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Abstract

This work explores the equilibrium and non-equilibrium statistical mechanics of small charged
particles (counterions) at oppositely charged polymers and cylindrical surfaces. Processes
involving charged polymers and their neutralizing counterions are ubiquitous in soft-matter
and biological systems, where electrostatic interactions result in an impressive variety of
phenomena. The interplay between electrostatic interactions, that attract counterions towards
charged polymers, and the entropy gained by counterions upon dissolution leads to a critical
counterion-condensation transition, which is the central theme of this thesis.

The universal and critical features of this transition are investigated in equilibrium con-
ditions using both analytical approaches and a novel Monte-Carlo simulation method. The
critical exponents as well as the singular behavior associated with thermodynamic quanti-
ties are determined and demonstrated to be universal and in accord with mean-field theory
in two and three spatial dimensions. The statistical correlation between counterions comes
into play below the critical temperature, where counterions are strongly bound to the op-
positely charged surface of the polymer (condensation phase). It is shown using asymptotic
analysis that in the strong-coupling limit, which is realized by high-valency counterions or
highly charged surfaces, electrostatic correlations dominate and result in an effective electro-
static attraction between two like-charged cylinders. Such attractive pair interactions are in
striking contrast with the standard, purely repulsive mean-field interactions, and can trigger
aggregation and phase instability in solutions of highly charged macroions.

Another relevant system, in which counterions play a decisive role and will be subject of
theoretical investigation in the present work, are charged polymer brushes, that consist of
densely end-grafted polymer chains onto a surface. It is shown that the coupling between
osmotic pressure of counterions trapped inside the brush and the polymer length variation
due to the chain elasticity leads to a weak grafting-density dependence for the brush layer
thickness. This behavior goes beyond the standard scaling theories. It has been observed in
recent experiments and simulations, which are compared with the present theoretical results.

Finally, to investigate the non-equilibrium dynamics of counterions at charged polymers,
Brownian Dynamics simulation techniques are employed both in the presence and absence of
hydrodynamic interactions between constituent particles. In particular, the influence of coun-
terion condensation on the electrophoretic mobility of a charged polymer and its counterions
is studied under the action of small and large external electric fields. It is shown that hydro-
dynamic interactions enhance the polymer mobility but substantially reduce the mobility of
counterions. In fact, counterions located in the immediate vicinity of the charged polymer
are found to be dragged along with the polymer. It is shown using different charge pattern
models that the local structural details of the polymer chain, such as the charge spacing, can
drastically affect the mobility of counterions and the charged polymer itself.
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Zusammenfassung

Diese Arbeit untersucht die statistische Mechanik für Gleichgewichts- und Nichtgleichge-
wichtszustände kleiner geladener Teilchen (Gegenionen) in der Nähe von entgegengesetzt
geladenen Polymeren und zylindrischen Oberflächen. Prozesse, die geladene Polymere und
ihre ladungskompensierenden Gegenionen beinhalten, sind allgegenwärtig in weicher Materie
und biologischen Systemen, in denen elektrostatische Wechselwirkungen sich in einer beein-
druckenden Vielfalt von Phänomenen niederschlagen. Das Zusammenspiel von elektrostati-
schen Wechselwirkungen, die Gegenionen zu den geladenen Polymeren ziehen, mit der Entro-
pie, die die Gegenionen dadurch gewinnen, dass sie in Lösung gehen, führt zu einem kritischen
Gegenionen-Kondensationsübergang. Dieser ist das zentrale Thema der vorliegenden Arbeit.

Die universellen und kritischen Eigenschaften dieses Übergangs werden im Gleichgewicht
sowohl durch analytische Ansätze als auch durch eine neue Monte-Carlo-Simulationsmethode
untersucht. Die kritischen Exponenten und das singuläre Verhalten, das in den thermodynami-
schen Größen sichtbar wird, werden mit Hilfe von Simulationen bestimmt, und es wird gezeigt,
dass diese universell und in Übereinstimmung mit der mean-field-Theorie sind, sowohl in zwei
als auch in drei Raumdimensionen. Statistische Korrelation der Gegenionen tritt unterhalb
der kritischen Temperatur auf, also in der Kondensationsphase, bei der die Gegenionen sich in
großer Anzahl um die entgegengesetzt geladene Oberfläche des Polymers ansammeln. Anhand
einer asymptotischen analytischen Theorie wird gezeigt, dass im Grenzfall starker Kopplung
– beispielsweise bedingt durch hochvalente Gegenionen oder stark geladene Oberflächen –
die elektrostatischen Korrelationen dominieren und sich in einer effektiven elektrostatischen
Anziehung zwischen zwei gleichnamig geladenen Zylindern niederschlagen. Solche attraktiven
Paar-Wechselwirkungen stehen im Gegensatz zu den gewöhnlichen, ausschließlich repulsiven
mean-field Wechselwirkungen und können Aggregation und Phaseninstabilität in Lösungen
von hochgeladenen Makro-Ionen auslösen.

Ein anderes relevantes System, bei dem Gegenionen eine entscheidende Rolle spielen, sind
sogenannte geladene Polymer-Bürsten, die aus dichtgepackten Polymerketten bestehen, wel-
che mit einem Ende auf einer Oberfläche befestigt sind. In dieser Arbeit wird gezeigt, dass
die Kopplung zwischen dem osmotischen Druck der in der Bürste gefangenen Gegenionen
und der durch die Elastizität des Polymers hervorgerufenen Variation der Polymerlänge zu
einer schwachen Abhängigkeit der Dicke der Bürstenschicht von der Bedeckungsdichte führt.
Dieses Verhalten geht über die Standard-Skalentheorie hinaus und wurde vor kurzem in Ex-
perimenten und Simulationen beobachtet, die mit den vorliegenden theoretischen Ergebnissen
verglichen werden.

Um die Nichtgleichgewichtsdynamik von Gegenionen an geladenen Polymeren zu untersu-
chen, wurden Brownsche-Dynamik-Simulationstechniken verwendet, sowohl mit als auch ohne
hydrodynamische Wechselwirkungen zwischen den einzelnen Partikeln. Insbesondere wurde
der Einfluss der Gegenionenkondensation auf die (elektrophoretische) Mobilität eines gela-
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denen Polymers und seiner Gegenionen in einem äußeren Feld untersucht. Es wird gezeigt,
dass die hydrodynamischen Wechselwirkungen die Mobilität des Polymers erhöhen, aber die
Beweglichkeit der Gegenionen wesentlich reduzieren. Tatsächlich werden Gegenionen, die sich
in der unmittelbaren Nähe des geladenen Polymers befinden, mit dem Polymer mitgezogen.
Desweiteren wird mit Hilfe verschiedener Ladungsverteilungsmodelle gezeigt, dass die lokalen
Details der Struktur der Polymerkette, zum Beispiel der Abstand der geladenen Monomere,
die elektrophoretische Mobilität sowohl der Gegenionen als auch des Polymers selbst stark
beeinflussen können.



Chapter 1

Introduction

Electric charges and electrostatic interactions are ubiquitous in soft-matter and biological
systems. Soft materials, such as polymers, colloids and proteins acquire surface charges when
dissolved in a polar solvent such as water. This is often due to dissociation of surface chemical
groups, which leaves permanent charges on the surface and releases microscopic ions into the
solution. Soft materials are easily deformed or re-arranged by potentials comparable to ther-
mal energy. It thus becomes clear that electrostatic interactions caused by permanent (or even
induced) charges, that are typically of long-range and large strength, constitute a prominent
factor determining the behavior and properties of these materials. This makes charged mate-
rials central to many technological applications and on the other hand, a challenging subject
for fundamental research in inter-disciplinary sciences. In what follows, I briefly review a
few examples to demonstrate the diversity of phenomena associated with charged soft-matter
systems.

Colloids and polymers: The mesoscopic scale

Colloids are abundant in nature and industry: Smoke, fog, milk, paint and ink are only a few
examples of colloidal systems. They comprise tiny solid or liquid particles that are suspended
in another medium such as air or another liquid. An important factor, which makes colloidal
solutions in many ways different from molecular or simple electrolyte solutions (such as sugar
or salt solution), is the large asymmetry in size and mass between the colloidal particles
and solvent molecules (or microscopic ions): Colloids are mesoscopic particles with sizes in
the range of few nanometers to microns that are indeed made of many atoms, but not yet
sufficiently many (i.e. much less than a mole) to make them behave like macroscopic bodies.
In colloidal dispersions, the total area that is in contact with solvent is tremendously large:
For nanometer-size colloids, nearly half of the atoms (of Angstrom size) are at the surface.
This ratio reduces to only a minor fraction of one for micron-size particles, and tends to
“zero”for macroscopic objects. Therefore contrary to the typical situation in the macroscopic
world, the physics here is dominated by “surface”properties [1, 2, 3].

Another relevant mesoscopic or macromolecular system are polymers (with everyday-
life examples like chewing gum, dough, or egg white), in which many repeating subunits
(monomers) are chemically connected to form a flexible chain. Flexible polymers are dis-
tinguished by their many degrees of freedom associated with conformational arrangement of
monomers that are easily excited by thermal energy at room temperature. The coexistence
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Figure 1.1: a) Schematic view of a charged solution consisting of charged colloids (dark spheres),

charged polymer chains and microscopic neutralizing counterions (small black spheres). Colloids may

be covered by charged polymer brushes, which are typically highly swollen in aqueous solutions and

generate an additional repulsive interaction between colloids. b) Charged polymers may be classified

as flexible (such as PSS), semi-flexible (such as DNA or actin filaments) and rigid (such microtubules)

depending on the ratio between their contour length and their persistence length. Actin filaments

(two-stranded helical polymers of the actin protein with diameter of 5-9 nm) and microtubules (long

hollow cylinders of outer diameter 25 nm made of the protein tubulin) have relatively large persistence

lengths of the order of 10 µm and 1 mm respectively.

between thermal fluctuations and the stringent constraint of connectivity imposed by cova-
lent binding between subunits (which is characteristic of the solid state) leads to a diverse
phase behavior [4, 5, 6]: Polymer chains can have large extensions in the solution and be
strongly entangled, or even collapse into a compact globular state (and thus form a colloidal
system as it is, for instance, realized with proteins). The entanglement of chains in polymeric
liquids gives rise to mechanical and rheological properties that differ dramatically from those
of normal liquids or solids. Depending on their chemical structure, polymer chains can have
a large mechanical stiffness as well, in which case they behave like rigid rods at length scales
smaller than a characteristic persistence length (Figure 1.1a). Two famous examples of stiff
polymers are provided by Nature: Actin filaments and microtubules that are known by their
important role in biological processes occurring in the cell [7] (see Figure 1.1b).

The mesoscopic scale exhibits a distinct regime of time scales as well: The processes in-
volving macromolecules in a solvent are quite slow as compared with microscopic phenomena.
Any motion in a solvent, such as water, is bounded by frequent collisions with microscopic
solvent particles, that transfer the energy to the solvent heat bath, and generate an erratic
movement, the prominent Brownian motion [8, 9, 10, 11]. While the collisions and molecular
processes occur at very short time scales (of the order 10−14−10−10 seconds), the diffusion of
polymers and colloids occurs in time scales that are larger by orders of magnitude spanning
the range of microseconds to seconds. Within this time scale, one deals with a dissipative
stochastic dynamics [12, 13] that will be considered later in this thesis.
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Charges: from industry to biology

In the mesoscopic world, only electromagnetic interactions, that emerge in a variety of forms,
are capable of overcoming thermal fluctuations, which are characterized by an energy scale
of about 0.025eV at room temperature [2]. Here other fundamental forces of nature, such as
gravity that rules the macroscopic large-scale world, play a marginal role or no role at all.

In general, colloids dissolved in an aqueous solvent attract each other due to ubiquitous
van-der-Waals dispersion forces that result from induced charges (via spontaneous polariza-
tion of atoms) on their surfaces [2]. As a result, colloidal particles tend to form aggregates.
Large aggregates typically sediment and destroy the dispersion. In many applications (for
example in food emulsions such as milk), however, stability of a colloidal dispersion is a desir-
able property. One way to stabilize dispersions against aggregation is to generate long-range
repulsive interactions between colloidal particles by imparting permanent like-charges to their
surfaces, which leads to the celebrated DLVO mechanism for the stability of colloidal disper-
sions [1, 14]. Another method is to end-graft polymer chains (or polymer brushes) to the
particle surfaces [15]. For this task, charged polymers are ideal since they swell substantially
in aqueous solutions and inhibit close contact between colloids (see Figure 1.1a). This latter
mechanism has the advantage that it is highly stable against the addition of electrolyte or salt
ions [16], a common ingredient of colloidal solutions, which screen the long-range Coulomb
forces resulting thus in exponentially decaying interactions between particles [18, 17]. But
since dense charged polymer brushes trap a large amount of oppositely charged ions (coun-
terions) inside, the structure of the brush layer, and thereby the repulsive force generated
between colloids, remains highly insensitive to the amount of additional salt.

Charged polymers, or the so-called polyelectrolytes, and their synthesis have attracted a
lot of attention in recent years thanks to their significant role in the production of cheap,
non-toxic and environmentally friendly materials [19, 20]. In contrast to water-insoluble
hydro-carbon chains, polyelectrolytes typically show high affinity for water and heavy metal
ions, which makes them useful in applications such as super-absorbing diapers, waste water
purifiers and washing detergents and their additives.

In biology, on the other hand, charged polymers and electrostatic effects emerge in many
striking examples [21]. Almost all proteins, as well as the DNA and the RNA, are charged
polymers. DNA, for instance, is a long, highly negatively charged biomolecule with a total
length of about two meters in human cells: It bears one elementary charge per 1.7Å, which for
human DNA adds up to 1010 elementary charges overall. Yet the DNA is densely packed inside
the micron-size cell nucleus. In eucaryotic cells, this storage process involves a hierarchical
structure on the lowest level of which short segments of DNA are tightly wrapped around
positively charged proteins (histones) of few nanometers in diameter [7]. The complexation
of DNA with histone proteins is believed to be highly influenced by electrostatic interactions
[23, 24, 25]. Electrostatic effects also play a key role in complexes of DNA with cationic lipids
[26, 27, 28], which are considered as promising synthetically based non-viral carriers of DNA
for gene therapy [29].

Another notorious example (which is closely related to the works presented later in this
thesis) is DNA condensation [21, 30, 31], where electrostatic effects enter in a counter-intuitive
fashion: Here like-charged segments of DNA strongly attract each other! In the in vitro
experiments, the condensation of DNA is realized using bacteriophages–viruses that infect
bacteria and consist of a rigid shell (the capsid) accommodating a single molecule of viral
DNA. These viruses can inject their DNA into a cell (or a lipid vesicle) with appropriate
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a) b)     DNA

condensate

DNA

Figure 1.2: a) Single DNA molecule of the bacteriophage T2 (about 50 µm long) is tightly packed

into the viral capsid (shown in the middle). When exposed to distilled water, the capsid shell is

raptured due the excess internal osmotic pressure (osmotic shock) and the DNA is pushed out [22]. b)

Three now-empty T5 bacteriophages, shown on the top left, have injected their DNA into a liposome

(a model bacterial cell). The remaining bacteriophage, bottom left, is about to inject its DNA [30, 32].

The subtle electrostatic effects inside the liposome have caused the three viral DNA molecules (of

total length of about 124 µm) to form a tightly wound toroidal condensate (for comparison note that

the capsid size is about 70 nm). The medium contains 50 mM of spermidine chloride that yields a

sufficient concentration of trivalent cations to condense the DNA.

receptor proteins in its outer membrane (see Figure 1.2). As a result, large lengths of DNA
(up to hundred microns) are fitted and condensed into a tightly packed, circumferentially
wound torus with a diameter of about hundred nanometers. But this packaging process,
which works against the Coulombic self-repulsion and the conformational entropy of the DNA
chain, is made possible because of the presence of high-valency cations (counterions) in the
medium. Similarly, other highly charged polymers, such as negatively charged F-actin, a
principal structural protein in cells and muscle tissues, can aggregate into closely packed rod-
like bundles when small amounts of multivalent cations are added to the solution [33, 34].
It turns out that, in general, when particles are strongly charged, the role of electrostatic
interactions dramatically changes (or, indeed, reverses as compared with weakly charged
systems) [35]: Here electrostatic interactions themselves govern the destabilization of charged
solutions by mediating attractive like-charge interactions!

Theoretical challenge and coarse-grained models

From a theoretical point of view, charged systems pose a many-body problem: Macroions,
such as charged colloids or polymers, are always surrounded by neutralizing oppositely charged
microscopic ions, called counterions, and also in general by coions. These particles form
loosely bound ionic clouds around macroions and tend to screen their charges. In particular,
counterions, that are attracted towards macroion surfaces, predominantly determine static or
dynamic properties of macroionic solutions in many instances. Understanding the interaction
between macroions across an ionic medium, or their transport properties (such as their mo-
bility in response to a driving electric field, or electrophoresis), requires an understanding of
the counterionic clouds first.
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In the case of charged polymers, the conformational degrees of freedom, as well as the
long-range electrostatic interactions between charged monomers, add to the complexity of
the problem. While these factors can all be incorporated to some extent within numerical
simulation approaches, analytical understanding of charged systems is less developed and is
mainly based on simplified models. A common theoretical approximation to disentangle the
coupling between various degrees of freedom is to fix the chain conformation and focus on
a detailed description of the counterion distribution. Insofar as the counterionic properties
are concerned, this approach provides a good approximation, particularly because charged
polymers are typically highly stretched due to mutual repulsions between monomers. On the
other hand, many important charged polymers such as DNA, actin filaments, microtubules
and fd-viruses, as well as many synthetic polymers, are intrinsically stiff and rod-like. Like-
wise, in densely grafted brushes, charged polymers appear to be highly stretched and with
relatively small lateral wiggling. Therefore, as a first step towards understanding counteri-
onic properties on an analytical level, one may represent charged polymers with rigid straight
cylinders or lines of discrete charges [20, 36, 37, 38, 39].

In the most common theoretical approaches known also as primitive models, the molecular
nature of solvent is neglected and it is represented by a continuum dielectric medium. In
reality, the solvent structure is locally perturbed around particles, which can give rise to
additional short-range solvent-induced interactions between particles [2]. On the other hand,
the microscopic features of the colloidal particles and polymers are taken into account using
coarse-grained models that incorporate only a few effective parameters. For instance, the
charge pattern of colloids or polymers (that may be ordered or highly irregular) is represented
by a uniform distribution, characterized by an effective surface charge density. In most cases,
the specific effects associated with ions (which represent their quantum-chemical properties)
as well as the image charge effects (due to the dielectric mismatch at the boundaries) are also
neglected. These models therefore represent a crude simplification of reality, yet given those
simplifications, establishing a systematic and clear understanding of electrostatic effects turns
out to be a challenging route.

Overview of this work

The central goal in this thesis is to establish unambiguous results based on simple well-
defined models for those aspects of charged polymers that are associated with counterions.
I have therefore adopted the aforementioned approximations except in Chapter 7, where
structural details of polymer chains are incorporated in a simple fashion and within numerical
simulations. In this work, I focus on the one-component counterion-only systems and neglect
coions and the additional salt. The possible effects associated with additional salt will be
discussed qualitatively. However, for the specific problems (or the regimes of parameters)
considered in this work, the additional salt is expected to matter only when present in large
amounts. The organization of this thesis is as follows:

Chapter 2 gives an overview of the two basic phenomena that are central to the problems
discussed in the forthcoming chapters, namely, counterion condensation at charged curved
boundaries and strong-coupling effects such like-charge attraction. Here I will make use of
qualitative arguments to demonstrate the gross physical picture behind these phenomena.

In Chapters 3 and 4, I will focus on the asymptotic properties of counterions at a single
charged cylinder in the limit where outer confining boundaries tend to infinity (the so-called
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infinite-dilution limit). In this limit, counterions display a peculiar critical behavior referred
to as the counterion-condensation transition, which has become one of the central issues
in understanding the static and dynamic properties of charged polymers. The chief goal
here is to determine the critical and universal aspects of this transition. To this end, I
employ extensive Monte-Carlo simulations (using a novel sampling technique for large system
sizes) as well as asymptotic analytical methods in both three and two spatial dimensions.
By introducing the mean inverse localization length of counterions as the relevant order
parameter, I will demonstrate that the critical behavior of counterions is governed by universal
scaling relations, and thereby determine the so-called critical exponents of this transition.
The precise location of the critical point, the role of electrostatic correlations and the singular
behavior of thermodynamic quantities are among other issues that will be addressed in detail.

In Chapter 5, I will focus on the interaction between a pair of like-charged cylinders in the
strong-coupling limit (i.e. when counterions are multivalent or surfaces are highly charged),
where, as it will be shown, correlation effects give rise to strong effective attraction between
like-charged cylinders. The analytical studies in this chapter are based on the asymptotic
strong-coupling theory. I will also discuss the effective interaction between two like-charged
spheres. These results will be compared with recent numerical simulations on strongly coupled
systems displaying a good quantitative agreement.

Chapter 6 deals with charged polymer (or polyelectrolyte) brushes, in which many like-
charged polymers are grafted by one end to a planar surface. The main issue here is the
behavior of the brush thickness as a function of the grafting density (number of chains per
unit area) in the so-called osmotic regime. In this regime, counterions are strongly trapped
inside the brush layer and their osmotic pressure generates the dominant pressure swelling
the polymer chains. While previous scaling theories predict that the osmotic brush height
is independent of the grafting density, recent experiments and simulations exhibit a weakly
increasing brush height with grafting density. I will present a non-linear scaling theory as
well as a systematic mean-field cell-model study, which can explain the observed behavior in
experiments and simulations on a semi-quantitative level.

Chapter 7 considers the non-equilibrium stationary-state dynamics of extended charged
polymers in an external electric field. I investigate the electrophoretic mobility of a charged
polymer and its counterions using Brownian Dynamics simulations methods as well as simple
analytical considerations. In particular, I will discuss the role of hydrodynamic interactions
and counterion condensation in electrophoresis of counterions and the charged polymer. Here I
shall consider several polymer models that differ in the specific form of the charge distribution
along the backbone but all have identical effective charge parameters (such as the linear charge
density). It will be thus shown that the electrophoretic mobility is substantially influenced by
such structural details as also demonstrated recently by capillary electrophoresis experiments.



Chapter 2

Counterion at Charged Objects:
General aspects

This chapter provides a general overview of the physical mechanism behind some of the
basic phenomena in charged systems that one frequently encounters throughout this thesis.
Emphasize is made on equilibrium statistical behavior of counterions at uniformly charged
surfaces that may be planar or curved.

I will first focus on a system of counterions at one and two opposing like-charged planes
and introduce two main regimes of weak and strong coupling, where counterions adopt dis-
tinctly different distribution functions. Strong-coupling effects lead to effective interactions
between like-charged surfaces that qualitatively differ from what one would expect based on
the standard mean-field arguments. At charged curved surfaces, on the other hand, counteri-
ons exhibit a dramatic unbinding transition, which varies in nature depending on geometrical
symmetries of bounding surfaces, and influences the effective interaction between charged
surfaces as well. The main ideas presented here will be corroborated using systematic ana-
lytical and numerical methods, and will be applied to other related systems, in the following
chapters.

2.1 Length scales in a classical charged system

Consider a system of fixed charged objects (macroions) with uniform surface charge density
−σse (with e being the elementary charge) that are surrounded by their neutralizing counte-
rions of charge valency +q. (I conventionally assume that macroions are negatively charged
and counterions are positively charged, thus σs and q are both positive by definition.) The
solvent is assumed to be a continuum medium of dielectric constant, ε, independent of the
temperature, T .

One of the most basic characteristic length scale in a charged system is set by the ratio be-
tween the thermal energy scale, kBT , and the bare Coulombic interaction energy between two
elementary charges at separation r, that is V (r) = e2/(4πεε0r), where ε0 is the permittivity
of vacuum. This ratio may be written as V/(kBT ) = ℓB/r, where

ℓB =
e2

4πεε0kBT
(2.1)

is the Bjerrum length, which measures the distance at which two elementary charges interact
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with thermal energy kBT [40]. In water and at room temperature, one has ℓB ≃ 7.1Å.
Likewise, the rescaled Bjerrum length,

ℓ̃B = q2ℓB, (2.2)

characterizes the strength of mutual counterionic repulsions against thermal fluctuations in
the system.

Other length scales are set by the charge distribution and the specific geometry of macro-
ions. For simplicity, I shall concentrate here on a system composed of a planar charged
wall of infinitely large extension with neutralizing counterions confined to one half-space, the
so-called planar electrical double layer [1, 2, 41, 42] (Figure 2.1).

A different length scale may be identified by comparing the thermal energy kBT with the
energy scale of the counterion-wall attraction, U(z) = qσse

2z/(2εε0), where z is the vertical
distance from the wall. Hence the ratio U/(kBT ) = z/µ, where

µ =
1

2πqℓBσs
(2.3)

is known as the Gouy-Chapman length [41, 42], which measures the distance at which the
thermal energy equals the counterion-wall interaction energy. The Gouy-Chapman length
gives a measure of the thickness of the counterionic layer at a charged wall as will be shown
later.

In principle, one may tune the system parameters in such a way that either of the two
length scales, ℓ̃B and µ, become arbitrarily large or small. In fact, only the dimensionless
ratio between these two quantities, namely,

Ξ =
ℓ̃B
µ

= 2πq3ℓ2Bσs, (2.4)

which is known as the electrostatic coupling parameter, is relevant and uniquely describes
different physical regimes that may be found for counterions at a planar charged wall [35,
43, 44, 45, 46]. In fact, one could show on purely dimensional grounds that such a system
has only two independent length scales (which are taken here as the Bjerrum length and the
Gouy-Chapman length) and thus only one independent dimensionless parameter.

2.1.1 From mean-field to strong-coupling regime

For small coupling parameter Ξ ≪ 1, equation (2.4) indicates that the counterion-wall system
has a relatively large Gouy-Chapman length (or small Bjerrum length), which reflects a loosely
bound counterion cloud at the charged wall (Figure 2.1a). For large coupling parameter
Ξ ≫ 1, in contrast, the Gouy-Chapman length is relatively small (or the Bjerrum length is
large) and counterions are strongly attracted toward the wall (Figure 2.1b).

Further insight into the structure of the counterionic layer may be obtained by considering
the typical distance between counterions at the charged surface. For counterions residing near
the surface, the local electroneutrality condition implies a typical lateral separation of

a⊥ ∼
√

q

σs
, (2.5)
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Figure 2.1: a) For small coupling parameter, Ξ ≪ 1, counterions form a diffuse three-dimensional

layer. b) For large coupling parameter, Ξ ≫ 1, the counterionic layer is essentially two dimen-

sional since the typical lateral distance between counterions, a⊥, becomes much larger than the Gouy-

Chapman length, µ. In this regime, counterions are strongly correlated and surrounded by a correlation

hole of size ∼ a⊥ ≫ µ.

since each counterion neutralizes the charge of an area given by a2
⊥ ∼ q/σs, up to a geometrical

prefactor of the order one. Counterion spacing a⊥ is not an independent length scale and
may be written in units of the Gouy-Chapman length as

a⊥
µ

∼
√

Ξ. (2.6)

In the weak-coupling regime Ξ ≪ 1, equation (2.6) indicates that the lateral separation of
counterions at surface is small compared with µ (layer thickness) implying a diffuse fluid-like
counterionic layer at the surface as depicted in Figure 2.1a.1 This regime is dominated by
mean-field-like features, i.e. counterions become independent from each other in a statistical
sense, as can be verified using a systematic approach (Appendix A).

In the strong-coupling regime Ξ ≫ 1, lateral separation of counterions becomes larger than
the Gouy-Chapman length indicating a quasi two-dimensional structure for the counterionic
layer as depicted in Figure 2.1b. Such a layer is dominated by strong mutual repulsions
between counterions as can be seen by considering the effective 2D plasma parameter [47]

Γ ≡ ℓ̃B
a⊥

∼ Ξ1/2, (2.7)

which gives the ratio between mutual Coulombic repulsions against thermal fluctuations (in
the 2D one-component plasma of counterions at a neutralizing surface). Coulombic repulsions
for large Γ tend to freeze out lateral fluctuations of counterions on the surface, inducing strong
correlations and a trend toward crystallization in the ionic structure [48, 49]. Individual
counterions thus become surrounded by a correlation hole of size a⊥ from which neighboring
counterions are statistically depleted. The Wigner crystallization of the 2D one-component
plasma is known to occur for Γ > Γc ≃ 125 [47], corresponding to the range of coupling
parameters Ξ > Ξc ≃ 3.1 × 104 [46].

1A more accurate estimate of the typical distance, a, between counterions in an extended three-dimensional
layer gives a/µ ∼ Ξ1/3 [43].
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Charged object σs (e/nm2) R(Å) q µ(Å) Ξ R̃

charged membranes ∼ 1 – 1 2.2 3.1 –
2 1.1 24.8 –
3 0.7 83.7 –

DNA 0.9 10 1 (Na+) 2.4 2.8 4.1
2 (Mn2+) 1.2 22.4 8.2

3 (spermidine) 0.8 75.6 12.3
4 (spermine) 0.6 179 16.4

highly charged colloids ∼ 1 20 3 0.7 85 28
(surfactant micelles)

weakly charged colloids ∼ 0.1 ∼ 103 1 ∼ 2 ∼ 0.1 ∼ 5 × 102

(polystyrene particles)

Table 2.1: Typical values of physical parameters for realistic charged systems: σs and R denote

the surface charge density and the radius of curvature of charged objects. q is the charge valency of

counterions, µ = 1/(2πqℓBσs) is the Gouy-Chapman length, Ξ = q2ℓB/µ is the coupling parameter,

and R̃ = R/µ is the Manning parameter (Section 2.3). The Bjerrum length is taken here as ℓB ≃ 7.1Å

corresponding to an aqueous medium of dielectric constant ε = 80 at room temperature.

In brief, the two asymptotic regimes of weak coupling (Ξ ≪ 1) and strong coupling
(Ξ ≫ 1) are distinguished physically by different structures arising for counterionic layers at
charged surfaces (these results hold for charged curved surfaces as well). The quantitative
form of the counterionic distribution function is considered in the following section. Before
proceeding further, it is useful to consider the typical values of the coupling parameter in
realistic systems. Table 2.1 shows few typical examples of both weakly coupled and strongly
coupled systems. As already seen from Eq. (2.4), the coupling strength grows quite rapidly
with the counterion valency (Ξ ∼ q3), which agrees with experimental and numerical evidence
indicating rapidly growing correlation effects for increasing counterion valency (see Chapter
5 and references cited therein). Note that a typical coupling strength of Ξ ∼ 102 (or larger)
already reflects strong-coupling regime and a value of Ξ ∼ 1 (or smaller) typically corresponds
to the weak-coupling regime.

2.2 Counterion distribution at a charged surface

2.2.1 Weak-coupling or mean-field regime

For small coupling strength Ξ ≪ 1, as mentioned before, one may employ the mean-field
approximation in order to describe the counterionic layer because each counterion in the
layer interacts with a diffuse cloud of other counterions (Figure 2.1a). The mean-field theory
systematically neglects inter-particle correlations. It can formally be derived in the limit of
Ξ → 0 [50] (see Appendix A). It is governed by the so-called mean-field Poisson-Boltzmann
(PB) equation [1, 2]

∇2ψelec(x) =
σ(x)e

εε0
− qeρ0

εε0
Ω(x) exp(−qeψelec/kBT ), (2.8)
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for the mean electrostatic potential in space, ψelec. Note that σ(x) on the right hand side of
Eq. (2.8) represents the charge distribution of macroions (which are assumed to be fixed),
and the second term corresponds to the mean-field PB counterion density profile (Appendix
A), i.e.

ρPB(x) = ρ0 Ω(x) exp(−qeψelec/kBT ), (2.9)

where ρ0 is a normalization prefactor, and the geometry function Ω(x) specifies the space
accessible to counterions.

For point-like counterions at a single uniformly charged wall (Figure 2.1a), the PB solution
yields an algebraically decaying density profile of the form [1, 2]

ρPB(z)

2πℓBσ2
s

=
1

(z/µ+ 1)2
, (2.10)

where z ≥ 0 is the distance from the wall. In agreement with qualitative considerations in Sec-
tion 2.1, the mean-field profile (2.10) represents an extended counterionic layer with diverging
moments 〈zn〉 =

∫∞
0 dz zn ρPB(z) for n > 1. Yet, the density profile is itself normalizable to

the total number of counterions (as necessary to neutralize the surface charge) reflecting the
fact that a charged wall binds all its counterions. The Gouy-Chapman length, µ, in this case
equals the height of a layer at the wall which contains half of the counterions, and may thus
be associated with the typical layer thickness.

The density of counterions at contact with the charged wall is obtained as ρPB(z = 0) =
2πℓBσ

2
s . This result is in fact exact (i.e. valid beyond the mean-field level) within the present

model [51].

2.2.2 Strong-coupling (SC) regime

At intermediate to large coupling strength Ξ > 1, counterionic correlations render the mean-
field theory an invalid description of the system. It becomes exceeding difficult to obtain a full
analytical description for the system due to the liquid-like behavior of counterions at surface.
But for very large coupling parameter Ξ ≫ 1, one can obtain a simple analytical theory as
explained below [43, 48, 49].

For Ξ ≫ 1, counterions are highly separated from each other and one may consider the
layer as a collection of laterally frozen correlation cells, each consisting of a single counterion
interacting with an area of the wall of size ∼ a⊥, Eq. (2.5) (Figure 2.1b). Since the lateral
extension of the cells is much larger than the layer thickness a⊥/µ =

√
Ξ ≫ 1, the dominant

contribution to the density profile of counterions comes from the vertical degree of freedom,
z, through which single counterions are coupled to the wall with the interaction potential
U/(kBT ) ≃ z/µ. Hence using the Boltzmann weight, one finds the (laterally averaged)
density profile

ρSC(z) = ρ0 exp(−z/µ). (2.11)

The prefactor in the above expression (the contact density) may be fixed from the normal-
ization condition and using the global electroneutrality of the system as ρ0 = 2πℓBσ

2
s . Unlike

the weak-coupling case, the strong-coupling profile, ρSC(z), decays exponentially as one moves
away from the charged wall. Moreover, the average distance of counterions is finite and equal
to the Gouy-Chapman length, 〈z〉SC = µ, reflecting the quasi-2D form of the layer.

It can be shown using a series expansion in powers of 1/Ξ that when Ξ → ∞, the main
contribution to the partition function of a charged system comes from single-particle inter-
action terms (i.e. the terms representing interactions between single mobile counterions with
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fixed macroions) [43] (see Appendix A). This leads to a leading-order analytical theory for
Ξ → ∞, which is known as the asymptotic strong-coupling (SC) theory. As indicated by
the preceding argument, the strong-coupling single-particle results correspond physically to
the situation with an infinitely large correlation hole size, a⊥/µ, around counterions at the
surface. For a finite coupling parameter, one expects that the SC results, such as Eq. (2.11),
that are strictly valid for Ξ → ∞, still hold at distances smaller than the correlation hole
size, i.e. for z < a⊥. This yields a criterion identifying the strong-coupling regime for finite
coupling strength as

z

µ
< Ξ1/2 (2.12)

using Eq. (2.5). This criterion has been verified using numerical and analytical studies on
charged walls [43, 44, 46]. At distances larger than the correlation hole size z > a⊥, multi-
particle interactions play a role and modify the form of the density profile. For z ≫ a⊥,
correlation effects weaken and the system exhibits mean-field-like behavior [43, 44, 46, 52].

2.3 The role of curvature

In the preceding sections, I discussed the two asymptotic regimes of weak and strong coupling
for counterions at a planar charged wall. In realistic situations, charged surfaces often have
an intrinsic curvature. The general results discussed before remain valid also for the struc-
ture of the counterionic layers at charged curved surfaces. But charged curved boundaries
can trigger a striking binding-unbinding transition for counterions which leads to drastically
different features. For simplicity, I consider only charged spherical and cylindrical macroions
characterized by a single radius of curvature R.

The relevant dimensionless parameter identifying curvature of macroions is given by the
ratio between the radius of curvature, R, and the Gouy-Chapman length, µ, that is

R̃ =
R

µ
, (2.13)

which will be referred to as the Manning parameter (see below). Intuitively, one expects that
for R̃ ≫ 1, properties of the system remain qualitatively close to those of planar charged
walls. On the contrary, the curvature of the surface is expected to become important for
small R̃. In fact, the geometrical symmetries of macroions, e.g., whether they are cylindrical
or spherical, also play an important role as they enforce the generic form of the long-range
counterion-surface interactions.

Using a uniform surface charge density σs, the Gouy-Chapman length (2.3) reads

µ =
1

2πqℓBσs
=











R/(qℓBτ) for charged cylinders,

2R2/(qℓBZ) for charged spheres,
(2.14)

where τ = 2πσsR is the linear charge density (in units of the elementary charge e) in the
case of charged cylinders, and Z = 4πσsR

2 is the total charge valency for charged spheres.
For charged cylinders, the rescaled radius R̃, Eq. (2.13), is identical with the well-known
Manning parameter, ξ, introduced originally for charged rod-like polymers [39], i.e.

R̃ = ξ ≡ qℓBτ, (2.15)
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while for charged spheres, one has

R̃ =
qℓBZ

2R
. (2.16)

In the following chapters, I may occasionally use ξ or R̃ to denote the Manning parameter.

2.3.1 Binding-unbinding transition of counterions

At equilibrium, counterions tend to diffuse away in order to maximize the entropy of the
system, while at the same time, they are attracted energetically toward the macroion surfaces.
In the planar limit R̃→ ∞, as seen from the limiting results in Section 2.2, counterions retain
a finite density profile, ρ(z), normalized to the total number of counterions (i.e., to the amount
necessary to neutralize the surface charge). This reflects complete counterion-binding in the
planar limit as intuitively expected, since counterion attraction to the surface, ∼ z, grows
faster than the entropic gain, ∼ ln z, with distance, z.

Charged spheres

At a charged sphere, the energetic attraction scales like 1/r, which is always weaker than the
entropic repulsion (∼ ln r) experienced by counterions at large distances, r, from the sphere
center. Hence, counterions tend to unbind completely and diffuse to infinity in the absence
of confining boundaries. This behavior may be demonstrated on a single-particle level using
the partition function, Z1, of a single counterion attracted to an oppositely charged sphere
via the interaction energy U(r)/(kBT ) = −qZℓB/r = −2R̃2µ/r, i.e.

Z1 = 4π

∫ D

R
r2 dr exp

[

2R̃2
(

µ

r

)]

, (2.17)

where it is assumed that the counterion-sphere system is bounded by an outer spherical shell
of radius D > R. Since the integrand in Eq. (2.17) is always large than unity, Z1 diverges
as Z1 ∼ (D/R)3 when D/R → ∞. Consequently, the single-particle distribution function,
ρ1(r) = exp[−U(r)/kBT ]/Z1, vanishes indicating complete unbinding (or de-condensation) of
counterions. The role of a confining volume thus becomes important in keeping counterions
in the proximity of charged spheres. Note that the confinement volume per sphere is inversely
related to the concentration of spherical macroions in a solution, and the infinite-volume limit
in fact represents the infinite-dilution limit of a macroionic solution.

Charged cylinders

Charged cylinders represent a situation intermediate to planar charged walls and spheres
in that the energetic attraction of counterions to a charged cylinder grows logarithmically
with the radial distance from the cylinder axis, r, that is in the same way as the entropic
gain increases, ∼ ln r. The competition between these two effects can result in a thresh-
old binding-unbinding process, known as the counterion-condensation transition (CCT) at
charged cylinders.

On a single-particle level, this threshold behavior can be characterized using the single-
counterion interaction energy, U/(kBT ) = 2(qℓBτ) ln(r/R) = 2ξ ln(r/R), with an infinite
cylinder in an outer confining cylindrical shell of radius D > R. The single-particle partition
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function may thus be written as

Z1 = 2π

∫ D

R
r dr e−2ξ ln(r/R) ∼

∫ ∆

0
dy e−2(ξ−1)y, (2.18)

where I have used a logarithmic transformation for the radial coordinate as y = ln(r/R), and
defined

∆ = ln(D/R) (2.19)

as the lateral extension parameter of the system. The relevant infinite-volume limit (infinite-
dilution limit) for cylinders is determined by this factor as ∆ → ∞, where Z1 may remain
finite or it may diverge depending on the Manning parameter ξ: For ξ < 1, Z1 diverges and
the single-particle distribution function, ρ1(r) ∼ exp(−2ξ ln r)/Z1, tends to zero reflecting
complete de-condensation of counterions. For ξ > 1, on the contrary, Z1 remains finite
indicating condensation of counterions that adopt a finite density profile at the cylinder (the
condensation is not complete in the sense that a fraction of (neutralizing) counterions always
escapes to infinity–see Chapter 3). The above argument suggests a threshold of ξc = 1 for
the counterion-condensation transition.

Strictly speaking, the threshold behavior emerges only at an infinitely long cylinder (or
approximately when the cylinder length, say H, is larger thanD). For finite cylinders, one can
distinguish two regimes of radial distances, namely, r < H, where the cylindrical symmetry
assumed above (and the results for the threshold behavior) approximately holds, and r > H,
where counterions experience an almost-spherically-symmetric potential and thus tend to
diffuse away.

It is important to note that the preceding discussion, though useful in bringing out the
peculiar behavior of counterions at curved surfaces, is only based on single-particle consid-
erations: the counterionic interactions and the role of the coupling parameter, Ξ, are not
taken into account. In Chapters 3 and 4, I present systematic analysis of the counterion-
condensation transition (CCT) at a charged cylinder incorporating the full interaction Hamil-
tonian. As will be demonstrated, many-body effects give rise to qualitatively different fea-
tures as compared to these single-particle predictions. Indeed, the logarithmic transformation,
y = ln(r/R), introduced above turns out to be the key to establish a full analysis of the CCT
in the limit ∆ → ∞.

2.4 Interactions between like-charged surfaces

Macroions in solution are often like-charged and thus repel each other by their bare Coulombic
interaction. The overall effective interaction is however different from this bare interaction
due to the presence of counterions, which can mediate both repulsive and attractive effective
forces between two like-charged surface as will be demonstrated in this section. Obviously, the
counterion-mediated interactions depend strongly on the distribution of counterions around
macroions. For instance for two spherical or cylindrical macroions, the effective interaction
reduces to the bare (repulsive) value in the regime where counterions completely de-condense
and diffuse away (e.g., for two unconfined spheres or for two unconfined cylinder with suf-
ficiently small Manning parameter). In the regime where counterions bind to the surface,
the nature of effective interaction varies from pure repulsion to attraction as electrostatic
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Figure 2.2: Schematic representation of the asymptotic interaction regimes of a) mean field and

b) strong coupling for two like-charged walls. The mean-field regime is obtained for large separations

between the walls (compared to other length scales) and is dominated by the repulsive osmotic pressure

of counterions. For small separations (compared with the typical counterion spacing), the walls attract

each other due to a dominant single-particle attraction mediated by counterions that are isolated in

correlation cells of large lateral extension ∼ a⊥/2 ≫ δ (shown by a dotted loop).

correlations become stronger by increasing the coupling parameter, Ξ.2

In order to demonstrate the gross physical picture, I shall focus on the interaction between
two planar like-charged walls of uniform surface charge density −σse at separation δ from each,
where q-valent counterions fill only the space between the walls–see Figure 2.2 (the dielectric
constant is assumed to be uniform in space). In this system, an extra length scale is set by
the wall separation, δ. Two limiting regimes of repulsion and attraction may be distinguished
qualitatively by comparing δ with other length scales of the system as follows.

2.4.1 Mean-field regime: Repulsion

First consider the limit where the wall separation, δ, is large compared with all other length
scales in the system and also that the system is weakly coupled, Ξ ≪ 1 (Figure 2.2a). In
this case, counterions form a diffuse layer at each wall, but due to large wall separation, the
system is approximately decoupled into two nearly neutral sub-systems, each consisting of
a charged wall and its counterionic cloud. The effective pressure acting between the walls
is dominated by the osmotic pressure of counterions across the mid-plane, since the overall
electrostatic field at the mid-plane is zero due to the charge neutrality of each sub-system.
This osmotic pressure is positive and therefore yields an effective repulsion between the walls.

