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2 Abstract 

The predominant precursor cell type during cortical neurogenesis are radial glia cells, which 

receive extrinsic and intrinsic signals that might influence cell proliferation and neurogenesis. 

These radial glia cells have direct contact to the growth factor rich basement membrane 

throughout cell division. However, it is not known, how the signals received from the basal 

cell attachment influence the behavior of radial glia cells in regard to the regulation of cell 

proliferation and neurogenesis. Therefore, I examined the lamininγ1 (LNγ1) mutant, lacking 

the contact of radial glial endfeet to the basement membrane, and the α6 integrin-/- with a 

disturbed assembly of the basement membrane. The analysis of the LNγ1 mutant and the α6 

integrin-/-, showed no defects in the radial glia progeny, cell proliferation or their orientation 

of cell division. Thus, these results strongly suggest that the direct contact of radial glia cells 

to the basement membrane is not required for these aspects. Radial glia cells of the dorsal 

telencephalon are also known to be specified by the expression of the transcription factor 

Pax6, which plays a pivotal role in the regulation of cell proliferation, neurogenesis and 

regionalisation during development of the telencephalon. In order to understand how Pax6 

coordinates these diverse functions at the molecular level, the roles of the different DNA-

binding domains of Pax6, the paired domain (PD), the splice variant of the paired domain 

(PD5a) and the homeodomain (HD) were analyzed in loss- and gain-of-function approaches. 

The analysis of the specific paired domain mutant Pax6Aey18-/-, that lacks large parts of the 

paired domain, but contains an intact homeodomain and transactivating domain (TAD), 

showed that the paired domain is required for the regulation of neurogenesis, cell proliferation 

and regionalisation in the developing telencephalon and eye. The homeodomain plays only a 

minor role during telencephalic development, in contrast to its function in the eye, as shown 

by the analysis of Pax64Neu-/- mice, which have a point mutation in the DNA-binding domain 

of the homeodomain, while paired domain and transactivating domain are still functional. 

Moreover retrovirus-mediated overexpression of Pax6 and Pax6(5a) in cortical cells showed 

that splicing of the paired domain regulates between a Pax6 form that affects neurogenesis, 

and cell proliferation, while the other Pax6 form, containing exon5a, regulates exclusively cell 

proliferation. 
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3 Zusammenfassung 

Die Mehrzahl der proliferierenden Zellen während der Neurogenese im zerebralen Cortex am 

Embryonaltag 14 (E14) sind radiale Gliazellen, aus denen in asymmetrischer Zellteilung 

Neurone hervorgehen. Die Zellproliferation und Zelldifferenzierung können einerseits durch 

extrinsische Faktoren, wie zum Beispiel Wachstumsfaktoren, und andererseits durch zell-

intrinsiche Faktoren, wie beispielsweise Transkriptionsfaktoren reguliert werden. Während 

der Zellteilung haben radiale Gliazellen des dorsalen Telencephalons direkten Kontakt zur 

Basalmembran. Die Basalmembran enthält eine Vielzahl von Faktoren, die möglicherweise 

das Zellteilungs- und Differenzierungsverhalten der radialen Gliazellen beeinflussen könnten. 

Bisher war unklar, inwiefern der direkte Kontakt zwischen den Endfüßchen der radialen 

Gliazellen und der Basalmembran einen Einfluß auf Zellteilung und Differenzierung hat. 

Deshalb wurde in dieser Arbeit anhand von zwei verschiedenen Mausmutanten dieser Einfluß 

untersucht. Die Lamininγ1 Mutante (LNγ1) zeichnet sich durch den Verlust des Kontaktes 

zwischen den Endfüßchen der radialen Gliazellen und der Basalmembran aus, während bei 

der α6 Integrin-/- die Basalmembran-Zusammenlagerung gestört ist. Die Analyse dieser 

Mutanten zeigte, daß der Verlust des direkten Kontaktes zwischen radialen Gliazellen und der 

Basalmembran keinen Einfluß auf die Zellproliferation und -differenzierung hat. 

Ein weiteres Charakteristikum der radialen Gliazellen des dorsalen Telencephalons ist die 

Expression des Transkriptionsfaktors Pax6, der eine zentrale Rolle in der Regulation der 

Zellproliferation, Neurogenese und Regionalisierung während der Entwicklung des 

Telencephalons spielt. Um zu verstehen, wie Pax6 diese verschiedenen Funktionen auf 

molekularer Ebene koordiniert, wurde die Rolle der verschiedenen Pax6 DNA 

Bindedomänen, d.h. der Paireddomäne (PD), der alternativen Spleißvariante der 

Paireddomäne (PD5a) und der Homeodomäne (HD), in Funktionsverlust- und 

Funktionsgewinnanalysen untersucht. Die Analyse der Pax6Aey18-/- Mutante, die eine große 

Deletion in der PD aufweist, während Homeodomäne und Transaktivierungsdomäne noch 

intakt sind, zeigte die zentrale Rolle der Paireddomäne für die Regulation der 

Zellproliferation, Neurogenese und Regionalierung während der Telencephalon- und 

Augenentwicklung auf. Im Gegensatz dazu spielt die Homeodomäne nur eine untergeordnete 

Rolle während der Entwicklung des Telencephalons, ist aber wichtig für die Regulation von 

Neurogenese, Zellproliferation und Regionalisierung während der Augenentwicklung. Dies 

zeigte sich in der Analyse der Pax64Neu-/- Mutante, deren HD keine DNA-Bindung mehr 

eingehen kann, während PD und TAD noch intakt sind. Außerdem konnte mittels retroviraler 
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Überexpression von Pax6 und Pax6(5a) in corticalen Zellen gezeigt werden, daß duch 

unterschiedliches Spließen der Paireddomäne einerseits eine Pax6 Form entsteht, die sowohl 

Neurogenese als auch Zellproliferation regulieren kann (kanonisches Pax6), während die 

alternative Spleißvariante (Pax6(5a)) ausschließlich Zellproliferation reguliert. 
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4 Introduction 

In the developing embryo, cell proliferation is required, but it has to be well in balance with 

cell differentiation and regulated in time and region specific manner. Precursor cells in the 

central nervous system have to be specified correctly in order to acquire their neuronal 

identity and subtype differentiation. A first step for cell specification is the regionalisation of 

the brain, meaning that transcription factors are expressed in region specific patterns 

(Lumsden and Krumlauf, 1996; Tanabe and Jessell, 1996). One important region-specific 

expressed transcription factor is Pax6 (Stoykova and Gruss, 1994; Stoykova et al., 1996; 

Walther and Gruss, 1991). This gene is involved in the regulation of cell proliferation, 

neurogenesis and regionalisation. However, not only transcription factors influence these key 

developmental processes but also extrinsic cues, as for example growth factors, which are 

enriched in the basement membrane that covers the outer surface of the brain, also play an 

important role in the regulation of cell proliferation and differentiation. 

In this thesis I studied the influence of the basement membrane in the regulation of cell 

proliferation and neurogenesis in the developing telencephalon, as well as the role the 

transcription factor Pax6 in the regulation of cell proliferation, neurogenesis and 

regionalisation of the developing forebrain. 

 

 

4.1 CNS development 

Very briefly, the mammalian central nervous system (CNS) originates from the neural plate, a 

portion of the dorsal ectoderm, induced by mesodermal signalling. First the neural plate 

proliferates and invaginates, leading to the formation of edges that finally fuse and thereby 

lead to the generation of the neural tube which segregates then from the surface (Fig. 1). 

Medial regions of the neural plate stage are now located ventrally and give rise to a ventral 

signalling center that secretes ventralising signals as sonic hedgehog (Shh) which then induce 

or regulate the expression of ventrally expressed transcription factors as Mash1, Dlx-genes, 

Nkx-genes (Lumsden and Krumlauf, 1996; Tanabe and Jessell, 1996). Lateral regions are now 

located dorsally and give rise to the dorsally located signalling centers of the roof plate which 

are secreting for example the bone morphogenic proteins (BMPs) (Tanabe and Jessell, 1996) 

fibroblast growth factors (Fgfs) (Bottcher and Niehrs, 2005; Dono, 2003; Ford-Perriss et al., 
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2001) and wingless-int proteins (Wnts) (Cadigan and Nusse, 1997; Nelson and Nusse, 2004) 

that have been suggested to play a role in the regulation of gene expression and proliferation. 

The neural plate contains three types of cells: (i) Cells located in the inner area give rise to the 

brain and spinal cord, (ii) cells positioned externally will give rise to the neural crest cells and 

(iii) to the epidermis of the skin (see Fig. 1a). The formation of the neural tube occurs in an 

anterior to posterior gradient. Even before the posterior neural tube is completely closed, the 

formation of three primary vesicles (prosencephalon, mesencephalon and rhombencephalon) 

occurs anteriorly (Fig. 2). By the time of neural tube closure at the posterior regions, the optic 

vesicles have extended laterally from each side of the developing forebrain. The 

prosencephalon gives rise to the most anterior telencephalon and the more caudal situated 

diencephalon. The telencephalon forms two cerebral hemispheres which are separated by 

midline structures and subdivided into the dorsal cerebral cortex (ctx) and the ventral 

ganglionic eminences (GE). The GE are themselves subdivided into the lateral ganglionic 

eminence (LGE) and medial ganglionic eminence (MGE) (see Fig. 3B). The diencephalon 

forms dorsally thalamic and ventrally hypothalamic brain regions. It receives input from the 

retina, which is a derivative of the diencephalon.  

 

 

4.2 Patterning and regionalisation 

The development of the CNS along the anterior/posterior (A/P) and the dorso/ventral (D/V) 

axis is controlled by organizing signals, which are secreted molecules of the Bone 

morphogenetic protein (BMP), Sonic hedgehoc (Shh), Fibroblast growth factor (Fgf) and 

Wingless-Int protein families (Jessell, 2000; Lumsden and Krumlauf, 1996; Rubenstein et al., 

1998). The secretion of the signalling molecules occurs in a strict spatio-temporal pattern, 

assuring the proper development and specification of the different brain regions. Signalling 

from these organizing centers induces a specific expression pattern of different transcription 

factors, specifying certain regions of the brain or certain cell populations. Characteristic 

transcription factors expressed in the developing dorsal telencephalon are for example Pax6 

which is expressed in a lateral-rostralhigh and caudal-mediallow gradient (Fig. 3B), 

Neurogenin2, a direct downstream target gene of Pax6 (Scardigli et al., 2003) or Emx1/2 

which are expressed in a lateral-rostrallow and caudal-medialhigh gradient opposing to the 

gradient of Pax6 expression (Bishop et al., 2000; 2002; Muzio et al., 2002; 2003). In the 

ventral telencephalon, beside others, the basic helix-loop-helix proteins Mash1 and Olig2 and 
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the homeobox containing transcription factor Gsh2 are expressed (Fig. 8) (Guillemot et al., 

1993; Sommer et al., 1996; Toresson et al., 2000; Zhou et al., 2000). Pax6 was shown to play 

a particularly crucial role in a variety of aspects in forebrain development such as in the 

regulation of cell proliferation, cell fate decisions and patterning (Estivill-Torrus et al., 2002; 

Götz et al., 1998; Grindley et al., 1997; Heins et al., 2002; Stoykova et al., 1996; Torresson et 

al., 2001; Warren and Price, 1997; Yun et al., 2000). However, it was not clear yet, how the 

regulation of these multiple functions is coordinated at the molecular level, thus the role of the 

different Pax6 DNA-binding domains (see below) in these key developmental aspects were 

analyzed in this work. 

 

 

4.3 The transcription factor Pax6 

4.3.1 DNA binding domains 

4.3.1.1 The paired domain 

Pax6 contains two DNA binding domains, the paired domain (PD) (128 amino acids (AA)) 

connected via a glycine rich linker region to a paired-type homoedomain (HD) (60 AA), 

followed by a prolin-serine-thronine rich (PST-rich) transactivating domain (TAD) (Fig. 9A; 

for review see: Bouchard et al., 2003). The PD of Pax6 is a bipartite DNA binding domain 

consisting of the N-terminal ‘PAI’ and the C-terminal ‘RED’ (‘PAI-RED’) (Fig. 9C) (Czerny 

et al., 1993; Epstein et al., 1994a; Epstein et al., 1994b; Jun and Desplan, 1996; Xu et al., 

1999) and both domains, PAI and RED, bind to specific DNA-binding sites. The N-terminal 

PAI subdomain is critical for DNA binding to Pax6 consensus sites (P6CON; 5’-

ANNTTCAGCa/tTc/gANTt/ga/cAt/c-3’; Epstein et al., 1994a), while the C-terminal RED 

contributes to DNA binding by contacting adjacent nucleotides (Epstein et al., 1994b) (Fig. 

9C).  

Upon alternative splicing 14 AA (exon5a) are inserted in the N-terminal PAI domain (Fig. 

9A) (Walther et al., 1991) and thus DNA binding of the PAI domain is abolished and occurs 

via the RED domain (Fig. 9C) (Epstein et al., 1994b). This alternative splice form of Pax6, 

containing exon5a, is termed Pax6(5a) in contrast to the canonical Pax6, which lacks exon5a. 

Pax6(5a) binds specifically to the Pax6(5a) consensus site 5aCON (5aCON: 5’-

ATGCTCAGTGA¦ATGTTCATTGA-3’, Epstein et al., 1994b). However, the canonical Pax6 

form is also able to bind to the 5aCON site and activate transcription in vitro (Epstein et al., 
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1994b), while Pax6(5a) is not able to bind to P6CON sites. The Pax6(5a) form plays an 

important role in the eye (Azuma et al., 1996; Azuma et al., 2005; Singh et al., 2002) of 

vertebrates and interestingly the same modification of PD DNA-binding was recently 

discovered in the developing compound eye of Drosophila (Dominguez et al., 2004). Due to 

gene duplication during evolution in Drosophila two homologs of the canonical Pax6 form, 

eyeless (ey) (Quiring et al., 1994) and its paralog twin of eyeless (toy), exist (Czerny et al., 

1999). The Drosophila homologs of the murine Pax6(5a) isoform are the two paralogs 

eyegone (eyg) and twin of eyegone (toe) (Jang et al., 2003; Jun et al., 1998). Eyg and toe are 

lacking the N-terminal part of the PD and are able to bind to 5aCON sites (Jun et al., 1998). 

The ratio between the canonical Pax6 and Pax6(5a) seems to be critical during eye 

development (Chauhan et al., 2004). 

Further Pax6 isoforms lacking the PD (PD-less) have been found in mouse brain (Mishra et 

al., 2002), in the quail neuroretina (Carriere et al., 1993) and in C. elegans (Zhang and 

Emmons, 1995). The murine PD-less Pax6 form is generated by alternative splicing and is 

present in brain, eye and pancreas (Mishra et al., 2002). Intron 7 harbours a CpG island which 

can act as transcription initiation site for a transcript comparable to the PD-less Pax6 isolated 

form quail neuroretina (Kleinjan et al., 2004; Carriere et al., 1993) or to the truncated Pax6 

form in C. elegans (Zhang and Emmons, 1995). The PD-less form binds to HD P2 consensus 

site but is not able to activate transcription in vitro (Mishra et al., 2002). Thus, transcriptional 

activation might depend on both DNA-binding domains, PD and HD. Interaction of the PD-

less form with the full length Pax6 lead to an enhancement of transcription in vitro (Mikkola 

et al., 2001). 

 

 

4.3.1.2 The paired-type homeodomain 

The paired-type HD of Pax6 is similar to other HDs with a globular domain consisting of 3 α 

helices (60 AA). The critical AA residue for DNA binding is a serine located in helix3 at 

position 50 (position 9 in helix 3). Changes in this AA can abolish DNA-binding (Favor et al., 

2001; Hanes and Brent, 1989; Percival-Smith et al., 1990; Schier and Gehring, 1992; 

Treisman et al., 1989). The HD of Pax6 binds preferentially to P3 consensus sites (5’-

TAAT(N)3ATTA-3’) (Czerny and Busslinger, 1995; Wilson et al., 1993). Loss of HD DNA-

binding leads to defects in eye formation (Favor et al., 2001) and further, the HD is involved 

in the regulation of rhodopsins (Kozmik et al., 2003). 
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4.3.2 Pax6 expression 

Pax6 expression in the mouse embryo starts at E8 in the anterior surface ectoderm and in the 

neuroepithelium of the presumptive spinal cord, hindbrain and forebrain, before telencephalon 

and diencephalon develop (Stoykova and Gruss, 1994; Walther et al., 1991). In the 

developing forebrain Pax6 expression becomes restricted to the VZ cells of the dorsal 

telencephalon (Fig. 3B, Fig. 8B), where it persists during neurogenesis, and certain regions of 

the diencephalon (Grindley et al., 1995; Mastick et al., 1997; Stoykova et al., 1996; Stoykova 

and Gruss, 1994; Walther et al., 1991; Warren and Price, 1997) (Fig. 3A). No Pax6 expression 

has been detected in the second proliferative population of the telencephalon, the 

subventricular zone (SVZ) cells (Englund et al., 2005; Götz et al., 1998), which are located 

above the VZ (Smart, 1976). The Pax6 expression extends to the dorsal lateral ganglionic 

eminence (dLGE), whereas in the ventral telencephalon almost no Pax6 expression is 

detectable, except in a small stripe in the cells along the pallial-subpallial boundary (PSB) 

(Stoykova et al., 1996; Stoykova and Gruss, 1994), which mainly separates the dorsal from 

the ventral telencephalon (Fig. 3B). 

 

 

4.3.3 The role of Pax6 in the boundary formation and regionalisation 

Loss of Pax6 function has been extensively studied in the Small eye mice (Pax6Sey-/-), a 

mouse strain characterized by the natural occurrence of a point mutation leading to a stop-

codon prior to the HD and thus to a truncated protein lacking the homeodomain and the 

transactivating domain (TAD) (Hill et al., 1991). In Pax6Sey-/- mice the PSB is severely 

disrupted (Stoykova et al., 1997) and a strong increase in cell migration between the GE and 

the cerebral cortex has been detected (Chapouton et al., 1999). Loss of functional Pax6 leads 

to the loss of the border specific expression of SFRP-2, Nrg1, Tgfα and Wnt-7b in the 

Pax6Sey-/- mice (Assimacopoulos et al., 2003; Kim et al., 2001). As described above, Pax6 

expression is restricted to the dorsal telencephalon and thus misspecification due to changes in 

patterning occurs in the Pax6Sey-/- mutant telencephalon such that ventral transcription factors 

expand dorsally (Heins et al., 2002; Stoykova et al., 1996; Stoykova et al., 1997; Stoykova 

and Gruss, 1994; Toresson et al., 2000; Yun et al., 2001) and the expression of Ngn2 

(Scardigli et al., 2003) is lost in the regions of Pax6 expression (Stoykova et al., 2000; 

Toresson et al., 2000; Yun et al., 2001).  
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Not only the specification of dorsal versus ventral regions in the telencephalon depends on 

Pax6, but also arealisation of the cerebral cortex (Bishop et al., 2002; Muzio et al., 2002; 

2003). Pax6 expression in the dorsal telencephalon occurs as mentioned above in a gradient 

(rostralhigh-caudallow, lateralhigh-mediallow) opposed to the expression of Emx1 and Emx2. Loss 

of functional Pax6 leads to the expansion of Emx2 and in turn to the anterior expansion of the 

primary visual area, while loss of functional Emx2 leads to the caudal expansion of Pax6 and 

the domains containing somatosenory neurons and motor neurons expand (Bishop et al., 

2002; Muzio et al., 2002; Muzio and Mallamaci, 2003). 

Changes in regionalisation due to loss of functional Pax6 have also been observed in other 

regions of the CNS, as in the ventral diencephalon, hindbrain and spinal cord (Briscoe et al., 

1999; Grindley et al., 1997; Osumi, 2001; Stoykova et al., 1996). 

 

 

4.3.4 The role of Pax6 in the regulation of neurogenesis 

Loss- and gain of function studies showed that Pax6 is involved in the regulation of 

neurogenesis in the developing forebrain. In the dorsal telencephalon of Pax6Sey-/- mice 

neurogenesis is strongly impaired (Heins et al., 2002; Schmahl et al., 1993), whereas no 

alterations have been detected in the ventral telencephalon. In the diencephalon and spinal 

cord, subpopulations of neurons are lacking (Ericson et al., 1997; Mastick and Andrews, 

2001) and during embryonic eye development leads the loss of functional Pax6 protein to 

precocious neurogenesis followed by massive cell death (Philips et al., 2005). At 

midneurongenesis the vast majority (80%) of the VZ precursor cells in the dorsal 

telencephalon are radial glia cells (Hartfuss et al., 2001) which express Pax6 (Götz et al., 

1998). Loss of functional Pax6 protein in the Pax6Sey-/- mice leads to a decrease in the 

neurgenenic potential of the VZ cells (Heins et al., 2002), whereas the SVZ cells (Haubensak 

et al., 2004; Miyata et al., 2004; Noctor et al., 2004) seem less affected in that regard. 

Retrovirally mediated overexpression of Pax6 showed the strong neurogenic potential in 

astrocyte cultures in vitro (Heins et al., 2002). 

In the adult brain, Pax6 expression in the dentate gyrus has been associated with the 

generation of neurons after ischemia (Nakatomi et al., 2002) and loss- and gain-of-function 

approaches in cells of the adult SVZ showed that Pax6 is necessary and sufficient for adult 

neurogenesis in the olfactory bulb, in addition Pax6 is required for neuronal subtype 

specification, i.e. the generation of thyrosine hydroxylase positive (TH+) neurons in the adult 

olfactory bulb (Hack et al., 2005). 
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4.3.5 Pax6 and cell proliferation 

Besides its potent role in the regulation of neurogenesis Pax6 is also involved in the regulation 

of proliferation. Increased cell proliferation has been described in the dorsal telencephalon of 

the functional null allele Pax6Sey (Estivill-Torrus et al., 2002; Götz et al., 1998).  

Also other Pax6 expressing regions of the CNS exhibit changes in cell proliferation due to the 

loss of functional Pax6 protein, as it is the case in the diencephalon (Warren and Price, 1997), 

the developing eye (Marquardt et al., 2001) and in the cerebellum (Engelkamp et al., 1999). 

The role of Pax6 in the regulation of cell proliferation seems to be region specific, since loss 

of functional Pax6 in the telencephalon leads to an increase in cell proliferation (Estivill-

Torrus et al., 2002; Götz et al., 1998), whereas it leads to a decreased cell proliferation in the 

diencephalon (Warren and Price, 1997). In the developing eye, Pax6 regulates positively cell 

proliferation, since the loss of Pax6 decreases the number of cells generated (Marquardt et al., 

2001). In the cerebellum no changes in cell proliferation have been detected in the Pax6Sey-/- 

mice (Engelkamp et al., 1999). 

As described above, Pax6 is involved in the regulation of many developmental processes, as 

the regulation of cell proliferation, neurogenesis and regionalisation. Interestingly, Pax6 

seems to act region-specific on cell proliferation, since it promotes cell proliferation in the 

developing eye, while it rather suppresses cell proliferation in the developing telencephalon. 

Pax6 contains different DNA binding domains (PD, PD5a, HD). In order to understand how 

Pax6 coordinates the regulation of these multiple functions at the molecular level, the role of 

the different DNA-binding domains (PD, PD5a, HD) has been analyzed in loss- and gain-of-

function approaches in different regions of the brain.  

 

 

4.4 Neuroepithelial features 

4.4.1 Interkinetic nuclear migration 

As described above, the telencephalon initially develops from the neural tube which consists 

of a single layer of proliferating neuroepithelial cells, forming a pseudostratified epithelium. 

Neuroepithelial cells undergo interkinetic nuclear migration (Sauer, 1935). This term describes 

the intracellular translocation of the nucleus, while the proliferating cell progresses through 

the different cell cycle phases (Sauer, 1935; Takahashi et al., 1995) (Fig. 4). Cells progressing 

through M-phase are localized at the apical ventricular surface (VS). After the termination of 

cell division, the nuclei migrate during G1-phase outwards to reach the basal most 
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proliferative zone during S-phase, from where they migrate again in G2-phase towards the 

apical ventricular surface (VS), where the next cell division takes place. Thus, the 

pseudostratification of the neuroepithelium results from the movement of the nuclei along the 

apical-basal axis of the epithelium. 

In this thesis I analyzed different mouse mutants in order to identify factors that might act as 

regulators of the interkinetic nuclear migration as part of the proliferative behaviour of cells in 

the telencephalon. 

