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Abstract
Canonically deformed spacetime, where the commutator of two coordinates

is a constant, is the most commonly studied noncommutative space. Noncom-
mutative gauge theories that have ordinary gauge theory as their commutative
limit have been constructed there. But these theories have their drawbacks: First
of all, constant noncommutativity can only be an approximation of a realistic
theory, and therefore it is necessary to study more complicated space-dependent
structures as well. Secondly, in the canonical case, the noncommutativity didn't
ful�ll the initial hope of curing the divergencies of quantum �eld theory. There-
fore it is very desirable to understand noncommutative spaces that really admit
�nite QFTs.

These two aspects of going beyond the canonical case will be the main focus
of this thesis. They will be addressed within two di�erent formalisms, each of
which is especially suited for the purpose.

In the �rst part noncommutative spaces created by ?-products are studied.
In the case of nonconstant noncommutativity, the ordinary derivatives possess a
deformed Leibniz rule, i.e. ∂i(f ?g) 6= ∂if ?g+f ?∂ig. Therefore we construct new
objects that still have an undeformed Leibniz rule. These derivations of the?-
product algebra can be gauged much in the same way as in the canonical case and
lead to function-valued gauge �elds. By linking the derivations to frames (viel-
beins) of a curved manifold, it is possible to formulate noncommutative gauge
theories that admit nonconstant noncommutativity and go to gauge theory on
curved spacetime in the commutative limit. We are also able to express the de-
pendence of the noncommutative quantities on their corresponding commutative
counterparts by using Seiberg-Witten maps.

In the second part we will study noncommutative gauge theory in the matrix
theory approach. There, the noncommutative space is the ground state of a
matrix action, the �uctuations around this ground state creating the gauge theory.
In the canonical case the matrices used are in�nite-dimensional (they are the
Fock-space representation of the Heisenberg algebra), leading to a number of
problems, especially with divergencies. Therefore we construct gauge theory using
�nite dimensional matrices (fuzzy spaces). This gauge theory is �nite, goes to
gauge theory on a 4-dimensional manifold in the commutative limit and can also
be used to regularize the noncommutative gauge theory of the canonical case.
In particular, we are able to match parts of the known instanton sector of the
canonical case with the instantons of the �nite theory.
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Chapter 1

Introduction

There is a simple Gedankenexperiment showing that any quantum theory includ-
ing gravity will make it impossible to measure distances smaller than the Planck
length: Trying to measure smaller and smaller distances, we are forced to use test
particles with more and more energy. But this energy will a�ect the geometry of
space itself, creating black holes which �nally become bigger than the distances
we wanted to measure (see e.g. [36]). Below the Planck length, distance looses
its meaning.

In the absence of a consistent formulation of quantum gravity, we do not know
the exact nature of quantized spacetime, but it is clear that the usual notion of a
di�erentiable manifold should be replaced by something re�ecting the quantum
nature of spacetime at very small distances. Following the well known ideas of
quantum mechanics, the uncertainty in the measurement of the coordinates leads
directly to the notion of noncommutative spaces.

There is another motivation for the introduction of noncommutative space-
time, this time coming from quantum �eld theory. There, the divergencies appear-
ing in the quantization are UV-e�ects, and therefore related to small distances.
The introduction of noncommutativity could work as a ultraviolet cut-o�, making
QFT �nite. Even though the UV-divergencies are now well under control through
the renormalization programme, they nevertheless suggest that spacetime should
change its nature at very small distances.

To make spacetime noncommutative, the commutative algebra of functions is
usually replaced by a noncommutative algebra generated by coordinatesx̂i with
commutation relations

[x̂i, x̂j] = iθij. (1.1)
In the canonical case, this commutator is a constant, i.e. θij ∈ R. Gauge theory
on this space was studied in great detail in the last few years, mainly due to
its appearance in string theory. But if we think that noncommutativity is an
e�ect of quantum gravity, the canonical case can only be the simplest example.
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Other, more complicated structures should be studied, especially structures that
are related to curved backgrounds. But also in view of our second motivation, the
canonical case proved to be disappointing: it doesn't cure the in�nities of QFT,
it rather adds new ones.

The aim of this thesis will be to extend noncommutative gauge theory beyond
the canonical case, in the two directions mentioned above: towards noncommu-
tative gauge theory on curved backgrounds in part I, and towards gauge theory
models which are actually �nite in part II. For these two goals, we will use two
di�erent approaches, two di�erent ways in which noncommutative gauge theory
can be formulated already in the canonical case: one using?-products, the other
one matrices.

The notion of a ?-product came �rst up when Groenewold [47] and Moyal [87]
used Weyl's quantization prescription [100] to pull back the noncommutativity
of the quantum mechanical position and momentum operators onto the classical
phase space. Later on, it was generalized in the framework of deformation quan-
tization [11, 12] to arbitrary symplectic and Poisson manifolds. A?-product is
an associative noncommutative product acting on functions on a manifold, the
noncommutativity being controlled by a deformation parameter. Expanded in
this parameter, one can write

f ? g = f · g + θij∂if∂jg +O(θ2) (1.2)

To zeroth order, the ?-product reproduces ordinary pointwise multiplication,
higher orders are bidi�erential operators acting on the functions. The �rst order
term corresponds to a Poisson structure. While every?-product corresponds to a
Poisson structure, the opposite is also true: For on every Poisson manifold there
is a ?-product quantizing the Poisson structure [71].

Interest in noncommutative gauge theory formulated with the help of ?-
products triggered when it became clear that it appears in string theory as the low
energy limit of open strings with a backgroundB-�eld [26]. In this picture, the
endpoints of the open strings on the D-brane cease to commute, and depending on
the regularization used, their behavior can be described either by noncommutative
Yang-Mills theory or by commutative Yang-Mills with background B-�eld. These
two descriptions can be linked by a map from the noncommutative quantities to
the commutative ones, the Seiberg-Witten map [95].

The approach to noncommutative gauge theory most important to this thesis
was developed in Munich in a series of papers [78, 64, 63], noticing that multi-
plication with a noncommutative coordinate is no longer a covariant operation.
Then, coordinates have to be gauged much in the same way that derivatives
have to be gauged in commutative gauge theory, leading to covariant coordi-
nates. As the ?-product in the canonical case behaves very much like an ordinary
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product with respect to di�erentiation and integration, the covariant coordinates
can be used to formulate noncommutative gauge theory in close analogy to the
commutative case. The noncommutative theory is �nally linked to the commuta-
tive one by using Seiberg-Witten maps, allowing to deal with nonabelian gauge
theory as well. This way, it was possible to construct a noncommutative ver-
sion of the standard model [18, 81] and study its phenomenological implications
[13, 89, 80, 81, 82]. The extension to supersymmetry is somewhat more com-
plicated as the SW-maps in general become nonlocal [84], but for the case of a
reduced N = 1

2
supersymmetry it is still possible [85]. Lately, it was even possible

to formulate noncommutative gravity [8] for the canonical case.
As the noncommutative gauge transformations contain translations in space,

there can't exist local observables in noncommutative gauge theory. But it was
realized that in momentum space, certain Wilson loops with �xed momentum are
actually gauge invariant [59, 48, 31]. These Wilson loops do not quite close, but
contain a gap corresponding to the noncommutativity and the momentum, which
is why they are also referred to as open Wilson lines. These open Wilson lines
were used to construct the inverse SW-map for the �eld strength to all orders
[90]. Other approaches to calculating SW-maps include a solution for abelian
gauge theory to all orders using the Kontsevich formality map [71, 65, 66], a
cohomological procedure within the BRST formalism [17] and a re�ned analysis
of its internal structure [25].

In the quantization of noncommutative gauge theory, the legs of diagrams
can no longer be exchanged, leading to a distinction between planar and non-
planar diagrams [39]. The planar diagrams have the same high energy behavior
as their commutative counterparts, but the nonplanar diagrams lead to what is
called IR/UV-mixing [86]. The diagrams are made �nite in the UV by oscillatory
factors, but only for �nite momentum. For vanishing momenta, the divergencies
reappear, therefore mixing the UV and the IR behavior of the theory. There are
many studies on the renormalization properties of such theories (see [37, 98] for
references), but so far the only consistently renormalizable theory isφ4-theory
with a special potential term added [54].

There are several lines of research going beyond the canonical case [19]. Covari-
ant coordinates and SW-maps can be constructed for arbitrary Poisson manifolds
[65, 67, 66], but the limit to commutative gauge theory no longer is clear. On
κ-deformed spacetime, it was possible to establish noncommutative gauge the-
ory, the nonconstant commutator of the coordinates leading to derivative valued
gauge �elds [33, 34, 35]. Somewhat closer to our approach, gauge theory on the
Eq(2)-covariant plane was studied using frames [83]. More recently, there have
been attempts using coordinate transformations from the canonical case to more
complicated algebras [30, 40, 93].
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The �rst part of this thesis will be devoted to expanding noncommutative
gauge theory to more general?-products and relating it to gauge theory on curved
spacetime.

In chapter 2, we will �rst discuss the canonical case. We introduce the ?-
product usually used in this case, the Moyal-Weyl ?-product. With this, non-
commutative gauge theory is formulated in the standard way. As this approach
can only deal with U(N) gauge groups, we introduce Seiberg-Witten maps to
accommodate for general gauge groups. We end this chapter with discussing
noncommutative observables.

In chapter 3, we start with the general de�nition of?-products, and show how
they arise out of ordering prescriptions of algebras. For a special ordering, the
Weyl- (or symmetric) ordering, we then calculate the corresponding ?-product
to second order for general algebras, a result already published in [15] together
with Andreas Sykora. Two other ?-products are presented as well, the Jambor-
Sykora ?-product [62] and Kontsevich's formality?-product [71]. After discussing
integration on such ?-product algebras, we end with concrete examples.

In chapter 4, we discuss derivatives and derivations on ?-product algebras.
For the canonical case, the usual derivatives still had the undeformed Leibniz
rule. For general ?-products, this is no longer the case. The derivatives acquire
a nontrivial coproduct, which means that their Leibniz rule is deformed. But for
our construction of gauge theory we will need objects that still have the usual
Leibniz rule, i.e. derivations of the ?-product algebra. We are able to identify
such objects by linking them to vector �elds commuting with the Poisson structure
corresponding to the ?-products. We explicitly construct these derivations for the
three ?-products introduced in chapter 4, and end with the continuation of the
example from chapter 3.

In chapter 5, we use the derivations to construct gauge theory. As the deriva-
tions have the usual Leibniz rule, they can be gauged in full analogy to the
canonical case, leading to function-valued gauge �elds and �eld strength. As we
want the noncommutative gauge theory to have a meaningful commutative limit,
we link it to gauge theory on curved spacetime by introducing frames. On the
commutative side, frames can be introduced to diagonalize the metric. If they
ful�ll a compatibility condition with the Poisson structure of the noncommuta-
tive space, we can lift them to derivations of the?-product algebra. Then we use
these derivations to build a noncommutative gauge theory that in the commu-
tative limit reduces to gauge theory on curved spacetime. We give an example
where the spacetime of the commutative limit is a manifold with constant curva-
ture. To deal with general gauge groups, we again introduce SW-maps from the
noncommutative to the commutative quantities. For the Weyl-ordered?-product,
we calculate the SW-maps for all relevant quantities up to second order. For the
formality ?-product we are able to construct the SW-maps to all orders for abelian
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gauge theory. The results of this chapter (and parts of the preceding chapter)
have already been published in [15] together with Andreas Sykora.

In chapter 6, the last chapter on the?-product approach, we start with noticing
that covariant coordinates can be de�ned for any ?-product, and use them to
construct noncommutative analogs of Wilson lines. These can then be used to
build noncommutative observables and to extend the construction of the inverse
SW-map of [90] to general ?-products with nondegenerate Poisson structure. This
has been published in [16], again together with Andreas Sykora.

But ?-products aren't the only way to express the noncommutativity (1.1). In
the canonical case, the algebra of the coordinates is nothing but the well known
Heisenberg algebra, and we can use the creator and annihilator formalism to rep-
resent it. The coordinates then become in�nite-dimensional matrices acting on a
Fock space, the derivatives commutators with the coordinates and integration the
trace over the Fock space. Gauge transformations are now unitary transforma-
tions, and we again have to gauge the coordinatesxi to get covariant coordinates
X i = xi + Ai. The gauge theory action

S = c tr ([X i, Xj]− iθij)2 (1.3)

can be expressed entirely in terms of the dynamical matrix variablesX i, reproduc-
ing the noncommutative space as the ground state, with the �uctuations forming
the gauge theory. In the canonical case, this description is equivalent to the
?-product approach, but it is the better framework to address nonperturbative
questions such as topological solutions.

The instanton sector of noncommutative gauge theory is very rich, and many
classical constructions can be reformulated on the noncommutative side. In two
dimensions, all instantons have been classi�ed [50], but in four dimensions the pic-
ture is far more complicated. There are the generalizations of the two-dimensional
instantons (which will become important in this thesis), but there are many
other instantons as well, which can be found by using a noncommutative ADHM-
construction or Nahm's equations (see [37] for references).

The quantization of the model of course is troubled by the same divergencies
as the one constructed via ?-products, but the exact de�nition is quite nontrivial
for another reason as well: the theory contains sectors with any rank of the gauge
group U(n) [50]. To have a well-de�ned theory and quantization prescription, a
regularization of gauge theory onRdθ is therefore very desirable.

Luckily, there is a number of cases (in particular certain quantized compact
spaces such as fuzzy spheres and tori), which have �nite dimensional matrix
representations of size N . In the limit N → ∞, they nevertheless approach
a commutative space. Gauge theory on these spaces can be introduced much
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in the same way as in (1.3), but now the covariant coordinatesXi are �nite-
dimensional Hermitian matrices of sizeN . The conventional gauge theory is then
correctly reproduced in the limit N → ∞. This leads to a natural quantization
prescription by simply integrating over these matrices, making everything �nite
and well de�ned.

In the 2-dimensional case, this matrix-model approach to gauge theory has
been studied in considerable detail for the fuzzy sphereS2

N [74, 21, 96, 57, 22] and
the noncommutative torus T2

θ [3, 91, 92, 45], both on the classical and quantized
level. It is well-known thatR2

θ can be obtained as the scaling limit of these spaces
S2
N and T2

N at least locally, which suggests a correspondence also for the gauge
theories. This correspondence of gauge theories has been studied in great detail
for the case of T2

θ → R2
θ [91, 44, 46] on the quantized level, exhibiting the role of

certain instanton contributions.
In 4 dimensions, the quantization of gauge theory is more di�cult, and a

regularization using �nite-dimensional matrix models is particularly important.
The most obvious 4-dimensional spaces suitable for this purpose areT4, S2 × S2

and CP 2. On fuzzy CP 2
N [52, 2, 20], such a formulation of gauge theory was given

in [53]. This can indeed be used to obtainR4
θ for the case of U(2) -invariant θij.

The case of R2×S2
N as regularization ofR4

θ with degenerate θij was considered in
[102, 103], exhibiting a relation with a conventional non-linear sigma model. A
formulation of lattice gauge theory for even-dimensional tori has been discussed
in [5, 4, 45]. Related �fuzzy� solutions of the string-theoretical matrix models [58]
were studied e.g. in [60, 70], see also [69].

The second part of this thesis will be devoted to the construction of gauge
theory on such a 4-dimensional fuzzy space, the product of two fuzzy spheres
S2
N×S2

N . Besides introducing fermions as well, we will use this model to regularize
gauge theory in the canonical case, i.e. on R4

θ, with a special interest in the
behavior of the instanton sector.

For this, we will again study the canonical case in chapter 7, this time using
the matrix-model approach. The coordinates become annihilation and creation
operators on a Fock space, and gauge theory can be formulated as an in�nite-
dimensional matrix model having the space as its ground state. We explain
why this theory contains sectors for every rank n of the gauge group U(n), and
construct the 4-dimensional generalization of the instantons found in [50].

In chapter 8, we �rst present the fuzzy sphereS2
N introduced by John Madore

in [73]. To go to 4 dimensions, we use the product of two such spheres to get to
S2
N × S2

N , and show how to get to the canonical case of R4
θ in a double scaling

limit.
In chapter 9, we give a de�nition of U(n) gauge theory on fuzzy S2

N × S2
N .

The action is a generalization of the approach of [96] for fuzzyS2
N . It di�ers from
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similar string-theoretical matrix models [58] by adding a constraint-term, which
ensures that the vacuum solution is stable and describes the product of 2 spheres.
The �uctuations of the covariant coordinates then correspond as usual to the
gauge �elds, and the action reduces to ordinary Yang-Mills theory onS2 × S2 in
the limit N →∞.

We then discuss some features of the model, in particular a hidden SO(6)
invariance of the action which is broken explicitly by the constraint. This suggests
some alternative formulations in terms of collective matrices, which are assembled
from the individual covariant coordinates. This turns out to be very useful to
construct a Dirac operator, and may help to eventually study the quantization
of the model explicitly. The stability of the model without constraint is also
discussed, and we show that the only �at directions of theSO(6) -invariant action
are �uctuations of the constant radial modes of the 2 spheres. The quantization of
the model is de�ned by a �nite integral over the matrix degrees of freedom, which
is shown to be convergent due to the constraint term. We also give a gauge-�xed
action with BRST symmetry.

We also include charged fermions in the fundamental representation of the
gauge group, by giving a Dirac operator D̂ which in the large N limit reduces
to the ordinary gauged Dirac operator on S2 × S2. This Dirac operator inherits
the SO(6) symmetry of the embedding space S2 × S2 ⊂ R6, and exactly anti-
commutes with a chirality operator. The 4-dimensional physical Dirac spinors
are obtained by suitable projections from 8-dimensional SO(6) spinors. This
projection however commutes with D̂ only in the large N limit, and is achieved
by giving one of the 2 spinors a large mass. Weyl spinors can then be de�ned
using the exact chirality operator. An alternative version of chirality is given by
de�ning a Ginsparg-Wilson system.

As a further test of the proposed gauge theory, we study topologically non-
trivial solutions (instantons) on S2

N × S2
N . We �nd in particular a simple class

of solutions which can be interpreted as U(1) instantons with quantized �ux,
combined with a singular, localized �ux tube. They are related to the ��uxon�
solutions of U(1) gauge theory on R4

θ [50] discussed in chapter 7. Solutions which
can be interpreted as 2-dimensional spherical branes wrapping one of the two
spheres are also found.

In chapter 10, we then study the relation of the model on S2
N × S2

N with
Yang-Mills theory on R4

θ, and demonstrate that the usual Yang-Mills action on
R4
θ is recovered in the appropriate scaling limit. We show in detail how theU(1)

instantons (�uxons) on R4
θ of chapter 7 arise as limits of the above non-trivial

solutions on S2
N × S2

N . In particular, we are able to match the moduli space of
n �uxons, corresponding to their location on R4

θ resp. S2
N × S2

N . We �nd in
particular that even though the �eld strength in the bulk vanishes in the limit
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of R4
θ, it does contribute to the action on S2

N × S2
N with equal weight as the

localized �ux tube. This can be interpreted on R4
θ as a topological or surface

term at in�nity. Another unexpected feature on S2
N × S2

N is the appearance of
certain superselection rules, restricting the possible instanton numbers. In other
words, not all instanton numbers onR4

θ are reproduced for a given matrix sizeN ,
however they can be found by considering matrices of di�erent size. This depends
on the precise form of the constraint term in the action, which is hence seen to
imply also certain topological constraints.

Most of the results of the second part of this thesis have already been published
in [14], together with Frank Meyer and Harold Steinacker.
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Part I

The ?-product approach





11

The use of ?-products made noncommutativity more accessible to physicists,
as they can be applied very intuitively without reference to any strong (and com-
plicated) mathematical background. We can still work with ordinary functions on
ordinary commutative space-time, introducing the noncommutativity through the
?-product. The ?-product reproduces the ordinary pointwise product to zeroth
order in some deformation parameter, the higher orders are di�erential operators
acting on the functions and produce the noncommutativity. Therefore,?-products
are a very convenient tool for deforming commutative theories. The naive pre-
scription for constructing noncommutative theories would then be to take the
commutative theory and replace ordinary multiplication by?-multiplication. As
the deformation depends on a parameter, we can get back the commutative theory
by letting it go to zero. Corrections to the commutative theory can be calculated
order by order.

As we will see, this simple prescription works surprisingly well in the canonical
case where the commutator of two coordinates is a constant. This is mainly due to
the fact that in this case the ?-product still behaves very much like the commuta-
tive product with respect to di�erentiation and integration. But if we go to more
complicated structures, this is no longer the case. Derivatives acquire a deformed
Leibniz rule and ordinary integration no longer has the trace property. There-
fore, the recipe of just replacing ordinary multiplication with?-multiplication no
longer works. In order to nevertheless construct noncommutative gauge theory
on these more complicated spaces, it will be necessary to �rst have a closer look
especially at the behavior of the derivatives. We will be able to identify objects
that still have an undeformed Leibniz rule (we will call them derivations of the
?-product algebra), using them as building blocks for gauge theory. By linking
them to frames on a curved spacetime, we can also make sense of the measure
function we have to introduce in order to make integration cyclic again.
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Chapter 2

The canonical case

Noncommutative gauge theory in the canonical case, where the commutator of
two coordinates is a constant, has been studied extensively in the last few years
(see e.g. [37, 98] for reviews), mainly due to its appearance in string theory [95]. It
would be beyond the scope of this thesis to review all the aspects of this fascinating
�eld, so we will have to concentrate on what will be important for going beyond
the canonical case in the chapters to follow. We will start with the most commonly
used ?-product for the canonical case, the Moyal-Weyl?-product. Only the most
important features of this ?-product will be presented here, but we will come back
to it at the beginning of chapter 3 with a more detailed analysis. After a quick
look at commutative gauge theory, an introduction into how noncommutative
gauge theory can be formulated with the help of this ?-product is given. This
introduction will mainly follow the approach developed here in Munich [78, 64,
63, 18] using Seiberg-Witten maps. Finally we will present the noncommutative
observables found in [31, 48, 59], as we will be able to generalize them later on in
chapter 6.

2.1 The Moyal-Weyl ?-product
In the canonical case, the noncommutative coordinates ful�ll commutation rela-
tions

[x̂i, x̂j] = iθij (2.1)

with the constant noncommutativity parameter θ ∈ R. The noncommutative
algebra generated by the noncommutative coordinates can be represented on the
space of functions on Rn by introducing a noncommutative product, the Moyal-
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Weyl1 ?-product [47, 87]

f ? g = m · e i
2
θij∂i⊗∂jf ⊗ g = fg +

i

2
θij∂if∂jg +O(2), (2.2)

with m · (f ⊗ g) = fg and ∂i = ∂
∂xi

. The product is associative, as

(f ? g) ? h = m · e i
2
θkl∂k⊗∂l(m · e i

2
θij∂i⊗∂jf ⊗ g)⊗ h (2.3)

= m ·m · e i
2
θkl(∂k⊗1⊗∂l+1⊗∂k⊗∂l)e

i
2
θij∂i⊗∂j⊗1f ⊗ g ⊗ h

= m ·m · e i
2
θij(∂i⊗1⊗∂j+∂i⊗∂j⊗1)e

i
2
θkl1⊗∂k⊗∂lf ⊗ g ⊗ h

= m · e i
2
θij∂i⊗∂j(f ⊗ (m · e i

2
θkl∂k⊗∂lg ⊗ h))

= f ? (g ? h)

and obviously reproduces (2.1). Furthermore, as θ is antisymmetric, usual com-
plex conjugation is still an involution

f ? g = m · e− i
2
θij∂i⊗∂jf ⊗ g = g ? f (2.4)

and integration has the trace property
∫
dnx f ? g =

∫
dnx g ? f, (2.5)

if the functions f and g vanish su�ciently fast at in�nity (of course f ? g has to
be integrable in the �rst place).

Di�erentiation on this space is an inner operation, i.e. we have

iθµν∂ν = [xµ, · ], (2.6)

which can easily be calculated from (2.2). This also means that the derivatives
still have the usual Leibniz rule, i.e. we have

∂i(f ? g) = ∂if ? g + f ? ∂ig. (2.7)

2.2 Commutative gauge theory
Let us now recall some properties of a general commutative gauge theory. A
non-abelian gauge theory is based on a Lie group with Lie algebra

[T a, T b] = i fabcT
c. (2.8)

1actually, Groenewold-Moyal?-product would be the more appropriate name, as Groenewold
was the �rst to introduce the ?-product in [47], but to avoid misunderstandings, we will never-
theless stick to the term usually used in the literature.



2 The canonical case 15

Matter �elds transform under a Lie algebra valued in�nitesimal parameter

λ = λaT
a (2.9)

in the fundamental representation as

δλψ = iλψ.

It follows that
(δλδξ − δξδλ)ψ = δi[ξ,λ]ψ. (2.10)

The commutator of two consecutive in�nitesimal gauge transformation closes into
an in�nitesimal gauge transformation. As di�erentiation isn't a covariant oper-
ation, a Lie algebra valued gauge potential ai = aiaT

a is introduced with the
transformation property

δλai = ∂iλ+ i[λ, ai]. (2.11)
With this the covariant derivative of a �eld is

Diψ = ∂iψ − iaiψ. (2.12)

The �eld strength of the gauge potential is de�ned to be the commutator of two
covariant derivatives

fij = i[Di, Dj] = ∂iaj − ∂jai − i[ai, aj]. (2.13)

For nonabelian gauge theory, the �eld strength is not invariant under gauge trans-
formations, but rather transforms covariantly, i.e.

δλf = i[λ, f ]. (2.14)

The same is true for the Lagrangian density fijf ij. In order to get a gauge
invariant action, we have to use the trace over the representation of the gauge
�elds. As the trace is cyclic, the commutator with the gauge parameter vanishes
and the action

S =

∫
dxntrfijf

ij (2.15)

becomes invariant.

2.3 Noncommutative gauge theory
To do noncommutative gauge theory in the ?-product approach, we can simply
mimic the commutative construction, replacing the ordinary pointwise product
with the ?-product.
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Fields should now transform as

δΛΨ = iΛ ?Ψ. (2.16)

The commutator of two such gauge transformations should again be a gauge
transformation, i.e we want

(δΛδΞ − δΞδΛ)Ψ = δi[Ξ?,Λ]Ψ, (2.17)

which is only possible for gauge groups U(N), as for Λ = ΛaT
a and Ξ = ΞaT

a

the commutator

[Ξ ?, Λ] =
1

2
[Ξa ?, Λb]{T a, T b}+

1

2
{Ξa ?, Λb}[T a, T b] (2.18)

will only close into the Lie algebra for u(N) in the fundamental representation.
But general gauge groups can be implemented by using Seiberg-Witten maps (see
chapter 2.4).

As coordinates do not transform under gauge transformations, multiplication
from the left with coordinates no longer is a covariant operation, i.e.

δΛ(xi ?Ψ) = xi ? Λ ?Ψ 6= Λ ? xi ?Ψ. (2.19)

This is very much like the situation in commutative gauge theory, where acting
with a derivative from the left isn't a covariant operation. Following the procedure
there, we introduce covariant coordinatesX i by adding a gauge �eld Ai as

X i = xi + θijAj. (2.20)

To make the X i covariant, i.e. δΛX i = i[Λ ?, X i], the gauge �eld has to transform
as

δΛ(θijAj) = −i[xi ?, Λ] + i[Λ ?, θijAj] (2.21)
and therefore

δΛAi = ∂iΛ + i[Λ ?, Ai], (2.22)
in exact analogy to the commutative case. The commutator with the coordinate
produces the derivative on the gauge parameter, as [xi ?, f ] = iθij∂jf . More
generally we can introduce a covariantizerD that applied to a function f renders
it covariant [65]

δΛ(D(f)) = i[Λ ?, D(f)]. (2.23)
We can now go on to formulate noncommutative gauge theory much in the

same way as we formulated commutative gauge theory.
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The covariant derivativeDi can be introduced as

DiΨ = ∂iΨ− iAi ?Ψ, (2.24)

the �eld strength Fij as

Fij = i[Di
?, Dj] = ∂iAj − ∂jAi − i[Ai ?, Aj]. (2.25)

The relation to the covariant coordinates subsists at this level with

−i([X i ?, Xj]− iθij) = θikθjlFkl. (2.26)

For nondegenerate θ, the two descriptions - either at the level of covariant coor-
dinates or covariant derivatives - are clearly equivalent.

