control over the system evolution in the
Hilbert space, the ability to prepare a well defined initial state, a sufficiently low amount
of decoherence, and state-specific quantum measurements [31, 32]. These requirements
provide a good starting point for analyzing possible qubit candidates, however, these re-
quirements are not very strict. For example, in nuclear magnetic resonance (NMR) the
initialization of the nuclear spins in a well defined state is not possible. Moreover, there
is no local experimental control or read-out available for individual spins. On the other
hand, the NMR quantum computers show very long decoherence times and the ensemble of
spins is easily manipulated. This illustrates that the very good decoherence properties of
the NMR quantum computer make workarounds possible, i.e., they can (roughly speaking)
compensate for the lack of compliance with another criteria. This is reflected in the great
experimental success of NMR quantum computation [33, 34|, even performing advanced
algorithms on a small number of qubits [35].

From the analysis of Quantum Error Correction Codes (QECCs) [36] a threshold for the
fidelity, which is the deviation of the propagator of a physical system from the ideal unitary

4There are several different measures to characterize entanglement, an introduction is given in Ref. [24].
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propagator U, can be derived. Originally, it has been found that for quantum operations
to be useful for quantum information processing, the fidelity has to meet the threshold
criterion to be closer to unity than F = 1 —107* [37], which corresponds to approximately
10* operations within the decoherence time. More recent work for stabilizer codes [38]
gives F = 1 — 10~3 and when huge resource requirements are acceptable in the specific
qubit setup, the criterion can be softened even more to up to approximately F = 1072
139]. Also, fault tolerant quantum error correcting codes in non Markovian environments
have been investigated lately [40, 41]. For an excellent summary and review of this topic
see Ref. [42].

1.3 Qubit realizations

Currently, many efforts to realize quantum bits in different ways are pursued. Among
the most important ones are optical photon quantum computers, optical cavity quantum
electrodynamics (cQED), ion traps, nuclear magnetic resonance and solid-state implemen-
tations. These proposals for a quantum computer will be briefly reviewed here.

In an optical quantum computer, the qubits are defined by the photon being located in
different modes of the light field or by the polarization of the photons. Beamsplitters and
phase shifters give the arbitrary transforms and nonlinear media can be used for two-qubit
operations. These two-qubit operations are also hard to realize. Initial preparation of
single photon states is usually done by strongly attenuating a coherent light source. The
noise properties of the photon quantum computer are good because the photons hardly
interact. It is also possible to realize an optical photon quantum computer based only
on linear optics and photodectors, however, this approach has the disadvantage that the
quantum gates are postselected, which introduces significant computational overhead [43].

The optical cQED [44, 45] quantum computer is very closely related to the photon
quantum computer. In typical cQED experiments, neutral atoms fall through the cavity
and interact during a finite cavity transit time with the light field inside the cavity. An
important difference to the photon quantum computer is that the two-qubit operations,
i.e., the interactions between the individual photons, are mediated by the atoms that are
passing through an optical cavity. This way, the light field, i.e., the photons, interact
with the atom. The theme of cQED will be discussed again in chapter |5, where a basic
introduction to quantum optics and circuit-QED (cQED in the solid-state domain) is given,
and in chapter [12 for microwave photons travelling inside a superconducting cavity. Also
optical photons have been used to demonstrate a decoherence free subspace (DFS) encoding
experimentally. Specifically, two logical qubits that were encoded into four physical qubits
(photons) have been encoded into a DFS immune to collective dephasing. Then, the
photons were transmitted through a noisy (artifical noise) channel and the DFS encoding
has been shown to work [46]. Decoherence free subspaces will be discussed in more detail
in chapter 9 of this thesis.

From the point of view of scalabilty and stability, ion trap quantum computers are very
promising. Because these two ingredients are at the heart of quantum computation the ion
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Figure 1.1: Schematic of a linear ion trap
setup. The ion trap itself consists of elon-
gated electrodes. The trap shown here is
loaded with three ions which can be con-
fined with electromagnetic fields to the

Figure 1.2: Picture of the ion trap that
was used for the quantum teleportation
experiment realized by the Blatt group
ﬂ4—§. Picture courtesy of the Blatt group,
University of Innsbruck, Austria.

center of the trap, aligned along the trap
axis. Picture courtesy of the Blatt group,
University of Innsbruck, Austria.

trap quantum computers are believed to be among the most promising qubit candidates
47]. A typical ion trap quantum computer consists of a linear Paul trap where a chain of
several ions is trapped. The qubit itself is defined by the nuclear spin state or the phonon
modes of an atom. By applying an oscillating electromagnetic field to two of the four
electrodes of the trap, a confining potential for the atoms is generated, and laser cooling
techniques prepare the atoms in their vibrational ground states. The individual atoms can
then be manipulated by laser pulses and the measurement is performed by photodetectors,
i.€., by laser induced fluorescence techniques that provide a selective detection of the state
of the ions with an readout efficiency close to unity. The interaction between different
atoms is mediated by a common phonon mode. Quantum gate operations with a single
ion ﬂ?g] and also two-ion, and four-ion entangled states have been demonstrated M, %gi]
One problem of the ion trap quantum computer is that for strong ion-ion coupling the ions
are spatially close, which makes it hard to address individual ions. However, this problem
can be overcome by moving the atoms inside the trap ﬁ@] or by dark state schemes ﬁ@]
Especially scalable ion trap designs, the so-called segmented multizone traps, have been
fabricated with multiple trapping regions where the ions are shuttled between the different
parts of the trap @, 54]. Recently, also ion trap devices on a chip have been developed ﬁ%]
Pictures 1.1 and [1.2 show a sketch of a typical ion trap setup for quantum computation
and a picture of an experimental setup that was used to perform successful teleportation
of the quantum state of an ion. A potential drawback of the ion trap quantum computer
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Figure 1.3: Sketch of a setup for an optical cavity Figure 1.4: Molecule used
QED experiment taken from the excellent review in for the implementation of
Ref. [44]. In this experiment, the atoms are released the five qubit NMR quan-
from a magneto-optical trap and then fall into a Fabry- tum computer presented in
Perot type of cavity. Inside the cavity, the atom and Ref. [56].

the light field interact [45].

is that the preparation of the ions in their motional ground states is hard to achieve [14].
The interaction of single atoms with a light field (or even single photons) inside a resonator
is also the subject of the aforementioned cQED experiments [44, 45].

Although the experimental realizations of Nuclear Magnetic Resonance (NMR) quan-
tum computers are the most advanced in terms of the manipulation and number of qubits,
which can be manipulated nowadays, and also for the problem of state purification a
promising solution has been found [57], the major problem of scalability remains. The evo-
lution from the initial proposal [58] for an NMR quantum computer to the factorization of
the number 15, see Ref. [35], was very fast, however, the major drawback is the scalability
to many qubits which means that very complex molecules have to be synthesized [56]. One
problem with the macroscopic samples for NMR quantum computation is that even when
very large magnetic fields are applied, the net polarization of the spins in the sample is
very small (around one part in a million) [59]. Thus, the initialization of the NMR qubits
in a well defined state is impossible. But, it has been shown that it is not necessary to
perform quantum computation with true pure states. Rather, a pseudo-pure state scheme
has been first proposed in Ref. [57]. The idea of the pseudo-pure states is that quantum
computation can be performed on a state described by the density matrix

p=(1—-e1/N+el0) (0], (1.2)
which will evolve (if the quantum computer is otherwise error-free) to a state

pl=01-e1/N+el) ] (1.3)
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after the computation, where the initial state |0) should, after an ideal quantum gate
operation, end up in the desired state |¢). For a regular quantum computer prepared
in this mixed state, a random answer would be expected with probability 1 — ¢ and the
correct answer would be expected to be returned with probability €. Now, it is important
to note that it is possible to determine the desired answer by repeating the computation
or to use an ensemble of qubits and take the ensemble averaged result. The ensemble
averaged result is exactly what is used for NMR quantum computation [59]. After initial
criticism on the pseudo-pure state method, the method has been clarified in Refs. [60, 61].
However, even the requirement to obtain pseudo-pure states for quantum computation
is not strict for all algorithms, e.g., it is not necessary for computing the Deutsch-Josza
algorithm [62]. Moreover, NMR quantum computation on highly polarized spin states (not
thermal states) is another possibility. In NMR quantum computation, the molecules are
subjected to strong magnetic fields which are used to manipulate the state of the spins.
These controls allow to steer the unitary evolution of the quantum system.

In the following chapters, this thesis will focus on solid-state implementations of quan-
tum computers. These are especially scalable and relatively easily fabricated with present
day technology. However, due to the requirement that thermal effects should be small
in order to observe quantum behaviour, they need to be cooled down to cryogenic tem-
peratures. The main challenge is to understand and describe decoherence in these qubit
systems. The outline of the next chapters of this introduction is as follows.

First, in chapter 2, a detailed introduction to solid-state quantum computation, focused
on superconducting and semiconductor qubits, will be given. Then the important deco-
herence mechanisms, i.e., energy relaxation and dephasing, for QD and superconducting
flux and charge qubits will be described and methods to analyze decoherence in solid-state
qubits will be introduced. Namely, a general introduction to decoherence is given in chapter
4, including the treatment of decoherence and the derivation of a set of master equations
in the so-called Bloch-Redfield formalism.
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Chapter 2

Solid-state quantum computation

Already in the preceding chapter it could be recognized that there exists a rich diversity of
different proposals for devices that could potentially be used as qubits, the basic building
blocks of a much larger quantum computer. However, also in the solid-state domain qubits
can be realized in many different ways. Lately, great progress has been made with qubits
in superconducting structures. These are based on the charge degree of freedom or on the
phase that is associated with the Cooper pair condensates in two pieces of superconductor
separated by a Josephson junction. The Josephson tunnel junction is the main element of
the superconducting qubits that are discussed in this thesis; it will be discussed in detail
in the next section. The manipulation and readout of these superconducting qubits will
be presented in more detail in the next chapter.

Among other promising realizations of solid-state qubits are semiconductor qubits,
and especially Quantum Dot (QD) qubits. Quantum dots are devices in which a two-
dimensional electron gas (2DEG), located around 100 nm below the surface, is confined
via gate electrodes. Also for these devices, several different designs have been proposed,
including using the spin of an electron [63, 64] and charge states in double quantum dots.

QDs are easily tunable via gate voltages, which can be applied to gate electrodes on
top of the substrate. This tunability makes the QDs ideal devices for experimental studies.
Because the QDs have small spatial dimensions, they exhibit a quantized level structure.
A quantum dot is mainly characterized by its charging energy, which can be fabricated to
be very large (up to 1.5 meV ~ 15 K as presented in Ref. [65]), therefore these charging
effects are of relevance below temperatures 7'~ 15 K. QDs show charge quantization and
(taking into account possible orbital excitations) energy quantization, and are thus also
called artificial atoms.

Most generally, it is necessary in order to be able to observe quantum mechanical effects
in small devices that the temperature scale is well below the typical energies of the two-
state system. This holds for the solid-state devices investigated here. However, note that
in these solid-state devices the overall energy scales (typically on the order of 10 GHz,
which corresponds to T~ 1/2 K) are much smaller compared to, e.g., experiments in the
optical domain.



12 2. Solid-state quantum computation

2.1 Superconducting qubits

Superconducting qubits fulfill the basic criteria for quantum bits. They can in principle
be scaled up to systems of many qubits, can be controlled by electromagnetic fields, can
be read-out via standard detectors, e.g., voltmeters and oscilloscopes, and due to the
superconducting gap, quasiparticle excitations are suppressed. On the other hand, because
of to the many degrees of freedom in a solid-state system, decoherence remains a major
issue and needs to be carefully investigated and avoided as much as possible. Here, we
focus on qubits in superconducting structures that are based on the charge or phase (flux)
degree of freedom associated with the Cooper pair condensate on a superconducting island
or in a superconducting loop.

The Josephson junction is a tunnel barrier between two superconductors, i.e., an insu-
lating layer in between two superconductors. The basic schematic of a Josephson junction
is depicted in Fig. 2.1. Tt shows two superconductors (electrodes) which are interrupted
by a piece of insulating material, e.g., an oxide barrier. The Josephson junction itself is
usually labelled by a cross (x). B.D. Josephson derived [66, 67] that even if no voltage
bias is applied, a finite supercurrent will flow between the two superconductors,

I, = I.sin Ag, (2.1)

where A¢ is the phase difference between the Cooper-pair wavefunctions in the two su-
perconducting electrodes. The critical current . is the maximum supercurrent that the
junction can support; it also defines the so-called Josephson energy F; = hl./2e. For a
finite voltage bias of the junction, Josephson found that an alternating supercurrent of
amplitude I. and frequency v = 2eV/h will develop according to

d(A¢)

== = 2V (2.2)

In the presence of a gauge potential and in terms of the gauge invariant phase difference

v =A¢ — (2m/Dy) /A - ds, (2.3)
with the flux quantum ®, = h/2e. The free energy which is stored in the junction is [68]
F = const. — Ejcos~. (2.4)

An easy description of the properties of the Josephson junction is given by the so-called
resistively and capacitively shunted junction (RCSJ) model. In this model one takes into
account the capacitance of the Josephson junction and a normal resistance of the junction,
which is associated with the resistive dissipative quasiparticle channel. The capacitance
depends quantitatively on the geometry of the Josephson tunnel junction between the two
superconducting electrodes. Thus, a Josephson junction in principle behaves like a parallel
circuit of the junction itself and a capacitance C' and resistor R. The resistance R will be
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electrode 1 . electrode 2

Figure 2.1: Part a) is the Figure 2.2: Potential energy (2.6) of a Josephson junc-
equivalent circuit of the re- tion modeled via the RCSJ model for different magni-
sistively and capacitively tudes of the junction bias current I. This potential is
shunted junction model. the so-called tilted-washboard potential. The dynamics
Part b) is a sketch of a ba- of the phase in the potential is indicated in the plot.

sic Josephson junction.

close to the normal state resistance R,, for superconductor-insulator-superconductor (S-1-S)
junctions near 7., whereas at lower temperatures it rises approximately as R,exp(A/kgT)
for V< 2A/e, where A is the superconductor energy gap. For different kinds of junctions,
like superconductor-normal conductor-superconductor (S-N-S) junctions the behaviour is
generally different [68]. In the RCSJ model it is possible to derive a differential equation
for the time dependence of the phase, namely

d*y 1 dy I
Yy = L 2.
a2 "o RCa M T Iy (2:5)

where w, = (2el.9/hC )12 is the plasma frequency of the junction and the damping parame-
ter 8, = (w,RC')? was first introduced by Stewart and McCumber [69, 70]. The differential
equation (2.5) is written down in analogy to the equation of motion of a particle with
mass (h/2¢)?C moving along the axis given by the gauge invariant phase difference 7 in
an effective potential given by

ve) = —cosy — i% (2.6)

EJ [CO

which is shown in Fig. 2.2. Moreover, the particle is subjected to a drag force given by a
term proportional to the effective velocity of the particle and the energy scale is given by
E; = (h/2e)l, [68]. The Josephson tunnel junctions as described here, are used as basic
building blocks of both superconducting charge and flux qubits.
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Figure 2.3: Schematic circuit di-  Figure 2.4: Plot of the wavefunctions and eigener-

agram of the rf-=SQUID. The rf-  gies that correspond to the lowest three eigenstates

SQUID is formed by a supercon- of the rf SQUID Hamiltonian obtained from nu-

ducting loop that is interrupted by  merical simulations. The wavefunctions |¢;) and

a single Josephson tunnel junction  |i¢5) are localized in one of the wells and the wave-

[72]. function associated with |¢3) is delocalized over the
double-well. The parameters for the simulations
are I.o = 1.4 pA, C; =0.13 pF, L = 270 pH, and
®, = 0.4990, see also chapter [12.

One of the simplest qubit designs in these structures are single junction phase qubits
(where the qubit degree of freedom is the superconducting phase across a Josephson tunnel
junction [71]) and the so-called rf-SQUID, which we will investigate in more detail in section
2.1.2. The rf-SQUID is a superconducting ring that is interrupted by a single Josephson
tunnel junction, see Fig. 2.3.

In the following section, these different types of superconducting qubits will be intro-
duced.

2.1.1 Superconducting charge qubits

In Figure[2.5 a charge qubit circuit is schematically drawn in two different variations, where
the setup presented in the right picture allows for the manipulation of the tunnel matrix
element of the qubit via an external flux. In the superconducting charge qubit the qubit
states |0) and |1) are defined as zero or one additional Cooper pair on a superconducting
island. The superconducting island itself is connected via Josephson tunnel junctions to
a superconducting reservoir, see the illustrations in Fig. 2.5. Compared to other types of
Josephson junctions that have been investigated and used in practice [72, 73], the tunnel
junction leads to a small damping term. The Hamiltonian of a superconducting charge
qubit can be derived by writing down the total energy of the system, as the sum of the
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Figure 2.5: Schematic view of a charge qubit. The left circuit shows a superconducting
island connected to a gate electrode via a capacitor C; and a reservoir via a Josephson
junction. The right circuit is a superconducting charge qubit in a superconducting quantum
interference device (SQUID) geometry. Here, the single junction of the left circuit is split
into two junctions. By applying an external flux through the SQUID loop, the tunnel
matrix element of the qubit can be tuned [74].

free energy Eqn. (2.4), the work W done by the voltage source, which is connected to the
charge qubit (see Fig. [2.5), and the electrostatic energy U,

(Q+CyVy)? | CoVy(Cs—Cy)

E=F+U-W=—-F A
+ TCSAO T S ey T e, + )

(2.7)

In this system the two conjugate variables are the charge degree of freedom () and the
phase A¢ across the Josephson junction. Here, the last term in Eqn. (2.7) just gives
a constant energy offset (it is independent of )) and can be ignored when deriving the
Hamiltonian of a single charge qubit. The charging energy of the Cooper pair box is defined
as B, = €*/2(C, + C). For low temperatures such that kpT < E. < A, where A is the
energy gap of the superconductor, the excess charge enters the island as Cooper pairs, i.e.,
Q) = 2ne. Therefore, the Hamiltonian can be expressed as

H =4E.(n —n,)* — E;cos7, (2.8)

where n, = —V,C,/2e is the gate charge. This Hamiltonian can be described in either the
charge basis or the phase basis; where the charge and phase are conjugate variables [n, ] =
ih. If the charging energy FE. is larger than the Josephson energy E;, the Hamiltonian (2.8)
is conveniently expressed in the charge basis, where the charge states are characterized
by the number of additional Cooper pairs on the superconducting island. By using the
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relations for the displacement exp(%ivy) |n) = |n £ 1), the Hamiltonian (2.8) reads
Ey
H= 3 (450= ) ol = ) et 1l @) (29)

When the gate voltage V, is manipulated such that n, ~ 1/2 (note that the potential is pe-
riodic in the gate voltage) and at low temperatures the two states |0) and |1) corresponding
to zero or one additional charge on the superconducting island are degenerate. Exactly at
the degneracy point there is an anticrossing of the eigenenergies of the qubit and the level
splitting is given by the Josephson energy term in Eqn. (2.9). Near the degeneracy point,
the Hamiltonian is truncated to two states

H ~ AE(ng|0) (0] + (1 — ny)* [1) (1]) — (1/2)(]0) (1] + [1) {0]). (2.10)

Now, by introducing |1) = (0,1)T and |0) = (1,0)T as basis states and writing down the
Hamiltonian in this basis one obtains

. E
H =2E,(2n, — 1)6. + 2E.(2n% — 2n, + 1)1 + 7"5—:,:, (2.11)

where the Pauli spin matrices in standard representation have been used and 1 denotes
the identity matrix. The second constant term just gives a global energy offset and can be
neglected. In accordance with experiments with natural spin-1/2 systems, where electro-
magnetic fields are used to steer the dynamics of the spin, the parameters B, = 4E.(1—2n,)
and B, = Ej; are introduced. In the same way, arbitrary single-qubit operations can be
performed on a superconducting charge qubit with manipulation of B, and possibly B,
by an external gate voltage or (if the charge qubit is fabricated in SQUID geometry) by
an external flux, respectively. When the charge qubit is fabricated in SQUID geometry,
as shown in the right circuit of Fig. (2.5), the tunnel matrix element of the qubit can be
tuned via the externally applied magnetic flux which is threading the SQUID loop. Then,
effectively the parameter B, is replaced by B,(®,) = 2E; cos(n®,/®Pg), where ¢, denotes
the externally applied flux.

2.1.2 Superconducting flux qubits

The so-called superconducting flux qubits [74] are based either on rf-SQUID loops [75] (a
superconducting loop interrupted by a single Josephson junction, cf. Fig. 2.3) or on SQUID
loops with three Josephson junctions [76]. Here, the state of the qubit is defined by clock-
wise or counter-clockwise circulating currents in the SQUID loop. At degeneracy, the qubit
state corresponds to an equal macroscopic superposition of clockwise and counter-clockwise
circulating currents, cf. Fig. 2.8, In this picture, the energetically higher lying states cor-
respond to circulating currents with much smaller current. The first implementation, an
rf-SQUID, is a superconducting ring, which is interrupted by a single Josephson junction.
It has been shown in experiment [75] that superpositions of truly macroscopic currents,
i.e. currents that consist of ~ 10! Cooper pairs, can be formed in the rf-SQUID devices.
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The phase differences across the junctions in a SQUID device and the flux enclosed by
the superconducting loop are related by the fluzoid quantization |77, 78|

0]
nyi:27T(}T+27Tn,n€N. (212)
i 0

For a rf-SQUID loop with only a single Josephson tunnel junction and thus only a single
phase v, the total flux through the loop and the phase can be used equivalently. The
Hamiltonian that describes this system consists of parts describing the different circuit
elements

e The Josephson energy term

The free energy of a Josephson junction is F' = const. — E;cosvy in the presence
of an electromagnetic gauge potential.

o Self-inductance L of the loop

There is also a term due to the self-inductance of the qubit loop, generated by the
screening current in the superconductor. Namely, the total flux equals the sum of
the screening flux and the externally applied flux, & = &, + ®,. Thus, the term in
the Hamiltonian reads

LE 9 (-0,

5 91 = 5T (2.13)

e The charging energy

The charging energy associated with the capacitance of the junction enters the Hamil-
tonian via Q*/2C.

Therefore, the overall Hamiltonian can be expressed as

Q>? (0] (®— CI)J;)Q
H=——-F 2m— - 2.14
20 7 COS 7T(DO + 5T (2.14)

where the last two terms determine the potential energy

% <%;%))2 — B, cos (zwq%)] , (2.15)

where Uy = ®3/(47%L) and B, = E;/Uy. Here, Q = —ihd/0® < & are canonically
conjugate variables [Q, ®] = ih, just like coordinate X and momentum P. (Note that here
the notation from Ref. [79] will be adopted mostly, i.e., X = vVmw/hX, P= 1/vVmhwP
and correspondingly H = hwH )

In Fig. the plot of the potential close to ®¢/2 for different ®, and [ is shown. It
is found that for 3, > 1 a double well structure develops close to a frustration of f = 1/2

U(®) = U,
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Figure 2.6: Plot of the potential energy Eqn. (2.15) of a rf-SQUID. The left plot depicts
the potential for different values of 3, = E; /Uy, i.e., the increase of the barrier height with
increasing Josephson energy F; and the right plot shows the evolution of the asymmetry
between the two wells due to a different external bias flux ®,,.

corresponding to ® = ®(/2. This is because when E; > E¢ then the Josephson energy of
the fully frustrated loop has two equivalent minima that correspond to states with currents
circulating in opposite directions. The tunneling between these minima is given by a sum
over all tunneling paths that connect both classical minima. The tunneling leads to a
splitting A between these two levels, which is given by the charges ¢; (in units of 2¢) that
are induced on the islands [80]

A = Ag|1 + ¥min 4 g2rilatan) o g2rilattan—)| (2.16)

The level splitting A depends strongly on the interference pattern between these different
tunneling paths. Note that when the flux trough the loop is exactly half a flux quantum,
the loop is invariant under flips that change the direction of the current [80]. In general,
for the case when the Josephson energy is much larger than the charging energy, the only
constraint on the potential is that the double degeneracy of the total Josephson energy as
a function of the phases has to hold.

For low temperatures only the lowest state within each well is relevant. In this case
two states [¢p) and |1g) that are localized in the left and the right well are found. The
Hamiltonian can then be truncated into the basis of the two states |¢1) and |¢R)

o WolHL) (WolHWR) \ (e A . R
CR i IS R ) B ST

where € = (e — er)/2 and the constant offset (¢, + £g)/2 has been neglected.

Often, this Hamiltonian is conveniently parametrized by two perpendicular electromag-
netic fields B, (®,) = 4m/6(8, — 1) E;(P./Po—1/2) and B,, which depends on the barrier
height and thus on the Josephson energy E; [74]. The tunneling amplitude term B, can
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Figure 2.7: Effective potential of the rf-
SQUID qubit as a two-state system. Here,
the terms in the Hamiltonian Eqn. (2.18)
are visualized; A is the tunneling ampli-
tude and € is the asymmetry, which can be
tuned by the external flux ®,, between the
two wells.

Figure 2.8: Plot of the eigenenergies of a
two-state system. At the degeneracy point,
e = 0 the splitting between the energy lev-
els is A and the eigenstates are symmetric
and antisymmetric superpositions of the
basis states, i.e., the clockwise/counter-
clockwise rotating currents. Here, we set

A = 0.1 and vary the energy bias e.
This corresponds effectively to changing
the magnetic flux through the SQUID loop
of an rf-SQUID qubit or a flux qubit.

be calculated with the WKB method [76] or the aformentioned summation of different
tunneling paths [80]. Thus, the effective two-state system is expressed in terms of the

Pauli-matrices as

1 1
H = —3B.6. — 3 B.6. (2.18)

Although the system that is investigated here in general is a multi-level system, for
an appropriate parameter regime a two-level system is obtained at low energies. It is
separated by a significant gap from higher excitations. Thus, these kinds of qubits are
called pseudo-spin systems because the system Hamiltonian can be expressed in the same
form as “real” spin-1/2 systems [14].

In Fig. [2.7] the different terms in the two-state approximation of the rf-SQUID are
depicted. The tunneling between the two-wells is determined by the tunneling amplitude
A and the energy bias between the wells is given by €. The energy bias can be tuned by
varying the external flux through the qubit loop.

Although the aforementioned macroscopic superposition of currents has been shown in
this type of rf-SQUID qubits [75], the drawback of qubits based on rf-SQUID devices is
that B; > 1 implies that the product of the critical current of the Josephson junction and
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Figure 2.9: SEM picture of a small
self-inductance three Josephson junction
flux qubit [8j] The superconducting
aluminium loop is interrupted by three
Josephson junctions, with one of the junc-
tions slightly smaller, cf. Fig. [2.10. The
Josephson junctions are fabricated as thin
insulating oxide layers in between the su-
perconducting electrodes.
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Figure 2.10: Schematic circuit diagram
of a superconducting flux qubit. The su-
perconducting islands are interrupted by
three Josephson junctions, where one of
the junctions is a factor a smaller than
the other junctions. In order to form an
effective two-level potential for low tem-
peratures, a =~ 0.7 — 0.8 [76]. The loop is
threaded by the total flux ® and the qubit

states are clockwise or counter-clockwise
rotating currents, cf. Fig.2.8.

its self-inductance is very large. This leads to two major drawbacks

1. Large critical currents require a large junction area; this leads to a large capacitance
and due to the large capacitance quantum fluctuations of the phase and consequently
tunneling between the lowest energy eigenstates, i.e., the qubit states, is suppressed.
Therefore in practice only a narrow parameter range is useful.

2. A large self-inductance of the rf-SQUID can only be achieved in large loops. Thus,
because of the system dimensions the qubit is very susceptible to noise.

Due to these drawbacks that considerably hinder the development of qubits based on
these SQUID devices, Mooij @] and Feigel'man @, @] put forward a proposal to use a
much smaller superconducting loop (smaller self-inductance) with more Josephson junc-
tions embedded into the loop to still be able to design the double-well potential sufficiently.
A picture of this so-called fluz qubit design that is for example used at TU Delft [8], @3)],,
MIT [86, 87], NTT [88] or IPHT Jena [89)] is shown in Fig. 2.9 and an equivalent circuit is
schematically drawn in Fig. 2.10. The flux qubit is a small superconducting SQUID loop
made from aluminium or niobium interrupted by three Josephson tunnel junctions, which
are thin isolating oxide layers in between the superconducting electrodes. The eigenstates
of the qubit are again clockwise and counter-clockwise rotating persistent currents, the
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Figure 2.11: Plot of the potential energy U/E;, Eqn. (2.20), for the 3 Josephson junction
(3jj) qubit in a unit cell of the potential versus the phases. The isolines correspond to
half-integer values of the potential energy (-1.0, 0, 0.5, 1.0, 1.5, 2.0), starting at -1.0 for
the contour in the center of the plot.

difference in flux between these two states is 2I,L = 1073®, for typical qubit parameters
I, ~ 200 nA and L =~ 5 pH ﬂ%] Thus, the two basis states are very close to each other and
the coupling to external decoherence sources can be made small. However, this small dif-
ference between the two basis states translates into a truly macroscopic magnetic moment
on the order of 10* — 10°up [74], where pp is the Bohr magneton.

Important characteristic features of a flux qubit are the small self-inductance of the
superconducting SQUID loop and the fact that several Josephson junctions are used to
form the potential landscape. However, the main ingredient for the appearance of a double
well potential is again the frustration of the qubit loop. Because of the small self-inductance
of the loop, the flux ® through the loop is close to the externally applied flux ® = &, + LI, ~
®,, where L is the self-inductance of the qubit and I, is the screening current, often also
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Figure 2.12: Plot of the potential energy term in Eqn. (2.21) for the 3 Josephson junction
(3jj) qubit. The isolines correspond to the following values of the potential energy, starting
from the bottom of the potential well (1.30, 1.35, 1.40, 1.45, 1.50, 1.55, 1.60). The double-
well potential is chosen slightly asymmetric by setting f = 0.499.

called circulating current. Therefore fluxoid quantization Eqn. (2.12) leads to

P,
¢1 + ¢2 + ¢3 = 277'3 (219)
0
where the ¢;, 1 = 1,...,3 are the gauge invariant phases for a three junction loop. There-

fore, only ¢, and ¢, are the independent dynamical variables. For this three junction loop
the potential energy is given by

U(pr, o) = —Ejcos ¢ — Eycos gy — Eycos(2m®, /g — ¢1 — ¢2), (2.20)

where one of the Josephson junctions has been taken slightly smaller than the other two
junctions, i.e., F; = aF; with a = 0.7 m, a] Note that one of junctions is chosen
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Figure 2.13: Plot of the wavefunctions of the 3jj flux qubit. The left plot depicts the eigen-
wavefunction ¥, of the lowest energy level and the right plot shows the eigen-wavefunction
1o associated with the second energy level in a unit cell. These wavefunctions are obtained
from numerical determination of the eigenenergies and eigenstates of the Hamiltonian for
the 3jj flux qubit, given in Eqn. (2.21). The wavefunctions are calculated for a typical set
of parameters given in Ref. ﬁg] and are seen to agree very well with the solutions from a
tight-binding model presented in the aforementioned work. In more detail, the parameters
used for the numerical calculations are v = 0.02, « = 0.8, E;/Ec ~ 80, L ~ 10 pH, and
Iy ~ 400 nA. Note that the values of the coordinates ¢}, and ¢, are given in a unit cell,
which is discretized on a 40x40 lattice, cf. Fig. [2.12.

slightly smaller in order to suppress interference from different tunneling paths in the
potential ﬁ%, 80, @]

For £, /E; > 0.5 and a frustration close to half a flux quantum a double well potential
is formed, see Fig.[2.11. Then, for low temperatures again only the two lowest states in each
well contribute and the system effectively behaves as a two level system, see Eqn. (2.18).
The full Hamiltonian can be expressed in terms of new coordinates ¢, = (¢1 + ¢2)/2 and

¢m = (¢1 — ¢2)/2, and becomes ﬁ]

- 1P} 1pP?
H= §MI; + §M—Tn + E;(2 4 a — 2cos ¢, cos ¢y, — acos(2nP, /Do + 26,,)), (2.21)

where the conjugate momenta are defined via P; = —ihd/0¢;, the mass terms are M, =
(Po/27)?2C (1 +7) and M,, = (Po/27)*2C (1 +2a:+ ) and v is defined via C, = yC. The
potential is plotted in terms of these new coordinates in Fig. [2.12. In this rotated basis,
the eigenenergies and wavefunctions for the Hamiltonian Eqn. (2.21) can be, e.g., obtained
numerically. Eigenenergies and wavefunctions that were obtained numerically from the
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Hamiltonian are presented in Fig. 2.13|

Experiments with superconducting qubits have been very successful: macroscopic su-
perpositions of states [81,90] and macroscopic quantum coherence [85] have been demon-
strated. Recently, also coupled qubits have been successfully realized [92]. The qubits were
coupled via a direct inductive Ising-type coupling that can not be switched; the qubits were
fabricated in a chain, which to first order leads to nearest neighbour interaction between
the qubits. This type of flux (or current-current) coupling gives a & @Y )—type of cou-
pling in the Hamiltonian. However, flux qubit devices can for example also be coupled
capacitively by connecting one of the superconducting islands of each qubit via a capacitor
to each other, as will be discussed in chapter 9.

This introduction to superconducting qubits has so far only been focused on the most
common charge and flux qubit designs, but of course there exist several other approaches.
Namely, the Saclay group introduced an effective hybrid-design, where the qubit is based on
a superconducting Cooper pair box and can be effectively decoupled from the measurement
circuit during operation of the qubit. This is achieved by operating the qubit either in the
charge or phase regime for manipulation and read-out [93]. In these experiments the qubit
is operated at the “sweet spot” with respect to decoherence and therefore shows a large
number of coherent Rabi oscillations within the decoherence time. Another elaborate read-
out scheme for flux qubit devices has been realized by the Jena group [89]. It is based on
coupling the flux qubit to a tank circuit, i.e., a low frequency resonator. The read-out
is then performed by monitoring the change in the properties of the resonator due to the
qubit, 7.e., in the resonance frequency of the resonator and the amplitude of the response
of the resonator to a high-frequency (HF) signal.

2.2 Semiconductor qubits

Currently, the most important semiconductor qubits are Quantum Dot (QD) or donor
based qubits. The Quantum Dot (QD) qubits are mostly based on either self-assembled
or lateral semiconductor heterostructures (typically GaAs/AlGaAs). The self-assembled
QDs are grown epitaxially on lattice-mismatched crystalline materials. These are for ex-
ample InAs or GaAs on Ge or Si, with a lattice mismatch between around 5-10% [96].
The self-assembled QDs form zero dimensional semiconductor nanostructures and their
formation is steered by mechanical strain, or more generally by the growth conditions like
the temperature and substrate properties. Typical sizes of these self-assembled QDs are
around approximately 10 nm, thus the dots have a discrete level structure and electrons
and holes are strongly confined in the QDs. Therefore, these systems can also be termed
artificial atoms or even molecules [96-99]. The self-assembled QDs are manipulated with
electromagnetic radiation in the optical domain and many studies regarding their prop-
erties and manipulation have been pursued [100-107]. Applications for the QDs are for
example the realization of lasers or qubits. The qubits can be defined via charge or spin ex-
citations in the QDs. From the quantum computation point of view, these devices possess
long coherence times and are only weakly coupled to the evironmental degrees of freedom.
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Figure 2.14: Lateral double quantum dot
structure that was used for the realiza-
tion of a charge qubit, the readout of
the charge qubit is done by a bias volt-
age pulse, which transforms the system
to a molecular state. Finally, a finite cur-
rent depending on the state of the qubit
is measured ﬁ%] Note that the QD struc-
tures presented in Figs.[2.14 and[2.15/ can
in principle be used to realize both types

Figure 2.15: Lateral quantum dot struc-
ture used for the experimental realization
of a QD spin qubit, the readout of the
spin qubit is done via spin to charge con-
version using the second dot of the dou-
ble dot system. The spin state in the left
dot (qubit spin) is transferred in a spin-
dependent charge state in the right dot,
which is then detected by the Quantum
Point Contact (QPC) M]

of QD qubits.

However, on the other hand, the fabrication of the QD structures is not yet fully deter-
ministic and the coupling of several qubits is hard to control. Two qubits in self-assembled
QDs can be coupled via their Coulomb (dipol-dipol) interaction or via a single mode of
the electromagnetic field inside a cavity.

In contrast to self-assembled QDs, the system parameters of QDs formed in a two-
dimensional electron gas (2DEG) in lateral semiconductor heterostructures are easily tun-
able. In these structures the 2DEG forms approximately a few hundered nanometers below
the surface, near the interface of the two semiconducting materials. The 2DEG is confined
by the gates on top of the substrate and the QD is defined. The gate voltages allow to
precisely control the tunnel barriers between the QD and the reservoirs, i.e., the source
and drain leads, the coupling between the QDs in a double-dot system, and the shape of
the QD (the electro-chemical potential inside the dot). For transport measurements with
lateral QDs, a finite voltage is applied across the QD via leads connected to the quantum
dot and thus a current is flowing through the QD.

In these QD structures, all electrons are bound and there is only a small number of
additional free electrons (ranging from 0 to around 1000) M] Therefore, qubits based
both on the charge degree of freedom m—lll] and the spin of individual electrons in a
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back gates N magnetized or heterostructure
high-g layer quantum well

Figure 2.16: Sketch of an array of QD spin qubits, taken from Ref. @] The qubits are
defined by the spin states of a single electron in a QD.

QD [674, @] have been envisioned.

Up to now, in QD charge qubits, where the state of the qubit is defined by the position of
an additional charge in a double-QD system, coherent oscillations have been demonstrated
@] QD charge qubits are supposed to be hindered by strong decoherence due to phonons,
1/ f-noise due to background charges, electronic baths and co-tunneling, for a quantitative
analysis see Ref. [113]. However, recently substantial experimental progress regarding the
coherence times has been made [114].

In the QD spin qubit, the qubit is defined by the spin state of an electron in a single QD
M] It is considered to be more stable with respect to decoherence due to the stability of
the electron spin in the QD. On the other hand, the electron spin is also much harder to
manipulate and to read out. The most important decoherence sources in QD spin qubits
are expected to be hyperfine interactions between the electron spin and the nuclear spins
in the bulk material [115] and spin-phonon or spin-orbit phonon coupling m It has
been shown that it is possible to fabricate QDs with just one electron in the dot m] and
also the readout of QD spin qubits has been demonstrated via spin-charge conversion and
readout with a quantum point contact (QPC) @] In Fig.2.16 an array of several coupled
QD spin qubits for quantum computation is sketched.

A schematic view of a single lateral QD with several top gates for manipulation of the
QD is shown in Fig. [2.17. The source-drain voltage corresponds to the difference in the
electrochemical potentials g and pp, cf. Fig. 2.18] In figure 2.18 a more detailed picture
of the energy levels of a single lateral quantum dot is depicted. The chemical potentials
of source and drain are denoted by pug and pp, respectively. The charge states inside the
quantum dot are indicated by black lines, the grey line is an orbital excited state. The
electrochemical potential of the quantum dot with N electrons is p(N). It is defined as
the energy that is required to add an electron to the dot. Without loss of generality, the
local electron level (or electrochemical potential) is given for the difference between N — 1
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Figure 2.17: Schematic drawing of a sin-
gle lateral quantum dot. The 2DEG
that forms approximately 100 nm below
the surface, constricted by the gate elec-
trodes, is indicated by the grey circle. The
gate voltage can be used to displace the
charge levels inside the quantum dot, cf.
Fig. [2.19. Moreover, it is also possible to
manipulate the barrier heights I';, and I'p
externally.

and N electrons [108, 118]
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Figure 2.18: Energy levels inside a sin-
gle lateral quantum dot. Depending on
the source-drain voltage Vsp, transport
through the quantum dot is possible. The
charge levels are given by black lines and
the orbital excited levels are drawn in
grey. A gate voltage can be used to
shift the energy levels upwards through
the transport window given by Vsp. The
Coulomb peaks in the transport current
appear when the charge levels are inside
the transport window, cf. Fig. 2.19. Pic-
ture taken from [113].

E
Ec — =S (CsVsp + C,V,) + Ey, (2.22)

le]

where Ec = €%/C is the charging energy of the dot and C' is the capacitance given by
the network of capacitances connected to the dot. The source-drain voltage Vsp and the
gate voltage V, are used to manipulate the local electron level according to Eqn. (2.22).
Moreover, Ny is the number of electrons in the QD without applying a gate voltage and
the C; are the corresponding capacitances. The discrete levels in the QD are separated by
the addition energy F,q4q4(NN), which is given by [108, 118]

Eaaa(N) = p(N +1) = u(N) = Ec + AE, (2.23)

where AFE is the level spacing between two discrete quantum states, indicated in Fig. 2.18.
Note that this energy AF is zero when two electrons are added to the same spin-degenerate
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Figure 2.19: Transport through a QD. The left plot depicts the Coulomb peaks in the
linear-response regime. The right plot shows the Coulomb diamonds in the differential
conductance dI/dVsp, where Vgp is the source-drain or bias voltage. The edges of the
diamond-shaped regions (marked black) correspond to the onset of current. The grey lines
indicate the onset of transport through excited states. Pictures are taken from Ref. [118].

level and the first term in the expressions for the addition energy, the charging energy FE¢,
is purely electrostatic.

In transport experiments with QDs, a finite source-drain voltage is applied across the
quantum dot and when one of the charge levels is tuned by the gate voltage into the
transport window, the so-called Coulomb peaks appear. Thus, in a single quantum dot
there are charge ground states, however, there also exist elementary excitations just like
in real atoms, which lead to orbital excited states.

There also exist other proposals for qubits in semiconductors. The most important ones
are based on phosphorus donors in silicon. Again, a distinction between donor charge and
spin qubits is made, the charge qubit states are given by lowest states of an electron which
is localized in the potential generated by two P* ions. The donor spin qubit is based on
the nuclear spin of a positively charged donor in a semiconductor [119], the qubit can be
manipulated by controlling the resonance frequency of the nuclear spins and the coupling
between spins with external gates. Then ac electromagnetic fields are used at resonance
to alter the state of the nuclear spin. The measurement of this type of qubit could be
performed by spin-charge conversion [120, 121].



Chapter 3

Quantum gate operations and
readout

A quantum gate operation in solid-state devices can be performed using electromagnetic
fields, i.e., by means of gate voltages and magnetic fields. The simplest experiment, yet
the most important one to begin with, is to demonstrate coherent Rabi oscillations in a
driven qubit circuit. These have been shown first in superconducting charge qubits [122]
and later also for superconducting flux qubits [85].

Typically, in superconducting charge qubits quantum gate operations are performed via
application of DC pulses, i.e., short rectangular pulses. The individual pulses to complete
a more complex quantum gate, for example a CNOT gate can be viewed as different single-
qubit or two-qubit gates given by quantum mechanical propagators U = exp(—(i/h)HAt),
where the length of the pulse is denoted by At and the time evolution is generated by a
static Hamiltonian H. Recently, also manipulation schemes that are inspired by protocols
from NMR quantum computation [123] have been presented [124]. In chapter 10, another
method to manipulate superconducting charge qubits will be presented. There, a short
pulse-trajectory of rather soft (small Fourier bandwith compared to the time and frequency
scale that is set by the pulse duration) pulses will be presented that drastically improves
the gate performance of a charge qubit system and it is also feasible from the point of view
of experiments. Superconducting flux qubits can also be manipulated with DC pulses. This
is done by rapidly switching the two fields B, and B, that determine the energy bias and
the tunnel matrix element of the qubit, respectively. Usually, the tunnel matrix element
B, is set fixed. However, it is possible to replace one of the junctions in a rf-SQUID or 3jj
flux qubit by another SQUID loop with two Josephson junctions. Then, the tunnel matrix
element B,(®,) of the qubit can be tuned by adjusting the flux through the addtional
SQUID loop. Note that the requirement to steer two fluxes that act spatially very close
is hard to achieve and flux crosstalk then will certainly degrade the performance of these
types of qubits. Moreover, also an additional noise source is introduced to the system.
With this control over B, and B, the elementary single-qubit gates could be performed.

However, flux qubits are most conveniently addressed by AC fields and resonant pulses.
This is done in the following way. In these systems first a coherent flux driving of the type
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3um
Figure 3.1: SEM image of a flux qubit with a Figure 3.2: SEM image of a flux
readout DC-SQUID, which is surrounding the qubit and attached readout SQUID.
qubit loop. The qubit state can be measured In experiments performed with this
using the current biased DC-SQUID, which kind of qubit coherent Rabi oscilla-
will switch into the finite voltage state for dif- tions have been demonstrated. Be-
ferent values of the bias current Iz depending low the image of the qubit circuit, an
on the state of the qubit. Image courtesy of equivalent circuit diagram and the
TU Delft. pulse sequence used for demonstra-

tion of Rabi oscillations are shown.
Image courtesy of TU Delft.

Hy = decos(wt) is applied. The oscillatory driving field can be applied at the resonance
frequency of the qubit like in NMR experiments [g%a] Then the manipulation pulses are
convoluted with the driving [125]. The effective manipulation of the qubit is then described
best in the reference frame that rotates with the driving frequency. Two-qubit operations
can be performed with the same technique, for example in a two-qubit system the level
splitting of one qubit depends on the state of the other qubit. Therefore, the transition of
the first qubit, will be conditionally shifted depending on the state of the first qubit, e.g.,
when the second qubit is in the |1) state. A pulse can only be resonant with the transition of
the first qubit when the state of the second qubit (the control qubit) is correct. Obviously,
the timescale of the irreducible two-qubit operations is determined by the coupling strength
between the qubits.

Another possibility for qubit manipulation is the adiabatic quantum computation M,
127]. This refers to a composite quantum system of qubits that is always kept in its
ground state, where the Hamiltonian of the system is different for different quantum gates
or algorithms and varied slowly. Here, it is important to note that the speed-up of the
adiabatic quantum computer is due to an energy gap between ground state and excited
states. Adiabatic quantum computation has been shown to be equivalent to standard quan-
tum computation M] . Qubit setups with flux qubits have been proposed for adiabatic
quantum computation [129].
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However, prior to the demonstration of single-qubit or two-qubit operations, the basic
experiment is the aformentioned demonstration of coherent Rabi oscillations, where the
frequency of the oscillations should vary linearly with the amplitude of the driving field,
and Ramsey fringe experiments, where the coherent evolution in the ¢,-component of the
qubit is probed. The latter is done by two /2 pulses, before the coherent evolution and
in the end to readout the pseudo-spin. Both of these experiments indicate whether the
qubit system can really be manipulated quantum coherently. From these experiments the
so-called quality factor of quantum coherence Q, = mv,T5 [93] can be extracted, where v,
is the transition frequency of the qubit and T5 is the coherence time of a superposition
of qubit states. It follows from the threshold theorem for QECCs, cf. section 1.2, that
a @, > 104Vqt0p is required for quantum computation. Here, ¢,, is the duration of an
elementary operation [130]. For superconducting phase qubits, the quality factor can be
as large as @), ~ 25000. For comparison, the QD qubits exhibit a much smaller quality
factor, namely Q, ~ 7 [94], Q, ~ 3 [131], and Q, ~ 6 [114], as summarized in [113].
However, not only the number of coherent oscillations within the decoherence time is an
important benchmark for the qubit system but also the amplitude (“visibility”) of the
coherent oscillations [132, 133]. Many experiments have observed [71, 93, 122, 134] and
analyzed [135, 136] this loss of oscillation amplitude of the coherent oscillations. Thus,
additionally to the exponential decay of the coherent oscillations due to decoherence the
oscillations do not extrapolate back to the full expected amplitude at time ¢t = 0, which is
an indication for non-Markovian effects due to the environment [132, 137].

The readout of a flux qubit can be done by fabricating the flux qubit loop inside a
DC-SQUID, which is then used for readout of the qubit state. For readout, the DC-
SQUID is biased by a current Ig, which is increased until the DC-SQUID switches to
the finite voltage state (where it also becomes dissipative, i.e., it is not superconducting
anymore). The point where the DC-SQUID switches to a finite voltage depends on the
flux that is threading the DC-SQUID loop and therefore on the state of the qubit. Due to
a signal-to-noise ratio (SNR) that is smaller than unity and the statistical nature of this
measurement, a huge number of experiments have to be performed. However, there are
many more readout schemes for flux qubits, which in the best cases even provide single-
shot resolution, or are quantum-non-demolition (QND) measurements, as in the case of a
flux qubit inside a cavity, which will be presented later.

In general, the ideal readout process should work as follows [138]. As long as the detec-
tor is switched off, the qubit should not experience any backaction from the detector, i.e.,
dephasing and relaxation due to the detector circuit need to be avoided during the initial-
ization and manipulation of the qubit. But when the detector is switched on to detect the
state of the qubit, the qubit has to be dephased quickly by the detector in order to project
the qubit state onto one of the basis states. Thus, for a fast measurement, the detector
has to be coupled strongly to the qubit. During the readout process energy relaxation,
which leads to mixing, should be suppressed, though. The relaxation of the qubit is also
due to the coupling between the meter and the qubit, as long as the measurement is not
a quantum non-demolition measurement (QND) for which the qubit and qubit-detector
coupling terms in the Hamiltonian commute [138]. Note that the coupling strength of the
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readout device, the meter, and the qubit during the measurement also determines the basis
in which the qubit is read out. However, also measurements that do not lead to a complete
collapse of the wavefunction can be performed repeatedly in order to obtain information
about the system [139]. This is for example the case for the readout of superconducting
flux qubits with a DC-SQUID [76, 81, 90].

In summary, the requirements that determine the quality of a readout switch are sum-
marized as follows [140]

e The energy relaxation time of the qubit has to be sufficiently long when the detector
is switched on.

e The dephasing time of the qubit has to be sufficiently long when the detector is
turned off.

e The measurement time (the time taken by the measuring device to determine the
state of the qubit with a signal-to-noise ratio (SNR) of 1), which describes the sen-
sitivity of the switch, has to be sufficiently small.

e The dead time that is needed to reset the measuring device and the qubit after
a measurement has to be sufficently small. (These are determined by the energy
expenditure associated with producing a signal strong enough for external detection.)

It is very hard to optimize all of these parameters at the same time [75, 87, 90, 141, 142].
However, it is of central importance to improve the readout fidelity and speed of the read-
out, and significant progress has been made with the dispersive readout of superconducting
charge qubits inside a cavity, which is also a QND measurement [136]. In the aforemen-
tioned experiments, long coherence times of the superconducting charge qubit system on
the order of ~ 500 ns and a visibility close to unity have been demonstrated with the cavity
readout scheme [136, 143].



Chapter 4

Decoherence

Physicists learned to realize that whether they like a theory or they don’t like a
theory is not the essential question. Rather, it’s whether or not the theory gives
predictions that agree with experiment.

Richard Feynman, 1985

An expert is someone who knows some of the worst mistakes that can be made
i his subject and who manages to avoid them.
Werner Heisenberg, Physics and beyond, 1971

A new scientific truth does not triumph by convincing its opponents and making
them see the light, but rather because its opponents die, and a new generation
grows up that is familiar with it.

Max Planck, Wissenschaftliche Selbstbiographie, 1945

Decoherence denotes the influence of an environment, which can be a heat bath or
reservoir, on a much smaller quantum system. However, in most cases one is not interested
in the overall dynamics of the full system, including the reservoir and the quantum system
(in the following called system, e.g., a particle or an atom or qubit), but rather in the
evolution of the smaller quantum system taking into account the influence of the reservoir
due to their mutual coupling. Of course, also in classical physics examples exist, where
one is concerned with the evolution of only a part of the system, e.g., in Brownian motion
processes. In these Brownian motion processes, particles exhibit a stochastic thermal
movement, with collisions between the particles that broaden (and shift) the distribution
function [144]. The Brownian motion of particles can be described by a Langevin equation,
with friction forces that describe the effects of the collisions and damping, and a Langevin
force that takes into account for fluctuations. A different tool is the Fokker Planck equation
that can be used to describe the evolution of the statistical distribution function, e.g., of
the particles. In Quantum Brownian motion [145] stochastic relations for the quantum
mechanical operators or states are utilized and an additional uncertainty due to quantum
fluctuations even in the initial state completes the theory.
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Returning to the description of the quantum system and the environment, the concept
is that the particle (or quantum system) interacts with a very large reservoir with many
degrees of freedom such that no macroscopic change of the reservoir is observed due to
the coupling to the small system. In general, there are two relevant time scales, the time
scale of fluctuations in the reservoir that perturbs the system, and a longer time scale
that characterizes the dynamics of the system itself. This approach can also be adopted
to the case when the system is an ensemble of particles, e.g., an atom, a molecule, or
(several) qubits, and the reservoir is a radiation field. In this particular case, the reservoir
has an infinite number of degrees of freedom that correspond to an infinite number of
modes of the electromagnetic field [146]. (The properties of a qubit (or atom) coupled
to a single mode electromagnetic field are discussed in more detail in the chapters |5/ and
121) It is important to note that the correlation functions of the electromagnetic fields give
the information about the dynamics of the fluctuations of the electromagnetic fields [146].
When the smaller system is just a single atom or qubit, then it is quite evident that the
reservoir dynamics will only be affected very little by the atom-reservoir coupling. In many
situations, the radiation field can be viewed as a perturbation, which changes fast on the
atomic time scale. In summary, the effects of the system and reservoir dynamics can be
interpreted as the system and reservoir fluctuating and polarizing each other. Returning
to the notion of decoherence in the beginning of this section, in the case of a quantum
system the aforementioned effects are called decoherence.

