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A.INTRODUCTION 1

A. INTRODUCTION 

 

1. Yersinia species – general properties 

The yersiniae (genus XI of the family Enterobacteriaceae) consist of eleven species of which 

Y. pestis, Y. pseudotuberculosis, and Y. enterocolitica are considered to be primary pathogens 

of mammals (Brubaker, 1991). Y. pseudotuberculosis and Y. pestis are closely related species 

that share nearly 97% gene homology (Achtman et al., 1999; Motin et al., 2002; Trebesius et 

al., 1998). Y. enterocolitica in contrast presents a more variable genomic arrangement with 

only 60 - 65% DNA homology with Y. pestis/Y. pseudotuberculosis (Bottone, 1999).  

Today, isolated cases of Y. pestis infection (the plague) are reported sporadically in the US, 

India and Madagascar (Perry and Fetherston, 1997). Y. pestis is an obligate parasite, in 

contrast to Y. enterocolitica and Y. pseudotuberculosis, which are free-living microorganisms 

and are food-borne pathogens (Cornelis et al., 1998; Black et al., 1978). Y. enterocolitica, 

which is the most prevalent in humans, and Y. pseudotuberculosis (mainly isolated from 

animals such as pigs) cause a broad range of gastrointestinal syndromes.  

Of special importance to the pathogenic process of all Yersinia species is the shared 

requirement of a virulence plasmid pCD1 (pYV in enteropathogenic Yersinia) that encodes a 

type III secretion system (Cornelis and Van Gijsegem, 2000), which is responsible for 

injecting into host cells a number of cytotoxins and effectors (Yersinia outer proteins) that 

inhibit bacterial phagocytosis and processes of innate immunity (Brubaker, 2003; Cornelis, 

2002). Two additional plasmids unique to Y. pestis, termed pPla (pPCP1) (9.6 kb) and pFra 

(pMT1) (102 kb), play roles in tissue invasion (Lahteenmaki et al., 1998) and capsule 

formation (Kutyrev et al., 1986), as well as infection of the plague flea vector (Hinnebusch et 

al., 2002; Hinnebusch, 2003), respectively (Table 1). 

The medically significant yersiniae can multiply on appropriate media at temperatures 

ranging from about 5 to 42°C. However, marked differences mediated by global regulatory 

mechanisms occur upon an increase from room (26°C) to host (37°C) temperature. These 

dysfunctions include expression of additional nutritional requirements and production of 

virulence functions. In contrast to Y. pestis which is non-motile, the two enteropathogenic 

Yersinia species are motile at 27 °C (Cover and Aber, 1989; Bottone, 1999; Tauxe et al., 

1987). 
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Table 1. Distinguishing properties and virulence determinants of wild-type Y. pestis, Y. 

pseudotuberculosis, and Y. enterocolitica (Brubaker, 1991 with modifications). 

Gene product and 

location of genes 

Established or 

putative virulence 

functionc

Y. pestis Y. pseudotuberculosis Y. enterocolitica 

pPla plasmid  + - - 

Pesticin - + - - 

Plasminogen activator + + - - 

Posttranslational 

degradation of Yopsa

+ + - - 

pCD/pYV plasmid  + + + 

Yops + + + + 

YadA (protein 1 or Yop 

A) 

+ - + + 

V antigen + + + + 

pFra plasmid  + - - 

Fraction 1 or capsular 

antigen 

+ + - - 

Phospholipase D + + - - 

Chromosomal 

determinants 

    

Pigmentation or peptide 

F (hemin 

storage at 26°C) 

+ + - - 

Motility (26°C) - - + + 

Hydrophobic sugars in 

LPS (26°C)/O-antigen 

- - + + 

Assimilation of low 

levels of NH4 (26°C) 

- - + + 

Constitutive glyoxylate 

bypass 

- + - - 

Aspartase - - + + 

Glucose 6-phosphate 

dehydrogenase 

- - + + 

Urease - - + + 

Ornithine 

decarboxylase 

- - - + 

Host cell invasins     

Invasin (Inv) + - + + 
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Attachment invasion 

locus (Ail) 

+ - - + 

pH 6 antigen/Myf + + + + 

Antigen 5 (catalase) + + + - 

Fermentation of     

Rhamnose - - + - 

Melibiose - - + - 

Sucrose - - - + 

Sorbitol - - - + 

Cellobiose - - - - 

Biosynthesis of     

Methionine - - + + 

Phenylalanine - - + + 

Threonine-glycine - - + + 

Isoleucine-valine - - + + 
a +, present; -, absent. 

 

1.1 Yersinia enterocolitica 

Y. enterocolitica, which is one of the focuses of this study, is widely distributed in nature in 

aquatic and animal reservoirs, with swine serving as a major reservoir for human pathogenic 

strains. The species Y. enterocolitica was established in 1980 by applying DNA relatedness 

studies and phenotypic characteristics. A species was defined as that its strains must have a 

DNA-DNA relatedness of more than 70%. This standard is still valid for the genus Yersinia 

today. In the past years it was noted that the species Y. enterocolitica consists biochemically 

and serologically heterogeneous strains: so called “European” and “American” biogroups 

(BG) and serotypes (ST) named after the continent of their first isolation. Isolates of both 16S 

rRNA gene types had sequence identities of more than 97%. However, it was demonstrated 

the presence of three DNA-DNA relatedness groups within the species Y. enterocolitica 

represented by the “American” bio- and serotypes, by the enteropathogenic “European” 

strains and by the non-enteropathogenic “European” strains. Considering the presence of 

three relatedness clusters and the “minor but consistent phenotypic variation” i.e. the highly 

conserved 16S rRNA gene sequence of European and American isolates, the division of the 

species Y. enterocolitica into two subspecies was justified. It was proposed the names Y. 

enterocolitica subsp. enterocolitica for strains belonging to the 16S rRNA gene type of 

American origin and Y. enterocolitica subsp. palearctica for strains belonging to the 16S 

rRNA gene type of European origin (Neubauer et al., 1999).  
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Within Y. enterocolitica, there exists sufficient biochemical heterogeneity to have warranted 

the establishment of six biogroups – known as 1A, 1B, 2, 3, 4 and 5 – that can be 

differentiated by biochemical tests (Table 2) (Bottone, 1999).  

 

Table 2. Biochemical tests used to biogroup Y. enterocolitica strains. 

Test                                                                                                       Biogroup reactiona

 1A 1Bb 2 3 4 5 

Lipase activity + + - - - - 

Salicin (acid production in 24 h) + - - - - - 

Esculin hydrolysis (24 h) +/- - - - - - 

Xylose (acid production) + + + + - v 

Trehalose (acid production) + + + + + - 

Indole production + + v - - - 

Ornithine decarboxylase + + + + + +(+) 

Voges-Proskauer test + + + + + +(+) 

Pyrazinamidase activity + - - - - - 

Sorbitol (acid production) + + + + + - 

Inositol (acid production) + + + + + + 

Nitrate reduction + + + + + - 
a +, positive; -, negative; (+), delayed positive; v, variable. 
b Biogroup 1B is comprised mainly of strains isolated in the United States. 

 

The latter is further subdivided into three groups: a non-pathogenic group (BG 1A); a weakly 

pathogenic group that is unable to kill mice (BG 2 to 5); and a high pathogenic, mouse-lethal 

group (BG 1B) (Carniel, 2002). BG 1A lacks the Yersinia virulence plasmid pYV and a 

functional inv gene and seems to be distantly related to the other biogroups. Serologically, Y. 

enterocolitica may be separated into approximately 60 serotypes (ST) of which only 11 

serotypes have been most frequently associated with human infection (Table 3). Of these 

serotypes, the preponderance of infections on a worldwide basis are caused by serotypes O:3, 

O:9, O:5,27 with a declining number of ST O:8 isolations being made from symptomatic 

patients. As, however, Y. enterocolitica O:3, O:9, and O:8 antigens have been recovered from 

different Yersinia species (Aleksic, 1995) the pathogenic potential of a Y. enterocolitica 

isolate should be based on both serotype and biotype determination (Bottone, 1999). In terms 

of geographical distribution, the weakly and high pathogenic Y. enterocolitica species exhibit 

some preferences: the high-pathogenic organisms are more frequently isolated in the US, 
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while the weakly pathogenic isolates are predominantly isolated in Europe and Japan (Aleksic 

and Bockemuhl, 1990). However, recently Y. enterocolitica ST O:8 has been isolated in 

Germany (Schubert et al., 2003). Interestingly, the majority of nonporcine Y. enterocolitica 

isolates are of the non-pathogenic biogroup 1A and lack the virulence determinants of 

invasive isolates. Furthermore, as shown in Table 3 (Bottone, 1999), there is a close 

association of pathogenic species with a particular animal reservoir. 

 

Table 3. Virulence of Y. enterocolitica correlated with biogroup, serogroup, and ecologic and 

geographic distribution (Bottone, 1999). 

Associated with 

human infections 

Biogroup Serotype(s) Ecologic distribution 

Yes 1B O:8, O:4, O:13a,13b, 

O:18, O:20, O:21 

Environment, pigs (O:8), mainly in the 

United States, Japan, Europe 

Yes 2 O:9, O:5,27 Pigs, Europe (O:9), United States (O:5,27), 

Japan (O:5,27), Sweden, The Netherlands 

Yes 3 O:1,2,3, O:5,27, O:3 Chinchilla (O:1,2,3), pigs (O:5,27) 

Yes 4 O:3 Pigs, Europe, United States, Japan, South 

Africa, Scandinavia, Canada, The 

Netherlands 

Yes 5 O:2,3 Hare, Europe 

Noa 1A O:5, O:6,30, O:7,8, 

O:18, O:46, 

nontypeable 

Environment, pigs, food, water, animal and 

human feces, global 

a Y. enterocolitica isolates comprising biogroup 1A may be opportunistic pathogens in 

patients with underlying disorders. 

 

1.2 Yersinia pestis 

Yersinia pestis, the causative agent of plague, is supposed to be a recently emerged pathotype 

evolved from enteropathogen Y. pseudotuberculosis (Achtman et al., 1999; Skurnik et al., 

2000). Three Y. pestis biovars, Antiqua (A), Mediaevalis (M), and Orientalis (O), that are 

believed to be the causative agents of the historical plague pandemics, are distinguished by 

their ability to ferment glycerol and their nitrification activity (Devignat, 1951). However, in 

addition to these strains there exists a group of Y. pestis isolates distributed through various 

countries of the former USSR, Mongolia, China, and Morocco that share certain 

characteristics with the closely related species Y. pseudotuberculosis (Anisimov et al., 2004). 
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They ferment rhamnose (Rha), are additionally dependent on the nutrients, and possess 

elective virulence being less virulent in guinea pigs but highly virulent in mice. These strains 

are described in the literature as cause of occasional human or animal plague cases but have 

been rarely associated with epizootics of plague (Anisimov et al., 2004; Bakanidze et al, 

2003). To separate these Rha-positive isolates from the main group of Y. pestis strains, they 

were proposed to be named Y. pestoides or Pestoides (Martinevskii, 1969). Alternatively they 

were named according to the place of their first isolation i.e. Y. pestis subsp. caucasica, 

ulegeica, altaica, etc. (Anisimov et al., 2004).  

The main acquisitions of the plague microbe supposed to be responsible for its virulence are 

two plasmids, in addition to the pYV plasmid. The 10-kb plasmid pPla (also designated as 

pYP, pPCP1 or pPst) encodes the plasminogen activator and the bacteriocin pesticin. The 

100-kb plasmid pFra (also designated pMT1 or pYT) is responsible for the synthesis of 

Fraction 1 antigen and phospholipase D. The plasminogen activator is involved in the 

dissemination of the plague bacterium from the site of the initial fleabite, while phospholipase 

D (previously denoted as murine toxin) plays a major role in survival of plague bacteria in 

fleas (Hinnebusch et al., 2002) . All pathogenic yersiniae share the virulence-associated pYV 

plasmid, which encodes a finely tuned type III secretion machinery of anti-phagocytic factors 

(Cornelis and Wolf-Watz, 1997). 

Most of the rhamnose-positive Y. pestis isolates contain all three Y. pestis specific plasmids. 

However, some of them lack the pPla plasmid and/or carry an enlarged pFra (Filippov et al., 

1990). Y. pestis subsp. caucasica (also Pestoides F) is frequently isolated in high mountainous 

Caucasus and mountainous Dagestan. It belongs phenotypically to biovar Antiqua with 

Microtus arvalis being its main reservoir (Bakanidze et al., 2003). Plague epizootics of 

varying intensity were documented in this focus. Rha-positive Y. pestis caucasica strains lack 

the pPla but contain an enlarged pFra. They are of low virulence in guinea pigs. However, an 

aerozolised Pestoides F strain lacking the plasminogen activator was proven to be highly 

virulent (Worsham and Roy, 2003). Strict geographical isolation in a high mountainous 

region might have led to the preservation of an “ancient plague” microbe. Y. pestis G8786 

which was isolated in the Caucasian high mountainous focus was typed as an atypical 

Antiqua strain by genome-wide microarray analysis (Hinchliffe et al., 2003). This analysis 

reflects its remote origin and the highest divergence from other Y. pestis strains. 

 

1.3 Pathogenic factors of Yersinia 
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Historically, Y. enterocolitica is primarily a gastrointestinal tract pathogen with, under 

defined host conditions, a strong propensity for extraintestinal spread. When it infects the 

gastrointestinal tract, acute enteritis with fever and inflammatory, occasionally bloody, watery 

diarrhea is the most frequent occurrence, particularly in children (Bottone, 1997). In young 

adults, acute terminal ileitis and mesenteric lymphadenitis mimicking appendicitis appear to 

be a more common clinical syndrome (Black et al., 1978; Chandler and Parisi, 1994). The 

yersinial nuance in the extent of gastrointestinal tract pathologic findings centers largely 

about the serogroup of the invading strain, with serogroup O:8 producing the more 

catastrophic events, including extensive ulceration of the gastrointestinal tract and death 

(Gutman et al., 1973), whereas serogroups O:3 (Lee et al., 1990) and O:9 are less destructive 

in the gastrointestinal tract. Also secondary immunologically mediated sequelae of acute Y. 

enterocolitica infection such as arthritis and erythema nodosum, which are the most common, 

and Reiter’s syndrome, glomerulonephritis, and myocarditis have been reported 

predominantly among Scandinavians and in the setting of Y. enterocolitica serotype O:3, 

biotype 4 infections. Most patients manifesting postyersinial reactive arthritis are HLA-B27 

positive. The reasons underscoring this predisposition are unknown (Bottone, 1997). 

Yersinia pestis is primarily a rodent pathogen, with humans being an accidental host when 

bitten by an infected rat flea.  The flea draws viable Y. pestis organisms into its intestinal 

tract. These organisms multiply in the flea and block the flea's proventriculus. 

Some Y. pestis in the flea are then regurgitated when the flea gets its next blood meal thus 

transferring the infection to a new host. While growing in the flea, Y. pestis loses its capsular 

layer. Most of the organisms are phagocytosed and killed by the polymorphonuclear 

leukocytes in the human host. A few bacilli are taken up by tissue macrophages. The 

macrophages are unable to kill Y. pestis and provide a protected environment for the 

organisms to synthesize their virulence factors. The organisms then kill the macrophage and 

are released into the extracellular environment, where they resist phagocytosis (YopH and 

YopE; Yersinia outer membrane protein) by the polymorphs. The Y. pestis quickly spread to 

the draining lymph nodes, which become hot, swollen, tender, and hemorrhagic. This gives 

rise to the characteristic black buboes responsible for the name of this disease. 

Within hours of the initial flea bite, the infection spills out into the bloodstream, leading to 

involvement of the liver, spleen, and lungs. The patient develops a severe bacterial 

pneumonia, exhaling large numbers of viable organisms into the air during coughing fits. 50 

to 60 percent of untreated patients will die if untreated. As the epidemic of bubonic plague 



A.INTRODUCTION 8

develops (especially under conditions of severe overcrowding, malnutrition, and heavy flea 

infestation), it eventually shifts into a predominately pneumonic form, which is far more 

difficult to control and which has 100 percent mortality. 

Pathogenicity of Yersinia species is mediated by an above mentioned 75 kb plasmid (pYV) 

and 2 additional plasmids in Y. pestis (pPla and pFra). These plasmids control the 4 major 

virulence factors in the genus: excreted antiphagocytic proteins (Yops), proteins involved in 

processing and excretion of the Yops (Ysc) and a complex regulatory network (Lcr proteins 

for low calcium response). Chromosomal factors also play a role in virulence. These factors 

are the adhesion/invasion proteins (YadA), invasin InvA, the adhesive factor Myf (mucoid 

Yersinia factor, homolog of the pH6 antigen), the enterotoxin Yst, and proteins involved in 

iron acquisition. Virulence genes on Yersinia are controlled by 2 independent regulatory 

systems, temperature and cellular concentration of calcium. Secretion of Yops occurs only at 

37ºC and in the absence of calcium (Cornelis, 1994). A chromosomal gene ymoA, encoding 

YmoA, functions as the temperature controller (Cornelis et al., 1991), by blocking VirF 

protein to the promoters of yop genes at temperatures below 30°C and allows expression of 

yop and ysc genes at 37°C (Michiels et al., 1991). Recently work has been shown that RovA, 

a member of the MarR/SlyA family of winged-helix transcription factors, regulates 

expression of inv (Revell and Miller, 2000; Ellison et al., 2004). Disruption of rovA increases 

the LD50 of the organism when inoculated using the oral route. However, when administered 

by intraperitoneal injection only a slight difference in LD50 between mutant and wild-type 

organisms is apparent.  

 

1.3.1 Yst Enterotoxin 

Invasion of Y. enterocolitica and Y. pseudotuberculosis through mucosal surfaces and 

colonization of these surfaces is based, at least in part, on the production of a toxin (Yst), a 

30-amino acid peptide, similar to the heat stable toxin produced by E. coli (Iriarte and 

Cornelis, 1995). Both toxins activate the particulate form of guanylate cyclase, thus 

increasing cGMP levels in the intestine. The activity of the toxin eventually leads to fluid 

accumulation in the intestine. This activity led to the hypothesis that Yst is involved in 

inducing diarrhea during Yersinia infection. Diarrhea is not a major symptom in the mouse 

infection model; however, oral inoculation of the young rabbit induces clear diarrhea as well 

as systemic infection. Using the young rabbit model, a yst mutant strain was defective in 

inducing diarrhea, weight loss, and death relative to wild-type Y. enterocolitica (Delor and 
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Cornelis, 1992). These data suggest that Yst may be a mediator of the diarrhea observed in 

infants infected with Y. enterocolitica. yst has been found in both pathogenic and non-

pathogenic strains of Y. enterocolitica. Homologous DNA was also found in some strains of 

Y. kristensenii (Delor et al., 1990).  

 

1.3.2 Mucoid Yersinia factor (Myf) 

Yersinia species also possess a chromosomal gene which encodes a fibrillar protein in 

pathogenic serotypes of Y. enterocolitica known as Myf (Cornelis, 1994). Myf is composed of 

MyfA (a 21 kDa protein), MyfB (a chaperone) and MyfC (an outer-membrane protein) 

(Iriarte and Cornelis, 1995). As with other virulence factors, the fibrillar protein has 

homology to proteins with similar function in enterotoxigenic E. coli. These proteins are 

hypothesized to work in conjunction with Yst to aid in the colonization of mucous 

membranes. Y. pseudotuberculosis and Y. pestis have a protein with similar function of Myf, 

but is called pH6 antigen or pilus adhesion (PsaA), which may be involved in defence once 

the organisms are within the phagocyte (Lindler and Tall, 1993). 

 

1.3.3 Invasin (Inv) 

Invasin (Inv), an outer membrane protein, mediates attachment and entry into nonphagocytic 

cells (Isberg et al., 1987) and binds tightly to a family of α/β1- integrins, which are host 

molecules that bind to extracellular matrix proteins such as fibronectin on the basolateral 

surface of epithelial cells (Isberg and Leong, 1990). By binding tightly to integrins, invasion 

mediates bacterial uptake via a “zipper”-like mechanism, zippering the host cell membrane 

around the bacterium as it enters (Isberg and Leong, 1990). Invasin, by itself, is sufficient to 

mediate this uptake; invasin cloned into noninvasive E. coli, or purified invasin coupled to 

inert particles such as beads, mediates particle uptake. Host actin is needed for bacterial 

uptake since cytochalasins inhibit particle uptake (Finlay and Falkow, 1988). However, 

cytoskeletal rearrangements are not dramatic and disappear within a few minutes of bacterial 

entry (Young et al., 1992). Host signal transduction mechanisms appear to be necessary for 

invasin-mediated bacterial entry, since host tyrosine kinase inhibitors that block host cell 

signaling prevent bacterial uptake but adhere to cultured cells (Rosenshine et al., 1992).  

 

1.3.4 Attachment invasion locus (Ail) 
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One of the chromosomal genes that is highly correlated with virulence is ail (Miller and 

Falkow, 1988). Ail is a 17 kDa outer membrane protein that is predicted to have eight 

membrane-spanning amphipathic β-strands and four extracellular loops (Miller et al., 1990; 

Beer and Miller, 1992). Ail was identified along with inv in a screen for Y. enterocolitica 

genes that could confer an invasive phenotype to Escherichia coli. E. coli carrying ail are 

highly invasive for some tissue culture cell lines (CHO cells) and moderately invasive for 

other tissue culture cells (HEp-2 cells). Ail mediates a high level of adherence to both CHO 

and HEp-2 cells. It was subsequently demonstrated that Ail also confers a high level of serum 

resistance to E. coli (Bliska and Falkow, 1992; Pierson and Falkow, 1993). Mutations in ail in 

Y. enterocolitica reduce the ability of Y. enterocolitica to invade tissue culture cells and 

significantly reduce their ability to survive the bactericidal effects of serum (Pierson and 

Falkow, 1993). Interestingly, ail sequences are only found in the pathogenic yersiniae (Miller 

et al., 1989). The ail gene of Y. pseudotuberculosis does not confer the attachment and 

invasion phenotype to E. coli but does confer high levels of resistance against serum 

complement, and an ail mutant of Y. pseudotuberculosis is serum sensitive (Yang et al., 

1996). 

 

1.3.5 Yersinia adhesin (YadA) 

The adhesion protein YadA is encoded by the yadA gene located in the virulence plasmid of 

Yersinia (pYV) that is common to the pathogenic Yersinia species (Bukholm et al., 1990; 

Heesemann et al., 1984; Isberg, 1989). YadA is a virulence factor of Y. enterocolitica, 

however, YadA seems to be dispensable for the virulence of Y. pseudotuberculosis, and in 

wild-type Y. pestis the yadA gene has a frameshift mutation silencing the gene (Rosqvist et 

al., 1988; Skurnik and Wolf-Watz, 1989). Expression of the Y. pseudotuberculosis YadA in Y. 

pestis reduces its virulence (El Tahir and Skurnik, 2001). YadA is a homotrimer of ca. 45-

kDa subunits that are anchored to the outer membrane via their C-termini, while their N-

termini form a globular head on top of a stalk; the ‘lollipop’-shaped YadA structure covers 

the entire bacterial surface giving it hydrophobic properties (Gripenberg-Lerche et al., 1995; 

Hoiczyk et al., 2000; Mack et al., 1994; Skurnik et al., 1984). The yadA gene expression is 

induced at 37°C by the temperature-dependent transcriptional activator LcrF. YadA is a 

multifaceted protein as revealed by its different biological properties. YadA+ bacteria bind to 

collagens, laminin, fibronectin, intestinal submucosa, mucus, and to hydrophobic surfaces like 

polystyrene. YadA+ bacteria autoagglutinate in stationary culture and also specifically 
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agglutinate guinea pig red blood cells. YadA is also a potent serum resistance factor as it 

inhibits the classical pathway of complement. As invasin, it mediates low rate invasion to 

tissue culture cells. In a rat model of reactive arthritis YadA and specifically YadA-mediated 

collagen binding is necessary for Y. enterocolitica to induce the disease (Balligand et al., 

1985; Han and Miller, 1997; Tamm et al., 1993; Tertti et al., 1992).  

 

1.3.6 The Yersiniabactin iron acquisition system 

Iron acquisition is an essential requirement for all microorganisms except certain lactobacilli 

and Borrelia burgdorferi (Posey and Gherardini, 2000). One of the major differences between 

weakly and high pathogenic Yersinia lies in their ability to capture the iron molecules 

necessary for their systemic dissemination in the host. Several iron-uptake (siderophore) 

systems in enterobacteria are located on specific chromosomal regions designated 

pathogenicity islands. The high-pathogenicity island (HPI), initially found and characterized 

in Yersinia spp. may be considered an archetype of iron-uptake islands (Carniel, 2001). The 

siderophore synthesized specifically by highpathogenicity Yersinia is called yersiniabactin 

(Heesemann et al., 1993). This 482-Da molecule belongs to a small sub-group of phenolate 

siderophores and has an affinity for ferric iron (KD = 4 × 10–36) much higher than for ferrous 

iron (Gehring et al., 1998). The 30- kb right-hand part of the HPI, termed the yersiniabactin 

locus, is highly conserved in the three pathogenic species Y. pestis, Y. pseudotuberculosis and 

Y. enterocolitica. This locus is composed of 11 genes organized in four operons. The exact 

function of all these genes is not yet entirely elucidated, but they can roughly be divided into 

three functional groups: yersiniabactin biosynthesis, transport into the bacterial cell (outer 

membrane receptor and transporters), and regulation. This pathogenicity island has never 

been detected in weakly pathogenic or avirulent strains of Yersinia (de Almeida et al., 1993). 

 

1.3.7 Yersinia outer proteins (Yops)  

The virulence plasmid, referred to as the pYV plasmid in Y. enterocolitica, encodes the Yop 

virulon – an integrated virulence apparatus (Cornelis et al., 1998; Iriarte et al., 1998). These 

proteins are involved in the resistance of Yersinia to phagocytosis by PMNs and 

macrophages, in inhibition of the PMN oxidative burst (Lian and Pai, 1985), in induction of 

programmed cell death in macrophages (Mills et al., 1997), and in inhibition of the cytokine 

release that is normally induced by Yersinia infection (Schulte et al., 1996), so limiting the 

host’s inflammatory response to the infection. The Yop virulon includes a set of secreted 
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proteins (the Yop proteins), the Yop-specific chaperones (the Syc proteins), a Yop-dedicated 

secretion system (the Ysc system), and a regulatory network. Some of the secreted Yop 

proteins are required for the translocation across the eukaryotic cell membrane of other Yops 

that interfere with normal cellular processes in the cytosol of the eukaryotic cell.  

The Ysc system belongs to the family of type III secretion systems, which are called contact-

dependent because intimate contact between the eukaryotic cell and bacteria triggers secretion 

and allows delivery of bacterial proteins inside eukaryotic cells (Fallman et al., 1997). 

Homologous secretion systems are also present in a number of other bacteria, all of which 

interact with eukaryotic cells. These include animal pathogens – Salmonella enterica, 

Shigella flexneri, enteropathogenic and enterohaemorraghic E. coli (EPEC and EHEC), 

Pseudomonas aeruginosa, etc. (Cornelis et al., 1998; Alfano and Collmer, 1997; Hueck, 

1998). 

In vitro, Yop secretion only occurs at 37ºC in the absence of Ca2+. This secretion correlates 

with growth arrest, a phenomenon known for a long time as “Ca2+ dependency” (Boyd and 

Cornelis, 2001, in ”Principles of Bacterial Pathogenesis”). There seem to be two different 

regulatory networks. The first permits full expression of all the virulence plasmid-encoded 

virulence functions when the environment is ideal and the temperature reaches 37ºC, while 

the second only prevents Yop production in the presence of 2,5 mM Ca2+ ions (Cornelis et al., 

1991; Rohde et al., 1994; Bolin et al., 1988; Forsberg and Wolf-Watz, 1988). 