In noncommutative gauge theory, the �eld strength F is not gauge invari-
ant, even for gauge group U(1). It rather transforms covariantly under gauge
transformations, i.e.

δΛ(Fµν ? F
µν) = i[Λ ?, Fµν ? F

µν ]. (2.27)

Therefore even Abelian noncommutative gauge theory looks more like nonabelian
gauge theory. But just inserting a trace over the representation of the gauge
group no longer guarantees gauge invariance. To get gauge invariant expressions,
we have to use the trace property of the integral. If we set the action for non-
commutative gauge theory as

S =

∫
dnx trFµν ? F

µν , (2.28)

this expression will transform as

δΛS = i

∫
dnx tr [Λ ?, Fµν ? F

µν ] = 0, (2.29)

because the cyclicity of the integral annihilates the ?-part of the commutator,
and the cyclicity of the trace annihilates the nonabelian part. This means that
we cannot separate the trace over the representation of the gauge group and the
integration as in the commutative case, we need both to get a gauge invariant
action.

2.4 The Seiberg-Witten map
Up to now, we could only do noncommutative gauge theory for gauge groupsU(n)
because of (2.18). We will now show how to implement general gauge groups by
using Seiberg-Witten maps [95, 64].
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As we have seen, the commutator of two noncommutative gauge transforma-
tions no longer closes into the Lie algebra for general gauge groups. The noncom-
mutative gauge parameter and the noncommutative gauge potential will therefore
have to be enveloping algebra valued. In principle, this should mean that we are
left with in�nitely many degrees of freedom. But the enveloping algebra valued
parameters will only depend on their commutative counterparts, therefore pre-
serving the right number of degrees of freedom. These Seiberg-Witten mapsΛ,
Ψ and A are now functionals of their classical counterparts and additionally of
the gauge potential a.

They will transform as

δλΨψ[a] = iΛλ[a] ?Ψψ[a] (2.30)

and
δλAi[a] = ∂iΛλ[a] + i[Λλ[a] ?, Ai[a]]. (2.31)

The covariantizer D[a] will now transform as

δλ(D[a](f)) = i[Λλ[a] ?, D[a](f)]. (2.32)

Their dependence on the commutative �elds is given by the requirement that
their noncommutative transformation properties should be induced by the com-
mutative ones (2.9) and (2.11) like

Ψψ[a] + δλΨψ[a] = Ψψ+δλψ[a+ δλa],

Ai[a] + δλAi[a] = Ai[a+ δλa], (2.33)
Λλ[a] + δξΛλ[a] = Λλ[a+ δξa].

This means that it doesn't matter if we transform the noncommutative �elds
under the noncommutative gauge transformations or if we transform the commu-
tative �elds they depend on under commutative gauge transformations. This is
why we do not di�erentiate in our notation between commutative and noncom-
mutative gauge transformations, using δλ = δΛλ[a]. Additionally, to zeroth order
in the deformation parameter, the noncommutative �elds should be equal to their
commutative counterparts, i.e.

Ψψ[a] = ψ +O(θ),

Ai[a] = ai +O(θ), (2.34)
Λλ[a] = λ+O(θ).

The SW-maps (Seiberg-Witten maps) can be found order by order in the
deformation parameter. Alternatively they can be calculated via a consistency
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condition. Although the gauge transformations do not have to close into the
Lie algebra, there is still the requirement that the commutator of two Seiberg-
Witten gauge transformations (2.30) should again be a Seiberg-Witten gauge
transformation (2.30), i.e.

(δλδξ − δξδλ)Ψ = δi[ξ,λ]Ψ (2.35)

Written out this means that

−iδξΛλ[a] + iδλΛξ[a] + [Λλ[a] ?, Λξ[a]] = iΛi[ξ,λ][a]. (2.36)

This consistency condition for the the SW-map of the gauge parameter can be
solved order by order. Then the solutions can be used to calculate the other
SW-maps by inserting them into (2.33) and using (2.34).

There are also methods for constructing the SW-maps to all orders [65, 66, 90],
which we will discuss later in chapters 5.3 and 6.2, where we extend them to more
complicated ?-products.

2.5 Observables
One characteristic property of noncommutative gauge theory is the fact that there
are no local observables. As the gauge group of noncommutative gauge theory
also comprises translations in space, gauge invariant quantities (such as observ-
ables) cannot be local �elds. But nevertheless observables can be constructed by
integrating over special Wilson lines [31, 48, 59], which can be interpreted as the
Fourier transform of a Wilson line with �xed momentum. Unlike the commuta-
tive case, where closed Wilson lines are gauge invariant, these noncommutative
Wilson lines do not quite close. The gap between the endpoints is related to the
momentum via the parameter of the noncommutativity. To see this, we will �rst
present �nite expressions for noncommutative gauge theory.

2.5.1 Finite gauge transformations
In a �nite version of a noncommutative gauge theory, a scalar �eld should trans-
form like

φ′ = g ? φ, (2.37)
where g is a function that is invertible with respect to the ?-product

g ? g−1 = g−1 ? g = 1. (2.38)

Again, multiplication with a coordinate function is not covariant any more

(xi ? φ)′ 6= xi ? φ′. (2.39)
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Just as in the in�nitesimal formulation, covariant coordinates

X i(x) = xi + θijAj(x) (2.40)

can be introduced, transforming in the adjoint representation

X i′ = g ? X i ? g−1. (2.41)

Now the product of a covariant coordinate with a �eld is again a �eld. In perfect
analogy to the commutative case, the gauge �eldAi transforms as

Ai′ = ig ? ∂ig
−1 + g ? Ai ? g−1. (2.42)

This �nite formulation of noncommutative gauge theory is equivalent to the in-
�nitesimal formulation presented before. For details on this equivalence, see [63].

2.5.2 Wilson lines
Just think of a �eld φ transforming covariantly under a gauge transformation
with gauge parameter λ = lix

i. The corresponding �nite expression is

φ(x) → eilix
i

? ? φ(xk) ? e−ilix
i

? = φ(xk − ljθ
jk), (2.43)

i.e. a translation by −ljθjk. This means that noncommutative gauge transfor-
mations in fact contain translations in space! The? subscript on the exponential
means that all the multiplications are done using the?-product. But it is a spe-
cial property of the Moyal-Weyl ?-product that the ?-exponential actually is the
same as the ordinary one, i. e. we have eixi

? = eix
i , which is why we will drop the

?-subscript in the following.
The fact that translations are gauge transformations can be used to construct

noncommutative analogs of Wilson lines. Such a Wilson line

Wl = eiliX
i

? e−ilix
i (2.44)

has indeed the same transformation properties under a gauge transformation

W ′
l (x) = g(x) ? Wl(x) ? g

−1(x− liθ
ij). (2.45)

as a Wilson line starting at x and ending at x − lθ. Here we only treat straight
Wilson lines, but for the canonical case they can also be generalized to noncom-
mutative Wilson lines with arbitrary paths [59, 31, 48].
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2.5.3 Observables
As space translations are included in the noncommutative gauge transformations,
no local observables can be constructed. One has to integrate over the whole space
to get gauge invariant objects. For this it is useful to look at the Fourier transform
of the Wilson lines (2.44)

Wl(k) =

∫
dnxWl(x) ? e

ikix
i (2.46)

Under a gauge transformation, it transforms as

Wl(k)
′ =

∫
dnx g(x) ? Wl(x) ? g

−1(x− liθ
ij) ? eikix

i (2.47)

=

∫
dnx g(x) ? Wl(x) ? e

ikix
i

? e−ikix
i

? g−1(x− liθ
ij) ? eikix

i

=

∫
dnx g(x) ? Wl(x) ? e

ikix
i

? g−1(x− liθ
ij + kiθ

ij).

This means that the so called open Wilson lines [59, 31, 48] de�ned as

Ul = Wl(l) =

∫
dnxWl(x) ? e

ilix
i

, (2.48)

are gauge invariant. Here, the momentum k of the Wilson line corresponds to
its length rj = liθ

ij via the parameter of the noncommutativity, i.e. rj = kiθ
ij.

Using (2.44), this is of course even more obvious

Ul =

∫
dnxWl(x) ? e

ilix
i

=

∫
dnx eiliX

i

? e−ilix
i

? eilix
i

=

∫
dnx eiliX

i

. (2.49)

These open Wilson lines can even be generalized by inserting an arbitrary function
f of the covariant coordinates as

∫
d2nx f(X) ? eiliX

i (2.50)

without spoiling the gauge invariance.



22 2 The canonical case



23

Chapter 3

General ?-products

We had introduced the Moyal-Weyl ?-product for the canonical case without
explaining how it can be derived. In order to introduce the notion of?-products
in general, we will �rst have a closer look at the canonical case again. Suppose
we have a two-dimensional canonical algebra generated by the noncommutative
coordinates x̂ and ŷ with relations

[x̂, ŷ] = −iθ. (3.1)

To represent this algebra on the space C∞(R2), we will de�ne an ordering pre-
scription ρ by mapping monomials in the commutative variablesx and y to the
monomials in the noncommutative variables x̂ and ŷ with all the x̂ on the left
hand side and all the ŷ on the right hand side

ρ(xnym) := x̂nŷm. (3.2)

This is called normal ordering. If we normal order a monomial, we get

ŷmx̂k =

min(m,k)∑
i=0

(iθ)i

i!

m!

(m− i)!

k!

(k − i)!
x̂k−iŷm−i. (3.3)

If we multiply two such monomials and normal order the result, we therefore get

ρ(xnym)ρ(xkyl) =

min(m,k)∑
i=0

(iθ)i

i!

m!

(m− i)!

k!

(k − i)!
x̂n+k−iŷl+m−i (3.4)

=

min(m,k)∑
i=0

(iθ)i

i!

m!

(m− i)!

k!

(k − i)!
ρ(xn+k−iyl+m−i)

As the vector space of the noncommutative polynomials of a certain degree has
the same dimension as the vector space of the commutative polynomials of the
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same degree, the ordering ρ can be inverted, giving

ρ−1(ρ(xnym)ρ(xkyl)) =

min(m,k)∑
i=0

(iθ)i

i!

m!

(m− i)!

k!

(k − i)!
xn+k−iyl+m−i (3.5)

=
∞∑
i=0

(iθ)i

i!
∂iy(x

nym)∂ix(x
kyl)

= m · eiθ∂y⊗∂x(xnym)⊗ (xkyl)

= (xnym) ?n (xkyl).

Therefore get a new ?-product

f ?n g = m · eiθ∂y⊗∂xf ⊗ g = ρ−1(ρ(f)ρ(g)) (3.6)

for the algebra (3.1) by applying the ordering prescriptionρ on polynomial func-
tions! Let's compare it to the Moyal-Weyl ?-product (2.2). For the algebra (3.1)
this read

f ?w g = m · e i
2
θ(∂y⊗∂x−∂x⊗∂y)f ⊗ g. (3.7)

If we de�ne a di�erential operator

T = e−
i
2
θ∂x∂y , (3.8)

we can calculate

f ?w g = m · e i
2
θ(∂y⊗∂x−∂x⊗∂y)f ⊗ g (3.9)

= m · e i
2
θ(∂y⊗1+1⊗∂y)(∂x⊗1+1⊗∂x) eiθ∂y⊗∂x e−

i
2
θ(∂x∂y⊗∂x∂y)f ⊗ g

= e
i
2
θ∂x∂y((e−

i
2
θ∂x∂yf) ?n (e−

i
2
θ∂x∂yg))

= T−1((Tf) ?n (Tg))

= T−1ρ−1(ρT (f)ρT (g)).

The two ?-products are related by the di�erential operator T , and the Moyal-
Weyl ?-product can be expressed by an ordering prescription ρT . The ordering
actually corresponds to symmetric ordering, e.g. we have

ρT (xy) = ρ(e−
i
2
θ∂x∂yxy) = ρ(xy − i

2
θ) = x̂ŷ − i

2
θ (3.10)

= x̂ŷ − 1

2
[x̂, ŷ] =

1

2
(x̂ŷ + ŷx̂).

This method of constructing ?-products by applying an ordering prescription is
not limited to the canonical case.
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3.1 De�nition
But before we have a look at more complicated ?-products, we will �st give an
abstract de�nition. For this we will introduce a parameter h (which we think
of as small) measuring the deformation, and express everything as formal power
series in this parameter.

A ?-product on a manifoldM is an associative C-linear product

f ? g = fg +
∞∑
i=1

hiBi(f, g), (3.11)

where the Bi are bidi�erential operators acting on f, g ε C∞(M)[[h]]. From the
associativity of the ?-product follows that the ?-commutator ful�lls the Jacobi
identity, i.e.

[f ?, [g ?, h]] + [g ?, [h ?, f ]] + [h ?, [f ?, g]] = 0. (3.12)
For the antisymmetric part π of the �rst order term B1, i.e.

[f ?, g] = hπ(f, g) +O(2), (3.13)

this means that it has to be a Poisson structure. Expressed in some local coordi-
nates as π = 1

2
πij∂i ∧ ∂j, this means that it has to ful�ll

πij∂jπ
kl + πkj∂jπ

li + πlj∂jπ
ik = 0. (3.14)

Therefore for every ?-product, there is a Poisson structure related to it. On the
other hand, if we start with some Poisson structure, we can always construct a
corresponding ?-product [71], the formality ?-product we will present in chapter
3.4.

3.2 ?-products by operator ordering
We will now show how to construct ?-products for associative algebras that are
de�ned by commutator relations

R : [x̂i, x̂j] = ihĉij (3.15)

in the same way as we constructed the normal ordered?-product in (3.6). More
abstractly, such an algebra can be de�ned as

A = C〈x̂1, ..., x̂n〉[[h]]/R, (3.16)

where we allow formal power series in the deformation parameterh. As we treat
h as a formal parameter, such an algebra always has the Poincare-Birko�-Witt
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property, i.e. the vector space of the noncommutative polynomials of a certain
degree has the same dimension as if the coordinates were commutative. Especially
this means that we can map the basis of the commutative algebraC[x1, ..., xn][[h]]
onto a basis of the noncommutative algebraA. Such an ordering prescription

ρ : C[x1, ..., xn][[h]] → C〈x̂1, ..., x̂n〉[[h]]/R (3.17)

is then an isomorphism of vector spaces. With it, we can introduce a?-product
as

f ? g = ρ−1(ρ(f)ρ(g)), (3.18)
making the commutative algebra equipped with the?-product isomorphic to the
noncommutative algebra A. Two ordering prescriptions ρ and ρ′ of the same
algebra are always related by a similarity transformationT as ρ = ρ′T with

T = id+
∞∑
i=1

hiTi, (3.19)

where the Ti are di�erential operators. The corresponding ?-products ? and ?′

are then related by

f ? g = ρ−1(ρ(f)ρ(g)) = T−1ρ′−1(ρ′(Tf)Tρ′(Tg)) = T−1((Tf) ?′ (Tg)). (3.20)

3.3 The Weyl-ordered ?-product
In this chapter we will construct the Weyl-ordered?-product of a general noncom-
mutative algebra up to second order. Weyl-ordering means that we use totally
symmetric ordering for the generators. We start with an algebra generated byN
elements x̂i and relations

[x̂i, x̂j] = ĉij(x̂), (3.21)
where we have suppressed the explicit dependence of ĉ on a formal deformation
parameter, but we will always assume that it is at least of order 1. For such an
algebra we will calculate a ?-product up to second order. Let

f(p) =

∫
dnx f(x)eipix

i (3.22)

be the Fourier transform of f . Then the Weyl ordered operator associated to f
is de�ned by

W (f) =

∫
dnp

(2π)n
f(p)e−ipix̂

i (3.23)
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(see e. g. [78]) . Every monomial of coordinate functions is mapped to the
corresponding Weyl ordered monomial of the algebra. We note that

W (eiqix
i

) = eiqix̂
i

. (3.24)

The Weyl ordered ?-product is de�ned by the equation

W (f ? g) = W (f)W (g). (3.25)

If we insert the Fourier transforms of f and g we get

f ? g =

∫
dnk

(2π)n

∫
dnp

(2π)n
f(k)g(p)W−1(e−ikix̂

i

e−ipix̂
i

). (3.26)

We are therefore able to write down the?-product of the two functions if we know
the form of the last expression. For this we expand it in terms of commutators.
We use

eÂeB̂ = eÂ+B̂R(Â, B̂) (3.27)
with

R(Â, B̂) = 1 +
1

2
[Â, B̂] (3.28)

− 1

6
[Â+ 2B̂, [Â, B̂]] +

1

8
[Â, B̂][Â, B̂] +O(3).

If we set Â = −ikix̂i and B̂ = −ipix̂i, the above-mentioned expression becomes

W−1(e−ikix̂
i

e−ipix̂
i

) = (3.29)

e−i(ki+pi)x
i

+
1

2
(−iki)(−ipj)W−1(e−i(ki+pi)x̂

i

[x̂i, x̂j])

−1

6
(−i)(km + 2pm)(−iki)(−ipj)W−1(e−i(ki+pi)x̂

i

[x̂m, [x̂i, x̂j]])

+
1

8
(−ikm)(−ipn)(−iki)(−ipj)W−1(e−i(ki+pi)x̂

i

[x̂m, x̂n][x̂i, x̂j])

+O(3).

If we assume that the commutators of the generators are written in Weyl ordered
form

ĉij = W (cij), (3.30)
we see that

[x̂m, [x̂i, x̂j]] = W (cml∂lc
ij) +O(3), (3.31)

[x̂m, x̂n][x̂i, x̂j] = W (cmncij) +O(3). (3.32)
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Further we can derive

W−1(e−iqix̂
i

W (f(x))) = W−1
( ∫

dnp

(2π)n
f(p)e−i(qi+pi)x̂

i

R(−iqix̂i,−ipix̂i)
)

= W−1

(
W

( ∫ ∫
dnp

(2π)n
f(p)e−i(qi+pi)x

i × (3.33)

(1 +
1

2
(−ipi)(−iqj)[xi, xj])

))
+O(2)

= e−iqix
i

f(x) +
1

2
e−iqix

i

(−iqi)cij∂jf(x) +O(2),

using
∂jf(x) =

∫
dnp

(2π)n
f(p)(−ipj)e−ipix

i

.

Putting all this together yields

W−1(e−ikix̂
i

e−ipix̂
i

) = e−i(ki+pi)x
i

(
1 +

1

2
cij(−iki)(−ipj) (3.34)

+
1

8
cmncij(−ikm)(−ipn)(−iki)(−ipj)

+
1

12
cml∂lc

ij(−i)(km − pm)(−iki)(−ipj)
)

+ O(3),

and we can write down the Weyl ordered ?-product up to second order for an
arbitrary algebra

f ? g = fg +
1

2
cij∂if∂jg (3.35)

+
1

8
cmncij∂m∂if∂n∂jg

+
1

12
cml∂lc

ij(∂m∂if∂jg − ∂if∂m∂jg) +O(3).

Let us collect some properties of the just calculated?-product. First

[xi ?, xj] = cij (3.36)

is the Weyl ordered commutator of the algebra. Further, if there is a conjugation
on the algebra and if we assume that the noncommutative coordinates are real
x̂i = x̂i, then the Weyl ordered monomials are real, too. This is also true for the
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monomials of the commutative coordinate functions. Therefore this ?-product
respects the ordinary complex conjugation

f ? g = g ? f. (3.37)

On the level of the Poisson tensor this means

cij = −cij. (3.38)

3.4 The formality ?-product
TheWeyl-ordered?-product of chapter (3.3) is very useful for explicit calculations,
but these can only be done in a perturbative way order by order. Also, it is
only known in general up to the second order we calculated here. For closed
expressions and questions of existence, Kontsevich's formality ?-product [71] is
the better choice. It is known to all orders and comes with a strong mathematical
framework that can be used for further constructions.

This mathematical framework, known as Kontsevich's formality map [71], is a
very useful tool for studying the relations between Poisson tensors and?-products.
To make use of the formality map we �rst want to recall some de�nitions. A
polyvector �eld is a skew-symmetric tensor in the sense of di�erential geometry.
Every n-polyvector �eld α may locally be written as

α = αi1...in ∂i1 ∧ . . . ∧ ∂in . (3.39)

We see that the space of polyvector �elds can be endowed with a gradingn. For
polyvector �elds there is a grading respecting bracket that in a natural way gener-
alizes the Lie bracket [ · , · ]L of two vector �elds, the Schouten-Nijenhuis bracket.
For an exact de�nition see A.1.1. Ifπ is a Poisson tensor, the Hamiltonian vector
�eld Hf for a function f is

Hf = [π, f ]S = −πij∂if∂j. (3.40)

Note that [π, π]S = 0 is the Jacobi identity of a Poisson tensor.
On the other hand a n-polydi�erential operator is a multilinear map that

maps n functions to a function. For example, we may write a 1-polydi�erential
operator D as

D(f) = D0f +Di
1∂if +Dij

2 ∂i∂jf + . . . . (3.41)
The ordinary multiplication · is a 2-di�erential operator. It maps two functions
to one function. Again the numbern is a grading on the space of polydi�erential
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operators. Now the Gerstenhaber bracket [ · , · ]G is natural and respects the
grading. For an exact de�nition see A.1.2.

The formality map is a collection of skew-symmetric multilinear mapsUn,
n = 0, 1, . . ., that maps n polyvector �elds to a m-di�erential operator. To
be more speci�c let α1, . . . , αn be polyvector �elds of grade k1, . . . , kn. Then
Un(α1, . . . , αn) is a polydi�erential operator of grade

m = 2− 2n+
∑
i

ki. (3.42)

In particular the mapU1 is a map from a k-vector�eld to a k-di�erential operator.
It is de�ned by

U1(α
i1...in∂i1 ∧ . . . ∧ ∂in)(f1, . . . , fn) = αi1...in∂i1f1 · . . . · ∂infn. (3.43)

The formality maps Un ful�ll the formality condition [71, 7]

Q′1Un(α1, . . . , αn) +
1

2

∑
ItJ={1,...,n}

I,J 6=∅

ε(I, J)Q′2(U|I|(αI), U|J |(αJ)) (3.44)

=
1

2

∑

i6=j
ε(i, j, . . . , î, . . . , ĵ, . . . , n)Un−1(Q2(αi, αj), α1, . . . , α̂i, . . . , α̂j, . . . , αn).

The hats stand for omitted symbols, Q′1(Υ) = [Υ, µ] with µ being ordi-
nary multiplication and Q′2(Υ1,Υ2) = (−1)(|Υ1|−1)|Υ2|[Υ1,Υ2]G with |Υs| being
the degree of the polydi�erential operator Υs, i.e. the number of functions it
is acting on. For polyvector�elds αi1...iks

s ∂i1 ∧ . . . ∧ ∂iks
of degree ks we have

Q2(α1, α2) = −(−1)(k1−1)k2 [α2, α1]S.
For a bivector�eld π we can now de�ne a bidi�erential operator

? =
∞∑
n=0

1

n!
Un(π, . . . , π) (3.45)

i.e.

f ? g =
∞∑
n=0

1

n!
Un(π, . . . , π)(f, g). (3.46)

To see that the formality ?-product is associative, we �rst de�ne the special map

Φ(α) =
∞∑
n=1

1

(n− 1)!
Un(α, π, . . . , π). (3.47)



3 General ?-products 31

Using the formality condition (3.44) we calculate that

[?, ?]G = Φ([π, π]S), (3.48)

where [?, ?]G = 0 means that the ?-product is associative. This follows from the
fact that π is a Poisson tensor, i.e [π π]S = 0. Note that the de�nition (3.46) would
be equally valid for general bivector �elds π′, but the resulting product would
cease to be associative. Nevertheless the non-associativity would be controlled by
(3.48).

3.5 The Jambor-Sykora ?-product
The formality ?-product of the last chapter is very useful for abstract proofs (and
in fact we will use it for constructing a SW-map to all orders in chapter 5.3, but
it is too complicated for explicit calculations. But for special cases where the
Poisson structure can be expressed in terms of commuting vector �elds, there is
a ?-product that is both known to all orders and easy to handle in calculations,
the Jambor-Sykora ?-product [62]. For commuting vector�eldsXa = X i

a∂i (i.e.
[Xa, Xb] = 0) and a constant matrix σ the Jambor-Sykora ?-product reads

f ?σ g = m · eσabXa⊗Xbf ⊗ g, (3.49)

wherem·(f⊗g) = fg. The constant matrix σ can be written as σ = σas+σs with
σas antisymmetric and σs symmetric. There is an equivalence transformation

ρ = e
1
2
σab

s XaXb (3.50)

from the antisymmetric ?-product

f ?as g = m · eσab
asXa⊗Xbf ⊗ g (3.51)

to the full one (3.49)
f ?as g = ρ−1(ρ(f) ?σ ρ(g)). (3.52)

Note that for real vector�eldsXa and σas imaginary, ordinary complex conjuga-
tion is an involution of the antisymmetric ?-product, i.e.

f ?as g = g ?as f. (3.53)

For the full ?-product we can pull back this property byρ and the involution now
is ρρ−1. On a function f this reads ρ(ρ−1(f)), and we have

ρ(ρ−1(f ?σ g)) = ρ(ρ−1f ?as ρ−1g) (3.54)
= ρ(ρ−1g ?as ρ−1f)

= ρ(ρ−1g) ?σ ρ(ρ−1f).
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3.6 Traces
For the Moyal-Weyl ?-product, ordinary integration still had the trace property,
i.e. it was invariant under cyclic permutations of the elements in the integrand.
Unluckily, this is in general no longer the case for the more complicated?-products
of this chapter. But the cyclicity of integration is crucial for turning gauge-
covariant objects into gauge invariant ones. Therefore, we have to guarantee the
trace property of the integral by introducing a measure functionΩ. For many
?-products the trace may then be written as

tr f =

∫
d2nxΩ(x) f(x). (3.55)

Due to the cyclicity of the trace the measure functionΩ has to ful�ll

∂i(Ωθ
ij) = 0 (3.56)

which can easily be seen by using partial integration. If we take the Poisson
structure θij to be invertible, the inverse of the Pfa�an

1

Ω
= Pf(θ) =

√
det(θ) =

1

2nn!
εi1i2···i2nθ

i1i2 · · · θi2n−1i2n (3.57)

is a solution to this equation. Unluckily, there is no such formula for?-products
whose Poisson structures are not invertible.

If equation (3.56) is ful�lled, cyclicity is only guaranteed to �rst order. In
principle we have to calculate higher orders of Ω according to the ?-product
chosen. Nevertheless there can always be found a ?-product so that a measure
function ful�lling (3.56) guarantees cyclicity to all orders [38].

3.7 Example: ?-products for the κ-deformed plane
We will exemplify the ideas of the last chapter by applying them to the algebra
generated by x and y with commutation relations

[x, y] = −iax. (3.58)

This is the 2-dimensional version of what is known asκ-deformed spacetime. The
generalization to higher dimensions is straightforward.

