Halogen-, Azid- und Koordinationsverbindungen des Arsens und Antimons

Thomas Schütt

Dissertation zur Erlangung des Doktorgrades der Fakultät für Chemie und Pharmazie der Ludwig-Maximilians-Universität München

Halogen-, Azid- und Koordinationsverbindungen des Arsens und Antimons

von

Thomas Schütt

aus

Wasserburg am Inn

Erklärung

Diese Dissertation wurde im Sinne von § 13 Abs. 3 bzw. 4 der Promotionsordnung vom 29. Januar 1998 von Herrn Prof. Dr. Thomas M. Klapötke betreut.

Ehrenwörtliche Versicherung

Diese Dissertation wurde selbständig, ohne unerlaubte Hilfe erarbeitet.

München, den 03.05.2001

.....

(Unterschrift des Autors)

Dissertation eingereicht am03.05.20011. Berichterstatter:Prof. Dr. Thomas M. Klapötke2. Berichterstatter:Prof. Dr. Ingo-Peter LorenzMündliche Prüfung am06.06.2001

Meinen Eltern und Silvia Die vorliegende Arbeit wurde in der Zeit von November 1998 bis April 2001 am Department Chemie der Ludwig-Maximilians-Universität unter Anleitung von

Herrn Prof. Dr. Thomas M. Klapötke

angefertigt.

Herrn Prof. Dr. Thomas M. Klapötke danke ich herzlich für das in mich gesetzte Vertrauen, für die mir eingeräumte wissenschaftliche Freiheit und das große Interesse am Gelingen meiner Arbeit. Er hatte stets Zeit für meine Fragen und stand mir mit wertvollen Diskussionen und Ratschlägen zur Seite. All dies hat zum Gelingen dieser Arbeit beigetragen.

Herrn Prof. Dr. Ingo-Peter Lorenz danke ich für die Zweitberichterstattung der vorliegenden Dissertation sowie für informative Gespräche bei Most und Wein, die mit Chemie weniger zu tun hatten.

Besonders dankbar bin ich **Herrn Prof. Dr. Wolfgang Beck**, der stets Interesse an meiner Arbeit hatte und durch fachliche Diskussionen zum Gelingen an dieser Arbeit beigetragen hat. Ferner danke ich Ihm für die Überlassung der Palladiumazid- und Platinazid-Komplexe.

Mein besonderer Dank gilt auch all denjenigen, die zum Gelingen dieser Arbeit ihren Teil beigetragen haben:

- Meinen Laborkollegen Claudia Rienäcker, Christoph Aubauer und Fatima Belouafa.
 Sie hatten es mit meinen musikalischen Beschallungen nicht leicht. An unser hervorragendes Arbeitsklima im Sprenglabor werde ich mich gerne erinnern
- Dr. Anton Hammerl f
 ürs Korrekturlesen (Heiland!) und daf
 ür, dass er es mir ermöglichte, einmal das Bild auf der ersten Seite zu haben
- Carmen Nowak für den morgendlichen Kaffee
- Gunnar Spiess für seine netten Späße

- Angelika Häußler, Wolfgang Fraenk und Oliver Ruscitti für nette und gemütliche Kaffeepausen
- Priv.-Doz. Dr. Konstantin Karaghiosoff f
 ür die Aufnahmen der NMR-Spektren sowie seiner Hilfe beim Auswerten
- Dr. Margaret-Jane Crawford für wertvolle fachliche Diskussionen
- Anette Burdzy für Lösemittel und Bergen an Kopien
- Frau Scheckenbach f
 ür ihre Hilfe im Papierkrieg und dass sie mir immer den Postboten gespielt hat
- Gernot Kramer, Dr. Peter Mayer, Dr. Holger Piotrowski, Dr. Kurt Polborn, Walter Ponikwar, Max Suter, Martin Vogt und Marcus Warchold für die Durchführung zahlreicher Kristallstrukturanalysen sowie ihrer Geduld beim Lösen der Strukturen
- Dr. Bela Tereczki, da er auch Ferrari-Fan ist
- Meinen F-Praktikantinnen Eveline Lançon und Stance Vogler, weil sie den Laboralltag aufgelockert haben
- Allen Mitarbeitern der analytischen Abteilung

Mein persönlicher Dank geht an Silvia für Ihre liebevolle Unterstützung, sowie an meine Eltern, die mir dies alles ermöglicht haben

Inhaltsverzeichnis

Dank

Inhaltsverzeichnis

1	Aufgabenstellung	1
2	Allgemeiner Teil	2
2.1	Abkürzungen	2
2.2	Maßeinheiten	3
3	Ergebnisse und Diskussion	4
3.1	Binäre Arsenazid- und Antimonazid-Verbindungen	4
3.1.1	Einführung – Bisheriger Kenntnisstand	4
3.1.2	Darstellung, Eigenschaften und NMR-spektroskopische Untersuchungen der	
	binären Arsenazid- und Antimonazid-Verbindungen	5
3.1.3	Ergebnisse und Diskussion der Schwingungsspektren	13
3.1.4	Berechnete Strukturen der binären Arsenazid- und Antimonazid-	
	Verbindungen	19
3.1.5	Kristallstrukturen von [PPh4][As(N3)6] und [Py-H][As(N3)6]	28
3.1.6	Kristallstruktur von [PPh4][Sb(N3)3.19Cl2.81]	32
3.1.7	Kristallstrukturen von [PPh ₄][SbCl ₄] und [NEt ₄][SbCl ₆]	34
3.1.8	Zusammenfassung	38
3.2	Gemischte Halogen/Azid-Verbindungen von Arsen und Antimon	40
3.2.1	Einführung – Bisheriger Kenntnisstand	40
3.2.2	Darstellung, Eigenschaften und NMR-spektroskopische Untersuchungen	
	gemischter Chlorid/Azid-Verbindungen von Arsen und Antimon	41
3.2.3	Ergebnisse und Diskussion der Schwingungsspektren	43
3.2.4	Kristallstrukturen von SbCl(N ₃) ₂ , AsCl(N ₃) ₂ · Pyridin und	
	$SbCl_2N_3 \cdot 2$ Pyridin	46
3.2.5	NBO-Analysen der Kristallstrukturen von As $Cl(N_3)_2$ · Pyridin und	
	$SbCl_2N_3 \cdot 2$ Pyridin	54
3.2.6	Zusammenfassung	56

3.3	Lewis-Säure-Base-Addukte von As(N ₃) ₅ und Sb(N ₃) ₅	58
3.3.1	Einführung – Bisheriger Kenntnisstand	58
3.3.2	Darstellung und Eigenschaften von As $(N_3)_5 \cdot LB$ und Sb $(N_3)_5 \cdot LB$	59
3.3.3	Ergebnisse und Diskussion der Schwingungsspektren	59
3.3.4	Ergebnisse und Diskussion der NMR-Spektren	65
3.3.5	Berechnete Strukturen von $As(N_3)_5 \cdot LB$ und $Sb(N_3)_5 \cdot LB$	68
3.3.6	Thermodynamik und Stabilität	71
3.3.7	Zusammenfassung	72
3.4	Lewis-Säure-Base-Addukte von AsCl5 und SbCl5	74
3.4.1	Einführung – Bisheriger Kenntnisstand	74
3.4.2	Darstellung und Eigenschaften von $AsCl_5 \cdot LB$ und $SbCl_5 \cdot LB$	75
3.4.3	Ergebnisse und Diskussion der Schwingungsspektren	77
3.4.4	Ergebnisse und Diskussion der NMR-Spektren	82
3.4.5	Berechnete Strukturen von AsCl ₅ · LB und SbCl ₅ · LB	82
3.4.6	Kristallstrukturen von SbCl ₅ · NCCl und SbCl ₅ · NCCN · SbCl ₅	86
3.4.7	NBO-Analyse der Kristallstrukturen von SbCl ₅ · NCCl und	
	$SbCl_5 \cdot NCCN \cdot SbCl_5$	89
3.4.8	Thermodynamik und Stabilität	93
3.4.9	Zusammenfassung	95
3.5	Das Chlorooxoarsenat(III) [NMe4]2[As4O2Cl10] · 2CH3CN	96
3.5.1	Einführung – Bisheriger Kenntnisstand	96
3.5.2	Darstellung von [NMe ₄] ₂ [As ₄ O ₂ Cl ₁₀] · 2CH ₃ CN	96
3.5.3	Kristallstruktur von [NMe4]2[As4O2Cl10] · 2CH3CN	97
3.5.4	NBO-Analyse der Kristallstruktur des As ₄ O ₂ Cl ₁₀ ^{2–} -Anions	99
3.5.5	Ergebnisse und Diskussion der Schwingungsspektren	101
3.5.6	Zusammenfassung	103
3.6	Wasserfreies Ammonium-hexachloroantimonat(V), [NH4][SbCl6]	104
3.6.1	Einführung – Bisheriger Kenntnisstand	104
3.6.2	Darstellung von [NH ₄][SbCl ₆]	105
3.6.3	Kristallstruktur von [NH4][SbCl6]	105
3.7	Palladiumazid- und Platinazid-Verbindungen	108
3.7.1	Einführung – Bisheriger Kenntnisstand	108
3.7.2	Darstellung und Eigenschaften von Palladium(II)azid-Komplexe	110
3.7.3	Ergebnisse und Diskussion der Schwingungsspektren	111

3.7.4	Ergebnisse und Diskussion der ¹⁴ N-NMR-Spektren	112
3.7.5	Kristallstrukturen von $L_2Pd(N_3)_2$ (L = PPh ₃ , AsPh ₃ , 2-Chloropyridin,	
	Chinolin)	113
3.7.6	Kristallstruktur von [AsPh4]2[Pd2(N3)4Cl2]	118
3.7.7	Kristallstrukturen von [PNP] ₂ [Pd(N ₃) ₄], [AsPh ₄] ₂ [Pt(N ₃) ₄] · 2H ₂ O	
	und $[AsPh_4]_2[Pt(N_3)_6]$	120
3.7.8	Zusammenfassung	129
Α	Eurovimontollov Toil	120
4		150
4.1	Quantenchemische Berechnungen	130
4.1	Methoden	130
4.2	Basissätze und Pseudopotentiale	130
4.3	Frequenzanalyse und Thermodynamik	132
4.4	NBO-Analysen	132
4.2	Arbeitstechnik	134
4.3	Ausgangsverbindungen	135
4.4	Analysenmethoden	136
4.4.1	Elementaranalyse	136
4.4.2	Schmelzpunktbestimmung	136
4.4.3	Infrarotspektroskopie	137
4.4.4	Ramanspektroskopie	137
4.4.5	Kernresonanzspektroskopie	138
4.4.6	Röntgenstrukturanalyse an Einkristallen	138
4.5	Reaktionen und Darstellungen	140
4.5.1	Darstellung von binären Arsenazid- und Antimonazid-Verbindungen	140
4.5.1.1	Darstellung von As(N ₃) ₃	140
4.5.1.2	Darstellung von $[As(N_3)_4][AsF_6]$	140
4.5.1.3	Darstellung von [NMe ₄][As(N ₃) ₄]	141
4.5.1.4	Darstellung von [Py-H][As(N ₃) ₆]	141
4.5.1.5	Darstellung von [PPh ₄][As(N ₃) ₆]	142
4.5.1.6	Versuchte Darstellung von As(N ₃) ₅	142
4.5.1.7	Darstellung von Sb(N ₃) ₃	142
4.5.1.8	Darstellung von [Sb(N ₃) ₄][Sb ₂ F ₁₁]	143
4.5.1.9	Darstellung von [PPh4][Sb(N3)4]	143

4.5.1.10	Darstellung von [NEt ₄][Sb(N ₃) ₆]	144
4.5.1.11	Versuchte Darstellung von Sb(N ₃) ₅	144
4.5.2	Darstellung gemischter Chlorid/Azid-Verbindungen von Arsen und	
	Antimon	145
4.5.2.1	Darstellung von SbCl(N ₃) ₂	145
4.5.2.2	Darstellung von AsCl(N ₃) ₂ · NC ₅ H ₅	145
4.5.2.3	Darstellung von $SbCl_2N_3 \cdot 2NC_5H_5$	146
4.5.3	Darstellung von Lewis-Säure-Base-Addukten von $As(N_3)_5$ und $Sb(N_3)_5$	146
4.5.3.1	Darstellung von $As(N_3)_5 \cdot NC_5H_5$	146
4.5.3.2	Darstellung von $Sb(N_3)_5 \cdot NC_5H_5$	147
4.5.3.3	Darstellung von $As(N_3)_5 \cdot NC_9H_7$	147
4.5.3.4	Darstellung von $Sb(N_3)_5 \cdot NC_9H_7$	148
4.5.3.5	Darstellung von $As(N_3)_5 \cdot NH_3$	149
4.5.3.6	Darstellung von $Sb(N_3)_5 \cdot NH_3$	149
4.5.3.7	Darstellung von $As(N_3)_5 \cdot N_2H_4$	150
4.5.3.8	Darstellung von $Sb(N_3)_5 \cdot N_2H_4$	150
4.5.3.9	Darstellung von $As(N_3)_5 \cdot NCNH_2$	151
4.5.3.10	Darstellung von $Sb(N_3)_5 \cdot NCNH_2$	151
4.5.4	Darstellung von Lewis-Säure-Base-Addukten von AsCl5 und SbCl5	152
4.5.4.1	Darstellung von SbCl ₅ · NCCl	152
4.5.4.2	Darstellung von SbCl ₅ · NCBr	152
4.5.4.3	Darstellung von SbCl ₅ · NCI	153
4.5.4.4	Darstellung von $SbCl_5 \cdot NCCN \cdot SbCl_5$	153
4.5.4.5	Darstellung von SbCl ₅ · NCNH ₂	153
4.5.4.6	Darstellung von SbCl ₅ · NC ₅ H ₅	154
4.5.4.7	Darstellung von AsCl ₅ · NCI	154
4.5.5	Darstellung von [NMe ₄] ₂ [As ₄ O ₂ Cl ₁₀] · 2CH ₃ CN	155
4.5.6	Darstellung von Palladium(II)azid-Komplexen	155
4.5.6.1	Darstellung von Bis(azido)bis(2-Chloropyridin)palladium(II)	155
4.5.6.2	Darstellung von Bis(azido)bis(3-Chloropyridin)palladium(II)	156
4.5.6.3	Darstellung von Bis(azido)bis(chinolin)palladium(II)	156

5	Zusammenfassung	158
6	Anhang	169
6.1	Einkristall-Röntgenstrukturanalysen von [PPh4][As(N3)6] und	
	[Py-H][As(N ₃) ₆]	169
6.1.1	Angaben zu den Einkristall-Röntgenstrukturanalysen von	
	$[PPh_4][As(N_3)_6]$ und $[Py-H][As(N_3)_6]$	169
6.1.2	Atomkoordinaten und Auslenkungsparameter [Å ²] von [PPh ₄][As(N ₃) ₆]	170
6.1.3	Atomkoordinaten und Auslenkungsparameter [Å ²] von [Py-H][As(N ₃) ₆]	171
6.2	Einkristall-Röntgenstrukturanalyse von [PPh4][SbCl _{2.81} (N ₃) _{3.19}]	172
6.2.1	Angaben zu der Einkristall-Röntgenstrukturanalyse von	
	$[PPh_4][SbCl_{2.81}(N_3)_{3.19}]$	172
6.2.2	Atomkoordinaten und Auslenkungsparameter [Å ²] von	
	$[PPh_4][SbCl_{2.81}(N_3)_{3.19}]$	173
6.3	Einkristall-Röntgenstrukturanalysen von [NEt4][SbCl6]	
	und [PPh4][SbCl4] · CHCl3	174
6.3.1	Angaben zu den Einkristall-Röntgenstrukturanalysen von	
	[NEt ₄][SbCl ₆] und [PPh ₄][SbCl ₄] · CHCl ₃	174
6.3.2	Atomkoordinaten und Auslenkungsparameter [Å ²] von	
	[PPh ₄][SbCl ₄] · CHCl ₃	175
6.3.3	Atomkoordinaten und Auslenkungsparameter [Å ²] von [NEt ₄][SbCl ₆]	177
6.4	Einkristall-Röntgenstrukturanalyse von SbCl(N ₃) ₂	178
6.4.1	Angaben zu der Einkristall-Röntgenstrukturanalyse von SbCl(N ₃) ₂	178
6.4.2	Atomkoordinaten und Auslenkungsparameter [Å ²] von SbCl(N ₃) ₂	179
6.5	Einkristall-Röntgenstrukturanalysen von AsCl(N3)2 · Pyridin	
	und SbCl ₂ (N ₃) · 2 Pyridin	180
6.5.1	Angaben zu den Einkristall-Röntgenstrukturanalysen von	
	AsCl $(N_3)_2$ · Pyridin und SbCl ₂ (N_3) · 2 Pyridin	180
6.5.2	Atomkoordinaten und Auslenkungsparameter [Å ²] von AsCl(N ₃) ₂ · Pyridin	181
6.5.3	Atomkoordinaten und Auslenkungsparameter [$Å^2$] von SbCl ₂ (N ₃) · 2 Pyridin	181
6.6	Einkristall-Röntgenstrukturanalysen von SbCl5 · NCCl	
	und SbCl ₅ · NCCN · SbCl ₅	182
6.6.1	Angaben zu den Einkristall-Röntgenstrukturanalysen von	
	$SbCl_5 \cdot NCCl \text{ und } SbCl_5 \cdot NCCN \cdot SbCl_5$	182

6.6.2	Atomkoordinaten und Auslenkungsparameter [Å ²] von SbCl ₅ · NCCl	183
6.6.3	Atomkoordinaten und Auslenkungsparameter [Å ²] von	
	$SbCl_5 \cdot NCCN \cdot SbCl_5$	183
6.7	Einkristall-Röntgenstrukturanalyse von	
	$[NMe_4]_2[As_4O_2Cl_{10}] \cdot 2CH_3CN$	184
6.7.1	Angaben zu der Einkristall-Röntgenstrukturanalyse von	
	$[NMe_4]_2[As_4O_2Cl_{10}] \cdot 2CH_3CN$	184
6.7.2	Atomkoordinaten und Auslenkungsparameter [Å ²] von	
	$[NMe_4]_2[As_4O_2Cl_{10}] \cdot 2CH_3CN$	185
6.8	Einkristall-Röntgenstrukturanalyse von [NH4][SbCl6]	186
6.8.1	Angaben zu der Einkristall-Röntgenstrukturanalyse von [NH4][SbCl6]	186
6.8.2	Atomkoordinaten und Auslenkungsparameter [Å ²] von [NH ₄][SbCl ₆]	187
6.9	Einkristall-Röntgenstrukturanalysen von Pd(PPh ₃) ₂ (N ₃) ₂	
	und Pd(AsPh ₃) ₂ (N ₃) ₂	188
6.9.1	Angaben zu den Einkristall-Röntgenstrukturanalysen von	
	$Pd(PPh_3)_2(N_3)_2$ und $Pd(AsPh_3)_2(N_3)_2$	188
6.9.2	Atomkoordinaten und Auslenkungsparameter $[Å^2]$ von Pd(PPh ₃) ₂ (N ₃) ₂	189
6.9.3	Atomkoordinaten und Auslenkungsparameter $[Å^2]$ von Pd(AsPh ₃) ₂ (N ₃) ₂	190
6.10	Einkristall-Röntgenstrukturanalysen von Pd(C9H7N)2(N3)2	
	und Pd(2-Clpy) ₂ (N ₃) ₂	191
6.10.1	Angaben zu den Einkristall-Röntgenstrukturanalysen von	
	Pd(C ₉ H ₇ N) ₂ (N ₃) ₂ und Pd(2-Clpy) ₂ (N ₃) ₂	191
6.10.2	Atomkoordinaten und Auslenkungsparameter $[Å^2]$ von $Pd(C_9H_7N)_2(N_3)_2$	192
6.10.3	Atomkoordinaten und Auslenkungsparameter $[Å^2]$ von Pd(2-Clpy) ₂ (N ₃) ₂	192
6.11	Einkristall-Röntgenstrukturanalysen von [AsPh4]2[Pd2(N3)4Cl2]	
	und [PNP] ₂ [Pd(N ₃) ₄]	193
6.11.1	Angaben zu den Einkristall-Röntgenstrukturanalysen von	
	$[AsPh_4]_2[Pd_2(N_3)_4Cl_2]$ und $[PNP]_2[Pd(N_3)_4]$	193
6.11.2	Atomkoordinaten und Auslenkungsparameter [Å ²] von	
	$[AsPh_4]_2[Pd_2(N_3)_4Cl_2]$	194
6.11.3	Atomkoordinaten und Auslenkungsparameter $[Å^2]$ von $[PNP]_2[Pd(N_3)_4]$	195
6.12	Einkristall-Röntgenstrukturanalysen von $[AsPh_4]_2[Pt(N_3)_4] \cdot 2H_2O$	
	und [AsPh ₄] ₂ [Pt(N ₃) ₆]	196

6.12.1	Angaben zu den Einkristall-Röntgenstrukturanalysen von	
	$[AsPh_4]_2[Pt(N_3)_4] \cdot 2H_2O \text{ und } [AsPh_4]_2[Pt(N_3)_6]$	196
6.12.2	Atomkoordinaten und Auslenkungsparameter [Å ²] von	
	$[AsPh_4]_2[Pt(N_3)_4] \cdot 2H_2O$	197
6.12.3	Atomkoordinaten und Auslenkungsparameter [Å ²] von [AsPh ₄] ₂ [Pt(N ₃) ₆]	198

7 Literatur

199

1 Aufgabenstellung

Ein wesentliches Ziel dieser Arbeit war die Synthese und Charakterisierung neuer niedermolekularer Verbindungen des Arsens und Antimons, die Chemiker aufgrund allgemeiner Erfahrungen als nicht darstellbar oder existenzfähig bezeichnen würden. Besonders Arsen- und Antimonazide in der Oxidationsstufe (V) stellen explosive Verbindungen dar, die zum einen schwer darstellbar und zum anderen schwierig zu charakterisieren sind.

Neben der strukturellen Charakterisierung durch Röntgendiffraktometrie an Einkristallen sollte die Charakterisierung der Spezies vor allem durch Schwingungsspektroskopie (Infrarotund Ramanspektroskopie) und multinukleare Kernresonanz-Spektroskopie (¹⁴N-, ¹H-, ¹³C-, ⁷⁵As und ¹²¹Sb-NMR) erfolgen.

Als weiteres Mittel zur Strukturbestimmung bietet sich in jüngster Zeit immer mehr der Vergleich mit aus quantenchemischen Berechnungen gewonnen Daten an. Besondere Aufmerksamkeit sollte hierbei neben der Strukturoptimierung der Durchführung von Frequenzanalysen einerseits zur Auffindung von Minimum-Strukturen sowie andererseits zur Vorhersage experimentell zugänglicher Infrarot- und Ramanfrequenzen geschenkt werden. Durch die Berechnung der theoretischen Schwingungsfrequenzen sollte eine genaue Zuordnung der experimentellen Schwingungsbanden erfolgen. Zusätzlich ermöglicht die Frequenzanalyse eine exakte Beschreibung der Schwingungsmodi. Dies ist besonders für solche Verbindungen sehr von Vorteil, die beispielsweise aufgrund ihrer thermodynamischen Instabilität oder aufgrund fehlender Charakterisierungsmöglichkeiten nur schwingungs-spektroskopisch untersucht werden können.

Quantenmechanische Berechnungen der thermodynamischen Daten sollten helfen, die Stabilität der experimentell zu untersuchenden Moleküle vorherzusagen. Ausgehend von den thermodynamischen Daten sollte ein Zusammenhang zwischen Struktur und Bindung gefunden werden.

Ferner sollten sowohl Palladiumazid-Verbindungen des Typs $L_2Pd(N_3)_2$ (L = Ligand), hinsichtlich ihrer *cis/trans*-Isomerie, als auch homoleptische Palladiumazid- und Platinazid-Verbindungen strukturell charakterisiert werden.

2 Allgemeiner Teil

2.1 Abkürzungen

In Tabelle 1 sind die in der vorliegenden Arbeit verwendeten Abkürzungen aufgeführt.

Tabelle 1Allgemein verwendete Abkürzungen

Abb.	Abbildung	LB	Lewis-Base
AMU	atomic mass unit	LP	lone pair
äq	äquatorial	m	Multiplett
a.u.	atomic unit	Me	Methyl
ax	axial	μ	Absorptionskoeffizient
BDE ₂₉₈	Bindungsdissoziationsenthalpie	ν	Wellenzahl
ber.	berechnet	NBO	natural bond orbitals
BO	Bindungsordnung	NIMAG	number of imaginary frequencies
Bzl	Benzyl	NMR	nuclear magnetic resonance
Ch	Chinolin	NPA	natural population analysis
ca.	zirka	Nr.	Nummer
DFT	Dichtefunktional-Theorie	Ψ	Pseudo
DMSO	Dimethylsulfoxid	Ph	Phenyl
d	Bindungslänge	ppm	parts per million
δ	chemische Verschiebung	PTFE	Polytetrafluorethylen
d	Dublett	Ру	Pyridin
ΔH° ₂₉₈	Bindungsdissoziationsenergie	q _{ct}	Ladungstransfer
$\Delta U^{\rm tr}$	Translationsenergie	quart.	Quartett
$\Delta U^{\rm rot}$	Rotationsenergie	rel.	relativ
e	Elektronen	<i>s</i> .	siehe
E _{tot}	Gesamtenergie	S	Singulett
exp.	experimentell	sept.	Septett
gef.	gefunden	SiMe ₃	Trimethylsilyl (TMS)
GOOF	Goodness of fit	t	Triplett
h	Stunde	Т	Temperatur
Int.	Intensität	T _{max}	maximale Transmission
IR	Infrarot	T _{min}	minimale Transmission
J	Kopplungskonstante	vgl.	vergleiche
Kap.	Kapitel	ZPE	zero-point-energy
λ	Wellenlänge	<	Bindungswinkel

2.2 Maßeinheiten

Als Maßeinheiten wurden die im internationalen Einheitensystem (SI) geltenden verwendet. Die von diesem System abweichenden benutzten Einheiten und deren Umrechnungen in SI-Einheiten sind in Tabelle 2 aufgeführt.

Größe	Einheit	Bezeichnung	Umrechnung in SI-Einheit
Länge	Å	Angström	$1 \text{ Å} = 10^{-10} \text{ m}$
Temperatur	°C	Grad Celsius	$^{\circ}C = K - 273.1$
Wellenzahl	cm^{-1}	reziprokes Zentimeter	$1 \text{ cm}^{-1} = 100 \text{ m}^{-1}$
Druck	bar	Bar	1 bar = $10^5 \text{ Nm}^{-2} = 1 \text{ Pa}$
Energie	eV	Elektronenvolt	$1 \text{ eV} = 1.6022 \cdot 10^{-19} \text{ J}$
Energie	cal	Kalorie	1 cal = 4.18 J
Frequenz	Hz	Hertz	$1 \text{ Hz} = 1 \text{ s}^{-1}$
Wellenlänge	nm	Nanometer	$1 \text{ nm} = 10^{-9} \text{ m}$
Volumen	L	Liter	$1 L = 10^{-3} m^3$

3 Ergebnisse und Diskussion

3.1 Binäre Arsenazid- und Antimonazid-Verbindungen

3.1.1 Einführung – Bisheriger Kenntnisstand

Die Synthese, Isolierung und Strukturbestimmung energiereicher Verbindungen ist für Chemiker eine experimentelle Herausforderung.¹ Zu diesen Verbindungen gehören auch binäre Azide von Elementen der V. Hauptgruppe, über deren Struktur und Reaktivität wenig bekannt ist.² In kürzlich erschienenen Studien wurden jedoch die Strukturen und Stabilitäten der Azidamine N(N₃)₃, HN(N₃)₂, des N(N₃)₂⁻-Anions und des N(N₃)₄⁺-Kation aufgrund quantenechanischer Rechnungen theoretisch vorhergesagt.^{3,4} Unlängst haben Christe *et al.* über die überraschend einfache Synthese der ionischen Verbindung N₅⁺AsF₆⁻ in wasserfreiem HF und ihre Charakterisierung berichtet.⁵ In diesem Salz liegt das neuartige N₅⁺-Kation vor, das erst dritte Mitglied (neben N₂ und N₃⁻) der N_n-Familie vor.

Binäre Azid-Spezies des Phosphors wurden in den 70-igern vollständig charakterisiert. $P(N_3)_3$,⁶ $P(N_3)_4^+$,⁷ $P(N_3)_5^6$ und $P(N_3)_6^{-8}$ wurden sowohl mit schwingungspektroskopischen Methoden, als auch durch ³¹P-NMR-Spektroskopie charakterisiert. Strukturelle Parameter sind in der Literatur nicht beschrieben.

Über die Chemie kovalenter Arsenazide wurde erstmals von Revitt und Sowerby⁹ mit der Synthese, den spektroskopischen Eigenschaften und der thermischen Zersetzung einiger Organoarsen(III)azid-Verbindungen berichtet. Mittels ¹⁴N-NMR-Spektroskopie wurden diese Verbindungen von Beck *et al.* näher charakterisiert,¹⁰ jedoch ist bislang sehr wenig über deren Reaktivität oder Struktur bekannt.

Strukturell sind bisher lediglich zwei Arsen(III)azid-Verbindungen charakterisiert worden: Die Perfluoralkyl-Verbindungen Bis(trifluoromethyl)arsenazid,¹¹ (CF₃)₂AsN₃, und Trifluoromethylarsendiazid,¹² CF₃As(N₃)₂, deren Strukturen durch Elektronenbeugung bestimmt wurden. Klapötke *et al.* berichteten kürzlich über die Reaktionen von AsCl₃ und [AsCl₄][AsF₆] mit aktiviertem Natriumazid. Die erste binäre Arsenazid-Verbindung As(N₃)₃ und die erste binäre As^V-Azid-Spezies [As(N₃)₄]⁺ konnten auf diesem Wege dargestellt werden.^{13,14}

Azid-Verbindungen des Antimons sind ebenfalls nur in sehr geringer Anzahl bekannt. In früheren Arbeiten wurden die Reaktionen von SbCl₅ mit NaN₃, (CH₃)₃SiN₃ und HN₃ beschrieben.¹⁵ Die dimere Verbindung [SbCl₄N₃]₂ konnte auf diesem Wege synthetisiert

werden. Desweiteren wurde das Additionsprodukt dieser Verbindung mit der Lewis-Base Pyridin schwingungsspektroskopisch untersucht.^{15a} Durch Reaktion von KN₃ mit SbCl₅ in SO₂ konnte das Kaliumsalz der anionischen Verbindung SbCl₅N₃⁻ dargestellt werden. Strukturelle Daten liegen für diese Antimonazid-Verbindungen keine vor. Die Bestimmung der Strukturen an Einkristallen war bisher, außer für die ternäre Verbindung [SbCl₄N₃]₂,¹⁶ nur in Anwesenheit organischer Substituenten möglich. Die Strukturen der Moleküle $\{[(PN'Bu)_2(N'Bu)_2]SbN_3\},^{17}$ [(CH₃)₃SbN₃]₂O,¹⁸ Me₂SbN₃¹⁹ und [(C₆H₅)₃SbN₃]₂O²⁰ wurden durch Röntgenbeugung an Einkristallen experimentell bestimmt.

Die erste binäre Antimonazid-Verbundung wurde 1996 von Klapötke *et al.* durch Reaktion von SbI₃ und AgN₃ synthetisiert. Sb(N₃)₃ wurde eindeutig durch IR- und ¹⁴N-NMR-Spektroskopie charakterisiert.²¹ Die Strukturen der beiden binären Verbindungen As(N₃)₃ und Sb(N₃)₃ wurden später quantenchemisch auf BLYP-Niveau berechnet.⁴

Im folgenden wird über eine weitere Darstellungsmethode der bereits bekannten binären Verbindungen $As(N_3)_3$, $[As(N_3)_4]^+$ und $Sb(N_3)_3$ berichtet. Desweiteren werden in vorliegender Arbeit die Synthesen, Eigenschaften und spektroskopischen Untersuchungen aller fehlenden binären kationischen und anionischen Arsenazid- und Antimonazid-Verbindungen, im Vergleich mit Ergebnissen aus quantenmechanischen Rechungen (B3LYP), berichtet.²² Ferner wird erstmals über die Röntgenstrukturanalyse des extrem stickstoffreichen binären Hexaazidoarsenat(V)-Anions als dessen PPh₄⁺²³- und Py-H⁺²²-Salz berichtet. Es werden die versuchten Darstellungen der binären neutralen As(V)- (As(N_3)_5) und Sb(V)-Azide (Sb(N_3)_5) beschrieben.

Ferner werden die durch Röntgenstrukturanalyse bestimmten molekularen Strukturen der Edukte [PPh₄][SbCl₄] und [NEt₄][SbCl₆] diskutiert.

3.1.2 Darstellung, Eigenschaften und NMR-spektroskopische Untersuchungen der binären Arsenazid- und Antimonazid-Verbindungen

 $As(N_3)_3$ and $Sb(N_3)_3$ wurden Reaktion von $AsCl_3$ bzw. $SbCl_3$ mit einem Überschuss Trimethylsilyazid (TMS-N₃, TMS = Me₃Si) bei Raumtemperatur in CH₂Cl₂ dargestellt (Gleichung 1).

 $MCl_3 + 3 TMS-N_3 \xrightarrow{CH_2Cl_2} M(N_3)_3 + 3 TMS-Cl$ (1) (M = As, Sb) $As(N_3)_3$ und $Sb(N_3)_3$ sind, wie in der Literatur beschrieben, hochexplosive Verbindungen.^{13,21} Beide Verbindungen sind bei Raumtemperatur kinetisch stabil, explodieren jedoch heftig, wenn die Temperatur erhöht wird. Kontakt mit Metallspateln ergibt ebenfalls eine Explosion. Die Explosionsneigung von $Sb(N_3)_3$ ist höher als die von $As(N_3)_3$. Aus diesem Grund wurden keine Elementaranalysen durchgeführt.

Die ¹⁴N-NMR-Spektroskopie ist eine sehr geeignete Methode, um kovalent gebundene Azide zu charakterisieren. Die ¹⁴N-NMR-Spektren von As(N₃)₃ und Sb(N₃)₃ wurden in der vorliegenden Arbeit neu aufgenommen. Die Ergebnisse dieser Untersuchungen stimmen sehr gut mit den in der Literatur beschriebenen überein.^{13,14,21} Für die kovalent gebundenen Azide konnten jeweils drei gut aufgelöste Resonanzen in den ¹⁴N-NMR-Spektren detektiert werden. Die Zuordnung der Atome der individuellen Resonanzen von N_α, N_β und N_γ (Konnektivität: $M-N_{\alpha}-N_{\beta}-N_{\gamma}$) erfolgte dabei anhand von Literaturdaten.^{10,24} Das N_β-Atom von As(N₃)₃ zeigt eine sehr scharfe Resonanz bei $\delta = -136$ ppm, das N_γ-Atom bei $\delta = -171$ ppm und das N_α-Atom, wie erwartet, ein breites Signal bei $\delta = -324$ ppm. Sb(N₃)₃ zeigt die analogen Resonanzen $\delta = -139$ (N_β), -173 (N_γ) und -271 (N_α) ppm. Die chemischen Verschiebungen der N-Atome in dem azid-substituierten Molekül SbCl(N₃)₂ überein (vgl. Kap. 3.2.2).²⁵

Die kationischen Arsenazid- und Antimonazid-Spezies wurden durch Reaktion von $[AsCl_4][AsF_6]$ mit TMS-N₃ und $[SbCl_4][Sb_2F_{11}]$ mit aktiviertem Natriumazid²⁶ in SO₂ dargestellt (Gleichungen 2 und 3).

$$[AsCl_4][AsF_6] + 4 TMS-N_3 \xrightarrow{SO_2} [As(N_3)_4][AsF_6] + 4 TMS-Cl (2)$$

 $[SbCl_4][Sb_2F_{11}] + 4 \text{ akt. NaN}_3 \xrightarrow{SO_2} [Sb(N_3)_4][Sb_2F_{11}] + 4 \text{ NaCl}$ (3)

Beide kationischen Spezies sind äußerst explosive Verbindungen. Bei Raumtemperatur sind sie kinetisch stabil, explodieren jedoch heftig, wenn sie einem thermischen Schocktest²⁷ unterzogen werden. Die Explosionskraft dieser Verbindungen sind äußerst gewaltig. Kleingewachsene Kristalle der Verbindung $[As(N_3)_4][AsF_6]$ waren imstande, eine Kugel eines Zweikugelkolbens zu pulverisieren, nachdem sie mit einem Glasstab nur leicht berührt wurden, obwohl die Kristalle in gefrorenem Perfluorpolyethylen-Öl eingebettet waren. Diese Verbindungen müssen mit extremster *Vorsicht* gehandhabt werden! Die ¹⁴N-NMR-Spektren von $[As(N_3)_4][AsF_6]$ und $[Sb(N_3)_4][Sb_2F_{11}]$ zeigen drei gut aufgelöste Signale eines kovalent gebundenen Azids. Für $[As(N_3)_4][AsF_6]$ sind Resonanzen bei $\delta = -137$ (N_{β}) , -173 (N_{γ}) und -279 (N_{α}) ppm, und für $[Sb(N_3)_4][Sb_2F_{11}]$ bei $\delta = -142$ (N_{β}) , -173 (N_{γ}) und -274 (N_{α}) ppm ersichtlich.

Aufgrund der aufgenommenen NMR-Spektren kann davon ausgegangen werden, dass kein Azid/Fluorid-Austausch an den Anionen stattgefunden hat. Das ¹⁹F-NMR-Spektrum und das ⁷⁵As-NMR-Spektrum von [As(N₃)₄][AsF₆] zeigen die erwartete Quartettresonanz bei $\delta = -65.1$ (¹⁹F) und eine Septettresonanz bei $\delta = 0.0$ (⁷⁵As), was auf die Anwesenheit eines AsF₆⁻-Anions im Molekül hindeutet.²⁸ Andere Resonanzen, die auf einen partiellen oder vollständigen Azid/Fluorid-Austausch hindeuten, konnten nicht gefunden werden. Ein Signal für das As(N₃)₄⁺-Kation konnte im ⁷⁵As-NMR-Spektrum aufgrund des hohen Quadrupolmoments des ⁷⁵As-Kernes nicht detektiert werden. Dieser Kern kann nur in hochsymmetrischer Umgebung NMR-spektroskopisch detektiert werden.²⁹ Die bisher einzigen, durch ⁷⁵As-NMR-Spektroskopie charakterisierten, tetraedrisch koordinierten Arsenatome, sind die AsCl₄⁺- und AsBr₄⁺-Kationen, die erst kürzlich von Schrobilgen *et al.* beschrieben wurden.³⁰

Das ¹⁹F-NMR-Spektrum von $[Sb(N_3)_4][Sb_2F_{11}]$ in SO₂ weist drei Multiplettresonanzen bei $\delta = -90.5$, -98.4 und -128.7 ppm auf, was auf die Anwesenheit eines Sb_2F_{11} -Anions im Molekül hindeutet.³¹ Ähnlich wie für die Verbindung $[As(N_3)_4][AsF_6]$ konnten keine Signale aufgelöst werden, die auf einen partiellen oder vollständigen Azid/Fluorid-Austausch hindeuten.

Die anionischen Arsen(III)- und Antimon(III)-Azid-Spezies wurden durch Reaktion von [NMe₄][AsCl₄] bzw. [PPh₄][SbCl₄] mit einem Überschuss an TMS-N₃ in Acetonitril bei Raumtemperatur dargestellt (Gleichungen 4 und 5).

$$[NMe_4][AsCl_4] + 4 TMS-N_3 \xrightarrow{CH_3CN} [NMe_4][As(N_3)_4] + 4 TMS-Cl (4)$$

 $[PPh_4][SbCl_4] + 4 TMS-N_3 \xrightarrow{CH_3CN} [PPh_4][Sb(N_3)_4] + 4 TMS-Cl (5)$

Beide Verbindungen sind kinetisch stabil und explodieren nicht, wenn sie mit einem Metallspatel berührt werden oder wenn sie elektrostatischer Ladung ausgesetzt werden. Die relativ hohe kinetische Stabilität kann durch die Tatsache erklärt werden, dass die Anionen durch große und voluminöse Kationen im festen Zustand räumlich voneinander getrennt werden, so dass eine hohe Aktivierungsbarriere für die insgesamt exotherme Zersetzung der

Verbindungen resultiert.³² Aus diesem Grund können die beiden Verbindungen relativ gefahrlos im Labor gehandhabt werden. Werden sie einem thermischen Schocktest²⁷ unterzogen, so wird eine intensive Verpuffung beobachtet. Die elementare Zusammensetzung beider anionischen Verbindungen wurde durch Elementaranalyse bestätigt. Die ¹H-, ¹³C- und ³¹P-NMR-Spektren zeigen für [PPh₄][Sb(N₃)₄] die erwarteten Resonanzen (vgl. Experimenteller Teil). Das ¹⁴N-NMR-Spektrum von [NMe₄][As(N₃)₄] zeigt vier Signale. Das scharfe Signal bei $\delta = -135$ ppm wird dem N_β-Atom zugeordnet, das N_γ-Atom zeigt eine Resonanz bei $\delta = -181$ ppm und das N_α-Atom zeigt wie erwartet eine breite Resonanz bei $\delta = -326$ ppm. Die extrem scharfe Resonanz bei $\delta = -338$ ppm kann dem Stickstoffatom des NMe₄⁺-Kations zugeordnet werden. Für [PPh₄][Sb(N₃)₄] sind im ¹⁴N-NMR-Spektrum Signale bei $\delta = -136$ (N_β), $-171(N_{\gamma})$ und -324 (N_α) ppm vorhanden.

Die anionischen Arsen(V)-Azid-Spezies wurden zum einen durch Reaktion von $[PPh_4][AsCl_6]$ mit einem Überschuss an TMS-N₃, und zum anderen durch Reaktion des Lewis-Säure-Base-Addukts As(N₃)₅ · Pyridin mit einer Lösung von HN₃ in CH₂Cl₂ dargestellt. Die beiden Hexaazidoarsenat(V)-Spezies $[PPh_4][As(N_3)_6]$ und $[Py-H][As(N_3)_6]$ konnten auf diese Weise isoliert werden (Gleichungen 6 und 7).

$$[PPh_4][AsCl_6] + 6 TMS-N_3 \xrightarrow{CH_2Cl_2} [PPh_4][As(N_3)_6] + 6 TMS-Cl (6)$$

$$As(N_3)_5 \cdot NC_5H_5 \qquad + \qquad HN_3 \qquad \xrightarrow{CH_2Cl_2} \qquad [py-H][As(N_3)_6] \qquad (7)$$

Die korrespondierende Hexaazidoantimonat(V)-Verbindung [NEt₄][Sb(N₃)₆] wurde durch Reaktion von [NEt₄][SbCl₆] mit TMS-N₃ in Acetonitril erhalten (Gleichung 8). Die Zusammensetzung dieser Verbindung konnte durch Elementaranalyse bestätigt werden. Wird [PPh₄][SbCl₆] als Edukt eingesetzt, so zeigt die Röntgenstrukturanalyse, dass kein vollständiger Azid/Chlorid-Austausch stattfindet. Es wurde eine Verbindung der formalen Zusammensetzung [PPh₄][Sb(N₃)_{3.19}Cl_{2.81}] isoliert (*s*. Kap. 3.1.6).

$$[NEt_4][SbCl_6] + 6 TMS-N_3 \qquad \xrightarrow{CH_3CN} [NEt_4][Sb(N_3)_6] + 6 TMS-Cl (8)$$

Es konnte kein Azid/Fluorid-Austausch beobachtet werden, wenn beispielweise [PPh₄][SbF₆] als Edukt verwendet wird. Möglicherweise ist die Antimon-Fluor-Bindung zu stark, um einen Austausch zu ermöglichen.

Die explosiven Eigenschaften der Hexaazid(V)-Verbindungen ähneln aufgrund ähnlicher räumlicher Trennung der Kationen und Anionen im Kristallverbund denen der Tetraazid(III)-Anionen. [PPh₄][As(N₃)₆] erscheint kinetisch stabiler zu sein als [Py-H][As(N₃)₆]. Obwohl [Py-H][As(N₃)₆] sicher im Labor gehandhabt werden kann, explodiert diese Verbindung wenn sie einem thermischen Schocktest²⁷ unterzogen wird. Die Explosion von $[PPh_4][As(N_3)_6]$ erscheint etwas milder und [NEt₄][Sb(N₃)₆] verpufft nur leicht. Das ¹H-NMR-Spektrum von [Py-H][As(N₃)₆] zeigt zusätzlich zu den Resonanzen, die den Wasserstoffatomen des Pyridinrings zugeordnet werden, ein breites Signal bei $\delta = 13.62$ ppm, das dem Wasserstoffatom am protonierten N-Atom des Pyridinrings zugeordnet wird. Für [PPh₄][As(N₃)₆] zeigen die ¹H-, ¹³C- und ³¹P-NMR-Spektren die zu erwartenden Signale. Die ¹⁴N-NMR-Spektren von [PPh₄][As(N₃)₆] und [Py-H][As(N₃)₆] spiegeln die kovalente Natur der koordinierten Azidliganden wieder. Für [Py-H][As(N₃)₆] sind vier Resonanzen ersichtlich, wovon drei den nichtäquivalenten Stickstoffatomen der kovalent gebundenen Azidgruppe zugeordnet werden ($\delta = -142$ (N_{β}), -163 (N_{γ}) und -253 (N_{α}) ppm), und ein breites Signal bei $\delta = -167$ ppm, welches dem protoniertem Stickstoffatom des Pyridinrings zugeordnet wird. Für [PPh₄][As(N₃)₆] zeigt das ¹⁴N-NMR-Spektrum drei Resonanzen bei $\delta = -141$ (N₆), -165 (N_{γ}) und -256 (N_{α}) ppm (Abbildung 1).

Abb. 1 14 N-NMR-Spektrum von [PPh₄][As(N₃)₆].

Die ⁷⁵As-NMR-Spektren von [PPh₄][As(N₃)₆] und [Py-H][As(N₃)₆] weisen relativ scharfe Signale bei einer chemischen Verschiebung von δ = +12 ppm und +4 ppm auf. Die Resonanzen sind damit deutlich im Vergleich zum Signal der Ausgangsverbindung ([PPh₄][AsCl₆] δ = -392 ppm)^{29d} zu tiefem Feld verschoben. Das ⁷⁵As-NMR-Spektrum von [Py-H][As(N₃)₆] ist in Abbildung 2 abgebildet.

Abb. 2 75 As-NMR-Spektrum von [Py-H][As(N₃)₆].

Die ¹H- und ¹³C-NMR-Spektren von [NEt₄][Sb(N₃)₆] zeigen die erwarteten Signale (vgl. Experimenteller Teil). [NEt₄][Sb(N₃)₆] ist nur in DMSO löslich. Das ¹²¹Sb-NMR-Spektrum zeigt ein relativ scharfes Signal bei $\delta = -3$ ppm, was auf eine symmetrische hexakoordinierte Antimonspezies in Lösung hindeutet. Die chemische Verschiebung liegt im selben Bereich wie für SbF₆⁻ ($\delta = 88$ ppm) und SbCl₆⁻ ($\delta = 0$ ppm).³³ Das ¹⁴N-NMR-Spektrum zeigt zusätzlich zu einem sehr scharfen Signal bei $\delta = -318$ ppm, das dem Stickstoffatom des NEt₄⁺-Kations zugeordnet wird, typische Resonanzen die den nichtäquivalenten Stickstoffatomen der Azidgruppen entsprechen. Das N_β-Atom zeigt eine Resonanz bei

 δ = -141 ppm und das N_α-Atom ein sehr breites Signal bei -244 ppm. Für das terminale N_γ-Atom werden drei Signale bei δ = -154, -163 und -173 ppm beobachtet (Abbildung 3). Vermutlich liegen in Lösung assoziierte Antimonazid-Verbindungen, ähnlich der Sb₂F₁₁⁻⁻ oder Sb₃F₁₆⁻⁻Anionen vor. Die Elementaranalyse und Schwingungsspektren deuten jedoch auf diskrete Sb(N₃)₆⁻⁻Anionen im festen Zustand hin. Eine andere Erklärung wären partielle Wechselwirkungen der terminalen mit den Stickstoffatomen der NEt₄⁺⁻Kationen oder den DMSO-Lösemittelmolekülen. Diese Wechselwirkungen würden unterschiedliche N_γ-Atome bewirken, und die Resonanzen im ¹⁴N-NMR-Spektrum erklären. Ein ähnlicher Unterschied zwischen Lösung und festem Zustand wurde auch beim Palladiumazid-Komplex [Pd(NH₃)₄][Pd(N₃)₄] beobachtet.³⁶

Versuche, die reinen Pentaazide As $(N_3)_5$ und Sb $(N_3)_5$ zu isolieren, führten zu Explosionen. Dabei wurde aus den verwendeten Reaktionsgefäßen nur pulverisiertes Glas erhalten. In einem Versuch wurde eine Lösung von AsF₅ in SO₂ mit einem Überschuss an TMS-N₃ umgesetzt. Die Reaktionslösung kann problemlos bei Raumtemperatur gehandhabt werden. Versuche das Produkt bei -78°C zu isolieren schlugen fehl, und führten zu Explosionen während der Aufarbeitung des Reaktionsgemisches. Reines Arsenpentaazid ist vermutlich wie AsCl₅,³⁴ höchst instabil. AsCl₅ zersetzt sich bereits über -50°C in AsCl₃ und Cl₂. PCl₅ und SbCl₅ sind stabil. Die Instabilität von AsCl₅ wird der *d*-Blockkontraktion (post transition metal effect) und der relativen Schwachheit der As-Cl-Bindung zugeschoben (vgl. Kap 3.4). Es wurde versucht, Sb(N₃)₅ auf zwei verschiedenen Reaktionswegen zu synthetisieren. In einem Experiment wurde SbF₅ mit einem Überschuss an TMS-N₃ in SO₂-Lösung umgesetzt. In einem zweiten Versuch wurden SbCl₅ und TMS-N₃ in CH₂Cl₂ zur Reaktion gebracht. In beiden Fällen konnten die Reaktionsmischungen ohne Zersetzung oder Stickstoffbildung bis Raumtemperatur erwärmt werden. Die Lösemittel, resultierendes TMS-F(Cl) und der Überschuss an TMS-N₃ konnten im dynamischen Vakuum entfernt werden. Dieser Prozess wurde gestoppt, sobald keine weitere Verdampfung beobachtet wurde. In beiden Fällen wurden leicht gelbliche Öle isoliert. ¹⁴N-NMR- und Raman-spektroskopische Untersuchungen an diesen Ölen lassen auf die intermediäre Bildung eines Lewis-Säure-Base-Adduktes der Form Sb(N₃)₅ · N₃-TMS schließen. Die Spektren zeigen Signale bzw. Resonanzen die einer Antimonazid-Verbindung und TMS-N3 zugeordnet werden können. Dieses intermediäre Addukt scheint ein sehr schwaches Addukt zu sein. Versuche das koordinierende TMS-N3 im dynamischen Vakuum zu entfernen, führten zu heftigen Explosionen. Eine ähnliche Adduktbildung konnte im Falle von As(N₃)₅ nicht beobachtet werden. Dies ist im Einklang mit Studien über stickstoffkoordinierte Lewis-Säure-Base-Addukte von As(N₃)₅ und Sb(N₃)₅. Es zeigte sich, dass Antimonpentaazid stabilere Addukte bildet (s. Kap. 3.3).³⁵

3.1.3 Ergebnisse und Diskussion der Schwingungsspektren

Tabelle 3 und 4 geben einen Überblick über ausgewählte, auf B3LYP-Niveau berechnete und experimentell bestimmte Schwingungsfrequenzen aller binären Arsenazid- und Antimonazid-Verbindungen wieder. Die Schwingungsspektren der Verbindungen As $(N_3)_3$, As $(N_3)_4^+$ und Sb $(N_3)_3$ wurden nochmals untersucht, um eine exakte und detaillierte Zuordnung der Normalschwingungen zu erhalten. Die hier beschriebenen schwingungsspektroskopischen Daten der Verbindungen As $(N_3)_3$, As $(N_3)_4^+$ und Sb $(N_3)_3$ stimmen exzellent mit den in der Literatur beschriebenen Daten überein.^{13,14,21}

Die experimentell bestimmten Schwingungsfrequenzen stimmen sehr gut mit den auf B3LYP-Niveau berechneten Daten überein, so dass die Richtigkeit der Zuordnungen der Normalschwingen gewährleisten werden kann. Es sollte jedoch nicht unerwähnt bleiben, dass die quantenmechanischen Berechnungen für isolierte Moleküle in der Gasphase bei 0°K durchgefüht wurden, und dass geringfügige Differenzen zwischen Gasphasen- und Festkörper-Spektren auftreten können.

Für kovalent gebundene Azide werden in der Literatur vier verschiedene Schwingungsmodi diskutiert ($v_{as}N_3$, v_sN_3 , δN_3 und vMN), und für jeden Modus eine Beispielsschwingung angegeben.^{9,13,14,23,36} Jedoch werden in den Schwingungsspektren oft 8-10 Banden beobachtet, die den Schwingungen der Azidgruppen zugeordnet werden können. Eine vollständige und exakte Zuordnung der erhaltenen Banden ist aufgrund der komplexen Strukturen mancher kovalenter Azidverbindungen schwierig. Um eine detailliertere Zuordnung zu ermöglichen, wurden in vorliegender Arbeit die Schwingungsspektren aller binären kationischen, neutralen und anionischen Arsenazid- und Antimonazid-Spezies auf B3LYP-Niveau berechnet und mit den experimentell bestimmten Schwingungsdaten verglichen.

Die gemessenen IR- und Ramanspektren aller binären Verbindungen zeigen alle charakteristischen Banden kovalent gebundener Azide. Die kovalente Natur der Azidliganden wird sowohl durch das gleichzeitige Auftreten der antisymmetrischen (ca. 2100 cm⁻¹) und der symmetrischen Valenzschwingung (ca. 1270 cm⁻¹) der Azidgruppen im IR- und Raman-Spektrum als auch durch die ebenfalls im IR- und Raman-Spektrum auftretenden starken Banden zwischen 365 cm⁻¹ und 472 cm⁻¹, die den As-N- bzw. Sb-N-Streckschwingungen zugeordnet werden können, bestätigt.³⁷

Die antisymmetrische Streckschwingung kovalenter Azide wird in Schwingungsspektren bei ca. 2100 cm⁻¹ beobachtet. Für diesen Schwingungsmodus werden mehr Schwingungen erwartet, wenn mehr als eine Azid-Einheit im Molekül präsent ist. Dieser Schwingungsmodus

kann in eine $v_{as}N_3$ –"*in phase*"-Schwingung und in eine $v_{as}N_3$ –"*out of phase*"-Schwingung unterteilt werden. Erstere "*in phase*"-Schwingung erscheint den Berechnungen (B3LYP) zufolge bei höheren Wellenzahlen. Dieser Modus kann als Schwingung beschrieben werden, bei dem sich die Symmetrie des Moleküls nicht ändert, wohingegen die Symmetrie bei der "*out of phase*"-Schwingung verändert wird. Es zeigt sich, dass die experimentell beobachteten und berechneten Frequenzen der antisymmetrischen Streckschwingungen der Azidgruppen für das As $(N_3)_4^+$ -Kation zu höheren Wellenzahlen verschoben sind (vgl. Tabelle 3), gefolgt von den Neutralverbindungen (As $(N_3)_3$ und As $(N_3)_5$) und den anionischen Spezies As $(N_3)_4^$ und As $(N_3)_6^-$. Die gleiche Tendenz wird auch bei den binären Antimonaziden (vgl. Tabelle 4), wenn auch weniger ausgeprägt als bei den Arsenverbindungen, beobachtet. In Übereinstimung damit stehen die berechneten N-N-Abstände aller binären Azide (*s*. Kap. 3.1.4).

Die gleiche Unterscheidung in "*in/out of phase*"-Schwingungen kann für die symmetrische Steckschwingung der Azidgruppen vorgenommen werden, die zwischen 1200 - 1300 cm⁻¹ beobachtet wird. Auch hier kann eine ähnliche Tendenz diskutiert werden. Die berechneten und experimentell bestimmten Schwingungsfrequenzen der symmetrischen Streckschwingung erscheinen für die kationischen $M(N_3)_4^+$ -Spezies (M = As, Sb), im Gegensatz zu der antisymmetrischen Streckschwingung, bei niedrigeren Wellenzahlen, gefolgt von den neutralen $M(N_3)_3^-$ und $M(N_3)_5$ -Verbindungen, und den anionischen Verbindungen $M(N_3)_4^-$ und $M(N_3)_6^-$ (M = As, Sb), welche die höchsten Frequenzen für die symmetrische Streckschwingung aufweisen. Diese Tendenz ist bei M = Sb nicht so stark ausgeprägt, als bei M = As.

Diese Ergebnisse deuten auf einen höheren Anteil der Lewisformel III (s. Schema 1) für die Azidliganden in den Verbindungen $M(N_3)_4^+$, $M(N_3)_3$ und $M(N_3)_5$ hin, die eine höhere Bindungsordnung zwischen den N_β- und N_γ-Stickstoffatomen repräsentiert, wohingegen die Azidliganden in den anionischen Verbindungen $M(N_3)_4^-$ und $M(N_3)_6^-$ (M = As, Sb) mehr zu Lewisformel I und II in Schema 1, mit einer niedrigeren Bindungsordnung zwischem dem N_βund N_γ-Stickstoffatom, tendieren.

Generell zeigt sich, dass, wenn lokalisierte Molekülorbitale (LMO) in Betracht gezogen werden, um die Elektronenaufenthaltswahrscheinlichkeit kovalenter Azide zu beschreiben, die *increased valence structure* IV zu 25 kanonischen Lewis-Strukturen, die die Strukturen I - III und V - VII beinhalten, äquivalent ist (R = monoatomare Gruppe).^{38,39}

Schema 1

Die B3LYP-Niveau durchgeführten auf Rechnungen ergeben, dass die Deformationsschwingung der Azidgruppe vier Normalschwingungen besitzt. Zwei Schwingungen können als "in/out of phase"-Schwingungen einer Ebene (634 - 687 cm⁻¹) beschrieben werden, die anderen zwei Schwingungen als "in/out of phase"-Schwingungen einer Ebene, die senkrecht zur Ersten steht (560 - 617 cm⁻¹). Die δN₃ "in phase"-Schwingungen ergeben Banden, die im Vergleich zur den δN₃ "out of phase"-Schwingungen zu höheren Wellenzahlen verschoben sind. Die Arsen- und Antimon-Stickstoff-Streckschwingungen können ebenfalls in eine symmetrische Schwingung, bei der sich die Symmetrie des Moleküls nicht ändert, und eine antisymmetrische Schwingung, bei der die Symmetrie verändert wird, unterteilt werden. Die höchsten Wellenzahlen zeigen die kationischen und neutralen Verbindungen, gefolgt von den anionischen Spezies, was mit den

berechneten und experimentell bestimmten M-N-Abständen (M = As, Sb) gut übereinstimmt. Die Deformationsschwingungen der As-N- bzw. Sb-N-Bindungen können den Banden zwischen 226 - 291 cm⁻¹ zugeordnet werden. Die Tabellen 3 und 4 zeigen jeweils eine As-Nbzw. Sb-N-Deformationsschwingung für alle dargestellten binären Arsen- und Antimonazide. In den Raman- und IR-Spektren der Verbindungen sind jedoch mehrere Banden, die diesem Schwingungsmodus zugeordnet werden können, ersichtlich. Eine vollständige und exakte Zuordnung dieser Banden ist aufgrund Kombinationen dieses Schwingungstyps mit Torsionsschwingungen des Moleküls, erschwert. Alle beschriebenen Schwingungen stimmen gut mit denen in der Literatur beschriebener Arsenazid- und Antimonazid-Verbindungen überein.^{9,13,14,21,25,35}

Die beschriebenen Tendenzen wurden ebenso in einer vergleichenden Studie über die binären Phosphorazide $P(N_3)_3$, $P(N_3)_5$ und $P(N_3)_4^+$ beobachtet.⁶

In Abbildung 4 ist das Ramanspektrum von [NMe₄][[As(N₃)₄] abgebildet.