 

1.3.8 Lipopolysaccharide (LPS) 

Lipopolysaccharide (LPS) is the major component of the outer membrane of Gram-negative 

bacteria. Although much attention has been given to the biological effects of its lipid A 

portion, a great body of evidence indicates that its O chain polysaccharide (O antigen) portion 

plays an important role in the bacterium–host interplay. Skurnik and colleagues demonstrated 

that the LPS O antigen is also essential for full virulence of Y. enterocolitica serotypes O:3 

and O:8 (al Hendy et al., 1992; Zhang et al., 1997). A mutant lacking the O antigen is 100- 

fold less virulent than the wild type after oral infection. An interesting feature of Y. 

enterocolitica O antigen is that its expression is temperature regulated. The optimum 

expression occurs when bacteria are grown at room temperature (RT, 22–25ºC). However, 

when they are grown at 37ºC, the host temperature, only trace amounts of O antigen are 

produced (al Hendy et al., 1991; Brubaker, 1991; Bengoechea et al., 2002). Significantly, 

most, if not all, Yersinia virulence factors are also regulated by temperature (Straley and 
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Perry, 1995). Recent work by Bengoechea and colleagues showed that the Y. enterocolitica 

O:8 LPS O antigen mutants of three different O antigen phenotypes (expressing no O antigen, 

one O unit or randomly distributed O antigen chain lengths) are attenuated in virulence 

regardless of the infection route used (Bengoechea et al., 2004). The results indicated that for 

the full virulence of Y. enterocolitica O:8 not only the presence of the O antigen but also the 

proper distribution of the O antigen chain lengths is required. They also demonstrated that the 

function or expression of other virulence factors of Y. enterocolitica O:8 require the presence 

of the O antigen. 

 

2. Suppressive subtractive hybridization as a tool in the elucidation of the genetic 

variability among Yersinia strains 

The presence of different sequences and virulence factors in similar bacterial pathogens 

suggests that bacterial diversity may commonly involve horizontal transfer, loss and 

acquisition of important blocks of chromosomal or plasmid DNA encoding a series of related 

gene products. For example, high pathogenic Y. enterocolitica BG 1B strains have a 

chromosomal “pathogenicity island” and a pYV encoded Yop virulon, which are absent in 

non pathogenic Y. enterocolitica BG 1A isolates (Carniel, 2001). On the other hand, even 

different strains belonging to the avirulent group, such as ST O:5 or ST O:6,30, BG 1A may 

cause an infection. Thus, serotype-, biogroup- or even strain-specific markers might be 

responsible for the differences in clinical manifestations of yersiniae. To map out such 

lineage-specific markers, we have applied the suppression subtractive hybridization (SSH) 

method (Diatchenko et al., 1996; Lisitsyn et al., 1993; Lisitsyn and Wigler, 1995). This 

method was already successfully used for the identification of genomic differences between 

Y. enterocolitica WA-C BG 1B, ST O:8 and Y. enterocolitica NF-O biogroup 1A, ST O:5 

(Iwobi et al., 2002). The Y. enterocolitica species represent a highly heterogeneous group of 

bacteria ranging from the non pathogenic BG 1A strains to the high pathogenic BG 1B and 

low pathogenic isolates of BG 2-5 (Table 3). Although closely related, the BG 1B and BG 2-5 

organisms differ significantly with respect to pathogenicity.  

 

3. Diagnostics of Yersinia 

The gold standart for the final biochemical identification of a Yersinia isolate is still classical 

tube testing (Aleksic and Bockemuhl, 1990). Commercially available identification systems 

such as the API 20E, API rapid 32 IDE, the GNI card of the VITEK system (all bioMerieux) 
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or the Micronaute E (Merlin Diagnostika) lack sensitivity and specificity at the species level 

(Neubauer et al., 1998; Linde et al., 1999). The definite identification of Y. enterocolitica 

isolates can also be achieved by sequencing the 16S rRNA gene (Neubauer et al., 2000). A 

commercially available PCR kit and a dip stick probe assay for the identification of Y. 

enterocolitica isolates based on 16S rRNA gene sequences proved to be specific either for 

“European” or “American” isolates (Neubauer et al., 1999).  

For the assessment of the presumptive pathogenicity of an Y. enterocolitica isolate a variety 

of empiric virulence markers are used (Aleksic and Bockemuhl, 1990). These assays can 

easily be replaced by PCR assays targeting plasmid genes (Neubauer et al., 2000; Neubauer et 

al., 2000). The evaluation of molecular systems in terms of routine diagnostic procedures, 

however, is still missing. 
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4. Aims of this research study 

Depending on the pathogenicity level, weakly and highly pathogenic Yersinia strains use 

different strategies for their interactions with a host. Discovering chromosomal and plasmid 

determinants, which are responsible for the different strategies utilized by weakly and highly 

pathogenic yersiniae will allow us to trace the evolution of pathogenicity in yersiniae. 

Because of problems with typing of Y. enterocolitica strains as well as their serological 

discrimination from Brucella species, pathotype-specific genomic determinants will be good 

epidemiological markers.  

In this work, we made an attempt to recognize genomic features of the weakly and highly  

pathogenic yersiniae, as well as to fish out  signature sequences that will be suitable for 

epidemiological studies.  

In our study, a mouse lethal Y. enterocolitica BG 1B, ST O:8, which presents the classic 

“American” highly pathogenic group of strains, was used both as a tester and as a driver in 

SSH with a mouse non virulent Y. enterocolitica BG 4, ST O:3 strain, which is a typical “non-

American” isolate and mainly distributed in Germany, to uncover gene acquisitions and losses 

in both strains of the selected pair. We have also characterized the gene acquisitions of the 

representative Rha-positive, human avirulent Y. pestis strain G8786 isolated in Georgia in the 

high mountainous Caucasian locus from Microtus arvalis in 1987, by means of SSH with 

another human virulent Antiqua strain Yokohama.  

 

 

This research study had two aims: 

I. Uncovering gene acquisitions and losses in chromosomes of the two Y. enterocolitica 

isolates, namely Y. enterocolitica subsp. palearctica BG 4 ST O:3 (weakly pathogenic Y-

108C strain) and Y. enterocolitica subsp. enterocolitica BG 1B ST O:8 (highly pathogenic 

WA-C strain) by SSH.  

II. Characterization of gene acquisitions of the human avirulent Y. pestis strain G8786 

compared with another Antiqua strain Yokohama by SSH. 

This differential analysis approach should lead to the following goals: 

1) Isolation and characterization of novel DNA sequences unique to the highly and weakly 

pathogenic Y. enterocolitica BG 4 and  BG 1B strains. 
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2) Finding a novel virulence factors and epidemiological markers specific to the weakly 

pathogenic Y. enterocolitica BG 4 strains 

3) Isolation and characterization of novel DNA sequences unique to the human avirulent Y. 

pestis strain G8786 
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B. MATERIALS AND METHODS 

 

1. Material 

1.1 Equipment 

Centrifuge Sigma, Deisenhofen 1K1S, Table-centrifuge 

3K30 with Rotor Nos. 12156 and 19776 

Electrophoresis apparatus for 

SDS-PAGE 

Bio-Rad, München Mini-Protean -II Cell and Western 

Blot Apparatus 

Electroporation-apparatus Bio-Rad, München, Gene Pulser, II 

Pulse Controller II 

French Press French Pressure Cell 40K SLM Aminco 

Hybridization oven Personal Hyb. Stratagene, Amsterdam 

Incubator Heraeus, Hanau Typ B20 

PCR-Cycler PE Applied Biosystems, Weiterstadt Gene Amp 2400 

pH Meter Mettler, Toledo 320 pH Meter 

Photometer Pharmacia, Biotech Ultrospec 2000 

Pipettes Eppendorf, Hamburg Research P10-P1000 

Sequencer PE Applied Biosystems, Weiterstadt ABI 377 DNA 

Sequencer 

Shaking incubator Braun, Melsungen Certomat BS-1 

Sterile bank Heraeus, Hanau Herasafe HS12 

Transilluminator Heralab, Wiesloch, UVT-20M/W 

Video-equipment Sigma, Deisenhofen, EASY (Enhanced Analysis 

System) 

Vacuum blot Pharmacia,-LKB, Uppsala, LKB 2016 Vacu GeneR-

Chamber 

Scale Sartorius, Göttingen Model R 160P and Pt 1200 

 

1.2 Other materials 

Plastic and related articles were purchased from the following firms: Nunc, Roskilde, DK; 

Sartorius, Göttingen; Falco/Becton Dickinson, Heidelberg; B. Braun, Melsungen; Eppendorf, 

Hamburg; Greiner, Nürtingen and Schleicher & Schüll, Dassel.Nylon membranes (Zeta Probe 
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GT) were purchased from Biorad and Nitrocellulose membranes (Whatman-paper) from 

Schleicher & Schüll. 

 

1.3 Chemicals and Enzymes 

All chemicals and antibiotics were supplied by Merck (Darmstadt), Biochrom (Berlin), Roche 

(Mannheim) and Sigma (Deisenhofen). Media plates were supplied by Difco (Detroit, 

Michigan, USA) and enzymes were obtained from MBI Fermentas (St. Leon-Roth), Roche 

(Mannheim), and Gibco (Eggenstein). 

 

2. Bacteria, Plasmids and Primers 

2.1 Table 4. Bacterial strains and plasmids 

Strain / plasmid Relevant Characteristics References or source 

Srains   

E. coli   

JM109 { recA1 endA1 gyrA96 thi hsdR17(rk-, 

mk+) supE44 relA1 ∆(lac-proAB) [F' 

traD36 proAB lacIqZ∆M15]} 

(Yanisch-Perron et al., 1985) 

JM109 Nalr The spontaneous NalR mutant of E. coli 

strain JM109 

This research 

XL1 Blue MR (mcrA) 183 (mcrCB-hsdSMR-mrr) 173 

endAI supE44 thi-1 recA1 gyrA96 

relA1lacc

Stratagene 

BL21 F- ompT hsdS(rB
– mB

-) gal Stratagene 

Y. enterocolitica   

Y-108-P Clinical isolate, ST O:3 BG 4 (Heesemann et al., 1984) 

Y-108-C Plasmidless variant of Y-108P This research 

Y11 Clinical isolate, ST O:3 BG 4 SaBw strain collection, Dr. Neubauer 

5307 Clinical isolate, ST O:3 BG 4 SaBw strain collection, Dr. Neubauer 

5783 Clinical isolate, ST O:3 BG 4 SaBw strain collection, Dr. Neubauer 

Y486 Animal isolate, ST O:3 BG4 SaBw strain collection, Dr. Neubauer 

Y626 WS 15/93 Animal isolate, ST O:3 BG4 SaBw strain collection, Dr. Neubauer 

Y633 (WE50/01) Clinical isolate, ST O:3 BG 4 SaBw strain collection, Dr. Neubauer 

Y641 Animal isolate, ST O:3 BG4 SaBw strain collection, Dr. Neubauer 

560 (SW13123) Animal isolate, ST O:3 BG4 (Saken et al., 1994) 

559 (M388) Animal isolate, ST O:3 BG4 (Saken et al., 1994) 

556 (8265) Clinical isolate, ST O:3 BG 4 (Saken et al., 1994) 
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531 (SW13711) Animal isolate, ST O:3 BG4 (Saken et al., 1994) 

554 (29C-43a) Clinical isolate, ST O:3 BG 4 (Saken et al., 1994) 

555 (MCH697) Clinical isolate, ST O:3 BG 4 (Saken et al., 1994) 

Y485 Animal isolate, ST O:3 BG4 SaBw strain collection, Dr. Neubauer 

628 W 498 Animal isolate, ST O:3 BG4 SaBw strain collection, Dr. Neubauer 

642 ST O:3 BG4 SaBw strain collection, Dr. Neubauer 

Y631 Animal isolate, ST O:3 BG4 SaBw strain collection, Dr. Neubauer 

S-2840 Clinical isolate, ST O:3 BG 4 MvP strain collection 

2118-Y Clinical isolate, ST O:3 BG 4 MvP strain collection 

221 Erg.Nod Clinical isolate, ST O:3 BG 4 MvP strain collection 

Y-1088 Clinical isolate, ST O:3 BG 4 MvP strain collection 

66 Stuhl Clinical isolate, ST O:3 BG 4 MvP strain collection 

56 LK Clinical isolate, ST O:3 BG 4 MvP strain collection 

62 Stuhl Clinical isolate, ST O:3 BG 4 MvP strain collection 

59 LK Clinical isolate, ST O:3 BG 4 MvP strain collection 

4147 pYVII Ar+ Clinical isolate, ST O:3 BG 4 MvP strain collection 

7347 pYVI Ar+ Clinical isolate, ST O:3 BG 4 MvP strain collection 

Y745 IP24231  ST O:3 BG 3, Man, Japan SESAHS strain collection, Dr. Pham 

Y746 IP24232  ST O:3 BG 3, Man, Japan SESAHS strain collection, Dr. Pham 

Y747 IP134  ST O:3 BG 4, Man, Sweden SESAHS strain collection, Dr. Pham 

Y748 IP21981  ST O:3 BG 4, Man, France SESAHS strain collection, Dr. Pham 

Y749 IP1601  ST O:3 BG 4, Man, Japan SESAHS strain collection, Dr. Pham 

Y750 IP19718  ST O:3 BG 4, Man, China SESAHS strain collection, Dr. Pham 

Y751 IP23222  ST O:3 BG 4, Man, UK SESAHS strain collection, Dr. Pham 

Y752 IP23357  ST O:3 BG 4, Man, Brazil  SESAHS strain collection, Dr. Pham 

Y753 IP24309  ST O:3 BG 4, Man, N. Caledonia SESAHS strain collection, Dr. Pham 

Y754 IP24310 ST O:3 BG 4, Man, N. Caledonia SESAHS strain collection, Dr. Pham 

Y755 IP7032  ST O:3 BG 4, Man, South Africa  SESAHS strain collection, Dr. Pham 

Y756 IP7036  ST O:3 BG 4, Man, South Africa SESAHS strain collection, Dr. Pham 

Y757 IP3692  ST O:3 BG 4, Man, Hungary SESAHS strain collection, Dr. Pham 

Y758 IP3704  ST O:3 BG 4, Man, Hungary SESAHS strain collection, Dr. Pham 

Y759 IP4115  ST O:3 BG 4, Man, Canada SESAHS strain collection, Dr. Pham 

Y763 IP4124  ST O:3 BG 4, Man, Canada SESAHS strain collection, Dr. Pham 

Y764 IP4125  ST O:3 BG 4, Man, Canada SESAHS strain collection, Dr. Pham 

Y765 IP22274  ST O:3 BG 4, Man, Australia SESAHS strain collection, Dr. Pham 

Y766 IP22275  ST O:3 BG 4, Man, Australia SESAHS strain collection, Dr. Pham 

Y767 IP22276  ST O:3 BG 4, Man, Australia SESAHS strain collection, Dr. Pham 

Y768 IP25728  ST O:3 BG 4, Man, Australia SESAHS strain collection, Dr. Pham 
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Y769 IP23227  ST O:3 BG 4, Man, New Zealand SESAHS strain collection, Dr. Pham 

Y770 IP23228  ST O:3 BG 4, Man, New Zealand SESAHS strain collection, Dr. Pham 

Y771 IP23230  ST O:3 BG 4, Man, New Zealand SESAHS strain collection, Dr. Pham 

910/98 Clinical isolate, ST O:3 BG 4, Poland PZH strain collection, Dr. 

Gierczynski 

562/03 Clinical isolate, ST O:3 BG 4, Poland PZH strain collection, Dr. 

Gierczynski 

465/00 Clinical isolate, ST O:3 BG 4, Poland PZH strain collection, Dr. 

Gierczynski 

128/99 Clinical isolate, ST O:3 BG 4, Poland PZH strain collection, Dr. 

Gierczynski 

627/99 Clinical isolate, ST O:3 BG 4, Poland PZH strain collection, Dr. 

Gierczynski 

120/98 Clinical isolate, ST O:3 BG 4, Poland PZH strain collection, Dr. 

Gierczynski 

243/96 Clinical isolate, ST O:3 BG 4, Poland PZH strain collection, Dr. 

Gierczynski 

504/97 Clinical isolate, ST O:3 BG 4, Poland PZH strain collection, Dr. 

Gierczynski 

99/96 Clinical isolate, ST O:3 BG 4, Poland PZH strain collection, Dr. 

Gierczynski 

457/98 Clinical isolate, ST O:3 BG 4, Poland PZH strain collection, Dr. 

Gierczynski 

567/98 Clinical isolate, ST O:3 BG 4, Poland PZH strain collection, Dr. 

Gierczynski 

265/01 Clinical isolate, ST O:3 BG 4, Poland PZH strain collection, Dr. 

Gierczynski 

274/99 Clinical isolate, ST O:3 BG 4, Poland PZH strain collection, Dr. 

Gierczynski 

188/01 Clinical isolate, ST O:3 BG 4, Poland PZH strain collection, Dr. 

Gierczynski 

254/97 Clinical isolate, ST O:3 BG 4, Poland PZH strain collection, Dr. 

Gierczynski 

353/96 Clinical isolate, ST O:3 BG 4, Poland PZH strain collection, Dr. 

Gierczynski 

332/98 Clinical isolate, ST O:3 BG 4, Poland PZH strain collection, Dr. 

Gierczynski 

184/97 Clinical isolate, ST O:3 BG 4, Poland PZH strain collection, Dr. 
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Gierczynski 

96C (Y-96) Clinical isolate, ST O:9 BG 2 (Saken et al., 1994) 

564 (7Oulua) Clinical isolate, ST O:9 BG 2 (Saken et al., 1994) 

563 (YE099) Clinical isolate, ST O:9 BG 2 (Saken et al., 1994) 

Y738 IP22393  ST O:9 BG 2, France SESAHS strain collection, Dr. Pham 

586 (H567/90) Clinical isolate, ST O:5,27 BG 2 (Saken et al., 1994) 

568 (YE873) Animal isolate, ST O:5,27 BG 2 (Saken et al., 1994) 

534 (D113) Animal isolate, ST O:5,27 BG 2 (Saken et al., 1994) 

Y740 IP199  ST O:5,27 BG 2, Man, USA SESAHS strain collection, Dr. Pham 

Y741 IP885  ST O:5,27 BG 2, Man, UK SESAHS strain collection, Dr. Pham 

Y743 IP22460  ST O:5,27 BG 2, Man, Australia SESAHS strain collection, Dr. Pham 

JD E029 Clinical isolate, ST O:1  (Schiemann, 1982) 

gk1142 Hare, ST O:2 BG 5 (Kapperud et al., 1985) 

JD E766 Clinical isolate, ST O:1,2,3  (Schiemann, 1982) 

Y772 IP1  ST O:2a,2b,3 BG 5, Hare, France SESAHS strain collection, Dr. Pham 

Y773 IP178  ST O:2a,2b,3 BG 5, Hare, France SESAHS strain collection, Dr. Pham 

438/80 ST O:6,31 (Skurnik, 1984) 

1309/80 ST O:6,31 (Skurnik, 1984) 

IP 2222 Non-clinical isolate, ST O:36, BG 1A (Grant et al., 1999) 

gc 3973-76 Clinical isolate, ST O:4  (Kay et al., 1983) 

JD E701 Clinical isolate, ST O:4,32 BG 2 (Schiemann, 1982) 

NF-O  Clinical isolate, ST O:5 BG 1A (Saken et al., 1994) 

Y755 IP124 ST O:5 BG 1A, Pony, France SESAHS strain collection, Dr. Pham 

Y774 IP102  ST O:6,30-6,61, Man, Denmark SESAHS strain collection, Dr. Pham 

189/80  ST O:6,30 BG 1A (Skurnik, 1984) 

6737/80 ST O:6,30 BG 1A (Skurnik, 1984) 

350 ST O:7,8 MvP strain collection 

329/82 ST O13:b,e,f,i MvP strain collection 

3039/85 ST 020:b,e,f,i MvP strain collection 

209/84 ST 021:b,e,f,I MvP strain collection 

478/91 ST O:41,43 MvP strain collection 

4643/93 ST O:48 MvP strain collection 

WA-C  Clinical isolate, ST O:8 BG 1B (Heesemann et al., 1984) 

589 (900/90) Clinical isolate, ST O:8 BG 1B (Saken et al., 1994) 

575 (893/87) Clinical isolate, ST O:8 BG 1B (Saken et al., 1994) 

Y736 IP636  ST O:8 BG 1B, USA SESAHS strain collection, Dr. Pham 

Y. pseudotuberculosis   

PB1 ST O:1 Michigan State University, USA, Dr. 
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Brubaker 

346 Clinical isolate, ST O:3  MvP strain collection 

Y. pestis   

735 Rattus norvegicus MvP strain collection 

5764 Rattus norvegicus MvP strain collection 

952 Rattus norvegicus MvP strain collection 

G8786 Vole (Golubov et al., 2004) 

EV Clinical isolate MvP strain collection 

Yokohama Clinical isolate MvP strain collection 

Other yersiniae   

Y. intermedia H9-36/83  ST O:17 MvP strain collection 

Y. frederiksenii H56-

36/81  

ST O:60 MvP strain collection 

Y. kristensenii H25-36/84  ST O:50 MvP strain collection 

Y. rohdei H274-36/78  ST O:76 MvP strain collection 

Y. bercovieri H632-36/85  ST O:16 MvP strain collection 

Y. mollaretii H279-36/86  ST O:59 MvP strain collection 

Y. ruckeri 529-36/85 unknown MvP strain collection 

Y. aldovae  H344-36/91  ST O:NT MvP strain collection 

   

Plasmids   

SuperCos1 Cloning vector Apr Neor Stratagene 

pSC1275D SuperCos1 carrying a proximal part of 

the rtx operon 

This research 

pSC1012B SuperCos1 carrying a distal part of the 

rtx operon 

This research 

pMOSBlue Cloning vector Apr Amersham 

pET100/D-TOPO Expression vector which allows 

expression of recombinant protein with 

an N-terminal 6xHis tag 

Invitrogen 

pRTX2100 pET100D/TOPO carrying 2100 bp of 

rtxA gene 

This research 

pG8786 pFra plasmid from Y. pestis G8786 

strain 

(Golubov et al., 2004) 

pG8786-Cmr pG8786 carrying Cmr gene (Golubov et al., 2004) 

RP4 the conjugative plasmid (Kim et al., 1993) 

pKD46 plasmid carrying red system genes (Murphy, 1998) 

pKD3 Plasmid carrying Cmr gene was used as (Murphy, 1998) 
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a source of Cmr cassete 

 

2.2 Table 5. List of primers: SSH (seq. primers), IS1331, rtx, pG8786 

Primer 5’-…..-3’ sequence Description 

Primers for SSH project   

T7 (forward) TAATACGACTCACTATAGGGA amplifies the insert within 

the MCS of pMOSBlue 

vector 

U19 (reverse) GTTTTCCCAGTCACGACGT amplifies the insert within 

the MCS of pMOSBlue 

vector 

Primers for IS1331 

project 

  

istBL.for TAAGAAAATGCCACTTGTGAGGGG sequencing primer 

istAL.for CGTTAATCGTTGTTTGGCGGG sequencing primer 

istAM.for TCCGTAATGTTCTCACTTGACGCTC sequencing primer 

istAL2.for GGGCAAATACCCCAAATCATC sequencing primer 

ist.for GGTTTCATCAGTTAGGCGTTG sequencing primer 

ist2.for GATTAATACGGTAGCCAATACTCG sequencing primer 

istAL3.for ATGCTGGGTTTATTTAATGGGC sequencing primer 

gpP.for GGCATCAATTCCGATATATTCCACG sequencing primer 

orf19.rev CGGAGGTTGAGAATCTATTCCAGAA

GAG 

sequencing primer 

O1R.rev TGGAGTAGCTCAGTAAAGGTGG sequencing primer 

orf155m.rev AAGATTGGCCCCAACAGAGTC sequencing primer 

O2R.rev GTGCAAAAGTAGACCAAGGGATC sequencing primer 

istL.rev GAATGGGTAAAACTATTTGCCGATG sequencing primer 

fic.for TATGCTGAAGGCTGTGGCTGTCA sequencing primer 

istBN2.for TTATGCTGTGGGAACCTGGCTTG sequencing primer 

istBL.rev CCACCAATGGGTTTAAAGTTCGC sequencing primer 

istAR.rev CAAGTGCCGTCTGCCTGTTGA sequencing primer 

istAM.rev AAGAACAATATCAACCCGCGCC sequencing primer 

istAR1.rev GCTCTCGCTGTGAAATCCGGC sequencing primer 

ist.rev AAATTACCCGCCAAACAACG sequencing primer 

ist2.rev CACAGCATAAAACACTGTCTGAC sequencing primer 

istAR2.rev CGTCGCGCTGCTTTTGCTGT sequencing primer 

intU.rev TTATATTATCGGGGTGCATGGCAC sequencing primer 
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O1L.for ATTGGTAATACGCAGAGTTTCCTTC sequencing primer 

orf181m.for AATGTGCACAGAGAAGATAATCG sequencing primer 

O2L.for GCCCTAGTCGCTTTTTACCTAATG sequencing primer 

istR.for CGGTATGACGAGATATTTGTAACTG sequencing primer 

STY4827.for ATGAGCCAAACAACCCCACACCC sequencing primer 

istBN2.rev CATCATTGTGACATTATTGAAACAG

GCA 

sequencing primer 

istAN1.rev TCAATGCCATCAGATCATCCAAACA sequencing primer 

Primers for pG8786 

project 

  

YopP8 GAGACCAGTTCTTTAATCAG amplifies part of yopP 

YopP9 GCCAGTGCCAAACTAAAAAT amplifies part of yopP 

cafD.for CTGACAAATTTATGTGAAGATCAAT

GTTAGGAACTAATGCAGAAAGCCA

CGGTGTAGGCTGGAGCTGCTTC 

generates PCR fragment for 

ET mutagenesis 

cafD.rev AACCCCGGGGTGAGGGCAAAGGCT

GCTTTGTTGAAGTTGCATGGATGAT

GGCATATGAATATCCTCCTTAG 

generates PCR fragment for 

ET mutagenesis 

cafD1.for GGGGATGACGTCGTCTTGGCTAC amplifies part of cafD 

cafD1.rev TCCACTCACTGAGTGAAGCCCTTTT

AA 

amplifies part of cafD 

Primers for rtx project    

delA.for ATGCCCGTGGGTGGGAATGATGATA

TTTTCGTCGGATCCATTGCTGCAGT

GTAGGCTGGAGCTGCTTC 

generates PCR fragment for 

ET mutagenesis 

delA.rev CTTAGCTTTCTCCACATTCTTTCTTC

CCTCCACTAAAGCTGATTCAGACAT

ATGAATATCCTCCTTAG 

generates PCR fragment for 

ET mutagenesis 

alf10.for ATACCATTCAAGTCGGAATGATGAG sequencing primer 

alf11.for AACCTCGACGAAATCAAGTCAACTG sequencing primer 

alf12.for GGAAGATCTGCTTAATATGGAGCAG sequencing primer 

alf13.for CGGAAGATCTGCTTAATATGGAGCA

G 

sequencing primer 

alf14.for GAAGGAGATGATGAACTTATCGCTG sequencing primer 

alf141.for TCTCTAGCGGGGCTGAAAAAG sequencing primer 

alf15.for CAGGTTTTGAGATAAATTATGCCCG sequencing primer 

rtxA_1.rev TTACACCCCCCCCATCAGAGCATAA

GTG 

generates PCR fragment 

with the first part of rtxA for 
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subcloning into the 

expression vector 

pET100/D-TOPO 

alf16.for ATATTCATCCATTATCTACGGCGG sequencing primer 

alf17.for GGAGTAATGTCCACACCGTATAAG sequencing primer 

alf18.for TTAGGTGAATTGCCCCTGAGTG sequencing primer 

 

All the primers used in this work were supplied by Metabion (Martinsried). They were 

supplied in either a 100 pmol/µl solution or lyophilized. Lyophilized primers were dissolved 

in distilled, sterile water to a 100 pmol/µl end concentration. Table 2 gives a list of the 

primers used in this work. 

