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3. PREFACE 

During the development of multicellular organisms cells divide, migrate, differentiate and 

die in a spatially and temporally coordinated manner. One impressive example of 

morphogenesis is the development of the brain. Billions of neuronal cells begin to form a 

precise network of nerves and synaptic connections. Neurons are highly polarized cells, 

with an axon that transmits information from the cell to the environment and a dendritic

tree that receives and decodes the signals arriving to the cell from the environment.

During development, the establishment of neuronal polarity is a crucial event and it 

normally follows precise steps. Axonogenesis, or axon generation, is the first event of 

neuronal polarization. An axon arises from young, undifferentiated neurons, and then 

extends away from the cell to cover specific territories, often enduring particularly long 

journeys in order to establish the right connection and finally take up to delivering a 

specific electric message. The process of “dendritogenesis” or dendrite generation, 

immediately follows, and it consists of the outgrowth of tiny single processes that 

elongate, branch and further increase their complexity overtime resulting in the formation 

of an extensive and intricate dendritic “tree”. Mature neurons come in contact with axons 

of a number of other neurons through the complex dendritic network, receiving and 

integrating electric input messages, and then further transmitting the packages of 

information to the rest of the neuron and further. 

The complex processes of axonogenesis, dendritogenesis and the establishment of the 

proper neuronal networks require that cells communicate with other cells and with their 

environment, the correct wiring of the nervous system relying on the ability of neurons to 

find and to recognize their appropriate synaptic partners during development. A growing 

axon with its highly dynamic growth cone encounters, for example, several 

environmental cues on its way, each bearing a message that directs the growing process 

in a defined direction. Extracellular information is received for example, via surface

receptors that recognize specific stimuli and transduce signals into the interior of the cell
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in order to evoke the proper responses, which may translate in a “stop” message or a “go”.

Similar mechanisms govern the generation, correct extension and branching of the 

dendritic tree. The molecular mechanisms and the environmental cues driving 

axonogenesis and axonal guidance have been partially uncovered in the last years 

whereas less is known about the processes leading to dendritogenesis. The identification 

of new molecular players in dendritogenesis, both at a cellular level and as extracellular

cues, is therefore a particularly interesting and challenging field.
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4. SUMMARY 

Signaling between ephrin ligands and their Eph receptors is crucial for several 

developmental processes. During the development of the nervous system some growth 

factors like the neurotrophins have been shown to be key regulators of dendritogenesis 

and dendritic architecture. Eph-ephrin signalling instead, has been mostly shown to be 

crucial for axon guidance and local events like the promotion of spine formation and 

maintenance, and synaptic plasticity, at later stages of neuronal development. Very little 

evidence is available that shows involvement of Eph-ephrin signalling in earlier stages of 

neuronal morphogenesis and their role as modulators of dendritic development in a 

broader structural way.

In the first part of the project, a microarray screening was carried out in order to identify

new players in the Eph-ephrin signalling pathway. Catenin, a developmental protein 

was found to be strongly induced by the activation of the Eph-ephrin system. Catenin

is a member of the Catenin family, proteins that are mainly involved in the formation and 

reinforcement of adherens junctions. Some members of this family, like Catenin and

the nervous system-specific Catenin, have recently been found to be crucial players in 

dendritic morphogenesis.

The second part of the project was aimed at elucidating the activity of Catenin in 

dendritogenesis, characterising its potential role as a new effector in Eph-ephrin 

signalling, and establishing a biochemical link between the two. 
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5. INTRODUCTION 
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5.1 Introduction outline
The first part of this introduction will cover specific aspects of dendritogenesis, its 

chronology, what it is known about the extracellular cues directing it and the molecular

mechanisms that lie downstream.

The second part will cover more specifically the nature of Eph-ephrin signalling, some of 

the neuronal developmental processes influenced by it and the molecular machinery

downstream.

The third part will review the available information on candidate gene Catenin: from 

protein structure to the known biological functions.
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5.2 The generation of the dendritic tree

Although the processes of the generation of a dendritic tree are complex and diverse, they 

can be separated broadly into a few essential steps. First, dendrites grow out from

morphologically immature and unpolarized young neurons and attain characteristic 

growth rates, lengths, diameters and molecular compositions, different from those

neurites which will later be defined as axons. Second, dendrites extend in a defined 

direction and increase in diameter. Third, they start forming branches at defined intervals. 

Fourth, as dendrites elaborate, many also generate filopodia and small specialized

protrusions called spines that are the major synaptic sites in the mammalian brain (see

figure 5.1)

Figure 5.1 The four major steps of dendritogenesis. Initiation, outgrowth and guidance,
branching  and spine formation (modified from Scott and Luo, 2003).
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5.2.1 Dendrite outgrowth

To form connections with the correct presynaptic axon, dendrites must sprout, and extend 

away from the neuronal cell body into their target field. The outgrowth is initiated by a 

local event of subcortical actin polymerization in an organized manner, similar to the

formation of lamellipodia. Bundles of actin filaments push the cellular membrane

forming a protrusion that is almost simultaneously invaded by microtubules,

polymerizing in an oriented manner, and contributing to the elongation and stabilization 

of the process. 

Several extracellular factors have been shown to contribute to dendritic sprouting and

elongation. One example is a GPI-linked candidate plasticity gene 15 (CPG 15) that

promotes tectal projection neurons to extend their dendrites when over-expressed in 

Xenopus tectal cells (Nedivi et al., 1998). Another is osteogenic protein 1 (OP-1), a 

member of the transforming growth factor-  (TGF- ) superfamily, which has been 

demonstrated to stimulate dendrite growth from sympathetic neurons in culture with 

nerve growth factor (NGF) as a cofactor and to promote primary dendrite elongation in 

E18 mouse cortical neurons (Lein et al., 1995; Le Roux et al., 1999).

NGF, together with brain derived neurotrophic factor (BDNF), neurotrophin 3 (NT3) and 

NT4/5, belongs to the family of neurotrophins; they are dimeric secretory proteins that 

signal through receptor tyrosine kinases, known as TrkA, TrkB, TrkC and the co-receptor

p75NTR.

Neurotrophins have also been shown to increase dendritic length and complexity in 

several studies in vivo and in vitro, in cultures and in brain slices. (McAlister et al., 1995; 

McAlister et al., 1996). Time lapse imaging of live rat hippocampal neurons in slice 

cultures (Horch et al., 1999) showed that BDNF induces dendritic sprouting. 
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The dynamics of dendritic sprouting and elongation and especially the cellular pathways 

through which extracellular signals exert their effects have not yet been fully understood 

and it is not clear whether these factors act directly by locally regulating the cytoskeleton 

or if they turn on a specific genetic program for dendritic sprouting from undifferentiated 

neurons. Rho family GTPases whose roles are much better characterized in later dendrite

development, could also be involved in dendritic sprouting. 

5.2.2 Dendrite guidance 

Similar to axonal processes, a growing dendrite has to steer toward its target and cross

territories in order to establish the right connections. Not so much is known about 

dendritic guidance, whereas axonal guidance has been more extensively studied. In this 

process diffusible proteins like semaphorins, for example, are important. These molecules

have been shown to be crucial for axonal growth cone guidance but they also seem to be 

involved in dendritic growth cone guidance. 

Semaphorin (Sema) 3A normally causes repulsion or collapse of axonal growth cones. 

Interestingly, knock-out mice for Sema 3A also display defects in dendrite guidance of 

cortical pyramidal neurons (Polleux et al., 1998; Polleux et al., 2000) together with the 

expected axonal phenotypes. Sema 3A appears to serve as an attractant for the apical

dendrites of pyramidal neurons in cortical slices (Polleux et al., 2000) because cortical

pyramidal neurons send dendrites towards the source of endogenous Sema 3A (Giger et 

al., 1996). This asymmetric mechanism could be dependent on different concentrations,

in dendrites and axons, of Guanylate cyclase (GCS), the enzyme that synthesizes cyclic 

nucleotide guanosine 3’/5’-monophosphate (cGMP) ( Luo et al., 1993; Messersmith et al., 

1995). cGMP seems to be necessary for Sema 3A-mediated dendritic attraction and a 

higher concentration in growing dendrites has been reported (Giger et al., 1996). Axonal
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and dendritic growth cones may therefore share similar guidance mechanisms and 

transduction machinery even if they are differentially regulated. 

5.2.3 Dendrite branching 

To cover the correct target fields and reach the final neuronal “complexity”, most

dendrites need to form an extensive set of dendritic branches. Two major mechanisms of 

dendrite branch formation have so far been described: one is the ‘splitting’ of growth

cones which was first observed predominantly in in vitro studies (Bray et al., 1973), and 

second, the so called ‘interstitial’ branching, a process in which new branches arise along 

the sides of established dendritic shafts. This latter mechanism appears to be predominant 

in physiological conditions. 

Time lapse studies of live pyramidal neurons from rat hippocampus slices have

demonstrated that each branch initially appears in the form of a single filopodium and 

then it elongates assuming its defined morphology (Dailey and  Smith, 1996). 

Most filopodia emerge from and quickly retract into the dendritic shaft; some develop

further into growth cone-like structures which then mature into branches (Daley et al., 

1996). Stabilized branches extend and become substrate for further branch addition and 

stabilization, so that the final complexity is reached by iterative cycles of branch addition,

stabilization and extension (see figure 5.2).
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Figure 5.2. Rho GTPase-dependent stages of dendritic branching. For the correct
development of dendrites, three distinct processes are required. Branches must be first added to 
the arbor and Rac plays a key role. Newly formed branches must then be stabilized and the
process is also Rac-mediated. Finally, stabilized branches extend and these branches then support 
further branch additions in an iterative process. Branch extension is mediated by a decrease in 
RhoA activity. High levels of RhoA repress branch stabilization (modified from Cline and Van
Aelst, 2004).

Newly generated filopodia arise mainly as bundles of actin filaments and F-actin seems

to be the main component until the filopodium is committed to form a new branch and is 

therefore stabilized by the invasion of microtubules. The elongation is then elicited by a 

dual process involving dynamic F-actin structures at the leading edge of the growth cone 

and tubulin to stabilize and reinforce the newly formed process.

Similar to dendritic branch formation, the emergence of dendritic spines involves lateral 

protrusions of membrane and cytoskeleton: some of the newly formed filopodia are not 

stabilized in branches but mature into spines suggesting that the initial steps of the 

formation of both spines and branches could be similarly regulated but then differ later 

according to extracellular cues or neuronal activity (Altman et al., 1972; O’Leary et al., 

1988; Yu et al., 1994; Daley et al., 1996). 
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5.2.3.1 Role of Rho family GTPases in dendrite branching 

Because of the crucial role played by actin in the early stages of dendritic branching, the

regulators of the actin cytoskeleton have been the most studied molecules, and 

specifically the Rho family of small GTPases have emerged as key integrators of 

environmental cues regulating actin dynamics in the dendritic cytoskeleton (see figure

5.2). The Rho family of small GTPases are low molecular weight guanine nucleotide 

binding proteins. They alternate between an ‘active’ GTP-bound state and an ‘inactive’ 

GDP-bound state. Only in their GTP bound state can those GTPases interact with 

downstream molecules that mediate their effect. The ratio of the two forms is regulated 

by a set of other molecules, for example the GTPase activating proteins (GAPs) which 

increase the hydrolysis rate of bound GTP and thereby inactivate Rho. Other regulating 

molecules are the guanine nucleotide exchange factors (GEFs) that instead favor the 

exchange of hydrolyzed GDP for GTP and thereby activate Rho. The level of activity of 

such regulators alternately favors one side of the equilibrium (see figure 5.3).
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Figure 5.3. Molecular switch of Rho family GTPases. Inactive Rho bound to GDP is 
transformed into its active GTP bound state by a guanosine nucleotide exchange factor (GEF). 
Rho bound to GTP activates effector molecules. GTPase activity is promoted by a GTPase
activating protein (GAP) that turns back Rho into its inactive GDP bound state. 

The best studied members of the Rho family GTPases are cell division cycle 42 (Cdc42), 

Ras-related C3 botulinum toxin substrate 1 (Rac1) and Ras homologous member A (Rho 

A). Of the three molecules, Rac 1 and to some extent Cdc42, are key regulators of 

dendritic branching and dendritic remodelling. Rho A instead, appears to play a key role 

in regulating overall dendritic and branch lengths (see figure 5.2).

It has been shown in Xenopus retinal ganglion cells that the expression of dominant

negative mutants of Cdc42 and Rac1 reduces dendritic complexity whereas RhoA 

mutants has no noticeable effect; conversely a dominant active form of Rac1 but not of 

Cdc42 favours dendritic branching (Ruchhoelt et al., 1999). Other studies with Xenopus

neurons showed that Rac1 promotes branch addition whereas Rho A mostly seems to 

affect branch extension (Li et al., 2000) and interestingly, in chick retinal ganglion cells, 

constitutively active mutants of Rac1 promote the addition of tertiary branches. 
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Differently to Cdc42 and Rac 1, RhoA activity appears to be mostly inhibitory, as active

RhoA functions as a repressor of dendritic growth when bound to GTP while allowing

dendritic growth when inactive. Under physiological conditions the Rho A pathway is 

normally repressed and is locally activated when dendritic growth needs to be limited. 

Expression of a constitutively active Rho A mutant in several neuronal systems generally 

results in a decrease in dendritic growth. Conversely, dominant negative versions of Rho 

A or RhoA selective inhibitors result in the opposite phenotype, i.e. a marked increase in 

total dendritic length. (Nakayama et al., 2000; Ruchhoelt et al., 1999; Wong et al., 2000; 

Lee et al., 2000).

Not surprisingly, Rho family GTPases are also important for dendritic spine formation; in 

particular, dominant active forms of Rac1 promote the formation and maturation of 

dendritic spines in Purkinje cells of transgenic mice and in rat hippocampal and cortical 

neurons ( Luo et al., 1996; Nakayama et al., 2000; Tashiro et al., 2000). In contrast, Rho 

A activity seems to block spine formation, maintenance and elongation. 

Experimental evidence thus suggests that a differential engagement of GTPases controls 

different structural changes to attain the final dendritic architecture and plasticity. In fact 

the situation may even be more complex, given recent evidence that there could be a 

cross talk between Rho GTPases and their upstream and downstream effectors, in the 

form of feedback loops which ultimately determine the final architectural outcome.

Interestingly, recent studies have shown that intracellular distributions of RhoA, Cdc42 

and Rac1 differ according to the neuronal developmental stage in rat hippocampal 

cultures. During the early stages of process formation, that is during axon and dendritic 

sprouting, the three GTPases are evenly distributed throughout the cell, suggesting a 

possible interplay of the three different modulators, in a joint manner.

In fully developed neurons though, RhoA enriches in dendrites, Rac1 in axons, and 

Cdc42 is equally abundant in both domains, so that at later stages, a polarized segregation 

of the actin regulatory machinery might play an important role in axonal and dendritic

architectural plasticity (Da Silva et al., 2004). 
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5.2.3.2 Downstream cellular effectors of Rho family GTPases

Members of the Rho family GTPase exert their function through the activation of a

cascade of factors all of which tend to affect the dynamics of the actin and/or microtubule

cytoskeleton.

Well-known effectors that can be activated by both Rac and Cdc42 belong to the p21-

activated kinase (PAK) family of serine/threonine kinases. PAK proteins have been 

ascribed roles in regulating actin cytoskeleton dynamics and gene expression (Jaffer and 

Chernoff 2002; Bokoch et al., 2003). These kinases exist in an inactive state in the 

cytoplasm as a result of their N-terminal autoinhibitory region. Upon binding to Rac-GTP 

or Cdc42-GTP, the auto-inhibition is relieved, resulting in PAK activation and its auto-

phosphorylation. One mechanism by which PAKs affect the actin cytoskeleton involves 

phosphorylation and activation of the Lin-11, Isl-1, and Mec-3 (LIM) domain-containing

kinases (Yang et al. 1998; Edwards et al. 1999; Dan et al. 2001). Once active, these 

kinases phosphorylate and inhibit cofilin, an actin filament depolymerising factor, with 

the result of stabilizing actin filaments and promote actin polymerization (Bamburg 1999; 

Stanyon and Bernard 1999). The regulation of myosins is likely to be another component

of PAK-mediated cytoskeletal signalling. There is evidence that PAK1 can interfere with 

myosin light chain (MLC) function via direct phosphorylation and inhibition of myosin 

light chain kinase (MLCK) (Sanders et al. 1999; Bokoch 2003). This action of PAK may

assist in the disassembly of actin stress fibers triggered by PAK. 

Another key mechanism by which Rac and Cdc42 relay signals to the actin cytoskeleton

involves the Wiskott-Aldrich-syndrome family of scaffolding proteins. The Wiskott-

Aldrich-syndrome protein (WASP) and its closest relative neuronal WASP (N-WASP)

are regulated by Cdc42 (Rohatgi et al. 1999). Three other members of this family,

WAVE1–3 (also known as Scar proteins) mediate actin-based processes triggered by Rac 

(Miki et al. 1998; Machesky et al. 1999; Suetsugu et al.1999; Yamazaki et al. 2003; Yan 

et al. 2003). Both the WASP and WAVE family members are linked to the actin 

cytoskeleton through their interaction with the Arp2/3 complex. In the case of WASP/N-

WASP, these proteins have been shown to directly bind the activated form of Cdc42. 

This induces a conformational change that releases the WASP from auto-inhibition, 
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allowing it to activate the Arp2/3 complex to nucleate the formation of new actin 

filaments in vitro (Machesky et al. 1999; Rohatgi et al.1999, 2000; Kim et al. 2000). The 

WAVE proteins also mediate actin cytoskeletal changes downstream of Rac but without 

directly binding to it. They, in addition to directly activating the Arp2/3 complex, also

influence the activity of profilin which binds a number of actin monomers, preventing 

spontaneous nucleation and the addition of actin monomer to the  pointed  end  of the

filament, but not to the barbed end, and thus directly controlling actin polymerization

dynamics (Pollard et al. 2000). 

The major downstream effectors of RhoA that mediate GTPase’s effects on the 

cytoskeleton are members of the Rho-kinase (also called ROK/ROCK) family (Leung et 

al. 1995; Matsui et al., 1996; Nakagawa et al. 1996; Leung et al. 1996). 

Rho-kinases are serine/threonine kinases that play several roles in RhoA-induced actin

reorganization. They control actin filament bundling by directly phosphorylating 

and activating MLC, or by phosphorylating and inactivating MLC phosphatase, thereby 

indirectly increasing MLC phosphorylation and activation (Amano et al. 1996; Kimura et 

al. 1996). Furthermore, Rho-kinases may promote F-actin accumulation by 

phosphorylating and activating LIM-K, which in turn phosphorylates and inactivates the 

actin depolymerization factor (ADF) cofilin (Maekawa et al. 1999; Sumi et al. 1999,

2001; Ohashi et al. 2000; Amano et al. 2001) (see figure 5.4).
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Figure 5.4. The actin cycle: signalling downstream of Rho GTPases (see text for details). Rho,
Rac and Cdc42 are positively regulated by  GEFs and  negatively  regulated by GAPs. Other 
GTPases can 

also influence the state of phosphorylation of Rho GTPases. Activation of Rho triggers a
signalling cascade mediated by Rho kinase (ROCK) which phosphorylates and activates myosin
also through the inhibition of myosin light chain phosphatase (MLC-Ptase). Rac and Cdc42 
mediate part of their effects through p21 activated kinase  (PAK).  PAK can also phosphorylate
myosin  light chain (MLC) but its main activity is the activation of Lin-11, Isl-1, and Mec-3
kinase (LIM-K); which in turn negatively regulate cofilin contributing to the shift of the
equilibrium between G-actin and F-actin towards the filamentous form. PAK may also induce 
WASP family Verprolin-homologous protein (scar/WAVE) activity positively regulating profilin
and activating the complex Arp2/3 and therefore actin polymerization. Activation of Cdc42 
positively regulates neuronal Wiskott-Aldrich-Syndrome protein (N-WASP) which in turn 
activates profilin and Arp2/3 complex promoting actin polymerization.
(From:www.signaling-gateway.org/molecule/rsc/maps/actin_pathway_0.jpg)
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5.2.3.3 Extracellular cues that trigger Rho family GTPases signalling cascade 

Several studies have shown that synaptic activity is able to regulate dendritic arbour 

growth and branch dynamics. In vivo experiments with Xenopus tectal neurons showed 

that visual stimulation favours dendritic arbour growth and the rate of branch addition 

and that this effect is abolished by the treatment with blockers of N-methyl-D-aspartate

(NMDA) and amino-3-hydroxy-5-methyl-4-isoxazole propionic acid (AMPA)

glutamate receptors suggesting that glutamatergic synaptic transmission is required for

the dendritic growth rates (Jan et al., 2003). 

Visual stimulation was also reported to promote endogenous Rac activity and to decrease

Rho A activity in the optic tectum. Similarly, glutamate receptor activity increases Rac 

and Cdc42 activity (Li et al., 2002; Sin et al., 2002). Finally, it was shown that the use of 

dominant negative forms of Rac and Cdc42 and of dominant active Rho A completely

blocks arbor development following visual stimulation (Li et al., 2002).

The other main upstream cues that lead to the activation of Rho GTPase signalling and 

contribute to dendrite complexity, are extracellular signalling molecules whose activity is 

in some cases, also connected to neuronal activity. These cues, among others, are 

neurotrophins, semaphorins, slit and the ephrins. Most of the studies have been carried

out in the context of axonal growth and guidance and still little is known about the 

mechanisms through which the above mentioned factors exert their effect on dendritic 

development and spine formation.

Several studies show the involvement of neurotrophins in dendritic development through 

Rho GTPase signalling in combination with neuronal transmission, in particular through 

the NMDA receptors.  (Engert et al., 1999; McAllister et al., 1997; McAllister et al., 1995;

Schumann, 1999).

Other studies trying to connect neurotrophins and Rho GTPases have suggested that in 

cortical neurons BDNF is likely to increase arbor complexity by increasing the rate of

branch addition and stabilization in a very similar way to that induced by Rac over-

expression (Nakayama et al., 2000) . 
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The already mentioned study by Yu and Malenka (Yu et al., 2003) has shown a 

connection between dendritic development and the soluble factor Wnt (Wingless), via 

Catenin and through Rho GTPases. Over-expression of -Catenin increases dendritic

arbor growth by a mechanism that requires the interaction with its binding partner N-

Cadherin and neuronal activity. Wnt signalling starts from the interaction of the soluble 

ligand with its membrane receptor, Frizzled, and this leads to the dissociation of 

Catenin from N-cadherin and to the subsequent enhancement of dendritic arbor growth. 

Neuronal activity induces a release of soluble Wnt and this positively regulates dendritic 

growth.

5.2.3.4 Spine formation

(also see chapter in Eph-ephrin signalling)

Once a neuron has extended its dendritic tree and covered its target field it begins to 

establish connections with the axonal projections of other neurons in its environment.

The major path of communication between dendrites and axons are the so 

aforementioned “spines”, typical of excitatory synapses. Immature dendritic protrusions, 

classified as filopodia, tend to be long and thin, while mature protrusions, or spines, tend 

to have a well-defined head and neck structure. The cytoskeleton of spines and filopodia 

is mainly actin based. Because of the importance of actin for spine shape and function, 

the Rho GTPases play a predictable crucial role in spine formation, maintenance, and 

physiology (Bonhoeffer and Yuste 2002; Lisman 2003). On the other hand, little is 

known about the external cues that influence Rho GTPase activity in the context of spine 

morphogenesis. In general, the effect of Rho A, Rac1 and Cdc42 on spine formation can 

be generalized such that: activation of Rho causes spine loss whereas activation of Rac 

and Cdc42 signalling promotes dendritic spine formation (RhoGTPase signalling and 

their effect on spine morphogenesis are summarized in figure 5.5).
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Most of the evidence comes from the characteristic spine phenotypes produced by the

overexpression of Rho GTPase mutants in neurons or by the treatment with specific

inhibitors. Constitutively active Rho A decreases spine density and length in pyramidal

neurons in rat and mouse hippocampal slices and cultured rat hippocampal neurons. The

use of Rho A inhibitors though, has somewhat contradictory effects depending on the 

system used: they cause elongation of spine necks, reduce spine density, and increases 

filopodia density in cultured rat hippocampal neurons but they also increases the density 

and length of spines in mouse cortical and hippocampal pyramidal neurons in 

organotypic slices, although dominant negative Rho A does not affect pyramidal spine 

density in rat hippocampal slices neurons (Nakayama et al. 2000; Tashiro et al. 2000; 

Pilpel and Segal 2004). The effects of constitutively active Rho A on hippocampal spines 

has been shown to be mediated by the Rho effector Rho kinase (Nakayama et al. 2000).

Rac1 has been shown to play a role in both, the formation and maintenance of dendritic 

spines. Neurons expressing constitutively active Rac1 tend to form overlapping

protrusions which are composed of numerous “mini” spines. Rac activation decreases 

spine size and increases their density in mouse and rat cortical and hippocampal

pyramidal neurons in slices and in cultured rat hippocampal neurons (Tashiro et al., 2000; 

Nakayama et al., 2000; Pilpel and Segal 2004). In contrast, dominant negative Rac1 

causes a reduction in spine density in rat and mouse pyramidal neurons in hippocampal 

slices (Nakayama et al., 2000; Tashiro and Yuste 2004). Regulators of Rac in the context 

of dendritic spine morphogenesis include Kalirin and -PIX. Kalirin-7 is one of the most 

prevalent RhoA/Rac1 GEF isoforms in the adult rat brain. It contains only the Rac1 GEF 

domain and it has been shown to activate Rac1 (Penzes et al. 2000, 2001b). In primary

cortical neurons, ectopically expressed Kalirin-7 is targeted to spines and increases the 

number and size of spine-like structures. Conversely, reduced expression of Kalirin in 

CA1 neurons in hippocampal slices or dissociated rat hippocampal neurons results in 

reduced spine density (Ma et al.2003). Kalirin-7 has also been implicated in a signalling

cascade whereby ephrin-B1 treatment of cultured neurons induces phosphorylation and 

activation of the EphB2 receptor, redistribution of the Rho-GEF Kalirin to synapses, and 

32



activation of Rac1 and its effector PAK, leading to an increase in the number and size of 

dendritic protrusions with different morphologies. Interestingly, dominant negative forms

of EphB receptor, catalytically inactive Kalirin, dominant negative Rac1 or inhibition of 

PAK interfere with ephrin-B1-induced spine development (Penzes et al. 2003).

