Aus der Kinderklinik und Kinderpoliklinik im Dr. von Haunerschen Kinderspital Klinik der Ludwig-Maximilians-Universität München Vorstand: Prof. Dr. med. D. Reinhardt

3-Methylcrotonyl-CoA: Carboxylase Mangel: Molekulare Grundlagen

Dissertation zum Erwerb des Doktorgrades der Medizin an der Medizinischen Fakultät der Ludwig-Maximilians-Universität zu München

> vorgelegt von Florian Bartholomäus Lagler aus Berchtesgaden 2002

Mit Genehmigung der Medizinischen Fakultät der Universität München

Berichterstatter:	Prof. Dr. A. A. Roscher
Mitberichterstatter:	Priv. Doz. Dr. H.M. Diepolder Priv. Doz. Dr. M. Schmolke
Mitbetreuung durch die promovierten Mitarbeiter:	Dr. med. A. Holzinger, Dr. med. W. Röschinger
Dekan:	Prof. Dr. med. Dr. h. c. K. Peter
Tag der mündlichen Prüfung:	25.07.02

	••			
AP	VII	D71	IINI	CEN
AD	NU	NL	UIN	GLIN

<u>1 EI</u>	INLEITUNG	1
1.1	DER 3-METHYLCROTONYL-COA: CARBOXYLASE MANGEL	1
1.1.1	BIOCHEMISCHE GRUNDLAGEN	1
1.1.2	KLINISCHES BILD UND THERAPIE	3
1.1.3	Epidemiologie	5
1.1.4	MOLEKULARBIOLOGISCHE GRUNDLAGEN	5
1.2	ZIELSETZUNG	7
<u>2 M</u>	ATERIAL UND METHODEN	8
2.1	EXTRAKTION GENOMISCHER DNA AUS VOLLBLUT	8
2.1.1	Lyse der Erythrozyten	8
2.1.2	INKUBATION DER ZELL-LYSATE MIT PROTEINASE K	8
2.1.3	Aussalzen der Proteine, Fällen, Waschen und Lösen der DNA	8
2.1.4	Puffer-Lösungen	9
2.2	POLYMERASEKETTENREAKTION (PCR)	10
2.3	AMPLIFIKATION	10
2.4	NICHT-RADIOAKTIVE SEQUENZIERUNG MITTELS CYCLE SEQUENCING	12
2.5	EXTRAKTION VON RNA, REVERSE TRANSKRIPTION UND SEQUENZIERUNG VON CDI	NA-
	FRAGMENTEN	13
2.6	RESTRIKTIONSANALYSE ZUM AUSSCHLUSS VON POLYMORPHISMEN	14
2.7	PATIENTENKOLLEKTIV	15
2.8	AUSGANGSBEDINGUNGEN	16
<u>3 EI</u>	RGEBNISSE	17
3.1	Strategie	17
3.2	MUTATIONSANALYSE	17
3.2.1	MUTATIONEN IM MCCA GEN	17
3.2.2	MUTATIONEN IM MCCB GEN	18
3.2.3	AUSSCHLUß VON POLYMORPHISMEN	20

III

<u>4</u>	4 DISKUSSION 5 ZUSAMMENFASSUNG 6 LITERATURVERZEICHNIS 7 VERÖFFENTLICHUNGEN 8 DANKSAGUNG	22
<u>5</u>	ZUSAMMENFASSUNG	32
<u>6</u>	LITERATURVERZEICHNIS	34
7	VERÖFFENTLICHUNGEN	38
<u>8</u>	DANKSAGUNG	40
<u>9</u>	LEBENSLAUF	41

Abkürzungen

Α	
А	Adenin
ADP	Adenosin-Diphosphat
A. thaliana	Arabidopsis thaliana
Ala	Alanin
Arg	Arginin
Asp	Aspartat
ATP	Adenosin-Triphosphat
В	
bp	Basenpaare
С	
С	Cytosin
C-3	Propionyl-Carnitin
cDNA	komplementäre DNA
D	
Da	Dalton
ddNTP	Didesoxynukleotidtriphosphat
DNA	Desoxyribonukleinsäure
DTT	Dithiothreitol
E	
EDTA	Ethylendiaminotetraacetat
ESE	"exonic splicing enhancers"
F	
FISH	Fluoreszenz-in-situ-Hybridisierung

G	
G	Guanin
G. max.	Glycine max
G6PD	Glukose-6-Phosphat-Dehydrogenase
Gln	Glutamin
Gly	Glycin
GTE	Glyzerintrierukat
GTO	Glyzerintrioleat
Н	
3-HIVA-C	3-Hydroxyisovaleryl-Carnitin
K	
kDa	Kilodalton
kb	Kilobasen
L	
Lys	Lysin
Μ	
Μ	Methionin
MCC	3-Methylcrotonyl-CoA: Carboxylase
$MCC\alpha = MCCA$	α-Untereinheit der 3-Methylcrotonyl-CoA: Carboxylase
$MCC\beta = MCCB$	β-Untereinheit der 3-Methylcrotonyl-CoA: Carboxylase
MCCA	3-Methylcrotonoyl-CoA:Carboxylase A-Gen
МССВ	3-Methylcrotonoyl-CoA:Carboxylase B-Gen
Met	Methionin
mRNA	messenger-RNA
Ν	
nm	Nanometer

0	
OMIM	Online Mendelian Inheritance in Man
Р	
PAC	P1-derived artificial chromosome
PAGE	Polyacryl-Gel-Elektrophorese
4-PB	4-Phenylbutyrat
PCC	Propionyl-CoA: Carboxylase
ΡССβ	β -Untereinheit der Propionyl-CoA: Carboxylase
PCR	Polymerasekettenreaktion
Pro	Prolin
R	
R	Arginin
RNA	Ribonukleinsäure
RT-PCR	Reverse-Transkriptions-PCR
S	
SDS	Natrium Dodecyl Sulfat
Ser	Serin
snRNA	"small nuclear RNA"
SR-Proteine	Serin-Arginin-Proteine
Τ	
Tandem-MS	Elektrospray-Tandem-Massenspektrometrie
Taq	Thermus aquaticus
TE	TRIS-EDTA

TRIS 2-Amino-2-(hydroxymethyl)-1,3-propandiol

1 Einleitung

1.1 Der 3-Methylcrotonyl-CoA:CarboxylaseMangel

Der 3-Methylcrotonyl-CoA: Carboxylase Mangel (OMIM *210200) ist ein autosomal rezessiv vererbter Defekt im Abbau der Aminosäure Leucin und wurde 1982 erstmals beschrieben (Beemer et al., 1982).

1.1.1Biochemische Grundlagen

Das Enzym 3-Methylcrotonyl-CoA: Carboxylase (3-Methylcrotonoyl-CoA: Kohlendioxid Ligase (ADP-bildend), EC 6.4.1.4; MCC) ist beteiligt am Abbau der essentiellen verzweigtkettigen Aminosäure L-Leucin (Abb. 1., S. 2). L-Leucin wird zunächst reversibel zu 2-Oxoisocapronsäure desaminiert und dann in zwei irreversiblen Schritten oxidativ zu Isovaleryl-CoA decarboxyliert und zu 3-Methylcrotonyl-CoA dehydriert. Für die folgende Bildung von 3-Methylglutaconyl-CoA sind Adenosin-Triphosphat (ATP) und Bicarbonat notwendig (Lynen et al., 1961). Die MCC ist neben der Pyruvat: Carboxylase und der Propionyl-CoA: Carboxylase (PCC) eine von drei im Mitochondrion lokalisierten Biotinabhängigen Carboxylasen (Hector et al., 1980). Diese Enzyme weisen eine hohe Strukturähnlichkeit auf und besitzen drei strukturell konservierte funktionelle Domänen: Die "Biotin-Carboxylase-Domäne", welche die Carboxylierung von gebundenem und freiem Biotin unter ATP-Spaltung katalysiert, die "Biotin-Carboxyl-Carrier-Domäne", welche die prosthetische Gruppe Biotin für die Carboxylierung trägt und die "Carboxyltransferase-Domäne", welche den Transfer der Carboxylgruppe vom Biotin-Carboxyl-Carrier zu dem für jede Carboxylase spezifischen Substrat katalysiert (Jitrapakdee et al., 1999; Samols et al., 1988).

Der MCC-Mangel führt zu einer Akkumulation von 3-Methylcrotonyl-CoA, die zu einer erhöhten Ausscheidung von 3-Hydroxyisovaleriansäure und 3-Methylcrotonylglycin im Urin führt. Vermehrt anfallende Acyl-CoA-Verbindungen werden intramitochondrial zu Acylcarnitinen umgewandelt, wobei sich 3-Hydroxyisovaleryl-Carnitin als führender pathologischer Metabolit in Blut und Urin nachweisen läßt (Röschinger et al., 1995; van Hove et al., 1995).

Abb. 1 Abbau von L-Leucin, angrenzende Stoffwechselwege und charakteristische Metabolite bei MCC Mangel

1.1.2Klinisches Bild und Therapie

Der klinische Phänotyp von bisher 38 beschriebenen Patienten ist außerordentlich variabel und reicht von asymptomatischen (n=11) bis zu letalen Verläufen (n=3) (Tab. 1, S. 4) (Bannwart et al., 1992; Beemer, 1982; Visser et al., 2000; Wiesmann et al., 1998).

Die Erstmanifestation der beschriebenen Patienten lag zwischen dem ersten Lebenstag (Bannwart, 1992; Murayama et al., 1997; Wiesmann, 1998) und dem Alter von 4,7 Jahren (Beemer, 1982). Im Rahmen kataboler Stoffwechselsituationen (prolongierte Fastenperioden, fieberhafte Infekte, Gastroenteritiden) kam es zu Hypoglykämien (Bartlett et al., 1984; Gitzelmann et al., 1987; Kobori et al., 1989; Layward et al., 1989; Steen et al., 1999; Tsai et al., 1989) und milden, teils ketotischen metabolischen Azidosen (Bartlett, 1984; Beemer, 1982; Gitzelmann, 1987; Kobori, 1989; Layward, 1989), gelegentlich mit Hyperammonämie (Layward, 1989; Tsai, 1989). Häufig wurden Bewußtseinsstörungen bis hin zum Koma beobachtet (Bartlett, 1984; Rolland et al., 1991; Visser, 2000). Klinisch führend sind neurologische Symptome wie muskuläre Hypotonie (Elpeleg et al., 1989).

Bisher können keine allgemein verbindlichen Therapieempfehlungen gegeben werden. Im Vordergrund stehen die vorsorgende Aufklärung und präventive Maßnahmen, um katabole Krisen zu vermeiden. Initial wird der Ausschluß einer Biotinabhängigkeit empfohlen, wenn auch bisher keine Biotin-sensitiven Patienten bekannt sind. Eventuell kann eine milde Proteinrestriktion durchgeführt werden, um die Leucinzufuhr auf bis zu 30 mg/kg x d zu reduzieren. Liegt dadurch die Gesamtproteinzufuhr unter den altersentsprechenden Empfehlungen, so wird eine Leucin-freie Aminosäuren-Mischung substituiert. Daneben wird zur schnelleren Ausschleusung akkumulierender Metabolite Carnitin eingesetzt. Die Gabe von Glycin kann wahlweise erwogen werden. In akuten Krisen ist eine umgehende Anabolisierung dringend erforderlich, um die endogene Proteolyse und damit den Anfall körpereigenen Leucins zu stoppen. Zunächst kann eine orale Zufuhr von Kohlenhydraten z.B. durch Sondierung einer Dextroselösung versucht werden. Wird dadurch keine metabolische Stabilisierung erzielt, so ist eine parenterale Glukosezufuhr (ca. 14 mg/kg x min) und gegebenenfalls eine Dauerinfusion von Insulin (initial 0,1 IE/kg x h) indiziert.

	Andere	neurologische Symptome	16	42,1	Kobori, 1989	Pearson, 1995	Bannwart, 1992	Bartlett, 1984	Beemer, 1982	Gitzelmann, 1987	Lehnert, 1996	Murayama, 1997	Rolland, 1991	Steen, 1999	Tuchman, 1993	Visser, 2000	Wiesmann, 1998	
	Zerebrale	Anfälle	5	13,2	Bannwart, 1992	Lehnert, 1996	Murayama, 1997	Steen, 1999	Tsai, 1989									
	Psycho-	motorische Retardierung	6	23,7	Bannwart, 1992	Lehnert, 1996	Mourmans, 1995	Murayama, 1997	Steen, 1999	Visser, 2000	Yap, 1998							
e)	Muskuläre	Hypotonie	10	26,3	Bannwart, 1992	Bartlett, 1984	Elpeleg, 1992	Gibson, 1998	Gitzelmann, 1987	Wiesmann, 1998								
aturanalys	Gedeih-	störung	4	10,5	Elpeleg, 1992	Murayama, 1997	Wiesmann, 1998	Visser, 2000										
els (Liter	Hyperam-	monämie	2	5,3	Tsai, 1989	Layward, 1989												
s MCC Mang	Milde	Azidose	4	10,5	Bartlett, 1984	Beemer, 1982	Gitzelmann, 1987	Kobori, 1989	Layward, 1989									
ubilit t de	Hypo-	glykämie	9	15,8	Bartlett, 1984	Gitzelmann, 1987	Kobori, 1989	Layward, 1989	Steen, 1999	Tsai, 1989								
ische Varia	Ver-	storben	ω	7,9	Bannwart, 1992	Kobori, 1989	Wiesmann, 1998											
1 Klin	Ohne	Symptome	11	28,9	Beemer, 1982	Gibson, 1998	Ihara, 1997	Kobori, 1989	Mourmans, 1995	Pearson, 1995	Tsai, 1989	Visser, 2000						
Tab.			u	%	Ref.													