The mid-plane osmotic pressure is proportional to the local density of counterions, ρmid,
following the ideal-gas equation of state, P = ρmid kBT , where ρmid drops roughly with the
inverse square of the wall separation for large δ as indicated by Eq. (2.10). This yields the

2Note that for charged spheres and cylinders, the coupling parameter, Ξ, and the Manning parameter, R̃,
can in principle be varied independently from each other. In other words, de-condensation of counterions may
occur in all ranges of the coupling parameter, Ξ (see Chapter 3). Therefore, the strong correlations regime,
where like-charge attraction emerges, is achieved by taking a large coupling parameter, Ξ ≫ 1 (see a more
accurate criterion in Section 2.4.3), and also a sufficiently large Manning parameter to ensure substantial
counterion binding at macroions. It is however difficult to establish this latter condition even for the simplest
interesting cases of two spheres and two cylinders, as it requires a detailed analysis of the binding-unbinding
process, which is available only in the asymptotic limits of mean field (Ξ → 0) [39, 53] and strong coupling
(Ξ → ∞) [54]. The mean-field theory is irrelevant for our purpose (as it does not include correlations). The
strong-coupling condition on the Manning parameter is discussed in Chapter 5.
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scaling form of the repulsive pressure between the walls as P (δ) ∼ δ−2. The formal derivation
of the pressure based on the PB equation gives [1, 2, 43]

PPB(δ)/(kBT )

2πℓBσ2
s

= Λ, (2.20)

where Λ is determined from the transcendental equation Λ1/2 tan[Λ1/2(δ/2µ)] = 1. For large
δ/µ ≫ 1, the PB solution yields

PPB(δ)/(kBT )

2πℓBσ2
s

≃
(

πµ

δ

)2

, (2.21)

which is expectedly independent of the surface charge density of the walls.

2.4.2 Strong-coupling regime: Attraction

Now consider a different asymptotic regime in which the system is strongly coupled, Ξ ≫ 1,
and the distance between the walls is smaller than the lateral spacing between counterions at
each wall, i.e. a⊥ ≫ δ (Figure 2.2b). Since counterions are highly separated from each other,
the two opposite layers of counterions tend to form an inter-locking pattern in equilibrium
and at small separations.

The system may be thought of as a collection of laterally frozen “correlation cells”, each
consisting of a single counterion sandwiched between two opposing sections of the walls with
lateral size of about a⊥/2 (Figure 2.2b). Since a⊥ ≫ δ, the effective pressure (or interaction
free energy) between the walls is dominated by the contribution from individual counterions
fluctuating in each correlation cell, and lateral interactions may be neglected. The electro-
static energy of the system per cell is the sum of the bare interaction between the two surfaces
with each other and with the single counterion, which–using the electroneutrality condition
per cell and the fact that the wall separation is small–follows as uelec/(kBT ) ≃ 2πℓBσ

2
s δ per

unit area. This energetic contribution gives an attractive pressure as Pelec/(kBT ) ≃ −2πℓBσ
2
s

between the walls. On the other hand, the entropic contribution due to counterion confine-
ment is of the order Sci ∼ kB ln δ (per cell), which generates a repulsive component. The total
pressure between strongly coupled walls is then obtained by combining these two effects and
may be written as

PSC(δ)/(kBT )

2πℓBσ2
s

= −1 +
2µ

δ
. (2.22)

This expression clearly predicts a closely packed bound-state for the like-charged walls with
the equilibrium surface separation, δ∗, being equal to twice the Gouy-Chapman length, i.e.

δ∗ = 2µ. (2.23)

The like-charged walls therefore attract each other for δ > δ∗ and repel at smaller distances.

As noted before, for Ξ → ∞, the partition function of a charged system is in general
reduced to a single-particle form (Appendix A). Indeed, the single-particle expression (2.22)
represents an exact asymptotic result for planar walls [43, 45, 46].
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2.4.3 Rouzina-Bloomfield criterion

In a system with finite coupling parameter, Ξ (and thus with a finite a⊥/µ ratio, Eq. (2.5)),
the asymptotic strong-coupling results (strictly valid for Ξ → ∞) hold approximately as long
as the surface separation, δ, is smaller than the typical lateral distance between counterions
at surface, a⊥, i.e. for

δ < a⊥. (2.24)

This condition in fact yields a simple and generic criterion identifying the regime where
strong-coupling attraction is expected to emerge between two like-charged macroions. It was
originally suggested by Rouzina and Bloomfield [48] and verified later using analytical and
numerical methods for two charged planar walls [43, 45, 46], and also for other systems such
as charged cylinders [55] as will be discussed in Chapter 5. For planar walls and in units of
the Gouy-Chapman length, the Rouzina-Bloomfield criterion (2.24) reads

(

δ

µ

)2

< Ξ. (2.25)

For δ < a⊥, single-particle contributions are dominant and give rise to attraction of purely
energetic origin between like-charged surfaces, a direct consequence of structural correlations
among counterions (Figure 2.2b). For larger separations between opposing macroion surfaces
δ > a⊥, mean-field features become increasingly important and the strength of attraction
reduces. Eventually at very large separations, the interaction becomes repulsive [43, 45, 46].
This is the reason why correlation-induced attractive interactions in systems with (realistic)
finite coupling parameter appears to be short-ranged.
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Chapter 3

Counterion-Condensation
Transition (CCT) at Charged
Cylinders

Electrostatics of charged polymers is often dominated by small oppositely charged ions (coun-
terions), which maintain the global electroneutrality of charged solutions. Many charged
polymers, such as tubulin, actin and DNA are stiff and may be represented by straight cylin-
ders (on length scales smaller than the persistence length). Neglecting many-ion effects, a
single counterion is attracted by an electrostatic potential that grows logarithmically with
the radial distance from the central cylinder axis. But since the counterion confinement en-
tropy also shows a logarithmic size dependence, it was suggested early by Onsager [39] that
a counterion delocalization transition occurs at a threshold cylinder charge or equivalently,
at a critical temperature. Onsager’s argument, which is strictly valid for a single particle,
was soon corroborated by mean-field studies [20, 39, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66],
which demonstrate that a charged cylinder can indeed bind or condense a finite fraction of
counterions below a critical temperature (and even in the limit of infinite system size with no
confining boundaries), while above the critical temperature, all counterions de-condense and
diffuse to infinity.

This counterion-condensation transition (CCT) dramatically affects a whole number of
static and dynamic quantities as observed in recent experiments on charged polymers [20, 59,
60, 67, 68, 69, 70, 71, 72, 73]: upon condensation, the bare polymer charge is screened leading,
for instance, to a significant reduction in electrophoretic mobility [70, 73] and conductivity of
polymers [72]; it also triggers striking static properties such as counterion-induced attraction
between like-charged polymers, which gives rise to compact phases of F-actin [33, 34] and
DNA [31]. Since its discovery, the CCT has been at the focus of numerical [74, 75, 76, 77]
and analytical [78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95] studies.
Under particular dispute has been the connection between CCT and the celebrated Kosterlitz-
Thouless transition of logarithmically interacting particles in two dimensions [82, 97, 98, 99].

The CCT at charged cylinders is regulated by a dimensionless control parameter, ξ = qℓBτ ,
known as the Manning parameter [39], which depends on the linear charge density of the cylin-
der, −τe, charge valency of counterions, +q, and the Bjerrum length ℓB = e2/(4πεε0kBT ) ac-
commodating the ambient temperature T and the medium dielectric constant ε. The Manning
parameter plays the role of the inverse rescaled temperature and can be varied experimentally
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by changing the linear charge density (using synthetic chains or various pH) [69, 71, 72, 73] or
by varying the dielectric media (mixing different solvents) [70, 73]. According to mean-field
theory [20, 39, 62, 63, 64, 65, 66], condensation occurs above the critical value ξc = 1. In
experiments, the critical Manning parameter appears to be about unity, but large deviations
have also been reported [72, 73, 100], and the precise location of the critical point is still
debated [73].

On the other hand, it is known that the critical temperature may in general be influenced
by correlations and fluctuations, which are not captured within the mean-field theory [101].
These effects typically cause deviations from mean-field predictions in both non-universal
and universal quantities below the upper critical dimension. Surprisingly, the mean-field
prediction for the CCT threshold, ξc, has not been questioned in literature and apparently
assumed to be exact. Likewise, the existence of universal scaling relations and critical (scaling)
exponents associated with the CCT has not been addressed, neither on the mean-field level
nor in the presence of correlations.

The chief goal in this chapter is to address the following issues: i) what is the exact
threshold of the CCT, ξc, and ii) what are the critical scaling exponents associated with this
transition in three spatial dimensions (3D). I shall also determine the type of singularities
that emerge in thermodynamic quantities as the CCT criticality sets in (these issues will be
addressed for the CCT in two dimensions in the following chapter). To establish a systematic
investigation of the correlation effects, I will employ Monte-Carlo simulations for counterions
at a single charged cylinder using a novel sampling method (centrifugal sampling), which is
realized by mapping the radial coordinate to a logarithmic scale. This enables us to inves-
tigate the critical limit of infinite system size (that is when the outer boundaries confining
counterions tend to infinity) within tractable equilibration times in the simulations. The im-
portance of taking very large system sizes becomes evident by noting that lateral finite-size
effects, which mask the critical unbinding behavior of counterions, depend on the logarithm of
system size in the cylindrical geometry [39, 57, 62, 63, 64, 65, 66, 75, 82, 83, 87, 89, 94, 37, 38],
causing a quite weak convergence to the critical infinite-size limit.

The present simulations [95, 96] provide the first numerical results for the asymptotic
critical behavior of CCT and systematically incorporate correlation effects. The relevance
of electrostatic correlations is in general identified by a dimensionless coupling parameter,
Ξ = 2πq3ℓ2Bσs with σs = τ/(2πR) being the surface charge density and R the radius of
the cylinder. The mean-field theory represents the limit Ξ → 0 [43, 46, 50], while in the
converse limit of strong coupling, Ξ ≫ 1, correlations become significant and typically lead
to drastic changes [35, 43, 46, 49, 54, 55]. In order to investigate scaling properties of the
CCT in various regimes of the coupling parameter, I shall focus on the inverse moments
of the counterionic density profile, which play the role of the “order parameters”for this
transition and represent the mean inverse localization length of counterions. Using a combined
finite-size-scaling analysis with respect to both lateral size of the system and the number of
counterions, I show that the order parameters adopt scale-invariant forms in the vicinity of
the critical point. The critical scaling exponents associated with the reduced temperature and
the size parameters are determined both within the simulations and also analytically within
two limiting theories of mean field and strong coupling. As a main result, I demonstrate
that the critical exponents of the CCT are universal (that is independent of the coupling
parameter varied over several decades 0.1 < Ξ < 105) and appear to be in close agreement
with the mean-field prediction. Surprisingly, the critical Manning parameter is also found
to be universal and given by the mean-field value ξc = 1. The transition threshold, ξc, is
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determined with high accuracy from the asymptotic behavior of the location of a singular
peak emerging in the internal energy of the system. The excess heat capacity is found to
vanish at small Manning parameters (de-condensation phase) and exhibits a universal jump
at the transition point indicating that the CCT may be regarded as a second-order transition
as also suggested in a previous mean-field study [89].

As will be shown, the validity of mean-field predictions in 3D breaks down as the Man-
ning parameter increases beyond the critical value (i.e. in the condensation phase), where
inter-particle correlations become significant at large coupling. This leads to an enhanced
accumulation of counterions near the cylinder surface and a crossover to the strong-coupling
theory predictions [35, 43, 46].

The organization of this chapter is as follows: In Sections 3.1 and 3.2, I shall introduce the
model and outline the general method proposed for the investigation of the CCT. In Section
3.3, I will derive the scaling relations for order parameters and determine the asymptotic
behavior of thermodynamic quantities within mean-field theory, which is valid in all dimen-
sions. In Section 3.4, analytical results are obtained within the strong-coupling theory. The
numerical analysis of the CCT for various coupling strengths will be presented in Sections 3.5
and 3.6.

3.1 Cell model for charged rod-like polymers

I shall consider a primitive cell model [37, 38, 104], which consists of a single charged cylinder
of radius R and point-like neutralizing counterions of charge valency +q that are confined
laterally in an outer (co-axial) cylindrical box of radius D–see Figure 3.1. The cylinder
has infinite length, H, and a uniform (surface) charge distribution, −σ(x)e, where σ(x) =
σsδ(r−R). (Note that q and σs are given in units of the elementary charge, e, and are positive
by definition.) The cylinder is assumed to be rigid and impenetrable to counterions and the
dielectric medium is represented by a uniform dielectric constant, ε. In three dimensions,
electric charges interact via bare Coulombic interaction

v(x) = 1/|x|. (3.1)

The electroneutrality condition holds globally inside the cell and entails the relation

qN = τH, (3.2)

where N is the number of counterions per cell and τ = 2πRσs represents the linear charge
density of the cylinder. The system is described by the Hamiltonian

HN

kBT
= q2ℓB

∑

〈ij〉

v(xi − xj) − qℓB

N
∑

i=1

∫

v(x − xi)σ(x) dx +
ℓB
2

∫

σ(x) v(x − x′)σ(x′) dxdx′,

(3.3)
which comprises mutual repulsions between counterions located at {xi} (first term), the
counterion-cylinder attraction (second term) and the self-energy of the cylinder (last term).
It can be written as

HN

kBT
= q2ℓB

∑

〈ij〉

v(xi − xj) + 2ξ
N
∑

i=1

ln

(

ri
R

)

+C0, (3.4)
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Figure 3.1: The three-dimensional model consists of a charged cylinder of infinite length, H , and its

neutralizing counterions confined in an outer cylindrical box (see the text for parameters).

where ξ is the Manning parameter of the system [39, 57],

ξ = qℓBτ (3.5)

with ℓB = e2/(4πεε0kBT ) being the Bjerrum length (in water and at room temperature
ℓB ≃ 7Å), and ri = (x2

i + y2
i )

1/2 being the radial coordinate of the i-th counterion from the
cylinder axis, which coincides with z-axis. The additive term C0 in Eq. (3.4) is related to the
cylinder self-energy, which will be important in obtaining a convergent energy expression for
the system in the simulations (Section 3.5.2 and Appendix D.1).

3.1.1 Dimensionless description

The parameter space of the system may be spanned by a minimal set of independent di-
mensionless parameters obtained from the ratios between characteristic length scales. These
length scales are the rescaled Bjerrum length, q2ℓB, the Gouy-Chapman length

µ =
1

2πqℓBσs
, (3.6)

and the radius of the charged cylinder, R, and that of the outer boundary, D. The rescaled
cylinder radius

R̃ =
R

µ
= ξ (3.7)

equals the Manning parameter, ξ. The ratio between the rescaled Bjerrum length and the
Gouy-Chapman length, µ, gives the electrostatic coupling parameter (Chapter 2),

Ξ =
q2ℓB
µ

= 2πq3ℓ2Bσs, (3.8)
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which can identify the importance of electrostatic correlations in a charged system [35, 43, 44,
46, 54, 55], and the ratio between D and R, which enters only through the lateral extension
parameter

∆ ≡ ln

(

D

R

)

(3.9)

characterizing lateral finite-size effects. The relevant infinite-system-size limit is obtained for
∆ → ∞ [66, 37, 38].

I shall use the dimensionless form of the Hamiltonian obtained by rescaling the spatial
coordinates as x̃ = x/µ [43], that is

HN

kBT
= Ξ

∑

〈ij〉

v(x̃i − x̃j) + 2ξ
N
∑

i=1

ln

(

r̃i

R̃

)

+ C0. (3.10)

The electroneutrality condition (3.2) in rescaled units reads

2πξH̃ = 2πΞN, (3.11)

where the left hand side is simply the rescaled area of the cylinder covered by the electric
charge. The thermodynamic limit is obtained for N → ∞ and H → ∞, but keeping N/H =
τ/q (or equivalently, N/H̃ = ξ/Ξ) fixed.

3.2 CCT as a generic binding-unbinding process

The statistical physical properties of the system may be investigated using the canonical
partition function,

ZN =
µ3N

N !

∫

Ṽ

[

N
∏

i=1

dz̃i dφi dr̃i r̃i

]

exp

{

− HN

kBT

}

(3.12)

represented in cylindrical coordinates x̃i = (r̃i, φi, z̃i), with the spatial integral running over
the volume, Ṽ , of the space accessible for counterions, i.e. R̃ ≤ r̃ ≤ D̃.

Naively, one may conjecture that the partition function (3.12) diverges in a certain range
of Manning parameters, when the upper boundary of the radial integrals, D̃, tends to infinity,
as may be indicated by the logarithmic form of the counterion-cylinder interaction, which
gives rise to algebraic prefactors of the form r̃1−2ξ

i in the integrand. The possible emergence
of a divergency in a charged cylindrical system was first pointed out by Onsager and the
connection with the counterion-condensation transition was discussed by Manning [39].

Here I shall demonstrate this peculiar point using a transformation of coordinates, which
provides the basis for the numerical simulations considered later in Section 3.5. The radial
coordinate is transformed as

y = ln

(

r̃

R̃

)

, (3.13)

upon which the partition function in (3.12) transforms as

ZN =
µ3N R̃2N

N !

∫

Ṽ

[

N
∏

i=1

dz̃i dφi dyi

]

exp

{

− H∗
N

kBT

}

, (3.14)
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where the volume integral runs over the region 0 < y < ∆ = ln(D/R), and

H∗
N

kBT
=

N
∑

i=1

W (yi) + Ξ
∑

〈ij〉

v(x̃i − x̃j) + C0 (3.15)

is the transformed Hamiltonian of the system with

W (y) = 2(ξ − 1)y. (3.16)

As seen, the original partition function is now mapped to the partition function of a system of
interacting (repelling) particles in a linear potential well, W (y). This latter quantity includes
the contributions associated with the cylindrical boundary, namely, the bare counterion-
cylinder attraction (i.e. 2ξy) and an entropic (repulsive) term from the measure of the radial
integral (i.e. −2y), which may be regarded as an induced centrifugal component.

For small Manning parameter, ξ < 1, the potential well, W (y), becomes purely repulsive
suggesting that counterions unbind (or “de-condense”) from the central cylinder departing to
infinitely large distances as the outer confining boundary tends to infinity, ∆ = ln(D/R) →
∞. In contrast for ξ > 1, the potential well exerts an attractive force upon counterions,
which might lead to partial binding (or “condensation”) of counterions even in the absence of
confining walls. The new representation of ZN in Eq. (3.14), therefore, reflects the interplay
between energetic and entropic factors on a microscopic level.

Note that the rigorous analytical derivation of the aforementioned properties for coun-
terions based on the full partition function is still an open problem, and only approximate
limiting cases have been examined analytically (Section 3.2.2).

3.2.1 Onsager instability

As a simple illustrative case, let us consider a “hypothetical” system, in which mutual counte-
rionic repulsions are switched off. The partition function (3.12) thus factorizes as ZN ∼ ZN

1 ,
where

Z1 =

∫ ∆

0
dy e(2−2ξ)y =

e(2−2ξ)∆ − 1

2 − 2ξ
(3.17)

is the single-particle partition function. It diverges for ξ < 1, when the lateral extension
parameter, ∆, tends to infinity, which implies complete de-condensation of counterions, i.e.
the probability, P (r) ∼ exp(−2ξ ln r)/Z1, of finding counterions at any finite distance, r,
from the cylinder tends to zero (equivalent to a vanishing density profile, ρ(r) = NP (r)).
But Z1 and the counterionic density profile remain finite for ξ > 1, indicating that the
Manning parameter ξc = 1 is the onset of the CCT on the one-particle level, which will be
termed here as the Onsager instability (in the spirit of Onsager’s original argument [39]).
Onsager instability captures the basic features of the CCT. It exhibits the weak logarithmic
convergence (via ∆ = lnD/R) to the critical limit as the volume per polymer (∼ D2) goes
to infinity,1 and as shown in Appendix B, displays algebraic singularities in energy and heat
capacity (at ξc = 1) that may be identified by a set of scaling exponents. Such scaling relations
are crucial in the analysis of the critical behavior in the following sections.

I emphasize here that the results obtained within Onsager instability are by no means
conclusive as soon as inter-counterionic interactions are switched on, which, as will be shown,

1The Onsager divergency may equivalently occur when the lower bound of the integral (cylinder radius)
tends to zero R→ 0 [39], since only the ratio D/R is relevant.
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lead to qualitative differences. In particular, it turns out that a diverging partition function
is not necessarily an indication of the onset of the CCT as asserted by the single-particle
argument [39].

3.2.2 Beyond the Onsager instability

Many-body terms involved in the full partition function (3.12) render the systematic analysis
of the CCT quite difficult. The analytical results are available in the asymptotic limits of
i) vanishing coupling parameter Ξ → 0, which leads to the mean-field or Poisson-Boltzmann
(PB) theory, and ii) infinite coupling parameter Ξ → ∞, which leads to the strong-coupling
(SC) theory [43]. In the mean-field approximation (case i), statistical correlations among
counterions are systematically neglected. In the opposite limit of strong coupling (case ii),
the leading contribution to the partition function takes a very simple form comprising only
the one-particle (counterion-cylinder) contributions [35, 43, 54, 55]. I will derive the mean-
field predictions for the CCT in Section 3.3. The SC description (Ξ → ∞) resembles the
Onsager instability and will be discussed in Section 3.4 and Appendix B. The perturbative
improvement of these two limiting theories in a system of finite coupling parameter, Ξ, is
formally possible by computing higher-order correction terms as previously performed for
planar charged walls [43, 44, 46], but will not be considered here.

Interestingly, in both limits, the onset of the CCT is obtained as ξc = 1, which is due
to the simplified form of the counterionic correlations. An important question is whether
the critical value, ξc, varies with the coupling parameter. Such a behavior may be expected
since the Manning parameter represents the rescaled inverse temperature of the system (i.e.
ξ = T∗/T with T∗ ≡ qτe2/(4πεε0kB)), which, as known from bulk critical phenomena [101],
can be shifted from its mean-field value due to inter-particle correlations for large couplings.
Also it is interesting to examine whether the CCT exhibits scale-invariant properties near ξc
and if it can be classified in terms of a universal class of exponents. Such scaling relations are
known to represent relevant statistical characteristics of systems close to continuous phase
transitions [101].

To address these issues, one has to define quantities which can serve as order parameters
of the CCT. In the following section, I shall introduce such quantities and, by considering the
mean-field theory, I will show that the order parameters indeed exhibit scaling behavior near
the CCT threshold. I will return to the influence of electrostatic correlations on the threshold
Manning parameter and scaling exponents of the CCT in the subsequent sections.

3.3 Mean-field theory for the CCT

3.3.1 Non-linear Poisson-Boltzmann (PB) equation

The mean-field theory can be derived systematically using a saddle-point analysis in the limit
Ξ → 0 [43]. It is governed by the well-known Poisson-Boltzmann (PB) equation [37, 38],
which, in rescaled units, reads (Appendix A)

∇2
x̃
ψ = 2σ̃(x̃) − κ̃2 Ω̃(x̃) e−ψ(x̃) (3.18)

for the dimensionless potential field ψ(x̃). Here

σ̃(x̃) = δ(r̃ − R̃) (3.19)
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is the rescaled charge distribution of the cylinder and

Ω̃(x̃) = Ω̃(r̃) =











1 R̃ ≤ r̃ ≤ D̃,

0 otherwise

(3.20)

specifies the volume accessible to counterions. In the canonical ensemble, one has

κ̃2

2
=

2πξH̃
∫

dx̃ Ω̃(x̃) exp(−ψ)
. (3.21)

Assuming the cylindrical symmetry (for an infinitely long cylinder) and using Eq. (3.18)
and the global electroneutrality condition (3.11), one obtains

(

r̃
dψ

dr̃

)

r̃=R̃
= 2ξ and

(

r̃
dψ

dr̃

)

r̃=D̃
= 0, (3.22)

which are used to solve the PB equation (3.18) in the non-trivial region R̃ ≤ r̃ ≤ D̃ [37, 38].
Thereby, one obtains both the free energy (Section 3.3.3) and the rescaled radial density
profile of counterions around the charged cylinder

ρ̃(r̃) =
κ̃2

2
Ω̃(r̃) e−ψ(r̃). (3.23)

The rescaled density profile, ρ̃(r̃), is related to the actual number density of counterions, ρ(r),
through ρ̃(r̃) = ρ(r)/(2πℓBσ

2
s ) [43] (see also Appendix A).

As shown by Alfrey et al. [37] and Fuoss et al. [38], the PB solution takes different
functional forms depending on whether ξ lies below or above the Alfrey-Fuoss threshold

ΛAF =
∆

1 + ∆
, (3.24)

that is

ψPB(r̃) =















ln[ κ̃
2r̃2

2β2 sinh2(β ln r̃
R̃

+ coth−1 ξ−1
β )] ξ ≤ ΛAF,

ln[ κ̃
2r̃2

2β2 sin2(β ln r̃
R̃

+ cot−1 ξ−1
β )] ξ ≥ ΛAF,

(3.25)

where β is given by the transcendental equations

ξ =















1−β2

1−β coth(−β∆) ξ ≤ ΛAF,

1+β2

1−β cot(−β∆) ξ ≥ ΛAF.

(3.26)

The PB density profile of counterions, Eq. (3.23), is then obtained for R̃ ≤ r̃ ≤ D̃ as

ρ̃PB(r̃) =
β2

r̃2
×











sinh−2(β ln r̃
R̃

+ coth−1 ξ−1
β ) ξ ≤ ΛAF,

sin−2(β ln r̃
R̃

+ cot−1 ξ−1
β ) ξ ≥ ΛAF,

(3.27)
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where I have arbitrarily chosen ψPB(r̃ = R̃) = 0 to fix the reference of the potential. This
condition also fixes κ̃ in Eq. (3.25) as well as the radial density of counterions at contact with
the cylinder using Eq. (3.23), i.e.

κ̃2

2
= ρ̃PB(R̃) =

1

ξ2
×











(ξ − 1)2 − β2 ξ ≤ ΛAF,

(ξ − 1)2 + β2 ξ ≥ ΛAF.
(3.28)

The density profiles given in Eq. (3.27) are in fact normalized to the total number of counte-
rions, N , a condition imposed via Eq. (3.21). Using Eq. (3.23), the normalization condition
in rescaled units reads

∫ D̃

R̃
dr̃ r̃ ρ̃PB(r̃) = ξ. (3.29)

3.3.2 Onset of the CCT within mean-field theory

The threshold of CCT within the mean-field PB theory was considered by several workers
[62, 63, 64, 65, 66, 37, 38]. It may be obtained from the asymptotic behavior of the density
profile (∆ → ∞) as reviewed below.

First note that for ∆ ≫ 1, the Alfrey-Fuoss threshold ΛAF, Eq. (3.24), tends to unity
from below, i.e.

ΛAF = 1 − 1

∆
+ O(∆−2). (3.30)

Therefore, for Manning parameter ξ < 1, one may use the first relation in Eq. (3.26) to obtain
the limiting behavior of the integration constant β as (Appendix C.1)

β = (1 − ξ) + O
(

e−2∆(1−ξ)
)

, (3.31)

when ∆ → ∞. Using this into Eq. (3.28), one finds that the density of counterions at contact,
ρ̃PB(R̃), asymptotically vanishes. Hence, the density profile (3.23) at any finite distance from
the cylinder tends to zero for ξ ≤ 1, i.e.

ρ̃PB(r̃) → 0, (3.32)

representing the de-condensation regime in the limit ∆ → ∞. For ξ ≥ 1, on the other hand,
one has β → 0 for increasing ∆ (Appendix C.1), and thus using Eq. (3.28),

ρ̃PB(R̃) → (ξ − 1)2

ξ2
. (3.33)

Using the second relation in Eq. (3.27) and expanding for small β, the radial density profile
follows as [63, 105]

ρ̃PB(r̃) → (ξ − 1)2

ξ2

[

r̃

R̃

]−2 [

1 + (ξ − 1) ln
r̃

R̃

]−2

(3.34)

in the limit ∆ → ∞ (see also Appendix C.6), which is finite and indicates condensation of
counterions. This proves that the mean-field critical point is given by

ξPB
c = 1, (3.35)

corresponding to the mean-field critical temperature

TPB
c =

qτe2

4πεε0kB
. (3.36)
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3.3.3 Critical scaling-invariance: Mean-field exponents

It is readily seen from Eqs. (3.33) and (3.34) that the asymptotic density of counterions adopts
a scale-invariant or homogeneous form with respect to the reduced Manning parameter,

ζ = 1 − ξPB
c

ξ
, (3.37)

close to the critical value ξPB
c = 1. Note that the reduced Manning parameter equals the re-

duced temperature of the system, t = 1−(T/TPB
c ), when other quantities such as the dielectric

constant, ε, and the linear charge density of the cylinder, τ , are kept fixed. (Experimentally,
however, the Manning parameter may be varied by changing ε [70, 73] or τ [69, 71, 72, 73] at
constant temperature, in which case, ζ can be related to the reduced dielectric constant or
the reduced linear charge density.)

In a finite confining volume (finite ∆), such scaling forms with respect to ζ do not hold
since the true CCT is suppressed. Yet as a general trend [101], one expects that for sufficiently
large ∆, the reminiscence of such scaling relations appears in the form of finite-size-scaling
relations near the transition point. These relations would involve both ζ and the lateral
extension parameter, ∆, (as the only relevant parameters in the mean-field limit) in a scale-
invariant fashion as will be shown below.

The CCT order parameters

As possible candidates for the CCT “order parameter”, I use the inverse moments of the
counterionic density profile

Sn(ξ, D̃) ≡
〈

1

r̃n

〉

=

∫ D̃
R̃ r̃ dr̃ r̃−n ρ̃(r̃)
∫ D̃
R̃ r̃ dr̃ ρ̃(r̃)

(3.38)

where n > 0.2 Note that these quantities reflect mean inverse localization length of coun-
terions. In the condensation phase (where counterions adopt a finite density profile), one
has Sn > 0, reflecting a finite localization length. But at the critical point and in the de-
condensation phase (with vanishing counterionic density profile), one has Sn = 0 in the limit
of infinite system size ∆ → ∞, which indicates a diverging counterion localization length.

In order to derive the mean-field finite-size-scaling relations for Sn near ξPB
c = 1, I will

focus on the PB solution in the regime of Manning parameters ξ ≥ ΛAF, since for any finite
∆, one has ΛAF ≤ ξPB

c = 1 from Eq. (3.30). Inserting the first relation in Eq. (3.27) into Eq.
(3.38), I obtain

SPB
n =

β2

ξ

∫ D̃

R̃
dr̃ r̃−n−1 sin−2(β ln

r̃

R̃
+ cot−1 ξ − 1

β
). (3.39)

Changing the integration variable as y = ln(r̃/R̃), I obtain

SPB
n =

β2

ξn+1

∫ ∆

0
dy e−ny sin−2(βy + cot−1 ξ − 1

β
). (3.40)

2The density moments for n < 0 are divergent since for finite ξ, a finite fraction of the counterions is always
de-condensed.
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For ∆ ≫ 1, the above relation may be approximated by a simple analytic expression as
(Appendix C.4)

SPB
n (ζ,∆) ≃ 1

n

[

ζ2 + β2(ζ,∆)

]

(3.41)

for ξ being sufficiently close to the critical value ξPB
c = 1.

Using the above result, one may distinguish two limiting cases, where different scaling
relations are obtained, namely, i) when ∆ → ∞ but ζ = 1 − ξPB

c /ξ is finite and close to the
critical value ζPB = 0, and ii) when ∆ is finite and large, but the system tends towards the
critical point, ζ → ζPB

c = 0.
In the first case, as stated before, one has β → 0 for the above-threshold regime, ζ ≥ 0;

thus using Eq. (3.41), I obtain

SPB
n (ζ,∆ → ∞) ≃ ζ2

n
. (3.42)

On the other hand, SPB
n vanishes for ζ ≤ 0 (Appendix C.4). Hence, the following scaling

relation is obtained in the infinite-system-size limit ∆ → ∞,

SPB
n (ζ,∞) ≃











ζχPB/n 0 ≤ ζ ≪ 1,

0 ζ ≤ 0,
(3.43)

which introduces the mean-field critical exponent associated with the reduced Manning pa-
rameter, ζ (or the reduced temperature, t) as

χPB = 2. (3.44)

The mean-field counterion-condensation transition is therefore characterized by a diverging
(localization) length scale 1/SPB

1 ∼ ζ−2, as the critical point is approached from above. The
scaling relation (3.43) may also be derived in a direct way by considering a strictly infinite
system (∆ = ∞) as shown in Appendix C.6.

In the limiting case (ii) with ζ → ζPB
c = 0, one has from Eq. (3.26) that β ≃ π/(2∆)

when ∆ is finite but large, ∆ ≫ 1 (Appendix C.1). Therefore, using Eq. (3.41) I obtain

SPB
n (0,∆) ≃ π2

4n∆2
, (3.45)

which introduces a new scaling relation

SPB
n (0,∆) ∼ ∆−γPB (3.46)

with the mean-field exponent
γPB = 2 (3.47)

associated with the lateral extension parameter, ∆. This relation shows that the approach to
the true CCT limit (when SPB

n vanishes at the critical point) is logarithmically weak as the
box size, D, increases to infinity, i.e. SPB

n (ζ = 0) ∼ 1/(lnD/R)2.
The scaling relations (3.42) and (3.45) indicate that SPB

n takes a general scale-invariant
form with respect to ζ and ∆ as

SPB
n ≃ ∆−γPBDn(ζ∆

γPB/χPB) (3.48)
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for sufficiently large ∆ and in the vicinity of the mean-field threshold. The scaling function,
Dn(u), has the following asymptotic behavior

Dn(u) ∼











const. u→ 0,

uχPB/n u→ +∞.
(3.49)

In general, the scale-invariant relations such as Eq. (3.48) may be obtained within the PB
frame-work using the fact that the integration constant β(ζ,∆) takes a scale-invariant form
as

β ≃ ∆−1B(ζ∆). (3.50)

Here B(u) is a scaling function which behaves asymptotically as (Appendix C)

B(u) ∼











const. u→ 0,

√
u u→ +∞.

(3.51)

Combining Eqs. (3.41) and (3.50), the scaling function Dn(u) is obtained in terms of B(u) as

Dn(u) ≃
1

n

[

u2 + B2(u)
]

, (3.52)

which reproduces Eq. (3.49) when combined with Eq. (3.51).
The mean-field exponents χPB and γPB appear to be independent of the index of the

density moments, n. They may be used to characterize the mean-field universality class of
the CCT in all dimensions, since the PB results are independent of the space dimensionality.

Mean-field energy and heat capacity

The mean-field canonical free energy of the counterion-cylinder system may be obtained using
a saddle-point analysis from the field-theoretic representation of the partition function when
Ξ → 0 [103] (Appendix A). The rescaled PB free energy defined as F̃PB ≡ FPB

N /(NkBT ) is
given by (up to the trivial kinetic energy part)

F̃PB = −1

ξ

∫

r̃ dr̃

[

1

4

(

dψPB

dr̃

)2

+ δ(r̃ − R̃)ψPB(r̃)

]

− ln

[

1

ξ

∫ D̃

R̃
r̃ dr̃ e−ψPB(r̃)

]

− ln

(

2Vcyl

Nξ

)

,

(3.53)
where Vcyl = πR2H is the actual volume of the cylinder. In the thermodynamic limit N → ∞,
the ratio Vcyl/N is a constant and will be dropped in what follows.

Inserting the PB potential field, Eq. (3.25), into the free energy expression (3.53), I find
that for ξ > ΛAF

F̃PB = −1

ξ

[

(1 − β2)∆ + ln

(

(ξ − 1)2 + β2

1 + β2

)

+ ξ

]

+ ln[(ξ − 1)2 + β2] − ln(2ξ). (3.54)

While for ξ < ΛAF, I obtain

F̃PB = −1

ξ

[

(1 + β2)∆ + ln

(

(ξ − 1)2 − β2

1 − β2

)

+ ξ

]

+ ln[(ξ − 1)2 − β2] − ln(2ξ). (3.55)
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These expressions (up to some additive constants) have also been obtained by Lifson et al.
[104] using a charging process method.

The rescaled (internal) energy, ẼPB ≡ EPB
N /(NkBT ), and the rescaled excess heat capac-

ity, C̃PB ≡ CPB
N /(NkB), can be calculated using the thermodynamic relations

ẼPB = ξ
∂F̃PB

∂ξ
, (3.56)

C̃PB = −ξ2∂
2F̃PB

∂ξ2
, (3.57)

where the derivatives are taken at fixed volume, number of particles, and also for fixed charges
and dielectric constant. A closed-form expression may be obtained for energy using the
relation E = (εε0/2)

∫

dx (∇ψelec)
2, where ψelec = kBTψPB/qe is the potential field in actual

units. In rescaled units, the result is

Ẽ =
1

4ξ

∫ D̃

R̃
r̃ dr̃

(

dψ

dr̃

)2

=
1

ξ
×























(1 + β2)∆ + ln

[

(ξ−1)2−β2

1−β2

]

+ ξ ξ ≤ ΛAF,

(1 − β2)∆ + ln

[

(ξ−1)2+β2

1+β2

]

+ ξ ξ ≥ ΛAF.

(3.58)

In general, the above quantities can be calculated numerically using the transcendental
equation (3.26). But in the limit of ∆ → ∞, I employ the asymptotic results obtained for β
(Appendix C) to derive the asymptotic form of the rescaled PB free energy as [103]

F̃PB =











(ξ − 2)∆ ξ ≤ ξPB
c = 1,

−∆/ξ ξ ≥ ξPB
c = 1.

(3.59)

The rescaled PB energy asymptotically behaves as

ẼPB =











ξ∆ ξ ≤ ξPB
c ,

∆/ξ ξ ≥ ξPB
c ,

(3.60)

and the rescaled PB excess heat capacity as

C̃PB =











0 ξ < ξPB
c ,

2∆/ξ ξ > ξPB
c .

(3.61)

The above results show that both energy and excess heat capacity develop a singular
peak at the Manning parameter ξPB

c = 1 when the critical limit ∆ → ∞ is approached. The
PB results also show that the free energy diverges with ∆ both above and below the mean-
field critical point, in contrast with the behavior obtained within the (one-particle) Onsager
instability [39], which suggests a connection between the onset of the counterion condensation
and the divergence of the partition function (Section 3.2 and Appendix B).

Another important point is that the PB heat capacity exhibits a discontinuity at ξPB
c = 1.

Therefore, the CCT may be considered as a second-order transition as also pointed out in
a previous mean-field study [89]. I shall return to the singular behavior of energy and heat
capacity later in the numerical studies.
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3.4 Strong-coupling theory for the CCT

In the limit of large coupling parameter, Ξ → ∞, the partition function of a charged system
adopts an expansion in powers of 1/Ξ, the leading term of which comprises only single-particle
contributions, i.e. a single counterion interacting with fixed charged objects [43, 44, 44] (see
Appendix A). This leading-order theory, referred to as the asymptotic strong-coupling (SC)
theory, describes the complementary limit to the mean-field regime, Ξ ≫ 1, where inter-
particle correlations are expected to become important [35, 43, 48, 49].

The rescaled SC density profile for counterions is obtained as (Appendix A)

ρ̃SC(r̃) = Λ0 Ω̃(r̃) e−ũ(r̃) (3.62)

where ũ(r̃) = 2ξ ln(r̃/R̃) is the single-particle interaction energy and Λ0 is a normalization
factor, which is fixed with the total number of counterions. Thus one has

Λ0 =
2(ξ − 1)

ξ

[

1 − e−2(ξ−1)∆
]−1

, (3.63)

in the cell model considered here. Note that for ∆ → ∞, Λ0, and therefore the whole density
profile, vanishes for ξ ≤ 1. But for ξ ≥ 1, one obtains Λ0 → 2(ξ − 1)/ξ and hence a finite
limiting density profile as

ρ̃SC(r̃) → 2(ξ − 1)

ξ

(

r̃

R̃

)−2ξ

. (3.64)

This shows that the CCT is reproduced within the SC theory as well, and surprisingly, the
threshold value is found to be ξSC

c = 1 in coincidence with the mean-field prediction. Note
however that the SC profile for ξ > 1 indicates a larger contact density for counterions as
compared with the mean-field theory, e.g., for ∆ → ∞, one has

ρ̃SC(R̃) =
2(ξ − 1)

ξ
, (3.65)

which is larger than the PB value (3.33) by a factor of ρ̃SC(R̃)/ρ̃PB(R̃) = 2(1−1/ξ)−1. The SC
density profile also decays faster than the PB profile indicating a more compact counterionic
layer at the cylinder. This reflects strong ionic correlations in the condensation phase (ξ > 1)
for Ξ ≫ 1 as will be discussed further in the numerical studies below.

Using Eq. (3.62), the SC order parameters can be calculated as

SSC
n (ξ,∆) =

2(ξ − 1)

ξn(2ξ − 2 + n)

1 − e−(2ξ−2+n)∆

1 − e−2(ξ−1)∆
(3.66)

for arbitrary ξ and ∆. For ∆ → ∞, SSC
n vanishes for ξ ≤ ξSC

c = 1, but tends to

SSC
n (ζ,∞) =

2(ξ − 1)

ξn(2ξ − 2 + n)
(3.67)

for ξ ≥ ξSC
c = 1. In the vicinity of the critical point, SSC

n exhibits the scaling relation

SSC
n (ζ,∞) ≃ 2ζ/n, (3.68)
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which gives the SC scaling exponent associated with the reduced Manning parameter, ζ =
1 − ξc/ξ, as χSC = 1. In a finite system and right at the threshold ξ = ξSC

c , SSC
n shows the

finite-size-scaling relation

SSC
n (0,∆) ≃ 1

n∆
, (3.69)

which gives the SC scaling exponent associated with the lateral extension parameter, ∆, as
γSC = 1.

These exponents are different from the corresponding mean-field values, Eqs. (3.44) and
(3.47). As will be shown later, the SC predictions, which coincide with the Onsager instability
results, in fact break down near the CCT critical point.

3.5 Monte-Carlo study of the CCT in 3D

The preceding analysis within the mean-field and the strong-coupling theory reveals a set of
new scaling relations associated with the counterion-condensation transition (CCT) in the
limit of infinitely large (lateral) system size. In the following sections, I shall use numerical
methods to examine the critical behavior in various regimes of the coupling parameter, and
thereby, to examine the validity of the aforementioned analytical results.

3.5.1 The centrifugal sampling method

The major difficulty in studying the CCT numerically goes back to the lack of an efficient
sampling technique. Poor sampling problem arises for counterions at charged curved surfaces
in the infinite-confinement-volume limit because, contrary to charged plates, a finite fraction
of counterions always tends to unbind from curved boundaries and diffuse to infinity as the
system relaxes toward its equilibrium state. This situation is, of course, not tractable in
numerical simulations; hence to achieve proper equilibration within a reasonable time, charged
cylinders are customarily considered in a confining box (in lateral directions) of practically
large size. As well known [57, 63, 64, 65, 75, 77], lateral finite-size effects are quite small for
sufficiently large Manning parameter (ξ > ξc). But at small Manning parameters (ξ ∼ ξc),
these effects become significant and suppress the de-condensation of counterions.

The mean-field results already reveal a very weak asymptotic convergence to the true
critical transition limit controlled by the logarithmic size of the confining box ∆ = ln(D/R).
Hence one needs to consider a confinement volume of extremely large radius, D, to establish
the large-∆ regime, where the scaling (and possibly universal) properties of the CCT emerge.
For this purpose, clearly, the simple-sampling methods within Monte-Carlo or Molecular
Dynamics schemes [74, 75, 76, 77, 106, 107, 108] are not useful at low Manning parameter as
they render an infinitely long relaxation time.

