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Zusammenfassung

In den derzeit favorisierten kosmologischen Modellen fiir die Entstehung von Galaxien
wird angenommen, dafl der Grofiteil der Masse im Universum aus dunkler Materie be-
steht, bei der es sich etwa um ein lediglich schwach wechselwirkendes, noch unbekanntes
Elementarteilchen handeln kénnte. Experimentell konnte die dunkle Materie bisher auf
der Erde nicht nachgewiesen werden, allerdings gibt es viele indirekte Hinweise auf ihre
Existenz. Diese indirekten Beweise stiitzen sich auf die gravitative Wirkung der dunklen
Materie, wie sie in vielen astrophysikalischen Systemen beobachtet wird, etwa in den
Bahnbewegungen von Galaxien in Galaxienhaufen, oder im Gravitationslinseneffekt, bei
dem Bilder von Hintergrundgalaxien durch massereiche Vordergrundobjekte verdndert
werden. Es wird angenommen, dafl die dunkle Materie zur heutigen Zeit nur noch an der
gravitativen Wechselwirkung teilnimmt und sich daher wie ein stoflfreies Fluid verhilt.

Das Wachstum von Struktur im Universum erfolgt durch die gravitative Instabilitit
von primordialen Fluktuationen in der Energiedichte des frithen Universums. Die derzeit
erfolgreichsten theoretischen Modelle nehmen an, daf die dunkle Materie “kalt” ist,
das heifit ihre thermische Bewegung ist vernachlissigbar zum Zeitpunkt der Gleichheit
der Energiedichte in Strahlung und Materie. In Kosmologien, die von kalter dunkler
Materie (CDM, englisch cold dark matter) dominiert sind, erfolgt die Entstehung von
Galaxien hierarchisch. Zunéchst bilden sich kleine Galaxien, welche sich dann in einem
hierarchischen Verschmelzungsproze zu immer groBeren Einheiten zusammenfiigen. In
diesem Bild der Strukturbildung “von unten nach oben” enstehen grofle Galaxienhaufen,
welche die gegenwértig grofiten virialisierten Strukturen darstellen, erst relativ spét.

In dieser Arbeit beschiftige ich mich mit einer Reihe verwandter Aspekte der Theorie
der hierarchischen Entstehung von Galaxien. In einem ersten Schwerpunkt meiner Ar-
beit konzentriere ich mich auf Verschmelzungsprozesse von Scheibengalaxien. Wenn zwei
Spiralgalaxien vergleichbarer Masse zusammenstoflen, schleudern gravitative Gezeiten-
krifte Sterne und interstellares Gas aus den dynamisch kalten Scheiben heraus. Dieses
Material fithrt zur Bildung langer Gezeitenarme, wie sie in vielen wechselwirkenden Paa-
ren von Galaxien beobachtet werden. In manchen Systemen erreichen die Gezeitenarme
Léngen von mehreren hundert Kiloparsec.

Vor kurzem wurde in numerischer Arbeit gezeigt, dafl die Anfilligkeit von Schei-
bengalaxien fiir die Entstehung von Gezeitenarmen stark von der internen Struktur der
Galaxien abhingt. Aus diesem Grund konnten Gezeitenarme interessante Hinweise auf
die Menge dunkler Materie in Galaxien und auf ihre Verteilung relativ zu den leuchten-
den Sternen liefern. Die aktuellen CDM-Modelle fiir die Entstehung von Galaxien sagen
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voraus, dafl der leuchtende Teil der Galaxien in einen sehr ausgedehnten und masserei-
chen Halo aus dunkler Materie eingebettet ist. Die Gesamtmasse des Halos iiberschreitet
die Masse der Sterne dabei um ein Vielfaches. Je massereicher der Halo allerdings ist,
desto grofler werden die auftretenden Geschwindigkeiten in Galaxienkollisionen, was zu
kiirzeren Wechelswirkungszeiten und zu einer insgesamt geringeren Stérung der Scheiben
fithrt. Aulerdem hat das durch Gezeitenkrifte gestorte Material dann ein tieferes Gravi-
tationspotential zu iiberwinden. Sehr massereiche Halos konnten daher die Entstehung
ausgeprigter Gezeitenarme verhindern.

Um diesem Punkt weiter nachzugehen, habe ich detaillierte numerische Modelle von
Scheibengalaxien konstruiert. Die strukturellen Eigenschaften dieser Galaxien wurden
aus analytischen Modellen fiir die erwartete Verteilung von Scheibengalaxien in CDM-
Universen abgeleitet. Ich habe dann Kollisionen und Verschmelzungen solcher Scheiben-
galaxien in einem grofen Satz von Computersimulationen studiert. Dabei zeigte sich, daf}
Modelle mit kleinen Scheiben kaum in der Lage sind, Gezeitenarme zu bilden, wihrend
Galaxien, die grofie Scheiben relativ zu ihrem Halo besitzen, viel leichter massereiche
und ausgedehnte Gezeitenarme produzieren. Allerdings scheint es auch so zu sein, daf
die aktuellen CDM-Modelle eine hinreichend grofie Zahl von Galaxien voraussagen, die
Gezeitenarme bilden konnen. Aus diesem Grund kann die beobachtete Haufigkeit sol-
cher Systeme zwanglos erklirt werden. Diese Schlufifolgerung ist praktisch unabhingig
von den gewéhlten kosmologischen Parametern der CDM-Modelle. Aus diesem Grund
erscheint es unwahrscheinlich, dafl Gezeitenarme besonders niitzlich zu deren Bestim-
mung sind, wenn sie auch weiterhin ein sehr interessantes Werkzeug zur Erkundung der
inneren Struktur von Scheibengalaxien darstellen.

In einem zweiten Schwerpunkt meiner Forschungsarbeit habe ich mich mit Pro-
blemen der Sternentstehung und ihrer Riickwirkung auf das interstellare Medium in
Scheibengalaxien beschiiftigt. Beobachtungen zeigen, dafl die Sternentstehungsrate in
Scheibengalaxien zeitlich relativ konstant ist. Man nimmt an, dal dies als Ergebnis
von Riickwirkungsprozessen durch Supernova-Explosionen, durch ultraviolette Strah-
lung junger Sterne, oder durch starke Sternenwinde zustande kommt. Diese Prozesse
fithren zu einer Selbstregulierung der Sternentstehungsrate. In Simulationen ohne solche
Riickwirkungsmechanismen fiithren die unbehinderten Kiihlungsprozesse des Gases zu
einem ungebremsten Anstieg der Sternentstehungsrate. Allerdings sind die detaillierten
Wirkungsmechanismen der Riickwirkungsprozesse bisher weitgehend unverstanden. Da
sich das Problem der Sternentstehung auch durch einen besonders grofien dynamischen
Bereich auszeichnet, lassen sich die relevanten physikalischen Prozesse auf der Skala
ganzer Galaxien nicht direkt simulieren. In dieser Arbeit entwickle ich daher ein phino-
menologisches Modell, das die Einbeziehung von Sternentstehung und ihrer Riickwirkung
in hydrodynamischen Simulationen von Galaxien erlaubt. Dieses Modell benutzt einen
effektiven, turbulenten Druck, um die turbulenten Gasbewegungen auf kleinen, nicht
aufgelosten Skalen zu beschreiben.

Das Modell zur Beschreibung von Riickwirkung wurde so konstruiert, dafl es die
beobachtete Abhéngigkeit der Sternentstehungsrate von der Gasdichte in Spiralgalaxi-
en reproduziert. Man kann nun auch versuchen, das Modell auf Verschmelzungen von
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Spiralgalaxien mit hohem Gasgehalt anzuwenden. Nachdem die Galaxien ihre erste Be-
gegnung durchlaufen haben, kommt es zu einem starken Strom von Gas in das Zentrum
der Galaxien, da gravitative Drehmomente wihrend der Kollision dem Gas Drehimpuls
entziehen. Durch die rasch ansteigende Konzentration von Gas im Zentrum kommt es zu
einem starken Ausbruch der Sternentstehung, dhnlich wie er in vielen superhellen Infra-
rotgalaxien beobachtet wird. Ich zeige, daf} die Flichendichte der Sternentstehungsrate
in den zentralen Regionen der Modellgalaxien konsistent mit derjenigen in beobachteten
Ausbriichen der Sternentstehung ist.

Nachdem die Galaxien ein erstes Mal zusammengestoflen sind, entfernen sie sich
zunéchst wieder. Allerdings fithren die dynamischen Reibungsverluste zu einer raschen
Dissipation der Energie der Bahnbewegung, so dafl die Galaxien erneut zusammenfallen
und schliefllich verschmelzen. Nach der abschlielenden Verschmelzung entsteht ein ein-
ziges Sternsystem, in welchem die Galaxien ihre urspriingliche Identitit verlieren. Diese
Verschmelzungsprodukte weisen groBe strukturelle Ahnlichkeiten mit elliptischen Gala-
xien auf. Ich vergleiche nun die Struktur der entstehenden Galaxien in Simulationen mit
rein stoffreier Dynamik mit derjenigen aus dquivalenten gasdynamischen Simulationen.
Es zeigt sich, daf} die Form der Isophoten systematisch unterschiedlich ist. Galaxienver-
schmelzungen, bei denen starke dissipative Prozesse und Sternentstehung beteiligt sind,
fithren zu Isophoten, die scheibenartige Abweichungen von einer perfekten Ellipsenform
aufweisen. Umgekehrt tendieren dissipationsfreie Verschmelzungen dazu, rechteckformi-
ge Abweichungen zu produzieren. Dies bestitigt eine speziell in Beobachtungsstudien
der Entstehung elliptischer Galaxien gehegte Vermutung, dafl scheibenartige Isophoten
mit Dissipation verbunden sind. Ein potentielles Problem der untersuchten dissipati-
ven Simulationen ist allerdings, daf} sie mdglicherweise zu effektiv im Produzieren eines
zentralen Ausbruchs der Sternentstehung sind. Die dabei auftretende Erhéhung der zen-
tralen Phasenraumdichte fithrt zu einer zentralen Spitze in der Helligkeitsverteilung, die
méglicherweise nicht in Ubereinstimmung mit den beobachteten Helligkeitsverteilungen
elliptischer Galaxien steht.

In einem dritten Schwerpunkt meiner Arbeit studiere ich die Entstehung von Galaxi-
en innerhalb eines Modells, das deren kosmologische Einbindung korrekt beriicksichtigt.
Zu diesem Zweck habe ich die Entstehung eines grofien Galaxienhaufens in einem fla-
chen Universum geringer Dichte in hochaufgelosten Computermodellen simuliert. Die-
se Simulationen wurden auf einem parallelen Supercomputer ausgefithrt und erreichen
wahrscheinlich den gréfiten dynamischen Bereich, der bisher fiir solche kosmologischen
Simulationen verwendet wurde. Indem ich eine grofle Zahl von Simulationsausgaben
speichere, kénnen die Simulationen zur direkten Analyse der Verschmelzungsprozesse
der dunklen Materie verwendet werden. Die hohe Auflésung der Simulationen erlaubt
dabei auch erstmals, das Schicksal von Halos zu verfolgen, die in groflere Halos hinein-
fallen. Dabei werden die kleineren Halos nicht sofort aufgelost, sondern deren innerer
Kern kann die starken gravitativen Gezeitenkrifte des Haufens iiberleben und sich als
unabhingiges physikalisches Objekt im Potential des entstehenden Haufens bewegen.
In dieser Arbeit entwickle ich neue Techniken, um solche Unterstruktur in Halos der
dunklen Materie aufzuspiiren und deren Entwicklung zu verfolgen.
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In den Simulationen der Galaxienhaufen wird nur die Entwicklung der stofifreien
dunklen Materie berechnet, welche den gravitativ dominierenden Anteil an der Masse
im Universum darstellt. Um auch die Entwicklung der leuchtenden Teile der Galaxien
zu beschreiben, benutze ich sogenannte semi-analytische Modelle der Galaxienentste-
hung. In diesen Modellen werden Prozesse wie die Strahlungskithlung des Gases, die
Sternentstehung und ihre Riickwirkung, oder die Anreicherung des Gases durch Metalle
mit vereinfachten, jedoch physikalisch motivierten Modellen beschrieben. Ich erweitere
diese Modelle, so dafl die Informationen iiber die Unterstruktur in Halos aus dunkler
Materie mit einbezogen werden kann. Wie ich zeigen kann, fiithrt dies zu einer deutli-
chen Verbesserung einiger Ergebnisse dieser semi-analytischen Modelle. So wird etwa
die Leuchtkraftfunktion durch eine Schechter-Funktion nun gut beschrieben, und das
Problem zu heller Galaxien im Haufen, welches in einfacheren Verfahren auftritt, wird
vermieden. Ich zeige, dafl diese Verbesserungen in erster Linie durch genauere Schétzun-
gen der tatsichlichen Verschmelzungsrate von Galaxien im Haufen zustandekommen, so
wie sie die detaillierte Unterstrukturanalyse liefert.

Insgesamt liefern die semi-analytischen Modelle in ihrer jetzigen Ausgestaltung eine
bemerkenswert erfolgreiche Beschreibung der Galaxienpopulation in groflen Haufen. Mit
einem relativ kleinen Satz freier Parameter wird die Leuchtkraftfunktion von Haufenga-
laxien und deren Masse-Leuchtkraft-Verhéltnis gut beschrieben. Gleichzeitig findet man
eine ausgeprigte Dichte-Morphologie-Beziehung, und die Verteilung des B — K Farb-
index zeigt eine Dichotomie zwischen Spiralen und Ellipsen, dhnlich wie es beobachtet
wird. Auflerdem wird die Tully-Fisher Relation von Feldgalaxien gut beschrieben und
die vorausgesagte Geschichte der Sternentstehungsrate ist in guter Ubereinstimmung mit
aktuellen Beobachtungsdaten.

Ein erheblicher Teil der oben beschriebenen Arbeit macht intensiven Gebrauch von
Computersimulationen, sowohl mit rein stofifreier Dynamik als auch mit Hydrodynamik.
Diese Simulationen wurden mit einem neuen Simulationsprogramm berechnet, welches
ich fiir diese Arbeit entwickelt habe. Das Programm kombiniert ein hierarchisches Mul-
tipolverfahren zur Berechnung der Gravitation mit einer teilchenbasierten Beschreibung
hydrodynamischer Fluide (sogenannte smoothed particle hydrodynamics). Das Programm
verwendet eine Reihe algorithmischer und numerischer Verbesserungen im Vergleich zu
fritheren Verfahren. Beispielsweise werden alle Teilchen mit individuellen, beliebig varia-
blen Zeitschritten integriert und ein neues, effizienteres Kriterium fiir die Verwendbar-
keit der Multipol-Naherung wird eingefiihrt. Ich habe auch eine Programmversion zur
Verwendung auf parallelen Supercomputern mit verteiltem Speicher entwickelt. Hierbei
wurde ein expliziter Kommunikationsansatz verwendet, welcher erhebliche algorithmi-
sche Anderungen im Vergleich zu den seriellen Berechnungsverfahren erforderlich mach-
te. Aufgrund seiner Lagrangeschen Eigenschaften schrinkt das implementierte numeri-
sche Verfahren das zu untersuchende Problem prinzipiell weder in seiner Geometrie noch
in seinem dynamischen Bereich ein. Das Simulationsprogramm hat dadurch einen sehr
weiten Einsatzbereich. In einem vierten Schwerpunkt meiner Forschungsarbeit beschrei-
be ich die eingesetzten numerischen Techniken und ich stelle eine Reihe von Tests der
Geschwindigkeit und Genauigkeit des entstandenen kosmologischen Werkzeugs vor.
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In einem abschlieBenden, fiinften Teil meiner Forschungsarbeit untersuche ich das
grofriaumige Dichtefeld des Universums anhand des 1.2-Jy Rotverschiebungskatalogs.
Dieser Galaxienkatalog wurde im infraroten Spektralbereich ausgewahlt, und zwar von
einer Liste infraroter Punktquellen, die vom IRAS-Satelliten beobachtet worden sind.
Der 1.2-Jy Rotverschiebungskatalog 1488t sich zur Konstruktion einer Karte der Galaxi-
enverteilung im lokalen Universum heranziehen, welche fast die gesammte Himmelsku-
gel abdeckt. Die modernen Theorien zur hierarchischen Galaxienentstehung in CDM-
Universen gehen von winzigen primordialen Stérungen in der Massendichte des frithen
Universums aus. Die Aufklirung der statistischen Eigenschaften dieser Fluktuationen
stellt eine der grundlegenden Herausforderungen der Kosmologie dar. “Inflationére”
kosmologische Modelle schlagen vor, daf die anfinglichen Stérungen letztlich auf Quan-
tenfluktuationen zuriickgehen, die wihrend der inflationdren Phase um ein vielfaches
verstirkt wurden. In solchen Modellen sind die Phasen verschiedener Fouriermoden des
Fluktuationsspektrums statistisch unabhéngig, so dafl die Stérungen ein Gaufisches Zu-
fallsfeld bilden. Es gibt allerdings auch alternative Szenarien zur Bildung der primor-
dialen Stérungen, die als Saatkorner der kosmischen Strukturbildung aufgefafit werden
koénnen. Topologische Defekte wie magnetische Monopole, oder kosmische Fiaden (eng-
lisch cosmic strings) sind solche Moglichkeiten. Allerdings sagen solche Modelle mit
topologischen Defekten Phasenkorrelationen zwischen den Stérungen voraus.

In dieser Arbeit benutze ich das topologische Genus-Maf}, um die Geometrie von
Flichen gleicher Dichte im grofirdumigen Dichtefeld des Universums zu untersuchen.
Diese statistische Methode kann benutzt werden, um die Hypothese eines Gaufischen
Zufallsfelds fiir die anfinglichen Storungen direkt zu testen. Ich entwickle eine ausge-
dehnte statistische Methodik, um theoretische Computermodelle fiir die Verteilung der
dunklen Materie mit beobachteten Galaxienkatalogen wie dem 1.2-Jy Katalog zu ver-
gleichen. In diesem Verfahren benutze ich grofle Ensembles kiinstlicher Galaxienkataloge,
welche die Auswahleffekte und die statistischen Unsicherheiten in beobachtenden Daten
nachbilden. Ich entwickle dann eine mehrdimensionale Hauptkomponentenanalyse, um
die beobachteten Genuskurven mit theoretischen Modellen zu vergleichen. Ich zeige, daf
das 1.2-Jy Dichtefeld auf groien Skalen mit der Hypothese eines Gaulschen Zufallsfelds
konsistent ist. In dem schwach nichtlinearen Bereich des gravitativen Wachstums von
Struktur entwickeln sich Phasenkorrelationen, die mit der Genus-Statistik gemessen wer-
den konnen. Es wird gezeigt, dal die Genus-Statistik des 1.2-Jy Katalogs inkonsistent
mit dem ‘Standard’-CDM (SCDM) Modell ist, und zwar mit einem Konfidenzbereich
von iiber 99%. Dies ist in erster Linie eine Folge einer falschen Form des angenom-
menen Fluktuationsspektrums, welches auf grofien Skalen zu schwache Stérungen auf-
weist. Alternative Varianten der CDM-Modelle mit ausreichend starken Fluktuationen
auf groBen Skalen sind dagegen in guter Ubereinstimmung mit dem 1.2-Jy Katalog. Ein
wesentlicher Vorteil der Genus-Analyse im Vergleich mit anderen Verfahren zur Unter-
suchung der Grofiraumstruktur ist ihre relative Unabhéngigkeit vom sogenannten Bias
der Galaxienverteilung. Im allgemeinen wird angenommen, dafl die Galaxienverteilung
der Massenverteilung folgt, jedoch gibt es vermutlich Abweichungen von einer strengen
Proportionalitét, den sogenannten Bias der Galaxien. Die Ergebnisse der Genus-Statistik



Zusammenfassung

sollten sich nicht oder nur sehr unwesentlich dndern, falls ein solcher Bias existiert.
Teile dieser Arbeit (Kapitel 2 und 6) sind in den Artikeln Springel et al. (1998) und
Springel & White (1999) bereits verdffentlicht worden oder befinden sich im Druck.
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Summary

In the currently favoured cosmological models for the formation of galaxies it is assumed
that most of the mass in the Universe consists of ‘dark’ matter, perhaps in the form
of a yet to be identified, weakly interacting massive particle. While the dark matter
has not been detected directly on Earth so far, there is a lot of indirect evidence for its
existence. This indirect evidence stems from the dark matter’s gravitational effects on
its surroundings, seen for example in the orbital motions of galaxies within clusters, or
in the gravitational lensing of background galaxies by massive foreground objects. At
the current epoch, dark matter is assumed to interact only gravitationally, behaving as
a collisionless fluid. The growth of structure is then thought to occur via gravitational
instability of primordial fluctuations in the energy density of the early Universe. The
most successful theoretical models assume that the dark matter is cold, i.e. it has only
a small velocity dispersion at the epoch of matter-radiation equality. In these cold dark
matter (CDM) cosmologies, galaxy formation proceeds hierarchically. Small galaxies
are born first, and a hierarchy of merging processes then assemble ever more massive
systems. The largest virialized objects at the present time, rich clusters of galaxies, are
expected to form rather recently in this ‘bottom-up’ paradigm of galaxy formation.

In this thesis, I work on a number of related aspects of the theory of hierarchical
galaxy formation. In one line of my research, I focus on merging processes of disk
galaxies. When two spiral galaxies of comparable mass collide, gravitational tidal forces
lead to the ejection of tails of stars and gas out of the dynamically cold disks. Such
tidal tails are observed in many interacting pairs of galaxies, sometimes extending to
distances as large as several hundred kiloparsec from the main bodies of the galaxies.

Recent numerical work suggested that disk galaxies of differing structure can differ
strongly in their susceptibility to tail formation. Tidal tails may thus provide important
clues about the amount of dark matter in galaxies, and about its distribution relative
to that of the visible light. According to the current CDM models of galaxy formation,
the luminous part of galaxies is embedded in a fairly extended halo of dark matter,
with total mass much larger than that of the stellar component itself. Galaxies with
more massive haloes experience higher encounter velocities, leading to a smaller overall
strength of the perturbation of the disk. In addition, the perturbed material has to
climb out of a deeper potential well, possibly preventing the formation of massive tails.

To elucidate this point further, I have constructed detailed numerical models of disk
galaxies with structural properties derived from analytic models for the population of
disk galaxies expected in CDM universes. I then studied collisions and mergers of these
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models in a large set of computer simulations. It was found that models with small
disks have difficulty ejecting tails, while larger disks much more easily produce massive
and extended stellar tails. However, it appears that in the context of current CDM
theories a relatively large number of galaxies should be capable of tail formation. Hence
the abundance of observed systems with tails can be explained relatively easily. This
conclusion is practically independent of the cosmological parameters of the CDM models.
It thus seems unlikely that tidal tails are useful to constrain cosmological parameters.

In a second line of my research, I have addressed problems related to gas cooling
and star formation in disk galaxies. Observationally, the star formation rate in isolated
disk galaxies appears relatively constant in time. It is thought that this results from
feedback processes due to supernova explosions, UV radiation of young stars, or stel-
lar winds, leading to a self-regulation of star formation. Simulations without modeling
of such processes give rise to a run-away of the star formation rate due to unimpeded
cooling. Unfortunately, the physical mechanisms constituting feedback are poorly under-
stood in detail. There are also severe technical constraints arising from the extraordinary
large dynamic range encountered in this problem, precluding any brute force attempt
to simulate star formation on the scale of whole galaxies. In this study, I have therefore
developed a phenomenological model for the incorporation of star formation and su-
pernova feedback into hydrodynamical simulations of galaxies. The model employs the
notion of an effective turbulent pressure arising from motions in the interstellar medium
on unresolved scales.

By construction, the feedback model results in star formation rates in agreement
with the observed global ‘Schmidt-law’ for disk galaxies. I also apply this modeling
to mergers of gas-rich spiral galaxies. During the first encounter of the galaxies, grav-
itational torques extract angular momentum from the gaseous component, leading to
a strong central influx of gas. As a result, a burst of star formation develops in the
galaxies’ centers, much like that seen in ultraluminous infrared galaxies. I show that the
surface density of the star formation rate in the central regions is consistent with the
one observed in starbursting systems.

In these collisions, the galaxies separate again after their first encounter. However,
because of energy losses due to dynamical friction, they fall back together again and
eventually merge. After the final coalescence of the galaxies, they form a single pile
of stars and lose their individual identity. These merger remnants resemble elliptical
galaxies. By comparing the structure of remnants between dissipationless simulations
and equivalent gasdynamical collisions I show that the isophotal shapes are systemati-
cally different. Mergers involving strong dissipation and star formation lead to isophotes
that have ‘disky’ distortions from perfect ellipticity, while pure collisionless simulations
tend to result in ‘boxy’ ellipticals. This confirms a long standing hypothesis in observa-
tional studies of the formation of elliptical galaxies. A potential problem of the current
modeling is that the dissipative simulations might be too effective in producing a central
starburst. The resulting increase of central phase-space density leads to a central ‘spike’
in luminosity which appears inconsistent with observed luminosity profiles of elliptical
galaxies.

12
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In a third line of research, I study the formation of galaxies in their proper cos-
mological environment. To this end, I have simulated the formation of a rich cluster
of galaxies in a flat, low-density universe using very high numerical resolution. These
simulations have been carried out on a parallel supercomputer and achieve the largest
dynamic range ever reported for cosmological N-body simulations. By storing a large
number of simulation outputs, these high-resolution simulations can be used to study
the formation history of dark matter haloes in great detail. In particular, they give a
proper account of the fate of the dark haloes that fall into a larger object. Such haloes
are not dissolved immediately. Rather, their cores may survive and orbit as independent
physical entities within the potential of the larger system. In this thesis, I develop new
techniques to identify and track such substructure within dark matter haloes.

The cluster simulations only compute the evolution of the collisionless dark matter,
which is the gravitationally dominant component of the universe. To study the formation
of the luminous parts of galaxies, I employ so-called semi-analytic models of galaxy
formation. In these models, processes like gas cooling, star formation, feedback, or metal
enrichment, are treated with a set of simple, yet physically motivated assumptions. I
extend previous models of semi-analytic galaxy formation to allow the inclusion of the
substructure information extracted from the high-resolution simulations, and I show that
this improves the results obtained considerably. For example, the luminosity function
of cluster galaxies becomes well fit by a Schechter function. It develops a well defined
‘knee’, and a problem of excessively bright first ranked cluster galaxies that occurs in
simpler models, is avoided. I show that these improvements primarily result from a
much better estimate of the actual merger rate of galaxies within dark matter haloes,
which is provided by high resolution simulations.

In their current form, the semi-analytic models provide a remarkably successful de-
scription of the population of cluster galaxies. With a relatively small set of free parame-
ters, the luminosity function of cluster galaxies and the cluster mass-to-light ratio can be
fit. A pronounced morphology-density relation is found, and the B — K color distribution
shows a dichotomy between spirals and ellipticals, much like that observed. Simultane-
ously, the Tully-Fisher relation of field galaxies is well fit, and the predicted global star
formation history is in reasonable agreement with current observational results.

Much of the work described above has been based on the extensive use of computer
simulations, both with collisionless dynamics and with hydrodynamics. These simula-
tions have been carried out with a new simulation code that I have written for this
thesis. The code combines a gravity-solver based on a hierarchical tree-algorithm with
smoothed particle hydrodynamics. It implements a number of algorithmic and numerical
improvements compared to previous methods. For example, all particles are integrated
with individual, fully adaptive timesteps, and a new, more efficient cell-opening crite-
rion for the tree-algorithm is introduced. I have also parallelized the code for massively
parallel supercomputers with distributed memory. Here, an explicit communication ap-
proach was adopted, requiring substantial algorithmic changes compared to the serial
version of the simulation code. Due to its Lagrangian nature, the code is not restricted
by geometry or by the dynamic range of the problem under study. It has thus a wide
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range of applications. In a fourth line of my research, I describe the numerical algo-
rithms employed in the code, and I present a number of tests showing the performance
and accuracy of this cosmological tool.

Finally, in a fifth line of research, I study the large-scale density field of the Uni-
verse using the 1.2-Jy redshift survey. This catalogue of galaxies has been selected in
the infrared, from a parent catalogue of galaxies detected by the TRAS satellite. The
1.2-Jy survey provides a nearly full sky map of the observed galaxy distribution in the
Local Universe. Hierarchical galaxy formation according to CDM models starts from
tiny primordial fluctuations in the matter density field. It is one of the great challenges
of cosmology to determine the statistical nature of the initial perturbation field. Infla-
tionary cosmology suggests that quantum fluctuations, amplified during the inflationary
epoch, gave rise to the initial perturbations. In this case, the phases of different Fourier
modes of the fluctuation spectrum should be uncorrelated, i.e. the perturbations should
form a Gaussian random field. However, there are also alternative scenarios for the
generation of a seed field for structure formation. For example, topological defects like
cosmic strings or magnetic monopoles could provide perturbations as well, but such
defect models generically predict phase correlations.

In this thesis, I use the topological genus-measure to characterize the geometry of
isodensity surfaces of the large-scale density field. This statistical method can be used to
test the Gaussian random phase hypothesis for the initial fluctuation field. I develop an
extensive statistical methodology to compare theoretical N-body models for the cluster-
ing of dark matter with observed galaxy catalogues like the 1.2-Jy survey. This method
works with large ensembles of mock galaxy catalogues that mimic the selection biases
and the sampling noise inherent in observational data, and it employs a multivariate
principal components analysis to compare the observed genus curves with theoretical
models. I show that on large scales the 1.2-Jy density field is consistent with being a
Gaussian random field. In the mildly non-linear regime of gravitational clustering, phase
correlations develop which can be detected with the genus statistic. The genus statistic
of the 1.2-Jy survey is shown to be inconsistent with the ‘standard’ cold dark matter
model (SCDM) at a 99% confidence level. This is because the shape of the power spec-
trum of SCDM does not exhibit enough large-scale power. However, alternative variants
of CDM models with more large-scale power are in good agreement with the 1.2-Jy
survey. Unlike many other techniques to study large-scale clustering, the genus statistic
is largely independent of galaxy bias. These results are thus unlikely to be changed if
galaxies are biased tracers of the mass.

Parts of this thesis (Chapters 2 and 6) have already been published in the articles of
Springel et al. (1998) and Springel & White (1999).
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—I was sitting in a chair in the patent office at Bern when
all of a sudden a thought occurred to me: “If a person
falls freely he will not feel his own weight.” I was startled.
This simple thought made a deep impression on me. It
impelled me toward a theory of gravitation.

Albert Einstein

Thesis objectives

1.1 Motivation

Now that the work on my PhD thesis is almost completed, I find it difficult to recount
what originally motivated me to select the subject of galaxy formation for my disser-
tation. After all, the breadth of current research in physics offers such a multitude of
possibilities that anyone’s research career will be more like a random walk, constantly
disturbed by interesting questions one happens to run into by chance, rather than being
a straight path to some envisaged goal in the distance. So I would have to lie if I said
that I had been determined already years ago to select the topic I have chosen. How-
ever, I still know well what originally drove me to study physics. It was the interest
and curiosity in the way nature works, it was the admiration for the great discoveries of
physicists, and it was the attraction by the intellectual challenges provided by natural
sciences. Against the fundamental scope of physics, other academic disciplines always
appeared to me less interesting.

Within theoretical physics, cosmology is a particularly fascinating subject. It offers
large numbers of challenging problems, it stretches human imagination far beyond the
realm of direct experience, and it is highly appealing because of its close ties to very
fundamental questions about the world we live in. I find it satisfying that these questions
are not only interesting for physicists, but that this interest is shared by the general
public.

Galaxies are among the most beautiful objects on the sky, and I was always deeply
struck by pictures of these magnificent systems. I'm thus pleased that I got the oppor-
tunity to work on these objects and to study processes related to their formation and
evolution. I have also been lucky to live at the right time for this subject. Galaxy forma-
tion and cosmology might well be in their Golden Age right now. The last ten to twenty

15



1 Thesis objectives

years have witnessed a dramatic progress towards an understanding of the formation of
structure in the Universe. Satellite missions like IRAS, COBE, and ROSAT have revolu-
tionized the field. The Hubble-Space Telescope has opened up the high-redshift Universe,
and the new class of 8-10 meter telescopes are producing loads of fascinating data, just
awaiting scientific exploitation. Simultaneously, the rapid advances of computer tech-
nology have fundamentally transformed the way research in theoretical astrophysics is
done. I have always been fascinated by the growing complexity of information technol-
ogy, and much of the work presented in this thesis tries to exploit computer simulations
for the study of the highly non-linear processes occurring in galaxy formation.

1.2 Historical perspectives

Astronomy might well be the oldest scientific discipline of mankind. The stars on the
night sky have always exerted a powerful influence on human culture and religion, and
even today, many people entertain the belief that their fate is determined by stellar
constellations. Many of the ancient cultures of the past also developed an advanced
scientific understanding of astronomy. Unfortunately, most of this knowledge was lost
when these civilizations were destroyed in the course of history. Only the astronomical
knowledge of the Greek culture survived, and provided the foundation of modern as-
tronomy. Every astronomer is reminded of this antique heritage in daily work when the
arcane magnitude system is used to quantify the brightness of astrophysical objects.

The Greeks still believed in an eternal Universe. Plato and Aristoteles thought it
to be ancient, without being subject to any evolution. Only towards the end of the
Middle Ages, new views of the Universe started to emerge. Kopernikus discovered that
the Earth revolves around the Sun, and Giordano Bruno realized in 1580 that stars are
distant suns which might possibly have planets — he was burned on the stake for this
revolutionary idea. Later, Galileo Galilei interpreted the Milky Way as an assembly of
stars.

A big step forward was made, when Isaac Newton formulated the laws of gravity and
mechanics, and hence laid out the foundation of classical physics. Using Newton’s ideas,
the philosopher Immanuel Kant explained the Milky Way as a rotating system of stars,
where the centrifugal force balances the gravitational attraction. He also speculated
about the existence of distant galaxies that are like our own.

These early steps in cosmology are very impressive, especially when one considers the
limited observational techniques available at the time and the pre-enlightened society
that could make scientific work even life-threatening. However, the most spectacular
advances of modern cosmology really had to wait until this century.

Tt was in particular Albert Einstein, who laid out the very basis of our current view of
an expanding Universe. With his general theory of relativity he revolutionized our ideas
about space and time. This achievement Einstein’s is also a marvelous lesson about the
power of pure thought.

With the advent of general relativity it was soon realized that it permitted cosmolog-
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ical solutions describing expanding or contracting universes. Friedmann and Lemaitre
were then the first who worked out the family of homogeneous and isotropic cosmologies.
They thus may be viewed as fathers of the Big-Bang models, although it probably does
injustice to the many other fathers that have contributed to this emerging theory. It is
interesting to note that Einstein introduced the cosmological constant into his theory, be-
cause he tried to allow a static universe as a solution of the field equations. When it was
realized that the Universe is really expanding, he dismissed it as the “greatest blunder of
his life”. However, the cosmological constant has been haunting astronomers again and
again. Most recently, observations of distant supernovae have accumulated substantial
evidence suggesting that the cosmological constant might actually be non-zero. In fact,
theoretical models for structure formation had been favouring a cosmological constant
even before these observations.

In 1929, Edwin Hubble published his famous ‘Hubble-law’, which is of fundamental
importance for cosmology and describes the observational fact that distant galaxies are
receding from us with velocities proportional to their distance. Hubble’s finding imme-
diately suggested that space itself is expanding, and that the Universe was a lot smaller
and denser in the past. Based on this observation, Einstein and de Sitter proposed in
1932 a world model based on a pressure-less critical density cosmology. This model is
still one of the standard background scenarios, and one of the most attractive cosmogo-
nies on theoretical grounds. George Gamov then realized in 1946 that the Universe was
dense and hot enough in its early phase to allow fast thermonuclear reactions. In par-
ticular, he realized that these reactions would synthesize light elements. Together with
Alpher and Bethe, he then predicted in 1948 the cosmic background radiation.

Penzias and Wilson discovered this cosmic background radiation in 1965 more or
less by chance. Dicke had been planning an experiment specifically designed to search
for it, but he came too late. Although Dicke and Peebles immediately realized that
the ‘noise’ in Penzias and Wilson’s detector was the background radiation searched for
so long, only Penzias and Wilson received the Nobel Prize. In the 1990s, the COBE
satellite discovered tiny temperature fluctuations in the microwave background, and thus
detected traces of the seeds of structure formation in the early universe. Nowadays, the
expansion of the Universe, the cosmic microwave background radiation, and the synthesis
of the light elements are the pillars of modern big-bang cosmologies.

Galaxy formation itself is really a very young subject. The first quantitative attempts
to understand it date back just 20 years ago. In the late seventies, the pioneering work
of Rees & Ostriker (1977) and White & Rees (1978) started up the modern picture of
galaxy formation. In was in particular the study of White & Rees (1978) that laid out
the main concepts of hierarchical galaxy formation. They for the first time computed the
luminosity function of galaxies based on the assumption that galaxies form by cooling
processes inside dark matter haloes. In the 1980s, these cold dark matter cosmogonies
have started to flourish, and they have now become the most widely favoured model
which is very actively investigated in current research.
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1.3 Physical processes in galaxy formation

There are many excellent monographs on modern cosmology (e.g. Weinberg 1972; Peebles
1993; Padmanabhan 1993; Peacock 1999), so I will only give a very brief and limited
account of the field in this introduction. The following sections are just meant to provide
a framework for my further studies, and to put them into perspective within astrophysics.
Note that a complete review of the current status of galaxy formation theory would easily
fill several hundred pages and is therefore beyond the scope of this thesis.

Cosmology draws just about from all fields of physics, and the breadth it has thus ac-
quired can be both a source of great stimulation and intimidation for a young researcher.
A graduate student in cosmology has to catch up with the rapidly advancing theoretical
understanding of the universe, and he has to struggle with observational astronomy, with
its often obscure terminology and arcane conventions.

Within cosmology, galaxy formation is one of the most complicated phenomena. It is
an inherently non-linear, three dimensional process, with a multitude of diverse physical
processes operating on vastly different scales. Even viewed in isolation, some of the
important processes in galaxy formation are only poorly understood, and often their
relevance for the problem of galaxy formation can be judged only vaguely. Is seems clear
however, that all of the processes in the following (incomplete) list are relevant to some
degree: (1) Evolution of the background cosmology. (2) Nonlinear gravitational collapse.
(3) Infall and shock heating of gas. (4) Radiative cooling and heating processes. (5)
Star formation. (6) “Feedback” by supernova explosions and stellar winds. (7) Galaxy
interactions and mergers. (8) Chemical enrichment and stellar evolution. (9) Galactic
winds. (10) Radiation transfer.

Below I will briefly discuss some of the most basic aspects of these processes. Note
that T will not talk about the early universe, and its crucial processes of big bang nu-
cleosynthesis and inflationary cosmology, nor do I have room to give an account of the
cosmic microwave background and the thermal history of the universe.

1.3.1 The homogeneous universe

I will assume that the cosmological principle holds, i.e. the Universe can be approximated
as being homogeneous and isotropic, at least on large enough scales. Then the spacetime
of the Universe can be described by the Robertson-Walker metric, viz.

dr?
1—kr2

ds? = ¢ dt? — a?(¢) ( + r? d92> : (1.1)

Here, spherical coordinates (r,0,¢) are used to describe spatial positions, and dQ)? =
d#?+sin? §d¢? is a shorthand for the square of the solid angle. Note that the coordinates
are comoving with the expansion of the Universe, whose spatial extent grows proportional
to the dimensionless expansion parameter a(t). By convention, a(tp) = 1 at the present
time ty3. Depending on the value of k, there are three different global geometries for the
Universe, commonly refered to as closed (k > 0), flat (k = 0) and open (k < 0).
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Einstein’s field equations simplify for the Robertson-Walker metric and for the as-
sumption that the contents of the Universe can be described as an ideal fluid. One then
obtains the Friedmann equations

a 4G 3p Ac?
and ) ) )
a 871G kc Ac
Z) ==, = 4 1.
(a) 3 P72 + 3 (1.3)

Here T also allowed for a cosmological constant A in Einstein’s equations. In the New-
tonian limit of the field equations, it is easy to see that A effectively acts as an energy
density ppc? = c*A/87G of the vacuum.

In order to solve the Friedman equations, an equation of state for the cosmic fluid
needs to be specified. There are three main components of the material content of the
Universe: baryons, dark matter and relativistic matter, like photons or neutrinos. Note
that I will assume that the dark matter consists of some form of a weakly interacting
massive particle (WIMP). In the early Universe, the energy density is dominated by
radiation and relativistic particles, hence the equation of state is given by p = %ch.
However, as the Universe expands, the energy density of radiation decays as a~*, while
that of non-relativistic matter just scales as a~3. From the temperature of the cosmic
microwave background we can then infer that ordinary matter dominated over radiation
for most of the history of the Universe. In this phase, the pressure can be neglected
altogether (dust universe). In this study I will only be concerned with lookback times
that are always in the matter-dominated phase.

The Hubble constant is defined as the expansion rate at the present time #y:

Ho=-| . (1.4)

Often, I will parameterize the value of Hy by Hy = 100 h kms~! Mpc™!, where A is a
dimensionless fudge factor that will appear in many quantitative results in this work.
The matter content of the universe is usually expressed in terms of the critical density

32
_ 2o 1.5
Pc 8nC (1.5)
allowing the definition of useful cosmological parameters:
p Ac? kc?
Q== N=—s, Q=-——=. 1.6
0 e A 3 Hg c a% Hg ( )

Note that these definitions refer to the values of the corresponding quantities at the
present time. If desired, the definitions can also be used to define time dependent
cosmological parameters. Upon division by HZ, the Friedmann equation (1.3) at the
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present time becomes Qg + Q. + Q4 = 1, while (1.2) takes the form ¢y = %Qo — Q4.
Here, the deceleration parameter

was introduced; it is sometimes used to parameterize cosmological background models.
Using the above definitions, a simple matter-dominated universe may thus be completely
specified by the cosmological parameters (Hp, Qg, 24) or (Hg, Q0,qo). Once these para-
meters are known, the expansion rate as a function of size is given by

H(a) = g — HyE(a), (1.8)

where

B(a) = /Qa=? + (1 — Qo — Qa)a=2 + Q4. (1.9)

These basic relations may also be used to compute the lookback time to a given size of

the Universe in the past, i.e.
da

t(a) = /a1 peant (1.10)

At present, it is still one of the major goals of observational cosmology to determine the
numerical values of the cosmological parameters.

The perhaps simplest cosmological model is a flat universe with zero cosmological
constant. It is commonly called Einstein-de-Sitter universe and is characterized by 2y =
1 and Qp = Q. = 0. Since the simplest inflationary theory predicts a critical density
universe, this model is very attractive on theoretical grounds. However, in the last
ten years evidence has been constantly growing that we probably live in a low-density
universe with g ~ 0.3. Very recently, there have also been strong observational hints
that the cosmological constant is non-zero. In fact, the observations of distant supernovae
suggest that Qp ~ 0.7, implying that the universe might be vacuum dominated at the
present time, and that the rate of expansion is actually accelerating (go < 0).

Objects at cosmological distances are seen redshifted by z = (Agbs — Aem)/Aem, Where
Aobs 18 the observed wavelength, and Aem is the wavelength in the emitter’s rest frame.
This cosmological redshift z is of fundamental importance in the study of the Universe
because it can be directly measured with observations of spectra. If one neglects peculiar
motions and solves the geodesic equation of the observed light ray one finds that the

redshift can be expressed as
1

a(tem)
This redshift arises because space itself expands, and it is therefore quite different from
the ordinary Doppler effect. The above relation characterizes both the distance of the

object and the epoch of the emission of the light. The redshift may therefore serve as a
convenient time variable, and I will frequently employ it in that sense.

z+1=

(1.11)
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1.3.2 Gravity and the growth of structure

Above I have briefly discussed the dynamics of homogeneous universes. Clearly, the
observed Universe is far from being homogeneous — there is an enormous richness of
structure ranging from dwarf galaxies, to groups and clusters of galaxies, and finally to
huge superclusters. For the observer, galaxies appear as islands of stars, with stellar
densities 10® times larger than the mean stellar density. Their typical size is roughly
10kpc, yet their average distance is of order 1 Mpc.

Nevertheless, the common assumption is that on scales somewhat larger than 100 Mpc
homogeneity is approached. If the Universe is smoothed on larger scales, it will appear
homogeneous. Despite its small-scale lumpiness the global dynamics of the Universe can
then still be described by the Friedmann-Lemaitre models.

The currently favoured theories of structure formation in the Universe assume that
the structure grows due to gravitational instability out of primordial fluctuations in the
density. Note that these theories are in principle completely specified by their initial
conditions. In the simplest case, these are already fully given by the form of the initial
fluctuation spectrum, and by the values of the cosmological parameters. However, the
problem encountered in practice is that it is highly non-trivial to compare the predic-
tions of such a model (the clustering of dark matter) with the objects that are actually
observed (the galaxies).

At this point, it is worth pointing out that the dominant interaction that governs
the dynamics and evolution of galaxies, stellar systems in general, and of large-scale
structure in the Universe is gravitation. Although dissipative gas physics is clearly
important for galaxy formation, it likely plays only a minor role for the structure of
elliptical galaxies, for clusters of galaxies, for the dynamics of large-scale structure, and
for other gas-poor objects. The relative importance of the gravitational interaction is
corroborated since it appears that the majority of the mass of the Universe consists of
dark matter, which has been detected only by its gravitational interactions. Modern
cosmology assumes that there is a class of yet unidentified particles contributing as dark
matter to the mass density. While the dark matter has not been directly detected on
Earth so far, there is a lot of indirect evidence that demonstrates its existence. This
indirect evidence stems from the dark matter’s gravitational effects on its surroundings,
seen for example in the orbital motions of galaxies within clusters, or in the gravitational
lensing of background galaxies by massive foreground objects, in the rotation curves of
galaxies, or in the kinematics of their satellites.

The dark matter is believed to interact with other matter only by gravity. This
idea brings a great simplification, because the dynamics of the dark matter can then be
studied using the laws of gravity alone, without having to worry about the much more
complicated physical processes related to the gas that ultimately forms the stars in the
visible parts of galaxies.

The study of the growth of density perturbations under their self-gravity in an ex-
panding universe is therefore one of the major topics in cosmology. As long as the
fluctuations are small, the equations of motion can be linearized by expanding around
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the homogeneous solution. The resulting linear theory together with its higher-order
extensions are among the best methods to study the formation of large-scale structure.
However, especially in the context of galaxy formation, analytic techniques are severely
limited by the inherently non-linear character of gravity. In galaxies, the mean density is
more than ~ 107 times larger than the background density, making linear theory useless.
There are a few special analytic solutions for the nonlinear collapse of structures, most
notably the spherical collapse model. While these solutions offer invaluable insight into
the relevant dynamics, they provide no adequate description for the highly asymmetric
processes occurring in hierarchical galaxy formation.

Consequently, direct numerical simulation of the gravitational dynamics has become
an indispensable tool in cosmology. At the heart of these methods lies the gravitational
N-body problem, which describes the dynamics of a collection of N point particles of
comparable mass under their mutual gravity. For example, the stars in a galaxy, or the
dark matter ‘particles’ of the Universe are often modeled as N-body systems. Below I will
briefly try to summarize the basics of linear theory and cosmological N-body simulations
in turn.

1.3.2.1 Linear theory

Dark matter is assumed to behave as a collisionless fluid for most of the history of
the Universe. Since the number of particles is believed to be very large, gravitational
two-body scattering events occur at such a low rate, that the system can be accurately
described in terms of a smooth one-particle distribution function f(r,v,t) in phase space.
This distribution function can be interpreted as a number or mass density, giving the
probability of finding a particle near the phase-space point (r,v) at time ¢.

Assuming that there are no collisions between particles, the phase-space evolution is
given by the collisionless Boltzmann equation (CBE), also known as Vlasov equation. It
simply describes conservation of phase-space density along a particle trajectory, viz.

ar_of, of ovar
-9t Vor arav (1.12)

This states that the phase space fluid f streams freely in the self-consistent potential @,
which is obtained as solution of Poisson’s equation

V2®(r,t) = 4nGp(r, 1), (1.13)
where the density

plrt) = [ F(e,v,t)dv (1.14)
is simply a moment of the distribution function. We may also define a mean velocity
field as

1
v(r,t) = ;/vf(r,v,t)dv. (1.15)
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Taking further moments with respect to velocity, it is easy to derive an equation for
the mean streaming that corresponds to the familiar Euler equation of fluid dynamics
(Binney & Tremaine 1987):

ov 1 —
— -V)v=-V® - —(P- . 1.16
5t (V) S (P-v) (1.16)
The last term on the right hand side describes an anisotropic kinetic pressure arising
from random motions of the particles. This stress tensor P is defined as

Py = p({(vivg) — {os) (v5)) (1.17)
where

1
(vivj) = ;/Uivjf(r,v,t)dv, (1.18)

and (v;) is just a component of the mean velocity field defined in equation (1.15). For
a collisionless gas, the velocity distribution may be far from isotropic, and the resulting
shear stress can give rise to a collisionless damping process called free-streaming damp-
ing. In simple words, particles can damp perturbations by flying away from overdense
or underdense regions at their thermal speeds. This process is relevant for so-called ‘hot’
dark matter. However, if one is dealing with ‘cold’ dark matter, the pressure term can
be neglected in linear theory. Here, one is usually interested in a regime where the scale
X of a perturbation is larger than the Jeans length \; = (702/Gp)'/2, i.e. gravity is
more important than pressure. Note however that the pressure term is bound to become
important for the structure of nonlinear collapsed objects.

We will now discuss the evolution of perturbations in an expanding universe. It is
convenient to employ so-called comoving coordinates x defined by

r = ax, (1.19)

where a is the scale factor. These coordinates take out the uniform expansion of the
background metric. The physical velocity r of a particle can then be written as

r = ax + ax, (1.20)

where the motion relative to the comoving frame, v = ax, is called the peculiar velocity,
and ax = Hr is the Hubble flow. Note that the velocity v used in the discussion above
(equations 1.12 to 1.18) is really r, and not the peculiar velocity.

In principle, the proper treatment of the growth of structure in the universe requires
the use of general relativity. However, in the limit of non-relativistic motions, and for
fluctuations well inside the horizon, the relevant equations reduce to the Newtonian
limit. The only difference lies in the occurrence of the cosmological constant, describing
effectively a pressure of the vacuum. In physical coordinates, the ‘Euler’ equation in the
Newtonian limit then becomes

dr or VP

E:E (r-Vr)r:—Vr@—

+ QpHZr, (1.21)
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where T adopted an isotropic pressure P = po?, for simplicity. In the following, I will
drop the pressure entirely, which is appropriate for a cold collisionless fluid.

We know rewrite the Euler equation in comoving coordinates. Note that ¥ = ax +
2ax + ax and V, = %Vx. The term involving @ can be eliminated using equation (1.2),
which may be written as

a anG
— =O\H; — — . 1.22
o Ao 3 P ( )
One then obtains ) ) G
x+2%% = "V, 0+ " px. (1.23)
a a 3

Note that the Q5-term has cancelled. It is only implicitly present through the equation
governing the expansion rate. The term linear in x describes the attractive force from
the mass inside a sphere of radius |x| with background density. By defining the peculiar
gravitational potential as

$(r) = -G / % dr’ (1.24)

this term can be incorporated into the potential gradient. One then obtains the equation
of motion

; 1
% +2%% = —— V. (1.25)
a a

This shows that it is really the density fluctuation field 6p(r) = p(r) — p that causes
motions in the Newtonian limit. Note that the formulation of equation (1.25) also treats
the boundary conditions in Newtonian theory properly.

In linear theory, we expand the equations of motion around the homogeneous uni-
verse. To this end, one commonly introduces a dimensionless density contrast

5(X,t) — p(X,t) — ﬁ(t) ]

— 1.26
70 (120
The fluid equations can then be written as
64 (14 0)Vx =0, (1.27)
IPLE L Vo (1.28)
X+2-x=—— .
a a2 "’
V2¢p = 4nG 5 a’s. (1.29)

The first of these equations is just the continuity equation. Note that all spatial deriv-
atives in these three equations now refer to the comoving coordinates x. Combining
these relations and assuming that the fluctuation field is small, one can drop all terms of
higher than linear order in § and x. Note that x vanishes for the homogeneous universe.
One then obtains

§+2%6=4rGp0o (1.30)
a
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as a single equation for the density contrast. This linear equation in § looks just the
same in Fourier space, i.e. all Fourier modes are decoupled and grow independently from
each other. In general, equation (1.30) has two independent solutions, a growing and a
decaying mode. For €}y = 1 the solutions are particularly simple. The growing mode is
§ x t2/3 x a, and the decaying one is § o ¢t~'. It is interesting to note that the Hubble
parameter H(t) = a/a itself fulfills equation (1.30). Since H(t) decreases with time, at
least as long as the universe is not dominated by the cosmological constant, H(t) is a
decaying solution. The growing solution can then be obtained from H(¢) by observing
that the Wronskian W = |86, — 003| of two independent solutions &,, 0 of equation
(1.30) has the value a=2. For a general cosmology, the growing solution is thus

! a(t) a
5(t) o< D(t) = H(t) /Otm :H(t)/o t ‘2—3. (1.31)

1.3.2.2 Zel'dovich approximation

Zel’dovich suggested another approach to linear theory. Using the kinematical ansatz
x(t) = q +b(t) s(a), (1.32)

his method assumes that the particles continue to move in the direction of their ini-
tial displacement. Here, the comoving coordinates q are the original, unperturbed La-
grangian positions of the particles. Equation (1.32) provides a mapping from the homo-
geneous particle distribution described by q to the perturbed distribution described by
the Fulerian coordinates x. Linearizing the Jacobian of this mapping, it is easy to show
that the density perturbation is given by

§=—b{t)V-s. (1.33)

Since the first order Lagrangian perturbation theory needs to agree with the first order
Eulerian perturbation theory treated above, we can infer that b(¢) must be equal to
the growing solution D(t) — otherwise we do not obtain §(¢) o< D(t). The Zel’dovich
approximation is therefore given by

x(t) = q+ D(t) s(q). (1.34)

Comparison with equation (1.28) and (1.30) shows that the direction of the particle
displacement d(t) = x(¢) — q is given by the gradient of the peculiar potential, viz.

Vo

d=-——"—. 1.35
47 G p a? (1.35)
Similarly, the peculiar velocity is proportional to the displacement field
. D
vV =ax :aﬁd = aH(a)f(Q)d. (1.36)
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The last term expresses v in terms of the logarithmic derivative

QO 0.6
a+ Q1 —a)+ Q(a® —a)

_ dlogD

f() ~ Q(a)*® =

= 1.37
dloga ( )
of the growth factor. The approximation f() ~ Q(a)"® is quite accurate and therefore
often used instead of a cumbersome exact computation of the growth factor with equation
(1.31). In particular, one may now express the peculiar velocity as

_2f(9)
V=3 H0® (1.38)
where g = —V¢/a is the peculiar acceleration.

The advantage of the Zel’dovich approximation lies in its ability to still provide a
reasonable approximation when linear theory already starts to break down. In order
to construct initial conditions for cosmological N-body simulation, one therefore usually
employs the Zel’dovich approximation to initialize particle velocities via equation (1.36).

1.3.2.3 N-body simulations

Although linear theory is an extremely valuable tool to study the early growth of struc-
ture, and the growth on scales that are so large that they are still in the linear regime at
the present time, it is clearly limited by its inability to describe the non-linear evolution
of structure. Using higher order perturbation theory, the validity of the analytic method
can be extended somewhat, albeit at the expense of highly increasing mathematical
complexity. There are also a small number of tractable analytic models for non-linear
gravitational collapse. However, these solutions are limited to very special initial con-
ditions of high symmetry. Computer simulations that directly solve the full non-linear
equations provide an alternative approach that has become increasingly popular with
the advent of ever more powerful computers. In this thesis, I will make extensive use of
such simulation techniques.

As was discussed above, dark matter is assumed to obey the collisionless Boltzmann
equation (CBE). In principle, one may thus try to directly solve this six-dimensional
partial differential equation. However, this is mathematically very difficult and compu-
tationally usually not competitive with a simple alternative approach: In the N-body
method, one replaces the smooth function f(r,v) with a set of N particles, which es-
sentially represent d-functions in phase space. This system of particles is then evolved
under its self-gravity. If enough particles are used, their collective potential will be a
good approximation to the true potential of the underlying distribution function and the
particles will approximately move along characteristic curves of the true solution of the
CBE. The evolved particle system will then provide a fair sampling of the phase-space
of the true distribution function f(r,v). In essence, the N-body method may thus be
viewed as a Monte-Carlo technique to solve the CBE.

Large gravitational N-body systems like galaxies can also be described by the CBE
(Binney & Tremaine 1987). In this case, the physical system that one tries to model is
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clearly represented by a large, but finite number of bodies - the stars of the galaxy. Since
dark matter is important for the structure of galaxies, there are actually two separate
collisionless components, the stars and the dark matter.

In the context of a many-particle phase-space description, the CBE amounts to
neglecting particle-particle correlations altogether, i.e. many-particle distribution func-
tions are assumed to simply factorize in products of one-particle distribution functions.
This approximations holds as long as the relaxation timescale associated with gravita-
tional ‘Rutherford-scattering’ is much larger than the natural dynamical time scale of
the system. The larger the number N of bodies in an object of a given size, the longer
the relaxation time. For galaxies with 108 stars it is already far longer than the Hubble
time. Note however, that small star clusters with 10* stars are usually not well described
by the CBE any more. As a note of caution one might also add that although the CBE
is physically well motivated, there is often no rigorous proof of its validity (Kandrup
1997). Similarly, estimates of the time scale where it might be expected to fail have only
approximative character.