Another important player in Rac-mediated spine formation is -PIX. -PIX is a Rac GEF 

implicated in dendritic spine morphogenesis involving G protein-coupled receptor kinase

interacting protein (GIT)1. In cultured hippocampal neurons, a dominant negative GIT1

mutant results in a significant decrease in the number of synapses and normal mushroom-

shaped spines, with a concomitant increase in the number of long, thin dendritic 

protrusions. This phenotype results from disruption of the synaptic localization of GIT1 

and mislocalization of its binding partner Beta-PIX and Rac (Zhang et al. 2003). Beta-

PIX and GIT1 have also been found in a complex with PAK and Shank, a post-synaptic 

scaffolding protein shown to interact with glutamate receptors and actin cytoskeletal

proteins (Ehlers 1999; Tu et al. 1999; Boeckers et al. 2002 ; Park et al. 2003). 

The role of Cdc42 in spine morphogenesis is less defined compared to RhoA and Rac1. 

Neither constitutively active nor dominant negative Cdc42 appear to have any significant

effect on spine density or length in mouse cortical and hippocampal pyramidal cells in

slices (Tashiro et al. 2000). Regulators and effectors of Cdc42 implicated in dendritic

spine regulation include intersectin-1, N-WASP, and insulin receptor tyrosine kinase

substrate (IRSp53). Activated EphB2 receptor physically associates with Cdc42 GEF 

intersectin-1 and activates its GEF activity in cooperation with neural N-WASP, a 

regulator of Arp2/3-mediated actin nucleation. This is turn activates Cdc42 and spine 

morphogenesis in dissociated mouse hippocampal neurons. Interestingly, mutants of 

intersectin-1, N-WASP, and Cdc42 are all capable of inhibiting spine formation in this

system, leading to an increase in protrusion length and a decrease in width, and 

consequently a loss of mature spines and an increase in filopodia (Irie and Yamaguchi

2002).

33



Figure 5.5. Rho GTPase signaling cascades that affect dendritic spine formation. In general, 
activation of Rac and Cdc42 signaling promotes dendritic spine formation, while activation of 
Rho/Rho-kinase causes spine loss. See text for details. (GIT1) G protein-coupled receptor kinase-
interacting protein; (IRSp53) insulin receptor substrate of 53 kDa; (Igf1) insulin-like growth 
factor 1 (modified from Govek and Van Aelst, 2005).
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5.3 Eph receptors and their ephrin ligands

The Eph receptors constitute the largest class of receptor tyrosine kinases in the human

genome. They are conserved among vertebrates, insects, nematodes and even sponges. 

They function in a broad variety of developmental and adult processes ranging from cell 

migration, to synapse plasticity. Ephs and ephrins signal in a bidirectional way, i.e. Eph

receptors as well as their ligands transduce signals into the cells expressing them, thus, 

ephrin ligands also act as receptor-like molecules. Signalling downstream of the receptors 

is termed as ‘forward’ and downstream of the ligands as ‘reverse’ signalling.

5.3.1 The Eph class of receptor tyrosine kinases

The human genome encodes 13 different Eph receptors. Based on sequence similarity

and ligand binding characteristics they are subdivided into 8 EphA receptors (EphA1-

EphA8) and 5 EphB receptors (EphB1-EphB4, EphB6). Chicken encode an additional 

EphB receptor, EphB5 (Wilkinson, 2001). The genomes of the nematode Caenorhabditis

elegans and the fruitfly Drosophila melanogaster encode one Eph receptor each (Vab-1 

and Dek respectively) (George et al., 1998; Scully et al., 1999). Ephs are type I 

transmembrane receptors. Their extracellular domain consists of an N-terminal globular

ligand-binding domain, followed by a cysteine rich region and two fibronectin type III

repeats. The single transmembrane region is followed by a juxtamembrane region, a

tyrosine kinase domain, a sterile- -motif (SAM)-domain and a C-terminal PDZ-binding 

domain. Ligand binding specificity is encoded within the N-terminal globular domain

(see figure 5.6).
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Figure 5.6. Main structural features of Eph receptors and their ephrin ligands (see text for
explanation)

5.3.2 Ephrin ligands 

Similarly to the Eph receptors, the vertebrate ephrin ligands are also subdivided into two 

classes. While all ephrins share a homologous N-terminal ephrin-domain, only the 

ephrinB ligands have a single transmembrane domain and a cytoplasmic domain

containing 5-6 conserved tyrosine residues and a C-terminal PDZ-binding motif. EphrinA
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ligands are linked to the membrane by a glycosyl-phosophatidyl-inositol (GPI)-anchor. 

Vertebrates have 5 ephrinA ligands (ephrinA1-ephrinA5) and 3 ephrinB ligands 

(ephrinB1-ephrinB3).

EphA receptors bind ephrinA ligands, whereas EphB receptors bind ephrinB ligands.

Cross-binding among subclasses is not very common with the exception of EphA4 

(Wilkinson, 2000). Binding specificity within a subclass is low. All EphA receptors bind

to all ephrinA ligands. EphB1, EphB2, and EphB3 receptors bind equally well to both

ephrinB1 and ephrinB2. There is some specificity within subclass B: EphB4 appears to

only bind ephrinB2 (Wang et al., 1998; Adams et al., 1999; Gerety et al., 1999). In C.

elegans there are 4 GPI-anchored ephrin ligands (EFN1-EFN4). The sequence of their N-

terminal domains shares similarities with vertebrate A- and B-type ephrins (Chin-Sang et 

al., 1999). In Drosophila, D-ephrin is the only known ligand for Dek. The D-ephrin 

coding sequence predicts 3 transmembrane domains, an extracellular ephrin domain after 

the first transmembrane domain and a cytoplasmic domain with some sequence similarity

to vertebrate B-type ephrins (Bossing and Brand, 2002)  (see figure 5.7).
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Figure 5.7. Eph receptor classes and their ligands. Eph receptors can be subdivided according
to their binding specificity to their ephrin ligands. The B-subclass (in mammals EphB1-B4, 
EphB6) binds to ephrinB1-B3, whereas EphA receptors bind to ephrinA1-A5. Exceptions are 
EphA4 which can bind to both ephrinAs and ephribB2 and -B3; and EphB2 which also interacts
with ephrinA5.

5.3.3 Signaling mechanisms by Eph receptors and ephrin ligands

5.3.3.1 Mechanisms of Eph receptor forward signaling 

Most RTKs activate signalling pathways that target transcription in the nucleus leading to 

proliferative and/or differentiation responses. By contrast, Eph receptors regulate cell 

migration, repulsion, and attachment to the extracellular matrix. The signalling cascades 

that they activate, therefore, ultimately converge on the cytoskeleton and on adhesion

sites.
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The first step in initiation of Eph signalling is the recognition and binding of receptors 

with ligands on opposing cell surfaces. Several studies lead to a model of a two step 

mechanism: initially a high affinity heterodimer is formed between one N-terminal

globular domain of the Eph receptor and the N-terminal domain of an ephrin molecule.

Recognition proceeds via an induced fit mechanism where a loop of the ligand induces

the folding of a hydrophobic binding pocket on the receptor. This heterodimeric 1:1

complex then favors tetramerization to a 2:2 complex. Low affinity binding sites between

tetramers may then lead to further oligomerization (Himanen et al., 2001). It has been 

shown that Eph-receptors require higher order oligomerized ligands for full activation

when presented as soluble recombinant Fc-fusion proteins (ephrin-Fc) (Stein et al., 1998). 

It is thought that this oligomerization mimics the membrane anchorage of the ligand. (see

figure 5.8)
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Figure 5.8. Mechanisms of Eph receptor activation. (A) In the unbound state, the cytoplasmic
domain of Eph receptors is in a close and inactive conformation held by a fold in the 
juxtamembrane region. A tyrosine residue in the A-loop of the kinase domain keeps the enzyme
inactive. (B) The binding of ligand induces a conformational change in the globular domain.
Ligand-receptor interactions promote the formation of a heterotetramer followed by higher order
heteromultimers (not shown). Kinase domains come close together and basal activity leads to 
trans-autophosphorylation. Phosphorylation of the A-loop tyrosine activates the kinase.
Phosphorylation at the juxtamembrane tyrosines opens up the close conformation leading to full
kinase activity.

There is no evidence that the ligand induced change in the secondary structure of the

receptor is transfered outside of the globular domain. Thus, the mechanisms of kinase 

activation are rather similar to those of other RTKs. Ligand binding brings together two 

catalytically autoinhibited receptors into an orientation that favors trans-

autophosphorylation on a tyrosine residue located on the so called activation-loop (A-

loop) within the kinase domain. In its unphosphorylated form, the A-loop folds into the 

catalytic pocket of the kinase domain, thereby inhibiting its activity. Steric forces liberate

the phosphorylated loop outside the pocket, leading to kinase activation. Another 

inhibitory interaction exists between the kinase
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domain and the juxtamembrane region. Upon phosphorylation of two conserved tyrosines 

within this region, this interaction folds up permitting the full activation of the receptor.

The activated receptors then interact with adaptor molecules that transmit signals into the 

cell. Adaptor molecules contain functional protein-protein interaction domains such as 

the src-homology-2 (SH2) and SH3 domains. SH2 domains bind to phosphorylated 

tyrosine motifs of the receptor thereby connecting upstream and downstream signalling 

events. The interaction of a variety of such adaptors with Eph receptors has been shown.

The SH2 domains of the non receptor tyrosine kinases Abl and Arg bind to the 

phosphorylated juxtamembrane tyrosine residues. Abl and Arg are known regulators of

the actin cytoskeleton and activation of EphB1 receptor leads to a decrease in Abl activity.

Eph receptors also interact with the related non receptor tyrosine kinases of the Src 

family (SFK) (Ellis et al., 1996; Zisch et al., 1998). SFKs have been implicated in 

regulation of cytoskeletal dynamics and cell-substrate adhesion via integrins (Thomas

and Brugge, 1997). 

The Rho GEF Ephexin (Eph interacting exchange protein) provides another link between 

Eph receptors and Rho family GTPases. Ephexin binds to the kinase domain of EphA4 

and has differential effects such that RhoA is activated and Rac as well as Cdc42 are 

inhibited. The net result is a shift of actin dynamics towards contraction and reduced 

extension. Dominant negative forms of Ephexin abolished Eph receptor dependent 

growth cone collapse (Wahl et al., 2000; Shamah et al., 2001). 

Eph receptors are regulators of substrate adhesion via integrins. Their action can lead to 

enhanced or reduced adhesion. Activated EphB2 receptor in NIH3T3 fibroblasts leads to 

phosphorylation of the GTPase R-Ras, a known regulator of integrin mediated adhesion. 

Phosphorylation of R-Ras led to decreased adhesion (Zou et al., 1999). Focal adhesion 

kinase (FAK) is an important regulator of integrins. EphA2 receptor was shown to 

dephosphorylate FAK, suppressing the adhesion of prostate carcinoma cells in culture 

(Miao et al., 2000). Other studies reported that Eph receptor signalling can lead to 

enhanced adhesion by integrins. In human kidney cells EphB1 can promote integrin 

adhesion via the SH2-SH3 adaptor Nck (Huynh-Do et al., 2002) activating the Nck 
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interacting kinase (NIK) (Becker et al., 2000). In NIH3T3 and HEK293 cells activation 

of EphA8 receptor caused the plasma membrane recruitment of the p110  subunit of 

phosphatidylinositol 3-kinase (PI3K ), promoting integrin mediated adhesion and cell 

migration (Gu and Park, 2001; Gu and Park, 2003). The signalling events described are 

summarized in figure 5.9.

Figure 5.9. Summary of adaptor interactions described in the text. Cytoplasmic tyrosine
kinases like Abl/Arg and Src act downstream of Eph receptors to regulate cytoskeletal dynamics.
The GEF Ephexin shifts the balance of Rho family GTPase activity towards Rho. Signaling via 
PI3K, Nck, FAK and R-Ras modulates cell adhesion by integrins.

42



As mentioned before, Eph receptors also regulate synaptic spine morphology (see section 

about spine formation in the dendritic development chapter). In this case the neuronal cell 

surface proteoglycan syndecan-2, a cell adhesion molecule, plays an important role in the 

process of spine maturation (Ethell and Yamaguchi, 1999). EphB2 activation leads to 

syndecan-2 clustering in cultured hippocampal neurons resulting in the formation of new

spines. This effect depends on the PDZ-domain protein syntenin, a known interactor of 

syndecan-2 and EphB2, as well as tyrosine phosphorylation of syndecan-2 by EphB2 

(Ethell et al., 2001). As mentioned before, filamentous actin is an important structural 

feature of spines.

Stimulation of neurons with soluble ephrinB1-Fc activates the RhoGEF kalirin. A 

pathway involving the Rho family GTPase Rac1 and its downstream effector p21 

activated kinase (PAK) and links EphB receptors to actin dynamics in spines (Penzes et 

al., 2003). EphB2 also interacts with the RhoGEF intersectin, an activator of Cdc42, 

providing another link between EphB receptors and actin assembly in spines (Irie and 

Yamaguchi, 2002). EphB2 receptor can directly modulate the activity of NMDA

receptors. In young immature neurons activated EphB2 caused the co-clustering of 

NMDARs. EphB2 activates the cytoplasmic tyrosine kinase Src, which can 

phosphorylate cytoplasmic tyrosine residues in NMDAR. Phosphorylation enhances the 

ability of NMDAR to flux calcium ions, an important step in synaptic plasticity (Dalva et 

al., 2000; Takasu et al., 2002). 

5.3.3.2 Mechanisms of ephrin ligand reverse signalling

Much less is known about the signalling mechanisms that act downstream of ephrinB 

ligands. The conservation of the five tyrosine residues in all ephrinBs suggests a role in 

downstream signalling similar to that of RTKs (see figure 5.10).
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EphrinB immunoprecipitates from embryonic nervous tissue are tyrosine phosphorylated 

(Brückner et al., 1997). Phosphorylation occurs mainly at tyrosine residues -23, -18 and -

4 (C-terminal residue counted as -1) (Kalo et al., 2001). Stimulation of cells 

heterologously expressing ephrinB ligands with soluble Fc fusions of EphB receptors 

(EphB-Fc) results in their subsequent phosphorylation on tyrosines (Holland et al., 1996; 

Brückner et al., 1997). Ephrin phosphorylation was also induced in these cells by contact 

with EphB expressing cells (Holland et al., 1996). Thus, trans-interactions of ephrinBs

with their cognate receptors, activates signalling pathways, involving tyrosine kinases, in 

the ligand expressing cells. Concomitant overexpression of ephrinB with Src leads to 

ephrinB phosphorylation (Holland et al., 1996). Tyrosine phosphorylation of ephrinBs 

can also be achieved in cis by activation of platelet derived growth factor (PDGF)-

receptors or fibroblast growth factor (FGF)-receptors if they are expressed in the same

cells (Brückner et al., 1997; Chong et al., 2000). Therefore it is likely that ephrinBs can 

serve as components of the signalling pathways downstream of these receptors. So far 

one adaptor molecule has been identified to bind to ephrinB ligands in a phosphotyrosine 

dependent way: The SH2- and SH3 domain containing

Nck homologue Grb4 (Nck ). Prolonged stimulation of cells heterologously expressing 

ephrinB molecules with EphB-Fc results in a reduction of F-actin stress fibers and the

disassembly of focal adhesions, leading to the detachment of the cells from the 

substratum. This effect is accompanied by FAK phosphorylation and delivery of the focal 

adhesion protein paxillin from the plasma membrane, suggesting a the regulated 

disassembly of focal adhesion sites. The rearrangements in the actin cytoskeleton are 

abolished by co-overexpression of a dominant negative form of Grb4. Grb4 binds to a 

variety of other signalling molecules including Abl interacting protein-1 (Abi-1), axin, a 

scaffold protein in the Wnt signalling pathway and the c-Cbl associated protein CAP 

(Cowan and Henkemeyer, 2001). EhrinB ligands interact with several PDZ domain

proteins (Torres et al., 1998; Brückne et al., 1999; Lin et al., 1999; Lu et al., 2001). Some

of them like GRIP1, GRIP2 and syntenin are adaptor proteins containing only PDZ-

domains. Others are linked to functional domains like the protein interacting with C-

kinase (PICK1) or the tyrosine phosphatase PTP-BL. Interestingly the PDZ binding motif 

in ephrinBs (YKV) contains one tyrosine phosphorylation site. In vitro peptide binding 
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studies revealed that phosphorylation might influence PDZ binding (Lin et al., 1999). Not 

so much is known about ephrinB-PDZ interaction. Both, B- and A-type ephrins localize 

to lipid rafts. Rafts are small subdomains in cell membranes rich in cholesterol and 

sphingolipids. Rafts serve as signalling platforms harboring a variety of membrane

anchored signalling molecules (Simons and Toomre, 2000). EphrinB ligands recruit the 

PDZ domain containing proteins GRIP1 and -2 to lipid rafts (Brückner et al., 1999). The

GPI anchor targets ephrinA ligands to rafts. EphrinA molecules engaged with their 

cognate EphA receptor activate the Src family kinase (SFK) Fyn, which is also targeted

to rafts via its myristoyl moiety. Associations via rafts are thought to provide a 

mechanism as to how ephrinA ligands are able to transduce signals despite the fact that

they lack a cytoplasmic domain. EphrinA reverse signalling regulates integrin mediated

adhesion (Davy et al., 1999; Davy and Robbins, 2000; Huai and Drescher, 2001). These 

data together with recent findings in our lab (Palmer A. and Zimmer M.) lead to the 

proposal of a ‘switch model’ for ephrinB reverse signaling. EphrinB engagement with its 

EphB receptors induces the rapid co-clustering of ephrinB and SFKs, causing SFK 

activation and ephrinB phosphorylation. Both active SFKs and phosphorylated ephrinB

activate signaling pathways, either independently or in concert with each other, involving 

phosphotyrosine/SH2 interactions. With delayed kinetics, ephrinB clusters recruit PTP-

BL, which dephosphorylates

both Src and ephrinB, effectively turning off signaling by ephrinB and Src via 

phosphotyrosine. The recruitment of PTP-BL to ephrinB may not terminate ephrinB 

signaling completely, but rather shifts signaling from phosphotyrosine-dependent to 

PDZ-domain-dependent signaling. 

.
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Figure 5.10. Ephrin reverse signaling. EphrinB ligands signal via PDZ-RGS to inhibit SDF-
1/CXCR4 mediated cell migration. Upon receptor binding ephrinB ligands become tyrosine
phosphorylated on their cytoplasmic domain. This provides docking sites for the SH2 adaptor
Grb4. Grb4 signals via CAP to the cytoskeleton. The focal adhesion proteins FAK and Paxillin 
become tyrosine phosphorylated downstream of ephrinB ligands. Integrin adhesion can be 
modulated by both ephrinB and ephrinA reverse signaling. EphA receptor binding to ephrinA 
ligands leads to activation of Fyn kinase. The mechanism of Fyn activation may rely on 
interactions within rafts.

5.3.4 Effects of Eph-ephrin signaling 

As previously mentioned, Eph-ephrin signaling is at the basis of several crucial 

developmental and adult processes, axon pathfinding and topographic mapping, synapse 

morphology and synapse plasticity, but also cell migration, segmental patterning, 

angiogenesis and tumorigenesis. The influence of Eph-ephrin activation on cell behaviour

differs according to the cell type but can generally be attributed to repulsion of cells or 
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cellular processes, such neuronal growth cones. In a few cases Eph-ephrin activation 

leads to increased adhesion/attraction. In molecular terms many of the signalling 

pathways downstream of Eph and ephrins converge to regulate the cytoskeleton.

Eph-ephrin mediated cellular effects can be classified in three different categories: those 

that require forward signalling, those that require reverse signalling and those that require 

both. Some well studied examples of Eph-ephrin signalling in the development of the 

nervous system will be given below.

 5.3.4.1 Forward and reverse signaling during axon guidance 

Developing neurons must extend their axonal projections in order to reach their specific 

innervation territories. Neurons of many sensory organs, like the visual system, project in 

a topographic manner. For example neighbouring neurons within the vertebrate retina 

(Retinal ganglion cells, RGCs) project to neighbouring regions in the mammalian

superior colliculus (SC) or the avian tectum. Their relative positions in the retina with 

respect to the temporal-nasal axis determine their target areas in the tectum/SC with 

respect to the anterior-posterior axis. Ephs/ephrins were first described as molecules

involved in retinotopic map formation during development (O'Leary and Wilkinson,

1999). EphrinA ligands are expressed in an anterior (low) to posterior (high) gradient in 

the tectum/SC. EphA receptors are expressed in a nasal (low) to temporal (high) gradient 

in the retina (see figure 5.11).

47



Figure 5.11. Simplified model of retinotopic mapping by EphA receptors and ephrinA 
ligands. (A) EphA receptors are expressed on growth cones of retinal ganglion cell (RGC) axons. 
EphrinA ligands are expressed on tectal or superior collicular cells. They are repellents that 
transmit growth inhibitory signals into the EphA receptor expressing cell. (B) EphA3 is expressed
in a nasal (N) to temporal (T) gradient in the retina. EphrinA ligands are expressed in an anterior
(A) to posterior (P) gradient in the tectum. RGCs located to nasal positions in the retina express 
lower levels of EphA3. High levels of ephrinA ligands are required to stop their growth. The
result is that their axons project into relative posterior regions in the tectum. Conversely,
temporally located RGCs expressing high levels of EphA3 receptor stop growing already in 
response to low levels of ephrinA ligands in the anterior tectum.

EphrinA ligands represent repellents for axons expressing high amounts of EphA 

receptors. In a simplified model axons from temporal neurons expressing high EphA 

receptor, respond already to low levels of ephrinA ligand in the anterior tectum. 

Conversely, axons from nasal neurons expressing low levels of EphA receptors require 
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high levels of ephrinA ligand to respond, thus they can  extend to more  posterior 

positions  within the tectum/SC. (Wilkinson,

2000; McLaughlin et al., 2003). Not only ephrins but also the Eph receptors can 

represent guidance cues for axons. EphB2-/- mice have a defect in the posterior part of the 

anterior commissure (ACp). In mammals, axons originating from the temporal sides of 

the cortex normally fasciculate and cross the midline in the dorsal forebrain to find their 

targets on the contra-lateral sides of the cortex. In EphB2-/- mice these axons fail in 

crossing the midline and instead misproject into the ventral forebrain. Interestingly, this 

phenotype is rescued in genetically engineered mice expressing a chimeric EphB2 

receptor which has its cytoplasmic domain replaced by lacZ (EphB2-lacZ). Thus, the N-

terminal domain of EphB2 is sufficient for correct guidance. EphB2 is not expressed by 

ACp axons but in the tissue of the ventral forebrain. Conversely, ephrinB ligands are 

expressed on the axons (Henkemeyer et al., 1996; Orioli et al., 1996). These data 

suggested that ACp axons sense a repellent represented by the extracellular domain of 

EphB2 in the ventral forebrain and ephrinB ligands act as receptor-like molecules

transducing signals in reverse via their cytoplasmic domains. Eph/ephrins are crucial for 

the formation of many other axonal projections. In some cases reverse signalling, and in 

other cases classical Eph receptor forward signalling is required (Palmer and Klein, 2003).

5.3.4.2 Eph/ephrins and synaptic plasticity 

Several Eph receptors and ephrin ligands have been shown to be expressed at neuronal 

synapses (Gerlai, 2001; Murai and Pasquale, 2002). In many CNS synapses the 

postsynaptic sites are formed by spines. The morphology of spines is thought to be 

important for synaptic function (Hering and Sheng, 2001; Bonhoeffer and Yuste, 2002). 

Eph receptor signalling has been shown to be involved in synaptic spine formation and 

morphology (see above). 
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Activity dependent synaptic plasticity often requires N-methyl-D-aspartate (NMDA)-type 

glutamate receptors. NMDAR dependent Ca2+ influx and associated signalling pathways

orchestrate synapse formation and plasticity (Helmchen, 2002). In young hippocampal

neuron cultures EphB2 receptor activation leads to interaction with and clustering of 

NMDAR. EphB receptor signalling can enhance NMDAR dependent Ca2+ influx leading 

to increased CREB (cAMP Response Element Binding Protein)  dependent  transcription, 

a process important for

synapse plasticity, learning and memory. In the same system EphB receptor stimulation

elicits the formation of new synapses. These findings suggest that ephrinB ligands in 

presynaptic membranes induce the maturation of glutamatergic synapses by NMDAR 

aggregation and regulating NMDAR function (Dalva et al., 2000; Takasu et al., 2002). 

The EphB2-NMDAR interaction has been confirmed to occur in adult mice and targeted 

inactivation of the mouse EphB2 gene in the hippocampus interfered with spatial learning

and long-term potentiation of synapses of the Schaffer collateral pathway. Interestingly, 

expression patterns and genetic studies suggested that ephrinB ligand reverse signalling is 

important for these processes (Grunwald et al., 2001). Recent data support a model where 

ephrinB ligands signal in postsynaptic membranes via the PDZ domain protein GRIP to 

glutamate receptors of the AMPA type, regulating their surface distribution at synapses

(Grunwald et. al., 2003). NMDAR independent LTP occurs at hippocampal Mossy fiber 

synapses. Electrophysiological studies suggested that postsynaptic PDZ interactions link 

EphB receptor forward signalling to non-NMDA type glutamate receptor functions. 