Decoherence includes both (energy) relaxation and dephasing. Dephasing leads to
entropy production and the following long time behaviour [74] of the system density matrix

(p£()) = {p£(0)) e¥F 717, (4.1)

where the density matrix is written in the system eigenbasis, F is the level spacing of the
qubit, px = (1/2)(p, £ ip,), and 7, is the dephasing time. Additionally, the diagonal
entries of the density matrix tend towards their thermal equilibrium values given by the
Boltzmann factors due to relaxation with energy exchange, characterized by

(p:(t)) = p=(00) + [p:(0) = pa(00)] 7"/, (4.2)

where p,(00) are the thermal equilibrium values and 7y is the relaxation time. In other
words, the relaxation time is the timescale on which the diagonal elements of the reduced
density matrix (in the preferred eigenbasis), i.e., the density matrix of the system where
the environmental degrees of freedom have been traced out, tend towards the Boltzmann
factors. The dephasing time is the timescale on which the off-diagonal elements of the
reduced density matrix, i.e., the coherences, vanish. Thus, entropy production and energy
exchange, which is irreversible, lead to dephasing and relaxation.

Decoherence can also be viewed as stemming from an asymmetry of dissipative systems
under time-reversal. In other words as was already discussed before, the time-evolution of
a dissipative system is not unitary.

When the coupling between the system and the reservoir has little effect during the
correlation time of fluctuations of the reservoir, a master equation can be derived that
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gives the coarse-grained rate of variation of the system density operator while treating the
effects of the reservoir perturbatively [146-148]. The derivation of the master equation
will be elucidated in section [4.3. This case is reminiscent of the weak-collision regime
in Brownian motion. The condition that the coupling between reservoir and the system
has a weak effect during the correlation time of the reservoir is known as the so-called
motional narrowing condition. In more detail, let the dimensionless parameter a describe
the coupling strength between the system and the reservoir. This parameter characterizes

also the dispersion of the values for the interaction I:Iim => i S'j ® B., where the S'j are

7
system operators and the Ej are bath operators. In other words, if the broadening of the
spectral lines of the system produced by the coupling to the reservoir is not homogeneous,
then the width of the spectral lines is large. However, because the interaction between the
system and the bath fluctuates rapidly, the inhomogeneous width is reduced by a factor
that is proportional to the correlation time of the reservoir, therefore the name motional
narrowing evolved.

4.1 Linear response and the fluctuation dissipation
theorem

For a macroscopic environment, the coupling of the quantum system to each distinct sin-
gle mode of the reservoir can be considered very weak. Therefore one can assume that
the system-reservoir coupling is linear in the bath coordinates for the large environment.
Overall, the influence of the environment on the system can be large, though, because the
influence of all the bath modes adds up and it is possible that there are many different
modes in the environment [148]. The notion of this linear coordinate-coordinate coupling
between the system and the reservoir coordinates is called linear response theory. The
linear response theory clearly has the fluctuation-dissipation theorem at its heart [149],
which says that the irreversible processes in weak non-equlibrium are necessarily related
to thermal fluctuations in equilibrium. Namely, for an external perturbation coupling to a
system quantity [150], i.e.,

plt) % p(0) — / at’ [V (&), p(0)) (4.3)

to

where V(') denotes the coupling of the external perturbation to a physical quantity of
the system. From this one can evaluate the expectation value of a physical observable
O(r,t) and the expectation value of the deviation dO(r,t) from its unperturbed value. For
to — —oo, where @) is an observable in the interaction picture [150],

(50(r,t)>:% / it / dr'tr [po]O1 (r, 1), Qu(r', £)]] F(, 1), (4.4)

to——o0
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which defines the generalized susceptibility or linear response function

_ / i / dr'x(r, v, ) F(x, £), (4.5)
where from comparison of Eqns. (4.4) and (4.5) it is directly found that

x(r,t,r' ") = %tr [po[O1(r, 1), Q(x' )] 0(t — 1), (4.6)

which is the so-called Kubo formula. In the case when the system is translation invari-
ant, Fourier transformation gives (00 (k,w)) = x(k,w)F(k,w). Next, we split up the
generalized susceptibility into real and imaginary part x(w) = x'(w) + ix”(w), where
X' (w) = x(—w) and x"(w) = —x"(w). In quantum mechanics the correlation function
is defined via the symmetrized form

(FQUIQ(E) + 5Q()FQD) = 5tx (QNIQW) +5QUNQM]) . (4

The calculation of the Fourier transform of this expression and comparison with the Fourier
transformed Kubo formula gives the fluctuation dissipation theorem [151, 152]

(6Q5Q)., = coth (Bhw/2) hy"(w). (4.8)

Note that x” describes the change of energy and therefore the dissipation. The Kramers-
Kronig relations are [150]

Rex(w) = = —P/d ’;C, _ww (4.9)
my(w) = x'(w)= —;P/d 5(_2} (4.10)

where P denotes the principal value of the integral expression. With the Kramers-Kronig
relations it is possible to calculate the imaginary part of the response function if the real
part is known and vice versa. The real part y’ of the generalized susceptibility y determines
the classical dissipation and thus the relaxation time T}, whereas the imaginary part x”
gives the quantum fluctuations characterized by the dephasing time 75. As was reasoned
before, the linear response theory has a broad range of applicability and it shows that
the oscillator-bath models, as presented in the next section, are universal within linear
response.

4.2 The Spin-Boson model

Often, a physical system in contact with a dissipative environment can be described by a
heat bath, which is sensitive to the position of the qubit or two-state system [153-155]. One
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particular example is the following kind of interaction between the qubit and the collective
bath mode as discussed in the last section

=> 8;,@B;=6.0X(t), (4.11)

J
where S; are system observables, the B; are bath (reservoir) observables, as introduced in
the last section. Here, X () is a collective bath observable, which can be understood as the

coordinate of the harmonic oscillator that is coupled to the system and jiggles the system.
The collective bath mode can be expressed in terms of all modes x; of the reservoir [148]

= % zzczxZ (4.12)
i=1

The heat bath acts like a fluctuating force on the system and causes decoherence in the
system. In the case of Gaussian statistics, the heat bath can be modeled by a bath of
harmonic oscillators, ¢.e., bosons. This leads to the following “Spin-Boson” Hamiltonian
in second quantization

Hsp = H, — athA a; +al +Zﬁwaal, (4.13)

=1

where a' and @ are the bosonic creation and annihilation operators, H, is the Hamiltonian
of the qubit. Next, the environmental effects can be cast into the spectral density, which
characterizes the coupling and relates the ¢; and A; [148],

N 9
) T c;
25w —w) = 23 — W), 414
= ;21 A0 (w — w;) 5 2 miWi(S(w w;) ( )

=1

A realistic assumption, e.g., for electromagnetic noise due to the wiring [81] are Ohmic
spectral densities with a Drude-cutoff. This leads to integrals in the Bloch-Redfield rate
expressions Eqn. (4.24) that are tractable by the residue theorem [156]. The cutoff fre-
quency w, for the spectral functions of the two qubits is then chosen to be the largest
frequency in the problem. Namely,

ohw

Jw) =",
@iz

(4.15)

where the dimensionless parameter « describes the strength of the dissipative effects that
enter the Hamiltonian via the coupling to the environment. Note that in order for the
Bloch-Redfield formalism, which is presented in section 4.3, to be valid, it is necessary to
assume o < 1. The reason for this restriction is that the Golden Rule rate expressions
involve a Born approximation in the system-bath coupling. This corresponds to a descrip-
tion of the evolution of the system density matrix in the interaction picture in the linear
response regime.
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4.3 Bloch-Redfield formalism

In order to describe decoherence in the weak damping limit, the Bloch-Redfield-Formalism
1147, 148, 157] can be used to derive a set of master equations for the system dynamics.
Starting from the Liouville equation of motion for the density operator of the whole system

d - i
—Wi(t)=—=
dt ®) h
where the Hamiltonian H and the corresponding Liouvillian £ can be decomposed in the

form

[H, W (t)], (4.16)

H(t)=Hg(t)+ Hg+ Hy and £ = Ls+ Lp + L. (4.17)

Here, H s(t) is the system part of the Hamiltonian, Hp describes the bath, and Hj is the
system-bath interaction term. Next, one extracts the reduced system part of the whole
system W(t) describing the dynamics of the relevant macroscopic observables. This can
be done by defining a projector P, where p(t) = trp(W (t)) is the so-called reduced density
matrix and P? = P holds such that the full density matrix can be split into two parts

W(t) = PW(t)+ (1 — P)W(t). (4.18)
The second part of this expression describes the environmental degrees of freedom and
correlations between system and environment. Note that the normalization trppg = 1 has
to be fulfilled [158]. Here, the action of the projector P is to effectively trace out the
environmental (bath) degrees of freedom, i.e., PW(t) = p(t). The thermal equilibrium
density matrix is given by
—1

pg = |trp GXP(—ﬁBﬁ(T)) exp(—ﬁBﬁ(T)), (4-19)

where 3(T) = (kgT)~!, T is the temperature and kp is Boltzmann’s constant. Next, the
expression for W (t) from Eqn. (4.18) is inserted into Eqn. (4.16) and two coupled equations
for the relevant and irrelevant parts are found. Integration of the latter one and substitution
of this result into the equation for the relevant part finally gives the exact generalized master
equation for the reduced density matrix, the Nakajima-Zwanzig equation [159, 160]

t
p(t) = PLp(t)+ / dt' PLexp|(1—P)Lt)(1—P)Lp(t—t')+ PLexp[(1— P)Lt](1— P)W(0),
0
(4.20)
where the system and bath density matrix were assumed to factorize at the initial time.
Now, one uses a projection operator such that the irrelevant part (1 — P)IW(0) can be
disregarded, which puts the condition on the noise that it is not biased. Moreover, if P
commutes with L, considering the kernel only in second order in £; and disregarding
retardation effects, the master equation in Born approximation

t
p(t) = P(Ls + L1)p(t) + / dt' PL; P EALRY (1 PYLp(t) (4.21)

0
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is obtained. Here, the Born approximation is made in the coupling strength to the envi-
ronment. Here, also a Markov approximation can be made. It refers to the assumption
of a memoryless reservoir [148]. In the master equation (4.21) a Markov assumption can
be made by letting the integration bound ¢ — oo in the integral term. The Born approx-
imation is valid for weak coupling of the system to the environment, whereas the Markov
assumption, which means that memory effects are negligible, can straightforwardly be
lifted. This derivation of the master equation provides a systematic way of finding a set of
coupled master equations, which describes the dynamics of the reduced (i.e.the reservoir
coordinates are traced out) density matrix for a given system in contact with a dissipative
environment. It has recently been shown to be numerically equivalent to a path-integral
approach [158].

The Hamiltonian of our two qubit system in contact with a dissipative environment,
Eqn. (4.17) is of the generic system-bath form. In the aforementioned Born approximation
and when the system is only weakly coupled to the environment, Bloch-Redfield theory
provides the following set of equations for the reduced density matrix p describing the
dynamics of the system in the system eigenbasis [147, 148]

ke

where wy,,,, = (E, — E,,)/h. The Redfield relaxation tensor R, comprises the dissipative
effects of the coupling of the system to the environment. The elements of the Redfield
tensor are given by Golden Rule expressions [148]

Rumie = 0m D Dol 400> T4 =Tk = T4 s (4.23)

T

and the Golden Rule rates are

rid = p? / dt € K (Hy g () Hy e (0)) g, (4.24)
0
PO g / dt et (Fly o (0 (1)) 5 (4.95)

0

Note, that H;(t) = exp(iHpt/h)Hexp(—iHpt/h) is the interaction part of the Hamiltonian
in the interaction picture with respect to the bath and (-)z denotes thermal averaging over
the bath degrees of freeedom. These rate expressions can also be derived from lowest order
diagrams in the Keldysh technique, see Ref.[74]. The two-time averages in the master
equation are related to two categories of statistical functions, the symmetric correlation
functions that describe the dynamics of the fluctuations of the observables of the system
and the reservoir, and the linear susceptibilities that describe the linear response of each
system to an external perturbation [146]. In more detail, the correlation functions that
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enter the Redfield tensor elements describe the bath correlations. The general two-time
correlation function for the bath observables

~

G(t' 1) = trp (pr(i’)l%’(lf")) (4.26)

can be split into real and imaginary parts. The real part of this function is the symmetric
correlation function that describes the dynamics of the fluctuations of the bath observable
X (t) in the state pg, whereas the imaginary part is related to a linear susceptibility [146].
In other words, the real part describes the classical fluctuations, whereas the imaginary
part specifies the quantum part of the noise.

When the reservoir is in a stationary state and the interaction between the system and
the bath is taken to be of bilinear form H =y gi@)Bi of the coupling between the system
S; and bath operators B;,then G (¢',t") depends only on the time difference 7 = ¢’ — t”

A

G(7) = tru(psB(7)B(0)). (4.27)

The symmetric correlation function and the linear susceptibility function can be used to
characterize the effects of the bath (reservoir) on the system. In the most general situation
both the small system and the reservoir fluctuate and can polarize each other. There exist
both processes, where the system dynamics evolves unperturbed but affects (polarizes) the
reservoir, which then also modifies the evolution of the system, and phenomena in which
the fluctuations of the bath strongly influence the dynamics and properties of the system.
Note also that the coarse-grained rate of variation of the system density operator in the
Bloch-Redfield master equations corresponds to an intrinsic time averaging introduced
in the Bloch-Redfield formalism over a timescale determined by the motional narrowing
condition.

Using the secular approximation, it is possible to define decoherence rates, i.e., de-
phasing and relaxation rates from the Redfield tensor Eqn. (4.23). The overall relaxation
rate of a system of qubits is defined as the sum of the eigenvalues (or the trace) of the
relaxation part of the Redfield tensor [161], i.e., of the matrix R with matrix elements
Enm = Ry, mm- Therefore, the relaxation and dephasing rates are defined as

I'p=1tr(R), and 'y, . = Rymnm- (4.28)

Note that these rate expressions are derived in secular approximation (they are not obtained
from the full Redfield tensor) for

e non-degenerate levels max |Re(Rymre)| < n;in |wnm| [161],

n,m,k,l

e and in the absence of Liouvillian degeneracy |wpm, — wie| > |Rapea|, Where a, b, ¢, d €
{k,¢,m,n} [162].

The corresponding relaxation and dephasing times of a single qubit are given by 77 = Tx =

1/T'r and Ty = T,,; for a larger system, the dephasing times are defined via T,,, = 1/T, .
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The system frequencies wy,,, are renormalized by the imaginary part of the Redfield tensor
[161] via wpy, — W, = Wom — 1M Ry, 4y 0m- At small temperatures these renormalization
effects do not depend on temperature. The renormalization effects diverge logarithmically
with the cutoff frequency w, [163].

It is interesting to note that the Lindblad operators [164] derived from the Bloch-
Redfield formalism for the corresponding Lindblad equation preserve complete positivity
only in the pure dephasing case [165], i.e., when [ﬁg,ﬁf] = 0 is fulfilled, or at high
temperatures. Then the Markovian approximations are of Lindblad type and the nice
mathematical form of the Lindblad equation is recovered [165].

For a numerical solution of the set of Redfield equations Eqn. (4.22), which are a set
of coupled differential equations, it is convenient to collapse p into a vector. Then, in
general the Redfield equations without driving, i.e., without explicit time dependence in
the Redfield tensor R, and for a static Hamiltonian, are solved by an ansatz of the
type p(t) = Bexp(R')B~'p(0), where R’ is a diagonal matrix. Possible computational
drawbacks of this ansatz are discussed in Refs. [166, 167]. (See appendix [E/ for numerical
computations of a more general scenario including driven qubit dynamics.) The entries
of this diagonal matrix are the eigenvalues of the Redfield tensor, written in matrix form,
including the dominating coherent term iwy,,, cf. Eqn. (4.22). Here, the reduced density
matrix p = (p11,...,pa)? is written in vector form and the matrix B describes the basis
change to the eigenbasis of E, in which R’ has diagonal form.

Note that for 1/f-noise that is well approximated as Markovian and Gaussian, the ef-
fects of 1/ f-noise on the qubit system can be taken into account within the presented theory
of a Spin-Boson model with the set of Bloch-Redfield master equations. This is done by set-
ting the zero frequency component of the spectral function J;,¢(0) to an experimentally or
theoretically determined value for the magnitude of the 1/ f-noise. However, in many cases
the noise turns out to be non-Markovian and/or non-Gaussian, leading to non-exponential
decay, which can neither be treated by Bloch-Redfield theory nor parameterized by a single
rate. The 1/ f-noise due to hopping background charges or general quantum bistable fluc-
tuators in superconducting qubits has been intensively studied [168-171]. Recently, there
have been several investigations of 1/ f-noise caused by a single moving background charge
[172] or several background charges [173] treated in an impurity model.
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Chapter 5

Quantum optics in the solid-state

In this chapter a small overview of several ingredients from the field of quantum optics [174,
175], which will be required for describing circuit-Quantum Electrodynamics (cQED) [176]
experiments in the solid-state, will be given. First, we start from the general Hamiltonian
of the electromagnetic (photon) field [174]

.1 1
H = 5 /(80E2 + ,UOHz) dr = ghwk (a,tak -+ 5) s (51)

where the last equality holds in second quantization for mode functions that form a com-
plete orthonormal set and satisfy the transversality condition [174] and az, ap are the
bosonic creation and annihilation operators The bosonic operators obey the usual bosonic
commutation relations [a;, a;] = [a], aj] =0 and [a;,a J] = §;j. There are two different kinds
of field states that will be most important for further considerations, the so-called Fock
states or number states and the so-called coherent states. The Fock states are the eigen-
states |n) of the Hamiltonian Eqn. (5.1) with eigenvalues hwg(n,+(1/2)) (ng, = 0,1,2,...),
i.e., they are eigenstates of the number operator n;, = a,a; with eigenvalue nj. The fol-

lowing relations hold for the state of the field mode

ap|0) = 0, (0|H|0) = Zhwk, (5.2)

aklng) = % g — 1), ak|nk>:<nk+1>1/2|nk+1>, (5.3)

(nk|myg) = bmn, Z|nk> (ng| = 1. (5.4)
nk:0

The state vector for higher lying excited states is obtained from the vacuum state |0) b
repeated application of the bosonic creation operators, Eqn. (5.3),

(ap)"

) = 0), nx = 0,1,2,... . (5.5)
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Thus, the Fock states have a well defined number of photons in each state, however, on the
other hand the coherent states can have an indefinite number of photons in a state with a
well defined phase. This is because the product of the uncertainty in amplitude and phase
has to fulfill the Heisenberg uncertainty relation. In summary, the coherent states can be
expressed in terms of the number states

o) = P25 \j‘—"_' In). (5.6)

n:
n

The coherent states can be generated by application of the displacement operator
D(a) = exp(aa’ — afa) = e710F/2c00 g="a (5.7)

to the vacuum state |a) = D(«)|0). The photons in a coherent state follow a Poissonian
distribution
2
P(n) = | (nfa)[* = |af*"e™*" /nl . (5-8)

One more class of states are the squeezed states, these have less noise in one quadrature
than the coherent states, while the noise in the other quadrature is larger than in a coherent
state due to the requirement that the state has to fulfill the Heisenberg uncertainty relation
[174]. This leads to sub-Poissonian and super-Poissonian statistics in the two quadratures.

After introduction of these basic properties of the electromagnetic field, now the proper-
ties of the light field inside a cavity and the interaction of the light field with an (artificial)
atom, 7.e. a qubit, inside the cavity are discussed. The Hamiltonian of a qubit interacting
with a single field mode inside the cavity is the so-called Jaynes-Cummings Hamiltonian
[177] obtained in the electric dipole and rotating wave approximations

H = Hg+ He + H; = hwé, + hwpa'a + hglao™ + alé6™), (5.9)

where Hg is the Hamiltonian of the qubit, H¢ is the free energy of the cavity field and H;
describes the interaction between the qubit and the cavity field. The rapidly oscillating
terms in the qubit-cavity interaction Hamiltonian, which were neglected in the derivation,
do not conserve energy and would correspond for example to the excitation of an atom
together with the emission of a photon. The spin operators in the last term are defined as
ot = (6, +1i6,)/2 and 6~ = (6, — i6,)/2. Here, without loss of generality the qubit-field
coupling strength g was taken to be a real number. See chapter 12 and appendix [F for a
derivation of the Jaynes-Cummings Hamiltonian for a flux qubit inside a cavity.

In Fig.’5.1 the level structure for the uncoupled (g = 0) and coupled qubit-cavity system
described by the Jaynes-Cummings Hamiltonian at resonance w = w, is illustrated. Here,
damping is neglected. In the case of a non-zero coupling strength ¢, the degeneracy of
the qubit and resonator energy levels is lifted and the diagonalization of the Hamiltonian
would yield the so-called dressed states [143, 174]. The mean number of photons inside the
cavity at resonance and for the qubit initially prepared in the excited state, is depicted in
Fig.[5.3. Nicely, the vacuum Rabi oscillations, i.e., the periodic exchange of energy between
the qubit and the cavity is observed.
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Figure 5.1: Energy level structure for the
Jaynes Cummings Hamiltonian. The left
part depicts the degenerate energy levels for
the uncoupled (g = 0) qubit-cavity Hamil-
tonian. The right part shows the level struc-
ture for finite coupling between the qubit
and the cavity. In this case, the degeneracy
of the energy levels is lifted by the qubit-
cavity coupling [162, 174].
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Figure 5.2: Mean number of photons for
the resonant Jaynes-Cummings Hamilto-
nian without an external driving and with-
out taking into account the qubit or cavity
decay. Here, the qubit and the cavity are
exactly on resonance and the qubit is ini-
tially prepared in the excited state. Clearly,
coherent oscillations in the mean number
of photons are observed due the periodic

energy exchange between qubit and cavity.
Here, w = w, = g, and n = 0.

In recent experiments with superconducting qubits inside a cavity [143, 178], the basic
concepts of quantum optics haven been demonstrated in the domain of microwave photon
fields. The qubit (the artificial atom) is fabricated inside a coplanar resonator, which
provides the cavity, whereas the coupling between the qubit and the cavity is due to a
capacitive coupling of the single Cooper pair box or charge qubit to the electric field inside
the resonator. For manipulation and readout of the qubit, an external coherent driving
field is applied to the cavity either at a frequency given by the qubit splitting or at the
cavity resonance frequency. This corresponds to a classical antenna driving the cavity
mode and is known as the so-called driven Jaynes-Cummings model [179] described by the
Hamiltonian

H = hwé, 4 hwyata + hg(as™ + al67) + hn(ae™mt + atemt), (5.10)
where 7 is the amplitude of the driving field and wy,, is the frequency of the classical
coherent microwave source. A classical field, which is not quantized, has no free energy
Hamiltonian. It is given by inexhaustible external sources. Thus, the time-dependence
stems only from the plane wave expressions. Note that the (phase) stability of a regular
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Figure 5.3: Mean number of photons for the
resonantly driven Jaynes-Cummings Hamil-
tonian, but without taking into account the
qubit or cavity decay (thus the mean num-
ber of photons steadily increases). Here,
the qubit, cavity and the coherent driving
are exactly on resonance and the qubit is

Figure 5.4: Photon number distribution for
the driven Jaynes-Cummings Hamiltonian.
The qubit is initially prepared in the ex-
cited state, and coherent oscillations are ob-
served. With increasing time higher num-
ber states are populated. Here, N = 20
number states were taken into account, w =

initially prepared in the excited state. A
steady increase of the photon number inside
the cavity with additional coherent oscilla-
tions in the mean number of photons are
observed. Here, w = w, = g, and n = 0.15g.

w, = g, and = 0.15g.

continuous wave (cw) microwave source is better than the stability of a laser @] Figure
5.3 shows the mean number of photons inside the cavity for the driven Jaynes-Cummings
Hamiltonian without damping, ¢.e., the number of photons inside the cavity increases
steadily. Compared to the case without driving, the coherent oscillations are still visible.
In Fig.5.4, the photon number distribution for the driven Jaynes-Cummings model, which
was obtained from numerical simulations of the time evolution is shown. The simulations
were obtained from a numerical simulation of the Hamiltonian evolution for consideration of
20 number states. In these simulations both the cavity and qubit decay were disregarded.
Without the external classical driving, which corresponds to n = 0 in the (classically)
driven Jaynes-Cummings Hamiltonian Eqn. (5.10), and in the case where the qubit and
the cavity are resonant, the system shows vacuum Rabi oscillations due to constantly
exchanging energy between the oscillator (resonator) and the qubit, when the qubit is
prepared in the excited state. For finite driving and in the case where the qubit, cavity
and the classical driving are resonant, it is nicely observed that in the course of time the
occupation of the number states varies and increases and is peaked at around 2 photons
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for an appropriately chosen mild driving strength. As was mentioned before, neither qubit
decay nor cavity leakage was taken into account here. Note that the cavity decay rate, i.e.,
the cavity leakage rate needs to be of appreciable magnitude in order to be able to measure
the photon field (and thus also infer the state of the qubit). Interestingly, the quality factor
@ is very large in microwave cavities, thus the photon inside the cavity essentially never
leaks, it rather leaks in transverse direction of the cavity mirrors. Thus it is impossible
to measure the output field. However, in the scheme that will be presented in chapter 12,
the quality factor of the cavity is chosen such that the cavity leakage rate is approximately
k ~ 1 MHz, which leads to a sufficient signal strength such that the output field can be
measured.

Now, the statistics of the light field inside the cavity will be investigated in more detail.
For the pioneering experiments [178], the strength 7 of the classical driving is such that the
average number of photons in the cavity is approximately one, i.e., the cavity decay rate
r equals the magnitude of the photon flux into the cavity. At this point it is interesting to
note the differences in the statistics of the photon distribution. Clearly, a classical antenna
that is driving a quantized mode generates coherent states with Poissonian statistics. On
the other hand, a pure Jaynes-Cummings Hamiltonian can generate Fock states [174] and
has also been proposed to be used in charge qubit setups [181]. However, the classically
driven Jaynes-Cummings Hamiltonian in the discussed experiments can not lead to a Fock
state, even if the mean number of photons in the field is equal to one. Simulations show
that a quasi-coherent state, ¢.e., a mixture of many number states, develops inside the
cavity.

In summary, in this section the basic properties of the electromagnetic field that in-
teracts with a single atom or qubit inside a cavity, were introduced and applied to the
particular case of a superconducting qubit inside a cavity, where the cavity is driven by a
cw microwave source, which models current experiments [178].
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Chapter 6

Decoherence and gate performance of
coupled solid-state qubits

6.1 Introduction

For superconducting flux or charge qubits, one of the most important noise sources is noise
from the electronics (Nyquist noise) in the flux or the gate voltages. This noise can be
modeled by a linear coupling of the pseudo-spin system to the collective coordinate of a
bath of harmonic oscillators determining the environmental influence on the qubit system,
see section|4.2l This Spin-Boson model, which is characterized by its power spectrum, has
been successfully applied [74, 161, 163].

In the following papers, the decoherence properties of a two-qubit system coupled via
an Ising-type zz-interaction are evaluated. For a system of two qubits there are two general
cases of different mutually uncorrelated bath couplings. Both qubits could be coupled to
a single bosonic bath or each qubit to one of two different baths. From the evaluation
of the dynamics of the reduced density matrix within the Bloch-Redfield formalism it is
found that in general these two cases cause nearly identical decoherence properties. Here,
the qualitative and quantitative behaviour of the dissipative dynamics is determined by
the symmetry properties of the spin part of the interaction Hamiltonian and the system
Hamiltonian. When the commutator []:I I,I:Is] = 0 vanishes, i.e., in the case when the
coupling to the bath and the qubit system Hamiltonian do commute (or in other words,
the Hamiltonians are parallel), only pure dephasing processes contribute to the overall
decoherence. It is worth noting that the pure dephasing rates will vanish in the case of
an Ohmic spectrum for 7" — 0. (Moreover, for a super-Ohmic spectral function the pure
dephasing will always vanish, cf. chapter9.) However, as soon as the coupling to the bath
and the system Hamiltonian are not completely parallel anymore, there will be a significant
noise level even for T' — 0, the noise saturates.

It is not only important to investigate the decoherence rates, but also the effects of
decoherence on the ability of the system to perform quantum gate operations. Therefore,
the so-called gate quality factors are investigated. These quantify how good the system
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Figure 6.1: Circuit diagram for the CNOT gate, decomposed into the elementary Hadamard
single qubit gate on the second qubit and a CONTROLLED-PHASE operation, cf. Refs. [14]
and [163].

can perform a given quantum gate operation under the influence of the environment. The
gate quality factors [182] are the purity P, which is a measure for the decoherence effects,
the fidelity F, which is the overlap between the propagator for the ideal quantum gate
operation and the gate operation with decoherence, and two measures for the non-local
nature of the qubit states after performing the gate operation. The latter two are the
quantum degree Q and the entanglement capability C [183]. The entanglement capability
has been shown to be closely related to the negativity Ey of a state, which is a non-entropic
entanglement monotone and corresponds to the well-known concurrence [24], cf. chapter[11.

The effect of the variation of the bath coupling operator can be investigated by allowing
the spin operator that couples to the environment to lie arbitrarily in the x-z plane on
the Bloch sphere. Then it is found that the best gate performance for a gate depends
on whether the coupling to the bath mimics the composition of the system Hamiltonian
during the gate sequence. For example, the CNOT operation in superconducting qubits (as
given in Fig.[6.1), which are coupled via an Ising-type of zz-interaction, can be realized
just by two Hadamard gates

T (106, +1®6
U = exp [ iZ £ 2 , 6.1

the two-qubit coupling operation, and three additional z-type single qubit gates. Inter-
estingly, when the coupling to the bath resembles this small admixture of ., the gate
performance of the two-qubit system is best.

In experiment, a fabricational spread of qubit parameters can not be avoided. Thus, it
is important to analyze the influence of asymmetric qubit parameters on the decoherence
properties of the qubit system. Again, decoherence is very sensitive to the direction of
the spin coupling to the bath. In the case of a perpendicular system Hamiltonian and
bath coupling, the decoherence rates increase exponentially when increasing one of the
qubit energies in the system, which corresponds to increasing the asymmetry between
the qubits. In this case, the largest energy scale in the system naturally determines the
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magnitude of the decoherence.

Recently, the finding that for low temperatures the relaxation of the qubit system,
which is prepared in an excited state, into the ground state occurs via the population
of intermediate states, has been verified by experiments [184]. In these experiments the
cryogenic temperature is about 7' ~ 10 mK. However, the microwave lines that are fed
through the cryostat to the sample, which are needed for the qubit spectroscopy and
manipulation of the qubits, are not as well thermally decoupled. Therefore, the microwave
lines introduce a new higher effective (noise) temperature, which can leave the qubit system
in an excited state. The noise from the flux and microwave lines has been associated in
experiments with two environmental heat baths with different bath temperature that are
coupled to both qubits in the same correlated manner. This scenario is closely connected
to the situation that is analyzed in the papers in this chapter.

In another experiment proposed by Zorin [185, 186] for a charge-phase qubit with
radio frequency readout, the coupling to the decoherence due to voltage fluctuations in
the charge control line is exactly of the form H ;1 = (64sinf + &, cos Q)X as evaluated
in the third paper in this chapter, see Ref. [187]. Especially the decoherence properties
of quantum logic gates with coupled superconducting phase qubits [188] for which the
aforementioned variable noise coupling is anticipated, are modeled in detail in the third
paper in this chapter.

Thus, obviously several of the properties of the two-qubit systems that were predicted
in the following papers have been verified by measurements [184]. The theoretical pa-
pers presented in this chapter model precisely the properties of experimental setups that
are currently under investigation [186], albeit allowing for general statements about the
influence of (dynamical) symmetries on the noise level of the qubit system.

Recently, other theoretical works on the dynamics of the dissipative two-qubit system
1189, 190] verified the importance of symmetries in the coupling between the qubit and the
bath and extended the analysis to non-Markovian environments, i.e. environments with a
memory.

The aforementioned findings are derived and presented in great detail in the following
papers.
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Solid-state quantum bits are promising candidates for the realization of a scalable quantum computer.
However, they are usually strongly limited by decoherence due to the many extra degrees of freedom of a
solid-state system. We investigate a system of two solid-state qubits that are coupled via o-i”@ U(z/ ) type of
coupling. This kind of setup is typical for pseudospin solid-state quantum bits such as charge or flux systems.
‘We evaluate decoherence properties and gate quality factors in the presence of a common and two uncorrelated
baths coupling to o, , respectively. We show that at low temperatures, uncorrelated baths do degrade the gate
quality more severely. In particular, we show that in the case of a common bath, optimum gate performance of
a controlled-PHASE gate can be reached at very low temperatures, because our type of coupling commutes with
the coupling to the decoherence, which makes this type of coupling interesting as compared to previously
studied proposals with o'§,i)®o'§:f ) coupling. Although less pronounced, this advantage also applies to the

controlled-NOT gate.

DOI: 10.1103/PhysRevA.67.042319

L INTRODUCTION

Quantum computation has been shown to perform certain
tasks much faster than classical computers [1-3]. Presently,
very mature physical realizations of this idea originate in
atomic physics, optics, and nuclear magnetic resonance.
These systems are phase coherent in abundance, however,
scaling up the existing few-qubit systems is not straightfor-
ward. Solid-state quantum computers have the potential ad-
vantage of being arbitrarily scalable to large systems of
many qubits [4—6]. Their most important drawback is the
coupling to the many degrees of freedom of a solid-state
system. Even though recently, there has been fast progress in
improving the decoherence properties of experimentally re-
alized solid-state quantum bits [7—11], this remains a formi-
dable task.

Quite a lot is known about decoherence properties of
single solid-state qubits, see, e.g., Refs. [12—14], but much
less is known about systems of two or more coupled qubits
[15-17]. However, only for systems of at least two qubits,
the central issue of entanglement can be studied. The physi-
cally available types of qubit coupling can be classified as
Heisenberg-type exchange that is typical for real spin-1/2
systems, and Ising-type coupling, which is characteristic for
pseudospin setups, where the computational degrees of free-
dom are not real spins. In the latter, the different spin com-
ponents typically correspond to distinct variables, such as
charge and flux [10,18] whose couplings can and have to be
engineered on completely different footing. Previous work
[16,17] presented the properties of a system of two coupled
solid-state qubits that are coupled via 0';”@ O';j) type cou-
pling as proposed in Ref. [14] as the current-current coupling
of superconducting charge quantum bits.

On the other hand, many systems such as inductively
coupled flux qubits [6], capacitively coupled charge qubits
[7,8], and other pseudospin systems [19] are described by a
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O'(Zi)® crij ) Ising-type coupling. This indicates that the com-
putational basis states are coupled, which, i.e., in the case of
flux qubits are magnetic fluxes, whereas o,,, are electric
charges. The o, observable is a natural way of coupling,
because it is typically easy to couple to. We will study a two
qubit-system coupled this way that is exposed to Gaussian
noise coupling to o, the “natural” observable. This ex-
ample accounts for the crucial effect of electromagnetic
noise in superconducting qubits. We will compare both the
cases of noise that affects both qubits in a correlated way and
the case of uncorrelated single-qubit errors. We determine
the decoherence properties of the system by application of
the well-known Bloch-Redfield formalism and determine
quality factors of a controlled-NOT (CNOT) gate for both
types of errors and feasible parameters of the system.

II. MODEL HAMILTONIAN

We model the Hamiltonian of a system of two qubits,
coupled via Ising-type coupling. Each of the two qubits is a
two-state system that is described in pseudospin notation by
the single-qubit Hamiltonian [13]

. 1 .

qu:_EEUZ_EAU.\" (1)
where € is the energy bias and A the tunnel matrix element.
The coupling between the qubits is determined by an extra
term in the Hamiltonian Hyy= — (K/Z)&E”@ &52) that repre-
sents e.g., inductive interaction (directly or via flux trans-
former) in the case of flux qubits [6,20]. Thus, the complete
two-qubit Hamiltonian in the absence of a dissipative envi-
ronment reads

o)1
— ~(i ~ (i 1)~ (2
qub—iZE,Z —5ya0l =500 |-5K"e . (2)

The dissipative (bosonic) environment is conveniently mod-
eled as either a common bath or two distinct baths of har-
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monic oscillators, coupling to the o, components of the two
qubits. This approach universally models baths which pro-
duce Gaussian fluctuations, such as the noise from linear
electrical circuits. An example for a situation described by a
common bath is long correlation length electromagnetic
noise from the experimental environment or noise generated
or picked up by coupling elements such as flux transformers
[6]. Short correlation length radiation or local readout and
control electronics coupling to individual qubits [13] might
be described as coupling to two uncorrelated baths of har-
monic oscillators.

One should note that if the number of qubits is increased
to more than two, there might also occur dissipative effects
that neither affect all qubits nor only a single qubit, but rather
a cluster of qubits, thus, enhancing the complexity of our
considerations [21].

In the case of two uncorrelated baths, the full Hamiltonian
reads

1 o1 N
2t — B O NN G IR 8 <0
2qb izzl,l ) €,0; ) iOy 2Uz

©)

| N
S KGG L H, Hy,

where each qubit couples to its own, distinct harmonic oscil-

lator bath Hp, i=1.2, via the coupling term UE"))A(('), i
=1,2, that bilinearly couples a qubit to the collective bath

coordinate X¥=¢Z \,x,. We again sum over the two qu-
bits. In the case of two qubits coupled to one common bath,
we model our two-qubit system with the Hamiltonian

1
D

. JUPREE B,
2 (ei0§’)+A,-a'ﬁ.'))—EKa'gl)a'(zz)
=12

+%(&§'>+&§2>)X+H3, @)
where Hp denotes one common bath of harmonic oscillators.

The appropriate starting point for our further analysis is
the singlet/triplet basis, consisting of |TT>::( 1,0,0,0)7,
AT +11)=(0,1,0,0)7, [11):=(0,0,1,0)7, and the
singlet state (1/y2)([11)—|11)):=(0,0,0,1)". In the case of
flux qubits, the T and | states correspond to clockwise and
counterclockwise currents respectively.

In this basis, the undamped Hamiltonian H,, , Eq. (2), of
the two-qubit system assumes the matrix form

e+tK 7 0 —An
e — 1 7 -K n Ae )
267 2 n K—e€ Ap |’
—-Anp Ae Ay —K

with e=e;+e, 7=(A;+4)/\2, Ap=(A;-A)/\2,
and Ae=€,— €,. From now on, for simplicity, we concen-
trate on the case of equal parameter settings, A;=A, and
€=¢,.
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If we now also express the coupling to the dissipative
environment in this basis, we find in the case of coupling to
two uncorrelated distinct baths that

e—s+K n 0 0
1 n -K n —As
thb:_f 5 (6)
g 2 0 n K—e€+s 0
0 —As 0 -K

with s=X,+X, and As=X,—X,. Here, the bath mediates
transitions between the singlet and triplet states, the singlet is
not a protected subspace.

In the case of two qubits with equal parameters that are
coupled to one common bath, we obtain the matrix

e—s+K g 0 0

1 n —-K n 0
H;hb:_f 5 (7)

9 2 0 n K—ets O

0 0 0 -K

where s=2X and As=0. One directly recognizes that com-
pared to Eq. (6) in this case, thermalization to the singlet
state is impeded, because Eq. (7) is block diagonal in the
singlet and triplet subspaces. The singlet and triplet are com-
pletely decoupled from each other, and in the case of one
common bath the singlet is also completely decoupled from
the bath and thus, protected from dissipative effects. There-
fore, a system in contact with one common bath that is pre-
pared in the singlet state will never experience any decoher-
ence effects. The singlet state is a decoherence free subspace
(DFS) [22], although a trivial, one-dimensional one.

III. EIGENENERGIES AND EIGENSTATES
OF THE TWO-QUBIT HAMILTONIAN

We calculate exact analytical eigenvalues and eigenvec-
tors of the unperturbed two-qubit system Hamiltonian in the
aforementioned symmetric case of Eq. (5), which reads

e+K 0 0

_— I{f » —-K 7 0 ®
26 2| o 7 K—e 0
0 0 0 -K

This Hamiltonian is block diagonal and the largest block, the
triplet, is three dimensional, i.e., it can be diagonalized using
Cardano’s formula. Details of that calculation are given in
Ref. [23]. The case of nonidentical qubits is more easily
handled numerically.

In the following, |E1), |E2), |E3), and |E4) denote the
eigenstates of the two-qubit system. The eigenenergies of the
unperturbed Hamiltonian (8) depend on the three parameters
K, €, and 7. Fig. 1 displays the eigenenergies in more detail
for typical experimentally accessible values. The values that
are chosen for the parameters €, 7, and K in Fig. 1 corre-
spond to what can be reached in flux qubits. They typically
assume values of a few GHz resembling the parameters
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FIG. 1. Plot of the eigenenergies of the eigenstates |E1), |E2), |E3), and |E4). From upper left to lower right: (1) K= 7=E, and € is
varied, (2) K=10E,, n=E,, and € is varied; the inset resolves the avoided level crossing due to the finite transmission amplitude 7; (3)

n=€e=E, and K is varied; (4) K=€=E, and 7 is varied.

of known single- and two-qubit experiments in Delft [13]
and at MIT [24]. Therefore, we will use a characteristic en-
ergy scale E,, which is typically E;=1 GHz. The corre-
sponding scales are #,=1 ns, w,=27X1 GHz, and T,
=v,(hlkz)=4.8X10"2 K. Panel (1) shows that for large
values of €, two of the eigenenergies are degenerate (namely,
for €>7,K the states |E1) and |E4) equal the states
AN2)(T1y=111)) and (1/V2)(|T1)+[L1)). hence the
eigenenergies are degenerate) while near zero energy bias
(magnetic frustation f=1/2) all four eigenenergies might be
distinguished. Note also that, therefore, at zero energy bias,
the transition frequency w;4,= — wy has a local maximum,
which, as will be shown below, can only be accessed via
nonsymmetric driving.

If K is set to a big positive value corresponding to large
ferromagnetic coupling [Fig. 1, panel (2), K=10E,], the
Hamiltonian (8) is nearly diagonal and, hence, the eigen-
states in good approximation are equal to the singlet/triplet
basis states. In this case, |E3) equals the triplet state
(N2Y((TL)+]11), |E2) and |E4) equal |11) and || ]),
respectively, for positive values of €. For large negative val-
ues of €, the two states |E2) and |E4) become equal || |)
and |17) with a pseudo-spin-flip between clockwise and
counterclockwise rotating currents at e=0 when going from
positive to negative €. In the case of large ferromagnetic
coupling, the ground state tends towards the superposition
(IN2)(|11)+]11)). Panel (2) shows that only for e equal
to zero, both |E2)=|11) (|E2)=||]), for negative €) and
|[E4)=|]1) (|E4)=|T1T), for negative €) have the same en-
ergies (which one would expect if the —(1/2)K agl )O'(Zz) term
in the Hamiltonian dominates), because if € is increased, the

e,»&(zi) (i=1,2) terms in the Hamiltonian change the energy.

For large antiferromagnetic coupling, |—K|>€,A the
states |T|) and || T) are favorable. In this limit, the ground
state tends towards (1/y2)(|11)+]/1)) and the energy
splitting between (1/42)([T1)+[11)) and (142)(|1])
—|17)) vanishes asymptotically, leaving the ground state
nearly degenerate.

From Fig. 1, panel (3), one directly recognizes that the
singlet eigenenergy crosses the triplet spectrum, which is a
consequence of the fact that the singlet does not interact with
any triplet states. At zero energy bias (magnetic frustration
f=1/2, for a flux qubit), none of the eigenstates equal one of
the triplet basis states (e.g., as observed for a large energy
bias €), they are rather nontrivial superpositions. This is elu-
cidated further in the following paragraph. The inset of panel
(2) depicts the level anticrossing between the eigenenergies
of the two states |E2) and |E4) due to quantum tunneling.

In general, the eigenstates are a superposition of singlet/
triplet states. Figure 2 shows how singlet/triplet states com-
bine into eigenstates for different qubit parameters. The first
cigenstate |E1) equals (1/y2)(|T1)—|11)) for all times
while the other eigenstates |E2), |E3), and |E4) are in gen-
eral superpositions of the singlet/triplet basis states. For large
values of | €|, the eigenstates approach the singlet/triplet) ba-
sis states. In particular, at typical working points, where e
~5A [13], the eigenstates already nearly equal the singlet/
triplet basis states. Hence, although the anticrossing de-
scribed above corresponds to the anticrossing used in Refs.
[9,25] to demonstrate Schrodinger’s cat states, enfanglement
is prevalent away from the degeneracy point. For an experi-
mental proof, one still would have to show that one has
successfully prepared coherent couplings by spectroscopi-
cally tracing the energy spectrum. Note that, for clarity, in
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FIG. 2. Plot of the amplitude of the different singlet (triplet) states of which the eigenstates denoted by |E1), |E2), |E3), and |E4) are
composed for the four eigenstates. In all plots € is varied, and K and 7 are fixed to E .

Fig. 2, the interqubit coupling strength K is fixed to a rather
large value of E that also sets the width of the anticrossing,
which potentially can be very narrow.

Spectroscopy

As a first technological step towards demonstrating coher-
ent manipulation of qubits, usually the transition frequencies
between certain energy levels are probed [9,25], i.e., the en-
ergy differences between the levels. Figures 3 and 4 depict
the transition frequencies between the four eigenstates. The
transition frequencies are defined as w,,,=(E,—E,,)/f and

S I R
2 ) 2
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1 N T TR

bl

o
WE,

FIG. 3. Plot of the absolute value of the transition frequencies
W3y, Wy, and w3y . In the left column K= 7=0.2E and € is var-
ied. In the right column, K=0.2E,, e=E, and 7 is varied.

®,y=— 0,,, . The transitions between the singlet state |E1)
and the triplet states are forbidden in the case of one com-
mon bath, due to the special symmetries of the Hamiltonian
(4), if the system is driven collectively through a time-
dependent energy bias €;(¢) = €,(t). However, in the case of
two distinct baths, the environment can mediate transitions
between the singlet and the triplet states.

Not all transition frequencies have local minima at €
=0. The frequencies w,; and w3, have local maxima at zero
energy bias e. This can already be inferred from Fig. 1, panel
(1), the energy of the eigenstate | E4) has a local minimum at
€=0. Similarily, the substructure of w3, can be understood
from Fig. 1: the frequency ws4 has a local maximum at €
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FIG. 4. Plot of the transition frequencies w,;, wy;, and ws,. In
the left column, K= 7=0.2E and € is varied. In the right column,
K=0.2E , e=E,, and 7 is varied.
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=0, because of the local minimum of the eigenenergy of the
state |E4). First, if € is increased, the level spacing of |E4)
and |E3) decreases. Then, for larger values of €, the level
spacing of |E4) and |E3) increases again. Thus, the structure
observed for w34 around e=0 emerges in Fig. 4.

IV. BLOCH-REDFIELD FORMALISM

In order to describe decoherence in the weak damping
limit, we use the Bloch-Redfield Formalism [26]. It provides
a systematic way of finding a set of coupled master equations
which describes the dynamics of the reduced (i.e., the reser-
voir coordinates are traced out) density matrix for a given
system in contact with a dissipative environment and has
recently been shown to be numerically equivalent to the
more elaborate path-integral scheme [27]. The Hamiltonian
of our two-qubit system in contact with a dissipative envi-
ronment, Egs. (3) and (4), has the generic “‘system+bath”
form

H,,(t)=H,,+Hp+H;,,, ©)

where Hj is a bath of harmonic oscillators and H;,,, inherits
the coupling to a dissipative environment. In our case, the
effects of driving are not investigated. In Born approxima-
tion and when the system is only weakly coupled to the
environment, Bloch-Redfield theory provides the following
set of equations for the reduced density matrix p describing
the dynamics of the system [28,29]:

pnm(t):7iwnmpnm(t)7% ank(/pk(’(t)s (10)
where  @,,=(E,—E,)/fi, and max,, Re(R,o)]
<min,,,,|®,, must hold. The Redfield relaxation tensor
R, .x¢ comprises the dissipative effects of the coupling of the
system to the environment. The elements of the Redfield
relaxation tensor are given through golden rule rates [28]

ank{’: 5€m2r Ffr:rr>k+ 2 kZ Ffrrm
_F(€:121k 1_‘fmnk (11)

A. Two qubits coupled to two distinct baths

We now evaluate the Golden rule expressions in Eq. (11)
in the case of two qubits, each coupled to a distinct harmonic
oscillator bath. Here, H,(t) = exp(iHgt/h)Hexp(—iHpgt/h) de-
notes the coupling between system and bath in the interac-
tion picture, and the bracket denotes thermal average of the
bath degrees of freedom. Writing down all contributions
gives

(mnk

o
F(f) :h—zj dte—imnkr<e[i<HB‘+HBZ>t/h]
0

X (04, @ XD+ 03, @R D))l =iy +Hy uit]

X (o) @XD+02) @XD)), (12)
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where af’llm (i=1,2) are the matrix elements of ¢'” with

respect to the eigenbasis of the unperturbed Hamiltonian (8)
and likewise for I',) .

We assume Ohmic spectral densities with a Drude cutoff.
This is a realistic assumption, i.e., for electromagnetic noise
[13] and leads to integrals in the rates which are tractable by
the residue theorem. The cutoff frequency w, for the spectral
functions of the two qubits is typically assumed to be the
largest frequency in the problem, this is discussed further in
Sec. IVE,

aho ahw

Ji(w)= and Jy(w)= (13)
1+2 1+2
w? w?

c c

The dimensionless parameter « describes the strength of the
dissipative effects that enter the Hamiltonian via the coupling
to the environment, described by s and As. In order for the
Bloch-Redfield formalism, which involves a Born approxi-
mation in the system-bath coupling, to be valid, we have to
assume «,<<1. After tracing out over the bath degrees of
freedom, the rates read

1
F%;Lfg[w.(wnk) + A (@) [ coth( Bfi w,4/2)— 1]

[AM (wnk’ +AM (wnkvl)] (14)

WlthA] Aémnk Uilgnz Elizk’A27A€mnk U(zgnzgi,zrgk’and
M=(Q,i)= Pf dw [Coth(,Bﬁw/Z)Q+w]

(15)

here P denotes the principal value. Likewise,
(=) 1 1 2
F(mnkzg[A Jl(wfm) +A ‘,2(w4.7m)][00th(ﬂﬁw{7m/2) +1 ]
T A M (00,2 F A M (0g,,1)] (16)

The rates T'("), and T'(,) might be inserted into Eq. (11) to
build the Redfield tensor. Note, here, that for w,;—0, and
we,,— 0 respectively, the real part of the rates (which is re—
spons1ble for relaxation and dephasmg) is of value I'(")
U=/ e, ol a+ 0@ o) ar].

To solve the set of differential equatlons (10), it is conve-
nient to collapse p into a vector. In general, the Redfield
equations (10) without driving are solved by an ansatz of the
type p(t)=Bexp(Rf)B™'p(0), where R is a diagonal matrix.
The entries of this diagonal matrix are the eigenvalues of the
Redfield tensor (11), written in matrix form, including the
dominating term i w,,,, [cf. Eq. (10)]. Here, the reduced den-
sity matrix p=(py;, ....pas)" is written as a vector. The
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B. Two qubits coupled to one common bath

For the case of two qubits coupled to one common bath,
we perform the same calculation as in the preceding section,
which leads to expressions for the rates analogous to Egs.
(16)

r<+>—1AJ h(B% /21+iA
{’mnk_sﬁ wnk)[COt (B Wy ) ] 4h
® J(w)
><’Pf dwﬁ[coth(ﬁh w2)w,;— w],
0 0 — Wy
(17)
with A= A{’mnkia—( (m E]rzk+o-(]f)m izrzk+0—52;nlo'(z,|)3k
+ 02,0, and
re) = AJ(w(m)[coth(,Bhw(m/Z)+1]+ yy=
® J(w)
XP dwﬁ[coth(ﬁﬁwﬁ)wem-‘rw].
0 0 = Wy,
(18)

The difference between the rates for the case of two distinct

baths (14) and (16) are the two extra terms 0'(12," Eerk and

of freedom. In the case of one common bath, there is only
one spectral function, which we also assume to be Ohmic
J(w)=(ahw)/(1+w2/w?). For w,;—0, and w,,,—0, re-
spectively, the real part of the rates is of the value T'})

[mnk =(a/4Bh)A, for wy,, ,0,;,—0.

C. Dynamics of coupled flux qubits with dissipation

The dissipative effects affecting the two-qubit system lead
to decoherence, which manifests itself in two ways. The sys-
tem experiences energy relaxation on a time scale 7,=1"p
(I'k is the sum of the relaxation rates of the four diagonal
elements of the reduced density matrix; I'x=—2,0, and
®, are the eigenvalues of the matrix that consists of the
tensor elements R, ,, , ., n,m=1,...,4), called relaxation
time, into a thermal mixture of the system’s energy eigen-
states. Therefore, the diagonal elements of the reduced den-
sity matrix decay to the value given by the
Boltzmann factors. The quantum coherent dynamics of the
system are superimposed on the relaxation and decay on a

usually shorter time scale 7, —F Y(i,j=1,... 4i#j and
F¢"m= - ReR,ibm nom) termed dephasmg time. Thus, dephas-

ing causes the off-diagonal terms (coherences) of the reduced
density matrix to tend towards zero.