3.7.1 The Weyl-ordered ?-product
The Poisson structure for this algebra quite obviously is

{f, g}p = −iax∂xf∂yg + ia∂yfx∂xg, (3.59)
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and the Poisson tensor therefore

cij = −iaxδixδjy + iaxδiyδ
j
x. (3.60)

As cij is linear in the coordinates, the Weyl-ordering of the expression doesn't
play a role. Inserting (3.60) into (3.35) produces the Weyl-ordered?-product up
to second order for (3.58)

f ? g = fg − ia

2
x(∂xf∂yg − ∂yf∂xg) (3.61)

−a
2

8
x2(∂2

xf∂
2
yg − 2∂x∂yf∂x∂yg + ∂2

yf∂
2
xg)

+
a2

12
x(∂x∂yf∂yg + ∂yf∂x∂yg − ∂xf∂

2
yg − ∂2

yf∂xg) +O(3).

3.7.2 The Jambor-Sykora ?-product
If we choose vector�elds

X1 = x∂x and X2 = −a∂y (3.62)

and σ =

(
0 i
0 0

)
(see also [62]), the Jambor-Sykora ?-product (3.49) will re-

produce the algebra (3.58). This ?-product corresponds to normal ordering. It
reads

f ?σ g = m · e−ia x∂x⊗∂yf ⊗ g, (3.63)
while the antisymmetric ?-product (3.51) reads

f ?as g = m · e− ia
2
x∂x⊗∂y+ ia

2
∂y⊗x∂xf ⊗ g. (3.64)

Notice that the antisymmetric ?-product di�ers (3.64) from the Weyl-ordered ?-
product (3.61) at second order and therefore does not correspond to symmetric
ordering. The equivalence transformation (3.52) between (3.63) and (3.64) is

ρ = e−
i
2
ax∂x∂y . (3.65)
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Chapter 4

Derivatives and Derivations

We are now able to represent more complicated algebras on ordinary functions
by using the ?-products of the last chapter. But there is an important element
still missing: derivatives. In the canonical case, we could just use the ordinary
derivatives to construct noncommutative actions. This was unproblematic as the
usual derivatives had an undeformed Leibniz rule, i.e.

∂i(f ? g) = ∂if ? g + f ? ∂ig. (4.1)

But with more complicated ?-products, this is in general no longer the case. The
derivatives do not only act on the functions, but also on the ?-product, which
now depends on the coordinates. Symbolically we can write

∂i(f ? g) = ∂if ? g + f ? ∂ig + f(∂i?)g, (4.2)

where ∂i? means that the derivative is acting on the bidi�erential operator ?
represents. This additional term can already be seen at the level of the Poisson
structure. Take e.g. the Poisson structure (3.59) of theκ-deformed plane. The
derivative ∂y in the y-direction does not act on it, so that we still have

∂y{f, g}p = {∂yf, g}p + {f, ∂yg}p, (4.3)

but in the x-direction, things are di�erent:

∂x{f, g}p = ∂x(−iax∂xf∂yg+ ia∂yfx∂xg) = {∂xf, g}p+{f, ∂xg}p+ {f, g}p
x

(4.4)

for x 6= 0. The same is true for derivatives acting on?-products: the usual Leibniz
rule is deformed. For the antisymmetric ?-product on the κ-deformed plane, this
deformed Leibniz rule reads

∂x(f ?as g) = (∂xf) ?as (e−
i
2
a∂yg) + (e

i
2
a∂yf) ?as (∂xg), (4.5)
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see (4.36). Such derivatives with a deformed Leibniz rule can nevertheless be
used to construct gauge theory [34, 33, 35], but it is far more involved than in the
canonical case. Especially, the gauge �elds associated to these derivatives become
derivative valued (see also chapter 5.1.1).

Here, we will pursue a di�erent approach. As we saw in (4.3), the derivative
in the y-direction did act on the Poisson structure as in the canonical case. And
on the antisymmetric ?-product, its Leibniz rule is indeed undeformed, i.e

∂y(f ?as g) = (∂yf) ?as g + f ?as (∂yg), (4.6)

see (4.35). Such a derivative can be gauged much in the same way as in the
canonical case, leading to function valued gauge �elds. But before we actually
construct gauge theory in chapter (5), we will �rst have a closer look at objects
that behave like ∂y did in our example, i.e we will be looking for vector �elds
that commute with the Poisson structure and how we can use them to get dif-
ferential operators that have an undeformed Leibniz rule with the corresponding
?-product. These di�erential operators with an undeformed Leibniz rule we will
call derivations of the ?-product algebra.

4.1 Derivations
We will be able to identify derivations of ?-product algebras with what we call
Poisson vector �elds of the Poisson structure associated with the?-product, i.e.
vector �elds X with

X{f, g}p = {Xf, g}p + {f,Xg}p. (4.7)

If we locally write

{f, g}p = π(f, g) = πij∂if∂jg and X = X i∂i, (4.8)

this is equivalent to saying that the Schouten-Nijenhuis bracket (see A.1.1) of the
vector �eld X with the Poisson structure π vanishes

[X, π]S = 0 ⇔ Xk∂kπ
ij − πik∂kX

j + πjk∂kX
i, (4.9)

or that the vector �eld X commutes with the Poisson structure π. If we have
such a Poisson vector �eld X, we are looking for a di�erential operator δX with
the following property

δX(f ? g) = δXf ? g + f ? δXg. (4.10)

Such a map δ from the vector�elds to the di�erential operators, which maps
the derivations of the Poisson manifold TπM = {X ∈ TM |[X, π]S = 0} to the
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derivations of the ?-product D?M = {δ ∈ Dpoly|[δ, ?]G = 0}, can be constructed
both for the Weyl ordered ?-product (see 4.2), for the formality ?-product (see
4.3 ) and the Jambor-Sykora ?-product (see 4.4). Here we want to investigate
the general properties of such a map δ. For this we expand it on a local patch in
terms of partial derivatives

δX = δiX∂i + δijX∂i∂j + · · · . (4.11)

Due to its property to be a derivation, δX is completely determined by the �rst
term δiX∂i. This means that if the �rst term is zero, the other terms have to
vanish, too. If further e is an arbitrary derivation of the ?-product, there must
exist a vector �eld Xe such that

δXe = e. (4.12)

If X, Y ∈ TπM , then [δX , δY ] is again a derivation of the ?-product and we can
conclude that

[δX , δY ] = δ[X,Y ]? , (4.13)
where [X, Y ]? is a deformation of the ordinary Lie bracket of vector �elds. Obvi-
ously it is linear, skew-symmetric and ful�lls the Jacobi identity.

With the help of the map δ and the deformed bracket [ · , · ]? it is also possible
to construct noncommutative forms over the derivations of the?-product algebra,
a formulation we will present in appendix A.2.

4.2 Derivations for the Weyl-ordered ?-product
We now want to calculate the derivationsδX of the Weyl-ordered ?-product (3.35)
from the derivationsX of the Poisson structure cij up to second order. We assume
that δX can be expanded in the following way

δX = X i∂i + δijX∂i∂j + δijkX ∂i∂j∂k + · · · . (4.14)

Expanding the equation

δX(f ? g) = δX(f) ? g + f ? δX(g) (4.15)

order by order and using [X, c]S = 0 we �nd that

δX = X i∂i − 1

12
clk∂kc

im∂l∂mX
j∂i∂j (4.16)

+
1

24
clkcim∂l∂iX

j∂k∂m∂j +O(3).
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For [ · , · ]? we simply calculate [δX , δY ] and get

[X,Y ]? = [X,Y ]L (4.17)

− 1

12
(clk∂kc

im∂l∂mX
j∂i∂jY

n − clk∂kc
im∂l∂mY

j∂i∂jX
n)∂n

+
1

24
(clkcim∂l∂iX

j∂k∂m∂jY
n − clkcim∂l∂iY

j∂k∂m∂jX
n)∂n

+O(3).

4.3 Derivations for the formality ?-product
We saw in chapter 3.4 that the formality ?-product can be constructed from the
maps Un from the polyvector�elds to the polydi�erential operators as

f ? g =
∞∑
n=0

1

n!
Un(π, . . . , π)(f, g). (4.18)

With these maps, we can further de�ne the special polydi�erential operators

Φ(α) =
∞∑
n=1

1

(n− 1)!
Un(α, π, . . . , π), (4.19)

Ψ(α1, α2) =
∞∑
n=2

1

(n− 2)!
Un(α1, α2, π, . . . , π). (4.20)

For X a vector�eld, we de�ne
δX = Φ(X). (4.21)

Using formula (3.42) we see that it is indeed a 1-di�erential operator. We will
now use the formality condition (3.44) to have a closer look at its properties.

For g a function and X and Y vector�elds, we see that Ψ(X, Y ) is a function
and we go on to calculate

[δX , ?]G = Φ([X, π]S), (4.22)
[δX , δY ]G + [Ψ(X, Y ), ?]G = δ[X,Y ]S (4.23)

+Ψ([π, Y ]S, X)−Ψ([π,X]S, Y ).

If π is a Poisson tensor, i. e. [π, π]S = 0 and if X and Y are Poisson vector �elds,
i. e. [X, π]S = [Y, π]S = 0, the relations (4.22) and (4.23) become

δX(f ? g) = δX(f) ? g + f ? δX(g), (4.24)
([δX , δY ]− δ[X,Y ]L)(g) = [Ψ(X, Y ) ?, g]. (4.25)
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when evaluated on functions. We see thatδ really is the map we were looking for,
i.e. it maps derivations of the Poisson structure to derivations of the associated
formality ?-product.

Additionally the map δ preserves the bracket up to an inner derivation. This
can be cast into the following form:

[δX , δY ] = δ[X,Y ]? (4.26)

with
[X, Y ]? = [X, Y ]L +HΦ−1Ψ(X,Y ). (4.27)

4.4 Derivations for the Jambor-Sykora ?-product
While looking for derivatives for the Jambor-Sykora ?-products, we can con�ne
ourselves to the antisymmetric case (3.51), as all the properties can be pulled
back to the full one (3.49) via the equivalence transformation (3.52).

In the framework of Kontsevich's formality ?-product, we saw that we could
construct a map from the vector�elds to the di�erential operators that maps
derivations of the Poisson structure to derivations of the formality?-product to
all orders.

We will now look for such a map that maps derivations of the Poisson structure

π =
1

2
σabasX

i
a∂i ∧Xj

b∂j (4.28)

associated with the Jambor-Sykora?-product to derivations of the antisymmetric
Jambor-Sykora ?-product (3.51). As the vector�eldsXa commute with each other
and σas is antisymmetric, (3.51) can be rewritten in terms of the Poisson structure
as

f ?as g = m(eσ
ab
asX

i
a∂i⊗Xj

b∂j(f ⊗ g)) = m(eπ(f ⊗ g)). (4.29)
In this notation it is obvious that vector�elds commuting with the Poisson struc-
ture (4.28) will be derivations of the ?-product (4.29) as well. This means that
for vector�elds Y with

[Y, π]S = 0 ⇔ [Y ⊗ 1 + 1⊗ Y, π] = 0 ⇔ Y {f, g}P = {Y f, g}P + {f, Y g}P
we also have

Y (f ?as g) = m((Y ⊗ 1 + 1⊗ Y )eπ(f ⊗ g)) (4.30)
= m(eπ(Y ⊗ 1 + 1⊗ Y )(f ⊗ g))

= Y f ?as g + f ?as Y g.
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We therefore do not get higher order terms, the map from the vector�elds to the
di�erential operators is the inclusion. This also implies that the algebra of the
vector�elds remains undeformed under quantization.

For the coproduct of general vector�elds acting on the ?-product (3.51), we
get a deformed Leibniz rule

X(f ?as g) = (4.31)
∞∑
n=0

1

n!
σa1a2
as ...σanbn

as ([...[X,Xa1 ], Xa2 ], ...], Xan ]f) ?as (Xb1 ...Xbng)

+
∞∑
n=0

1

n!
σa1a2
as ...σanbn

as (Xa1 ...Xanf) ?as ([...[X,Xb1 ], Xb2 ], ...], Xbn ]g).

We can use the equivalence transformation (3.50) to pull back these structures
to the full ?-product (3.49). Note that the Poisson structure of the full?-product
(3.49) only depends on the antisymmetric part of σ and therefore is (4.28), the
same as for the antisymmetric ?-product (3.51).

A vector�eld Y commuting with the Poisson structure of the full ?-product
(3.49) will be a derivation of the antisymmetric ?-product (3.51). We use (3.52)
to get

ρY ρ−1(f ?σ g) = (ρY ρ−1f) ?σ g + f ?σ (ρY ρ−1g) (4.32)
from

Y (f ?as g) = Y f ?as g + f ?as Y g. (4.33)
The map δX from the vector�elds to the di�erential operators for the full ?-
product (3.49) is therefore given by

δX = ρXρ−1. (4.34)
The algebra of these deformed vector�elds is isomorphic to the algebra of the
undeformed vector�elds. Also the coalgebra of the deformed vector�elds with re-
spect to the full ?-product (3.49) is isomorphic to the coalgebra of the undeformed
vector�elds with respect to the antisymmetric ?-product (3.51).

4.5 Example: Derivatives and Derivations for the
κ-deformed plane

We will now exemplify the ideas of this chapter by applying them to the κ-
deformed plane we already studied in chapter 3.7. We will now concentrate on
the Jambor-Sykora ?-products, where the basic mechanisms at work can be best
seen.
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4.5.1 The antisymmetric case
For the antisymmetric ?-product (3.64), the vector�elds are undeformed, but they
may acquire nontrivial coproducts (4.31). The derivative in they-direction com-
mutes with the Poisson structure and is therefore a derivation of the?-product:

∂y(f ?as g) = (∂yf) ?as g + f ?as (∂yg). (4.35)
But the derivative in thex-direction does not commute with the Poisson structure
and has a deformed Leibniz rule:

∂x(f ?as g) = (∂xf) ?as (e−
i
2
a∂yg) + (e

i
2
a∂yf) ?as (∂xg). (4.36)

Multiplication from the left with a function (without ?-multiplication) also ac-
quires a derivative quality:

y(f ?as g) = (yf) ?as g − i

2
af ?as (x∂xg) (4.37)

= f ?as (yg) +
i

2
a(x∂xf) ?as g

and
x(f ?as g) = (xf) ?as (e

i
2
a∂yg) (4.38)

= (e−
i
2
a∂yf) ?as (xg).

This also implies the following relations
(xf) ?as g = (e−

i
2
a∂yf) ?as (xe−

i
2
a∂yg) (4.39)

and
(yf) ?as g = f ?as (yg) +

i

2
ax∂x(f ?as g). (4.40)

If we combine (4.36) and (4.38) to calculate the coproduct ofx∂x, we see that it
is indeed a derivation of the ?-product, as expected.

x∂x(f ?as g) = (x∂xf) ?as g + f ?as (x∂xg) (4.41)
For the other vector�elds linear in the coordinates we get

x∂y(f ?as g) = (x∂yf) ?as (e
i
2
a∂yg) + (e−

i
2
a∂yf) ?as (x∂yg), (4.42)

y∂y(f ?as g) = (y∂yf) ?as g + f ?as (y∂yg) (4.43)

− i
2
a(∂yf) ?as (x∂xg) +

i

2
a(x∂xf) ?as (∂yg)

and
y∂x(f ?as g) = (y∂xf) ?as (e−

i
2
a∂yg) + (e

i
2
a∂yf) ?as (y∂xg) (4.44)

− i
2
a(∂xf) ?as (x∂xe

− i
2
a∂yg) +

i

2
a(x∂xe

i
2
a∂yf) ?as (∂xg).
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4.5.2 The normal ordered case
Of course we can switch to the ?-product (3.63) corresponding to normal ordering
by using the transformation (3.65)

ρ = e−
i
2
ax∂x∂y . (4.45)

The vector�elds are then mapped to the di�erential operators by applying (4.34).
For the coordinates we get

δy = ρyρ−1 = y − i

2
ax∂x and δx = ρxρ−1 = xe−

i
2
a∂y , (4.46)

revealing the derivative nature of multiplication of coordinates from the left. The
derivative in the y-direction stays undeformed

δ∂y = ρ∂yρ
−1 = ∂y, (4.47)

the derivative in the x-direction becomes

δ∂x = ρ∂xρ
−1 = e

i
2
a∂y∂x. (4.48)

We can combine (4.46) and (4.48) to give

δx∂x = ρx∂xρ
−1 = ρxρ−1ρ∂xρ

−1 = x∂x. (4.49)

Note that the deformation δ acts trivially on x∂x, as it does commute with ρ. For
the other vector�elds linear in the coordinates we get from (4.46,4.47,4.48)

δx∂y = x∂ye
− i

2
a∂y ,

δy∂y = y∂y − i

2
ax∂x∂y, (4.50)

δy∂x = y∂xe
i
2
a∂y − i

2
ax∂2

xe
i
2
a∂y .
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Chapter 5

Gauge theory on curved NC spaces

One hope associated with the application of noncommutative geometry in physics
is a better description of quantized gravity. At least it should be possible to
construct e�ective actions where traces of this unknown theory remain. If one
believes that quantum gravity is in a sense a quantum �eld theory, then its ob-
servables are operators on a Hilbert space and therefore elements of an algebra.
Some properties of this algebra should be re�ected in the noncommutative geom-
etry the e�ective actions are constructed on. As the noncommutativity should
be induced by background gravitational �elds, the classical limit of the e�ective
actions should reduce to actions on curved spacetimes [75, 29].

In the canonical case, the gauge theory reduces in the commutative limit to a
theory on �at spacetime. Therefore it is necessary to develop concepts working
with more general algebras, since one would expect that curved backgrounds
are related to algebras with nonconstant commutation relations. We will use
the derivations of ?-product algebras we studied in chapter 4 to build covariant
derivatives for noncommutative gauge theory. We will be able to write down a
noncommutative action by linking these derivations to a frame �eld induced by a
nonconstant metric. In the commutative limit, this action reduces to gauge theory
on a curved manifold. As an example we will again studyκ-deformed spacetime,
where the action reduces in the commutative limit to scalar electrodynamics on
a manifold with constant curvature.

We will also introduce Seiberg-Witten maps to do noncommutative gauge
theory with arbitrary gauge groups. A proof of the existence of the Seiberg-
Witten-map for an Abelian gauge potential will be given for the formality ?-
product. We will also give explicit formulas for the Weyl ordered?-product up
to second order.
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5.1 The general formalism
5.1.1 Noncommutative gauge theory
To do gauge theory on the noncommutative spaces equipped with the more com-
plicated ?-products of chapter 3, we will try to follow the formalism of the canon-
ical case as much as possible.

Fields in the fundamental representation will again transform as

δΛΨ = iΛ ?Ψ. (5.1)

The commutator of two such gauge transformations should again be a gauge
transformation, i.e we again want

(δΛδΞ − δΞδΛ)Ψ = δi[Ξ?,Λ]Ψ. (5.2)

As in the canonical case, this is only possible for gauge groupsU(N). The �rst
di�erence to the canonical case occurs when we look at the transformation prop-
erties of a derivative

δΛ(∂iΨ) = ∂i(iΛ ?Ψ) = i(∂iΛ) ?Ψ + iΛ ? (∂iΨ) + iΛ(∂i?)Ψ. (5.3)

The additional term iΛ(∂i?)Ψ is in general no longer zero, corresponding to a
nontrivial coproduct of the derivative. If we now want to add a gauge �eldAi to
the derivative to make it gauge invariant, i.e.

DiΨ = ∂iΨ− iAi ?Ψ, (5.4)

the transformation properties ofAi also have to o�set this new term to get

δΛ(DiΨ) = iΛ ? DiΨ. (5.5)

From this we get

δΛ(Ai) ?Ψ = ∂iΛ ?Ψ + i[Λ ?, Ai] ?Ψ + Λ(∂i?)Ψ, (5.6)

which means that the gauge potential can no longer be a function, it has to be
derivative valued. To see this better, we take as an example the?-product (3.64)
for the κ-deformed plane. The above formula then reads

δΛ(Ax) ?as Ψ = (∂xΛ) ?as (e−
i
2
a∂yΨ) (5.7)

+((e
i
2
a∂y − 1)Λ) ?as (∂xΨ) + i[Λ ?as, Ax] ?as Ψ.

To o�set the terms coming from the deformed Leibniz rule for∂x (where additional
derivatives act on the right hand side), the gauge �eldAx has to become derivative
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valued. Gauge theory using such derivative valued gauge �elds was constructed
in [34, 33, 35], but we will try a di�erent approach here.

We saw in chapter 2.3 that there is a di�erent formulation for noncommutative
gauge theory in terms of covariant coordinates. So let us see what happens if we
try to gauge the coordinates with a more complicated ?-product. We want to
have

δΛ(Xi ?Ψ) = δΛ((xi + Ãi) ?Ψ) = iΛ ? Xi ?Ψ. (5.8)
Therefore the gauge �eld Ãi has to transform as

δΛÃi = i[Λ ?, xi] + i[Λ ?, Ãi]. (5.9)

This means that Ãi is still a function, because the commutator with a coordinate
of course has an undeformed Leibniz rule. But there is a problem with this Ansatz:
the gauge �eld Ãi vanishes in the commutative limit. In the canonical case, this
could be solved by de�ning a new �eld (θ−1)ijÃj, but this is no longer possible
as the now coordinate dependent θ−1 would spoil the transformation properties
of the new object.

This is why we introduced derivations δX in chapter 4. They do have both an
undeformed Leibniz rule and a nonvanishing commutative limit. So we introduce
covariant derivations as

DX = δX − iAX , (5.10)
where X is a Poisson vector �eld. The gauge �eldAX will transform as

δΛAX = δXΛ + i[Λ ?, AX ]. (5.11)

Then, a �eld strength FX,Y can be de�ned as

− iFX,Y = [DX
?, DY ]−D[X,Y ]? , (5.12)

the properties of D and [ · , · ]? making sure that the �eld strength is function-
valued and transforms covariantly1.

1This can also be expressed in the language of the noncommutative forms introduced in
appendix A.2. AX is the connection one form evaluated on the vector �eldX. It transforms
like

δΛA = δΛ + iΛ ∧A− iA ∧ Λ. (5.13)
The covariant derivative of a �eld is now

DΨ = δΨ− iA ∧Ψ, (5.14)

and the �eld strength becomes

F = DA = δA− iA ∧A. (5.15)
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5.1.2 Seiberg-Witten gauge theory
Up to now, we could only do noncommutative gauge theory for gauge groupsU(n),
just as in the canonical case. We will now show how to implement the concept of
Seiberg-Witten maps [95, 64] into our new setting of covariant derivations to be
able to do gauge theory for general gauge groups.

Just as in the canonical case, the Seiberg-Witten maps for the �elds will have
to be enveloping algebra valued, but they will only depend on their commutative
counterparts, therefore preserving the right number of degrees of freedom. Again
we demand that their noncommutative transformation properties are determined
by the transformation properties of the commutative �elds they depend on.

Therefore the �elds again transform as [63]

δαΨψ[a] = iΛα[a] ?Ψψ[a], (5.17)

leading to the same consistency condition for the gauge parameter

iδαΛβ − iδβΛα + [Λα
?, Λβ] = iΛ−i[α,β]. (5.18)

The transformation law for the covariantizer is now

δα(D[a](f)) = i[Λα[a] ?, D[a](f)]. (5.19)

The Seiberg-Witten-map can be easily extended to the derivationsδX of the ?-
product. The noncommutative covariant derivationDX [a] can be written with
the help of a noncommutative gauge potentialAX [a] now depending both on the
commutative gauge potential a and the Poisson vector�eldX

DX [a]Ψψ[a] = δXΨψ[a]− iAX [a] ?Ψψ[a]. (5.20)

It follows that the gauge potential has to transform like

δαAX [a] = δXΛα[a] + i[Λα[a] ?, AX [a]]. (5.21)

We will give explicit formulas for the Seiberg-Witten maps in chapters 5.2 and
5.3.

One easily can show that the �eld strength is a covariant constant

DF = δF − iA ∧ F = 0. (5.16)



5 Gauge theory on curved NC spaces 47

5.1.3 Commutative actions with the frame formalism
To link the noncommutative constructions of the last chapters with commutative
gauge theory, we �rst want to recall some aspects of classical di�erential geometry.
Suppose we are working on a n-dimensional manifoldM with metric gµν . Then
there are locally n derivatives ∂µ which form a basis of the tangent space TM of
the manifold. We can always make a local basis transformation to a frame (or
�non-coordinate basis�)

ea = ea
µ(x)∂µ, (5.22)

(with eaµ(x) invertible, i.e. eaµeaν = δµν ) where the metric is constant

ηab = ea
µeb

νgµν . (5.23)

Since forms are dual to vector �elds, they may be evaluated on the frame. For
the gauge �eld we get

aa = a(ea), (5.24)

leading to the covariant derivate

Daψ = (Dψ)(ea) = eaψ − iaaψ. (5.25)

The �eld strength becomes

fab = i[Da, Db]− iD([ea, eb]) = eaab − ebaa − a([ea, eb])− i[aa, ab]. (5.26)

Locally this means that

aa = ea
µaµ , Daψ = ea

µDµ and fab = ea
µeb

νfµν . (5.27)

Using these de�nitions, the action for gauge theory on a curved manifold can be
written in the two di�erent bases as

S = −1

4

∫
dnx

√
g ηabηcdfacfbd = −1

4

∫
dnx

√
g gµνgρσfµρfνσ, (5.28)

where
√
g =

√
det (gµν) =

√
det(eaµebνηab) = det eaµ (5.29)

is the measure function induced by the metric.
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5.1.4 Gauge theory on curved noncommutative spacetime
In order to formulate gauge theory on a curved noncommutative spacetime, we
need a frame ea and a Poisson structure { · , · }p = πµν∂µ∧∂ν that are compatible
with each other. Compatibility means that the frame ea commutes with the
Poisson structure { · , · }p, i.e.

ea{f, g}p = {eaf, g}p + {f, eag}p, (5.30)

and that the measure function√g induced by the metric gµν = eaµe
b
νηab is also

a measure function for the Poisson manifold, i.e. that we have

∂µ(
√
gπµν) = 0.

We will call the ?-product algebra generated by quantizing such a Poisson struc-
ture a curved noncommutative space, as the gauge theory we will de�ne on it in
this chapter will reduce to gauge theory on a curved manifold in the commutative
limit. In appendix A.3 we will propose a method how to �nd frames commuting
with the Poisson structure in the context of quantum spaces. How to �nd Poisson
structures compatible with a given frame by a construction based on di�erential
equations can be found in [97].

For the gauge theory, we saw in chapter 5.1.1 that we can de�ne a covariant
derivative of a �eld by using a derivation δX

DXΨψ = δXΨψ − iAX ?Ψψ. (5.31)

With this, a �eld strength could be de�ned as

−iFX,Y = [DX
?, DY ]−D[X,Y ]? . (5.32)

The properties of δ· and [ · , · ]? ensured that this really is a function and not a
polydi�erential operator.

On a curved noncommutative space, we can quantize the frame ea with the
map δ to get derivations of the?-product. These we can use to de�ne our covariant
derivatives. The noncommutative covariant derivative (5.31) and �eld strength
(5.32) evaluated on the frame ea then read

DaΦ = DeaΦ = δeaΦ− iAea ? Φ, (5.33)

−iFab = −iFea,eb
= [Dea

?, Deb
]−D[ea,eb]? . (5.34)

The �eld strength will transform covariantly under gauge transformations, i.e. we
have

δΛ(F ) = i[Λ ?, F ]. (5.35)
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To make the action gauge invariant, the integral has to have the trace property,
i.e. it has to be invariant under cyclic permutations. For this we need a measure
function Ω, which in our case will be the measure function induced by the metric
plus possible higher orders in the noncommutativity (see also chapter 3.6), i.e.
we will have

Ω =
√
g +O(1). (5.36)

With this, we have a noncommuative gauge action

S = −1

4

∫
dnxΩ ηabηcdFac ? Fbd. (5.37)

that goes in the commutative limit

S → −1

4

∫
dnx

√
g gµνgρσfµρfνσ (5.38)

to gauge theory on a curved manifold.