MCC Mangels (Literaturanalyse) U U U Ŧ Klinische Variabilit -

n: Zahl der Patienten; %: Prozentanteil der Patienten bezogen auf n = 38; Ref.: Referenzen

1.1.3Epidemiologie

Durch die Einführung des erweiterten Neugeborenenscreenings im Januar 1999 in Bayern ist es möglich, den MCC Mangel mittels Tandem-Massenspektrometrie (Tandem-MS) zu erfassen. Alle im Screening detektierten Neugeborenen werden zur Bestätigungsdiagnostik und Familienuntersuchung einem spezialisierten Stoffwechselzentrum zugeführt. Hierbei besteht die Möglichkeit, auch asymptomatische Verwandte zu erfassen. Die bisherigen Ergebnisse aus verschiedenen Screeningzentren (USA, Australien und Deutschland) ergaben für den MCC Mangel eine überraschend hohe Inzidenz von etwa 1 : 40 000 (Naylor et al., 1999; Ranieri et al., 2000; Roscher et al., 2000; Smith et al., 2000). Es ist daher wahrscheinlich, daß es sich bei diesem Defekt um die häufigste organische Azidämie handelt und viele asymptomatische oder oligosymptomatische Individuen mit MCC Mangel nicht erkannt werden (Gibson et al., 1998).

1.1.4Molekularbiologische Grundlagen

Das bovine MCC Holoenzym ist ein Tetramer aus unterschiedlichen α - und β -Untereinheiten (Lau et al., 1981; Lau et al., 1980). Die cDNA beider Untereinheiten verschiedener Pflanzen konnte in den letzten Jahren kloniert werden (McKean et al., 2000; Song et al., 1994; Wang et al., 1994; Weaver et al., 1995). Auf dieser Grundlage gelang unserer und zwei anderen Arbeitsgruppen kürzlich die molekulare Charakterisierung beider humaner *MCC* Gene (Baumgartner et al., 2001; Gallardo et al., 2001; Holzinger et al., 2001).

Die hohe Sequenzähnlichkeit mit dem *MCCA*-Gen (α -Untereinheit der MCC) der Sojabohne (*Glycine max*, 45% Übereinstimmung, Abb. 4, S. 27) ermöglichte die Klonierung der humanen *MCCA* cDNA. Das Gen kodiert für die aus 725 Aminosäuren bestehende Untereinheit (2580 bp, 80,5 kDa). Durch Fluoreszenz-*in-situ*-Hybridisierung (FISH) von Metaphase-Chromosomen unter Verwendung von PAC-Klonen ("P1-derived artificial chromosome") als Sonden konnte das Gen auf Chromosom 3q26-q28 lokalisiert werden. Es setzt sich aus 19 Exons und 18 Introns zusammen (Holzinger, 2001). Wie bei der α -Untereinheit der PCC, enthält das *MCCA* Gen eine N-terminal gelegene "Biotin-Carboxylase-Domäne" und eine C-terminal lokalisierte "Biotin-Carboxyl-Carrier-Domäne" (Samols, 1988). Im Zentrum der "Biotin-Carboxyl-Carrier-Domäne" liegt das Motiv Ala-Met-Lys-Met, das für die verschiedenen Biotin-abhängigen Carboxylasen konserviert ist (Samols, 1988). Biotin wird kovalent an die Aminogruppe am Kohlenstoff 6 des Lysins an Position 681

gebunden, so dass ein 6-Biotinyl-Lysin, das Biocytin, entsteht. 33 Aminosäuren C-terminal des Biocytins liegt ein konservierter hydrophober Aminosäurerest, der von entscheidender Bedeutung für die Biotinylierung zu sein scheint (Baumgartner, 2001; Holzinger, 2001; Murtif et al., 1987) (Abb. 4, S. 27). Die "Biotin-Carboxylase-Domäne" ist in den N-terminal gelegenen zwei Dritteln des Gens lokalisiert und katalysiert wahrscheinlich die Biotincarboxylierung, den ersten Schritt der MCC-Reaktion. Es enthält das streng konservierte Motiv Gly-Gly-Gly-Gly-Lys-Gly, das als ATP-Bindungsstelle gilt (Song, 1994) (Abb. 4, S. 27).

Die humane *MCCB* cDNA konnte aufgrund des hohen Konservierungsgrades mit dem *Arabidopsis thaliana MCCB* Gen (58% Übereinstimmung, Abb. 5, S. 29) kloniert werden. Das für die aus 563 Aminosäuren bestehende β-Untereinheit kodierende Gen enthält 2304 Basenpaare und hat ein berechnetes Molekulargewicht von 61,3 kDa. Es besteht aus 17 Exons und 16 Introns. Mittels FISH konnte es auf Chromosom 5q13 lokalisiert werden. Die konservierte Domäne im *MCCB* Gen gleicht der "Carboxyltransferase-Domäne" anderer biotinabhängiger Enzyme. Sie entspricht wahrscheinlich der 3-Methylcrotonyl-CoA-Bindungsstelle (Baumgartner, 2001; Gallardo, 2001; Holzinger, 2001) (Abb. 5, S. 29).

1.2 Zielsetzung

Zielsetzung dieser Arbeit war es, die Bedeutung von *MCCA* und *MCCB* als humane Krankheitsgene zu bestätigen und damit die Grundlage für eine systematische molekularbiologische Charakterisierung von Patienten mit 3-Methylcrotonyl-CoA: Carboxylase Mangel zu schaffen. Im einzelnen wurden folgende Probleme bearbeitet:

- Die Etablierung einer Methode zur molekulargenetische Diagnostik des 3-Methylcrotonyl-CoA: Carboxylase Mangels
- Die molekulargenetische Charakterisierung des Patientenkollektivs
- Die Evaluation der eigenen Ergebnisse und der in der Literatur vorhandenen Daten in Bezug auf eine möglicherweise bestehende Genotyp-Phänotyp-Korrelation

2 Material und Methoden

2.1 Extraktion genom ischer DNA aus Vollblut

Zur DNA-Extraktion aus Leukozyten wurde die Aussalz-Methode nach Miller, Dykes und Polesky (Miller et al., 1988) angewandt. Detaillierte Angaben zur Zusammensetzung der verwendeten Puffer-Lösungen finden sich unter 2.1.4.

2.1.1Lyse der Erythrozyten

Zur Bearbeitung wurde 1,5 bis 5 ml Ethylendiaminotetraacetat-Vollblut (EDTA-Vollblut) in ein steriles 15 ml-Zentrifugenröhrchen (Sarstedt AG, Nürnbrecht) überführt und mit Erythrozyten-Lysepuffer auf ein Endvolumen von 15 ml aufgefüllt. Die Suspension wurde vorsichtig gemischt und bis zur Lyse der Erythrozyten (lackartige Rotfärbung) bei Raumtemperatur belassen. Anschließend wurden die Leukozyten bei 1500 U/min abzentrifugiert. Der Überstand mit den lysierten Erythrozyten wurde dekantiert und das Sediment mit Erythrozyten-Lysepuffer resuspendiert und erneut gewaschen.

2.1.2Inkubation der Zell-Lysate mit Proteinase K

Die resuspendierten Leukozyten wurden mit 1 ml Proteinase K-Puffer, 25 µl Proteinsase K und 50 µl SDS 20 % über Nacht bei 37°C oder über 2 Stunden bei 65°C im Wasserbad inkubiert. SDS als Detergenz lysiert die Zellmembranen der Leukozyten. Proteinase K spaltet die Proteine und löst damit die genomische DNA aus ihrer "Verpackung".

2.1.3Aussalzen der Proteine, Fällen, Waschen und Lysen der DNA Nach der Inkubation mit Proteinase K wurden die Proteinfragmente mit 300 µl 5 M NaCl-Lösung denaturiert und bei 4500 U/min abzentrifugiert. Der Überstand wurde in ein 15 ml-Zentrifugenröhrchen überführt und mit 4 ml Ethanol 100 % (Fa. J.T. Baker, Griesheim) versetzt. Die genomische DNA wurde durch vorsichtiges Schwenken gefällt und als weißes Fadenknäuel mit Hilfe einer Pipette aufgenommen und mit 350 µl eisgekühltem Ethanol 70 % gewaschen. Anschließend wurde die DNA etwa 1 Stunde bei Raumtemperatur getrocknet, danach in Tris-EDTA-Puffer (TE-Puffer) (Volumen in Abhängigkeit der Pelletgröße) gelöst und bei 4°C gelagert.

2.1.4Puffer-Lösungen

Erythrozyten-Lysepuffer:

NH ₄ Cl	155 mM	41,45 g	Sigma A-4514
KHCO ₃	10 mM	5 g	Merck 4854
Na-EDTA	0,1 mM	0,17 g	Sigma E-5134

ad 5000 ml bidestilliertes Wasser

pH 7,4 einstellen mit 1 M HCl bzw. 2 M NaOH

Proteinase K-Puffer:

1 M Tris*/HCl pH 7,5	5 ml	Sigma T-6666
0,5 M Na-EDTA pH 8,0	2 ml	Sigma E-7889
5 M NaCl	3 ml	Sigma S-5150

*2-Amino-2-(hydroxymethyl)-1,3-propandiol

ad 1000 ml bidestilliertes Wasser

TE-Puffer (Tris-EDTA-Puffer)

Tris	10 mM	1,21 g	Sigma T-6666	
Na-EDTA	1 mM	0,37 g	Sigma E-5134	

ad 1000 ml bidestilliertes Wasser

pH 8,0 einstellen mit 1 M HCl bzw. 2 M NaOH

20 % Sodium Dodecyl Sulfat-Lösung (SDS-Lösung): 20 g SDS (Serva 20763) ad 100 ml bidestilliertes Wasser.

70 % Ethanol: 70 ml Ethanol 100 %, unvergällt (Fa. T.J. Baker, Griesheim) ad 100 ml bidestilliertes Wasser.

Erythrozyten-Lysepuffer, Proteinase K-Puffer und TE-Puffer wurden nur autoklaviert verwendet.

2.2 Polymerasekettenreaktion (PCR)

Ziel der Polymerasekettenreaktion (PCR) ist die effiziente Vervielfältigung von DNA-Sequenzen innerhalb kurzer Zeit. Mullis gelang erstmals unter Nutzung der Thermostabilität der DNA-Polymerase des thermophilen Bakteriums *Thermus aquaticus* (Taq) die vollautomatische, exponenzielle Vermehrung von DNA (Mullis et al., 1986; Mullis et al., 1987).

Oligonukleotid-Primer flankieren den zu vervielfältigenden DNA-Abschnitt und dienen als Startpunkte der DNA-Synthese. Nach einmaliger Anfangsdenaturierung durch Erhitzen wird der Reaktionsansatz auf eine Temperatur abgekühlt, die den Primern die Bindung an den komplementären DNA-Einzelstrang (Annealing) ermöglicht, womit die von den Polymerasen benötigten 3'OH-Enden bereitgestellt werden. Die Annealingzeit sollte so kurz, die Annealingtemperatur so niedrig wie möglich gewählt werden, um eine spezifische Primerbindung zu erzielen. Man berechnet pro G/C-Paar 4 °C und pro A/T-Paar 2 °C. Die Summe entspricht der Schmelztemperatur. Zieht man 5% des Wertes ab, so ergibt sich die Annealingtemperatur. Durch die anschließende Erhitzung des Ansatzes wird das Aktivitätsoptimum der Polymerase erreicht, die mittels Mg²⁺-Ionen und dNTP den partiell doppelsträngigen Einzelstrang zum Doppelstrang synthetisiert (Extension). Die Extensionszeit wird entsprechend der Syntheserate des Enzyms (Taq-Polymerase: ca. 1000 bp/min) und der Länge des Produktes gewählt. Die Amplifikationszyklen bestehend aus Denaturierung, Annealing und Extension werden etwa 20 bis 40 mal wiederholt, so dass am Ende der Reaktion 2ⁿ (n = Anzahl der Zyklen) Moleküle vorliegen.

2.3 Amplifikation

Zur genomischen Mutationsanalyse wurden die einzelnen Exons des *MCCA* und des *MCCB* Gens mittels Taq-DNA Polymerase (Fa. Roche Diagnostics GmbH, Mannheim) und dem entsprechenden 10x Standardpuffer in einem 50 µl-Ansatz vervielfältigt. Die verwendeten Exon-flankierenden Oligonukleotid-Primer sind in Tabelle 2 angeführt. Es wurden eine Annealingtemperatur von 55°C, eine Annealingzeit von 45 s und 35 Zyklen gewählt. Zur Kontrolle der Konzentration wurden 8 µl der Produkte mit Ethidiumbromid (Firma Merck, Darmstadt) markiert und auf ein 1,5 % Agarose Gel (DNA Agarose, Fa. Biozym Diagnostics, Hessisch Oldendorf) aufgetragen.

