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2 Abstract 
The forebrain is generated by distinct sets of precursor cells that express specific transcription 

factors as well as secreted signaling factors in a time- and region-dependent manner. The 

distribution of these factors is similar in the avian and mammalian forebrains.  

In this work I aimed to examine the molecular mechanisms regulating telencephalic patterning. 

Therefore, I first compared the expression pattern of homeobox transcription factors, known to play 

crucial roles in regionalization of the forebrain, such as Emx1 and Emx2. This analysis showed 

particularly intriguing domains in the developing telencephalon expressing either only Emx2, such 

as the dorso-ventricular ridge (DVR) and the cortical hem, both genes, such as the hippocampus and 

the pallium or none, such as the subpallium and the choroid plexus (ChP). Taken together with 

other expression patterns I could conclude that the DVR, the nature of which was debated for a long 

period of time, displays a dorsal nature and that the pallial/subpallial boundary is located between 

DVR and subpallium.  

Next, I aimed to examine the role of Emx1 and Emx2 in the specification of these distinct regions. 

Therefore, I used a misexpression approach targeting Emx1 and Emx2 into the anlage of the 

choroid plexus (ChP) where these transcription factors are normally not expressed. In this region 

normal development was disturbed. The normally non-neuronal, thin morphology of the ChP with a 

low rate of proliferation and the characteristic expression of Otx2 and Bmp7 was lost. Instead, the 

rate of proliferation and the thickness of the tissue were increased and rather displayed “hem-like” 

properties. Instead, the Otx2-positive region of the ChP was shifted beside the region of ectopic 

Emx1/2-expression and exhibited intermediate properties, with features of ChP-tissue like Otx2 and 

Bmp7-expression, but also features of the cortical hem with a higher rate of proliferation and 

increased thickness of tissue.  

Thus, Emx1 and Emx2 play a key role in instructing dorsal neuroepithelium to proliferate. The 

misexpression of these genes is sufficient to convert non-neuronal ChP-tissue into neuroepithelium. 

Ectopic expression of Emx1/2 in the dorsal pallium, its normal region of expression, also displayed 

alterations. Ectopic Emx-expression blocked the expression of the neurogenic transcription factor 

Pax6 and suppressed neuronal differentiation. This change of neuronal differentiation could be 

caused by reduction of Pax6.  

Taken together, Emx1 and Emx2 are two potent factors that can change regional identity, enhance 

proliferation and block neuronal differentiation.  
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3 Zusammenfassung 
Das Vorderhirn wird von bestimmten Populationen von Vorläuferzellen gebildet, die 

unterschiedliche Transkriptionsfaktoren und morphogenetische Faktoren in einem 

charakteristischen räumlichen und zeitlichen Muster exprimieren. Diese Transkriptionsfaktoren sind 

im Vorderhirn von Maus und Huhn ähnlich verteilt.  

Ziel dieser Arbeit war die Untersuchung von molekularen Mechanismen welche die Musterbildung 

im Telencephalon regulieren. Dafür habe ich zunächst die Expressionsmuster von Homeobox  

Transkriptionsfaktoren, wie Emx1 und Emx2, verglichen, die eine entscheidende Rolle bei der 

Regionalisierung des Vorderhirns spielen. Die Analyse zeigte eine regionsabhängige Expression 

von Emx1 und Emx2. Im Dorso-ventricular ridge (DVR) und im kortikalen Saum wurde 

ausschließlich Emx2 exprimiert, während im Hippocampus und im Pallium Emx1 und Emx2 

exprimiert wurden. Im Subpallium oder Choroiden Plexus (ChP) hingegen wurde weder Emx1- 

noch Emx2- Expression detektiert. Die Region des DVR, dessen Zuordnung lange umstritten war, 

konnte aufgrund von Expressionsanalysen weiterer Transkriptionsfaktoren dem Pallium zugeordnet 

werden. Die palliale/supalliale Grenzregion des Hühnchenvorderhirns befindet sich somit zwischen 

DVR und Subpallium.  

Neben der Analyse der Expressionsmuster von Emx1 und Emx2 wurde auch deren Rolle bei der 

Spezifizierung dieser speziellen Gehirnregionen untersucht. Dafür habe ich Misexpressions-

Experimente durchgeführt. Emx1 und Emx2 wurden in die Anlage des Choroiden Plexus (ChA) 

eingebracht, eine Region im Telencephalon, die normalerweise keines dieser Gene exprimiert. Die 

anschließende Untersuchung zeigte, dass die normale Entwicklung des ChP nicht mehr stattfinden 

konnte. Der ChP, ein nicht-neuronales, schwach proliferierendes Gewebe, in dem unter anderem 

Otx2 und Bmp7 exprimiert werden, konnte durch die Überexpression von Emx1 und Emx2 

missspezifiziert werden. Die Expression von Otx2 und Bmp7 wurde unterdrückt, die 

Proliferationsrate stieg an und die Dicke des Gewebes nahm zu, was den Eigenschaften des 

kortikalen Saums entsprach. Die Otx2-positive ChP-Region wurde neben die ektopisch Emx1/2- 

exprimierenden Region verschoben. Dort zeigte sich ein intermediärer Phänotyp, der sowohl durch 

Eigenschaften von ChP-Gewebe (Otx2- und Bmp7-Expression) wie auch von Saumgewebe 

(erhöhte Proliferationsrate und Gewebedicke) charakterisiert war.  

Somit konnte gezeigt werden, dass Emx1 und Emx2 eine Schlüsselrolle bei der Instruktion zur 

Proliferation von dorsalem Neuroepithelium spielen. Die Misexpression dieser Gene ist ausreichend 

um nicht-neuronales ChP-Gewebe in Neuroepithelium umzuwandeln.  
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Weiterhin konnte durch Überexpression von Emx1 und Emx2 im Pallium, wo diese Gene 

normalerweise exprimiert werden, eine Suppression des dorsalen neurogenen Transkriptionsfaktors 

Pax6 erzielt werden. Der Verlust von Pax6 ist die mögliche Ursache für die verminderte 

Differenzierung zu Neuronen. Die Ergebnisse dieser Arbeit zeigen, dass Emx1 und Emx2 zwei 

potente Faktoren sind, die die Regionalisierung beeinflussen, die Proliferation erhöhen und 

außerdem einer neuronalen Differenzierung entgegenwirken. 
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4 Introduction 
The vertebrate forebrain is one of the most complex but also most fascinating biological structures 

and we are still far away from understanding how its complicate organization is achieved during 

development. However, the molecular mechanisms underlying its formation are very similar in all 

developing tissues.   

 

4.1 General development of the regions of the central nervous system 

The central nervous system (CNS) develops from the neural plate, a structure of ectodermal origin 

receiving inductive signals from the mesoderm. The edges of this neural plate fold up and close to 

form the neural tube (Fig.1). The neural tube then starts to develop along the anterior/posterior axis. 

From the anterior (rostral) pole, the differentiation proceeds to the posterior (caudal) pole. At the 

rostral end three primary vesicles develop that will later give rise to the forebrain (prosencephalon), 

midbrain (mesencephalon) and hindbrain (rhombencephalon; Fig.2). The forebrain further 

differentiates into the diencephalon and the telencephalon at the most rostral position with its 

characteristic two hemispheres. 

 

4.2 Patterning and regionalization  

The formation of the nervous system has to be strictly controlled to allow a temporally and spatially 

correct generation of different cell types. Thus, the nervous system develops along two axes: the 

anterior/posterior (A/P) and the dorso/ventral (D/V) axis. Regionalization along the A/P axis 

divides the neural tube into four major divisions: forebrain, midbrain, hindbrain and spinal cord, 

which can already be detected at neural plate stage. Later in development D/V patterning 

establishes distinct regions that develop dorsally and become delineated from those differentiating 

ventrally. In this way cells acquire a distinct regional identity. The specification of regions along the 

A/P and D/V axis is controlled by the action of organizing signals (Fig.3; Jessell, 2000; Lumsden 

and Krumlauf, 1996; Rubenstein et al., 1998; Stern, 2001; Wolpert, 1969).  

 

These organizing signals are secreted molecules belonging to the families of Fibroblast growth 

factors (Fgfs), Sonic hedgehog (Shh), Wingless-Int proteins (Wnts) and Bone morphogenic proteins 

(Bmps): 
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 Wnt-molecules are cysteine-rich secreted glycoproteins that regulate multiple processes during 

development, like proliferation and cell fate in the dorsal neural tube (Ikeya et al., 1997; Lee and 

Jessell, 1999; Megason and McMahon, 2002; Wodarz and Nusse, 1998). Nineteen Wnt-genes have 

been identified so far (Cadigan and Nusse, 1997; Nelson and Nusse, 2004). 

Bmps belong to the transforming growth factors-β (TGF-β) superfamily and are known to be 

important mediators for the development of the nervous system. They are involved in processes like 

cell proliferation, differentiation and apoptosis. By structural similarities the vertebrate Bmps are 

subdivided into the dpp family (Bmp2, 4) and the 60A family (Bmp5-8) and the more distant 

activin (Zhao, 2003). Several Bmps are detectable in the non-neural ectoderm adjacent to the neural 

plate and later on in the dorsal midline of the neural tube (Tanabe and Jessell, 1996). 

Fgfs constitute a large family of polypeptide growth factors and are involved in diverse processes, 

such as cell proliferation, migration, differentiation, cell survival, chemotaxis and apoptosis 

(Bottcher and Niehrs, 2004; Dono, 2003; Ford-Perriss et al., 2001). 

Shh, a member of the Hedgehog family of intercellular signaling molecules has been shown to 

regulate cell fate specification, cell proliferation and cell survival mainly in the ventral neural tube 

(Ingham and McMahon, 2001). 

 

At neural plate stage two local signaling centers have been identified to play a role for A/P 

patterning: the anterior neural ride (ANR) and the mid/hindbrain junction (isthmus; Houart et al., 

1998; Joyner, 1996; Joyner et al., 2000; Shimamura and Rubenstein, 1997). The ANR controls 

forebrain development and the isthmus is involved in the formation of midbrain and cerebellum. 

Fgf3, 8 (Fig.3A; Crossley et al., 2001), Chordin and Noggin are factors that are secreted from the 

ANR (Fig.3A) and promote anterior fate by regulating the expression of transcription factors (TFs) 

like Bf1, Nkx2.2, Nkx2.1, Otx1 and Emx2 that are involved in the specification of the anterior 

forebrain (Fig.3C; Rubenstein et al., 1998; Shimamura et al., 1995). The graded expression of 

several other Wnt- and Bmp-antagonists allows stronger Wnt- and Bmp-signaling in the caudal 

region (Chapman et al., 2004; Chapman et al., 2002; Wilson and Houart, 2004). 

As development proceeds, the neural plate folds up and gives rise to the neural tube. Regions 

located medially in the neural plate are now located ventrally and regions located at the lateral edge 

move into the dorsal region, giving rise to two new signaling centers the roof plate dorsally and the 

floor plate ventrally (Fig.3B,D). Roof plate and floor plate regionalize the neural tube into discrete 

domains along the D/V axis through the action of secreted morphogenetic factors (Fig.3B). In the 

forebrain this results in the formation of the subpallium ventrally and the pallial domains dorsally. 
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The expression of members of the Bmp- and Wnt-gene family (Altmann and Brivanlou, 2001; 

Furuta et al., 1997; Lee and Jessell, 1999) from the roof plate have been suggested to play roles in 

the specification of dorsal fate by inducing transcription factors like Emx-genes and Ngn2 (Fig.3D; 

Wilson and Rubenstein, 2000). Signals secreted from the floorplate, like Shh induce ventral 

characteristics by regulating the expression of Nkx 2.1, Dlx-genes and Mash1 (Fig.3D; Lumsden 

and Krumlauf, 1996; Tanabe and Jessell, 1996).  

Thus, by signaling from those organizing centers a distinct pattern of transcription factors is 

established that controls the generation of distinct regions in the forebrain. This finally results in an 

architecture, axonal connectivity and a distribution of cell types characteristic for this area. The 

precise molecular mechanisms being involved in this multi-step process are still not fully 

understood and need to be further analyzed. The telencephalic signaling centers, which are involved 

in regulating the basic patterning, are very similar in mouse and chick and therefore hint to a 

general mechanism in both species. 

 

4.3 Regions of the forebrain 

In this way the distinct regions of the forebrain are specified and delineated from each other. In 

vertebrates each cerebral hemisphere of the forebrain consists of the dorsal pallium (avian 

wulst/mammalian cortex), the ventral subpallium (mammalian striatum: composed of medial 

ganglionic eminence (MGE) and lateral ganglionic eminence (LGE)) and midline-structures that 

bifurcate the brain into two hemispheres. Birds possess an additional structure called the dorso-

ventricular ridge (DVR; ventral pallium) located between the pallium (avian wulst) and the 

subpallium (Fig.4, 5).  

 

While the main structure for information processing resides in mammals and birds in the 

telencephalon, these vertebrate classes use different telencephalic regions of which the homology is 

not clear. The mouse forebrain mainly consists of two major parts, the layered pallium (cortex), 

which processes sensory and motor information and the nuclear subpallium (striatum), which 

controls the motor system. The avian DVR is involved in processing visual, somatosensory and 

auditory information, while the avian wulst is referred to as the telencephalic visual area (Fig.4; 

Deng and Rogers, 2000). Former analyses have already described the dual role of the DVR, which 

shows dorsal as well as ventral features and one could allocate this structure to the pallium (Puelles 

et al., 2000), subpallium (Ariëns Kappers, 1936) or characterize it as an intermediate structure like 
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an enlarged boundary-region (Fernandez et al., 1998). On the one hand it processes cortical 

functions and expresses dorsal markers, but on the other hand it is organized in patch (nuclear cell 

clusters) and matrix (surrounding grey matter) like the subpallium (Striedter, 1997). To obtain 

clearer evidence for a dorsal, ventral or intermediate nature of the DVR, I analyzed the expression 

of several dorsal and ventral markers. 

 

These regions of the avian and mammalian forebrains are generated in a similar way: Cells located 

in the ventricular zone (VZ), the layer directly lining the ventricular surface, strongly proliferate and 

produce large amounts of precursor cells as well as differentiating neurons that migrate outward to 

form distinct layers or structures of the brain. Precursor cells either remain in the VZ or move to the 

adjacent subventricular zone (SVZ), a second proliferative layer (Fig.4; Boulder Committee, 1970; 

Noctor et al., 2004; Smart, 1976), which is most prominent in the subpallium of both species. 

 

In mammals the six-layered cortex develops in a strict inside-out mode, which means that cells 

generated later in development accumulate on top of earlier born neurons (McConnell, 1989). 

Neurons are generated between E12-18, while first astrocytes start to be detectable at E16 

(Cameron and Rakic, 1991; Chenn and McConnell, 1995; Qian et al., 1998; Qian et al., 2000). The 

avian pallium is generated similarly compared to the mammalian cortex. Neurogenesis of the avian 

wulst of the chick takes place between E4 and E9, while most neurons are born on E6 and E7 (Tsai 

et al., 1981a). Most of the glial cells are born after E10 (Tsai et al., 1981a). According to Tsai et al., 

(1981a; 1981b) the avian telencephalon develops in an outside-in mode, where young neurons 

usually accumulate below older ones. Contradicting the findings of an “outside-in” generation of 

the avian brain, are the observations made by Striedter and Keefer (2000), who demonstrated that 

many cells in the avian wulst migrate past older ones, which is proposed to be accomplished along 

radial glial fibers (Medina and Reiner, 2000; Striedter and Beydler, 1997). However, the regions in 

the avian and mammalian forebrain develop into slightly different structures, of which the 

affiliation of homology has not been completely clarified yet.  

 

The most medial part of the mammalian and avian forebrain is called midline-region and it is 

composed of the hippocampus (HC), located closest to the medial pallium, the cortical hem (CH) 

intermediately and the choroid plexus (ChP) and choroidal roof (r) developing most medially in the 

midline-region. The hippocampal complex composed of the dentate gyrus and CA fields is an 

important structure for learning and memory (Abel and Lattal, 2001; Martin et al., 2000). The 
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cortical hem has been proposed to serve as a signaling center by expressing several members of the 

Wnt-family (Wnt2b, Wnt3a, Wnt5a, Wnt7b, Wnt8b; Garda et al., 2002; Grove et al., 1998). Some 

studies have provided evidence that Wnt is important for the development of the medial pallium 

(Roelink, 2000). The mature choroid plexus, a non-neuronal epithelium secretes the cerebrospinal 

fluid (CSF; Fig.5) and thus might be responsible for maintaining a proper pressure in the ventricles. 