 

 

4.4.2 Proliferative zones in the developing telencephalon 

Together with the beginning of neurogenesis at E11/12, the pseudostratified character of the 

neuroepithelium and also some epithelial features are lost (Aaku-Saraste et al., 1996). Instead, 

stratification/layering starts. The proliferating cells located at the apical side of the cerebral 

cortex, adjacent to the lateral ventricle, are termed ventricular zone (VZ) cells, the second 

proliferative cell population, the subventricular zone (SVZ) cells, originates form the VZ and 

starts to develop above the VZ (Noctor et al., 2004; Smart, 1976 and this work) at E12. As 

development proceeds, the VZ cells lose more and more their neuroepithelial character and 

achieve more glial properties. The transformation from neuroepithelial cells into radial glia 

cells is reflected by the appearance of astroglial markers, as for example BLBP (brain lipid-

binding protein; Feng et al., 1994; Kurtz et al., 1994), RC2 (radial cell 2; Misson et al., 1988), 

GLAST (glutamate astrocyte specific transporter; Storck et al., 1992) and the appearance of 

glycogen granules (present E14 but not yet at E12). Radial glia cells are characterized by a 

long radial process extending towards the pial surface and attaching via their endfeet to the 

basement membrane (Brittis et al., 1995; Marin and Rubenstein, 2003; Miyata et al., 2001; 

Nadarajah et al., 2001). The vast majority (80%) of cells present in the VZ at 

midneurogenesis are radial glia cells (Hartfuss et al., 2001). VZ cells still undergo interkinetic 

nuclear migration, which means that they divide at the apical surface, but in contrast to the 

early neuroepithelial cells the translocation of the nucleus remains restricted to the VZ and 

does not occur all over the cell soma, which would include the entire cerebral wall since they 

extend their processes to the pial surface (for review see: Götz and Huttner, 2005). So far, it 

has not been described that SVZ cells undergo interkinetic nuclear migration, thus one 

important characteristic feature of SVZ cells is that they undergo mitosis at non-surface 

positions. 
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4.4.3 Mode of cell division 

Two different types of cell divisions occur in the developing CNS. Prior to neurogenesis cells 

divide predominantly symmetrically and give rise to two identical daughter cells (two 

proliferating precursor cells). Thus the pool of precursor cells increases (Fig. 7A). Symmetric 

cell division is associated with the lateral expansion of the tissue and is thus correlated with 

the expansion of the areas in the developing cortex. At midneurogenesis symmetric cell 

divisions can also give rise to two postmitotic neurons (Shen et al., 2002), as it has been 

described for SVZ cells (abventricular cell divisions) (Noctor et al., 2004). Asymmetric cell 

divisions give rise to two different daughter cells, for example one precursor cell and one 

postmitotic neuron (Fig. 7A). The asymmetric mode of cell division leads to the radial 

expansion of the cortex. As mentioned above VZ precursor cells divide at the ventricular 

surface (VS). Different cleavage planes have been observed in cells dividing at the ventricular 

surface (VS) (Fig. 7B). The cleavage plane occurred either along the apical-basal axis 

perpendicular with respect to the VS, or parallel to the VS or in an oblique manner (Fig. 7C).  

On account of the apico-basal polarity of neuroepithelial/radial glia cells it has been proposed 

that the cleavage plane of a cell division and thus the asymmetric or symmetric distribution of 

cellular components is associated with cell fate (Huttner and Brand, 1997). Based on previous 

time lapse studies in ferret it has been proposed that a cell division with a plane perpendicular 

with respect to the ventricular surface (VS) is a symmetric cell division giving rise to two 

identical precursor cells, whereas a cell division with a horizontal plane with respect to the VS 

has been considered to be an asymmetric cell division. The apical daughter cell remained in 

the proliferative zone, whereas the basal daughter cell became a postmitotic migratory neuron 

and has been specified by the asymmetric inheritance of the Notch protein (Chenn and 

McConnell, 1995). This model has been revised by studies in the mouse cerebral cortex 

showing that perpendicular cell divisions can also be asymmetric by the unequal distribution 

of the apical membrane patch (Kosodo et al., 2004). 

 

 

4.4.4 Radial glia cells 

It was believed for long time that radial glia are basically support cells for migrating neurons, 

but recently it has been proven that they are also the main source for new born neurons 

(Malatesta et al., 2003; 2000; Miyata et al., 2001; Noctor et al., 2001). For the period of 

neurogenesis (E11-E17) in the cerebral cortex an overall number of 11 cell cycles has been 
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determined (Takahashi et al., 1996) and the number of cell cycle has been correlated to the 

laminar identity of the neurons. Neurons generated in the cell cycles 1-8 are located in layers 

6 and 5, whereas neurons of layers 4 and 3/2 arise in cell cycles 9-11 in the mouse cerebral 

cortex (Takahashi et al., 1996). The layers of the cerebral cortex are formed in an inside-first, 

outside-last manner, which means that late born neurons migrate through the early born 

neurons and settle on top. At E11/E12 young postmitotic neurons migrate predominantly via 

somal translocation (Nadarajah et al., 2001). In this process the contacts to the neighbouring 

cells of the VZ are lost and the soma is pulled up under preservation of the basal attachment 

towards the pial surface (Nadarajah et al., 2001) and thus the preplate (PP) builds underneath. 

Neurons which are born at E14-E18 possess a small leading process and migrate along the 

radial processes of the radial glia cells basally, splitting the preplate into the marginal zone 

(MZ) and the subplate (SP) (Rakic et al., 2003; Miyata et al., 2001; Nadarajah et al., 2001; 

Noctor et al., 2001). Neurons are either born in the VZ or in the SVZ (Noctor et al., 2004). 

SVZ cells arise in an asymmetric cell division in the VZ, undergo one or more cell divisions 

at SVZ position and then generate neurons (Haubensak et al., 2004; Miyata et al., 2004; 

Noctor et al., 2004). 

 

 

4.4.5 Cell polarity 

Neuroeptihelial cells and radial glia cells are characterized by epithelial features, as for 

example an apico-basal polarity (Fig. 5). Until E8.5 neuroepithelial cells are linked at the 

apical surface via tight junctions, whereas later on adherens junctions are present (Aaku-

Saraste et al., 1996). Adherens junctions are in close contact to protein complexes, as the 

apical complex containing atypical Protein Kinase C (aPKC), the Par proteins, the small Rho- 

GTPase Cdc42 (for review see e.g. Schneeberger and Lynch, 2004) and the membrane bound 

protein Prominin-1 (Weigmann et al., 1997). The apical side of the neuroepithelial and radial 

glia cells is exposed cerebrospinal fluid (CSF), which contains a variety of factors and is 

secreted by the cells of the choroid plexus, a medial structure close to the cortical hem.  

At the basal side of cerebral cortex neuroepithelial and radial glia cells attach via their endfeet 

to the basement membrane (BM) (Fig. 5B), which is a sheet-like layer of extracellular matrix 

(ECM). The BM is composed of glycoproteins and proteoglycans. The main basement 

membrane components are laminins, type IV collagens, nidogens and heparan sulphate 

proteoglycans (HSPGs) (Paulsson, 1992; Yurchenco and O'Rear, 1994) (Fig. 6A). Laminins 

are heterotrimeric proteins, each trimer composed of an α, β and γ chain. So far five α, three β 
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and three γ chains are known, combining together and generating fifteen different laminin 

isoforms (for review see: Quondamatteo, 2002). Type IV collagens are trimers. Each trimer is 

composed of three α (IV) chains in triple helix formation. Six α (IV) are known yet (α1-α6 

(IV) (for review see: Quondamatteo, 2002; Tunggal et al., 2000). Nidogens/entocins are small 

glycoproteins that belong to two families (for review see: Tunggal et al., 2000). Perlecan is a 

basement membrane associated heparan sulphate proteoglycan that can also be cell membrane 

associated in contrast other heparan sulphate proteoglycans. Laminins and type IV collagens 

form sheet like structures which are linked by perlecan and nidogen (Fig. 6B). The exact 

mechanism of basement membrane assembly and maintenance in vivo is not yet clear. 

Basement membrane assembly in vivo occurs under the mediation of different receptors as for 

example integrins (reviewed in Quondamatteo, 2002). Integrins are heteromeric 

transmembrane proteins composed of an α- and β-subunit. 18 α and 8 β integrin subunits are 

known so far and give rise to 24 different integrin heteromers (Bouvard et al., 2001). 

Meningeal cell secrete the components of the ECM, which assemble into a basement 

membrane underneath the meningeal cells and the neural tissue (Sievers et al., 1994). The 

conditional deletion of β1 integrin under the control of the nestin promotor leads to defects in 

the basement membrane (Graus-Porta et al., 2001). Also other receptors, as for example 

dystroglycan, have been discussed as key players in basement membrane formation (reviewed 

in Quondamatteo, 2002). Basement membranes provide structural support for cells, separate 

compartments (Martinez-Hernandez and Amenta, 1983) and influence cellular behaviour as 

migration, differentiation and proliferation, since they contain a variety of other factors such 

as the Fibroblast growth factors (Fgfs) (Dono, 2003; Ford-Perriss et al., 2001) and Wingless-

Int proteins (Wnts) (for review see e.g. Cadigan and Nusse, 1997; Nelson and Nusse, 2004; 

Nusse, 2005). Previous studies showed that heparan sulphate proteoglycans (HPSGs) bind 

Fgfs (for review see: Dono, 2003; Ornitz, 2000). Captured growth factors in the ECM 

constituting the BM might influence the proliferative behaviour of radial glia cells. Previously 

it has been shown that the radial process remains attached to the BM during cell division of a 

radial glia cell (Miyata et al., 2001) and it has been speculated that this attachment might 

influence the cell fate (Fishell and Kriegstein, 2003). Not only cell fate might be concerned by 

the attachment of RG endfeet to the BM but also cytoskeletal dynamics.  

In order to answer the question how the basal polarity, achieved by radial glia endfeet 

attachment at the pial surface, might influence the proliferative behaviour of the radial glia 

cells and their cell fate, I analyzed in this work several basement membrane mutants. First, I 

analyzed the lamininγ1 mutant mice, which are characterized by a targeted deletion of the 
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nidogen binding site in the γ1 chain of laminin (Willem et al., 2002). The BM in this mutant 

forms, as detectable in laminin (LN) and fibronectin (FN) immunohistochemistry, but the 

components are not properly linked. Radial glia endfeet are detached form the BM at E14 and 

not radially arranged as it is the case in the cerebral cortex of the corresponding WT 

littermates. Second, I analyzed the α6 integrin-/- mice which lack the laminin receptor α6β1 

integrin. Thus the BM can not properly assemble, as shown in EM pictures (Georges-

Labouesse et al., 1998). As a third mutant I analyzed the perlecan-/- mice, characterized by 

the targeted deletion of perlecan causing disassembly and disruption of the BM (Costell et al., 

1999). 
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5 Abbreviations 

Ab  antibody 

Abs  Absorption 

bHLH  basic helix-loop-helix 

BLBP  brain lipid-binding protein 

BMP  bone morphogenic protein 

BrdU  5-bromo-2-desoxy-uridine 

bp  base pair 

Cb  cerebellum 

Cad  cadherin 

cDNA  complementary DNA 

CDS  coding sequence 

Cfr  frontal cortex 

ChP  choroid plexus 

CNS  central nervous system 

CP  cortical plate 

CSF  cerebrospinal fluid 

DAPI 4’-6’-diamidino-2-

phenylindole 

DCX  doublecortin 

DNA  desoxyribonucleic acid 

DNase  desoxyribonuclease 

dNTP  desoxynucleotides 

CTX  cortex 

Di  diencephalon 

div  days in vitro 

DNA  desoxyribonucleic acid 

DT  dorsal thalamus 

E  embryonic day 

ECM  extracellular matrix 

egl  external granular layer 

Em  emission 

ET  epithalamus 

FACS  fluorescence activated cell 

sorting 

FCS  fetal calf serum 

Fig.  figure  

FN  fibronectin 

G1  G1-phase of cell cycle 

G2  G2-phase of cell cycle 

GAPDH Glyceraldehyde-3-

phosphate dehydrogenase 

GE  ganglionic eminence 

GF  growth fraction 

GFAP  glial fibrillary acidic protein 

GFP  green fluorescent protein 

GLAST glutamate astrocyte-specific 

transporter 

GS  glutamine synthase 

h  hour 

hrs  hours 

HC  hippocampus 

HD  homeodomain 

HPRT hypoxanthine guanine 

phosphoribosyl transferase 

HRP  horse radish peroxidase 

Ig  immunoglobulin 

IRES  internal ribosomal entry site 

IZ  intermediate zone 

ko  knock-out 

LGE  lateral ganglionic eminence 

LI  labelling index 

LN  laminin 

LTR  long terminal repeat 

LV  lateral ventricle 
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mAB  monoclonal antibody 

Ms  mesencephalon 

MGE  medial ganglionic eminence 

MI  maximum intensity 

min  minute 

M-phase mitosis phase of the cell 

cycle 

My  myelencephalon 

MZ  marginal zone 

n  sample number  

NE  neuroepithelium 

Ngn  neurogenin 

NGS  normal goat serum 

OB  olfactory bulb 

OC  optic cup 

ORE  optic recess 

OV  optic vesicle 

P  postnatal day 

pAB  polyclonal antibody 

PBS  phosphate buffered saline 

pBS KS bluescript KS 

PC  posterior commissure 

PCR  polymerase chain reaction 

PD  paired domain 

PD5a paired domain containing 

exon5a 

PDL  poly-D-lysine 

PFA  paraformaldehyde 

PH3  phosphorylated histone H3 

Pfu DNA-polymerase with 

proofreading activity 

Pn  pons 

PP  preplate 

pRB  retinoblastoma protein 

P/S  penicillin-streptomycin 

PSB  pallial-subpallial boundary 

PT  pretectum 

RNA  ribonucleic acid 

RNase  ribonuclease 

RC2  radial cell 2 

rln  reelin 

rpm  rounds per minute 

RMS  rostral migratory stream 

RT  room temperature 

RPE retinal pigmented 

epithelium 

RT-PCR real time-polymerase chain 

reaction 

Sc  spinal cord 

SE  septum 

SP  subplate 

SEM  standard error of the mean 

SFRP secreted frizzled related 

protein  

Shh  sonic hedgehog 

S-phase DNA-synthesis phase of the 

cell cycle 

s.d.  standard deviation 

SVZ  subventricular zone 

TAD  transactivating domain 

TC    total cell cycle length 

TS    s- phase lenght 

TF  transcription factor 

TH  thyrosine hydroxylase 

VZ  ventricular zone 

WT  wildtype 

4V  fourth ventricle 

v  volume 
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6 Material and Methods 

6.1 Animals  

The wildtype mice used in this work are C57/Bl/6J mice obtained from Charles River.  

The Pax6Sey mice are characterized by a naturally occurring point mutation in the Pax6 gene, 

leading to the expression of a truncated non-functional protein (Hill et al., 1991). Pax6Sey mice 

were maintained as heterozygotes on a mixed C57BL/6JxDBA/2J background. Heterozygous 

Pax6Sey mice were recognized by their eye phenotype (Hill et al., 1991) and crossed in order 

to obtain homozygous Pax6Sey mutant embryos. Embryos were characterized with the help of 

a binocular on account of their eye phenotype: homozygous Pax6Sey mutant embryos are 

lacking any eye. 

The Pax6Aey18 mice (Haubst et al., 2004) were maintained on a C3HeB/FeJ background. 

Homozygous Pax6Aey18 mutant embryos were identified by their eye phenotype. Pax64Neu 

(Favor et al., 2001) mice were maintained on a C3HeB/FeJ background. Homozygous 

Pax64Neu mutant embryos were identified by their eye phenotype and by the identification of 

the point mutation at position 776 in sequence analysis.  

Pax6tm1Gfs mice, here referred to as Pax6(5a)-/- mice (Singh et al., 2002), are characterized by 

the targeted deletion of exon5a of Pax6 and were maintained as homozygotes on a C57BL/6 

background.  

α6 integrin-/- embryos (Georges-Labouesse et al., 1998) and the respective WT littermates 

(129Sv/ C57BL/6 mixed background) were obtained form Elisabeth Georges-Labouesse.  

Lamininγ1 mutant embryos (Willem et al., 2002) and the respective WT littermates (Sv129/ 

C57BL/6 background) were obtained form Ulrike Mayer. 

Perlecan-/- embryos (Costell et al., 1999) and the respective WT littermates (C57BL/6 

background) were obtained form Reinhard Fässler. 

The day of vaginal plug was considered as embryonic day 0 (E0), the day of birth as postnatal 

day 0 (P0). In this study we used only WT and homozygous mutant littermates. 

 

 

6.2 Genotyping of transgenic mice 

Genotyping of transgenic mice was performed according to a protocol of Larid et al. 1991. 

Tail biopsies of embryos or adult mice or were transferred into 250-500µl lysis buffer and 

incubated over night rotating at 55°C. Bones and hairs were removed by centrifugation (10 
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minutes at 13000 rpm) after tissue lysis was completed. The supernatant was transferred into 

250-500µl isopropanol, incubated at RT for 10 minutes and then mixed. DNA precipitates 

were transferred with the help of a pipette tip into 250µl H20. DNA was dissolved at 55°C for 

several hours. 

 

 

6.2.1 Genotyping of perlecan-/- mice 

To evaluate the genotypes of WT and perlecan mutants three primers were used (Perlecan 

sense: 5’-AAC CAG AAG GGG TGG CAA GAA-3’ (Intron5); WT antisense: 5’-GCA GCA 

CCT CTT GAA TCT GAG-3’ (Exon 6 Rev); perlecan-/- antisense: 5’-TAC TGA GGC AGA 

GTC TCT CTC-3’ (Intron 6 Rev1)). Two separate PCR reactions were performed containing 

as primers either perlecan sense and perlecan-/- antisense or perlecan sense and WT antisense. 

The PCR was carried out a total volume of 20µl using 2µl DNA; 2µl 10x PCR buffer (1x 

final); 2µl 2mM dNTPs (100nM final); 2µl 10pmol/µl forward primer (1pmol/µl final); 2µl 

10pmol/µl reverse primer (1pmol/µl final); 2µl 10pmol/µl reverse primer (1pmol/µl final); 

0.8µl 50mM MgCl2 (2mM final); 1µl Q-Solution; 0.2µl Taq-Polymerase; 8µl H2O under the 

following cycling conditions: 1 cycle 95°C/180sec; 42 cycles (94°C/30sec; 55°C/30sec; 

72°C/45sec); 1 cycle 72°C/180sec.The genotype of the WT gives rise to a PCR product of 

approximately 280bp length, the perlecan-/- PCR product is 510bp long.  

 

 

6.3 Histology 

Time pregnant mice were sacrificed with diethylether or increasing CO2 concentrations 

followed by cervical dislocation. Embryos were removed by hysterectomy and transferred 

into Hanks buffered salt solution (HBSS) with 10mM HEPES. Either embryonic brains were 

removed with the help of two dissection forceps from posterior to anterior or the entire head 

was taken. 

 

6.3.1 BrdU Labelling in vivo 

For the detection of the interkinetic nuclear migration during embryonic development, time 

pregnant mice were injected intraperitoneally (5mg BrdU/100 g body weight). The mouse was 

sacrificed either 0.5h or 6h after the injection. 
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6.3.2 Cryosections 

Embryonic brains or heads were fixed in 4% paraformaldehyde (PFA) (in phosphate buffered 

saline (PBS)) for the following times: E12 whole head: 2hrs; E14 brain: 2hrs; E14 whole 

head: 3.5hrs; E16 brain: 3hrs; E16 whole head: 5hrs, E18 brain: 4hrs; E18 whole head: 7-8 

hrs; P2 whole head: 8-9 hrs at 4°C. After a brief washing step with PBS, tissue was incubated 

at 4°C in 30% sucrose solution (in PBS) over night. After cryoprotection was completed, the 

tissue was embedded in a tissue-tek containing embedding mold and sections (12µm) were 

cut with a cryostat. Sections were collected on SuperFrost microscope slides and stored at -

20°C. 

 

 

6.3.3 Vibratome sections 

E14 and E16 brains were fixed for 6hrs in 2% PFA at 4°C. Brains were embedded in 3% 

agarose (in PBS) and sections (150µm) were cut with a vibratome. 

 

 

6.4 Tissue culture 

Embryonic brains were isolated from E14 time pregnant mice as described above. The 

hemispheres were separated and the meninges were removed. After the removal of the 

hippocampus and the olfactory bulbs, the cortex was separated from the ganglionic eminence 

and transferred into HEPES containing HBSS on ice. After a brief centrifugation step in order 

to remove the HEPES, 1 ml trypsin containing EDTA solution was added to digest the tissue 

for 15 minutes at 37°C. Trypsin activity was stopped by adding 2ml DMEM (10% FCS, 1% 

P/S (for further details see table: 6.12.2). Cells were mechanically dissociated with a 

firepolished and medium coated Pasteur-pipette. The cells were twice washed by 

centrifugating for 5 minutes at 1000rpm (172x g), followed by resuspending in 3ml DMEM 

(10% FCS, 1% P/S). Cells were counted with the help of a neubauer-chamber and plated at a 

density of 5x 105 cells per well of a 24-well plate on poly-D-lysine (PDL) coated glass 

coverslips. Cells were incubated at 37°C and 5% CO2. Two hours after plating viral infection 

was performed. The next day 0.5ml SATO (Bottenstein and Sato, 1979) medium was added. 

Every second day 0.5ml of medium was replaced with 0.5ml fresh SATO medium. Prior to 
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fixation cells were briefly washed with PBS and then fixed for 15 minutes in 4% PFA. After 3 

washes with PBS at RT, cells were processed for immunohistochemistry. 

 

 

6.4.1 Viral infection of cortical cell cultures 

Primary cells from E14 cerebral cortex were isolated and cultured as described above and 

infected with the respective retrovirus 2 hours after plating at a concentration resulting in not 

more than 50 clones per coverslip. 

 

 

6.5 Immunohistochemistry 

In general immunohistochemical pretreatments were performed for specific antibodies in 

increasing stringency. This means that pretreatments with NP40 were performed before 

Triton-X100 (Tx) treatment, acetic acid-ethanol treatment and citrate buffer treatment before 

HCl treatment for BrdU immunohistochemistry. 

To detect BrdU that has been incorporated into the DNA, sections were pre-treated for 30 

minutes in 2N HCl, followed by 2x 15 minutes incubation in 0.1M Sodium-tetraborate 

(pH8.5) and 3x washed for10 minutes in PBS. 

 

 

6.5.1 Primary and secondary antibodies 

Cryosections were defrosted at RT and rehydrated for 10 minutes with PBS. The primary 

antibodies used in this work are listed in table 6.5.1.1. 

Sections or coverslips were incubated with the primary antibody over night at 4°C in a humid 

chamber. The respective fluorescence labelled secondary antibodies were used from Jackson 

Immunoresearch, Inc. and Southern Biotechnology Associates, Inc. to visualize the antigen 

(table 6.5.1.2). 

Sections or coverslips were incubated in secondary antibody solution for 1h at RT, followed 

by 3 washes for 10 minutes in PBS. In order to confirm the specificity of the primary 
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antibody, the respective secondary antibodies were incubated without previous primary 

antibody incubation. 