Presynaptic ephrinB reverse signalling in this case may regulate long lasting presynaptic 

changes (Contractor et al., 2002).
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5.4 cDNA Microarrays

The cDNA Microarray technology, with all its variants, was developed a few years ago 

and it immediately showed a high experimental potential as it allows to take gene 

expression snapshots of a system under specific conditions. The Microarray technique is 

a mostly automated procedure that uses robotics and bioinformatics, and allows to 

simultaneously detect the gene expression profile of thousand of genes. The version used 

in this study consisted of a glass support on which up to 15’000 genes were arranged in 

an organized order (array). The source of the genes spotted can vary according to the 

system used (in our case a mouse cDNAs developmental library). The spotted glass 

support is the constant in a microarray experiment. Using the principle of base pairing, 

the slide is hybridized to complementary sequences coming from a reference and a test, 

the difference between the two being the experimental condition to be tested. Total 

mRNA is extracted from the reference and the test, then reverse transcribed using

oligonucleotide labelled with two different fluorophors. The freshly synthesized 

fluorescent cDNAs are then pooled and hybridized to the microarray.  After the 

hybridization, each spot on the slide will contain a certain ratio of the two fluorescent 

signals directly proportional to the abundances of that specific gene in the test conditions 

and in the reference. If, for example, the fluorophor used for labelling the test cDNA

prevails, the original amount of mRNA for the specific microarray spot was more

abundant in the test than in the reference, that is to say, compared to the reference, once a 

condition X is applied to the system, the gene is induced. The output of the resulting

fluorescence ratio between test and reference is then measured by a fluorescence scanner. 

The ratios for each hybridization spot are then automatically processed by a computer

which generates a list of expression ratios for all the genes on the chip (see figure 5.12)

(Ekins and Chu, 1999). 
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Figure 5.12. Schematic drawing illustrating the Microarray technique. Total mRNA from the
experimental test and the reference are reverse transcribed incorporating different fluorescently-
tagged nucleotides.  The fluorescent probes are then hybridized to the microarray chips 
containing an array of different genes. Fluorescent light is then shone on the chip and emission
fluorescence for each spot is measured by a fluorescence scanner. Computer analysis follows to
determine the ratios between the two different fluorescent dyes in order to assess if the signal
relative to a precise spot is more abundant in the test or in the reference condition. (Modified
from NCVS: http://www.ncvs.org/ncvs/groups/cmb/mrna.html)

The experimental information about Eph-ephrin signalling pathway helps to explain the 

basic cellular events that bring about Eph-ephrin biological function and the resulting

macroscopic developmental processes driven by them. As mentioned before, most of the 

crucial Eph-ephrin responses, repulsive or attractive, from axonal guidance to changes in 

cell motility, are mediated by changes in cytoskeleton dynamics leading to a local 

rearrangement of the cytoskeleton and of cell shape. The most widely studied cellular 

responses mediated by Eph-ephrin signalling are local cues, involving the two 
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juxtaposing surfaces during cell to cell interaction and then leading to nearby local 

rearrangements i.e. via the influence Rho GTPases have on actin dynamics. Little is still 

known about the extent to which Eph-ephrin signalling  also reaches  the nucleus and 

induces  the activation  or the repression  of  specific 

genes that might be involved in triggering later events and therefore later responses, on a 

broader cellular level and not so much is known about the extracellular cues directing 

dendritic growth, development and complexity and about the eventual nuclear events

downstream. We have shown that Catenin, a nervous system specific, developmental

protein is up-regulated upon activation of Eph-ephrin signaling in a microarray screening 

(see below). Published information, structural features and patterns of expression 

suggested a role of Catenin in dendritic morphogenesis downstream of Eph-ephrin 

signalling.

5. 5 New candidate molecules for dendritic development: Catenin

The gene for Catenin was first cloned from a human fetal brain library using

oligonucleotides deduced from a plakophilin 1 related expressed sequence tag (EST)

(Paffenholz and Franke, 1997) and named neural plakophilin-related arm-repeat protein 

(NPRAP) /Neurojungin. Independently, the product of the same gene was discovered in a 

yeast two-hybrid assay as an interactor with the loop region of presenilin 1 (PS1) (Zhou 

et al., 1997). PS1 harbors numerous autosomal dominant mutations that cause an early 

onset of familial Alzheimer disease (Cruts and Van Broeckhoven, 1998). It functions

early in development during somitogenesis (Wong et al., 1997) and formation of the 

neocortex (Shen et al., 1997). Like the mammalian gene Catenin and its Drosophila 

orthologue Armadillo, Catenin is a member of the Armadillo repeat family,

characterized by a 42-amino acid imperfect repeat unit (Arm) involved in protein-protein 

interactions. Among members of the Arm repeat family, the number of repeated units 

varies, as well as most of the -NH2 and COOH- terminal sequences flanking the repeats. 
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Catenin belongs to a subfamily with 10 Arm repeats whereas Catenin has 12 repeats 

(see figure 5.13). More specifically, the subfamily to which Catenin belongs is termed

p120ctn subfamily, and also includes other proteins containing 10 Arm repeats (see

figure 5.13). p120 is the founding member of the subfamily (Peifer  et al., 1994), other 

members of the subfamily are p0071 and the plakophilins, both components of the

desmosome (Kapprell et al., 1988; Hatzfeld and Nachtsheim 1996), and ARVCF, a

protein with unknown function (Sirotkin et al., 1997). In the subfamily, Catenin has

greatest similarity with the Arm repeats of p0071 (69.3% identity), and is somewhat less

related to p120ctn (48% identity). 

5.5.1 Molecular structure

The gene for human Catenin encodes a 1,224-amino acid product with a predicted 

molecular weight of 132,544 Dalton and a pI of 7.94 (Lu et al., 1999). Mouse Catenin

encodes a 1,247-amino acid protein with a 25-amino acid insert at position 879 in the 8th

Arm repeat. Mouse Catenin is highly related with 95% identity and 98% similarity to 

the human protein (Paffenholz and Franke, 1997). 

Apart from the 10 Arm repeats that occupy most of the central part of the molecule

(amino acids 551 to 971)  a significant portion of the molecular mass still lies NH2- and 

COOH- terminal to those repeats and it displays several interesting structural features

(see figure 5.13):

Three potential SH3 binding motif with the sequence XPXXPP within a 

region encompassing amino acids 32 and 440

A proline rich motif (aa 216-226), absent in p120ctn

Two Abl tyrosine phosphorylation consensus sites (Y289 and Y429).

Amino acids 811-817 represent a lysine rich motif that could represent a 

potential nuclear localization signal (NLS)

A poly-proline tract, also not present in p120ctn 

Numerous (17) potential phospho-tyrosines between aa 975 and 1230
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A DSWV sequence at the very carboxyl terminus that binds to PDZ motif 

containing proteins (Ide et al., 1999) 

Figure 5.13. Catenin structure in comparison with related proteins Catenin and
p-120. Catenin is a 1,255 amino acid protein. A significant portion of the molecule is 
constituted by ten Armadillo (Arm) repeats in the central part (yellow circles). Besides, other
domains of interest are: 3 Src homology 3 binding motifs (SH3, green boxes), a nuclear 
localization signal (NLS) and a PDZ binding motif (PDZ, red box) at the very C-terminus.
Additionally,  two  potential  Abl tyrosine  phosphorylation consensus sites are present at 
positions 289 and 429 and a potential phospho-tyrosine rich area (17 residues) stretches from
position 975 to 1230. Catenin, a 782 aa protein, contains 12 Arm repeats, a NLS included in
the sixth Arm repeat and two phosphotyrosines at positions 86 and 654. p-120 contains 10 Arm 
repeats and two NLS. The COOH terminus of the molecule includes a long stretch of potentially
phosphorylatable tyrosines. Numerous splice variants exist. 

5.5.2 Expression pattern

Catenin is mostly a nervous system specific protein even though it has been recently 

found to be present in pancreatic tissue and the outer limiting zone of the retina. It is also

expressed in glial cells and ependymal stem cells as well as in the P19 embryonic

carcinoma stem cells and Pheochromocytoma PC12 cells. (Kim et al., 2002) 
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Catenin appears very early in the development of the nervous system at about the time

of neurulation; Catenin mRNA is detectable in the mouse embryo by embryonic day 8 

(E8), its level increases through post natal day 7 (P7) but it appears to decrease in the 

adult brain. 

More specifically, at E10 Catenin is already detectable along the neuraxis from the 

telencephalon to the rombencephalon but not in the developing spinal cord. By E12 it is 

strongly expressed in the telencephalic vescicle with slightly lower levels in the 

diencephalon and mesencephalon. Expression is also detectable in the rhombencephalic

lip which includes the myelencephalon (future pons) and metencephalon (future 

cerebellum), the dorsal root ganglia and the developing spinal cord  (Ho et al., 2000). 

(See figure 5.14)

Figure 5.14. Whole mount in situ hybridization with an anti-sense -catenin probe in 
embryonic days  E10 and E12 embryos. Dorsal (A, B) and sagittal (C) views of E10 (left; A 
and C) and E12 (right; A and C) mice are shown. At E11 (A and C), mRNA expression is 
detectable in the mesencephalon (Mes) and rhombencephalon (Rh) but not in the developing 
spinal cord. By E12, mRNA expression is intense in the telencephalon, mesencephalon,
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rhombencephalon and the developing spinal cord (Sc; A). The sagittal view of the E12 embryo
(right; C) illustrates the intense labeling of the telencephalic vesicle (Te). For abbreviations, see
list. Scale bar 0.6 mm (from Ho et al., 2000). 

At E11 the undifferentiated ventricular neuroepithelium of the cortex is the region that 

shows the strongest -Catenin expression (other regions that show high expression of -

Catenin between E11 and E18 are the hippocampus, the pons, the ventral portion of the

rostral medulla and the external granular level of the cerebellum).

An interesting event happens in the neuroepithelium as embryonic development

progresses further. Between E11 and E18 a gradual decline in proliferative activity leads 

to a decrease in the thickness of the neuroepithelium and to a parallel enlargement of the 

postmytotic marginal zone to form the cortical plate (Bayer and Altman, 1991; Berry and 

Rogers, 1965; Caviness et al., 1982; Leavitt and Rakic, 1982). At E15 -Catenin

expression is still ubiquitous both in proliferative and postmytotic regions and both the 

neuroepithelium and the emerging cortical plate express high levels of the protein. 

However, in the intermediate zone, consisting of migrating neurons and elongating 

axonal processes -Catenin is less expressed. By E18 when the majority of the neurons 

have differentiated and axonogenesis and elaboration of dendrites is under way, -

Catenin shows a peculiar and defined laminar expression pattern corresponding exactly to 

the spatial segregation of proliferating, migrating and arborizing neurons. The thinning 

neuroepithelium still shows a strong expression of -Catenin, whereas the intermediate

zone, through which cells are migrating, now appears almost devoid of -Catenin. The 

thickening cortical plate though, again shows a steadily increasing -Catenin expression. 

At the cellular level, -Catenin’s distribution reflects the changes that migrating and 

differentiating neurons undergo. In the dividing cells forming the neuroepithelium,

Catenin shows a honeycomb distribution pattern typical of adherens junction 

molecules. This is consistent with the fact that cells forming the neuroepithelium are 

tightly packed and have dense adherens junction complexes. The thickening cortical plate

on the other hand shows a completely different Catenin pattern: in layer I the molecule

is specifically distributed to the dendrites of differentiating pyramidal neurons and not in 

the cell bodies. The intermediate zone and its migrating cells do not express Catenin.
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The molecule undergoes a dynamic change in its cellular distribution and expression 

levels, from the cell junction where it contributes to the structure and cellular adhesion of 

the neuroepithelium (as well as other areas of the CNS where cells are still 

undifferentiated), to the differentiating dendrites of postmitotic neurons, most likely 

playing a role in the correct development of dendritic arbors. Migrating neurons in the 

intermediate zone require less adhesive properties, and that stop expressing the molecule

(Ho et al., 2000) (see figure 5.15).

Figure 5.15. Differential expression of -Catenin in the mouse cerebral cortex during 
development. -Catenin expression is indicated in dark green. By embryonic stage 15, the
cerebral wall is compartmentalized into a ventricular zone (VZ), intermediate zone (IZ), and 
cortical plate (CP). By this developmental stage, an otherwise uniform -Catenin expression 
pattern undergoes a dramatic change and shifts from a cell junction distribution in proliferating
cells in the VZ to the arborizing dendrites of differentiating neurons in the CP. Migrating neurons
in the intermediate zone (IZ) cease to express Catenin. Growing axons do not express -
Catenin either.
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Only a few areas of the nervous system still show some Catenin expression in the adult. 

Among them the cerebellum where Catenin appears to specifically distribute to 

dendrites (Ho et al., 2000). (See figure 5.16)

Figure 5.16. Microphotograph of -catenin immunolabeling of coronal sections of adult 
cerebellum. Magnification image of adult mouse cerebellum. Catenin labeling is restricted to 
dendrites. Unlabeled neuronal somata appear as halos. Scale bar = 100  (from Ho et al., 2000) 

5.5.3 The biological functions of Catenin

5.5.3.1 Catenin in cell junctions 

Adherens junctions, typical of epithelia, are tight junction points between neighboring 

cells, responsible for the proper organization of tissues and crucial for the mobility

properties of their cells. (See figure 5.17). The adherens junction complex between two 

neighboring cells is composed of three compartments: the intracellular compartments of 
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the first and the second and the common extracellular space in-between. Important

members of the adherens junction complex  are  Cadherins,  which  are  single 

membrane-spanning  glycoproteins  that  directly anchor the cells via Ca2+-dependent

homophilic interactions of their extracellular domains and intracellularly connect with the

cytoplasmic complexes involved in the junction. The classical Cadherins, which include

E-, N-, and P-cadherin (Marrs and Nelson, 1996), have a highly conserved cytoplasmic

domain to which a set of associated proteins bind (Nagafuchi and Takeichi, 1988; Ozawa

et al., 1989). Together they form a cytoplasmic plaque complex which links cadherins to 

the actin cytoskeleton (Takeichi, 1991, 1995; Yap et al., 1997),  therefore adhesive

activity of the junctions derives from both the cadherin ectodomain which has a weak

adhesive activity of its own (Brieher et al., 1996) and the cytoplasmic complexes which 

significantly strengthen the homophilic interaction.

Figure 5.17. Scheme of an adherens junction.
Cadherins from adjacent cells maintain homophilic Ca2+-dependent interactions through their
extracellular domains. Their intracellular domain forms a cytoplasmic plaque with the catenins

and p120 catenin. The latter two bind a juxtamembrane portion of Cadherins whereas 
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the other catenins interact with the COOH- terminus of the molecule. The cytoplasmic plaque 
serves to anchor cadherins to the cytoskeleton by directly binding to actin filaments. 

The most important members of the cytoplasmic plaque complex are the Catenins. They 

bind to Cadherins via their highly conserved cytoplasmic domain; Catenin binds to 

Cadherins, Catenin (which also directly interacts with actin) in turn binds to

Catenin and this secures the Cadherins-Catenin complex to actin filaments (Aberle et 

al., 1994; Hoschuetzky et al., 1994; Funayama et al.,  1995; Jou et al., 1995; Rimm et al., 

1995). Other members of the Catenin family which bind to Cadherins are: 

Catenin/Plakoglobin (closely related to Catenin), p120ctn and Catenin (Lu et al., 

1999). P120ctn and Catenin, though, bind to a juxtamembrane region of Cadherins in 

contrast with all the other catenins that bind to a more distal region of the cytoplasmic tail 

of the Cadherins (Ozawa and Kemler, 1998; Yap et al., 1998). As mentioned before, 

Catenin is strongly expressed in the highly proliferative neuroepithelium of the cortical

ventricular zone in the developing mouse brain from E10 to E18. In early stages during 

neurogenesis the intracellular distribution of Catenin is typical of cell junction proteins, 

that is, prominent along the lateral surface and the apical end of neuroepithelial cells. 

Here, Catenin was shown to co localize with  Catenin and N-Cadherin. In cell lines 

Catenin was shown to interact with E-Cadherin. Like its close relative p120, Catenin

binds to a 41 aa  juxtamembrane region of Cadherins, which contains a DEGGGE 

sequence conserved among mouse E-Cadherin, OB-Cadherin, N-Cadherin, Xenopus C-

Cadherin and Drosophila E-Cadherin  (Lu et al., 1999). The strength and the number of 

cell junctions are crucial in regulating important developmental processes like cell 

motility and migration, and therefore it is conceivable that the interactions between the 

various players of the plaque complex should also be finely regulated: a shift in Cadherin 

subtypes or a change in the composition of the protein pool in the cell junction complex,

can cause, for instance, a weakening or a strengthening of cell-cell interaction, 

influencing the motility of the cells. For example, during neurulation, some ectodermal

cells change cadherin expression from E- to N-cadherin; this shift allows neural precursor 

cells to segregate from other cells derived from the ectoderm. Subsequently, neural crest 
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cells, which down-regulate N-Cadherin expression, migrate from the dorsal ectoderm to 

specific locations in different germ layers (Hatta et al., 1987)

It has been shown that in the case of E-Cadherin, the juxtamembrane region negatively 

regulates adhesion by preventing lateral dimerization of the extracellular domain (Ozawa 

and Kemler, 1998), therefore molecules which bind to this site, such as Catenin may

be important regulators of cell adhesion. 

Transient expression of Catenin in MDCK epithelial cells further enhances the typical

cell scattering response upon stimulation with hepatocyte growth factor (HGF).

Interestingly, during this process Catenin changes its intracellular distribution from the 

cell junctions to the cytoplasm (Lu et al. 1999). 

In the tightly packed epithelial cell layer of the cortical ventricular zone, the down 

regulation of Catenin may weaken cell to cell contacts, loosening the adherens

junctions and thereby allowing cells to migrate to form the cortical plate. Then, upon 

reaching the proper position, neurons could potentially re-express Catenin to establish

new cellular contacts and secure new tissue contexts to the differentiating neurons. 

5.5.3.2 Catenin in dendrites and synapses

At later embryonic stages, and in post natal and adult brain, -Catenin shifts to a typical

dendritic distribution as neurons differentiate and extend their dendritic arbor where it 

could be involved in the correct development of dendritic processes.

Recent findings show that increased cellular levels of other members of the 

Cadherin/Catenin complex, namely N-cadherin, N-Catenin and Catenin all enhance

dendritic arborization in rat hippocampal neurons, in the latter case independently of the 

Wnt/ Catenin signaling pathway. Conversely, sequestering of Catenin decreases

dendritic arborization (Yu and Malenka ,2003 ). 

-Catenin over-expression in cultured hippocampal neurons alters cell morphology,

causing a massive overgrowth mostly affecting primary dendrites and branching in 

general. In addition, overexpression induced filopodia-like processes devoid of 
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microtubules but highly enriched in actin filaments. This will be later on defined as 

Catenin “complexing” phenotype (Kim et al., 2002; Martinez et al., 2003).

Interestingly NIH3T3 cells that transiently express -Catenin assume a typical “dendritic” 

phenotype, with extensive formation of heavily branched dendrite-like structures and 

numerous filopodia (Kim et al., 2002).

A similar effect is observed in PC12 cells in a typical assay involving their differentiation 

upon stimulation with NGF. PC12 cells, normally round, undergo major morphological

changes upon stimulation with NGF forming a complex network of dendrite-like 

processes. Transient expression of -Catenin further accentuates these stimulatory effects

(Lu et al., 2002). In all cases, a massive generation of actin filaments was observed to be 

responsible for the morphological alterations.

Another interesting and most likely related role that the Cadherin/Catenin complex may

play is in the formation, regulation and maintenance of contacts between pre- and 

postsynaptic membranes at synaptic junctions which, after all, represent a highly

specialized type of cellular junction. Homophilic cadherin interactions between pre-and

post-synaptic cells, reinforced by the Catenin complex and the underlying actin 

cytoskeleton may play a role in the stabilization of synaptic junctions. It has been shown 

that Cadherins and Catenins may play important roles in synapse formation: -Catenin

and Catenin co-localize with synaptophysin, a presynaptic marker (Uchida et al. 1996; 

Jones et al., 2002). N-Cadherin and Catenin are present in axons and dendrites before 

synapse formation and then cluster at developing synapses in hippocampal neurons 

(Benson and Tanaka, 1998; Yu and Malenka, 2003). Catenin, like Cadherins and other 

Catenins, is enriched in synaptosomes but it has been found to localize mainly to the post 

synaptic compartment of the synapse.

The postsynaptic density consists of a conglomeration of membrane bound scaffolding 

proteins, receptors and cytoskeletal elements that play a crucial role in the maintenance of 

synaptic structure, in synaptic transmission and synaptic plasticity and Catenin

interacts with several post synaptic density components like PSD-95 (post synaptic 

density-95), mGluR1  (type I metabotropic glutamate receptor) and NR2A (ionotropic 

NMDA receptor) (Jones et al., 2002), S-SCAM (synaptic scaffolding molecule) via its 

PDZ binding domain (Ide et al., 1999), suggesting an important role for the molecule.
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5.5.3.3 Catenin and actin cytoskeleton dynamics 

Actin mediated changes in cell shape, are essential for a wide range of cellular activities,

from cell motility to dendritogenesis to axon guidance.

The actin binding properties of some Catenins together with their strategic proximity to

the cellular membrane and its molecular machinery confer to these molecules important

roles in the regulation of cytoskeletal dynamics in response to extracellular stimuli. All 

known phenotypes of Catenin, from the effect on cell junctions in MCDK cells to the 

effect in dendritic organization in hippocampal neurons are very likely to be exerted via a

–Catenin mediated change in cytoskeletal processes.

Catenin has been shown to physically interact with actin in cell lines and cultured 

hippocampal neurons where they co-localize in growth cones (Lu et al., 2002). 

Catenin also interacts with cortactin. Cortactin is a linker protein in the actin

cytoskeleton: as it cross-links actin filaments in a tyrosine phosphorylation dependent 

manner (Weed and Parson 1993, Huang et al., 1997). Catenin and cortactin form a 

complex in which a COOH region just downstream of the last Arm repeat of -Catenin

appears to be crucial (Martinez et al., 2003). In rat hippocampal neurons and in PC12 the 

complex is responsible for primary process extension and its absence (by deleting -

Catenin and Cortactin interaction domains) has negative effects on the ability of the cells 

to generate processes and branches. The -Catenin and cortactin complex recruits the Arp 

2/3 complex through which the actin dependent-outgrowth process is most likely driven. 

The Arp 2/3 complex comprises 7 polypeptides and regulates both the formation and 

structure of actin networks directly. By increasing the nucleation rate, the Arp2/3

complex generates the large number of new filaments needed for actin network formation

and helps create the branched network by cross-linking the slow growing pointed end of 

one filament to the side of another (May, 2001; Weaver et al., 2001). The Arp 2/3 

complex-mediated cross-links are relatively unstable and cortactin and -Catenin may
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stabilize the Arp 2/3 complex-mediated branches. This may serve to localize protrusions

to sites of neuronal activity in light of the interaction of both -Catenin and Cortactin 

with postsynaptic scaffolding proteins. The interaction between Catenin, Cortactin and 

in turn Arp 2/3 is regulated by the state of phosphorylation of Catenin and Cortactin. 

The application H2O2 and orthovanadate triggers Catenin phosphorylation, via a non 

identified Src kinase family member and causes the dissociation of the complex and the 

inhibition of processes outgrowth (Martinez et al., 2003). 

Process elongation and process branching are most likely regulated in a different fashion, 

the modulation of neurite complexity being a result of the balance between the two. As 

mentioned before, Rho A has been shown to be important in dendritic branching. Its

inhibition, in particular, promotes dendritic branching whereas its over-expression or the 

expression of dominant active versions has strong inhibitory effects. The generation of 

new primary processes and their elongations are, on the other hand, mostly unaffected 

(Nakayama et al., 2000 and Neumann et al., 2002). Catenin appears to be connected 

with both process elongation and process branching as its over-expression enhances (or 

mimics) the effects of Rho A mutants (or Rho A inhibitors) through a possible -Catenin

Rho A inhibitory activity. This still unidentified mechanism may be similar to that of its 

close relative p120ctn (Anastasiadis et al., 2000 and Noren et al., 2000). On the other 

hand, Catenin mutants unable to form a complex with cortactin show a decrease in the 

number of primary dendrites and a defect in their elongation whereas the Rho A-

dependent branching activity is partially retained (Martinez et al., 2003) (See figure 5.18)
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Figure 5.18. Catenin and primary process extension versus branching. Two different
pathways regulate the effects of Catenin on process elaboration. Unphosphorylated Catenin
forms a complex with unphosphorylated Cortactin; the complex then recruits Arp2/3 to promote
new generation of actin filaments. Not yet identified extracellular signals can lead to
phosphorylation of the -Catenin–Cortactin complex causing the disruption of their interaction 
and the complex with Arp2/3 arresting dendrite elongation. Rho inhibition can be amplified by
phosphorylated -Catenin, which leads to branching (modified from Martinez et al., 2003).

-Catenin has also been shown to bind the cytoplasmic non receptor tyrosine kinase c-

Abl (the cellular homologue of Abelson murine leukemia virus) (Lu et al., 2002). The 

presence of nuclear and cytoplasmic pools of Abl and its actin-binding capability 

indicates a role of the molecule in the regulation of cell cycle, cytoskeletal organization

(Van Etten, 1999) and in neuronal morphogenesis (Koleske et al., 1998 and Zuckerberg 

et al., 2000). Abl interacts with several different protein families, including

catenin/cadherin cell adhesion complexes, Trio family GFP exchange factors (GEFs) and 
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Ena/VASP (vasodilator-stimulated phosphor-protein) family actin regulatory proteins 

(Lanier and Gertler, 2000). 