ЦЦ	1
g	_
nis	•
Se	
ğ	
	-
E	j
]
LUISKUSS	1

Zuordnung	$As(N_3)_3$				$As(N_3)_4^{-a}$				
	IR	Ran	nan	Ber. ^b	IR	Raman		Ber. ^b monomer	Ber. ^b dime
v _{as} N ₃ – "in phase"		2115	(2.5)	2284 (469)	2130 s	2121 (4)	N	215 (225)	2196 (1132)
$v_{as}N_3$ –"out of phase"	2088 vs			2265 (599)		2082 (2)	N	2193 (2091)	2175 (2370)
v _s N ₃ –"in phase"	1243 s	1238	(1.5)	1329 (126)	1262 m	1258 (1.5		350 (103)	1363 (195)
$v_s N_3$ –"out of phase"		1226	(1.5)	1297 (226)		1243 (0.5		345 (221)	1341 (224)
δN ₃ –"in phase"		667	(3)	672 (25)	676 w		•	571 (38)	683 (28)
δN ₃ –"out of phase"	662 m			660 (14)	664 m	663 (1)	•	570 (16)	661 (23)
δN ₃ -"in phase/90°"				598 (10)			•	528 (17)	624 (10)
δN ₃ -"out of phase/90°"	565 m			578 (9)	597 w		•	503 (7)	605 (20)
v _{as} AsN		472	(10)	482 (22)	428 vw	447 (10)	~	128 (23)	436 (77)
v _s AsN	450 m			449 (70)		410 (2)	(1)	391 (98)	430 (27)
δAsN		263	(3.5)	304 (18)		271 (4)	N	290 (298)	287 (88)
Zuordnung	$As(N_3)_4^{+c}$			$As(N_3)_5$	$As(N_3)_6^{-d}$		$As(N_3)_6^{-e}$		
	IR	Raman	Ber. ^b	Ber. ^b	IR	Raman	IR	Raman	Ber. ^b
ν _{as} N ₃ "in phase"	2129 s	2134 (2)	2312 (288)	2267 (643)		2112 (2.5)		2110 (3.5)	2234 (1651)
$v_{as}N_3$ –"out of phase"			2304 (505)	2259 (936)	2086 s	2081 (1)	2085 vs	2084 (1.5)	2228 (729)
v _s N ₃ –"in phase"			1248 (455)	1326 (321)	1277 s	1273 (0.5)	1270 s	1279 (3.5)	1347 (321)
$v_s N_3$ –"out of phase"	1245 m	1242 (1)	1247 (276)	1283 (404)		1248 (0.5)			1344 (162)
δN ₃ –"in phase"	688 w	698 (1)	681 (57)	693 (78)			s 889	681 (1.5)	689 (77)
δN ₃ –"out of phase"	662 m		675 (15)	684 (44)	666 w	670 (1)		669 (1.5)	683 (28)
δN_3 -"in phase/90°"			544 (17)	593 (13)					594 (47)
δN_3 –"out of phase/90°"			519 (49)	581 (15)					592 (7)
v _{as} AsN		433 (10)	451 (37)	452 (108)	418 s	415 (10)	416 s	416 (10)	404 (152)
v _s AsN		416 (4)	439 (70)	447 (97)					398 (177)
		291 (1)	295 (10)	301 (22)		288 (1)		267 (1.5)	305 (60)

Ergeonisse	
und	_
t	J
5	•
×	
Ĕ	
ŝ	
SIO	•

Zuordnung	$Sb(N_3)_3$				$SD(IN_3)_4$			
	IR	Ram	un	Ber. ^b	IR	Raman	Ber. ^b monomer	Ber. ^b dimer
v _{as} N ₃ "in phase"	2157 m			2275 (579)	2131 w		2248 (712)	2242 (1708)
v _{as} N ₃ "out of phase"	2100 vs	2113 ((4)	2243 (804)	2079 m	2084 (2)	2225 (715)	2208 (3280)
v _s N ₃ –"in phase"	1255 s	1263 (2)	1342 (146)	1260 s	1273 (0.5)	1358 (155)	1368 (277)
$v_s N_3$ –"out of phase"	1210 m			1315 (195)			1350 (147)	1344 (253)
δN ₃ –"in phase"	680 s			649 (16)	698 m	681 (3)	669 (3)	679 (23)
δN_3 –"out of phase"		667 (2)	645 (9)	669 w	646 (1)	664 (41)	660 (31)
δN ₃ –"in phase/90°"	560 w			588 (8)		617 (2)	624 (19)	620 (23)
δN ₃ –"out of phase/90°"				580 (9)			609 (10)	605 (10)
v _{as} SbN	424 m			414 (59)		402 (3)	400 (21)	414 (58)
v _s SpN	401 m	377 (5	<u> </u>	408 (93)		365 (2)	372 (80)	342 (72)
8SPN		252 (4)	246 (20)		233 (3.5)	232 (35)	232 (306)
Zuordnung	$Sb(N_3)_4^{+c}$			$Sb(N_3)_5$		$Sb(N_3)_6^{-d}$		
	IR	Raman	Ber. ^b	Ber. ^b		IR	Raman	Ber. ^b
v _{as} N ₃ "in phase"		2129 (2)	2279 (318)	2262 (362)				2238 (1715)
$v_{as}N_3$ – "out of phase"	2113 vs		2274 (640)	2256 (1100)		2081 vs	2083 (2.5)	2232 (847)
$v_s N_3$ -"in phase"		1286 (1.5)	1249 (405)	1326 (240)			1298 (1.5)	1351 (324)
$v_s N_3$ -"out of phase"	1260 s		1248 (232)	1298 (295)		1256 s		1348 (180)
δN ₃ –"in phase"	628 s	672 (3.5)	625 (20)	662 (55)				670 (53)
δN ₃ –"out of phase"			612 (0)	655 (55)		666 w	668 (2.5)	667 (17)
δN ₃ –"in phase/90°"			547 (15)	589 (10)				600 (44)
δN_3 –"out of phase/90°"			546 (1)	585 (12)		576 vw		597 (7)
v _{as} SbN			461 (39)	439 (79)		405 w	412 (10)	404 (106)
	435 m	421 (10)	454 (35)	428 (73)			394 (7)	398 (123)
VsSbN		237 (4.5)	234 (16)	250 (30)			226 (3)	233 (73)

<u>.</u>

18

3.1.4 Berechnete Strukturen der binären Arsenazid- und Antimonazid-Verbindungen

Die Molekülstrukturen aller ionischen und neutralen binären Arsenazid- und Antimonazid-Verbindungen wurden auf HF-Niveau in C_1 -Symmetrie optimiert. Die Berechnungen lokaler Minimumstrukturen (*NIMAG* = 0) ergaben für die kationischen M(N₃)₄⁺-Spezies S₄-Symmetrie, S₆-Symmetrie für die Hexaazidanionen M(N₃)₆⁻, C_s-Symmetrie für die monomeren M(N₃)₄⁻-Anionen und neutralen M(N₃)₅-Verbindungen und S₂-Symmetrie für die dimeren M(N₃)₄⁻-Anionen (M = As, Sb). Daher wurden die Strukturen auf B3LYP-Niveau in S₂-, S₄-, S₆- und C_s-Symmetrie optimiert. Die HF-Berechnungen ergaben für die neutralen M(N₃)₃-Azid-Spezies C₁-Symmetrie. Infolgedessen wurden die molekularen Strukturen von M(N₃)₃ (M = As, Sb) in C₁-Symmetrie auf B3LYP-Niveau optimiert. Die auf B3LYP-Niveau berechneten Strukturen aller binären Arsenazid- und Antimonazid-Verbindungen zeigen lokale Minima (*NIMAG* = 0).

Klapötke *et al.* berichteten über die in C_3 -Symmetrie berechneten molekularen Strukturen von As(N₃)₃ und Sb(N₃)₃. Es konnten zwei lokale Minimumstrukturen für beide Verbindungen berechnet werden. Eine Struktur kann als *cis*-Struktur beschrieben werden, in der die Azidgruppen zu dem am Zentralatom (As, Sb) lokalisierten freien Elektronenpaar in *cis*-Position angeordnet sind. In der zweiten berechneten Struktur sind die Azidliganden zu dem freien Elektronenpaar des Zentralatoms *trans*-ständig.^{4,21} In dieser Arbeit wurden lokale Minimumstrukturen für M(N₃)₃ (M = As, Sb) auf B3LYP-Niveau berechnet, in denen zwei Azidliganden *trans*-ständing und ein Azidligand *cis* orientiert sind (Abbildung 5). Diese berechneten Strukturen sind geringfügig energetisch begünstigt (ca. 3 kcal/mol). Ausgewählte berechnete Strukturparameter aller beschriebenen binären Arsenazide und Antimonazide sind in Tabelle 5 aufgeführt.

Die Zentralatome von As(N₃)₃ und Sb(N₃)₃ (Abbildung 5) sind pyramidal von drei Azidgruppen, wovon zwei *trans*- und eine *cis*-stehend zu einem freien Elektronenpaar am Zentralatom sind, und einem freien Elektronenpaar umgeben. Die Azidgruppen in M(N₃)₃ (M = As, Sb) sind, wie für kovalent gebundene Azide erwartet, mit N-N-N-Bindungswinkel von ca. 175° leicht gewinkelt. Ein interessantes, obwohl nicht unerwartetes,⁴⁰ strukturelles Merkmal sind die Bindungswinkel zwischen den Stickstoffatomen und den Zentralatomen (N-M-N). Sie liegen in einem Bereich zwischen 90.5° und 103.4°, was auf ein stereochemisch wirksames freies Elektronenpaar an den Metallzentren schließen läßt.

Die durchschnittlichen M-N-Bindungslängen betragen für $As(N_3)_3$ 1.888 Å und für $Sb(N_3)_3$ 2.076 Å. Die berechneten (B3LYP) Strukturparameter von $Sb(N_3)_3$ stimmen gut mit den experimentell bestimmten Bindungslängen und Bindungswinkeln der azidsubstituierten Verbindung $SbCl(N_3)_2$ gut überein (vgl. Kap. 3.2.4).²⁵

Abb. 5 Berechnete (B3LYP) Molekülstrukturen von $M(N_3)_3$ (M = As, Sb).

Die $As(N_3)_4^+$ und $Sb(N_3)_4^+$ -Kationen (Abbildung 6) sind mit beinahe ideal tetraedrischen N-M-N-Bindungswinkeln tetraedrisch von vier Azidliganden umgeben (ideale *S*₄-Symmetrie). Die Azid-Einheiten in beiden kationischen Spezies sind mit N-N-N-Bindungswinkel von ca. 171.5° leicht gewinkelt. Der durchschnittliche M-N-N-Bindungswinkel von 118.7° ist, verglichen mit den M-N-N-Winkeln der Triazide, aufgrund der unterschiedlichen Lokalisierung der freien aktiven Elektronenpaare an den N1-Stickstoffatomen der Azid-Einheiten geringfügig kleiner. Die M-N-Bindungslängen betragen für das $As(N_3)_4^+$ -Kation 1.795 Å und für das $Sb(N_3)_4^+$ -Kation 2.009 Å und sind somit deutlich kürzer verglichen mit den Triaziden.

Abb. 6 Berechnete (B3LYP) Molekülstrukturen der kationischen $M(N_3)_4^+$ -Spezies (M = As, Sb).

Die Strukturen der berechneten Verbindungen As(N₃)₅ und Sb(N₃)₅ (Abbildung 7) sind dadurch gekennzeichnet, dass die Zentralatome trigonal bipyramidal von fünf Azidliganden umgeben sind. Die Symmetrie der Moleküle wird aufgrund der sterischen Wirksamkeit der Azid-Einheiten von D_{3h} nach C_s erniedrigt. Die N-N-N-Bindungswinkel sind wie zuvor beschrieben, mit durchschnittlichen N-N-N-Winkeln von 174.6° leicht gewinkelt. In beiden Verbindungen sind die N-M-N-Bindungswinkel zwischen den axialen N_{α}-Atomen der Azidgruppe, und den Zentralatomen nahezu linear (As(N₃)₅ 177.2°; Sb(N₃)₅ 177.4°). Die Bindungswinkel zwischen den axialen und äquatorialen N_{α}-Atomen variieren für As(N₃)₅ zwischen 114.9° und 123.9°, und für Sb(N₃)₅ von 112.7° bis 123.7°. Diese Bindungswinkel liegen damit innerhalb den erwarteten Werten für eine trigonale bipyramidale Anordnung. Die Strukturen sind durch zwei längere M-N-Bindungen für die Azidliganden in axialer Position (As-N1 1.901, As-N4 1.920; Sb-N1 2.067, Sb-N4 2.080 Å), und drei kürzeren M-N-Abständen für die Azid-Einheiten in äquatorialer Position (As-N13 1.860, As-N7/10 1.870; Sb-N13 2.040, Sb-N7/10 2.060 Å) gekennzeichnet.

Die Strukturen der Tetraazido-Anionen der Elemente Arsen und Antimon wurden in einer monomeren und dimeren Form auf B3LYP-Niveau berechnet, da Kristallstrukturanalysen von Tetrahalogen-Anionen von Arsen und Antimon sowohl monomere als auch dimere Form belegen. Während die AsX₄⁻-Anionen (X = Cl, Br, I) und das SbCl₄⁻-Anion (vgl. Kap. 3.1.6) eine dimere Struktur besitzen,⁴¹ zeigt das Tetrafluoroarsenat(III)-Anion eine monomere Struktur.⁴²

Die monomeren $M(N_3)_4^-$ -Anionen (M = As, Sb) weisen eine Ψ -trigonal bipyramidale Struktur mit idealer C_s -Symmetrie auf (Abbildung 8). Die Zentralatome sind von vier Azidliganden und einem stereochemisch aktiven freien Elektronenpaar umgeben. Zwei dieser Azidliganden besetzten eine äquatoriale Position, und zwei eine axiale. Gemäss den Vorhersagen des VSEPR-Modells⁴³ besetzen die freien Elektronenpaare eine äquatoriale Position, da freie Elektronenpaare gegenüber koordinierten Azidliganden einen höheren Platzbedarf besitzen. Dementsprechend zeigen die monomeren $M(N_3)_4^-$ -Anionen eine bisphenoidale (SF₄-Typ) Gestalt, mit zwei längeren axialen Bindungen (As-N1 2.058, As-N4 2.205; Sb-N1 2.208, Sb-N4 2.287 Å) und zwei kürzeren äquatorialen Bindungen (As-N7/10 1.930; Sb-N7/10 2.122 Å). Interssanterweise zeigt eine axiale Azidgruppe (N4-N5-N6) im Vergleich zu der anderen axialen (N1-N2-N3) Azidgruppe eine längere M-N-Bindung. Dies kann vermutlich aufgrund der Tatsache erklärt werden, dass die N4-N5-N6-Azid-Einheit dem stereochemisch aktiven *lone-pair* in äquatorialer Position zugewandt ist (*cis*), während die andere N1-N2-N3-Azid-Einheit *trans* angeordnet ist und somit geringere Abstoßung erfährt Die N-M-N-Bindungswinkel der äquatorialen Azidliganden sind in einem Bereich zwischen 98.4° (Sb) und 99.1° (As), was auf ein stereochemisch aktives *lone-pair* schließen läßt. Die N-M-N-Bindungswinkel zwischen den axialen N_{α}-Atomen der Azidgruppen und den Metallzentren sind für beide Anionen mit Winkel von 172.7° für As(N₃)₄⁻ und 164.3° für Sb(N₃)₄⁻ leicht gewinkelt, was mit der stereochemischen Wirksamkeit des freien Elektronenpaars erklärt werden kann. Die Bindungswinkel zwischen den axialen und äquatorialen N_{α}-Atomen der Azid-Einheiten sind aufgrund des Effektes des freien Elektronenpaars in äquatorialer Position, erwartungsgemäß zwischen 84.0° und 88.5° und damit kleiner als 90°.

Abb. 8Berechnete (B3LYP) Molekülstrukturen der monomeren $M(N_3)_4^-$ -Anionen
(M = As, Sb).

Die auf B3LYP-Niveau berechneten Strukturen der dimeren $[M(N_3)_4]_2$ -Anionen zeigen ideale S₂-Symmetrie. Zwei monomere $M(N_3)_4$ -Einheiten sind über N_{α} -Atome axialer Azidliganden verbrückt, und bilden somit zentrosymmetrische Dimere (Abbildung 9). Die Zentralatome sind Ψ -oktaedrisch von fünf Azidgruppen und einem stereochemisch aktiven Elektronenpaar umgeben. Jeweils vier Azidliganden besetzen äguatoriale Positionen und eine Azidgruppe eine axiale Position. Die beiden axialen Azidgruppen und die beiden lone-pairs sind jeweils *trans* zueinander angeordnet. Die M-N-Bindungslängen der verbrückenden Azide sind nicht äquidistant. Sie sind signifikant gegenüber den terminalen Azidgruppen (As-N1 2.037, As-N10 2.096; Sb-N1 2.225, Sb-N10 2.279 Å) verlängert (As-N4 2.329, As-N4A 2.499; Sb-N4 2.395, Sb-N4A 2.565 Å). Die M-N10-Bindung, die in trans-Position zu den verbrückenden Stickstoffatom (N4) stehend ist, ist gegenüber der in *cis*-Position (M-N1) verlängert. Ein merklicher trans-Effekt ist erkennbar, der sich in unterschiedlichen M-N10- und M-N1-Bindungslängen widerspiegelt. Letztere Bindung ist kürzer und in trans-Position zu der längeren M-N4A-Brückenbindung stehend. Die M-N7-Bindungslängen (As-N7 1.926; Sb 2.098 Å) werden von dem *trans*-Effekt nicht beeinflusst und zeigen deshalb kürzere M-N7-Bindungsabstände. Die N-M-N-Bindungswinkel sind für beide dimere Anionen in einem Bereich zwischen 88.8° und 92.3° und entsprechen deshalb den Erwartungen für Ψ -oktaedrische Strukturen. Interessanterweise ist den Berechnungen (B3LYP) zufolge die Dimerisierung energetisch nicht bevorzugt (As 28.5 kcal mol^{-1} , Sb 34.2 kcal mol⁻¹), jedoch weisen die berechneten dimeren Strukturen lokale Minima auf. Es erscheint wichtig zu erwähnen, dass die Berechnungen für in der Gasphase isolierte Moleküle bei 0° Kelvin durchgeführt wurden. Die Dimerisierung kann im festen Zustand auch durch Kristallpackungseffekte begünstigt werden.

Abb. 9 Berechnete (B3LYP) Molekülstrukturen der dimeren $[M(N_3)_4^-]_2$ -Anionen (M = As, Sb).

Für die Hexaazidanionen der Elemente Arsen und Antimon wurden lokale Minimumstrukturen in S_6 -Ssymmetry berechnet (Abbildung 10). Die Gestalt der berechneten Strukturen stimmt exzellent mit den experimentell bestimmten Kristallstrukturen der Hexaazid-Komplexe der Metalle Germanium,⁴⁴ Zinn,⁴⁵ Blei,⁴⁶ Platin^{32a,47} und den in Kapitel 3.1.5 der Verbindungen $[Py-H][As(N_3)_6]$ beschriebenen Kristallstrukturen und [PPh₄][As(N₃)₆] überein. Die Zentralatome sind ideal oktaedrisch von sechs Stickstoffatomen umgeben. Azidliganden, die trans zueinander stehen, sind zentrosymmetrisch angeordnet. Die M-N-Bindungslängen betragen für das As(N₃)₆-Anion 1.962 Å und für das Sb(N₃)₆-Anion 2.118 Å. Die Azid-Einheiten sind mit N-N-N-Winkeln von 174.9° für beide Anionen leicht gewinkelt. Die N-M-N-Bindungswinkel sind erwartungsgemäß für eine oktaedrische Koordination für das As(N₃)₆-Anion zwischen 88.5° und 90.5°, und für das Sb(N₃)₆-Anion zwischen 88.9° und 91.1°. Die auf B3LYP-Niveau berechneten strukturellen Parameter stimmen sehr gut mit den experimentell bestimmten Bindungslängen und -winkel für die Verbindungen $[PPh_4][As(N_3)_6]^{23}$ und $[Py-H][As(N_3)_6]^{22}$ überein (vgl. Kap. 3.1.5).

Werden berechneten strukturellen die Parameter aller beschriebenen binären Azidverbindungen der Elemente Arsen und Antimon miteinander verglichen, so wird eine signifikante Tendenz offensichtlich. Die kationischen Spezies $M(N_3)_4^+$ zeigen mit 1.795 Å (As) und 2.009 Å (Sb) die deutlich kürzesten durchschnittlichen M-N-Bindungslängen, gefolgt von den neutralen Verbindungen M(N₃)₅ (As-N 1.884 Å, Sb-N 2.061 Å) und M(N₃)₃ (As-N 1.888 Å, Sb-N 2.076 Å). Die anionischen Spezies weisen die längsten M-N-Abstände auf. Die Anionen in der Oxidationsstufe (V) (As-N 1.962 Å, Sb-N 2.118 Å) sind verglichen mit den anionischen Verbindungen in der Oxidationsstufe (III) (monomer, As-N 2.031 Å, Sb-N 2.185 Å; dimer As-N 2.177 Å, Sb-N 2.312 Å) geringfügig kürzer.

Die N-N-Abstände innerhalb der Azidgruppen zeigen eine ähnlich Tendenz in gleicher Reihenfolge. Die kationischen Verbindungen zeigen die längsten N_{α} - N_{β} - und die kürzesten N_{β} - N_{γ} -Bindungslängen, gefolgt von den Neutralverbindungen und den anionischen Verbindungen (vgl. Tabelle 5). Dementsprechend ist die Bindungsordnung zwischen dem N_{β} und N_{γ} -Stickstoffatom (vgl. Lewisformel III, Schema 1) für die kationischen Azidverbidungen am höchsten, gefolgt von den neutralen Aziden. Die anionischen Azide haben eine niedrigere Bindungsordnung zwischen N_{β} und N_{γ} (Lewisformel I und II, Schema 1). Diese Tendenzen stimmen gut mit mit den experimentell bestimmten und auf B3LYP-Niveau berechneten Schwingungsdaten überein (vgl. Kap. 3.1.3).

Die relativ kurzen N_{β} - N_{γ} -Bindungslängen könnten eine Erklärung für die gesteigerte Explosivität der kationischen Verbindung im Vergleich zu den anionischen Aziden sein. Die Eliminierung von N_2 aus der Azidgruppe kann durch eine höhere Bindungsordnung zwischen N_{β} und N_{γ} begünstigt sein.

	As(N ₃) ₃	$As(N_3)_4^-$	$[\mathrm{As}(\mathrm{N}_3)_4^-]_2$	$As(N_3)_4^+$	As(N ₃) ₅	As(N ₃) ₆
Symmetrie	C_1	Cs	S_2	S_4	$C_{\rm s}$	S_6
NIMAG	0	0	0	0	0	0
<i>zpe</i> [kcal mol ⁻¹]	24.5	32.2	65.5	32.9	41.5	49.7
d(As-N1)	1.874	2.058	2.037	1.795	1.901	1.962
<i>d</i> (N1-N2)	1.239	1.217	1.216	1.264	1.235	1.224
<i>d</i> (N2-N3)	1.138	1.153	1.155	1.127	1.139	1.146
<(As-N1-N2)	121.2	120.9	118.2	118.3	117.2	117.5
<(N1-N2-N3)	174.3	176.7	175.8	171.2	174.6	174.9
<(N1-As-N4)	103.4	172.7	88.5	120.2	177.2	89.5
<(N1-As-N7)	94.3	86.9	87.5	104.4	88.8	90.5
<(N4-As-N7)	98.1	88.5	82.9	104.4	90.5	89.5
_	Sb(N ₃) ₃	$Sb(N_3)_4^-$	$[Sb(N_3)_4^-]_2$	$Sb(N_3)_4^+$	Sb(N ₃) ₅	Sb(N ₃) ₆ ⁻
Symmetrie	Sb(N₃) ₃ C ₁	$Sb(N_3)_4^-$ C_s	$[\mathbf{Sb}(\mathbf{N}_3)_4^-]_2$ S_2	$Sb(N_3)_4^+$ S_4	Sb(N₃) ₅ C _s	$Sb(N_3)_6$
Symmetrie <i>NIMAG</i>	Sb(N₃) ₃ <i>C</i> ₁ 0	$ \begin{array}{c} \mathbf{Sb}(\mathbf{N}_3)_4^- \\ \hline C_s \\ 0 \\ \end{array} $	$[Sb(N_3)_4]_2$ S_2 0	$\frac{\mathbf{Sb}(\mathbf{N}_3)_4^+}{S_4}$	Sb(N₃) ₅ C _s 0	$ Sb(N_3)_6^- $ $ S_6 $ $ 0 $
Symmetrie <i>NIMAG</i> <i>zpe</i> [kcal mol ⁻¹]	Sb(N ₃) ₃ C ₁ 0 23.9	$ Sb(N_3)_4^- C_s 0 31.9 $	$[Sb(N_3)_4]_2$ S_2 0 63.8	$ Sb(N_3)_4^+ S_4 0 31.5 $	Sb(N ₃)5 Cs 0 40.4	Sb(N ₃) ₆ S_6 0 48.7
Symmetrie <i>NIMAG</i> <i>zpe</i> [kcal mol ⁻¹] <i>d</i> (Sb-N1)	Sb(N ₃) ₃ C ₁ 0 23.9 2.078	Sb(N ₃) ₄ C _s 0 31.9 2.208	$[Sb(N_3)_4]_2$ S_2 0 63.8 2.225	$ Sb(N_3)_4^+ S_4 0 31.5 2.009 $	Sb(N ₃)5 Cs 0 40.4 2.067	$Sb(N_3)6^ S_6$ 0 48.7 2.118
Symmetrie NIMAG zpe [kcal mol ⁻¹] d(Sb-N1) d(N1-N2)	Sb(N ₃) ₃ C ₁ 0 23.9 2.078 1.235	Sb(N ₃) ₄ C _s 0 31.9 2.208 1.218	$[Sb(N_3)_4]_2$ S_2 0 63.8 2.225 1.214	$Sb(N_3)_4^+$ S_4 0 31.5 2.009 1.260	Sb(N ₃)5 C _s 0 40.4 2.067 1.236	Sb(N ₃) ₆ S ₆ 0 48.7 2.118 1.225
Symmetrie <i>NIMAG</i> <i>zpe</i> [kcal mol ⁻¹] <i>d</i> (Sb-N1) <i>d</i> (N1-N2) <i>d</i> (N2-N3)	Sb(N ₃) ₃ C ₁ 0 23.9 2.078 1.235 1.141	Sb(N ₃) ₄ C _s 0 31.9 2.208 1.218 1.153	$[Sb(N_3)_4]_2$ S ₂ 0 63.8 2.225 1.214 1.157	$ Sb(N_3)_4^+ S_4 0 31.5 2.009 1.260 1.131 $	Sb(N ₃)5 C _s 0 40.4 2.067 1.236 1.140	Sb(N_3) ₆ ⁻ S_6 0 48.7 2.118 1.225 1.146
Symmetrie <i>NIMAG</i> <i>zpe</i> [kcal mol ⁻¹] <i>d</i> (Sb-N1) <i>d</i> (N1-N2) <i>d</i> (N2-N3) <(Sb-N1-N2)	Sb(N ₃) ₃ C ₁ 0 23.9 2.078 1.235 1.141 121.4	Sb(N₃) ₄ ⁻ <i>C</i> _s 0 31.9 2.208 1.218 1.153 122.7	$[Sb(N_3)_4]_2$ S ₂ 0 63.8 2.225 1.214 1.157 119.8	$Sb(N_3)_4^+$ S_4 0 31.5 2.009 1.260 1.131 119.6	Sb(N ₃)5 C _s 0 40.4 2.067 1.236 1.140 118.3	Sb(N ₃) ₆ S ₆ 0 48.7 2.118 1.225 1.146 118.9
Symmetrie <i>NIMAG</i> <i>zpe</i> [kcal mol ⁻¹] <i>d</i> (Sb-N1) <i>d</i> (N1-N2) <i>d</i> (N2-N3) <(Sb-N1-N2) <(N1-N2-N3)	Sb(N ₃) ₃ C ₁ 0 23.9 2.078 1.235 1.141 121.4 175.1	Sb(N ₃) ₄ C _s 0 31.9 2.208 1.218 1.153 122.7 176.4	$[Sb(N_3)_4]_2$ S ₂ 0 63.8 2.225 1.214 1.157 119.8 176.7	$Sb(N_3)_4^+$ S_4 0 31.5 2.009 1.260 1.131 119.6 172.0	Sb(N ₃)5 C _s 0 40.4 2.067 1.236 1.140 118.3 174.3	$Sb(N_3)_6^ S_6$ 0 48.7 2.118 1.225 1.146 118.9 174.9
Symmetrie <i>NIMAG</i> <i>zpe</i> [kcal mol ⁻¹] <i>d</i> (Sb-N1) <i>d</i> (N1-N2) <i>d</i> (N2-N3) <(Sb-N1-N2) <(N1-N2-N3) <(N1-Sb-N4)	Sb(N ₃) ₃ C ₁ 0 23.9 2.078 1.235 1.141 121.4 175.1 98.5	Sb(N ₃) ₄ C _s 0 31.9 2.208 1.218 1.153 122.7 176.4 164.3	$[Sb(N_3)_4]_2$ S ₂ 0 63.8 2.225 1.214 1.157 119.8 176.7 90.0	$Sb(N_3)_4^+$ S_4 0 31.5 2.009 1.260 1.131 119.6 172.0 122.3	Sb(N ₃)5 C _s 0 40.4 2.067 1.236 1.140 118.3 174.3 177.4	Sb(N ₃) ₆ S ₆ 0 48.7 2.118 1.225 1.146 118.9 174.9 88.9
Symmetrie <i>NIMAG</i> <i>zpe</i> [kcal mol ⁻¹] <i>d</i> (Sb-N1) <i>d</i> (N1-N2) <i>d</i> (N2-N3) <(Sb-N1-N2) <(N1-N2-N3) <(N1-Sb-N4) <(N1-Sb-N7)	Sb(N ₃) ₃ C ₁ 0 23.9 2.078 1.235 1.141 121.4 175.1 98.5 90.5	Sb(N ₃) ₄ C _s 0 31.9 2.208 1.218 1.153 122.7 176.4 164.3 84.0	$[Sb(N_3)_4]_2$ S ₂ 0 63.8 2.225 1.214 1.157 119.8 176.7 90.0 85.1	$Sb(N_3)_4^+$ S_4 0 31.5 2.009 1.260 1.131 119.6 172.0 122.3 103.5	Sb(N ₃)5 C _s 0 40.4 2.067 1.236 1.140 118.3 174.3 177.4 89.3	$Sb(N_3)_6^ S_6$ 0 48.7 2.118 1.225 1.146 118.9 174.9 88.9 91.1

Tabelle 5Ausgewählte berechnete (B3LYP) Bindungslängen [in Å] und -winkel [in °]für binäre Arsenazid- und Antimonazid-Verbindungen.

3.1.5 Kristallstrukturen von [PPh₄][As(N₃)₆] und [Py-H][As(N₃)₆]

[PPh₄][As(N₃)₆] kristallisiert in der monoklinen Raumgruppe *C*2/c mit vier Formeleinheiten in der Elementarzelle und den Gitterparametern a = 22.147(3), b = 7.1943(8), c = 18.766(2)und $\beta = 98.635(2)$, wohingegen [Py-H][As(N₃)₆] in der triklinen Raumgruppe $P\overline{1}$ mit einem Molekül in der Einheitszelle kristallisiert. Die Gitterparameter betragen a = 6.8484(7), b = 7.3957(8), c = 8.0930(7), $\alpha = 91.017(2)$, $\beta = 113.235(2)$ und $\gamma = 91.732(2)$. Die Molekülstruktur des As(N₃)₆⁻-Anions ist in Abbildung 11 wiedergegeben. Ein Vergleich über experimentell bestimmte und auf B3LYP-Niveau berechnete Strukturparameter ist in Tabelle 6 aufgeführt.

Abb. 11Molekülstruktur des $As(N_3)_6^-$ -Anions in der Verbindung [PPh_4][As(N_3)_6] (Die
Gegenionen wurden übersichtlichkeitshalber nicht gezeichnet). Die
thermischen Ellipsoide repräsentieren eine Wahrscheinlichkeit von 25%. Das
 $As(N_3)_6^-$ -Anion in der Verbindung [Py-H][As(N_3)_6] hat die gleiche Struktur.

	Röntgenstrukturanalyse	Röntgenstrukturanalyse	Berechnung
	$[PPh_4][As(N_3)_6]$	[Py-H][As(N ₃) ₆]	(B3LYP)
Symmetrie	S_2	S_2	S_6
<i>d</i> (As-N1)	1.931(2)	1.940(3)	1.962
d(As-N4)	1.920(3)	1.934(4)	1.962
<i>d</i> (As-N7)	1.938(2)	1.939(3)	1.962
<i>d</i> (N1-N2)	1.229(3)	1.222(5)	1.224
<i>d</i> (N2-N3)	1.123(3)	1.126(5)	1.146
<i>d</i> (N4-N5)	1.222(3)	1.235(5)	1.224
<i>d</i> (N5-N6)	1.123(3)	1.127(5)	1.146
<i>d</i> (N7-N8)	1.238(3)	1.215(5)	1.224
<i>d</i> (N8-N9)	1.120(3)	1.130(5)	1.146
<(N1-N2-N3)	173.6(3)	175.4(5)	174.9
<(N4-N5-N6)	176.3(3)	174.7(4)	174.9
<(N7-N8-N9)	173.4(3)	175.4(4)	174.9
<(As-N1-N2)	115.6(2)	115.5(3)	117.5
<(As-N4-N5)	116.2(2)	116.4(3)	117.5
<(As-N7-N8)	114.9(2)	116.0(3)	117.5
<(N1-As-N4)	88.5(1)	88.6(2)	89.5
<(N1-As-N7)	91.5(1)	91.4(2)	90.5
<(N4-As-N7)	88.2(1)	89.2(2)	89.5

Tabelle 6Ausgewählte berechnete (B3LYP) und experimentell bestimmteBindungslängen [in Å] und -winkel [in °] für das $As(N_3)_6^-$ -Anion.

Die Röntgenstrukturanalysen von $[PPh_4][As(N_3)_6]$ und $[Py-H][As(N_3)_6]$ zeigen ionische Verbindungen mit PPh₄⁺- bzw. Py-H⁺-Kationen und As $(N_3)_6^-$ -Anionen, zwischen denen keine signifikanten Kationen-Anionen-Wechselwirkungen bestehen. Aufgrund der Fehlordnung der Pyridinium-Kationen im Kristall war es nicht möglich zwischen Kohlenstoff- und Stickstoffatomen zu unterscheiden. Alle Ringatome des Pyridinringes wurden daher als Kohlenstoffatome verfeinert.

Die Arsenatome, die eine nur geringfügig verzerrte oktaedrische Umgebung aufweisen, sind an sechs Stickstoffatome gebunden. Die Anionen zeigen im Kristall ideale S_2 -Symmetrie. Die Arsenatome liegen auf einem Inversionszentrum woraus eine zentrosymmetrische Anordnung, *trans* zueinender stehender Azidliganden, resultiert. Die As-N-Bindungslängen variieren von 1.920(3) bis 1.940(3) Å und die N-As-N-Bindungswinkel liegen in einem Bereich zwischen 86.3(2)° und 93.7(2)°. Während die N_{α}-N_{β}-Bindungslängen von 1.215(5) Å bis 1.238(3) Å variieren, liegen die terminalen N_{β} - N_{γ} -Bindungslängen zwischen 1.120(3) und 1.130(5) Å. Die Bindungswinkel zwischen den Arsenatomen und den Azideinheiten (As-N-N) liegen in einem Bereich zwischen 114.9(2)° und 116.4(3)°. Die Bindungswinkel innerhalb der Azideinheiten variieren von 173.4(3)° bis 176.3(3)° und sind somit leicht gewinkelt. Alle experimentell bestimmten Strukturparameter stimmen exzellent mit den auf B3LYP-Niveau berechneten Bindungslängen und -winkeln überein (vgl Tabelle 6).

Die Packungsverhältnisse der Verbindungen [PPh₄][As(N₃)₆] und [Py-H][As(N₃)₆] sind in den Abbildungen 12 und 13 gezeigt.

Abb. 12Darstellung der Elementarzelle von [PPh4][As(N3)6]. Wasserstoffatome wurden
übersichtlichkeitshalber nicht gezeichnet.

In der Verbindung [PPh₄][As(N₃)₆] liegen jeweils zwei Anionen auf den kristallographischen *a*-Achsen. Die Anionen sind weiträumig durch die voluminösen Kationen voneinander getrennt. Der kürzeste Abstand zwischen terminalen Stickstoffatomen zweier Azidgruppen beträgt 3.958 Å. Somit sind keine Anionen···Anionen-Wechselwirkungen erkennbar. Die Pyridinium-Kationen besetzen in der Verbindung [Py-H][As(N₃)₆] generelle Lagen in der Mitte der Elementarzelle. Die Arsenatome sind auf den Kantenmitten der *a*-Achse positioniert. Daraus folgt, dass die Anionen deckungsgleich arrangiert sind, und schwache Wechselwirkungen zwischen terminalen Stickstoffatomen unterschiedlicher Anionen im Kristall auftreten. Der kürzeste N3-N9-Abstand beträgt 3.286 Å. Der relativ kurze N3-N9-Abstand in [Py-H][As(N₃)₆] kann eine Erklärung für die leicht gesteigerte Explosivität von [Py-H][As(N₃)₆] gegenüber [PPh₄][As(N₃)₆] sein.

3.1.6 Kristallstruktur von [PPh₄][Sb(N₃)_{3.19}Cl_{2.81}]

Wie unter Kap. 3.1.2 beschrieben konnte bei der Umsetzung von $[PPh_4][SbCl_6]$ mit TMS-N₃ der gemischte Chlorid/Azid-Komplex $[PPh_4][Sb(N_3)_{3.19}Cl_{2.81}]$ isoliert werden. Ein vollständiger Chlorid/Azid-Austausch wurde nicht beobachtet. Ein ähnliches Phänomen wurde bei der röntgenographischen Charakterisierung von $[AsPh_4][Pt(N_3)_{5.28}Cl_{0.72}]$ beobachtet.^{32a}

[PPh₄][Sb(N₃)_{3.19}Cl_{2.81}] kristallisiert in der orthorhombischen Raumgruppe $P2_12_12_1$ mit vier Formeleinheiten in der Elementarzelle und den Gitterparametern a = 7.6175(6), b = 13.5093(8) und c = 27.053(2). Die Molekülstruktur des Sb(N₃)_{3.19}Cl_{2.81}-Anions ist in Abbildung 14 wiedergegeben. Ausgewählte Strukturparameter sind in Tabelle 7 aufgeführt.

Abb. 14 Molekülstruktur des Sb(N₃)_{3.19}Cl_{2.81}⁻-Anions in der Verbindung [PPh₄][Sb(N₃)_{3.19}Cl_{2.81}] (Die Kationen wurden übersichtlichkeitshalber nicht gezeichnet). Die thermischen Ellipsoide repräsentieren eine Wahrscheinlichkeit von 25%.

Die Kristallstrukturanalyse ergab getrennte PPh₄⁺-Kationen und Sb(N₃)_{3.19}Cl_{2.81}⁻-Anionen, zwischen denen keinerlei Wechselwirkungen vorliegen. Die PPh₄⁺-Kationen sind ohne Besonderheiten und werden deshalb nicht weiter diskutiert. In den Sb(N₃)_{3.19}Cl_{2.81}⁻-Anionen sind jeweils zwei Chloridliganden vollständig, zwei Chloridliganden partiell und zwei Chlorliganden nicht mit Azidionen ersetzt (Abbildung 14). Die Sb(N₃)_{3.19}Cl_{2.81}⁻-Anionen zeigen eine oktaedrische Koordination an den Antimonzentren. Entgegen dem Hexaazidoarsenat(V), in dem *trans*-stehende Azidliganden zentrosymmetrisch angeordnet sind, sind hier die beiden Azidgruppen N4-N5-N6 und N10-N11-N12 zueiander *cis*-stehend, was durch mögliche Packungseffekte und Mischkristallbildung begründet werden kann. Die experimentell bestimmten Bindungslängen werden aufgrund der Mischkristallbildung zum Teil unrealistisch wiedergegeben. Die Bindungswinkel an den Antimonatomen liegen alle bei ca. 90°, was für eine oktaedrische Koordination spricht. In Tabelle 7 sind ausgewählte Strukturparameter zusammengefasst.

Tabelle 7Ausgewählte experimentell bestimmte Bindungslängen [in Å] und -winkel[in °] für das Sb(N₃)_{3,19}Cl_{2,81}-Anion.

d(Sb-Cl1)	2.328(2)	<i>d</i> (Sb-N1)	2.04(3)
<i>d</i> (Sb-Cl2)	2.397(2)	<i>d</i> (Sb-N4)	2.05(2)
d(Sb-Cl3)	2.387(2)	<i>d</i> (Sb-N7)	2.10(1)
d(Sb-Cl4)	2.31(2)	<i>d</i> (Sb-N10)	2.20(2)
<i>d</i> (N1-N2)	1.40(5)	<i>d</i> (N2-N3)	1.06(3)
<i>d</i> (N4-N5)	1.19(4)	<i>d</i> (N5-N6)	1.13(3)
<i>d</i> (N7-N8)	0.95(1)	<i>d</i> (N8-N9)	1.27(2)
<i>d</i> (N10-N11)	0.69(2)	<i>d</i> (N11-N12)	1.36(2)
<(Cl1-Sb-Cl2)	89.6(1)	<(Cl2-Sb-Cl3)	88.7(3)
<(Cl1-Sb-Cl3)	81.6(3)	<(Cl2-Sb-Cl4)	175.3(6)
<(N1-Sb-N4)	88(1)	<(N1-Sb-N7)	82(1)
<(N1-Sb-N10)	87(1)	<(N4-Sb-N7)	81.3(8)
<(Sb-N1-N2)	116(2)	<(Sb-N7-N8)	114(1)
<(Sb-N4-N5)	118(2)	<(Sb-N10-N11)	111(3)
<(N1-N2-N3)	172(3)	<(N4-N5-N6)	175(2)
<(N7-N8-N9)	168(2)	<(N10-N11-N12)	167(3)

[PPh₄][SbCl₄]⁴¹ und [NEt₄][SbCl₆]⁴⁸ wurden nach Literaturvorschrift durch Reaktion von PPh₄Cl mit SbCl₃ bzw. NEt₄Cl mit SbCl₅ dargestellt und mit Azid-austauschenden Reagentien umgesetzt. Die Identität der Edukte wurden sowohl durch Ramanspektroskopie als auch durch Röntgenstrukturanalyse gesichert.

Die Chloroantimonate(III) besitzen strukturelles Interesse, weil sie in Abhängigkeit von der Natur der Kationen unterschiedliche Zusammensetzungen der Anionen besitzen. Die Variationsbreite ist bei den Tetrachloroantimonaten(III) besonders groß, da in diesem Fall wegen der unvollständigen Koordination des Antimons im Festkörper Assoziationen der Anionen erfolgen können. Dies kommt in den Strukturen der bisher untersuchten Tetrachloroantimonate(III) zum Ausdruck. So zeigt sich, dass mit einem Tetraethylammonium-Kation⁴⁹ die Anionen im Kristallverband zu diskreten Sb₄Cl₁₆⁴⁻-Einheiten, die als tetramere SbCl₄-Gruppierungen angesehen werden können, assoziiert sind. In diesem komplexen Anion ist das Antimonatom sechsfach koordiniert und entspricht einem Dimeren des in dieser Arbeit beschriebenen Sb₂Cl₈^{2–}-Anions. Die verbrückenden Chloratome koordinieren dabei an drei Antimonatome. Das freie Elektronenpaar scheint im Gegensatz zu dem hier beschriebenen Anion stereochemisch nicht aktiv zu sein. Werden Tetra-npropylammonium-,⁴⁹ Tetra-*n*-butylammonium-⁴⁹ bzw. Tetraphenyl-phosphonium-Kationen^{41c} eingesetzt, so liegt das SbCl₄⁻-Anion als konkretes Dimer vor (Sb₂Cl₈²⁻-Anion).

Müller *et al.* beschrieben kürzlich die Struktur des dimeren SbCl₄⁻-Anions als dessen Tetraphenylphosphonium-Salz.^{41c} Diese Verbindung liegt allerdings als Acetonitrilsolvat vor. In der vorliegenden Arbeit wird die neuerliche Strukturbestimmung von [PPh₄][SbCl₄] als dessen Chloroformsolvat beschrieben.

[PPh₄][SbCl₄] · CHCl₃ kristallisiert in der triklinen Raumgruppe Raumgruppe $P\overline{1}$ mit zwei Molekülen in der Einheitszelle und den Gitterparametern a = 11.3932(9), b = 11.502(1), c = 23.445(2), $\alpha = 85.229(9)$, $\beta = 87.607(9)$ und $\gamma = 70.98(1)$. Die Molekülstruktur des Sb₂Cl₈²⁻-Anions ist in Abbildung 15 wiedergegeben. Abb. 15 Molekülstruktur des Sb₂Cl₈^{2−}-Anions in der Verbindung [PPh₄][SbCl₄] · CHCl₃
 (Die Gegenionen und Lösemittelmoleküle wurden übersichtlichkeitshalber nicht gezeichnet). Die thermischen Ellipsoide repräsentieren eine Wahrscheinlichkeit von 25%.

Die Röntgenstrukturanalyse offenbart eine ionische Verbindung mit diskreten PPh_4^+ -Kationen, $Sb_2Cl_8^{2-}$ -Anionen und CHCl_3-Lösemittelmolekülen, die keine signifikanten Wechselwirkungen untereinander aufweisen. Das im Kristallgitter als diskretes zentrosymmetrisches Dimer vorliegende Tetrachloroantimonat(III)-Anion setzt sich aus zwei kantenverknüpften quadratisch-pyramidalen Einheiten zusammen. Die Antimonatome sind Ψ -oktaedrisch von fünf Chloratomen und einem stereochemisch aktiven freiem Elektronenpaar umgeben. Dabei befinden sich die beiden stereochemisch aktiven freien Elektronenpaare und die beiden terminalen axialen Chloratome (Cl31 und Cl22) *trans*-ständig zueinander.

Die terminalen äquatorialen Sb-Cl-Bindungen (durchschnittlich 2.458 Å) sind geringfügig länger als in freiem SbCl₃ (2.36 Å),⁵⁰ während die terminalen axialen Sb-Cl-Bindungen mit durchschnittlich 2.373 Å den Erwartungen entsprechen. Die terminalen äquatorialen Sb-Cl-Bindungen werden vermutlich aufgrund der Wechselwirkungen der *s-lone-pairs* der verbrückenden Chloratome mit den antibindenden σ^* -Orbitalen der terminalen äquatorialen Sb-Cl-Bindungen geschwächt, und somit verlängert. Die schwach verbrückenden

Sb1-Cl12- bzw. Sb1-Cl41-Bindungen sind deutlich kürzer als die Summe der van-der-Waals-Radien von Sb und Cl (4.00 Å).⁵⁰ Die Cl-Sb-Cl-Bindungswinkel liegen in einem Bereich von ca. 90°, so dass die Antimonatome annähernd ideal quadratisch-pyramidal von fünf Chloratomen umgeben sind. Tabelle 8 gibt einen Überblick über ausgewählte Bindungslängen und -winkel.

<i>d</i> (Sb1-Cl11)	2.499(2)	<i>d</i> (Sb2-Cl42)	2.463(2)
d(Sb1-Cl21)	2.440(2)	d(Sb2-Cl32)	2.430(2)
d(Sb1-Cl31)	2.388(2)	<i>d</i> (Sb2-Cl22)	2.358(2)
<i>d</i> (Sb1-Cl12)	2.967(2)	<i>d</i> (Sb2-Cl41)	2.991(2)
d(Sb1-Cl41)	2.801(2)	d(Sb2-Cl12)	2.828(2)
<(Cl31-Sb1-Cl11)	91.16(7)	<(Cl22-Sb2-Cl42)	89.57(7)
<(Cl31-Sb1-Cl21)	92.56(7)	<(Cl22-Sb2-Cl32)	91.41(6)
<(Cl21-Sb1-Cl11)	90.69(6)	<(Cl42-Sb2-Cl32)	92.26(6)
<(Cl31-Sb1-Cl41)	81.99(7)	<(Cl22-Sb2-Cl12)	83.38(6)
<(Cl41-Sb1-Cl12)	89.10(6)	<(Cl41-Sb2-Cl12)	88.12(6)
<(Sb1-Cl12-Sb2)	91.36(7)	<(Sb1-Cl41-Sb2)	91.39(7)

Tabelle 8Ausgewählte experimentell bestimmte Bindungslängen [in Å] und -winkel[in °] für das $Sb_2Cl_8^{2-}$ -Anion.

[NEt₄][SbCl₆] kristallisiert in der monoklinen Raumgruppe $P2_1/n$ mit zwei Molekülen in der Elementarzelle und den Gitterkonstanten a = 7.1689(8), b = 10.199(1), c = 11.716(1), und $\gamma = 102.69(1)$. Die Molekülstruktur von [NEt₄][SbCl₆] ist in Abbildung 16 wiedergegeben.

Abb. 16Molekülstrukturvon[NEt4][SbCl6](Wasserstoffatomewurdenübersichtlichkeitshalbernichtgezeichnet).DiethermischenEllipsoiderepräsentieren eineWahrscheinlichkeit von 25%.

Die Kristallstruktur von [NEt₄][SbCl₆] besteht aus isolierten oktaedrischen SbCl₆⁻-Anionen und isolierten NEt₄⁺-Kationen. Das Stickstoffzentrum in den NEt₄⁺-Kationen ist tetraedrisch von vier Kohlenstoffatomen umgeben. Die C-N-C-Bindungswinkel variieren zwischen 102.9(6)° und 115.7(7)° und sind damit dem idealen Tetraederwinkel von 109.47° relativ nahe. Die Ethylgruppen besitzen eine *trans*-Konformation, wobei die C-C-N-C-Diederwinkel nur geringfügig von 180° abweichen. Die Bindungswinkel im Anion liegen in einem Bereich zwischen 89.34(5)° und 90.66(5)° und entsprechen damit den Erwartungswerten. Die Sb-Cl-Bindungslängen liegen zwischen 2.352(1) und 2.367(2) Å, was mit den in dieser Arbeit beschriebenen Sb-Cl-Bindungslängen für SbCl₆⁻-Anionen und dem in dieser Arbeit beschrieben SbCl₆⁻-Anion in der Verbindung [NH₄][SbCl₆] übereinstimmt.^{48,51} Tabelle 9 gibt einen Überblick über ausgewählte Bindungslängen und -winkel.

d(Sb-Cl1)	2.352(1)	d(Sb-Cl1A)	2.352(1)
<i>d</i> (Sb-Cl2)	2.366(1)	d(Sb-Cl2A)	2.366(1)
<i>d</i> (Sb-Cl3)	2.367(2)	d(Sb-Cl3A)	2.367(2)
<i>d</i> (N-C1)	1.56(1)	<i>d</i> (N-C3)	1.54(1)
<i>d</i> (N-C2)	1.39(1)	<i>d</i> (N-C4)	1.57(9)
<i>d</i> (C1-C11)	1.52(2)	<i>d</i> (C2-C22)	1.46(2)
<i>d</i> (C3-C33)	1.50(2)	<i>d</i> (C4-C44)	1.54(3)
<(Cl1-Sb-Cl2)	89.34(5)	<(Cl2-Sb-Cl3)	89.51(6)
<(Cl1-Sb-Cl3)	90.59(6)	<(Cl1-Sb-Cl1A)	180.00
<(C1-N-C2)	114.6(6)	<(C1-N-C3)	102.9(6)
<(C1-N-C4)	106.3(6)	<(C2-N-C3)	115.7(7)

Tabelle 9Ausgewählte experimentell bestimmte Bindungslängen [in Å] und -winkel[in °] für [NEt₄][SbCl₆].

3.1.8 Zusammenfassung

Die Strukturen und Normalschwingungen der binären Arsenazid- und Antimonazid-Verbindungen $M(N_3)_3$, $M(N_3)_4^+$, $M(N_3)_4^-$, $M(N_3)_5$ und $M(N_3)_6^-$ (M = As, Sb) wurden berechnet und mit experimentellen Werten verglichen. Die Verbindungen wurden als reine Substanzen bzw. als Salze synthetisiert und isoliert. Die Isolation der reinen Pentaazide gelang aufgrund der extremen Explosivität nicht.

Es gelang erstmals, eine Arsenazid-Verbindung durch Röntgenstrukturanalyse zu charakterisieren. So konnte die molekulare Struktur des $As(N_3)_6^-$ -Anions als dessen [PPh₄][As(N₃)₆]- und [Py-H][As(N₃)₆]-Salz geklärt werden. Die Bindungsparameter zeigen eine gute Übereinstimmung mit den berechneten Strukturen. Die Zuordnung der Raman- und IR-Spektren erfolgte mit Hilfe der berechneten Schwingungsdaten.

Die explosiven Eigenschaften der dargestellten Verbindungen unterscheiden sich in Abhängigkeit von den Ladungen der Ionen bzw. Neutralverbindungen. Die reinen Pentaazide konnten nicht isoliert werden, da sie spontan explodieren. Die Triazide konnten zwar isoliert werden, sind aber hochexplosiv. Die kationischen Spezies zeigen im Vergleich zu den anionischen Verbindungen eine höhere Explosionsneigung. Dies kann teilweise durch stabilisierende Gegenionen erklärt werden, da die anionischen Verbindungen durch größere Kationen stabilisiert wurden als die kationischen Spezies und somit die explosiven Anionen räumlich voneinander getrennt sind. Ferner kann die erhöhte Explosivität der kationischen Verbindungen durch die berechneten N-N-Abstände innerhalb der Azidgruppen erklärt werden.

In den ⁷⁵As- bzw. ¹²¹Sb-NMR-Spektren konnten nur im Falle der Hexaazidoanionen Resonanzen aufgelöst werden, da diese Kerne nur in hochsymmetrischer Umgebung aufgrund ihres hohen Quadrupolmoments detektiert werden können.

3.2.1 Einführung – Bisheriger Kenntnisstand

Gemischte Halogenverbindungen der Elemente Arsen und Antimon sind nur in sehr begrenzter Anzahl bekannt. So existiert in der Oxidationsstufe (V) eine Verbindung der formalen Summenformel AsCl₂F₃, die im Festkörper als Salz der Zusammensetzung [AsCl₄][AsF₆] vorliegt.⁵² Dieses Salz hat als Synthon für die Darstellung von Chlorfluorarsoranen große Bedeutung erlangt. Durch Vakuumthermolyse von [AsCl₄][AsF₆] konnten Minkwitz *et al.* das gemischte Chlorfluorarsoran AsCl₄F darstellen,⁵³ wobei AsF₅ als Nebenprodukt anfällt. Durch intermolekularen Ligandenaustausch entstehen in der Gasphase AsCl₂F₃⁵⁴ und AsClF₄,⁵⁵ welche bei 173 K in präparativen Mengen isoliert werden konnten. Die bei der Zersetzung intermediär vermutete Verbindung AsCl₃F₂ konnte nicht isoliert werden. Bei diesen Verbindungen handelt es sich um äußerst instabile Moleküle, die leicht unter Halogenaustausch dismutieren.⁵⁶ AsCl₂F₃ ist die bisher einzige strukturell charakterisierte gemischte Halogenverbindung von Arsen, an der an dem Arsenatom zwei unterschiedliche Halgenatome gebunden sind. Die Gasphasenstruktur von AsCl₂F₃ wurde mittels Elektronenbeugung experimentell bestimmt.⁵⁶

Von gemischten Halogenverbindungen des Arsens in der Oxidationsstufe (III) sind lediglich die Verbindungen AsCl₂Br und AsClBr₂ beschrieben worden. Müller *et al.* berichteten über die schwingungsspektroskopische Untersuchung dieser gemischten Chlor-bromarsane.^{57,58} Diese Verbindungen konnten nicht als reine Substanzen isoliert werden. Gemischte Halogenverbindungen des Arsens und Antimons neigen im allgemeinen dazu, in die entsprechenden Trihalogenide unter Halogenaustausch zu dismutieren.^{57,59}

Gemischte Halogen/Azid-Verbindungen in der Oxidationsstufe (III) sind nur für Phosphor beschrieben worden. Dillon *et al.* konnten gemischte Verbindungen des Typs PX_2N_3 und $PX(N_3)_2$ (X = Cl, Br) darstellen und mittels ³¹P-NMR-Spektroskopie charakterisieren.⁶⁰ Eine entsprechende Flour-Verbindungen (PF₂N₃) konnte ebenso durch Reaktion von PF₂X (X = I, Br) mit MN₃ (M = Na, Li)⁶¹ bzw. PF₂Cl mit NaN₃⁶² unabhängig voneinander in zwei verschiedenen Arbeitsgruppen nahezu zeitgleich synthetisiert und durch NMR- und IR-Spektroskopie charakterisiert werden. Von den entsprechenden Iod-Verbindungen ist lediglich die Monoazid-Verbindung PI_2N_3 bekannt. Weitere Substitution des Iods gegen Azid konnte auch durch Reaktion mit großem Überschuss an LiN₃ nicht beobachtet werden.⁶³

Die bisher einzige gemischte Halogen/Azid-Verbindung von Antimon ist das in der Oxidationsstufe (V) vorliegende SbCl₄N₃. In früheren Arbeiten wurden die Reaktionen von SbCl₅ mit NaN₃, (CH₃)₃SiN₃ und HN₃ beschrieben,¹⁵ wobei SbCl₄N₃ isoliert werden konnte. Durch Röntgenstrukturanalyse konnte die Vermutung bestätigt werden, dass SbCl₄N₃ im Festkörper als azidverbrücktes Dimer vorliegt.¹⁶

Ein Ziel dieser Arbeit war es, gemischte Halogen/Azid-Verbindungen der Elemente Arsen und Antimon in der Oxidationsstufe (III) darzustellen und zu charakterisieren. Im folgenden wird über die Reaktionen von MX₃ (M = As, Sb; X = F, Cl, Br, I) mit azidübertragenden Reagentien, die IR-, Raman- und NMR-spektroskopische Untersuchungen und die Röntgenstrukturanalysen von von SbCl(N₃)₂, AsCl(N₃)₂ · Pyridin und SbCl₂N₃ · 2 Pyridin berichtet.^{25,64}

3.2.2 Darstellung, Eigenschaften und NMR-spektroskopische Untersuchungen der gemischten Chlorid/Azid-Verbindungen von Arsen und Antimon

Die Synthese und Charakterisierung gemischter Halogen/Azid-Verbindungen von Arsen und Antimon in der Oxidationsstufe (III) erwies sich als äußerst schwierig. Einerseits neigen die darzustellenden Verbindungen leicht zur Dismutierung,^{57,59} andererseits sind keine geeigneten Charakterisierungsmöglichkeiten vorhanden. Weder ⁷⁵As- noch ¹²¹Sb lassen sich NMR-spektroskopisch in der Oxidationsstufe (III) detektieren, da aufgrund des hohen Quadrupolmoments diese Kerne nur in sehr symmetrischer Umgebung detektiert werden können.²⁹

Am geeignetsten erschienen deshalb Umsetzungen von MF₃ (M = As, Sb) mit stöchiometrischen Mengen an AgN₃, NaN₃ oder TMS-N₃. Diese Reaktionen wurden mit Hilfe der ¹⁴N- und ¹⁹F-NMR-Spektroskopie verfolgt. Es zeigte sich, dass in den aufgenommen ¹⁴N-NMR-Spektren die erwarteten Resonanzen für kovalent gebundene Azide vorhanden sind. In den ¹⁹F-NMR-Spektren sind nur Signale vorhanden, die von AsF₃ bzw. SbF₃ stammen. Daher muß davon ausgegangen werden, dass intermediär gebildete gemischte Fluor/Azid-Verbindungen in die jeweiligen Trifluoride und Triazide dismutieren. Setzt man MX_3 (M = As, Sb; X = Br, I) mit entsprechenden azidübertragenden Reagentien um, so wurden in den Ramanspektren nur die entsprechenden Trihalogenide und Triazide gefunden.