5.1.4.1 Scalars
For the noncommutative version of a scalar Lagrangian

ηabDaφDbφ+m2φφ, (5.39)

we also need an involution ·̄ of the ?-product, i.e.

(f ? g) = g ? f. (5.40)

To make the NC Lagrangian invariant under NC gauge transformations, the NC
gauge parameter Λ and the NC gauge �eld AX have to be invariant under this
involution to get

δΛφ = (Λ ? φ) = φ ? Λ = Φ ? Λ (5.41)
and

(AX ? φ) = φ ? AX = φ ? AX . (5.42)
For the Weyl-ordered ?-product, ordinary complex conjugation still is an involu-
tion, and the hermiticity of the NC gauge parameterΛ and the NC gauge �eldAX
can be checked explicitly on the formulas of the Seiberg-Witten map in chapter
5.2.

Putting everything together, we therefore end up with an action

S =

∫
dnxΩ (−1

4
ηabηcdFac ? Fbd + ηabDaΦ ? DbΦ−m2Φ ? Φ). (5.43)
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that is invariant under noncommutative gauge transformations

δΛS = 0 (5.44)

and reduces in the commutative limit

S →
∫
dnx

√
g (−1

4
gµνgρσfµρfνσ + gµνDµφ̄Dνφ−m2φ̄φ), (5.45)

to scalar electrodynamics on a curved manifold.

5.1.4.2 Spinors
Even though it isn't clear how to de�ne NC spinors on general curved spacetimes
due to the nontrivial spin-connection, it should still be possible in two dimensions.
There, the spin connection vanishes and the commutative spinor action can be
written as

Sspinor =
1

2

∫
d2x

√
gΨiγaeµa(∂µ − iAµ +m)Ψ. (5.46)

Note that with the usual gamma-matrices {γa, γb} = 2ηab and γµ = γaeµa , we
get {γµ, γν} = 2gµν . The noncommutative version of (5.46) is easily constructed,
and we get

Sspinor =
1

2

∫
d2xΩΨiγa(δea − iAea +m) ?Ψ (5.47)

with ea = eµa∂µ, which is invariant under NC gauge transformations and reduces
in the commutative limit to (5.46).

5.1.5 Example: A frame for κ-deformed spacetime
In this chapter we will construct a frame for the n-dimensional generalization
of the κ-deformed plane studied in chapters 3.7 and 4.5. The relations of this
quantum space2 are

[x̂0, x̂i] = iax̂i for i 6= 0, (5.48)
with a a real number. The Poisson structure for this space is

cµν = iaxiδµ0 δ
ν
i − iaxiδµi δ

ν
0 . (5.49)

2Compared to the two-dimensional example in (3.7) and (4.5), the coordinatex0 corresponds
to x and the coordinates xi correspond to y. A Jambor-Sykora ?-product for the n-dimensional
κ-deformed space reads e.g.

f ? g = m · e−ia xi∂i⊗∂0f ⊗ g.
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The derivative in thex0-direction obviously commutes with this Poisson structure,
and we can use it for the frame, setting e0

µ = δµ0 . For the other directions, we see
that ρ∂i with ρ =

√∑n−1
i=1 (xi)2 commutes with the Poisson structure, as we have

ρ∂ic
µν = iaρδµ0 δ

ν
i − iaρδµi δ

ν
0 and cµσ∂σ(ρδ

ν
i ) = iaρδµ0 δ

ν
i , (5.50)

giving
ρ∂iγ

µν − cµσ∂σρδ
ν
i + cνσ∂σρδ

µ
i = 0. (5.51)

For the frame, we can therefore take

eo = ∂o, (5.52)
ei = ρ∂i,

leading to a commutative metric

g = (dx0)2 + ρ−2((dx1)2 + · · ·+ (dxn−1)2). (5.53)

We know that we can write

(dx1)2 + · · ·+ (dxn−1)2 = dρ2 + ρ2dΩ2
n−2, (5.54)

where dΩ2
n−2 is the metric of the n− 2 dimensional sphere. Therefore in this new

coordinate system
g = (dx0)2 + (d ln ρ)2 + dΩ2

n−2 (5.55)

and we see that the commutative space is a cross product of a two dimensional
Euclidean space and a n − 2-sphere. Therefore it is a space of constant non-
vanishing curvature. Further

√
det g = ρ−(n−1) (5.56)

is both the measure function on this curved space and it ful�lls

∂µ(
√

det gcµν) = 0, (5.57)

i.e. it also guarantees the cyclicity of the integral, see chapter 3.6.
We have found a frame compatible with the Poisson structure ofκ-deformed

spacetime and can therefore construct noncommutative gauge theory on this
space. We will continue this example in chapter 5.2.6, where we will also have
explicit formulas for the SW-maps, writing down an explicit action for the gauge
theory.
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5.2 Explicit formulas for the Seiberg-Witten map

We will now present a consistent solution for the Seiberg-Witten-maps up to
second order for the Weyl ordered ?-product and non-abelian gauge transforma-
tions. The solutions have been chosen in such a way that they reproduce the ones
obtained in [63] for the canonical case.

For calculating the Seiberg-Witten maps, we will write the Weyl ordered?-
product (3.35) expanded to second order as

f ? g = fg + f ?1 g + f ?2 g +O(3) (5.58)

with
f ?1 g =

1

2
cij∂if ∂jg (5.59)

and

f ?2 g =
1

8
cmncij∂m∂if∂n∂jg +

1

12
cml∂lc

ij(∂m∂if∂jg − ∂if∂m∂jg). (5.60)

5.2.1 The gauge parameter
The gauge parameter is equally expanded as

Λα[a] = Λ0
α[a] + Λ1

α[a] + Λ2
α[a] +O(3) (5.61)

The solution for the gauge transformations is obtained by solving the consistency
condition (5.18) order by order. To zeroth order, we clearly haveΛ0

α[a] = α.
To �rst order, the consistency condition reads

iδαΛ
1
β − iδβΛ

1
α + [α,Λ1

β] + [Λ1
α, β]− iΛ1

−i[α,β] = −[α ?1, β] (5.62)

= −1

2
cij[∂iα, ∂jβ]

A solution to this equation is

Λ1
α[a] = − i

4
cij{∂iα, aj}. (5.63)

Note that this solution is not unique. Especially, we could always add terms
solving the homogeneous part of (5.62).
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To second order, the consistency condition reads

iδαΛ
2
β − iδβΛ

2
α + [α,Λ2

β] + [Λ2
α, β]− iΛ2

−i[α,β] (5.64)
= −[α ?1, Λ1

β]− [Λ1
α
?1, β]− [Λ1

α,Λ
1
β]− [α ?2, β]

= −1

2
cij[∂iα, ∂jΛ

1
β]−

1

2
cij[∂iΛ

1
α, ∂jβ]− [Λ1

α,Λ
1
β]

−1

8
cmncij[∂m∂iα, ∂n∂jβ]− 1

12
cml∂lc

ij([∂m∂iα, ∂jβ]− [∂iα, ∂m∂jβ]).

Using the �rst order term (5.63), we calculate the second order term

Λ2
α[a] = +

1

32
cijckl

(
4{∂iα, {ak, ∂laj}} − 2i[∂i∂kα, ∂jal] (5.65)

+2[∂jal, [∂iα, ak]]− 2i[[aj, al], [∂iα, ak]]

+i{∂iα, {ak, [aj, al]}}+ {aj, {al, [∂iα, ak]}}
)

+
1

24
ckl∂lc

ij
(
{∂iα, {ak, aj}} − 2i[∂i∂kα, aj]

)
.

5.2.2 Fields in the fundamental representation
In the same way a solution for the �eld Ψ in the fundamental representation is
obtained by solving equation (5.17). We expand it to second order as

Ψψ[a] = Ψ0
ψ[a] + Ψ1

ψ[a] + Ψ2
ψ[a] +O(3). (5.66)

The zeroth order is the commutative �eld, i. e. Ψ0
ψ[a] = ψ. To �rst order, the

equation (5.17) reads

δαΨ
1
ψ − iαΨ1

ψ = iα ?1 ψ + iΛ1
αψ =

i

2
cij∂iα∂jψ + iΛ1

αψ, (5.67)

which is solved using (5.63) to give

Ψ1
ψ[a] =

1

4
cij

(
2iai∂jψ + aiajψ

)
. (5.68)

To second order the equation (5.17) reads

δαΨ
2
ψ − iαΨ2

ψ = iα ?2 ψ + iα ?1 Ψ1
ψ + iΛ1

α ?1 ψ + iΛ1
αΨ

1
ψ + iΛ2

αψ (5.69)

=
i

8
cmncij∂m∂iα, ∂n∂jψ +

i

12
cml∂lc

ij(∂m∂iα∂jψ − ∂iα∂m∂jψ)

+
i

2
cij∂iα∂jΨ

1
ψ +

i

2
cij∂iΛ

1
α∂jψ + iΛ1

αΨ
1
ψ + iΛ2

αψ.
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Using the solutions to �rst order (5.63) and (5.68), a solution

Ψ2
ψ[a] = +

1

32
cijckl

(
4i∂iak∂j∂lψ − 4aiak∂j∂lψ − 8ai∂jak∂lψ (5.70)
+4ai∂kaj∂lψ + 4iaiajak∂lψ − 4iakajai∂lψ

+4iajakai∂lψ − 4∂jakai∂lψ + 2∂iak∂jalψ

−4iaial∂kajψ − 4iai∂kajalψ + 4iai∂jakalψ

−3aiajalakψ − 4aiakajalψ − 2aialakajψ
)

+
1

24
ckl∂lc

ij
(
2iaj∂k∂iψ + 2i∂kai∂jψ + 2∂kaiajψ

−akai∂jψ − 3aiak∂jψ − 2iajakaiψ
)

can be calculated for the second order term.

5.2.3 The covariantizer
The covariantizer is expanded as well as

D[a](f) = D0[a](f) +D1[a](f) +D2[a](f) +O(3). (5.71)
We will now solve (5.19) order to order. To zeroth order, we takeD to be the
identity, i.e. D0[a](f) = f . To �rst order (5.19) reads

δαD
1(f)− i[α,D1(f)] = i[α ?1, f ] =

i

2
cij[∂iα, ∂jf ], (5.72)

having a solution
D1[a](f) = icijai∂jf. (5.73)

To second order we get for (5.19)

δαD
2(f)− i[α,D2(f)] = i[α ?2, f ] + i[α ?1, D1(f)] (5.74)

+i[Λ1
α
?1, f ] + i[Λ1

α, D
1(f)]

=
i

8
cmncij[∂m∂iα, ∂n∂jf ]

+
i

12
cml∂lc

ij([∂m∂iα, ∂jf ]− [∂iα, ∂m∂jf ])

+
i

2
cij[∂iα, ∂jD

1(f)] +
i

2
cij[∂iΛ

1
α, ∂jf ] + i[Λ1

α, D
1(f)],

with a solution

D2[a](f) = +
1

4
cijckl

(
− 2{ai, ∂jak}∂lf + {ai, ∂kaj}∂lf (5.75)
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+i{ai, [aj, ak]}∂lf − {ai, ak}∂j∂lf
)

+
1

4
cil∂lc

jk{ai, ak}∂jf.

5.2.4 The gauge �eld
Finally we want to calculate a SW-map for the gauge potentialAX evaluated on
a Poisson vector �eld X. Again we expand it as

AX [a] = A0
X [a] + A1

X [a] + A2
X [a] +O(3). (5.76)

Expanding the equation (5.21) as well, we see that to zeroth order it is solved by
A0
X [a] = Xnan. To �rst order it reads

δαA
1
X − i[α,A1

X ] = X i∂iΛ
1
α + δ1

Xα + i[α ?1, Xnan] + i[Λ1
α, X

nan] (5.77)

= X i∂iΛ
1
α +

i

2
cij[∂iα, ∂j(X

nan)] + i[Λ1
α, X

nan].

Using [X, c]S = 0, we can calculate a solution

A1
X [a] =

i

4
cklXn{ak, ∂lan + fln}+

i

4
ckl∂lX

n{ak, an}, (5.78)

where fij = ∂iaj − ∂jai − i[ai, aj] is the commutative �eld strength.
The equation to second order is

δαA
2
X − i[α,A2

X ] = X i∂iΛ
2
α + δ1

XΛ1
α + δ2

Xα + i[Λ1
α, A

1
X ] + i[Λ2

α, X
nan] (5.79)

+i[α ?2, Xnan] + i[α ?1, A1
X ] + i[Λ1

α
?1, Xnan]

= X i∂iΛ
2
α + δ1

XΛ1
α + i[Λ1

α, A
1
X ] + i[Λ2

α, X
nan].

+
i

8
cmncij[∂m∂iα, ∂n∂j(X

nan)]

+
i

12
cml∂lc

ij([∂m∂iα, ∂j(X
nan)]− [∂iα, ∂m∂j(X

nan)])

+
i

2
cij[∂iα, ∂jA

1
X ] +

i

2
cij[∂iΛ

1
α, ∂j(X

nan)]

− 1

12
clk∂kc

im∂l∂mX
j∂i∂jα +

1

24
clkcim∂l∂iX

j∂k∂m∂jα

The second order solution for the NC gauge potential is

A2
X [a] = +

1

32
cklcijXn

(
− 4i[∂k∂ian, ∂laj] + 2i[∂k∂nai, ∂laj] (5.80)

−4{ak, {ai, ∂jfln}} − 2[[∂kai, an], ∂laj] + 4{∂lan, {∂iak, aj}}



56 5 Gauge theory on curved NC spaces

−4{ak, {fli, fjn}}+ i{∂naj, {al, [ai, ak]}}
+i{ai, {ak, [∂naj, al]}} − 4i[[ai, al], [ak, ∂jan]]

+2i[[ai, al], [ak, ∂naj]] + {ai, {ak, [al, [aj, an]]}}
−{ak, {[al, ai], [aj, an]}} − [[ai, al], [ak, [aj, an]]]

)

+
1

32
cklcij∂jX

n
(
2i[∂kai, ∂lan] + 2i[∂iak, ∂lan]

+2i[∂iak, ∂lan − ∂nal] + 4{an, {al, ∂kai}}
+4{ak, {ai, ∂nal − ∂lan}} − 2i{ak, {ai, [an, al]}}
+i{ai, {al, [an, ak]}}+ i{an, {al, [ai, ak]}}

)

+
1

24
cklcij∂l∂jX

n
(
∂i∂kan − 2i[ai, ∂kan]− {an, {ak, ai}}

)

+
1

24
ckl∂lc

ijXn
(
2i[aj, ∂k∂ian] + 2i[∂kai, fjn]

−{∂jan, {ak, ai}}+ 2{ai, {ak, fnj}}
)

+
1

24
ckl∂lc

ij∂jX
n
(
− 4i[ai, ∂kan] + 2i[ak, ∂ian]− {an, {ak, ai}}

)

− 1

12
ckl∂lc

ij∂j∂kX
n∂ian +O(3).

5.2.5 Field strength, covariant derivative and action
We will now use the Seiberg-Witten maps of the preceding chapters to calculate
actions for noncommutative gauge theory to �rst order. We start with calculating
the �eld strength (5.32). It is
Fab = F (Xa, Xb) = [DXa

?, DXb
]−D[Xa,Xb]? (5.81)

= Xk
aX

l
bfkl +

i

2
cij{ai, ∂j(Xk

aX
l
bfkl)}

+
i

2
cijXk

aX
l
b{fjl, fki}+

1

4
cijXk

aX
l
b{ai, [aj, fkl]}+O(2).

The covariant derivative is
DaΦ = DXaΦ = δXaΦ− iAXa ? Φ (5.82)

= Xk
aDkφ+

i

2
Xk
afkic

ijDjφ

+
i

2
cijai∂j(X

k
aDkφ) +

1

4
cijaiajX

k
aDkφ+O(2).

Using partial integration and the trace property of the integral, i.e. ∂µ(Ωcµν) = 0,
we can calculate
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S̃gauge =

∫
dnxΩ ηabηcdFac ? Fbd (5.83)

=

∫
dnxΩ ηabηcdXµ

aX
ν
cX

ρ
bX

σ
d fµνfρσ

+

∫
d4xΩ ηabηcd

( i
4
cij[ai, [∂j(X

µ
aX

ν
c fµν), X

ρ
bX

σ
d fρσ]]

+
i

8
cijXµ

aX
ν
cX

ρ
bX

σ
d {fµν , {fij, fρσ}} −

1

4
cijXµ

aX
ν
cX

ρ
bX

σ
d [fµνai, fρσaj]

−1

4
cijXµ

aX
ν
cX

ρ
bX

σ
d [aifµν , ajfρσ] +

i

2
cijXµ

aX
ν
cX

ρ
bX

σ
d {fµν , {fjσ, fρi}}

)

+O(2),

where we haven't done the trace over the gauge representation jet. Doing this
now, the action for the gauge particles is

Sgauge = −1

4
tr(S̃gauge) (5.84)

=

∫
dnxΩ ηabηcdXµ

aX
ν
cX

ρ
bX

σ
d

(
− 1

4
tr(fµνfρσ)

− i
8
cijtr(fijfµνfρσ)− i

2
cijtr(fµνfjσfρi)

)
+O(2).

With cij = −cij we get

Sscalar =

∫
dnxΩ ηabDaΦ ? DbΦ (5.85)

=

∫
dnxΩ ηab

(
X
µ

aX
ν
bDµφDνφ

+
i

2
cijX

µ

aX
ν
bDµφfνiDjφ+

i

2
cijX

µ

aX
ν
bDjφfνiDµφ

+
i

2
cijX

µ

aX
ν
bDµφfijDνφ

)
+O(2)

for the scalar �elds.

5.2.6 Example: A NC action on κ-deformed spacetime
Now we continue our example from chapter 5.1.5. There, we had already con-
structed a frame

eµ0 = δµ0 , (5.86)
eµi = ρδµi (5.87)
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with ρ =
√
xixi compatible with the Poisson structure

cµν = iaδµ0 δ
ν
i x

i − iaδν0δ
µ
i x

i. (5.88)

These we can plug into our solution of the Seiberg-Witten map and get

Λλ[a] = λ+
a

4
xi{∂0λ, ai} − a

4
xi{∂iλ, a0}+O(a2),

Φφ[a] = φ− a

2
xia0∂iφ+

a

2
xiai∂0φ+

ia

4
xi[a0, ai]φ+O(a2),

AX0 = a0 − a

4
xi{a0, ∂ia0 + fi0}+

a

4
xi{ai, ∂0a0}+O(a2), (5.89)

AXj
= ρaj − a

4
ρ{aj, a0} − a

4
ρxi{a0, ∂iaj + fij}

+
a

4
ρxi{ai, ∂0aj + f0j}+O(a2),

δXµ = Xν
µ∂ν +O(a2).

The measure function induced by the frame (5.86,5.87) was

Ω = ρ−(n−1) =
√
g, (5.90)

also guaranteeing the cyclicity of the integral. With this measure function the
actions become

Sgauge = −1

2

∫
dnx ρ3−nη00ηijTr(f0if0j) (5.91)

−1

4

∫
d4x ρ5−nηklηijTr(fkiflj)

−a
2

∫
dnx ρ3−nη00ηijxpTr(f0pf0if0j)

+
a

4

∫
d4x ρ5−nηklηijxpTr(f0pfkiflj)

−a
2

∫
dnx ρ5−nηklηijxpTr(fjp{fki, fl0}) +O(a2)

and

Sscalar =

∫
dnx ρ1−nη00D0φD0φ+

∫
dnx ρ3−nηklDkφDlφ (5.92)

−a
2

∫
dnx ρ3−nηklxiDkφfl0Diφ+

a

2

∫
dnx ρ3−nηklxiDkφfliD0φ

−a
2

∫
dnx ρ3−nηklxiDiφfl0Dkφ+

a

2

∫
dnx ρ3−nηklxiD0φfliDkφ

−a
∫
dnx ρ3−nηklxiDkφf0iDlφ+O(a2).
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In the commutative limit a→ 0 the action reduces to scalar electrodynamics on
a manifold with constant curvature.

5.3 Construction of the Seiberg-Witten maps to
all orders

For explicit calculations, the Weyl ordered ?-product is the best choice, but it
is only known to second order. For calculations to all orders, we can use the
formality ?-product, which also comes with strong mathematical tools we can
use for the construction of the Seiberg-Witten maps. We already saw how to
construct derivations for the formality ?-product in chapter (4.3). We can use
them to formulate NC gauge theory on any Poisson manifold. To relate the NC
theory to commutative gauge theory, we need the Seiberg-Witten maps for the
formality ?-product. In [65] and [66] the SW maps for the NC gauge parameter
and the covariantizer were already constructed to all orders inθ. We will extend
the method developed there to the SW map for covariant derivations.

5.3.1 Formality
We saw in chapter 3.4 that the formality ?-product can be constructed using the
maps Un from the polyvector�elds to the polydi�erential operators as

f ? g =
∞∑
n=0

1

n!
Un(π, . . . , π)(f, g). (5.93)

With these maps, we already introduced the special polydi�erential operators

Φ(α) =
∞∑
n=1

1

(n− 1)!
Un(α, π, . . . , π), (5.94)

Ψ(α1, α2) =
∞∑
n=2

1

(n− 2)!
Un(α1, α2, π, . . . , π) (5.95)

in chapter 4.3. For the construction of the Seiberg-Witten maps, we will need
some additional relations, which we calculate using the formality condition (3.44).

For g a function, X and Y vector�elds and π and σ bivector�elds we see that
both Φ(g) and Ψ(X,Y ) are functions and we go on to calculate

[?, ?]G = Φ([π, π]S), (5.96)
[Φ(f), ?]G = −Φ([f, π]S), (5.97)
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[δX , ?]G = Φ([X, π]S), (5.98)
[δX , δY ]G + [Ψ(X, Y ), ?]G = δ[X,Y ]S (5.99)

+Ψ([π, Y ]S, X)−Ψ([π,X]S, Y ),

[Φ(σ),Φ(g)]G + [Ψ(σ, g), ?]G = −δ[σ,g]S (5.100)
−Ψ([π, g]S, σ)−Ψ([π, σ]S, g),

[δX ,Φ(g)]G = φ([X, g]S) (5.101)
−Ψ([π, g]S, X)−Ψ([π,X]S, g).

If π is a Poisson tensor, i. e. [π, π]S = 0 and if X and Y are Poisson vector �elds,
i. e. [X, π]S = [Y, π]S = 0, the relations (5.96) to (5.99) become

f ? (g ? h) = (f ? g) ? h, (5.102)
δHf

(g) = −[Φ(f) ?, g], (5.103)
δX(f ? g) = δX(f) ? g + f ? δX(g), (5.104)

([δX , δY ]− δ[X,Y ]L)(g) = [Ψ(X, Y ) ?, g] (5.105)

when evaluated on functions. [ · , · ] are now ordinary commutator brackets. ?
de�nes an associative product, the Hamiltonian vector �elds are mapped to inner
derivations and Poisson vector �elds are mapped to outer derivations of the?-
product.

5.3.2 Semi-classical construction
We will �rst do the construction in the semi-classical limit, where the star com-
mutator is replaced by the Poisson bracket. As in [65] and [66], we de�ne, with
the help of the Poisson tensor θ = 1

2
θkl∂k ∧ ∂l
dθ = −[·, θ] (5.106)

and (locally)
aθ = θijaj∂i. (5.107)

Note that the bracket used in the de�nition of dθ is not the Schouten-Nijenhuis
bracket (A.1.1). For polyvector�elds π1 and π2 it is

[π1, π2] = −[π2, π1]S, (5.108)

giving an extra minus sign for π1 and π2 both even (see B.2.2). Especially, we get
for dθ acting on a function g

dθg = −[g, θ] = [g, θ]S = θkl∂lg∂k. (5.109)
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Now a parameter t and t-dependent θt = 1
2
θklt ∂k ∧ ∂l and Xt = Xk

t ∂k are intro-
duced, ful�lling

∂tθt = fθ = −θtfθt and ∂tXt = −Xtfθt, (5.110)
where the multiplication is understood as ordinary matrix multiplication, e.g.
(θtfθt)

ij = θikt fklθ
kj
t . Given the Poisson tensor θ and the Poisson vector�eld X,

the formal solutions are

θt = θ

∞∑
n=0

(−t fθ)n =
1

2
(θkl − tθkifijθ

jl + . . .)∂k ∧ ∂l (5.111)

and

Xt = X

∞∑
n=0

(−t fθ)n = Xk∂k − tX ifijθ
jk∂k + . . . . (5.112)

θt is still a Poisson tensor andXt is still a Poisson vector�eld, i.e.

[θt, θt] = 0 and [Xt, θt] = 0. (5.113)
For the proof see B.1.

With this we calculate

fθ = ∂tθt = −θtfθt = −[aθ, θ] = dθaθ. (5.114)

We now get the following commutation relations

[aθt + ∂t, dθt(g)] = dθt((aθt + ∂t)(g)), (5.115)
[aθt + ∂t, Xt] = −dθt(X

k
t ak), (5.116)

where g is some function which might also depend on t (see B.2.1).
To construct the Seiberg-Witten map for the gauge potentialAX , we �rst

de�ne

Kt =
∞∑
n=0

1

(n+ 1)!
(aθt + ∂t)

n. (5.117)

With this, the semi-classical gauge parameter reads [65, 66]

Λλ[a] = Kt(λ)
∣∣∣
t=0
. (5.118)
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To see that this has indeed the right transformation properties under gauge trans-
formations, we �rst note that the transformation properties ofaθt and Xk

t ak are

δλaθt = θklt ∂lλ∂k = dθtλ (5.119)

and
δλ(X

k
t ak) = Xk

t ∂kλ = [Xt, λ]. (5.120)
Using (5.119,5.120) and the commutation relations (5.115,5.116), a rather tedious
calculation (see B.3) shows that

δλKt(X
k
t ak) = Xk

t ∂kKt(λ) + dθt(Kt(λ))Kt(X
k
t ak). (5.121)

Therefore, the semi-classical gauge potential is

AX [a] = Kt(X
k
t ak)

∣∣∣
t=0
. (5.122)

5.3.3 Quantum construction
We can now use the Kontsevich formality map to quantize the semi-classical con-
struction. All the semi-classical expressions can be mapped to their counterparts
in the ?-product formalism without loosing the properties necessary for the con-
struction. One higher order term will appear, �xing the transformation properties
for the quantum objects.

The ?-product we will use is

? =
∞∑
n=0

1

n!
Un(θt, . . . , θt). (5.123)

We de�ne

d? = −[·, ?]G , (5.124)
which for functions f and g reads

d?(g) f = [f ?, g]. (5.125)
The bracket used in the de�nition of d? is the Gerstenhaber bracket (A.1.2). We
now calculate the commutators (5.115) and (5.116) in the new setting (see B.2.2).
We get

[Φ(aθt) + ∂t, d?(Φ(g))] = d?((Φ(aθt) + ∂t)Φ(g)), (5.126)
[Φ(aθt) + ∂t,Φ(Xt)] = −d?(Φ(Xk

t ak)−Ψ(aθt , Xt)). (5.127)
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The higher order term Ψ(aθt , Xt) has appeared, but looking at the gauge trans-
formation properties of the quantum objects we see that it is actually necessary.
We get

δλΦ(aθt) = Φ(dθtλ) = d?Φ(λ) (5.128)
with (5.104) and (5.119) and

δλ(Φ(Xk
t ak)−Ψ(aθ, Xt)) = Φ([Xt, λ])−Ψ(dθλ,Xt) (5.129)

= [Φ(Xt),Φ(λ)]−Ψ([θt, λ], Xt)

+Ψ([θt, Xt], λ)−Ψ(dθλ,Xt)

= [Φ(Xt),Φ(λ)]

= δXtΦ(λ),

where the addition of the new term preserves the correct transformation property.
With

K?
t =

∞∑
n=0

1

(n+ 1)!
(Φ(aθt) + ∂t)

n, (5.130)

a calculation analogous to the semi-classical case gives

δλ(K
?
t (Φ(Xk

t ak)−Ψ(aθt , Xt))) = δXtK
?
t (Φ(λ)) (5.131)

+d?(K
?
t (Φ(λ)))K?

t (Φ(Xk
t ak)−Ψ(aθt , Xt)).