 

6.5.1.1 Table Primary antibodies  

Name Host-animal/ 
working 
dilution 

Pretreatment Marker Supplier Reference 

Anti-β-
Galactosi-
dase  

Rabbit (1:300, 
0.5% Tx, 10% 
NGS) 

30 min in 
0.5% Tx, 10% 
NGS 

Enzyme used as 
marker gene 

Cappel (55976) (Williams and 
Price, 1995) 

Anti-β-
Galactosi-
dase 

Mouse (IgG1, 
1:1000, 0.5% Tx, 
10% NGS) 

30 min in 
0.5% Tx, 10% 
NGS 

Enzyme used as 
marker gene 

Sigma (G6282)  

Anti-β-
Galactosi-
dase 

Mouse (IgG2a, 
1:500, 0.5% Tx, 
10% NGS) 

30 min in 
0.5% Tx, 10% 
NGS 

Enzyme used as 
marker gene 

Promega (Z3783)  

Anti-βIII-
Tubulin 

Mouse (IgG2a; 
0.5% Tx, 10% 
NGS) 

8 min boiling 
in 0.01M 
Sodium-
Citrate buffer, 
pH6.0 at max 
in microwave 
on sections or 
15 min Acid-
EtOH at -20°C 
on coverslips 

Postmitotic 
neurons 

Sigma (T8660) (Lee, 1995) 

Anti-BLBP Rabbit (1:1500, 
0.5% Tx, 10% 
NGS) 

8 min boiling 
in 0.01M 
Sodium-
Citrate buffer 

Lipid Binding 
Protein, 
precursor cell 
subtypes 

Nathaniel Heintz, Howard 
Hughes Medical Institute, 
Rockefeller University, 
New York, USA 

(Feng et al., 
1994; Kurtz et 
al., 1994) 

Anti-BrdU Mouse (IgG1, 
1:10) 

1h 0.5% Tx, 
30 min 2N 
HCl, 2x 15 
min Borate 
buffer pH8.5 

S-Phase marker Bio-Science Products 
(010198) 

(Götz et al., 
1998) 

Anti-BrdU Rat (1:100) 1h 0.5% Tx, 
30 min 2N 
HCl, 2x15 min 
Borate buffer 
pH8.5 

S-Phase marker Abcam (ab6326) 

 
 

Anti-Brn3a Mouse (IgG1, 
1:500) 

 Retinal ganglion 
cell marker 

Chemicon (MAB1585) (Philips et al., 
2005) 

Anti- 
Fibroncetin  

Rabbit (1:40; 
0.5% Tx, 10% 
NGS) 

0.5% Tx, 10% 
NGS 

Extracellular 
matrix 
component 

Chemicon (AB 2033)  

Anti-GFAP Mouse (IgG1, 
1:100, 0.5% Tx, 
10% NGS) 

0.5% Tx, 10% 
NGS 

Astroglialmarker Sigma (G3893)  
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Anti-Gsh2 Rabbit (1:1000, 
0.5% Tx, 10% 
NGS) 

15min in 0.5% 
Tx, 10% NGS 

TF expressed in 
precursor cells of 
subpallium 

Kenneth Campbell, 
Division of Develop-
mental Biology, 
Cincinnati Children’s 
Hospital Medical Center, 
Cincinnati, USA 

(Toresson et al., 
2000) 

Anti-
Glutamine 
synthase 

Mouse (IgG2a, 
0.5% Tx, 10% 
NGS)  

0.5% Tx, 10% 
NGS 

Marker for glial 
cells 

BD Biosciences (610517)  

Anti-Islet1 Mouse (IgG2b, 
1:10, 0.5% Tx, 
10% NGS) 

8 min boiling 
in 0.01M 
Sodium-
Citrate buffer 

Marker for 
retinal ganglion 
cells 

Developmental 
Hybridoma Bank 
(39.4D5) 

 

Anti-Ki67  
(Tec-3) 

Rat (1:50, 0.5% 
Tx, 10% NGS) 

8 min boiling 
in 0.01M 
Sodium-
Citrate buffer  

Marker for 
proliferating 
cells 

Dako (dia 333-67)  

Anti-
Laminin 

Rabbit (1:40, 
0.5% Tx, 10% 
NGS) 

 Component of 
the ECM 

Chemicon (AB 2034)  

Anti-Mash1  Mouse (IgG1, 
1:2; 0.5%Tx, 
10% NGS) 

8 min boiling 
in 0.01M 
Sodium-
Citrate buffer 

bHLH TF 
expressed in 
precursor cells of 
subpallium 

kindly provided by 
F.Guillemot 

 

Anti-NeuN 

 

Mouse (IgG1, 
1:50, 0.5% Tx, 
10% NGS) 

30min 0.5% 
Tx, 10% NGS 

Neuronal marker Chemicon (MAB377) (Mullen et al., 
1992) 

Anti-nestin  Mouse (IgG1, 
1:4, 0.5% Tx, 
10% NGS) 

  Developmental 
Hybridoma Bank (rat-
401) 

 

Anti-Ngn2 Mouse (IgG2a, 
1:10, 0.5% Tx, 
10% NGS) 

8 min boiling 
in 0.01M 
Sodium-
Citrate buffer 

TF expressed in 
precursor cells of 
pallium 

kindly provided by 
D.Anderson 

 

Anti-Olig2 Rabbit (1:1000, 
0.5% Tx, 10% 
NGS) 

 TF expressed in 
precursor cells of 
subpallium 

kindly provided by 
D.Rowitch 

Takebayashi et 
al. 2000 

Anti-O4  Mouse (IgM, 
1:1000) 

 Marker for 
oligodendrocytes 

Kindly provided by 
J.Price 

 

Anti-Pax2 Rabbit (1:100, 
0.5% Tx, 10% 
NGS) 

8 min boiling 
in 0.01M 
Sodium-
Citrate buffer 

Marker for optic 
stalk 

Covance (PRB-276P) Dressler et al., 
1992 

Anti-Pax6 Mouse (IgG1, 
1:50, 0.5% Tx, 
10% NGS) 

8 min boiling 
in 0.01M 
Sodium-
Citrate buffer 

TF expressed in 
VZ cells of 
pallium 

Developmental 
Hybridoma Bank (chick 
pax6a.a. 1-223) 

 

Anti-Pax6 Rabbit (1:300, 
0.5% Tx, 10% 
NGS) 

8 min boiling 
in 0.01M 
Sodium-
Citrate buffer 

TF expressed in 
VZ cells of 
pallium 

Babco (PRB-278P)  
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Anti-Pax6 Rabbit (1:1000, 
0.5% Tx, 10% 
NGS) 

8 min boiling 
in 0.01M 
Sodium-
Citrate buffer 

TF expressed in 
VZ cells of 
pallium 

Chemicon (AB 5409)  

Anti-PH3 Rabbit (1:200, 
0.5% Tx, 10% 
NGS) 

8 min boiling 
in 0.01M 
Sodium-
Citrate buffer 

M-Phase marker Upstate Biotech (06-570) (Hendzel et al., 
1997) 

Anti-RC2  Mouse (IgM, 
1:500, 0.5% Tx, 
10% NGS) 

8 min boiling 
in 0.01M 
Sodium-
Citrate buffer 

Precursor cell 
subtype 

kindly provided by P. 
Leprince 

 

Anti-Reelin 

(142 and 
E4) 

Mouse IgG1 
(1:500, 0.5% Tx, 
10% NGS) 

 Cajal-Retzius 
cells in the 
cerebral cortex 

André Goffinet, 
University of Louvain, 
Medical School, Brussels, 
Belgium 

(de Bergeyck et 
al., 1998) 

Anti-
reticulon-1  

Rat (9-4, 1:10, 
0.5% Tx, 10% 
NGS) 

 Marker for PSB kindly provided by T. 
Hirata 

 

Anti-Tbr2 Rabbit (1:2000; 
0.5% Tx, 10% 
NGS) 

8 min boiling 
in 0.01M 
Sodium-
Citrate buffer 
and 1h 0.5% 
Tx, 30min  2N 
HCl, 2x15 min 
Borate buffer 
pH8.5 

Transcription 
factor in SVZ 
cells of dorsal 
pallium 

Kindly provided by R. 
Hevner 

 

 

6.5.1.2 Table Secondary antibodies  

Name Supplier 

Anti-rabbit Ig FITC / TRIC / biotinylated 

Anti-rabbit Ig Cy2 

Streptavidin AMCA 

Anti-guinea pig Ig Cy2 

Anti-rat FITC / TRIC 

Jackson ImmunoResearch / Dianova  

 

Vector Laboratories 

Dianova Immundiagnostics 

(Jackson ImmunoResearch) 

Anti-mouse IgG1 FITC / TRIC / biotinylated 

Anti-mouse IgG2b FITC / TRIC / biotinylated 

Anti-mouse IgM FITC / TRIC / biotinylated 

EuroPath Ltd. 

(Southern Biotechnology Associates) 
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6.5.2 Visualisation of cell nuclei 

Cell nuclei were counterstained with DAPI (4’-6’-diamidino-2-phenylindole) (Stock 2mg/ml) 

diluted 1:100 in PBS for 10 minutes at RT followed by 3x 10 minutes washes in PBS. (DAPI 

forms flourescent complexes with the DNA, attaching to AT-rich sequences, which can be 

visualized at 460 nm). To analyse the orientation of cell divisions at the ventricular surface, 

cell nuclei were visualized with propidium-iodide (PI). The PI staining solution contained 

0.5mg/ml PI (in PBS) and 25U/ml RNase. Sections were incubated for 15 minutes at RT, 

followed by 3x 10 minutes washes in PBS. PI binds to double stranded DNA (Abs: 482 nm, 

Em: 636 nm). 

Specimen were mounted in Aqua Poly/Mount (Polysciences, Northampton, UK) and analyzed 

at a Confocal Microscope (Leica TCS 4NT, Leica Microsystems; Olympus FV1000; Zeiss 

LSM510).  

 

 

6.6 Retrovirus preparation 

6.6.1 Cloning strategy of generated Pax6 viruses 

6.6.1.1 PD-less Pax6 virus 

In order to generate a viral vector containing the natural occurring splice variant of Pax6, 

lacking the PD (Mishra et al., 2002), linker PCR was performed. In this technique the primers 

contain already the restriction sites required for the ligation into the plasmid. The PCR was 

performed in a total volume of 100µl with 10µl 10x buffer, 2µl dNTPs, 8µl MgCl2 (50mM), 

2µl PD-less f1 (10µM), 2µl PD-less r1 (10µM), 0.2µl template (Pax6 CDS in pBS KS) 

(1µg/µl), 1,5µl Pfu-Polymerase, 74,3µl H2O, under the following cycling conditions: 1 cycle 

95°C/5 min; 30 cycles (95°C/30sec; 58°C/30sec; 72°C/45sec); 1 cycle 72°C/7min. A product 

of 665bp was generated, loaded on a 1% agarose gel and after running the gel the band of 

interest was isolated and the DNA was extracted using a Gelextraktion kit (Qiagen) according 

to the instructions of the manufacturer. For directional cloning, the PCR product and the viral 

backbone vector (pMXIG; Nosaka et al., 1999) underwent a restriction digest with BamHI 

and SacII (2hrs at 37°C). The products were cleaned using a Gelextraction kit and the 

appropriate amount of fragment and vector were used for the ligation (see below). 
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6.6.1.2 Cloning of a virus with point mutation in HelixIII of HD at nucleotide position 

776 (PM776 virus) 

In order to construct a retrovirus containing the Pax6 CDS with a point mutation at position 

776 (PM 776) identical to the mutation in the Pax6 gene of the Pax64Neu-/- mice (Favor et al., 

2001) two different Linker-PCRs were performed. The primers PM776f and PM776r are 

containing a point mutation at nucleotide position 776 and are complementary to each other. 

PCR reaction 1 was performed in a total volume of 100µl (for reaction mix and PCR 

conditions see: 2.5.3.1) using Delh3 f1 and PM776r as primers. PCR reaction 2 was 

performed under the same conditions using the primers PM776f and PDless r1. The two 

products were used as templates for PCR reaction 3, where all 4 primers were added to the 

reaction mix (for reaction mix and PCR conditions see: 2.5.3.1). This gave rise to a 1269bp 

product containing a point mutation at nucleotide position 776. The PCR product was 

extracted with the Gelextraction kit (Qiagen) as described above. Restriction digest with 

BamHI and SacII was followed by another step of Gelextraction. The cleaned product was 

used for ligation to the pMXIG vector. 

Linker-Primer list: 
Delh3f1: CGGGATCCATGCAGAACAGTCACAGC 
PM 776 f: TGTCCATACCAAAGGATTAGCTTC 
PM 776 r: ACAGGTATGGTTTCCTAATCGAAG 
PD-less f1: CGGGATCCGAGATGCGACTTCAGC 
PD-less r1: TCCCCGCGGTTACTGTAATCGAGG 

 

 

6.6.2 Ligation 

The ligation was performed with the ratio 1:1, 1:3 and 1:5 of vector to insert. 20ng pMXIG 

(cut with BamHI and SacII) were used in a total volume of 20µl ligation reaction containing 

4µl 5x T4 ligase-buffer, 0.1µl T4 ligase together with the corresponding amount of insert, add 

H2O. The reaction was incubated for 2 hrs at RT. Then the transformation to top10 cells has 

been performed. 

 

 

6.6.3 Transformation 

10ng of Plasmid or 1µl ligation-mix were added to 25µl of top10 cells (chemical competent 

cells) and incubated for 30 minutes on ice. After a head shock of 45 seconds at 42°C in a 
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waterbath, cells were incubated for 10 minutes on ice, then 1ml of LB medium without any 

antibiotics was added and cells were incubated for 1 hour at 37°C in a bacterial shaker 

(225rpm). 50-100µl of the cell suspension was plated on LB-agar plates containing the 

respective selective antibiotic (e.g. Ampicillin 50mg/ml) depending on the resistence gene of 

the transformed plasmid. LB-agar plates were incubated over night at 37°C. The next day 

colonies were picked with an autoclaved pipette tip and transferred into 3ml of antibiotic 

containing LB-Medium and cultured for 3-4 hours. 1ml of this preculture was transferred into 

200ml antibiotic containing LB-medium and incubated over night in a bacterial shaker at 

37°C, 225rpm. 1ml of the bacterial culture was mixed with 1ml of 100% glycerol, vortexed 

and stored at -80°C (glycerol stock). Then the bacteria were harvested and the plasmid DNA 

was purified following the Qiagen Midiprep protocol using a Midi Tip100 column per 100ml 

of bacterial culture. The DNA pellet was dissolved in 200µl of H2Obidest. The concentration 

was measured with a photometer at 260nm.  

 

 

6.6.4 Mini-PCR screening 

In order to screen for clones containing plasmid with the expected insert, clones were picked 

with an autoclaved pipette tip and inocculated on a new antibiotic containing LB-agar plate 

(for re-identification clones were numbered). Then respective clones were transferred into 

20µl H20, followed by the addition of the PCR mastermix, containing the appropriate primers, 

and the PCR reaction. Clones containing the right size of insert were sequenced (Seqlab, 

Göttingen) and the sequences were aligned against the gene of interest. 

 

 

6.6.5 GPG Retrovirus preparation 

Gpg packaging cells (Ory et al., 1996) allow the production of high titer amphotropic 

retrovirus. In contrast to many other retrovirus packaging cell lines, which often lose their 

efficiency over time in culture due to the gradual loss of the packaging genes, contain the 

packaging plasmids of the gpg cells different selection markers (gentamycin (G418), 

puromycin). Thus the expression of the packaging genes is better maintained over long 

periods of culturing in presence of the corresponding antibiotics. Since the protein of the 

vesicular stomatitis virus G (VSV-G) is toxic for gpg293 cells, the expression of this gene is 

controlled by tetracycline. Therefore these cells are cultured in presence of tetracycline, 
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puromycin and G418. Retroviral vectors pseudotyped with VSV-G have a broad tropism and 

can be concentrated by ultracentrifugation without loss of activity (Galipeau et al., 1999). 

GPG cells were cultured in DMEM (10% (v/v) FCS (heat inactivated for 30 minutes at 56°C), 

1% (v/v) P/S, 1µg/ml tetracycline, 2µg/ml puromycin and 0.3mg/ml G418) Cells were 

passaged with PBS and trypsin containing 1µg/ml tetracycline. For the viral production, gpg 

helper-free packaging cells were used. 90-95% confluent gpg cells were transfected with the 

below described viral plasmids (PD-less Pax6, PM776 and the CMMP-GFP respectively) 

using lipofectamine 2000 and Opti-MEM I reduced-serum medium. The medium was 

replaced 8-10 hours post transfection and cells were cultured in DMEM (10% FCS, 1% P/S, 

see table 6.12.2). The virus containing medium was harvested after 48 hrs, filtered through a 

0.45µm filter and centrifuged at 50.000x g for 1.5 hrs at 4°C. The supernatant was carefully 

removed and the pellet was resuspended in TNE over night at 4°C, aliquoted and stored at -

80°C. The titer of the virus (viral particles/ml) was determined by transduction of E14 

primary cell cultures in serial dilution. After 2 div, cells were fixed and the number of clones 

was quantified after immunhistochemical detection of GFP. The number of GFP positive 

clones corresponds to the number of viral particles transduced. Typically viral titers of 106-

107 viral particles/ml were obtained. GFP was detectable after 2 div. 

 

 

6.6.6 Pax6 and Pax6(5a) retrovirus preparation 

The entire coding sequence of Pax6 (1873bp fragment) (Heins et al., 2002) and Pax6(5a) 

(Haubst et al., 2004) (1915 bp fragment) was cloned in sense orientation into the BglII unique 

restriction site of the retroviral vector 1704 between the upstream LTR and the EMC IRES 

sequence (gift of J.E.Majors; Ghattas et al., 1991). BOSC23 helper-free packaging cells (Pear 

et al., 1993) were cultured in DMEM (10% FCS, 1% P/S; see also 6.12.2) and transiently 

transfected with the respective viral plasmid. This resulted in a viral titer of 1x 105/ml.  

BOSC23 cells were split 3x prior to transfection in a ratio of 1:3. One day prior to 

transfection, 6x 106 cells were plated on a 10 cm dish, in order to achieve 80% confluence. 

For the transfection 20µg DNA were mixed with CaCl2 in 500µl (final CaCl2 concentration 

0.125M) followed by the addition of 500µl 2x HBS (per 10 cm dish). The transfection mix 

was incubated for 20 minutes at RT. Meanwhile the medium of the BOSC23 cells was 

changed to DMEM (10% FCS, 1%P/S) containing 25µM Chloroquine (9ml medium/10 cm 

dish). 1ml of transfection mix was added to each plate, after 8-10 hours the 
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DMEM/Chloroquine was replaced by DMEM (1% FCS, 1% P/S). The virus containing 

medium was collected after 24-48 hrs, briefly centrifuged (1000 rpm at 4°C) to remove dead 

cells and filtrated (0.45µm filter) on ice. The virus was concentrated at least 10fold by using 

centriprep YM-50 columns (amicon) in several centrifugation steps at 1500x g, 4°C according 

to the manufactors instructions, aliquoted and stored at -80°C. 

 

 

6.7 In situ hybridization 

6.7.1 Plasmid linearization 

20µg of plasmid were linearized with the appropriate enzyme (40U) in a total volume of 50µl 

for 2.5 hours at 37°C. To remove the restriction enzyme, phenol-chloroform extraction was 

performed. The volume was increased to 200µl by adding sterile water (RNase free). 200µl of 

Phenol-Chloroform were added and strongly mixed for 1 minute, followed by a centrifugation 

step of 5 minutes at 13000 rpm in a table centrifuge. The upper DNA containing water phase 

was recovered, mixed with 200µl isoamylalcohol by means of a vortex for 1 minute and 

centrifuged for 5 minutes at 13000 rpm. The upper phase was recovered and 1/10 volume 

(20µl) of 3M sodium acetate and 0.7 volumes of 100% ethanol (RNase free) were added to 

precipitate DNA. The sample was centrifuged (10 minutes at RT, 13000 rpm). The 

supernatant was removed and the pellet was washed with 70% ethanol. After air drying, the 

pellet was resuspended in 18µl H2O (RNase free), pH8. 

The in situ plasmid for the generation of the Svet1 cRNA probe (plasmid from V. Tarabykin) 

was cut with XhoI and transcribed with T7 polymerase. The plasmid for the generation of the 

SFRP2 cRNA probes (plasmid from S. Pleasure) was cut with EcoRI and transcribed with T7 

polymerase. 

 

 

6.7.2 In vitro transcription 

The following components were mixed accordingly to the manufactors protocol (Roche) in a 

total volume of 20µl: 1µg of linearized plasmid, 2µl NTP mix (containing digoxigenin labeled 

UTP; DIG-UTP), 2µl 10x transcription buffer, 1µl RNase inhibitor, 1µl T3, SP6 or T7 RNA-

polymerase and H2O (RNase free). The reaction was incubated for 2 hours at 37°C. The yield 

of transcript was increased by adding 1µl T3, SP6 or T7 RNA-polymerase after 1 hour. 
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Addition of 2µl 0.2 M EDTA (RNase free) stopped the reaction. In order to precipitate the 

RNA 2.5µl 4M LiCl and 75µl 100% ethanol were added. The mix was incubated at -20°C 

over night or for 2 hours at -80°C, then centrifuged for 7 minutes at 4°C. The pellet was 

washed with 70% ethanol and air dried before resuspending in 20µl RNase free H2O, then 

200µl Hybridisation buffer were added. 

 

 

6.7.3 In situ hybridization 

5-7µl RNA-antisense probe (corresponding to 0.5-1.0µg RNA) were diluted in 150µl 

hybridisation buffer and denaturated for 5 minutes at 70°C, applied onto the microscope slides 

carrying the sections of interest and sealed with a clean coverslip. Slides were incubated 

overnight at 65°C in a sealed box with Whatman paper, soaked with 1x SSC in 50% 

formamide, in a hybridisation oven. Slides were washed for 10 minutes in pre-warmed (65°C) 

washing solution at 65°C and the coverslip was removed. Further 2-3 washes at 65°C for 30 

minutes were done, followed by 2 washes in MABT for 30 minutes at RT. Sections were 

blocked in 2% blocking-solution for 1 hour at RT. Anti-digoxigenin Fab fragments coupled to 

alkaline phosphatase were diluted 1:2500 in blocking-solution and 150µl of this antibody-

solution were applied per slide. Sections were covered with parafilm. The antibody incubation 

was performed in a humid chamber overnight at RT. Slides were washed 4-5 times in MABT 

for 20 minutes at RT, and rinsed twice in Alkaline-phosphatase (AP) staining buffer for 10 

minutes at RT. 150µl NBT/BCIP-containing staining solution was added per slide and 

covered with parafilm. Slides were incubated 12 to 24 hours (occasionally up to 3 days) at 

RT. When the staining was strong enough, the reaction was stopped by rinsing the slides in 

AP staining buffer and shortly in water. Slides were dried for several hours at RT and 

mounted in AquaPoly/Mount. 

 

 

6.8 In vitro electroporation of mouse embryonic brains 

E13 mouse embryos were removed from the uterus (see above), the amniotic cavity was 

separated from the embryo, leaving the umbilical chord connection to the placenta intact. The 

embryos were stored on ice in PBS prior to electroporation. DNA was mixed with fast green 

and injected by means of a glass capillary into the lateral ventricle of the forebrain. Electrodes 

(diameter: 5mm) were placed at both sides of the embryonic head coming from the anterior 
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end of the head and the head was squeezed between the electrodes with slight pressure. 5 

pulses of specific settings were applied (15ms, voltage x100: 0.7, width x10: 5, delay x100: 

0.5, mode1: manual; frequency x10: 0.5). The electroporation was performed in a petridish 

without PBS. After electroporation embryos were transferred into PBS. The cortex was 

isolated and placed on a 3 cm Millicell CM filter (0.4µm pore) in a 6-well plate containing 

1ml DMEM (supplemented with 10% (v/v) FCS and 1% (v/v) P/S) per well. One day after 

electroporation the first GFP positive cells were visible. After three days the tissue was 

harvested under UV light after three days by sub dissecting with a small knife (piece of a 

razorblade in a blade holder). The GFP positive tissue was transferred into 100µl RNAlater on 

ice in order to prevent that the samples are destroyed by RNAases. Samples were briefly 

centrifuged and RNA was extracted using the Trizol-reagent.  

 

 

6.8.1 RNA extraction 

For RNA extraction with Trizol-reagent 1 ml Trizol was added to the tissue that was stored in 

100µl RNAlater. The tissue was homogenized with a syringe (1ml, 26G needle). RNA was 

extracted following the instructions of the manufacturer. 

Alternatively RNA was extracted with the RNeasy Kit (Qiagen) according to the instructions 

of the manufacturer. 

 

 

6.9 RT-PCR 

6.9.1 Sample preparation for RT-PCR 

Brains were isolated from the embryos as described above. To exclude contamination of the 

cortical tissue with ventral telencephalic tissue and vice versa, cortex and ganglionic 

eminence were separated at the sulcus with a special knife. Total RNA was extracted either by 

using the RNeasy-kit (Qiagen) or Trizol (see above) according to the instructions of the 

manufacturer. 
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6.9.2 cDNA synthesis 

1µg of purified RNA was reverse transcribed with the SuperScript First Strand Synthesis 

System for RT-PCR (invitrogen life technologies; Cat. No: 11904-018). For this 1µg RNA, 

1µl 10mM dNTP-Mix, 1µl random hexamers (50ng/µl), DEPC-treated water up to 10µl were 

mixed, incubated at 65°C for 5 min, chilled on ice for 1 min. Meanwhile the following 

reaction mixture was prepared for each reaction: 2µl 10x RT buffer, 4µl 25mM MgCl2, 2µl 

0.1M DTT, 1µl RNaseOUT (Recombinant RNase Inhibitor). 9µl of this mixture was added to 

each RNA/primer mixture, gently mixed and briefly collected by centrifugation. Samples 

were incubated at 42°C for 2 min. Then 1µl of SuperScriptII RT (MoMLV reverse 

transcriptase) was added to each mix, samples were incubated at 42°C for 50 min. The 

reaction was terminated by incubating the samples at 70°C for 15 min and chilling on ice. The 

reactions were collected by brief centrifugation. 1µl of RNase H was added and incubated for 

20 min at 37°C. CDNA samples were purified by using the Qiagen QIAquick PCR 

Purification Kit Protocol following the instructions of the manufacturer. 