Furthermore, it serves as a source for Bmps (Furuta et al., 1997).  

 

This midline-region develops from the medial region of the telencephalic vesicle. In the chick 

forebrain around embryonic day 4 (E4) the tissue located most medially already appears distinct 

from the adjacent tissue by a slightly thinner morphology. This thin tissue will later give rise to the 

choroid plexus and choroidal roof and therefore I will refer to it as choroidal anlage (ChA). Already 

at this stage the tissue adjacent to this choroidal anlage exhibits characteristics of the cortical hem. 

 

4.4 Migration 

The development of these distinct regions in the forebrain is also characterized by distinct modes of 

cell migration. Neurons, born in the VZ, either migrate radially to form the different cortical layers 

or they move tangentially, orthogonal to the direction of radial migration, and in this way manage to 

migrate over long distances e.g. from the subpallium to the pallium. Both modes of migration have 

been described in mouse and chick (Anderson et al., 1997; Cobos et al., 2001a; Marin and 

Rubenstein, 2003; Medina and Reiner, 2000; Murakami and Arai, 2002; Striedter and Beydler, 

1997; Striedter and Keefer, 2000). 

4.4.1.1 Radial migration 

The development of the cortical layers involves at least two different modes of radial migration. At 

early stages of corticogenesis, cells migrate via somal translocation to form the preplate (PP), the 

first layer generated above the VZ (Morest, 1970). This mechanism seems to be independent of 

radial glia cells (Miyata et al., 2001; Nadarajah and Parnavelas, 2002). These cells extend a long 

process that terminates at the pial surface and a short ventricular process attached to the ventricular 

surface (Brittis et al., 1995; Marin and Rubenstein, 2003; Miyata et al., 2001; Morest, 1970; 

Nadarajah et al., 2001). The translocating cells loose their contact to the ventricular surface and 

their leading process becomes progressively shorter, lifting the soma basally in an apparently 

continuous movement (Nadarajah et al., 2001). The second mode of radial migration is used for the 
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formation of the cortical plate (CP; see Fig.4). Neurons, born in the VZ, use radial glial cells to 

migrate to their final destination. These cells have a short leading process and migrate forward in a 

short and rapid way which alternates with a longer stationary phase (Nadarajah et al., 2001). 

4.4.1.2 Tangential migration 

Three different types of tangential migration can be observed dependent on the substrate the cells 

migrate through. In vitro precursor cells from E14 MGE and LGE explants migrate through 

matrigel arranged in chains (Wichterle et al., 1999). This homotypic chain migration, also observed 

when neural precursor cells are grown as neurospheres was demonstrated to be regulated by 

integrins, a group of adhesion molecules (Hynes, 1992; Jacques et al., 1998). 

Other tangentially migrating neurons use growing axons to find their final position, which is e.g. the 

case for neurons expressing Gonadotropin-releasing hormone (GnRH). These cells are derived from 

the nasal placode and reach the forebrain by following the nasal septum, crossing the cribiform 

plate under the olfactory bulb and finally migrate into the forebrain along vomeronasal (VMN) 

axons (Marin and Rubenstein, 2003; Wray, 2001).  

A large number of cells rather migrate individually, not following any cellular substrates or 

following substrates that have not been identified so far. This type of tangential migration can be 

observed when cells move from the subpallium to the pallium. The subpallium, specifically the 

MGE in the mouse and the pallidum (PA) in the chick, is the main source of GABAergic 

interneurons migrating into the cortex and hippocampus (Cobos et al., 2001a; Lavdas et al., 1999; 

Sussel et al., 1999; Wichterle et al., 1999; Wichterle et al., 2001). The interneurons migrate along 

restricted routes towards the cortex. In the forebrain of the mouse they migrate superficially through 

the marginal zone (MZ), intermediately through the subplate (SP) and deeply through the SVZ 

(Fig.6B; DeDiego et al., 1994; Denaxa et al., 2001; Lavdas et al., 1999; Marin and Rubenstein, 

2001). In the chick, neurons also take three different routes, through the MZ, the mantel zone (M) 

and the SVZ (Fig.6A; Cobos et al., 2001a). Semaphorins have been suggested to play a role in 

directing the migration of neurons (Polleux et al., 1998; Polleux et al., 2000).  

 

However, cell migration is not occurring without restraints. Boundaries along the A/P and D/V axis 

have been described in the hindbrain between the rhombomeres (Guthrie and Lumsden, 1991) and 

in the diencephalon (Zona Limitans Intrathalamica, ZLI; Figdor and Stern, 1993; Zeltser et al., 

2001), which exhibit lineage restriction and prevent cell mixing. In the forebrain of mice a dorso-

ventral boundary forms, restricting dorsal cells from migrating into the ventral direction, while it 



Introduction 

 

 

 14

allows a prominent cell migration from the subpallium into the pallium (Chapouton et al., 1999; 

Chapouton et al., 2001; Sussel et al., 1999; Wichterle et al., 1999). In mammals this boundary is 

composed of a radial glia fascicle (Matsunami and Takeichi, 1995; Stoykova et al., 1996; Stoykova 

et al., 1997). Since the avian and mammalian forebrains exhibit structural differences, such as the 

region of the DVR, it is interesting to investigate the question if the boundaries in different 

vertebrates are located at homologous regions. 

  

4.5 Emx1 and Emx2, two homeobox transcription factors 

My research mainly concentrated on the homeobox transcription factors Emx1 and Emx2, which 

have been shown - together with Otx homeobox genes - to be crucial regulators of forebrain 

development (Acampora et al., 1998; Acampora et al., 1997; Acampora et al., 1995; Crossley et al., 

2001; Simeone et al., 1992a; Simeone et al., 1992b). Emx1 and Emx2 also seem to specify the 

dorsal region of the forebrain (Bishop et al., 2002; Mallamaci et al., 2000b; Muzio and Mallamaci, 

2003). Both genes are expressed from early stages in overlapping regions in the dorsal 

telencephalon, including the midline-structures such as cortical hem and hippocampal anlage, but 

excluding the midline-structure that develops into the ChP and roof. In particular there are small 

territories adjacent to the Emx1/2 double-positive region that lack Emx1-expression. These are the 

regions of the pallial/subpallial boundary (Muzio et al., 2002) and the medial part of cortical hem 

(Tole et al., 2000; Yoshida et al., 1997). Emx1 and Emx2 represent homologues of the Drosophila 

empty spiracles (ems) head-gene and share an identity of 80% at the amino-acid level with the ems 

homeodomain. In Drosophila, mutations in the ems-gene lead to a loss of the anterior cephalic 

segments, where this gene is normally expressed (Hirth et al., 1995).  

 

4.5.1 Expression pattern of Emx1 and Emx2 in the forebrain of the mouse 

In the mouse, Emx1 and Emx2 are expressed in a subset of precursor cells located in the VZ of the 

dorsal telencephalon. These two TFs are expressed in a descending caudo/medial to rostro/lateral 

gradient and thus show their strongest expression caudally in the midline-structures (Boncinelli, 

1999; Finkelstein and Boncinelli, 1994; Gulisano et al., 1996; Mallamaci et al., 1998; Simeone et 

al., 1992a; Simeone et al., 1992b). Their expression starts prior to neurogenesis at E9 in the mouse 

telencephalon, immediately after the neural tube has closed and the expression covers most of the 

cortex. A subset of precursor cells as well as postmitotic pyramidal neurons express Emx1 (Chan et 

al., 2001). Emx2 is already detectable at E8, in the latero/caudal forebrain primordium and later it 
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covers the entire cortex. The expression of Emx2 peaks at E12 and disappears until E17 (Simeone 

et al., 1992a). Emx2 is not only expressed in the VZ but also in the nuclei of Cajal-Retzius (CR) 

cells and in the most marginally located cortical plate neurons, where expression is only detected in 

the apical dendrites (Mallamaci et al., 2000a). In few adult regions Emx2 is still detectable, like the 

adult SVZ of the lateral ventricles and the dentate gyrus of the hippocampus, notably the only zones 

where neurogenesis continues lifelong (Gangemi et al., 2001).  

 

4.5.2 The role of Emx1 and Emx2 during forebrain development 

4.5.2.1 Emx1-, Emx2-, Emx1/2- mutant mice 

The inactivation of the Emx2-gene has demonstrated important contribution to corticogenesis 

(Pellegrini et al., 1996; Yoshida et al., 1997). Already at E12 the cerebral hemispheres and the 

olfactory bulbs are reduced in size. The hippocampus is smaller and the dentate gyrus is missing. 

Emx2-mutants also lack the uro-genital tract at this age and die at birth (Fig.7). Only subtle defects 

could be detected in the adult Emx1-mutant, which might be attributable to its later expression 

(Yoshida et al., 1997).  

In the Emx1/2 double-mutants the defects are much stronger than in the single mutants. Emx1/2 

double-mutant mice show small cerebral hemispheres, no hippocampus, cortical hem or ChP and 

the remaining tissue of the medial wall does not invaginate (Fig.7; Bishop et al., 2003; Pellegrini et 

al., 1996; Shinozaki et al., 2002; Yoshida et al., 1997). This suggests a redundancy between Emx1 

and Emx2 in most of the cortical region. The small size of the ventricles could be due to a loss of 

CSF, normally secreted by the choroid plexus. This loss of the midline-structures seems to be 

compensated by an extension of the telencephalic roof. Since the cortical hem signaling center and 

the ChP do not develop, two major signaling sources for Wnt and Bmp are lost (Shinozaki et al., 

2004). The loss of the hem also leads to a lack of Cajal-Retzius cells because the hem has recently 

been discovered as the main source for this cell type (Shinozaki et al., 2002; Takiguchi-Hayashi et 

al., 2004).  

 

4.5.2.2 Emx1/2-overexpression in vitro 

Heins et al. (2001) investigated the role of Emx1 and Emx2 in cell division and proliferation in 

vitro. He showed that Emx2-overexpression promotes symmetric cell division in the cortex, thus 

enhancing the number of multipotent cells. In contrast, Emx2-overexpression had no effect on the 
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proliferation of striatal cells (Heins et al., 2001). The effect in the cortex was most prominent in the 

rostral region at E16, which normally contains fewer Emx2-positive cells than the caudal part. Here, 

a 4-fold increase of the clonal size, the progeny generated by a single precursor cell, was observed 

at E16. In his studies Emx1 did not effect the proliferation but kept the cells in a rather 

undifferentiated state. However, if Emx1 and Emx2 influence cell proliferation in vivo is not known 

yet. To answer this important question, I overexpressed Emx1 and Emx2 in the developing 

telencephalon in chick embryos in ovo. 

 

The main aim of my thesis was to study the role of Emx1 and Emx2 during chick forebrain 

development. Several studies of Emx1-, Emx2-mutant and Emx1/2 double-mutant mice have 

already described several functions of these genes during telencephalic development. However, 

mutant analyses reveal not all functions of the genes knocked out, but can be studied in 

overexpression or misexpression experiments. I performed these overexpression studies in vivo 

using in ovo electroporation of chick embryos. This is a very efficient tool to analyze the influence 

of a gene on regions where it is normally not or only weakly expressed. Even regions that express 

this gene can show alterations by ectopic overexpression. In my studies I focused on the influence 

of Emx1 and Emx2 on regionalization of certain forebrain areas and on their role in cell 

proliferation and differentiation. 
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5 Abbreviations 
Ab  antibody 

ANR  anterior neural ridge 

A/P  anterior/posterior 

bHLH  basic helix-loop-helix 

Bmp  bone morphogenic protein 

bp  base pairs 

BrdU  5’-Bromo-2’deoxy-Uridine 

ChA  choroidal anlage 

ChP  choroid plexus 

CH  cortical hem 

ctx  cortex 

Dkk  Dickkopf 

DNA  desoxyribonucleic acid 

DVR  dorso-ventricular ridge 

Cad  Cadherin 

CNS  central nervous system 

CP  cortical plate 

CSF  cerebrospinal fluid 

di  diencephalon 

DLHP  dorso/lateral hinge point 

DMEM Dulbecco’s modified eagle medium 

D/V  dorso/ventral 

E  embryonic day  

E1  early region1 

EGFP  enhanced green fluorescent protein 

FCS  fetal calf serum 

Fgf  fibroblast growth factor 

Fig.  figure 

fp  floor plate 

GE  ganglionic eminence 

GFP  Green fluorescent protein 

GnRH  gonadotropin-releasing hormone  
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H  hour 

HC  hippocampus 

HH  Hamburger Hamilton stage 

IgF-II  Insulin-like growth factor II 

Ig  immunglobulin 

IRES  internal ribosome entry site 

is  isthmus 

IZ  intermediate zone 

LGE  lateral ganglionic eminence 

LV  lateral ventricle 

mAb  monoclonal antibody 

M  mantel zone 

me  mesencephalon 

MGE  medial ganglionic eminence 

MHP  medial neural hinge point 

MP  medial pallium 

M-Phase mitoses phase of the cell cycle 

mRNA  messenger ribonucleic acid 

MZ  marginal zone 

n  number of samples 

NE  neuroepithelium 

NP  neopallium 

Oc  optic cup 

P  pallium 

PA  pallidum 

pAb  polyclonal antibody 

PBS  phosphate buffered saline 

PDL  poly-D-lysine 

pfu  plaque forming unit 

PP  preplate 

pr  prosencephalon 

r  choroidal roof 

r1  rhombomer1 
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rh  rhombencephalon 

RMS  rostral migratory stream 

RNA  ribonucleic acid 

RT  room temperature 

SEM  standard error of the mean 

Sfrp   secreted frizzled related protein 

Shh  sonic hedgehog 

SP  subplate 

sp  secondary prosencephalon 

S-Phase DNA-synthesis phase of the cell cycle 

Stdev  standard deviation 

SVZ  subventricular zone 

TF  transcription factor 

TGF-β  transforming growth factors-β 

VMN  vomeronasal 

V  ventricle 

VZ  ventricular zone 

Wnt  wingless Int protein  

WT  wildtype 

ZLI  zona limitans intrathalamica 

‘  minute 
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6 Materials and Methods 

6.1 Animals 

Fertilized eggs (White Leghorn, Rhode Island Red, White Rock, Araucana) were obtained weekly 

from Firma Hölzl in Moosburg (Blütenstraße 22) and kept at 4°C. To start the development they 

were incubated horizontally at 37.8°C with a humidity of 55%. The first day of incubation was 

considered as embryonic day 0 (E0). The experiments were performed between E2 and E10. 

Chicken embryos can be staged precisely with the developmental table of Hamburger and Hamilton 

(Hamburger, 1951). For experimental analysis the embryos were decapitated and dissected 

immediately in Hanks Balanced Salt Solution (HBSS) containing 1% HEPES.  

 

6.2 EGFP-adenovirus production 

The EGFP-adenovirus was constructed by A.Gärtner (Chapouton et al., 1999). This adenovirus is 

lacking the “Early” region1 (E1) and is therefore replication incompetent. Infected cells cannot 

generate new virus. The EGFP-transgene is driven by the CMV-promotor and has been inserted into 

the viral vector by homologous recombination. 

For virus production 293 cells, that stably express E1a and E1b (Graham, 1991) were grown until 

confluency. Virus (109 pfu) was added to the 293 cells. After 2-3 days, about 70% of the cells were 

detached from the culture plates. Cells were centrifugated (172 x g, 5 min, 4°C) and 10ml of 

medium, containing 10% glycerol, were added to the pellet, which could then be stored at –80°C. 

Freezing and thawing was performed three times. A following homogenizing step mechanically 

cracked the membranes of the cells. Debris was centrifugated (1550 x g, 15 min, 4°C) and 

homogenized again. The supernatant was then purified and concentrated using a CsCl-gradient: A 

12ml ultracentrifugation tube was filled with 1.5ml of a 1.45g/cm3 CsCl-solution, 2.5ml of a 

1.32g/cm3 and overlayed with the cell extract. The probes were centrifugated at 90.000 x g for 3-4 

hours at 4°C. Adenovirus with a normal density of 1.34g/cm3 forms a visible layer, which can be 

removed with a syringe. This solution containing the virus was applied onto a second CsCl-gradient 

(10mM Tris pH8) and centrifugated for 16-24 hours. The layer containing the adenovirus is easily 

recognizable and removable. CsCl was taken away by gelfiltration using an NAP-25 column. 

10mM Tris/10% glycerol was used for elution. The virus was frozen in 10µl aliquots on dry ice and 

then stored at -80°C.  
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6.3 EGFP-adenovirus injections and migration analysis 

To infect slices with an adenovirus, brain hemispheres of E7 chick embryos were cut frontally with 

a tissue chopper at 300µm thickness. The slices were collected in DMEM-medium with 5% FCS. 