In numerical N-body simulations one is usually forced to use a much smaller number
of particles than are actually present in the modeled astrophysical system. For exam-
ple, state-of-the-art simulations of galaxies use of the order 10° particles to represent
the stars of an isolated galaxy, some five to six orders of magnitude less than the real
number of stars. To prevent excessive two-body relaxation, one resorts to a numerical
trick and introduces an explicit softening of the gravitational force, i.e. at small sep-
arations the gravitational force is smoothly reduced below the Newtonian value. One
thus deliberately introduces a lower resolution cut-off. This reduces gravitational two-
body scattering, and it also simplifies the numerical orbit integration by allowing larger
timesteps. More technical details about our numerical techniques will be given in Chap-
ter 5.

In this study, I will use two ‘types’ of N-body simulations. Chapters 2 and 3 are
concerned with simulations of individual and interacting galaxies. In these simulations,
the galaxies are simulated with vacuum boundary conditions, i.e. the background cos-
mology is neglected. Since the galaxies have already collapsed during their formation
and decoupled from the expansion of the universe, this is a fair approximation. One
needs to keep in mind though, that this approach neglects the possible further infall of
material and the gravitational tidal fields of matter in the surroundings of the galaxies.

In the second class of simulations, I consider ‘proper’ cosmological simulations. These
simulations start shortly after the Big Bang, with a mass distribution that is close to
being perfectly homogeneous. The initial Lagrangian particle positions are perturbed
according to the fluctuation spectrum predicted by inflationary cosmology (Guth 1981),
and the initial particle velocities are set with the Zel’dovich approximation.

The initial fluctuation spectrum of cold dark matter cosmologies can be described
by (Efstathiou et al. 1992)

P(k) = Bk o (1.39)
{1+ [ak + (k)3 + (ck)?]”}
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where ¢ = 6.4T" ' h~'kpe, b = 3.0T ' h~'kpc, ¢ = 1.7T~ ! h~'kpc and v = 1.13. This
form is able to fit a wide class of theoretical models where I' acts as a shape parameter
of the power spectrum. The standard, flat, scale-invariant, adiabatic cold dark matter
model (SCDM) is accurately fitted for I' = h. Flat cold dark matter models with
a cosmological constant are also reasonably well described if I' = Qgh. Variants of
CDM models that exhibit more large scale power due to decaying neutrinos are well
approximated if T' ~ Qyh[0.861 + 3.8(m 7)%/3]'/2, where m is the neutrino mass in units
of 10keV and 7 is its lifetime in years.

The form of equation (1.39) results from a scale-invariant primordial power-spectrum
P(k) x k, modified by the linear growth of fluctuations during the early phase of the
universe. Here, the growth rate of individual modes differs depending on whether they
are in or outside the horizon, leading to a bend in the power spectrum. A critical pre-
diction of inflationary theory is that the initial fluctuations form a Gaussian random
field. In this case, they are completely determined by their power spectrum alone, and
all phase correlations vanish. Alternative models for seeds of cosmic structure, e.g. topo-
logical defects like cosmic strings, typically introduce such higher-order correlations. In
Chapter 6 I will directly test the Gaussian random phase hypothesis by studying the
topology of isodensity surfaces in the observed density field of the Universe.

After the start of a cosmological simulation, it first continues to follow the further
linear growth of perturbations. However, unlike the analytic techniques, it is then capa-
ble of accurately following the evolution into the mildly non-linear, and finally into the
highly non-linear regime. In this way, the simulation is able to correctly compute the
hierarchical growth of structure.

In universes dominated by cold dark matter, primordial fluctuations survive on small
scales. The first structures that undergo non-linear collapse are then small objects of
sub-galactic mass. These objects then cluster together, and merge hierarchically into
larger and larger objects. Galaxy formation thus proceeds in a bottom-up picture, where
larger galaxies tend to form later than smaller ones. In this picture, huge clusters of
galaxies, which are the most massive non-linear objects at the present time, form very
recently.

In models with hot dark matter galaxy formation would proceed very differently.
Due to the damping of fluctuations on small scales, the fluctuation spectrum would
be dominated by scales that are close to the horizon at matter-radiation equality zeq.
As a result, the first structures that form are clusters and superclusters, which then
need to fragment into smaller objects like galaxies. This top-down picture for galaxy
formation has been successfully ruled out, simply because it proved to be incompatible
with observations. However, there is still the possibility that a small admixture of hot
dark matter contributes to the density of universe.

In the cosmological simulations of this work, discussed in Chapter 4, I specifically
study the formation of a rich cluster of galaxies. By using substantially more parti-
cles than in all so far published work on this problem, the mass resolution of these
simulations has been greatly increased. The resulting highly resolved dynamics of the
dark matter is then used to construct the galaxy population of the cluster using semi-
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analytic techniques. In this way, an explicit model for the formation of cluster galaxies
is constructed.

1.3.3 Hydrodynamics

In the currently favoured class of cosmogonies it is assumed that most of the mass
of the Universe is in the form of cold dark matter, which interacts only gravitationally.
However, there is of course also a contribution to the matter density made up of ordinary
baryonic material. After all, the baryons are responsible for the luminous stars we see,
and for the life on this planet.

One can try to model the baryonic gas of the Universe along with the dark matter.
The gas component is gravitationally coupled to the dark matter, but unlike collisionless
material it also feels hydrodynamical forces arising from its thermal pressure. This ap-
parently simple difference gives already rise to the rich phenomenology of gaseous shocks
and turbulence. So even in the simplest case of a non-radiative gas, hydrodynamics adds
substantial physical complexity. Note that the highly simplified assumption of a non-
radiative gas is a reasonable approximation for the hot plasma in clusters of galaxies,
and has hence immediate applications in this context.

At the next level of complexity, radiative heating and cooling processes can be taken
into account. In contrast to the dark matter, the baryonic component can lose part of its
internal energy by radiative processes. White & Rees (1978) were the first who suggested
that galaxy formation essentially proceeds in two stages, for which these cooling processes
are of critical importance. First, dark matter haloes form in a collisionless gravitational
collapse, and then baryons sink to the centers of these haloes. The condensation of
baryons in the halo centers is only possible because the gas can dissipate energy by
emitting radiation. Radiative cooling thus plays a primary role in the formation of
galaxies, but it is also required to understand properties of the intergalactic medium
such as the absorption lines in QSO spectra generated by gas clouds along the line of
sight.

The gasdynamical equations adopted in cosmological studies are usually those of
an inviscid ideal gas, supplemented with optional heating and cooling terms in the
energy equation. Since the densities in astrophysical plasmas are usually very low, this
description is sufficient. The relevant equations (continuity equation, Euler equation,
and energy equation) are then

dp
3 tPVv=0, (1.40)
dv VP
A A VL ) 1.41
& P Vo, (1.41)
du P Theat — Acool
- __V%. —acat Teool 1.42

where u is the specific energy per unit mass, and heating and cooling terms were intro-
duced in the energy equation. Usually, an adiabatic equation of state P = (y — 1)pu is
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assumed. For simplicity, I have written these equations in their Newtonian form. The
adaptation to an expanding universe is discussed in Chapter 5.

Most of the relevant radiative heating and cooling processes in cosmology are well
understood by atomic physics, and the rates of these processes can be computed pre-
cisely. However, in some astrophysical situations a multi-species chemistry together
with proper radiative transfer calculations are required to accurately follow the radia-
tion processes. In this study, I will not be concerned with situations that reach such a
degree of complexity.

The astrophysical plasma encountered in studies of galaxy formation is an ionized
mix of hydrogen and helium of primordial abundance, which may also be polluted by
a small admixture of ‘metals’, i.e. with elements more massive than helium. Under the
assumption of collisional ionization equilibrium, the cooling rate of such a plasma can be
computed as a function of metallicity. Note that the cooling rate depends quite strongly
on metallicity. The treatment of chemical enrichment in galaxy formation models can
therefore be very important.

From a technical point of view, it is not very difficult to include radiative cooling
into gasdynamical simulations. One only needs to look up tabulated results for the
cooling function, and then use it in the thermal energy equation. However, the inclusion
of cooling alone can lead to the problem of over-cooling. This describes the formation
of extremely dense and cold gas clumps. In reality it is assumed that star formation
and accompanying feedback processes prevent the formation of these knots of cold and
extremely dense gas. Hence the inclusion of cooling more or less requires the inclusion
of these processes as well.

1.3.4 Star formation, feedback and other trouble

In the first step of galaxy formation, dark matter forms virialized haloes in a process
known as violent relaxation. Gas then falls into the potential wells provided by the
dark matter and heats up by shocks. Inside the haloes, the baryonic gas becomes dense
enough to participate in radiative cooling processes at an appreciable rate. It will thus
lose pressure support and sink to the center of the halo, where it eventually will form
luminous stars.

Up to this point, the general framework of galaxy formation is relatively well known,
both analytically and numerically. However, the severe problem with actual star forma-
tion is that important parts of it are not understood in detail. What seems relatively
clear is that the condensation of gas leads to the formation of a complex multi-phase
interstellar medium. Among the phases one also expects a population of giant molecular
clouds. These complexes may fragment or collide with each other. Eventually, the cores
of molecular clouds may undergo collapse down to stellar densities, with the subsequent
onset of thermonuclear reactions. It is not well understood, what triggers the collapse,
nor what the mass spectrum of the formed population of stars is going to be.

Clearly, in an actively star forming region, violent things go on, and the gas physics
is expected to be highly non-linear. When a new stellar association has formed, its
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UV radiation can ionize gas and significantly alter the thermodynamic properties of the
interstellar and intergalactic medium. The stars may also affect the surrounding gas
by powerful mass-loaded winds. Furthermore, most massive stars will only live a short
time, and then explode as supernovae. The powerful shock waves of supernovae can
blow holes into the interstellar medium, or they might even blow it away entirely in
small dwarf galaxies.

All these processes associated with star formation deposit energy back into the
gaseous medium, and are therefore usually refered to as feedback. Unfortunately, the
current understanding of the detailed mechanisms of feedback is probably even worse
than that of star formation. However, feedback is thought to provide an important
regulation mechanism for star formation. For example, the star formation rate in ordi-
nary disk galaxies is relatively constant with time, presumably a result of self-regulation
of star formation by feedback. The two problems of star formation and feedback are
therefore intertwined and probably require a simultaneous solution.

Given these conceptual difficulties, it is clear that star formation cannot be treated
from first principles at this point. It should also be noted that the numerical resolution
of currently feasible simulations of whole galaxies is still by orders of magnitude too poor
to resolve individual star formation events. Simulation strategies for star formation have
therefore usually adopted one of two approaches. In one approach, one focuses on a very
small patch of the interstellar medium, say a cold molecular cloud, and then tries to
follow its evolution with very high numerical resolution. In this method one tries to
incorporate the physics as realistically as possible. In a complementary approach, one
attempts to simulate the formation or evolution of whole galaxies. Here, one would
already be content with a good description of the global star formation rate and of the
global dynamics of the interstellar medium. In this latter approach one therefore resorts
to phenomenological models for star formation and feedback, which are motivated by
observational data.

In Chapter 3 of this thesis, I will study the dynamics of the baryonic component in
simulations of isolated and colliding galaxies. These relatively small simulations provide
ideal laboratories to examine the physics of the gaseous phase, and to explore phenom-
enological models for star formation and feedback. The model I develop turns out to be
quite successful for isolated and colliding galaxies, but the inclusion of dissipative gas
physics is numerically very costly. In particular, a dissipative cosmological simulation
with comparable resolution to the large cluster studied in this work is not yet possible
(this will likely change in the near future with the advent of newer generations of com-
puters). This highlights that ‘semi-analytic’ galaxy formation techniques may currently
be the best tool to study galaxy formation using cosmological initial conditions. In such
models, the gasdynamical equations are replaced by a set of simplified yet physically
motivated approximations for the star formation rate, the feedback, merger timescales,
etc. I will use such a method in Chapter 4 to study the formation of cluster galaxies.

In passing, I just want to briefly caution that galaxy formation offers a further variety
of potentially important effects, all of them explored to some level, but mostly without
final conclusions yet. For example, magnetic fields could be important for the dynamics
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of the ionized gas if the primordial seed fields are strong enough, or if dynamo processes
are effective. Currently it appears that magnetic fields are probably unimportant for
galaxy formation; considering the complexities of magneto-hydrodynamics this certainly
comes as a relief. Another debated issued is the potential relevance of central, super-
massive black holes for the formation of galaxies. Note that even if such black holes play
no important role for the actual formation of the galaxy, they will probably strongly
influence the structure and dynamics of the galaxies’ innermost part.

1.3.5 Mergers of galaxies

As discussed above, mergers of galaxies are a common and inevitable process in hierarchi-
cal theories of galaxy formation. In these models, mergers are not only a mechanism for
building up ever more massive stellar systems, but they also determine the morphology
of galaxies to a large extent.

Observed galaxies exhibit a wide class of morphological types, ranging from almost
featureless elliptical galaxies over disk-like objects to magnificent grand design spiral
galaxies, which are probably among the most beautiful objects on the sky. When gas
cools inside a dark matter halo, it first settles into a rotationally supported disk, because
it still carries some of its initial angular momentum. Star formation inside this gaseous
disk will then produce a stellar disk. It is thus thought that this generic mode of star
formation produces the populous class of disk and spiral galaxies.

When two disk galaxies of comparable mass collide and merge, the disks are destroyed
and a spheroidal remnant results, with structural properties resembling elliptical galax-
ies. According to the merger hypothesis it is therefore believed that most, if not all,
elliptical galaxies form under the influence of galaxy mergers.

If one studies the morphologies of observed galaxies in detail, one finds that there also
exists a large class of ‘peculiar’ galaxies, which cannot be classified as bona-fide elliptical
or disk galaxies. These galaxies often feature long and extended tails of stars, protruding
from their main body to distances reaching several hundred kiloparsec. Among the
most famous systems of this type are the ‘Antennae’ galaxies (NGC4038/39), the ‘Mice’
(NGC4676), or Arp295, and many more of them may be found in Arp’s Atlas of Peculiar
Galazies.

In a classic paper, Toomre & Toomre (1972) showed with simple numerical experi-
ments that such tails can be ejected by tidal forces in close encounters of dynamically
cold disk galaxies. It is now generally accepted that the stellar tails seen in many pe-
culiar galaxies are indeed generated when two galaxies collide with each other. Usually,
such encounters lead to a final coalescence of the galaxies, where they form a single pile
of stars and lose their original identity.

Recall that the stars seen in a pair of colliding galaxies represent only the visible
part of the galaxies. In all viable models of cold dark matter cosmologies, the mass
of the dark matter halo belonging to a galaxy is expected to be much larger than the
total baryonic mass of the disk itself. Also note that the dark haloes are much more
extended than the disks. This points to a potential problem with such models, because
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disk galaxies embedded in massive and extended dark haloes can have difficulty to form
tidal tails. This is because such galaxies experience higher encounter velocities, leading
to a smaller overall strength of the perturbation of the disk. In addition, the perturbed
material has difficulty to climb out of the deeper potential well. This therefore suggests
a potential conflict of cold dark matter models with the observed existence of long tails.
In Chapter 2, I will further examine this problem using collisionless N-body simulations
of colliding disk galaxies.

When two disk galaxies of similar structure collide, strong gravitational tides during
their first encounter can induce a bar instability that quickly transforms the disks into a
pair of open bisymmetric spirals. The interstellar gas contained in the disks loses parts
of its angular momentum in this process. As a result, the gas is driven towards the center
of the galaxies, where the high inflow rate can start and feed a violent starburst. In such
a burst, the total star formation rate can reach values of more than 100Mg yr—!, about
two orders of magnitude larger than that in quiescently star forming spiral galaxies.
Since the centers of galaxies are heavily obscured by dust, much of the optical and UV
radiation of the newly formed stars is re-radiated in the infrared. As a result, such
galaxies become extremely luminous in the infrared and often outshine optically bright
galaxies. This class of ultraluminous infrared galaxies has been discovered by the IRAS
satellite, and it is now generally assumed that many of these objects are undergoing
an interaction-induced starburst. Some of my hydrodynamical simulations of colliding
galaxies in Chapter 3 will examine this phenomenon in more detail.

1.4 Outline

The formation of galaxies is one of the most active fields of research in cosmology. This
fact alone illustrates that as of yet no final theory for galaxy formation exists. Obviously,
this work cannot provide one either — its aims have to be more modest.

In this thesis, I work mainly on two related aspects of galaxy formation. In one
line of research, I study the evolution and interaction of individual disk galaxies. In
particular, I will consider major mergers of spiral galaxies, and the formation of elliptical
remnants. In a complementary line of research, I apply semi-analytic models for galaxy
formation to high-resolution cosmological simulations of the formation of a rich cluster
of galaxies. Here, the full galaxy population of a cluster is constructed in the framework
of a hierarchical cold dark matter model. A common tool needed in both approaches
is a powerful simulation code, which employs sophisticated numerical techniques. Its
development represented a substantial part of this work, and may thus be viewed as
representing the third line of research in this thesis. Finally, in a fifth line of research I
test the Gaussian random phase hypothesis for the initial conditions of galaxy formation
using the topological genus measure.

In Chapter 2, I discuss collisionless simulations of mergers between disk galaxies.
These numerical experiments focus on the question, whether the structural properties
expected for disk galaxies in currently viable cold dark matter models contradict the
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observed occurrence of long tidal tails in pairs of interacting galaxies.

I will then move on in Chapter 3 to simulations of galaxies that include a modeling
of the gaseous interstellar medium and its associated star formation processes. Here, I
develop a model for the self-regulation of the star formation rate using a phenomenolog-
ical approach to feedback. I then apply this model to mergers between gas-rich spiral
galaxies, allowing a study of the resulting starbursts, and of the structural properties of
the merger remnants.

While these first two chapters deal with simulations of individual galaxies under
vacuum boundary conditions, I carry out high-resolution cosmological simulations of
the formation of a rich cluster of galaxies in Chapter 4. These simulations achieve a
very high mass resolution (up to 69 million particles have been used) and have been run
on a massively parallel supercomputer. I develop new techniques to identify and track
substructure within the dark matter halo of the cluster and its progenitors, allowing a
much more detailed analysis of the dark matter merging history than it has been possible
before. I use this substructure information to implement a new semi-analytic scheme
for the formation of cluster galaxies, and I show that it leads to remarkably successful
results.

In Chapter 5, I will discuss the numerical techniques developed for the simula-
tions presented in this work. The newly written code is a combined N-body grav-
ity /hydrodynamics solver, where gasdynamical interactions are treated with so-called
smoothed particle hydrodynamics, while the gravitational interaction is computed with
a hierarchical tree algorithm. The code employs individual timesteps for all particles,
and it has been developed in a serial and a parallel version. The latter was designed
to run on massively parallel supercomputers with distributed memory, using explicit
message passing routines. The serial version of the code has also been adapted to the
special-purpose hardware GRAPE , which may be used instead of the tree-algorithm to
compute the gravitational forces.

A critical assumption in current cold dark matter theories is the hypothesis that
the primordial fluctuation spectrum was a Gaussian random field. In Chapter 6, I will
directly test this hypothesis by examining the topology of the large-scale density field,
as measured with the 1.2-Jy redshift survey of IRAS galaxies. I compare the genus
statistic of the 1.2-Jy survey with numerical N-body models for the clustering of dark
matter, and I invest particular care in the statistical methodology of this comparison.

Finally, I will give in Chapter 7 a brief summary of the findings of this thesis, and
an outlook for future work.

34



—Man braucht sich bloB die Miihe zu machen, finf
Minuten nachzudenken, dann begreift man, dafl einem
das Leben nichts Aufregendes bietet aufier ein paar Din-
gen, die man nicht kaufen kann. Ich machte mein Bier
auf und dachte an Betty.

Philippe Djian, Betty Blue

Tidal tails in CDM cosmologies

Abstract

We study the formation of tidal tails in pairs of merging disk galaxies with structural
properties motivated by current theories of cold dark matter (CDM) cosmologies.
In a recent study, Dubinski, Mihos & Hernquist (1996) showed that the formation
of prominent tidal tails can be strongly suppressed by massive and extended dark
haloes. For the large halo-to-disk mass ratio expected in CDM cosmologies their
sequence of models failed to produce strong tails like those observed in many well-
known pairs of interacting galaxies. In order to test whether this effect can constrain
the viability of CDM cosmologies, we construct N-body models of disk galaxies
with structural properties derived in analogy to the analytical work of Mo, Mao &
White (1998). With a series of self-consistent collisionless simulations of galaxy-
galaxy mergers we demonstrate that even the disks of very massive dark haloes
have no problems developing long tidal tails, provided the halo spin parameter is
large enough. For our class of models, the halo-to-disk mass ratio is not a good
indicator of the ability to produce tails. Instead, the relative size of disk and halo,
or alternatively, the ratio of circular velocity to local escape speed at the half mass
radius of the disk are more useful criteria. This result holds in all CDM models.
While tidal tails can provide useful information on the structure of galaxies, it
thus appears unlikely that they are able to constrain the values of the cosmological
parameters within these models.

2.1 Introduction

In standard hierarchical scenarios for galaxy formation, mergers of galaxies are common
events that lead to the build-up of ever more massive galaxies. In fact, such mergers have
been observed for a long time. There is now a large database of well studied examples
of merging or strongly interacting disk galaxies, among the most prominent of them
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are NGC4038/39 (the Antennae), NGC4676 (the Mice), and NGC7252. Many of these
pairs feature extended tidal tails, with a length that can reach more than 100 h~'kpc
in projection, or in the extreme case of IRAS19254-7245 (the Superantennae) even ~
305 h~'kpc from tip to tip (Colina et al. 1991).

The tails originate in close encounters of disk galaxies, when the mutual tidal field
ejects disk stars into arcing trajectories that lead to the formation of long tails pointing
way from the galaxies, and of bridges connecting them. This process was first demon-
strated convincingly in a classic paper by Toomre & Toomre (1972). Later White (1978,
1979) computed the first fully self-consistent 3-dimensional simulations of merging galax-
ies and established the rapidity of the orbital decay, and the structural resemblence of
the merger remnants to elliptical galaxies. This work has been confirmed and extended
over the years by simulations with increasingly realistic initial conditions and ever better
numerical resolution (Farouki & Shapiro 1982; Farouki et al. 1983; Negroponte & White
1983; Barnes 1988, 1989, 1992; Hernquist 1992, 1993b; Barnes & Hernquist 1996). There
have also been quite successful attempts to model particular interacting systems in de-
tail, for example NGC7252 (Hibbard & Mihos 1995) and NGC2442 (Mihos & Bothun
1997).

Recently, Dubinski, Mihos & Hernquist (1996, hereafter DMH) studied the morphol-
ogy of tidal tails in a series of merging models of disk galaxies with varying halo-to-disk
mass ratio. In their sequence of four models, they kept the inner rotation curve very
nearly constant and surrounded the disk and the bulge with ever more extended and
massive dark haloes. They found that with increasing mass of the dark halo, the re-
sulting tidal tails became shorter and less massive. Their explanation for this effect is
simple. For a fixed structure of the disk, a more massive halo leads to a deeper poten-
tial well and a higher encounter velocity. As a consequence, the duration and overall
strength of the perturbation to the disk is smaller, and the perturbed material cannot
as easily climb out of the deeper potential well.

Dubinski, Mihos, and Hernquist have followed up this study with an analysis of
NGC7252 (Mihos et al. 1998), and an investigation of different dark matter profiles with
a restricted 3-body code (Dubinski et al. 1997). Again they found that disk models with
large halo-to-disk mass ratio were not able to produce prominent tidal tails. In particular,
they concluded that for mass ratios above 10:1 it should be exceedingly difficult to
make tails as long as those observed in systems like NGC7252 or NGC4038/39. Since
the currently favoured theoretical values of halo-to-disk mass are considerably higher
than this, they speculated that there might be a conflict with cold dark matter (CDM)
cosmologies.

In this work we examine the tail-forming ability of realistic models of disk galaxies,
where ‘realistic’ means that their structural properties are motivated to a large degree
by current theories of CDM cosmologies. We derive the structural properties of our disk
galaxies according to the analytic model of Mo, Mao & White (1998, hereafter MMW),
and we collide pairs of these galaxies in self-consistent N-body simulations. We adopt
initial conditions for these merger simulations that are favourable for tail formation.

We will demonstrate that the halo-to-disk mass ratio is not sufficient for characteriz-
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ing ability to make tidal tails. We find that it is the relative distribution of disk and halo
material that is relevant, not the mass ratio itself. This conclusion was reached earlier
by Barnes (1997, private communication) through analysis of a series of simulations with
halo/disk models differing both from those of DMH and from the CDM-based models
we use here.

We will show that realistic disk models in CDM cosmologies can produce long and
massive tidal tails, provided the spin parameter of their dark halo is large enough. This
result is practically independent of the cosmological parameters.

This chapter is organized as follows. In Section 2 we describe the structural proper-
ties of our disk models, and in Section 3 we discuss our techniques for setting up N-body
representations of these models. A description of the different simulations we have per-
formed is given in Section 4, while Section 5 presents the results. Finally, we summarize
and discuss our findings in Section 6.

2.2 Models of disk galaxies

MMW have developed an analytical model for the structure of disk galaxies embedded
in cold dark matter haloes. Their model rests on a number of simple yet plausible
assumptions, and it is very successful in reproducing the observed properties of disk
galaxies. In particular, the predicted population can match the slope and scatter of the
Tully-Fisher relation as well as the properties of damped Lya absorbers in QSO spectra.
We take their model as basis to derive the structural properties of our N-body models
of disk galaxies. For definiteness, we briefly summarize the relevant assumptions and
equations.

2.2.1 Dark haloes

Using high-resolution N-body simulations, Navarro, Frenk & White (1996, 1997, here-
after NFW) established that haloes formed by the gravitational clustering of cold dark
matter exhibit a universal structure. Suitably scaled, the density distribution of these
dark matter haloes does not depend on cosmology. The NFW-profile is given by

dc
(r/rs) (1 + T/TS)Q’

where peit. is the background density at the time of the halo formation, 75 is a scale
radius, and . is a characteristic overdensity. Note that the slope of this profile is shal-
lower than isothermal at the center, and it gradually steepens outward to an asymptotic
slope of —3. Following NFW, we define the virial radius rogp as the radius with mean
overdensity 200, i.e. it contains the virial mass

p(r) = Perit. (2.1)

4
Mago = 200pcrit. ?7‘5’00 , (2.2)
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and we define the concentration
o= 1200 (2.3)
= .

of the halo. With these definitions, the characteristic overdensity is given by

200 3
fe=— —————. 2.4
C 3 (140 -1% (24)
Further, let
G Mag
U%oo = (2-5)
7200

be the circular velocity at the virial radius. Given the concentration ¢ and the Hubble
constant H(z), the radial density profile of a halo may then be specified by anyone of
the parameters wvagg, 7200, Or Mopg. In particular, we have

Ugoo V200
M200 = ——— and 200 — IOH(Z) . (26)

2.2.2 Putting a disk into the halo

We now put a stellar disk into an NFW halo according to the model of MMW. This
rests on four key assumptions:

1. The mass My of the disk is a given fraction mq of the halo mass.

2. The spin Jg of the disk is a given fraction j4q of the angular momentum J of the
halo.

3. The disk has the structure of a thin exponential disk, and it is cold and centrifugally
supported.

4. Only disks that are dynamically stable against bar formation correspond to ob-
servable disk galaxies.

The angular momentum J of a halo with total energy F is often characterized by the
dimensionless spin parameter

~
S|
N[=

(2.7)

@

According to N-body results (Warren et al. 1992; Lemson & Kauffmann 1999), the
distribution of A is well approximated by

n — Il_ 2
p() dr = (2@%/20 exp l-%} % (2.8)

with o = 0.5 and a typical value A = 0.05. This distribution is practically independent
of cosmology, and of the mass and environment of the haloes (Lemson & Kauffmann
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1999). The initial kinetic energy of the spherically symmetric halo may be computed by
assuming that all particles move around the center on circular orbits, with speed equal
to the circular velocity. This ‘trick’ results in

GM?
Fypn = —— 2.9

kin 27_200 fca ( )

where
c I:l _ 1 - ln(1+c)]

[In(1 +¢) - %]

Using the virial relation £ = — Ey;;,, the angular momentum of the halo then becomes
2 3
J=AGE M ( 7;3(’0) . (2.11)
[+

We now put a fraction mq of the initial halo mass into a thin stellar disk with an
exponential surface density, viz.

Y(R) = Xpexp (—%) (2.12)

with $¢ = Mg/(2nR2). Here My = mqMyq is the total mass of the disk and Ry is its
scale radius. The condition
Ja = jaJ (2.13)

will then determine the scale radius of the disk, because its spin is given by
200 / R\ 2 R
Ja= M, / <—> ve(R) exp <——) dR, (2.14)
0 Rd Rd

where the circular velocity v, is the sum of two contributions, namely

0
v (R) = R@ = 07 gisk (R) + V% am(R). (2.15)

2.2.3 Response of the dark matter profile

We take the gas, that later forms the disk, to be initially distributed just like the dark
matter. However, the structure of the dark halo will be changed when the disk forms in
its center. We again follow MMW and assume that the dark matter reacts adiabatically
to the disk formation. In particular, we assume that the spherical symmetry of the
halo is retained, and that the angular momentum of individual dark matter orbits is
conserved. This latter condition may be formulated as

riM (r;) = reMg(rg). (2.16)
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Here r; and r¢ are the initial and final radii of some dark matter mass shell, M (r) gives
the initial NFW mass profile, and M¢(r) is the final cumulative mass profile after the
disk is formed. M;(r) is the sum of the cumulative mass of the disk and the dark mass
inside the initial radius, i.e.

M (re) = Ma(re) + (1 — ma) M (r3). (2.17)
The final profile My (r) of the dark matter halo is then given by
Mi(r) = Mi(r) — Ma(r). (2.18)

For a given set of parameters vogg, ¢, mq, jd4, A, and a formation redshift z, the above
equations uniquely determine a disk model. Note that in practice the scale length Ry of
a disk needs to be determined iteratively in order to satisfy equations (2.13) and (2.17).

2.2.4 Including a bulge

In many galaxies, including the Milky Way, a central bulge population of stars is ob-
served. For spirals like the Milky Way or of later type, the bulge mass is less than
20% of the disk mass. For this reason, the dynamical importance of the bulge in these
systems should be small. However, there are also systems with a higher mass fraction
in the bulge. While most of the models in this study do not have a bulge, we still want
to investigate its possible influence on our results. Hence we here generalize the above
model to allow the option of a bulge.

Bulges appear to be flattened triaxial systems, that may be partly supported by
rotation. However, Hernquist (1993b) found that it hardly matters for the density and
velocity structure of merger remnants whether bulges are spinning or not. For simplicity,
we therefore neglect a possible flattening of the bulges and model them as non-rotating
spheroids with a spherical Hernquist profile of the form

M, ™

= T (2.19)

pv(r)

In analogy to the treatment of the disk, we assume that the bulge mass is a fraction
my, of the halo mass. Since we take the bulge to be non-rotating it has lost its specific
angular momentum either to the halo, or to the disk. We will assume that there is no
angular momentum transport between the disk and the dark halo, and none between
the disk and the bulge. In this case jq4 = mgq.

For simplicity, we further assume that the bulge scale radius 7, is a fraction f, of
that of the disk, i.e. 7, = fi,Rq. Note that the disk half mass radius is 1.678 Ry, while
that of the bulge is 2.414 1y,.

It is then straight forward to generalize the above disk model to accomodate the
bulge. The circular velocity of equation (2.15) gets an additional contribution from the
bulge, i.e.

2 (R) = v gisk(R) + vg g (R) + vep(R), (2:20)
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with v, (R) = GMy(R)/R. Further, equation (2.17) needs to be replaced by
Mi(re) = Mq(re) + Mp(re) + (1 — mq — mp) M (r1), (2.21)
and the dark mass profile of equation (2.18) now becomes

My (r) = Mi(r) — My(r) — My(r). (2.22)

2.3 N-body realizations of model galaxies

2.3.1 Introduction

In order to construct near-equilibrium N-body realizations of our disk models, we need
to initialize both positions and velocities of particles according to the solution of the
collisionless Boltzmann equation (CBE)!. While the first can easily be done according
to the derived mass distributions for halo, bulge, and disk, the latter is considerably
more complicated.

Instead of attempting to solve the CBE directly, we follow Hernquist (1993a) and
assume that the velocity distribution at a given point in space can be sufficiently well
approximated by a multivariate Gaussian. In this case, only the first two moments of
the velocity distribution are needed. They can be obtained by taking moments of the
CBE, a process that leads to a hierarchy of generalized Jeans equations (Magorrian &
Binney 1994).

For a static, axisymmetric system, the energy E and the angular momentum compo-
nent L, are conserved along orbits. With the assumption that the distribution function
depends only on F and L, one can show (Magorrian & Binney 1994) that the first
velocity moments are given by

TR = U, = URU, = U,U; = Ugvg = 0, (2.23)
vg =%, (2.24)
v2 = %/Zoo d?' p(R, z')g(R, 2", (2.25)
AR AR (2.26)
where the azimuthal circular velocity is defined as
v2 = Rg—; (2.27)

Not specified by the Jeans equations is the azimuthal streaming g, which can essentially
be freely chosen in the context of the above approximations. This reflects the fact that

lalso known as Vlasov equation.
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the distribution function is even in L,; the relative contribution of the parts with positive
and negative L, can be arbitrarily chosen.

We employ the assumption f = f(F, L,) for the dark matter halo and the optional
bulge. However, a realistic distribution function for the disk has a more complicated
structure, and we will treat it slightly differently, as described below.

2.3.2 Structure of the disk

Real stellar disks have a finite thickness. For their vertical structure we adopt the
common choice of Spitzer’s isothermal sheet, viz.

pd(R,z) = @sech2 (i) . (2.28)

) 20
Here the thickness zy of the disk sets its ‘temperature’. Most spiral galaxies seem to be
consistent with a constant vertical scale length with a value of zy ~ 0.2Ry, which we
will adopt in the following.

The distribution function of the disk depends on more than just two conserved quan-
tities, hence it is unrealistic to assume an isotropic velocity dispersion. However, we will
keep the assumption that the velocity ellipsoid is aligned with the coordinate axes. Then
equation (2.25) remains valid, and we use it to compute o2(R, z). Note that due to the
radial variation of ¥(R) and the presence of the halo, the vertical velocity structure of
the disk will not be exactly isothermal.

We further employ the epicycle approximation (Binney & Tremaine 1987, chapter 4)
to relate the radial and azimuthal velocity dispersions by

2
2 _9R
o5 = —=. 2.29
¢ 72 ( )
Here we have defined 4 5
2 _
= — 2.30
and the epicyclic frequency ~ as
309 0%
2 _
=27 . 2.31
" =Ror R (2:31)

The epicycle approximation also implies that the asymmetric drift is small. We neglect it
altogether and set the streaming velocity to be equal to the circular velocity, i.e. g = v..
For simplicity, we also continue to assume that afz = 02. With these assumptions the
velocity structure of the disk is fully specified.

Note that the thickness of the disk must be chosen large enough to fulfil Toomre’s
stability criterion, which requires
ORK

@= 3.36GX

to ensure local stability in differentially rotating disks.

For our models, the minimum value of () is about 1.4. Hence, we could have taken
somewhat colder disks, which might produce sharper tidal tails.

>1 (2.32)
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2.3.3 Rotation of the halo

For consistency, we want to properly represent the angular momentum carried by the
dark matter, although we do not expect that halo rotation will have a strong influence
on tail formation.

We model the streaming velocity of the dark halo as some fixed fraction fg of the
local azimuthal circular velocity, i.e.

g = fve. (2.33)

If the specific angular momentum of the dark matter is conserved during disk formation,
the factor f; stays fixed as well. Hence it can be computed for the initial NF'W-profile.
For the streaming of equation (2.33) the initial angular momentum is

13 1
2 G2Mz2ard
=3 b I (2.34)
2
[In(1 4 ¢) - ]
where g, is the integral
¢ T % x%
= In(1 — dz. 2.35
9e /o [n( + ) 1_|_x] TETOE z (2.35)
Comparing this with equation (2.11) we see that fg is given by
1 3
3. (2c\?2 2
=M =) gt In(1 — : 2.36
ls=3 (fc) Je {n( +<) 1-{—0] (2.36)

The quantity fs/A varies only weakly, e.g. it takes the value 4.5 for ¢ = 1, and reduces
to 3.3 for ¢ = 100.

2.3.4 Halo truncation

For the halo we encounter a slight technical problem, since the cumulative mass distri-
bution of the NFW profile actually diverges for large r. This is simply due to the fact
that the NFW-profile in the form of equation (2.1) is not valid out to arbitrarily large
distances; it just provides a good fit to the profile up to about the virial radius.
Instead of truncating the profile sharply at the virial radius we rather want to derive
N-body models where the density fades out smoothly. For simplicity, we have chosen an
exponential cut-off that sets in at the virial radius and turns off the profile on a scale rg,

VI1Z.
_ Paitde (T \° (_7“ - ?"200>
p(T) - C(l +C)2 <r200> €Xp T (237)

for r > rogg. The power law exponent a allows a smooth transition of the profile at
T900- We select a such that the logarithmic slope
1+ 3¢

=- (2.38)
7200 1 + c

n=r—Inp

dr
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of the profile at the virial radius is continuous. This implies a = ¢ + n.

Note that this truncation results in some additional halo mass beyond the virial
radius. The total mass My, is roughly 10% larger than Mygy. However, we want to keep
our definitions of disk and bulge masses in terms of the virial mass. As a consequence
we need to slightly modify equation (2.17). It becomes

M.
Mi(ry) = Ma(re) + My(re) + |1 = 2% mq + mp) | M (1),
(o)

2.3.5 Numerical procedure

Finally, we briefly describe our computer code to set up a galaxy according to the above
model. The following steps are followed:

1. Particle positions are initialized according to the density profiles for halo, disk,
and bulge.

2. We then compute the velocity dispersions on a fine logarithmic mesh in the (R, z)-
plane. For this purpose, we compute the integrals

— 1 [ 0P
2 = r,=— 2.
v2 p/z dz Pos (2.39)

numerically at the grid points. This also determines % = v2. Note that the
density refers only to the component under consideration, while the potential is
given by all the material. For the halo and the bulge, we use equation (2.26) and

find ’U(Qb by numerically differentiating p@ in this plane. For the disk, we use the
epicycle approximation to determine 0_35, and we set the azimuthal streaming equal

to the local circular velocity. The streaming of the halo is given by equation (2.33),
while that of the bulge (if present) is set to zero.

It should be noted that the integrals of equation (2.39) require elaborate numerical

techniques, since the computation of the combined force field is nontrivial.

3. Finally, particle velocities are initialized by drawing random numbers from multi-
variate Gaussians with dispersions interpolated from the (R, z)-grid to the particle
positions.

This scheme is similar to that of Hernquist (1993a), although our numerical procedure
and treatment of the disk is somewhat different.
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Figure 2.1: Rotation curves of disk models A to F. The top three panels show the
full rotation curve of models A-C out to the virial radius. In the other six panels, the
radial coordinate is normalized to the disk scale length, and we plot the inner rotation
curve out to 5 disk scale lengths. In each panel, the dotted curve gives the contribution
of the dark matter, the dashed that of the disk, and the solid line is the total rotation
curve. In all the models, the total mass of the galaxies is equal, and corresponds to an

initial NFW dark matter profile with vygo = 160 km s7! and ¢ = 15.

2.4 Simulations

2.4.1 Models
2.4.1.1 The basic disk models

We have constructed a basic set of six disk models with a constant total mass corre-
sponding to Vagp = 160 km s7! and a concentration of ¢ = 15. These models are those
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Table 2.1: Parameters of our basic set of six disk models. All of them have the same
total mass corresponding to Vago = 160kms™!, and an initial halo concentration of
¢ = 15. From the possible combinations of A\,mq € {0.025,0.5,0.1} we consider only
those models that are stable according to the criterion A > mgy. We assume that the
disk material conserves its specific angular momentum, i.e. j4 = mg. The two tables
illustrate our labeling of the models and the resulting disk scale lengths. Note that
these models have no bulge.

A
0.025 0.06 0.1
0.025 A B C

mq 0.05 D E
0.1 F
Model A B C D E F

Rq[h~'kpc] 152 3.31 6.87 2.87 6.45 5.72

12T Tt st 120
10 ]
- =15
o 8[ .
Q | -
2 1102
o® 4t ]
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2 ]
0:":j'.'flt'...|...|...|...|...|\.§.\.‘IT_O
0.00 0.02 0.04 0.06 0.08 0.10 0.12 0.14

A

Figure 2.2: Sizes of disks. The two solid lines show the scale length R4 of disks as a
function of the spin parameter A. The solid lines are for haloes with ¢ = 15, while the
dotted curves refer to ¢ = 5. In both cases, the heavy curves are for mq = 0.025, and
the thin ones for mq = 0.1. The dashed line shows the distribution p(A) of A expected
in CDM cosmologies.



2.4 Simulations

Table 2.2: List of runs. The table gives the orbital angular momentum of the different
runs in terms of the minimum Keplerian separation Ryep. All the runs had an initial
galaxy separation of Rgiare = 320 A~ 'kpc, and were set-up on a parabolic encounter
with zero total energy. Each of the runs is a collision between identical disk models.
The latter is specified by the initial character of the labels. The middle table gives the
actual separation R, of the disks in their first encounter, while the bottom table lists
the total spin parameters Aot of the colliding binary systems.

Ryep [~ "kpc]
3.5 7.0 14.0 28.0 56.0 112.0
A0 A1 A2
BO Bl B2
co C1 C2 (€3 (4 Ch
C2r
C2i
D1
E2
F2
T1
U1l
V1
W1
Rmin [h_lkpc] >‘t0t
A0 64 B2 237 D1 1038 A0 0.035 B2 0.069 D1 0.056
BO 83 C2 224 E2 182 BO 0.047 C2 0.094 E2 0.094
Co 74 C2r 194 F2 224 Co0 0.072 C2r 0.006 F2 0.094
Al 105 C21i 21.2 W1 10.9 Al 0.044 C2i 0.067 W1 0.056
Bl 140 C3 374 T1 83 B1 0.056 C3 0.113 T1 0.056
Cl 136 C4 582 Ul 94 Cl 0.081 C4 0.139 Ul o0.0711

A2 213 C5 1096 V1 10.8 A2 0.057 C5 0.176 V1 0.051

combinations of A\,mq € {0.025,0.5,0.1} that result in stable cold disks, i.e. that have
A > myq (the stability criterion is discussed in more detail below). We label these models
A to F, as outlined in Table 2.1. Also given in this Table are the resulting disk scale
lengths. Note that we always assume jq = mg, i.e. the specific angular momentum
content of the disk material is exactly conserved during disk formation. In contrast to
this, gas-dynamical simulations of disk formation (Navarro & White 1994; Navarro &
Steinmetz 1997; Weil et al. 1998) have typically led to a loss of angular momentum from
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the gas to the halo. As a result, the disks formed in these simulations were much too
small to be identified with real spiral galaxies. However, as all of the above authors
note, this angular momentum problem may well be due to an insufficient treatment of
feedback processes.

Note that in the model of MMW, the structure of the disk galaxies depends only on
X' = (ja/maq)A. Hence, angular momentum loss from the disk (jq < mq) has the same
effect as lowering the value of .

2.4.1.2 Rotation curves

In Figure 2.1 we show the rotation curves of our six primary models described in Table
2.1. For each model, we give the inner rotation curve out to 5 disk scale lengths, which
is about the accessible regime in most disk galaxies. For models A to C, we also show
the full rotation curve out to the virial radius of 160 2~ 'kpc.

Several interesting trends may be observed. In the models A, B, and C, only the spin
parameter is increased. This leads to larger disks with roughly Rq < A. The dependence
of R4 on the spin parameter A is shown in Figure 2.2. However, the smaller disks pull
in the dark matter more strongly, leading to a larger concentration of the dark matter
for smaller disks. This effect reduces the differences between the rotation curves when
their radial coordinate is normalized to the disk scale length.

On the other hand, for very small disk mass, the dark matter profile will be nearly
unaffected by the disk formation. In this limit, the disk stars behave more or less like
test particles in the dark matter potential, yet the size of the disk is still determined by
the halo spin parameter. Also, in this limiting case of a massless disk it is quite clear
that the mass ratio between halo and disk must be irrelevant for the formation of stellar
tidal tails.

2.4.1.3 A model with a massive bulge

We also consider a model with a massive bulge, designed to have a similar rotation curve
to DMH’s models, and hence being more directly comparable to them than our standard
models. We also adopt their relatively high disk-to-bulge mass ratio of 2:1. In detail, our
parameters for this model, which we call “W’, are ¢ = 15, vggp = 160km s~ 1, A = 0.05,
mq = 2/3 x 0.05, mp, = 1/3 x 0.05, and f;, = 0.1. This results in the rotation curves
shown in Figure 2.3. While the inner rotation curve is very similar to that of DMH, the
contribution of the dark matter is much more important in our model, even at small
radii. In particular, it is always much larger than the contribution of the disk.

2.4.1.4 The amount of dark mass in the disks

As the rotation curves in Fig. 2.1 show, all our ‘basic’ disk models A-F are gravitationally
dominated by dark matter, even in the innermost regions of the disks. While the presence
of a dark matter halo has been convincingly demonstrated by the flatness of observed
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Figure 2.3: Rotation curves of the bulge model W. The top panel shows the full
rotation curve, and the lower panel displays the inner rotation curve out to 5 disk scale
lengths. The dashed line is the contribution of the disk, the dot-dashed that of the
bulge, the dotted that of the dark halo, and the solid line gives the total curve.

rotation curves, there is still a controversy about the amount of dark matter in the inner
regions of disk galaxies.

This controversy has arisen, because the decomposition of an observed rotation curve
into a stellar and a dark matter component is rather ambiguous, since the result de-
pends strongly on assumptions about the dark matter profile and the mass-to-light
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Figure 2.4: Contours of the disk stability parameter €, (solid lines) for ¢ = 15.
According to Syer, Mao & Mo Syer et al. (1997) disks with €, > 0.75 should be
stable against bar formation, while the earlier work of Efstathiou, Lake & Negroponte
Efstathiou et al. (1982) gives the condition €, > 1.1. Disk models lying below the thick
dashed line are dominated by the disk gravity at the maximum of the disk rotation
curve, thus the hatched region shows the parameter space that may contain stable
disks which are not everywhere dominated by dark matter. Two of our models, ‘T’ and
‘U’ (stars), lie in this region. The other models are indicated as triangles.

ratio (Navarro 1998). Traditionally, rotation curves have therefore been fitted using the
‘maximum-disk’ hypothesis, i.e. the largest mass possible is assigned to the disk consis-
tent with the rotation curve. The recent work of Debattista & Sellwood (1998) suggests
that the central density of dark matter in barred galaxies should be low, thus supporting
the maximum-disk hypothesis. However, others (e.g. van der Kruit 1995) maintain that
the contribution of dark matter in the inner regions of disk galaxies must be substantial.
There is also recent observational work that supports this assertion (Quillen & Saraje-
dini 1998). We also note that even if the inner rotation curve of a galaxy can be well
accounted for by a disk component alone, this does not provide evidence for the absence
of dark matter in the inner parts of the disk.

The theoretical results employed in this work predict dark matter profiles with a
central density cusp, and a resulting strong contribution of dark matter in the inner
disks. We now briefly discuss, to what extent the model of MMW may also accommodate
galaxies that are maximum-disk, or at least somewhat closer to it. In order to make
the self-gravity of the disk more important, we can either reduce A (making the disk
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Figure 2.5: Inner rotation curves of the models T, U, and V out to 5 disk scale lengths.
The dashed line is the contribution of the disk, the dotted that of the dark halo, and
the solid line gives the total rotation curve.
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smaller), increase mq4 (making the disk heavier), or lower ¢ (reducing the concentration
of the halo). However, for fixed mq and fixed ¢, disk-stability poses a lower limit on .
Thin, fully self-gravitating disks have been known to be violently bar-unstable for a long
time, a fact that suggested to Ostriker & Peebles (1973) that there must be dark matter
that stabilizes the disks. Later, Efstathiou, Lake & Negroponte (1982) used N-body
simulations to derive the stability criterion ey, > 1.1 for the disk, where

Umax
= Gt/ R 0

and vpax is the maximum rotation velocity. Recently, Syer, Mao & Mo (1997) confirmed
that ey, is a good diagnostic for bar-instability, although they found a somewhat weaker
stability criterion, €y, > 0.75.

In Figure 2.4 we show contours of €, in the mg-A plane. Also shown is the region,
where the disk gravity at the maximum of the disk rotation curve is larger than the con-
tribution by the dark matter. There is thus a small region of parameter space (hatched)
where the galaxies are disk-dominated, but where they should be still stable against bar
formation according to Syer et al. (1997). Incidentally, e, > 1.0 corresponds very closely
to the condition A > mg, the choice we employed so far.

Note that lowering A may not only render a disk unstable, it will also make it
substantially smaller. Hence, the observed sizes of disk galaxies can also provide a lower
bound on A. Indeed, the results of MMW suggest that disks become too small if they lose
a substantial part of their angular momentum to the dark halo. Since these arguments
disfavour low A, one may rather try to increase mq to make the gravity of the disk more
important. In principle, we expect that the universal cosmic baryon fraction poses an
upper limit on mq, while the actual value of mq could be a lot smaller if the efficiency of
disk formation is low. Taking a big bang nucleosynthesis value of Qp ~ 0.015h~2 (Copi
et al. 1995) for the baryon density, mq should be smaller than 0.06 in a critical density
universe with a Hubble constant of A = 0.5. However, clusters of galaxies suggest that
the baryon fraction is larger by at least a factor of three (White et al. 1993). Note that
in a low density universe this can be reconciled with cosmic nucleosynthesis. If Qg is as
low as 0.2, the limit on mg goes up to about 0.15-0.2.

We examine these possibilities to a limited extent with three additional models which
are disk-dominated in the inner regions. It is interesting to see how their tidal tails fit
into the systematic properties of the other models. We label one of these models ‘T’,
and give it the parameters mq = 0.1, A = 0.05, ¢ = 15, vg90 = 160km s *, and my, = 0.
For a further model, called ‘U’, we instead adopt mq = 0.15, A = 0.08, i.e. here we make
the disk substantially more massive. Finally, we consider a model ‘V’ with a smaller
concentration of the halo. Here we use ¢ = 5, mq = 0.1, and A = 0.05. Hence this model
is consistent with the value of ¢ ~ 5 favoured by Navarro (1998) in a recent analysis of a
sample of spiral galaxies. Note that such low concentrations are theoretically expected
for flat, low-density universes.

The inner rotation curves of these models are shown in Fig. 2.5. The stability pa-
rameter for them is e, ~ 0.84. Hence they lie in the hatched region of Figure 2.4. In
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contrast to the other models, we here chose or = 2.0 0, for the velocity structure of the
disk to prevent it developing a bar before the galaxies collide. This raises ) to about
2.0, while it would have been @ ~ 1.0 for our conventional choice for og.

2.4.2 Collision simulations

The most favourable condition for making tidal tails are prograde encounters where
the spin vectors of the disks are aligned with the orbital angular momentum. In this
situation, the approximate resonance between the disk rotation and the orbital angular
frequency amplifies the perturbation of particle orbits on the far sides of the disks, since
they stay for a longer time in the region of the strongest tidal field.

Since we here try to achieve as prominent tails as possible, we usually set up our
disk-disk collisions on prograde parabolic orbits. For simplicity we run only symmetric
encounters between pairs of identical models; that is we collide model A with A, B with
B, and so on.

We always chose the initial separation of the galaxies to be twice the virial radius.
i.e. Rgart = 320 'kpc. The remaining undetermined orbital parameter is the orbital
angular momentum. We specify it in terms of the minimum separation Ry, the galaxies
would reach if they were point masses moving on the corresponding Keplerian orbit. In
reality, once the galaxies overlap they will start to deviate from this trajectory due to
dynamical friction. As a consequence, the actual separation Ry, of the galaxies in their
first encounter will generally be larger than Riep.

Note that most of the encounter velocity is generated by the potential gradient inside
the virial radii of the two galaxies, and the tails themselves also move primarily within
this region. Hence it seems unlikely that material ‘outside’ the haloes strongly affects
tail formation. In principle, such material will be present in simulations that also follow
the cosmological context of the collision.

We examined three main choices for Ryep, 3.5, 7 and 14 h~'kpc. For each of the
models A, B, and C, we have run all three of these combinations, while we restricted
ourselves to just one ‘impact parameter’ for the other models. Note that these orbital
parameters are consistent with typical energies and eccentricities found in cosmological
N-body simulations (Navarro et al. 1995; Tormen 1997). Additionally, we simulated a
set of wider encounters with Ry, = 28, 56, 112 h~'kpc for the C model. Runs labeled
‘A0, ‘BO’, etc. refer to Ryep = 3.5 h™1kpc, those containing the digits 1 or 2 to 7h ™ kpc
and 14 h~'kpc, respectively.

We also simulated two additional versions of run C2 where the disks do not have a
prograde orientation. In the collision ‘C2r’ both disks are retrograde, i.e. their spins
are just flipped, while in the model ‘C2i’ they are inclined by 90° relative to the orbital
plane.

With respect to the bulge model and the disk-dominated models, we have only run
one simulation in each case (‘W1’, ‘T1’, ‘Ul’, ‘V1I’), an encounter at Ryep, = 7h~kpe.
Table 2.2 gives an overview of all these runs. In this table, we also list the total spin
parameter Aot for the colliding binary systems. Apart from the extreme collisions C4
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and C5, these values are well consistent with the log-normal distribution (2.8) for .

Also shown in Table 2.2 are the actual minimum separations R, of the centers of
the disks in their first encounter. We here defined the center of a disk as its densest
point, and used a kernel interpolation like in smoothed particle hydrodynamics (SPH)
to estimate the density of particles. However, using simply the center-of-mass of the
individual disks gives similar results.

When the galaxies start to overlap, the interaction potential between them becomes
shallower than that of the corresponding point masses. This effect will make the orbits
wider than the Keplerian expectation. However, the galaxies are also slowed down by
dynamical friction, an effect that brings the galaxies closer together. Both mechanisms
compete with each other, and their relative strength depends on the distribution of
mass inside the galaxy. As Table 2.2 shows, the minimum separations R, are usually
somewhat larger than the corresponding Keplerian value Riep,. Note however, that the
measurement of Ry,i, has an uncertainty of order 1 A~ 'kpc, because we stored only a
limited number of output times.

2.4.3 Numerical techniques

All the simulations in this work have been run with our GADGET-code (G Alaxies with
Dark matter and Gas intEracT). It is a newly written N-body/SPH-code in C, specif-
ically designed for the simulation of galaxy formation and interaction problems. The
gravitational interaction is either computed with the special-purpose hardware GRAPE
(if available) or with a TREE code. In this work, the SPH part of GADGET is not used;
we just treat dark matter and stellar material as collisionless particles. Futher details of
GADGET will be described in Chapter 5.

For all of the basic models A to F, and for T to V, we used 20000 particles to
represent each disk, and 30000 particles for each halo, hence each simulation had a total
of 100000 particles. We chose a gravitational softening length of 0.4 h~'kpc for the dark
matter, and 0.1 h~'kpc for the disk. Time integration was performed with high enough
accuracy, such that the total energy was conserved to better than 0.8% in all runs.

For the bulge model W, we used an additional 10000 particles for each bulge, and
we employed a softening of 0.1 h~'kpc for the bulge as well.

Some of the models have been integrated using GRAPE (A0, B0, B2, E2, F2, T1, U1,
W1), the others with the TREE code. For the latter we used the cell opening criterion
of Dubinski (1996) with 6 = 1.0, we included quadrupole moments, and we matched the
spline softening of the TREE code to the Plummer softening of GRAPE cited above.

Each simulation was run for 2.6 internal time units, or 0.26 Hubble times, corre-
sponding to 2.54 x 10° h=!yr. At this point of time, the merger remnants are not yet
fully relaxed, but the tidal tails have already largely decayed.
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2.5 Results

2.5.1 Dynamical evolution of the models

Figure 2.6 shows a representative example of the time evolution of one of our runs
(B1). Overall, the models follow the well-known behaviour of close encounters of pairs
of disk galaxies. When the galaxies reach orbital centre, violent tidal forces induce a
bar instability that quickly transforms the disks into a pair of open bisymmetric spirals.
Simultaneously, disk material from the far side of the encounter is ejected by the tidal
field into arcing trajectories that later form tidal arms. Material from the near side
is drawn towards the companion, giving rise to bridges between the galaxies as they
temporarily separate again. While the bridges are destroyed when the galaxies come
back together for a second time, the tails can survive and grow for a longer time in the
relatively quiet regions of the outer potential.

Nevertheless, the dynamical evolution of the tidal tails is quite rapid. After their
initial phase of expansion, the most strongly bound material in the inner region of the
tail quickly starts to rain back onto the merging pair. Eventually, this also happens to
material progressively further out, such that the surface density and prominence of the
tidal tails quickly decrease with time.

2.5.2 Comparison of tidal tails

Depending on the strength of the tidal response, the tidal tails can contain a varying
amount of mass, and reach different lengths. By comparing the time evolution of the
models A to C, such differences are readily apparent. For example, the tails of the larger
disks of run C1 are much more massive and prominent than those of run B1, while the
tails of the small disks of simulation Al are rather thin and anemic. However, the spatial
extent of the tails is quite comparable in the models. When normalized to the initial
disk scale length the anemic tails of the A-models are even longer than those of the
C-models.

These trends are clearly visible in Figures 2.7 and 2.8, where we compare different
runs at the same time, approximately corresponding to the moment when the tails are
most impressive. Note however, that due to the rapid evolution of the morphology of
the tidal tails it is not easy to compare different models at exactly equivalent times of
dynamical evolution.