I shall therefore introduce a novel sampling method within the Monte-Carlo scheme, which
enables one to properly span the relevant parts of the phase space for large confining volumes.
In three dimensions, I use the configurational Hamiltonian (3.10) in rescaled coordinates. The
sampling method, which I will refer to as the centrifugal sampling, is obtained by mapping
the radial coordinate to a logarithmic scale according to Eq. (3.13), i.e. y = ln(r̃/R̃), which
leads to the transformed partition function (3.14). As explained before (Section 3.2), the
entropic (centrifugal) factor, exp(2y), is absorbed from the measure of the radial integrals
into the Hamiltonian, yielding the transformed Hamiltonian H∗

N in Eq. (3.15).
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Figure 3.2: Typical snapshots from the simulations on the counterion-cylinder system in 3D for a)

lateral extension parameter ∆ = ln(D/R) = 100 and three different Manning parameters ξ = 0.7, 1.0

and 2.0 as indicated on the graph, and b) for Manning parameter ξ = 1.0 and smaller lateral extension

parameters ∆ = 10 and 25. The snapshots show top-views of the simulation box (see Section 3.5.2

and Figure 3.1) with radial distances shown in logarithmic scale y = ln(r̃/R̃). Point-like counterions

are shown by black spheres and the charged cylinder by a circle in the middle. Figure c) gives the

simulated radial density of counterions in rescaled units, ρ̃(r̃) = ρ(r)/(2πℓBσ
2
s ), as a function of the

(linear) distance from the cylinder axis. Main set shows the data for ∆ = 100 and Manning parameters

ξ = 2.0 (open square), 1.5 (open triangle-ups), 1.1 (open diamonds), 1.0 (filled squares) and 0.7 (filled

circles) from top to bottom. Inset shows the same for ξ = 1.0, but for various lateral extension

parameters ∆ =10, 25 and 100 (top to bottom). Solid curves are the mean-field PB prediction

obtained numerically from Eq. (3.27). Number of counterions here is N = 100 and the coupling

parameter Ξ = 0.1. Error-bars are smaller than the size of symbols.

I thus simulate the system using Metropolis algorithm [109], but making use of the trans-
formed Hamiltonian (3.15). The entropic factors, which cause unbinding of counterions, are
hence incorporated into the transition probabilities of the associated Markov chain of states,
that generates equilibrium states with the distribution function ∼ exp(−βH∗

N ). The averaged
quantities, say Q̄, follow by extracting a set of T values {Q1, . . . , QT } in the course of the
simulations as Q̄ =

∑T
t=1Qt/T , which, for sufficiently large T , produces the desired ensemble

average 〈Q〉, i.e.

Q̄ =
1

T

T
∑

t=1

Qt ≃
µ3N R̃2N

N !ZN

∫

Ṽ

[

N
∏

i=1

dz̃i dφi dyi

]

Q(yi, φi, z̃i) e
−βH∗

N = 〈Q〉, (3.70)

up to relative corrections of the order 1/
√
T .



3.6 Simulation results in 3D 35

3.5.2 Simulation model and parameters

The geometry of the counterion-cylinder system in the following simulations is similar to what
I have sketched in Figure 3.1. I use typically between N = 25 to 300 counterions (most of
the results in are obtained with N=100 and 200 particles) and increase the lateral extension
parameter, ∆ = ln(D/R), up to ∆ = 300. I also vary the Manning parameter, ξ, and consider
a wide range of values for the electrostatic coupling parameter, Ξ, from Ξ = 0.1 (close to the
mean-field regime) up to Ξ = 105 (close to the strong-coupling regime).

The cylindrical simulation box has a finite height, H̃, which is set by the electroneutrality
condition (3.11), i.e. H̃ = NΞ/ξ. In order to mimic the thermodynamic limit and reduce
the finite-size effects due to the finiteness of the cylinder height, I apply periodic boundary
conditions in z direction (parallel to the cylinder axis) by replicating the main simulation box
infinitely many times in that direction. The long-range character of the Coulomb interaction
in such a periodic system leads to summation of infinite series over all periodic images. These
series are not generally convergent, but in an electroneutral system, the divergencies cancel
and the series can be converted to fast-converging series. I use the summation techniques due
to Lekner [110] and Sperb [111], which are utilized for the one-dimensionally periodic system
considered here–see Appendix D.1 (similar methods are developed in Ref. [112]). Finally in
order to obtain reliable values for the error-bars, the standard block-averaging scheme is used
[113]. The simulations typically run for ∼ 1.1×106 Monte-Carlo steps per particle with ∼ 105

steps used for the equilibration purpose.

3.6 Simulation results in 3D

3.6.1 Overall behavior in the infinite-system-size limit

Distribution of counterions

I start by demonstrating the results for the distribution of counterions as generated by the
centrifugal sampling method. In Figure 3.2, typical simulation snapshots are shown together
with the counterionic density profile for small coupling parameter Ξ = 0.1. Counterion
distribution is shown for large (∆ = 100), intermediate (∆ = 25) and small (∆ = 10) lateral
extension parameter. The counterion-condensation transition is clearly reproduced for large
∆ (Figure 3.2a): counterions are “de-condensed”and gather at the outer boundary at small
Manning parameter (shown for ξ = 0.7), while they partially “condense”and accumulate
near the cylinder surface for large Manning parameter (shown for ξ = 2). The Manning
parameter ξ = 1, as seen, represents an intermediate situation. This trend is demonstrated
on a quantitative level by the radial density profile of counterions ρ̃(r̃) (Figure 3.2c, main
set), which tends to zero by decreasing ξ down to about unity. Note that relatively large
fluctuations occur at low ξ making ρ̃(r̃) an inconvenient quantity to precisely locate the
critical value ξc, which will be considered later. The data moreover follow the mean-field PB
density prediction, Eq. (3.27), shown by solid curves, as expected since the chosen coupling
parameter is small.

The transition regime at intermediate ξ exhibits strong finite-size effects. As may be
seen from the snapshots in Figure 3.2b, the de-condensation process at ξ = 1 is strongly
suppressed for small logarithmic sizes ∆ = ln(D/R) = 10 and 25. The corresponding density
profiles (inset of Figure 3.2c) indicate a sizable accumulation of counterions near the cylinder
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surface, which is washed away only by taking a sufficiently large ∆. Such finite-size effects
at low ξ are also observed in previous numerical studies, which have devised simulations
in linear scale and thus considered only small confinement volumes per polymer (typically
∆ < 10) [75, 77, 106, 107, 108]. In some studies [114], these effects have been interpreted as
an evidence for counterion condensation at small ξ, leading to the incorrect conclusion that
no condensation transition exists.

Condensed fraction of counterions

The preceding results for large ξ exhibit a counterionic density profile that extends continu-
ously from the cylinder surface to larger distances. This indicates that making a distinction
between two layers of condensed and de-condensed counterions, in the sense of two-fluid mod-
els frequently used in literature [20, 39, 56, 57, 58, 59, 60, 61, 80, 82, 83, 84, 85, 86, 91, 92],
requires a criterion.

The two-fluid description predicts a fraction of

αM =











0 ξ ≤ 1

1 − 1/ξ ξ ≥ 1
(3.71)

of counterions to reside in the condensed layer (which is considered as a layer with small
thickness at the polymer surface), when the infinite-dilution limit is reached. Previous studies
[62, 63, 64, 66, 75, 94] show that the Manning condensed fraction, αM, may also be identified
systematically within the Poisson-Boltzmann theory by employing an inflection-point crite-
rion [75, 94]. This can be demonstrated using the PB cumulative density (the number of
counterions inside a cylindrical region of radius r), nPB(r), obtained as

nPB(r)

N
=

2πH

N

∫ r

R
r′ dr′ ρPB(r′) =

1

ξ
×















(ξ − 1) − β coth

[

βy + coth−1 ξ−1
β

]

ξ ≤ ΛAF,

(ξ − 1) − β cot

[

βy + cot−1 ξ−1
β

]

ξ ≥ ΛAF,

(3.72)
using Eq. (3.27). For ξ ≥ ΛAF, nPB(r) exhibits an inflection point at a radial distance r∗
when plotted as a function of y = ln(r/R) [75]. One can show that for ∆ → ∞, only the
fraction of counterions, that lie within the cylindrical region r ≤ r∗, remains associated with
the cylinder and tends to the Manning condensed fraction, i.e.

nPB(r∗)

N
→ αM. (3.73)

In other words, only this fraction of counterions contribute to the asymptotic density profile
and the rest (1/ξ of all) is pushed to infinity (Appendix C.6).

The simulations results for the cumulative density as a function of the logarithmic radial
distance y = ln(r̃/R̃) are shown in Figure 3.3 for various Manning parameters (solid and dot-
dashed curves). Here I have chosen a very large lateral extension parameter ∆ = ln(D/R) =
300, which exhibits the concept of condensed fraction more clearly. The data show an in-
flection point, which is located approximately at y∗ = ln(r∗/R) ≃ ∆/2 for large ξ (for small
ξ → 1, the location of the inflection point, r∗, tends to R–see Appendix C.3). The rapid
increase of n(r̃) at small (r ∼ R) and at large distances (r ∼ D) reflects the two counterion-
populated regions at the inner and outer boundaries, which are separated by an extended
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Figure 3.3: Cumulative density, n(r̃), per total number N , of counterions as a function of the loga-

rithmic distance from the charged cylinder, ln(r̃/R̃). The dot-dashed curves are simulation results for

Ξ = 0.1, N = 70, and ∆ = 300 and for various Manning parameters as shown on the graph. These

curves also closely represent the PB prediction (3.72), which are not explicitly shown. The solid curves

show the simulation data for the large coupling parameter Ξ = 102 and for ξ = 3.0 and ξ = 2.0.

plateau (compare with Figure 3.2). For small ∆, the inflection point has a non-vanishing
slope and the two regions are not quite separated (data not shown) [75, 91].

Using the inflection-point criterion, the condensed fraction, α, may be estimated as α =
n(r∗)/N [75], which roughly corresponds to the plateau level in Figure 3.3. Simulation results
are shown in Figure 3.4 for large ∆ = 300. Let us first consider the case of a small coupling
parameter Ξ = 0.1, where the simulated cumulative density, n(r̃) (dot-dashed curves in
Figure 3.3), closely follows the PB prediction (3.72) (PB curves are not explicitly shown).
The calculated condensed fraction (diamonds in Figure 3.4) agrees already quite well (within
< 1%) with the Manning or PB limiting value αM (solid curve in Figure 3.4).

An important question is whether the form of the cumulative density profile, n(r̃), and
the condensed fraction are influenced by electrostatic correlations for increasing coupling
parameter Ξ. In Figure 3.3, I show n(r̃) from the simulations for Ξ = 102 and for two
values of Manning parameter ξ = 2.0 and 3.0 (solid curves). This coupling strength generally
falls into the strong-coupling regime for charged systems, where electrostatic correlations are
expected to matter [35, 54, 55] (note that DNA with trivalent counterions represents Ξ ∼ 102,
but with a larger ξ ∼ 12). As seen, n(r̃) shows a more rapid increase at small distances
from the cylinder (condensed region) indicating a stronger accumulation of counterions near
the surface. This trend is also observed in previous simulations [75, 107, 106, 108] and in
experiments with multivalent counterions [115], and will be analyzed in more detail later in
this section.

However, in contrast to previous conclusions (obtained based on small values of ∆) [75, 91],
the aforementioned behavior for large Ξ does not imply a larger condensed fraction as defined
within the inflection-point criterion. Since as seen in Figure 3.3, the large-distance behavior of
the density profile is not influenced by electrostatic correlations, and so remains the condensed
fraction (plateau level) unaffected for increasing coupling strength (inset of Figure 3.4). This
result can be appreciated only when the asymptotic behavior for ∆ ≫ 1 is considered.
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The order parameters Sn

The n-th-order inverse moment of the counterionic density profile may be calculated numer-
ically using

Sn =
1

N

N
∑

i=1

r̃−ni (3.74)

for n > 0, where r̃i is the radial distance of the i-th counterion from the cylinder axis and
the bar sign denotes the Monte-Carlo time average after proper equilibration of the system.
The overall behavior is shown in Figure 3.5 for S1 as a function of Manning parameter,
ξ. Recall that a vanishing order parameter, S1, indicates the complete de-condensation of
counterions, while a finite S1 reflects a finite degree of counterion binding to the charged
cylinder (corresponding to a finite localization length ∼ 1/S1).

As seen from the figure, de-condensation can occur in all relevant regimes of the coupling
parameter Ξ. For large Manning parameter, electrostatic coupling effects become important
and shift the order parameter to larger values exhibiting a crossover from the mean-field
prediction (solid curve), which is verified for small Ξ < 1, to the strong-coupling prediction
(dashed curve) at very large values of Ξ [35, 43, 46]. The mean-field result follows from
Eq. (3.40) and the strong-coupling prediction is obtained using Eq. (3.66). As seen, in the
transition regime ξ ∼ 1, the order parameter data remain close to the mean-field curve and
deviate from the SC prediction. A close examination of correlation effects as well as finite-
size effects in this region is quite important in determining the scaling behavior and will be
considered later. Here I will concentrate on the correlation-induced crossover behavior in the
condensation phase.
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Electrostatic correlations at surface and for large ξ

In Figure 3.6, I plot the simulated radial density profile of counterions, ρ̃(r̃), for ξ = 3.0 and
consider several different coupling parameters. In agreement with the preceding results, the
counterionic density in the immediate vicinity of the charged cylinder increases for increasing
Ξ exhibiting large deviations from the mean-field prediction (see Ref. [116] for a similar trend
at charged plates). For a given surface charge density σs, the observed trend is predicted,
e.g., for increasing counterion valency, q, since the coupling parameter scales as Ξ ∼ q3 (Eq.
(3.8)). The crossover from the mean-field PB prediction (solid curve) to the strong-coupling
prediction (dashed curve) appears to be quite weak, in agreement with the situation observed
for counterions at planar charged walls [44, 46]. These limiting profiles are calculated from
Eqs. (3.27) and (3.62) respectively, and both exhibit an algebraic decay with the radial
distance, r̃. But the SC profile shows a faster decay and thus a more compact counterion
layer near the surface at large coupling strength (compare Eqs. (3.34) and (3.64)).

An interesting point is that the simulated density at contact with the cylinder shows
a more rapid increase when the coupling parameter increases from Ξ = 10 to Ξ = 100 as
compared with other ranges of Ξ (Figure 3.6). This is in fact accompanied by the formation
of correlation holes around counterions near the surface as shown below.

In order to examine counterion-counterion correlations at the surface, I consider the one-
dimensional pair distribution of counterions, g1D(z̃), which measures the probability of finding
two counterions lined-up along z-axis (i.e. along the cylinder axis with equal azimuthal angles
φ) at a distance z̃ from each other. In Figure 3.7, I plot the unnormalized pair distribution
function defined via

g1D(z̃) ≡ 1

N

′
∑

i6=j

〈

δ(z̃i − z̃j − z̃) δ(φi − φj)

〉

, (3.75)

where the prime mark indicates that the sum runs only over counterions at the surface (defined
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coupling (dashed curve) predictions are obtained from Eqs. (3.27) and (3.62), which, for ∆ = 300,

roughly coincide with the asymptotic expressions (3.34) and (3.64).

in the simulations as counterions residing in a shell of thickness about the Gouy-Chapman
length, µ, around the cylinder). At small coupling parameter (Ξ = 10, cross symbols), the
pair distribution function only shows a very weak depletion zone at small distances along the
cylinder axis. For larger values of Ξ, one observes a pronounced correlation hole at small
distances around counterions, where the distribution function vanishes over a finite range.
This correlation hole develops in the range of coupling parameters 10 < Ξ < 100, which marks
the crossover regime between the mean-field and the strong-coupling regime (compare cross
symbols and filled triangle-ups) [46]. The correlation hole appears only for sufficiently large
Manning parameter ξ (large enough number of condensed counterions) and is distinguishable
in the present simulations for ξ > 1.2.

The small-separation correlation hole is followed by an oscillatory behavior for elevated
ξ indicative of a short-ranged liquid-like order among counterions line-up along the cylinder
axis (distinguishable from the data for ξ > 2.0 in the large-coupling regime Ξ > 100). The
location of the first peak of g1D gives a rough measure of the typical distance between lined-
up counterions, az, at the cylinder surface. This distance is set by the local electroneutrality
condition azτ = q. In rescaled units, one obtains

ãz ≡
az
µ

=
Ξ

ξ
, (3.76)

from Eqs. (3.5), (3.6) and (3.8), which is used to rescale the horizontal axis of the graph in
Figure 3.7.

Note that the correlation hole size increases with the coupling parameter and thus counte-
rions at the surface become highly isolated, reflecting dominate single-particle contributions
for Ξ ≫ 1 [43, 46]. In fact, as discussed in Chapter 2, the single-particle form of the SC theory
(obtained formally for Ξ → ∞) is a direct consequence of large correlation hole size around
counterions at the surface [35, 43, 46, 54, 55]. Clearly, for the counterion-cylinder system,
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this can be the case only for sufficiently large Manning parameter, where a sizable fraction
of counterions can gather near the surface. Consequently in this regime, the data tend to the
strong-coupling predictions for elevated Ξ (Figures 3.5 and 3.6) as also verified in the simula-
tions of charged plates, where all counterions are bound to the surface [46], and two charged
cylinders with large ξ [54, 55]. This also explains why the SC theory, though being able to
reproduce the CCT on a qualitative level, fails to capture the quantitative features near the
critical point (except for the value of the critical Manning parameter), where counterion are
mostly de-condensed.

3.6.2 Critical Manning parameter ξc

I will now consider the behavior of counterions near the critical point and begin with deter-
mining the precise location of the critical Manning parameter, ξc.

To this end, I shall employ a procedure similar to the method of locating the transition
temperature in bulk critical phenomena [101, 117, 121]. Namely, one expects that the transi-
tion point is reflected by a singular behavior in thermodynamic quantities such as energy or
heat capacity as already indicated by the mean-field results obtained in Section 3.3.3. The
mean (internal) energy, EN , and the excess heat capacity, CN , may be obtained directly from
the simulations and in rescaled units as

Ẽ =
EN
NkBT

=

〈 HN

NkBT

〉

, (3.77)

C̃ =
CN
NkB

= N

〈(

δHN

NkBT

)2 〉

, (3.78)

where the configurational Hamiltonian HN is defined through Eq. (3.10) and δHN = HN −
〈HN 〉.

Simulation results for the rescaled energy, Ẽ, and the rescaled excess heat capacity, C̃, in
Figure 3.8 (symbols) show a non-monotonic behavior as a function of ξ. The energy develops a
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pronounced peak and the heat capacity exhibits a jump at intermediate Manning parameters,
which become singular for ∆ increasing to infinity. The general behavior of energy and heat
capacity can be understood using simple arguments as follows.

For sufficiently small ξ, counterions are all unbound and the electrostatic potential in
space is roughly given by the bare potential of the charged cylinder, i.e. ψ(r̃) ≃ 2ξ ln(r̃/R̃).
This yields the rescaled internal energy, Ẽ, (via integrating over the square electric field, see
Eq. (3.58)) as

Ẽ =
1

4ξ

∫ D̃

R̃
r̃ dr̃

(

dψ

dr̃

)2

≃ ξ∆ (3.79)

for ∆ = ln(D/R) ≫ 1. Intuitively, this result may be obtained also by assuming that
counterions experience the potential of the cylinder at the outer boundary; thus one simply
has Ẽ ≃ ψ(D̃)/2 ≃ ξ∆, which explains the linear increase of the left tail of the energy curve
with both ξ and ∆ (Figure 3.8a). Now using the following thermodynamic relation

ξ
∂Ẽ

∂ξ
= Ẽ − C̃, (3.80)

the excess heat capacity is obtained to vanish in the de-condensation regime, i.e. C̃ ≃ 0
(Figure 3.8b). Hence, the heat capacity reduces to that of an ideal gas of particles.

For large ξ, the electrostatic potential of the cylinder is screened due to counterionic bind-
ing. If one estimates the screened electrostatic potential of the cylinder as ψ(r̃) ≃ 2 ln(r̃/R̃),
which can be verified systematically within the PB theory [38, 105], one obtains the energy
and the heat capacity as

Ẽ ≃ ∆/ξ and C̃ ≃ 2∆/ξ. (3.81)
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These results may also be obtained by noting that only the fraction 1/ξ of de-condensed coun-
terions (Section 3.6.1) contributes to the energy on the leading order; thus Ẽ ≃ ψ(D̃)/(2ξ) ≃
∆/ξ. The above asymptotic estimates in fact coincide with the asymptotic (∆ → ∞) PB
results (3.60) and (3.61), which are shown by solid curves in Figure 3.8.

The preceding considerations demonstrate that the non-monotonic behavior of the energy
and excess heat capacity results directly from the screening effect due to the condensation
of counterions as ξ increases. Hence, the singular peaks emerging in both quantities reflect
the onset of the counterion-condensation transition, ξc, which occurs in the thermodynamic
infinite-system-size limit N → ∞ and ∆ → ∞. Within the PB theory (solid and dashed
curves in Figure 3.8), the location of the peak of energy, ξE,PB

∗ (N,∆), tends to the mean-field
threshold ξPB

c = 1 from below as ∆ increases obeying the finite-size-scaling relation

ξPB
c − ξE,PB

∗ (∆) ≃ 1

∆
, (3.82)

which is obtained using the full PB energy (3.58). On the other hand, the location of the
peak of the PB heat capacity approaches ξPB

c from above.

I locate the critical point from the asymptotic behavior of the energy peak, ξE∗ , as N and
∆ increase. (The heat capacity peak is found to be located further away from the critical
point than the energy peak, resembling the well-known behavior of the heat capacity peak
in finite Magnetic systems [117], which makes it inconvenient for determining the critical
point). In Figure 3.9, I show the simulation results for ξE∗ (symbols) as a function of ∆−1 for
Ξ = 0.1 and for various number of particles (main set). These data are obtained using the
thermodynamic relation (3.80), which allows us to calculate the first derivative of the energy,
∂Ẽ/∂ξ, including its error-bars, directly from the energy and the heat capacity data without
referring to numerical differentiation methods which typically generate large errors near the
peak. As seen, for increasing N , the data converge to and closely follow the mean-field
prediction (solid curve) within the estimated error-bars; for N > 100, ξE∗ lies within about
1% of the PB threshold ξPB

c = 1. Since in the simulations I have used ∆ ≤ 300, the behavior
of ξE∗ for very small ∆−1 → 0 is not obtained, nevertheless, the excellent convergence of the
data for Ξ = 0.1 to the PB prediction gives an accurate estimate for the critical Manning
parameter as

ξc = 1.00 ± 0.002. (3.83)

The results for larger values of the coupling parameter, Ξ, in the inset of Figure 3.9 show
that the location of the energy peak does not vary with the coupling parameter. Therefore,
the critical Manning parameter is found to be universal and given by the mean-field value
ξc = 1.0. Recall that the same threshold is obtained within the Onsager instability and the
strong-coupling analysis (Sections 3.2.2 and 3.4).

Another important result is that the CCT is not associated with a diverging singularity,
in contrast to the Onsager instability prediction [39]. But, the energy at any finite value of
ξ, and also the heat capacity for ξ > 1, tend to infinity (as ∼ ∆) when the lateral exten-
sion parameter, ∆, increases to infinity, which, as illustrated before, reflects the logarithmic
divergency of the effective electrostatic potential in a charged cylindrical system. The CCT,
however, exhibits a universal discontinuous jump for the excess heat capacity at ξc, and thus
indicates a second-order phase transition (Figure 3.8).
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3.6.3 Scale-invariance near the critical point

Now that the precise location of the critical Manning parameter is determined, a finite-size
analysis, similar to what I presented within the mean-field theory, may be used to determine
the near-threshold properties of the CCT order parameters from the simulation data.

Note that in the simulations, finite size effects arise both from the finiteness of the system
size (via the lateral extension parameter, ∆), and also from the finiteness of the number of
counterions, N ; the latter being related to the finiteness of the height of the main simulation
box H = Nq/τ (Section 3.5), which has a sizable influence on the transition, although the
implemented periodic boundary condition already reduces its effects. In what follows, I
present the numerical evidence for scaling relations with respect to both N and ∆. The
asymptotic behavior for increasing N and ∆ to infinity provides us with the scaling behavior
with respect to the reduced Manning parameter, ζ (or the reduced temperature, t), which
characterizes the CCT universality class in 3D.

Finite-size effects near ξc

In Figure 3.10 (main set), I show the order parameter S1 as a function of 1/∆ and in the
vicinity of the critical point ξc = 1 (number of counterions N = 100 is fixed). S1, which repre-
sents the mean inverse localization length of counterions, gradually decreases with decreasing
1/∆ as they become gradually more de-condensed, but for Manning parameters as large as
ξ = 1.05 (open circles), the data quickly saturate to a finite value as ∆ → ∞. For sufficiently
small Manning parameter (e.g. ξ < 0.97), on the other hand, S1 converges to zero. In the
vicinity of the threshold (ξ = 1, diamonds), a non-saturating behavior is found suggesting a
power-law decay as S1 ∼ ∆−γ , where γ > 0. As seen, the data at ξ = 1 roughly coincide for
both small coupling (Ξ = 0.1, open diamonds) and large coupling (Ξ = 102, filled diamonds)
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indicating that electrostatic correlations do not influence the scaling behavior (see below).
There still remain non-negligible deviations between the simulation data at the critical point
(diamonds) and the PB power-law prediction (3.45) with γPB = 2, which is shown in the
figure by a straight dot-dashed line. These deviations arise from the finiteness of the number
of particles.

Interestingly, the data obtained for various number of counterions, N (at fixed lateral
extension parameter, ∆), also indicate a power-law decay near the critical point, i.e. as
S1 ∼ N−ν , where ν > 0. This is shown in the inset of Figure 3.10, where the scaling exponent
ν appears to be about 2/3 (represented by a dashed line). In fact, for sufficiently large N , the
data deviate from this power-law behavior since finite-size effects due to lateral extension of
the system, ∆, are simultaneously present. Thus in order to determine the exponents γ and
ν, a more systematic approach is required, which should incorporate both lateral-size and
ion-number effects.

Generalized finite-size-scaling relations

In brief, the simulation data suggest that at the critical point (ζ = 1 − ξc/ξ = 0) and for
a bounded system (finite ∆) in the thermodynamic limit N → ∞, the order parameter
Sn(ζ,∆, N) = 〈1/r̃n〉 decays as

Sn(0,∆,∞) ∼ ∆−γ , (3.84)

while in an unbounded system (∆ → ∞) and for finite N , one expects a power-law decay as

Sn(0,∞,N) ∼ N−ν . (3.85)
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In thermodynamic infinite-system-size limit (∆ → ∞ andN → ∞), the true critical transition
sets in with Sn(ζ < 0,∞,∞) = 0, and one anticipates the scaling behavior with the reduced
Manning ζ as

Sn(ζ,∞,∞) ∼ ζχ (3.86)

in a sufficiently small neighborhood above ξc = 1.
These scaling relations may all be deduced from a general finite-size-scaling hypothesis for

Sn, i.e. assuming that Sn(ζ,∆, N) takes a homogeneous scale-invariant form with respect to
its arguments in the vicinity of the transition point, ξc, when both N and ∆ are sufficiently
large. In other words, for any positive number λ > 0,

Sn(λζ, λ
−b∆, λ−cN) = λaSn(ζ,∆,N), (3.87)

where a, b and c are a new set of exponents associated with ζ,∆ andN respectively. The above
relation implies that when the reduced Manning parameter, ζ, is rescaled with a factor λ, the
size parameters, N and ∆, can be rescaled such that the order parameter remains invariant
up to a scaling prefactor. Finite-size scale-invariance is a common feature in critical phase
transitions [101, 118, 119] and provides an accurate tool to estimate the critical exponents in
numerical simulations [117, 120, 121, 122]. The exponents in Eq. (3.87) can be calculated
directly from MC simulations. These exponents are in fact related to and give the values of
the desired critical exponents γ, ν and χ, as will be shown below. Note that the exponents
may in general depend on n (the index of Sn), the coupling parameter, Ξ, or the space
dimensionality, which are not explicitly incorporated in the proposed scaling hypothesis, but
their influence will be determined later.

Given Eq. (3.87), the following relations are obtained by suitably choosing λ. For λ =
N1/c, one finds

Sn(ζ,∆, N) = N−a/cCn(ζN1/c,∆N−b/c), (3.88)

where Cn(u, v) is the scaling function corresponding to a system with both finite N and ∆.
The above expression is useful for a system with finite N in the limit ∆ → ∞. Thus assuming
that Cn(u, v) exists for v = ∆N−b/c → ∞, the relation (3.88) reduces to

Sn(ζ,∞,N) = N−a/cNn(ζN
1/c), (3.89)

where the scaling function Nn(u) = Cn(u,∞). The critical exponent ν follows by considering
this relation right at the critical point, ζ = 0, i.e.

Sn(0,∞,N) = Nn(0)N
−ν , (3.90)

where ν is obtained as
ν =

a

c
. (3.91)

On the other hand, I assume that in the vicinity of (and above) the critical point (i.e. for
small but finite ζ), Sn(ζ,∞, N) is only a finite function of the reduced Manning parameter ζ
when the limit N → ∞ is taken. Hence the scaling function Nn(u) is required to behave as
Nn(u) ∼ ua for u→ ∞, which yields

Sn(ζ,∞,∞) ∼ ζχ, (3.92)

where the critical exponent associated with ζ reads

χ = a. (3.93)
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Figure 3.11: Rescaled order parameter, Na/cS1, as a function of the rescaled reduced Manning

parameter, ζN1/c, in the vicinity of the critical point, ξc = 1.0, and for small and large coupling

parameters Ξ = 0.1 (main set) and Ξ = 103 (inset). Symbols show data for various number of

particles N = 50 (triangle-downs), 70 (circles), 75 (squares), 100 (diamonds), 200 (cross symbols),

300 (triangle-ups), and fixed ∆ = 300. In these plots, the exponents are chosen as a/c = 2/3 and

1/c = 1/3. Error-bars are smaller than the symbol size.

To determine the critical exponent associated with ∆ in terms of the exponents {a, b, c},
one needs to consider Eq. (3.87) for λ = ∆1/b. One thus has

Sn(ζ,∆, N) = ∆−a/bC′
n(ζ∆

1/b,N∆−c/b), (3.94)

where C′
n(u, v) is a new scaling function. This relation is useful for a system with finite ∆ in

the limit N → ∞, where assuming that C′
n(u, v) exists, one obtains

Sn(ζ,∆,∞) = ∆−a/bDn(ζ∆
1/b) (3.95)

with a new scaling function Dn(u) = C′
n(u,∞). The critical exponent γ follows by considering

this relation right at the critical point, ζ = 0, that yields

Sn(0,∆,∞) = Dn(0)∆−γ , (3.96)

where γ reads

γ =
a

b
. (3.97)

Therefore, one has a complete set of relations (3.91), (3.93) and (3.97) from which the critical
scaling exponents γ, ν and χ may be obtained using the exponents a, b and c.

Equation (3.95) compares directly with the mean-field result, Eq. (3.45), where I showed
that γPB = 2 and χPB = 2. Note also that the exponent ν is not defined within mean-field
theory.

3.6.4 Critical exponents: the CCT universality class

The exponents χ and ν

In order to verify the generalized finite-size scaling hypothesis (3.87) and estimate the critical
exponents numerically, I adopt the standard data-collapse scheme used widely in literature
[120, 121, 122].
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I begin with the exponents χ and ν that can be calculated using Eq. (3.88), which
involves a scaling function Cn(u, v) of two arguments u = ζN1/c and v = ∆N−b/c. In the
present simulations, N ranges from 25 up to 300 and ∆ ranges from 50 up to 300; thus
assuming that the exponent b/c is small, which will be verified later on, one deals with a
typically large value for v ∼ 10− 102. Therefore the limiting relation (3.89) is approximately
valid and yields

Na/cSn ≃ Nn(ζN
1/c). (3.98)

Now if the data for Sn are plotted as function of ζ = 1 − ξc/ξ for various N (but at
fixed sufficiently large ∆), equation (3.98) predicts that by rescaling the reduced Manning
parameter ζ by the factor N1/c and the order parameter by the factor Na/c, all data should
collapse onto a single curve. Numerically, this procedure allows to determine the exponents
a/c and 1/c in such a way that the best data collapse is achieved. I show the results in
Figure 3.11 for various N (symbols) and for the coupling parameter Ξ = 0.1 (main set). The
collapse of the data onto each other is indeed achieved within the numerical error-bars for the
exponents in the range 1/c ≃ 1/3 ± 0.05 and a/c ≃ 2/3 ± 0.1. This yields the critical scaling
exponents ν and χ from Eqs. (3.91) and (3.93) as

ν ≃ 2/3 ± 0.1, (3.99)

χ ≃ 2.0 ± 0.4, (3.100)

where the errors are estimated using the standard error propagation methods. The value
obtained for χ agrees with the mean-field result, Eq. (3.44).

In order to check whether the exponents vary with the electrostatic coupling parameter,
Ξ, I repeat this procedure for a wide of range of values for Ξ. I find the same values for the
exponents for coupling parameters up to Ξ = 105. For comparison, the results for Ξ = 103

are shown in the inset of Figure 3.11, where the data collapse is demonstrated for 1/c = 1/3
and a/c = 2/3.

The exponent γ

Given the exponents a and c calculated above and making use of the finite-size scaling relation
(3.94), one can estimate the exponent b, and thereby the scaling exponent γ, associated with
the lateral extension parameter. In this case, however, the second argument v = N∆−c/b in
the scaling function C′

n(u, v) defined in Eq. (3.94) may not be considered as large within the
present simulations (since as shown below the ratio c/b is large). But it turns out that the
dependence of C′

n(u, v) on v is quite weak such that the finite-size scaling relation (3.95) is
approximately valid and can thus give the desired exponent. To examine this latter property
of C′

n(u, v), I consider the relation (3.94) right at the threshold Manning parameter (ζ = 0),
i.e.

Sn(0,∆, N) = ∆−a/bC′
n(0,N∆−c/b). (3.101)

In Figure 3.12, Sn(0,∆, N) is plotted as a function of ∆ in a log-log plot for increasing N
from 70 up to 300 and for Ξ = 0.1. As clearly seen, the order parameter varies quite weakly
with the number of particles, and the variations are already within the error-bars (equal to
symbol size) for N > 100.

Thus multiplying both sides of Eq. (3.95) with ∆a/b, one has

∆a/bSn ≃ Dn(ζ∆
1/b), (3.102)
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in which the exponent a is previously determined as a = χ = 2.0 ± 0.4. I thus plot the order
parameter Sn as a function of ζ for various ∆ (but at fixed sufficiently large N), and rescale
both Sn and ζ values with the scaling factors ∆a/b and ∆1/b respectively; the exponent b is
chosen in such a way that the best data collapse is obtained within the error-bars. The result
is shown in Figure 3.13 for ∆a/bS1 as a function of ζ∆1/b, where the coupling parameter is
chosen as Ξ = 0.1. The collapse of the data onto each other is obtained only for the exponent
1/b in the range 1/b ≃ 1.0 ± 0.2, yielding the critical scaling exponent γ from Eq. (3.97) as

γ ≃ 2.0 ± 0.6, (3.103)

which agrees with the mean-field exponent, Eq. (3.47). I find the same value for γ by
repeating the above procedure for larger coupling parameters. For instance, the results for
Ξ = 105 are shown in the inset of Figure 3.13, where I have chosen 1/b = 1.0.

Note that the estimated values of b and c show that the ratio b/c is as small as 0.3, which
is consistent with the assumption made in using the asymptotic forms (3.89) and (3.95) in
the foregoing data-collapse procedure.

As a main result, the present numerical data confirm the existence of characteristic scaling
relations associated with the counterion-condensation transition in 3D and show that the
values of the critical exponents are universal, i.e. independent of the coupling parameter, Ξ,
and agree with the mean-field universality class.

Also, in agreement with mean-field results, the exponents are found to be independent
of n, the index of the order parameters Sn = 〈1/r̃n〉. In fact, I find that the higher-order
moments are related to the first-order moment, S1, via

Sn ≃ S1

n
(3.104)
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in the vicinity of the critical point, which indicates that nSn is independent of n, as demon-
strated in the inset of Figure 3.12 (compare with the mean-field relation (3.41)).

3.7 Conclusion and discussion

In this chapter, I present an extensive numerical analysis of the critical behavior of counterions
at a charged cylinder in three spatial dimensions [95, 96]. I also investigate the critical behavior
analytically in the asymptotic limits of mean field (Poisson-Boltzmann) and strong coupling.

The counterion-condensation transition (CCT) is regulated by the dimensionless Manning
parameter (rescaled inverse temperature), ξ = qℓBτ , and occurs at a critical threshold ξc,
below which counterions completely unbind (de-condense) to infinity, but above ξc, a finite
fraction of counterions binds (or condenses) in the vicinity of the charged cylinder. Since the
CCT criticality emerges asymptotically in the limit of infinite system size and infinitely many
particles, I have employed Monte-Carlo (MC) simulation of a periodic cylindrical cell model
in the logarithmic radial coordinate, which gives rise to a powerful (centrifugal) sampling
method for extremely large lateral system sizes within reasonable equilibration times. This
constitutes the key part of the present numerical investigation, since the critical and universal
aspects of the CCT within the cell model can only be captured for large logarithmic system
size ∆ = ln(D/R) ≫ 1 (with D and R being the outer boundary and the charged cylinder
radii respectively).

As main results, I have determined the precise location of the critical Manning parameter,
ξc, the scaling universality class of the CCT and the singular behavior of energy and heat
capacity on a systematic level and without suppressing inter-particle correlations. As shown
both the mean internal energy and the excess heat capacity become singular at the critical
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point. The excess heat capacity, which vanishes in the de-condensation phase, shows a uni-
versal discontinuity (jump) at the critical point indicating that the CCT is a second-order
transition, as also suggested in a recent mean-field study [89]. In a finite system, these sin-
gularities appear in the form of pronounced peaks, the asymptotic behavior of which is used
to determine the critical Manning parameter, ξc, in the simulations. On the other hand, the
critical scaling exponents associated with the CCT are obtained using a combined finite-ion-
number, N , and finite-size, ∆, analysis of the order parameters Sn = 〈r̃−n〉 (with r̃ = r/µ
being the radial distance from the cylinder axis in units of the Gouy-Chapman length, µ).
These order parameters represent the inverse localization length of counterions. For ξ < ξc
and in an infinitely large system, Sn vanishes, but takes a finite value above ξc, which exhibits
the scaling relation Sn ∼ ζχ, where ζ = 1 − ξc/ξ is the reduced Manning parameter (the re-
duced temperature) and the exponent χ is determined as χ = 2.0± 0.4 from the simulations.
In finite systems, Sn does not vanish at ξc and displays a power-law decay with increasing
size parameters, ∆ and N , as Sn(ξ = ξc) = ∆−γ (when number of particles, N , is fixed)
and Sn(ξ = ξc) = N−ν (when lateral extension parameter, ∆, is fixed), where the critical
exponents are determined as γ = 2.0 ± 0.6 and ν = 2/3 ± 0.1.

The critical exponents are demonstrated to be universal, i.e. independent of the coupling
strength, Ξ (varied over several decades 0.1 < Ξ < 105), and agree with the values obtained
from the mean-field PB theory as χPB = 2.0 and γPB = 2.0 (note that the exponent ν is not
defined within mean-field theory). Interestingly, the critical Manning parameter in 3D is also
found to be universal and given by the mean-field value ξc = 1. Therefore, in contrast with the
typical situation in bulk critical phenomena, the CCT criticality is found to be described by
the mean-field universality class in 3D. Correlation effects in fact become important above the
critical Manning parameter (in the condensation phase) and lead to strong deviations from
mean-field theory and support the strong-coupling predictions characterized by an excessive
accumulation of counterions near the cylinder surface, in agreement with previous numerical
studies [75, 91, 106, 107, 108] and experiments [115]. An important result is that the large-
distance form of the density profile remains unaffected by these correlations and thereby a
universal condensed fraction is obtained when the inflection-point criterion is applied.

The rigorous analytical derivation of the critical Manning parameter or the scaling expo-
nents of the CCT in 3D is not yet available and the present study provides the first numerical
results for the universal and critical features of this transition in the large-system-size limit.
The present predictions for order parameters and thermodynamic quantities can be examined
in experiments. In particular, the order parameters may be obtained from the distribution
of counterions around charged polymers, which has been directly measured using anomalous
scattering techniques [124].

In this study, I have made use of a standard cell model in order to bring out main universal
aspects of the CCT. It is interesting to examine possible effects due to additional specific
factors that exist in realistic situations, namely, the discrete charge pattern of polymers
[76, 77, 80, 88, 91, 107, 125], chain flexibility and finite contour length [64, 65, 74, 76, 77, 80,
84, 85, 92, 125, 126] as well as the influence of non-uniform dielectric boundaries [92] on the
critical behavior. However, the present results already indicate that short-range effects such
as electrostatic correlations do not affect the properties of the system near the critical region
(ξ ∼ ξc), since most of counterions are de-condensed and the critical behavior is predominately
determined by long-range features.

In this work, I have not investigated the role of additional salt and co-ions, which lead
to screening of electrostatic interactions (see, e.g., Refs. [75, 76, 107, 108]). It is known that
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the Debye screening length, rs, plays the role of an upper bound cut-off (similar to the outer
boundary D in the cell model): the CCT occurs for vanishing salt concentration, i.e. when
ln(rs/R) → ∞ [39, 62, 63, 94]. Thus one can expect similar asymptotic behavior to arise near
ξc = 1 and within a similar model as used here, when the vanishing-salt limit is approached.



Chapter 4

Counterion-Condensation
Transition in Two Dimensions

In this chapter, I shall investigate the asymptotic and critical properties of the counterion-
cylinder system in two spatial dimensions (2D). In two dimensions, the Coulomb interaction
between a pair of point-like particles depends logarithmically on their distance. The 2D
counterion-cylinder system is thus equivalent to a 3D system composed of a central charged
cylinder and parallel cylindrical “counterions”. This model may be applicable to an experi-
mental system of oriented cationic and anionic polymers such as DNA with polylysine [102].

From a fundamental point of view, the study of such a 2D system is important because
the effects of fluctuations typically grow with diminishing dimension [101]. Fluctuations are
known to play a significant role near critical phase transitions, and may lead to deviations
from mean-field theory below an upper critical dimension. However, as shown in the preceding
chapter, the counterion-condensation transition (CCT) at charged cylinders falls into the
mean-field universality class in three spatial dimensions: While the regime above the critical
Manning parameter ξc (condensation phase) is dominated by correlation effects at elevated
electrostatic coupling strength, Ξ, the critical region itself shows universal scale-invariant
and singular features independent of the coupling parameter. It is interesting to determine
whether these results will be altered in a lower spatial dimension.

As will be shown using Monte-Carlo simulations [95, 96], the 2D counterion-cylinder sys-
tem exhibits certain peculiarities that arise due to the long-range logarithmic interactions
between particles. Namely, for finite number of counterions, a set of singular points emerge
in thermodynamic quantities (as well as in the order parameters) that reflect delocalization
events of individual counterions as the Manning parameter varies. For increasing particle
number, the singular points tend to merge and eventually in the thermodynamic limit, the
2D results tend to the universal values determined by mean-field theory. Therefore, the strik-
ing result in 2D is that the mean-field theory is found to be exact for the whole range of
Manning parameters (including the critical region) when the number of counterions tends to
infinity. I will show that these results can be understood using an approximate analytical
theory based on the 2D partition function.
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4.1 The 2D model

In two dimensions, I shall use an analogue of the cell model described in Chapter 3, which
consists of a 2D central charged cylinder (central “disk”) of radius R confined co-axially
and together with its neutralizing point-like counterions in an outer cylinder (outer “ring”)
of radius D. In order to construct the two-dimensional interaction Hamiltonian, I use the
fact that the Coulomb interaction between two elementary charges in 2D (the 2D Green’s
function) is of the form

v(x) = − ln |x|. (4.1)

This follows directly from the solution of the 2D Poisson equation for a point charge, that is

∇2v(x) = −2πδ2(x). (4.2)

The configurational Hamiltonian of the 2D system may thus be written as

HN

kBT
= λcλr

N
∑

i=1

ln

(

ri
R

)

− λ2
c

∑

〈ij〉

ln

∣

∣

∣

∣

xi − xj
R

∣

∣

∣

∣

(4.3)

with xi = (ri, φi) being the position vector of the i-th counterion (in polar coordinates),
and λc and λr being dimensionless charges of the counterions and the cylinder respectively.
The first term gives the counterion-cylinder attraction and the second term gives mutual
repulsions between counterions. Clearly, the present 2D model is equivalent to a 3D system
comprising an infinitely long central cylinder (of radius R) in the presence of mobile parallel
lines of opposite charge as “counterions”. Using this 3D analogy, the prefactors λr and λc
may be related to the linear charge density of the cylinder and counterion lines respectively.