Daher wurden Arsen- bzw. Antimontrichlorid mit TMS-N₃ bzw. NaN₃ umgesetzt, da aufgrund der relativ großen Ähnlichkeit von Chlorid und Azid die Neigung zur Dismutierung am geringsten sein sollte. Sowohl AsCl₃ als auch As(N₃)₃ sind flüssig, so dass gemischte Arsenchlorid/azid-Verbindungen ebenfalls flüssig sein sollten. Die Existenz gemischter Arsenchlorid/azid-Verbindungen bzw. Antimonchlorid/azid-Verbindungen kann jedoch nur durch Röntgenstrukturanalyse sicher bewiesen werden.

Im Falle von SbCl $(N_3)_2$, das durch Reaktion von SbCl₃ und NaN₃ gemäß Gleichung 8 in CH₂Cl₂ dargestellt wurde, gelang es, eine donorfreie Verbindung zu isolieren und durch Röntgenstrukturanaylse zu charakterisieren.

$$SbCl_3 + 2 NaN_3 \xrightarrow{CH_2Cl_2} SbCl(N_3)_2 + 2 NaCl (8)$$

 $SbCl_2N_3$ konnte in Gegenwart von Pyridin als Lewis-Base kristallisiert werden, wobei das Lewis-Säure-Base-Addukt $SbCl_2N_3 \cdot 2$ Pyridin entstand (Gleichung 9).

$$SbCl_3 + TMS-N_3 + 2Py \xrightarrow{CH_2Cl_2} SbCl_2N_3 \cdot 2Py + TMS-Cl$$
 (9)

Einer gemischte Chlorid/Azid-Verbindung von Arsen konnte ebenfalls in Gegenwart von Pyridin als Lewis-Base isoliert werden. Allerdings konnte nur die diazidsubstituierte Verbindung $AsCl(N_3)_2$ · Pyridin einwandfrei charakterisiert werden. Hier wurde ein Äquivalent $AsCl_3$ mit zwei Äquivalenten TMS-N₃ und nach kurzer Reaktionszeit mit zwei Äquivalenten Pyridin zur Reaktion gebracht. Der erwünschte Chlorid/Azid-Austausch erfolgte, aber nur ein Pyridin-Molekül wurde an das Arsenzentrum koordiniert (Gleichung 10). Die Dismutierung der gemischten Arsen- bzw. Antimon-Chlorid/Azid-Spezies wird vermutlich durch Koordination einer Lewis-Base an das Lewis-saure Zentrum verhindert.

AsCl₃ + 2 TMS-N₃ + Py
$$\xrightarrow{CH_2Cl_2}$$
 AsCl(N₃)₂ · Py + 2 TMS-Cl (10)

Die Verbindungen SbCl(N₃)₂, AsCl(N₃)₂ · Pyridin und SbCl₂N₃ · 2 Pyridin wurden durch ¹H-, ¹³C- und ¹⁴N-NMR-Spektroskopie charakterisiert. Das ¹⁴N-NMR-Spektrum von SbCl(N₃)₂ zeigt die für kovalent gebundene Azide erwarteten drei Resonanzen bei einer chemischen Verschiebung von $\delta = -142$ (N_β), -175 (N_γ) und -274 (N_α) ppm. Die ¹⁴N-NMR-Spektren der Verbindungen AsCl(N₃)₂ · Pyridin ($\delta = -139$ (N_β), -181 (N_γ) und -269 (N_α) ppm) und SbCl₂N₃ · 2 Pyridin ($\delta = -143$ (N_β), -172 (N_γ) und -275 (N_α) ppm) zeigen die analogen Resonanzen. Zusätzlich zeigen die beiden Spektren Resonanzen bei $\delta = -164$ ppm (AsCl(N₃)₂ · Pyridin) und $\delta = -157$ ppm (SbCl₂N₃ · 2 Pyridin), die vom Stickstoffatom der koordinierenden Pyridinmoleküle stammen. Sie sind im Vergleich zu freiem Pyridin deutlich zu hohem Feld verschoben (Pyridin -64 ppm).⁶⁵ Daraus läßt sich schließen, dass die Addukte AsCl(N₃)₂ · Pyridin und SbCl₂N₃ · 2 Pyridin in Lösung stabil sind. Die ¹H- und ¹³C-NMR-Spektren zeigen die erwarteten Resonanzen für Pyridinmoleküle (*s*. Experimenteller Teil).

 $SbCl(N_3)_2$ explodiert beim thermischen Schocktest²⁷ aus. Die beiden Pyridin-Adduke verpuffen nur leicht. Daraus folgt, dass As $Cl(N_3)_2$ · Pyridin und $SbCl_2N_3$ · 2 Pyridin durch Adduktbildung kinetisch stabilisiert werden können.

3.2.3 Ergebnisse und Diskussion der Schwingungsspektren

In Tabelle 10 sind die theoretisch berechneten (B3LYP) und experimentell beobachteten Raman- und IR-Normalschwingungen von SbCl(N₃)₂, AsCl(N₃)₂ · Pyridin und SbCl₂N₃ · 2 Pyridin aufgeführt. Die auf B3LYP-Niveau berechneten Schwingungen stimmen sehr gut mit den experimentell bestimmten Schwingungsdaten überein, so dass eine Zuordnung der experimentell bestimmten Normalschwingungen getroffen werden kann.

Die antisymmetrische Streckschwingung der Azidgruppen wird in den Raman- und IR-Spektren bei ca. 2100 cm⁻¹ beobachtet. Die unter Kapitel 3.1.3 beschriebene Unterscheidung in "*in/out of phase*"-Schwingungen kann auch für SbCl(N₃)₂ und AsCl(N₃)₂ · Pyridin getroffen werden. Die symmetrische Streckschwingung der Azidgruppen wird in einem Bereich zwischen 1210 cm⁻¹ und 1290 cm⁻¹ detektiert.

Die Azid-Deformationsschwingungen zeigen sowohl in den Raman- als auch in den IR-Spektren Banden zwischen 555 cm^{-1} und 672 cm^{-1} .

Die symmetrische Sb-Cl-Streckschwingung der Verbindung SbCl₂N₃ · 2 Pyridin zeigt im Ramanspektrum ein Signal bei 326 cm⁻¹ und die antisymmetrische Streckschwingung ein Signal bei 285 cm⁻¹. Beide Schwingungen sind damit im Vergleich zu den antisymmetrischen und symmetrischen Sb-Cl-Streckschwingung von SbCl₃ (v_{as} Sb-Cl 381 cm⁻¹ und v_s Sb-Cl 359 cm⁻¹)⁶⁶ deutlich zu niedrigeren Wellenzahlen verschoben. Die Sb-Cl-Streckschwingung von SbCl(N_3)₂ erscheint bei 347 cm⁻¹. Dieses Signal ist weniger zu niedrigeren Wellenzahlen verschoben. Es folgt, dass die Sb-Cl-Bindungslängen in der Reihenfolge SbCl₂N₃ · 2 Pyridin > SbCl(N₃)₂ > SbCl₃ abnehmen sollten, da eine Verlängerung der Sb-Cl-Bindung eine Verschiebung der Schwingungen zu niedrigeren Wellenzahlen bewirkt. Eine ähnliche Verschiebung As-Cl-Streckschwingung wurde im der Ramanspektrum von AsCl $(N_3)_2$ · Pyridin beobachtet. Die As-Cl-Streckschwingung zeigt eine Bande bei 287 cm⁻¹ und ist damit im Vergleich mit den As-Cl-Streckschwingungen von AsCl₃ um ca. 120 cm⁻¹ zu niedrigeren Wellenzahlen verschoben.⁶⁶ Somit sollte auch hier die As-Cl-Bindung im Vergleich zu den As-Cl-Bindungslängen in AsCl₃ länger sein. Diese Vermutungen wurden in beiden Fällen durch die Röntgenstrukturanalyse bestätigt.

Die kovalenten Donor-Acceptor-Eigenschaften von AsCl(N₃)₂ · Pyridin und SbCl₂N₃ · 2 Pyridin wird durch das Auftreten von Banden, die der As- und Sb-N_{Pyridin}-Streck- und Deformationsschwingungen zugeordnet werden können, gestützt. AsCl(N₃)₂ · Pyridin zeigt eine As-N_{Pyridin}-Streckschwingung bei 216 cm⁻¹, die Deformationsschwingung erscheint bei 139 cm⁻¹. SbCl₂N₃ · 2 Pyridin zeigt die gleiche Streckschwingung im Ramanspektrum bei 166 cm⁻¹. Die Deformationsschwingung zeigt eine Bande bei 108 cm⁻¹.

LT.	1
÷	
<u>1</u> Q	
<u>0</u>	
$\overline{\mathbf{O}}$	
Ξ	
5	
Ś	
Q	
c	
Ξ	
-	
\sim	
2	1
	,
	,
d Uisk	
d Uiski	
d Uiskus	
d Diskuss	
d Diskussic	
d Diskussioi	

Tabelle 10 Ausgewählte berechnete und experimentell beobachtete Schwingungsdaten [in cm⁻¹] und Zuordnung für SbCl(N₃)₂, $AsCl(N_3)_2 \cdot Pyridin \ und \ SbCl_2N_3 \cdot 2 \ Pyridin.$

SbCl(N ₃) ₂			$AsCl(N_3)_2$	Pyridin		$SbCl_2N_3 \cdot 2$	Pyridin		Zuordnung
Ber. ^a	Raman ^b	IR	Ber. ^a	Raman ^b	IR	Ber. ^a	Raman ^b	IR	
2267 (500)	2129 (3)		2267 (500)	2118 (2.5)	2113 vs	2254 (646)	2091 (0.5)	2136 m	$v_{as}N_3$ -"in phase"
2256 (785)		2113 vs	2244 (506)	2085 (1.5)				2079 vs	$v_{as}N_3$ -"out of phase"
1337 (174)	1286 (2)		1327 (146)	1268 (1)		1343 (153)	1210 (2)	1251 s	v _s N ₃ -"in phase"
1315 (223)		1260 s	1312 (174)	1258 (0.5)	1257 vs				$v_s N_3$ out of phase'**
650 (13)	672 (3.5)		662 (20)	670 (1.5)	670 sh	658 (10)	650 (1.5)	648 w	δN ₃ –"in phase"
640 (11)		628 s	651 (17)	647 (1)	637 s				δN ₃ -"out of phase",°
586 (12)			585 (11)			595 (11)		594 s	δN ₃ –"in phase/90°"
585 (9)	555 (1.5)	577 s	581 (7)		567 m				δN_3 -"out of phase/90°"°
444 (36)		435 m	444 (25)	452 (10)		404 (28)	386 (2)		$v_s M N_{azid}^{d}$
417 (64)	421 (10)		407 (89)	433 (1)	431 m				$\nu_{as}MN_{azid}{}^d$
232 (14)	237 (5)		275 (15)	265 (2.5)		238 (13)	241 (4)		δMN _{azid}
334 (67)	347 (6.5)		321 (173)	287 (2)		306 (109)	326 (10)		v _s MCI
						293 (135)	285 (9)		v _{as} MC1
			232 (9)	216 (2)		157 (9)	166 (1.5)		vMN _{Pyridin}
			135 (1)	139 (1.5)		108 (1)	108 (3)		$\delta MN_{Pyridin}$
^a In Klamme	rn: IR-Intensit	ät [in km mol	ļ						
^b In Klamme	rn: rel. Raman	ı-Intensität.							

^e Die Unterscheidung "*in/out of phase*" enfällt für SbCl₂N₃ · 2Py. ^d Die Unterscheidung "*symmetrisch/antisymmetrisch*" enfällt für SbCl₂N₃ · 2Py.

3.2.4 Kristallstrukturen von SbCl(N₃)₂, AsCl(N₃)₂ · Pyridin und SbCl₂N₃ · 2 Pyridin

SbCl(N₃)₂ kristallisiert in der monoklinen Raumgruppe C_2/c mit acht Molekülen in der Elementarzelle und den Gitterparametern a = 11.694(4), b = 7.751(4), c = 12.241(5) und $\beta = 100.45(1)$. Die molekulare Einheit mit Elementbezeichnugen ist in Abbildung 17 abgebildet. Ausgewählte experimentell bestimmte und auf B3LYP-Niveau berechnete Strukturparameter sind in Tabelle 11 wiedergegeben.

Abb. 17Molekülstruktur von SbCl(N3)2. Die thermischen Ellipsoide repräsentieren eine
Wahrscheinlichkeit von 25%.

SbCl(N₃)₂ bildet isolierte Moleküle, in denen das Antimonatom unter Einbeziehung des freien Elekronenpaares Ψ -tetraedrisch von zwei Stickstoff- und einem Chloratom umgeben ist. Der N1-Sb-N4-Bindungswinkel beträgt 90.5(3)°, der N1-Sb-Cl1-winkel 91.0(2)° und der N4-Sb-Cl1-winkel 88.7(2)°, was auf ein stereochemisch aktives freies Elektronenpaar hinweist. Die durchschnittlichen Sb-N-Bindungslängen (2.15 Å) stimmen mit Literaturwerten überein.^{16,17,18,19,20}

	Röntgenstrukturanalyse	Berechnung (B3LYP)
<i>d</i> (Sb1-N1)	2.152(8)	2.077
<i>d</i> (Sb1-N4)	2.144(7)	2.053
<i>d</i> (N1-N2)	0.98(1)	1.238
<i>d</i> (N2-N3)	1.28(1)	1.138
<i>d</i> (N4-N5)	1.22(1)	1.233
<i>d</i> (N5-N6)	1.13(1)	1.142
<i>d</i> (Sb1-Cl1)	2.430(2)	2.399
<(N1-Sb1-N4)	90.5(3)	91.6
<(N1-Sb1-Cl1)	91.0(2)	92.3
<(N4-Sb1-Cl1)	88.7(2)	90.1
<(Sb1-N1-N2)	120.1(7)	120.4
<(Sb1-N4-N5)	119.9(5)	121.7
<(N1-N2-N3)	177(1)	175.0
<(N4-N5-N6)	178.8(9)	175.0

Tabelle 11Ausgewählte berechnete und experimentell bestimmte Bindungslängen [in Å]und -winkel [in °] für SbCl(N3)2.

Die Azidgruppen zeigen innerhalb des SbCl(N₃)₂-Moleküls unterschiedliche N-N-Bindungslängen. Eine Azidgruppe zeigt die erwarteten N-N-Bindungslängen (N4-N5 1.22(1) Å, N5-N6 1.13(1) Å), die N-N-Abstände der anderen Azidgruppe werden unrealistisch wiedergegeben (vgl. Tabelle 11). Die auf B3LYP-Niveau berechneten N-N-Abstände zeigen das erwartete Verhalten. Dieses Phänomen wurde auch bei den Kristallstrukturanalysen der Platin-Azid-Komplexe [Pt(N₃)₄]^{2–}, [Pt(N₃)₆]^{2–32a}und [Me₃PtN₃]₄⁶⁷ beobachtet (genauere Erklärung *s*. Kap. 3.7).

Sowohl die Bindungswinkel zwischen dem Antimonatom und den Azideinheiten (Sb-N-N, ca. 120°), als auch die Bindungswinkel innerhalb den Azidgruppen (N-N-N, ca. 177°) entsprechen den Erwartungen.

Die experimentell bestimmten Strukturparameter stimmen bis auf die N1-N2- und N3-N4-Bindungslängen exzellent mit den auf B3LYP-Niveau berechneten Bindungsparametern überein.

Die N1-Atome der Azideinheiten verbrücken zwei Antimonatome zu zentrosymmetrischen Dimeren, die über weitere Verbrückung über die N4-Atome endlose "Zick-Zack"-Ketten ausbilden (Abbildung 18). Diese Ketten formieren sich aufgrund Wechselwirkungen zwischen konkreten SbCl(N_3)₂-Molekülen, wobei sich diese Wechselwirkungen in intermolekularen Sb···N-Abständen von 2.64 Å und 2.83 Å wiederspiegeln. Bezieht man das freie Elektronenpaar und die Sb···N-Wechselwirkungen in die Betrachtungen mitein, so kann die Koordination am Antimonatom als verzerrt oktaedrisch bezeichnet werden (Cl1-Sb1-N4A 153.8°, N1-Sb1-N4A 80.5° und N4-Sb1-N4A 66.8°).

Abb. 18 Ausschnitt aus der Kette im Kristall von SbCl(N₃)₂. Die thermische Ellipsoide repräsentieren eine Wahrscheinlichkeit von 25%.

AsCl(N₃)₂ · Pyridin kristallisiert in der triklinen Raumgruppe $P\overline{1}$ mit zwei Molekülen in der Elementarzelle und den Gitterparametern a = 7.3826(8), b = 8.0314(9), c = 9.612(1), $\alpha = 108.497(2)$, $\beta = 103.881(2)$ und $\gamma = 101.632(2)$ (Abbildung 19). Die experimentell bestimmten und auf B3LYP-Niveau berechneten Bindungslängen und -winkel sind in Tabelle 12 aufgeführt.

Abb. 19 Molekülstruktur von AsCl(N₃)₂ · Pyridin (Wasserstoffatome wurden übersichtlichkeitshalber nicht gezeichet). Die thermischen Ellipsoide repräsentieren eine Wahrscheinlichkeit von 25%.

Das Arsenatom ist Ψ -trigonal bipyramidal von drei Stickstoffatomen und einem Chloratom umgeben. In äquatorialer Position befinden sich die beiden Azidgruppen (N2-N3-N3 und N4-N5-N6), die beiden axialen Positionen werden von einem koordinierenden Pyridinmolekül und von einem Chloratom besetzt. Das freie Elektronenpaar des Arsenatoms befindet sich in Übereinstimmung mit den Vorhersagen des VSEPR-Modells⁴³ in der dritten äquatorialen Position, da es im Vergleich zu dem Pyridinmolekül und dem Chloratom mehr Raum benötigt. Die experimentell bestimmten und berechneten (B3LYP) Bindungswinkel belegen diese Ψ -trigonal bipyramidale Anordnung der Liganden (ca. 90°, siehe Tabelle 12).

	Röntgenstrukturanalyse	Berechnung (B3LYP)
<i>d</i> (As-N1)	2.158(3)	2.459
d(As-Cl)	2.4848(9)	2.296
d(As-N2)	1.897(2)	1.914
<i>d</i> (As-N5)	1.916(3)	1.914
<i>d</i> (N2-N3)	1.210(4)	1.235
<i>d</i> (N3-N4)	1.138(4)	1.140
<i>d</i> (N5-N6)	1.185(4)	1.235
<i>d</i> (N6-N7)	1.149(4)	1.140
<(N1-As-N2)	84.1(1)	79.9
<(N1-As-N5)	85.9(1)	79.9
<(Cl-As-N2)	91.35(8)	97.2
<(Cl-As-N5)	91.56(9)	97.2
<(N2-As-N5)	94.9(1)	99.8
<(Cl-As-N1)	174.51(6)	175.4
<(As-N2-N3)	117.6(2)	119.7
<(As-N5-N6)	118.0(2)	119.7
<(N2-N3-N4)	175.7(3)	175.0
<(N5-N6-N7)	174.2(3)	175.0

Tabelle 12Ausgewählte berechnete und experimentell bestimmte Bindungslängen [in Å]und -winkel [in °] für AsCl(N₃)₂ · Pyridin.

Das Molekül weist im Kristall keine spezielle Symmetrie auf. Die auf B3LYP-Niveau durchgeführten quantenmechanischen Rechnungen sagen ideale C_s -Symmetrie für dieses Molekül vorher. Die Spiegelebene ist annähernd auch in der Kristallstruktur zu erkennen. Die räumliche Gestalt dieses Moleküls stimmt sehr gut mit der des Lewis-Säure-Base-Adduktes AsCl₃ · NMe₃ überein.⁶⁸

Die berechneten Strukturparameter der Azidgruppen stimmen sowohl mit den experimentell bestimmten As-N- und N-N-Bindungslängen als auch den As-N-N- und N-N-Bindungswinkeln sehr gut überein (vgl. Tabelle 12). Es fällt auf, dass das Molekül einen relativ langen As-Cl-Bindungsabstand von 2.4848(9) Å und eine kurze koordinative Bindung zum Pyridinmolekül (As-N1 2.158(3) Å) aufweist. Die starke Koordination der starken Lewis-Base Pyridin am Arsenzentrum führt zu einer Schwächung der As-Cl-Bindung und

somit im Vergleich zu einer As-Cl-Bindungslänge, die länger ist als in der kationischen Spezies $AsCl_4^+ (2.042(3) - 2.0545(9) \text{ Å})^{30,52}$ oder binärem $AsCl_3 (2.17(2) \text{ Å})^{69}$.

Die auf B3LYP-Niveau durchgeführten Berechnungen ergeben eine die koordinative Bindung zum Pyridinmolekül, die in der Gasphase schwächer ist. Dies führt zu einer berechneten As-N1-Bindungslänge von 2.459 Å. Aufgrund der schwächeren Wechselwirkung der Lewis-Base Pyridin mit der schwachen Lewis-Säure AsCl(N₃)₂ in der Gasphase ist die As-Cl-Bindung (2.296 Å) nicht verlängert wie im Kristall (As-Cl 2.4848(9) Å).

Strukturen solcher schwachgebundenen Systeme können sich beträchtlich zwischen Gasphase und Festkörper unterscheiden.^{70,71}

SbCl₂N₃ · 2 Pyridin kristallisiert in der orthorhombischen Raumgruppe *P*bca mit acht Molekülen in der Elementarzelle und den Gitterparametern a = 6.5566(5), b = 13.635(1) und c = 30.901(2) (Abbildung 20). Die experimentell bestimmten und auf B3LYP-Niveau berechneten Bindungslängen und -winkel sind in Tabelle 13 angegeben.

Die Kristallstrukturanalyse zeigt, dass in der Verbindung isolierte Moleküle ohne intermolekulare Kontakte vorliegen. Das Antimonatom ist Ψ -oktaedrisch bzw. quadratisch pyramidal von drei Stickstoffatomen und zwei Chloratomen und einem freien Elektronenpaar umgeben. Die koordinierenden Pyridinmoleküle und die Chloratome besetzen die Ecken einer fast planaren Ebene, das N1-Atom der Azidgruppe die Spitze der quadratischen Pyramide. Die experimentell bestimmten und berechneten Bindungswinkel belegen diese Ψ -oktaedrische Anordnung der Liganden (ca. 90°, siehe Tabelle 13). Abb. 20 Molekülstruktur von SbCl₂N₃ · 2 Pyridin (Wasserstoffatome wurden übersichtlichkeitshalber nicht gezeichet). Die thermischen Ellipsoide repräsentieren eine Wahrscheinlichkeit von 25%.

Die Strukturparameter der Azideinheit aus Experiment und Theorie stimmen sehr gut überein. Die Sb-N1-Bindungslänge beträgt 2.084(2) Å und stimmt damit ebenso wie die N-N-Bindungslängen innerhalb der Azidgruppen gut mit experimentell bestimmten Sb-N-, und N-N-Bindungslängen anderer Antimonazidverbindungen, überein.^{16,17,18,19,20}

Die Sb-Cl-Bindungslängen betragen durchschnittlich 2.5174 Å, und sind damit merklich länger als die durchschnittlichen Sb-Cl-Bindungslängen in SbCl₃ (2.36 Å)⁵⁰ und [NEt₄][SbCl₆] (2.362 Å, vgl. Kap. 3.1.7). Ähnliche Sb-Cl-Bindungslängen wurden nur in den verbrückten Sb₂Cl₈^{2–}-Anionen (Kap. 3.1.7)^{41,49} bzw. in dem Lewis-Säure-Base-Addukt SbCl₃ · NH₂Ph⁷² (2.52 Å) gefunden.

Die durchschnittlichen Sb-N-Bindungslängen zwischen dem Antimonatom und den Pyridinmolekülen betragen 2.429 Å, was auf eine relativ schwache Koordination der Pyridinmoleküle hinweist.

	Röntgenstrukturanalyse	Berechnung (B3LYP)
<i>d</i> (Sb-N1)	2.084(2)	2.101
d(Sb-Cl1)	2.4995(8)	2.451
<i>d</i> (Sb-Cl2)	2.5352(8)	2.461
<i>d</i> (Sb-N4)	2.466(2)	2.790
<i>d</i> (Sb-N5)	2.392(2)	2.687
<i>d</i> (N1-N2)	1.210(3)	1.230
<i>d</i> (N2-N3)	1.141(3)	1.143
<(N1-Sb-Cl1)	86.40(7)	93.1
<(N1-Sb-Cl2)	87.91(7)	95.1
<(Cl1-Sb-Cl2)	95.96(3)	95.0
<(N1-Sb-N4)	78.14(9)	77.6
<(N1-Sb-N5)	78.30(8)	75.2
<(N4-Sb-N5)	82.24(8)	95.4
<(N4-Sb-Cl1)	162.90(6)	170.2
<(N5-Sb-Cl2)	165.55(6)	170.2
<(Sb-N1-N2)	119.1(2)	120.1
<(N1-N2-N3)	175.9(3)	175.3

Tabelle 13Ausgewählte berechnete und experimentell bestimmte Bindungslängen [in Å]
und -winkel [in °] für $SbCl_2N_3 \cdot 2$ Pyridin.

3.2.5 NBO-Analysen der Kristallstrukturen von AsCl(N₃)₂ · Pyridin und SbCl₂N₃ · 2 Pyridin

Die molekularen Addukte zwischen Trihalogeniden bzw. -Tripseudohalogeniden von Arsen und Antimon mit Pyridin stellen typische Lewis-Säure-Base-Komplexe dar. Die Trihalogenide von Arsen und Antimon sind relativ schwache Lewis-Säuren. Trihalogenide von Phosphor wirken sogar Lewis-basisch.⁷³ Eines der Hauptmerkmale dieser Addukte ist der gesamte Ladungstransfer q_{ct} zwischen dem Donor-Molekül (Pyridin) und dem Acceptor-Molekül (AsCl(N₃)₂ und SbCl₂N₃). Um einer genaueren Einblick in diese Donor-Acceptor-Wechselwirkung zu erhalten, wurden NBO-Analysen (Natural Bond Orbital Analysis) mit den experimentell bestimmten Atomkoordinaten von AsCl(N₃)₂ · Pyridin und SbCl₂N₃ · 2 Pyridin berechnet. Die quantenchemischen Rechnungen wurden auf B3LYP/6-31G(d,p)-Niveau mit einem quasirelativistischem Pseudopotential für Arsen und Antimon (*s*. Experimenteller Teil) durchgeführt.

Die NBO-Analysen der Addukt-Komplexe AsCl $(N_3)_2$ · Pyridin und SbCl $_2N_3$ · 2 Pyridin ergeben leicht polarisierte Moleküle. Tabelle 14 zeigt die NPA-Partialladungen der einzelnen Atome in diesen beiden Addukten.

Tabelle 14	NPA-Partialladungen [in e] für AsCl(N ₃) ₂ · Pyridin und SbCl ₂ N ₃ · 2 Pyridin
	auf B3LYP-Niveau.

	AsCl(N ₃) ₂ · Pyridin	SbCl ₂ N ₃ · 2 Pyridin	
M (M = As, Sb)	1.35	1.46	
Cl ^a	-0.55	-0.56	
$N_{Py}^{\ b}$	-0.53	-0.53	
$N_{\alpha}^{\ c}$	-0.68	-0.75	
N_{β}^{c}	0.24	0.24	
Nγ ^c	-0.07	-0.09	
q _{ct}	0.20	0.27	

^a Durchschnittswert der zwei Chloratome in der Verbindung SbCl₂N₃ \cdot 2 Pyridin.

 $^{\rm b}$ Durchschnittswert der zwei Stickstoffatome der Pyridinringe in der Verbindung $SbCl_2N_3\cdot 2$ Pyridin.

^c Durchschnittswert der äquivalenten Azid-Stickstoffatome in der Verbindung AsCl $(N_3)_2$ · Pyridin.

Die Gesamtmenge der von den Pyridin-Basen zu den Lewis-Säuren (AsCl(N₃)₂ und SbCl₂N₃) transferierten Ladung q_{ct} in diesen Donor-Acceptor-Komplexen beträgt für

AsCl $(N_3)_2$ · Pyridin 0.20 Elektronen und für SbCl $_2N_3$ · 2 Pyridin 0.27 Elektronen. Dieses Ergebnis stimmt gut mit dem Konzept der +I- und –I-Effekte überein.

In SbCl₂N₃ · 2 Pyridin werden 0.13 Elektronen von einem Molekül Pyridin und 0.14 Elektronen von dem anderen Molekül Pyridin auf das Antimonzentrum übertragen. Dementsprechend ist die Donor-Acceptor-Wechselwirkung zwischen Antimon und Pyridin in SbCl₂N₃ · 2 Pyridin pro Pyridin-Molekül schwächer als zwischen Arsen und Pyridin in AsCl(N₃)₂ · Pyridin, was sich auch in den M-N_{Py}-Bindungslängen wiederspiegelt. Die As-N_{Py}-Bindung ist mit 2.158(3) Å extrem kurz und läßt auf eine starke Wechselwirkung schließen. Die Sb-N_{Py}-Bindungslängen mit durchschnittlich 2.429 Å deutlich länger und läßt auf eine schwächere Wechselwirkungen schließen.

Die auf B3LYP-Niveau durchgeführten NBO-Analysen zeigen ferner deutlich, dass die Ladungsverteilung der Stickstoffatome innerhalb der Azidgruppen polarisiert ist. Die N_{α}-Atome der Azidgruppe tragen eine durchschnittliche Ladung von -0.72 Elektronen, die N_{β}-Atome eine Ladung von +0.24 Elektronen und die terminalen N_{γ}-Atome haben eine Ladung von durchschnittlich 0.08 Elektronen in guter Übereinstimmung mit den in Kap. 3.1.3 (Schema 1 und 2) beschriebenen Lewis-Formel für kovalent gebundene Azide.

Zur graphischen Veranschaulichung sind in den Abbildungen 21 und 22 die NPA-Partialladungen beider Addukte gekennzeichnet.

Abb. 22 NPA-Partialladungen [in e] für Sb $Cl_2N_3 \cdot 2$ Pyridin auf B3LYP-Niveau.

3.2.6 Zusammenfassung

Gemischte Chlorid/Azid-Verbindungen von Arsen und Antimon in der Oxidationsstufe (III) konnten synthetisiert werden. SbCl $(N_3)_2$ wurde donorfrei dargestellt. AsCl $(N_3)_2$ und SbCl $_2N_3$ wurden als Pyridin-Addukte erhalten.

Die Verbindungen wurden durch Raman-, IR- und multinukleare NMR-Spektroskopie eindeutig charakterisiert. Die Strukturen und Normalschwingungen aller Chlorid/Azid-Verbindungen von Arsen und Antimon wurden auf B3LYP-Niveau berechnet, und mit experimentell bestimmten Schwingungsspektren verglichen. Die Übereinstimmung zwischen Experiment und Theorie ist außerordentlich gut. Die Schwingungsspektren von AsCl(N₃)₂ · Pyridin und SbCl₂N₃ · 2 Pyridin zeigen eindeutig Banden, die sowohl der Streckals auch der Deformationsschwingung der M-N_{Py}-Bindung (M = As, Sb) zugeordnet werden. Alle experimentell dargestellte Addukte wurden durch NMR-Spektroskopie charakterisiert. Die ¹⁴N-NMR-Spektren zeigen deutlich verschobene Resonanzen der Stickstoffatome der koordinierten Pyridinringe im Vergleich zu freiem Pyridin. Strukturen, die ein lokales Minimum (*NIMAG* = 0) aufweisen, konnten für alle Verbindungen berechnet werden. Die Übereinstimmung der berechneten Strukturparameter mit den durch Röntgenstrukturanalyse bestimmten Bindungslängen und -winkel ist außerordentlich gut. Die Zentralatome in SbCl(N₃)₂ sind Ψ -tetraedrisch, die von AsCl(N₃)₂ · Pyridin Ψ -trigonalbipyramidal, und die von SbCl₂N₃ · 2 Pyridin Ψ -oktaedrisch umgeben.

Auf der Grundlage der experimentell bestimmten Atomkoordinaten von AsCl(N₃)₂ · Pyridin und SbCl₂N₃ · 2 Pyridin wurden NBO-Analysen (B3LYP) berechnet, um einen Einblick in die Bindungssituation solcher schwach gebundenen Lewis-Säure-Base-Addukte zu erhalten. In AsCl $(N_3)_2$ · Pyridin werden 0.20 Elektronen vom Pyridin auf AsCl $(N_3)_2$ übertragen und in SbCl₂N₃ · 2 Pyridin 0.27 Elektronen von den beiden Pyridinmolekülen auf SbCl₂N₃. Die Wechselwirkung pro Molekül Pyridin ist damit im Vergleich zu AsCl(N₃)₂ · Pyridin Dieses Ergebnis spiegelt den experimentell schwächer. sich in bestimmten M-N_{Py}-Bindungslängen wieder.

3.3.1 Einführung – Bisheriger Kenntnisstand

3.3

Ein Interessenschwerpunkt unserer Arbeitsgruppe ist die Darstellung und Charakterisierung von Verbindungen von Hauptgruppenelementen in hohen Oxidationsstufen. Klapötke *et al.* berichteten vor kurzer Zeit über die Synthese und Charakterisierung von Lewis-Säure-Base-Addukten zwischen Stickstoffbasen und Arsen- und Antimon-pentafluorid.^{28,74,75,76,77} Die Molekülstrukturen der Addukte SbF₅ · (HCN)₃⁷⁶ und AsF₅ · (HCN)₃⁷⁷ wurden röntgenographisch ermittelt. AsF₅ und SbF₅, die sehr starke Lewis-Säuren sind, bilden sogar sehr schwache Acceptor-Donor-Komplexe mit Carbonylhalogeniden.⁷⁸ AsCl₅ ist instabil und zerfällt überhalb -50° C in AsCl₃ und Cl₂.³⁴ In der Literatur ist nur ein AsCl₅ · LB-Addukt (LB = Lewis-Base) beschrieben (AsCl₅ · OP(Ph)₃).⁷⁹ SbCl₅ kann durch eine Vielzahl von Stickstoff- oder Sauerstoff-Donoren stabilisiert werden.^{80,81,82,83} In dieser Arbeit sollen neuartige Pseudohalogen-Spezies der Elemente Arsen und Antimon in der Oxidationsstufe (V) gefunden werden, die Donor-Acceptor-Komplexe mit Lewis-Basen bilden können.

Ein Teil dieser Arbeit und ein Interessengebiet unserer Arbeitsgruppe befaßt sich mit der Synthese und Charakterisierung kovalenter Azide der Elemente Arsen und Antimon. Klapötke *et al.* konnten die binären Arsenazid- und Antimonazid-Verbindungen $As(N_3)_3$, $As(N_3)_4^+$, 13,14 und $Sb(N_3)_3^{21}$ darstellen und charakterisieren.

Die neuartigen Arsen(V)-azid- und Antimon(V)-azid-Verbindungen und ihr Verhalten als Lewis-Säure werden untersucht. Im folgenden wird die Synthese, Eigenschaften und die spektroskopische und theoretische Charakterisierung von $As(N_3)_5 \cdot LB$ und $Sb(N_3)_5 \cdot LB$, (LB = Pyridin, Chinolin, NH₃, N₂H₄ und NH₂CN) beschrieben.³⁵

3.3.2 Darstellung und Eigenschaften von As(N₃)₅ · LB und Sb(N₃)₅ · LB

Die Lewis-Säure-Base-Addukte wurden durch Reaktion der entsprechenden Pentafluoride der 15.-ten Hauptgruppe mit stöchiometrischen Mengen von Trimethylsilylazid und den jeweiligen Lewis-Basen synthetisiert (Gleichung 11).

 $MF_5 + 5 Me_3SiN_3 + LB \xrightarrow{CH_2Cl_2 \text{ oder } SO_2} M(N_3)_5 \cdot LB + 5 Me_3SiF$ (11)

 $(M = As, Sb; LB = Pyridin, Chinolin, NH_3, N_2H_4 und NH_2CN)$

Bei den Reaktionen mit NH₃ und N₂H₄ wurde Methylenchlorid als Lösemittel verwendet, da NH₃ und N₂H₄ mit SO₂ reagieren. Vor Zugabe der jeweiligen Lewis-Basen müssen alle Fluorid-Liganden durch Azid-Liganden ausgetauscht sein, da sonst aufgrund der kinetischen Trägheit von sechsfach koordinierten Arsen- und Antimon-Verbindungen kein Fluorid/Azid-Austauch beobachtet wurde. Alle Versuche nicht-stabilisiertes As(N₃)₅ und Sb(N₃)₅ zu isolieren, schlugen aufgrund der Explosivität der binären Verbindungen fehl (vgl. Kap. 3.1.2). In Lösung und in der Gegenwart von Trimethylsilylfluorid, das bei der Reaktion entsteht, können die *in situ* generierten Arsen- und Antimonpentaazide gehandhabt werden.

Die dargestellten Verbindungen sind bei Raumtemperatur stabil und können als Feststoff gehandhabt werden, explodieren jedoch heftig bei Reibung oder höheren Temperaturen. Daher wurde auf die Durchführung von Elementaranlysen und massenspektrometrische Untersuchungen verzichtet.

3.3.3 Ergebnisse und Diskussion der Schwingungsspektren

In Tabelle 15, 16 und 17 sind die berechneten (B3LYP) und beobachteten Raman- und IR-Normalschwingungen von $As(N_3)_5 \cdot LB$ und $Sb(N_3)_5 \cdot LB$, (LB = Pyridin, Chinolin, NH₃, N₂H₄ und NH₂CN) aufgeführt. Die auf B3LYP-Niveau berechneten Schwingungen stimmen sehr gut mit den experimentell bestimmten Schwingungsdaten überein. Die Normalschwingungen können somit zugeordnet werden. Die gute Übereinstimmung der beobachteten und berechneten Frequenzen lassen keinen Zweifel, dass es sich bei den dargestellten Komplexen um Stickstoff-koordinierte Donor-Acceptor-Addukte handelt. Für
die Chinolin-Addukte wurden aufgrund der Ähnlichkeit von Chinolin mit Pyridin keine theoretischen Berechnungen durchgeführt.

Die IR- und Raman-Spektren zeigen kovalent an Arsen und Antimon gebundene Azidgruppen. Die antisymmetrische Streckschwingung der Azidgruppe wird bei allen untersuchten Verbindungen bei ca. 2100 cm⁻¹ detektiert. Bei den hier beschriebenen Verbindungen kann, ähnlich wie für die in Kap. 3.1.3 untersuchten Azid-Komplexe, eine Unterteilung in *"in/out of phase"*-Schwingugsmodi vorgenommen werden. Der *"in phase"*-Schwingungsmodus erscheint nach den theoretischen Berechnungen (B3LYP) bei höheren Wellenzahlen.

Die gleiche Unterteilung in "*in/out of phase*"-Schwingungsmodi wird auch bei der symmetrischen Streckschwingung der Azidgruppe vorgenommen. Die Banden zwischen 1200 cm⁻¹ und 1300 cm⁻¹ werden diesem Modus zugeordnet. Nach Berechnungen sollte die Deformationsschwingung der Azid-Liganden vier Banden aufweisen. Zwei Banden dieser Schwingung können den "*in und out of phase*"-Schwingungen in einer Ebene (634 - 687 cm⁻¹) (IR-aktiv) und zwei den "*in und out of phase*"-Schwingungen in einer Ebene, die senkrecht auf der ersten Ebene steht, zugordnet werden (508 - 626 cm⁻¹) (Raman-aktiv). Die δN_3 –"*in phase*"-Schwingung erscheint im Vergleich zu den Banden der δN_3 –"*out of phase*"-Schwingung auch bei höheren Wellezahlen.

Die Arsen- und Antimon-Stickstoff Streckschwingung wird in eine symmetrische und in eine antisymmetrische Schwingung unterteilt (s. Tabelle 15, 16 und 17). Die Deformationsschwingungen der As-N- und Sb-N-Bindungen werden den Banden bei 229 - 283 cm⁻¹ zugordnet.

Die kovalenten Donor-Acceptor-Eigenschaften der hier beschriebenen Verbindungen wird durch das Auftreten von Banden der Asbzw. Sb-NLewis-Base-Streckund Deformationsschwingungen gestützt. Die As- und Sb-NLewis-Base-Streckschwingung der Pyridin- und Chinolin-Addukte zeigen Banden bei 173 cm^{-1} bis 216 cm^{-1} . Die Deformationsschwingungen dieser Bindungen ergeben Banden zwischen 111 cm⁻¹ und 139 cm⁻¹. Die gleichen Streckschwingungen der NH₂CN-Addukte zeigen starke Banden bei 429 cm⁻¹ (IR) und 430 cm⁻¹ (Raman) für As(N₃)₅ · NCNH₂ und bei 419 cm⁻¹ (Raman) für die Sb(N₃)₅-Verbindung. Die Deformationsschwingung dieser Bindung zeigt in beiden Fällen Banden bei ca. 130 cm⁻¹ in den Raman-Spektren. Die vCN-Streckschwingung ist charakteristisch für die hier beschriebenen Donor-Acceptor-Wechselwirkungen. Banden dieser Schwingungsart sind bei 2327 cm⁻¹ (As(N₃)₅ · NCNH₂) und 2350 cm⁻¹ $(Sb(N_3)_5 \cdot NCNH_2)$ in den IR-Spektren ersichtlich. Sie sind damit deutlich um 118 cm⁻¹ bis 141 cm⁻¹ gegen unkoordinierten NH₂CN (2209 cm⁻¹) zu höheren Wellenzahlen verschoben. Dieses Ergebnis stimmt gut mit der Theorie überein, die besagt, dass Cyanide bessere σ -Donoren als π -Acceptoren sind und dass vCN-Banden von komplexierten Cyaniden gegenüber freien Cyaniden generell zu höheren Wellenzahlen verschoben sind.^{66,83} Banden für die Streckschwingungen der As- und Bindung, der NH₃-Addukte konnten nicht gefunden werden. Nur As(N₃)₅ · NH₃ zeigt eine Bande bei 135 cm⁻¹, die der As-N_{Lewis-Base}-Deformationsschwingung zugeordnet wird. Den Berechnungen (B3LYP) zufolge hat die Streckschwingung der As- und Sb-N_{Lewis-Base}-Bindung der Hydrazin-Addukte, Banden bei ca. 430 - 454 cm⁻¹. Nur das As(N₃)₅ · N₂H₄-Addukt zeigt eine schwache Bande im Raman-Spektrum bei 430 cm⁻¹. Die Deformationsschwingung der As- bzw. Sb-N₂H₄-Bindung wird nur für das Sb(N₃)₅ · N₂H₄-Addukt bei 147 cm⁻¹ im Raman-Spektrum gefunden.

Ein umfassender Vergleich der Schwingungen der As- und Sb-N_{Lewis-Base}-Bindungen aller dargestellten Addukte kann aufgrund der unterschiedlichen Ligandensysteme der verwendeten Lewis-Basen nicht erfolgen.

In Abbildung 23 ist das Raman-Spektrum von As(N₃)₅ · NH₃ abgebildet.

Ē
ю
8
Ξ.
SS
e O
9
Ξ.
nd
nd D
nd Dis
nd Disk
nd Diskus
nd Diskussi
nd Diskussio

Tabelle 15 $Ausgewählte \ berechnete \ und \ experimentell \ beobachtete \ Schwingungsdaten \ [in \ cm^{-1}] \ und \ Zuordnung \ für \ As(N_3)_5 \cdot Pyridin,$ $Sb(N_3)_5 \cdot Pyridin, As(N_3)_5 \cdot Chinolin und <math display="inline">Sb(N_3)_5 \cdot Chinolin.$

As(N ₃) ₅ · P	yridin		$Sb(N_3)_5 \cdot I$	Pyridin		As(N ₃) ₅ · Chir	nolin	Sb(N ₃) ₅ · Chir	olin	Zuordnung
Ber. ^a	Raman ^b	IR	Ber. ^a	Raman ^b	IR	Raman ^b	IR	Raman ^b	IR	
2242 (773)	2115 (2.5)		2250 (802)			2113 (4)		2092 (3.5)		v _{as} N ₃ –"in phase"
2235 (136)	2096 (1)	2081 vs	2234 (85)	2092 (2.5)	2088 vs	2089 (3)	2085 vs	2080 (3.5)	2078 vs	$v_{as}N_3$ –"out of phase"
1325 (122)			1323 (249)			1273 (1)	1269 vs	1269 (0.5)		$v_s N_3$ -"in phase"
1318 (230)	1261 (2)	1256 s	1319 (66)	1259 (1)	1255 s				1252 s	$v_s N_3$ -"out of phase"
698 (68)	684 (0.5)	680 s	669 (60)		683 m		682 m			δN_3 -"in phase"
677 (38)	669 (1)		666 (25)	666 (2)		669 (2.5)		667 (2)	665 s	δN_3 –"out of phase"
589 (17)		608 vw	591 (10)			630 (0.5)	626 w		574 w	δN ₃ -"in phase/90°"
579 (6)		574 w	587 (5)		577 vw	522 (3.5)		519(4)	508 w	δN_3 –"out of phase/90°"
425 (112)	420 (10)		417 (80)	410 (10)	405 w	415 (10)	412 w	410 (8)	416 s	$v_{as}MN_{azid}$
390 (19)			381 (3)					392 (10)		$v_{\rm s} M N_{\rm azid}$
279 (11)	274 (3)		252 (70)	249 (3)		267 (3.5)		229 (3)		8MN _{azid}
3265 (4)	3097 (2.5)	3110 m	3255 (6)	3101 (2)	3099 m	3071 (3)	3088 w	3073 (4)	3071 w	vCH
1633 (5)	1610 (2)	1609 m	1639 (7)	1637 (1)	1629 m	1620 (1.5)	1617 m	1636 (2)	1635 s	VCC
231 (3)	216 (1.5)		176 (4)	171 (4)		200 (1)		173 (3)		vMN _{Lewis-Base}
132 (1)	121 (5)		111 (2)	111 (2)		123 (7)		139 (2)		$\delta MN_{Lewis-Base}$
^a In Klamm	nern: IR-Inte	nsität [in kı	m mol ⁻¹].							

^b In Klammern: rel. Raman-Intensität.

62

Ш
Η.
70
Ο.
σ
Ē.
Ξ.
ŝ
ñ
ñ
R
Ξ.
ā
ā. D
īd Di
nd Dis
ıd Disk
ıd Disku
ıd Diskus
ıd Diskuss
ıd Diskussi
ıd Diskussic
nd Diskussion

		t				
As(N ₃) ₅ · NCNH	2		Sb(N ₃) ₅ · NCNH	2		Zuordnung
Ber. ^a	Raman ^b	IR	Ber. ^a	Raman ^b	IR	
2244 (526)	2119 (4)	2101 vw	2265 (464)	2109 (1.5)	2126 w	v _{as} N ₃ 'in phase''
2231 (398)	2092 (3)	2081 vs	2232 (830)	2097 (2)		$v_{as}N_3$ –"out of phase"
1327 (161)	1287 (1)	1294 s	1346 (73)		1260 s	v _s N ₃ "in phase"
1310 (252)	1264 (2)		1318 (182)	1252 (0.5)		$v_s N_3$ 'out of phase''
675 (34)	670 (1.5)	667 m	666 (39)	668 (2)	669 w	δN ₃ 'in phase''
664 (10)			654 (16)	634 (2)		δN_3 –"out of phase"
590 (8)			596 (12)			δN ₃ -"in phase/90°"
580 (8)			587 (7)			δN_3 – "out of phase/90°"
421 (91)	417 (8)	416 w	413 (66)	407 (5.5)		v _{as} MN _{azid}
391 (16)			388 (3)			$v_s M N_{azid}$
284 (32)	283 (2.5)		236 (9)	233 (3.5)		8MN _{azid}
2360 (274)		2327 s	2347 (389)		2350 s	VNC
1144 (1)		1138 m	1176 (1)	1177 (0.5)		vCNH ₂

Tabelle 16 $Ausgewählte \ berechnete \ und \ experimentell \ beobachtete \ Schwingungsdaten \ [in \ cm^{-1}] \ und \ Zuordnung \ für \ As(N_3)_5 \cdot NCNH_2$ und $Sb(N_3)_5 \cdot NCNH_2$.

^b In Klammern: rel. Raman-Intensität. ^a In Klammern: IR-Intensität [in km mol⁻¹]. 127 (25) 437 (69) 555 (148)

> 429 (10) 500 (2.5)

430 m 497 w 1138 m

422 (23) 569 (184) 1176 (1)

419 (6)

 $\nu MN_{Lewis-Base}$ $\delta NCNH_2$

 $\delta MN_{Lewis-Base}$

131 (17)

127 (7.5)

63

μ	1
Ĥ	
JO	
Ö	
õ	
극	
ニ	
Ś	
Ś	
O	
_	
ᄃ	
Ħ	
bo	
nd	-
nd L	_
	5
nd UIS	
nd Ulsk	
nd Disku	
nd Diskus	
nd Diskuss	
nd Uiskussi	
nd Diskussio	
nd Diskussion	

Tabelle 17 $Ausgewählte \ berechnete \ und \ experimentell \ beobachtete \ Schwingungsdaten \ [in \ cm^{-1}] \ und \ Zuordnung \ für \ As(N_3)_5 \cdot NH_3,$ $Sb(N_3)_5\cdot NH_3,\,As(N_3)_5\cdot N_2H_4\text{ und }Sb(N_3)_5\cdot N_2H_4.$

$As(N_3)_5 \cdot NH_3$		Sb(N ₃) ₅ · N	VH ₃		$As(N_3)_5 \cdot N$	H_2H_4		Sb(N ₃) ₅ · N	$_{2}H_{4}$		Zuordnung
Ber. ^a Raman ^b	IR	Ber. ^a	Raman ^b	IR	Ber. ^a	Raman ^b	IR	Ber. ^a	Raman ^b	IR	
2250 (599) 2125 (4)	2084 s	2253 (953)	2104 (2)		2256 (704)	2101 (1.5)	2105 w	2254 (950)	2096 (2)	2097 w	$v_{as}N_3$ -"in phase"
2231 (150) 2085 (3)	2048 s	2230 (41)	2088 (2)	2082 s	2230 (155)	2088 (1)		2234 (162)			$v_{as}N_3$ –"out of phase"
1324 (147) 1266 (1.5)		1325 301)	1260 (0.5)	1258 m	1327 (149)	1273 (0.5)	1280 s	1324 (241)	1269 (1)	1271 s	$v_s N_3$ -"in phase"
1308 (189) 1248 (1)	1245 s	1317 (132)			1318 (130)			1314 (152)			$v_s N_3$ -"out of phase"
689 (37)	687 s	666 (27)		667 w	685 (25)			693 (92)			δN ₃ –"in phase"
674 (29) 664 (3)	668 s	658 (17)	659 (0.5)		672 (25)	667 (1.5)	666 m	660 (29)	655 (1)	665 w	δN_3 –"out of phase"
592 (12)		591 (11)			593 (12)			595 (9)			δN ₃ "in phase/90°"
584 (7)	575 s	584 (6)			588 (6)		580 w	583 (6)		577 w	δN_3 –"out of phase/90°"
422 (118) 416 (10)	407 vs	411 (60)	400 (3)		421 (110)	407 (10)		415 (83)	395 (5)		$v_{as} MN_{azid}$
377 (4) 378 (2)		388 (2)			382 (12)	390 (5)		384 (4)			$\nu_s MN_{azid}$
280 (1) 271 (1)		238 (48)	237 (10)		248 (3)			247 (46)			δMN_{azid}
3610 (56) 3042 (0.5)	3099 w	3600 (59)	3042 (3)	3133 m	3546 (69)	3150 (0.5)	3203 m	3540 (70)	3101 (1)	3197 m	v _{as} NH
3458 (42)		3457 (43)			3448 (17)			3445 (4)			ν _s NH
1654 (28)		1632 (27)			1641 (54)		1610 w	1641 (58)		1605 w	δNH ₃
					974 (188)	968 (0.5)		964 (117)	964 (0.5)	950 s	VNN
332 (18)		344 (4)			454 (62)	430 (3)		431 (55)			vMN _{Lewis-Base}
128 (1) 135 (6)		129 (3)			111 (1)			138 (1)	147 (8)		$\delta MN_{Lewis-Base}$
^a In Klammern: IR-Int	ensität [in l	(m mol ⁻¹].									
^b In Klammern: rel. Ri	aman-Inten	sität.									

64

3.3.4 Ergebnisse und Diskussion der NMR-Spektren

Die Ergebnisse der NMR-Studie sind in Tabelle 18 zusammengefasst. Eine sehr geeignete Methode, um Stickstoff-gebundene Lewis-Säure-Base-Komplexe zu charakterisieren, ist zweifelsohne die ¹⁴N-NMR-Spektroskopie. Für die kovalent gebundenen Azide werden drei Signale in den ¹⁴N-NMR-Spektren beobachtet. Die Zuordnung der individuellen Resonanzen N_{α}, N_{β} und N_{γ} (Bindung: M–N_{α}–N_{β}–N_{γ}) erfolgte dabei nach Literaturbeispielen.^{10,14,21,24}

Die N_β-Atome zeigen eine scharfe Resonanz bei ca. $\delta = -140$, die N_γ-Atome bei ca. $\delta = -170$ und die N_α-Atome, wie erwartet, eine breite Resonanz bei $\delta = -240 - -271$ ppm. ¹⁹F-NMR-Spektren aller Pentaazid-Addukte zeigen keine Resonanzen, so dass von einem vollständigem Fluorid/Azid-Austausch ausgegangen werden kann.

In den ¹⁴N-NMR-Spektren sind die Resonanzen der Stickstoffatome der koordinierenden Lewis-Basen im Vergleich zu den freien Lewis-Basen deutlich verschoben.⁶⁵ Die dargestellten Verbindungen bilden auch in Lösung (CH₂Cl₂, SO₂, DMSO) stabile Addukte.

Die ¹⁴N-NMR-Resonanzen der Pyridin- und Chinolin-Addukte sind bis zu 116 ppm zu höherem Feld verschoben. Die Verschiebung ist für die stärkere Lewis-Säure "Sb(N₃)₅" und für die stärkere Lewis-Base Pyridin größer. Die ¹⁴N-NMR-Resonanzen der Ammoniak-Addukte zeigen Signale bei –349 (Sb) und –359 ppm (As) und sind im Vergleich zu freiem NH₃ (–388 ppm) zu tieferem Feld verschoben. Die ¹H-NMR-Spektren dieser beiden Addukte zeigen bei ca. 7.1 ppm breite Signale.

Die Hydrazin-Addukte weisen zwei Resonanzen in den ¹⁴N-NMR-Spektren auf. Sie können dem koordinierenden Stickstoffatom (–358 ppm) und dem nicht-koordinierenden Stickstoffatom (–334 ppm) des Hydrazin-Moleküls zugeordnet werden. Die Verschiebung und Linienbreite des nicht-koordinierenden Stickstoffatoms ist dem Signal von freiem Hydrazin (–331 ppm) sehr ähnlich.⁶⁵ Die ¹H-NMR-Spektren der Hydrazin-Addukte zeigen ebenso wie die Spektren der Ammonik-Addukte breite Singuletts bei 6.90 ppm (As) und 7.30 ppm (Sb).

Im Falle von Sb(N₃)₅ · NCNH₂ zeigt das ¹⁴N-NMR-Spektrum zusätzlich zu den Azidsignalen zwei Resonanzen für die NH₂CN-Einheit. Das Signal bei –359 ppm wird dem Stickstoffatom der -NH₂-Einheit zugeordnet. Diese Resonanz ist im Vergleich zu freiem NH₂CN (–365 ppm) nicht signifikant verschoben.⁶⁵ Das zweite Signal bei –153 ppm stammt von dem Stickstoffatom der Cyanid-Einheit. Es ist damit im Vergleich zu freiem Cyanamid (–196 ppm)⁶⁵ zu tieferem Feld verschoben. Da nur das Signal der -NC-Einheit verschoben ist, ist das Cyanamid wahrscheinlich nur über die Cyanid-Einheit koordiniert. Das ¹⁴N-NMR- Spektrum des As(N₃)₅ · NCNH₂-Addukts weist zusätzlich zu den Azidresonanzen ein Signal bei –359 ppm auf. Die Zuordnung erfolgt entsprechend dem Sb(N₃)₅ · NCNH₂-Addukt. Das Signal der Cyanid-Einheit wurde nicht gefunden. Die ¹³C-NMR-Spektren der Cyanamid-Addukte zeigen Signale, die um ca. 40 ppm im Vergleich zu freiem NCNH₂ zu tieferem Feld veschoben sind. Dieses Ergebnis entspricht den Erwartungen, da aufgrund des Elektronenziehenden Effekts der Lewis-Säure dieser Kern stark abgeschirmt wird.

Die chemischen Verschiebungen der ⁷⁵As- bzw. ¹²¹Sb-NMR-Spektren zeigen Resonanzen im Bereich zwischen +1 und +20 ppm (Tabelle 18). Die relativ scharfen Signale deuten auf eine hochsymmetrische Umgebung am Zentralatom (As, Sb) hin da diese Elemente wegen ihres hohen Quadrupolmoments nur in hochsymmetrischer Umgebung detektiert werden können.²⁹

Es folgt, dass die Zentralatome in Lösung oktaedrisch von sechs Stickstoffatomen umgeben sein sollten (vergleiche Kap. 3.3.5). Das 121 Sb-NMR-Spektrum der Verbindung Sb(N₃)₅ · Chinolin ist in Abbildung 24 wiedergegeben.