	In	tron-Prim	er MCCA			Int	ron-Pi	rime	er MCCB	
Exc	on Primer	5'	Sequenz	3'	Exo	n Primer	5	,	Sequenz	3'
1	MCCA1 for	CGCAGCTGCC	CTCTGTACTGG		1	MCCB1 for	TGTGG	ACAGO	GCCTGAGAATC.	AGAG
	MCCAlrev	CCTCGCTCCC	CGCCTCTGCC			MCCB1 rev	CTCCT	CACT	TTGCTTCCTAG	CC
2	MCCA 2 for	CTTTTGAAAG	GAACAATTGTATT.	ACC	2	MCCB2for	GAGCT	rgaa(CAAGACAGGCA	GG
	MCCA 2 nev	CTTAAACACT	ITCCAGTCTGAAG	С		MCCB2 nev	AAAGC	AATAA	ACTATTTTAGG.	ACATC
3	MCCA3 for	CTCATTCTCA	ATTCTTTGCTCTC	С	3	MCCB 3 for	GAGAC	CTTTT	TTATCGTGTCA	АТСТАА
	MCCA 3 nev	CTGACACAGI	TAAACGAATAAAC	G		MCCB 3 rev	GTACT	ATGGI	AACAGAGAACA	CTC
4	MCCA4for	GTATAGTGTA	ATGAGTATGTACT.	AGC	4	MCCB4for	CATGT	JTAA(CTGTTTAAATG	TGTAG
	MCCA 4 nev	CATCAGTTGO	CACAAAACGTATT	CC		MCCB4 rev	TGGAT	JCCT	GTGCCTCATCA.	AAGTC
5	MCCA 5 for	CATTAAGGT	GTTGCCAGTTGAG	С	5	MCCB 5 for	ATTGG	J GTAT	ICTTGTAATGA	GTG
	MCCA5 nev	GGCCCAAACT	TATTTCAACTGAC	С		MCCB5 rev	ATACA	raca(GCCTTCCAAAC	TATC
6	MCCA6for	CTTGAATTGA	AATAATTTGTAG	AATTTG	6	MCCB6for	CGTAG	CACAT	TTTAGTTCATA	GAG
	MCCA6 nev	САТАААТАА	ACAAAGAAGACA	AGCC		MCCB 6 rev	AGCCA	rccci	AGAGTACCTAA	TTCG
7	MCCA7 for	GGCTTGTCTT	ICTTTGTTTTATT	TATG	7	MCCB7 for	GCATC	ГСАТС	GTGTTTGTCGT	GTGC
	MCCA7 nev	GTCAGAAAAA	ATAAGGCCAACC			MCCB7 rev	TACTA	AACGI	ICACCAAGCTG	TACTG
8	MCCA8 for	CCTAACAGTT	TAGCTTAACG		8	$MCCB8for^{RA}$	TGTCT	JATGO	GACCGATTTCA	CTG
	MCCA 8 nev	CAGAGTAAGA	ATTCACATTACG			$MCCB8rev^{RA}$	TGGTG	rggto	CTGGCAAGTTT	AGC
9	MCCA9for	CTAGTAAGGC	CAAGCTACTAATG	G	9	MCCB 9 for	GAGAA	JATAC	CTTGGGACCTG	AG
	MCCA9 nev	CTAAAACATA	AATTAAACACTG	TTACG		MCCB9 rev	CATGA	LLLL	AAGGTGCAGTG	AGTC
10	MCCA 10 for	CTGATTATAC	CACTATTGAATAT	GACC	10	MCCB 10 for	TTGAA	ATCAT	IGTCTTTAAAC.	AGG
	MCCA 10 mev	CCACCGCACC	CCAGCCAAGGC			MCCB 10 rev	ACATA	CAAAC	GAGACTCACAG	CTGG
11	MCCA 11 for	GTAGCCGCTA	ATACGGTAGATTT	С	11	MCCB 11 for	TTGCA	ATAT/	AATTTCTCAAG	GC
	MCCA 11 mev	GTACTAAAAC	CTTAAAAAGAGTG	AGAC		MCCB 11 rev	AAGTC	[TGA]	AACAAGAGATT	CCTG
12	MCCA 12 for	CCTTCGTGTT	ITTGACTTGAAGA	GG	12	MCCB 12 for	GAAAA	GCAC	AAGACATAATC	TTC
	MCCA 12 mev	GGTGCTGACC	CAAACACATCAAG	G		MCCB 12 mev	GGTTG	CTGAC	GGCATCTAGTT.	AAGC
13	MCCA 13 for	TATTGTTTTC	CCCCACTCAGCAG	C	13	MCCB 13 for	TAGAA	rgca:	IGATGATAATA	GAG
	MCCA 13 mev	TTTGCAAAAA	ACTTGACAAGCAG	AGG		MCCB 13 rev	ATGGT	ACAGO	CTCTGGAATCA	ATAC
14	MCCA 14 for	TGTAAGGTGT	FAAATTTCATAGG	C	14	MCCB 14 for	GAATTO	JCGTI	FCCGCATATTA	ATCC
	MCCA 14 nev	CAGATTAATO	GTGATACATTTCT.	ATG		MCCB 14 rev	ATCTG	JGAAT	IGGCATTCTAT.	ATTTC
15	MCCA 15 for	GAGAGTGAGA	ATTCTTTATATCT	CGG	15	MCCB 15 for	CATGG	JCCTO	CTGAAAATCTA	TGTTG
	MCCA 15 nev	GTATAAAAGO	CGGTCAGATTCAG	C		MCCB 15 nev	GCAGC	ACAG	ICTAAATATGG	CCAGG
16	MCCA 16 for	GATCTTATTA	ATTCTGTAGTGT	TGTTC	16	MCCB 16 for	AGTTG	[TCAC	CTGAAGCTGAC	TTAC
	MCCA 16 mev	GGTCAAACAG	GTTTTTCTCCCATG	C		MCCB 16 nev	ACCAT	CTCA	ACTACATAGAG	CTCTG
17	MCCA 17 for	GGTATATTAG	GTAAAAATATAGT	GATAGG	17	MCCB 17 for	TAGTT	ГGGT(GGTAAATTCAT.	AACTC
	MCCA 17 mev	TAAATGACAA	AGTTTAACAAAGC	CACG		MCCB 17 rev	GGCTA	CTACA	ATGTGTTAATT	TTCAG
18	MCCA 18 for	GCAGATGAAC	CATATCTAGGACC							
	MCCA 18 mev	GGTATGATTO	GCTCCCAAAGTCC							
19	MCCA 19 for	CTCAGTCCTC	CATTAGTATTGCA	GC						
	MCCA 19 mev	AGAGAGAAGA	ACACTACTTAACT	GG						

Tab. 2 Exon-flankierende Oligonukleotid-Primer von MCCA und MCCB

Alle Primer wurden zur Amplifikation und zur Sequenzierung verwendet. ^{RA} Primer, die für die Restriktionsanalyse verwendet wurden. Die Zahl im Primernamen gibt an, welches Exon mit dem Primer sequenziert bzw. amplifiziert werden kann. For = forward; d.h. Primer liest in 5'-3'-Richtung; rev = reverse; d.h. Primer liest in 3'-5'-Richtung. *MCCA* 13 for liest in 5'-3'-Richtung und dient der Sequenzierung/Amplifizierung des Exon 13 im *MCCA* Gen.

	cDNA-Primer MCCA					cDNA-Primer MCCB				
	Primer	5'	Sequenz	3'		Primer	5	,	Sequenz	3'
fl	MCCA 5 for	GGGACGC	AGCTGCCTCTGT	AC	fl	MCCB5 for	ACCGGC	CTCCA	AGGCCAGCGTG	ŀG
fl	MCCA 3 rev	AGAGAGA	AGACACTACTTA	ACTGG	fl	MCCB3 rev	GGCTAC	CTACA	ATGTGTTAATT	'TTCAG
	MCCA 152 for	GGTCCTC	ATTGCAAACAGA	GG		MCCB 467 for	CCAAGA	AATO	GCCATGCAAAA	CAG
	MCCA 360 for	GCTGCAC	AGGCTATCCATC	С		MCCB 577 nev	CGGCCA	AAGT	IGGTCTCGATC	TGG
	MCCA 1019 nev	CATGGAG	ATGAATACAAGG	CTG		MCCB 858 for	TTAGCT	TAGC	AGGTTGTGAG	ŀG
	MCCA 1258 rev	CCACCAG	GATTGAAACTGG	AGT		MCCB 965 nev	AACTAT	TCCF	ATACAATTCAT	'CAGC
	MCCA 1372 for	ACAATAT	IGTTGGACTGCA	CACC		MCCB 1252 for	AAGGAA	ATTGO	CCAAGGATGGT	'GC
	MCCA 1649 for	CAGAAAC	ATGACTCTTAAA	GATGG		MCCB 1369 nev	CTGCCA	ACAC	ATCCCATAGTT	TCC

Tab.	3	cDNA-Oligonukleotid-Primer	von	MCCA und	MCCB
------	---	----------------------------	-----	----------	------

^{fl} Primer, die zur full-length-Amplifikation verwendet wurden

Die Primernamen wurden so gewählt, dass die Zahl die Position der ersten Base in Leserichtung bezeichnet, an die der Primer bindet (Position 1 entspricht dem 5'gelegenen Adenin). for steht für forward und gibt an, dass der Primer in 5'-3'-Richtung liest, rev steht für reverse und gibt an, dass der Primer in 3'-5'-Richtung liest. *MCCA* 152 for liest in 5'-3'-Richtung und bindet an die Basen 152 bis 172; *MCCA* 1019 rev liest in 3'-5'-Richtung und bindet an die Basen 1019 bis 998 usw..

2.4 Nicht-radioaktive Sequenzierung mittels Cycle Sequencing

Die Sequenzierung dient der Analyse der DNA-Primärstruktur. Die nicht-radioaktive Sequenzierung von PCR-Produkten mittels *Cycle Sequencing* beruht wie die radioaktive Sequenzierung auf der Kettenabbruch-Methode (Sanger et al., 1977). Bei der nichtradioaktiven Methode werden statt eines radioaktiv markierten Nukleotids vier mit Fluorescein-Farbstoffen markierte Didesoxynukleotide (Terminatoren) verwendet. Der Einbau der markierten Nukleotide erfolgt in einer PCR-Reaktion mit nur einem Primer. Da jedes Nukleotid mit einem anderen Farbstoff markiert ist, wird nur ein Sequenzier-Ansatz benötigt.

Die PCR-Produkte wurden mit Hilfe des PCR Purification Kits (Fa. Qiagen, Hilden) nach Angaben des Herstellers gereinigt und mit Wasser eluiert. Hierbei wurden überschüssige Nukleotide und Primer der PCR-Reaktion entfernt. Anschließend wurden erneut 10 μ l des gereinigten PCR-Produktes auf ein Agarosegel 1,5 % aufgetragen. Je nach Konzentration der PCR-Produkte wurden in dem folgenden 5 μ l-Seqenzier-Ansatz 1 bis 2 μ l der Produkte eingesetzt. Für die Sequenzierung wurde je einer der beiden für die Amplifikation verwendeten Primer und der Ready Reaction dRhodamine Terminator Cycle Sequencing Kit mit *AmpliTaq* Polymerase FS benutzt (Fa. Applied Biosystems/Perkin Elmer, Weiterstadt).

Sequenzieransatz:

Reagenz	Meng	e
Gereinigtes PCR-Produkt	1 - 2	μl
Sequenzier-Primer (10 pmol/µl)	1	μl
Ready Reaction Mix	2	μl
Bidestilliertes Wasser	ad 5	μl

PCR-Programm:

Schritt	Temperatur	Dauer	r	Zyklen
Denaturierung	96 °C	15	sec	
Annealing	53 °C	15	sec	ן
Elongation	60 °C	4	min	} x 29

Anschliessend wurden nicht eingebaute, fluoreszenzmarkierte Nukleotide mittels der Ethanol-Präzipitations-Methode entfernt. Dazu wurden die Produkte mit 12,5 μ l unvergälltem Alkohol 100 % und 0,5 μ l 2 M Na-Acetat präzipitiert. Anschließend wurde 20 min bei 10.000 g und 4 °C zentrifugiert, die Pellets in 100 μ l Ethanol 70 % gewaschen, erneut zentrifugiert und der flüssige Überstand abpipettiert. Danach wurden die Proben im Wärmeschrank ca. 1 Stunde lang bei 60°C getrocknet.

Die präzipitierten Proben wurden durch die Firma Medigenomix GmbH (Martinsried) auf einem ABI PRISM 377 DNA Sequencer elektrophoretisch aufgetrennt. Die Auswertung der DNA-Sequenzen erfolgte mit der ABI PRISM Sequence Navigator 1.0.1 Software.