 

3. Culture media, Antibiotics, Strain Cultivation and Storage 

3.1 Culture media 

Sterilization of liquid media was by autoclaving (121 °C at 1 bar for 20 min). For solid agar, 

15 g agar per liter of liquid media was used. 

 

Luria-Bertani (LB) Medium Trypton                         10 g 

Yeast powder extract    5 g 

NaCl                              5 g 

H2Odest to                      1 L 

pH set to 7.4 - 7.6 with NaOH 

 

Minimal medium (M9) 

 

Na2HPO4                      6 g 

KH2PO4                        3 g 

NaCl                               0.5 g 

NH4Cl                            1 g 

Water to                         1 L 

pH adjusted to 7.4, 

autoclaved and cooled 

 

Further media components 

 

 

1M MgSO4

20% Glucose 

1M CaCl2
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0.5M EGTA 

 

3.2 Antibiotics 

Name and concentration of antibiotics employed in this research are listed in table 3. 

Sterilization of all antibiotics was by filtration with 0.22 µm filters. 

Table 6. List of Antibiotics 

Antibiotic Abbreviation Dissolved in End-concentration (µg/ml) 

Ampicillin Amp H2Odest 100 (E. coli) 

400 (Yersinia) 

Kanamycin Km H2Odest 50 

Nalidixic acid Nal 0.5 N NaOH 100 

Chloramphenicol Cm 70 % C2H5OH 30 

Streptomycin Sm H2Odest 100 

Tetracycline Tet 70 % C2H5OH 15 

 

3.3 Cultivation and long term storage of bacteria 

Bacteria were cultivated either on agar plates or in liquid medium by incubation on a shaker 

as follows: 

- Yersinia: 200 rpm at 27°C 

- E. coli: 200 rpm at 37°C. For long term storage, bacteria were suspended in LB-Medium 

fortified with 10% Glycerol and frozen at -80°C. Table 4 presents a summary of the strains 

and plasmids used in this study. 

 

4. Molecular genetic methods 

 

4.1 Isolation of Chromosomal DNA 

High quality chromosomal DNA was isolated according to the method described in Current 

Protocols (Ausubel et al., 2000) as follows. Bacteria from a saturated liquid culture were 

lysed with SDS and proteinase K. Cell wall debris, polysaccharides, and remaining proteins 

were then removed by selective precipitation with CTAB (hexadecyl trimethyl ammonium 

bromide), and high molecular weight DNA was recovered from the resulting supernatant by 

isopropanol precipitation. 

Reagents 

Tris-EDTA Buffer 2M Tris.HCl, pH 8 
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0.25M EDTA, pH 8 

CTAB/NaCl solution 10% CTAB (hexadecyltrimethyl ammonium bromide) 

0.7M NaCl (4.1g / 100 ml) 

Dissolve in 80 ml distilled water, 

heat to 65°C and adjust volume to 100 ml 

 

Procedure 

50 ml LB medium (supplemented with antibiotics when appropriate) was inoculated with the 

bacteria of interest and grown overnight on a shaker at the 27°C/37°C. The cells were then 

pelleted at 4,000 x g for 5 min and gently resuspended in 9.5 ml TE buffer. 0.5 ml of 10% 

SDS was added and 50µl proteinase K (20 mg/ml in H2O), followed by gentle mixing and 

incubation for 1 hr at 37°C. 1.8 ml 5M NaCl was added and mixed thoroughly. 1.5 ml 

CTAB/NaCl was then added, the suspension mixed and then incubated at 65°C for 20 min. 1 

volume (13.5 ml) of freshly prepared chloroform/isoamylalcohol mixture (at a ratio of 24:1 

respectively) was then added, and the suspension was centrifuged at 6,000 x g for 10 min at 

RT. The viscous upper phase was then drawn out with a tipless 5 ml pipette, mixed with 1 

volume of Phenol/Chloroform/Isoamylalcohol (25:24:1) and subjected to centrifugation for at 

least 10 min at 6,000 x g at RT. This extraction step with phenol was repeated thrice, after 

which the last phase was collected in a fresh tube and treated with 0.6 volume isopropanol to 

precipitate the DNA. The solution was mixed carefully till the DNA self-precipitated. The 

DNA was then spooled out of the mix with a pipette tip and washed twice in 1 ml of 70% 

ethanol. The DNA was allowed to air-dried and finally dissolved overnight in high purity 

water. 

 

4.2 Isolation of plasmid DNA 

 

4.2.1 Plasmid isolation with QIAprep Spin Miniprep kit (Qiagen) 

The QIAprep Spin Miniprep kit was routinely used for small scale isolation of plasmid DNA 

(up to 20 µg). The principle behind it is based on alkaline lysis, coupled with anion-exchange 

chromatography. The isolation procedure was as recommended by the kit’s manufacturer.  

 

4.2.2 Plasmid isolation with Nucleobond AX100 Kit (Machery-Nagel) 



B. MATERIALS AND METHODS 28

The Nucleobond AX100 Kit was used for the isolation of high quality DNA in high 

concentration (up to 100 µg). The principle of DNA isolation is also based on alkaline lysis of 

cells, followed by purification of nucleic acids on the basis of anion-exchange 

chromatography. The isolation procedure was as recommended by the kit’s manufacturer. 

 

4.3 Purification DNA and determination of DNA concentration and purity 

 

4.3.1 Phenol extraction and ethanol precipitation of DNA 

Phenol extraction was carried out to remove contaminating proteins from a DNA preparation. 

Procedure 

• The DNA solution was mixed with an equal volume of TE - saturated 

phenol/chloroform/isoamyl alcohol (25:24:1) in a microcentrifuge tube and the mixture 

vortexed for 30 sec. 

• The mixture was centrifuged at 14,000 rpm for 5 min at RT to separate the sample into 

phases. 

• The upper aqueous layer was then removed into a clean tube, carefully avoiding denatured 

proteins found at the aqueous / phenol interface. This upper phase was then mixed with an 

equal volume of the phenol / chloroform / isoamyl alcohol solution mentioned above, the 

mixture vortexed and centrifuged (14,000 rpm for 5 min). This step was repeated 2-3 

times, and the DNA precipitated from the upper aqueous phase through ethanol 

precipitation. 

 

Ethanol precipitation 

This was carried out to remove contaminating salts from a DNA preparation or to concentrate 

a DNA preparation. 

Procedure 

• The DNA solution was mixed with 1/10 volume of 3 M sodium acetate and 3 volumes of 

ethanol. 

• The mixture was incubated at -20°C for 30 min. 

• The mixture was centrifuged at 14,000 rpm for 15 min at 4°C. 

• The supernatant was removed and the DNA pellet was washed with 70% ethanol and 

centrifuged at 14,000 rpm for 5 min at 4°C. 

• The pellet was air-dried and the DNA resuspended in water and stored at -20°C. 
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4.3.2 Determination of DNA concentration and purity 

Nucleic acids have a maximum absorption at 260nm wavelength. The isolated DNA was 

diluted with distilled water (1:100) and the absorbance at 260nm against H2Obidest measured 

spectrophotometrically. The calculation of the DNA concentration was based on the 

following formula:  

1 A260 = 50 µg/ml for dsDNA 

1 A260 = 33 µg/ml for ssDNA 

For determination of DNA purity, the A260/280 coefficient was photometrically determined. 

An A260/280 < 1.8 indicated contamination of the DNA preparation with protein or aromatic 

substances such as phenol, while an A260/280 > 2.0 indicated possible contamination with 

RNA (LAB FAQs, Roche). 

 

4.4 Polymerase Chain Reaction (Saiki et al., 1988) 

The polymerase chain reaction (PCR) permits the selective in vitro amplification of a 

particular DNA region by mimicking the phenomenon of in vivo DNA replication. Typically, 

three steps are involved in a standard PCR recation: denaturation, which achieves the 

dissociation of the template DNA molecules into single strands; annealing, which allows 

single stranded primers to bind to complementary sites on the template DNA; and lastly 

elongation which allows for extension of the DNA strands, due to the effect of the 

thermostable DNA polymerase. As template DNA, either plasmid, cosmid or chromosomal 

DNA was utilized at a diluted concentration, or cooked cells were employed. Where cooked 

cells were used as source of template DNA, the procedure was as follows: 

- A bacterial colony was isolated, suspended in 70 µl H2Obidest, cooked at 95 °C for 10 min 

and centrifuged (12,000 rpm for 5 min). 

- The supernatant containing released DNA template was then utilized in the PCR reaction. 

For a typical 50 µl reaction volume, the following components were pipetted into a PCR 

test-tube: 

Reaction components DNA 

Primer 1 (100 pmoles) 

Primer 2 (100 pmoles) 

dATP, dCTP, dGTP, dTTP 

10 x Taq-Reaction buffer 

5 µl 

0.5 µl 

0.5 µl 

5 µl 

5 µl 
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Taq-polymerase (5 U/µl) 

H2O 

0.5 µl 

ad to 50 µl 

Cycling parameters Denaturation 94°C 

Denaturation* 94°C 

Annealing* x°C 

Elongation* 72°C 

Final extension 72°C 

3 min 

30 sec 

30 sec 

y min 

3 min 

* 30 - 35 cycles 

x: Annealing temperature dependent on the Tm (melting temperature) of primers 

y: Elongation is typically 1 min pro kb of amplified DNA 

A negative control with water as template DNA was always included in the reactions and 5 µl 

of the finished PCR product was checked on an agarose gel before purification with the 

Qiagen PCR purification kit. 

 

4.5 Agarose gel electrophoresis 

The agarose gel was prepared by mixing an appropriate proportion of agarose (to a final 

concentration of 0.7 - 2% depending on the MW of the sample DNA) with 1 x TAE buffer, 

the mixture cooked and after cooling poured into precast agarose gel chambers. The DNA 

was then mixed with loading buffer, loaded onto spurs on the gel and electrophoretically 

separated by voltage application utilizing the 1 x TAE solution as the running buffer. 

Following the electrophoretic run, gels were stained in ethidium bromide solution and the 

DNA visualized under ultraviolet radiation. 

Solutions: 

1x TAE buffer 

 

 

 

10 x Loading buffer for agarose gels 

 

 

Agarose gel 

 

Ethidium bromide staining solution: 

40mM Tris / HCl, pH = 8.2 

20mM Acetic acid 

2mM EDTA, pH 7.6 

 

0.25% (w/v) Bromophenol blue 

10% (v/v) Glycerol  

 

0.8% - 2% Agarose in 1 x TAE 

 

1 µg Ethidium bromide pro ml H2O 
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4.6 Enzymatic modification of DNA 

 

4.6.1 Restriction digestion of DNA 

Chromosomal or plasmid DNA samples were routinely subjected to restriction digestions. For 

a restriction endonuclease reaction, the following components were mixed together and 

incubated at the appropriate temperature (usually 37°C for most enzymes): 

DNA 

10 x Reaction bufferx

Enzyme 

H2O  

x µl 

1 µl 

2 - 3 units / µg DNA 

to 10 µl* 

* For higher DNA concentrations, the reaction and volume were scaled up linearly. 

x: Choice of reaction buffer depended on the type of enzyme employed. 

 

Because all reaction enzymes are supplied in 50% glycerol, which can exert an inhibitory 

effect on digestion efficiency, care was taken that the glycerol concentration did not exceed 

5% final digestion volume. Enzyme inactivation was either through heat treatment at 65°C for 

20 min (Lab FAQs, Roche). 

 

4.6.2 Dephosphorylation of DNA 

This procedure removes the phosphate ends arising after digestion of a vector/plasmid DNA 

with restriction endonucleases, thus preventing dimerization or self-religation of vector or 

plasmid DNA. The vector DNA is then free to ligate with an insert DNA of choice. Shrimp 

alkaline phosphatase (SAP from Roche, Mannheim) was employed and the reaction 

proceeded at 37°C for 30 minutes, followed by heat inactivation at 70°C for 20 min. 

 

4.6.3 Ligation of DNA molecules 

Ligation of linear DNA molecules was with the enzyme T4 DNA ligase (Gibco, Eggenstein). 

Typically, a 1:2 vector to insert ratio was utilized for all ligations and the reaction proceeded 

at 16°C overnight. 

 

4.7 DNA sequencing 
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DNA Sequencing was done by the dideoxy-chain terminating method on an automated ABI 

Prism DNA Sequencer. The ensuing chromatograms were processed with Chromas software 

and BLASTN and BLASTX programs provided by NCBI (National Center for Biotechnology 

Information) and TIGR (The Institute for Genomic Research), and also the Y. pestis and Y. 

enterocolitica gene banks from Sanger Center were employed for in-depth homology 

searches. 

 

4.8 RNA analysis 

 

4.8.1 RNA Isolation 

Total RNA was extracted from bacterial cells by TRIzol reagent (Invitrogen, USA) according 

to the manufacturer’s instructions with modifications. Briefly, bacterial cells were pelleted 

and homogenized in 1 ml of TRIzol reagent. The mixture was incubated at 65ºC for 30 min to 

achieve complete dissociation of nucleoprotein complexes. 0.2 ml of chloroform was added 

and the tubes were vigorously shaken with vortex for 15 sec and incubated at room 

temperature for 3 min. Samples were centrifuged at 13,000 x g for 15 min at 4°C. The 

aqueous upper phase was then transferred to a fresh tube and the RNA precipitated by mixing 

with isopropanol and 0.8M sodium citrate/1.2M NaCl, 0.5 volumes of the aqueous phases 

each. The sample was incubated at room temperature for 10 min and centrifuged at 14,000 x g 

for 20 minutes at 4°C. The supernatant was discarded and the RNA washed twice with 1 ml 

75% ethanol and centrifuged at 14,000 x g for 5 min at 4°C. The RNA was then air-dried and 

dissolved in RNase-free water.  

 

4.8.2 DNase reaction 

This was essential to remove DNA contaminants from the RNA preparation. 

Procedure 

Reaction components 

 

 

 

Incubation 

Reaction stop 

RNA (up to 1µg) 

DNase incubation buffer 

DNase 

RNase free water 

15 min at RT 

25 mM EDTA (pH 8) 

10 min heat treatment at 

x µl 

1 µl 

1 µl 

ad to 10 µl 

 

1 µl 
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65°C 

 

4.8.3 Reverse Transcription 

Reverse transcription is an enzyme-catalyzed synthesis of cDNA from an RNA matrix in the 

presence of a gene specific primer and dNTPs. The SuperscriptTM II RNase H- Reverse 

Transcriptase (Invitrogen, USA) was used in all reverse transcription analyses as described 

below. As a negative control reaction, RNA sample without reverse transcriptase was also 

always included to exclude the possibility of false positive reactions due to DNA 

contamination. 

 

4.9 Bacterial transformation 

Bacterial cells were made electrocompetent using standard procedures, and then transformed 

with plasmid/cosmid DNA as described below. 

 

4.9.1 Production of electrocompetent cells 

A modified protocol from Hanahan (Hanahan, 1983) was employed. The procedure was 

carried out in the cold and under sterile conditions. 

Procedure 

50 ml LB medium was inoculated with an overnight culture of the bacterium (E. coli or 

Yersinia) and incubated with vigorous shaking at 27°C/37°C until an OD600 of 0.5 - 0.6 was 

achieved. 

• The cells were chilled on ice for 10 - 15 min and transferred to 50-ml falcon tubes. 

•  Cells were then centrifuged at 4000 rpm for 25 min at 4°C. 

• The supernatant was decanted and cells resuspended in 50 ml of sterile ice-cold water 

(sterile), mixed well and centrifuged under the same conditions as above. 

• The above wash step was repeated, following which cells were washed with 50 ml ice-

cold 10% glycerol (centrifuged in the cold at 4000 rpm for 25 min). 

• The glycerol solution was decanted and the cell volume estimated and cells resuspended 

in an equal volume of ice-cold glycerol. 

• Cells were then aliquoted in 50 µl volumes and stored at -80°C until required. 

Transformation 

Electroporation with high voltage was achieved with the Gene Pulser II from Bio-Rad. The 

principle relies on the fact that short electrical impulses directed at bacterial cells generate 
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pores in the cell membrane that facilitates entry of foreign or exogenous DNA into the cell 

(Dower et al., 1988). The settings employed were 25 µF capacitance at 2.5 kV and 200 ohms 

After electroporation transformed cells were mixed with 1 ml LB medium and incubated at 

27°C/37°C with shaking for 50 min. Bacterial cells were then plated out in 100 - 200 µl 

aliquots on LB-agar plates containing the required antibiotics for selection of recombinants. 

 

4.10 Southern Blot hybridization (Southern, 1975) 

This method was originally described by Southern and the principle involves transfer of DNA 

from a gel to a membrane, fixation of transferred DNA with UV light and subsequent 

hybridization of the membrane with an appropriately labeled DNA probe. The objective is to 

locate DNA samples that share some level of homology with the labeled probe. DNA probes 

were typically labeled with digoxigenin according to manufacturers’ instructions (Roche, 

Mannheim). 

 

 

4.10.1 Preparation of DNA probe 

4.10.1.1 Digoxigenin-labeling of DNA through PCR  

Procedure 

Reaction components Template DNA 

PCR Buffer 

dNTPs (2 mM dATP/dCTP/dGTP 

and 1.3 mM dTTP) 

DIG dUTP 

Primer 1 (100 pmol/µl) 

Primer 2 (100 pmol/µl) 

Taq-polymerase 

H2Odest

2.5 µl 

5 µl 

5 µl 

 

3.5 µl 

1 µl 

1 µl 

0.2 µl 

31.7 µl 

PCR amplification 35 PCR cycles of denaturation, annealing and elongation  

 

4.10.1.2 Random-primed method of DNA labeling 

This method relies on the random labeling of a DNA sample with DIG-11-dUTP (Roche, 

Mannheim), catalyzed by the Klenow polymerase enzyme. 

Procedure 
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Starting component DNA cooked for 10 min and rapid-chilled 

on ice 

10 ng – 1 µg 

Other reaction components Hexanucleotide mix (10x) 

 dNTP labeling mix (10x) 

Klenow enzyme (2 U/µl) 

H2Odest

2 µl 

2 µl 

1 µl 

20 µl 

Incubation 37°C, overnight  

Further reaction 

components 

0.2 M EDTA 

4M LiCl 

ice-cold C2H5OH 96% 

2 µl 

2 µl 

50 µl 

Incubation -70°C, 30 min  

The labeled DNA was then pelleted by centrifugation at 15,000 rpm at 4°C for 15 min, the 

DNA pellet washed with ice-cold C2H5OH and in 50 µl H2Odest suspended. 

 

 

4.10.2 Southern (Vacuum) Blot 

Basically the Southern blot was carried out by transferring DNA from an agarose gel onto a 

nylon membrane using a vacuumblot (LKB 2016 Vacu GeneR, Pharmacia-LKB, Uppsala, 

Sweden). The blotting involved treating the gel consecutively with a depurination solution, a 

denaturating solution, a neutralizing solution and finally 20 x SSC at a minimum pressure of 

40 mbar for depurination and 50 mbar for the following steps. A successful DNA-transfer 

step was then followed by DNA fixation on a nylon membrane by crosslinking with UV light 

(0.12 J/cm2). 

Depurination solution 0.25 M HCl 

Denturating solution 0.5 M NaOH; 1.5 M NaCl 

Neutralizing solution 0.5 M Tris-HCl, pH 7.5; 1.5 M NaCl 

20 x SSC (pH 7.0) 0.3 M Na3 citrate; 3 M NaCl 

 

4.10.3 Hybridization and detection 

Hybridization solution SSC 

SDS 

Blocking reagent (dry milk, Roth) 

5x 

0.1% 

1% 

Wash-buffer 1 SSC 2x 



B. MATERIALS AND METHODS 36

SDS 0.1% 

Wash-buffer 2 SSC 

SDS 

0.1x 

0.1% 

Blocking solution Blocking reagent in buffer 1 1% 

Buffer 1 (pH 7.5) Tris-HCl 

NaCl 

0.1 M 

0.15 M 

Substrate-buffer (pH 9.6) NaCl 

Tris-HCl 

MgCl2

0.1 M 

0.1 M 

0.05 M 

Substrate-detection solution NBT (1 mg/ml) 

BCIP (5 mg/ml) 

Substrate buffer 

10 ml 

1 ml 

90 ml 

Hybridization: The membrane blot was first prehybridized for a minimum of 3 hours at 

68°C, followed by hybridization with the appropriate DIG-probe at 68°C overnight. 

Stringency washes then followed comprising two consecutive washes of the blot at RT for 15 

min with wash buffer 1, followed by another round of two stringency washes at 68°C for 30 

min each with wash buffer 2 (see below for buffer compositions). 

Blocking and incubation of the blot with Anti-Digoxigenin antibody: The membrane blot 

was then incubated with blocking buffer for 1 hr at RT and then washed briefly with buffer 1. 

This step prevented unspecific binding of the DNA probe to non-homologous DNA regions. 

The membrane was then washed briefly with buffer 1, followed by incubation for 45 min of 

the membrane blot in a solution containing the Anti-Digoxigenin antibody conjugated with 

alkaline phosphatase (the Anti-Dig antibody was diluted 1:5000 in buffer 1). The membrane 

was then washed twice with buffer 1. 

Detection: Detection followed, by incubation in a freshly mixed substrate-detection solution 

at 37°C in the dark. On visible detection of the bands, the reaction was stopped by the 

addition of water. 

 

4.11 Cosmid gene bank of Y. enterocolitica Y-108C 

The cosmid gene library was prepared with the Supercos 1 cosmid vector (Stratagene). This is 

a vector specially engineered to contain bacteriophage promoter sequences (cos sites) 

flanking a unique cloning site, thus allowing the in vitro packaging of DNA into phage heads. 
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4.11.1 Preparation of cosmid vector DNA 

• 25 µg of the cosmid vector DNA (7.6 kb) was digested with 9 U/µg of XbaI in a total 

volume of 200 µl according to standard digestion procedures (see 4.6.1) for 1 hr at 37°C. 

Digested vector was purified once with phenol-chloroform-isoamyl alcohol (25:24:1). The 

XbaI digested cosmid DNA was resuspended in distilled water at a concentration of 1 

µg/µl and subjected to dephosphorylation according to previously described protocols 

(see 4.6.2). 

• The dephosphorylated DNA was phenol-purified and digested with 5 U/µg of BamHI 

endonuclease in a total volume of 200 µl at standard buffer conditions. Complete 

digestion was verified by loading DNA sample on 0.8% agarose gel. Two cosmid bands 

were observed running at 1.1 and 6.5 kb respectively. 

• The Xba I/BamH I digested cosmid DNA was purified with phenol-chloroform, 

resuspended in deionized water at a concentration of 1 µg/µl and stored at -20°C. 

 

 

4.11.2 Preparation of genomic DNA 

Procedure 

• Isolation of chromosomal DNA was according to the CTAB/NaCl procedure previously 

      described (see 4.1). 

• The chromosomal DNA was partially digested with Sau3AI in order to clone into the 

BamHI site of the Supercos 1 cosmid vector. Preliminary digests prior to the main one 

were carried out to identify the optimal incubation time to achieve an insert size range of 

30 - 42 kb, essential for cloning into the Supercos1 vector. 

• Preliminary digest: 10 µg of genomic DNA in a total reaction volume of 100 µl was 

digested at 37°C with 0.5 U of Sau3A I. 15 µl aliquots of the digest was then removed at 

various time intervals: 0 -, 5 -, 10 -, 15 -, 20 -, 30 -, and 45 minutes time points, and 

checked by gel electrophoresis on a 0.6 - 0.7% (w/v) agarose gel. The time interval that 

yielded a large proportion of the digested fragments running within 35 - 50 kb range was 

chosen as the desired digestion time. 

• Main digest: After the optimal time interval was determined (15 min), a partial Sau3AI 

digest of 100 µg of genomic DNA in a 1 ml total reaction volume was carried out. The 

reaction was scaled up to best mimic the test partial digest including enzyme 

concentration, temperature and reaction time. The reaction was stopped with 15 µl of 0.5 
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M EDTA (pH 8). 10 µl aliquot of the reaction mix was loaded on a 0.7% gel to ensure 

appropriate size distribution. The DNA was resuspended in 50 µl of TE buffer. 

• Dephosphorylation of the partially digested genomic DNA with SAP (see 4.6.2) after 

which it was phenol-chloroform purified. For dephosphorylation, the following were 

added to the 50 µl of DNA from above: 

10x SAP buffer 

Distilled water 

SAP 

10 µl 

38 µl 

2 µl (1 unit/µl) 

The reaction volume was made up to 100 µl, and incubated at 37°C for 1 hr. 

• 3 µl of 0.5 M EDTA was added to stop the reaction followed by heat inactivation of the 

enzyme at 65°C for 20 min. 

• The DNA was extracted once with phenol-chloroform saturated with 50 mM Tris-HCl 

(pH 8.0) and once with chloroform. The aqueous phase was then adjusted to 0.3 M 

sodium acetate (pH 5.5) and ethanol-precipitated by adding 2.5 volumes of 100% (v / v) 

ethanol. 

• The DNA was resuspended to a 1µg/µl concentration in TE buffer and a sample run on 

0.7% agarose gel. 

 

4.11.3 Ligation and packaging of DNA 

• The ligation reaction was set up by adding the following reaction components to a 

microcentrifuge tube: 

2.5 µg of partially digested SAP genomic DNA 

1.0 µl of Supercos 1 DNA (Xba I-SAP and digested with BamH I, 1 µg/µl) 

2.0 µl of 10x ligase buffer 

Water to a final volume of 20 µl 

• A negative control ligation was set up by adding the following components to a 

microcentrifuge tube: 

1.0 µl of Supercos 1 DNA (Xba I-SAP and digested with BamH I, 1 µg/µl) 

2.0 µl of 10x ligase buffer 

Water to a final volume of 20 µl 

• 1 µl aliquot was removed from each reaction and stored at 4°C for later gel analysis. 

• 1 µl of T4 DNA ligase was added to the remaining 19 µl of the reaction and incubated at 

4°C overnight. 
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• 1 µl aliquot was removed from each reaction and loaded on a 0.7% agarose gel for 

analysis. 

 

Packaging 

The packaging reaction was carried out with the Gigapack II gold packaging extract 

(Stratagene) according to manufacturers’ instructions. E. coli XL 1- Blue MR was the 

bacterial host strain utilized for titration of the cosmid packaging reaction. 

 

4.12 Suppressive subtractive hybridization (Diatchenko et al., 1996) 

Genomic differences between Y. enterocolitica 4 (Y-108C, weakly pathogenic strain) and Y. 

enterocolitica 1B WA-314 (high-pathogenic strain) as well as Y. pestis Yokohama and Y. 

pestis G8786 were mapped out by employing the PCR-Select Bacterial Genome Subtraction 

System from Clontech (BD Biosciences Clontech, USA). An overview of the PCR-Select 

method is shown in Figure 1. Briefly, genomic DNA (1.5 - 2 µg) was first isolated from the 

two strains of bacteria to be compared (driver strain and tester strain). The chromosomal 

DNA was then digested with RsaI, a four base cutter. This step generated DNA fragments 

ranging in size from 0.1 to 3 kb. The tester DNA was then subdivided into two portions, each 

of which was ligated with a different oligonucleotide adaptor (adaptor 1 and 2R at 10 µM 

concentration each). After adaptor ligation, the DNA was purified by phenol/chloroform 

extraction. 