First, we investigate the incoherent relaxation of the two-
qubit system out of an eigenstate. At long times, the system
is expected to reach thermal equilibrium, pL,q=(1/Z)e’BH .
Special cases are T=0, where p,, equals the projector on
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FIG. 6. Plot of the occupation
probability of the four eigenstates
|E1), |E2), |E3), and |E4) for

initially starting in one of the

5 eigenstates |E1) (upper row) or
t |E2) (lower row) at T=21T,.
The left column illustrates the
case of two qubits coupling to one

common bath and the right col-
umn the case of two qubits cou-
pling to two distinct baths. The
energies K, € and #n are all fixed
to E,. The characteristic time
scale 7, is 1= 1/v.
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the ground state and 7—, where all eigenstates are occu-
pied with the same probability, i.e., peq:(l/4)f, Figures 5
and 6 illustrate the relaxation of the system prepared in one
of the four eigenstates for temperatures 7=0 and T
=21T, respectively. The qubit energies K, €, and 7 are all
set to E, and « is set to @=10"3. From Fig. 1, one recog-
nizes relaxation into the eigenstate |E2), the ground state for
this set of parameters.

At low temperatures (7=0), we observe that for the case
of two distinct uncorrelated baths, a system prepared in one
of the four eigenstates always relaxes into the ground state.
In the case of two qubits coupling to one common bath, this
is not always the case, as can be seen in the upper left panels
of Figs. 5 and 6. This can be explained through our previous
observation, that the singlet is a protected subspace: Neither
the free nor, unlike in the case of distinct baths, the bath-
mediated dynamics couple the singlet to the triplet space.
Moreover, we can observe that relaxation to the ground state
happens by populating intermediate eigenstates with a lower
energy than the initial state the system was prepared in at ¢
=0 (cf. Fig. 1).

For high temperatures (7=21T), the system thermalizes
into thermal equilibrium, where all eigenstates have equal
occupation probabilities. Again, in the case of one common
bath, thermalization of the singlet state is impeded and the
three eigenstates |E2), |E3) and |E4) have equal occupation
probabilites of 1/3 after the relaxation time.

If the system is prepared in a superposition of eigenstates,
e.g., |[E3) and |E4) as in Fig. 7, which are not in a protected
subspace, we observe coherent oscillations between the
eigenstates that are damped due to dephasing and after the
decoherence time, the occupation probability of the eigen-
states is given by the Boltzmann factors. This behavior is
depicted in Fig. 7. Here, for @=10"3, the cases of T=0 and
T=21T, are compared. When the temperature is low
enough, the system will relax into the ground state |E2), as
illustrated by the right column of Fig. 7. Thus, the occupa-
tion probability of the state (1/y2)(|E3)+|E4)) goes to
zero. Here, in the case of zero temperature, the decoherence

times for the case of one common or two distinct baths are of
the same order of magnitude. The left column illustrates the
behavior when the temperature is increased. At T=2.1T,
the system relaxes into an equally populated state on times
much shorter than for 7=0. For low temperatures, the char-
acteristic time scale for dephasing and relaxation is some-
what shorter for the case of one common bath (7'%/72°
~0.9, for =10"3). This can be explained by observing the
temperature dependence of the rates shown in Fig. 8. Though
for the case of one common bath, two of the dephasing rates
are zero at 7=0, the remaining rates are always slightly
bigger for the case of one common bath compared to the case
of two distinct baths. If the system is prepared in a general
superposition, here |E3) and |E4), nearly all rates become
important thus compensating the effect of the two rates that
are approximately zero at zero temperature and leading to
faster decoherence.

If « and, therefore, the strength of the dissipative effects
is increased from a=1077 to a= 10’2, the observed coher-
ent motion is significantly damped. Variation of « leads to a
phase shift of the coherent oscillations, due to renormaliza-
tion of the frequencies [16]. However, in our case, the effects
of renormalization are very small, as discussed in Sec. IV E,
and cannot be observed in our plots.

D. Temperature dependence of the rates

Figure 8 displays the dependence of typical dephasing
rates and the relaxation rate I on temperature. These deco-
herence rates are the inverse decoherence times. The rates
are of the same magnitude for the cases of one common bath
and two distinct baths. As a notable exception, in the case of

one common bath, the dephasing rates F%le = F‘m £o to zero

when the temperature is decreased, while all other rates satu-
rate for 7—0. This phenomenon is explained later on. If the
temperature is increased from T,= (h/kg)v,=4.8X 1072 K,
the increase of the dephasing and relaxation rates follows a
power-law dependence. It is linear in temperature 7' with a
slope given by the prefactors of the expression in the Red-
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position of eigenstates |E3) and |E4). The first row shows the behavior for two qubits coupling to two uncorrelated baths. The lower row
shows the behavior for two qubits coupled to one common bath. The qubit parameters €, 7, and K are set to E; and « is set to «
=10"3. The inset resolves the time scale of the coherent oscillations.
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field rates that depends on temperature. At temperature 7'
~(0.17,, the rates show a sharp increase for both cases. This
roll-off point is set by the characteristic energy scale of the
problem, which in turn is set by the energy bias €, the trans-
mission matrix element 7, and the coupling strength K. For
the choice of parameters in Fig. 8, the characteristic energy
scale expressed in temperature is 7~0.17 .

Note that there is also dephasing between the singlet and
the triplet states. When the system is prepared (by applica-
tion of a suitable interaction) in a coherent superposition of
singlet and triplet states, the phase evolves coherently. Then
two possible decoherence mechanisms can destroy phase co-
herence. First, “flipless” dephasing processes, where (E) re-
mains unchanged. These flipless dephasing processes are de-
scribed by the terms for wy,, ,,;—0 in the rates, Egs. (16)
and (18). Obviously, these terms vanish for 7—0, as the
low-frequency component of Ohmic Gaussian noise is
strictly thermal. Second, relaxation due to emission of a bo-
son to the bath is also accompanied by a loss of phase co-
herence. This process in general has a finite rate at T=0.
This explains the T dependence of the rates in the single-bath
case: |E1) alone is protected from the environment. As there
are incoherent transitions between the triplet eigenstates even
at T=0, the relative phase of a coherent oscillation betweeen
|[E1) and any of those is randomized, and the decoherence

rates I',  are finite even at 7=0. As a notable exception,

|E2), the lowest-energy state in the triplet subspace, can
only be flipped through absorption of energy, which implies
that the dephasing rate I', also vanishes at low temperature.
The described behavior can be observed in Fig. 8.

If the parameters € and 7 are tuned to zero, thus K being
the only nonvanishing parameter in the Hamiltonian, all
dephasing and relaxation rates will vanish for 7=0 in the

1.5 2.0

case of one common bath. This behavior is depicted in Fig.
9. It originates from the special symmetries of the Hamil-
tonian in this case and the fact that for this particular two-
qubit operation, the system Hamiltonian and the coupling to
the bath are diagonal in the same basis. This special case is
of crucial importance for the quantum gate operation as de-
scribed in Sec. V and affects the gate quality factors.

E. Renormalization effects

Next to causing decoherence, the interaction with the bath
also renormalizes the qubit frequencies. This is mostly due to
the fast bath modes, and can be understood analogous to the
Franck-Condon effect, the Lamb shift, or the adiabatic renor-
malization [30]. Renormalization of the oscillation frequen-
cies w,,, is controlled by the imaginary part of the Redfield
tensor [16]

— @,y 7= Oy — IMR i - (19)

Oy

Note that ImR,,,,,,,,,= —ImR,, ..., due to the fact that the cor-
relators in the Golden Rule expressions have the same parity.
The imaginary part of the Redfield tensor is given by

1 ® 1
= ClB—P [ dwf<w>(2 2 )

W7 Wy

X[ coth( B w/2) w,;,— w] (20)

and
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FIG. 10. The left plot depicts the ratio of the renormalization effects and the corresponding transition frequencies.
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Parameters: «

=103, T=0, and w,/w, is varied between 10? and 10° for several frequencies (w;,, w4, and w,3) for the case of two baths and in the
case of w3 also for the case of one common bath. The parameters for the right plot are @=10"3, T=2.1T,, and . /w, is varied between
10* and 10°. The inset of the left plot shows a log-log plot of the temperature dependence of the renormalization effects. Here =103 and
,=10". Note that for small temperatures the renormalization effects do nor depend on temperature. (This is elucidated further in Sec.
IV E.) The plots are scaled logarithmically to emphasize the logarithmic divergence of the renormalization effects with w, .

1
1m0 = Clini ﬁPf dwf(w)(w — )
tm

X[ coth(Bhw/2) w,+ w], (21)
where P denotes the principal value, and C{>% are prefac-
tors defined, in the case of two distinct baths, according to
CP o= 4[0'”2”1 (,1,3,(-0— 0(2) Sz,zk] and in the case of one
common bath CI® =1 LA Here, for simplicity, we assumed
=a,=a and thus, J;(w)=J,(w)=J(w). Evaluation of
the integral leads to the following expression for T'{!)  :

2,
aw
I (= Clh e | (14 c) + ()
Cmnk fk(2+wnk)¢/ 2)t (e,
w,
} (22)
Wy
with ¢:=(Bhw,)/(27) and c,:=(Bhw.)/(27). In the
case of '}, ), the expression is
20,
Iml{,) =Cib® < " |yl +c,)+ (e
€mnk fm'ILZ’TT(a)?‘Fw%m) '7[’( 2) ’ﬁ( 2)
wC
*2Re[l,[l(icl)]+77w7 , (23)
tm

with ¢ :=(w¢,,B8%)/(27). The terms in Egs. (22) and (23)
which are linear in w. give no net contribution to the imagi-
nary part of the Redfield tensor [16]. To illustrate the size of
the renormalization effects, the ratio of the renormalization
effects to the frequencies which are renormalized is depicted
in Fig. 10.

If ¢, and ¢, are large, and the digamma functions can be
approximated by a logarithm, the resulting expression for the
renormalization effects will be independent of temperature.

The temperature dependence of Eqgs. (22) and (23) at higher
temperatures, where ¢, and ¢, are small and the renormal-
ization effects are very weak, is shown in Fig. 10. The rates
(22) and (23) diverge logarithmically with w, in analogy to
the well-known ultraviolet-divergence of the spin boson
model [30]. When comparing the left (T=0) and right (T
=2.1T,) panel, one recognizes that for the first case, one
common bath gives somewhat smaller renormalization ef-
fects than two distinct baths, while in the second case for T
=2.1T,, the renormalization effects deviate only slightly
(see the behavior for w,3) and the renormalization effects are
smaller for the case of two distinct baths. The effects of
renormalization are always very small [|Im(R,, ,, )/ @]
below 1% for our choice of parameters] and are therefore,
neglected in our calculations. However, having calculated
Egs. (22) and (23), these are easily incorporated in our nu-
merical calculations. The case of large renormalization ef-
fects is discussed in Ref. [31].

We only plotted the size of the renormalization effects for
w1, W4, and w3y, because in general, all values of w,,, are
of the same magnitude and give similar plots. The size of the
renormalization effects diverges linearly with «, the dimen-
sionless parameter that describes the strength of the dissipa-
tive effects.

For flux qubits, the cutoff frequency w, is given by the
circuit properties. For a typical first order low-pass LR filter
[32] in a qubit circuit [13], one can insert R=50 ) (typical
impedance of coaxial cables) and L~1 nH (depends on the
length of the circuit lines) into w;r=R/L, and gets that
0 r~5%X10'"" Hz. w,p is the largest frequency in the prob-
lem (see again Ref. [13], Chap. 4.5) and w.>w; should
hold. Then w,~10"* Hz (=10%E,) as cutoff frequency is a
reasonable assumption.

V. GATE QUALITY FACTORS

In Sec. IV, we evaluated the dephasing and relaxation
rates of the two-qubit system that is affected by a dissipative
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environment. Furthermore, we visualized the dynamics of
the two-qubit system. This does not yet allow a full assess-
ment of the performance as a quantum logic element. These
should perform unitary gate operations and based on the
rates alone, one can not judge how well quantum gate opera-
tions might be performed with the two-qubit system. There-
fore, to get a quantitative measure of how our setup behaves
when performing a quantum logic gate operation, one can
evaluate gate quality factors [33]. The performance of a two-
qubit gate is characterized by four quantities: the fidelity,
purity, quantum degree, and entanglement capability. The fi-
delity is defined as

16
1 i i j
F=1¢ 2 (VLIS UG, @9
=

where U is the unitary matrix describing the desired ideal
gate and the density matrix obtained from attempting a quan-
tum gate operation in a hostile environment is p{;=p(tG),
which is evaluated for all initial conditions p(0)
=|WJ Y(Wi | . The fidelity is a measure of how well a quan-
tum logic operation was performed. Without dissipation, the
reduced density matrix pfé after performing the quantum gate
operation, applying Ug; and the inverse UE would equal
p(0). Therefore, the fidelity for the ideal quantum gate op-
eration should be 1.
The second quantifier is the purity

16

1 .
P=1g 2, t(pp)?). (25)

which should be 1 without dissipation and 1/4 in a fully
mixed state. The purity characterizes the effects of decoher-
ence.

The third quantifier, the quantum degree, is defined as the
maximum overlap of the resulting density matrix after the
quantum gate operation with the maximally entangled states,
the Bell states

Q=max(W,,. || V5.). (26)
j k

me
J»

where the Bell states ¥

me

are defined according to

+ +
gD g I )
‘q’107|ll>*|TT>’ |\I,11J1T>*|Tl>' (28)

me ™ \/5 me ™ \/5

For an ideal entangling operation, e.g., the controlled-NOT
gate, the quantum degree should be one. The quantum degree
characterizes nonlocality. It has been shown [34] that all den-
sity operators that have an overlap with a maximally en-
tangled state that is larger than the value 0.78 [17] violate the
Clauser-Horne-Shimony-Holt inequality and are thus nonlo-
cal.

PHYSICAL REVIEW A 67, 042319 (2003)

The fourth quantifier, the entanglement capability C, is the
smallest eigenvalue of the partially transposed density matrix
for all possible unentangled input states |, ). (see below).
It has been shown [35] to be negative for an entangled state.
This quantifier should be — 0.5, e.g., for the ideal Uxog, thus
characterizing a maximally entangled final state. Two of the
gate quality factors, namely, the fidelity and purity might
also be calculated for single-qubit gates [12]. However, en-
tanglement can only be observed in a system of at least two
qubits. Therefore, the quantum degree and entanglement ca-
pability cannot be evaluated for single-qubit gates.

To form all possible initial density matrices, needed to
calculate the gate quality factors, we use the 16 unentangled
product states | ), j=1,...,16 defined [17] according to
W), (ab=10. . 4, with [W)=[1), [W,)=|1),
(W) =N +1). and [W)=AN)(1)+il1)).
They form one possible basis set for the superoperator vg
with p(15)=vsp(0) [17,33]. The states are chosen to be
unentangled for being compatible with the definition of C.

A. Implementation of two-qubit operations
1. Controlled phase-shift gate

To perform the controlled-NOT operation, it is necessary
to be able to apply the controlled phase-shift operation to-
gether with arbitrary single-qubit gates. In the computational

basis (]00),/01),/10),|11)), the controlled phase-shift opera-
tion is given by
1 0 0 O
01 0 0
Ucz(e)= 0 1ol (29)
0 0 e

and for ¢ =, up to a global phase factor,
T T T
— i (D i (2 i (D (2)
Ucy exp(z40'z )exp(z4a'z )exp(z40Z o, )

Note that in Eq. (30) only o, operations, which commute
with the coupling to the bath, are needed. The controlled
phase-shift operation together with two Hadamard gates and
a single-qubit phase-shift operation then gives the controlled-
NOT gate.

2. Controlled-NoT gate

Due to the fact that the set consisting of the Uxgr (or
controlled-NOT) gate and the one-qubit rotations, is complete
for quantum computation [36], the Uyxor gate is a highly
important two-qubit gate operation. Therefore we further in-
vestigate the behavior of the four gate quality factors in this
case. The Uxor operation switches the second bit, depending
on the value of the first bit of a two bit system. In the com-
putational basis, this operation has the following matrix
form:
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TABLE I. Parameters of the Hamiltonians which are needed to
perform the Uxor gate operation; only the nonzero parameters are
listed: §=E| in our case.

No. Operation Parameters (E,) Time (s)
At o
1 exp| —iz( — 6=—§ A=—§ TI:Q
2\ V2 2¢
1
2 exp(igog) 6=¢ TZZE
: T e el
3 exp|i 007 vy
1
4 exp(i%ro'f) &=§ (L
[ 1
5 exp‘iqu) €=§ TSZE
5
P+ 32
6 exp —i;(ix\/E = &=—¢ A=—§ Tﬁ*ﬂ
1 0 0 O
01 0 0
Uxor= 31
XOR 00 0 1 (31)
0 1 0

Up to a phase factor, the two-qubit Uxgg (or CNOT) operation
can be realized by a sequence of five single-qubit and one
two-qubit quantum logic operations. Each of these six opera-
tions corresponds to an appropriate Hamiltonian undergoing
free unitary time evolution exp[—(i/i)H,,t]. The single-
qubit operations are handled with Bloch-Redfield formalism,
like the two-qubit operations. We assume dc pulses (instan-
taneous on and off switching of the Hamiltonian with zero
rise time of the signal) or rectangular pulses

(@40
Uxor=¢€Xp, *iz e

V2

Ucz(m)

o0t 09) }

V2

.77
‘2

('W (l))
Xexp| i=o,’ |exp
2 z

(32)

where Uc() is given by Eq. (30). This generic implemen-
tation has been chosen in order to demonstrate the compari-
son to other coupling schemes [17] as well as for computa-
tional convenience, it is not necessarily the optimum scheme
for application under cryogenic conditions, where slow rise-
time ac pulses are preferred. Table I shows the parameters we
inserted into the one- and two-qubit Hamiltonian to receive
the Uyog operation. In our case, we assumed {é=E;. How-
ever, there is no restriction in the use of other values for &.
For a typical energy scale of 1 GHz, the resulting times from
Table I are in the nanosecond range.

To better visualize the pulse sequence needed to perform
the quantum Uxor operation, which was already given in

PHYSICAL REVIEW A 67, 042319 (2003)
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FIG. 11. Pulse sequence needed to perform the quantum Uxor
operation. Here, the elements of the unperturbed single- and two-
qubit Hamiltonian needed to perform a certain operation undergo-
ing free unitary time evolution are shown. The dotted horizontal
lines denote £€=0, and the horizontal lines are spaced by |£|=E, .
The durations of each pulse are not equal in general 7,# 7;, i,j
=1,...,6 (cf. Table I).

Table I, Fig. 11 depicts the values of the elements of the
Hamiltonians. Interestingly enough, we find that for the only
two-qubit operation included in the Uy operation, € and 7
are zero. Thus, K is the only nonzero parameter and H,,
assumes diagonal form. For flux qubits, implementing the
pulse sequence Fig. 11 involves negative and positive values
tuning the magnetic frustration through the qubit loop below
or above f=1/2. Note that, e.g., for realistic models of in-
ductively coupled flux qubits, it is very difficult to turn on
the interaction Hamiltonian between the two qubits without
the individual o, terms in the Hamiltonian. However, for the
pulse sequence given in Eq. (32), we might simply perform
the third, fourth, and fifth operations of Eq. (32) at once
using only the Hamiltonian with both the individual o, terms
and the interqubit coupling.

To obtain the final reduced density matrix after perform-
ing the six unitary operations (32), we iteratively determine
the density matrix after each operation with Bloch-Redfield
theory and insert the attained resulting density matrix as ini-
tial density matrix into the next operation. This procedure is
repeated for all possible unentangled initial states given in
the preceding section. We inserted no additional time inter-
vals between the operations. This is usually needed, if one
applies Bloch-Redfield formalism, because it is known to
violate complete positivity on short time scales. However,
we circumvent this problem in our calculations by dropping
the memory after each operation, when we iteratively calcu-
late the reduced density matrix. This procedure may lead to
small inaccuracies as compared to using QUAPPI [17], which,
however, should not affect our main conclusions.

B. Temperature dependence
1. Controlled phase-shift gate

We have analyzed the gate quality factors in the cases of
a common and of two distinct baths, respectively. In Fig. 12,
the temperature dependence of the deviations of the four gate
quality factors from their ideal values are depicted as a log-
log plot. At temperatures below T=2.5X 102 K~0.5T,,
the purity and fidelity are clearly higher for the case of one
common bath, but if temperature is increased above this
characteristic threshold, fidelity and purity are slightly higher
for the case of two baths.

In the case of one common bath the fidelity, purity, and
entanglement capability are approaching their ideal value 1,
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FIG. 12. Log-log plot of the
temperature dependence of the de-
viations of the four gate quantifi-

ers from their ideal values after

performing the controlled phase-
shift (CPHASE) gate operation. In
all cases, a=a,=a,=10"3. The
full curves are provided as guides
to the eye.
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T,

when temperature goes to zero. This is related to the fact that
in the case of one common bath all relaxation and dephasing
rates vanish during the two-qubit step of the controlled
phase-shift gate due to the special symmetries of the Hamil-
tonian, when temperature goes to zero as depicted in Fig. 9.

The controlled phase-shift operation creates entangle-
ment. The creation of entanglement is impeded by decoher-
ence effects that vanish when temperature approaches zero.
Therefore, the entanglement capability exhibits the same be-
havior as the fidelity and purity. For zero dissipation (&
=0), the quantum degree has the value 0.5 but the entangle-
ment capability is —0.5 thus, characterizing a maximum en-
tangled state. The reason is that the Bell-states, which are
generated by the controlled phase-shift gate from the input
states, result in a basis that is different from the used basis,
but can be transformed using only local transformations.

Furthermore, for finite dissipation, Fig. 9 shows that also
for the case of two distinct baths, there are only three non-
vanishing rates for 7—0. The system, being prepared in one
of the 16 initial states, might relax into one of the eigenstates
that is an entangled state.

We observe the saturation of the deviation for the case of
two baths and can directly recognize the effects of the sym-
metries of the controlled phase-shift operation. For given «,
the fidelity and purity cannot be increased anymore by low-
ering the temperature in the case of two distinct baths. Inter-
estingly enough, we find that for two qubits coupling to one
common bath, the situation is different for temperatures be-
low 0.5T,. Above a temperature of T,=4.8X 1072 K, the
decrease of the gate quality factors shows a linear depen-
dence on temperature for both cases of one common or two
distinct heat baths before it again saturates at about 10> K
~2X 10T, . Finite decoherence effects in the fidelity, purity
and entanglement capability at 7=0 for the case of two dis-
tinct baths are resulting from the coupling of the system to
the environment of harmonic oscillators, which (at 7=0) are

10? 10
T,

all in their ground states and can be excited through sponta-
neous emission. But for the case of one common bath, the
deviation from the ideal fidelity goes to zero, when tempera-
ture goes to zero. This is due to the special symmetries (K is
the only nonvanishing parameter in the two-qubit operation)
of the Hamiltonian, which rules out spontaneous emission.
These symmetries are also reflected in the temperature de-
pendence of the rates, Fig. 9. There, for one common bath,
all rates vanish for 7— 0. Note that these rates only describe
the two-qubit part of the operation. However, the single-
qubit part behaves similarly, because the terms in the single-
qubit Hamiltonian are also %o, .

2. Controlled-NoT gate

Different to the preceding section, we now add two
single-qubit operations (Hadamard gates) to the controlled
phase-shift operation that do not commute with the coupling
to the bath. In Fig. 13, the deviations of the gate quality
factors from their ideal values are depicted as a log-log plot.
Again, at temperatures below 7=2.5X10"2 K~0.5T,, the
purity and fidelity are higher for the case of one common
bath, but if temperature is increased above this characteristic
threshold, fidelity and purity are higher for the case of two
baths. Note that, we have chosen a rather large «, this value
can substantially be improved by means of engineering [13].
The fidelity and purity are clearly higher for the case of one
common bath, when temperature is decreased below 0.5T.
This is related to the fact that in the case of one common
bath, all relaxation and dephasing rates vanish during the
two-qubit-step of the Uyog , due to the special symmetries of
the Hamiltonian, when temperature goes to zero as discussed
in the preceding paragraph. However, the quantum degree
and the entanglement capability tend towards the same value
for both the case of one common and two distinct baths. This
is due to the fact that both quantum degree and entanglement
capability are, different than fidelity and purity, not defined
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FIG. 13. Log-log plot of the
temperature dependence of the de-
viations of the four gate quantifi-
ers from their ideal values after
performing the Uxogr gate opera-

tion. In all cases, a=a;=a,

=107, The dotted line indicates
the upper bound set by the
Clauser-Horne-Shimony-Holt  in-
equality. The full curves are pro-
vided as guides to the eye.
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as mean values but rather characterize the “‘best” possible
case of all given input states. This results in the same value
for both cases.

In the recent work by Thorwart and Hanggi [17], the
Uxor gate was investigated for a o'i,”@ a'ﬁ,j ) coupling scheme
and one common bath. They find a pronounced degradation
of the gate performance, in particular, the gate quality factors
only weakly depend on temperature. They set the strength of
the dissipative effects to @=10"*. Their choice of param-
eters was e~ 10E;, A~1E,, and K~0.5E; which is on the
same order of magnitude as the values given in Table 1. As
can be seen in Fig. 13, we also observe only a weak decrease
of the gate quality factors for both the cases of one common
bath and two distinct baths in the same temperature range
discussed by Thorwart and Hinggi, both for a=10"3 and
a=10"* and overall substantially better values. This is due
to the fact that for U'E,i)® o-i.j ) coupling, the Hamiltonian does
not commute with the coupling to the bath during the two-
qubit steps of the Uxggr pulse sequence.

We observe the saturation of the deviation for both the
cases of two baths and one common bath. For given «, the
fidelity and purity can not be increased anymore by lowering
the temperature, different from the behavior for the con-
trolled phase-shift gate that was discussed in the preceding
section. This is due to the application of the Hadamard gate
whose Hamiltonian does not commute with the coupling to
the bath. Above a temperature of 7', the decrease of the gate
quality factors shows a linear dependence on temperature for
both cases. Here, different from the controlled phase-shift
gate, we observe finite decoherence effects in all four gate
quantifiers also at 7=0, both for the case of one common or
two distinct heat baths. These decoherence effects are result-
ing from the coupling of the system to the environment of
harmonic oscillators, which (at 7=0) are all in their ground
states and can be excited through spontaneous emission as
already described above.

102 10

T,

The dotted line in Fig. 13 shows that the temperature has
to be less than about 7=217,=1 K in order to obtain values
of the quantum degree being larger than Q~0.78. Only then,
the Clauser-Horne-Shimony-Holt inequality is violated and
nonlocal correlations between the qubits occur as described
in Ref. [17].

C. Dependence on the dissipation strength

The deviations from the ideal values of the gate quantifi-
ers possess a linear dependence on « as expected. Generally
(if no special symmetries of the Hamiltonian are present),
there are always finite decoherence effects also at 7=0.
Therefore, we can not improve the gate quality factors below
a certain saturation value, when lowering the temperature
[17], as was also discussed in the preceding section. By bet-
ter isolating the system from the environment and by care-
fully engineering the environment [13], one can decrease the
strength of the dissipative effects characterized by «. In or-
der to obtain the desired value of 0.999 99 for F, P, and Q
[17], @ needs to be below 107° at T=0.21T,=10 mK.

D. Time resolved controlled-NOT operation

To investigate the anatomy of the Uyor quantum logic
operation, we calculated the occupation probabilities of the
singlet/triplet states after each of the six operations, of which
the Uxor consists. This time resolved picture of the dynam-
ics of the two-qubit system, when performing a gate opera-
tion, gives insight into details of our implementation of the
Uxor operation and the dissipative effects that occur during
the operation. Thus, we are able to characterize the physical
process, which maps the input density matrix p, to p,,, in an
open quantum system [33]. When the system is prepared in
the state || |)=|00), the Uxog operation (31) does not alter
the initial state and after performing the Uxqgr operation, the
final state should equal the initial state || |)=]00). This can

042319-14

of coupled solid-state qubits



Paper 1

DECOHERENCE AND GATE PERFORMANCE OF COUPLED. ..

PHYSICAL REVIEW A 67, 042319 (2003)

FIG. 14. Time resolved Uyxor
operation. The system is initially
prepared in the state [00). Occu-
pation probabilities of the singlet/

triplet states are shown after
completion of a time step 7; (i

=1,...,6). For a=a=a,
=10"% and T=21T,=1 K clear
deviations from the ideal case can

be observed. Qubit parameters are
set according to Table I. The lines
are provided as guides to the eye.
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clearly be observed in Fig. 14. During the Uyxor operation,
occupation probabilities of the four states change according
to the individual operations given in Eq. (32). At T=21T,,
the case of two baths differs significantly from the case of
one common bath. After the third operation (the two-qubit
operation; only there the distinction between one common or
two distinct baths makes sense), occupation probabilities are
different for both environments resulting in a less ideal result
for the case of two baths.

In Fig. 14, the resulting state after performing the Uyor
operation always deviates more from the ideal value (for a
=0, i.e., no dissipation) for the case of two distinct baths, if
all other parameters are fixed and set to the same values for
both cases. The state P|q is less close to the ideal occupa-
tion probability one and the other singlet/triplet states are

also less close to their ideal value for the case of two distinct
baths. The case of two distinct baths also shows bigger de-
viations from the ideal case («=0) during the Uyxgg opera-
tion (see Fig. 14). But, if the system is initially prepared in
the state [11)=|11), the case of two distinct baths shows
bigger deviations from the ideal case during the Uyor opera-
tion, while the resulting state is closer to the ideal case for
two distinct baths compared to one common bath.

In Figs. 14 and 15, it looks like there would be no deco-
herence effects (or at least much weaker decoherence effects)
after performing the (first two) single-qubit operations. How-
ever, not all input states are affected by the decoherence
effects the same way. And when we regard all possible input
states, there are finite decoherence effects. This can be ex-
plained with Fig. 16. Figure 16 depicts the time resolved

FIG. 15. Time resolved Uxor
operation. The system is initially
prepared in the state |11). Occu-
g pation probabilities of the singlet/

triplet states are shown after
completion of a time step 7; (i

i =1,...,6). For a=a,=a,
=10"2 and T=21T,=1K, de-
1 viations from the ideal case can be
observed. Qubit parameters are set

according to Table I. The lines are
provided as guides to the eye.
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FIG. 16. Time resolved purity for the Uyog operation. The value
of the purity after each time step 7; (i=1,...,6) is shown. Here
a=a;=a,=10"%, and T=2.17,=100 mK (lower panel) or T
=0 (upper panel). Qubit parameters are set according to Table L.
The lines are provided as guides to the eye.

purity when performing the Uxor operation. We clearly ob-
serve that there are finite decoherence effects for the first
single-qubit operations in Eq. (32) as well. The difference
between the single-qubit and two-qubit operations is the
steeper decrease of the purity due to stronger decoherence in
the case of the two-qubit operation. The upper panel in Fig.
16 depicts the behavior of the purity for 7— 0. Decoherence
due to the o, terms in the Hamiltonian will vanish for T
—0 in the case of one common bath.

VI. CONCLUSION

We presented a full analysis of the dynamics and decoher-
ence properties of two solid-state qubits coupled to each
other via a generic type of Ising coupling and coupled, more-
over, either to a common bath, or two independent baths.

We calculated the dynamics of the system and evaluated
decoherence times. From the temperature dependence of the
decoherence rates (Fig. 8), we conclude that both types of
environments show a similar behavior; however, in the case
of one common bath, two of the decoherence rates are zero,
and the remaining ones are slightly larger than in the case of
two distinct baths. This temperature dependence is also re-
flected in the characteristics of the gate quality factors from
quantum information theory, which are introduced as robust

PHYSICAL REVIEW A 67, 042319 (2003)

measures of the quality of a quantum logic operation. We
illustrate that the gate quality factors depend linearly on «,
as expected. The time resolved Uxqg operation (Figs. 14 and
15) again illustrates the difference between one common and
two distinct baths, and moreover, we observe that single-
qubit decoherence effects « o, during the Uyor operation are
weak. The time scales of the dynamics of the coupled two
qubit system are comparable to the time scales, which were
already observed in experiments and discussed in the litera-
ture [13].

The question, whether one common bath or two distinct
baths are less destructive regarding quantum coherence can
not be clearly answered. For low enough temperatures, cou-
pling to one common bath yields better results. However,
when the temperature is increased, two distinct baths do bet-
ter; in both temperature regimes, though, the gate quantifiers
are only slightly different for both cases.

Compared to the work of Thorwart [17], the interaction
part of our model Hamiltonian possesses symmetries (the
Hamiltonian of the two-qubit operation and the errors com-
mute) that lead to better gate quality factors. Furthermore,
analysis of the symmetries and error sources of our model
system can lead to improved coupling schemes for solid-
state qubits. Milburn and co-workers on the other hand fo-
cused on comparison of classical and quantum mechanical
dynamics [15] and estimated the decoherence properties of
two coupled two-state systems.

Governale [16] determined the decoherence properties of
two coupled charge qubits whose Hamiltonian differs from
Eq. (2) by the type of interqubit coupling, namely, 0'(‘})
®U§,2) coupling. However, introducing the quality factors
gives a measure to judge how certain qubit designs perform
quantum gate operations.

As a next step, one should consider driving, to be able to
observe and discuss Rabi oscillations in systems of two
coupled qubits. It should be investigated, how the decoher-
ence properties are modified, if one adds more qubits to the
system.
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Abstract. On the way to solid-state quantum computing, overcoming decoherence
is the central issue. In this contribution, we discuss the modeling of decoherence of
a superonducting flux qubit coupled to dissipative electronic circuitry. We discuss
its impact on single qubit decoherence rates and on the performance of two-qubit
gates. These results can be used for designing decoherence-optimal setups.

1 Introduction

Quantum computation is one of the central interdisciplinary research themes
in present-day physics [1]. It promises a detailed understanding of the often
counterintuitive predictions of basic quantum mechanics as well as a quali-
tative speedup of certain hard computational problems. A generic, although
not necessarily exclusive, set of criteria for building quantum computers has
been put forward by DiVincenzo [2]. The experimental realization of quan-
tum bits has been pioneered in atomic physics, optics and NMR. There, the
approach is taken to use microscopic degrees of freedom which are well iso-
lated and can be kept quantum coherent over long times. Efficient controls
are attached to these degrees of freedom. Even though these approaches are
immensely succesful demonstrating elementary operations, it is not evident
how they can be scaled up to macroscopic computers.

Solid-state systems on the other hand have proven to be scalable in
present-day classical computers. Several proposals for solid-state based quan-
tum computers have been put forward, many of them in the context of su-
perconductors [3]. As solid-state systems contain a macroscopic number of
degrees of freedom, they are very sensitive to decoherence. Mastering and
optimizing this decoherence is a formidable task and requires deep under-
standing of the physical system under investigation. Recent experimental
success [4,5] suggests that this task can in principle be performed.

In this contribution, we are going to study decoherence of superconducting
qubits coupled to an electromagnetic environment which produces Johnson-
Nyquist noise. We show, how the decoherence properties can be engineered

B. Kramer (Ed.): Adv. in Solid State Phys. 43, pp. 763-778, 2003.
© Springer-Verlag Berlin Heidelberg 2003
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by carefully designing the environmental impedance. We will discuss how the
decoherence affects the performance of a CNOT operation.

2 Superconducting Flux Qubits

Superconducting qubits [3,4,5,6] are very well suited for the task of solid-
state quantum computation, because two of the most obvious decoherence
sources in solid-state systems are supressed: Quasiparticle excitations experi-
ence an energy gap and phonons are frozen out at low temperatures [7]. The
computational Hilbert space is engineered using Josephson tunnel junctions
that are characterized by two competing energy scales: The Josephson cou-
pling of a junction with critical current I., Ey = I.®$o/27, and the charging
energy Eq, = 2¢2/Cj of a single Cooper pair on the geometric capacitance
Cy of the junction. Here &, = h/2e is the superconducting flux quantum.
There is a variety of qubit proposals classified by the ratio of this ener-
gies. Whereas another contribution in this volume [8] focuses on the case
of charge qubits, E., > FEj, this contribution is motivated by flux qubit
physics, Ej > E.,. However, most of the discussion has its counterpart in
other superconducting setups as well. Specifically, we discuss a three junction
qubit [6,9], a micrometer-sized low-inductance superconducting loop contain-
ing three Josephson tunnel junctions (Fig. 1). By applying an external flux
&, a persistent supercurrent can be induced in the loop. For values where &,
is close to a half-integer number of flux quanta, two states with persistent
currents of opposite sign are nearly degenerate but separated by an energy
barrier. We will assume here that the system is operated near ¢, = %450. The

microwave current

a C
bias current control current
N
=
g '
qubit

Fig. 1. Experimental setup for measurements on a flux qubit. The qubit (center)
is a superconducting loop that contains three Josephson junctions. It is induc-
tively coupled to a DC-SQUID (a), and superconducting control lines for applying
magnetic fields at microwave frequencies (b) and static magnetic fields (c). The
DC-SQUID is realized with an on-chip shunt circuit with impedance Z(w). The
circuits a)-c) are connected to filtering and electronics (not drawn)
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persistent currents in the classically stable states have here a magnitude I,.
Tunneling through the barrier causes a coupling between the two states, and
at low energies the loop can be described by a Hamiltonian of a two state
system [6,9],

i, = %a—z + %ffw, (1)
where 6, and 6, are Pauli matrices. The two eigenvectors of &, correspond
to states that have a left or a right circulating current and will be denoted as
|L) and | R). The energy bias € = 2I,(®,— &) is controlled by the externally
applied field @,. We follow [10] and define A as the tunnel splitting at ¢, =
%(150, such that A = 2W with W the tunnel coupling between the persistent-
current states. This system has two energy eigen values i%\/ AZ + 2, such
that the level separation v gives v = v/ A2 4 2. In general A is a function
of €. However, it varies on the scale of the single junction plasma frequency,
which is much above the typical energy range at which the qubit is operated,
such that we can assume A to be constant for the purpose of this paper.

In the experiments @, can be controlled by applying a magnetic field
with a superconducting coil at a distance from the qubit and for local control
one can apply currents to superconducting lines, fabricated on-chip in the
vicinity of the qubit. The qubit’s quantum dynamics will be controlled with
resonant microwave pulses (i. e. by Rabi oscillations). In recent experiments
the qubits were operated at € &~ 5A or € ~ 0 [1,9]. The numerical values given
in this paper will concentrate on the former case. At this point, there is a
good trade-off between a system with significant tunneling, and a system with
0 ,-like eigenstates that can be used for qubit-qubit couplings and measuring
qubit states [6]. The qubit has a magnetic dipole moment as a result of the
clockwise or counter-clockwise persistent current The corresponding flux in
the loop is much smaller than the applied flux @4, but large enough to be
detected with a SQUID. This will be used for measuring the qubit states. For
our two-level system Eq. (1), this means that both manipulation and readout
couple to &,. Consequently, the Nyquist noise produced by the necessary
external circuitry will couple in as flux noise and hence couple to 6., giving
€ a small, stochastically time-dependent part de(t).

Operation at € ~ 0 has the advantage that the flux noise leads to less
variation of v. In the first experiments [4] this has turned out to be crucial
for observing time-resolved quantum dynamics. Here, the qubit states can be
measured by incorporating the qubit inside the DC-SQUID loop. While not
working that out in detail, the methods that we present can also be applied
for the analysis of this approach. This also applies to the analysis of the
impact of electric dipole moments, represented by 6,. With E., < E;, these
couple much less to the circuitry and will hence not be discussed here.

As the internal baths are well suppressed, the coupling to the electromag-
netic environment (circuitry, radiation noise) becomes a dominant source of
decoherence. This is a subtle issue: It is not possible to couple the circuitry
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arbitrarily weakly or seal the experimental setup, because it has to remain
possible to control the system. One rather has to engineer the electromagnetic
environment to combine good control with low unwanted back-action.

Any linear electromagnetic environment can be described by an effective
impedance Z.g. If the circuit contains Josephson junctions below their crit-
ical current, they can be included through their kinetic inductance Ly, =
@y /(2m1. cos ¢), where ¢ is the average phase drop across the junction. The
circuitry disturbs the qubit through its Johnson-Nyquist noise, which has
Gaussian statistics and can thus be described by an effective Spin-Boson
model [11]. In this model, the properties of the oscillator bath which forms
the environment are characterized through a spectral function J(w), which
can be derived from the external impedance. Note, that other nonlinear ele-
ments such as tunnel junctions which can produce non-Gaussian shot noise
are generically not covered by oscillator bath models.

As explained above, the flux noise from an external circuit leads to € =
€0 + 0e(t) in Eq. (1). We parametrize the noise de(t) by its power spectrum

({8e(t), 6¢(0)}),, = h*J(w) coth(fiw/2kpT). (2)

Thus, from the noise properties calculated by other means one can find J(w)
as was explained in Detail in [12]. In this contribution, we would like to out-
line an alternative approach pioneered by Leggett [13], where J(w) is derived
from the classical friction induced by the environment. In reality, the com-
bined system of SQUID and qubit will experience fluctuations arising from
additional circuit elements at different temperatures, which can be treated
in a rather straightforward manner.

3 Decoherence from the Electromagnetic Environment

3.1 Characterizing the Environment from Classical Friction

We study a DC-SQUID in an electrical circuit as shown in Fig. 1. It contains
two Josephson junctions with phase drops denoted by <;,5. We start by
looking at the average phase Yex = (71 + 72)/2 across the read-out SQUID.
Analyzing the circuit with Kirchhoff rules, we find the equation of motion

2C J@&ex = —21.0cos(V;) $in Yex + Ibias — o / A Yex ()Y (= t).  (3)
2m ’ 2r

Here, ¥in = (71 — 72)/2 is the dynamical variable describing the circulating
current in the loop which is controlled by the flux, I, is the bias current
imposed by the source, Y (w) = Z71(w) is the admittance in parallel to the
whole SQUID and Y (7) its Fourier transform. The SQUID is described by
the junction critical currents I. o which are assumed to be equal, and their
capacitances C'y. We now proceed by finding a static solution which sets the
operation point ¥i,/ex,0 and small fluctuations around them, 67y /ex- The
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static solution reads Inias = Ic cff SINYex,0 Where Ic cg = 210 cos7in,0 is the
effective critical current of the SQUID. Linearizing Eq. 3 around this solution
and Fourier-transforming, we find that

2]y tan yin o Zegr (w)
Bex() = T2 TMOCR g ) @)

where Zeg(w) = (Z(w) '+ 2iwCy+ (ikain)*l)_1 is the effective
impedance of the parallel circuit consisting of the Z(w), the kinetic in-
ductance of the SQUID and the capacitance of its junctions. Neglecting
self-inductance of the SQUID and the (high-frequency) internal plasma
mode, we can straightforwardly substitute v, = 7®/®Py and split it into
Yin,0 = TP« 5/Po set by the externally applied flux @y g through the SQUID
loop and §v; = mnMsqlq/Po where Mgq is the mutual inductance between
qubit and the SQUID and Iq(¢p) is the circulating current in the qubit as a
function of the junction phases, which assumes values £}, in the classically
stable states.

In order to analyze the backaction of the SQUID onto the qubit in the
two-state approximation, Eq. (1), we have to get back to its full, continuous
description, starting from the classical dynamcis. These are equivalent to a
particle, whose coordinates are the two independent junction phases in the
three-junction loop, in a two-dimensional potential

C(0/27)*¢ = —VU(p, Py 4 + IsMsq). (5)

The details of this equation are explained in [0]. C is the capacitance matrix
describing the charging of the Josephson junctions in the loop, U(¢p) con-
tains the Josephson energies of the junctions as a function of the junction
phases and Is. is the ciculating current in the SQUID loop. The applied flux
through the qubit @, is split into the flux from the external coil &, , and the
contribution form the SQUID. Using the above relations we find

IsMsq = 6@ — 2m2 M2 I3 tan? yin,oi%f%fQ (6)
where 0Py ~ Msgqle,oCOSYex,08107in,0 is the non-fluctuating back-action
from the SQUID.

From the two-dimensional problem, we can now restrict ourselves to the
one-dimensional subspace defined by the preferred tunneling direction [6],
which is described by an effective phase ¢. The potential restricted on this
direction, Uip(yp) has the form of a double well [11,14] with stable minima
situated at £¢o. In this way, we can expand Uip(p,Pq) ~ U(p, @q,x) +
Iq(¢)IgMsq. Approximating the phase-dependence of the circulating current
as Iq(p) = I,p/po where I, the circulating current in one of the stable
minima of ¢, we end up with the classical equation of motion of the qubit
including the backaction and the friction induced from the SQUID
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2 2
@0 Zeffl
—Cet <_27r) w2+ 27T2MSQQI§iaS tan? Yin,0 71’90040‘;(2)

= —apUlD((p, eryq + (5@61). (7)

From this form, encoded as D(w)p(w) = —9U /¢ we can use the prescription
given in [13] and identify the spectral function for the continuous, classical
model as Jeont = ImD(w). From there, we can do the two-state approximation
for the particle in a double well [14] and find J(w) in analogy to [12]

) = 22 (%)Ib tan? (52) ReZun(e)) 5)

3.2 Qubit Dynamics under the Influence of Decoherence

From J(w), we can analyze the dynamics of the system by studying the
reduced density matrix, i.e. the density matrix of the full system where the
details of the environment have been integrated out, by a number of different
methods. The low damping limit, J(w)/w < 1 for all frequencies, is most
desirable for quantum computation. Thus, the energy-eigenstates of the qubit
Hamiltonian, Eq. (1), are the appropriate starting point of our discussion. In
this case, the relaxation rate I (and relaxation time 7.) are determined
by the environmental spectral function J(w) at the frequency of the level
separation v of the qubit

r,= S 2J(z)coth Y 9)
L n %epT )’

where T is the temperature of the bath. The dephasing rate I'y (and dephas-
ing time 7,) is
€

I,
F¢:T¢:1:7+2TI‘O¢<;)

2 kgT
h

with a = lim,_0 J(w)/(27w). These expressions have been derived in the
context of NMR [15] and recently been confirmed by a full path-integral
analysis [10]. In this paper, all rates are calculated for this regime.

For performing efficient measurement, one can afford to go to the strong
damping regime. A well-known approach to this problem, the noninteracting
blip approximation (NIBA) has been derived in [13]. This approximation
gives good predictions at degeneracy, ¢ = 0. At low |e|] > 0 it contains an
artifact predicting incoherent dynamics even at weak damping. At high bias,
€ > A and at strong damping, it becomes asymptotically correct again. We
will not detail this approach here more, as it has been extensively covered in

[11,14].

(10)
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If J(w) is not smooth but contains strong peaks the situation becomes
more involved: At some frequencies, J(w) may fall in the weak and at others
in the strong damping limit. In some cases, whern J(w) < w holds at least
for w < 2 with some 2 > v/h, this can be treated approximately: one can
first renormalize Acg through the high-frequency contributions [11] and then
perform a weak-damping approximation from the fixed-point Hamiltonian.
This is detailed in [16]. In the general case, more involved methods such as
flow equation renormalization [17] have to be used.

4 Engineering the Measurement Apparatus

From Eq. (8) we see that engineering the decoherence induced by the mea-
surement apparatus essentially means engineering Z.g. This includes also
the contributions due to the measurement apparatus. In this section, we are
going to outline and compare several options suggested in literature. We as-
sume a perfect current source that ramps the bias current Iy;,s through the
SQUID. The fact that the current source is non-ideal, and that the wiring to
the SQUID chip has an impedance is all modeled by the impedance Z(w).
The wiring can be engineered such that for a very wide frequency range
the impedance Z(w) is on the order of the vacuum impedance, and can be
modeled by its real part R;. It typically has a value of 100 2.

4.1 R-Shunt

It has been suggested [18] to overdamp the SQUID by making the shunt cir-
cuit a simple resistor Z(w) = Rg with Rg < 1/ Lxin/2Cjy. This is inspired by
an analogous setup for charge qubits, [3]. Following the parameters given in
[12], a SQUID with I. o = 200nA at &/Pg ~ 0.75 biased at Ihins = 120nA, we
find Lii, ~ 2 - 1077 H. Together with Cj ~ 1fF, this means that the SQUID
is overdamped if R < Rpax = 1.4k€). Using Eq. 8, we find that this provides
an Ohmic environment with Drude-cutoff, J(w) = aw/(1 + w?/w? ) where
wrr = R/Lyin and o = (21)2/h (Msql,/®o)? T2, tan? (nd/Py) L3,/ Rs. Us-
ing the parameters from [12], Msql,/Po = 0.002, we find R = 0.08Q2 and
wir/R = 8.3GHz/Q. Thus, for our range of parameters (which essentially
correspond to weak coupling between SQUID and qubit), one still has low
damping of the qubit from the (internally overdamped) environment at rea-
sonable shunt resistances down to tens of Ohms. For such a setup, one can
apply the continuous weak measurement theory as it is outlined e.g. in [18].
This way, one can readily describe the readout through measurement of Z.g
which leaves the system on the superconducting branch. If one desires to read
out the state by monitoring the voltage at bias currents above the I. og, our
analysis only describes the pre-measurement phase and at least shows that
the system is hardly disturbed when the current is ramped.
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4.2 Capacitive Shunt

Next, we consider a large superconducting capacitive shunt (Fig. 2a, as imple-
mented in [4,9]). The C shunt only makes the effective mass of the SQUID’s
external phase vex very heavy. The total impedance Z.g(w) and J(w) are
modeled as before, see Fig. 3. As limiting values, we find
272
wRI:J, for w < wre
Re{Zew(w)} ~ Ry,  forw=wrc (11)
W, fOI' w > wrc

We can observe that this circuit is a weakly damped LC-oscillator and
it is clear from (9) and (8) that one should keep its resonance frequency
wrc = 1/v/LjCsn, where Re{Zes(w)} has a maximum, away from the qubit’s
resonance wyes = V/h. This is usually done by chosing wic < wryes. For a
C-shunted circuit with wpc < wres, this yields for J(w &~ wic)

2r)® (MI,\° , o (TP 1
~ 17 — | === 12
J(w) th @O bias tan @0 Csth ( )

The factor 1/w?® indicates a natural cut-off for J(w), which prevents the
ultraviolet divergence [11,10] and which in much of the theoretical litera-
ture is introduced by hand. Using Eq. (9), we can directly analyze mix-
ing times 7, VS wres for typical sample parameters (here calculated with the

a |
I~
I bias @ }é\ C:h — LJ 3V
Ny
|
b |
T\ Rs h
Ibm.\-@ 5 L, | &V
E.; Cs/l
|

Fig. 2. Circuit models for the C-shunted DC-SQUID (a) and the RC-shunted DC-
SQUID (b). The SQUID is modeled as an inductance L. A shunt circuit, the
superconducting capacitor Cg, or the Rgn-Csn series, is fabricated on chip very
close to the SQUID. The noise that couples to the qubit results from Johnson-
Nyquist voltage noise 6V from the circuit’s total impedance Zeg. Zeg is formed by
a parallel combination of the impedances of the leads Z;, the shunt and the SQUID,
such that Z;HI =1/Z;1 +1/(Rsn + 1/iwCsp) + 1/iwL 7, with Rg, = 0 for circuit (a)
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Fig. 3. A typical Re{Z;(w)} for the C-shunted SQUID (a) and the RC-shunted
SQUID (b), and corresponding J(w) in (c) and (d) respectively. For comparison,
the dashed line in (c) shows a simple Ohmic spectrum, J(w) = cw with exponential
cut off we/2m = 0.5 GHz and o = 0.00062. The parameters used here are I, = 500
nA and 7' = 30 mK. The SQUID with 2., = 200 nA is operated at f = 0.75 7 and
current biased at 120 nA, a typical value for switching of the C-shunted circuit (the
RC-shunted circuit switches at higher current values). The mutual inductance M
= 8 pH (i. e. MI,/®Po = 0.002). The shunt is Cs;, = 30 pF and for the RC shunt
Rsn = 10 Q. The leads are modeled by R; = 100 2

non-approximated version of Re{Z;(w)}), see [12] for details. The mixing
rate is then I ~ (2rA/h)° w5 (MI,/®,)” 12, tan?(nd/Po)(2hC2 Ry)
coth (Awyes/2kpT). With the C-shunted circuit it seems possible to get 7.
values that are very long. They are compatible with the ramp times of the
SQUID, but too slow for fast repetition rates. For the parameters used here
they are in the range of 15 ps. While this value is close to the desired order
of magnitude, one has to be aware of the fact that at these high switching
current values the linearization of the junction as a kinetic inductor may un-
derestimate the actual noise. In that regime, phase diffusion between different
minima of the washboard potential also becomes relevant and changes the
noise properties [19,20].