 

 

6.9.3 RT-PCR 

RT-PCR was done with the LightCycler-System (Roche). For each reaction 2µl cDNA 

(40ng), 1µl of forward and reverse primer (see below), 2,4µl MgCl2, 2µl reaction mix 

(containing SYBR Green 1 (1x) and light cycler RT-PCR enzyme mix) and 11,6µl H20 were 

pipetted in a glas capillary, briefly centrifuged and the PCR was started. After an initial 

denaturation step at 95°C for 5 min up to 45 cycles PCR cycles (15 seconds denaturation at 

95°C, 8 seconds of primer annealing at 55°C, 25 seconds of extension at 72°C) were done.  

In this system relative expression levels of a gene of interest are determined by comparison to 

the expression levels of a housekeeper gene (GAPDH or HPRT). Samples were used 

undiluted, 1:10 and 1:100, as negative control a PCR reaction with H2O instead of template 

was used. The lightcycler software analyses (i) the amplification of cDNA and (ii) the melting 

curve of the product. Each PCR cycle is followed by a quantification step obtained by the 

measuring the fluorescence obtained by intercalation of SYBR Green I into the products 

generated. Each curve of amplification is characterized by 3 phases: an early background 

phase, a phase of exponential growth (log linear, where N= N0x(Econst)n ; N= number of 

amplified molecules, n= number of amplification cycles) and a plateau phase. The 

background phase lasts until the fluorescence signal form the PCR product is greater than the 
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background fluorescence of the probe system and the exponential phase begins when 

sufficient product has accumulated to be detected above the background and ends when the 

reaction efficiency begins to fall (plateau phase). The software of the lightcycler system plots 

the SYBR Green I signal of each sample against the number of cycles and the background 

fluorescence is removed by setting a noise band. This fluorescence threshold is used to 

determine cycle numbers that correlate inversely with the log of the initial template 

concentration. To this end the log-linear portions of the amplification curves are identified 

and best fit lines calculated. The crossing points (CP) are the intersections between the best-fit 

lines of the log-linear region and the noise band. These CPs correlate inversely with the log of 

the initial template concentration (LightCycler Operator’s Manual, Version 3.3, April 2000, 

Roche). The CP determined for the candidate mRNA was normalized to those of GAPDH and 

HPRT to compensate for variability in RNA amount and for exclusion of general 

transcriptional effects. I calculated fold reduction (FR): FR = 2(CP1–CP2) with CP1 as the 

CP of the GAPDH or HPRT and CP2 as the CP of the gene of interest The mRNA levels of 

GAPDH and HPRT in each tissue sample were set to 1. The expression levels of HPRT were 

compared to the expression levels of GAPDH in order to certify that the expression levels of 

GAPDH remain constant. The melting curve analysis of the lightcycler software was used to 

identify the product. 

 

RT-PCR Primer  
Paired forward: 5’ CAGCTTGGTGGTGTCTTTGT 
Paired reverse: 5’ GCAGAATTCGGGAAATGTCG 
Splice forward: 5’ GCAGATGCAAAAGTCCAGGT 
Splice reverse: 5’ CTCGTAATACCTGCCCAGAA 
Homeo forward: 5’ TCTAATCGAAAGGGCCAAATG 
Homeo reverse: 5’ AGGAGGAGACAGGTGTGGTG 
GAPDH forward: 5’ ATTCAACGGCACAGTCAAGG 
GAPDH reverse: 5’ TGGATGCAGGGATGATGTTC 
HPRT forward: 5’ GTTGGATACAGGCCAGACTTTGT 
HPRT reverse: 5’ CCACAGGACTAGAACACCTGCTA 
eGFP forward: 5’ CGTAAACGGCCACAAGTTCAGCGTG 
eGFP reverse: 5’ACTGGGTGCTCAGGTAGTGGTTGTC 
Ngn2 forward: 5’ ACCGCATGCACAACCTAAAC 
Ngn2 reverse: 5’ AGCGCCCAGATGTAATTGTG 
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6.10 Quantification of neurons and proliferating cells 

The quantification of neurons was performed in sections of the cerebral cortex at E14 from 

WT and homozygous mutants (Pax6Sey-/-, Pax6Aey18-/-, Pax64Neu-/- and Pax6(5a)-/-) at 

corresponding rostral, intermediate and caudal levels stained for NeuN. The thickness of the 

NeuN-positive cortical plate was measured in confocal pictures taken in a defined (lateral) 

area of the cortex by first drawing a line at right angle to the ventricular surface (VS) from the 

VS to the pial surface. The length of this line was determined by the ImageJ program and 

served as measure of the total cortical thickness. A second line was drawn from the apical to 

the basal side of the NeuN-positive band, and its length served as a measure for the thickness 

of the band of neurons, the cortical plate. The width of the cortical plate was calculated as the 

proportion of the overall thickness of the cerebral cortex (see table 2).  

The quantification of PH3 positive cells was performed by placing a 150µm wide square, 

covering the entire cortical thickness parallel to the VS. All PH3 positive cells in this square 

were counted separately for cells lining the ventricle (VZ cells) and cells at abventricular 

positions (SVZ cells defined as PH3 positive cells 5 or more cell diameters away from the 

VS; see Smart, 1976; table 2).  

The quantification of PH3 positive cells in the E14 WT, α6 integrin-/-, LNγ1 mutant 

hemispheres were quantified using the neurolucida system. The hemispheres were outlined, 

thus with the help of the perimeter the size of the area of quantification was determined. In 

this area, the numbers of PH3 positive cells at the ventricular surface and at abventricular 

positions were quantified.  

For the clonal analysis in vitro, all clones per coverslip were assessed for their cell type or 

size and the mean was calculated per coverslip (excluding coverslips with more than 50 

clones).  

 

 

6.11 Statistics 

For all data sets, the arithmetic average, the standard deviation and the standard error of the 

mean was calculated as follows: 

the arithmetic average:  
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the standard deviation (s.d) :  1
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the standard error of the mean (SEM): n
sSEM =

 

 

Error bars depict in the histograms either standard deviated (s.d.) or standard error of the 

mean (s.e.m.). Group comparisons were made with the unpaired t-test and p-values smaller 

than 0.05 were considered significant (*), p-values smaller than 0.01 were considered highly 

significant (***). Calculations of the arithmetic average, the standard deviation, the standard 

error of the mean were performed with Microsoft Excel. The significance of the obtained data 

was tested using the program Stats. 
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6.12 Material 

6.12.1 Microscopy 

Fluorescent microscope  

AxioPhot microscope Zeiss 

HBO 100W fluorescent lamp Zeiss 

AxioCam HRc camera Zeiss 

Apo Tome Zeiss 

AxioVision 3.1.1.1 and 4.1 program Zeiss 

Objective Plan Neofluar 5x/0,15 (Phase 1) Zeiss 

Objective Plan Neofluar 10x/0,30 (Phase 1) Zeiss 

Objective Plan Neofluar 20x/0,50 (Phase 2) Zeiss 

Objective Plan Neofluar 40x/0,75 (Phase 2) Zeiss 

Objektive Plan-Apochromat 40x/1,30 Oil Zeiss 

Objektive Plan-Apochromat 63x/1,40 Oil (Phase 3) Zeiss 

 

Fluorescent stereomicroscope  

SZX 12 microscope Olympus 

U-RFL-T fluorescent lamp Olympus 

U-CMAD3 incl. U-TV1 X camera Olympus 

AnalySIS 3.1 program Soft Imaging Systems 

 

Confocal microscope  

Leitz DM RBE microscope Leitz 

Leica TCS NT confocal Leica 

HBO 50W fluorescent lamp Leica 

TCS NT Vers.1.6.587 program Leica 

Objective HC PL APO 10x/0.40 IMM Leica 

Objective HC PL APO 20x/0.70 IMM CORR Leica 

Objective PL APO 40x/1.25 oil Ph3 Leica 

Objective PL APO 63x/1.32 oil Ph3 Leica 

  

Confocal microscope 

Olympus FV1000 

Olympus 

HBO 100W fluorescent lamp Olympus 

Objective 10x Olympus 

Objective 20xW Olympus 

Objective 40x Olympus 

Objective 63x Olympus 
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Confocal microscope 

Zeiss LSM 510 

Zeiss 

HBO 100W fluorescent lamp Zeiss 

Objective 10x Zeiss 

Objective 20xW Zeiss 

Objective 20x Zeiss 

Objective 40x Zeiss 

Objective 40xW Zeiss 

Objective 63x Zeiss 

 

 

 

6.12.2 Complex media, buffers and solutions 

Name Protocol 

Alkaline-phosphatase staining buffer 

(AP-buffer) ISH) 

 

100mM NaCl 

50mM MgCl2 

100mM Tris pH9.5 

0.1% tween-20 

1mM levamisole 

in dd H2O 

 

AP - NBT/BCIP (ISH) 

 

AP 

350µg/ml NBT 

175µg/ml BCIP 

 

2x HBS 50mM HEPES, pH 7.05 

50mM KCl 

12mM dextrose 

280mM NaCl 

1.5mM Na2HPO4 

 

Blocking-solution (ISH) MABT 

2% blocking reagent 

20% heat inactivated sheep serum 

 

BrdU-Solution for cell culture 1mM BrdU 

in ddH2O 
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BrdU-Solution for i.p.-Injection 5mg/ml (w/v) BrdU 

in 1x PBS 

 

Di-sodium-tetraborate-buffer (0.1M) 

pH 8.5 

0.1 M Na2B4O7 · H2O 

in dd H2O 

 

Cell culture medium for primary cells and 

BOSC23helper free packaging cells 

10% (v/v) FCS (heat inactivated 30 min at 56°C) , 1% (v/v) 

Penicillin-Streptomycin in DMEM (Gibco) 

 

Cell culture medium for gpg cells 10% (v/v) FCS (heat inactivated 30 min at 56°C) , 1% (v/v) 

Penicillin-Streptomycin in DMEM (Gibco), 1µg/ml 

tetracycline, 2µg/ml puromycin and 0.3mg/ml G418 

 

Ethanol-glacial acetic acid 20% (v/v) glacial acetic acid 

in ethanol absolute 

 

FCS-PS-Medium 10% (v/v) FCS (heat inactivated 30 min. at 56°C) 

1% (v/v) Penicillin-Streptomycin 

in DMEM 

 

Fast Green  1% in H2O 

HCl (2.4 N) 2.4 N HCl (37 % (w/v)) 

in dd H2O 

 

HEPES-HBSS-Medium 10 mM HEPES 

in HBSS 

 

Hybridisation buffer (ISH) 1x salt solution 

50% formamide 

10% dextran sulfate 

1mg/ml wheat germ tRNA 

1x Denhardt’s solution 

ddH2O 

 

LB (Luria-Bertani) medium 

PH 7.0 

 

20g/l LB broth base 

in ddH20 

 

LB-agar 

 

LB-medium 

15g/l agar 
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LiCl (4M) (ISH) 

 

4M LiCl 

ddH20 

 

 

Lysis buffer 

pH 8.5 

100mM TrisHCl 

5mM EDTA 

0.2% SDS 

200mM NaCl 

100µg/ml proteinase K 

 

MABT (5x) (ISH) 

pH 7.5 

 

500mM maleic acid 

750mM NaCl 

0.1% tween-20 

ddH2O 

 

NaN3-PBS (0.05%) 0.05% (w/v) NaN3 

in 1x PBS 

 

NP40 (0.1%) 0.1% NP40 (v/v) 

in 1x PBS 

 

PBS (Phosphate buffered salt solution, 1x) 

pH 7.4 

137 mM NaCl 

2.7 mM KCl 

80.9 mM Na2HPO4 

1.5 mM KH2PO4 

in ddH2O 

 

PFA (2%) 2% (w/v) paraformaldehyde 

in 1x PBS 

 

PFA (4%) 4% (w/v) paraformaldehyde 

in 1x PBS 

 

Poly-D-lysin-hydrobromide solution 

 

1% (v/v) PDLsolved (1mg/ml PDL in ddH2O o/n solved) 

in 0.1M sodium-tetraborate buffer 

 

Propidium iodide (PI) Stock-solution 10mg/ml in PBS 

 

RNase Stock-solution 500U/ml in H2O 
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Saline 0.9% (w/v) NaCl 

in ddH20 

 

Salt solution (10x) (ISH) 

 

2M NaCl 

90mM Tris HCl, pH7.5 

10mM Tris base 

70mM NaH2PO4 

50mM Na2H PO4 

50mM EDTA 

ddH2O 

 

SATO-medium for primary cell culture 

 

DMEM 

1g/l Glucose 

2mM Glutamine 

10µg/ml Insulin (bovine) 

100µg/ml Transferrin (human) 

0.0286% BSA-pathocyte 

0.2µM Progesterone 

0.1mM Putrescine 

0.45µM Thyroxine 

0.224µM Selenite 

0.5µM Tri-iodo-thyronine 

 

Sodium-Citrate buffer 10x 0.1M Sodium-Citrate, pH6.0 in ddH2O 

 

SSC (20x) (ISH) 3M NaCl 

0.3M sodium citrate 

in ddH20 

 

Sucrose-PBS-solution (30%) 

 

30% (w/v) sucrose 

in 1x PBS 

 

TBE (10x) 

 

450mM Tris base 

440mM boric acid 

10mM EDTA 

in ddH20 

 

TE 

pH 8.0 

 

10mM TrisHCl 

1mM EDTA 

in ddH20 
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TE-buffer 

pH 7.5 

10mM TrisHCl 

0.1mM EDTA 

in ddH20 

 

TNE 50mM Tris-HCl (pH7.8) 

130mM NaCl 

1mM EDTA 

 

Triton X-100 10% 10% (v/v) Triton X-100 

in 1x PBS 

 

Tween-20 (0.1% / 0.5%) (ISH) 0.1% / 0.5% (v/v) Tween-20 

in 1x PBS 

 

Washing solution (ISH) 1xSSC 

50% formamide 

0.1% tween-20 

 

 

 

6.12.3 Product list 

Name Supplier 

Agarose (electrophorese) Biozym 

Agarose high EEO Biomol 

Ampicillin Sigma 

Anti-DIG-FAB-fragments alkaline phosphatase Roche 

Aqua Poly/Mount mounting medium Polysciences 

Bacto-Agar DIFCO Laboratories 

BCIP (5-bromo-4-chloro-3-indolyl-phosphate, 4-toluidine salt) Roche 

beta-mercaptoethanol Merck 

Blocking reagent  Roche 

Boric acid Merck 

BrdU (5-Bromo-2-desoxyuridin) Sigma 

Bromphenol blue Merck 

BSA Sigma 

CaCl2 Sigma 

cDNA-Synthesis Kit Invitrogen 

CO2-Gas Air Liquide 

DAPI Pierce 
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Denhardt’s solution Sigma 

Dextran sulfate Sigma 

Diethylether for anesthesia Hoechst 

DIG-RNA labelling mix (10x; DIG-UTP) Roche 

Di-Sodiumhydrogenphosphate Na2HPO4 Merck 

dNTP (for PCR) Pharmacia Biotech 

Dulbecco’s modified Eagle Medium (DMEM) 

(with Glutamax-1 (L-Alanyl-L-Glutamin) without Natriumpyruvate 

with Glucose with Pyridoxin) 

Gibco 

EDTA (Titriplex) Merck 

Ethanol absolute (EtOH) Riedel-deHaën 

Fast Green FCF Sigma 

Fetal Calf Serum (FCS) Sigma 

Formamide Merck 

Geneticin (G418-sulfate) Gibco 

Gentamycin Gibco 

Glucose (d-glucose) Merck 

Glycerol (87%) Merck 

Glycin Sigma 

Hank’s buffered salt solution (HBSS) Gibco 

Heat inactivated sheep serum  Sigma 

HEPES-Buffersolution 1 M, pH 7,2 - 7,5 Gibco 

Hydrochloric acid (37 %) HCl Merck 

Immersion oil 518N Zeiss 

Insulin Sigma 

Isopropanol Merck 

Kaliumchloride KCl Merck 

Kaliumdihydrogenphosphate KH2PO4 Merck 

LB broth base Gibco 

Levamisole Sigma 

Lightcycler Kit Roche 

Lipofectamine 2000 Invitrogen 

l-glutamine (200mM) Gibco 

LiCl Merck 

Maleic acid Fluka 

Methanol absolut (MeOH) Merck 

MgCl2 Merck 

MgSO4-7H20 Merck 

MidiPrep-Kit Qiagen 

MidiTip 100 column Qiagen 
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Molecular weight marker (1kb-ladder) Gibco 

MoMLV reverse transcriptase Roche 

NaCl Merck 

NaH2PO4 Merck 

NaHCO3 Merck 

NaN3 (pure) Merck 

Natriumtetraborate (Borax) Na2B4O7-H20 Sigma 

NBT (Nitroblue tetrazolium chloride) Roche 

Normal goat serum (NGS) Vector Laboratories 

NP40 – Igepal  Sigma 

Oligo(dT)12-18 primers Roche 

Opti-MEM I reduced serum Medium Invitrogen 

Paraformaldehyde (PFA) Merck 

PCR-buffer (10x) Qiagen 

Penicillin/Streptomycin-Solution 

10 000 E Penicillin, 10 0000 µg/ml Streptomycin, 

as PenicillinG (Sodiumsalt) & Streptomycinsulfate 

Gibco 

Pfu-Polymerase MBI 

Phenol-chloroform-isoamylalcohol (50:49:1) Gibco 

Poly-D-Lysine Hydrobromide (PDL) Sigma 

Polyoxyethylenesorbitanmonolaurate (Tween-20) Biorad 

Progesterone Sigma 

Propidium-iodide (PI) Sigma 

Proteinase K Roche 

Putrescine Sigma 

Q-Solution (5x) Qiagen 

Red fluorescent RetroBeads™ (Beads) Lumafluor 

Restriction enzymes New England Biolabs 

RNAlater Ambion 

RNA polymerase 50U/µl (T3, T7, SP6) Stratagene, MBI 

RNAse A Qiagen 

RNAse inhibitor Boehringer Mannheim 

RNeasy Kit Qiagen 

RT-PCR Enzyme Mix Roche 

RT-PCR Reaction Mix SYBR green Roche 

SDS Roth 

Selenite Sigma 

Sodium citrate Merck 

Sodium selenite Merck 

Sodium acetate Merck 
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Sucrose Merck 

Taq-DNA-Polymerase Qiagen 

Thyraxine Sigma 

Top10 cells  Invitrogen  

Transcription buffer (5x) (ISH) Stratagene 

Transferrin Sigma 

Tri-iodo-thyronine Sigma 

TrisBase Merck 

TrisHCl Merck 

Triton X-100 Roth 

Trizol Gibco 

Trypsin Type XII, 9000 BASF units/mg  Sigma 

Trypsin-EDTA (1x) 

0,05 % (w/v) Trypsin in HBSS without Ca2+, Mg2+ 

with 0,02 % (w/v) EDTA (4Na) 

Gibco 

Wheat germ tRNA Sigma 

 

 

6.12.4 Consumables 

Name Supplier 

Borosilicate glass capillaries 1.5mmO.D. x 0.86mm I.D. 

GC150OF-10 

Havard Apparatus 

Cell culture dishes, sterile (100-, 200 mm) Falcon 

Cell culture flasks (75-, 175 cm2) Falcon 

Cell culture tubes, sterile (15-, 50 ml) Falcon 

Centriprep YM-50 (4311) Amicon 

Coverslips 24 x 24 mm Marienfeld 

Coverslips 24 x 50 mm Marienfeld 

Coverslips Ø 13 mm, autoclaved BDH 

Eppendorf tubes (0.5-, 1.5, 2.0 ml) Eppendorf 

Glass slides 76 x 26 mm, frosted end Menzel Gläser 

Glass slides Superfrost®-Plus 76 x 26mm Menzel Gläser 

Multi-well cell culture-plates, sterile (6-, 24-, 48-wells) Nunc 

Parafilm American National can 

Pasteur pipettes, autoclaved Volac 

PCR-tubes (0.2ml) Roth 

Permeable filtermembrane inserts Millicell-CM 

(0,4µm pore, 30mm diameter) 

Millipore 

Pipettes, sterile (5-, 10-, 25 ml) Falcon 
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Polyallomer Centrifuge tubes 1x3 ½ in (25x 89mm) Beckman 

Razor blades, extra thin Gillette 

Superglue UHU 

Syringe filters 0.45µm Renner 

Syringe needles (Neolus, 0,4mm) Terumo 

Syringe - fine dosage (1ml) Braun 

Syringes (10-50ml) Becton Dickinson 

Whatman chromatography paper Whatman 

 

 

6.12.5 Instruments 

Name Supplier 

Agarose gel chambers MPI-workshop, Neolab 

Bakterial incubator Heraeus 

Bakterial shaker Innova 4000 New Brunswick Scientific 

Blade holder FST 

Bench centrifuge 5415 C Eppendorf 

Cell culture incubator Heraeus, Binder 

Centrifuge Rotana 460R Hettich 

Cooling centrifuge Sepatech Omnifuge 2.0 RS Heraeus 

Cryostate CM 3050, Cryostate CM 3050S Leica 

Electroporation tweezer platinum electrode round, 5mmm, 

CUY650P5 

Protech 

Forceps Dumont #5 ‘Biologie’ (0,05 x 0,01) mm Fine Science Tools 

Grinder Model EG-44 Narishige 

Heating block Liebisch, Eppedorf 

Holder for glass capillary WP1 Protech 

Hybridisation oven Memmert 

Hybridisation oven HB-1000 Hybridizer (for DNA lysis) UVP Laboratory Products 

Lightcycler Roche 

Neubauer-counting chamber improved bright-line 

(depth 0,100 mm/0,0025 mm2) 

Superior 

Orbital shaker KS 500,  Janke & Kunkel 

PCR mashine My cycler BioRad 

PCR mashine GeneAmp PCRSystem 9700 Applied Biosystems 

Phase contrast microscope Diavert Leitz 

pH-meter inolab pH720 WTW 

Power supply Biorad 

Preparation lights KL1500 electronic Leica 
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Puller for capillaries Model PC-10 Narishige 

Sorvall RC-5B refrigerated superspeed centrifuge DuPont Instruments 

Spectrophotometer, Ultrospec 3000 Pharmacia Biotech 

Stereomicroscope, Wild M3Z Heerbrugg 

Stereomicroscope, Wild M8,  Leica 

Steril hood “Edge Gard Hood” The Baker Company 

Steril hood Class II Typ A/B3 Nuaire Biological Safety Instruments 

Steril hood Herasafe Kendro 

Stimulator (TSS 10) for elcetroporation Intracell 

Tissue chopper Mickle Laboratory Engineering 

Ultracentrifuge Avanti J-301 Beckman Coulter 

Vibratome Vibraslice 752M Campden Instruments 

Vortex Scientific Industries 

Waterbath GFL 

Waterbath for in-situ GFL 
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7 Results 

7.1 The influence of BM contact on radial glia cell fate and proliferation 

In order to address the question whether the basal cell attachment of radial glia cells at the 

basement membrane has an influence on the regulation of cell proliferation and neurogenesis 

specific mouse mutants lacking the basal cell attachment of radial glia cells were analyzed. 

The laminin γ1 mutant is characterized by the targeted deletion of the nidogen-binding site in 

the γ-chain, thus the BM is formed but the components are not properly linked (Halfter et al., 

2002). This leads to a detachment of radial glia endfeet from the basement membrane (Fig. 

10B,D,F). A second basement membrane mutant that has been analyzed to answer this 

question is the α6 integrin-/- mouse. α6 integrin forms together with β1 integrin a heterodimer 

and thus acts as a ligand for laminin. Due to the loss of the laminin receptor no proper BM 

assembly occurs (Fig. 11D; (Georges-Labouesse et al., 1998). Despite the improper assembly 

of the BM radial glia morphology did not seem to be severely abnormal (Fig. 12B,D,F). 