2.5 Extraktion von RNA, Reverse Transkription und Sequenzierung von cDNA-Fragmenten

Für die Mutationsanalyse auf cDNA-Ebene wurde zunächst unter Verwendung von RNAzol B (Fa. WAK Chemie, Bad Soden) die Gesamt-RNA aus kultivierten Fibroblasten extrahiert. Die Zellen wurden trypsiniert, in PBS-Puffer gewaschen und zentrifugiert. Der Puffer wurde abpipettiert, bevor RNAzol B zugegeben wurde. Die Phasentrennung erfolgte auf Eis durch Zugabe von 100 μl Chloroform. Es wurde das gleiche Volumen Isopropanol 100 % dazu gegeben, erneut 14 Minuten auf Eis inkubiert und 5 Minuten bei 13.000 U/min und 4 °C zentrifugiert. Das Pellet wurde in 96 μ l RNAse-freiem Wasser aufgenommen. Es wurden 4 μ l autoklavierte 5 M NaCL-Lösung zugefügt und anschließend mit 100 μ l Isopropanol 100 % gefällt, auf Eis inkubiert (15 Minuten) und anschließend abzentrifugiert (15 Minuten, 13.000 U/min, 4 °C). Das Pellet wurde mit Ethanol 75% gewaschen, zentrifugiert (8 Minuten, 7500/min, 4 °C) und in 50 μ l RNAzol-freies Wasser aufgenommen. Die RNA-Konzentration des Produktes wurde photometrisch (bei Wellenlänge 260 nm) bestimmt. Für die reverse Transkription wurden 5 μ l RNA eingesetzt. Unter "reverser" Transkription versteht man die Transkription von RNA in komplementäre DNA (cDNA) im Gegensatz zur Transkription, bei der RNA ausgehend von DNA als Matritze synthetisiert wird. Für die cDNA-Synthese wurde der Erststrang-cDNA-Synthese-Kit der Firma Pharmacia Amersham Biotech (Freiburg) verwendet. Der Erststrang wurde dabei mit Hilfe von unspezifischen random-Primern (pd(N)6) und spezifischen cDNA-Primern synthetisiert. 1 μ l Primer, 1 μ l Dithiothreitol und 8 μ l RNA werden dazu 10 Minuten bei 65 °C inkubiert und anschließend 3 Minuten auf Eis gegeben; dann wird der die Polymerase enthaltende Mix zugegeben und 1 Stunde bei 37 °C inkubiert.

Für die anschließende Reverse-Transkriptions-PCR (RT-PCR) wurden 2 µl des cDNA/RNA-Hybrids und die für das jeweilige Gen spezifischen cDNA-Primer verwendet. Die PCR erfolgte mit dem Expand Long und Expand High Fidelity PCR System der Firma Boehringer mit 50 ng der jeweiligen Primer in 50-µl-Ansätzen. Die cDNA beider Gene wurde full-length amplifiziert und anschließend mit cDNA-Primern nach dem unter 2.4 beschriebenen Vorgehen sequenziert.

Die verwendeten Primer sind in Tabelle 3 (S. 12) angeführt und mit ^{"fl"} gekennzeichnet.

2.6 Restriktionsanalyse zum Ausschluss von Polym orphism en

Zum Ausschluss eines Polymorphismus, das heißt einer Sequenzveränderung die häufiger als der spontanen Mutationsrate entsprechend in einer Population vorkommt, wurde eine Restriktionsanalyse durchgeführt. Die Methode ermöglicht die Detektierung einer bestimmten Basenfolge (meist 6-8 Basen lang) in DNA-Fragmenten ohne Sequenzierung und ist damit besonders geeignet, viele relativ kurze Fragmente auf Polymorphismen bzw. Mutationen zu screenen.

Untersucht wurde die DNA eines Patienten und die von 50 Kontrollindividuen. Die DNA-Fragmente wurden entsprechend dem unter 2.2 aufgeführten Vorgehen amplifiziert. Die verwendeten Primer sind in Tabelle 2 (S. 11) mit ^{"RA"} gekennzeichnet. Anschließend wurden sie mit dem Restriktionsenzym *Pml*I (Boehringer, Mannheim) über Nacht bei 37° C inkubiert (Restriktionsverdau). *Pml*I bindet an DNA-Stränge mit der Basenfolge GTGCAC und schneidet zwischen G und C. Kommt diese Basenfolge im untersuchten Fragment vor, so wird es in zwei Stücke geschnitten. Zur Beurteilung der Fragmentlängen wurden die verdauten PCR-Produkte und unverdautes Amplifikat auf ein Agarosegel 2,5% aufgetragen.

2.7 Patientenkollektiv

Im Rahmen dieser Arbeit wurden 4 Patienten untersucht (Tab. 4, S. 16). Drei sind türkischer (MA, KF, KK), einer rumänischer (LM) Herkunft. KF und KK sind Kinder konsanguiner Eltern. Die Patienten MA (0,8 Jahre alt), KF und KK (je1,5 Jahre alt) wurden anhand erhöhter Konzentrationen von 3-Hydroxyisovaleryl-Carnitin im erweiterten Bayerischen Neugeborenenscreening mittels Tandem-MS erfaßt. Sie sind bisher asymptomatisch geblieben. Patient LM (5,5 Jahre alt) entwickelte im Alter von 3 Jahren im Rahmen eines interkurrenten Infektes zerebrale Krampfanfälle. Die Diagnose wurde durch die Analyse der organischen Säuren im Urin gestellt. Der Patient ist bis auf leichte feinmotorische Defizite neurologisch unauffällig. Zur biochemischen Charakterisierung wurden bei allen Patienten Acylcarnitine im Vollblut (Tandem-MS) sowie organische Säuren im Urin (Gaschromatographie-Massenspektrometrie) analysiert. Bei drei Patienten wurde durch die Aktivitätsbestimmung der drei intramitochondrialen Biotin-abhängigen Carboxylasen in kultivierten Fibroblasten der isolierte MCC-Mangel bestätigt. Von dem vierten Patienten standen Fibroblasten nicht zur Verfügung. Kein Patient sprach auf Biotinsubstitution an. Alle wurden mit einer moderaten Eiweißrestriktion (ca. 1,5 g/kg x d) und Carnitinsupplementation behandelt. Einen wesentlichen Bestandteil der Therapie stellt die strikte Vermeidung von katabolen Stoffwechselsituationen dar.

Patient	Nationalität	Detektion	Klinischer Phänotyp	Alter*	Eltern
MA	türkisch	Screening	asymptomatisch	0,8	non-konsanguin
KF	türkisch	Screening	asymptomatisch	1,5	konsanguin
LM	rumänisch	Krampfanfall	feinmotorisches Defizit	5.5	non-konsanguin

Krampfanfall feinmotorisches Defizit 5,5

asymptomatisch

non-konsanguin

konsanguin

1,5

Tab. 4 Patientenkollektiv

*Alter in Jahren bei Studiendurchführung

Screening

türkisch

2.8 Ausgangsbedingungen

Die humane MCCA und MCCB cDNA war kurz vor Beginn der Arbeit kloniert worden. Die Sequenzen der Exon-flankierenden Intronregionen aller Exons konnten mittels Durchsicht von publizierten, aber noch unvollständigen Datenbanksequenzen, direkter Sequenzierung von PAC-DNA mit Exon-Primern und Exon-Exon-PCR von beiden Seiten bestimmt werden. Von 3 Patienten standen kultivierte Fibroblasten und EDTA-Blut zur Verfügung, so daß im Rahmen der Arbeit zunächst die gesamte kodierende Region beider Gene durch RT-PCR amplifiziert werden konnte. Die Mutationsanalyse dieser Patienten sollte primär auf RNA-Ebene durch Sequenzierung der amplifizierten full-length cDNA mit Exon-Primern erfolgen. Mutationen sollten auf genomischer Ebene durch PCR-Amplifikation und Sequenzierung betroffener Exons bestätigt werden. Von einem Patienten stand nur EDTA-Blut zur Verfügung, so daß die Mutationsanalyse primär durch die Seqenzierung aller Exons von MCCA und MCCB und die Mutationsbestätigung durch Sequenzierung betroffener Exons in beiden Richtungen ("forward"/"reverse") erfolgen sollte. Als Wildtyp-Sequenz für die Beurteilung von Sequenzvariationen dienten die Ergebnisse der Sequenzierung deutscher Kontrollindividuen (cDNA und genomisch) sowie die von unserer Gruppe kürzlich eingereichten GenBankeinträge (HsMCCA, GenBank-Eintrag: AF297332_1; HsMCCB, GenBank-Eintrag: AAK49409).

KK

3 Ergebnisse

3.1 Strategie

Die Mutationsanalyse auf cDNA-Ebene gestaltete sich problematisch, da die Sequenzierung nur relativ kurze Fragmente in verwertbarer Qualität erbrachte und so nicht der gesamte kodierende Bereich mit den vorliegenden Oligonukleotid-Primern sequenziert werden konnte. Modifikationen der PCR-Bedingungen ergaben keine wesentliche Verbesserung. Da die genomische Sequenzierung aller Exons sehr gute Ergebnisse erbrachte, wurde die ursprüngliche Strategie modifiziert. Zunächst wurden alle Exons in 5'-3'-Richtung sequenziert, von einer Mutation betroffene Exons in 3'-5'-Richtung bestätigt und anschließend auf cDNA-Ebene in beiden Richtungen sequenziert. Die homozygote Mutation des Patienten KK konnte nur durch genomische Sequenzierung in zwei Richtungen bestätigt werden, da keine RNA vorlag. Die Mutationen der drei anderen Patienten konnten in vier unabhängigen PCR-Ansätzen, d.h. auf genomischer und cDNA-Ebene in je zwei Richtungen, bestätigt werden.

3.2 Mutationsanalyse

Zur Mutationsanalyse wurde bei allen vier Patienten der komplette kodierende Bereich beider *MCC* Gene sequenziert. Hierzu wurde bei allen Patienten DNA aus Leukozyten untersucht. Bei drei Patienten wurde zusätzlich RNA aus kultivierten Hautfibroblasten analysiert. Bei zwei Patienten konnten Mutationen im *MCCA* Gen, bei den beiden anderen Mutationen im *MCCB* Gen detektiert werden.

3.2.1Mutationen im MCCA Gen

Zwei der untersuchten Patienten wiesen Mutationen im *MCCA* Gen auf. Drei von vier Allelen konnten aufgeklärt werden. Bei diesen nicht vorbeschriebenen Mutationen handelt es sich um eine Missense-Mutation, die bei beiden Patienten nachgewiesen werden konnte und um eine Nonsense-Mutation. Bei einem Patienten konnte auch nach Sequenzierung des gesamten kodierenden Bereichs und der Exon-flankierenden Intronbereiche kein weiteres mutiertes Allel nachgewiesen werden.

Der Patient MA zeigte eine Compound-Heterozygotie für die Missense-Mutation S535F (1604C>T) und die Nonsense-Mutation V694X (2079delA) (Abb. 2, S. 19). Die Mutation S535F (1604C>T) liegt im Exon 14 des *MCCA* Gens und bewirkt den Austausch der Aminosäure Serin durch Phenylalanin. Die Mutation V694X (2079delA) liegt im C-terminalen Bereich des *MCCA* Gens in Exon 19. Sie führt zu einem vorzeitigem Kettenabbruch. Beide Mutationen wurden in je zwei unabhängigen PCR-Ansätzen auf RNA-und DNA-Ebene bestätigt. Die Compound-Heterozygotie wurde durch Segregationsanalyse belegt. Bei beiden Eltern konnte durch Sequenzierung der genomischen DNA eine Heterozygotie nachgewiesen werden. Die Mutter weist den Austausch S535F (1604C>T) auf und der Vater trägt die Nonsense-Mutation V694X (2079delA). Die Untersuchung aller Exons des *MCCA* Gens ergab bei beiden keine weitere Mutation.

Bei dem Patienten KF wurde eine Heterozygotie ausschließlich für den Austausch S535F (1604C>T) gefunden (Abb. 2, S. 19).

3.2.2Mutationen im MCCB Gen

Mutationen im *MCCB* Gen wiesen zwei Patienten auf. Es konnten drei von vier Allelen aufgeklärt und damit eine vorbeschriebene sowie eine bisher unbekannte Missense-Mutation nachgewiesen werden.

Bei dem Patienten KK konnte eine Homozygotie für die Missense-Mutation R268T (803G>C) nachgewiesen werden (Abb. 2, S. 19). Sie liegt am 3'-Ende des Exon 8 und führt zum Austausch von Arginin durch Threonin. Die Mutation wurde auf DNA-Ebene in 5'- und 3'-Richtung sequenziert. cDNA für die Bestätigung auf RNA-Ebene stand nicht zur Verfügung. Der Patient LM wies die Missense-Mutation E99Q (295G>C) in Exon 4 auf. Sie bewirkt den Austausch von Glutamat zu Glutamin. In der mRNA-Analyse stellt sich die Mutation homozygot dar, in der genomischen Sequenzierung jedoch heterozygot. Mehrfache unabhängige Kontrollsequenzierungen erbrachten das gleiche Ergebnis. Eine weitere Mutation konnte nicht gefunden werden, so dass ein Allelverlußt postuliert wurde.