Catenin has strong consensus sites for Abl binding and Abl-induced tyrosine 

phosphorylation in the N terminal part of the molecule. The two proteins form a stable

complex in neurons and they co localize with F-actin filaments in the growth cone.

Furthermore MDCK cells irradiated with UV light (which was shown to activate c-Abl

kinase activity) shows a strong Catenin phosphorylation. The use of specific c-Abl 

kinase inhibitors enhances the effects of -Catenin in PC12 differentiation upon treatment

with NGF (Lu et al., 2002). The alteration of MDCK cell shape in response to HGF (Lu 

et al., 1999) is also more pronounced in the presence of c-Abl kinase inhibitors. Both 

events are mediated by a reorganization of the actin cytoskeleton, consistently with the 

hypothesis that the unphosphorylated -Catenin is the one responsible for actin

polymerization promoting/regulating activity.
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6. RESULTS 

68



6.1 Identification of novel Eph-ephrin downstream effectors using a
Microarray screening: Catenin

The dynamics of Eph-ephrin signaling have been extensively studied together with the 

cellular effects they bring about and the developmental processes they govern. In order to 

assess the extent to which Eph-ephrin signaling reaches the nucleus and affects gene 

expression and in order to identify new genes whose activation or repression can 

participate in mediating Eph-ephrin response, a microarray screening was carried out on 

mouse cortical neurons cultures. High density glass slides containing the National 

Institute of Aging (NIA) 15,000 mouse embryonic clone set (Tanaka et al., 1997) were 

produced in house, in collaboration between T. Iwata and G. Panté, using the facilities

available at EMBL (Heidelberg). All clones were first amplified by PCR using a common

set of primers flanking the insert. All PCR products, free of plasmid sequences, were then 

checked on agarose gel. To improve the quality of the cDNAs to be printed later on the 

glass support, only products showing a clear band were selected while those that showed 

double, multiple or no bands were discarded. Before glass spotting, some PCR products

were randomly selected and further checked at the sequence level in order to confirm the 

identity assigned in the NIA sequence database to the specific clone so that possible

errors in handling the clone collection could be ruled out. The glass slides containing the 

cDNA collection were hybridized to fluorescent probes obtained by reverse transcription 

of cellular mRNA from control and differentially stimulated test neuronal cultures (see 

figure 6.1).

Two screenings were performed, the first using 3DIV E15 mouse cortical neurons 

stimulated for 1 hour with either Fc as a control, or ephrinB2-Fc as test; the second 

screening was performed using 1DIV E15 mouse cortical neurons stimulated with Fc, as 

a control and with either ephrinB2-Fc or Eph-B1-Fc for 4 hours as test. The difference

between the two screenings was the age of the neuronal cultures used, older and 

morphologically more differentiated neurons in the first case and younger, less 

differentiated neurons in the second; with the aim of evaluating changes in gene 

activation according to the developmental stage. EphrinB2 and EphB1 were arbitrarily 

chosen to stimulate the cortical  neuron  cultures  because cortical  neurons
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are a heterogeneous neuronal population and different neuronal subtypes express various 

forms of Eph and ephrins. The second screening was carried out by T. Iwata. 

The processed microarray data consist of raw lists of gene names (each corresponding to 

one of the 15,247 spots on the slide) together with statistic parameters that indicate, 

among other things, the intensity of each spot (which correlates with the abundance of the 

transcript in the original culture) and the ratio of the two fluorescence values (which is

correlated with the relative abundance of one transcript versus the other). (See figure

6.1.B).
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Figure 6.1. Processing a Microarray slide. A. Example of Microarray slide; 15,247 spots, each
representing a single c-DNA, are arranged in 48 sub-arrays. After hybridization spots appear in
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green, red and yellow. B. Example of “Scatter Plot”. Computer analysis calculates a set of
statistic parameters important for the interpretation of the hybridization data. For each spot the 
median value of the red fluorescence channel (y) is plotted against the median value of the green
fluorescence (x) in a logarithmic scale. The regression line indicates the 1/1 fluorescence ratio.
Green fluorescence represents the control condition whereas red fluorescence represents the test.
Spots along the regression line show no major difference between the control and the test 
conditions and appear yellow. Spots to the left of the regression line are up-regulated in the test
condition and appear red. Spots to the right of the regression line are down-regulated in the test
condition and appear green. 

Microarray raw lists are further processed to extract, according to specific sorting criteria,

shortlists of genes of interest. Raw data from screening 1 and 2 were first sorted

according to spot intensity, in order to exclude all the rare cellular products and then 

according to a threshold of +1.99 or -3.79 folds of gene induction or repression, 

respectively, between the control and the test, in order to select the activities whose

changes in expression levels were most striking upon stimulation with ephrin-Fc or Eph-

Fc. A higher threshold for down-regulated genes was chosen due to the fact that the 

number of repressed genes appeared to be far higher and to vary much more in 

expression levels than the up-regulated genes.

In the case of screening 2, the short-listed genes where further classified in three 

categories: genes induced or repressed by the stimulation with ephrinB2-Fc, genes 

induced or repressed by the stimulation with EphB1-Fc and genes induced or repressed 

by the stimulation with both ephrinB2-Fc and EphB1-Fc. 

Table 6.1 shows the shortlists of candidate genes from screening 1 (A) and from

screening 2 (B), with clone number, number of folds of induction/repression in the 

microarray experiment and ID (if known). As mentioned before, the NIA 15K mouse 

embryonic clone set consists of 15,247 cDNAs. In fact, a major number of ESTs

correspond to specific gene sequences with known ID whereas a portion of those 

sequences, namely 50% are novel genes with unidentified function. Thus, this gene 

collection was also chosen in order to uncover the role of novel molecules in Eph-ephrin 

signaling. Once sorted according to spot intensity and folds of induction/repression, the 

shortlist was further screened according to other parameters in order to obtain a number 

of candidate genes. These criteria comprise published data including expression patterns, 

structural features etc. The sequences of all hits with no annotated ID were extensively

72



compared to sequences in public and private databases (Genbank, Celera); some gave 

unclear hits, as their sequence matched several different gene sequences. In other cases 

the clone sequence was too short, most likely corresponding to non coding regions of the

original transcript. Overall, even though potentially more promising, the genes with no 

ID were not studied further. Another important selection criterion was the validation, in 

the same cortical neuron cultures and the same stimulation conditions, of microarray

induction/repression data by another experimental method, such as Northern Blot or RT-

PCR, to assess gene expression changes in mRNA levels or Western Blot, for protein 

levels. RT-PCR was carried out in a semi quantitative way using the Light Cycler 

technology. RT-PCR is a two step method: RNA is first extracted then reverse-

transcribed to cDNA. Specific PCR primers are then used in a standard amplification

reaction. RT-PCR can be useful to visualize the levels of a transcript in a given condition 

as the intensity of the PCR band on agarose gel will be proportional to the abundance of 

the original mRNA in the system. Semi-quantitative RT-PCR compares the abundance of 

a transcript in two different conditions, control and test. The ratio between the abundance 

of the transcript in the test versus the control measures the relative increase or decrease of 

the specific mRNA when the stimulus is applied. The Light Cycler technology is based 

on the incorporation of a double strand specific fluorescent dye during the PCR reaction. 

The increase of fluorescence, which is detected live by an automated system, is a direct 

effect of the increase of double stranded DNA in the PCR reaction. Fluorescence

intensities from control and test are calculated and compared and relative increases or 

decreases of the concentration of a transcript can be extrapolated. The advantage of the 

method lies in the fact that the fluorescence measurement takes place during the reaction 

and before saturation of the PCR, when both control and test products would have the 

same final fluorescence intensity (also see figure 6.2).

For clones with no ID in situ hybridization was also carried out in order to establish the 

patterns of gene expression in mouse embryos of the same developmental stage from 

which the original neuronal cultures used for the microarray experiments were prepared.

Screening 1 yielded 28 regulated genes, 9 of them with non identified ID (table 6.1.A).

All sequences were checked in RT-PCR analysis; most of them showed mRNA 

expression levels compatible with the microarray data (this also supports the suitability
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of the Microarray  approach). For  a  small percentage  of  clones  RT-PCR data were in 

contrast with the Microarray and were discarded. In some cases, when RT-PCR was not 

applicable (i.e. difficulties in the selection of PCR primer sets), Western Blot was then 

used to analyze protein levels if a commercial antibody was available (L10, L23). Three

clones with no ID (L1, L2, L3) were also used as probes in in situ hybridization 

experiments and all three showed an interesting embryonic nervous system specific

staining (data not shown). Some clones, even if nicely induced or repressed, were 

discarded on the basis of literature background (for example as in the case of L15 or L17). 

The remaining clones with no ID annotation and genes which could not be validated with 

a second method were also discarded. A list of 6 genes was finally obtained (Table 6.1,

green).

Short-listed genes from screening number two were processed and further sorted in the

same way (see table 6.1.B). Catenin was found to be the gene with the highest up-

regulation fold in the category of genes induced by the activation of both Eph-forward 

and ephrin-reverse signaling. Because of problems in designing specific LightCycler 

primers for Catenin (primer sets must be carefully selected in order to avoid secondary, 

double stranded structures, like hairpins, that may influence the measurement of 

fluorescence), and given the availability a good commercial antibody, Western Blot was 

chosen as main validation method of the Microarray data, with the limitation that only 

changes in protein levels would be studied.
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Figure 6.2. Example of Microarray validation by RT-PCR using the LightCycler technology.
SMAD4 is a tumor suppressor in the TGF-beta signaling pathway and was found to be 5.7 folds 
repressed in Microarray experiments upon stimulation with ephrinB2-Fc (see table 1A, clone 
L23). Real time PCR was carried out to validate the data using the same cortical neuron culture as 
a system. Neurons were stimulated with either Fc or ephrinB2-Fc using the same procedure
described for the Microarray. Total RNA was extracted, reverse transcribed and then used as a 
template for RT-PCR with the LightCycler technology. SMAD4 specific oligos were used in test 
reactions whereas primers for ribosomal S16 protein, an abundant transcript in the cell, were used
in serial standards where template concentration is used in 2, 1 or 0.25 dilution ratios. The PCR 
reaction process is monitored by fluorescence detection, enabling measurement at the beginning 
of the detectable exponential phase or at the “crossing point” (x), which is considered the most
reliable point of quantification. Crossing points are expressed as “number of cycles” and in 
general, a late crossing point correlates with low transcript abundance whereas an early crossing
point indicates a high copy number of the original transcript and a higher abundance. In the case
of clone L23, the signal from the ephrinB2-Fc stimulated condition appeared 1.4 cycles later than 
the signal from Fc control; this, extrapolating from the standard curve, indicated that L23
(SMAD4) was -2.3 fold repressed downstream of the activation of Eph-forward signaling, thus
confirming and validating the Microarray data. The “no template” signal is most likely due to
background fluorescence generated by primer dymers; due to its late appearance, it does not 
influence the experiment.
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Figure 6.3 shows Catenin protein level analysis in Western Blot. 3DIV, E15 mouse 

cortical neuron cultures were stimulated for 1 hour with ephrinB2-Fc, EphB1-Fc and Fc 

as a control. Both ephrin and Eph stimulation markedly increase Catenin protein levels.

The effect is detectable for up to 4 hours after stimulation. Even if the trend was very 

similar, less striking differences between control and Eph or ephrin-treated were detected 

in duplicate experiments, rather than the “black and white” pattern shown in figure 6.3 A,

perhaps due to the fact that neurons in culture express a variable basal level of Catenin

even before stimulation, the protein being necessary in the homeostasis of the neurons. 

Figure 6.3 B shows an example: Fc stimulation for 1 hour and the corresponding lane for

the 4 hours timepoint show a slight variability. 

Western blots against two other Arm repeat family members, p120ctn and -Catenin,

showed no changes in protein levels upon stimulation with clustered ephrin or Eph 

receptor, this suggests that the effect observed in the case of Catenin is indeed specific 

(data not shown).

Due to its relatively novel history and possible high experimental potential, its nervous

system and development specific pattern of expression, its dendritic and synaptic 

distribution and of course the striking changes in gene expression and protein levels upon 

stimulation with both Eph and ephrins, and, last but not least, the immediate availability 

of several biochemical and genetic tools, Catenin was preferred and selected as the

candidate gene for further characterization and study.
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Table 6.1. Microarray shortlists. A: Microarray short list of up- and down-regulated genes from
screen 1 (performed with E15 mouse cortical neurons 3 days in vitro stimulated with Fc
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or ephrinB2-Fc for 1 hour). The table is completed with microarray validation methods and
corresponding data and the gene ID, if known. Some of the array short listed genes were validated
by checking mRNA levels after stimulation (RT-PCR), some by checking protein levels using 
Western blot. For some of them, particularly the genes with no database ID, in situ hybridization 
was carried out in E15 embryos in order to gather information about their expression patterns.In
green are the genes whose microarray folds of induction/repression where confirmed by another 
method and that were interesting due to published data or structural features. In white are genes 
that were excluded from further analysis either because a second method gave contradictory
information as compared to the microarray data or because they had no clear ID and at the same
time the cDNA clones were too short (below 400 kb) to be studied further (NV=not validated). B:
Table of genes short listed in screen 2. The selection criteria were as in the previous screen.
Screen 2 was performed using E15 mouse cortical neurons 1DIV stimulated with Fc, ephrinB2-Fc
or EphB1-Fc for 4 hours. “ARRAY Forward” indicates folds of induction upon stimulation with
ephrin-B2-Fc and “ARRAY Reverse” indicates folds of induction upon stimulation with Eph-B1-
Fc. The genes in the screen were divided in three categories: genes that were markedly up-
regulated or down-regulated downstream of respectively: i. reverse signaling; ii. forward
signaling; iii. both forward and reverse signaling. Each subgroup in table 1B includes the top five
genes with the highest changes in gene expression for each of the three categories. Catenin
expression was found to be up-regulated downstream of both Eph and ephrin signaling.
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Figure 6.3. Microarray validation: Catenin protein levels increase upon stimulation with
both ephrin and Eph receptor. Western Blot was carried out using mouse E15 3DIV cortical 
neuron culture lysates and an anti Catenin antibody. A: cultures were stimulated for 1 hour 
with Fc as a control, ephrinB2-Fc or EphB1-Fc. Western Blot anti tubulin was used as a loading
control. Brain lysate used as a positive control for Catenin protein. B: duplicate experiment.
The increase in protein levels is sustained for 4 hours of stimulation.
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6.2 Catenin and Eph-ephrin signaling

The microarray data suggested that the up-regulation of Catenin in neurons was a 

novel nuclear effect following the activation of Eph-ephrin signaling. The following 

experiments were aimed at addressing the questions about the nature of the effects that 

the induction of Catenin brings about in the cell, and whether Catenin could also 

play a direct role as a member of Eph-ephrin signaling cascade. 

6.2.1 Catenin is phosphorylated by Eph-forward signaling but not by ephrin-

reverse

It has been shown that Catenin can be phosphorylated by the cytoplasmic non-receptor 

tyrosine kinase c-Abl at two conserved NH2-terminal tyrosines (Lu et al., 2002). 

Moreover, Catenin displays a long stretch of potentially phosphorylatable tyrosines in 

the COOH-terminus. Other members of the Arm repeat family, such as -Catenin, have 

also been shown to be substrates for various kinase activities. In addition, the closest 

relative of Catenin, p120, is also a potent Src kinase substrate. Therefore, a first 

experiment was to check if Catenin was involved in the relay of phosphorylation 

following the activation of Eph-ephrin signaling. 3DIV cultures of mouse E15 cortical

neurons were stimulated according to the same protocol used for the microarray

experiments and their validation. Western blots using an anti phospho-tyrosine antibody 

showed that a band corresponding to the molecular size of Catenin displayed a clear

phosphorylation signal upon stimulation with ephrinB2-Fc but not with EphB1-Fc. 

Different stimulation time points were taken, ranging from 30 minutes to 24 hours. The 

phosphorylation peak was reached after 1hour and phosphorylation was sustained for at 

least 24h although with decreased intensity (see figure 6.4 A) In order to confirm the 

Catenin phosphorylation after Eph receptor stimulation in neurons, HeLa cells were

transiently co-transfected with an EGFP tagged version of Catenin and wild type 
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EphA4 or a kinase-dead (KD) version of the receptor, that lacks kinase activity. 

Catenin was immuno-precipitated  and then 

probed for phospho-tyrosines. The phosphorylation signal could only be detected if

Catenin was co-expressed with the active form of EphA4 but not if co-expressed with 

the KD mutant (See figure 6.4 B). The product of the EphA4 construct is constitutively 

active and not regulated by ephrin binding; therefore no stimulation was required. 

Figure 6.4. Catenin phosphorylation upon activation of Eph-signaling in neurons and cell 
lines. A: Catenin phosphorylation time-course in 3DIV mouse E15 cortical neuron cultures. A
product of the molecular size correspondent to Catenin is phosphorylated in response to
ephrinB2-Fc stimulation but not to EphB1-Fc stimulation. The phosphorylation is sustained for
up to 24 hours. B: Catenin Phosphorylation in HeLa cells transiently expressing Catenin and
EphA4. Catenin was immuno-precipitated via its EGFP tag then probed for tyrosine
phosphorylation. Catenin is phosphorylated by EphA4 but not by a kinase-dead (KD)  version 
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of  the  receptor. If  transfected  alone, Catenin  is  present in the cells in an unphosphorylated
form. Rabbit pre-immune serum was used as a control and incubated with lysate from cells
expressing EphA4 and Catenin.

In order to define the structural domains of Catenin involved in the phosphorylation 

induced by the activation of Eph receptor, two deletion mutants of Catenin were used: 

one deletion covers the first 250 NH2-terminal amino acids ( N250), the other lacks the

final COOH-terminal 207 amino acids ( C207). The N250 deletion covers a large 

portion of the NH2-terminus of the molecule, including one of the two tyrosine residues 

phosphorylated by c-Abl (Lu et al., 2002). C207 lacks the PDZ-binding motif and 

almost all of the 17 potential tyrosine phosphorilation sites of the COOH-terminus.

The two deletion mutants, both EGFP-tagged, were transiently transfected with active

EphA4 in HeLa cells. The cells where also stimulated with ephrinB3-Fc because

ephrinB3 as well as ephrinA1 are the two major ligands for EphA4.  This stimulation was 

done to assess whether receptor clustering had an effect in phosphorylation levels. 

Immuno-precipitated N250 probed for phospho-tyrosines showed a strong 

phosphorylation band which was as intense as in the case of full length Catenin. The 

phosphorylation band of C207, on the other hand, appeared to be weaker than in that of 

full length Catenin and of N250, suggesting that the tyrosine residues phosphorylated 

by EphA4 lie mostly at the COOH-terminal of the molecule. Receptor clustering 

appeared to play no role (see figure 6.5). The poor expression of the C207 construct 

though, complicates the interpretation of this result. 

The phosphorylation of Catenin by Eph receptors suggests that the role of the molecule

in Eph-ephrin signaling does not merely involve the induction of Catenin expression

but a more complex interaction that involves biochemical modifications of the molecule

and that suggests a possible active role of Catenin in the signaling cascade. Strikingly, 

the phosphorylation of Catenin is specific for Eph-forward signaling as it was not

observed downstream of ephrin activation. This suggests a differential involvement of 

Catenin in the two cellular responses. 
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Figure 6.5. Phosphorylation of Catenin and deletion mutant N250 but not of C208 in 
HeLa cells. Immuno-precipitated Catenin and deletion mutant N250 show a stronger
phosphorylation band, when co-transfected with EphA4, than deletion mutant C208; suggesting
that the C terminus of Catenin is likely to be the target of Eph receptor mediated 
phosphorylation. Arrows indicate Catenin full length and the deletion mutants N250 and 

C208 (lower molecular weight). Catenin and the deletion mutants were immuno-precipitated
using the EGFP-tag (stripped membrane stained with anti EGFP is shown in lower panel). The
cells were stimulated with ephrinB3-Fc in order to asses the role of receptor clustering in 

Catenin phosphorylation levels as EphA4 is constitutively activated if expressed in HeLa cells.
The presence of phospho bands of lower molecular weight (upper panel) in correspondence with
ephrinB3-Fc treatment is currently not yet explained; one explanation could be the co-
immunoprecipitation of an unidentified protein.

83



6.2.2 Catenin and EphA4 interact physically 

Several factors bind the activated Eph receptor, mostly adaptor molecules containing 

protein-protein interaction SH2- and SH3-domains, and other factors that, once 

phosphorylated by the receptor, help transduce the signal into the cell. Catenin

contains SH3-binding motifs and protein interaction moieties that suggest a role as a 

signaling/adaptor molecule in signal transduction cascades. The phosphorylation of 

Catenin following the activation of Eph-ephrin signaling raised new questions about 

the nature of the interaction between Catenin and Eph receptor. Specifically, if the two 

molecules interact directly, possibly through their several protein-protein interaction 

moieties, or if the phosphorylation of Catenin is an indirect effect mediated by another

protein downstream of the activated Eph receptor. Biochemical evidence for a physical 

interaction surfaced as EphA4 and Catenin co-immunoprecipitated from HeLa cells

when transiently co-transfected (figure 6.6 A). The result was confirmed by co-

immunoprecitation of endogenous EphA4 and Catenin from mouse E17 brain lysates 

(figure 6.6.B)

In order to establish if the interaction between EphA4 and Catenin requires the kinase 

activity of the receptor, HeLa cells where transiently co-transfected with KD-EphA4. The 

mutant retained the ability to interact with Catenin and co-immunoprecipitated,

similarly to another receptor mutant 2E-EphA4. The 2E mutant has the two conserved 

juxtamembrane phospho-tyrosines mutated into glutamic acid; the mutation removes the

receptor autoinhibition loop and changes its conformation to constitutively active. The

two phospho-tyrosines are crucial in Eph-mediated signaling as they are docking sites for 

several factors involved in the cascade. The 2E mutant also retained the ability to co-

immunoprecipitate Catenin (figure 6.6.C) suggesting that, at least in transiently 

transfected cell lines, the interaction between Catenin and EphA4 is not regulated by 

Eph receptor kinase activity and does not require the two juxtamembrane

phosphotyrosines.
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Figure 6.6 Catenin and EphA4 co-immunoprecipitate in cell lines and brain lysate. A: IP
anti EphA4 shows co-immunoprecipitation Catenin from co-transfected HeLa cell lysates. The 
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difference of Catenin apparent molecular weights is due to the EGFP-tag of transfected full
length Catenin. B: IP anti EphA4 shows co-immunoprecipitation of Catenin from E17 brain
lysates. C: IP anti EphA4 shows co-immunoprecipitation of EphA4 and mutants 2E and Kinase 
Dead (KD) with Catenin (HeLa cells).

Further evidence for the interaction between Catenin and EphA4 in neurons was 

obtained from fluorescent protein imaging using rat hippocampal cultures. The switch to 

rat neurons was due to the ease of transfecting rat neuronal cultures as opposed to mouse 

cultures. Hippocampal neurons from E19 rats were kept in culture and then transfected

with fluorescently tagged versions of Catenin and Eph receptor. Both proteins 

appeared to be expressed and homogeneously distributed throughout the neurons with no 

difference in cellular localization. Upon stimulation with ephrin at different time-points,

together with the expected gradual formation of fluorescent Eph receptor clusters, a 

striking intracellular redistribution of fluorescent Catenin was also noticed. Catenin

appeared to form aggregates that grow in size overtime, as the stimulation time proceeded. 

The first aggregates appeared after 30 minutes of ephrin application and they grew in size 

and number for 2 hours after stimulation. Strikingly, Catenin aggregates and Eph 

receptor clusters appeared to co-localize, even if the dynamics of formation differed. Eph 

receptor clusters appeared after a few minutes from stimulus application while Catenin

aggregates became clearly visible only after about 30 minutes, hinting at the fact that one 

event may precede the other. A second interesting event that ephrin stimulation triggered 

in neurons over-expressing fluorescent Catenin was a marked change in cellular 

morphology, specifically involving cellular processes: with dynamics similar to those of 

the formation of Catenin clusters, neurites appeared to retract, markedly decrease in 

length, become thicker in diameter, and assume a much more irregular shape (figure 6.7).
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Figure 6.7: Fluorescently tagged Catenin changes its intracellular distribution upon 
stimulation with ephrin. Rat hippocampal neurons in culture transfected with fluorescently
tagged EphB2 receptor (ECFP) and Catenin (EYFP) were stimulated for 2 hours with Fc as a 
control (panels A, B, C) and with ephrinB2-Fc (panels D, E, F, G). Upon stimulation, Catenin
strikingly changes its cellular distribution, forming aggregates that tend to become bigger 
overtime (other time points not shown). Catenin aggregates co-localize with EphB2 clusters
(see panels F and G, arrows). Note that stimulated neurons appear to have shorter neurites and a 
more irregular shape if compared to control neurons. (Transfection at 3DIV and imaging after 2 
days)
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The intracellular re-localization of Catenin upon stimulation and the formation of 

aggregates which co-localize with Eph receptor clusters were also observed in NIH3T3

cell lines co-expressing fluorescently tagged versions of the two molecules. Catenin

forms aggregates upon ephrin stimulation and these appear to co-localize with Eph 

receptor clusters (figure 6.8).

Similar results were obtained with HeLa cells that co-expressed EGFP- Catenin and 

EphA4 and were stimulated with pre-clustered ephrinB3-Fc: EGFP- Catenin undergoes 

a striking redistribution, forming aggregates that colocalize with EphA4 clusters (figure

6.9). The EGFP- C208 mutant on the other hand has a mislocalization problem,

appearing to be unevenly distributed, already forming aggregates, independent of any 

stimulation. Some of the aggregates appear to partially co-localize with EphA4, raising 

the question whether EphA4 and EGFP- C208 actually interact. For technical reasons it 

was not possible to prove this interaction with biochemical methods.