 

 

7.1.1 Neurogenesis in the absence of basal cell attachment/polarity 

Neurogenesis was examined by immunohistochemistry against the neuronal marker βIII-

Tubulin. Youngborn neurons accumulate underneath the pial surface and thus form the 

cortical plate (CP). Immunohistochemistry against βIII-Tubulin in the lamininγ1 mutant 

(LNγ1 mutant) (Fig. 13B) and in the α6 integrin-/- (Fig. 14B) revealed no obvious changes in 

the degree of neurogenesis due the basal detachment of radial glia endfeet. In WT and α6 

integrin -/- frontal sections a clear band of densely packed neurons was detectable at E14 in 

DAPI nuclear staining, whereas in the LNγ1 mutant the CP seemed less compact and 

organized (see also Halfter et al., 2002), thus the overall number of neurons could be changed 

and therefore additional quantification is required in both mutants, especially since both 

mutants develop neuronal ectopias outside the BM in the subarachnoidal space (Georges-

Labouesse et al., 1998; Halfter et al., 2002). According to the results obtained so far, it seems 

that the basal detachment of radial glia endfeet does not influence the rate of neurogenesis. 
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7.1.2 Proliferation in the absence of basal cell attachment/polarity: 

Not only the rate of neurogenesis but also cell proliferation might be affected due to the loss 

of basal cell polarity especially since the BM concentrates growth factors, that might be 

supplied to the radial glia endfeet contacting the BM. Previously is has been shown that a the 

radial glia cell retains the process attached to the BM during cell division (Miyata et al., 

2001). Thus it has been speculated that attachment could act on the cell behaviour in regard to 

cell fate (Fishell and Kriegstein, 2003). Since no changes in neurogenesis were detected, cell 

proliferation has been analyzed in the LNγ1 mutant and the α6 integrin-/-. As mentioned 

above two proliferative cell populations are present in the telenecephalon VZ and SVZ. 

Dividing precursor cells in VZ and SVZ were visualized by immunohistochemistry against 

phospho-Histone H3 (PH3), a marker for cells in M-phase (Hendzel et al., 1997) and 

quantified per area in frontal sections of rostral, intermediate and caudal levels of the 

telencephalon with the neurolucida system. Since VZ cells divide at the VS and SVZ cells at 

abventricular positions the proliferative behavior of both populations can be analyzed 

separately by immunohistochemistry against PH3. No significant changes in the number of 

PH3+ cells at the VS or at non-surface positions were detectable in the LNγ1 mutant (n= 2 

litter; total number of quantified hemispheres WT n= 43; LNγ1 mut n= 51) and α6 integrin -/- 

(n= 3 litter, total number of quantified hemispheres WT n= 39; α6 integrin-/- n= 50) due to 

loss of basal cell process attachment (see Fig. 15 or table 1). Thus it seems that the basal 

attachment is not required for the regulation of cell proliferation. 

 

 

7.1.2.1 Ectopic cell clusters 

However, in the dorsal and ventral telencephalon of the LNγ1 mutant mice, ectopic clusters of 

proliferating Ki67+ and PH3+ cells were detected inside the cortical plate. The ectopic 

clusters of proliferating cells were visible for the first time at E13/E14 when the first neurons 

were generated, since before the entire wall of the dorsal telencephalon contained only 

proliferating neuroepithelial cells. The clusters of proliferating cells were detectable until E18 

in the telencephalon, although they became smaller correlated to the overall decrease in 

proliferation. In order to check whether due to the aberrant formation of the basement 

membrane cells, as for example fibroblasts, have migrated into the parenchyma 

immunohistochemistry against fibronectin (FN) and Ki67 has been performed, but no double 

positive cells were detected (Fig. 16), thus we could exclude that proliferating cells migrated 
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into the cortex. Anti-nestin immunostaining revealed the neural origin of these cells (Fig. 16) 

that were in addition RC2- and BLBP-immunopositive (Fig. 17). Since SVZ precursors 

normally do not contain RC2 (Hartfuss et al., 2001), these data suggest that the ectopic 

precursors may originate from radial glia. In order to examine whether these cells generate 

prematurely astroglia, immunohistochemistry against GFAP has been performed, but no 

GFAP positive cells were detectable at E18 in these ectopic clusters. 

 

 

7.1.2.2 Reelin signalling 

The neurons of the marginal zone (MZ) secrete reelin, a large (385kDa) extracellular matrix 

protein, which is important for the neuronal migrational behaviour. The reelin expression in 

the LNγ1 mutant showed alterations that might lead to changes in the neuronal migration 

since these mice develop ectopias (Halfter et al., 2002), which are protrusions of neurons at 

the brain outside. In order to see whether the formation of ectopic proliferating cell clusters is 

related to the altered reelin signalling immunohistochemistry against reelin and Ki67 has been 

performed. The band of reelin positive cells is discontinously in the cortex of the LNγ1 

mutant. Thus one possibility could be that in regions where reelin is missing, the ectopic 

clusters are forming, but this was not the case. Occasionally reelin positive cells and ectopic 

proliferating clusters were located close to each other (yellow circles in Fig. 18) or the 

clusters occured where reelin positive cells were lacking (yellow square in Fig. 18). Thus no 

clear correlation between the lack or presence of reelin and the formation of ectopic 

proliferating cell clusters has been observed (Fig. 18). The reelin expression in the α6Integrin 

-/- mice was not altered (Fig. 19) and no ectopic cell clusters have been detected in this 

mutant. 

 

 

7.1.2.3 Interkinetic nuclear migration in absence of radial glia endfeet attachment 

Stable apical and basal cell attachment of radial glia may be a prerequisite for interkinetic 

nuclear migration. The mechanism of the nuclear translocation during the interkinetic nuclear 

migration in proliferating VZ cells is not known yet, however interkinetic nuclear migration 

was disturbed upon loss of Lis1 a microtubule associated protein (Gambello et al., 2003), thus 

the microtubule cytoskeleton could be involved here. A 0.5 and a 6 hour BrdU pulse has been 

performed in the LNγ1 mutant in order to analyze the interkinetic nuclear migration when the 
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cells lack the basal endfeet attachment. Surprisingly no severe alterations were detected in the 

interkinetic nuclear migration (Fig. 20). No changes were detectable after a 0.5h BrdU pulse 

and 6.0 hour BrdU pulse in the cortex of the LNγ1 mutant (Fig. 20B) compared to the WT 

(Fig. 20A). Thus, the basal attachment of radial glia endfeet seems not to be important for the 

mechanism of interkinetic nuclear migration.  

 

 

7.1.2.4 Orientation of cell division in the absence of basal radial glia cell attachment 

Detachment of radial glia endfeet might lead to changes in the cytoskeleton and might thus 

influence the angle of cell division (and thereby maybe even cell fate). The chromatin was 

counterstained by propidium-iodide (PI, dye intercalating in the major groove of the DNA) 

and angles of cell divisions were measured in ana-and telophase of M-phase, since the spindle 

apparatus is rotating until the cell enters anaphase (Haydar et al., 2003), by imageJ program. 

Cell divisions were classified into three groups: horizontal cell divisions in an angle of 0-30° 

with respect to the VS, oblique cell division (30-60°) and perpendicular cell divisions (60-

90°) with respect to the VS. This analysis has been performed in frontal sections of rostral, 

intermediate and caudal levels of WT and LNγ1 mutant, WT and α6 integrin-/- and in a third 

basement membrane mutant, the perlecan-/- and the corresponding WT. The perlecan-/- lacks 

the heparan sulphate protoglycan perlecan, which is a linker molecule that connects laminin 

and collagen. The homozygous perlecan-/- develops almost always an exencephalic brain at 

E14, which means that the brain is severely malformed (Fig. 21). In total more than 20 litters 

of E14 perlecan-/- mice have been prepared and only one of these contained a homozygous 

perlecan-/- that developed an exencephalus at one hemisphere whereas the other hemisphere 

remained closed (Fig. 21). Since the intact hemisphere was nevertheless malformed, it was 

only possible to determine the percentages of dividing cells at the VS. In all three basement 

membrane mutants the same percentages of cells dividing in a perpendicular, horizontal or 

oblique plane of division were detected (Fig. 22A,B,C). No significant changes in the 

orientation cell divisions were detected between WT (Fig. 22A; n= 103 mitosis) and LNγ1 

mutant (Fig. 22A; 2 litter analyzed; n= 110 mitosis), WT (Fig. 22B; n= 89 mitosis) and α6 

integrin-/- (Fig. 22B; 2 litter analyzed; n= 150 mitosis) and in WT (Fig. 22C; n= 53 mitosis) 

and the perlecan-/- (Fig. 22C; 1 litter analyzed; n= 41 mitosis). Taken together it seems that 

the basal detachment of radial glia endfeet at the basement membrane does not affect the 

orientation of cell division. 
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7.2 The influence of the distinct Pax6 DNA-binding domains on cell fate, 

proliferation and patterning in the telencephalon 

Not only extrinsic cues can influence the behavior of a cell in regard of cell proliferation and 

differentiation, but also intrinsic factors as for example transcription factors play a role.  

As detailed above, the paired box transcription factor Pax6 plays an important role in the 

developing forebrain. Pax6 is involved in the regulation of neurogenesis in the dorsal 

telencephalon (see for example: Heins et al., 2002; Schmahl et al., 1993), in the regulation of 

cell proliferation (Estivill-Torrus et al., 2002; Götz et al., 1998) and in the regionalisation of 

the telencephalon coupled with the formation of the pallial-subpallial boundary (Chapouton et 

al., 1999; Heins et al., 2002; Stoykova et al., 1996; Stoykova et al., 1997; Stoykova et al., 

2000; Toresson et al., 2000; Yun et al., 2001). One intriguing question that arises in this 

context is: How are all these diverse functions coordinated at the molecular level? As 

described above, Pax6 consists of a paired DNA-binding domain, which is subdivided in the 

N-terminal PAI subdomain and the C-terminal RED subdomain and a paired-type HD. In 

order to examine the role of the different DNA binding domains in vivo I took advantage of 

different mutant Pax6 alleles affecting specifically the different DNA-binding domains. The 

role of the PD was assessed by the analysis of the Pax6Aey18 mutant mice, which are 

characterized by the loss of a splice acceptor site in front of exon 5a such that exon5a and 

exon 6 are deleted. Thus a large part of the PD is missing, whereas the HD and TA remain 

unaffected (Fig. 23B; Haubst et al., 2004). The Pax6tm1Gfs mice (here referred to as Pax6(5a)-

/- ; Singh et al., 2002), are specified by the targeted deletion of exon5a, thus the specific 

function of exon5a has been assessed by the analysis these mutants (Fig. 23C). The role of the 

HD was analyzed by means of the Pax64Neu mutant mice, carrying a pointmutation in the third 

helix of the HD leading to a change in the aminoacid at the critical position 50. Thus DNA-

binding of the HD is abolished, but the PD and TAD are retained (Fig. 23D; Favor et al., 

2001). The results obtained from the analysis of the different Pax6 alleles was compared to 

WT littermates and the phenotype of the functional null allele Pax6Sey-/- (Fig. 23E; Hill et al., 

1991). 
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7.2.1 The role of the different Pax6 DNA-binding domains in the regulation of 

neurogenesis 

Neurogenesis was analysed by immunohistochemistry against the neuronal marker proteins 

NeuN and βIII-Tubulin. As described above, postmitotic neurons migrate from the 

proliferative zones in the dorsal telencephalon towards the pial surface and settle below, 

forming the cortical plate (CP). Immunohistochemistry against NeuN in Pax6Aey18-/- mutant 

mice compared to WT littermates (Fig. 24A) showed that the thickness of the CP is strongly 

decreased (Fig. 24B), whereas the specific loss of the HD in the Pax64Neu-/- mice had no 

effects on the thickness of the CP, i.e. the degree of neurogenesis (Fig. 24D). The analysis of 

the Pax6(5a)-/- mice revealed no obvious changes in the degree of neurogenesis compared to 

WT (Fig. 24C). The quantification of the thickness of the CP in comparison to the overall 

thickness of the cerebral cortex revealed that neurogenesis in the Pax6Aey18-/- mice is 

significantly decreased to the same extend (p<0.001) as in the Pax6Sey-/- mice (table 2). 

Thus even though Pax6Aey18-/- is not a truncation mutant and still has an intact HD and TAD it 

exhibits the full neurogenesis phenotype, suggesting a key role of the paired domain in this 

process. The quantification analysis of neurogenesis (ratio of thickness CP to thickness of the 

cortex) confirmed the findings of the immunohistochemical analysis in the HD mutant mice 

Pax64Neu-/- and also the targeted deletion of exon5a in the Pax(5a)-/- mice, where no changes 

were detectable (see table 2). Thus, the PD, but not the HD of Pax6 is required for the 

regulation of neurogenesis in the cerebral cortex. 

 

 

7.2.1.1 The generation of upper layer neurons in the different Pax6 mutant alleles: Tbr2 

and Svet1 expression 

Recently it has been shown that the transition of radial glia cells to SVZ cells is associated 

with the upregulation of the T-domain transcription factor Tbr2 (Bulfone et al., 1999) and a 

downregulation of Pax6 (Englund et al., 2005). Tbr2 mRNA expression was strongly reduced 

in the the Pax6Sey-/- mice (Englund et al., 2005), consistent with the aberrant specification of 

SVZ cells in the Pax6Sey-/- mutant cortex (Nieto et al., 2004; Tarabykin et al., 2001). In order 

to determine which DNA-binding domains are involved in the regulation of Tbr2 I examined 

its expression in the domain-specific Pax6 mutant mice. Tbr2 expression is absent in the 

cortex of the PD mutant (Pax6Aey18-/-) (Fig. 25C), whereas it was still detectable in the cortex 

of the Pax64Neu-/- mice (Fig. 25B). Interestingly, I found Tbr2 also expressed in the neurons in 
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the eye (Fig. 25D), which means that it is not only expressed in neurogenic precursors but 

also in neurons, as it has been described also for the early telencephalon E10-E12 by Englund 

(2005). Cux2 and Svet1 two further marker proteins specifying SVZ precursor cells and their 

progeny the upper layer neurons have been identified recently (Nieto et al., 2004; Tarabykin 

et al., 2001; Zimmer et al., 2004). Cux2 and Svet1 are absent in the functional null allele 

Pax6Sey-/-. I analyzed in this work the expression pattern of Svet1 (Tarabykin et al., 2001) by 

in situ hybridisation in the Pax6 alleles Pax6Sey-/- (was used as a control), Pax6Aey18-/-, 

Pax64Neu-/- and Pax6(5a)-/- at E14. Svet1 expression was absent in the SVZ of the functional 

null allele Pax6Sey-/- (Fig. 26A’) and almost completely absent in the SVZ of the Pax6Aey18-/- 

(Fig. 26B’), while it was expressed normally in the SVZ of Pax64Neu-/- and Pax6(5a)-/- mice. 

Thus, it seems that the PD is required for the expression of Tbr2 and Svet1 in the SVZ, while 

the HD seems to play no role in that regard.  

 

 

7.2.2 The role of the different Pax6 DNA-binding domains in the regulation of cell 

proliferation 

In the functional null allele Pax6Sey cell proliferation is increased in the dorsal telencephalon 

(Estivill-Torrus et al., 2002; Götz et al., 1998). In order to assess proliferating cells 

immunohistochemistry against Ki67 (Gerlach et al., 1997), a marker for proliferating cells in 

all stages of the cell cycle and against phospho-Histone H3 (PH3), a marker for cells in M-

phase (Hendzel et al., 1997) was performed. Since VZ precursor cells divide at the VS and 

SVZ precursor cells at abventricular positions (Haubensak et al., 2004; Miyata et al., 2004; 

Noctor et al., 2004; Smart, 1976), PH3 was not only used for the detection of cells in M-phase 

but also as a marker to discriminate these two precursor populations (see for example Fig. 

24A).  

In a first set of experiments dividing precursor cells were quantified per hemisphere in cortex 

(ctx) and ganglionic eminence (GE) during development starting at E12, when the first SVZ 

cells become apparent until late neurogenesis at E16 in the Pax6Sey-/- mice. Loss of functional 

Pax6 protein in the telencephalon of the Pax6Sey-/- mice leads specifically to an increase in the 

percentage of abventricular dividing cells in the cerebral cortex (Fig. 27A). The proportion of 

cells dividing at abventricular positions in the cortex (ctx) reached levels that resemble the 

percentages of cells dividing at abventricular positions in the ventral telencephalon (GE) (Fig. 

27B), where hardly any Pax6 protein is expressed. Thus, the cerebral cortex of Pax6Sey-/- mice 

seems to achieve proliferative properties of the ventral telencephalon due to the loss of the 
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functional Pax6 protein. In order to assess which DNA-binding domains of Pax6 are involved 

in the regulation of cell proliferation in the cerebral cortex, quantification of PH3 positive 

cells was performed at E14 in the different Pax6 mutant alleles (Pax6Aey18-/-, Pax64Neu-/-, 

Pax6(5a)-/-) and compared to the phenotype of the functional null allele Pax6Sey-/-. To 

standardize the quantification, proliferation was quantified per area since alterations in 

proliferation can affect the size of the cortical hemispheres. Cells dividing at the VS and at 

non-surface positions were quantified over an area of 150 µm along the VS (see material and 

methods). Proliferation was strongly increased in the Pax6Aey18-/- mice as can be seen in the 

increased number of PH3 positive cells in the cortex (Fig. 24B). Quantification of dividing 

precursor cells revealed that the overall number of PH3 positive cells dividing at the ventricle 

in the Pax6Aey18-/- mice was not changed in comparison to the WT cortex, but exclusively the 

number of PH3 positive cells dividing at abventricular positions was significantly increased 

(2.7fold, see table 2). This phenotype was very similar to the functional null allele Pax6Sey 

(Fig. 24E), where a 2.4 fold increase in the number of the SVZ precursor cells was detected 

(see table 2). No changes in the number of PH3 positive cells were detectable in the HD 

mutant Pax64Neu-/- (Fig. 24D) or in the Pax6(5a)-/- mice (Fig. 24C) (table 2).  

Thus, the PD not only plays an important role in the regulation of neurogenesis, but is also 

involved in the regulation of cell proliferation in the dorsal telencephalon, whereas the HD 

seems to play no role in this regard.  

 

 

7.2.2.1 Interkinetic nuclear migration 

In contrast to SVZ precursor cells, VZ precursor cells undergo interkinetic nuclear migration. 

One possibility for the increased number of cells dividing at abventricular positions in the 

Pax6Sey-/- cortex could be that the interkinetic nuclear migration is disturbed (Götz et al., 

1998). In order to study changes in the interkinetic nuclear migration, BrdU, a DNA base 

analogon, which is incorporated into the DNA during S-phase of the cell cycle (Nowakowski 

et al., 1989), was injected intraperitoneally into time pregnant (E14) mice. BrdU is 

metabolized 30 minutes post injection (Packard et al., 1973) and can be detected by 

immunohistochemistry. A short pulse of 0.5 hour was used in order to detect cells in S-phase, 

which are localized at the basal side of the ventricular zone. In the WT cerebral cortex, a band 

of BrdU positive cells is detectable in the basal part of the ventricular zone after a BrdU pulse 

of 0.5 hour and the apical zone of the VZ is free of BrdU labelled nuclei (Fig. 28A). A long 

BrdU pulse of 6 hours was used to assess the translocation of the nuclei towards the VS. This 
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experiment showed that the VZ precursors have migrated from the basal to the apical end of 

the VZ in the WT cortex, forming a more or less compact band at the VS (Fig. 28C). Since 

BrdU labels all cells in S-phase (VZ and SVZ cells) the SVZ cells became apparent as a band 

above the basal VZ (see Fig. 29C, dashed white line). A 0.5 hour BrdU pulse in the Pax6Sey-/- 

revealed that cell nuclei are not located in a clear band as it is the case for the E14 WT cortex, 

but rather more spread all over the VZ with some nuclei located in the apical VZ, close to the 

VS (Fig. 28B). This impression persists in the 6 hour BrdU pulse (Fig. 28D). Although a 

certain portion of BrdU positive nuclei translocated to the VS, many BrdU labelled nuclei 

were displaced and spread all over the proliferative zone reaching even the pial surface 

(arrows in Fig. 28D) compared to WT. The analysis of the specific PD mutant Pax6Aey18-/- 

revealed similar a similar phenotype (Fig. 29B), as was detected in the functional null allele 

Pax6Sey-/- after a 0.5h and 6.0h BrdU pulse. In contrast, the HD mutant mice Pax64Neu-/- mice 

(Fig. 30B,D) and the Pax6(5a)-/- (Fig. 31B,D) did not show any changes in that regard after 

0.5 hour and 6.0 hours of BrdU pulse. Thus, a 0.5 and 6.0h BrdU pulse leads to a similarly 

altered phenotype in regard of the location of S-phase cells in the Pax6Sey-/- and Pax6Aey18-/- 

cortex compared to the WT. No differences were detected in the positions of S-phase cells in 

the cortex of Pax64Neu-/- and Pax6(5a)-/- mice, compared to the WT situation.  

Since Pax6 acts differently on cell proliferation in different regions of the CNS, the 

interkinetic nuclear migration of neuroepithelium cells in the eye has been studied as well (see 

below). 

 

 

7.2.3 The role of the different Pax6 DNA binding domains in telencephalic patterning 

Next the role of the PD and HD in mediating dorso-ventral patterning in the forebrain was 

examined. In the Pax6Sey-/- cortex hardly any Neurogenin (Ngn) 2 immunreactivity was 

detectable in the dorsal telencephalon (Fig. 32E), but corresponding to the graded expression 

of Pax6 (lateral/rostralhigh, medial/caudallow), Ngn2 was still detectable in medial and caudal 

regions in the cortex of Pax6Sey-/- and Pax6Aey18-/- mutants (Fig. 33). The expression domains 

of transcription factors expressed in the ventral telencephalon, such as Mash1, Gsh2 and 

Olig2, expand into the dorsally in the absence of Pax6 function (Heins et al., 2002; Stoykova 

et al., 2000; Toresson et al., 2000; Yun et al., 2001). Loss of a functional PD in the Pax6Aey18-

/- mutant causes precisely the same phenotype in the lateral cortex (Fig. 32A’; Fig. 34B) as 

detected in the Pax6Sey-/- mutant mice (Fig. 32D’), while no changes in the dorso-ventral 

patterning were observed in the cortex of the Pax6(5a)-/- (Fig. 32B’) and the HD mutant 
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Pax64Neu-/- (Fig. 32C’ and Fig. 34D,F). These findings further support the crucial role of the 

canonical PD in telencephalic development. 

The region of the telencephalon where the expression domains of dorsal and ventral 

transcription factor abut is the pallial-subpallial boundary (PSB) (Lumsden and Krumlauf, 

1996), which consists of a radial glia fascicle that is specified in the ventral most region of the 

Pax6 expression territory for example by the expression of secreted frizzled related protein 2 

(SFRP2), a putative Wnt-inhibitor (Kim et al., 2001). SFRP2 expression is lost at the PSB of 

the Pax6Sey-/- telencephalon (Kim et al., 2001; Fig. 35D’). The same phenotype was observed 

in Pax6Aey18-/- (Fig. 35B’) and interestingly also in the HD mutant Pax64Neu-/- (Fig. 35C’), 

while SFRP2 expression in the Pax6(5a)-/- telencephalon appeared normal (Fig. 35B’). The 

boundary specific marker reticulon-1 is specifically expressed in the radial glia fascicle of the 

PSB (Hirata et al., 2002) (see Fig. 36A,C), while no reticulon-1 expression is detectable in the 

telencephalon of the Pax6Sey-/- (Hirata et al., 2002 and Fig. 36E). In contrast to the 

telencephalon of functional null allele Pax6Sey-/-, reticulon-1 expression is detectable at the 

region of the PSB in the telencephalon of the Pax6Aey18-/- (Fig. 36B) and Pax64Neu-/- mice 

(Fig. 36D). However, no formation of the radial glia fascicle can be observed in these two 

mutants.  

Taken together, these results suggest that the HD and the PD cooperate in some aspects as for 

example the regulation of SFRP2 and reticulon-1 expression, but not all aspects of 

differentiation of the PSB. Other effects of Pax6 on dorso-ventral patterning, as the region-

specific expression of transcription factors depend predominantly on the PD of Pax6. 