D: Genstruktur des kodierenden Bereiches von MCCB;

			Mutatio	Bioch	nemischer Phäi	notyp		
Patient	Gen	Exon	DNA	Protein		C5-OH ^a	C5-OH/C3 ^b	MCC°
MA	МССА	14	1604C>T/	S535F	heterozygot	33.7	16.3	0
MA	MCCA	19	2079delA	V694X	heterozygot	55.7	10.5	
KF	MCCA	14	1604C>T	S535F	heterozygot	39.2	24.5	0
LM	МССВ	4	295G>C	E99Q	Allelverlust	35.5	29.6	2
KK	МССВ	8	803G>C	R268T	homozygot	20.8	41.7	n.b. ^d

Tab. 5 Molekulargenetische und biochemische Typisierung des Kollektivs

^a 3-Hydroxyisovaleryl-Carnitin-Konzentration im Blut angegeben in µmol/l (Referenzbereich 0.06-0.44 µmol/l)

^b Quotient aus 3-Hydroxyisovaleryl-Carnitin und Propionyl-Carnitin im Plasma (Referenzbereich 0.03-0.4)

^c Spezifische Aktivität von 3-Methylcrotonyl-CoA: Carboxylase in kultivierten Hautfibroblasten [Picomol fixiertes [¹⁴C] Bicarbonat / mg Protein x Stunde], angegeben in % der Kontrolle.

^d Nicht bestimmt

3.2.3Ausschluß von Polymorphismen

Die Mutation S535F (1604C>T) fanden wir bei zwei unabhängigen Individuen. Die Mutationsanalyse des Patienten KF ergab im Gegensatz zu Patient MA darüber hinaus keine weitere Mutation. Wir sequenzierten daher die entsprechende Region bei 50 gesunden Kontrollindividuen und konnten die Mutation S535F (1604C>T) in keinem Fall nachweisen.

Von dem Patienten KK stand uns nur genomische DNA zur Verfügung, so dass die Mutation nicht auf RNA-Ebene bestätigt werden konnte. Außerdem betrifft der Basenaustausch R268T (803G>C) eine Aminosäure, die zwar zwischen Mensch und Maus, nicht jedoch zwischen Mensch und *A. thaliana* konserviert ist. Zum Ausschluß eines Polymorphismus führten wir daher eine Restriktionsanalyse von Exon 8 bei KK und 50 gesunden Kontrollen durch (Abb. 3, S. 21). Der Austausch $803G \rightarrow C$ konnte bei allen Kontrollindividuen ausgeschlossen werden.

Abb. 3 Restriktionsanalyse zum Ausschluß von Polymorphismen

A. Schematische Abbildung des 219 bp langen Fragmentes in Exon 8 (Amplifikation mit Exon 8 flankierenden Primern *MCCA* 8 (forward) und *MCCA* 8 (reverse)). Liegt der Basenaustausch $803G \rightarrow C$ vor, so bindet das Restriktionsenzym *Pml*I an der Exon-Introngrenze und schneidet zwischen C und G. Es entstehen zwei Fragmente (108 bp und 111 bp).

B. Ethidiumbromidmarkierte Fragmente wurden auf ein Agarosegel 2,5% aufgetragen, um die Fragmentlänge abzuschätzen. Abgebildet wurden der 1 Kilobasen-Marker (M), eine der 50 untersuchten Kontrollproben nach Restriktionsverdau (Ko, *Pml*I +), Patient KK vor Restriktionsverdau (KK, *Pml*I -) und nach Restriktionsverdau (KK, *Pml*I +). Die Kontrolle und das unverdaute Amplifikat von KK zeigen Banden bei ca. 220 bp, die beiden Fragmente (108 bzw. 111 bp) des verdauten Amplifikats von KK bilden gemeinsam eine Bande bei etwa 110 bp.

4 Diskussion

Der Aufbau des *MCC* Holoenzyms mit seinen unterschiedlichen α - und β -Untereinheiten ist aufgrund von detaillierten Studien des aus der Rinderniere isolierten Enzyms seit langem bekannt (Lau, 1981; Lau, 1980).

Die cDNA des für die Biotin enthaltende α -Untereinheit kodierenden *MCCA* Gens wurde in verschiedenen Pflanzen beschrieben (Song, 1994; Wang, 1994; Weaver, 1995). Mc Kean *et al.* konnten das *MCCB* Gen der *Arabidopsis thaliana* molekular charakterisieren (McKean, 2000). Auf dieser Grundlage wurden kürzlich durch unsere und zwei andere Arbeitsgruppen (Baumgartner, 2001; Gallardo, 2001; Holzinger, 2001) die humanen *MCCA* und *MCCB* cDNAs kloniert.

In der hier vorliegenden Arbeit sollte die Bedeutung von *MCCA* und *MCCB* als humane Krankheitsgene bestätigt und damit die Grundlage für eine systematische molekulargenetische Charakterisierung von Patienten mit *MCC* Mangel geschaffen werden.

Die hier primär eingesetzte Mutationsanalyse auf genomischer Ebene war zielführend. Der gesamte kodierende Bereich und die Exon-flankierenden Bereiche von *MCCA* und *MCCB* konnten sequenziert werden. Sowohl heterozygote als auch homozygote Mutationen wurden zuverlässig erfaßt, dabei traten wenig Artefakte auf. Insbesondere im Hinblick auf Splicesite-Mutationen bzw. Allelverluste, die in unserem und einem anderen Patientenkollektiv (Baumgartner, 2001) auftraten, ist es zweckmäßig, die genomische Sequenzierung als Screeningmethode und die cDNA-Sequenzierung zur Bestätigung einzusetzen, da so die Exon-flankierenden Intronsequenzen primär miterfaßt werden. Um in Zukunft Patienten schnell und effizient molekulargenetisch untersuchen zu können, sollte die Sequenzierung auf cDNA-Ebene weiter so verbessert werden, dass mit wenigen PCR-Ansätzen der gesamte kodierende Bereich sequenziert werden kann.

Die Identifikation *MCCA*- bzw. *MCCB*-defizienter Zellen im Rahmen dieser Studie könnte in Zukunft eine Komplementationsanalyse vor der Sequenzierung erlauben. Dazu werden Patientenfibroblasten mit definierten *MCCA*- oder *MCCB*-mutierten Fibroblasten fusioniert und durch Bestimmung der *MCC*-Aktivität einer Komplementierungsgruppe zugeordnet. Wahlweise wäre eine Transfektion von Patientenzellen mit *MCCA*- bzw. *MCCB*-cDNA und anschließender *MCC*-Aktivitäts-Bestimmung möglich. Für die Mutationsanalyse muß dann anschließend nur noch ein Gen sequenziert werden.

Die Sequenzierung des gesamten kodierenden Bereiches von *MCCA* und *MCCB* bei Kontrollindividuen ergab eine Übereinstimmung der Sequenzen mit den kürzlich veröffentlichten GenBank-Einträgen (*MCCA*: GenBank-Eintrag: AF297332_1, *MCCB* GenBank-Eintrag: AAK49409). Durch die Untersuchung von vier biochemisch charakterisierten Patienten mit isoliertem *MCC*-Mangel wurden zwei Patienten mit veränderten Allelen im *MCCA*- und zwei Patienten mit Mutationen im *MCCB*-Gen identifiziert. Artefakte konnten durch Bestätigung der Mutationen in vier unabhängigen PCR-Reaktionen ausgeschlossen werden (bei drei von vier Patienten auf genomischer und cDNA-Ebene). Da Expressionsstudien nicht Gegenstand dieser Arbeit waren und somit der *in vitro* Nachweis der phänotypischen Relevanz der beschriebenen Mutationen nicht vorliegt, werden die Mutationen einzeln diskutiert.

1604C>T im Exon 14 des MCCA Gens führt zum Austausch von Serin durch Phenylalanin (S535F). Für das Serin auf Position 535 besteht keine Konservierung zwischen Mensch und *C. elegans* bzw. *Glycine max*, die an dieser Stelle ein Aspartat bzw. Prolin haben. Die humane Propionyl-CoA: Carboxylase, ein der MCC sehr ähnliches Enzym, trägt an dieser Position ein Arginin (Abb. 4, S. 27). Man könnte daraus ableiten, dass für die Enzymfunktion nicht entscheidend ist, welche Aminosäure an Position 535 steht. Die biochemischen und physikalischen Eigenschaften der kleinen, hydrophilen Aminosäure Serin (Masse: 87,08 Da; Volumen: 89,0 Å³) und des großen, zirkulären, hydrophoben Phenylalanins (Masse: 147,18 Da; Volumen 189,9 Å³) unterscheiden sich jedoch so deutlich, dass von einer veränderten Proteinstruktur aufgrund des Austausches der Aminosäuren ausgegangen werden kann, die möglicherweise einen signifikanten Einfluß auf die Funktion der MCC hat. Ein Gen-Polymorphismus ohne Krankheitsrelevanz wurde durch die Untersuchung von 100 Chromosomen nicht-verwandter Kontrollindividuen ausgeschlossen. Diese Mutation wurde bei zwei nicht-verwandten Patienten (KF, MA) nachgewiesen. Bei KF konnte auch nach Sequenzierung des vollständigen kodierenden Bereiches von MCCA und MCCB auf genomischer und cDNA-Ebene nur die heterozygote Mutation S535F (1604C>T) detektiert werden. Als Ursache hierfür kommen eine bisher unbekannte Mutation im Promotor- oder im Intronbereich in Frage, die die Transkription oder das Splicing des einen Allels stören, so dass durch die Sequenzierung nur das andere erfasst wird. Die Mutation V694X (2079delA) liegt im C-terminalen Bereich des MCCA Gens in Exon 19. Sie führt zu einem vorzeitigen Abbruch der konservierten "Biotin-Carboxyl-Carrier-Domäne" am 3'-Ende, so daß die

Aminosäure F714 nicht exprimiert wird. Der hydrophobe Aminosäurerest F714 liegt 33 Aminosäuren C-terminal des Biocytins (V747). Murtif konnte zeigen, dass bei verschiedenen Spezies und unterschiedlichen Biotin-abhängigen Carboxylasen der hydrophobe Rest 714 von entscheidender Bedeutung für die Bindung von Biotin an Biocytin (Biotinylierung) ist (Murtif, 1987). Die Compound-Heterozygotie für diese beiden Mutationen wurde bei dem Patienten MA durch Segregationsanalyse nachgewiesen. Eine weitere Mutation konnte bei Sequenzierung des gesamten kodierenden Bereichs und der exon-flankierenden Intronbereiche nicht identifiziert werden. Entsprechend den Kriterien von Cotton und Horaitis (Cotton et al., 2000) ist damit für diese Mutationen von pathogener Relevanz auszugehen.

Die bei dem Patienten KK homozygot vorliegende missense-Mutation R268T (803G>C) liegt in der konservierten "Biotin-Carboxylase-Domäne" am 3'-Ende des Exon 8. Das Vorliegen eines Polymorphismus konnte durch Restriktionsanalyse (*Pml*I) bei 50 Kontrollindividuen ausgeschlossen werden (Abb. 3, S. 21). DNA der konsanguinen Eltern von KK stand nicht zur Verfügung, so daß keine Segregationsanalyse durchgeführt werden konnte. Die Mutation führt zum Austausch von Arginin durch Threonin. Auf Nukleotidebene wird die letzte Base des Exon 8 G803 durch ein C ersetzt. Bei Eukaryonten ist die letzte Base eines Exons in 73% ein G (Lewin, 1994). Dies spricht für die funktionelle Bedeutung des Guanins an dieser Position.

R268T (803G>T) ist konserviert zwischen Mensch und Maus, nicht jedoch zwischen Mensch und *A. thaliana* (Abb. 5, S. 29). Die Ursache hierfür könnte in unterschiedlichen Splicemechanismen bei Mensch und *A. thaliana* liegen. Man unterscheidet introndefinierte Splicingmodelle, die auf der Verbindung von im Intron gelegenen Splicesites mittels "small nuclear RNAs" (snRNA) basieren und exondefiniertes Splicing. Dabei binden Serin-Arginin-Proteine (SR-Proteine) an "exonic splicing enhancers" (ESE), um zwei nebeneinander liegende Exons zu verbinden, bevor das Intron entfernt wird (Berget, 1995; Mount, 2000; Reed et al., 2001; Tacke et al., 1999). Bei niederen Eukaryonten mit kurzen Introns scheint das introndefinierte Splicing, bei höheren Eukaryonten mit langen Introns das exondefinierte Splicing der entscheidende Mechanismus zu sein (Berget, 1995). Der Austausch R268T (803G>C) könnte also durch Einfluß auf das exondefinierte Splicing bei höheren Eukaryonten phänotypische Relevanz haben. Insgesamt kann von einer funktionellen Bedeutung der Mutation R268T (803G>C) ausgegangen werden. Ob diese durch Störung des Splicings bedingt ist, sollte in weiterführenden Studien mittels RNA-Sequenzierung untersucht werden. Auch eine Instabilität der RNA durch den Einfluss der Mutationen auf die RNA-Struktur wäre denkbar.