4.3 RC-Shunt

As an alternative we will consider a shunt that is a series combination of a
capacitor and a resistor (Fig. 2b) (RC-shunted SQUID). The RC' shunt also
adds damping at the plasma frequency of the SQUID, which is needed for
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realizing a high resolution of the SQUID readout (i. e. for narrow switching-
current histograms) [19]. The total impedance Z;(w) of the two measurement
circuits are modeled as in Fig. 2. For the circuit with the RC shunt

2L2
leJ7 for w € wro

<R, forw=wio < gy | (13)
Ri//Rsp, for w = wpoc > Rsthsh,
Ri//Rsn, forw > wrc

Re{Z;(w)} =~

The difference mainly concerns frequencies w > wrc, where the C-shunted
circuit has a stronger cutoff in Re{Z.s(w)}, and thereby a relaxation rate,
that is several orders lower than for the RC-shunted circuit. Given the values
of J(w) from Fig. 3 one can directly see from the values of that an RC-
shunted circuit with otherwise similar parameters yields at wyes/2m = 10
GHz relaxation times that are about four orders of magnitude shorter.

5 Coupled Qubits

So far, we have applied our modeling only to single qubits. In order to study
entanglement in a controlled way and to eventually perform quantum algo-
rithms, this has to be extended to coupled qubits.

5.1 Hamiltonian

There is a number of ways how to couple two solid-state qubits in a way which
permits universal quantum compuation. If the qubit states are given through
real spins, one typically obtains a Heisenberg-type exchange coupling. For
other qubits, the three components of the pseudo-spin typically correspond
to physically completely distinct variables. In our case, &, corresponds to the

flux through the loop whereas G/, are charges. Consequently, one usually

finds Ising-type couplings. The case of &}(,1) ® &}(,2) coupling, i.e. coupling by
a component which is orthogonal to all possible single-qubit Hamiltonians,
has been extensively studied [21,22], because this type is straightforwardly
realized as a tunable coupling of charge qubits [3]. We study the generic case
of coupling the “natural” variables of the pseudospin to each other, which
can be realized in flux qubits using a switchable superconducting transformer
[6,23], but has also been experimentally utilized for coupling charge qubits
by fixed capacitive interaction [24].

We model the Hamiltonian of a system of two qubits, coupled via Ising-
type coupling. Each of the two qubits is described by the Hamiltonian Eq.
(1). The coupling between the qubits is described by fqu = —(K/Q)&gl) ®
&9 that represents e.g. inductive interaction. Thus, the complete two-qubit
Hamiltonian in the absence of a dissipative environment reads

N 1 . : 1
—_Z 500 50 _ Z g5 52)
Hop = 5 i§2 (GZUZZ + A6, ) 2K02 6. (14)
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For two qubits, there are several ways to couple to the environment: Both
qubits may couple to a common bath such as picked up by coupling elements
[6]. Local readout and control electronics coupling to individual qubits [6]
can be described as coupling to two uncorrelated baths. In analogy to the
procedure described above, one can determine the spectral functions of these
baths by investigating the corresponding impedances.

In the case of two uncorrelated baths, the full Hamiltonian reads

3 3 Loyso . p A
Hggb :H2qb+ Z §U§)X()+H31 +H327 (15)
i=1,2

X0 = ¢, Az, are collective coordinates of the bath. In the case of two
qubits coupling to one common bath we model our two qubit system in a
similar way with the Hamiltonian

~ ~ 1 ~ ~
3}, = Hagp+ 5 (68 +6P) X + Hp, (16)
where X is a collective bath coordinate similar to above.

5.2 Rates

We can derive formulae for relaxation and dephasing rates similar to Egs. (9)
and (10). Our Hilbert space is now four-dimensional. We label the eigenstates
as |E1)...|E4). We chose | E1) to be the singlet state (|T]) — /1)) /v/2, which
is always an eigenstate [25] whereas |E2)...|E4) are the energy eigenstates
in the triplet subspace, which are typically not the eigenstates of 621) + 69).
As we have 4 levels, we have 6 independent possible quantum coherent os-
cillations, each of which has its own dephasing rate, as well as 4 relaxation
channels, one of which has a vanishing rate indicating the existence of a stable
thermal equilibrium point. The expressions for the rates, although of simi-
lar form as in Egs. (9) and (10) are rather involved and are shown in [27].
Figure 4 displays the dependence of typical dephasing rates and the sum of
all relaxation rates I'r on temperature for the case A = ¢ = K = hvg with
vs = 1GHz. The rates are of the same magnitude for the case of one common
bath and two distinct baths. If the temperature is increased above the roll
off point set by the intrinsic energy scales, T, = (h/kp)vs = 4.8 - 1072 K,
where E; = 1GHz, the increase of the dephasing and relaxation rates follows
a linear dependence, indicating that the environmental fluctuations are pre-
dominantly thermal. As a notable exception, in the case of one common bath
the dephasing rates I',,, = I,,, go to zero when the temperature is decreased
while all other rates saturate for 7' — 0. This can be understood as follows:
the singlet state |E1) is left invariant by the Hamiltonian of coupled qubits
in a common bath, Eq. (16), i.e. it is an energy eigenstate left unaffected
by the environment. Superpositions of the singlet with another eigenstate
are usually still unstable, because the other eigenstate generally suffers from
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Fig. 4. Log-log plot of the temperature dependence of the sum of the four relaxation
rates and selected dephasing rates. Qubit parameters K, € and 7 are all set to Es and
the bath is assumed to be Ohmic o = 1072, The upper panel shows the case of one
common bath, the lower panel the case of two distinct baths. At the characteristic
temperature of approximately 0.1 - T the rates increase very steeply

decoherence. However, the lowest-energy state of the triplet subspace |E2)
cannot decay by spontaneous emission and flip-less dephasing vanishes at
T = 0, hence the dephasing rate between eigenstates |E1) and |E2) vanishes
at low temperatures, see Fig. 4. As shown in [25], there can be more “pro-
tected” transitions of this kind if the qubit parameters are adjusted such that
the symmetry between the unperturbed qubit and the coupling to the bath
is even higher, e.g. at the working point for a CPHASE operation.

5.3 Gate Performance

The rates derived in the previous section are numerous and do strongly de-
pendend on the tunable parameters of the qubit. Thus, they do not yet allow
a full assesment of the performance as a quantum logic element. A quan-
titative measure of how well a two-qubit setup performs a quantum logic
gate operation are the gate quality factors introduced in [26]: the fidelity,
purity, quantum degree and entanglement capability. These factors charac-
terize the density matrices obtained after attempting to perform the gate
operation in a hostile environment, starting from all possible initial condi-
tions p(0) = |&},) (¥ |. To form all possible initial density matrices needed to
calculate the gate quality factors, we use the 16 unentangled product states
@), 5 =1,...,16 defined [22] according to [¥,), ), (a,b=1,...,4), with
@) = 10), [¥2) = [1), [¥5) = (1/v2)(|0) +]1)), and [¥4) = (1/v/2)(0) +i [1)).
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They form one possible basis set for the superoperator vg which describes the
open system dynamics such that p(tg) = vap(0) [22,26]. The CNOT gate is
implemented using rectangular DC pulses and describing dissipation through
the Bloch-Redfield equation as described in [3,25].

The fidelity is defined as F = (1/16)3.%, (&, | U pLUc |¥,). The fi-
delity is a measure of how well a quantum logic operation was performed.
Clearly, the fidelity for the ideal quantum gate operation is equal to 1. The

second quantifier is the purity P = (1/16) 2;6:1 tr {(ij)ﬂ, which should be

1 in a pure and 1/4 in a fully mixed state. The purity characterizes the effects
of decoherence. The quantum degree measures nonlocality. It is defined as the
maximum overlap of the resulting density matrix after the quantum gate op-
eration with the maximally entangled Bell-states Q = max;  (¥5.| p% [¥F.).
For an ideal entangling operation, e.g. the CNOT gate, the quantum degree
should be 1. It has been shown [27] that all density operators that have an
overlap with a maximally entangled state that is larger than the value 0.78
[22] violate the Clauser-Horne-Shimony-Holt (CHSH) inequality and are thus
non-local. The entanglement capability C is the smallest eigenvalue of the
partially transposed density matrix for all possible unentangled input states
[@7.). (see below). It has been shown [28] to be negative for an entangled state.
This quantifier should be -0.5, e.g. for the ideal CNOT, thus characterizing
a maximally entangled final state.

In Fig. 5, the deviations due to decoherence of the gate quality factors
from their ideal values are shown. Similar to most of the rates, all gate quality
factors saturate at temperatures below a threshold set by the qubit energy
scales. The deviations grow linearily at higher temperatures until they reach
their theoretical maximum. Comparing the different coupling scenarios, we
see that at low temperatures, the purity and fidelity are higher for the case
of one common bath, but if temperature is increased above this threshold,
fidelity and purity are approximately equal for both the case of one common
and two distinct baths. This is related to the fact that in the case of one
common bath all relaxation and dephasing rates vanish during the two-qubit-
step of the CNOT (see [25] for details), due to the special symmetries of
the Hamiltonian, when temperature goes to zero as discussed above. Still,
the quantum degree and the entanglement capability tend towards the same
value for both the case of one common and two distinct baths. This is due to
the fact that both quantum degree and entanglement capability are, different
than fidelity and purity, not defined as mean values but rather characterize
the “best” possible case of all given input states.

In the recent work by Thorwart and Hénggi [22], the CNOT gate was
investigated for a &z(j) ® 639 ) coupling scheme and one common bath. They
find a pronounced degradation of the gate performance with gate quality fac-
tors only weakly depending on temperature. If we set the dissipation and the
intrinsic energy scale to the same values as in their work, we also observe
only a weak decrease of the gate quality factors for both the case of one com-
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Fig. 5. Log-log plot of the temperature dependence of the deviations of the four
gate quantifiers from their ideal values. Here the temperature is varied from = 0 to
2. F,. In all cases & = a1 = az = 1072, The dotted line indicates the upper bound
set by the Clauser-Horne-Shimony-Holt inequality

mon bath and two distinct baths in the same temperature range discussed
by Thorwart and Hanggi. However, see Fig. 5, overall we find substantially
better values. This is due to the fact that for 6, ® &, coupling, the Hamilto-
nian does not commute with the coupling to the bath during the two-qubit
steps of the pulse sequence, i.e. the symmetries of the coupling to the bath
and the inter-qubit coupling are not compatible. The dotted line in Fig. 5
shows that already at comparedly high temperature, about 20 qubit ener-
gies, a quantum degree larger than Q = 0.78 can be achieved. Only then, the
Clauser-Horne-Shimony-Holt inequality is violated and non-local correlations
between the qubits occur as described in [22]. Thus, even under rather mod-
est requirements on the experimental setup which seem to be feasible with
present day technology, it appears to be possible to demonstrate nonlocality
and entanglement between superconducting flux qubits.

6 Summary

It has been outlined, how one can model the decoherence of an electromag-
netic environment inductively coupled to a superconducting flux qubit. We
have exemplified a procedure based on analyzing the classical friction induced
by the environment for the specific case of the read-out SQUID. It is shown
that the SQUID can be effectively decoupled from the qubit if no bias cur-
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rent is applied. The effect of the decoherence on relaxation and dephasing
rates of single qubits has been discussed as well as the gate performance of
coupled qubits. We have shown that by carefully engineering the impedance
and the symmetry of the coupling, one can reach excellent gate quality which
complies with the demands of quantum computation.
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The decoherence of an asymmetric two-qubit system that is coupled via a variable interaction term to a
common bath or two individual baths of harmonic oscillators is examined. The dissipative dynamics are
evaluated using the Bloch-Redfield formalism. It is shown that the behavior of the decoherence effects is
affected mostly by the symmetries between the qubit operator that is coupled to the environment and the
temperature, whereas the differences between the two bath configurations are very small. Moreover, it is
elaborated that small imperfections of the qubit parameters do not necessarily lead to a drastic enhancement of

the decoherence rates.

DOI: 10.1103/PhysRevA.72.052314

I. INTRODUCTION

Quantum computation provides a substantial speedup for
several important computational tasks [1-4]. A general quan-
tum bit (qubit) consists of a two level quantum system with
a controllable Hamiltonian of sufficient generality to imple-
ment a universal set of quantum logic gates [5]. From such a
set, an arbitrary quantum algorithm can be implemented to
any desired accuracy limited only by decoherence. A univer-
sal two qubit system requires just single-qubit rotations and
one additional entangling two qubit gate. One important ex-
ample for an entangling two qubit gate is the controlled-NOT
(CNOT) gate that switches the state of the second qubit de-
pending on the state of the first qubit.

Superconducting Josephson charge and persistent current
(flux) qubits have been shown to possess the necessary prop-
erties [4] to act as quantum bits. They have been manipulated
coherently and coherence times in the ws range have been
demonstrated experimentally [6-12] with a corresponding
quality factor of quantum coherence of up to Q,=~ 10* [10].
In a two qubit system, where the coupling was achieved
using a shared Josephson junction, coherent Rabi oscillations
between states of a coupled qubit system were observed
[13,14] and in a two charge qubit system a conditional gate
operation was performed [12]. All of these experiments suf-
fer from material imperfections which lead to nonideal time
evolutions of the quantum states due to a parameter spread in
the characteristic energies of the system Hamiltonian. Thus,
it is of general importance to theoretically model these asym-
metric qubit systems and their decoherence properties to op-
timize the decoherence in experimental setups. In this paper,
the dependence of the decoherence rates and gate quality
factors on the parameter spread of the qubits will be elabo-
rated theoretically. In perspective, this is of crucial impor-
tance for connecting the experimental status and prospects to
these central concepts in quantum information science:
which degree of parameter uniformity do experiments have
to achieve for symmetry-based protection schemes to
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work—do these schemes have to be extended in order to
accomodate experimental restrictions?

On the other hand, for high symmetry of the qubit param-
eters, the qubit coherence can be intrinsically strongly pro-
tected. This extends from the protection of the singlet in a
symmetric qubit setup [15] to the general concept of
decoherence-free subspaces (DFS’s) [16,17]. General consid-
erations on the stability of such DFS’s can be found in Ref.
[18]. In this paper the experimental conditions for these in-
trinsic protection mechanisms are investigated and direct
conclusions for the decoherence of a two qubit system are
given.

Also, variable bath couplings to the decohering environ-
ment have already been identified as a novel parameter for
engineering decoherence, e.g., in Ref. [19]. It is exactly these
decoherence properties of a qubit bath interaction operator
that lies in the xz plane on the Bloch sphere that will be
investigated in this work.

In Sec. II, we will introduce the global model of two
qubits with a general bath coupling operator and how coher-
ence can be protected by symmetry. In Sec. III, we specify
how decoherence is parameterized and handled using the
Bloch-Redfield approach, which helps to compute the gate
quality factors introduced in Sec. IV. Results are summarized
in the two subsequent sections: Section V shows how deco-
herence and gate quality depends on the coupling angle
whereas Sec. VI discusses the experimentally important case
of asymmetrically fabricated qubits.

II. THE MODEL

The Hamiltonian of a typical pseudo-spin system can be
expressed in terms of the Pauli matrices as

1
Hq=—§(50'z+A0'x), (1)
where € is the energy bias and A is the tunneling amplitude.
In a two qubit system, an additional interaction term is re-
quired to implement the universal two qubit gate. In super-

conducting implementations [6,8—11,20,21] this coupling
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term is typically proportional to 6'5”6'(2). Here, the super-

scripts are the qubit indices. In pa;ticular, inductively
coupled flux qubits [15,22] and capacitively coupled charge
qubits [23] are coupled this way. Thus, the two qubit Hamil-
tonian is

2
Hy = -3 (068 1+ A0) - 25050 @)
4 2z 2 2z :
i=1
In the singlet/triplet basis, (1,0,0,0)"=|17), (0,1,0,0)"
=11 D+[LTN/N2, 0,0,1,0)"=[] |), (0,0,0,1)"=(|1 1)
—|1 1972 that exhibits the symmetry properties of the cou-
pling most clearly, this Hamiltonian takes the following ex-
plicit matrix form:

€ 7 vy —Ap
1 - - Ae
H=-| 7 77 .®
AR n -—€ Ap
-Ayp —-Ae Anp vy

with e=eV+e?, Ae=eV—€? and 7;=(A(”+A<2))/\E, Any
=(AW-A®)/\2. Using this Hamiltonian the CNOT gate can
be implemented through a sequence of elementary quantum
gates [15,24]

UcnoT = U(ﬁ) exp(— ig Ai”)exp(— i%&f.”)

T
02 o - 7600 @)

where Ug) denotes the Hadamard gate operation performed
on the second qubit. It involves one two-qubit operation at
step three only. For our numerical calculations we applied
the characteristic energies that were used in Ref. [15] as a
viable example for superconducting solid-state flux or charge
qubits. Following this approach also gate sequences opti-
mized with respect to decoherence have been studied [25].
Disregarding the Hadamard gates, the gate operation Eq. (4)
forms a controlled-phase (CPHASE) gate

1 00 O
010 0

UcpHASE = 001 ol (5)
000 €

with ¢=.

III. DECOHERENCE

In experimental realizations of this model, additional ef-
fects always impair the capability of the system to operate as
a qubit. In condensed matter implementations, the most pro-
nounced is the coupling to environmental degrees of free-
dom. This leads to relaxation, i.e., classical thermalization of
the states as well as, on a much shorter time scale, to dephas-
ing. Decoherence causes the system to act similar to a clas-
sical ensemble eliminating all potential computational ben-
efits of quantum algorithms. For a wide range (e.g, Refs.

PHYSICAL REVIEW A 72, 052314 (2005)

[15,23,26]) of solid state implementations the dominant de-
coherence effects caused by coupling to linear environments
such as electric circuits obey Gaussian statistics and can be
effectively modeled with a bath of harmonic oscillators. It is
assumed here that there is only one decoherence source in
the dominating order of magnitude in the coupling parameter
and possible weaker noise sources are ignored. To model this
source each qubit is either coupled to an individual or to a
common bath of harmonic oscillators. The system Hamil-
tonian then takes the form

1 A 5
HPy =H,, + E(é-f_”X“) +69%) +HP +HY  (6)
or
B LPSNTIRNEINS
quB=H2q+5(UA\, +6,”)X +Hj, (7)

where & is the spin representation of the qubit operator talk-
ing to the environment that depends on the specific imple-
mentation of the qubit. For the special case of superconduct-
ing flux qubits, which only experience flux noise, and
superconducting charge qubits which are only subject to
charge noise, this would correspond to G,=4. Here, X is the
collective coordinate of the harmonic oscillator bath and the
superscript distinguishes between the single bath and the two
bath case. The general form is

6,= (¢ 0) =\2(c,6, +¢,6,) +c.6., (8)

where the factor \2 in front of ¢, and ¢, was chosen for
convenience in the singlet/triplet basis in which the qubit-
bath interaction becomes

—c AX
CZA)A(
C_\\)A( —cj( C+A)2
-, AX c,AX c AX 0

cX c¢x O

c, X 0 cX

Him = 5 (9)

N | —
(=)

with c,=c,*ic,, X=XW4+X? Here, AX=XV-X?® for the
case of two baths and AX=0 for one common bath.

In the following we will, without loss of generality, char-
acterize the results by the angle 6 between the &, and &,
component of the coupling

>

X =(6,sin 6+ G, cos 0)X. (10)

This is completely analogous to the bath coupling that is
encountered in proposed experimental qubit realizations,
e.g., for charge qubits [19]. The bath coupling angle 6 is
defined for [0, 7/2].
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Following the lines of Refs. [15,26], the Bloch-Redfield
formalism is applied to calculate the effects of decoherence.
The Bloch-Redfield equations and decoherence rates are
given analytically. However, in comparsion to a fully ana-
Iytic evaluation of the dynamics of the two-qubit system
[27], with this method the time evolution of the reduced
density matrix can also be determined numerically for a wide
range of system Hamiltonians.

The environment, i.e., the bath of harmonic oscillators, is
characterized by its spectral density. The strength of the dis-
sipative effects is given by the dimensionless parameter c.
The bath spectral function is assumed to be linear in fre-
quency up to a cutoff frequency w,.. Thus, J(w)=afiw/[1
+(w/w,)?], i.e., we employ an Ohmic spectrum with a Drude
cutoff. The cutoff frequency is chosen two orders of magni-
tude above the largest frequency which is typical for a flux
qubit system, w,=10"3 Hz [7].

We choose a rather large coupling strength to the environ-
ment of =103, which is still in the weak coupling regime,
to be able to observe pronounced decoherence effects. The
Bloch-Redfield equations describe the evolution of the den-
sity matrix in the eigenbasis of the unperturbed Hamiltonian
[28,29]

pnm == iwnmpnm - 2 anklpkl’ (1 1)
kil
where the Redfield tensor R,,,; is given by
ankl = 51»'12 I‘Ez‘:lk + 6nk2 r;:rrn F;m)nk - F;:r-t)nk’ (12)
r r

and the rates I' are given by the Golden Rule expressions

T = hizf dteiiwnk%gl,lm(t)ﬁl,nk(o»ﬂ’ (13)
0

Tl = h_zf die™ ' Hy 1, (0)Hy (1)) s (14)
0

where ITI,’[ (1) is the matrix element of the bath/system cou-
pling part of the Hamiltonian in the interaction picture. Here,
B indicates averaging over the degrees of freedom of the
thermal bath. In the following S8=1/kgT, where T is the tem-
perature of the bath. Evaluating this, we find according to
Ref. [15] for one common bath the rates

r AJ(wab)[coth(Bﬁwab/Z) 1]+ —

Imnk = 8% 7Tﬁ

S
X P J dw%[coth(ﬁﬁw/z)%b T wl,
0 W= W,
(15)

where ab=nk for the plus rate and ab= lm for the minus rate
A1) (1) ) 6@ 6D 51 5D 52
and A= Al"l”k 0, s,m™ s, nk+ s, lm s, nk+ s, im?. s, nk+0—

s,m™ s,nk*
For two distinct baths one finds analogously
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re

Imnk —

= *[A Ti(wgp) + A2y (w,)[coth(Bhiw,,/2) + 1]

Tﬁ[/\sz(wab) +AMi(04)], (16)
with Al Allmll Alllm snk’ AZ Alzmnk: A.\ [)m ink and
. Jiw
M;(Q)= Pf dw P 2[COth(,['}ﬁa)/Z)Q F o], (17)

where P denotes the principal value. The limit of w,;, tending
towards zero can be evaluated separately

(+) =) _ A(1 Py 1) A A(2) A
Tt = Tt = 4Bﬁ(0\ im9. s,3k+ 0'( kt O'S l)m (& nk
+ 0'(\ l)mo-(szz:k (18)
for one bath, and
+) _1-) (1) () (2) ~(2)
Fl;mk = Flmnk (al 5, imY. s,nk + aZO- ,lmo.i.nk (19)

4ph

for two baths. All calculations were performed in the same
parameter regime as in Ref. [15], thus renormalization ef-
fects of the frequencies are weak and will be neglected. This
structure of the rates nicely shows the relation to symmetry
and DFS: The matrix elements of the gy in the eigenbasis
determine the simultaneous symmetry properties of the qubit
Hamiltonian and the system bath coupling. The energy split-
tings w,;, determine the relevant segment of environmental
phase space and depend on symmetry much more weakly.

IV. GATE QUALITY FACTORS

The ability of a realistic device, or in our case a more
realistic model of a device, to operate a quantum gate is
characterized by the four gate quality factors introduced in
Ref. [30]. Those are the fidelity F, purity P, quantum degree
Q, and entanglement capability C. The quantum degree and
entanglement capability characterize entangling operations.
They are unique to multiqubit gates. We will collectively
refer to these as nonlocal gate quality factors (GQFs) as op-
posed to fidelity and purity, which are both well defined for
an arbitrary number of qubits, in particular also for a single
qubit, and will be referred to as the local gate quality factors.

The fidelity can be evaluated, following Ref. [24], as fol-
lows:

F= (Wil Upoul[Win). (20)
The overline indicates the average over a discrete set of un-
entangled input states |¥;,) that can serve as a basis for all
possible input density matrices. The propagator U is the ideal
unitary evolution of the desired gate, and g, is the density
matrix after applying the realistic gate to |¥;,). Thus a per-
fect gate reaches a fidelity of unity and the deviation from
unity characterizes the deviation from the ideal process. The
purity P is indicative of the decoherence effects
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—

P=tr(psy)- (21)
Again, the overbar indicates the input state average. A pure
output state leads to P=1, whereas as the state becomes

increasingly mixed, the square of the weight of the contribu-
tions no longer sums up to unity and goes down to a mini-
mum of one divided by the dimension of the Hilbert space of
the system, 1/4 in our case.

Whereas the preceding two factors can be defined for any
number of qubits, the following two are particular to the
higher-dimensional case:

Q= max <ql1ne|pnul|q,me>-

Pout Ve

(22)

Here, the p,, are the density operators after the gate opera-
tion relating to unentangled input states, whereas the |W )
are the maximally entangled states, also known as Bell
states. Therefore, this measures the ability of the gate to cre-
ate quantum entanglement.

Finally, the entanglement capability C is the smallest ei-
genvalue of the density matrix resulting from transposing the
density matrix of one qubit. As shown in Ref. [31], the non-
negativity of this smallest eigenvalue is a necessary condi-
tion for the separability of the density matrix into two unen-
tangled systems. After separation, the partially transposed
density matrix is a valid density matrix as well, with non-
negative eigenvalues. The negativity of the smallest eigen-
value thus indicates that the states are not separable and
therefore nonlocal. It approaches —0.5 for the ideal CNOT
gate. The dynamics of entanglement in a two-qubit system
has been studied in Ref. [32]. The entanglement capability is
closely related to the negativity Ey of a state [33], which is a
nonentropic entanglement monotone [34].

V. COMBINATION OF &, AND 6, ERRORS

Now, the spin-boson model with a variable coupling op-
erator to the harmonic oscillator baths, Eq. (10), is studied in
more detail. We start with the CPHASE gate, which is entan-
gling and forms the core part of the CNOT operation. The
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TABLE I. Maxima of the gate quality factors for the CNOT and
the CPHASE gate operation. Here 7 indicates the temperature and
Tg=Eg/kp is the characteristic temperature scale, which corre-
sponds to the qubit energy scale during the gate operation. Both the
preferred bath configuration and qubit operator coupling to the bath
are given.

CNOT local GQFs nonlocal GQFs preferred case
T<Tg close to &, close to G, 1 bath
T>Tg close to 4, at g, 1 bath
CPHASE local GQFs nonlocal GQFs preferred case
T<Tg at &, at g, —*
T>Tg at &, at g, 2 baths

“There is no clear tendency observed in this case, see Fig. 1. Close
to pure &, coupling two baths are preferred, and close to G, one
bath.

quantum degree for the CPHASE gate is always smaller than
the ideal value because the CPHASE gate cannot create en-
tangled Bell states in this particular basis. Thus, we did not
consider the quantum degree for the CPHASE gate. The dif-
ferent error coupling configurations achieve the best gate
quality factors for different coupling operators to the envi-
ronmental baths. The scenarios are summarized in Table 1.

Two qualitatively different temperature regimes are
found, separated by a smooth crossover. Temperatures are
measured in units of T,, where Eg/h=(kg/h)T is the char-
acteristic energy scale, which corresponds to the typical qu-
bit energy scale during the quantum gate operation and is
typically of the order of a few GHz. For low temperatures
T<Tg, spontaneous emission processes dominate. When Ty
is approached, thermal effects become important and for T
~ Ty temperature is the dominating energy scale as will be
discussed in more detail below.

The CPHASE gate, for pure &, coupling, is protected by
symmetry because the gate operation and the coupling to the
bath commute. As was shown previously, all disturbances
vanish here in the limit of low temperatures. In this case,

5x10° S s e e e e T
3  e—e CNOT, 2 baths B
4x10 ,| -0 CNOT, 1 bath
0” 2x10” [~ w—a CPHASE, 2 baths
~ o o--a CPHASE, 1 bath
A 3
2x10
g 1x10° - .
16 FIG. 1. Dependence of the gate quality factors
X - . .
on the bath coupling angle 6 defined in Eq. (10)
0 Ty for the CNOT and CPHASE operation at T~0< T.
B 0 (n/2) Here, the behavior of the gate quality factors for
o I L IR B B both the single bath and two bath case is shown.
r 1 The characteristic energy scale for the gate opera-
—o10? tion is Eg/h=1 GHz [15]. The lines are provided
ﬁ | ) as guides to the eye.
o" /l:’
T’ -
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" [=—=a T=200T,, 2 baths ] L S FIG. 2. Dependence of the
N 05— A gate quality factors on the bath
0.4 b N S T I W coupling angle 6 defined in Eq.
720 0.2 0'49 (7t/2())'6 1 (10) for the CNOT operation at
1.5x10 T — T T T large temperatures T=2Tg and T
T e =2007. The characteristic energy
“'6-_‘9 . .
1.ox10” |- Te~—e I b scale for the gate operation is
| o004 Eg/h=1 GHz [15]. The lines are
&) 5.0x10° L1 Ol L provided as guides to the eye.
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<
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spontaneous emission processes are the dominating decoher-
ence mechanism because absorption and excitation processes
are effectively suppressed due to the bath coupling (i.e., ma-
trix elements for theses processes are restricted due to sym-
metries of the bath coupling operators) and the temperature.
In this case, the low-temperature regime can be referred to as
the emission limited regime.

The additional &, operation in the CNOT gate Eq. (4) dur-
ing the single qubit Hadamard operations leads to nonvan-
ishing decoherence rates even in the low-temperature limit.
The reason is again the competition of pure dephasing with
emission and absorption processes which show a different
dependence on the coupling angle 6.

However, the Hadamard part of the CNOT operation is
short compared to the overall length of the gate operation
(4). Thus, it is found that for low temperatures the best val-
ues for the GQFs are obtained very close to pure ¢, coupling
as depicted in Fig. 1. This implies that the overall decoher-
ence effects are smallest if the bath coupling angle 6
throughout the gate is adjusted to the distribution of gate
operations, which are characterized by different directions on
the Bloch sphere.

For the CNOT gate better results are observed for the
single bath case throughout the low-temperature regime, see
Fig. 1. For the single bath configuration, close to pure &,
coupling to the bath, the difference becomes quite significant
and for the nonlocal GQFs actually approaches a factor of 2,
but reduces again as pure &, coupling is reached. The
CPHASE gate (see Fig. 1) prefers a two bath configuration
unless the coupling is &, dominated. Again, the nonlocal
GQFs are affected most.

For the pure &, case (=0 or correspondingly ¢,=c¢,=0
and c,=1) little difference between the two bath and the
single bath behavior is found in the CNOT case and none at
all for the CPHASE. It is observed that the single bath con-
figuration is certainly preferred as soon as there is a signifi-

cant &, contribution in the gate operation. This means that
the additional protection from the one-dimensional decoher-
ence free subspace [15,16] involved is mainly beneficial if
the commutator of the qubit operator, which couples to the
bath and the qubit Hamiltonian (the Hamiltonian that is
needed to perform the individual parts of the gate operation)
has appropriate matrix elements, i.e., if there is a significant
noncommuting part in the bath coupling and the gate opera-
tions. However, in a &, dominated case the individual cou-
pling is preferred as it does not induce any additional indirect
couplings between the qubits. It is natural that the two qubit
GQFs should notice this more strongly than the single qubit
GQFs for which the differences never become more than
about one fifth of the individual deviations.

For the high-temperature regime, drastically different be-
havior in the nonlocal GQFs is found, see Fig. 2. Both Q and
C now achieve their best values at a pure &, coupling for
both gates, the local GQFs achieve their maximum at a pure
&, value. The protection that the CPHASE gate enjoyed in the
low temperature regime breaks down here. The high-
temperature case is essentially scale free, i.e., high tempera-
tures symmetrize the system. In this case the system eigen-
basis is given by the qubit operator which couples to the
bath. This can be nicely shown when considering the single
qubit dephasing rates within the spin-boson model [21]

r 1 & 5(0) A?
= e + —=
2E?

= S(E),
T, 2F (E)

(23)

where E is the single qubit energy splitting and S(E) denotes
the power spectrum of the noise. The expression Eq. (23)
becomes I',~2makyT/1 for T>E and does not depend on
the ratio A/e.

Thermalization is determined by the off-diagonal bath
couplings in the basis of the corresponding system Hamil-
tonian which is required for a certain gate operation. It will

052314-5



Paper 3

95

STORCZ et al.

e,
o 2228
et

pe
.-~#..-----..--:::W A
S’X.ZiifiZAAA M

s

fron AR

o—o Iy

Rates/av
S

oo —_—
= T,
o oo Ty
A“Arau
10 [ & oo Ty

T,

i Iy

10—2x\.IuI.\.Iu].I.IAIAI‘I‘I‘
-0.7 -06 -05 -04 -03 -02 01 0 0.1 02 03 04 05 0.6

FIG. 3. (Color online) Dependence of the decoherence rates on
the qubit asymmetry. Here, we set K=0, €;=0, A,=Eg, and vary A;.
The single and two bath cases behave identically, thus only the
single bath case is shown. The strength of the decoherence effects is
set to @=10"3 and T~0.5T5. We set the bath coupling angles (24)
to 6;=0 and 6,=0, i.e., the bath coupling operator and the Hamil-
tonian are perpendicular. The decoherence rates are scaled by avg,
with vg=Eg/h. The lines are provided as guides to the eye.

be strongly dominated by the noncommuting contributions,
i.e, the &, bath coupling for the CPHASE part of the CNOT
gate. The single qubit Hadamard part of the CNOT gate will
be additionally also affected by the &, bath coupling. The
two-qubit operation (CPHASE), or in other words the nonlocal
part, of the CNOT gate is of the 651)6'(,2) type and the single
qubit Hadamard gates contain both 6'; and &, contributions.
Thus, during the gate operation the thermalization is domi-
nated strongly by the &, part of the bath coupling for the
nonlocal and by the &, part for the local GQFs, implying that
for thermal fluctuations the &,-type couplings are more im-
portant in inducing interqubit transitions, while &, primarily
affects the single qubit gate quantifiers. What implementa-
tion to choose for a gate here, becomes a question of what
gate quantifiers are desired to be optimized. The differences
between the one bath and two bath scenario are now small.

For pure &, coupling of the qubit to the bath, a peculiar
effect is observed. In this case, the minimal eigenvalue of the
partially transposed density matrix that is the entanglement
capability remains negative even for 7> T, (Fig. 2). The
negativity of the eigenvalue of the partially transposed den-
sity matrix is not just a necessary but also a sufficient crite-
rion for the nonseparability of the system in our case [31].
Thus, no matter what the temperature or strength of the dis-
sipative effects in our system during the CNOT gate operation,
entanglement will never be eliminated completely. This can
be explained by rapid thermalization into a protected en-
tangled state. Furthermore, this effect carries over well into
the regime where both &, and &, noise are present.

Overall, the temperature (and the coupling strength) has
the largest influence on the GQFs. At T<T,(T=~107? K), we
observe deviations of the GQFs from the ideal value which
are less than 1073, At T>T(T~1 K) the deviations are 10~
and quickly increasing further at larger temperatures. The
different coupling operators to the bath are the next strongest
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effect. Rotating the coupling operator from &, to &, causes,
in the worst cases, three to four times stronger deviations
from the ideal value than the &, noise. Finally, the change
due to different types of bath couplings is generally small
compared to the differences between &, and &, type cou-
pling. This also suggests that we do not need to worry about
noise sources with at least one order of magnitude weaker
coupling strength, even if they couple through a less favor-
able coupling operator.

As an intermediate conclusion, it is found that for the
decoherence dominated regime the CPHASE operation
reached the optimum value of the GQFs for a pure &, cou-
pling to the bath. In the case of the CNOT operation, the
minimum is located slightly shifted to the &, component be-
cause of the mixture of &, parts during the Hadamard opera-
tions, compare with Fig. 1. For the CNOT operation, the op-
timum values of the four gate quantifiers are encountered at
different bath couplings, which are characterized by the mix-
ing angle Eq. (10), especially for large temperatures.

Thus, the differences between the case of one common
bath and two baths are much less important than the symme-
tries between the gate operation and the bath operators. In
particular, the difference between the case of one or two
baths disappears for pure &, coupling to the bath. Here, de-
coherence due to flux noise or charge noise in coupled su-
perconducting flux or charge qubits was explored. Decoher-
ence due to 1/f noise, caused by background charges or
bistable fluctuators, was not treated. If still in the motional
narrowing limit, it can be included in the Redfield equations
by introducing a peak at zero frequency in the spectral func-
tion with a magnitude given by experiment [35]. More gen-
erally, microscopic calculations are needed [36].

VI. NONIDENTICAL QUBITS

Now, we do not restrict the analysis to the case of a uni-
form error coupling Eq. (10) anymore. In general, both qu-
bits can couple to the baths differently

69 =69 sin 6, + 69 cos 6, (24)

where i=1,2 denotes one of the qubits. For the numerical
calculations, the qubits are set to the degeneracy point K
=¢=0 and A, is set to Ejg, i.e., effectively this model de-
scribes a system of two uncoupled qubits. Here, A; and thus
also the asymmetry G=(A;—A,)/(A;+A,) is varied.
Experimentally the spread of the qubit parameters due to
fabricational imprecision is very important both because
quantum algorithms (without further modification) require a
certain level of precision and the decoherence effects in the
system of qubits have to be sufficiently small [37].
Therefore, it is of central importance to investigate also
the effects of the parameter spread in nonidentical qubits on
the behavior of the decoherence rates. Superconducting qu-
bits are preferably operated at the degeneracy point where
decoherence effects are suppressed for superconducting
charge and flux qubits. However, the tunnel matrix elements
for superconducting qubits can differ significantly, on the
order of several percent [12,14]. Thus, the dependence of the
decoherence rates, i.e., dephasing rates and the relaxation
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FIG. 4. (Color online) Dependence of the decoherence rates on
the qubit asymmetry at 7=0.57. Here, the case of one common
bath is investigated. The tunnel matrix element of the second qubit
and the interqubit coupling are set to A;=K=FEg and A is varied.
For comparison with experiments, large asymmetry in the tunnel
matrix elements of the individual qubits is investigated. The bath
coupling angles are set to #;=0 and 6,=0. The strength of the
dissipative effects is a=1073. The lines are provided as guides to
the eye.

rate, close to the degeneracy point on the qubit asymmetry is
an important property. The decoherence rates are defined ac-
cording to Refs. [26,15]. Namely, the relaxation rate is I'y
=-2,A,, where A, are the eigenvalues of the matrix R,, ,, ;>
n,m=1,...,4, and the dephasing rates are
= _ReRn,m,n,m'

Figure 3 depicts the dependence of the decoherence rates
on the qubit asymmetry G when the individual qubits are
operated close to the degeneracy point. A Temperature T
~0.5T, which is typical for experimental situations, is cho-
sen for this analysis.

We observe that for pure &, coupling to the bath
(6,=m/2 and 6,=1r/2), the asymmetry of the qubits is irrel-
evant because the coupling to the bath and the system Hamil-
tonian commute (the indices of qubit one and qubit two
could be exchanged without changing the system). For
mixed bath coupling of the &, type for one qubit (6,=m/2)
and the 6,(6,=0) type for the other qubit, still the decoher-
ence rates do not vary for different asymmetry. The reason
for this behavior is that the &, bath coupling of the first qubit
always commutes with the qubit Hamiltonian, i.e., only flip-
less dephasing processes contribute to the decoherence rates
of the first qubit. When we vary the asymmetry, essentially
A, is varied (A,=Ej is kept constant), which leads to a dif-
ferent contribution of the first qubit to the overall decoher-
ence. However, these corrections are small compared to the
full decoherence rates (i.e., not only flipless dephasing pro-
cesses) that contribute in the case of qubit two where
[Hgp,Hgy] #0 and A, stays constant.

Finally, Fig. 3 shows the case of exactly perpendicular
system Hamiltonian and bath coupling. Here, the decoher-
ence rates increase steeply for increasing asymmetry.
Note here that due to the definition of G and A,, the two
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cases G=-0.6—A,=(1/4)E; and G=0.6—A,=4Eg are
vastly different.

From the dependence of the decoherence rates on the
asymmetry G of the two qubits at the degeneracy point, it is
possible to estimate the maximum tolerable asymmetry for a
given constraint on the deviation of the decoherence rates
from their value for perfectly symmetric qubits. It is found
that in order for the deviation of the relaxation rate from its
value for perfectly symmetric qubits to stay below 1%, it is
required that 0.5A,<A;<1.5A,; i.e., the parameter spread
of the two qubits could be remarkably large (=50%) without
considerably affecting the relaxation rates. However, detailed
analysis shows that for the deviations of the dephasing rates,
the increase happens much earlier. Moreover, there is a large
spread among the dephasing rates, which are sensitive to the
qubit asymmetries. Note that both the single bath and the two
bath case behave identically for the relaxation rate. Differ-
ences between the two cases only occur for the dephasing
rates. The angles of the bath coupling where the minimum
dephasing rates are encountered are different for the different
dephasing rates.

Typical experimental values for charge [12] and flux qubit
[14] designs indicate that the parameter spread in the tunnel
matrix amplitudes can be quite large, in the case of the
charge qubit it is a factor of A,/A;=0.91 and for the flux
qubit A,/A;=4.22, which corresponds to deviations of ap-
proximately ten and up to several hundred percent, respec-
tively. This difference of asymmetries is due to the fact, that
fabrication parameters such as E. and E; enter the exponent
of the tunnel splitting in the flux qubit case [6]. Thus, the
parameter spread of the tunneling amplitudes for the flux
qubit is larger and the decoherence rates will be considerably
affected. These experimental values emphasize that it is im-
portant to study the evolution of the decoherence effects for
nonidentical qubit parameters. Moreover, important informa-
tion about the noise sources coupling to the qubit can be
identified. From comparison of the decoherence rates for dif-
ferent qubit samples, which possess different asymmetries
between the tunnel amplitudes, it is thus possible to identify
the predominant bath coupling angle. In most qubit designs
the bath coupling angle is then uniquely related to a certain
noise source, e.g., flux noise in the case of flux qubits [38].

Figure 4 depicts the experimentally important [14] behav-
ior of the decoherence rates when A, and K are fixed to Eg
and A;> A, is changed. We define the deviation of the de-
coherence, i.e., the relaxation or dephasing rates from their
values at the degeneracy point as

FR.¢ij(A1 # Ay, K=Eg€=0)
- FR,@-_,(AI =A)=K=Egé€=0) '

1 (25)

R.¢; =

In this case the two qubits are permanently coupled, and
embedded into one common environmental bath. The deco-
herence rates begin to increase linearly when A is larger
than A,.

Figure 5 illustrates the temperature dependence of the de-
coherence rates for the case of one common bath. The values
of the decoherence rates for the two bath case differ insig-
nificantly from the single bath case. We observe that the
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FIG. 5. Temperature dependence of selected
decoherence rates for K=0, €=0, A|=Eg, A,

=0.9A,, for the single bath case. Here, tempera-
ture and the bath coupling angles are varied. The
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strength of the dissipative effects is set to a
=1073. The decoherence rates are scaled by avs,
where vg=FEg/h. The lines are provided as guides
to the eye.
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spread of the magnitude of the different decoherence rates
increases at intermediate mixing angles. As expected, the
magnitude of the decoherence rates is maximum in the case
where the system Hamiltonian and the coupling to the bath
are perpendicular to each other. For the opposite case, where
the system Hamiltonian and the coupling to the bath com-
mute, the decoherence rates vanish for decreasing tempera-
ture, i.e., only flipless dephasing processes contribute to the
overall decoherence. Note that in the case where the system
Hamiltonian and the coupling to the bath commute (6,
=/2 and 6,=m/2) the relaxation rate vanishes.

It is found that the dephasing rates depend strongly on the
qubit asymmetry. Nevertheless the parameter spread of the
qubit energies can be quite large (around 10%) without af-
fecting the decoherence properties considerably for the case
of a favorable bath coupling. However, for very large asym-
metries and a bath coupling, which is perpendicular to the
system Hamiltonian, the decoherence rates increase expo-
nentially with asymmetry.

VII. CONCLUSION

A system of two pseudospins coupled by an Ising-type
&(])6{2) interaction, which models e.g., superconducting
cﬁarg‘é or flux qubits, was investigated. It was shown that for
the system of two pseudospins the optimum gate perfor-
mance of different gate operations is closely related to their
composition of elementary gates and the coupling to the
bath. In more detail, the gate fidelity is enhanced when the
coupling angle to the bath imitates the composition of the
gate operation in terms of Hamiltonian parts pointing in dif-
ferent directions on the Bloch sphere. When considering the
gate quality factors, the temperature and aforementioned spe-
cial symmetries of the system-bath coupling have a large
influence on the decoherence properties, whereas the differ-
ences for the single or two bath scenarios are minor. For the
CPHASE operation at low temperatures, the optimum gate
quality factors are at pure &, system-bath coupling due to the
fact that only in this case all individual Hamiltonians neces-

sary for performing the gate operations and the system bath
coupling commute. Similarily, the CNOT gate operation ap-
proaches the best gate quality factors close to ¢, system-bath
coupling with a slight &, admixture due to the Hadamard
operations. These findings can be directly applied in systems
where it is possible to engineer the decohering environment
to a certain degree [39]. Moreover, special symmetries that
are identified in experiments can also be used for the encod-
ing of several physical qubits into logical qubits [16,17] to
reduce the effects of the environmental bath.

For very large temperatures, the temperature effectively
symmetrizes the system and thus entanglement is always
preserved during a CNOT gate operation independently of the
system-bath coupling. It is found that the parameter spread
of the tunnel matrix elements of the qubits, when operated
close to the degeneracy point can be quite large (approxi-
mately 10%) for a bath coupling which commutes with the
system Hamiltonian without affecting the decoherence prop-
erties considerably; which again emphasizes the importance
of using the symmetry properties of the system and bath to
improve the decoherence of the qubit system. In the special
case where the system Hamiltonian commutes with the
system-bath coupling Hamiltonian, the differences in the de-
coherence rates stay below 1% for the aforementioned spread
of the tunnel matrix elements. This special case can model
the situation in superconducting flux qubits [13,14], where
the dominating noise source is flux noise, quite well if the
tunnel matrix elements of the individual qubits are small
compared to the energy bias of the qubits and the interqubit
coupling strength. However, in a more general setup with
nonidentical qubits, the aformentioned symmetry properties
are almost certainly not fulfilled and the performance of the
qubits will be degraded quite significantly.

VIII. OUTLOOK

Our results indicate, that in case of tunable bath coupling
operators, decoherence may be further engineered. More-
over, they indicate that symmetry-induced coherence protec-
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tion is remarkably stable under realistic parameter spread.
These results are expected to have significant impact on the
analysis of the recent experiments [9,14,19]. Next to its prac-
tical importance, this emphasizes the role of the spatial cor-
relations of the environmental noise that has been assumed
here, but which needs to become an integral part of the ex-
perimental characterization of the environment.
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Chapter 7

Decoherence of two coupled QD
charge qubits

7.1 Introduction

Here, a system of two coupled quantum dot charge qubits is investigated. In these lateral
quantum dot structures the qubit is defined by an additional charge in the left or right dot
of a double quantum dot system. The tunnel coupling between the two dots, ¢.e., the tunnel
amplitude of the qubit can be tuned by an external gate voltage. In comparison to the
superconducting qubits, this quantum dot system is not as well protected from excitations,
it is coupled to several more degrees of freedom of the solid-state system. Namely, the most
important decoherence sources for charge qubits in quantum dots have been identified as
phonon decoherence, 1/ f-noise, electronics noise, and cotunneling, see Ref. [113]. Thus, a
very important design issue for the quantum dot charge qubit system is how quantum dot
charge qubits could be coupled and how the decoherence sources will act on such a setup.

In the following paper, the intrinsic decoherence due to the electron-phonon interactions
is considered [191, 192] and the gate performance for a system of two coupled quantum
dot charge qubits in a dissipative environment is evaluated. In this model for the electron-
phonon decoherence, the assumption of Gaussian wavefunctions for each of the two dots
is made, which corresponds to small tunnel couplings between the dots or large distances
between the dot centers. The noise on the two qubits has both local and collective prop-
erties. It does neither fall completely in one of the standard classes of decoherence models
for quantum registers, collective or local decoherence. From analyzing the decoherence
properties of different classes of effective spectral functions, it is possible to propose a
description of the noise in terms of multipole moments. The decoherence rates for the
two-qubit setup can be made only slightly larger than the single qubit rates by adjusting
the tunnel coupling between the dots to be small.

Because of the super-Ohmic spectrum of the phonons and the intrinsic type of bath
coupling, which is diagonal in the eigenbasis of the system Hamiltonian, the gate quality
of a CNOT gate operation is limited only by the single-qubit Hadamard gates. Thus, it is
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possible by adjusting a weak tunnel coupling between the two dots that form one qubit,
to significantly improve the gate performance despite a longer evolution time. Therefore,
the overall gate performance is increased by slowing down the Hadamard operation and
the threshold for quantum error correction, cf. section /1.2, can be met by the quantum dot
charge qubit system.
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Recent experiments by Hayashi et al. [Phys. Rev. Lett. 91, 226804 (2003)] demonstrate coherent
oscillations of a charge quantum bit (qubit) in laterally defined quantum dots. We study the intrinsic
electron-phonon decoherence and gate performance for the next step: a system of two coupled charge
qubits. The effective decoherence model contains properties of local as well as collective decoherence.
Decoherence channels can be classified by their multipole moments, which leads to different low-
energy spectra. It is shown that due to the super-Ohmic spectrum, the gate quality is limited by
the single-qubit Hadamard gates. It can be significantly improved, by using double-dots with weak

tunnel coupling.

PACS numbers: 03.67.Lx, 03.65.Yz, 73.21.La, 71.38.-k

I. INTRODUCTION

In recent years, the experimental progress in analyz-
ing transport properties in double quantum dots' has
lead to the fabrication of double dot structures with only
one electron in the whole system?3. This well-defined
situation permits, although it is strictly speaking not
necessary4, to use quantum dot systems as quantum bits
(qubits). In order to define qubits in lateral quantum
dot (QD) structures, the two degrees of freedom, spin
and charge, are naturally used. For spin qubits®, the in-
formation is encoded in the spin of a single electron in
one quantum dot, whereas for the charge qubit®™8 the
position of a single electron in a double dot system de-
fines the logical states. Similar ideas can also be applied
to charge states in Silicon donors®. Both realizations are
interconnected: interaction and read-out? of spin qubits
are envisioned® to be all-electrical and to make use of the
charge degree of freedom.

Although the promises of spin coherence in theory'°
and in bulk measurements'! are tremendous in the long
run, it was the good accessibility of the charge degrees of
freedom which lead to a recent break-through?, namely
the demonstration of coherent oscillations in a quantum
dot charge qubit. In this experiment, three relevant de-
coherence mechanisms for these charge qubits have been
pointed out: a cotunneling contribution, the electron-
phonon coupling, and 1/f-noise or charge noise in the
heterostructure defining the dots.

Recent theoretical results'? predict that the cotunnel-
ing contribution can be very small, provided that the cou-
pling between the dots and the connected leads is small.
Thus, cotunneling is not a fundamental limitation. This,
however, means that initialization and measurement pro-
tocols different from those of Ref. [4] are favorable?.

Other theoretical works!®1415:16:17 already describe
the electron-phonon interaction for a single charge qubit
in a GaAs/AlGaAs heterostructure. Moreover, also elec-
tronic Nyquist noise in the gate voltages affects the qubit

system'8. Note that the physics of the electron-phonon
coupling is different and less limiting in the unpolar ma-
terial Si'?, where the piezo-electric interaction is absent.

II. MODEL

In this article, we analyze the decoherence due to the
electron-phonon coupling in GaAs, which is generally as-
sumed to be the dominant decoherence mechanism in a
coupled quantum-dot setting. The recent experimental
analysis shows that the temperature dependence of the
dephasing rate in the experiment? can be modeled with
the Spin-Boson model and hence is compatible with this
assumption®’. We develop a model along the lines of
Brandes et al.2?? to describe the piezo-electric interac-
tion between electrons and phonons in lateral quantum
dots. Thereby, we assume the distance between the two
dots to be sufficiently large and the tunnel coupling A to
be relatively small, which is a prerequisite for the validity
of the model. The Hamiltonian for a system of two dou-
ble dots with a tunnel-coupling within the double dots
and electrostatic coupling between them, see Fig. 1, can
be expressed as??

f{total = f{sys + ﬁbath + f{intv (1)
where
N 1 . N R .
Hsys = - Z 5 (Eio'z,i + Aiaz,i) - kUz,l & 02,2 (2)
i=1,2
Hpoin = Z hwchcq 3)
q

refer to the qubits and the heat bath, respectively. ¢ is
the phonon wave number. The system-bath interaction
Hamiltonian H;,y depends on details of the setup such as
the crystalline structure of the host semiconductor and
the dot wave functions. We will distinguish between the
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two extreme cases of long correlation length phonons re-
sulting in coupling of both qubits to a single phonon bath,
or two distinct phonon baths for short phonon correla-
tion length. The former case is more likely?® and ap-
plies to crystals which can be regarded as perfect and
linear over the size of the sample, whereas the latter
case describes systems that are vstrained or disordered
and double quantum dots in large geometrical separa-
tion. The correlation length has to be distinguished from
the wave length: The former indicates, over which dis-
tances the phase of the phonon wave is maintained,i.e.,
over which distance the description as a genuine stand-
ing wave applies at all, whereas the latter indicates the
internal length scale of the wave.