 

 

7.2.4 Role of the Pax6(5a) isoform in vivo 

So far it became clear that the PD is the essential DNA-binding domain for the mediation of 

all aspects in cortical development that involve Pax6 as transcriptional regulator, although the 

specific deletion of exon5a in the Pax6(5a)-/- had no effect on cortical development at E14. In 

contrast to the other Pax6 mutants (Pax6Sey-/-, Pax6Aey18-/-, Pax64Neu-/-) analyzed in this work 

Pax6(5a)-/- mice are viable and grow into adulthood. The intriguing question that arises in 

this context is: What is the specific role of the alternatively spliced PD5a in the 

telencephalon?  
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7.2.4.1 Relative expression levels of Pax6(5a), canonical Pax6 and PD-less Pax6 

Nothing was known so far about the ratio of expression of the canonical Pax6 compared to the 

Pax6(5a) isoform in the developing cortex, thus expression levels were determined by RT-

PCR using WT cortical RNA of different developmental stages as template. Interestingly 

Pax6(5a) levels are increasing over time and are expressed almost at the same level as 

canonical Pax6 at E18 (Fig. 37B). As described above, the PD of the canonical Pax6 is able to 

bind to both paired domain consensus sites (P6CON and 5aCON), thus it might well be that 

the specific loss of the Pax6(5a) isoform is compensated by the canonical Pax6. In order to 

see whether the loss of Pax6(5a) leads to changes in the expression of canonical Pax6, real 

time RT-PCR on RNA from the early developing (E10, E11, E12) cortex has been performed. 

Indeed an increase in the expression levels of canonical Pax6 protein was detected. 

Interestingly, Pax6 expression increased to the same extend as the Pax6(5a) isoform is 

contributing to the overall Pax6 levels in the WT situation (10-15%, see Fig. 37C).  

As described above, alternative splicing leads not only to the generation of the Pax6(5a) 

isoform, but also to the generation of a PD-less Pax6 form. This isoform consists of the HD as 

DNA-binding domain and the TAD and has been found to be highly expressed in mouse brain 

(Mishra et al., 2002), but so far nothing is known about the specific expression of this isoform 

in the telencephalon. RT-PCR was performed in order to assess the expression levels of the 

PD-less Pax6 from E10–E18. Interestingly are the expression levels of the PD-less Pax6 form 

during the early development higher, while they are decreasing at the end of neurogenesis 

(Fig. 38A).  

 

 

7.2.4.2 Neurogenesis and cell proliferation in Pax6(5a)-/- during development 

In order to see whether the compensation of the loss of the Pax6(5a) expression in the 

Pax6(5a)-/- by canonical Pax6 at early developmental stages is also reflected in neurogenesis 

and the regulation of cell proliferation, immunohistochemistry against NeuN and PH3 has 

been performed. Indeed no differences were detectable in comparison to the WT, while in the 

cortex of the functional null mutant Pax6Sey-/-, neurogenesis was delayed and cell 

proliferation was not changed at E12. Thus, early in development (E12) until mid 

neurogenesis (E14, see above) no changes in regard to neurogenesis and cell proliferation 

were detected. Since the expression levels of canonical Pax6 and Pax6(5a) are almost equal at 

E18 it seems rather improbable that canonical Pax6 can compensate the specific loss of 
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Pax6(5a) at this stage. Therefore it might be possible that the Pax6(5a)-/- mice show a ‘late’ 

phenotype. Thus neurogenesis and cell proliferation were analyzed at E16 (Fig. 39) and at 

postnatal stage P2 (Fig. 40) in the cortex of the Pax6(5a)-/-, but no changes were detected. 

One region of the mouse brain where Pax6 expression in the adulthood is linked to 

neurogenesis is the olfactory bulb (OB) (Hack et al., 2005). Pax6Sey-/- mice are lacking OBs 

(Hogan et al., 1986) and develop instead an olfactory bulb like structure (OBLS) in the ventral 

telencephalon (Jimenez et al., 2000; Stoykova et al., 2003). In contrast, olfactory bulbs 

develop normally in the Pax6(5a)-/- (Fig. 41). Pax6 expression in the OB is mainly restricted 

to a subset of periglomerular interneurons, which are dopaminergic and located in the 

glomerular layer of the OB (Fig. 41E). In addition Pax6-immunoreactivity is detectable in the 

granular layer, where it is localized mostly in young doublecortin-immunoreactive neurons 

(Hack et al., 2005).  

Immunohistochemistry against thyrosine hydroxylase (TH), a rate limiting enzyme in the 

synthesis of dopamin, was used to understand the role of the Pax6(5a) isoform in the 

generation of dopaminergic periglomerular interneurons at P2, but no obvious changes in the 

TH positive neurons of the OB were detected (Fig. 41B,D), except that they appeared less 

organized and more scattered than in the WT (Fig. 41A,C). 

 

 

7.2.4.3 Radial glia morphology and changes in gliogenesis in the Pax6(5a)-/- 

The radial glia morphology in the Pax6Sey-/- mice that lack any functional Pax6 protein is 

slightly altered and seems disorganized (Fig. 42B,D,F), although the basement membrane was 

not altered (Fig. 42H). Possibly could the specific loss of exon5a influence the radial glia 

morphology, but no changes were detectable in the Pax6(5a)-/- mice during mid- (Fig. 43B,D) 

and late neurogenesis (Fig. 44F). Interestingly, the further analysis of glial markers at P2 

revealed that the glial marker BLBP is stronger expressed in the Pax6(5a)-/- mice (Fig. 44B), 

than in the WT (Fig. 44A), whereas RC2 and Glutaminsynthase (GS) expression (Fig. 44D) 

and GFAP expression were not altered. 
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7.3 The role of the different Pax6 DNA binding domains in patterning of 

the diencephalon 

The Ngn2 expression was also analyzed in the diencephali of the different Pax6 mutant 

alleles. In the E14 WT diencephalon Ngn2 expression occurs all along the ventricle in a thin 

band of cells and is expressed at higher levels in the dorsal and ventral regions, where Pax6 

expression occurs (Fig. 45). Ngn2 expression was detectable in the diencephali in the absence 

of functional Pax6 protein (Pax6Sey-/-) (Fig. 46), in the absence of a functional PD (Pax6Aey18-

/-) (Fig. 47), in the absence of HD DNA-binding (Pax64Neu-/-) (Fig. 48) and in the absence of 

exon5a (Pax6(5a)-/-) (Fig. 49). Thus the loss of functional Pax6 or the loss of a specific 

DNA-binding domain of Pax6 does not influence the expression of Ngn2 in the diencephalon 

in contrast to the telencephalon. 

 

 

7.4 The role of the different Pax6 DNA-binding domains in eye 

development 

As mentioned already above Pax6 is not only an important transcription factor in the 

developing telencephalon but fulfils as well a pivotal role in the developing eye.  

Very briefly, during eye development the optic vesicle (OV) evaginates from the presumptive 

ventral diencephalon and expands laterally towards the surface ectoderm (SE) in the head 

region at E8 (Fig. 50). A brief contact between optic vesicle and surface ectoderm is followed 

by the invagination of the optic vesicle and thus the formation of the two-layered optic cup 

(Fig. 50). Upon this, thickening of the surface ectoderm is induced and leads to the formation 

of the lens placode which invaginates from the SE to form the lens (Fig. 50). At these stages 

Pax6 is expressed in the optic vesicle and in the overlying surface ectoderm. As development 

proceeds, Pax6 expression becomes restricted to the inner layer of the optic cup (presumptive 

neuroretina), the surface ectoderm (presumptive cornea) and the lens. Upon completion of the 

eye development, Pax6 expression is confined to the neural retina, the cornea and the lens 

epithelium. The formation and proper positioning of the developing eye depends on the 

interaction of Pax6 and other transcription factors. Early Pax6 and Pax2 are coexpressed in 

the optic vesicle (Bäumer et al., 2003), later Pax2 expression is restricted to the ventral optic 

cup and is finally confined to the optic stalk. The promotor region of Pax6 contains a putative 

binding site for Pax2 and vice versa. Both transcription factors are repressing each other and 

hence form the boundary between neuroretina and optic stalk (Schwarz et al., 2000). No eyes 
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develop in the absence of functional Pax6 protein in the Pax6Sey-/- mice (Grindley et al., 1995; 

Hill et al., 1991). The optic vesicle expands laterally in order to contact the surface ectoderm. 

The surface ectoderm in the homozygous Pax6 null mutants is devoid of Pax6 expression 

(Grindley et al., 1995) and fails to form lens placode and lens pit (Hogan et al., 1988; Hogan 

et al., 1986), thus no lens develops. The optic vesicle does not invaginate properly and thus no 

optic cup formation can be observed and no retinal pigmented epithelium (RPE) develops 

(Grindley et al., 1995). In the remnant eye vesicle do the first neurons develop precociously at 

E10, but then they die and are not detectable anymore at E14 (Philips et al., 2005). 

Here I analyzed the roles of the different DNA-binding domains of Pax6 in the regulation of 

neurogenesis, cell proliferation and regionalisation in the developing eye at E14. 

Loss of a functional PD in the Pax6Aey18-/- mice (Haubst et al., 2004) and loss of a functional 

HD in the Pax64Neu-/- mice (Favor et al., 2001) leads to the absence of eye formation, whereas 

in case of specific loss of the Pax6(5a) isoform in the Pax6(5a)-/- mice (Singh et al., 2002) 

eye development occurs, even though with morphological aberrations (Singh et al., 2002).  

 

 

7.4.1 The influence of the different Pax6 DNA-binding domains on neurogenesis in the 

eye 

Within the eye remnant that is detectable in the Pax6Sey-/-, Pax6Aey18-/- and Pax64Neu-/- mice at 

E14 retinal tissue was identified by the presence of nestin positive neuroepithelial cells. The 

lens was not detectable in the Pax6Sey-/- mice, whereas some lens remnants were occasionally 

detected in the Pax6Aey18-/- and Pax64Neu-/- mutants (for Pax64Neu-/- see e.g. Fig. 52B). In 

order to assess whether any neurons are detectable at E14 in the above described mutant Pax6 

alleles immunohistochemistry against βIII-Tubulin as a marker for young postmitotic neurons 

was performed. No βIII-Tubulin positive cells were detectable at E14 in the Pax6Sey-/- mice 

(Fig. 51B), while a considerable number of βIII-Tubulin-immunoreactive cells were present 

in the Pax6Aey18-/- mice (PD mutant) (Fig. 52A) and less in the Pax64Neu-/- mice (HD mutant) 

(Fig. 52B). In the Pax6(5a)-/- mice no changes in neurogenesis were detectable in comparison 

to the WT control (compare Fig. 51A and Fig. 52C). In total 7 different cells types (six 

neuronal subtypes and Müller glia) are present in the eye, which are generated in a sequential 

time restricted manner. Among the first neuronal cells generated are the retinal ganglion cells. 

In order to see whether retinal ganglion cells develop in the absence of a functional PD, PD5a 

or HD immunohistochemistry against Islet1 and Brain3a (Brn3a) has been performed in the 

different Pax6 mutants. No Islet 1 or Brn3a positive cells were detectable in the eye remnant 
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of the Pax6Sey-/- mice (Fig. 53B), while Islet 1 and Brn3a positive cells were detectable in the 

Pax6Aey18-/- mice (Fig. 53C), Pax64Neu-/- mice (Fig. 53D) and in the Pax6(5a)-/- mice (Fig. 

53E). The retinal pigment epithelium is visible in WT by the normal ‘white’ light of the 

microscope (Fig. 53A’). In the functional null allele Pax6Sey-/- the development of the RPE 

fails (Grindley et al., 1995), while the same phenotype was observed in the Pax6Aey18-/- 

mutant eye vesicle, occasionally some RPE was detectable at the outer surface of the eye 

vesicle in the Pax64Neu-/- mice (Fig. 53D’, red arrow), whereas the RPE developed normally 

in the Pax6(5a)-/- (Fig. 53E’).  

Thus, taken together, in contrast to the developing telencephalon both DNA-binding domains, 

PD and HD, play a role in the regulation of neurogenesis in the developing eye. Mutants of 

each DNA-binding domain exhibit a phenotype with severe eye malformation and reduced 

neurogenesis, suggesting that the lack of each domain impairs neurogenesis. However, only if 

no Pax6 protein is present, neurogenesis fails completely. 

 

 

7.4.2 The role of the different Pax6 DNA-binding domains in the regulation of cell 

proliferation in the eye 

Since Pax6 is involved in the regulation of cell proliferation in the eye (Marquardt et al., 

2001), cell proliferation was also analyzed in the eye of Pax6(5a)-/- and the remnant eye 

vesicles of Pax6Sey-/-, Pax6Aey18-/- and Pax64Neu-/- mutants by immunohistochemistry against 

PH3. In the functional null allele Pax6Sey-/- the number of PH3 positive cells is strongly 

decreased in the tissue remnant of the eye (Fig. 51B). Loss of a functional PD (Pax6Aey18-/-) 

(Fig. 52A) and HD (Pax64Neu-/-) (Fig. 52B) leads as well to a decrease in the number of PH3 

positive cells, whereas no obvious alterations in the number of PH3 positive cells were 

detected in the eye of the Pax6(5a)-/- mice at E14 (Fig. 52C). In contrast to the developing 

telencephalon loss of a functional Pax6 protein leads to a decrease in cell proliferation and 

these results show that both DNA binding domains, PD and HD are required for the 

regulation of cell proliferation in the developing eye. 

 

 

7.4.2.1 Interkinetic nuclear migration in the eye  

Since the interkinetic nuclear migration is a general feature of neuroepithelial cells, it takes 

also place in the neuroepithelium of the developing eye. To detect cells in S-phase BrdU was 
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administered for 0.5 hour and 6 hours (see also above). Indeed after 0.5h BrdU pulse cells in 

S-phase were detectable at the most basal side of the neuroepithelium, close to the zone where 

the postmitotic neurons are located and after 6 hours cell nuclei translocated to the side of the 

epithelium, where cells divide (RPE side) (see arrow Fig. 54). In contrast to the telencephalon 

no SVZ cells or basal precursors were detectable in the retina at E14. In the functional null 

allele Pax6Sey-/- interkinetic nuclear migration was detectable to a certain extent, despite the 

general decrease in cell proliferation (Fig. 54B,D). Also in the PD mutant mice (Pax6Aey18-/-) 

(Fig. 55B,D) and HD mutant mice (Pax64Neu-/-) (Fig. 56B,D) interkinetic nuclear migration 

occurred normally. BrdU labeled nuclei were located at the basal side of the proliferative zone 

after a 0.5 h BrdU pulse, in some distance to cells in M-phase (PH3 positive) cells, which are 

located at the most apical site of the proliferative zone. Whereas during a 6.0 hour BrdU pulse 

most cell nuclei migrated towards the apical surface at the positions were cells undergo M-

phase. Cell proliferation was strongest decreased in the Pax6Sey-/-, followed by a less strong 

decrease in the PD mutant Pax6Aey18-/-. Cell proliferation in the Pax64Neu-/- (lacking HD 

DNA-binding seemed even a bit less decreased than in the Pax6Aey18-/- (compare Fig. 55 and 

Fig. 56). 

Taken together, interkinetic nuclear migration takes place in the absence of functional Pax6 

protein in the remnant eye vesicle of Pax6Sey-/- to certain extent and was clearly detectable 

after a 0.5h and 6.0h BrdU pulse in the remnant eye vesicle of the Pax6Aey18-/- (PD mutant) 

and Pax64Neu-/- (HD mutant).  

 

 

7.4.3 The influence of the Pax6 DNA binding domains on regionalisation -boundary 

formation between the optic stalk and the neuroretina 

As described above, Pax6 and Pax2 repress each other by binding to the enhancer region of 

the respective other gene. Pax2 expression is restricted to the optic stalk, while Pax6 is 

expressed in the inner neuroretina in the E14 WT eye (see Fig. 57A). In the homozygous 

functional null allele Pax6Sey-/-, Pax2 expression expands in the eye vesicle at E12 (Fig. 57C). 

This expansion persists at E14 in the Pax6Sey-/-, however, the Pax2 expression occurs more 

patchy than at E12 (Fig. 57C,E). Here I analyzed which DNA-binding domains of Pax6 are 

required for the transcriptional repression of Pax2. In the case of loss of a functional PD 

(Pax6Aey18-/-) (Fig. 58B), Pax2 expression expands as well into the remnant eye tissue. In the 

HD mutant (Pax64Neu-/-) only single Pax2 positive cells were detectable in the pseudo-optic 

cup (Fig. 58D) and in general the expansion was not as strong as in the Pax6Sey-/- mice (Fig. 
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57E). In contrast, the targeted deletion of exon5a in the Pax6(5a)-/- mice (Fig. 58F) did not 

alter Pax2 expression, also not at later developmental stages (P2, see Fig. 41F,G). Taken 

together, both DNA-binding domains of Pax6 seem to be required for the repression of Pax2 

expression in the neuroretina, however it seemed that Pax2 expansion was less strong in the 

Pax64Neu-/-. 

In summary these results show that in the developing eye, in contrast to the developing 

telencephalon both DNA-binding domains of Pax6 are contributing to the regulation of 

neurogenesis and cell proliferation. Furthermore both DNA-binding domains are required for 

the restriction of the Pax2 expression to the optic stalk domain. 

 

 

7.5 The role of the PD and PD5a in regard to cell proliferation and 

differentiation 

In order to separate the roles of canonical Pax6 and Pax6(5a) isoform in the regulation of 

neurogenesis and cell proliferation gain-of function experiments were performed. Replication-

incompetent retroviruses containing either only LacZ as a marker (encoding for β-

Galactosidase (β-Gal)), (BAG =control virus, Williams et al., 1991), or LacZ followed by an 

IRES and the Pax6 gene (Heins et al., 2002), or LacZ followed by an IRES and the Pax6(5a) 

gene (Haubst et al., 2004) (Fig. 59) were used. The progeny of single infected cells was 

analyzed after 7 days in vitro (div). Retroviruses infect dividing cells only during cell 

division. The virus is inherited by one daughter cell and the viral DNA integrates into the host 

DNA. The progeny of a single infected cell represents a cell clone and was detected by 

immunohistochemistry against β-Gal (Heins et al., 2001; 2002; Williams et al., 1991). This 

experiment allowed to assess the cell-autonomous role of the Pax6 isoforms in regulating 

neurogenesis and cell proliferation. After 7 div the clonal composition was assessed by 

immunohistochemistry against NeuN for neurons, O4 for oligodendrocytes, GFAP for 

astrocytes and RC2 or anti-nestin for undifferentiated precursors. Accordingly to the cell 

composition, clones were classified as pure neuronal clone, when only neurons were present, 

as mixed when the clone contained besides neurons also other cells and a pure non-neuronal 

when no neurons were detectable. Overexpression of Pax6 with a canonical PD in cells from 

E14 WT cortex led to a significant increase in the percentage of pure neuronal clones, on the 

expense of the glial clones (astrocytes 3% of clones, n=249; oligodendrocytes 0% of clones, 

n=81) (Fig. 59A,C).  
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In contrast, overexpression of Pax6(5a) did not influence the cell fate, since no increase in 

neurogenesis was detectable (Fig. 59A,C) and the percentage of glial clones generated was 

comparable to the control situation (astrocytes 11% of clones, n=137; oligodendrocytes 7% of 

clones, n=103). The proneuronal bHLH transcription factor Mash1 (Casarosa et al., 1999) is 

involved in patterning and cell fate decisions in the ventral telencephalon and expands 

dorsally in the absence of functional Pax6 protein (Fig. 32). Upon overexpression of canonical 

Pax6 the number of Mash1 positive cells was significantly downregulated (2% of clones 

compared to 14% of clones in the control), whereas no effect was detectable upon Pax6(5a) 

overexpression in the number of Mash1 positive cells (18% of clones).  

The same set of experiments was performed on the functional null background in cortical 

cells from E14 Pax6Sey-/- mice. The control situation (BAG) showed that significantly less 

pure neuronal clones were generated in the absence of functional Pax6 protein. 

Overexpression of canonical Pax6 not only rescued, but even led to a significant increase in 

the percentage of pure neuronal clones generated, while the overexpression of Pax6(5a) had 

no effect on neurogenesis even in the absence of Pax6. Since canonical Pax6 is able to bind to 

both consensus sites (P6CON and 5aCON), while Pax6(5a) binds to 5aCON sites only, these 

results suggest that the regulation of target genes mediating the neurogenic effect of Pax6 

depends on the P6CON site and that the neurogenic effect of Pax6 is mediated by the 

canonical PD. Besides the role of the Pax6 isoforms in the regulation of cell fate decisions, 

also the regulation of cell proliferation upon overexpression of canonical Pax6 and 

Pax6(5a)was studied. Both isoforms lead to a significant decrease in the number of cells 

generated per clone. Interestingly, overexpression of Pax6(5a) reduced cell proliferation, i.e. 

clonal size independent from the cell type (neuronal or glial) (Fig. 59D). 

In summary it may be said that the Pax6(5a) isoform reduces cell proliferation independently 

of cell fate, while canonical Pax6 couples the reduction of cell proliferation with cell fate 

decisions, i.e. neurogenesis. 

 

 

7.6 The effect of Pax6 overexpression on proliferation and cell cycle length 

In order to assess which parameters of the cell cycle are influenced by Pax6, cell proliferation 

was analyzed upon Pax6 overexpression in three different sets of experiments using the 

cumulative BrdU labeling method (CLM) (Nowakowski et al., 1989). BrdU is incorporated 

into the DNA of proliferating cells during S-phase and can be detected by 
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immunohistochemistry. The ratio of cells in S-phase (BrdU positive) at a given timepoint to 

the total number of proliferating cells (Ki67 positive) gives the labeling index (LI). BrdU 

labeling of the proliferating cells progresses successively over time, since all proliferating 

cells undergo S-phase at some point and since BrdU was present in a sufficient concentration 

in the cell culture medium all the time (Fig. 60A). E14 WT cortical cells were infected with β-

Gal (BAG) or Pax6 containing retrovirus, cultured for 2 div and BrdU was administered for 

0.5, 2.0, 4.0, 8.0 hours prior to fixation. This cumulative BrdU labeling allowed the 

determination of the cell cycle length and the S-phase length of E14 WT cortical cells in the 

control situation (BAG-infected cells) and upon Pax6 overexpression in vitro. 

Immunohistochemistry against β-Gal has been performed in order to detect retrovirus infected 

cells per clone, against Ki67 to reveal the proliferating cells per clone and against BrdU to 

assess the cells that went through S-phase during BrdU administration. The cell proliferation 

upon Pax6 overexpression has been studied by calculating the growth fraction (GF= ratio of 

proliferating cells (Ki67 positive) to the entire pool of retrovirus infected cells (β-Gal 

positive)). The cell cycle and S-phase length were determined by calculating the labeling 

index (LI= percentage of cells in S-phase (BrdU labeled nuclei) among all proliferating cells 

(Ki67 positive)). As third value the ratio of BrdU labeled nuclei among all β-Gal positive cells 

has been determined. The shortest BrdU pulse duration was 0.5 hour prior to fixation, labeling 

all proliferating cells in S-phase at that time, thus the fraction of proliferating cells in the first 

pulse is equal to TS/TC. The labeling index is the proportion of cells labeled in the total 

population at a given time, thus i.e. the first BrdU pulse labels at t=0, LI0=TS/TC. The LI was 

determined for the different times of BrdU exposure. The time when all proliferating (Ki67 

positive) cells are BrdU labelled, gives the total cell cycle length (TC) minus the length of S-

phase (TS) (TC - TS) (see Fig. 60A). The point where the slope crosses the x-axis gives the 

length of S-phase (TS). The crossing point of the y-axis gives the LI at the time 0 (t=0, 

LI0=TS/TC) (Fig. 60A). The slope was calculated using the equation y= p*q+x. TC - TS was 

calculated setting y= 100, TS was calculated setting x= 0. 

The determination of the GF showed that upon Pax6 overexpression proliferation is 

significantly decreased (p= 0.017). In average 55,4% of cells per clone are proliferating in the 

Pax6 overexpression situation compared to 70,5% in the control situation. The value obtained 

for the GF of WT BAG-infected cortical cells does not significantly differ (p= 0.05) from the 

GF value obtained in WT BAG-infected cells in the analysis of the cell proliferation in vitro 

upon loss of functional Pax6 (see below 7.4.2). 
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The total cell cycle length (TC) length upon Pax6 overexpression was 17,2 hours compared to 

17,2 hours in the control situation (Fig. 60B). The TS duration in the control situation was 4,1 

hours, while Pax6 overexpression lead to a TS of 4,4 hours. Thus the overexpression of Pax6 

did not lead to significant changes in the cell cycle and S-phase length. 