As in [65, 66], the NC gauge parameter is

Λλ[a] = K?
t (Φ(λ))

∣∣∣
t=0
, (5.132)

and we therefore get for the NC gauge potential

AX [a] = K?
t (Φ(Xk

t ak)−Ψ(aθt , Xt))
∣∣∣
t=0
, (5.133)

transforming with

δλAX = δXΛλ − [Λλ
?, AX ]. (5.134)
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Chapter 6

Covariant coordinates

While we can only construct actions for noncommutative gauge theory if we have
a frame commuting with the Poisson structure, covariant coordinates can always
be de�ned. Therefore we can still extract information from the noncommutative
gauge theory, even if we do not have the complete picture. We will use these
covariant coordinates to generalize the open Wilson lines of chapter 2.5. In [90]
these were used to give an exact formula for the inverse Seiberg-Witten map. We
will generalize this construction for general ?-products with invertible Poisson
structure θij.

6.1 Wilson lines and observables
As we saw in chapter 5.1.1, multiplication with a coordinate from the left is not
a covariant operation. For this, we can de�ne covariant coordinates

X i = xi + Ai (6.1)

for which we want

δΛ(X i ?Ψ) = δΛ((xi + Ai) ?Ψ) = iΛ ? X i ?Ψ. (6.2)

Therefore the gauge �eld Ai has to transform as

δΛA
i = i[Λ ?, xi] + i[Λ ?, Ai]. (6.3)

Even though the gauge �eld Ai vanishes in the commutative limit, its Seiberg-
Witten map can nevertheless be calculated [65]. It starts with

Ai = θijaj +O(2). (6.4)
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We can use the covariant coordinates to construct noncommutative Wilson lines.
As in the canonical case we can start with

Wl = eiliX
i

? ? e−ilix
i

? , (6.5)

where ? is now an arbitrary ?-product. The transformation property ofWl is now

W ′
l (x) = g(x) ? Wl(x) ? g

−1(Tlx), (6.6)

where
Tlx

j = eilix
i

? ? xj ? e−ilix
i

? (6.7)
is an inner automorphism of the algebra, which can be interpreted as a quantized
coordinate transformation. Note that thee−liXi

? do not close to a group for θij(x)
at least quadratic in thex's. Therefore it is not clear how to generalize NC Wilson
lines for arbitrary curves as in [59]. If we replace commutators by Poisson brackets,
the semi-classical limit of these coordinate transformations may be calculated

Tlx
k = eili[x

i?, ·]
? xk ≈ e−li{x

i,·}xj = e−liθ
ij∂jxk, (6.8)

the formula becoming exact for θij constant or linear in x. We see that the semi-
classical coordinate transformation is the �ow induced by the Hamiltonian vector
�eld −liθij∂j. At the end we may expandWl in terms of θ and get

Wl = e−iliθ
ijaj +O(θ2), (6.9)

where we have replaced Ai by its Seiberg-Witten expansion. We see that for
l small this really is a Wilson line starting at x and ending at x − lθ. For a
given ?-product, the higher order corrections to this expression can in principle
be calculated. Note that this expression would also depend on the speci�c choice
of the Seiberg-Witten-map of the covariant coordinates.

If we have a measure function Ω(x) for our ?-product with ∂i(Ωθij) = 0, we
can use the trace property of the integral (see chapter 3.6) to generalize the open
Wilson lines of chapter 2.5. They read

Ul =

∫
d2nxΩ(x)Wl(x) ? e

ilix
i

? =

∫
d2nxΩ(x) eiliX

i(x)
? (6.10)

and are again gauge invariant objects. Of course, we can again insert a function
f depending only on the covariant coordinates

fl =

∫
d2nxΩ(x) f(X i) ? eiliX

i(x)
? (6.11)

without spoiling the gauge invariance.
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6.2 Inverse Seiberg-Witten-map
As an application of the above constructed observables we generalize [90] to arbi-
trary ?-products, i. e. we give a formula for the inverse Seiberg-Witten map for
?-products with invertible Poisson structure. In order to map noncommutative
gauge theory to its commutative counterpart, we need a functionalfij[X] ful�lling

fij[g ? X ? g−1] = fij[X], (6.12)
df = 0 (6.13)

and
fij = ∂iaj − ∂jai +O(θ). (6.14)

f is a gauge covariant �eld strength and reduces in the limitθ → 0 to the correct
expression.

To prove the �rst and the second property we will only use the algebra prop-
erties of the ?-product and the cyclicity of the trace. All quantities with a hat
will be elements of an algebra. With this let X̂ i be covariant coordinates in an
algebra, transforming under gauge transformations like

X̂ i′ = ĝX̂ iĝ−1 (6.15)

with ĝ an invertible element of the algebra. Now de�ne

F̂ ij = −i[X̂ i, X̂j] (6.16)

and
(F̂ n−1)ij =

1

2n−1(n− 1)!
εiji1i2···i2n−2F̂

i1i2 · · · F̂ i2n−3i2n−2 . (6.17)

Note that the space is 2n dimensional. Using the the symmetrized trace str, i.e.

strF̂ ,X̂

(
F̂ qX̂r

)
=

q!r!

(q + r)!
tr

(
F̂ qX̂r+ (6.18)

all other possible permutations of q F̂ ′s and r X̂ ′s
)

see also [90], the expression

Fij(k) = strF̂ ,X̂

(
(F̂ n−1)ije

ikjX̂
j
)

(6.19)
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clearly ful�lls the �rst property due to the properties of the trace. Note that
symmetrization is only necessary for space dimension bigger than 4 due to the
cyclicity of the trace. In dimensions 2 and 4 we may replacestr by the ordinary
trace tr. Fij(k) is the Fourier transform of a closed form if

k[iFjk] = 0 (6.20)

or if the current

J i1···i2n−2 = strF̂ ,X

(
F̂ [i1i2 · · · F̂ i2n−3i2n−2]eikj F̂

j
)

(6.21)

is conserved, respectively
kiJ

i··· = 0. (6.22)
This is easy to show, if one uses

strF̂ ,X̂

(
[kiX̂

i, X̂ l]eikjX̂
j · · ·

)
(6.23)

= strF̂ ,X̂

(
[X̂ l, eikjX̂

j

] · · ·
)

= strF̂ ,X̂

(
eikjX̂

j

[X̂ l, · · ·]
)
,

which can be calculated by simple algebra.
To prove that F has the right commutative limit, we have to switch to the

?-product formalism and expand the formula in θij. The expression (6.19) now
becomes

F [X]ij(k) =

∫
d2nx

Pf(θ)

(
(F n−1

? )ij ? e
ikjX

j

?

)
symF,X

. (6.24)

The expression in brackets has to be symmetrized inF ij and X i for n > 2. Up
to second order in θij, the commutator F ij of two covariant coordinates is

F ij = −i[X i ?, Xj] = θij − θikfklθ
lj − θkl∂lθ

ijak +O(3) (6.25)

with fij = ∂iaj − ∂jai the ordinary �eld strength. Furthermore we have

eikiX
i

? = eikix
i

(1 + ikiθ
ijaj) +O(2). (6.26)

If we choose an antisymmetric ?-product, the symmetrization will annihilate all
the �rst order terms of the ?-products between the F ij and X i, and therefore we
get

−F [X]ij(k) (6.27)

= −2n

∫
d2nx

εθn

(
εijθ

n−1 − (n− 1)εijθ
n−2θfθ
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−θkl∂l(εijθn−1)ak

)
eikix

i

+O(1)

= −2n

∫
d2nx

εθn

(
εijθ

n−1 − (n− 1)εijθ
n−2θfθ

−1

2
εijθ

n−1fklθ
kl
)
eikix

i

+O(1)

= d2nx
(
θ−1
ij + 2n(n− 1)

εijθ
n−2θfθ

εθn

−1

2
θ−1
ij fklθ

kl
)
eikix

i

+O(1),

using partial integration and ∂i(εθnθij) = 0. To simplify notation we introduced

εijθ
n−1 = εiji1j1···in−1jn−1θ

i1j1 · · · θin−1jn−1etc. (6.28)

In the last line we have used

θ−1
ij = −(θn−1)ij

Pf(θ)
= −2n

εijθ
n−1

εθn
. (6.29)

We will now have a closer look at the second term, noting that

θij
εijθ

n−2θfθ

εθn
= − 1

2n
θ−1
kl θ

krfrsθ
sl = − 1

2n
frsθ

rs (6.30)

and therefore
εijθ

n−2θfθ

εθn
= a

εijθ
n−1

εθn
frsθ

rs + bfij (6.31)

with a+ b = − 1
2n
. Taking e. g. i = 1, j = 2 we see that

ε12···klθn−2θkrfrsθ
sl = ε12···klθn−2(θk1θ2l − θk2θ1l)f12 (6.32)

+terms without f12.

Especially there are no terms involving f12θ
12 and we get for the two terms on

the right hand side of (6.31)

2aε12θ
n−1f12θ

12 = −2nbε12θ
12θn−1f12 (6.33)

and therefore b = − a
n
. This has the solution

a = − 1

2(n− 1)
and b =

1

2n(n− 1)
. (6.34)

With the resulting

2n(n− 1)
εijθ

n−2θfθ

εθn
=

1

2
θ−1
ij fklθ

kl + fij (6.35)
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we �nally get

−F [X]ij(k) =

∫
d2nx

(
θ−1
ij + fij

)
eikix

i

+O(1). (6.36)

Therefore
f [X]ij = F [X]ij(k)−F [x]ij(k) (6.37)

is a closed form that reduces in the commutative limit to the commutative Abelian
�eld strength. We have found an expression for the inverse Seiberg-Witten map.
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Part II

Matrix model approach
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Though ?-products are a convenient tool for studying noncommutativity, their
strength lies mainly in the perturbative regime. For other purposes, especially
nonperturbative ones, a di�erent approach using a di�erent representation of the
algebra of functions on noncommutative space is better suited.

If we take the simple example of a noncommutative plane with canonical
noncommutativity

[x, y] = iθ, (6.38)
we see immediately that this is nothing but the Heisenberg algebra, for which
we can use the well known Fock-space representation. In2n dimensions, we can
use n such pairs of coordinates which upon complexi�cation become creation and
annihilation operators on the Fock-space. Using this approach, it was possible
to study many nonperturbative features of noncommutative �eld theory such as
solitons and instantons (see e.g. [37] for references).

We will call this approach matrix model approach, as the gauge theory can be
described as a matrix model having the noncommutative space as its ground state,
the �uctuations creating the gauge theory. But noncommutative spacetime with
canonical commutation relations has to be represented on an in�nite-dimensional
vectorspace, leading to a number of problems. First of all, there are the well
known divergencies of noncommutative gauge theory. Then, the rank of the
gauge group can't be �xed in this model [37]. Therefore we are looking for spaces
that can be represented as �nite-dimensional matrix algebras, where everything
is well de�ned. The space on which we will base our constructions will be the
fuzzy sphere [73], anN -dimensional matrix algebra corresponding to a truncation
of the spherical harmonics on the sphere at angular momentumN − 1. To go
to 4 dimensions, we will use the product of two such fuzzy spheres S2

N × S2
N ,

generated by N2-dimensional matrices. In one limit, this fuzzy space goes over
to the product of two commutative spheres, but in a di�erent limit, it also goes
to noncommutative R4 with canonical commutation relations. Our interest will
therefore be twofold: On one hand we will study gauge theory on this fuzzy
space as the deformation of commutative gauge theory, on the other hand as a
regularization of gauge theory onR4

θ.
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Chapter 7

The canonical case

Before we study gauge theory on a �nite-dimensional fuzzy space, we �rst want
to present the usual matrix model approach to noncommutative gauge theory on
R4
θ. After a quick look at the in�nite-dimensional Fock-space representation of
R4
θ, we will show how gauge theory can be formulated as a matrix model with

ground state R4
θ. The �uctuations around this ground state will create the gauge

theory. Finally we will have a look at a certain class of instantons, the so called
�uxon solutions.

7.1 The Heisenberg algebra
In two dimensions, the coordinate algebra with canonical deformation

[x, y] = iθ (7.1)

is nothing but the well known Heisenberg algebra. But now the noncommuta-
tivity isn't between the coordinates and momenta, but between the coordinates
themselves. Of course we can use the usual Fock space representation for this
algebra by �rst de�ning

x± := x± iy (7.2)
with

[x+, x−] = 2θ. (7.3)
The Fock space is given by

H = {|n〉, nεN0}, (7.4)

where the creator and annihilator operators act as

x−|n〉 =
√

2θ
√
n+ 1|n+ 1〉, x+|n〉 =

√
2θ
√
n|n− 1〉. (7.5)
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This can be generalized to higher dimensions. Any 2n-dimensional algebra with
canonical commutation relations can by suitable rotations be brought into a form
where it consists of n pairs of noncommuting variables (7.1). As we will mostly
be concerned with the 4-dimensional case in the following, we will present it here
in more detail.

The most general noncommutativeR4
θ is generated by coordinates subject to

the commutation relations
[xµ, xν ] = iθµν , (7.6)

where µ, ν ∈ {1, . . . , 4}. Using suitable rotations, θµν can always be cast into the
form

θµν =




0 θ12 0 0
−θ12 0 0 0

0 0 0 θ34

0 0 −θ34 0


 . (7.7)

To simplify the following formulas, we restrict our discussion from now on to the
selfdual case

θµν =
1

2
εµνρσθρσ (7.8)

and denote
θ := θ12 = θ34; (7.9)

the generalizations to the antiselfdual and the general case are obvious. In terms
of the complex coordinates

x±L := x1 ± ix2 , x±R := x3 ± ix4, (7.10)

the commutation relations (7.6) take the form

[x+a, x−b] = 2θδab, [x+a, x+b] = [x−a, x−b] = 0, (7.11)

where a, b ∈ {L,R}. The Fock-space representationH of (7.11) has the standard
basis

H = {|n1, n2〉, n1, n2 ∈ N0 }, (7.12)
with

x−L|n1, n2〉 =
√

2θ
√
n1+1|n1+1, n2〉, x+L|n1, n2〉 =

√
2θ
√
n1|n1−1, n2〉

x−R|n1, n2〉 =
√

2θ
√
n2+1|n1, n2+1〉, x+R|n1, n2〉 =

√
2θ
√
n2|n1, n2−1〉 .

(7.13)
The derivatives on this space are inner, i.e. they are produced by the commutator
with a coordinate

−iθµν∂ν =̂ [ · , xµ], (7.14)
just as in the ?-product formalism.
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7.2 Noncommutative gauge theory
We can introduce gauge theory by using a matrix action

S = − (2π)2

2g2θ2
tr ([Xµ, Xν ]− iθµν)

2, (7.15)

where the Xµ are in�nite-dimensional matrices, and the trace is over the Fock
space (7.12). The action is obviously constructed in such a way as to have the
Fock-space representation ofR4

θ as its ground state. As we want the action to be
invariant under unitary transformations

Xµ → U †XµU, (7.16)

we get �uctuations Aµ around the ground state xµ as

Xµ = xµ + Aµ. (7.17)

The �uctuationsAµ are understood as in�nite-dimensional matrices acting on the
Fock space (7.12) as well. They have to transform as

Aµ → U †[xµ, U ] + U †AµU (7.18)

to make the Xµ gauge covariant. Remembering that the commutator with a co-
ordinate produces a derivative, we recognize the correct transformation behavior
for the gauge �eld. The gauge covariant �eld strength then reads

iFµν = ([Xµ, Xν ]− iθµν) = [xµ, Aν ]− [xν , Aµ] + [Aµ, Aν ] (7.19)

and the action (7.15) reads

S =
(2π)2

2g2θ2
tr(FµνFµν). (7.20)

To bring the action into a form where it resembles more the creator and annihilator
representation, we can also use the complex covariant coordinatesX±a

X±L = X1 ± iX2 , X±R = X3 ± iX4 (7.21)

and the corresponding �eld strength

Fαa,βb = [Xαa, Xβb]− 2θεαβδab (7.22)

with a, b ∈ {L,R} and α, β ∈ {+,−}. The action (7.15) can now be written in
the form

S =
π2

g2θ2
tr(

∑
a

F+a,−aF+a,−a −
∑

a,b

F+a,+bF−a,−b), (7.23)
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and the equations of motion are given by
∑
a,α

[Xαa, (Fαa,βb)
†] = 0 . (7.24)

We now want to discuss a peculiar feature of this formulation of noncommuta-
tive gauge theory. Even though we did construct our action forU(1), it actually
contains sectors for every rank of the gauge groupU(n)! This is related to the
fact that in noncommutative gauge theories, the gauge group also contains trans-
formations acting on spacetime itself. As the size of the matricesXµ isn't �xed
(they are in�nite-dimensional operators), we can't seperate the gauge part of the
unitary transformations from the spacetime part. This can be seen as follows: If
we have

Xµ = xµ (7.25)
as a ground state of the theory, then of course

X ′
µ =

(
xµ 0
0 xµ

)
(7.26)

is equally a ground state. In fact, the direct sum ofn solutions xµ of the equations
of motion will again be a solution. As the covariant coordinatesXµ = xµ + Aµ
corresponding to the ground state (7.25) produce aU(1) theory, any such ground
state X ′

µ = xµ ⊗ 1n×n can be viewed as the ground state of aU(n) gauge theory,
where the gauge degrees of freedom act on the right hand side of the tensor
product. The corresponding covariant coordinate can then be written as

X ′
µ = xµ ⊗ 1n×n + Aµ,aT

a, (7.27)

with the T a are generalized Gellman matrices forU(n), producing a U(n) gauge
theory. So the matrix action (7.15) cannot be restricted to one gauge group, it
contains sectors with all U(n). As we will see in chapter 10, this problem can be
�xed in a regularized theory.

7.3 U(1) instantons on R4
θ

We will for the moment stick to theU(1)-sector of the theory and look for solutions
of the equations of motion (7.24) which can be understood as instantons of the
gauge theory.

On noncommutativeR2
θ, all U(1)-instantons were constructed and classi�ed in

[50]. They can be interpreted as localized �ux solutions, sometimes called �uxons.
The situation on R4

θ is more complicated, and there are di�erent types of non-
trivial U(1) instanton solutions on R4

θ. Assuming that θµν is self-dual, there are
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two types of instantons: �rst, there exist straightforward generalizations of the
two-dimensional localized �uxon solutions with self-dual �eld strength. As in the
two-dimensional case, we will refer to these 4-dimensional solutions as �uxons.

There are other types of U(1) instantons on R4
θ, which were found through a

noncommutative version of the ADHM equations [88, 41, 27, 55, 61], in particular
anti-selfdual instantons which are much less localized than the �uxon solutions.
However, we will concentrate on the generalizations of [50], as they will become
important for us in chapter 10.

For the construction of the �uxons, let us consider a �nite dimensional sub-
vectorspace Vn of the Fock-space H of dimension n spanned by a �nite set of
vectors |n1, n2〉 ∈ H,

Vn = 〈{|ik, jk〉; k = 1, ..., n}〉 . (7.28)
We introduce a partial isometry1 S mapping H to H \ Vn , which has

S†S = 1l, (7.29)
SS† = 1l− P

Vn
(7.30)

with the projection operator onto the subspaceVn

P
Vn

:=
n∑

k=1

|ik, jk〉〈ik, jk|. (7.31)

Following [50] one then �nds solutions to the equations of motion given by2

X
(n)
+L := Sx+LS

† +
n∑

k=1

γLk |ik, jk〉〈ik, jk| (7.32)

X
(n)
+R := Sx+RS

† +
n∑

k=1

γRk |ik, jk〉〈ik, jk| , (7.33)

and X(n)
−a = (X

(n)
+a )†. Here γL,Rk ∈ C determine the position of the �uxons. The

�eld strength Fµν for this solution is
Fµν = P

Vn
θµν . (7.34)

In particular, the action corresponding to the instanton solution (7.32,7.33) is
proportional to the dimension of the subspaceVn

S[X
(n)
±a ] =

8π2

g2
tr(P

Vn
) =

8π2

g2
n. (7.35)

1If we index the basis ofH as |ik, jk〉 with k ∈ N and assume that V is spanned by the �rst
n vectors (which we can always get by using a suitable unitary transformation),S can be given
by S : |ik, jk〉 → |ik+n, jk+n〉.

2Note that [X(n)
+L , X

(n)
+R] = [X(n)

+L , X
(n)
−R] = [X(n)

−L, X
(n)
+R] = [X(n)

−L, X
(n)
−R] = 0 .
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Since they can be interpreted as localized �ux, theseU(1)-instanton solutions for
R4
θ are called �uxons. The localization can be seen as follows: recall [42] that

the above projection operators can be represented on the space of commutative
functions (using a normal-ordering prescription) as

|k1, k2〉〈k1, k2| ∼= 1

k1!k2!
(
x−L√

2θ
)k

1

(
x+L

√
2θ

)k
1

(
x−R√

2θ
)k

2

(
x+R

√
2θ

)k
2

e−
x+Lx−L

2θ
−x+Rx−R

2θ .

(7.36)
Hence the above �eld strengthsFµν = P

Vn
θµν are superpositions of Gauss-functions

which are localized in a region in space of size
√
θ.
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Chapter 8

Fuzzy spaces

In this chapter we will present a 4-dimensional noncommutative space that has
the advantage of having �nite dimensional representations. Therefore, the gauge
theory we will construct on it in chapter 9 will be well de�ned and all calculations
will become �nite. Using this space we will be able to regularize bothR4

θ itself in
chapter 8.3 and gauge theory onR4

θ in chapter 10.

8.1 The fuzzy sphere S2
N

We start by recalling the de�nition of a 2-dimensional space, the fuzzy sphere
introduced in [73]. The algebra of functions on the fuzzy sphere is the �nite alge-
bra S2

N generated by Hermitian operators xi = (x1, x2, x3) satisfying the de�ning
relations

[xi, xj] = iΛNεijkxk, (8.1)
x2

1 + x2
2 + x2

3 = R2. (8.2)

They are obtained from theN -dimensional representation ofsu(2) with generators
λi (i = 1, 2, 3) and commutation relations

[λi, λj] = iεijkλk,

3∑
i=1

λiλi =
N2 − 1

4
(8.3)

(see Appendix C.1) by identifying

xi = ΛN λi, ΛN =
2R√
N2 − 1

. (8.4)

The noncommutativity parameter ΛN is of dimension length. The algebra of
functions S2

N therefore coincides with the simple matrix algebraMat(N,C). The
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normalized integral of a function f ∈ S2
N is given by the trace

∫

S2
N

f =
4πR2

N
tr(f). (8.5)

The functions on the fuzzy sphere can be mapped to functions on the commutative
sphere S2 using the decomposition into harmonics under the action

Jif = [λi, f ] (8.6)

of the rotation group SU(2). One obtains analogs of the spherical harmonics up
to a maximal angular momentum N − 1. Therefore S2

N is a regularization of
S2 with a UV cuto�, and the commutative sphere S2 is recovered in the limit
N → ∞. Note also that for the standard representation (C.2), entries in the
upper-left block of the matrices correspond to functions localized at x3 = R.
In particular, the fuzzy delta-function at the �north pole� is given by a suitably
normalized projector of rank 1,

δ(2)
NP (x) =

N

4πR2
|N − 1

2
〉〈N − 1

2
| (8.7)

where |N−1
2
〉 is the highest weight state with maximal eigenvalue of λ3. Delta-

functions with arbitrary localization are obtained by rotating (8.7).

8.2 S2
NL
× S2

NR

The simplest 4-dimensional generalization of the above is the productS2
NL
×S2

NR
of

2 such fuzzy spheres, with generally independent parametersNL,R. It is generated
by a double set of representations of su(2) commuting with each other, i. e. by
λLi , λ

R
i satisfying

[λLi , λ
L
j ] = iεijkλ

L
k , [λRi , λ

R
j ] = iεijkλ

R
k , (8.8)

[λLi , λ
R
j ] = 0

for i, j = 1, 2, 3, and Casimirs
3∑
i=1

λLi λ
L
i =

N2
L − 1

4
,

3∑
i=1

λRi λ
R
i =

N2
R − 1

4
. (8.9)

This can be realized as a tensor product of 2 fuzzy sphere algebras

λLi = λi ⊗ 1NR×NR, (8.10)
λRi = 1NL×NL

⊗ λi, (8.11)
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hence as algebra we have S2
NL
× S2

NR

∼= Mat(N ,C) where

N = NLNR. (8.12)

The normalized coordinate functions are given by

xL,Ri =
2R√

(NL,R)2 − 1
λL,Ri ,

∑
(xLi )2 = R2 =

∑
(xRi )2. (8.13)

This space1 can be viewed as regularization of S2 × S2 ⊂ R6, and admits the
symmetry group SU(2)L × SU(2)R ⊂ SO(6). The generators xL,Ri should be
viewed as coordinates in an embedding spaceR6. The normalized integral of a
function f ∈ S2

NL
× S2

NR
is now given by
∫

S2
NL
×S2

NR

f =
16π2R4

N tr(f) =
V

N tr(f), (8.14)

where we de�ne the volume V := 16π2R4. We will mainly consider NL = NR in
the following.

8.3 The limit to the canonical case R4
θ

It is well-known [28] that if a fuzzy sphere is blown up near a given point, it
can be used to obtain a (compacti�ed) noncommutative plane with canonical
commutation relations: Consider the tangential coordinatesx1,2 near the north
pole x3 = R. Setting

R2 = Nθ/2, (8.15)
they satisfy the commutation relations

[x1, x2] = i
2R

N
x3 = i

2R

N

√
R2 − x2

1 − x2
2 = iθ +O(1/N). (8.16)

Therefore in the double scaling limit withN, R→∞ keeping θ �xed, we recover2
the commutation relation of the canonical case,

[x1, x2] = iθ (8.17)
1In principle one could also introduce di�erent radiiRL,R for the 2 spheres, but for simplicity

we will keep only one scale parameterR (and sometimes we will set R = 1).
2One could be more sophisticated and use the stereographic projections as in [28], which

leads essentially to the same results.
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up to corrections of order 1
N
. Similarly, starting with S2

NL
× S2

NR
and setting

R2 = NL,RθL,R/2, (8.18)

we obtain in the large NL, NR limit

[xLi , x
L
j ] = iεijθ

L, [xRi , x
R
j ] = iεijθ

R, (8.19)
[xLi , x

R
j ] = 0.

This is the most general form ofR4
θ with coordinates (x1, ..., x4) ≡ (xL1 , x

L
2 , x

R
1 , x

R
2 )

(after a suitable orthogonal transformation). The integral of a functionf(x) then
becomes ∫

S2
NL
×S2

NR

f(x) → 4π2θLθRtr(f(x)) =:

∫

R4
θ

f(x), (8.20)

which has indeed the standard normalization, giving each �Planck cell� the ap-
propriate volume.
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Chapter 9

Gauge theory on fuzzy S2 × S2

Now that we have the fuzzy space S2
NL
× S2

NR
corresponding to N 2-dimensional

matrices, we want to construct a matrix model havingS2
NL
× S2

NR
as its ground

state. As in the canonical case, the �uctuations around this ground state will
produce a gauge theory. But as the matrices are now �nite-dimensional, the
model will be well de�ned and �nite.