A. One common phonon bath

In the case of a single phononic bath with a very long
correlation length coupling to both charge qubits, Hint
can be written as

N 1 ~ A
Hing = Z 3 {(an +Bg1 + g2+ 842)11 ® 12 +
q

(g1 — Bg1)21 ®1a +

+age = Br2)l1 ® ?72,2] (ch+cg) . (4)
The coeflicients ag; and f,; describe the coupling of a
localized electron (one in each of the two double dot sys-
tems) to the phonon modes. They are given by

Qgi = )‘fl<l77;|eitﬁ“lvi>7
Bei = )‘q<7'ai‘e“ﬁ|7"i>v

where the |l,7) and |r,i) denote the wavefunctions of
the electrons in the left or right dot of qubit i. We as-
sume these wavefunctions to be two-dimensional Gaus-
sians centered at the center of the dot, as sketched in
Figure 1. These states approximate the ground state in
the case of a parabolic potential and small overlap be-
tween the wavefunctions in adjacent dots. The coefficient
Aq is derived from the crystal properties?2.

Henceforth, we investigate the case of two identical
qubits. Due to the fact that the relevant distances are
arranged along the x-direction, we obtain the coupling
coefficients

)\qeiq(—l/Q—d)e—qza2/47

Qg1 = (7
By1 = )\qe—iql/Ze—q202/4’ (8)
oy = )\qeiql/Qe—qzazﬂ7 (9)
Bea = Ageltl/2Hdema /1 (10)

Here, ¢ is the absolute value of the wavevector ¢. The
second exponential function in each line is the overlap
between the two Gaussian wavefunctions.

This two-qubit bath coupling Hamiltonian is quite
remarkable, as it does not fall into the two standard

2
(1) (1) 2) (2)
Vol Vor Vol Vor
Jap™ d “api™ Sand™ d ~ap? N
qubit 1 qubit 2

FIG. 1: (Colour online) Sketch of the two coupled identical
charge qubits realized in a lateral quantum dot structure. d =
100 nm is the distance of the dot centers in one qubit, [ =
200 nm is the distance between the right dot center of qubit 1
and the left dot center of qubit 2. The width of the Gaussian
wavefunction of an electron in each dot is 0 = 5 nm. The
values chosen for the distances d and [ are slightly smaller
than in experimental realizations®* in order to provide a lower
bound for the decoherence times. In principle, there could be
tunneling processes between both qubits, i.e., the QDs two
and three in the chain, but we assume that the coupling is
pinched off by applying appropriate gate voltages. The gray
box between the qubits indicates that there is no tunneling
between the qubits.

categories usually treated in literature (see, e.g., Refs.
[24,25,26] and references therein): On the one hand,
there is clearly only one bath and each qubit couples
to the bath modes with matrix elements of the same
modulus, so the noise between the qubits is fully corre-
lated. On the other hand, the Hamiltonian does not obey
the familiar factorizing collective noise form Hgp con =
Xsystem @ Xpath. Such a form would lead to a high de-
gree of symmetry and thus protection from the noise
coupling?42° however, the Hamiltonian Hiy,, eq. 4, can-
not be factorized in such a bilinear form. It is hence
intriguing to explore where in between these cases the
physics ends up to be. This is in particular important
for finally finding strategies to protect the qubits against
decoherence, and for estimating the scaling of decoher-
ence in macroscopic quantum computers.

In order to obtain the dynamics of the reduced density
matrix p for the coupled qubits, i.e., for the degrees of
freedom that remain after the environment is traced out,
we apply Bloch-Redfield theory?”:28:29, It starts out from
the Liouville-von Neumann equation ifip = [H, peot) for
the total density operator. A perturbational treatment
of the system-bath coupling Hamiltonian Hj,; results in
the master equation

. 00
p= = el =1z [ wli, Hi(=7), 5],

(11)
where pp = exp(—8Hpg)/Z denotes the equilibrium den-
sity matrix of the bath. Evaluating the trace over all
bath variables, trp, and decomposing the reduced density
operator into the eigenbasis of the unperturbed system
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Hamiltonian, we obtain?®30

)énm = 7iwnmpnm - Z ank(’,pk(’,? (12)
k.l

where wym = E,, — Ep,. The first term on the right hand
side describes the unitary evolution and the Redfield re-
laxation tensor R,k incorporates the decoherence ef-
fects. It is given by

(+) (=) (=) (+)
anki = (5[7" Z rnrrk + 6”79 Z Ferm - Flmnk - rlmnk’
r r
(13)

where the rates I'®) are determined by Golden Rule
expressions?30, see Eqs. (20) and (21), below. The
Redfield tensor and the time evolution of the reduced
density matrix are evaluated numerically to determine
the decoherence properties of the system due to a weak
electron-phonon coupling. Note that in addition, Ohmic
electronic noise can be taken into account by employ-
ing the spectral function®" Jg(w) = Johmic(w) + J(w),
where J(w) contains only the phonon contribution. It
is also possible to take 1/f-noise in the quantum dot
system into account in the same way. The 1/f-noise
essentially determines the magnitude of the dephasing
part of the decoherence. Thus, it is in turn possible to
impose for the zero frequency component J(0) the ex-
perimental value of the dephasing rates or a value from
a microscopic model®2. However, in many cases it turns
out to be non-Markovian and/or non-Gaussian, leading
to non-exponential decay, which can neither be described
by Bloch-Redfield theory nor parameterized by a single
rate.

Hu
Jeo(w) = g |:2 — 9% gin <i> F @ in (i) 4 2% G (L> T
4 w wq w wi w Witd w

where g = 0.05 is the dimensionless electron-phonon cou-
pling strength for the commonly used material GaAs?!22
and cg the speed of sound. The different frequen-
cies represent the distances in the system: wq = c¢s/d,
wi = ¢s/l, warr = cs/(d+1) and wag; = cs/(2d + 1),
and w. = ¢s/o. This structure can be understood as fol-
lows: The electron-phonon interaction averages out if the
phonons are rapidly oscillating within a dot, i.e. if the
wavelength is much shorter than the dot size — this pro-
vides the high-frequency cutoff at w.. On the other hand,
long-wavelength phonons do not contribute to decoher-
ence between dots 7 and j, if the wavelength is much
longer than their separation because then, the energy
shift induced by the phonon displacement will only lead
to a global phase. Furthermore, we can approximate the

In order to compute the rates, the electron-phonon in-
teraction Hamiltonian has first to be taken from the lo-
calized representation to the computational basis, which
is straightforward. To compute Bloch-Redfield rates, it
is necessary to rotate into the eigenbasis of the system.
After this basis change, the spectral densities Jymnk(w)
are calculated along the lines of Ref. [22] as

Jtmnk(w) ={((B~'CB),, (B™'CB), )¢ (14)

m (
where B is the matrix for the basis transformation from
the computational basis {|00), |01), |10), [11)} to the
eigenbasis of the system and (), denotes an averaging
over all phonon modes g with frequency w. The matrix
C'is diagonal in the computational basis, C' = diag(ag,1 —
/HqJ + Qg2 — ﬂq,?y Qg1 — ﬂq‘l + Qg2 — ﬂq,?y Qg1 — Bq,l +
Qg2 — Bg2, 091 — By + g2 — Bg.2)-

The explicit derivation shows that it is most convenient
to split the total spectral function Jymnk(w) [see Eq. (14)]
into odd and even components

Jl’,mnk (W) = 6Zmnk']e(w) + Oimnk']o(w) ) (15)
where the prefactors egmni and ogmnk of the even/odd
part of the spectral function are matrix elements coming

from the basis change from the computational basis to
the eigenbasis of the system and

™
Je/o(w) =7 Z ‘0‘(1,17@171iaq,2¢ﬁq,2|25("—’*“-’q)~ (16)
q

They evaluate to

Wit2d .
Lit2d o

n <7w ) :|e“’2/2“’3, (17)
Wit2d

leading order at low frequencies as

2rhgd?
Jo(w) = ”3‘692 w3 + O(w?), (18)
&2 2 2 3 4
o) = whg(12d? + 21d° + d )w5+0(w7)‘ 19)

10¢t

This different power-laws w?® to w® can be understood
physically as illustrated in Figure 2. “Even” terms are
the natural extension of the one-qubit electron-phonon
coupling, adding up coherently between the two dots.
In the “odd” channel, the energy offset induced in one
qubit is, for long wavelengths, cancelled by the offset in-
duced in the other qubit. Thus, shorter wavelenghts are
required for finding a remaining net effect. An alterna-
tive point of view is the following: The distribution of
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FIG. 2: Illustration of the even (top) and odd (bottom) con-
tributions to the total rates. Filled circles indicate occupied
dots. For long-wavelength modes, the energy shifts induced
by underlying phonons in the two dots add up coherently in
the even case but cancel in the odd case. Note, that moving
charges from the black to the white dots changes the dipole
moment in the even but not in the odd case.

|
-20

FIG. 3: (Colour online) Spectral functions Je o(w) in the case
of one common phonon bath for the fixed parameters c; =
5000 m/s, g = 0.05, d = 100 nm, ! = 200 nm and ¢ = 5 nm.
Inset: zoom for small frequencies.

the two charges can be parameterized by a dipole and
a quadrupole moment. The “even” channel couples to
the dipole moment of the charge configuration similar to
the one-qubit case. The “odd” channel couples to the
quadrupole moment alone (see Figure 2). Thus, it re-
quires shorter wavelengths and consequently is strongly
supressed at low frequencies. This explains the different
low-frequency behavior illustrated for realistic parame-
ters in Figure 3. Thus, we can conclude that for small
frequencies the odd processes are suppressed by symme-
try — even beyond the single-dot supression and the sup-
pression of asymmetric processes.

With these expressions for the spectral densities, one
can proceed as in Ref. [26] and determine the rates that
constitute the Redfield tensor to read

(+) ka,nk(wnk) hwnk‘ _

Coink = o, coth pT 11, (20)
_ Jommnk (we hwem

i) = ”“E;L m) {coth ( 21@37%) +1}. (21)

For w;; — 0, these rates vanish due to the super-Ohmic
form of the bath spectral function. From this, we find the
time evolution of the coupled qubit system and finally
also the gate quality factors.

B. Two distinct phonon baths

When each qubit is coupled to its own phononic bath,
the part of the Hamiltonian that describes the interaction
with the environment Hiy is given by

Hie = Z % [(aql + ﬁ(h)il + (g, — ﬁQI)&ZJ]

q1
x(ch, +coq) @ 1o+

+ Z % [(atn + ﬂ@)iz + (g, — ﬁqa)a’Z,Z]
q2

><(c:;2 teg)®1y . (22)

This scenario can be realized in different ways: One can
split the crystal into two pieces by an etched trench. Al-
ternatively, if there is lattice disorder and/or strong non-
linear effects, the phonons between the dots may become
uncorrelated.

The calculation of the coupling coefficients works in a
similar way, but there are two different indices ¢; and go
to represent the phononic baths of each qubit

g = /\qleizh(71/2*(1)e*f1?ﬂ”/47 (23)
ﬁ‘h = /\q1e_iqll/2e_q12a2/4v (24)
Qs = Agye' /e, (25)
By = Agei@2(/2+d)g=aio®/4 (26)

The expression for the spectral functions Jemnk(w)
turns out to be exactly the same as the one in the last
section with the only difference that instead of i, the
coupling between electrons and phonons is now expressed
as ag, (with ¢ = 1,2 for both qubits). Therefore, in or-
der to obtain the spectral density Jm,nk(w), one has to
average over two distinct baths, i.e.

Jonni(@) = (B7'CB),,,, (B'CB), )arese (27)

{m

Again, we find two different functions that we name in
the same way as in the previous section, J.(w) and J,(w),
which are given by
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2
h € w L
Jeolw) = 229 19 9% iy <i> 72 Zsin [ L) - 22 g [ et /Wl (28)
4 w wd w Wi w Wit d

FIG. 4: (Colour online) Spectral functions Je,o(w) in the case
of two distinct phonon baths for the fixed parameters ¢, =
5000 m/s, g = 0.05, d = 100 nm, [ = 200 nm and ¢ = 5 nm.
Inset: magnification for small frequencies.

The prefactors from the basis change also enter the ex-
pressions for the rates in the same way as in the last
section. The spectral functions Je,(w) are plotted in
Figure 4; the inset depicts the proportionality to w® for
small frequencies.

III. GOLDEN RULE RATES

We proceed as in Ref. [26] and determine the Golden
rule rates that govern the Redfield tensor. Thereby, we
find both the time evolution of the coupled system and
the gate quality factors.

Let us first discuss the impact of this particular bath
coupling on the dephasing and relaxation rates. The de-
coherence rates, i.e., the relaxation and dephasing rates,

are defined according to I'r = — >, Ay, where A, are
the eigenvalues of the matrix composed of the elements
Ronmm, m,m = 1,...,4, and 'y, = —ReRy mnm

for non-degenerate levels |wnm| > |Rnmn,m| and in
the absence of Liouvillian degeneracy, |wpm — wi| >
|Rabedl a,b,c,d, € {k,1,m,n}, respectively®..

As a reference point, we study the rates in the uncou-
pled case. In this case, and in the absence of degeneracies
between the qubits, there is a clear selection rule that the
environment only leads to single-qubit processes, i.e., de-
coherence can be treated at completely separate footing.
As aresult, all rates are identical between the qubits. To
make this obvious, we rewrite the original Hamiltonian in

the one-bath case, combining Eq. (4) with egs. (7)-(10)
as

N 2 2 d ;
Hiy = Z |: 2e=9"" /4 gin <%> (e’lq(Hd)/szz,l +

q

+€iq(l+d)/2é'z,2) + E()i (C:; + qu) (29)

which — besides a phase factor which is meaningless for
single-qubit transitions — is identical to the standard
electron-phonon Hamiltonian for double dots?2.

Figure 5 shows the temperature dependence of the en-
ergy relaxation rate I'r and the two dephasing rates I'y,
and I'y,, compared to the single qubit relaxation and de-
phasing rates. In this notation, I'y, ; is the rate at which a
superposition of energy eigenstates ¢ and j is decays into
a classical mixture. We considered the following three
cases, characterized by values on the matrix element rel-
ative to a characteristic system energy scale Eg: (a)
large difference of the &; and A; (i = 1,2) between both
qubits and no coupling between the qubits (1 = A; =
(1/40)E;, e2 = Ay = —(21/40)E, and coupling energy
K = 0), (b) small asymmetry between the parameters
for both qubits and no coupling (1 = Ay = —(1/2)E;,

€9 = Ay = —(21/40)Es and K = 0), and (c) with-
out asymmetry between the qubits and a rather strong
coupling between the qubits (e = Ay = —(1/2)E;,

go = Ay = —(1/2)E; and K = 10E;). One generally
would expect a different value of the distance between
the dot centers in the qubits d, when the tunneling cou-
pling is varied. However, in our case of the dot wave-
functions which overlap only in their Gaussian tails, this
effect is very small (below 1 nm for a change in the tun-
neling amplitude A of approximately ~ (1/2)Ej) for the
lengthscales that we are considering. Note, that in Ref.
3 a substantial change of A over more than an order of
magnitude was obtained experimentally by a rather mild
adjustment of the gate voltage, so it is consistent that a
small change of A can be achieved by a tiny adjustment.
Therefore the value d = 100 nm is used for the electron-
phonon coupling encoded in J, and J, in all cases.

For case (a), we find that all rates are for all temper-
atures larger than the single qubit rates, as one would
expect®®. In more detail, for the single bath case, the
ratio of the relaxation rates is approximately 1.9, the ra-
tio of the single-qubit dephasing rate and the two-qubit
dephasing rate I'y,, is around 0.9 and for the dephasing
rate I'y,,, the ratio is 1.0. The behaviour of the even
and odd parts of the spectral function in the single bath
case can be explained from the spectral function Fig. 3,
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FIG. 5: (Colour online) Temperature dependence of the relaxation and dephasing rates normalized by the single-qubit relaxation
and dephasing rates. The two-qubit relaxation rate is given by the trace of the relaxation part of the Redfield tensor in secular
approximation. The energy scales for the two-qubit transitions 1 «» 3 and 2 < 4 are comparable to the single qubit energy scale,
the characteristic qubit energies are Es = (1/8) GHz. The different cases are (a) e1 = A1 = (1/40)Es, e2 = Ag = —(21/40)E,
and coupling energy K = 0, (b) e1 = A1 = —(1/2)Es, e2 = Az = —(21/40)Es, and K = 0), and (¢) e1 = A1 = —(1/2)Es,
€2 = Ao —(1/2)E; and K = 10Es. Note that cases (a) and (b) model uncoupled qubits, especially for case (a) the
overall relaxation rate for the two-qubit system is approximately twice the single-qubit relaxation rate when calculated for the

dominating larger energy scale of the two-qubit system (e2 = Ay = —(21/40)Es).

for small w one finds that J, < J.. For the case of large
frequencies, however, the even part of the spectral func-
tionincreases and even dominate beyond the threshold
w 2 wq. Overall, it is found that in the case of a single-
bath the decoherence effects are significantly suppressed
compared to the two-bath scenario. For the two-bath
case, the ratios are for the relaxation rates approximately
3.9, for the dephasing rate I'y,, around 1.9 and for the
dephasing rate I'y,, it is 2.0. Note that for the two-bath
case J. < J, always and for the case where both tun-
nel matrix elements in the Hamiltonian vanish, the rate
vanishes, too.

After decreasing the asymmetry between the two
qubits as in case (b), the rates decreased but are still
comparable with the single qubit rates, besides the last
dephasing rate I'y,,. This can be understood, if one con-
siders the energy spectrum of the eigenvalues of the sys-
tem Hamiltonian. In cases (a) and (b) there is signifi-
cant difference between the qubits, so it is straightfor-
ward to map the two-qubit rates onto the corresponding
single qubit rates and they are largely determined by
single-qubit physics. In case (c), we consider a fully sym-
metric case in the qubit parameters, but with a finite
and large coupling between the qubits. This coupling
lifts the degeneracy but makes the rate a generic two-
qubit rate which belongs to a relatively robust transition
with small transition matrix elements for the single bath

case. At high temperatures, these symmetry-related ef-
fects wash out as discussed in Ref. [34]. However, the
high-temperature rates do not coincide with the single-
qubit rates, as the underlying energy scales are still dif-
ferent and in generally larger for the two-qubit situation.

Overall, the ratio of the two-qubit and single-qubit re-
laxation rates decreases for increasing temperature due
to the reduction of correlation effects in the double dot
system, besides case c¢), where a symmetry based on the
underlying Hamiltonian becomes important.

IV. QUANTUM GATE PERFORMANCE

For the characterization of the quantum gate perfor-
mance of this two-qubit system, it is necesssary to intro-
duce suitable quantifiers. Commonly, one employs the
four gate quality factors introduced in Ref. [35]; fidelity
F, purity P, quantum degree Q, and entanglement capa-
bility C to chararcterize a gate operation within a hostile
enviroment.

The fidelity, i.e., the overlap between the ideal prop-
agator and the simulated time evolution including the
decoherence effects, is defined as

F = (Uin| Ut poueU [P, (30)
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where the bar indicates an average over a set of 36 unen-
tangled input states |¥i,) = |¢;) [¢;), with i, j =1,...,6.
The 6 single-qubit states [¢;) are chosen such that they
are symmetrically distributed over the Bloch sphere,

_ o) +e 1)
,6> - \/5 (31)

where ¢ = 0,7/2,m,37/2. Here, U is the ideal unitary
time evolution for the given gate, and poyt is the reduced
density matrix resulting from the simulated time evolu-
tion. A perfect gate reaches a fidelity of unity. The purity
‘P measures the strength of the decoherence effects,

[Y1) =10}, [2) =11), [vs..

P = tr(pdu)- (32)

Again, the bar indicates the ensemble average. A pure
state returns unity and for a mixed state the purity can
drop to a minimum given by the inverse of the dimension
of the system Hilbert space, i.e. 1/4 in our case.

If the density operator p describes an almost pure
state, i.e., if the purity is always close to the ideal value
1, it is possible to estimate the purity loss during the gate
operation from its decay rate along the lines of Ref. [36].
Thereby, one first evaluates the decay of (d/dt)trp® for
an arbitrary pure qubit state p = [)(¢)|. From the basis-
free version of the master equation (11), follows straight-
forwardly

{o o}

g =2 [ dr tes i, He(=7),0 @ 5]l
t w2 Jo
(33)

By tracing out the bath variables, we obtain an expres-
sion that contains only qubit operators and bath corre-
lation functions. This depends on the state |¢) via the
density operator. Performing the ensemble average over

all pure states as described in the Appendix A, we obtain

2

m/ﬂ A7 e ([Hint, Hint (—7)]4+) Boeq: (34)

P =
where N = 4 denotes the dimension of the system Hilbert
space of the two qubits. We have used the fact that
trHint = 0. Although the discrete and set of states em-
ployed in the numerical computation is obviously differ-
ent from the set of all pure states, we find that both
ensembles provide essentially the same results for the pu-
rity.

If the bath couples to a good quantum number, i.e.,
for [Hgys, Hing] = 0, the system operator contained in
the interaction picture operator I:Iim(fT) remains time-
independent. Then, the 7-integration in (34) is effectively
the Fourier transformation of the symmetrically ordered
bath correlation function in the limit of zero frequency.
Thus, we obtain

- 2 . hw
P= 7@}}1{{%;(]@(&)) coth%—Iﬂ (35)

where

Tiw) = 7 D lagi = Bual’d(w —wy)  (36)
q

denotes the spectral density of the coupling between
qubit ¢ and the heat bath(s).

In the present case of a super-Ohmic bath, the limit
w — 0 results for the coupling to a good quantum num-
ber in P = 0. This means that whenever the tunnel
coupling in the Hamiltonian (2) is switched off, i.e. for
A1 = Ay = 0, the purity decay rate vanishes. Thus,
we can conclude that the significant purity loss for the
CNOT operation studied below [cf. Eq. (41)], stems from
the Hadamard operation. This is remarkably different
from cases with other bath spectra: For an ohmic bath,
for which J;(w) o w, expresion (35) converges in the
limit w — 0 to a finite value. By contrast, for a sub-
ohmic bath, this limit does not exist and, consequently,
the purity decay cannot be estimated by its decay rate.
During the stage of the Hadamard operation, Ay = A
while A; = 0. Then, the interaction picture versions of
the qubit-bath coupling operators read

6z,1(77—) = &z,ly (37)
G22(—T) = 6.2co8(AT/h) — 6y 2sin(AT/R). (38)

In the case where both qubits couple to individual en-
vironments, the expression for the change of the purity
can be evaluated for each qubit separately. For qubit
2, we still have a coupling to a good quantum number,
while for qubit 1, the appearence of cos(A7/h) results in
a Fourier integral evaluated at the frequency A/h. Thus,
we finally obtain

P= _AT lim i)
5 w—0

(A /) coth g (39)
For the super-Ohmic bath under consideration [see egs.
(18) and (19)], the first term in Eqn. (39) vanishes.

In the case of one common heat bath, the estimate of
the purity decay is calculated in the same way. The only
difference is that we have to consider, in addition, cross
terms of the type 1. ® 2., i.e. terms that contain
operators of different qubits. The contribution of these
terms, however, vanishes when performing the trace over
the bath variables in Eq. (34). Thus, we can conclude
that within this analytical estimate, the purity decay rate
is identical for both the individual bath model and the
common bath model.

The so-called quantum degree

Q= max
Pout,| Pme)

<\IJmc| Pout ‘\I/m(‘,> (40)

is the overlap of the state obtained after the simulated
gate operation and the maximally entangled Bell states.
Finally the entanglement capability C is defined as the
smallest eigenvalue of the density matrix resulting from
transposing the partial density matrix of one qubit. As
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FIG. 6: (Colour online) Temperature dependence of the deviation of the four gate quality factors from their ideal values for the
CNOT gate. The decoherence due to phonons is taken into account. The black line shows the results for a single phonon bath
and the red line is for two phononic baths. The characteristic qubit energies are E; = 1/4 GHz and the tunnel amplitudes are
A; = Es (i =1,2) due to the spacing of the double dots. In the curves for the deviation of the purity, we included lines for the

analytical expressions 1 from Eq. (34) and 2 from Eq. (39).

shown in Ref. [37], the non-negativity of this smallest
eigenvalue is a necessary condition for the separability of
the density matrix into two unentangled systems. The
entanglement capability approaches —0.5 for the ideal
CNOT gate.

It has been shown that the controlled-NOT (cNOT)
gate together with single-qubit operations is sufficient
for universal quantum computation. Here, we investi-
gate the decoherence during a CNOT gate which generates
maximally entangled Bell states from unentangled input
states. In Figures 6 and 7 the simulated gate evolution in
the presence of phonon baths is shown. Using the system
Hamiltonian, the CNOT gate can be implemented through

the following sequence of elementary quantum gates26:38

UI({Z) exp <7z£62)1> exp <7i£&z,2) X
X exp (—ig&211&2,2> exp (—ig52,1> UI({Q)7
(41)

Ucnor =

where Ul(f) denotes the Hadamard gate operation per-
formed on the second qubit. This gate sequence just
involves one two-qubit operation at step three. The pa-
rameters for the numerical calculations are given below

Figs. 6 and 7.

In Fig. 6, the gate quality factors for the case of a single
or two distinct phononic baths are shown. It is observed
that for the case of a single phonon bath they achieve
better values. This offset is due to the larger number
of non-vanishing matrix elements in the coupling of the
noise to the spin components for the two bath case. Here,
due to several non-commuting terms in the coupling to
the bath and the different Hamiltonians needed to per-
form the individual steps of the quantum gate, the gate
quality factors saturate when the temperature T is de-
creased. This happens at around 7' = T = 12mK corre-
sponding to Fs = 1/4 GHz as the characteristic energy
scale.

Figure 7, depicts the same behaviour of the gate qual-
ity factors as in Figure 6 with the only difference that the
tunnel coupling A, is smaller by a factor of 4 during the
Hadamard operation. The qualitative behavior is very
similar to that in Figure 6, but the deviation from the
ideal values for the gate quality factors is much smaller
and already fulfills the criterion of an allowed deviation of
10~%. The reduction of the tunnel amplitudes by a factor
4 corresponds to a very small change of the distance d in
the two qubits (namely, from 100.0 nm to 100.3 nm) ow-
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FIG. 7: (Colour online) Temperature dependence of the deviation of the four gate quality factors from their ideal values for
the ¢NOT gate. The decoherence due to phonons is taken into account. The black line shows the results for a single phonon
bath and the red line is for two phonon baths. The characteristic qubit energies are Fs = 1/4 GHz and the tunnel amplitude
during the Hadamard operation on the second qubit is Ag = 1/4FE;, i.e., a factor 4 smaller than in Figure 6. In the curves for
the deviation of the purity, we included lines for the analytical expressions 1 from Eq. (34) and 2 from Eq. (39).

ing to the Gaussian shape of the electron wavefunctions,
provided their distance is sufficiently large?2.

We have already mentioned that the phonon contri-
bution to decoherence still allows for the fidelity values
below the threshold 1 — F < 1074 from Ref. [39]. For a
reliable quantum computer, however, such intrinsic de-
coherence mechanisms should beat the threshold at least
by an order of magnitude. This can be achieved as fol-
lows: As we have seen, the Hadamard gate is the step
limiting the performance as during the Hadamard the
system is vulnerable against spontaneous emission at a
rate y o< B3, where E is the typical energy splitting of the
single qubit. The duration of the Hadamard, on the other
hand, scales as 7 o< 1/E. Thus, the error probability and
the purity decay reduces to 1 —e™" ~ 7 o« E2. Thus,
by making the Hadamard slower, i.e., by working with
small tunnel couplings between the dots, the gate perfor-
mance can be increased. This works until Ohmic noise
sources, electromagnetic noise on the gates and controls,
takes over. This is demonstrated nicely in Fig. 7, where
the cNOT gate for a modified Hadamard opertation (on
the second qubit) with Ag = g9 = (1/4)E; is depicted. It
is clearly observed that by decreasing the tunnel matrix
element and by increasing the evolution time the deco-

herence is reduced and the threshold for the gate quality
factors to allow universal quantum computation®® can be
achieved.

The gate quality of a CNOT under decoherence has
been studied in Refs. [26,38] for standard collective
and/or single-qubit noise in Ohmic environments. The
single-qubit case for charge qubits in GaAs has been stud-
ied in Ref. [17] with emphasis on non-Markovian effects.
Even in view of this, and in view of the emphasis of the
strong tunneling regime, that work arrives at the related
conclusion that intrinsic phonon decoherence in this sys-
tem can be limited. Please note, that the approximations
in the microscopic model give an upper bound of valid-
ity for the validity of effective Hamiltonians as studied
in Ref. [17] as descibed in Refs. [7,15,21,22]. The work
presented here is not affected by this restriction due to
the emphasis of the case of small tunnel coupling.

V. CONCLUSIONS

We have analyzed the influence of a phononic environ-
ment on four coupled quantum dots which represent two
charge qubits. The effective error model resulting from

charge qubits
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the microscopic Hamiltonian does not belong to the fa-
miliar classes of local or collective decoherence. It con-
tains a dipolar and quadrupolar contribution with super-
ohmic spectra at low frequencies, w® and w® respectively.
The resulting decoherence is an intrinsic limitation of any
gate performance. In particular, we have investigated
within a Bloch-Redfield theory the relevant rates and
the quality of a CNOT gate operation. The two employed
models of coupling the qubits to individual heat baths
versus a common heat bath, respectively, yield quantita-
tive differences for the gate qualifiers. Still the qualitative
behavior is the same for both cases.

Within an analytical estimate for the purity loss, we
have found that the decoherence plays its role mainly
during the stage of the Hadamard operation. The physics
behind this is that during all the other stages, the bath
couples to the qubits via a good quantum number. Con-
sequently, during these stages, the decoherence rates are
dominated by the spectral density of the bath in the
limit of zero frequency which for the present case of a
super-ohmic bath vanishes. The results of our analyti-
cal estimate compare favorably with the results from a
numerical propagation.

The fact that on the one hand, the bath spectrum is
super-ohmic, while on the other hand, the Hadamard op-
eration is the part that is most sensitive to decoherence,
suggests to slow down the Hadamard operation by us-
ing a rather small tunnel coupling. Then, decoherence is
reduced by a factor that is larger than the extension of
the operation time. This finally results for the complete
gate operation in a reduced coherence loss. Thus, the
gate quality is significantly improved for dots with weak
tunnel coupling and can intrinsically meet the threshold
for quantum error correction.
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APPENDIX A: AVERAGE OVER ALL PURE
STATES

In this appendix, we derive formulas for the evalu-
ation of expressions of the type tr(pA) and tr(pApB)
in an ensemble average over all pure states p = ) (1.
The state |¢) is an element of an N-dimensional Hilbert
space. Decomposed into an arbitrary orthonormal basis
set {|n)}n=1...n, it reads

‘w) = Z Cn‘”>7

where the only restriction imposed on the coefficients ¢,
is the normalization (Y[¢)) = Y, |ca|> = 1. Hence the
ensemble of pure states is fully described by the distri-

(A1)

10
bution
Pler,...oen) =01 =Y leal?). (A2)
n
We emphasize that P(cq,...,cn) is invariant under uni-

tary transformations of the state |¢). The prefactor yn
is determined by the normalization
/dZCl...dQCNP(cl.,...,cN) =1 (A3)

of the distribution, where [ d®c denotes integration over
the real and the imaginary part of c.

The computation of the ensemble averages of the coef-
ficients with the distribution (A2) is straightforward and
yields

'mCh = —=0mn A4
ot = 0 (A1)
T !

CmChCm Cly = NN+ (OmnOmrns + Omns Opms ). (A5)

Using these expressions, we consequently find for the en-
semble averages of the expressions tr(pA) and tr(pApB)
the results

o) = oA = 24, (49)
w(pApB) = G (GIBIY) = W
(A7)

which have been used for deriving the purity decay (33)
from Eq. (34).

While this averaging procedure is very convenient for
analytical calculations, the numerical propagation can be
performed with only a finite set of initial states. In the
present case, the averages are computed with the set of
36 states given after Eq. (30). In the present case, we
have justified numerically that both averaging procedures
yield the same results. Thus, it is interesting whether this
correspondence is exact.

For the case of one qubit, N = 2, the discrete set of
states is given by the states |¢)) = ¢1]1) + ¢2]2) where
(c1,c2) is chosen from the set of 6 vectors

(6):(3) -2 (&)

where ¢ = 0,7/2,7,37/2. Computing the averages for
the states (A8) is now staightforward and shows that
this discrete sample also fulfills the relations (A4) and
(A5). Thus, we can conclude that for the computation of
averages, both the discrete and the continuous sample.

For more than one qubit, however, arises a difference:
While the sample of all pure states also contains entan-
gled states, these are by construction excluded from set
of direct products of the 6 one-qubit states (A8). Still
our numerical results indicate that the different samples
practically result in the same averages.

(A8)
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Chapter 8

Design of coupling elements for
superconducting qubits

8.1 Introduction

A major milestone on the road to quantum computation is the development of systems of
many coupled qubits while maintaining sufficient control over these qubits [14, 193]. For
superconducting flux and charge qubits there exist several different proposals to couple
individual qubits [74], e.g., via a capacitor [194, 195], direct inductive coupling [92, 196],
an LC-oscillator chain [197], or a flux transformer [81, 82]. A typical experimental setup
for two flux qubits that share a common line and are coupled inductively (note that the
kinetic inductance is increased greatly when the neighbouring qubits share a line) is shown
in Fig. [8.1. In this design, each two flux qubits share a common line of superconductor and
the circulating (screening) currents in each loop induce a flux through the neighbouring
qubit loops, which will lead to &Y ® 6£i+1)—type coupling terms in the Hamiltonian. A
drawback of this direct inductive coupling scheme is that the coupling can not be switched
on and off, which would be very desirable in order to realize precise quantum gate oper-
ations. Another setup for a tunable coupling of flux qubits is the flux transformer, which
is sketched in Fig. 8.3; a superconducting loop is fabricated on top of the two qubits sep-
arated by an insulating layer in-between. In the off-state, the transformer loop contains
an integer number of flux quanta supplied by an external field. In this state the response
of a current to a change in flux is small, however, when the the critical current of the
device is increased a circulating current in the transformer loop builds up, which mediates
the coupling. Alternatively, it is possible to replace the single Josephson junction that
interrupts the coupling loop by a SQUID loop, which can be switched by the external flux
that pierces this additional loop [82]. However, then the severe problem of flux cross-talk
between the loops is introduced. Recently, also another scheme for a tunable coupling via
a flux transformer has been proposed, see Ref. [199]. One possiblity to simplify the original
design of the flux transformer, is to replace the regular Josephson junction in the trans-
former circuit by junctions with an intrinsic m-shift [200-203] or based on trapped fluxoids
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Figure 8.1: Sketch of an Ising chain of inductively coupled flux qubits, picture from [196].

in a regular superconducting ring [204]. This leads to a well-defined off-state of the flux
transformer for zero flux bias, whereas for the original design the additional SQUID loop
that replaces the Josephson junction of the flux transformer has to be biased by exactly
half a flux quantum in the off-state, which is inconvenient and causes flux noise on the
qubits even in the off-state of the coupler.

Here, the coupling via a flux transformer that will lead to an Ising type of zz-coupling
will be investigated for flux qubits. In order to overcome the problems of inserting an-
other SQUID loop to tune the interaction mediated by the flux transformer, it is pro-
posed to use a so-called Josephson-Field-Effect-Transistor (JoFET). The JoFET [198, 205
209] can be viewed as a tunable Josephson junction. It resembles a regular metal-oxide-
semiconductor field-effect transistor (MOSFET). In-between the source and drain contacts,
a InGaAs/InAS layer is fabricated as depicted in figure[8.2 and under the channel defined
by the SiOs between the Nb contacts a two-dimensional electron gas (2DEG) is formed.
The electron density of the 2DEG, which acts as a weak link between the two supercon-
ductors, can be tuned by an external gate voltage. Thus, it is possible to tune the critical
current of the junction with an external gate voltage. This is very favorable compared to
the direct inductive coupling, because the on/off state of the transformer is well defined
and the problem of flux cross-talk can be avoided. For applications of the flux transformer,
it is important to investigate the noise properties of switches for the transformer loop.
The qubit should rest in a low noise environment and decoherence due to the coupling cir-
cuit should be suppressed. In the following paper, the decoherence properties of different
switches for the flux transformer are investigated. It is found that the JoFET introduces
no fundamental restrictions in terms of additional noise acting on the qubit.

First, the working principle of the flux transformer will be explained in more detail.
The flux transformer consists of a SQUID loop around the two qubits with a Josephson
junction as an on/off switch (cf. Fig.[8.3). In practice, the transformer loop is fabricated
on top of the flux qubits with an insulating layer in between. Referring to this picture, the
following equations for the flux through qubits one and two, generated by currents in the



8.1 Introduction 115

Vo

Al gate metal
SiO, gate insulator

Si doping

InAlAs buffer

GaAs substrate

Figure 8.2: Schematic drawing of a JoFET, cf.[156]. The superconducting source and
drain contacts are made from niobium. Under the channel defined by the SiO, in between
the contacts, the inversion layer constitutes a quasi two-dimensional electron gas (2DEG),
which can be considered as a weak link between the superconducting electrodes. The
electron density of the 2DEG can be manipulated with an external gate voltage. The

critical current of such devices can be tuned by the applied gate voltage up to approximately
50 pA at V, =20 V, see Ref. [198].

qubits and the flux transformer, can be read off [72,210]

AD, = Llléirc + MLTIgirC + MLQJ(Q3irC (8.1)
AD, = LQIgirc + MQvT[c::Firc + MQﬁllclzirc’

where L = L; = Ly are the self-inductances of the qubits, My, = My = My are the
mutual inductances between the transformer and the qubit, and M;, ~ 0 is the direct
mutual inductance between qubits one and two. The so-called circulating currents /., are
the screening currents in each of the qubit loops. In order to avoid confusion with the
screening current in the transformer loop, these screening currents of the qubit loops will
be referred to as circulating currents in accordance with literature [76, 81, 82]. Moreover,
it is convenient to introduce the following notation, Mpr is the self-inductance of the
transformer loop, Mrg = Mrq = M;r, i = 1,2 is the mutual inductance between the
qubit and the transformer loop and Moo = L;, @ = 1,2 is the self-inductance of the qubit.

The direct inductive mutual coupling between the two qubits is assumed to be small,
i.e., the qubits are fabricated in a substantial distance from each other. The extra flux
AP, and AP, shifts the energy levels of the two qubits by an amount

ae1,2
3(191,2.

AELQ == A@LQ (83)
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qubit 1 qubit 2

N
LAN\%—‘ Iirc

RCSJ model

Figure 8.3: Sketch of a flux transformer that couples two superconducting flux qubit loops
taken from [211].

From the Hamiltonian of the two-qubit system

2
H=> 6+ Aol + K66, (8.4)
i=1
it is immediately immanent that in the case of two qubits with identical parameters, the
energy shift Ae; o of both qubits by K = A€ 5 can be denoted by

1
K = A@m@:A@m 0 Iy <(D1,2——CDU>

0, 0D, 5 circ 2
= ADyHI 2 = Ady 15 sin(y"?) (8.5)

where 7()®) denotes the gauge invariant phase difference resulting from the three Joseph-
son junctions in each superconducting qubit loop.

Introducing the screening flux, which corresponds to the circulating current of the
transformer loop, ®s = A®; and writing it in a similar form as equations (8.1) and
(8.2) yields together with the equations for A®; = &; and APy = $, (we introduced the
abbreviations just for the sake of simplicity) in matrix form the system of equations

d = MI
Og M7y Mrq Mrg Is
o | = | Mo Moo O L. (8.6)
o, Mrg 0 Moo ) \ L

where the direct mutual inductance between the qubits was assumed to be very small. By
defining 1/D := (MgqMpr — 2M7,) we can conveniently write the matrix inverse M~":

Moo —Mrq —Mrq

M =D | —Mrq (Mrr— (Mio/Myg)) M3/ Mgq (8.7)
Mrq Mo /Moq (Mpp — (Mo /Mgq))
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And the screening current Ig can be conveniently expressed as
Is = D(Mgoo®s — Mpo®1 — Mpg®,). (8.8)

It is useful to insert experimental values in order to estimate the value of the average
screening current in the transformer loop, e.g., when the qubit system is in the state
IT1). The following experimental values can be gathered, Mgq ~ 13 pH, My ~ 30 pH,
Mrg ~ 15 pH, [éﬁ"c ~ 1079 A, v =~ 107! (strong coupling) and assumed two qubits with
identical parameters (fluxoid quantization ®g = ®¢ — /27 holds)

Is = D(Mgo®s — 2Mrq(I 5 Maq + I, Mor)) ~ —44-107TA +33-107° 1L, (8.9)
For the JoFET, a typical value of I} ~ 251075 A and the screening current becomes
[Is| ~ | —44-1077+83-107% A = 3.57- 1077 A. Thus, it is found that the coupling
of the qubits to the transformer loop can be made reasonably large and a considerable
screening current develops in the transformer loop. However, the transformer circuit will
also introduce noise for the qubits. Thus, the noise properties of the transformer circuit
have to be investigated in detail because even a very good coupler in terms of coupling
strength and tunability is unemployable if it introduces strong noise for the qubits. For
modeling the intrinsic noise of the JoFET (or Josephson junction) in the transformer
loop, the resistively and capacitively shunted junction (RCSJ) model is employed [68]. In
the RCSJ-model the dynamics of the gauge invariant phase are given by the differential
equation

hC' . h . T .
ol + 2en” + 1o sin(y) +01(t) = Is. (8.10)

The correlation of the current noise is given by the fluctuation-dissipation theorem
(6101) , = coth (Bhw/2) hx"(w), (8.11)

where y”(w) is the imaginary part of the generalized susceptibility. This equation can be
rewritten in terms of the circuits admittance Y (w)

(8151)., = coth(Bhw/2)wReY (w). (8.12)

From Fig. [8.3 the real part of the admittance for the RCSJ model in the tranformer loop
can be calculated . .
"w)y=Re|—+R"| == 8.13
) =Re (o + B ) =4 (813
which is thus found to lead to an Ohmic spectral function. From the effective circuit an
intrinsic Drude-type of cutoff with w. = R(Myr + Ljy)/MprLy is found, where L; is the
Josephson inductance of the junction in the transformer loop. From Eqn. (8.11) one can
then calculate the fluctuations in the energy bias using the relation e = 21;,.0P, see Ref.
[211],
(0e(t)6e(0)),, = J(w)coth(LBhw/2). (8.14)
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In the following paper, the properties of different switches for the superconducting flux
transformer are investigated. It is found that most noise from the coupler is imposed on
the qubits during the switching of the transformer. Moreover, the JOFET as well as high-T.
materials (note that the noise of the high-T, materials itself can be very challenging [212—
214]) with an intrinsic 7-shift are suitable as switches for the transformer loop, because
they cause only little dissipation.
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Superconducting flux qubits are a promising candidate for solid-state quantum computation. One of
the reasons is that implementing a controlled coupling between the qubits appears to be relatively
easy, if one uses tunable Josephson junctions. We evaluate possible coupling strengths and show
how much extra decoherence is induced by the subgap conductance of a tunable junction. In light
of these results, we evaluate several options of using intrinsically shunted junctions and show that
based on available technology, Josephson field effect transistors and high-7'. junctions used as
shifters would be a good option, whereas the use of magnetic junctions as 7 shifters severely limits
quantum coherence. © 2003 American Institute of Physics. [DOL 10.1063/1.1612901]

Quantum computation promises qualitative improvement
of computational power as compared to today’s classical
computers. An important candidate for the implementation of
a scalable quantum computer are superconducting qubits.]‘2
After experimental demonstration of basic features, e.g., in
flux qubitsf'4 the improvement of the properties of such set-
ups involves engineering of couplings and decoherence, see,
e.g., Ref. 5.

To perform universal quantum computation with a sys-
tem of coupled qubits it is very desirable to be able to switch
the couplings (although there are in principle workarounds).®
It has already been described that for flux qubits, this can be
achieved by using a superconducting flux transformer inter-
rupted by a tunable Josephson junction,? i.e., a superconduct-
ing switch, as shown in Fig. 1. The primary and most
straightforward proposal for the implementation of this
switch is to use an unshunted dc-superconducting quantum
interference device (SQUID) based on tunnel junctions uti-
lizing the same technology as for the qubit junctions. Al-
though this holds the promise of inducing very little extra
decoherence, it suffers from two practical restrictions: (i) the
SQUID loop has to be biased by exactly half a flux quantum
in the off state and (ii) the external control parameter is a
magnetic flux, which introduces the possibility of flux
crosstalk between the qubits and the switch. The combina-
tion of (i) and (ii) implies that even small flux crosstalk will
severely perturb the off state of the switch.

This can be avoided by using different switches: A
voltage-controlled device such as a Josephson field effect
transistor (JOFET)” or a super—normal—metal-conductor
(SNS)-transistor completely avoids the cross-talk problem.
As an intermediate step,® one can improve the SQUID by
using a large 7 junction, in order to fix the off-state at zero
field. Such 7 junctions can be found in high-T', systems’ or
in systems with a magnetic barrier.'” All these junctions are
damped by a large subgap conductance because they contain
a large number of low-energy quasiparticles.

In this letter, we quantitatively evaluate the coupling

“Electronic mail: storcz@theorie.physik.uni-muenchen.de

0003-6951/2003/83(12)/2387/3/$20.00 2387

strength between two qubits coupled by a switchable flux
transformer. We evaluate the strength of the decoherence in-
duced by the subgap current modeled in terms of the resis-
tively shunted junction (RSJ) model. Based on this result, we
assess available technologies for the implementation of the
switch.

We start by calculating the strength K of the coupling
between the two qubits without a switch and then show how
it is modified by the presence of the switch. From Fig. 1 and
the law of magnetic induction we find the following equa-
tions for the flux through qubit 1 and 2 induced by currents
in the qubits and the flux transformer

Dy Mrr Mo Mro)\ [
ol @y | =| Mrp My, 0 || 1
&, Mz 0 Myl \I2

. (1)

where M (¢ is the self-inductance of the qubits (assumed to
be identical), M7, is the mutual inductance between the
transformer and the qubits and the mutual inductance be-
tween the qubits is assumed to be negligible. The fluxes &P
in Eq. (1) are the screening fluxes in the transformer and the
two qubits, i.e., the deviations from the externally applied
values. Henceforth, we abbreviate Eq. (1) as 6&=MI. These
formulas are general and can be applied for any flux through

1 as £ 1

] 1. I 1
1 3 i 3

qubit 1 qubit 2
1 2
® ®
i =
) wa—‘ s

RSJ model

FIG. 1. The flux transformer inductively couples two flux qubits (see Ref.
2). It can be switched, e.g., by a dc—SQUID or by a tunable shunted Joseph-
son junction.

© 2003 American Institute of Physics
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Paper

121

2388 Appl. Phys. Lett., Vol. 83, No. 12, 22 September 2003

L R L

FIG. 2. Equivalent circuit diagram of the flux transformer circuit. The
JoFET is modeled by a resistively shunted Josephson junction.

the transformer loop. It is most desirable to couple zero net
flux through the device, which can be achieved by using a
gradiometer configuration.!! For this gradiometer case, we
get Ig=—(Mro/Mpr)(I,+1,), which we might insert into
Eq. (1) and find for the inductive energy

M7,

2
Eindz(MQQ_ Moy

M
(413 =221, @)
T

The terms resulting from the off-diagonal elements of Eq. (1)
can directly be identified as the interqubit coupling strength
K= —2(M§Q/MTT)1112 which enters the 6,8, Ising-
coupling described in Refs. 2 and 12. Note, that the dynam-
ics of the qubit flux is dominated by the Josephson energies,2
to which the diagonal term is only a minor correction.

We now introduce the tunable Josephson junction into
the loop. Using fluxoid quantization, we rewrite the Joseph-
son relation'! Ig=1_ sin[ —2m(dPg/dg)] and insert it into Eq.
(1). The resulting nonlinear equation can be solved in the
following cases: (i) If [Ig/I |<1 (“on” state of the switch)
we find K=-2(M7o/Mi)II, with  Miyp=Mqp
+(Do27w1.)=Mpp+ Ly;,(0). This can be understood as an
effective increase of the self-inductance of the loop by the
kinetic inductance of the Josephson junction at zero bias. (ii)
In the case |Ig/I.|~1, “off” state, the circulating current is
close to the critical current of the switch, hence the phase
drop is *w/2 and we find an analogous form K=
—2(M§Q/M'TT)1112 with M pp=Mp+(Do/4|1.]), ie., at
low I, the coupling can be arbitrarily weak due to the enor-
mous kinetic inductance of the junction close to the critical
current.

We now turn to the discussion of the decoherence in-
duced by the subgap conductance of the tunable junction.
The decoherence occurs due to the flux noise generated
through the current noise from the quasiparticle shunt.
Hence, both qubits experience the same level of noise. The
decoherence of such a setup has been extensively studied in
Ref. 12 as a function of the environment parameters. In this
letter, we evaluate these environment parameters for our spe-
cific setup.

We model the junction by the RSJ-model for a sound
quantitative estimate of the time scales even though the
physics of the subgap conductance is usually by far more
subtle than that. We evaluate the fluctuations of the current
between two points of the flux transformer loop sketched in
Fig. 1. L is the geometric inductance of the loop, L; is the
Josephson inductance characterizing the Josephson contact
and R is the shunt resistance. The correlation is given by
the fluctuation-dissipation theorem (é14I),
=coth(Bfiw/2)hw Re Y(w), where Y(w) is the admittance
of the effective circuit depicted in Fig. 2. Following the lines

M. J. Storcz and F. K. Wilhelm

fluctuations of the qubit of the shape (Je(r)38e(0)),
=J(w)coth(hw/2kzT) with J(w)=aw?/(w?>+ w?) with the
important result that the dimensionless dissipation parameter
here reads

2 a2 72

a= 4IcircMTQLI (3)
hR(L+L,)?

and an intrinsic cutoff w.,=R(L+L;)/LL,;. Here, L;

=®,/27l, is the kinetic inductance of the junction. From
Eq. (3) we receive in the limit L>L; the expression a
OC1/RI§ and for L~L;, L<L; it follows that a>1/R. From
the results of Ref. 12, we can conclude that a~10"° poses
an upper bound for gate operations to be compatible with
quantum error correction. In the following sections we will
evaluate « for different types of junctions in the switch, a
JOoFET, a superconductor-ferromagnet-superconductor (SFS)
junction and a high-T'. junction by inserting typical param-
eters. We use the normal resistance R to estimate the shunt
resistance in the RSJ model. Here, it is important to note that
the parameters /. and Ry of the junction determine the suit-
ability of the device as a (low-noise) switch, which are given
by a combination of material and geometry properties. In the
following we exemplify the calculation of the dissipative ef-
fects with several experimental parameter sets.

For present day qubit technology'® we can assume L
~1nH, /4~100 nA M7,~100 pH. In the following, we
estimate « for a number of junction realizations, adjusting
the junction area for sufficient critical current.

A JoFET can be understood as a SNS junction where the
role of the normal metal is played by a doped semiconductor.
By applying a gate voltage, it is possible to tune the electron
density of the semiconductor.

The critical current of such a junction containing N,
channels can be found using the formula of Kulik and
Omel’yanchuk I,=(7wA)/(Rye). "™ Ry=h/(2¢*Ng,) is the
point-contact resistance. In a JOFET, the back gate essentially
controls N,. The typical normal resistance is around Ry
~10 Q. For a JoFET the critical current of the Josephson
junction is /,~30 A and the Josephson inductance is L,
~11 pH.7

Inserting the earlier estimates we get a~7 X 10~%. This
means that the dissipative effects are weak and a JoFET
should be a reasonable switch that poses no new constraints.
Besides the obvious technological challenge,7 one drawback
of JoFETs is that due to wide junctions with dimensions of
around w= 500 nm they are likely to trap vortices, which can
cause 1/f noise by hopping between different pinning sites.
However, this can be reduced by pinning, e.g., by perforating
the junction.

If we go away from the on state with the JoFET, we
reduce both /. and G linearily by depleting the density of
states. Figure 3 shows that we find that the dissipative effects
are strongest during the switching process when
L,(p./pS")~L, and not in the on state of the switch. In the
off state of the switch (for p,(0)—0) also @ goes to zero. If
the switch is tuned from the off state to the on state,
reaches a local maximum and then decreases again. This
makes the JoFET a very attractive switch: It induces an ac-
ceptably low level decoherence in the on state and can be

of Ref. 5, this translates into a spectral function of the energy made completely silent in the off state.
ject to
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FIG. 3. The dimensionless dissipation parameter a as a function of the
electron density in the two-dimensional electron gas for a JOFET. The inset
shows a linear plot of the region with the largest a.

A SFS junction in the 7 state is based on a metallic
material, thus the estimate of the shunt resistance in the RSJ
model yields a much smaller result than in the case of the
JOFET, R~10"° Q.'° The critical current of the SFS junc-
tion is /.~0.2 mA. Thus, leaving the transformer properties
unchanged, we find L;~1.7 pH. Using these estimates the
strength of the dissipative effects is of the order of «
~(.16. This makes such a device unsuitable at the present
level of technology, however, it appears that superconductor-
insulator-ferromagnet superconductor (SIFS) junctions' are

1x10" T T T

1x10°

« — 0=10"

A High-T,
1x10°- @ JoFET ]
m SFS
¢ SIFS
-10 | 1 |
D0 0® 1x10° 1x10™ 1x10° 1x102

I (A)

FIG. 4. Log-log plot of the normal state resistance vs the critical current of
the junction. Here R, is taken as an estimate for the shunt resistance of the
junction. The solid line denotes @=10"° and the two dotted lines are for
a=10"* (lower line) and a=10"% (upper line). Parameters for the SIFS
junction are /,~8.5X 107> A and Ry~250 m Q (see Ref. 15).
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by far closer to the desired values, see Fig. 4.