 

 

7.7 Loss of functional Pax6 and the effect on cell proliferation in vitro 

As described above, in the absence of functional Pax6 protein more cells are proliferating at 

abventricular positions in the dorsal telencephalon (see Fig. 24E, 27A and table 2). In 

addition, the PSB does not form and increased cell migration from the ventral into the dorsal 

telencephalon takes place in the Pax6Sey-/- (Chapouton et al., 1999). In order to exclude that 

the increased number of cells dividing at abventricular positions in the cortex of Pax6Sey-/- 

mice originates from the ventral telencephalon, where no Pax6 is expressed, the proliferative 

behavior of Pax6Sey-/-cortical cells was analyzed in vitro. Cells from E14 WT and Pax6Sey-/- 

cortex were infected with the β-Gal containing retrovirus (BAG), cultured for 2 div and BrdU 

was added to the culture medium 0.5 hour prior to fixation in three different sets of 

experiments.  

Also in vitro cell proliferation was significantly increased (p= 7.7x10-8) in the cortical cells of 

Pax6Sey-/- (GF: 88,7%), while in the WT cortical cells only 64,7% were proliferating (Fig. 

61). No significant changes were detected in the LI in the cortical cells of Pax6Sey-/- mice (LI: 

BrdU/Ki67: 21,1%) compared to 17,2% in the WT cortical cells (Fig. 61 to the left; p= 

0.208), while the ratio of BrdU labeled cells to the total cells (β-Gal positive) was 

significantly increased (p= 0.00568) in the Pax6Sey-/- (19,2%) compared to the WT cortical 

cells (11,1%), reflecting the overall increase in cell proliferation.  

Thus this experiment showed that the changes in cell proliferation in the cortex of the Pax6Sey-

/- mice arise because of cell intrinsic changes, i.e. loss of functional Pax6 protein. 

 

 

7.8 Loss of a functional PD and the effect on neurogenesis in vitro 

As described above, neurogenesis is impaired in the cortex of the Pax6Aey18-/-. In order to 

exclude that the impairment in neurogenesis is compensated by enhanced cell migration from 

the ventral into the dorsal telencephalon in the Pax6Aey18-/- and to test whether the changes in 

regard to neurogenesis are cell intrinsic, neurogenesis of the Pax6Aey18-/- mice was analyzed 
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in vitro. E14 WT and Pax6Aey18-/- cortical cells were infected with a control virus carrying β-

Gal as a marker (BAG, Williams et al., 1991) and cultured for 7 div. Neurogenesis was 

assessed by immunohistochemistry against NeuN and βIII-Tubulin. The in vitro data 

confirmed the in vivo findings. Significantly less neurons were generated from the Pax6Aey18-

/- cortical cells (39,4% neurons among β-Gal positive cells ± 4,3 (s.d); n= 414 cells) 

compared to the WT situation (56% neurons among β-Gal positive cells ± 4,8 (s.d); n= 346 

cells) (Fig. 62). This means that the changes in neurogenesis are cell autonomous due to the 

lack of a functional PD in the Pax6Aey18-/- mice. 

 

 

7.9 Determination of the apoptosis rate in retrovirus infected cell cultures 

In order to examine whether the retroviruses used and/or high levels of Pax6 expression have 

an influence on apoptosis, WT cortical cells were infected either by BAG, Pax6 or Pax6(5a) 

retroviruses, cultured for 2 div and immunostained against β-Gal for the detection of cells 

generated by one clone, against NeuN for the determination of neurons generated and 

chromatin was counterstained with DAPI in order to detect pyknotic nuclei for the 

determination of the apoptosis rate in the viral infected clones. In the control situation (BAG 

and 1726) only 1% of pyknotic nuclei was detected (n= 373 cells), whereas no apoptosis was 

detected upon overexpression of Pax6 (n= 205 cells) and Pax6(5a) (n= 125 cells).  

 

 

7.10 Construction of Pax6 retroviral vectors 

7.10.1.1 PD-less Pax6 virus 

As mentioned already, alternative splicing leads also to the generation of the PD-less Pax6 

isoform, consisting of the HD as DNA-binding domain and the TAD (Mishra et al., 2002). 

PD-less Pax6 expression levels are changing in the developing telencephalon from high 

expression levels at E10 to decreased levels at E18 (see above 7.2.4.1). So far, nothing is 

known about the role of this isofom during development. Thus, I constructed a replication 

incompetent retroviral vector, containing the coding sequence (CDS) of the PD-less Pax6, 

followed by an IRES and the CDS of GFP, which might provide a new tool for the 

examination of the role of the PD-less Pax6 protein. 
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7.10.1.2 Pax6 containing a mutation in the HD (PM776) 

Since the loss of a functional HD had only subtle effects in the developing telencephalon (loss 

of SFRP2 expression, no formation of radial fascicle at the PSB), a retroviral vector lacking 

DNA-binding of the HD has been constructed. The Pax6 CDS contained a pointmutation in 

helix III at position 776bp, leading to the same mutant Pax6 form as present in the Pax64Neu-/- 

(Favor et al., 2001). The mutated Pax6 CDS is followed by an IRES and the CDS of GFP. 

This viral construct might provide a new tool for the overexpression of a Pax6 contianing a 

mutated HD, to gain further insights in the role of the HD in regard to neurogenesis and cell 

proliferation. 

 

 

7.11 Approach for the analysis of Pax6 target genes 

In order to assess genes that are directly or indirectly regulated by Pax6 in the developing 

telencephalon E13 embryos were co-electroporated ex vivo either with GFP expressing 

control vector or Pax6 containing vector coelectroporated with GFP expressing vector. The 

electroporated cortices were initially kept in vitro for 2 days but this time proved too short to 

detect upregulation of candidate genes thus it had to be increased to 3 div (Fig. 63A,B). GFP 

expression was already detectable after 1 div. However, when explants were cultured for 3 

days, a significant increase of the known target Ngn2 was observed by RT-PCR (Fig. 63C). 

Further electroporations were performed to collect sufficient amounts of RNA (2-6µg) to 

examine expression differences upon Pax6 transduction using affymetrix microarrays. 
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8 Figures and Tables 
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Table 1: Quantitative analysis of cell proliferation in the basement membrane mutants LNγ1 

mutant and in the α6 integrin-/- 
  

 Proliferation/Area 

(number of PH3+ 

cells per 100µm2) at 

Ventricular surface 

Proliferation/Area 

(number of PH3+ 

cells per100µm2) at 

Subventricular zone* 

Proliferation/Area 

(total number of 

PH3+ cells per 

100µm2) 

Percent 

abventricular 

PH3+ cells 

per 100µm2 

WT 

LNγ1mutant 

3,2 ± 0,433 

3,1 ± 0,580 

0,9 ± 0,244 

1,1 ± 0,362 

4,1 ± 0,600 

4,2 ± 0,849 

20,9 ± 4,732 

26,2 ± 5,499 

WT 

α6 integrin-/- 

2,6 ± 0,367 

2,3 ± 0,476 

0,9 ± 0,105 

0,9 ± 0,346 

3,4 ± 1,146 

3,2 ± 0,826 

25,5 ± 1,281 

26,7 ± 3,585 

 

All values given as mean ± s.d. with WT to LNγ1mutant n= 43, LNγ1mutant n=51; WT to α6 integrin-/- n=39, 

α6 integrin-/- n= 50 

 

*including uSVZ in LNγ1mutant 

 

 

 

Table 2. Quantitative analysis of the phenotypes of mouse mutants with specific defects in 

Pax6 DNA-binding domains 

 
 Ratio of thickness of  

cortical plate (neurons)/ 

thickness of entire cortex 

Proliferation/Area 

(number of PH3+ 

cells per radial stripe 

of 150µm) at 

Ventricular surface 

Proliferation/Area 

(number of PH3+ 

cells per radial stripe 

of 150µm) at 

Subventricular zone 

Proliferation/Area 

(total number of 

PH3+ cells per 

radial stripe of 

150µm) 

Percent 

abventricular 

mitosis per 

hemisphere  

WT 

Pax6Aey18-/- 

0.25 ± 0.039 

0.21 ± 0.0311 p<0.009 

13.9 ± 4.2  

12.8 ± 2.5 p<0.453 

4.9 ± 2.6 

13.3 ± 2.9 p<1.8*10-7 

18.8 

26.1  

24.2 ± 5.2 

42.0 ± 8.7 

WT 

Pax6(5a)-/- 

0.25 ± 0.070 

0.22 ± 0.064 p<0.1 

11.8 ± 2.0 

12.3 ± 3.4 p<0.661 

5.9 ± 3.1 

4.3 ± 2.1 p<0.143 

17.7 

16.6  

26.1 ± 6.0 

25.4 ± 4.2 

WT 

Pax64Neu-/- 

0.23 ± 0.055 

0.23 ± 0.029 p<0.8 

15.1 ± 5.3 

13.1 ± 3.8 p<0.311 

6.3 ± 4.5 

5.9 ± 3.8 p<0.847 

21.4 

19  

29.7 ± 7.4 

27.2 ± 5.5 

WT 

Pax6Sey-/- 

0.23 ± 0.035 

0.17 ± 0.041 p<0.0007 

16.3 ± 6.3 

17.1 ± 5.6 p<0.831 

7.8 ± 6.7 

19.1 ± 5.6 p<9.8*10-5 

24.1 

36.2  

16.0 ± 6.9 

35.8 ± 5.2 

 

All values given as mean ± s.d. with n=12 
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9 Discussion 

In this work, intrinsic and extrinsic cues in the developing telencephalon and eye have been 

analyzed with respect to the regulation of cell proliferation, neurogenesis and regionalisation. 

The transcription factor Pax6 is a potent cell intrinsic regulator of cell proliferation, 

neuogenesis and regionalisation. Pax6 is expressed in the radial glia cells of the 

telencephalon, which constitute the majority of precursor cells in the VZ during neurogenesis. 

The analysis of specific mouse mutants allowed assessing the functional roles of the different 

DNA-binding domains of Pax6. We could show that the canonical PD is necessary and 

sufficient to regulate all developmental functions of Pax6 in the telencephalon, while the 

alternative splice variant of the PD (PD5a) specifically affects cell proliferation without 

affecting cell fate or patterning. In contrast, mutation of the HD affected only subtle aspects of 

the boundary delineating the dorsal and ventral telencephalon. The canonical PD binds to both 

Pax6 consensus sites (P6CON and 5aCON), whereas the PD5a binds to 5aCON sites only, 

thus these results suggest that neurogenesis is regulated by target genes containing P6CON 

sites, while cell proliferation is regulated via 5aCON target sites. In contrast to the developing 

telencephalon, where the HD plays only a minor role in the regulation of neurogenesis, cell 

proliferation and regionalisation, both Pax6 DNA-binding domains (PD and HD) contribute to 

the regulation of these aspects in the developing eye. 

Radial glia cells do not only depend on the cell intrinsic factors, but are also exposed to 

extrinsic signals that might regulate the key developmental processes cell proliferation and 

neurogenesis. Thus, the influence achieved by the attachment of radial glia endfeet to the 

basement membrane on the proliferative behavior and cell differentiation has been studied. 

The analysis of the LNγ1 mutant, lacking the contact of radial glia cells to the basement 

membrane and the α6 integrin-/-, characterized by the improper basement membrane 

assembly, let us conclude that neither the detachment of radial glia endfeet nor the improper 

assembly of the basement membrane affects cell proliferation and neurogenesis in the 

developing telencephalon. 
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9.1 The role of Pax6 in the regulation of cell proliferation in the cerebral 

cortex 

Two proliferative populations are present in the developing telencephalon, the VZ originating 

from the early neuroepithelium, and the SVZ (Smart, 1976) that becomes apparent with the 

onset of neurogenesis at E12 and originates from the VZ (Noctor et al., 2004). Loss of 

functional Pax6 protein in the Pax6Sey-/- mice leads to an increase in cell proliferation in the 

cortex (Estivill-Torrus et al., 2002; Götz et al., 1998). The quantification of cells dividing at 

the ventricular surface (VS), corresponding to VZ precursor cells, versus cells dividing at 

abventricular positions (SVZ positions) in the cerebral cortex of Pax6Sey-/- mice revealed that 

especially the number of cells dividing at abventricular positions is increased during cortical 

neurogenesis. The Pax6Sey-/- allele leads to the generation of a non functional truncated 

protein, lacking the transactivating domain. So far, nothing was known about the roles of the 

different Pax6 DNA binding domains (PD, PD5a and HD) in the regulation of cell 

proliferation. Our in vivo analysis of the Pax6Aey18-/- allele showed that the loss of a 

functional PD under preservation of a functional HD and TAD in the Pax6Aey18-/- mutant 

leads to the same cell proliferation phenotype as in the functional null allele Pax6Sey-/-, also at 

the quantitative level. In contrast, no changes in cell proliferation were observed in the cortex 

of the Pax64Neu-/-, lacking specifically HD DNA-binding and in the cortex of the Pax6(5a)-/-, 

lacking specifically exon5a of the PD. Thus, we could demonstrate that the PD of Pax6 is 

required for the regulation of cell proliferation in the cerebral cortex. 

What could be the reason for the increase in the number of precursors at abventricular 

positions? Several markers have been reported recently for the identification of neuronal SVZ 

precursors, as for example the homeodomain transcription factors Cux1, Cux2 (Nieto et al., 

2004; Zimmer et al., 2004), the non-coding RNA Svet1 (Tarabykin et al., 2001) and the T-

domain transcription factor Tbr2 (Englund et al., 2005). All these markers are lost in the SVZ 

cells of the functional null allele Pax6Sey-/- and at the same time, upper layer neurons are 

absent in the cortex of the Pax6Sey-/- mice (Englund et al., 2005; Nieto et al., 2004; Tarabykin 

et al., 2001; Zimmer et al., 2004). The analysis of Svet1 and Tbr2 expression in the specific 

mutant Pax6 alleles showed that an intact PD is required for the expression of these genes, 

since the loss of a functional PD in the cortex of Pax6Aey18-/- mice led to the absence of Svet1 

and Tbr2, while both were detectable in the Pax64Neu-/- (HD mutant) and the Pax6(5a)-/-. The 

expression of Svet1, Cux2 and Tbr2 correlates with the generation of upper layer neurons 

(Englund et al., 2005; Nieto et al., 2004; Tarabykin et al., 2001; Zimmer et al., 2004) in the 
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cortex, thus it might be that their loss leads to an ongoing cell proliferation, associated with 

the lack of neuronal differentiation in the mutant Pax6 alleles Pax6Sey-/- and Pax6Aey18-/-.  

Another possibility for the increased number of proliferating cells at abventricular positions in 

the cortex of the Pax6Sey-/- could be that the apoptosis rate is changed due to the loss of 

functional Pax6 protein, but immunohistochemistry against activated caspase-3 in the cerebral 

cortex of WT and Pax6Sey-/- at E14 did not show any differences in that regard.  

Further, it could also be that the increased SVZ in the cortex of Pax6Sey-/- mice develops due 

to changes in cell migration in the telencephalon. The pallial-subpallial boundary (PSB) is lost 

in the telencephalon of the Pax6Sey-/- (Stoykova et al., 1997) and as one consequence, 

increased cell migration from the ventral into the dorsal telencephalon takes place (Chapouton 

et al., 1999). In order to determine whether the increased SVZ develops (i) on account of 

increased cell migration of precursor cells from the ventral telencephalon into the cerebral 

cortex or (ii) due to cell autonomous changes, cortical cells were isolated form WT and 

Pax6Sey-/- at E14 and cultured for 2 days in vitro (div). Prior to fixation the DNA-base 

analogon BrdU was added to the culture medium. This enabled us to determine the labeling 

index (LI= ratio of BrdU positive cells to total number of proliferating cells). Cells in S-phase 

incorporate BrdU in the DNA, thus a short BrdU pulse reveals possible changes in S-phase of 

the cell cycle or changes in the proliferation rate. No significant changes in the LI were 

detected between cortical cells form WT and Pax6Sey-/-, thus no changes in S-phase of the cell 

cycle seem to occur. However, the determination of the growth fraction (GF= ratio of 

proliferating cells to total cell number) showed a significant increase in the GF in cortical 

cells isolated from Pax6Sey-/- compared to cortical cells of corresponding WT littermates, 

which means that cell proliferation is indeed increased in the cortex of Pax6Sey-/- mice. This 

increase might be based on a cell autonomous effect, namely the loss of functional Pax6 

protein.  

In order to determine whether Pax6 acts cell autonomously on cell proliferation, gain-of-

function experiments were performed. The analysis of cell proliferation in the Pax6Aey18-/- 

cortex showed that the PD is the important DNA-binding domain for the regulation of cell 

proliferation. However, it was not yet clear, whether Pax6 with a canonical PD, or Pax6 

containing the alternatively spliced PD (PD5a) is required in this regard. Hence we 

determined the specific roles of the PD and PD5a in the regulation of cell proliferation, using 

a retroviral vector containing either the canonical Pax6 or the alternative splice variant 

Pax6(5a). Here we could show that both isoforms, canonical Pax6 and Pax6(5a), decrease the 

number of cells generated per clone after 7 div in WT and even in Pax6Sey-/- cortical cells, 
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which means that both isoforms of the PD are able to regulate cell proliferation. Thus, the 

decrease in cell proliferation upon Pax6 overexpression in individual cortical precursors 

together with the increase in cell proliferation in vivo and in vitro in cortical cells upon loss of 

functional Pax6 protein (Pax6Sey-/-), argues strongly for a cell autonomous effect of Pax6 on 

cell proliferation. 

The next question we asked was: How can Pax6 overexpression lead to a decrease in cell 

proliferation? First of all it could be that high levels of Pax6 protein are inducing apoptosis. 

We could exclude this possibility, since no changes in apoptosis (assessed by quantification of 

pyknotic nuclei in the infected clones) were detectable in cortical cells infected with control 

virus or Pax6 containing virus. Another possibility could be that Pax6 leads to a slower cell 

cycle, thus less cell divisions occur per time unit. Alternatively it could be that Pax6 

overexpression leads to an increase in cell differentiation, thus more cells exit the cell cycle. 

In order to test for these possibilities, we analyzed the cell cycle and S-phase length in WT 

cortical cells upon retrovirus mediated Pax6 overexpression compared to WT cortical cells, 

infected with control virus. This analysis showed that increased levels of Pax6 expression do 

not lead to changes in cell cycle or S-phase length, which argues for the latter possibility 

proposed above, namely for an increased cell cycle exit rate. This result is well in line with 

the increase in the number of pure neuronal clones obtained upon Pax6 overexpression (see 

below). 

A characteristic feature of proliferating VZ cells in the telencephalon is the translocation of 

their nuclei in correlation with the different cell cycle phases (Sauer, 1935). BrdU pulse 

experiments indicated that there might be changes in the interkinetic nuclear migration in the 

Pax6Sey-/- mice (Estivill-Torrus et al., 2002; Götz et al., 1998), since cells seem to translocate 

their nuclei in a less organized fashion. BrdU pulse experiments in the different mutant Pax6 

alleles revealed in the PD mutant (Pax6Aey18-/-) a phenotype similar as the one detected in the 

Pax6Sey-/- mice, while no changes in the interkinetic nuclear migration were detectable in the 

HD mutant (Pax64Neu-/-) or in the Pax6(5a)-/- mice. This suggests a role of the PD in the 

regulation of the interkinetic nuclear migration. What could be the reason for the ‘picture’ that 

we detected in regard of the interkinetic nuclear migration? One possibility could be that 

G2/M-phase is shortened in the Pax6 mutant cells, and that these cells start to divide before 

they reach the ventricular surface. However, my results excluded this possibility since the 

length of G2/M phase is not changed in the Pax6Sey-/- mice (Haubst, diploma thesis). Another 

explanation could be that the interkinetic nuclear migration of the VZ cells is not altered at all 

in the Pax6Sey-/- and Pax6Aey18-/- mutant cortex. Since BrdU labels all cells in S-phase, also 
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the SVZ precursors that do not undergo interkinetic nuclear migration (Smart, 1976) are 

labeled. The strongly increased SVZ precursor population could expand in the ventricular 

zone in the Pax6Sey-/- and Pax6Aey18-/- cortex. One evidence for this scenario is that the band 

of abventricular mitosis detected by immunohistochemistry against PH3 is much broader in 

the Pax6Sey-/- and Pax6Aey18-/- cortex than in the WT (see Fig. 28, 29). Thus, the effect of the 

coordinated nuclear translocation of the BrdU labeled VZ cells that we detected in the WT, is 

blurred by the presence of an increased number of BrdU positive SVZ cells in the Pax6Sey-/- 

and Pax6Aey18-/- cortex (see for example Fig. 29D). Further support for this hypothesis was 

obtained by the analysis of the interkinetic nuclear migration in the neuroepithelial cells of the 

developing eye. Although cell proliferation was strongly decreased in the remnant eye vesicle 

of Pax6Sey-/-, Pax6Aey18-/- and Pax64Neu-/-, interkinetic nuclear migration seemed to occurs 

despite loss of wild type Pax6 protein. 

Taken together, these results show clearly that cell proliferation increases in the cerebral 

cortex and in cortical cell culture due to the loss of functional Pax6, whereas Pax6 gain-of-

function decreases cell proliferation in cortical cells. These findings argue for a cell 

autonomous role of Pax6 in the regulation of cell proliferation. In other regions of the CNS 

Pax6 is also involved in the regulation of cell proliferation, as e.g. in the diencephalon and the 

developing eye. However, in the Pax6Sey-/- diencephalon and in the targeted deletion of Pax6 

in the neuroretina of the developing eye, decreased cell proliferation was detected (Marquardt 

et al., 2001; Warren and Price, 1997), thus Pax6 seems to act region-specifically on cell 

proliferation. 

 

 

9.2 The role of Pax6 in the regulation of neurogenesis 

Loss of functional Pax6 protein in the telencephalon does not only lead to an increase in cell 

proliferation, but also to a decrease in cortical neurogenesis (see e.g. Heins et al., 2002). Here 

we addressed the question which DNA-binding domains of Pax6 are involved in the 

regulation of cortical neurogenesis. The analysis of the mouse mutants harboring specific 

mutations in the distinct DNA-binding domains of Pax6 revealed that the PD mutant 

(Pax6Aey18-/-) shows the same phenotype as the functional null allele Pax6Sey-/- in regard to 

neurogenesis, while the HD mutant (Pax64Neu-/-) and the targeted deletion of exon5a 

(Pax6(5a)-/-) did not show aberrant phenotype in neurogenesis compared to the 

corresponding WT. The decrease in neurogenesis was confirmed at the quantitative level and 
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proved to be significant. As described above, the radial glia fascicle at the pallial-subpallial 

boundary (PSB) in the Pax6Aey18-/- telencephalon fails to form. However, the boundary 

specific marker protein reticulon-1 was still present in the Pax6Aey18-/-, in contrast to the 

functional null allele Pax6Sey-/-, where the loss of the PSB is correlated with the enhanced cell 

migration from the ventral to the dorsal telencephalon (Chapouton et al., 1999). We were 

concerned that the alterations of the PSB could allow increased cell migration form the 

ventral telencephalon into the cortex and thus compensate the decreased neurogenesis in the 

Pax6Aey18-/- cortex. In order to exclude this possibility, we analyzed neurogenesis in cortical 

cell culture after 7 div. Indeed, we found a significant decrease in the percentage of neurons 

generated from cortical cells of the Pax6Aey18-/- compared to the WT, indicating that the PD 

acts cell autonomously on the regulation of neurogenesis. Thus, we conclude that beside the 

regulation of cell proliferation, also the regulation of neurogenesis in the telencephalon 

depends on the PD of Pax6. However, since the deletion of the PD in the Pax6Aey18-/- mice 

includes also exon5a, it was not yet clear, whether Pax6 with a canonical PD, or Pax6 

containing the alternatively spliced PD (PD5a) is involved in the regulation of neurongenesis. 

Upon specific retrovirus mediated overexpression of either canonical Pax6 or Pax6(5a) in 

individual precursor cells we showed that canonical Pax6 induces a significant increase in the 

percentage of pure neuronal clones, while the PD5a was not able to influence neurogenesis. 

Hence it seems that the target genes containing P6CON sites are mediating the neurogenic 

effect, which is well in line with the presence of the P6CON site in the direct target gene 

Ngn2 (Bertrand et al., 2002). In summary we could thus show that exclusively canonical Pax6 

acts on the regulation of neurogenesis in the developing telencephalon. 