For washing, the filter inserts were incubated in DMEM/FCS-medium and afterwards, 3-4 slices 

were transferred close to the centre of each Millipore insert of the 6-well plate, containing 1.5 ml 

DMEM/FCS-medium.  

Different regions of the slices, like pallium, DVR and subpallium were stereotactically infected 

with the EGFP-adenovirus using capillaries with an opening of about 1mm. At different time points 

(24h, 48h, 72h) after infection, pictures of migrating, EGFP-positive cells were taken at the 

binocular. 

To analyze the specificity of the infected site, tests with Cytochalasin D, a poison that inhibits actin 

polymerization and therefore disables cells to migrate (Cooper, 1987), were performed. Slices 

treated with Cytochalasin D should not show cells far away from the infected site, otherwise it 

would indicate a contamination of the medium with virus. 

 

6.4 Construction of plasmids for electroporation 

6.4.1 Pmes-Emx2 

Emx2 was removed from the bluescript vector pBSKEmx2EP1 (4245pb) by digestion with XhoI 

and EcoRI. Additionally, DraI and SapI were used to cut the backbone of the bluescript vector to 

minimize the possibility for contamination with the bluescript. The size of Emx2 is 1326bp. Since 

PMES (5727bp) contains two SalI sites, it was partially digested with SalI for 30min. SalI and XhoI 

produce the same overlapping ends. In this way two fragments with the size of 3999bp and 1728bp 

appeared. The intention of the short incubation period was to disable a complete digest and produce 

a greater fraction of linerized plasmid when the enzyme only cut at one restriction site. 0.6µl of 

0.5M EDTA were used to stop the restriction digest. The linerized band (5727bp) was removed 

from a 1% agarose gel and cleaned with the Qiagen gel extraction kit. Pmes was then digested with 

EcoRI for 3 hours, to cut away a small band of 10bp. The right band (5717bp) was separated in an 

agarose gel and afterwards cleaned with the gel extraction kit. For ligation the Pmes-vector and the 

Emx2-insert were mixed in 1:3-5 ratios and incubated with ligation buffer and T4 DNA ligase at 

17°C over night. In order to decrease the volume for transformation I precipitated the DNA. The 

transformation was conducted with 50µl of TOP10 bacteria, plated and incubated over night. For 
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testing the colonies, Minipreps were performed and test-digestions with BamHI, AccI and EagI. To 

increase the amount of Pmes-Emx2 plasmid Midipreps were prepared (Fig.8A). 

6.4.2 Pmes-Emx1 

To remove Emx1 from the Pgem3-vector, Pgem3-Emx1 was digested with EcoRI and XbaI. PvuI 

was added to digest the backbone of the plasmid to minimize contamination with the bluescript 

vector. Pmes was first digested with XbaI for 3h for allowing a complete digest and then separated 

on an agarose gel. I cut out the higher band (5727bp) which resembled the linarized plasmid in 

comparison to the lower uncut supercoiled plasmid and purified the DNA by gel extraction.  

Next, this band was enzymatically digested with EcoRI for 2h and the DNA was purified with the 

PCR Purification Set, to gain a higher amount of DNA. The ligation mix, that contained Pmes-

vector and the Emx1-insert in a ratio 1:3-5, ligation buffer and T4 DNA ligase were incubated at 

17°C over night. The transformation was performed with 25µl of TOP10 bacteria, 5µl of the 

ligation mix and SOB medium. To test the ligation, the amount of plasmid was increased by 

Minipreps and tested by digestion with BamHI. The correct band showed a size of 820bp. The 

amount of Pmes-Emx1 plasmid was increased by the preparation of Midipreps (Fig.8B). 

 

6.5 Plasmid “preparation” 

Plasmids received on filter paper were soaked in 50µl TE buffer or water for 30 minutes and 

subsequently centrifuged for 5 minutes at maximum speed. For transformation, 1µl of the elution or 

10ng of plasmid DNA were added to 25µl of chemically competent TOP10 cells or to 100µl self 

made Dh5α E.coli and incubated on ice for 30 minutes. After a heat shock of 45 seconds at 42°C 

cells could recover for 10 minutes on ice. 1ml of LB-medium was added to the cells, which were 

then placed in a bacterial shaker at 37°C for 45 minutes. 50-100µl of the suspension were plated on 

LB-Agar plates containing antibiotics e.g. Ampicillin (50µg/µl) depending on the resistance gene 

encoded by the plasmid at 37°C over night. The next day one colony was picked and incubated for 

about 4 hours in 3-5ml LB-medium containing antibiotics (e.g. Ampicillin 50µg/µl). The preculture 

was added to 50ml of LB-medium containing antibiotics and over night incubated in the bacterial 

shaker at 37°C. Bacteria were harvested and plasmid DNA was purified following the Qiagen 

Midiprep protocol using a midi Tip100 column. The DNA pellet was dissolved in 200µl H2Obidest 

and the concentration was measured with the photometer at 260nm. 
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6.6 In ovo electroporation 

The technique of in ovo electroporation is a method to efficiently transfer genes into developing 

chick embryos in order to analyze gene regulation, function and expression. The efficiency of 

expression of a reporter gene is enhanced by 10-1000 fold, using electroporation compared to DNA 

injection only (Jaroszeski et al., 1999; Mir et al., 1998; Somiari et al., 2000). The exposure to pulsed 

electric fields enhances the permeability of cell membranes and enables plasmids to cross 

cytoplasmic membranes. Different models try to explain the structural rearrangements of the lipid 

bilayer (Neumann, 1999; Weaver, 1996). The Neumann model proposes that the application of an 

electric field alters the distribution of ions at the inner surface of the cell membrane, which leads to 

a difference in the transmembrane potential. This induces electroporative deformations of the cell 

that elongates along the axis of the field. Thus, small hydrophobic pores are formed which enable 

the DNA to enter (Fig.9; Neumann, 1999). 

Different parameters like thickness of tissue, conductivity of the environment and architecture of 

electrodes have to be combined and optimized with the parameters of the applied electric pulses like 

voltage, duration, frequency and total number of pulses to minimize cell damage and maximize the 

amount of gene delivery (Somiari et al., 2000).  

 

6.7 Procedure for electroporation 

6.7.1 Preparation of the embryos 

The horizontally incubation of the eggs allows the embryo to be nested on the highest point on top 

of the yolk. A small amount of albumin has to be removed from the flat side of the egg at E2 (HH: 

9-13) to enable the embryo to sink. A small piece of adhesive tape on the eggshell allows to easily 

cut a small window into the eggshell. If it is difficult to recognize the embryo or to count somites it 

is useful to underlay the embryo with Font India ink diluted 1:6 in PBS by using a syringe.  

 

6.7.2 Injection of DNA-solution 

The DNA-solution (2-5µg/µl) was mixed with Fast Green (0.1%), an indicator to color the DNA for 

the injection. Glass capillaries without filament were pulled (settings: heat 575; pull 255; velocity 

50; time 120). Using a pulse generator I gave pulses with a pressure of 20-30psi and injected 0.2-

1µl of the DNA solution into the telencephalic vesicle until the whole vesicle appeared to be green. 
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6.7.3 Electroporation 

Platin covered gold electrodes were placed parallel to the tissue and 4-6 pulses were given by the 

stimulator in order to transfer the DNA to the side of the positive pole. For enlarging the region of 

misexpression the electrodes were slightly rotated after some pulses. 

My optimized parameters of the stimulator were:  

 

Frequency: 5Hz 

Mode: 1/manual 

Delay: 50ms 

Width: 10ms 

Voltage: 20-30V 

Number of pulses: 4-6 

 

The area of electroporation was determined according to the fate map analysis performed by (Cobos 

et al., 2001b). Since the pallial and midline-regions are not located dorsally at these early 

developmental stages, it is difficult to hit these regions, which are located more posterior along the 

neural ridge (Fig.10; Cobos et al., 2001b). 

 

6.7.4 Post-electroporation treatment 

The manipulated embryos were covered with 70µl of Penicillin/Streptomycin to minimize the risk 

of infection and the eggshell was carefully sealed with a piece of adhesive tape to prevent them 

from drying. Afterwards, the eggs were incubated again in order to let the embryos develop further. 

Two or four days later (which equals E4 or E6), depending on the experiment, the eggs were 

opened and the embryos were taken out, decaptured, tested for fluorescence and fixed for 2-4 hours 

in 4% PFA. Afterwards the heads or brains were cryoprotected by over night treatment with 20% 

sucrose at 4°C. Then the tissue was frozen in TissueTek and afterwards cut with a cryostat in 20µm 

thick sections collected on Superfrost Plus slides. 

 

6.8 BrdU-Labeling  

5-Bromo-2-deoxyuridin (BrdU); (Nowakowski et al., 1989) is a DNA base analogon, which is 

incorporated into the DNA during DNA synthesis (S-phase of cell cycle). In this way proliferating 

cells can be labeled. Therefore, 14-15µg BrdU (20µg/µl in H2O with 0.01% Fast Green) were 
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injected into a vein of the chicken embryo developing on top of the yolk (Striedter and Keefer, 

2000). Usually embryos with the age of 4-6 days (HH23 -29) were pulse labeled. 30 minutes to 6 

days after injection the embryos were sacrificed. 

 

6.9 In situ hybridization  

6.9.1 Plasmid linearization 

20 µg of plasmid-DNA were linerized with the appropriate enzyme (40 units) in a total volume of 

50-60µl for 2.5 hours at 37°C. For purification of the linerized plasmid a phenol extraction was 

performed. Water was added up to 200µl, mixed with 200µl of Phenol/Chloroform/Isoamyalkohol 

(50:49:1) and strongly mixed for one minute. After centrifugation for five minutes in an Eppendorf 

centrifuge at maximum speed (13.1x103rpm), the water phase, which is the upper phase, had to be 

recovered. 1/10 vol. Sodium Acetat (3M) and 0.7 vol. Isopropanol had to be added and allowed to 

precipitate for 10 minutes at room temperature. After a centrifugation step of 15 minutes at 

maximum speed the DNA pellet was shortly washed with 70% Ethanol and subsequently 

resuspended in 20µl H2Obidest.  

 

6.9.2 In vitro transcription 

For in vitro transcription, the transcription mix (total 20µl), containing 1µg DNA, 2µl NTP mix 

(digoxygenin labeled UTP; DIG-UTP), 4µl 5x transcription buffer, 1µl RNAse inhibitor, 1µl T3,T7 

or SP6 RNA-polymerase and RNAse-free water was incubated at 37°C for 2 hours. The reaction 

was stopped with 2µl 0.2M EDTA and the RNA was precipitated with 2.5µl 4M LiCl and 75µl pure 

Ethanol at -20°C over night or at –80°C for two hours. After centrifugation at 4°C for seven 

minutes the pellet was dissolved in 20µl RNAse-free water and 200µl hybridization buffer. The 

final probe should exhibit a concentration of around 100ng/µl. 
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Table of prepared in situ plasmids and antisense cRNA-probes  
Plasmid Vector Insert Digestion/ 

Transcription 

Reference Provider 

Bmp7 pSK 0.7kb XhoI/T7  A.Wizenmann 

Cash1 pSK- 1.9kb (EcoRI) XhoI/T3 UO1339 T.Reh 

Dlx1 pBIISK- 960bp 

(XhoI+EcoRI) 

EcoRI/T7  J.Rubenstein/ 

Debbie 

Emx1 pSK 300bp EcoRI/T7  E.Bell 

Emx2 pKS  PvuII/T7  A.Lumsden/E.Bell 

Fgf8 (S) pBSK  PstI/T7  T.Edlund 

Gli3 pBS SK 1.5kb 

(EcoRI/EcoRI) 

EcoRV/T3  A.Wizenmann 

Lhx2a   XhoI/T3  S.Richter 

Msx2 pBSSK  HindIII/T3 (Graham et al., 

1993) 

A.Wizenmann/ 

A.Graham 

Ngn1 pBSKS 1.3kb SacI/T7 AF123883 S.Penez/ 

D.J.Anderson 

Ngn2 pBSKS 0.8kb SacI/T7 AF123884 S.Penez/ 

D.J.Anderson 

Otx2   BamHI/T7  M. Wassef 

Pax6 pBKS+  EcoRI/T7 M.Goulding F.Schubert 

Sfrp1 pBSKII 224bp EcoRI/T7  L.W.Burrus 

Ttr PCRscript 

(Stratagene) 

 NcoI/T7 (Duan et al., 

1991) X60471 

M.Wassef 

Wnt7b pGem3zf 380bp HindIII/T7  J.McMahon 

 

6.9.3 In situ hybridization – non-radioactive 

0.5-1µg of RNA anti-sense probe were diluted in 150µl hybridization buffer and heated at 70°C for 

5 minutes to denature the RNA. The solution was applied on each slide and covered with a clean 

coverslip to prevent the sections from drying. Sections were incubated at 65°C over night in a box 

containing 1x SSC in 50% Formamide on whatman paper. The sections were washed 3-4 times with 

washing solution at 65°C, the first step lasting 10 minutes and the following steps each 30 minutes. 

These were followed by washing the sections in 1x MABT for 2 times lasting 30 minutes at RT. 

The blocking solution was applied for at least 1 hour at RT. Then, Anti-Digoxigenin Fab fragments 

coupled to Alkaline-Phosphatase, diluted in blocking solution (1:2500) were applied onto each slide 

(500µl). The sections were covered with a piece of parafilm and incubated in a humid chamber over 
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night at RT. After 4-5 washes in 1x MABT, each lasting 20 minutes, Alkaline-Phosphate staining 

solution was applied for 10 minutes at RT. NBT and BCIP were added to the staining solution (1ml 

of staining solution + 3.5µl NBT + 3.5µl BCIP) and 150µl were applied onto each slide, covered 

with a piece of parafilm. The incubation period depended on the quality of the probe and therefore 

varied between 2 to 24 hours. When the reaction was strong enough it was stopped by rinsing in 

staining solution and shortly in water. The slides had to be completely dry before mounting them 

with AquaPoly/Mount. 

 

6.9.4 Whole-mount in situ hybridization 

Young chicken embryos (HH9-21) were preferentially in situ hybridized as whole-mounts. After 

dissecting the embryos in PBS they were fixed in 4% PFA over night at 4°C. Two washing steps in 

PBT, each lasting 5 minutes, were performed at RT. It is important to puncture the head to avoid 

trapping of the reagents in the lumen. Embryos were dehydrated by taking them through a 

Methanol-series (25%, 50%, 75%, 100%), each step lasting 5 minutes (5’). An additional 100% 

Methanol step for one hour or over night was followed by taking them reversely through the 

Methanol-gradient (75%, 50%, 25%) for rehydration. After two washing steps in PBT (2 x 5’), 6% 

Hydrogen Peroxide in PBT was applied for 60 minutes, followed by three washing steps (3 x 5’). 

After the administration of detergent mix (3 x 20’) the embryos were fixed again in 4% PFA, 

containing 0.2% Glutaraldehyde for 20 minutes at RT. Washing was performed (3 x 5’) and pre-

hybridization mix was applied for 60 minutes or over night at 70°C. This mix was replaced with 

preheated hybridization mix, containing 0.5 to 1µg RNA probe and incubated overnight at 70°C. 

For washing, preheated Solution X was administered for 15 minutes and four additional times for 

30 minutes at 70°C.  Three washing steps in 1x MABT (3 x 5’) at RT were followed by a blocking 

step using 20% GS and 2% blocking solution in 1x MABT for 1-2 hours at RT. The antibody was 

added (1:2000) in blocking solution and the embryos were incubated over night at 4°C. Washing 

was performed in 1x MABT for 8 times, each step lasting 60 minutes and additional washing was 

performed over night at 4°C. After 3 washes in NTMT, embryos were incubated in NTMT with 

3.5µl NBT and 3.5µl BCIP per 2-3ml at RT as long as the color reaction took place. The staining 

solution was replaced with PBT until it appeared clear and the Alkaline-Phosphatase reaction could 

be stopped by application of PFA over night at 4°C. 
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6.10 Immunocytochemistry 

Cryosections were defrosted for 10 minutes and then rehydrated with PBS for 10 minutes at RT. As 

primary antibodies I used antibodies against transcription factors, proliferation-markers, 

differentiation-markers and cell subtype specific markers:   

For the detection of transcription factors I used the polyclonal antibody (pAb) against Dlx (rbt, 

1:75, 0.5% Triton-X100 (T), 10% NGS in PBS for 2 days), the pAb against Emx1 (rbt, 1:1000, 

0.5% T, 10% NGS), the pAb against Emx2 (rbt, 1:4000, 0.2% tween TBS, 10% NGS), the pAb 

against Gsh2 (rbt, 1: 1000, 0.5% T, 10% NGS), the pAb against Pax6 (rbt, 1:300, 0.5% T, 10% 

NGS) and the pAb against Tbr (rbt, 1:200, 0.5% T, 10% NGS).  