High-T, junctions can be realized in different ways.
Here, we take from Ref. 9 parameters for a typical noble
metal (Au)-bridge junction with a film thickness of about
w=~100 nm. The product /. Ry~1mV and py=8.3 {d nm.
We assume that in principle /. for the 7 state and the O state
are the same. For a contact area of around 900 nm?, I,
~1 mA and Ry~1 (). Now the strength of the dissipative
effects is easily evaluated to be a~6.5X10"%, which is
much better than SFS 7 junctions and even better than the
JoFET.

We estimated the strength of the dissipative effects that
will occur due to the switch for several possible switches.
These results are summarized in Fig. 4 for typical parameters
of the analyzed systems. We find that the noise properties of
a JoFET and 7 shifters based on high-7,. materials introduce
no important noise source. On the other hand, the parameters
found from 7 shifters based on magnetic materials are much
less encouraging.
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Chapter 9

Decoherence Free Subspace (DF'S)
encoding

9.1 Introduction

Decoherence Free Subspaces (DFS) are generally considered as one possible tool to reduce
or, in very special cases, even completely prevent environmental action on the qubit system,
which results in decoherence. Historically, first the conditions for DFSs have been pointed
out [215-218] and then investigations of the robustness of the decoherence free states [219]
to perturbations which break the symmetry have been made.

Consider a general Hamiltonian

ﬁ:HS+ﬁSB+FIB, (91)

where the different parts of the Hamiltonian describe the system, the system-bath inter-
action, and the bath. Here, the system-bath interaction is taken bilinear in the system
(spin) and bath operators, H; = Yo S, @ B,. Obviously, for Hgp = 0, system and bath
are decoupled and evolve independently of each other, i.e., the evolution of the system is
decoherence free (DF). However, for non-vanishing system-bath interaction, one looks for
subspaces of the full Hilbert space that fullfill the condition of DF dynamics.

The conditions for a DFS are [220],

1. There exists a set { k) } of eigenvectors of the spin operators S, with Sy [k) = ¢, |k)
for all «, [k). Here, the eigenvectors are degenerate, i.e., the eigenvalue ¢, depends
only on a and not on k.

2. The system Hamiltonian Hg leaves the subspace invariant and the evolution starts
within this subspace.

As long as these requirements are met, the dynamics will be DF.

It has been shown that universal quantum computation can be performed within the
encoded subspace for a single exchange Hamiltonian [221]. And the duality between quan-
tum error correcting codes (QECCs) [36] and DFSs has also been pointed out, e.g., in
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Perfect Entanglers
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Figure 9.1: Schematic picture of a DFS
encoding to protect from collective de-
phasing. The DFS is a subspace of the
whole Hilbert space. The logical (en-
coded) states are denoted by the sub-
script “L”.

Figure 9.2: Cartoon of the partition
of all the gates in SU(4) into local
single-qubit gates and non-local two-
qubit gates, taken from Ref. M]

Refs. m, M] Let us now exemplify one special case of collective dephasing for a sys-

tem Hamiltonian that commutes with 6{”. In this case the system-bath interaction is

Hgp = (ZZ &9) ® B. Figure 9.1 depicts a DFS encoding for this example, here a system
of four physical qubits is encoded into two logical qubits, denoted by the subscript “L”.

When the collective spin operator S in this example acts on the four states depicted in
Fig. 19.1, all states lead to the same eigenvalue. Of course, one has to work out in detail
that all conditions for a DFS are fulfilled, but this example nicely explains the advantages
and design of DFSs. Investigations on the DFS encoding have been carried out for some
physical realizations of qubits, in Ref. M] DF'Ss have been introduced in the context of
collective amplitude damping. Scalable schemes, e.g., for ion trap quantum computation
in decoherence-free subspaces M] have been proposed and for NMR quantum computers
the properties of a DFS have been intensively studied M, ’56]

Yet, the application of the DFS encoding to real solid-state physical systems is profound
because of the many different decoherence sources and the fact that little is known about
the correlations of the noise. Thus, despite the beautiful theoretical idea of DFSs, it is very
hard in practice to identify systems that can take full advantage of the DFS encoding.

To exploit the full advantage of DFSs, it is necessary to identify systems that are subject
to collective noise. Thus, it is important to identify the degree of correlation of the noise
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Figure 9.3: Weyl chamber trajectory illustrating the CNOT operation for the amsotro%)
exchange interaction, i.e., for an inter-qubit coupling Hamiltonian H,. = x a 5D
obtained from the representatlon in the geometric theory presented in Ref. r L1 2 and
K o are local single-qubit gates.

in qubit systems to develop strategies to fight decoherence. The noise correlations are
characterized by the correlation length scale.

Two-qubit gates can be represented geometrically in the Weyl chamber, which provides
a projection of SU(4) into R3 [227]. Namely, every unitary operation U € SU(4) can be
decomposed in [222]

U = kyexp [— i(c16M6 P + 02&( )5 ( ) 4 c36Me? )] ko, (9.2)

with &y, ke € SU(2)®@SU(2) and ¢y, ¢2, c3 € R. In the Weyl chamber, all non-local operations
can then be expressed in terms of the three parameters ¢, ¢, and c3. These parameters
are the three-dimensional coordinates in the Weyl chamber. By detailed analysis @],
it is found that the representation of non-local two-qubit operations is a tetrahedron in
R3. Figure 9.3 exemplifies the trajectory for a CNOT gate with two coupled qubits as
described in the paper in the following section. Note also that it was shown in ﬁMﬂ
that any quantum gate can be implemented by three interactions and eight single-qubit
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Noise .— P

|0)

Figure 9.4: Experimental demonstration of quantum state tomography for a DFS en-
coded four-photon qubit state from M] The entries of the density matrix of the
qubit before and after transmission through a noisy transmission channel are depicted.
The DFS encoding protects the quantum state. The trace-fidelity of the transfer is

Fpin,Pout =tr [(\/ poutpin\/ pout)l/Q] — 09958 Zl: 00759

gates. However, in a latter work M] the authors discovered the quantum gate B that
can implement any arbitrary two-qubit quantum operation with a minimal number of both
two- and single-qubit gates, i.e., any non-local two-qubit operation can be obtained from
only two applications of the B gate, which is useful for physical systems where the B gate
is easily implemented.

The general feasibility of DF'S encoding has been demonstrated with photon states ﬁ476]
In this experiment, four-photon states have been generated by parametric down conversion
and used to encode one qubit inside a DFS. Then these photons were transmitted via a
noisy transmission channel, where the noise is simulated by transmission of the photons
through quarter- and half-wave plates. Finally, quantum state tomography of the qubit
states showed the immunity against the noise. These results are depicted in Fig. 9.4

In the following paper M], the DFS encoding for a realistic model of superconduct-
ing solid-state qubits is investigated. These qubits are coupled via the aforementioned
anisotropic exchange interaction [195]. It turns out that the noise stemming from the cou-
pling elements, which is assumed to be correlated between neighbouring qubits, can be
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completely suppressed by encoding into a DFS. However, next to the DFS encoding also
the special form of the bath spectral function needs to be exploited in order to provide
perfect protection.

In more detail, the 1/ f-noise from the coupling elements that couples to a single qubit
(here, for the sake of simplicity and without loss of generality only a single-qubit will be
considered) can be described by the Hamiltonian

1 € Ae'? 1 i6.00/2 [ € A —i650¢/2
fﬂ—§(AaM -f)**b—ﬁe A =)0

where Hp is the Hamiltonian that describes the environmental bath of harmonic oscillators
with coordinates X'Z interacting with the qubit via the term 0¢ = ). czf(@ This kind of
Hamiltonian describes the effect of background charges on a flux qubit, which act via the
Aharonov-Casher effect [230, 231]. It is well known that these background charges typi-
cally produce 1/ f-noise that can be described by a general semiclassical noise-correlation
function in the frequency domain,

5 (00(1)09(0) + 56(0)66(1)). = S4(w) = @'l e coth(hiw/2),  (9.4)

in the limit when s — 0 and w < T', where S, = (2Tas/w.)1/w. Although the magnitude
of the 1/ f-noise is usually small, the reason why 1/ f-noise is still noxious is that there is
a large spectral weight at low frequencies.

The effect of the charge noise can be viewed as an effective unitary transformation
which can be properly undone by an appropriate inverse transformation. Namely, the
Hamiltonian Eqn. (9.4) can be mapped by using the unitary matrix U(t) = e~?=%%/2, Here,
do(t) is an operator (or, in the Schrodinger picture, a time-dependent variable), thus the
transformation of the wave function [¢)') = U|y) corresponds to the transformation of the
Hamiltonian H, = UHyU" + (i(d/dt)U)UT. Physically, this corresponds to going to the
frame which is co-rotating with the noise and the extra term can be viewed as an inertial
force. Thus, one can write

H, = (2 i) + %56@ + Hyp,
where de = 8¢ is the time-derivative of the phase. This corresponds to a spin-boson
model, where the fluctuating force is the time-derivative of the phase. Note that the time-

derivation corresponds to a factor iw in frequency space. Therefore, one can identify the
spectral density of the corresponding spin-boson model

%<56(t)56(0) + 6€(0)0e(t))y = Se(w) = aw*2wl=%e™w/% coth(Rfw/2), (9.5)

which reduces to a super-Ohmic power spectrum S.(w) = apw?/w.. Thus, the transfor-
mation presented here effectively transforms 1/ f-noise to regular flux-noise with a super-
Ohmic spectrum.
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Full protection of superconducting qubit systems from coupling errors
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Solid state qubits realized in superconducting circuits are potentially scalable. However, strong decoherence
may be transferred to the qubits by various elements of the circuits that couple individual qubits, particularly
when coupling is implemented over long distances. We propose here an encoding that provides full protection
against errors originating from these coupling elements, for a chain of superconducting qubits with a nearest
neighbor anisotropic XY-interaction. The encoding is also seen to provide partial protection against errors

deriving from general electronic noise.

DOI: 10.1103/PhysRevB.72.064511

Superconducting flux qubits have been shown to possess
many of the necessary features of a quantum bit (qubit),
including the ability to prepare superpositions of quantum
states'-> and manipulate them coherently.? In these systems,
the dominating error source appears to be decoherence due to
flux noise.* Present designs for arrays of multiple flux qubits
that are coupled through their flux degree of freedom are
easily implemented from an experimental point of view.’
However, when scaling up to large numbers of qubits, they
suffer from technical restrictions such as possible flux
crosstalk and a need for physically large coupling elements,
which are expected to act as severe antennas for decoher-
ence. The possibility of avoiding errors by prior encoding
into decoherence free subspaces (DFS) that are defined by
the physical symmetries of the qubit interaction with the en-
vironment is consequently very attractive. Such encoding is
also attractive for superconducting charge qubits,®” which
are subject to similar decoherence sources.®

In this work, we show how to develop such protection for
qubits coupled by the nearest neighbor XY-interaction that is
encountered in both flux and charge qubit designs.”!'0 We
demonstrate that for this coupling, a two-qubit encoding into
a DFS provides full protection against noise from the cou-
pling elements. Moreover, all encoded single-qubit opera-
tions are also protected from collective decoherence deriving
from the electromagnetic environment. The protection is
seen to result from a combination of symmetry in the cou-
pling element and a restricted environmental phase space of
the multi-qubit system—the DFS alone would not be suffi-
cient. The analysis makes use of an exact unitary transfor-
mation of 1/f phase noise in the coupling element (hence
with a sub-Ohmic power spectrum) into regular nearest-
neighbor correlated flux noise on the qubits that is character-
ized by a super-Ohmic power spectrum. To assess the perfor-
mance of the encoding we add to this coupling-derived noise
a single-qubit Ohmic noise source that represents the generic
uncorrelated environmental factors and analyze the fidelity
of encoded quantum gate operations.

The Hamiltonian of a linear chain of XY coupled qubits
reads

1098-0121/2005/72(6)/064511(5)/$23.00

064511-1

PACS number(s): 03.67.Pp, 03.65.Yz, 03.67.Lx, 85.25.—j

H,=H, + Hj,

=2 [0+ 880 + Kt (667" + 606V)].
i

(1)

where H0=E,-[6,&ii)+A,v&ii)] is the uncoupled qubit Hamil-
tonian, and K; ., is the strength of the inter-qubit coupling,
H;,. We assume that it is possible to switch the coupling
K; ;41 and the flux bias €(®, ;) of each qubit separately. Such
a Hamiltonian can be realized using flux qubits with capaci-
tive coupling.!® The switch for this interaction can in prin-
ciple be implemented using PIN varactor diodes, microme-
chanical devices, or small Josephson junctions.!' Switching
on the coupling suppresses the tunnel amplitudes'® A;. The
Hamiltonian of Eq. (1) can also be readily implemented in
charge qubits, i.e., Cooper pair boxes coupled by Josephson
junctions,” whose coupling strength can be tuned through an
external magnetic field. In both cases, the couplers are large
objects and hence act as efficient antennas for charge and/or
flux noise when the coupling is on. When the coupling is
switched off, this noise is confined within the coupler and
does not affect the qubits.

The decoherence sources relevant to Eq. (1) are back-
ground charges. This can be represented as 1/f noise in the
coupler as we explain below. In addition general electromag-
netic (e.m.) noise, both local flux or electronics noise,
couples to single qubits and, for long wavelength, also to
multiple qubits. The e.m. noise is represented as usual by
Ohmic noise which has both uncorrelated and collective
components. The effect of these environmental decoherence
sources on Eq. (1) is represented by the usual (linear) cou-
pling to a bath of oscillators Hb=2,-(a2'a,~+%), characterized
by a spectral density J(w)=3,\,?8(w—w;), with the cou-
pling strength characterized by a dimensionless parameter'?
a.

We first show how the coupling and local noise are de-
scribed in this framework. Background charge fluctuations
8q(t) arising in the capacitive coupling elements between
qubits i and i+1, induce geometric Aharonov-Casher!?
phases J¢(t) < 5q(t) when the qubit flux states tunnel be-
tween eigenstates of &,. This results in a correlated two-qubit

©2005 The American Physical Society
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error operator exp[i5¢(&£i)+&ii+l))] acting on Hy. The low-
frequency limit of this pﬁase noise in the coupling elements
can be approximated as a Gaussian 1/f noise process deriv-
ing from coupling to a sub-Ohmic oscillator bath with asso-
ciated spectral density'>!3 Jfﬁ"b(w):(afo/ €)sign(w)e™ e,
Here and henceforth we set #,kgz=1. This leads to a classical
power spectrum in the frequency domain

Sy(@) = 5(3¢(1) 3h(0) + 5(0) (1)),
=77 (w)coth(w/2T)
= 2Ty w.w) 2)

for w<<T, which characterizes the environmental phase
space of the correlated two-qubit errors due to capacitive
coupling. Uncorrelated single qubit errors deriving from lo-
cal electronic elements are represented here by bath coupling
to the flux states, i.e., ¢, errors. This is typically represented
by a bath having an Ohmic spectral density," J.%
=aqww?/(wl+w?), which thus characterizes the environ-
mental phase space of the uncorrelated single-qubit errors.
We note that very recently, &, single-qubit errors (i.e., bit flip
errors) have also been identified.'® The third source of errors,
correlated errors deriving from long wavelength electromag-
netic radiation, can be removed by encoding into a DFS as
we show below, independent of the form of the spectral den-
sity associated with the source of such collective decoher-
ence.

We can formally introduce the noise due to background
charges into the total Hamiltonian H,+H, by transforming
the total Hamiltonian with a unitary operator U,
=exp[i5¢(é'(z')+6'§’+l))], resulting in

H=H'+H,=U,H

Ugp+ Hy, 3)

with associated spectral density Jqub (w). Thus, the error acts
in the interaction picture as a time-dependent unitary trans-
formation and it can be eliminated by undoing the transfor-
mation. In NMR (nuclear magnetic resonance) language, this
is a transformation to the “co-fluctuating” frame. The unitary
transformation is properly undone by a time-dependent uni-
tary transformation in the interaction picture, which trans-
forms the states as [i')= U:;b|¢/> and the coupled Hamiltonian
as

+ —
Her= UjHU, = iU}y Uy, @)
d 1 . . .
it & _ [ A0 | AG+D)
_thbdtU"h_2 &+ 6" ]5¢ (5)

The last term is understood as an effective system-bath in-
teraction, written more explicitly

.d Iro , .
Hgp = - lU;hEUqb = 5[0'?) + O'?H)] ® > iw\,(a,— a,).
n

(6)

Note that Hq=U:;bH’Uqb. Physically, this arises from the
transformation into the noninertial co-fluctuating frame as an
inertial force. It is recognized that (6) is the regular spin

PHYSICAL REVIEW B 72, 064511 (2005)

boson coupling Hgp =i\ a;+\"a}) with \]=iw\;. In
this transformed representation we now have correlated flux
errors, i.e., pairwise coupling of the qubit &, operators to
energy fluctuations given by the time-derivative of the fluc-
tuating correlated coupler phase, d¢. Most importantly, the
associated spectral density of the oscillator bath is also trans-
formed, becoming qub(w)=wzliqb(w)=a0w2 sign(w)/ €,
which is now super-Ohmic. Similar arguments can be ap-
plied to the flux noise arising when two charge qubits are
coupled by a SQUID, except that here the coupling (flux)
noise is usually Ohmic rather than sub-Ohmic, so that the
transformed spectral density is proportional to w? rather than
to o’. Note, that the flux states only get transformed by
phase factors, hence computation and measurement carried
out in this basis are unaffected by this transformation.

To protect against these correlated errors we employ a
two-qubit encoding |0),=[01), |1),=|10) which is recogniz-
able as the smallest DFS encoding that can protect against
collective dephasing.'® It, therefore, automatically protects
against any correlated phase errors, including our third
source of error deriving from long wavelength e.m. noise.

We will show that as a result of the symmetry in the bath,
in particular, because of the form of its spectral density, this
encoding also provides complete protection against the noise
arising during capacitive coupling. This results in perfect
performance of both encoded single qubit and two qubit op-
erations when correlated errors during two-qubit operations
are the only source of decoherence. Uncorrelated single qubit
errors are then the only remaining mechanism leading to a
reduced fidelity of quantum gates. We find below that for
single qubit errors of less than or equal strength to two qubit
errors, the DFS encoding still provides a significant, al-
though now incomplete, protection.

The two logical qubits are encoded into four physical qu-
bits using the encoding scheme [00),=|0101),]01),
=[0110),,]10), =]1001),|11),=[1010),, where L and P de-
note logical and physical states, respectively. We assume that
the four physical qubits constitute a linear array (this need
not be contiguous) which we label 1,2,3,4. This four-
dimensional subspace is left invariant by collective errors
involving qubits 1 and 2, U, with i=1, as well as by errors
involving qubits 3 and 4, Uy with /=3, but not by collective
errors involving qubits 2 and 3, i.e., Uy with i=2, see Ref.
16. A simple counting argument shows that a DFS that pro-
tects against all two-qubit errors including those between the
two encoded qubits does not exist.

The latter errors arise when switching on the coupling
between qubits 2 and 3 with H;,; as described above, in order
to perform logical two- qubit operations. Thus, in a Hamil-
tonian formulation within the basis spanned by the encoded

. A2), A3
subspace vectors, the coupling error 6.+ between qu-
bits 2 and 3 does not have identical degenerate eigenvalues
as would be required for a DFS.!” Moreover, the physical
single qubit errors also do not fulfill this requirement of de-
generate eigenvalues. In the language of quantum error cor-
recting codes (QECC)'® where a DFS is a particular example
of a degenerate QECC'® we, therefore, conclude that our
encoding is not fully degenerate under the action of both the
correlated two-qubit and single qubit errors and does not
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constitute a true DFS for both classes of errors. A true DFS
would be completely degenerate, giving identical syndromes
of unity for all of these errors. As a result of this lack of
degeneracy, additional operations are in principle needed for
correction of the uncorrelated noise, i.e., of the physical
single-qubit errors, as well as for correction of the coupling
error Uy, i=2. Nevertheless, we will see below that the lat-
ter coupling errors resulting from the background charge
fluctuations are actually suppressed by the bath properties
and its symmetry after application of the transformation U,
so that only the single qubit errors need to be actively cor-
rected.

The encoded single-qubit operations, given here without
loss of generality for the first encoded logical qubit only, can
be shown to be

(1) (2)

e—i(rz T= e i0; T (7)
(1) 12
e T= e_lHimT (8)
() —(hm ()_ ()T
e lo'y T:e“Tz 4610«\' Te io, 4, (9)

where ﬁim=(Hint/ €)) and 7=rg,. The first operation is
straightforwardly achieved by tuning the flux bias. To imple-
ment the second operation, &i]), we need to cancel the effect
of H,,. This is also straightforward, if €; and A; can be tuned
to zero. If A cannot be tuned to zero, it is nevertheless still
possible to act with H;, alone, by combining a short time
Trotter expansion with operator conjugation as follows. First,
we recognize that conjugation of H, with & can invert the
sign of A;

—iH (A ~B)i _ @2 o (AL ei(&“h&f}))w/z.

e —i(l}il)-ﬂ}, >
(10)

e

The alternation of H,(A;,A,,K}y) with Hy(=A;,-A,,K),)
results in the desired action of Hjy, up to commutator errors
between H;,, and Aé’i’)’(’) which can be suppressed by mak-
ing a Trotter expansion:

fim (¢~ M8 182 K122 =B (-0 =Ap Kig)i2nYn ity

(11)

This scheme requires only relatively small values of n to be
effective. Direct simulation shows that for n~ 10, the rela-
tive deviation of individual matrix elements U, from Uiﬂﬁ“]
is smaller than 1%. During all these encoded single qubit
operations the encoded qubit remains in the DFS encoded
subspace and so is fully protected against correlated two-
qubit errors deriving from both the capacitive coupling and
from any other electromagnetic correlated noise.

Encoded two-qubit operations require pairwise coupling
of physical qubits from the two encoded qubits |0); and |1);,

e.g., qubits 2 and 3 as mentioned above. The encoded U..(f)
two-qubit controlled-phase operation is

PHYSICAL REVIEW B 72, 064511 (2005)

— —(1)=(2) o T 03 L@ 523 vy
.,([) = i0; 0 T=elsx4elHimT/26—l(7x 2€lHi“‘T/2€ISV4 ,

(12)

where S;=&(X2)—&f) and S.v=&,(\-2)+&(x3)' This can be com-
bined with an encoded single qubit Hadamard gate to pro-
duce the controlled NOT (CNOT) gate.'"* Now the first ele-
ment of l_lzz(t),e"sx’”/“, takes the DFS states outside the
subspace to form superpositions of DFS and non-DFS states
and populate the non-DFS states [0111), [0100), [1011) and
[1000). Detailed analysis reveals that the two-qubit operation
Eq. (12) will always take the encoded qubits out of the DFS
encoded subspace. However, during these excursions out of
the DES, when only coupling errors are present, only pure
dephasing processes which do not flip eigenstates can con-
tribute to decoherence,'* since the coupling to the bath com-
mutes with the interqubit coupling. The rates of these
dephasing ~ processes  are  proportional to  S(0)
=limwﬂoli‘lb(w)coth(wﬂT), which vanishes as a result of
the super-Ohmic shape of Jiqb derived from the tunneling-
flux transformation introduced above. Consequently these
processes “lack phase space” in the environmental degrees of
freedom and hence are fully suppressed. This excursion out
of the DFS encoded subspace into a larger region of the full
Hilbert space in which only pure dephasing processes con-
tribute to the decoherence can alternatively be viewed as an
excursion into a larger subspace that is characterized by sup-
pression of relaxation processes.

We demonstrate the benefits of the DFS encoding by nu-
merical studies of the CNOT gate, calculated from the simu-
lated evolution of the reduced density matrix for the coupled
flux qubits using the Bloch-Redfield description of the spin-
boson model of the qubit and its bath coupling characterized
by'* J(w). This approach is valid for ¢, < 1. To quantify
the gate performance we evaluate the fidelity'® F of the en-
coded quantum gate operation, defined by F
=1]*62./1.2101’{"\ng’bUG|\I'~{,,>. Here Ug is the unitary matrix
describing the desired ideal gate, and pj;=p(t;) is the density
matrix obtained from attempting a quantum gate operation in
a hostile environment, i.e., with errors, evaluated for all ini-
tially unentangled product states' from the encoded logical
basis, p(0)=|W/ )W |. The states |W9 ) are defined in Ref.
20.

Figure 1 shows the calculated gate fidelity for an encoded

CNOT operation UCNOT, obtained from UZZ together with the
relevant encoded single qubit gates. We see that, as predicted
by the above analysis, when only two-qubit errors are active
(a'®=0) the gate performance is perfect. When additional
uncorrelated single-qubit errors during single qubit opera-
tions occur (a'®), the gate fidelity is seen to decrease as the
strength of these errors increases. The DFS encoding is thus
seen to give 100% protection against the primary coupling
errors in addition to correlated background errors. It does not
protect against uncorrelated single qubit errors, in fact, due
to the larger overhead, DFS encoding alone is sensitive
against these (compare sets I and II). However, the uncorre-
lated single qubit errors can be well treated by active quan-
tum error correction, particularly if the error rates for single
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FIG. 1. Fidelity deviation 1—-F vs temperature for the encoded
CNOT operation, shown for two different combinations of super-
Ohmic two-qubit noise (strength a?4®=q,) and Ohmic single-qubit
noise (strength a'?®=qy)) acting on the physical qubits. The char-
acteristic temperature scale is 7= ¢€y(h/kp), yielding 7;=48 mK for
qubits with energies €;=¢y,=1 GHz, i=1, 2. Here, ¢, is used as an
energy unit for the correlation function. Solid lines are provided as
guides to the eye. Ideal gate performance is achieved when a'?”
=0. Detailed analysis shows that the fidelity depends linearly on
@', For comparison, set I shows the corresponding performance of
the unencoded CNOT operation taken from Ref. 14.

qubit and correlated errors are comparable. It is also possible
to combine this encoding scheme with a QECC in order to
achieve fault-tolerance. Using the scheme proposed in Ref.
21, the leakage problem of standard QECC methods can be
overcome.

Saturation of the gate quality at low temperatures occurs
because all decohering processes (except spontaneous emis-
sion) are frozen out. This occurs when kzT'=E,;,, where
E in is the lowest energy splitting in the system. Here, E,;,
=¢€,. Even during the excursion out of the DFS, transitions
between the eigenstates of the Hamiltonian involving spon-
taneous emission are forbidden by symmetry. Thus, at low
temperatures, only energy-conserving “pure dephasing” pro-
cesses influence the gate. These are proportional to the noise
power S(w—0). For an Ohmic environment, this noise is
purely thermal,'* S(0)« T, so that the gate performance is
still limited at any finite temperature. For the super-Ohmic
case, S(0)=0 at any 7 (Fig. 1). When ag, is small, the fidelity
can be considerably increased because the errors from the
coupling elements introduce no new constraints; i.e., if, for
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equal coupling strength to the electromagnetic environment,
the appropriate relative weight of two qubit errors is larger
than that of one qubit errors, it is evident that the DFS en-
coding provides considerable protection. Thus, for optimiz-
ing two-qubit gates it is of crucial importance to identify,
whether or not the noise is correlated between qubits. This is
a critical challenge for experiment. An experimental signa-
ture of correlated noise is, e.g., the superior coherence of the
states used as logical qubits in this work.

In conclusion, we have shown that using a DFS encoding
of superconducting flux or charge qubits can significantly
enhance their gate performance for the entangling two-qubit
operations that are required to implement quantum computa-
tion. The DFS-encoding proposed here ensures that all en-
coded single-qubit operations are protected against 1/f noise
in the capacitive coupling elements, as well as from corre-
lated electromagnetic noise. The latter are the errors originat-
ing from the coupling of the qubits to a common electromag-
netic environment. When only the capacitive coupling errors
arising during two-qubit operations are present, even though
these are not automatically protected by this DFS encoding,
we find that perfect fidelity can still be achieved. We have
shown that this is a consequence of two symmetries of the
bath. First, commutation of the system-bath coupling with
the interqubit coupling results in elimination of spontaneous
emission between qubit eigenstates. Second, a vanishing bath
spectral density for dephasing processes results from the ex-
act correspondence of the 1/f sub-Ohmic charge noise in the
coupler to super-Ohmic flux noise on the qubits.

The phase space restriction found here derives from the
choice of the XY-interaction between the qubits: coupler
noise from other interactions would explore the full phase
space during the two-qubit operation. Thus the XY-coupling
is a very attractive coupling scheme whenever decoherence
is a major concern. From the results presented here, we ex-
pect that this DFS-inspired encoding, which is also very ef-
ficient, requiring only two physical qubits per logical qubit,
will therefore be useful for reducing the noise in quantum
circuits based on superconducting qubits.
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Chapter 10

Optimum control of superconducting
solid-state qubits

10.1 Introduction

Here, a system of two capacitively coupled Josephson charge qubits m, @] with full con-
trol only over the gate voltages of the two Cooper pair boxes (the superconducting islands)
is investigated. The experimental setup is depicted in Fig.[10.1. In a recent experiment
the CNOT gate (a conditional gate operation) has been demonstrated with this setup H2732],

Figure 10.1: Picture of the experimental two charge qubit setup of the NEC group which
was used for the demonstration of a conditional gate operation. The charge qubits are
manipulated by dc pulses on the voltage gates. The first qubit is fabricated in SQUID
geometry, i.e., the tunnel amplitude can be changed on a timescale much longer than the
experimentally realized gate operation. Picture taken from Ref. “2732]
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however, the fidelity of the gate operation, i.e., the overlap of the experimental propagator
and the ideal unitary propagator, was found to be below 50% [232]. The charge qubits in
this experiment were manipulated by fast DC-pulses (rectangular pulses) of total durations
80 — 260 ps with rise-times of about 40 ps. In general, the approach of decomposing quan-
tum gates into elementary operations is, for small system size, greatly outperformed by
custom-built pulse sequences obtained from optimum control theory. However, clearly for
larger systems the optimization problem can not be solved easily anymore. Thus, it would
be still desirable to find small time or decoherence-optimal building blocks for extensive
quantum gate operations on a larger quantum computer with many qubits. Clearly, not
only in the context of a small system, pulse shaping techniques are an important tool for
the manipulation of quantum systems and appriopriate control might increase the gate
fidelity drastically, as will be shown in the paper associated with this section.

10.2 Optimal control theory

In order to find a time-optimal pulse sequence for the manipulation of the qubit system,
which leads to a time evolution of the system that is close to the desired ideal propagator,
the time evolution is split in n small time steps

U= exp(—itnﬁ(n)) X e X exp(—itkﬁ(k)) X - X exp(—itlf[(l)). (10.1)

Where the overall sequence should be time-optimal, i.e., t = >, ¢ should be minimal and

the Hamiltonians H, (k) are piecewise constant [233]. It is most convenient to split the total
Hamiltonian that is associated with the timestep ¢ into a drift term (free evolution) and
a control term (which can be manipulated, e.g., by gate voltages)

H( k) = Hd+H Hd—f—Zu(])H(] (10.2)

J

where u( ) is the value of the control, e.g., the gate voltage, for the j-th qubit and the k-th
timestep. When the gate fidelity is unity, 7.e., the obtained propagator equals the ideal
desired propagator, it is found that

U = Usgeatl |2 = [|U][5 + [|Uideal||5 — 2Re tr (ULWU) =0, (10.3)

ideal

and Re tr (U

U ) has to be maximized for a fixed overall time ¢. This is done via optimal

control theory, using the scalar-valued Hamiltonian function

h(U(ty)) = Re tr (Af(th—@ Hy+ > u A ))U(tk))>, (10.4)

J

derived from the equation of motion U(t) = —iHU (t) with the initial condition U(0) = 1
with the Lagrange multiplier A(¢), which satisfies A(t) = —iHA(¢). Then Pontragyagin’s
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maximum principle [234] requires

8hég((]7;k)) C m tr ()\T(tk)]f_](k)(](tk)> —0. (10.5)

Then a gradient-flow based recursion method is employed [235, 236] to determine the
amplitude of the j-th control for the k-th time-interval. Thus, it is found for the j-th
control and the iteration step r + 1

(1) = u (1) + T
with an appropriately chosen discretization stepsize €. Note that this procedure has to be
repeated for a set of final times ¢, that decrease to the minimal time ¢, as long as the

fidelity for the obtained propagator is large enough, i.e., above a threshold that was set
beforehand.

(10.6)

10.3 System Hamiltonian

First, the Hamiltonian of the two-qubit system in terms of Pauli spin-matrices will be
derived. Starting from Eqn. (1) in [232] in the charge basis

. FE
Bo= 3 Bl mad — 2257 (0) (1] + 1) 0]) © o) {s)
ni,n2=0,1 ng=0,1
EJ
23 ) (] @ (10) (1] + (1) {0)), (10.7)
n1=0,1

it is found that after expanding all terms of this expression gives
H = Ey00) (00| + Epi |01) (01] + Eyg [10) (10] + Eyy [11) (11

=~ B0y () + 1) 0l) & o) 0] - EJ1<<|0><1|+|1><0|>®u><1|
- % 10) (0] ® (]0) (1] +[1) (0]) — 7 1) (1 @ (10) (1] + [1) {0[),  (10.8)
where
Exw = Eu(ng —0)°+ Ea(ng —0)? + Enngng, (10.9)
Eyn = Eu(ng —0)°+ Ewn(ng —1)° + Emngl(ng2 1), (10.10)
B = E.a(ng — 1)+ Exn(ng —0)* + E,(ng — ng, (10.11)
En = Eua(ng —1)°+ Ewn(ng — 1)+ En(ng — 1)(ng — 1). (10.12)

Now a set of Pauli matricies in the computational basis |00) , |01),]10),|11) is introduced
-1 0 0 0 -1 0 0 0 1 0 0 O
0 -1 0 0 0 1 0 0 0 -1 0 0
5(1) 5(2) 5 5(2) —
7z 0 0 10| 7% 0 0 —10 | %% 00 -10|"
0 0 01 0 0 0 1 0 0 0 1

(10.13)
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which are all diagonal in the computational basis. To rewrite the Hamiltonian (10.8) in
terms of the Pauli-matrices we first treat the diagonal part of the Hamiltonian. It is useful
to note that it is very simple to split up the diagonal part

H= (10.14)

o O O e
o O o O
o o0 OO
QL O O O

into parts that are proportional to the Pauli matrices, because this space is spanned by
5—9), 69), &gl) ® 622) and 1. Therefore, the diagonal matrix Eqn. (10.14) can be split into

A = H—}l(a+b+c+d)i (10.15)
A, — Al_%((Al)HHAl)m)&gU (10.16)
Ay = AQ—%((AQ)QQHAI)M)&Q) (10.17)
A = s = 5((As)n + (Ag))o 6 =0, (10.15)

Thus, the diagonal part of the Hamiltonian reads

. 1 1 .
Hdiag = — <1Em(ngl + 2n92 —1- Ng1Mg2 + ngl(ngg - 1)) + §Ecl(2ngl — 1)) O'S)
+{ g Em(ngi(nge = 1) = ngings —ng +1)) + 5 Eea(1 = 2ng2) | &
1
— (Z/Em(ngl(%2 —1) — ngng +ng — 1)) sWs2), (10.19)

This can be further simplified to become

A 1 A
i = 7 ((Em(l — M) + 2B (1 — 2n4))5 0
4 (Bn(1 = 2ng1) + 2Ba(1 — 2ny9))6@ + Ema§1>&§2>>. (10.20)

The off-diagonal part of the Hamiltonian is composed of the single-qubit spin-flip terms

. E E
Hy = —%&;U - %&9. (10.21)

Therefore, the whole Hamiltonian expressed in terms of Pauli matricies is

. E
H = =(En(1=2ng)+2E4(1 —2ng,))60 — %&;ﬂ
E 1
+ S (Ep(1 —2n4) + 2E0(1 — 2n,5))6® — 22152 4 "B W53 (10,22
g g z
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From this expression it is clearly seen that due to the permanent coupling of the qubits,
the controls n,; (the gate voltages V; ;) are mutually coupled. Next, after having derived
the Hamiltonian of the two-qubit system, it is important to investigate the timescales and
energy scales, which will determine the dynamics of the qubit evolution. From Ref. [232]
the energies

E., = 580ueV = 140GHz,

Eo = 671peV = 162GHz,

E, = 95ueV = 23GHz,

E; = 45peV = 11GHz,

Ej, = 41peV = 10GHz, (10.23)

are extracted. In Ref. [232], the controlled-NOT pulse takes 255 ps or 264 ps (depending
on the input state — therefore, the CNOT operation is of course not unitary anymore) with
a fall and rise-time of the pulses of about 40 ps.

10.4 Generalization to the three qubit Hamiltonian

Compared to the two charge qubit setup, the three charge qubit setup in an open chain
geometry, i.e., without connecting the third qubit to the first qubit (which would lead to
a term proportional to &9) ® &S)’) in the three charge qubit Hamiltonian), the role of the
middle qubit is special. This can be clearly observed in the Hamiltonian which shall be
derived below. A typical three charge qubit setup is depicted in Fig. [10.4. There is a
second important change on top of the different shape of the Hamiltonian. The charging
energy of the second qubit will be significantly decreased due to the increase of the overall
capacitance seen by the second qubit. This occurs only for the second (or middle) qubit
due to the additional coupling capacitance seen by this qubit. In the case of a closed chain
geometry this decrease of F, would of course occur for all qubits.

The general expression (10.22) can easily be generalized for an open chain of N qubits
and leads to nearest neighbour qubit-qubit interaction. The overall Hamiltonian is

N N-1

] (i B ~(8) A (i

H=> Bit)el - 7039 + > oWl (10.24)
i=1 i=1

To derive the pseudo magnetic field strengths B; (or in other words the qubit bias) and
the qubit-qubit coupling strength J; ;11 explicitly, we shall use the method from the last
section and obtain for the diagonal elements of the Hamiltonian

. 1 “
Hging = _Z<2Ecl(1 —2ng1) + Epi (1 — 2”92))0,5;1)

1
= (2Bl = 2n5) + By (1 = 2ng1) + Epa(1 = 2g3))5 Y
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Figure 10.2: The three charge qubit setup in an open chain geometry. Each of the super-
conducting Cooper pair boxes is capacitively coupled to the neighbouring boxes. However,
the last qubit in the chain is not connected to the first qubit in the chain. Due to this
asymmetry, the charging energy of the middle qubit is decreased.

1

a 4_1(2Ec3(1 — 2ngs) + Ena(1 - 2”92»69)
1 1
+ ZEM&S) ® P + ZE,Ma—f) ®&® (10.25)

From comparison of Eqns. (10.24) and (10.25) the elements B; and J; ;11 of the Hamiltonian
are easily identified. Please note that the tunneling terms in the Hamiltonian remain
unchanged. Thus, it was again sufficient to calculate only the diagonal elements because
the qubit coupling is diagonal in the computational basis and thus only the well known
single qubit tunneling terms survive as off-diagonal elements. Moreover, it is important to
note that (due to the given geometry) additionally only the diagonal terms proportional

(1) ~(2) ~(2) 2)

. ~(3) ~(1 . ~(3 . : .
tooz’, 0z, 0,2 ), ag ) ® 6y, and ag ® a§ ) can occur in the Hamiltonian.

Note again that one could probably also find a closed chain geometry for a three charge
qubit design that would not only lead to the nearest neighbour interaction terms given
above, i.e., for the closed chain setup all coupling terms &tV ®&§2), ST , and &M o6
would appear in the Hamiltonian and the decrease of the qubit charging energies would
occur isotropic. The coupling topology also predetermines the overall time needed to
perform quantum gate operations [233]. In particular, the information flow in a system of
qubits where each qubit is coupled to every other qubit is optimal in terms of the execution

time of any quantum algorithm.



10.5 Energy levels and leakage 141

Aq =41 peV, AI:O.8 neV
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Figure 10.3: Plot of the eigenenergies of the single charge qubit Hamiltonian including two
leakage levels for a gate charge n, € [—1,2|. Here, A, denotes the qubit energy splitting
at degeneracy, A, is the splitting of the leakage levels at the qubit degeneracy.

10.5 Energy levels and leakage

Fig.[10.3 depicts the energy levels over a broad range of gate voltages V, = 2en,/C,. From
Figs. 110.3 and [10.4/ it is found that anticrossings between one of the leakage levels and
one of the qubit levels are present at n, = 0 and n, = 1.5; close to the qubit degeneracy
point, the splitting between the qubit levels and the leakage levels is more than 103ueV.
Thus, simple spectroscopic arguments indicate that the leakage levels are only of minor
significance during the manipulation of the two-qubit system with pulsed controls because
the magnitude of the gate voltages is such that n, is varied between approximately ny, = 0
and ng, = 0.6.

In this section, leakage into higher charge states is considered, for a detailed description
of the leakage problem for superconducting charge qubits see also Refs. [237-239]. For
each qubit the basis states expressed in terms of the number of Cooper pairs on the
island are |n) = |—1),]0),[1),]2). In the first instance and for the sake of simplicity
only a single charge qubit is considered. However, all simulations of the time-evolution
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Figure 10.4: Plot of the eigenenergies of the single charge qubit Hamiltonian including the
leakage levels. Here, A, denotes the qubit splitting at degeneracy. Clearly, the leakage
levels are separated from the qubit levels by a large energy gap around ny = 0.25 ~ 0.5.

of the qubits under the optimized controls that are presented in the following sections
are calculated using the full Hamiltonian of two superconducting charge qubits with two
additional leakage levels each.

From the diagonalization of the full leakage Hamiltonian for a single qubit the corre-
sponding energy levels are found. These are shown in Figs. [10.3 and [10.4, whereas Fig.
10.5/depicts the anticrossing of the qubit levels (the working transition) and the anticross-
ing of the leakage levels at the degeneracy point, where the gate charge is n, = 1/2. Here,
the characteristic parameters of the single qubit are taken from the experiments [232],
E. = 580peV and E; = 41peV. Note that E; directly determines the energy splitting of
the qubit at the degeracy point.
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Figure 10.5: Plot of the eigenenergies of the qubit Hamiltonian around degeneracy. Both
plots resolve the anticrossings of the qubit levels and the leakage levels at the degeneracy
point. The left plot shows the qubit splitting, the right plot shows the splitting of the next
anticrossing (leakage levels) at degeneracy.

10.6 Generation of entanglement

The concurrence of a bipartite quantum state is defined as C' = (@Z)*|€f§1) ® 6252)|¢>, where
the concurrence C' € [0,1]. Here, C' = 1 characterizes a non-separable entangled state
and C' = 0 is a separable state that can be written as a product state. Interestingly,
the concurrence for the input state [1;) = \%(|O> + 1)) ® |1) is Cyge = 0.688 in the
case of the pioneering experiments performed at NEC [232] and for the optimized pulse
sequence it is found that Coptimizea = 0.998. Thus, a huge increase in the value of the
concurrence is readily observed for the optimized pulse sequence. From this one would
be tempted to conclude that the degree of entanglement that is generated by the cNOT
gate in the pioneering experiments is quite small. However, this is not true. The so-called
Horodecki criterion M(p) > 1, where M measures the non-locality of a state encoded in
its density matrix p [240], is fulfilled for both realizations. Thus, also for the imperfect
and not pulse optimized experimental realization of the CNOT gate, the CNOT gate clearly
generates entanglement and the outcome for several examples of factorized input states (see
below) violates at least one of Bell’s inequalities. When the stability of the entanglement
creation characterized by the averaged concurrence is concerned, though, it becomes clear
that the optimized pulse sequence is uniformly stable. Namely, the average concurrence
for input states that lead to completely entangled states when the CNOT gate is performed,
for example when averaged over the states \%(l()} + 1)) ®10) and \%(|O) + (1)) ® |1), gives
Cnec = 0.794 and still Coptimizea = 0.998. In summary, non separable entangled states are
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Abs(UCNOT)
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Abs(UCNOT,_-UCNOT)

Figure 10.6: Weighted (with the phase angle) absolute values of the propagator matrix
elements for the simulated CNOT operation performed with Gaussian pulses. The trajectory
of the Gaussian pulses was fitted to the pulse sequence obtained from optimal control
theory. The right plot depicts the difference between the operations with and without
taking leakage into account. The excellent fidelity is clearly visible.

created even for the CNOT gate performed by the NEC group. Weyl chamber trajectories
(see chapter [9 for an introduction to the Cartan decomposition and the Weyl chamber)
for the pioneering cNOT gate that was performed by the group at NEC [232] and the
optimized CNOT gate are both presented in the supplementary material given with the
following paper.

10.7 Time evolution of the optimized CcNOT gate

For the experimental implementation of the optimized pulse sequence it is useful to fit
the theoretically determined trajectory for the gate voltage controls on the two qubits,
e.g., with superpositions of several experimentally realizable Gaussian or harmonic pulses.
The fitted pulse sequence of harmonic pulses is discussed in detail in the following paper,
however, the results for decomposition of the overall pulse sequence into Gaussian pulses
will be discussed here.

First, the fidelity of the optimized pulses is evaluated. The trace fidelity is defined as

1
F = <[t (U], (10.26)

where U, is the propagator of the ideal ¢NOT gate and U is the propagator for the
simulated CNOT gate including the leakage levels.
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The numerical calculation of the time propagation gives the results presented in table
10.1/ for a set of Gaussian or harmonic pulses that were fitted to the optimized trajectory
for the qubit controls; this trajectory was evaluated via optimal control theory. The results
were obtained for a simulation with a pulse duration of ¢ = 55 ps and 250 or 50 discretiza-
tion steps (Gaussian pulses or harmonic pulses). For the CNOT gate realized with Gaussian

Pulse  F (no leakage) F (leakage)
Gaussian 0.999834 0.997976
Harmonic 0.989471 0.984742

Table 10.1: Comparison of the trace fidelity for different shapes of the control pulses that
are applied to the two superconducting charge qubits.

pulses the resulting propagator with and without leakage and the difference between the
two cases in terms of the matrix elements of the propagator is shown in Fig. 10.6. Again,
for all simulations the characteristic parameters of the Hamiltonian are taken from the
pioneering paper by the NEC group, see Ref. [232]; namely, E, = 580ueV, E.o = 671ueV,
E,, =9ueV, Ejy =45ueV and Ejo = 41pueV.
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10.8 The single-qubit Hadamard gate

The optimized pulses obtained from optimal control theory provide a possibility of effec-
tively manipulating only a single qubit in a two-qubit system while leaving the other qubit
unaffected. This is demonstrated here with the example of a Hadamard gate that is per-
formed on one of the permanently coupled qubits only. The ideal propagator for this gate
reads U = HV @ 1.

It is found that both qubits need to be manipulated (pulsed) in order to achieve an ef-
fective idle operation on one of the qubits and the Hadamard operation on the other qubit.
The time-optimal trajectories for the manipulation pulses are illustrated in Fig.[10.7. Here,
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Figure 10.7: Time optimal single-qubit Hadamard gate for a system of two constantly
coupled Josephson charge qubits. The qubit parameters for the simulations are those of
Ref. [232]. Plot courtesy of A. Sporl, TU Miinchen.

the Hamiltonian again is splitted into a drift and control part H = H; + H. and the qubit
energies are taken from the experimental work presented in Ref. [232], namely E; = 41pu
eV, E;, = 45p eV, and Ej» = 95ueV. From the figure, it is recognized that the pulse
amplitudes can become relatively large (éng ~ —0.6...0.6) for the qubit on which the
Hadamard gate is performed, however, this pulse sequence is not yet optimized for small
amplitudes in the same way it was done for the CNOT gate. The trace fidelity Eqn. (10.26)
is F' = 0.9999678 for this pulse sequence and it is again remarkbly good. However, note
that here no leakage to other than the qubit levels was taken into account in the simula-
tions. The duration of the pulses iS tHadamara = 47 ps. Thus, the optimized pulses can also
help to effectively decouple a perpetually coupled system of two (or more) qubits.

In the following paper the optimization of the control of superconducting charge qubits for
a two-qubit CNOT and three-qubit TOFFOLI gate will be discussed.
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Optimal Control of Coupled Josephson Qubits
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This paper is dedicated to the memory of Martti Salomaa.

In two and three coupled Josephson charge qubits we exemplify how to take pulse controls for
realising quantum gates from fidelity-limited pioneering stages to the decoherence limit of near
timeoptimal high-fidelity controls. Thus a CNOT gate can be obtained with a trace fidelity > 1—107°
for the two qubits. Even when including higher charge states, the leakage is below 1%, although the
pulses are non adiabatic. The controls are five times faster than the pioneering experiment (Nature
425, 941 (2003)) for otherwise identical parameters—i.e. a progress towards the error-correction
threshold by a factor of 100. We outline schemes to generate these shaped pulses by few LCR-
circuits. The approach generalises to larger systems, as shown by realising a TOFFOLI gate in three
linearly coupled charge qubits 13 times faster than a circuit of nine CNOTs of above experimental
work. In view of the next generation of fast pulse-shape generators, the combination of methods
is designed to find wide application in quantum control of pseudospin and macroscopic quantum
systems such as charges in super- and semiconductors, excitons, and Bose-Einstein condensates.

PACS numbers: 85.25.Cp,85.35.Gv, 82.56.Jn, 03.67.Lx

Regarding Hamiltonian simulation and quantum com-
putation recent years have seen an increasing array of
quantum systems that can be coherently controlled. Next
to natural microscopic quantum systems, a particular at-
tractive candidate for scalable setups are superconducting
devices based on Josephson junctions [1-3]. Due to the
ubiquitous bath degrees of freedom in the solid-state en-
vironment, the quantum coherence time remains limited,
even in light of recent progress [4, 5] approaching theoret-
ical bounds. Thus it is a challenge to generate the gates
fast and accurately enough to meet the error correction
threshold. This poses fundamental questions, such as (7)
to which extent are gate accuracies and speeds limited by
the presence of nearby higher levels? (ii) does a constant
and relatively strong interaction promote or hinder the
gate performance and which parameter is limiting the
gate time? and (7i) given the challenge in building con-
trol electronics: which properties do pulses for quantum
gates in these pseudospin systems have to have?

Recently, progress has been made in applying opti-
mal control techniques to steer quantum systems [6] in
a robust, relaxation-minimising [7] or timeoptimal way
(8, 9]. Spin systems are a particularly powerful paradigm
of quantum systems [10]: N spins-1 are fully control-
lable, if (i) all spins can be addressed selectively by rf
pulses and (#) if the spins form an arbitrary connected
graph of weak (Ising-type) coupling interactions. The op-
timal control techniques of spin systems can be extended
to pseudospin systems, such as charge or flux states in
superconducting setups, provided their Hamiltonian dy-
namics can be expressed to sufficient accuracy within a
closed Lie algebra, e.g., su(2") in a system of N qubits.

As a practically relevant and illustrative example, we

consider two capacitively coupled charge qubits con-
trolled by DC pulses as in Ref. [1]. The infinite-
dimensional Hilbert space of charge states in the device
can be mapped to its low-energy part defined by zero or
one excess charge on the respective islands [2]. Identi-
fying these charges as pseudospins, the Hamiltonian can
be written as Hioy = Haritt + Heontrol, Where the drift or
static part reads (for constants see caption to Fig. 1)

E, E. E,
Havige = — (T + Tl> (M el - %(Ug) ®1)
En | Eeo Ep
- ( I + > (1os?) - T(]l@(rff))
E,
+ D @) M

while the controls can be cast into

E
Hcontrol = <7mng2 + Ecln_ql) (Ugl) ® ]l)

2)

E777,
+ < 5 Mgt T Eu?”_q?) (1e0?)

Note that the Pauli matrices involved constitute a min-
imal generating set of the Lie algebra su(4); hence the
system is fully controllable. The control amplitudes ng,,
v = 1,2 are gate charges controlled by external volt-
ages via ng, = V;,Cy, /2e. They are taken to be piece-
wise constant in each time interval ;. This pseudospin
Hamiltonian motivated by Ref. [1] also applies to other
systems such as double quantum dots [11] and Josephson
flux qubits [12], although in the latter case the controls
are typically rfpulses.