	$^{1}\mathrm{H}$	¹³ C	14 N	⁷⁵ As/
				¹²¹ Sb
$As(N_3)_5 \cdot NC_5H_5$	6.58 m (2-H), 7.02 m (3-H),	125.0 s (2-C), 127.4 m (3-C),	-142 (N _β), -151 (py)	+20
	8.30 d (1-H)	142.8 d (1-C)	-161 (N _γ), -263 (N _α)	
$Sb(N_3)_5 \cdot NC_5H_5$	6.74 m (2-H), 6.94 m (3-H),	124.2 s (2-C), 126.4 m (3-C),	-141 (N _β), -173 (N _γ)	+4
	8.10 d (1-H)	139.8 d (1-C)	-180 (py), -268 (N _α)	
$As(N_3)_5 \cdot NC_9H_7$	7.71 m (2-H), 7.74 m (6-H),	121.9 s (2-C), 125.7 s (6-C),	-115 (Ch) -141 (N _β),	+7
	7.86 m (7-H), 8.05 m (5-H),	128.6 s (5-C), 129.0 s (4-C),	-165 (N _γ), -260 (N _α)	
	8.10 m (3-H), 8.57 m (8-H),	129.2 s (7-C), 132.4 s (8-C),		
	8.97 m (1-H)	141.0 s (3-C), 144.9 s (9-C),		
		148.1 s (1-C)		
$Sb(N_3)_5 \cdot NC_9H_7$	7.97 m (2-H), 8.06 m (6-H),	121.8 s (2-C), 122.2 s (6-C)	-141 (N _β), -160 (Ch)	+1
	8.13 m (7-H), 8.28 m (5-H),	129.6 s (5-C), 129.8 s (4-C),	-170 (N _γ), -251 (N _α)	
	8.31 m (3-H), 9.03 m (8-H),	130.7 s (7-C), 135.6 s (8-C),		
	9.15 m (1-H)	139.7 s (3-C), 145.1 s (9-C),		
		146.8 s (1-C)		
As(N ₃) ₅ · NH ₃	7.15 (breit)		-141 (N _β), -165 (N _γ)	+8
			-265 (N _α), -359 (NH ₃)	
$Sb(N_3)_5 \cdot NH_3$	7.14 (breit)		-141 (N _β), -172 (N _γ),	+3
			-251 (N _α), -349 (NH ₃)	
	7.94	1567	141 (NI) $1(4$ (NI)	+0
$As(In_3)_5 \cdot InCINH_2$	7.04	150.7	-141 (N_{β}) , -164 (N_{γ})	79
			$-249 (N_{\alpha}), -339 (NCN_{\Pi_2})$	
$Sb(N_3)_5 \cdot NCNH_2$	7.88	155.9	-141 (N _β), -153 (<u>N</u> CNH ₂)	+4
			-172 (N _γ), -252 (N _α),	
			-359 (NC <u>N</u> H ₂)	
$As(N_3)_5 \cdot N_2H_4$	6.90 (sehr breit)		-139 (N _β), -166 (N _γ)	+11
			-242 (N _α)	
			-334 (As-NH ₂ - <u>N</u> H ₂)	
			-358 (As- <u>N</u> H ₂ -NH ₂)	
$Sb(N_3)_5 \cdot N_2H_4$	7.30 (sehr breit)		-139 (N _β), -173 (N _γ)	+5
			-242 (N _α)	
			-334 (Sb-NH ₂ - <u>N</u> H ₂)	
			-358 (Sb- <u>N</u> H ₂ -NH ₂)	

 $\label{eq:chemische NMR-Verschiebungen der M(N_3)_5 \cdot LB-Addukte \ [\delta \ in \ ppm].$

3.3.5 Berechnete Strukturen von As(N₃)₅ · LB und Sb(N₃)₅ · LB

Die auf B3LYP-Niveau berechneten Strukturen der $As(N_3)_5 \cdot LB$ und $Sb(N_3)_5 \cdot LB$ -Addukte sind in Abbildung 25 gezeigt. Tabelle 19 gibt einen Überblick über die berechneten Strukturparameter. Die Arsen- und Antimonatome weisen eine leicht verzerrte oktaedrische Umgebung auf, in der sie an sechs Stickstoffatome gebunden sind. Fünf dieser Stickstoffatome stammen von Azidliganden und eines von den entsprechenden Lewis-Basen. Alle berechneten Strukturen weisen ein lokales Minimum auf (*NIMAG* = 0). Die Bindungswinkel zwischen den N1-Atomen der axialen Azidgruppen und den Stickstoffatomen der jeweiligen Lewis-Basen sind mit Winkeln zwischen 174.0° und 177.0° nahezu linear. Die Bindungswinkeln zwischen den Stickstoffatomen der axialen und den N-Atomen der äquatorialen Azidgruppen liegen zwischen 94.8° und 97.6°. Daraus resultiert eine nahezu ideale oktaedrische Struktur.

Die berechneten Bindungslängen und -winkel der Azidgruppen stimmen sehr gut mit den experimentell bestimmten Bindungslängen und -winkel kovalent gebundener Arsenazide und Antimonazide überein (vgl. Kap. 3.1.5, 3.1.6 und 3.2.4). Die N1-N2-Abstände liegen in einem Bereich zwischen 1.234 und 1.241 Å. Die resultierende Bindungsordnung liegt somit zwischen einer Einfach- und einer Doppelbindung (vgl. Kovalenzradien für Stickstoff⁸⁴: $r_{cov. (BO = 1)} = 0.7$ Å, $r_{cov. (BO = 2)} = 0.6$ Å, $r_{cov. (BO = 3)} = 0.55$ Å). Für die Bindungslängen N2-N3 (1.137 - 1.142 Å) ergibt sich eine Bindungsordnung zwischen zwei und drei. Die Bindungswinkel der Azidgruppen (N-N-N) betragen ca. 174°, die Bindungswinkel zwischen den Arsen- bzw. Antimonatomen und den Azidgruppen (M-N-N) ca. 118°. Sie stimmen damit gut mit den in Kapitel 3.1.5, 3.1.6 und 3.2.4 beschriebenen experimentell bestimmten Bindungswinkeln überein.

Interessanterweise zeigen die Hydrazin-Addukte die kürzesten M-N_{LB}-Bindungslängen (2.121 Å (As) und 2.275 Å (Sb)), gefolgt von den Ammoniak-Addukten (2.134 Å (As) und 2.284 Å (Sb)) und den Pyridin-Addukten (2.178 Å (As) und 2.290 Å (Sb)). Die Cyanamid-Verbindungen weisen deutlich längere M-N_{LB}-Bindungslängen auf (2.500 Å (Sb) und 2.660 Å (As)) (*s*. Tabelle 19).

Aufgrund der Koordination der Lewis-Basen an den Zentralatomen verlängern sich die Asbzw. Sb-N1-Abstände (axiale Azidgruppe) durch die Wechselwirkung des s-*LP* des Stickstoffatoms der Lewis-Basen mit den antibindenden σ^* -Orbitalen der As- bzw Sb-N1-Bindung. Die berechneten As- bzw. Sb-N1-Bindungslängen (axiale Azidgruppe) stimmen damit überein. Die Cyanamid-Addukte haben die kürzesten Abstände. Die berechneten Bindungslängen hängen mit der Stabilität der Verbindungen zusammen (vgl. Kap. 3.3.6).

	As(N ₃) ₅ · Pyridin	$As(N_3)_5 \cdot NH_3$	$As(N_3)_5 \cdot NCNH_2$	$As(N_3)_5 \cdot N_2H_4$
Symmetrie	C_1	C_1	C_1	C_1
d(As-N1)	1.922	1.918	1.845	1.918
d(As-N4)	1.937	1.940	1.928	1.947
<i>d</i> (N1-N2)	1.234	1.235	1.241	1.235
<i>d</i> (N2-N3)	1.141	1.141	1.137	1.141
d(As-N _{LB})	2.178	2.134	2.660	2.121
d(N _{LB} -C)	1.344		1.167	
$d(H_2N-NH_2)$				1.440
<(As-N1-N2)	117.6	118.6	116.6	118.7
<(N1-N2-N3)	175.1	174.7	172.9	174.6
<(N1-As-N4)	94.8	96.5	96.5	96.2
<(N1-As-N _{LB})	176.6	175.2	177.0	175.6
<(As-N _{LB} -C)	120.2		139.8	
<(N _{LB} -C-NH ₂)			177.0	
<(As-N _{LB} -NH ₂)				120.3
	Sb(N ₃) ₅ · Pyridin	$Sb(N_3)_5 \cdot NH_3$	Sb(N ₃) ₅ · NCNH ₂	$Sb(N_3)_5 \cdot N_2H_4$
Symmetrie	Sb (N ₃) ₅ · Pyridin C_1	$\frac{\mathbf{Sb}(\mathbf{N}_3)_5 \cdot \mathbf{NH}_3}{C_1}$	$\frac{\mathbf{Sb}(\mathbf{N}_3)_5 \cdot \mathbf{NCNH}_2}{C_1}$	$\frac{\mathbf{Sb}(\mathbf{N}_3)_5 \cdot \mathbf{N}_2 \mathbf{H}_4}{C_1}$
Symmetrie d(Sb-N1)	Sb(N₃)₅ · Pyridin <i>C</i> ₁ 2.093	Sb(N₃)₅ · NH₃ C ₁ 2.087	$\frac{\text{Sb}(\text{N}_3)_5 \cdot \text{NCNH}_2}{C_1}$ 2.039	Sb(N_3) ₅ · N ₂ H ₄ C_1 2.085
Symmetrie d(Sb-N1) d(Sb-N4)	Sb(N ₃) ₅ · Pyridin C₁ 2.093 2.098	Sb(N₃)₅ · NH₃ C ₁ 2.087 2.097	Sb(N₃)₅ · NCNH₂ C ₁ 2.039 2.098	Sb(N_3) ₅ · N ₂ H ₄ C_1 2.085 2.103
Symmetrie d(Sb-N1) d(Sb-N4) d(N1-N2)	Sb(N ₃) ₅ · Pyridin C ₁ 2.093 2.098 1.234	Sb(N₃)₅ · NH₃ <i>C</i> ₁ 2.087 2.097 1.235	Sb(N₃)₅ · NCNH₂ C ₁ 2.039 2.098 1.237	Sb(N_3)5 \cdot N2H4 C_1 2.085 2.103 1.235
Symmetrie d(Sb-N1) d(Sb-N4) d(N1-N2) d(N2-N3)	Sb(N ₃) ₅ · Pyridin C ₁ 2.093 2.098 1.234 1.142	Sb(N₃)₅ · NH₃ <i>C</i> ₁ 2.087 2.097 1.235 1.141	Sb(N₃)₅ · NCNH₂ C ₁ 2.039 2.098 1.237 1.139	Sb(N_3) ₅ · N ₂ H ₄ C_1 2.085 2.103 1.235 1.141
Symmetrie d(Sb-N1) d(Sb-N4) d(N1-N2) d(N2-N3) d(Sb-N _{LB})	Sb(N ₃) ₅ · Pyridin C ₁ 2.093 2.098 1.234 1.142 2.290	Sb(N ₃) ₅ ⋅ NH ₃ C ₁ 2.087 2.097 1.235 1.141 2.284	Sb(N ₃) ₅ ⋅ NCNH ₂ C ₁ 2.039 2.098 1.237 1.139 2.500	Sb(N_3) ₅ · N ₂ H ₄ C_1 2.085 2.103 1.235 1.141 2.275
Symmetrie d(Sb-N1) d(Sb-N4) d(N1-N2) d(N2-N3) d(Sb-N _{LB}) d(N _{LB} -C)	Sb(N ₃) ₅ · Pyridin C ₁ 2.093 2.098 1.234 1.142 2.290 1.346	Sb(N ₃) ₅ ⋅ NH ₃ C ₁ 2.087 2.097 1.235 1.141 2.284	Sb(N ₃) ₅ ⋅ NCNH ₂ C ₁ 2.039 2.098 1.237 1.139 2.500 1.169	Sb(N ₃) ₅ · N ₂ H ₄ C_1 2.085 2.103 1.235 1.141 2.275
Symmetrie d(Sb-N1) d(Sb-N4) d(N1-N2) d(N2-N3) d(Sb-N _{LB}) d(N _{LB} -C) d(H ₂ N-NH ₂)	Sb(N ₃) ₅ · Pyridin C1 2.093 2.098 1.234 1.142 2.290 1.346	Sb(N ₃) ₅ ⋅ NH ₃ C ₁ 2.087 2.097 1.235 1.141 2.284	Sb(N ₃) ₅ ⋅ NCNH ₂ C ₁ 2.039 2.098 1.237 1.139 2.500 1.169	Sb(N ₃) ₅ · N ₂ H ₄ C_1 2.085 2.103 1.235 1.141 2.275 1.451
Symmetrie d(Sb-N1) d(Sb-N4) d(N1-N2) d(N2-N3) d(Sb-N _{LB}) d(N _{LB} -C) d(H ₂ N-NH ₂) <(Sb-N1-N2)	Sb(N ₃) ₅ · Pyridin C ₁ 2.093 2.098 1.234 1.142 2.290 1.346 119.2	Sb(N₃)₅ · NH₃ C ₁ 2.087 2.097 1.235 1.141 2.284 119.7	Sb(N₃)₅ · NCNH₂ C ₁ 2.039 2.098 1.237 1.139 2.500 1.169 118.5	Sb(N_3)5 · N2H4 C_1 2.085 2.103 1.235 1.141 2.275 1.451 119.8
Symmetrie d(Sb-N1) d(Sb-N4) d(N1-N2) d(N2-N3) d(Sb-N _{LB}) d(N _{LB} -C) d(H ₂ N-NH ₂) <(Sb-N1-N2) <(N1-N2-N3)	Sb(N ₃) ₅ · Pyridin C ₁ 2.093 2.098 1.234 1.142 2.290 1.346 119.2 174.9	Sb(N ₃) ₅ ⋅ NH ₃ C ₁ 2.087 2.097 1.235 1.141 2.284 119.7 174.8	Sb(N₃)₅ · NCNH₂ <i>C</i> ₁ 2.039 2.098 1.237 1.139 2.500 1.169 118.5 173.4	Sb(N_3)5 · N2H4 C_1 2.085 2.103 1.235 1.141 2.275 1.451 119.8 174.7
Symmetrie d(Sb-N1) d(Sb-N4) d(N1-N2) d(N2-N3) d(Sb-N _{LB}) d(N _{LB} -C) d(H ₂ N-NH ₂) <(Sb-N1-N2) <(N1-N2-N3) <(N1-Sb-N4)	Sb(N ₃) ₅ · Pyridin C ₁ 2.093 2.098 1.234 1.142 2.290 1.346 119.2 174.9 95.6	Sb(N ₃) ₅ ⋅ NH ₃ C ₁ 2.087 2.097 1.235 1.141 2.284 119.7 174.8 97.6	Sb(N₃)₅ · NCNH₂ C ₁ 2.039 2.098 1.237 1.139 2.500 1.169 118.5 173.4 95.6	Sb(N_3)5 \cdot N2H4 C_1 2.085 2.103 1.235 1.141 2.275 1.451 119.8 174.7 97.4
Symmetrie d(Sb-N1) d(Sb-N4) d(N1-N2) d(N2-N3) d(Sb-N _{LB}) d(N _{LB} -C) d(H ₂ N-NH ₂) <(Sb-N1-N2) <(N1-N2-N3) <(N1-Sb-N4) <(N1-Sb-N _{LB})	Sb(N ₃) ₅ · Pyridin C ₁ 2.093 2.098 1.234 1.142 2.290 1.346 119.2 174.9 95.6 176.6	Sb(N₃)₅ · NH₃ <i>C</i> ₁ 2.087 2.097 1.235 1.141 2.284 119.7 174.8 97.6 174.5	Sb(N ₃) ₅ ⋅ NCNH ₂ C ₁ 2.039 2.098 1.237 1.139 2.500 1.169 118.5 173.4 95.6 175.6	Sb(N_3) ₅ · N_2H_4 C_1 2.085 2.103 1.235 1.141 2.275 1.451 119.8 174.7 97.4 174.0
Symmetrie d(Sb-N1) d(Sb-N4) d(N1-N2) d(N2-N3) d(Sb-N _{LB}) d(N _{LB} -C) d(H ₂ N-NH ₂) <(Sb-N1-N2) <(N1-N2-N3) <(N1-Sb-N4) <(Sb-N _{LB} -C)	Sb(N ₃) ₅ · Pyridin C ₁ 2.093 2.098 1.234 1.142 2.290 1.346 119.2 174.9 95.6 176.6 120.0	Sb(N ₃) ₅ ⋅ NH ₃ C ₁ 2.087 2.097 1.235 1.141 2.284 119.7 174.8 97.6 174.5	Sb(N₃)₅ · NCNH₂ <i>C</i> ₁ 2.039 2.098 1.237 1.139 2.500 1.169 118.5 173.4 95.6 175.6 137.3	Sb(N_3)5 · N2H4 C_1 2.085 2.103 1.235 1.141 2.275 1.451 119.8 174.7 97.4 174.0
Symmetrie d(Sb-N1) d(Sb-N4) d(N1-N2) d(N2-N3) d(Sb-N _{LB}) d(N _{LB} -C) d(H ₂ N-NH ₂) <(Sb-N1-N2) <(N1-N2-N3) <(N1-Sb-N4) <(N1-Sb-N _{LB}) <(Sb-N _{LB} -C) <(N _{LB} -C-NH ₂)	Sb(N ₃) ₅ · Pyridin C ₁ 2.093 2.098 1.234 1.142 2.290 1.346 119.2 174.9 95.6 176.6 120.0	Sb(N ₃) ₅ · NH ₃ C ₁ 2.087 2.097 1.235 1.141 2.284 119.7 174.8 97.6 174.5	Sb(N₃)₅ · NCNH₂ <i>C</i> ₁ 2.039 2.098 1.237 1.139 2.500 1.169 118.5 173.4 95.6 175.6 137.3 176.7	Sb(N_3)5 · N2H4 C_1 2.085 2.103 1.235 1.141 2.275 1.451 119.8 174.7 97.4 174.0

Tabelle 19Ausgewählte berechnete (B3LYP) Bindungslängen [Å] und -winkel [°] der $M(N_3)_5 \cdot LB$ -Addukte (M = As, Sb; LB = Pyridin, NH₃, NCNH₂ und N₂H₄).

Ergebnisse und Diskussion

3.3.6 Thermodynamik und Stabilität

Strukturelle Parameter, Gesamtenergien $[E_{tot}]$, Nullpunktschwingungsenergien [zpe] sowie die Bindungsdissoziationsenthalpien bei 298.15° Kelvin $[BDE_{298}]$ wurden für alle As $(N_3)_5 \cdot LB$ bzw. Sb $(N_3)_5 \cdot LB$ -Addukte und den freien Reaktionskomponenten auf B3LYP-Niveau berechnet, und in Tabelle 20 zusammengefasst. Die Bindungsdissoziationsenthalpien für die Dissoziation der Addukte (Gleichung 12) ist ein Maß für die As- bzw. Sb-N_{LB}-Bindungsstärke dieser Addukte.

$$M(N_3)_5 \cdot LB \longrightarrow M(N_3)_5 + LB$$
 (12)

 $(M = As, Sb; LB = Pyridin, NH_3, N_2H_4 und NH_2CN)$

Mit Hilfe der berechneten Gesamtenergien (Tabelle 20) können Vorhersagen über die theoretischen Werte der Reaktionsenthalpien der Dissoziation gemacht werden. Die Dissoziationsenergien wurden berechnet, um die Nullpunktsschwingungsenergie, (*zpe*),⁸⁵ den Rotationsterm ($\Delta U^{\text{rot}} = 3/2$ RT), den Tranlationsterm ($\Delta U^{\text{tr}} = 3/2$ RT) und den Arbeitsterm ($p\Delta V = 1$ RT) korrigiert und in die Gasphasen-Bindungsdissoziationsenthalpien bei Raumtemperatur (ΔH°_{298}) konvertiert.

Die Werte der Bindungsdissoziationsenthalpien (BDE_{298}) der 1:1 Addukte nehmen in der Reihenfolge der Lewis-Basen N₂H₄, NH₃, Pyridin und NH₂CN ab. Die Werte sind für Sb(N₃)₅ höher als für As(N₃)₅. Mit Werten von $\Delta H^{\circ}_{298} = +31.1$ kcal mol⁻¹ für Sb(N₃)₅ · N₂H₄, $\Delta H^{\circ}_{298} = +23.7$ kcal mol⁻¹ für As(N₃)₅ · N₂H₄, $\Delta H^{\circ}_{298} = +25.8$ kcal mol⁻¹ für Sb(N₃)₅ · NH₃ und $\Delta H^{\circ}_{298} = +25.3$ kcal mol⁻¹ für Sb(N₃)₅ · Pyridin entsprechen die Bindungen einer "starken" Lewis-Säure-Base As/Sb-N_{LB}-Bindung. Der Wert für As(N₃)₅ · NH₃ beträgt $\Delta H^{\circ}_{298} = +17.0$ kcal mol⁻¹, für Sb(N₃)₅ · NCNH₂ $\Delta H^{\circ}_{298} = +17.1$ kcal mol⁻¹ und für As(N₃)₅ · Pyridin $\Delta H^{\circ}_{298} = +15.5$ kcal mol⁻¹. Dies läßt auf eine "normale" Lewis-Säure-Base As/Sb-N_{LB}-Bindungsstärke schließen.⁸⁵ Für As(N₃)₅ · NCNH₂ beträgt die Bindungsdissoziationsenthalpie nur $\Delta H^{\circ}_{298} = +9.9$ kcal mol⁻¹, was einem "schwachen" und locker gebundenen Addukt entspricht.

Die Bindungsdissoziationsenthalpien stimmen qualitativ gut mit den berechneten As- bzw. Sb-N_{LB}-Bindungslängen überein (*s.* Tabelle 20).

Verbindung	- <i>E</i> _{tot} [a.u.]	<i>zpe</i> [kcal mol ⁻¹]	NIMAG	BDE ₂₉₈	<i>d (M</i> …N) [Å]
U				[kcal mol ⁻¹]	
B3LYP/					
6-31G(d,p)					
As(N ₃) ₅	827.124455	41.5	0		
$As(N_3)_5 \cdot N_2H_4$	939.026445	77.8	0	23.7	2.121
$As(N_3)_5 \cdot NH_3$	883.709235	66.3	0	17.0	2.134
As(N ₃) ₅ · NC ₅ H ₅	1075.434971	98.9	0	15.5	2.178
$As(N_3)_5 \cdot NCNH_2$	975.921013	63.8	0	9.9	2.660
Sb(N ₃) ₅	826.362834	40.4	0		
$Sb(N_3)_5 \cdot N_2H_4$	938.276560	76.7	0	31.1	2.275
$Sb(N_3)_5 \cdot NH_3$	882.961719	65.2	0	25.8	2.284
Sb(N ₃) ₅ · NC ₅ H ₅	1074.689287	97.9	0	25.3	2.290
$Sb(N_3)_5 \cdot NCNH_2$	975.171689	63.1	0	17.1	2.500
N_2H_4	111.863035	33.3	0		
NH ₃	56.556411	21.6	0		
C ₅ H ₅ N	248.287074	55.8	0		
NH ₂ CN	148.783189	21.4	0		

Tabelle 20Berechnete (B3LYP) Gesamtenergien $[E_{tot}]$, Nullpunktsschwingungsenergien[zpe], Bindungsdissoziationsenthalpien $[BDE_{298}]$ und strukturelle Parameter fürdie As $(N_3)_5 \cdot$ LB bzw. Sb $(N_3)_5 \cdot$ LB-Addukte und freien Lewis-Basen.

3.3.7 Zusammenfassung

Die Lewis-Säure-Base-Addukte $As(N_3)_5 \cdot LB$ und $Sb(N_3)_5 \cdot LB$, (LB = Pyridin, Chinolin, NH₃, N₂H₄ und NH₂CN) wurden synthetisiert und durch Raman-, IR- und multinukleare NMR-Spektroskopie charakterisiert. Die Strukturen und Normalschwingungen der Addukte wurden auf B3LYP-Niveau berechnet und mit experimentell bestimmten Schwingungspektren verglichen. Die Übereinstimmung zwischen Theorie und Experiment ist außerordentlich gut. Die Schwingungspektren zeigen eindeutig Banden, die sowohl der Streck- als auch der Deformationsschwingung der M-N_{LB}-Bindung (M = As, Sb) zugeordnet werden.

Die ¹⁴N-NMR-Spektren zeigen im Vergleich zu den freien Lewis-Basen deutlich verschobene Resonanzen der Stickstoffatome der Lewis-Basen. ⁷⁵As- und ¹²¹Sb-NMR-Spektren deuten auf eine hochsymmetrische Umgebung von Arsen und Antimon hin. Adduktstrukturen, die ein lokales Minimum aufweisen, konnten für alle $M(N_3)_5 \cdot LB$ (M = As, Sb) Spezies berechnet werden. Die Übereinstimmung der berechneten Strukturparameter mit experimentell bestimmten Strukturen von Arsenazid- und Antimonazid-Verbindungen ist außerordentlich gut (vgl. Kap. 3.1.5, 3.1.6 und 3.2.4).

Die Zentralatome Arsen und Antimon zeigen eine sechsfache Koordination, mit nahezu idealer oktaedrischer Umgebung. Sie sind umgeben von fünf Azidliganden und einem Stickstoffatom der jeweiligen Lewis-Basen.

Auf der Grundlage von quantenchemischen Berechnungen (B3LYP) wurde die Bindungsdissoziationsenthalpie bestimmt. Die Stabilität der Addukte steigt in der Reihenfolge NH₂CN < Pyridin < NH₃ < N₂H₄ und As(N₃)₅ < Sb(N₃)₅.

3.4 Lewis-Säure-Base-Addukte von AsCl₅ und SbCl₅

3.4.1 Einführung – Bisheriger Kenntnisstand

Die Existenz von PCl₅ (1809) und SbCl₅ (1825) ist schon seit langem bekannt.^{86,87} AsCl₅ und BiCl₅ konnten bis 1976 noch nicht synthetisiert werden.^{34a} Die geringere Abschirmung der größeren Kernladung durch die 3d- bzw. 5d-Elektronen bei den Elementen der vierten bzw. sechsten Periode, wie z.B. As und Bi, bewirkt eine energetische Absenkung der s-Orbitale. Das Phänomen wird als *d*-Block-Kontraktion bzw. Lanthanoidenkontraktion bezeichnet.⁸⁸ Dieser Effekt wirkt sich auf das nichtbindende Elektronenpaar aus, das nach bindungstheoretischen Vorstellungen hohen s-Charakter besitzt und sich deshalb sehr dicht am Kern befindet.^{34b}

Der erste Versuch zur Darstellung von AsCl₅ wurde bereits 1841 von Rose *et al.* beschrieben.⁸⁹ 1976 gelang Seppelt *et al.* erstmals die Darstellung von AsCl₅.³⁴ Die Existenz wurde gravimetrisch und ramanspektroskopisch durch Bandenvergleich mit den niedrigeren und höheren Homologen bestätigt. Bestrahlung einer Lösung von AsCl₃ in Chlor bei –105°C mit UV-Licht ergibt AsCl₅ als gelblichen Festkörper, der schon bei –50°C unter partieller Zersetzung schmilzt.^{34a}

Eine weitere Darstellungsmöglichkeit von AsCl₅ wurde 1977 wiederum von *Seppelt* beschrieben. Die Synthese erfolgte durch Reaktion von AsCl₃, Cl₂ und CF₂Cl₂ als Lösemittel. Die Reaktionsmischung wird bei Raumtemperatur vermischt und anschließend bei -110° C mit UV-Licht bestrahlt.^{34b}

Während Salze des AsCl₆⁻-Anions mit voluminösen Kationen bekannt sind,^{90,91,92,93} sind Lewis-Säure-Base-Adukkte von AsCl₅ wenig bekannt. Lediglich AsCl₅ · 2 OP(Ph)₃⁹² und AsCl₅ · OP(CH₃)₃⁷⁹ wurden eindeutig charakterisiert. Versuche AsCl₅ mit Pyridin, 2,2'-Bipyridin oder 1,10-Phenanthrolin zu stabilisieren scheiterten aufgrund des zu hohen basischen Charakters der eingesetzten Lewis-Basen im Vergleich zu den Phosphinoxiden.^{94,95} In diesen Addukten bewirkt der Elektronentransfer eine Erniedrigung der Elektronendichte am Arsenatom und somit eine leichtere Abspaltung von Chlor aus AsCl₅.⁹²

Klapötke *et al.* synthetisierten Lewis-Säure-Base-Addukten von Stickstoffbasen, insbesondere Halogennitrilen, und Arsen- und Antimonpentafluorid.^{28,74,75,76,77} Die Molekülstrukturen der Addukte SbF₅ · NCCN⁷⁶ und AsF₅ · (HCN)₃⁷⁷ wurden bestimmt. Die starken Lewis-Säuren AsF₅ und SbF₅ bilden auch mit schwachen Lewis-Basen Acceptor-Donor-Komplexe wie z. B. mit Carbonylhalogeniden.⁷⁸

Allenstein und Schmidt synthetisierten 1964 die Addukte SbCl₅ · NCX (X = Cl, Br, I).⁸⁰ Die Lewis-Säure-Base-Adukkte wurden durch Reaktion von SbCl₅ mit den entsprechenden Halogencyaniden in CH₂Cl₂ erhalten. Die Adukkte wurden durch IR-Spektroskopie charakterisiert, wobei sie vermuteten, dass die Halogencyanide über das Stickstoffatom der Cyan-Einheit an dem Zentralatom koordiniert. Diese Vermutungen wurden später von Kawai und Kanesaka⁸¹ und Burgard und MacCordick bestätigt.⁸²

Darauf aufbauend wurde in dieser Arbeiten Komplexe von AsCl₅ und SbCl₅ mit schwachkoordinierenden Lewis-Basen synthetisiert und durch Raman- und NMR-Spektroskopie und teilweise durch Röntgenstrukturanalyse näher charakterisiert.⁸³ Das Koordinationsverhalten wurde durch Bestimmung der Bindungsdissoziationsenthalpie aus *DFT*-Berechnungen untersucht.

3.4.2 Darstellung und Eigenschaften von AsCl₅ · LB und SbCl₅ · LB

Die Lewis-Säure-Base-Addukte von SbCl₅ wurden durch stöchiometrische Reaktion der entsprechenden Lewis-Basen mit SbCl₅ in den in Gleichungen 13 - 18 angegebenen Lösemittel dargestellt. Die Reaktion eines Äquivalents SbCl₅ mit einem Äquivalent Dicyan führte nicht zu dem gewünschten 1:1-Addukt, sondern zu einem 2:1-Addukt (Gleichung 16).

SbCl ₅	+	CICN	\longrightarrow	SbCl ₅ ·NCCl	(13)
SbCl ₅	+	BrCN	$\xrightarrow{CH_2Cl_2}$	SbCl ₅ ·NCBr	(14)
SbCl ₅	+	ICN	$\xrightarrow{CH_2Cl_2}$	SbCl ₅ ·NCI	(15)
2 SbCl ₅	+	(CN) ₂	\longrightarrow	SbCl ₅ ·NCCN ·SbCl ₅	(16)
SbCl ₅	+	NCNH ₂	$\xrightarrow{CH_2Cl_2}$	$SbCl_5 \cdot NCNH_2$	(17)
SbCl ₅	+	NC ₅ H ₅	$\xrightarrow{CH_2Cl_2}$	$SbCl_5 \cdot NC_5H_5$	(18)

Die Lewis-Säure-Base-Addukte wurden als farblose Feststoffe in hohen Ausbeuten isoliert. Im Falle von ClCN und $(CN)_2$ wurde die Darstellung lösemittelfrei durchgeführt. Alle dargestellten Addukte sind in gängigen Lösemittel, wie DMSO, CH₂Cl₂ oder SO₂ gut löslich. Als präparativ schwierig erwies sich die Synthese. Zwei verschiedene Methoden sind für die Synthese der AsCl₅ · LB-Addukte denkbar. Zum einen durch Reaktion von AsCl₅ mit entsprechenden Lewis-Basen (Gleichung 19).

$$AsCl_5 + LB \longrightarrow SbCl_5 \cdot LB$$
 (19)

Zum anderen durch Reaktion von AsCl₃ mit den entsprechenden Lewis-Basen mit anschließender Oxidation (Gleichung 20).

AsCl₃ + LB $\xrightarrow{Cl_2}$ AsCl₅ · LB (20)

Es gelang aufgrund fehlender Kühlvorichtungen nicht, AsCl₅ bei –110°C durch UV-Bestrahlung zu generieren. Die Reaktionstemperatur konnte während der Bestrahlungszeit nicht konstant gehalten werden. Somit blieb der Reaktionsweg nach Gleichung 19 verwährt. In Anlehnung an die Darstellung der Adukkte AsCl₅ · 2 OP(Ph)₃⁹² und AsCl₅ · OP(CH₃)₃⁷⁹ wurde der zweite Reaktionsweg (Gleichung 20) gewählt.

Lösungen von AsCl₃ wurden mit äquivalenten Mengen an CICN, BrCN, ICN, (CN)₂, NH₂CN und Pyridin versetzt und anschließend mit Chlor umgesetzt. Die Umsetzung mit Chlor führte nur bei der Reaktion mit ICN zur gewünschten Verbindung. Bei den Umsetzungen mit Pyridin und NH₂CN konnten farblose Pulver isoliert werden, deren Raman- und NMR-Spektren und Elementaranalysen keinen Aufschluss über die Zusammensetzung der isolierten Verbindungen ergaben. Die Existenz von Koordinationsverbindungen von AsCl₅ mit diesen Lewis-Basen konnte nicht nachgewiesen werden. Bei den restlichen Lewis-Basen wurden die Edukte isoliert. Nur AsCl₅ · NCI konnte nachgewiesen werden. Alle anderen Koordinationsverbindungen werden daher im folgenden theoretisch behandelt (Kap. 3.4.5 und 3.4.8).

3.4.3 Ergebnisse und Diskussion der Schwingungsspektren

In Tabelle 21 und 22 sind die berechneten (B3LYP) und experimentell beobachteten Raman-Normalschwingungen von AsCl₅ · NCI und SbCl₅ · LB, (LB = Pyridin, NCNH₂, ICN, BrCN, ClCN und $1/2(CN)_2$) angegeben. Die auf B3LYP-Niveau berechneten Schwingungen stimmen sehr gut mit den experimentell bestimmten Schwingungsdaten überein.

Die Schwingungsfrequenzen der Verbindungen SbCl₅ · LB, (LB = ICN, BrCN und ClCN) sind mit den in der Literatur beschriebenen Schwingungsfrequenzen in guter Übereinstimmung.^{80,81,82} Die vCN-Streckschwingung hat Banden zwischen 2187 cm⁻¹ und 2352 cm⁻¹ und ist um 18 - 76 cm⁻¹ im Vergleich zu den freien Halogencyanen⁹⁶ zu höheren Frequenzen verschoben. Cyanide sind bessere σ -Donoren als π -Acceptoren daher sollten komplexierte vCN-Banden generell zu höheren Wellenzahlen im Vergleich zu freien Cyaniden verschoben sein.⁶⁶

Für die vCN-Streckschwingung würde man für SbCl₅ · NCCN · SbCl₅ in den Schwingungsspektren zwei Banden erwarten, wovon eine Raman-aktiv und eine IR-aktiv sein sollte. Dieser Schwingungsmodus kann als symmetrische vCN- und antisymmetrische vCN-Streckschwingung bezeichnet werden. Das Signal der symmetrischen vCN-Streckschwingung erscheint im Raman-Spektrum bei 2352 cm⁻¹ (Abbildung 26).

Die vCX-Streckschwingung und die δ XCN-Deformationsschwingung (X = I, Br, Cl, CN, NH₂) sind ebenso wie der oben erwähnte Schwingungsmodus zu höheren Frequenzen verschoben.

Die vSbN-Streckschwingung erscheint in den Ramanspektren bei ca. 200 cm⁻¹ und sind damit in guter Übereinstimmung mit in der Literatur beschriebenen SbN-Streckschwingungen.^{81,82} Die δSbN-Deformationschwingung wird den Banden von 83 cm⁻¹ bis 134 cm⁻¹ Wellenzahlen zugeordnet. Eine vollständige und genaue Zuordnung ist in den Tabellen 21 und 22 zu finden. Die vSbCl-Streckschwingungen von freiem SbCl₅ werden im Bereich von 307 bis 399 cm⁻¹ beobachtet.⁹⁷ Beim Vergleich der vSbCl-Streckschwingungen von freiem SbCl₅ mit denen der beschriebenen Additionsverbindungen fällt auf, dass die im Ramanspektrum beobachteten vSbCl-Streckschwingungen nicht signifikant zu niedrigeren Frequenzen verschoben sind, obwohl SbCl₅ ein freies Elektronenpaar akzeptiert, und damit die Sb-Cl-Bindungen stärker polarisiert werden.

Abb. 26Ramanspektrum von $SbCl_5 \cdot NCCN \cdot SbCl_5$.

Die Banden, die den Halogencyaniden, NH₂CN und $(CN)_2$ zugeordnet werden können, verschieben sich, wie oben beschrieben, aufgrund der Koordination am Zentralatom im Vergleich zu den freien Cyaniden, zu höheren Wellenzahlen. Die ?CN-Streckschwingung ist besonders charakteristisch. Aufgrund ihrer Verschiebung können Aussagen über die Donorstärke der verschiedenen Cyanide gemacht werden. Die Verschiebung ist für die ?CN-Streckschwingung von NH₂CN mit 76 cm⁻¹ am größten, gefolgt von den Halogencyanen (28 - 42 cm⁻¹) und Dicyan mit 18 cm⁻¹. Somit sollte auch die Stabilität des Cyanamid-Adduktes am größten und die des Dicyan-Adduktes am geringsten sein. Die Verschiebung der ?CN-Streckschwingung des AsCl₅ · NCI-Adduktes ist mit 18 cm⁻¹ sehr gering, was auf ein schwach koordinierendes Addukt schließen lässt. Die hier getroffenen Aussagen über die Stabilität der Addukte stimmen gut mit den berechneten (B3LYP) Stabilitäten überein (vgl. Kap. 3.4.8).

SbCl ₅ ·NCCl		SbCl ₅ ·NCBr		SbCl ₅ ·NCI		AsCl ₅ ·NCI		Zuordnung (Symmetrierasse)
Berechnung ^a	Raman ^b	M = As bzw. Sb						
95 (17)	83 (2.5)	78 (11)	83 (1)	71 (9)		66 (7)		δ MN, A_1
121 (0)	131 (4)	120 (0)	130 (5)	120 (0)	126 (1.5)	163 (0)	157 (5)	δMCl _{ax} , <i>E</i>
181 (0)	170 (2)	180 (0)	166 (3)	180 (0)	176 (1.5)	224 (14)	195 (3)	$\delta MCl_{aq}, B_1$
185 (16)	193 (3)	184 (17)	192 (4)	183 (18)	184 (2.5)	173 (14)	170 (2)	vMN, E
320 (2)	305 (2.5)	320 (1)	302 (2)	319(1)	302 (3)	328 (4)		$v_{s}MCl_{aq}, A_{1}$
354 (90)	344 (10)	353 (89)	341 (10)	354 (83)	344 (10)	364 (119)	379 (4)	$v_{as}MCl_{aq}, E$
362 (84)	355 (8)	361 (88)	355 (10)	359 (93)		401 (106)	410 (10)	ν MCl _{ax} , A_1
406 (9)		383 (7)	396 (1)	349 (12)		334 (12)		δXCN, <i>E</i>
786 (0)		622 (6)	637 (0.5)	524 (25)	533 (0.5)	502 (7)	484 (1)	vXC, A_1
2362 (190)	2259 (2.5)	2337 (164)	2232 (3)	2322 (149)	2197 (3)	2306 (49)	2187 (2)	v CN, A_1
393 (4)	380 vs (IR)	356 (1)	343 (2)	314 (0)	328 (3)	314 (0)	328 (3)	$\delta XCN, E^{C}$
744 (8)	714 s (IR)	580 (2)	573 (8)	487 (0)	455 (7)	487 (0)	455 (7)	vXC, A_1^{C}
2322 (39	2219 vs (IR)	2300 (24)	2190 (10)	2288 (11)	2169 (10)	2288 (11)	2169 (10)	vCN, A_1^{C}

Tabelle 21	Ausgewählte berechnete und experimentell beobachtete Schwingungsdaten [in cm ⁻¹] und Zuordnung für SbCl ₅ · NCCl,
	SbCl ₅ · NCBr, SbCl ₅ · NCI und AsCl ₅ · NCI.

^a In Klammern: IR-Intensität [in km mol⁻¹].

^b In Klammern: rel. Raman-Intensität.

^c Schwingungsdaten der freien Halogencyane.

SbCl ₅ ·NCCN ·SbCl ₅		SbCl ₅ ·NCNH ₂		SbCl ₅ ·NC ₅ H ₅		Zuordnung
Berechnung ^a	Raman ^b	Berechnung ^a	Raman ^b	Berechnung ^{a, c}	Raman ^b	
70 (43, A _{2u})		154 (9)	134 (2)	197 (7, <i>B</i> ₁)	194 (1.5)	δSbN
118 (0, <i>E</i> _g)	130 (3)	120 (0)		123 (2, <i>B</i> ₁)		δSbCl _{ax}
178 (0, <i>E</i> _g)	170 (0.5)	176 (0)	170 (2)	171 (11, A_1)	176 (2.5)	$\delta SbCl_{aq}$
175 (29, <i>E</i> _u)	195 (2)	207 (26)	185 (2)	231 (3, <i>B</i> ₂)		vSbN
$324(5, A_{2u})$	318 (1)	317 (19)	300 (2)	$309(3, A_1)$	294 (2.5)	$v_{s}SbCl_{aq}$
357 (172, <i>E</i> _u)	345 (10)	350 (145)	345 (10)	341 (94, <i>B</i> ₂)	329 (10)	$v_{as}SbCl_{aq}$
373 (155, <i>A</i> _{2u})	373 (1)	353 (61)		346 (83, <i>A</i> ₁)	359 (5)	vSbCl _{ax}
		529 (12)				δNCNH ₂
556 $(1, E_g)$	500 (1)					δΝCC
		1194 (0)				vCNH ₂
905 (0, A _{1g})	865 (0.5)			1631 (2, <i>B</i> ₂)	1608 (0.5)	vCC
		2399 (453)	2285 (1)	1320 (0, <i>B</i> ₂)		vCN
2299 (4, A _{2u})						vCN "antisymmetrisch"
2456 (0, A _{1g})	2352 (1.5)					vCN "symmetrisch"
		483 (71)	436 (3)			δNCNH ₂ ^c
570 $(0, A_g)$						δNCC ^c
		1100 (7)	1150 (4)			vCNH ₂ ^c
892 (0, $A_{\rm g}$)						vCC ^c
		2364 (92)	2209 (8)			vCN ^c
2271 (0, A _u)						vCN "antisymmetrisch" ^c
2438 (0, Ag)	2334 vs (IR)					vCN "symmetrisch" ^c

Tabelle 22	Ausgewählte berechnete und experimentell beobachtete Schwingungsdaten [in cm ⁻¹] und Zuordnung für
	SbCl ₅ · NCCN · SbCl ₅ , SbCl ₅ · NCNH ₂ und SbCl ₅ · NC ₅ H ₅ .

^a In Klammern: IR-Intensität [in km mol⁻¹]. ^b In Klammern: rel. Raman-Intensität, berechnete Symmetrierassen. ^c Schwingungsdaten der freien Cyanide.

3.4.4 Ergebnisse und Diskussion der NMR-Spektren

Die Resonanzen der Stickstoffatome der Addukte in den ¹⁴N-NMR-Spektren sind im Vergleich zu den freien Lewis-Basen signifikant zu höherem Feld verschoben. SbCl₅ · NCCl zeigt ein breites Signal bei –172 ppm, SbCl₅ · NCBr bei –154 ppm und SbCl₅ · NCI eine Resonanz bei –126 ppm. Die Stickstoffresonanz im AsCl₅ · NCI-Addukt (–143 ppm) ist um 54 ppm im Vergleich zu freiem ICN (–89 ppm) zu höherem Feld verschoben.

SbCl₅ · NCCN · SbCl₅ zeigt im ¹⁴N-NMR-Spektrum eine Resonanz bei –172 ppm, die den äquivalenten Stickstoffatomen zugeordnet werden kann. Die Resonanz ist damit im Vergleich zu freiem Dicyan (–113 ppm)⁹⁸ um 59 ppm zu höherem Feld verschoben. Die stärkste chemische Verschiebung zeigt das stabilste Addukt SbCl₅ · NC₅H₅. Die Resonanz des Stickstoffatoms ist im Gegensatz zu freiem Pyridin (–63 ppm)⁹⁹ um 132 ppm zu höherem Feld verschoben. Daraus folgt, dass die Addukte nicht nur im Festkörper, sondern auch in Lösung stabil sind.

Eine Ausnahme stellt das Cyanamid-Addukt dar. Das ¹⁴N-NMR-Spektrum zeigt Resonanzen bei –195 und –359 ppm, die mit den Resonanzen von freiem NH₂CN identisch sind. Das ¹⁴N-NMR-Spektrum wurde in DMSO aufgenommen, da die Substanz in weniger polaren Lösemittel nicht löslich ist. Es wird vermutet, dass NH₂CN durch die relativ starke Lewis-Base DMSO verdrängt wird und damit Austauschprozesse für die identischen Resonanzen im ¹⁴N-NMR-Spektrum verantwortlich sind.

3.4.5 Berechnete Strukturen von AsCl₅ · LB und SbCl₅ · LB

In Tabelle 23 sind die auf B3LYP-Niveau berechneten strukturellen Parameter aller $MCl_5 \cdot LB$ -Addukte (M = As, Sb; LB = ICN, BrCN, CICN, 1/2(CN)₂, NH₂CN, Pyridin) wiedergegeben. Die Molekülstrukturen aller Addukte wurden auf HF-Niveau in C_1 -Symmetrie optimiert. Es wird eine C_{4v} -Symmetrie für $MCl_5 \cdot LB$ (M = As , Sb; LB = ClCN, BrCN und ICN) (Abb. 27), D_{4h} -Symmetrie für $MCl_5 \cdot NCCN \cdot MCl_5$ (M = As, Sb) (Abb. 27) und C_{2v} -Symmetrie für $MCl_5 \cdot NC_5H_5$ (M = As, Sb) (Abb. 28) erhalten. Die Cyanamid-Addukte zeigen nur C_1 -Symmetrie (Abb. 28). Die Addukte wurden in den erhaltenen Symmetrien auf B3LYP-Niveau (C_1 , C_{4v} , D_{4h} und C_{2v}) optimiert. Die Addukte haben sowohl auf HF- als auch auf B3LYP-Niveau lokale Minima (*NIMAG* = 0). Die berechneten Strukturparameter stimmen sowohl mit in der Literatur beschriebenen

Strukturdaten als auch mit den Bindungslängen und -winkel der in Kap 3.4.6 beschriebenen Kristallstrukturen gut überein.^{76,100}

Es erscheint jedoch erwähnenswert zu betonen, dass sich Strukturen solcher schwachbindenden Systeme beträchtlich zwischen Gasphase und Festkörper unterscheiden können.^{70,71}

Alle berechneten Strukturen zeigen oktaedrische Koordination an den Zentralatomen. Die Arsen- bzw. Antimonatome sind von fünf Chloratomen, vier in äquatorialen Positionen und eines in axialer Position, und einem Stickstoffatom der entsprechenden Lewis-Säure umgeben.

Abb. 27 Berechnete (B3LYP) Strukturen von $MCl_5 \cdot NCX$ und $MCl_5 \cdot NCCN \cdot MCl_5$ (M = As, Sb; X = Cl, Br, I).

Abb. 28 Berechnete (B3LYP) Strukturen von $MCl_5 \cdot NCNH_2$ und $MCl_5 \cdot NC_5H_5$ (M = As, Sb).

Die berechneten M-Cl_{äq}-Bindungslängen sind im Vergleich mit den auf dem selbem Niveau berechneten M-Cl_{äq}-Bindungslängen von freiem AsCl₅ (2.258 Å) und SbCl₅ (2.352 Å) geringfügig länger. Aufgrund der Koordination der Stickstoffbasen an das Zentralatom wird die Sb-Cl_{äq}-Bindung durch die Wechselwirkung der s-*LP*'s der Stickstoffatome mit den antibindenden σ^* -Orbitalen der Sb-Cl_{äq}-Bindungen geschwächt und somit verlängert. Die längsten M-Cl_{äq}-Bindungsabstände zeigen die Pyridin-Addukte (As 2.274 Å; Sb 2.411 Å), gefolgt von den Cyanamid-Addukten (As 2.254 Å; Sb 2.397 Å). Die Halogencyanid-Addukte zeigen ähnliche M-Cl_{äq}-Bindungsabstände (As 2.241 Å; Sb 2.390 Å). Die M-Cl_{äq}-Bindungslängen sind in den Dicyan-Adukkten am kürzesten (As 2.238 Å; Sb 2.384 Å). Es folgt, dass die Wechselwirkungen der s-*LP*'s der Stickstoffatome mit den antibindenden σ^* -Orbitalen der Sb-Cl_{äq}-Bindungen, in den Pyridin-Addukten am stärksten ist und für die Dicyan-Adukkte am schwächsten sein. In Übereinstimmung mit diesen hier beschriebenen Schlussfolgerungen ist die berechnete Stabilität der Addukte (vgl. Kap. 3.4.8).

Die M-N_{LB}-Bindungslängen (M = As, Sb) verringern sich in folgender Reihenfolge: $(CN)_2 > CICN > BrCN > ICN > NH_2CN > Pyridin (Abstände siehe Tab. 23). Zusätzlich werden bei der Komplexbildung die C-N- und C-X-Bindungslängen (X = Cl, Br, I, C und NH₂) im Vergleich zu den freien Lewis-Basen verkürzt.$

Die Verringerung der M-N_{LB}-Bindungslängen lässt die gleichen Schlussfolgerungen für die Stabilität der Komplexe zu, wie sie aufgrund der Streckung der M-Cl_{äq}-Bindungslängen getroffen wurden.

Die Cl_{aq} -M- Cl_{ax} -Bindungswinkel (M = As, Sb) stimmen mit diesem Trend überein. Die Pyridin-Addukte zeigen für die Antimon-Verbindung Winkel von 94.3° und für die Arsen-Verbindung von 93.7°. Sie sind damit den idealen Winkel für einen Oktaeder von 90° am nächsten und deuten auf eine starke Komplexbildung hin. Für die NH₂CN-Addukte liegen diese Bindungswinkel bei 96.8° (Sb) und 96.5° (As), was nur auf eine geringfügige Verzerrung von der oktaedrischen Geometrie hindeutet. Die Halogencyan-Addukte weisen Winkel von ca. 97.5° (Sb) und 99.6° (As) auf, das Dicyan-Addukt der Antimon-Verbindung einen Winkel von 100.0° und das Dicyan-Addukt der Arsen-Verbindung einen Winkel von 100.9°. Sie sind somit am stärksten verzerrt, was auf eine relativ schwache Koordination schließen lässt.

Für die Cyanamid-Addukte wurden auf B3LYP-Niveau die Isomere berechnet, in der die Cyanamid-Einheiten über die NH₂-Gruppe an die Zentralatome koordiniert sind. Obwohl auch für diese Isomere lokale Minimumstrukturen gefunden wurden, liegen diese Isomere um ca. 6.7 kcal/mol energetisch höher als die CN-koordinierten Adukkte.

Tabelle 23Ausgewählte berechnete (B3LYP) Bindungslängen [in Å] und -winkel [in °]
der MCl5 · LB-Addukte (M = As, Sb; LB = ClCN, BrCN, ICN, $1/2(CN)_2$,
NCNH2 und Pyridin).

	SbCl ₅ ·NCCl ^a	SbCl ₅ ·NCBr	SbCl ₅ ·NCI	$SbCl_5 \cdot 1/2(NC)_2^a$	SbCl ₅ ·NCNH ₂	SbCl ₅ ·NC ₅ H ₅
Symmetrie	$C_{4\mathrm{v}}$	$C_{4\mathrm{v}}$	$C_{4\mathrm{v}}$	$D_{4\mathrm{h}}$	C_1	C_{2v}
d(Sb-Cl _{äq})	2.390	2.390	2.391	2.384	2.397	2.411
d(Sb-Cl _{ax})	2.348	2.349	2.351	2.330	2.362	2.372
d(Sb-N)	2.514	2.491	2.466	2.870	2.344	2.326
<i>d</i> (N-C)	1.158	1.159	1.159	1.160	1.163	
<i>d</i> (C-X)	1.629	1.784	1.998	1.380	1.315	
<(Cl _{äq} SbCl _{ax})	97.7	97.5	97.3	100.0	96.8	94.3
<(Cl _{ax} SbN)	180.0	180.0	180.0	180.0	179.0	180.0
<(SbNC)	180.0	180.0	180.0	180.0	155.6	
<(NCX)	180.0	180.0	180.0	180.0	176.9	
	AsCL·NCC	AsCL·NCBr	AsCL·NCI	AsCL: 1/2(NC)	AsCL:NCNH	AsCl. ·NC.H.
Summatria	AsCl ₅ ·NCCl	AsCl ₅ ·NCBr	AsCl ₅ ·NCI	AsCl ₅ · $1/2(NC)_2$	$AsCl_5 \cdot NCNH_2$	AsCl ₅ ·NC ₅ H ₅
Symmetrie	$\frac{\mathbf{AsCl}_{5} \cdot \mathbf{NCCl}}{C_{4v}}$	AsCl ₅ ·NCBr C _{4v}	AsCl ₅ ·NCI C_{4v}	AsCl ₅ ·1/2(NC) ₂ D_{4h}	$\frac{\text{AsCl}_5 \cdot \text{NCNH}_2}{C_1}$	
Symmetrie d(As-Cl _{äq})	AsCl5 ·NCCl C_{4v} 2.240	AsCl₅·NCBr C _{4v} 2.241	AsCl ₅ ·NCI C_{4v} 2.241	AsCl₅·1/2(NC)₂ <i>D</i> _{4h} 2.238	AsCl₅·NCNH₂ C ₁ 2.254	$AsCl5·NC5H5$ C_{2v} 2.274
Symmetrie d(As-Cl _{äq}) d(As-Cl _{ax})	AsCl₅·NCCl C _{4v} 2.240 2.164	AsCl₅·NCBr <i>C</i> _{4v} 2.241 2.165	AsCl₅·NCI C₄v 2.241 2.167	AsCl ₅ ·1/2(NC) ₂ D _{4h} 2.238 2.156	AsCl₅·NCNH₂ C1 2.254 2.189	AsCl₅·NC₅H₅ C _{2v} 2.274 2.221
Symmetrie d(As-Cl _{äq}) d(As-Cl _{ax}) d(As-N)	AsCl₅·NCCl C4v 2.240 2.164 2.890	AsCl₅·NCBr C _{4v} 2.241 2.165 2.864	AsCl₅·NCI C4v 2.241 2.167 2.812	AsCl ₅ ·1/2(NC) ₂ D _{4h} 2.238 2.156 3.207	AsCl ₅ ·NCNH ₂ C ₁ 2.254 2.189 2.389	AsCl₅·NC₅H₅ C _{2v} 2.274 2.221 2.223
Symmetrie d(As-Cl _{äq}) d(As-Cl _{ax}) d(As-N) d(N-C)	AsCl₅·NCCl C _{4v} 2.240 2.164 2.890 1.161	AsCl ₅ •NCBr C _{4v} 2.241 2.165 2.864 1.161	AsCl₅·NCI C4v 2.241 2.167 2.812 1.161	AsCl ₅ ·1/2(NC) ₂ D _{4h} 2.238 2.156 3.207 1.162	AsCl₅·NCNH₂ C ₁ 2.254 2.189 2.389 1.161	AsCl₅·NC₅H₅ C _{2v} 2.274 2.221 2.223
Symmetrie d(As-Cl _{äq}) d(As-Cl _{ax}) d(As-N) d(N-C) d(C-X)	AsCl ₅ ·NCCl C_{4v} 2.240 2.164 2.890 1.161 1.638	AsCl₅·NCBr <i>C</i> _{4v} 2.241 2.165 2.864 1.161 1.793	AsCl ₅ ·NCI C_{4v} 2.241 2.167 2.812 1.161 2.006	AsCl ₅ ·1/2(NC) ₂ D _{4h} 2.238 2.156 3.207 1.162 1.381	AsCl ₅ ·NCNH ₂ C ₁ 2.254 2.189 2.389 1.161 1.326	AsCl₅·NC₅H₅ C _{2v} 2.274 2.221 2.223
Symmetrie d(As-Cl _{äq}) d(As-Cl _{ax}) d(As-N) d(N-C) d(C-X) <(Cl _{äq} AsCl _{ax})	AsCl ₅ ·NCCl C_{4v} 2.240 2.164 2.890 1.161 1.638 99.8	AsCl ₅ •NCBr C _{4v} 2.241 2.165 2.864 1.161 1.793 99.5	AsCl ₅ ·NCI C_{4v} 2.241 2.167 2.812 1.161 2.006 99.4	AsCl ₅ ·1/2(NC) ₂ D _{4h} 2.238 2.156 3.207 1.162 1.381 100.9	AsCl ₅ •NCNH ₂ C ₁ 2.254 2.189 2.389 1.161 1.326 96.5	AsCl₅·NC₅H₅ C _{2v} 2.274 2.221 2.223 93.7
Symmetrie d(As-Cl _{äq}) d(As-Cl _{ax}) d(As-N) d(N-C) d(C-X) <(Cl _{äq} AsCl _{ax}) <(Cl _{ax} AsN)	AsCl ₅ ·NCCl C_{4v} 2.240 2.164 2.890 1.161 1.638 99.8 180.0	AsCl₅•NCBr C₄v 2.241 2.165 2.864 1.161 1.793 99.5 180.0	AsCl ₅ ·NCI C_{4v} 2.241 2.167 2.812 1.161 2.006 99.4 180.0	AsCl ₅ ·1/2(NC) ₂ D _{4h} 2.238 2.156 3.207 1.162 1.381 100.9 180.0	AsCl ₅ •NCNH ₂ C ₁ 2.254 2.189 2.389 1.161 1.326 96.5 179.9	AsCl₅·NC₅H₅ C _{2v} 2.274 2.221 2.223 93.7 180.0
Symmetrie d(As-Cl _{äq}) d(As-Cl _{ax}) d(As-N) d(N-C) d(C-X) <(Cl _{äq} AsCl _{ax}) <(Cl _{ax} AsN) <(AsNC)	AsCl ₅ ·NCCl C_{4v} 2.240 2.164 2.890 1.161 1.638 99.8 180.0 180.0	AsCl ₅ ·NCBr C_{4v} 2.241 2.165 2.864 1.161 1.793 99.5 180.0 180.0	AsCl ₅ ·NCI C_{4v} 2.241 2.167 2.812 1.161 2.006 99.4 180.0 180.0	AsCl ₅ ·1/2(NC) ₂ D _{4h} 2.238 2.156 3.207 1.162 1.381 100.9 180.0 180.0	AsCl ₅ •NCNH ₂ C ₁ 2.254 2.189 2.389 1.161 1.326 96.5 179.9 176.7	AsCl₅·NC₅H₅ C _{2v} 2.274 2.221 2.223 93.7 180.0

^a vergleiche Tabelle 24 für die experimentell bestimmten Strukturparameter.

3.4.6 Kristallstrukturen von SbCl₅ · NCCl und SbCl₅ · NCCN · SbCl₅

SbCl₅ · NCCl kristallisiert in der orthorhombischen Raumgruppe *Pnma* mit vier Formeleinheiten in der Elementarzelle und den Dimensionen a = 12.723(1), b = 9.473(1) und c = 7.8097(8). SbCl₅ · NCCN · SbCl₅ kristallisiert in der monoklinen Raumgruppe *P*2₁/*c* mit zwei Formeleinheiten in der Elementarzelle und den Dimensionen a = 10.8440(8), b = 6.0812(5), c = 12.3062(9) und $\beta = 92.255(2)$. In Tabelle 24 sind ausgewählte experimentell bestimmte Bindungslängen und Bindungswinkel aufgeführt. Abbildung 29 zeigt die Molekülstruktur von SbCl₅ · NCCl mit Elementbezeichnungen. Die Struktur des SbCl₅ · NCCN · SbCl₅ Adduktes ist in Abbildung 30 wiedergegeben.

Abb. 29 Molekülstruktur von SbCl₅ · NCCl. Die thermischen Ellipsoide repräsentieren eine Wahrscheinlichkeit von 25%.

Abb. 30Molekülstruktur von $SbCl_5 \cdot NCCN \cdot SbCl_5$. Die thermischen Ellipsoide reprä-
sentieren eine Wahrscheinlichkeit von 25%.