For the detection of proliferating cells, I used the monoclonal antibody (mAb) against BrdU (mouse 

IgG1; 1 :10) to label cells that undergo DNA-synthesis and the pAb against the phosphorylated 

histone H3 (PH3; rbt; 1:200, 0.5% T, 10% NGS) to analyze cells in mitosis.  

To label postmitotic neurons, markers like the pAb Map2 (mouse IgG1; 1:500, 10% NGS) and the 

pAb against NeuN (mouse IgG1; 1:50, 0.5% T, 10% NGS) were used.  

To detect the electroporated cells I used the mAb and pAb against EGFP (mouse, IgG1, 1:300; rbt, 

1:500 in 0.5% T, 10% NGS).  

Certain subtypes of cells were labeled with the pAb against Blbp (rbt, 1:1500, 0.5% T, 10% NGS), 

the pAb against Calbindin (rbt, 1:500, 0.5% T, 10% NGS) and the mAb 142 against Reelin (mouse, 

IgG1, 1:500, 0.5 T, 10% NGS). 

 

Usually the antibody mix was applied and incubated overnight at 4°C in a humid chamber. For 

some antibodies special pretreatments were necessary: All of the transcription factors and EGFP I 

pretreated for 15 minutes with 0.5% T and 10% NGS and NeuN even for 30 minutes.  

Map2 had to be incubated with Ethanol-glacial acetic acid for 15 min at -20°C.  

The staining signal for PH3 and Dlx was enhanced by boiling the sections in 0.01M Citrate buffer 

for 8 minutes.  

To detect BrdU a series of pretreatments was necessary. Sections were treated with 0.5% T, 10% 

NGS for one hour, which permeables the membrane. This was followed by a denaturation step of 

the double-stranded DNA with 2N HCl for 30 minutes. To neutralize the acid, two washing steps of 

15 minutes with 0.1M Sodium Tetraborat (pH 8.5) were necessary. The pretreatment has to be 

followed by three washing steps in PBS for 10 minutes before the staining could be performed. 
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The visualization of these antibodies was carried out by using secondary subclass specific 

antibodies coupled to Fitc, Tritc or biotinylated, which were applied onto the sections for 1h at RT. 

The monoclonal mouse antibodies were visualized by using anti mouse IgG1-Fitc (1:50)/ -Tritc 

(1:50)/ -biotinylated (1:250) and the polyclonal rabbit antibodies were detected by anti rabbit Ig-

Fitc (1:50)/ -Tritc (1:50)/ -biotinylated (1:250). For the visualization of the biotinylated antibodies a 

third step, using streptavidin-AMCA (1:50)/ Fitc (1:100) was necessary.  

 

Negative controls were performed to confirm a specific binding of the secondary antibody. This 

was controlled by using the secondary antibody only. 

 

Primary antibodies (alphabetical order) 

Name Host-animal/ 

working 

dilution 

Pretreatment Marker Supplier Reference 

Anti-BLBP Rabbit (1:1500, 

0.5% T, 10% 

NGS) 

 Brain Lipid 

Binding Protein, 

precursor cell 

subtypes 

Nathaniel Heintz, Howard 

Hughes Medical Institute, 

Rockefeller University, 

New York, USA 

(Feng et al., 

1994) ; (Kurtz et 

al., 1994)  

Anti-BrdU Mouse IgG1 

(1:10) 

1h 0.5% T, 

30’ 2N HCl, 

2x15’ Borate 

buffer pH8.0 

S-Phase marker Bio-Science Products  

Anti-Dlx Rabbit (1:75,  

0.5% T, 10% 

NGS for 2 days) 

Boiling in 

0.01M 

Sodium-

Citrate buffer, 

pH6.0 for 8’ at 

max in the 

microwave 

enhances 

signal 

TF expressed in 

precursor and 

postmitotic cells 

in MGE and 

LGE; 

tangentially 

migrating cells  

Robert Hevner, Dep. Of 

Pathology, Univ. Of 

Washington School of 

Medicine, Harborview 

Medical Center, Seattle, 

WA, USA 

 

Anti-Emx1 Rabbit (1:1000, 

0.5% T, 10% 

NGS, 2.Ab biot.) 

 Dorsal TF 

expressed in 

precursor cells 

and pyramidal 

neurons 

Giorgio Corte, 

Department of Oncology, 

Biology and Genetics, 

University of Genova 

Medical School, Genova, 

Italy 
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Anti-Emx2 Rabbit (1:4000, 

0.2% Tween 

TBS, 10% NGS) 

 Dorsal TF 

expressed in 

precursor cells 

and  Cajal-

Retzius cells 

Osamu Hatano, 

Department of Anatomy, 

Nara Medical University, 

840 Saijo-machi, 

Kashihara, Nara-634-

8521, Japan 

 

Anti-EGFP Rabbit (1:500, 

0.5% T, 10% 

NGS) 

15’ in 0.5%T/ 

10%NGS 

Cells containing 

the EGFP-gene 

RDI  

Anti-EGFP Mouse IgG1 

(1 :300, 0.5% T, 

10% NGS) 

15’ in 0.5%T/ 

10%NGS 

Cells containing 

the EGFP-gene 

Chemicon  

Anti-Gsh2 Rabbit (1:1000, 

0.5% T, 10% 

NGS) 

15’ in 0.5% T/ 

10% NGS 

TF expressed in 

precursor cells of 

subpallium 

Kenneth Campbell,  

Division of 

Developmental Biology, 

Cincinnati Children’s 

Hospital Medical Center, 

Cincinnati, USA 

 

Anti-Map2 Mouse IgG1 

(1:500, 10% 

NGS) 

15’: -20°C 

Acid-EthOH 

Neuronal marker Sigma  

Anti-NeuN 

 

Mouse IgG1 

(1:50, 0.5% T, 

10% NGS) 

30’ 0.5% T, 

10% NGS 

Neuronal marker Chemicon (Mullen et al., 

1992) 

Anti-Pax6 Rabbit (1:300, 

0.5% T, 10% 

NGS) 

15’ in 0.5% T/ 

10% NGS 

Dorsal TF Babco  

Anti-PH3 Rabbit (1:200, 

0.5% T, 10% 

NGS) 

Boiling in 

0.01M 

Sodium-

Citrate buffer, 

pH6.0 for 8’ at 

max in the 

microwave 

M-Phase marker Upstate Biotech (Hendzel et al., 

1997) 

Anti-Reelin 

(142) 

Mouse IgG1 

(1:500, 0.5% T) 

 Cajal-Retzius 

cells in the 

cerebral cortex 

André Goffinet, 

University of Louvain, 

Medical School, Brussels, 

Belgium 

 

(de Bergeyck et 

al., 1998) 
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Anti-Tbr Rabbit (1:200, 

0.5% T, 10% 

NGS) 

15’ in 0.5% T/ 

10% NGS 

TF expressed in 

postmitotic cells 

in the cortex 

Marta Nieto, Beth Israel 

Deaconess Medical 

Center, Howard Huges 

Medical Institute, Harvard 

Medical School, Boston, 

USA 

 

 

Table 4.3 Secondary antibodies (alphabetical order) 

Name Supplier 

Anti-rabbit Ig FITC / TRIC  Jackson ImmunoResearch / Dianova 

Anti-rabbit Ig biotinylated 

Streptavidin AMCA 

Streptavidin Fitc 

Vector Laboratories 

Anti-mouse IgG1 FITC / TRIC / biotinylated Southern Biotechnology Associates 

 

6.11 Nuclear stain 

To be able to count the number of cells I used DAPI (4’, 6-diamidino-2-phenylindole) as a nuclear 

stain. DAPI forms strongly fluorescent DAPI-DNA complexes by attaching in the minor grove of 

A-T rich sequences of DNA. This can be visualized at a wavelength of ~460nm. The application of 

DAPI is usually the last step of the staining procedure. A solution of 1µg/ml DAPI in PBS is 

dropped onto the sections and incubated for 5-10 minutes at RT.  

 

6.12 Data analysis 

6.12.1 Confocal microscope 

To analyze the cryostat sections of electroporated brains carefully a two-channel confocal laser 

scanning microscope (Leica-NT) was used. Pictures were taken with 10x, 20x or 40x oil 

immersions objectives. In this way I obtained images of single optical sections with a thickness 

between 1 and 4µm or maximum intensity images of 10-20µm. 

 

6.12.2 Fluorescence microscope with camera 

To analyze double or triple antibody stainings or take pictures of in situ hybridized sections I used 

the Zeiss Axiophot fluorescence microscope connected to an Axiocam Camera.  
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6.12.3 Statistics 

For the evaluation of the proliferation in the transduced brain regions, statistical analyses were 

carried out. Proliferating cells (PH3+) were counted as proportion of all transduced cells (EGFP+) 

and values like arithmetic average, standard deviation and standard error of the mean were 

calculated. 

The standard deviation is a statistic that tells you how tightly all the various examples are clustered 

around the mean in a set of data and the standard error of the mean is the standard deviation of the 

sampling distribution of the mean.  
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The error bars in the diagrams resemble the SEM. To test the data for significance I used the 

Student’s t-test. The result (p) of this test tells us the probability of our conclusion being correct. 

There is a 95% chance of the means being significantly different if p=0.05, a 99% chance of the 

means being highly significantly different for p = 0.01 and a 99.9% chance of the means being 

very highly significantly different for p=0.001. 

The calculations and construction of the diagrams were carried out with Microsoft Exel and the 

Student t-test was performed with the statistical program: STATS.EXE 
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6.13 Material 

6.13.1 Microscope 
Fluorescent microscope  

AxioPhot microscope Zeiss 

HBO 100W fluorescent lamp Zeiss 

AxioCam HRc camera Zeiss 

AxioVision 3.1.1.1 program Zeiss 

Objective Plan Neofluar 5x/0,15 (Phase 1) Zeiss 

Objective Plan Neofluar 10x/0,30 (Phase 1) Zeiss 

Objective Plan Neofluar 20x/0,50 (Phase 2) Zeiss 

Objective Plan Neofluar 40x/0,75 (Phase 2) Zeiss 

Objektive Plan-Apochromat 40x/1,30 Oil Zeiss 

Objektive Plan-Apochromat 63x/1,40 Oil (Phase 3) Zeiss 

 

Fluorescent stereomicroscope  

SZX 12 microscope Olympus 

U-RFL-T fluorescent lamp Olympus 

U-CMAD3 incl. U-TV1 X camera Olympus 

AnalySIS 3.1 program Soft Imaging Systems 

 

Confocal microscope  

Leica DM RBE microscope Leica 

Leica TCS NT confocal Leica 

HBO 50W fluorescent lamp Leica 

TCS NT Vers.1.6.587 program Leica 

Objective HC PL APO 10x/0.40 IMM Leica 

Objective HC PL APO 20x/0.70 IMM CORR Leica 

Objective PL APO 40x/1.25 oil Ph3 Leica 

Objective PL APO 63x/1.32 oil Ph3 Leica 

 

6.13.2 Electroporation 
Electroporation setup  

Compressor Jun-Air, Denmark 

Electrodes (Platin covered gold electrodes) TR Teck, Japan: CUY 611 

Puller for capillaries Flaming, Brown Micropipette Puller, 

Sutter instruments Co., Model P-97 
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Pulse generator (pneumatic picopump PV 820)  WPI, Sarasota, Florida, USA 

Stimulator (TSS 10) Intracell 

 

6.13.3 Solutions, buffer and media 

6.13.3.1 Adenovirus-production 

CsCl-solution 1.45g/cm3: 43g CsCl in 60ml 10mM Tris pH 8.0 

1.32g/cm3: 56g CsCl in 116ml 10mMTris pH 8.0 

Tris/Glycerol 10mM Tris 

10% Glycerol 

DMEM-FCS DMEM 

5%FCS 

 

6.13.3.2 BrdU-puls 

BrdU-Solution for in ovo injections  20mg/ml (w/v) BrdU 

in H2O 

Fast Green  1% in H2Obidest 

 

6.13.3.3 Cell culture 

Cytochalasin D (2mg/ml stock solution in DMSO) 2µg/µl – 8µg/µl in culture medium 

FCS-PS-Medium 10% (v/v) FCS (heat inactivated 30 min. at 56°C) 

1% (v/v) Penicillin-Streptomycin 

in DMEM 

HEPES-HBSS-Medium 10 mM HEPES 

in HBSS 

PFA (4%) 4% (w/v) Paraformaldehyde in 1xPBS 

Sucrose-PBS-solution (20%) 20% (w/v) Sucrose in PBS 

 

6.13.3.4 Electroporation 

Font-India Ink in PBS Font India ink 1:6 in PBS 

Fast Green 1% in H2Obidest 
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6.13.3.5 Immunohistochemistry 

HCl (2.4 N) 2.4 N HCl (37 % (w/v)) 

in H2Obidest 

PBS (Phosphate buffered salt solution, 1x) 

pH 7.4 

137 mM NaCl 

2.7 mM KCl 

80.9 mM Na2HPO4 

1.5 mM KH2PO4 

in H2Obidest 

Sodium-Citrate buffer 10x 0.1M Sodium-Citrate, pH 6.0 in H2Obidest 

Tween-20 (0.1% / 0.5%) 0.1% / 0.5% (v/v) Tween-20 

in 1x PBS 

 

6.13.3.6 In situ hybridization 

Alkaline-phosphatase staining buffer 

(AP-buffer) 

 

100mM NaCl 

50mM MgCl2 

100mM Tris pH9.5 

0.1% Tween-20 

1mM Levamisole 

in H2Obidest 

AP - NBT/BCIP 

 

AP buffer 

350µg/ml NBT 

175µg/ml BCIP 

Blocking-solution MABT 

2% blocking reagent 

20% heat inactivated sheep serum 

Hybridization buffer 1x salt solution 

50% Formamide 

10% Dextran Sulfate 

1mg/ml wheat germ tRNA 

1x Denhardt’s solution 

H2Obidest  

LiCl (4M) 

 

4M LiCl 

H2Obidest  

MABT (5x) 

pH 7.5 

 

500mM Maleic Acid 

750mM NaCl 

0.1% Tween-20 

H2Obidest  
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SSC (20x) 3M NaCl 

0.3M Sodium Citrate 

in H2Obidest  

Tween-20 (0.1% / 0.5%) 0.1% / 0.5% (v/v) Tween-20 

in 1x PBS 

Washing solution 1x SSC 

50% Formamide 

0.1% Tween-20 

 

6.13.3.7 Whole-mount in situ hybridization 

BCIP 50mg/ml in dimethylformamide 

Blocking solution MABT 

20% GS 

2% blocking reagent 

Detergent solution 

 

1% Nonidet P-40 (Igepal) 

1% SDS 

0.5% Deoxycholate 

50mM Tris-HCL (pH 8.0) 

1 mM EDTA (pH 8.0) 

150 mM NaCl 

Hybridization solution 50% Formamide  

5 x SSC 

2% SDS 

50 µg/ml tRNA 

2% BBR 

50-100µg/ml Heparin 

MABT (5x) 

pH 7.5 

 

500mM Maleic Acid 

750mM NaCl 

0.1% Tween-20 

H2Obidest  

NBT 100mg/ml in (70%) dimethylformamid 

NTMT 100 mM NaCl  

100 mM TrisHCl (pH 9.5) 

50 mM MgCl2 

0.01% Tween 20  

PBT DEPC-PBS 

0.01% Tween 
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Solution X 50% Formamide 

2x SSC 

1% SDS 

SSC 20x, pH 4.5 in DEPC 

Tween-20 (0.1% / 0.5%) 0.1% (v/v) Tween-20 

in 1x PBS 

 

6.13.3.8 Molecular biology 

LB-agar 

 

LB-medium (LB Broth Base 20g/l) 

15g/l Agar 

SOB-Medium 2% Bacto trypton 

0.5% Bacto yeast extract 

10mM NaCl 

2.5mM KCl 

in H2Obidest 

TBE (10x) 

 

450mM Tris Base 

440mM Boric Acid 

10mM EDTA 

in H2Obidest 

 