Die Missense-Mutation E99Q (295G>C) verursacht den Austausch von Glutamat durch Glutamin. Das Glutamat an Position 99 ist die letzte Aminosäure am 3'-Ende von Exon 4 und vollständig konserviert zwischen Mensch, Maus (GenBank EST accession no. AA275644), A. thaliana, Caenorhabditis elegans (GenBank accession no. P34385) und Drosophila melanogaster (GenBank accession no. AF57388). Der Aminosäurerest findet sich auch in den Carboxyltransferase-Untereinheiten anderer Biotin-abhängiger Enzyme wie der Propionyl-CoA: Carboxylase und der Methylmalonyl-CoA: Decarboxylase unterschiedlicher Spezies ((McKean, 2000), Domänen A). Kürzlich beschrieben Baumgartner et al. (Baumgartner, 2001) diesen Austausch bei zwei nicht-verwandten Patienten. Ein Polymorphismus wurde durch Untersuchung von 66 nordamerikanischen Kontrollindividuen ausgeschlossen. Expressionsstudien in durch SV-40-Transfektion stabilisierten Fibroblasten ergaben für das E99Q-Allel keine MCC-Aktivität. E99Q (295G>C) gilt somit als phänotypisch relevant. Bei dem Patienten LM stellte sich die Mutation in der genomischen Sequenzierung heterozygot, in der mRNA-Analyse jedoch homozygot dar. Es kann daher von einem Allelverlust ausgegangen werden, das heisst, ein Allel wird nicht transkribiert, es produziert also keine RNA und wird somit in der Sequenzierung nicht dargestellt. Die Durchsicht der Exonflankierenden Intronsequenzen ergab keine Splicesite-Mutation. In zukünftigen Untersuchungen sollte versucht werden, die Promotorregion und Introns weiter aufzuklären, da möglicherweise eine Mutation in diesem Bereich den Allelverlusst bewirkt haben könnte. Dies könnte auch zur vollständigen molekulargenetischen Klärung des Patienten KF führen (s.o.). Zusammenfassend ließen sich also bei allen untersuchten Patienten im MCCA- oder MCCB-Gen Mutationen nachweisen, die von pathologischer Relevanz zu sein scheinen und bei Kontrollindividuen nicht nachgewiesen wurden.

Tab. 6 Neue und beschriebene Mutationen im MCCAGen: Lokalisation,Änderung auf DNA-Ebene, Effekt auf Protein-Ebene und klinischer Ph notyp

Nr. Exon DNA-Ebene Protein-Ebene klinischer Phänotyp ⁴	
1 14 1604C>T $S535F^{1}$ (MA, KF) 2 Patienten asymptoma	atisch
2 19 2079 $del A$ V694 X^1 (MA) asymptomatisch	
3 11 1155A>C R385S ^{2,3} schwer/unbekannt	
4 11 1263_1264insG** Q421fsX ^{2*} 2 Patienten mild	
5 8 866C>T A289V ² mild	
6 13 1594G>C $D532H^2$ schwer	
7 12 1310T>C $L437P^2$ schwer	
8 10 974T>G $M325R^3$ schwer	

¹ Mutation in dem hier untersuchten Patientenkollektiv

² vorbeschriebene Mutation aus Baumgartner et al (Baumgartner, 2001)

³ vorbeschriebene Mutation aus Gallardo et al (Gallardo, 2001)

⁴,,mild": späte Manifestation, Symptome gut reversibel, allenfalls milde neurologische Defizite

"schwer": frühe Manifestation mit schwerer neurologischer Symptomatik

*bei Baumgartner bezeichnet als Q421 fs(+1)

**bei Baumgartner bezeichnet als 1264insG

Abb. 4 Sequenzvergleich von humaner MCC**a** mit humaner PCC**a** und orthologen Proteinen (Seite 27)

3-Methylcrotonyl-CoA: Carboxylase α-Untereinheit (*MCC*α) von *Homo sapiens* (Hs*MCC*α, GenBank-Eintrag: AF297332_1), *Caenorhabditis elegans* (Ce*MCC*α, GenBank-Eintrag: CAB 03038) und *Glycine max* (gm*MCC*α, T06360); humane PCCα (HsPCCα, GenBank-Eintrag: CAA32763). Das Alignement wurde mit der *multiple sequence alignement*-Funktion des Baylor College of Medicine Search Launchers auf der Internetseite des Human Genome Sequencing Centers (Houston, Tx) durchgeführt. Die Grafik wurde mit der Online-Version des Programms "Boxshade 3.21" erstellt. Das Programm ordnet alle Aminosäuren aufgrund ihrer biochemischen Eigenschaften einer von 9 Gruppen zu (FYW / ILVM / P / DE / GA / ST / NQ / C / RKH). Aminosäuren derselben Gruppe werden als ähnlich definiert. Ähnliche Aminosäuren in Hs/Ce/Gm werden grau und identische Aminosäuren werden schwarz hinterlegt. Außerdem wurden folgende Markierungen verwendet: ATP-Bindungsmotiv: durchgezogene Linie; Biotinbindungsmotiv: gestrichelte Linie; Biocytin: Pfeil; konservierter hydrophober Phenylalaninrest: Stern. Mutationen wurden mit Ziffern gekennzeichnet entsprechend der Nummerierung in Tabelle 6.

<pre>cd 1 MAASAVSVLLVAAERNEWHREPSLLLPPRTWVMRORTMKTTTATGRMITEVLIANRGEIACRVMRTAKKLGVOTVAVTSEADRNSMHVDMADEA cd 1</pre>	 36 YSIGPAPESQOSYLSMEKTIQVAKYSAA OA IHPGCGFLSENMEFAELCKOBGIIFIGPPESAIRDMGIKSTSKSIMAAGVPVVEGYHGEDQSDQC 36 YHIGPPLAAESYLNMDKIINSALRSGA OA IHPGYGFLSENAGFAEKCAOAGLVFIGPPESAIRDMGAKNVSKOIMEDAKVPVVKGFHGEDOSDAN 30 IRIGPPPARLSYLNMDKILNSALRSGA OA IHPGYGFLSENAGFAEKCAOAGLVFIGPPESAIRDMGAKNVSKOIMEDAKVPVVKGFHGEDOSDAN 30 IRIGPPPARLSYLNMDAINDAIKTIKKTRAQVHPGYGFLSENAGFASKLCEESGLTFIGPPAGAIRDMGAKNVSKOIMEDAKVPVVKGFHGEDOSDAN 31 VCVGPAPTSKSYLNMDAIMPAIKKTRAQAUHPGYGFLSENAGFARCLAABVVFIGPPTHAIQAMGDKSASKRIMGAAGVPVNTIPGEDGVVKDAEE 35 VCVGPAPTSKSYLNMDAIMPAIKKTRAQAUHPGYGFLSENKEFARCLAABVVFIGPDTHAIQAMGDKISSKLLAKKAEVNTIPGEDGVVKDAEE 	(1) <	386 IEEAPAPGIKSEVRKKLGERAVRAAKAVRYGAGTVEFINDSK-HNFCFMBMNTRLQVEHPVTEMITGTDLVEWQLRU 326 IEEAPAPNMEHDTRVKLGESAVRAAAVRYGYGAGTVEFINDPR-GEFYFMBMNTRLQVEHPVTEMITGOEDFIMGDWKLSNNLISGTDLVEWQLRV 3270 IEEAPAPNISADFRAQLGVAAVSAAKAVNYFNAGTVEFINDPR-GEFYFMBMNTRLQVEHPVTEMITGOEHFYTBGIDFIMGDWKLSNNLISGTDLVEWQLRV 3270 IEEAPAPNISADFRAQLGVAAVSAAKAVNYFNAGTVEFLVDSK-KNFYFMBMNTRLQVEHPVTEMITGOEFT	(3) 4) <	 457 QENTV GLPTNIDLELNLSGHPEFEAGNVHTDFIPQHHKQELESEKAAAKESICQAALGE	 3.37 ESSS GRELNISTERNMTLEDGK-NNVALAVEENHDGSLEMOIEDKTFQVLGNLSEGDCTELKCSVNGVASKAKLIILDEN		712 VEFERESDKRESE 05 55 VEFERESDKRESE 02 55 SVEACTONETTONETTONETTONETTONETTONETTONETTONE	
HS MCCC Ce MCCC Gm MCCC Hs PCCC	HS MCC(Ce MCC(Gm MCC(Hs PCC(HS MCC Ce MCC Gm MCC Hs PCC	HS MCC Ce MCC Gm MCC HS PCC	HS MCC Ce MCCC Gm MCCC HS PCCC	HS MCC Ce MCC Gm MCC HS PCC	HS MCC Ce MCC Gm MCC HS PCC	HS MCC Ce MCC Gm MCC Hs PCC	HS MCCC Gm MCCC Hs PCCC	

Nr.	Exon	DNA-Ebene	Protein-Ebene	klinischer Phänotyp ⁴
1	4	295G>C	E99Q ^{1,2}	schwer/2 Patienten mild (LM)
2	8	803G>C	R268T ¹	asymptomtomatisch
3	5	464G>A	R155Q ²	Mild
4	10	929C>G	P310R ²	mild
5	6	517dupT**	S173Xfs ^{2,3} *	2 Patienten mild
6	14	1309A>G	I437V ²	mild
7	6	577C>T	R193C ²	mild
8		IVS5-1G>A	IVS5-1G>A ²	mild
9	6	518C>T	S173L ²	schwer
10	11	1015G>A	V339M ²	schwer/schwer
11	5	499T>C	C167R ³	schwer
12	7	652G>A	A218T ³	schwer
13		281G>T ³	IVS3+5G>T ³	2 Patienten asymptomatisch

Tab. 7 Neue und beschriebene Mutationen im MCCBGen: Lokalisation, Änderung auf DNA-Ebene, Effekt auf Protein-Ebene und klinischer Ph notyp

¹ Mutation in dem hier untersuchten Patientenkollektiv

² vorbeschriebene Mutation aus Baumgartner et al (Baumgartner, 2001)

³ vorbeschriebene Mutation aus Gallardo et al (Gallardo, 2001)

⁴,,mild": späte Manifestation, Symptome gut reversibel, allenfalls milde neurologische Defizite

"schwer": frühe Manifestation mit schwerer neurologischer Symptomatik

* bei Baumgartner angeführt als S173fs(+1), in Gallardo bezeichnet alsD172fs

**bei Baumgartner angeführt als 518insT, in Gallardo bezeichnet als 517insT

Abb. 5 Sequenzvergleich von humaner MCC β mit humaner PCC β und orthologen Proteinen (Seite 29)

3-Methylcrotonyl-CoA: Carboxylase β -Untereinheit ($MCC\beta$) von Homo sapiens (Hs $MCC\beta$, GenBank-Eintrag: AAK49409) und Arabidopsis thaliana (At $MCC\beta$, GenBank-Eintrag: AAF35258), humane PCC β (Hs $MCC\beta$, NP000523) und $MCC\beta$ Mus musculus (Mm $MCC\beta$; AA274644, AW611294.1, w75384, AA050433.1, AA049241, AA940119, AI131996). Alignement und Grafik wurden erstellt wie bei Abbildung 4. Das wahrscheinlich der 3-Methylcrotonyl-CoA-Bindungsstelle entsprechende konservierte Motiv wurde durch eine durchgezogene Linie markiert. Identische Aminosäuren in Hs/Ce/Gm sind schwarz hinterlegt. Mutationen wurden mit Ziffern gekennzeichnet entsprechend der Nummerierung in Tabelle 7.

Bisher liegen Daten zur Mutationsanalytik des *MCC*-Mangels aus den kürzlich publizierten Studien von Baumgartner, Gallardo und dieser Studie vor. Insgesamt wurden in den drei Arbeiten 26 Patienten (16, 7, 4 Patienten mit einer Übereinstimmung, Tab. 6 und Tab. 7, S. 26 und S. 28) beschrieben. Die klinischen Angaben der in den anderen beiden Studien beschriebenen Patienten lassen nur eine grobe Einteilung in zwei Gruppen zu: einerseits schwer betroffene Patienen mit einer neonatalen bzw. frühkindlichen Manifestation und ausgeprägten neurologischen Defiziten, andererseits asymptomatische bis milde Verläufe mit guter Rückbildung der Symptomatik und nur diskreten oder fehlenden neurologischen Defiziten. Insgesamt wurden 14 Patienten mit mildem und 10 mit schwerem Verlauf molekulargenetisch untersucht, zu zwei Patienten wurden keine klinischen Daten angegeben. Alle vier hier untersuchten Patienten zeigen einen milden Verlauf (3 asymptomatisch), bei deutlich pathologischen biochemischen Markern. Alle beschriebenen Patienten haben eine Enzymrestaktivität < 10 % der Referenzpersonen und, soweit angegeben, deutlich pathologische Konzentrationen der biochemischen Marker (3-Hydroxyisovaleriansäure und 3-Methylcrotonylglycin im Urin, 3-Hydroxyisovaleryl-Carnitin im Blut) (Tab. 5, S. 20).