In beiden Addukten sind die Antimonatome annähernd ideal oktaedrisch von fünf Chlor- und einem Stickstoffatom umgeben. SbCl₅ · NCCl besitzt eine leicht verzerrte C_{4v} -Symmetrie und SbCl₅ · NCCN · SbCl₅ annähernde D_{4h} -Symmetrie mit einer ekliptischen Konformation.

Die Sb-N-Bindungslängen des SbCl₅ · NCCl-Adduktes sind mit 2.286(5) Å signifikant kürzer als im SbCl₅ · NCCN · SbCl₅-Addukt (2.663 Å), was auf eine schwächere Koordination des Dicyans im Vergleich zu ClCN hinweist (vgl. Kap. 3.4.7). Die Abweichung der experimentell bestimmten Sb-N-C-Bindungswinkel, mit 174.1(5)° für SbCl₅ · NCCl und 170.74° für SbCl₅ · NCCN · SbCl₅, von den auf B3LYP-Niveau berechneten 180° kann durch Kristallpackungseffekte erklärt werden.

Die Chlorcyan- und die Dicyan-Einheiten sind in den Addukten mit N-C-Cl- (179.4(6)°) und N-C-C-Bindungswinkel (179.6(9)°) nahezu linear.

	SbCl ₅ · NCCl	SbCl ₅ · NCCN · SbCl ₅	
d(Sb-Cl1)	2.322(2)	2.272(1)	
d(Sb-Cl2)	2.336(1)	2.336(2)	
d(Sb-N)	2.286(5)	2.663	
<i>d</i> (N-C)	1.137(8)	1.142(7)	
d(C-Cl)	1.593(7)		
<i>d</i> (C-C)		1.39(1)	
<(Cl1-Sb-Cl2)	96.04(5)	99.90(6)	
<(Cl1-Sb-N)	178.7(1)	178.64	
<(Sb-N-C)	174.1(5)	170.74	
<(N-C-Cl)	179.4(6)		
<(N-C-C)		179.6(9)	

Tabelle 24Ausgewählte experimentell bestimmte Bindungslängen [in Å] und -winkel[in °] für SbCl5 · NCCl und SbCl5 · NCCN · SbCl5.

3.4.7NBO-Analyse der Kristallstrukturen von SbCl5 · NCCl und
SbCl5 · NCCN · SbCl5

Die molekularen Addukte zwischen Antimonpentachlorid und Cyaniden stellen typische Lewis-Säure-Base-Komplexe dar. Eines der Hauptmerkmale dieser Addukte ist der gesamte Ladungstransfer q_{ct} zwischen dem Donor-Molekül und dem Acceptor-Molekül. Um einer genaueren Einblick in diese Donor-Aceptor-Wechselwirkung zu bekommen, wurden NBO-Analysen (Natural Bond Orbital Analysis) mit den Atomkoordinaten der Röntgenstrukturanalyse von SbCl₅ · NCCl und SbCl₅ · NCCN · SbCl₅ berechnet. Die quantenchemischen Rechnungen wurden auf B3LYP/6-31G(d,p)-Niveau mit einem Experimenteller quasirelativistischem Pseudopotential für Antimon *(s.* Teil) durchgeführt.101,102

Die NBO-Analysen der Addukt-Komplexe SbCl₅ · NCCl und SbCl₅ · NCCN · SbCl₅ ergeben leicht polarisierte Moleküle. Tabelle 25 zeigt die NPA-Partialladungen der einzelnen Atome in diesen beiden Addukten.

	SbCl ₅ · NCCl	$Cl_5Sb \cdot NCCN \cdot SbCl_5$
Sb	1.80	1.76
Cl _{ax}	-0.38	-0.35
Cl _{äq} ^a	-0.39	-0.37
Ν	-0.46	-0.25
С	0.35	0.31
Cl _{Nitril}	0.25	
q _{ct}	0.14	0.11

Tabelle 25NPA-Partialladungen [in e] für $SbCl_5 \cdot NCCl$ und
 $Cl_5Sb \cdot NCCN \cdot SbCl_5$ auf B3LYP-Niveau.

^a Durchschnittswert von vier Chloratomen in äquatorialer Position.

Die Gesamtmenge der von den Cyanid-Einheiten zu den SbCl₅-Einheiten transferierten Ladung, q_{ct} , in diesen Donor-Acceptor-Komplexen beträgt für SbCl₅ · NCCl 0.14 Elektronen, und für Cl₅Sb · NCCN · SbCl₅ 0.11 Elektronen. Dieses Ergebnis stimmt gut mit dem Konzept der +I- und –I-Effekte überein. Die Gesamtmenge der transferierten Ladung wird in SbCl₅ · NCCl von einer SbCl₅-Einheit akzeptiert. In Cl₅Sb · NCCN · SbCl₅ wird die Ladung auf zwei Moleküle SbCl₅ übertragen (0.06 Elektronen pro SbCl₅-Einheit). Dementsprechend ist die Donor-Acceptor-Wechselwirkung in Cl₅Sb · NCCN · SbCl₅ verglichen mit der

Wechselwirkung von SbCl₅ · NCCl geringer. In Übereinstimmung damit stehen sowohl die berechneten Stabilitäten der Komplexe (vgl. Kap 3.4.8), die experimentell bestimmte Verschiebung der ?CN-Streckschwingung komplexierter Cyanide zu den ?CN-Streckschwingung der freien Cyanide (vgl. Kap. 3.4.3) und die berechneten und experimentell bestimmten Sb-N-Bindungslängen (vgl. Kap. 3.4.5 und 3.4.6). Interessanterweise stammt ein erheblicher Teil der transferierten Ladung von den s-LonePairs der Stickstoffatome und der größte Anteil wird von den Chloratomen der Acceptor-Einheiten aufgenommen. Diese Bindungsverlängerung der Interpretation stimmt mit der Sb-Cl-Bindungen bei Komplexbildung überein. Die wichtigsten Donor-Acceptor-Wechselwirkungen sind in Tabelle 26 zusammengefasst.

Tabelle 26	Ausgewählte Donor-Acceptor-Wechselwirkungen [in kcal mol ⁻¹]
	für SbCl ₅ · NCCl und Cl ₅ Sb · NCCN · SbCl ₅ auf B3LYP-Niveau.

	SbCl ₅ · NCCl	$Cl_5Sb \cdot NCCN \cdot SbCl_5$
$\sigma \left(Cl_{aq}-Sb \right) \Longrightarrow \sigma^* \left(Cl_{aq}'-Sb \right)^a$	37.2	39.9
s-LP (Cl _{äq}) => $\sigma^* (Cl_{äq}-Sb)^a$	10.8	10.1
s-LP (N) => $\sigma * (Cl_{ax}-Sb)$	32.6	14.7
s-LP (N) => $\sigma * (Cl_{aq}-Sb)^{b}$	10.0	2.9
σ (C-Cl _{Nitril}) => σ * (N-C)	8.8	
s-LP (Cl _{Nitil}) => σ * (N-C)	13.2	
p-LP (Cl _{Nitril}) => $\sigma * (N-C)$	32.7	
p-LP (Cl _{Nitril}) $\Rightarrow \sigma * (N-C)$	26.7	
π (N-C) => π^* (C'-N') ^c		12.5
π (N-C) => π * (C'-N') ^c		12.5
$\sigma (C-N) \Longrightarrow \sigma^* (C-C)^{\mathfrak{c}}$		8.3
$\sigma (C-C) \Longrightarrow \sigma^* (C-N)^c$		9.9
s-LP (N) => $\sigma * (C-C)^{c}$		9.0

^a jedes Chloratom in äquatorialer Position doniert in das σ^* -Orbital der anderen drei Cl_{äq}-Atome.

^b für jedes Chloratom in äquatorialer Position.

^c tritt zweimal auf (für jedes CN-Fragment der Dicyan-Einheit).

Die s-*LP*'s der Stickstoffatome zeigen Wechselwirkungen mit den antibindenden σ *-Orbitalen der Sb-Cl-Bindungen. Die Sb-Cl-Bindungen werden dadurch geschwächt. In SbCl₅ · NCCl treten interessante Wechselwirkungen der s- und p-*LP*'s der Chloratome in der ClCN-Einheit mit den antibindenden σ *- und π *-Orbitalen der C-N Dreifach-Bindung auf. Cl₅Sb · NCCN · SbCl₅ zeigt Wechselwirkungen zwischen den bindenden π -Orbitalen der C-N-Fragments. Die aus diesen Wechselwirkungen resultierenden Mulliken-Bindungsordnungen [BO] sind in Tabelle 27 aufgeführt.

Für SbCl₅ · NCCl beträgt die Sb-N-Bindungsordnung 0.30 und für Cl₅Sb · NCCN · SbCl₅ 0.16. Es folgt, dass die Wechselwirkung für das SbCl₅ · NCCl-Addukt stärker ist. Die berechneten Bindungsordnungen der C-N-Bindung betragen für das Chlorcyan-Adukt 1.79 und für Cl₅Sb · NCCN · SbCl₅ 1.81. Die oben beschriebenen Wechselwirkungen bewirken im Vergleich mit den Bindungsordnungen freier Cyanide, eine Absenkung der C-N-Bindungsordnungen bei Komplexbildung.

0.63	0.67
	0.07
0.60	0.61
0.30	0.16
1.79	1.81
0.97	
	1.07
	0.60 0.30 1.79 0.97

Tabelle 27NBO-Bindungsordnung [BO] für SbCl5 · NCCl und Cl5Sb · NCCN · SbCl5auf B3LYP-Niveau.

^a Durchschnittswert von vier Chloratomen in äquatorialer Position.

Zur graphischen Veranschaulichung sind in den Abbildung 31 und 32 die NPA-Partialladungen beider Addukte farbig gekennzeichnet.

Abb. 31 NPA-Partialladungen [in e] für SbCl₅ · NCCl auf B3LYP-Niveau.

Abb. 32NPA-Partialladungen [in e] für $Cl_5Sb \cdot NCCN \cdot SbCl_5$ auf B3LYP-Niveau.

3.4.8 Thermodynamik und Stabilität

Strukturelle Parameter, Gesamtenergien $[E_{tot}]$, Nullpunktschwingungsenergien [zpe] sowie die Bindungsdissoziationsenthalpien $[BDE_{298}]$ bei 298.15° Kelvin wurden für alle AsCl₅ · LB bzw. SbCl₅ · LB-Addukte und den freien Reaktionskomponenten auf B3LYP-Niveau berechnet, und in Tabelle 28 zusammengefasst. Die Bindungsdissoziationsenthalpien für die Dissoziation der Addukte (Gleichung 21) ist ein Maß für die As- bzw. Sb-N_{LB}-Bindungsstärke dieser Addukte.

 $MCl_5 \cdot LB \longrightarrow MCl_5 + LB$ (21) (M = As, Sb; LB = ClCN, BrCN, ICN, ¹/₂(CN)₂, NH₂CN und Pyridin)

Mit Hilfe der berechneten Gesamtenergien (Tabelle 28) können Vorhersagen über die theoretischen Werte der Reaktionsenthalpien der Dissoziation gemacht werden. Die Dissoziationsenergien wurden berechnet, um die Nullpunktsschwingungsenergie (*zpe*),⁸⁵ den Rotationsterm (ΔU^{rot} (ClCN, BrCN, ICN) = 1 RT; ΔU^{rot} (NH₂CN, Pyridin) = 3/2 RT; ΔU^{rot} ($^{1}/_{2}$ (CN)₂) = 5/2 RT), den Translationsterm (ΔU^{tr} (ClCN, BrCN, ICN, BrCN, ICN, NH₂CN, Pyridin) = 3/2 RT; ΔU^{tr} ($^{1}/_{2}$ (CN)₂) = 3 RT) und den Arbeitsterm ($p\Delta V$ (ClCN, BrCN, ICN, NH₂CN, Pyridin) = 1 RT; $p\Delta V$ ($^{1}/_{2}$ (CN)₂) = 2 RT) korrigiert und in die Gasphasen-Bindungsdissoziationsenthalpien bei Raumtemperatur (ΔH°_{298}) konvertiert.

Die Werte der Bindungsdissoziationsenthalpien (BDE_{298}) der 1:1 Addukte nehmen in der Reihenfolge der Lewis-Basen Pyridin, NH₂CN, ICN, BrCN und ClCN ab. Die Werte sind für SbCl₅ höher als für AsCl₅. Die Adukkte sin im Vergleich mit den in Kap 3.3.6 beschriebenen Addukten, abgesehen der Pyridin Addukte ($\Delta H^{\circ}_{298} = +27.6$ kcal mol⁻¹ für SbCl₅ · Pyridin und $\Delta H^{\circ}_{298} = +17.9$ kcal mol⁻¹ für AsCl₅ · Pyridin) und dem SbCl₅ · NCNH₂ Addukt ($\Delta H^{\circ}_{298} =$ +17.0 kcal mol⁻¹), relativ schwach gebundene Moleküle. Bei den Halogencyanid-Adukkten steigt die Bindungsdissoziationsenthalpie mit der Masse des Halogenatoms.

Die Berechnungen zeigen ebenfalls, dass die Donorstärke des Dicyans im Vergleich zut den anderen Lewis-Basen am geringsten ist. Für die 2:1 Addukte beträgt die durchschnittliche Bindungsdissoziationsenthalpien (BDE_{298}) $\Delta H^{\circ}_{298} = +4.3$ kcal mol⁻¹ (SbCl₅ · NCCN · SbCl₅) und $\Delta H^{\circ}_{298} = +1.6$ kcal mol⁻¹ (AsCl₅ · NCCN · AsCl₅), was auf sehr schwache Lewis-Säure-Base-Addukte schließen lässt.⁸⁵

Tabelle 28	Berechnete (B3LYP) Gesamtenergien $[E_{tot}]$, Nullpunktsschwingungsenergien
	[zpe], Bindungsdissoziationsenthalpien [BDE298] und strukturelle Parameter für
	die AsCl ₅ · LB bzw. SbCl ₅ · LB-Addukte und freien Lewis-Basen.

Verbindung	- <i>E</i> _{tot} [a.u.]	zpe	NIMAG	BDE ₂₉₈	<i>d (M</i> …N) [Å]	$\Delta v CN [cm^{-1}]$
		[kcal mol ⁻¹]		[kcal mol ⁻¹]		
B3LYP/						
6-31G(d,p)						
SbCl ₅	2306.497547	3.8	0			
SbCl ₅ ⁻ ICN	2410.743811	9.5	0	+10.1	2.47	28
SbCl5 ⁻ BrCN	2412.702814	9.8	0	+9.2	2.49	42
SbCl5 [·] ClCN	2859.512657	10.2	0	+8.7	2.51	40
SbCl ₅ [·] NH ₂ CN	2455.305675	26.2		+17.0	2.34	76
(SbCl5 [·] CN) ₂	4798.653945	19.1	0	+8.6	2.87	18
SbCl5 [·] C5H5N	2554.827885	61.5	0	+27.6	2.33	
AsCl ₅	2307.224760	4.3	0			
AsCl ₅ ⁻ ICN	2411.459508	9.7	0	+3.2	2.81	18
AsCl5 [·] BrCN	2413.419270	9.9	0	+2.9	2.86	
AsCl5 [·] ClCN	2860.229671	10.3	0	+2.7	2.89	
AsCl ₅ 'NH ₂ CN	2456.017077	26.4	0	+7.4	2.39	
(AsCl ₅ [·] CN) ₂	4800.098758	19.5	0	+3.1	3.21	
AsCl ₅ [·] C ₅ H ₅ N	2555.539332	61.8	0	+17.9	2.22	
ICN	104.231352	4.4	0			
BrCN	106.191646	4.6	0			
CICN	553.002098	4.9	0			
NH ₂ CN	148.783189	21.4	0			
(CN) ₂	185.649243	9.6	0			
C ₅ H ₅ N	248.287074	55.8	0			

Die berechneten Stabilitäten der dargestellten Addukte stimmen sowohl mit den berechneten und experimentell bestimmten As- und Sb-N-Bindungslängen und der experimentell beobachteten Verschiebung der vCN-Streckschwingung der koordinierten Cyanide im Vergleich zu unkoordinierten Cyaniden überein (*s.* Tab. 28).

3.4.9 Zusammenfassung

Die Lewis-Säure-Base-Addukte AsCl₅ · NCI und SbCl₅ · LB (LB = CICN, BrCN, ICN, NH₂CN, $^{1}/_{2}$ (CN)₂ und Pyridin) wurden synthetisiert und durch Raman- und multinukleare NMR-Spektroskopie charakterisiert. Die Strukturen und Normalschwingungen aller Addukte wurden auf B3LYP-Niveau berechnet, und mit experimentell bestimmten Schwingungsspektren verglichen. Die Übereinstimmung zwischen Experiment und Theorie ist außerordentlich gut. Die Schwingungsspektren zeigen eindeutig Banden, die sowohl der Streck- als auch der Deformationsschwingung der M-N_{LB}-Bindung (M = As, Sb) zugeordnet werden.

Die ¹⁴N-NMR-Spektren zeigen im Vergleich zu den freien Lewis-Basen deutlich verschobene Resonanzen der Stickstoffatome.

Strukturen, die ein lokales Minimum (*NIMAG* = 0) aufweisen, konnten für alle Addukte berechnet werden. Die Übereinstimmung der berechneten Strukturparameter für SbCl₅ · NCCl und SbCl₅ · NCCN · SbCl₅ mit den durch Röntgenstrukturanalyse bestimmten Bindungslängen und -winkel ist außerordentlich gut. Die Strukturen zeigen eine sechsfache Koordination mit nahezu idealer oktaedrischer Umgebung an den Zentralatomen. Sie sind umgeben von fünf Chloratomen und jeweils einem Stickstoffatom der entsprechenden Lewis-Basen.

Auf der Grundlage der von SbCl₅ · NCCl und SbCl₅ · NCCN · SbCl₅ experimentell bestimmten Atomkoordinaten wurden NBO-Analysen (B3LYP) berechnet, um einen Einblick in die Bindungssituation solcher schwach gebundenen Lewis-Säure-Base-Addukte zu erhalten. Die Wechselwirkung von Dicyan mit SbCl₅ ist geringer als die Wechselwirkung von ClCN mit SbCl₅.

Basierend auf quantenmechanischen Rechnungen (B3LYP) wurde die Bindungsdissoziationsenthalpie bestimmt. Die thermodynamische Stabilität steigt in der Reihenfolge $(CN)_2 < ClCN < BrCN < ICN < NH_2CN < Pyridin und AsCl_5 < SbCl_5.$

3.5 Das Chlorooxoarsenat(III) [NMe₄]₂[As₄O₂Cl₁₀] · 2CH₃CN

3.5.1 Einführung – Bisheriger Kenntnisstand

Während der Studien über gemischt komplexe Arsen(III)-halogenanionen des Typs AsX_3Y^- (X, Y = F, Cl, Br, I, N₃), die allerdings nicht eindeutig charakterisiert werden konnten, entstand bei der Reaktion von NMe₄N₃ und AsCl₃ in Acetonitril unter aeroben Bedingungen das Chlorooxoarsenat(III) [NMe₄]₂[As₄O₂Cl₁₀] · 2CH₃CN. Dieser interessante Oxohalogen-Komplex konnte ebenfalls gezielt nach Literaturvorschrift¹⁰³ durch Reaktion von AsCl₃, As₂O₃ und NMe₄Cl in Acetonitril dargestellt werden.

In der Literatur sind wenige Oxohalogen-Komplexe der Metalle Arsen und Antimon beschrieben. Lediglich die komplexen Oxohalogen-anionen $As_2OCl_6^{2-,103,104}$ monomeres und dimeres $As_2OCl_5^{-,103,105,106,107}$ Sb $_2OCl_6^{2-,108,109,110}$ Sb $_4OCl_{12}^{2-,111}$ und Sb $_2OCl_7^{3-,112}$ konnten charakterisiert werden. Die Struktur des $As_4O_2Cl_{10}^{2-}$ -Dianions wurde durch Einkristall-Röntgenstrukturanalyse gelöst.^{103,106} Die Bindungsverhältnisse dieser Oxohalogen-Komplexe von Arsen und Antimon wurden bisher in der Literatur nicht diskutiert.

Im folgenden wird über die Synthese, die Einkristall-Strukturbestimmung und der schwingungsspektroskopischen Untersuchung von Bis(tetramethylammonium)-bis(μ^4 - chloro)-octachloro-bis(μ^2 -oxo)-tetra-arsen(III), [NMe₄]₂[As₄O₂Cl₁₀] · 2CH₃CN berichtet. Die Bindungsverhältnisse werden durch NBO-Anaylse (B3LYP), die mit den Atomkoordinaten der Röntgenstrukturanalyse berechnet wurde, geklärt.¹¹³

3.5.2 Darstellung von [NMe₄]₂[As₄O₂Cl₁₀] · 2CH₃CN

Die Umsetzung von äquimolaren Mengen Arsentrichlorid und Tetramethylammoniumazid führte unter aeroben Bedingungen zum Bis(tetramethylammonium)-bis(μ^4 -chloro)-octachloro-bis(μ^2 -oxo)-tetra-arsen(III), [NMe₄]₂[As₄O₂Cl₁₀] · 2CH₃CN (Gleichung 22) und nicht identifizierbaren Nebenprodukten.

$$4 \operatorname{AsCl}_{3} + 4 \operatorname{NMe}_{4}\operatorname{N}_{3} \xrightarrow{CH_{3}CN/H_{2}O} [\operatorname{NMe}_{4}]_{2}[\operatorname{As}_{4}O_{2}Cl_{10}] \cdot 2CH_{3}CN$$
(22)
Das selbe Produkt wurde gezielt durch Reaktion von AsCl₃, As₂O₃ und NMe₄Cl in Acetonitril dargestellt (Gleichung 23).

$$8 \operatorname{AsCl}_3 + 2 \operatorname{As}_2 O_3 + 6 \operatorname{NMe}_4 Cl \xrightarrow{CH_3 CN} 3 [\operatorname{NMe}_4]_2 [\operatorname{As}_4 O_2 Cl_{10}] \cdot 2CH_3 CN$$
(23)

3.5.3 Kristallstruktur von [NMe₄]₂[As₄O₂Cl₁₀] · 2CH₃CN

Das Salz $[NMe_4]_2[As_4O_2Cl_{10}] \cdot 2CH_3CN$ kristallisiert in der orthorhombischen Raumgruppe *Fmmm* mit vier Formeleinheiten in der Elementarzelle und den Dimensionen a = 11.4144(8), b = 14.732(1) und c = 19.803(2). In Tabelle 29 sind ausgewählte experimentell bestimmte und auf B3LYP-Niveau berechnete Bindungslängen und -winkel des $As_4O_2Cl_{10}^{2-}$ -Anions aufgeführt. Abbildung 33 zeigt das komplexe Oxohalogen-Anion mit Elementbezeichnungen.

Abb. 33Molekülstruktur des $As_4O_2Cl_{10}^{2-}$ -Anions. Die thermischen Ellipsoide
repräsentieren eine Wahrscheinlichkeit von 25%.

Die Röntgenstrukturanalyse von $[NMe_4]_2[As_4O_2Cl_{10}] \cdot 2CH_3CN$ ergab, dass getrennte NMe_4^+ -Kationen und $As_4O_2Cl_{10}^{2-}$ -Anionen sowie zwei Lösemittel-Moleküle (CH₃CN) vorliegen, zwischen denen keine signifikanten Kationen-Wechselwirkungen bestehen. Die Tetramethylammonium-Kationen sowie die beiden Lösemittel-Moleküle sind im Kristall stark fehlgeordnet. Die $As_4O_2Cl_{10}^{2-}$ -Anionen zeigen lokale D_{2h} -Symmetrie, in denen vier Arsenatome und zwei Sauerstoffatome coplanar angeordnet sind. Jedes Arsenatom weist lokale Ψ -oktaedrische Geometrie auf, in denen es von vier Chloratomen in nichtäquivalenten äquatorialen Positionen (zwei verbrückende- und zwei terminalen Chloratome) und einem stereochemischen aktivem Elektronenpaar in *trans* Position zu dem axial verbrückendem Sauerstoffatom umgeben ist (Abb. 33).

Die zwei verbrückende Chloratome, die oberhalb und unterhalb der quadratisch planaren Ebene liegen, die durch die vier Arsenatome aufgespannt wird, zeigen gleichermaßen Wechselwirkungen zu allen vier Arsenatomen und damit μ^4 -Chlor-Brücken. Das As₄O₂Cl₁₀^{2–} Anion kann als Assoziationsprodukt zweier Cl₂As-O-AsCl₂-Einheiten und zweier Chlorid-Anionen mit signifikanten Wechselwirkungen beschrieben werden (vergleiche Kap. 3.5.4).

Die As-Cl_{term.}-Abstände (2.219(1) Å) sind im Vergleich zu As-Cl-Bindungslängen der kationischen Spezies AsCl₄⁺ (2.042(3) - 2.0545(9) Å),^{30,52} oder binäres AsCl₃ (2.17(2) Å)⁶⁹ länger. Vergleichbare As-Cl-Bindungslängen zeigt nur das binäre AsCl₆⁻-Anion (2.187(4) - 2.245(2) Å)⁹⁰ oder das Lewis-Säure-Base-Addukt AsCl₃ · NMe₃ (2.18(1) Å),¹¹⁴ in dem aufgrund der Wechselwirkung zwischen dem Elektronenpaar des Stickstoffatoms und dem Arsenatom die As-Cl-Bindung geschwächt wird. Alle berechneten und experimentell bestimmten Strukturparameter des As₄O₂Cl₁₀²⁻-Anions, stimmen mit den in der Literatur beschriebenen Bindungslängen und -winkel gut überein (Tabelle 29).^{103,106}

	Röntgenstrukturanalyse	Berechnung (B3LYP)
d(As1-Cl _{bridg.})	3.070(1)	3.070
d(As1-Cl _{term.})	2.219(1)	2.297
d(As-O)	1.763(2)	1.794
<(O-As1-Cl _{term.})	93.32(9)	95.3
<(O-As1-Cl _{bridg.})	81.26(9)	82.5
<(As1-O-As2)	123.6(3)	120.9
<(Cl _{term.} -As1-Cl _{term.})	94.80(6)	95.4
<(Cl _{bridg.} -As1-Cl _{term.})	168.42(4)	168.0
<(As1-Cl _{bridg.} -As2)	60.81(3)	61.1

Tabelle 29Ausgewählte berechnete und experimentell bestimmte Bindungslängen [in Å]und -winkel [in °] für das $As_4O_2Cl_{10}^{2}$ -Anion.

3.5.4 NBO-Analyse der Kristallstruktur des As₄O₂Cl₁₀²⁻-Anions

Die NBO-Analyse wurde auf B3LYP-Niveau mit einem 6-31G(d) Basissatz für Chlor und Sauerstoff, und einem quasirelativistischem Pseudopotential für Arsen (s. Experimenteller Teil) mit den durch Röntgenstrukturanalyse experimentell bestimmten Atomkoordinaten berechnet. Es wurde angenommen, dass im Kristall Ladungstrennung vorliegt und somit die zweifache negative Ladung im komplexen Anion lokalisiert ist.

Das As₄O₂Cl₁₀²⁻-Anion wird in der Literatur als loser Zusammenhalt zweier Cl₂As-O-AsCl₂-Einheiten und zweier Chlorid-Anionen beschrieben, die durch Wechselwirkungen zweiter Ordnung stabilisiert werden.¹⁰⁶

Das molekulare $As_4O_2Cl_{10}^{2-}$ -Anion kann am besten als intramolekularer Lewis-Säure-Base-Komplex beschrieben werden, wobei die Cl⁻Anionen die Lewis-Base, und die Cl₂As-O-AsCl₂-Einheiten die Lewis-Säure repräsentieren. Einer der wichtigsten Charakteristika dieses Adduktes ist der Ladungstransfer q_{ct} vom Donor-Molekül (Cl⁻) zum Acceptor-Molekül (Cl₂As-O-AsCl₂). Die Gesamtmenge der transferierten Ladung beträgt 0.374 Elektronen und wir von einem Chlorid-Anion auf eine Cl₂As-O-AsCl₂-Einheit übertragen. Es folgt, dass die verbrückenden Chloratome eine Ladung von -0.626 Elektronen haben und die Cl₂As-O-AsCl₂-Einheiten eine negative Ladung von -0.374 Elektronen besitzen. Interessanterweise stammt ein beträchtlicher Teil der übertragenen Ladung von dem freien Elektronenpaar der verbrückenden Chloratome, das in einem s-Orbital lokalisiert ist. Der größte Anteil dieser Ladung wird in die antibindenden σ *-Orbitale der As-Cl_{term}-Bindung, die *trans* zu den verbrückenden Chloratomen angeordnet sind, übertragen. Diese Interpretation stimmt mit der Dehnung der As-Cl_{term}-Bindungen überein, sobald das Arsenatom zusätzliche Koordinationen eingeht.

Zusätzlich zu den Wechselwirkungen der s-*LP*'s der verbrückenden Chloratome mit den antibindenden σ *-Orbitalen der As-Cl_{term.}-Bindung, die die As-Cl_{term.}-Bindungen schwächen, sind Wechselwirkungen der p-*LP*'s der Sauerstoffatome der Cl₂As-O-AsCl₂-Einheiten mit den antibindenden σ *-Orbitalen der As-Cl_{term.}-Bindungen offensichtlich. Desweiteren gibt es Wechselwirkungen zwischen den σ *-Orbitalen der As-Cl_{term.}-Bindungen und den σ *-Orbitalen der As-O-Bindungen. Dadurch werden die As-O-Bindungen geschwächt. Die aus diesen Wechselwirkungen resultierenden NPA-Partialladungen und die Mulliken Bindungsordnungen (BO) sind in Tabelle 30 wiedergegeben. Zur besseren Übersicht sind in Abbildung 34 die NPA-Partialladungen farbig gekennzeichnet.

Tabelle 30NPA-Partialladungen [in e] und NBO-Bindungsordnung [BO] für das $As_4O_2Cl_{10}^{2}$ -Anion auf B3LYP-Niveau.

NPA	As	Cl _{bridg.}	Cl _{term.}	O
	1.288	-0.626	-0.445	-1.170
во	As-Cl _{brig} . 0.094	As-Cl_{term.} 0.500	As-O 0.518	q _{ct} 0.374

Abb. 34 NPA-Partialladungen [in e] des $As_4O_2Cl_{10}^{2}$ -Anions auf B3LYP-Niveau.

3.5.5 Ergebnisse und Diskussion der Schwingungsspektren

In Tabelle 31 sind die theoretisch berechneten (B3LYP) und experimentell beobachteten Raman- und IR-Normalschwingungen des As₄O₂Cl₁₀²⁻-Anions aufgeführt. Die IR- und Raman-Spektren von [NMe₄]₂[As₄O₂Cl₁₀] · 2CH₃CN zeigen zusätzlich zu den erwarteten Schwingungen, die dem NMe₄⁺-Kation und den CH₃CN-Lösemittel-Molekülen zugeordnet werden können, alle charakteristischen Normalschwingungen kovalenter As-Cl- und As-O-Bindungen. Für die Arsen-Sauerstoff-Streckschwingung werden vier Banden erwartet, von denen zwei Raman-aktiv (v_sAsO "*in phase*", *A*_g; v_{as}AsO "*out of phase*", *B*_{1g}) und zwei IRaktiv sind (v_sAsO "*out of phase*", *B*_{3u}; v_{as}AsO "*in phase*", *B*_{2u}). Die symmetrischen und antisymmetrischen As-O-Streckschwingungen liegen zwischen 709 cm⁻¹ und 519 cm⁻¹ und stimmen mit in der Literatur beschriebenen Arsen-Sauerstoff-Streckschwingungen überein.¹¹⁵ Die charakteristischen Arsen-Chlor-Streckschwingungen liegen in einem Bereich zwischen 300 cm⁻¹ und 352 cm⁻¹. Sie sind im Vergleich zu AsCl₃,¹¹⁶ aufgrund der Schwächung der As-Cl-Bindung, zu niedrigeren Wellenzahlen verschoben. Die Deformationsschwingungen der As-O-As-Einheiten zeigen eine schwache Bande im Raman-Spektrum (241 cm⁻¹) und eine starke Bande im IR-Spektrum (240 cm⁻¹). Die Deformationsschwingungen des coplanaren As-Ringsystems werden bei 208 cm⁻¹ (IR) und 192 cm⁻¹ (Raman) beobachtet. Die Streckschwingung der As-Cl_{bridg}.-Bindung können weder im IR-Spektrum noch im Ramanspektrum beobachtet werden. Die Deformationsschwingung dieser Bindung zeigt eine starke Bande bei 119 cm⁻¹ im Ramanspektrum.

IR	Raman	Berechnung (B3LYP) ^a	Zuordnung, Symmetrierasse
	103 (6)	100 (0 / 11)	$\delta_{as}As4-Ring + \delta_{s}AsCl_{term.}, A_{g}$
	119 (5.5)	117 (102 / 0)	$\delta_{\rm as} {\rm AsCl}_{\rm bridg.}, B_{3{\rm u}}$
	142 (6.5)	143 (75 / 0)	δ AsCl (wag.), B_{3u}
208 w		200 (4 / 0)	$\delta_{\rm as}$ As4-Ring, $B_{\rm 3u}$
	192 (5.5)	205 (0 / 18)	$\delta_{\rm s}$ As4-Ring, $A_{\rm g}$
240 s		242 (19 / 0)	δ AsOAs "in phase", B_{1u}
	241 (1)	242 (0 / 3)	δ AsOAs "out of phase", B_{2g}
	300 (4.5)	296 (0 / 24)	v_{s} AsCl _{term.} "in phase", B_{3g}
	315 (7.5)	312 (0 / 47)	$v_{as}AsCl_{term.}$ "out of phase", B_{2g}
313 s		314 (345 / 0)	$v_{as}AsCl_{term.}$ "in phase", B_{2u}
323 m	325 (4.0)	324 (381 / 0)	v_{s} AsCl _{term.} "out of phase", B_{3u}
335 s		334 (435 / 0)	$v_{as}AsCl_{term.}$ "in phase", B_{1u}
352 vw	352 (7.5)	354 (0 / 103)	$v_{s}AsCl_{term.}$ "in phase", A_{g}
519 vs		538 (85 / 0)	v_{s} AsO "out of phase", B_{3u}
	523 (2)	541 (0 / 49)	v_s AsO "in phase", A_g
	688 (3.5)	703 (0 / 31)	v_{as} AsO "out of phase", B_{1g}
709 vs		718 (794 / 0)	v_{as} AsO "in phase", B_{2u}

Tabelle 31Ausgewählte berechnete und experimentell beobachtete Schwingungsdaten $[in cm^{-1}]$ und Zuordnung für das $As_4O_2Cl_{10}^{2}$ -Anion.

^a In Klammern: IR-Intensität [in km mol⁻¹], Ramanaktivität [in Å⁴ AMU⁻¹].

3.5.6 Zusammenfassung

 $[NMe_4]_2[As_4O_2Cl_{10}] \cdot 2CH_3CN$ wurde gezielt synthetisiert und durch Raman- und IR-Spektroskopie charakterisiert. Die Normalschwingen des Moleküls konnten durch Vergleich mit quantenmechanischen Methoden (B3LYP) berechneten Schwingungsfrequenzen eindeutig zugeordnet werden. Die Struktur des Salzes wurde mittels Einkristall-Röntgenstrukturanalyse bestimmt. Die Bindungssituation des komplexen Anions wurde durch NBO-Analyse (B3LYP) geklärt.

3.6.1 Einführung – Bisheriger Kenntnisstand

Bärnighausen *et al.* berichteten 1973 über die Kristallstruktur des Monohydrates von Ammonium-hexachloroantimonat(V), $[NH_4][SbCl_6] \cdot H_2O.^{51b}$ Die Verbindung kristallisiert in der Raumgruppe *Immm* und ist somit homoeotyp zu den Verbindungen $[CH_3CO][SbCl_6]^{117}$ und $[NH_4][SbCl_6] \cdot NH_3.^{118}$ Damit verhalten sich das CH_3CO^+ -Kation und die $NH_4^+ \cdot H_2O$ -Einheit als strukturell äquivalente Einheiten wenn sie zusammen mit $SbCl_6^-$ -Anionen kristallisieren.

Die Kristallstruktur von $[NH_4][SbCl_6] \cdot H_2O$ ist eng mir der von K₂PtCl₆ verwandt, da die Anordnung der SbCl₆⁻-Anionen und der PtCl₆²⁻-Anionen topologisch äquivalent ist und die Lagen der Kalium-Ionen abwechselnd von H₂O und den NH₄⁺-Kationen besetzt werden. Diese Gleichartigkeit wurde durch folgende Gruppen-/Untergruppenbeziehung untermauert.¹¹⁹ Betrachtet man die Raumgruppen von K₂PtCl₆ (*Fm3m*) und die von $[NH_4][SbCl_6] \cdot H_2O$ (*Immm*) so wird beim Übergang von *Fm3m* nach *Immm* die dreifache und vierfache Symmetrieachse verloren, das Translationsgitter bleibt aber, abgesehen von der topologischen Fehlordnung, unverändert, da *Immm* eine zellengleiche Untergruppe von *Fm3m* ist. Die damals beobachtete Reduzierung der Symmetrie basiert auf der Bildung von Paaren zwischen NH₄⁺-Kationen und H₂O.^{51b}

Bärnighausen *et al.* berichten, dass vom kristallographischen Standpunkt aus gesehen, die Strukturanalyse des wasserfreien [NH₄][SbCl₆]-Salzes interessant sein sollte, da eine ähnliche Symmetriereduzierung, wie zuvor beschrieben, die Raumgruppe C2/c für wasserfreies [NH₄][SbCl₆] vorhersagt.^{51b} Diese Symmetriereduzierung wurde wie folgt begründet. In einem ersten Schritt wird die zweifache Symmetrie entlang der [001]-Ebene von *Immm* verloren. Formal wird die Raumgruppe C2/m für [NH₄][SbCl₆] in der unkonventionellen Platzierung *I*2/*m* erhalten. In einem zweiten Schritt wird die Symmetrie der Raumgruppe beibehalten, jedoch muss die [001]-Richtung verdoppelt werden um zur richtigen Raumgruppe für [NH₄][SbCl₆] zu kommen. Bärnighausen *et al.* waren jedoch nicht in der Lage, die Kristallstruktur des wasserfreien Ammonium-hexachloroantimonat(V) zu lösen.

Im folgenden wird über die zufällige Synthese und die Kristallstruktur des wasserfreien Ammonium-hexachloroantimonat(V), [NH₄][SbCl₆] berichtet.¹²⁰

3.6.2 Darstellung von [NH₄][SbCl₆]

Einkristalle der Verbindung $[NH_4][SbCl_6]$ wurden nach fünf-wöchigem Belassen eines Kolbens isoliert, der die unter Kap. 3.4 beschriebene Verbindung $SbCl_5 \cdot NCI$ und CH_2Cl_2 als Lösemittel enthielt. Vermutlich war dieser Kolben nicht vollständig verschlossen, oder das Lösemittel enthielt Spuren an Feuchtigkeit, wodurch sich $[NH_4][SbCl_6]$ einkristallin gebildet hat.

Die Bildung geschah vermutlich nach der in Gleichung 24 beschriebenen sauren Nitrilverseifung, da feuchtes Methylenchlorid Spuren an HCl bilden kann.

 $SbCl_5 \cdot NCI + 2H_2O + 2HCl \longrightarrow [NH_4][SbCl_6] + HCOOCl + HI$ (24)

3.6.3 Kristallstruktur von [NH₄][SbCl₆]

[NH₄][SbCl₆] kristallisiert in der monoklinen Raumgruppe C2/c mit vier Formeleinheiten in der Elementarzelle und den Gitterparametern a = 11.972(4), b = 6.2594(13), c = 11.999(4) und $\beta = 101.56(4)$. Abbildung 35 zeigt das Molekül mit Elementbezeichnungen.

Abb. 35 Molekülstruktur von [NH₄][SbCl₆]. Die thermischen Ellipsoide repräsentieren eine Wahrscheinlichkeit von 25%.

Die Kristallstruktur von $[NH_4][SbCl_6]$ offenbart das Vorliegen einer ionischen Verbindung aus NH_4^+ -Tetraedern und $SbCl_6^-$ -Oktaedern. Die $SbCl_6^-$ -Anionen zeigen Sb-Cl-Bindungslängen zwischen 2.359 (1) und 2.337 (1) Å. Die Cl-Sb-Cl-Bindungswinkel liegen in einem Bereich zwischen 89.17 (4) und 90.83 (4)°, was auf eine fast ideale oktaedrische Umgebung des Antimonatoms schließen läßt.

Die Strukturparameter des SbCl₆⁻-Anions stimmen sehr gut mit den Bindungslängen und -winkel der Verbindungen [NEt₄][SbCl₆] (vgl. Kap. 3.1.7 und dort erwähnte Referenzen) und HSbCl₆ \cdot 3H₂O¹²¹ überein.

Die N-H-Bindungslängen wurden zur kristallographischen Lösung der Struktur auf 0.88(1) Å fixiert, H-H-Abstände wurden bei freier Variable gleichgesetzt. Die Orientierung der H-Atome im Kristall wurde frei verfeinert, so dass die auftretenden Wasserstoffbrückenbindungen lokalisiert und diskutiert werden können. Dadurch ergibt sich ein perfekter Tetraeder für die NH_4^+ -Kationen. Die fixierten N-H-Bindungslängen stimmen sehr gut mit frei verfeinerten N-H-Bindungslängen überein.¹²²

Ähnlich der Verbindung $[P(OH)_4][SbF_6]$,¹²³ die aus idealen $(POH)_4^+$ -Tetraedern und SbF₆⁻-Oktaedern aufgebaut ist und H…F-Kontakte zeigt, sind die tetraedrischen NH₄⁺-Kationen über H…Cl-Wasserstoffbrückenbindungen mit sechs kristallographisch unterschiedlichen SbCl₆⁻-Anionen verknüpft (Abbildung 36). Dabei bildet jedes Wasserstoffatom Kontakte zu zwei SbCl₆⁻-Anionen. Die H…Cl-Abstände liegen in einem Bereich zwischen 2.77(4) und 2.99(1) Å, was auf schwache Wasserstoffbrückenbindungen schließen läßt. Abb. 36 Darstellung der Elementarzelle von [NH₄][SbCl₆]. Die intermolekularen H…Cl-Abstände sind in [Å] wiedergegeben.

3.7 Palladiumazid- und Platinazid-Verbindungen

3.7.1 Einführung – Bisheriger Kenntnisstand

In früheren Arbeiten¹²⁴ über Palladium(II)azid und dessen Verhalten gegenüber Stickstoffund Sauerstoffbasen wie Pyridin, Ammoniak oder Tetrahydroduran, konnte gezeigt werden, dass Palladium(II)azid befähigt ist koordinative Bindungen zu Lewis-Basen einzugehen um Verbindungen des Typs $L_2Pd(N_3)_2$ zu bilden (L = Lewis-Base). Während zwei Pyridin-Moleküle an das Metallatom koordinieren zeigte sich, dass beispielsweise die Basizität von Acetonitril oder Tetrahydrofuran nicht ausreicht um an das Palladiumatom zu koordinieren. Infolgedessen wurde bei diesen Versuchen reines Palladiumazid isoliert. In Fortführung dieser Arbeiten wird im folgenden über das koordinative Verhalten von Palladiumazid gegenüber halogensubstituierten Pyridinderivaten, die aufgrund der elektronenziehenden Wirkung der Halogenatome schwächere Lewis-Basen darstellen, und Chinolin als Lewis-Base berichtet. Die IR-, Raman- und NMR-spekroskopischen Untersuchungen der dargestellten Verbindungen werden im Vergleich zu bekannten Palladium(II)azid-Komplexen beschrieben. Die relative thermodynamische Stabilität der cis- und trans-Isomere von Verbindungen des Typs $L_2M(N_3)_2$ (L = Lewis-Base, M = Pd, Pt) liegt seit geraumer Zeit im Interesse vieler chemischer Untersuchungen.^{125,126} Normalerweise sind *cis*-Isomere in Verbindungen des Typs L₂Pd(N₃)₂ thermodynamisch stabiler. Die Isomere können oft durch einen von drei assoziativen Prozessen ineinander übergeführt werden.^{127,128,129,130,131} Die isomere Energiedifferenz und die Rate der Überführung solcher Spezies ist im hohen Maße von den eingesetzten Liganden und den verwendeten Anionen abhängig.¹³² Gleiche Anteile an cisund trans-Isomere wurden beispielsweise in Lösungen gefunden, wenn Methyldiphenylphosphan und Dimethylphenylphosphan als Liganden und Azid-Gruppen als Anionen eingesetzt wurden.¹³³ Wird Triphenylphosphan als Lewis-Base eingesetzt und Azid als Anion, so ist sowohl in Lösung, als auch im festen Zustand, das trans-Isomere bevorzugt.¹³⁴ Aufgrund von IR- und Raman-Untersuchungen konnte Beck et al. das trans-Isomere für die Verbindungen $L_2Pd(N_3)_2$ (L = PPh₃, AsPh₃) im festen Zustand postulieren.^{135,136} Kristallstrukturanalysen von $(Bzl)_2Pd(N_3)_2^{137}$ und $(Pyridin)_2Pd(N_3)_2^{36}$ zeigen die trans-Isomere im festen Zustand. Im folgenden werden die Kristallstrukturen der transkonfigurierten Palladium(II)azid-Komplexe $L_2Pd(N_3)_2$ (L = PPh₃, AsPh₃, 2-Chloropyridin und Chinolin) beschrieben.^{47,138} Beck et al. konnten ebenso zeigen, dass (PPh₃)₂Pd(N₃)₂ ein Paradebeispiel für Reaktion am koordinierten Azidliganden unter sehr milden Bedingungen darstellt.¹³⁹

Das Azid-Ion ist ein sehr vielseitiger Ligand, der in verschiedenster Art und Weise an Metallatome koordiniert werden kann. Mononukleare, dinukleare und polynukleare werden.^{139,140,141,142,143,144,145,146,147} Metallazid-Komplexe konnten synthetisiert Diese Vielfältigkeit des Azidliganden führt oft zu terminalen, end-on- oder end-to-end-verbrückten Azidkomplexen, was wiederum die Stereochemie der Übergangsmetallionen und deren spektroskopischen Eigenschaften bereichert. Polymer-verbrückte Metallazid-Verbindungen finden gerade in jüngster Zeit aufgrund ihrer vielfältigen magnetischen Eigenschaften großes Intersesse.¹⁴⁶ Metall-Komplexe mit einzelen verbrückenden Azidliganden sind hingegen wenig in der Literatur beschrieben.¹⁴⁷ Obwohl eine Vielzahl von verbrückten Übergangsmetallazid-Komplexen durch Röntgenstrukturanalyse charakterisiert werden konnten,¹³⁹⁻¹⁴⁷ ist der derzeitig einzig strukturell charakterisierte verbrückte Palladiumazid-Komplex $[AsPh_4]_2[Pd_2(N_3)_6]^{.148}$ Im folgenden wird über die Röntgenstrukturanalyse des gemischt valenten Palladiumazid/chlorid-Komplexes [AsPh₄]₂[Pd₂(N₃)₄Cl₂] berichtet, welcher vermutlich eine Zwischenstufe bei der Synthese von [AsPh₄]₂[Pd₂(N₃)₆] darstellt.¹⁴⁸ Die Strukturen gemischter Halogen- bzw. Pseudohalogen- und Azid-Platin-Komplexe des Typs $Pt(N_3)_4(X)_2^{2-}$ (X = Cl, Br, I, SCN und SeCN) wurden kürzlich beschrieben.¹⁴⁹

Kristallstrukturen homoleptischer Azido-Metallate sind bisher nur in begrenzter Anzahl bekannt. Unsere Arbeitsgruppe berichtete kürzlich über die Kristallstruktur des $Pd(N_3)_4^{2^-}$ -Anions als dessen $Pd(NH_3)_4^{2^+}$ -Salz.³⁶ Über die Strukturen des homoleptischen $Pt(N_3)_4^{2^-}$ -Anions und des $Pt(N_3)_6^{2^-}$ -Anions berichtete vor kurzem Dehnicke *et al.*^{32a} Im folgenden wird über die Kristallstrukturen der homoleptischen Palladium(II)azid-Spezies [PNP]₂[Pd(N₃)₄], einem Isomer des $Pt(N_3)_4^{2^-}$ -Anion als dessen [AsPh₄]₂[Pt(N₃)₄] · 2H₂O-Salz und die neuerliche Bestimmung der Kristallstruktur von [AsPh₄]₂[Pt(N₃)₆] im Vergleich mit quantenmechanischen Ergebnissen (HF und B3LYP) berichtet.⁴⁷

3.7.2 Darstellung und Eigenschaften von Palladium(II)azid-Komplexen

Die Palladium(II)azid-Komplexe $L_2Pd(N_3)_2$ (L = 2-Chloropyridin, 3-Chloropyridin und Chinolin) wurden durch Reaktion von Palladiumnitrat, zwei Äquivalenten der jeweiligen Lewis-Base und Natriumazid in einem Wasser/Aceton-Gemisch dargestellt (Gleichung 24).

 $Pd(NO_3)_2 + 2 NaN_3 + 2 L \xrightarrow{H_2O/Aceton} L_2Pd(N_3)_2 + 2 NaNO_3$ (24)

(L = 2-Chloropyridin, 3-Chloropyridin und Chinolin)

Reaktionen mit Pentafluorpyridin als Lewis-Base führten in allen Fällen zu reinem Palladiumazid. Es folgt, dass das Koordinationsverhalten von Pentafluorpyridin im Vergleich zu den anderen eingesetzten Lewis-Basen aufgrund der stark elektronenziehenden Fluorsubstituenten zu gering ist, um an das Metallzentrum zu koordinieren, und dass die Lewis-Basen-Stärke des Azid-Ions größer als die des Pentafluorpyridins ist, da die Bildung von polymeren Palladiumazid bevorzugt ist.

Die Azid-Komplexe sind in unpolaren Lösemittel wie Benzol oder CCl₄ unlöslich. In polaren Lösemittel wie CHCl₃ sind sie gering löslich, so dass NMR-Untersuchungen möglich waren. Geeignete Kristalle für die Röntgenstrukturanalyse von $L_2Pd(N_3)_2$ (L = 2-Chloropyridin und Chinolin) wurden durch Umkristallisation aus Chloroform gewonnen.

Die dargestellten Verbindungen unterscheiden sich wesentlich in ihren explosiven Eigenschaften. Gegenüber mechanischer Reibung sind sie relativ unempfindlich, jedoch explodieren speziell die halogensubstituierten Pyridin-Azid-Komplexe wenn sie einem thermischen Schocktest²⁷ unterzogen werden. Die thermodynamisch am wenigsten stabile Verbindung ist $L_2Pd(N_3)_2$ (L = 2-Chloropyridin). Die Verbindung explodiert bei 120°C schlagartig. Der Explosionspunkt liegt damit nur 3°C höher als in reinem Palladiumazid. $L_2Pd(N_3)_2$ (L = 2-Chloropyridin und Chinolin) zersetzen sich bei 143°C bzw. 171°C. Damit kann gefolgert werden, dass Chloridsubstitution am Pyridinliganden die explosiven Eigenschaften von Pyridin-koordinierten Palladium(II)azid-Verbindungen erhöht.³⁶

Geeignete Kristalle für die Röntgenstrukturanalyse von $L_2Pd(N_3)_2$ (L = PPh₃, AsPh₃), [AsPh₄]₂[Pd₂(N₃)₄Cl₂], [PNP]₂[Pd(N₃)₄], [AsPh₄]₂[Pt(N₃)₄] · 2H₂O und [AsPh₄]₂[Pt(N₃)₆] wurden durch Kristallisation aus Chloroform/Pentan gewonnen. *Herrn Prof. Dr. W. Beck* sei an dieser Stelle nochmals für die Bereitstellung der Azid-Komplexe herzlich gedankt.

3.7.3 Ergebnisse und Diskussion der Schwingungsspektren

Tabelle 32 gibt einen Überblick über die experimentell bestimmten Schwingungsfrequenzen der in dieser Arbeit synthetisierten Palladium(II)azid-Komplexe wieder. Die antisymmetrische und symmetrische Streckschwingungen der Azidliganden, $v_{as}N_3$ und v_sN_3 können einfach zugeordnet werden. Generell sind die Frequenzen der antisymmetrischen Streckschwingung verbrückender Azid-Einheiten im Vergleich mit terminalen Azid-Gruppen zu höheren, und die Frequenzen der symmetrischen Streckschwingung zu niedrigeren Wellenzahlen verschoben.¹⁴⁵ Verglichen mit in der Literatur^{10,135,136,148,150,151} beschriebenen Schwingungen für Palladium(II)azid-Komplexe, liegen in den Verbindungen $L_2Pd(N_3)_2$ (L = 2-Chloropyridin, 3-Chloropyridin, Chinolin) terminale Azidgruppen vor.

Die Spektren zeigen sehr starke Banden bei ca. 2010 – 2050 cm⁻¹ die den $v_{as}N_3$ -Streckschwingungen zugeordnet werden. Azidverbrückte Palladium-Komplexe zeigen für diesen Schwingungsmodus starke Absorptionen bei ca. 2070 cm⁻¹ (vgl. Tabelle 32). Aus der Tatsache, dass jeweils nur eine Bande für die antisymmetrische Streckschwingung sichtbar ist, folgt, dass die Verbindungen L₂Pd(N₃)₂ (L = 2-Chloropyridin, 3-Chloropyridin, Chinolin) zentrosymmetrische Moleküle darstellen. Diese Schlußfolgerungen wurden durch Röntgenstrukturanalyse bestätigt.

Die symmetrische Streckschwingung der Azidgruppen werden den Banden bei ca. 1280 cm⁻¹ zugeordnet. Die starke Intensität dieser Banden, welche für das Azid-Ion verboten sind, läßt auf kovalent gebundene Azidliganden schließen.¹³⁵

Die charakteristische δN_3 -Deformationsschwingung der Azid-Gruppe kann bei ca. 580 cm⁻¹ beobachtet werden. Die Palladium-Stickstoff-Streckschwingungen zeigen Banden bei ca. 400–460 cm⁻¹.

Verbindung	$v_{as}N_3$	$v_s N_3$	δN ₃	vPdN	Literatur
(2-Clpy) ₂ Pd(N ₃) ₂	2046	1282	587	460	diese Arbeit
(3-Clpy) ₂ Pd(N ₃) ₂	2033	1287	584	410	diese Arbeit
$(C_9H_7N)_2Pd(N_3)_2$	2015	1277	587	425	diese Arbeit
$(PPh_3)_2Pd(N_3)_2$	2045	1283	574	411	135,136
$[AsPh_4]_2[Pd_2(N_3)_4(\mu-N_3)_2]$	2060 [*] , 2033,	1283, 1271*	583, 563	417, 403	135,150
	2000				
[(PPh ₃)Pd(N ₃)(µ-N ₃)] ₂	2075*, 2027	1283, 1269*	572, 563	393	150
$[(PPh_3)_2Pd(\mu-N_3)]_2(BF_4)_2$	2079*	1260*	-	-	151
[Pd(µ-N ₃) ₂] _n (polymer)	2067*	1205*	559	438	36
(C ₅ H ₅ N) ₂ Pd(N ₃) ₂	2030	1291	581	460	36
$[Pd(NH_3)_4][Pd(N_3)_4]$	2017	1287	587	398	36

Tabelle 32Ausgewählte experimentell beobachtete Schwingungsdaten [in cm⁻¹] für
Palladium(II)azid-Komplexe (IR-Spektren).

* verbrückende Azidliganden.

3.7.4 Ergebnisse und Diskussion der ¹⁴N-NMR-Spektren

Die dargestellten Komplexe wurden durch ¹⁴N-NMR-Spektroskopie charakterisiert (Tabelle 33). In den Spektren sind drei gut aufgelöste Signale sichtbar die den unterschiedlichen Stickstoffatomen der kovalent gebundenen Azidgruppen zugeordnet werden. Die exakte Zuordnung der N_{α}-, N_{β}- und N_{γ}-Stickstoffatome (Konnektivität: Pd-N_{α}-N_{β}-N_{γ}) erfolgt dabei nach Beispielen aus der Literatur.^{10,24,36} Die individuellen chemischen Verschiebungen der Stickstoffatome für L₂Pd(N₃)₂ (L = 3-Chloropyridin, Chinolin) stimmen sehr gut mit den chemischen Verschiebungen anderer Palladiumazid-Komplexe überein (Tabelle 33). Für die Verbindung L₂Pd(N₃)₂ (L = 2-Chloropyridin) wurde aufgrund der relativ geringen Löslichkeit nur eine Resonanz aufgelöst, die dem N_{β}-Atom zugeordnet wird. *Spin-spin-splitting*, welche auf kleiner als 30 Hz geschätzt wird, wurde aufgrund des hohen Quadrupolmoments des ¹⁴N-Kernes nicht beobachtet.¹⁵²

Die Resonanzen bei ca. –130 ppm werden dem zentralen N_β-Atom der Azidgruppe zugeordnet, da die chemische Verschiebung dieses Atoms dem zentralen Stickstoffatom des Azid-Ions sehr ähnlich ist.¹⁰ Ein weiteres Signal, das zu höherem Feld verschoben ist (ca. –320 ppm) wird den N_α-Atomen der Azidgruppe zugeordnet. Die verbleibenden Signale bei ca. –225 ppm werden den terminalen N_γ-Stickstoffatomen der Azidgruppen zugeordnet. Für die Verbindungen L₂Pd(N₃)₂ (L = 2-Chloropyridin, Chinolin) wurde in den ¹⁴N-NMR-Spektren jeweils ein weiteres breites Signal beobachtet (–73 ppm für L = 2-Chloropyridin, –159 ppm für L = Chinolin), das den koordinierten Lewis-Basen zugeordnet wird. Diese Resonanzen sind damit im Vergleich mit den freien Lewis-Basen deutlich zu höherem Feld verschoben.²⁴

 Tabelle 33
 Chemische NMR-Verschiebungen der dargestellten Palladiumazid-Komplexe

 und verwandten Verbindungen [δ in ppm].

Verbindung	Nα	N_{β}	Nγ	Lösemittel	Lit.
(2-Clpy) ₂ Pd(N ₃) ₂		-128		CDCl ₃	diese Arbeit
(3-Clpy) ₂ Pd(N ₃) ₂	-321	-130	-223	CDCl ₃	diese Arbeit
$(C_9H_7N)_2Pd(N_3)_2$	-331	-128	-225	CDCl ₃	diese Arbeit
(PPh ₃) ₂ Pd(N ₃) ₂	-363	-140	-230	CH_2Cl_2	10
$[AsPh_4]_2[Pd_2(N_3)_4(\mu-N_3)_2]$	-355	-135	-230	CH_2Cl_2	10
$[(PPh_3)Pd(N_3)(\mu - N_3)]_2$	-374	-134	-255	CH_2Cl_2	10
$[(PPh_3)_2Pd(\mu-N_3)]_2(BF_4)_2$	-365	-129	-192	CH_2Cl_2	10
[Pd(µ-N ₃) ₂] _n (polymer)	-328	-129	-226	Pyridin	36
$(C_5H_5N)_2Pd(N_3)_2$	-328	-129	-225	<i>d</i> ₆ -Aceton	36
[Pd(NH ₃) ₄][Pd(N ₃) ₄]	-338	-129	-234	<i>d</i> ₆ -Aceton	36

3.7.5 Kristallstrukturen von $L_2Pd(N_3)_2$ (L = PPh₃, AsPh₃, 2-Chloropyridin, Chinolin)

Die Verbindungen $L_2Pd(N_3)_2$ (L = PPh₃, AsPh₃) kristallisieren in der triklinen Raumgruppe $P\overline{1}$ mit einem Molekül in der Elementarzelle (Abbildung 37). (2-Chloropyridin)₂Pd(N₃)₂ kristallisiert in der monoklinen Raumgruppe $P2_1/c$ mit zwei Molekülen in der Einheitszelle (Abbildung 38) und (Chinolin)₂Pd(N₃)₂ in der monoklinen Raumgruppe $P2_1/n$ mit zwei Molekülen in der Elementarzelle (Abbildung 39). Die experimentell bestimmten Bindungslängen und -winkel sind in Tabelle 34 aufgeführt.