 

 

4.12.1 Hybridization 

4x hybridization buffer 200 mM HEPES-HCl (pH 8.0) 

2 M NaCl 

0.2 mM EDTA (pH 8.0) 

• For the first round of subtractive hybridization, approximately 0.6 µg of RsaI-digested 

driver DNA was mixed in two separate reactions with 0.012 µg each of i) adaptor 1-

ligated tester DNA and ii) adaptor 2R-ligated tester. 

• The reaction volume was made up to 4 µl using a 4 x hybridization buffer. The samples 

were covered with a drop of mineral oil, centrifuged briefly and incubated in a thermal 

cycler (Perkin Elmer) at 98°C for 1.5 min (initial denaturation). 
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Fig. 1: Overview of the CLONTECH PCR-Select procedure. 

Genomic DNA (1.5 - 2 µg) was first isolated from the two strains of bacteria to be compared (driver 
strain and tester strain). The chromosomal DNA was then digested with RsaI, a four base cutter. This 
step generated DNA fragments ranging in size from 0.1 to 3 kb. The tester DNA was then subdivided 
into two portions, each of which was ligated with a different oligonucleotide adaptor (adaptor 1 and 
2R at 10 µM concentration each). After adaptor ligation, the DNA was purified by phenol/chloroform 
extraction. 
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• Incubation followed at 63°C for 1.5 hr. The two samples from this first hybridization were 

then mixed together and 0.3 µg freshly denatured driver DNA was added to further enrich 

for tester-specific sequences. 

• This DNA mixture was then subjected to a second hybridization reaction, with overnight 

incubation in the thermal cycler at 63°C.  

 

4.12.2 PCR amplification 

Prior to thermal cycling, a preincubation step was carried out at 72°C to fill in the missing 

strands of the adaptors and thus create binding sites for the PCR primer. This would provide 

binding sites for PCR Primer 1 whose nucleotide sequence corresponds to the first 22 

nucleotides of both adaptors 1 and 2R. PCR amplification to selectively amplify for tester-

specific DNA was done in two stages. In the first amplification, only dsDNAs with different 

adaptor sequences on both ends are sequentially amplified. In the second round of 

amplification, nested PCR, employing nested primers 1 and 2, was used to further reduce the 

background and enrich the DNA pool for tester specific sequences. The nucleotide sequences 

of the two nested primers 1 and 2 corresponded to the last 22 and 20 nucleotides respectively 

of Adaptors 1 and 2R utilized in the DNA ligation reaction. 

Cycling parameters 

Primary PCR 

 

Denaturation 

*Denaturation 

*Annealing 

*Elongation 

* 25 cycles 

94°C 

94°C 

66°C 

72°C 

30 sec 

30 sec 

30 sec 

1.5 min 

Secondary nested PCR Denaturation 

*Denaturation 

*Annealing 

*Elongation 

* 10-12 cycles 

94°C 

94°C 

68°C 

72°C 

30 sec 

30 sec 

30 sec 

1.5 min 

Analysis of the subtracted fragments on a 1.2% agarose gel revealed a smear with distinct 

bands running from about 300 bp to 1.5 kb. The subtracted fragments were subsequently 

cloned into pMOSBlue vector (Amersham Biosciences, USA), followed by transformation 

into the highly efficient JM109 competent cells (see section 4.9 for transformation 
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procedure). The pMOSBlue vector allows for blue-white screening with recombinant clones 

appearing white when plated on X-gal and IPTG indicator plates. 

 

4.12.3 Preparation of X-gal/IPTG LB-agar plates for blue-white screening of 

recombinants 

• For one plate 35 µl of 50 mg/ml X-gal and 20 µl of 100 mM IPTG were added to 30 

ml LB-agar with an appropriate antibiotic. 

• The medium was dropped on plates. 

• The plates were left to soak for at least 30 min prior to plating. 

• 10 - 50 µl of each transformant was then spread on the LB agar X-gal/IPTG plates. 

Inverted plates were incubated overnight at 37°C. 

 

5. Protein biochemical studies 

 

5.1 Sodium-dodecyl-sulphate Polyacrylamide Gel Electrophoresis 

Principle 

In SDS polyacrylamide gel electrophoresis, proteins are separated as they migrate through a 

gel on the basis of their molecular weights. SDS is an anionic detergent that denatures 

proteins. The SDS also disrupts hydrogen bonds, blocks hydrophobic interactions, and 

substantially unfolds the protein molecules by eliminating the tertiary and secondary 

structures. Two types of buffer systems are used in protein gel electrophoresis: continuous 

and discontinuous. In the discontinuous system employed in this work, a non-restrictive large-

pore gel called a stacking gel is layered on top of a separating (resolving gel). The buffer 

composition for the two gel layers differs which in turn differs from the composition of the 

electrophoresis buffer. At the onset of an electrophoretic separation, the proteins migrate first 

through the stacking gel and then into the separating gel, where separation takes place. With 

the aid of a protein marker applied alongside the protein samples of interest, the MW of the 

proteins applied on the gel can be estimated. The following is the pipetting scheme applied 

for the preparation of two 11% acrylamide SDS-gels: 

Separating gel Stacking gel 

2.15 ml H2O 

3.75 ml 1 M Tris/HCl (pH 8.8) 

3.7 ml Protogel 

3.19 ml H2O 

0.83 ml 0.75 M Tris/HCl (pH 6.8) 

0.7 ml Protogel 
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0.2 ml SDS (10%) 

40 µl APS (10%) 

200 µl TEMED (10%) 

0.1 ml SDS (10%) 

40 µl APS (10%) 

200 µl TEMED (10%) 

10x Electrophoresis buffer  

Tris                                                                30.2 g 

Glycine                                                         142.6 g 

H2O                                                              ad 1 liter

 

4x SDS-loading buffer (pH 6.8)  

Tris                                                                0.4 g 

SDS                                                               1.2 g 

Glycerol                                                         7.5 ml 

ß-Mercaptoethanol                                         2.5 ml 

Bromophenol blue (2% solution)                   0.5 ml 

H2O                                                                ad 50 

ml 

 

Coomasie dye solution  

0.125% Coomasie Brilliant blue (Serva)       250 mg 

 

 

Destaining solution  

Methanol                                                         250 ml 

Glacial acetic acid                                           350 ml 

H2O                                                              ad 5 liter 

 

 

The electrophoresis system from Bio-Rad was employed in this work and the assembly of 

glass plates and spacers for the production of the gels was according to manufacturer’s 

instructions. For the SDS-gel run, the probes to be analyzed were mixed with the SDS-

loading gel buffer and cooked briefly at 95°C for 5 - 10 min and then applied on the gels. 

Electrophoresis proceeded at an applied voltage of 200 V (or at 20 mA) for 1 - 2 hr. 

 

5.2 Western Blot (Towbin et al., 1979) 

Principle 
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Western blot relies on the principle of the specificity of the interaction between a protein and 

its cognate antibody which is visualizable by means of chemiluminiscence or 

autoradiography. 

Reagents 

1x Western-blot buffer 

 

Wash buffer 

Blocking solution 

0.025 M Tris 

0.19 M Glycine 

0.5% Tween 20 (v/v) in 1x PBS 

5% milk (w/v) in wash buffer 

Procedure 

• Following separation of proteins in a conventional SDS-PAGE, the proteins were 

electrophoretically transferred to a nitrocellulose membrane (in 1x Western blot buffer) at 

a constant voltage of 150 - 200 V (or 350 mA) for 1 hr. 

• The membrane was then incubated in blocking solution overnight in the cold. 

• The membrane was then incubated for 1.5 hr with the first antibody directed against the 

protein of interest, following which the blot was washed three times. 

• The secondary antibody, conjugated with either alkaline phosphatase (AP) was then added 

(usually at a 1:5000 dilution), incubation for 1.5 hr followed, after which the membrane 

blot was washed three times. 

• The detection of protein-antibody interaction or binding was by means of the BCIP/NBT-

Blue liquid substrate system (Sigma) for alkaline phosphatase-coupled secondary 

antibody. 

The BCIP/NBT system is a colorimetric antigen detection method. NBT and BCIP are two 

colorless substrates which form a redox system. BCIP is oxidized by alkaline phosphatase to 

indigo by release of a phosphate group. In parallel, NBT is reduced to diformazan. The 

reaction products form a water insoluble brownish precipitate on nylon membranes. 

 

5.3 Cultivation and induction of bacteria 

E. coli BL21 carrying the pET100/D-TOPO/RtxA fusion vector was cultivated at 37°C 

overnight in LB medium fortified with ampicillin. The culture was diluted 1:100 in LB-

medium (containing ampicillin) and incubated at 37°C with shaking till an OD600 of 0.6 - 0.8 

was achieved. The cells were then induced with 0.3 mM IPTG, incubated further at 16°C for 

32 hr. The cells were then pelleted by centrifugation at 6000 rpm for 20 min at 4°C, and the 

pellet resuspended in PBS (containing 1 mM PMSF, 1 mM DTT for protein stabilization). For 
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release of the soluble protein fractions from the cell, the bacterial suspension from above was 

subjected to French Press with the French Pressure Cell at 1000 psi (repeated four times). 

 

5.4 Purification of the 6xHis fusion protein 

The soluble fractions with the 6xHis fusion protein from bacterial lysates were rapidly 

purified with Ni-NTA Purification System (Invitrogen, USA). The principle is based on the 

strong affinity of the polyhistidine (6xHis) peptide to nickel-charged agarose resins which it 

binds specifically; allowing other proteins to flow though the column packed with the agarose 

beads. Through several wash steps, the unspecific bound proteins are washed through the 

column and the 6xHis-tagged protein eluted under mild conditions with an elution buffer. 

Procedure 

Cell debris was dissolved in loading buffer (6 M Urea, 40 mM imidasole, 20 mM Tris - HCl, 

pH 8.0) and applied on a 3-ml Ni-NTA column (Bio-Rad) equilibrated with the same buffer. 

After loading, the column was washed with 10 bed volumes of loading buffer. 6xHis-fusion 

protein was produced by elution from column under denaturating conditions (6M Urea, 200 

mM imidasole 20 mM Tris - HCl, pH 8.0). Eluted protein was collected in 0.4 ml portion and 

frozen at -30°C. Protein sample was analyzed by SDS-PAGE and Western-blot with AP Ni – 

NTA conjugate (Qiagen). 

 

5.5 Preparative SDS-PAGE and protein recovery 

5.5.1 Preparative SDS-PAGE 

The fusion protein was mixed with SDS-loading gel buffer (Laemmli) and loaded on a 

preparative SDS-Polacrylamide gel. The run conditions were as described previously. 

Following the SDS-PAGE run, the gel was stained with Coomasie dye solution and the 

required protein band was excised from the gel with a clean scalpel. 

 

5.5.2 Protein recovery 

Gel slice containing the protein was homogenized and macerated with 300 µl of PBS buffer 

and crushed using a mortar and pestle. Homogenous suspension was used for a rabbit 

immunization as described below. 

 

5.6 Rabbit immunization 
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The rabbit was injected three times subcutaneously, with a time period of three weeks 

between each immunization. Typically, 400 - 500 µg of protein was used per immunization. 

For the first immunization, the protein was mixed with an equal proportion of complete 

Freund’s adjuvant. Further immunizations utilized Freund’s incomplete adjuvant also in a 1:1 

ratio with the protein. Ten days after every immunization, blood samples were collected from 

the animal. The blood was allowed to coagulate at RT for 3 - 5 hours and centrifuged for 30 

min at 6000 rpm. The serum (supernatant) was then collected and stored at -20°C. 

 

5.7 Immunoprecipitation (Cochet et al., 1998) 

Immunoprecipitation was carried out using DynabeadsR Protein G (DYNAL BIOTECH ASA, 

Oslo, Norway). DynabeadsR Protein G are uniform, magnetizable polystyrene beads 2.8 µm in 

diameter and coated with recombinant protein G covalently coupled to the surface.  

Procedure 

• 50 µl of the DynabeadsR Protein G were added to the serum which contains anti RtxA79 

IgG. 

• The suspension was incubated with gentle mixing for 40 min at RT. 

• The DynabeadsR Protein G/IgG complex was washed three times in the PBS/0.1% Tween-

20 buffer by using the magnetic PickPenR (BioNobile, Finland). 

• The DynabeadsR Protein G/IgG complex was added to the bacterial lysate containing 

RtxA and incubated with tilting and rotation at 4°C for 3 hr. 

• The protein-beads complex was collected with PickPenR and washed three times by using 

1 ml of PBS/0.1% Tween-20 buffer. 

• RtxA was eluted from the magnetic beads with the 40 µl of Laemmli sample buffer (SDS-

PAGE sample buffer) at 95°C for 10 min and then applied on the gel for analysis.  

 

6. Bioinformatics  

Bioinformatic tools were powerfully utilized for sequence analysis, alignments and similarity 

searches. The two primary databanks that were extensively utilized were Genbank and EMBL 

(European Molecular Biology Laboratory). 

 

Primary databanks 

1. The Genbank in the USA is under the patronage of the National Center for Biotechnology 

(NCBI) and is an official Sequence data bank which contains more than 3 millions protein 
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and nucleotide sequences. All sequences are identified or tagged with a unique accession 

number. A Genbank sequence is usually divided into two parts: 

• the Annotation which contains a precise and detailed information about the sequence and 

• the Sequence itself. The ENTREZ search machine is coupled with the Genbank and 

allows a specific search based on an accession number, organism, gene, protein or author. 

2. The EMBL nucleotide sequence database is the European equivalent of the Genbank and 

utilizes the SRS (sequence retrieval system), a search machine similar to the ENTREZ for 

specialized searches of the database and many other databanks over the web interface. 

 

BLAST 

In addition to the text-based SRS and ENTREZ search engines described above, the BLAST 

search was also extensively utilized. The BLAST (basic local alignment search tool) search 

enables comparison of a particular sequence of interest with available databanks, leading to 

identification of similar sequences or relationships with previously described gene families. 

The following BLAST programs were employed in this work: 

• BLASTN: compares a nucleic acid query sequence with nucleic acid databanks directly 

• BLASTX: compares a translated nucleotide sequence with protein sequence databanks 

• TBLASTX: compares a translated nucleotide sequence with a database of translated 

nucleotide sequences 

• BLASTP: compares a protein query with a protein database. 

The BLAST program provided by NCBI (http://www.ncbi.nlm.nih.gov/BLAST/) and 

BLAST2 (http://www.ch.embnet.org/software/BottomBLAST.html?) maintained by the 

Swiss Institute of Bioinformatics were extensively used for sequence analysis. 

 

FASTA: A very common format for sequence data is derived from conventions of FASTA, a 

program for FAST Alignment by W. R. Pearson. Many of the programs used in this work 

employed the FASTA format for reading sequences or for reporting results. 

 

Sequence alignment: This is the assignment of residue-residue correspondences. Examples 

included: 

• a Global match: all of one sequence was aligned with all of another 

• a Local match: a region in one sequence was matched with a region of another 

• a Multiple alignment: a mutual alignment of many sequences. 
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7. Nucleotide sequence accession numbers 

The sequences of the Y. enterocolitica O:3 IS1331A, IS1331B insertion elements and the 

pG8786 plasmid from Y. pestis G8786 have been submitted to the EMBL database under the 

accession numbers AJ849657, AJ849658 and AJ698720, respectively. 
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C. RESULTS 

 

1. Uncovering genomic differences in human pathogenic Yersinia enterocolitica 

 

1.1 Construction of libraries of subtracted fragments and their analysis for tester-

specific sequences  

To uncover genomic differences between mouse virulent and mouse non-virulent human 

pathogenic yersiniae, we subtracted genomic DNA of the mouse virulent WA-C, BG 1B, ST 

O:8 strain with genomic DNA of mouse non-virulent Y-108C, BG 4, ST O:3 strain using 

WA- C strain first as a tester and than as a driver. Both, O:8- and O:3-specific sequences were 

recognized by hybridization. Only DNA fragments with possible impact on virulence and 

those, which can serve as epidemiological markers are depicted in Tables 7 and 8. The 

percentages of clones in the subtracted libraries that correspond to tester-specific DNA were 

53% and 49% for O:8 and O:3, respectively (checked by Southern Blot hybridization, data not 

shown). In total, 428 O:8-specific and 83 O:3-specific sequences were identified. Not 

surprisingly, 60% of O:8- and 44% of O:3-specific sequences showed high similarity (70-

95%) to the sequences of the completed Yersinia pestis CO92 genome (Tables 7 and 8). 

 

Table 7. Selected Y. enterocolitica O:3-specific SSH fragments and their characteristics 

No. Homology to predicted gene and encoded protein Similarity, positives 

(% amino acid) 

GenBank 

accession 

number 

01_05 wbbX, lipopolysaccharide O-antigen biosynthesis protein, 

Yersinia enterocolitica O:3 

wbbW, lipopolysaccharide O-antigen biosynthesis protein, 

Yersinia enterocolitica O:3 

162/162 (100%) 

 

71/71 (99%) 

CAA79354 

 

CAA79353 

01_22 YPO0732, putative flagellar hook-associated protein, Yersinia 

pestis 

130/215 (59%) CAC89583 

01_27 YPO0741, putative flagellar protein, Yersinia pestis 56/72 (77%) CAC89592 

01_33 xnp2, nematocidal toxin, Xenorhabdus bovienii 139/275 (49%) CAC19493 

01_43 YPO2274, putative phage protein, Yersinia pestis 198/204 (96%) CAC91078 

01_52 rtxA, cytotoxin, Vibrio cholerae 150/192 (77%) AAD21057 

01_65 YPO0466, hypothetical protein, Yersinia pestis 144/188 (75%) CAC89322 

01_92 YPO0272, putative type III secretion apparatus protein, 

Yersinia pestis 

wbbT, lipopolysaccharide O-antigen biosynthesis protein, 

61/87 (69%) 

 

141/143 (98%) 

CAC89135 

 

CAA79348 
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Yersinia enterocolitica O:3 

02_11 yapG, putative autotransporter protein, Yersinia pestis 55/67 (81%) CAC14226 

02_31 YPO0261, putative type III secretion apparatus, Yersinia 

pestis 

YPO0262, putative type III secretion apparatus, Yersinia 

pestis 

YPO0263, type III secretion system apparatus lipoprotein, 

Yersinia pestis 

25/47 (52%) 

 

58/83 (69%) 

 

45/50(90 %) 

CAC89123 

 

CAC89124 

 

CAC89125 

02_33 YPO2279, putative phage-related membrane protein, Yersinia 

pestis 

193/199 (96%) CAC91084 

02_64 sseD, secretion system effector, Salmonella typhimurium 45/81 (55%) AAL20325 

02_72 yapA, putative autotransporter protein, Yersinia pestis 79/98 (80%) CAC14220 

02_85 YPO2884, putative exported protein, Yersinia pestis 112/197 (56%) CAC92135 

02_92 YPO2273, phage hypothetical protein, Yersinia pestis 

sscA, secretion system chaperone, Salmonella typhimurium 

29/43 (66%) 

63/105 (59%) 

CAC91077 

AAL20323 

02_93 YPO0720, putative flagellar regulatory protein, Yersinia pestis 

YPO0719, hypothetical protein, Yersinia pestis 

37/50 (74%) 

78/107 (72%) 

CAC89571 

CAC89570 

03_10 wbcM, putative glycosyltransferase, Yersinia enterocolitica 

O:3 

50/68 (73%) CAA87701 

03_28 VCA0253, antibiotic acetyltransferase, Vibrio cholerae 56/95 (58%) AAF96164 

03_33 ORF, putative multidrug-resistance protein, Aeromonas 

hydrophila 

63/147 (42%) AAF63418 

 

Table 8. Selected Y. enterocolitica O:8-specific SSH fragments and their characteristics 

No. Homology to predicted gene and encoded protein Similarity, positives 

(% amino acid) 

GenBank 

accession 

number 

04_62 EcoRIIM, site-specific DNA-methyltransferase (cytosine-

specific), Escherichia coli 

198/222 (88%) P05101 

04_37 trp1400B, IS1400 transposase B, Yersinia enterocolitica O:8 91/92 (98%) CAB46580 

04_50 trp1329B, IS1329 transposase, Yersinia enterocolitica O:8 148/148 (100%) CAB46576 

04_93 YPO2884, putative exported protein, Yersinia pestis 29/44 (65%) CAC92135 

05_02 ECs5005, hypothetical protein, E. coli 79/92 (85%) NP_313032 

05_04 YPO2999, putative HlyD secretion protein, Yersinia pestis 140/166 (84%) NP_406493 

05_19 yenI, methyltransferase-endonuclease, Yersinia enterocolitica 

O:8 

39/39 (100%) CAC95150 

05_51 YPO0466, hypothetical protein, Yersinia pestis 89/179 (49%) CAC89322 

05_76 YPO3268, multidrug resistance protein B, Yersinia pestis 68/93 (72%) CAC92502 

05_84 VCA0811, putative chitinase, Vibrio cholerae 83/165 (49%) AAF96709 
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06_31 YPO3133, multidrug efflux protein, Yersinia pestis 135/136 (98%) CAC92368 

06_37 cya, adenylate cyclase, Yersinia enterocolitica O:8 31/32 (96%) AAL51150 

06_42 tpn1330, transposase, Yersinia enterocolitica O:8 197/200 (98%) CAC83041 

06_53 hmsR, putative hemin binding protein, Yersinia pestis 

hmsS, hemin storage system, HmsS protein, Yersinia pestis 

41/42 (97%) 

50/56 (88%) 

T47005 

CAC90769 

06_87 shuA, outer membrane heme receptor, Shigella dysenteriae 65/145 (44%) AAC27809 

07_14 fes, enterochelin esterase, Yersinia enterocolitica O:8 86/89 (96%) AAB02191 

07_92 pfeA, ferric enterobactin receptor precursor PfeA, 

Pseudomonas aeruginosa 

69/94 (72%) AAG06076 

07_96 fcl, putative GDP-L-fucose synthetase, Yersinia enterocolitica 

O:8 

157/165 (95%) AAC60774 

08_04 YPO0744, putative flagellar biogenesis protein, Yersinia 

pestis 

64/91 (69%) CAC89595 

08_08 manC, GDP-mannose pyrophosphorylase, Yersinia 

enterocolitica O:8 

233/248 (93%) AAC60775 

08_32 wbcG, putative glycosyltransferase, Yersinia enterocolitica 

O:8 

169/170(99%) AAC60770 

08_62 pic, protease with mucinase and hemagglutinin activities, 

Shigella flexneri 

67/134 (49%) AAK00464 

12_18 orf, ferrichrome-iron receptor, Zymomonas mobilis 26/52 (49%) AAG42412 

12_34 cnf, cytotoxic necrotizing factor, Yersinia pseudotuberculosis 64/140(45%) AAG45433 

13_40 YPO1496, putative heme-binding protein, Yersinia pestis 192/229 (83%) CAC90319 

13_95 YPO3922, hemophore HasA, Yersinia pestis 109/139 (77%) CAC93387 

 

 

1.1.1 Subtracted fragments with similarity to genes of surface structures and metabolic 

pathways 

Genes involved in synthesis of O:3-specific (wbbX, wbbW, and wbbT) (Zhang et al., 1993) 

and O:8-specific (fcl, manC, and wbcG) (Zhang et al., 1997) O-antigens, as well as host-

specific restriction modification systems, EcoRII-like (Som et al., 1987) in Y. enterocolitica 

O:3 and YenI, PstI-like in Y. enterocolitica O:8 were uncovered as species-specific (Kinder et 

al., 1993). Sequences with similarities to genes of the Y. pestis hemin storage locus (hmsR, 

hmsS) (Buchrieser et al., 1999; Parkhill et al., 2001) were found only in Y. enterocolitica 

serotype O:8, although Y. enterocolitica does normally not express the pigmentation 

phenotype of Y. pestis. On the other hand, the sequences of one of the two flagellar operons, 

found in Y. pestis CO92 (namely YPO0719, YPO0720, YPO0732, YPO0741, and YPO0743) 

(Parkhill et al., 2001), were absent from O:8 but present in strain O:3. Besides the 
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yersiniabactin iron uptake and hemin storage systems, DNA of strain O:8 contained 

sequences with similarities to systems that are involved in iron and heme (hemin) acquisition, 

such as Fes enterochelinesterase (Schubert et al., 1999), PfeA ferric enterobactin receptor 

from Pseudomonas aeruginosa (Stover et al., 2000), or YPO1496 putative heme binding 

protein and hemophore-dependent heme acquisition system Has from Y. pestis (Rossi et al., 

2001), ferrichrome iron receptor from Zymomonas mobilis, and ShuA outer membrane heme 

receptor of Shigella dysenteriae (Mills and Payne, 1995; Koebnik et al., 1993). 

 

1.1.2 Subtracted fragments with similarity to virulence factors 

Certain candidates for virulence factors were revealed in both strains. Sequences with 

similarity to RtxA-like cytotoxin of Vibrio cholerae (Lin et al., 1999), type III secretion 

system of Salmonella typhimurium located on a SPI2 pathogenicity island (YscT, SseD, and 

SscA) (Nikolaus et al., 2001; Cornelis, 2002), Xnp2 nematocidal toxin from Xenorhabdus, or 

YapA and YapG putative autotransporter proteins from Y. pestis (Parkhill et al. , 2001), were 

specific for Y. enterocolitica O:3. Surprisingly, sequences with similarity to the proteins of the 

chromosomally encoded type III secretion system (TTSS) were more closely related to the 

putative proteins YPO0272, YPO0261, YPO0262 and YPO0263 of the Y. pestis CO92 than to 

the TTSS of Y. enterocolitica O:8 strain 8081 (Haller et al., 2000). On the other hand, 

sequences with similarity to putative HlyD secretion protein YPO2999 from Y. pestis, 

adenylate cyclase (Petersen and Young, 2002), Pic protease with mucinase and hemagglutinin 

activities from Shigella flexneri (Al Hasani et al., 2001), or CNF cytotoxic necrotizing factor 

found in Yersinia pseudotuberculosis (Lockman et al., 2002) turned out to be Y. enterocolitica 

O:8-specific sequences. 

 

1.1.3 Subtracted fragments with similarity to drug resistance genes 

Strains of both serotypes contain sequences that might be involved in drug resistance. 

VCA0253 streptogramin A acetyltransferase from V. cholerae (Seoane and Garcia Lobo, 

2000) and putative multidrug resistance protein from Aeromonas hydrophila (Zhang et al., 

2000) were revealed in Y. enterocolitica O:3 strain, while three proteins, YPO1267, a 

probable drug-resistant translocator protein, YPO3268, multidrug resistance protein B, and 

YPO3133, multidrug efflux protein from Y. pestis (Parkhill et al., 2001), were specific for Y. 

enterocolitica O:8. 
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1.1.4 Subtracted fragments with similarity to movable genetic elements 

SSH readily mapped known Y. enterocolitica 1B-specific insertion sequences such as IS1326, 

IS1327, IS1328, IS1329, and IS1440 (Rakin and Heesemann, 1995; Rakin et al., 2000), which 

might serve as epidemiological markers of Y. enterocolitica 1B group. At least some genes of 

the hypothetical prophage encoded by YPO2273 - 2279 of Y. pestis CO92 were present in Y. 

enterocolitica O:3 isolate, while a sequence with similarity to that encoding the Ecs5005 

hypothetical protein (encoded by VT2-Sakaj prophage carrying the verotoxin 2 genes) 

(Makino et al., 1999) was restricted to Y. enterocolitica O:8 strain. 