Taking the logarithmic interaction (4.1) will also ensure that the general form of the
field-theoretic representation for the system remains the same as in the 3D case [170], and
in particular, the mean-field Poisson-Boltzmann theory, which follows from a saddle-point
analysis (Appendix A), is represented exactly by the same equations and results as discussed
in Section 3.3.

4.1.1 Rescaled representation

In analogy with the 3D system, I shall refer to the dimensionless prefactor of the counterion-
cylinder interaction in Eq. (4.3) as the Manning parameter, that is

ξ = λcλr/2. (4.4)

Also the prefactor of the counterion-counterion interaction is defined as the coupling parameter

Ξ = λ2
c/2. (4.5)

These definitions can be justified systematically when the Hamiltonian of the system is
mapped to an effective field theory, where Ξ and ξ formally appear in the same role as
in 3D. I shall conventionally rescale the spatial coordinates as x̃ = x/µ2D using the length
scale µ2D ≡ R/ξ, which is the 2D analogue of Eq. (3.7).

The Hamiltonian in rescaled units reads

HN

kBT
= 2ξ

N
∑
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ln

(

r̃i

R̃
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− 2Ξ
∑

〈ij〉

ln

∣
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R̃
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∣

∣

. (4.6)
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The electroneutrality condition implies λr = Nλc, where N is the number of counterions in
the system. This relation may also be written as

ξ = NΞ. (4.7)

Thus an important consequence of electroneutrality in 2D is that the coupling parameter and
the Manning parameter are related only via the number of counterions. In particular, in the
thermodynamic limit N → ∞, the coupling parameter tends to zero, Ξ → 0, suggesting that
the mean-field prediction should become exact!

I use a similar simulation method as devised for the 3D system using the transformed
coordinates (y, φ) with y = ln(r̃/R̃) being the logarithmic radial distance of particles from
the central cylinder. As explained in Section 3.5, this transformation leads to the centrifugal
sampling method appropriate for equilibration of systems with large lateral extension param-
eter ∆ = ln(D/R) ≫ 1, where the critical behavior associated with the CCT emerges. The
2D partition function thus reads

ZN =
R2N

N !

∫

Ṽ

[

N
∏

i=1

dφi dyi

]

exp

{

− H∗
N

kBT

}

, (4.8)

where 0 ≤ y ≤ ∆ and the transformed Hamiltonian,

H∗
N

kBT
= (2ξ − 2)

N
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∣
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. (4.9)

The minimal set of dimensionless parameters in 2D is given by Manning parameter, ξ, total
number of counterions, N , and the lateral extension parameter, ∆. The range of simulation
parameters and other details are consistent with those given in Section 3.5.2.

4.2 Simulation results in 2D

4.2.1 The order parameters

I will consider the same set of order parameters Sn = 〈1/r̃n〉 as defined in Eq. (3.38) to
characterize the CCT in 2D. They can be measured in the simulations as

Sn =
1

N

N
∑

i=1

r̃−ni (4.10)

for n > 0, where the bar sign denotes the MC time average after proper equilibration of the
system. Of particular interest is the behavior of Sn as a function of Manning parameter,
ξ, which identifies the two regimes of complete de-condensation (with vanishing Sn) and
partial condensation (with Sn > 0) as ∆ → ∞. Unlike in 3D, where Ξ can be varied as an
independent parameter, various coupling regimes in the 2D system are spanned by changing
the number of particles, N , for a given ξ (see Eq. (4.7)).

The 2D simulation results for the order parameter S1 are shown in Figure 4.1 for various
number of particles N = 1, 2, 3, 5, 10 and 100 (symbols) and for a large lateral extension
parameter ∆ = 300. As seen for the smallest number of counterions, N = 1, the data
trivially follow the strong-coupling prediction, Eq. (3.66), shown by the dashed curve (Section
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Figure 4.1: Order parameter S1 = 〈1/r̃〉 as a function of Manning parameter, ξ, for the 2D counterion-
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parameter here is ∆ = 300. Thin dashed curves are guides to the eyes.

3.4). As N increases, S1 decreases and for sufficiently large values, the data converge to the
mean-field PB prediction, Eq. (3.40), shown by the solid curve. This in fact occurs for
the whole range of Manning parameters and thus confirms the trend predicted from the 2D
electroneutrality condition (4.7). Accordingly, scaling analysis of the order parameters for
large N gives identical results for the scaling exponents as in 3D (Sections 3.6.3 and 3.6.4)
and thus in agreement with the mean-field theory, which I shall not discuss here any further.
The result that the mean-field theory for the counterion-cylinder system is exact in 2D for
N → ∞ is in striking contrast with the typical trend in bulk phase transitions [101], and
also with the situation in 3D, where the strong-coupling effects become important in the
condensation phase (ξ > 1) for growing Ξ (Section 3.6.1).

The order-parameter data in Figure 4.1, on the other hand, reveal a peculiar set of cusp-
like singularities, that are quite pronounced for small number of particles. These points
become strictly singular in the limit ∆ → ∞ and represent the Manning parameters at which
individual counterions successively condense (or de-condense). I will demonstrate this point
using an analytical approach in Section 4.2.3. (A similar singular behavior is also found in 3D
for small N , but the behavior in 3D appears to be more complex and will not be considered
in this work).

4.2.2 Energy and heat capacity

The singularities at small particle number, N , appear also in the internal energy and the heat
capacity. In Figures 4.2 and 4.3, I plot the rescaled energy, Ẽ = EN/(NkBT ), and excess heat
capacity, C̃ = CN/(NkB), obtained from the simulations using Eqs. (3.77) and (3.78) and
the 2D Hamiltonian (4.6), as a function of ξ and for N = 1, 2, 3, 4 and 5. As seen, the energy
shows a sawtooth-like structure consisting of wide regular regions, in which the energy almost
linearly increases, and narrow singular regions, where the energy rapidly drops. Recalling the



4.2 Simulation results in 2D 57

0 0.5 1 1.5 2 2.5 3 3.5 4
0

1

2

N=1

N=2

N=3

ξ0

0.5

1
N=5

N=4

E
∆

0 1 2 3 4 5 6 7

ξ

∼

E
∆

∼

Figure 4.2: The rescaled (internal) energy of the 2D counterion-cylinder system, Ẽ = EN/(NkBT ),
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thermodynamic relation

ξ
∂Ẽ

∂ξ
= Ẽ − C̃, (4.11)

it follows that the excess heat capacity vanishes in the regular regions, but develops highly
localized peaks in the singular regions, as also seen from the simulation data in Figure 4.3.

4.2.3 Condensation singularities in 2D: an analytical approach

In what follows, I present an approximate (asymptotic) analysis of the 2D partition, which
elucidates the physical mechanism behind the singular behavior in 2D. (The rigorous analysis
of the 2D problem is still missing and more systematic approximations are recently developed
[123].)

The partition function

Suppose that the Manning parameter is such that N − m counterions are firmly bound to
the central cylinder (disk), while m counterions have de-condensed to infinity, where m =
1, . . . , N . Using the 2D Hamiltonian (4.6), the partition function can exactly be written as

ZN =

∫





N
∏

i=m+1

dxi



 exp

{

− HN−m

kBT

}

×
m
∏

l=1

Z(l)
N (4.12)
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Figure 4.3: The rescaled excess heat capacity of the 2D system, C̃ = CN/(NkB), as a function of

Manning parameter, ξ, for different number of particles, N , as indicated on the graph (for clarity, the

data are here multiplied by N). The peaks represent successive condensation (de-condensation) of

counterions–see Section 4.2.3. For these data ∆ = 300. The dashed curves are the analytical results

given by Eq. (4.20).

in actual units, where HN−m represents interactions among condensed counterions (labeled
by i = m+ 1, . . . , N), and

Z(l)
N =

∫

dxl exp

{

− 2ξ ln

(

rl
R

)

+
2ξ

N

N
∑

i=l+1

ln

∣

∣

∣

∣

xi − xl
R

∣

∣

∣

∣

}

(4.13)

is the contribution from individual de-condensed counterions (labeled by l = 1, . . . ,m). As-
suming that the de-condensed counterions are de-correlated form each other and also from
the condensed counterions as they diffuse to infinity for ∆ → ∞ (i.e. using |xi − xl| ≃ rl),

Z(l)
N approximately factorizes as

Z(l)
N ≃ 2π

∫

rl drl exp

{

− 2ξ ln

(

rl
R

)

+
2ξ

N

N
∑

i=l+1

ln

(

rl
R

)}

= 2πR2 exp [2(1 − ξl/N)∆] − 1

2(1 − ξl/N)
. (4.14)

In the limit ∆ → ∞, Z(l)
N diverges for Manning parameters

ξ ≤ ξsl ≡
N

l
, (4.15)

which indicates de-condensation of the l-th counterion from the charged cylinder (see Section
3.2.1). Repeating the above argument for various number of de-condensed counterions, one
finds a set of singular Manning parameters,

ξsl =
N

l
for l = 1, . . . ,N, (4.16)
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N {ξsN , . . . , ξs1}
1 1
2 1 2
3 1 3/2 2
4 1 4/3 ≃ 1.33 2 4
5 1 5/4 = 1.25 5/3 ≃ 1.67 5/2 5

Table 4.1: Numerical values of the location of the singularities, Eq. (4.16), for the 2D counterion-

cylinder system for different numbers of particles, N (compare Figures 4.1-4.3).

at which individual counterions de-condense from the charged cylinder. These singular points
coincide with the values obtained from the simulations based on the full partition function
(4.8) for very large ∆ (see Figures 4.1-4.3 and Table 4.1 for the numerical values).

Energy and heat capacity

In general the partition function (4.12) can also exactly be written as

ZN =
N
∏

l=1

Z(l)
N , (4.17)

where Z(l)
N is defined in Eq. (4.13). For ∆ ≫ 1, the dominant contribution to the internal

energy and the heat capacity comes from de-condensed counterions. Thus, in order to derive
analytical expressions for energy and heat capacity on the leading-order for large ∆, I shall

use Eq. (4.17) together with the approximate expression (4.14) for Z(l)
N . Hence, I obtain the

leading-order contribution to the free energy FN/(kBT ) = − lnZN as

F̃ ≡ FN
NkBT

≃ − 1

N

N
∑

l=1

ln
e2(1−ξ/ξ

s
l )∆ − 1

2(1 − ξ/ξsl )
(4.18)

for ∆ ≫ 1, and thereby the (rescaled) internal energy, Ẽ = ξ∂F̃/∂ξ, and the rescaled heat
capacity, C̃ = −ξ2∂2F̃/∂ξ2, are obtained as

Ẽ ≃
N
∑

l=1

ξ

Nξsl

(

2∆ exp[2(1 − ξ/ξsl )∆]

exp[2(1 − ξ/ξsl )∆] − 1
− 1

1 − ξ/ξsl

)

, (4.19)

C̃ ≃
N
∑

l=1

(

ξ

ξsl

)2( 1

(1 − ξ/ξsl )
2
− ∆2

sinh2[2(1 − ξ/ξsl )∆]

)

. (4.20)

The above expressions are shown in Figures 4.2 and 4.3 for ∆ = 300 and for various number
of particles (dashed curves), which as seen closely reproduce the behavior obtained in the
simulations (symbols).

Note that as an individual counterion de-condenses at ξsl , the internal energy suddenly
jumps, since the de-condensing counterion gains a large amount of energy due to its logarith-
mic interaction with the central cylinder. The regular regions (between two successive jumps)
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in the energy curve are dominated by de-condensed counterions and thus exhibit linear scal-
ing with ∆ = ln(D/R). The asymptotic form of the energy in these regions for ∆ → ∞ is
obtained from Eq. (4.19) as

lim
∆→∞

Ẽ

∆
=
l(l + 1)

N2
ξ for ξsl+1 < ξ < ξsl . (4.21)

The singular part of the energy corresponds to a narrow region around each ξsl , which
(except for the uppermost singularity) is bounded between a local minimum (slightly above
ξsl ) and a local maximum (slightly below ξsl ). The approximate locations of these extrema
are obtained as

ξmin
l

ξsl
≃ 1 +

1
√

∆(l − 1)
and

ξmax
l

ξsl
≃ 1 − 1

√

∆(l + 1)
(4.22)

using Eq. (4.19), and for large ∆. The energy jump, δẼl, upon de-condensation of a counte-
rions at ξ = ξsl is then given by

δẼl ≡ Ẽ(ξmax
l ) − Ẽ(ξmin

l ) ≃ 2∆

N
. (4.23)

Note that this value can also be obtained directly from Eq. (4.21). For ∆ → ∞ but at fixed
and finite N , the energy curve tends to a sharp sawtooth-like form as both ξmin

l and ξmax
l

tend to ξsl producing N strictly step-like singular points, at which the limiting energy jump
is

lim
∆→∞

δẼl
∆

=
2

N
. (4.24)

The heat capacity expression (4.20), on the other hand, exhibits N isolated peaks for
∆ ≫ 1. The heat capacity at ξl diverges as C̃(ξ = ξsl ) ≃ ∆2/3 with increasing ∆, giving rise
to N limiting algebraic divergencies as

lim
∆→∞

C̃ =
N
∑

l=1

(

1 − ξsl
ξ

)−2

. (4.25)

4.2.4 Critical point and the continuum limit

The lower-most singularity located at ξ = ξsN is associated with the de-condensation of the
“last”counterion from the charged cylinder. As shown above, this singularity occurs at unity
(ξsN = 1) when ∆ → ∞ and is thus independent of the number of counterions. It therefore
gives the exact location of the 2D critical point as ξc = 1 when the continuum (thermody-
namic) limit N → ∞ is approached, which coincides with the mean-field prediction. Note
that in analogy with the method used in Section 3.6.2, ξc can also be derived from the asymp-
totic value of the energy maximum location, Eq. (4.22), for l = N , when ∆ and N both tend
to infinity.

Equations (4.23)-(4.25) represent the asymptotic results when the system size increases to
infinity but the number of particles, N , is finite. In the converse limiting case, i.e. when ∆ is
large and fixed but N increases to infinity (continuum limit), all singularities smoothen except
for the one, which represents the critical point. The limiting energy curve for N → ∞ may
be obtained as follows. First note that the width of the energy jump around each singularity
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tends to zero as indicated by Eq. (4.23). Secondly, the spacing between singular points ξsl
(and thus the width of regular regions for ξ > 1) tends to zero (as ∼ 1/N) as N increases.
Therefore, the energy at a given Manning parameter ξ between two successive singularities,
ξsl+1 < ξ < ξsl , is approximately given by Ẽ ≃ Ẽ(ξ = ξsl ), where the right hand side is obtained

from Eq. (4.19) as Ẽ(ξ = ξsl ) = ∆/ξsl . This implies that

lim
N→∞

Ẽ =
∆

ξ
(4.26)

for ξ ≥ 1 and sufficiently large ∆. For small Manning parameter ξ < 1, there are no singu-
larities and from Eq. (4.19), I obtain

lim
N→∞

Ẽ = 2ξ∆ × lim
N→∞

N
∑

l=1

1

Nξsl
= ξ∆ (4.27)

for large ∆. These limiting results can also be obtained using Eq. (4.21).
The predicted energy curve in the continuum limit therefore coincides with the universal

form obtained within the mean-field theory in Section 3.3.3 (see Eq. (3.60)). The heat
capacity in this limit follows from Eq. (3.80), and exhibits a universal jump at ξc = 1 in
agreement with Eq. (3.61).

4.2.5 The condensed fraction

The preceding results enable us to calculate the limiting condensed fraction of counterions,
α(ξ), as well when ∆ → ∞ and N → ∞. For a given Manning parameter, ξ, and number
of particles, N , the condensed fraction αN (ξ) is given by the number of singularities located
below ξ, i.e.

αN (ξ) ≡ 1 − l

N
for ξsl+1 < ξ < ξsl . (4.28)

This fraction is trivially zero for ξ < ξc = 1 as ∆ → ∞. Using Eqs. (4.16) and (4.28), I obtain
the condition

αN (ξ) − 1

N
< 1 − 1

ξ
< αN (ξ), (4.29)

which in the limit of infinite number of counterions yields

α(ξ) ≡ lim
N→∞

αN (ξ) = 1 − 1

ξ
. (4.30)

This is nothing but the mean-field or Manning condensed fraction, αM = 1 − 1/ξ (Section
3.6.1). The finite-ion-number correction to this limiting value follows from Eq. (4.29) as

αN (ξ) − α(ξ) ∼ N−1. (4.31)
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Chapter 5

Strong-Coupling Interactions

Electrostatic interaction between charged macromolecules (macroions), such as polyelec-
trolytes (like DNA) and colloidal particles, is a key factor determining the global phase
behavior of charged solutions. Macroions in solutions are often like-charged and thus the
bare interaction between them is repulsive. However the mobile neutralizing counterions that
maintain electroneutrality of the solution screen the bare charges of macroions and typically
reduce the bare interactions between them. Still in many instances, the resultant effective
interactions appear to be repulsive, which is often favored from a technological point of view,
e.g., when stabilization of colloidal dispersions is important.

In recent years, however, mounting evidence from both experiments [31, 33, 34, 127, 128,
129, 130, 131, 132, 133, 134, 135, 136] and numerical simulations [137, 138, 139, 140, 141, 142,
143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 153, 154, 155, 44, 45, 46, 157, 55, 158] shows
that in certain physical conditions, like-charged macroions can strongly attract each other
via effective forces of electrostatic origin. Most notably, like-charge attraction appears to be
responsible in formation of dense packages of DNA molecules (DNA condensates) [30, 31],
bundles of stiff charged polymers (such as F-actin) [33, 34, 135] and large aggregates of
charged colloidal particles [150, 151, 152, 153]. Interestingly, such attractive forces emerge
only in strongly charged (or more precisely, strongly coupled) systems, i.e. when macroions
are highly charged (with surface charge densities up to 1e/nm2 as in the DNA system),
neutralizing counterions are multivalent, or when the temperature or the dielectric constant
of the medium is low. Such strong-coupling attractive interactions are typically much stronger
than the usual attractive van-der-Waals interactions and may thus have significant practical
implications where, for instance, multivalent counterions are present.

The phenomenon of like-charge attraction indeed contrasts the standard picture available
from mean-field theories [18, 1, 2, 3], such as Poisson-Boltzmann theory, which predict purely
repulsive like-charge interactions [188, 189, 190]. The main scenarios which are put forward
to explain this phenomenon go beyond the mean-field level by accounting for electrostatic
correlations that are neglected within mean-field approximation [20, 137, 138, 139, 140, 141,
142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 153, 154, 155, 44, 45, 46, 157, 55,
158, 159, 161, 162, 163, 164, 165, 166, 167, 168, 169, 170, 50, 171, 172, 173, 174, 175, 48,
176, 177, 178, 179, 49, 180, 181, 43, 182, 54, 35, 183, 184, 185, 186, 187]. Recent theoretical
attempts include integral-equation methods [143, 159], perturbative improvement of the mean-
field theory including Gaussian-fluctuations theories [20, 161, 162, 163, 164, 165, 166, 167,
168, 169, 170, 50, 171, 172], and local density functional theory [174, 175], which compare
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well with numerical simulations and all exhibit attraction. These methods are, however,
mostly applicable for large separations between macroions or for low coupling strength (the
so-called high-temperature regime), and can not characterize the closely packed bound-state
between like-charged macroions. An alternative approach was triggered by Rouzina and
Bloomfield [48] with the insight that counterions form two-dimensional highly correlated layers
at macroionic surfaces for large coupling strength (the so-called low-temperature regime).
Such structural correlations give rise to attractive interactions of mainly energetic origin
[176, 177, 178, 179, 49, 180, 181, 43, 182, 54] and can account for the closely packed bound-
state of like-charged macroions [45, 46, 55, 176, 177, 178, 179, 49, 180, 181, 43, 182, 54].

This chapter deals with this latter regime of strong coupling. The general physical mecha-
nism that leads to like-charge attraction in this regime is reviewed in Chapter 2. Here I present
a systematic analysis of the effective interaction between a pair of like-charged rods and a pair
of like-charged spheres [35, 54, 55] using the asymptotic strong-coupling (SC) theory [43, 44],
which describes the limit of large coupling parameters (Ξ → ∞). This asymptotic theory
involves a simple analytical expression for the leading-order free energy containing both ener-
getic and entropic contributions from counterions. It therefore represents a finite-temperature
theory. The energetic contribution exhibits a long-range attractive force between macroions,
which scales as ∼ d−1 for two charged rods and as ∼ d−2 for two charged spheres located at
distance d from each other. The SC attraction is independent of temperature and prevails
as the dominant component when the zero-temperature limit is taken (formally, this limit is
achieved by taking the limit µ→ 0, where µ is the Gouy-Chapman length). At finite tempera-
tures, the entropic contributions that are incorporated via a single-particle partition function
trigger de-condensation of counterions for small radius of curvature of macroions (or small
Manning parameter) as discussed in Chapters 2 and 3. This leads to a bare repulsion between
macroions. Hence within the SC theory, one can determine both regimes of attraction and
repulsion between macroions.

It is shown that when attraction is dominant, macroions form a closely packed bound-
state with small surface-to-surface separation of the order of the counterion diameter (plus
a term of the order of the Gouy-Chapman length). For charged spheres, these results agree
with recent simulations on a semi-quantitative level [54, 35]. For two charged rods, a system-
atic comparison with Molecular Dynamics simulations reveals a good quantitative agreement
between the SC theory and simulations at sufficiently large coupling strength [55]. I will also
study the repulsion-dominated as well as the crossover regime, where a binding-unbinding
transition is found to occur for both charged rods and charged spheres. This regime does
not correspond to large electrostatic correlations between particles, but it is, nonetheless,
captured systematically within the SC formalism (see the Discussion).

5.1 Strong-coupling theory: General formalism

Consider a system of fixed rigid macroions with charge distribution −σ(x)e, and a number of
N oppositely charged counterions of diameter σci and charge valency +q. All charges interact
via Coulombic interaction v(x) = 1/|x|, and the electroneutrality condition is assumed to
hold globally in the system. Hence, one always has

Nq =

∫

dxσ(x). (5.1)
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As before, I shall use a dimensionless representation which is obtained by rescaling spatial
coordinates as x̃ = x/µ with µ = 1/(2πqℓBσs) being the Gouy-Chapman length, where σs

is the surface charge density of macroions (see Eqs. (2.3) and (2.14)). The electroneutrality
condition (5.1), when written in rescaled units, relates the coupling parameter to the number
of counterions through

Ã ≡
∫

dx̃ σ̃(x̃) = 2πΞN, (5.2)

where Ã is the rescaled area of macroions covered by electric charges, and Ξ = 2πq3ℓ2Bσs is
the electrostatic coupling parameter (see Eq. (2.4)).

As shown in Appendix A, for large coupling parameter Ξ ≫ 1, the grand-canonical par-
tition function of the system, Zg, adopts a series expansion in powers of 1/Ξ as [44, 43]

Zg(Λ) = Z0

∞
∑

j=0

1

j!

(

Λ

2πΞ

)j




j
∏

k=1

∫

dx̃k Ω̃(x̃k)



×exp

{

−Ξ
j
∑

n<m

v(x̃n−x̃m)−
j
∑

i=1

ũ(x̃i)

}

, (5.3)

where Λ is the rescaled fugacity and the function Ω̃(x̃) takes geometrical constraints into
consideration, e.g., restricts the positions of mobile counterions to an appropriate region in
space.

Equation (5.3) is in fact nothing but a virial expansion with respect to the counterionic
degrees of freedom. The zeroth-order term,

Z0 = e−Ũ0/πΞ, (5.4)

gives the contribution of fixed macroions in the absence of counterions, where

Ũ0 =
1

8π

∫

dx̃dx̃′ σ̃(x̃) v(x̃ − x̃′) σ̃(x̃′) (5.5)

is the rescaled zero-particle interaction energy. The first-order term in Eq. (5.3) is the
partition function in the presence of a single counterion interacting with macroions via the
one-particle interaction energy,

ũ(x̃) = − 1

2π

∫

dx̃′ v(x̃ − x̃′) σ̃(x̃′). (5.6)

Higher-order terms involve the two-particle interaction, v(x̃ − x̃′), that enters in the non-
perturbative form of exp(−Ξv).

The canonical strong-coupling (SC) theory is obtained as an asymptotic theory from the
above expansion, Eq. (5.3), in the limit Ξ → ∞. As shown below, the leading-order contri-
bution to the canonical free energy of the system for Ξ → ∞ contains only the single-particle
terms.

5.1.1 The strong-coupling free energy

To calculate the SC free energy, I start from the grand-canonical free energy

Qg(Λ) = −kBT lnZg(Λ), (5.7)

where Zg is given by Eq. (5.3). The Legendre transformation,

FN = NkBT ln Λ + Qg(Λ), (5.8)
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provides us with the canonical free energy, FN . The rescaled fugacity, Λ, in Eq. (5.8) is
calculated from

N = Λ
∂ lnZg

∂Λ
(5.9)

in terms of Ξ and other rescaled geometrical factors. (Note that N can be eliminated using
Eq. (5.2).) In general, one may propose the following expression for Λ in the large coupling
limit Ξ ≫ 1,

Λ = Λ0 +
Λ1

Ξ
+

Λ2

Ξ2
+ . . . , (5.10)

where Λ0,Λ1, . . . are determined from Eq. (5.9) using Eqs. (5.2), (5.3)-(5.6).1 It is easy to
verify that, for instance,

Λ0 =
Ã

∫

dx̃ Ω̃(x̃) e−ũ(x̃)
, (5.11)

Λ1 =
Ã2
∫

dx̃dx̃′ Ω̃(x̃) Ω̃(x̃′) e−ũ(x̃)−ũ(x̃′)[1 − e−Ξv(x̃−x̃
′)]

2π
[

∫

dx̃ Ω̃(x̃) e−ũ(x̃)
]3 . (5.12)

Inserting this into Eq. (5.8), one obtains FN , which also admits a large-coupling expression
as

FN
kBT

=
F1

Ξ
+

F2

Ξ2
+ . . . . (5.13)

The coefficient of the leading-order term reads

F1 =
Ũ0

π
− Ã

2π
ln

∫

dx̃ Ω̃(x̃) e−ũ(x̃) + C0, (5.14)

in which C0 = (Ã/2π) ln Ã−Ã/2π is a constant. The free energy coefficient F1 (which may be
regarded as the rescaled SC free energy), yields the strong-coupling free energy of the system
as

FSC
N

kBT
=

F1

Ξ
. (5.15)

This term generates the leading contribution to the effective forces between macroions, which
will be examined for two charged rods and spheres in the following sections.

Note that when this asymptotic SC theory is applied to realistic systems of finite coupling
parameter, one should always determine the regime of parameters, where higher-order cor-
rection terms are relatively small. These terms have been calculated analytically for systems
composed of planar charged walls in Refs. [44, 43, 45], but for charged rods and spheres, ana-
lytical calculations become very difficult. I shall instead use a simple well-established criterion:
two apposed like-charge surfaces become strongly coupled when the typical lateral distance
between counterions at the surfaces becomes larger than or comparable to the surface-surface
separation (see Section 2.4.3). This criterion, which was first introduced by Rouzina and
Bloomfield [48], has been confirmed analytically for charged walls [43] and numerically for
both planar and curved surfaces [44, 45, 46, 148, 150, 151, 152, 55].

One should also note that the virial expansion (5.3) can systematically incorporate non-
electrostatic pair interactions between particles as well. Thus, the SC free energy (5.14)

1In general, the proposed expansion, Eq. (5.10), may also involve additional logarithmic terms [43].
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may be easily generalized to include, for instance, the excluded-volume interaction between
particles. Clearly, only the macroion-counterion excluded-volume interaction enters in the
leading-order free energy (via the interaction energy term, ũ(x̃)). In what follows, I shall
assume a hard-core excluded-volume repulsion between counterions (of finite diameter σci)
and macroions. Therefore (due to the exponential factor exp(−ũ)), overlapping configurations
do not contribute to the spatial integral in Eq. (5.14) and the effect of counterion size is
incorporated into the geometry function Ω̃, which, for cylindrical and spherical macroions of
radius R0, leads simply to a hard-core radius of

R = R0 + σci/2. (5.16)

For a given amount of macroion charge, equation (5.16) implies a reduced surface charge
density, and thus an increased Gouy-Chapman length, µ, as compared to the case with point-
like counterions. The following results are presented in units of the Gouy-Chapman length
and the counterion diameter explicitly appears only when the actual units are restored (see,
e.g., Eqs. (5.33) and (5.52) below).

5.2 Two like-charged rods

In this section, I will focus on the interaction between two identical parallel like-charged rods
of linear charge density −τe, bare radius R0 and infinite length H that are located at axial
separation of d from each other (Figure 5.1). The rods are confined in a rectangular box of
edge size L together with N neutralizing q-valent counterions; hence, one has qN = 2τH.
The Gouy-Chapman length associated with this system reads

µ =
1

2πqℓBσs
=

R

qℓBτ
, (5.17)

where σs = τ/(2πR) is the surface charge density and R is the hard-core radius defined via Eq.
(5.16). Clearly, the rescaled rod radius, R̃ = R/µ, is identical with the Manning parameter,
i.e.

R̃ = ξ = qℓBτ. (5.18)

The zero-particle and single-particle interaction terms (5.5) and (5.6) are obtained as

Ũ0

H̃
= −2πR̃2 ln d̃, (5.19)

ũ(x̃, ỹ) = 2R̃ (ln r̃1 + ln r̃2) , (5.20)

where H̃ = NΞ/(2ξ) (from the electroneutrality condition), and

r̃1,2 = [(x̃± d̃/2)2 + ỹ2]1/2 (5.21)

are radial distances from the rods axes. Inserting the above expressions into Eq. (5.14), one
ends up with the SC free energy (per number of counterions), Eq. (5.15), as

FSC
N

NkBT
= −R̃ ln d̃− ln I, (5.22)

where

I(d̃, R̃, L̃) ≡
∫

dx̃dỹ Ω̃ exp
[

−2R̃ (ln r̃1 + ln r̃2)
]

, (5.23)

in which Ω̃ = Ω̃(x̃, ỹ; d̃, R̃, L̃) specifies the volume available for counterions, i.e., it is unity
inside the box (excluding the two rods of hard-core radius R̃) and zero elsewhere.
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Figure 5.1: a) Two identical parallel charged rods of bare radius R0 (and infinite length H) are

considered at the axial separation d and in a square box of lateral edge size L, which also contains

neutralizing counterions of charge valency +q. Dashed circle in the top view b) shows the closest

approach distance. The frame of coordinates is chosen in the mid-way between the rods with z-axis

being parallel to their axes. az is the typical distance between counterions at surface that will be

considered in Section 5.2.3.

5.2.1 Threshold of attraction

The first term in Eq. (5.22) is the bare electrostatic repulsion between the rods. The energetic
and entropic contributions from counterions is incorporated on the leading order in the single-
particle partition function I, which can generate an effective rod-rod attraction. In order to
examine the onset of attraction, let us consider first the limit of infinite box size L̃/R̃ → ∞.

In this limit, the counterionic integral (5.23) scales with the box size as I ∼ L̃2−4R̃, which may
be seen simply by rescaling the spatial coordinates with L as x→ x/L, etc. Thus for R̃ < 1/2,
I diverges and consequently, the distribution function of counterions, ∼ exp(−ũ)/I, vanishes
indicating de-condensation of counterions from the two rods.2 The counterion-mediated force
between the rods, ∼ ∂ ln I/∂d, tends to zero as well; thus two unconfined rods merely repel
each other for R̃ < 1/2. In contrast for R̃ > 1/2, counterionic distribution function remains
finite indicating that R̃ = 1/2 is the onset of counterion condensation in this system in
agreement with the results due to Ray and Manning [53]. Intuitively, one expects that the
attraction appears above this threshold, since right at the condensation threshold, there is
an unbalanced bare rod-rod repulsion, which can be compensated once a finite fraction of
counterions is condensed around the rods.

Now assuming that the SC free energy has only one local minimum, which will be verified
by numerical evaluation below, the attraction threshold can be determined from the large-
separation behavior of the free energy, i.e. for d̃ ≫ d̃min, where d̃min = 2R̃ is the minimum
axial separation. To this end, I rescale the spatial coordinates as

x̃′ =
x̃

d̃
, ỹ′ =

ỹ

d̃
. (5.24)

2 The SC counterionic density profile is obtained as ρ̃SC(x̃) = Λ0Ω̃(x̃) exp(−ũ(x̃)) (see Ref. [43] and
Appendix A), where according to Eq. (5.11), Λ0 = Ã/I .
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Consequently, the integral I in Eq. (5.23) scales as

I(d̃, R̃) = d̃ 2−4R̃ J

(

R̃

d̃
, R̃

)

, (5.25)

where J is a dimensionless integral given by

J = 2

∫

x̃′>0
dx̃′dỹ′ Ω̃′

[

(

x̃′ +
1

2

)2

+
(

ỹ′
)2

]−R̃ [(

x̃′ − 1

2

)2

+
(

ỹ′
)2

]−R̃

, (5.26)

where I have made use of the symmetry property of the integrand upon the reflection with
respect to the plane x̃′ = 0, and thus the corresponding integral is taken only over the half-
space x̃′ > 0 excluding a disk of radius R̃/d̃ centered at (x̃′ = +1/2, ỹ′ = 0) (this is formally
accounted for by the geometry function Ω̃′). For very large d̃/d̃min, the radius of the disk
tends to zero and the limiting behavior of the integral in Eq. (5.26) is determined by the
contributions from the boundary regions, which vary depending on whether R̃ is smaller or
larger than 1.

For Manning parameter R̃ < 1, the contribution from the boundary region around the
disk vanishes, and the integral in Eq. (5.26) is dominated by its outer boundary, which gives
only a constant independent of d̃. Therefore, the prefactor of J in Eq. (5.25) yields the
leading d̃-dependence of I for large axial separations. Substituting this into Eq. (5.22), I
obtain the large-separation form of the SC free energy as

FSC
N

NkBT
≃ −(2 − 3R̃) ln d̃. (5.27)

For R̃ > 1, on the other hand, the integral in Eq. (5.26) is dominated by the boundary

region around the disk yielding J ∼ d̃2R̃−2 for very large d̃/d̃min, which leads to the following
attractive tail for the SC free energy,

FSC
N

NkBT
≃ R̃ ln d̃. (5.28)

Therefore, as clearly seen from Eqs. (5.27) and (5.28), two unconfined rods experience an
attractive force at large separations, when the Manning parameter, R̃, becomes larger than
the threshold

R̃c =
2

3
. (5.29)

The onset of attraction between two like-charged rods has also been considered in a num-
ber of recent studies. Analysis of Ray and Manning [53] based on the classical counterion-
condensation model predicts attraction for R̃ > 1/2. It should be noted, however, that the
attraction mechanism involved in their theory is not based on electrostatic correlations, but
features a mean-field covalence-like binding process. Arenzon et al.’s study [177, 182] based
on a structural-correlations theory (which also accounts for counterion condensation) pre-
dicts attraction for R̃ > 2. Numerical simulations [145, 157, 55, 158], on the other hand,
give attraction for the range of Manning parameters R̃ > 0.8, but have not yet specified the
attraction threshold precisely (see Section 5.2.3 below).
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5.2.2 Equilibrium axial distance

I shall now consider the attraction and repulsion regimes for two like-charged rods in a finite
confining box (Figure 5.1). The typical form of the SC free energy as a function of the axial
separation, d̃ (which is calculated numerically from Eq. (5.22)) is shown in Figure 5.2 for
both large (R̃ > R̃c = 2/3) and small (R̃ < R̃c = 2/3) Manning parameters.

For large Manning parameter R̃ (see, e.g., R̃ = 1 in Figure 5.2a), the free energy exhibits a
long-range attraction and a pronounced global minimum at a small axial separation d̃∗ ≃ 2R̃,
which, as seen, depend little on the confining box size, L̃. This is because counterions are
mostly localized in the proximity of the rods and, particularly, in the narrow intervening
region between them as it can be verified directly using the SC counterionic distribution
function. One can thus employ a saddle-point approximation to evaluate the counterionic
integral (5.23) for R̃ ≫ 1 (Appendix E.1), which gives the approximate form of FSC

N around
its minimum as

FSC
N

NkBT
≃ 3R̃ ln d̃− ln(d̃− 2R̃). (5.30)

The first term in Eq. (5.30) contributes a dominant energetic attractive force, which is
independent of temperature, while the second term generates a repulsive component which
is proportional to temperature, T (Appendix E.1). Thus for Ξ → ∞ and R̃ → ∞ (which
formally corresponds to the zero-temperature limit), the SC theory predicts that the attractive
force increases (in agreement with results in Refs. [145, 168]), and saturates to the limiting
value

F SC
rods(d)

H
≃ − e2τ2

2πεε0
×











1/d d≫ 2R,

3/d d ≃ 2R,
(5.31)

(per unit length of the rods H and in actual units) for large and small axial separations
respectively. Here I have used Eqs. (5.28) and (5.30), and that F SC

rods = −∂FSC
N /∂d.

The rescaled equilibrium axial separation, d̃∗, maintained by such a long-range attraction,
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follows by minimizing Eq. (5.30) with respect to d as

d̃∗ ≃ 2R̃+
2

3
+ O(

1

R̃
) when R̃≫ 1. (5.32)

Restoring actual units in Eq. (5.32) and using Eqs. (5.16) and (5.17), one obtains the actual
equilibrium surface-to-surface separation of the rods as

δ∗ ≡ d∗ − 2R0 ≃ σci +
2

3
µ+ O(µ2), (5.33)

when the Manning parameter is sufficiently large (or the Gouy-Chapman length, µ, is small).
This distance is about the counterion diameter, σci, and indicates a closely packed bound-state
for the two rods.

For small Manning parameter R̃ < R̃c = 2/3, on the other hand, qualitatively different
features arise (see, e.g., R̃ = 0.3 in Figure 5.2b). In this case, the effective interaction
between the rods exhibits a significant dependence upon the size of the confining box, which
is a direct consequence of the de-condensation of counterions. For R̃ ≪ 1, the equilibrium
axial separation is obtained approximately as (Appendix E.1)

d̃∗ ≃
L̃√
π
, (5.34)

which tends to infinity with L̃ → ∞, indicating a purely repulsive force between unconfined
rods.
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In brief, one may specify the attraction and repulsion regimes of two like-charged rods by
plotting the equilibrium axial separation d̃∗ as a function of the Manning parameter, as shown
in Figure 5.3a for several different box sizes. The region below each curve shows the repulsion
regime and above that is the attraction regime. (These results are obtained by numerical
minimization of the full SC free energy, Eq. (5.22).) When the Manning parameter is lowered
down to the attraction threshold R̃c = 2/3, the two rods tend to unbind from each other as
L increases to infinity. A continuous unbinding transition occurs in the limit L → ∞ (solid
curve), which exhibits a universal scaling exponent for the diverging axial distance

d̃∗ ∼ (R̃− R̃c)
−α (5.35)

(shown separately in Figure 5.3b), where within our numerical errors

α = 3/2. (5.36)

5.2.3 Comparison with numerical simulations

Several numerical simulations have recently been reported on charged rods [145, 157, 55, 158]
and also on more detailed models, which incorporate the charge pattern of DNA [144, 155].
In general, attraction is found for intermediate to large Manning parameter and coupling
parameter, which is typically achieved by taking multivalent counterions [145, 157, 55, 158]
or small Bjerrum lengths [55].

The emergence of a closely packed bound-state of like-charged rods is established within
the simulations [145, 157, 55, 158]. It results from a balance between repulsion at small
distances (close to the contact) and attraction at intermediate to large separations. These
features agree with the SC predictions on a qualitative level. A quantitative comparison
between simulations and the SC theory is meaningful only in the range of parameters where
the theory is expected to be valid. Specifically, for a system with finite coupling parameter
(e.g., with Ξ ∼ 10 − 100, which is typically the case in the simulations [145, 157, 55]), the
SC results (strictly valid only for Ξ → ∞) are applicable when higher-order correction terms
in the 1/Ξ-expansion (5.13) are relatively small. Recall that these correction terms include
higher-order electrostatic, as well as counterion-counterion excluded-volume effects (Section
5.1). Here, I first introduce two criteria identifying the regime where these effects are small,
and then present a quantitative comparison with recent simulations.

Regime of applicability of SC results

For highly charged rods, excluded-volume interactions between counterions may become sig-
nificant as attraction is accompanied by accumulation of counterions in the narrow intervening
region between the rods. At large couplings, counterions tend to line up on opposing surfaces
of the rods and along the rods axes forming a correlated inter-locking pattern [157] (see the
illustration in Figure 5.1a). The typical distance between counterions at the surface, az, may
be estimated from the local electroneutrality condition, q = τaz, yielding

az =
q

τ
, (5.37)

which agrees closely with the results obtained in recent simulations [157]. It is expected that
when az is smaller than the counterion diameter, σci, i.e.

az < σci, (5.38)
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excluded-volume repulsions between counterions become important, and the accumulation of
counterions between the rods according to the SC mechanism is prohibited. Consequently,
the effective electrostatic interaction between the rods may drastically be affected [157].

The importance of higher-order electrostatic effects may be examined in a qualitative
fashion using the Rouzina-Bloomfield criterion as demonstrated in Section 2.4.3. Namely,
the strong-coupling attraction is expected to emerge when the surface-to-surface distance of
the rods, δ = d − 2R0, becomes smaller than the typical distance between counterions at
opposing surfaces, az, Eq. (5.37) [148, 150, 151, 152, 48, 43, 45]. Defining the dimensionless
Rouzina-Bloomfield parameter as

γRB =
az
δ

=
q

τδ
, (5.39)

the strong-coupling attraction regime may be specified by

γRB > 1. (5.40)

Numerical simulations

In order to bring out electrostatic features of the like-charge attraction and avoid complica-
tions arising from volume interactions [157], I will concentrate on the Molecular Dynamics
simulations of the two-rod system performed by Arnold and Holm [55]. In this study, vol-
ume interactions between counterions are excluded, but counterions still retain a soft-core
excluded-volume repulsion with the rods [55]. The SC results presented in the preceding sec-
tions deal with a similar system with the difference that counterion-rod volume interactions
were assumed to be of hard-core nature (Section 5.1). The simulation model has a geometry
similar to what I have sketched in Figure 5.1 (with periodic boundary conditions employed
in z direction), except that the outer box is cylindrical. (The outer box diameter in simula-
tions is chosen as 8d; thus for final comparison in Figure 5.4, the theoretical curves are also
re-calculated using a similar constraint but using, for simplicity, a square box of edge size
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L = 8d. The results are not affected by the box size in the considered range of Manning
parameters.) In the simulations, rods are kept at fixed actual surface-to-surface distance, δ,
with fixed linear charge density, τ , and counterion valency, q, but the Bjerrum length and
the rods radius, R, are varied. Hence, the Gouy-Chapman length, µ = R/(qℓBτ), varies
accordingly allowing to span various regimes of coupling parameter and Manning parameter.

In Figure 5.4, the simulation results (symbols) for the equilibrium surface-to-surface dis-
tance of rods are shown in rescaled units and as a function of the Manning parameter. The
Rouzina-Bloomfield parameter γRB, Eq. (5.39), is fixed for each simulation data set. This
parameter is related to the coupling parameter, Ξ = 2πq3ℓ2Bσs,via

Ξ = R̃ δ̃ γRB, (5.41)

and thus gives a measure of deviations from the asymptotic SC limit, as clearly supported
by the simulation data in Figure 5.4: the simulated equilibrium axial separation decreases
upon increasing γRB (from about 3 up to 60) and approaches the strong-coupling curve, which
represents a closely packed bound-state of the two rods. The agreement becomes quantitative
for the Rouzina-Bloomfield parameter as large as γRB = 50 and 60 for the whole range of
Manning parameters studied in the simulations. Note that, for instance, for a moderate
Manning parameter of ξ = 3.0, Ξ increases from 18 for cross symbols up to about 100 for
filled diamonds.

Due to convergence limitations, the simulations so far have been limited to the range of
Manning parameters R̃ > 0.8 [55]. Nonetheless, the excellent convergence of the data to the
SC curve suggests an attraction threshold of about R̃c = 2/3 as predicted in Section 5.2.1.