In a time interval ¢; the system thus evolves under
H{) = Hyy+ Hio

control- Lhe task is to find a sequence of
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FIG. 1: (Colour online) Fastest gate charge controls obtained
for realising a CNOT-gate on two coupled charge qubits (left
part: control qubit, right part: working qubit). The total
gate charges for the qubits are ng, = ngV + dng, with v =
1,2. Here, ngl = 0.24, ngz = 0.26 and the qubit energies
Ec1/h =140.2 GHz, Ec2/h = 162.2 GHz, E;1/h = 10.9 GHz,
Ej2/h =9.9 GHz, and E,,/h = 23.0 GHz were taken from the
experimental values in [1]. The 50 piecewise constant controls
are shown as bars (uniform width A = ¢, = 1.1 ps); the trace
fidelity is 27lv|tr{Ug\MgetUT}| > 1-10"". Red lines give the
analytic curves in Eqn. 3; the blue ones superimposed show a
pulse synthesised by an LCR-filter (see below and Fig. 3).

control amplitudes for the intervals t1,t2,...,tk, ..., tn
such as to maximise a quality function, here the over-
lap with the desired quantum gate or element of an
algorithm Usarges. Moreover, for the decomposition of
Upr = efitMHMe—itM,lHM" ”_efitka . emel into
available controls {H,Ek)} to be timeoptimal, T :=
Ziwzl tr has to be minimal. The gate fidelity is
lmity, lf HUTfUtargetHg = 0 = HUTH% + HUtargetHg -
2Re t1{U, g Ur}. Maximising Re tr{Uf,. .Ut} can
be solved by optimal control: set Rh(U(ty)) :=
Re tr{\(tx)(—i(Ha + Y u,H,))U(ty)} with the
Lagrange-type adjoint system A(¢) following the equa-
tion of motion A(t) = —i(Hgq + Y u,H,)A(t). Pon-
tryagin’s maximum principle requires 9Oh/0u, =
Re tr{\f(—iH,)U} = 0 thus allowing to implement
a gradient-flow based recursion. For the amplitude
of the v*" control in iteration r 4+ 1 at time interval
t; one finds with ¢ as a suitably chosen step size

r+1 T Oh™) (1),
ngt () = ) (1) + €5t
detail in Refs. [13, 14]. T is the shortest fixed final time
allowing for a given fidelity to be obtained numerically.

as explained in more

Throughout the work, we take the parameters from the
experiment [1]. Fig. 1 shows the fastest decompositions
obtained by numerical optimal control for the CNOT gate
into evolutions under available controls (Eqns. 1 and 2).
In contrast to the 255 ps in Ref. [1], T'= 55 ps suffice to
get [[Ur — Usarget||, = 5.3464 x 1075 corresponding to a
trace fidelity of %“T{UJMEQUTH >1-107°.

The supplementary material illustrates how the se-
quence of controls (Fig. 1) acts on specific input states
by representing the quantum evolution on local Bloch

spheres complemented by showing the coupling evolu-
tion in the Weyl chamber. These pictures trigger phys-
ical insight: for a cNOT, the duration 7" = 55 ps has

to accomodate at least a 3 rotation under the coupling

Hamiltonian (30, ® o) lasting 21.7 ps concomitant to

two § z-rotations under the drift component (%O’Sf)) each
requiring 25.3 ps. This is in contrast to NMR, where
the coupling interactions are some 100 times slower than
the local ones, so timeoptimal controls can be envis-
aged as Riemannian geodesics in the symmetric space
G/K = SU(4)/SU(2)®? [8]. However, in our charge
qubit system, the time scales of local and non-local inter-
actions are comparable, and the local drifts in K gener-
ated by o, are even time-limiting, while phase shifts gen-
erated by o, via the gate charge are fast (¢f. Equs. 1-2).
Assuming in a limiting simplification that two T x-pulses
are required, the total length cannot be shorter than 50.6
ps. A sigmoidal phase distortion from a geodesic state in-
version is cheap timewise. While the duration of T' = 55
ps of our controls is close to the simplifying infimum of
50.6 ps, the controls in Ref. [1] last 255 ps; they entail
several closed great circles on the Bloch sphere and are
far from geodesic (details in the supplement).

Note that the time course of controls in charge
qubits turns out palindromic (Fig. 1).  Self-inverse
gates (Ug.dte = 1) relate to the more general time-and-
phase-reversal symmetry (TPR) observed in the con-
trol of spin systems [15]: for example, any sequence
e~ a0z emityye=it:0: g inverted by transposition con-
comitant to time reversal ¢, — —t, and oy, — —oy.
Since the Hamiltonians in Eqns. 1-2 are real and sym-
metric, they will give the same propagator, no matter
whether read forward or backward.

The pulses are not very complicated, as the time course
of the controls on either qubit (v = 1,2) can be written
with high accuracy as a sum of 6(7) harmonic functions
(coefficients in Tab. 1 of the supplement)

5(6)

ng,(t) = Zau((j) cos (27rw,,(j)% +¢,(7)) . (3)
=0

The limited bandwidth allows to maintain high fidelity
even if leakage levels formed from higher charge states of
the qubit system are taken into account: we now explic-
itly apply the pulses to the extended system obtained
by mapping the full Hamiltonian [1] to the subspaces of
—1,...,2 extra charges per island. The two-qubit cNOT
gate is thus embedded into the group SU(16), still the
full propagator generated by the above controls projects
onto the CNOT gate giving a trace fidelity > 0.99. Even
the time courses starting with any of the four canonical
two-qubit basis vectors hardly ever leave the state space
of the working qubits: at no time do the projections onto
the leakage space exceed 0.6 %. Clearly, optimisation in-
cluding explicit leakage levels could improve the quality
even further in systems where necessary [16].
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FIG. 2: (Colour online) Spectroscopic explanation of the high quality of the control sequences of Fig. 1: the spectral overlap
of the Fourier-transforms (right walls) of the controls of Fig. 1 with the energy differences corresponding to the one-charge
transitions into leakage levels (solid lines on the surface) is small at gate charges in the working range (within black dashed
lines). In the 3D representation, intensities at allowed (solid lines) vs forbidden transitions (broken lines) into leakage levels are
given in terms of transition-matrix elements (normalised by charging energies E2, E2) with an extended control Hamiltonian
as in Eqn. 2 expressed by Hc(6ng,) in [(¥y|H.W;)|*: the working transitions (blue) are far more probable than the allowed
ones into leakage levels (red) that have no overlap with the excitation bandwidth of the pulses; forbidden ones are very weak.

In simplified terms, the high quality can be understood
by relating the limited bandwidth to the transitions be-
tween the eigenstates of the local parts of Hgyif in Eqn. 1:
while one-charge transitions to leakage levels like | —1) <
|0) and |2) < |1) are allowed, two-charge transitions like
| —1) < [1) and |2) < |0) are forbidden in terms of
the transition-matrix elements |(¥ginal|HeontrolWinitial)|?
as can be seen in Fig. 2. Note the charge control on
gate 2 in Fig. 1 is around éngy = 0.2 thus driving the
working transition |0) < |1), while the ‘spectral overlap’
of the Fourier-transform of the time course in both con-
trols with energy differences corresponding to one-charge
leakage transitions in Fig. 2 is small. Hence simple spec-
troscopic arguments underpin the high fidelity.

The actual pulse shape generation is a challenging but
possible task. Note that the minimal length of the pulse
is given by the coupling strength. In the pertinent time
scale, however, there are no commercially available de-
vices for generating arbitrary wave forms.Yet, high-end
pulse generators [17, 18] or ultrafast classical Josephson
electronics [19] are close to the necessary specifications.

As a proof of principle, it is important to note how
to generate these pulses experimentally, which can read-
ily be exemplified using the well-established technique of
shaping in Laplace space: we start with an input current
pulse Iin(t) shorter than the desired one of a shape which
is arbitrary as long as it contains enough spectral weight
at the harmonics necessary for the desired pulse. Such
pulses are easily generated optically or electrically[18].
This pulse is sent through an appropriately designed dis-
crete electrical four-pole with transfer function Z;15. We
have carried out this idea for a rectangular pulse of length
7, = l.1ps as an input and our two gate pulses as out-
puts. We have developed a transfer function in Laplace

space Z12(s) by fitting Vy(s) = Z12(s)Iin(s), see Fig. 3.
Owing to causality, the poles of Z12 are either on the neg-
ative real axis or in conjugate pairs of poles on the left
half plane. Each conjugate pair corresponds to an LCR-
filter stage, whereas each real pole corresponds to an RC
lowpass-filter [20]. With 8 LCR filters and two low-pass
filters the pulses are very close to the desired ones, see
Fig. 1, and a trace fidelity of 94 % can be achieved for
the entire CNOT. Clearly, the quality could be further
improved with more refined technology. This approach
can also accomodate the generally frequency-dependent
transfer function from the generator to the sample as
shown in the Supplementary Material.

Note that our controls are fairly robust with regard to
+5% variation of the tunneling frequencies E, , and the
coupling term FE,, as well as to Gaussian noise on the

FIG. 3: (Colour online) Filter characteristic for shaping the
pulse on the working gate. The bars show the poles s; of
the transfer function in the Laplace plane. Poles outside the
negative imaginary axis also lead to the complex conjugate
pole and can be implemented by an LCR-Filter. The height
of the bar gives the modulus of the residue in this pole.
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FIG. 4: (Colour online) Left: Trace fidelities resulting from
the controls of Fig. 1 when the parameters E,, and F; in
Eqns. 1-2 vary by £5%. In this range, the quality profile can
be fitted by a tilted 2D Gaussian (parameters in Supplement).
Right: Fidelities under Gaussian noise on control amplitudes
and time intervals parameterised by the standard deviations
20 /A and 20amp/amp ranging from 0 to 5%. (As in Fig. 1,
A = tg; amp := éng, with v = 1,2.) Each data point is an
average of 25’000 Monte-Carlo simulations.

control amplitudes and time-itervals as shown in Fig. 4.

Likewise, in a system of three linearly coupled charge
qubits, we realised the TOFFOLI gate by experimentally
available controls (Fig. 5), where the speed-up against a
circuit of 9 CNOTS is by a factor of 2.8 with our cNOTS
and by 13 with the ¢NOTS of Ref. [1]. Due to the com-
paratively strong qubit-qubit interactions in multiqubit
setups, a direct generation of three-qubit gates is much
faster than its compostion by elementary universal gates.
This also holds when developing simple algorithms [21] on
superconducting qubit setups: a minimisation algorithm
for searching control amplitudes in coupled Cooper pair
boxes was applied in [22], where the optimisation was
restricted to only very few values. In Ref. [23], an rf
pulse sequence for a CNOT with fixed couplings was in-
troduced, which, however, is much longer and uses more
of the available decoherence time.

In conclusion, we have shown how to take pulse con-
trols for realising quantum gates in pseudospin systems
from fidelity-limited pioneering stages to the decoherence
limit of near timeoptimal high-fidelity controls. In su-
perconducting charge qubits, the progress towards the
error-correction threshold is by a factor of 100 (details
in the Supplement). Limiting the optimal-control based
shapes to low bandwidth allows for non-adiabatic pulses
with remarkably low leakage to higher states thus jus-
tifying the pscudospinfé truncation to the low-energy
part of the spectrum. Moreover, shapes could be kept
simple enough to be realised by few LCR-circuits, so the
approach will find wide application, in particular for the
next generation of fast pulse-shaping devices.

We expect the decoherence time scales dominated by
1/f contributions to 75 will not change largely under the
pulses, so time optimal controls provide a significant step
towards the accuracy threshold for quantum computing,
even if the optimisation of decoherence times reaches its
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FIG. 5: Fastest gate charge controls obtained for realis-
ing a TOFFOLI gate on a linear chain of charge qubits cou-
pled by nearest-neighbour interactions with a trace fidelity of
o [t0{Ul gec Ur}| > 1 —107°. Parameters: Eci/h = 140.2
GHz, Eco/h = 120.9 GHz, Ec3/h = 184.3 GHz, E;1/h = 10.9
GHZ, E‘/;)/h = 99 GHZ, E,]g/h = 94 GHZ, Emlymz/h = 23
GHz, ny, = 0.24, nj, = 0.26, n); = 0.28.

intrinsic limits.
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Supplementary Material:
Optimal Control of Coupled Josephson Qubits

A. Sporl, T. Schulte-Herbriiggen, S.J. Glaser, V. Bergholm, M. Storcz, J. Ferber, and F.K. Wilhelm
(Dated: September 26, 2005)

OVERVIEW

In the first place, it is the purpose of this supplement to illustrate the quality of the qubit dynamics under the pulse
controls obtained numerically in order to provide more insight. Given these numerical controls, the second paragraph
demonstrates how easily the pulse shapes can actually be generated by classical network synthesis. Moreover, we wish
to emphasize that the controls obtained are fairly robust to £5% variation of the tunneling frequencies E; as well as
the coupling strength FE,, thus embracing typical errors of spectroscopic parameter determination. Finally, we show
that the current work gained two orders of magnitude towards approaching the error-correction threshold of ~ 10~%.

QUALITY OF THE QUBIT DYNAMICS UNDER THE OPTIMISED CONTROLS

Figure 1 shows the qubit dynamics of the reduced system given by local Bloch-spheres. The left one belonging to
qubit A (control), shows the projections p4 = Trpp and vice versa for the right one. The sigmoidal distortion of the
inversion discussed in the main text is time-wise cheap due to fast local controls along o,. Bloch vectors inside the
spheres indicate entanglement between the qubits as in Fig. 2. The experimental pulses used in Ref. [1] entail much
longer trajectories with loops and several nearly closed great cycles (see Figs. 3-4); they are far from geodesic.

The Weyl chamber of Fig. 5 provides a visualisation complementary to the local Bloch spheres: under the controls
of Fig. 1 (main text) it picks out the coupling evolution in G/K = SU(4)/SU(2)®2. In NMR time scales, this is time-
limiting, hence there time optima are geodesic [2], whereas here in the charge qubits, local and non-local evolutions
take similar times thus giving a mildly recurrent curve.

FIG. 1: Evolution of the product state |©(0)) = |0)|0) under the optimised controls resulting in |©(T")) = |0)|1). The evolution
0 <t <T with T =55 ps is represented by the reduced states trg|©(t))(O(t)| (left sphere) and tra|0O(¢))(O(¢)| (right sphere)
on the respective local Bloch spheres with the grid lines spaced by 10°. The blow-up shows the top of the left Bloch sphere.

FIG. 2: Evolution of the Bell state |®,) = % (]00) + |11)) into the final state % (l01) + |11)) (filled red dots). The Bell state
is maximally entangled and hence has local representations in the centre of the respective Bloch spheres, while the final state
is a product state represented by points (filled red dots) on their surfaces. The projection on the left is a view from the top

onto the plane inserted into the left Bloch sphere.
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FIG. 3: For comparison: same evolution of the product state |©(0)) = |0)|0) as in Fig. 1, but using the pulse of the experiment
in the NEC group [1]. The evolution 0 < ¢ < T with T = 255 ps is represented by the reduced states trg|0(¢))(0(t)| (left)
and tra|©(t))(O(t)| (right) on the respective local Bloch spheres. The trajectory completes two full circles (see inset) before
reaching its final state near the south pole. Grid lines are spaced by 10° on the Bloch spheres, and by 1° in the inset.

FIG. 4: Evolution of the Bell state |®4) = % (]00) + |11)) as Fig. 2, but using the control of the experiment [1]. Parameters
of that pulse on the second qubit are: dngz = 0.25, total length 255 ps with 40 ps rise time and 40 ps fall time, digitisation:
1000 points. Note the different final states as compared to Figs. 1 and 2 indicative of a resulting gate whose matrix elements
coincide with the proper CNOT in absolute value, but not in phase. (Actually, the phase deviations are not uniform throughout
the elements).

(300

(a)

5,0,0)

®0,0) ®0,0) "

FIG. 5: Coupling evolution under the controls of Fig. 1 (main text) represented in the Weyl chamber. With local and non local
controls being of comparable time scale, where the time for a local m-pulse is actually time-limiting, the time-optimised controls
(a) give a mildly recurrent smooth curve which ends at the point (3,0, 0) as expected for a CNOT requiring a 5 evolution under
the coupling term %J; ® 0. In contrast, the coupling evolution under the controls of Ref. [1] is meandering back and forth (b)
and terminates (red dot) without reaching 7 exactly.
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TABLE I: Parameters giving the envelope to the control amplitudes ng, (¢) for the two qubits v = 1,2 as in Eqn. 3 in the main
text. T = 55 ps. The fits give x? = 0.008231 for qubit 1 and x? = 0.003668 for qubit 2.

J ai(j) w1 () #1(5) az(j) wa(j) #2(7)
0 — 4.4647 0 0 —17.4138 0 0

1 — 4.5071 0.0130 9.3846 —23.7277 0.4400 1.7869
2 6.5080 3.2896 — 0.7031 —10.0067 1.2108 2.5555
3 14.5596 3.3968 2.1083 — 8.5767 1.9801 3.3284
4 —14.2523 3.5523 1.6296 —15.5114 2.5745 4.6400
5 — 6.1681 3.6477 4.4777 —19.2964 2.8057 7.0698
6 — — — — 8.4275 2.9355 9.8117

PULSE SHAPING HARDWARE

This section details the pulse shaping scheme outlined in the main text. For the pulses of Fig. 1 of the paper,
Table I gives the Fourier-type decompositions according to Eqn. 3 (main text).

The data in Fig. 3 of the paper and in Fig. 6 of this supplement have been obtained as follows: we have fitted
a rational function Zi2(s) in Laplace space, such that Voue(s) = Z12(s)Iin(s) where Iin is a 1 ps current pulse and
ngi = Cq,iVout,i/2e for the two qubits, ¢ = 1,2. This function is represented best by its residue decomposition
Zip =), sf’sl. With this decomposition, there are a number of approaches to design a lumped circuit with this
transfer function, such as the method of Gewertz [3] that systematically eliminates poles and introduces loops in the
electrical circuit: one LCR-loop for each pair of complex conjugate poles, and one RC-filter for each pole on the real
axis. Thus, the degree of the polynomial in the denominator gives a clear view on the size of the necessary circuit.

In reality, the transfer function from the pulse shaping circuit (which at room temperature can conveniently be
placed to the sample) is not constant. Most reliably, it can be measured e.g. by using a capacitor simulating the qubit.
In the linear case, it can be expressed as another four-pole impedance matrix Zsample. The total transfer function of
the series configuration of those four-poles will then be Z12 = Z12 sample Z12 fitter/ (Z22,fitter + Z11,sample)- This outlines,
that unless the transfer function to the sample is not filtering out the relevant frequencies (i.e. becomes small for
values of s important to Voyut), it will be possible to design an appropriate filter taking into account the properties of
the experimental setup. With this approach, the full transfer function Z;2 shapes the pulse.

When designing the filter as well as the pulse one can readily accomodate the experimental necessities. Due to
unavoidable fabrication uncertainties, the optimum pulse will be slightly different for each individual pair of qubits.
Thus the parameters for the Hamiltonians in Eqs. 1-2 of the main paper have to be determined spectroscopically
before re-running our algorithm to adapt the optimal pulse shapes, which can easily be done on a regular PC.

Pulses can also be formed by other means, such as superimposing short pulses of shapes easy to generate with
different heights, widths, and delays. The two main candidates for this approach are (i) Gaussian pulses [4], which
can be generated at room temperature and pass the necessary cryogenic filtering nearly undistorted and (#) SFQ
pulses, which can be generated on chip (hence avoiding the filters) using ultrafast classical Josephson electronics [5].

Note, that our optimization method also applies to control by microwave Rabi-type pulses [6], where pulse shaping
appears to be easier as time scales are usually longer.

FIG. 6: Pole structure of the transfer functions necessary for shaping the pulses on both the control (left) and target (right)
qubit. Parameters correspond to Fig. 3 of the main paper.
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ROBUSTNESS OF THE OPTIMISED CONTROLS

Interestingly, the controls of Fig. 1 (main text) are already remarkably robust with respect to joint variations
of the tunneling energies Ej, (v = 1,2) as they may result from homogeneously differing oxygen content in the
alloy of the junction material as well as deviating coupling strength F,,. These parameters have to be determined
spectroscopically, where the relative error normally does not exceed 5 %. Fig. 7a shows that even the time-optimised
controls as short as 7" = 55 ps cope with such variations. Significant improvement of the broad-band behaviour,
however, could not be obtained by pulse sequences up to a total duration of T'= 75 ps thus suggesting that broad-
band CNOT controls tailored for the special (and rare) instances with ill-defined experimental parameters will require
considerably longer pulse schemes. A similar robustness is observed in Monte-Carlo simulations of Gaussian noise on
the control amplitudes or time units as seen in Fig. 7b.

0.05 0.05
(@) (b) 0.9990
; \—'\ 0.99925
: a 0.9995
ur : %
-~ 0 @ ~a 0.99975
% : 2
w ~0.9999 o°
0.9999
0.9995 ‘e
0.9975 0.9990 S 099999
-0.05 o A
-0.05 0 0.05 0 0.05
SE,/E,, Uoers"Op/ A

FIG. 7: (a) Trace fidelities resulting from the controls of Fig. 1 in the main text when the parameters E,, and E; in Eqns. 1-2
vary by +5%. In this range, the quality profile can be fitted (x* = 3.84 x 107%) by a tilted 2D Gaussian distribution with
standard deviations of 0.80 for §E,,/E,, and 1.27 for §E;/E;. The correlation coefficient is —0.38 corresponding to a tilt
angle of —30° between the z-axis and the major principal axis of the ellipse. (b) Fidelities under Gaussian noise on control
amplitudes and time intervals ranging from 0 to 5%. Scaling the standard deviations by 1.96 0 /A and 1.96 0amp/amp means
95 % of the simulated noise values lie in the intervals 0+ 1.96 0. (As in Fig. 1, A :=ty; amp := dng, with v = 1,2.) Each data
point is an average of 25’000 Monte-Carlo simulations. At the origins (+) of (a) and (b), the trace fidelities are 1 — 10~°.

TOWARDS THE ERROR-CORRECTION THRESHOLD: GUIDELINES AND FRONTIERS AHEAD

Apart from illustrating the results in the main text, it is the purpose of this Supplement to make a strong case for
the next generation of fast pulse shapers. Actually we regard them as paramount for reaching the goal of scalable
quantum computation with superconducting Josephson elements. Let F' denote the fidelity of a gate of duration
T, and let T5 be the pertinent overall decay time. Assuming independent errors, the quality of a gate is roughly
determined by ¢ ~ Fe~T/T> ~ F(1 — le), where the error rate 1 — ¢ ~ 107 is an estimate for the error-correction
threshold (see e.g. [7]). This goal can be met by improvements on three frontiers:

1. fighting decoherence by making T5 longer,
2. cutting gate times by making T" shorter,
3. improving fidelity by making F' larger,
where this work shows how to cope with the latter two by means of optimal control.

(1) In fact the Josephson devices known today [1, 6, 8] have already undergone a great deal of hardware optimisation
bringing decoherence down close to its theoretical limits. The observed decoherence times in charge qubits are on
the scale of To ~ 0.5 to 2.5 ns for two-qubit dynamics [9], and 10 ns for single qubits [10]. Both can be improved
by using echo techniques [11], which hints at 1/f noise as the limiting factor. Other improvements of T5 rely on
operating with microwave pulses [6, 12] at an optimum bias point on the expense of much slower pulses limited by
the Rabi frequency. Although our technique may incorporate both strategies, echo and microwave pulses, we base
our technological estimate in the next section on an optimistic T3 of 10 ns, which appears to be accessible in a charge
qubit setup as in [1].
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(2) The pulse controls currently available are too slow to fully exploit the power of the experimental setting: within
a decay time of 10 ns, just 40 CNOTs of the current duration of 250 ps can be performed (with the rise times in the
order of 35 ps). On the other hand, the capacitively coupled Josephson hardware elements themselves have large
intrinsic frequency scales allowing for fast operation and may well reach the decoherence-limited threshold—provided
gates could be executed some 10 times faster than in the current experimental setting, where we have shown that
within 10 ns, approx. 200 time-optimised high-fidelity CNOTs can be run.

(3) For obtaining sufficiently high fidelities experimentally, an important part of the future challenge will boil down to
the accurate determination of the experimental system response: once this can be done, a non-ideal system response
can easliy be incorporated into our algorithms thus allowing for getting fidelities that are essentially limited by the
robustness of the experimental setting (cf. Fig. 7). With fidelities of ' up to 1 — 10~ being ideally accessible by our
pulses, the total error rate is then entirely limited by decoherence (T%)

Summary of the CNOT gate. With the pulses presented here, the total error rate 1 — ¢ is limited by decoherence (T%)
and amounts to 1 — ¢ = 0.0055, which does not reach the error correction threshold of 1 — ¢ ~ 10~* yet. However,
it compares favorably to the one in the pioneering setting [1], where a fidelity of F' ~ 0.4188 was obtained (largely
limited by the phase twists) for a pulse of duration 7' = 250 ps thus leading to a value of ¢ = 0.4083. So our results
present an improvement of two orders of magnitude in the error rates (1 — ¢ = 0.0055 instead of 1 — ¢ = 0.5917).

Summary for the TOFFOLI gate. The effects are nearly as dramatic: in a linear chain of three qubits coupled by nearest-
neighbour interactions, a TOFFOLI gate needs nine CNOTs, which gives an error rate of 1 — gpioneer = 1 — 0.4083° =
0.9997 using the cNOTS of Ref. [1], an error rate of 1 — guetwork = 1 — 0.9945% = 0.0483 with nine of our cNOTs, while
the error rate of the TOFFOLI gate shown in Fig. 5 of the main text is 1 — gdirect = 1 — 0.99999 ¢~ 180ps/10ns — 0.0178,
assuming for the moment that the 75 in a coupled three-qubit Josesphson system would also be in the order of 10
ns. Clearly, the latter error rate is again entirely decoherence-limited and thus strongly suggests to generate quantum
modules directly and in a time optimal way from the experimentally available controls rather than decomposing them
into elementary universal quantum gates first.

Concluding Guidelines

Our results make a strong case for faster pulse generation, both shorter in total length and with the possibility of
shaping the external structure. This is a corner stone for future progress. In constrast, even though the current
experimental controls could further be optimised fidelity-wise, a simple calculation already shows that this will not
suffice for significant improvements given the time scales of current pulse shaping technology: in the case of a CNOT,
the quality would always be limited by e~T/72 = 0.975 even at fidelities of F' = 1. On the same footing, if higher fidelity
is achieved by additional compensation pulses, the total sequence becomes longer and the quality again deteriorates.
Rather, one should strive for making the Josephson hardware system even faster without introducing higher 75 decay
rates. Since with reasonable fidelities the limitation is entirely on decoherence, above all, the ultra-fast pulse-shaping
devices being developed right now will enable significant progress. Clearly, this technological frontier has not been
really explored so far, yet the timescales needed are not excessively short compared to what has been realized with
electro-optical methods involving pulsed lasers and switches [13]. For getting sufficiently high fidelities experimentally,
another frontier will rely on accurately determining the experimental system response, which should then be included
into the numerical algorithms.

The combination of optimal control and network synthesis methods presented here thus gives a proof of principle
by way of example, and the broadly applicable techniques will lead to similar improvements in further solid-state
qubit setups, e.g., semiconductor quantum dots. Other experimental settings, such as microwave pulses at optimum
points, where both decoherence and control are slower will profit likewise. The tools of optimal quantum control are
thus shown to be both very powerful and general and hence await broad application in spin and pseudospin systems.
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Chapter 11

EPR pairs in superconducting charge
qubits

11.1 Introduction

In 1935, Einstein, Podolsky, and Rosen (EPR) in their famous work [241] raised the ques-
tion whether quantum mechanics is incomplete through discussion of the correlations be-
tween two particles. Bohr in his comment to this work [242] showed that quantum theory
is consistent, though, he did not argue whether quantum mechanics is complete or incom-
plete [231]. The claim by EPR implies an inequality that is not satisfied by some of the
quantum correlations; namely Bell’s inequalities are violated [243]. These have been gen-
eralized by Clauser, Horne, Shimony, and Holt (CHSH) [244] in order to allow to test the
EPR correlations.

Here, the generation and quantum state tomography of EPR pairs, in superconducting
charge qubits and the decoherence of the generated EPR states will be discussed. Therefore,
the maximally entangled Bell states

1 1
Y+) = E(\om L 11)), L) = -

are used to test the quantum mechanical correlations, i.e., the entanglement.

The entanglement can be quantified by an entanglement measure [240], e.g., the lin-
earized entropy [24], entanglement capability [183], or concurrence [245]. In the follow-
ing paper, the quantum mechanical correlations in the two charge qubit system will be
metered by the concurrence as defined in Refs. [245, 246]. In more detail, the con-
currence [245] of a state [¢) with a density matrix p = [¢) (¢|, is given by C(p) =
max{0, VA — VA2 — Vs — \/)\_4}, where the \; are the eigenvalues of pp in decreasing
order of magnitude and

(J01) = [10)). (11.1)

p=(o,@0.)p (0, ®0). (11.2)
As an entanglement measure, the concurrence indicates non-locality. For maximally en-

tangled states, e.g., the Bell states which are the ideal EPR correlations, the concurrence
is unity, whereas fully separable states yield zero as the value of the concurrence.
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In the charge qubit system that is considered here, two important drawbacks restrict
the performance of the quantum gate operations on the two charge qubit system, which
are needed in order to generate and measure the EPR pairs. First, there is no full control
over all terms in the Hamiltonian, i.e., the coupling between the two qubits is fixed and set
by a coupling capacitance. Here, we assume that one can tune the Josephson energy via an
externally applied flux through the SQUID loop of the charge qubit (that is fabricated in
SQUID geometry) and the gate charges, i.e., the charge energies or bias of the qubit. Still,
the coupling term between the qubits is not tunable and set constant. Thus, a scheme
for manipulation of the qubits and quantum state tomography has to be developed that
takes these special properties into account. Second, decoherence due to fluctuations of the
control voltages and a smaller amount of 1/ f-noise (due to hopping background charges),
which can be effectively modeled by Gaussian noise, affects the qubit (states) and can
severly limit the decoherence times of the qubit system. Therefore, numerical simulations
of the time evolution of the prepared EPR pairs that take decoherence into account were
performed within the Bloch-Redfield formalism that is presented in chapter [4.3 of this
thesis.

It will be shown how conditional gate operations on any qubit can be realized, also with
the constant coupling term between the qubits. Starting from the natural ground state
of the circuit, any EPR pair can be generated by a set of basic quantum gate operations.
Moreover, the correlations can be verified by a test of Bell’s inequality with the generated
EPR pairs, which is described in detail. This test can be performed by obtaining the
correlation function from repeated measurements of the qubit states.
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We propose an efficient approach to prepare Einstein-Podolsky-Rosen (EPR) pairs in currently-existing
Josephson nanocircuits with capacitive-couplings. In these fixed-coupling circuits, two-qubit logic gates could
be easily implemented while, strictly speaking, single-qubit gates cannot be easily realized. For a known two-
qubit state, conditional single-qubit operations could still be designed to evolve only the selected qubit and keep
the other qubit unchanged; the rotations of the selected qubit depends on the state of the left one. These con-
ditional single-qubit operations allow to deterministically generate the well-known Einstein-Podolsky-Rosen
pairs, represented by EPR-Bell (or Bell) states, at a macroscopic level. Quantum-state tomography is further
proposed to experimentally confirm the generation of these states. The decay of the prepared EPR pairs is ana-
lyzed using numerical simulations of the system dynamics. Possible applications of the generated macroscopic
EPR pairs to test Bell’s Inequality (BI) are also discussed.

PACS number(s): 03.67.Mn, 03.65.Wj, 85.25.Dq.

I. INTRODUCTION

Quantum mechanics (QM) is a very successful theory. It
has solved many physical mysteries in both macroscopic su-
perconductivity and microscopic elemental-particle systems.
Still, laboratory studies of its conceptual foundations and
interpretation continue to attract much attention. One of
the most important examples is the well-known Einstein-
Podolsky-Rosen (EPR) “paradox”, concerning the complete-
ness of QM. Based on a gedanken experiment, Einstein,
Podolsky and Rosen (EPR) claimed [1] that QM is incom-
plete and that so-called “hidden variables” should exist. This
is because a two-particle quantum system might be prepared
in a correlated state such that a measurement performed on
one of the particles immediately changes the state (and thus
the possible physical outcome) of the second particle, even
though the two particles could be separated by large distances,
without direct communication between them. This “paradox”
lead to much subsequent, and still on-going, research. Bell
proposed [2] an experimentally testable inequality to exam-
ine the existence of the hidden variables: if this inequality is
ever not satisfied, then there are no so-called local “hidden
variables” and thus there are quantum non-local correlations.
Bell’s Inequality (BI) has served as one of the most impor-
tant witnesses of entanglement, which is a correlated feature
of composite quantum systems and takes an important role in
future quantum information processing.

During the past decade, a number of interesting experi-
ments [3] using entangled photon pairs have been proposed
and carried out to investigate the quantum nature of two-
particle entangled states. These experiments showed that BI
could be strongly violated, and thus agreed with quantum me-
chanical predictions. Yet, two essential loopholes have not
been strictly closed in these experiments. First, the required
EPR pairs were generated in a small subset of all pairs created

in certain spontaneous processes, and thus were not determin-
istically prepared. Second, besides the problem of detector
efficiency, the expected locality could not be strictly satisfied
as the individual experimental measurements of two particles
were not realistically spacelike separated. Therefore, it is nec-
essary to study two-particle entanglement in different, e.g.,
massive or macroscopic systems, instead of fast-escaping pho-
tons. Theoretical proposals include those with e.g., neutral
Kaons [4], Rydberg atoms [5], ballistic electrons in semicon-
ductors [6], and trapped ions [7]. Experimentally, in 1997 two
Rydberg atoms had been first entangled to form EPR pairs in
a high @ cavity by the exchange of a single photon [8]. Later,
by exchanging the quanta of the common vibrational mode,
EPR correlations of ultralong lifetime had been generated be-
tween a pair of trapped cold ions separated a few microm-
eters apart [9]. Consequently, experimental violations of BI
have been verified with the EPR correlations between the two
ions [10] and between an atom and a photon [11].

Recent developments of quantum manipulation in coupled
Josephson systems [12, 13] allow to experimentally investi-
gate the quantum correlations between two macroscopic de-
grees of freedom in a superconducting nano-electronic de-
vice [14]. Proposals have been made for producing quan-
tum entanglement between two superconducting qubits, e.g.,
indirectly coupled by sequentially interacting with a current-
biased information bus [15, 16], coupled inductively [17, 18],
and coupled via a cavity mode [19]. It has also shown [20] that
micowave pulses applied to the gate-voltages can entangle two
charge-qubit coupled by a large Josephson junction. By intro-
ducing effective single-qubit operations, we have shown [21]
that the BI could also be tested even in capacitively-coupled
Cooper-pair boxes. The robustness of the scheme proposed
there [21] is better suited for weak interbit couplings, e.g.,
when the ratio of the interbit-coupling energy E,, and the
Josephson energy E'; of the qubit is small. Here, for an arbi-
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FIG. 1: Two capacitively-coupled SQUID-based charge qubits. The
quantum states of two Cooper-pair boxes (i.e., qubits) are manipu-
lated by controlling the applied gate voltages Vi, V2 and external
magnetic fluxes ®1, P2 (penetrating the SQUID loops). P; and P»
(dashed line parts) read out the final qubit states.

trary interbit coupling, we propose an approach for producing
EPR correlations by manipulating the well-known EPR-Bell
(or Bell) states
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The outline of the paper is as follows. In Sec. II, we pro-
pose a few elementary quantum operations to deterministi-
cally manipulate two superconducting-quantum-interference-
device (SQUID)-based Josephson charge qubits coupled ca-
pacitively. We show that conditional operations on any se-
lected qubit, keeping the state of the other qubit unchanged,
are still possible in the present constant-coupling circuit. By
making use of these operations, in Sec. III, we propose a
two-step approach to deterministically generate any EPR pairs
from the circuit’s ground state [¢)(0)) = |00). Further, we
discuss how to experimentally confirm the generation of EPR
pairs by using a tomographic technique via various experi-
mentally realizable projected measurements. In Sec. IV, con-
sidering the existence of typical voltage-noises and 1/ f-noise,
we numerically analyze the decays of the prepared EPR cor-
relations within the Bloch-Redfield formalism [22]. In Sec.
V, we discuss the possibility of testing BI with the generated
EPR pairs. Conclusions and discussions are given in Sec. VI.

IL. MANIPULATIONS OF TWO
CAPACITIVELY-COUPLED JOSEPSHON CHARGE
QUBITS

We consider the two-qubit nano-circuit sketched in
Fig. 1, which was used in recent experiments [12, 23].
Two superconducting-quantum-interference-device (SQUID)
loops with controllable Josephson energies produce two

Josephson qubits, fabricated separately (e.g., up to a few mi-
crometers [12, 23]) and coupled via the capacitance C,,. The
qubits work in the charge regime with kpT < Ef]] ) «
E<C7 ) <« A (with j = 1,2), wherein both quasi-particle
tunnelling and excitations are effectively suppressed and the
number n; (withn; = 0,1, 2, ...) of Cooper-pairs in the boxes
is a good quantum number. Here, kg, T, A, E(CJ >, and Ef,J )
are the Boltzmann constant, temperature, superconducting
gap, the charging and Josephson energies of the jth qubit, re-
spectively.

Following Refs. [12, 23], the dynamics of the system can
be effectively restricted to the subspace spanned by only the
four lowest charge states: |00), |10}, |01) and |11}, and is thus
described by the following simplified Hamiltonian

~ 1 . . . .
=3 [Eg)agﬂ - El(j’)a;ﬂ] +ELole®, (3)

j=1,2
with Eyy = En/4,E, = 4€2C,/Cx, EY
20 cos(n®; /o), and EY) = Ec,(ng, — 1/2) +

En(ng, /2 —1/4),5 # k = 1,2 being the coupling-,
Josepshon- and charge energies, respectively. Here, n,, =
Cg] Vj/(?@), EC] = 46202k/02, and Cz; = 021022 — C72n
Above, e is the electron charge and ®( the flux quantum.
ef]]) and Cx; are the Josephson energy of the single-junction
and the sum of all capacitances connected to the jth box, re-
spectively. The pesudospin operators are defined as o, =
|0)(0] — [1)(1] and o5 = [0} (1] + [1)(0].

Obviously, the interbit-coupling energy E12 = E,, /4 is
determined by the coupling capacitance C,, and therefore
given by fabrication and fixed, i.e., not controllable. How-
ever, the charge- and Josephson energies of the qubits, Eg )

and Ef/ ), can be controlled by adjusting the applied gate-
voltages V; and fluxes ®;. Although any evolution of this
two-qubit system is solvable, we prefer certain relatively sim-
ple quantum operations for conveniently engineering arbitrary
quantum states. These operations can be achieved by properly
setting the above controllable parameters.

First, one can switch off all the charge- and Josephson en-
ergies and let the circuit evolve under the Hamiltonian a int =

Eio agl) U,(zz), i.e., undergo a free time-evolution
- E
Uo(r) = exp {—i—}fT aﬁ“oiz)} ; @

in the operational delay 7. We assume the circuit stays in this
parameter setting, until any operation is applied to it. In this
case, the Bell states Egs. (1) and (2) will not evolve, once they
have been generated.

Second, if ng, = ng, = 1/2 (co-resonance point) and
Ey) = E§2> = FEj, then the circuit has the Hamiltonian
He, = —EJ(Ua(cl) + 0;1))/2 + Eia 021)09, which corre-
sponds to the following compact time-evolution operator

a b b c
~ 1 ba* ¢ b
Ueo = 2 b ar b
c b b oa
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with a = cos(tQ/h) — iE12sin(tQ/h) /Q + exp(—itEro/ k),
b=14iE;sin(tQ/h)/Q, ¢ = cos(tQ/h) —iE1sin(tQ/h) /Q—
exp(—itE12/h), and Q = /E? + E%,. The sub-index “co”
refers to “co-resonance”. Thus, we can simultaneously flip
the two qubits, i.e., |00) = |11), and |01) = [10), by setting
the duration as cos(t2/h) = — cos(tE12/h) = 1. Another
specific two-qubit quantum operation

1—-4 0 0 1+i

L1 0 1+il1—4 0

U°°*§ 0 1—il4+i O ©)
14+i 0 0 1—1

can also be implemented, if the duration is set as cos(t{)/h) =
sin(tE12/h) = 1.

Note that a single-qubit logic gate cannot be strictly
achieved in the system with strong constant interbit-coupling.
Considering the correction of the constant-coupling, we have
proposed an effective approach to approximately implement
expected single-qubit logic operations [21]. Below, we want
to manipulate only one qubit and leave the other one unaf-
fected. Various conditional single-qubit quantum operations
(thus, no strict single-qubit quantum logic gates) will be de-
signed to evolve one selected qubit, depending on the state of
the other one.

If we switch off all charge energies and one of the Joseph-

son energies, €.g., E’(IQ) = 0, this will typically yield a Hamil-

tonian I:I(Jl) = fE‘(]l)o;vl)/Q + Fio aimag). In this case the
circuit undergoes the time evolution
(& 00
go_ & ¢ 00
J 00 ¢ & |
00 & G
with

.. . (tm Er2
& = isinagsin e ,cosa; = —
2 71

t t
(1 = cos m — 7 cos aq sin m R
h h

1
m=3 (2E12)2 + (E{V)2.
This implies that there are two invariant subspaces

{]00), 10)} and {|01),|11)} for this conditional dynamics;
the evolution of the first qubit depends on the state of the sec-
ond qubit, although the later one is unchanged during the dy-
namics. This operation reduces to

-1
oo - b

10 0
110 0

=l oot ©
001

-1
if the Josephson energy is set beforehand to Ef]l) = 2F5 and
the duration is set to satisfy the condition sin(y1¢/h) = 1.

Similarly, the conditional quantum evolution of the second
qubit, keeping the first qubit unchanged, can be implemented

by only switching on the Josephson energy of the second
qubit. For example, if ESQ) = 2F) is set beforehand and the
duration satisfies the condition sin(y2t/h) = 1,72 = E12v/2,
then

01 0
10 1
01 0
10 -1

can be obtained.

The above conditional manipulations on a selected qubit
can be further engineered by introducing other controllable
parameters, e.g., switching on the charging energies of qubits.
EDoW o —
the circuit undergoes a time-

In fact, under the Hamiltonian IA{(C{;
E§1)0;1>/2 + Epoto?,

evolution
pt vy 00
7 _ [ v+ uy 00
Uos = 0 0 p_ v |’
0 0 v_ u*
with

M+ = COS Ak — {cos a4 sin e
+ A 08 (v n )

EW
271’

. . tyx .
| 2% 4 8in a4 sin 7 , sinag =

1
1 = SVIED 2t 2mp + (B

If the charge energy of the first qubit is beforehand set as
EY) = 2E), (thus cosa_ = 0), and the duration is set
as cos(ty+/h) = 1, then the following two-qubit Deutsch
gate [24]

10 0 0 o
o (o1 o 0 _ B,
Uy’ (6h) = 0 0 cosf; isinf, L= o ®

0 0 isinf#; cosby

is obtained. This gate implies that the target qubit (here it is
the second one) undergoes a quantum evolution only if the
control qubit (here, the first qubit) is in the logical state ”1”.
If the duration is set to simultaneously satisfy the two condi-
tions: sinf; = 1 and cos(ty4/h) = 1, then the above two-
qubit operation is equivalent to the well-known controlled-
NOT (CNOT) gate, apart from a phase factor. Obviously,
if the charge energy of the first qubit is set beforehand as

Eé.l ) = —2E} 9, then the target qubit undergoes the same evo-
lution only if the control qubit is in the logic state “0”, i.e.,
cosfy isinf; 0 0
A (1) | isinf; cosf; 0 0
0 0 01

Note that, due to the presence of the constant interbit-

coupling E2, the charge energy E(c1 ) depends on both gate-
voltages applied to the two Cooper-pair boxes. Switching
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off the charge energy E(C2 ) =0 requires that the two gate-
voltages should be set to satisfy (ng, — 1/2)/(ng, — 1/2) =
—2FE12/Ec,. Under this condition the charge energy E(cl )
could still be controlled by adjusting either V; or Va.

III. MACROSCOPIC EPR-CORRELATIONS:
DETERMINISTIC GENERATIONS AND TOMOGRAPHIC
CONFIRMATIONS

Now, it will be shown how to deterministically generate
EPR correlations between the above two capacitively-coupled
Josephson qubits. Then, we propose an effective approach,
which is experimentally feasible, to confirm the generation of
the EPR states by using tomographic techniques in the present
fixed-coupling system. Naturally, we begin with the ground
state of the circuit [¢)(0)) = |00), which can be easily ini-
tialized by letting the circuit work far from the co-resonance
point via a large voltage bias.

First, we superpose two logical states of a selected qubit,
e.g., the first one. This can be achieved by simply using a
pulse of duration ¢; to implement the above quantum opera-
tion (9), i.e.,

0% (61) 1

Here, the plus sign corresponds to the time durations for ; =
Egl)tl/(Qh) = /4, and 57 /4. The minus sign corresponds
to 6 = EWt, /(2h) = —7/4, and T /4.

‘We next conditionally flip the second qubit, keeping the first
one unchanged. The expected operations can be simply ex-
pressed as either |00) — |01), keeping |10) unchanged, or
|10) — |11), keeping |00) unchanged. The former (latter)
operation requires to flip the second qubit if and only if the
first qubit is in logic state “0” (“1”). These manipulations
can be achieved by evolving the circuit under the Hamiltonian
a2 =EPe® j2- EP6l? 2+ Era 0o, When the
charging energy Eé.z ) is set beforehand to E(c2 ) = —2F13, two
of the Bell states can be deterministically created as follows

[40) (100) +[10)). (10)

2
o0 "= o) = on £ o), an
by accurately setting the duration ¢, of the manipulation
cosfly 0 isinfr 0
U(f)(@) = isi?le (1J 60292 8 12)
0 0 o0 1
to simultaneously satisfy the conditions sinfl; = 1 and

cos(Yta/h) = 1. Here, 6y = EPt,/(2h), and v =

(Eg))2 + (E‘(]2>/2)2‘ Inversely, by setting Eg) = 2F9
beforehand, the other two Bell states can be produced as

o [Ya) = !

[1h1) (100) £ [11)), (13)

2

S

4
by using the single-step operation
10 0 0
(2 0 cosfy 0 isinfy
0% (62) = 0”10 (14)
0 isinfly 0 cosfy
of the duration satisfying the conditions sinfl3 = —1 and

cos(y'te/h) = 1.

The fidelity of these EPR correlations can be experimen-
tally measured by quantum-state tomography, i.e., recon-
structing the density matrix of the prepared quantum state.
From this reconstructed density matrix, relevant quantum in-
formation quantities, such as the degree of entanglement and
entropy, can be calculated. For the complete characterization
of an unknown two-qubit state with a 4 x 4 density matrix p =
(pij,et) (with ¢, 4, k,1 = 0,1), we need to determine 15 inde-
pendentreal parameters, due to trp = Zi,j:&l pijij = 1,and
Pijkl = Ppy,;;- This can be achieved by a series of measure-
ments on a sufficient number of identically prepared copies of
the measured quantum state. The operations presented above
for the generation of EPR pairs could provide enough copies
of any expected EPR pairs to be reconstructed. Experimen-
tally, Bell states of pseudo-spins (e.g., in nuclear magnetic res-
onance systems [25], two-level trapped cold ions [9], and the
photon pairs [26]) have been tomographically reconstructed
by only using a series of single-qubit manipulations. Recently,
we have proposed a generic approach to tomographically mea-
sure solid-state qubits with switchable interactions [27]. Due
to the relatively strong interbit-coupling, which is always on in
the circuits considered here, specific operations are required to
realize the tomographic reconstruction of the EPR pairs gen-
erated.

The state of a charge qubit is often read out by capacitively
coupling a single-electron transistor (SET) to the measured
qubit [28]. The dissipative current IC(] ) flowing through the
7th SET, coupled to the jth qubit, is proportional to the prob-
ability of a projective-operator measurement ]53 = |1;)(1]
on the state of density matrix p, i.e., 9 = tr(plsj). Such a
projective measurement is equivalent to the measurement of
ai”, as aﬁ” = (fj — Pj)/Q with f]' being the unit operator.
For the present system one may perform three kinds of pro-
jective measurements: i) the P;-measurement (with projected
operator P ®ly) acting only on the first qubit (independent
of the state of the second qubit); ii) the P»-measurement (with
projected operator L®Py) operating only on the second qubit
(independent of the state of the first qubit); and iii) the Pjo-
measurement (with projected operator ﬁ’l ® }52) simultane-
ously acting on both Cooper-pair boxes.

All diagonal elements of the density matrix p can be di-
rectly determined by performing these three kinds of projec-
tive measurements on the system. In fact, p11,11 can be deter-
mined by the P;>-measurement as

prin x I =tr(pP @ By). (15)
Next, p19,10 could be determined by P -measurement as
p10,10 + prin o IV = tr(pPr @ Io). (16)
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Also, we can determine po1,01 by the P>-measurement as

poror + piin < I = tr(pl @ P). (17)

The remaining element pgo 0o could be determined by the nor-
malization condition trp = 1.

The 12 non-diagonal elements which are left, should be
transformed to the diagonal positions of new density matrix
o= WpWT, by performing a proper quantum operation W
on the original density matrix p. For example, after a quantum
manipulation U (1)’ evolving the system to p = U}D p Uy”,
we can perform the P;2-measurement to obtain

1% x u[p P, ® Py

1
= 5[/?01,01 +p11,01 — 2Re(por,11)],  (18)

for determining Re(po1,11); and perform the P -measurement
to obtain

—(2) N A 1

Ic X tr[pP1 ® 12] = 5[1 + 2R€(p00)10 — P01,11)]-, (19)
for determining Re(poo,10). All the remaining 10 off-diagonal
elements of p can be similarly determined.

Table I summarizes such a procedure for tomographic char-
acterization of an unknown two-qubit state in this fixed-
coupling two-qubit system. We need to first apply to p the
quantum operations listed in the first column of Table I. Af-
terwards, the projected measurements listed in the second col-
umn of Table I must be made. In this way, all the matrix ele-
ments of p can be determined. Of course, this is not a unique
approach for determining all fifteen independent elements of
the density matrix. In fact, the expected tomographic recon-
struction could also be achieved by only using the Py- and
Pz—measurements, and making the Plz—measurement unnec-
essary.

With the density matrix p obtained by the above tomo-
graphic measurements and comparing to the density matrix
of ideal Bell states, e.g.,

100 +1 00 00
000 0 01 410
vl =1 90 00 0 [’ o+1 1 0]
£100 1 00 00

the fidelity of the EPR pairs generated above can be defined
as Fly,y = tr(ppjy, ) and Fig,y = tr(pps, ), respectively.

So far, we have shown that macroscopic EPR correlations
could be produced between two capacitively-coupled Cooper-
pair boxes. Further, these macroscopic entangled states can
be characterized by using tomographic techniques via a series
of projective measurements. Below, we will numerically es-
timate the lifetimes of these macroscopic quantum entangled
states and discuss their possible application to test Bell’s in-
equality.

TABLE I: Tomographic characterization of an unknown two-qubit
state p = (pijee) with 4,5,k,01 = 0,1 in capacitively-coupled
Josephson circuits. Each row of this table requires operating on an
identically prepared initial state p.

Operations Measurement Determining
No Pl ® Pz pP11,11
No Pel 010,10
No f1 ® pz 01,01
0}1) P1 ®P2 Re(po1,11)
(A]Jm Pol Re(poo,10)
0}2) ]51 ® PQ Re(p1o,11)
0}2) fl ® 152 Re(poo,o01)
Uﬁ”(%)ﬁf)(g) 151 ® fz Re(poo,11)
Uil)(%)ﬁf)(;) P1 ®P2 Re(po1,10)
U_l)(%) il ® P2 Im(poo,10)
A_(,_l)(%) L®P Im(po1,11)
U(_Q)(%) L®P Im(poo0,01)
U(Q)(%) hob Im(p10,11)
Usco P oP Im(poo,11)
Uco Lepb Im(po1,10)

IV. DECAY OF MACROSCOPIC EPR PAIRS DUE TO
GATE-VOLTAGE NOISE

The EPR pairs generated above are the eigenstates of the
idle (i.e., no operations on it) circuit without any charge- and
Josephson energies, and thus are long-lived, at least theoreti-
cally. Considering the influence of various disturbing pertur-
bations, these pure quantum states will finally decay to the
corresponding mixed states. In fact, experimental solid-state
circuits are very sensitive to decoherence because of the cou-
pling to the many degrees of freedom of the solid-state envi-
ronment. However, coherent quantum manipulations on the
generated EPR pairs are still possible if their decay times are
not too short.

The typical noise sources in Josephson circuits consist of
linear fluctuations of the electromagnetic environment (e.g.,
circuitry and radiation noises) and the low-frequency noise
due to fluctuations in various charge/current channels (e.g.,
the background charge and critical current fluctuations). Usu-
ally, the former one behaves as Ohmic dissipation [29] and
the latter one produces a 1/ f spectrum [30], which is still not
fully understood in solid-state circuits (see, e.g., [31]). Here,
we assume that the decay of the EPR pairs arises from linear
environmental noises, i.e., we investigate the fluctuations of
the gate voltages applied to the qubits. Moreover, the effect
of background charges that cause dephasing are modeled by
setting the zero-frequency part of the bath spectral function to
a value given by the experimentally obtained [32] dephasing
rates for the charge qubit system. The effect of gate-voltage
noise on a single charge qubit has been discussed in [29]. We
now study two such noises in a capacitively-coupled circuit.
Each electromagnetic environment is treated as a quantum
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system with many degrees of freedom and modeled by a bath
of harmonic oscillators. Furthermore, each of these oscillators
is assumed to be weakly coupled to the Cooper-pair boxes.