Abb. 37Molekülstruktur von $(PPh_3)_2Pd(N_3)_2$ (E = P) (Wasserstoffatome sind
übersichtlichkeitshalber nicht gezeichnet). Die thermischen Ellipsoide
repräsentieren eine Wahrscheinlichkeit von 25%. Die Molekülstruktur von
 $(AsPh_3)_2Pd(N_3)_2$ (E = As) ist isotyp.

Abb. 38 Molekülstruktur von (2-Chloropyridin)₂Pd(N₃)₂ (Wasserstoffatome sind übersichtlichkeitshalber nicht gezeichnet). Die thermischen Ellipsoide repräsentieren eine Wahrscheinlichkeit von 25%.

Abb. 39Molekülstruktur von (Chinolin)2Pd(N3)2 (Wasserstoffatome sind
übersichtlichkeitshalber nicht gezeichnet). Die thermischen Ellipsoide
repräsentieren eine Wahrscheinlichkeit von 25%.

Tabelle 34Ausgewählte experimentell bestimmte Bindungslängen [in Å] und -winkel[in °] für L2Pd(N3)2 (L = PPh3, AsPh3, 2-Chloropyridin, Chinolin).

	$(PPh_3)_2Pd(N_3)_2$	$(AsPh_3)_2Pd(N_3)_2$	(2-Chloropyridin) ₂ Pd(N ₃) ₂	(Chinolin) ₂ Pd(N ₃) ₂
	(E1 = P1,	(E1 = As1,	(E1 = N11, E1A = N11A)	(E1 = N4,
	E1A = P1A)	E1A = As1A)		E1A = N4A)
<i>d</i> (Pd-N1)	2.022(3)	2.028(2)	2.029(4)	2.038(5)
<i>d</i> (N1-N2)	1.190(5)	1.202(3)	1.195(6)	1.177(6)
<i>d</i> (N2-N3)	1.151(5)	1.145(3)	1.153(6)	1.152(5)
<i>d</i> (Pd-E1)	2.347(1)	2.4160(7)	2.022(3)	2.033(4)
d(C-Cl)			1.727(4)	
<(N1-N2-N3)	174.9(4)	175.0(3)	175.8(5)	176.6(6)
<(N1-Pd-N1A)	180.0	180.0	180.0	180.0
<(E1-Pd-E1A)	180.0	180.0	180.0	180.0
<(Pd-N1-N2)	122.5(3)	119.8(2)	119.7(3)	120.2(3)
<(E1-Pd-N1)	92.6(1)	93.67(7)	92.4(1)	92.2(2)
<(E1-Pd-N1A)	87.4(1)	86.33(7)	87.6(1)	87.8(2)

In den zentrosymmetrischen Molekülen sind die Palladiumatome in einer quadratisch planaren Anordnung umgeben. (PPh₃)₂Pd(N₃)₂ ist von zwei Stickstoffatomen der Azidliganden und zwei Phosphoratomen der Triphenylphosphan-Gruppen und (AsPh₃)₂Pd(N₃)₂ ist von zwei Stickstoffatomen der Azid-Gruppen und zwei Arsenatomen der Triphenylarsanliganden umgeben. $(2-Chloropyridin)_2Pd(N_3)_2$ und $(Chinolin)_2Pd(N_3)_2$ sind jeweils von vier Stickstoffatomen umgeben, wovon zwei von den Azidliganden stammen und zwei von den jeweiligen Stickstoffbasen. In diesen Verbindungen liegen alle Stickstoffatome der Azidliganden und die Palladiumatome in einer Ebene. In (Chinolin)₂Pd(N₃)₂ liegen alle acht Stickstoffatome in einer Ebene. Die Chinolinringe sind aus dieser Ebene um 76.4° gedreht (<N1-Pd-N4-C1). (PPh₃)₂Pd(N₃)₂ und (AsPh₃)₂Pd(N₃)₂ zeigen im Gegensatz zu (Chinolin)₂Pd(N₃)₂ und (Pyridin)₂Pd(N₃)₂,³⁶ in denen die N-Pd-N-Achse (Stickstoffatome der Lewis-Basen) in der selben Ebene wie die Stickstoffatome der Azidliganden und die Palladiumatome liegen, dass die E-Pd-E1-Achsen (E = P,As; E-Pd-E1 180.0°) fast gänzlich senkrecht zu der beschriebenen N₃-Pd-N₃-Ebene (Diederwinkel <E1-Pd-N1-N2 88°) stehen. Dies kann durch die sterischen Effekte der großvolumigen EPh₃-Liganden ($E = P_{A}$ s) erklärt werden. Die Phenylringe sind in diesen beiden Komplexen in einer gestaffelten Konformation angeordnet.

Die Chlorsubstitution an den Pyridinringen in Position 2 führt dazu, dass die Azidgruppen zu den Chloratomen orientiert sind (N3…Cl1 3.44 Å). Folglich driftet die N-Pd-N-Achse (Stickstoffatome der Lewis-Base) aus der N₃-Pd-N₃-Ebene. Der Diederwinkel <N11-Pd-N1-N2 beträgt 26.8°.

Die Pd-N1-Bindungslängen mit 2.022(3) - 2.038(5) Å und die Pd-N1-N2-Bindungswinkel (119.7(3) - 122.5(3)°) aller vier Palladiumazid-Komplexe entsprechenden Erwartungen und stimmen gut mit in der Literatur beschriebenen Pd-N₃-Bindungslängen und Pd-N-N-winkeln überein.^{36,137} Die N1-N2-Bindungslängen (1.177(6) - 1.202(3) Å) und die N2-N3-Bindungslängen (1.145(3) - 1.153(6) Å) sind für kovalent gebundene Azide erwartungsgemäß nicht äquidistant. Die Azid-Einheiten sind mit N1-N2-N3-Bindungswinkel zwischen 174.9(4)° und 176.6(6)° leicht gewinkelt.

Der Kristallverband in $(2\text{-Chloropyridin})_2 Pd(N_3)_2$ is dadurch gekennzeichnet, dass die Moleküle Ketten bilden, in denen die Moleküle deckungsgleich angeordnet sind (Abbildung 40). Die Stickstoffbene der Azidliganden einer Kette ist gegenüber der N-Ebene der anderen Kette um exakt 90.0° gedreht.

Abb. 40Darstellung der Elementarzelle von (2-Chloropyridin)2Pd(N3)2. Blick entlang
der a-Achse (Wasserstoffatome sind übersichtlichkeitshalber nicht gezeichnet).
Die thermischen Ellipsoide repräsentieren eine Wahrscheinlichkeit von 25%.

3.7.6 Kristallstruktur von [(AsPh₄)₂][Pd₂(N₃)₄Cl₂]

Das Salz [AsPh₄]₂[Pd₂(N₃)₄Cl₂] kristallisiert in der monoklinen Raumgruppe $P2_1/c$ mit zwei Formeleinheiten in der Elementarzelle und den Dimensionen a = 13.9662(3), b = 11.1945(3), c = 17.1456(4) und $\beta = 113.118(2)^{\circ}$. In Tabelle 35 sind ausgewählte experimentell bestimmte Bindungslängen und -winkel des Pd₂(N₃)₄Cl₂²⁻-Anions aufgeführt. Abbildung 41 zeigt die Molekülstruktur des Pd₂(N₃)₄Cl₂²⁻-Anions mit Elementbezeichnungen.

Abb. 41Molekülstruktur des $Pd_2(N_3)_4Cl_2^{2-}$ -Anions. Die thermischen Ellipsoide
repräsentieren eine Wahrscheinlichkeit von 25%.

Das komplexe Anion weist einen planaren Pd₂N₂-Ring mit einem Inversionszentrum auf. Direkte Metall-Metall-Wechselwirkungen können aufgrund von Pd1…Pd1A-Bindungsabständen (3.1467(8) Å) und stumpfen Pd1-N4-Pd1A-Bindungswinkel (100.7(3)°) ausgeschlossen werden. Eine an den Metallzentren analoge Struktur wurde in den Metallazid-Komplexen Pd₂(N₃)₆^{2-,148} [Ta(μ -N₃)Cl₄]₂,¹⁵³ [cp^{*}VCl(N₃)(μ -N₃)]₂,¹⁴⁵ [cp^{*}V(N₃)₂(μ -N₃)]₂¹⁴⁵ und [(C₆F₅)₂B(μ -N₃)]₂¹⁵⁴ gefunden.

<i>d</i> (Pd1-N1)	2.071(5)	Pd1-N4	2.045(6)	
<i>d</i> (N1-N2)	0.991(8)	Pd1-N4A	2.041(6)	
<i>d</i> (N2-N3)	1.254(9)	N4-N5	1.178(8)	
<i>d</i> (Pd1-Cl1)	2.302(2)	N5-N6	1.130(9)	
<(N1-N2-N3)	173.8(7)	N4-N5-N6	177.3(9)	
<(Pd1-N1-N2)	122.2(5)	Pd1-N4-N5	128.6(5)	
<(N1-Pd1-N4A)	170.1(2)	Pd1-N4A-N5A	130.3(5)	
<(N1-Pd1-N4)	90.8(2)	C11-Pd1-N1	96.1(2)	
<(Cl1-Pd1-N4A)	93.8(2)	Cl1-Pd1-N4	173.0(2)	
<(N4-Pd1-N4A)	79.3(3)			

Tabelle 35Ausgewählte experimentell bestimmte Bindungslängen [in Å] und -winkel[in °] für das $Pd_2(N_3)_4Cl_2^{2^-}$ -Anion.

Die verbrückenden Azidliganden (N4, N5, N6) sind geringfügig aus der Ebene des Pd₂N₂-Rings gedreht (maximal 6°). Die Chloratome liegen in der selben Ebene wie die Atome des Pd₂N₂-Rings. Die N4-N5-Bindungslängen betragen 1.178(8) Å, und sind damit länger als die N5-N6-Bindungslängen (1.130(9) Å), und damit vergleichbar mit den experimentell bestimmten Azid-Bindungslängen im $Pd_2(N_3)_6^{2-}$ -Anion.¹⁴⁸ Die terminalen Azid-Einheiten (N1, N2, N3) zeigen unrealistische N-N-Abstände. Der N1-N2-Abstand beträgt 0.991(8) Å und ist somit kürzer als der N2-N3-Abstand mit 1.254(9) Å. Dieses Ergebnis ist verwunderlich, da die Relation in N-N-Abständen von Azid-Einheiten normalerweise umgekehrt sein sollte.¹⁵⁵ Dieses Phänomen wurde auch bei den strukturellen Untersuchungen $SbCl(N_3)_{2,2}^{25}$ der Platin-Azid-Komplexen des Moleküls $[AsPh_4]_2[Pt(N_3)_4]$ und $[AsPh_4]_2[Pt(N_3)_6]^{32a}$ und der Goldazid-Verbindung Ph₃PAuN₃^{156b} beobachtet. Mit Hilfe kristallographischer Methoden konnte geklärt werden, dass die Position des N1-Atoms nicht korrekt beschrieben wird. Daher wurde eine erneute Bestimmung der Kristallstrukturen der Platinazid-Komplexe $[AsPh_4]_2[Pt(N_3)_4]$ und $[AsPh_4]_2[Pt(N_3)_6]$ (vgl. Kap. 3.7.7) durchgeführt.

Die terminalen Pd1-N1-Bindungslängen sind im Vergleich zu den unter Kapitel 3.7.5 beschriebenen Azid-Komplexen mit 2.071(5) Å geringfügig länger. Diese Tatsache kann dadurch erklärt werden, dass aufgrund der Wechselwirkung des N4A-Atoms mit dem Pd1-Atom (Dimerisierung) (Pd1-N4A 2.041(6) Å) die Pd1-N1-Bindungslänge aufgrund der Wechselwirkung zwischem dem s-*LP* des N4A-Stickstoffatoms mit dem antibindenden σ^* -Orbital der Pd1-N1-Bindung ansteigt.

Die N1-N2-N3- und N4-N5-N6-Bindungswinkel liegen zwischen 173.8(7) und 177.3(9)° und entsprechen damit den Erwartungen. Die terminalen Azid-Einheiten weisen einen Diederwinkel von 20.1° (N2-N1-Pd1-N4) zum Pd_2N_2 -Ring auf.

In dieser Struktur wird die generelle Erfahrung bestätigt, dass Azidliganden besser als Chloratome geeignet sind als verbrückende Einheiten zu fungieren.¹⁵⁷

3.7.7 Kristallstrukturen von $[PNP]_2[Pd(N_3)_4]$, $[AsPh_4]_2[Pt(N_3)_4] \cdot 2H_2O$ und $[AsPh_4]_2[Pt(N_3)_6]$

[PNP]₂[Pd(N₃)₄] kristallisiert in der orthorhombischen Raumgruppe *P*bca mit vier Formeleinheiten in der Elementarzelle und den Dimensionen a = 20.045(1), b = 19.741(1)und c = 16.0790(9), [AsPh₄]₂[Pt(N₃)₄] · 2H₂O in der monoklinen Raumgruppe *P*2₁/*n* mit zwei Formeleinheiten in der Elementarzelle und den Dimensionen a = 11.1981(8), b = 16.181(1), c = 13.357(1) und $\beta = 95.043(9)^{\circ}$. Das Kristallsystem in [AsPh₄]₂[Pt(N₃)₆] hingegen ist triklin (Raumgruppe $P\overline{1}$). Das Salz kristallisiert mit einem Molekül in der Elementarzelle und den Kantenlängen a = 10.2961(2), b = 10.5176(2) und c = 12.5363(2), sowie den Zellenwinkeln $\alpha = 88.035(1)$, $\beta = 73.702(1)$ und $\gamma = 67.9989(7)$.

Die Molekülstrukturen der $M(N_3)_4^{2-}$ -Anionen der Verbindungen $[PNP]_2[Pd(N_3)_4]$ (M = Pd) und $[AsPh_4]_2[Pt(N_3)_4] \cdot 2H_2O$ (M = Pt) sind in Abbildung 42 gezeigt. Ausgewählte experimentell bestimmte und berechnete (HF und B3LYP) Bindungslängen und -winkel sind in den Tabellen 36 und 37 zusammengefasst.

Abb. 42Molekülstruktur des $Pt(N_3)_4^{2-}$ -Anions. Die thermischen Ellipsoide
repräsentieren eine Wahrscheinlichkeit von 25%. Die Molekülstruktur des
 $Pd(N_3)_4^{2-}$ -Anions zeigt die gleiche Gestalt.

Die Struktur von $[PNP]_2[Pd(N_3)_4]$ besteht aus PNP^+ -Kationen $(PNP^+ = N(PPh_3)_2^+)$ ohne Besonderheiten und $Pd(N_3)_4^{2-}$ -Anionen, die keinerlei signifikanten Kationen----Anionen-Wechselwirkungen aufweisen. Die Palladiumzentren der $Pd(N_3)_4^{2-}$ -Anionen sind annähernd ideal quadratisch planar von vier Stickstoffatomen umgeben. Die Struktur ist zu dem homoleptischen Kupferazid-Komplex $Cu(N_3)_4^{2-}$ isotyp.¹⁵⁸

Die Winkel zwischen den Azidgruppen an den Palladiumatomen liegen in einem Bereich zwischen $88.9(2)^{\circ}$ (N1-Pd-N4) und $91.1(2)^{\circ}$ (N1-Pd-N4A). Im Gegensatz zu dem in der Literatur beschriebenen Pd(N₃)₄²⁻-Anion mit Pd(NH₃)₄²⁺-Gegenionen,³⁶ in dem die Anionen aufgrund von Kationen···Anionen-Wechselwirkungen ideal planar angeordnet sind (alle Atome des Anions liegen in einer Ebene), zeigt das hier beschriebene Pd(N₃)₄²⁻-Anion signifikante Torsionswinkel. Zwei der vier Azidliganden zeigen Torsionswinkel von 16.7° (N1-Pd-N4-N5). Der Torsionswinkel der anderen beiden Azidgruppen beträgt 30.9° (N4-Pd-N1-N2). Quantenmechanische Berechnungen auf HF- und B3LYP-Niveau (Tabelle 36) zeigen ein lokale Minimumstruktur für ein planares Anion (Symmetrie C_{4h}). Die Abweichung

der experimentell bestimmten und berechneten Diederwinkel kann durch Packungseffekte im Kristall erklärt werden.

	Röntgenstrukturanalyse	HF	B3LYP
Symmetrie		$C_{ m 4h}$	$C_{4\mathrm{h}}$
NIMAG		0	0
<i>zpe</i> [kcal mol ⁻¹]		32.3	31.7
-E _{tot} [a.u.]		779.818612	784.796567
<i>d</i> (Pd-N1)	1.995(5)	2.087	2.082
<i>d</i> (Pd-N4)	1.991(5)	2.087	2.082
<i>d</i> (N1-N2)	1.225(6)	1.203	1.205
<i>d</i> (N2-N3)	1.139(6)	1.155	1.167
<i>d</i> (N4-N5)	1.145(7)	1.203	1.205
<i>d</i> (N5-N6)	1.090(7)	1.155	1.167
<(N1-N2-N3)	177.8(6)	175.7	174.5
<(N4-N5-N6)	172.3(7)	175.7	174.5
<(Pd-N1-N2)	124.8(4)	130.6	124.9
<(Pd-N4-N5)	123.6(5)	130.6	124.9
<(N1-Pd-N4)	88.9(2)	90.0	90.0
<(N1-Pd-N4A)	91.1(2)	90.0	90.0
<(N1-Pd-N1A)	180.0(4)	180.0	180.0

Tabelle 36	Ausgewählte berechnete (HF und B3LYP) und experimentell bestimmte
	Bindungslängen [in Å] und -winkel [in °] für das $Pd(N_3)_4^{2-}$ -Anion.

Die vier Azidliganden nehmen jeweils gleichsinnige Lagen mit vierzähligen Drehachsen senkrecht zu den Ionenebenen ein. Daraus resultiert eine Struktur die einem "Windrad" sehr ähnlich ist (Abbildung 42).

Die Anionen in der Verbindung $[PNP]_2[Pd(N_3)_4]$ weisen zwei kristallographisch unterschiedliche Azidgruppen auf. Die N1-N2-N3-Einheit zeigt erwartete Bindungslängen (N1-N2 1.225(6) Å, N2-N3 1.139(6) Å), die N4-N5-N6-Einheit wird, ähnlich der Verbindung $[AsPh_4]_2[Pd_2(N_3)_4Cl_2]$, durch unrealistische Bindungslängen beschrieben (N4-N5 1.145(7) Å, N5-N6 1.090(7) Å). Berechnungen auf HF- und B3LYP-Niveau zeigen gleichartige Bindungslängen für alle Azidliganden. Die Übereinstimmung der berechneten und experimentell bestimmten Bindungsparameter ist, abgesehen der N4-N5- und N5-N6-Bindungslängen, außerordentlich gut. Die Molekülstruktur des Pt(N₃)₄²⁻-Anions wurde erst kürzlich von Dehnicke *et al.* beschrieben.^{32a} Hier wird über die erneute Strukturbestimmung dieses Anions im Vergleich mit Ergebnissen aus quantenmechanischen Berechnungen berichtet. Im Gegensatz zu der von Dehnicke *et al.* berichteten Verbindung,^{32a} kristallisiert die hier beschriebene Verbindung mit zwei Wassermolekülen in der Elementarzelle. Die Wassermoleküle sind kristallographisch fehlgeordnet und die Wasserstoffatome konnten nicht lokalisiert werden. Daher können keine Aussagen über das Wasserstoffbrückenbindungssystem gemacht werden. Dennoch könnten Wechselwirkungen zwischen den Lösemittelmolekülen und den Anionen auftreten. Der kürzeste O…N3-Abstand beträgt 3.31 Å, was auf schwache Wasserstoffbrückenbindungen zwischen den terminalen N3-Atomen der Azidgruppe und den Wassermolekülen schließen läßt. Mit Hilfe dieser Brückenbindungen kann eventuell die unterschiedliche Orientierung der Azid-Einheiten innerhalb der Anionen der hier beschriebenen Verbindung im Vergleich mit der lösemittelfreien Verbindung^{32a} erklärt werden.

Für die lösemittelfreie Verbindung wird aufgrund der unterschiedlichen Orientierung der N-N-N-Achsen annähernd lokale C_{2v} -Symmetrie an den Platinatomen erreicht. Die Kristallstruktur der Anionen in der Verbindung [AsPh₄]₂[Pt(N₃)₄] · 2H₂O offenbart zwei kristallographisch unterschiedliche Azid-Einheiten mit gleichsinniger Anordnung aller vier symmetriegenerierten Azidliganden. Daher zeigen die hier beschriebenen Pt(N₃)₄^{2–}-Anionen die gleiche molekulare Struktur wie die [Pd(N₃)₄]^{2–}-Anionen, die Au(N₃)₄[–]-Anionen¹⁵⁶ und die Cu(N₃)₄^{2–}-Anionen.¹⁵⁸ Ähnlich der Pd(N₃)₄^{2–}-Anionen besetzen die Azidgruppen in den Pt(N₃)₄^{2–}-Anionen gleichsinnige Lagen mit einer vierzähligen Drehachse senkrecht zu den Ionenebenen, woraus eine "Windrad"-ähnliche Struktur resultiert (Abbildung 42).

Die Platinatome sind annähernd ideale quadratisch planaren von vier Stickstoffatomen umgeben. Die Bindungswinkel zwischen den Azidgruppen sind in einem Bereich zwischen 88.3(5)° (N1-Pt-N4) und 91.7(5)° (N1-Pt-N4A). Tabelle 37 gibt einen Überblick über die experimentell bestimmten und auf HF- und B3LYP-Niveau berechneten Strukturparameter wieder.

	Röntgenstrukturanalyse	HF	B3LYP
Symmetrie		$C_{4\mathrm{h}}$	$C_{4\mathrm{h}}$
NIMAG		0	0
<i>zpe</i> [kcal mol ⁻¹]		32.4	31.8
- <i>E</i> _{tot} [a.u.]		771.241319	776.264057
<i>d</i> (Pt-N1)	2.032(9)	2.085	2.076
<i>d</i> (Pt-N4)	1.94(1)	2.085	2.076
<i>d</i> (N1-N2)	1.20(1)	1.204	1.206
<i>d</i> (N2-N3)	1.14(1)	1.154	1.167
<i>d</i> (N4-N5)	1.04(1)	1.204	1.206
<i>d</i> (N5-N6)	1.13(2)	1.154	1.167
<(N1-N2-N3)	175.0(1)	175.3	173.8
<(N4-N5-N6)	172.0(2)	175.3	173.8
<(Pt-N1-N2)	121.9(7)	129.4	125.6
<(Pt-N4-N5)	125.0(1)	129.4	125.6
<(N1-Pt-N4)	88.3(5)	90.0	90.0
<(N1-Pt-N4A)	91.7(5)	90.0	90.0
<(N1-Pt-N1A)	180.000(1)	180.0	180.0

Tabelle 37Ausgewählte berechnete (HF und B3LYP) und experimentell bestimmte
Bindungslängen [in Å] und -winkel [in °] für das $Pt(N_3)_4^{2-}$ -Anion.

Ähnliche Probleme, die N-N-Abstände innerhalb den Azid-Einheiten betreffend, treten auch bei dieser Verbindung auf. Zwei Azidliganden zeigen mit N-N-Abständen die den Erwartungen entsprechen "normales" Verhalten. Die beiden anderen Azidgruppen weisen unerwartete Abstände auf. Quantenchemische Berechnungen (HF und B3LYP) (Tabelle 37) sagen eine lokale Minimumstrukur mit gleichen N-N-Bindungslängen für alle vier Azidliganden vorher.

Die Azidgruppen weisen signifikante Torsionswinkel auf die durch Packungseffekte im Kristall erklärt werden können. Zwei der Azidgruppen zeigen Diederwinkel von 7.2° (N1-Pt-N4-N5), die Torsionswinkel der anderen beiden Azid-Einheiten betragen 39.5° (N4-Pt-N1-N2). Die Berechnungen sagen eine Minimumstruktur mit lokaler C_{4h} -Symmetrie am Platinzentrum voraus (Torsionswinkel = 0°).

Die Packungsverhältnisse der $Pt(N_3)_4^{2-}$ -Anionen sind in Abbildung 43 wiedergegeben. Die Anionen bilden Ketten in denen sie deckungsgleich angeordnet sind. Im Gegensatz zu der lösemittelfreien Verbindung,^{32a} zeigt die hier beschriebene Verbindung bei mechanischer

Reibung keine explosiven Eigenschaften. Dies kann durch die unterschiedliche Orientierung der Anionen im Kristall erklärt werden. Im Gegensatz zu dem von Dehnicke *et al.* beschriebenen lösemittelfreien Komplex,^{32a} sind in der vorliegenden Verbindung keine Wechselwirkungen innerhalb der Anionen im Kristall sichtbar, da die Anionen durch die relativ großen Kationen und Lösemittelmoleküle voneinander getrennt werden.

Abb. 43Perspektivische Darstellung der $Pt(N_3)_4^{2-}$ -Anionen. Blick entlang der c-Achse
(Die Tetraphenylarsonium-Kationen und Lösemittelmoleküle sind
übersichtlichkeitshalber nicht gezeichnet). Die thermischen Ellipsoide
repräsentieren eine Wahrscheinlichkeit von 25%.

Die Kristallstruktur von $[AsPh_4]_2[Pt(N_3)_6]$ (Abbildung 44) wurde kürzlich von Dehnicke *et al.* beschrieben.^{32a} Die experimentell beobachteten N-N-Abstände wurden, wie bei den Strukturen $[AsPh_4]_2[Pt(N_3)_4] \cdot 2H_2O$ und $[PNP]_2[Pd(N_3)_4]$, zum Teil unrealistisch wiedergegeben. Daher wurde in vorliegenden Arbeit die Kristallstruktur erneut bestimmt und die experimentell bestimmten Strukturparameter mit Ergebnissen aus quantenmechanischen Rechnungen (HF und B3LYP) verglichen (Tabelle 38).

Abb. 44Molekülstruktur des $Pt(N_3)_6^{2-}$ -Anions. Die thermischen Ellipsoide
repräsentieren eine Wahrscheinlichkeit von 25%.

Das Komplex-Anion $Pt(N_3)_6^{2-}$ ist im Kristall zentrosymmetrisch (Symmetrie S_2). Seine Pt-N-Abstände sind etwas länger als im $Pt(N_3)_4^{2-}$ -Anion (vgl. Tab. 37). Somit überwiegt der Effekt der größeren Koordinationszahl gegenüber der Kontraktion des Atomradius von Pt (IV) gegenüber Pt (II) in $Pt(N_3)_4^{2-}$. Die Pt-N-N-Bindungswinkel von $[AsPh_4]_2[Pt(N_3)_6]$ sind im Mittel mit 117.5° deutlich kleiner als in $[AsPh_4]_2[Pt(N_3)_4] \cdot 2H_2O$, die einem Mittelwert von 123.5° zeigen. Hierin kommt die verschieden große Lokalisierung der nichtbindenden freien Elektronenpaare an den N_{α}-Atomen zum Ausdruck.

Die erneute Strukturanalyse von $[AsPh_4]_2[Pt(N_3)_6]$ ergab, wie bereits beschrieben,^{32a} ähnliche Probleme hinsichtlich der N-N-Abstände. Zwei Azidliganden zeigen mit N1-N2-Bindungslängen von 1.208(7) Å und N2-N3-Abständen von 1.149(7) Å "normales" Verhalten, zwei Azidgruppen weisen ähnliche Bindungslängen innerhalb der Azid-Einheiten auf (N7-N8 1.158(7) Å, N8-N9 1.167(8) Å), die N-N-Abstände der verbleibenden zwei Azidgruppen werden unrealistisch wiedergegeben (N4-N5 1.032(7) Å, N5-N6 1.216(9) Å). Tabelle 38 gibt einen Vergleich zwischen experimentell bestimmten und berechneten (HF und B3LYP) Strukturparametern wieder.

	Röntgenstrukturanalyse	HF	B3LYP
Symmetrie		<i>S</i> ₆	<i>S</i> ₆
NIMAG		0	0
<i>zpe</i> [kcal mol ⁻¹]		49.8	48.3
-E _{tot} [a.u.]		1097.581975	1104.650506
<i>d</i> (Pt-N1)	2.063(4)	2.066	2.103
<i>d</i> (Pt-N4)	2.146(5)	2.066	2.103
<i>d</i> (Pt-N7)	2.058(5)	2.066	2.103
<i>d</i> (N1-N2)	1.208(7)	1.221	1.214
<i>d</i> (N2-N3)	1.149(7)	1.142	1.158
<i>d</i> (N4-N5)	1.032(7)	1.221	1.214
<i>d</i> (N5-N6)	1.216(9)	1.142	1.158
<i>d</i> (N7-N8)	1.158(7)	1.221	1.214
<i>d</i> (N8-N9)	1.167(8)	1.142	1.158
<(N1-N2-N3)	174.1(6)	175.0	173.9
<(N4-N5-N6)	174.1(6)	175.0	173.9
<(N7-N8-N9)	172.4(7)	175.0	173.9
<(Pt-N1-N2)	117.50(4)	121.2	118.4
<(Pt-N4-N5)	115.3(4)	121.2	118.4
<(Pt-N7-N8)	119.6(4)	121.2	118.4
<(N1-Pt-N4)	90.1(2)	90.9	90.6
<(N1-Pt-N7)	89.5(2)	89.1	89.4
<(N4-Pt-N7)	89.1(2)	89.1	89.4

Tabelle 38	Ausgewählte berechnete (HF und B3LYP) und experimentell bestimmte
	Bindungslängen [in Å] und -winkel [in °] für das $Pt(N_3)_6^{2-}$ -Anion.

Quantenchemische Berechnungen auf HF- und B3LYP-Niveau deuten auf eine lokale Minimumstruktur mit S_6 -Symmetrie. Die beiden unterschiedlichen N-N-Abstände der Azidgruppen werden für alle Azide realistisch wiedergegeben. Die Übereinstimmung der experimentell bestimmten und berechneten Strukturparameter ist abgesehen der unrealistischen N-N-Abständen, außerordentlich gut. Ähnliche Probleme bezüglich der N-N-Astände wurden ebenso für den Platinazid-Komplex [Pt(Me)N₃(PⁱPr₃)₂] beobachtet. *Ab initio*-Berechnungen ergaben auch für diese Verbindung realistische N-N-Abstände.¹⁵⁹

Azid-Komplexen $[PPh_4]_2[Sn(N_3)_6]^{45}$ isotyp mit den $[AsPh_4]_2[Pt(N_3)_6]$ ist und [PPh₄]₂[Pb(N₃)₆].⁴⁶ Die Kationen von [AsPh₄]₂[Pt(N₃)₆] befinden sich auf allgemeinen Lagen in der Mitte der Elementarzelle. Die Platinatome der Anionen besetzen die Ecken der Elementarzelle mit zentrosymmetrischer Lagesymmetrie (Abbildung 45). Die Struktur hat damit Ähnlichkeit mit dem CsCl-Typ, wobei das AsPh4⁺-Kation der Lagen des Caesium-Ionen und die Pt(N₃)₆²⁻-Anionen der Lagen der Chlorid-Ionen im CsCl entsprechen. Betrachtet man die Kationen und Anionen von [AsPh4]2[Pt(N3)6] als Kugeln, so resultiert eine hexagonale dichteste Packung. In ihr sind die Pt(N₃)₆²⁻-Anionen durch die Kationen voneinander separiert, so dass sich keine Azid-Gruppen berühren. Kommt es zum Zerfall einer Azido-Metallat-Einheit, so kann die Zerfallsenergie von den Kationen aufgenommen und über Schwingungszustände abgeführt werden. Vermutlich ist das eine wesentliche Ursache für die Stabilität von $[AsPh_4]_2[Pt(N_3)_6]$.

Abb. 45Darstellung der Elementarzelle von [AsPh4]2[Pt(N3)6]. Blick entlang der c-
Achse. Die thermischen Ellipsoide repräsentieren eine Wahrscheinlichkeit von
25%.

3.7.8 Zusammenfassung

Die Palladiumazid-Komplexe $L_2Pd(N_3)_2$ (L = 2-Chloropyridin, 3-Chloropyridin, Chinolin) wurden erstmalig synthetisiert und eindeutig mittels IR-, Raman- und ¹⁴N-NMR-Spektroskopie charakterisiert. Die Ergebnisse dieser spektroskopischen Untersuchungen deuten eindeutig auf *trans*-stehende Azidliganden hin. Diese Ergebnisse konnten teilweise durch Röntgenstrukturanalyse bestätigt werden. Ferner wurden ebenso die von Beck *et al.* synthetisierten Palladiumazid-Komplexe $L_2Pd(N_3)_2$ (L = PPh₃, AsPh₃) strukturell charaktersisiert. Ähnlich wie in $L_2Pd(N_3)_2$ (L = 2-Chloropyridin, Chinolin) sind die Azidgruppen *trans* zueinander angeordnet.

Erstmals konnte ein gemischt valenter Chlorid/Azid-Komplex strukturell charakterisiert werden. Im Kristall von $[AsPh_4]_2[Pd_2(N_3)_4Cl_2]$ liegen die $Pd(N_3)_2Cl^-$ -Anionen als azidverbrückte Dimere vor die einen planaren Pd_2N_2 -Ring bilden.

Ferner wurden in vorliegender Arbeit die binären Palladiumazid- und Platinazid-Anionen $Pd(N_3)_4^{2-}$, $Pt(N_3)_4^{2-}$ und $Pt(N_3)_6^{2-}$ als deren PNP^+ bzw. AsPh₄⁺-Salze strukturell charakterisiert.

Auftretende Probleme bezüglich N-N-Abständen innerhalb der Azid-Einheiten wurden durch quantenmechanische Rechnungen auf HF- und B3LYP-Niveau gelöst. Die Tetraazid-Anionen weisen im Kristall annähernde C_{4h} -Symmetrie auf, und das Hexaazid-Anion annähernd S_6 -Symmetrie. Für die Tetraazid-Anionen resultiert dadurch eine molekulare Struktur, die dem eines "Windrades" sehr ähnlich ist.

4 Experimenteller Teil

4.1 Quantenchemische Berechnungen

4.1.1 Methoden

Alle quantenmechanische Berechnungen wurden mit dem Programmpacket Gaussian 98 berechnet.¹⁶⁰ Die Berechnungen wurden auf HF-¹⁶¹ oder *DFT*-Niveau durchgeführt.

Die durch Dichtefunktionaltheorie (B3LYP) und HF-Methode berechneten Strukturparameter für Moleküle der Hauptgruppenelemente sind meist in guter Übereinstimmung mit den experimentellen Ergebnissen.

Berechnungen auf DFT-Niveau wurden unter Benutzung der Hybridmethode B3LYP, welche ein Gemisch eines Hartree-Fock-Austausch und einer DFT-Austauschkorrelation darstellt, durchgeführt. Es wurden Becke's drei Parameterfunktionale verwendet, in denen die nichtlokale Korrelation durch das LYP-Funktional (Lee-, Yang-, Parr-Korrelationsfunktional) beschrieben wird. Eine kurze Definition der B3LYP-Methode ist in Lit. 162 beschrieben. Die Strukturen wurden innerhalb der gewählten Symmetrien voll optimiert.

4.1.2 Basissätze und Pseudopotentiale

Für Wasserstoff, Sauerstoff, Stickstoff, Kohlenstoff und Chlor wurde ein Standard-6-31G(d,p)-Basissatz verwendet. Für Arsen, Antimon, Brom und Iod wurden quasirelativistische Pseudopotentiale (As: ECP28MWB; Sb: ECP46MWB; I: ECP46MWB; Br: ECP28MWB)¹⁶³ und ein (5s5p1d)/[3s3p1d]-DZ+P-Valenzbasissatz verwendet.¹⁶⁴ Für Palladium und Platin wurden ebenso quasi-relativistische Pseudopotentiale (Pd: ECP28MWB; Pt: ECP60MWB)¹⁶⁵ und ein (8s7p6d)/[6s5p3d]-DZ+P-Valenzbasissatz verwendet.¹⁶⁴ Tabelle 39 gibt einen Überblick über die in dieser Arbeit berechneten Moleküle, und mit welcher Methode und welchem Basissatz sie berechnet wurden.

Molekül	Methode	Basissatz	Pseudopotential	Kapitel
As(N ₃) ₃	HF, B3LYP	6-31G(d)	As	3.1
Sb(N ₃) ₃	HF, B3LYP	6-31G(d)	Sb	3.1
$As(N_3)_4^+$	HF, B3LYP	6-31G(d)	As	3.1
$Sb(N_3)_4^+$	HF, B3LYP	6-31G(d)	Sb	3.1
$As(N_3)_4^-$	HF, B3LYP	6-31G(d)	As	3.1
$Sb(N_3)_4^-$	HF, B3LYP	6-31G(d)	Sb	3.1
$[As(N_3)_4]_2$	HF, B3LYP	6-31G(d)	As	3.1
$[Sb(N_3)_4^-]_2$	HF, B3LYP	6-31G(d)	Sb	3.1
As(N ₃) ₅	HF, B3LYP	6-31G(d)	As	3.1
Sb(N ₃) ₅	HF, B3LYP	6-31G(d)	Sb	3.1
$As(N_3)_6^-$	HF, B3LYP	6-31G(d)	As	3.1
Sb(N ₃) ₆	HF, B3LYP	6-31G(d)	Sb	3.1
SbCl(N ₃) ₂	B3LYP	6-31G(d)	Sb	3.2
$As(N_3)_5 \cdot NC_5H_5$	B3LYP	6-31G(d,p)	As	3.3
$Sb(N_3)_5 \cdot NC_5H_5$	B3LYP	6-31G(d,p)	Sb	3.3
$As(N_3)_5 \cdot NH_3$	B3LYP	6-31G(d,p)	As	3.3
$Sb(N_3)_5 \cdot NH_3$	B3LYP	6-31G(d,p)	Sb	3.3
$As(N_3)_5 \cdot N_2H_4$	B3LYP	6-31G(d,p)	As	3.3
$Sb(N_3)_5 \cdot N_2H_4$	B3LYP	6-31G(d,p)	Sb	3.3
As(N ₃) ₅ · NCNH ₂	B3LYP	6-31G(d,p)	As	3.3
$Sb(N_3)_5 \cdot NCNH_2$	B3LYP	6-31G(d,p)	Sb	3.3
NC ₅ H ₅	B3LYP	6-31G(d,p)		3.3, 3.4
NH ₃	B3LYP	6-31G(d,p)		3.3
N_2H_4	B3LYP	6-31G(d,p)		3.3
NCNH ₂	B3LYP	6-31G(d,p)		3.3, 3.4
AsCl ₅ · NCCl	HF, B3LYP	6-31G(d)	As	3.4
SbCl ₅ · NCCl	HF, B3LYP	6-31G(d)	Sb	3.4
AsCl ₅ · NCBr	HF, B3LYP	6-31G(d)	As, Br	3.4
SbCl ₅ · NCBr	HF, B3LYP	6-31G(d)	Sb, Br	3.4
AsCl ₅ · NCI	HF, B3LYP	6-31G(d)	As, I	3.4
SbCl ₅ · NCI	HF, B3LYP	6-31G(d)	Sb, I	3.4
$[AsCl_5 \cdot NC]_2$	HF, B3LYP	6-31G(d)	As	3.4
$[SbCl_5 \cdot NC]_2$	HF, B3LYP	6-31G(d)	Sb	3.4
$AsCl_5 \cdot NCNH_2$	HF, B3LYP	6-31G(d,p)	As	3.4
$SbCl_5 \cdot NCNH_2$	HF, B3LYP	6-31G(d,p)	Sb	3.4
AsCl ₅ · NC ₅ H ₅	HF, B3LYP	6-31G(d,p)	As	3.4
$SbCl_5 \cdot NC_5H_5$	HF, B3LYP	6-31G(d,p)	Sb	3.4
CICN	B3LYP	6-31G(d)		3.4
BrCN	B3LYP	6-31G(d)	Br	3.4
ICN	B3LYP	6-31G(d)	Ι	3.4

Tabelle 39Methoden, Basissätze und benutzte Pseudopotentiale der quantenchemischen
Berechnungen.

(CN) ₂	B3LYP	6-31G(d)		3.4
$As_4O_2C{l_{10}}^{2-}$	B3LYP	6-31G(d)	As	3.5
$Pd(N_3)_4^{2-}$	HF, B3LYP	6-31G(d)	Pd	3.7
$Pt(N_3)_4^{2-}$	HF, B3LYP	6-31G(d)	Pt	3.7
$Pt(N_3)_6^{2-}$	HF, B3LYP	6-31G(d)	Pt	3.7

4.1.3 Frequenzanalyse und Thermodynamik

Die Schwingungsfrequenzen, IR-Intensitäten und Ramanaktivitäten wurden in der harmonischen Näherung berechnet. Alle in dieser Arbeit aufgeführten Schwingungsfrequenzen sind unskaliert.

Alle Dissoziationsenthalpien wurden um die Nullpunktsschwingungsenergien korrigiert. Thermische Korrekturen (Arbeits-, Rotations- und Translationsterm) wurden durchgeführt, um die entsprechenden thermodynamischen Größen (BDE^{298}) bei 298.15 K und 1 atm abzuschätzen.

4.1.4 NBO-Analysen

Die Natürliche Bindungsorbital-Analyse (NBO) ist eine Populationsanalysenmethode, um Hybridisierungen, kovalente und nichtkovalente Effekte zu untersuchen.^{101,102} Die NBO-Analyse transformiert sukzessive den *input*-Basissatz zu den verschiedenen lokalisierten Basissätzen (betreff Einzelheiten zur Lokalisierungsstrategie *s*. Lit. 166):

input-Basissatz \rightarrow NAOs \rightarrow NHOs \rightarrow NBOs \rightarrow NLMOs.

Die so erhaltenen Bindungsorbitale (NBOs) entsprechen dem gebräuchlichen Lewis-Bild, in dem Bindungen und freie Elektronenpaare lokalisiert werden. Das NBO für eine lokalisierte σ -Bindung ϕ_{AB} zwischen den Atomen A und B wird direkt aus den Hybridorbitalen h_A und h_B geformt

 $\phi_{AB} = c_A h_A + c_B h_B$

die wiederum aus einem Satz effektiver Valenzschalen-Atomorbitale (NAOs) hervorgegangen sind.
Die zueinander orthogonalen, lokalisierten Orbitale werden maximal besetzt, wobei die energetisch günstigste Lewis-Formel bei maximaler Besetzung der NBOs gesucht wird (E(Lewis)). Die Gesamtenergie

E = E (Lewis) + E (Non-Lewis)

weicht allgemein nur geringfügig von E (Lewis) ab; in der Regel gilt E (Non-Lewis) < 1 % E (Lewis).

Demnach sind die gefüllten φ_{AB} -NBOs sehr gut geeignet, die kovalenten Effekte einer Molekel in Einklang mit der "natürlichen Lewis-Struktur" zu beschreiben. Zudem führt die Erzeugung von Bindungsorbitalen jedoch auch zu unbesetzten Zuständen, mit denen die nichtkovalenten Effekte (*z.B.* Hyperkonjugationen) beschrieben werden können. Der in diesem Zusammenhang wichtigste Zustand ist das antibindende Orbital φ_{AB}^* :

$\phi^*_{AB} = c_A h_A - c_B h_B$

Die antibindenden Orbitale dürfen nicht mit den virtuellen MOs einer SCF-Rechnung verwechselt werden, da letztere absolut unbesetzt sind, während erstere geringfügig besetzt sein können und ihre Besetzung zu einer definierten Energiesenkung führt.

Die teilweise Besetzung der antibindenden Zustände (ϕ^*_{AB}) führt zu Abweichungen vom idealisierten Lewis-Bild und somit zu geringen nichtkovalenten Korrekturen im Modell der lokalisierten kovalenten Bindungen (entspricht E (Non-Lewis)). Da, wie oben angeführt, der E (Non-Lewis)-Beitrag zur Gesamtenergie sehr gering ist, kann die Korrektur durch eine einfache Störungsrechnung 2. Ordnung beschrieben werden.

Details zu den durchgeführten NBO-Analysen sind in Tabelle 40 zusammengefaßt.

Molekül	Methode	Strukturoptimierung	Pseudopotential	Kapitel
$C_5H_5N \cdot AsCl(N_3)_2$	B3LYP / 6-31G(d,p)	Kristallstruktur (single-point)	As	3.2
$2 C_5\text{H}_5\text{N}\cdot\text{SbCl}_2\text{N}_3$	B3LYP / 6-31G(d,p)	Kristallstruktur (single-point)	Sb	3.2
SbCl ₅ · NCCl	B3LYP / 6-31G(d)	Kristallstruktur (single-point)	Sb	3.4
$[SbCl_5 \cdot NC]_2$	B3LYP / 6-31G(d)	Kristallstruktur (single-point)	Sb	3.4
$As_4O_2Cl_{10}^{2-}$	B3LYP / 6-31G(d)	Kristallstruktur (single-point)	As	3.5

Tabelle 40Details zu de NBO-Analysen.

4.2 Arbeitstechnik

Die präparativen Arbeiten wurden aufgrund der teilweisen hohen Feuchigkeitsempfindlichkeit der Verbindungen unter Inertgasatmosphäre durchgeführt. Alle Glasgeräte wurden vor Gebrauch im Hochvakuum ausgeheizt. Das Ein- und Umfüllen der Verbindungen erfolgte unter Zuhilfenahme der Schlenk-Technik oder in einer *Dry-Box* unter Inertgasatmosphäre.

Um beim Arbeiten mit explosiven Stoffen, wie *z.B.* Aziden, den größtmöglichen Schutz zu gewährleisten, wurde mit Vollgesichtsschutzschutz, geeignetem Hörschutz, einem Ledermantel und Lederhandschuhen gearbeitet.

Für den Experimente, in welchen z.B. mit SO₂ als Lösungsmittel, MF₅ (M = As, Sb), ClCN oder (CN)₂ gearbeitet wurde, wurde als Reaktionsgefäße Ein- bzw. Zweikugelkolben oder 5mm NMR-Rohre mit PTFE-Ventil verwendet. Diese halten einem Druck von mindestens 7 bar stand. Die Aufnahmekapazität pro Kugel beträgt 15 – 20 mL. Zur Abtrennung von Feststoffen ist der Zweikugelkolben mit einer inkorporierten Fritte ausgestattet, wobei beide Kugeln mit je einem PTFE-Ventil zugänglich und absperrbar sind. Das SO₂ wird unter Zuhilfenahme einer Vakuum-Druck-Metallanlage aus Edelstahl einkondensiert.¹²⁴ Die Swagelok[®]-Verbindung zwischen Reaktionsgefäß und Anlage wird durch Schraubverbindungen mit Teflon[®]-Dichtungen hergestellt. Dadurch kann ohne Schliffett gearbeitet werden.

4.3 Ausgangsverbindungen

Substanz	Herkunft	Reinigung bzw. Trocknung
akt. NaN ₃	Lit. 26	
AsCl ₃	Lit. 167	Destillation
[AsCl ₄][AsF ₆]	Lit. 52	
AsF ₅	Matheson	Kondensation
As(N ₃) ₅ · Pyridin	Lit. 35	
As ₂ O ₃	Aldrich	
BrCN	Aldrich	
Chinolin	Aldrich	Destillation
2-Chloropyridin	Aldrich	
3-Chloropyridin	Aldrich	
(CH ₃) ₃ SiN ₃	Aldrich	
CICN	ICI	Kondensation
Cl ₂	Messer-Griesheim	Kondensation
(CN) ₂	Lit. 167	P ₄ O ₁₀ , Kondensation
HN ₃ (1.0 M in CH ₂ Cl ₂)	Lit. 168	
ICN	Aldrich	
NaN ₃	Fluka	
[NEt ₄][SbCl ₆]	Lit. 48	
NH ₃	Messer-Griesheim	Na
N_2H_4	Merck	NaOH, BaO, Na
NH ₄ Cl	Fluka	
NH ₂ CN	Aldrich	P_4O_{10}
[NMe ₄][AsCl ₄]	Lit. 169	
NMe ₄ Cl	Aldrich	
NMe ₄ N ₃	Lit. 170	
Pd(NO₃) ₂	Aldrich	
[PPh4][AsCl6]	Lit. 90	
[PPh4][SbCl4]	Lit. 41c	
[PPh ₄][SbCl ₆]		
Pyridin	Aldrich	Destillation
SbCl ₃	Fluka	Sublimation
SbCl ₅	Aldrich	Destillation
$[SbCl_4][Sb_2F_{11}]$	Lit. 171	
SbF ₅	Aldrich	Kondensation

Tabelle 41Ausgangsverbindungen.

Die in dieser Arbeit verwendeten Ausgangsverbindungen wurden entweder über den Handel bezogen oder nach Literaturvorschriften hergestellt (Tabelle 41). In Tabelle 42 sind die verwendeten Lösungsmittel, die nach Literaturvorschrift¹⁷² gereinigt und getrocknet wurden, aufgeführt.

Tabelle 42	Lösungsmittel
------------	---------------

Lösungsmittel	Herkunft	Reinigung	Trocknung	
Aceton	Chemikalienausgabe LMU-München			
CD ₂ Cl ₂	Cambridge Isotope Laboratories			
CDCl ₃	Cambridge Isotope Laboratories			
CH ₂ Cl ₂	Merck	Destillation	CaH ₂	
CHCl ₃	Merck	Destillation	P_4O_{10}	
CH ₃ CN	Merck		P_4O_{10}	
d ₆ -DMSO	Cambridge Isotope Laboratories			
H ₂ O	LMU-München			
Pentan	Merck	Destillation	Na	
SO ₂	Messer Grießheim	Kondensation	CaH ₂	

4.4 Analysenmethoden

4.4.1 Elementaranalyse

Elementaranalysen wurden an einem VARIO-EL der Firma ELEMENTAR im CHNS-Modus durchgeführt. Die Chlor- Brom- und Iodbestimmungen erfolgte nach Schöniger mit der O₂-Kolben-Methode.

4.4.2 Schmelzpunktbestimmung

Die Schmelz- bzw. Zersetzungspunkte wurden in abgeschmolzenen Kapillaren an einem BÜCHI B540 Schmelzpunktgerät bestimmt.

4.4.3 Infrarotspektroskopie

Infrarotspektren wurden an einem NICOLET 520 FT-IR-Spektrometer, PERKIN-ELMER *983 G* IR-Spektrometer und an einem PERKIN ELMER *Spectrum One* FT-IR-Spektrometer aufgenommen. Die Proben wurden entweder auf KBr-Platten oder als Nujolverreibung zwischen CsI-Platten vermessen. In Tabelle 43 sind die benutzten Abkürzungen für die Bandenintensitäten und in Tabelle 44 die Schwingungsarten aufgeführt.

Abkürzung	Bezeichnung	Intensität / Gestalt
VW	very weak	sehr schwach
W	weak	schwach
m	medium	mittel
S	strong	stark
VS	very strong	sehr stark
sh	shoulder	Schulter
br	broad	breit

4.4.4 Ramanspektroskopie

Zur Aufnahme von Ramanspektren stand ein Gerät Spektrum 2000R NIR FT-Raman der Firma PERKIN ELMER ausgestattet mit einem Nd:YAG-Laser mit einer maximalen Leistung von 750 mW zur Verfügung. Die Anregungswellenlänge lag bei 1064 nm. Entsprechend der Stabilität der Proben konnte die Laserleistung variabel eingestellt werden. Die Proben wurden in abgeschmolzenen Glaskapillaren (Durchmesser: 4 mm) vermessen. Zur Aufnahme hochexplosiver Substanzen wurde zum Schutz der optischen Einrichtungen ein Laserlicht-durchlässiger Schutzschild verwendet.

In den Ramandatenlisten sind die relativen Intensitäten in Klammern gesetzt angegeben, wobei dem intensivsten *Peak* der Wert 10 zugeordnet wurde. Die Daten sind als Wellenzahlen in cm^{-1} angegeben. In Tabelle 44 sind die Schwingungsarten aufgeführt.

Tabelle 44Schwingungsarten.

Abkürzung	Schwingungsart	Abkürzung für Deformations-	Schwingungsart
		schwingungen	
ν	Valenzschwingung	wag.	Kippschwingung ("wagging")
δ	Deformationsschwingung	i.p.	in-plane-Schwingung
as	antisymmetrisch	o.p.	out-of-plane-Schwingung
S	symmetrisch		

4.4.5 Kernresonanzspektroskopie

In der Kernresonanzspektroskopie entsprechen positive δ -Werte einer Hochfrequenz- bzw. Tieffeldverschiebung und negative δ -Werte entsprechend umgekehrt.

¹H- ¹³C-, ¹⁹F-, ¹⁴N- und ³¹P-NMR-Spektren wurden entweder an einem EX400 Gerät der Firma JEOL oder an einem EX400 *Delta eclipsed* Gerät der Firma JEOL mit einer Anregungsfrequenz von 400 (¹H), 100.6 (¹³C), 376.1 MHz (¹⁹F), 28.9 MHz (¹⁴N), 161.8 (³¹P), 96.1 (¹²¹Sb) bzw. 69.0 MHz (⁷⁵As) gemessen. Als externer Standard diente Tetramethylsilan (¹H, ¹³C), Freon-11 (¹⁹F), Nitromethan (¹⁴N), 85 %ige Phosphorsäure (³¹P), KAsF₆ (⁷⁵As) bzw. NEt₄SbCl₆ (¹²¹Sb).

4.4.6 Röntgenstrukturanalyse an Einkristallen

Die Daten der Verbindungen SbCl₅ · NCCl, SbCl₅ · NCCN · SbCl₅, SbCl(N₃)₂, AsCl(N₃)₂ · Pyridin, SbCl₂(N₃) · 2 Pyridin, [PPh₄][As(N₃)₆] und [Py-H][As(N₃)₆] wurden auf einem SIEMENS P4 Diffraktometer mit einem SMART Area-Detektor unter Benutzung von monochromatischer Mo-K_{α} Strahlung (λ = 0.71073 Å) gesammelt. Die Röntgendaten von [NMe₄]₂[As₄O₂Cl₁₀] · 2 CH₃CN, Pd(2-Clpy)₂(N₃)₂, Pd(AsPh₃)₂(N₃)₂, [PNP]₂[Pd(N₃)₄], [AsPh₄]₂[Pt(N₃)₄] · 2H₂O, [PPh₄][SbCl_{2.81}(N₃)_{3.19}], [NH₄][SbCl₆], [NEt₄][SbCl₆] und [PPh₄][SbCl₄] · CHCl₃ wurden auf einem STOE IPDS Diffraktometer, die Daten von [AsPh₄]₂[Pd₂(N₃)₄Cl₂] und [AsPh₄]₂[Pt(N₃)₆] auf einem Nonius Kappa CCD Diffraktometer, die Röntgendaten von Pd(C₉H₇N)₂(N₃)₂ auf einem SIEMENS P4 Diffraktometer unter Benutzung von monochromatischer Mo-K_{α} Strahlung (λ = 0.71073 Å) gesammelt.

Absorptionskorrekturen wurden entweder numerisch oder mit Hilfe des Programms "SADABS"¹⁷³ durchgeführt. Die Strukturen wurden entweder durch direkte Methoden oder nach der "*heavy atom method*" gelöst. Strukturlösung und -verfeinerung wurde unter der Benutzung der Programmsysteme SIR97,¹⁷⁴ SHELXS97¹⁷⁵ und SHELXL97¹⁷⁶ durchgeführt. Wasserstoffatome wurden entweder frei verfeinert oder in idealisierte Lagen nach einem "*riding model*" berechnet.

Detaillierte kristallographische Daten aller Röntgenstrukturanalysen sind im Anhang (Kap. 6.1 - 6.12) zusammengefaßt.

4.5 Reaktionen und Darstellungen

4.5.1 Darstellung der binären Arsenazid- und Antimonazid-Verbindungen

4.5.1.1 Darstellung von $As(N_3)_3$

(CH₃)₃SiN₃ (1.06 mL, 8.0 mmol) wurde unter ständigem Rühren zu einer Lösung von AsCl₃ (0.17 mL, 2.0 mmol) in 25 mL CH₂Cl₂ bei 25°C langsam zugespritzt. Die Reaktionsmischung wurde bei Raumtemperatur 15 Stunden gerührt. Das Lösemittel und resultierendes (CH₃)₃SiCl wurden im dynamischen Vakuum entfernt. Es blieb eine leicht gelbe Flüssigkeit in 93% Ausbeute. – IR (KBr): \tilde{v} = 2088 (vs, v_{as}N₃), 1243 (s, v_sN₃), 662 (s, δ N₃), 565 (m, δ N₃), 450 (m, vAsN). – Raman (500 scans, 100 mW, 180°, 20 °C): \tilde{v} = 2115 (2.5, v_{as}N₃), 1238 (1.5, v_sN₃), 1220 (1.5, v_sN₃), 667 (3, δ N₃), 472 (10, vAsN), 263 (3.5, δ AsN), 220 (1.5), 164 (5). – ¹⁴N-NMR (CH₂Cl₂, 29 MHz, 25 °C): δ = –136 (s, N_β), –171 (s, N_γ), –324 (s, N_α). – AsN₉ (201.0): ber.: N 62.7%; gef.: N 61.2%.

4.5.1.2 Darstellung von $[As(N_3)_4][AsF_6]$

Auf einer Seite eines Zweikugelkolbens wurde [AsCl₄][AsF₆] (0.406 g, 1.0 mmol) in 10 mL SO₂ suspendiert. Auf der andere Seite des Zweikugelkolbens wurde (CH₃)₃SiN₃ (0.79 mL, 6.0 mmol) in 10 mL SO₂ gelöst. Beide Seiten wurden bei Raumtemperatur zur Reaktion gebracht und für 12 Stunden gerührt. SO₂ und resultierendes (CH₃)₃SiCl wurden im dynamischen Vakuum entfernt. Es blieb ein leicht gelbes Pulver in 92% Ausbeute. – IR (KBr): \tilde{v} = 2129 (s, v_{as}N₃), 1245 (m, v_sN₃), 702 (vs, v₃AsF₆), 688 (w, δ N₃), 662 (m, δ N₃), 391 (vs, v₄AsF₆). – Raman (160 scans, 200 mW, 180°, 20 °C): \tilde{v} = 2134 (2, v_{as}N₃), 1242 (1, v_sN₃), 698 (1, δ N₃), 681 (1, v₁AsF₆), 433 (10, vAsN), 416 (4, vAsN), 369 (2, v₅AsF₆), 291 (1, δ AsN), 277 (0.5). – ¹⁴N-NMR (SO₂, 29 MHz, 25 °C): δ = –137 (s, N_β), –173 (s, N_γ), –279 (s, N_α). – ¹⁹F-NMR (SO₂, 376 MHz, 25 °C): δ = –65.1 (quart., *J* = 808 Hz). – ⁷⁵As-NMR (SO₂, 69 MHz, 25 °C): δ = 0 (sept., *J* = 849 Hz).