We will start with the most obvious formulation, gauging every coordinate
seperately. But there is also a more elegant formulation using collective matrices.
This will be especially usefull to introduce fermions, which can be embedded very
naturally in this framework.

We will also study non-trivial solutions of the EOMs, identifying some of them
as the monopoles on the commutativeS2×S2, while others will become important
in the limit to R4

θ in the following chapter.

9.1 Gauge theory
In the fuzzy case, it is natural to construct S2

L × S2
R as a submanifold of R6.

We therefore consider a multi-matrix model with 6 dynamical �elds (covariant
coordinates) BL

i and BR
i (i = 1, 2, 3), which are N ×N Hermitian matrices. As

action we choose the following generalization of the action in [96],

S =
1

g2

∫
1

2
Fia jbFia jb + ϕ2

L + ϕ2
R (9.1)

with a, b = L,R and i, j = 1, 2, 3; summation over repeated indices is implied.
Here ϕL,R are de�ned as

ϕL :=
1

R2
(BL

i B
L
i −

N2
L − 1

4
), ϕR :=

1

R2
(BR

i B
R
i −

N2
R − 1

4
), (9.2)
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and R denotes the radius of the two spheres, which we keep explicitly to have the
correct dimensions. The �eld strength is de�ned by

FiL jL =
1

R2
(i[BL

i , B
L
j ] + εijkB

L
k ), (9.3)

FiR jR =
1

R2
(i[BR

i , B
R
j ] + εijkB

R
k ),

FiL jR =
1

R2
(i[BL

i , B
R
j ]).

This model (9.1) is manifestly invariant under SU(2)L × SU(2)R rotations act-
ing in the obvious way, and U(N ) gauge transformations acting as BL,R

i →
UBL,R

i U−1. We will see below that this reduces indeed to the U(1) Yang-Mills
action on S2 × S2 in the commutative limit. Note that if the action (9.1) is con-
sidered as a matrix model, the radius drops out using (8.14). The equations of
motion for BL

i are

{BL
i , B

L
j B

L
j −

N2
L − 1

4
}+ (BL

i + iεijkB
L
j B

L
k ) (9.4)

+iεijk[B
L
j , (B

L
k + iεkrsB

L
r B

L
s )] + [BR

j , [B
R
j , B

L
i ]] = 0,

and those for BR
i are obtained by exchanging L ↔ R. By construction, the

minimum or ground state of the action is given byF = ϕ = 0, hence BL,R
i = λL,Ri

as in (8.10,8.11) up to gauge transformations; cp. [53] for a similar approach on
CP 2. We can therefore expand the covariant coordinatesBL

i and BR
i around the

ground state
Ba
i = λai +RAai , (9.5)

where a ∈ {L,R} and Aai is small. Then AL,Ri transforms under gauge transfor-
mations as

AL,Ri → A′L,Ri = UAL,Ri U−1 + U [λL,Ri , U−1], (9.6)
and the �eld strength takes a more familiar form1,

FiL jL = i([
λLi
R
,ALj ]− [

λLj
R
,ALi ] + [ALi , A

L
j ]), (9.7)

FiR jR = i([
λRi
R
,ARj ]− [

λRj
R
,ARi ] + [ARi , A

R
j ]),

FiL jR = i([
λLi
R
,ARj ]− [

λRj
R
,ALi ] + [ALi , A

R
j ]).

So far, the spheres are described in terms of 3 Cartesian covariant coordinates
each. In the commutative limit, we can separate the radial and tangential degrees

1We do not distinguish between upper and lower indicesL,R.
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of freedom. There are many ways to do this; perhaps the most elegant for the
present purpose is to note that the terms

∫
ϕ2
L+ϕ2

R in the action imply that ϕL,R
is bounded for con�gurations with �nite action. Using

ϕL =
λLi
R
ALi + ALi

λLi
R

+ ALi A
L
i , (9.8)

and similarly for ϕR it follows that

xiA
a
i + Aai xi = O(

ϕ

N
) (9.9)

for �nite Aai . This means that Aai is tangential in the (commutative) large N
limit. Alternatively, one could consider φL = NϕL, which would acquire a mass
of order N and decouple from the other �elds2. The commutative limit of (9.1)
therefore gives the standard action for electrodynamics onS2 × S2,

S =
1

2g2

∫

S2×S2

F t
ia jbF

t
ia jb (9.10)

with a, b = L,R and i, j = 1, 2, 3. Here F t
iL jR denotes the usual tangential �eld

strength. This can be seen most easily by noting that e.g. at the north pole
xL,R3 = R, one can replace

i[
λL,Ri
R

, ·] → −εij ∂

∂xL,Rj
(9.11)

in the commutative limit, so that upon identifying the commutative gauge �elds
A

(cl)
i via

A
(cl)L,R
i = −εijAL,Ri (9.12)

the �eld strength is given by the standard expressionF t
iL jR = ∂Li A

(cl)R
j −∂Rj A(cl)L

i

etc.

U(k) gauge theory
The above action generalizes immediately to the nonabelian case, keeping pre-
cisely the same action (9.1), (9.2), but replacing the matricesBL,R

i by kN × kN
matrices, cp. [96]. The constraint term will then impose as ground stateλL/Ri ⊗
1k×k. Expanding the covariant coordinatesBL,R

i = λ
L/R
i ⊗1k×k+A

L/R
i,a T a in terms

of the Gellman matrices T a, the action (9.1) is the fuzzy version of nonabelian
U(k) Yang-Mills on S2 × S2.

2The constraints ϕL = 0 = ϕR could also be imposed by hand; however the suppression
through the above terms in the action is more �exible, as we will see in chapter 9.5.
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9.2 A formulation based on SO(6)

The above action can be cast into a nicer form by assembling the matricesBL,R
i

into bigger collective matrices, following [96]. Since it is natural from the fuzzy
point of view to embed S2 × S2 ⊂ R6 with corresponding embedding of the
symmetry group SO(3)L × SO(3)R ⊂ SO(6), we consider

Bµ = (BL
i , B

R
i ) (9.13)

to be the 6 -dimensional irrep of so(6) ∼= su(4). Since (4)⊗ (4) = (6)⊕ (10), it is
natural to introduce the intertwiners

γµ = (γLi , γ
R
i ) = (γµ)

α,β (9.14)
where α, β denote indices of (4). We could then assemble our dynamical �elds
into a single 4N × 4N matrix

B = Bµγµ + const · 1l. (9.15)
Of course the most general such 4N × 4N matrix contains far too many degrees
of freedom, and we have to constrain these B further. Since SU(4) acts on B
as B → UTBU , the γµ can be chosen as totally anti-symmetric matrices, which
precisely singles out the (6) ⊂ (4)⊗ (4). One can moreover impose

(γLi )† = γLi , (γRi )† = −γRi , (9.16)
and

γLi γ
L
j = δij + iεijkγ

L
k , (9.17)

γRi γ
R
j = −δij − εijkγ

R
k , (9.18)

[γLi , γ
R
j ] = 0, (9.19)

which will be assumed from now on; we will give two explicit such representa-
tions in (D.5), (C.5). This would suggest to constrainB to be antisymmetric.
However, the component �elds Bµ are naturally considered as Hermitian rather
than symmetric matrices. Furthermore, since the γµ = (γµ)

α,β have two upper
indices, they do not form an algebra. There are two ways to proceed. We can
either separate them again by introducing two 4N × 4N matrices,

BL =
1

2
+BL

i γ
L
i , BR =

i

2
+BR

i γ
R
i , (9.20)

breaking SO(6) → SO(3) × SO(3). This will be pursued in Appendix D.1.
Alternatively, we can use the γµ with the above properties to construct the 8× 8
Gamma-matrices

Γµ =

(
0 γµ

γµ† 0

)
, (9.21)
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which generate the SO(6)-Cli�ord algebra

{Γµ,Γν} =

(
γµγν† + γνγµ† 0

0 γµ†γν + γν†γµ

)
= 2δµν . (9.22)

This suggests to consider the single Hermitian 8N × 8N matrix

C = ΓµBµ + C0 =

(
0 BL

BL 0

)
+

(
0 BR

−BR 0

)
=: CL + CR, (9.23)

where C0 = CL
0 + CR

0 denote the constant 8× 8-matrices

CL
0 = − i

2
ΓL1 ΓL2 ΓL3 =

1

2

(
0 1
1 0

)
, (9.24)

CR
0 = − i

2
ΓR1 ΓR2 ΓR3 =

i

2

(
0 1
−1 0

)
(9.25)

in the above basis. Using the Cli�ord algebra and the above de�nitions one then
�nds

C2 = BµBµ +
1

2
+ Σµν

8 Fµν . (9.26)

Here Σµν
8 = − i

4
[Γµ,Γν ], and the �eld strength Fµν coincides with the de�nition in

(9.3) if written in the L−R notation,

Fia jb = i[Bia, Bjb] + δabεijkBka. (9.27)

Therefore the action

S6 = Tr((C2 − N2

2
)2) = 8tr(BµBµ − N2 − 1

2
)2 + 4trFµνFµν (9.28)

is quite close to what we want. The only di�erence is the term (BµBµ − N2−1
2

)2

instead of (BiLBiL − N2
L−1

4
)2 + (BiRBiR − N2

R−1

4
)2, for 2N2 = N2

L + N2
R. This

di�erence is easy to understand: since (9.28) isSO(6)-invariant, the ground state
should be some S5. We therefore have to break this SO(6)- invariance explicitly,
which will be done in the next chapter. However before doing that, let us try
to understand action (9.28) better and see whether it leads to a meaningful 4-
dimensional �eld theory. We show in Appendix D.2 by carefully integrating out
the scalar components ofBL,R

i that the SO(6)- invariant constraint term in (9.28)
induces the second term in the following e�ective action

Seff
6 ∼ 4tr

(
FµνFµν − (FiLxiL − FiRxiR)

1

4(1
2
− ∂µ∂µ)

(FiLxiL − FiRxiR)

)
(9.29)
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in the commutative limit, whereFiL = 1
2
εijkFjL kL etc. Comparing the second term

with FµνFµν , we see that the zero mode of the Laplace operator∂µ∂µ can produce a
contribution that cancels the corresponding contribution fromFµνFµν , but that all
higher modes are smaller by at least a factor of2(1

2
−∂µ∂µ). Therefore, the action

(9.28) is positive de�nite except for the obvious zero modeδBL
i = ε, δBR

i = −ε.
This means that the geometry of S2

L × S2
R is locally stable even with the SO(6)-

symmetry unbroken, except for opposite �uctuations of the radii.

9.2.1 Breaking SO(6) → SO(3)× SO(3)

To obtain the original action (9.1) for S2 × S2, we have to break the SO(6)-
symmetry down to SO(3) × SO(3). We can do this by using the left and right
gauge �elds CL and CR introduced in (9.23) separately. Their squares are

C2
L = BiLBiL +

1

4
+

(
γiL 0
0 γiL

)
(BiL + iεijkBjLBkL), (9.30)

C2
R = BiRBiR +

1

4
− i

(
γiR 0
0 γiR

)
(BiR + iεijkBjRBkR).

As both γiL, γiR and γiLγjR are traceless, we have

Sbreak := 2Tr((C2
L −

N2
L

4
)(C2

R −
N2
R

4
)) (9.31)

= 16Tr((BiLBiL − N2
L − 1

4
)(BiRBiR − N2

R − 1

4
)).

With these terms we can recover our action as

S = S6 − Sbreak = Tr
(
(C2 − N2

2
)2 − 2(C2

L −
N2
L

4
)(C2

R −
N2
R

4
)
)

(9.32)

= 8 tr
(
(BiLBiL − N2

L − 1

4
)2 + (BiRBiR − N2

R − 1

4
)2 +

1

2
FµνFµν

)
,

which is precisely the action (9.1) for gauge theory on S2
NL
× S2

NR
omitting the

overall constants. Hence the action is formulated as a 2-matrix model, however
with highly constrained matrices CL, CR. This formulation using the Gamma-
matrices is very natural and useful if one wants to couple the gauge �elds to
fermions, as discussed in chapter 9.4.

For simplicity, we will only considerNL = NR = N from now on.
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9.3 Quantization
The quantization of the gauge theory de�ned by (9.1) or its reformulation (9.32)
is straightforward in principle, by a path integral over the Hermitian matrices

Z[J ] =

∫
dBµe

−S[Bµ]+trBµJµ . (9.33)

Note that there is no need to �x the gauge since the gauge groupU(N ) is compact.
The above path integral is well-de�ned and �nite for any �xedN . To see this, it
is enough to show that the integral

∫
dBµe

−(BL
i B

L
i −N2−1

4
)2−(BR

i B
R
i −N2−1

4
)2 (9.34)

converges, since the contributions from the �eld strength further suppress the
integrand. This integral is obviously convergent for any �xedN .

For perturbative computations it is necessary to �x the gauge, and to sub-
stitute gauge invariance by BRST-invariance. Such a gauge-�xed action will be
presented next.

9.3.1 BRST Symmetry
To construct a gauge-�xed BRST-invariant action, we have to introduce ghost
�elds c and anti-ghost �elds c̄. These are fermionic �elds, more preciselyN ×N−
matrices with entries which are Grassman variables.

The full gauge-�xed action reads:

SBRST = S +
1

N tr
(
c̄[λµ, [Bµ, c]]− (

α

2
b− [λµ, Bµ])b

)
, (9.35)

where b is an auxiliary (Nakanishi-Lautrup) �eld. This action is invariant with
respect to the following BRST-transformations:

sBµ = [Bµ, c] sc = cc (9.36)
sc̄ = b sb = 0

(matrix product is understood), where the BRST-di�erentials acts on a product
of �elds as follows:

s(XY ) = X(sY ) + (−1)εY (sX)Y . (9.37)

Here εY denotes the Grassman-parity of Y

εY =

{
0 Y bosonic
1 Y fermionic . (9.38)
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It is not di�cult to check that these BRST-transformations are indeed nilpotent,
i.e.

s2 = 0 . (9.39)
Integrating out the auxiliary �eld b leads to the following action

S ′BRST = S +
1

N tr
(
c̄[λµ, [Bµ, c]]− 1

2α
[λµ, Bµ][λν , Bν ]

)
. (9.40)

Setting α = 1 corresponds to the Feynman gauge. This is indeed what one would
obtain by the Faddeev-Popov procedure. The actionS ′ is invariant with respect
to the following operations:

s′Bµ = [Bµ, c] (9.41)
s′c = cc

s′c̄ = [λµ, Bµ] .

Since we have used the equations of motion of b, the BRST-di�erential s′ is not
nilpotent o�-shell anymore, but we still have

s′2|on−shell = 0 . (9.42)

9.4 Fermions
To introduce spinors on fuzzy S2 × S2, we will �rst have to have a look at the
commutative case. There, we will calculate the Dirac operator and bring it into
a form which is more suitable for the fuzzy case. The formulation of fuzzy gauge
theory using the SO(6)-Cli�ord algebra will proove very usefull, and the fuzzy
Dirac operator will be a simple generalization of the commutative one. But this
Dirac operator (because it is based on SO(6) instead of SO(3)× SO(3)) will be
reducible, which is why we will have to introduce projectors onto the physical
Dirac fermions. Chirality can be introduced either using the chirality operator
inherited from SO(6) or using a Ginsparg-Wilson system.

9.4.1 The commutative Dirac operator on S2 × S2

To �nd a form of the commutative Dirac operator onS2 × S2 which is suitable
for the fuzzy case, one can generalize the approach of [51] forS2, which is carried
out in detail in Appendix D.3.3: One can write the �at SO(6) Dirac operator
D6 in 2 di�erent forms, using the usual �at Euclidean coordinates and also using
the spherical coordinates of the spheres. Then one can relateD6 with the curved
four-dimensional Dirac operatorD4 on S2×S2 in the same spherical coordinates.
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This leads to an explicit expression for D4 involving only the angular momen-
tum generators, which is easy to generalize to the fuzzy case. In terms of these
tangential derivatives Jµ, the result becomes the simple expression

D4 = ΓµJµ +

(
0 1
1 0

)
+ i

(
0 1
−1 0

)
= ΓµJµ + 2C0, (9.43)

which is clearly a SO(3)×SO(3)-covariant Hermitian �rst-oder di�erential oper-
ator. Here Γµ generate the SO(6) Cli�ord algebra (9.22), C0 is de�ned in (9.25),
and we put R = 1 for simplicity here. However this Dirac operator is reducible,
acting on 8-dimensional spinors Ψ8 corresponding to the SO(6) Cli�ord algebra.
Hence Ψ8 should be a combination of two independent 4-component Dirac spinors
on the 4-dimensional space S2 × S2. To see this, we will construct explicit pro-
jectors projecting onto these 4-dimensional spinors, and identify the appropriate
4-dimensional chirality operators. This will provide us with the desired physical
Dirac or Weyl fermions.

9.4.2 Chirality and projections for the spinors
There are 3 obvious operators which anti-commute withD4. One is the usual
6-dimensional chirality operator

Γ := iΓL1 ΓL2 ΓL3 ΓR1 ΓR2 ΓR3 =

( −1 0
0 1

)
, (9.44)

which satis�es
{D4,Γ} = 0, Γ† = Γ, Γ2 = 1. (9.45)

The 8-component spinorsΨ8 split accordingly into two 4-component spinorsΨ8 =(
ψα
ψβ

)
, which transform as 4 resp. 4 under so(6) ∼= su(4); recall the related

discussion in chapter 9.2. The other operators of interest are

χL = ΓiLxiL and χR = ΓiRxiR. (9.46)

They preserve SO(3)× SO(3) ⊂ SO(6), and satisfy

{D4, χL,R} = 0 = {χL, χR} (9.47)

as well as
χ2
L,R = 1. (9.48)

We will also use
χ =

1√
2

Γµxµ =
1√
2

(χL + χR) (9.49)
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which satis�es similar relations. This means that

P± =
1

2
(1± iχLχR) (9.50)

with
P 2
± = P±, P+ + P− = 1 and P+P− = 0 (9.51)

are Hermitian projectors commuting with the Dirac operator onS2 × S2 as well
as with Γ,

P †± = P± and [P±, D4] = [P±,Γ] = 0. (9.52)
Therefore they project onto subspaces which are preserved byD4 and Γ. Hence
the spinor Lagrangian can be written as

Ψ†
8D4Ψ8 = Ψ†

+D4Ψ+ + Ψ†
−D4Ψ− (9.53)

involving two Dirac spinors Ψ± = P±Ψ8. In order to get one 4-component Dirac
spinor, we can e.g. impose the constraint

P+Ψ8 = Ψ8, (9.54)

or equivalently give one of the two components a large mass, by adding a term

M Ψ†
8P−Ψ8 (9.55)

to the action with M → ∞. The physical chirality operator is now identi�ed
using (9.52) and (9.45) as Γ acting on Ψ+. It can be used to de�ne 2-component
Weyl spinors on S2 × S2.

To make the above more explicit, consider the a pole of the spheres, i.e.

xL =




1
0
0


 and xR =




1
0
0


 . (9.56)

In the basis (9.21) for the Cli�ord algebra we then get explicitly

P± =
1

2
(1± i

( −γ1
Lγ

1
R 0

0 γ1
Lγ

1
R

)
) =

1

2
(1± σ3 ⊗ σ3 ⊗ σ3). (9.57)

This means that
P+ = diag(1, 0, 0, 1, 0, 1, 1, 0) (9.58)

projects onto a 4-dimensional subspace exactly as expected.
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9.4.3 Gauged fuzzy Dirac and chirality operators
To �nd a fuzzy analogue of the Dirac operator (9.43) coupled to the gauge �elds,
we recall the connection between the gauge theory on S2 × S2 and the SO(6)
Gamma matrices established in chapter 9.2. In the spirit of that chapter a natural
fuzzy spinor action would involve

Ψ†CΨ, (9.59)

where Ψ is now a 8N × N -matrix (with Grassman entries). Of course, (9.59)
does not have the appropriate commutative limit, but we can splitC into a fuzzy
Dirac operator D̂ and the operator χ̂ de�ned by

χ̂Ψ =

√
2

N
(ΓµΨλµ − C0Ψ), (9.60)

which generalizes (9.49); here we used the de�nition (9.24,9.25) of C0. This
operator satis�es

χ̂2 = 1, (9.61)

and reduces to (9.49) in the commutative limit. Note also that χ̂ commutes
with gauge transformations, since the coordinatesλµ are acting from the right in
(9.60). Setting

ĴµΨ = [λµ,Ψ], (9.62)

we get for the fuzzy Dirac operator

D̂ = C − N√
2
χ̂ = Γµ(Ĵµ + Aµ) + 2C0 = ΓµDµ + 2C0. (9.63)

Here3
D̂µ := Ĵµ + Aµ (9.64)

is a covariant derivative operator, i.e. D̂µψ → UD̂µψ which is easily veri�ed
using (9.6). This D̂ clearly has the correct commutative limit (9.43) for vanishing
A, and the gauge �elds are coupled correctly. In particular, this de�nition of
D̂ applies also to the topologically non-trivial solutions of chapter 9.5 without
any modi�cations. Moreover, the chirality operatorΓ as de�ned in (9.44) anti-
commutes with D̂ also in the fuzzy case,

{D̂,Γ} = 0. (9.65)
3We set R = 1 in this chapter for simplicity.
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Furthermore, using some identities given at the beginning of chapter 9.2 we obtain
for D̂2ψ:

D̂2ψ = (ΣµνFµν + D̂µD̂µ + {Γµ, C0}D̂µ + 2)ψ (9.66)
=: (ΣµνFµν + ¤̂ + 2)ψ,

de�ning the covariant 4-dimensional Laplacian ¤̂ acting on the spinors. This
corresponds to the usual expression for D̂2 on curved spaces, and the constant
2 is due to the curvature scalar. Since D̂2 and ΣµνFµν are both Hermitian and
commute with Γ and P̂± as de�ned in (9.69) in the largeN limit, it follows that
¤̂ satis�es these properties as well.

9.4.4 Projections for the fuzzy spinors
For the fuzzy case, we can again consider the following operators

χ̂LΨ =
2

N
(ΓiLΨλiL + CL

0 Ψ), (9.67)

χ̂RΨ =
2

N
(ΓiRΨλiR + CR

0 Ψ)

which satisfy
χ̂2
L,R = 1, {χ̂L, χ̂R} = 0 . (9.68)

This implies (χ̂Lχ̂R)2 = −1, and we can write down the projection operators

P̂± =
1

2
(1± iχ̂Lχ̂R) (9.69)

which have the commutative limit (9.50) and the properties (9.51). However, the
projector no longer commutes with the fuzzy Dirac operator (9.63):

[D̂, χ̂Lχ̂R] = {D̂, χ̂L}χ̂R − χ̂L{D̂, χ̂R} (9.70)

= − 2

N

((
2(λiL + AiL)ĴiL − 2AiLλiL + 2CL

0 ΓiLD̂iL + 1
)
χ̂R

−χ̂L
(
2(λiR + AiR)ĴiR − 2AiRλiR + 2CR

0 ΓiRD̂iR + 1
))
,

which only vanishes for N → ∞ and tangential Aµ (9.9). To reduce the degrees
of freedom to one Dirac 4-spinor, we should therefore add a mass term

M Ψ†
8P̂−Ψ8 (9.71)

which for M → ∞ suppresses one of the spinors, rather than impose an exact
constraint as in (9.54). This is gauge invariant since P̂± commutes with gauge
transformations,

P̂±ψ → UP̂±ψ . (9.72)
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The complete action for a Dirac fermion on fuzzyS2
N × S2

N is therefore given by

SDirac =

∫
Ψ†

8(D̂ +m)Ψ8 +M Ψ†
8P̂−Ψ8 (9.73)

with M →∞. The physical chirality operator is given byΓ (9.44), which allows
to consider Weyl spinors as well.

9.4.5 The Ginsparg-Wilson relations
There is an alternative approach to introduce chirality on fuzzy spaces, using the
Ginsparg-Wilson relations. These were initially designed to study chiral fermions
on the lattice [43], but they proved to be applicable to fuzzy fermions as well
[9, 10]. On the fuzzy sphere, the Dirac and the chirality operator can be cast
into a form in which they ful�ll these relations. This makes it possible to study
issues such as topological properties and index theory [6, 101]. We will see that
the same relations can be formulated for our model, too.

A Ginsparg-Wilson system consists of two involutionsΓ and Γ′, i.e.

Γ2 = 1 ; Γ† = Γ and Γ′2 = 1 ; Γ′† = Γ′. (9.74)

In our case, these two involutions are de�ned as two di�erent noncommutative
versions of chirality, one acting from the left, the other one acting from the right

ΓΨ =

√
2

N
(Γµλµ + C0)Ψ, (9.75)

Γ′Ψ =

√
2

N
(ΓµΨλµ − C0Ψ). (9.76)

We recognize Γ′ as the fuzzy operator (9.60). But also Γ has the commutative
operator (9.49) as its limit.

In the Ginsparg-Wilson system, the Dirac operator was initially de�ned to be

d =
1

a
Γ(Γ− Γ′), (9.77)

where a is the lattice spacing, but here we will choose

D =
N

2

√
2(Γ− Γ′), (9.78)

as this reproduces our fuzzy Dirac operator (9.63) (with gauge �elds switched
o�). We can now de�ne an alternative chirality operator

χ =
1

2
(Γ + Γ′). (9.79)
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It ful�lls

{D,χ} = 0, (9.80)
2N2χ2 +D2 = 2N2.

Therefore χ exactly anticommutes withD, but it vanishes on the top modes ofD,
i.e. for |D| = √

2N . But at least for every eigenstateΨE with positive eigenvalue
E <

√
2N

DΨE = EΨ, (9.81)
the ungauged fuzzy Dirac operator has also an eigenstateΨ−E = χΨE with the
negative eigenvalue −E because of

DΨ−E = DχΨ = −χDΨ = −χEΨ = −EΨ−E. (9.82)

This can be used [6] to derive the following index theorem forD

Ind(D) = n+ − n− = Tr(χ). (9.83)

To include gauge �elds, we can write

ΓA =

√
2

N
(Γµ(λµ + Aµ) + C0) =

√
2

N
C. (9.84)

With

DA =
N

2

√
2(ΓA − Γ′), (9.85)

χA =
1

2
(ΓA + Γ′) (9.86)

we now get

{D,χ} =
N

2

√
2(Γ2

A − 1) (9.87)

=
N

2

√
2(

2

N2
(BµBµ +

1

2
+ Σµν

8 Fµν)− 1)

=

√
2

N
(BµBµ +

N2 − 1

2
+ Σµν

8 Fµν),

which corresponds exactly to the result of [101] for the fuzzy sphere. Other results
of [101] are therefore expected to hold in our case, too.

Alternatively, the gauge �elds could also be introduced in a way that is closer
to the Ginsparg-Wilson setting by normalizingΓA.
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9.5 Topologically non-trivial solutions onS2
N ×S2

N

We will now go back to pure gauge theory on S2
N × S2

N , looking for non-trivial
solutions of the equations of motion (9.4). We will �nd that the theory is rich
in topological solutions, some corresponding to monopoles on the commutative
limit S2 × S2, others corresponding to the �uxon solutions found on the second
limit R4

θ.
In order to understand better the non-trivial solutions found below, we �rst

note that the classical space S2 × S2 is symplectic with symplectic form

ω = ωL + ωR, (9.88)

where
ωL =

1

4πR3
εijkx

L
i dx

L
j dx

L
k (9.89)

and similarly ωR. The normalization is chosen such that
∫

S2
L,R

ωL,R = 1 =

∫

S2×S2

ωL ∧ ωR (9.90)

so that ωL, ωR generate the integer cohomology H∗(S2 × S2,Z). Noting that
ω is self-dual while ω̃ := ωL − ωR is anti-selfdual, it follows immediately that
both F = 2πω and F = 2πω̃ are solutions of the Abelian �eld equations. More
generally, any

F (mL,mR) = 2πmLω
L + 2πmRω

R (9.91)

for any integers mL,mR is a solution. In bundle language, they correspond to
products of 2 monopole bundles with connections and monopole numbermL,R

over S2
L,R. Following the literature we will denote any such non-trivial solution

as instanton.