When models with different impact parameters are compared, some finer trends in
the tail morphology may be observed. With growing impact parameter (labels 0 — 2),
the bridges between the galaxies become more pronounced, and the tails are slightly more
curved. This is related to the larger orbital angular momentum of these encounters.

Note that the runs A, B, and C of Figure 2.7 all have a large halo-to-disk mass
ratio of more than 40:1. Nevertheless, the spatial extent of the tails is often quite large.
For example, the B-models with a disk scale length of Rq ~ 3.5 h~'kpc produce tails
reaching 200 = 'kpc in length, i.e. about 60 times the original disk scale length.
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Figure 2.6: Time evolution of run B1l. The panels show the disk particles projected
onto the orbital plane. The length units labeling the axes are given in h~'kpc. The
elapsed time since the start of the simulation (upper left corners) is given in units of
0.1 Hubble times, or 9.8 x 108 h~lyr.
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Figure 2.7: Comparison of tidal tails between different runs. All the panels show the
disk particles projected onto the orbital plane at the same time since the start of the
simulation. The top 9 panels display runs that involve the disk models A-C for the set
of impact parameters Rye, = 3.5, 7, and 14 h~'kpc (indicated by the digits 0, 1, and 2,
respectively, in the labels of the runs). From A to C, the spin parameter \ increases in
the sequence 0.025, 0.05, and 0.1, but all three models have an equal disk mass given
by mq = 0.025. In the lower three panels we show additional collisions of model C with
wider impact parameters in the sequence Ryep = 28, 56, and 112 h~ lkpe.
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Figure 2.8: Comparison of tidal tails between different runs. The panels show the
disk particles projected onto the orbital plane at the same time since the start of the
simulation. Runs D1 and E2 involve models with twice as heavy disks (mgq = 0.05) than
A-C, while F2 has mgq = 0.1. The D-model has a spin parameter of A = 0.05, while the
E- and F-disks have A = 0.1. The T (mq = 0.1, A = 0.05) and U (mgq = 0.15, A = 0.08)
models are disk-dominated in their inner regions, while model W (mq = 0.034, my, =
0.016 A = 0.05) also contains a bulge. The digit in the label of the runs parameterizes
the impact parameter; 0, 1, and 2 are for Ryep, = 3.5, 7, or 14 h~'kpc, respectively.

When tails of models with different halo-to-disk mass ratio but equal spin parameter
are compared, it becomes clear that the mass ratio is not the relevant parameter that
decides whether tails form or not. For example, the tails of runs E2 and F2 in Figure 2.7
may be compared to the ones of run C2. Despite a variation of the mass ratio by a factor
4 or so, the tails are almost equally strong in these three simulations. This is clearly due
to the approximately equal size of the disks in these models. Because the dark matter is
gravitationally dominant even in the regions of the disks, the disk stars behave almost
like test particles in the gravitational potential of the dark halo. In this limiting case it
is clear, that only the location of the disk material inside the dark halo determines the
disk response, i.e. it is the relative size of disk and dark halo that matters.
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Figure 2.9: Tidal response T' as a function of time for three selected runs. We define
T as the mass fraction of each disk that reaches a distance of more than 10Rg to its
center-of-mass. Also indicated as horizontal lines are the values of T, that we take
as measure for the tidal response of the disk. Since we only stored simulation outputs
with a spacing of 0.1 time units, the measurement of Teg is slightly uncertain.

2.5.3 An indicator for tidal response

As we have seen above, knowledge of the halo-to-disk mass ratio is not sufficient to
predict how prone a particular galaxy model is to tail formation. MMW suggested using

the quantity ® ,
ve(R
&= [UC(R)] (2.41)

as a more suitable indicator. &£ compares the depth of the potential well with the
specific kinetic energy of the disk material. The quantity £ also arises, when one tries to
estimate the relative increase AF of specific kinetic energy of disk stars in a nearly head-
on encounter of identical disk models. In this situation one finds (Binney & Tremaine
1987; Mo, Mao & White 1998)

2
AB/? ~ (“-) —1/€. (2.42)
Ve
This suggests the use of £ as an indicator for the susceptibility of a disk model to tidal
perturbations. In order to obtain a typical value for £ we evaluate it at R = 2Ry, which
is about the half mass radius of the disk.
We now want to test how well £ works as an indicator for the ability of a particular
disk-halo model to develop massive tails. Here one encounters two immediate problems.
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Figure 2.10: Tidal response T of the different runs versus the value of £ for the
corresponding disk model, where £ is evaluated at R = 2Ry. The measurement of Teg
is slightly uncertain, and Tt also depends on details of the orbital parameters of the
encounter. However, our runs are designed to produce very nearly the strongest tails
possible for a given disk model. At fixed &, it should therefore be hard to find a model
that gives a higher value for Tes than the maximum of our runs. In other words, there
should be no model in the region above the indicated dashed line.

First, the tidal response of a disk depends on the orbital parameters of the encounter
with its companion. For example, if a disk is tilted against the orbital plane, the tidal
forces felt by the bulk of the disk material will generally be smaller, resulting in a
less prominent tidal tail. Similarly, a change of the impact parameter or the orbital
energy can affect the tidal response. We here do not intend to investigate the complete
parameter space. Rather, we focus on collisions that produce the strongest tails possible
for mergers of a given disk model.

In this spirit, prograde encounters are an obvious choice for the orientations of the
disks, since this configuration has repeatedly been shown to produce the strongest tails,
and we here confirm this with the runs C2r and C2i. We use parabolic orbits, because
they are plausible candidates for real interacting galaxies if one assumes that they are
coming together for their first time. However, even when this assumption is dropped,
DMH showed that moderately bound orbits are no more effective in producing tails than
zero energy orbits. With respect to the ‘impact’ parameter Riep, we have examined a
range of different choices and found that the tails appear to be of maximum strength
for Ryin &= 2 — 6Ry, i.e. in collisions where the disks pass each other at a distance of a
few disk scale lengths. Hence, our merger simulations of equal disk galaxies have been
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Figure 2.11: Tidal response T of the different runs versus the disk-to-halo mass
ratio (left panel), and versus M (2Rq)/M (right panel). The quantity M (2Rq4)/M is a
measure of the fraction of the total mass in the disk region.

set up to exhibit the most favourable conditions for tail formation, and should indeed
produce the strongest tails possible for these disk models.

Second, it is not obvious how to define the mass or extent of the tidal tails in an
objective way. This is further complicated by the rapid dynamical evolution of the tails,
which makes it difficult to compare simulations that may form their tails at different
times.

In order to solve this problem and measure the strength of the tidal response, we have
come up with the following scheme. We start by defining the quantity 7" to be the mass
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Figure 2.12: Tidal tails of simulations C2r and C2i. The panels show the disk parti-
cles, projected either onto the xy-plane (orbital plane), or the yz-plane. Apart from a
different orientation of the disks, runs C2r and C2i are identical to C2. In C2r, both
disks are retrograde, while in C2i the spins of the disks lie in the orbital plane, pointing
along the x-axis. These runs may be compared with C2 shown in Figure 2.7.

fraction of each disk that reaches a distance of more than 10Ry from its center-of-mass,
where Ry is the original scale length of the unperturbed disk.

In Figure 2.9 we show examples for the time evolution of T'. Shortly after the disks
come together for the first time, T jumps up, reaches a maximum, and slowly decays,
until the disks are scrambled up in their second encounter and 7" loses its initial meaning.
Note that the different runs reach their maximum of 7' at different times. In order to
compare them on an equal footing, we therefore define an effective response Ty as the
peak value reached by T'.

In Figure 2.10 we plot the tidal response Teg of our runs versus the value of &,
evaluated at R = 2R4. Although our coverage of parameter space is limited, it is
nevertheless clear that there is a correlation between Teg and £. Of course, there is
some uncertainty in the measurement of Teg and this introduces some scatter. Also, for
fixed £, the tidal response T.g depends somewhat on the impact parameter Ryep, and it
might also have a slight dependence on my. However, to the extent that our simulations
really produce the strongest tails possible for our disk models, Fig. 2.10 shows that it
will be exceedingly hard to find a model that produces tails that lie above the dashed
diagonal line. This establishes that £ is a good indicator for the mazimum tidal response
Tefr, that may be obtained for a given class of disk models. In particular, models with
& > 8 should be unable to produce strong tails. This is in excellent agreement with the
analysis of MMW, who estimated £ = 4.2, 5.5, 7.2, and 9.3 (in order of increasing halo
mass) for the sequence of four models of DMH; in agreement with Figure 2.10, the last
two of these models failed to produce prominent tails.

Figure 2.10 may also be compared to the two panels of Figure 2.11. In the left panel,
we plot the tidal response versus the disk-to-halo mass ratio. This again shows, that
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the disk-to-halo mass ratio is not a good indicator for the ability to form tidal tails. For
example, the models A, B, and C differ subtantially in the mass of their tails despite
their equal disk-to-halo mass ratio. However, if we use instead the ratio of the total
amount of mass in the region of the disk to the total mass of the galaxy, the mass ratio
criterion can be partly resurrected. This is shown in the right panel of Fig. 2.11, where
we plot Tog versus M (2Rq)/M. Here M(2R4) is the total mass inside two disk scale
lengths, and M is the total mass of the galaxy and its halo. In this formulation, the mass
ratio measures the relative distribution of mass within the system, and is a fair indicator
of the ability of a galaxy model to form tidal tails. However, a detailed comparison with
Fig. 2.10 shows, that £ does a better job than M (2Rq)/M. For example, the model T1
appears as an outlyer in Fig. 2.11, failing to fit the monotonic trend of larger Teg with
increasing M (2R4)/M, but fits within the general distribution in Fig. 2.10.

Starting from a head on collision, Figure 2.10 also shows that the tidal response
Tegr becomes larger as the impact parameter Ry, is increased. However, for very wide
encounters one expects only a small distortion of the disks. As the sequence of models
C0-C5 demonstrates, there is indeed a maximum response for an intermediate impact
parameter Riep, of order a few disk scale lengths.

Also, the orientation of the disks is an important factor in determining the strength
of the disk response. In the retrograde collision C2r, the spins of the galaxies are just
reversed compared to C2, yet this already makes the tidal tails much weaker, as seen in
Figure 2.12. Similarly, the inclined galaxies of simulation C2i produce tails that are less
extended than those of run C2.

We also note that the simulations T1, Ul, and V1, in which our ‘disk-dominated’
models collide, produce tidal tails well in line with the general trend of Figure 2.10.

2.5.4 A model with a bulge

In Figure 2.13 we show the time evolution of run W1, which collides two disk + bulge
galaxies. These disk galaxies (our model W) are descendents of model D, but one third
of the stellar mass has been put into a centrally concentrated bulge. This results in a
rotation curve (Figure 2.3) that is practically flat up to the very center of the disk, with
a shape quite similar to the models of DMH.

Due to their strong central concentration, the bulges survive largely unaffected until
their final coalescence. However, the disks develop prominent tails that appear to be
similar in strength to the other models with specific angular momentum corresponding
to A = 0.05. A measurement of T, shows that the strength of the tails is in fact quite
similar to the directly comparable simulation D1. Also, the run W1 fits well into the
plot of Figure 2.10, although the inner structure of model W is very different from that
of the other models.

This suggests that bulges are not effective in preventing tail formation, at least as
long as they primarily affect the inner rotation curve.
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Figure 2.13: Time evolution of run W1, which collides our disk+bulge model with
itself. The top series of panels displays the disk particles projected onto the orbital
plane, while the bottom panels show the bulge particles. The length units refer to
h~'kpc, and the elapsed time since the start of the simulation (upper left corners) is
given in units of 0.1 Hubble times, or 9.8 x 108 h—lyr.
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2.6 Discussion

In this study we constructed N-body models of disk galaxies with structural properties
directly motivated by current theories of hierarchical galaxy formation. In particular,
the mass of the dark haloes in these models is much larger than that of the stellar disks.
In the most extreme models we consider, the halo-to-disk mass ratio is larger than 40:1,
yet these models can produce long and massive tidal tails, provided the spin parameter
is not too small. The halo-to-disk mass ratio is thus not critical for tail-making ability.

Instead, the size of the disk compared to that of the halo seems to be the critical
factor. In our approach, the size of the disk is tied to the spin of the dark halo. A larger
spin parameter A leads to larger disks. The bulk of the disk material is then more loosely
bound in the dark matter potential well and can be more easily induced to form long
tidal tails. This effect can be quantified in terms of the ratio £ of the circular velocity to
the escape speed at a radius R = 2R3. We have shown that £ correlates well with the
tidal response of the disk models. For models with £ > 8 we do not expect significant
tails, while models with £ < 6.5 can produce substantial tails.

When £ is used to characterize the tail-making ability, the results of DMH agree
with our own. In their sequence of four models not only the mass of the halo changes,
but also its spatial extent. We think the latter effect is critical in defining tail-making
ability, because the relative size of disk and halo affects the value of £ strongly. This also
agrees with the earlier conclusion of Barnes (1997, private communication). For given
inner structure and given mass ratio My/My, less extensive halos have larger £ and so
make weaker tails.

We focused in this work on just one halo mass. Note however, that the shape of the
rotation curves does not depend on our particular choice for v9gg. Rotation curves with
other peak velocities may be realized by an appropriate scaling of vagg.

According to the work of NFW, the shape of the dark matter profile is insensitive to
cosmology. Also, the distribution of A is universal and independent of the initial power
spectrum. Furthermore, the average value of the concentration ¢ does not vary with halo
mass, and it depends only weakly on cosmology. For low-density flat universes a smaller
value, ¢ ~ 5, is probably more appropriate than the value ¢ = 15 employed in most of
the models in this work. Such a smaller concentration is also supported by observational
data (Navarro 1998). However, our model ‘V1’, which has ¢ = 5, produces tails well
in line with the other models in Figure 2.10. Also note that according to Figure 2.2,
smaller ¢ gives rise to larger disks, in principle favouring even stronger tails.

This suggests that all ‘reasonable’ CDM cosmologies can produce disk galaxies with
A > 0.05 that are roughly equally capable of producing tidal tails when they collide
and merge with similar objects. We conclude that the observed lengths of tidal tails in
interacting galaxies are consistent with current CDM cosmologies, and that tidal tails
are not useful to discriminate between different flavours of these scenarios.

However, tidal tails remain a useful tool to probe the structure of individual galaxies,
since the length and mass of tails formed in an interaction is a strong function of the
rotation curve and the potential in the region of the galactic disk. The presence of
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tidal tails can thus provide important constraints on models of disk galaxies. In fact,
these constraints are potentially very powerful if dynamical modeling of tail formation
is combined with detailed observations of the velocity field in merging pairs of galaxies.

We hope that the N-body representations of disk models constructed in this work
may be more realistic caricatures of real spiral galaxies than those of previous work. In
particular, the structural properties of our models are motivated by hierarchical structure
formation and are less ad hoc than in previous simulations of this kind. These models
should be useful for future work on galaxy evolution.
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—Q: Where’s the rest of the moon when it’s not a full
moon?

—A: When they landed on the moon in 1969, the astro-
nauts shoveled most of the moon’s surface into special
containers and took it home. They would have taken the
whole thing, but they needed to keep some dirt there to
hold the flag up. If you see something that looks like a
full moon, that’s either false memory or someone playing
a practical joke on you.

Scott Adams, Journey to Cubeville

Modeling star formation and feedback in
simulations of interacting galaxies

Abstract

We discuss a heuristic model to implement star formation and feedback in hydro-
dynamical simulations of galaxy formation and evolution. In this model, gas is
allowed to cool radiatively and to form stars with a rate given by a simple Schmidt-
type law. We assume that supernovae feedback results in turbulent motions of gas
below resolved scales, a process that can effectively pressurize the diffuse gaseous
medium, even if it lacks substantial thermal support. Ignoring the complicated
detailed physics of the feedback processes, we try to describe their net effect on
the interstellar medium with a fiducial second reservoir of internal energy, which
accounts for the kinetic energy content of the gas on unresolved scales. Applying
the model to three-dimensional, fully self-consistent models of isolated disk galaxies,
we show that the resulting feedback loop can be modeled with smoothed particle
hydrodynamics such that converged results can be reached with moderate numer-
ical resolution. With an appropriate choice of the free parameters, Kennicutt’s
phenomenological star formation law can be reproduced over many orders of mag-
nitude in gas surface density. We also apply the model to mergers of equal mass
disk galaxies, typically resulting in strong nuclear starbursts. Confirming previous
findings, the presence of a bulge can delay the onset of the starburst from the first
encounter of the galaxies until their final coalescence. The final density profiles
of the merger remnants are consistent with de Vaucouleurs profiles, except for the
innermost region, where the newly created stars give rise to a luminous core with
stellar densities that may be in excess of those observed in the cores of most el-
liptical galaxies. By comparing the isophotal shapes of collisionless and dissipative
merger simulations we show that dissipation leads to isophotes that are more disky
than those of corresponding collisionless simulations.
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3.1 Introduction

Numerical studies of large-scale structure formation have greatly helped to gain insight
into the collisionless dynamics of dark matter in cold dark matter (CDM) universes. In
contrast to the rapid progress in this field, modeling the formation of the luminous parts
of galaxies has proven to be far more difficult. Here, a large range of complicated physical
processes have to be considered that go far beyond the regime of ‘simple’ gravitational
dynamics. In order to properly model the formation processes of luminous stars, the
hydrodynamics of the interstellar medium (ISM) has to be followed, including gas shocks,
radiative heating and cooling processes, and the actual formation and fragmentation of
cold molecular clouds. In addition, newly formed stars will influence the surrounding
ISM by energy input in the form of supernova explosions, stellar winds, or UV radiation.
As a result, the ISM is believed to exhibit a complicated multi-phase structure (McKee
& Ostriker 1977; Shu et al. 1987). Further complications arise from magnetic fields
and gas turbulence (Norman & Ferrara 1996; Mac Low et al. 1998), which may play an
important role in stabilizing molecular clouds against collapse. Also, the gas dynamics
will remain tightly coupled to the gravitational dynamics of the whole galaxy at all times,
e.g. star formation in the disk may be triggered and regulated by large-scale gravitational
instabilities in the disk (Wyse & Silk 1989; Wang & Silk 1994; Silk 1997).

While it is obvious that one would like to include star formation in cosmological
simulations of galaxy formation, it is also clear that these physical processes are too
complicated to be modeled from first principles. And even if this were possible, a three-
dimensional simulation that tries to address all the relevant physics would be not feasible
with current technology, just because the dynamic range of the problem is so large. For
example, a typical size of a cold gas cloud is about 10 — 100 pc, while that of the galaxy
is of order 100kpc, and scales above 1 Mpc are important for its formation. Given that
the cloud has a complicated internal structure, one faces a problem with spatial dynamic
range of at least 107. As a consequence, only two-dimensional simulations have so far
been able to model the turbulent ISM on a global scale (Rosen & Bregman 1995; Wada &
Norman 1999). However, in three dimensions the resolution problem will stay for some
time until it might eventually be overcome with more sophisticated simulation codes,
and with faster computer hardware. Adaptive mesh refinement codes (Norman & Bryan
1998; Klein et al. 1998) or parallel tree-SPH codes (Davé et al. 1997) are tools that
potentially will be able to achieve sufficient dynamic range, at least for a small localized
volume.

In the meantime, the problem might be amenable to heuristic solutions that avoid the
brute-force approach required by attempts to correctly model all the relevant physics.
Observationally, the star formation rate follows surprisingly well a global Schmidt-law
(Kennicutt 1983, 1989, 1998), i.e. the star formation properties correlate well with the
local gas density. This suggests that a simple phenomenological approach to star for-
mation can be employed, in which the properties of the ISM are averaged over scales of
order 100 pc. In such an approach, we gloss over the details of the physics of star for-
mation, but we might still get important clues about the spatial and temporal evolution
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of the star formation rate. For example, such a model may be applied to interactions of
galaxies and to the study of the starbursts triggered by them.

In recent years, a number of authors have worked along such lines, coupling smoothed
particle hydrodynamics (SPH) codes with simple star formation and feedback prescrip-
tions (Katz 1992; Navarro & White 1993; Mihos & Hernquist 1994b; Steinmetz & Miiller
1995; Tissera et al. 1997; Gerritsen & Icke 1997; Hultman & Killander 1997), or they
developed such models for hydrodynamical mesh codes (Yepes et al. 1997).

A robust result of these studies has been that “thermal” supernova feedback is not
effective in regulating star formation, i.e. if the energy released by supernova was assumed
to simply heat the ISM, its dynamics was hardly affected. This is because the dense gas
in star forming regions is able to radiate away this heat input very quickly. However, an
introduction of “kinetic” feedback made it possible to obtain quasi-stationary models of
disk galaxies with star formation rates resembling normal spiral galaxies. In most SPH
simulations, this kinetic feedback has been implemented by imparting radial momentum
kicks on neighboring SPH particles. In this study, we try to improve on such a feedback
implementation, which is plagued by numerical intricacies, and directly resorts to the
particle formalism of SPH. We instead investigate a model of the star formation/feedback
loop that is based on the notion of an effective equation of state for the ISM, averaged
over scales of order 100 pc. In essence, we augment the thermal pressure of the gas with a
turbulent pressure, while not resolving the turbulence itself. This “sub-grid” model does
not directly resort to the particle formalism of SPH, and has advantageous numerical
properties. It leads to a smooth description of star formation, which can be shown to
result in quantitatively converged results even with moderate numerical resolution. Our
model is able to quantitatively reproduce the star formation law of Kennicutt (1998).

Once isolated disk galaxies can be modeled as quiescently star forming galaxies,
one can try to explore more extreme environments by hoping that the model carries
over to such regimes. For example, one may ask how the star formation rate evolves
in major mergers of gas rich spirals. In previous simulations of this kind (Barnes &
Hernquist 1991; Mihos & Hernquist 1994a, 1996; Barnes & Hernquist 1996) it was shown
that major mergers can produce strong nuclear starbursts with sufficient strength to
plausibly account for ultraluminous infrared galaxies (ULIRGS). However, a problem of
the simulations has been that the nuclear starbursts led to the formation of extremely
dense and concentrated cores of young stars in the center of the merger remnants (Mihos
& Hernquist 1994a). The resulting break in the stellar profile seems not to be observed in
this form in real elliptical galaxies, so one aim of this work is to examine to what extent
such stellar cores can be circumvented by our new prescription to implement feedback.
To this end, we simulate a number of major mergers, and we compare the structure
of the merger remnants with those obtained in corresponding collisionless simulations.
While the surface brightness profiles of our remnants follow r!/4-laws for most of their
light, the dissipative simulations exhibit a central luminosity excess, quite similar to the
results of Mihos & Hernquist (1994a).

Our set of merger simulations also allows us to study the effect of dissipation on the
isophotal shapes of the merger remnants. We demonstrate that dissipation produces
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“disky” isophots, confirming a long-standing hypothesis in studies of the systematic
properties of elliptical galaxies.

This chapter is organized as follows. In Section 2 we describe in detail the assump-
tions of our modeling, while we briefly describe its numerical implementation in Section
3. We then consider simulations of isolated disk galaxies in Section 4, and we examine
major mergers in Section 5. Finally, we discuss our findings in Section 6.

3.2 Model ingredients

3.2.1 Dark matter, stars, and gas

Initially, our galaxy models contain a dark matter halo, a stellar disk, an optional stellar
bulge, and a gaseous disk capable of forming further stellar material. The structural
properties of our model galaxies are derived according to the analytic work of Mo, Mao
& White (1998), and the details of how we construct N-body representations of these
galaxies are described in Chapter 2. Note that our initial conditions do not explicitely
contain a hot gaseous phase in the galactic halo, although such a medium does form
by shock heating in our merger simulations. In studies of galaxy formation, feedback is
often invoked as a mechanism to regulate further gas inflow. In this study we mostly deal
with another aspect of feedback, the one that refers to the regulation of star formation
of the gas that has already cooled and settled to a disk.

In the collisionless limit, the dark matter and the stars follow the coupled Poisson-
Vlasov equations, and we solve this system with the usual N-body approach. In contrast
to that, the interstellar gas is more difficult to model, since it is collisional and may
develop shocks, and it can participate in radiative processes and the poorly understood
physics of star formation. To first approximation we treat the interstellar medium (ISM)
as an ideal inviscid gas, i.e. it follows the FKuler equation

dv VP

—=—-—-V2 3.1
" p ; (3.1)
and the energy equation
du P
V.V, 2
g7 pV v (3.2)

Here v and p describe the velocity field and the the density of the gas, and u is its internal
energy per unit mass, while @ is the total gravitational potential of the system. We take
the thermal pressure to be P = (y — 1)pu, with v = 5/3, appropriate for a monoatomic
ideal gas. Below we will supplement this simple gas dynamics with additional processes
in order to model star formation and feedback.

3.2.2 Cooling

In contrast to dark matter, baryonic gas can lose energy by radiative cooling. This is an
important process for the formation of the luminous part of galaxies, since it allows the
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Figure 3.1: Cooling rate for a primordial mix of H and He according to Sutherland &
Dopita (1993).

gas to sink to the centers of the dark matter potential wells, and to ultimately form the
stars we see today.

We adopt cooling functions computed for collisional ionisation equilibrium (CIE) by
Sutherland & Dopita (1993). The loss of energy per unit mass of gas is given by

du - Anet (p, T)
(dt)cool B P ) (3.3)

For simplicity, we assume a primordial composition of hydrogen and helium, and we
neglect changes of the metallicity of the gas in this work. In Figure 3.1, we show
the adopted net cooling function for a primordial H/He mix, computed for collisional
ionization equilibrium by Sutherland & Dopita (1993). Note that the temperature of
the gas is given by

r_FP_(-1p

kp k

where 77 is the mean particle mass. While the gas is fully ionized at temperatures above
~ 1052 K, it starts to recombine at lower temperatures. In this transitional region,
changes due to the varying number density of electrons, which needs to be taken into
account in equation (3.4).

Below 10* K the gas is basically neutral and does not cool any further by simple
line cooling or Compton cooling. In principle, there are less efficient molecular cooling
processes that can eventually further reduce the gas temperature (Abel et al. 1997).
These processes are highly relevant for the formation and fragmentation of dense mole-
cular clouds (Abel et al. 1998), and for the generation of the cold, dense filaments that

U, (3.4)
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thread the surrounding warm gas in the ISM (Rosen & Bregman 1995). However, we
do not attempt to resolve the true multi-phase structure of the ISM in this work, since
we clearly lack resolution to do that. Rather we implement an effective star formation
model that keeps the gas in a relatively smooth phase, which is probably best identified
with the layer of warm, neutral gas observed in the Galaxy.

Note that the gas may also be heated by an ambient ultraviolet (UV) background or
by UV radiation of newly formed stars. In this work, we do not consider such sources
of heating. While an ambient UV field has had very little effect on star formation in
the simulations of Navarro & Steinmetz (1997) and Weinberg et al. (1997), Gerritsen
& Icke (1997) successfully used feedback by local UV sources to self-regulate their star
formation model.

In regions of high density, the cooling time of the gas can become very short. In
this regime the gas may become thermally unstable, and it then collapses essentially
on a free fall time. If no further physics is included, this catastrophic cooling results in
knots of cold, dense gas, with density and size set by the resolution of the gasdynamical
simulation. This situation is not only numerically unpleasant, it also appears to be un-
physical. In reality, star formation and its accompanying feedback processes are thought
to alter the dynamics of the gas phase in the high density regime. These processes will
prevent a collapse of all of the gas into high density clumps. Hence the inclusion of
cooling requires the consideration of such additional processes.

3.2.3 Star formation

We take the star formation rate per unit volume to be proportional to the local gas
density, and inversely proportional to the local dynamical time, viz.

d
Ao _ 0
dt tayn

(3.5)

where p, denotes the density of stars, and the dynamical time of the gas is given by
tayn = (Gp)~%°. This parameterization leads to a Schmidt-type law g, oc p" with n =
1.5, which empirically has been used for a long time to describe the gross star formation
properties of galaxies. A parameterization of the form (3.5) has also been employed
in many numerical simulations that included star formation, and also in semi-analytic
studies of galaxy formation (Kauffmann et al. 1993). Of course, the star formation also
depletes the gas according to

% = —aG%pl?. (3.6)

3.2.4 Feedback model

One of the robust result of previous simulations has been that thermal feedback alone
has hardly an effect on the evolution of the ISM and on the star formation rate. This
is caused by the short cooling times in dense star forming regions; the heat input by
supernovae is just radiated away nearly instantly. To remedy this problem, Navarro &
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White (1993) proposed to put some of the feedback energy directly into kinetic energy of
the gas. In their SPH implementation of this idea, they imparted small radial momentum
kicks to the particles around a star-forming SPH particle. While this scheme proved to
be able to regulate the star formation rate, it is numerically and physically not without
problems. First, the feedback description is formulated directly in terms of the SPH
particle formalism, and its free parameters are thus bound to depend on details of
numerical resolution and implementation of SPH. Also, the radial motions triggered by
the star-forming particle seem unphysical, since the real expanding shells of supernova
remnants are several orders of magnitude smaller than the typical resolution limit of
current cosmological SPH simulations.

We here want to improve on the numerical properties of such a kinetic feedback
scheme. In particular, the model should achieve converged numerical results in hydro-
dynamical simulations using moderate numerical resolution, and the small number of
tunable parameters of the model should be independent of resolution. Only in this situ-
ation we can expect to obtain meaningful results if the model is applied to cosmological
simulations of galaxy formation, where objects of a large range in masses form, and the
first objects are inevitably small. At this stage of the modeling we therefore give well
controlled numerical properties precedence over the implementation of more detailed
physics.

Star-forming molecular clouds are known to have lifetimes much larger than their
free-fall time under gravitational collapse. However, since the density in these clouds
is high enough to allow efficient cooling, it can not be ordinary thermal pressure that
supports them. Instead, turbulent gas motions caused by supernova explosions and
stellar winds have been suggested as a mechanism of support for the gas. This turbulence
could be of a supersonic hydrodynamical nature, or it could involve magnetic fields
leading to supersonic or super-Alfvenic magnetic turbulence (Mac Low et al. 1998). By
the same token, it is clear that the temperature of the interstellar HI in the Galaxy is
far too low to provide enough thermal pressure to support the HI layer against collapse
under its own weight. The support is likely provided by turbulent bulk motions of the
gas (Lockman & Gehman 1991). This turbulence may be fed by supernovae explosions,
superbubbles, stellar winds, HII regions, or differential sheer in the disk. By analysing
the grand source function of this turbulence, Norman & Ferrara (1996) showed that the
turbulent pressure is given by pturp ~ 10 —100 piy, i.€. it typically dominates the thermal
pressure.

Our new approach to feedback therefore rests on the assumption that the ISM is pri-
marily supported by turbulent pressure, and that this turbulence is sustained by kinetic
energy feedback of exploding supernovae. We model this feedback by a second reservoir
of internal energy, q, of the gas. This reservoir is introduced to describe the energy
content per unit mass due to turbulent motion of gas at scales well below the spatial
resolution limit. We further assume that the energy content g effectively pressurizes the
gas, and we take the pressure of this medium to be

P=(y—1)(u+q)p. (3.7)
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Note that the temperature of the gas is still computed based on u alone. Hence, for
q > u the gas may be pressure supported even if it is cold.

Following Navarro & White (1993), we adopt a power-law initial mass function (IMF)
with a slope of 1.5 between 0.1 and 40 M, and we assume that all stars above 8 Mg
go supernova instantly with the release of 10%! ergs of energy. The local energy input
due to supernovae is then eg,dp,/dt, with eg, = 4 x 10*8 ergs M(T)l. We assume that this
energy is first released into the turbulent reservoir g, i.e.

dg ) 1dps
' = e = 2P 3.8
(dt feedback p dit (38)

We further invoke a process that thermalizes this kinetic energy and transforms it into
‘ordinary’ thermal energy. We parameterize this process as

where f(p) is some function of density. For reasons that we will describe in more detail
below, we choose f(p) = B/./p for the functional dependence of f(p), i.e. the thermal-
ization proceeds more slowly in high-density regions.

There are then two free parameters in the model, o and 3. Note that for 8 — oo we
have ordinary thermal feedback, while # = 0 corresponds to maximum kinetic feedback,
where all the feedback energy is collected in g and star formation will eventually be
quenched.

In summary, the equations governing the internal energy of the gas phase look like

du A(u, p) q

m =—(y-1DuV-v-— +ﬂﬁ’ (3.10)
d
d—z — —(’y—1)qV'V+O[€Sfb(GP)05_ﬂp35, (3']‘1)

where the adiabatic changes are described by the terms involving the velocity divergence.

To elucidate the essential properties of this model, consider a portion of gas with
V . v ~ 0, but which is dense enough to form stars at appreciable rate. Then the gas
will also be able to cool efficiently, i.e. the energy input by the feedback into the thermal
reservoir will not be able to raise the temperature of the gas above ~ 10* K. On the
other hand, the reservoir ¢ will take on an equilibrium value of

g =enG*Paf1p. (3.12)

For high densities, efficient feedback will lead to g > u, resulting in an effective pressure
of the gas of
P~ (v — 1D)ep,G¥Paf 1 p2 (3.13)

In star forming regions, we therefore obtain an effective equation of state in the form

P = cp?, (3.14)
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3.2 Model ingredients

with ¢ = (y — 1)eg, G%33~1. In principle, we can adjust the polytropic index of the gas
by changing our model assumptions about the function f(p). However, after some exper-
imentation, we think that the choice leading to Eqn. (3.14) has two desirable properties,
making it superior to other possibilities in the framework of the present model.

First, a self-gravitating sheet of gas with an equation of state of the form (3.14), and
a surface mass density o, has the density distribution

oz) = %“cos(kz), for [ke] < 7 (3.15)

with

_ 227G
=—
Remarkable about this solution is the lack of dependence of the vertical scale height

2 2
o [2°pdz v c
=< T " =|——-4)] — 1
“0 Jpdz (4 ) ArG (3.17)

on the surface mass density. This suggests that it should be comparatively easy to
reconcile this model with the observed constancy of the stellar and gaseous scale heights
with radius in many disk galaxies. Note that for the stiff equation of state (3.14), the
volume polytropic index is equal to the surface polytropic index (Hunter 1972; Laughlin
et al. 1998).

In conjunction with our star formation law, a further consequence of equation (3.15)
is that the star formation rate per unit area of a sheet of gas is given by

V/7I(1.25)

o 1.5
Dsen = Y75 2 0(Gh)"? (5) , (3.18)

k2 (3.16)

i.e. we have a Schmidt-law Yspr o ¢1*® not only for the volume density, but also for

the surface mass density of the gas. Such a law has indeed been found by Kennicutt
(1998). Therefore, we now further investigate the proposed model by trying to model the
gaseous disks in galaxies as self-gravitating sheets of gas. We note that for the Galaxy,
a stable hydrostatic equilibrium configuration of the gas has been shown to provide a
good description of the data, at least on large scales (Kalberla & Kerp 1998; Bloemen
1987).

3.2.5 Designing Kennicutt’s law

By studying the star formation rates and gas densities of a large sample of normal disk
galaxies, and of star-bursting systems, Kennicutt (1998) has found the remarkable result,
that on average the star formation rate per unit area and the surface gas density are
related by!

1.4£0.15
Yigas > Mg

EﬁRzﬂﬁi&ﬂx104< =

(3.19)

Mgpc™ yrkpc2’

Yfor Hy = 75kms™ 1.
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3 Modeling star formation and feedback in simulations of interacting galaxies

This ‘global’ Schmidt-law holds over an exceptionally wide range of scales, bridging at
least 5 decades in density, and 7 decades in star formation rate.

The composite Schmidt-law (3.19) has been obtained based on suitably defined aver-
ages of gas and star formation densities of whole galaxies, but Kennicutt also studied the
azimuthally averaged star formation rate per unit area as a function of radius in normal
disk galaxies. Above Xga5 ~ 10 Mgpc2 the local star formation rate scales with gas
density just in the way implied by equation (3.19). However, below this gas density, the
star formation rate drops very steeply. Thus, there also exists a rather sharp threshold
in gas density; below it, star formation is strongly suppressed.

We take Kennicutt’s findings as a phenomenological basis to set the free parameters
of our star-formation/feedback model. Looking at equations (3.17) and (3.18), we can
express the free parameters a and 3 as

_0.5 5SFR
a=1.96G7°%° SpEs 20°, (3.20)
)
B =0.146(y — 1)epG ;f? 2 0. (3.21)
gas

Based on Kennicutt’s law for the azimuthally averaged star formation rate we take a
value of
Terr 10 15R*Mgyr kpe ?
Ygas (100 h Mgpe—2)*°

for the coefficient of the star formation law. We then need to assume a thickness zy for
the gaseous sheet to determine o and 3. In this work, we take zy = 0.2h 'kpc. This
results in

(3.22)

0.0131 %0 " 3.23
a=00131 (20 ) (3.23)

and

oo

= 0.0051 h>M%Pyr~'kpc ' (L)_ : 3.24

h © yr XpC 0.2 h~kpc (3:24)

We also introduce an explicit cut-off in the star-formation law by requiring the star
formation rate to be strongly suppressed below ¢y, = 10hMgpc2. We relate this
cut-off surface density to a volume density by means of peyy = kXcyt/2. This results in

_ Ygas _ ( 20 )_1 2 -3
pert = 0.342=55 = 00171 (o) WP Mope (3.25)

Finally, we alter the star formation rate of equation (3.5) by setting p, = 0 for p < peys-

We have now fixed the free parameters of our star formation model before we have
actually done a numerical simulation. In the following sections we will investigate how
well this model performs in self-consistent SPH-simulations of individual and colliding
disk galaxies.
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3.3 Numerical techniques

3.3 Numerical techniques

In summary, the gasdynamical model outlined above is described by equations (3.1),
(3.7), (3.10), and (3.11). We supplement this system with the collisionless dynamics of
dark matter and stellar material, and evolve it under self-gravity with our new SPH code
GADGET. Algorithmic and numerical details of this code will be described in Chapter 5.
We here just discuss our methods to implement the actual formation of collisionless
stellar material, and the depletion of the gas content.

We have formulated star formation in an entirely continuous fashion, and we would
like to obtain an equally continuous description of these processes in the particle-based
SPH formalism. However, it is not feasible to spawn new independent star particles
at every timestep, for every gas particle, just because the resulting number of stellar
particles would quickly grow prohibitively large, and the small mass of these particles
would lead to excessive two-body heating in encounters with the heavy dark matter
particles. To avoid this, we treat the gas particles as hybrid gas/star particles in the
way suggested by Mihos & Hernquist (1994b). Each SPH particle carries a gas mass,
and a collisionless mass corresponding to the stellar material formed by this particle.
The gasdynamical interactions are computed with the gas mass only, while both mass
contributions participate in the gravitational interaction. Star formation is then simply
a conversion of some of the gas mass into collisionless stellar mass, with the total mass
of the hybrid particle being constant.

While this scheme allows a smooth implementation of star formation, it has the
disadvantage that the formed collisionless matter remains coupled to the gas phase. To
cure this problem, we also spawn independent stellar particles. To this end, each SPH-
particle computes the sum of the stellar mass that has been formed in the region of
its smoothing neighbours. If this exceeds some predefined mass m, (typically half the
initial gas particle mass), a new stellar particle of mass m, is formed, where the stellar
mass of this particle is collected by kernel weighting from the SPH neighbours. The
particle is created at the center-of-mass position and with the center-of-mass velocity of
the various mass parts taken from surrounding gas particles. In this way, the fraction
of newly created stellar material that is still bound to SPH particles falls below 30 per
cent soon after the simulation is started.

In strongly star forming regions, the gas mass can be heavily depleted. In this case,
SPH particles would ultimately turn into very light gas particles. To maintain a roughly
constant gas mass resolution, we also dissolve gas particles completely once their mass
drops below a prescribed fraction of their initial mass. In this case, the mass and energy
of the particle is distributed kernel-weighted among its SPH-neighbours.

3.4 Isolated disk galaxies

In the following we consider models of disk galaxies with structural properties set ac-
cording to the analytical study of Mo et al. (1998). The structure of the dark matter
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3 Modeling star formation and feedback in simulations of interacting galaxies

halo is assumed to follow the NFW-profile (Navarro et al. 1996, 1997), adiabatically
modified by the formation of a stellar disk. The dark halo is described by its circular
velocity vagp, its spin parameter A, and its concentration c. The mass and virial radius
of the halo are then given by

3
U200
10GH (z)’

and 200 = Y200 (326)

Moo = .
200 10H (z)

We assume that a centrifugally supported stellar disk of mass My = mgqMoyg has formed
inside the halo, and that the specific angular momentum of the disk material is equal
to that of the halos. Adopting an exponential disk for the radial structure of the stellar
disk, the disk scale length R4 can then be computed. Vertically, we model the stellar
disk as an isothermal sheet with scale-length R, = 0.2Ry .

Fully self-consistent N-body representations of such models can be constructed in the
way outlined by Springel & White (1999). In this study, we supplement the disk models
by an additional gaseous phase in the disk. For this purpose, we assume that a fraction
feas of the disk mass is in the form of gas. Initially, we distribute the gas just like the
stellar material in the disk. However, we only assign an azimuthal velocity component
equal to the local circular velocity to the gas, and we set its initial internal energy per
unit mass equal to u = v2/(y — 1). If the gas is allowed to cool radiatively, it will then
quickly settle into a thin gaseous disk.

3.4.1 Cooling and star formation without feedback

We start by considering a simulation where the gas is allowed to cool radiatively and
to form stars, but where no feedback effects are taken into account. For definiteness,
we select an isolated disk galaxy with parameters vogp = 160kms™!, ¢ = 5, A = 0.05,
mg = 0.05, and fgas = 0.2, and we label this model “I1”. These parameters result in a
disk scale-length of Rq = 4.5 h~'kpc. We employ 20000 gas, 20000 disk, and 30000 dark
matter particles for this simulation, and we use a gravitational softening of 0.4 h~'kpc
for the dark halo, and 0.1 »~'kpc for the gas, disk, and newly formed stellar particles.

In Figure 3.2 we show the time evolution of this model. After the start of the
simulation, most of the gas quickly settles into a very thin disk at a temperature of
T ~ 10* K due to efficient cooling. In Figure 3.3 we show a phase diagram of the SPH
particles in the temperature-density plane for the initial gas distribution, and for the gas
after 0.1 internal time units?. At that point of time, most of the gas has already cooled
to 10* K due to the short cooling times in the initial gaseous disk.

Note that an isothermal sheet at a temperature of 10* K, and gas surface density
similar to our model galaxy, would have a thickness of just ~ 0.04 h~'kpc at the center.
This is already below the gravitational softening length of the current simulation, so a
simulation with very high resolution would be necessary to accurately follow the self-
gravity of the gas in such a situation. On the other hand, the observed thickness of the HI

>The internal unit time is 9.8 x 10847 'yr.
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Figure 3.2: Time evolution of the projected gas density (color-coded) in simulation
I1, where only cooling and star formation are enabled, but no feedback is considered.
The gaseous disk is seen face-on in the xy-projection, and edge-on in the xz- and zy-
projections. The circle marks the optical radius Rop¢ = 3.2Rq. In each panel, the time
T since the start of the simulation is given in units of 9.8 x 108h~lyr.

distribution in the Galaxy is several hundred pc, again showing that the warm gaseous
layer cannot be supported by thermal pressure alone (Lockman & Gehman 1991).

The extreme thinness of the gaseous disk, and its lack of pressure support, make it
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Figure 3.3: Temperature versus gas density of the SPH particles in simulation I1 for
the initial time (top), and for the evolved simulation after 0.1 time units (bottom). The
density is given in terms of ny, the number density of hydrogen nuclei.

highly susceptible to axisymmetric and local perturbations. As a result, the gas disk
soon breaks up into clumps, that sweep up more and more of the gaseous disk to form a
scattered distribution of very dense and ‘cold’ gas lumps. Note that what we have here
called ‘cold’ still has a temperature of ~ 10* K. In studies of the ISM, such temperatures
are usually refered to as ‘warm’, since the gas in dense molecular clouds is much colder,
and is then refered to as the cold component.
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Figure 3.4: Star formation rate of models I1 and 12 as a function of time. Simulation
I1 involves only cooling and star formation, while run I2 has also thermal feedback.
However, the latter has little effect on the dynamics of the gas, and the evolution of the
star formation rate.

The lumps of gas collapse under their self-gravity until they are either stopped by
their residual thermal support, or by the gravitational softening length. The latter will
often be the case in simulations with a minimum resolution of 0.1~ 'kpc or larger.
Note that in the real multi-phase interstellar medium very high densities are indeed
reached. For example, the hydrogen number density in protostellar clouds may well be
above 100 cm 3. However, these densities are many orders of magnitudes larger than the
densities we can simulate in the present three-dimensional simulations of whole galaxies.
This again illustrates that we cannot resolve the details of the star forming processes
in detail. Being far less ambitious, we instead try to model the gross properties of star
formation averaged over scales 0.1~ 'kpc.

Since we have coupled the star formation rate (SFR) to the gas density, the SFR
will grow strongly when the dense gas lumps form. This is seen in Figure 3.4, where
we plot the star formation rate as a function of time for this simulation. After the
start of the simulation, the star formation rate grows strongly, developing a starburst
that has consumed 40% of the gas mass by time ¢ = 0.4. Because the gas is rapidly
depleted in this burst, the star formation rate declines again after that time. Note
that quiescently star forming disk galaxies are believed to have a rather constant star
formation rate with time. Clearly, this cannot be reconciled with the present simulation,
which therefore does not represent a plausible physical scenario for the gas dynamics in
disk galaxies. Perhaps its most severe shortcoming is the absence of a mechanism that
can regulate star formation. Such a mechanism is thought to be provided from feedback
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Figure 3.5: Phase diagram of the gas particles of model 12 at time ¢ = 0.1. In con-
trast to simulation I1, we here included thermal feedback by supernovae. Comparing
with the lower panel of Figure 3.3, one sees that this energy input quickly re-heats all
adiabatically cooled gas back to 10* K. However, further heating is prevented by the ef-
ficient radiative cooling mechanism that sets in at that temperature. This thermometer
confines the gas to a nearly isothermal equation of state.

of the newly formed stars on the surrounding ISM. We now investigate the changes in
the gas dynamics and the star formation rate induced by the inclusion of feedback.

3.4.2 Self-regulation of star formation

A main motivation for the inclusion of feedback is to try to prevent the unphysical run-
away of the SFR seen in simulation I1. However, if we include only thermal feedback
(8 = o0), the situation hardly changes. This is seen in simulation 12, where we put the
feedback energy, 4 x 10%8 ergs per formed solar mass of stars, into the ordinary thermal
reservoir u of the gas. As seen in the phase diagram of Figure 3.5, this energy can easily
heat all adiabatically cooled gas back to a temperature of 10* K, but no temperature
increase beyond 10* K is obtained, because the gas can cool very efficiently in the high-
density knots where stars form. This again confirms previous studies; the injected heat
energy is radiated away quickly without significantly affecting the dynamics of the gas.
Consequently, the star formation rate is not changed very much either (see Figure 3.4).

The ineffectiveness of purely thermal feedback has previously been noted by several
authors, all invoking slightly different mechanisms to remedy this problem. Navarro
& White (1993) and Mihos & Hernquist (1994b) proposed a kinetic energy feedback,
Gerritsen & Icke (1997) invoked UV radiation by young stars, and Yepes et al. (1997)
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Figure 3.6: Time evolution of the projected gas density (color-coded) in simulation
I3, which uses our new feedback model. The gaseous disk is seen face-on in the xy-
projection, and edge-on in the xz- and zy-projections. The circle marks the optical
radius Ropt = 3.2R4.

tried to solve the problem by explicitly introducing a two-phase description of the ISM.
We will now examine the properties of our new model. As outlined in Section 2, we fix
the free parameters with the phenomenological star formation law of Kennicutt (1998),
and by assuming a thickness of zg = 0.2 h~'kpc for the gaseous disk. This results in
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Figure 3.7: Star formation rate of model I3 as a function of time. This simulation
uses our new prescription for implementing feedback. As can be seen by the near
constancy of the star formation rate, the feedback leads to a quasi-static disk galaxy
that quiescently forms stars at an almost constant rate.

a = 0.0131 and 8 = 0.0051 hQM%5yr71kpc*1'5, and we will employ these choices in all
further simulations.

Simulation I3 is the model galaxy I1 yet again, but this time simulated with our
feedback model enabled. In Figure 3.6, we show the time evolution of the gas density
distribution of this model. The dynamics of the gas in the disk is very different from
that shown in Figure 3.2. Instead of breaking up into small dense lumps, the gas now
remains in a relatively smooth disk, which shows signs of transient spiral structure. The
disk as a whole appears stable and does not show any strong signs of secular evolution.

In Figure 3.7, we show the evolution of the star formation rate as a function of
time. After an initial relaxation phase, the SFR remains effectively constant. This
demonstrates that the feedback model does indeed establish a self-regulation process for
the star formation rate. The nature of this self-regulation process can be understood
with the phase diagram of Figure 3.9. Here we plot the total gas pressure (in the form
of an ‘effective’ temperature T*, defined as T* = iP/kp) versus the density of the gas
particles in simulation I3. Above a density of ~ 1cm 3, the effective equation of state of
the gas changes to P  p?. In this regime, the turbulent pressure dominates the thermal
pressure, i.e. the gas is supported by the small-scale motions induced by supernovae
explosions.

84



z[ h'kpc]

y[h*kpe]

z[ h'kpc]

y[h*kpe]

3.4 Isolated disk galaxies

z[ h'kpc]

0 4 0 4 - 0 4 0 4
x[ h*kpc] z[ h'kpe] x[ h*kpc] z[ h'kpe]

x[ hkpc x[ hkpc
[ Op] 10 -10 [ Op] 10

z[ h'kpc]

y[h*kpe]

-10 0 10 -4 0 4 - 0 - 0
x[ h*kpc] z[ h'kpe] x[ h*kpc] z[ h'kpe]

Figure 3.8: Comparison of the gas density distribution in model I3 at different nu-
merical resolution. From the top left panel (I3-a) to the bottom right panel (I3-d), the
particle number in each component (gas, disk, halo) increases by a factor of two.

3.4.3 Resolution study

An important aim of our modeling has been to come up with an effective “sub-grid”
model for star formation, able to give meaningful quantitative results for the star for-
mation rate, even under conditions of moderate or poor numerical resolution. Since we
formulated our feedback scheme without direct involvement of the mass resolution in

85



3 Modeling star formation and feedback in simulations of interacting galaxies

106 E T T T T T T T T E
- T=05 ]
10° E
< F ]
')‘F L _
104 ) E

103 | . | | i g |

10 104 1072 100 102
ny [ cm®]

Figure 3.9: Phase diagram of T* = iP/kp versus density of simulation I3. Above a
density of ~ 10°cm™3, the energy content in the thermal reservoir ¢ becomes larger
than that in the thermal reservoir u. As a result, the feedback due to star formation
leads to additional pressure support of the gas, changing the effective equation of state
to P oc p?.

the SPH equations, we should be able to obtain converged numerical results, without
having to adjust the free parameters o and S.

We test this assertion by repeating simulation I3 at a range of different mass resolu-
tions. We start in realization I3-a with 10000 gas, 10000 disk, and 15000 halo particles.
We then successively increase the particle numbers in all three components by a factor
of 2, to obtain realizations 13-b, I3-c, and I3-d. The final run I3-d has then 80000 gas,
80000 disk, and 120000 halo particles. Note that I3-b is identical to the simulation I3
described earlier. We have run all four simulations with identical numerical parameters,
the only difference being the particle number.

In Figure 3.8 we compare the gas surface mass density for the models 13-a to 13-d at
an equal point of time. While models I3-c and 13-d show nice spiral patterns, they are
less well resolved in I3-b, and broken up in the rather patchy gas distribution of model
simulation 13-a. However, the morphology of the gas distribution is quite comparable,
at least in models I3-b, 13-¢, and I3-d.

In Figure 3.10 we show results for the global star formation rate of disk model I3
in this resolution study. The models 13-b, 13-c, and I3-d agree quite well, indicating
that the global SFR has already largely converged in the realization I3-b. The poorly
resolved model 13-a leads to an over-prediction of the star formation rate. This seems
to be due to the lumpy structure which the gaseous disk develops under the influence
of large particle noise. The higher density inside these lumps boosts the global star
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Figure 3.10: Comparison of the star formation rate as a function of time for different
numerical resolution. In the models I3-a to I3-d, the particle number successively
increases by a factor of 2. It is seen, that the star formation rate has already very
well converged for I3-b, while the poor resolution of run I3-a leads to an overestimate
of the star formation rate. In this case, the small number of gas particles leads to the
development of gaseous lumps in the disk, causing an overestimate of the star formation
rate.

formation rate. However, the overall result of this resolution study is very encouraging.
It demonstrates that our model has well-posed numerical properties, and that moderate
numerical resolution is sufficient to obtain meaningful results for the global properties
of the ISM in this model.

3.4.4 Kennicutt's law

We tried to design the feedback scheme such that it reproduces the observed global
Schmidt-law of Kennicutt (1998). In particular, we have selected the values of the free
parameters o and (8 a priori such that our models should match quantitatively the
observed dependence of star formation rate per unit area on gas surface density as a
function of radius in disk galaxies. We now test whether this has worked out.

In Figure 3.11 we show Xgpr versus the azimuthally averaged gas mass density Ygas
for the run I3-d. Note that in this simulation, we have not used a cut-off value for the star
formation rate. Also shown in this Figure is Kennicutt’s law, which we used to compute
values for the free parameters a and 8 of our feedback model. The good agreement
between the simulation and this target relation shows that the approximate treatment
of the gas as a self-gravitating sheet in hydrostatic equilibrium works surprisingly well.
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Figure 3.11: Star formation rate per unit area as a function of gas surface density for
simulation I3-d. The stars show azimuthally averaged quantities in small circular annuli.
The solid line shows the ‘target’ relation (Kennicutt’s phenomenological law) used to
determine the free parameters a and 8 before this simulation was done. Our feedback

model thus performs as expected, in particular, it nicely reproduces a Tgrg o< Tgz law.

Note that we haven’t included a cut-off in the star formation law in this simulation.

We now consider a number of simulations of isolated galaxies with different structural
properties. Model 14 is the model I3 yet again, but this time with the cut-off in the star
formation rate included. We also simulate two related versions of this model, differing
only in the circular velocity of the halo. In I5, we use vogy = 120kms~!, and in I6,
vo00 = 80kms~!. We further consider two rather extreme galaxies in terms of gas
density. In model I7 we chose a low disk mass (mq = 0.025), and a low gas content
(fegas = 0.1) together with a high spin parameter for the halo (A = 0.1). This results
in a large disk (Rq = 10.75h~'kpc) of extremely low gas surface density. Aiming for
the opposite extreme, we combined a heavy disk (mq = 0.1) with a high gas content
(fgas = 0.4), and a relatively small spin of the halo (A = 0.06). This results in a disk of
size Rq = 4.5 h~'kpc with very high gas surface density.

In Figure 3.12, we show Ygpr versus the azimuthally averaged gas mass density ogas
for the runs I4 to I8. All the models follow the Kennicutt relation very well, including
the cut-off at the right place. Note that model I7 practically has no star formation at
all, because its gas density remains below the threshold value nearly everywhere.
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Figure 3.12: Star formation rate per unit area as a function of gas surface density for
simulations 14 to I8. In these simulations, an explicit cut-off in the star formation rate
was used to reproduce the observed threshold.

3.5 Major mergers

3.5.1 Collision simulations

Even in gas-rich spiral galaxies, the total amount of mass in gas is small compared to
the mass of the dark matter and that of collisionless stars. Thus we do not expect a
significant modification of the global dynamics of a merging system of galaxies due to
dissipative gasdynamics. However, the central starbursts triggered by the interaction
might dramatically change the properties of the innermost regions of the galaxies. In
the following, we try to address the following questions related to these changes:

1. Does our parameterization of feedback and star formation lead to strong nuclear
starbursts as obtained in previous studies?

2. How does the strength and evolution of the starbursts depend on the orbit of the
galaxies, and do we find a similar dependence on the presence of a bulge as was
found by Mihos & Hernquist (1994c)?

3. What is the effect of dissipation on the structure of the merger remnants? How
do the density profiles and the isophotal shapes change?

In order to be able to address these questions in a clean way, we have performed a
number of targeted simulations. To this end, we consider four galaxy models, A, B, C,
and D. The basic structure of all of them is given by vggo = 120s~'km, ¢ = 5, A = 0.05,
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3 Modeling star formation and feedback in simulations of interacting galaxies

Table 3.1: Summary of runs. The table gives the labeling of our collision simulations,
and a short explanation for each of them.

run disk model orbit

Al gas, no bulge prograde, wide
A2 gas, no bulge prograde, close
A3 gas, no bulge inclined

B1 gas, with bulge prograde, wide
B2 gas, with bulge prograde, close
B3  gas, with bulge inclined

C1l collisionless, no bulge prograde, wide
C2 collisionless, no bulge prograde, close
C3  collisionless, no bulge inclined

D1 collisionless, with bulge prograde, wide
D2 collisionless, with bulge prograde, close
D3  collisionless, with bulge inclined

and mgy1, = 0.05, i.e. they all have the same total mass, and the same total baryonic
fraction. In galaxy A, we put all of the baryonic mass into the disk, 20 per cent of
it in the form of gas, the rest as collisionless stars. In galaxy B, one quarter of the
baryonic mass is put into a bulge, 20 per cent into a gaseous disk, and the rest is used
for a collisionless stellar disk. The galaxies C and D correspond exactly to A and B,
respectively, except that they contain no gas. Instead, the corresponding mass has also
been assigned to collisionless stars. These four galaxies may thus be used to explore
consequences of dissipative gas dynamics in merging galaxies with or without a bulge.