The co-immunoprecipitation results and the data from fluorescence imaging provide 

evidence that Catenin and Eph receptor do interact with each other in cell lines but also

in neurons. Whether they interact directly or via some adaptor protein remains to be 

clarified. The activation of Eph-ephrin signaling has a strong effect on Catenin

subcellular distribution, leading to the formation of large aggregates that co-localize with

Eph receptor clusters. This hints to the possibility that Catenin may be recruited by 

Eph receptor in response to receptor activation, is then phosphorylated and is 

subsequently involved in the downstream signaling cascade. The C208 mutant, on the

other hand, as a non phosphorylatable version of Catenin (or due to its poor expression 

and mislocalization), may not be able to take part in the phosphorylation relay 

downstream of the activated receptor.
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Figure 6.8. Ephrin induced Catenin aggregates and EphB2 clusters co-localize in NIH3T3 
fibroblasts. Co-localization (arrows) of co-transfected EYFP- Catenin and ECFP-EphB2 upon
stimulation with ephrinB2-Fc (A, B, C) or Fc (D, E, F) for 2 hours. EYFP-Delta Catenin, green; 
anti Fc immuno-staining (stains clustered ephrin-Fc bound to Eph receptor), red. 
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Figure 6.9. Relocalization of EGFP- -Catenin and co-localization with EphA4 after 1 hour
stimulation with ephrinB3-Fc in HeLa cells. A and B, EGFP-transfected cells. C and D, cells 
co-transfected with EGFP and EphA4. E and F, cells co-transfected with EGFP- Catenin and 
EphA4. G and H, cells co-transfected with EGFP- C208 and EphA4. In A to G cells were 
stimulated with Fc as a control; in B to H with ephrinB3-Fc. All images show EGFP-fluorescence.
Panels I, L, M, N show respectively E, F, G, H images (EGFP fluorescence in green) merged
with anti EphA4 staining (red). EGFP- Catenin undergoes an intracellular redistribution upon
stimulation with ephrinB3-Fc, forming clusters which co localize with EphA4 clusters (F, L).
EGFP- C208 shows an uneven distribution, even under control conditions. Stimulation with
ephrinB3-Fc does not have any visible effect. EGFP- C208 clusters seem to partially co-localize
with EphA4 clusters (G, H, M, N) (anti EphA4 staining alone is not shown). 
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6.3 Eph receptor forward signaling, but not ephrin reverse signaling, 

leads to the formation of -Catenin aggregates

In order to further investigate the dynamics of formation of Catenin aggregates and the 

interaction with ephrinBs, rat hippocampal neurons were transfected with EGFP-

Catenin and imaged at different timepoints after stimulation with Fc as a control,

ephrinB3-Fc or EphB1-Fc. As shown before, stimulation with ephrin induced an

intracellular rearrangement of EGFP- Catenin, causing the formation of aggregates that 

start to be visible at 30 - 60 minutes after stimulation, and become larger overtime (figure

6.10 C and D). Formation of Catenin aggregates was not observed with Fc control 

stimulation (figure 6.10 A and B) and interestingly, with EphB1-Fc stimulation (figure

6.10 E and F). This led to the conclusion that Catenin aggregated as a specific 

response to activation of forward signaling. These data correlate with Catenin

phosphorylation (also forward signaling specific), hinting at the fact that the activation of 

Eph receptor could lead to the recruitment and phosphorylation of Catenin, which

would then form aggregates at sites where active Eph receptors cluster. As mentioned

before, the dynamics of Catenin aggregates formation are slightly delayed from those 

of Eph receptor clusters and of Eph receptor activation, suggesting that the two events

occur sequentially. Interestingly, Catenin phosphorylation and aggregate formation 

dynamics are almost overlapping, about 30 – 60 minutes after stimulation as the two 

events first become detectable. 
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Figure 6.10. Eph receptor forward signaling, but not ephrin reverse signaling, leads to the
formation of -Catenin aggregates. EGFP- -Catenin re-localization upon stimulation of
transfected rat hippocampal neurons: -Catenin forms aggregates that increase in size overtime
(arrows) only in neurons stimulated with ephrinB3-Fc (C and D) but not with Fc or EphB1-Fc
(panels A and B and E and F respectively), (transfection at 3DIV and imaging after 2 days).
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In order to better visualize the dynamics of -Catenin aggregate formation, rat 

hippocampal neurons expressing EGFP- -Catenin were imaged live for up to 125 

minutes. Neurons were kept in culture and filmed for 60 minutes (1 image/5 min) before 

the stimulus was applied, then time lapse images were taken for 60 additional minutes.

The stimuli used were ephrinB3-Fc and Fc as a control, being these two cases the most 

interesting in the set of fixed neurons described above. Application of ephrinB3-Fc

clearly triggers EGFP- -Catenin aggregation in addition to causing changes in neurite 

shape; neurites retract and appear less regular in shape (figure 6.11). -Catenin

aggregates are visible not only all along the cellular processes but also in the cell body. 

Control neurons stimulated with Fc do not show any change in -Catenin distribution

overtime (figure 6.12). The time lapse experiments therefore confirm and reinforce the 

conclusions drawn from the fluorescence analysis of fixed hippocampal neuron cultures; 

fluorescently tagged -Catenin undergoes a dynamic redistribution upon stimulation with 

ephrinBs.
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Figure 6.11. Live imaging of a EGFP- -Catenin transfected hippocampal neuron upon
stimulation with ephrinB3-Fc. EphrinB3-Fc was added 60 minutes after imaging start. EGFP- -
Catenin fluorescence undergoes an intracellular redistribution forming aggregates (arrows) that 
increase in size overtime. The aggregates can first be observed 5 minutes after stimulation and 
become more evident after about 1 hour stimulation. Time intervals: 5 minutes, exposure 100
msec. Transfection at 3DIV and imaging after 2 days (also see multimedia support). 
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Figure 6.12. Live imaging of a EGFP- -Catenin transfected hippocampal neuron upon
stimulation with Fc as a control. Fc was added 60 minutes after imaging start. EGFP- -Catenin
fluorescence distribution is unchanged. Time intervals: 5 minutes, exposure 100 msec.
Transfection at 3DIV and imaging after 2 days (also see multimedia support). 
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6.4 Catenin and Eph-ephrin signaling are required for the 

establishment of proper dendritic morphology

Having shed some light on the nature of the -Catenin and Eph receptor interaction, the 

next question was to clarify what kind of cellular response and biological function was

downstream of -Catenin and Eph-ephrin signaling. It has already been shown that over-

expression of -Catenin in cultured hippocampal neurons alters dendritic morphology,

causing a massive dendritic overgrowth (Lu et al., 2002). It was shown before that 

hippocampal neurons expressing EGFP- -Catenin display marked changes in neurite

shape upon stimulation with ephrin ligand in addition to the re-localization and 

aggregation of EGFP- -Catenin protein. In order to study ephrin-induced changes in 

dendritic morphology, control neurons expressing EGFP, neurons expressing EGFP- -

Catenin, and neurons expressing EGFP- C207 were analyzed upon stimulation with 

different factors. As mentioned before, -Catenin COOH terminus deletion mutant

C207 lacks the PDZ binding motif and most of the 17 potentially phosphorylatable 

tyrosines. C207 was shown to act as a dominant negative version of -Catenin as it can

multimerize and sequester the endogenous protein (Lu et al., 2002). It also prevents the 

full length construct from causing the characteristic increase dendrite complexity if co-

expressed in neurons.  EGFP- C207 expressing neurons appear to be much less complex

than control neurons, being markedly less branched and having shorter dendrites. A very 

similar phenotype is caused by the depletion of endogenous -Catenin with RNAi 

interference (unpublished data, personal communication with Qun Lu, ECU, USA). 

Control EGFP, EGFP- -Catenin or EGFP- C207 neurons were stimulated with Fc, 

ephrinB3-Fc, BDNF or NGF for 24 hours in order to visualize any long term effects on 

dendritic morphology. BDNF and NGF were chosen because of their well known 

promoting effect on dendritic outgrowth, therefore providing a reference and a control. 

The study of dendritic morphology was carried out using the Sholl analysis method in 

which a grid of concentric circles is centered on the cell body of a neuron and the number

of times the dendritic tree intersects the grid is measured. The resulting figures show the 
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degree of complexity of the dendritic tree analyzed (Sholl, 1953).  For statistical analysis

of the following experiments, each condition is represented by 8 different neurons, with a 

total of 106 neurons imaged.

Figure 6.13 shows a summary of the effects of Fc, ephrinB3-Fc, BDNF and NGF on 

EGFP-transfected neurons as a reference for a control condition in which only 

endogenous -Catenin is present. Rat hippocampal neurons in culture express a basal 

level of -Catenin as shown by immuno-fluorescence staining (data not shown). 

Interestingly, long term stimulation with ephrinB3-Fc has an effect on the overall 

complexity of the neurons. Dendrites appear to shorten, to have fewer branches and to 

generate a number of short, filopodia-like cellular processes if compared to neurons

treated with control Fc. An effect of Eph-ephrin signaling in shaping dendritic 

morphology was so far unreported even if the effect is mild. The stimulation with both 

BDNF and NGF on the other hand, causes a marked increase in dendritic complexity,

enhancing, as expected, dendritic branching and length. The effects were quantified with 

a Sholl analysis and reported in tables of figure 6.14. 

Figure 6.15 shows a summary of the effects of Fc, ephrinB3-Fc, BDNF and NGF on 

EGFP/EGFP- -Catenin co-transfected neurons. The co-transfection with EGFP was 

necessary to better visualize cellular contours and fine processes possibly devoid of 

fluorescent -Catenin. As mentioned before, -Catenin over-expression alone is able to 

increase dendritic complexity. Upon stimulation with ephrinB3-Fc, though, the dendritic

tree undergoes a massive reorganization, in a similar fashion to that observed in EGFP-

neurons but much more pronounced: dendrites appear much shorter and the number of 

dendritic branches was lower. On the other hand, BDNF and NGF do not have any 

specific additional effect to -Catenin induced dendritic complexity.  Figure 6.16 shows

the Sholl analysis for these neurons. 

Figure 6.17 shows a summary of the effects of Fc, ephrinB3-Fc, BDNF and NGF on 

EGFP/EGFP- C207 co-transfected neurons. As mentioned before, the deletion mutant 

alone induces a simplification of dendritic architecture; dendrites appear unbranched and 

short. The number of primary dendrites directly sprouting from the
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cell body is very elevated, as compared to control neurons and additionally they show a 

higher number of short filopodia-like processes whose number or formation does not 

appear to be influenced by any of the stimuli applied, appearing unchanged in their 

morphology. Figure 6.18 shows the Sholl analysis data for these neurons.
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Figure 6.13. Effects of long-term ephrinB3-Fc, BDNF, or NGF on dendritic morphology of
EGFP-transfected hippocampal neurons. A. Neuron stimulated with Fc for 24 hours. B.
Neuron stimulated with ephrinB3-Fc; the cell appears to have shorter and less branched dendrites 
and show a higher number of small filopodia-like cellular processes. C and D. Neurons 
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stimulated with BDNF or NGF, respectively: both factors increase neuronal complexity
promoting dendritic branching and elongation. Transfection at 3DIV and imaging after 2 days.

Figure 6.14 Sholl analysis of EFGP-transfected hippocampal neurons stimulated with Fc,
ephrinB3-Fc, BDNF or NGF for 24 hours. The number of intersections between dendrites and
Sholl circles is plotted as a function of the distance from the cell body. A. EphrinB3-Fc 
stimulation (blue bars) induces a simplification of the dendritic arbor as compared to Fc treated
control neurons (white bars).The effect is evenly distributed all along the dendritic tree (p<0.05 
for areas neighboring asterisks). B. BDNF stimulation causes a marked increase in the complexity
of the dendritic arbor, especially in regions close to the cell body and in regions most distal from 
it (asterisks indicate broad areas of statistical significance; p<0.01). C. NGF stimulation causes 
very similar effects to BDNF (asterisks indicate broad areas of statistical significance; p<0.01). D.
Overall comparison view of Fc, ephrinB3-Fc, BDNF and NGF effects (3DIV+2 days after
transfection), (n=8), (for simplicity ephrinB3-Fc = b3). 
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Figure 6.15. Effects of long term ephrinB3-Fc, BDNF, or NGF application on dendritic 
morphology of EGFP/EGFP- -Catenin transfected hippocampal neurons. A. Neuron
stimulated with Fc for 24 hours. B. Stimulation with ephrinB3-Fc. Similarly to EGFP neurons,
they display shorter and less branched dendrites, however, the effect induced by ephrin is even
more pronounced. C and D. Neurons stimulated with BDNF or NGF, respectively: both factors
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increase neuronal complexity promoting dendritic branching and elongation. Transfection at 
3DIV and imaging after 2 days.

Figure 6.16. Sholl analysis of EGFP/EGFP- -Catenin transfected hippocampal neurons
stimulated with Fc, ephrinB3-Fc, BDNF or NGF for 24 hours. A. EphrinB3-Fc stimulation
induces a marked simplification of the dendritic arbor as compared to Fc treated control neurons. 
The effect is evenly distributed all along the dendritic tree (asterisks indicate broad areas of
statistical significance; p<0.01). B. BDNF stimulation does not seem to influence neuronal 
morphology in a dramatic way but it affects primary dendrites and processes close to the cell 
body (asterisks; p<0.05). C. NGF stimulation causes very similar effects to BDNF. D. Overall
comparison view of Fc, ephrinB3-Fc, BDNF and NGF effects (3DIV+2 days after transfection).
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Figure 6.17. Effects of long term ephrinB3-Fc, BDNF or NGF on dendritic morphology of 
EGFP/EGFP- C207 transfected hippocampal neurons. C207 expressing cells show a 
very simplified dendritic architecture with very little dendritic branching, short dendrites 
but a higher number of primary dendrites and short filopodia-like processes whose 
formation is not affected by any of the stimuli. A. Neuron stimulated with Fc for 24 hours. B. 
Neuron stimulated with ephrinB3-Fc; the stimulation does not influence dendritic morphology. C 
and D. Neurons stimulated with BDNF and NGF, respectively: both factors partially rescue the

C207 mutant phenotype by increasing dendritic branching and elongation. (3DIV+2 after
transfection).

Figure 6.18. Sholl analysis of EGFP/EGFP- C208 transfected hippocampal neurons 
stimulated with Fc, ephrinB3-Fc, BDNF or NGF for 24 hours. A. EphrinB3-Fc stimulation
does not affect neuronal morphology. B. BDNF stimulation partially rescues the phenotype by 
increasing dendritic complexity in areas most proximal and distal from the cell body (asterisks, 
p<0.05). C. NGF stimulation causes very similar effects to BDNF. D. Overall comparison view 
of Fc, ephrinB3-Fc, BDNF and NGF effects (3DIV+2 days after transfection). 
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Several other morphological parameters can be useful to evaluate the complexity of a

dendritic tree. One of them is the dendritic order. The dendritic order refers to the degree

of branching from a “primary” dendrite that sprouts directly from the cell body. A 

dendrite of the “secondary” order therefore generates as a branch from the primary 

dendrite and a branch extending from a secondary branch is then termed “tertiary”, and 

so on; the higher the dendrite order, the more complex the dendritic tree. As shown in 

figure 6.19, stimulation with ephrinB3-Fc markedly reduced dendritic orders in both 

EGFP-neurons (-37%, p<0.05) and, in a more striking way, in EGFP/EGFP- -Catenin

neurons (-46%, p<0.05) as compared to control Fc treatment. EGFP/EGFP- C208

neurons show no response to ephrinB3-Fc stimulation.

BDNF and NGF treatment causes an expected increase in dendrite order in EGFP-

neurons but no additional effect in EGFP/EGFP- -Catenin neurons. On the other hand, 

they are able to increase dendrite order in EGFP/EGFP- C208 neurons. 

Another useful parameter to study dendritic tree complexity is the number of primary

dendrites. As shown in figure 6.20, stimulation with ephrinB3-Fc causes a reduction in 

the number of primary dendrites in EGFP/EGFP- -Catenin neurons (p<0.05), more 

striking than in the case of EFGP neurons. EGFP/EGFP- C208 neurons show no such 

response to ephrinB3-Fc. In this case, BDNF and NGF treatment also causes an increase 

in number of primary dendrites in EGFP-neurons but no additional effect in 

EGFP/EGFP- -Catenin neurons. Strikingly, EGFP/EGFP- C208 neurons show an

already elevated number of primary dendrites and they do not specifically respond to any 

of the stimuli.
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Figure 6.19. Dendrite order analysis of EGFP-, EGFP/EGFP Catenin- and EGFP/EGFP-
C208 transfected neurons upon stimulation with Fc, ephrinB3-Fc, BDNF or NGF for 24 

hours. A. EGFP neurons show a decrease in the order of dendritic branching upon ephrinB3-Fc
stimulation (green) whereas BDNF (red) and NGF (yellow) have an opposite effect, causing an
increase in branching order as compared to Fc control (blue). B. EGFP/EGFP Catenin neurons
show an overall increase in the order of dendritic branching. Whereas ephrinB3-Fc stimulation
causes a marked decrease in the dendrite order, BDNF and NGF have no additional effect. C.
EGFP/EGFP- C208 neurons all show a lower order of branching, partially rescued by BDNF and
NGF stimulation (for simplicity, “ephrinB3-Fc” stimulation is indicated as “b3”). 
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Figure 6.20. Primary dendrite analysis of EGFP-, EGFP/EGFP Catenin- and
EGFP/EGFP- C208 transfected neurons upon stimulation with Fc, ephrinB3-Fc, BDNF or 
NGF for 24 hours. A. EGFP neurons show a trend towards a decrease in the number of primary
dendrites upon ephrinB3-Fc stimulation (green). BDNF (red) and NGF (yellow) cause an increase
in the number of primary dendrites as compared to Fc controls (blue). B. EGFP/EGFP Catenin
neurons show an overall increase in the number of primary dendrites independently of the 
stimulus. While ephrinB3-Fc stimulation causes a decrease in the number of primary dendrites, 
BDNF and NGF have no effect. C. EGFP/EGFP- C208 neurons all show a very high number of 
primary dendrites unaffected by the stimulus applied. 
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A dendritic node is referred to as the point where a dendrite branches generating a 

process of a higher order. The number of nodes in a dendritic tree is therefore another 

indicator of complexity. As shown in figure 6.21, stimulation with ephrinB3-Fc has the 

slight effect of reducing the number of nodes in EGFP-neurons but more strikingly in 

EGFP/EGFP- -Catenin neurons as compared to control Fc treatment (p<0.05). EGFP-

C208 neurons show no response to ephrinB3-Fc stimulation. BDNF and NGF treatment

causes an increase in the number of nodes in EGFP-neurons but have no additional effect

on EGFP/EGFP- -Catenin neurons. On the other hand, they are able to slightly increase 

node numbers in EGFP/EGFP- C208 neurons. 

Finally, another useful parameter is the total length of all dendrites in the tree. Figure

6.22 shows that stimulation with ephrinB3-Fc has the effect of clearly shortening the 

average dendritic length of EGFP-neurons (-33% compared to control, p<0.05). The 

effect is enhanced in EGFP/EGFP- -Catenin where the decrease in total length is -48%

(p<0.05) compared to the respective control. EphrinB3 stimulation has no effect on 

EGFP/EGFP- C208 neurons. BDNF and NGF treatment on the other hand, cause an 

expected increase in dendritic length in EGFP-neurons but have no additional effect on 

EGFP/EGFP- -Catenin neurons which show an increased total dendritic length due to the 

effect of -Catenin over-expression. BDNF and NGF, similarly to what was observed in 

the case of dendrite order, partially rescue the phenotype, increasing the overall dendritic

length of about 50% (p<0.05). 

The total dendritic length gives an idea of the overall extension of the dendritic tree, with 

no hint though to the complexity and the extent of branching. In order to have a very 

precise picture of a dendritic tree it is therefore necessary to take all the above described 

parameters in consideration. 
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Figure 6.21. Analysis of the number of nodes in EGFP-, EGFP/EGFP Catenin- and 
EGFP/EGFP- C208 transfected neurons upon stimulation with Fc, ephrinB3-Fc, BDNF or 
NGF for 24 hours. A. EGFP neurons show a trend towards a decrease of the number of nodes 
upon ephrinB3-Fc stimulation (green). BDNF (red) and NGF (yellow) cause an increase in the 
number of nodes as compared to Fc control (blue). B. EGFP/EGFP- Catenin neurons show 
much more marked differences; ephrinB3-Fc stimulation causes a marked decrease in the number,
BDNF and NGF have no effect. C. EGFP/EGFP- C208 neurons all show a low number of nodes; 
the phenotype is partially rescued by BDNF and NGF stimulation.
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Figure 6.22. Analysis of total dendritic length in EGFP-, EGFP/EGFP Catenin- and
EGFP/EGFP- C208 transfected neurons upon stimulation with Fc, ephrinB3-Fc, BDNF,
NGF for 24 hours. A. EGFP neurons show a 31% decrease in total dendritic length upon
ephrinB3-Fc stimulation whereas BDNF and NGF have an opposite effect, causing an increase 
total dendritic length as compared to Fc control. B. EGFP/EGFP Catenin neurons show an
overall increase in the order of dendritic branching as an effect of Catenin over-expression. 
While EphrinB3-Fc stimulation causes a marked decrease in dendritic length (-48%), BDNF and 
NGF have no additional effect. C. EGFP/EGFP- C208 neurons all show a decrease in dendritic
length, compared to control neurons. The phenotype is partially rescued by BDNF and NGF
stimulation which both cause an increase of 60 and 58% in total dendrite length whereas
ephrinB3-Fc treatment has no evident effect (p<0.05).
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Taken together, the information resulting from the Sholl analysis and the analysis of 

various neuronal parameters presents a complex picture about the effect of various 

stimuli on -Catenin and C208 neurons. The parameters establishing the complexity of 

a dendritic tree vary and most likely they are not influenced by the stimuli in the same 

way. Figure 6.23 illustrates synoptically the results obtained from the morphological

studies.

Overall, expression of full length -Catenin causes an increase in dendritic complexity

whereas expression of C208 causes a marked decrease if compared to control neurons, 

suggesting that functional -Catenin is essential for proper dendritogenesis. The effect of 

ephrinB3 stimulation has the general effects of reducing dendrite length, dendrite 

branching and the number of primary dendrites. These effects are greatly enhanced when

neurons over-express -Catenin. The effect does not seem to be due to the higher

complexity that -Catenin neurons have from the start since the differences between Fc 

and ephrinB3-Fc treatments between control neurons and EGFP- -Catenin neurons are 

higher in percentage. C208 neurons do not respond to ephrinB3. Interestingly, C208

neurons also have an extraordinary amount of primary dendrites sprouting from the cell 

body, even if these processes are short and not branched.
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Figure 6.23. Synoptic scheme illustrating the effect of Fc, ephrinB3-Fc, BDNF and NGF
stimulation on variously transfected neurons. For simplicity, EGFP-neurons are indicated as
“EGFP”, EGFP/EGFP- Catenin neurons are indicated as “ Catenin” and EGFP/EGFP- C208
neurons as “ C208”. Similarly, stimulation with ephrinB3-Fc is indicated as “ephrinB3” 
and stimulations with BDNF and NGF have been grouped together due to the similarity
of effects that they produce. The category “neurite extension” correlates with the total 
dendritic length mentioned in the previous section. “Pluses” are to be intended with as a 
comparison to EGFP neurons stimulated with Fc. – indicates a strong decrease, +/- 
indicates an intermediate situation. Note that the scheme has no statistical value but it is 
intended as a simplified summary of the data presented in the section above.
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6.4.1 -Catenin and the dynamics of filopodia formation 

Filopodia formation is a very important process during dendritic development as they are 

crucial intermediates for the initiation of dendritic branching and, although still not

clearly, spine formation. In young neurons, when dendrites still do not have mature

spines and are not engaged in synaptic relationships, filopodia presumably work as 

sensors, rapidly growing and retracting in response to specific signals with the aim of 

directing further growth or differentiation where it is appropriate (Davenport et al., 1993) 

Eph-ephrin signaling was shown to be a positive regulator of spinogenesis and the 

commitment of filopodia to spines (Penzes et al., 2003; Ma et al., 2003). In order to asses 

a potential role of -Catenin and its mutant C208 in filopodia formation, the same

neurons used in the Sholl analysis were further studied for filopodia formation. The age 

of the culture used (2 to 3DIV) did not allow discriminating between filopodia-like 

processes and nascent spines as spines appear as mature processes with a distinct neck 

and head only after one week or more in culture. Because of the lack of filopodia markers,

the filopodia-like processes will be here referred to as “filopodia” based on 

morphological criteria. One interesting observation was that EGFP-transfected neurons 

seemed to respond to ephrinB3-Fc treatment by increasing the number of filopodia (see 

figure 6.13) and C208, on the other hand, showed a massive filopodial growth 

independently of the stimulus applied (see figure 6.17). EGFP-, EGFP/EGFP- -Catenin-

and EGFP/EGFP- C208-transfected neurons stimulated with Fc, ephrinB3-Fc, BDNF or 

NGF were imaged and filopodia-like structures labeled and counted. The maximal length 

accepted for filopodia was of 2 m, longer processes were automatically considered as a 

nascent branch and excluded from the statistics. Figure 6.24 shows an example of 

filopodia quantification using the programs Neurolucida and Neuroexplorer in 

combination. The total number of filopodia is given as filopodial density or as a ratio by 

division with total dendritic length. The example shows the comparison between two 

EGFP-transfected neurons: one stimulated with Fc as a control and the other stimulated

with ephrinB3-Fc. The stimulation with ephrinB3-Fc induced a marked increase in 

filopo-
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dial density. The data from all neuronal transfections in all the applied stimulation

conditions are summarized in figure 6.25.