 

1.1.5 Subtracted fragments with similarity to genes of hypothetical proteins 

The same Y. pestis sequences, YPO0466 and YPO2884, encoding hypothetical proteins 

(Parkhill et al., 2001) were presented in subtractive libraries of both strains. Still, YPO0466 

sequence showed 77% homology with Y. enterocolitica O:3, but only 49% with Y. 

enterocolitica O:8 sequence. YPO2884 sequence demonstrated 56% similarity with that 

revealed in Y. enterocolitica O:3, but only a small fragment of YPO2884 (44 aa) had 65% 

homology with the sequence from Y. enterocolitica O:8 strain. Moreover, both YPO0446 and 

YPO2884 showed 77% homology with each other, emphasizing a common origin of both 

sequences. 

 

For our further investigation we have chosen two subtractive fragments from Y. enterocolitica 

ST O:3 with similarity to a novel IS21-like element and putative RtxA-cytotoxin. Preliminary 

data have shown that IS21-like element might be unique for European weakly pathogenic Y. 

enterocolitica isolates. Putative RtxA-like cytotoxin might be the new virulence determinant 

of Y. enterocolitica ST O:3 strains. 

 

 

2. A novel IS21-like element - IS1331 was uncovered by subtractive hybridization  

 

2.1 General description of IS1331 

Suppression subtractive hybridization (SSH) was performed to distinguish the weakly 

pathogenic Y. enterocolitica BG 4 ST O:3 Y-108C strain from the highly pathogenic Y. 

enterocolitica BG 1B ST O:8 WA-314C strain and to identify genes specific to the weakly 

pathogenic Y. enterocolitica strain (Golubov et al., 2003). The variety of unique sequences 

was uncovered by SSH. Two fragments (03_20 and 01_46) of 83 Y-108C-specific sequences 
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have significant homology to genes of previously described transposases and NTP-binding 

proteins, respectively. A cosmid pSC1046 that hybridized with the original DIG-labelled 

03_20 subtracted fragment was isolated from the Y. enterocolitica Y-108C cosmid gene 

library. Further sequencing of the cosmid by primer walking identified a putative insertion 

element, IS1331, which turned out to be unique to European weakly pathogenic Y. 

enterocolitica isolates.  

 

Sequence comparison of all IS1331 copies in Y. enterocolitica Y-108C ST O:3 (pYV-bearing 

strain), Y. enterocolitica gk 1142 O:2 and Y. enterocolitica JD E029 O:1 revealed two IS1331 

isoforms – IS1331A and IS1331B, which have differences in their nucleotide content and 

structure (Fig. 2, 3C).  

In general, IS1331 has a characteristic IS structure with two imperfect terminal inverted 

repeats (IRL and IRR) of 30 bp with eight mismatches (Fig. 2, 3AB). Comparison of the 

terminal inverted repeats of all IS1331 copies has shown striking similarities among them 

(Fig. 3A, 3B). IS1331 contains two long ORFs, the istAB genes that are organized in an 

operon (Fig. 2). These ORFs have been designated istA and istB based on the similarity of 

their predicted products to the putative transposase IstA (56% at the amino acid level, Fig. 4) 

and the ATP binding protein  

IstB of IS1326 (71% at the amino acid level, Fig. 5) (Brown et al., 1996). The GC content of 

the IS1331 is 39.73%, which is not in agreement with the GC content of the Y. enterocolitica 

host (46% to 48% for the Yersinia chromosome) (Bercovier and Mollaret, 1984).  

The main differences between two isoforms of IS1331 are one 6 bp deletion in istA (Fig. 3C), 

and 14 single nucleotide replacements over IS1331 sequence which changed the istB frame. 

istB (frame -2; 723 bp) of IS1331A is located in a relative reading phase of -1 compared with 

istA (frame -1; 1506 bp), in such a way that an ATG initiation codon of istB overlaps the TGA 

stop codon of istA by 14 bp (Fig. 6). Also one of the IS1331 copies has the 5 bp deletion in 

the istA gene (Fig. 3C). 
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2373 bp

istA 1500 bpistB 651 bpIRL IRR

ORF181------- -------ORF155

2380 bp

istA 1506 bp

IRR

IRL istB 723 bp
gpP ------- -----STY1639

istA 1506 bpistB 723 bptnpAyrcyfc

IRR

IRL
ORF181 ------ -------ORF155

2380 
bp

A.

B.

C.

2373 bp

istA 1500 bpistB 651 bpIRL IRR

ORF181------- -------ORF155

2380 bp

istA 1506 bp

IRR

IRL istB 723 bp
gpP ------- -----STY1639

istA 1506 bpistB 723 bptnpAyrcyfc

IRR

IRL
ORF181 ------ -------ORF155

2380 
bp

A.

B.

C.

 

 
 
 
 
 
 
 
Fig. 2: Schematic structure of the three copies of IS1331. IRL – left inverted repeat; IRR – right 
inverted repeat. Partially sequenced up- and downstream genes with respect to IS1331 are boxed. The 
size of the each copy of IS1331 (including IRL and IRR) is shown in bp under each corresponding 
structure. A. IS1331B on pYV-like plasmid from Y. enterocolitica Y11 O:3. B. IS1331A on pYV-like 
plasmid from Y. enterocolitica JD E029 O:1. C. IS1331A on the chromosome of Y. enterocolitica Y11 
O:3  
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IRL

ORF181  - tgtcaattatggtctaaaagt
tnpA*- - tgtcaattatggtctaaaagt
ycdX - - tgtcaattatggtctaaaagt
gpP  - - tgtcaattatggtctaaaagt
?**- - - tgtcaattatggtctaaaagt

IRR

acttttgcacaatatttaaca - ORF155
acttttgcacaatatttaaca - STY1639
acttttgcacaatatttaaca- intU
acttttgcacaatatttaaca- ORF19
acttttgcacaatatttaaca- ORF155*

acttttgcacaatatttaaca- STY4827**

1. atgcccatcaaaacag------gataaggagttgatttgg ORF181-IS1331B-ORF155
2. atgcccatcaaaacag------gataaggagttgatttgg ycdX -IS1331B-ORF19
3. atgcccatcaaaacagaataaggataaggagttgatttgg gpP   -IS1331A-STY1639
4. atgcccatcaaaacaggataag-----ggagttgatttgg ?     -IS1331A-intU
5. atgcccatcaaaacagaataaggataaggagttgatttgg ?     -IS1331A-STY4827**

6. atgcccatcaaaacagaataaggataaggagttgatttgg tnpA  -IS1331A-ORF155*

A.

B.

C.

IRL

ORF181  - tgtcaattatggtctaaaagt
tnpA*- - tgtcaattatggtctaaaagt
ycdX - - tgtcaattatggtctaaaagt
gpP  - - tgtcaattatggtctaaaagt
?**- - - tgtcaattatggtctaaaagt

IRR

acttttgcacaatatttaaca - ORF155
acttttgcacaatatttaaca - STY1639
acttttgcacaatatttaaca- intU
acttttgcacaatatttaaca- ORF19
acttttgcacaatatttaaca- ORF155*

acttttgcacaatatttaaca- STY4827**

1. atgcccatcaaaacag------gataaggagttgatttgg ORF181-IS1331B-ORF155
2. atgcccatcaaaacag------gataaggagttgatttgg ycdX -IS1331B-ORF19
3. atgcccatcaaaacagaataaggataaggagttgatttgg gpP   -IS1331A-STY1639
4. atgcccatcaaaacaggataag-----ggagttgatttgg ?     -IS1331A-intU
5. atgcccatcaaaacagaataaggataaggagttgatttgg ?     -IS1331A-STY4827**

6. atgcccatcaaaacagaataaggataaggagttgatttgg tnpA  -IS1331A-ORF155*

A.

B.

C.

 

 
 
 
 
 
Fig. 3: A & B. Nucleotide sequences of the IRL and IRR, respectively. Diverse nucleotides in 
inverted repeats are boxed. The closest ORFs are shown besides of the nucleotide sequences. C. 
Partial nucleotide sequence comparison of the part of istA from all IS1331 copies. The 6-bp and 
5-bp deletions are shown as the gaps. From the right side of each sequence the corresponding copy of 
IS1331 is exposed.   
* -   Y. enterocolitica JD E029 O:1  
** - Y. enterocolitica gk1142 O:2 
?   -  downstream gene is unknown 
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1     MLCMETILKVRRLSLKQGLSQRAIAKQLQISRHTVSKYLAIETKEPPAYKRTQTHYPKLG
:: :..:  :||: :::| | |.||:. .:||:||.|||. .. ||.   |. .  .||:

1     VINVAILSAIRRWHFRDGASIREIARRSGLSRNTVRKYLQSKVVEPQYPARDSV..GKLS
61    EFIPVLKQRLTDETKLPAKQRLTARRHFERLRTEGYQGAYCAVASFIRQFKE....QYQP

.| | |:|:|..| | . | | . |. :  | . |: |.|  |..| ||:|:    . |.
59    PFEPKLRQWLSTEHKKTKKLRRNLRSMYRDLVALGFTGSYDRVCAFARQWKDSEQFKAQT
117   APHVVFIPQRFSAADAYQFDWSFETVKLNGLLVKLKVAHFRLCHSRAFFIRAYPNEKLDM

.....||| ||..::|:||||| : .::.|  |||.:|:|:|.|||||.:||| .:| :|
119   SGKGCFIPLRFACGEAFQFDWSEDFARIAGKQVKLQIAQFKLAHSRAFVLRAYYQQKHEM
177   LIDAHNHAFSYFGGTPNRGIYDNMKTAVKHIGMGKERIFNDKFLSMMNHFIIEPVACTPA

|:||| ||| .|||.|.|||||||||||. :|.|||| .|::| .|:.|:::::  |.||
179   LFDAHWHAFQIFGGIPKRGIYDNMKTAVDSVGRGKERRVNQRFTAMVSHYLFDAQFCNPA
237   SGWEKGQVERQVRTLRKQLFEPTLAFNNIDELNSFLLDQCHQIIQTATHPEDRSKVINTL

|||||||:|:.|.. |..|::.. .|..:.:|| :| ..|..:  .  |||  ...:.. 
239   SGWEKGQIEKNVQDSRQRLWQGAPDFQSLADLNVWLEHRCKALWSELRHPE.LDQTVQEA
297   FCVERTMLAPYSPYTGGQFA..IVQINSLSLFCFDGHKYSVPNNLVGKKVTLKTTATEIK

|. |.. | :. | . :.|.  . .:.| .|.  :|::||||.....: :.|:. |..: 
298   FADEQGELMAL.PNAFDAFVEQTKRVTSTCLVHHEGNRYSVPASYANRAISLRIYADKLV
355   IIVDSECVAQHQRSF.....IKNQTTYNPWHYLSTLKRKPGALRNGEPFINWDLPKPVKE

: .::: :|:|.| |      :.:| |:  ||||.|.:||||||||.||   :||.:.|.
357   MAAEGQHIAEHPRLFGSGHARRGHTQYDWHHYLSVLQKKPGALRNGAPFA..ELPPAFKK
410   LQQHLLKRPKGDRAMVQLLSLIADYGEDLGVTAAAIALDEGVPTVEAVLNIIHRLTE..P

||  ||.|| |||.||::|.|: . :|: .:.|..:||: | |. | |||:: |||| |
415   LQSILLQRPGGDRDMVEILALVLHHDEGAVLSAVELALECGKPSKEHVLNLLGRLTEEPP
468   VIPTFKINDIPLNIPPQANCQRYNTLLKGVPNGTA

. |.   .::.|.:.||||..||:.| ::...:
475   PKPIPIPKGLRLTLEPQANVNRYDSLRRAHDAA

1     MLCMETILKVRRLSLKQGLSQRAIAKQLQISRHTVSKYLAIETKEPPAYKRTQTHYPKLG
:: :..:  :||: :::| | |.||:. .:||:||.|||. .. ||.   |. .  .||:

1     VINVAILSAIRRWHFRDGASIREIARRSGLSRNTVRKYLQSKVVEPQYPARDSV..GKLS
61    EFIPVLKQRLTDETKLPAKQRLTARRHFERLRTEGYQGAYCAVASFIRQFKE....QYQP

.| | |:|:|..| | . | | . |. :  | . |: |.|  |..| ||:|:    . |.
59    PFEPKLRQWLSTEHKKTKKLRRNLRSMYRDLVALGFTGSYDRVCAFARQWKDSEQFKAQT
117   APHVVFIPQRFSAADAYQFDWSFETVKLNGLLVKLKVAHFRLCHSRAFFIRAYPNEKLDM

.....||| ||..::|:||||| : .::.|  |||.:|:|:|.|||||.:||| .:| :|
119   SGKGCFIPLRFACGEAFQFDWSEDFARIAGKQVKLQIAQFKLAHSRAFVLRAYYQQKHEM
177   LIDAHNHAFSYFGGTPNRGIYDNMKTAVKHIGMGKERIFNDKFLSMMNHFIIEPVACTPA

|:||| ||| .|||.|.|||||||||||. :|.|||| .|::| .|:.|:::::  |.||
179   LFDAHWHAFQIFGGIPKRGIYDNMKTAVDSVGRGKERRVNQRFTAMVSHYLFDAQFCNPA
237   SGWEKGQVERQVRTLRKQLFEPTLAFNNIDELNSFLLDQCHQIIQTATHPEDRSKVINTL

|||||||:|:.|.. |..|::.. .|..:.:|| :| ..|..:  .  |||  ...:.. 
239   SGWEKGQIEKNVQDSRQRLWQGAPDFQSLADLNVWLEHRCKALWSELRHPE.LDQTVQEA
297   FCVERTMLAPYSPYTGGQFA..IVQINSLSLFCFDGHKYSVPNNLVGKKVTLKTTATEIK

|. |.. | :. | . :.|.  . .:.| .|.  :|::||||.....: :.|:. |..: 
298   FADEQGELMAL.PNAFDAFVEQTKRVTSTCLVHHEGNRYSVPASYANRAISLRIYADKLV
355   IIVDSECVAQHQRSF.....IKNQTTYNPWHYLSTLKRKPGALRNGEPFINWDLPKPVKE

: .::: :|:|.| |      :.:| |:  ||||.|.:||||||||.||   :||.:.|.
357   MAAEGQHIAEHPRLFGSGHARRGHTQYDWHHYLSVLQKKPGALRNGAPFA..ELPPAFKK
410   LQQHLLKRPKGDRAMVQLLSLIADYGEDLGVTAAAIALDEGVPTVEAVLNIIHRLTE..P

||  ||.|| |||.||::|.|: . :|: .:.|..:||: | |. | |||:: |||| |
415   LQSILLQRPGGDRDMVEILALVLHHDEGAVLSAVELALECGKPSKEHVLNLLGRLTEEPP
468   VIPTFKINDIPLNIPPQANCQRYNTLLKGVPNGTA

. |.   .::.|.:.||||..||:.| ::...:
475   PKPIPIPKGLRLTLEPQANVNRYDSLRRAHDAA

1     MLCMETILKVRRLSLKQGLSQRAIAKQLQISRHTVSKYLAIETKEPPAYKRTQTHYPKLG
:: :..:  :||: :::| | |.||:. .:||:||.|||. .. ||.   |. .  .||:

1     VINVAILSAIRRWHFRDGASIREIARRSGLSRNTVRKYLQSKVVEPQYPARDSV..GKLS
61    EFIPVLKQRLTDETKLPAKQRLTARRHFERLRTEGYQGAYCAVASFIRQFKE....QYQP

.| | |:|:|..| | . | | . |. :  | . |: |.|  |..| ||:|:    . |.
59    PFEPKLRQWLSTEHKKTKKLRRNLRSMYRDLVALGFTGSYDRVCAFARQWKDSEQFKAQT
117   APHVVFIPQRFSAADAYQFDWSFETVKLNGLLVKLKVAHFRLCHSRAFFIRAYPNEKLDM

.....||| ||..::|:||||| : .::.|  |||.:|:|:|.|||||.:||| .:| :|
119   SGKGCFIPLRFACGEAFQFDWSEDFARIAGKQVKLQIAQFKLAHSRAFVLRAYYQQKHEM
177   LIDAHNHAFSYFGGTPNRGIYDNMKTAVKHIGMGKERIFNDKFLSMMNHFIIEPVACTPA

|:||| ||| .|||.|.|||||||||||. :|.|||| .|::| .|:.|:::::  |.||
179   LFDAHWHAFQIFGGIPKRGIYDNMKTAVDSVGRGKERRVNQRFTAMVSHYLFDAQFCNPA
237   SGWEKGQVERQVRTLRKQLFEPTLAFNNIDELNSFLLDQCHQIIQTATHPEDRSKVINTL

|||||||:|:.|.. |..|::.. .|..:.:|| :| ..|..:  .  |||  ...:.. 
239   SGWEKGQIEKNVQDSRQRLWQGAPDFQSLADLNVWLEHRCKALWSELRHPE.LDQTVQEA
297   FCVERTMLAPYSPYTGGQFA..IVQINSLSLFCFDGHKYSVPNNLVGKKVTLKTTATEIK

|. |.. | :. | . :.|.  . .:.| .|.  :|::||||.....: :.|:. |..: 
298   FADEQGELMAL.PNAFDAFVEQTKRVTSTCLVHHEGNRYSVPASYANRAISLRIYADKLV
355   IIVDSECVAQHQRSF.....IKNQTTYNPWHYLSTLKRKPGALRNGEPFINWDLPKPVKE

: .::: :|:|.| |      :.:| |:  ||||.|.:||||||||.||   :||.:.|.
357   MAAEGQHIAEHPRLFGSGHARRGHTQYDWHHYLSVLQKKPGALRNGAPFA..ELPPAFKK
410   LQQHLLKRPKGDRAMVQLLSLIADYGEDLGVTAAAIALDEGVPTVEAVLNIIHRLTE..P

||  ||.|| |||.||::|.|: . :|: .:.|..:||: | |. | |||:: |||| |
415   LQSILLQRPGGDRDMVEILALVLHHDEGAVLSAVELALECGKPSKEHVLNLLGRLTEEPP
468   VIPTFKINDIPLNIPPQANCQRYNTLLKGVPNGTA

. |.   .::.|.:.||||..||:.| ::...:
475   PKPIPIPKGLRLTLEPQANVNRYDSLRRAHDAA

 

 

Fig. 4: Amino acid sequence comparison of  the IstA transposases from IS1326 (lower line) and 
IS1331A (upper line). Identical residues are shown with vertical lines, and residues homologous to 
those in IS1331A are pointed or double pointed. The DD(45)E transposase motif in bold; HTH, helix-
turn-helix motif, is underlining; an integrase-like core domain in IstA is double underlining. Two 
absent in IS1331B amino acids are boxed. 
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Query: 1   MERHECIEILKQLKLTAMAENFDDVVIDGIRRKRSTMDIIGNLLTTEQTQRHIRSIGYRI
M+    + ILK LKL  MA   +++           + ++ +L+  E  +R +RS+ Y++

Sbjct: 2   MQHEGHVRILKSLKLFGMAHAIEELGNQNSPAFNQALPMLDSLIKAEVAEREVRSVNYQL
Query: 61  NQARFPQHKTLSDFEFEQSPLNKPSIELLNDCDYIREKRNIIFVGGPGTGKTHLATALGI

A+FP ++ L  F+F QS +N+ +++ L+ CD++ + +N++ +GGPGTGKTHLATA+G 
Sbjct: 62  RVAKFPVYRDLVGFDFSQSLVNEATVKQLHRCDFMEQAQNVVLIGGPGTGKTHLATAIGT
Query: 121 NAATN-GFKVRFWNVLDLVNKLELDKES-KQFKLTNQLTKLDLIVLDDLGYLPFSQKGGA

A  +   +VRF++ +DLVN LE +K S +Q ++ N+L   DL++LD+LGYLPFSQ GGA
Sbjct: 122 QAVMHLNRRVRFFSTVDLVNALEQEKSSGRQGQIANRLLYADLVILDELGYLPFSQTGGA
Query: 179 LLFHLISQLHEHTSIMITTNLAFSEWVKLFADEKMTAALLDRLVHHCDIIETGNESFRFK

LLFHL+S+L+E TS+++TTNL+FSEW ++F DEKMT ALLDRL HHC I+ETGNES+RFK
Sbjct: 182 LLFHLLSKLYEKTSVILTTNLSFSEWSRVFGDEKMTTALLDRLTHHCHILETGNESYRFK
Query: 239 NRS

+ S
Sbjct: 242 HSS

Query: 1   MERHECIEILKQLKLTAMAENFDDVVIDGIRRKRSTMDIIGNLLTTEQTQRHIRSIGYRI
M+    + ILK LKL  MA   +++           + ++ +L+  E  +R +RS+ Y++

Sbjct: 2   MQHEGHVRILKSLKLFGMAHAIEELGNQNSPAFNQALPMLDSLIKAEVAEREVRSVNYQL
Query: 61  NQARFPQHKTLSDFEFEQSPLNKPSIELLNDCDYIREKRNIIFVGGPGTGKTHLATALGI

A+FP ++ L  F+F QS +N+ +++ L+ CD++ + +N++ +GGPGTGKTHLATA+G 
Sbjct: 62  RVAKFPVYRDLVGFDFSQSLVNEATVKQLHRCDFMEQAQNVVLIGGPGTGKTHLATAIGT
Query: 121 NAATN-GFKVRFWNVLDLVNKLELDKES-KQFKLTNQLTKLDLIVLDDLGYLPFSQKGGA

A  +   +VRF++ +DLVN LE +K S +Q ++ N+L   DL++LD+LGYLPFSQ GGA
Sbjct: 122 QAVMHLNRRVRFFSTVDLVNALEQEKSSGRQGQIANRLLYADLVILDELGYLPFSQTGGA
Query: 179 LLFHLISQLHEHTSIMITTNLAFSEWVKLFADEKMTAALLDRLVHHCDIIETGNESFRFK

LLFHL+S+L+E TS+++TTNL+FSEW ++F DEKMT ALLDRL HHC I+ETGNES+RFK
Sbjct: 182 LLFHLLSKLYEKTSVILTTNLSFSEWSRVFGDEKMTTALLDRLTHHCHILETGNESYRFK
Query: 239 NRS

+ S
Sbjct: 242 HSS

 

 

Fig. 5: Amino acid sequence comparison of the IstB NTP-binding proteins from IS1326 (lower 
line) and IS1331A (upper line). Identical residues are shown as a consensus residues between two 
sequences, residues homologous to those in IS1331A are shown with plus. The NTP-binding P-loop 
motif in IstB are indicated by underlining. 
 

 

 

In contrast to istB of IS1331A, istB of IS1331B (651 bp) is in the same relative phase -2 like 

istA frame, but divided from istA by 57 bp intergenic region (Fig. 2). IstA of IS1331 has a 

usual for the IS21 family DD(46)E transposase motif, a putative DNA-binding domain 

(domain with helix-turn-helix structural motif, 6-70 aa) in the N-terminal part and an 

integrase-like core domain in the middle of the protein (125-291 aa) (Fig. 4). The 6 bp 

deletion in istA of IS1331B, which results in deletion of two amino acids (S and L) in 

transposase IstA, probably did not affect the important domains in IstA (Fig. 4). IstB contains 

an ATP/GTP binding P-loop motif (100-118 aa) (Fig. 5).  

Based on the similarity to the NTP-binding protein, transposase and presence of the inverted 

repeats of 30 bp IS1331 might be classified as a member of the IS21 family. The transcription 
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of both istA and istB was confirmed in Y. enterocolitica Y-108C by the reverse transcription 

PCR (data not shown). 

 

 

1 AGATAGCCCTCAAGATATTGTTAAATATTGTGCAAAAGTAGACCAAGGGATCGGGGAATT

61 ATGGTGTAAAAGTGCACCACCCTGATTATTGATAAACTCTCCGTTTTTACGGAGATCTCC

121 TTGGATGCTGTGCATGGAAACCATACTTAAAGTCAGAAGGCTTTCTCTTAAGCAAGGGCT

41 M L C M E T I L K V R R L S L K Q G L

------------------------------------------------------------

1561 GAACATCCCGCCCCAGGCTAATTGTCAGCGTTACAACACGTTATTAAAAGGGGTGCCAAA

521 N I P P Q A N C Q R Y N T L L K G V P N

1621 TGGAACGGCATGAATGTATTGAAATACTTAAACAATTAAAGCTTACAGCCATGGCTGAAA

541 G T A *

540 M E R H E C I E I L K Q L K L T A M A E

------------------------------------------------------------

2281 TGGTTCATCATTGTGACATTATTGAAACAGGCAATGAATCATTTAGGTTCAAAAACCGGT

760       L  V  H  H  C  D  I  I  E  T  G  N  E  S  F  R  F  K  N  R 

2341 CTTAAAGTGGCGCACTTTTAAAGCATAACTGTGGCTCACTTTTAGACCATAATTGACACT

780 S *

IRR

-35 -10

RBS

RBS

IRL

1 AGATAGCCCTCAAGATATTGTTAAATATTGTGCAAAAGTAGACCAAGGGATCGGGGAATT

61 ATGGTGTAAAAGTGCACCACCCTGATTATTGATAAACTCTCCGTTTTTACGGAGATCTCC

121 TTGGATGCTGTGCATGGAAACCATACTTAAAGTCAGAAGGCTTTCTCTTAAGCAAGGGCT

41 M L C M E T I L K V R R L S L K Q G L

------------------------------------------------------------

1561 GAACATCCCGCCCCAGGCTAATTGTCAGCGTTACAACACGTTATTAAAAGGGGTGCCAAA

521 N I P P Q A N C Q R Y N T L L K G V P N

1621 TGGAACGGCATGAATGTATTGAAATACTTAAACAATTAAAGCTTACAGCCATGGCTGAAA

541 G T A *

540 M E R H E C I E I L K Q L K L T A M A E

------------------------------------------------------------

2281 TGGTTCATCATTGTGACATTATTGAAACAGGCAATGAATCATTTAGGTTCAAAAACCGGT

760       L  V  H  H  C  D  I  I  E  T  G  N  E  S  F  R  F  K  N  R 

2341 CTTAAAGTGGCGCACTTTTAAAGCATAACTGTGGCTCACTTTTAGACCATAATTGACACT

780 S *

IRR

-35 -10

RBS

RBS

IRL

 

 
Fig. 6: Partial nucleotide sequence of IS1331A. IRL and IRR are shown by arrows. -35 and -10 
regions of a putative promoter of istAB are underlined. Ribosome binding sites (RBS) are over lined. 
Start codons of IstA and IstB are boxed, stop codons are shown with asterisks.  
 

 

 

 

2.2 Determination of the copy number and flanking sequences 

The Southern blot analysis was performed to determine the copy number of IS1331. 

Hybridization experiments with the 427-bp PCR fragment obtained with the primers 
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istAM.for and istAM.rev, internal to the IS1331, were carried out. For this, genomic DNA of 

different yersiniae was digested with EcoRI (which does not cut inside the IS1331), 

transferred to a nylon membrane and hybridized with the DIG-labeled 427-bp probe (see 

Materials and Methods). 

In total, twenty six strains were studied by the Southern blot analysis (Fig. 7).  