For each of these models, we have run three collision simulations on different orbits.
These are (1) a very wide prograde encounter with a minimum separation of Rye, =
8.0 h~'kpc, (2) a close prograde encounter with Ryep, = 0.5 'kpc, and (3) an inclined
encounter with Ry, = 1.0 h~'kpc, 6 = 30°, ¢1 = 0°, 6 = 60°, and ¢ = 90°. The
angles specify the orientation of the spin vectors of the two disks in ordinary spherical
coordinates. In our set-up, the orbital plane coincides with the xy-plane, and the galaxies
move such that they reach their Keplerian minimum separation when they cross the x-
axes, with their orbital angular momentum pointing along the z-axes. All of the collisions
have been started from an initial separation Rgiar; = 240 A~ 'kpc on a parabolic orbit. We
list a summary of these runs in Table 3.1. Note that for every gas-dynamical simulation
there is one collisionless simulations, with the gas replaced by disk stars. In particular,
simulations A1-A3 correspond to C1-C3, and B1-B3 to D1-D3.
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3.5 Major mergers

3.5.2 Time evolution

In Figure 3.13, we show the gas distribution in run Al as a typical example for the time
evolution of the merger simulations. As has been demonstrated in many previous studies,
the encounter between two equal disk galaxies leads to the formation of tidal tails, which
are ejected when the galaxies reach orbital pericenter for the first time. Simultaneously,
stars from the near side of the encounter are drawn towards the companion, giving rise
to bridges between the galaxies as they temporarily separate again. The bridges are
destroyed when the galaxies come back together for a second encounter, but the tails
survive and grow for a longer time in the relatively quiet regions of the outer potential.
Eventually, the disks are scrambled up when the centers of the galaxies finally coalesce
to form a spheroidal merger remnant.

The strength of the tidal response depends on the structure of the galaxies, and
the orbit of their encounter. A more detailed discussion of this dependence is given
elsewhere (Dubinski et al. 1999; Springel & White 1999). We here only study a limited
set of simulations to examine the influence of dissipation and star formation.

In the first encounter of the galaxies, the disks develop a bar and are transformed into
a pair of open bisymmetric spirals. The response of the gas to the tidal perturbation is
markedly different than that of the stellar component. It forms relatively thin arms, and
exhibits a phase-lag relative to the stellar arms, such that it loses angular momentum
due to gravitational torques. This extraction of angular momentum drives a central
inflow of the gas, allowing it to feed a nuclear starburst. Barnes & Hernquist (1996) and
Mihos & Hernquist (1996) have studied this mechanism in detail, and our simulations
are fully in line with their conclusions. In particular, we also find that the presence
of a bulge can prevent an early inflow of the gas by stabilizing the disks against bar
formation. This can be most easily seen in the history of the star formation rate, as
discussed below.

3.5.3 Evolution of the star formation rate

In Figure 3.14, we show the time evolution of the global star formation rate for those
merger simulations that involve gas (A1-A3, B1-B3). Until the first encounter of the
disks at ¢ ~ 1.0, the approaching galaxies form stars at a constant rate in all models.
In the wide prograde encounter of Al, a strong inflow of gas is initiated in this first
encounter, leading to a moderate but sustained starburst. Interestingly, simulation Bl
shows only a slight elevation of the star formation rate. Hence the early inflow of gas
can be almost completely suppressed by the presence of a central stellar bulge.

However, the strength of the early inflow depends also on the orbit of the galaxies, as
may be seen by comparing Al with the narrow prograde encounter of A2. The orbital
angular momentum is much smaller in A2/B2 than in A1/B1, and the strong shocks
formed in the overlapping disks reduce differences between the early response in models
B2 and A2 compared to those showing up between Al and B1.

When the galaxies come together for a second time, a nuclear starburst develops
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3 Modeling star formation and feedback in simulations of interacting galaxies

Figure 3.13: Time evolution of the projected gas density in simulation A3, an inclined
encounter of two bulge-less disk galaxies. Each panel measures 80 h~'kpc on a side,
and time T is given in units of 9.8 x 108h~tyr.
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3.6 Structure of merger remnants

in the center of each galaxy. In our simple model, the global star formation rate is
increased by not much more than a factor of 10. This is not particularly extreme, and
is insufficient to explain the most luminous ULIRGS. However, the absolute values of
the star formation densities in the central regions are actually quite large, as we show
below.

There is also an interesting double-peak structure in the main starburst at ¢t ~
2.0 — 2.5. This is connected to the dynamics of the final merger. The main starburst
is triggered by the second encounter of the galaxies, at a time when they already have
lost most of their orbital angular momentum due to dynamical friction. However, the
galaxies still spiral about each other for a short time, until their nuclei finally coalesce
to form a single remnant. The strongest star formation rate is reached when the nuclei
have just merged, or are already so close that the infalling gas ‘sees’ them as one nucleus.

The difference in the absolute strength of the final starburst in A1 and B1 is largely
a consequence of the early influx of gas in Al; here a substantial fraction of the gas
is already consumed early on in the encounter, leaving less gas for the starburst at
coalescence.

It is also interesting to look at the surface density of the star formation rate in terms
of suitably defined averaged values, as it is done in observational studies. In Figure 3.15
we plot the effective density of the star formation rate versus the gas surface density, for
three different regimes. These are: (1) whole isolated disks, (2) the centers of isolated
disks, (3) the central regions of starbursting disks. In the first case, we have defined the
effective star formation density as the average SFR. inside the optical radius, while we
considered the innermost 3% of the gaseous mass to obtain values for the centers.

By putting these measurements onto a common diagram, see Fig. 3.15, we obtain a
global Schmidt-law over a remarkably large dynamic range. The absolute amplitude of
the star formation rates in the different regimes is also in very good agreement with the
compilation of observational data by Kennicutt (1998, see his Fig. 6).

3.6 Structure of merger remnants

3.6.1 Morphology

Merger remnants are generally triaxial objects, with isophots that are close to perfect
ellipses. The triaxiality may be quantified in terms of the axis ratios a and b of the
principal axis of the moment of inertia tensor (Barnes 1992; Hernquist 1992, 1993b). To
this end, we define the center of the remnant as the position of the particle with the
minimum gravitational potential, and we compute the moment of inertia tensor for the
most bound half of the particles. In principle, the shape of the remnant can vary if
particle groups of increasing binding energy are considered. However, the shape stays
roughly constant at least out to the half-mass energy, so we here follow Hernquist (1993b)
and characterize the remnants by just considering the inner half of the particles.

In Table 3.2 we list the axis ratios a and b for our merger remnants. Here, b = Ay/A;
and ¢ = A3/A;, where the eigenvalues A of the moment of inertia tensor are sorted as

93



3 Modeling star formation and feedback in simulations of interacting galaxies

C T T ] C T ]
12+ — 12+ —
r Al ] r B1 ]
101 . 101 .
s 8 1 % sf .
2 N ]
= 6f 4 = er .
F T ] F ]
(%] 4j ] (%] 4j
2 ] 2
07””\””\””\‘H‘\HH\H: O v vl L e
0.0 0.5 1.0 1.5 2.0 2.5 0.0 0.5 1.0 1.5 2.0 2.5
t[0.1 Hy t[0.1 Hy
12+ — 12+ —
[ A2 ] [ B2 ]
10F - 10F -
s o8 1 % s =
§© r ] §© r ]
— 6 7 — 6 7
@ r ] @ r ]
B a4k 4 & a4k .
2F . 2- e .
07””\””\””\‘H‘\HH\H: (o] S T B AR I
0.0 0.5 1.0 1.5 2.0 2.5 0.0 0.5 1.0 1.5 2.0 2.5
t[0.1 Hy™Y t[0.1 Hy™Y
C T T ] C T ]
12+ — 12+ —
r A3 ] r B3 ]
10F - 10F -
s 8 1 % sf .
g N ]
= 6f 4 = er .
F ] F ]
7] 4j ] 7] 4j ]
21 y 2 b
O‘HHHH‘\HH\HH\H’ OHH\HH\HHMH‘\HH\H:
0.0 0.5 1.0 1.5 2.0 2.5 0.0 0.5 1.0 1.5 2.0 2.5
t[0.1 Hy t[0.1 Hy

Figure 3.14: Evolution of the global star formation rate in the collision simulations
A1-A3, and B1-B3. The runs labeled with a leading ‘A’ involve disk galaxies that do
not have a bulge, while those with ‘B’ have a central stellar bulge, however, the total
mass of gas is equal in both types of galaxies. The simulations labeled with ‘1’ are wide
prograde encounters, those with ‘2’ are much narrower prograde collisions, and those
with ‘3’ are inclined mergers.
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Figure 3.15: Composite Kennicutt law. We here plot the star formation rate per
unit area versus the gas surface density for several of our disk models and collision
simulations. The filled circles are effective values for the isolated galaxies 14-18, averaged
over the region inside their optical radius. Hollow circles are for the central regions of
these galaxies, while the filled squares are for the central regions of the merging galaxies
Al, A2, B1, B2 at two times of their evolution. The ‘central’ values have been obtained
for the innermost 3% of the gas mass. The solid line is the ‘target’ relation we used to
compute values for the free parameters of our star formation model. This figure may
be directly compared to Fig. 6 of Kennicutt (1998).

A1 > A > A3. We also give the triaxiality parameter T = (1 — b%)/(1 — ¢?). For oblate
galaxies T' = 0, while prolate galaxies have T'= 1 (de Zeeuw & Franx 1991).

Most of the remnants can be classified as oblate spheroids that are close to being
axisymmetric. Only the remnants of the collisionless disk-only simulations (C1-C3) show
stronger triaxiality. Here, there are also large differences to the corresponding dissipative
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Table 3.2: Morphology of merger remnants. b, ¢, and T give axis ratios and triaxiality
of the merger remnants at ¢t = 2.8 of our collision simulations.

run b c T

Al 094 0.54 0.15
A2 096 0.50 0.11
A3 091 0.51 0.24

Bl 090 0.49 0.25
B2 091 0.50 0.21
B3 097 0.51 0.08

Cl 068 037 0.63
C2 074 033 0.50
C3 088 0.61 0.37

D1 0.87 0.42 0.30
D2 086 0.43 0.31
D3 0.95 0.70 0.20

simulations. Apparently, the central density cusps provided either by a bulge or by the
newly created stars in the center favour axisymmetry of the remnants.

3.6.2 Density profiles

The coarse-grained phase space density can only decrease in collisionless simulations. It
therefore appears that the remnants of collisionless mergers of disk galaxies are not able
to reproduce the high central phase space densities of elliptical galaxies, just because the
progenitor disks start out with insufficient phase space density (Kormendy 1989). This
argument has been held against the merger hypothesis. However, dissipative effects or
the inclusion of compact bulges may be invoked to provide a solution to this problem
(Hernquist et al. 1993). In previous simulations it was indeed shown that the central
influx of gas in mergers, accompanied by star formation, can drastically boost the cen-
tral phase space density. However, it remains a crucial question, whether the resulting
luminous profiles in the center can match the observed profiles of elliptical galaxies.

As expected, the nuclear starbursts in our merger simulations lead to a strong increase
of the stellar densities in the merger remnants. In Figure 3.16, we show a comparison
of the total luminous mass profile (spherically averaged) of the remnants in simulations
B2 and D2. The profile of the dissipative simulation B2 is steeper in the center than
those of D2, and it even steepens there compared to the power-law with slope ~ —2.5
found in the main body of the remnant. Such a steep slope is at the upper end of the
observed distribution of slopes for early-type galaxies (Gebhardt et al. 1996). Much
of the central density in B2 stems from the newly created stars, shown as a dashed
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Figure 3.16: Comparison of the spherically averaged, luminous density profiles of the
merger remnants of simulations B2/D2. B2 is shown as a thick line, D2 as a thin solid
line, and the dashed line gives the newly formed stars in B2. The center of each remnant
was defined as the location of the minimum of the gravitational potential.

line in Figure 3.16. However, it is interesting to note that the increase of the central
density also affects the other collisionless components in the models. In the two panels
of Figure 3.17 we compare the profile of the ‘old’ collisionless disk and the ‘old’ bulge,
where ‘old’ refers to material that was already present at the start of the simulations.
In B2, both components exhibit a central increase of the density compared to D2 by
up to a factor ~ 4 — 5, showing that the dissipational deposition of mass in the center
effectively pulls in some of the collisionless material. The merger remnants in our other
runs show similar profiles and trends as those of B2/D2, so we omit the corresponding
figures here.

We now consider the surface mass density which can be more easily related to ob-
servations of surface brightness profiles. Collisionless merger simulations usually lead
to 7'/%-profiles that are consistent with those observed in the majority of early-type
galaxies. However, in dissipative simulations, Mihos & Hernquist (1994a) have found a
strong concentration of the newly formed stars towards the center, resulting in a lumi-
nosity ‘spike’ in the center, and a surface brightness profile that shows an obvious break
between a very steep inner component, and a flatter r!/4-profile in the main body of
the remnant. Although studies of the cores of ellipticals with HST reveal density cusps
in most of them (Gebhardt et al. 1996), the bulk of the elliptical population does not
show a steepening in the innermost ~100-500 pc. On the other hand, about 10% of the
galaxies in the Nuker sample do show such bright cores (Byun et al. 1996). This sug-
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Figure 3.17: The top and bottom panel compare the spherically averaged mass profiles
of the old disk and the old bulge components in runs B2/D2 separately. In each case,
B2 is shown as a thick line, D2 as a thin solid line, and the dashed line gives the newly
formed stars in B2.

gests that gas-rich mergers can evolve into normal elliptical galaxies, while some of them
might leave behind a central luminous spike. By studying the luminosity and molecular
gas profile of Arp 220, Hibbard & Yun (1999) show that this prototypical ULIRG might
indeed be of this kind, while the late-stage remnants of NGC 3921 and NGC 7252 can

still be characterized by an r'/4-law in their centers.
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Figure 3.18: Azimuthally averaged surface mass profiles of the remnants of the dis-
sipative simulations A1-A3, B1-B3 (thick), and the dissipationless runs C1-C3, D1-D3
(thin). In each panel, the corresponding luminous profiles are compared with each
other, and the dashed line shows the newly formed stars in the dissipative run. The
dotted vertical line marks the gravitational softening length of 0.1 A~'kpc. Shown here
is the xz-projection; other projections are qualitatively very similar.
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The surface brightness profiles of our remnants exhibit a central excess of stellar
density similar to those seen in the experiments of Mihos & Hernquist (1994a). In Fig-
ure 3.18, we compare the azimuthally averaged surface mass densities of our dissipative
simulations with those of the corresponding dissipationless run. Unlike the spherically
averaged profile, the two-dimensional projection (here along the y-axis) shows the cen-
tral density excess more clearly. The mass profile of the newly formed stars does not
match the remaining collisionless component seamlessly, and this mismatch shows up as
a break in the total mass profile. Interestingly, even the collisionless simulations D1-D3
show such a break, although it is weaker than in the runs with dissipation. Apparently,
the violent relaxation during coalescence is not effective enough to erase the “memory”
of the bulge, and to mix it homogeneously with the rest of the remnant.

It is not yet clear, whether the dense cores due to newly formed stars are a pos-
sible problem for the merger hypothesis, because the modeling of star formation and
feedback adopted in this study remains highly uncertain. It is however noteworthy that
we obtain similar results to Mihos & Hernquist (1994a) using different techniques for
our simulations. This suggests that the result is robust, and that any model based on
an equally simplistic star-formation/feedback scheme is likely to encounter the same
problem. However, there are a number of processes that might prevent the formation
of luminous spikes in the nuclear starbursts of gas-rich mergers. If the physics of star
formation and feedback is very different in a strong starbursts than captured by our
modeling, more diffuse starbursts may be produced, leading to a smoother distribution
of the newly created stars. For example, the central starburst might be powerful enough
to drive a mass-loaded superwind, carrying a good fraction of the cold gas out of the
center. Of course, there is also the possibility that differences in the IMF, or the dust
obscuration, between the young starburst component and the old stars change the slopes
of the luminous components such that they are consistent with the observed “seamless”
profiles of most early-type galaxies.

3.6.3 Isophotal shapes

Isophotes of elliptical galaxies deviate from perfect ellipses (Bender et al. 1987), and it
has been proposed that the systematics of these deviations provide important clues for
understanding the formation history of ellipticalss. The deviations of isophotes from
perfect ellipticity can be quantified by expanding the residuals from an elliptical fit in a
Fourier series (Bender & Mollenhoff 1987)

Ar =" [ay cos(ke) + by sin(ke)] (3.27)
k

where Ar are the linear deviations as a function of the azimuthal angle ¢, measured from
the major axes of the ellipse. The first non-trivial coefficient that measures a distortion
symmetric to the principal axes of the ellipse is a4. Negative values of a4 imply “boxy”
ellipses, while positive values lead to a more “disky” shape.

100



3.6 Structure of merger remnants

Ny b e b e e b e e e v b e e b e e e e e b e e e e e e by

Figure 3.19: Comparison of the isophotal shapes of two merger remnants. The contour
plots on the top show the isophots of remnants Al and C1, projected along their
principal axes. Each small panel is 20 h~'kpc on a side. The thick isophot contains
half the luminosity (stellar mass), and the isophots are spaced 0.5 mag apart in surface
brightness. The small panels below show measurements of the diskyness and ellipticity
of the isophots for these projections. The isophots are labeled by their magnitude
relative to the half-light isophot.
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Figure 3.20: Comparison of the isophotal shapes of our merger remnants, averaged
over 100 random lines of sight. Each panel gives the average diskyness as a function
of the magnitude of the isophot (zero magnitude is assigned to the half-light isophot).
The error bars indicate the 1o uncertainty due to the finite number of projections.
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Observationally, rotation seems to be dynamically less important in boxy than in
disky ellipticals, and this correlation has been used for a proposed revision of the Hub-
ble classification system by Kormendy & Bender (1996). These authors also provide
evidence for a possible dichotomy between (1) normal- and low-luminosity ellipticals
that are coreless and disky, and (2) giant ellipticals with cuspy cores and boxy-distorted
isophotes. It has also been speculated that dissipation plays a key role in producing disky
isophotes, and that the path from boxy to disky ellipticals may thus indicate mergers
with increasing importance of dissipation (Bender et al. 1992, 1993). Recent simulations
by Bekki & Shioya (1997) seem to support this notion, and we will here examine this
question for our merger remnants.

However, collisionless simulations of merging galaxies have repeatedly been shown
to produce both boxy and disky isophotes (Governato et al. 1993; Heyl et al. 1994;
Lima-Neto & Combes 1995). Furthermore, the isophotal shape strongly depends on the
projection, even to the extent that the same merger remnant can exhibit either boxy or
disky isophotes when viewed from different directions. This certainly complicates the
interpretation of isophotal shapes. Nevertheless, there seems to be a slight surplus of
boxy isophotes in large samples of collisionless remnants, and highly flattened remnants
also appear to be boxy (Heyl et al. 1994; Lima-Neto & Combes 1995).

In Figure 3.19 we compare the isophotes of simulations A1 and C1, projected along
the three principal axes of the remnants. To obtain sufficiently smooth two-dimensional
mass density fields, we have employed a Gaussian smoothing kernel of varying smoothing
length, i.e. the outer contours are based on more heavily smoothed fields. This is done
to beat down particle noise, which strongly increases with distance from the center. The
thick isophot in each contour plot contains half of the ‘light’ (mass), and the spacing of
the isophots is 0.5 mag. We have also fitted ellipses to the isophotes inside the half-light
radius, and evaluated a4/a and the ellipticity e = 1 —b/a as a function of the magnitude
of the isophot. These results are shown in the lower panels of Figure 3.19.

The projections along the major and intermediate axes show the strong oblateness
of the remnants in these idealized, exactly prograde collisions. Also nicely visible is the
central increase of the density in A1 compared to C1. Even by eye one can see that the
isophotes of the dissipative simulation A1l seem to be more disky on average than those
of C1. This is borne out by the measurements of a4, which tend to give smaller values
for C1. Especially in the xy-projection, the isophotes of C1 are very boxy, while those
of A1 appear to be slightly disky and they are also much rounder.

However, Figure 3.19 also demonstrates that the measurement of as/a for a single
projection is rather noisy, primarily because of the limited number of particles in our
remnants, which is very much smaller than the number of luminous stars in real galaxies.
But we also see that the same remnant can be both boxy or disky when viewed from
different directions (see e.g. the xy/yz projections of C1). The noise can be reduced
somewhat if a4 /a is averaged for many lines of sight, which is also warranted due to the
projection-dependence of disky-/boxyness. Such an averaging procedure is not possible
for real galaxies, but it should give the expected mean ellipticities for a sample of equal
objects, observed from random directions. We thus compute elliptical fits for a set of
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100 random lines of sight for every remnant. For each remnant, we then average the
measurements of a4 /a for the isophots of the same magnitude relative to the half-light
isophote.

In Figure 3.20 we compare these measurements for each pair of corresponding dissi-
pative/collisionless simulations. In the bulgeless simulations (A1-A3, C1-C3), the gas-
dynamical remnants are clearly much more disky than the corresponding collisionless
remnants. This can be understood as a consequence of the strong central increase in
density due to the nuclear starburst. As Barnes & Hernquist (1996) have shown, the
deep potential well in the center destabilizes box orbits passing close to the center, and
turns them e.g. into tube orbits. As a result the mix of orbital families is changed such
that the isophots of the remnant turn disky.

This picture is also consistent with the much weaker trend to diskyness seen in the
simulations B1-B3, which feature a massive bulge. Here the difference in the central
densities between the B/D-pairs is much smaller than in the A/C-pairs, and as a conse-
quence the relative populations of their orbital families remain more similar.

Note that in all cases the dissipative simulations are more disky than the collisionless
ones close to the center, i.e. dissipation clearly favours diskyness. However, even with
this strong correlation between diskyness and dissipation, it should be kept in mind that
it will hold only in the mean for a population of observed merger remnants. A single
projection of a remnant might look boxy, even if it is disky in the mean when viewed
from many directions.

3.7 Discussion

In this chapter, we have studied a simple model to implement a self-regulating star-
formation/feedback-loop in hydrodynamical simulations of disk galaxies. We have al-
lowed the gas to cool radiatively, and to form collisionless stars at a rate determined by
the local gas density and the local dynamical time. If only these processes are included,
the ISM gives rise to a runaway of the star formation rate. We therefore invoked a
feedback process that regulates the star formation rate, and we assumed that the main
source of energy for this mechanism stems from kinetic energy of exploding supernovae.

However, since we clearly lack the resolution to follow the physics of the turbulent
ISM in three dimensions, we tried to formulate a feedback model that is based on the
notion of an effective equation of state. Ideally, such a “sub-grid” model should correctly
describe the gross behaviour of the ISM on large scales, while the details on small
scales need not to be resolved. A working model that meets these requirements would
be extremely valuable; it could be used in simulations of galaxy formation in large
cosmological volumes. The catch of course is that currently the “sub-grid” physics
is not well enough understood to unambiguously establish the validity of any given
“effective” model. While it is quite plausible that supernovae will stir up the ISM in
some way, the physical processes that constitute feedback are very difficult to model in
detail. We have described this poorly understood kinematics with a fiducial reservoir
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¢, introduced to account for the kinetic energy in turbulent gas motion on unresolved
scales. Assuming that g provides a turbulent pressure for the gas, we arrived at the
desired self-regulation mechanism; a local increase in gas density leads to stronger star
formation, thereby giving rise to an extra turbulent pressure which works against the
local density enhancement.

We have shown that our model is able to describe quiescently star forming disk
galaxies. The star formation rates quantitatively match those observed in late-type
galaxies, and the model galaxies are stable, and show no signs of strong secular evolution.
We formulated the feedback model in a numerically clean way, which does not resort
explicitly to the particle formalism of SPH. This approach offers favourable numerical
properties. In particular, we have demonstrated that our results are quite insensitive to
the mass resolution of our simulations.

In simulations of colliding galaxies we find nuclear inflows of gas and the triggering of
nuclear starbursts quite like it was found in previous work. The star formation densities
reached in the centers are quantitatively similar to those observed in the central regions
of starburst systems. We also confirm that the presence of a bulge can delay the central
influx of gas. This is related to the stabilizing effect of the bulge on the disk, where the
bulge can prevent the formation of a strong bar in the disk during the first encounter of
the galaxies.

We also examined a small number of collisions of galaxies with and without a bulge,
and with different orbital configurations. To highlight differences induced by the gas
dynamics in the structure of the remnants, we have run a corresponding collisionless
simulation for each dissipative merger. Similar to Mihos & Hernquist (1994a), we find
that the nuclear starbursts occurring in gas-rich mergers can boost the central star
formation rate considerably, even leading to the formation of a dense stellar core, with
an accompanying luminosity spike. While there are systems with such central spikes,
features of this kind are not observed in the majority of the elliptical population. It thus
seems that dissipation may be too effective in our models.

By comparing the isophotal shapes of our dissipative merger remnants with those of
corresponding collisionless simulations, we confirm a common speculation that dissipa-
tion gives rise to disky isophots. However, it is important to note that such a correlation
can only be expected to hold in the mean for a large sample of galaxies. The dependence
of isophotal shape on projection is so strong, that the same remnant can exhibit both
boxy and disky isophots when viewed from different directions.

Of course, the description of the ISM adopted in this work needs to be treated with
caution. It does give reasonable results for isolated disk galaxies, and it was specifically
designed to be compatible with the observed global Schmidt-law for the star formation
rate. However, it is certainly questionable whether the physical conditions in star-
bursting nuclei are similar to those in quiescently star-forming disk galaxies, and even if
they were, it is not clear whether our attempt to model these processes in a simplistic
way gives meaningful results in both regimes. Nevertheless, the agreement between
our results with previous work suggests that the main results of these studies, such as
the rates of gas inflow, or the development of nuclear starbursts, are robust. While
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this in general supports the notion that ULIRGS are intimately connected to mergers
and interactions, there also remain problems, if one assumes that normal ellipticals are
formed by mergers of gas-rich spirals. The most imminent one seems to arise from
the formation of luminous spikes at the centers of the merger remnants. They appear
difficult to reconcile with the surface brightness profiles of most early-type galaxies.

This might well point to a major shortcoming of the present modeling. Our simplified
sub-grid model largely glosses over the shock physics, which is particularly important
to drive outflows. For example, OB-associations with an accompanying starburst may
generate super bubbles in the ISM and trigger outflows to the surrounding IGM, or even
blow away the gas of dwarf galaxies (Mac Low & Ferrara 1999) entirely — it is quite clear
that our simple parameterization will not be able to properly model these effects. This
highlights that there are at least two important aspects of feedback. One is concerned
with the effects of star formation on the IGM and on the hot gaseous phase in the
galactic halo, while the other deals with the self-regulation of star formation within the
gaseous disk itself. Our model addresses the second of these problems, but it doesn’t
describe the first one adequately.

Despite these caveats, we think that the general approach offered by simplified sub-
grid models is very useful in studies of galaxy formation, and it will likely remain so for
quite some time, since a detailed description of the ISM on the scale of whole galaxies is
computationally not yet feasible. In the future, high-resolution studies of small patches
of the ISM might well give rise to much more accurate sub-grid models, which will then
be invaluable tools to model the formation of the luminous component of the Universe
on much larger scales.
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—This is time, naked time, it comes slowly into existence,
it keeps you waiting, and when it comes you are disgusted
because you realize that it’s been there already for a long

time.

Jean-Paul Sartre, Nausea

Populating a cluster of galaxies

Abstract

We study the formation of cluster galaxies by combining high-resolution N-body
simulations with semi-analytic modeling. To this end, we have simulated the for-
mation of a rich cluster of galaxies in a flat low-density (ACDM) cosmology. We
simulated the same cluster three times, at mass resolutions of 6.9 x 10%, 1.4x 10° and
2.4 x 108 h~My,, allowing direct tests of resolution dependence. The three clusters
are resolved with 0.12, 0.61 and 3.5 million particles within the virial regions, re-
spectively. By storing 51 simulation outputs between redshifts z = 20 and z = 0, we
are able to analyse the merging history of the dark matter in substantial detail. We
introduce new algorithms to identify and track substructure within haloes, and we
generalize the semi-analytic methodology recently developed by Kauffmann et al.
(1999a) to directly include this information for building up the galaxy population
of the cluster. We demonstrate that the inclusion of “subhaloes” leads to a sub-
stantial improvement of the results of the semi-analytic recipes. In particular, the
new scheme endows the cluster luminosity function with a pronounced knee, and
it makes it well fit by a Schechter function. It also avoids an excessive brightness
of the first ranked cluster galaxies. We show that the main cause for this improve-
ment lies in the ability of the subhalo-scheme to provide more accurate estimates
for the merging rate inside the cluster. Our semi-analytic model simultaneously
produces a cluster mass-to-light ratio close to observational values and it fits the
velocity-based Tully-Fisher relation of spirals in the field. We can directly demon-
strate the presence of a morphology-density relation, spatially resolved within the
cluster. Towards the center of the cluster, the morphological mix of galaxies be-
comes increasingly dominated by ellipticals, while in the outskirts of the cluster
and in the field, most galaxies are spirals. Because the morphology of our model
galaxies is determined almost exclusively by the merging history of the galaxies, this
shows that hierarchical clustering naturally produces a strong morphology-density
relation. The star formation histories of the cluster galaxies show that already half

107



4 Populating a cluster of galaxies

of their stars have formed beyond redshift z ~ 4, while the galaxies in the field form
the bulk of their stars substantially later; at z ~ 2 half of their stars are in place.

4.1 Introduction

Based on the pioneering work of White & Rees (1978), the last two decades have wit-
nessed substantial progress towards an understanding of galaxy formation within the
framework of a universe dominated by cold dark matter (CDM). For an appropriate
choice of the cosmological parameters, the CDM theory provides a remarkably success-
ful description of large-scale structure formation, and it is in good agreement with a
large variety of observational data. Much of this progress has been achieved by detailed
analytical and numerical studies of the collisionless dynamics of the dark matter. As
a result, this part of cosmic evolution is now quite well understood. However, the ac-
tual formation of the luminous parts of galaxies within CDM universes involves many
complex physical processes in addition to gravity, like radiative cooling of gas, or star
formation and its regulation mechanisms. The theoretical modeling of important aspects
of these processes is still highly uncertain.

Not surprisingly, this lack of precise specifications for the treatment of the relevant
physics has also hampered direct numerical studies of galaxy formation. In addition,
such studies are confronted with a huge range of scales spanned by the relevant physics.
Hydrodynamical simulations therefore still fail to reproduce basic properties of galaxies
in detail, although more recent work is beginning to achieve impressive successes (e.g.
Steinmetz & Miiller 1995; Pearce et al. 1999).

However, much of the current understanding of galaxy formation has been learned
from ‘semi-analytic’ models of galaxy formation, as laid out originally by White & Frenk
(1991), Cole (1991), and Lacey & Silk (1991). In these models, the complicated physics
involved in galaxy formation is approximated in terms of a simplified yet physical treat-
ment of the most important processes involved. These processes include the formation
and merging history of dark matter haloes, the shock heating and virialization of gas
within these haloes, the radiative cooling of gas and its settling to a gaseous disk, star
formation, and the resulting feedback processes by supernovae and stellar winds. At
the expense of some uncertainty introduced by the simplifying assumptions, the semi-
analytic techniques can access a much larger dynamic range than present numerical sim-
ulations, and they allow a fast exploration of parameter space and of the consequences
of possible changes in the model prescriptions.

Over the last few years, a number of groups have studied the properties of semi-
analytical models, and they tested their predictions against observational data (Lacey
et al. 1993; Cole et al. 1994; Kauffmann et al. 1994; Heyl et al. 1995; Baugh et al.
1996a,b; Kauffmann 1995a,b, 1996a.b; Kauffmann & Charlot 1998; Baugh et al. 1998;
Somerville & Primack 1998; Benson et al. 1999). Population synthesis models as intro-
duced by Kauffmann et al. (1993) have allowed detailed photometric comparisons with
observations, including studies of the evolution of galaxy populations to high redshift.
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With a small number of free parameters, semi-analytic models have been quite success-
ful in reproducing a large range of galaxy properties, such as luminosity functions, the
Tully-Fisher relation, number counts, color distributions, and the star formation history.
However, depending on the normalization of the models, they have usually not been able
to simultaneously fit the zero-point of the Tully-Fisher relation and the luminosity func-
tion of field galaxies, although more recent work has been continuously improving on
that.

The construction of dark matter merging history trees (Kauffmann & White 1993;
Somerville & Kolatt 1999) is an important ingredient in semi-analytic models. In most
studies, Monte-Carlo realizations of merging histories for individual objects are generated
using the extended Press-Schechter formalism (Press & Schechter 1974; Bond et al. 1991).
A disadvantage of this approach is that there is little information about the spatial
distribution of galaxies. To still study the clustering properties of galaxies, semi-analytic
models have been employed to relate the galaxy and mass distributions of cosmological
N-body simulations, effectively placing galaxies into virialized haloes at a single time
output. Already White et al. (1987) used such a technique, and many recent studies
followed it (Kauffmann et al. 1997; Governato et al. 1998; Somerville & Primack 1998;
Benson et al. 1999).

As a natural extension of this approach, one can attempt to use N-body simulations
not only to provide spatial positions and masses of haloes, but also to directly measure
the full merging history trees of galaxies. White et al. (1987) were the first to develop
a crude version of this approach, which avoids the uncertainties and inaccuracies in
the Press-Schechter formalism, and it eventually allows semi-analytic models to make
more direct contact with the dark matter dynamics. For example, one can imagine
using the spin parameters and orbits of dark haloes measured from the simulations to
obtain a better description of disk sizes or merging timescales. However, this approach
requires simulations with very high mass resolution and the storage of a large number
of simulation outputs, resulting in substantial raw data volume.

Recently, Roukema et al. (1997) studied merging history trees directly from N-body
simulations using scale-free simulations and a rather limited number of simulation out-
puts. A much more extensive study has been done by Kauffmann et al. (1999a, hereafter
KCDW), who have analysed the merging history trees of a set of high-resolution N-body
simulations, with a total of 51 output times between redshift z = 20 and z = 0. KCDW
combined semi-analytic models of galaxy formation with their analysis of the dark mat-
ter dynamics to study the clustering strength and the galaxy bias in two cosmological
models. In subsequent papers, they used this methodology to predict the evolution
of clustering to high redshift (Kauffmann et al. 1999b), and to construct realistically
selected mock redshift surveys (Diaferio et al. 1999).

Using a somewhat different technique, van Kampen et al. (1999) also made use of the
full merging history of N-body simulations. They modified an existing N-body code such
that heavier ‘tracer’ particles were introduced during run-time. These tracer particles
replaced locally overdense groups of particles, which they identified with galaxies. In
this way, van Kampen et al. (1999) tried to circumvent the overmerging problem.
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Our approach aims in a similar direction, yet we follow the methodology of KCDW
and extend it directly to the regime of substructure. To this end, we study three simula-
tions of the formation of a rich cluster of galaxies using very high mass resolution. The
simulations follow the same object, a cluster of mass ~ 10'® h~'M, in a flat, low-density
cosmology, with different mass resolution. We resolve the virial region of the final cluster
with 0.12, 0.61 and 3.5 million particles, respectively, and we sample the field in the re-
gion around the cluster with about twice as many high-resolution particles in each case.
The cosmological tidal field is properly represented by an additional boundary region
with 3.1 million particles, extending to a distance of 70 A~ !Mpc from the cluster. This
sequence of simulations allows a direct test of the dependence of our results on numerical
resolution.

We develop a new algorithm, SUBFIND, to identify substructure within groups form-
ing in these simulations. This algorithm defines “subhaloes” as locally overdense, self-
bound particle groups, and it is able to detect hierarchies of substructure using just a
single simulation output. As in KCDW, we have stored 51 simulation snapshots from
z = 20 to the current epoch, and we trace the merging history of groups and their sub-
haloes from output to output. We modify the semi-analytic recipes employed by KCDW
to allow the inclusion of subhaloes, and we analyse the changes resulting from that.

In particular, we study the luminosity function of the cluster in the B-band. We
investigate the mass-to-light ratio of the cluster, the Tully-Fisher relation of spirals in
the field, and the B — V' colors of our model galaxies. We show that the new subhalo-
scheme gives rise to a pronounced morphology-clustercentric relation. Qur approach also
allows an analysis of the star formation history of the field and cluster galaxies, showing
that the stars of cluster galaxies are substantially older than those of field galaxies, and
that they have formed well before the cluster itself is assembled.

Interestingly, the new subhalo-analysis improves the agreement with observational
data considerably, especially with respect to the cluster luminosity function. Most of the
bright galaxies in the final, highly-resolved cluster are still connected to well localized
subhaloes within the smooth dark matter background of the cluster. There is hence no
need to estimate merging timescales for galaxies falling into the cluster. Apparently,
inaccuracies of such estimates lead to the problem of excessively bright first ranked
cluster galaxies in the standard methodology of KCDW.

This chapter is organized as follows. In Section 2 we describe the N-body simu-
lations, and in Section 3 we briefly review the techniques of KCDW, and our specific
implementation of them. In Section 4 we discuss our techniques to identify dark matter
substructure within larger haloes, and our methods of tracing it between different simu-
lation outputs. We then describe the implementation of semi-analytic models including
this subhalo information, and we present results obtained with these prescriptions in
Section 5. Finally, we discuss our findings in Section 6.
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Table 4.1: Numerical parameters of cluster simulations. All four simulations compute
the evolution of the same cluster, in a ACDM universe with cosmological parameters
Qo =0.3,04 =0.7, T =0.21, 0g = 0.9, and h = 0.7. The simulations follow a sphere of
matter, with comoving diameter 141 A~ 'Mpc. In the Table, we give the particle mass
my, used in the central high-resolution zone, the starting redshift zgart, the gravitational
softening € in the high-resolution zone, the number Ny, of high-resolution particles, the
number Nyhq of boundary particles, the total number Ny, of particles, and the number
N, of processors used in each of the simulations S1-S4. The gravitational softening
was kept fixed at the given values in physical coordinates below redshift z = 9, and in
comoving coordinates above this redshift.

S1 S2 S3 S4
mp [h Mg] 6.87 x 109 1.36 x 10° 2.38 x 10 4.68 x 107

Zstart 30 50 80 140

e [h~1kpc] 6.0 3.0 1.4 0.7
N 450088 1999978 12999878 66000725
Nond 3029956 3117202 3016932 3013281
Niot 3480044 5117180 16016810 69014006

Ny 16 32 128 512

4.2 Cluster simulations

In this study, we analyse collisionless simulations of clusters of galaxies that are generated
by the technique of ‘zooming in’ on a region of interest (Tormen et al. 1997). In a
first step, a cosmological simulation with sufficiently large volume is used to allow the
selection of a suitable target cluster. For this purpose, we employed the GIF-ACDM!
model carried out by the Virgo consortium. It has cosmological parameters 29 = 0.3,
Qp = 0.7, h = 0.72, spectral shape I' = 0.21, and was cluster-normalized to og = 0.9.
The simulation followed 256 particles of mass 1.4 x 10'°h~'M, within a comoving box
of size 141.3 h~'Mpc on a side. Note that this simulation is one of the models recently
studied by KCDW. We selected the second most massive cluster that had formed in the
GIF simulation for further study. This cluster has a virial mass 8.4 x 10'* h~'M, and
it appears to be well relaxed at the present time.

In a second step, we simulated the formation of this cluster once more using a greatly
increased mass and force resolution. To this end, the particles in the final GIF-cluster
and in its immediate surroundings were traced back to their Lagrangian region in the
initial conditions. The corresponding part of the displacement field was then sampled
using a glass-like particle distribution with smaller particle masses than in the GIF
simulation. Due to the increase in resolution, the fluctuation spectrum could now be
extended to smaller scales. We added a random realization of this additional small-

1The GIF project is a joint effort by astrophysicists in Germany and Israel.

?We employ the convention Hy = 100 hkms * Mpc ™ *.
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Figure 4.1: The projected mass density fields in slices of thickness 10 h~Mpc around
the cluster center in the original GIF simulation (top) and the S2 resimulation (bot-
tom). The left image is 141 h~!Mpc on a side, and the white square marks the region
(85 h~'Mpc on a side) that is displayed from the corresponding resimulation.
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scale power, while we kept all the waves on larger scales that had been used in the GIF
simulation.

Outside this central high-resolution region, we gradually degraded the resolution by
using particles with masses that grow with distance from the center. In this ‘bound-
ary region’, we employed a spherical grid whose spacing grew with distance from the
high resolution zone. The spherical boundary region extends to a total diameter of
141.3 b~ '*Mpc, which is just the box size of the original GIF simulation. Beyond this re-
gion, we assumed vacuum boundary conditions, i.e. a vanishing density fluctuation field.
Using comoving coordinates, we then evolved the simulations to redshift z = 0 with our
parallel tree-code GADGET. This code uses individual timesteps for all particles, and was
designed to run on massively parallel supercomputers with distributed memory. Paral-
lelization is achieved explicitly using the communication library of the Message Passing
Interface (MPI). A full account of the numerical and algorithmic details of GADGET is
given in Chapter 5.

To be able to study systematic effects arising from numerical resolution, we simulated
the same cluster several times, increasing the resolution step by step. In the first step,
refered to as simulation ‘S1’ from here on, the particle mass was just about two times
smaller than in the original GIF simulation. For S1, we used a total of 450000 particles
for the high-resolution zone, and 3 million for the boundary region. Note that one
would usually try to make the number of boundary particles smaller than that of the
high-resolution particles. However, with the sequence of our planned simulations in
mind, we here opted for this high number of boundary particles because we wanted to
keep the number approximately the same for all runs of our simulation set.

Except for slight changes at its inner rim, the boundary region was then kept fixed
for the other simulations were we populated the central zone with many more parti-
cles. In simulation ‘S2’, we used 2 million high-resolution particles, and we reduced
the gravitational softening to € = 2.0 A 'kpc. In simulation ‘S3’, we then employed a
total of 13 million high-resolution particles with mass 2.4 x 108 A~'Mg, and a soften-
ing of 1.4 h~'kpc. In this chapter, we will just report results for the three simulations
S1-S3, but we note that we have recently completed yet another step in this sequence.
In simulation ‘S4’ we used a total of 66 million particles for the high-resolution zone,
pushing the particle mass down to 4.68 x 10" "M, and the spatial resolution down to
0.7 'kpc. In each case, roughly one third of the particles in the high-resolution zone
end up in the virialized region of the final cluster. This means that S4 resolves a single
object with about 20 million particles.

In Table 4.1, we summarize important numerical parameters of our simulations. Note
that we have softened gravity using a spline kernel. Our cited values for € are such that
the gravitational potential of a point mass at zero lag is ® = —Gm/e, and that the
softened force becomes Newtonian at a distance 2.8 . We have kept the softening length
fixed in physical coordinates below redshift z = 9, and in comoving coordinates at higher
redshift. The softening for the boundary particles was set to much larger values, in an
inner shell around the cluster to 15 h~'kpc, and further outside to 75 A~ 'kpc. For all four
simulations, we stored 51 outputs, logarithmically spaced in expansion factor between
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redshifts z = 20 and z = 0.

In Figure 4.1, we show two images comparing the original density field of the GIF-
simulation with that of our S3 resimulation. The filaments of dark matter around the
cluster are nicely reproduced by S3, even relatively far away from the cluster, where the
resolution of S3 has already fallen below that of the GIF simulation. Also visible is the
much larger resolution of S3 in the region of the actual cluster.

4.3 Modeling galaxy formation using N-body merging trees

In the following, we briefly summarize our specific implementation of the techniques
developed by KCDW to combine semi-analytic models for galaxy formation with dark
matter merging history trees directly measured from cosmological N-body simulations.
We will extend this formalism later to include dark matter substructure, and we will be
especially interested in any changes of the results arising from that.

There are essentially two main parts in the modeling: (1) The measurement of dark
matter merging trees from a sequence of simulation outputs. (2) The implementation of
the actual semi-analytic recipes for galaxy formation on top of these merging trees. Both
parts of the modeling are technically complex and warrant a detailed discussion. In this
Section, we start by describing our implementation of the techniques of KCDW. First
we treat the construction of the merging trees, then the physics of galaxy formation.
Having set the ground in this way, we will then describe in Sections 4 and 5 what we
change in the two parts to allow the inclusion of subhalo information.

4.3.1 Following the merging trees

For each simulation output, we compile a list of dark matter haloes with the friends-of-
friends (FOF) algorithm using a linking length of 0.2 in units of the mean interparticle
separation. We only include groups with at least 10 particles in the halo catalogue. The
majority of such haloes are already stable, i.e. particles found in 10-particle groups at
one output time are also found in a halo in a subsequent simulation output. For each
halo, we also determine the most-bound particle within the group, where ‘most-bound’
here refers to the particle with the minimum gravitational potential.

We now follow the merger tree of the dark matter from output to output. A halo
Hp at redshift zg is defined to be a progenitor of a halo Ha at redshift z4 < zg, if at
least half of the particles of Hg are contained within Ha, and the most bound particle
of Hgy is contained in Hpa, too. These definitions already suffice to uniquely define the
dark matter merging trees.

4.3.1.1 Defining a galaxy population

So far we are just dealing with catalogues of dark matter haloes. We now supplement
this with the notion of a galazy population with physical properties given by the semi-
analytic techniques. In our formalism, each dark halo carries exactly one central galaxy,

114



4.3 Modeling galaxy formation using N-body merging trees

and its position is given by the most-bound particle of the halo. Only the central galaxy
is supplied with additional gas that cools within the halo.

A halo can also have one or several satellite galaxies, where the position of each of
them is given by one of the particles of the halo. Satellites are galaxies that had been
central galaxies themselves in the past, but their haloes have merged at some previous
time with the larger halo they now reside in. Satellite galaxies orbit in their halo and
are assumed to merge with the central galaxy on a dynamical friction timescale. Note
that they are cut-off from the supply of fresh cool gas, so they may only form stars until
their reservoir of cold gas is exhausted.

Finally, we define a class of field galaxies, which are introduced to keep track of
satellites whose particles are currently not attached to any halo, for example because
they have been ejected out of their parent halo. Usually, these “lost” field galaxies are
again accreted onto a halo later on.

4.3.1.2 Following the galaxy population in time

At a given output time, we therefore deal with a galaxy population consisting of central
galaxies, satellite galaxies, and field galaxies, each attached to the position of a simulation
particle. Starting at the first output time at high redshift (when the first haloes have
formed), we initialize the galaxy population with a set of central galaxies, one for each
halo, with stellar mass, cold gas mass, and luminosity set to zero. The physical properties
of these galaxies are then evolved to the next output time, where we obtain a new
galaxy population based on a combination of semi-analytic prescriptions and the merging
history of the dark matter. Repeating this scheme from output to output forward in
time we obtain the galaxy population at the present time, and at all output times at
higher redshift.

We now describe in more detail our rules and prescriptions for this evolution. Begin-
ning with the galaxy population at redshift zg, we first generate the galaxies of the new
population at redshift zy < zp based on the merging history of the dark matter. Using
the group catalogues of the corresponding simulation outputs and the galaxy population
at zp, we construct an ‘initial’ set of galaxies at za as follows:

1. Each galaxy at zp is assigned to its new halo at z5. If the particle used to tag a
galaxy does not reside in any halo, the galaxy becomes a field galaxy.

2. Each halo at za selects its central galaxy as the central galaxy of its most massive
progenitor. This central galaxy is repositioned to the position of the most-bound
particle, i.e. a new particle tagging the galaxy is selected. The central galaxies of
all other progenitors become satellites of the halo.

3. If a halo has no progenitors, a new central galaxy is created at the position of
its most-bound particle. In the event that the halo contains one or more galaxies
(particles recovered from the field), the central galaxy is picked as the most massive
of them.
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Once the new set of galaxies is generated in this way, the properties of the galaxies are
evolved according to the physical prescriptions described below, resulting finally in the
new galaxy population at redshift z5. Note that some of the satellite galaxies generated
in the initial set for zs will merge with central galaxies during this evolution, and thus
not necessarily be part of the ‘final’ population at za.

4.3.2 Physical evolution of the galaxy population

We model the following physical processes: (1) Radiative cooling of hot gas onto cen-
tral galaxies. (2) Transformation of cold gas into luminous stars by star formation. (3)
Reheating of cold gas, or its ejection out of the halo, by supernova feedback. (4) Or-
bital decay of satellites and their merging with central galaxies. (5) Spectrophotometric
evolution of the luminous stars. (6) Simplified morphological evolution of galaxies. (7)
Metal enrichment of the gas. Below we detail the physical parameterizations adopted
for these processes.

4.3.2.1 Gas cooling

Gas cooling is modeled as in White & Frenk (1991). We assume that the hot gas within
a dark halo is distributed like an isothermal sphere with density profile pg(r). Then
the local cooling time t.,01(7) can be defined as the ratio of the specific thermal energy
content of the gas, and the cooling rate per unit volume, viz.

_3 kT pg(r)
teoot (1) = 3 o 2(r) A(T, 2)°

(4.1)

Here fim,, is the mean particle mass, ne(r) the electron density, and A(T, Z) the cooling
rate. The latter depends quite strongly on the metallicity Z of the gas, and on the
virial temperature T = 35.9 (Vii;/ kms~1)2 K of the halo. We employ the cooling func-
tions computed by Sutherland & Dopita (1993) for collisional ionisation equilibrium to
represent A(T, Z).

We define the cooling radius 7¢o01 as the radius for which %, is equal to the current
age tage of the universe. If the cooling radius lies well within the virial radius Ry of a
given halo, we take the cooling rate to be

dM 01 d7cool
oo 2y &l (12

Note that we define the virial radius R;; of a FOF-halo as the radius of a sphere which
is centered on the most-bound particle of the group and has an overdensity 200 with
respect to the critical density. We take the enclosed mass M;; = 100H 2R3ir/ G as the
virial mass, and we assign a virial velocity as V;,er = G Myir/ Ryir.

Adopting an isothermal sphere for the distribution of the hot gas of mass My,y; within

the halo, i.e.

= 47rpg ('rcool)'r

My,
pg(r) = u

_ v 4.3
A Ryier?’ (43)
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the cooling rate is then given by

ndool _ Mhot Tcool
dt Ryir 2tage

(4.4)

At early times or for low-mass haloes the cooling radius can be much larger than the

virial radius. In this case, the hot gas is never expected to be in hydrostatic equilibrium,

and the cooling rate will essentially be limited by the accretion rate. We approximate
this rate with

dMacer o Mot Vyir

dt B Rvir ’

(4.5)

where Vi, is the virial velocity of the halo. We adopt the minimum of equations (4.4)
and (4.5) as our actual cooling rate.

4.3.2.2 Star formation

We model the star formation rate of a galaxy as

dM* _ aMcold’ (4.6)
dt tdyn

where Mcoq is the mass of its cold gas, and tqy, is the dynamical time of the galaxy.

We approximate the latter as
Reff

tdyn = — 4.7

dyn Vvir ’ ( )
with Reg = 0.1Ry;, i.e. we set the effective stellar radius to a fixed fraction of the virial
radius. Note that at a fixed redshift, R;, is proportional to Vir, hence ¢4, depends only
on redshift. The dimensionless parameter « regulates the efficiency of star formation
and is treated as a free parameter. Once a galaxy falls into a larger halo and becomes
a satellite, the values of Ryiy and Vi are not changed any more. The galaxy can then
continue to form stars until its reservoir of cold gas is exhausted, but it does not receive
new cold gas by cooling processes.

4.3.2.3 Feedback

Assuming a universal initial mass function (IMF), the energy released by supernovae per
formed solar mass is nsy Esn, where ngn gives the expected number of supernovae per
formed stellar mass, and Egn is the energy released by each supernova. The formation
of a group of stars with mass A M, will thus be accompanied by the release of a feedback
energy of nsn EsnAM,, where we adopt nsy = 5.0 x 1073M", based on the Scalo (1986)
IMF, and Esy = 10°! erg.

One major uncertainty is how this energy affects the evolution of the interstellar
medium, and how the star formation rate is regulated by it. We here assume that the
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feedback energy reheats some of the cold gas back to the virial temperature of the dark
halo. The amount of gas reheated by this process is then

4 E
A M eheat = g € 778‘1\;2. SN

vIir

AM,, (4.8)

where the dimensionless parameter € describes the efficiency of this process.

Following KCDW, we consider two alternative schemes for the fate of the reheated
gas. In the retention scheme, the reheated gas is simply transfered from the cold phase
back to the hot gaseous halo, and the reheated gas thus stays within the halo. Alter-
natively, in the ejection scheme we assume that the gas leaves the halo, and it is only
re-incorporated into the halo at some time later. If AMgje. is the total gas mass ejected
by a galaxy, we model this reincorporation by simply setting A Mgjec to zero again when-
ever the galaxy’s halo merges with a larger system, i.e. the amount of hot gas is increased
by AMgjec in this event.

4.3.2.4 Mergers of galaxies

In CDM universes, large haloes form by merging processes out of smaller haloes. Simi-
larly, mergers of galaxies are an inevitable process in hierarchical galaxy formation. We
assume that the satellite galaxies orbiting within a dark matter halo experience dynam-
ical friction and will eventually merge with the central galaxy of the halo. In principle,
mergers between two satellite galaxies are also possible. These events are expected to
be rare, but they happen occasionally, as we will show later on. Here, such events are
neglected, but they will be taken into account in our subhalo-scheme.

N-body simulations by Navarro et al. (1995) suggest that the merging timescale can
be reasonably well approximated by the dynamical friction timescale

7. Lfe)  Verg
friction — 2 C GMsat A

(4.9)

The formula is valid for a small satellite of mass Mg, orbiting at a radius 7. in an
isothermal halo of circular velocity V;. The function f(€) describes the dependence of
the decay on the eccentricity of the satellites’ orbit, expressed in terms of e = J/J.(E),
where J.(E) is the angular momentum of a circular orbit with the same energy as the
satellite. The function f(¢) is well approximated by f(e) ~ *-"8, for € > 0.02 (Lacey &
Cole 1993). C is a constant with value C ~ 0.43, and In A is the Coulomb logarithm.

We follow Kauffmann et al. (1999a) and approximate r. with the virial radius of the
halo when the satellite first falls into it. To describe the orbital distribution, we adopt
the average value (f(€)) ~ 0.7, computed by van den Bosch et al. (1999). Note that
this differs slightly from KCDW who drew a random orbit uniformly from e € [0.02, 1].
We identify the mass of the satellite with the virial mass of the galaxy at the time
when it was last a central galaxy, and we approximate the Coulomb logarithm with
InA = (1 + Myir/Mgat)-
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When a satellite merges with a central galaxy, all its stellar mass is transfered to the
bulge component of the central galaxy, and the photometric properties of this galaxy are
updated accordingly. Similarly, the cold gas of the satellite is transferred to the central
galaxy. If the mass ratio between the stellar components of the merging galaxies is larger
than some threshold value (we adopt 0.3 for that), we assume that we deal with a magjor
merger. In this event, the merger destroys the disk of the central galaxy completely,
and all stars form a single spheroid, i.e. they generate a bulge. In addition, we assume
that all the cold gas left in the two merging galaxies is rapidly consumed in a starburst.
The stars created in this burst are also added to the bulge component. Since the central
galaxy is fed by a cooling flow, it can later on grow a new disk component.

4.3.2.5 Spectrophotometric evolution

The photometric properties of our model galaxies can be constructed using stellar pop-
ulation synthesis models (Bruzual & Charlot 1993). Such models assume a distribution
of stars according to an initial mass function, and they evolve the spectral energy distri-
butions (SEDs) of these stars according to theoretical evolutionary tracks. In this way,
the spectra and colors of a stellar population formed in a short burst of star formation
can be followed as a function of time. Once the evolution F,(t) of the SED of a single
isochrone population of stars is known, the SED S, (¢) of a galaxy can be computed as

S,(t) = /0 t F,(t —t") M,(t') dt' (4.10)

from its star formation history M,(¢). Upon convolution with standard filters, colors
and luminosities in the desired bands can be obtained. In principle, this technique
also allows the redshifting of spectra, and the incorporation of k-corrections to make
direct contact with observational photometric data at high redshift. In this work we use
updated evolutionary synthesis models by Bruzual & Charlot (in preparation). In these
models, we assume solar metallicity throughout.

4.3.2.6 Morphological evolution

Simien & de Vaucouleurs (1986) have observed a good correlation between the B-band
bulge-to-disk ratio, and the Hubble-type T of galaxies. For a magnitude difference
AM = Myyige — Miotal they find a mean relation

(AM) = 0.324(T + 5) — 0.054(T + 5)% + 0.0047(T + 5)°. (4.11)
Following previous semi-analytic studies, we therefore simply assign morphologies based
on this equation. Specifically, we will usually classify galaxies with T' < —2.5 as ellip-

ticals, those with —2.5 < T < 0.92 as S0’s, and those with 7' > 0.92 as spirals and
irregulars. Note that galaxies without any bulge are classified as type T' = 9.
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4.3.2.7 Chemical enrichment

Metallicity can strongly influence both the cooling rates and the photometric evolution
of stellar populations. In this work we will only consider its influence on the cooling
function. Initially, we assume that all gas is of primordial abundance with zero metallic-
ity. Due to star formation and the accompanying supernova explosions, the interstellar
medium is enriched with metals. If some of this processed material is mixed into the
hot halo gas, the cooling rates can be increased substantially.

We assume that each generation of stars of mass AM, produces a mass AM, =
y AM, of heavy elements, where y is the constant yield in the instantaneous recycling
approximation. It is not well known how these metals get distributed in galaxies. In
our default model, we will assume that the metals always remain in the cold gas phase
of each galaxy. In this case, the metallicity of the halo gas remains zero, and the mean
metallicity of stars will approach the yield y. In this default model, we also take the
metallicity of the reheated gas to be zero, despite the enrichment of the cold gas.