As mentioned above, SVZ precursors are specified by the expression of Cux1/2, Tbr2 and 

Svet1 and generate the upper layer neurons (II-IV) (Englund et al., 2005; Nieto et al., 2004; 

Tarabykin et al., 2001; Zimmer et al., 2004). The expression of these genes is lost the 

functional null allele Pax6Sey-/-. Here we could show that the expression of Tbr2 and Svet1 is 

as well lost in the PD mutant (Pax6Aey18-/-). At the same time SVZ precursors proliferate more 

also at later developmental stages, and the cortical plate is decreased in thickness in the 

Pax6Sey-/- and Pax6Aey18-/- cortex at E18. In summary, a conclusion would be that SVZ 

precursor cells in the Pax6Sey-/- and Pax6Aey18-/- mutant cortex are lacking the expression of 

transcription factors that specify the upper layer neurons and instead of undergoing neuronal 

differentiation, cells continue to proliferate. In contrast to the developing telencephalon, Tbr2 

was also expressed in the neurons of the neuroretina, which means that it is not only 
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expressed in neurogenic precursors but also in neurons, as it has been described also for the 

early telencephalon E10-E12 (Englund et al., 2005).  

Taken together these results showed that Pax6 regulates neurogenesis in the developing 

telencephalon by means of the canonical PD cell autonomously. However, the role of Pax6 in 

the regulation of neurogenesis is not exclusively restricted to the telencephalon, but includes 

also other regions of the CNS. Loss of functional Pax6 in the diencephalon, the cerebellum 

and the spinal cord is associated the loss of neuronal subpopulations (Briscoe et al., 1999; 

Engelkamp et al., 1999; Vitalis et al., 2000; Warren and Price, 1997). 

 

 

9.3 The influence of the different Pax6 DNA-binding domains on the 

regionalisation of the telecephalon 

Severe changes in regionalisation occur in the telencephalon of the Pax6Sey-/- mice (Stoykova 

et al., 1996; Toresson et al., 2000; Yun et al., 2001). So far it was not clear which DNA-

binding domains of Pax6 are involved in establishing the regionalisation of the telencephalon. 

Here we showed that regionalisation in the telencephalon of the PD mutant Pax6Aey18-/- was 

altered to a similar extend as in the Pax6Sey-/- mice. Ngn2 expression, a direct downstream 

target gene of Pax6, was almost completely absent in rostro-lateral regions, whereas it was 

still detectable in regions of low Pax6 and high Emx2 expression. Also other transcription 

factors, which are normally expressed in the ventral telencephalon, as Mash1 and Gsh2 

expand dorsally in the telencephalon of the Pax6Aey18-/- mice, while the loss of HD DNA-

binding in the telencephalon of the Pax64Neu-/- or the specific loss of exon5a in the Pax6(5a)-/- 

did not lead to any changes in the regionalisation. 

Interestingly, we found that the expression of the wnt-inhibitor SFRP2 at the palliall-

subpallial boundary (PSB), the region where the dorsal pallium and the ventral subpallium 

abut, is lost in the telencephalon of the Pax64Neu-/- and Pax6Aey18-/- mice. Furthermore, the 

formation of the radial glia fascicle at the PSB fails, although in contrast to the functional null 

allele Pax6Sey-/-, the expression of the PSB specific marker reticulon-1 (Hirata et al., 2002) 

was still detectable in both mutants (Pax6Aey18-/- and Pax64Neu-/-). In addition we detected in 

both mutants (Pax6Aey18-/- and Pax64Neu-/-) high levels of BLBP expression in the reticulon-1 

expressing cells. Thus it seems that multiple mechanisms contribute to the formation of the 

PSB, which might as well act as a signalling center in the developing telencepahlon as 

previously proposed (Assimacopoulos et al., 2003). In summary these results showed that 
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both DNA-binding domains of Pax6 (PD and HD) are required to act on SFRP2 and reticulon-

1 expression, which means that either both DNA-binding domains bind cooperatively to the 

DNA or that the PD might be required to modulate DNA-binding of the HD (Jun and 

Desplan, 1996; Mikkola et al., 2001; Mishra et al., 2002; Singh et al., 2000) or the HD might 

interact with the C-terminal RED domain of the PD as previously shown in vitro (Bruun et al., 

2005). 

 

 

9.4 The role of the PD5a in the developing telencephalon 

We did not detect any changes in neurogenesis, cell proliferation and regionalisation in the 

Pax6(5a)-/- telencephalon (E12- P2). However, there are several reasons why this result has to 

be interpreted with caution: (i) The canonical form of the PD is able to bind to both consensus 

sites (P6CON, 5aCON). (ii) The expression levels of canonical Pax6 increase 1.4 fold in the 

cortex of the Pax6(5a)-/- which is a sufficient amount to compensate the loss of the normal 

expression levels (10-20%) of Pax6(5a). Hence as a conclusion from the in vivo analysis 

follows that Pax6(5a) does not fulfil any specific roles, which could not be taken over by the 

canonical Pax6. This has been confirmed by the overexpression experiments described above, 

where we showed that the overexpression of Pax6(5a) in individual precursor cells leads to a 

significant decrease in clonal size, while no effect on cell fate was detectable, even in cells of 

the Pax6Sey-/- mice lacking functional Pax6 protein. In contrast, overexpression of the 

canonical Pax6 isoform decreased the clonal size and influenced the cell fate. Since Pax6(5a) 

binds exclusively to 5aCON sites, the target genes involved in cell proliferation should 

contain 5aCON sites, while target genes involved in the regulation of neurogenesis would 

rather contain P6CON sites, which is already confirmed for the direct target gene of Pax6 and 

proneuronal gene Ngn2 (Bertrand et al., 2002; Scardigli et al., 2003). 

One reason for a decreased clonal size could be an increase in the apoptosis rate, but no 

significant changes in apoptosis were detectable upon Pax6 or Pax6(5a) overexpression. A 

second cause for a small number of cells per clone could be changes in the mode of cell 

division, leading to more asymmetric cell divisions, which generate one precursor and one 

postmitotic cell. The experiment for the determination of the cell cycle length (see above) 

showed, that cell proliferation decreases already after 2div from 70% in the control infected 

cells to 55% after Pax6 overexpression, with no detectable changes in the cell cycle length. In 

addition, the number of pure neuronal clones was increased upon overexpression of canonical 
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Pax6. Thus it might be that Pax6 overexpression leads to an increased number of asymmetric 

cell divisions.  

In summary, we conclude from our loss-of-function analysis of the PD mutant Pax6Aey18-/-, 

the functional null allele Pax6Sey-/-, the HD mutant Pax64Neu-/-, the Pax6(5a)-/- and the gain-

of-function studies on the canonical Pax6 and Pax6(5a) that the PD is the most important 

DNA-binding domain in the telencephalon, mediating the effects of Pax6 in the regulation of 

neurogenesis, the cell autonomous effect of Pax6 on cell proliferation, and the influence of 

Pax6 on the regionalisation in the telencephalon. Further we could show by gain-of-function 

experiments that the PD5a acts on cell proliferation. The HD is involved together with the PD 

in regulation of certain aspects of the formation of the pallial-subpallial boundary in the 

telencephalon (for summary see Fig. 64). 

 

 

9.5 The different DNA-binding domains of Pax6 act region-specifically in 

the developing telencephalon and the eye 

Pax6 expression in the CNS is not restricted to the telencephalon but is also detectable for 

example in the diencephalon and the developing eye. Interestingly, Pax6 seems to regulate 

cell proliferation in a region dependent context. While loss of functional Pax6 in the 

telencephalon leads to an increase in cell proliferation (Estivill-Torrus et al., 2002; Götz et al., 

1998), decreased cell proliferation occurs in the early diencephalon of the functional null 

allele Pax6Sey-/- (Warren and Price, 1997). The targeted deletion of Pax6 in the neuroretina 

showed that Pax6 promotes cell proliferation and is required to maintain cells in a multipotent 

precursor state (Marquardt et al., 2001). In the invertebrate eye of Drosophila cell 

proliferation is promoted by the Pax6(5a) homolog eyegone (eyg), while the Pax6 homologs 

eyeless (ey) and twin of eyeless (toy) rather promote cell specification and differentiation 

(Dominguez et al., 2004). The targeted deletion of Pax6(5a) in the vertebrate eye leads to a 

decreased number of iris and lens fiber cells (Singh et al., 2002), showing that the target genes 

of Pax6(5a) in vertebrates and eyg in invertebrates fulfil similar roles in the regulation of cell 

proliferation. Thus, one conclusion would be that the specific function of Pax6(5a) in the 

developing telencephalon in regard to the regulation of cell proliferation must have evolved 

later than in the eye. 

The absence of functional Pax6 leads to the absence of eyes in the Pax6Sey-/- (Grindley et al., 

1995; Hill et al., 1991). In the case of loss of a functional HD in the Pax64Neu-/- mice (Favor et 
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al., 2001) and PD in thePax6Aey18-/- mice (Haubst et al., 2004) no eye development occurs as 

well. In all three Pax6 alleles (Pax6Sey-/-, Pax6Aey18-/-, Pax64Neu-/-) a remnant of the eye 

vesicle can be detected. Occasionally, a lens-like remnant has been detected in the Pax64Neu-/- 

and Pax6Aey18-/-, but never in the Pax6Sey-/- mice. The Pax6(5a)-/- mice develop an eye which 

is at postnatal stages characterized by a decrease in lens fiber cells and cells of the iris (Singh 

et al., 2002). Due to premature neurogenesis followed by massive apoptosis in the remnant of 

the eye vesicle in the functional null allele Pax6Sey-/- (Philips et al., 2005) no βIII-Tubulin 

positive cells were detectable at E14 and proliferation was severely reduced, while in the PD 

(Pax6Aey18-/-) and HD (Pax64Neu-/-) mutant neurons (βIII-Tubulin positive) of different 

subtypes (Brn3a positive and Islet-1 positive neurons) were generated and also cell 

proliferation was less reduced. Neurogenesis and cell proliferation did not show severe 

alterations in the embryonic eye of Pax6(5a)-/- mice at E14. No retinal pigmented epithelium 

(RPE) developed in the Pax6Sey-/- and Pax6Aey18-/- mutant mice, while occasionally little RPE 

residues were detectable in the HD mutant Pax64Neu-/-. Thus, in pronounced contrast to the 

developing telencephalon both DNA-binding domains PD and HD contribute to the regulation 

of neurogenesis and cell proliferation in the developing eye. The selective use of PD, PD5a 

and HD might thus contribute to the region-specific differences of Pax6 function in the CNS.  

 

 

9.6 Other mechanisms that could explain the region-specific differences of 

Pax6 functions 

Not only the selective use of different DNA-binding domains can contribute to region-specific 

differences of Pax6 function. Also different expression levels of the different Pax6 splice 

variants (canonical Pax6, Pax6(5a) and PD-less Pax6) could be involved, since a specific ratio 

of Pax6 and Pax6(5a) improved transcriptional activation (Chauhan et al., 2004). The region 

specific expression levels are also correlated with the region specific usage of promotor and 

enhancer elements (for review see: Morgan, 2004). Recently natural antisense transcripts 

(NATs) of Pax6 (Pax6OS= Pax6 opposite strand) have been detected in the eye (Alfano et al., 

2005), but not yet in the telencephalon. While some NATs display a sequence complementary 

to exonic sequences of their corresponding sense genes, the NATs of Pax6 and also Pax2 are 

complementary to intronic sequences. Thus, one could speculate that the Pax6 NATs could 

act on intronic enhancer elements or possible splicing sites of Pax6, since they occurred in six 

different alternative splice forms (Alfano et al., 2005). It might be possible that the binding of 
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Pax6 NATs to intronic sequences, as for example enhancer elements, silences distinct 

alternative splice forms of Pax6. Interestingly, the NATs described by Alfano and colleagues 

(2005) were discovered also for other genes that are alternatively spliced. In the Vax2-/- is 

also the corresponding Vax2OS significantly decreased, while the overexpression of CrxOS 

lead to a reduction of Crx levels (Alfano et al., 2005). Thus one could speculate that NATs 

might be involved in the regulation of the region-specific function of Pax6 by modulating the 

gene activity, especially in combination with different expression levels of the alternative 

Pax6 forms, as the canonical Pax6, Pax6(5a) or the PD-less form of Pax6.  

But maybe even different ratios of the different Pax6 isoforms might be sufficient to specify 

the region-specific role of Pax6. For example, the PD-less Pax6 form interacts with the PD of 

Pax6 and thus enhances the transcriptional activation by Pax6 in vitro (Mikkola et al., 2001). 

In this context my result concerning the expression levels of the PD-less Pax6 is of interest. 

The PD-less Pax6 form is higher expressed than the PD-containing form at E10-E12, at the 

onset on neurogenesis, compared to midneurogenesis at E14, while at E18 both forms are 

expressed at equally lower levels in the cerebral cortex. Thus it might be possible that the PD-

less Pax6 form is involved in the regulation of cell proliferation, since at E10-E12 

predominantly cell divisions generating precursors occur. Recently it has been shown that the 

HD of Pax6 interacts with the hypophosphorylated form of the tumor suppressor gene pRB 

(retinoblastoma protein) (Cvekl et al., 1999). The retinoblastoma protein forms a complex 

with E2F in the G1-phase of the cell cycle and upon phosphorylation of pRB, E2F is released 

and can activate the transcription of Cyclin E, which is required for re-entering the cell cycle. 

Thus it might be that the HD of the PD-less Pax6 form interacts with hypophosphorylated 

pRB and hence inhibits the complex formation with E2F, which could then maybe activate 

transcription of Cyclin E earlier or more easily, thus the re-entry in the cell cycle would be 

promoted. This hypothesis is supported by the fact that the PD-less form, although containing 

HD and TAD and binding to P2 sites in vitro, fails to activate transcription (Mishra et al., 

2002). On the other hand one could speculate that the HD depends on the PD in order to 

activate transcription (Mishra et al., 2002), but it might also be that the PD-less form binds to 

the DNA and thus blocks as a kind of regulatory molecule HD targets, maybe in a region and 

time specific manner. PD-less Pax6 forms were not only identified in the mouse, but also in 

the quail neuroretina. Interestingly, the PD-less forms (32/33kDa) were only detected in the 

cytoplasm, while the PD-containing Pax6 forms (43kDa, 46 kDa and 48 kDa) were detected 

in the nucleus. However, after transient transfection the PD-less Pax6 forms were also 

detected in the nucleus (Carriere et al., 1993). 
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Further mechanisms involved in the regulation of the time and region-specific role of Pax6 

could be posttranslational protein modifications as for example phosphorylation as it has been 

described for the TAD of zebrafish Pax6, which is phoshphorylated at a specific serine 

residue by the mitogen-activated protein kinases (MAPKs), the extracellular-signal regulated 

kinase (ERK) and the p38 kinase but not by Jun N-terminal kinase (JNK) in vitro (Mikkola et 

al., 1999). And also in the quail neuroretina phosphorylation has been described (Carriere et 

al., 1993). Since phosphorylation is important for the subcellular localisation of proteins, 

modification of DNA binding and the interaction between TADs of transcription factors with 

the transcription machinery (Hunter and Karin, 1992), this might be another mechanism to 

regulate the effects of Pax6 in a region and time-specific manner.  

In the quail neuroretina several Pax6 isoforms of different molecular weights (32/33kDa, 

43kDa, 46kDa, 48kDa) have been detected, and interestingly the isoforms detected in the 

nucleus (46kDa and 48kDa) were O-glycosylated, while the unglycosylated forms were only 

present in the cytoplasm (32/33kDa and 43kDa) (Lefebvre et al., 2002). Thus there seems to a 

multitude of modification mechanisms that might all influence the region-specific action of 

Pax6 and might explain the region- and organ-specific different roles of Pax6. 

 

 

9.7 The influence of the basal cell attachment on neurogenesis and cell 

proliferation 

Not only intrinsic factors, but also extrinsic factors may influence the radial glia lineage and 

cell proliferation. Radial glia cells, which comprise the majority of proliferating precursor 

cells at midneurogenesis (Hartfuss et al., 2001) are characterized apico-basal polarity (Huttner 

and Brand, 1997; Kosodo et al., 2004; Wodarz and Huttner, 2003) and thus receive important 

extrinsic signals via their apical and basal cell pole that might influence the proliferative 

behavior or cell differentiation. The apical side of the cell is for example characterized by the 

presence of prominin-1 (Weigmann et al., 1997) and signaling may occur in the specific 

prominin domains at the apical cells side (Kosodo et al., 2004). At the basal cell pole of radial 

glia cells α6 integrin occurs at high concentrations (Wodarz and Huttner, 2003). Recent 

studies showed that radial glia cells maintain their radial process throughout cell division 

(revieved in Fishell and Kriegstein, 2003; Miyata et al., 2001; Noctor et al., 2001). It has been 

hypothesized that the maintenance of the radial glia endfeet is important for the cells in order 

to receive signals from the basal side which might influence cell fate decisions (for review 
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see: Fishell and Kriegstein, 2003), especially since the basement membrane harbors a variety 

of factors such as fibroblast growth factors (Fgfs). Extracellular Fgfs bind tightly to heparan 

sulfate proteoglycan (HSPGs) of the extracellular matrix (ECM) (for review see: Dono, 

2003). Fgfs are important for the regulation of cell proliferation during cortical development 

(for review see: Dono, 2003). HSPGs are components of the basement membrane and 

promote and stabilize the binding of Fgfs to their respective receptors (Schlessinger, 2004). 

This is of particular interest in regard of the asymmetric inheritance of the radial glia process 

during cell division, which might play a role for the further cell fate.  

 

 

9.8 Neurogenesis in absence of basement membrane attachment 

The basal influence on radial glia cells was analyzed by means of two different basement 

membrane mutants, the LNγ1 mutant (Willem et al., 2002), which is chararcterized by the 

detachment of radial glia endfeet at midneurogenesis and the α6 integrin-/-, which lacks a 

proper basement membrane assembly (Georges-Labouesse et al., 1998). The LNγ1 mutant 

displayed in regard of endfeet detachment from the basement membrane a more severe 

phenotype than the α6 integrin-/-. The neurogenesis seemed normal at E14 in both mutants, 

where the radial glia processes lack contact to the basement membrane or proper basement 

membrane assembly. Thus, basement membrane attachment of radial glia endfeet or proper 

basement membrane assembly at the radial glia endfeet seems not to be important for the rate 

of neurogenesis. However, neuronal migration seems to be altered in both mouse mutants, as 

visible in the formation of aberrant neuronal ectopias (Georges-Labouesse et al., 1998; Halfter 

et al., 2002). 

 

 

9.9 Basement membrane attachment of radial glia processes and cell 

proliferation 

Especially the presence of growth factors, as for example Fgfs, which act on cell proliferation, 

and which are captured by the components of the basement membrane (for review see: Dono, 

2003; Ornitz, 2000) implies that cell proliferation might be altered when the direct contact of 

radial glia processes with the BM is lost. However, the quantification of dividing cells at the 

VS and at abventricular positions per area showed no significant alterations in both basement 
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membrane mutants LNγ1 mutant and α6 integrin-/-. One explanation for these results could be 

that although the endfeet of radial glia cells do not attach at the BM, they nevertheless receive 

‘basal signals’. The basement membrane in the LNγ1 mutant forms, but is not properly linked. 

Nidogen is a linker molecule connecting the laminin sheet with the type IV collagen sheet (for 

review see: Quondamatteo, 2002), thus lack of the nidogen binding site at the γ1chain of 

laminin leads to improper sheet-linking. Hence it might be even possible that components of 

the BM enter the parenchyma and supply the basal endfeet of radial glia cells with factors. On 

the other hand, also in the α6 integrin-/- no phenotype in regard to cell proliferation has been 

detected, and in this mutant the basement membrane assembly is affected, thus the matrix that 

captures the factors that might influence radial glia cells from the basal cell pole, fails to form. 

Important to mention in this context is that the radial glia endfeet in the α6 integrin-/- are 

associated with laminin deposits (Georges-Labouesse et al., 1998) that might be sufficient to 

deliver the required basal cues, but on the other hand HSGPs and not laminin were shown to 

play a role in binding Fgfs tightly. In addition, the formation of neuronal ectopias outside the 

BM and the pia mater in the subarachnoidal space occurred especially in regions where the 

BM was highly disorganized in the α6 integrin-/-, which might reflect an active degradation 

process of the BM (Georges-Labouesse et al., 1998). It is also important to mention that the 

endfeet of neuroepithelial and early radial glia cells are not all detached from the BM at 

earlier stages in the LNγ1 mutant (Halfter et al., 2002). Thus the cells could receive at least 

early during development signals from the BM, even though one would assume that 

proliferating cells depend not only ‘once in their life’ on extrinsic signals such as growth 

factors, but rather during their entire period of proliferation. 

Since the glial cells are linked at the apical surface via junctional complexes and their radial 

processes are spanning the entire width of the cortical wall in order to attach to the basement 

membrane one could assume that the cell achieves a certain stability that might be required to 

coordinate the interkinetic nuclear migration and the plane of cell division. The analysis of the 

interkinetic nuclear migration in the LNγ1 mutant, showed no alterations. One reason for the 

lack of a phenotype in regard to the interkinetic nuclear migration could be that this cellular 

behavior is restricted to the ventricular zone and does not span the entire cortical wall. 

Obviously the cell contacts at the apical cell pole and in the VZ are sufficient to stabilize the 

cell and maybe the intracellular anchoring points of the cytoskeleton involved in that process 

are still sufficient to perform interkinetic nuclear migration properly. Thus, radial glial cells 

rather require the apical adherens junctions (Vorbrodt and Dobrogowska, 2003), than the 

basal attachment to coordinate the nuclear translocation. Cells might also receive signals from 
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the CSF at the apical cell pole, as for example Fgfs (for review see: Dono, 2003) that could 

influence cell proliferation in general and the interkinetic nuclear migration. 

As mentioned above, proliferating cells can divide horizontally, obliquely or perpendicular 

with respect to the ventricular surface. Based on the findings obtained in Drosophila where 

the apico-basal cell polarity is associated with the plane of cell division and with cell fate 

(Campos-Ortega, 1993), the question addressed here was whether the loss of the basal cell 

polarity influences the plane of cell division. However, no changes in the plane of cell 

division were detected due to the lack of basal attachment and basal polarity in the LNγ1 

mutant, the α6 integrin-/- and even in a third basement membrane mutant, the perlecan-/- 

mice. Studies in the ferret cortex showed that horizontal cell divisions are correlated with 

asymmetric cell divisions giving rise to a precursor cell and a neuron that inherits Notch 

asymmetrically (Chenn and McConnell, 1995). Thus, the model has been postulated that the 

plane of cell division is also correlated with cell fate in vertebrates, such that a horizontal cell 

division is asymmetric giving rise to one neuron and one precursor and perpendicular cell 

divisions give rise to two identical daughter cells (Chenn and McConnell, 1995). However, a 

problem with the model of Chenn and McConnell is that only a minority of cell divisions in 

the neuroepithelium at midneurogenesis occurs horizontally (10-15%), thus there would be 

too few neurogenic cell divisions. In addition, the mode of cell division should change in 

mutants characterized by decreased neurogenesis, as for example the Pax6Sey-/- mice, but no 

changes were detectable in the mode of cell division in Pax6Sey-/- mice (Stricker, unpublished 

observations). Recent studies showed now that also perpendicular cell divisions with respect 

to the ventricular surface can be asymmetric due to the inheritance of the apical membrane 

patch by one of the daughter cells (Kosodo et al., 2004). In addition it has been shown that 

perpendicular cell divisions give rise to one VZ precursor and one neurogenic SVZ precursor 

(Noctor et al., 2004).  

Apart from the correlation between the plane of cell division and cell fate, it might have been 

possible that the loss of the basal attachment induces changes in the cytoskeleton that could 

also influence the orientation of cell division. However, it seems that changes in the 

cytoskeleton during cell division remain exclusively restricted to the area of cell division and 

do not involve the entire cytoskeleton, which comprises the width of the entire cortical wall, 

and since the cell attachment at the apical side was not altered, no changes were obtained.  

The only phenotype detected in regard of cell proliferation was the occurrence of ectopic 

proliferating cell clusters inside the cortical plate of the LNγ1 mutant that consist of neuronal 

precursor cells originating from the VZ and persisted during development until E18. The 
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formation of neuronal ectopias in the LNγ1 mutant correlates with the defect in reelin 

signaling (Halfter et al., 2002), but no clear correlation was found between the formation of 

ectopic proliferating clusters in the cortical plate and altered reelin signaling. Thus it remains 

unclear how these clusters arise. 

In summary, it may be said that the direct contact of radial glia cell endfeet to the basement 

membrane is not required for the regulation of cell proliferation and neurogenesis. Thus the 

cells might receive the crucial signals at the apical side. 
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