 

 

1   2   3   4   5   6  7  8  9  10     11 12 13  14  15  16  17 18 19 20 21 22 23 24 25 261   2   3   4   5   6  7  8  9  10     11 12 13  14  15  16  17 18 19 20 21 22 23 24 25 261   2   3   4   5   6  7  8  9  10     11 12 13  14  15  16  17 18 19 20 21 22 23 24 25 26

Fig. 7. Southern blot hybridization of EcoRI-digested bacterial genomic DNA with a DIG-

labeled probe to IS1331.  
1.  Y. enterocolitica Y-108C ST O:3 BG 4  14. Y. enterocolitica JD E029 ST O:1  
2.  Y. enterocolitica NFO ST O:5 BG 1A 15. Y. enterocolitica 221 Erg. Nod ST O:3 BG 4 
3.  Y. enterocolitica ST O:5,27 BG 2 16. Y. enterocolitica 2118-Y ST O:3 BG 4 
4.  Y. enterocolitica WA-C ST O:8 BG 1B 17. Y. enterocolitica S-2840 ST O:3 BG 4 
5.  Y. enterocolitica 96C ST O:9 BG 2 18. Y. enterocolitica ST O:36 BG 1A 
6.  Y. pstbc. PBI ST O:1A 19. Y. ruckeri 529-36/85 
7.  Y. pstbc. 346 ST O:3 20. Y. mollaretii ST O:59 H279-36/86 
8.  Y. pestis EV 21. Y. bercovieri ST O:16 H632-36/85 
9.  Y. pestis G8786 22. Y. rohdei ST O:76 H274-36/78 
10. Y. pestis Yokohama 23. Y. aldovae  ST O:NT H344-36/91 
11. Y. enterocolitica  438/80 ST O:6,31  24. Y. kristensenii ST O:50 H25-36/84 
12.  Y. enterocolitica 189/80 ST O:6,30 BG 1A 25. Y. frederiksenii ST O:60 H56-36/81 
13.  Y. enterocolitica gk 1142 ST O:2  26. Y. intermedia ST O:17 H9-36/83 
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Eight tested strains possess the IS element. The number of IS1331 copies in the genome 

varied among the strains. From the hybridisation patterns we assumed that Y. enterocolitica 

O:3 221 Erg. Nod., 2118-Y and S-2840 (all pYV-bearing strains) contain at least four IS1331 

copies (Fig. 7), in comparison to three positive bands, which were detected in the plasmid-

cured derivative of Y. enterocolitica Y-108C. It indicates that at least one copy of IS1331 is 

located on the pYV-like plasmid. DNA isolated from other low pathogenic Y. enterocolitica 

H567/90 ST O:5,27 and Y. enterocolitica 96C ST O:9 gave only one and five positive signals 

under stringent condition, respectively. It is interesting, that Y. enterocolitica S-2840 ST O:3 

has five positive signals instead of four detected in other strains of ST O:3. Y. enterocolitica 

gk 1142 ST O:2 and Y. enterocolitica JD E029 ST O:1 contain at least one copy of IS1331 

(Fig. 7).  

All accessible nucleotide sequences flanking IS1331 in Y. enterocolitica Y11 ST O:3 strain 

were obtained from the draft of the genome sequencing project of the above-mentioned strain 

(Table 9). We have additionally performed sequencing beside IS1331 insertion sites in 

another Y. enterocolitica Y-108P ST O:3 with the original Y11 PCR primers. It was not 

surprising that IS1331 insertion sites in Y. enterocolitica Y-108P were the same like in Y11. 

We have also determined genomic sequences flanking IS1331 in Y. enterocolitica JD E029 

ST O:1 and Y. enterocolitica gk 1142 ST O:2 by inverse PCR. Afterwards, the original Y11 

PCR primers were used to verify the sequencing data. As expected, IS1331 locations in Y. 

enterocolitica JD E029 ST O:1 and Y. enterocolitica gk 1142 ST O:2 were different. IS1331 

in Y. enterocolitica JD E029 ST O:1 strain was found on the pYV-like plasmid in the 

ORF181-ORF155 intergenic region (Fig. 2), while in Y. enterocolitica gk 1142 ST O:2 

IS1331 is chromosomally located in the neighbourhood of the putative ORF with similarity to 

STY4827 (putative phage capsid protein) of Salmonella enterica (Acc. NP_458905). 

Surprisingly, ORF181-ORF155 intergenic region of pYV-like plasmid of Y. enterocolitica JD 

E029 O:1 contains three additional ORFs – yfc, yrc and tnpA besides IS1331A (Fig. 2). Yfc 

has the similarity to Plu4880 (74% at amino acid level, encodes the uncharacterized 

conserved protein from Photorhabdus luminescens subsp. laumondii TTO1, Acc. 

CAE17252). Yrc has the similarity to Raeut03006195 (88% at amino acid level), which 

encodes the putative site-specific recombinase from Ralstonia eutropha JMP134 (Acc. 

ZP_00165678). tnpA is a pseudogene with the similarity to the tnpA from pKLH466 plasmid 

(Pseudomonas sp. LS46-6, Acc. CAC80084).  
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Table 9. IS1331 flanking ORFs in the Y. enterocolitica Y11 and Y-108P ST O:3 genomes. 
No Downstream 

gene 
Similar gene/ 
product/organism 

Similarity 
(positives  
amino acids, %) 

Acc. No.*** Upstream  
gene 

Similar gene/ 
product/organism 

Similarity  
(positives 
amino acids, %) 

Acc. No.*** 

1 ORF181 ORF181/unknown/ 
Yersinia enterocolitica 
W22703 O:9 pYVe227 
plasmid 
 

159/160 (99%) AAD16801 ORF155 ORF155/ 
unknown/ 
Yersinia 
enterocolitica 
W22703 O:9 
pYVe227 plasmid 
 

154/155 (99%) AAD16802 

2 ycdX ycdX/ hypothetical 
protein ycdX precursor/ 
Escherichia coli 
CFT073 
 

58/89 (65%) NP_753209 ORF19 ORF19 (TraC-3)/ 
antirestriction 
protein/ 
Escherichia coli 
ECOR31 
 

230/252 (91%) AAP70295 

3 gpP gpP/ terminase, DNA-
dependent ATPase/ 
Enterobacteria phage P2 
 
 

178/202 (88%) AAD03269 STY1639 STY1639/ 
putative 
bacteriophage tail 
fiber assembly 
protein/Salmonell
a enterica serovar 
Typhi CT18 
 

64/106 (60%) NP_456050 

4 unknown       intU intU/ putative 
integrase for 
prophage CP-
933U/ Shigella 
flexneri 2a str. 
301 
 

155/313 (49%) NP_707880 

5* unknown       STY4827 STY4827/putativ
e phage capsid 
protein/Salmonell
a enterica serovar 
Typhi 
 

51/75 (68%) 
  

NP_458905 
  

6**  tnpA  Transposase/pKLH466/
Pseudomonas sp. LS46-
6 

130/148 (87%)  CAC80084 ORF155 ORF155/ 
unknown/ 
Yersinia 
enterocolitica 
W22703 O:9 
pYVe227 plasmid 

40/40 (100%) AF102990 

* Located on the chromosome of Y. enterocolitica O:2 
** Located on the pYV-like plasmid of Y. enterocolitica O:1 
*** Accession number for homological proteins 
 

 

2.3 Distribution of IS1331 among various yersiniae 

The distribution of the newly described IS1331 element in the genomes of the pathogenic and 

non-pathogenic yersiniae species Y. pestis, Y. pseudotuberculosis, Y. enterocolitica, Y. 

ruckeri, Y. mollaretii, Y. bercovieri, Y. rohdei, Y. kristensenii, Y. frederiksenii and Y. 

intermedia was investigated by Dot blot analysis. Hybridization experiments with the above 

mentioned DIG-labeled PCR-fragment, which is internal to the IS1331, were carried out. 

Surprisingly, hybridization signals were obtained only with the genomic DNA of the weakly 

pathogenic Y. enterocolitica bio- and serotypes (Table 10). IS1331 was not identified in any 

other yersiniae tested under stringent conditions. 



C. RESULTS 63

Table 10. Strains used in the screening of IS1331 . 

No. Isolate Origin Country IS1331* 

 Y. enterocolitica ST O:3 BG 4    

1 Y-108C  Man Germany + 

2 Y11  Man Germany + 

3 5307  Man unknown + 

4 5783  Man unknown + 

5 Y486  Calf unknown + 

6 Y626 WS 15/93  Pig Belgium + 

7 Y633 (WE50/01)  Man Belgium + 

8 Y641  Pup unknown + 

9 560 (SW13123)  Pig Japan + 

10 559 (M388)  Pig Japan + 

11 556 (8265)  Man France + 

12 531 (SW13711)  Pig Japan + 

13 554 (29C-43a)  Man Norway + 

14 555 (MCH697)  Man Canada + 

15 Y485  Pig unknown + 

16 628 W 498  Pig tongues Belgium + 

17 642  unknown Germany + 

18 Y631  Pig/food 

technology 

Denmark + 

19 S-2840  Man Germany + 

20 2118-Y  Man Germany + 

21 221 Erg.Nod  Man Germany + 

22 Y-1088  Man Germany + 

23 66 Stool  Man Germany + 

24 56 LK  Man Germany + 

25 62 Stool  Man Germany + 

26 59 LK  Man Germany + 

27 4147 pYVII Ar+  Man Germany + 

28 7347 pYVI Ar+  Man Germany + 

29  Y745 IP24231  Man Japan + 

30 Y746 IP24232  Man Japan + 

31 Y747 IP134  Man Sweden + 

32 Y748 IP21981  Man France + 

33 Y749 IP1601  Man Japan + 

34 Y750 IP19718  Man China + 

35 Y751 IP23222  Man UK + 

36 Y752 IP23357  Man Brazil  + 
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Table 10. Continued 

No. Isolate Origin Country IS1331* 

37 Y753 IP24309  Man N. Caledonia + 

38 Y754 IP24310  Man N. Caledonia + 

39 Y755 IP7032  Man South Africa  + 

40 Y756 IP7036  Man South Africa + 

41 Y757 IP3692  Man Hungary + 

42 Y758 IP3704  Man Hungary + 

43 Y759 IP4115  Man Canada + 

44 Y763 IP4124  Man Canada + 

45 Y764 IP4125  Man Canada + 

46 Y765 IP22274  Man Australia + 

47 Y766 IP22275  Man Australia + 

48 Y767 IP22276  Man Australia + 

49 Y768 IP25728  Man Australia + 

50 Y769 IP23227  Man New Zealand + 

51 Y770 IP23228  Man New Zealand + 

52 Y771 IP23230  Man New Zealand + 

53 910/98 Man Poland + 

54 562/03 Man Poland + 

55 465/00 Man Poland + 

56 128/99 Man Poland + 

57 627/99 Man Poland + 

58 120/98 Man Poland + 

59 243/96 Man Poland + 

60 504/97 Man Poland + 

61 99/96 Man Poland + 

62 457/98 Man Poland + 

63 567/98 Man Poland + 

64 265/01 Man Poland + 

65 274/99 Man Poland + 

66 188/01 Man Poland + 

67 254/97 Man Poland + 

68 353/96 Man Poland + 

69 332/98 Man Poland + 

70 184/97 Man Poland + 

  Y. enterocolitica ST O:9 BG 2    

71 96C (Y-96) Man Germany + 

72 564 (7Oulua) Man Finland + 

73 563 (YE099) Man Canada + 

74 Y738 IP22393  Man France + 
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Table 10. Continued 

No. Isolate Origin Country IS1331* 

  Y. enterocolitica ST O:5,27 BG 2    

75 586 (H567/90) Man Germany + 

76 568 (YE873) Pig Canada + 

77 534 (D113) Dog Japan + 

78 Y740 IP199  Man USA + 

79 Y741 IP885  Man UK + 

80 Y743 IP22460  Man Australia + 

  Y. enterocolitica ST O:1     

81 JD E029 human unknown + 

  Y. enterocolitica ST O:2     

82 gk1142 hare unknown + 

  Y. enterocolitica ST O:1,2,3 BG 3    

83 JD E766 human unknown + 

  Y. enterocolitica ST O:2a,2b,3    

84 Y772 IP1  Hare France - 

85 Y773 IP178  Hare France - 

  Y. enterocolitica ST O:6,31    

86 438/80 unknown unknown - 

87 1309/80 unknown unknown - 

  Y. enterocolitica ST O:36 BG 1A    

88 IP 2222 Nonclinical 

isolate 

unknown - 

  Y. enterocolitica ST O:4     

89 gc 3973-76 Man USA - 

  Y. enterocolitica ST O:4,32    

90 JD E701 human unknown - 

  Y. enterocolitica ST O:5 BG 1A    

91 NF-O  Man Newfoundland - 

92 Y755 IP124 Pony France - 

  Y. enterocolitica ST O:6,30-6,61    

93 Y774 IP102  unknown Denmark - 

  Y. enterocolitica ST O:6,30 BG 1A    

94 189/80  unknown unknown - 

95 6737/80 unknown unknown - 

  Y. enterocolitica ST O:7,8 BG 1A    

96 350 unknown Germany - 

  Y. enterocolitica ST O13:b,e,f,i    

97 329/82 unknown USA - 

  Y. enterocolitica ST 020:b,e,f,i    
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Table 10. Continued 

No. Isolate Origin Country IS1331* 

98 3039/85 unknown unknown - 

  Y. enterocolitica ST 021:b,e,f,i    

99 209/84 unknown unknown - 

  Y. enterocolitica ST O:41,43    

100 478/91 unknown unknown - 

  Y. enterocolitica ST O:48    

101 4643/93 unknown unknown - 

  Y. enterocolitica ST O:8 BG 1B    

102 WA-C (WA-314) Man USA - 

103 589 (900/90) Man Japan - 

104 575 (893/87) Man Italy - 

105 Y736 IP636  unknown USA - 

  Y. pseudotuberculosis    

106 PB1, ST O:1 unknown unknown - 

107 735 Rattus norvegicus St. Petersburg, 

Russia 

- 

108 952 Rattus norvegicus St. Petersburg, 

Russia 

- 

109 346, ST O:3 Man Denmark - 

  Y. pestis    

110 5764 Rattus norvegicus St. Petersburg, 

Russia 

- 

111 G8786 Vole Georgia - 

112 EV Man Madagascar - 

113 Yokohama Man Japan   

  Other species    

114 Y. intermedia H9-36/83 ST O:17 unknown unknown - 

115 Y. frederiksenii H56-36/81 ST O:60 unknown unknown - 

116 Y. kristensenii H25-36/84 ST O:50 unknown unknown - 

117 Y. rohdei H274-36/78 ST O:76 unknown unknown - 

118 Y. bercovieri H632-36/85 ST O:16 unknown unknown - 

119 Y. mollaretii H279-36/86 ST O:59 unknown unknown - 

120 Y. ruckeri 529-36/85 unknown unknown - 

121 Y. aldovae  H344-36/91 ST O:NT unknown unknown - 

MvP – Max von Pettenkofer Institute of Hygiene and Medical Microbiology, Munich, Germany 
PZH - Department of Bacteriology National Institute of Hygiene, Warsaw, Poland 
SaBw - Institute for Microbiology, German Federal Armed Forces, Munich, Germany 
SESAHS - South Eastern Sydney Area Health Service, Sydney, Australia 
*„+“ – IS1331 is present in a genome; „-“ – IS1331 is absent in a genome 
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3. Uncovering a novel RTX-like toxin in Y. enterocolitica subsp. palearctica Y-108 

One of the subtracted fragments (01_52), uncovered by SSH, showed high similarity to the 

rtxA gene of Vibrio cholerae El Tor. To obtain the complete sequence of the putative gene we 

screened the cosmid gene bank of Y. enterocolitica Y-108C. Two cosmids (pSC175D and 

pSC1012B) carrying the ORF of interest were isolated and subsequently sequenced. A genetic 

locus comprising 14665 bp and containing 7 open reading frames was uncovered (Fig. 8).  

These ORFs have been designated accordingly to the similarity of their predicted products 

(Table 11).  

Figure 9 compares the organization of the RTX cluster with the homologous that encoded by 

E. coli, V. cholerae, Photorhabdus luminescens and sequence of the neighbor genes from 

from the Y. pestis genome.  

 

 

14665 bp

kdpA

ymp1

rtxH
rtxC yhp1

phrB

rtxA

pSC1275D pSC1012B

14665 bp

kdpA

ymp1

rtxH
rtxC yhp1

phrB

rtxA

pSC1275D pSC1012B

 

 

 

Fig. 8: Organization of the RTX-gene cluster and neighbouring ORFs 
ORFs are shown in italic; pSC1275D and pSC1012B illustrate, which part of the rtxA cluster comes 
from the sequenced cosmids. 
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Table 11. Background and RTX-gene cluster of Y. enterocolitica Y-108C 

ORF/size Similar gene/Putative product/Microorganism Homology, aa 

kdpA 

1638 bp 

kdpA/putative potassium-transporting ATPase A chain/Yersinia pestis CO92 470/524 (89%) 

ymp1 

204 bp 

YPO2693/putative membrane protein/Yersinia pestis CO92 61/68 (89%) 

rtxH 

372 bp 

VC1449/hypothetical protein/Vibrio cholerae O1 El Tor 79/107 (73%) 

rtxC 

456 bp 

VC1450/cytolysin-activating lysine-acyltransferase/Vibrio cholerae O1 El Tor 111/151 (73%) 

rtxA 

9636 bp 

VC1451/RTX toxin/ Vibrio cholerae O1 El Tor 1972/3212 (61%) 

yhp1 

474 bp 

YPO2694/hypothetical protein/ Yersinia pestis CO92 126/149 (84%) 

phrB 

546 bp 

YPO2695/putative deoxyribodipyrimidine photolyase/ Yersinia pestis CO92 141/178 (79%) 
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Y. enterocolitica
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Fig. 9: Genomic structure of the RTX cluster in Y. enterocolitica Y-108C; line-up of the 
RTX gene cluster and neighbouring genes with the RTX elements from V. cholerae, E. 
coli and P. luminescens.  
The known or predicted functions of each ORF are indicated by different shadings. * - The rtxA 
homologs from P. luminescens are clustered in two chromosomal regions and tandemly organized. 
Four of them are complete genes and other four were disrupted by frameshifts or insertion sequences. 
↓IS – indicates insertion sequence element.  
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3.1 Structure of the rtx operon 

We have identified and characterized the gene cluster in Y. enterocolitica Y-108C ST O:3 that 

contains four genes: rtxA, rtxC, ymp1, and rtxH (Fig. 8, 9). The possible toxin, RtxA, 

resembles members of the RTX (repeats in toxin) toxin family that contains a glycin-rich 

repeated motif. Like other RTX toxins, it is associated with an activator, RtxC – 

acyltransferase. In the case of the cholerae’s cytotoxin and most other RTX toxins, the genes 

required for toxin biosynthesis and secretion exist in one operon (Fig. 9). Within the operon 

should be two genes encoding secretion proteins that are components of ABC transporter 

system (rtxB and rtxD). In the Y. enterocolitica Y-108C genome we have not found yet 

transporter genes which might transport RtxA. But we have  found two ORFs with unclear 

functions. One of them, Ymp1, has similarity to a putative membrane protein YPO2693 from 

Y. pestis CO92 and second one,  RtxH, has similarity to a peptide chain release factor 1 

(VC1449) from V. cholerae. 

Comparative analysis (Fig. 10) of the RtxA from Y. enterocolitica and V. cholerae as well as 

the RtxC proteins on amino acid level showed that these proteins have more similarity to each 

other than to the other proteins of RTX-family, for instance, HlyA and HlyC from E. coli. 

(Fig. 11) 

 

 

 
 

Fig. 10: Homology tree of RtxA-like proteins. RtxA – RtxA-like protein of Y. enterocolitica 
Y11; Vc1451 – RtxA protein of V. cholerae; HlyA_O6 – HlyA protein of E. coli O:6; HlyA_O157 – 
HlyA protein of E. coli O:157. Numbers show the level of similarity. 
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Fig. 11: Homology tree of RtxC-like proteins. RtxC – RtxC-like protein of Y. enterocolitica 
Y11; Vc1450 – RtxC protein of V. cholerae; HlyC_O6 – HlyC protein of E. coli O:6; HlyC_O157 – 
HlyC protein of E. coli O:157. Numbers show the level of similarity. 
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M II     1      2       3       4       5       6       7       8      9    M VIIM II     1      2       3       4       5       6       7       8      9    M VII

 
 

Fig. 12: Southern blot hybridization of HindIII-digested genomic DNA of various 
Yersinia strains with DIG-labeled probe to rtxA. 
M II.  DIG-labeled DNA molecular weight marker II, 23130, 9416 and 6557 bp fragments; 
1.  Y. enterocolitica JD E029 ST O:1; 
2.  Y. enterocolitica 2118-Y ST O:3 BG 4; 
3.  Y. enterocolitica Y11 ST O:3 BG 4; 
4.  Y. frederiksenii H-56-36/81 ST O:60; 
5.  Y. enterocolitica BV4- ST O:3 BG 4; 
6.  Y. enterocolitica gk 1142 ST O:2; 
7.  Y. enterocolitica 4147 pYVII Ar+ ST O:3 BG 4; 
8.  Y. enterocolitica 5307 Ar+ O:3 BG 4; 
9.  Y. enterocolitica 5783 Ar- ST O:3 BG 4; 
M VII. DIG-labeled DNA molecular weight marker VII, 8576, 7427, 6106, 4899, 3639, 2799 and 
1953 bp fragments. 
 

 

 

 

 

3.2 Distribution of the RTX-like cluster among different Yersinia 

We have established by using the Southern blot analysis and DNA microarray that rtxA is 

present only among weakly pathogenic Y. enterocolitica strains and is absent in highly and 

nonpathogenic bioserotypes (Table 12 and Fig. 12). 
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Table 12. Distribution rtxA among different yersiniae. 

No. Isolate Origin Country rtxA* 

 Y. enterocolitica ST O:3 BG 4    

1 Y-108C Man Germany + 

2 Y11 Man Germany + 

3 5307 Man unknown + 

4 5783 Man unknown + 

5 Y486 Calf unknown + 

6 Y626 WS 15/93 Pig Belgium + 

7 Y633 (WE50/01) Man Belgium + 

8 Y641 Pup unknown + 

9 560 (SW13123) Pig Japan + 

10 559 (M388) Pig Japan + 

11 556 (8265) Man France + 

12 531 (SW13711) Pig Japan + 

13 554 (29C-43a) Man Norway + 

14 555 (MCH697) Man Canada + 

15 Y485 Pig unknown + 

16 628 W 498 Pig tongues Belgium + 

17 642 unknown Germany + 

18 Y631 Pig/food 

technology 

Denmark + 

19 S-2840 Man Germany + 

20 2118-Y Man Germany + 

21 221 Erg.Nod. Man Germany + 

22 Y-1088 Man Germany + 

23 66 Stool Man Germany + 

24 56 LK Man Germany + 

25 62 Stool Man Germany + 

26 59 LK Man Germany + 

27 4147 pYVII Ar+ Man Germany + 

28 7347 pYVI Ar+ Man Germany + 

29  Y745 IP24231  Man Japan + 

30 Y746 IP24232  Man Japan + 

31 Y747 IP134  Man Sweden + 

32 Y748 IP21981  Man France + 

33 Y749 IP1601  Man Japan + 

34 Y750 IP19718  Man China + 

35 Y751 IP23222  Man UK + 

36 Y752 IP23357  Man Brazil  + 
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Table 12. Continued 

No. Isolate Origin Country rtxA* 

37 Y753 IP24309  Man N. Caledonia + 

38 Y754 IP24310  Man N. Caledonia + 

39 Y755 IP7032  Man South Africa  + 

40 Y756 IP7036  Man South Africa + 

41 Y757 IP3692  Man Hungary + 

42 Y758 IP3704  Man Hungary + 

43 Y759 IP4115  Man Canada + 

44 Y763 IP4124  Man Canada + 

45 Y764 IP4125  Man Canada + 

46 Y765 IP22274  Man Australia + 

47 Y766 IP22275  Man Australia + 

48 Y767 IP22276  Man Australia + 

49 Y768 IP25728  Man Australia + 

50 Y769 IP23227  Man New Zealand + 

51 Y770 IP23228  Man New Zealand + 

52 Y771 IP23230  Man New Zealand + 

53 910/98 Man Poland + 

54 562/03 Man Poland + 

55 465/00 Man Poland + 

56 128/99 Man Poland + 

57 627/99 Man Poland + 

58 120/98 Man Poland + 

59 243/96 Man Poland + 

60 504/97 Man Poland + 

61 99/96 Man Poland + 

62 457/98 Man Poland + 

63 567/98 Man Poland + 

64 265/01 Man Poland + 

65 274/99 Man Poland + 

66 188/01 Man Poland + 

67 254/97 Man Poland + 

68 353/96 Man Poland + 

69 332/98 Man Poland + 

70 184/97 Man Poland + 

  Y. enterocolitica ST O:9 BG 2    

71 96C (Y-96) Man Germany - 

72 564 (7Oulua) Man Finland - 

73 563 (YE099) Man Canada - 

74 Y738 IP22393  Man France - 



C. RESULTS 75
Table 12. Continued 

No. Isolate Origin Country rtxA* 

  Y. enterocolitica ST O:5,27 BG 2    

75 586 (H567/90) Man Germany - 

76 568 (YE873) Pig Canada - 

77 534 (D113) Dog Japan - 

78 Y740 IP199  Man USA - 

79 Y741 IP885  Man UK - 

80 Y743 IP22460  Man Australia - 

  Y. enterocolitica ST O:1    

81 JD E029 human unknown - 

  Y. enterocolitica ST O:2     

82 gk1142 hare unknown - 

  Y. enterocolitica ST O:1,2,3 BG 3    

83 JD E766 human unknown - 

  Y. enterocolitica ST O:2a,2b,3    

84 Y772 IP1  Hare France - 

85 Y773 IP178  Hare France - 

  Y. enterocolitica ST O:6,31    

86 438/80 unknown unknown - 

87 1309/80 unknown unknown - 

  Y. enterocolitica ST O:36 BG 1A    

88 IP 2222 Nonclinical 

isolate 

unknown - 

  Y. enterocolitica ST O:4    

89 gc 3973-76 Man USA - 

  Y. enterocolitica ST O:4,32    

90 JD E701 human unknown - 

  Y. enterocolitica ST O:5 BG 1A    

91 NF-O  Man Newfoundland - 

92 Y755 IP124 Pony France - 

  Y. enterocolitica ST O:6,30-6,61    

93 Y774 IP102  unknown Denmark - 

  Y. enterocolitica ST O:6,30 BG 1A    

94 189/80  unknown unknown - 

95 6737/80 unknown unknown - 

  Y. enterocolitica ST O:7,8     

96 350 unknown Germany - 

  Y. enterocolitica ST O13:b,e,f,i    

97 329/82 unknown USA - 

  Y. enterocolitica ST 020:b,e,f,i    
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Table 12. Continued 

No. Isolate Origin Country rtxA* 

98 3039/85 unknown unknown - 

  Y. enterocolitica ST 021:b,e,f,i    

99 209/84 unknown unknown - 

  Y. enterocolitica ST O:41,43    

100 478/91 unknown unknown - 

  Y. enterocolitica ST O:48    

101 4643/93 unknown unknown - 

  Y. enterocolitica ST O:8 BG 1B    

102 WA-C (WA-314) Man USA - 

103 589 (900/90) Man Japan - 

104 575 (893/87) Man Italy - 

105 Y736 IP636  unknown USA - 

  Y. pseudotuberculosis    

106 PB1, ST O:1 unknown unknown - 

107 735 Rattus 

norvegicus 

St. Petersburg, 

Russia 

- 

108 952 Rattus 

norvegicus 

St. Petersburg, 

Russia 

- 

109 346, ST O:3 Man Denmark - 

  Y. pestis    

110 5764 Rattus 

norvegicus 

St. Petersburg, 

Russia 

- 

111 G8786 Vole Georgia - 

112 EV Man Madagascar - 

113 Yokohama Man Japan   

  Other species    

114 Y. intermedia H9-36/83 ST O:17 unknown unknown - 

115 Y. frederiksenii H56-36/81 ST O:60 unknown unknown - 

116 Y. kristensenii H25-36/84 ST O:50 unknown unknown - 

117 Y. rohdei H274-36/78 ST O:76 unknown unknown - 

118 Y. bercovieri H632-36/85 ST O:16 unknown unknown - 

119 Y. mollaretii H279-36/86 ST O:59 unknown unknown - 

120 Y. ruckeri 529-36/85 unknown unknown - 

121 Y. aldovae  H344-36/91 ST O:NT unknown unknown - 

*„+“ – rtxA is present in a genome; „-“ – rtxA is absent in a genome 
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3.3 Transcription analysis of the RTX gene cluster 

Reverse transcription analysis was carried out to determine the transcription of the genes of 

the RTX cluster. The positive transcripts indicate in vivo transcription of all four ORFs 

(ymp1, rtxH, rtxC, and rtxA) as a single mRNA (Fig. 13). 
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Fig. 13: Gel electrophoresis of the PCR fragments after
RT-PCR and schematic representation of the common 
RTX genes‘ transcription 
 
1. PCR fragment from primers to ymp1  
2. PCR fragment from primers to rtxH  
3. PCR fragment from primers to rtxC 
4. PCR fragment from primers to rtxA 
5. Molecular weight marker 
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3.4 Structural features of RtxA 

The RTX toxins as a group have certain common domain structures: an N-terminal 

hydrophobic domain required for pore formation; central prototoxin activation sites; C-

terminal glycine-rich (GD) calcium-binding repeats involved in target-cell binding; and a C-

terminal signal for secretion. 