5.3 Two like-charged spheres

In this section, I will consider the interaction between two identical like-charged spheres of
bare radius R0 and charge −Ze that are located at center-to-center distance of d from each
other (Figure 5.5). The spheres are confined in a cubic box of edge size L together with N
neutralizing q-valent counterions; hence Nq = 2Z. The Gouy-Chapman length associated
with this system is

µ =
1

2πqℓBσs
=

2R2

ℓBqZ
, (5.42)

where σs = Z/(4πR2) is the surface charge density and R is the hard-core sphere radius, Eq.
(5.16). In analogy with the cylindrical case (see Eq. (5.18)), I shall refer to the ratio between
the radius of curvature and the Gouy-Chapman length,

R̃ =
R

µ
=
ℓBqZ

2R
, (5.43)

as the Manning parameter for charged spheres (see Section 2.3).
To determine the SC effective interaction between spheres, Eq. (5.14), I will follow similar

lines as in the preceding sections. The zero-particle and one-particle interaction energies, Eqs.
(5.5) and (5.6), are obtained here as

Ũ0 = 4π
R̃4

d̃
, (5.44)

ũ(x̃, ỹ, z̃) = −2R̃2
(

1

r̃1
+

1

r̃2

)

, (5.45)
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where r̃1,2 = [(x̃± d̃/2)2 + ỹ2 + z̃2]1/2 are radial distances from the spheres centers. The SC
free energy (5.14) is thus obtained as

FSC
N

NkBT
=
R̃2

d̃
− ln I, (5.46)

where

I(d̃, R̃, L̃) ≡
∫

dx̃dỹ dz̃ Ω̃ exp

[

2R̃2
(

1

r̃1
+

1

r̃2

)]

, (5.47)

in which Ω̃(x̃, ỹ, z̃; d̃, R̃, L̃) specifies the region accessible for counterions, that is the volume
inside the cubic box excluding the two spheres of hard-core radius R.

The first term in Eq. (5.46) is the bare repulsion between the spheres, and the second
term contains energetic and entropic contributions from counterions on the leading order.
This term reproduces the binding-unbinding behavior of counterions at charged spheres. It
can generate an effective attraction between the spheres as well. To demonstrate this, I first
consider two spheres in the limit of infinite box size L̃→ ∞. In this limit, the single-particle
partition function, I, diverges with the box volume as I ∼ Ṽ = L̃3 since the integrand in (5.47)
is always positive and bigger than one. Thus the distribution function of counterions around
the spheres, ∼ exp(−ũ)/I (see footnote 2), and also the component of the force contributed by
counterions, ∼ ∂ ln I/∂d̃ ∼ L̃−2, vanish indicating complete de-condensation of counterions
and a purely repulsive interaction between unconfined spheres as expected. (Recall from
Chapter 2 that spherical macroions can not bind their counterions in an unconfined geometry.)
In contrast, it turns out that in a finite confining box, two like-charged spheres can attract
each other provided that their Manning parameter is sufficiently large.

Figures 5.6a-d show the typical form of the SC free energy for two spheres in a box, which is
calculated numerically (using Monte-Carlo integration methods) from Eq. (5.46). As seen, for
small Manning parameter R̃, the long-range sphere-sphere repulsion is dominant (Figure 5.6a).

But as the Manning parameter exceeds a threshold value of R̃
(1)
c (which is R̃

(1)
c ≃ 3.3 for L̃ =
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A potential barrier is found in the range R̃
(1)
c (L̃) < R̃ < R̃

(2)
c (L̃) (b and c), where R̃

(1)
c ≃ 3.3 and

R̃
(2)
c ≃ 3.8 for L̃ = 100.

100 in the figure), a local minimum is developed at small separations indicating a short-range
attraction and a meta-stable bound-state (Figure 5.6b). This attraction regime is separated
from the large-distance repulsion regime by a pronounced potential barrier (Figures 5.6b and
c). For increasing Manning parameter, the attractive local minimum becomes deeper than
the large-distance minimum, and the potential barrier disappears beyond a second threshold

of R̃
(2)
c (which is R̃

(2)
c ≃ 3.8 for L̃ = 100)–Figure 5.6d. These features indicate a discontinuous

unbinding transition between a closely packed bound-state and a repulsion-dominated state
of two like-charged spheres by varying the Manning parameter. Note that similar features
as above are obtained for box sizes that are larger than L̃ ≃ 20; for a smaller box size, the
attraction regime disappears and only the shallow large-distance minimum is obtained.

A digram representing different regimes of attraction and repulsion for two spheres is
shown in Figure 5.7, where I have plotted the locations of the minima (solid curves) of the
strong-coupling free energy, Eq. (5.46), as well as the location of its maximum (dashed
curves), as a function of the Manning parameter, R̃, for fixed L̃ = 100. The upper branch
represents the shallow repulsion-dominated minimum, which is strongly sensitive to the box
size. For small R̃ ≪ 1, the equilibrium center-to-center distance increases linearly with the
box size as

d̃∗ ≃ 3

√

3

4π
L̃, (5.48)

when L̃ → ∞ (see Appendix E.2). In contrast, the small-separation minimum (the lower
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branch) is nearly independent of the box size. It is maintained by a strong attractive interac-
tion mediated by counterions that tend to accumulate in the intervening region between the
spheres. For large R̃ ≫ 1, the approximate form of the SC free energy at small separations
around its minimum can be calculated using a saddle-point analysis, which gives (Appendix
E.2)

FSC
N

NkBT
≃ −7

R̃2

d̃
− ln(d̃− 2R̃). (5.49)

For increasing Manning parameter to infinity (or decreasing temperature to zero), the repul-
sive contribution (second term in Eq. (5.49)) vanishes and the energetic attraction (first term
in Eq. (5.49)), which is independent of temperature, dominates. The resultant limiting force
between spheres at small separation (d ≃ 2R) is given by

F SC
spheres(d) = −7

Z2e2

4πεε0d2
(5.50)

in actual units, which agrees with the results obtained in other works [179]. The rescaled
equilibrium center-to-center distance is obtained from Eq. (5.49) as

d̃∗ ≃ 2R̃+
4

7
+ O(

1

R̃
) when R̃≫ 1. (5.51)

Restoring the actual units, one finds the actual equilibrium surface-to-surface separation as

δ∗ ≡ d∗ − 2R0 ≃ σci +
4

7
µ+ O(µ2), (5.52)

using Eqs. (5.16) and (5.42). Note that this result is obtained for sufficiently large Manning
parameter (or small Gouy-Chapman length, µ) and thus predicts an equilibrium surface
separation of about the counterion diameter σci.

5.3.1 Attraction threshold

The strong-coupling attraction regime for two like-charged spheres may be specified by R̃ >

R̃
(1)
c , where the threshold Manning parameter R̃

(1)
c actually depends on the confining box

size, i.e. R̃
(1)
c = R̃

(1)
c (L̃). As shown in the inset of Figure 5.7, the calculated values of R̃

(1)
c

(symbols) exhibit a logarithmic dependence on the box size, which is roughly given by

R̃(1)
c = a+ b ln L̃, (5.53)

where a ≃ 0.55 and b ≃ 0.6 (the fitted function (5.53) is shown by a solid curve). The weak
dependence of the attraction threshold on the confinement size can explain the stability of
compact clusters of spheres in quite large confinement volumes L̃≫ 1 [146, 148, 150, 151, 152],
since the Manning parameter only needs to exceed a moderate value (∼ ln L̃) for like-charged
spheres to fall into the attraction-dominated regime.

5.3.2 Comparison with numerical simulations

Several simulations [146, 147, 148, 150, 151, 152, 153, 154] have recently considered the effec-
tive electrostatic attraction of like-charged spheres in the strong coupling regime (e.g., using
multivalent counterions or in some cases, low dielectric constants [148] or low temperatures
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[154]). The strength of attractive force is sufficiently large that leads to closely packed bound-
states (including large aggregates) between like-charged spheres [146, 147, 148, 150, 151, 152,
153, 154]. The bound-state corresponds to an attractive small-separation minimum in the
potential of mean-force between spheres [146, 147, 150, 151, 152], which is separated by a
pronounced potential barrier from a repulsion regime at large separations (see, e.g., Fig. 1 in
Ref. [146]). On the other hand, it was shown that the attractive minimum and the potential
barrier are not robust and exhibit a dependence upon the size of the confinement volume
[146]: the depth of the attractive minimum and at the same time, the height of the potential
barrier, decreases with increasing volume leading to a long-range repulsion between spheres
in a sufficiently large confining box as expected. The qualitative form of the simulated inter-
action potential [146] indeed agrees with the SC results shown in Figure 5.6. Note also that in
agreement with simulations [146], the SC results imply that for a given Manning parameter

between the two thresholds R̃
(1)
c < R̃ < R̃

(2)
c , the height of the free energy barrier decreases

and the effective attraction diminishes by increasing the box size. The existence of a potential
barrier in the interaction potential of confined spheres can result in meta-stable bound-states
between spheres [154] and also indicates a first-order phase transition (phase separation be-
tween a dilute and an aggregated phase) in the thermodynamic limit [146, 150, 151, 152].

Table 5.1 presents typical parameters from some of recent simulations. In the two last
columns, I compare the SC prediction for the equilibrium surface-to-surface separation be-
tween spheres (in actual units), δ∗ = d∗ − 2R0, with the simulation results, δsim (if explicitly
measured), which follow from the location of the minimum of the simulated potential of mean
force or equivalently, from the pair distribution function of spheres. The values of δ∗ are
calculated by numerical evaluation of the full SC free energy (5.46) for the corresponding
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simulation parameters, in which I have also accounted for the finite size of counterions (Sec-
tion 5.1). (Note that the analytical expression (5.52) gives an approximate value for δ∗, which
is valid only up to the first order in µ.) As seen, there is a reasonable semi-quantitative agree-
ment between the theoretical predictions and the simulation results. In fact, the equilibrium
surface-to-surface distance in these simulations appears to be about the counterion diameter
(see the Discussion in Ref. [151, 152]). This also follows from the strong-coupling prediction,
Eq. (5.52), because for highly charged spheres, the Gouy-Chapman length is indeed small as
compared with the counterion diameter.

In the table, I also show the estimated values for the typical separation between counterions
at the sphere surfaces, a⊥ (see the illustration in Figure 5.5). This quantity is set by the local
electroneutrality condition, πa2

⊥ ∼ q/σs, as

a⊥ ≃ R

√

4q

Z
(5.54)

up to a geometric factor of the order of one. As seen, a⊥ is larger than the Gouy-Chapman
length (µ ∼ 1Å) in these simulations leading to a large coupling parameter, Ξ. Recall that
the ratio between these two length scales is related to Ξ as ã⊥ = a⊥/µ ∼ (2Ξ)1/2 (see Chapter
2), where the coupling parameter, Ξ = 2πq3ℓ2Bσs, for charged spheres reads

Ξ =
q3ℓ2BZ

2R2
. (5.55)

Moreover, the strong-coupling (Rouzina-Bloomfield) attraction criterion,

δ < a⊥, (5.56)

is also fulfilled as the equilibrium sphere separation, δsim, appears to be smaller than a⊥. These
observations indicate that higher-order electrostatic effects that enter in the sub-leading terms
of the 1/Ξ-expansion of the free energy (Section 5.1) are relatively small. In fact, the excluded-
volume repulsion between counterions, which enters through these higher-order terms, is also
expected to be small in these simulations, since the lateral separation of counterion at spheres
is larger than the counterion size, σci. Therefore, the simulation parameters indeed cover the
regime, where the asymptotic strong-coupling theory is expected to be valid.

5.4 Conclusion and discussion

In this chapter, I investigate the effective electrostatic interaction between like-charged cylin-
drical and spherical macroions in the regime of large coupling parameter, Ξ, which is achieved
for large counterion valency, large charge densities on macroions, low dielectric constants, or
for low temperatures. In this regime, interactions between macroions are dominated by strong
counterionic correlations: counterions form highly correlated layers at macroions giving rise
to an energetic counterion-mediated attraction. For Ξ → ∞, the leading-order contribution to
the interaction free energy is calculated via the strong-coupling theory, which is obtained from
a systematic 1/Ξ-expansion series (virial expansion). It represents a finite-temperature theory
incorporating both energetic effects (which are responsible for the strong-coupling attraction)
as well as the entropic contribution from counterions. The latter enables the SC theory to
reproduce the de-condensation of counterions at small Manning parameters and thus yield
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Simulation q Z ℓB(Å) R(Å) σci(Å) L(Å) µ(Å) R̃ Ξ R̃
(1)
c a⊥(Å) δsim(Å) δ∗(Å)

Ref. [146] 2 10 7.01 7 3.3 50-200 1.07 8.1 26 2.8-3.7 7.7 2.5 3.41
Ref. [147] 2 20 7.14 10 4 102 1.01 11.9 28 3.3 7.5 4 4.10
Ref. [148] 2 32 112 48.9 4.4 102 0.73 70.1 615 3.3 25.5 – 4.41
Ref. [150] 3 60 7.15 20 4 102 0.75 29.2 85 3.3 9.8 4 4.05
Ref. [153] 3 12 7.15 10 2 102 0.94 11.7 68 3.3 11.0 – 2.09

Table 5.1: Parameters from simulations on highly charged spheres: q is the charge valency of

counterions with diameter σci, Z is the charge valency of spheres with radius R, and ℓB, µ, ξ and Ξ

are the Bjerrum length, the Gouy-Chapman length, Eq. (5.42), the Manning parameter, Eq. (5.43),

and the coupling parameter, Eq. (5.55), respectively. L is the confining box size and R̃
(1)
c is the

estimated attraction threshold (Section 5.3.1). The last two columns show the equilibrium surface-to-

surface distance obtained in these simulations, δsim (if explicitly measured), and the corresponding SC

prediction, δ∗. Some of the numbers are given up to the order of magnitude, and the extracted values

of δ from simulations have a typical resolution of about 1Å. Note that in estimating the values of Ξ, µ

and a⊥, the finite size of counterions is also accounted for assuming that they have hard-core volume

interactions with macroions [147, 148, 150, 151, 152, 153]–see Section 5.1.

a consistent picture for the whole range of Manning parameters. Note however that in this
latter regime, counterionic correlations vanish and the macroions repel each other.

For sufficiently large Manning parameter R̃ = R/µ, the SC theory predicts a closely
packed bound-state between macroions maintained by a long-range attractive force, which
varies with distance, d, as ∼ d−1 for two rods, and as ∼ d−2 for two spheres (this force
is of constant strength for charged plates–see Chapter 2). As shown, the SC predictions
for the attraction regime and the closely packed bound-state of two like-charged rods agree
quantitatively with recent numerical simulations for elevated coupling strength (e.g., for Ξ ∼
102) [55]. For charged spheres, the SC predictions (for equilibrium bound-state separation
and the effective interaction potential) show a qualitative agreement with the simulations
[146, 147, 150, 151, 152, 153]. Note that since numerical simulations can only handle systems
with a finite coupling parameter, the agreement with the SC theory (strictly valid for Ξ → ∞)
is limited to the regime determined by the Rouzina-Bloomfield criterion, that is small surface-
to-surface separation as compared with the counterion spacing at the apposed surfaces of
macroions (Chapter 2). In this regime, a dominate energetic coupling is mediated by single
counterions sandwiched between macroions, which gives rise to a single-particle structure for
the SC free energy.

For decreasing Manning parameter, the counterion-induced attraction weakens against
the bare repulsion, and macroions exhibit an unbinding transition. For charged rods, this
transition is found to be continuous. It occurs at a universal value of the Manning parameter
R̃c = 2/3 in an infinitely large confinement volume and displays a power-law behavior for
diverging axial distance as d∗ ∼ (R̃ − R̃c)

−3/2. Therefore, R̃c = 2/3 represents a universal
attraction threshold for two unconfined rods. Charged spheres, on the contrary, only exhibit
attraction in a finite confining box, where the transition between attraction and repulsion
regimes is found to be non-universal (volume dependent) and discontinuous due to a potential
barrier in the interaction free energy. The attraction threshold for two spheres increases
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logarithmically with the box volume, which indicates that the bound-state of strongly coupled
spheres is highly stable against changes in the confinement volume as observed also in recent
simulations [146, 148, 150, 151, 152].

The SC attraction regime can be realized in experiments by choosing a coupling parameter
of the order Ξ ∼ 102, and a Manning parameter of the order R̃ ∼ 10 for charged spheres and
R̃ > 1 for charged rods. For instance, in aqueous solutions of DNA (with radius R0 ≃ 10Å
and linear charge density τ e ≃ 6 e/nm), one has R̃ ≃ 8 and Ξ ≃ 25 in the presence of divalent
counterions, and R̃ ≃ 12 and Ξ ≃ 80 for trivalent counterions such as spermidine. In colloidal
dispersions, an aqueous solution of highly charged surfactant micelles of, for example, typical
radius R0 ≃ 20Å and charge valency Z ≃ 60 represents the Manning parameter and the
coupling parameter of the order of R̃ ≃ 30 and Ξ ≃ 100 for trivalent counterions.

Here I did not investigate possible thermodynamic phase transitions triggered by attractive
strong-coupling forces. There has been indication of an attraction-induced phase separation
in the system of like-charged spheres from recent numerical simulations [146, 150, 151, 152,
153]. To study these transitions, one should account for additional entropic contribution
from fluctuating macroion-macroion distance coordinate, which are not considered within the
present study. This provides an interesting subject for the application of the SC theory in
the future.

Another interesting problem is to examine the influence of additional salt on the interac-
tions in the strong-coupling limit. Qualitatively, one can associate the size of the confinement
box considered in the present study with the Debye screening length. Thus, addition of salt
is expected to matter only close to the unbinding threshold of macroions. Other subjects
which are relevant for the interaction between macroions include the effect of finite polymer
stiffness, the discrete charge pattern of macroions [144, 155, 173, 176, 177, 179, 180, 156], and
bundling of many charged polymers [31, 33, 34, 149, 168, 179, 186].
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Chapter 6

Polyelectrolyte Brushes: Non-linear
osmotic regime

Polyelectrolyte brushes are layers of charged polymer chains that are densely end-grafted
onto a surface. Since charged brushes typically trap their counterions and form a layer of
very high internal ionic concentration, their structure and behavior is rather insensitive to
the amount of externally added salt. This gives rise to a wide range of applications for
stabilization and surface functionalization of charged and neutral colloids [15, 191]. In recent
years, polyelectrolyte brushes have been subject of extensive investigations both theoretically
[192, 193, 16, 194, 195, 196, 197, 198, 199, 200, 201, 202, 203, 204, 205, 206] and experimentally
[207, 208, 209, 210, 211, 212, 213, 214, 215, 216, 217], which have revealed the detailed phase
behavior of these systems. Of particular importance is the behavior of the equilibrium height
of the brush layer (brush thickness) as a function of the grafting density. One may distinguish
a few scaling regimes for this quantity, which result from the interplay between steric, entropic
and electrostatic contributions.

In strongly charged brushes, i.e. when both grafting density and charge fraction of poly-
electrolyte chains are sufficiently large, most of the counterions are trapped inside the brush.
For not too high grafting densities, the repulsive osmotic pressure of counterions is the
major effect that tends to swell the chains and balances their elastic stretching pressure.
This regime is known as the osmotic brush regime. According to standard scaling theories
[16, 194], the equilibrium thickness of the osmotic brush is independent of the grafting den-
sity. For very large grafting densities, steric effects dominate over electrostatic interactions
and the excluded-volume repulsions (in good solvent conditions) balance the elastic pressure
on the chains, leading to the so-called quasi-neutral brush regime [194, 199]. The effects of
excluded-volume interactions have also been studied in poor solvent conditions [195]. On the
other hand, for larger charge fractions or large Bjerrum lengths, the electrostatic correlation
between mobile counterions and oppositely charged monomers comes into play and gener-
ates a strong attractive pressure on the chains, which leads to the collapsed brush regime
[194, 203, 204, 205].

In weakly charged brushes with small grafting density and charge fraction of the chains,
the counterion cloud extends far beyond the brush height and their osmotic pressure becomes
irrelevant against uncompensated electrostatic repulsion between charged monomers. This
results in the charged or Pincus brush regime, where the elastic and the electrostatic pressures
are balanced [16].
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In this chapter, I shall concentrate on the salt-free osmotic brushes on a planar grafting
surface and in the weak-coupling regime, that is at moderate to small Bjerrum lengths and
low counterion valency, where electrostatic correlations are negligible. This regime has been
extensively studied by experimental as well as numerical methods. In particular for osmotic
brushes, it has been shown both in experiments [216, 217] and simulations [206] that the
brush thickness varies weakly with the grafting density, a trend which contrasts the standard
scaling results [16, 194]. These scaling theories are based on two main assumptions: i) the
charges of both monomers and counterions are assumed to be distributed uniformly inside
the brush, and ii) the chain elasticity is treated within the linear (Gaussian) approximation.

Here I will present a mean-field cell-model study [103] as well as a non-linear scaling theory
[216], which demonstrate that the observed behavior for the osmotic brush, which will be
referred to as the non-linear osmotic brush regime, may be explained on a semi-quantitative
level by incorporating non-linear effects that go beyond the standard scaling description.
Namely, I will account for the laterally non-uniform distribution of monomers and counterions
inside the brush as well as the non-linear elasticity of the chains (as required by their strong
stretching in the osmotic regime). While inhomogeneous distribution of counterions inside the
brush matters at intermediate to small grafting densities, the self-volume occupied by highly
stretched and laterally localized polymer chains plays an important role at large grafting
densities. This volume remains unaccessible to surrounding counterions. It is assumed to be
conserved, which is a simple way to account for the coupling between lateral and longitudinal
degrees of freedom: as chains shrink (at a fixed grafting density), the available volume for
counterions decreases accordingly, leading to an enhanced osmotic pressure.

In Section 6.1, I shall focus on the non-linear scaling description of the brush, in which,
for simplicity, the inhomogeneous charge distributions inside the brush is neglected, but the
polymer self-volume as well as the non-linear elasticity is taken into account. This leads to
a linearly increasing brush height with the grafting density which is compared with both
experiments [216, 217] and simulations [206, 216] displaying a reasonable agreement. Next,
I will present a mean-field cell model (Section 6.2) to improve upon the non-linear scaling
theory by accounting for lateral electrostatic effects (including lateral variation of the coun-
terionic density profile around polyelectrolyte chains) within the framework of the non-linear
Poisson-Boltzmann theory. While the non-linear scaling theory is only applicable at large
grafting densities, the present mean-field analysis can account for the brush behavior in the
whole range of grafting densities (as long as the osmotic condition is preserved, e.g., using
sufficiently long chains). It displays a non-monotonic dependence on the grafting density: At
moderate grafting densities, the brush height is found to increase with a weaker rate than
what predicted by the scaling analysis, due to an interplay between lateral electrostatics and
the conservation of the polymer volume. At small grafting densities, the volume constraint
becomes irrelevant and the mean-field cell model predicts re-stretching of the chains due to
an increasing electrostatic pressure acting on the chains. The dependence of the brush thick-
ness on the grafting density in this limit is regulated by the counterion-condensation process
around the chains.

An inhomogeneous distribution of counterions in lateral directions has been recently ob-
served both in simulations [204, 205, 206] and experiments [210, 212, 214, 215]. Experimental
data on spherical charged brushes indicate that the counterion distribution around single
chain indeed follows the the non-linear PB predictions as obtained within the cylindrical-cell-
model approach [37, 38]. On the other hand, chains are found to be stretched up to 60-80%
of their contour length [206, 208, 209, 210, 212, 214, 216, 217], which necessitates the use of
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Figure 6.1: Schematic geometry of a charged brush with L and H denoting the brush height and the

height of the counterion layer, respectively.

non-linear elasticity models [200, 202]. But it should be noted that the elasticity model by
itself does not generate a grafting-density dependence for the brush height [202].

6.1 Non-linear scaling theory for the osmotic brush

An analytical theory for polyelectrolyte brushes relies on a number of simplifying assumptions.
The full theoretical problem is intractable because the degrees of freedom of the polymer
chains and the neutralizing mobile counterions are coupled. The schematic geometry of the
brush system is visualized in Figure 6.1: the polymer chains are assumed to extend in average
to a distance L from the anchoring surface, and the counterions in general form a layer with a
thickness H. As will be shown later, for strongly charged brushes, the counterion layer height
is typically very close to the polymer layer height.

To establish a scaling theory, I start by constructing the total free energy of the brush per
unit area as

Ftot = Fchain + Fci + Fint, (6.1)

which is a sum of separate contributions from polymer chains, Fchain, contributions from the
counterions, Fci, and an electrostatic interaction term which couples polymers and counteri-
ons, Fint. The main contribution to the polymer free energy comes from the elastic response
due to the stretching of chains, hence Fchain ≃ Felas. For a freely-jointed-chain model, the
elastic free energy has a purely entropic origin and can be calculated exactly (Section 6.2.3).
Here only the asymptotic expressions for weak and for strong stretching is needed, which read
(per unit area)

Felas

kBT
≃











3ρaL
2/(2Nmb

2
0) L≪ Nmb0,

−Nmρa ln(1 − L/Nmb0) L ≃ Nmb0,
(6.2)

which are proportional to the grafting density, ρa. Here Nm denotes the number of monomers
per chain and b0 is taken as the center-to-center distance between monomers along the polymer
backbone (equal to diameter for spherical monomers). For a fully stretched chain, L equals
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the contour length L0 = Nmb0. The weak-stretching term is the standard linear (Gaussian-
chain) elasticity [16, 194]. For the highly stretched situations typically encountered in highly
charged brushes, the strong-stretching term (second relation in Eq. (6.2)) is more appropriate
and leads to a few changes in the results as will be explained later.

The counterion free energy, Fci, contains entropic contributions (due to the confinement
of the counterions inside a layer of thickness H) as well as energetic contributions from inter-
counterionic interactions. For high grafting densities, entropy of confinement of counterions
is the dominant effect (Sections 6.2.4 and 6.3). To estimate this later quantity, I shall employ
a free-volume approximation very much in the spirit of the van-der-Waals equation of state
for the liquid-gas system. For this I assume an effective hard-core volume of veff for a single
polyelectrolyte chain, which reduces the free volume available for counterions inside the brush.
The entropic free energy of counterions thus reads (per unit area)

Fci

kBT
= ρaNmf

[

ln

(

ρaNmf

H − ρaveff

)

− 1

]

, (6.3)

where f is the charge fraction of the chains. Note that throughout this section, I will assume
that monomers and counterions are monovalent particles. Generalization to multivalent par-
ticles is straight forward and will be considered in Section 6.2.

This free-volume theory takes the hard-core interactions between the polymer monomers
and the counterions into account in a non-linear fashion. In the limit of vanishing polymer self-
volume, veff → 0, one recovers the standard ideal entropy expression. As the volume available
for the counterions in the brush, which per polymer is H/ρa, approaches the self-volume of
the polymers, veff , the free energy expression (6.3) diverges, that means, the entropic prize for
that scenario becomes infinitely large. The self-volume of the polymers is roughly independent
of the brush height (i.e. remains constant as the chain extension varies), and can be written
in terms of the monomer hard-core (or effective) diameter σeff and the polymer contour length
Nmb0 as, veff = Nmb0σ

2
eff (note that σeff takes into account the monomer and the counterion

diameters, and that the monomers may be bulky with a lateral dimension larger than b0).
This leads to the final expression

Fci

kBT
= ρaNmf

[

ln

(

ρaNmf

H − ρaNmb0σ
2
eff

)

− 1

]

. (6.4)

Finally, the electrostatic interaction between polyelectrolytes and counterions is considered
on the mean-field level. For the scaling analysis in this section, I assume the charges are
smeared out over the brush region (0 < z < L) and over the polymer-free region (L < z < H
with z measuring the direction perpendicular to the anchoring surface. For this situation,
Fint has been calculated using a box-model in Ref. [203] and reads

Fint

kBT
=

2π

3
ℓB(ρaNmf)2

(H − L)2

H
. (6.5)

An electrostatic attractive force arises when the counterion layer extends over the polymer
layer, i.e. when H > L. This is the driving force that keeps the counterions inside the brush
layer. This force will be important in order to estimate when counterions start to leave the
brush as will be discussed later [216]. Note that the above estimate for Fint is valid as long
as electrostatic correlations (that are neglected within mean-field theory and can indeed lead
to an additional attractive pressure on the chains [203]) are small, i.e. for moderate to small
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Bjerrum lengths (e.g., ℓB = e2/(4πεε0kBT ) ∼ 1 nm, which is the typical case for aqueous
solutions in room temperature) and for low-valency counterions [43].

The standard osmotic brush regime [16, 194] results from balancing the elastic stretching
term for small stretching, L ≪ Nmb0, Eq. (6.2), with the counterion entropy in the absence
of a polymer self-volume (which is Eq. (6.4) in the limit of σeff → 0), and for H = L. The
result from minimizing the resulting free energy with respect to the brush height L gives the
optimal height L∗ as [16, 194]

L∗

Nmb0
≃
√

f

3
. (6.6)

It is clear that for fully charged polymers (f = 1), the predicted stretching in Eq. (6.6) goes
beyond the assumption of weak stretching.

In the strongly stretched osmotic brush regime, one may choose the strong stretching
version of the chain elasticity in Eq. (6.2) and balance it with the counterion entropy for
vanishing polymer self-volume and for the case H = L (Eq. (6.4)). The result is

L∗

Nmb0
≃ f

1 + f
, (6.7)

which is the large-stretching analogue of Eq. (6.6). The maximal stretching predicted from
this equation is obtained for f = 1 and corresponds to 50% of the contour length. This
height is considerably smaller than what is observed in simulations and experiments (Figures
6.2 and 6.3). Moreover, the predicted brush height in Eq. (6.7) does not depend on the
grafting density. It transpires that something is missing in the above scaling description.
This something is proposed to be the entropic pressure which increases as the volume within
the brush is progressively more filled up by the polymer self-volume. The fact that the non-
linear elasticity of the chains by itself does not lead to a grafting-density dependence for the
brush height has also been noted in previous studies [200, 202].

To demonstrate the non-linear osmotic brush regime, I combine the strong stretching (non-
linear) version of the chain elasticity in Eq. (6.2) with the counterion entropy, Eq. (6.4), in
the presence of a finite polymer self-volume and for H = L. Minimizing the combined free
energy with respect to L, the equilibrium brush height is obtained as

L∗

Nmb0
≃ f + ρaσ

2
eff

1 + f
, (6.8)

which exhibits a linear dependence on the grafting density. In the limit of maximal grafting
density ρaσ

2
eff → 1, that is close packing, the brush height reaches the maximal value L0 =

Nmb0, as one would expect: Compressing the brush laterally increases the vertical height and
finally leads to a totally extended chain structure.

One main approximation in the preceding analysis is the assumption that all counterions
stay localized in the brush layer, i.e. H = L, which will be analyzed critically now. To get
a feeling for the involved forces, I will first consider the confinement of a layer of counterions
at a planar charged surface. I take the electrostatic interaction energy (6.5) for an infinitely
thin brush layer L = 0 and balance it with the confinement entropy (6.4) for σeff = 0, which
yields the optimal counterion layer height H∗ = 3/(2πℓBNmfρa) = 3µ. This result has the
same scaling as the Gouy-Chapman length µ = 1/(2πℓBNmfρa), a measure of the extend of
counterion layers [1, 2], and thus shows that the scaling approach reproduces the result from
the exact analysis of the Poisson-Boltzmann approach (see Chapter 2). Next, I will consider
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the counterion layer in the presence of a finite brush height L. I will therefore minimize
the sum of the electrostatic interaction energy, Eq. (6.5), and the counterion confinement
entropy, Eq. (6.4), with respect to the counterion layer height H for vanishing polymer
diameter σeff = 0, and obtain the result (to first order in powers of [H∗ − L]/L)

H∗ = L+ 3µ/2. (6.9)

This gives the counterion layer height corresponding to the results in Eqs. (6.6) and (6.7)
for the brush height. Since for a typical highly charged brush, the Gouy-Chapman length,
µ, is of the order of one Angstrom or less, the counterion layer basically has the same height
as the brush layer. In other words, the counterions are completely trapped inside the brush
for vanishing polymer radius, in agreement with the simulation results shown in Figure 6.2.
Now I perform the same estimate for finite polymer volume. Minimizing the sum of the
electrostatic interaction energy (6.5) and the counterion confinement entropy (6.4) for finite
L and finite σeff , one finds (to first order in powers of [H∗ − L]/L)

H∗ = L+
3µ

2(1 − η)
, (6.10)

where η = ρaσ
2
effNmb0/L measures the ratio of the polymer excluded-volume veff = σ2

effNmb0
and the volume in the brush available for a single polymer L/ρa, and thus the degree of
close-packing in the brush. For a grafting density of ρa = 0.1 nm−2, a polymer length of
L = 15 nm and a monomer number of Nm = 136 (and monovalent particles), as used in the
experiments (see below), one obtains a Gouy-Chapman length of µ = 1/(2πℓBNmfρa) ≃ 0.01
nm. Therefore, even for a close-packing fraction of 99%, i.e. for η = 0.99, the difference
between the counterion layer height and the brush height is only about a nanometer, which
is rather negligible compared to the total brush height. This argument reflects the strong
electrostatic interaction between the brush and the counterion layer in the osmotic regime,
and it shows that the underlying assumption that all counterions are trapped inside the brush
is justified, even for cases where the non-linear osmotic pressure is rather large and leads to
a brush height very close to full extension of the chains.

6.1.1 Comparison with Molecular Dynamics simulations

Computer simulations have been performed extensively to investigate polyelectrolyte brushes
both at strong [203, 204, 205] and low [206] electrostatic couplings.

Here I shall consider simulations performed at low electrostatic coupling, which exhibit
the osmotic brush regime [206]. The simulation model adopts a freely-jointed bead-chain
model (using the so-called finite extensible non-linear elastic potential) for polymer chains
end-grafted onto a rigid surface (with monomers and counterions modeled as soft spheres of
equal diameter σci = σm = σ using a repulsive Lennard-Jones potential). All particles are
monovalent (qm = q = 1) and moderate values are chosen for the Bjerrum length, i.e. ℓB ∼ σ.
The average bond length, b0, (which is the result of the interplay between soft LJ repulsion
and the bond potential) is almost unaffected by the electrostatic repulsions and roughly equals
the particle diameter, b0 = 0.98σ [206, 103].

Figure 6.2a shows a snapshot from the simulations of a fully charged brush at large grafting
density ρa = 0.12σ−2. Simulated density profiles of monomers and counterions in normal
direction are shown in Figure 6.2b, which indicate that both monomers and counterions
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Figure 6.2: a) A snapshot of the simulated polyelectrolyte brush at grafting density of ρa = 0.12σ−2

(from Refs. [206, 216]). Monomers are shown by light gray and counterions by dark gray spheres.

b) Simulated density profiles, ρ(z), of monomers (open symbols) and counterions (filled symbols) as

a function of the distance from the anchoring surface, z, for grafting densities (from bottom to top):

ρaσ
2 = 0.020 (triangle-lefts), 0.042 (circles), 0.063 (squares), 0.094 (diamonds), and 0.12 (triangle-

ups). c) Simulated brush height (symbols) as a function of grafting density [216]. The solid line

represents the prediction of the non-linear scaling theory, Eq. (6.8), with σ2
eff = 2σ2. The dashed lines

(i) and (ii) show the scaling predictions (6.6) and (6.7), respectively, and the dot-dashed line is guide

to the eye. Here the brush is composed of 36 fully charged chains (f = 1) of Nm = 30 monomers

(contour length of L0/σ = 29.4) at ℓB = σ.

follow very similar nearly-step-like profiles with uniform amplitude inside the brush, which
increases with the grafting density (the monomers show a short-range ordering close to the
anchoring plane, which is not relevant in the present study). Thus counterions are mostly
confined in the polyelectrolyte layer and as, one may observe, the chains are stretched up to
about 60%-70% of their contour length.

In Figure 6.2c, the simulation results for the brush height (symbols) are shown along with
the prediction of the non-linear scaling theory, Eq. (6.8) (solid line), for moderate to large
grafting densities. (Note that I have used σ2

eff = 2σ2, which corresponds to an approximate
two-dimensional square-lattice packing of monomers and counterions on two interpenetrating
sublattices.) As seen, the non-linear scaling prediction qualitatively captures the slow increase
of the brush height with grafting density. The deviations from the simulation data may result
in part from additional effects such lateral inhomogeneity of counterion distribution around
the chains and the intermediate-stretching elasticity of the chains, which go beyond the scaling
level and will be taken into account in Section 6.2. An important factor, however, is the way
one estimates the effective self-volume of the polymer, or in other words, the estimate for
the free volume available for counterions inside the brush, which can explain the deviations
between the preceding theoretical prediction and the simulations. This will be discussed using
the mean-field cell model in Section 6.2.5 [103].
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Figure 6.3: a) The experimentally measured height of the osmotic PSS136 (circles) and PSS83

(squares) brushes as a function of grafting density from Ref. [216]. The brush contains either 1 mM

CsCl salt (filled symbols) or only clean water at pH=5.5 (open symbols). The dashed lines are power-

law fits with the exponents 0.17 and 0.13, respectively. The solid lines are fits to Eq. (6.8). Fits were

only made to the filled symbols. b) The experimental results (symbols) for the height of the salt-free

osmotic PSS356 brush as a function of grafting density from Ref. [217]. The solid line shows a fit to

the non-linear scaling prediction, Eq. (6.8).

6.1.2 Comparison with experiments

The predictions of the non-linear osmotic brush have also been compared with recent ex-
perimental data [216, 217]. In a set of experiments [216], the brush height has been mea-
sured using monolayers of the diblock copolymers poly-(ethyl ethylene)144poly(styrene sulfonic
acid)136 (or PEE144PSS136) and also poly-(ethyl ethylene)114poly(styrene sulfonic acid)83 (or
PEE114PSS83) at the air-water interface. The PSS block is soluble in (and extends into) the
water phase forming a highly charged brush layer. The grafting density of the PSS brush may
be changed by lateral compression and the height of the layer (brush height) is measured using
x-ray reflectivity techniques. The brush height is studied in clean water or in the presence of
small amount of added salt (1 mM CsCl) that is used for contrast enhancement.

As shown in Figure 6.3a, the data clearly indicate a weak increase of the PSS brush height
with grafting density. The brush height is found to be stretched up to 60% of the contour
length (which is about 340Å for PEE144PSS136 using a monomer size of about 2.5Å). In
order to compare with the non-linear scaling predictions, the data for the brush height, L,
are fitted to Eq. (6.8) with the following preselected parameters: monomer size b0 = 2.5Å
and number of (the PSS block) monomers Nm = 136 and Nm = 83 for PEE144PSS136 and
PEE114PSS83 systems respectively. The charge fraction (of the PSS block) is estimated as
f = 0.49 and f = 0.85 for the two cases respectively, an estimate which accounts also for ion
chemical binding inside the brush [216]. The only free parameter is thus σeff , which serves
as a fit parameter to account for the effective area occupied by a compressed polymer chain.
Very similar values are obtained for σeff for both systems, i.e. σeff = 13.84Å and 13.96Å
respectively, leading to a minimum chain area of about σ2

eff = 193Å2. This value is of the
same order as the minimum area which a compressed PSS chain with a radius of rm = 6Å
occupies, i.e. πr2m/0.91 = 124Å2 (assuming a hexagonal lattice). Clearly, the fitted effective
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excluded-volume is larger since it also takes into account the finite volume of the counterions
which might or might not be hydrated.

In a different set of experiments [217], the osmotic brush height has been measured as
function of the grafting density using neutron reflectivity measurements on a monolayer of
charged diblock copolymers consisting of poly-(tert-butylstyrene)63poly(styrene sulfonate)356
(or PtBS63PSS356). Here also the brush height is found to increase weakly with the grafting
density, which as shown in Ref. [217], agrees with the present non-linear scaling prediction.
In Figure 6.3b, these data are shown (filled symbols) together with a fit to Eq. (6.8) with σeff

being the only fit parameter (other parameters are chosen as b0 = 2.5Å for the PSS block with
Nm = 356 monomers and a charge fraction of f = 0.33 as estimated in Ref. [217]). As seen,
a good fit is obtained by choosing σeff = 14.60Å corresponding to a minimum effective area
of about σ2

eff = 213Å2 per PSS chain, which is close to the values obtained in the experiments
discussed above. Note again that this value incorporates the finite volume of counterions as
well.

In brief, the above results demonstrate that the non-linear scaling predictions can capture
the non-linear osmotic behavior observed in experiments on a semi-quantitative level.

6.2 Non-linear mean-field theory for the osmotic brush

In the preceding scaling analysis, I assumed that the polymer and counterion charges are
smeared out in the brush and thus, in particular, neglected the lateral inhomogeneities in the
distribution of charges that built up due to the interactions between charged polymers and
counterions (see, e.g., Eq. (6.5)). In order to account for these latter effects on the mean-field
level, I shall apply a cell-model approach [21, 36, 37, 38, 104] to calculate the electrostatic
contribution to the free energy of the osmotic brush. I will also consider the full stretching
free energy of the chains based on the freely-jointed-chain model rather than using only the
limiting strong-stretching expression, Eq. (6.2).

6.2.1 The cell model

To calculate electrostatic contributions, I will model a polyelectrolyte chain in the brush
as a cylindrical rod with a uniform linear charge density, −τe. For a chain consisting of
Nm spherical monomers with equal diameter b0, one has τL = qmfNm, where f is the
charge fraction of the chain, −qm is the valency of charged monomers, and L is the chain
length (end-point height from the anchoring surface), which is equal to the rod height. Each
polyelectrolyte rod is symmetrically enclosed in a cylindrical unit cell with radius D, which
is determined by the grafting density ρa. The chain length, L, is assumed to be much larger
than the cell radius, L≫ D. As discussed before, I will assume that the total volume of the
rod is constant, i.e., R2L = R2

0L0, where L0 = Nmb0 and R0 stand for the length and radius
associated with its fully stretched conformation. Note that R0 can generally be different from
the radius of the monomers as there are different possibilities to choose a cylindrical rod
model for a polyelectrolyte chain (see Section 6.2.5) [103]. In the following sections, I shall
focus on a model with R0 = b0/2 (Figure 6.4a).

Electroneutrality condition is satisfied in each unit cell due to the presence of a fixed
number of counterions, N , with charge valency +q and radius rc, i.e. τL = qmfNm = qN
(here qm, q and τ are defined to be positive).
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Figure 6.4: The model used for the polyelectrolyte chain (a) and the cylindrical unit cell (b) as

discussed in the text. The unit cell boundary in the simulations is shown by a square.

Note that in the simulation model discussed in Section 6.1.1, grafting points form a square
lattice with the lattice spacing of 2Dsim and thus, a grafting density of ρa = 1/(4D2

sim). Since
the analytical solution for the counterion distribution is only available for a cylindrical unit
cell, one has to map the square simulation box to a cylindrical box. (In experiments, the
grafting-point distribution is highly irregular and thus different from both simulation and
analytical models.) There are different ways to adopt a cylindrical unit cell for such a planar
brush (Section 6.2.5) [103]. In the following analysis, I will choose a cylindrical cell with the
diameter, 2D, equal to the lattice spacing of the square lattice, i.e. D = Dsim, as shown in
Figure 6.4b. The grafting density for this model reads ρa = 1/(4D2).

6.2.2 The electrostatic free energy

In the mean-field or Poisson-Boltzmann (PB) approximation, the electrostatic correlations
between neighboring cells, and also between counterions in a cell, are entirely neglected and
the study of the system is thus reduced to a single-cell study (note that the electric field at the
boundary of the cell vanishes by virtue of the electroneutrality condition). This approximation
is valid for weakly coupled systems, i.e. at moderate or small Bjerrum lengths and for low-
valency counterions (see Chapter 2) [43].