However, in our feedback model we assumed that supernovae reheat gas from the
cold reservoir of a galaxy. If the latter is enriched with metals, it seems plausible that
metals are transported along with the reheated gas. In the retention model, the reheated
gas is mixed with the hot halo, thereby enriching it. In the ejection model, the reheated
gas leaves the galaxy for a while and thus pollutes the intergalactic medium. Assuming
that the accreted gas is of primordial abundance, ejection feedback will then not change
the metallicity of the cooling gas.

In Section 4.6.7 we will briefly discuss the effects of metal transport in models with
retention feedback. Note that feedback is much more efficient in small haloes, i.e. metal-
licity effects can be expected in such a transport model to strongly increase cooling rates
of low mass galaxies.

4.3.3 More implementation details

In our practical implementation of the physical evolution of the galaxy population, we
process the following steps. We first estimate merger timescales for those satellites that
have newly entered a given halo, i.e. the galaxies that had not been contained in the
largest progenitor of the halo. This ‘merger clock’ then decreases with time, and the
satellite will be merged with the central galaxy when this time is over. Note that the
merger clock may be reset before the merger happens if the halo containing the satellite
merges with a larger system.

We then compute the total amount of hot gas available for cooling in each halo.
Assuming on average a universal abundance of baryons equal to the primordial one, this
is simply

Moy = foMeir — > [ M + MJ), + MG, (4.12)

c ejec

3

where the sum extends over all galaxies within the halo. Here f;, = Q,/Q denotes
the baryon fraction of the universe. Using the cooling model of Section 4.3.2.1, we then
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estimate the cooling rate onto each central galaxy, and we keep this rate constant during
the time AT between the two simulation outputs.

Once these quantities are known, we solve the simple differential equations describing
star formation, cooling and feedback. We typically use a number of N ~ 50 small
timesteps of size At = AT/N for this purpose. At each of these small steps, new
cold gas is added to the central galaxies. For each galaxy, we then form some stellar
mass AM, according to its star formation rate, and we update its current and future
photometric properties accordingly. The cold gas mass of each galaxy is reduced by
the amount of stars formed, and by the mass of the gas that is reheated or ejected by
supernova, feedback.

At the end of each of the small steps, the merger clocks of the satellites are reduced
by At. If a satellite’s merging time falls below zero, it is merged with the central galaxy
of its parent halo. In practice, this means that the luminosity, the stellar mass, and the
gas mass of the satellite are transfered to the central galaxy, and that the satellite is
removed from the list of galaxies. In addition, in the event of a major merger all cold
gas of the central galaxy is consumed in a short starburst, and all stellar material is
transformed into a spheroid.

4.3.4 Choice of model parameters

Following KCDW, we use the I-band Tully-Fisher relation to normalize our models,
i.e. to set the free parameters a and € which specify the efficiency of star formation and
feedback, respectively. We consider the central galaxies of haloes in the periphery of the
cluster, with morphological types corresponding to Sb/Sc galaxies for that purpose. Note
that we only use haloes that are not ‘contaminated’ by heavier boundary particles. The
remaining number of galaxies is sufficiently large to construct a well defined Tully-Fisher
diagram. We try to fit the velocity based Iband Tully-Fisher relation

M; — 5log h = —21.00 — 7.68(log W — 2.5) (4.13)

measured by Giovanelli et al. (1997). We will assume that the circular velocity V. of a
spiral galaxy is 10% larger than the virial velocity of that galaxies halo. This is motivated
by detailed models for the structure of disk galaxies (Mo et al. 1998) embedded in cold
dark matter haloes that follow the universal NFW profile (Navarro et al. 1996, 1997).
We set the velocity width W as twice the circular velocity.

Keeping other parameters fixed, we find that varying e changes both the slope and
the zero-point of the Tully-Fisher relation strongly. In particular, making feedback
stronger tilts the Tully-Fisher relation towards steeper slopes, whereas the star formation
efficiency only weakly affects the zero-point. However, o has a strong effect on the gas
mass fraction left in galaxies at the present time.

In principle, the parameters « and € may be specified using the slope and zero-point
of the Tully-Fisher relation alone. However, the weak dependence of the Tully-Fisher
relation on o makes this impractical. Similar to KCDW, we instead use an additional
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criterion and require that the cold gas mass in a ‘Milky-Way’ galaxy of circular velocity
V. = 220kms~! is about 0.6 x 10'° A~ M.

Note that the baryon fraction fi, can strongly influence the cooling rates, and thus
the absolute normalization of the models. As White et al. (1993) have shown, the
baryon content of rich clusters of galaxies strongly argues for a baryon fraction as high
as f, = 0.2. This is inconsistent with big bang nucleosynthesis constraints in a critical
density universe, but can be accommodated within low-density cosmologies, like the one
considered in our cluster models. We will assume fy, = 0.2 in this study.

4.4 Following halo substructure

4.4.1 Identification of substructure

A basic step in the analysis of cosmological simulations is the identification of virialized
particle groups, which give the sites where luminous galaxies form. Perhaps the most
popular technique employed for this task is the friends-of-friend (FOF) algorithm. It
places any two particles with a separation less than some linking length b into the same
group. In this way, particle groups are formed that correspond to regions approximately
enclosed by isodensity contours with threshold value p oc 1/b%. For an appropriate choice
of b, groups are selected that are close to the virial overdensity predicted by the spherical
collapse model. FOF is both simple and efficient, and its group catalogues agree quite
well with the predictions of Press-Schechter theory (Gotz et al. 1998).

However, FOF has a tendency to occasionally link independent structures across
feeble particle bridges, and in its standard form with a linking length of b ~ 0.2 it is not
capable of detecting substructure inside larger virialized objects. Using sufficiently high
mass resolution, recent studies (Tormen 1997; Tormen et al. 1998; Ghigna et al. 1998;
Klypin et al. 1999) were able to demonstrate that substructure in dense environments
like groups or clusters may survive for a long time. The cores of the dark haloes of
galaxies that fall into a cluster will thus remain intact, and orbit as self-gravitating
objects in the smooth dark matter background of the cluster. In previous simulations,
haloes falling into clusters were usually quickly evaporated, and the clusters exhibited
little signs of substructure. It now appears, that sufficient numerical force and mass
resolution is enough to resolve this “overmerging” problem.

The identification of substructure within dark matter haloes is a challenging technical
problem, and several algorithms to find “haloes within haloes” have been proposed. In
hierarchical friends-of-friends (HFOF) algorithms (Gottlober et al. 1998; Klypin et al.
1999) the linking length of plain FOF is reduced in a sequence of discrete steps, se-
lecting in this way groups of higher and higher overdensity, eventually capturing true
substructure.

Clearly, the need for a well-posed physical definition of “substructure” arises early on
in such an analysis. Most authors have required such subhaloes to be locally overdense
and self-bound, a requirement that we will impose in the following as well. Note that
this implies that any locally overdense region within a dense background needs to be
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treated with an unbinding procedure. This is because a small halo within a larger system
represents only a relatively small fluctuation in the density, and a substantial amount
of mass within the overdense region will just stream through and not be gravitationally
bound to the substructure itself.

Klypin et al. (1999) also proposed a bound density maximum (BDM) algorithm,
where they iteratively determined the bound subset of particles in a sphere around a
local density maximum. In the method of Tormen et al. (1998) previous simulation
outputs are used to track the infall of particle groups into larger systems. Once such
a particle group from the field was accreted by a cluster, they simply determined the
subset of these particles that still remained self-bound.

Another approach is followed in DENMAX (Gelb & Bertschinger 1994) and its off-
spring SKID, where particles are moved along the local gradient in density towards a
local density maximum. Particles ending up in the ‘same’ maximum are then linked
together as a group. SKID has been employed by Ghigna et al. (1998) to find substruc-
ture in a rich cluster of galaxies, and to study the statistical properties of the detected
subgroups.

Integrating the gradient of the density field and moving the particles is not without
technical subtleties, for example a suitable stopping condition is needed. The new algo-
rithm HOP of Eisenstein & Hut (1998) tries to avoid these difficulties by restricting the
group search to the set of original particle positions, just like FOF does. In HOP, one
first obtains an estimate of the local density for each particle, and then attaches it to
its densest neighbor. In this way a set of disjoint particle groups are formed. However,
a number of additional rules are needed to link and prune some of these groups. For
example, HOP may split up a single virialized clump into several pieces of unphysical
shape, which have to be joined using auxiliary criteria.

It appears that all of these techniques have different strengths and weaknesses, and
none is completely satisfactory yet. We have therefore come up with a new algorithm
to detect substructure in dark matter haloes that combines ideas of SKID, HOP and
FOF, and adds some new ones. For easier reference, we dub this algorithm SUBFIND
(for subhalo finder).

4.4.2 The algorithm SUBFIND

Our objective with SUBFIND is to be able to extract substructure defined as locally
overdense, self-bound particle groups within a larger parent group. We will take this
group as a particle group pre-selected with a standard FOF linking length, although
SUBFIND could operate on arbitrary particle groups, or with slight modifications on
all of the particles in a simulation at once. The selection of FOF-groups as input data
provides a convenient means to organize the groups according to a simple two stage
hierarchy consisting of ‘background group’ and ‘substructure’.

Note that it is unlikely to lose any substructure by restricting the search to ordinary
FOF-groups. FOF may accidentally link two structures, a case SUBFIND will be able
to deal with, but we rarely expect FOF (with a linking length of 0.2) to split a physical
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structure into two parts.

In SUBFIND, we begin by computing a local estimate of the density at the positions
of all particles in the input group. This is done in the usual SPH-fashion, i.e. the local
smoothing scale is set to the distance of the Ngens nearest neighbor, and the density is
estimated by kernel interpolation over these neighbours. The particles may be viewed
as tracers of the three-dimensional dark matter density field. We consider any locally
overdense region within this field to be a substructure candidate. More specifically, we
define such a region as being enclosed by an isodensity contour that traverses a saddle
point. How could one find these regions? Imagine lowering a global density threshold
slowly within the density field. For most of the time, isolated overdense regions will
just grow in size as the threshold is lowered, except for the moments when two separate
regions coalesce to form a common domain. Note that at these instances the contours
of two separate regions join at a saddle point. As a result the topology of the isodensity
contour changes as well.

Our algorithm tries to identify all locally overdense regions by imitating such a
lowering of the global density threshold. To this end, we sort the finite number of
particles according to their density, and we ‘rebuild’ the particle distribution by adding
them in the order of decreasing density. Whenever a new particle ¢ with density p; is
considered, we find the Ny, nearest neighbors within the full particle set. Within this
set A; of Ny, particles, we also determine the subset of particles with density larger
than p;, and among them we select a set B; holding the two closest particles. Note that
this set may contain only one particle, or it may be empty. We now consider three cases:

1. The set B; is empty, i.e. among the Ny, neighbors is no particle that has a higher
density than particle ¢. In this case, particle 7 is considered to mark a local density
maximum, and it starts growing a new subgroup around it.

2. If B; contains a single particle, or two particles that are attached to the same
subgroup, the particle ¢ is also attached to this subgroup.

3. B; contains two particles that are currently attached to different subgroups. In
this case, the particle 7 is considered to be a saddle point, and the two subgroups
labeled by the particles in B; are registered as subhalo candidates. Afterwards, the
particle ¢ is added by joining the two subgroups to form a single subgroup. Note
that all subhalo candidates will be examined for self-boundedness later on in the
algorithm.

Working through this scheme results in a list of subhalo candidates, which can be
efficiently stored in a suitably arranged link-list structure. Note that a given particle can
be member of several different subhalo candidates, and that the algorithm is in principle
fully capable of detecting arbitrary levels of “subhaloes within subhaloes”.

Up to this point, the construction of subhalo candidates has been based on the
spatial distribution of particles alone. A more physical definition of substructure is
obtained by adding the requirement of self-boundedness. We therefore subject each
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subhalo candidate to an unbinding procedure to obtain the “true” substructure. To
this end, we successively eliminate particles with positive total energy, until only bound
particles remain. We perform the unbinding in physical coordinates, where we define
the subhalo’s center as the position of the most bound particle, and the velocity center
as the mean velocity of the particles in the group. We then obtain physical velocities
with respect to this group center by adding the Hubble flow to the peculiar velocities.
Finally, if more than a minimum number of Ny, particles survive the unbinding, we
refer to these particles as a subhalo.

There remains the important issue of how one should deal with complications arising
from the assignment of particles to several different subhalo candidates. This does not
only occur if one deals with genuine “substructure within substructure”, but it is actually
quite typical for the algorithm. For example, imagine a large halo containing several
small subhaloes. Whenever one of the small haloes ‘separates’ from the main halo, two
subhalo candidates are generated according to case (iii) of the algorithm. Each time
the larger of these groups describes the bulk of the main halo, which will thus appear
several times as a subhalo candidate, although one would like to consider it only once
as an independent physical structure.

We approach this issue by considering only the smaller subhalo candidate at each
branch of the tree generated by the saddle points. This is based on the notion that we
want to examine substructure within some larger object, and this ‘background’ object
is expected to have larger mass than the actual substructure. In addition, we process
the subhalo candidates in the inverse sequence as they have been generated, i.e. we work
through the saddle points from low to high density. In this way, a smaller subhalo within
a larger subhalo will always be processed later than its parent subhalo. As we consider
the subhalo candidates in this order, each particle carries a label indicating the subhalo
it was last detected to reside in. If in the process it is found to be contained also within
a smaller subhalo, this label will be overwritten by the new subgroup identifier.

In this way, the complexity of our analysis is reduced by assigning each particle at
most to one subhalo. We are still able to detect a hierarchy of small subhaloes within
larger subhaloes, albeit at the expense of reducing the latter by the particles contained at
deeper levels of the hierarchy. However, this usually does not affect the corresponding
parent subhalo strongly, since the mass of any substructure within a larger group is
usually small compared to that of the parent group. Nevertheless, it can happen that
the extraction of subhaloes unbinds some additional particles from the parent subhalo.
For this reason, we check all the disjoint subhaloes at the end of the process yet again
for self-boundedness. Here, we also assign all particles not yet bound to any subhalo
to the “background halo” of the group, which we define as the largest subhalo within
the original FOF input group, and we check whether they are at least bound to this
structure. If not, these particles represent ‘fuzz’, identified by FOF to belong to the
group, but not (yet) gravitationally bound to it.

In summary, SUBFIND decomposes a given particle group into a set of disjoint self-
bound subhaloes, each identified as a locally overdense region within the density field
of the original structure. The algorithm is spatially fully adaptive, and it has only
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two free parameters, Ngens and Npgp. The latter of these parameters sets the desired
mass resolution of structure identification, and we usually employ Nyg, = 10 for this
purpose. The results are quite insensitive to the other parameter, the number Nge,s of
SPH smoothing neighbours, which we typically set to a value slightly larger than Npg,.

Finally, we want to note that any efficient practical implementation of the algorithm
requires the use of hierarchical tree-data structures, and fast techniques to find nearest
neighbours and gravitational potentials. For this purpose, we employ techniques lent
from our tree-SPH code GADGET.

4 4.3 Examples for substructure identification

In Figures 4.2 and 4.3, we show two typical examples of substructure identification
obtained with SUBFIND. In the first case (Fig. 4.2), we selected a small group from the
periphery of the S2-cluster, illustrating the tendency of FOF to link structures across
feeble particle bridges. By eye, it is apparent that there are at least four independent
structures, forming a group that may be about to merge. SUBFIND detects 6 subhaloes
in this case, and it cleanly separates the groups prematurely linked together by FOF.

In the second example (Fig. 4.3), we show a somewhat larger object, also extracted
at z = 0 from the S2-simulation. Again, one can clearly spot substructure embedded in
the FOF-group. The algorithm SUBFIND finds 56 subhaloes in this case. The largest
one is the ‘background’ halo, shown in the top right panel of Fig. 4.3. It essentially
represents the backbone of the group, with all its small substructure removed. This
substructure is made up of 55 subhaloes, which are plotted in a common panel on the
lower left.

4.4.4 Subhaloes in the S1, S2 and S3 clusters

Substructure within dark matter haloes is in itself a highly interesting subject that
merits detailed investigations. What are the structural properties of subhaloes within
haloes? What is their distribution of sizes and masses? What is their ultimate fate?
Answers to these questions are highly relevant for a number of diverse topics such as
galaxy formation, the stability of cold stellar disks embedded in dark haloes, or to the
weak lensing of galaxies in clusters (Geiger & Schneider 1998, 1999).

Tormen et al. (1998) and Ghigna et al. (1998) have addressed some of these questions,
and it will be interesting to supplement their work with results obtained from our new
group-finding technique. However, such a study is beyond the scope of the present
chapter, where we focus on semi-analytic models for the galaxy population of the cluster.
We therefore refer a detailed statistical analysis of substructure to future work, and just
report the most basic properties of the subhaloes identified in the clusters at redshift
z=0.

Especially interesting is a comparison of the mass spectra of subhaloes detected in
the three cluster simulations S1, S2 and S3. In this sequence of simulations, the mass
and force resolution increases substantially, which clearly leads to a larger number of
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Figure 4.2: Example for a substructure decomposition of a FOF input group. The
top left panel shows a small FOF-group (3417 particles) identified at z = 0 in the S2
simulation. In this example, FOF has linked structures of comparable mass across thin
particle bridges. As shown in the two columns on the right, SUBFIND decomposes this
group into 6 constituents. Particles not bound to any of these subhaloes are labeled as
“fuzz”. Spatial coordinates are given in h~'kpc.

resolved subhaloes. More specifically, we detect 118 subhaloes in the final cluster of S1,
496 in S2, and 1848 in S3. In Figure 4.4, we show a plot of the substructure in the
S2-cluster.

The increase of numerical resolution thus unveils an enormous richness of structure in
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Figure 4.3: Example for a subhalo identification with SUBFIND. The top left panel
shows a small FOF-group (44800 particles), identified at z = 0 in the vicinity of the
S2 cluster. SUBFINDidentifies 56 subhaloes within this group, the largest one forms
the background halo and is shown on the top right, while the other 55 subhaloes are
plotted on a common panel on the lower left. In this example, the total mass in all the
“true” subhaloes 2-56 is about 8% of the group mass. Particles not bound to any of
the subhaloes form “fuzz”, and are displayed on the lower right. Spatial coordinates
are given in h~'kpc.
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4.4 Following halo substructure
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Figure 4.4: Substructure in the S2 cluster at z = 0. The top left panel shows a
color-coded projection of the FOF-group that contains the cluster. To highlight the
substructure, particles have been given a weight proportional to the local dark matter
density. In the top right panel we show the largest subhalo identified by SUBFIND,
i.e. the background halo. The lower right shows the 495 other subhaloes identified in the
object. Finally, on the lower right, we plot in the lower circles at the positions of each
identified subhalo, with radius proportional to the third root of the particle number in
the subhalo. Note that we even found subhaloes within subhaloes in this example.
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Figure 4.5: Subhalo mass functions in the three clusters S1, S2 and S3 at redshift
z = 0. In the top panel, we plot the cumulative number N(m) of subhaloes with
masses larger than m. The short vertical lines mark the ends of the graphs for the
simulations S1 (lowest resolution) and S2 (intermediate resolution). The agreement
between the three simulations is remarkably good. This good agreement is also present
in the differential mass function dN/dm, which we show in the lower panel.

the cluster. However, as the comparison of the cumulative and differential mass spectra
in Figure 4.5 shows, S1 and S2 are actually well capable of resolving all the objects above
their respective resolution limits. Even close to their resolution limit they predict the
right abundance of subhaloes of a given mass.
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4,45 Merging trees using substructure

We now describe our methods to construct merging trees that take the identified sub-
haloes into account. Note that SUBFIND classifies all particles of a given FOF-group
either to lie in a bound subhalo, or to be unbound. Any ordinary FOF-group lacking
substructure will also appear in the list of subhaloes identified by SUBFIND, albeit only
with its bound subset of particles. Since the requirement of self-boundedness is a rea-
sonable physical condition for the definition of dark haloes, we therefore consider the
list of haloes generated by SUBFIND as the ‘source list’ for our further analysis.

One might then ask why we employ FOF-groups to begin with. We use the FOF-
groups as a convenient ‘container’ to establish a simple two stage hierarchy of haloes.
We define the largest subhalo in a given FOF-group as the main halo hosting the central
galaxy. All other subhaloes found within the group will be considered to be substructure
of this main halo.

In the following discussion, the term subhalo will refer to any self-bound structure
identified by SUBFIND, even if it is just the self-bound part of an ordinary FOF-group
that has no real substructure. In addition, we adopt the following definitions:

A subhalo Sp at redshift zg is a progenitor of a subhalo Sa at redshift zx < zg, if
more than half of the Ny, most-bound particles of Sg end up in Sa. This definition
concentrates on the most-bound core of each structure, and we have found it to be very
robust in tracing subhaloes between different output times. One can choose Nyjni as some
fraction of the number of particles of subhalo Sg, say all or half of them. However, such
a condition may fail if Sy is deprived of its outer halo between two outputs, as it may
occasionally happen when a structure of relatively large mass falls into a cluster. We have
found that setting Ny, = 10, equal to our lower particle limit for group identification,
can satisfactorily treat even these cases. Note that our notion of ‘most-bound’ refers to
the most negative binding energy. SUBFIND automatically stores each subhalo in the
order of increasing binding energy to facilitate this kind of linking, i.e. the subhaloes are
effectively stored from inside out.

A subhalo Sp at redshift zp is a progenitor of a FOF-group G at redshift zx < zp,
if more than half of the particles of Sg are present in G5. We also call a FOF-group Gg
a progenitor of a subgroup Sa, if more than half of the particles of Sy are contained in
Gg- Note that in this latter condition we deliberately used the particles of S to define
‘membership’ in one of the FOF-group at higher redshift.

We expect that once a self-bound structure has formed, most of its mass will remain
in bound structures in the future. However, occasionally it may happen that a group that
was just barely above our specified minimum particle number at one output time falls
below this limit at the next output time, for example because the group is evaporated
by interactions with other material, or because of noise in the identification of groups
with size close to our identification threshold. We call such groups wolatile, and drop
them in our analysis. More precisely: All FOF-groups without any bound subhalo are
considered to be volatile and disregarded. In addition, if a subhalo is not progenitor to
any other subhalo, and not progenitor to any non-volatile FOF-group, it is considered
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to be volatile too, and dropped from further analysis. Note that basically all subhaloes
eliminated in this way have particle numbers very close to the detection threshold.

After the elimination of volatile subhaloes, we link subhaloes between pairs of succes-
sive simulation outputs. By construction, every subhalo may have several progenitors,
but itself can only be progenitor for at most one other subhalo. In fact, due to the elim-
ination of volatile subhaloes, a subhalo Sy will always be progenitor to another subhalo,
or at least to a FOF-group Ga. If only the latter is the case, we treat the subhalo Sg
as a progenitor of the main halo within the FOF-group.

There remains then the important case that a subhalo Sa has no progenitor. If it also
has no progenitor FOF-group, we call this subhalo a new structure, which is considered
to have newly formed between the two output times. In the galaxy formation scheme,
new galactic ‘seeds’ will be inserted into these subhaloes.

If however the subhalo Sp has no progenitor subhalo, but a progenitor FOF-group
G, it is likely that either the subhalo represents a chance fluctuation, or that it was
overlooked in the identification process at the time zg. In the latter case the correspond-
ing structure will have been merged with the main halo, so we drop these subhaloes.
Their absolute number and the total mass contained in them is always very small.

In summary, the above identification scheme allows a detailed tracing of the dark
matter merging history tree, from the past to the present. In particular, the scheme
is able to deal with groups, that pop into existence, that grow in size by accreting
additional background particles, that merge with other haloes of comparable size and
lose their identity, or that fall into a larger halo without being destroyed completely.
The latter case is particularly interesting, since we expect that a subhalo can survive
for some time within the larger structure. However, its mass can be reduced by tidal
stripping, and this effect can eventually completely dissolve the structure.

4.5 Substructure and semi-analytic models

4.5.1 Inclusion of subhaloes

One of the questions we want to address in this study is how the inclusion of subhaloes
changes the results of semi-analytic models. In order to highlight such changes we will
try to modify the ‘standard’ scheme, which is based on the work of KCDW, in a minimum
fashion when subhaloes are included.

Note that a large variety of semi-analytic “recipes” are conceivable, and that the
results can depend quite strongly on the detailed assumptions made, as has been recently
highlighted by KCDW. Semi-analytic models thus cannot eliminate uncertainties arising
from poorly constrained physics. However, they are ideal tools to explore the relative
importance of various model ingredients, and hence to constrain their relevance for
observed trends in observational properties.

We now describe the changes in our semi-analytic methodology when subhaloes are
included. From here on, we will refer to the formalism of KCDW, which only works with
FOF groups, as the ‘standard’-scheme, and to the analysis that includes substructure as
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the ‘subhalo’-scheme. Please note that the word ‘standard’ is not meant to imply that
the corresponding procedure has the status of a well-established, widely used method in
the field — it is just used to refer to the methodology recently developed by KCDW.

Our most important change concerns the definition of the galaxy population at each
output time. We define the largest subhalo in a FOF-group to host the central galaxy
of the group, and its position is given by the most-bound particle in that subhalo.
All gas that cools within a FOF-group is funneled exclusively to the central galaxy.
This definition of ‘central galaxy’ thus corresponds to the one adopted in the standard
analysis.

However, with respect to the population of galaxies orbiting in the halo, we can now
distinguish between halo-galazies and satellite galaxies. Here we have coined yet another
term; ‘halo-galaxies’ are attached to the most bound particle of the remaining subhaloes
in the FOF-group. These halo-galaxies had been proper central galaxies in the past, until
their halo has fallen into a larger structure, but the core of their dark halo is still intact,
and thus allows an accurate determination of the position of the halo-galaxy within the
group. These halo-galaxies may still be viewed as ‘central galaxies’ of their respective
subhaloes, but they are not fed by a cooling flow any more, since their subhalo is not
the largest one in the FOF group.

Finally, when two (or more) subhaloes merge, the halo-galaxy of the smaller subhalo
becomes a satellite of the remnant subhalo. These satellites are treated like in the
standard analysis. Their position is tagged by the most-bound particle identified at the
last time they were still a halo-galaxy, and they are assumed to merge on a dynamical
friction timescale with the halo-galaxy of the new subhalo they now reside in. We need
to introduce such satellites in the subhalo-scheme in order to account for actual mergers
between subhaloes, and also for the finite numerical resolution of our simulations, which
limits our ability to track the orbits of subhaloes once their mass has fallen below our
resolution limit. It also allows to make direct contact with the standard-scheme in the
limit of poor resolution. Note that the class of halo-galaxies is absent in the standard
analysis, where all of these objects would be treated as satellites.

In the subhalo scheme, we define the virial mass M, of a subhalo simply as the
total mass of its particles. We then assign a virial radius by assuming that the halo has
an overdenity 200 with respect to the critical density, i.e. R3,, = GM.;;/(100H?), and

vir
we define a virial velocity as Vv21r = G M,ir/Ryir-

4.5.2 Mergers inside the cluster

When the analysis of subhaloes is included, a halo falling into a larger group can be
followed as an independent physical entity along its orbit in the larger halo. The ef-
fects of orbital decay will thus be properly modeled, up to the point when the subhalo
is eventually lost, either due to effects of finite resolution, or due to actual physical
disruption.

In this context, the interesting possibility of mergers between halo-galaxies inside the
cluster arises. Such mergers are believed to occur only rarely due to the large velocity
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Figure 4.6: Number of merger events between subhaloes inside the cluster (top panel).
Note that we here define the ‘cluster’ at some redshift z as the largest progenitor halo
of the final cluster. We define an inner merger event by requiring that a subhalo of the
cluster, which is not the main subhalo, has at least two progenitor subhaloes residing
in the largest cluster progenitor at the previous output time. We plot the number
of such events measured in the cluster simulations S2 and S3 for pairs of successive
output times. The solid and dashed lines are boxcar averages of the measured points.
For comparison, we show in the bottom panel the number of ‘normal’ mergers with
the cluster center. Here we count the number of subhaloes inside the largest cluster
progenitor that merge with the main subhalo of the cluster.
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dispersion of cluster galaxies. Note however, that our subhalo algorithms are capable of
dealing with these events, if they occur.

We are now in a position to find out whether we actually detect such events. Using
the merging history trees of the subhalo scheme, we can simply look for situations
where a halo-galaxy of the cluster has two (or more) progenitor subhaloes that both
reside in the largest progenitor FOF-halo of the cluster. In the top panel of Figure 4.6
we show the number of such events measured in the cluster simulations S2 and S3
for pairs of successive output times. While the absolute number of mergers between
subhaloes is relatively low, they clearly do occur with a small rate. The larger number
of mergers detected in S3 merely reflects the better mass resolution of this simulation. As
expected, the strong increase of the abundance of subhaloes towards smaller mass scales
is accompanied by an increase of the absolute number of mergers inside the cluster. Note
that the standard-scheme of semi-analytic modeling does not account for these merger
events, but the subhalo-scheme does.

It is interesting to compare the detected rate of mergers between halo-galaxies with
the number of ‘normal’ mergers, i.e. mergers between a subhalo and the cluster center.
To obtain a fair comparison with the events measured above, we now count how many
subhaloes within the largest cluster progenitor merge with the cluster center, i.e. are
progenitor to the main subhalo of the cluster. We plot the corresponding number of
events in the bottom panel of Figure 4.6. For the last 30 outputs of S2 (z < 5.2), the
total number of mergers ‘inside’ is 32, while the ‘normal’ ones occur 645 times. For S3,
these numbers are 143 and 2780, respectively. In both cases, the ratio between these two
numbers is close to 20.0, suggesting that roughly one out of 20 subhalo mergers occurs
with another halo-galaxy instead of with the central object.

4.6 Results

4.6.1 Tully-Fisher relation
We use the velocity-based I-band Tully-Fisher relation

My —5logh = —21.00 — 7.68 (log W — 2.5) (4.14)

of Giovanelli et al. (1997), and the requirement of a gas mass of ~ 0.6 x 10! h='Mg in
‘Milky-Way’ haloes, to normalize our models. We consider two variants for the imple-
mentation of feedback, the ‘ejection’ model, where gas is blown out of small haloes, and
the ‘retention’ model, where reheated gas is always kept within the halo.

In Figure 4.7, we show the best-fit Tully-Fisher relations obtained for these two
models, applied to the S2-cluster using the ‘subhalo’-scheme. In these plots, we only
considered central galaxies of haloes that are peripheral to the cluster, but that are
not contaminated by heavier boundary particles. We also applied a morphological cut
1.2 < Myyige — Migtar < 2.5, approximately selecting Sb/Sc galaxies. In Table 4.2, we
list the model parameters thus obtained. In these initial models, we have assumed that
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Figure 4.7: The I-band Tully-Fisher relation for Sb/Sc galaxies in the S2 simulation,
obtained with the subhalo-scheme using ejection and retention feedback, respectively.
The galaxies have been selected as central galaxies of uncontaminated haloes in the
periphery of the cluster. The solid line represents the recent measurement by Giovanelli
et al. (1997).

all metals remain in the cold gas phase. Effects of chemical enrichment of the hot halo
will be discussed separately below. In the following, we will use the same normalization
also for our other cluster simulations, and for the ‘standard’ semi-analytic scheme.

The Tully-Fisher relations we obtain exhibit remarkably small scatter. This is a
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Table 4.2: Numerical parameters adopted for our semi-analytic models. « is the star
formation efficiency, € the efficiency of feedback by supernovae, fi, the baryon fraction,
and y the mean effective yield of metals per stellar generation.

Model e € o Y
ejection 0.10 0.05 0.20 0.02
retention 0.10 0.15 0.20 0.02

result of the tight coupling we assumed between the sizes and circular velocities of the
disks of spiral galaxies and the masses of their dark haloes. Note that additional scatter
can be expected from the distribution of spin parameters of dark haloes, which gives rise
to variations of the disk sizes associated with a halo of a given mass (Mo et al. 1998).

The ejection model fits the slope of the observed TF-relation relatively easily. How-
ever, the retention model is less effective in suppressing star formation in low mass haloes.
For the same value of ¢, the retention scheme produces therefore a shallower Tully-Fisher
relation than the ejection model. As a result, a much larger value for € is needed to bring
the retention model in agreement with the observed steepness of the TF-relation. This
strong feedback reduces the overall brightness somewhat, an effect that could be easily
compensated for by slightly larger values for « or fi,. Note that a feedback efficiency
of ¢ = 0.05 means that feedback will be very efficient in haloes of virial velocity below
Vsny = 130km S_1(€/0.05)1/2. In such haloes, one will have AMeheat > AM,, i.e. the
mass of reheated gas exceeds that of newly formed stars.

It is also interesting to compare the Tully-Fisher relations obtained for the different
cluster simulations, and for the ‘subhalo’ and ‘standard’ variants of semi-analytic mod-
eling (see Figure 4.8). For the sake of brevity, we restrict the comparison between the
‘subhalo’ and ‘standard’ schemes to the S2-cluster, and between the simulations S1-S3
to the subhalo-scheme with ejection feedback. In general, there is good agreement be-
tween the two variants of semi-analytic modeling, and between the different simulations,
despite their great differences in numerical resolution. The ‘subhalo’ scheme is slightly
more conservative at the lower mass end than the standard method. This is because
volatile haloes are excluded in the subhalo analysis, and the virial mass of haloes is
assigned slightly differently in this scheme. As a result, an Sb/Sc galaxy in the subhalo
scheme cannot have a virial mass less than the mass of 10 simulation particles, while
close to the resolution the standard analysis sometimes assigns virial masses that can be
even below that limit.

Comparing the two lower panels of Figure 4.8 with the left panel in Figure 4.7, one
also sees that the agreement between the simulations S1, S2 and S3 is very encouraging.
For the same choice of free parameters, the slopes of the Tully-Fisher relations agree
very well. However, a detailed examination of the zero-points also shows that there is a
slight trend towards fainter zero-points in the sequence of simulations S1 to S3. As we
will show below, this effect is a consequence of a systematic increase of the brightness of
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Figure 4.8: The top two panels show the Iband Tully-Fisher relations obtained for
the S2 simulation using the ‘standard’-methodology of KCDW. These may be compared
with the results for the subhalo-scheme displayed in Figure 4.7. The bottom two panels
give the TF-relations for the S1 and S3 simulations using the subhalo/ejection-variant

of the semi-analytic modeling.

central galaxies due to overmerging processes. In the subhalo scheme, this effect becomes
weaker for higher numerical resolution.

4.6.2 Cluster luminosity function

In Figure 4.9, we show the B-band luminosity function of the S2-cluster obtained with
the new ‘subhalo’ methodology, and we compare it to the result of the ‘standard’ semi-
analytic recipe of KCDW. We plot the number of cluster-galaxies in bins of size 0.5
mag, and we fit Schechter functions to the counts. The standard prescription results
in a relatively steep slope of —1.35 at the faint-end, and the “knee” of the Schechter
function is not well defined. This is just another reincarnation of a well-known problem
of semi-analytic studies. They usually predict too many galaxies both at the faint and
the bright end, i.e. their luminosity function is not curved enough. These deficiencies
can be partly cured by invoking additional physics like dust obscuration, or by alluding
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Figure 4.9: The B-band cluster luminosity function obtained for the S2 simulation
using the subhalo scheme (top) and the standard scheme (bottom). We here show
results for the ejection feedback, and note that the results for the retention model are
very similar. The solid lines are Schechter function fits to the histograms of bin-size
0.5 mag. For the subhalo model, the faint end slope is @« = —1.21, and the turn-off is
at M, ~ —21.6. The standard scheme results in a steeper slope of &« = —1.35, and the
characteristic magnitude is not well defined. Note that the standard model produces a
galaxy of magnitude -23.4, which appears too bright even comparing to the brightest
cD galaxies.

to stronger feedback processes. However, most semi-analytic studies have not been
successful in simultaneously achieving agreement with the Tully-Fisher relation and the
luminosity function.
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Figure 4.10: The B-band cluster luminosity function obtained for the S1 and S3
simulations using the subhalo scheme and ejection feedback. The solid lines are three-
parameter Schechter function fits to the histograms of bin-size 0.5 mag. For the S3
model, the faint-end slope of the fit is a = —1.22 with M, = —21.4, while for S1 we
obtain o« = —1.19 and M, = —22.2.

Compared to the field, the luminosity functions of clusters tend to be considerably
steeper, and a slope of —1.35 can be accommodated easily with existing data. However,
the standard-scheme also produces a brightest cluster galaxy with luminosity in excess of
most normal c¢D galaxies. For example, in the S2 cluster, the standard-scheme produces
a central galaxy with B-magnitude —23.4.

In contrast to that, the luminosity function obtained with the subhalo formalism
has a more reasonable shape. There are more L,-galaxies, resulting in a flatter faint-
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end slope of a = —1.21, and in a more pronounced “knee”, allowing a decent fit with
a Schechter function. In addition, the very large brightness of the central galaxy has
disappeared. The overall shape of the resulting luminosity function is in reasonably good
agreement with known cluster luminosity functions.

What is causing this big difference between the subhalo-scheme and the standard
scheme? Note that the excessive brightness of the central galaxy in the latter model
cannot be due to an overcooling problem. We have already cut-off the cooling flow for
central galaxies in haloes with a virial velocity larger than 350 km s~!. Furthermore, the
cooling model was essentially the same for both schemes, which is also reflected in their
similar overall mass-to-light ratios.

We think that the most important difference between the ‘standard’ semi-analytic
scheme and the ‘subhalo’-methodology is that the latter allows a much more accurate
estimate of the actual merging rate in any given halo. Recall that one critical assumption
in the study of KCDW has been that the position of a satellite galaxy can be traced by
a single particle identified as the most-bound particle of the satellite’s halo just before
it was accreted by a larger system. KCDW also assumed that the time of survival of
a satellite can be estimated using a simple dynamical-friction formula. However, if this
description turned out to be too crude, the excessive brightness of the central galaxies
could simply result from an overestimate of the overall merging rate, or from merging
the ‘wrong’ galaxies with the center, i.e. bright galaxies that actually still orbit in the
halo and have not yet merged with the central galaxy.

Before we investigate this issure in more detail below, we plot in Figure 4.10 the clus-
ter luminosity functions for the S1 and S3 clusters, obtained with the subhalo scheme and
ejection feedback. Comparing these luminosity functions with the corresponding result
obtained for S2 (Fig. 4.9), we clearly see that with decreasing resolution the brightness
of the first ranked cluster galaxies increases. Again, we think that this is a reflection
of the overmerging problem that troubles simulations with insufficient numerical reso-
lution, and this effect is also responsible for the weak trend in the zero-points of the
Tully-Fisher relations (see Figures 4.7 and 4.8).

We now directly test whether such an ‘overmerging’ problem is responsible for the
difference between the subhalo scheme and the standard formalism. To this end we try
to answer three questions: (1) How many of the galaxies present in subhaloes of S2 at
z = 0 are prematurely merged with the center in the standard scheme? (2) How well
is the position of subhaloes given by the single particles used to track satellites in the
standard scheme? (3) How do the merging timescales estimated in the standard scheme
compare with the actual survival times of infalling halos?

To address the first two of these questions, we follow each subhalo of the cluster
back in time along its merging history until it is a main halo itself for the first time.
The corresponding FOF-halo will host a central galaxy in the standard scheme, and
the descendant of this galaxy at z = 0 should directly correspond to the galaxy of the
originally selected subhalo.

Among the 494 subhaloes identified in the S2-cluster at z = 0, we find in this way
that 23 of them do not have a directly corresponding satellite galaxy in the ‘standard’-
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formalism. The satellites that should correspond to these 23 subhaloes have prematurely
disappeared by merging processes with the central galaxy. Note that the total number
of mergers with the central galaxy in the standard scheme is 94, while this number is 125
in the subhalo formalism. This suggests that the overall rate of mergers is not too high
in the standard scheme. However, in the standard scheme the central galaxy accrets 18
galaxies with stellar mass more than 10'° A~ 'Mg, among them 6 galaxies with stellar
mass larger than 10'' A" *Mg. On the other hand, in the subhalo formalism there is
only 1 merger involving more than 10'! A~'Mg, and 6 with more than 10'° A='Mg,.
This means that a larger number of very bright galaxies is merged with the central
galaxy in the standard scheme. We also note that the 23 subhaloes that appear to have
been merged prematurely in the standard scheme tend to be quite bright. If we take the
results for the subhalo-model and add the luminosities of the corresponding halo-galaxies
to that of the central galaxy, its brightness increases from -21.64 to -23.56 mag, quite
close to the -23.4 obtained in the standard-scheme. It thus appears that the excessive
brightness of the central cluster galaxy in the standard scheme is mainly caused by an
underestimate of the merging timescales for some fraction of the bright galaxies.

With respect to positions of satellites, we find that a fraction of 86.8% of the sub-
haloes in S2 still contain the most-bound particle that is used in the standard-scheme
to track the position of the satellite. This number is 86.6% in S1, and 82.2% in the S3
cluster. Using just a single particle identified at a time before a structure was accreted
onto the cluster can thus provide a good estimate of the subhalo’s position within the
cluster halo at later times.

We now come to the third question raised above. Consider a subhalo that merges at
a certain time with another, larger subhalo. As above, we can follow this subhalo back
in time along the path defined by its most massive progenitor subhalo at each output
time. At some point, the subhalo’s progenitor found in this way will be for the first
time the main subhalo of a FOF halo. We call the lookback time until this happens
the survival time of the FOF halo. Note however, that this survival time is really a
lower limit to the ‘true’ survival time, since the corresponding subhalo might have been
lost prematurely due to limited resolution effects. To determine the survival times, we
process all subhaloes that vanish in mergers, and we store the maximum survival time
thus obtained for each FOF halo.

It is now interesting to compare these survival times with the estimates of the merging
timescale, as given by equation (4.9). We compute the merger timescales exactly in the
way as it is done in the standard scheme for FOF haloes that merge with another
halo, but are not a most massive progenitor themselves. In Figure 4.11, we compare the
survival time with the estimated merger timescale for these FOF haloes. There is clearly
a correlation between the two, albeit with very large scatter. Note in particular that
all the points below the diagonal line correspond to merger events that are predicted to
happen too early in the standard methodology — the subhaloes that trace the cores of the
corresponding FOF haloes actually survive for a longer time. In the standard scheme,
these premature mergers make the central galaxy too bright.

On the other hand, there is also a substantial number of estimated merger timescales
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Figure 4.11: Scatter plot comparing the estimated merger times based on the dy-
namical friction formula (4.9) with the survival times derived by explicitly tracking the
merging history of subhaloes. To avoid overcrowding, we have just plotted one fifth of
the measured points.

that are very large, in fact much larger than a Hubble time. Note that for the choices
we adopted in equation (4.9), the dynamical friction formula is essentially the current
dynamical time of virialized haloes times the mass ratio of the halo and its infalling
satellite. Hence the large estimates of merger timescales arise when the mass of the
satellite is much smaller than that of the halo. However, the dynamical friction estimate
does not include the effects of tidal truncation and disruption, which act to reduce the
lifetime of satellites. The dynamical friction estimate might therefore systematically
overestimate the time of survival of small satellites. In fact, the results of Tormen et al.
(1998) indicate that the dependence of the merger timescale on the mass ratio, measured
just before the satellite falls in, is much weaker than linear. Presently it is unclear,
whether an improved parameterization of the merger timescales in the standard scheme
can produce results as good as those obtained by explicitely following the subhaloes.
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4.6.3 Morphology density relation

Dressler (1980) has shown that the relative frequency of elliptical galaxies is higher in
denser environments. In particular, in the cores of clusters, spirals are quite rare, while
they are the dominant type in the field, and in the Universe as a whole. Whitmore et al.
(1993) have argued that this morphology-density relation presumably reflects a more fun-
damental morphology-clustercentric relation; the correlation between morphology and
clustercentric separation seems tighter than that between morphology and projected
density. However, this assertion is still controversial.

In Figure 4.12, we show the cumulative number of galaxies of different Hubble as a
function of distance from the cluster center. The top panel gives all the galaxies with
Mgy < —16, while in the middle panel we just show the bright galaxies with My < —19.
It is seen that the elliptical galaxies (the T' < —4 bin) are more concentrated towards the
center than the spirals. In fact, from the cumulative distribution it can be infered that
the three-dimensional density profile of the ellipticals has a steeper slope than that of the
sprirals. It is also interesting to note that the bright galaxies are primarily ellipticals,
as seen in the middle panel. In the top two panels all galaxies have been counted,
i.e. halo-galaxies that are attached to a subhalo as well as ordinary satellites. In the
bottom panel, we just show the distribution of the subhalo-galaxies. Note that there is
one subhalo as close as 55h 'kpc to the center, but all other subhalos are more than
~ 200 h~'kpc away.

In Figure 4.13 we show the morphology-clustercentric relation obtained for the S2-
cluster, using our subhalo-scheme with ejection feedback. For the classification of galax-
ies, we applied the same cuts in T-space as above. Note that the fraction of elliptical
galaxies strongly rises towards the center of the cluster, while that of the spirals declines
accordingly. The quantitative strength of these trends is in good yet not perfect agree-
ment with the results of Whitmore et al. (1993).

We think that this is a very interesting result. Recall that our morphological model-
ing is solely based on the merging history of galaxies. This simplistic model for morpho-
logical evolution already suffices to establish a pronounced morphology density relation.
This shows that the morphology density relation is built-in at a very fundamental level
in hierarchical theories of galaxy formation.

In passing we note that in the standard recipe, where satellites are just traced by
single particles once they have fallen into a larger halo, the morphology-clustercentric
relation is also present, yet not so well defined. In Figure 4.14, we show the morphology-
clustercentric relation obtained for the standard methodology. Within the cluster, the
trend of morphology with radius is somewhat weaker. Note that in Figure 4.13 we only
counted galaxies that are still attached to a subhalo. If we also include the satellites, the
results become more similar to the standard scheme, i.e. the morphology-clustercentric
relation is better defined in the subhalo population of galaxies than in the satellites.
This is probably caused by a more accurate treatment of the merging history of those
galaxies that can still be traced by a subhalo.

Figure 4.13 also shows that the fraction of S0’s in our cluster is too small compared
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Figure 4.12: Cumulative number of galaxies in the S2 cluster as a function of radial
distance to the cluster center. In the top panel, we count all galaxies with Mp < —16,
binned into three classes of different Hubble type. In the middle panel, only the bright
galaxies with Mp < —19 are shown, while the bottom panel gives only those galaxies
that are still represented by a subhalo. Here, the diamonds mark the distance of
individual galaxies. The results shown are for the S2 cluster using ejection feedback.
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Figure 4.13: Morphological mix of galaxies as a function of clustercentric radius.
We here show results for the S2-simulation, using the subhalo modeling with ejection

feedback. Only galaxies that are still attached
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with that seen in nearby clusters. However, disk galaxies orbiting in a cluster experience
high-speed encounters with other galaxies. Together with global cluster tides this can
drive a morphological evolution towards spheroids, a process termed galaxy harassment
(Moore et al. 1996, 1998). It has been suggested that the spiral galaxies seen abundantly
in clusters at moderate redshift are harassed and slowly transformed to S0’s at the
present time. In its current form, our modeling does not account for this effect, and it
might thus be invoked to explain our deficit of SO galaxies.

4.6.4 Cluster mass-to-light ratio

The observed mass-to-light ratios of clusters of galaxies are known to be much larger
than those of individual galaxies, and this fact has been recognized early on as strong
evidence for the existence of large amounts of dark matter in clusters. Typical measured
values for the cluster mass-to-light range from Yp =200~ Y to Yp = 400h Y in the
B-band. For the Coma cluster, Kent & Gunn (1982) measured Yp = 360h Y, while
X-ray data seem to point to a lower value. For example, Cowie et al. (1987) inferred a
mass-to-visual-light ratio for Coma as low as Ty = 180h Y.

The galaxy population constructed for the S2 cluster using the subhalo model has a
total magnitude of Mp = —25.7. For its total mass of 8.36 x 1014 h~'M), the cluster
mass-to-light ratio is thus Yp = 590h Y. In the V-band, we obtain My = —26.6 and
Ty = 450hY5. These mass-to-light ratios may be slightly too large compared to the
mean of observational results, although there are also measurements that are as large as
our values. For example, Kent & Gunn (1983) obtained Yy = 600 h Y, for the Perseus
cluster.

However, small changes of our parameters can easily enhance the overall brightness
of the cluster, and thus reduce the mass-to-light ratios to a desired value. One simple
possibility for that is to change the conversion factor between the virial velocity and the
circular velocity. If the circular velocity of a disk in a dark matter halo of given virial
velocity is on average 15% larger than we assumed, the normalization to the Giovanelli
et al. (1997) Tully-Fisher relation results in an overall increase in brightness of 0.5
mag, and a corresponding reduction of the mass-to-light ratio to 63% of its old value.
Another possibility is to be less restrictive in imposing a cut-off for the cooling-flows. In
Figure 4.15 we show the luminosity function of the S3 cluster when the corresponding
limit is increased from 350kms~! to 450kms~!. This only affects the central galaxies
of very large haloes and makes them brighter. As a result, the mass-to-light ratio goes
down to Yy = 387h Y. For a cut-off at 500kms~!, the central cluster galaxy reaches
a brightness of Mp = —23.09 mag, which might be interpreted as a c¢D galaxy, and the
mass-to-light ratio becomes YTy = 343h 1.

4.6.5 B — V color distribution

In Figure 4.16, we show the B — V color distribution of galaxies brighter than —19.7
mag in the S2 simulation. A corresponding plot has been shown by KCDW, and we here
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Figure 4.15: B-band cluster luminosity function obtained with the subhalo-
methodology for the S3 cluster. We have here cut off the cooling flows in haloes with
virial velocities above 450kms™!, i.e. we have been less restrictive than in our normal
models (compare Figure 4.10) where the corresponding limit was 350kms~!. As a re-
sult of this change, the central galaxies in large haloes become brighter, leading to a
reduction of the mass-to-light ratio of the cluster. For easier comparison, the Schechter-
function drawn in this plot has the parameters of the fit obtained for S3 in Figure 4.10.

obtain similar result. The distribution of the B — V' colors is bimodal, with two peaks at
B—-V ~0.7Tand B—V ~ 1.0. By plotting the color distribution for individual morpho-
logical types, it becomes apparent that this dichotomy mainly reflects the differences in
star formation history between elliptical and spiral galaxies. The recent star formation
in spirals makes them blue, while the older stellar populations of ellipticals give them
redder colors.

We show the projected spatial distribution of red (B —V > 0.85) and blue (B -V <
0.85) galaxies in Figure 4.17. In this plot, we visualize the dark matter mass distribution
inside a cube 4h~'Mpc on a side, centered on the S3-cluster, as a gray-scale image.
Overlaid on this picture are red and blue circles at the positions of the semi-analytic
galaxies. The area of each circle is proportional to the blue-light luminosity of the
corresponding galaxies. It can be seen that most of the galaxies in the cluster are red,
and that these red galaxies are heavily concentrated towards the center. Note that only
very few galaxies in the region of the cluster are blue, although the blue spirals form
the majority of galaxies in the field surrounding the cluster. The concentration of red
elliptical galaxies towards the center is consistent with our result for the morphology-
clustercentric relation.

148



4.6 Results

40

30

number
TT

20

10

£ Spirdls (T>3.0)

B-V
050 060 0.70 080 0.90 100
w w w w w w

Vil

20—

15

number
T

10+

T

T

- Ellipticals (T<-1.5)

T

40

30

number

20

10F

OE .

[

= All (My<-19.7)

///.

/

7

0.50

0.60

0.70

0.80 0.90
B-V

1.00

Figure 4.16: The B—V colors of galaxies brigther than —19.7 mag in the S2 simulation.
The dichotomy of the distribution mainly reflects the difference in the stellar populations
of elliptical and spiral galaxies. Spirals are significantly bluer due to the their recent
star formation, while ellipticals have older stellar populations, resulting in redder colors.
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Figure 4.17: The projected distribution of galaxies in the S3 cluster. The circles
mark the positions of red (B —V > 0.85) and blue (B — V < 0.85) galaxies, in a box
4 h~'Mpc on a side around the cluster center. The area of each circle is proportional to
the B-band luminosity, and the gray-scale image in the background visualizes the dark
matter density. Only galaxies with Mp < —16 are shown.

4.6.6 Star formation history

In Figure 4.18, we plot the evolution of the star formation rate for all galaxies (and their
progenitors) that belong to the cluster at the present epoch, and we compare this to
the history of the star formation rate of ‘field’ galaxies in the periphery of the cluster.
We here show results for the S2 cluster using the subhalo model with ejection feedback.
Note that the star formation rate is approximately proportional to the Ha luminosity
and to the UV-luminosity, respectively. We find that the total star formation rate of the
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Figure 4.18: Evolution of the star formation rate of all galaxies that end up in the
S2-cluster at the present time (small boxes). The small triangles give the corresponding
rates for the field galaxies in the periphery of the cluster. Here, the vertical normal-
ization is arbitrary, since it depends on the volume defined as the ‘field’. The results
shown are for the subhalo-model with ejection feedback. Note that the contribution of
the starburst mode in major mergers is negligible for the total star formation rate of
the cluster galaxies.

cluster galaxies is almost unaffected when we turn off starbursts in major mergers. In
the current model, only a small fraction of all stars is formed in the starburst mode.

The star formation rate of field galaxies has recently been investigated by Madau
et al. (1998), suggesting a sharp rise of the star formation rate (SFR) from z = 0 to a
peak at z ~ 1.5, and then a fall towards higher redshift. The peak of the star formation
history of our cluster galaxies lies at significantly higher redshift, around z ~ 6 — 7, and
the fall towards higher redshift appears somewhat gentler than suggested by the analysis
of Madau et al. (1998). On the other hand, the SFR of our field galaxies peaks at lower
redshift, around z ~ 3 —4, and the decline towards the present time is relatively shallow.
At present there are still large uncertainties in the observational determination of the
cosmic star formation history, primarily due to the dust corrections that have to be
applied to optical/UV data. However, both the newest corrections for dust extinction,
and the recent determinations of the star formation history in the near-infrared (Blain
et al. 1999) move the peak of the observed star formation history to z ~ 3 — 4.

From Figure 4.18 it is already apparent that the stars in the cluster form considerably
earlier than those in the field. To highlight this point, we plot in Figure 4.19 the
cumulative star formation rate of the cluster galaxies, and compare it to that of the field
galaxies. Already at z ~ 4, 12 Gyr ago, half of the stars in the cluster have been formed,
while the field galaxies have produced half their stars not until z ~ 2. Note that the
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Figure 4.19: The fraction of stars in the cluster that have formed up to redshift z.
Half of the stars are in place by z ~ 4. The dashed line gives the same quantity for all
galaxies in uncontaminated haloes in the surroundings of the cluster. On average, their
stars form considerably later. The small inset gives the same quantities as a function
of lookback time for our choice of cosmology. We here show results for the S2 cluster
using the subhalo-scheme with ejection feedback.

actual cluster forms at much lower redshift; it has assembled half of its final mass at
z = 0.66.

4.6.7 Effects of chemical enrichment

In the results presented so far, we have assumed that all the metals released in supernovae
explosions remain in the cold phase of the interstellar medium. The metallicity of the
halo gas thus remained zero, and the cooling function used was effectively always that
for primordial abundance.

However, if feedback does indeed reheat some of the cold gas, there should be a
transport of metals along with the reheated, enriched gas. Note that in the retention
model, we mix the reheated gas into the hot halo. Feedback should therefore pollute the
halo with metals. This is not necessarily the case in the models with ejection feedback,
because here the reheated gas is assumed to leave the galaxy.

In Figure 4.20, we show the Tully-Fisher relation obtained for the S2-simulation when
retention feedback is used and the metal transport is taken properly into account. Since
we modeled feedback to become more efficient in low-mass haloes, the gaseous halo is
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Figure 4.20: Tully-Fisher relation for the S2-simulation, including metal enrichment
of the hot gaseous halo. We here assumed that feedback reheats enriched cold gas, and
mixes it homogeneously into the halo. For the same choice of parameters as used in our
standard retention model, the model with metal transport leads to considerably brighter
galaxies, and to a shallower Tully-Fisher relation. The corresponding results are shown
as small boxes. To bring the Tully-Fisher relation again into rough agreement with
the observational result by Giovanelli et al. (1997) (solid line), a very large feedback
efficiency of € = 0.5 is needed. The corresponding galaxies are plotted as stars.

more efficiently enriched with metals in small galaxies. As a result, the brightness of low
mass galaxies is more strongly increased by metallicity-boosted cooling rates than that
of high mass galaxies. Keeping the parameters « and ¢ fixed, this tilts the Tully-Fisher
relation to a shallower slope, apart from increasing the overall brightness of the galaxies.
The TF-relation shown in Figure 4.20 is based on the choice of parameters adopted so far
for the retention scheme (see Table 4.2). To bring the TF-relation in rough agreement
again with the observations of Giovanelli et al. (1997), we have to make the suppression
of star formation in low mass haloes stronger. In fact, we need a rather extreme value
of ¢ = 0.5 to at least achieve approximate agreement with the observed relation. For
this choice, the zero-point of the TF and the overall brightness of the cluster is about
right, although the TF relation is still slightly shallow. It can be further steepened by
increasing e, albeit at the expense of reducing the overall brightness too much.

It thus seems that metal enrichment of the haloes of low-mass galaxies amplifies the
tendency of the retention scheme to produce low-velocity galaxies that are too bright.
The ejection model fairs considerably better in this respect. Due to its stronger suppres-
sion of star formation in small galaxies, and the absence of metal deposition in the halo,
it nicely produces a steep enough Tully-Fisher relation using a moderate value for e. On
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the other hand, if there was a mechanism that enhances the efficiency of metal enrich-
ment in haloes with high circular velocity, such a process could also help to steepen the
Tully-Fisher relation. It would act like positive feedback in the larger galaxies. However,
presently it is unclear whether such a physical process exists, and if so, how it might
operate.