9.5.1 Instantons and �uxons
We are interested in similar non-trivial solutions of the EOMs (9.4) in the fuzzy
case. The monopole solutions on the fuzzy sphereS2

N are given by representations
λN−mi of su(2) of sizeN−m [68], which lead to the classical monopole gauge �elds
in the commutative limit as shown in [96]. It is hence easy to guess that we will
obtain solutions on S2

N × S2
N by taking products of these:

BL
i = αL λN−mL

i ⊗ 1lN−mR
, (9.92)

BR
i = αR 1lN−mL

⊗ λN−mR
i (9.93)
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where λN−mL,R

i are theN−mL,R dimensional generators ofsu(2). It is not di�cult
to verify that these are solutions of (9.4) with αL,R = 1 +

mL,R

N
for mL,R ¿ N ,

with �eld strength

FiLjL = −mL

2R3
εijkx

L
k , FiRjR = −mR

2R3
εijkx

R
k , FiLjR = 0, (9.94)

while B ·B − N2−1
4

→ 0 as N →∞. This means that F = −2πmLωL − 2πmRωR

in the commutative limit, so that indeed
∫

SL,R
2

F

2π
= −mL,R. (9.95)

Notice that the Ansatz (9.93) implies that all matrices have sizeN = (N −
mL)(N −mR), which is inconsistent if we require thatN = N2 in order to have
the original S2

N × S2
N vacuum. Therefore it appears that these solutions live in

a di�erent con�guration space, similar as the commutative monopoles which live
on di�erent bundles. However, the situation is in fact more interesting: the above
solutions can be embedded in the same con�guration spaces ofN2×N2 matrices
as the vacuum solution if we combine them with other solutions, which have �nite
action in four dimensions4. They are in fact crucial to recover some of the known
U(1) instantons in the limit S2

N → R2
θ resp. S2

N × S2
N → R4

θ, as we will see.
Consider the following Ansatz

BL,R
i = diag(dL,Ri,1 , ..., d

L,R
i,n ) (9.96)

in terms of diagonal matrices (ignoring the size of the matrices for the moment).
These are solutions of (9.4) in two cases,

∑
i

dL,Ri,k d
L,R
i,k =

{
N2−3

4
, typeA

0, typeB (9.97)

(i.e. dL,Ri,k = 0 in type B). The associated �eld strength is

FiLjL =
εijk
R2

diag(dLk,1, ..., d
L
k,n), FLR = 0, (9.98)

and a similar formula forFiRjR. The constraint term is then (B ·B− N2−1
4

) → −1
2

for type A, and (B · B − N2−1
4

) → −N2−1
4

for type B in the large N limit. In
particular, only the type A solutions will have a �nite contribution

Sfluxon =
V

g2N
(

n

4R4
+

2n

R4

N2 − 3

4

)
→ 8π2

g2
n (9.99)

4as opposed to 2 dimensions, where their action goes to in�nity forN →∞.
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to the action5, which for N → ∞ is only due to the �eld strength. We will see
below that these type A solutions can be interpreted as a localized �ux or vortex,
and we will call them �uxons since they will lead in the scaling limit to solutions
on R4

θ which we denoted as such [94, 49, 56].
One can now combine these �uxon solutions with the monopole solutions

(9.93) in the form

BL
i =

(
αL λN−mL

i ⊗ 1lN−mR
0

0 diag(dLi,1, ..., d
L
i,n)

)
, (9.100)

BR
i =

(
αR 1lN−mL

⊗ λN−mR
i 0

0 diag(dRi,1, ..., d
R
i,n)

)
.

These are now matrices of sizeN = (N −mL)(N −mR) + n, which must agree
with N = N2. This is clearly possible for

mL = −mR = m, n = m2, (9.101)

while for mL 6= −mR the contribution from the �uxons would be in�nite sincen
would be of order N . To understand these solutions, we can compute the gauge
�eld from (9.5),

ALi =
1

R

(
BL
i − λNi ⊗ 1lN

)
= ALi (xL, xR). (9.102)

To evaluate this, we �rst have to choose a gauge, i.e. a unitary transformationU
for (9.100) which allows to express e.g. λN−mL

i ⊗1lN−mR
in terms of xLi ∝ λNi ⊗1lN

and xRi ∝ 1lN ⊗ λNi . For example, in the casemL = −mR = m this can be done
using a unitary map

U : CN−m ⊗ CN+m ⊕ Cm2 → CN ⊗ CN , (9.103)

mapping a (N −m)× (N +m) matrix into a N ×N matrix by trivially matching
the upper-left corner in the obvious way, and �tting Cm2 into the remaining
lower-right corner. With this being understood, one can write

RALi (xL, xR) = (αLλN−mi − λNi )⊗ 1lN+m (9.104)
+λNi ⊗ (1lN+m − 1lN) + (d-terms)

= A
(mL)
i (xL) + sing(xL3 = −R, xR3 = −R)

where A(mL)
i (xL) is indeed the gauge �eld of a monopole with chargem on S2

L in
the largeN limit, as was checked explicitly in [96]. Heresing(xL3 = −R, xR3 = −R)

5A �nite action can also be obtained for the typeB solution using a slightly modi�ed action
(9.107), as discussed below.
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indicates a �eld which is singular for largeN and localized at the south pole of
S2
L and S2

R. It originates both from cutting and pasting the bottom and right
border of the above matrices usingU (leading to singular gauge �elds but regular
�eld strength at the south poles), as well as the d-block (leading to a singular
�eld strength). To see this recall that in general for the standard representation
(C.2) of fuzzy spheres, entries in the lower-right block of the matrices correspond
to functions localized at x3 = −R, cp. (8.7). The gauge �eld near this singularity
will be studied in more detail in chapter 10.2. The �eld strength is

FiLjL = −mL

2R3
εijkx

L
k + εijk

1

R2

n∑
i=1

dLk,iPi (9.105)

in the commutative limit, where Pi are projectors in the algebra of functions on
S2
N × S2

N of rank 1; recalling (8.7), they should be interpreted as delta-functions
Pi = V

N2 δ
(4)(x3 = −R). Similar formulae hold for ARi (xL, xR) and FiRjR, while

FLR = 0.
We assumed above that these delta-functions are localized at the south poles

xL3 = xR3 = −R. However, the location of these delta-functions can be cho-
sen freely using gauge transformations. This can be seen by applying suitable
successive gauge transformations using N − k-dimensional irreps of SU(2) for
k = 0, 1, ...,m− 1, which from the classical point of view all correspond to global
rotations, successively moving the individual delta-peaks. Therefore the solution
(9.100) should in general be interpreted as a monopole onS2×S2 with monopole
number mL = −mR = m, combined with a localized singular �eld strength char-
acterized by its position and a vector dLk,i. We will see in chapter 10 that it
becomes the �uxon solution in the planar limitR4

θ.
The total action of these solutions (9.100) is the sum of the contributions from

the monopole �eld plus the contribution from the �uxons (9.99), which both give
the same contribution

S(m) =
4π2

g2

(
2m2 + 2m2

)
(9.106)

in the large N limit, using (9.101). The �rst term is due to the global monopole
�eld (9.94), and the second term is the contribution of the �uxons through the
localized �eld strength.

The interpretation of these solutions depends on the scaling limitN → ∞
which we want to consider. We have seen that in the commutative limit keeping
R = const, these solutions become commutative monopoles on S2 × S2 with
magnetic chargesmL = −mR, plus additional localized �uxon degrees of freedom.
For largeR, the �eld strength of the monopoles vanishes, leaving only the localized
�uxons. In particular, we will see in the following chapter that in the scaling limit
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S2
N×S2

N → R4
θ only the �uxons survive and become well-known solutions for gauge

theory on R4
θ.

A �nal remark is in order: if we �x the sizeN of the matrices, only certain
�uxon and monopole numbers are allowed, given by (9.101). Otherwise the num-
ber n of �uxons and hence the action would diverge withN . This can be seen as
an interesting feature of our model: viewed as a regularization of gauge theory on
R4
θ, this points to possible subtleties of de�ning the admissible �eld con�gurations

in in�nite-dimensional Hilbert spaces and relations with topological terms in the
action. On the other hand, we could accommodate the most general solutions
including also type B solutions (9.97) by modifying the action similar as in [96].
For example,

S =
1

g2

∫ (4BL
i B

L
i

N2R4
(BL

i B
L
i −

N2
L − 1

4
)2+

4BR
i B

R
i

R4
(BR

i B
R
i −

N2
R − 1

4
)2+

1

2
Fia,jbFia,jb

)

(9.107)
leads to the same commutative action, but with a vanishing action for the Dirac
string in the type B solutions.

9.5.2 Spherical branes
Consider the following solutions

BL
i =

(
αL λN−mi 0

0 diag(di,1, ..., di,m)

)
⊗ 1lN , (9.108)

BR
i = 1lN ⊗ λNi

which are matrices of sizeN = N2. The corresponding �eld strength is

FiLjL = − m

2R3
εijkx

L
k + εijk

1

R2

m∑
i=1

dk,iPi (9.109)

FRR = FLR = 0

where Pi are projectors in the algebra of functions onS2
L of rank 1 which should

be interpreted as delta-functions Pi = 4πR2

N
δ(2)(x3 = −R). In particular the

gauge �eld A vanishes on S2
R, while on S2

L there is a monopole �eld together with
a singularity at a point. This is similar to the �uxons of the previous chapter,
but now only on S2

L. This leads to the interpretation as a 2-dimensional brane
located at a point on S2

L. The action for these solutions is in�nite. In the limit
S2
N × S2

N → R4
θ, the �ux will be located at a 2-dimensional hyperplane. Such

solutions for gauge theory onR4
θ were found in [1, 50], which would be recovered

in the scaling limit S2
N × S2

N → R4
θ .
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Chapter 10

Gauge theory on R4
θ from S2

N × S2
N

We saw in chapter (8.3) that R4
θ can be obtained as a scaling limit of fuzzy

S2
NL
×S2

NR
. Here we will extend this scaling also to the covariant coordinatesBµ,

thereby relating the gauge theory onS2
NL
×S2

NR
to that on R4

θ and hence providing
a regularization for the latter. We will in particular relate the instanton solutions
on these two spaces.

On noncommutative R2
θ, all U(1)-instantons were constructed and classi�ed

in [50]. One can indeed recover these instantons from corresponding solutions
on S2

N , as we will show below. However, since we are mainly interested in the
4-dimensional case here, we will only present the corresponding constructions on
S2
NL
× S2

NR
resp. R4

θ here, without discussing the 2-dimensional case separately.
It can be recovered in an obvious way from the considerations below.

The situation on R4
θ is more complicated, and there are di�erent types of

non-trivial U(1) instanton solutions on R4
θ. The instantons found by solving the

noncommutative version of the ADHM equations [88, 41, 27, 55, 61] are hard to
�nd in the fuzzy case, as this construction relies heavily on selfduality, a notion
which isn't naturally available in our formulation of S2 × S2 embedded in R6.
But the four-dimensional �uxon solutions discussed in detail in chapter 7.3 can
be recovered as scaling limits of the solutions (9.100) onS2

NL
×S2

NR
. In particular,

the moduli of the �uxon solutions on R4
θ will be related to the free parameters

dL,Ri in (9.100). This supports our suggestion to use gauge theory onS2
NL
× S2

NR

as a regularization for gauge theory onR4
θ.
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N × S2
N

10.1 The action
We saw in chapter 8.3 that the fuzzy space S2

NL
× S2

NR
has a scaling limit to R4

θ,
with θ cast in the following form:

θµν =




0 θ12 0 0
−θ12 0 0 0

0 0 0 θ34

0 0 −θ34 0


 . (10.1)

This scaling can also be applied to the covariant coordinates Bµ, connecting
the gauge theory on S2

NL
× S2

NR
to that on R4

θ and therefore providing it with a
regularisation. For the selfdual case (i.e. θ12 > 0 and θ34 > 0) we can de�ne

X1,2 :=

√
2θ12

NL

BL
1,2 , (10.2)

X3,4 :=

√
2θ34

NR

BR
1,2 , (10.3)

φL,R := BL,R
3 − NL,R

2
+

1

NL,R

((BL,R
1 )2 + (BL,R

2 )2) , (10.4)

The antiselfdual case (θ34 < 0) can easily be reached by setting e.g.

X4/3 :=

√
2θ34

NR

BR
1/2, (10.5)

but for simplicity we will limit us to the selfdual case in the following. TheX
will become the covariant coordinates onR4

θ in the limit NL/R → ∞, and the φ
an auxiliary �eld. To see this we now blow up the spheres by setting

R2 =
1

2
NLθ34 =

1

2
NRθ12. (10.6)

With this double scaling limit R, N → ∞ keeping θ �xed we calculate for the
�eld strength

1

R2
([BL

1 , B
R
1 ]) =

1

θ12θ34

[X1, X3], etc., (10.7)

1

R2
(BL

1 + i[BL
2 , B

L
3 ]) =

√
1

θ12θ34R2

(
X1 + i[X2, φ

L]− i

2θ12

[X2, (X1)
2]

)

1

R2
(BL

2 + i[BL
3 , B

L
1 ]) =

√
1

θ12θ34R2

(
X2 + i[X1, φ

L]− i

2θ12

[X1, (X2)
2]

)

1

R2
(BL

3 + i[BL
1 , B

L
2 ]) =

1

θ12θ34

(
θ12 + i[X1, X2]

+
θ12θ34

R2
φL − θ12θ

2
34

2R4
((X1)

2 + (X2)
2)

)
.
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Analogous expressions hold forBR
i . For the potential term we get

1

R2
(BL

i B
L
i −

N2
L − 1

4
) =

1

θ34

φL +
2

R2
((φL)2 +

1

4
) (10.8)

− 1

θ12R2
{φL, (X1)

2 + (X2)
2}

+
1

θ2
12R

2
((X1)

2 + (X2)
2)2.

We immediately see that the only terms from action (9.1) involvingφL,R are

1

θ2
34

(φL)2 +
1

θ2
12

(φR)2 +O(
1

R
), (10.9)

and therefore we can integrate them out in the limitR→∞. In the leading order
in R the remaining terms give the standard action

S = − 1

2g2θ2
12θ

2
34

∫
([Xµ, Xν ]− iθµν)

2 (10.10)

for a gauge theory on R4
θ for general θµν . The Xµ are interpreted as covariant

coordinates, which can be written as1

Xµ = xµ + Aµ. (10.11)

Hence the gauge �elds Aµ describe the �uctuations around the vacuum. In par-
ticular, note that our regularization procedure clearly �xes the rank of the gauge
group, unlike in the naive de�nition on Rdθ as discussed in chapter 7.2. The
generalization to the U(n) case is obvious.

10.2 Instantons on R4
θ from S2

N × S2
N

With the scaling limit of chapter 10.1, the gauge theory onS2
N × S2

N provides us
with a regularization for the gauge theory onR4

θ. Of course, such a regularization
might a�ect the topological features of the theory, an e�ect we want to investigate
in this chapter. For this, we will map the topologically nontrivial solutions found
in chapter 9.5 on S2

N × S2
N to R4

θ.
Consider again the solutions (9.100) that combine the �uxon solutions with the

monopoles, with the �uxons at the north pole instead of the south pole because
1we do not distinguish between upper and lower indices
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we want to study their structure. Their scaling limit as in (10.2) gives

Xi =

√
2θ

N

(
diag(dLi,1, ..., d

L
i,n) 0

0 αL λN−mi ⊗ 1l

)
, (10.12)

Xi+2 =

√
2θ

N

(
diag(dRi,1, ..., d

R
i,n) 0

0 αR 1l⊗ λN+m
i

)
(10.13)

for i = 1, 2. Recalling that the rescaled λ1,2 on S2
NL
×S2

NR
become the x±'s on R4

θ

in the scaling limit √
2θ

N
(λL,R1 ± iλL,R2 ) → x±L,R,

we see that (10.12) and (10.13) become the instantons (7.32, 7.33) onR4
θ,

X1 + iX2 → X
(n)
+L = Sx+LS

† +
n∑

k=1

γLk |ik, jk〉〈ik, jk|, (10.14)

X3 + iX4 → X
(n)
+R = Sx+RS

† +
n∑

k=1

γRk |ik, jk〉〈ik, jk|. (10.15)

Here the (di)-block acting on a basis |ik, jk〉 of Vn ⊂ H ∼= CN becomes the
projector part of (10.14, 10.15) with

√
2θ

N
dL,R1,k → ReγL,Rk , (10.16)

√
2θ

N
dL,R2,k → ImγL,Rk ,

and the monopole block becomesSx+S
† where S is a partial isometry fromH to

H\Vn. Note that we can recover any value for the γ's in this scaling, solving the
constraint didi = N2−3

4
by d3 ≈ N

2
. Therefore the full moduli space of the �uxon

solutions (7.32, 7.33) onR4
θ can be recovered in this way. Furthermore, the mean-

ing of the parameters γL,R is easy to understand in our approach: Note �rst that
using a rotation (which acts also on the indices) followed by a gauge transforma-
tion, the di can be �xed to be radial at the north pole,dL,Ri ∼ (0, 0, N/2). This is
a �uxon localized at the north pole. Now apply a translation at the north pole,
which corresponds to a suitable rotation on the sphere. As theγ1,2

k , according to
(10.16), are the projections of the vectors dL,Ri onto the surface of the spheres,
rotating the vector dL,Ri in the scaling limit amounts to a translation of theγ1,2

k ,
which therefore parametrize the position of the �uxons.

It has been noted [37] that theSx+S
† correspond to a pure (but topologically

nontrivial) gauge, which can qualitatively be seen already in two dimensions.
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There, the partial isometry S : |k〉 → |k + n〉 is basically ( x−√
x−x+

)n ∼ (x−iy
r

)n ∼
einϕ and therefore the gauge �eld Ai = S∂iS

† has a winding number n. The
topological nature of the Sx+S

† is even more evident in our setting, as they are
the limit of the monopole solutions (9.92,9.93) onS2

N × S2
N . Moreover, note that

their contribution to the action (9.106) survives the scaling: even though the �eld
strength vanishes as R→∞, the integral gives a �nite contribution equal to the
contribution of the �uxon part. This topological �surface term� is usually omitted
in the literature on R4

θ, but becomes apparent in the regularized theory.
So it seems that we recovered all the instantons of chapter 7.3, but in fact there

is an important detail that we haven't discussed jet. It is the embedding of the
n-dimensional �uxons and the (N −m)(N +m)-dimensional monopole solutions
into the N2-dimensional matrices of the ground state. Such an embedding is
clearly only possible for n = m2. This means that the regularized theory has a
superselection rule for the dimension of the allowed instantons, a rule that did
not exist in the unregularized theory2.

One way to allow arbitrary instanton numbers is to allow the sizeN of the
matrices to vary. However, this is less satisfactory as it destroys the uni�cation of
topological sectors, which is a beautiful feature of noncommutative gauge theory.
On the other hand, the type B solutions (9.97) together with the changed action
(9.107) might allow the construction of the missing instantons. The idea is to
�ll up the unnecessary m2 − n places with di = 0. The changed action would
not suppress such solutions any more, and in fact they would not even contribute
to the action. This amounts to adding a discrete sector to the theory which
accommodates these type B solutions, but decouples from the rest of the model.
Whether or not one wants to do this appears to be a matter of choice. This
emphasizes again the importance of a careful regularization of the theory. It
would be very interesting to see what happens in other regularizations e.g. using
gauge theory on noncommutative tori or fuzzyCP 2.

2Note that this is di�erent in two dimensions. There, a rank n �uxon can be combined
with a (N − n)-dimensional monopole block and all the instantons onR2

θ can be recovered.
Furthermore, the actions for the �uxons and the monopoles scale di�erently withN . Therefore,
in two dimensions, the action for the monopoles vanishes in the scaling limit that produces a
gauge theory on R2

θ with rescaled coupling constant.
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Appendix A

Brackets, forms and frames

A.1 De�nitions of the brackets
A.1.1 The Schouten-Nijenhuis bracket
The Schouten-Nijenhuis bracket for multivector�eldsπs = π

i1...iks
s ∂i1 ∧ . . . ∧ ∂iks

can be written as ([7],IV.2.1):

[π1, π2]S = (−1)k1−1π1 • π2 − (−1)k1(k2−1)π2 • π1, (A.1)

π1•π2 =

k1∑

l=1

(−1)l−1π
i1...ik1
1 ∂lπ

j1...jk2
2 ∂i1∧ . . .∧ ∂̂il∧ . . .∧∂ik1

∧∂j1∧ . . .∧∂jk2
, (A.2)

where the hat marks an omitted derivative.
For a function g, vector�elds X = Xk∂k and Y = Y k∂k and a bivector�eld

π = 1
2
πkl∂k ∧ ∂l we get:

[X, g]S = Xk∂kg, (A.3)
[π, g]S = −πkl∂kg∂l,

[X, π]S =
1

2
(Xk∂kπ

ij − πik∂kX
j + πjk∂kX

i)∂i ∧ ∂j,

[π, π]S =
1

3
(πkl∂lπ

ij + πil∂lπ
jk + πjl∂lπ

ki)∂k ∧ ∂i ∧ ∂j.

A.1.2 The Gerstenhaber bracket
The Gerstenhaber bracket for polydi�erential operators As can be written as
([7],IV.3):
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[A1, A2]G = A1 ◦ A2 − (−1)(|A1|−1)(|A2|−1)A2 ◦ A1, (A.4)

(A1 ◦ A2)(f1, . . . fm1+m2−1) (A.5)

=

m1∑
j=1

(−1)(m2−1)(j−1)A1(f1, . . . fj−1, A2(fj, . . . , fj+m2−1), fj+m2 , . . . , fm1+m2−1),

where |As| is the degree of the polydi�erential operator As, i.e. the number of
functions it is acting on.

For functions g and f , di�erential operators D1and D2 of degree one and P
of degree two we get

[D, g]G = D(g), (A.6)
[P, g]G(f) = P (g, f)− P (f, g),

[D1, D2]G(g) = D1(D2(g))−D2(D1(g)),

[P,D]G(f, g) = P (D(f), g) + P (f,D(g))−D(P (f, g)).

A.2 Noncommutative forms
We are now able to introduce noncommutative forms as well. If we have a map
δ from the Poisson vector �elds to the derivations of the ?-product algebra, we
have seen that there is a natural Lie-algebra structure

[δX , δY ] = δ[X,Y ]? , (A.7)

over the space of these derivations. On this we can easily construct the Chevalley
cohomology. Further, again with the mapδ, we can lift derivations of the Poisson
structure to derivations of the ?-product. Therefore it should be possible to pull
back the Chevalley cohomology from the space of derivations to the Poisson vector
�elds. This will be done in the following.

A deformed k-form is de�ned to map k Poisson vector �elds to a function
and has to be skew-symmetric and linear over C. This is a generalization of
the undeformed case, where a form has to be linear over the algebra of functions.
Functions are de�ned to be 0-forms. The space of formsΩ?M is now a ?-bimodule
via

(f ? ω ? g)(X1, . . . , Xk) = f ? ω(X1, . . . , Xk) ? g. (A.8)
As expected, the exterior di�erential is de�ned with the help of the mapδ.

δω(X0, . . . , Xk) = (A.9)
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k∑
i=0

(−1)i δXi
ω(X0, . . . , X̂i, . . . , Xk)

+
∑

0≤i<j≤k
(−1)i+jω([Xi, Xj]?, X0, . . . , X̂i, . . . , X̂j, . . . , Xk).

With the properties of δ and [·, ·]? it follows that

δ2ω = 0. (A.10)

To be more explicit we give formulas for a function f , a one form A and a two
form F

δf(X) = δXf, (A.11)
δA(X,Y ) = δXAY − δYAX − A[X,Y ]? ,

δF (X,Y, Z) = δXFY,Z − δY FX,Z + δZFX,Y ,

−F[X,Y ]?,Z + F[X,Z]?,Y − F[Y,Z]?,X .

A wedge product may be de�ned

ω1 ∧ ω2(X1, . . . , Xp+q) = (A.12)
1

p!q!

∑
I,J

ε(I, J)ω1(Xi1 , . . . , Xip) ? ω2(Xj1 , . . . , Xjq)

where (I, J) is a partition of (1, . . . , p+q) and ε(I, J) is the sign of the correspond-
ing permutation. The wedge product is linear and associative and generalizes the
bimodule structure (A.8). We note that it is no more graded commutative. We
again give some formulas.

(f ∧ A)X = f ? AX , (A.13)
(A ∧ f)X = AX ? f,

(A ∧B)X,Y = AX ? BY − AY ? BX .

The di�erential (A.9) ful�lls the graded Leibniz rule

δ(ω1 ∧ ω2) = δω1 ∧ ω2 + (−1)k2 ω1 ∧ δω2. (A.14)

A.3 Frames
We will now propose a method how to �nd frames and Poisson structures of quan-
tum groups that are compatible. On several quantum spaces deformed derivations
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have been constructed [99, 72, 24]. In most cases the deformed Leibniz rule may
be written in the following form

∂̂µ(f̂ ĝ) = ∂̂µf̂ ĝ + T̂µ
ν(f̂)∂̂ν ĝ, (A.15)

where T̂ is an algebra morphism from the quantum space to its matrix ring

T̂µ
ν(f̂ ĝ) = T̂µ

α(f̂)T̂α
ν(ĝ). (A.16)

Again in some cases it is possible to implement this morphism with some kind of
inner morphism

T̂µ
ν(f̂) = êµ

af̂ êa
ν , (A.17)

where êaµ is an invertible matrix with entries from the quantum space. If we
de�ne

êa = êa
µ∂̂µ, (A.18)

the êa are derivations
êa(f̂ ĝ) = êa(f̂)ĝ + f̂ êa(ĝ). (A.19)

The dual formulation of this with covariant di�erential calculi on quantum spaces
is the formalism with commuting frames investigated for example in [32, 76, 23,
77]. There one can additionally �nd how our formalism �ts into the language of
Connes' spectral triples.

We can now represent the quantum space with the help of a?-product. For
example, we can use the Weyl ordered ?-product constructed in chapter 3.3.
Further we can calculate the action of the operators êa on functions. Since the êa
are now derivations of a ?-product, there necessarily exist Poisson vector �eldsea
with

δea = êa. (A.20)
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Calculation of the SW-map to all
orders

B.1 Calculation of [θt, θt] and [θt, Xt]

We want to show that θt is still a Poisson tensor and thatXt still commutes with
θt. For this we �rst de�ne θ(n)kl = (θf)n = θkifij . . . θ

rsfsl = fliθ
ij . . . frsθ

sk =
(fθ)n and θ(n)kl = θ(fθ)n = θkifij . . . frsθ

sl. In the calculations to follow we will
sometimes drop the derivatives of the polyvector�elds and associateπk1...kn with
πk1...kn 1

n
∂k1 ∧ . . . ∧ ∂knfor simplicity. All the calculations are done locally.