Analysis of the deduced amino acid sequence of the Y. enterocolitica RtxA shows some 

similar as well as distinguishing features compare to the V. cholerae RtxA (Fig. 14).  
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Fig. 14: Schematic representation of the RtxA protein and its features. 
Upper figure: map of the RtxA-like toxin from Y. enterocolitica Y-108C 
Lower figure: map of the RtxA-like toxin from V. cholerae El Tor 
All putative domains and sites are marked. 
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The predicted size of RtxA in Y. enterocolitica Y-108C is 3,212 aa in size, compared with 

about 1,000 aa residues for the E. coli HlyA or 4,546 aa for the V. cholerae RtxA. A pore-

forming domain is notably absent in the N terminus of RtxA. In fact, glycine-rich regions of 

RtxA shows the greatest sequence similarity to other RTX toxins. Normally, they contain 

hemolysin-type calcium-binding sites which bind calcium. It has been suggested that such 

internally repeated domain of haemolysins may be involved in Ca-mediated binding to 

erythrocytes. It has been shown that such a domain is involved in the binding of calcium ions 

in a parallel beta roll structure (Baumann et al., 1993). Such metal-binding sites were found in 

a group of bacterial exported proteins that includes haemolysin, cyclolysin, leukotoxin and 

metallopeptidases belonging to MEROPS peptidase family M10 (clan MA(M)), subfamily 

10B (serralysin) (Park and Ming, 2002). 

Within the enormous length of RtxA, about a dozen sequences conform to the consensus for 

toxin activation by acylation (Pellett and Welch, 1996). However, whether or how many of 

these sites are substrates for acylation is unknown. Finally, the C terminus of the protein 

contains a secretion signal. Although the secretion signals of RTX toxins do not follow a 

strong consensus, disruption of an "aspartate box" motif, rich in aspartic acid and serine, at the 

C terminus of other RTX toxins can severely affect secretion (Kenny et al., 1992). One RGD 

(cell attachment) sequence appear at amino acids 2234-2236 of RtxA (Fig. 14). It is 

interesting, RtxA of V. cholerae contains two similar motifs, whereas it is absent in HlyA of 

E. coli (Lin et al., 1999). This short peptide sequence, found in fibronectin and other adhesive 

proteins, facilitates binding to the integrin family of cell surface receptors (Ruoslahti, 1996). 

What has been called the 'RGD' tripeptide is also found in the sequences of a number of other 

proteins, where it has been shown to play a role in cell adhesion. These proteins are: some 

forms of collagens, fibrinogen, vitronectin, von Willebrand factor (VWF), snake disintegrins, 

and slime mold discoidins. The 'RGD' tripeptide is also found in other proteins where it may 

also, but not always, serve the same purpose. Whether RGD sequences have any role in 

activity of RtxA is unknown. 

Although large regions of the protein do not share sequence similarity to proteins in the 

database, certain motifs are present. Such motifs like a glycosaminoglycan attachment site, 

serralysin-like metalloprotease structure, peptidase C58 Yersinia/Haemophilus virulence 

surface antigen domain and prokaryotic membrane lipoprotein lipid attachement site have not 

been found in other RTX-like toxins (Fig. 14). All of these structures are present in proteins 

that play a role in a pathogenic process. For example, serralysin is a bacterial Zn-

endopeptidase that acts as a virulence factor to cause tissue damage and anaphylactic response 
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(Park and Ming, 2002). These peptidase include the astacin family, snake venom Zn-

endopeptidases, the extracellular metalloproteases from Serratia sp., Pseudomonas sp. and 

Erwinia sp., and the matrixins. Other protein, Yersinia/Haemophilus virulence surface 

antigen, belongs to a group of cysteine peptidases correspond to MEROPS peptidase family 

C58 (clan CA). They are found in bacteria that include plant pathogens (Pseudomonas 

syringae), root nodule bacteria, and intracellular pathogens (e.g. Yersinia pestis, Haemophilus 

ducreyi, Pasteurella multocida, Chlamydia trachomatis) of animal hosts. Sequences can be 

extremely divergent outside of a few well-conserved motifs. Members of the family from 

pathogenic bacteria are likely to be pathogenesis factors. 

 

3.5 Production of recombinant RtxA and generating of a rabbit serum against RtxA 

pRTX2100 is a plasmid that contains a 2.1 kb fragment of the rtxA gene in pET100/D-TOPO 

(Invitrogen) vector. The 79 kDa His-tagged product, designed RtxA79, was purified from E. 

coli BL21 cells in the presence of 6 M Urea on a nickel column (Fig. 15).  

 

RtxA79

50 kDa

60 kDa

80 kDa

5        4        3       2    1

RtxA79

50 kDa

60 kDa

80 kDa

5        4        3       2    1

 

Fig. 15: Purification of the RtxA79. SDS-
PAGE (7.5% polyacrylamide) 
 
1. BenchMark Protein Ladder (Invitrogen) 
2. Crude bacterial lysate after induction 
3. Soluble fraction after disrupting the bacterial pellet 
through French press 
4. Insoluble fraction after disrupting the bacterial pellet 
through French press 
5. RtxA79 after purification on a nickel column 

 

 

 

Purified protein was used for immunization of a rabbit and production of the RtxA-specific 

antibodies.  

Sterile culture supernatant fluids and cell lysate from stationary phase cultures of Y11 were 

examined for the presence of the RtxA by immunoprecipitation and western blotting. RtxA 
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was immunoprecipitated and subsequently detected using antibody raised against a 79 kDa 

subfragment of RtxA that had been purified from E. coli as a 6xHis-tagged protein. Two 

weakly visible bands were detected by the RtxA-specific antibody that were not detected by 

the pre-immune serum (Fig. 16).  

 

 

 

 

 

Fig. 16: RtxA immunoblotting: 
Antiserum was raised against RtxA79.  
Arrows on the right denote the location of RtxA-
specific bands. 
M – BenchMark Prestained Protein Ladder 
(Invitrogen) 
1- Crude cell lysate of E. coli BL21 expressed 
RtxA79  
2- Culture supernatant fluids from Y-108C after 
immunoprecipitation 
3- Crude cell lysate of Y-108C after 
immunoprecipitation 

176.5 kDa 

113.7 kDa 

RtxA79 

63.8 kDa 

 
 

 

 

Together these bands consistent with the predicted full-length size of RtxA. 

These data demonstrate that the RtxA protein is synthesized and exported to culture 

supernatants but in a small quantity. In future, RtxA-specific antibodies may be used for 

detection antibodies in human serum against RtxA and, if it will be high specific for Y. 

enterocolitica ST O:3, as a tool for serological diagnostic. 

 

4. Structural organization of the pFra virulence-associated plasmid of Rha-positive 

Yersinia pestis 

Plague is an acute systemic zoonotic disease caused by infection with Yersinia pestis. 

Evolutionary Y. pestis is a recently evolved clone of Y. pseudotuberculosis (pathotype) that 

causes chronic and localized lymphadenitis and gastroenteritis. A group of Rha-positive Y. 
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pestis strains shares certain features of both Y. pseudotuberculosis and Y. pestis. One of these 

Rha-positive strains, Y. pestis G8786 biovar Antiqua, isolated from a vole in high 

mountainous Caucasus, Georgia, was compared by suppression subtractive hybridization 

(SSH) with another Antiqua isolate, Y. pestis Yokohama, to uncover lossess and acquisitions 

in the G8786 genome. Changes in both, chromosomal and plasmid DNA, were detected in 

G8786.  

Several G8786-specific sequences show similarity to genes responsible for the transmissivity 

of R100 and F plasmids, namely, traG (pilus assembly), traH (pilus assembly) and traN 

(mating pair stabilization). We supposed that a transmissible replicon might have been 

acquired by the Y. pestis G8786. To prove this, the pFra plasmid and chromosomal DNAs 

were hybridized with a traG probe designed from the sequence of the subtracted fragment. 

Hybridization studies proved that the tra-operon is a part of the pFra plasmid, namely 

pG8786. To map out the location of the insert of the tra-genes in the pG8786 plasmid we 

have sequenced the complete replicon pG8786. 

 

4.1 General description 

Y. pestis strain G8786 was cured of pYV8786 by plating on LB-EGTA agar at 37°C and 

selecting for the loss of the Cad-phenotype. Loss of the pYV8786 plasmid was proven by 

plasmid screening and by PCR for the pYV-encoded marker yopP. A shotgun library was 

prepared from pG8786 isolated from a monoplasmid Y. pestis G8786 derivative. The entire 

sequence of pG8786 was determined to be 137,036 bp. Screening and annotation of the 

sequence with the Pedant-Pro Sequence Analysis Suite (Biomax Informatics AG, Germany) 

revealed 148 putative coding regions along the entire length of the plasmid. In general, the 

pG8786 is a pFra plasmid which has additionally acquired tra genes (necessary for a 

conjugational transfer) from an unknown origin but with significant similarity to known and 

well characterized conjugative plasmids including F and R plasmids (Table 13).  
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Table 13. List of the characteristics and the closest relatives of the predicted product 

of each CDS from regions 1 and 2. 

CDS/Gene Position (bp) Homologue found by BLAST 

(ORF/Gene, product, organism/element)

Similarity (aa, %) Accession no.

   

region 1 37.546-42.172 bp 

 

  

CDS38 38.438-37.648 HCM2.0120c, hypothetical protein, 

Salmonella enterica subsp. enterica 

serovar Typhi, plasmid pHCM2 

261/262 (99%) 

 

NP_569592 

 

CDS39 39.737-38.595 HCM2.0121c, putative ribonucleoside-

diphosphate reductase beta subunit, 

Salmonella enterica subsp. enterica 

serovar Typhi, plasmid pHCM2 

379/380 (99%) 

 

NP_569593 

 

CDS40 42.160-39.845 HCM2.0122c, putative ribonucleoside-

diphosphate reductase alpha subunit, 

Salmonella enterica subsp. enterica 

serovar Typhi, plasmid pHCM2 

769/771 (97%) 

 

NP_569594 

 

   

region 2 81.956-114.573 bp 

 

  

traA 82.124-82.480 traA, prepropilin, Escherichia coli K-12  

strain CR63, plasmid F 

63/69 (91%) 

 

NP_061453 

 

traL 82.631-82.936 traL, TraL, function - F pilus assembly, 

Escherichia coli K-12  strain CR63, 

plasmid F 

87/99 (87%) NP_061454 

traE 82.951-83.517 traE, TraE, function - F pilus assembly, 

Escherichia coli K-12  strain CR63, 

plasmid F 

159/188 (84%) NP_061455 

traK 83.504-84.247 traK, TraK, function - F pilus assembly, 

Escherichia coli K-12  strain CR63, 

plasmid F 

173/224 (77%) 

 

NP_061456 

 

traB 84.225-85.628 traB, TraB, function - pilus assembly, 

Escherichia coli K-12, plasmid R100-1 

362/467 (77%) 

 

AAB07770 

 

traV 85.650-86.189 traV, TraV, function - pilus biogenesis, 

Shigella flexneri 2b strain 222, plasmid 

R100 

114/163 (69%) 

 

NP_052954 

 

traV 86.267-86.533 traR, TraR, conjugative transfer protein, 

Salmonella typhi, plasmid pED208 

 

55/88 (62%) 

 

AAM90708 
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Table 13. Continued 

CDS/Gene Position (bp) Homologue found by BLAST 

(ORF/Gene, product, organism/element)

Similarity (aa, %) Accession no.

orfX1(CDS81) 86.537-86.722 orfX1, hypothetical protein, transfer 

region, Salmonella typhi, plasmid 

pED208 

54/60 (90%) 

 

AAM90709 

 

orfX2 86.604-87.110 orfX2, hypothetical protein, transfer 

region, Salmonella typhi, plasmid 

pED208 

73/95 (76%) 

 

AAM90710  

 

traP 87.100-87.666 traP, conjugative transfer protein, 

Salmonella typhimurium LT2, plasmid 

pSLT 

62/137 (45%) 

 

NP_490568 

 

traC 87.659-90.290 possible pseudogene traC, Escherichia 

coli K-12  strain CR63, plasmid F 

301/339 (88%) NP_061463 

trbI 90.287-90.634 trbI, pilus assembly protein, Salmonella 

typhimurium LT2, plasmid pSLT 

78/91 (85%) 

 

NP_490574 

 

traW 90.631-91.281 traW, pilus assembly protein, 

Salmonella typhimurium LT2, plasmid 

pSLT 

143/187 (76%) 

 

NP_490575 

 

traU 91.278-92.270 traU, pilus assembly protein, 

Salmonella typhimurium LT2, plasmid 

pSLT 

276/320 (86%) 

 

NP_490576 

 

trbC 92.462-92.917 trbC, hypothetical protein, Shigella 

flexneri 2b strain 222, plasmid R100 

111/151 (73%) 

 

NP_052965 

 

traN 92.914-94.764 traN, mating pair stabilization protein, 

Salmonella typhimurium LT2, plasmid 

pSLT 

455/607 (74%) 

 

NP_490579 

 

traF 95.017-95.766 traF, TraF, Escherichia coli, plasmid 

R100-1 

193/234 (82%) 

 

AAB61943 

 

traO 95.693-96.031 traQ, pilin chaperone, Salmonella 

typhimurium LT2, plasmid pSLT 

47/63 (74%) 

 

NP_490582 

 

trbB 95.970-96.566 trbB, hypothetical protein, Escherichia 

coli K-12  strain CR63, plasmid F 

139/179 (77%) 

 

NP_061474 

 

traH 96.563-97.936 traH, pilus assembly protein, 

Salmonella typhimurium LT2, plasmid 

pSLT 

394/446 (88%) 

 

NP_490584 

 

traG 97.936-100.755 traG, responsible for pilus biogenesis 

and stabilization of mating pairs, 

Shigella flexneri 2b strain 222, plasmid 

R100 

 

761/939 (81%) 

 

NP_052976 
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Table 13. Continued 

CDS/Gene Position (bp) Homologue found by BLAST 

(ORF/Gene, product, organism/element)

Similarity (aa, %) Accession no.

 

Y1062 

 

102.083-100.876 

 

Y1062, possible pseudogene, putative  

 transposase IS285, Yersinia pestis KIM 

10+, plasmid pMT-1 

 

381/381 (100%) 

 

 

AAC82722 

 

traD 102.087-104.276 traD, TraD, Escherichia coli F sex 

factor 

547/705 (77%) AAC44181 

traI 104.276-109.516 traI, TraI, function - oriT nicking and 

unwinding, Escherichia coli K-12  strain 

CR63, plasmid F 

1324/1759 (75%) 

 

NP_061483 

 

traX 109.380-110.255 traX, F pilin acetylation protein, 

Shigella flexneri, plasmid pWR501 

160/284 (56%) 

 

NP_085416 

 

finO 110.322-111.041 finO, fertility inhibition protein, 

Escherichia coli, plasmid F 

75/180 (41%) 

 

P22707 

 

bcfH 111.028-111.825 bcfH, putative thiol-disulfide isomerase, 

Salmonella typhimurium LT2 

138/244 (56%) 

 

NP_459033 

 

nuc 111.973-112.527 nuc, endonuclease, Yersinia 

enterocolitica strain 15673 

(biogroup1A/serogroup 0:5) pYV 

plasmid 

135/174 (77%) 

 

CAA73744 

 

copB 112.418-112.648 copB, CopB, function - replication 

control, Enterobacter intermedius, 

plasmid pLV1402 

36/46 (78%) 

 

CAA08928 

 

copA 112.835-112.750 copA, small RNA, function – antisense 

control, Escherichia coli, plasmid R1 

71/81 (87%) (bp) V00326  

 

tapA 112.867-112.944 tapA, TapA,  function - antisense 

control, Enterobacter intermedius, 

plasmid pLV1402 

24/25 (96%) 

 

CAA08929 

 

repA 112.925-113.800 repA, replication protein, Enterobacter 

intermedius, plasmid pLV1402 

234/287 (81%) 

 

CAA08930 

 

SMR0139 114.351-114.847 SMR0139, possible pseudogene, 

ATP/GTP-binding protein, Serratia 

marcescens, plasmid R478 

143/164 (87%) 

 

 

NP_941209 

 

 

When the pG8786 ORFs had similarity to known proteins in the database, we assigned the 

putative protein a likely function. A total of 62 of these ORFs are transcribed in a clockwise 

orientation, while the remaining 86 ORFs are transcribed counterclockwise. All putative 

ORFs have significant homology to previously described hypothetical or characterized 
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proteins in the GenBank database. 79% of them exactly matched ORFs of plasmid pMT1 of 

Y. pestis biovar Mediaevalis strain 91001 (Accession no. NC_005815). The position and 

transcriptional orientations of all ORFs are shown in Figure 17. In contrast to other sequenced 

pFra replicons (pMT1 from Y. pestis biovar Mediaevalis strains KIM5 and KIM10+, and 

pMT1 from Y. pestis biovar Orientalis strain CO92) this replicon contains two additional large 

coding regions: i) three ORFs with high similarity to the HCM2.0120c, HCM2.0121c, and 

HCM2.0122c genes of plasmid pHCM2 from Salmonella enterica serovar Typhi strain CT18 

(denoted region 1 in Figure 19) and ii) a large cluster of transfer genes (region 2 in Figure 19). 

We have not found any crucial deletions in the pFra part of pG8786 besides the absence of 

two copies of the IS100 element present in plasmid pMT1 of Y. pestis biovar Mediaevalis 

strain 91001 (Table 14). 

 

Two potential regions of plasmid replication and one partitioning system were discovered on 

pG8786. One region of replication originates from the pFra plasmid (Hu et al., 1998; Lindler 

et al., 1998), while the second one has high similarity to the alpha replicon pLV1402 plasmid 

of Enterobacter intermedius (Osborn et al., 2000). The plasmid partitioning function was 

identical to the parABS system of pFra (Hu et al., 1998; Lindler et al., 1998).  

The overall G+C content of pG8786 was 51.96% in comparison to the lower overall G+C 

content (47.64%) of the chromosome of Y. pestis KIM or CO92 (Deng et al., 2002; Parkhill et 

al., 2001) or pMT1 (50.2%) (Hu et al., 1998). Surprisingly, region 2 covering nucleotides 

81,956 to 114,573 has a G+C content of 57.58% (Fig. 18) that is much higher than the overall 

G+C content of the backbone of the plasmid pointing to its horizontal acquisition. 

pG8786 contains two copies of the IS200-like element (also known as IS1541 in Y. pestis) in 

opposite orientation. The first IS200 insertion is located between positions 34,588 and 35,076 

and the second one is close to the first one (positions 36,944 to 37,453). Also two copies of 

the IS285-like element were found in opposite orientation (positions 80,712 to 81,920 and 

102,083 to 100,876, respectively).  

The second IS285 had a frameshift after codon 169 and thus appeared to be a non-functional 

remnant. One copy of each, an IS1328-like and an IS100 element, was found on pG8686 

(Table 14 and Fig. 18). They have the same orientation as the first copy of IS285.  
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Table 14. Distribution of IS-elements in five sequenced pFra plasmids of Y. pestis 

Y. pestis 

strain 

Number 

of IS100 

copies  

Number 

of IS285 

copies  

Number of 

IS1541 (IS200) 

copies 

Number of 

IS1328-like 

copies 

Accession no. 

91001 3 1 1 1 NC_005815 

KIM10+ 2 1 1 1 AF074611 

KIM5 2 1 1 1 (IS1618) AF053947 

CO92 2 1 1 0 NC_003134 

G8786 1 2 2 1 AJ698720 
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Fig. 17: Map of the pG8786 plasmid. The internal circle depicts region 1, region 2 and the pFra-
like backbone. The outer circle shows ORFs and their orientation which are denoted by their positions: 
arrows and boxes outside of the ring indicate clockwise transcription, and inside the ring indicate 
counterclockwise. The map was derived from the annotated DNA sequence by the Vector NTI 
(InforMax, USA) computer program and edited in CorelDRAW. 
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Fig. 18: The G+C content and the graphic map of pG8786. The plot showing the G+C 
content was derived by the Vector NTI (InforMax, U.S.A.) program. The plot displays selected ORFs 
and some other annotated features to the correct scale (the upper figure). The scale below the GC plot 
displays the size of the plasmid in base pairs. IS285* - IS285-insertion sequence which appeared to be 
a non-functional remnant. 
 

 

 

4.2 ORFs of region 1 

The 4,626-bp region 1 is absent from the pFra plasmids of Y. pestis KIM and CO92 

representing biovars Mediaevalis and Orientalis, respectively (Fig. 19). Surprisingly this 

region is present in the pFra plasmid from the avirulent Y. pestis biovar Mediaevalis strain 

91001 isolated from Microtus brandti in Inner Mongolia, China (Accession no. AE017045). It 

is also 96% identical to the plasmid pHCM2 of Salmonella enterica serovar Typhi strain 

CT18 (Parkhill et al., 2001). Our analysis revealed three putative ORFs (CDS38, CDS39, and 

CDS40) spanning bp 37,641 to 42,160 (Table 13). CDS38 is highly similar to the 

HCM2.0120c hypothetical protein. CDS39 and CDS40 are putative beta and alpha 

ribonucleoside-diphosphate reductase subunits which might be necessary for the 

deoxyribonucleotide metabolism. 
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Fig. 19: Graphical comparison of different pFra plasmids with pG8786 derived by the 
ACT (Artemis Comparison Tool) program (The Wellcome Trust Sanger Institute, UK). 
a) pG8786 vs. pMT-1 of Y. pestis KIM10+; b) pG8786 vs. pMT1 of Y. pestis CO92; c) pG8786 vs. 
pMT1 of Y. pestis KIM5; d) pG8786 vs. pMT1 of Y. pestis 91001. Areas of pG8786 that are not 
present in the other pFra plasmids are shown as the region 1 and region 2. Vertical lines show similar 
parts of the plasmids. 
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4.3 ORFs of the transfer region 

ORFs spanning bp 81,956 to 111,038 (region 2) in pG8786 were found to be similar to the tra 

region genes of the F-like plasmids which belong to the type IV family of secretion systems 

(T4SS; Table 13). Analysis of the pG8786 tra region further showed 25 putative ORFs (traA-

bcfH), whereas the F tra region has 37 ORFs (Frost et al., 1994). However, the cryptic 

conjugative plasmid from Y. enterocolitica 29930 contains even less genes i.e. 16 ORFs 

(Strauch et al., 2003). The tra region of pG8786 is similarly organized and highly 

homologous to the tra regions of F-like plasmids from different incompatibility groups of the 

IncF family – IncFI (F), IncFII (R-100, R100-1) and IncFV (pED208) (Table 13, Fig. 20a). 

Accordingly, the putative pG8786 transfer genes were designated by their homologs in the 

IncF plasmids. 

The gene products can be organized into four groups based on functions inferred from their 

closely related homologs: pilus biogenesis (TraA-V, TraW, -U, TrbC, TrbI, TraF, -H, -Q, -X 

and the N-terminal region of TraG); regulation (FinO); DNA nicking and initiation of transfer 

(TraI, TraD), and mating-aggregate stabilization (TraN, -G). Other non-classified components 

of the tra region are TraP, a protein that stabilizes the extended pilus, TrbB, a putative 

thioredoxin homolog, and hypothetical proteins OrfX1 and OrfX2 (Frost et al., 1994; Lawley 

et al., 2003; Lu et al., 2002).  

Surprisingly, the genes with similarity to traM (the function of signaling that DNA transfer 

should begin), traJ (a positive regulator of transcription of the tra operon), traT, and traS 

(surface exclusion) were not detected in the tra region of pG8786. We have also identified 

only the 3’-end remnant of traY located next to the first copy of IS285. For the reason that the 

gene organization of the tra region of pG8786 mostly resembles the transfer region of plasmid 

pED208 of Salmonella typhi (Fig. 20a, 21) (Lu et al., 2002), we speculate that genes traM, 

traJ, traY, traT and traS might be deleted or truncated in the case of traY. 

The oriT region is arbitrarily defined as the region at the beginning of the traM gene. This 

region contains the site where nicking occurs and transfer of the single-stranded DNA is 

initiated, in a 5'-to-3' manner, into the recipient cell (Frost et al., 1994). As the traM-Y gene 

locus was absent from pG8786, we tried to define a possible origin of transfer (oriT). 

However, an expanded search of the pG8786 sequence did not reveal any region of the 

plasmid that might function as oriT. Nevertheless, plasmids without defined oriT have been 

described (Galli et al., 2001). 
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Fig. 20: a) The phylogenetic tree of the transfer regions from various origins. b) The 
phylogenetic tree of the replication origins from different microorganisms. The trees are 
built using the Neighbor Joining method (NJ) of Saitou and Nei by the Vector NTI program 
(InforMax, U.S.A.). AlignX displays the calculated distance values in parenthesis following the 
molecule name displayed on the tree. 
 

 

An interesting feature of the pG8786 tra region is the presence of the gene corresponding to 

finO (Table 13). FinO is a part of the FinOP system that is a key determinant defining the 

frequency of IncF plasmid-mediated DNA transfer. TraJ, a positive regulator of the tra genes 

is controlled at the post-transcriptional level by two negative elements, finP and finO. FinP is 

a plasmid-specific antisense RNA, whereas finO encodes a co-repressor, which is almost 

identical (over 95% identity) and cross-reactive among various F-like plasmids (Frost et al., 

1994). We suppose that the intact FinO of pG8786 can also repress the transcription of traJ of 

other F-like conjugative plasmids which might have been acquired by G8786 cells. Thus the 

frequency of transfer of such an acquired plasmid might be dramatically reduced.  

To check self-transmissivity of pG8786, we have inserted a chloramphenicol gene cassette 

between the caf1 gene and CDS69 (primers’ position bp 69,955 – bp 70,412) to tag this 

plasmid. Y. pestis G8786 (pG8786-CmR) was mated with recipient E. coli JM109 (NalR ). 

However, we did not detect a transfer of the CmR marker and thus of the labelled plasmid as 

well. Also our attempts to mobilize pG8786-CmR with the broad range RP4 IncP-alpha 

plasmid (Pansegrau et al., 1994) were unsuccessful. Nevertheless, it cannot be excluded that  
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Fig. 21: Line-up of the tra genes of pG8786 (lower figure) with the tra genes of the 
pED208 from Salmonella enterica serovar Typhi (upper figure).  
The black arrows point out ORFs which are equally represented in both plasmids. The white arrows 
represent ORFs which are absent in either of the two transfer regions. IS285* - IS285-insertion 
sequence which appeared to be a non-functional remnant. The vertical lines between arrows show 
similar ORFs. 
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pG8786 might be transmissible if supplemented with the missing tra genes in trans or if 

mated with a more suitable recipient strain. 