The canonical PB free energy of the counterion-cylinder system may be obtained system-
atically from a saddle-point approximation [50] and reads (see Appendix A)

FPB

kBT
= − 1

4πℓBq2

∫

dx

[

1

2
(∇ψ)2 +

2ξ

R
δ(r −R)ψ(x)

]

−N ln

[
∫

R≤r≤D
dx e−ψ(x)

]

, (6.11)

where ξ = qℓBτ is the Manning parameter, and the global electroneutrality condition implies

ξL = Nq2ℓB. (6.12)

The rescaled electric potential ψ (in units of kBT/qe) fulfills the PB equation as

∇2ψ = −κ2e−ψ(x) (6.13)
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in the cylindrical region R ≤ r ≤ D, where κ2 = 4πℓBq
2N/

∫

R≤r≤D dx exp(−ψ) is an un-
specified factor the value of which will be fixed once the reference point of the potential is
specified.1 This equation may be solved for ψ using the boundary conditions [37, 38]

(

r
dψ

dr

)

r=R
= 2ξ and

(

r
dψ

dr

)

r=D
= 0 (6.14)

as discussed in Chapter 3. The solution for ψ(r) and thus the PB free energy takes different
functional forms depending on whether ξ lies below or above the Alfrey-Fuoss threshold ΛAF.
For a polyelectrolyte rod with fixed radius, R, one has [37, 38]

ΛAF =
ln(D/R)

1 + ln(D/R)
, (6.15)

while in the present model with the constant volume constraint, ΛAF has to be determined
from a transcendental equation (see below).

For ξ ≤ ΛAF, the electrostatic free energy per number of monomers reads

FPB

NmkBT
=
qmf

q

{

− 1

ξ

[

(1+β2) ln
D

R
+ln

(

(ξ − 1)2 − β2

1 − β2

)

+ξ

]

+ln[(ξ−1)2−β2]+c(R)

}

(6.16)

(up to an irrelevant additive constant), while for ξ ≥ ΛAF, one has

FPB

NmkBT
=
qmf

q

{

−1

ξ

[

(1−β2) ln
D

R
+ln

(

(ξ − 1)2 + β2

1 + β2

)

+ξ

]

+ln[(ξ−1)2+β2]+c(R)

}

, (6.17)

where c(R) = − ln(2πℓBfqqmNmR
2) and β is an integration constant, which is determined

from the transcendental equation

ξ =



















1−β2

1−β coth(−β ln D
R

)
ξ ≤ ΛAF,

1+β2

1−β cot(−β ln D
R

)
ξ ≥ ΛAF.

(6.18)

Note also that R represents the actual radius of the polyelectrolyte rod and thus in the present
model is related to the Manning parameter, ξ, through

R(ξ) = R0

√

ξ/ξ0. (6.19)

This dependence is induced by the volume constraint R2L = R2
0L0, and the fact that the

total charge of the rod is conserved, i.e.

ξL = ξ0L0, (6.20)

where ξ0 = qqmfℓB/b0 is the Manning parameter associated with the fully stretched con-
formation of the rod. In the above formulation, counterions have been taken as point-like

1The electroneutrality condition entails that the canonical free energy, Eq. (6.11), be invariant under the
gauge transformation ψ → ψ+ψ0. As a consequence, the PB free energy, Eqs. (6.16) and (6.17), is independent
of κ2.
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particles. To account for finite counterion radius, rc, one may define the hard-core rod radius
as

Rhc(ξ) = rc +R0

√

ξ/ξ0 (6.21)

to be used instead of R in the preceding equations. For ξ = ξ0, one has Rhc(ξ) = rc + R0,
which compares with the effective polymer diameter σeff in Section 6.1.

Note that ξ is limited from above and below due to the geometrical constraints Rhc ≤ D
and L ≤ L0 respectively. As a result, one observes that

ξ0 ≤ ξ ≤ ξu, (6.22)

where
ξu = ξ0(D − rc)

2/R2
0. (6.23)

Finally, note that the threshold Manning parameter, ΛAF, at which the functional form
of the solution to the PB equation is changed, is determined from

ΛAF =
lnD/Rhc(ΛAF)

1 + lnD/Rhc(ΛAF)
, (6.24)

in which Rhc(ΛAF) is given by Eq. (6.21).2

6.2.3 The elastic free energy

I will adopt a freely-jointed-chain (FJC) model to calculate the elastic contribution to the
total free energy of the osmotic brush. The exact free energy of such a chain model has a
purely entropic origin and is obtained as (see Appendix F.1)

FFJC

NmkBT
= − ln

sinh y

y
+ y coth y − 1, (6.25)

where Nm is the number of monomers and y is found from

L

L0
= coth y − 1

y
, (6.26)

where the chain end-to-end distance, L, corresponds to the actual rod height within the cell
model. The FJC model generates the linear weak-stretching result (L≪ Nmb0) as

FFJC

NmkBT
≃ 3L2

2(Nmb0)2
(6.27)

corresponding to a Gaussian-chain elasticity. On the other hand, it accounts for the finite
extensibility of the chain yielding the strong-stretching (L ≃ Nmb0) non-linear elasticity as
(see Appendix F.1)

FFJC

NmkBT
≃ − ln(1 − L

Nmb0
) + const. (6.28)

2 It is easy to check that the Alfrey-Fuoss threshold, ΛAF, tends to the Manning critical value ξM = 1
[20, 39], when D → ∞, or R0 and rc → 0. In the present model, ΛAF may be smaller or larger than ξ0, but
it never exceeds ξu, i.e. ΛAF < ξu. Also it never becomes larger than one as seen from Eq. (6.24). Therefore,
in a system with ξ0 > 1, one will always have the above-threshold condition ξ ≥ ξ0 > ΛAF implied by Eq.
(6.22). Similar situation occurs when D → R0 + rc, since in this case one has ξu → ξ0, and hence, again ΛAF

lies below ξ0.
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Figure 6.5: a) Typical free energy of the mean-field cell model, Eq. (6.29), plotted as a function

of the Manning parameter, ξ, for f = 1, ℓB = 0.1b0, q = qm = 1, rc = b0/2, and D = 1.5b0. In this

case, the lower and upper bounds for ξ are ξ0 = 0.1 and ξu = 0.4, respectively. The arrow shows the

location of the optimal Manning parameter ξ∗ ≃ 0.16. b) Log-log plot of the rescaled optimal height

of the brush as a function of the grafting density for ℓB = 0.1b0, q = qm = 1, point-like counterions

and various charge fractions as indicated on the graph (solid curves). Dashed lines are the asymptotic

behavior obeying Eq. (6.32) for large grafting densities.

6.2.4 Optimal brush height and its limiting behavior

The total free energy of the brush per unit cell is the sum of the electrostatic and elastic free
energies obtained in Eqs. (6.16) or (6.17) and (6.25), i.e.

F tot = FPB + FFJC. (6.29)

This compares with the scaling free energy (6.1), where the interaction and counterionic
contributions (per unit area), i.e. Fci + Fint, are now incorporated in the cell-model PB free
energy, FPB.

The total free energy can be viewed as a function of the effective Manning parameter of
the system, ξ, which varies according to the brush height L (see Eq. (6.20)). The typical
form of F tot is shown in Figure 6.5a as a function of ξ, where other parameters are fixed as
f = 1, ℓB = 0.1b0, q = qm = 1, rc = b0/2, and D = 1.5b0. Recall that the effective Manning
parameter, ξ, is bounded from below by ξ0, and from above by ξu, which are here ξ0 = 0.1
and ξu = 0.4. The total free energy increases for small and large ξ and has a minimum
at an intermediate Manning parameter, ξ∗, which corresponds to an optimal brush height
L∗ = ξ0L0/ξ∗.

The reason for this behavior is that by decreasing ξ down to ξ0, the chain becomes highly
stretched and its elastic free energy diverges due to its finite extensibility (see Eq. (6.28)).
For large ξ → ξu, on the other hand, the available space for counterions decreases (since
Rhc → D), and the translational entropy due counterion confinement diverges.

In this section, I will focus on the generic predictions of the present mean-field cell model
for the brush height, L∗, as a function of grafting density, ρa. To this end, I will take
counterions as point-like particles (rc = 0) with charge valencies q = qm = 1. More general
results will be given in the following section.
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Figure 6.5b shows the optimal brush height plotted as a function of ρa for the Bjerrum
length ℓB = 0.1b0, and for three different values of the charge fraction f = 1, 1/2 and 1/3
(solid curves). As seen, both at large and small grafting densities, the brush height increases
and eventually tends to its maximum value L0 = Nmb0. Also a lower bound is predicted for
the equilibrium height of the brush depending on the charge fraction and the Bjerrum length.
For f > 1/2 and ℓB/b0 ∼ 0.1, this lower bound is about 50% of the contour length indicating
that the chains remain increasingly stretched over a wide range of grafting densities. The
limiting behavior of the brush height with grafting density can be understood both by the
asymptotic expansion of the free energy (Appendix F.2) and by simple physical arguments
as I will present now.

In the limit of large grafting densities ρa → ρmax
a (with ρmax

a = 1/b20 being the maximum
grafting density here), one deals with small cell radius, i.e. D/R0 → 1, whereR0 = b0/2 (recall
from Section 6.2.1 that in the present model ρab

2
0 = R2

0/D
2). In this limit, the dominant

contribution to the PB free energy comes from the confinement entropy of counterions inside
the cell, which may be approximated by that of an ideal gas of particles (see Appendix F.2),
i.e.

Sci

NmkB
≃ f ln[π(D2 −R2)L], (6.30)

where R is defined in Eq. (6.19). Therefore, osmotic pressure of counterions becomes the
major repulsive pressure swelling the rod against stretching pressure of the elasticity. In this
limit, the chain has a large extension and its elastic free energy per number of monomers is
given by Eq. (6.28), i.e.

Felas

NmkBT
≃ − ln(1 − L/L0). (6.31)

Balancing the longitudinal pressures due to these two opposing contributions using ∂/∂L(Felas−
TSci) = 0 at fixed cell radius D, I obtain

L∗(ρa)

L0
≃ f + ρab

2
0

1 + f
, (6.32)

which is equivalent to Eq. (6.8) obtained within the non-linear scaling theory in Section 6.1.

The expression given by Eq. (6.32) is plotted in Figure 6.5b for the charge fractions f = 1,
1/2, 1/3 (dashed curves) together with the results obtained from minimization of the full free
energy in Eq. (6.29) (solid curves). The coincidence is evident at large grafting densities.
The linear dependence on the grafting density in Eq. (6.32) is induced by the conserved
polymer volume constraint. The weaker dependence and deviations from Eq. (6.32) observed
at lower grafting densities (e.g., at about ρab

2
0 ∼ 0.1, which approximately corresponds to

the simulated regime) result from lateral electrostatic effects, which become significant and
generate a minimum for the brush at intermediate grafting densities.

For very small grafting densities ρab
2
0 ≪ 1 (or equivalently D/R0 ≫ 1), the present model

is applicable for very long chains, since only in this case, counterions will be confined within
the brush (see the Discussion). In this limit, the brush height shows different asymptotic
behavior depending on whether the optimal Manning parameter, ξ∗, is below or above the
Alfrey-Fuoss threshold ΛAF ≃ 1, Eq. (6.24). First I will consider the case with ξ∗ < ΛAF.
For the parameters chosen in Figure 6.5b (ℓB = 0.1b0, qm = q = 1), this condition holds
for ρab

2
0 < 0.1, as can be checked from Eq. (6.24). In this case, the counterion cloud is

highly diluted as counterions are de-condensed (Chapter 3) and there will be no electrostatic
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Figure 6.6: Log-log plot of the rescaled optimal height of the brush as a function of grafting density.

Solid curves show the results obtained from the minimization of the full free energy, Eq. (6.29), with

f = 1, q = qm = 1, and point-like counterions, for a) ℓB = 0.1b0 (ξ0 = 0.1), b) ℓB = 0.7b0 (ξ0 = 0.7)

and c) ℓB = 1.2b0 (ξ0 = 1.2). The dashed and dot-dashed curves show the asymptotic estimates at

small grafting densities for the cases a) (using Eq. (6.34)) and c) (Eq. (6.38)) respectively. The dotted

line shows the brush height in the absence of lateral effects for f = 1 (Eq. (6.39)).

screening on the bare electrostatic potential of the rod ψ(r) = 2ξ ln(r/R). This potential is
used to calculate the electrostatic energy per unit cell as

Uelec

NmkBT
≃ fξ ln

D

R
. (6.33)

The entropic contribution of counterions may still be accounted for using Eq. (6.30). Conse-
quently, the electrostatic free energy of the system, Felec ≃ Uelec − TSci, is obtained as

Felec

NmkBT
≃ f(ξ − 2) ln

D

R
(6.34)

for very large D/R0. This expression can be derived also by expanding the PB free energy
(6.16) in powers of R/D as shown in Appendix F.2.

Using Eqs. (6.34) and (6.19), the longitudinal electrostatic pressure can be calculated by
differentiating Felec with respect to L = ξ0L0/ξ. Balancing this with the elastic pressure from
Eq. (6.31), one obtains the equilibrium brush height which has to be calculated numerically
and is shown in Figure 6.6 (dashed curve) for f = 1 and ℓB = 0.1b0. In the Figure, I also
show the results from minimization of the full free energy, Eq. (6.29) (solid curve a). The
plot is made for ρa down to 10−6b−2

0 . For vanishingly small grafting densities ρab
2
0 → 0,

the entropic contribution becomes negligible compared with the bare electrostatic repulsion
between monomers, and the equilibrium brush height behaves asymptotically as

L∗(ρa)

L0
≃ f ln ρab

2
0

f ln ρab20 − 2ξ−1
0

. (6.35)

This function is not shown in Figure 6.6, because it is valid for smaller grafting densities.
In the second scenario, i.e. when the optimal Manning parameter becomes larger than

the threshold ξ∗ > ΛAF ≃ 1, bare electrostatic interactions are partially screened as a result
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of the counterion condensation process (Chapter 3). The PB electrostatic potential (up to
some logarithmic corrections) reduces to the bare electrostatic potential of a rod with critical
Manning parameter ξM = 1, i.e., ψ(r) = 2 ln(r/R), when D/R0 → ∞. The electrostatic
energy per unit cell can be estimated using this potential as

Uelec

NmkBT
≃ f

ξ
ln
D

R
. (6.36)

To estimate entropic contributions in this case, I shall adopt the counterion-condensation
picture [20, 39] that only a fraction of 1/ξ of counterions are unbound and may contribute
to the entropic pressure. Thus, the corresponding ideal-gas entropy of counterions, Sci in Eq.
(6.30), may be corrected by such a factor and used, together with Eq. (6.36), to obtain the
leading term of the electrostatic free energy per unit cell, Felec ≃ Uelec − TSci, as

Felec

NmkBT
≃ −f

ξ
ln
D

R
. (6.37)

This expression may be obtained by a limiting expansion of the PB free energy (6.17)–
see Appendix F.2. Calculating the longitudinal electrostatic pressure from Eq. (6.37) and
balancing it with the non-linear stretching pressure from Eq. (6.31), I obtain

L∗(ρa)

L0
≃ 1 +

2ξ0
f ln ρab20

. (6.38)

The asymptotic expression, Eq. (6.38), is shown in Figure 6.6 (dot-dashed curve) along with
the result from minimization of the full free energy, Eq. (6.29) (solid curve c) for a system
with f = 1 and ℓB = 1.2b0 (ξ0 = 1.2) for which the optimal Manning parameter, ξ∗, remains
always above the Alfrey-Fuoss threshold (see footnote 2). As seen, the above asymptotic
estimate, Eq. (6.38), becomes accurate for ρab

2
0 < 10−4. Similar behavior is obtained within

the present model for the whole range of Bjerrum lengths; see, e.g., the result for f = 1 and
ℓB = 0.7b0 (ξ0 = 0.7) in Figure 6.6 (solid curve b).

The preceding results on the low-grafting-density behavior of the brush thickness demon-
strate the important role of lateral electrostatic effects (especially that of lateral distribu-
tion of counterions), which are systematically included in the PB free energy and generate
re-stretching of the chains at small grafting densities. In this limit, the constant volume con-
straint becomes unimportant. Both for weakly charged (ξ0 < 1) and highly charged chains
(ξ0 > 1), lateral electrostatic contributions produce a repulsive longitudinal force acting on
the chains, which increases logarithmically by decreasing the grafting density (Eqs. (6.34) and
(6.37)). In particular, for highly charged chains, the force is independent of the brush height,
i.e. −∂Felec/∂L ∼ lnD/R (using Eqs. (6.37) and (6.20)), which is a direct consequence of
the electrostatic screening due to condensation of counterions. In any case, the increase of
the brush height, which converges to the contour length, is logarithmically weak. If lateral
effects are neglected, the brush height remains independent of the grafting density and reads

L∗

L0
=

f

1 + f
, (6.39)

which is shown by a dotted line in Figure 6.6. This result follows from Eqs. (6.30), (6.31) and
neglecting the volume constraint (compare with Eq. (6.7) in the non-linear scaling theory in
Section 6.1).



6.2 Non-linear mean-field theory for the osmotic brush 99

0.04 0.06 0.08 0.1 0.12

ρ
a
σ2

8

10

12

14

16

18

20

22
L

*
/ σ

(i)

(ii)

0.04 0.06 0.08 0.1 0.12

ρ
a
σ2

2

4

6

8

10

12

14

16

(i)

(ii)

L
*
/ σ

a) b)

Figure 6.7: Brush height as a function of the grafting density for polyelectrolyte chains of Nm = 30

monomers (contour length L0 ≃ 30σ). Circles show the simulation data and squares are the predictions

of the present mean-field cell model for a) charge fraction f = 1 and the Bjerrum length ℓB = σ, and

b) charge fraction f = 1/3 and ℓB ≃ 2σ. The dotted lines (i) and (ii) show the scaling predictions,

Eqs. (6.6) and (6.7), with Gaussian and non-linear elasticity respectively.

Finally, I emphasize that the non-monotonic behavior of the brush thickness is not influ-
enced by the elasticity model and qualitatively similar features are obtained when a Gaussian
chain elasticity is used.3

6.2.5 Comparing mean-field results with simulations

The predictions of the mean-field model presented above are compared with simulation results
[206] in Figure 6.7 (the details of the simulation model are described briefly in Section 6.1.1).
Theoretical points are obtained by minimization of the total free energy (6.29) taking into
account the polymer volume conservation and the finite size of the counterions using rc = b0/2
(here q = qm = 1 and I assume b0 = σ while comparing with the simulation data). As seen, the
theoretical predictions (squares) qualitatively capture the trend observed in the simulations
(circles). The main source of quantitative deviations between the theory and the simulations
may be associated with the estimate of the free volume accessible for counterions in the cell-
model approach, i.e. the results vary depending on the way the simulated system is mapped
to a cylindrical cell model (Section 6.2.1). This gives a measure of the systematic errors of
the present model, which as shown in Ref. [103], turns out to be of the order of the deviations
from the simulation data. To elucidate this point, I consider here a slightly different version
of the cell model, in which the polyelectrolyte rod is chosen such that it has the same volume
as the polymer chain (rather than having the same radius as chosen so far). In this case, the
radius of the fully stretched rod is slightly smaller and reads R0 =

√

2/3b0/2 as shown in
Figure 6.8a. Also I will choose the cylindrical cell such that it has the same volume as the

3For instance, by replacing the FJC elasticity with the Gaussian chain elasticity (6.27), the brush height is
found to increase logarithmically by decreasing ρab

2

0 as L∗/L0 ∼ − ln ρab
2

0 in the low-grafting-density regime
and for highly charged chains. The elasticity model affects the magnitude of the chain stretching and also
the particular dependence of the brush height on the grafting density. For chains of finite length, the correct
limiting behavior is obtained if the finite extensibility of the chain is accounted for, e.g., using the FJC model.
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Figure 6.8: A different version of the cell model adopted for the simulated brush system with a) a

polyelectrolyte rod and b) a cylindrical unit cell (solid circle) that occupy the same volumes as the

(fully stretched) polyelectrolyte chain and the square unit cell within the simulations respectively;

i.e. one has here R0 =
√

2/3b0/2 and D = 2Dsim/
√
π. This unit cell has a larger free volume for

counterions as compared with the model considered in the previous section, which adopts a larger

rod radius and a smaller outer cylinder radius (shown by a dashed circle)–compare Figure 6.4. c)

The brush height (diamonds) calculated using the cell model shown in a) and b) is compared with the

theoretical results presented in the previous section (squares) and the simulations (circles). Parameters

are the same as in Figure 6.7a. The dotted lines (i) and (ii) are the scaling predictions (6.6) and (6.7),

respectively.

simulation (square) unit cell. This implies a cell radius of D = 2Dsim/
√
π (Figure 6.8b). In

brief, the new choice of the cell model gives a larger volume for counterions, which lowers
their osmotic pressure. The results for the brush height are calculated (for f = 1, ℓB = σ,
and q = qm = 1) using the full free energy (6.29), finite counterion size (rc = b0/2) and the
volume constraint as before (diamonds in Figure 6.8c). As expected, the results appear to
be somewhat smaller than previous ones (squares in Figures 6.7 and 6.8c). Note also that
the results for the new model lie around the minimum of the brush height, which occurs
at intermediate grafting densities (see Figure 6.5b). The difference between the two models
represents the systematic error-bars of the cell model, indicating also that the simulation data
agree with the cell-model predictions within these errors-bars.

Yet some of the differences may still be associated with excluded-volume effects and lateral
wiggling of the polyelectrolyte chains in the simulations, which are accounted for here in a
simple fashion using the polymer volume conservation. They can play a role at large grafting
densities, where the validity of the cell-model approach might break down.
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6.3 Conclusion and Discussion

In this chapter, strongly charged polyelectrolyte brushes are investigated in the non-linear
osmotic regime using a non-linear scaling analysis as well as a mean-field (Poisson-Boltzmann)
cell model.

In the simulations [206] as well as in recent experiments [216, 217] on dense osmotic
brushes, it has been observed that the brush height varies weakly with the grafting density.
In this situation, polyelectrolyte chains are strongly stretched and counterions are mostly
confined within the brush layer. The observed behavior for the brush height does not agree
with the standard scaling analysis [16, 194], which yields a brush height independent of the
grafting density.

The present non-linear scaling analysis indicate that the self-volume of the polymer chains,
which is neglected in previous studies, plays an important role at large grafting densities and
generates a linear dependence on the grafting density. This volume is unaccessible for coun-
terions, and is effectively conserved. It therefore couples the osmotic pressure of counterions
in the brush to the variations of the chains extension.

Furthermore, I have considered additional corrections to the scaling results using a mean-
field analysis by incorporating i) the non-linear Poisson-Boltzmann theory, which includes
lateral electrostatic effects (including non-uniform distribution of counterions in the brush),
and ii) the non-linear elasticity of the chains (that are typically strongly stretched in the
osmotic regime) using a freely-jointed-chain model. The predictions of the present study
have been compared with both experiments and simulations and display a semi-quantitative
agreement with them. While non-linear elasticity models have been accounted for in the
past [200, 202], previous studies have commonly assumed that charges are smeared out and
uniformly distributed in the brush. The present mean-field cell-model study shows that
laterally inhomogeneous distribution of polymers (which are highly localized) and that of
counterions become increasingly important as the grafting density is lowered: They lead to a
weak dependence on the grafting density and a minimum for the brush height at intermediate
grafting densities. At small grafting densities, they result in the re-stretching of the chains.

Here I have neglected the excluded-volume repulsion between counterions and also the
non-uniform distribution of counterions in the direction normal to the anchoring plane, which
results from partial diffusion of counterions outside the brush layer. The former effect may
play a role at large grafting densities, while the latter is expected to become important at low
grafting densities and for short chains (see below). Both effects are partially present in the
simulations and experiments. In Section 6.1, I have shown that the diffusion of counterions
outside the brush layer is expected to be negligible in the regime of parameters considered
in the simulations and experiments. This is in fact verified directly in the simulations (see
Figure 6.2). In what follows, I will first show that the excluded-volume repulsion between
counterions is negligible, and then provide an estimate for the minimum chain length which
is necessary to keep counterions inside the brush.

Possible contribution from excluded-volume repulsions between counterions may be esti-
mated from the second-virial contribution to the total free energy, which may be written (per
unit cell) as

Fv2
NmkBT

=
1

2Nm
v2 ρ

2
ciVcell =

1

2
v2

Nmf
2

π(D2 −R2)L
, (6.40)

where v2 > 0 is the effective virial coefficient of counterions (for good solvent condition), and
ρci is their average density in a unit cell of volume Vcell = π(D2 − R2)L. The longitudinal
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pressure coming from the second-virial contribution, πLong
v2 , is calculated by differentiating

Eq. (6.40) with respect to L, the brush height. Comparing the result with the longitudinal
osmotic pressure πLong

os ∼ f/L (Eq. (6.30)), one finds

πLong
v2

πLong
os

∼ v2/2πb
3
0

L/Nmfb0

(

4ρab
2
0

1 − 4ρab20

)

, (6.41)

where the volume exclusion (closest approach distance) between counterions and monomers
is also accounted for. For largest grafting densities used in the simulations, e.g., ρab

2
0 ∼ 0.1,

and for fully charged chains f = 1 (where L/L0 ∼ 2/3), one has πLong
v2 /πLong

os ∼ (1/10)v2/v
hc
2 ,

where vhc
2 = πb30/6 is the hard-core second virial coefficient. If one takes v2 ∼ vhc

2 , the
excluded-volume pressure of counterions, which is neglected in the present study, is found
to be almost one order of magnitude smaller than their osmotic pressure. This ratio is
even smaller for smaller charge fractions and grafting densities, which cover the experimental
regime as well.

In general, counterions tend to leave the brush when the effective charge density of the
polyelectrolyte layer, Nmfρa, is small, i.e. at small grafting densities, small charge fractions
or for short chains. To prevent this situation, one should choose the parameters such that the
height of the counterion layer, which is roughly given by the effective Gouy-Chapman length
of the brush layer, µ = 1/(2πℓBNmfρa), is smaller than the brush height L∗ (note that here I
concentrate on monovalent particles). Comparing µ with the scaling prediction (6.6) for L∗,
one finds that the osmotic condition, L∗ > µ, is ensured if the number of monomers is larger
than the threshold

N∗
m = f−3/4(ρab

2
0)

−1/2
(

b0
ℓB

)1/2

. (6.42)

One notes that for f ∼ 1 and ℓB ∼ b0, this condition corresponds to the overlapping threshold
for neighboring chains, that is when ρaL

2
0 ∼ 1, where L0 = Nmb0 is the contour length. To

give a numerical estimate for N∗
m, I use the simulation parameters (ℓB = b0 for fully charged

chains, f = 1): at grafting densities as small as ρab
2
0 ∼ 10−6, Eq. (6.42) gives N∗

m ∼ 103,
while for ρab

2
0 ∼ 10−2 it gives N∗

m ≃ 10. Note that the latter case coincides with the minimum
grafting density used in the simulations, where polyelectrolyte chains bearNm = 30 monomers
(see Section 6.1.1).

Another mechanism which may become relevant (and invalidate the assumptions of the
present theory) at small charge fractions and small grafting densities is the formation of
mushroom conformations due to shrinkage of the chains onto the anchoring plane. To prevent
this, one has to take long chains with Nm > N∗∗

m = (ρab
2
0)

−1, which is a more stringent
condition on Nm, i.e. N∗∗

m > N∗
m. This corresponds to the Gaussian size of the polyelectrolyte

chains, N
1/2
m b0, being larger than the distance between neighboring chains in the brush, ρ

−1/2
a .

(Note that I have assumed a Gaussian polymer to obtain an upper bound estimate for N∗∗
m .)

At small grafting density of the order ρab
2
0 ∼ 10−6, one has N∗∗

m ∼ 106, a quite large value, and
for ρab

2
0 ∼ 10−2, one obtains N∗∗

m ∼ 100. In brief the low-grafting-density regime, where the
brush height has been predicted to increase with decreasing grafting density, may be observed
in experiments and simulations by choosing long enough chains.

An interesting problem is to extend the present results to include the variation of the
counterionic density profile in the direction normal to the anchoring plane and at low graft-
ing densities. A previous study [201] predicts that if this effect is accounted for using the
non-linear PB equation, the brush height monotonically decreases by lowering the grafting
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density provided that the concentration of counterions (and that of monomers) is assumed
to be smeared out laterally. The present results predict a re-increase of the brush height by
lowering the grafting density, when the counterion profile is assumed to be uniform in normal
direction, and allowed to adopt a laterally inhomogeneous form according to the non-linear
PB equation. An extended approach should, therefore, examine the interplay between these
two mechanisms.
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Chapter 7

Charged Polymers in Electric Field

Understanding the dynamic behavior of charged polymers has become a major topic in poly-
mer research mainly because in many practically relevant applications, one indeed deals with
dynamical properties of polymers in solution [19]. A most notable example is electrophoresis,
which has developed over the last several decades as a very powerful technique in separation
and characterization of biomolecules and colloids [19, 218, 219, 220, 221]. In electrophoretic
experiments, charged particles are studied subject to an external electric field and in partic-
ular, one measures the (electrophoretic) mobility of particles from their stationary-state drift
velocity in response to the electric field. For charged polymers, the electrophoretic mobil-
ity appears to be dependent in a rather complex way on a number of factors such as chain
contour length (or number of monomers) [220, 221, 222, 223, 224, 225, 226] and surrounding
conditions such as ionic strength [223]. In general, the structural properties of polymers,
such as stiffness, global chain conformation and even specific details such as charge pat-
tern along the backbone [70, 73], as well as the nature of interactions with solvent particles
and surrounding counterions all appear to have a remarkable influence on electrophoresis of
charged polymers [58, 100, 165, 219, 220, 227, 228, 229, 230, 231, 232, 233]. Indeed, the inter-
connection between these factors has made it very difficult to establish a through theoretical
understanding of polymer electrophoresis and there remains still numerous unsolved issues
[73, 220, 221, 223, 224].

Classical theories for dynamics of charged polymers are built upon simple models in which,
for instance, the polymer chain is modeled as a uniformly charged cylinder [165, 219, 228,
229, 230] or a line of discrete charges [58]. More complicated charge patterns that can capture
structural details are exceedingly more difficult to study on an analytical level. The param-
eters that enter such theories (e.g., the linear charge density of polymer and the Manning
parameter) reflect an effective or coarse-grained description of microscopic details.

Recent capillary electrophoresis experiments however reveal a markedly different behavior
for polymer mobility when charge pattern of the backbone is changed [73]. One of the pa-
rameters that can be adjusted carefully using synthetic chains is the charge spacing (distance
between two subsequent charged monomers along the backbone), which is related to the ef-
fective linear charge density or the Manning parameter. It is shown [73] that when the charge
spacing is varied while the effective Manning parameter is kept fixed (e.g., by controlling the
solvent dielectric constant), polymers exhibit different electrophoretic responses to the exter-
nal driving field. Similar trend is observed when the counterion size is changed. These effects
clearly go beyond the standard theoretical modeling of polymers and reflect the importance
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of specific features and local structural details.

In this chapter, I aim to study certain aspects of the stationary-state electrophoretic mo-
bility of charged polymers within a coarse-grained theoretical model, which can still account
for structural details of the polymer chains in a simple fashion. For this I shall use Brownian
Dynamics simulations (as well as simple analytical methods) and consider only long extended
flexible polymers with spherical monomers together with neutralizing counterions both in
the presence and absence of hydrodynamic interactions mediated by solvent medium. Short
polymer chains may undergo folding-unfolding transitions [232, 233] and display orientational
motions [234] and more complex conformational changes that go beyond the scope of the
present study (long chain length is mimicked in the simulations using periodic boundary con-
ditions along the central polymer axis). Moreover, the dynamics of counterions in the presence
of an infinite polymer chain has not yet been examined numerically, while some of the clas-
sical theoretical works are in fact developed for such a system [58, 165, 219, 228, 229, 230].
This system is particularly interesting since counterion condensation emerges strictly at long
extended charged polymers [39] (see also Chapter 3).

In this study, I shall consider several different charge patterns for the polymer chain by
varying the charge spacing and the monomer size while keeping the effective linear charge den-
sity, the Bjerrum length and thus the Manning parameter fixed by increasing the monomer
charge valency. Thereby, I demonstrate that the structural details can indeed substantially
affect the mobility of particles both in free-draining situation (i.e. without hydrodynamic
interactions) and in a hydrodynamic medium. In particular, the monomer and counterion
mobility (along the polymer central axis) both reduce upon increasing the polymer charge
spacing, which, in the free-draining situation, can be understood analytically in terms of a
simple model incorporating driven diffusion of counterions in a periodic potential generated
by the charge pattern of the polymer chain. I will also demonstrate how condensation of coun-
terions influence dynamics of monomers and counterions in both cases. (Note that unlike the
discussion in Chapter 3, where statics of counterion condensation is studied in the asymptotic
infinite-dilution limit, here only small confining volumes per polymer are considered.) An in-
teresting result is that hydrodynamic effects lead to a reduction in the population of condensed
counterions (hydrodynamic evaporation), which becomes more enhanced upon increasing the
electric field. This can be related to a large friction force on counterions in this case as com-
pared with the free-draining situation. Hydrodynamic forces generated by the polymer chain
in fact reverse the counterion mobility, i.e. counterions are dragged along with the charged
polymer. Yet in contrast to the main assumption in the standard counterion-condensation
model [58], mobility of condensed counterions turns out to be lower (in magnitude) than the
monomer mobility. In the free-draining case, by contrast, counterions always tend to move in
their proper direction in the electric field.

7.1 Model and methods

In the following dynamics simulations, I consider a single flexible charged polymer chain
consisting of Nm spherical monomers of radius rm of which a fraction f is charged with
charge valency −qm, and with a regular distribution along the backbone. I employ a cell
model in which the polymer is centered and confined with its neutralizing counterions in a
square box of lateral edge size L and height H. The box contains N counterions of radius rc
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Figure 7.1: Schematic view of a flexible polymer composed of charged and neutral spherical monomers

(in black and light gray respectively). Fluctuations (a) cause the projected polymer end-to-end dis-

tance, H , to be generally different from the contour length H0 = 2Nmrm (b). Central polymer axis is

shown by a dashed vertical line.

and charge valency +q to ensure the electroneutrality condition, i.e.

qN = fqmNm. (7.1)

(Note that qm and q are defined to be positive.) In order to mimic an infinite polymer chain,
I choose the box height H to be equal to the projected end-to-end distance of the polymer
along its central axis (z axis) and implement periodic boundary conditions by replicating
the main simulation box infinitely many times in that direction. Therefore, the box height
is instantaneously updated during the simulations according to length fluctuations of the
polymer (Figure 7.1). For the parameters chosen in this work, however, the length variation
is typically only a small percentage of the polymer contour length, H0 = 2Nmrm, and does
not lead to an appreciable effect.

7.1.1 Interactions

The following interactions are accounted for in the present model. Charged particles are
supposed to interact with the bare Coulomb interaction

UQ
kBT

= ℓB
∑

〈ij〉

qiqj
|xi − xj |

, (7.2)

where the sum runs over all particle pairs in the main simulation box and their periodic
images in z direction. Here qi and xi refer to the charge valency and the position of particle i.
Summation over periodic images in Eq. (7.2) leads to infinite summation series over Coulomb
interaction (∼ 1/|x|). In dynamics simulations, one in fact needs to calculate summation series
over inter-particle forces (∼ 1/|x|2), which are rapidly convergent and can be calculated with
high accuracy using the methods developed by Lekner [110] and Sperb [111] (see Appendix
D).
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Charged particles also experience a constant external electric field, E = E ẑ, in z direction
specified by the interaction potential

Uext

kBT
= −

∑

i

(

qie

kBT

)

Ezi. (7.3)

Monomers and counterions are modeled as soft spheres using an excluded-volume potential

ULJ =
∑

〈ij〉

U ijLJ, (7.4)

where U ijLJ is the shifted Lennard-Jones potential

U ijLJ

kBT
=



















ǫ

[(

σij

|xij |

)12

− 2

(

σij

|xij |

)6

+ 1

]

|xij | ≤ σij

0 |xij | ≥ σij,

(7.5)

between each two particles i and j of center-to-center distance |xij | = |xi − xj |. Here ǫ
determines the strength of repulsion (in units of kBT ) and σij is taken as the sum of radii,
i.e. σij = ri + rj (one has ri = rc if particle i is a counterion and ri = rm if it is a monomer).
Note that such a soft potential maintains an equilibrium separation of |xij |eq = σij for two
particles when other forces are absent.

Finally, to ensure the connectivity of the polymer chain, a Gaussian (or linear) elasticity
potential is used as

Uelas

kBT
=
K

2

∑

〈ij〉

(

|xi − xj| − 2rm

)2

, (7.6)

where the sum runs over nearest neighbors of the chain monomers only. This potential
represent a flexible chain with a bond stiffness K.

7.1.2 Rescaled parameters

In order to proceed, it is convenient to use a dimensionless representation. I conventionally
rescale the length scales with the counterion radius, e.g., as

x̃ =
x

rc
. (7.7)

In rescaled units
r̃m =

rm
rc

(7.8)

gives the size ratio between monomers and counterions and is a key parameter to demonstrate
structural details. Other relevant rescaled parameters are the charge fraction, f , and the
charge valency ratio

q̃m =
qm
q
. (7.9)

The strength of electrostatic interactions in the system is typically determined by two
independent dimensionless parameters, namely, the Manning parameter

ξ =
fqmqℓB

2rm
(7.10)
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and the counterionic Coulomb parameter

Γc =
q2ℓB
2rc

. (7.11)

This latter parameter can be expressed in terms of other dimensionless parameters as Γc =
ξr̃m/(q̃mf). Recall that the Manning parameter determines the binding state of counterions
to the polymer chain and regulates the counterion-condensation process (Chapters 2 and
3). The counterionic coupling parameter, on the other hand, gives the strength of Coulomb
repulsions between two counterions at contact and is a measure of electrostatic correlations
among counterions. Note also that Eq. (7.10) represents Manning parameter of a fully
extended chain, i.e. with all monomers being in contact and aligned in z direction (Figure
7.1b).

In rescaled representation, the external field reads

Ẽ =
qercE

kBT
, (7.12)

which is varied in the simulations over a range of Ẽ ∼ 0.1−10 in order to bring out both linear-
and non-linear-response features in the present theoretical model. For comparison, note that
Ẽ = 0.5 corresponds to an electric field of about E ∼ 106 V/m if one takes nanometer-size
particles of valency q = 3, which is close to realistic values.

Other rescaled parameters that will be fixed in the present study are the Lennard-Jones
energy parameter, ǫ, which is typically chosen as unity, and the stiffness parameter K̃ =
Kr2c/(kBT ), which is chosen as K̃ = 100 corresponding to a narrow distribution of polymer
bond lengths.

7.1.3 Langevin Brownian Dynamics

To investigate the stationary-state dynamics of the polymer-counterion system, I shall employ
the position Langevin equation both in the absence and in the presence of hydrodynamic
interactions. The former case is referred to as free-draining (or self-diffusing) dynamics and
corresponds to the situation where the velocity of a particle is determined only by the force
acting on it. In general, however, the velocity of a given particle in a fluid medium is not
simply proportional to the forces acting on that particle, but depends on the forces acting on
other particles as well. This is because the force acting on a given particle causes a long-range
flow field in solvent (which is treated here as a continuum medium) and thereby affects the
velocities of other particles [235]. This kind of interaction mediated by solvent flow is referred
to as hydrodynamic interaction and will be accounted for in the following simulations as well.
The comparison between these two cases for particle dynamics allows one to identify the role
of electro-friction and hydrodynamic effects separately.

Free-draining dynamics

The free-draining position Langevin equation yields the velocity of the i-th particle at time t
as [12, 13, 236]

ẋi = −µi0 ∇xiUtot + ζi(t), (7.13)

where
Utot = UQ + Uext + ULJ + Uelas (7.14)
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is the total interaction potential of the system (thus −∇xiUtot is nothing but the total force
acting on particle i), and ζi(t) is a time-dependent noise term, which mimics random collisions
with microscopic solvent particles. The above equation represents dissipative dynamics of the
system at sufficiently long times where inertia effects are relaxed [13, 17]. Here µi0 is the bare
particle mobility (or self-mobility) which is inversely proportional to the friction coefficient η
as

µi0 =
1

6πη ri
. (7.15)

The noise term ζi(t) is chosen as a Gaussian-distributed uncorrelated (white) noise with zero
mean value 〈ζi(t)〉 = 0, and the two-point correlation function

〈ζiν(t) ζjν′(t′)〉 = 2Di
0 δij δνν′ δ(t− t′), (7.16)

where ν and ν ′ represent different Cartesian components. To ensure an equilibrium distribu-
tion function according to the Boltzmann weight at long times (for zero external field), the
self-diffusion constant Di

0 must fulfill the Einstein’s relation [9], i.e.

Di
0 = µi0 kBT. (7.17)

In numerical simulations [237], the Langevin equation is used in a discretized form using
a finite, sufficiently small time step ∆t. Thus, for example, the equation for z component of
the position vector of the i-th particle at time t = (n+ 1)∆t reads

z̃i(n+ 1) = z̃i(n) − µ̃i0

(

∂Ũtot

∂z̃i

)

n
+
√

2µ̃i0 ζ̃iz(n) (7.18)

for the integral number n and in rescaled units (similar equations hold for x and y compo-
nents). Here I have defined Ũtot = Utot/(kBT ), and

µ̃i0 =
Di

0 ∆t

r2c
(7.19)

as the rescaled self-mobility (or dimensionless time step) of particle i. The discrete noise term

is rescaled as ζ̃iν(n) = ζiν(n)/
√

2Di
0/∆t representing thus a random Gaussian distribution

with zero mean and unit variance, i.e. 〈ζ̃iν(n)〉 = 0 and

〈ζ̃iν(n) ζ̃jν′(n
′)〉 = δij δνν′ δnn′ . (7.20)

The Langevin equation is supplemented with an initial condition for particle positions.
I choose the initial conditions such that all monomers are aligned in z direction and the
chain length equals the contour length (Figure 7.1b). But counterion locations are chosen at
random in the simulation box. The rescaled time step µ̃i0 is typically chosen as µ̃i0 = 10−3/r̃i
(with r̃i = 1 for counterions and r̃i = r̃m for monomers), which provides a good compromise
between accuracy and efficiency.

Hydrodynamic interactions

Hydrodynamic interactions between particles may be modeled in the simulations as follows.
For macromolecular systems, it is commonly assumed that the fluid motion is incompressible
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and creeping [6]. In other words, the flow field around particles can be described by the
linearized Navier-Stokes equation, known as Stokes equation, corresponding to the so-called
low-Reynolds-number regime [235]. Hence, the deterministic part of the velocity at the posi-
tion of particle i can be obtained from linear superposition of velocities generated by forces
acting on all particles as [235]

vi =
∑

j

M̂ij · Fj, (7.21)

where the sum runs over all particles, Fj is the force acting on particle j, and M̂ij is the
(hydrodynamic) mobility tensor for a pair of particles i and j, which depends on the distance
between these particles, i.e. xij = xi − xj. The Langevin equation may thus be written as
[238]

ẋi = −
∑

j

M̂ij · (∇xjUtot) +
∑

j

∇xi · D̂ij + ζi(t), (7.22)

where now the zero-mean Gaussian noise term has the following two-point correlation function

〈ζi(t) ζj(t
′)〉 = 2D̂ij δ(t− t′), (7.23)

with the diffusion tensor D̂ij being related to the mobility tensor by virtue of the fluctuation-
dissipation theorem (generalized Einstein’s relation) as

D̂ij = kBT M̂ij . (7.24)

Note that since the friction in the system leads to dissipation of energy, the mobility or
diffusion tensor is positive definite.

The case with no hydrodynamic interactions is reproduced when the off-diagonal terms
of the mobility tensor are zero and one has only the self terms, i.e. M̂ij = µi0 δij Î, where Î is
the three-dimensional unity matrix.