6.13.4 Product list 
Product Company 

Agarose (electrophorese) Biozym 

Ampicillin Sigma 

Anti-DIG-FAB-fragments alkaline phosphatase Roche 

Aqua Poly/Mount mounting medium Polysciences 

Bacto-Agar DIFCO Laboratories 

BCIP (5-bromo-4-chloro-3-indolyl-phosphate, 4-toluidine salt) Roche 

Blocking reagent  Roche 

BrdU (5-Bromo-2-Deoxyuridin) Sigma 

BSA Sigma 

CaCl2 Sigma 

CsCl Sigma 

Cytochalasin D Sigma 

DAPI  Pierce 

Dextran Sulfate Sigma 
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DIG-RNA labelling mix (10x ; DIG-UTP) Roche 

Di-Sodiumhydrogenphosphate Na2HPO4 Merck 

EDTA (Titriplex) Merck 

Ethanol absolute (EtOH) Riedel-deHaën 

Fast Green FCF Sigma 

Formamide Merck 

Gentamycin Gibco 

Glycerol (87%) Merck 

Hank’s buffered salt solution (HBSS) Gibco 

HEPES-Buffer solution 1 M, pH 7,2 - 7,5 Gibco 

Immersion oil 518N Zeiss 

Isopropanol Merck 

Kaliumchloride KCl Merck 

Kaliumdihydrogenphosphate KH2PO4 Merck 

LB Broth Base Invitrogen 

Levamisole Sigma 

LiCl Merck 

Maleic Acid Fluka 

MgCl2 Merck 

MidiPrep-Kit Qiagen 

MidiTip 100 column Qiagen 

Molecular weight marker (1kb-ladder) Gibco 

NaCl Merck 

NaH2PO4 Merck 

NaN3 (pure) Merck 

NBT (Nitroblue Tetrazolium Chloride) Roche 

Normal goat serum (NGS) Boehringer Ingelheim 

(Vector Laboratories) 

NP40 – Igepal  Sigma 

Paraformaldehyde (PFA) Merck 

Penicillin/Streptomycin-Solution 

10 000 E Penicillin, 10 0000 µg/ml Streptomycin, 

as PenicillinG (Sodium salt) & Streptomycinsulfate 

Gibco 

Phenol-Chloroform-Isoamylalcohol (50:49:1) Gibco 

Poly-D-Lysine Hydrobromide (PDL) Sigma 

Polyoxyethylenesorbitanmonolaurate (Tween-20) Biorad 

Propidium-Iodide (PI) Sigma 

Proteinase K Roche 
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Restriction enzymes New England Biolabs 

RNA polymerase 50U/µl (T3, T7, SP6) Stratagene  

RNase A Qiagen 

RNase inhibitor Boehringer Mannheim 

RNeasy Kit Qiagen 

Sodium Citrate Merck 

Sodium Acetate Merck 

Sucrose Merck 

Top10 cells  Invitrogen living Science 

Transcription buffer (5x) Stratagene 

Tris Base Merck 

TrisHCl Merck 

Triton X-100 Roth 

 

6.13.5 Consumables 
Product Company 

Adhesive tape Tesa 

Capillaries (thin-wall single-barrel standard borosilicate glass 

tubing; OD:1.2; ID:0.90; length: 4in./ 102mm) 

WPI 

Column (NAP-25) Pharmazia 

Coverslips 24 x 50 mm Marienfeld 

Eggs Hölzl/ Moosburg 

Eppendorf tubes (0.5, 1.5, 2.0ml) Eppendorf 

Glass slides Superfrost®-Plus 76 x 26mm Menzel Gläser 

Parafilm American National can 

Pasteur pipettes, autoclaved Volac 

Permeable filtermembrane inserts Millicell-CM 

(0,4µm pore, 30mm diameter) 

Millipore 

Pipettes, sterile (5, 10, 25ml) Falcon 

Razor blades, extra thin, Rotbart Gillette 

Superglue UHU 

Syringe filters 0.45µm Renner 

Syringe needles (Neolus, 0.4mm) Terumo 

Syringe - fine dosage (1ml) Braun 

Syringes (10-50ml) Becton Dickinson 

Ultracentrifugation tube (Quick-Seal) Beckmann 

Whatman chromatography paper Whatman 
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7 Results 

7.1 Characterization of the telencephalic regions during development 

7.1.1 Expression pattern of Emx1 and Emx2 in the chick forebrain during development  

Emx1 and Emx2 are two homeobox transcription factors, which are expressed in the dorsal 

telencephalon from early developmental stages onwards. I analyzed their expression domains at 

several developmental stages for a full characterization as basis for functional manipulation. To 

compare the different developmental stages, in situ hybridization was performed at E2, E4 and E7 

(Fig.11). At E2 (HH 9-14), shortly after the neural tube has closed, the expression domains of Emx1 

and Emx2 became fixed in the anterior prosencephalon, whereas di- and mesencephalon exhibited 

Emx1- and Emx2-expression in the complete region. No expression could be observed in the 

prosencephalon at HH10, whereas at HH11/12 Emx1 and Emx2 showed weak expression 

dorso/medially (Fig.11A, E). At E3 (HH18-21) both genes were expressed in the di- and 

mesencephalon and in the dorsal telencephalon (Fig.11B’), where they described a low rostro/lateral 

to high caudo/medial gradient with exception of the most medial located region. The expression 

domain of Emx2 (Fig.11F) seemed to extend further medially than Emx1 (Fig.11B), indicated by 

the white arrowheads. At E4 (HH24/25) Emx1 and Emx2 were strongly expressed in the 

dorso/medial region of the telencephalic vesicle, but excluded from the thinner medial tissue, the 

choroidal anlage (ChA; Fig.11C, G). Emx2-expression still extended slightly further medially than 

Emx1 (see empty arrowheads). The expression of both TFs decreased gradually towards the lateral 

region with Emx2 being expressed further laterally (Fig.11C, G; see black arrowheads). At E7 

(HH30/31) both TFs were strongly expressed in the hippocampus and the medial pallium. Emx2-

expression was also observed in the cortical hem but at lower levels, whereas Emx1 was only 

expressed in the dorsal-most region of the hem (Fig.11I, J; black arrowheads). Emx1 and Emx2 

were not expressed in the choroid plexus (ChP), which was located medial to the region of the hem 

(Fig.11D, H, I, J). In the ventricular zone (VZ) of the pallium (PA) the expression of both, Emx1 

and Emx2, decreased in a medial to lateral gradient, finally terminating in the DVR (see empty 

arrowheads). Weak expression of Emx2 extended further into the region of the DVR than Emx1 

(Fig.11D, H), even though no clear border of expression could be detected in this region. Emx2-

expression was observed in very low levels throughout the subpallial VZ (Fig.11H) and Emx1 was 

additionally detected in pallial postmitotic pyramidal neurons (see asterisk in Fig.11D). 
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Taken together, the expression of Emx1 and Emx2 began around HH11/12 in the dorso/medial 

prosencephalon and by HH18 exhibited a more restricted pattern in the telencephalon with strongest 

expression in the caudo/medial region. Both genes largely colocalized but Emx2-expression 

extended further medial into the cortical hem as well as further lateral into the region of the DVR. 

 

7.1.2 Analysis of different markers in the developing chick forebrain 

7.1.2.1 Characterization of forebrain regions at E4  

At this developmental stage the forebrain still appeared as a small telencephalic vesicle, mainly 

consisting of neuroepithelium (NE). The different forebrain regions did not show specialized 

morphological characteristics yet. Analysis of specific transcription factors and secreted signals like 

Fgf8, Bmps and Wnts exhibited some interesting expression domains in the forebrain. The dorsal 

Emx1/2- positive region was also characterized by the homeodomain TF Pax6 (Fig.12E), which 

also abutted the ChA. In the dorso/lateral telencephalon the Pax6-signal weakened and stopped 

around the Emx1-expression border. The ChA strongly expressed signaling-molecules like Fgf8 

rostrally (Fig.12A) and Bmp7 throughout the entire rostro/caudal extension (Fig.12C). The 

expression domain of the TF Otx2 (Fig.12B) also labeled this region but extended slightly further 

laterally. Fgf8- and Bmp7-expression bordered the expression of Emx1 and Emx2, whereby Emx1 

delineated a small gap to the Bmp7-expression domain (compare Figs.12C and 11C, G). Wnt7b 

(Fig.12D) was absent from the ChA but bordered the Bmp7-expression and thus overlapped with 

the weakly lateral expression of Otx2 and the medial expression of Emx1 and Emx2.  

As development proceeds, the midline-structure, pallial and subpallial regions become 

morphologically discernible. The medio/dorsal region fully invaginates and formes the midline-

region. The DVR and the subpallium strongly increase in radial size and the DVR appears as 

predominant structure of the avian forebrain.  

7.1.2.2 Characterization of forebrain regions at E6 

The exact location of distinct areas of the midline region was studied by the distribution of midline 

markers, like Bmp7, Wnt7b and Otx2. The cortical hem expressed Wnt7b (Fig.13A) and very 

weakly Otx2 and Bmp7 (see arrowheads in Fig.13B, C). In the dorsal region of the hem, Wnt7b 

overlapped with Emx1 and to an even greater extend with Emx2. 

Interestingly, the region located medially to the hem region, the ChP was completely devoid of 

Emx-expression. ChP-tissue could nicely be detected by coexpression of Otx2 and Bmp7 (Fig.13B, 
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C), even though the Bmp7-signal was not restricted exclusively to the region of the ChP. Its 

expression decreased dorsally, but the cortical hem interrupted the gradient and only showed very 

weak expression of the Bmp7-signal. Lhx2a and Gli3 labeled the VZ of the forebrain, with Lhx2a 

excluding ChP and hem and Gli3 only excluding the ChP (Fig.13D, E). Around E6/7 the tissue of 

the ChP matured and started to express Ttr (Fig.13F). 

 

Emx1/2, Pax6 and Ngn1/2 were expressed in opposing gradients in the dorsal telencephalon, 

including the DVR (Figs.11D, H; 14A, B, C). Emx1/2 showed a decreasing medial to lateral 

expression with high expression in the midline-region and lower levels of expression in the DVR, 

while Ngn1/2 and Pax6 exhibited opposing gradients and formed a sharp expression boundary to 

the subpallium (Fig.14A, B, C, F, G, H). Although Pax6 was weakly expressed in the midline-

region it extended furthest medial and even showed expression in the ChP (Fig.25D’), while neither 

Ngn1/2 nor Emx1/2 were detected in this region (Figs.11D, H; 14A, B). Interestingly, the dorsal 

region of the hem, the hippocampus and the choroidal roof expressed much lower levels of Pax6 

protein than the ChP (Fig.25D’). The domain of high Pax6-expression in VZ-cells of the pallium 

and DVR stopped at the sulcus between the DVR and subpallium (Fig. 14C, H), where a band of 

Pax6-containing cells extended into the differentiated parts of the subpallium (see asterisks in 

Fig.14C, 15A). Low levels of Ngn1/2 were expressed in the region of the hem, whereby Ngn2- 

expression was slightly stronger in the hem-region than Ngn1 (see arrowheads in insets in 

Fig.14A’’’, B’’’). While most cells in the VZ of the DVR expressed Ngn1 or Ngn2 (see insets in 

Fig.14A’’, B’’), only subpopulations of cells expressed these genes in the in the VZ of the dorsal 

pallium (see insets in Fig.14A’, B’). As described earlier, Emx1-expression stopped dorsal of Pax6- 

and Ngn2-expression domains leaving a gap to the ventrally expressed Dlx1-gene (Fig.11D; 14B, 

C, D; Bell et al., 2001; Fernandez et al., 1998). 

Specific markers for the subpallium are Dlx1, Cash1 and Gsh2 (Figs.14, 15). Neither Emx1/2, 

Ngn1/2 nor Pax6 were found in the subpallium. However, Pax6 was expressed in postmitotic cells 

in the dorsal part of the Dlx1-expression domain, but were absent from the ventral part (arrowheads 

in Fig. 14C). Cash1 and Gsh2 were expressed in the subpallium but seemed to extend slightly 

deeper into the DVR than Dlx1 (Figs. 14D, E, J, 15B). Cash1-expression continued at a low level 

through the DVR into the dorsal pallium (see arrow in Fig. 14E). Few Cash1-positive cells were 

observed in the cortical hem, whereas the choroid plexus completely lacked Cash1-expression 

(Fig.14E’). We also observed a small gap in Gsh2-immunoreactivity in the subpallium (see asterisk 

in Fig. 15B) comparable to the gap between the LGE and MGE in the mouse (Toresson et al., 
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2000). Gsh2-expression was strongest in the subpallial VZ and only few cells in the SVZ were 

Gsh2-positive (Fig.15C; Yun et al., 2001), whereas Cash1 was expressed from early precursors in 

the VZ and SVZ at the transition from VZ to SVZ (Fig.14E, J; Yun et al., 2002) and Dlx1 could be 

detected predominantly in the SVZ (Fig.14D, I).  

 

To directly examine the overlap of pallial and subpallial markers, we performed Pax6- and Gsh2-

double immunostainings and observed a small zone of Pax6/Gsh2 double-positive cells at all 

rostro/caudal levels coinciding with the origin of the band of Pax6-positive cells described above 

(Fig.15A, B, C). Since the soluble frizzled receptor2 (Sfrp2) was detected in the dorso/ventral 

boundary in mouse (Kim et al., 2001), we examined expression of the chick homologues (Terry et 

al., 2000) in the developing telencephalon. While no expression of Sfrp2 could be detected in the 

telencephalon, Sfrp1-expression was restricted to a small region between the DVR and subpallium, 

where Gsh2 and Pax6 were coexpressed (Fig.16; Frowein et al., 2002). The Sfrp1-positive territory, 

however, appeared broader than the Pax6/Gsh2-overlap and extended equally into pallial and 

subpallial regions (compare Figs.15 and 16).   

7.1.2.3 Characterization of forebrain regions at E10 

At E10 (HH36) the different regions had accomplished characteristic features. The region of the 

avian wulst occupied a very small area whereas the DVR appeared as predominant structure, 

characterized by the formation of clusters of neurons (Fig.17C). The cells of the DVR that form its 

nuclei are born at E6, migrate to their final destination and form cell clusters around E10 (Striedter 

and Keefer, 2000). These clusters could be identified by birthdating experiments (Striedter and 

Keefer, 2000). BrdU was injected at E6 and embryos were analyzed at E10. Typically, BrdU-

positive cell clusters in the DVR consisted of 10-50 cells in diameter and a thickness of 50-75 µm 

(Fig.17C, C’). The large region of the DVR was labeled with Tbr (Fig.17A), a marker for 

precursors and neurons in the pallial region and the DVR. Blbp characterized the dorso/ventral 

boundary region, which seemed to occupy a rather large region (Fig.17B). The choroid plexus has 

differentiated and strongly expressed Ttr (Fig.17D). Emx2 (Fig.17E) and Pax6 (Fig.17F) were still 

expressed in opposing gradients in the VZ of pallium and DVR. 

 

Taken together, this expression analysis further show that the DVR is characterized by pallial gene 

expression (Puelles et al., 2000) and does not correspond to the dorso/ventral boundary in the 
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telencephalon of mammals (Fernandez et al., 1998). It rather appears that the pallial/subpallial 

border was shifted below the DVR in the chick telencephalon (see schematic summary, Fig.18). 

 

7.1.3 Analysis of proliferation and differentiation at different stages 

The expression pattern of Emx1 and Emx2 coincided with morphologically different regions that 

showed differences in proliferation and differentiation. 

7.1.3.1 Analysis at E4 

The thickness of the pallium and subpallium varied slightly and no clear border could be 

distinguished between these regions. The pallium was 7-12 cells thick (9.1±0.4; n=14; Fig.19B) and 

the subpallium contained 9-14 cells (10.8± 0.4; n=12; Fig.19C). The choroidal anlage formed a 

small, thin band that consisted of 2-4 cells in thickness (2.8±0.2; n=12; Fig.19A). 

Proliferation was analyzed by staining for Phospho-histon H3, a marker for mitosis. By 

electroporating a GFP-plasmid, I labeled a certain amount of neuroepithelial cells. For 

quantification, GFP/PH3 double-positive cells were counted as proportion of all transduced cells. 

The pallial tissue contained around 5% mitotically active cells (n=3; Fig.19E), whereas the 

subpallium exhibited 8% PH3-positive cells (Fig.19F; n=2). The region of the ChA only exhibited 

very few proliferating cells (Fig.19D). In the subpallium, in contrast to the pallium, mitotically 

active cells seemed to be less restricted to the ventricular surface. This could be an early indication 

for the formation of the SVZ in the subpallium that will later occupy a large territory (see 

arrowheads in Fig.19F). PH3-positive cells lining the pial surface of the pallium belonged to blood 

vessels of the pia mater and not to the pallium (see arrows in Fig. 19E).  