Figure 6.24. Examples of filopodial analysis using the programs Neurolucida and 
Neuroexplorer. Neurons were traced and filopodia marked along the length of the dendrites 
(white squares) followed by software-based numeric analysis. The corresponding tables show the 
total number of filopodia as distributed along each dendritic branch, dendritic lengths and 
filopodia density calculated as a ratio between the total number of filopodia and the total length of 
the dendrites. A. EGFP- transfected neuron stimulated with Fc for 24 hours. B. EGFP-transfected 
neuron stimulated with ephrinB3-Fc for 24 hours. Together with a simplification of dendritic
morphology (compare mean dendritic lengths in A and B), ephrinB3-Fc treatment brings along a 
marked increase in filopodial density (note that the white squares also indicate nodes). 
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Figure 6.25. Filopodial analysis of EGFP-, EGFP/EGFP- Catenin-, EGFP/EGFP- C208
transfected neurons stimulated with Fc, ephrinB3-Fc, BDNF or NGF.
A, EGFP transfected neurons show a marked increase in filopodia density upon stimulation with 
ephrinB3-Fc (p<0.01). B. EGFP/EGFP- Catenin neurons show an overall increase in filopodia
density, stimulation with ephrinB3-Fc further increases the effect (p<0.05). C. EGFP/EGFP-

C208 neurons show a very high filopodial density and they were unresponsive to any of the
stimuli.
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As mentioned before, EGFP-neurons (figure 6.25 A) showed a marked increase in the 

number of filopodia upon stimulation with ephrinB3-Fc. Treatment with BDNF and NGF 

also showed a slight increase in filopodial density.  EGFP/EGFP- -Catenin transfectants 

(figure 6.25 B) also displayed an increase in filopodial number upon stimulation with 

ephrinB3-Fc but not as striking as in the case of EGFP neurons. Moreover, they appeared 

to be far richer in filopodia even before stimulation, probably as a further effect of the -

Catenin induced “complexing” phenotype. BDNF and NGF had no significant effect. 

EGFP/EGFP- C208-transfected neurons (figure 6.25 C) have a striking and 

homogeneous filopodial overgrowth, uninfluenced by any of the stimuli applied. 

In order to better visualize the two most interesting cases: the increase of filopodial

density in EGFP-transfected neurons upon stimulation with ephrinB3-Fc and the 

filopodial overgrowth in EGFP/EGFP- C208 transfectants, neurons were imaged over a 

long time. Neurons were kept in culture for 3 days + 2 after transfection and then filmed

for 17 hours. 

Figure 6.26 A and B show a GFP transfected neuron upon stimulation with Fc for 17 

hours as a control. The neuron appears moderately branched, displays a fair amount of 

filopodia and is highly dynamic over time. Processes extend and retract and even the cell 

body appears quite motile in respect to the initial position at 0 minutes.

Figure 6.26 C and D show a neuron stimulated with ephrinB3-Fc. The stimulation has a 

clear effect in promoting filopodia and filopodia-like processes outgrowth. At the same

time, the neuron retracts several branches, dendrites shorten and become thinner. 

Interestingly the neuronal cell body appears quite fixed and not as dynamic as in the case 

of the control, as if it was “frozen” on the spot when the ephrinB3-Fc stimulus was 

applied.

Figure 6.27 shows an EGFP/EGFP- C208 transfected neuron upon stimulation with Fc 

(A and B) and one stimulated with ephrinB3-Fc (C and D). As shown in previous 

experiments, neurons are much less branched, with short dendrites but a high number of 

short and thin primary dendrites and several filopodia whose number does not appear to 

vary. Also in this case, the neurons appear to be fixed on the substrate and
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show very little changes in morphology independently of the time in culture and 

stimulation.

Taken together, the information from the filopodial studies suggests a general 

involvement of long-term ephrinB3-Fc stimulation in the generation of filopodia-like 

structures. The effect is already strong in EGFP control neurons. Whether these filopodia 

will all mature into spines or if the result of this event will shift the ratio between 

filopodia and spines towards more filopodia and consequently mature less spines, is still 

not clear. In EGFP/EGFP- C208 transfected neurons the number of filopodia is very 

high, independently of the stimulus applied, suggesting that the presence of inactive -

Catenin (or perhaps the presence of phosphorylated -Catenin, similar to GFP neurons

expressing endogenous and active -Catenin) may remove inhibition that allows the 

outgrowth of filopodia. The data from EGFP/EGFP- -Catenin transfectants partially 

support this as they also show some increase in numbers of filopodia even if the overall 

number, before stimulation, is already high, complicating the conclusions to be drawn 

from these experiments. Another complication in the interpretation of the EGFP/EGFP-

C208data is the lack of effect of BDNF and NGF, making the correlation of the 

filopodial phenotype with -Catenin and Eph-ephrin signaling not so specific.

117



Figure 6.26. Live imaging of EGFP-transfected hippocampal neurons during long term 
stimulation with Fc (A and B) and ephrinB3-Fc (C and D). Pseudo colors indicate different
fluorescence intensities. E and F represent detail magnifications of C and D, respectively.
EphrinB3-Fc stimulation causes the outgrowth of numerous filopodia-like processes (D and F,
arrows). In parallel, dendrites retract and appear simpler (asterisk in E and F indicates the 
retraction of a dendrite). On the other hand, the Fc-stimulated neuron (A and B) is much more
dynamic and displayed a higher turnover of branching and process outgrowth. Nevertheless, the
number of filopodia stays unchanged overtime (exposure: 100 msec) (3DIV+2 after transfection) 
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Figure 6.27. Live imaging of EGFP/EGFP- C208 transfected hippocampal neurons upon
long term stimulation with Fc (A and B) and ephrinB3-Fc (C and D). E and F show detail
magnification of figures C and D respectively. Both neurons show a high number of filopodia-
like processes already before stimulation with ephrinB3-Fc or Fc and no major differences are
observed after 17 hours (E and F, arrows). Both neurons have a simple dendritic morphology
(exposure: 100 msec), (3DIV+2 after transfection). 
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6 5 -Catenin and HeLa cell migration

The nature and strength of cell junctions is a parameter that directly influences the

motility of cells; tighter junctions favour a compact and packed multicellular organization

and weaker junctions favour the detachment and motility of the cells. It has been shown 

that a switch in cadherin subtypes in the adherens junctions, for example, has important

developmental effects: during neurulation, some ectodermal cells change cadherin 

expression from E- to N-cadherin and the shift allows neural precursor cells to segregate

from other cells derived from the ectoderm. Subsequently, neural crest cells, which

down-regulate N-Cadherin expression, migrate from the dorsal ectoderm to specific 

locations in different germ layers (Hatta et al., 1987). The intracellular domains of 

Cadherins and specifically the juxtamembrane region appear to be crucial in the 

regulation of junction strength, in fact, in the case of E-Cadherin, it has been shown that 

the juxtamembrane region negatively regulates adhesion by preventing lateral 

dimerization of the Cadherin extracellular domain (Ozawa and Kemler, 1998). A switch 

in the intracellular components of the plaque may also influences the properties of the 

junctions in response to extracellular cues could be a key mechanism through which 

changes in cell motility are accomplished. For example, it has been shown that the 

activation of Wnt signalling leads to the dissociation of Catenin from N-cadherin 

influencing cell motility (Polakis, 2000 and Bienz et al., 2000) -Catenin binds to the 

juxtamembrane region of Cadherins and is a component of the adherens junction. Its 

ectopic expression in MDCK cells has been shown to influence the response of the cells 

to HGF stimulation, markedly increasing the already documented cell scattering (Lu et al., 

1999). Eph-ephrin signalling has also been shown to be important in the regulation of 

adhesive properties and in cell migration with somewhat different effects according to the 

system used the Eph-ephrin subtypes. In order to investigate a possible role of -Catenin

in a system in which cellular migratory properties are regulated by Eph-ephrin signalling, 

-Catenin or C208 constructs where co-transfected with EphA4 in He La cells and the

migratory properties of the cells in response to ephrin stimulation
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were studied. A two-chamber system was used (see figure 6.28); cells were transfected

and seeded in the upper chamber on a porous membrane that separates the upper chamber

and the lower chamber. The surface of the membrane on the lower chamber side is priory 

treated with a ligand (Fc as a control or ephrinB3-Fc). Cells migrate from the upper 

chamber to the lower chamber in response to (or independently from) the cue present on 

the other side of the membrane. The membranes are then fixed and cells are counted on 

both sides of the membrane (they can be visualized with fluorescent dyes of by their own 

fluoresce i.e. if they express EGFP). Ratios between migrated and non migrated cells 

indicate migratory properties. 

Upper

Upper

Lower
chamber

Lower

Fig 6.28 Diagram illustrating the two chamber system used in migration assays.
Cells are grown on a porous membrane that separates an upper and lower chamber. The lower
chamber side of the membrane is pre-treated with the molecule whose effect on migratory
properties of the cells is to be tested. The cells are allowed to migrate for an interval of time and
then the filter is fixed. Cells are counted on both sides of the membrane and migration ratios are 
calculated.

In the following experiments EGFP-only and EGFP/EphA4 transfected cells were used 

as a control. The EGFP construct was used in order to fluorescently visualize the control 

cells. EGFP- -Catenin and EGFP- C208 constructs were both co-transfected with 

EphA4. Each transfectant was allowed to migrate for 17 hours in low serum and in the

presence of Fc or ephrinB3, the membrane were fixed and the cells were coun- 
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ted. The experiments were done in triplicate and cells from 5 different sections of each

membrane were counted and plotted as percentage of migrated cells which indicates the 

number of cells counted on the filter of the low chamber against the total number of cells 

counted between the upper and the lower chamber. An aliquot of the transfected cells was 

seeded in parallel on glass coverslips and changes in EGFP fluorescence in response to

Fc or ephrinB3 stimulation can be seen in figure 6.9

Nearly 65% of EGFP-expressing cells migrate through the membrane independently of 

the stimulus applied. HeLa cells do not express EphA4 endogenously. This parameter

indicates the migratory properties of HeLa cells in the system used, and was used as a 

control (figure 6.29 and 6.9 A and B)

Cells co-expressing EGFP and EphA4 migrated at a ratio of approximately 65% in 

presence of Fc. In presence of ephrinB3-Fc the number of migrated cells increases

significantly to 86%. The stimulation with ephrinB3-Fc therefore has the effect of 

increasing the migration rates of approximately 20% (figure 6.29 and 6.9 C and D).

Approximately 78% of cells co-expressing EGFP- -Catenin and EphA4 migrate through 

the filter in the presence of Fc. The figure decreases significantly though when ephrinB3-

Fc is present; in this case only 51% of the cells migrate (figure 6.29 and figure 6.9 E and

F). The presence of -Catenin in the system has the effect of decreasing cell motility but 

the effect is only detectable upon stimulation with ephrinB3. This effect correlates with 

the redistribution of EGFP- -Catenin in the cells upon stimulation with ephrinB3 (figure

6.9 E and F), shifting from a smooth and homogeneous distribution in the control to a 

markedly irregular and aggregated one.

Cells co-expressing EGFP- C208 and EphA4 appear to be unresponsive to ephrinB3-Fc 

stimulation. The percentage of migrated cells ranges in this case between 58 and 55%

(figure 6.29). Interestingly and similarly to the previous case, both Fc and ephrinB3-Fc 

treated cells show aggregates of EGFP- C208 (figure 6.9 G and H).

These results suggest a possible interaction of -Catenin and Eph-ephrin signalling in 

regulating cell migration. The expression of -Catenin alone, differently from what was 

previously seen in hippocampal neurons, has no major effect. Only in the presence of 
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ephrinB3-Fc does the presence of -Catenin affect migratory properties of the cells. The 

presence  of the functionally  inactive C208 mutant does not affect mi-

gration properties of the cells. Interestingly, the EGFP- C208/EphA4 co-transfectants 

share a similar aggregated pattern of EGFP fluorescence with the EGFP- -

Catenin/EphA4 co-transfectants in the presence of ephrinB3. 

Figure 6.29. Co-expression of -Catenin and EphA4 influences migratory properties of 
HeLa cells upon stimulation with ephrinB3-Fc. Percentage of migrated cells is expressed as the
ratio between migrated cells versus the total number of cells seeded. EGFP control transfectants
(N) migrate at a rate of 65% and 70% upon treatment of the filter with Fc or ephrinB3-Fc 
respectively. The difference is not significant. EGFP/EphA4 co-transfectants (EphA4) show a
significant (p<0.05) 20% increase in migratory properties in the presence of ephrinB3-Fc. 
EphA4/EGFP- -Catenin co-transfectants (EphA4/ -Catenin) show a markedly different response 
to ephrinB3-Fc stimulation, appearing significantly less motile than the respective Fc treated
control (P<0.05). EphA4/ EGFP- C208 co-transfectants (EphA4/ C208) show no response to
ephrinB3 stimulation and their migratory properties are comparable to those of control cells. 
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7. DISCUSSION
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Dendrites are, together with axons, distinctive structural features of neurons. They are 

primary sites for synaptic contact and therefore the proper development of the dendritic 

arbor is crucial to neuronal circuit formation and synaptic input processing in the nervous 

system. Although many proteins have been identified as regulators of dendritic 

morphogenesis, much remains to be elucidated about its molecular mechanism. -Catenin

seemed to be an interesting candidate in the study of dendritic morphogenesis as it is a 

nervous system specific protein and, even if originally found as a component of the 

intracellular cadherin-catenin adherens junction plaque, it also distributes to neuronal 

processes and plays a role in the establishment of dendritic complexity. Its activity 

appears to be closely correlated with cytoskeletal processes and in particular with actin

dynamics. This is in accordance with recent data showing that other members of the Arm 

repeat family involved in the formation of cellular junctions like -Catenin, also play an 

important role in dendritic morphogenesis (Yu and Malenka, 2003 ). 

The aim of this project was to find a link between Eph-ephrin signaling and -Catenin

cellular function and demonstrate that Eph and ephrin, together with mediating several 

well characterized cellular effects, could also play a role in the complex events that lead 

to the correct development of the dendritic tree. The hypothesis for such a link initially 

arose as -Catenin mRNA and protein levels were found to be up-regulated in cortical 

neuron cultures in response to activation of Eph-ephrin signaling, in microarray

experiments and Western blots respectively. The up-regulation of -Catenin followed the 

activation of both Eph-forward and ephrin-reverse signaling, suggesting that -Catenin is 

involved in the cellular response to both stimuli. It has been shown that the over-

expression of -Catenin in hippocampal neurons promotes dendritic complexity, favors

dendrite branching and increases dendritic length (Kim et al., 2002; Martinez et al., 2003). 

Conversely, neurons expressing a truncated form of -Catenin with dominant negative 

activity, or neurons treated with RNA interference in order to specifically knock down -

Catenin levels in the cells, all led to a marked simplification of the dendritic tree (Kim et 

al., 2002; Jones and Lu, personal communication). A signal that induced the up-

regulation  of -Catenin in neurons,  like the activation  of  Eph-ephrin, would
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herefore have the predictable effect of instructing neurons to increase their dendritic

complexity.

The interaction between Eph-ephrin signaling and -Catenin though, proved to be more

complex than just a variation in gene expression levels, as endogenous -Catenin turned

out to also be phosphorylated in response to ephrinB stimulation of cortical neuron 

cultures. Phosphorylation of cell junction molecules is a common event in the cell but the 

significance of these events is still not completely understood. -Catenin highly

homologous protein p120ctn is a prominent target of both non-receptor and receptor

tyrosine kinases (Daniel and Reynolds, 1997) and -Catenin too can be phosphorylated 

upon activation of the Wnt pathway. -Catenin itself has been found to be a substrate of 

cAbl non receptor tyrosine kinase; the phosphorylation could be induced by the treatment

with H2O2 (Lu et al., 2002) but no physiological stimulus has so far been shown to induce 

tyrosine phosphorylation in -Catenin. The phosphorylation of -Catenin induced by

ephrinB is therefore a novel phenomenon, and it reinforces the idea that the molecule

may mediate more complex events in the cell than just structural functions, taking part, 

for example in signaling cascades. -Catenin phosphorylation shows long term dynamics,

it appears first around 30 minutes after stimulation and is then sustained for at least 24 

hours. The most interesting aspect that emerges from the phosphorylation data is that the 

phosphorylation of -Catenin is an event specifically downstream of the activation of 

Eph-forward signaling. Activation of ephrin-reverse signaling (i.e. stimulation with 

clustered forms of Eph receptor) resulted in the above mentioned induction of -Catenin

protein levels but it did not affect the phosphorylation state of the molecule. This

suggests a different involvement of -Catenin in the two responses; in one case the 

increase in protein levels is accompanied by a second and more complex event, in the 

other, the response appears to be simpler.

As mentioned before, the over-expression of -Catenin in neurons has the effect of 

complicating dendritic architecture, favoring the development of dendritic branches and 

increasing dendritic length. The effect is most likely dependent on the unphosphorylated 

form of -Catenin, as it has been shown that the phenotype produced by the over-
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expression is dependent on the interaction of unphosphorylated -Catenin with cortactin,

which, as a complex with Arp2/3 induce local actin polymerization events (Martinez et 

al., 2003). An increase  in   the levels  of  endogenous  (unphosphorylated) -Catenin,

induced   by   reverse signaling, may therefore have the meaning to instruct neurons to 

locally increase their dendritic complexity. On the other hand, it has also been shown that 

the phosphorylation of -Catenin causes the complex with cortactin to disassemble,

resulting in the disengagement of Arp2/3 and subsequently in the arrest of actin

polymerization activity. Activation of the forward signaling therefore has the apparently 

contradictory double effect of inducing the synthesis of new -Catenin and at the same

time to phosphorylate it. The contradiction arises from the fact that an increase of 

unphosphorylated -Catenin goes in the direction of higher complexity via the synthesis 

of actin filaments whereas -Catenin phosphorylation goes in the opposite direction, that

is, towards a decrease in complexity due to the disruption of its complex with cortactin 

and Arp2/3. This observation could be explained by extrapolating to a more physiological 

context: i.e. during the development and guidance of a dendritic branch. Upon encounter 

of the branch with ephrinB, the phosphorylation of endogenous -Catenin may have the 

early effect of temporarily deactivating actin polymerization in order to immediately stop 

process growth or to mediate a repulsive response. The synthesis of new -Catenin

protein is a later effect meant to “re-start” dendrite branching (perhaps in a different 

direction) when the repulsive cue subsides and to thus close the loop (see figure 7.1).

Such a repulsive response mediated by ephrin cues has been well characterized in axonal 

growth cone collapse and its involvement in dendritic guidance could also be possible. 

Interestingly, under certain circumstances ephrin reverse signaling has opposite effects, 

rather working as an attractant than as a repellent. This would correlate with the absence

of -Catenin phosphorylation in EphB-stimulated neurons and with the increase in 

dendritic complexity in neurons over-expressing the protein, or in neurons in which -

Catenin expression is up-regulated, as in the case of EphB stimulation. 
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Figure 7.1. Differential engagement of -Catenin in Eph-forward and ephrin-reverse
signaling. -Catenin forms a complex with cortactin and Arp2/3 and positively regulates actin
polymerization. Activation of Eph-receptor leads to -Catenin phosphorylation and to the
disassembly of the complex, resulting in a local inhibition of actin polymerization. The activation 
of Eph receptor also has the effect to promote -Catenin transcription and increase the pool of
unphosphorylated -Catenin. This contributes to the formation of new -Catenin/cortactin/Arp2/3
complexes so that the signalling loop is closed. Ephrin activation has no effect on -Catenin
phosphorylation but it promotes -Catenin synthesis, enriching the cellular pool of 
unphosphorylated -Catenin and enhancing actin polymerization.

A very interesting phenomenon observed upon transfection of neurons with fluorescently 

tagged -Catenin is the formation of tiny fluorescent protein aggregates upon stimulation

with ephrinB. The formation of -Catenin aggregates is an Eph-forward specific effect as 

the activation of ephrin-reverse signaling does not induce the formation of aggregates; 

this is in accordance with the phosphorylation dynamics of -Catenin so that the 

formation of aggregates in response of activation of Eph-ephrin seems to be closely 

correlated. The recruitment to Eph of various factors, kinases and adaptor proteins is a 
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well known and documented phenomenon that follows the activation of the receptor. Put

together, the experimental information presented so far suggests a possible mechanism

involving the phosphorylation  and sequestration  of  endogenous -Catenin  by the

activated Eph receptor, forming aggregates, so that -Catenin may not be able to bind its 

cellular partner cortactin and therefore promote actin polymerization. In support of this

hypothesis is the fact that -Catenin and Eph receptor do physically interact in neurons 

and cell lines as it was shown in co-immunoprecipitation experiments. Additionally -

Catenin aggregates co-localize with Eph receptor clusters induced by the stimulation with

ephrinB. The two events happen simultaneously but differ slightly, being Eph-receptor 

cluster formation a somewhat earlier event than -Catenin aggregate formation, this in 

accordance with the fact that -Catenin phosphorylation and recruitment to the membrane

is an effect mediated by the activated Eph receptor. Activation of Eph-ephrin and the 

changes in cytoskeletal dynamics in the direction of process collapse and repulsion are 

well studied. At the molecular level most of the already known mechanisms involve the 

Rho family of GTPases. In general, activation of Eph signaling leads to the inhibition of 

Rac and Cdc42. On the other end, the activation of GEF Ephexin favors RhoA-dependent 

signalling (Wahl et al., 2000; Shamah et al., 2001). An increase in the activity of RhoA 

has the well documented detrimental effect on the actin cytoskeleton, blocking 

polymerization of new actin and promoting the disassembly of existing filaments. The

decrease in Rac and Cdc42 activity also has a detrimental effect on actin dynamics.

Overall, the repression of Rac and Cdc42 pathways and the activation of RhoA play a 

crucial role in Eph-ephrin-mediated repulsive and retractive responses. The activity of -

Catenin and its phosphorylation-dependent negative effect on actin polymerization could 

synergistically work (and perhaps even physically interact) with the signaling cascade 

that leads to the activation of RhoA, and subsequently to actin cytoskeleton disassembly 

(see figure 7.2)
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Figure 7.2. -Catenin as a new effector in Eph-forward signaling. The activation of Eph 
receptor mediates well described cellular responses like process retraction and cellular repulsion 
by negatively influencing cytoskeletal dynamics. Activation of Eph receptors leads, through 
ephexin, to the activation of RhoA which in turn has detrimental effects on cytoskeletal structures.
The effect is enhanced by the repression of other factors like Rac and Cdc42 which normally have
the opposite role of activating cytoskeletal dynamics. The phosphorylation of -Catenin following 
the activation of Eph receptor also negatively influences cytoskeletal dynamics by blocking actin 
polymerization, possibly interacting with the RhoA signalling pathway.

The morphological study of dendritic trees of hippocampal neurons was intended to shed 

some more light on the biochemical interaction between -Catenin and Eph-ephrin 

signaling in determining cytoskeletal dynamics in neurons. For this purpose and analysis, 

three main groups of neurons were chosen: control, in which both -Catenin and Eph 

receptor are involved as endogenous proteins; neurons over-expressing -Catenin; and 

130



neurons with no functional -Catenin because of the concomitant expression of a 

dominant negative version of the molecule.

Relatively young neurons were chosen in the analysis because of the importance of 

dendritic differentiation in the study. Long stimulation times were chosen based on the 

observation that the effects induced on neurons where stronger and more clearly 

visualized in a 24h time frame, thus selecting also for late effects of stimulation. By 

comparison of the response of the three classes of neurons to ephrin stimulation it was 

possible to draw some interesting conclusions. 

For clarity it is necessary to keep the two main parameters defining dendritic complexity

separate: dendritic branching on one side and primary dendrite outgrowth on the other. 

The two developmental events are regulated differently (as mentioned before, dendritic 

branching is mediated by Rac/Cdc42 while outgrowth is a RhoA-dependent process) and 

in fact the presence of functional -Catenin or its absence has different effects on them. 

Control neurons respond to ephrin stimulation by decreasing the degree of

branching. Primary dendrite outgrowth on the other hand is mostly unaffected. 

Neurons over-expressing -Catenin show an overall increase in dendritic 

complexity. Upon stimulation with ephrin a similar effect as in control neurons is 

observed, albeit much more pronounced: dendrite branching is decreased greatly 

whereas primary dendrite outgrowth is mildly reduced. 

Neurons lacking functional -Catenin are refractory to ephrin stimulation. They 

display a very scarcely branched dendritic arbor. Interestingly though, the 

outgrowth of primary dendrites is highly enhanced and is several magnitudes

higher than in control neurons or neurons over-expressing -Catenin.

These observations hint to a scenario in which -Catenin is doubly implicated in 

controlling dendritic branching and dendrite outgrowth. The two mechanisms are in fact 

in an equilibrium which shifts to one side or another according to the specific 

requirements of a neuron. In some physiological contexts, for example under the 
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influence of an extracellular signal “A”, it is necessary for the cell to expand and branch 

its dendritic tree. In other cases for example under the influence of a signal “B” the

neurons is instructed to arrest dendritic branching and rather trigger the outgrowth of new 

primary dendrites, possibly in a different direction. These shifts in the equilibrium find 

their molecular basis in the fact that the effects of Rac1 and Cdc42 on dendritic branching

and the effects of RhoA on dendrite outgrowth are alternative and opposed to each other. 

A stimulus that positively activates Rac1 and Cdc42, negatively influences RhoA activity 

and vice versa. As mentioned before, it has been shown that the activation of EphBs 

represses Rac1 and Cdc42 activity and positively regulates RhoA activity, thus promoting

actin disassembly and repulsive responses. In this respect, -Catenin could be a link 

between Eph-ephrin signaling and Rho GTPases-mediated changes in the actin

cytoskeleton. The role of -Catenin in influencing the equilibrium between dendritic

branching and outgrowth could depend on the two different forms of the molecule.