Nahezu alle Individuen weisen unterschiedliche Mutationen auf. Insgesamt wurden 21 verschiedene mutierte Allele beschrieben. Es handelt sich um 15 Basenaustausche (MCCA: 5, Tabelle 6; MCCB: 10, Tabelle 7), die zu einfachen Aminosäureaustauschen führen, 3 Basenaustausche (MCCA: 1; MCCB: 2), die das Splicing beeinflussen und 3 Insertionen (MCCA: 1; MCCB: 2), davon führen 4 (MCCA: 3; MCCB: 1) zum direkten Kettenabbruch. In beiden Genen wurden Sequenzvariationen etwa mit gleicher Häufigkeit gefunden. Es gibt weder Genregionen noch Basen, die bevorzugt von Mutationen betroffen sind (Abb. 4 und Abb. 5, S. 27 und S. 29). Eine Korrelation zwischen klinischem Verlauf und Genotyp zeichnet sich bislang nicht ab. So zeigt beispielsweise MA eine Mutation, die einen Kettenabbruch induziert (V694X; 2079delA), der Patient ist jedoch klinisch asymptomatisch. Dasselbe gilt für die Patienten mit den Mutationen Q421fsX (1263_1264insG) im MCCA Gen (Baumgartner, 2001) und S173Xfs (517dupT) im MCCB Gen (Baumgartner, 2001; Gallardo, 2001). Andererseits wurden Patienten mit einfachen Aminosäureaustauschen (R385S, 1155A>C; S173L, 518C>T) und schwersten klinischen Verläufen beschrieben (Baumgartner, 2001). E99Q, 295G>C, die Mutation des oligosymptomatischen Patienten LM, wurde auch bei einem Patienten mit schwerer neurologischer Symptomatik gefunden (Baumgartner, 2001). Der klinische Verlauf ist demzufolge wohl nicht in erster Linie von den Mutationen im *MCCA-* oder *MCCB-*Gen abhängig, sondern möglicherweise von modifizierenden, regulatorischen Genen und krisenauslösenden Faktoren wie proteinreiche Ernährung, Infekte und andere Zustände, die zu einer katabolen Stoffwechselsituation führen.

Zusammenfassend wurden bei allen biochemisch diagnostizierten Patienten mit *MCC*-Mangel Mutationen im *MCCA*- oder *MCCB*-Gen nachgewiesen, die bei gesunden Kontrollindividuen nicht gefunden wurden. Dies bestätigt die Bedeutung von *MCCA* und *MCCB* als humane Krankheitsgene. Alle Personen mit pathologischem Genotyp zeigten auch eine reduzierte *MCC*-Aktivität, so daß von einer relevanten Auswirkung der detektierten Mutationen auf die Proteinexpression ausgegangen werden kann. Basierend auf den Ergebnissen dieser Studie kann im Rahmen von Expressionsstudien die funktionelle Relevanz einzelner Mutation untersucht werden. Weitere Untersuchungen der Splicesites sollten ermöglichen, die Patienten LM und KF vollständig molekulargenetisch aufzuklären. Durch die frühzeitige Erfassung neuer Patienten im Neugeborenenscreening wird es möglich sein, den Einfluss exogener Faktoren wie Proteinzufuhr, Infekte und andere katabole Situationen auf den Krankheitsverlauf zu studieren und die phänotypische Bedeutung des Genotyps prospektiv zu untersuchen. Diese Studien sollten die Ursachen der ausgeprägten Heterogenität des klinischen Bildes bei *MCC*-Mangel klären und somit eine individuelle Beratung und Betreuung betroffener Familien ermöglichen.

5 Zusammenfassung

Der isolierte 3-Methylcrotonyl-CoA: Carboxylase (MCC) Mangel ist eine angeborene Störung im Abbau der Aminosäure Leucin. Es sind sowohl bis ins Erwachsenenalter asymptomatische als auch frühe letale Verläufe beschrieben. Die Ursachen des variablen Phänotyps sind nicht verstanden. Das Enzym ist zusammengesetzt aus α - und β -Untereinheiten. Die kodierenden humanen Gene MCCA und MCCB wurden kürzlich in unserer Arbeitsgruppe kloniert. Die Erweiterung des Neugeborenen-Screenings mittels Tandem-Massenspektrometrie in Bayern erbrachte die überraschende Erkenntnis, daß der *MCC* Mangel wahrscheinlich die häufigste organische Azidämie (etwa 1 : 40 000) darstellt und asymptomatische Mutationsträger existieren. Über Risiko und Prognose dieser metabolischen Störung ist derzeit noch keine Aussage möglich. In dieser Arbeit sollte daher eine Methode zur molekulargenetischen Charakterisierung von Patienten mit MCC Mangel etabliert werden, um den prognostischen Wert des Genotyps studieren und damit die Beratung und Betreuung der betroffenen Familien verbessern zu können. Es wurden 3 asymptomatische Patienten aus dem Neugeborenenscreening sowie ein Patient, der mit cerebralen Krampfanfällen aufgefallen war, untersucht. Die Diagnose war bei allen Patienten durch Bestimmung der typischen Metabolite in Urin (3-Hydroxyisovaleriansäure und 3-Methylcrotonylglycin) und Blut (3-Hydroxyisovaleryl-Carnitin) gestellt worden.

Für die molekulargenetische Diagnostik des *MCC* Mangels wurde die Mutationsanalyse auf genomischer und cDNA Ebene für *MCCA* und *MCCB* etabliert. Es wurden zwei Patienten mit veränderten Allelen im *MCCA*- und zwei Patienten mit Mutationen im *MCCB*-Gen identifiziert. Ein Patient war compound-heterozygot für die Missense-Mutation S535F (1604C>T) und die Nonsense-Mutation V694X (2079delA) im *MCCA* Gen. Bei einem zweiten Patienten wurde S535F (1604C>T) heterozygot nachgewiesen. Ein Patient mit konsanguinen Eltern war homozygot für die Missense-Mutation S535F (1604C>T). Ein weiterer wies die Missense-Mutation E99Q (295G>C, cDNA: homozygot; gDNA: heterozygot) mit einen Allelverlust auf. In zwei Fällen werden zusätzliche Mutationen in der Promotorregion bzw. in einem Intron angenommen. Für alle gefundenen Mutationen kann von phänotypischer Relevanz ausgegangen werden. Drei davon waren bisher unbekannt und wurden von uns erstbeschrieben. Unsere Ergebnisse bestätigen die Rolle von *MCCA* und *MCCB* als humane Krankheitsgene. Die hier etablierte Mutationsanalyse stellt eine

zielführende Methode zur molekulargenetischen Charkterisierung von Patienten mit *MCC* Mangel dar und bildet damit die Grundlage für Expressionsstudien und Studien zur Untersuchung der Genotyp-Phänotypkorrelation.

- 6 Literaturverzeichnis
- Bannwart, C., Wermuth, B., Baumgartner, R., Suormala, T. & Weismann, U. N. Isolated biotin-resistant deficiency of 3-methylcrotonyl-CoA carboxylase presenting as a clinically severe form in a newborn with fatal outcome. *J Inherit Metab Dis* 15, 863-8 (1992).
- Bartlett, K., Bennett, M. J., Hill, R. P., Lashford, L. S., Pollitt, R. J. & Worth, H. G. Isolated biotin-resistant 3-methylcrotonyl CoA carboxylase deficiency presenting with lifethreatening hypoglycaemia. J Inherit Metab Dis 7, 182 (1984).
- Baumgartner, M. R., Almashanu, S., Suormala, T., Obie, C., Cole, R. N., Packman, S., Baumgartner, E. R. & Valle, D. The molecular basis of human 3-methylcrotonyl-CoA carboxylase deficiency. *J Clin Invest* 107, 495-504 (2001).
- Beemer, F. A., Bartlett, K., Duran, M., Ghneim, H. K., Wadman, S. K., Bruinvis, L. & Ketting, D. Isolated biotin-resistant 3-methylcrotonyl-CoA carboxylase deficiency in two sibs. *Eur J Pediatr* 138, 351-4 (1982).
- Berget, S. M. Exon recognition in vertebrate splicing. J Biol Chem 270, 2411-4. (1995).
- Cotton, R. G. & Horaitis, O. Quality control in the discovery, reporting, and recording of genomic variation. *Hum Mutat* **15**, 16-21. (2000).
- Elpeleg, O. N., Havkin, S., Barash, V., Jakobs, C., Glick, B. & Shalev, R. S. Familial hypotonia of childhood caused by isolated 3-methylcrotonyl-coenzyme A carboxylase deficiency. *J Pediatr* **121**, 407-10 (1992).
- Gallardo, M. E., Desviat, L. R., Rodríguez, J. M., Esparza-Gordillo, J., Pérez-Cerdá, C., Pérez, B., Rodríguez-Pombo, P., Criado, O., Sanz, R., Morton, D. H., Gibson, K. M., Thuy, P. L., Ribes, A., Rodríguez de Córdoba, S., Ugarte, M. & Penalva, M. Á. The molecular basis of 3-methylcrotonylglycinuria, a disorder of leucine catabolism. *Am J Hum Genet* 68, 334-346 (2001).
- Gibson, K. M., Bennett, M. J., Naylor, E. W. & Morton, D. H. 3-Methylcrotonyl-coenzyme A carboxylase deficiency in Amish/Mennonite adults identified by detection of increased acylcarnitines in blood spots of their children. *J Pediatr* **132**, 519-23 (1998).
- Gitzelmann, R., Steinmann, B., Niederwieser, A., Fanconi, S., Sourmala, T. & Baumgartner, R. Isolated (biotin-resistant) 3-methylcrotonyl-CoA carboxylase deficiency presenting at age 20 months with sopor, hypoglycaemia and ketoacidosis. *J Inherit Metab Dis* 10, 290-292 (1987).
- Hector, M. L., Cochran, B. C., Logue, E. A. & Fall, R. R. Subcellular localization of 3methylcrotonyl-coenzyme A carboxylase in bovine kidney. Arch Biochem Biophys 199, 28-36 (1980).
- Holzinger, A., Röschinger, W., Lagler, F., Mayerhofer, P. U., Lichtner, P., Kattenfeld, T., Thuy, P. L., Nyhan, W. L., Koch, H. G., Muntau, A. C. & Roscher, A. A. Cloning of the human *MCCA* and *MCCB* genes and mutations therein reveal the molecular cause of 3-methylcrotonyl-CoA carboxylase deficiency. *Hum Mol Genet* 10, 1299-1306 (2001).
- Ihara, K., Kuromaru, R., Inoue, Y., Kuhara, T., Matsumoto, I., Yoshino, M. & Fukushige, J. An asymptomatic infant with isolated 3-methylcrotonyl-coenzyme: a carboxylase deficiency detected by newborn screening for maple syrup urine disease. *Eur J Pediatr* 156, 713-5 (1997).
- Jitrapakdee, S. & Wallace, J. C. Structure, function and regulation of pyruvate carboxylase. *Biochem J* **340**, 1-16. (1999).

- Kobori, J. A., Johnston, K., Sweetman, L., Schmidt, K., Jurecki, E., Wolf, B., Goodman, S. & Packman, S. Isolated 3-methylcrotonyl CoA carboxylase deficiency presenting as a Reyes-like syndrome. *Pediatr Res* **25**, 142A (Abstract) (1989).
- Lau, D. P. & Fall, R. R. 3-Methylcrotonyl-CoA carboxylase from bovine kidney. *Methods Enzymol* **71**, 800-4 (1981).
- Lau, E. P., Cochran, B. C. & Fall, R. R. Isolation of 3-methylcrotonyl-coenzyme A carboxylase from bovine kidney. *Arch Biochem Biophys* **205**, 352-9 (1980).
- Layward, E. M., Tanner, M. S., Pollitt, R. J. & Bartlett, K. Isolated biotin-resistant 3methylcrotonyl-CoA carboxylase deficiency presenting as a Reye syndrome-like illness. *J Inherit Metab Dis* **12**, 339-40 (1989).
- Lehnert, W., Niederhoff, H., Suormala, T. & Baumgartner, E. R. Isolated biotin-resistant 3methylcrotonyl-CoA carboxylase deficiency: long-term outcome in a case with neonatal onset. *Eur J Pediatr* **155**, 568-72 (1996).
- Lewin, B. in *Genes V* (ed. Press, O. U.) 914 (Oxford University Press Inc., Oxford New York Tokyo, 1994).
- Lynen, F., Knappe, J., Lorch, E., Jutting, G., Ringelmann, E. & Lachance, J. P. Zur biochemischen Funktion des Biotins. II. Reinigung und Wirkungsweise der β-Methylcrotonyl-Carboxylase. *Biochem Z* **335**, 123 (1961).
- McKean, A. L., Ke, J., Song, J., Che, P., Achenbach, S., Nikolau, B. J. & Wurtele, E. S. Molecular characterization of the non-biotin-containing subunit of 3-methylcrotonyl-CoA carboxylase. *J Biol Chem* **275**, 5582-90 (2000).
- Miller, S. A., Dykes, D. D. & Polesky, H. F. A simple salting out procedure for extracting DNA from human nucleated cells. *Nucleic Acids Res* **16**, 1215 (1988).
- Mount, S. M. Genomic sequence, splicing, and gene annotation. *Am J Hum Genet* **67**, 788-92. (2000).
- Mourmans, J., Bakkeren, J., de Jong, J., Wevers, R., van Diggelen, O. P., Suormala, T., Baumgartner, R. & Wendel, U. Isolated (biotin-resistant) 3-methylcrotonyl-CoA carboxylase deficiency: four sibs devoid of pathology. *J Inherit Metab Dis* 18, 643-645 (1995).
- Mullis, K., Faloona, F., Scharf, S., Saiki, R., Horn, G. & Erlich, H. Specific enzymatic amplification of DNA in vitro: the polymerase chain reaction. *Cold Spring Harb Symp Quant Biol* **51 Pt 1**, 263-73 (1986).
- Mullis, K. B. & Faloona, F. A. Specific synthesis of DNA in vitro via a polymerase-catalyzed chain reaction. *Methods Enzymol* **155**, 335-50 (1987).
- Murayama, K., Kimura, M., Yamaguchi, S., Shinka, T. & Kodama, K. Isolated 3methylcrotonyl-CoA carboxylase deficiency in a 15-year-old girl. *Brain Dev* **19**, 303-305 (1997).
- Murtif, V. L. & Samols, D. Mutagenesis affecting the carboxyl terminus of the biotinyl subunit of transcarboxylase. Effects on biotination. *J Biol Chem* **262**, 11813-6. (1987).
- Naylor, E. W. & Chace, D. H. Automated tandem mass spectrometry for mass newborn screening for disorders in fatty acid, organic acid, and amino acid metabolism. *J Child Neurol* **14**, S4-8 (1999).
- Pearson, M. A., Aleck, K. A. & Heidenreich, R. A. Benign clinical presentation of 3methylcrotonylglycinuria. *J Inherit Metab Dis* 18, 640-641 (1995).
- Ranieri, E., Gerace, R., Bartlett, B., Barnard, K. & Fletcher, J. M. The introduction of tandem mass spectrometry into the South Australian neonatal screening program: benefits and costs. *J Inherit Metab Dis* 23, 2 (2000).