4.7 Discussion

In this study, we have used cosmological N-body simulations combined with semi-analytic
techniques to construct the galaxy population of a rich cluster of galaxies. The very high
resolution of our simulations allowed us to extend the methodology for galaxy formation
of KCDW to the regime of substructure within virialized systems. Our goal in this work
has therefore been twofold. We wanted to develop the necessary technical machinery for
a galaxy formation scheme that works with subhaloes, and we wanted to compare its
results with those obtained with the ‘standard’ techniques by KCDW.

The detection of subhaloes within haloes is a technically difficult problem, and has
only been addressed very recently. Several working algorithms have been described, but
none seems to be an ideal solution yet. In this chapter, we presented our new subhalo
finding algorithm, SUBFIND. It just relies on the particle positions and velocities of a
single output time, and it reliably identifies locally overdense, self-bound particle groups
within larger systems as ‘subhaloes’. SUBFIND can also detect hierarchies of ‘haloes
within haloes’, a feature that is not well represented in alternative techniques.

The mass spectrum of subhaloes in our cluster appears to be close to a power-law.
Our set of simulations allowed a direct study of resolution effects, and it is interesting
to note that the lower-resolution simulations predict the right abundance of subhaloes
for any given mass above their respective resolution limit.

Using the detected subhaloes, we have shown how they can be traced from simulation
output to output. Just like KCDW, we analysed 51 simulation snapshots, logarithmically
spaced in expansion factor from z = 20 to z = 0. This large number of output times
together with the very high resolution of our simulations allowed a study of the merging
history of the dark matter in unprecedented detail. For example, we detected more than
1840 subhaloes in the final halo of the S3 cluster, and we found around 140 events of
mergers or captures between subhaloes orbiting inside the progenitor halo of the cluster.

Using a very small set of modifications, we have adapted the semi-analytic scheme
of KCDW to include the analysis of subhaloes. In both schemes, the agreement with
the observed Tully-Fisher relation is very good. However, the inclusion of subhaloes
results in a substantial improvement of the cluster luminosity function of the models.
In the standard scheme, the first ranked cluster galaxies become too bright, while this
problem goes away in the subhalo-scheme. We have shown that this is mainly due to
overmerging that takes place in the standard model. Here, too many bright galaxies
that fall into the cluster are prematurely merged with the central galaxy. The direct
tracing of subhaloes until their eventual disappearance allows a more precise estimate
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of the actual merger rate within haloes. As a result, the luminosity function becomes
more curved, and develops a well defined knee and a flatter faint-end slope.

The subhalo-scheme also provides accurate positions for galaxies orbiting in the
cluster halo. We have shown that our simple morphological modeling gives rise to a
morphology-clustercentric relation that is qualitatively in reasonable agreement with ob-
servations. Towards the center of the cluster, the morphological mix of galaxies becomes
gradually dominated by ellipticals, while the contribution of spirals strongly declines.
Note that the morphology of our model galaxies is primarily determined by their merging
history. A morphology density relation arises therefore quite naturally in hierarchical
theories of galaxy formation.

Using the subhalo-scheme, our model for the galaxy population of the cluster now
produces results that are in good agreement with a variety of data. The cluster-
luminosity function has a reasonable shape, the Tully-Fisher relation of field spirals
is well fit, the cluster mass-to-light ratio has the right size, a reasonable morphology
density relation results, and the B — V color distribution appears to be compatible with
observations. Given the approximative treatment of key physical processes, we think
that these are remarkable successes. However, it is important to note that changes in
some of our model assumptions can have a strong effect on the results. Despite this
caveat, semi-analytic models are very useful to study the consequences of any changes in
these assumptions, thereby guiding the physical modeling. For example, we have briefly
discussed the effects of chemical enrichment of the gaseous halo by retention feedback,
and have shown that it is then hard to obtain a Tully-Fisher relation as steep as the
observed one.

One powerful strength of semi-analytic models is that they also provide the full
history of galaxy formation. If the present time provides the normalization of the models,
they can then be used to make predictions at high redshift. Observational data at high
redshift can then provide strong constraints on the models. In this work, we have
examined the star formation history of the galaxies that end up in the final cluster. The
star formation rate of the cluster galaxies peaks at significantly higher redshift than that
of the field galaxies. Half of the stars of the cluster are already in place at redshift z ~ 4,
while the stars in the field are much younger; half of them have formed below z ~ 2.

The combination of high-resolution N-body simulations and semi-analytic galaxy
formation schemes has proven to be able to provide a fairly detailed description of the
galaxy population in rich clusters. We think that this approach can be fruitfully exploited
to further study the properties of galaxy formation models in hierarchical cosmologies.
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GADGET: A code for collisionless and
gasdynamical cosmological simulations

Abstract

We describe the newly written code GADGET which is suitable both for cosmologi-
cal simulations of structure formation and for the simulation of interacting galaxies.
GADGET can evolve self-gravitating collisionless fluids with the traditional N-body
approach, and a collisional gas by smoothed particle hydrodynamics. Along with
the serial version of the code, we present a parallel version that has been designed
to run on massively parallel supercomputers with distributed memory. While both
versions use a tree algorithm to compute gravitational forces, the serial version of
GADGET can optionally employ the special purpose hardware GRAPE instead
of the tree. The code uses individual and adaptive timesteps for all particles, and
it combines this with a scheme for dynamic tree updates. Due to its Lagrangian
nature, GADGET thus allows to bridge a very large dynamic range, both in space
and time. Without changes, the code can be used to simulate cosmological vol-
umes as well as problems of interacting galaxies with vacuum boundary conditions.
GADGET has been successfully used to run cosmological simulations up to 7.5x 107
particles, high-resolution simulations of the formation of clusters of galaxies, as well
as workstation-sized problems of interacting galaxies. In this study, we detail the
numerical algorithms employed, and show various tests of the code.

5.1 Introduction

Numerical simulations of three-dimensional self-gravitating fluids have become an in-
dispensable tool in cosmology. They are now routinely used to study the non-linear
gravitational clustering of dark matter, the formation of clusters of galaxies, the inter-
actions of isolated galaxies, and the evolution of the intergalactic gas. Without these
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5 GADGET: A code for collisionless and gasdynamical cosmological simulations

numerical techniques the immense progress in these fields would have been impossible,
since analytic calculations are often restricted to idealized problems of high symmetry,
or to approximative treatments of inherently nonlinear problems.

The advances in numerical simulations have become possible both by the rapid
growth of computer performance and also by the implementation of ever more sophisti-
cated numerical algorithms. Note that the development of powerful simulation codes still
remains a primary task if one wants to take full advantage of new computer technologies.

While the direct summation method for the gravitational N-body problem remains
useful in small stellar dynamical systems, it is hopelessly inefficient for large N due to
the O(N?) scaling of its computational cost. A large number of groups have therefore
developed N-body codes that compute the large-scale gravitational field by means of
Fourier techniques. These are the PM, P?M, and AP3M codes (Efstathiou et al. 1985;
Couchman 1991; MacFarland et al. 1998). The modern versions of these codes supple-
ment the force computation on scales below the mesh size with a direct summation, and
they place mesh refinements on highly clustered regions.

An alternative to these schemes are the so-called tree algorithms, pioneerd by Barnes
& Hut (1986) and Jernigan & Porter (1989). Tree algorithms arrange particles in a
hierarchy of groups, and compute the gravity at a given point by summing over multipole
expansions of these groups. In this way the computational cost of a complete force
evaluation can be reduced to a O(N log N) scaling.

While mesh-based codes are generally much faster for close-to-homogeneous particle
distributions, the tree codes can adapt flexibly to any clustering state without significant
losses in speed. This Lagrangian nature is a great advantage, if a large dynamic range in
density needs to be covered. Here tree codes can outperform mesh based algorithms. In
addition, tree codes are free from any geometrical restrictions, and they can be combined
with integration schemes that advance particles with individual timesteps.

Yet another solution to the N-body problem is provided by special-purpose hardware
like the GRAPE board (Steinmetz 1996). It consists of custom chips that compute
gravitational forces by the direct summation technique. By means of their enormous
computational speed they can considerably extend the range where direct summation
remains competitive with software solutions.

In recent years, collisionless dynamics has also been coupled to gas dynamics, estab-
lishing the link between dark matter and the directly observable quantities. Tradition-
ally, hydrodynamical simulations have usually employed some kind of mesh to represent
fluid dynamical quantities. While a particular strength of these codes is their ability
to accurately resolve shocks, the mesh also imposes restrictions on the geometry of the
problem, and onto the dynamic range of spatial scales that can be simulated. However,
new adaptive mesh refinement codes of Norman & Bryan (1998) and Klein et al. (1998)
may provide a solution to this problem.

In cosmological applications, it is often sufficient to describe the gas by smoothed
particle hydrodynamics (SPH), as invented by Lucy (1977) and Gingold & Monaghan
(1977). The particle-based SPH is extremely flexible in its ability to adapt to any
given geometry. Moreover, its Lagrangian nature allows a locally changing resolution
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that ‘automatically’ follows the local mass density. This convenient feature helps to save
computing time by concentration the computational effort on those regions that have the
largest gas concentrations. Furthermore, SPH ties naturally into the N-body approach
for self-gravity, and can be easily implemented in three dimensions.

These advantages have led a number of authors to develop SPH codes for applications
in cosmology. Among them are TREESPH (Hernquist & Katz 1989; Katz et al. 1996),
GRAPESPH (Steinmetz 1996), HYDRA (Couchman et al. 1995; Pearce & Couchman
1997), and codes by Evrard (1988); Navarro & White (1993); Hultman & Kéllander
(1997); Davé et al. (1997); Carraro et al. (1998). See also Kang et al. (1994) and Frenk
et al. (1999) for a comparison of cosmological hydrodynamic codes.

In this chapter we describe our simulation code GADGET (GAlaxies with Dark
matter and Gas intEracT), which can be used both to simulate isolated self-gravitating
systems including gas, or for cosmological N-body simulations. We have developed two
versions of this code, a workstation version, and a version for massively parallel super-
computers with distributed memory. The workstation code uses either a tree algorithm
for the self-gravity, or the special purpose hardware GRAPE , if available. The paral-
lel version works with a tree only. Note that the parallelization required substantial
algorithmic changes compared to the serial code.

A particular emphasis of our work has been the development of an efficient time
integration scheme that allows individual and adaptive particle timesteps, and on the
elimination of sources of overhead both in the serial and parallel code. We have in-
vestigated different time step criteria, and have come up with a number of algorithmic
improvements that speed up the code, while maintaining its accuracy. As a result, GAD-
GET is a very flexible code without obvious intrinsic restrictions to the dynamic range
of the problems that we address with it.

In this work we describe in detail the implemented equations and algorithms of our
codes, and we show results for some test problems, and some science applications. In
Section 5.2, we give a brief summary of the implemented physics. In Section 5.3, we
discuss the computation of the gravitational force both with a tree algorithm, and with
GRAPE . We then describe our specific implementation of SPH in Section 5.4, and we
discuss our time integration scheme in Section 5.5. The parallelization of the code is
described in Section 5.6, and tests of the code(s) are presented in Section 5.7. Finally,
we summarize in Section 5.8.

5.2 Implemented physics

5.2.1 Collisionless dynamics

Dark matter and stars are modeled as self-gravitating collisionless fluids, i.e. they fulfill
the collisionless Boltzmann equation (CBE)

= = vV— — — —

df of af 8<I>8f_0
dt ~— ot ox Orov

(5.1)
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where the self-consistent potential ® is the solution of Poisson’s equation
V2&(r, 1) = 4nG / £(r, v, )dv, (5.2)

and f(r,v,t) is the mass density in single-particle phase-space. It is exceedingly difficult
to solve this coupled system of equations directly with finite difference methods. Instead,
we will follow the common N-body approach, where the phase fluid is represented by
N particles which are integrated along the characteristic curves of the CBE. In essence,
this is a Monte Carlo approach whose accuracy depends crucially on a sufficiently high
number of particles.

The N-body problem is thus the task of following Newton’s equation of motion for
a large number of particles under their own self-gravity. Note that we will introduce a
softening into the gravitational potential at small separations. This effectively introduces
a lower resolution cut-off, which allows larger integration timesteps, and also prolongs
the relaxation time of the system due to two-body encounters.

5.2.2 Gasdynamics

A simple description of the intergalactic medium (IGM), or the interstellar medium
(ISM), may be obtained by modeling it as an ideal, inviscid gas. The gas is then
governed by the continuity equation

dp
a+pV-v—0, (5.3)
and the Euler equation
dv VP
T VD 5.4

Further, the thermal energy u per unit mass evolves according to the first law of ther-
modynamics, viz.

du P A(u, p)
i VAR e St Lty 5.5
Y PR p (5.5)
Here we used Lagrangian time derivatives, i.e.
d 0
a—a"ﬁ‘v-v, (56)

and we allowed for a piece of ‘extra’ physics in form of the cooling function A(u,p),
describing external sinks or sources of heat for the gas.
For a simple ideal gas, the equation of state is

P=(y—1)pu, (5.7)

where v is the adiabatic exponent. We usually take v = 5/3, appropriate for a mono-
atomic ideal gas. The adiabatic sound speed c of this gas is ¢ = yP/p.
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Figure 5.1: Schematic illustration of the Barnes & Hut oct-tree in two dimensions.
The particles are first enclosed in a square (root node). This square is then iteratively
subdivided in four squares of half the size, until exactly one particle is left in each final
square (leaves of the tree). In the resulting tree structure, each square can be progenitor
of up to four siblings. Note that empty squares need not to be stored.

5.3 Gravity

5.3.1 Tree algorithm

An alternative to Fourier techniques, or to direct summation, are the so-called tree meth-
ods. In these schemes the particles are arranged in a hierarchy of groups. When the
force on a particular particle is computed the force exerted by distant groups is approx-
imated by their lowest multipole moments. Usually this approximation is terminated
at quadrupole order. Tree codes are a class of algorithms that in this way reduce the
computational cost for a complete force evaluation to O(N log N) (Jernigan & Porter
1989; Barnes & Hut 1986).

We employ the Barnes & Hut (1986, BH) tree in this work. In this scheme, the
computational domain is hierarchically partitioned into a sequence of cubes, where each
cube contains eight siblings of half the size. These cubes form the nodes of an oct-
tree structure. The tree structure is constructed such that each node (cube) contains
either exactly one particle, or it is progenitor to further nodes, in which case the node
carries the monopole and quadrupole moments of all the particles in the tree below it.
A schematic illustration of the BH tree is shown in Figure 5.1.

A force computation then proceeds by walking the tree, and summing up appropriate
force contributions from tree nodes. The multipole expansion of a node of size [ is used
only if

T > (5.8)

0 7
where r is the distance of the point of reference to the center-of-mass of the cell and 8 is
a prescribed accuracy parameter. If a node fulfills the criterion (5.8), the tree walk along
this branch can be terminated, otherwise it is continued with all its siblings. Equation
(5.8) is the standard Barnes & Hut (BH) opening criterion. Following Dubinski et al.
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(1996) we have also tried the simple modification

r> ! + 0, (5.9)

0
where the quantity ¢ gives the distance of the geometric center of the cell to its center-of-
mass. This provides protection against pathological cases where the center-of-mass lies
close to an edge of a cell. However, except for the first force computation in a simulation,
we will usually employ yet another opening criterion to be discussed in Section 5.3.1.2.

A technical difficulty arises when the gravity is softened. In regions of high particle
density (e.g. the centers of dark haloes, or cold dense gas knots in dissipative simulations),
it can frequently happen that nodes fulfill equation (5.8), and simultaneously we have
r < h, where h is the gravitational softening length. In this situation, one formally
needs the multipole moments of the softened gravitational field. Some previous tree
codes have ignored this complication altogether, or they have opened nodes always for
r < h. The first solution can lead to forces significantly in error, while the latter can
suffer from severe (and unnecessary) performance degradation for strongly clustered
regions (Hernquist & Katz 1989).

However, it is possible to do the proper multipole expansion for the softened potential,
and we know discuss it for definiteness. We want to approximate the potential at r due
to a (distant) bunch of particles with masses m; and coordinates x;. Note that we use
a spline-softened force law, hence the exact potential of the particle group is

O(r) =-GY mig(lxx —rl), (5.10)
k

where the function g(r) describes the softened force law. For Newtonian gravity we have
g(r) = 1/r, while the spline softened gravity with softening length A gives rise to

g(r) = _%WQ (%) : (5.11)

The function W (u) is given in the appendix of this chapter. It arises by replacing the
force due to a point mass m with the force exerted by the mass distribution p(r) =
mW (r; h), where we take W (r; h) to be the spline kernel used in the SPH formalism.

The spline softening has the advantage that the force becomes exactly Newtonian
for r > h, while other possible force laws, like the Plummer softening to be discussed
below, often converge only relatively slowly to Newton’s law.

We now introduce the center-of-mass s, and the total mass M of the particles. Fur-
ther we define

Yy=r—s. (5.12)

The potential may then be expanded in a multipole series assuming |y| > |x; — s|. Up
to quadrupole order, this results in

o) = ~6{Mg() +33" [LPQ+ L@ - )|y} (513)
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Here we have introduced the tensors

ka Xy — S) xk—s kaxkxk Mss”, (5.14)
k
and
P=1) my(x—5)°=1> myx; — 1Ms>. (5.15)
k k
Note that for Newtonian gravity, equation (5.13) reduces to the perhaps more familiar
form v o1 g p

Finally, the quadrupole approximation of the softened gravitational field is given by

1 1
f(r) = -vo = 6 { M)y + () Q + 505(0) (Y Q) y + 30a)Py } . (517)
Here we introduced the functions ¢1(y), g2(v), 93(y), and g4(y) as convenient abbrevia-
tions. Their definition is given in the appendix. In the Newtonian case, this simplifies
to

T P T R

flr) =G —— Sy = bl
(r) { YT Y T T Y

Note that although equation (5.17) looks rather cumbersome, its actual numerical
computation is only marginally more expansive than that of the Newtonian form (5.18)
because all factors involving g(y) and derivatives thereof can be tabulated for later use
in repeated force calculations.

5.3.1.1 Tree construction and tree walks

The tree construction can be done by inserting the particles one after the other in the
tree. It is possible to compute the multipole moments simultaneously by summing the
YoE Mk m(k)a:( ) terms for each node, and then looping at the end over all nodes again
and subtractlng the corresponding center-of-mass moments. It turns out, however, that
the particle coordinates have to be refered to a fixed point inside the node (we adopt
the geometrical center for that) in this procedure, otherwise intolerable accuracy losses
can result if single-precision arithmetic is used. Our code has been written in C and
optimized extensively with the help of profilers. As a result, the tree-construction is
very fast, and the time spent for it is negligible compared to a complete force walk for
all particles.

However, in our time integration scheme we use individual timesteps for all particles,
and at each given timestep, only a small fraction of all particles require a force walk. If
this fraction drops below ~ 1 per cent, a full reconstruction of the tree can take as long
as the force walk. However, most of this tree construction time can be eliminated by
dynamic tree updates, which we discuss in more detail in Section 5.5.

163



5 GADGET: A code for collisionless and gasdynamical cosmological simulations

The most time consuming routine in the code will then always be the tree walk.
Hence optimizing it can considerably speed up tree codes. We use pointers to access the
data structures and implemented a non-recursive tree walk, similar to Dubinski (1996).
The latter speeds up the tree walk by up to 10%.

GADGET also allows different gravitational softenings for groups of particles. In
order to guarantee momentum conservation, this requires a symmetrization of the force
when particles with different softening lengths interact. We here chose to symmetrize
the softenings by

h= max(hi, hj). (519)

However, the usage of different softening lengths leads also to complications for softened
tree nodes. Strictly speaking, the multipole expansion is only possible, if all the particles
in the node have the same softening. One clean possibility to solve this problem is to
construct separate trees for each species of particles with different softening. As long as
these species are more or less spatially separated, no severe performance penalty results.
However, this is different if the fluids are spatially ‘mixed’ (e.g. dark halo, stellar disk,
gaseous disk, and stellar bulge in simulations of interacting galaxies). Here it can be
better to construct a single tree, and open cells always if r < h; < hpax, where Apax iS
the maximum softening of the particles represented by the node, and h; is the softening
of the particle under consideration. GADGET allows a choice between either of the above
methods.

5.3.1.2 A new opening criterion

The accuracy of the forces resulting from the tree walk depends sensitively on the crite-
rion used to decide whether the multipole approximation for a given node is acceptable,
or whether the node has to be ‘opened’ for further refinement. The standard BH opening
criterion tries to limit the relative error of every particle-node interaction by comparing
a rough estimate of the size of the quadrupole term, ~ MI?/r*, with the size of the
monopole term, ~ M/r?. The result is the purely geometrical criterion of equation
(5.8).

As Salmon & Warren (1994) have pointed out, the worst-case behaviour of the BH
opening criterion is somewhat worrying. Although very rare in real astrophysical simu-
lations, the BH criterion can occasionally lead to very large force errors, when standard
values for the opening angle are used.

Another problem with the BH criterion occurs when one tries to use it at high redshift
in cosmological simulations. Here, the density field is very close to homogeneous and
the peculiar acceleration is small. For a tree algorithm this is a tough problem, because
the tree code always has to sum up partial forces from all the mass in a simulation. The
small net force at high z then arises in a delicate cancellation process between relatively
large partial forces. If a partial force is indeed much larger than the net force, even a
small relative error in it is enough to result in a large relative error of the net force. For
an unclustered particle distribution, the BH criterion therefore requires a much smaller
value of the opening angle than for a clustered one.
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Similarly, in a cosmological simulation the absolute sizes of forces between a given
particle and tree-nodes of a certain opening angle can vary by many orders of magni-
tude. In this situation, the purely geometrical BH criterion ends up investing a lot of
computational effort for the evaluation of all partial forces to the same relative accuracy,
irrespective of the actual size of each partial force, and the size of the absolute error thus
induced. It would be better to invest more computational effort in regions that provide
most of the force on the particle and less in regions whose mass content is unimportant
for the total force.

As suggested by Salmon & Warren (1994), one may therefore try to devise a cell-
opening criterion that limits the absolute error in every cell-particle interaction. In
principle, one may use analytic error bounds (Salmon & Warren 1994) to obtain a
suitable cell-opening criterion, but the evaluation of the relevant expressions can consume
significant amounts of CPU time.

Our approach to a new opening criterion is less stringent. Assume the absolute size
of the true total force is already known before the tree walk. In our code, we will use
the acceleration of the previous timestep as a handy approximate value for that. We
will now require that the estimated error of an acceptable multipole approximation is
some small fraction of this total force. Note that we truncate the multipole expansion
at quadrupole order. If the hexadecapole order is the leading term in the neglected
part of the series, the absolute truncation error will be roughly of the size of this term,
which is of order ~ M/r%(I/r)*. We can then require that this error should not exceed
some fraction a of the total force on the particle. The latter may be estimated from the
previous timestep. A tree-node has then to be opened if

MI* > alagy|r®. (5.20)

We have found this criterion to be more efficient than the ordinary BH criterion,
i.e. at a given computational expense it produces forces that are more accurate. Also,
this criterion does not suffer from the high-z problem discussed above. The same value
of a produces a comparable force accuracy, independent of the clustering state of the
material. In Section 5.7.2, we will show some quantitative measurements of the relative
performance of the two criteria.

5.3.2 Special purpose hardware

An alternative to software solutions to the N2-bottleneck of self-gravity is provided by
the GRAPE (GRAvity PipE) special-purpose hardware. It is designed to solve the
gravitational N-body problem in a direct summation, brute-force approach by means of
its superior computational speed. The latter is achieved with custom chips that compute
the gravitational force with a hardwired Plummer force law. The Plummer-potential of
GRAPE takes the form

m;

T
i (r—rj?+e)2

(5.21)
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The GRAPE -3A boards installed at the MPA have 40 N-body integrator chips in
total with an approximate peak performance of 25 GFlops. Recently, newer generations
of GRAPE boards have achieved even higher computational speeds. In fact, with the
GRAPE -4 the 1 TFlop barrier had first been surpassed (Makino et al. 1997), and even
faster special-purpose machines are in preparation (Spurzem 1997).

The GRAPE -3A boards are connected to an ordinary workstation via a VME in-
terface. The boards consist of memory chips that can hold up to 131072 particle coor-
dinates, and of integrator chips that can compute the forces exerted by these particles
for 40 positions in parallel. Note that higher particle numbers can also be processed
by splitting them up in sufficiently small groups. In addition to the gravitational force,
the GRAPE board returns the potential, and a list of neighbours for the 40 positions
within search radii h; specified by the user. This latter feature makes GRAPE especially
attractive for SPH calculations.

The parts of our code that use GRAPE have benefited from the code GRAPESPH
by Steinmetz (1996), and are similar to it. In short, the usage of GRAPE proceeds as
follows. For the force computation, the particle coordinates are first loaded onto the
GRAPE board, then GADGET calls GRAPE repeatedly to compute the force for up
to 40 positions in parallel. The communication with GRAPE is done by means of a
convenient software interface in C. GRAPE can also provide lists of nearest neighbours.
For SPH-particles, GADGET computes the gravitational force and the interaction list in
just one call of GRAPE . The host computer then still does the rest of the work, i.e. it
advances the particles, and computes the hydrodynamical forces.

In practice, there are some technical complications when one works with GRAPE . In
order to achieve the high computational speed, the GRAPE hardware works internally
with special fixed-point formats for positions, accelerations and masses. This results
in a reduced dynamic range compared to standard IEEE floating point arithmetic. In
particular, one needs to specify a minimum length scale dpj, and a minimum mass
scale mmyin when working with GRAPE . The spatial dynamic range is then given by
dmin[—2'8;2'8] and the mass range is myin[1; 64€/dmin] (Steinmetz 1996). In GADGET
we take special care that these constraints are always observed, otherwise the simulation
could be compromised by numerical errors.

While the communication time with GRAPE scales proportional to the particle
number N, the actual force computation of GRAPE is still an O(N?)-algorithm, be-
cause the GRAPE board represents a brute-force approach to the gravitational N-body
problem. This implies that for very large particle number a tree code running on the
workstation alone will eventually catch up and outperform the combination of work-
station and GRAPE . For our current set-up at MPA this break-even point is about at
300000 particles.

However, it seems also possible to combine GRAPE with a tree algorithm (Athanas-
soula et al. 1997), for example by exporting tree nodes instead of particles in an ap-
propriate way. Such a combination of tree+GRAPE could scale as O(N log N) and
outperform pure software solutions even for large N.
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5.4 Smoothed particle hydrodynamics

SPH is a powerful Lagrangian technique to solve hydrodynamical problems with an
ease that is unmatched by grid based fluid solvers (see Monaghan 1992, for an excel-
lent review). In particular, SPH is very well suited for three-dimensional astrophysical
problems that do not crucially rely on very accurately resolved shock fronts.

Unlike other numerical approaches for hydrodynamics, the SPH equations do not
take a unique form. Instead, many formally different versions of them can be derived.
Furthermore, a large variety of recipes for specific implementations of force symmetriza-
tion, determinations of smoothing lengths, and artificial viscosity, have been described.
Some of these choices are crucial for the accuracy and efficiency of the SPH implementa-
tion, others are only of minor importance. See the recent work by Thacker et al. (1998)
and Lombardi et al. (1998) for a discussion of the relative performance of some of these
possibilities. Below we give a summary of the specific SPH implementation we use. In it
we have tried to combine the best formulations that have emerged, while simultaneously
emphasizing accuracy and the need that the scheme must be amenable to an individual
timestep integrator.

The computation of the hydrodynamic force and the rate of change of internal energy
proceeds in two phases. In the first phase, new smoothing lengths h; are determined for
the active particles (these are the ones that need a force update at the current timestep,
see below). We set h; equal to the distance of the Ng-th nearest neighbour of a particle,
and we store all the indices of the Ny closest particles. Note that holding the number of
neighbours exactly constant is only slightly more expansive than letting it fluctuate (the
neighbour search is only a negligible fraction of the total computational time anyway).
However, a constant number of neighbours leads to much better energy conservation,
as shown by Nelson & Papaloizou (1994), and it reduces the ‘noise’ in SPH related
quantities considerably.

For the active particles, we then compute the density of the particle as

N
pi =Y m;iW(rij; hi), (5.22)
7j=1

where r;; = r; — r;, and we compute a new estimate of divergence and vorticity as

pz(v . V),‘ = ij(Vj - v,-)ViW(r,-j; hi), (523)

pZ(V X V)i = ij(vi — Vj) X VZ‘W(I‘Z'J'; h,) (524)
J
Here we employ the gather formulation for adaptive smoothing (Hernquist & Katz 1989).
For the passive particles, values for density, internal energy, and smoothing length
are predicted at the current time based on the values of the last update of those particles
(see Section 5.5). Finally, the pressure of the particles is set to P; = (v — 1)p;u;.
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In the second phase, the actual forces are computed. Here we symmetrize the kernels
of gather and scatter formulations in the way of Hernquist & Katz (1989). We compute
the gasdynamical accelerations as

P
azgas — (E) v1sc _ ij ( ] + Hzg)
7

p z' p]
[iviw(riﬁ h;) + §ViW(rij§ hj)] , (5.25)

and the change of the internal energy as

du; 1 P, P,
G~ 2™ <p2 + pJ +sz) (Vi = vj)
J

i J
1 1
VW wigsho) + 5V (i) (5.26)
The artificial viscosity f[ij is taken to be
1
= g i+ f)1Lij, (5.27)
with
I, = [—acijmj + 204#,2]'] [pij if v r” <0 (5.28)
0 otherwise,
where (Vv
“V);
;= , 5.29
= i 1 x v (5:29)
and h
iy = PV V)i — 1) (5.30)

ri —rj* + eh?j
This form of artificial viscosity is the shear-reduced version (Balsara 1995; Steinmetz
1996) of the ‘standard’ Monaghan & Gingold (1983) artificial viscosity. Recent studies
(Lombardi et al. 1998; Thacker et al. 1998) that test SPH implementations strongly
endorse it.

Since we store the full neighbour list for all particles, we can guarantee that the
sums contributing to equations (5.25) and (5.26) are always computed exactly, without
a possible loss of some of the pairs. For this purpose we simply scan the complete
interaction list. For every entry (i.e. the index j of a neighbour of particle 7), there is a
resulting force component

fij = —m;m; (P; + P; + H”> 1VZ'V[/'(I‘,']';hZ'). (5.31)
pi P 2
If we add fj; to the force on i, and —f;; to the force on j, the sum of equation (5.25)
is reproduced, and the momentum conservation is manifest. This also holds for the
internal energy.
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5.4.1 Neighbour search

In SPH, one needs to find the nearest neighbours of each SPH particle to construct its
interaction list. Specifically, one has the numerical task to find all particles closer than
a search radius R. Similar to gravity, the naive solution that checks the distance of all
particle pairs is an O(N?) algorithm which slows down prohibitively for large particle
numbers. Fortunately, there are faster search algorithms.

When the particle distribution is approximately homogeneous, perhaps the fastest
algorithm works with a search grid that has a cell size equal to R. The particles are
then first coarse-binned on this search grid, and link-lists are established that quickly
deliver only those particles that lie in a specific cell of the coarse grid. The neighbour
search proceeds then by range searching; only those mesh cells have to be opened that
have a spatial overlap with the search range.

For highly clustered particle distributions and varying search ranges R, the above
approach quickly degrades, since the mesh of the coarse grid has not the optimum size
for all particles. A more flexible alternative is to employ a geometric search tree. For
this purpose we construct a second BH tree just for the SPH particles, but without the
computation of multipole moments. A neighbour search is then performed by walking
the tree. A cell is ‘opened’ (i.e. further followed) if it has a spatial overlap with the
rectangular search range. If one arrives at a cell with only one particle, this is added to
the interaction list if it lies in the search range.

In the algorithm just described, the tree needs to be walked down to its leaves to find
all the particles in the interaction list. If the length of this tree walk can be reduced, the
speed of the algorithm can be increased. In GADGET we use the following additional
trick to achieve that. A tree walk along a branch is terminated, if the cell lies completely
inside the search range. Then all the particles in the cell can be added to the interaction
list. But how can these particles be found in the first place without further walking the
tree? It turns out that it is possible to set-up a link-list during the tree construction
that allows a retrieval of all the particles that lie inside a given cell, just like it is done
in the coarse-binning approach. This trick speeds up the neighbour search by more than
a factor of 2, and we will also employ it in the dynamic updates of the force tree to be
described later on.

There remains the task to specify an algorithm that finds exactly Ng closest neigh-
bours. We solve this in the following way: We predict a value h; for the smoothing
length based on the length h; of the previous timestep and the local velocity divergence.
We then do a range search with R = 1.2h;, on average resulting in ~ 2Ny potential
neighbours. From these we select the closest Ny with the fast algorithm select (Press
et al. 1995). If there are fewer than N; particles in the search range, or if the distance of
the Ng-th nearest particle inside the search range is larger than R, the search is repeated
for a larger search range. In the first timestep no previous h; is known, so we follow
the neighbour tree backwards from the leave of the particle under consideration, until
we obtain a first reasonable guess for the local particle density (from the number N of
particles in a node of volume [3). This provides an initial guess for hi.

169



5 GADGET: A code for collisionless and gasdynamical cosmological simulations

5.5 Time integration

As a time integrator, we use a variant of the leapfrog involving an explicit prediction
step. The latter is introduced to accommodate individual particle timestep in the N-
body scheme, as explained later on.

We here start by describing the integrator for a single particle. First, a particle
position at the middle of the timestep At is predicted according to

At

Fnt) = () 4 y() 5 (5.32)
and an acceleration based on this position is computed, viz.
ants) — _ V| (44 - (5.33)
Then the particle is advanced according to
vt = () 4 a(nt3) A, (5.34)
r(n D) — p() 4 % [v(") + v(”+1)] At. (5.35)

5.5.1 Timestep criterion

In the above scheme, the timestep may vary from step to step. Note that the choice of
timestep criterion is very important in determining the overall accuracy and computa-
tional efficiency of the integration.

In a static potential @, the error in specific energy arising in one step with the above
integrator is

1 0%® (n) (n+3) A .3
- a At
4 0z;0x; Y9 +

1 0 )

24 a.Tia.Tja.’L‘kvi Uj
to leading order in At, i.e. the integrator is second order accurate. Here the derivatives
of the potential are taken at coordinate r(® and summation over repeated coordinate
indices is understood.

In principle, one could try to use equation (5.36) directly to obtain a timestep by
imposing some upper limit on the tolerable error AE. However, this approach is quite
subtle in practice. First, the derivatives of the potential are difficult to obtain, and
second, there is no explicit guarantee, that the terms of higher order in At are really
small.

To guarantee that the higher order terms indeed become smaller, one may consider
the change of basic quantities describing the particle. For example, the change of the
position of the particle is

AE =

oM AR + O(AtY) (5.36)

Ar = £ 3 = VAL Za AR, (5.37)
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and its change in specific kinetic energy is
ABy = vWa A 4 %a<n+%>a<n+é>m2. (5.38)

For a stable integration, the terms of second order in At should be smaller than the first
order terms. This suggests a timestep criterion of the form
v

At = Aol )
|a|

(5.39)
where « is some dimensionless tolerance parameter. Alternatively, one may constrain the
absolute size of the second order displacement by assuming a typical velocity dispersion
o2 for the particles, corresponding to a scale E = o for the typical specific energy. This

results in
o

At = a1 - (5.40)
|al
We have found this criterion to give the best results compared to several alternative
choices, and we will later on show test calculations illustrating this in more detail.

The quantity aio0 controls the accuracy of the integrations. Qur typical choice for
simulations of interacting galaxies is of order a4q0 ~ 10 — 25km/sec. Note that the
timestep criterion (5.40) is Galilean-invariant and does not make an explicit reference
to the gravitational softening length employed.

5.5.2 Integrator for N-body systems

In contrast to a binary hierarchy of timesteps (Hernquist & Katz 1989; Steinmetz 1996),
we employ an integrator with completely flexible timesteps, similar to the one employed
by Groom (1997) and Hiotelis & Voglis (1991).

Each particle owns a timestep At;, and a current time t;, where its dynamical state
(ri, vi, a;) is stored. The dynamical state of the particle can be predicted at times
t € [t; £ 0.5A¢;] with first order accuracy.

The next particle k to be advanced is then the one with the minimum prediction
time defined as 7, = min (¢; + 0.5A¢;). The time 7, becomes the new current time of
the system. To advance the particle, we first predict positions for all particles at time
Tp according to

r; =r; + vi(mp — ). (5.41)

Based on these positions, the acceleration of particle £ at the middle of its timestep is
calculated as

1
agcn+2) _ _ VCI)(f'i)lf-k ) (5.42)
Position and velocity of particle k are then advanced as
1
V](cn—H) _ vl(cn) + 2a§c"+2)(7.p _ tk)’ (5.43)
rl(an) _ I,](cn) n [vl(cn) + v](cn+1)] (1o — t1), (5.44)
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and its current time can be updated to
£0) — 4 2(my — ). (5.45)

Finally, a new timestep Atfcnew) for the particle is estimated.

At the beginning of the simulation, all particles start out with the same current time.
However, since the timesteps of the particles are all different, the current times of the
particles distribute themselves nearly symmetrically around the current prediction time,
hence the prediction step involves forward and backward prediction to a similar extent.

However, it is impractical to advance only a single particle at any given prediction
time, because the prediction itself and the (dynamic) tree updates induce some overhead.
For this reason we advance particles in bunches. The particles may be thought of as being
ordered according to their maximum prediction times tf =1 + %Ati. The simulation
works through this time line, and always advances the particle with the smallest ¢¥, and
also all subsequent particles in the time line, until the first is found with

1
™ <t + ZAtZ’. (5.46)

This condition selects a group of particles at the lower end of the time line, and all the
particles of the group are guaranteed to be advanced at least by half or their maximum
allowed timestep.

Our practical experience shows that the size M of the group that is advanced at a
given step is often only a small fraction of the total particle number N. In this situation
it becomes important to eliminate any overhead that scales with O(N). For example, we
obviously need to find the particle with the minimum prediction time at every timestep,
and also the particles following it in the time line. A loop over all the particles, or a
complete sort at every timestep, would induce overhead of order O(N) or O(N log N),
which can become comparable to the force computation itself if M/N < 1. We solve this
problem by keeping the maximum prediction times of the particles in an ordered binary
tree (Wirth 1986) at all times. Finding the particle with the minimum prediction time
and the ones that follow it are then operations of order O(log N). Also, once the particles
have been advanced, they can be removed and reinserted into this tree with a cost of
order O(log N). Together with the dynamic tree updates, which eliminate prediction
and tree construction overhead, the cost of the timestep then scales as O(M log N) .

5.5.3 Dynamic tree updates

If the fraction of particles to be advanced at a given timestep is indeed small, the predic-
tion of all particles and the reconstruction of the full tree would also lead to significant
sources of overhead. However, the geometric structure of the tree, i.e. the way the
particles are grouped into a hierarchy, evolves only relatively slowly in time. It would
therefore be sufficient to reconstruct this grouping only every couple of timesteps, pro-
vided one can still obtain accurate node properties (center of mass, multipole moments)
at the current prediction time.
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We achieve exactly this by predicting properties of nodes of the tree, instead of all
the single particles. In order to do this, each node carries a center-of-mass velocity in
addition to its position at the time of its construction. New node positions can then be
predicted on the fly while the tree is walked, and only nodes that are actually visited
need to be predicted. Note that the leaves of the tree point to single particles. If they
are used in the force computation, their prediction corresponds exactly to the ordinary
prediction as outlined in equation (5.44).

In our scheme we neglect a possible time variation of the quadrupole moment of the
nodes. However, we have introduced an additional mechanism that reacts to fast time
variations of tree nodes. Whenever a tree node moves more than 0.2/ since the last
reconstruction of this part of the tree occurred, the node and all branches of the tree
originating from it are completely updated, i.e. the center-of-mass, center-of-mass ve-
locity and quadrupole moments are recomputed from the individual (predicted) particle
states.

Finally, the full tree is reconstructed from scratch every once in a while to take into
account the slow changes in the grouping hierarchy. We update the tree whenever a total
of 0.2N force computations have been done since the last full reconstruction. With this
criterion the tree construction is only an insignificant fraction of the total computation
time, while we have not noticed any significant loss of force accuracy induced by this
procedure.

In summary, the algorithms described above result in an integration scheme that
can smoothly and efficiently evolve an N-body system containing a very large dynamic
range in time scales. At a given timestep, only a small number M of particles are then
advanced, and the total time required for that scales as O(M log N).

5.5.4 Including SPH

The above time integration scheme may easily be extended to include SPH. Here we also
need to integrate the internal energy equation, and the particle accelerations also receive
a hydrodynamical component. To compute the latter we also need predicted velocities

Vi=v;+ ai,l(rp — ti), (5.47)

where we have approximated a; with the acceleration of the previous timestep. Similarly,
we obtain predictions for the internal energy

U; = u; + (1 — i), (5.48)
and the density of inactive particles as
pi = pi + pi(Tp — ti). (5.49)

For those particles that are to be advanced at the current system step, these predicted
quantities are then used to compute the hydrodynamical part of the acceleration and
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the rate of change of the internal energy with the usual SPH estimates, as described in
Section 5.4.

Note that the timestep criterion (5.40) needs to be supplemented with the Courant
condition for the gas particles. We adopt it in the form

« h;
At;, = cour /Y ’ 5 50
y hil(V - v)i| + ¢ (1 4 0.6 ayige) + 1.2 avisc|/ﬁ§nax| ( )

where ayis. regulates the strength of the artificial bulk viscosity, and oy iS an accuracy
parameter. For the SPH-particles, we use either criterion (5.40) or (5.50), whichever
gives the smaller timestep.

5.5.4.1 Additional fixings

As defined above, we evaluate a%* and u at the middle of the timestep, when the
actual timestep At of the particle that will be advanced is already set. Note that in our
integration scheme, there is a term in the artificial viscosity that can cause a problem.
The second term in equation (5.28) tries to prevent particle inter-penetration. If a
particle happens to get very close to another SPH particle in the time At/2, this term can
suddenly lead to a very large repulsive acceleration a"**¢ trying to prevent the particles
from getting any closer. However, it is then too late to reduce the timestep. Instead,
the velocity of the approaching particle will be changed by a"¢At, possibly reversing
the approach of the two particles. But the artificial viscosity should at most halt the
approach of the particles. To guarantee this, we introduce an upper cut-off to the
maximum acceleration induced by the artificial viscosity. If v;; - r;; < 0, we replace
equation (5.27) with

Vij ' Tij
(mi + mj)WijAt ’

- 1 )
Iyj = 5(fi + f;) min |TLj, (5.51)
where W;; = r;;V; [W(ri;; hi) + W (ri;; hj)] /2. With this change, our integration scheme
works very well also in regimes with strong shocks. Without this fix, we occasionally
got single particles flying out of the shocking regions with high velocities.

5.5.4.2 Implementation of cooling

When radiative cooling is included in simulations of galaxy formation or galaxy interac-
tion, additional numerical problems arise. In regions of strong gas cooling, the cooling
times can become so short, that extremely small timesteps would be required to follow
the internal energy accurately with the simple explicit scheme used so far.

To remedy this problem, we treat the cooling semi-implicitly in an isochoric approx-
imation. At any given timestep, we first compute the rate 42 of change of the internal
energy due to the ordinary adiabatic gas physics. In an isochoric approximation, we
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then solve implicitly for a new internal energy predicted at the end of the timestep, i.e.

A [, 0] A
P '

A"t = o™ AL — (5.52)

The implicit computation of the cooling rate guarantees stability. Based on this estimate,
we compute an effective rate of change of the internal energy, which we take then as

i = [a" — V] /At (5.53)

This last step is necessary since our integration scheme requires the possibility to pre-
dict the internal energy at arbitrary times. With the above procedure, u; is always a
continuous function of time, and the prediction may be done for all intermediate times.

5.5.5 Integration in comoving coordinates

For simulations in a cosmological context, the expansion of the universe has to be taken
into account. Let x denote comoving coordinates, and a be the dimensionless scale factor
(a = 1.0 at the present epoch). Then the Newtonian equation of motion becomes

!

x+2 x = G/ud?’m'. (5.54)
|x — x'|3

Here the function dp(x) = p(x) — p denotes the (physical) density fluctuation field.

In an N-body simulation with periodic boundary conditions, the volume integral
of equation (5.54) is carried out over all space. As a consequence, the homogeneous
contribution arising from p drops out around every point. Then the equation of motion
of particle 7 becomes

. a . G m; (x; — x;)
2ty =Gy Ml oX) 5.55
X a X a3 g |xi — Xj|3 ( )
periodic

However, one may also employ vacuum boundary conditions. Here, one simulates a
spherical region of radius R around the origin, and neglects density fluctuations outside
this region. In this case, the background density p gives rise to an additional term, viz.

m;X;; 1
xl—|—2 x; = = ‘};j';f + 5Qoﬂgx,- ) (5.56)
J#

Currently, GADGET does not support periodic boundary conditions, which might in
principle be implemented by means of the Ewald summation method (Hernquist et al.
1991). Cosmological simulations therefore need to employ equation (5.56).

In linear theory, it can be shown that the kinetic energy

1 2
T = 3 ;miv (5.57)

175



5 GADGET: A code for collisionless and gasdynamical cosmological simulations

in peculiar motion grows proportional to a, at least at early times. This implies that
3, mi%x? o 1/a, hence the comoving velocities X = v/a actually diverge for a — 0. Since
cosmological simulations are usually started at redshift z ~ 30 — 100, one therefore needs
to follow a rapid deceleration of x at high redshift. So it is numerically unfavourable to
solve the equations of motion in the variable x.

To remedy this problem, we instead use a new velocity variable

=

W =aqa

X, (5.58)

and we use the expansion factor itself as time variable. Then the equations of motion
become

dx w
da ~ S(a)’ (5.59)
@ = 2a T @s@ | SQHix; _
da 2a + a?S(a) G; |Xij|3 + 900 0Xi | » (5.60)
with S(a) given by
5(a) = HO\/QO +a(l - Qo — Q) + a3Qy = a? H(a). (5.61)

Using the Zel’dovich approximation, one sees that w remains constant in the linear
regime. Strictly speaking this holds only for an Einstein-de-Sitter universe at all times,
however, it is also true for other cosmologies at early times. Hence equations (5.58)
to (5.61) in principle solve linear theory for arbitrarily large steps in a. This allows
to traverse the linear regime with maximum computational efficiency. Furthermore,
equations (5.58) to (5.61) represent a convenient formulation for general cosmologies,
and for our variable timestep integrator. Since w does not vary in the linear regime,
predicted particle positions based on %X; = x; + w;(ap — a;)/S(ap) are quite accurate.
Also, the acceleration entering the timestep criterion may now be identified with dw/da,
and the timestep becomes

dw|!

da

The above equations only treated the gravity part of the dynamical equations. How-
ever, it is straightforward to express the hydrodynamical equations in the variables (x,
w, a) as well. For gas particles, equation (5.60) receives an additional contribution due
to hydrodynamical forces, viz.

dw) 1 VxP
—_— =— . 5.63
( da hydro a S(a') p ( )

For the energy equation, one obtains

du 3 P 1 P
¢ 2 Ty.w 64
da a p S(a)pV v (5:64)

Aa = a0 (5.62)

Here the first term on the right hand side describes the adiabatic cooling of gas due to
the expansion of the universe.
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5.6 Parallelization

Massively parallel computer systems with distributed memory have become increasingly
popular recently. They can be thought of as a collection of workstations, connected by a
fast communication network. This architecture promises large scalability for reasonable
cost. Current state-of-the art machines of this type include Cray T3E, IBM SP/2, and
Intel Paragon.

However, an efficient use of parallel distributed memory machines often requires
substantial changes of existing algorithms, or the development of completely new ones.
Conceptionally, parallel programming involves two major difficulties in addition to the
task of solving the numerical problem in a serial code. First, there is the difficulty of how
to divide the work and data evenly among the processors, and second, a communication
scheme between the processors needs to be devised.

In recent years, a number of groups have developed parallel N-body codes, all of
them with different parallelization strategies, and different strengths and weaknesses.
An early attempt for parallelization has been done by Theuns & Rathsack (1993). Later,
Warren et al. (1992) parallelized the BH-tree code for the first time on massively parallel
machines. Dubinski (1996) presented the first parallel tree code based on MPI. Also,
Dikaiakos & Stadel (1995) have developed a parallel simulation code (PKDGRAV),
that works with a balanced binary tree.

We have developed a new parallel tree code, that implements for the first time indi-
vidual particle timesteps. We have used the Message Passing Interface (MPI) (Pacheco
1997; Snir et al. 1995), which is an explicit communication scheme, i.e. it is entirely up to
the user to control the communication. Messages containing data can be sent between
processors, both in synchronous and asynchronous modes. A particular advantage of
MPI is its flexibility and portability. Our simulation code uses only standard C and
standard MPI, and should therefore run on a variety of platforms. We have confirmed
this so far on Cray T3E and IBM SP/2 systems.

5.6.1 Domain decompaosition

The typical size of problems attacked on parallel computers is usually much too large to
fit into the memory of individual computational nodes, or into ordinary workstations.
This fact alone, but of course also the desire to distribute the work among the processors,
requires a partitioning of the problem onto the individual processors.

For our N-body/SPH code we have implemented a spatial domain decomposition.
The particular algorithm we use for the split is an orthogonal recursive bisection (ORB)
(Dubinski 1996). In the first step, a split is found along one spatial direction, e.g. the
x-axis, and the collection of processors is grouped into two halves, one for each side of
the split. These processors then exchange particles such that they end up hosting only
particles lying on their side of the split. In the simplest possible approach, the position
of the split is chosen such that there are an equal number of particles on both sides.
However, for an efficient simulation code the split should try to balance the work done
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Computational domain PE 0 PE 1

. ® Domain decomposition
.

PE 1 PE 2 PE 3

Figure 5.2: Schematic representation of the domain decomposition in two dimensions,
and for four processors. Here, the first split occurs along the y-axis, separating the
processors into two groups. They then independently carry out a second split along the
x-axis. After completion of the domain decomposition, each processor element (PE)
can construct its own BH tree just for the particles in its part of the computational
domain.

in the force computation on both sides. This aspect will be discussed further below.

In a second step, each group of processors finds a new split along a different spatial
axis, e.g. the y-axis. This splitting process is repeated recursively until the final groups
consist of just one processor, which then hosts a rectangular piece of the computational
volume. Note that this algorithm constrains the number of processors that may be used
to a power of two.

A two-dimensional schematic illustration of the ORB is shown in Figure 5.2 for four
processors. Note that each processor can construct a local BH tree for its domain,
and this tree may be used to compute the force exerted by the processors’ particles on
arbitrary test particles in space.

5.6.2 Parallel force computation

Our algorithm for parallel force computation differs significantly from that of Dubinski
(1996). He uses the notion of locally essential trees. These are trees that are sufficiently
detailed to allow the full force computation for any particle local to a processor, without
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Identification of active particles
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Figure 5.3: Schematic illustration of the parallelization scheme of GADGET for the
force computation. In the first step, each PE identifies the active particles, and puts
their coordinates in a communication buffer. In a communication phase, a single and
identical list of all these coordinates is then established on all processors. Then each PE
walks its local tree for this list, thereby obtaining a list of force contributions. These
are then communicated in a collective process back to the original PE that hosts the
corresponding particle coordinate. Each processor then sums up the incoming force
contributions, and finally arrives at the required total forces.

/ Communication and
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further need for information from other processors. The locally essential trees can be
constructed from the local trees by pruning and exporting parts of these trees to other
processors, and attaching these parts as new branches to the local trees. To determine
which parts of the trees need to be exported, special tree walks are required.

A disadvantage of this technique is that the construction of the locally essential trees
is a complicated, time-consuming process that needs to be repeated every time-step.
While this should not be an issue for an integration scheme with a global timestep,
the tree construction time would dominate the computational time for our individual
timestep scheme, where typically of order 1 per cent of all particles require a force update
at one of the (small) system timesteps. Therefore we chose a different parallelization
scheme that essentially scales linearly with the number of particles that need a force
computation.

Our strategy starts from the observation that each of the local processor trees is
able to provide the force exerted by its particles for any location in space. The full
force might thus be obtained by adding up all the force contributions from the local
trees. As long as the number of these trees is less than the number of typical force-node
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interactions, this computational scheme is practically not more expansive than a tree
walk of the corresponding essential tree.

A force computation therefore requires a communication of the desired coordinates
to all processors. These then walk their local trees, and send the force components back
to the original processor that sent out the corresponding coordinate. The total force
then results by summing up the incoming contributions.

In practice, a force computation for a single particle would be badly imbalanced in
work in such a scheme, since some of the processors could stop their tree walk already
at the root node, while others would have to evaluate several hundred particle-node
interactions. However, our time integration scheme advances at a given timestep always
a group M of particles of size about 0.5-5 per cent of the total number of particles. This
group represents a representative mix of the various clustering states of matter in the
simulation. Each processor contributes some of its particle positions to this mix, but
the total list of coordinates is the same for all processors. If the domain decomposition
is done well, one can arrange that the cumulative time to walk the local tree for all
coordinates in the list is the same for all processors.

Our force computation scheme proceeds therefore as sketched schematically in Fig-
ure 5.3. Each processor identifies the particles that are to be advanced in the current
timestep, and puts their coordinates in a communication buffer. Next, an all-to-all com-
munication phase is used to establish the same list of coordinates on all processors. This
communication is done in a collective fashion: For N, processors, the communication
involves N, — 1 cycles. In each cycle, the processors are arranged in N,/2 pairs. Each
pair exchanges their original list of coordinates. In this way, the communication is done
fully in parallel, and the time it requires scales as O(M N,). On the T3E, the commu-
nication bandwidth is large enough, that only a small fraction of the overall simulation
time is spent in this phase.

In the next step, all processors walk their local trees and replace the coordinates with
the corresponding force contribution. Note that this is the most time-consuming step
of the simulation (as it should), hence work-load balancing is most crucial here. After
that, the force contributions are communicated in a similar way as above between the
processor pairs. The processor that hosted a particular coordinate adds up the incoming
force contributions and finally ends up with the full force for that location. This can then
be used to advance its particles, and determine new timesteps for them. In these phases
of the N-body algorithm, as well as in the tree construction, no further information from
other processors is required.

Currently, the parallelization of the SPH part of the code is still in an experimental
stage. In principle, hydrodynamics is easier to parallelize than gravity, because it is a
local interaction. Note that in contrast to this, the gravitational N-body problem has the
nasty property that at all times each particle interacts with every other particle, making
gravity intrinsically difficult to parallelize on distributed memory machines.

Most SPH particles do not rely on information from other domains. However, there
are those whose smoothing kernel extends across domain boundaries. Here it becomes
a tricky problem of designing an efficient communication and bookkeeping algorithm to
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exchange neighbours across domain boundaries. We are still working on our solution.

5.6.3 Work-load balancing

Due to the high communication bandwidth of parallel supercomputers like the T3E or
the SP/2, the time required for force computation is dominated by the tree walks, and
this is also the dominating part of the simulation as a whole. It is therefore crucial
that this part of the computation parallelizes well. In the context of our parallelization
scheme, this means that the domain decomposition should be done such that the time
spent in the tree walks is the same for all processors.

It is helpful to note, that the list of coordinates for the tree walks is independent of
the domain decomposition. However, we can think of each patch of space, represented
by its particles, to cause some cost in the tree-walk process. A good measure for this
cost is the number of particle-node interactions originating from this region of space.
To balance the work, the domain decomposition should therefore try to make this cost
equal on both sides of each domain split.

In practice, each tree-node carries a counter for the number of node-particle inter-
actions it participated in since the last domain decomposition. Before a new domain
decomposition starts, we then need to assign this cost to individual particles. For this
purpose, we have implemented a method to walk the tree backwards from a leave (i.e.
a single particle) to the root node. In this walk, the particle collects its total cost by
adding up its share of the cost from all its parent nodes. In this respect, our work-load
balancing scheme differs from that of Dubinski (1996).

Note that an optimum work-load balance often results in substantial memory im-
balance. Tree-codes consume plenty of memory, so that the problem size is usually
memory rather than CPU-time limited. For example, a single node with 128 Mbyte
on the Garching T3E is already filled to roughly 60 per cent with 1.5x10° particles,
including all memory for the tree structures. In this example, the remaining free mem-
ory would usually not be enough to guarantee optimum work-load balancing in strongly
clustered simulations. Unfortunately, such a situation is not untypical in practice, since
one usually strives for large N in N-body work, so one is always tempted to fill up most
of the available memory with particles, without leaving much room to balance the work-
load. Of course, GADGET can only try to balance the work within the limits set by the
available memory.

5.7 Results and tests

5.7.1 Tests of timestep criteria

As first tests of the relative performance of different timestep criteria, we integrate a
particle orbit in the potential of a point mass, and in the potential of an isothermal
sphere. We consider three simple timestep criteria, which are based on the acceleration
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Table 5.1: Test of the timestep criteria (5.65) to (5.67) for the integration of Kepler
ellipses in the field of a point mass. The free parameters of the criteria are set such
that they all integrate a circular orbit using the same number of timesteps. We then
consider orbits of increasing eccentricity €, keeping the total energy of the orbiting
particle constant. Averaged over five orbits, the table lists the mean relative drift of
the total energy, and the number in parenthesis gives the number of force computations
per orbit. An co-sign means that the integration catastrophically failed.