Unphosphorylated -Catenin acts as a dendrite branching promoting factor. The

phosphorylated and clustered -Catenin, in response to Eph activation, is not able to carry

out its branch promoting activity. At the same time the aggregation and phosphorylation 

of -Catenin removes a blockade to the outgrowth of new primary processes, finally 

favoring outgrowth against dendritic branching. This is supported by the fact that in the 

absence of functional -Catenin neurons appear to be scarcely branched but with a very 

high number of primary dendrites. In this case the equilibrium is shifted towards primary

dendrite outgrowth.

The use of C208 deletion mutant of -Catenin though, still leaves some open questions. 

The deletion mutant of the 208 COOH terminal amino acids of -Catenin is not able to 

form a complex with cortactin and furthermore it has been described to sequester wild 

type -Catenin and prevent it from exerting its function (Kim et al., 2002); therefore the

mutant has been described as a dominant negative and its over-expression results in the 

above mentioned phenotype. The phosphorylation data in the result section, on the other 

hand, show that C208 is only weakly phosphorylated by the Eph receptor, partly 

because the tyrosine residues which are targets of Eph mediated phosphorylation lie in

the C terminus of the molecule, and partly because the mutant is expressed less
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efficiently than the full length protein. Whether the effect on dendritic architecture is due

to the dominant negative activity of C208 or rather to the fact that the mutant has a 

possible effect of its own, i.e. due to its compromised role in signaling, is still not clear.

The conclusion is that a functionally inactive form of -Catenin promotes dendritic 

outgrowth and clearly blocks dendritic branching (see figure 7.3).

Figure 7.3. The role of -Catenin phosphorylation in the equilibrium between dendrite
branching and dendrite outgrowth. The state of -Catenin phosphorylation regulates the
equilibrium between dendrite branching and dendrite outgrowth: a prevalence of
unphosphorylated -Catenin favors branching while a prevalence of phosphorylated -Catenin
favors outgrowth. The factors that may help shift the balance towards the unphosphorylated form
are BDNF and NGF but also clustered EphB which has been shown to induce new -Catenin
synthesis. Rac1 and Cdc42 pathways may interact to promote dendrite branching. The factors that
favor the phosphorylated form include clustered ephrin. The phosphorylated form of -Catenin
promotes dendrite outgrowth and at the same time inhibits dendrite branching, acting as both an
activator and a repressor, possibly with RhoA as a signaling partner. Cells expressing the C208
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mutant seem to lack the dynamic branching/outgrowth equilibrium which is permanently shifted
towards dendrite outgrowth independently of the extracellular stimulus applied. 

BDNF and NGF also have interesting effects on the three categories of neurons. Control 

neurons stimulated with BDNF and NGF increase all parameters of dendritic complexity

very much resembling neurons over-expressing -Catenin (before stimulation with 

ephrinB). Neurons over-expressing -Catenin on the other hand show no further increase 

in their already high dendritic complexity when BDNF or NGF are added. This may hint 

to the fact that over-expressing neurons have already reached the highest degree of 

dendritic complexity, or, more intriguingly that the effect of high levels of 

unphosphorylated -Catenin in the cell is equivalent to the stimulation of control neurons 

with BDNF or NGF, or, in other words, that  BDNF   and   NGF   could   work  in   the

same  pathway   and  be  above  hypothesized  fact or “A” that promotes

unphosphorylated -Catenin-mediated dendritic branching. Another interesting 

observation comes from neurons expressing the non functional form of -Catenin. In this 

case, the neuronal phenotype, which consists in a simplified dendritic tree, is rescued and

dendrites increase their branching upon stimulation with BDNF or NGF. This hints to the 

fact that -Catenin may be dispensable downstream of BDNF and NGF and that, at least 

in part, other molecular mechanisms control dendritic branching. Interestingly though, 

they have no additional positive effect on the number of primary dendrites and on the 

massive outgrowth visible in C208 transfectants, confirming the process to be a 

phenotype generated by inactive -Catenin (see figure 7.3).

Parallel to the analysis of dendritic architecture, the results from the study of filopodial 

density in the three classes of neurons upon stimulation with ephrin, BDNF or NGF, add 

more complexity to the story. It has previously been shown that Eph-ephrin signaling is 

important for the generation and maintenance of spines (Irie and Yamaguchi 2002; 

Penzes et al. 2003). On the other hand the correlation between filopodial processes in 

young neurons and spines in adult neurons is not yet clear. If the hypothesis according to 

which a filopodium is a precursor of a spine is true, an increase in the number of 

filopodia upon a certain stimulus would mean that the neuron is instructed to generate 
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more spines. On the other hand, if filopodia formation and spinogenesis are unrelated 

processes, a stimulus that increases filopodia numbers may shift the equilibrium towards

the filopodia with the final effect that the neurons develops less spines. At the molecular

level, once more, Rho GTPases appear to have a major role in the formation of filopodia. 

Activation of Rac1 and Cdc42 pathways has been shown to positively influence spine

formation. On the other hand mutants of important downstream effectors of Rac1 and 

Cdc42 like N-WASP, intersectin-1 and Cdc42 itself seem to inhibit spine formation and

instead increase filopodia (Tashiro et al., 2000; Nakayama et al., 2000; Irie and 

Yamaguchi 2002; Pilpel and Segal 2004). This is consistent with the hypothesis that 

filopodia and spines indeed are two unrelated forms of fine dendritic processes, each with 

distinct cellular functions. The results presented in this thesis show that control neurons 

highly increase the number of filopodia upon long term stimulation with ephrin. Whether

the effects will result in an increase of spine numbers or an overall decrease is not 

possible to say at this stage. The effect seems to be specific for ephrin treatment as BDNF 

and NGF have no effect on filopodial density. Filopodia also increase in neurons over-

expressing -Catenin when they are stimulated with ephrin. -Catenin over-expression 

alone though, already has the effect of increasing filopodial density if compared to 

control neurons; this suggests that -Catenin up-regulation (in an unphosphorylated form),

together with promoting dendritic branching, also promotes filopodia formation. As 

mentioned before, the major mechanism leading to dendritic branching is the so called 

“interstitial branching” where a branch arises laterally from the dendritic shaft as a small

filopodium-like process, then it stabilizes and elongates. The increase in the number of 

filopodia could therefore be part of that late event induced by ephrin stimulation that 

leads to the restoration of dendritic complexity after the repulsive extracellular signal has

exerted its effect. The newly generated filopodia could therefore represent the “sensing” 

organs of the dendritic tree, and the points from where the new branching, perhaps in a 

different direction, will take place. Another interesting observation comes from the 

filopodial analysis of C208 mutant. Filopodial density is in this case very high and not 

influenced by any of the stimuli applied. The filopodial phenotype of C208 partially 

resembles that of control and -Catenin neurons when stimulated with ephrinB. Since 

C208 is a dominant negative/inactive form of -Catenin, neurons lack the actin 
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promoting activity of unphosphorylated -Catenin and the potentially counteracting 

effects of phosphorylated -Catenin. There are two possible explanations for the 

phenotypes observed: first, the effects are due to the absence of -Catenin (because of the 

expression of the dominant negative mutant); second, the dominant negative mutant does 

not just act as a dominant negative, but it has effects of its own. More precisely, the

effects of the C208 mutant on dendritic architecture and filopodial formation may be

due to the deletion of the tyrosine-rich C terminal portion of the molecule, where Eph 

receptor-mediated phosphorylation likely takes place and not only to the physical

sequestration of endogenous -Catenin. The signaling-deficient -Catenin would then be

responsible for the phenotypes observed. To distinguish between these two scenarios, the 

employment of RNAi knock-down experiments would be required. 

The stimulation with BDNF and NGF could partially rescue the effect of C208 on 

dendritic architecture, but the two growth factors showed no effect on filopodial 

dynamics. On the other hand, such an effect would not be expected since the application 

of BDNF and NGF does not have any influence in promoting filopodial outgrowth in 

control neurons. If filopodia are an intermediate for dendrite branching, then the BDNF 

and NGF induction of branching may also follow different pathways and signaling 

machineries.

Eph-ephrin signalling has been shown to be important in the regulation of adhesive

properties and in cell migration with somewhat different effects according to the system

used the Eph-ephrin subtypes. The two chambers migration assay gives another example 

of the functional interaction between -Catenin and Eph-ephrin signaling although the

data still do not allow drawing definitive conclusions. The co-expression of -Catenin

and EphA4 in HeLa cells has no effect on cell migration until cells are stimulated with 

ephrinB3. In this case they markedly decrease their motility and migrate approximately

30% less efficiently than the control cells. The use of the C208 construct in the presence

of EphA4 has no effect on migratory properties of the cells. The phosphorylation state of 

-Catenin and the formation of aggregates may again provide an explanation for these 

results. In cells co-expressing -Catenin and EphA4 the distribution of -Catenin

fluorescence markedly changes upon stimulation with ephrinB3, leading to the formation
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of aggregates. The phosphorylation state of -Catenin was not determined in the cells 

used for the migration assays; on the other hand, as it was shown before, the 

phosphorylation state of the molecule is correlated with the number of its aggregates and 

vice versa. In these cells, activation of the receptor may lead to phosphorylation, 

aggregation and sequestering of -Catenin. This, in accordance with what was observed 

in neurons, could possibly negatively influence cytoskeletal dynamics making cells less 

motile. In this case then, -Catenin may act as a repressor of migration when present in

the phosphorylated form. Differently from neurons, its unphosphorylated form does not

seem to have a specific effect. The data derived from C208 and EphA4 co-transfectants 

are consistent with this idea. In this case migratory properties are not influenced by 

ephrinB3 stimulation. Interestingly though, the distribution of C208 fluorescence also 

shows an aggregated pattern in both control and stimulated cells. C208 is a non 

functional version of -Catenin which most likely lacks key residues implicated in the 

regulation of the phosphorylation state of the molecule. Its aggregates form 

independently of any stimulus. HeLa cells with clustered C208 therefore migrate as if 

no -Catenin were present in the cells, as the activity of the full length protein is

dependent on the fine regulation of its phosphorylation state and aggregation. Another 

hypothesis could be that C208 does indeed behave as the clustered/phosphorylated -

Catenin in repressing cell migration. What argues against this hypothesis is the fact that 

migration rates of C208/EphA4 co-transfectants are slightly but not significantly lower

than those of control cells. 

Taken together the experimental data presented in this thesis propose -Catenin as a 

novel interactor of Eph-ephrin signaling, involved in mediating cytoskeletal responses 

upon activation of the signaling cascade. A few points require further investigation. It is 

still not clear if the biochemical interaction between -Catenin and EphA4 is direct or

indirect. In the case of a direct interaction, still to be determined are the domains involved

in both -Catenin and EphA4 sequences.  In the case of -Catenin phosphorylation, it is 

also not clear which residues are involved, even if the data shown suggest that they may

be concentrated near the COOH terminus of the molecule. The analysis of the 
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phosphorylatable tyrosine residues via the generation i.e. of deletion mutants proved to be 

difficult due to the high number of potentially important residues and their concentration 

in a relatively short sequence of -Catenin structure. This is in accordance with other 

members of the Arm family; -Catenin stability and association with cadherins, for

example, are highly regulated through multiple phosphorylation sites (Polakis et al., 2000; 

Bienz et al., 2000; Roura et al., 1999; Murase et al., 2002).

The role of the up-regulation of endogenous -Catenin in the context of dendritogenesis 

is still in apparent contradiction with the local effect that ephrin stimulation has on 

neurons. For this reason it would be important to find an extracellular cue capable of 

increasing dendritic complexity mediated by -Catenin but that at the same time keeps 

the phosphorylation state of the molecule unchanged, or, in other words, a signal that 

shifts the equilibrium towards the unphosphorylated state of -Catenin, increasing its

activity in promoting dendritic branching. Natural candidates are BDNF and NGF but 

their effects on -Catenin expression and protein levels and on -Catenin phosphorylation 

still need to be tested before the two growth factors can be associated with -Catenin

activity. An important control will also include EphB-Fc as a stimulus in the Sholl

analysis of dendritic complexity. EphB-Fc stimulation induces -Catenin expression and 

protein levels but does not lead to -Catenin phosphorylation and aggregation. If the 

equilibrium model hypothesized before were correct, activation of reverse signaling 

should   positively  regulate  dendritic   branching  by  enriching  the  pool  of 

unphosphorylated -Catenin. Preliminary data show that both control and -Catenin over-

expressing hippocampal neurons stimulated with Eph-Fc for 24 hours indeed seem to 

increase their dendritic complexity (data not shown). 

Finally, further experiments need to be done in order to shed more light on the role of -

Catenin and Eph-ephrin signaling in HeLa cell migration. Also in this case it would be 

interesting to evaluate the role of ephrin-reverse signaling by using -Catenin/ephrin co-

transfectants and stimulate with clustered Eph.
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7.1 Outlook

A potentially interesting yet unexplored field is the role of -Catenin in regulating gene 

transcription. Other members of the Arm family with important structural roles in the cell 

junction and in dendritic development like -Catenin have also been shown to influence 

gene transcription. Upon activation of the Wnt pathway, -Catenin changes its 

intracellular distribution and migrates from the cell junction to the nucleus. Interestingly,

recent data (Yu and Malenka, 2003) indicate that the intracellular re-localization of -

Catenin from the cell junction to the nucleus is also important for the modulation of -

Catenin mediated effect on dendrite branching. The study suggests that -Catenin bound 

to Cadherins is required for dendritic outgrowth and a cue diverting -Catenin from its 

normal distribution negatively influences the branching. Conversely, all manipulations

that enhance dendritic branching can be effectively blocked by sequestering intracellular 

-Catenin. This information nicely fits with the hypothesis of the sequestration of -

Catenin by the activated Eph receptor and the subsequent decrease of dendritic branching. 

Whether phosphorylated -Catenin once re-localized is able, like -Catenin, to migrate to

the nucleus and have any activity in gene transcription is not known. Like -Catenin

though, -Catenin has a nuclear localization sequence in its molecular structure,

suggesting that indeed the two molecules could share more than just a few functional 

analogies.

-Catenin KO mice have recently been described in Israely et al., 2004. Although KO 

mice appear to be viable and fertile and they do not show any major defect in CNS 

morphology so far  identified,  they  have   severe  but  specific  learning,  synaptic 

plasticity,  and  synaptic composition deficits that cannot be compensated for by other 

catenin family members in the brain, such as p120ctn or -Catenin. This suggests a 

critical and specific role for -Catenin in experience-dependent synaptic modifications

and cognitive function. Given the implication of Eph-ephrin signalling in synaptic 

plasticity and synapse formation, the study of the relationship between -Catenin and 

Eph-ephrin in this field could prove to be quite interesting.
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8. MATERIALS AND METHODS 
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8. 1 Buffers and solutions

10X PBS                                                        1.3M NaCl 

      70mM Na2HPO4

      30mM NaH2PO4, pH 7.2 

TE buffer     10mM Tris/HCl

      1mM EDTA, pH 8

50X TAE     2M Tris-Acetate

      50mM EDTA

20XSSC     3M NaCl

      0.3M NaCitrate, pH 7.5/4.5

1X MOPS     0.418% MOPS

      2mM Na-Acetate

      1mM EDTA pH 8

RNA loading buffer    13.4% formamide

      4.4% of 37% formaldehyde

      80ug Blue Bromophenol

      1X MOPS

5X Denhardt solution 1% Ficoll 400 

      1% polyvinylpirrolidone

      1% BSA

H2O

Microarray hybridization buffer 50% formaldehyde
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      6X SSC

0.5% SDS 

      5X Denhardt solution

In situ pre-hybridization solution 50% formamide

      5X SSC pH4.5

      0.1% tween 20

      0.5% CHAPS

      2% blocking reagent

      50 g/ml tRNA 

      50 g/ml heparin 

      5mM EDTA pH 8.1

In situ hybridization buffer 0.19M NaCl 

      10mM Tris pH7.2

      5mM NaH2PO4*2H2O

      50% formamide

      10% dextrane sulphate

      1mg/ml Yeast rRNA

      1X Denhardt solution

In situ washing buffer    50% formamide

      2X SSC

      0.1% tween 20

8.2 Media and antibiotics for bacterial culture

142



LB (Luria-Bertani-) medium 10g Bacto-Trypton

      5g Yeast extract

      5g NaCl

      add H2O to 1l, adjust pH to 7.5 

LB plates     supplement with 15g/l agar

Antibiotics     diluted 1:1000

Ampicillin     Stock 100mg/ml inH2O

Kanamycinsulfate Stock 50mg/l in H2O

8.3 Bacterial strains

DH5      supE44 lacU169 ( 80 lacZ M15)
hsdR17

recA1 endA1 gyrA96 thi-1 relA1

K12 (dam minus) supE44 lacU169 ( 80 lacZ M15)
hsdR17

recA1 endA1 gyrA96 thi-1 relA1

8.4 Media and supplements for tissue culture

DMEM m (Invitrogen)

media) Calf serum/ Foetal bovine serum 0.292mg/ml L-

glutamine, 100U/ml penicillin, 100μg/ml streptomycin 

418

100U/ml penicillin, 100μg/ml streptomycin, 350μg/ml

geneticin sulfate (G418). 

Dulbecco’s Modified Eagle mediu

Supplemented with 10% (0.5% or 0.25% for starving 

DMEM CS G DMEM, 10% Calf serum, 0.292mg/ml L-glutamine, 
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DMEM FBS G418

Glutamine, 100U/ml Penicillin, 100μg/ml Streptomycin,

350μg/ml geneticin sulfate (G418). 

DMEM, 10% Foetal bovine serum, 0.292mg/ml L-

8.5 Media and supplements for primary culture of neurons

Neurobasal medium/B27 500ml of neurobasal medium (Invitrogen) were supplemented with 10ml of B27 

supplement (Invitrogen).

MEM Minimal essential medium (Invitrogen)

N-MEM MEM, 0.6% glucose, 110μg/ml pyruvic acid, 0.292mg/ml L-glutamine

N2 supplement MEM containing: Insulin (500μg/l), human transferrin (10mg/l), progesterone (0.63μg/l),

putrescin (1611μg/l), selenite (0.52μg/l).

N2-MEM N-MEM, 10%N2, 0.1g/ml chicken egg albumin.

HS-MEM MEM, 10% HS, 0.6% glucose, 0.292mg/ml L-glutamine.

Borate Buffer 1.24g boric acid, 1.9g Borax ad 400ml H2O, pH8.5.

HBSS 500ml of Hank’s buffered salt solution (Invitrogen) were supplemented to final

concentrations of 100U/ml penicillin, 100μg/ml streptomycin and with 3.5ml 1M HEPES 

(pH7.2) and 3.5ml 1M MgCl2 when used as a dissection medium.

8.6 Cell lines

NIH3T3
uibbs)

lasts CS

from kidney 
BS

(Bristol Mayer Sq
Mouse fibrob DMEM

COS Simian fibroblasts derived DMEM F
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PC12
ells

BS

eLa Human cervix carcinoma 
cells

DMEM FBS 

s for cell transfection

Rat adrenal
pheochromocytoma c

DMEM F

H

8.7 Solution

M CaCl2

2× BES-buffered saline (2×BBS) 

4·2H2O

(pH 6.96-7.22) 

.8 Solutions for Biochemistry

1

50 mM BES

280 mM NaCl

1.5 mM Na2HPO

8

Laemmli stacking gel (10ml):

 HCl pH6.8,

% SDS 

TEMED

10% Laemmli separating gel (10ml):

l 5  Tris HCl pH8.8,

S

50μl 10% APS

5μl TEMED

1.3ml 30% w/v acrylamid/bis

 25:1

2.6ml 0.5M Tris

 0.4

6.1ml H2O

100μl 10% APS

10μl

3.3ml 30% w/v acrylamid/bis

  25:1

2.6m 1. M

  0.4% DS

4ml H2O
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5x Laemmli electrophoresis buffer (10l): 154.5g   Tris base 

721g   glycine 

50g   SDS 

10x Transfer buffer (2.5l): 60.5g   tris base

281.5g   glycine 

25g   SDS 

Anderson stacking gel buffer (7.45ml): 1.25ml 30% w/v acrylamide

1ml 1% bisacrylamide

0.9ml 1M Tris HCl pH6.8 

4.3ml H2O

50μl 10% APS

5μl TEMED

15% Anderson separating gel (20ml): 10ml 30% w/v acrylamide

1.7ml 1% bisacrylamide

5ml 1.5M Tris HCl pH8.8

3.15ml H2O

200μl 10% APS

20μl TEMED

5x Anderson electrophoresis buffer (2l): 60g   Tris Base 

288g   glycine 

10g   SDS 

Stripping buffer: 5mM   PBS pH7.2

2mM -mercaptoethanol

2%  SDS

4x Sample buffer for non-reducing conditions: 4ml 10% SDS 

16.ml 1M Tris pH6.8

2ml glycerol

1.9ml H2O

0.1%  bromophenol blue 

4x Sample buffer for reducing conditions: 50μl -mercaptoethanol /ml 4x sample buffer

8.9 Plasmids

pE(G/Y)FP-C1    Becton Dickson

pSPORT 1     Lifetech
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8.9.1 Expression constructs 

Full length -Catenin-EGFP-tagged             From Qun Lu 

                              Full length -Catenin-EYFP -tagged Insert (BglII and XmaI ends) was cloned

into

                                                                       pEYFP-C1 vector 

C208-EGFP-tagged    From Qun Lu

C208-YGFP-tagged                        Insert (BglII and XmaI ends) was cloned into

                                                                       pEYFP-C1 vector 

N250-EGFP-tagged            From Qun Lu 

EphA4      From Joaquin Egea

EphA4-Kinase Dead From Joaquin Egea 

EphA4-2E     From Joaquin Egea

EphB2-ECFP-tagged    From Jenny Koehler

8.10 Antibodies

Primary antibodies

Anti-tubulin     Sigma, mouse

      WB: 1:2000

Anti-phosphotyrosine (4G10)  Upstate Biotechnology, mouse

      WB: 1:5000
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Anti-EphB2     R&D, goat

      WB: 1:200

                                                           Immunocytochemistry: 4 g/ml

Anti-EphA4 globular domain        (J. Egea, R.K., unpublished) rabbit serum

                                                          Immunocytochemistry: 1:100 

      WB: 1:2000

Anti-Sek (EphA4)    Transduction Laboratories, mouse

      WB: 1:1000

      IP: 2 g/mg protein 

Anti-GFP     RDI, rabbit

      WB: 1:2000

     IP: 1-4 g/mg protein 

      Immunocytochemistry: 1:100

Anti- -Catenin    Transduction Laboratories, mouse

      WB: 1:1000

     IP: 4 g/mg protein 

      Immunocytochemistry: 1:100

Anti-Calsyntenin    Gift from P. Sonderegger’s Lab

Anti-Smad4     Santa Cruz, mouse

      WB: 1:2000

Anti-human Fc FITC- or TR-conjugated Jackson ImmunoResearch, goat polyclonal 

     Immunocytochemistry: 7.5 g/ml

148



Anti-human Fc Jackson ImmunoResearch, goat 

     1/10 (w/w) for preclustering of Fc-fusion

proteins

Secondary antibodies 

Anti-mouse HRP    Amersham, goat polyclonal

      WB:1:2000 

Anti-rabbit HRP    Amersham, goat polyclonal

      WB: 1:2000

Anti-mouse Texas Red Sigma, goat polyclonal 

      IF: 1:200

Anti-mouse-Cy3, -Cy5 Jackson ImmunoResearch, donkey 
polyclonal

IF: 1:200 

Anti-mouse-Alexa488  Molecular Probes, goat polyclonal

IF: 1:200 

8.11 Chemicals and commercial kits

100x L-glutamine (Invitrogen)

100x penicillin / streptomycin. (Invitrogen) 

30% Acrylamid/Bis 25:1 (Biorad)

Aprotinin (Sigma)

Benzamidine (Sigma)

Biorad Dc Protein Assay (Biorad)
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ß-Mercaptoethanol (Sigma)

Calf serum (CS) (Invitrogen)

Chicken albumin (Sigma) 1g/ml in N-MEM

Dimethyl sulfoxide (DMSO) (Sigma)

Dithiothreitol (DTT)

ECL Western Blot detection reagent (Amersham)

EDTA (Sigma)

EphB1-Fc, EphrinB3-Fc, EphrinB2-Fc,EphrinB1-Fc (R&D)

Foetal bovine serum (FBS) (Invitrogen)

Geneticin sulfate (G418) (Invitrogen)

Human Fc fragment (Dianova)

Human transferrin (Sigma)

Isopropyl- -D-thiogalactopyranoside (IPTG) (Sigma)

LightCycler DNA Master SYBRGreen I system (Roche)

Lipofectamine (Invitrogen)

Lipofectamine plus reagent (Invitrogen)

Lysozyme (Sigma)

Mouse-laminin (Invitrogen)

Normal Donkey Serum (Dianova)

Normal Goat Serum (Dianova)

Papain (Sigma), 1mg/ml, stored at 4°C.

phenylmethylsulfonyl fluoride (PMSF) (Sigma)

Poly-D-lysine (Sigma)

Poly-L-lysine (Sigma)

PonceauS solution (Serva)

Progesterone (Sigma)

Protein A-Sepharose 4B (Pharmacia)

Protein G-Sepharose 4B (Pharmacia)

Putrescin (Sigma)

Pyruvic acid (Sigma)

TEMED (Biorad)

Triton X-100, analytical grade (Serva)

Trypsin inhibitor (Roche)

Trypsin/EDTA (Invitrogen)

Tween 20 (Biorad)

Methods
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8.12 Molecular biology

8.12.1 Preparation of plasmid DNA 

Plasmid DNA was purified from small-scale (5 ml, minipreparation) or from large-scale 

(300

ml, maxipreparation) bacterial cultures. Single colonies from transformed bacteria or 

bacterial glycerol stocks were picked into LB medium containing 100 µg/ml ampicillin or 

kanamycin and grown overnight (ON) at 37°C with vigorous shaking. The bacterial 

suspension was pelleted by centrifugation at 4,000 rpm for 5 min at RT. The pellet was

resuspended in buffer P1 (QIAGEN). Mini- and Maxipreparations of plasmid DNA were 

carried out according to the QIAGEN protocol using lysis of the cells and binding of the

plasmid DNA to a special resin. After washing, elution and precipitation the plasmid 

DNA was re-dissolved in a suitable volume of EB buffer (QIAGEN) for minipreparation

or pure water (Sigma) for maxipreparation. DNA concentration was measured in a UV 

spectrometer at 260 nm. The following formula was used: dsDNA: OD × 50 × dilution

factor = X µg/ml

8.12.2 Enzymatic treatment of DNA 

Cleavage of plasmid DNA: Approximate 2-6 µg of DNA was cut in 30 µl of the 

appropriate buffer and 2 to 5 U restriction enzyme for 1 to 2 hours (hrs) at an appropriate 

temperature. De-phosphorylation of DNA fragments: For the dephosphorylation of DNA 

fragments 10× buffer, pure water (Sigma) and 1 U (1 µl) of calf intestine alcaline

phosphatase (Roche) was added to the restriction enzyme reaction to get a total reaction 

volume of 40 µl, incubated for 20 min at 37°C and heat-inactivated at 75°C for 15 min. 