4.5.1.3 Darstellung von $[NMe_4][As(N_3)_4]$

Zu einer Lösung von [NMe₄][AsCl₄] (0.086 g, 0.3 mmol) in 40 mL CH₃CN wurde unter ständigem Rühren (CH₃)₃SiN₃ (0.40 mL, 3.0 mmol) bei Raumtemperatur langsam zugegeben. Nach 10 Stunden wurde das Lösemittel sowie resultierendes (CH₃)₃SiCl im dynamischen Vakuum entfernt. Es blieb ein farbloser Feststoff quantitativer Ausbeute. – IR (KBr): $\tilde{v} = 2922$ (s), 2130 (s, v_{as}N₃), 1642 (m), 1483 (s), 1416 (w), 1262 (m, v_sN₃), 1103 (m), 951 (s), 805 (s), 676 (w, δ N₃), 664 (m, δ N₃), 597 (w, δ N₃), 481 (m), 428 (vw, vAsN). – Raman (500 scans, 150 mW, 180°, 20 °C): $\tilde{v} = 3024$ (4), 2976 (3), 2121 (4, v_{as}N₃), 2082 (2, v_{as}N₃), 1454 (2.5), 1411 (0.5), 1258 (1.5, v_sN₃), 1243 (0.5, v_sN₃), 951 (1), 757 (2), 663 (1, δ N₃), 447 (10, vAsN), 410 (2, vAsN), 271 (4, δ AsN), 249 (2.5), 147 (3). – ¹H-NMR (CDCl₃, 400 MHz, 25 °C): $\delta = 3.30$ (s, CH₃). – ¹³C-NMR (CDCl₃, 101 MHz, 25 °C): $\delta = 55.3$ (s, CH₃). – ¹⁴N-NMR (CDCl₃, 29 MHz, 25 °C): $\delta = -135$ (s, N_β), -181 (s, N_γ), -326 (s, N_α), -338 (s, NMe₄). – C₄H₁₂AsN₁₃ (317.1): ber.: C 15.2, H 3.8, N 57.4; gef.: C 15.5, H 4.1, N 56.8.

4.5.1.4 Darstellung von [Py-H][As(N₃)₆]

Zu einer Lösung von As(N₃)₅ · Pyridin (0.364 g, 1.0 mmol) in 20 mL CH₂Cl₂ wurde unter Rühren 1.0 mL einer 1 molaren HN₃-Lösung in CH₂Cl₂ bei Raumtemperatur zugegeben. Nach 16 Stunden Rühren wurde das Lösemittel im dynamischen Vakuum entfernt. Es blieb ein leicht gelblicher Feststoff. Nach Umkristallistaion aus CH₂Cl₂ bei –30°C wurden blassgelbe Kristalle in 77% Ausbeute erhalten. – IR (KBr): $\tilde{v} = 3112$ (w), 2086 (s, v_{as}N₃), 1588 (s), 1463 (m), 1277 (s, v_sN₃), 1180 (m), 666 (m, δ N₃), 418 (s, vAsN). – Raman (302 scans, 150 mW, 180°, 20 °C): $\tilde{v} = 3112$ (0.5), 2112 (2.5, v_{as}N₃), 2081 (1, v_{as}N₃), 1606 (0.5), 1273 (0.5, v_sN₃), 1248 (0.5, v_sN₃), 1198 (0.5), 1011 (1), 670 (1, δ N₃), 415 (10, vAsN), 288 (0.5, δ AsN), 264 (1.5), 169 (1.5), 113 (2). – ¹H-NMR (CD₂Cl₂, 400 MHz, 25 °C): $\delta = 8.06$ (d, 2-H), 8.57 (m, 3-H), 8.80 (m, 1-H), 13.62 (s, N-H). – ¹³C-NMR (CD₂Cl₂, 29 MHz, 25 °C): $\delta = -142$ (s, N_β), -163 (s, N_γ), -167 (s, Py-H), -253 (s, N_α). – ⁷⁵As-NMR (CD₂Cl₂, 69 MHz, 25 °C): $\delta = 12$ (s).

4.5.1.5 Darstellung von $[PPh_4][As(N_3)_6]$

[PPh₄][As(N₃)₆] wurde bei 25°C unter Stickstoffatmosphäre durch Zugabe von (CH₃)₃SiN₃ (0.53 mL, 4.0 mmol) zu einer Lösung von [PPh₄][AsCl₆] (0.314 g, 0.5 mmol) in 25 mL CH₂Cl₂ unter ständigem Rühren dargestellt. Nach 5 Stunden wurden gebildetes (CH₃)₃SiCl und das Lösemittel im dynamischen Vakuum abgezogen. Farblose Kristalle in 71% Ausbeute wurden durch Umkristallisation aus CH₂Cl₂ bei –25 °C erhalten. – IR (KBr): \tilde{v} = 2085 (vs, v_{as}N₃), 1585 (w), 1481 (m), 1434 (s), 1270 (s, v_sN₃), 1108 (s), 96 (w), 888 (m), 783 (s), 688 (s, δN₃), 526 (s), 416 (s, vAsN), 305 (s). – Raman (525 scans, 200 mW, 180°, 20 °C): \tilde{v} = 3068 (6.5), 2110 (3.5, v_{as}N₃), 2084 (1.5, v_{as}N₃), 1587 (4.5), 1279 (3.5, v_sN₃), 1187 (0.5), 1163 (0.5), 1099 (1.5), 1027 (2.5), 1001 (6.5), 681 (1.5, δN₃), 669 (1.5, δN₃), 416 (10, vAsN), 267 (1.5, δAsN), 252 (1.5), 116 (8). – ¹H-NMR (CDCl₃, 400 MHz, 25 °C): δ = 6.83 (m, 2-H), 7.33 (m, 3-H), 7.52 (m, 1-H). – ¹³C-NMR (CDCl₃, 101 MHz, 25 °C): δ = 117.5 (d, 1-C), 130.8 (d, 2-C), 134.4 (d, 3-C), 135.9 (d, 4-C). – ¹⁴N-NMR (CDCl₃, 29 MHz, 25 °C): δ = -141 (s, N_β), -165 (s, N_γ), -256 (s, N_α). ³¹P-NMR (CDCl₃, 109 MHz, 25 °C): δ = 23.9 (s). ⁷⁵As-NMR (CDCl₃, 46 MHz, 25 °C): δ = 4 (s). – C₂₄H₂₀AsN₁₈P (666.4): ber.: C 43.3, H 3.0, N 37.8; gef.: C 42.9, H 2.9, N 37.4.

4.5.1.6 Versuchte Darstellung von As(N₃)₅

In einem 5mm NMR-Röhrchen mit angeschlossenem Poly-(tetrafluorethylen)-Ventil wurde auf eine gefrorene Lösung von $(CH_3)_3SiN_3$ (0.40 mL, 3.0 mmol) in 2.0 mL SO₂ AsF₅ (0.085 g, 0.50 mmol) bei –196°C aufkondensiert. Das Reaktionsgemisch wurde langsam auf Raumtemperatur erwärmt, wobei sich eine gelbe Lösung bildete. Versuche As $(N_3)_5$ von überschüssigem $(CH_3)_3SiN_3$, resultierendem $(CH_3)_3SiF$ und dem Lösemittel bei –78°C zu trennen, führten zu heftigen Explosionen.

4.5.1.7 Darstellung von Sb(N₃)₃

 $(CH_3)_3SiN_3$ (0.53 mL, 4.0 mmol) wurde bei 25°C unter ständigem Rühren zu einer Lösung von SbCl₃ (0.228 g, 1.0 mmol) in 20 mL CH₂Cl₂ langsam zugespritzt. Die Reaktionsmischung wurde bei Raumtemperatur 24 h gerührt. Das Lösemittel und resultierendes (CH₃)₃SiCl wurden im dynamischen Vakuum entfernt. Es blieb ein farbloser Feststoff in 97% Ausbeute. – IR (KBr): $\tilde{v} = 2157$ (m, $v_{as}N_3$), 2100 (vs, $v_{as}N_3$), 1255 (s, v_sN_3), 1210 (m, v_sN₃), 680 (s, δ N₃), 560 (w, δ N₃), 424 (m, vSbN), 401 (m, vSbN). – Raman (165 scans, 100 mW, 180°, 20 °C): $\tilde{v} = 2113$ (4, v_{as}N₃), 1263 (2, v_sN₃), 667 (2, δ N₃), 377 (5, vSbN), 322 (10), 297 (3), 252 (4, δ SbN), 152 (4), 101 (3). – ¹⁴N-NMR (CH₂Cl₂, 29 MHz, 25 °C): $\delta = -139$ (s, N_β), -173 (s, N_γ), -271 (s, N_α).

4.5.1.8 Darstellung von $[Sb(N_3)_4][Sb_2F_{11}]$

Auf einer Seite eines Zweikugelkolbens wurde [SbCl₄][Sb₂F₁₁] (0.716 g, 1.0 mmol) in 15 mL SO₂ gelöst. Auf der andere Seite des Zweikugelkolbens wurde aktiviertes NaN₃ (0.288 g, 4.5 mmol) in 10 mL SO₂ suspendiert. Beide Seiten wurden bei Raumtemperatur zur Reaktion gebracht und für 24 Stunden gerührt. Nach Filtration wurde SO₂ im dynamischen Vakuum entfernt. Es blieb ein farbloses Pulver in 76% Ausbeute. – IR (KBr): \tilde{v} = 2113 (vs, v_{as}N₃), 1628 (m), 1260 (s, v_sN₃), 628 (s, δ N₃), 577 (s, Sb₂F₁₁⁻), 435 (m, vSbN). – Raman (400 scans, 150 mW, 180°, 20 °C): \tilde{v} = 2129 (2, v_{as}N₃), 1286 (1.5, v_sN₃), 672 (3.5, δ N₃), 613 (0.5, Sb₂F₁₁⁻), 555 (0.5, Sb₂F₁₁⁻), 421 (10, vSbN), 358 (3), 237 (4.5, δ SbN), 140 (3). – ¹⁴N-NMR (SO₂, 29 MHz, 25 °C): δ = –142 (s, N_β), –173 (s, N_γ), –274 (s, N_α). – ¹⁹F-NMR (SO₂, 376 MHz, 25 °C): δ = –90.5 (m), –98.4 (m), –128.7 (m).

4.5.1.9 Darstellung von [PPh₄][Sb(N₃)₄]

Zu einer Lösung von [PPh₄][SbCl₄] (0.603 g, 1.0 mmol) in 50 mL CH₃CN wurde unter ständigem Rühren (CH₃)₃SiN₃ (0.79 mL, 6.0 mmol) bei Raumtemperatur langsam zugegeben. Nach 24 Stunden wurde das Lösemittel sowie resultierendes (CH₃)₃SiCl im dynamischen Vakuum entfernt. Es blieb ein farbloses Pulver 83% Ausbeute. – IR (KBr): \tilde{v} = 2960 (w), 2919 (m), 2131 (w, v_{as}N₃), 2079 (m, v_{as}N₃), 1448 (m), 1260 (s, v_sN₃), 1091 (m), 1021 (w), 871 (m), 798 (s), 698 (m, δ N₃), 669 (w, δ N₃), 526 (m). – Raman (195 scans, 200 mW, 180°, 20 °C): \tilde{v} = 3062 (9), 2963 (3), 2084 (2, v_{as}N₃), 1587 (8), 1273 (0.5, v_sN₃), 1189 (1.5), 1100 (3), 1028 (4.5), 1001 (10), 681 (3, δ N₃), 646 (1, δ N₃), 617 (2, δ N₃), 402 (3, vSbN), 365 (2, vSbN), 333 (2), 233 (3.5, δ SbN), 201 (1.5), 101 (6). – ¹H-NMR (CDCl₃, 400 MHz, 25 °C): δ = 7.57 (m, 2-H), 7.63 (m, 3-H), 7.75 (m, 1-H). – ¹³C-NMR (CDCl₃, 101 MHz, 25 °C): δ = 117.7 (d, 1-C), 130.7 (d, 2-C), 134.3 (d, 3-C), 135.7 (d, 4-C). – ¹⁴N-NMR (CDCl₃, 20 MHz, 25 °C): δ = -136 (s, N_β), -171 (s, N_γ), -324 (s, N_α). ³¹P-NMR (CDCl₃, 109 MHz, 25 °C): δ = -136 (s, N_β), -171 (s, N_γ), -324 (s, N_α).

25 °C): $\delta = 23.8$ (s). $-C_{24}H_{20}PSbN_{12}$ (629.2): ber.: C 45.8, H 3.2, N 26.7; gef.: C 45.3, H 3.5, N 25.7.

4.5.1.10 Darstellung von [NEt₄][Sb(N₃)₆]

Zu einer Lösung von [NEt₄][SbCl₆] (0.232 g, 0.5 mmol) in 30 mL CH₃CN wurde unter Stickstoffatmosphäre (CH₃)₃SiN₃ (0.79 mL, 6.0 mmol) bei 25°C zugegeben wobei sich die Lösung sofort gelb verfärbte. Nach weiteren 24 Stunden Rühren wurden gebildetes (CH₃)₃SiCl und das Lösemittel im dynamischen Vakuum entfernt. Es blieb ein gelbes Pulver in 86% Ausbeute. – IR (KBr): $\tilde{v} = 3007$ (vw), 2993 (w), 2086 (vs, v_asN₃), 1484 (s), 1453 (w), 1394 (m), 1256 (s, v_sN₃), 1172 (m), 1000 (s), 784 (s), 666 (w, δ N₃), 576 (vw, δ N₃), 405 (w, vSbN). – Raman (465 scans, 100 mW, 180°, 20 °C): $\tilde{v} = 2993$ (4), 2953 (3), 2083 (2.5, v_asN₃), 1460 (3), 1298 (1.5, v_sN₃), 1118 (1.5), 1067 (0.5), 1001 (1), 900 (0.5), 668 (2.5, δ N₃), 412 (10, vSbN), 394 (7, vSbN), 301 (3), 226 (3, δ SbN), 171 (3.5), 147 (4), 120 (2). – ¹H-NMR (*d*₆-DMSO, 400 MHz, 25 °C): $\delta = 1.16$ (tt, -CH₂-CH₃), 51.4 (t, -<u>C</u>H₂-CH₃). – ¹³C-NMR (*d*₆-DMSO, 101 MHz, 25 °C): $\delta = -141$ (s, N_β), -154 (s, N_γ), -163 (s, N_γ), -173 (s, N_γ), -244 (s, N_α), -318 (s, NEt₄). ¹²¹Sb-NMR (*d*₆-DMSO, 96 MHz, 25 °C): $\delta = -3$ (s). – C₈H₂₀SbN₁₉ (504.1): ber.: C 19.1, H 4.0, N 52.8; gef.: C 18.3, H 3.6, N 51.2.

4.5.1.11 Versuchte Darstellung von Sb(N₃)₅

(a) In einem 5mm NMR-Röhrchen mit angeschlossenem Poly-(tetrafluorethylen)-Ventil wurde auf eine gefrorene Lösung von $(CH_3)_3SiN_3$ (0.40 mL, 3.0 mmol) in 2 mL SO₂ SbF₅ (0.108 g, 0.50 mmol) bei –196°C aufkondensiert. Das Reaktionsgemisch wurde langsam auf Raumtemperatur erwärmt, wobei sich eine dunkelgelbe Lösung bildete. Versuche Sb(N₃)₅ von überschüssigem (CH₃)₃SiN₃, resultierendem (CH₃)₃SiF und dem Lösemittel zu isolieren, führten zur spontanen Zersetzung.

(b) Zu einer Lösung von SbCl₅ (0.13 mL, 1.0 mmol) in 25 mL CH_2Cl_2 wurde unter ständigem Rühren (CH_3)₃SiN₃ (0.79 mL, 6.0 mmol) bei –40°C zugespritzt. Nach weiteren 5 Stunden Rühren wurde der Überschuss (CH_3)₃SiN₃ und gebildetes (CH_3)₃SiCl im dynamischen Vakuum entfernt. Versuche das Produkt zu trocknen führten zu Explosionen.

4.5.2 Darstellung gemischter Chlorid/Azid-Verbindungen von Arsen und Antimon

4.5.2.1 Darstellung von SbCl(N₃)₂

Eine Lösung von SbCl₃ (0.456 g, 2.00 mmol) in 25 ml CH₂Cl₂ wurde mit zwei Äquivalenten NaN₃ (0.260 g, 4.0 mmol) bei Raumtemperatur zur Reaktion gebracht. Die Suspension wurde für 48 Stunden gerührt. Nach Filtration wurde das Lösemittel im dynamischen Vakuum entfernt. Es blieb ein farbloses Pulver. Zur Röntgenstrukturanalyse geeignete Kristalle wurden durch Umkristallisation aus CH₂Cl₂ bei –30°C in 73% Ausbeute erhalten. – IR (KBr): $\tilde{\nu} = 2113$ (vs, v_{as}N₃), 1260 (s, v_sN₃), 680 (s, δ N₃), 577 (s, δ N₃), 435 (m, v_sSbN). – Raman (300 scans, 100 mW, 180°, 20 °C): $\tilde{\nu} = 2129$ (2.5, v_{as}N₃), 1286 (2, v_sN₃), 672 (3.5, δ N₃), 555 (1.5, δ N₃), 421 (10, v_{as}SbN), 347 (6.5, vSbCl), 237 (5, δ SbN). – ¹⁴N-NMR (CH₂Cl₂, 29MHz, 25°C): $\delta = -142$ (s, N_β), -175 (s, N_γ), -274 (s, N_α).

4.5.2.2 Darstellung von $AsCl(N_3)_2 \cdot NC_5H_5$

(CH₃)₃SiN₃ (0.53 mL, 4.0 mmol) wurde unter ständigem Rühren zu einer Lösung von AsCl₃ (0.17 mL, 2.0 mmol) in 25 mL CH₂Cl₂ bei 25°C langsam zugespritzt. Die Reaktionsmischung wurde bei Raumtemperatur eine Stunde gerührt. Zu dieser Reaktionsmischung wurde Pyridin (0.32 mL, 4.00 mmol) zugegeben und für weitere zwei Stunden gerührt. Das Lösemittel und resultierendes (CH₃)₃SiCl wurden im dynamischen Vakuum entfernt. Nach Umkristallisation aus CH₂Cl₂ bei –25°C blieben farblose Kristalle in 71% Ausbeute. – IR (KBr): \tilde{v} = 3066 (m), 2113 (vs, v_{as}N₃), 1635 (w), 1600 (s), 1537 (s), 1486 (s), 1447 (vs), 1339 (m), 1257 (vs, v_sN₃), 1158 (m), 1065 (s), 1036 (s), 1008 (s), 946 (m), 755 (s), 670 (sh, δ N₃), 637 (s, δ N₃), 567 (m, δ N₃), 431 (m, vAsN). – Raman (66 scans, 150 mW, 180°, 20 °C): \tilde{v} = 3073 (3), 2118 (2.5, v_{as}N₃), 2085 (1.5, v_{as}N₃), 1606 (1), 1575 (1), 1268 (1, v_sN₃), 1258 (0.5, v_sN₃), 1038 (3), 1013 (4), 670 (1.5, δ N₃), 647 (1, δ N₃), 452 (10, vAsN), 433 (1, vAsN), 287 (2, vAsCl), 265 (2.5, δ AsN), 216 (2, vAsN_{Py}), 180 (3), 139 (1.5, δ AsN_{Py}). – ¹H-NMR (CD₂Cl₂, 400 MHz, 25 °C): δ = 6.33 (m, 2-H), 7.12 (m, 3-H), 8.22 (d, 1-H). – ¹³C-NMR (CD₂Cl₂, 101 MHz, 25 °C): δ = 124.0 (s, 2-C), 127.7 (m, 3-C), 141.1 (d, 1-C). – ¹⁴N-NMR (CH₂Cl₂, 29 MHz, 25 °C): δ = -139 (s, N_β), -164 (s, N_{Py}), -181 (s, N_γ), -269 (s, N_α).

4.5.2.3 Darstellung von $SbCl_2N_3 \cdot 2NC_5H_5$

(CH₃)₃SiN₃ (0.26 mL, 2.0 mmol) wurde unter ständigem Rühren zu einer Lösung von SbCl₃ (0.456 g, 2.0 mmol) in 25 mL CH₂Cl₂ bei 25°C langsam zugespritzt. Die Reaktionsmischung wurde bei Raumtemperatur eine Stunde gerührt. Zu dieser Reaktionsmischung wurde Pyridin (0.32 mL, 4.00 mmol) zugegeben und für weitere zwei Stunden gerührt. Das Lösemittel und resultierendes (CH₃)₃SiCl wurden im dynamischen Vakuum entfernt. Nach Umkristallisation aus CH₂Cl₂ bei –25°C blieben farblose Kristalle in 66% Ausbeute. – IR (KBr): $\tilde{\nu}$ = 3063 (m), 2136 (m, v_{as}N₃), 2079 (vs, v_{as}N₃), 1634 (s), 1608 (s), 1538 (s), 1485 (s), 1389 (w), 1331 (m), 1251 (s, v_sN₃), 1179 (s, 1054 (s), 1004 (s), 936 (m), 750 (s), 648 (w, δ N₃), 594 (s, δ N₃), 509 (m). – Raman (196 scans, 150 mW, 180°, 20 °C): $\tilde{\nu}$ = 3075 (3.5), 2091 (0.5, v_{as}N₃), 1602 (2), 1572 (1.5), 1210 (2, v_sN₃), 1035 (5), 1014 (5), 650 (1.5, δ N₃), 386 (2, vSbN), 326 (10, vSbCl), 285 (9, vSbCl), 241 (4, δ SbN), 166 (1.5, vSbN_{Py}), 108 (3, δ SbN_{Py}). – ¹H-NMR (CD₂Cl₂, 400 MHz, 25 °C): δ = 6.52 (m, 2-H), 7.42 (m, 3-H), 8.32 (d, 1-H). – ¹³C-NMR (CD₂Cl₂, 101 MHz, 25 °C): δ = 124.9 (s, 2-C), 126.7 (m, 3-C), 143.2 (d, 1-C). – ¹⁴N-NMR (CH₂Cl₂, 29 MHz, 25 °C): δ = –143 (s, N_β), –157 (s, N_{Py}), –172 (s, N_γ), –275 (s, N_α).

4.5.3 Darstellung von Lewis-Säure-Base-Addukten von As(N₃)₅ und Sb(N₃)₅

4.5.3.1 Darstellung von $As(N_3)_5 \cdot NC_5H_5$

In einem Zweikugelkolben wurde auf der einen Seite auf eine gefrorene Lösung von $(CH_3)_3SiN_3$ (0.66 mL, 5.00 mmol) in 10 mL SO₂ AsF₅ (0.170 g, 1.00 mmol) bei –196°C kondensiert. Die Reaktionsmischung wurde langsam auf Raumtemperatur erwärmt und 24 Stunden gerührt. Auf der anderen Seite des Zweikugelkolbens wurde Pyridin (0.08 mL, 1.00 mmol) in 10 mL SO₂ gelöst. Beide Seiten wurden bei Raumtemperatur zur Reaktion gebracht und für weitere 12 Stunden gerührt. SO₂ und resultierendes (CH₃)₃SiF wurden im Hochvakuum entfernt. Es blieb ein gelber Feststoff in 94% Ausbeute. – IR (KBr): \tilde{v} = 3110 (m), 2081 (vs, v_{as}N₃), 1636 (m), 1609 (m), 1538 (m), 1488 (m), 1256 (s, v_sN₃), 1165 (w), 1058 (w), 750 (s), 680 (s, δN_3), 608 (vw, δN_3), 574 (w, δN_3), 482 (vw). – Raman (310 scans, 100 mW, 180°, 20 °C): \tilde{v} = 3097 (2.5), 2115 (2.5, v_{as}N₃), 2096 (1, v_{as}N₃), 1610 (1), 1261 (2, v_sN₃), 1211 (1), 1018 (4), 684 (0.5, δN_3), 669 (1, δN_3), 420 (10, v_{as}AsN), 274 (3, δAsN), 216 (1.5), 121 (5). – ¹H-NMR (CD₂Cl₂, 400 MHz, 25 °C): δ = 6.58 (m, 2-H), 7.02 (m, 3-H),

8.30 (d, 1-H). $-{}^{13}$ C-NMR (CD₂Cl₂, 101 MHz, 25 °C): $\delta = 125.0$ (s, 2-C), 127.4 (m, 3-C), 142.8 (d, 1-C). $-{}^{14}$ N-NMR (CD₂Cl₂, 29 MHz, 25 °C): $\delta = -142$ (s, N_β), -151 (s, N_{Py}), -161 (s, N_γ), -263 (s, N_α). $-{}^{75}$ As-NMR (CD₂Cl₂, 69 MHz, 25 °C): $\delta = 20$ (s).

4.5.3.2 Darstellung von $Sb(N_3)_5 \cdot NC_5H_5$

In einem Zweikugelkolben wurde auf der einen Seite auf eine gefrorene Lösung von $(CH_3)_3SiN_3$ (0.66 mL, 5.00 mmol) in 10 mL SO₂ SbF₅ (0.217 g, 1.00 mmol) bei –196°C kondensiert. Die Reaktionsmischung wurde langsam auf Raumtemperatur erwärmt und 24 Stunden gerührt. Auf der anderen Seite des Zweikugelkolbens wurde Pyridin (0.08 mL, 1.00 mmol) in 10 mL SO₂ gelöst. Beide Seiten wurden bei Raumtemperatur zur Reaktion gebracht und für weitere 12 Stunden gerührt. SO₂ und resultierendes $(CH_3)_3SiF$ wurden im Hochvakuum entfernt. Es blieb ein gelber Feststoff in 92% Ausbeute. – IR (KBr): $\tilde{v} = 3099$ (m), 2088 (vs, v_{as}N₃), 1629 (m), 1603 (w), 1550 (m), 1479 (w), 1255 (s, v_sN₃), 1161 (m), 1040 (s), 683 (m, δN_3), 608, 577 (vw, δN_3), 405 (w, v_{as}SbN). – Raman (200 scans, 150 mW, 180°, 20 °C): $\tilde{v} = 3101$ (2), 2092 (2.5, v_{as}N₃), 1637 (1), 1259 (1, v_sN₃), 1201 (2), 1010 (4.5), 666 (2, δN_3), 638 (1.5), 410 (10, v_{as}SbN), 334 (3), 298 (2), 249 (3, δSbN), 171 (4), 111 (5). – ¹H-NMR (CD₂Cl₂, 400 MHz, 25 °C): $\delta = 6.74$ (m, 2-H), 6.94 (m, 3-H), 8.10 (d, 1-H). – ¹³C-NMR (CD₂Cl₂, 29 MHz, 25 °C): $\delta = -141$ (s, N_β), -173 (s, N_γ), -180 (s, N_{Py}), -268 (s, N_α). – ¹²¹Sb-NMR (CD₂Cl₂, 96 MHz, 25 °C): $\delta = 4$ (s).

4.5.3.3 Darstellung von $As(N_3)_5 \cdot NC_9H_7$

In einem Zweikugelkolben wurde auf der einen Seite auf eine gefrorene Lösung von $(CH_3)_3SiN_3$ (0.66 mL, 5.00 mmol) in 10 mL SO₂ AsF₅ (0.170 g, 1.00 mmol) bei -196°C kondensiert. Die Reaktionsmischung wurde langsam auf Raumtemperatur erwärmt und 24 Stunden gerührt. Auf der anderen Seite des Zweikugelkolbens wurde Chinolin (0.12 mL, 1.00 mmol) in 10 mL SO₂ gelöst. Beide Seiten wurden bei Raumtemperatur zur Reaktion gebracht und für weitere 12 Stunden gerührt. SO₂ und resultierendes (CH₃)₃SiF wurden im Hochvakuum entfernt. Es blieb ein braun-gelbes Pulver in 97% Ausbeute. – IR (KBr): \tilde{v} = 3088 (w), 2085 (vs, v_{as}N₃), 1617 (m), 1612 (m), 1530 (w), 1488 (m), 1269 (vs, v_sN₃), 1170 (m), 1030 (w), 750 (s), 682 (m, δN_3), 626 (w, δN_3), 412 (w, v_{as}AsN). – Raman (500

scans, 150 mW, 180°, 20 °C): $\tilde{v} = 3071$ (3), 2113 (2.5, $v_{as}N_3$), 2089 (3, $v_{as}N_3$), 1620 (1.5), 1585 (2), 1375 (4), 1273 (1, v_sN_3), 1055 (1), 769 (5), 669 (2.5, δN_3), 630 (0.5, δN_3), 522 (3.5, δN_3), 415 (10, $v_{as}AsN$), 267 (3.5, δAsN), 200 (1), 123 (7). – ¹H-NMR (CD₂Cl₂, 400 MHz, 25 °C): $\delta = 7.71$ (m, 2-H), 7.74 (m, 6-H), 7.86 (m, 7-H), 8.05 (m, 5-H), 8.10 (m, 3-H), 8.57 (m, 8-H), 8.97 (m, 1-H). – ¹³C-NMR (CD₂Cl₂, 101 MHz, 25 °C): $\delta = 121.9$ (s, 2-C), 125.7 (m, 6-C), 128.6 (s, 5-C), 129.0 (s, 4-C), 129.2 (s, 7-C), 132.4 (s, 8-C), 141.0 (s, 3-C), 144.9 (s, 9-C), 148.1 (s, 1-C). – ¹⁴N-NMR (CD₂Cl₂, 29 MHz, 25 °C): $\delta = -115$ (s, N_{Ch}), -141 (s, N_β), -165 (s, N_γ), -260 (s, N_α). – ⁷⁵As-NMR (CD₂Cl₂, 69 MHz, 25 °C): $\delta = 7$ (s).

4.5.3.4 Darstellung von $Sb(N_3)_5 \cdot NC_9H_7$

In einem Zweikugelkolben wurde auf der einen Seite auf eine gefrorene Lösung von (CH₃)₃SiN₃ (0.66 mL, 5.00 mmol) in 10 mL SO₂ SbF₅ (0.217 g, 1.00 mmol) bei -196°C kondensiert. Die Reaktionsmischung wurde langsam auf Raumtemperatur erwärmt und 24 Stunden gerührt. Auf der anderen Seite des Zweikugelkolbens wurde Chinolin (0.12 mL, 1.00 mmol) in 10 mL SO₂ gelöst. Beide Seiten wurden bei Raumtemperatur zur Reaktion gebracht und für weitere 12 Stunden gerührt. SO2 und resultierendes (CH3)3SiF wurden im Hochvakuum entfernt. Es blieb ein braun-gelbes Pulver in 95% Ausbeute. - IR (KBr): $\tilde{v} = 3071$ (w), 2078 (vs, $v_{as}N_3$), 1635 (s), 1597 (s), 1558 (m), 1489 (m), 1252 (s, v_sN_3), 1148 (m), 1133 (m), 1050 (w), 809 (s), 771 (m), 665 (s, δN_3), 574 (w, δN_3), 508 (w, δN_3), 474 (w), 416 (s, $v_{as}SbN$), 334 (m). – Raman (450 scans, 150 mW, 180°, 20 °C): $\tilde{v} = 3073$ (4), 2092 (3.5, v_{as}N₃), 2080 (3.5, v_{as}N₃), 1636 (2), 1598 (2), 1395 (4), 1381 (4.5), 1269 (0.5, v_sN₃), 1150 (1), 1053 (3), 769 (4), 667 (2, δN_3), 519 (4, δN_3), 410 (8, $v_{as}SbN$), 392 (10, v_sSbN), 334 (7), 229 (3, δ SbN), 210 (2), 173 (3), 139 (2). – ¹H-NMR (CD₂Cl₂, 400 MHz, 25 °C): δ = 7.97 (m, 2-H), 8.06 (m, 6-H), 8.13 (m, 7-H), 8.28 (m, 5-H), 8.31 (m, 3-H), 9.03 (m, 8-H), 9.15 (m, 1-H). $-{}^{13}$ C-NMR (CD₂Cl₂, 101 MHz, 25 °C): $\delta = 121.8$ (s, 2-C), 122.2 (m, 6-C), 129.6 (s, 5-C), 129.8 (s, 4-C), 130.7 (s, 7-C), 135.6 (s, 8-C), 139.7 (s, 3-C), 145.1 (s, 9-C), 146.8 (s, 1-C). $-{}^{14}$ N-NMR (CD₂Cl₂, 29 MHz, 25 °C): $\delta = -141$ (s, N_β), -160 (s, N_{Ch}), -170 (s, N_γ), -251 (s, N_a). $-^{121}$ Sb-NMR (CD₂Cl₂, 96 MHz, 25 °C): $\delta = 1$ (s).

4.5.3.5 Darstellung von $As(N_3)_5 \cdot NH_3$

In einem Zweikugelkolben wurde auf der einen Seite auf eine gefrorene Lösung von $(CH_3)_3SiN_3$ (0.66 mL, 5.00 mmol)) in 10 mL $CH_2Cl_2 AsF_5$ (0.170 g, 1.00 mmol) bei –196°C kondensiert. Die Reaktionsmischung wurde langsam auf Raumtemperatur erwärmt und 24 Stunden gerührt. Auf der anderen Seite des Zweikugelkolbens wurde NH₃ (0.017 g, 1.00 mmol) in 10 mL CH_2Cl_2 gelöst. Beide Seiten wurden bei Raumtemperatur zur Reaktion gebracht und für weitere 12 Stunden gerührt. Es bildete sich ein leicht gelber Niederschlag. CH_2Cl_2 und resultierendes (CH_3)₃SiF wurden im Hochvakuum entfernt. Es blieb ein leicht gelbes Pulver in 79% Ausbeute. – IR (KBr): $\tilde{v} = 3099$ (w), 2084 (s, $v_{as}N_3$), 2048 (s, $v_{as}N_3$), 1393 (w), 1245 (s, v_sN_3), 837 (w), 687 (s, δN_3), 668 (s, δN_3), 575 (s, δN_3), 407 (vs, $v_{as}AsN$), 314 (m). – Raman (310 scans, 150 mW, 180°, 20 °C): $\tilde{v} = 3042$ (0.5), 2125 (4, $v_{as}N_3$), 2085 (3, $v_{as}N_3$), 1344 (0.5), 1266 (1.5, v_sN_3), 1248 (1, v_sN_3), 664 (3, δN_3), 416 (10, $v_{as}AsN$), 378 (2, $v_{as}AsN$), 271 (1, δAsN), 164 (3.5), 135 (6). – ¹H-NMR (*d*₆-DMSO, 400 MHz, 25 °C): $\delta = 7.15$ (s, NH₃). – ¹⁴N-NMR (*d*₆-DMSO, 29 MHz, 25 °C): $\delta = -141$ (s, N_β), -165 (s, N_γ), -265 (s, N_α), -359 (s, NH₃). – ⁷⁵As-NMR (*d*₆-DMSO, 69 MHz, 25 °C): $\delta = 8$ (s).

4.5.3.6 Darstellung von $Sb(N_3)_5 \cdot NH_3$

In einem Zweikugelkolben wurde auf der einen Seite auf eine gefrorene Lösung von $(CH_3)_3SiN_3$ (0.66 mL, 5.00 mmol) in 10 mL CH_2Cl_2 SbF₅ (0.217 g, 1.00 mmol) bei –196°C kondensiert. Die Reaktionsmischung wurde langsam auf Raumtemperatur erwärmt und 24 Stunden gerührt. Auf der anderen Seite des Zweikugelkolbens wurde NH₃ (0.017 g, 1.00 mmol) in 10 mL CH_2Cl_2 gelöst. Beide Seiten wurden bei Raumtemperatur zur Reaktion gebracht und für weitere 12 Stunden gerührt. Es bildete sich ein leicht gelber Niederschlag. CH₂Cl₂ und resultierendes (CH₃)₃SiF wurden im Hochvakuum entfernt. Es blieb ein leicht gelbes Pulver in 73% Ausbeute. – IR (KBr): $\tilde{v} = 3133$ (m), 2082 (s, $v_{as}N_3$), 1403 (s), 1258 (m, v_sN_3), 1047 (m), 798 (m), 667 (s, δN_3). – Raman (500 scans, 200 mW, 180°, 20 °C): $\tilde{v} = 3042$ (3), 2104 (2, $v_{as}N_3$), 2088 (2, $v_{as}N_3$), 1409 (0.5), 1260 (0.5, v_sN_3), 659 (0.5, δN_3), 446 (0.5), 400 (3, $v_{as}SbN$), 237 (10, δSbN). – ¹H-NMR (d_6 -DMSO, 400 MHz, 25 °C): $\delta = 7.14$ (s, NH₃). – ¹⁴N-NMR (d_6 -DMSO, 29 MHz, 25 °C): $\delta = -141$ (s, N_β), -172 (s, N_γ), -251 (s, N_α), -349 (s, NH₃). – ¹²¹Sb-NMR (d_6 -DMSO, 96 MHz, 25 °C): $\delta = 3$ (s).

4.5.3.7 Darstellung von $As(N_3)_5 \cdot N_2H_4$

In einem Zweikugelkolben wurde auf der einen Seite auf eine gefrorene Lösung von $(CH_3)_3SiN_3$ (0.66 mL, 5.00 mmol) in 10 mL $CH_2Cl_2 AsF_5$ (0.170 g, 1.00 mmol) bei –196°C kondensiert. Die Reaktionsmischung wurde langsam auf Raumtemperatur erwärmt und 24 Stunden gerührt. Auf der anderen Seite des Zweikugelkolbens wurde N_2H_4 (0.03 mL, 1.00 mmol) in 10 mL CH_2Cl_2 gelöst. Beide Seiten wurden bei Raumtemperatur zur Reaktion gebracht und für weitere 12 Stunden gerührt. Es bildete sich ein brauner Niederschlag. CH_2Cl_2 und resultierendes $(CH_3)_3SiF$ wurden im Hochvakuum entfernt. Es blieb ein braunes Pulver in 83% Ausbeute. – IR (KBr): $\tilde{v} = 3203$ (m), 2105 (w, $v_{as}N_3$), 1610 (w), 1401 (vw), 1280 (s, v_sN_3), 837 (vw), 666 (m, δN_3), 580 (w, δN_3), 334 (w). – Raman (400 scans, 200 mW, 180°, 20 °C): $\tilde{v} = 3150$ (0.5), 2101 (1.5, $v_{as}N_3$), 2088 (1, $v_{as}N_3$), 1273 (0.5, v_sN_3), 1081 (0.5), 667 (1.5, δN_3), 430 (3), 407 (10, $v_{as}AsN$), 390 (5, v_sAsN), 268 (1). – ¹H-NMR (*d*₆-DMSO, 400 MHz, 25 °C): $\delta = 6.90$ (s, N_2H_4). – ¹⁴N-NMR (*d*₆-DMSO, 29 MHz, 25 °C): $\delta = -139$ (s, N_β), –166 (s, N_γ), –242 (s, N_α), –334 (s, $AsNH_2NH_2$), –358 (s, $AsNH_2NH_2$). – ⁷⁵As-NMR (*d*₆-DMSO, 69 MHz, 25 °C): $\delta = 11$ (s).

4.5.3.8 Darstellung von $Sb(N_3)_5 \cdot N_2H_4$

In einem Zweikugelkolben wurde auf der einen Seite auf eine gefrorene Lösung von $(CH_3)_3SiN_3$ (0.66 mL, 5.00 mmol) in 10 mL CH_2Cl_2 SbF₅ (0.217 g, 1.00 mmol) bei –196°C kondensiert. Die Reaktionsmischung wurde langsam auf Raumtemperatur erwärmt und 24 Stunden gerührt. Auf der anderen Seite des Zweikugelkolbens wurde N₂H₄ (0.03 mL, 1.00 mmol) in 10 mL CH_2Cl_2 gelöst. Beide Seiten wurden bei Raumtemperatur zur Reaktion gebracht und für weitere 12 Stunden gerührt. Es bildete sich ein dunkelbrauner Niederschlag. CH_2Cl_2 und resultierendes (CH_3)₃SiF wurden im Hochvakuum entfernt. Es blieb ein dunkelbraunes Pulver in 78% Ausbeute. – IR (KBr): $\tilde{\nu} = 3197$ (m), 2097 (w, $\nu_{as}N_3$), 1605 (w), 1399 (vw), 1271 (s, ν_sN_3), 1077 (m), 950 (s), 665 (w, δN_3), 577 (w, δN_3). – Raman (300 scans, 150 mW, 180°, 20 °C): $\tilde{\nu} = 3101$ (1), 2096 (2, $\nu_{as}N_3$), 1269 (1, ν_sN_3), 1087 (0.5), 964 (0.5), 655 (1, δN_3), 395 (5, $\nu_{as}SbN$), 325 (10), 147 (8). – ¹H-NMR (*d*₆-DMSO, 400 MHz, 25 °C): $\delta = 7.30$ (s, N_2H_4). – ¹⁴N-NMR (*d*₆-DMSO, 29 MHz, 25 °C): $\delta = -139$ (s, N_{β}), -173 (s, N_{γ}), -242 (s, N_{α}), -334 (s, SbNH₂MH₂), -358 (s, Sb<u>N</u>H₂NH₂). – ¹²¹Sb-NMR (*d*₆-DMSO, 96 MHz, 25 °C): $\delta = 5$ (s).

4.5.3.9 Darstellung von $As(N_3)_5 \cdot NCNH_2$

In einem Zweikugelkolben wurde auf der einen Seite auf eine gefrorene Lösung von $(CH_3)_3SiN_3$ (0.66 mL, 5.00 mmol) in 10 mL SO₂ AsF₅ (0.170 g, 1.00 mmol) bei –196°C kondensiert. Die Reaktionsmischung wurde langsam auf Raumtemperatur erwärmt und 24 Stunden gerührt. Auf der anderen Seite des Zweikugelkolbens wurde NCNH₂ (0.042 g, 1.00 mmol) in 10 mL SO₂ gelöst. Beide Seiten wurden bei Raumtemperatur zur Reaktion gebracht und für weitere 12 Stunden gerührt. SO₂ und resultierendes $(CH_3)_3SiF$ wurden im Hochvakuum entfernt. Es blieb ein rotbraunes Pulver in 83% Ausbeute. – IR (KBr): \tilde{v} = 3302 (w), 2327 (s), 2101 (vw, vasN₃), 2081 (vs, vasN₃), 1634 (m), 1539 (m), 1294 (s, vsN₃), 1200 (m), 1138 (m), 1034 (m), 919 (m), 729 (s), 667 (m, δN_3), 497 (w), 430 (m), 416 (w, vasAsN). – Raman (385 scans, 150 mW, 180°, 20 °C): \tilde{v} = 3193 (0.5), 2119 (4, vasN₃), 2092 (3, vasN₃), 1561 (3), 1287 (1, vsN₃), 1264 (2, vsN₃), 1069 (2.5), 1038 (1), 703 (1), 670 (1.5, δN_3), 500 (2.5), 429 (10), 417 (8, vasAsN), 283 (2.5, δAsN), 127 (7.5). – ¹H-NMR (*d*₆-DMSO, 400 MHz, 25 °C): δ = 7.84 (s, NCNH₂). – ¹³C-NMR (*d*₆-DMSO, 101 MHz, 25 °C): δ = 156.7 (s, NCNH₂). – ¹⁴N-NMR (*d*₆-DMSO, 29 MHz, 25 °C): δ = -141 (s, N_β), -164 (s, N_γ), -249 (s, N_α), -359 (s, NC<u>NH₂</u>). – ⁷⁵As-NMR (*d*₆-DMSO, 69 MHz, 25 °C): δ = 9 (s).

4.5.3.10 Darstellung von $Sb(N_3)_5 \cdot NCNH_2$

In einem Zweikugelkolben wurde auf der einen Seite auf eine gefrorene Lösung von $(CH_3)_3SiN_3$ (0.66 mL, 5.00 mmol) in 10 mL SO₂ SbF₅ (0.217 g, 1.00 mmol) bei -196°C kondensiert. Die Reaktionsmischung wurde langsam auf Raumtemperatur erwärmt und 24 Stunden gerührt. Auf der anderen Seite des Zweikugelkolbens wurde NCNH₂ (0.042 g, 1.00 mmol) in 10 mL SO₂ gelöst. Beide Seiten wurden bei Raumtemperatur zur Reaktion gebracht und für weitere 12 Stunden gerührt. SO₂ und resultierendes (CH₃)₃SiF wurden im Hochvakuum entfernt. Es blieb ein braunes Pulver in 88% Ausbeute. – IR (KBr): \tilde{v} = 3280 (w), 2350 (s), 2126 (w, v_{as}N₃), 1489 (w), 1382 (w), 1260 (s, v_sN₃), 1019 (s), 898 (m), 798 (w), 669 (m, δN_3). – Raman (400 scans, 130 mW, 180°, 20 °C): \tilde{v} = 3204 (0.5), 2109 (1.5, v_{as}N₃), 2097 (2, v_{as}N₃), 1639 (0.5), 1573 (1), 1395 (1.5), 1252 (0.5, v_sN₃), 1177 (0.5), 989 (0.5), 764 (2), 668 (2, δN_3), 634 (2, δN_3), 419 (6), 407 (5.5, v_{as}SbN), 349 (10), 233 (3.5, δSbN), 143 (2.5). – ¹H-NMR (*d*₆-DMSO, 400 MHz, 25 °C): δ = 7.88 (s, NCNH₂). – ¹³C NMR (*d*₆-DMSO, 101 MHz, 25 °C): δ = 155.9 (s, NCNH₂). – ¹⁴N-NMR (*d*₆-DMSO, 29 MHz,

25 °C): $\delta = -141$ (s, N_{β}), -153 (s, <u>N</u>CNH₂), -172 (s, N_{γ}), -252 (s, N_{α}), -359 (s, NC<u>N</u>H₂). - ¹²¹Sb-NMR (*d*₆-DMSO, 96 MHz, 25 °C): $\delta = 4$ (s).

4.5.4 Darstellung von Lewis-Säure-Base-Addukten von AsCl₅ und SbCl₅

4.5.4.1 Darstellung von SbCl₅ · NCCl

In einem 5-mm NMR-Rohr mit Young-Ventil wurde auf eine gefrorene Lösung von SbCl₅ (0.25 mL, 2.00 mmol) ClCN (2.40 mmol) bei –196°C kondensiert. Die Reaktionsmischung wurde langsam auf Raumtemperatur erwärmt, wobei sich ein leicht gelblicher Feststoff bildete. Der Feststoff wurde im Hochvakuum getrocknet. Es blieb ein leicht gelbliches Pulver in 94% Ausbeute. Zur Röntgenstrukturanalyse geeignete Kristalle wurden durch Umkristallisation aus SO₂ bei –25°C erhalten. –Schmelzpunkt: 95°C. – Raman (265 scans, 100 mW, 180°, 20 °C): \tilde{v} = 2259 (2.5, vCN), 648 (2), 616 (2), 557 (1.5), 355 (8, vSbCl), 344 (10, vSbCl), 305 (2.5, vSbCl), 297 (2), 193 (3, vSbN), 170 (2, δ SbCl), 131 (4, δ SbCl), 83 (2.5, δ SbN). – ¹⁴N-NMR (SO₂, 29 MHz, 25 °C): δ = –172. – CCl₆NSb (360.5): ber.: C 3.3, N 3.9, Cl 59.0; gef.: C 3.1, N 3.7, Cl 58.9.

4.5.4.2 Darstellung von SbCl₅ · NCBr

In einem Schlenkkolben wurde SbCl₅ (0.25 mL, 2.00 mmol) zu einer Lösung von BrCN (0.212 g, 2.00 mmol) in 20 ml CH₂Cl₂ langsam unter ständigem Rühren bei Raumtemperatur zugespritzt. Die Reaktionslösung wurde drei Stunden bei Raumtemperatur gerührt. Das Lösemittel wurde im Hochvakuum entfernt. Es blieb ein farbloser Feststoff in quantitativer Ausbeute. –Schmelzpunkt: 111°C. – Raman (30 scans, 150 mW, 180°, 20 °C): \tilde{v} = 2232 (3, vCN), 637 (0.5), 396 (1), 355 (10, vSbCl), 341 (10, vSbCl), 302 (1, vSbCl), 295 (2), 192 (4, vSbN), 166 (3, δ SbCl), 130 (5, δ SbCl), 83 (1, δ SbN). – ¹⁴N-NMR (CD₂Cl₂, 29 MHz, 25 °C): δ = –154. – CBrCl₅NSb (404.9): ber.: C 3.0, N 3.5, Br 19.7, Cl 43.8; gef.: C 2.9, N 3.6, Br 19.4, Cl 42.5.

4.5.4.3 Darstellung von SbCl₅ · NCI

In einem Schlenkkolben wurde SbCl₅ (0.25 mL, 2.00 mmol) zu einer Lösung von ICN (0.310 g, 2.00 mmol) in 25 ml CH₂Cl₂ langsam unter ständigem Rühren bei Raumtemperatur zugespritzt. Die Reaktionslösung wurde zwei Stunden bei Raumtemperatur gerührt. Das Lösemittel wurde im Hochvakuum entfernt. Es blieb ein farbloses Pulver in quantitativer Ausbeute. –Schmelzpunkt: 103°C. – Raman (20 scans, 150 mW, 180°, 20 °C): \tilde{v} = 2197 (3, vCN), 533 (0.5), 344 (10, vSbCl), 302 (3, vSbCl), 184 (2.5, vSbN), 176 (1.5, δ SbCl), 126 (1.5, δ SbCl), – ¹⁴N-NMR (CD₂Cl₂, 29 MHz, 25 °C): δ = –126. – CCl₅INSb (451.9): ber.: C 2.7, N 3.1, Cl 39.2, I 28.1; gef.: C 2.5, N 3.2, Cl 39.4, I 27.9.

4.5.4.4 Darstellung von $SbCl_5 \cdot NCCN \cdot SbCl_5$

In einem 5-mm NMR-Rohr mit Young-Ventil wurde auf eine gefrorene Lösung von SbCl₅ (0.13 mL, 1.00 mmol) (CN)₂ (1.00 mmol) bei –196°C kondensiert. Die Reaktionsmischung wurde langsam auf Raumtemperatur erwärmt, wobei sich ein schwach gelblicher Feststoff bildete. Der Feststoff wurde im Hochvakuum getrocknet. Es blieb ein leicht gelbliches Pulver in 88% Ausbeute. Zur Röntgenstrukturanalyse geeignete farblose Kristalle wurden durch Umkristallisation aus SO₂ bei –25°C erhalten. –Schmelzpunkt: 73°C. – Raman (150 scans, 100 mW, 180°, 20 °C): \tilde{v} = 2352 (1.5, vCN), 865 (0.5, vCC), 500 (1), 399 (2), 373 (1, vSbCl), 345 (10, vSbCl), 318 (1, vSbCl), 299 (2), 195 (2, vSbN), 170 (0.5, \deltaSbCl), 153 (0.5), 130 (3, \deltaSbCl). – ¹⁴N-NMR (SO₂, 29 MHz, 25 °C): δ = –172. – C₂Cl₁₀N₂Sb₂ (650.1): ber.: C 3.7, N 4.3, Cl 54.5; gef.: C 3.7, N 4.3, Cl 54.4.

4.5.4.5 Darstellung von $SbCl_5 \cdot NCNH_2$

In einem Schlenkkolben wurde SbCl₅ (0.25 mL, 2.00 mmol) zu einer Lösung von NH₂CN (0.080 g, 2.00 mmol) in 20 ml CH₂Cl₂ langsam unter ständigem Rühren bei Raumtemperatur zugespritzt. Die gelbliche Reaktionslösung wurde bei Raumtemperatur gerührt, wobei nach 10 Minuten ein leicht gelbliches Pulver ausfiel. Nach Filtration wurde das Produkt im Hochvakuum getrocknet. Es blieb ein farbloses Pulver in 91% Ausbeute. –Schmelzpunkt: 147°C. – Raman (130 scans, 100 mW, 180°, 20 °C): $\tilde{v} = 2285$ (1, vCN), 345 (10, vSbCl), 300 (2, vSbCl), 185 (2, vSbN), 170 (2, δ SbCl), 134 (2, δ SbN). – ¹H-NMR (*d*₆-DMSO, 29 MHz, 25 °C): $\delta = 8.25$ (s, NCNH₂). – ¹³C-NMR (*d*₆-DMSO, 29 MHz, 25 °C): $\delta = 161.0$

(s, NCNH₂). - ¹⁴N-NMR (d_6 -DMSO, 29 MHz, 25 °C): $\delta = -195$ (s, <u>NCNH₂</u>), -359 (s, NC<u>NH₂</u>). - CH₂Cl₅N₂Sb (341.1): ber.: C 3.5, H 0.6, N 8.2, Cl 52.0; gef.: C 3.7, H 0.7, N 8.3, Cl 52.1.

4.5.4.6 Darstellung von $SbCl_5 \cdot NC_5H_5$

In einem Schlenkkolben wurde SbCl₅ (0.25 mL, 2.00 mmol) zu einer Lösung von Pyridin (0.16 mL, 2.00 mmol) in 20 ml CH₂Cl₂ langsam unter ständigem Rühren bei Raumtemperatur zugespritzt. Die Reaktionslösung wurde bei Raumtemperatur gerührt, wobei sich sofort ein leicht gelblicher Niederschlag bildete. Nach Filtration wurde das Produkt im Hochvakuum getrocknet. Es blieb ein farbloses Pulver in 93% Ausbeute. –Schmelzpunkt: 207°C. – Raman (205 scans, 100 mW, 180°, 20 °C): $\tilde{v} = 3093$ (1), 3061 (1), 1608 (0.5, vCC), 1210 (0.5), 1156 (0.5), 1040 (1), 1017 (2), 646 (1), 359 (5, vSbCl), 329 (10, vSbCl), 294 (2.5, vSbCl), 194 (1.5, δ SbN), 176 (2, δ SbCl), 167 (2), 152 (2). – ¹H-NMR (*d*₆-DMSO, 29 MHz, 25 °C): $\delta = 7.86$ (m, 2-H), 8.35 (m, 3-H), 8.82 (d, 1-H). – ¹³C-NMR (*d*₆-DMSO, 29 MHz, 25 °C): $\delta = -195$ (s, N_{Py}). – C₅H₅Cl₅NSb (378.1): ber.: C 15.9, H 1.3, N 3.7, Cl 46.9; gef.: C 16.1, H 1.5, N 3.7, Cl 46.6.

4.5.4.7 Darstellung von AsCl₅ · NCI

In einem Schlenkkolben wurde AsCl₃ (0.17 mL, 2.00 mmol) zu einer Lösung von ICN (0.310 g, 2.00 mmol) in 25 ml CH₂Cl₂ langsam unter ständigem Rühren bei Raumtemperatur zugespritzt. Durch die Reaktionslösung wurde 20 Minuten getrocknetes Chlorgas durchgeleitet, wobei sich die Reaktionslösung zunächst gelb, dann leicht braun färbte. Die Reaktionsmischung wurde auf –130°C gekühlt, wobei ein leicht gelbliches Pulver ausfiel. Nach Filtration wurde das Produkt im Hochvakuum getrocknet. Es blieb ein farbloses Pulver in 88% Ausbeute. – Raman (20 scans, 150 mW, 180°, 20 °C): $\tilde{v} = 2187$ (1, vCN), 484 (1), 410 (10, vAsCl), 379 (4, vAsCl), 195 (3, δ AsCl), 170 (2, vAsN), 157 (5, δ AsCl), – ¹⁴N-NMR (CD₂Cl₂, 29 MHz, 25 °C): $\delta = -143$. – AsCCl₅IN (405.1): ber.: C 3.0, N 3.4, Cl 43.8, I 31.0; gef.: C 3.0, N 3.5, Cl 43.8, I 31.3.

4.5.5 Darstellung von [NMe₄]₂[As₄O₂Cl₁₀] · 2CH₃CN

AsCl₃ (0.1 mL, 1.20 mmol) wurde in einem Schlenkkolben unter Rühren mit As₂O₃ (0.060 g, 0.30 mmol) und NMe₄Cl (0.11 g, 1.00 mmol) in 25 mL CH₃CN bei Raumtemperatur umgesetzt. Nach 24 h ständigem Rühren löste sich die Suspension vollständig. Die Reaktionslösung wurde auf -25° C abgekühlt, wobei sich nach mehreren Stunden ein farbloses Niederschlag abschied. Der farblose Feststoff wurde durch Filtration isoliert und aus CH₃CN bei -25° C umkristallisiert. Es blieben farblose Kristalle in 88% Ausbeute. – IR (KBr): $\tilde{v} = 3018$ (s), 2258 (m), 1482 (m), 970 (w), 709 (vs, vAsO), 519 (vs, vAsO), 352 (vw, vAsCl), 335 (s, vAsCl), 323 (m, vAsCl), 313 (s, vAsCl), 240 (s, δ AsOAs), 208 (w). – Raman (200 scans, 150 mW, 180°, 20 °C): $\tilde{v} = 3030$ (8), 2253 (4), 1486 (10), 956 (3), 756 (3.5), 688 (3.5, vAsO), 523 (2, vAsO), 459 (2), 352 (7.5, vAsCl), 325 (4, vAsCl), 315 (7.5, vAsCl), 300 (4.5, vAsCl), 241 (1, δ AsOAs), 192 (5.5), 142 (6.5), 119 (5.5), 103 (6.0). – C₁₂H₃₀As₄Cl₁₀N₄O₂ (916.6): ber.: C 15.7, H 3.3, N 6.1; gef.: C 15.3, H 3.0, N 5.9.

4.5.6 Darstellung von Palladium(II)azid-Komplexen

4.5.6.1 Darstellung von Bis(azido)bis(2-Chloropyridin)palladium(II)

2-Chloropyridin (1 mL, 10.6 mmol) in 5 mL Aceton und eine Lösung von NaN₃ (0.039 g, 0.6 mmol) in 5 mL Wasser wurden langsam unter ständigem Rühren zu einer Lösung von Pd(NO₃)₂ (0.069 g, 0.3 mmol) in 10 mL Wasser bei Raumtemperatur zugetropft. Es bildete sich sofort ein brauner Niederschlag. Nach zwei Stunden Rühren und Filtration wurde das brauner Pulver mit Wasser gewaschen und im dynamischen Vakuum getrocknet. Umkristallisation aus CHCl₃/Pentan ergab braune Kristalle in 89% Ausbeute. – Explosionspunkt: 120°C. – IR (KBr): $\tilde{v} = 3102 - 2975$ (w), 2046 (s, v_{as}N₃), 1590 (s), 1562 (s), 1460 (s), 1428 (s), 1282 (s, v_sN₃), 1142 (s), 1059 (s), 1033 (m), 890 (m), 775 (s), 587 (m, δ N₃), 456 (s), 460 (s, vPdN). – Raman (30 scans, 100 mW, 180°, 20 °C): $\tilde{v} = 3074$ (4), 2030 (3.5, v_{as}N₃), 1589 (1), 1560 (2), 1286 (2, v_sN₃), 1035 (4.5), 732 (2), 655 (1.5), 381 (vPdN) (10), 167 (5), 102 (7). – ¹H-NMR (CDCl₃, 400 MHz, 25 °C): $\delta = 8.40$ (m, 6-H), 7.40 (m, 4-H), 7.33 (m, 3-H), 7.24 (m, 5-H). – ¹³C-NMR (CDCl₃, 101 MHz, 25 °C): $\delta = 151.7$ (s, 2-C),), 149.9 (s, 6-C), 138.7 (s, 4-C), 124.5 (s, 3-C), 122.3 (s, 5-C). – ¹⁴N-NMR (CDCl₃,

29 MHz, 25 °C): $\delta = -73$ (s, N_{2-Chloropyridin}), -128 (s, N_β). - C₁₀H₈Cl₂N₈Pd (417.6): ber.: C 28.8, H 1.9, N 26.8; gef.: C 28.4, H 2.0, N 26.2.