Differentiation was monitored by staining for Map2, a microtubule-associated protein which is 

expressed in postmitotic neurons. Map2-positive neurons were rarely observed in the pallial region 

(Fig.19H), but some postmitotic neurons were detected in the subpallium (Fig.19I), forming a thin 

band above the neuroepithelium. Also in the ChA no differentiated neurons were found (Fig.19G). 

7.1.3.2 Analysis at E6 

At E6 the regions of the dorsal telencephalon could be distinguished by their thickness, cell 

proliferation and neuronal differentiation. The thickness increased from the ChP to the pallium and 

DVR. The ChP consisted of 2-4 cells (2.4±0.2; n=12; Fig.20B, B’’, E), the hem of 2-6 cells (4±0.3; 

n=16; Fig.20B, B’, E) and the adjacent hippocampal area contained about 11 cells (11.1±0.4; n=9, 
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E). Interestingly, in a rostral to caudal direction the tissue of the cortical hem became thinner and 

more elongated. The pallium exhibited a thickness of 15-28 cells (20.6±1.4; n=10; Fig 20A’, E).  

Proliferation was studied by the expression of PH3, which also strongly increased from the region 

of the ChP to the pallium. The rate of proliferation in the ChP was rather low (2.4±0.4; n=13; 

quantified as PH3-positive cells per area; Fig.20B, E). The rate of proliferation in the hem-region 

(5.4±1.6; n=5, E) was higher than in the choroid plexus, but still lower than in the pallium 

(18.3±1.1; n=3; Fig.20A, E). In the pallium, also cells in a region above the VZ underwent mitosis. 

This thin 1-cell layer of mitotic cells lining the VZ resembles the subventricular zone (SVZ) in 

analogy to the mammalian SVZ (Smart, 1976), which is composed of few cells in thickness. The 

DVR showed a similar rate of proliferation compared to the pallium (19.5±1.1; n=2; Fig.20C, E) 

but the size of the SVZ was greatly enlarged compared to the pallium.  

Neuronal differentiation was not observed in the ChP (Fig.20B) but in the hem-region (Fig.20B), in 

the pallium (Fig.20A) and in the DVR (Fig.20C). In the pallium and in the DVR postmitotic 

neurons formed a strong Map2-positive band, whereby the territory in the DVR was much larger. 

Interestingly, the cortical hem exhibited Map2-positive neurons, that used their processes to reach 

the inner ventricular surface or cells resided in the VZ-tissue, a characteristic feature only observed 

in the tissue of the hem (see high power inset in Fig.20B). In the region of the DVR, postmitotic 

neurons formed a very thick layer (Fig.20C). 

 

The size of the subpallium had strongly increased by E6. A high rate of proliferation was observed 

in the VZ (24.5±1.6; n=6) and in the SVZ (Fig.20D, E). The SVZ in the subpallium appeared 

similar to the SVZ in the DVR, but contained a larger number of proliferating cells. Many 

differentiated neurons were present in a prominent band, indicative of pronounced neuronal 

differentiation (Fig.20D). 

 

This cell biological analysis demonstrated that the DVR rather resembled the structure of the 

subpallium. This is obvious in regard to the thickness of the tissue, the pronounced neuronal 

differentiation, the presence of a broad SVZ and the formation of nuclear cell clusters, while the 

rate of proliferation was rather comparable to the rate observed in the pallium. These observations 

are juxtaposed to the pallial pattern of transcription factors that characterize the region of the DVR. 

These opposing observations raise the question where the pallial/subpallial boundary is located. 
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7.1.4 Location of the pallial/subpallial boundary by migration analysis 

To analyze the exact position of the pallial/subpallial boundary, I studied the migration of neurons 

using slice cultures transfected with EGFP-adenovirus at different regions. Pictures of the migrating 

cells were taken at different time-points after infection.  

Cells infected in the avian pallium predominantly elongated radially (n=3/3; Fig.21A). Infected 

cells in the DVR, showed a migration into the pallium, using different routes. DVR-cells migrated 

through the marginal zone, the intermediate mantel zone and the proliferative SVZ (n=8/15; 

Fig.21B, D). However, about half of the slices with cells infected in the DVR did not show any 

migration (n=7/15; Fig.21B, D). Infections of the subpallium, also exhibited migration through 

marginal, mantel and SVZ to reach the pallium (n=7/12; Fig.21C, D). Similar results were obtained 

in vivo using quail-chick grafts (Cobos et al., 2001a). In few cases I observed that cells infected in 

the DVR migrated ventrally into the subpallium by crossing the pallial/subpallial boundary (n=1/15; 

Fig.21B, D). Cells that were infected in the region of the boundary acquired a radial morphology 

(n=3/5; Figs.21D; 22A), reminiscent of the mammalian boundary in this area, which is 

characterized by a bundle of radial glia cells. This boundary-region was also labeled for Blbp 

(Fig.22B), an antibody that marks mammalian radial glia cells in the boundary-region (Hartfuss et 

al., 2001; Li et al., 2004). The migration analysis demonstrated a shift of the pallial/subpallial 

boundary below the region of the DVR. This boundary coincided with the Pax6-positive stream of 

cells, the Sfrp1-positive region, the radially oriented morphology of cells, the migratory boundary 

and the dorsal and ventral expression of characteristic transcription factors.  

 

7.2 Analysis of telencephalic development upon misexpression of Emx1/2 

To elucidate the role of Emx1 and Emx2 on regionalization, proliferation and differentiation of the 

different forebrain regions, I overexpressed these genes in the pallium, subpallium and midline-

region by in ovo electroporation. 

7.2.1 Electroporation and conformation of plasmid transduction 

Electroporation yielded the highest efficiency, when it was carried out at embryonic day 2 (E2; 

HH9-13). One day after electroporation, at E3, in about 90% of the electroporated brains the entire 

neuroepithelium was GFP-positive (Fig.23A). As development proceeded, cells of the VZ started to 

loose GFP-immunoreactivity; supposedly they diluted the plasmid during proliferation. This effect 

was observed most strongly in high proliferative regions, like the DVR and subpallium. Thus, by 

E6, few cells in the VZ were still positive for the control plasmid (Fig.23B) and by E7 even less 
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cells in the VZ were GFP-positive. These remaining few GFP-positive cells were organized in a 

column like manner, which could be an indication for slowly dividing stem cells (Fig.23C). 

To misexpress Emx1 and Emx2 I cloned the mouse fulllength cDNA into the expression plasmid 

Pmes, which contained an IRES-EGFP sequence after the multiple cloning site (kind gift of Cathrin 

Krull; Swartz et al., 2001b). The IRES-EGFP sequence has been demonstrated to mediate reliable 

coexpression by the generation of a bicistronic mRNA and internal translation (Fig.24; Ghattas et 

al., 1991; Heins et al., 2001; Heins et al., 2002). To test ectopic Emx-expression, the constructs 

were electroporated into the subpallial region of the forebrain at E2, sacrificed at E4, and analyzed 

for the coexpression of Emx and GFP by immunohistochemistry. This showed that the GFP-signal 

nicely colocalized with Emx1 or Emx2 (Fig.24A, B; see arrows). Some cells in the VZ as well as in 

the MZ seemed not to show coexpression of Emx1 and GFP (see arrowheads in Fig.24A, B). The 

lack of red stained Emx-positive cells in the VZ might be due to the strong GFP-signal outshining 

the red staining, whereas in the MZ, non-pyramidal postmitotical cells might have downregulated 

Emx-protein posttranslationally. Electroporation was performed either with one of the plasmids or 

with a mixture of both at equal proportion, aiming for the strongest effect. By coelectroporation 

approximately 90% of all transfected cells expressed both constructs (Swartz et al., 2001a). This 

confirmation of coexpression of Emx and GFP allowed the assumption of Emx being expressed in 

the green GFP-transduced tissue. 

 

7.2.2 Ectopic expression of Emx1/2 promoted defects in the midline-region at E6 

At E6 GFP-electroporated control brains exhibited a normal midline-region folded to the inside, 

bifurcating the forebrain into two hemispheres with a thin ChP at the most ventral part (Fig. 25A, B, 

C, D; n=3). In contrast, high levels of Emx1/2-misexpression in a large region did not allow the 

development of an apparent midline-structure (Fig. 25E, F, G, H; n=4). In some cases the 

morphology rather resembled a holoprosencephalic brain (Fig.25E; n=2). Some manipulated 

forebrains also exhibited foldings of midline-structures to the outside (Fig.25I; n=2). These strong 

morphological deformations prompted me to look at the question of the regional identities of these 

abnormal structures.  

 

7.2.2.1 Identity of the manipulated midline-region 

In order to determine the identity of the Emx1/2-transduced GFP-positive area, I examined Pax6, 

which is normally expressed in the dorsal telencephalon, including the ChP but excluding the 
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choroidal roof, dorsal hem and hippocampus (Fig.25D, D’). In manipulated brains at E6, the Pax6-

expression extended across the midline-region coinciding with the GFP-positive territory and did 

not exclude a region that could resemble the hem, hippocampus or the choroidal roof (Fig. 25H). 

Interestingly, strongly GFP/Emx1/2-positive cells seemed to lack the expression of Pax6, whereas 

weaker GFP-positive cells still expressed Pax6. This suggested a downregulation, direct or indirect, 

of Pax6 by Emx1/2.  

Analysis of Otx2, which was expressed exclusively in the choroid plexus and which was normally 

absent from the Emx-territory (Fig. 25B) showed that upon Emx-transduction, Otx2 was 

consistently excluded from the Emx/GFP-territory (n=3; Fig. 25F, J). The Otx-positive region rather 

seemed to be shifted to an area, adjacent to the Emx/GFP-positive region. Bmp7 was shifted too, 

coinciding with the ectopic Otx2-positive region (Fig. 25G). To evaluate the location of the hem-

region in the transfected embryos, I analyzed Wnt7b in the Emx/GFP-transfected regions. Wnt7b 

clearly marked the regions adjacent to the expression of Otx2 (Figs.26C, E; 13A, C), which 

indicated that the hem-region was unaltered (Fig.26A). Gli3 was ectopically upregulated in the 

Emx1/2-positive region (Fig.26D, F) compared to the control (Fig.26B). Sometimes it even 

overlapped with the Otx2-positive region, which indicated a misspecification of this region, since 

coexpression of Otx2 and Gli3 was never observed in control brains (Figs.25B; 26B). These 

deformations indicate a misspecification of the midline-region promoted by the overexpression of 

Emx1/2 in the territory normally devoid of Emx-expression. This gene expression analysis suggests 

that upon ectopic Emx-expression the pallial territory expands into the midline-region that normally 

acquires a non-neuronal (ChP-) phenotype.  

 

7.2.2.2 Analysis of proliferation and differentiation 

To further study differences induced by ectopic Emx in the dorsal telencephalon, I examined the 

cell biological characteristics of these regions. The cell biological features discriminating pallium 

and midline-region are the thickness of the epithelium, the cell proliferation and the formation of 

neurons (Fig.27). In the Emx-transduced region (see Fig.25E, I) a mean thickness of 9 cells was 

observed (brain #1: 11.8±0.8, n=9; #2:11±0.5, n=10; #3:4.3±0.3, n=11; Fig.27A, A2, B, B2, C), 

which closest resembled the thickness of the cortical hem in the control situation (4±0.3; Fig.20B, 

B’), a region with low levels of Emx-expression. Thus, the region normally giving rise to a thin ChP 

changed into an apparently neuroepithelial tissue. 
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Consistent with this observation, the manipulated Emx/GFP-positive region showed a higher rate of 

proliferation (Ø10.8 cells/area; brain #1: 7.3±0.3, n=3; brain #3: 14.3±1.1, n=4; Fig.27B2’, C), than 

a normal cortical hem (5.4±1.6; n=5; Fig.20B) but a lower proliferation rate than normally found in 

the pallium (18.3±1.1, n=3; Fig.20A). 

To analyze the formation of neuroepithelium in the manipulated area, I examined the presence of 

neurons (Fig.27B2’’). A territory of strong Emx-misexpression displayed postmitotic neurons 

although they appeared to be fewer in number than in the control elctroporated pallium. This means 

that ectopic Emx induces the ectopic formation of neuroepithelium but also restricts the process of 

maturation.  

 

The shifted Otx2-positive tissue exhibited a mean “hem-like” thickness of 6 cells (Ø=6.4 cells; 

brain #1: 5.8±0.7, #2: 5.8±0.3, #3: 7.6±0.3; Fig.27A, A1, B, B1, C), which indicated a slight 

enlargement of the thickness compared to the normal choroid plexus (Fig.20B’’). The region of 

Otx2-expression also exhibited an increased “hem-like” rate of proliferation (8 cells/area; brain #1: 

10±1.2, n=3; brain#3: 5.8±0.7, n=5; Fig.27B1’, C) compared to tissue of the normal ChP (5.4±1.6; 

n=5; Fig.20B). This means, the misspecified region was able to proliferate stronger than the normal 

Otx2-positive tissue of the ChP normally allows. Comparing the Emx-transduced region to the 

Otx2-positive territory, 5x more PH3-positive cells were detected. In the Otx2-positive region no 

Map2-positive cells could be observed above the VZ, which would be an indication for shifted ChP-

tissue (Fig.27B1’’).  

 

In some cases (n=3), when the transduction level of Emx1 or Emx2 was very high and when the 

manipulation affected a large region, strong folding of the transduced tissue was observed (Fig.28). 

Especially the pallium of the forebrain (E6), transduced with Pmes-Emx2 (Fig.28A) showed strong 

foldings and an enlargement of the dorsal tissue. Even in the subpallium eventually additional 

foldings appeared, when it was electroporated with Pmes-Emx1 (Fig.28B). This suggests an 

expansion of the tissue due to enhanced proliferation, which supports the role of Emx1/2 in 

upregulating cell proliferation. 

 

Thus, these results show that ectopic Emx suppresses the formation of a proper midline-region and 

that shifted midline-structures cannot differentiate properly. Emx-transduction into regions that are 

normally devoid of Emx, like the ChP, suppresses the development indicated by downregulation of 

markers like Otx2, Bmp7 and Pax6 (for summary see Fig.29). 
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7.2.3 Influence of Emx1/2-misexpression on the development at E4 

7.2.3.1 Early regulation of midline-markers  

In order to determine the mechanisms of how Emx-genes mediate the suppression of midline-

formation, earlier developmental stages were analyzed. Chick embryos were electroporated at E2 

(HH9-14) and sacrificed at E4, at which stage the midline just begins to be detectable, but has not 

yet morphologically differentiated and invaginated. 

The control embryos (Fig.30A, B, C, D; n = 3), transfected with a GFP-construct showed a clear 

overlap of the GFP-region with Otx2, Wnt7b and Bmp7 in the region of the presumptive midline. In 

contrast, Otx2 was suppressed in the region of misexpression (Fig.30E, F; n = 4). It is clearly visible 

that Emx1/2 suppressed the expression of Otx2 at different levels of the rostro/caudal axis. Two 

different levels are depicted, the caudal region (Fig.30E) and the rostral region (Fig.30F). 

Interestingly, Wnt7b-expression was reduced in the Emx1/2-positive region in the rostral region 

(Fig30.G). In the caudal region Wnt7b was not expressed dorsally at this stage and therefore, no 

regulation could be observed. This downregulation of Wnt7b is not detected in older embryos 

(Fig.26C, E), as mentioned earlier. Emx1/2-overexpression did also not affect Bmp7-expression 

(Fig.30H) at this developmental stage. Notably, Pax6-immunoreactivity was strongly reduced upon 

overexpression of Emx1/2. In control electroporated brains 66% of the GFP-labeled cells 

coexpressed Pax6, whereas only 7% of the Emx1/2-transduced cells also expressed Pax6. This 

indicated a downregulation of Pax6 by 89%, mediated through Emx1/2. 

Taken together, Emx-misexpression already induces alterations at E4, evident in the reduction of 

Otx2, Wnt7b- and Pax6-expression, while Bmp7-expression seems unchanged.  