Numerous studies in past have considered the systematic derivation of the hydrodynamic
tensor, M̂ij, for spherical particles of finite size [239, 240]. M̂ij can in general be written as an
expansion in inverse powers of the center-to-center distance between particles, xij = xi − xj .
Assuming no-slip (stick) boundary condition on particle surfaces and on the leading order (in
inverse powers of distance 1/|xij |), the hydrodynamic tensor is given by

M̂ii = µi0 Î (7.25)

for same particle (i = j), and for different non-overlapping particles as

M̂ij =
1

8πη |xij |

[(

1 +
σ

(2)
ij

3|xij |2
)

Î +

(

1 −
σ

(2)
ij

|xij |2
)

x̂ij x̂ij

]

for |xij | > σij, (7.26)

where x̂ij = xij/|xij |, σij = ri+rj and σ
(2)
ij = r2i +r2j . When particles overlap, i.e. |xij | < σij ,

the above expression for M̂ij is no longer valid. In this case, a positive-definite expression
was obtained by Rotne and Prager [239] as

M̂ij =
1

6πη a

[(

1 − 9|xij |
32a

)

Î +

(

3|xij |
32a

)

x̂ij x̂ij

]

for |xij | < σij , (7.27)

which is valid only for equal-size particles with ri = rj = a. In the simulations with equal-size
particles, I will therefore use Eqs. (7.25)-(7.27) to incorporate hydrodynamic interactions.
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For non-equal size particles, however, I shall only employ Eq. (7.25) and the non-overlapping
expression (7.26), but make use of a larger excluded-volume repulsion strength between par-
ticles (typically with ǫ = 5), such that the particle overlapping is suppressed and the positive-
definiteness of the mobility tensor is not violated.

For the purpose of numerical simulations, equation (7.22) should be used in a discretized
form [237, 238]. But first note that the second term on the right hand side of this equation
is zero since the mobility tensor as given above is divergenceless, i.e.

∑

j

∇xi · D̂ij = 0. (7.28)

Thus using a sufficiently small time step ∆t, one obtains

xi(n+ 1) = xi(n) −
∑

j

[

M̂ij · (∇xjUtot)

]

n
∆t+ ζi(n)∆t, (7.29)

where the discretized zero-mean Gaussian random force, ζi, has the two-point correlation
function

〈ζi(n) ζj(n
′)〉 = 2 D̂ij

δnn′

∆t
. (7.30)

In rescaled units, one has

x̃i(n+ 1) = x̃i(n) −
∑

j

[

M̂′
ij · (∇x̃j Ũtot)

]

n
+

√
6 ζ̃i(n), (7.31)

where ζ̃i(n) = ζi(n)∆t/(
√

2rc), M̂′
ij = M̂ij∆t/r

2
c , and thus

〈ζ̃i(n) ζ̃j(n
′)〉 = D̂′

ij δnn′ , (7.32)

where I have defined D̂′
ij = D̂ij∆t/r

2
c . Note that a random Gaussian noise with the correlation

function (7.32) may be generated numerically from Gaussian distributed random numbers
with zero mean and unit variance using the Cholesky decomposition method as described in
detail by Ermak et al. [238].

In the simulations, I will use minimal-image scheme to determine hydrodynamic inter-
actions between particles and their periodic images, because a closed-form formula for the
computation of the square root of the hydrodynamic tensor (involved in the Cholesky de-
composition method) [241] is not available when incorporating infinite periodic images. This
approximation is expected to be valid because only systems with small lateral extensions are
considered here, where hydrodynamic interactions are expected to be screened at distances
comparable to the box height. By contrast, Coulomb interactions are evaluated using infinite
periodic images along the polymer central axis (Appendix D).

7.1.4 Models for charge pattern

In order to bring out the effects due to local structural details of polymers, I shall consider
five different models for charge pattern of a polymer chain. These are obtained by varying
the charge fraction f , the charge valency ratio, q̃m = qm/q, and the size ratio, r̃m = rm/rc,
between monomers and counterions. Note that these parameters are changed such that the
system retains the same Bjerrum length, ℓB, and the effective linear charge density for the
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polymer chain, τ = qmf/(2rm), as well as the same Manning parameter, ξ, in all differ-
ent models. I will use counterions of the same charge valency and radius in these models.
Therefore, when an effective description is considered (i.e. by mapping a polymer chain to a
uniformly charged line or cylinder of given radius), all these models appear to be equivalent;
hence, one can isolate the effects due only to the polymer charge distribution and ions sizes.

Different polymer models used in the present study are as follows (Figure 7.2):

• model A: all monomers are charged, f = 1, and have the same charge and radius as
counterions, q̃m = r̃m = 1.

• model B1: every second monomer is charged, f = 1/2, but with a valency twice that of
counterions (in magnitude), q̃m = 2. All monomers have the same radius as counterions,
r̃m = 1.

• model B2: every third monomer is charged, f = 1/3, with q̃m = 3, but again r̃m = 1.

• model C1: all monomers are charged, f = 1, but they are twice as big as counterions,
r̃m = 2, and bear a charge valency twice the counterion valency, q̃m = 2.

• model C2: all monomers are charged, f = 1, but they are three times larger than
counterions, r̃m = 3, and bear a charge valency three times as large, q̃m = 3.

7.2 Simulations results

7.2.1 Counterion distribution

Figure 7.2 shows typical snapshots from Brownian Dynamics simulations for the five different
models introduced above (recall that all these polymer models have the same effective linear
charge density). Here the Manning parameter is chosen as ξ = 4.0, the rescaled electric
field (in z direction upward) is Ẽ = 3.0, and particle dynamics is free draining. As may
be seen from the snapshots, counterions tend to accumulate more densely around polymer
models with smaller monomer size (note that some counterions always tend to diffuse to large
distances from the polymer which are not shown in the snapshots). In order to quantify the
distribution of counterions, I shall consider the radial density profile, ρ(r), of counterions
averaged in z direction and calculated directly from the simulations.

Figure 7.3a shows the rescaled density profile ρ̃(r̃) = ρ(r)r3c for different models and in
the absence (no HI) and presence (HI) of hydrodynamic interactions. Note that here r is the
radial distance from the polymer central axis (in xy plane) and rc the counterionic radius.
The Manning parameter is ξ = 4.0, the rescaled external field is Ẽ = 3.0 (as in Figure 7.2),
and the density profiles are normalized to the total number of counterions, N . In general, the
data show a peak at radial distance r̃ ≃ r̃m + 1, which corresponds to the closest approach
distance of counterions from monomers. Below this distance, counterion density reduces due
mainly to volume exclusion from monomers. But still since the chain is flexible and there
is sizable chain wiggling for small monomer size (models A, B1 and B2), counterions have
a finite chance to appear at the polymer central axis and thus their density at r̃ = 0 is
not zero. The reduction of counterion density near the polymer with increasing monomer-
counterion size ratio, r̃m, is clearly seen from the figure both with and without hydrodynamic
interactions (compare models C1 and C2 with other models). This may be understood by
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A B1 B2 C1 C2

Figure 7.2: Typical snapshots from the Brownian Dynamics simulation of a charged polymer and

counterions. Charged monomers are shown in dark gray and neutral monomers are shown in light

gray. In models A, C1 and C2 all monomers are charged but have different sizes, namely, the same

size as counterions in A and twice and three times as large in C1 and C2. In models B1 and B2,

monomers have the same size as counterions, but the charge fraction changes, i.e. every second and

every third monomer is charged in B1 and B2 respectively. Note that all models have the same effective

linear charge density and Manning parameter, which is achieved by changing the charge valency of

monomers, i.e. in model A, counterions and monomer have the same valency but monomer valency is

twice (three times) the counterion valency in models B1 and C1 (B2 and C2). Here Manning parameter

is ξ = 4.0, the electric field strength (in z direction upward) is Ẽ = 3.0, the lateral box edge size is

L̃ = 60 + 2r̃m (with r̃m = rm/rc) and hydrodynamic interactions are switched off.

noting that although polymers have the same linear charge density, their effective surface
charge density, and thereby their effective surface field which attracts counterions, reduces
sizably with increasing r̃m.

Comparing the data in Figures 7.3a indicates that hydrodynamic interactions lead to
dilution of the counterionic atmosphere in the immediate vicinity of the polymer chain, as
the density peak height in this case (HI) is systematically lower. In Figure 7.3b, I show the
radial density of counterions in the presence of hydrodynamic interactions and for increasing
electric field in model B2. As clearly seen, the counterionic density reduces further around
the polymer chain as the electric field becomes larger. Such effects are almost negligible in
the absence of hydrodynamic interactions (data not shown; see, e.g., Figure 7.4b below).

7.2.2 Hydrodynamic “evaporation”mechanism

To examine the field-driven dilution of the counterionic cloud in more detail, I consider an
integrated quantity, α, which is obtained by integrating the density profile up to a certain
distance, r̃∗, from the central polymer axis (and dividing by the total number of counterions).
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Figure 7.3: a) Radial density profile of counterions averaged in z direction and in rescaled units

ρ̃(r̃) = ρ(r)r3c as a function of rescaled radial distance from the polymer central axis, r̃, for various

models with the following parameters: ξ = 4.0, Ẽ = 3.0 (in z direction) and L̃ = 60 + 2r̃m. The graph

on the left (no HI) represents free-draining results, while the graph on the right (HI) shows the data

with hydrodynamic interactions included. b) The same as a) but in the presence of hydrodynamic

interactions and for model B2 and various rescaled electric field strength as indicated on the graph.

(These results are obtained with N = 24 counterions and Nm = 24 monomers in models A, B1 and

B2, and Nm = 12 and 8 monomers in models C1 and C2 under periodic boundary conditions in z

direction.)

Connecting this quantity with the so-called condensed fraction of counterions requires a cri-
terion for r̃∗. For this purpose, I consider the cumulative density profile n(r̃) of counterions,
which gives the number of counterions within a cylindrical shell of radius r̃. Typical examples
for n(r̃) are shown in Figure 7.4a from free-draining dynamics simulations of models C1 and
C2 (note that the radial distance 0 ≤ r̃ ≤

√
2L̃/2 in a square box of edge size L̃). The

short-distance increasing part of the profile (till it reaches a shoulder) is taken here as the
condensed layer; it typically corresponds to distances smaller than r̃∗ = 4 + r̃m, and thus
represents a cylindrical shell around the polymer axis that can accommodate two layers of
counterions. In fact since the Manning parameter is large here (ξ = 4.0), the result is not
strongly dependent on the choice of r̃∗. (Recall from equilibrium studies in Chapter 3 that in
the infinite-dilution limit, L̃→ ∞, one can provide a systematic definition for the condensed
fraction using the Poisson-Boltzmann equation.)

The results for the condensed fraction, α, are shown in Figure 7.4b with (HI) and without
(no HI) hydrodynamic interactions. As expected, for vanishing electric field, the condensed
fraction agrees with the equilibrium Manning limiting value, αM = 1 − 1/ξ for ξ > 1 (i.e.
αM = 0.75 for ξ = 4.0), which is shown by a dot-dashed line in the graph. In fact, the free-
draining and the hydrodynamic results also coincide for vanishing electric field, which reflects
the basic point that equilibrium properties of the system do not depend on hydrodynamic
interaction between particles. For models C1 and C2, which have larger monomers, α is
typically smaller due to the lower density of counterions near the surface as discussed before.
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Figure 7.4: a) Cumulative radial density of counterions, n(r̃), as a function of distance from the central

polymer axis, r̃, for models C1 (solid curve) and C2 (dashed curve) in the absence of hydrodynamic

interactions (for Ẽ = 3.0 and ξ = 4.0). Inset shows a closer view of the data for small distances. b)

Condensed fraction of counterions as defined in the text (Section 7.2.2) as a function of the electric field

with (HI) and without (no HI) hydrodynamic interactions. Symbols show different models: A (circles),

B1 (squares), B2 (diamonds), C1 (triangle-ups), C2 (triangle-downs), and dotted lines are guides to

eyes. Manning parameter is ξ = 4.0 and other parameters are as in Figure 7.3. The equilibrium

Manning limiting value is shown by a horizontal dot-dashed line. Error-bas are of the order of the

symbol size.

When particle do not interact hydrodynamically, the condensed ratio remains almost
the same at various electric fields. However, in agreement with the observation in previous
section, the condensed fraction is smaller and systematically decreases for growing external
field strength, Ẽ, when hydrodynamic interactions are taken into account. A comparison of
numerical values suggest that up to 10% of counterions are driven away or evaporate as a
result of hydrodynamic interactions. As will be discussed later, this mechanism allows the
system to reduce the friction. Note that because charged monomers drift in opposite direction
to the external field, they tend to drag condensed counterions along, that is opposite to their
proper direction, which causes a considerable friction.

7.2.3 Electrophoresis: Mobility in an external field

In this section, I shall focus on the stationary-state mobility of particles under the action of
an external field. The average mobility of a charged particle i due to an electric field in z
direction, E = E ẑ, is defined here as

µi =
〈żi(t)〉
qieE

, (7.33)

where qie is the charge and żi is the velocity of the particle in z direction. In the absence
of interactions between particles, the mobility tends to the bare mobility of the particle, i.e.
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Figure 7.5: Rescaled mobility of monomers, µ̃m, Eq. (7.35), in the absence (a) and presence (c)

of hydrodynamic interactions as a function of the rescaled external field, Ẽ. Symbols show different
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m , Eq. (7.36). Here the Manning parameter is ξ = 4.0 and other parameters are as in Figure

7.3. Dotted lines are guides to eyes. Error-bars if not shown are smaller than the symbol size.

µi → µi0 (Eq. (7.15)), as may directly be seen from the Langevin equation (7.13).

Mobility of monomers

The average mobility of monomers can be calculated in the simulations from the discrete form

µm = − 1

qmefNmE∆t

Nm
∑

i=1

[zi(n+ 1) − zi(n)], (7.34)

where the sum runs over all monomers in the simulation box and the bar sign denotes time
average in the simulations after proper relaxation time. Note that in the above expression, the
denominator equals the total external force acting on the polymer (per simulation box), that
is qmefNmE, and thus the ratio µp ≡ µm/Nm is nothing but the average polymer mobility.1

In order to proceed, I rescale the mobility with the bare value for counterions, µc0 =
1/(6πηrc), Eq. (7.15). Thus in rescaled units

µ̃m ≡ µm
µc0

= − 1

q̃m fNm Ẽ µ̃c0

Nm
∑

i=1

[z̃i(n+ 1) − z̃i(n)]. (7.35)

In Figure 7.5, the rescaled monomer mobility is plotted as a function of the rescaled
electric field for different polymer models. In the absence of hydrodynamic interactions and

1In literature, the quantity µp is referred to as the inverse electrophoretic friction coefficient [58], and the
polymer electrophoretic mobility is defined as Qpµp with Qp = qmefNm being the total polymer charge. In
the present study, the polymer charge per unit length is kept fixed, and thus I will drop the charge prefactor
and refer to definition (7.34) as the mobility.
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for increasing electric field (Figure 7.5a), the monomer mobility tends to the bare value,

µ̃m0 =
µm0
µc0

= r̃−1
m , (7.36)

which is unity for models A, B1 and B2, where monomers have the same size as counterions,
but is smaller for larger monomers (by a factor of two and three in models C1 and C2 re-
spectively). This may be seen more clearly in Figure 7.5b, where I have plotted µ̃m/µ̃

m
0 for

models A, B2, C1 and C2. The observed trend at high electric field resembles the so-called
Wien effect, which has originally been studied for simple electrolyte solutions [242].

For small and intermediate external fields (Ẽ ∼ 1), the data show larger error-bars reflect-
ing larger thermal fluctuations effects against the driving external force. In this regime, there
are remarkable deviations from the large-field value µ̃m/µ̃

m
0 ≃ 1, which are more pronounced

for model B2 with higher charge spacing along the backbone. In this case, the mobility is
reduced down to 60% of the bare value at small electric fields Ẽ ∼ 1. These free-draining
features can be understood using a simple theoretical model as will be shown in Section 7.2.5
below.

The monomer mobility changes dramatically when hydrodynamic interactions are included
(Figure 7.5c). In this case, µ̃m is substantially larger (by a factor of about two for the
parameters chosen in the figure) as compared with free-draining case shown in Figure 7.5a.
The data also indicate that the mobility in the three models with small monomer size (r̃m = 1)
does not saturate within the considered range of electric field Ẽ < 10, while the mobility of
larger monomers appears to be weakly dependent on the field strength. An enhanced mobility
for monomers in a hydrodynamic medium is indeed expected because of a phenomenon known
as hydrodynamic entraining effect: Because monomers are almost aligned and move in the
same direction, the flow field generated by each monomer enhances the mobility of the others
that follow it (corresponding to a lower effective friction experienced by those monomers).

Interestingly, enhancement of the mobility due to hydrodynamic effects is stronger for
small monomers (models A, B1 and B2) as follows from Figure 7.5d, where I have rescaled
the monomer mobility with the bare value, Eq. (7.36). Therefore, unlike the free-draining
case, the size of monomers in a hydrodynamic medium has an important influence on their
mobility, which reflects the non-linear nature of hydrodynamic interactions.
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Mobility of counterions

In the present model, counterions are positively charged and prefer to move in the same
direction as the electric field, while charged monomers drift in the opposite direction. This
generates a considerable friction between monomers and the surrounding counterion cloud,
which is the reason behind the reduction of mobilities at low electric fields. The data in
Figure 7.6 show the rescaled average mobility of counterions, µ̃c, defined as

µ̃c ≡
µc
µc0

=
1

µ̃c0NẼ

N
∑

i=1

[z̃i(n+ 1) − z̃i(n)], (7.37)

as a function of Ẽ. As expected, the mobility of free-draining counterions (Figure 7.6a)
tends to the bare value µ̃c0 = 1 for large electric fields. For free-draining counterions, the
average mobility actually almost coincides with that of monomers (when size difference is
also accounted for), i.e.

µ̃c ≃
µ̃m
µ̃m0

(7.38)

within the simulation error-bars (compare Figures 7.5a and 7.6a; see also Figure 7.10 below).
This reflects a fundamental symmetry of the present model, that is, since the total charge
of monomers equals that of counterions (due to electroneutrality in the simulation box), the
total force from the external field acting on monomers and counterions are also the same. On
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average, the internal forces in z direction also balance leading to almost equal mobilities for
counterions and monomers.

When hydrodynamic interactions are present (Figure 7.6b), this symmetry does not hold
and counterions show distinctly different (and indeed smaller) average mobility as compared
with the free-draining case, indicating stronger drag forces acting on counterions. This is
in contrast to the strong entraining effect which is obtained for monomers (compare Figure
7.5c). Note that, in particular, counterion mobility in Figure 7.6b vanishes and even becomes
negative at small to intermediate fields in models with small monomer size.

To get more insight into the dynamic behavior of counterions, mobility of condensed, µ̃cc,
and de-condensed, µ̃uc, counterions are considered separately in Figure 7.7 (the mobility is
rescaled with the bare value as in Eq. (7.37)). The discrimination between such two popu-
lation of counterions is made based on the criterion explained before, i.e. the condensation
shell is defined as a cylindrical shell around the polymer that can accommodate two layers of
counterions. For sufficiently large fields and in the free-draining case (a and b), counterions
located either close or far away from the polymer show similar mobility as the effects due to
inter-particle interactions are relatively small. For de-condensed counterions (Figure 7.7b),
the mobility remains close to the bare mobility, µ̃c0 = 1 (shown by a dot-dashed horizontal
line), almost in the whole range of the electric fields (except for quite small values where
large fluctuations appear). Condensed counterions (Figure 7.7a), show systematically smaller
values at intermediate to small fields, especially in model B2 with large charge spacing along
the polymer. Since at the chosen value of Manning parameter (ξ = 4.0), more than half of the
counterions are condensed (Figure 7.4b), the overall mobility of counterions is dominated by
condensed ones, and thus reduces the total counterion mobility at low fields as already seen
in Figure 7.6a. It is important to note that the mobility of free-draining condensed counte-
rions is positive, which means that they glide along the polymer, an effect seen in previous
simulation of short polymers as well [232, 233].

When hydrodynamic forces are in action (Figures 7.7c), condensed counterion are found
to be dragged along with the monomers as their mobility becomes negative. For the chosen
parameters in the figure, this occurs for all values of the field strength Ẽ < 10, and in
all five different models, but mobility in the presence of large monomers (models C1 and
C2) is expectedly larger. In the present case, even de-condensed counterions show a smaller
mobility (75% of the bare value) for large electric fields (Figure 7.7d), which reflects the fact
that the opposing flow field generated by the motion of monomers is long-ranged. Note that
the mobility of condensed counterions is still very different (smaller in magnitude) from that
of monomers (compare Figure 7.5c), which contrasts the assumption in previous theoretical
works that condensed counterions form a layer that moves as a single body with the polymer
chain [58]. Again the substantial reduction and sign change in the total mobility of counterions
(Figure 7.6b) is due to the fact that more than half of the counterions are condensed for the
chosen parameters as indicated from the data in Figure 7.4b. As discussed in Section 7.2.2,
counterion density near the polymer decreases when hydrodynamic interactions are included.
Given the preceding results for the mobility, this process can be understood as a mechanism
to reduce the friction between particles in the system.

7.2.4 Counterion condensation and electrophoretic mobility

The data presented in the preceding section are obtained for a typically large Manning param-
eter (i.e. ξ = 4.0), where, as shown, most of the counterions are highly bound to the charged
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polymer. By changing the Manning parameter, the degree of counterion binding varies and
one expects remarkable changes in the mobility. In Figure 7.8a, the cumulative density pro-
file of counterions is shown for various Manning parameters and at fixed external electric
field Ẽ = 3.0. For decreasing Manning parameter, the general form of the profile changes,
especially the short-distance region in which the cumulative density rapidly increases (con-
ventionally defined as the condensed layer) disappears, reflecting counterion de-condensation.
These features agree with the results in Chapter 3, where counterion-condensation process is
studied in equilibrium condition. As it was shown, the universal and critical features associ-
ated with the counterion-condensation transition (CCT), which is predicted to occur at the
critical Manning parameter ξc = 1, appear in the limit of very large confinement volumes.
Here the simulated system is considered in rather small confining box (rescaled confining box
size of L̃ = 60 + 2r̃m), and the transition to the complete de-condensation regime is expected
to be highly suppressed. This is seen from the data in Figure 7.8b, where the condensed
fraction appears to almost smoothly crossover to zero for decreasing ξ instead of vanishing
sharply at ξ = 1 (compare with Figure 3.4 in Chapter 3). In the figure, I also show the
(equilibrium) Manning limiting value, i.e. αM = 1 − 1/ξ for ξ > 1 and zero otherwise (solid
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curve). Note that the differences between this result and the data (symbols) at intermediate
ξ is mostly due to non-equilibrium dynamic effects, because, as shown before (Figure 7.4), the
counterion density deviates from its equilibrium value and gives a smaller condensed fraction
even at electric fields as small as Ẽ = 3.0 as considered here. At large ξ, finite-ion-number
effects come into play in the simulations and counterions all appear to be condensed (note
that here the number of counterions is N = 24 and thus, for instance, at ξ = 15 less than a
single counterion, i.e. N/ξ, is predicted to be de-condensed according to the Manning limiting
law).

In Figure 7.8c and d, the data obtained for average monomer mobility are shown as a
function of Manning parameter, ξ. In both free-draining (c) and hydrodynamic (d) situation,
there appears a rather smooth crossover in the data when Manning parameter increases
beyond the predicted threshold ξc = 1 [39]. In the former case, the mobility, µ̃m, remains
close to the bare value, µ̃m0 = r̃−1

m (Eq. (7.36)) in the de-condensation regime, indicating
weak counterion-monomer interactions and thus small electro-friction effects. While in the
condensation regime (ξ > 1), µ̃m decreases slowly (and almost linearly) with increasing ξ. In
the hydrodynamic case, by contrast, mobility increases for decreasing Manning parameter in
the de-condensation regime. But due to larger friction effects in this case, the decay of µ̃m
with increasing counterion condensation (increasing ξ) is found to be stronger as compared
with the free-draining case.

7.2.5 Self-diffusion at a charge array: An analytical approach

The generic behavior of mobility of counterions and monomers in the free-draining situation
can be understood using a simple analytical model as I present now.

In order to study electro-friction effects on an analytical level, I neglect the flexibility
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of the polymer chain and focus on an infinitely long, fixed and rigid array of qm-valency
charges with spacing b. I will then consider a single counterion (of charge valency q), which
diffuses in the vicinity of this charge array under the action of an external electric field in z
direction parallel to the array axis (charges are assumed to be point-like and interact only
via bare Coulomb potential). As will be demonstrated below, this simple model can provide
quantitative information about the mobility of particles at various distances from the polymer
giving further insight into the behavior observed in the simulations.

Force profile of a charge array

The z component of the Coulombic force generated by the array at a radial distance r from
its axis is given by

Fz(r, z) = −qqme
2

4πεε0

+∞
∑

m=−∞

z −mb

[r2 + (z −mb)2]3/2
, (7.39)

where (r = 0, z = mb) gives the location of charged monomers for m = −∞, . . . ,+∞ (Figure
7.9). The summation in the above equation is convergent and can be mapped to rapidly-
converging and equivalent series formulae containing special functions (Appendix D). For
instance, one obtains

Fz(r, z) = − qqme
2

4πεε0b2

[

8π
+∞
∑

m=1

mK0

(

2πm
r

b

)

sin

(

2πm
z

b

)]

, (7.40)

whereK0(x) is the modified Bessel function of the second kind, which decays exponentially for
large x (as ∼ exp(−x)/√x) but diverges logarithmically for small x. The above representation
is therefore rapidly convergent when the radial distance r from the polymer axis is sufficiently
large. The resultant force profile is periodic in z direction and the amplitude of the force
modulation decreases with increasing r (Figure 7.9).

The problem of driven diffusion of a counterion near a charged polymer is therefore reduced
to the problem of Brownian motion in a periodic potential under the action of a constant
external field. To proceed further, I truncate the series in Eq. (7.40) after the first term, and
therefore consider only a sinusoidal force profile as

Fz(r, z) ≃ −A(r) sin

(

2π
z

b

)

, (7.41)

where the amplitude A(r) = [2qqme
2/(εε0b

2)]K0(2πr/b). In fact, the above sinusoidal profile
(dot-dashed curves in Figure 7.9) closely follows the full force profile (7.40) generated by the
array (solid curves in the figure) at distances r̃ > 1, which is due to the rapidly decaying
behavior of the Bessel function. The above approximation allows for an analytical solution
for the mobility of counterions as follows.

Average counterion mobility

The Langevin equation (7.13) for a counterion drifted by an electric field E in z direction and
at a radial distance r may be written in rescaled form as

ẇ(t) = µ′0

(

F ′ −A′(r) sinw

)

+ ζ ′(t), (7.42)



124 7. Charged Polymers in Electric Field

where the variables and parameters are rescaled as follows: w(t) = 2πz(t)/b is the rescaled
position of the counterion along z axis, µ′0 = 4π2µc0/b

2 is a rescaled bare mobility and ζ ′(t) is
the rescaled zero-mean white noise with the two-point correlation function of the form

〈ζ ′(t) ζ ′(t′)〉 = 2µ′0kBT δ(t− t′). (7.43)

The force terms in Eq. (7.42) contain two rescaled coefficients, namely,

F ′ = qeEb/(2π), (7.44)

which represents the external field, and

A′(r)

kBT
= 4ξK0

(

2π
r

b

)

, (7.45)

which identifies the counterion-polymer interaction with ξ = qqmℓB/b being the Manning
parameter. The rescaled average counterion mobility as defined in Eq. (7.37) may be written
here as

µ̃c =
〈ẇ〉
µ′0F

′
= 1 − χ−1(r)〈sinw〉, (7.46)

using Eq. (7.42), where

χ(r) =
F ′

A′(r)
. (7.47)

Clearly, at very large radial separation r, the interaction coefficient A′(r) vanishes (due to
exponentially decaying Bessel function) and therefore, χ−1(r) tends to zero. Consequently,
average mobility µc, Eq. (7.46), tends to the rescaled bare value for counterion, i.e. µ̃c → 1.

In order to calculate the mobility for arbitrary Manning parameter, ξ, electric field, E,
and radial separation r, one needs to calculate 〈sinw〉 in Eq. (7.46). This problem has
in fact been solved for a similar Langevin equation (with periodic potential) in a different
context [243, 244, 245]. The solution may be written in terms of modified Bessel functions of
imaginary order as

µ̃c = 1 + χ−1(r) Im

{I1+iF ′/(2kBT )

(

A′(r)
2kBT

)

IiF ′/(2kBT )

(

A′(r)
2kBT

)

}

. (7.48)

Using this equation and Eqs. (7.44) and (7.45), one can calculate the average mobility as a
function of ξ and E.

In Figure 7.10a, I have plotted µ̃c as obtained from Eq. (7.48) for fixed Manning pa-
rameter ξ = 4.0, fixed charge spacing b/rc = 6 (corresponding to model B2) and for various
radial distance r̃ = r/rc (as indicated on the graph), as function of the rescaled electric field
Ẽ = qeErc/(kBT ). I also show simulation data (symbols) for the mobility of counterions, con-
densed counterions and monomers in model B2 and for Manning parameter ξ = 4.0. As seen,
the predicted mobility (7.48) substantially decreases at small electric fields (corresponding to
linear response regime) when r/rc is small, i.e. when counterion moves close to the polymer
axis. The reason for this behavior is that the counterion should penetrate through periodic
potential barriers generated by the array which hinder its motion (Figure 7.9). While at large
separations or at sufficiently large electric fields, the free particle mobility is reproduced as
expected. Note that the preceding theoretical model deals with diffusion of a single particle,
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Figure 7.10: a) Rescaled mobility of free-draining counterions (solid curves) calculated from the
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and ignores interactions between counterions as well as the chain fluctuations. Yet, as seen,
it nicely captures the general trend observed in the simulations on a qualitative level. In fact,
the data coincide with the theoretical curves obtained for diffusion at radial distance r̃ ≃ 2,
which in the simulations, corresponds to the location of the peak of the density profile (Figure
7.3, model B2).

In Figure 7.10b, a similar comparison is made in which the electric field is fixed (Ẽ = 3.0)
but Manning parameter is varied. Both data and theoretical curves correspond to model A
with b/rc = 2. Again the results of the above model qualitatively explain the trend observed in
the simulations, i.e. for increasing Manning parameter the mobility of particles decreases due
to stronger counterion-polymer interactions. The coincidence occurs again for a reasonable
value of radial distance (r̃ ≃ 2) chosen in the analytical solution (7.48).

7.3 Conclusion and discussion

Using Brownian Dynamics simulation techniques, I investigate the stationary-state dynam-
ics of charged polymers and counterions in an external electric field and for various charge
patterns for the polymer chain.

In order to eliminate finite-length effects and capture counterion condensation, I have
used an infinite polymer chain, which is mimicked in the simulations using periodic boundary
conditions. Both free-draining dynamics and hydrodynamic interactions between particles are
studied. In general, the polymer shows an enhanced electrophoretic mobility in the presence of
hydrodynamic interactions, which can be understood based on the hydrodynamic entraining
effect, i.e. since monomers are aligned and move in the same direction, the generated flow
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field enhances their mobility. In contrast, counterion mobility substantially decreases in the
presence of long-ranged hydrodynamic effects, because counterions motion (in the opposite
direction relative to monomers) is strongly hindered by the monomers flow field. Interestingly,
counterions close to the polymer (condensed counterions) are dragged along with the polymer
in this case. But in contrast to the assumption in the standard counterion-condensation model
[58], they have a lower absolute mobility. Another important result is that hydrodynamic
effects lead to partial evaporation of condensed counterions, and cause notable deviations
from the Manning limiting value for the condensed fraction, which is more enhanced at large
electric fields.

In the free-draining case, condensed counterions mobility, although reduces due to interac-
tion with the polymer, still remains positive. At low Manning parameters or for large external
fields, counterion mobility is close to the bare value as expected. But as the Manning parame-
ter increases beyond unity, where counterion-condensation effects start to become important,
the mobility decreases almost linearly with the Manning parameter. As shown, the general
behavior of free-draining mobility can be understood qualitatively based on a single-particle
diffusion model in the presence of a periodic potential generated by an array of charges, which
approximately represents the electrostatic potential due to the polymer.

In the simulations, I have considered five different models, in which the charge spacing and
the monomer size differ, but the effective linear charge density (and the Manning parameter)
is kept fixed. As shown, increasing the charge spacing highly suppresses the mobility of
charged particles at large Manning parameter. The reason is that the mobility (which roughly
represents inverse effective friction coefficient) is dominated by interactions between condensed
counterions and monomers, which, as shown within the charge-array model, lead to large
friction for large charge spacing. This signifies the role of local structural details as observed
also in recent electrophoretic experiments [73]. Therefore, the electrophoretic behavior of
charged polymers (at moderate to large Manning parameters) can not be described on a
quantitative level unless charge pattern is correctly incorporated.

In the present study, I have not accounted for the effects of co-ions, which are expected to
change the overall mobility of particles in the system in a remarkable fashion. In fact, co-ions
are drifted by the electric field in the opposite direction as compared with counterions, which,
in a hydrodynamic medium, leads to screening of hydrodynamic interactions over a length
scale comparable to the Debye screening length. One can also incorporate more complex
structures for the polymer chain in the simulations, e.g., using monomers of different size in
a chain or using side groups. These issues will be addressed in the future.



Appendix A

Field Theory for Macroions in an
Ionic Solution

In this appendix, I will present a field theoretical formalism for the equilibrium properties
of a classical charged system consisting of fixed macroions of charge distribution −σ(x)e
in an ionic mixture (electrolyte) of n + 1 different ionic species that are all immersed in a
continuum medium of dielectric constant ε and at temperature T . In order to reproduce
the results presented in the text for the counterion-only solutions as a special case, I shall
distinguish one of the counterionic species (of charge valency +q and total number N) from
the other n “salt”ionic species (labeled by Greek indices α = 1, . . . , n and of charge valencies
zα and total numbers Nα). The limiting theories of mean field (Poisson-Boltzmann) and
strong coupling (SC) will be derived afterwards as two complementary asymptotic cases.

The configurational Hamiltonian of the mixture reads

H
kBT

=
ℓB
2

∫

dxdx′ [qρ̂(x) + ρ̂s(x) − σ(x)] v(x − x′) [qρ̂(x′) + ρ̂s(x
′) − σ(x′)]

−ℓB
2

[q2N +
n
∑

α=1

z2
αNα] v(0), (A.1)

where ℓB = e2/(4πεε0kBT ) is the Bjerrum length, v(x) = 1/|x| is the Coulomb interaction in
three dimensions, and I have defined

ρ̂s(x) =
n
∑

α=1

zαρ̂α(x), ρ̂α(x) =
Nα
∑

i=1

δ(xαi − x), ρ̂(x) =
N
∑

i=1

δ(xi − x), (A.2)

in which ρ̂α and ρ̂ are the number density operators associated with the salt ionic species
(located at positions {xαi }) and q-counterions (located at {xi}), respectively. The canonical
partition function of the system is written as

ZN,Nα =

[

1

N !

N
∏

i=1

∫

dxi
(λt)3

Ω(xi)

][ n
∏

α=1

1

Nα!

Nα
∏

i=1

∫

dxαi
(λαt )

3
Ωα(x

α
i )

]

exp

{

− H
kBT

}

, (A.3)

where the integrals are taken over positions of mobile particles and the geometry functions
Ω(x) and Ωα(x) specify the available space for these particles (with λαt = h/

√
2πmαkBT and

λt = h/
√

2πmkBT being the corresponding thermal wave-lengths).
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The partition function (A.3) can be mapped to a field theory by means of a Hubbard-
Stratonovich transformation, which may be done by inserting the identities

∫

Dρs δ(ρs − ρ̂s) =

∫

DρsDϕs ei
∫

x

ϕs(ρs−ρ̂s) = 1, (A.4)
∫

Dρ δ(ρ− ρ̂) =

∫

DρDϕei
∫

x

ϕ(ρ−ρ̂) = 1, (A.5)

where {ρs(x), ϕs(x)} and {ρ(x), ϕ(x)} are some conjugate fluctuating fields. One thus finds

ZN,Nα =

∫
[

DρDϕDρsDϕs
]

e−V [ρ,ϕ,ρs,ϕs] × 1

N !

[
∫

dx

a3
Ω(x) e−iϕ

]N

×
n
∏

α=1

1

Nα!

[
∫

dx

a3
α

Ωα(x) e−izαϕs

]Nα

, (A.6)

where I have defined a3 = λ3
t exp[−q2ℓBv(0)/2], a3

α = (λαt )3 exp[−z2
αℓBv(0)/2], and

V [ρ, ϕ, ρs, ϕs] =
ℓB
2

∫

x,x′

[qρ(x)+ρs(x)−σ(x)] v(x−x′) [qρ(x′)+ρs(x
′)−σ(x′)]−i

∫

x

(ρϕ+ρsϕs).

(A.7)
In order to proceed, it is convenient to consider the grand-canonical partition function

Zg(λ, {λα}) =
∞
∑

N=0

λN
( n
∏

α=1

∞
∑

Nα=0

λNα
α

)

ZN,Nα , (A.8)

where {λα} and λ are fugacities associated with salt ionic species and q-counterions, respec-
tively. The Gaussian integrals over ρ and ρs fields can easily be evaluated and one arrives at
a single-field representation, that is

Zg(λ̂, {̂λα}) =

∫ Dϕ
Zv

exp { − S[ϕ]}, (A.9)

where Zv ∼ (Det v)1/2 involves vacuum-fluctuations contribution, and

S[ϕ] =
1

2q2ℓB

∫

x,x′

ϕ(x)v−1(x − x′)ϕ(x′) −
∫

x

[

i

q
σ(x)ϕ(x) + λ̂Ω(x) e−iϕ +

∑

α

λ̂αΩα(x) e−izαϕ/q
]

=

∫

x

[

1

8πq2ℓB

(

∇ϕ(x)

)2

− i

q
σ(x)ϕ(x) − λ̂Ω(x) e−iϕ −

∑

α

λ̂αΩα(x) e−izαϕ/q
]

, (A.10)

is the effective Hamiltonian, in which I have used the inverse Coulomb operator v−1(x) =
−∇2δ(x)/4π in three dimensions, and rescaled the fugacities as λ̂ ≡ λa−3 and λ̂α ≡ λαa

−3
α .

In general, density profile of particles at macroions and the effective interaction between
macroions in the ionic mixture can be derived from Eq. (A.9). For instance, the average
number of particles is given by

〈N〉 = λ̂
∂ lnZg(λ̂, {λ̂α})

∂λ̂
=

∫

dx ρ̄(x), (A.11)

〈Nα〉 = λ̂α
∂ lnZg(λ̂, {λ̂α})

∂λ̂α
=

∫

dx ρ̄α(x), (A.12)

where the number density profile of q-counterions and that of salt species α is

ρ̄(x) = λ̂Ω(x)

〈

e−iϕ
〉

, ρ̄α(x) = λ̂αΩα(x)

〈

e−izαϕ/q
〉

. (A.13)
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Dimensionless representation

I shall proceed using a dimensionless representation by rescaling the spatial coordinates as x̃ =
x/µ with the Gouy-Chapman length associated with q-counterions, that is µ = 1/(2πqℓBσs),
assuming that macroions have a uniform surface charge density of σs. One thus obtains

Zg(Λ, {Λα}) =

∫ Dϕ
Zv

exp

{

− S̃[ϕ]

Ξ

}

, (A.14)

where the rescaled effective Hamiltonian reads

S̃[ϕ] =
1

2π

∫

x̃

[

1

4

(

∇x̃ϕ(x̃)

)2

− iσ̃(x̃)ϕ(x̃) − ΛΩ̃(x̃) e−iϕ −
∑

α

ΛαΩ̃α(x̃) e−iγαϕ
]

, (A.15)

in which σ̃(x̃) = µσ(x)/σs, Ω̃(x̃) = Ω(x), Ω̃α(x̃) = Ωα(x), and Λ = 2πλ̂µ3Ξ and Λα =
2πλ̂αµ

3Ξ are the rescaled fugacities. As seen, the theory involves the following dimensionless
parameters (besides possible geometrical parameters characterizing macroions shape): i) the
electrostatic coupling parameter associated with q-counterions,

Ξ = 2πq3ℓ2Bσs, (A.16)

and ii) the charge valency ratios,

γα =
zα
q
, (A.17)

with α = 1, . . . , n. The asymptotic theories of mean field and strong coupling can be obtained
by taking appropriate limits of Ξ and γα.

A.1 Weak-coupling limit: Mean-field theory

The weak-coupling limit is obtained when both Ξ and |γα| become small. This situation may
be realized experimentally using low-valency ions at weakly charged surfaces. In the limit
Ξ → 0, the integral in Eq. (A.14) is dominated by the saddle-point solution of the effective
Hamiltonian, ϕPB, which is obtained from the saddle-point equation δS̃ [ϕ]/δϕ|ϕPB

= 0. Hence,

1

2
∇2

x̃
ϕPB = −iσ̃(x̃) + iΛΩ̃(x̃) e−iϕPB + i

∑

α

ΛαγαΩ̃α(x̃) e−iγαϕPB , (A.18)

which is nothing but the well-known Poisson-Boltzmann (PB) equation for the rescaled mean-
field potential, ϕPB. The mean-field (PB) theory obtained for Ξ → 0 does not include
fluctuation and correlation effects, which become relevant at finite values of Ξ. They can be
accounted for using a loop expansion around the saddle-point solution (see, e.g., Ref. [50] and
references therein). The loop expansion however breaks down at large Ξ ≫ 1, where higher-
order corrections become large and require a different approach (see Section A.2 below).

PB theory with counterions only

When no additional salt is present, the PB equation (A.18) is reduced to

∇̃2
x̃
ψ = 2σ̃(x̃) − κ̃2 Ω̃(x̃) e−ψ(x̃), (A.19)
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where ψ = iϕPB and κ̃2 = 2Λ. In the canonical ensemble with N counterions, one has

N = Λ
∂ lnZg(Λ, 0)

∂Λ
=

1

2πΞ

∫

dx̃ ρ̃PB(x̃) (A.20)

using Eqs. (A.11), (A.14) and (A.15), where

ρ̃PB(x̃) =
κ̃2

2
Ω̃(x̃)e−ψ(x̃) (A.21)

is the rescaled PB density profile of counterions. Note that the electroneutrality condition
implies that

∫

dxσ(x) = Nq, or in rescaled units Ã ≡ ∫

dx̃ σ̃(x̃) = 2πNΞ, where, assuming
that macroion charges are distributed over their surfaces, Ã is nothing but the rescaled area
of macroions. Using this, the normalization prefactor of the density profile is obtained as

κ̃2

2
=

Ã
∫

dx̃ Ω̃(x̃) e−ψ(x̃)
. (A.22)

Note that in general the density profile in rescaled units, ρ̃(x̃), are related to the actual density
profile, ρ(x) (Eq. (A.13)), via

ρ̃(x̃) =
ρ(x)

2πℓBσ2
s

. (A.23)

Restoring the actual units in Eq. (A.19), one recovers the standard PB equation

∇2ψelec(x) =
σ(x)e

εε0
− qρPB(x)e

εε0
, (A.24)

where ψelec = kBTψ/qe is the actual mean-field electrostatic potential field, and

ρPB(x) = ρ0 e
−qeψelec/kBT (A.25)

is the actual PB density profile of counterions with ρ0 = N/
∫

dxΩ(x) exp(−qeψelec/kBT ).

PB free energy with counterions only

The canonical PB free energy, FPB
N , is obtained by inserting the PB solution, ψ = iϕPB, into

the grand-canonical partition function (A.14) and then using a Legendre transformation as

FPB
N = NkBT ln

(

Λ a3

2πµ3Ξ

)

+ QPB
g (Λ), (A.26)

where QPB
g (Λ) = −kBT lnZg(Λ, [ψ(x̃)]) is the grand-canonical free energy and Λ is calculated

from Eq. (A.20) (note that the argument of the logarithm on the right hand side in nothing
but the actual fugacity λ). It is straight-forward to show that

FPB
N

NkBT
= − 1

Ã

∫

dx̃

[

1

4
(∇x̃ψ)2 + σ̃(x̃)ψ(x̃)

]

− ln

[

1

Ã

∫

dx̃ Ω̃(x̃) e−ψ(x̃)
]

− ln

(

µ3Ã
Na3

)

− 1,

(A.27)
and in actual units

FPB
N

kBT
= −

∫

dx

[

(∇xψ)2

8πq2ℓB
+

1

q
σ(x)ψ(x)

]

−N ln

[
∫

dx

a3
Ω(x) e−ψ(x)

]

+ (N lnN −N). (A.28)
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A.2 Strong-coupling limit

It has been shown in previous works [44, 43] that in the limit Ξ → ∞, an asymptotic theory,
known as the strong-coupling (SC) theory, may be derived for counterions at charged objects,
which can account for the correlation effects at large coupling strength [35] (Chapter 5). In
what follows, I will apply the same approach to derive the SC theory for macroions in an
ionic mixture. It will be assumed that the coupling parameter associated with q-counterions
is large Ξ → ∞, but the valency ratio of bathing salt ions to q-counterions is small, |γα| < 1.
In other words, ionic species α = 1, . . . , n (additional salt) are weakly coupled to macroions,
while the q-counterions are strongly coupled to them. Moreover, the coupling between salt
co-ions and q-counterions is also assumed to be weak, which can be valid, for instance, when
the q-counterions are bulky (with small effective surface charge density) [129], although here
ions are all assumed to be point-like.