Subsequently the de-phosphorylated DNA fragments were purified from the reaction mix.

Ligating vector and target DNA fragments: A 10 µl reaction containing purified 

linearized vector (approximate 0.1 µg) and DNA fragments (“insert”) in an 1:5 ratio, 0.5 

µl of T4 DNA ligase (NEB),  ligation  buffer  (10× T4  DNA ligase  buffer,  NEB) was

151



incubated over-night  at 16°C or at RT for 2 hours, followed by 30 min at 37°C for sticky 

end ligations. The reaction was then used to transform competent bacteria. 

8.12.3 Separation of DNA on agarose gels 

The DNA mix and circa one sixth of the volume of 6× loading buffer were loaded onto a 

0.8-2% agarose gel in TAE buffer containing ethidium bromide and run for

approximately 30 to 35 min at 100-180 V. After electrophoresis a UV photograph of the 

gel was taken. In a preparative gel, the DNA band was excised from the agarose gel with 

a clean, sharp scalpel and purified. 

8.12.4 Purification of DNA 

From agarose gel: Following extraction, purification of DNA fragments from agarose gel 

was carried out using the QIAquick Gel Extraction Kit (#28704, QIAGEN) as 

recommended by the manufacturer. The DNA was eluted in 30 µl of buffer EB 

(QIAGEN). From enzymatic reactions: to clean-upDNAfragments or oligonucleotides 

(>17 nucleotides) from salts, enzymes, unincorporated nucleotides, the QIAquick 

Nucleotide Removal Kit (#28104, QIAGEN) was used according to the protocol of

QIAGEN. The DNA was eluted in 30 µl of buffer EB (QIAGEN). 

8.12.5 Transformation of competent E. coli by electroporation 

50 µl of electro competent bacteria were gently thawed on ice, mixed with 3-5 µl of the 

ligation product and placed on ice for 1 min. Sterile 0.2 cm (green) cuvettes were placed

on ice. The Gene pulser apparatus (Bio-Rad) was set at 25 µF and to 2.5 kV; the pulse 

controller to 200 W. The mixture of bacteria and DNA was transferred to a cold 

electroporation cuvette. The cuvette was placed in the chamber slide, pushed into the 

chamber and pulsed once at the above settings. 1 ml LB medium was immediately added.

The cells were resuspended, transferred to a reaction tube and incubated at 37°C for 15 to 
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60 minutes with shaking at 225-250 rpm. The bacteria were then plated on LB agar plates

containing the appropriate antibiotic for the plasmid vector and incubated at 37°C ON. 

8.13 Semi-quantitative real-time PCR

8.13.1 cDNA preparation 

Total RNA was prepared from primary cortical neuron cultures in the same way as in the 

Microarray section (see below). Reverse transcription reactions were performed at 55°C

with Superscript III reverse transcriptase (Invitrogen) according to the instructions. The 

reaction included the use of oligo d(T) primers. cDNA products were further processed

by digesting RNA for 20 min with 4 U of RNase H (Biolabs), and then purified using a 

PCR cleanup kit (Qiagen).

8.13.2 PCR primers and templates 

Specific oligonucleotides for each gene to be validated with RT–PCR were designed by

the Oligo 6 Primer software. Only primers sets that formed very limited double stranded 

secondary structures were selected in order to avoid any double strand backgroung. Blast 

searches were used to ensure that primers were specific for each individual gene. Primer

sets amplified a single product of the correct size from a complex cDNA as measured by

melting curve analysis on the light cycler system (Roche) and agarose gel electrophoresis.

8.13.3 LightCycler RT-PCR 

Real-time PCR was performed with the LightCycler FastStart DNA Master SYBR Green

I system (Roche). Master mixtures were prepared in accordance with the manufacturer's

instructions by using the specific oligonucleotides for the genes of interest. After RT for 

20 min at 50°C, the following temperature profile was utilized for amplification:
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denaturation for 1 cycle at 95°C for 30 s; 45 cycles at 95°C for 1 s (temperature transition,

20°C/s), 55 to 50°C (step size, 1°C; step delay, 1 cycle) for 15 s (temperature transition, 

20°C/s), and 72°C for 15 s (temperature transition, 2°C/s); and fluorescence acquisition at 

55 to 50°C in single mode. Melting-curve analysis was performed at 45 to 90°C 

(temperature transition, 0.2°C/s) with step-wise fluorescence acquisition. Sequence-

specific standard curves were generated by using 10-fold serial dilutions of the specific 

RNA standards. The relative abundance of each sample transcript was then determined

with the aid of the LightCycler software based on the comparison with the G3PDH  and 

S16 curves as a standard. The specificity of the PCR was verified by ethidium bromide

staining on 3% agarose gels.

8.14 Primary culture of cortical neurons for biochemistry

Mass cultures of cortical neurons were prepared by a modified procedure based on (de 

Hoop et al., 1998). Forebrain hemispheres from mouse E14.5 embryos were dissected in 

warm HBSS as above. Cortices were washed with HBSS and then dissociated with 

Trypsin/EDTA solution for 15min at 37 C. Trypsin was blocked by 2 washes in 

prewarmed HS-MEM medium. Cells were triturated as above and plated in tissue culture 

dishes precoated with 1mg/ml poly-L-lysine in borate buffer over night at 37 C and HS-

MEM for an additional over night period at 37 C. Approximately 4-6 hemispheres were 

used per 10cm dish. Cells were left for 5h to attach and then medium was changed to N2-

MEM without insulin. Neurons were left for 2 days to differentiate, washed three times in 

warm HBSS and then stimulated. 

8.14.1 Stimulation of cells 

Neurons and cell lines (see below) were stimulated with ephrinB2-, ephrinB1-, EphB1-Fc 

Chimeras (R&D) or Fc (Dianova) which had been pre-clustered for 1h at room 

temperature using 1/10 (w/w) Fc fragment, goat anti-human IgG (Jackson 

154



Immunoresearch). Before stimulation, all cell types except cortical neurons were starved 

for 16h in medium containing 0.5% serum.

Stimulation of hippocampal neurons with BDNF and NGF was carried out using the 

following concentrations: 50 ng/ml and 100ng/ml respectively

8.15 Primary culture of neurons for immunocytochemistry, cell imaging and time 

lapse imaging

Hippocampal and cortical neurons were taken from mouse E15 and rat E19 embryos.

Embryos were taken out of the uterus and kept in ice cold HBSS buffer. Embryo heads

were cut off and the scull opened to take out the brain. Brain cortices were cut off from

the midbrain and brainstem and the meninges was pulled off. For hippocampal cultures 

the striatum was cut out and the hippocampus was separated from the cortex. Hippocampi

and cortices were incubated in HBSS with 1/10 papain solution for 10min at 37 C. The 

digestion reaction was stopped using 10mg/ml trypsin inhibitor in HBSS. The tissue was 

washed 3 times in Neurobasal medium. Cells were dissociated by trituration with glass

Pasteur pipettes with narrowed tips. 10ml of cell suspension was centrifuged for 3min at

800rpm to remove debris. The cell pellet was resuspended in Neurobasal medium

supplemented with B27. Cells were plated on glass coverslips or on live-cell-dishes 

precoated with 1mg/ml Poly-D-lysine in borate buffer over night and 10μg/ml mouse

laminin in PBS for 2h at 37 C. Cells were cultured in medium supplemented with 1/3 

(v/v) of conditioned growth medium obtained from at least 7day old high density E17.5 

cortical neuron cultures (3·106 cells / 10cm dish) prepared the same way as above with 

the exception that the dishes were not coated with laminin. Depending on the length of 

culture and the experiment, different numbers of cells were plated and incubated for a 

number of days at 37 C, 5% CO2 then transfected and imaged. For time lapse

experiments of neurons live-cell-dishes with a glass bottom were used.

8.15.1 Transfection of cell lines and primary neurons 
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NIH3T3 cells were transiently transfected using Lipofectamine Plus (QIAGEN)

according to the protocol. COS cells and HeLa cells were transfected with the calcium 

phosphate method.

For the calcium phosphate transfection method all solutions were warmed to room 

temperature.The plasmid DNAs were briefly spinned down in a mini centrifuge. For

transfection of neurons growing (i) in time-lapse dishes, part of the medium was removed,

leaving 0.9 ml medium in the dish and (ii) on glass coverslips in a 24-well plate, leaving 

0.25 ml. The remaining medium was collected, filter-sterilized and kept at 37°C in a 

humidified incubator with an atmosphere of 5% CO2. For 1 ml transfection solution 3-

7.5 µg DNA (depending on the plasmid size) were slowly added to freshly diluted 

250mMCaCl2 solution by stirring with the pipette tip, the final volume being 50 µl. 50 µl

of 2× BBS was added drop by drop to the DNACaCl2 solution. The reaction tube was

gently shaken each time after addition of three drops of 2× BBS. The solution was then 

thoroughly mixed. The CaCl2-DNA-BBS mixture was added drop wise to the 

hippocampal neurons and the dishes gently swirled in order to mix medium and

transfection mixture and to ensure a homogenous formation of the DNA-calcium

phosphate precipitation. 

For the transfection of neurons and HeLa cells on coverslips the CaCl2-DNA-BBS

mixture was added drop by drop to 0.9 ml medium in a polystyrene-tube while vortexing. 

250 µl of the transfection solution was immediately added to each well. The collected 

medium was filter-sterilized and kept in the incubator. Cells were incubated at 37°C in a 

humidified incubator with an atmosphere of 5% CO2 for the appropriate transfection time

(30 min - 4 h). If the formation of the precipitate was too heavy, the transfection medium

was removed and cultures were washed with pre-warmed HBSS (Invitrogen) until the 

DNA-calcium phosphate precipitation was completely washed off. After that the cells 

were incubated in the “old”, equilibrated culture medium. The expression time for time-

lapse experiments was 2 to 3 days. 

8.15.2 Time-lapse imaging 
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Live-cell imaging was performed with a Zeiss Axiovert 200M microscope equipped with 

a temperature-controlled CO2-incubation chamber set to 37°C, 60-70% humidity, 5% 

CO2 and a FluoArc system (Zeiss, Germany) set to 30-50%. Images were aquired using a 

63×oil immersion objective with a CoolSNAP-fx camera. Fluorescence images were 

processed using MetaMorph (Visitron, Germany).

8.15.3 Immunocytochemistry and cell imaging

For immunocytochemistry of total protein distribution, neurons and cells grown on 

coverslips were fixed with 4% PFA, 4% sucrose in D-PBS for 13 min at RT, washed 

once with D-PBS, then incubated with 50 mM ammonium chloride in D-PBS for 10 min

at RT and washed again before permeabilization for 5 min with ice-cold 0.1% TX-100 in 

D-PBS at 4°C. After washing, coverslips were blocked for about 30 min at RT or 

overnight at 4°C with 2% bovine albumin (A-3294, Sigma) and 4% serum (depending on 

the secondary antibody used: donkey, goat, sheep and/or rat serum, Jackson 

ImmunoResearch) in PBS. After blocking, coverslips were transferred into a dark moist 

chamber, face up. Primary antibodies for total stainings were incubated for at least 60 

min at RT in 50 µl blocking solution. After 3 washing steps with D-PBS for 5 min,

secondary antibodies, previously diluted in 50 µl of blocking solution, were added to the 

coverslips for 30 min at RT in the dark. After washing, samples were mounted in 

Gel/Mount media and dried at RT. For simple cell imaging of fluorescent proteins the 

same coverslip preparation procedure was done excluding the permeabilization and the

antibody staining steps. Images were acquired using an epifluorescence microscope

(Zeiss) equipped with a digital camera (SpotRT, Diagnostic Instruments) and the 

MetaMorph software (Visitron Systems).

8.16 Microarray 

8.16.1 Microarray production 
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High density glass microarray chips were prepared at EMBL using the NIA 15K cDNA

mouse clone set (Tanaka et al., 1997). The 15,247 cDNAs were first replicated 

inoculating 2µl of the original bacterial suspension into 50µl of LB broth. The replica 

plates were incubated for 18 hours at 37°C. 1µl of the bacterial replica culture was then 

amplified by PCR using two universal oligonucleotides. The 15,247 PCR products were 

further purified from unincorporated dNTPs and oligonucleotides using the PCR 

purification kit (Mecherey-Nagel). The purified PCR products were eluted in 100µl TE

buffer. The size and quality of the PCR products were then checked by agarose gel 

electrophoresis and then spotted at high density on glass coverslips by a robot. The slides 

were then incubated at 50°C for 3 hours and the DNA was denatured at 100°C for 10 min.

The microarray slides were then stored at room temperature in a dark place until use. 

8.16.2 RNA extraction and preparation of fluorescent probes 

Total RNA was extracted from cortical neuron cultures under different experimental

conditions using the RNAClean protocol (Hybaid). The RNA was then purified using 

RNA purification kit (Qiagen) and 40µg were then retro-transcribed and fluorescently 

labelled using a mixture of 3µg poly-dT oligonucleotides (GIBCO), 6µl of retro-

transcriptase superscript II (GIBCO), 0,1M DTT, 3µl of either Cy3-dUTP (Amersham)

for the control sample or Cy5-dUTP for the test, and 25µM of dNTPs. The retro-

transcription reaction was incubated for 4 hours at 42°C then stopped with 1,5µl of 1M 

NaOH/20 mM EDTA. The labelled cDNA was then purified using the PCR purification 

kit (Qiagen). 

8.16.3 Microarray hybridization

The cDNA spotted on the array slide was denatured for 2 min in boiling water before the 

hybridization with the fluorescent probes took place. The Cy3- and Cy5-labelled cDNAs

were pooled, dried out and resuspended in 30µl water. 2.4µg salmon sperm DNA, 10µg
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poly-dA oligonucleotide (Invitrogen) and 24µl hybridization buffer were added to the 

cDNA probes and the mixture was then denaturated by incubation for 2 min at 95°C. The 

probes were then hybridized to the microarray slide and incubated for 16 hours at 42°C in 

a water bath. After the hybridization, the microarray was washed twice with 0.1X SSC, 

0.1% SDS for 10 min at room temperature and twice with 0.5X SSC for 10 min. Finally, 

the microarray was scanned with a fluorescence laser-scanning device (GenePix 400B, 

Axon instruments).

8.16.4 Microarray analysis 

The hybridizations were performed in triplicate. The differential expression of each gene

was calculated from the relative intensity of the Cy5 versus the Cy3 fluorescent signal. 

Two independent experiments were conducted comparing two control samples 

(background control). The data acquisition and initial data analysis was performed with 

GenePix Pro 3.0 and the resulting data tables were analysed further with Microsoft Excel.

Scatter plots were used to visualize and select the genes. The GenePix Pro software 

calculates the normalization factor for each hybridization, based on the principle that the 

arithmetic mean of the ratios from each feature on the array should be equal to 1. 

Normalization was therefore performed by multiplying the factor for the ratio of medians

in each gene. The genes were then sorted by the sum of medians which indicates the 

intensity of hybridization. In order to obtain the list of genes with higher abundance only 

the spots with sum of medians higher than 5000 were selected. Finally, the genes were 

sorted by their ratio of medians which ultimately reflects the folds of induction or 

repression.

8.16.5 Insert cloning and generation of probes for various uses 

For the generation of probes from selected genes in the NIA library, clones were selected, 

amplified and plasmids isolated with the miniprep kit (Qiagen). 5µ of the isolated
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plasmids were digested using NotI and SalI restriction enzymes (Biolabs) which are

universal cutters for the excision of the NIA library inserts. The restriction digest was 

then run on agarose gel and the excised insert recovered and purified using the Gel 

Extraction Kit (Qiagen).

8.17 Boyden chamber assay

HeLa cells were grown as above. One day before transfection the cells were trypsinized 

and 1x106  cells were plated on a 10 cm Petri dish (Falcon). The cells were then 

transfected with the appropriate constructs with the calcium phosphate method as 

described above. Cells were detached using PBS without Ca2+ and Mg2+ and 

supplemented with EDTA (final concentration 2mM). The cells were then centrifuged 

and resuspended in warm starving medium. Cells were then counted and 5x104 were

seeded on the migration membranes. Prior to cell seeding the Boyden chambers (8µm

pore size, Costar) were coated for 18 hours at 4°C with 0.15µg/cm2 fibronectin plus

(Sigma) 0.6µg/cm2 anti-Fc (Jackson Immunoresearch). Membranes were then washed 

with PBS and blocked with 1% BSA (Sigma) in PBS for 1h at room temperature.

Membranes were then incubated for 1h at room temperature with either Fc or ephrinB3-

Fc at a concentration of 1.3µg/well. After washing in PBS, the membranes were

kept in starving medium (serum <0.5%). The transfected cells are then seeded and left 

migrating overnight. The membranes are then fixed by incubating them for 5 min in 

4%PFA (Sigma), washed, DAPI stained if necessary then the membranes are carefully

detached from the plastic support and mounted on a glass slide always in the correct 

orientation for fluorescence microscopy analysis.

8.18 Sholl analysis

Fluorescence pictures were taken with a 40x calibrated objective at a constant 1 sec 

exposure time in order to highlight even small or weak fluorescent details. The images
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were converted into their negative to further accentuate the contrast between the 

background and the neuronal structures. Sets of images were then processed with the 

software Neurolucida which allows manual tracing of dendritic processes. The cut-off for

filopodia was set to 2µm; any structure exceeding the threshold was considered to be a 

nascent dendritic branch. Traced images were then further analyzed with the software

Neuroexplorer  which automatically calculates a set of statistical parameters including

dendritic length, number of filopodia etc and other important parameters defining 

dendritic complexity (i.e. the number of intersections between the dendritic tree and a set 

of concentric circles drawn on the neuron and centered on the cell body (Sholl, 1953). 

The tables generated by Neuroexplorer were then exported to Microsoft Excel and 

statistically analysed. 

8.19 Biochemistry

8.19.1 Cell lysis 

Cortical neurons and transiently transfected cells were washed once with ice-cold D-PBS

and lysed in lysis buffer (50mM Tris-HCl, pH 7.5, 0.5-1% Triton X-100, 150mM NaCl,

10mM NaPPi, 20mM NaF, 1mM sodium orthovanadate, 1mM PMSF, 2.5mM

benzamidine and

10μg/ml each leupeptin and aprotinin) on ice for approximately 5 min. Cell lysates were 

then collected and centrifuged at 10,000g for 15 min at 4°. Before loading, samples were 

boiled for 5 min in 2× sample buffer for 5 min.

8.19.2 Immunoblotting and immunoprecipitation
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Protein samples were separated by 7,5 or 10% SDS-PAGE and transferred to 

nitrocellulose membranes. The membranes were blocked for 2h at room temperature in 

7.5% non-fat milk in PBS plus 0.1% Tween-20.

For immunoprecipitation, cells were lysed in lysis buffer and centrifuged at 10000g for 

10min.Lysates were then incubated with a variable amount (2 to 4μg) of antibody 

prebound to 20μl of proteinA or proteinG-Sepharose. After 2h at 4°C, 

immunoprecipitates were washed, denatured and analyzed by SDS-PAGE.  After blotting, 

membranes were incubated either 1-3 hours at RT or overnight at 4°C with a primary

antibody diluted in blocking solution. Membranes were washed three times for 10 min in 

PBST at RT. Secondary antibodies linked to horseradish peroxidase (HRPO) were used 

to specifically recognize the primary antibody diluted in blocking solution. After 

incubation for 1 hour at RT, membranes were washed three times for 10 min in PBST. To 

visulize signals, the membrane was incubated with ECl solution for 1 min at RT and

exposed to films (BioMax MS/MS, Kodak). The films were developed in an Optimax

(Typ TR, MS Laborgeräte. Anti-phosphotyrosine blots were performed using 4G10. For 

reprobing, membranes were stripped with 5mM sodium-phosphate buffer, pH 7.5, 2% 

SDS, 2mM ß-mercaptoethanol, where indicated.

8.20 Histology

8.20.1 Vibratome sections for in situ hybridization

Dehydrated E15 mouse embryos were left overnight in 4% PFA at 4°C were washed 

three times with D-PBS and then immersed in a mixture of gelatine and ovoalbumine in 

acetate buffer (see embedding solution). For embedding, a 11-ml aliquot was thawed at 

37°C and cooled down at RT. A base was prepared by adding 100 µl of glutaraldehyde 

(25%, Sigma) to 2 ml embedding medium, mixed quickly and poured into the molds. 
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After polymerization the embryos were placed on top. 350 µl of glutaraldehyde (25%, 

Sigma) were added to the remaining 7 ml of embedding medium, then mixed quickly and 

poured on the sample. Samples were stored 1 hour at 4°C in PBS. For vibratome sections 

the polymerised block was

glued to the holder (Leica). 80 µm and 100 µm sections were cut on a microtome

(VT1000S, Leica), immersed in D-PBS and immediately processed further for in situ

hybridization.

8.20.2 In situ hybridization

Sections were collected in D-PBS and subsequently dehydrated in methanol diluted in D-

PBS (25% for 5 min, 50% for 5 min, 75% for 5 min, 100% for twice 5 min). Sections 

were stored for up to several months at -20°C in 100% methanol or further processed 

after at least 2 hours at -20°C. Sections were then placed into a solution made out of 80%

methanol and 20% of 30% H2O2 solution (final concentration of 6% H2O2) for 1 hour at

RT. Rehydration was carried out in 50% methanol in D-PBS for 5 min followed by 25% 

methanol in D-PBS for 5 min. Samples were washed three times in PBST for 5 min at RT. 

Sections were treated with Proteinase K (20 µg/ml in D-PBST) for 13 min at RT. In order 

to stop the reaction, sections were washed twice with PBST on ice. Subsequently,

sections were fixed in fresh 4% PFA containing 0.2% glutaraldehyde for 40 min at RT. 

After two washes in PBST, sections were gently rocked in prehybridization buffer for at 

least 1hour at 70°C. Labeled RNA probes (= 12.5 µl/ml) were diluted in prehybridization 

buffer, preheated for 7 min to 70°C, and incubated with the sections overnight at 70°C. 

The next day, sections were first rinsed for 5 min and then washed three times for 30 min

in Solution 1 at 70°C. Following 5-min rinsing and three 30-min washes in Solution 2 at 

66°C, sections were first rinsed for 5 min and then washed three times for 30 min in 

Solution 3 once at 66°C and twice at 68°C. Subsequently, sections were washed twice 

with MABT for 5 min at RT and then twice for 30 min at 70°C. Unspecific antibody 

binding was prevented using blocking solution for 1.5 hour at RT. To detect DIG-labeled 

RNA, sections were incubated overnight at 4°C with an anti-DIG. Fab fragment

conjugated with alkaline phosphatase (AP) (1:2000 in blocking solution, #1 093274, 
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Roche).The next day, sections were washed 8 to 10 times with MABT for 30 min to get 

rid of unbound or unspecifically bound Fab fragments and to prevent endogenous AP

activity. After washing, sections were rinsed once in freshly made NTMT and then

equilibrated in NTMT for 10 to 20 min. Developing solution was added (1.4 µl nitroblue 

tetrazolium (NBT) and 1.1 µl 5-bromo-4-chloro-3-indolyphosphate (BCIP) per ml

NTMT) to give a dark purple color. Reaction and sample were kept in the dark. Sections 

were left in substrate solution at 37°C until enough staining was obtained. After 

development, sections were washed in PBST and postfixed in 4% PFA overnight. The

sections were then mounted and stored in a solution made of 1 part 4% PFA and 1 part 

glycerol.
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Istituto Mediterraneo per i Trapianti e Terapie ad Alta Specializzazione
(ISMETT), Palermo, Italy.

1994 - 1999: Master degree, Summa Cum Laude, in Biological Sciences.

University of Palermo, Italy. Specialization in Molecular Biology and 
Genetic Engineering. 

Thesis title: “Construction of a High Molecular Weight Genomic Library of
Streptomyces coelicolor A3(2) in Artificial Chromosomes ”.

Sept/1997 - Oct/1998: Erasmus Scheme, 

University of Wales, Swansea, UK

Sept/1989 - Jun/1994: Liceo Classico “G. Ugdulena”, Termini Imerese (PA), Italy. 
High School with a specialization in humanistic subjects. 

Sept/1981- Jun/1989: Primary and Secondary Education completed in Caccamo (PA), Italy
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