 

7.2.3.2 Analysis of proliferation and differentiation 

To analyze proliferation, tissue electroporated with the control plasmid was compared to the 

Emx1/2-transduced tissue. The proliferation was quantified by the amount of cells undergoing 

mitosis as proportion of all transfected cells. When the dorsal pallium was transduced with the 

control plasmid, I observed an average of 5.3% PH3-positive cells (control: 2 brains, 1499 cells; 

Fig.31A, A’, A’’, A’’’, B). Emx1- and Emx2-coelectroporation resulted in an increase of 

proliferation to 7.8% PH3-positive cells (911 cells, 2 brains). Interestingly, the presence of Emx1 

alone led to 10% proliferation, which is a 2-fold increase compared to the control (1508 cells, 3 

brains; Fig.31B). This increase could well explain the additional foldings of the dorsal pallium 

observed at E6 (Fig.28). Emx2-transduction into the dorsal pallium of the chick embryo resulted in 
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an upregulation to 8.5% (210 cells, 2 brains; Fig.31B). Proliferation analysis of the choroidal anlage 

could not be performed because this region could either not be located properly or the 

electroporation did not affect this region. 

 

Electroporation of the control plasmid into the ventral telencephalon resulted in 8% PH3-positive 

cells, a region with a significantly higher rate of proliferation than the pallium (control: 278 cells, 2 

brains; Fig.31B), whereas overexpression of Emx1/2 showed even a decrease to 5.7% (279 cells, 1 

brain; Fig.31B). Emx1-overexpression in the subpallium showed that brains 7% of the GFP-

expressing cells were PH3-positive (439 cells, 1 brain; Fig.31B), which also did not indicate any 

increase in proliferation.  

 

To analyze the differentiation of the Emx-transduced region, a staining for Map2 was performed 

(Fig.32). The control showed few Map2-positive cells in the transduced side (Fig.32A). 

Electroporation of Emx1 revealed a decrease of Map2-positive differentiated neurons at the pial 

surface (Fig.32B, B’; n=2) at two different rostro-caudal levels. These results suggest that Emx1 

keeps the cells in a proliferative mode not allowing them to differentiate, an effect not observed by 

overexpression of Emx2 (n=2).  

 

In summary, Emx1 and Emx2 are able to enhance proliferation in the pallium in vivo, whereby 

Emx1 exhibits a stronger effect. In Emx1-transduced brains the differentiation seems blocked by 

maintaining the cells in precursor state. Both genes, Emx1 and Emx2, are able to induce additional 

folding of the tissue, an indication for enhanced cell divisions. 

 

7.2.4 Stage dependence and dosage effect of gene regulation 

Occasionally (n=2), Emx1/2-transduction did not result in a downregulation of Otx2 in E6 as well 

as in E4 embryos (Fig.33). I examined whether the dosage of Emx1/2 or the stage of electroporation 

may cause this variability. All manipulated embryos that showed the Otx2-downregulation effect 

were electroporated between stages HH9 and HH12 (n=4). Electroporation after HH12, at HH13 or 

HH14 (n=2), never resulted in a downregulation of Otx2 in the region of Emx1/2-misexpression. 

The brain depicted in Fig.33A developed a normal thin (1.8±0.2; n=9; Fig.33B’), Otx2-positive 

region despite Emx1/2-transduction of this tissue, with a low rate of proliferation (2.5±0.3; n=4; 

Fig.33B’). However, the midline-region did not invaginate although Otx2-expression was not 

altered. Emx1/2-transduced embryos, analyzed at E4, occasionally also showed normal Otx2-
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expression, but only when manipulated at HH14 (Fig.33C, D). Wnt7b could still be downregulated 

(Fig.33E), when the manipulation was performed at these later stages, whereas Bmp7 seemed also 

not affected by manipulations after HH12 (Fig.33F). This indicates that around HH13 the region of 

Otx2-expression becomes irreversibly specified to develop into a thin non-neuronal tissue. 
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8 Discussion 
Gene expression analysis of various transcription factors demonstrated that the dorso-ventricular 

ridge (DVR), expresses mostly transcription factors characteristic for the dorsal telencephalon, the 

pallium. I could further show that the typical migrational restriction boundary between pallial and 

subpallial regions is located between the DVR and the subpallium.  

To investigate the influence of Emx1 and Emx2 on the development of forebrain regions, where 

they show a distinct partially overlapping expression pattern, I used over- and misexpression 

experiments to determine their function: When either Emx1 or Emx2 were overexpressed in the 

pallium, proliferation of precursor cells was drastically enhanced. This effect could not be observed 

in the subpallium. On the other hand, neurogenesis was reduced upon Emx-overexpression, further 

supported by the downregulation of Pax6, a neurogenic homeobox transcription factor. 

Finally, when either Emx1 or Emx2 were misexpressed in the midline-region of the forebrain, the 

choroid plexus failed to form and acquired instead a neural identity. This effect was mediated by 

Otx2 in a stage dependent manner.  

 

8.1 Expression domains of Emx1 and Emx2 in the avian compared to the 

mammalian forebrain 

Emx1 and Emx2 are two dorsally expressed homeobox transcription factors that showed largely 

overlapping expression domains from early developmental stages onwards. Around E2 (HH11/12) 

their domains became restricted to the dorsal prosencephalon and by E3 (HH18) the low 

rostro/lateral to high caudo/medial gradients were detectable. At all stages analyzed, Emx2 

extended further medially into the region of the hem than Emx1, as well as further ventrally into the 

region of the DVR (Fig.34). In the region of the midline, Emx1- and Emx2-expression was strong 

in the hippocampus but only Emx2 was detectable throughout the cortical hem. Similarly, the 

Emx2-expression domain extended further ventrally throughout the DVR, while Emx1 was only 

expressed in its most dorsal part. This observation corresponds to the expression pattern of Emx1 

and Emx2 in the mammalian brain, where Emx2 also extends further into the hem-region than 

Emx1 (Tole et al., 2000; Yoshida et al., 1997). Ventrally, Emx2 extends weakly around the 

pallial/subpallial boundary (Cecchi, 2002), while Emx1-expression terminates further dorsally, 

leaving a small gap to the boundary-region (Muzio et al., 2002). This means that medially in the 

hem as well as laterally in the region directly above the pallial/subpallial boundary (mouse: ventral 

pallium; chick: ventral DVR) the situation in mammalian and avian forebrains is very similar. Thus, 
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the lack of Emx1 in the hem-region in chick and mouse gives rise to very similar regions in mouse 

and chick medially, while the expression gap of Emx1, detected in mouse and chick laterally, gives 

rise to the structure of the DVR in the avian telencephalon and has been suggested to give rise to the 

amygdala in mammals (Fernandez et al., 1998). 

However, Emx-expression does not strictly respect borders to the neighboring structures. Hem and 

DVR share the identity of border areas where two different regions meet. The hem-region separates 

the pallial region from the ChP and the DVR separates pallium from subpallium, which somehow 

attributes an intermediate character to them. Hem and DVR share the expression of factors from the 

adjacent domains at low levels. The hem-region displays medial and dorsal characteristics, such as 

low levels of Otx2 and Bmp7 (ChP-markers) as well as low levels of Emx1 and Emx2 (pallial 

markers). The DVR also shows some dorsal and ventral characteristics, such as high levels of 

Cash1-expression ventrally and low levels dorsally but also dorsal markers like Emx1/2. A similar 

distribution of TFs that pattern dorsal and ventral regions lead to a general mode of development of 

dorsal and ventral telencephalic regions. However, not all TFs are distributed in a similar way in the 

avian and mammalian forebrain, which might lead to the distinct morphology in these vertebrate 

classes and will be described in more detail below.  

 

Since it has been proposed that the region between the expression domains of Emx1 and Dlx1 might 

give rise to the DVR (Fernandez et al., 1998), it would be interesting to test this model by 

overexpressing Emx1 in this region to possibly block the process of cell cluster formation in the 

DVR. Therefore, I introduced Emx1 by electroporation at E2 into the early region of the DVR to 

possibly manipulate the development of the nuclear cell clusters that become detectable by E10. To 

label these cells, I injected BrdU into a vein of the embryo at E6, the day when the cells, forming 

the clusters, are born. It was not possible to study the question in this way, because at E6 the Emx1-

GFP construct has almost disappeared from VZ-cells because of strong proliferation in the DVR. 

The electroporated DNA plasmids do not integrate into the genome and therefore in each round of 

cell division the number of copies of the plasmid may decrease by dilution between the daughter 

cells. To study the influence of Emx1 on the development of the nuclear structure of the DVR, I 

would suggest using a replication competent retrovirus (Greenhouse et al., 1988; Hughes and Kosik, 

1984; Hughes et al., 1987), to label higher amounts of proliferating cells without loosing the 

construct. 
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8.2 SVZ in the avian brain 

A characteristic of the subpallium in mammals (Smart, 1976; Smart et al., 2002) is the 

establishment of a second proliferative layer, the SVZ (Smart, 1985). In chick, the band of 

proliferating precursors superficial to the VZ was also most pronounced in the subpallium, as 

described from Striedter and Keefer (2000). The SVZ in this region was about 50µm thick. 

Interestingly, the region of the DVR also exhibited an SVZ, comparable to the SVZ in the 

subpallium in regard to its thickness, but containing fewer proliferating cells. The pallium also 

showed cells undergoing mitosis in the SVZ, but only few as is the case in the developing mouse 

pallium (Ishii et al., 2000; Valverde et al., 1995). Here, the cells formed a thin band, which was not 

described previously by Striedter and Keefer (2000). The fact that the DVR exhibits such a large 

SVZ-region, comparable to the subpallial SVZ, attributes a ventral characteristic to the DVR. 

 

8.3 DVR: a debate of homology  

Homologizing the DVR to a mammalian structure has been a matter for debate for a long period of 

time (Aboitiz, 1999; Aboitiz et al., 2003; Striedter, 1997). Once the DVR was believed to be 

homologous to the mammalian striatum (subpallium) because of its organization into distinct nuclei 

(Ariëns Kappers, 1936). But when modern anatomical studies revealed that the DVR receives major 

ascending input from the dorsal thalamus, the DVR began to be homologized with the mammalian 

neocortex (Karten, 1969; Lohman, 1990). Still another theory hypothesized to homologize the DVR 

to an enlarged pallial/subpallial boundary-region, which would be characterized by the expression 

gap between Emx1 and Dlx (Fernandez et al., 1998). By comparing the expression pattern of 

several pallial (Ngn1, Ngn2, Pax6, Emx1, Emx2), boundary (Sfrp1, Pax6/Gsh2 double-positive 

cells) and subpallial markers (Dlx1, Cash1) and by migration studies I demonstrated that the DVR 

resembles a pallial structure and that the pallial/subpallial boundary is shifted below this region. 

These observations support the suggestion from Puelles et al. (2000) and contradict the theory of the 

enlarged boundary proposed by Fernandez et al. (1998). But the question remains, why the DVR is 

able to generate a nuclear organization of neurons, while the expression of several markers 

resembles the pattern in the mammalian cortex, where neurons are organized in layers (McConnell, 

1988; McConnell and Kaznowski, 1991). Interestingly, the molecule Reelin was found to be 

expressed differently in mouse and chick in this region (Fig.35A, B; Bar et al., 2000; Bernier et al., 

2000; Tissir et al., 2002). In the mammalian forebrain, Reelin is secreted by Cajal-Retzius cells 

located in the marginal zone (MZ) lining the pial surface (Hevner et al., 2003). In the avian brain it 
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was also detected in the MZ of pallium and subpallium, but in the DVR no Reelin was detected in 

the MZ. But surprisingly the cells of the VZ strongly expressed Reelin and it was also detected 

throughout the mantel zone of this region (Fig.35A, B; Bar et al., 2000; Bernier et al., 2000; Tissir 

et al., 2002). Since Reelin is known to regulate neuronal migration (Lambert de Rouvroit and 

Goffinet, 1998) and influence radial glial cells (Hartfuss et al., 2003) it may be a candidate to 

influence the specific migration in the DVR. For investigating this hypothesis, cells from a cell line 

that expresses Reelin (293) were injected into the telencephalic forebrain vesicle at E5 and analysis 

was performed at E10. It was tested if this alteration could induce the formation of ectopic cell 

clusters also in regions like the pallium, which normally lack Reelin-expression in the VZ. Indeed, a 

10-fold enhancement in the formation of small clusters, containing approximately 16 cells, could be 

observed in a first experiment. This could be a first hint for this molecule being involved in the 

organization of patch (cell clusters) and matrix (grey matter surrounding) in the DVR. 

Electroporation of Reelin might even be a better attempt to investigate its function because Reelin is 

a large protein, which might not easily diffuse within the tissue.  

Cadherins have also been suggested to play a role in the formation of these clusters since they 

express cadherin7 (Cad7), whereas the matrix is R-Cadherin-positive (Heyers et al., 2003). Since 

cadherins bind mostly homotypically, cells that express the same cadherin subtype would segregate 

and thereby patch and matrix cells may sort into distinct compartments (Redies, 2000). Similar 

mechanisms have been suggested to be involved in the generation of the mammalian striatum 

(Redies, 2000; Redies et al., 2002; Takeichi, 1995). Also ephrins and their receptors might 

contribute to this segregation effect (Janis et al., 1999; Mellitzer et al., 1999). It will be interesting 

to compare the molecular mechanisms that mediate the arrangement of neurons into nuclei in the 

avian DVR compared to the mammalian striatum. 

 

8.4 Differences in gene expression patterns in the mammalian and avian 

forebrain during development 

During the course of this work, many similarities, but also some differences in gene expression 

were observed between mouse and chick. One of these was Reelin as described above (Fig.35). In 

addition, Cash1, an avian homologue of Mash1, was strongly expressed in the subpallium, extended 

slightly into the region of the DVR and continued to be weakly expressed in the VZ of the pallium, 

hippocampus and hem. Only the ChP was devoid of Cash1-expression (Fig.36A). While the 

mammalian Mash1 homologue also showed strong expression in the subpallium, there was a clear 
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medial high and lateral low gradient in the pallium and a specifically strong expression in the hem 

(Fig.36B; Fode et al., 2000). Thus Mash1 is only expressed in the hem-region of the mouse, but not 

the chick at comparable stages of development.  

The most diverse patterns of expression were observed for Wnt7a and Wnt7b. Chicken Wnt7a 

marked the region of the pallial/subpallial boundary (M; Fig.36C), whereas mouse Wnt7a was 

expressed throughout the VZ of the forebrain excluding the region of the hem (Fig.36D) and ChP. 

Wnt7b was expressed in the chick exclusively in the region of the hem, while in the mouse it was 

detected in addition to the VZ of hem and subpallium also throughout the pallium in neurons 

(Fig.36E, F).  

Since the expression pattern of most avian and mammalian forebrain genes was equivalent during 

development, the different expression of these few genes could play some role in the different 

development of some forebrain regions in these distinct vertebrate classes.  

 

8.5 Emx1 and Emx2 induce proliferation 

Transduction of Emx1 and Emx2 strongly enhanced the proliferation in the dorsal and medial 

region of the avian forebrain. The effects of Emx1 appeared even stronger in comparison to Emx2. 

This observation contradicted the results from Heins et al. (2001), who showed that in vitro only 

Emx2 was able to drive cells to proliferate more often and generate larger clones. For Emx1 he 

proposed a cell autonomous role in keeping the cortical precursor cells in an undifferentiated state, 

but he did not observe an influence on proliferation (Heins, 2004). His results are consistent with 

the observation in Emx1- and Emx2-single mutant mice. Emx2-mutant mice show a reduced size of 

the cortical hemispheres and a shortened midline-region (Bishop et al., 2000; Mallamaci et al., 

2000b; Tole et al., 2000), which could be explained by a lack of proliferating precursors, whereas 

the Emx1-mutant do not exhibit proliferation defects (Guo et al., 2000), which might be due to a 

compensation effect of Emx2. An explanation for Emx1 not being able to enhance proliferation in 

vitro could be due to a species difference in mouse and chick or to some artificial effects in vitro, 

e.g. that Emx1 needs cofactors for triggering proliferation, that are only present in vivo, but absent 

in vitro. Wnt-molecules could act as such a signal. Several studies have demonstrated that the loss 

of Wnt3a or Wnt8b induce a strong decrease in proliferation in the region of the hem (Lee et al., 

2000; McLaughlin, 2000). Furthermore, Theil et al. (2002) have demonstrated that Emx2 is a direct 

transcriptional target of Wnt-signaling. All these observations hint to Wnt-genes being involved in 
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the promotion of proliferation by regulating Emx-genes, which in a feed-back loop increase the 

precursor pool of Wnt-expressing cells.  

 

 I observed additional foldings of the forebrain-tissue in Emx1 as well as Emx2-transduced brains, 

which hints to an enlargement of the ventricular surface due to increased symmetric instead of 

asymmetric cell divisions. It has been suggested that the increase in symmetric cell divisions 

together with a decrease in asymmetric cell division might influence the size of the pallial surface 

(Caviness et al., 1995; Rakic, 1995) and thus account for the enlarged cerebral cortex, containing 

gyri and sulci, which is characteristic for humans. An increase of symmetric cell divisions has also 

been predicted for the increase of precursor cells in vitro, observed upon Emx2 infection, whereas 

the asymmetric mode of cell division was enhanced in case of loss of Emx2 (Heins et al., 2001). 