The preceding assumptions allow one to treat the contribution from additional salt within
a linearization (Debye-Hückel) approximation by expanding the last term in Eq. (A.15) up
to the second-order in γαϕ, which yields

S[ϕ] ≃ S0[ϕ] − Λ

2π

∫

x̃

Ω̃(x̃) e−iϕ, (A.29)

where the Gaussian part of the effective Hamiltonian reads

S0[ϕ] =
1

2π

∫

x̃

[

1

4
(∇x̃ϕ)2 − i

(

σ̃(x̃) −
∑

α

ΛαΩ̃α(x̃) γα

)

ϕ+
1

2

(

∑

α

ΛαΩ̃α(x̃) γ2
α

)

ϕ2
]

+ E0,

(A.30)
in which E0 = − 1

2π

∑

αΛαṼα, where Ṽα =
∫

dx̃ Ω̃α(x̃). In order to proceed with an analytic
approach, I assume that the salt ions (and not the q-counterions) are present in all space (of
total volume V ), i.e. Ω̃α(x̃) = 1 and thus Ṽα = Ṽ .

The non-linear part of the effective Hamiltonian (A.29) may be handled for large Ξ using
the standard strong-coupling approach [43], i.e. by employing a perturbative expansion in
Eq. (A.14) of the integrand in powers of Λ/Ξ, which gives

Zg =

〈

exp

[

Λ

2πΞ

∫

x̃

Ω̃(x̃) e−iϕ
]〉

0
=

∞
∑

j=0

1

j!

(

Λ

2πΞ

)j ∫ [ j
∏

k=1

dx̃kΩ̃(x̃k)

]〈

e−i
∑j

k=1
ϕ(x̃k)

〉

0
,

(A.31)
where the subindex 0 indicates averaging with respect to the Gaussian part, S0[ϕ]. The
averages in Eq. (A.31) may be calculated in a straight-forward manner as

〈

e−i
∑j

k=1
ϕ(x̃k)

〉

0
=

ZDH

Zv
exp

[

− 1

8π2Ξ

∫

x̃

χ(x̃) vDH(x̃ − x̃′)χ(x̃′) − E0

Ξ

]

, (A.32)

where χ(x̃) = σ̃(x̃) −∑

α Λαγα − 2πΞ
∑j
k=1 δ(x̃ − x̃k), and ZDH ∼ (Det vDH)1/2 with vDH

being the Debye-Hückel (screened Coulomb) interaction

vDH(x̃) = 4π

[

(−∇2 + κ̃2
s) δ(x̃)

]−1

=
e−κ̃s|x̃|

|x̃| , (A.33)

in which κ̃2
s = 2

∑

α Λαγ
2
α is the rescaled inverse Debye screening length due to the bathing

salt ions. In actual units, one has κ2
s = (κ̃s/µ)2 = 4πℓB

∑

α z
2
αλ̂α.
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Using the above results in Eq. (A.31), one obtains the following expression

Zg = A0 e
−Ũs/πΞ

[

1 +
Λ

2πΞ

∫

dx̃A1(x̃) e−ũs(x̃) + O
(

Λ

2πΞ

)2]

, (A.34)

where Ũs and ũs are screened zero-particle and one-particle interaction terms,

Ũs =
1

8π

∫

dx̃dx̃′ σ̃(x̃) vDH(x̃ − x̃′) σ̃(x̃′), (A.35)

ũs(x̃) = − 1

2π

∫

dx̃′ vDH(x̃ − x̃′)σ̃(x̃′). (A.36)

Note that Ũs represents the bare interactions between fixed macroions (i.e. when no q-
counterions are present) and ũs gives the interaction energy of a single q-counterion with
macroions. Higher-order terms include multi-particle contributions. The prefactors A0 and
A1(x̃) are given by

A0 =
ZDH

Zv
exp

{

− E0

Ξ
+

(
∑

α Λαγα)

8π2Ξ

∫

x̃,x̃′

vDH(x̃− x̃′)

(

2σ̃(x̃) −
∑

α

Λαγα

)}

(A.37)

A1(x̃) = exp

{

− (
∑

αΛαγα)

2π

∫

x̃
′

vDH(x̃− x̃′) − 1

2
Ξ vDH(0̃)

}

. (A.38)

Clearly, the preceding expansion in powers of Λ/Ξ is nothing but the virial expansion for q-
counterions at fixed charged objects in the presence of added salt. The asymptotic SC theory
is represented by the leading-order term of the expansion (A.34), which becomes formally
exact when Ξ → ∞.

The counterion-only case (no added salt) considered in Chapter 5 [43] follows directly from
Eq. (A.34) when the limit κs → 0 (or λα → 0) is taken, in which case the DH interaction,
vDH(x̃), reduces to bare Coulomb interaction v(x̃) = 1/|x̃|, and one has A0 → 1 and A1 →
exp[−Ξ v(0̃)/2]. The full form of the resultant series expansion is given in Eq. (5.3), in which
Ũ0 = limκs→0 Ũs, ũ = limκs→0 ũs and the fugacity is again rescaled as Λ → Λexp[−Ξ v(0̃)/2].
In order to obtain the canonical strong-coupling theory, one needs to evaluate the fugacity Λ
from N = Λ ∂ lnZg(Λ, 0)/∂Λ. In general, Λ adopts a large-coupling series expansion as

Λ = Λ0 +
Λ1

Ξ
+

Λ2

Ξ2
+ . . . , (A.39)

where Λ0,Λ1, . . . are calculated in text (see the notes in Section 5.1.1). In particular, one has

Λ0 =
Ã

∫

dx̃ Ω̃(x̃) e−ũ(x̃)
, (A.40)

where ũ is defined in Eq. (5.6). Using the preceding results in Eq. (A.13), one obtains the
asymptotic SC density profile of counterions in rescaled units as

ρ̃SC(x̃) = Λ0 Ω̃(x̃) e−ũ(x̃). (A.41)



Appendix B

Notes on the Onsager instability

Here I briefly discuss the singularities associated with the Onsager instability, which, as
demonstrated in Section 3.2.1, represents the binding-unbinding transition of a single counte-
rion in the presence of a charged cylindrical boundary. The rescaled energy, Ẽ = EN/(NkBT ),
and excess heat capacity, C̃ = CN/(NkB), of this system can be calculated from the single-
particle partition function, Eq. (3.17). The results in fact coincide with those obtained in
Chapter 4 by choosing N = 1 (see also Figures 4.3 and 4.2). The energy and the excess heat
capacity are thus obtained as

Ẽ ≃ 2ξ∆ exp[2(1 − ξ)∆]

exp[2(1 − ξ)∆] − 1
− ξ

1 − ξ
, (B.1)

C̃ ≃ ξ2

(1 − ξ)2
− ∆2ξ2

sinh2[2(1 − ξ)∆]
, (B.2)

for large ∆ ≫ 1. Both Ẽ and C̃ become singular at the critical Manning parameter ξc = 1
when ∆ → ∞. For finite large ∆, this singular point appears in the form of a pronounced
peak near the critical point. The approximate location of the energy peak ξE∗ is obtained as
(see Chapter 4)

ξE∗ ≃ 1 − 1√
2∆

, (B.3)

for ∆ ≫ 1, which shows a different asymptotic convergency (from below) to the critical value
ξc = 1 as compared with the mean-field result, Eq. (3.82). The heat capacity peak is located
above the critical Manning parameter and is given by

ξC∗ ≃ 1 +
5

∆2
. (B.4)

In the limit ∆ → ∞, the heat capacity diverges at the critical point from above and below
displaying the algebraic divergency

C̃ ∼ ζ−2 (B.5)

where ζ = 1 − 1/ξ. The left tail of energy (for ξ < ξE∗ ) goes to infinity linearly with ∆ as
Ẽ ≃ 2ξ∆ + ξ/(ξ − 1), but its right tail shows a power-law divergency as

Ẽ ∼ ζ−1. (B.6)

Note that these behavior are distinctly different from those obtained in the simulations with
many particles (Section 3.6.2) and within the mean-field theory (Section 3.3).
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Appendix C

Mean-Field Theory for Charged
Cylinders: Asymptotic results

This Appendix is devoted to asymptotic analysis of the mean-field Poisson-Boltzmann (PB)
results for counterions at a charged cylinder. In particular, I will derive the asymptotic form
of the scaling functions and order parameters associated with the counterion-condensation
transition as used in Chapters 3.

As discussed in Chapter 3, the PB solution for counterions at a single charged cylinder
involves an integration constant β, which is determined from the transcendental equation
(3.26), depending on whether the Manning parameter ξ is larger or smaller than the Alfrey-
Fuoss threshold ΛAF, Eq. (3.24). It depends on ξ and the lateral extension factor ∆ =
ln(D/R) and tends to one from below for increasing ∆ to infinity. All other quantities within
the PB theory may be expressed in terms of β. A general discussion has been given by Fuoss
et al. [38] for the overall behavior of β. Here, I first review some of the previous results and
then obtain the finite-size-scaling relations for β near the PB critical Manning parameter,
ξPB
c = 1, and for large ∆ ≫ 1. The asymptotic behavior of the PB order parameters and the

PB potential and density profile for counterions will also be discussed.

C.1 Limiting behavior of β for large ∆

Small Manning parameter ξ < ΛAF:

The integration constant β vanishes at ξ = ΛAF and tends to unity, β → 1−, for small
ξ → 0+, as it can be checked easily from Eq. (3.26) (I arbitrarily choose β ≥ 0) [38]. Further
inspection shows that in this regime, β → (ξ − 1)− when ∆ → ∞ [38]. Hence for ∆ ≫ 1, one
can propose the following form

β2 ≃ (ξ − 1)2(1 − x), (C.1)

where x is a small function of ξ and ∆. To determine x, one may rearrange the first equation
in (3.26) as

β∆ =
1

2
ln

1 − β

1 + β
− 1

2
ln

(ξ − 1) + β

(ξ − 1) − β
. (C.2)

and use this together with Eq. (C.1) to obtain

x ≃ 4ξ

2 − ξ
e2(ξ−1)∆, (C.3)
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which reproduces Eq. (3.31) in the text.

Large Manning parameter ξ > ΛAF:

For large Manning parameter ξ > ΛAF, β, Eq. (3.26), tends to a finite upper bound β∞ =
π/∆, when ξ → ∞ [38]. Thus for ∆ → ∞, β vanishes for the whole range of Manning
parameters ξ > ΛAF ≃ 1 as used frequently in the text (see, e.g., Eq. (3.42)).

C.2 Finite-size scaling for β close to ξPB
c :

Of particular importance is the behavior of β close to ξPB
c = 1. (Since always ΛAF ≤ 1,

I restrict the discussion only to the regime ξ > ΛAF). Analysis of Eq. (3.26) shows that
for sufficiently large ∆, one has β ≃ π/(2∆) right at the critical point ξPB

c = 1. One may
then perform a Taylor expansion around ξPB

c to obtain the approximate form of β for small
ζ = 1 − ξPB

c /ξ as

β(ζ,∆) =
π

2∆
+

2

π
ζ − 8∆

π3
ζ2 + O(ζ3), (C.4)

which remains valid for ζ∆ < π2/4. This relation clearly indicates a scale-invariant form for
β when ∆ ≫ 1. Comparing this with Eq. (3.50), I find the approximate form of the scaling
function B(u) as

B(u) ≃ π

2
+

2

π
u− 8

π3
u2, (C.5)

where u = ζ∆ < π2/4. In particular, one has B(u) → π/2 as u→ 0.

The asymptotic behavior of B(u) for u→ ∞ (or equivalently ∆ → ∞ for finite ζ) can be
obtained using a different series expansion, since in this limit β becomes singular at ξPB

c = 1
and the above expansion breaks down. This is because β is always singular (with an infinite
first derivative) at ΛAF which tends to the critical Manning parameter [38]. I thus perform
an expansion around ξ = ΛAF, which yields β ≃

√

3ζ/∆. This gives the asymptotic form of
the scaling function as

B(u) ≃
√

3u u→ ∞. (C.6)

C.3 The PB cumulative density profile

The PB cumulative density of counterions, nPB(y), is defined through Eq. (3.72). It can
be easily shown that nPB(y) is a monotonically increasing function of y = ln(r/R), i.e.
dnPB/dy ≥ 0 [75]. It is therefore bounded by its boundary values nPB(0) = 0 and nPB(∆) = N
(see Figure 3.3).

For ξ > ΛAF, nPB(y) has an inflection point the location of which, y∗ = ln(r∗/R), follows
from equation d2nPB/dy

2 = 0 as y∗ = tan−1[(ξ − 1)/β]/β. It is easy to check (using the
results in Appendix C.1) that y∗ ≃ ∆/2 for large ξ and that y∗ → 0 for ξ → 1 (y∗ becomes
negative for smaller values). For ξ < ΛAF, on the other hand, the cumulative density, nPB(y),
vanishes for y < ∆ as ∆ → ∞, as can be checked by inserting the approximate expression
(C.1) for β into Eq. (3.72).

Note that the main quantities of interest within the PB theory can be expressed solely
in terms of the cumulative density profile. This includes the PB potential field ψPB and the
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order parameters SPB
n . Using the definitions of these quantities (Section 3.3), I obtain the

following relations (which are valid for all ξ)

ψPB(y) = 2ξ

(

y − 1

N

∫ y

0
nPB(y′) dy′

)

(C.7)

SPB
n =

1

ξn

∫ ∆

0
dy e−ny

(

1

N

dnPB

dy

)

. (C.8)

C.4 Asymptotic behavior of Sn within PB theory

Small Manning parameter ξ < ΛAF:

For ξ < ΛAF ≃ 1, the order parameters, Sn, vanish as ∆ → ∞ indicating complete de-
condensation of counterions. To demonstrate this, I use Eq. (C.8), which, for ∆ ≫ 1, can be
written as

ξnSPB
n =

n

N

∫ ∆

0
dy e−nynPB(y) + O(e−n∆). (C.9)

Since the cumulative density is bounded by the number of counterions, N , and tends to zero
at any finite y for ξ < ΛAF ≃ 1 (Appendix C.3), one obtains SPB

n → 0 in this regime as
∆ → ∞.

Large Manning parameter ξ > ΛAF:

Consider the exact mean-field expression for SPB
n , Eq. (3.40). The integrand in Eq. (3.40) is

the product of an exponentially decaying factor with an inverse-squared sine-function, which
has a series of divergencies at ym = (mπ − ǫ)/β for integer m and ǫ ≡ cot−1[(ξ − 1)/β]. For
∆ → ∞, it follows from Appendix C.1 that β → 0 when ξ > ΛAF ≃ 1 implying ǫ→ 0. In this
limit, ǫ may be expanded as

ǫ ≃ β

ξ − 1
− β3

3(ξ − 1)3
+ O(β5). (C.10)

The location of singularities, ym, tend to infinity with increasing ∆ except for m = 0 for which
one has y0 = −ǫ/β → −1/(ξ−1) using Eq. (C.10). The quantity SPB

n in Eq. (3.40) is therefore
dominated by the lower bound of the integral (around y = 0) due to the exponentially-
decaying integrand. To derive the asymptotic form of SPB

n for large ∆, one can expand the
integrand either around the lower limit of the integral y = 0 or around the singular point y0.
Both procedures lead to the same scaling relation (3.42) for Sn in the strict limit of ∆ → ∞
when ξ is close to the critical value ξPB

c = 1. But only the second procedure leads to a correct
result when ξ increases beyond the critical value. This is because for large ξ, the singularity at
y0 ∼ −1/(ξ−1) approaches zero rendering the expansion around y = 0 a poor approximation.

By expanding the integrand around y = 0 (up to the first order in y), I obtain from Eq.
(3.40) that

SPB
n ≃ β2

ξn+1 sin2 ǫ

∫ ∆

0
dy e−(n+2ξ−2)y ≃ β2 + (ξ − 1)2

ξn+1(n+ 2ξ − 2)
. (C.11)

This relation reproduces Eq. (3.41) in the text, which, as explained above, is valid for ξ close
to ξPB

c = 1.
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For larger values of ξ, I expand the integrand in (3.40) around y0 = −ǫ/β, which yields

SPB
n ≃ β/ǫ

ξn+1

[

1 − nǫ

β
enǫ/βΓ(0,

nǫ

β
)

]

, (C.12)

where Γ(a, b) is the incomplete Gamma function. This relation provides a quite good approx-
imation for Sn for large ∆ and in the whole range of ξ > ξPB

c = 1. In particular, when the
limit ∆ → ∞ is taken, it yields the correct result for Sn(ξ,∆ → ∞) (see Eq. (C.22) below).

C.5 PB potential, counterion density and free energy

The preceding results for β may be used to obtain the asymptotic form of the rescaled PB
potential field, ψ = ψPB(r̃), Eq. (3.25), the counterionic density profile, ρ̃PB(r̃), Eq. (3.27),
and that of the PB free energy, FPB

N , Eqs. (3.54) and (3.54), when ∆ tends to infinity.

Small Manning parameter ξ < ΛAF:

For ξ < ΛAF ≃ 1, I use the large-∆ expansion for β given by Eqs. (C.1) and (C.3), where x
is a small parameter. Up to the leading order, the PB potential ψPB(r̃) (first relation in Eq.
(3.25)) is obtained from a series expansion as

ψPB(r̃) = 2ξ ln
r̃

R̃
+ O

(

e2(ξ−1)∆
)

. (C.13)

Similar expansion may be performed for the density profile (first relation in Eq. (3.27)), which
shows that the density profile asymptotically tends to zero as

ρ̃PB(r̃) =

(

r̃

R̃

)−2ξ

×O
(

e2(ξ−1)∆
)

→ 0. (C.14)

Derivation of the limiting form of the PB free energy, Eq. (3.55), may be done in the same
way and yields Eq. (3.59) for ξ ≤ ξPB

c = 1.

Large Manning parameter ξ > ΛAF:

For large ξ > ΛAF ≃ 1, one may use the fact that β itself becomes small for large ∆ and
vanishes for increasing ∆ → ∞ (Appendix C.1). Hence, the second expression for the potential
field in Eq. (3.25) may be expanded for small β, which gives

ψPB(r̃) = 2 ln
r̃

R̃
+ 2 ln

[

1 + (ξ − 1) ln
r̃

R̃

]

+ O(∆−2). (C.15)

A similar expansion may be performed for the density profile (second relation in Eq. (3.27)),
which gives

ρ̃PB(r̃) =
(ξ − 1)2

ξ2

(

r̃

R̃

)−2 [

1 + (ξ − 1) ln
r̃

R̃

]−2

+ O(∆−2). (C.16)

Finally, the PB free energy expression (3.54), when expanded for small β, yields the limiting
expression in Eq. (3.59) for ξ ≥ ξPB

c .
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C.6 PB solution in an unbounded system (∆ = ∞)

In the present study, I have assumed that the counterion-cylinder system is bounded laterally
ensuring the normalization of density profile, ρ̃PB(r̃), to the total number of counterions, N ,
even in the limit ∆ → ∞. In a strictly unbounded system (with ∆ = ∞), the normalization
property of density is not preserved, since a finite fraction of counterions escape to infinity. In
this case, the PB equation (3.18) can be solved by relaxing the normalization condition (3.21).
Assuming the boundary conditions at the cylinder surface as ψ∞

PB(R̃) = 0 and R̃[dψ∞
PB(r̃ =

R̃)/dr̃] = 2ξ, one finds [105]

ψ∞
PB(r̃) =











2ξ ln r̃
R̃

ξ ≤ ξPB
c = 1,

2 ln r̃
R̃

+ 2 ln
[

1 + (ξ − 1) ln r̃
R̃

]

ξ ≥ ξPB
c = 1.

(C.17)

Also κ̃2 = ρ̃∞PB(R̃) = 0 for ξ ≤ ξPB
c = 1 and κ̃2/2 = (ξ − 1)2/ξ2 otherwise. Hence using Eq.

(3.23), the density profile (for R̃ ≤ r̃ ≤ D̃) in a strictly unbounded system is obtained as

ρ̃∞PB(r̃) =















0 ξ ≤ 1,

(ξ−1)2

ξ2

[

r̃
R̃

]−2 [

1 + (ξ − 1) ln r̃
R̃

]−2
ξ ≥ 1,

(C.18)

which has the same form as given in Eqs. (3.32) and (3.34). But now ρ̃∞PB(r̃) is normalized
to the condensed fraction of counterions, αM (Eq. (3.71)), i.e.

∫ ∞

R̃
dr̃ r̃ ρ̃∞PB(r̃) = αMξ =











0 ξ ≤ ξPB
c = 1,

ξ − 1 ξ ≥ ξPB
c = 1

(C.19)

(compare with Eq. (3.29)). The order parameters in the unbounded system, SPB,∞
n , may be

calculated using ρ̃∞PB. For ξ > ξPB
c = 1, I obtain

SPB,∞
n =

1

ξn

[

1 − n

ξ − 1
en/(ξ−1)Γ(0,

n

ξ − 1
)

]

. (C.20)

In the vicinity of the critical point (ξ → 1+), the order parameter obeys the scaling relation

SPB,∞
n (ζ) ∼ ζ

n
, (C.21)

which exhibits a different exponent as compared with the quantity SPB
n (ζ,∆ → ∞) in Eq.

(3.42). This is again due to the difference in normalization factor, which enters in Sn through
Eq. (3.38) (note the order in which the integration and the infinite-system limit are taken).
In general, the order parameter SPB

n (ζ,∆ → ∞) is obtained by multiplying SPB,∞
n (ζ) with

the condensed fraction αM, as

SPB
n (ζ,∆ → ∞) = αMS

PB,∞
n (ζ). (C.22)
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Appendix D

Periodic Cell Model: Summation
techniques for simulations in 3D

D.1 Counterions at charged cylinders: MC simulations

As stated in Section 3.5.2, the periodic boundary conditions used in the simulations in 3D
lead to summation of Coulombic interactions (v(x) = 1/|x|) over all periodic images. The
resultant summation series are convergent for an electroneutral system and can be mapped
to fast-converging series, which can be handled easily in the simulations [110, 111]. In what
follows, I derive the convergent expressions for the configurational Hamiltonian (3.3).

The main simulation box (of height H and containing N counterions) is replicated in-
finitely many times in z direction generating a series of M → ∞ image boxes labeled with
m = −M/2, . . . ,−1, 0, 1, . . . ,+M/2 (with m = 0 being the main box). The Hamiltonian (3.3)
consists of three parts HN = Hci + Hint + Hself , namely, counterion-counterion interaction,
Hci, counterion-cylinder interaction, Hint, and the cylinder self-energy, Hself , that will be an-
alyzed separately. Here I use actual units and in the end, transform the results to the rescaled
form.

Hint and Hself terms

The counterion-cylinder interaction part per simulation box reads Hint/(MkBT ) =
∑N
α=1 u(rα),

where using σ(x) = σsδ(r −R), one has

u(rα) = −qℓB
∫

v(x − xα)σ(x)dx = 2ξ ln

(

rα
R

)

+ c0 (D.1)

with α running only over the counterions within the main box. The constant term is given
by

c0 = −qℓB
∫

v(x − x0)σ(x) dx, (D.2)

where x0 belongs to the cylinder surface. c0 may be written in terms of the cylinder self-
energy,

Hself

MkBT
=
ℓB
2

∫

σ(x)v(x − x′)σ(x′) dxdx′. (D.3)



142 D. Periodic Cell Model: Summation techniques for simulations in 3D

Using the electroneutrality condition τH = qN (per box), one can show that βHself/(MkBT ) =
−Nc0/2. Thus, one has

1

MkBT

(

Hint + Hself

)

= 2ξ
N
∑

α=1

ln

(

rα
R

)

+ C0, (D.4)

where C0 = −βHself/M is a constant (see Eq. (3.4)), which diverges logarithmically with
M . This can be seen from the asymptotic behavior of the self-energy for large M (or large
MH/R), i.e.

Hself/(kBT )

τ2ℓBMH
=

∫ 2π

0

dθdθ′

4π2

∫ MH
2

−MH
2

dz dz′/(2MH)
√

(z − z′)2 + 4R2 sin2 θ−θ′

2

≃ a0 + ln

(

MH

R

)

+ O
(

R

MH

)2

, (D.5)

where a0 ≃ ln 2 − 1. This logarithmic divergency is cancelled by a similar divergent term
coming from the interaction between counterions as shown below.

Hci term and the Lekner-Sperb formulae

The contribution from counterionic interactions (per box and for large M) can be written as

Hci

MkBT
=
q2ℓB
2M

∑

i6=j

v(xi − xj) =
q2ℓB
2H

[ N
∑

α6=β=1

SM

(

xα − xβ
H

)

+NS0
M

]

, (D.6)

where i and j run over all counterions (including periodic images), while α and β run over

counterions in the main simulation box. One also has S0
M = 2

∑M/2
m=1m

−1 and

SM

(

xα − xβ
H

)

=

M/2
∑

m=−M/2

[

ρ2
αβ + (ζαβ +m)2

]−1/2

, (D.7)

where ραβ = [(xα − xβ)
2 + (yα − yβ)

2]1/2/H and ζαβ = (zα − zβ)/H. Note that S0
M , in

particular, represents the interaction between a counterion and its periodic images, which are
lined up in z direction. This series diverges and may be written as S0

M = 2 ln(M/2)+2Ce for
M → ∞, where Ce = 0.577215 . . . is the Euler’s constant. In this limit, SM is also divergent,
but it may be split into a convergent and a divergent part as

SM = S0
M + SLS(ραβ , ζαβ) + 2(ln 2 − Ce), (D.8)

in which the convergent series SLS(ραβ , ζαβ) can be expressed in terms of special functions.
Now inserting the above results for SM and S0

M into Eq. (D.6), one can see that for
M → ∞,

Hci

MkBT
=
q2ℓB
2H

N
∑

α6=β=1

SLS(ραβ , ζαβ) + ξ(Ce − ln 2) + ξN lnM, (D.9)

with a logarithmic divergent term (last term) from the one-dimensional periodicity of the
system. Using Eqs. (D.5) and (D.9), it immediately follows that the divergencies in Eqs.
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(D.4) and (D.9) cancel each other when the electroneutrality condition is assumed. Thus I
obtain the well-defined expression

HN

MkBT
= 2ξ

N
∑

α=1

ln

(

rα
R

)

+
q2ℓB
2H

N
∑

α6=β=1

SLS(ραβ , ζαβ) + ξNh0, (D.10)

where h0 = 1 + ln(R/2H) + (Ce − ln 2)/N ; equivalently,

HN

MkBT
= 2ξ

N
∑

α=1

ln

(

r̃α

R̃

)

+
Ξ

2H̃

N
∑

α6=β=1

SLS(ρ̃αβ , ζ̃αβ) + ξNh0, (D.11)

in rescaled units, where h0 = 1 + ln(ξ2/2ΞN) + (Ce − ln 2)/N . The above expression is
used to obtain the internal energy and the heat capacity of the system in the Monte-Carlo
simulations reported in Section 3.5. The term SLS(ρ̃αβ , ζ̃αβ) may be obtained from Eq. (D.8)
using mathematical identities proposed by Lekner [110] and Sperb [111]. It may be written
in the form of two formally identical series expansion

SLS =



























I : − 2 ln ρ̃αβ + 4
∑∞
m=1K0(2πmρ̃αβ) cos(2πmζ̃αβ).

II :
∑∞
m=1

(−1/2
m

)

(ρ̃αβ)
2m

[

Z(2m+ 1, 1 + ζ̃αβ) − Z(2m+ 1, 1 − ζ̃αβ)

]

+

+(ρ̃2
αβ + ζ̃2

αβ)
−1/2 − Ψ(1 + ζ̃αβ) − Ψ(1 − ζ̃αβ) − c∗.

(D.12)

In the above relations, K0(x) is the modified Bessel function of the second kind, Z(n, x) =
∑∞
k=0 1/(k + x)n is the Hurwitz Zeta function, Ψ(x) is the Digamma function, and c∗ =

2 ln 2 ≃ 1.386294 . . ..
The series in Eq. (D.12) can be evaluated numerically up to the desired accuracy. Note

that the first series (Lekner scheme) involves the Bessel function K0(x), which decays ex-
ponentially for large x (as ∼ exp(−x)/√x) but diverges logarithmically for small x. It is
therefore rapidly converging when the radial distance between two given particles, ρ̃αβ, is
sufficiently large. I use the following recipe to truncate series I: For ρ̃αβ > 3, I truncate after
the third term, for 1/3 ≤ ρ̃αβ ≤ 3, I include 2 + [3/ρ̃αβ ] terms in the sum (where [x] refers to
the integer part of x), and for 1/4 ≤ ρ̃αβ < 1/3, I sum at least 12 terms. This recipe ensures a
relative truncation error of about |er| ∼ 10−10. For small radial separation ρ̃αβ < 1/4 between
two particles, series I becomes inefficient and slow. I thus employ the second series expression
(Sperb scheme). This series is rapidly converging for small ρ̃αβ provided that ζ̃αβ, which en-
ters in the argument of the Hurwitz Zeta function, is sufficiently small, namely for |ζ̃αβ| ≤ 1/2
[111] (note that in general one has |ζ̃αβ | ≤ 1). In fact due to the periodicity of the system,
the energy expression (D.6) remains invariant under the transformations ζ̃αβ → 1 − ζ̃αβ and
ζ̃αβ → −ζ̃αβ, and thus ζ̃αβ can be always restricted to the range |ζ̃αβ | ≤ 1/2. In this case,
I use up to 8 terms in series II. The relative truncation error, |er|, varies for different ζ̃αβ ,
e.g., for ζ̃αβ ≃ 0.4 and ρ̃αβ ≃ 0.25, one has |er| ∼ 10−7. The error substantially decreases
for smaller ζ̃αβ. The above truncation recipes yield accurate estimates for the interaction
energies within the statistical error-bars of the simulations.
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Appendix E

Strong-Coupling Interactions:
Asymptotic analysis

In this appendix, I discuss the asymptotic forms of the strong-coupling free energy as quoted
in Chapter 5 for the interaction between two like-charged rods and two like-charged spheres.

E.1 Two like-charged rods

I will first consider the limit of vanishingly small Manning parameter R̃ ≪ 1. A straight-
forward expansion of the integral in Eq. (5.22) in powers of R̃ gives the following expression
for the SC free energy (5.22), i.e.

FSC
N

NkBT
≃ −R̃ ln d̃+

2R̃

L̃2

∫ L̃/2

−L̃/2
dx̃dỹ (ln r̃1 + ln r̃2) − ln L̃2, (E.1)

where I have omitted terms that are independent of L̃ and d̃ as they are irrelevant in the
present discussion. The first two terms in Eq. (E.1) are nothing but the mean energy of the
two rods and their counterions, and the last term is the entropic contribution from counterions,
which takes an ideal gas form due to the highly de-condensed state of counterion for small R̃.
(This may be seen more clearly using the electroneutrality condition 2τH = qN and restoring
the actual units that yields FSC

N /(kBT ) ≃ −2ℓBτ
2H ln d+ 2ξN〈ln r1 + ln r2〉 −N lnL2. Note

also that Manning parameter equals the rescaled radius of rods, Eq. (5.18), thus R̃ → 0
implies line charges in the rescaled picture.) The bare repulsive force between the rods scales
like ∼ d̃−1, but the counterion-induced attraction force (coming from the second term) scales
as ∼ d̃/L̃2, which becomes vanishingly small as L̃ → ∞. Therefore, the asymptotic free
energy (E.1) admits a shallow L̃-dependent minimum as seen in Figure 5.2. By minimizing
expression (E.1) with respect to d̃, the bound-state separation is approximately found as in
Eq. (5.34) in the text when L̃→ ∞.

For large R̃ > R̃c, the free energy substantially decreases, when the rods are close to
each other (Figure 5.2). Inspection shows that in this situation, the main contribution to the
integral I in Eq. (5.23) comes from the intervening region between the rods (−d̃/2+ R̃ < x̃ <
d̃/2 − R̃; ỹ ≃ 0). This reflects strong accumulation of counterions in this region for large R̃,
as it can be checked directly from the counterionic distribution function obtained in the SC



146 E. Strong-Coupling Interactions: Asymptotic analysis

limit. The integral I, Eq. (5.23), may be rewritten as

I =

∫

dx̃dỹ Ω̃ exp
[

−2R̃ g(x̃, ỹ)
]

, (E.2)

where g(x̃, ỹ) = ln r̃1 + ln r̃2, and r̃1,2 are radial distances from the rods axes (Eq. (5.21)).
It follows that (x̃, ỹ) = (0, 0) is the saddle point of g, thus for sufficiently large R̃ ≫ 1, a
saddle-point approximation may be used to calculate I, which gives (up to some irrelevant
prefactors)

I ≃ e−2R̃ ln d̃2 × d̃2 ×
∫ 1/2−R̃/d̃

−1/2+R̃/d̃
dx̃ e8R̃ x̃

2

, (E.3)

where I have rescaled the coordinates as x̃ → x̃/d̃, ỹ → ỹ/d̃ (Eq. (5.24)) and assumed that
the box size is sufficiently large. Indeed, the above approximation is valid as long as the
surface-to-surface separation of rods is sufficiently small, i.e. ǫ = (d̃− 2R̃)/2R̃ ≪ 1, since g is
singular at (x̃/d̃, ỹ/d̃) = (±1/2, 0). Using Eqs. (E.3) and (5.22), one obtains

FSC
N

NkBT
≃ 3R̃ ln d̃− f(d̃, R̃), (E.4)

where f ≃ ln(d̃ − 2R̃) + O(ǫ). This yields Eq. (5.30) in the text. Note that for large
separations, equations (5.27) and (5.28) should be used instead as the correct asymptotic
forms of the free energy.

Restoring the actual units in Eq. (E.4), one obtains

FSC
N

kBT
≃ 6ℓBτ

2H ln d−N ln(d− 2R). (E.5)

The first term in Eq. (E.5) represents the attractive interaction energy between two rods
mediated by neutralizing counterions that are located (and lined up along the axes) between
them with an effective linear charge density of +2τ . While the second term may be regarded
as a repulsive entropic contribution from counterions.

E.2 Two like-charged spheres

For small Manning parameter R̃ ≪ 1, one can expand the integral in the SC free energy for
two spheres, Eq. (5.46), to get

FSC
N

NkBT
≃ R̃2

d̃
− 2R̃2

L̃3

∫ L̃/2

−L̃/2
d3r̃

(

1

r̃ 1
+

1

r̃ 2

)

− ln L̃3. (E.6)

This expression comprises the mean energy of the two spheres with their neutralizing coun-
terions (first two terms) together with the entropic contribution from counterions (last term)
that has an ideal-gas form and reflects their highly diluted state. The bare repulsive sphere-
sphere force scales as ∼ d̃−2, while the counterion-induced attraction force (coming from the
second term) scales as ∼ d̃/L̃3, which vanishes as L̃→ ∞. The asymptotic free energy (E.6)
has a shallow L̃-dependent minimum as seen in Figures 5.6a-c. The location of this minimum,
Eq. (5.48) in the text, is easily obtained from the asymptotic expression (E.6).

For large R̃, the free energy exhibits a local minimum at small center-to-center separations
(Figure 5.6d), where the main contribution to the volume integral in Eq. (5.46) comes from
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the intervening region between spheres (−d̃/2 + R̃ < x̃ < d̃/2 − R̃; ỹ ≃ 0; z̃ ≃ 0). A saddle-
point approximation similar to the two-rod system (Eq. (E.3)) may be performed, which
gives the asymptotic expression (5.49) in the text for the free energy at sufficiently large R̃
and small surface-to-surface separation ǫ = (d̃− 2R̃)/2R̃ ≪ 1, i.e.

FSC
N

NkBT
= −7

R̃2

d̃
− f(d̃, R̃), (E.7)

where f ≃ ln(d̃− 2R̃) + O(ǫ). Restoring the actual units, one obtains

FSC
N

kBT
≃ −7ℓB

Z2

d
−N ln(d− 2R). (E.8)

The first term in Eq. (E.8) formally corresponds to the energetic attraction between two
spheres mediated by a neutralizing counterion (of charge valency q = +2Z) located between
them. The second terms is a repulsive entropic contribution from counterions.
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Appendix F

Free Energy of a Charged Brush

As discussed in Chapter 6, the main contributions to the free energy an osmotic brush come
from elastic stretching and electrostatic contributions. The former contribution is calculated
using a freely-jointed-chain model, the details of which is presented in the following section.
The electrostatic contribution is obtained from a cell-model approach; the forthcoming Section
F.2 gives a short derivation of the asymptotic results used in the text for this part at small
and large grafting densities of the brush.

F.1 Freely-jointed-chain model

A freely-jointed chain (FJC) consists of Nm rigid links (monomers), each of fixed length
b0 that can point in any direction independently of each other. The free energy of such a
polymer chain is purely entropic and may be obtained by performing calculations in an isobaric
ensemble, i.e. assuming that the chain is stretched by applying a constant force F (in units
of kBT ). The configuration space of the chain is spanned by a set of angles {θi, φi} specifying
orientations of the monomers labeled by i = 1, . . . ,Nm (a spherical frame of coordinates is
chosen with z-axis pointing in the same direction as the force F ). The partition function of
FJC model is

ZFJC
F =

[
∫ 2π

0

dφ

2π

∫ π

0

dθ

2
sin θ eb0F cos θ

]Nm

=

[

eb0F − e−b0F

2b0F

]Nm

. (F.1)

The extension (end-to-end distance) of the chain, L, follows from L = ∂ lnZFJC
F /∂F as

L

b0Nm
= coth b0F − 1

b0F
. (F.2)

Using Legendre transformation one can calculate the isochoric free energy of the system,
FFJC/(kBT ) = − lnZFJC

F + LF , hence

FFJC

NmkBT
= − ln

sinh b0F

b0F
+ b0F coth b0F − 1, (F.3)

which is used together with Eq. (F.2) in Chapter 6.
In the weak-stretching or Gaussian-chain limit b0F ≪ 1, the end-to-end distance is ob-

tained from Eq. (F.2) as L ≃ Nmb
2
0F/3, which gives the Gaussian-chain free energy as
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FFJC/(NmkBT ) ≃ 3L2/2(Nmb0)
2. In the strong-stretching limit b0F ≫ 1, a non-linear force-

extension relation is reached from Eq. (F.2) as L/(b0Nm) ≃ 1 − 1/(b0F ). Using this, one
finds the non-linear elastic free energy FFJC/(NmkBT ) ≃ − ln(1 − L/Nmb0) + const.

F.2 PB free energy: Asymptotic results

Small grafting densities ρab
2
0 ≪ 1:

In this case, as discussed in the text, different expressions are obtained for the PB free
energy depending on whether the Manning parameter is smaller or larger than the Alfrey-
Fuoss threshold ΛAF = ln(D/R)/[ln(D/R) + 1], Eq. (6.15). Note that within the cell model
used for the brush, the grafting density is inversely related to the lateral cell radius D, i.e.
ρab

2
0 = (R/D)2. Using the results in Chapter 3 for large D/R, the PB free energy (per unit

cell) is given by

FPB

NmkBT
≃











f(ξ − 2) ln(D/R) ξ ≤ ΛAF ≃ 1,

−(f/ξ) ln(D/R) ξ ≥ ΛAF ≃ 1,
(F.4)

for vanishing grafting density or D/R → ∞. These results confirm Eqs. (6.34) and (6.37) in
the text that are obtained using heuristic arguments.

For small Manning parameter ξ ≤ ΛAF ≃ 1, both bare electrostatic energy of the
charged rod and entropy of mobile counterions contribute to the free energy as fξ lnD/R and
−2f lnD/R, respectively. However, for very large D/R, the longitudinal entropic pressure of
counterions becomes vanishingly small as compared with the longitudinal bare electrostatic
pressure. This can be seen by differentiation of the corresponding terms of the free energy
with respect to the cell volume πD2L at fixed cell radius D. (Note that the longitudinal
osmotic pressure is calculated from the free energy as πLong

os = −∂FPB/(πD2∂L), where L is
related to ξ via Eq. (6.20) and D is kept fixed.) In contrast, bare electrostatic and entropic
contributions lead to lateral pressures of the same order, as may be seen by differentiating
the corresponding terms of the free energy with respect to πD2L at fixed rod length L. This
latter result is known as Manning’s limiting law for the osmotic coefficient of dilute solutions
of weakly charged polyelectrolytes [39], which states that the osmotic coefficient, ν, tends to
a finite value of ν = 1 − ξ/2 as the solution becomes highly diluted. This relation can be
derived using the cell-model free energy (F.4) by noting that the osmotic coefficient is defined
as the ratio between the lateral osmotic pressure acting on the cell boundary,

πLat
os (D) = − ∂FPB

2πDL∂D
(F.5)

and the lateral osmotic pressure of an ideal gas of particles filling the cell under similar
conditions, i.e. Pid = N/πL(D2 −R2). Therefore, one obtains

lim
D/R→∞

ν = lim
D/R→∞

(

πLat
os

Pid

)

= 1 − ξ

2
. (F.6)

For large Manning parameter ξ > ΛAF ≃ 1, electrostatic repulsions and entropic effects
have contributions of the same order of magnitude in the total longitudinal pressure acting
on the rod, which can be understood in terms of the counterion-condensation picture [39] as
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explained in Section 6.2.4. The Manning limiting law for the (lateral) osmotic coefficient is
obtained in this regime (from Eq. (F.5) and second relation in Eq. (F.4)) as

lim
D/R→∞

ν =
1

2ξ
. (F.7)

Note that in the cell model used in Chapter 6, the rod radius R is not fixed but depends
on ξ (see Eq. (6.21)). The preceding discussions still hold for D ≫ rc +R0.

Large grafting densities ρab
2
0 → 1−:

In a cell model with fixed R, the Alfrey-Fuoss threshold ΛAF = ln(D/R)/[ln(D/R)+ 1] tends
to zero as the grafting density tends to its maximum value, i.e. when D/R→ 1. Therefore, for
finite values of the Manning parameter ξ, one has to use Eqs. (6.18) and (6.17) for ξ ≥ ΛAF.

Starting from Eq. (6.18), one can find an approximate expression for β in the limit of
D/R→ 1. Defining ǫ = D/R− 1 and expanding Eq. (6.18) for small ǫ, one obtains

β2 ≃ ξ

(

1

ǫ
+ O(ǫ0)

)

− 1. (F.8)

Now replacing β2 in Eq. (6.17) and expanding in terms of ǫ, one obtains (up to an additive
constant independent of ǫ)

FPB

NmkBT
≃ −f ln ǫ+ O(ǫ). (F.9)

This is the entropic free energy of an ideal gas of particles up to the leading order (compare
Eq. (6.30)), which represents the main contribution to the PB free energy at large grafting
densities.

In the cell model with constant volume constraint for the charged rod, this limit (namely
D → rc+R0) has to be handled with care. In fact, the upper limit on ξ, that is ξu, Eq. (6.23),
tends to the lower limit ξ0, Eq. (6.22), and so does the optimal Manning parameter. The
Alfrey-Fuoss threshold ΛAF becomes smaller than ξ0, therefore, the system indeed satisfies
ξ > ΛAF condition, so that the above discussion remains valid.
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Nilsson, L. Guldbrand, L. Nordenskiöld, Mol. Phys. 72, 177 (1991).

[141] C.E. Woodward, B. Jönsson, T. Åkesson, J. Chem. Phys. 89, 5145 (1988).

[142] J.P. Valleau, R. Ivkov, G.M. Torrie, J. Chem. Phys. 95, 520 (1991).
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[159] R. Kjellander, S. Marčelja, Chem. Phys. Lett. 112, 49 (1984); J. Chem. Phys. 82, 2122
(1985).
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