- Reed, R. & Magni, K. A new view of mRNA export: separating the wheat from the chaff. *Nat Cell Biol* **3**, E201-4. (2001).
- Rolland, M. O., Divry, P., Zabot, M. T., Guibaud, P., Gomez, S., Lachaux, A. & Loras, I. Isolated 3-methylcrotonyl-CoA carboxylase deficiency in a 16-month-old child. J Inherit Metab Dis 14, 838-9 (1991).
- Roscher, A. A., Liebl, B., Fingerhut, R. & Olgemöller, B. Prospective study of MS-MS newborn screening in Bavaria, Germany. Interim results. *J Inherit Metab Dis* 23, 4 (2000).
- Röschinger, W., Millington, D. S., Gage, D. A., Huang, Z. H., Iwamoto, T., Yano, S., Packman, S., Johnston, K., Berry, S. A. & Sweetman, L. 3-Hydroxyisovalerylcarnitine in patients with deficiency of 3-methylcrotonyl CoA carboxylase. *Clin Chim Acta* 240, 35-51 (1995).
- Samols, D., Thornton, C. G., Murtif, V. L., Kumar, G. K., Haase, F. C. & Wood, H. G. Evolutionary conservation among biotin enzymes. *J Biol Chem* **263**, 6461-4. (1988).
- Sanger, F., Nicklen, S. & Coulson, A. R. DNA sequencing with chain-terminating inhibitors. *Proc Natl Acad Sci U S A* **74**, 5463-7 (1977).
- Smith, W. E., Muenzer, J., Frazier, D., Millington, D. S., Kishnani, P. S., McDonald, M. & Koeberl, D. D. Evaluation of elevated hydroxyisovalerylcarntine in the newborn screen by tandem mass spectrometry. *Am J Hum Genet* 67, 292 (2000).
- Song, J., Wurtele, E. S. & Nikolau, B. J. Molecular cloning and characterization of the cDNA coding for the biotin-containing subunit of 3-methylcrotonoyl-CoA carboxylase: identification of the biotin carboxylase and biotin-carrier domains. *Proc Natl Acad Sci U S A* **91**, 5779-83 (1994).
- Steen, C., Baumgartner, E. R., Duran, M., Lehnert, W., Suormala, T., Fingerhut, S. R., Stehn, M. & Kohlschutter, A. Metabolic stroke in isolated 3-methylcrotonyl-CoA carboxylase deficiency. *Eur J Pediatr* **158**, 730-3 (1999).
- Tacke, R. & Manley, J. L. Determinants of SR protein specificity. *Curr Opin Cell Biol* **11**, 358-62. (1999).
- Tsai, M. Y., Johnson, D. D., Sweetman, L. & Berry, S. A. Two siblings with biotin-resistant 3-methylcrotonyl-coenzyme A carboxylase deficiency. *J Pediatr* **115**, 110-3 (1989).
- Tuchman, M., Berry, S. A., Thuy, L. P. & Nyhan, W. L. Partial methylcrotonyl-coenzyme A carboxylase deficiency in an infant with failure to thrive, gastrointestinal dysfunction, and hypertonia. *Pediatrics* **91**, 664-6 (1993).
- van Hove, J. L., Rutledge, S. L., Nada, M. A., Kahler, S. G. & Millington, D. S. 3-Hydroxyisovalerylcarnitine in 3-methylcrotonyl-CoA carboxylase deficiency. J Inherit Metab Dis 18, 592-601 (1995).
- Visser, G., Suormala, T., Smit, G. P., Reijngoud, D. J., Bink-Boelkens, M. T., Niezen-Koning, K. E. & Baumgartner, E. R. 3-methylcrotonyl-CoA carboxylase deficiency in an infant with cardiomyopathy, in her brother with developmental delay and in their asymptomatic father. *Eur J Pediatr* **159**, 901-904 (2000).
- Wang, X., Wurtele, E. S., Keller, G., McKean, A. L. & Nikolau, B. J. Molecular cloning of cDNAs and genes coding for beta-methylcrotonyl-CoA carboxylase of tomato. *J Biol Chem* 269, 11760-8 (1994).
- Weaver, L. M., Lebrun, L., Franklin, A., Huang, L., Hoffman, N., Wurtele, E. S. & Nikolau,
 B. J. Molecular cloning of the biotinylated subunit of 3-methylcrotonyl-coenzyme A carboxylase of Arabidopsis thaliana. *Plant Physiol* 107, 1013-4 (1995).

- Wiesmann, U. N., Suormala, T., Pfenninger, J. & Baumgartner, E. R. Partial 3methylcrotonyl-CoA carboxylase deficiency in an infant with fatal outcome due to progressive respiratory failure. *Eur J Pediatr* **157**, 225-9 (1998).
- Yap, S., Monavari, A. A., Thornton, P. & Naughten, E. Late-infantile 3-methylcrotonyl-CoA carboxylase deficiency presenting as global developmental delay. *J Inherit Metab Dis* 21, 175-6 (1998).

7 Veröffentlichungen

Originalarbeiten

- Schuster T., Lagler F., Pfluger T., Dietz H. G., Joppich I. A computerized vector manometry and MRI study in children following posterior sagittal anorectoplasty Pediatr Surg Int 2001; 17(1): 48-53.
- Holzinger A., Röschinger W., Lagler F., Mayerhofer P. U., Lichtner P., Kattenfeld T., Thuy L. P., Nyhan W. L., Koch H. G., Muntau A. C., Roscher A. A. Cloning of the human *MCCA* and *MCCB* genes and mutations therein reveal the molecular cause of 3-methylcrotonyl-CoA: carboxylase deficiency Hum Mol Genet 2001; 10: 1299-1306.

Abstracts

- Lagler F., Muntau A. C., Beblo S., Röschinger W., Linnebank M., Fowler B., Koch H. G., Roscher A.A.
 Hypermethioninemia and hyperhomocysteinemia in methionine adenosyltransferase I/III deficiency. VIII International Congress of Inborn Errors of Metabolism, Cambridge 13. bis 17.09.2000
 J Inherit Metab Dis, 2000, 23, Suppl. 1: 68
- Lagler F., Muntau A. C., Pudenz P., Reinhardt R. Churg-Strauss-Syndrom unter Montelukast-Therapie?
 49. Jahrestagung der Süddeutschen Gesellschaft für Kinderheilkunde und Jugendmedizin in Verbindung mit der Süddeutschen Gesellschaft für Kinderchirurgie in München Monatsschrift für Kinderheilkunde 2000; 148: 452
- F. Lagler, J. W. Taanman, M. Jaksch, W. Röschinger, A. C. Muntau Schwere neonatale Leberfunktionsstörung mit Encephalopathie: Mitochondriales DNA-Depletionssyndrom durch eine neue Mutation im DGUOK-Gen Jahrestagung der Arbeitsgememeinschaft für Pädiatrische Stoffwechselstörungen 2002 in Fulda.
- Holzinger A., Röschinger W., Lagler F., Mayerhofer P. U., Kattenfeld T., Le Phuc T., Nyhan W. L., Koch H. G., Muntau A. C., Roscher A. A. The molecular basis of 3-methyl-crotonyl-CoA: carboxylase deficiency 38. Arbeitstagung für Pädiatrische Forschung, Göttingen 21.-22.2.2002. Eur J Ped, 2001, 161:R5
- Muntau A. C., Habich H., Demmelmair H., Hoffmann B., Röschinger W., Maier E. M., Lagler F., Koletzko B., Roscher A. A.
 High frequency of tetrahydrobiopterin (BH₄)-responsive phenylalanine hydroxylase deficiency: new implications for treatment.

38. Arbeitstagung für Pädiatrische Forschung, Göttingen 21.-22.2.2002 Eur J Ped, 2001, 161:R6

- Röschinger W., Fingerhut R., Muntau A. C., Maier E. M., Lagler F., Hiedl S., Vosberg K., Liebl B., Olgemöller B., Roscher A. A.
 Verzweigtketten-Aminoazidopathien im Neugeborenen-Screening
 7. Pädiatrisches Stoffwechsel-Symposium, Innsbruck, 18. bis 20. April 2002
- Maier E. M., Krone N., Busch U., Muntau A. C., Röschinger W., Hiedl S., Lagler F., Fingerhut R., Olgemöller B., Roscher A. A., Liebl B.
 Medium chain acyl-CoA dehydrogenase (MCAD) mutations in patients identified by prospective MS/MS-based newborn screening in Bavaria 5th Meeting of the International Society for Neonatal Screening, 26.-29.6.2002, Genova, Italien

8 Danksagung

Herzlich bedanken möchte ich mich bei Herrn Prof. Dr. Adelbert Roscher für die Erweisung des Vertrauens zur Bearbeitung dieses Themas sowie die freundliche Unterstützung bei der Entstehung der Promotionsarbeit.

Ich danke auch Dr. med. Andreas Holzinger, der durch die Klonierung des *MCCA*- und *MCCB*-Gens die Grundlage für meine Untersuchungen gelegt hat und mir die Möglichkeit gab, auf seinen Ergebnissen aufzubauen.

Ein besonders großes Dankeschön möchte ich an Dr. med. Ania Carolina Muntau-Heger und Dr. med. Wulf Röschinger richten, die mir Freunde und Mentoren waren, wie man sie nur ganz selten findet. Sie nahmen nicht nur ihren *"stilpolizeilichen"* Auftrag war, sondern fanden trotz höchster Belastung stets Zeit und Energie, um mich in allen Aspekten der wissenschaftlichen Tätigkeit zu beraten und zu fördern.

Auch bei den anderen Mitgliedern der "*Molbiolbalintgruppe*" möchte ich mich ganz herzlich bedanken:

Esther Maier, die nicht nur ihrem Ruf als "*Queen of the DNA*" gerecht wurde, sondern auch als gute Freundin mit Powerbalints so manches Tief abgefangen hat;

Dipl. biol. Peter Meyerhofer, der durch sein methodisches *know how* und seine ruhige Art großen Anteil daran hatte, dass auch schwierige Situationen erfolgreich gemeistert werden konnten;

Dr. med. Nils Krone, der meine Arbeitsaquisitionsneigung therapeutisch zu beeinflussen versuchte und

Dipl. biol. Tanja Kattenfeld, die mir eine stets gutgelaunte Mitstreiterin beim "Herhügeln" war.

Mein herzlichster Dank gilt meiner Freundin Caren Deitermann, die große Geduld aufbrachte und auf vieles verzichten musste, meinen Eltern und meiner Schwester Veronika. Was Ihr für mich getan habt, kann ich nicht formulieren, nur versuchen, zu zeigen. Vielen Dank.

9 Lebenslauf

Name	Florian Bartholomäus Lagler					
04.02.72	Geboren in Berchtesgaden					
1991	Abitur (Gymnasium Berchtesgaden)					
1991-1992	Zivildienst, Rettungsdienst, Bayer. Rotes Kreuz (BRK)					
1991-1996	Rettungssanitäter im Rettungsdienst des BRK					
1992-1998	Studium der Humanmedizin an der					
	Ludwig-Maximilians-Universität München					
1994-1997	Famulaturen in der Schweiz, Südafrika und Deutschland					
1995-1997	Wissenschaftliche Hilfskraft, Anatomische Anstalt der LMU					
1998-1999	Praktisches Jahr:					
	Kinderchirurgie Dr. v . Haunersches Kinderspital und					
	Hospital for Sick Children, Toronto, Kanada					
	Pädiatrie Dr. von Haunersches Kinderspital					
	Innere Medizin Universit tsklinik Innsbruck, Österreich					
1999	Ärztliche Prüfung					
1999-2001	Arzt im Praktikum am Dr. von Haunerschen Kinderspital der LMU					

Seit 15.01.2001 Assistenzarzt am Dr. von Haunerschen Kinderspital