 

4.4 Replication and plasmid maintenance 

As mentioned above, DNA sequence analysis revealed two potential origins of plasmid 

replication which were named oriRa (bp 49,713 to 51,622) and oriRb (bp 112,331 to 114,155) 

(Fig. 17, 18). oriRa is identical with the replication origin of pFra which is also similar to 

RepFIB, RepHI1B, and P1 and P7 replicons (Lawley et al., 2003). 

 The second replication origin oriRb, which was localized in region 2, showed very high 

similarity (89% in bp) to the alpha replicon (RepFIIA) of pLV1402 of Enterobacter 

intermedius (Osborn et al., 2000). It is closely related to the IncFII virulence-associated 

replicons of pCD1 of Y. pestis (AF074612) and pYVe439-80 of Y. enterocolitica (M55182) 

(Fig. 20b). On the basis of the similarity to these replicons, the following genetic features 

were identified: copB (bp 112,331 to 112,648), copA (bp 112,835 to 112,750), tapA (bp 

112,867 to 112,944), repA (bp 112,925 to 113,800) and oriRβ (bp 113,972 to 114,155) (Table 

13, Fig. 17). In the IncFII replicons an antisense RNA molecule (CopA) inhibits synthesis of 

the replication protein (RepA) by binding to the leader region of the repA mRNA (CopT). 

RepA synthesis depends on translation of a short leader peptide (TapA) that is not expressed 

when CopA binds to CopT, thereby preventing translation of RepA and consequently 

preventing replication of the plasmid (Blomberg et al., 1992). The sequence 5’-

TTGCCCACA-3’, which may function as a binding site for the protein DnaA could be 

defined 174 bp downstream of repA. This sequence matches the DnaA box in seven of nine 

positions (Praszkier et al., 1991). 
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D. DISCUSSION 

 

1. Method of subtractive hybridization to identify genomic differences among Yersinia 

species 

The method of suppressive subtractive hybridization (SSH) has been successfully applied to 

map out genomic differences between closely related yersiniae, for example the work of 

Iwobi (Iwobi et al., 2002) who used SSH to uncover genomic differences between highly and 

nonpathogenic serotypes of Y. enterocolitica. In another study, comparison of Y. pestis and Y. 

pseudotuberculosis revealed seven DNA regions in Y. pestis that do not occur in Y. 

pseudotuberculosis, with four of them mapping to the same region on the Y. pestis genome 

(Radnedge et al., 2002). Subtractive hybridization was also successfully applied for whole 

genome comparisons between different strains of Y. pestis with the goal to develop signatures 

for epidemiological studies (Radnedge et al., 2001). Six species-specific difference regions 

(DFRs) were identified between different biovars (Antiqua, Mediaevalis and Orientalis) of Y. 

pestis. The DFRs were mapped and four were flanked by insertion sequences. The appearance 

of these DFRs in eighty geographically diverse strains of Y. pestis representing all three 

biovars was determined and revealed genomic plasticity resulting from the acquisition and 

deletion of these DNA regions. Additionally Y. pestis biovar Orientalis was found to possess 

DFR profiles different from Antiqua and Mediaevalis biovars, reflecting most probably the 

recent origins of this biovar. 

 

This work represents the attempt to find novel, potential virulence-associated sequences in 

weakly pathogenic Y. enterocolitica strains as well as to identify genomic features of Rha-

positive Y. pestis strains using subtractive hybridization. 

 

1.1. SSH applied for Y. enterocolitica starins 

To map out genomic differences between highly pathogenic Yersinia enterocolitica WA-C 

BG 1B, ST O:8 strain and weakly pathogenic Y. enterocolitica Y-108C BG 4, ST O:3 strain 

we have applied a method of suppression subtractive hybridization (SSH). In total, 428 WA-

C-specific and 83 Y-108C-specific sequences were uncovered by SSH. About 53% of O:8 

and 49% of O:3 subtracted fragments were tester-specific. Half of the tester-specific 

fragments were highly homologous (70-95% identity) to the sequences of the Yersinia pestis 

CO92 genome. These sequences represented known genes from several groups: (1) genes 
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involved in O-antigen biosynthesis, (2) host-specific restriction-modification systems, (3) 

systems of iron and heme acquisition and storage, (4) flagellar biogenesis genes, (5) putative 

virulence factors, (6) drug resistance genes, and (7) mobile elements. The large fraction of 

sequences homologous to mobile genetic elements may reflect their contribution to dispersing 

putative virulence traits and to the ongoing rearrangements of genetic islands. The spectrum 

of known virulence genes and novel virulence-associated DNA fragments was rather 

bioserotype-specific, than strain specific. Of note, part of the tester-specific sequences (in 

total 45 sequences) displayed either low homology (65%) or no homology to the known 

sequences. Unexpectedly, we have found several putative virulence determinant, for example 

rtxA-like putative cytotoxin, xnp2, nematocidal toxin and components of a new type III 

secretion system in the Y .enterocolitica O:3 genome. We speculate that these pathogenic 

factors might be a cause of different virulence level in weakly (BG 2-5) and nonpathogenic 

(BG 1A) biogroups of Y. enterocolitica. In summary, this study provides further evidence for 

the considerable diversity of the genomes within the Y. enterocolitica species. We detected 

more than 500 novel DNA fragments of Y. enterocolitica genomes, part of which are highly 

virulence-associated and may represent new targets for diagnostic purposes or 

epidemiological study. 

 

2. IS1331 is a novel insertion sequence element which is specific to the weakly 

pathogenic European biogroups and serotypes of Y. enterocolitica 

 

2.1 IS1331 belongs to the IS21 family 

We have reported on a first insertion sequence element, IS1331, characterized in the weakly 

pathogenic Y. enterocolitica ST O:3, ST O:1 and ST O:2 strains. Based on the differences 

between the nucleotide content of IS1331 copies we have revealed two IS1331 isoforms: 

IS1331A and IS1331B. Comparison of IS1331 genes, istA and istB, with GenBank database 

indicated that IS1331 belongs to the IS21 family. Members of this family have the length 

range 1,950-2,500 bp and are therefore among the largest bacterial IS elements. They exhibit 

two consecutive ORFs: a long frame designated istA (transposase) and a shorter downstream 

frame, istB (NTP-binding protein). Usually members of the IS21 family have terminal 

inverted repeats whose lengths may vary between 11 (IS21) and 50 bp (IS5376) and generally 

terminate in the dinucleotide 5'-CA-3'. Insertion of these elements results in a direct target 

duplication of 4 or, more frequently, 5 bp while two members (IS53 and IS408) may generate 
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8 bp repeats (Mahillon and Chandler, 1998). The IstA of IS21 family elements usually carries 

a motif related to the widespread integrase DD-E motif and a potential helix-turn-helix motif. 

The IstB carries a relatively well conserved potential NTP-binding domain. Overall identities 

range from 10 to 59% for IstA and from 25 to 67% for IstB (Mahillon and Chandler, 1998; 

Berger and Haas, 2001). Members of the IS21 family are widespread. Isoforms of IS21 

(IS640, IS21p, IS100) have been described in Y. pestis and Y. pseudotuberculosis (Hu et al., 

1998; Lohe et al., 1996; Filippov et al., 1995; Podladchikova et al., 1994). The presence of 

the helix-turn-helix motif and the DD-E motif in the putative transposase IstA and the 

ATP/GTP binding P-loop motif in the putative NTP-binding protein IstB of IS1331 confirms 

its inclusion into the IS21 family. Nevertheless, despite the fact that IS1331 has several 

characteristics of the IS21 family repetitive elements, we have not found any direct repeats in 

the target sequence after IS1331 transposition. One of the IS1331 copies, which has the 5 bp 

deletion in istA gene, might be non-functional due to the frameshift (Fig. 3C, variant 4) 

 

2.2 IS1331 can promote diverse genomic rearrangements 

Selfish IS elements can promote various genomic rearrangements including deletions, 

inversions as well as insertions of foreign unrelated sequences supplying the host 

chromosome with movable regions of homology. Recombination between such homologous 

regions might result in horizontal transfer of foreign genetic information and its establishing 

in a new host. IS1331 is present in a single (serotypes O:1, O:2, O:5,27) or multiple 

(serotypes O:3, O:9) copies on the chromosome of European pathogenic yersiniae (Fig. 7). 

However, a single IS1331 copy is localized on the pYV virulence plasmid of BG 2 and BG 4 

Y. enterocolitica strains. With a second copy of the IS element present on the chromosome a 

homologous recombination can occur resulting in a transient pYV integration into the 

bacterial chromosome. Such an event was observed with IS100-mediated integration of the 

pCad and pFra virulence-associated plasmids in Y. pestis (Protsenko et al., 1991). Also 

presence of several chromosomal IS1331 copies might increase the fluidity of Y. 

enterocolitica genome. 

 

2.3 Several copies of IS1331 are located on an uncharacterized phage  

IS1331 is integrated into different locations on the chromosome of Y. enterocolitica. The type 

of the genes in the neighbourhood of IS1331 (6 of 10 IS1331 flanking sequences have 

similarity to putative phage proteins, Table 9) may speak in favour of a presence of an 
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uncharacterized phage in Y. enterocolitica low pathogenic serotypes. Also it seems probable 

that IS1331 might be originally located on such a phage and later has transposed to pYV-like 

plasmids and chromosome of its new hosts. 

 

2.4 IS1331 might increase the expression of the downstream genes  

Promoter sequences in the IS1331 inverted repeats might serve as additional movable 

promoters for the genes suffered IS1331 insertion. IS1331 is inserted in ORF181-ORF155 

intergenic region of the pYV-like plasmids of Y. enterocolitica O:3 (Y11 and Y-108P strains) 

and JD E029 O:1. ORF181 and ORF155 are putative ORFs encoding hypothetical proteins 

with the unknown function. It is interesting that ORF181 is absent in two sequenced pYV-like 

plasmids – pYVa127/90 and pYVe8081 from Y. enterocolitica A127/90 and 8081 strains 

(Acc. No. NC_004564 and NC_005017, respectively) that belong to the highly pathogenic 

serotype O:8, but is present in pYV-like plasmids from the weakly pathogenic serotypes O:9 

(pYVe227, Acc. No. NC_002120), O:3 and O:1 (present study). On the other hand, ORF155 

is highly conserved and located in all sequenced pYV-like plasmids just before yopO, which 

encodes a serine kinase (Galyov et al., 1993). Also, in the case of Y. enterocolitica JD E029 

O:1 this intergenic space contains three other ORFs: yfc, yrc and tnpA. Based on these data 

we speculate that ORF155 might be a part of the Yop virulon and important for the virulence 

or plasmid maintenance. Also potential promoter sequences in IS1331 inverted repeats might 

increase the expression of the downstream genes, for example ORF155. 

 

2.5 IS1331 is restricted to human and animal weakly pathogenic European Y. 

enterocolitica bioserotypes  

Surprisingly, IS1331 is absent not only in the strains of the American biogroup 1B, but also in 

the strains of the non-pathogenic European biogroup 1A. It might be an additional evidence 

for the distant ecological and evolutionary relationships between weakly and non-pathogenic 

European serotypes. 

The novel IS element is restricted to human and animal weakly pathogenic European Y. 

enterocolitica pathotypes, which are proposed to form a new species Y. enterocolitica 

palearctica in contrast to Y. enterocolitica 1B strains making up Y. enterocolitica 

enterocolitica (Neubauer et al., 1999). The presence of IS1331 as a signature of European 

weakly pathogenic bioserotypes of Y. enterocolitica suggests its possible application in 

diagnostics and epidemiology of Y. enterocolitica infections. 
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Although members of the IS21 group are found in closely related Y. pestis and Y. 

pseudotuberculosis they are not present in American Y. enterocolitica biotypes, which carry 

multiple IS elements but of the other IS groups, such as IS3, IS605, IS110 and IS4 (see 

Introduction). Thus distribution of the IS elements of certain groups in two Y. enterocolitica 

pathotypes is in favour of the parallel evolution of American and European Y. enterocolitica 

strains.  

 

3. Identification of a new putative toxin, RtxA, in Y. enterocolitica Y-108C  

We identified a new putative toxin, RtxA, of Y. enterocolitica subsp. palearctica that belongs 

to the family of RTX (repeat in toxin) toxins by using a combination of genomic sequence 

analysis and representational difference analysis. The rtxA gene was uncovered by SSH and 

subsequently sequenced. The rtxA gene was found to be specific for Y. enterocolitica subsp. 

palearctica, where it was found in a single copy in the virulent strains Y-108C and in a 

further clinical isolates. The rtxA gene, in contrast, was not found in non-pathogenic 

European and highly pathogenic American biogroups and serotypes.  

 

3.1 Features of Rtx-like  toxins  

The Rtx toxins comprise a family of large, heat-labile, Ca2+-dependent, pore-forming 

cytotoxins secreted by a wide variety of Gram-negative humanand animal pathogens. This 

family includes hemolysins of E. coli (HlyA) (Felmlee et al., 1985) and Actinobacillus 

pleuropneumoniae (Chang et al., 1989), Bordetella pertussis adenilate cyclase-hemolysin 

(CyaA) (Glaser et al., 1989), leukotoxins of Pasteurella haemolitica (LktA) (Lo et al., 1987), 

cytotoxin RtxA of Vibrio cholerae El Tor (Lin et al., 1999), cytotoxin RtxA of Legionella 

pneumophila (Cirillo et al., 2000) and Fe-regulated Rtx-like toxin of Neisseria meningitidis 

(Thompson et al., 1993). Most Rtx toxins are proteins with a molecular mass of 100-200 kDa 

and are post-translationally activated by acylation via a specific activator protein. The 

repeated structure of RTX toxins, which gave them their name, is composed of several 

glycine-rich nonapeptides on the C-terminal half of the protein that bind Ca2+. The toxic 

activity of Rtx toxins in host cells may lead to necrosis and apoptosis, but the underlying 

detailed mechanisms are currently under investigation (Frey and Kuhnert, 2002). The 

hemolytic activity is the most obvious phenotype of many Rtx toxins under in vitro 

conditions. The glycin-rich repeats have a strong capacity to bind Ca2+, which was shown to 

be involved in binding to erythrocytes together with the lapidated amino acid residues 
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(Hughes et al., 1992). However, the erythrocytes might not be the main targets of Rtx toxins. 

In vivo, Rtx toxins induce inflammatory mediators or exert cytotoxic and cytolitic effects 

mainly to cells of the host’s immune defense, thus provoking necrosis, apoptosis, 

inflammation and disease (Czuprynski and Welch, 1995). Rtx toxins are supposed to act in 

synergy with lipopolysaccharides (Czuprynski and Welch, 1995). The pore-forming activity 

was shown for several Rtx toxins, but was studied in detail mostly for the E. coli α-

haemolysin HlyA (Benz et al., 1992). The 30-50 most C-terminal amino acids of a structural 

toxin protein constitute the signal for the specific type I secretion system which is encoded by 

two genes, both located on the same operon as the activator gene (acyltransferase), and the 

structural toxin gene (Hughes et al., 1992). 

 

3.2 RtxA can be a novel virulence determinant in weakly pathogenic Y. enterocolitica 

strains 

RTX gene cluster encodes the presumptive cytotoxin RtxA, an acyltransferase RtxC, and 

associated hypothetical proteins Ymp1 and RtxH with unknown functions. RtxA has several 

motifs, for example hemolysin-type calcium-binding sites, which are bring it closer together 

with RTX-like cytotoxins. In general, these sites responsible for the hemolysis of 

erythrocytes. But weakly pathogenic bioserotypes of Y. enterocolitica do not possess any 

hemolytic activity. RtxA has RGD motif that is also present in RtxA from V. cholerae but is 

absent in other RTX toxins. Lally (Lally et al., 1997) identified β2 integrin as the cell-surface 

receptor for the RTX toxins from Actinobacillus actinomycetemcomitans and E. coli. Given 

the presence of one RGD motif within RtxA, it may interact with the target cells by binding to 

host integrins. From the other hand, it has individual distinctive features, which make it 

unique. For example, glycosaminoglycan attachment site, serralysin-like metalloprotease 

structure, peptidase C58 Yersinia/Haemophilus virulence surface antigen domen and 

prokaryotic membrane lipoprotein lipid attachement site have not been found in other RTX-

like toxins.  

We speculate based on these data that RtxA from Y. enterocolitica may either be a new toxin 

in the RTX family toxins or a new adhesin. Also we can not exclude a variant when RtxA 

possesses dual activity as an adhesin and a cytotoxin. 

 

4. pG8786 carries conjugative genes 
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4.1 pG8786 is an ancient form of the pFra virulence plasmid? 

The complete sequence of pG8786, the 137-kb virulence plasmid of the rhamnose-positive Y. 

pestis strain G8786 from a vole (Microtus arvalis) in a plague endemic locus in the high 

mountainous Caucasus in Georgia, was determined. This sequence revealed the recombinant 

nature of pG8786, namely, the insertion of a 32,617 bp unique tra gene cluster and oriRb 

(region 2). Also a larger part of the plasmid pHCM2 of Salmonella enterica serovar Typhi 

that forms the backbone of the Y. pestis-specific plasmid pFra is preserved in pG8786 (region 

1). However, in contrast to other pFra plasmids (pMT1 from Y. pestis biovar Orientalis strain 

CO92 and pMT1 from Y. pestis biovar Mediaevalis strain KIM) the complete region 1 was 

also found in the pFra plasmid of the avirulent Y. pestis biovar Mediaevails strain 91001 

isolated from another vole (Microtus brandti) in Inner Mongolia, China. The fact that a larger 

remnant of pHCM2 of the same size is present in both geographically isolated atypical Y. 

pestis strains but absent from the epidemic isolates, implies that the plasmid pFra in Y. pestis 

G8786 and 91001 might represent an ancient form of pFra. This assumption is stressed by the 

presence of an additional transfer region in pG8786. Alternatively, pG8786 acquired the tra-

operon more recently by horizontal gene transfer. The variations in the G+C content also 

point to the chimeric nature of the plasmid. With these facts in mind, one can suppose that 

pG8786 may have originated by the acquisition of DNA fragments from various 

microorganisms with a higher G+C content.  

 

4.2 tra genes could be acquired due to the IS-mediated recombination events 

Comparison of the four sequenced pFra plasmids with pG8786 uncovers extended regions of 

DNA rearrangements in the backbone of the pFra replicon i.e. large inversions resulting from 

IS-mediated recombination. Thus, the presence of these flanking IS elements might display 

DNA rearrangements suffered by the pG8786 plasmid. We suppose that pFra initially co-

integrated with a conjugative IncFII group plasmid followed by a subsequent deletion by 

IS285-mediated recombination. Certain tra-associated genes (traM, traJ, traY, traT, traS, and 

par) of pG8786, or the complete tra region of another pFra plasmid (pMT1 91001) have 

suffered such a deletion. Alternatively, the presence of the par partition genes, associated 

with the second RepFII replication origin, might decrease the ability of pG8786 to co-exist 

with the virulence-associated pYV replicon that belongs probably to the same incompatibility 

group.  
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4.3 pG8786 is the potentially transmissive virulence-associated plasmid  

Conjugative transfer of the CmR-labelled pG8786 could not be demonstrated using the 

original host Y. pestis G8786 and E. coli as recipient. Nevertheless, a genetic exchange might 

take place under certain conditions, possibly in a different ecological environment, e.g. the 

flea midgut (Hinnebusch et al., 2002). Acquisition of a transmissive form of the pFra plasmid 

(encoding the Fraction 1 antigen and phospholipase D necessary for the colonization of the 

flea gut) might be the first major step in Y. pestis evolution from a common ancestor of Y. 

pseudotuberculosis and Y. pestis. Such an acquisition combined with the pre-existing in the 

genomes of pathogenic Yersinia (Y. pseudotuberculosis, 

http://bbrp.llnl.gov/bbrp/html/microbe.html and Y. enterocolitica, 

http://www.sanger.ac.uk/Projects/Y_enterocolitica/) pigmentation locus and insect toxin 

genes supplied the evolving organism with a better ability to survive in the flea vector 

resulting in efficient bloodborne transmission. The existence of a potentially transmissive 

virulence-associated plasmid in Y. pestis points to the fact that a new emerging pathogen may 

appear occasionally with the already acquired ability to survive and multiply efficiently in 

insect vectors like fleas. 
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E. SUMMARY 
 
 

In this study we applied a method of suppression subtractive hybridization (SSH) to map out 

genomic differences between highly pathogenic Yersinia enterocolitica WA-C BG 1B, ST 

O:8 strain and weakly pathogenic Y. enterocolitica Y-108 BG 4, ST O:3 strain (I), as well as 

Rha-positive Y. pestis G8786 bv. Antiqua strain, isolated from a vole in high mountainous 

Caucasus, Georgia, was compared with another Antiqua isolate, Y. pestis Yokohama (II).  

 

 

I. In total, 428 WA-C-specific and 83 Y-108C-specific sequences were uncovered by SSH 

applied to the Y. enterocolitica isolates. Among them were DNA fragments with similarity to 

known genes from several groups: (1) genes involved in O-antigen biosynthesis, (2) host-

specific restriction-modification systems, (3) systems of iron and heme acquisition and 

storage, (4) flagellar biogenesis genes, (5) putative virulence factors, (6) drug resistance 

genes, and (7) mobile elements. In particular, a novel IS-element belonging to the IS21-

family, designated IS1331 and the putative toxin RtxA with a high similarity to the RtxA 

cytotoxin from V. cholerae were revealed. 

 

 

The structure and distribution of IS1331, a new Yersinia enterocolitica insertion sequence 

element, were investigated. IS1331 is related to the IS elements of the IS21 family and is 

present in two isoforms in Y. enterocolitica ST O:3. The transcription of genes of IS1331 was 

shown by RT-PCR and proved its functionality. The probe for IS1331 efficiently detected all 

European weakly pathogenic Y. enterocolitica bioserotypes, whereas it does not hybridize 

with other strains. This indicates that IS1331 can be applied as an additional tool for Y. 

enterocolitica differentiation. Distribution of the different groups of IS elements in two Y. 

enterocolitica pathotypes is in favour of the parallel evolution of American and European Y. 

enterocolitica strains. 

 

 

We have also characterized the gene cluster in Y. enterocolitica O:3 Y-108C that contains 

four genes of the putative rtxA operon: rtxA, rtxC, ymp1, and rtxH. The possible toxin, RtxA, 

resembles members of the RTX (repeats in toxin) toxin family that contains a glycin-rich 
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repeated motif. Like other RTX toxins, it is associated with an activator, RtxC – 

acyltransferase. Ymp1, has similarity to a putative membrane protein YPO2693 from Y. pestis 

CO92 and the last one, RtxH, has a similarity to a peptide chain release factor 1 (VC1449) 

from V. cholerae. 

Using the Southern blot analysis and DNA microarray we have established that rtxA is 

present only in weakly pathogenic Y. enterocolitica subsp. palearctica strains and is absent in 

highly and nonpathogenic bioserotypes. Reverse transcription analysis was carried out to 

determine the transcription of the genes of the RTX cluster. The positive transcripts indicate 

in vivo transcription of all four ORFs (ymp1, rtxH, rtxC, and rtxA) as a single mRNA. RtxA 

was immunoprecipitated and subsequently detected using antibody raised against a 79 kDa 

subfragment of RtxA that was purified from E. coli as a 6xHis-tagged protein. Two bands 

were detected by the RtxA-specific antibody that were not detected by the pre-immune serum. 

Together these bands consistent with the predicted full-length size of RtxA. These data 

demonstrate that the RtxA protein is synthesized and exported to culture supernatants but 

perhaps in a small quantity.  

 

 

II. Sequences specific for the Rha-positive Y. pestis G8786 strain were uncovered by SSH. 

Several G8786-specific sequences show similarity to genes responsible for the transmissivity 

of R100 and F plasmids, namely, traG (pilus assembly), traH (pilus assembly) and traN 

(mating pair stabilization). To map out the location of the insert of the tra-genes in the 

pG8786 plasmid we have applied shotgun sequencing of the complete replicon. The 137,036-

bp plasmid pG8786 of Y. pestis G8786 isolated in the high mountainous Caucasian plague 

focus in Georgia is an enlarged form of the pFra virulence-associated plasmid encoding genes 

for the synthesis of the antigen Fraction 1 and the phospholipase D. In addition to the 

completely conserved genes of the pFra backbone, pG8786 contains two large regions of 

4,642-bp and 32,617-bp, termed regions 1 and 2, respectively. Region 1 retains a larger part 

of the Salmonella enterica serovar Typhi plasmid pHCM2 resembling the backbone of pFra 

replicons, while region 2 contains 25 ORFs with high similarity to the transfer genes of the F-

like plasmids. Despite of the fact that some genes typically involved in conjugative transfer of 

the F-like replicons are missing in pG8786, we cannot exclude that pG8786 might be 

transmissive under certain conditions.  
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This work represents comparative genome analysis of two Y. enterocolitica and two Y. pestis 

strains. New unique genetic elements, which are specific for each strain were uncovered. 

Further intensive experiments have allowed us to characterize a structure and distribution of 

the new IS element, IS1331, a novel putative RtxA-like toxin, and pG8786 plasmid, which 

carries transfer genes and might be an ancient form of the pFra replicon. 
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G. ABBREVIATIONS 
 
dest  distilled water 

Amp  Ampicillin 

AP  Alkaline Phosphatase 

APS  Ammonium persulphate 

ATP  Adenosine Triphosphate 

BCIP  5-Bromo-6-chloro-3-indolylphosphate 

BG  Biogroup 

bp  base pair 

BSA  Bovine serum albumen 

CIAP  Calf intestinal alkaline phosphatase 

Cm  Chloramphenicol 

DEPC  Diethylpyrocarbonate 

DNA  Deoxyribonucleic acid 

dNTP  deoxynucleoside triphosphate (dATP, dCTP, dGTP, dTTP) 

dsDNA double stranded DNA 

EDTA  Ethylenediamine triacetic acid 

e.g. for example 

EtOH  Ethanol 

Fig. Figure 

hr  hour 

HPI  High pathogenicity island 

IPTG  Isopropyl ß-D-thiogalactopyranoside 

kb  kilobase 

Kan  Kanamycin 

kDa  kilo Dalton 

LB  Luria Bertani 

µ  micro 

m  milli 

M  molar 

MCS  multiple cloning site 

min  minute 

n  nano 
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Nal  Nalidixic acid 

NBT  Nitroblue tetrazolium 

OD  optical density 

o/n overnight 

PAGE  Polyacrylamide gel electrophoresis 

PBS  Phosphate buffered saline 

PCR  polymerase chain reaction 

Rha rhamnose 

RNA  Ribonucleic acid 

RNase  Ribonuclease 

rpm  revolutions per minute 

RT  Room temperature 

RT  Reverse Transcriptase / Reverse transcription 

SDS  Sodium dodecyl sulphate 

sec  seconds 

ssDNA single stranded DNA 

Tab. Table 

TAE  Tris-Acetate-EDTA 

TEMED  N,N,N’,N’-tetramethyl-ethylenediamine 

Tet  Tetracycline 

TRIS  Tris-(hydroxymethyl)-ammonium methane 

O/N overnight 

UV  Ultraviolet 

V  Volt 

Vol. Volume 

v/v volume by volume 

wt  wild type 

w/v weight by volume 

X-gal 5-bromo-4-chloro-3-indolyl-ß-galactoside 

  

Nucleic acids  

A: Adenine  

C: Cytosine  
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G: Guanine  

T: Thymine  
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