€ A B C
0 <1010 < 10710 < 10710
(50) (50) (50)
05 —-30x102% —-19x103% —55x103
(57) (50) (70)
0.8 —0.018 —0.038 —0.041
(82) (48) (158)
0.9 —0.034 00 —0.076
(113) (311)
0.99 —-0.072 00 00
(352)

and/or velocity of the particle in the previous timestep. These criteria are

(A) At = %A‘ (5.65)
(B)  At= 77;; : (5.66)
C)  At= \jl(ljal . (5.67)

Criterion (A) is the of form suggested in this work, while both (B) and (C) have been
used in previous studies (among others: Heller & Shlosman 1994; Quinn et al. 1997).
We now consider a test particle in the field of a point mass. We adjust the coefficients
1A, 1B, 1c of the timestep criteria such that they all integrate a circular orbit of given
radius with N = 50 force computations. For the circular orbit, the timestep remains
fixed, and the integration is symplectic for all three criteria, without any secular drift
in energy. It is now interesting to consider how the various criteria perform when the
eccentricity e of the orbit is increased. In Table 5.1, we show the drift in total energy per
orbit (averaged over 5 orbits) and the number of force computations needed per orbit for
the three timestep criteria. Interestingly, only criterion (A) is able to stably integrate
orbits of very high eccentricity. Furthermore, it delivers higher accuracy than (C) at a
smaller computational cost. Similarly, (A) clearly outperforms (B), at least for € > 0.5.
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Table 5.2: Test of timestep criteria for the integration of orbits in the potential of a
singular isothermal sphere. We set the free parameters of the criteria (5.65) to (5.67)
such that they all need the same number of timesteps for a circular orbit. We then
consider orbits with smaller velocity v = kV, at apocenter. The table lists the mean
relative drift of total energy over a time 27V, /ag. The number in parenthesis gives the
number of force computations occurring over that time.

K A B C
0 <1010 < 10710 < 10710
(50) (50) (50)
05 —-83x107% 23x10% —-34x103
(78) (61) (85)
02 —77x103 0.035 —0.037
(101) (63) (132)
0.1 —0.021 —0.17 —0.13
(117) (99) (196)
0.05 —0.047 00 —0.28
(135) (341)

Of larger relevance for cosmological N-body simulations is the potential of an isother-
mal sphere, which may serve as a simple approximation to a dark matter halo. Using
the potential

B(r) = —V2 [log (i> - 1] , (5.68)

ao

we perform a similar test as above. We set the free parameters of the timestep criteria
such that they require 50 force computations for a circular orbit of radius ayg. We now
consider orbits with a velocity v at apocenter ay which is just a fraction x = v/V; of
the circular velocity. In Table 5.2, we list the mean relative drift of the total energy,
given for a time interval 2mag/V,, and we list the number of force computations needed
over that time. Again, the criterion (A) by far outperforms the other two criteria (B)
and (C). For a relatively small number of force computations it provides both the best
stability and the best accuracy for a given computational expense.

5.7.2 Force accuracy and opening criterion

In Section 5.3.1.2, we have pointed out that standard values of the BH-opening criterion
can result in very high force errors for the initial conditions of cosmological N-body
simulations. Here, the density field is very close to being homogeneous, so that the
small peculiar accelerations arise from a cancellation of relatively large partial forces.
We now investigate this problem using a sphere of radius 7h~'Mpc, carved out of the
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Figure 5.4: Force errors for the initial conditions of a cosmological simulation at
z = 80. We show results for the BH-criterion (boxes), and our new opening criterion
(triangles) as a function of their tolerance parameters. The plot gives the 90% percentile
of the error distribution, i.e. 90% of the particles have force errors below the cited values.
The horizontal axes measures the computational expense.

initial conditions (redshift z = 80) of a high-resolution cosmological simulation. This
sphere contains slightly more than 500000 particles of mass m, = 2.38 x 108A~ M,
To determine the distribution of force errors, we computed the true force using direct
summation for a random sample of 1000 particles, and we compared it to the force
obtained by the tree algorithm.

In Fig. 5.4, we show the force errors measured for the BH opening criterion and
for our new criterion (5.20) as a function of 6 and «, respectively. The plot shows the
90% percentile of the error distribution, i.e. 90% of the particles have force errors below
the cited values. Note that the horizontal axes measures the computational expense of
the force computation in terms of the average number of particle-cell interactions per
force evaluation. What is interesting are the very large errors resulting from the BH
criterion when ‘normal’ values like § ~ 0.8 — 1.0 are used. Our new criterion does better
in this respect. Since it tries to make the absolute error in any particle-cell interaction
smaller than some fraction of the total force, the error on the latter always stays within
reasonable bounds.

However, an even more important strength of the new criterion lies in its better
performance for clustered particle distributions. In Figure 5.5, we show results of a
force-accuracy test for an isolated galaxy with 30000 dark matter particles, and an
embedded stellar disk with 20000 particles. Comparing these results with Figure 5.4,
the most striking difference is the very different performance of the BH criterion in
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Figure 5.5: Force errors for an isolated halo/disk galaxy with the BH-criterion (boxes),
and the new opening criterion (triangles). The plot shows the 90% percentile of the
error distribution, i.e. 90% of the particles have force errors below the cited values. The
horizontal axes measures the computational expense.
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Figure 5.6: Force accuracy in a cosmological simulation of a cluster of galaxies, mea-
sured at z = 0. Using 16 processors, the parallel version of the code was used for this
test. We plot the 90% percentile of the error distribution, i.e. 90% of the particles have
force errors below the cited values. Results are given for the BH-criterion (boxes), and
the new opening criterion (triangles).
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the two different regimes. While already 6 = 1.0 gives sufficient force accuracy for the
clustered mass distribution of the galaxy, this value leads to intolerable force errors for
a close-to-homogeneous mass distribution. The new opening criterion does not suffer
from such a severe accuracy degradation in the homogeneous case; its error remains well
controlled.

Another advantage of the new criterion is that it is actually more efficient than
BH, i.e. it achieves higher force accuracy for a given computational expense. For a
strongly clustered particle distribution in a cosmological simulation, the implied saving
can easily reach a factor 2-3, and the simulation is sped up by the same factor. This
can be understood as follows: The purely geometrical BH criterion doesn’t care for
the dynamical significance of the mass distribution. For example, it will invest a large
number of cell-particle interactions to compute the force exerted by a large void to a
high relative accuracy, while actually this force might be of just small absolute size, and
it would be much better to concentrate on those regions that provide most of the force
on the current particle. The new opening criterion follows this latter strategy, improving
the force accuracy at a given number of particle-cell interactions. This can be seen in
Figure 5.6 where we plot the results of a measurement of the force accuracy at z = 0 in
a cosmological simulation with 3.2 million particles.

5.7.3 Colliding disk galaxies

As a test of the performance and accuracy of the integration of collisionless systems,
we here consider a pair of merging disk galaxies. Kach galaxy has a massive dark halo
consisting of 30000 particles, and an embedded stellar disk, modeled with 20000 particles.
The dark halo is modeled according to the NFW-profile, adiabatically modified by the
central exponential disk, which contributes 5% of the total mass. The halo has a circular
velocity vego = 160kms™!, a concentration ¢ = 5, and spin parameter A = 0.05. The
radial exponential scale length of the disk is Rq = 4.5 h~'kpc, while the vertical structure
is that of an isothermal sheet with thickness zyp = 0.2R4. The gravitational softening of
the halo particles is set to 0.4 h~'kpc, and that of the disk to 0.1 A~ 'kpc.

Initially, the two galaxies are set-up on a parabolic orbit, with separation such that
their dark haloes just touch. Both of the galaxies have a prograde orientation, but are
inclined with respect to the orbital plane. In fact, the test considered here corresponds
exactly to the simulation ‘C1’ computed in Chapter 3, where more information about
the construction of the initial conditions can be found (see also Chapter 2).

We first consider a run of this model with a set of parameters equal to our typically
employed values for a simulation of this kind. For the time integration, we used the
parameter ;o0 = 25kms !, and for the force computation with the tree algorithm, the
new opening criterion with & = 0.04. The simulation was then run from ¢t =0 to ¢ = 2.8
in internal units of time (corresponding to 2.85 h~!Gyr). During this time the galaxies
have their first close encounter at around ¢ ~ 1.0, where tidal tails are ejected out of
the stellar disks. Due to the braking by dynamical friction, the galaxies eventually fall
together for a second time, after which they quickly merge and violently relax to form
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Figure 5.7: Spherically averaged density profile of the stellar component in the merger
remnant of two colliding disk galaxies. Triangles show the results obtained using our
variable timestep integration, while boxes and diamonds are for fixed timestep integra-
tions with A¢ = 0.01 and At = 0.0025, respectively. Note that the simulation using
the adaptive timestep is about as expensive as the one with At = 0.01. In each case,
the center of the remnant was defined as the position of the particle with the minimum
gravitational potential.

a single merger remnant. At ¢ = 2.8, the inner parts of the merger remnant are well
relaxed.

This simulation required a total number of 4684 steps and 27795733 force computa-
tions, i.e. a computationally equally expansive computation with fixed timesteps could
just make 280 full timesteps. The relative error in the total energy was 3.0 x 1072,
and a Sun Ultrasparc-II workstation did the simulation in 4 hours. Note that the raw
force speed with ~2800 force computations per second was really very high — older
workstations will achieve somewhat smaller values, of course.

We now consider a simulation of the same system using a fixed timestep. For
At = 0.01, the run needs 280 full steps, i.e. it consumes the same amount of CPU
time as above. However, in this simulation, the error in the total energy is 2.2%, sub-
stantially larger than before. There are also differences in the density profile of the
merger remnants. In Figure 5.7, we compare the inner density profile of the simula-
tion with adaptive timesteps (triangles) to the one with a fixed timestep of At = 0.01
(boxes). We here show the spherically averaged profile of the stellar component, with
the center of the remnants defined as the position of the particle with the minimum of
the gravitational potential. It can be seen that in the innermost ~ 1 A~ 'kpc, the density
obtained with the fixed timestep falls short of the adaptive timestep integration.
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To get an idea how small the fixed timestep has to be to achieve similar accuracy
as with the adaptive timestep, we have simulated this test a second time, with a fixed
timesteps of At = 0.0025. We also show the corresponding profile (diamonds) in Fig-
ure 5.7. It can be seen that for smaller At, the agreement with the variable timestep
result improves. At ~ 2 x 0.4 h~'kpc, the softening of the dark matter starts to become
important. For agreement down to this scale, the fixed timestep needs to be slightly
smaller than At = 0.0025, so the overall saving due to the use of individual particle
timesteps is at least a factor of 4 — 5 in this example.

5.7.4 Collapse of a cold gas sphere

The self-gravitating collapse of an initially isothermal, cool gas sphere has been a com-
mon test problem of SPH codes (Evrard 1988; Hernquist & Katz 1989; Steinmetz &
Miiller 1993; Thacker et al. 1998; Carraro et al. 1998). Following these authors, we con-
sider a spherically symmetric gas cloud of total mass M, radius R, and initial density
profile

M 1
We take the gas to be isothermal initially, with an internal energy per unit mass of
M
w=0.05 %. (5.70)

At the start of the simulation, the gas particles are at rest. We obtain their initial
coordinates from a distorted regular grid that reproduces the density profile (5.69), and
we use a system of units with G = M = R = 1.

In Figure 5.8, we show the evolution of the potential, the thermal, and the kinetic
energy of the system from the start of the simulation at ¢t = 0 to t = 3. We plot results for
two simulations, one with 30976 particles (solid), and one with 4224 particles (dashed).
During the central bounce between ¢ ~ 0.8 and ¢t ~ 1.2 most of the kinetic energy is
converted into heat, and a strong shock wave travels outward. Later, the system slowly
settles to virial equilibrium.

For these runs Ng was set to 40, the gravitational softening to ¢ = 0.02, and time
integration was controlled by the parameters aio0 = 0.05 and aeour = 0.1%, resulting
in very good energy conservation. The absolute error in the total energy is less than
1.1 x 102 at all times during the simulation, translating to a relative error of 0.23%.
Since we use a time integration scheme with individual timesteps of arbitrary size, this
small error is particularly remarkable. The total number of small steps taken by the
4224 particle simulation was 3855, with a total of 2192421 force computations, i.e. the
equivalent number of ‘full’ timesteps was 519. A Sun Ultrasparc-II workstation needed
2300 seconds for the simulation. The larger 30976 particle run took 10668 steps, with
an equivalent of 1086 ‘full’ steps, and 12 hours of CPU time. Note that by reducing the

!Note that our definition of the smoothing length h differs by a factor of 2 from most previous SPH
implementations. As a consequence, corresponding values of acour are different by a factor of 2, too.
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Figure 5.8: Time evolution of the thermal, kinetic, potential, and total energy for the
collapse of an initially isothermal gas sphere. Solid lines show results for a simulations
with 30976 particles, dashed lines are for a 4224 particle run.

time integration accuracy by a factor of 2, with a corresponding reduction of the CPU
time consumption by the same factor, the results do practically not change, however,
the maximum error in the energy goes up to 1.2% in this case.

The results of Figure 5.8 agree very well with those of Steinmetz & Miiller (1993),
and with Thacker et al. (1998), if we compare to their best implementation of artificial
viscosity (their version 12). Steinmetz & Miiller (1993) have also computed a solution
of this problem with a very accurate, one-dimensional, spherically symmetric piecewise
parabolic method (PPM). For particle numbers above 10000, our SPH results become
very close to the finite difference result. However, even for very small particle numbers,
SPH is capable of reproducing the general features of the solution very well. We also
note that a three-dimensional PPM calculation of the collapse would require substantially
more CPU time as our SPH calculations.
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5.7.5 Performance and scalability of the parallel code

We here show a simple test of the performance of the parallel version of the code under
conditions relevant for real target applications. For this test, we have used a ‘stripped-
down’ version of the initial conditions originally constructed for a high-resolution simu-
lation of a cluster of galaxies. This original set of initial conditions was set-up to follow
the cosmological evolution of a large spherical region with comoving radius 70 h~'Mpc,
within a cosmogony corresponding to a ACDM universe with Qo = 0.3, Qy = 0.7,
Zstart = 90, and h = 0.7. In the center of the simulation sphere, 2 million high-resolution
particle were placed in the somewhat enlarged Lagrangian region of the cluster. The
rest of the volume was filled with an extended shell of boundary particles of larger mass
and larger softening; they are needed for a proper representation of the gravitational
tidal field.

To keep our test simple, we have cut out a sphere of comoving radius 12.25 h~Mpc
around the origin from these initial conditions, and we only simulated the 500000 high-
resolution particles with mass m, = 1.36 x 10°27'Mg, found within this region. Such a
simulation will not be useful for direct scientific analysis because it does not model the
tidal field properly. However, this test will show realistic clustering and time-stepping
behaviour, and thus allows a reasonable assessment of the expected computational cost
of the full problem.

We have run the test problem with GADGET on the Garching T3E from redshift
z = 50 to redshift z = 4.3. We repeated the identical run on partitions of size 4, 8, and
16 processors. In this test, we included quadrupole moments in the tree computation,
we used a BH opening criterion with § = 1.0, and a gravitational softening length of
15~ kpc.

In Table 5.3 we list in detail the elapsed wall-clock time for various parts of the
code for the three simulations. The dominant sink of CPU time is the computation of
gravitational forces for the particles. To advance the test simulation from z = 50 to
z = 4.3, GADGET needed 30.0 x 10° force computations in a total of 3350 timesteps.
Note that on average only 1.8% of the particles are advanced in a single timestep. Under
these conditions it is challenging to eliminate sources of overhead incurred by the time-
stepping and to maintain work-load balancing. GADGET solves this task satisfactory.
If we would use a fixed timestep, the work-load balancing would essentially be perfect.
Note that the use of our adaptive timestep integrator results in a saving of about a factor
of 3-5 compared to a fixed timestep scheme with the same accuracy.

We think that the overall performance of GADGET is quite good in this test. The
raw gravitational speed is very high, and the algorithm used to parallelize the force
computation scales reasonably well, as is seen in the upper left panel of Figure 5.9. Note
that the force-speed of the NV, = 8 run is even higher than that of the N, = 4 run. This
is because the domain decomposition does exactly one split in the z-, y-, and z-directions
in the N, = 8 case. The domains are then close to cubes, which reduces the depth of
the tree and speeds up the tree-walks.

Also, the force communication does not involve a significant communication over-
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Figure 5.9: Code performance and scalability. The top panel shows the speed of
the gravitational force computation as a function of processor number (in particles
per second). This is based on the tree walk time alone. In the simulation, additional
time is needed for tree construction, work-load imbalance, communication, domain
decomposition, etc. This reduces the ‘effective’ speed, as shown in the bottom panel.
This effective speed gives the number of particles advanced by one timestep per second.
Note that the only significant source of work-load imbalance in the code occurs in the
gravity computation, where some small fraction of time is lost when processors idle wait
for others to finish their tree-walks.

head, and the time spent in miscellaneous tasks of the simulation code scales closely
with processor number. Most losses of GADGET occur due to work-load imbalance in
the force computation. While we think these losses are acceptable in the above test,
one should keep in mind that we here kept the problem size fized, and just increased
the processor number. If we also scale up the problem size, work-load balancing will be
significantly easier to achieve, and the efficiency of GADGET will be nearly as high as
for small processor number.

5.8 Discussion

We have presented the numerical algorithms of our new code GADGET, designed as a
flexible tool to study a wide range of problems in cosmology. Typical applications of
GADGET can include interacting and colliding galaxies, star formation and feedback in
the interstellar medium, formation of clusters of galaxies, or the formation of large-scale
structure in the universe.

In fact, GADGET has already been used successfully in all of these areas. Using our
code, the formation of tidal tails in colliding galaxies was studied in Chapter 2, and
star formation and feedback in isolated and colliding gas-rich spirals was modeled in
Chapter 3. For these simulations, the serial version of the code was employed, both with
and without support by the GRAPE special-purpose hardware.
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5.8 Discussion

The parallel version of GADGET has been used to compute high-resolution N-body
simulations of clusters of galaxies, as will be discussed in Chapter 4. In the largest
simulation of this kind, 69 million particles have been employed, with 20 million of
them ending up in the virialized region of a single object. The particle mass in the high-
resolution zone was just 10719 of the total simulated mass, and the gravitational softening
length was 0.7 h~'kpc in a simulation volume of diameter 140 h~!Mpc, translating to an
impressive spatial dynamic range of 2 x 10° in three dimensions.

We have also successfully employed GADGET for two ‘constrained-realization’ (CR)
simulations of the Local Universe. In these simulations, the observed density field as
seen by IRAS galaxies has been used to constrain the phases of the waves of the initial
fluctuation spectrum. As a result, the CR simulations produce large-scale structure
with main features in direct correspondence to the most striking objects of the Local
Universe. These model universes have a Perseus-Pisces cluster, a Great Attractor, a
Cetus-Wall, a Coma Cluster, etc., just like the real Local Universe. The CR-simulations
will be particularly useful for generating mock galaxy catalogues that directly mimic all
selection biases arising from our special place in the Universe. For each of the two CR
simulations, we employed 74 million particles in total, with 53 million high-resolution
particles of mass 3.6 x 10°,~ M, (ACDM) or 1.2 x 101°A~!M, (7CDM) in the low-
density and critical-density models, respectively.

The main technical features of GADGET are as follows. Gravitational forces are
computed with a Barnes & Hut oct-tree, using multipole expansions up to quadrupole
order. The cell-opening criterion may be chosen either as the standard BH-criterion, or
a new criterion which we have shown to be computationally more efficient and better
suited to cosmological simulations starting at high redshift. As an alternative to the
tree-algorithm, the serial code can use the special-purpose hardware GRAPE both to
compute gravitational forces and for the search of SPH neighbours.

In our SPH implementation, the number of smoothing neighbors is kept exactly con-
stant, leading to very good energy conservation. We also manifestly conserve momentum,
i.e. force symmetry is guaranteed for every interacting pair of SPH particles. We use a
shear-reduced artificial viscosity that has emerged as a very good parameterization in
recent systematic studies that compared several alternative formulations (Thacker et al.
1998; Lombardi et al. 1998).

Parallelization of the code for massively parallel supercomputers is achieved in an
explicit message passing approach, using the MPI standard communication library. The
simulation volume is spatially split in a recursive orthogonal bisection, and each of
the resulting domains is mapped onto one processor. Dynamic work-load balancing
is achieved by measuring the computational expense incurred by each particle, and
balancing the sum of these weights in the domain decomposition.

The code allows fully adaptive, individual particle timesteps, both for collisionless
particles and for SPH particles. The speed-up obtained by the use of individual timesteps
depends on the dynamic range of the time scales present in the problem, and on the rel-
ative population of these time scales with particles. For a cosmological simulation with
a gravitational softening length larger than ~ 30 h~'kpc the overall saving is typically
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a factor of 3 — 5. However, if smaller softening lengths are desired, the use of individual
particle timesteps results in much larger savings. For collisionless particles, we use a
timestep criterion based on the inverse of the particle acceleration. We have shown that
this criterion clearly outperforms simple alternative criteria that are currently in use.
Our code can be used both to run simulations in physical and in comoving coordinates.
The latter is used for cosmological simulations only. Here, the code employs an integra-
tion scheme that can deal with arbitrary cosmological background models, and which is
exact in linear theory, i.e. the linear regime can be traversed with maximum efficiency.

All code features are controlled by a parameter file in free text format. Dynamic
memory allocation techniques are used throughout, such that no recompilation is neces-
sary, when different problems (collisionless of SPH, vacuum or cosmological background),
or varying problem sizes with different numbers of processors, are attacked.

GADGET is an intrinsically Lagrangian code. Both the gravity and the hydrody-
namical parts do not impose a restriction on the geometry of the problem, nor any
hard limit on the allowable dynamic range. Current and future simulations of structure
formation that aim to resolve galaxies in their correct cosmological setting will have to
resolve length scales of size 0.1 — 1 h~'kpc in volumes of size ~ 100 »~'Mpc. This range
of scales is accompanied by a similarly large dynamic range in mass and time scales.
Our new code is essentially free to adapt to these scales naturally, and it invests com-
putational work only where it is needed. It is therefore a good tool to work on these
problems.

Since GADGET is written in standard ANSI-C, and the parallelization for massively
parallel supercomputers is achieved with the standard MPI library, the code runs on a
large variety of platforms, without requiring any change. Having eliminated the depen-
dence on proprietary compiler software and operating systems we thus think that the
code will remain usable for the foreseeable future. Since GADGET is highly competitive
with other existing codes, we hope that it will become a widely used tool, benefiting
continuously from further improvements.

5.9 Appendix: Softened tree nodes

The smoothing kernel we use for SPH calculations is a spline of the form (Monaghan &
Lattanzio 1985)

7'2 ’f'3 T
. L=6(F)"+6(5)", 0<f<3,
W(rih) = — 2(1-1)%, l<r<, (5.71)
0, 5> L

Note that we define the smoothing kernel on the interval [0, h] and not on [0, 2h] as it is
frequently done in SPH calculations for traditional reasons.

We derive the spline-softened gravitational force from this kernel by taking the force
from a point mass m to be the one resulting from a density distribution p(r) = mW (r; h).
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Figure 5.10: Comparison of spline-softened (solid) and Plummer-softened (dotted)
potential of a point mass with the Newtonian potential (dashed). Here h = 1.0, and
e=h/28.
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Figure 5.11: Comparison of spline-softened (solid) and Plummer-softened (dotted)
force law with Newton’s law (dashed). Here h = 1.0, and € = h/2.8.
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This leads to a potential

B(r) = G%Wz (%) (5.72)
with a kernel
136u2 458u4 4 352u5 _ %’ 0 <u< %
Wo(u) =< 1o+ 2u? —16ud + Bt — 245 -5 L <y <, (5.73)
_1 u>1

IR
The multipole expansion of a group of particles is discussed in Section 5.3.1. It results
in a potential and force given by equations (5.13) and (5.17), respectively. The functions
appearing in equation (5.17) are defined as

!
gily) = g;y), (5.74)
" /
9"(y) 9
92\y) = - ) 5.75
(%) Y2 y3 (5.75)
!
gs(y) = gQ(y), (5.76)
Y
!
9a(y) = 91y) (5.77)
Y
Writing u = y/h, the explicit forms of these functions are
( —%—2+%u2—32u3, u < %,
1
gily) = 3 3 151u -3 +48u 19292 4 32 32 uwd, L<u<l, (5.78)
L —Elg', u > 1,
1 (384 96u, u< 3,
_ 384 1 48 1
@) = 5y —F —setu 3% 3<u<l (5.79)
\ 5 u > ].,
1 ( %76, u < %,
9(y) = 27 241 8 1lcu<l, (5.80)
\ _%E%’ u > 1,
, ( —95—6(5’&—4), u < %,
ay) = 359 8 L3430, L<u<l, (5.81)
\ 535, u > 1.

In Figures 5.10 and 5.11, we show the spline-softened and Plummer-softened force
and potential of a point mass. For a given spline softening length h, we define the
‘equivalent’ Plummer softening length as ¢ = h/2.8. For this choice, the minimum of
the potential at u = 0 has the same depth.
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Genus statistics of the Virgo N-body
simulations and the 1.2-Jy redshift survey

Abstract

We study the topology of the Virgo N-body simulations and compare it to the
1.2-Jy redshift survey of ITRAS galaxies by means of the genus statistic. Four high-
resolution simulations of variants of the CDM cosmology are considered: a flat
standard model (SCDM), a variant of it with more large-scale power (7CDM),
and two low density universes, one open (OCDM, Qg = 0.3) and one flat (ACDM,
Qo = 0.3, fluctuation amplitudes are chosen so that the simulations approximately
reproduce the observed abundance of rich clusters of galaxies at the present day. The
fully sampled N-body simulations are examined down to strongly nonlinear scales,
both with spatially fixed smoothing, and with an adaptive smoothing technique.
While the 7CDM, ACDM, and OCDM simulations have very similar genus statistics
in the regime accessible to fixed smoothing, they can be separated with adaptive
smoothing at small mass scales. In order to compare the N-body models with the
1.2-Jy survey, we extract large ensembles of mock catalogues from the simulations.
These mock surveys are used to test for various systematic effects in the genus
analysis and to establish the distribution of errors of the genus curve. We find that
a simple multivariate analysis of the genus measurements is compromised both by
non-Gaussian distributed errors and by noise that dominates the covariance matrix.
We therefore introduce a principal components analysis of the genus curve. With
a likelihood ratio test we find that the 1.2-Jy data favours the ACDM, vCDM
and OCDM models compared to SCDM. When genus measurements for different
smoothing scales are combined, the SCDM model can be excluded at a 99 per cent
confidence level, while the other three models fit the 1.2-Jy data well. These results
are unlikely to be significantly modified if galaxies are biased tracers of the mass,
provided that biasing preserves a monotonic relation between galaxy density and
mass density.
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6.1 Introduction

The observed large-scale structure of the Universe represents one of the most important
constraints for theories of cosmic structure formation. In the past, the clustering of
galaxies was mainly studied with statistics like the two-point correlation function, the
power spectrum, or the counts-in-cells analysis. These statistical measures have been
routinely applied to more and more powerful redshift surveys, leading to significant
advances in our understanding of cosmic history. Cosmological N-body simulations have
played a vital part in this development, and they are already strongly constrained by
the available data.

However, the two-point correlation function and the power spectrum describe the
properties of the galaxy distribution only to a limited extent. A full description would
involve a hierarchy of three-, four- and higher correlation functions or, alternatively,
information on the phase correlations among the different Fourier modes of the density
field. Furthermore, the low-order statistics are also quite insensitive to the geometrical
aspects of the clustering which the human eye can so easily detect in pictures of the
matter distribution. For example, it is still unclear whether the galaxy distribution is
best described as filamentary, cellular or sheet-like.

In order to develop a measure of the geometrical and morphological aspects of the
galaxy distribution a number of measures have been proposed, among them percolation
(Klypin 1988), level-crossing statistics (Ryden 1988), genus statistics (Gott et al. 1986),
minimal spanning tree (Pearson & Coles 1995), shape statistic (Luo & Vishniac 1995),
and Minkowski functionals (Mecke et al. 1994).

In this chapter we focus on the genus statistic which was first proposed by Gott
et al. (1986) and has become a widely accepted statistical tool in cosmology since then.
The genus probes the topology of isodensity surfaces of a smoothed mass density field.
It is therefore sensitive to global aspects of the density field that manifest themselves
in higher order correlations, which reflect the connectedness and morphology of the
structure in the Universe. Such features are not revealed by standard measures like the
power spectrum or the two-point correlation function. For example, galaxy distributions
that are wall-like, bubble-like or filamentary would all lead to different signatures in the
genus statistic. Thus the topology has potentially strong discriminative power and might
be used to rule out or support certain models for structure formation.

A particularly interesting application of the genus statistic is a test of the random
phase hypothesis for the initial density fluctuation field. Because the topology is invari-
ant during the linear growth of structure, the topology of the present galaxy distribution
can be related to the topology of the initial density field, which in turn allows a test
of the random phase hypothesis. Any departure of the measured topology from the
random phase prediction would be evidence for the presence of phase correlations that
might reflect non-Gaussian initial conditions.

In contrast to the linear regime, the topology on small, strongly non-linear scales
has hardly been studied to date. In particular, there are no theoretical predictions for
the genus statistics in this regime. Hence it is presently unclear whether the genus on
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small scales is a useful statistic to discriminate between different models of structure
formation.

In this chapter we examine the topology of a suite of large, high-resolution N-body
simulations carried out by the Virgo collaboration (Jenkins et al. 1998). The suite of
models consists of a standard cold dark matter model (SCDM), and three variants of
the cold dark matter cosmology, which have more power on large scales. These are a flat
Q = 1 model (rCDM), and two low density universes with €y = 0.3, one open model
(OCDM), and one closed by means of a cosmological constant (ACDM).

In the first of a series of papers, Jenkins et al. (1998) measured the correlation func-
tion, the power spectrum and various statistics of the velocity field of these simulations.
As Jenkins et al. (1998) demonstrate, all three models with the power spectrum shape
I' = 0.21 can fit the APM two-point galaxy correlation function reasonably well, if one
allows for a moderate scale-dependent bias. However, the differences between these mod-
els are rather small, at least when only the distribution at z = 0 is examined with these
statistics.

In the second paper of the series, Thomas et al. (1997) showed that the internal
structure of halos of rich clusters is also similar in all the models and would be difficult
to distinguish in practice.

Here we use the genus statistic to analyse these N-body simulations down to strongly
non-linear scales. In this regime, differences between the models can be detected. In
a second thread we compare the genus of the N-body models to the 1.2-Jy redshift
survey of IRAS galaxies. Our particular aim is to improve the statistical methodology
of such a comparison. For this purpose we work with ensembles of mock catalogues to
assess the properties of new smoothing techniques and to derive accurate estimates for
errors and systematic effects. This Monte-Carlo technique also allows the derivation of
formal exclusion levels for the N-body models. New larger redshift surveys may be used
subsequently to further tighten these constraints.

This chapter is organized as follows. In Section 2 we briefly review the genus statistic
which we apply in Section 3 to the fully sampled Virgo N-body simulations, both with
fixed and adaptive smoothing. Section 4 describes the 1.2-Jy redshift survey and the
construction of ensembles of mock catalogues. In Section 5 we introduce different meth-
ods to compute smoothed density fields from the redshift survey data, and in Section
6 we discuss various systematic effects that affect the genus statistic. We then turn in
Section 7 to the statistical methodology we adopt for the comparison with the 1.2-Jy
redshift survey, and we present the results of this comparison in Section 8. Finally we
summarize and conclude in Section 9.

6.2 Genus statistic

We first review briefly the genus statistic as introduced by Gott et al. (1986). A number
of redshift surveys have been analysed with it, starting with a compilation of relatively
small samples examined by Gott et al. (1989). Further surveys that have been studied
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include the SSRS (Park et al. 1992a), QDOT (Monaghan 1992), Abell Clusters (Rhoads
et al. 1994), CfA (Vogeley et al. 1994), and most recently the 1.2-Jy survey (Protogeros
& Weinberg 1997) and PSCz (Canavezes et al. 1998). There have also been a number
of theoretical studies of the genus in the mildly non-linear regime (Magorrian & Binney
1994; Matsubara & Yokoyama 1996; Matsubara 1996; Matsubara & Suto 1996), and the
genus has been applied in two dimensions to the microwave background (Colley et al.
1996) and to slice surveys (Park et al. 1992b; Colley 1997).

Given an isodensity contour of a smoothed mass density field we define the genus as

G:—i/mdA, (6.1)
4
where .
= 6.2
= (6.2)

is the local Gaussian curvature. Here r1 and r9 denote the principal radii of curvature,
and the integration extends over the whole surface. The Gauss-Bonnet theorem shows
that this definition of genus makes G equal to the number of topological holes (like the
one in a doughnut) minus the number of isolated regions of the surface.

Assuming an ergodic universe, we define a genus

9= (6.3)
per unit volume, where V is finite, but large enough to be a representative patch of the
universe. The genus depends on the density threshold used to construct the isodensity
surface. As a function of threshold we therefore obtain a genus curve, which is the
central object of this investigation.

We parameterize the genus curve by the fraction f of the volume above the density
threshold value or by the quantity

v=v2erf (1 -2f) (6.4)

derived from it. Here erf~! denotes the inverse of the error function erf(x) = % Iy e~ dt.

We will stick to the usual convention and present genus curves in the form g = g(v).

The definition (6.4) is chosen such that for a Gaussian random field the quantity v =
dt /o just measures the threshold value §; in units of the dispersion 0. However, we always
define v in terms of the volume fraction via equation (6.4), because this definition has
the advantage of making the genus curve invariant under arbitrary monotonic one-to-one
transformations of the density field. For example, a simple linear biasing transformation
would not affect it. Also, it is insensitive to the skewness of the one-point probability
distribution function, that quickly develops in the mildly non-linear regime.

There is a theoretical prediction for the expected genus curve of a Gaussian random
field (Hamilton et al. 1986). It is given by

v

g(v) = N(1 —v?)exp <—;) , (6.5)
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where the amplitude

2o 3
N— ﬁ <@> (6.6)

is determined by the second moment
2P 3
(k) = JE“P(k)dk (6.7)

[ P(k)d3k
of the (smoothed) power spectrum. Interestingly, only the amplitude of the genus curve
depends on the shape of the power spectrum. Apart from that it exhibits a universal,
symmetric w-shape that we will use as a benchmark to detect non-Gaussian features of
the density field.

For a given threshold value we compute the genus with the algorithm proposed by
Gott et al. (1986). The method tesselates space in small cubes that allow the isodensity
surface to be defined as the boundary between the volume elements above and below
threshold. If the cubes are sufficiently small this approximation does not change the
topology of the smooth isodensity surface. The curvature of the resulting polygonal
surface is compressed into the vertices of the cubes. This property allows a computer to
rapidly sum up the appropriate angle deficits and to compute the genus per unit volume.
The method also allows arbitrarily shaped survey volumes. Here one just counts those
vertices that are surrounded by eight volume elements that all lie inside the actual survey
region.

Based on Weinberg’s (1988) code CONTOUR for computing the genus we have written
a new version in C that is optimized for a high execution speed, since we need to compute
several thousand genus curves in this work. A simple sorting of the density field prior
to the genus computation led already to a major speed-up because it is then possible to
instantly find the threshold value corresponding to a desired volume fraction. This also
allows the efficient computation of high resolution genus curves.

6.3 Fully sampled Virgo simulations
6.3.1 The N-body models

In this Section we compute genus curves for four fully sampled N-body simulations of
variants of the CDM cosmology. These simulations, part of the Virgo project (Jenkins
et al. 1998) to examine structure formation in the universe at very high resolution, follow
2563 dark matter particles in boxes of comoving size of 239.5 h~'kpc. The simulations
have been carried out with the parallel adaptive grid code HYDRA (Pearce & Couchman
1997).

The linear theory power spectrum used to generate the initial conditions of the
models is parameterized by the generic fitting form

P(k) = Bk (6.8)

(1 + [ak + (bk)2 + (ck)Q]y)z/ya
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Table 6.1: Parameters of the examined CDM models. The simulations have been done

by the Virgo collaboration.

SCDM +CDM ACDM OCDM
Number of particles 2563 2563 2563 2563
Box size[ h~'kpc] 239.5 2395 2395  239.5
Zstart 50 50 30 119
D 1.0 1.0 0.3 0.3
Oa 0.0 0.0 0.7 0.0
Hubble constant A 0.5 0.5 0.7 0.7
r 0.5 0.21 0.21 0.21
o8 0.60 0.60 0.90 0.85
;X: 2H1Mpé ,‘\ ‘SCDMAE _ﬂumo;x= 2H1Mpé . 1CDM E
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Figure 6.1: Genus curves of four variants of the CDM cosmology. The solid lines in
each panel show the genus of the evolved density fields of the Virgo simulations for a
smoothing scale of 2 h~'kpc. The dotted line is a fit to the random phase genus curve,
while the dashed curve gives the genus of the corresponding Gaussianized field.
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where a = 6.4T "' h~'kpc, b =3.0T "' h~'kpc, c = 1.7TT ' h~'kpc, v = 1.13, and T is a
shape parameter (Efstathiou et al. 1992).

While the SCDM model has the shape parameter I' = 0.5, the other three models
have the same linear power spectrum with I' = 0.21. All four models are normalized so
as to give the observed abundance of rich clusters of galaxies at the present day. Further
simulation parameters are listed in Table 6.1 and may be found in Jenkins et al. (1998).

6.3.2 Fixed smoothing

We start with the ordinary genus statistic, i.e. we assume a spatially constant smoothing
kernel. In order to construct a smooth density field we bin the 16.7 million particles
of one simulation onto a mesh using the cloud-in-cell assignment, and we smooth the
resulting density field with a Fast Fourier convolution. We use a Gaussian kernel of the
form

1 x?2

Note that this differs from an ordinary normal distribution by a factor of /2 in the
definition of the smoothing scale. We stick to this convention which is used in the
majority of the literature on the subject.

Typically we employ a 1283 grid to represent the density field. Only for smoothing
lengths below 5 h~'kpc we do find that a smaller mesh is indicated. We then use a 2563
grid. For test purposes, we repeated one of our calculations on a 5122 mesh.

6.3.3 Results

In Figure 6.1 we show the genus curves of the four simulations at a smoothing scale
of 2h~'kpc, the smallest scale considered here. We will come back to the question of
what happens on still smaller ones later on. It is evident that the genus curves retain
their universal w-shape, even at this small smoothing scale where the density fields are
already fairly non-linear. Only a small bubble shift to the right has developed, which
seems somewhat weaker for the SCDM model than for the other cosmologies. Such a
bubble shift has been reported by Melott et al. (1988) as well, and it was also found by
Vogeley et al. (1994) for the CfA survey.

We obtain qualitatively similar genus curves for larger smoothing scales. For A >
8 h~'kpc the small bubble shift has vanished for all models and the shape of the genus
curves is fit perfectly by the random phase form of equation (6.5). In Figure 6.2 we
show the measured genus amplitudes as a function of smoothing scale. The SCDM
model exhibits a significantly higher amplitude, reflecting the different shape of its power
spectrum, while the other three models show very similar amplitudes. This demonstrates
that the genus amplitude in the linear and mildly non-linear regime is determined by
the shape of the power spectrum alone.

Even if the genus curve is well described by equation (6.5), the underlying density
field does not have to be Gaussian. In fact, Vogeley et al. (1994) and Canavezes et al.
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Figure 6.2: Genus amplitude of the Virgo simulations as a function of smoothing scale
(fixed smoothing). The dimensionless vertical axis gives the genus amplitude N times
the factor (27)2\3.

(1998) pointed out that the amplitude of the genus curve is suppressed on small scales
compared to the expected amplitude based on the power spectrum alone. This amplitude
drop was first observed by Melott et al. (1988) and is a direct consequence of phase
correlations that develop during the nonlinear growth of density perturbations. The
phase drop may be measured for a periodic N-body simulation by Gaussianizing the
evolved density field, i.e. by taking it to Fourier space, randomizing the phases of all
modes constrained by the reality condition §x = —d5, and transforming back to real
space. In this way a Gaussian field with identical power spectrum as the evolved density
field is obtained, and a measurement of its genus allows an estimate of the amplitude
drop.

We have measured the genus amplitude drop in this way and show the results in
Figure 6.3. Here we reach smoothing scales as small as 2 h~'kpc, thereby extending the
work of Canavezes et al. (1998). Note that the amplitude drop becomes very substantial
at small scales, showing that the genus is indeed quite sensitive to higher order correla-
tions in this regime. If we plot the amplitude drop against the variance of the smoothed
density fields, we can approximately take out the differences between the models due
to their slightly different normalizations. As the lower panel in Figure 6.3 shows, we
again find that the models with the same shape of the power spectrum exhibit a nearly
degenerate behaviour. However, the horizontal axis of this plot is affected by biasing.
Since the bias required to match the observed two-point correlation function (Jenkins
et al. 1998) is different for the four models, the amplitude drop may still be a useful
measure to discriminate between different CDM variants. Future galaxy redshift sur-
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Figure 6.3: Amplitude drop for the Virgo simulations, i.e. the ratio R of the genus
amplitude N to the corresponding amplitude of the Gaussianized density field. The
top panel shows the amplitude drop versus the smoothing scale, while the lower panel
displays it against the variance of the smoothed fields.

veys should allow an accurate measurement of the amplitude drop by combining genus
statistics with an independent measure of the power spectrum or clustering strength as
outlined by Canavezes et al. (1998). Comparing these measurements with the results
obtained in Figure 6.3 for the dark matter may then allow a direct measure of the bias

2_ 2 /2
b* = Ugal/UDM-

We now examine systematic limitations of the genus analysis performed above. We
will consider finite grid size effects first and then examine the resolution limit of the
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Figure 6.4: Finite grid size effect. The lines are genus curves for the ACDM simulation,
smoothed with A = 2 h~'kpc. The solid line is computed with a 5122 grid, the dashed
line with 2562, and the dotted line with 1283.

Virgo simulations in terms of the genus statistic.

6.3.3.1 Finite grid size

Our method for computing the genus curve relies on an approximate representation of
isodensity contours as polygonal surfaces that are made up of faces of small cubes used
to tesselate space. As Hamilton et al. (1986) show the genus curve is expected to be
unaffected by this approximation, if d/A < 1, where d is the size of the cubes. Typically
we use 1283-grids, and for A < 5h 'kpc 2563 grids. We find that for d < 0.5\ there is
hardly any finite grid size effect. For example, in Figure 6.4 we show a comparison of
the genus curves for the ACDM simulation, smoothed at A = 2~ 'kpc, using 1283, 2563,
and 5123 grids. There is only a small depression of the amplitude and the minima of the
genus curve, when the 1283 mesh is used, but for 256 the asymptotic behaviour is clearly
reached. It is therefore not necessary to use costly computations at 5123 resolution.

6.3.3.2 Resolution limit

If the smoothing length is reduced below 2 A~ 'kpc one suddenly starts to see features in
the genus curve, as exemplified in Figure 6.5, where we show the genus for the ACDM
simulation at a smoothing scale of 1 h 'kpc. However, the ‘ringing’ on the low density
side is just an artifact due to the fact that the resolution of the Virgo simulations is
limited. We demonstrate that this is indeed the case by analysing yet another simula-
tion of the Virgo consortium, the same ACDM model, but with a smaller box size of
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Figure 6.5: Resolution limit of the Virgo simulations. The solid line of the top panel
shows the genus of the ACDM model smoothed with A = 1A 'kpc, and the dotted
curve shows a best-fit random phase genus curve. In this case the smoothing reaches
the level of the inter-particle separation and the features in the genus curve are in fact
artifacts. We show that this is the case by computing the genus for a second ACDM
simulation with smaller box size of 141 h~'kpc, but with the same number of particles
and hence significantly higher spatial resolution. As seen in the bottom panel, the genus
curve remains featureless.

141 h~'kpc. This model has roughly twice the spatial resolution of the original simu-
lation. As the bottom panel of Figure 6.5 demonstrates, it still gives a ‘normal’ genus
curve for A = 1 h~'kpc.
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Figure 6.6: Finite grid size effects in the adaptive smoothing technique. Shown are five
genus curves for one of the SCDM subvolumes, computed at different grid resolutions.
For 10 neighbours, the number considered here, a 256° mesh is sufficient to resolve
accurately the genus of the density field, at least in the regions of positive genus and
for v > 0. However, the minimum on the negative side is still not fully resolved by a
grid as fine as 384%. Comparing the size distribution of the isolated regions at the two
minima, of the genus curve, we find that this is due to a larger relative abundance of
very small regions at the minimum on the negative side. This population of very small
structures is difficult to resolve; those regions with volume smaller than a mesh cell can
be lost, leading to a suppression of the genus amplitude.

The smoothing scale of 1 h~'kpc is already close to the mean inter-particle separation
of =~ 0.94 h~'kpc for the large-box Virgo runs. Due to the strong clustering of matter,
the voids apparently contain too few particles to prevent discreteness effects becoming
visible when a fixed smoothing kernel with A = 1~ 'kpc is used. On the other hand,
the regions with high particle density allow a much higher resolution in principle. In
order to take full advantage of this spatially varying resolution an adaptive smoothing
technique needs to be developed. We will introduce such a scheme in the next Section.

6.3.4 Adaptive Smoothing

As we saw above, a spatially fixed smoothing is not able to take full advantage of
the information content on small scales. Borrowing an idea from smoothed particle
hydrodynamics (SPH), we can improve on this by following the particles in a Lagrangian
sense and varying the smoothing scale with local density. This application of SPH-
smoothing to the dark matter has first been proposed by Thomas & Couchman (1992).

Of course, a difficulty with such an approach is that the resulting density field can-
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Figure 6.7: Genus curves for the adaptively smoothed Virgo simulations. The four
panels show results when 10, 20, 40, and 80 neighbours are used to determine the local
smoothing scale. Each curve is the average of 4 subvolumes, each being 64 times smaller
than the full simulation volume. Since the variance between these curves is quite small,
it is not necessary to extend the computation to a larger fraction of the total volume.

not be studied analytically. In particular, the power spectrum of the smoothed field
is not related to that of the underlying field in a simple way. Because of that, it is
also not obvious what one can expect for the genus statistic. In particular, adaptive
smoothing will not be useful to test the Gaussian random phase hypothesis on linear
scales. However, in light of the increased resolution of current redshift surveys and of
N-body simulations, the study of the topology at non-linear scales has become possi-
ble. In this regime, there are no reliable analytical predictions for the genus even when
fixed smoothing is used. Hence a comparison between theory and observation is perhaps
best done by using ensembles of mock surveys to calibrate the genus statistic. In this
framework one might then as well try an adaptive smoothing scheme in an attempt to
maximize the topological information extracted from a given data set.

A potential disadvantage of adaptive smoothing is that it may spoil to some extent
the relative independence of the ordinary genus analysis on bias. Further studies will be
needed to clarify how much this diminishes the usefulness of adaptive smoothing for a
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6 Genus statistics of the Virgo N-body simulations and the 1.2-Jy redshift survey

comparison of redshift surveys with simulations. However, the study of the topology of
the dark matter at highly non-linear scales is in itself very interesting, and it requires
adaptive smoothing to take full advantage of the mass resolution of the simulations.

As Hernquist & Katz (1989) point out there are two different approaches to defining
a smoothed density estimate with variable smoothing scale. In the scatter approach the
mass of each particle is distributed in space, and the density estimate at a particular point
x follows from the overlap of the individual smoothing spheres. Alternatively, one can
define a smoothing radius for each point x and weight all particles in its neighbourhood
by the resulting kernel (gather approach).

We want to compute the density field on a fine mesh at a large number of points. Be-
cause the number of tracer particles is also large, the gather approach is computationally
less costly in this case. Hence we will adopt it in the following.

As a smoothing kernel we choose the spherically symmetric spline kernel

g [1-6GI+6(GR) 0<fi<3
W(rih) = —5q 2(1-7)°, l<r<a, (6.10)
F>1
3 h ’

which is frequently used in SPH calculations (Monaghan & Lattanzio 1985). This kernel
has the advantage of compact support, which again simplifies the computational task.

For simplicity, we choose the smoothing scale h(x) as the distance to the N-th nearest
neighbour. In this way the smoothing scale is set to a fixed fraction of an estimate of
the local mean inter-particle separation. We then estimate the density field as

p(x) = Z W (r; — x; h(x)), (6.11)

where the sum extends over all particles.

The computational cost for adaptive smoothing is much higher than for fixed smooth-
ing, because Fourier techniques can no longer be applied and one has to work in real
space. Furthermore, the adaptive smoothing will also be able to resolve very small struc-
tures that demand a fine mesh in order to allow a proper resolution of their topology.

Because of this it is not possible to consider the whole simulation box in one pass.
Instead, we compute adaptively smoothed density fields for subvolumes of the simulation
box of size one quarter of the total box size. In this way, we divide the simulation in
64 subvolumes, each containing still 643 particles on average. For the small scales we
are considering here, we anticipate that each of these subvolumes will already contain so
many structural elements that the cosmic variance between them will be small. Hence
we assume that we will have to consider at most a few of the subvolumes in order to
accurately reproduce the genus of the whole simulation box.

We compute adaptively smoothed density fields on a regular grid for each of the
subvolumes. In the smoothing process, we also consider the particles that lie outside
the subvolume, hence boundary smoothing effects are not present. In Figure 6.6 we
show the dependence of the result on the chosen grid resolution for the extreme case
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Figure 6.8: Peak genus densities in the Virgo models as a function of the number N
of neighbours used in the adaptive smoothing scheme. We have measured the genus
for N = 10, 14, 20, 28, 40, 56, 80, and 112 neighbours, and plot the maximum genus
density times the number N of smoothing neighbours.

of N = 10 neighbours. A 1283 grid clearly leads to a systematic underestimate of the
genus, showing that small features are missed due to the coarseness of the grid. On
the other hand, the result for the 2563 grid is already very close to the finer meshes,
at least for v > —1. However, the minimum of the genus on the negative side is seen
to be very difficult to resolve accurately. By comparing the distributions of the sizes of
the isolated regions at the two minima, we find that the number density of very small
regions is much larger at the minimum on the negative side than on the positive side.
Since these very small voids are so abundant, the loss of the smallest of them due to the
finite grid size leads to a suppression of the genus. Fortunately this effect is less severe
at larger smoothing scales. As a compromise between computational cost and accuracy,
we decided to use 2562 grids for N = 10 neighbours, 1923 for 14 < N < 20, and 1283 for
N > 28. This ensures that the genus density is accurately resolved for v > —1. However,
the depth of the minimum on the negative side may be slightly diminished due to finite
grid size effects.

In Figure 6.7 we show genus curves for adaptive smoothing with N = 10, 20, 40,
and 80 neighbours. In each panel we plot the results for SCDM, 7CDM, ACDM, and
OCDM. Interestingly, there are marked differences between the models, particularly at
small smoothing scales. The SCDM model shows usually the highest genus amplitude, as
expected for the larger amount of small-scale power in this model. Only on the smallest
scale considered here, it is surpassed by the 7CDM model. While the genus amplitudes of
the three models 7TCDM, ACDM, and OCDM were practically degenerate in the regime
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Figure 6.9: Mass fraction above threshold versus volume fraction above threshold for
the adaptively smoothed Virgo simulations. Here N = 10 neighbours have been used in
the smoothing process. At a given volume fraction, the ACDM model contains a higher
fraction of its mass in the high density regions than the other three models.

accessible to fixed smoothing, they can now be used to discriminate between the models.

Note that the number density of structure elements resolved with adaptive smoothing
is really much larger than the one accessible to fixed smoothing. Compared to the
X\ = 2 h~'kpc fixed smoothing, the N = 10 adaptive scheme reaches a density of structure
elements which is approximately two orders of magnitude larger. This really opens up
a new regime for topological analysis.

In Figure 6.8 we plot the peak genus densities as a function of the number of neigh-
bour particles used for the adaptive smoothing. It is interesting that the relative dif-
ference between 7CDM, ACDM, and OCDM grows with decreasing smoothing length.
ACDM consistently shows the smallest amplitude, which demonstrates that its structure
has a higher degree of coherence with fewer small-scale features than the other models.

However, for the N = 10 smoothing, all four simulations give roughly the same
genus signal at the minimum on the positive side of the genus curves. This minimum
occurs at v ~ 2.4, corresponding to a volume fraction above threshold of only 0.0082.
For a Gaussian random field, the minimum occurs at v = /3, equivalent to the much
larger volume fraction of 0.042. At the minimum the genus is completely dominated
by the number density of very dense, isolated clumps. While this number density of
roughly 0.012 h3Mpc™ is similar for the four models, the mass fraction contained in
the clumps is different. For the N = 10 smoothing, we plot in Figure 6.9 the mass
fraction above threshold as a function of the volume fraction above threshold. Note
the very high concentration of the mass in these adaptively smoothed density fields.
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In the SCDM model 50 per cent of the mass is contained in only 0.65 per cent of the
volume. The 7CDM model requires almost twice the volume fraction, 1.23 per cent, to
include half of its mass. On the other hand, the ACDM and OCDM simulations have
half-mass volume fractions of 0.33 and 0.31 per cent, respectively. At high densities a
given volume fraction therefore contains a higher fraction of their mass than in the high
density models. This reflects the normalization of the models which ensures that they
all have the same abundance of virialized clusters of any given mass.

In contrast to the minimum on the positive side, the minimum on the negative side
of the genus curve is not shifted significantly. However, here the models show stronger
differences in their genus signal. Again, at the minimum the genus is dominated by a
high number density of isolated regions. These voids are significantly more abundant in
the 7CDM model than in the ACDM model. This means that the underdense regions
are choppier in the 7TCDM model than in ACDM. The latter model has voids which are
more coherent and larger on the average. Presently it is unclear, whether this can be
understood merely as a consequence of the smaller amount of mass left in the ACDM
model to fill the voids.

The maxima of the genus densities occur at a smaller volume fraction than 0.5, i.e.
the adaptive smoothing results in a substantial bubble-shift to the right. At the maxima,
the isodensity surfaces have the topology of a sponge, with an interlocking high density
region and a complex system of tunnels and voids. The smaller amplitude of ACDM can
again be interpreted as a larger degree of coherence; there are not so many topological
holes as in TCDM, for example, and the typical size of tunnels and cavities is expected
to be larger.

It should be noted that the two low-£2g models show only small differences when their
two-point correlation functions or their velocity fields are considered (Jenkins et al. 1998).
This demonstrates that the genus can indeed reveal additional information about the
morphological properties of the matter distribution. Here we conclude that the voids in
the ACDM model are in some sense ‘emptier’ than in the OCDM model.

We also note that only the adaptive smoothing allowed an extension of the genus
statistics essentially down to the mass resolution of the Virgo simulations. Future large
redshift surveys feature a large number of galaxies, possibly in the range 10° for the
Sloan and 2dF surveys. Adaptive smoothing techniques should prove very powerful for
this kind of data. We now work out a first test of this idea for the 1.2-Jy redshift survey.

6.4 The 1.2-Jy redshift survey and Virgo mock catalogues

6.4.1 The 1.2-Jy redshift survey data

The data of the 1.2-Jy redshift survey (Strauss et al. 1990) of IRAS galaxies has been
published (Fisher et al. 1995) and can be retrieved electronically from the Astronomical
Data Center (ftp://adc.gsfc.nasa.gov). The 5321 galaxies of the survey are selected from
the PSC catalogue above a flux limit of 1.2 Jy in the 60 ym band. The sky coverage is
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87.6 per cent, excluding only the zone of avoidance for |b| < 5° and a few unobserved or
contaminated patches at higher latitude.

There have been numerous studies of the 1.2-Jy survey, essentially covering all stan-
dard methods for analysing large-scale structure. Very recently the catalogue has also
been examined with topological methods. Yepes et al. (1997) used a percolation analy-
sis, Kersher et al. (1998) employed Minkowski functionals, and Protogeros & Weinberg
(1997) used genus statistic.

Our approach is similar to that of the latter authors. We also work with mock
catalogues to derive the statistical properties of the genus statistics. However, in contrast
to Protogeros & Weinberg (1997) we do not volume-limit our catalogues but use instead
a selection function weighting to derive the density fields. Additionally, we introduce
adaptive smoothing techniques. Although we agree with their main conclusions, we find
no confirmation of their finite volume bias, and we explicitly show that the errors of the
genus curve are not multivariate normally distributed.

In our analysis of the 1.2-Jy survey we convert the redshifts to the Local Group
frame and use them to infer distances without further corrections for peculiar velocities.
Redshift space distortions have only a negligible effect on the genus, as has been shown
in a number of studies.

We will assume an Einstein-de-Sitter model for the background cosmology through-
out. The results will not be sensitive to this choice because the 1.2-Jy density field maps
only the very local Universe.

We define the selection function S(z) = (m(r)) of the survey as the mean expected
comoving number density of sources at redshift z = |r|. We employ the fitting form

(U
é k)
2 [1+(£)]
and adopt the parameters (Table 6.2) determined by Springel & White (1998). Note

that the selection function includes a correction for the strong evolution seen in TRAS
galaxies.

S(z) =

(6.12)

6.4.1.1 Depth of maps

The galaxy density of a flux limited sample falls off quickly with distance. As a con-
sequence, the uncertainty in the density estimate grows rapidly with redshift. It is
desirable, of course, to use a survey volume that is as large as possible in order to
beat down statistical noise and cosmic variance. According to a useful rule of thumb
(Weinberg et al. 1987) discreteness effects are approximately negligible if

A>d=S8"3, (6.13)

where d is the mean inter-galaxy separation. Adopting this criterion we choose a maximal
radius Rpax by A = S(Rmax) 3 and use it to delimit the usable survey volume Vg. This
choice ensures that at the far edge of the survey volume the sampling condition is just
met, and in the remainder of the volume the sampling is denser.
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Table 6.2: Parameters of the selection function of the 1.2-Jy survey.
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Figure 6.10: The number of resolution elements (solid) for the 1.2-Jy survey when
the maximal survey volume is used. Also shown is the radius (dashed) of the usable
survey volume.