We evaluate

[θt, θt]S = θklt ∂lθ
ij
t + c.p. in (kij) (B.1)

=
∞∑

n,m=0

m∑
o=0

(−t)n+mθ(n)krθ(o)
i
sθ(m− o)jpθ

rl∂lθ
sp + c.p. in (kij)

+
∞∑

n,m=0

m∑
o=0

(−t)n+m+1θ(n)klθ(o)isθ(m− o)pj∂lfsp + c.p. in (kij)

=
∞∑

n,m,o=0

(−t)n+m+oθ(n)krθ(o)
i
sθ(m)jpθ

rl∂lθ
sp + c.p. in (kij)

−
∞∑

n,m,o=0

(−t)n+m+o+1θ(n)klθ(o)isθ(m)jp∂lfsp + c.p. in (kij).

The �rst part vanishes because θt is a Poisson tensor, i.e.

[θ, θ]S = θkl∂lθ
ij + c.p. in (kij) = 0, (B.2)
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the second part because of

∂kfij + c.p. in (kij) = 0. (B.3)

To prove that Xt still commutes with θt, we �rst note that

Xt = X

∞∑
n=0

(−tfθ) = X(1− tfθt). (B.4)

With this we can write

[Xt, θt] = [X, θt]− t[Xfθt, θt] (B.5)
= Xn∂nθ

kl
t − θknt ∂nX

l + θlnt ∂nX
k

−tXmfmiθ
in
t ∂nθ

kl
t + tθknt ∂n(X

mfmiθ
il
t )− tθlnt ∂n(X

mfmiθ
ik
t )

= Xn∂nθ
kl
t − θknt ∂nX

l + θlnt ∂nX
k

+tθknt ∂nX
mfmiθ

il
t − tθlnt ∂nX

mfmiθ
ik
t

+tθknt X
m∂nfmiθ

il
t − tθlnt X

m∂nfmiθ
ik
t .

In the last step we used (B.2). To go on we note that

tθknt X
m∂nfmiθ

il
t − tθlnt X

m∂nfmiθ
ik
t = tXnθkmt ∂nfmiθ

il
t , (B.6)

where we used (B.3). Making use of the power series expansion and the fact that
X commutes with θ, i.e.

[X, θ] = Xn∂nθ
kl − θkn∂nX

l + θln∂nX
k = 0, (B.7)

we further get

Xn∂nθ
kl
t + tXnθkmt ∂nfmiθ

il
t =

∞∑
r,s=0

(−t)r+sθ(r)kiXn∂nθ
ijθ(s)lj (B.8)

=
∞∑

r,s=0

(−t)r+sθ(r)ki θin∂nXjθ(s)lj

−
∞∑

r,s=0

(−t)r+sθ(r)ki θjn∂nX iθ(s)lj.

Therefore (B.5) reads
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[Xt, θt] =
∞∑

r,s=0

(−t)r+sθ(r)ki θ(s)ljθin∂nXj (B.9)

−
∞∑

r,s=0

(−t)r+sθ(r)ki θ(s)ljθjn∂nX i

−θknt ∂nX l + θlnt ∂nX
k + tθknt ∂nX

mfmiθ
il
t − tθlnt ∂nX

mfmiθ
ik
t

= 0.

B.2 Calculation of the commutators
B.2.1 Semi-classical construction
We calculate the commutator (5.115) (see also [66]), dropping the t-subscripts on
θt for simplicity and using local expressions.

[aθ, dθ(g)] = −θijaj∂iθkl∂kg∂l − θijajθ
kl∂i∂kg∂l (B.10)

+θkl∂kg∂lθ
ijaj∂i + θkl∂kgθ

ij∂laj∂i

= −θkl∂kθijaj∂ig∂l − θklθijaj∂k∂ig∂l − θklθij∂jak∂ig∂l

= +θijfjkθ
kl∂ig∂l − θkl∂k(θ

ijaj∂ig)∂l

= −dθfθg + dθ(aθ(g))

= −∂t(dθ)g + dθ(aθ(g)).

For (5.116) we get

[aθ, Xt] = θijaj∂iX
k∂k −Xk∂kθ

ijaj∂i −Xkθij∂kaj∂i (B.11)
= −θijXk∂kaj∂i − θik∂kX

jaj∂i

= Xkfkiθ
ij∂j + θij∂i(X

kak)∂j

= −∂tX − dθ(X
kak).

B.2.2 Quantum construction
In [79], (5.97,5.98,5.101) have already been calculated, unluckily (and implicitly)
using a di�erent sign convention for the brackets of polyvector�elds. In [66], again
a di�erent sign convention is used, coinciding with the one in [79] in the relevant
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cases. In order to keep our formulas consistent with the ones used in [79, 66], we
de�ne our bracket on polyvector�elds π1 and π2 as in [79] to be

[π1, π2] = −[π2, π1]S, (B.12)

giving an extra minus sign forπ1 and π2 both even. The bracket on polydi�erential
operators is always the Gerstenhaber bracket.

With these conventions and

d? = −[·, ?] (B.13)

we rewrite the formulas (5.101,5.99,5.97,5.98) so we can use them in the fol-
lowing

[Φ(X),Φ(g)]G = Φ([X, g]) + Ψ([θ, g], X)−Ψ([θ,X], g), (B.14)
[Φ(X),Φ(Y )]G = d?Ψ(X, Y ) (B.15)

+Φ([X, Y ]) + Ψ([θ, Y ], X)−Ψ([θ,X], Y ),

d?Φ(g) = Φ(dθ(g)), (B.16)
d?Φ(X) = Φ(dθ(X)). (B.17)

For the calculation of the commutators of the quantum objects we �rst de�ne

a? = Φ(aθt) (B.18)

and
f? = Φ(fθt). (B.19)

With (B.17) we get the quantum version of (5.114)

f? = d?a?. (B.20)

For functions f and g we get

∂t(f ? g) =
∞∑
n=0

1

n!
∂tUn(θt, . . . , θt)(f, g) (B.21)

=
∞∑
n=1

1

(n− 1)!
Un(fθ, . . . , θt)(f, g)

= f?(f, g)

With these two formulas we can now calculate the quantum version of (5.115)
as in [66]. On two functions f and g we have
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∂t(f ? g) = f?(f, g) (B.22)
= d?a?(f, g)

= −[a?, ?](f, g)

= −a?(f ? g) + a?(f) ? g + f ? a?(g),

where we used (A.6) in the last step. Therefore

[a?, d?(g)](f) = a?(d?(g)(f))− d?(g)(a?(f)) (B.23)
= a?([f ?, g])− [a?(f) ?, g]

= −∂t[f ?, g]− [a?(g) ?, f ]

= −∂td?(g)(f) + d?(a?(g))(f).

For a function g which might also depend on t the quantum version of (5.115)
now reads

[a? + ∂t, d?(g)] = d?(a?(g)). (B.24)
We go on to calculate the quantum version of (5.116). We �rst note that

∂tΦ(Xt) =
∞∑
n=1

1

(n− 1)!
∂tUn(Xt, θt, . . . , θt) = Φ(∂tXt) + Ψ(fθ, Xt). (B.25)

With this we get

[Φ(aθ),Φ(Xt)] = d?Ψ(aθ, Xt) + Φ([aθ, Xt]) (B.26)
−Ψ([θt aθ]) + Ψ([θt, Xt], aθ)

= d?Ψ(aθ, Xt) + Φ(−dθ(Xk
t ak)) + Φ(−∂tXt)−Ψ(fθ, Xt)

= −d?(Φ(Xk
t ak)−Ψ(aθ, Xt))− ∂tΦ(Xt),

where we have used (B.15).

B.3 The transformation properties ofKt

To calculate the transformation properties ofKt(X
k
t ak), we �rst evaluate

δλ((aθ + ∂t)
n)Xkak =

n−1∑
i=0

(aθ + ∂t)
idθ(λ)(aθ + ∂t)

n−1−iXkak (B.27)

=
n−1∑
i=0

i∑

l=0

(
i

l

)
dθ((aθ + ∂t)

l(λ))(aθ + ∂t)
n−1−lXkak
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and

(aθ + ∂t)
nδλ(X

kak) (B.28)
= (aθ + ∂t)

nXk∂kλ

= Xk∂k(aθ + ∂t)
n −

n−1∑
i=0

(aθ + ∂t)
idθ(X

kak)(aθ + ∂t)
n−1−iλ

= Xk∂k(aθ + ∂t)
n −

n−1∑
i=0

n−1−i∑
j=0

(
n− 1− i

j

)
(−1)n−1−i−j(aθ + ∂t)

i+j ×

dθ((aθ + ∂t)
n−1−i−j(Xkak))(λ)

= Xk∂k(aθ + ∂t)
n +

n−1∑
i=0

n−1−i∑
j=0

(
n− 1− i

j

)
(−1)n−1−i−j(aθ + ∂t)

i+j ×

dθ(λ)((aθ + ∂t)
n−1−i−j(Xkak))

= Xk∂k(aθ + ∂t)
n +

n−1∑
i=0

n−1−i∑
j=0

i+j∑

l=0

(
n− 1− i

j

)(
i+ j

l

)
(−1)n−1−i−j ×

dθ((aθ + ∂t)
l(λ))((aθ + ∂t)

n−1−l(Xkak)).

We go on by simplifying these expressions. Using(
i

l

)
=

(
i− 1

l

)
+

(
i− 1

l − 1

)
for i > l (B.29)

we get
n−1∑

m=l

m∑
i=0

(
n− 1− i

m− i

)(
m

l

)
(−1)n−1−m =

n−1∑

m=l

(
n

m

)(
m

l

)
(−1)n−1−m. (B.30)

Using (B.29) again two times and then using induction we go on to
n−1∑

m=l

(
n

m

)(
m

l

)
(−1)n−1−m =

l∑
i=0

(
n− 1− i

n− 1− l

)
, (B.31)

giving, after using (B.29) again
l∑

i=0

(
n− 1− i

n− 1− l

)
=

(
n

l

)
. (B.32)
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Together with
n−1∑

i=l

(
i

l

)
=

(
n

l + 1

)
(B.33)

these formulas add up to give
n−1∑

m=l

m∑
i=0

(
n− 1− i

m− i

)(
m

l

)
(−1)n−1−m +

n−1∑

i=l

(
i

l

)
=

(
n+ 1

l + 1

)
(B.34)

and therefore

δλ(Kt(X
kak)) = Xk∂k(Kt(λ)) + dθ(Kt(λ))Kt(X

kak). (B.35)
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Appendix C

Representations

C.1 The standard representation of the fuzzy sphere
The irreducibleN -dimensional representation of thesu(2) algebra λi (8.3) is given
by

(λ3)kl = δkl
N + 1− 2k

2
, (C.1)

(λ+)kl = δk+1,l

√
(N − k)k, (C.2)

where k, l = 1, ..., N and λ± = λ1 ± iλ2.

C.2 Representation of theSO(6)- intertwiners and
Cli�ord algebra

Latin indices i, j will run from 1 to 3, whereas Greek indices µ, ν, ... denote all
the six dimensions, i.e. both the three left and the three right indices. We will
use the Pauli matrices

σ1 =

(
0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0
0 −1

)
, (C.3)

which satisfy
σiσj = δij + iεijkσk. (C.4)

With these we de�ne the 4-dimensional antisymmetric matrices
γ1
L = σ1 ⊗ σ2, γ2

L = σ2 ⊗ 1, γ3
L = σ3 ⊗ σ2,

γ1
R = i σ2 ⊗ σ1, γ2

R = i 1⊗ σ2, γ3
R = i σ2 ⊗ σ3.

(C.5)
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They are the intertwiners between SU(4) ⊗ SU(4) and SO(6) and ful�ll the
following relations:

(γiL)† = γiL, (C.6)
(γiR)† = −γiR

and

γiLγ
j
L = δij + iεijk γ

k
L, (C.7)

γiRγ
j
R = −δij − εijk γ

k
R,

[γiL, γ
j
R] = 0.

We can now de�ne the 8-dimensional representation of theSO(6)-Cli�ord algebra
as

Γµ =

(
0 γµ

γµ† 0

)
, (C.8)

with the desired anticommutation relations

{Γµ,Γν} =

(
γµγν† + γνγµ† 0

0 γµ†γν + γν†γµ

)
= 2δµν . (C.9)

The chirality operator in this basis is

Γ = iΓ1
LΓ

2
LΓ3

LΓ1
RΓ2

RΓ3
R =

( −1 0
0 1

)
. (C.10)

The 8-dimensional SO(6)-rotations are generated by

Σµν
8 = − i

4
[Γµ,Γν ] = − i

4

(
γµγν† − γνγµ† 0

0 γµ†γν − γν†γµ

)
. (C.11)

If we de�ne

Σµν = − i
4
(γµγν† − γνγµ†) and Σ

µν
= − i

4
(γµ†γν − γν†γµ), (C.12)

the Cli�ord algebra transforms as

[Σµν
8 ,Γσ] =

(
0 Σµνγσ − γσΣ

µν

Σ
µν
γσ† − γσ†Σµν 0

)
. (C.13)

Explicitly we have

ΣiL jL = − i
4
[γiL, γ

j
L] = Σ

iL jL
, (C.14)

ΣiR jR = i
4
[γiR, γ

j
R] = Σ

iR jR
, (C.15)

ΣiR jL = − i
4
{γiR, γjL} = −Σ

iR jL (C.16)
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and therefore

[ΣiL jL
8 ,Γσ] =

(
0 [ΣiL jL, γσ]

[ΣiL jL, γσ†] 0

)
, (C.17)

[ΣiR jR
8 ,Γσ] =

(
0 [ΣiR jR, γσ]

[ΣiR jR, γσ†] 0

)
, (C.18)

[ΣiR jL
8 ,Γσ] =

(
0 {ΣiR jL, γσ}

−{ΣiR jL, γσ†} 0

)
. (C.19)
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Appendix D

Calculations for the matrix model
approach

D.1 Alternative formulation using4N×4N matri-
ces

Let us rewrite the action (9.32) in terms of the4N × 4N matrices BL, BR (9.20).
Noting that

CLCR + CRCL =

( −[BL, BR] 0
0 [BL, BR]

)
(D.1)

we can rewrite S6 (9.28) as

S6 = 2Tr

(
B2
L −B2

R −
N2

2

)2

+ 2Tr
(
[BL, BR]2

)
, (D.2)

where the trace is now over 4N × 4N matrices. Similarly

Sbreak = −4Tr

(
B2
L −

N2

4

)(
−B2

R −
N2

4

)
(D.3)

and combined we recover (9.1) as

S = S6 − Sbreak = 2Tr

(
(B2

L −
N2

4
)2 + (−B2

R −
N2

4
)2 + [BL, BR]2

)
. (D.4)

This looks like a 2-matrix model, however the degrees of freedomBL, BR are still
very much constrained and span only a small subspace of the4N × 4N matrices.
We would like to �nd an intrinsic characterization without using theγµ explicitly.
One possibility is to choose the γµ to be completely anti-symmetric matrices,
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see Appendix C.2. However this does not extend toB, since the Bµ should be
Hermitian and not necessarily symmetric, and moreover theγµ are not Hermitian
(the conjugate being the intertwiner (6) ⊂ (4) ⊗ (4)). Another possibility is
provided by the following representation of theγ-matrices:

γiL = σi ⊗ 1l2×2, γiR = 1l2×2 ⊗ iσi. (D.5)

They satisfy the relations (9.16) � (9.19), but are not antisymmetric. Now note
that

γiR = iPγiLP (D.6)
where

P =




1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1


 =

1

2
(1 + σi ⊗ σi) (D.7)

permutes the two tensor factors and satis�es

P 2 = 1. (D.8)

Therefore we can characterize the degrees of freedom in terms of 2 Hermitian
2N × 2N matrices

XL = Bi
Lσi +

1

2
, XR = Bi

Rσi +
1

2
(D.9)

which are arbitrary up to the constraint thatX0
L,R = 1

2
. Then

BL = XL ⊗ 1l2×2, BR = iP (XR ⊗ 1l2×2)P ; (D.10)

they could be extracted from a single complex matrix B̃ = (XL + iXR) ⊗ 1l2×2.
Furthermore, matrices of the formX⊗1l2×2 are characterized through their spec-
trum, which is doubly degenerate; indeed any such Hermitian matrix can be cast
into the above form using suitable unitary SU(4N ) transformations. Similarly,
P can also be characterized intrinsically: any matrixP written as

P = P0 ⊗ 1l2×2 + Pi ⊗ σi (D.11)

which satis�es the constraints

P0 =
1

2
, P 2 = 1l (D.12)

is given by (D.7) up to an irrelevant unitary transformationU ⊗ 1l. We could
therefore write down the action (D.4) in terms of three matricesBL,−iPBRP
and P , all of which are characterized by their spectrum and constraints of the
form (..)0 = 1

2
. The hope is that such a reformulation may allow to apply some

of the powerful methods from random matrix theory, in the spirit of [96].
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D.2 Stability analysis of the SO(6) - invariant ac-
tion (9.28)

Consider the action (9.28). We will split o� the radial degrees of freedom for large
N by setting1

BiL = λiL + AiL = λiL +AiL + xiLΦL (D.13)
requiring that λiLAiL = 0, and similarly for BiR, The stability of our geometry
will depend on the behavior of ΦL and ΦR. We calculate that

BµBµ−N
2 − 1

2
= N(ΦL+ΦR)+ΦLΦL+ΦRΦR+AµAµ−[λµ,Aµ]+O(

1

N
), (D.14)

where we used thatλiaAia = 0 and therefore bothAiaxia = O( 1
N

) andAia[λia, ·] =
O( 1

N
) for a = L,R. Setting

ΦL + ΦR = Φ1, (D.15)
ΦL − ΦR = Φ2

we get

BµBµ − N2 − 1

2
= NΦ1 + Φ1Φ1 + Φ2Φ2 +AµAµ − [λµ,Aµ] +O(

1

N
). (D.16)

In the limit N →∞ we can integrate out Φ1, as it acquires an in�nite mass. Al-
ternatively we can rescaleΦ1 by setting φ1 = 1

N
Φ1. Then, all the terms involving

φ1 but the �rst one in (D.16) will be of order 1
N

and we can equally integrate out
φ1.

The terms from
FiLFiL + FiRFiR − [BiL, BiR]2 (D.17)

with FiL = 1
2
εijkFjL kL etc. involving the remaining Φ2 will be (in the limit

N →∞)
1

2
Φ2Φ2 − Jµ(Φ2)Jµ(Φ2)− FiLxiLΦ2 + FiRxiRΦ2 (D.18)

with the tangential derivatives Jia = −iεijkxja∂ka. Calculating that

JµΦ2JµΦ2 = −∂µΦ2∂µΦ2 − xiL∂iLΦ2xjL∂jLΦ2 − xiR∂iRΦ2xjR∂jRΦ2 (D.19)

and using partial integration under the integral this gives
1

2
Φ2Φ2−Φ2∂µ∂µΦ2−xiL∂iLΦ2xjL∂jLΦ2−xiR∂iRΦ2xjR∂jRΦ2−FiLxiLΦ2+FiRxiRΦ2

(D.20)
1the fact that this leads to non-hermitian �elds for �niteN is not essential here
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Expanding both Φ2 and F in left and right spherical harmonics as

Φ2 =
∑

klmn

cklmnY
L
kmY

R
ln and Fiaxia =

∑

klmn

faklmnY
L
kmY

R
ln (D.21)

we get for �xed klmn, setting c = cklmn, fa = faklmn and p = 1
2
+ l(l+1)+k(k+1)

the following expression

pc2 − cfL + cfR = p(c− 1

2p
fL +

1

2p
fR)2 − 1

4p
(fL − fR)2. (D.22)

Integrating out the c's and putting everything back this leaves us with the addi-
tional term

−(FiLxiL − FiRxiR)
1

4(1
2
− ∂µ∂µ)

(FiLxiL − FiRxiR) (D.23)

in the action (9.28).

D.3 The Dirac operator in spherical coordinates
For a general Riemannian manifold with metric

g = gµνdx
µdxν (D.24)

the Christo�el symbols are given by

Γσµν =
1

2
gσλ(∂µgλν + ∂νgλµ − ∂λgµν). (D.25)

We can change to a non-coordinate basis (labeled by Latin indices in contrast to
the Greek indices for the coordinates) by introducing the vielbeinseµa with

eaµe
µ
b = δab , (D.26)

gµν = eaµe
b
νδab, gµν = eµae

ν
b δ
ab.

With these, the Dirac operator is given by

D = −iγaeµa(∂µ +
1

4
ωµab[γ

a, γb]), (D.27)

where the γa form a �at Cli�ord algebra, i. e.

{γa, γb} = 2δab , γa† = γa (D.28)

and the spin connection ω ful�lls

∂µe
a
ν − Γλµνe

a
λ + ω a

µ b e
b
ν = 0. (D.29)
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D.3.1 The Dirac operator on R6 in spherical coordinates
We will now write down the �at SO(6) Dirac operator D6 by splitting R6 into
R3
L × R3

R and introducing spherical coordinates on both the left and right hand
side. The �at metric becomes

g6 = r2
L dθL ⊗ dθL + r2

L sin2 θL dφL ⊗ dφL + drL ⊗ drL (D.30)
+r2

R dθR ⊗ dθR + r2
R sin2 θR dφR ⊗ dφR + drR ⊗ drR.

Looking at the formula for the Christo�el symbols (D.25), we see that all the
symbols with both right and left indices vanish. For the symbols with only right
or only left indices we get

Γθφφ = − sin θ cos θ, (D.31)

Γφθφ =
cos θ

sin θ
= Γφφθ,

Γrθθ = −r,
Γrφφ = −r sin2 θ,

Γθrθ =
1

r
= Γθθr,

Γφrφ =
1

r
= Γφφr,

where we have dropped the left or right subscript for simplicity. All other symbols
vanish. We want to go to a non-coordinate basis by introducing the vielbeins

e1L
θL

= rL; e2L
φL

= rL sin θL; e3L
rL

= 1; (D.32)
e1R
θR

= rL; e2R
φR

= rR sin θR; e3R
rR

= 1. (D.33)

Calculating the spinor connection by (D.29), we again see that all the terms with
both left and right indices vanish. The terms with only left or only right indices
are

ω 1
φ 2 = − cos θ = −ω 2

φ 1, (D.34)
ω 2
φ 3 = sin θ = −ω 3

φ 2,

ω 1
θ 3 = 1 = −ω 3

θ 1,

where we again dropped the left or right subscripts. Putting all this together we
see that D6 splits up into a left partD3L and a right part D3R as

D6 = D3L +D3R (D.35)
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with

D3L = −iΓ1

L

1

rL
(∂θL

+
cos θL
sin θL

)− iΓ
2

L

1

rL sin θL
∂φL

− iΓ
3

L(∂rL +
1

rL
), (D.36)

D3R = −iΓ1

R

1

rR
(∂θR

+
cos θR
sin θR

)− iΓ
2

R

1

rR sin θR
∂φR

− iΓ
3

R(∂rR +
1

rR
).(D.37)

where the Γ have to form a SO(6) Cli�ord algebra.

D.3.2 The Dirac operator on S2 × S2

We now want to calculate the curved Dirac operatorD4 on S2×S2 in the spherical
coordinates of the spheres (they are the same spherical coordinates we used before,
now restricted to the spheres). The metric onS2 × S2 with radii rL and rR is

g4 = r2
L dθL ⊗ dθL + r2

L sin2 θL dφL ⊗ dφL (D.38)
+r2

R dθR ⊗ dθR + r2
R sin2 θR dφR ⊗ dφR.

The metric is the same as (D.30) restricted to the spheres, so the Christo�el
symbols are the same as (D.31). Again introducing the vielbeins

e1L
θL

= rL; e2L
φL

= rL sin θL; (D.39)
e1R
θR

= rL; e2R
φR

= rR sin θR, (D.40)

we see that also the spin connection is the same as (D.34), and therefore we can
again split D4 into a right part D2R and a left part D2L as D4 = D2L +D2R with

D2L = −iΓ̃1
L

1

rL
(∂θL

+
cos θL
sin θL

)− iΓ̃2
L

1

rL sin θL
∂φL

, (D.41)

D2R = −iΓ̃1
R

1

rR
(∂θR

+
cos θR
sin θR

)− iΓ̃2
R

1

rR sin θR
∂φR, (D.42)

where the Γ̃ form a �at SO(4) Cli�ord algebra.

D.3.3 SO(3) × SO(3)-covariant form of the Dirac operator
on S2 × S2

The �at SO(6) Dirac operator D6 can be split into a left part D3L and a right
part D3R using spherical coordinates in D.35. Of course,D6 can also be written
in the usual Euclidian coordinates as

D6 = −iΓµ∂µ, (D.43)
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where again we can split it into a left and a right part as

D6 = D3L +D3R (D.44)

with

D3L = −iΓiL∂i, D3R = −iΓiR∂i, (D.45)
{D3L, D3R} = 0.

We have left open which representation of theSO(6) Cli�ord algebra we want to
use for the Γ in (D.36,D.37), but Γ in (D.45) is really the representation given by
(9.21). We will now relate the two expressions for the Cli�ord algebra and the
Dirac operator by �rst de�ning

JiL = −iεijkxjL∂kL and JiR = −iεijkxjR∂kR (D.46)

and noting that (
ΓiLxiL
rL

)2

=

(
ΓiRxiR
rR

)2

= 1. (D.47)

We calculate that
(

ΓjLxjL
rL

)2

ΓiL∂iL =

(
ΓjLxjL
rL

) (
xiL∂iL
rL

− 1

rL

(
γiL 0
0 γiL

)
JiL

)
, (D.48)

(
ΓjRxjR
rR

)2

ΓiR∂iR =

(
ΓjRxjR
rR

)(
xiR∂iR
rR

+
i

rR

(
γiR 0
0 γiR

)
JiR

)
, (D.49)

and therefore

D3L = −i
(

ΓjLxjL
rL

)(
∂rL −

1

rL

(
γiL 0
0 γiL

)
JiL

)
, (D.50)

D3R = −i
(

ΓjRxjR
rR

) (
∂rR +

i

rR

(
γiR 0
0 γiR

)
JiR

)
. (D.51)

Comparing this with (D.36,D.37) we see that

Γ
3

L =

(
ΓiLxiL
rL

)
and Γ

3

R =

(
ΓiRxiR
rR

)
, (D.52)

as the JL and JR have no radial components. From (D.50,D.51) we can also
deduce that

[Γ
i

L,

(
0 1
1 0

)
] = 0 = [Γ

i

R,

(
0 1
−1 0

)
] (D.53)
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and
{ΓiR,

(
0 1
1 0

)
} = 0 = {ΓiL,

(
0 1
−1 0

)
}. (D.54)

The curved Dirac operatorD4 on S2 × S2 expressed in the spherical coordinates
of the spheres also splits up as D4 = D2L + D2R with right part D2R and left
part D2L given in (D.41,D.42). Comparing this with (D.36,D.37), we see that the
dependence on the tangential coordinates is the same in both expressions. With
(D.53,D.54) we see that the matrices −i

(
0 1
1 0

)
Γ

3

LΓ
i

L and
(

0 1
−1 0

)
Γ

3

RΓ
j

R

for i, j = 1, 2 form a SO(4) Cli�ord algebra and can therefore be used as the Γ̃.
Note that this representation is still reducible, a problem we deal with in chapter
9.4.2. Now we can get a simple relation between theD3 restricted on the spheres
and the D2

−
(

0 1
1 0

)
(iΓ

3

LD3L|res. − 1

rL
) = D2L, (D.55)

−i
(

0 1
−1 0

)
(iΓ

3

RD3R|res. − 1

rR
) = D2R. (D.56)

Inserting (D.50,D.51) and using (D.52) together with (D.47) we �nd that

D2L =
1

rL
(ΓiLJiL +

(
0 1
1 0

)
), (D.57)

D2R =
1

rR
(ΓiRJiR + i

(
0 1
−1 0

)
). (D.58)

Setting rL = rR = 1 for simplicity, the Dirac operatorD4 on S2 × S2 takes the
form (9.43).
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