The Hamiltonian containing the fluctuations of the applied
gate voltages can be generally written as

H=H+Hz+V,

with
N L 1
5= Z (a;] aw, + 2) hw; (20)
7j=1,2 wj
and
V=0o(X1+8X) + 0P (X2 +9X1), @D

being the Hamiltonians of the two baths and their interactions
with the two boxes. Here,

X, — EC'/ Cg.y

J de Z(g:]&l:] +gw] dw;')

wj

with @, dLj being the Boson operators of the jth bath, and
Ju; the coupling strength between the oscillator of frequency
w; and the non-dissipative system. Due to the mutual cou-
pling of the two Cooper pair boxes, there will be crosstalk of
the noise affecting each qubit. This is modelled in the spin-
boson model with two bosonic baths presented above by the
terms with the additional factors 8 and . The amount of
this crosstalk is given by the network of capacitances or the
corresponding energies only; namely, § = E,,/2FE¢, and
v = E,,/2E¢,, and by inserting experimental values one
finds that 5 ~ v ~ 1/10.

The effects of these noises can be characterized by their
power spectra. The spectral density of the voltage noise for
Ohmic dissipation can be expressed as

J(w) = WZ g, [P0(w — wy) ~ mahw.

wj

(22

Here, a Drude cutoff with cutoff frequency w. = 10* GHz,
which is well above all relevant frequency scales of the sys-
tem, is introduced via J(w) = ahww?/(w? + w?). Here, a
is a dimensionless constant characterizing the strength of the
environmental effects. Introducing the impedance, Z;(w) =
1/[iwCy + Z~Y(w)], the spectral function for these fluctu-
ations could be expressed as J(w) = wRe(Z¢(w)). Here,
Z(w) ~ Ry is the Ohmic resistor and C; is the total capaci-
tance connected to the Cooper-pair box.

The well-established Bloch-Redfield formalism [22, 33]
provides a systematic way to obtain a generalized master
equation for the reduced density matrix of the system, weakly
influenced by dissipative environments. A subtle Markov ap-
proximation is also made in this theory such that the result-
ing master equation is local in time. In the regime of weak
coupling to the bath and low temperatures, this theory is nu-
merically equivalent to a full non-Markovian path-integral ap-
proach [34]. For the present case, a set of master equations

are obtained in the eigenbasis of the unperturbed Hamilto-
nian [29]
(23)

Pnm =

—1 Wnm Pnm — § ank‘l Pke>
kl

with the Redfield tensor elements R,,,,,x¢ given by

+) =) _pl- +
anké = 53”” Z F7(7,Trk + 6"7‘5 Z Fé'm“m - Ffm>nk - Fgm)nk’
T

) (24)
and the rates I'(*) are given by the Golden Rule expressions

00
Féi}nk = hiz/o dt eilwukt<HI,Zm(t)HI,nk(O)>7

Fg/:n)nk = h*ZA dt eiiwnm<HI.Zm(O)HI,nk(t)>‘

Here, Hy ¢, (t) is the matrix element of the bath/system cou-
pling term of the Hamiltonian in the interaction picture, and
the brackets denote thermal average.

The strength of the dissipative effects is characterized by
the dimensionless parameter . From experimental measure-
ments of the noise properties of the charge qubit system [35],
it is found that the strength of the Ohmic noise is given by

_ 4€®R

~18-1073
hr ’

« (25
where R ~ 6 Q2. Thus, current technology gives a noise floor
of approximately a ~ 1073, which will be used for the nu-
merical simulations. For visualization of the decay of the Bell

states, we compute the concurrence [36], given by

€ = max{0, VA1 — VA2 — VAs — VA

Here, the \; are the eigenvalues of pp and p = (0’; ®
02)p*(03 ® o). The concurrence is a measure for entan-
glement and indicates non-locality. The maximally entangled
Bell states (i.e., the ideal EPR correlations) yield a value of
1 whereas a fully separable state gives 0. The results of the
simulations are shown in Fig. 2, where the time evolution
of the concurrence C' shows the decays of all Bell states, for
temperature set to an experimentally feasible value of 10 mK.
Compared to the durations of quantum manipulations (~ 100
ps), the lifetimes of the operationally idle EPR pairs are suffi-
ciently long.

For the case where only the coupling term between the
qubits is present and all single-qubit terms in the Hamiltonian
are suppressed, Fig. 2(a) shows that the Bell states exponen-
tially decay. In this case, only pure dephasing, i.e., the zero
frequency value J(w = 0), contributes to overall decoher-
ence rates, as H = Hiyy = Eo 021)0;52) and [ﬁ, V] =0,
see Ref. [37]. The results from microscopic calculations of
the magnitude of 1/f-noise in these structures are incorpo-
rated by introducing a peak in the spectral function at zero
frequency. The magnitude of this peak is then determined

(26)
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by the microscopic derivations of the strength of the 1/f-
noise in the superconducting charge qubits. Namely, here
we set the zero frequency contribution, i.e., the dephasing
due to the 1/ f-noise to an experimentally reported value of
r, =~ 107 Hz [32]. Note that the individual contributions
from different noise sources sum up in the spectral function
J(w) = Jg(w) + Ji/#(w), which also holds at w = 0. It is
interesting to note that the decay time is independent of the
inter-qubit coupling strength E2. In more detail, when the
coupling energy F» in the Hamiltonian is increased the de-
cay does not change. The reason for this behavior is that the
pure dephasing is only affected by the zero frequency part of
the spectrum, which is obviously independent of the individ-
ual frequency splittings, i.e., the characteristic energy scale of
the Hamiltonian. Also, one of the most important results from
our numerical results (i.e., the decay time of |¢1) is longer
than that of |1+ )) is consistent with the analog experimental
one in ion traps [9]. This is because |¢+) is superposed by
two states with the same energy, while |¢4) corresponds to
higher energy and is more sensitive to such perturbations.

When the Josephson-tunneling terms exist, e.g., Ef,l) =
E'(Jz) = Ej, we see from Fig. 2(b) that the decays of the
generated EPR pairs are significantly faster than in the for-
mer case without any tunneling. This is becasue the addi-
tional Josephson tunneling provides additional decoherence
channels since the Hamiltonian of the circuit now does not
commute with the couplings to the baths. Moreover, also the
overall energy scale in the Hamiltonian increases. In this case,
the weaker interbit-coupling corresponds to the slower decay
of the EPR pairs.

V. TESTING BELL’S INEQUALITY

A possible application of the deterministically generated
EPR pairs is to test BI at the macroscopic level. Due to the
existence of interbit constant-coupling, the required local op-
erations of encoding classical information {6;} into the EPR
pairs cannot be strictly implemented. In Ref. [21] we pro-
posed an approach to overcome this difficulty by introducing
the effective single-qubit operations including corrections due
to the constant-coupling. Instead, here we approximately per-
form the encoded procedure by sequentially using the condi-
tional single-qubit operations

9 x1 0 0
g [ x v 00

and
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X
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FIG. 2: Simulated time evolution of the concurrence C' for a two-
qubit system coupled to a noisy environment and initially prepared
in the Bell states. Here, the temperature is set to 7 = 10 mK and
the strength of the dissipative effects for the two baths is o' = a? =
1073, (a) captures the long-time decay of the concurrence for differ-
ent entangled input states in the case of vanishing single-qubit terms,
i.e., when only the inter-qubit coupling terms are present. (b) com-
pares the decays of |¢)_) for different interbit-couplings (Er, = E,
and 0.1F ;) without (E'y) = E(JQ) = 0), and with Josephson tunnel-
ing (B = E® = E; = 55 yeV).

individually on the two qubits. The operation (AJV?) is
not a strict single-qubit operation (although it only evolves
the jth qubit,), as it depends on the state of the kth
qubitj # k = 1,2. Above, x; = isina;sing;,¥; =
cosf3; — icosa;sinf;,cose; = Eya/7y;, and ; =

\ E%, + (EF,J)/2)2,BJ- = tryj/h. For the case of ay = ap =
a, the validity of the above quasi-local encodings could be
described by the variation of the degree of entanglement (i.e.,
concurrence) of the EPR pairs

AC =1—/1—[sin(20)(1 — cos(2p1 + 292))/2]2 (27)

with ; = 2f3;. Obviously, AC' = 0 corresponds to the ideal
locality or maximal locality. After the encoding, we simulta-
neously detect [13] the populations of qubits and check if they
are in the same logic states: the excited one |1) or the ground
state |0).

Theoretically, the correlation of two local variables, ¢ and
(2, can be defined as the expectation value of the operator
Pr = [11)(11]+00)(00] — [10) (10| — |01)(01] = 6" @ 6?
and reads

E(p1,¢2) = cos® a +sin® acos(py + 2).  (28)

Experimentally, all the above operational steps can be re-
peated many times in a controllable way for various param-
eter sets. As a consequence, the correlation function £ can be
measured by

Nsame (@1, 02) — Naig(¢1, 92)
N&;ame (9917 992) + Ndif‘f (3017 9‘92) '

E(p1,92) = (29)
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TABLE II: Variations of the concurrence, AC, correlations F, and
CHSH-functions f, for certain typical parameters of the interbit cou-
pling £, and the controllable classical variables o1 and 2.

Em (1, 2) AC E(p1, p2) f
(—x/8,—w/8)] 0.00699]  0.76569
E; (—m/8,37/8) 0.00699 0.76569 2.6627
(3r/8,—w/8)| 0.00699|  0.76569
(37/8,31/8) | 0.26943] —0.36569
(—x/8,—w/8)] 0.00238] 0.72434
E;/10| (=x/8,37/8)| 0.00011] 070784 | 2.8264
(3r/8,—w/8)| 0.00011| 0.70784
(37/8,37/8) | 0.00363] —0.70285
(—7/8,—w/8)] 0.00001] 0.70711
E;/100 (—m/8,3m/8) 0.00001 0.70711 2.8284
(37/8,—w/8)| 0.00001| 0.70711
(37/8,37/8) | 0.00004] —0.70706

for any pair of chosen classical variables ¢; and ¢o. Here,
Nsame (91, 92) (Naist (1, ¢2)) are the number of events with
two qubits found in the same (different) logic states. With
these measured correlation functions, one can experimentally
test the BI in macroscopic systems.

We consider the following typical set of angles:
{ej,¥5} = {-n/8,37/8} and the interbit cou-
plings E,, = 4Ei» = FE;,E;/10,E;/100, respec-
tively. The corresponding variations AC' of the concur-
rence and the correlation E(p1,p2), which yields the
Clauser, Horne, Shimony and Holt (CHSH) [3] function
= 1E(e1,92) + E(p1.92) + E(o1,¢5) — E(¢1, 95)],
are given in Table II. It is seen that the variations AC' of the
concurrence after the quasi-local operations U(,] ) j =12
decrease with decreasing interbit coupling. For very weak
coupling, e.g., E,,/E; = 0.1(or0.01), the applied con-
ditional single-qubit operations can be regarded as local,
away from 0.4%, (or 0.004%). Besides these tiny loop-
holes of locality, Table II shows that the CHSH-type Bell’s
inequality [3]

f(h)) <2 (30)

is obviously violated.

VI. DISCUSSION AND CONCLUSION

Similar to other theoretical schemes (see, e.g., Ref. [18]) the
realizability of the present proposal also faces certain techno-
logical challenges, such as the rapid switching of the charge-

and Josephson energies of the SQUID-based qubits and deco-
herence due to the various environmental noises. Our numer-
ical results, considering various typical fluctuations, showed
that the lifetime of the generated EPR pairs adequately allows
to perform the required operations for experimentally testing
Bell’s inequality. Indeed, for current experiments [12], the de-
cay time of a two-qubit excited state is as long as ~ 0.6 ns,
even for the very strong interbit coupling, e.g., E,, ~ E;.
Longer decoherence times are possible for weaker interbit
couplings. In addition, for testing this, the influence of the
environmental noises and operational imperfections is not fa-
tal, as the nonlocal correlation E(¢p;, ;) in Bell’s inequality
is statistical — its fluctuation could be effectively suppressed
by the averages of many repeatable experiments.

In summary, for the experimentally demonstrated
capacitively-coupled Josephson nanocircuits, we found
that several typical two-qubit quantum operations (including
simultaneously flipping the two qubits and only evolving a
selected qubit in the case of leaving the other one unchanged)
could be easily implemented by properly setting the control-
lable parameters of circuits, e.g., the applied gate voltages
and external fluxes. As a consequence of this, macroscopic
EPR correlated pairs could be deterministically generated
from the ground state |00) by two conditional single-qubit
operations; only superposing two logic states of the selected
qubit and then only flipping one of the two qubits. During
these operations, the left qubit does not evolve. To experi-
mentally confirm the proposed generation schemes, we also
propose an effective tomographic technique for determining
all density matrix elements of the prepared states by a series
of quantum projective measurements. The deterministically
generated EPR pairs provide an effective platform to test, at
the macroscopic level, certain fundamental principles, e.g.,
the non-locality of quantum entanglement via violating the
Bell’s inequality.

The approach proposed here can be easily modified to engi-
neer quantum entanglement in other “fixed-interaction” solid-
state systems, e.g., capacitively (inductively) coupled Joseph-
son phase (flux) system and Ising (Heisenberg)-spin chains.
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Chapter 12

Circuit-QED — quantum optics in the
solid-state

12.1 Introduction

Quantum optics and cavity quantum electrodynamics (cQED), as already introduced in
chapter |5, have been very successful in the exploration of fundamental physics of quantum
systems (including the measurement process and decoherence) and quantum computation
144,45, 174, 176]. In quantum optics, the generation of photons in entangled states can be
achieved by using the atomic cascades or parametric down-conversion [176], which converts
a photon into two entangled photons of smaller energy. Moreover, in quantum optics, the
polarization of photon states can be manipulated and the photons can be detected with
a high detector efficiency [174, 176]. The generation of non-classical states of light [247],
the teleportation of quantum states [248-250], and quantum cryptography with correlated
photons [251, 252] are just a few examples of important successful experiments that were
performed in quantum optics. Yet, a drawback of the quantum optics setups for quantum
computation is that there is no efficient coupling between photons.

In cavity quantum electrodynamics (cQED) mixed atom and photon systems that can
interact inside a resonator are considered [176]. In cQED expriments, a neutral atom
falls through high finesse cavities, i.e., resonators with a large quality factor, and strong
coupling between the atom and the photon (field) is achieved [253]. The cQED setup has
been used to investigate quantum effects in great detail [254, 255], however, the fast time
evolution in optical systems hindered the direct study of entanglement in these systems.
Photon states with a fixed number of photons have been generated on demand in cQED
256] and even the measurement of the Wigner functions of an optical single-photon Fock
state with quantum state tomography has been performed [257]. Microwave cQED [258]
experiments show little relaxation and the atom and cavity are easily prepared in pure
states, moreover, as was already mentioned before, the setups are operated in the strong
coupling regime.

The strong coupling regime refers to the regime where the coupling between the atom
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and the photon field inside the cavity is strong compared to the cavity loss rate x and the
atom decay rate . For 3D microwave cavities, the vacuum Rabi frequency that character-
izes the coupling strength between the atom and the cavity is typically on the order of
g/m =~ 50 kHz, the cavity decay rate is k &~ 1 kHz, and the atom decay rate is v ~ 30 kHz
[176].

The idea of operating a superconducting solid-state qubit inside a cavity has been intro-
duced already some time ago for both charge qubit [259] and flux qubit (rf-SQUID) setups
1260, 261]. Also the preparation of macroscopic superpositions of cavity field states for this
type of cavity-qubit setup [262] and the generation of nonclassical photon states [263] has
been proposed. The successful experiments performed with a superconducting charge qubit
inside a cavity (a coplanar resonator) [178] showed a very impressive agreement with the
theoretical predictions both for the dynamics and decoherence of the cavity-qubit system
[143]. However, the generation of true quantum entanglement with artificial atoms and
photons inside a cavity [176] has not been demonstrated yet for a solid-state qubit setup.
Still, many of the concepts from quantum optics, such as for example electromagnetically
induced transparency that can be exploited to generate macroscopic quantum coherence
in superconducting qubits [264], are successfully applied to artificial atoms in solid-state
systems.

In summary, the important advantages of the solid-state setup compared to quantum
optics setups are that the coupling strength between the qubit and the cavity can be made
very large and that the qubit is fixed inside the cavity, i.e., the interaction time between the
qubit and the cavity field is very large. Differently from quantum optics, in the solid-state
setup the cavity field is measured and not the atom. The state of the qubit can be inferred
by measuring the output field of the cavity. Thus, in order to achieve an appreciable signal
strength for the measurement, it is necessary that the quality factor () of the resonator is
not too large (or in other words the cavity decay rate has to be sufficiently large).

12.2 Deterministic single microwave photon genera-
tion and detection

A single microwave photon that is created by a certain transition in one qubit carries in-
formation about the state of the qubit and can be used as an information bus, e.g., to
mediate entanglement between qubits. Also, these single photons could be used for quan-
tum cryptography applications in solid-state devices and are eventually just the starting
point for interfacing the solid-state and the quantum optics domain.

The special setting of a superconducting resonator as a cavity that is operated with
photons in the microwave domain is quite different from the setups in quantum optics
experiments. First experiments with microwave photons travelling in conductors used Han-
bury Brown and Twiss (HBT) correlations [265-267] to measure the super-Poissonian and
Poissonian photon statistics of a thermal and a coherent photon source [180].

Now, important differences and properties of the solid-state setup compared to quantum
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optics experiments will be discussed. First, note that the normal conducting part of the
setup, e.g., the microwave generators at room temperature, has no shot noise but Johnson-
Nyquist noise, whereas the superconducting part has no intrinsic electronic shot noise but
photon shot noise. A single microwave photon that is generated from a transition in a rf-
SQUID or 3jj flux qubit and travels through the superconducting resonator can be viewed
as a plane wave inside the waveguide. There are several possible loss mechanisms for this
electromagnetic wavepacket, namely

e Static or dynamic charge disorder,
e Magnetic impurities in the superconductor,
e Dispersion of the electromagnetic wavepacket.

For the superconducting waveguide, the fabrication in niobium (Nb) technology will be
considered in most detail. Static or dynamic charge disorder have been shown to be
negligible, see Ref. [268], which follows from the large quality factor @) for the resonances
that are associated with the Mooij-Schén modes [268] because the photon itself can also be
viewed as a quantum of the Mooij-Schén mode [268, 269]. Magnetic impurities in the Nb
can be analyzed via data for the density of states in the gap or subgap tunnel conductance.
The data presented in Ref. [270] suggests that the effect of magnetic impurities is also
negligible. Thus, it can be shown from an effective circuit model of the superconducting
waveguide or transmission line that the dispersion relation for the photon wavepacket is
linear. Therefore, the wavepacket will be destroyed only after a significant distance that is
estimated to be about one kilometer in the superconductor.

The microwave photon inside the cavity can be generated by an appropriate transition
of a rf-SQUID or a 3jj flux qubit, cf. chapter 2.1.2. Here, it is favorable to make use of the
rf-SQUID or 3jj flux qubit as a multi-level system. This is due to the fact that if a driving
that is resonant with the qubit is applied in order to populate the excited qubit level for
the generation of photons, the cavity will also be driven. This happens because the cavity
has to be on resonance with the transition that will generate the photon. Thus, a more
elaborate scheme is required for the single photon generation. It can be realized, e.qg., via
stimulated Raman adiabatic passage [271] or a Raman pulse.

For the general rf-SQUID N-level system, the interaction Hamiltonian that describes
the coupling between the system and the cavity [260, 272, 273] is given by

H = —=(®—a,)d, (12.1)

where the coupling constants are defined as

1 QA
9ij = — Vw2 (i [7) — 0i;Ps) .. (12.3)
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where ¢/ = |, ¢ B(r)-dS is the time independent part of the flux generated by the resonator
field, which is threading the qubit loop. The complete expression for the cavity flux, cf.
also appendix|F, is

o, = /B(r,t) -dS, with B(r,t) = 4 ch(a(t) +a'(t))B(r, t). (12.4)
2 Ho

For calculation of the coupling strength between the cavity and the qubit, which is deter-

mined by the g,;, it is necessary to compute the eigenstates |i) of the system Hamiltonian.

This can be easily done numerically either in the charge or phase basis. The total flux in

the qubit loop is the sum of the externally applied flux and the so-called screening flux,

which appears because of the finite self inductance of the qubit loop

=0, + P, (12.5)

For a 3jj flux qubit with a negligible self-inductance, the so-called screening current is
usually disregarded. In this case the expectation value of the total flux (i|®|j) will vanish at
the degeneracy point of the qubit, where the state of the qubit is in an equal superposition
state of clockwise and counter-clockwise rotating currents. Due to the small but finite
self-inductance of the real qubit, it is most convenient to view the screening current as a
perturbation

O, = LI, = LI, sin(¢y) = Li.sin(¢q), (12.6)

which is induced in the qubit loop. The screening current essential gives the coupling
between the cavity and the qubit. In the qubit eigenbasis it can be viewed as completely
off-diagonal, mediating the coupling strengths g;; with 7 # 7. The coupling strengths that
are presented in the paper of this chapter were calculated from numerical simulations of
the cavity-qubit Hamiltonian and the mutual inductive coupling.

Next, a detection scheme for the detection of photons with different frequencies is
required. This can be realized, e.g., by a (non-)linear mixing with another radiation
at a certain reference frequency. The basic interferometric setup is the same both for
a homodyne and a heterodyne readout scheme. In a homodyne scheme, the reference
radiation, i.e., the local oscillator, stems from the same source as the photon, or more
generally, the signal that is to be measured. For heterodyne detection the difference is that
the reference radiation comes from a different source. For example in a laser scattering
experiment with homodyne detection, the laser light is separated into two beams. Then
one of the beams is used to perform an experiment and the scattered photons should be
read out after the experiment. This radiation is mixed with the other laser beam that
acts as a local oscillator. Then the resulting measurement can be made insensitive to
fluctuations of the laser frequency.

12.3 Flux qubit inside a cavity

A flux qubit could be coupled either to the e.m. field inside a coplanar waveguide or to
the field inside a microstrip resonator. The microstrip resonator, which is essentially a coil
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Figure 12.1: Artist view of the microstrip resonator (coil shape) with a flux qubit fabricated
inside. The capacitors at the input and output ports of the microstrip coil set the boundary
conditions for the electromagnetic waves inside the resoantor. The qubit is to be fabricated
in Al technology and the resonator in Nb technology, parameters are given in the text.

with a ground plane that is at both ends interrupted by capacitors, has the advantage of
very strong inductive coupling to the qubit, see appendix

The resonance frequency of the microstrip resonator is carefully designed to be approx-
imately 10 GHz, i.e., it is in the microwave domain. Microstrip resonators have already
been fabricated and operated with resonance frequencies ranging from several hundred
MHz ﬁ2_75ﬂ up to several GHz “M]

The qubit is then fabricated in the middle of the resonator loop. It is directly inductively
coupled to the resonator, which is wrapped up as a coil around the qubit loop in order
to maximize the mutual coupling. This mutual inductive coupling via a current-current
coupling of the type H; = chquc, leads to a coupling of the qubit .-coordinate to the
cavity field. The Hamiltonian of the joint qubit-resonator system is ﬁ?GO‘, ‘261‘, ‘272‘, ‘277]

1 1 1
H= —56&,3 - iAa-z - hg(aT + a)&z + A, (aTa + 5) . (12'7)

The coupling strength g between the qubit and the cavity mode is analytically estimated
in appendix [F. Numerical simulations of the cavity-qubit Hamiltonian and the mutual
inductive coupling between the qubit and the microstrip resonator loop agree well with
these calculations. For typical qubit parameters [90] and assuming that the microstri
resonator is fabricated as a Nb coil, a coupling strength of g/7 ~ 100 — 200 MHz is foun£
In the eigenbasis of the system part of the Hamiltonian, the full Hamiltonian becomes

1
H = 2 Bp. + hg(a' + a)(sin(0)p, + cos(0)p.) + H., (12.8)

!The calculations of the mutual inductive coupling were performed with the software FastHenry (de-
veloped at the Research Laboratory of Electronics, MIT Cambridge, MA USA).
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Figure 12.2: Circuit design of the microstrip resonator. The left panel shows the whole
circuit board, whereas the upper right panel depicts one of the capacitances that define the
boundary conditions. The lower right panel is a close up of the microstrip coil. The qubit
will be fabricated inside the coil, cf. Fig. 12.1. The pictures are from the actual sample
design that was developed at the Walther-Meissner-Institute in Garching [274].

where E = V€2 + A2, § = arctan(A/e) is the so-called mizing angle [74], and H. is the
free energy of the cavity mode. At the qubit degeneracy point § = 7/2 and thus

1
H = —§Apz +hg(a'p™ +ap™) + H.+ H, + H,, (12.9)

where a rotating wave approximation that neglects the rapidly rotating terms was made in
the qubit-cavity coupling and the two extra terms H, and H,, describe the cavity and qubit
decay, respectively. The cavity decay rate k = w./@ can, depending on the quality factor
of the cavity, be fabricated to be approximately 1 MHz. Here, the tradeoff is between
having a sufficiently strong signal for the readout and a sufficiently small decay rate in
order to be still in the strong coupling regime g/m > v, k of cCQED. The qubit decay rates
are typically on the order of a MHz, corresponding to coherence times of approximately 1
ps [85,93].

Due to the effective impedance transformation of the cavity, the qubit can be very well
decoupled from electronics noise. However, it is of course not possible to decouple from
noise that is intrinsic to the qubit, e.g., fluctuators in the Josephson tunnel junctions.

It is also interesting to note that it is possible to generate squeezed vacuum states with
the non-linearities inherently present in SQUID devices [278].
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12.3.1 The dispersive readout

The Hamiltonian of the cavity-qubit system at the qubit degeneracy point, and with neither
taking into account the qubit nor the cavity decay, is given in the interaction picture with
regard to the oscillator mode as

1 | |
H = =5 Ap. + hg(ale™p™ + ac™p"), (12.10)

where ) = wpw — we is given by the frequency of the external driving and the cavity
resonance frequency. The transformation of this Hamiltonian into the interaction picture
with respect to the qubit system leads to

1} (1) = hg(Je) (g ac¢™/"™ 1 |g) (e| aleeid/m), (12.11)

where |g) and |e) denote the ground and excited states in the qubit eigenbasis. When the
frequency difference between the qubit system and the resonator 6 = Q—A/h is introduced
the Hamiltonian can be simplified further

Hy(t) = hy(le) (gl ae™" + |g) {e| a'e™). (12.12)

Thus, in this interaction picture the time-dependent Hamiltonian can be written in the
form [279]

Hi(t) =1 [A}e—”ﬁ + Aje“jt] , (12.13)
J

where A} is composed of time-independent system operators, and obtained from comparison
of Eqns. (12.12) and (12.13). It has been shown [279, 280] that for |d;] > g;,V7, and
|0;+0k| > gi, Vj # k, the Dyson series for the propagator associated with the Hamiltonian
Eqn. (12.13) can be written as U = exp(—iH.gt/h) with

[ATW AJ’]
J — (12.14)

Heﬁ:hz -
J

This method can be applied to the Hamiltonian Eqn. (12.12) and yields the effective Hamil-

tonian )

Hos = h% (le) (el (a'a + 1) — |g) (gl a'a) , (12.15)

which clearly shows the AC-Stark shift in the dispersive regime [§| > ¢, i.e., the cavity
frequency is shifted depending on the state of the qubit. Note that this readout scheme is
a QND measurement, because clearly [Hg,d,] = 0.
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We show that flux-based qubits can be coupled to superconductive resonators by means of a
quantum-optical Raman excitation scheme and utilized for the deterministic generation of propa-
gating microwave single photons. We introduce also a microwave quantum homodyning technique
that enables the detection of single photons and other weak signals, and full state reconstruction via
quantum tomography, realizing linear optics on a chip. These generation and detection protocols
are building blocks for the advent of quantum information processing in the field of circuit QED.
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A two-level atom coupled to a single mode of a quan-
tized electromagnetic field is arguably the most fun-
damental system exhibiting matter-radiation interplay.
Their interaction, described by the Jaynes-Cummings
(JC) model, arises naturally in the realm of cavity
quantum electrodynamics (CQED) in the microwave [1]
and optical domains [2]. There, a variety of nonclas-
sical states (e.g., squeezed, Schrodinger cat, and Fock
states [3]), among other remarkable phenomena and ap-
plications (e.g., entanglement and elements of quantum
logic [4]), have been proposed and realized. Other phys-
ical systems, like trapped ions [5], can reproduce the
JC dynamics and, consequently, exploit this analogy for
similar purposes. The intracavity field in CQED and
the motional field in trapped ions are typically detected
through a suitable transfer of information to measurable
atomic degrees of freedom [1, 5]. In the case of propa-
gating photonic fields [6], homodyne detection leads to
full state reconstruction by means of quantum tomog-
raphy [7]. Given its relevance for quantum communi-
cation, single-photon sources have been pursued in the
optical domain [8, 9]. Recently, several CQED-related
experiments have been performed in tunable, solid-state
systems. Quantum dots in photonic band-gap structures
have been used as single photon sources [10] and super-
conducting charge qubits [11] have been coupled to on-
chip cavities [12]. In addition, microwave squeezing with
Josephson parametric amplifiers [13] and aspects of the
quantum-statistical nature of GHz photons in mesoscopic
conductors have been demonstrated [14].

In this Letter, we show how to implement a determin-
istic source of microwave single photons at the output
of a superconducting resonator containing a flux qubit.
A Raman-like scheme [15] determines the coupling be-
tween the cavity and the qubit, consisting of the two
ground states of a three-level system in a A-type config-
uration [16, 17]. Furthermore, we show that these sin-

gle photons can be measured by means of a microwave
quantum homodyne detection (MQHD) scheme, based
on a superconducting hybrid ring [18] acting as an on-
chip microwave beam splitter (MBS). In this way, full
state reconstruction of an arbitrary traveling field can
be realized via microwave quantum homodyne tomogra-
phy (MQHT), a natural application of homodyning tech-
niques [7]. The generation of propagating microwave sin-
gle photons in a controlled way and an appropriate mea-
surement apparatus represent building blocks to establish
on-chip quantum information transfer between qubits.

A prototypical example of a flux-based quantum circuit
is the radio-frequency (RF) superconducting quantum-
interference device (SQUID) [19], a superconducting loop
interrupted by a single Josephson tunnel junction. The
RF SQUID Hamiltonian is

- Q (29, o
H = —+-—-F 2m— 1
s 2q+ 51, J COS ") (1)

where Q is the charge stored on the junction capacitor Cj,
® is the total flux threading the loop (with [®, Q] = if),
®, is an externally applied quasi-static flux bias, Ly is
the self-inductance of the loop, Ej = I.0®¢/27 is the
Josephson coupling energy, I.o is the junction critical
current, and ®¢ = h/2e is the flux quantum. For appro-
priate design parameters, and close to half-integer values
of ®,/Py, the RF SQUID potential profile becomes a
relatively shallow double well whose asymmetry can be
tuned by setting @y (see Fig. 1). In this case, the two
lowest eigenstates |g) and |e) are localized in the left and
right wells, respectively, whereas the second excited state
|h) is delocalized with energy above the barrier. As will
be shown later, these levels are suitable for implement-
ing a Raman excitation scheme. The energy levels can
be tuned by statically biasing ®y during the experiment,
and transitions between states are driven by pulsed ac
excitations. Other flux-based devices can also be used
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FIG. 1: (a) (Color online) Potential profile of the RF SQUID
for two distinct values of @ [(I) and (II)] and wave func-
tions for the first three lowest energy levels (|g), |e), and |h)).
Parameters are given in Table I. The Raman scheme is indi-
cated with arrows. (b) RF SQUID energy-band diagram near
Do /2 plotted vs. Px. Zero detuning case, point (I), and large
detuning case, point (II). (c¢) Absolute value of the vacuum
Rabi frequency gne as a function of ®x. The coupling reaches
40 MHz at the anticrossing between levels |e) and |h).

for the purposes of this work, for instance, persistent-
current (PC) qubits [20], which have been demonstrated
to possess relatively large excited-state lifetimes [21].
The segment of superconducting coplanar waveguide
(CWG) shown in Figs. 2 (a), (b), and (d) is one re-
alization of a monolithic resonator. Such a resonator
is characterized by eigenenergies with transition an-
gular frequencies wy that are much larger than the
thermal energy at cryogenic temperatures. Its Hamil-
tonian is Hy = Y, fwg (dldk + 1/2), where &L and a
are the bosonic creation and annihilation operators for
mode k. Voltage and current, corresponding to electric
and magnetic fields, respectively, are conjugate opera-
tors associated with the quantized resonator, fc(z,t) =
(8/0) (z,t), where z is the spatial coordinate for the
superconducting inner strip and 1§(z,t) is the normal
mode expansion of the cavity field. The vacuum rms
current of a single mode k = K of the cavity is I? - (2) =
hwi /2(Dl) |sin(2rz/D — Km/2)|. Here, D is the
length of the resonator and [ is its total series induc-
tance per unit length. The cavity is chosen to be a \/2
open-circuited resonator operated at the second mode,
K = 2, and coupled capacitively to a CWG trans-
mission line, as in Figs. 2 (a), (b), and (d). Such a
cavity can reach external quality factors Qx = 10% at
frx = wi /27 =~ 10 GHz [12], corresponding to a cavity
decay rate r./2m ~ 1 MHz. Hence, at a base tempera-
ture T}, ~ 50 mK, the mean number of thermal photons
is (nen) = [exp(fwk /kpTy)—1]7* ~ 107* and the cavity
mode can be considered to be in the vacuum state |0).
Embedding the RF SQUID in the CWG resonator [see
Figs. 2 (a), (b) and (c)] allows a strong, inductive cou-
pling between any two levels of the RF SQUID and the

single cavity mode K. The resulting interaction Hamilto-
nianis Hy = —M_ I g1, where I. i and I are resonator

and RF SQUID current operators, respectively, and Meg
is their mutual inductance. Explicitly, we find

Hy = — (Mes/Lo) I () (2= @) i [afe (1)~ ()] (2)

The RF SQUID can be positioned near one of the antin-
odes of the vacuum current [Fig. 2 (a)] and can be bi-
ased to yield maximum coupling for any two of its eigen-
states i) and |j). The interaction matrix element be-
tween these levels represents their coupling strength with
mode K and it is used to define the vacuum Rabi fre-
quency g;; = — (]V[CS/LS)ISK(Z)<i|<i>|j)/h. Moreover,
when operating the cavity mode largely detuned from
any two levels of the RF SQUID, the corresponding life-
times become strongly enhanced and an effective de-
cay rate ’yfjﬂ < ncf%gfi/(6§r) can be assumed, where
Ot > (Kc/2m) is the detuning between mode K and the
transition under consideration. The coupling ghe, the ef-
fective decay rate 'yff /2w, and other relevant quantities
have been calculated for both RF SQUIDs and PC qubits
and the results are reported in Table I.

A main application of the system illustrated above is
the generation of single photons at frequency fx in a
manner similar to a quantum-optical Raman scheme |9,
15]. After preparing the RF SQUID in level |g), the tran-
sition |g) < |h) is driven by a classical excitation with
Rabi frequency 2,1, and detuned by the amount . The
same transition is detuned from the resonator mode K by
an amount A >> §, resulting in a comparatively negligible
coupling. On the other hand, the |h) < |e) transition is
the only one coupled to mode K, and it is also detuned by
J [see Figs. 1 (a) and (b)]. Choosing § >> max [Qgn, gne),
level |h) can be adiabatically eliminated [9, 15], thus lead-
ing to the effective second-order Hamiltonian

] Qéh g]%e At s
Heg = h—=lg){gl +h=*le)(elapax +

d
+ hget (|8)(elage + le)glak ), (3)
where ge = (Qgh/0)gne is the effective Raman cou-

pling. The first two terms at the r.h.s. of Eq. (3) are
ac Zeeman shifts, while the last term describes an effec-
tive anti-JC dynamics, inducing transitions within the
{Ig)|n), |e)|n + 1)} subspaces. The ac Zeeman shifts as-
sociated with the transition of interest, {|g}|0),|e)|1)},
can be compensated by retuning the classical driving fre-
quency. When the strong-coupling regime is reached,
Joff 2, Max [/{C / 27r,'yﬁ£f / 27r]7 an effective m-pulse realizes
a complete transfer of population from state [g)|0) to
state |e)|1). This process leads to the creation of a mi-
crowave Fock state |1) inside the resonator that will leak
out in a time ~ 27/k.. Alternatively, in the case of
weak-coupling, the photon leaks to the outer world as
soon as it is generated inside the cavity, thereby realizing
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a deterministic single-photon source. Tailoring the pho-
ton pulse shape would require a time-dependent classical
driving Qgn(t) [9].

The proposed Raman scheme solves a technical prob-
lem of on-chip microwave single-photon generators: the
difficulty to initialize superconducting qubits in the ex-
cited state |e) without inevitably populating the cavity
(recall that the state |g)|0) is a dark state of the JC
dynamics) [12]. Raman pulses profit from the well de-
fined RF SQUID-resonator coupling [9], while adiabatic-
passage techniques are recommended for loosely trapped
qubits [8, 16]. The so-generated single photons can then
be guided through superconducting CWGs and trans-
ferred as propagating electromagnetic modes over appre-
ciable distances, typically beyond the few centimeters re-
quired for on-chip quantum communication.

Detection schemes based on classical homodyning [12,
18] are insufficient to resolve nonclassical states of the
electromagnetic radiation. On the other hand, microwave
single-photon detectors in mesoscopic systems do not ex-
ist to our knowledge. Here, we introduce an on-chip
MQHD technique as a means to detect weak quantum
signals, even at the level of single photons. It can be im-
plemented in three main steps. First, a signal (S) and a
local oscillator (LO), characterized by the same angular
frequency ws = wy,0, are coherently superposed at a suit-
ably designed MBS [Fig. 2 (a)]. This unitary manipula-
tion of the input fields, the quantum part of the measure-
ment process, is performed at cryogenic temperatures.
Second, the microwave fields at the MBS output ports are
amplified at low temperatures and then downconverted
to dc signals via classical homodyning, which is carried
out with image-rejection mixers (IRMs) at room temper-
ature [18]. Finally, the dc signals are detected as rms
voltages Vq with an oscilloscope and then processed to
calculate the corresponding powers Py = VZ/Z,, where
Z, is the characteristic network impedance.

The MBS is realized using a superconducting four-port
device: the hybrid ring, depicted in Fig. 2 (a). The ad-
vantageous coplanar design proposed here can be eas-
ily scaled and integrated with resonators in monolithic
circuits that can be fabricated with Nb technology [see
Fig. 2 (b)]. We now extend the classical theory of hybrid
rings in Ref. [18] to the quantum regime by analogy with
an optical beam splitter. With only the vacuum incident

TABLE I: Typical parameters and calculated relevant quan-
tities for the RF SQUID and the PC qubit [22], coupled to a
50 € resonator with dimensions given in Ref. [23].

eff

Lo Cj Le Mo 220 10, gy ke
(#A) (fF) (pH) (pH) (GHz) (nA) (MHz) (kHz)

RF SQUID 1.4 100 266 22 6.2 16.1 20 9.5

PCqubit 06 7 10 1 6 162 5.7 106.4

FIG. 2: (a) (Color online) Sketch of the entire generation and
detection network (Cin, C1, and C3: capacitive II network
representing the resonator input port; Cp: parasitic capacitor
at the cavity open-circuit ending; HR: hybrid ring; PS: phase
shifter; PD: power divider; AT: attenuator). (b) Asymmet-
ric CWG resonator with integrated HR. (¢) On-chip antenna
providing the classical driving Qgn. (d) Resonator-CWG cou-
pling region. (e) The waves traveling around the HR interfere
resulting in the plotted reflection and transmission amplitude
patterns. (f) Isolation between ports three and one of the HR.

at ports two and four, and up to a global phase common
to both input beams, the reduced quantum input-output
relations of a (superconducting) lossless MBS are

IR A I P
a, —t* r ar,o

where 7 and ¢ are the complex, frequency-dependent re-
flection and transmission coefficients, ag and aro are the
signal and LO port operators, respectively. The latter is
chosen to be a classical coherent field which is character-
ized by its complex amplitude aro = |avo|exp(ib;) [3],
where |ar,0| is the real part of this field and 6 is its rel-
ative phase with respect to S. The numerical simulations
plotted in Fig. 2 (e) show that the MBS can be balanced
over a broad bandwidth around the desired operation fre-
quency fk,ie.,r=t=1/v/2 (-3 dB).

A balanced MQHD is implemented subtracting the
powers associated to the measured voltages at ports two
and four of the IRMs,

Py2 — Pya < No — Ny = 2 |aro| Xo,, (5)

where the quantity (N2 — Nj) represents different re-
alizations of the measured observable (7, — 71,), with
fy = aYa,, g = aja,, and ay = (as + avo)/V2,
a4 = (—as + apo)/v2. Furthermore, X, represents dif-
ferent realizations of the measured quadratures X, =
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(&;ewr + age~"r)/2, where the LO operators were re-

placed by their complex amplitudes. Equation (5) con-
tains the essence of the balanced MQHD technique and
reveals that the quadrature of the weak signal S is ampli-
fied by a factor 2 |arol, and thus, for large LO voltages,
can overcome the detector (a cold amplifier) noise floor.
MQHD can be used for measuring any quadrature mo-
ment (X, gr) of signal S. It also allows one to reconstruct
the quadrature probability histogram pr(Xp,) by repeat-
ing the measurements of Xy, for 0 < 6, < 2 [see PS in
Fig. 2 (a)], a crucial step for the realization of MQHT.
The function pr(Xy,) is then related to the Wigner func-
tion of S, a phase-space representation of its correspond-
ing density operator, through an inverse Radon trans-
form [7]. MQHD and MQHT are powerful techniques,
allowing not only for the detection of single photons, but
also for full state reconstruction of any weak signal S.

The rms voltages Vg are the measured quantities from
which computing the powers Py in Eq. (5). At the output
port of one of the IRMs we find

|INhwg Z.
Va = Gcff‘(sm| 7_7}(’ (6)

where Geg is the effective gain of the network, oy, is
the downconversion coefficient of the IRM, N is any of
Na, Ny, Ty is the measurement time [e.g., in the case of
strong coupling, T = 47/(kc +1£H)], and Z. = 50 Q.
The quantum efficiency of the MQHD can be shown
to be almost unity. The two output ports of the hy-
brid ring are connected to two cryogenic amplifiers [see
Fig. 2 (a)]. The noise floor of each amplifier, as ex-
pressed through its noise temperature 7},, leads to a mean
photon number (ftamp) = kpTh/hwk. This quantity
must be exceeded by the mean number of signal pho-
tons at the amplifier input, which is oc |apol, in or-
der to realize a signal-to-noise-ratio SNR > 1. The
LO power Ppo required to reach this condition is then
(lavolPhwro)/mm = Vio/(2Ze) = (hwk (framp))/Tm,
where Vi,0 is the (real) LO voltage amplitude. As-
suming 7, ~ 10 K (corresponding to ~ 21 photons at
wg = 27 x 101° rad/s) and 7, ~ 1 us, a lower bound
for Ppo is approximately —130 dBm. Increasing the LO
power would in principle further enhance the weak quan-
tum signal. However, the trade off to large LO powers is
the leakage to the resonator resulting from the finite iso-
lation of the hybrid ring given by the scattering-matrix
parameter between LO and cavity ports, S31. Assuming
|S31| & —40 dB [see Fig. 2 (f)], a power of —130 dBm at
the LO port would be attenuated to —170 dBm at the
cavity port. This power would populate the cavity with
(n$f) ~ 2 x 1073 photons. Thus, an increase of the LO
power up to —110 dBm is admissible and single photons,
or other weak quantum signals, can be measured.

In conclusion, we presented a new scheme for the deter-
ministic generation of microwave single photons based on
a Raman pulse. Also, we showed how to realize MQHD

4

for measuring quadrature moments and MQHT for real-
izing full state reconstruction of quantum weak signals.
These proposals are essential tools for the implementa-
tion of quantum-optical CQED (e.g., Raman schemes, se-
lective interactions, quantum computing) and linear op-
tics (e.g., heterodyne detection, Mach-Zehnder interfer-
ometry, and entangled-photon chains) in the microwave
domain on a chip. Moreover, they represent an important
step for the advent of quantum information processing in
the field of circuit QED [24], e.g., quantum logic and on-
chip quantum communication with internal flying qubits.
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Conclusions

In this thesis macroscopic solid-state circuits envisaged as quantum bits were investigated.
These solid-state qubits fulfill the basic criteria for quantum bits [32]. Here, the decoherence
of these qubits was analyzed and different strategies to improve the gate performance of
these qubits were presented. Moreover, a scheme for the deterministic generation of single
microwave photons as well as their detection was given.

In chapter 6, the decoherence and gate performance of a two-qubit system in a setup
typical for solid-state qubits (such as superconducting charge or flux qubits) was analyzed.
It was found that the gate performance crucially depends on the symmetries of the qubit-
bath coupling, which suggests to try to engineer the qubit-bath coupling for optimized
decoherence of the qubit system. Recent experiments [92, 184] verify these findings and
engineer the electromagnetic environment in order to decrease the level of imperfections.

Chapter 7 deals with the decoherence of two QD charge qubits, namely a double
double-QD system. In this system, the most important intrinsic decoherence source is
decoherence due to the electron-phonon coupling and decoherence in this system is carefully
analyzed. It is found that due to the qubit-coupling to the noise, which is diagonal in the
preferred qubit eigenbasis, the decoherence can be significantly reduced, by reducing the
tunnel matrix elements in a single qubit (double dot).

The coupling of two flux qubits with a flux transformer is investigated in chapter 8. It
is proposed to use a JOFET, which is essentially a Josephson tunnel junction with a tunable
critical current, as a switch for the transformer loop. The JoFET as well as non-switchable
junctions that provide an intrinsic m-shift, are analyzed with regard to the decoherence
that they impose on the qubits. It is found that the noise due to the coupling elements
introduces only a small additional noise source with correlated noise between the qubits.
Moreover, it is verified that the switching process itself should be performed rather fast
because most decoherence occurs during the switching of the switch that steers the coupling
between the qubits.

In chapter 9, a Decoherence Free Subspace encoding is given for a specific design of
superconducting charge or flux qubits. For the case of flux qubits it is shown that the most
important decoherence source, namely 1/f-noise that affects the coupling elements, can
be fully eliminated by the encoding together with a restricted phase space of the logical
qubits. Both of these properties alone would be insufficient for a complete protection from
the noise. Moreover, the encoding also fully protects from collective dephasing on the
qubits.
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At present, carefully optimized pulse sequences are not yet commonly used for the
manipulation of superconducting solid-state qubits. In Chapter 10 optimal control theory
is introduced to the domain of superconducting charge qubits. In this system, only the
single-qubit bias terms can be individually controlled, but even these are mutually coupled.
Optimized pulse sequences found by this technique for a setup of two permanently coupled
superconducting charge qubits are presented. Astonishingly, the pulse sequence found with
optimal control theory, leads to a simulated fidelity, e.g., of the CNOT gate of F' > 99%,
even taking into account leakage to higher levels of the pseudo-spin system embedded into
an infinite Hilbert space. Thus, it is impressively shown that in these experiments the
pulse sequence and pulse shapes, and not decoherence is the limiting factor. Especially
the optimization of the former that leads to a major improvement in the gate performance
makes the potential of the charge qubit devices obvious.

Non-locality of entangled quantum states is a fascinating property of quantum me-
chanics. The generation, decoherence and tomography of maximally entangled Einstein-
Podolsky-Rosen (EPR) pairs is presented in chapter 11. Measurements on these states
are proposed that can verify the completeness of quantum mechanics in the sense of the
original work by EPR, [241] for macroscopic states, non-local correlations between the states
can clearly be identified.

In chapter 12, circuit-QED, i.e., the realization of ideas from quantum optics and
cavity QED in the solid-state, is introduced and a scheme for the deterministic generation
and detection of single microwave photons is proposed. Here, an rf-SQUID or a strongly
biased flux qubit inside a resonator is used to generate single microwave photons that
can be detected by the circuit analog of a beamsplitter /interferometer setup in quantum
optics. This detection scheme provides intrinsic amplification of the signal associated with
the single microwave photon. Thus, even though the noise floor on the amplifiers that will
be used for the final measurements is on the order of at least 20 photons, the signal from
the single photon, which was in such a way pre-amplified can easily be detected. Moreover,
it is proposed to embed a superconducting flux qubit inside a microstrip resonator that
acts as the cavity. Here, compared to quantum optics setups, the atom (or qubit) is fixed
inside the cavity and the field inside the cavity can be measured to infer the state of the
atom. Also, the cavity effectively filters the external decoherence from the electromagnetic
environment due to the narrow bandwidth of the cavity resonances. These devices that
realize linear quantum optics on a chip could be used for on-chip quantum communication
and to mediate long-range interactions between qubits.
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Appendix A

Useful relations

A.1 Operator relations

The following exact relations for the matrix exponential of an operator [281], its time
derivative [281], and commutation relations [281-283] are useful, e.g., for the computation
of exponentials of time-dependent operators in a Polaron transformation [284].

d

a(e‘&t) = A=At fl, (A1)
d / dA / dA
el A(t) — . sA i (lfs)fl — . (178)14 it sA
i /ds e~ e /ds e b (A.2)
0 0
1, .4 1,44 Aa A A A A
ety = A+ i (AA+ AA) + g(AAA’ + AANA+ AAA) +..., (A3)
t
t
AP = [ ds. et B[4 Bleb — / ds - B[4, Blet98 (A1)
) 0
A H
[e’\A,e“B] = /dt/ds : e(s_t)Ae(“_S)B[fl,é]esgetA. (A.5)

0 0
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A.2 Qubit states on the Bloch sphere

The state of a qubit can be represented geometrically on the Bloch sphere as depicted in
Fig. A.1. The qubit state is decomposed as

) = cos(6/2) |0) + € sin(6/2) 1), (A.6)

where ¢ and 6 are the angles on the Bloch sphere that describe the position of the spin
vector. The poles of the sphere are the &, eigenstates.

1>

Figure A.1: Bloch sphere representation of a qubit state. The poles of the sphere are the
eigenstates |0) and |1) of .. The angles ¢ and 6 are defined in Eqn. (A.6).

Each single qubit gate can be expressed in terms of a rotation of the state vector on the
Bloch sphere around a normalized axis 77 as [14, 285].

Ri(0) = exp(—i(0/2)7i5) = cos(#/2)1 — isin(6/2)(75), (A.7)
especially for A? = 1, which is the case for the Pauli matrices, it holds that
exp (iz’fl@) — cos(A)1 + isin()A. (A.8)

When the spin is subjected to a static magnetic field B, in z-direction, the state vector
evolves according to

1) = cos(0/2)e" 02 |0) + €' sin(0/2)e™ M2 1) (A.9)

i.e., the spin precesses with the Larmor frequency wy o |B,| around the z-axis.
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The dissipative TSS — connection to
the Kondo model and DMRG

The dissipative two-state system (TSS) (the qubit) has been analyzed in detail in chapters
4 and [6 for a small coupling strength a between the qubit and the environment. In this
chapter different approaches that extend the description of this system to large « (i.e. a
strong coupling to the environment) are presented. First, for simplicity a single qubit that
is coupled to an environmental bath of harmonic oscillators is considered

A N
H:Hq+HI+HB:—56—$+&ZX+HB, (B.1)

where H B = Ziv wiajai is the Hamiltonian that describes the bath. The system-bath
coupling term can be rewritten as

N
N
HI = 0, ®X - O-zﬁzlfz(aj +ai)7 <B2)

with coupling strengths f; for the individual modes. The spectral function that character-
izes the bosonic bath is taken as [286]

N
9 2raw, for w K w,

J(w) = w; 20w —w;) = { 0. forws (B.3)
where in the last step the spectral function was taken Ohmic with a high frequency cutoff.
This is the special case of an Ohmic spectral function and in general J(w) o w*, where
the spectral function is called sub-Ohmic for £ < 1, Ohmic for £ = 1, and super-Ohmic for
k > 1. For the Ohmic spectral function, the model presented in Eqn. (B.1) is equivalent to
the anisotropic Kondo model [287]. Here, the dimensionless parameter « parametrizes the
coupling strength to the environmental bath. The different phases of the dissipative TSS
are depicted in Fig. B.1. The figure summarizes the different phases as a function of «,
the dimensionless parameter that parametrizes the coupling to the environment. It turns
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Figure B.1: Phases of the dissipative two-state system in terms of the coupling strength «
1287]. The phase transition from the anti-ferromagnetic (AFM) phase to the ferromagnetic
(FM) phase is at a = 1. At the Toulouse point aw = 1/2, the anisotropic Kondo model can
be solved exactly [288].

out based on NRG and Bethe ansatz calculations that depending on « the system has
different ground states, i.e., a variation of o can drastically change the properties of the
system resulting in a phase transition. The phase boundary between the antiferromagnetic
(singlet) phase and the ferromagnetic phase is at a value of the coupling strength o =
1. The properties of the dissipative TSS have been evaluated in detail. It was found
that generally three regimes are important, damped coherent oscillations (0 < a < 1/2),
exponential decay (1/2 < o < 1), and localization of the (pseudo-)spin (o > 1) [148, 155,
289-291]. Moreover, it is found that the tunnel splitting of the TSS is renormalized, i.e.,
it diverges for a — 1, when A > w,, and the effective tunnel splitting is given by

(&3

sa=a(2)7 (B.4)

We

The resonance around A.g corresponds to coherent oscillations with a width that is given
by the decoherence rate of the dissipative TSS.

The Kondo problem deals with a single magnetic impurity and associated spin-1/2. It
interacts via an exchange scattering potential with a band of conduction electrons. In the
Kondo model, there is a constant density of electron-hole excitations close to the Fermi
surface