Table 6.3: The smoothing lengths adopted for the topological analysis of the 1.2-Jy
survey. Listed are the chosen survey depth Rp,ax, the resulting number N,es of resolution
elements and the number N, of galaxies inside the survey volume.

A [h7kpc] Rmax [h7'kpc]  Nies Ngal

5 26.00 92.6 1030
7 42.23 144.7 1783
10 62.07 157.6 2820
14 83.73 140.9 3582
20 110.63 111.5 4199
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6 Genus statistics of the Virgo N-body simulations and the 1.2-Jy redshift survey

6.4.1.2 Resolution elements

The notion of number of resolution elements provides a useful way to compare roughly
the statistical power of genus measurements. Because the smoothing extends over an
effective volume Vi = 73/2X3 the number of independent structures that can be present
in a finite survey volume is limited. This number is of order

Vs wR3

— _ Y 'max
Nres - ‘/;m - 37['3/2A3’ (6.14)

where w is the solid angle covered by the survey.

The number N;¢s indicates the power of a data set used for topological analysis. With
the QDOT survey Monaghan (1992) reached a maximum of about Ny = 80 whereas the
CfA survey allowed Vogeley et al. (1994) to achieve Ny = 260 for their best subsample.
The most powerful dataset examined so far is PSCz, making it possible for Canavezes
et al. (1998) to reach Ny = 415. For the 1.2-Jy redshift survey we have to be content
with N = 158 (see Figure 6.10). This already indicates that one can hardly expect
very tight constraints from the genus statistics of this data set. Instead, the sparse
sampling of the density field can be expected to severely limit the power of the genus
test.

For the genus analysis we have examined the smoothing lengths 5, 7, 10, 14, and
20 h~'kpc in approximately logarithmic spacing. Table 6.3 lists some relevant parame-
ters for the different cases.

6.4.2 Construction of mock surveys

We use the Virgo N-body simulations to obtain artificial redshift surveys that mimic the
statistical properties of the 1.2-Jy survey with respect to sky coverage, selection function
and luminosity distribution. The suites of mock catalogues are then analysed in exactly
the same way as the 1.2-Jy redshift survey data. In this way sampling noise, cosmic
variance, and systematic biases can be reliably modeled, which allows a fair assessment
of the viability of the models, even if strong biases in our analysis existed.

To construct a mock catalogue we first select an arbitrary observer position in the
periodic simulation box, which we replicate periodically in order to allow the construction
of catalogues with sufficient depth. For computational convenience, we adopt a depth
of 239.5 h~'kpc, corresponding to the size of the simulation box. We do not attempt
to restrict the observers to positions that match certain properties of the immediate
neighbourhood of the solar system because we want to allow for a realistic degree of
cosmic variance. Because we have only one simulation at our disposal, not all the mock
catalogues are independent. However, the survey volumes considered are much smaller
than the simulation volume itself.

We identify every dark matter particle with a possible galaxy site, i.e. we construct
only unbiased galaxy catalogues. We then compute the cosmological redshifts z; of
the potential galaxy sites with respect to the observer and draw uniformly distributed
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6.4 The 1.2-Jy redshift survey and Virgo mock catalogues

random numbers z; € [0, 1] for them. Only those galaxies with z; < S(z;) are kept,
where S(z) is the selection function scaled such that S(zp) = 1 for some very small z.
This selection results in a catalogue with selection function proportional to S(z).

We finally discard the galaxies behind the angular mask of the 1.2-Jy survey and
degrade the source density randomly such that the mock surveys contain the same
number of sources (5083) as the 1.2-Jy survey in a sphere of radius 239.5 b~ 'kpc.

In a second step (optional for this work) we assign observed fluxes to the galaxies
according to the luminosity function that results as a consequence of the adopted se-
lection function (Springel & White 1998). For this purpose we draw a random number
gi € [0,1] from a uniform distribution, compute a maximum redshift

Zmax — S_l [(1 - QZ)S(ZZ)] ’ (615)
and assign an observed flux
2 l1—a
Trax [ 1+ zmax>
, — Jmin 6.16
fi=1 7"22 ( 1+ 2 ( )

for each source. Here S~ ! denotes the inverse selection function, and fu;, = 1.2 Jy is the
flux limit. Note we here assumed a straight K-correction with @ = —2, a non-evolving
luminosity function, and an Einstein-de-Sitter universe. For Qg # 1, the latter may be
replaced by the appropriate cosmology.

We usually neglect peculiar velocities in the construction of mock catalogues. As
pointed out above, redshift space distortions are generally found to have only a minor
effect on the genus statistics, at least on the relatively large scales accessible so far. We
test that this is indeed the case by producing an additional set of mock catalogues in
redshift space, where we adopt the velocities of the dark matter particles themselves as
peculiar velocities of the mock galaxies.

6.4.2.1 The mock samples

We construct two main suites of mock catalogues; one is drawn from the SCDM simu-
lation, the other from the ACDM simulation. Each of them contains 500 1.2-Jy mock
surveys, that feature 5083 galaxies on 87.6 per cent of the sky, flux limited at 1.2-Jy and
volume limited at a depth of 239.5 h~'kpc.

These samples are used to develop the statistical methodology for the comparison of
the 1.2-Jy data to the N-body models. The large number of mock catalogues is necessary
to determine the statistical distribution of the genus reliably. We restrict ourselves to
the SCDM and ACDM simulations because we do not expect the genus of such a sparse
sample as 1.2-Jy to be able to discriminate between ACDM, 7CDM, and OCDM.

For the adaptive smoothing technique that we outline below, we fill the masked
regions of the sky with a small set of fake galaxies. For simplicity, we construct for each
catalogue 733 points with random angular positions in the masked regions, and with a
redshift distribution sampled from the catalogue itself.
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To examine a number of systematic effects we construct additional mock catalogues.
For example, we use 100 mock catalogues in redshift space to assess the influence of
redshift space distortion on the genus. We further compute additional catalogues that
are full-sky 1.2-Jy surveys, i.e. which have no angular mask. These are used to test
the influence of the mask. Finally, we compute a number of different survey realizations
for fixed observer positions in order to separately determine the relative importance of
sampling noise and cosmic variance.

6.5 Smoothing techniques

We now outline our procedures to construct smoothed density fields from the 1.2-Jy
redshift survey and the mock catalogues. These fields are then used as input to the
genus computation.

6.5.1 Fixed smoothing

Assuming a universal luminosity function an unbiased estimate of the galaxy density
field can be obtained by weighting the discrete point distribution m(r) of the observed
galaxies with the inverse of the selection function S(r):

m(r)

p(r) o S

(6.17)

We obtain an estimate of the density field smoothed on some scale A by convolving with
a filter W (r), which we choose as the Gaussian of equation (6.9).

However, due to the absence of galaxies in the regions of the angular mask, the density
would be systematically underestimated at locations close to unobserved patches of the
sky if the smoothing were just done by a straightforward use of the kernel of equation
(6.9). In order to avoid this problem we employ the ratio method proposed by Melott &
Dominik (1993), who have shown in a systematic study that a smoothing according to

A(r) — JW(r—r1')p(r')dr
p( ) - f W(I‘ _ I‘")M(I‘”) drll,

(6.18)

leads to the smallest loss or distortion of topological information compared to a number
of alternative schemes that treat the mask differently. Here M (r) is a mask field defined
to be equal to 0 for r lying behind the angular mask and to be 1 otherwise. For this
choice the denominator of equation (6.18) essentially renormalizes the smoothing kernel
to the survey volume visible from the reference point r.

In the actual computation of the genus curve we only use the volume with M(r) =1
which is not hidden by the mask. Additionally, we restrict the genus computation to
a sphere carved out of the smoothed density field. Note that there is no boundary
smoothing effect due to the outer surface of this sphere since we also include the sources
outside this final region in the smoothing process.
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We compute the convolutions that appear in the numerator and denominator of
equation (6.18) with the help of a Fast Fourier Transform (FFT) on a 128 mesh. We
choose a grid size of b = A\/8, which ensures that the genus is free of finite mesh size
effects (Hamilton et al. 1986), as we will demonstrate below. The final depth Rpyax of
the density field we use for the topological analysis is always small enough to avoid wrap
around effects due to the periodic FFT smoothing.

6.5.2 Adaptive smoothing

As we saw in the analysis of the Virgo simulations, the smoothing scale is limited by
the poor sampling of underdense regions. To make use of the additional resolution in
high density regions a variable smoothing length can be employed. We have already
implemented an adaptive smoothing scheme for the fully sampled N-body simulations.
We now define such a scheme for the analysis of flux limited redshift surveys as well.
Again, the hope is that the overall effect of adaptive smoothing is an increase of the
number of structure elements visible in a given density field.

6.5.2.1 Spherically symmetric kernel

We start by making the kernel a function of position, i.e. the smoothed density field is
computed as

= [ o)W - vy (6.19)

This definition corresponds to the scatter approach of SPH. Since this scheme strictly
conserves ‘mass’ (if W is properly normalized), it seems more natural to use for a
small number of tracer particles than the gather formulation, which we employed for
the densely sampled N-body simulations.

In a first variant of the adaptive smoothing, we stay with a spherical Gaussian and
allow only the smoothing scale to vary with the local density. Later we will generalize
the technique to triaxial Gaussians.

For a given survey volume V; and a prescribed smoothing scale Ao we first compute
the average mass My in a Gaussian sphere of radius Ao, that is

TN 3
My = T / p(r)dr = 72 )3, (6.20)

where the last equality holds (at least on average) due to our normalization of the
selection function.
We then compute for every galaxy site r; an individual smoothing radius A; such

that
/p expl )\2 o) ] M. (6.21)

This definition implies that \; will be smaller than )g if the density around r; is higher
than the mean, and it will be larger if the local density is lower than the mean.
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6.5.2.2 Triaxial kernel

Up to now we have only varied the volume of the kernels. In an attempt to improve the
flexibility of the smoothing we may also allow the shape of the kernel to vary. For this
purpose we adopt triaxial Gaussians

1
W(xr) = ———exp(—xTA x 6.22
Be7) 7% (detA)? ( ) (622)

as kernels, where the quadratic form A is a function of r. We now need to specify the
matrices A; for every particle. For simplicity, we set A; proportional to the local moment
of inertia tensor around the site ry, i.e.

r—r;)?
A; x /(r —1;)(r — ;)T p(r) exp l—%} dr, (6.23)

and we keep the original smoothing volume fixed by requiring (detAi)% = /\?. Once the
matrices A; are determined we ‘only’ need to compute

ﬁ(r) == Zsz(r Y Az) (6.24)

with m; = [S(r;)] ™! to arrive at the triaxially smoothed density field.

Because the adaptive smoothing has to be carried out in real space it requires much
more CPU time than the fixed smoothing described above. For this reason we construct
the density fields only in spheres of radius Rmax, each of them inscribed in a 643 mesh.
For simplicity we deal with the mask by filling the empty region with fake galaxies as
described above. Note that the masked volume is not used in the calculation of the
genus curve.

The adaptive smoothing schemes we employ here are by no means unique and many
other variants are conceivable. In fact, we have tried a number of alternatives ourselves.
However, the suggested procedure is fairly intuitive and allows a study of the effects of
volume and shape adaptivity separately. Currently we see no alternative to Monte-Carlo
experiments in determining the performance and properties of such adaptive smoothing
techniques.

6.6 Systematic effects
Before turning to the results for the 1.2-Jy survey and the Virgo mock catalogues, we
first examine various systematic effects that can affect the genus measurements. In

particular, we are interested in the amount of bias present in the genus curve derived
from a 1.2-Jy-like sample compared to the genus of the underlying density field.
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Figure 6.11: Finite volume effect. The thin line shows the average genus curve of 10
spherical subvolumes of radius 60 h~'kpc extracted from the SCDM simulation, while
the thick line gives the genus of the full simulation volume. The genus curves have been
computed for a resolution of Av = 0.01. Comparing the two curves we find no evidence
for the strong amplitude bias claimed by Protogeros & Weinberg (1997). They found
an increase of the genus amplitude for the finite volume curves by a factor of 1.5-2.0.

6.6.1 Finite volume effect

Recently, Protogeros & Weinberg (1997) have claimed that the genus curve is severely
biased high if it is computed from subvolumes carved out of large N-body simulations
or out of Gaussian random fields. In particular, for a roughly spherical volume of radius
Ruax = 60 A~ 'kpc and smoothing scale A = 10 h~'kpc they detected an increase of the
genus amplitude by a factor of 1.5-2. They further found that this volume effect becomes
somewhat smaller for larger volumes, yet it seems to be present independently of the
shape of the survey volume.

Their result is surprising since the volumes used in their analysis seem large enough
that any correlation of the curvature between adjacent points on the surface of the
volume is expected to average out, i.e. the mean curvature of the subvolume should
allow an unbiased estimate of the genus of the full volume.

We have searched for this volume effect ourselves, but we could not find it. For
example, in Figure 6.11 we compare the average genus curve for 10 spherical subvolumes
of radius Ryax = 60 h~'kpc extracted from the SCDM simulation with the genus of the
full simulation box. Reassuringly, the average genus curve of the subvolumes appears to
be largely unbiased; there is no trace of a strong finite volume effect.
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Figure 6.12: Effects due to the angular mask. The thick curve shows the average
genus curve for 100 SCDM mock catalogues before they are subjected to the 1.2-Jy
mask, i.e. their genus is computed for an all-sky density field. The thin line shows
the genus for the masked mock catalogues, where the genus computation involves the
ratio method. The curves shown are for fixed smoothing with A\ = 5h~'kpc. Larger
smoothing scales or the adaptive smoothing techniques result in similar small effects.

6.6.2 Mask effects

We dealt with the limited sky coverage of the 1.2-Jy survey by employing the ratio
smoothing method of Melott & Dominik (1993). Here we look for systematic biases
inflicted on the genus curve because of that. For this purpose we have constructed an
additional suite of 100 mock catalogues for the SCDM model. These catalogues have
full sky coverage, with 5816 galaxies to a depth of 239.5 h 'kpc.

In Figure 6.12 we compare the average genus curve of these full sky mock catalogues
to the average curve of the masked catalogues, where the computation involves the ratio
method. The good agreement between the two results gives us confidence that any bias
due to our treatment of the mask is very small. The result shown is for fixed smoothing
with A\ = 5h 'kpc, but we observe a similar small influence of the mask for other
smoothing scales and for the adaptive smoothing techniques.

6.6.3 Genus curves

Figure 6.13 shows the average genus curve of the SCDM suite of mock catalogues com-
pared to the genus of the fully sampled simulation. Obviously the genus curve derived
from the mock catalogues is biased high compared to full sampling. This can be explained
by the influence of shot noise on the genus amplitude, as demonstrated by Canavezes
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Figure 6.13: Genus curves for the SCDM simulation, smoothed at 7h~'kpc with
different smoothing techniques. The thick solid line gives the result for the fully sampled
SCDM simulation, while the thin line gives the corresponding average genus curve with
a fixed smoothing kernel for the SCDM mock catalogues. The dotted line shows the
result for the spherical adaptive smoothing, and the dashed curve is for triaxial adaptive
smoothing.

et al. (1998). Furthermore, the average curve exhibits a slight meatball bias, that is a
shift of the peak to the left. This effect can also be understood as a discreteness error
that results from the sparse sampling of the density field.

Also shown in Figure 6.13 are the mean genus curves resulting from the adaptive
smoothing techniques we tried. Both of them show a strong enhancement of the genus
amplitude. The spherically symmetric smoothing also results in a strong asymmetry
between the minima of the genus curve, with the minimum on the positive side being
lowered strongly, while the minimum on the negative side remains practically at the level
obtained for the fixed smoothing technique. Note that the genus curves for the different
smoothing techniques are expected to be different since the smoothing procedures are
sensitive to different properties of the density field.

Interestingly, the triaxial smoothing technique gives a genus very close to the spher-
ical smoothing around the minimum on the positive side, while it increases the genus
signal for smaller values of v. Presumably the amplitude of the minimum on the positive
side is just set by the number density of individual, isolated clumps. Apparently, the
triaxial technique does not change the topology of these isolated regions.

For fixed smoothing, the measured genus is biased compared to the fully sampled
simulations, albeit by a small amount. Instead of trying to correct for it as attempted
by Canavezes et al. (1998), we compare the 1.2-Jy measurements only to the results
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obtained for the mock catalogues, and not to the fully sampled simulations themselves.
This is a viable procedure, even if strong biases are present.

6.7 Statistical methodology

Ultimately we want to use the genus statistic to compare theory with observation, i.e.
to quantify the level of agreement of the 1.2-Jy survey with the Virgo N-body models. A
prerequisite to derive formal exclusion levels is a precise understanding of the distribution
of errors of the genus measurement.

Perhaps the most general method to assess random and systematic errors is to work
with ensembles of mock galaxy surveys that mimic the statistical properties of the actual
observed data set. When the mock catalogues and the redshift survey are analysed in
the same way, systematic biases that might be present in the adopted analysis enter in
the same way.

6.7.1 Distribution of errors

For a suite of n mock catalogues we measure the genus curve at k values vy, vs,. ..,V of
the filling factor. In what follows, we compute the genus with spacing Av = 0.1 in the
range [—3.0,3.0], i.e. at k = 61 positions. We now use these measurements to estimate
the distribution of errors in the genus. The mean genus curve and its covariance matrix
may be estimated as

1 n
g=-> g (6.25)
=t
and )
V =cov(gigj) = — > (8" - 2" -8, (6.26)
l
where gl¥) = (gg), ey g,(cl)) denotes the measured genus curve for the catalogue .

Recently Protogeros & Weinberg (1997) conjectured that the distribution of errors
is well described by a multivariate Gaussian

1 1 \Tr—1 .
= % 1 X — = - V - . 6‘27
f(g) 2 Elaetv? exp | =5 (8 ~ 8) (-8 (6.27)
Then the quantity
x’(g)=(g-8"V'e-8) (6.28)

would exhibit a x? distribution with k& degrees of freedom, and one could estimate the
probability

Xk z
— z2 e 2dx (6.29)
)
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Figure 6.14: Principal components of the genus measurement. The displayed curves are based
on an average of covariance matrices corresponding to different smoothing scales. The matrices
have been scaled to a common highest eigenvalue before the averaging. The resulting curves are
similar to the ones obtained for a single covariance matrix, but they are smoother due to the
reduction of noise by the averaging. We use these curves as generic principal components in the
PCA of all examined samples. Note that the principal components are normalized to unity and
mutually orthogonal to each other.

of finding a mock survey in the ensemble that differs from the mean of the mock cata-
logues by more than a particular observation with x? = x?(g{°*)). In this way a formal
exclusion level could be derived.

This procedure seems attractive, yet we find that its application requires a good
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6 Genus statistics of the Virgo N-body simulations and the 1.2-Jy redshift survey

deal of caution. As we show in the appendix of this chapter, the method is partly
compromised by the fact that the errors are at best approximately distributed as a
multivariate Gaussian. More importantly, we will use a principal components analysis
(PCA) to demonstrate that there are only a small number of principal components that
can be determined with some confidence. The rest of them are dominated heavily by
noise; it is therefore not a good idea to invert the noisy 61 x 61 covariance matrix of
equation (6.26). Instead we will regularize the problem by means of a PCA. Note that
a simple smoothing of the genus curve can remove some of the noise. However, as a
side effect this will make the covariance matrix close to singular. Of course, this causes
trouble if one naively goes ahead and tries to compute Vi;I, so a PCA cannot be avoided
in this way.

It should be noted that in the application of the x2-method by Protogeros & Weinberg
(1997) and Colley (1997) the noise was presumably far less problematic than in our
analysis. Especially their smaller number of points on the genus curves, and also the
slightly larger number of independent mock catalogues they used, might have reduced
the noise to a level that prevented the failure of the y2-method that we observe in this
study.

6.7.2 Principal components analysis

The principal components analysis (PCA, Murtagh & Heck 1987) is frequently applied
in astronomy to extract the most relevant features from data sets that may be strongly
contaminated by noise. Since PCA is a linear method it works best for uncorrelated
noise, a situation not really valid for the genus. However, we can still expect that it
allows the construction of a clean multivariate analysis of the measured genus curves.

Each measured genus curve can be viewed as a point in a 61-dimensional space. The
idea of PCA is to transform to a new set of coordinates which correspond to the directions
of maximum extension of the cloud of measured genus points. These principal axes are
just the eigenvectors of the covariance matrix (6.26). It is convenient to order these
components in descending order of their eigenvalues, i.e. the first principal component
shows the highest variance. Usually one then considers only the first few principal
components, which are the ones that describe the most prominent features of the signal.
In this way the method allows to efficiently filter out the noisy contributions to the signal
and to concentrate on its essential features.

The principal axes and their eigenvalues can be conveniently found by a singular
value decomposition (SVD) of the covariance matrix. Having ordered the principal
components in descending order we consider only the first m of them. We can then
construct a m x 61 matrix P that contains the m eigenvectors in its rows and that
projects a genus curve g onto new coordinates h = Pg. One can also transform back to
the original space, giving rise to a PCA-filtered genus curve

grca(m) = PTPg. (6.30)

In Figure 6.14 we display the first six principal components of the genus measurement.

226



6.7 Statistical methodology

4.0-10

3.0010°

2.0010°8

E(m)

1.0-10%

Figure 6.15: Global approximation error E as a function of the number m of included
principal components. The points shown are for the SCDM mock catalogues, smoothed
with 7 h~lkpc. Other smoothing scales show similar results. For the adaptive smoothing
techniques the minimum occurs also at m ~ 6. However, the higher components lead
to a somewhat smaller increase of E.

Actually these principal components have been derived from an averaged covariance
matrix, obtained by adding up matrices corresponding to several smoothing scales which
we have scaled to a common highest eigenvalue. The curves resulting from just one
suite of genus curves look very similar, although they are not quite so smooth. We
employ the averaging procedure to establish a generic set of smooth orthogonal principal
components that we subsequently apply to all the different samples on an equal footing.
Of course, depending on the covariance matrices used in the averaging procedure the
derived principal components may differ slightly in detail. However, in all cases the first
few components (we will use m = 6 of them) span very nearly the same region in the full
61-dimensional space of measured genus curves. Hence the specific choice of covariance
matrices is uncritical as long as all the information of these principal components is used
in a multivariate analysis.

Some of the principal components shown in Figure 6.14 are easy to interpret. The
first clearly measures the amplitude, while the next two can be seen to be sensitive to
a horizontal shift and a broadening of the genus curve. Hence the first three principal
components are similar in meaning to the genus meta-statistics introduced by Vogeley
et al. (1994). However, here these measures are not postulated in an ad-hoc way, but
they suggest themselves naturally as the most relevant features of the measured genus
curves.

How many principal components should we reasonably take? To answer this question
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Figure 6.16: Distribution of x2(h), when only the first 6 principal components are
included. The variance of the distribution is 12.66, close to the expected value of 12.0
for a x? distribution with m = 6 degrees of freedom (dotted line). The data shown here
are for the SCDM catalogues with fixed smoothing of 7h~'kpc. All the other cases
show equally good agreement with the theoretical x? distribution. Note that the test
curve g = 2g, which demonstrates the failure of the method applied in the appendix of
this chapter (Figure 6.22), here gives a x2 of 32.4, indicating correctly a terrible fit.

we examine a global error function

E(m) = Y (ghta(m) —8)’, (6.31)
l

where the sum is over the mock ensemble and ggé A(m) denotes the genus curve of
catalogue [, treated with a PCA filter of order m. Figure 6.15 shows a minimum of
E(m), when m =~ 6 principal components are used. Higher principal components lead
to additional noise, in the sense that the reconstructed genus curves differ more and
more from the ensemble average. For this reason we will restrict ourselves to the first 6
principal components.

As is seen in Figure 6.14 the first six principal components give only small weight
on the genus at low and high values of v, where we know that the errors are not nor-
mally distributed. Because of that, one can hope that the distribution of the principal
components h is consistent with a Gaussian, at least if we only use the first m = 6 of
them. A Kolmogorov-Smirnov test (see the appendix of this chapter) reveals that this
is indeed the case. We will therefore attempt an ordinary multivariate analysis based
on the fixed set of principal components displayed in Figure 6.14. Since we keep them
fixed for all suites of mock catalogues, we do not expect that the correlations between
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Figure 6.17: Genus curves of the 1.2-Jy redshift survey of IRAS galaxies. The left
column shows high resolution genus curves obtained with fixed smoothing, while the
middle and right columns give the results for the two adaptive smoothing schemes. In
each row the same smoothing scale is considered, rising from 5h~'kpc to 20 A~ 'kpc.
Note however that the vertical scale is different for individual panels. The adaptively
smoothed genus curves exhibit a considerably higher genus amplitude. The dashed lines
are random phase genus curves with amplitudes determined from the first principal
component of the measured genus curves. In the case of adaptive smoothing, \ sets the
mass per smoothing volume via equation (6.20).
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Figure 6.18: Average signal-to-noise ratio of the measured genus curves for different
smoothing techniques as a function of smoothing scale. The results are for the SCDM
mock catalogues and PCA-filtered (m = 6) genus curves. The small symbols show the
corresponding SNR for the raw genus curves. The ACDM catalogues give a similar
result.

the different principal components will exactly vanish, although they should be small.
For this reason we compute the covariance matrix C of the measured values of h, and
consider the statistic

x’(h) = (h —h)’'C7!(h - h). (6.32)

In Figure 6.16 we show an example of the distribution of this quantity. It is indeed
very well fit by a x? distribution with m = 6 degrees of freedom. Note that for this
statistic the pathological result obtained in the appendix for the curve g = 2g is gone;
here this curve gives x? = 32.4, implying a terrible disagreement, as it should.

6.8 Comparison of the 1.2-Jy survey with Virgo

6.8.1 1.2-Jy genus curves

Figure 6.17 shows the genus curves we obtain for the 1.2-Jy redshift survey with three
different smoothing schemes. The left column displays results for fixed smoothing, while
the middle and right columns give the corresponding curves for the two variants of
adaptive smoothing. The genus curves in the Figure are computed with a uniform
spacing of Av = 0.01 in the interval —3 < v < 3. Note that the genus curves that are
used for the comparison with the Virgo simulations represent only a subsampling of this
data with a spacing of Av =0.1.
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Figure 6.19: Example for a PCA-filtered genus curve as a function of the number m
of included principal components. In each panel the thin line shows the 1.2-Jy genus
curve resulting for triaxial adaptive smoothing with A = 5 h~'kpc. The thick line gives
the corresponding PCA-filtered curve for the specified order m of the filter.

The large amount of jitter in the curves indicates that there is substantial noise in
the measurement. Interestingly, the adaptively smoothed genus curves show less scatter
and seem to be smoother than with fixed smoothing. Clearly, the triaxial smoothing
technique produces the smoothest genus curves. It might therefore be hoped that this
reflects an increase of the number of resolved structural elements which in turn allows a
measurement of the genus curve with less error.

231



6 Genus statistics of the Virgo N-body simulations and the 1.2-Jy redshift survey

In order to test this expectation we define an average signal-to-noise ratio (SNR)

(SNR) = <§2> -1 zkj 5; (6.33)
=\ k&2 '
of the measured genus curves. Here g; denotes the mean genus density at each of the k =
61 measured positions, and 02(g;) is the variance of the corresponding measurements.

In Figure 6.18 we show the SNR for the three different smoothing techniques as
a function of smoothing scale. As expected, the adaptive smoothing techniques can
significantly improve the SNR compared to the fixed smoothing scheme. Also, the
triaxial method clearly performs better than the spherical adaptive smoothing. Note
that Figure 6.18 shows the SNR. for genus curves that are filtered with a PCA-filter of
order m = 6. The SNR for the raw genus curves is also plotted; it is generally smaller,
showing that the PCA-filter can indeed reduce the contamination with noise.

A further illustration of the effect of the PCA-filtering is given in Figure 6.19. Here
we show the 1.2-Jy genus curve resulting for the triaxial adaptive smoothing technique
with A = 5h 'kpc together with PCA-filtered versions of it. As the number m of
included principal components is increased, more features of the measured genus curve
can be faithfully reproduced by the filtered curve. However, adding in more principal
components will eventually only lead to a reproduction of the noise inherent in the
measured curve.

6.8.2 Comparison with Virgo

As outlined in Section 7 we base our statistical comparison between Virgo and the 1.2-Jy
survey on 6 principal components of the measured genus curves. The amplitudes of the
principal components are just the projections of the measured genus on the curves shown
in Figure 6.14.

In Figure 6.20 we show examples of the distribution of the principal components for
fixed smoothing with A = 10 A~ 'kpc. In each panel, the solid histogram shows the result
for the SCDM suite of mock catalogues, while the thin line gives the ACDM distribution.
The dotted lines show the normal distributions that result from the mean and the vari-
ances of these histograms, and the dashed vertical line marks the measurement for the
1.2-Jy survey itself. The panels of the bottom half of Figure 6.20 show the corresponding
genusplots for the triaxial adaptive smoothing technique.

It is immediately apparent, that the discrimination between SCDM and ACDM is
poor with a dataset as sparse as 1.2-Jy. The amplitude h; proves to be the most
sensitive measure of differences between the models. However, the large uncertainties in
the genus measurement manifest themselves in broad, overlapping distributions of the
principal components. Nevertheless we can still compute the exclusion probability of the
1.2-Jy measurements for each of the models. For this purpose we calculate the x?(h)
value of the 1.2-Jy measurement with respect to the distributions of the SCDM and
ACDM models, and the probability p that a mock catalogue shows a higher x? than the
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Figure 6.20: Distribution of the measured principal components for the SCDM (thick
histogram) and ACDM (thin histogram) models. In each panel, the dashed vertical line
marks the result for the 1.2-Jy survey. The dotted lines are normal distributions with the
mean values and variances of the individual histograms. The data shown compares the
distribution of the principal components for the fixed and triaxial adaptive smoothing
techniques with A = 10h 'kpc. Other smoothing scales show qualitatively similar
results.
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Figure 6.21: Measured genus amplitudes for the SCDM and ACDM mock catalogues
and the 1.2-Jy survey. Each panel shows results for one of the three different smoothing
schemes employed. The mean of the SCDM mock catalogues is displayed as solid line,
the ACDM result is the dashed curve, and the diamonds mark the 1.2-Jy measurements.
The attached error bars indicate the rms scatter of the SCDM sample. Note that we
have normalized the first principal component such that the measured amplitude N
corresponds to that of a best-fitting Gaussian curve (equation 6.5).

1.2-Jy survey. Here we assume that the principal components are multivariate normally
distributed.
Additionally we give the likelihood ratio (Protogeros & Weinberg 1997)

exp -5 (& - )]

between the ACDM and SCDM models. Here x2 and x% denote the x?-values of the
1.2-Jy data with respect to the SCDM and ACDM samples, and Cg and Cp are the
6 x 6 covariance matrices of the measured principal components. We list a summary of
our results in Table 6.4.

All the measured probabilities p are so high, that the 1.2-Jy genus data are consistent

1
£ (Acom) — |det Cs|?
|det Cy |2

(6.34)

SCDM
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Table 6.4: Comparison of SCDM and ACDM with the 1.2-Jy survey assuming a
multivariate normal distribution for the principal components. Listed are the x? values
(m = 6 degrees of freedom) for the 1.2-Jy survey when it is compared to either the
SCDM or the ACDM suite of mock catalogues, and the resulting exclusion levels p. We
also compute the relative likelihood of ACDM compared to SCDM.

Fixed smoothing

SCDM ACDM
A[ph7kpd X2 p X p L (SSDDM)
5 722 030 391 069 8122
7 706 032 543 049  4.316
10 8.05 0.23 464 059  10.790
14 546 049 5.15 052  2.429
20 9.04 0.17 7.30 029  4.465

Adaptive smoothing (spherical)

SCDM ACDM
AMhTpd X2 p X2 p o L(55EN)
5 552 048 210 091 5208
7 1297 0.04 1072 0.10  2.860
10 576 045 698 032  0.637
14 498 055 6.82 034  0.382
20 362 073 3.90 069  0.911

Adaptive smoothing (triaxial)

SCDM ACDM
A[ph7%kpe] X2 p X*  p L (QSDD%\‘E)
5 487 056 225 090  3.478
7 11.31 0.08 897 0.8  2.852
10 726 030 8.14 023  0.633
14 734 029 867 019  0.524
20 11.88 0.06 1040 0.1  2.545

with being drawn from either of the two CDM models, i.e. the genus test cannot rule
out the SCDM or ACDM model with high significance when only one smoothing scale
is considered. However, we can still make a statement about their relative likelihoods
given the measured 1.2-Jy data. For the fixed smoothing, the ACDM model is more
likely than the SCDM model for all smoothing scales. This preference of ACDM is also
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Table 6.5: Comparison of the SCDM and ACDM models with the 1.2-Jy survey
using a combination of genus amplitudes for different smoothing scales. Listed are the
fractions pqg, pr of mock catalogues that fit the ensemble mean worse than the 1.2-
Jy measurements. The pq statistic is just a sum over the x?-deviations at individual
smoothing scales, and the pg statistic is based on a fit of the run of genus amplitude
with smoothing scale.

SCDM ACDM

0.012  0.522
. PQ
xed 0002 0.696

pq 0.330 0.590
pr 0.242 0.992

pg 0174  0.384
pr 0132 0.944

spherical

triaxial

found with the adaptive smoothing, however at a weaker level since the results actually
favour SCDM at 10~ 'kpc and 14~ 'kpe.

To improve the discriminative power of the genus test we can try to combine the
measurements corresponding to different smoothing scales. As we have demonstrated
above, the genus amplitude (i.e. the first principal component A1) is most sensitive to
differences between the models, essentially because it measures the shape of the power
spectrum. Hence we will focus on it in the following.

In Figure 6.21 we show the average genus amplitudes of the SCDM and ACDM mock
catalogues together with the measurements for the 1.2-Jy survey. The models follow
approximately parallel lines, albeit at different heights, when we plot dimensionless
genus densities (27r)?2A3N. To quantify the overall agreement between the 1.2-Jy survey
and the models we consider two simple statistics. First we compute a x?-like quantity by
adding up the amplitude measurements corresponding to the different smoothing scales,
viz.

Am _ ;)2
Q= Z % (6.35)

where A is the measured 1.2-Jy amplitude at smoothing scale i, and A; and o; give
the mean and dispersion of one of the two mock ensembles. Because the survey volumes
corresponding to different smoothing scales are not independent, the quantity ¢} cannot
be expected to follow a y? distribution. Instead, we calibrate its distribution with
the mock ensembles themselves. In particular, we compute the fraction pg of mock
catalogues that give a higher value for ) than 1.2-Jy. This quantity can be interpreted
as an exclusion probability.

The above test makes no assumption about the run of genus amplitude with smooth-
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ing scale. We can further strengthen the constraints by assuming that the power spec-
trum of the 1.2-Jy survey is reasonably close to a CDM spectrum. Then the measured
genus amplitudes should lead to an approximately straight line as well. Using linear
regression we therefore fit a straight line to the measured amplitudes in the (2r)3X\3N-\
diagram and consider the distribution of the amplitude of this fit at the intermediate
smoothing scale of A = 12.5h 'kpc. Again we calibrate this statistic with the mock
catalogues. In particular, we compute for the measured 1.2-Jy value the fraction pr of
mock catalogues that deviate more from the mean than 1.2-Jy itself.

Table 6.5 summarizes the results of these tests. As already suggested by Figure 6.21
the fixed smoothing technique clearly favours the ACDM model, and rules out the SCDM
model with high significance. In fact, the combined genus test excludes the SCDM model
at a 99 per cent confidence level.

The adaptive smoothing techniques, however, disappoint the hopes for stronger con-
straints. While they also clearly favour the ACDM model, they cannot exclude SCDM
with reasonable significance. This is mainly due to 1.2-Jy measurements that are quite
high at intermediate smoothing scales and which fit the SCDM model better than ACDM
in this regime. This may well be a fluctuation due to cosmic variance. We also want
to argue that this should not be viewed as a failure of the adaptive smoothing tech-
niques. As we have shown, adaptive smoothing does increase the signal-to-noise ratio of
the measured genus curves. Hence it is able to measure more properties of the exam-
ined density fields. The results we obtain just mean that these additional properties of
the 1.2-Jy density field agree with both models and are not able to discriminate more
strongly between them.

In summary the genus statistic of the 1.2-Jy survey is consistent with the ACDM
model, while the SCDM cosmology is ruled out with high significance. This is in accor-
dance with the expectation that a model with power spectrum shape I' = 0.2 should do
substantially better than SCDM, since the observed galaxy distribution has been repeat-
edly shown to exhibit more large-scale power than SCDM. Our results are also consistent
with the work of Protogeros & Weinberg (1997), who found that the 1.2-Jy topology can
be explained by an open CDM cosmology with I' = 0.25, although a scale-free n = —1
model gave even a somewhat better fit.

6.9 Conclusions

In this work we have examined the genus statistics of N-body simulations down to the
smallest scales examined so far. With the conventional smoothing technique of a spatially
fixed kernel we showed that the genus curves of CDM cosmologies retain their random
phase shape far into the non-linear regime. However, the genus amplitude is strongly
reduced by phase correlations in the density field on scales below 10 A~ 'kpc. At 2k~ 'kpc
the suppression reaches a factor of 4. While it is not obvious at the moment how this
amplitude drop is related to more traditional measures of higher order correlations, it
might be an interesting quantity to characterize non-linearity in future investigations.
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The genus in the fixed smoothing regime fails to show strong differences between the
7CDM, ACDM, and OCDM models. This suggests that the genus is only sensitive to
the shape of the power spectrum in this regime.

We have shown that an adaptive smoothing is required to use the smallest resolved
mass scales of the Virgo simulations. Because of that we have computed genus curves
with a novel adaptive smoothing technique for the fully sampled simulations. With
the adaptive scheme we can clearly separate the four models at the smallest scales we
examined, i.e. the ‘degeneracy’ between the three models 7TCDM, ACDM, and OCDM
can be lifted. In addition, on these scales the genus statistics show very strong departures
from ‘quasi-Gaussian’ behaviour.

We have also performed a large Monte-Carlo experiment in order to establish the
statistical properties of the genus statistic when it is applied to a redshift survey like the
IRAS 1.2-Jy catalogue. For this purpose we extracted a large number of 1.2-Jy mock
catalogues from the simulations.

We found that the genus statistic of the 1.2-Jy survey is well consistent with the
ACDM simulation, while the SCDM model is ruled out at a 99 per cent confidence level.
We have not explicitly examined 7CDM and OCDM, since we expect them to show at
most marginal differences from ACDM at the resolution of the 1.2-Jy data.

In this work we also proposed two variants of adaptive smoothing techniques for
flux limited redshift surveys. We demonstrated that these techniques can improve the
signal-to-noise ratio of the measured genus curves. Hence they are able to extract more
topological information from a given redshift survey. Using the 1.2-Jy catalogue, how-
ever, we could not achieve a stronger discrimination between the SCDM and ACDM
models. Since adaptive smoothing is sensitive to additional properties of the density
field, we conclude that these properties of the 1.2-Jy survey are consistent with both
models. We remain convinced that adaptive smoothing will exhibit a clear advantage,
if redshift surveys are used that allow a reconstruction of the density field on strongly
clustered scales. Since very large redshift surveys like the Sloan survey are underway,
this regime will be accessible in the next few years.

Due to its sensitivity to higher order correlations, the genus statistic remains a use-
ful tool to test the random phase hypothesis, and to compare theoretical models with
observations. In this work we confirm that the topology of the 1.2-Jy redshift survey
is consistent with current models of cold dark matter universes that grow structure out
of random phase initial conditions. A particular advantage of the genus is that these
results should be largely independent of a possible bias between the galaxy density and
the mass density, at least if this bias relation is monotonic.

6.10 Appendix: Distribution of errors
In Section 6.7.1 we defined a multivariate analysis of the measured genus curves using

the full 61 x 61 covariance matrix of equation (6.26). Here we demonstrate that this
method can fail in practice, and we examine reasons for this failure.

238



6.10 Appendix: Distribution of errors

0.050

0.040

— 0.030

p(X®

0.020

0.010

0.000
20

100 T IRARARRARN IRARARRARN IRRRRRRRRN IRARARRARN IRARARRARN T

50

g(v) [ (100 h™* Mpc)*®]

Figure 6.22: The top panel shows the distribution of x? defined by equation (6.28) for
k = 61 measured points of the genus curve (SCDM mock catalogues, fixed smoothing
of 7h~'kpc). The dotted curve is the theoretical x? distribution for 61 degrees of
freedom. The dashed line marks the x2-value obtained if one checks the fit of a genus
curve that is everywhere twice the mean, i.e. g = 2g. The resulting low value of x>
suggests a perfect fit; yet this curve is highly inconsistent with the mock ensemble, as
we demonstrate in the bottom panel. Here the thick line gives g, while the thin line
shows g = 2g. The error bars are the rms deviations of the genus at individual points
v; of the curve.
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Figure 6.23: Pearson’s correlation coeflicient for the genus measurement. The labelled
curves show the correlation coefficient for a number of different points on the genus
curve. Adjacent points are quite strongly correlated over a range Av = 1. The result
shown here is for the SCDM catalogues with fixed smoothing of 5 h~'kpc; it is very
similar for all other smoothing scales we consider in this work.
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In Figure 6.22 we show the distribution of x? as defined in equation (6.28) for the
SCDM mock catalogues, smoothed with A\ = 7h~'kpc. The dotted line shows a 2
distribution for £ = 61 degrees of freedom, which is apparently able to fit the observed
distribution reasonably well. However, this does not necessarily mean that the distribu-
tion of errors is in fact well approximated by a multivariate Gaussian. A first hint that
a problem is lurking here may be obtained by computing the x? value for a genus curve
with g = 2g, i.e. one that deviates by 100 per cent from the mean. For this curve the x?
comes out as 40.1, suggesting a perfect fit, although the curve g is actually discrepant
at individual points on the genus curve with high significance level, as is shown in the
bottom panel of Figure 6.22.

Clearly, this peculiar result needs to be understood. In Figure 6.23 we show Pearson’s
correlation coefficient for a number of places on the genus curve. In general, adjacent
points on the genus curve are correlated over roughly a range Av = 1. The main effect
of these correlations is to introduce negative values in the inverse VZ]_1 of the covariance
matrix in the elements just off the diagonal. These terms reduce the weight of deviations
from the mean if adjacent points exhibit deviations of the same sign.

As a result, coherent deviations (as in g = 2g) are hardly penalized at all. This
partly explains the low x? we obtained for the test curve g = 2g; yet it does not
fully account for why the test fails so badly. We think that there are two reasons for
this. First, the statistical properties of the genus errors cannot be fully described by
the covariance matrix alone, because the distribution of errors is not consistent with
a multivariate Gaussian. This will be shown below. Second, and more importantly,
the noise in the covariance matrix compromises its inversion; although the inversion is
mathematically possible and stable, the result is not necessarily meaningful, because
it is strongly affected by the noise. The principal components analysis developed in
Section 6.7.2 provides a solution to this problem. The noise may also be tamed by using
a smaller number of points to sample the genus curves, or by using a very large ensemble
of mock catalogues.

We now demonstrate that the distribution of the genus measurements is in fact not
a multivariate Gaussian. It is sufficient to show that even the distribution of just the
genus at a single value of v; is not normal. For this purpose we employ a Kolmogorov-
Smirnov (KS) test. Based on the n = 500 genus measurements for a mock ensemble we
can estimate the mean and the variance at individual points on the genus curve from
the sample itself. We can then evaluate the KS test

D,, = sup |Sn(g) - F(g)| ’ (636)

where S, (g) denotes the cumulative distribution function of the measurements and F'(g)
is the cumulative probability distribution function of the presumed Gaussian.

In general the KS test is fully distribution-free only if the test distribution F' is
known beforehand. However, here we estimate the parameters of the normal distribution
from the sample itself. Because mean and variance are only scale factors of the normal
distribution, the KS test remains applicable, although the distribution of D,, is changed
(Kendell & Stuart 1973). We calibrate the latter with a Monte-Carlo experiment.
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Figure 6.24: Kolmogorov-Smirnov test of normality of the genus measurements. The
symbols give the test measure v/nD,, for 61 points on the genus curve of the SCDM
mock sample. Diamonds refer to fixed smoothing with 5 h~'kpc, boxes are for adaptive
smoothing. The horizontal lines delimit probability regions for various exclusion levels.
If the distribution were normal, a point should be found with probability 50% below
the lowest line, with 68% below the dashed line, with 95% below the dot-dashed line,
and with 99% below the solid line. We obtain a qualitatively similar result for other
smoothing scales and mock ensembles.

In Figure 6.24 we show measurements of \/nD, for the SCDM mock ensemble,
smoothed at 5h 'kpc with the spherical and, alternatively, the triaxially adaptive
method. If the distribution of the g; were Gaussian, in half of the cases we should
measure y/nD, > 0.609, and in only 1 per cent of the cases \/nD,, > 1.055. Hence the
KS test shows that the genus distribution is inconsistent with a Gaussian at low and
high values of v. Close to v = 0 the points are consistent with a normal distribution,
although there seems to be a lack of points with low values of \/nD,,.

We think that it is not too surprising that the distribution of errors is not well
described by a multivariate Gaussian. For example, sampling fluctuations can affect the
whole volume-fraction/density-threshold relation and thus result in coherent shifts of
parts of the genus curve along the x-axis. Similarly, the small survey volumes examined
here can lead to large irregular fluctuations in the genus due to particular density features
of the patch under examination. As a result, we expect that the genus curve exhibits
complicated higher order correlations which make it rather difficult to take full advantage
of its information content.
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Jean Baudrillard, Amerika

Concluding remarks

Abstract

In each of the preceding chapters, I have given a summary and a discussion of the
main results found in the corresponding sections. I will here briefly try to reiterate
some of my findings and to put them into perspective within cosmology.

7.1 Results and conclusions

In this thesis, I have studied a number of related aspects of the theory of structure
formation occurring via gravitational instability of Gaussian fluctuations in universes
dominated by cold dark matter. This class of theoretical models currently provides
the most successful description of structure formation, and it is also the most widely
investigated up to now.

An important paradigm of these theoretical models is the concept of hierarchical
galaxy formation. In CDM universes, galaxies form bottom-up, with small galaxies
being born first. A hierarchy of merging processes then leads to the build-up of ever
more massive galaxies. In these scenarios, mergers of galaxies are common events that
occur frequently. In fact, according to the merger hypothesis, most ellipticals are thought
to be formed by mergers of large disk galaxies.

In this work, I have addressed two main issues related to galaxy mergers. In Chap-
ter 2, I have focused on the formation of tidal tails in collisions of disk galaxies. In
previous work, it had been suggested that the massive dark haloes expected in CDM
models around disk galaxies could prevent them from forming tails as massive and ex-
tended as those observed in many prominent interacting systems. However, with a series
of self-consistent collisionless simulations of galaxy-galaxy mergers I have shown that the
halo-to-disk mass ratio is not a good indicator of the ability to produce tails. Instead,
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the relative size of disk and halo, or alternatively, the ratio of circular velocity to local es-
cape speed at the half mass radius of the disk decide whether strong tails can be formed.
Using a detailed modeling of the structure of galaxies expected in the currently favoured
CDM models, I have shown that these models are not compromised by an inability to
form tails, because there is a sufficiently large population of disk galaxies that is sus-
ceptible to tail formation. This conclusion is almost independent of the cosmological
parameters employed for the CDM model. Tidal tails thus provide no strong constraints
on them, but they remain a highly useful probe for the structure of individual interacting
systems.

A second issue related to galaxy mergers was addressed in Chapter 3. I here de-
veloped a hydrodynamical model for the regulation of star formation in disk galaxies
by feedback processes. Because the complicated physics of feedback is neither under-
stood in detail nor can it directly be simulated, I have adopted a heuristic approach
and introduced a fiducial second reservoir of internal energy, accounting for the kinetic
energy content of the gas on unresolved scales. Feedback by supernova explosions is then
thought to give rise to an effective turbulent pressure described by this reservoir.

Using this model, I have shown that a self-regulation of star formation can be
achieved, with star formation rates in agreement with the observed global Schmidt-
law for disk galaxies. The scheme allows converged numerical results to be reached with
moderate numerical resolution, which is of high relevance for future applications to cos-
mological simulations of galaxy formation. I have also applied the model to mergers of
gas-rich disk galaxies. These dissipative galaxy collisions lead to a strong central influx
of gas, where it feeds a central starburst. The presence of a bulge can stabilize the disk
such that the onset of the starburst is delayed from the first encounter of the galaxies
to their final merger. By studying the isophotal shapes of the merger remnants and
comparing them to equivalent collisionless merger remnants, I showed that dissipation
favours disky isophotal shapes. This supports a long-standing hypothesis raised in many
observational studies of the formation path of elliptical galaxies. In general, the density
profiles of the merger remnants are well consistent with de Vaucouleurs profiles, except
for the innermost region in the strongly dissipative simulations. Here, the newly created
stars give rise to a luminous core with luminosity density that may be higher than those
observed in the centers of ordinary ellipticals.

Hierarchical galaxy formation is a process that continuously acts over the course of
cosmic evolution. In Chapter 4, I have therefore addressed the problem of galaxy for-
mation within the proper cosmological background using simulations of the formation
of a rich cluster of galaxies. These simulations have presumably the largest numerical
resolution ever achieved in this field so far. The large resolution allowed an extension of
semi-analytic models for galaxy formation to a regime where one can actually track the
merging processes of dark matter subhaloes within larger virialized systems. I developed
new techniques to find these subhaloes, and to trace their evolution from simulation out-
put to output. In this new methodology I have been able to directly follow the merging
processes of galaxies, thereby eliminating uncertainties due to the previously required
estimates of merger timescales. I have shown that the resulting semi-analytic models pro-
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duce remarkably successful results for the population of cluster galaxies. The luminosity
function of cluster galaxies is very well fit by a Schechter function with a relatively flat
faint-end, and the overall mass-to-light ratio is consistent with observations. Simultane-
ously, the Tully-Fisher relation of spiral galaxies in the field is very well fit. Within the
cluster, elliptical galaxies are more concentrated towards the center than spirals, i.e. a
pronounced density-morphology relation results, spatially resolved within the cluster.
The star formation histories of cluster and field galaxies reveal that the cluster galaxies
form their stars substantially earlier than the galaxies in the field. Already at redshift
z =~ 4 half of the stars in the cluster have been formed, while this is not the case for the
field before z ~ 2.

In order to study resolution effects in my analysis, I have simulated the same cluster
of galaxies several times using different numerical resolution. Reassuringly, the number
of subhaloes I find is consistent between simulations of different numerical resolution.
Each of the simulations exhibits the right abundance of subhaloes down to its resolution
limit. Note that the total mass attached to subhaloes in the cluster is about 10-11%.

The formalism I developed also allows the detection of mergers between galaxies
inside the cluster. Such events do indeed occur, albeit at a small rate. Note that despite
the survival of hundreds to thousands of subhaloes in the final cluster, there is still plenty
of merging going on. In the semi-analytic modeling bulges of galaxies form in mergers
of galaxies while most stars are born in disks. However, the majority of stars in the
cluster are found in bulges, showing that their parent galaxies have undergone mergers
since most of the stars had been born.

A common theme through the work discussed above has been the extensive use of
computer simulations. These simulations have been carried out with a new N-body code
that combines a gravitational tree-algorithm with smoothed particle hydrodynamics, as
discussed in Chapter 5. The code uses a new time integration scheme allowing individual,
fully adaptive timesteps for all particles. With respect to the tree algorithm, I have
introduced a new cell-opening criterion, which is more efficient than the standard BH-
criterion, and has also much better properties when applied to cosmological simulations
at high redshift. I have also introduced a new concept of dynamical tree updates,
eliminating a possible bottleneck caused by the tree construction time in a regime where
the dynamic range in particle timesteps becomes very large. In the hydrodynamical
part, the code keeps the number of SPH smoothing neighbours exactly constant, and
it guarantees force symmetry between all hydrodynamically interacting particle pairs.
Together with a sheer-reduced formulation of the artificial viscosity, the hydrodynamical
part performs very well in test problems, in particular with respect to observing the
conservation laws. The code is essentially free in its ability to adapt to the geometry and
the dynamic range of the problem under consideration, and it only invests computational
work where it is needed.

I have also ported the code to massively parallel supercomputers with distributed
memory using an explicit communication paradigm. In principle, gravitational tree algo-
rithms are very difficult to parallelize on distributed machines, because at any given time,
every particle interacts with every other particle. Despite this problem, it is possible
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to design a decomposition of the problem, such that high degrees of parallelization and
resulting speed-up factors can be achieved. I have used a recursive orthogonal domain
decomposition to partition the problem onto the processors, where the domain decom-
position is dynamically determined by work-load balance considerations. Each domain
then acts as an independent computational entity that can provide the force exerted by
its mass content on arbitrary locations in space. Using a collective communication and
summation scheme, I then obtain the total force on the subset of particles that is ad-
vanced at the current timestep. This parallelization strategy allows to fully benefit from
the substantial gain in performance resulting from the use of adaptive timesteps. The
parallel code developed in this work scales well to high processor numbers and has been
successfully used to run several cosmological simulations with up to 74 million particles
on 512 processors. It is fully written in the C/MPI language standard, allowing its use
on a large variety of systems, without requiring any substantial change.

One of the fundamental assumptions of current theories of galaxy formation is
whether the primordial fluctuations that seed structure form a Gaussian random field.
It is thus an important task to test observationally whether this Gaussian random phase
hypothesis holds, or whether phase correlations in the primordial density field existed.
In Chapter 6, I have used the genus statistic to study the density field of the Local
Universe, as observed with the 1.2-Jy redshift survey of IRAS galaxies. Unlike the basic
statistical measurements of the power spectrum or the two-point correlation function,
the genus statistic is sensitive to correlations of higher order, and it can be used to test
whether the primordial density field is consistent with being a Gaussian random field.

In order to compare N-body models for the growth of structure with the 1.2-Jy survey,
I have extracted large ensembles of mock galaxy catalogues from the simulations. These
mock surveys, which mimic the selection properties of the 1.2-Jy survey, have then be
used to find the distribution of errors of the measured genus curves, and to establish
a principal components analysis of these curves. Using a likelihood ratio test and a
combination of genus measurements at different smoothing scales, I found that the 1.2-
Jy survey is inconsistent with the SCDM model at a 99% confidence level, while CDM
models with a shape parameter I' ~ (.2 for their power spectrum are in good agreement
with the data. On linear scales, the IRAS density field is consistent with the Gaussian
random field hypothesis. I also introduced a new adaptive smoothing technique, and I
showed that it increases the signal-to-noise ratio of the genus test. Adaptive smoothing
can thus be used to extract a larger amount of information from a given data set.
For the numerical N-body models, I have analysed the genus also in the strongly non-
linear regime, where large phase correlations due to gravitational clustering develop.
The amplitude drop of the genus curve with respect to the Gaussian value provides an
interesting quantitative measure of phase correlations and may in principle be used to
differentiate between models.
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7.2 Theoretical prospects

If one compares the current status of the field of galaxy formation with the one just
a few years ago, one is certainly impressed by the very rapid progress that has been
achieved in this area. Over the last decade or so, the paradigm of hierarchical galaxy
formation has emerged as a highly successful theory, able to provide explanations for a
large variety of observational facts. Similarly, for a suitable choice of the cosmological
parameters, the cold dark matter models are in reasonable agreement with all the basic
aspects of observational data. At present, there is no alternative theory that comes even
close to these successes, so one might be tempted to start talking of something like a
‘standard model’ for cosmic structure formation.

However, galaxy formation is still far from being ‘solved’, and it is too early to
consider hierarchical models as being proven. While the general picture of hierarchical
galaxy formation seems to work, this picture is still very crude in many respects. For
example, the details of star formation in galaxies or the chemical enrichment of the
interstellar and intergalactic media are only poorly understood. There are also many
well-established observational facts that are as of yet unexplained, or it is unsettled which
one out of several competing scenarios offers the correct explanation. For example, the
tilt of the fundamental plane of elliptical galaxies, or the physical origin of gamma ray
bursts, may be considered to fall into this category.

At a more fundamental level, we should not forget that cosmological parameters as
basic as the mass density of the Universe, or the Hubble parameter are still not known
precisely. On top of that lingers one of the most enigmatic questions of cosmology: What
is the physical nature of the dark matter?

However, cosmology will undoubtedly see substantial further progress in the next
few years. It can be expected that new observational data will be the catalyst allowing
such advances. In recent years, the exploration of the high-redshift Universe has become
possible with the Hubble Space Telescope, and the new huge 8-10 meter class telescopes
like VLT and Keck will continue to rapidly advance our understanding of the birth of
galaxies. Numerous new satellite missions will be launched in the near future. Projects
like Planck-Surveyor and MAP will provide measurements of the cosmic microwave
background with very large angular resolution. If successful, these missions will provide
precision measurements of the cosmological parameters. A host of new X-ray satellites
like XMM or Chandra will follow up on the successful exploration of the X-ray sky. New
huge redshift surveys like the Sloan or 2dF surveys are about to provide databases of
unseen quality and extent.

The sheer amount of cosmological data that will be provided by these projects is
awe inspiring, and it will likely transform our view of galaxy formation by constraining
many basic properties of the galaxy population to unprecedented accuracy. As a re-
sult, cosmology is probably about to enter the ‘precision era’. Theoretical models that
try to keep up with the ever more detailed observational picture of the Universe will
likely require ever more complex modeling, too. Therefore it appears that numerical
astrophysics might become even more important than it is today.
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