This increase of pallial surface and additional folds by an expansion of the precursor pool were also 

observed in transgenic mice expressing the stabilized form of ß-catenin in neural precursor cells 

(Chenn and Walsh, 2002). ß-catenin is an important factor that interacts with proteins of the 

TCF/Lef (T-cell factor/lymphoid enhancer binding factor) family to transduce Wnt-signals (Peifer 

and Polakis, 2000). This is an additional hint for Wnt-molecules being involved in the regulation of 

proliferation which might be accomplished by the regulation of Emx-genes. 

 

It could also be observed that the enhanced proliferation was accompanied by a reduction of 

neuronal differentiation. Upon Emx1-transduction, no continuous band of postmitotic neurons was 

lining the proliferative tissue in contrast to the control situation, which was consistent with the 

observation that Emx1-transduced cells strongly enlarged the precursor pool but did not 

differentiate. The normal program of pallial cells to undergo few cell divisions (Grove et al., 1993; 

Reid et al., 1995; Takahashi et al., 1999) was altered to a prolonged state of proliferation. 

 

Interestingly, transduction of Emx1/2 into the ventral telencephalon had no effect on cell 

proliferation or neurogenesis, similar to the results obtained in vitro (Heins, 2004; Heins et al., 

2001). The absence of an obvious effect of Emx1- or Emx2-misexpression in the ventral 

telencephalon in chick and mouse may be explained by the lack of potential cofactors or the 

inaccessibility of some crucial target genes. 
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8.6 Specification of the dorsal and medial pallium  

8.6.1 Emx2 versus Pax6  

A drastic downregulation of Pax6 protein could be observed upon overexpression of Emx1/2 in the 

pallial region. Pax6 and Emx2 are normally expressed in opposing gradients in the developing 

forebrain, with high expression of Pax6 rostro/laterally and Emx2 caudo/medially (Gulisano et al., 

1996; Mallamaci et al., 1998; Walther and Gruss, 1991). Comparing Pax6- and Emx2-mutants 

revealed complementary phenotypes. The absence of Emx2 lead to reductions in the caudo/medial 

regions together with rostro/lateral enlargements (Bishop et al., 2000; Mallamaci et al., 2000a) and 

complementary alterations were observed in the Pax6-mutant (Sey/Sey; Bishop et al., 2000). 

Notably, there was a strong reduction of Wnt-expression in the Emx2-mutant hem, while certain 

Wnt-genes were expanded in the Pax6-mutant (Muzio et al., 2002). Analysis of these mutant mice 

showed that Emx2 and Pax6 proteins are necessary to establish their graded expression by 

negatively regulating the expression of each other (Muzio et al., 2002).  

 

My observation that Pax6 is detected in fewer cells in the region of ectopic Emx1/2 could be 

explained by a suppression of neurogenesis by Emx-genes. Emx1/2 and Pax6 might be expressed 

sequentially. Emx1 and Emx2 are expressed by strongly proliferating cells of the VZ while Pax6 is 

expressed by cells that are specified to differentiate into neurons. Thus, Emx-positive proliferating 

precursor cells might downregulate Emx-expression in order to upregulate Pax6 for differentiation. 

The level of either Emx- or Pax6-expression in a cell might be responsible for its fate to either 

proliferate or differentiate. However, some populations of postmitotic neurons are located in the 

forebrain, which still express Emx1 or Emx2. In the mouse, all postmitotic pyramidal neurons in the 

pallium are Emx1-positive (Briata et al., 1996; Chan et al., 2001) and a subpopulation of Reelin-

expressing Cajal–Retzius cells is Emx2-positive (Stoykova et al., 2003). Both cell types somehow 

lost their ability to proliferate despite their expression of Emx1 or Emx2. The Emx1-expressing 

Cajal-Retzius cells are proposed to be born early in the region of the cortical hem, which lacks the 

expression of Pax6, and tangentially migrate into the marginal zone (Takiguchi-Hayashi et al., 

2004), whereas pyramidal neurons are born throughout corticogenesis and reach their position in the 

pallium by migrating along radial glia (Mione et al., 1997; Tan et al., 1998). For the differentiation 

of Emx1-positive pyramidal neurons as well as Emx2-positive Cajal-Retzius cells no 

downregulation of the Emx-genes occurs. Therefore, Pax6 might not be involved in the 
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differentiation process, since Emx-genes and Pax6 negatively regulate each other. Thus, Emx1/2 are 

also expressed in some populations of postmitotic neurons but play a different role here.  

 

8.6.2 Generation of the midline-region 

The analysis of several markers was used to better understand the specification of regions that will 

give rise to midline-structures, such as the ChP. Already at E4 (HH24/25) when the forebrain still 

consists of a small vesicle, the midline showed a specific pattern of gene expression. The choroidal 

anlage (ChA) strongly expressed Fgf8 rostrally, Bmp7 and Otx2 throughout the entire rostro-caudal 

extension of the forebrain. This region will probably give rise to the ChP and choroidal roof. Otx2 

extended slightly more laterally where it overlapped with the domain of Wnt7b-expression. This 

region will most likely form the cortical hem. Emx2 was also expressed in the hem-region, but was 

absent from the ChA (see summary Fig.37). 

 

8.6.3 Manipulation of the midline-region 

When introducing Emx1 and Emx2 into the region of the presumptive midline-region at E2 (HH9-

12), a suppression of Otx2 and Wnt7b was observed at E4 (HH24/25). This hints to a 

misspecification or suppression of ChA- and hem-tissue. A loss of Otx2 and Bmp7 in the region of 

Emx1/2-overexpression was apparent in the manipulated tissue at E6 (HH28/29). This indicates a 

persistent downregulation of Otx2, a transient downregulation of Wnt7b and maybe a secondary 

downregulation of Bmp7. The reduced expression of Wnt7b could not be observed anymore when 

the embryos developed until E6, which might be accomplished by the function of other regulatory 

genes or by the dilution of Emx1/2 plasmid after several rounds of cell division. The 

downregulation of Bmp7 has not occurred at E4 and could only be observed at E6, which would 

suggest that Bmp7 is not a direct target of Emx1 or Emx2. 

 

In the normal situation, Otx2-expression can be detected much earlier in the in the developing 

forebrain neuroepithelium than Emx1/2, occupying a large domain (Bell et al., 2001; Crossley et al., 

2001). By the time Emx1/2-expression is detectable (HH11/12), Otx2-expression has shifted to a 

small territory, the ChA of the telencephalic vesicle, which might be a first hint for Emx-genes 

being able to restrict Otx2-expression.  

The misexpression of Emx1/2 induced a suppression of Otx2 and did not allow the development of 

a proper ChP (Fig.38B, 2). Further analyses of proliferation and neuronal differentiation suggested a 
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misspecification of the Emx1/2-positive tissue with a higher rate of proliferation, enhanced 

thickness of the tissue and the appearance of few neurons, which rather resembled the structure of 

the hem. This means that Emx-genes are sufficient to block the proper development of non-

neuronal ChP-fate and instead induce neural fate in the ChP. In contrast, molecules normally 

restricted to the ChP were forced laterally into the previously neural region. This shifted 

Otx2/Bmp7-positive region (Fig.38B, 1) exhibited an increased thickness of the tissue and an 

enhanced rate of proliferation. This demonstrated a clear misspecification of the tissue, which 

besides the characteristic expression of ChP-markers (Otx2, Bmp7) exhibited a “hem-like” 

phenotype. This region could not acquire a ChP identity and thus Otx2 is not sufficient to specify 

ChP-tissue (for summary see Fig.38). 

 

8.6.4 Comparison of the ChP-phenotype in Emx1/2 double-mutants and after Emx1/2- 

overexpression  

The observation of Emx1/2-misexpression experiments in the region of the hem and ChP appear to 

contradict data obtained by analysis of Emx1/2 deficient mice, since both alterations induced the 

suppression of ChP-markers. Therefore, I will try to explain the similar phenotypes induced by 

either loss or overexpression of Emx1 and Emx2. Emx1/2 double-mutant mice lack the 

hippocampus, choroid plexus and cortical hem, but exhibit an enlarged choroidal roof (Shinozaki et 

al., 2004). Due to the lack of the hem-region, Wnt-signals are missing, which on the one side might 

be important to induce proliferation by instructing Emx1/2-positive cells to proliferate and on the 

other hand might be important to induce ChP-differentiation. Wnt-genes might also be important to 

induce Otx2-expression, which is lost in the double-mutant but is an essential factor for inducing 

ChP-differentiation. Without Wnt-signaling the anlage of the ChP lacks important signals and thus 

just achieves features of a choroidal roof (Shinozaki et al., 2004). In case of Emx1/2-transduction, I 

manipulated the tissue of the ChP and hem directly, which induced a misspecification of the 

electroporated cells. Emx1/2 suppressed the normal expression of Otx2, which consequently 

disabled the cells to differentiate properly into ependymal ChP cells but rather changed their fate 

into neuroepithelial cells with an enhanced rate of proliferation. Strong Emx1/2-overexpression in 

the region of the hem transiently downregulated Wnt-expression, observed at E4 while after some 

rounds of cell divisions the level of Emx1/2-expression may be strongly reduced and allowed the 

expression of Wnt7b again, like observed at E6. 
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8.6.5 Integration of phenotypes affecting the midline-region 

The regulation mechanisms which establish the genetic pattern that enable the formation of the 

ChP-region are rather complicated to understand. Analysis of several mutant mice revealed some 

gene interactions being involved in the formation of this region. Signaling from the hem-region has 

been shown as crucial inducer of the ChP. Mutant mice lacking the region of the hem, usually also 

lack the ChP, which can be observed in Emx1/2- (Shinozaki et al., 2004), Gli3- (Grove et al., 1998) 

and Lhx5-mutants (Zhao et al., 1999). Mice with a reduced hem-region e.g. Emx2-mutants (Tole et 

al., 2000; Yoshida et al., 1997) and Wnt3a-mutants (Lee et al., 2000) also exhibit a reduced ChP-

region. On the other hand, when a mutation leads to an enlarged hem, also the ChP seems to be 

significantly enlarged, which could be observed in the Lhx2-mutant (Bulchand et al., 2001).  

A short description of these mutants will help to better understand the alterations in the gene 

expression (for comparison see Fig.39): Like mentioned above, Emx1/2 double-mutant mice lack 

the hippocampus, choroid plexus and cortical hem and exhibit an enlarged roof (Fig.39B; Shinozaki 

et al., 2004). Since these structures show great differences in their expression level of Emx1 and 

Emx2, the defects of the mutant forebrains cannot just be due to a loss of Emx1 and Emx2. The 

hippocampus strongly expresses Emx1 and Emx2, the hem-region expresses Emx2 but Emx1 only 

dorsally, whereas the choroid plexus and choroidal roof completely lack Emx1/2. Therefore, 

Emx1/2 do not directly influence the development of the ChP. The loss of the hem, which serves as 

a Wnt-signaling center, rather might account for the loss of the ChP. The decrease of midline-tissue, 

including the hem, might be due to an Emx-related decrease in proliferation and thus reduced 

expansion of this region, while in contrast, the Emx-negative territory expands. 

Similar phenotypes are observed in the Lhx5 (Fig.39D) and Gli3-mutant. Lhx5 is normally 

expressed from the choroidal roof in close relation to the ChP, whereas Gli3 is expressed in the 

neuroepithelium of the forebrain except the ChP. Both mutations result in a loss of the hem-region 

and ChP. The tissue in both regions appears amorph (Grove et al., 1998; Zhao et al., 1999), which 

could also hint to a failure to differentiate. Interestingly, both genes are expressed in different 

regions, excluding the ChP, even though both mutations induce similar phenotypes regarding the 

ChP.  

Lhx2 also seems to play a role in early patterning, which is leading to a patterned cortical  

neuroepithelium dividing it into cortex and hem (Bulchand et al., 2001). In Lhx2-mutant mice ChP 

and hem are massively enlarged and the pallium is strongly shortened. Therefore, Lhx2 seems to 

restrict the Bmp- and Wnt-territories (Fig.39C). 
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8.6.6 Choroid plexus development 

Signaling from the hem-region seems to be necessary to establish the choroid plexus correctly.  

Early in the development of the ChP, cells of the head mesenchyme invade the ChP to form the 

second mesenchymal or stromal layer of the ChP (Birge, 1961; Sturrock, 1979). These invading 

cells have been suggested to be a force that pushes the ChP into the ventricle (Birge, 1961; Birge, 

1962) and the interactions between mesenchyme and neuroepithelium appear to be required for 

ChP-differentiation (Birge, 1961; Birge, 1962; Cavallaro et al., 1993). Such epithelial/mesenchymal 

interactions have been observed in different developing regions, like kidney and tooth, areas closely 

associated to Bmp- and Msx-expression. Since the ChP is a region of strong Bmp- and Msx-

expression these interactions could also occur in this region. Grove et al. (1998) suggested that 

Wnt-signaling might play a role in some aspects of ChP-differentiation, since she observed Wnt5a-

positive cells invading the ChP mesenchym. This would attribute to the hem a strong inductive role 

for the generation of the ChP, a model consistent with the phenotypes of mouse-mutants exhibiting 

deficiencies in the hem-region and ChP-differentiation. Also the Insulin-like growth factorII (IgF-

II), which is synthesized by mesenchymal cells might serve as an inducing principle for ChP 

epithelial differentiation (Cavallaro et al., 1993). 

 

For the specification or differentiation of the ChP, genes like Bmps, Bmp-receptors, Otx and Msx 

are probably involved. Bmps seem to be important for the formation of the ChP, by enhancing 

apoptosis and cell differentiation (Panchision et al., 2001; Solloway and Robertson, 1999). A 

mutation in the Bmp-Receptor1 (BmpR1) leads to differentiation defects of the ChP. Cells do not 

start to express the ChP-marker Ttr and the tissue does not achieve its characteristic thin 

morphology because precursor cells remain proliferative (Hebert et al., 2002). It has been shown 

that Bmps promote apoptosis by inducing Msx1/2 (Furuta et al., 1997; Marazzi et al., 1997; 

Shimamura and Rubenstein, 1997; Song et al., 1998; Timmer et al., 2002).  

 

I showed that certain gene regulations, like the downregulation of Otx2 could only be induced 

during a certain developmental period (HH9-12), whereas other markers like Wnt7b could still be 

regulated at later stages. This means that before HH13 the commitment of Otx2-positive cells is still 

capable of being reversed and at later stages the cells are determined to differentiate to their distinct 

fate, even in case of misexpression of Emx1/2. Wnt7b-expressing cells were not committed to a 

distinct cell fate at HH12 and therefore a downregulation was still possible to occur.  
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In conclusion, I propose a model for the interactions taking place for establishing a proper midline-

region (Fig.40). Wnt-signaling plays a key role in this model. The region of the Wnt-rich hem is 

restricted by the pallial expression of Lhx2. Wnt-signals induce Emx-genes to proliferate, which in 

a feed-back loop enlarge the medial region and thus also the region of the Wnt-expressing hem. 

Wnt-expressing cells invade the stroma of the ChP and might induce the formation of the ChP. The 

action of Otx2, Bmp- and Msx-genes induces apoptosis and a correct differentiation. The absence of 

Emx1 and Emx2 from the ChP and the absence of high levels of these genes from the cortical hem 

are important for a proper ChP-differentiation. It appears as if the cortical hem must be present for 

the ChP-differentiation. 

 

8.6.7 Malformation of the telencephalon induced by Emx1/2-transduction 

Manipulation of the presumptive midline-region induced changes in the morphology of the 

forebrain. I observed holoprosencephalic brains with no midline-region and brains, where the 

midline-region was folded to the outside. These manipulated brains usually had small ventricles, 

potentially due to a misspecification of ChP-tissue that would obviously effect the composition and 

pressure of the CSF in the ventricle. This might explain the reduced expansion of the hemispheres. 

Ectopic expression of Bmps was demonstrated to cause holoprosencephaly in forebrains of chicken 

(Wallis and Muenke, 1999). Since I also observed ectopic expression of Bmp7, this could be 

another explanation for the brain deformations. 

 

Thus, these data implicate a new role for Emx1 and Emx2: These genes mediate neural identity also 

in the midline-region, even in the non-neural tissue of the ChP. In contrast, the absence of Emx1/2 

is essential to allow the development of the ChP. 
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