4.5.6.2 Darstellung von Bis(azido)bis(3-Chloropyridin)palladium(II)

3-Chloropyridin (1 mL, 10.5 mmol) in 5 mL Aceton und eine Lösung von NaN₃ (0.039 g, 0.6 mmol) in 5 mL Wasser wurden langsam unter ständigem Rühren zu einer Lösung von Pd(NO₃)₂ (0.069 g, 0.3 mmol) in 10 mL Wasser bei Raumtemperatur zugetropft. Es bildete sich sofort ein ocker-farbiger Niederschlag. Nach zehn Stunden Rühren und Filtration wurde das Pulver mit Wasser gewaschen, und im dynamischen Vakuum getrocknet. Es blieb ein ocker-farbenes Pulver in 93% Ausbeute. – Zersetzungspunkt: 143°C. – IR (KBr): \tilde{v} = 3187 – 3002 (w), 2033 (s, v_{as}N₃), 1596 (s), 1561 (s), 1470 (s), 1428 (s), 1287 (s, v_sN₃, 1127 (s), 1064 (s), 940 (m), 806 (s), 761 (s), 691 (s), 584 (m, δ N₃), 410 (s, vPdN). – Raman (75 scans, 70 mW, 180°, 20 °C): \tilde{v} = 3065 (5), 2040 (3.5, v_{as}N₃), 1596 (2), 1559 (2), 1291 (2, v_sN₃), 1035 (7.5), 757 (2.5), 660 (2), 378 (10, vPdN), 199 (7), 148 (6), 129 (10). – ¹H-NMR (CDCl₃, 400 MHz, 25 °C): δ = 8.73 (m, 2-H), 8.64 (m, 6-H), 7.88 (m, 4-H), 7.45 (m, 5-H). – ¹³C-NMR (CDCl₃, 101 MHz, 25 °C): δ = 150.6 (s, 2-C), 149.6 (s, 6-C), 139.4 (s, 4-C), 133.9 (s, 3-C), 126.3 (s, 5-C). – ¹⁴N-NMR (CDCl₃, 29 MHz, 25 °C): δ = –130 (s, N_β), –223 (s, N_γ), –321 (s, N_α). – C₁₀H₈Cl₂N₈Pd (417.6): ber.: C 28.8, H 1.9, N 26.8; gef.: C 28.3, H 2.0, N 25.9.

4.5.6.3 Darstellung von Bis(azido)bis(chinolin)palladium(II)

Chinolin (1 mL, 8.5 mmol) in 5 mL Aceton und eine Lösung von NaN₃ (0.039 g, 0.6 mmol) in 5 mL Wasser wurden langsam unter ständigem Rühren zu einer Lösung von Pd(NO₃)₂ (0.069 g, 0.3 mmol) in 10 mL Wasser bei Raumtemperatur zugetropft. Es bildete sich ein oranger Niederschlag. Nach zehn Stunden rühren und Filtration wurde das Pulver mit Wasser gewaschen, und im dynamischen Vakuum getrocknet. Es blieb ein leicht oranges Pulver in 93% Ausbeute. – Zersetzungspunkt: 171°C. – IR (KBr): $\tilde{v} = 3057 - 2964$ (w), 2015 (s, v_{as}N₃), 1509 (s), 1463 (m), 1378 (m), 1317 (m), 1277 (s, v_sN₃), 1133 (m), 809 (s), 781 (s), 587 (w, δ N₃), 425 (s, vPdN), 399 (m). – Raman (30 scans, 100 mW, 180°, 20 °C): $\tilde{v} = 3070$ (4), 2029 (4.5, v_{as}N₃), 1585 (2), 1438 (3), 1379 (8), 1281 (1.5, v_sN₃), 1058 (3.5), 786 (6), 644 (1.5), 384 (10, vPdN), 174 (5), 142 (5.5), 102 (8.5). – ¹H-NMR (CDCl₃, 400 MHz, 25 °C): δ = 8.70 (m, 1-H), 8.22 (m, 8-H), 8.10 (m, 3-H), 7.74 (m, 5-H), 7.53 (m, 7-H), 7.42 (m, 6-H), 7.30 (m, 2-H). – ¹³C-NMR (CDCl₃, 101 MHz, 25 °C): δ = 152.7 (s, 1-C),), 149.4 (s, 9-C), 140.3 (s, 3-C), 132.9 (s, 8-C), 131.9 (s, 7-C), 129.4 (s, 4-C), 128.3 (s, 5-C), 127.4 (s, 6-C), 122.2 (s, 2-C). – ¹⁴N-NMR (CDCl₃, 29 MHz, 25 °C): δ = –128 (s, N_β), –159 (s, N_{Chinolin}), –225 (s, N_γ), –331 (s, N_α). – C₁₈H₁₄N₈Pd (448.8): ber.: C 48.2, H 3.1, N 25.0; gef.: C 48.9, H 3.0, N 24.3.

5 Zusammenfassung

Ziel dieser Arbeit war es, Arsen- bzw. Antimonverbindungen zu synthetisieren und zu charakterisieren, die Chemiker aufgrund allgemeiner Erfahrungen als instabil bzw. explosiv bezeichnen würden. Dabei wurden vier verschiedene Schwerpunkte gesetzt.

- (a) binäre Arsenazide und Antimonazide
- (b) gemischte Halogen/Azid-Verbindungen von Arsen und Antimon
- (c) Lewis-Säure-Base-Addukte von $As(N_3)_5$ und $Sb(N_3)_5$
- (d) Lewis-Säure-Base-Addukte von AsCl₅ und SbCl₅

(a) binäre Arsenazide und Antimonazide

Die binären Arsenazid- und Antimonazid-Verbindungen $M(N_3)_3$, $M(N_3)_4^+$, $M(N_3)_4^-$, $M(N_3)_5$ und $M(N_3)_6^-$ (M = As, Sb) wurden durch Reaktion der entsprechenden Chlorid-Verbindungen mit TMS-N₃ oder aktiviertem NaN₃ synthetisiert. Die Verbindungen wurden als reine Substanzen bzw. als Salze isoliert. Die Isolation der reinen Pentaazide gelang aufgrund der extremen Explosivität nicht.

Die Strukturen und Normalschwingungen aller binären Verbindungen wurden auf B3LYP-Niveau berechnet. Die kationischen Spezies zeigen S_4 -Symmetrie, die monomeren $M(N_3)_4^-$ -Anionen und die neutralen $M(N_3)_5$ -Spezies C_s -Symmetrie, die dimeren $[M(N_3)_4^-]_2$ -Anionen S_2 -Symmetrie und die $M(N_3)_6^-$ -Anionen S_6 -Symmetrie. Abbildung 46 zeigt die berechneten Strukturen und die explosiven Eigenschaften der Verbindungen.

Die berechneten durchschnittlichen M-N-Bindungslängen steigen in der Reihenfolge $M(N_3)_4^+$ $< M(N_3)_5 < M(N_3)_3 < M(N_3)_4^- < M(N_3)_6^-$. Die N-N-Bindungslängen innerhalb der Azidgruppen zeigen eine ähnliche Tendenz. Die kationischen Verbindungen zeigen die längsten N_{α} - N_{β} - und die kürzesten N_{β} - N_{γ} -Bindungslängen (Konnektivität: $M-N_{\alpha}-N_{\beta}-N_{\gamma}$) gefolgt von den Neutral-verbindungen und den anionischen Spezies. Dementsprechend ist die Bindungsordnung zwischen dem N_{β} und N_{γ} -Stickstoffatom (vgl. Lewisformel III, Schema 1) für die kationischen Azidverbidungen am höchsten und für die anionischen am geringsten. Diese Tendenzen stimmen gut mit den experimentell bestimmten und berechneten Schwingungsdaten für die Azidgruppen überein.

Abb. 46 Berechnete (B3LYP) Molekülstrukturen für binäre Arsenazid- und Antimonazid-Verbindungen (M = As, Sb).

Die ionischen Verbindungen werden durch voluminöse Gegenionen im Kristall stabilisiert. Die relativen kurzen N_β-N_γ-Bindungslängen erklären dennoch die gesteigerte Explosivität der kationischen Verbindungen gegenüber den anionischen Spezies. Eine Eliminierung von N₂ ist aufgrund dieser kurzen N_β-N_γ-Bindungslängen erleichtert. Die neutralen Triazide sind außerordentlich explosiv und die Pentaazide zersetzen sich aufgrund des extrem hohen Stickstoffgehalts spontan.

Es gelang erstmals eine Arsenazidverbindung durch Röntgenstrukturanalyse zu charakterisieren. Die Struktur des $As(N_3)_6^-$ -Anions wurde als desses PPh₄⁺- und Py-H⁺-Salz geklärt. Das Arsenatom ist von sechs Stickstoffatomen oktaedrisch umgeben. Das Anion zeigt im Kristall zentrosymmetrische *S*₂-Symmetrie. Die experimentell bestimmten Strukturparameter stimmen mit den auf B3LYP-Niveau berechneten gut überein. Abbildung 47 zeigt die Molekülstruktur des As(N₃)₆⁻-Anions.

Abb. 47Molekülstrukturdes $As(N_3)_6$ -Anions.DiethermischenEllipsoiderepräsentieren eine Wahrscheinlichkeit von 25%.

Die ¹⁴N-NMR-Spektren aller Verbindungen zeigen drei Resonanzen für die nichtäquivalenten Stickstoffatome der kovalent gebundenen Azide. In den ⁷⁵As- bzw. ¹²¹Sb-NMR-Spektren konnten nur im Falle der Hexaazidoanionen Resonanzen aufgelöst werden, da diese Kerne nur in hochsymmetrischer Umgebung aufgrund ihres hohen Quadrupolmoments detektiert werden können.

(b) gemischte Halogen/Azid-Verbindungen von Arsen und Antimon

Gemischte Halogen- bzw. Halogen/Azid-Verbindungen von Arsen und Antimon in der Oxidationsstufe (III) konnten bisher nicht isoliert werden, da diese Verbindungen leicht in die jeweiligen Trihalogenide bzw. Pseudohalogenide dismutieren. Deratige Dismutierungen wurden in dieser Arbeit bei Reaktionen von MX_3 (M =As, Sb; X = F, Br, I) mit azidübertragenden Reagentien beobachtet. Gemischte Halogen/Azid-Verbindungen von Arsen und Antimon konnten nur im Falle des Chlorids eindeutig isoliert werden. Die Dismutierungsneigung ist aufgrund der chemischen Ähnlichkeit von Chlorid und Azid am geringsten. SbCl(N_3)₂ wurde durch Reaktion von SbCl₃ und zwei Äquivalenten NaN₃ synthetisiert. SbCl₂N₃ konnte nur in Gegenwart von Pyridin als Lewis-Base kristallisiert werden, wobei das Lewis-Säure-Base-Addukt SbCl₂N₃ · 2 Pyridin entstand. Eine gemischte Chlorid/Azid-Verbindung von Arsen konnte ebenfalls in Gegenwart von Pyridin als Lewis-Base isoliert werden. Es wurde die Verbindung AsCl(N_3)₂ · 2 Pyridin durch Röntgenstrukturanalyse eindeutig charakterisiert.

Abbildung 48 zeigt die Molekülstruktur von SbCl $(N_3)_2$. Die Molekülstrukturen der beiden anderen gemischten Chlorid/Azid-Verbindung von Arsen und Antimon sind in Kap. 3.2.4 abgebildet.

Abb. 48Molekülstruktur von SbCl(N3)2. Die thermischen Ellipsoide repräsentieren eine
Wahrscheinlichkeit von 25%.

Die Zentralatome sind in Übereinstimmung mit dem VSEPR-Konzept in SbCl(N₃)₂ Ψ -tetraedrisch, in AsCl(N₃)₂ · Pyridin Ψ -trigonal-bipyramidal, und in SbCl₂N₃ · 2 Pyridin Ψ -toktaedrisch umgeben.

Die Schwingungsspektren von AsCl(N₃)₂ · Pyridin und SbCl₂N₃ · 2 Pyridin zeigen Banden bei 216 cm⁻¹ und 139 cm⁻¹ (As) und 166 cm⁻¹ und 109 cm⁻¹ (Sb). Diese Banden werden den Streck- bzw. Deformationsschwingung der M-N_{Py}-Bindungen (M = As, Sb) zugeordnet.

Die ¹⁴N-NMR-Spektren von AsCl(N₃)₂ · Pyridin und SbCl₂N₃ · 2 Pyridin zeigen zusätzlich zu den Resonanzen die den Azid-Stickstoffatomen zugeordnet werden, breite Resonanzen bei einer chemischen Verschiebung von $\delta = -164$ ppm (As) und -157 ppm (Sb). Diese Resonanzen werden den Stickstoffatomen der Pyridinmoleküle zugeordnet. Sie sind im Vergleich zu freiem Pyridin deutlich verschoben (-63 ppm). Es folgt, dass die Addukte ebenso in Lösung stabil sind.

Auf der Grundlage der experimentell bestimmten Atomkoordinaten von AsCl(N₃)₂ · Pyridin und SbCl₂N₃ · 2 Pyridin wurden NBO-Analysen (B3LYP) berechnet, um einen Einblick in die Bindungssituation solcher schwach gebundenen Lewis-Säure-Base-Addukte zu erhalten. In AsCl $(N_3)_2$ · Pyridin werden 0.20 Elektronen vom Pyridin auf AsCl $(N_3)_2$ übertragen und in SbCl₂N₃ · 2 Pyridin 0.27 Elektronen von den beiden Pyridinmolekülen auf SbCl₂N₃. Die Wechselwirkung pro Molekül Pyridin ist damit im Vergleich zu AsCl(N₃)₂ · Pyridin schwächer. Dieses Ergebnis spiegelt den experimentell sich in bestimmten M-N_{Pv}-Bindungslängen wieder.

(c) Lewis-Säure-Base-Addukte von As(N₃)₅ und Sb(N₃)₅

Die Isolation der binären Spezies $As(N_3)_5$ und $Sb(N_3)_5$ gelang aufgrund der spontanen Explosionen nicht. Daher wurden die Verbindungen *in situ* durch Reaktion von AsF₅ bzw. SbF₅ mit TMS-N₃ dargestellt und mit Lewis-Basen stabilisiert. Die Verbindungen $As(N_3)_5 \cdot LB$ bzw. $Sb(N_3)_5 \cdot LB$ (LB = Pyridin, Chinolin, NH₃, N₂H₄ und NH₂CN) wurden auf diese Weise synthetisiert. Die Verbindungen sind bei Raumtemperatur stabil, explodieren jedoch heftig bei Reibung oder höheren Temperaturen.

Die Strukturen und Normalschwingungen wurden auf B3LYP-Niveau berechnet. Die Zentralatome sind jeweils okatedrisch von sechs Stickstoffatomen umgeben. Fünf stammen dabei von Azidliganden und eines von der jeweiligen Lewis-Base. In Abbildung 49 ist die

Struktur von $As(N_3)_5 \cdot N_2H_4$ abgebildet. Die berechneten Strukturen der anderen Addukte sind in Kap. 3.3.5 zu finden.

Abb. 49 Berechnete (B3LYP) Struktur von $As(N_3)_5 \cdot N_2H_4$.

Die Schwingungsspektren zeigen alle Schwingungen die auf kovalent gebundene Azide schließen lassen. Zusätzlich sind im Bereich von 111 cm⁻¹ bis 430 cm⁻¹ Banden ersichtlich, die den Streck- bzw. Deformationsschwingungen der M-N_{LB}-Bindungen zugeordnet werden. Die ¹⁴N-NMR-Spektren von As(N₃)₅ · LB bzw. Sb(N₃)₅ · LB (LB = Pyridin, Chinolin, NH₃, N₂H₄ und NH₂CN) zeigen zusätzlich zu den Resonanzen die den Azid-Stickstoffatomen zugeordnet werden, Signale, die den Stickstoffatomen der jeweiligen Lewis-Basen zugeordnet werden. Diese Resonanzen sind im Vergleich zu den Resonanzen der freien N-Basen deutlich verschoben. Es folgt, dass die Addukte ebenso in Lösung stabil sind. Aufgrund der ¹⁴N-NMR-Spektren von As(N₃)₅ · NCNH₂ bzw. Sb(N₃)₅ · NCNH₂ kann gefolgert werden, dass die Cyanamid-Verbindungen über die Cyanid-Einheiten an die Zentralatome koordinieren. Die ⁷⁵As- bzw. ¹²¹Sb-NMR-Spektren belegen eine oktaedrische Koordination an den Zentralatome. Es konnten für alle Addukte Resonanzen in den Spektren detektiert werden.

wurden quantenmechanisch berechnet.

 $M(N_3)_5 \cdot LB \longrightarrow M(N_3)_5 + LB$ (25)

 $(M = As,Sb; LB = Pyridin, NH_3, N_2H_4 und NH_2CN)$

Die Bindungsdissoziationsenthalpie ist ein Maß für die As- bzw. Sb-N_{LB}-Bindungsstärke dieser Addukte. Die Stabilität der Addukte steigt in der Reihenfolge NH₂CN < Pyridin < NH₃ < N₂H₄ und As(N₃)₅ < Sb(N₃)₅. Die Bindungsdissoziationsenthalpien stimmen qualitativ gut mit den berechneten As- bzw. Sb-N_{LB}-Bindungslängen überein. Die schwächsten Cyanamid-Addukte zeigen die längsten As- bzw. Sb-N_{LB}-Bindungslängen, die stärksten Hydrazin-Addukte zeigen die kürzesten.

(d) Lewis-Säure-Base-Addukte von AsCl₅ und SbCl₅

AsCl₅ ist aufgrund der *d*-Blockkontraktion und der damit verbundenen geringer Abschirmung der hohen Kernladung sehr instabil. Addukte von AsCl₅ wurden ebenso wenige beschrieben. SbCl₅ hingegen ist stabil. In dieser Arbeit wurde das Koordinationsverhalten schwacher Lewis-Basen gegenüber MCl₅ (M = As, Sb) sowohl experimentell als auch theoretisch untersucht. Die Verbindungen MCl₅ · LB (M = As, Sb; LB = ClCN, BrCN, ICN, $^{1}/_{2}(CN)_{2}$, NH₂CN und Pyridin) wurden auf B3LYP-Niveau berechnet, die Verbindungen SbCl₅ · LB (LB = ClCN, BrCN, ICN, $^{1}/_{2}(CN)_{2}$, NH₂CN und Pyridin) und AsCl₅ · NCI konnten synthetisiert werden.

Strukturen, die ein lokales Minimum (*NIMAG* = 0) aufweisen, wurden für alle Addukte berechnet. Die Übereinstimmung der berechneten Strukturparameter für SbCl₅ · NCCl und SbCl₅ · NCCN · SbCl₅ mit den durch Röntgenstrukturanalyse bestimmten Bindungs-längen und -winkel ist außerordentlich gut. Abbildung 50 zeigt die Molekülstruktur des 2:1 Addukts SbCl₅ · NCCN · SbCl₅.

Abb. 50Molekülstruktur von $SbCl_5 \cdot NCCN \cdot SbCl_5$. Die thermischen Ellipsoide reprä-
sentieren eine Wahrscheinlichkeit von 25%.

Die Strukturen zeigen eine sechsfache Koordination mit nahezu idealer oktaedrischer Umgebung an den Zentralatomen. Sie sind umgeben von fünf Chloratomen und jeweils einem Stickstoffatom der entsprechenden Lewis-Basen.

Die Ramanspektren zeigen bei ca. 200 cm⁻¹ Banden für die vSbN-Streckschwingungen und von 83 cm⁻¹ bis 134 cm⁻¹ Banden für die δ SbN-Deformationsschwingungen. Die vCN-Streckschwingungen der Addukte ergeben Banden zwischen 2187 cm⁻¹ und 2352 cm⁻¹ und sind damit um 18 - 76 cm⁻¹ zu höheren Wellenzahlen im Vergleich zu den freien Cyaniden verschoben.

Die ¹⁴N-NMR-Spektren zeigen deutlich verschobene Resonanzen der Stickstoffatome im Vergleich zu den freien Lewis-Basen.

Auf der Grundlage der experimentell bestimmten Atomkoordinaten von SbCl₅ · NCCl und SbCl₅ · NCCN · SbCl₅ wurden NBO-Analysen (B3LYP) berechnet, um einen Einblick in die Bindungssituation dieser schwach gebundenen Lewis-Säure-Base-Addukte zu erhalten. Die Wechselwirkung der Lewis-Base Dicyan mit SbCl₅ ist geringer als die Wechselwirkung von ClCN mit SbCl₅.

Basierend auf quantenmechanischen Rechnungen (B3LYP) wurde die Bindungsdissoziationsenthalpien, die der thermodynamische Stabilität der Addukte entspricht, aller Addukte bestimmt. Die Stabilität steigt in der Reihenfolge $(CN)_2 < ClCN < BrCN < ICN < NH_2CN < Pyridin und AsCl₅ < SbCl₅.$

Ferner wurden in dieser Arbeit die Molekülstrukturen der Verbindungen [NEt₄][SbCl₆], [PPh₄][SbCl₄] · CHCl₃ (Kap. 3.1.7), [NH₄][SbCl₆] (Kap. 3.6.3) und[NMe₄]₂[As₄O₂Cl₁₀] (Kap. 3.5.3) durch Röntgenstrukturanalyse gelöst.

Das $As_4O_2Cl_{10}^{2-}$ -Anion weist eine ungewöhnliche Struktur auf. Das Anion besitzt im Kristall D_{2h} -Symmetrie, in denen vier Arsenatome und zwei Sauerstoffatome coplanar angeornet sind. Jedes Arsenatom weist eine lokale Ψ -oktaedrische Geometrie auf, in denen es von vier Chloratomen in nicht-äquivalenten äquatorialen Positionen (zwei verbrückende- und zwei terminalen Chloratome) und einem stereochemischen aktivem Elektronenpaar in *trans* Position zu dem axial verbrückendem Sauerstoffatom umgeben ist. Die Bindungssituation dieses Anions wurde durch NBO-Analyse geklärt. Die verbrückenden Chloratome übertragen jeweils eine Ladung von 0.374 Elektronen auf eine Cl₂As-O-AsCl₂-Einheit. Dabei sind hauptsächlich Wechselwirkungen der s-*LP*'s der verbrückenden Chloratome mit den antibindenden σ *-Orbitalen der As-Cl_{term}-Bindungen erkennbar. Diese Wechselwirkungen spiegeln sich in den relativ langen As-Cl_{term}-Bindungen (2.219(1) Å) wieder.

Ein weiters Ziel dieser Arbeit war die Synthese und strukturelle Charakterisierung von Azid-Komplexen der Metalle Palladium und Platin. Die Palladiumazid-Komplexe $L_2Pd(N_3)_2$ (L = 2-Chloropyridin, 3-Chloropyridin, Chinolin) wurden erstmalig synthetisiert und eindeutig mittels IR-, Raman- und ¹⁴N-NMR-Spektroskopie charakterisiert. Die Ergebnisse dieser spektroskopischen Untersuchungen deuten auf *trans*-stehende Azidliganden. Diese Ergebnisse konnten teilweise durch Röntgenstrukturanalyse bestätigt werden. Ferner wurden die von Beck *et al.* synthetisierten Palladiumazid-Komplexe $L_2Pd(N_3)_2$ (L = PPh₃, AsPh₃) strukturell charaktersisiert. Ähnlich wie in $L_2Pd(N_3)_2$ (L = 2-Chloropyridin, 3-Chloropyridin, Chinolin) sind die Azidgruppen *trans* zueinander angeordnet. Die Struktur von Pd(PPh₃)₂(N₃)₂ ist hier als Beispiel angegeben (Abbildung 51).

Abb. 51Molekülstruktur von $Pd(PPh_3)_2(N_3)_2$ (H-Atome sind nicht gezeichnet). Die
thermischen Ellipsoide repräsentieren eine Wahrscheinlichkeit von 25%.

In dem gemischt valenten Chlorid/Azid-Komplex $[AsPh_4]_2[Pd_2(N_3)_4Cl_2]$ liegen die $Pd(N_3)_2Cl^-$ -Anionen als azidverbrückte Dimere vor, die einen planaren Pd_2N_2 -Ring ausbilden. Desweiteren wurden in vorliegender Arbeit die binären Palladiumazid- und Platinazid-Anionen $Pd(N_3)_4^{2-}$, $Pt(N_3)_4^{2-}$ und $Pt(N_3)_6^{2-}$ strukturell charakterisiert. Auftretende Probleme bezüglich N-N-Abständen innerhalb der Azid-Einheiten konnten durch quantenmechanische Rechnungen auf HF- und B3LYP-Niveau gelöst werden. Die Tetraazid-Anionen weisen im Kristall beinahe ideale C_{4h} -Symmetrie, und das Hexaazid-Anion annähernd ideale S_6 -Symmetrie auf. Für die Tetraazid-Anionen resultiert dadurch eine molekulare Struktur, die dem eines "Windrades" sehr ähnlich ist (vgl. Kap. 3.7.7).

Zusammenfassend sind die in der vorliegenden Arbeit dargestellten Verbindungen und ihre Charakterisierung in Tabelle 45 aufgeführt. Sofern die Verbindungen bereits publiziert wurden sind die Originalarbeiten als Literaturstelle angegeben.

Verbindung	Schwingungsspektros-	NMR	Röntgenstruktur-	Lit.
	kopie		analyse	
As(N ₃) ₃	Raman, IR	¹⁴ N-NMR		Lit. 22
[As(N ₃) ₄][AsF ₆]	Raman, IR	¹⁴ N-, ¹⁹ F-, ⁷⁵ As-NMR		Lit. 22
[NMe ₄][As(N ₃) ₄]	Raman, IR	¹ H-, ¹³ C-, ¹⁴ N-NMR		Lit. 22
[Py-H][As(N ₃) ₆]	Raman, IR	¹ H-, ¹³ C-, ¹⁴ N-, ⁷⁵ As-NMR	Einkristall	Lit. 22
[PPh ₄][As(N ₃) ₆]	Raman, IR	¹ H-, ¹³ C-, ³¹ P-, ¹⁴ N-, ⁷⁵ As-NMR	Einkristall	Lit. 23
Sb(N ₃) ₃	Raman, IR	¹⁴ N-NMR		Lit. 22
$[Sb(N_3)_4][Sb_2F_{11}]$	Raman, IR	¹⁴ N-, ¹⁹ F-NMR		Lit. 22
$[PPh_4][Sb(N_3)_4]$	Raman, IR	¹ H-, ¹³ C-, ³¹ P-, ¹⁴ N-NMR		Lit. 22
[NEt ₄][Sb(N ₃) ₆]	Raman, IR	¹ H-, ¹³ C-, ¹⁴ N-, ¹²¹ Sb-NMR		Lit. 22
[PPh ₄][Sb(N ₃) _{3.19} Cl _{2.81}]			Einkristall	
$[PPh_4][SbCl_4] \cdot CHCl_3$			Einkristall	
[NEt ₄][SbCl ₆]			Einkristall	
SbCl(N ₃) ₂	Raman, IR	¹⁴ N-NMR	Einkristall	Lit. 25
AsCl(N ₃) ₂ · NC ₅ H ₅	Raman, IR	¹ H-, ¹³ C-, ¹⁴ N-NMR	Einkristall	Lit. 64
$SbCl_2N_3\cdot 2\;NC_5H_5$	Raman, IR	¹ H-, ¹³ C-, ¹⁴ N-NMR	Einkristall	Lit. 64
$As(N_3)_5 \cdot NC_5H_5$	Raman, IR	¹ H-, ¹³ C-, ¹⁴ N-, ⁷⁵ As-NMR		Lit. 35
$Sb(N_3)_5 \cdot NC_5H_5$	Raman, IR	¹ H-, ¹³ C-, ¹⁴ N-, ¹²¹ Sb-NMR		Lit. 35
$As(N_3)_5 \cdot NC_9H_7$	Raman, IR	¹ H-, ¹³ C-, ¹⁴ N-, ⁷⁵ As-NMR		Lit. 35
$Sb(N_3)_5 \cdot NC_9H_7$	Raman, IR	¹ H-, ¹³ C-, ¹⁴ N-, ¹²¹ Sb-NMR		Lit. 35
$As(N_3)_5 \cdot NH_3$	Raman, IR	¹ H-, ¹⁴ N-, ⁷⁵ As-NMR		Lit. 35
$Sb(N_3)_5 \cdot NH_3$	Raman, IR	¹ H-, ¹⁴ N-, ¹²¹ Sb-NMR		Lit. 35
$As(N_3)_5 \cdot N_2H_4$	Raman, IR	¹ H-, ¹⁴ N-, ⁷⁵ As-NMR		Lit. 35
$Sb(N_3)_5 \cdot N_2H_4$	Raman, IR	¹ H-, ¹⁴ N-, ¹²¹ Sb-NMR		Lit. 35
$As(N_3)_5 \cdot NCNH_2$	Raman, IR	¹ H-, ¹³ C-, ¹⁴ N-, ⁷⁵ As-NMR		Lit. 35
$Sb(N_3)_5 \cdot NCNH_2$	Raman, IR	¹ H-, ¹³ C-, ¹⁴ N-, ¹²¹ Sb-NMR		Lit. 35
SbCl ₅ · NCCl	Raman	¹⁴ N-NMR	Einkristall	Lit. 83
SbCl ₅ · NCBr	Raman	¹⁴ N-NMR		Lit. 83
SbCl ₅ · NCI	Raman	¹⁴ N-NMR		Lit. 83
$[SbCl_5 \cdot NC]_2$	Raman	¹⁴ N-NMR	Einkristall	Lit. 83
$SbCl_5 \cdot NCNH_2$	Raman	¹ H-, ¹³ C-, ¹⁴ N-NMR		Lit. 83
$SbCl_5 \cdot NC_5H_5$	Raman	¹ H-, ¹³ C-, ¹⁴ N-NMR		Lit. 83
AsCl ₅ · NCI	Raman	¹⁴ N-NMR		
[NMe ₄] ₂ [As ₄ O ₂ Cl ₁₀]	Raman, IR		Einkristall	Lit. 113
[NH ₄][SbCl ₆]			Einkristall	Lit. 120
Pd(2-Clpy) ₂ (N ₃) ₂	Raman, IR	¹ H-, ¹³ C-, ¹⁴ N-NMR	Einkristall	Lit. 138

Tabelle 45Im Rahmen der vorliegenden Arbeit dargestellte Verbindungen.

Pd(3-Clpy) ₂ (N ₃) ₂	Raman, IR	¹ H-, ¹³ C-, ¹⁴ N-NMR		Lit. 138
Pd(Ch) ₂ (N ₃) ₂	Raman, IR	¹ H-, ¹³ C-, ¹⁴ N-NMR	Einkristall	Lit. 138
$Pd(PPh_3)_2(N_3)_2^a$			Einkristall	Lit. 47
$Pd(AsPh_3)_2(N_3)_2^{a}$			Einkristall	Lit. 47
$[AsPh_4]_2[Pd_2(N_3)_4Cl_2]$			Einkristall	Lit. 47
$[PNP]_2[Pd(N_3)_4]^a$			Einkristall	Lit. 47
$[AsPh_4]_2[Pt(N_3)_4] \cdot 2H_2O^a$			Einkristall	Lit. 47
$[AsPh_4]_2[Pt(N_3)_6]^a$			Einkristall	Lit. 47
0				

^a Verbindung bekannt und durch spekroskopische Methoden bereits charakterisiert.
6 Anhang

6.1 Einkristall-Röntgenstrukturanalysen von [PPh₄][As(N₃)₆] und [Py-H][As(N₃)₆]

6.1.1 Angaben zu den Einkristall-Röntgenstrukturanalysen von [PPh₄][As(N₃)₆] und [Py-H][As(N₃)₆]

Formeleinheit	C ₂₄ H ₂₀ AsN ₁₈ P	C ₅ H ₆ AsN ₁₉
Relative Molmasse [g mol ⁻¹]	666.47	405.21
Farbe	farblose Prismen	gelbe Prismen
Kristallsystem	monoklin	triklin
Raumgruppe	C_2/c	PĪ
a [Å]	22.147(3)	6.8484(7)
b [Å]	7.1943(8)	7.3957(8)
c [Å]	18.766(2)	8.0930(8)
α[°]	90.00	91.017(2)
β[°]	98.635(2)	113.235(2)
γ[°]	90.00	91.732(2)
V [Å ³]	2956.1(6)	376.29(7)
Z	4	1
<i>T</i> [K]	183(2)	193(2)
Kristallabmessungen [mm]	0.20 x 0.10 x 0.05	0.30 x 0.20 x 0.20
$D_c [{ m g \ cm^{-3}}]$	1.498	1.788
<i>F</i> (000)	1352	201
Diffraktometer	Siemens SMART-Flächendetektor	Siemens SMART-Flächendetektor
Röntgenstrahlung	Mo-K α , $\lambda = 0.71073$ Å	Mo-K α , $\lambda = 0.71073$ Å
Meßbereich $\boldsymbol{\theta}$ [°]	1.86 bis 29.24	2.74 bis 28.62
Indexgrenzen	$-27 \leq h \leq 27$	$-8 \leq h \leq 8$
	$-7 \le k \le 8$	$-9 \le k \le 9$
	$-24 \le l \le 24$	$-10 \le l \le 10$
μ [mm ⁻¹]	1.255	2.298
Absorptionskorrektur	SADABS	SADABS
Gemessen Reflexe	8213	2195
Unabhängige Reflexe	$2869 (R_{int.} = 0.0343)$	1147 ($R_{int.} = 0.0232$)
Reflexzahl	2399 $[F > 4\sigma(F)]$	1137 [F > $4\sigma(F)$]
T _{min} , T _{max}	0.697835, 1.000000	0.3295, 0.5635
Restelektonendichte [e Å ⁻³]	-0.436, 0.574	-0.823, 0.492
Zahl der freien Parameter	241	115
GOOF	1.035	1.064
R [$F > 4\sigma(F)$] bzw.	R1 = 0.0375, $wR1 = 0.0922$	R1 = 0.0402, wR1 = 0.1082
R [$F > 2\sigma(F)$] R (alle Daten)	R2 = 0.0501, $wR2 = 0.0986$	R2 = 0.0405, wR2 = 0.1084
Strukturlösung	direkte Methoden	heavy-atom-method
Strukturverfeinerung	As, C, N, P anisotrop	As, C, N anisotrop
	H isotrop mit F ²	H isotrop mit F ²
CCDC-Nr.	140 555	162 492

Atom	X	У	Z	U _{eq}
As	0.2500	0.2500	0	0.0281(1)
N1	0.2426(1)	0.2170(4)	0.1004(1)	0.0424(6)
N2	0.2810(1)	0.1154(3)	0.1348(1)	0.0392(6)
N3	0.3126(1)	0.0215(4)	0.1708(2)	0.0555(7)
N4	0.2441(1)	0.5152(4)	0.0083(1)	0.0403(6)
N5	0.2142(1)	0.5726(3)	0.0533(1)	0.0389(6)
N6	0.1870(2)	0.6347(4)	0.0933(2)	0.0691(9)
N7	0.3383(1)	0.2582(4)	0.0225(1)	0.0424(6)
N8	0.3623(1)	0.3972(4)	-0.002(1)	0.0382(6)
N9	0.3891(1)	0.5175(4)	-0.0169(2)	0.0521(7)
P1	0.5000	0.1939(2)	0.2500	0.0279(2)
C1	0.4338(1)	0.3398(4)	0.2397(1)	0.0298(5)
C2	0.4261(1)	0.4701(4)	0.1842(2)	0.0372(6)
C3	0.3750(1)	0.5838(5)	0.1746(2)	0.0432(7)
C4	0.3322(1)	0.5676(5)	0.2208(2)	0.0453(8)
C5	0.3399(1)	0.4412(5)	0.2762(2)	0.0456(8)
C6	0.3909(1)	0.3267(5)	0.2865(2)	0.0369(6)
C7	0.5003(1)	0.0428(4)	0.1742(1)	0.0297(5)
C8	0.4537(1)	0.0413(4)	0.1159(1)	0.0336(6)
С9	0.4548(1)	-0.0875(5)	0.0614(2)	0.0407(7)
C10	0.5023(1)	-0.2124(5)	0.0650(2)	0.0411(7)
C11	0.5489(1)	-0.2126(5)	0.1225(2)	0.0412(7)
C12	0.54801(1)	-0.0869(4)	0.1779(2)	0.0373(6)

6.1.2 Atomkoordinaten und Auslenkungsparameter [Å²] von [PPh₄][As(N₃)₆]

Atom	X	У	Z	U _{eq}	
As	0.5000	0.0000	0.0000	0.0245(2)	
N1	0.4655(6)	0.2565(4)	0.0288(5)	0.0371(8)	
N2	0.2840(6)	0.3075(5)	-0.0454(5)	0.0353(8)	
N3	0.1216(8)	0.3652(6)	-0.1081(7)	0.060(1)	
N4	0.6698(6)	-0.0146(5)	0.2548(5)	0.0322(8)	
N5	0.7804(6)	0.1215(5)	0.3298(5)	0.0319(8)	
N6	0.8855(7)	0.2390(6)	0.4104(6)	0.051(1)	
N7	0.7564(5)	0.0711(5)	-0.0335(5)	0.0336(7)	
N8	0.7598(5)	0.0291(4)	-0.1782(4)	0.0289(7)	
N9	0.7753(7)	-0.031(6)	-0.3093(5)	0.046(1)	
C1	0.3052(8)	0.4400(6)	-0.6188(7)	0.043(1)	
C2	0.3893(8)	0.3711(6)	-0.4522(6)	0.037(1)	
C3	0.5859(8)	0.4311(6)	-0.3308(6)	0.040(1)	

6.1.3 Atomkoordinaten und Auslenkungsparameter [Å²] von [Py-H][As(N₃)₆]

6.2 Einkristall-Röntgenstrukturanalyse von [PPh₄][SbCl_{2.81}(N₃)_{3.19}]

Formeleinheit	$C_{24}H_{20}Cl_{2.81}N_{9.56}PSb$
Relative Molmasse [g mol⁻¹]	694.76
Farbe	gelb
Kristallsystem	orthorhombisch
Raumgruppe	$P2_{1}2_{1}2_{1}$
<i>a</i> [Å]	7.6175(6)
<i>b</i> [Å]	13.5093(8)
<i>c</i> [Å]	27.053(2)
α [°]	90.0
β[°]	90.00
γ [°]	90.0
<i>V</i> [Å ³]	2784.0(4)
Ζ	4
<i>T</i> [K]	200(2)
Kristallabmessungen [mm]	0.13 x 0.09 x 0.13
$D_c [{ m g \ cm^{-3}}]$	1.658
<i>F</i> (000)	1379
Diffraktometer	Stoe IPDS-Flächendetektor
Röntgenstrahlung	Mo-K α , $\lambda = 0.71073 \text{ Å}$
Meßbereich <i>θ</i> [°]	1.68 bis 25.83
Indexgrenzen	$-9 \le h \le 9$
	$-15 \le k \le 16$
	$-33 \le 1 \le 32$
μ [mm ⁻¹]	1.352
Absorptionskorrektur	numerisch
Gemessen Reflexe	15372
Unabhängige Reflexe	5337 ($R_{int.} = 0.1112$)
Reflexzahl	3199 [F > $4\sigma(F)$]
Restelektonendichte [e Å ⁻³]	-0.853, 1.039
Zahl der freien Parameter	382
GOOF	0.839
R [$F > 4\sigma(F)$] bzw.	R1 = 0.0490, wR1 = 0.0997
R [$F > 2\sigma(F)$] R (alle Daten)	R2 = 0.0935, wR2 = 0.1119
Strukturlösung	direkte Methoden
Strukturverfeinerung	C, Cl, N, P, Sb anisotrop
	H isotrop mit F ²

6.2.1 Angaben zu der Einkristall-Röntgenstrukturanalyse von [PPh4][SbCl_{2.81}(N₃)_{3.19}]

Atom	X	У	Z	U _{eq}
Sb	0.23249(7)	0.02390(4)	0.84490(1)	0.0458(1)
Cl1	-0.0641(3)	0.0407(2)	0.8639(1)	0.0719(8)
Cl2	0.2599(5)	-0.0987(2)	0.90846(8)	0.0609(7)
Cl4	0.188(0)	0.148(0)	0.7875(8)	0.080(9)
N1	0.245(0)	0.123(0)	0.788(1)	0.08(1)
N2	0.160(0)	0.214(0)	0.7956(6)	0.051(5)
N3	0.113(0)	0.286(1)	0.8029(6)	0.075(7)
Cl3	0.258(2)	0.1487(7)	0.9070(4)	0.045(4)
N4	0.316(0)	0.136(2)	0.8907(7)	0.052(7)
N5	0.260(0)	0.137(1)	0.932(1)	0.035(4)
N6	0.219(2)	0.1353(9)	0.9722(6)	0.061(6)
N10	0.179(2)	-0.089(1)	0.7886(6)	0.050(4)
N11	0.112(2)	-0.120(1)	0.7959(5)	0.056(4)
N12	-0.005(0)	-0.195(2)	0.8033(6)	0.170(7)
N7	0.503(1)	0.015(1)	0.8307(4)	0.067(3)
N8	0.542(1)	-0.049(1)	0.8213(4)	0.071(4)
N9	0.618(2)	-0.125(1)	0.8042(6)	0.138(6)
P1	0.0321(2)	0.0222(2)	0.60399(6)	0.0304(4)
C11	-0.1177(9)	0.0743(6)	0.6481(3)	0.033(2)
C21	-0.100(1)	0.0563(6)	0.6979(3)	0.040(2)
C31	-0.224(1)	0.0953(6)	0.7302(3)	0.047(2)
C41	-0.360(1)	0.1522(8)	0.7123(3)	0.059(3)
C51	-0.376(1)	0.1717(7)	0.6631(3)	0.046(2)
C61	-0.254(1)	0.1325(5)	0.6302(2)	0.040(2)
C12	0.170(1)	0.1152(6)	0.5779(3)	0.033(2)
C22	0.145(1)	0.2169(7)	0.5876(3)	0.047(2)
C32	0.258(2)	0.02841(6)	0.5663(3)	0.057(2)
C42	0.393(1)	0.2559(8)	0.5367(3)	0.052(2)
C52	0.424(1)	0.1561(8)	0.5271(3)	0.055(3)
C62	0.309(1)	0.0859(6)	0.5484(3)	0.038(2)
C13	-0.0990(9)	-0.0322(6)	0.5573(2)	0.031(2)
C23	-0.062(1)	-0.0237(7)	0.5073(3)	0.044(2)
C33	-0.169(1)	-0.0647(7)	0.4725(3)	0.054(3)
C43	-0.316(1)	-0.1206(7)	0.4869(3)	0.055(3)
C53	-0.350(1)	-0.1315(7)	0.5363(3)	0.049(2)
C63	-0.247(1)	-0.0904(5)	0.5715(2)	0.037(2)
C14	0.177(1)	-0.0643(6)	0.6311(3)	0.035(12)
C24	0.3062(9)	-0.0320(7)	0.6631(3)	0.042(2)
C34	0.429(1)	-0.961(8)	0.6835(3)	0.054(2)
C44	0.422(1)	-0.1972(7)	0.6694(3)	0.053(2)
C54	0.300(2)	-0.2293(7)	0.6378(4)	0.076(3)
C64	0.175(1)	-0.1652(7)	0.6176(4)	0.059(3)

6.2.2 Atomkoordinaten und Auslenkungsparameter [Å²] von

[PPh4][SbCl_{2.81}(N₃)_{3.19}]

6.3 Einkristall-Röntgenstrukturanalysen von [NEt₄][SbCl₆] und [PPh₄][SbCl₄] · CHCl₃

6.3.1 Angaben zu den Einkristall-Röntgenstrukturanalysen von [NEt₄][SbCl₆] und [PPh₄][SbCl₄] · CHCl₃

Formeleinheit	C ₈ H ₂₀ Cl ₆ NSb	$C_{50}H_{42}Cl_{14}P_2Sb_2$
Relative Molmasse [g mol⁻¹]	464.70	1444.58
Farbe	farblose Platten	farblose Nadeln
Kristallsystem	monoklin	triklin
Raumgruppe	$P2_1/n$	$P\overline{1}$
<i>a</i> [Å]	7.1689(8)	11.3932(9)
<i>b</i> [Å]	10.199(1)	11.502(1)
<i>c</i> [Å]	11.716(1)	23.445(2)
α [°]	90.00	85.229(9)
β [°]	102.69(1)	87.607(9)
γ [°]	90.00	70.98(1)
<i>V</i> [Å ³]	835.7(2)	2894.3(4)
Z	2	2
<i>T</i> [K]	200(2)	200(2)
Kristallabmessungen [mm]	0.37 x 0.30 x 0.12	0.24 x 0.18 x 0.16
$D_c [{ m g}{ m cm}^{-3}]$	1.847	1.658
<i>F</i> (000)	456	1424
Diffraktometer	Stoe IPDS-Flächendetektor	Stoe IPDS-Flächendetektor
Röntgenstrahlung	Mo-K α , $\lambda = 0.71073$ Å	Mo-K α , $\lambda = 0.71073$ Å
Meßbereich θ [°]	2.68 bis 27.88	1.74 bis 23.95
Indexgrenzen	$-9 \le h \le 9$	$-10 \le h \le 12$
	$-13 \le k \le 13$	$-13 \le k \le 10$
	$-15 \le 1 \le 15$	$-26 \le 1 \le 25$
μ [mm ⁻¹]	2.587	1.669
Absorptionskorrektur	numerisch	numerisch
Gemessen Reflexe	7456	6030
Unabhängige Reflexe	$1970 (R_{int.} = 0.0663)$	$5076 (R_{int.} = 0.0271)$
Reflexzahl	1757 [F > $4\sigma(F)$]	3787 [F > 4σ(F)]
T _{min} , T _{max}	0.4559, 0.7692	
Restelektonendichte [e Å ⁻³]	-1.056, 0.741	-0.406, 0.694
Zahl der freien Parameter	109	613
GOOF	1.403	0.908
R [$F > 4\sigma(F)$] bzw.	R1 = 0.0424, wR1 = 0.1140	R1 = 0.0326, wR1 = 0.0716
R [$F > 2\sigma(F)$] R (alle Daten)	R2 = 0.0488, wR2 = 0.1162	R2 = 0.0496, $wR2 = 0.0758$
Strukturlösung	direkte Methoden	direkte Methoden
Strukturverfeinerung	C, Cl, N, Sb anisotrop	C, Cl, P, Sb anisotrop
	H isotrop mit F^2	H isotrop mit F^2

174

6.3.2 Atomkoordinaten und Auslenkungsparameter [Å²] von [PPh₄][SbCl₄] · CHCl₃

Atom	X	У	Z	U _{eq}
Sb1	0.22159(5)	0.45444(4)	0.71991(1)	0.0242(1)
Sb2	0.51636(4)	0.53511(4)	0.78543(1)	0.0223(1)
Cl11	0.0602(2)	0.5740(2)	0.64921(7)	0.0387(6)
Cl21	0.1608(2)	0.2714(2)	0.71314(6)	0.0374(5)
Cl31	0.3744(2)	0.3982(2)	0.64535(7)	0.0518(7)
Cl41	0.4237(2)	0.3195(2)	0.78828(6)	0.0321(5)
Cl12	0.3084(2)	0.6714(2)	0.71876(6)	0.0297(5)
Cl22	0.3750(2)	0.5925(2)	0.86255(6)	0.0368(5)
Cl32	0.5798(2)	0.7162(2)	0.79060(6)	0.0340(5)
Cl42	0.6765(2)	0.4112(2)	0.85336(7)	0.0431(6)
P1	0.1197(2)	0.2916(2)	0.92033(6)	0.0199(5)
P2	-0.2572(2)	0.0008(2)	0.56726(6)	0.0194(5)
C111	0.2374(7)	0.3047(7)	0.9640(2)	0.027(2)
C211	0.3467(8)	0.3202(8)	0.9391(3)	0.035(2)
C311	0.4371(9)	0.3310(9)	0.9721(3)	0.045(3)
C411	0.424(1)	0.327(1)	1.0319(3)	0.050(3)
C511	0.3174(9)	0.3133(9)	1.0570(3)	0.044(3)
C611	0.2246(8)	0.3006(7)	1.0239(2)	0.031(2)
C121	0.0602(6)	0.4304(6)	0.8738(2)	0.024(2)
C221	-0.0180(8)	0.4343(8)	0.8303(3)	0.037(3)
C321	-0.0748(8)	0.5459(8)	0.7986(3)	0.034(2)
C421	-0.0489(8)	0.6486(8)	0.8091(3)	0.039(2)
C521	0.0318(9)	0.6434(8)	0.8515(3)	0.045(3)
C621	0.0879(9)	0.5355(7)	0.8851(3)	0.037(2)
C131	0.1754(7)	0.1553(6)	0.8819(2)	0.025(2)
C231	0.0890(8)	0.1167(7)	0.8549(2)	0.032(2)
C331	0.128(1)	0.0088(8)	0.8270(3)	0.042(3)
C431	0.251(1)	-0.0604(8)	0.8258(3)	0.046(3)
C531	0.333(1)	-0.021(1)	0.8519(4)	0.056(3)
C631	0.2972(9)	0.0858(9)	0.8802(3)	0.047(3)
C141	-0.0083(8)	0.2749(7)	0.9649(2)	0.020(2)
C241	-0.1202(8)	0.3599(8)	0.9644(2)	0.027(2)
C341	-0.2187(9)	0.3429(9)	0.9995(3)	0.031(2)
C441	-0.194(1)	0.2334(9)	1.0344(3)	0.039(3)
C541	-0.0781(9)	0.1465(8)	1.0342(3)	0.033(3)
C641	0.0150(9)	0.1637(8)	1.0000(2)	0.033(2)

A	n	h	а	n	ç
1 1			u		٠

C112	-0.1296(7)	-0.0001(6)	0.6092(2)	0.023(2)
C212	-0.0681(8)	0.0862(7)	0.5977(3)	0.035(2)
C312	0.0333(9)	0.0784(9)	0.6296(3)	0.047(3)
C412	0.0769(9)	-0.0166(9)	0.6722(3)	0.043(3)
C512	0.0141(8)	-0.0995(8)	0.6836(3)	0.038(2)
C612	-0.0889(8)	-0.0919(7)	0.6533(2)	0.029(2)
C122	-0.2108(7)	-0.1243(6)	0.5221(2)	0.023(2)
C222	-0.1104(8)	-0.2259(7)	0.5341(3)	0.035(2)
C322	-0.080(1)	-0.3242(8)	0.5004(3)	0.045(3)
C422	-0.1527(9)	-0.3196(8)	0.4534(3)	0.039(3)
C522	-0.2831(7)	-0.1198(7)	0.4748(2)	0.028(2)
C622	-0.2510(8)	-0.2188(8)	0.4413(3)	0.035(2)
C132	-0.3794(7)	-0.0129(6)	0.6154(2)	0.023(2)
C232	-0.4132(8)	0.0615(7)	0.6600(2)	0.028(2)
C332	-0.5113(8)	0.0564(8)	0.6968(3)	0.036(2)
C432	-0.5682(7)	-0.0318(8)	0.6885(3)	0.037(2)
C532	-0.5343(8)	-0.1057(8)	0.6452(3)	0.036(2)
C632	-0.4397(7)	-0.0987(7)	0.6072(2)	0.030(2)
C142	-0.3143(8)	0.1412(7)	0.5217(2)	0.026(2)
C242	-0.4281(9)	0.2244(8)	0.5308(3)	0.029(2)
C342	-0.474(1)	0.329(1)	0.4937(3)	0.050(3)
C442	-0.398(1)	0.3468(9)	0.4478(3)	0.047(3)
C542	-0.285(1)	0.265(1)	0.4381(3)	0.046(3)
C642	-0.2375(9)	0.1587(8)	0.4749(2)	0.035(3)
C1	0.803(1)	0.458(1)	0.6388(3)	0.051(3)
Cl1A	0.7705(3)	0.4221(3)	0.57081(9)	0.073(1)
Cl1B	0.7865(4)	0.3504(3)	0.6919(1)	0.010(1)
Cl1C	0.7101(3)	0.6049(3)	0.6532(1)	0.0720(9)
C2	0.701(1)	0.0935(9)	0.8409(3)	0.056(3)
Cl2A	0.7760(3)	0.0922(3)	0.90584(9)	0.076(1)
Cl2B	0.8018(3)	0.0995(4)	0.7835(1)	0.085(1)
Cl2C	0.6569(4)	-0.0359(3)	0.8393(2)	1.25(2)

Atom	X	У	Z	U _{eq}	
Sb	0.0000	0.0000	0.0000	0.0240(2)	
Cl1	-0.2511(2)	0.0611(2)	0.0886(1)	0.0365(3)	
Cl2	0.0596(2)	-0.1845(2)	0.1252(1)	0.0383(3)	
Cl3	0.2193(2)	0.1233(2)	0.1397(1)	0.0438(4)	
Ν	0.0000	0.0000	0.5000	0.030(1)	
C1	0.108(2)	0.079(1)	0.6078(9)	0.031(2)	
C11	0.325(2)	0.079(2)	0.625(2)	0.039(4)	
C2	0.062(2)	-0.129(1)	0.496(1)	0.031(2)	
C22	0.061(6)	-0.204(3)	0.602(2)	0.032(5)	
C3	-0.211(2)	0.017(1)	0.506(1)	0.034(3)	
C33	-0.347(1)	-0.0459(9)	0.4048(8)	0.041(5)	
C4	0.027(1)	0.0774(9)	0.3893(8)	0.024(2)	
C44	-0.053(5)	0.218(3)	0.368(2)	0.028(4)	

6.3.3 Atomkoordinaten und Auslenkungsparameter [Å²] von [NEt₄][SbCl₆]

6.4 Einkristall-Röntgenstrukturanalyse von SbCl(N₃)₂

Formeleinheit	ClN ₆ Sb
Relative Molmasse [g mol ⁻¹]	241.26
Farbe	farblose Prismen
Kristallsystem	monoklin
Raumgruppe	C_2/c
a [Å]	11.694(4)
<i>b</i> [Å]	7.751(4)
c [Å]	12.241(5)
α [°]	90.0
β [°]	100.45(1)
γ [°]	90.0
V [Å ³]	1091.2(8)
Z	8
<i>T</i> [K]	183(2)
Kristallabmessungen [mm]	0.20 x 0.10 x 0.10
$D_c [{ m g \ cm^{-3}}]$	2.937
<i>F</i> (000)	880
Diffraktometer	Siemens SMART-Flächendetektor
Röntgenstrahlung	Mo-K α , $\lambda = 0.71073 \text{ Å}$
Меßbereich <i>θ</i> [°]	3.17 bis 28.25
Indexgrenzen	$-14 \le h \le 14$
	$-9 \le k \le 9$
	$-15 \le 1 \le 15$
μ [mm ⁻¹]	5.437
Absorptionskorrektur	SADABS
gemessen Reflexe	2764
unabhängige Reflexe	$1046 (R_{int.} = 0.0631)$
Reflexzahl	$808 [F > 4\sigma(F)]$
T _{min} , T _{max}	0.783947, 0.862103
Restelektonendichte [e Å ⁻³]	-1.211, 1.324
Zahl der freien Parameter	73
GOOF	1.010
R [$F > 4\sigma(F)$] bzw.	R1 = 0.0394, wR1 = 0.0903
$R[F > 2\sigma(F)] R$ (alle Daten)	R2 = 0.0600, wR2 = 0.0956
Strukturlösung	direkte Methoden
Strukturverfeinerung	As, C, Cl, N, O anisotrop
CSD-Nr.	411 493

6.4.1 Angaben zu der Einkristall-Röntgenstrukturanalyse von SbCl(N₃)₂

Atom	X	у	Z	U _{eq}
Sb	0.91420(5)	0.23404(6)	0.47554(4)	0.0249(2)
Cl1	0.10832(2)	0.3500(3)	0.5986(2)	0.0314(5)
N4	0.8059(6)	0.3586(9)	0.5755(6)	0.030(2)
N5	0.8393(6)	0.489(1)	0.6262(6)	0.031(2)
N2	0.8868(7)	0.0052(9)	0.6433(9)	0.035(2)
N1	0.9195(7)	0.0044(9)	0.5751(7)	0.033(2)
N6	0.8685(8)	0.6119(9)	0.6731(6)	0.040(2)
N3	0.8446(9)	-0.003(1)	0.7325(8)	0.058(3)
N3	0.8446(9)	-0.003(1)	0.7325(8)	0.058(3)

6.4.2 Atomkoordinaten und Auslenkungsparameter [Å²] von SbCl(N₃)₂

6.5 Einkristall-Röntgenstrukturanalysen von AsCl(N₃)₂ · Pyridin und SbCl₂(N₃) · 2 Pyridin

6.5.1 Angaben zu den Einkristall-Röntgenstrukturanalysen von AsCl(N₃)₂ · Pyridin und SbCl₂(N₃) · 2 Pyridin

Formeleinheit	C ₅ H ₅ AsClN ₇	$C_{10}H_{10}Cl_2N_5Sb$
Relative Molmasse [g mol⁻¹]	273.53	392.88
Farbe	farblose Prismen	farblose Prismen
Kristallsystem	triklin	orthorhombisch
Raumgruppe	$P\overline{1}$	Pbca
<i>a</i> [Å]	7.3826(8)	6.5566(5)
b [Å]	8.0314(9)	13.635(1)
<i>c</i> [Å]	9.612(1)	30.901(2)
α [°]	108.497(2)	90.00
β [°]	103.881(2)	90.00
γ[°]	101.632(2)	90.00
V [Å ³]	500.22(9)	2762.4(4)
Z	2	8
<i>T</i> [K]	193(2)	193(2)
Kristallabmessungen [mm]	0.30 x 0.30 x 0.30	0.30 x 0.30 x 0.30
$D_c [{ m g}{ m cm}^{-3}]$	1.816	1.889
<i>F</i> (000)	268	1520
Diffraktometer	Siemens SMART-Flächendetektor	Siemens SMART-Flächendetektor
Röntgenstrahlung	Mo-K α , $\lambda = 0.71073$ Å	Mo-K α , $\lambda = 0.71073$ Å
Meβbereich θ [°]	2.36 bis 28.73	2.64 bis 29.07
Indexgrenzen	$-9 \le h \le 8$	$-8 \leq h \leq 8$
	$-10 \le k \le 10$	$-17 \le k \le 17$
	$-11 \le l \le 10$	$-30 \le l \le 41$
μ [mm ⁻¹]	3.637	2.373
Absorptionskorrektur	SADABS	SADABS
gemessen Reflexe	2847	14636
unabhängige Reflexe	1494 ($R_{int.} = 0.0171$)	$2796 (R_{int.} = 0.0285)$
Reflexzahl	1376 [F > $4\sigma(F)$]	2369 [F > $4\sigma(F)$]
T _{min} , T _{max}	0.5836, 0.6896	0.4301, 0.5834
Restelektonendichte [e Å ⁻³]	-0.419, 0.493	-0.494, 0.267
Zahl der freien Parameter	127	163
GOOF	1.042	1.116
R [$F > 4\sigma(F)$] bzw.	R1 = 0.0248, wR1 = 0.0652	R1 = 0.0243, wR1 = 0.0530
R [$F > 2\sigma(F)$] R (alle Daten)	R2 = 0.0278, wR2 = 0.0668	R2 = 0.0326, wR2 = 0.0551
Strukturlösung	heavy-atom-method	direkte Methoden
Strukturverfeinerung	As, C, Cl, N anisotrop	C, Cl, N, Sb anisotrop
	H isotrop mit F^2	H isotrop mit F ²

	$ASCI(13)_2 = 1 \text{ yrm}$	4111		
Atom	X	У	Z	U _{eq}
As	0.71203(4)	0.90151(3)	0.96696(3)	0.0250(1)
Cl	0.7071(1)	1.0583(1)	1.23368(9)	0.0426(2)
N1	0.7283(4)	0.7477(3)	0.7434(3)	0.0287(6)
N2	0.9433(4)	0.8452(3)	1.0455(3)	0.0297(6)
N3	0.9519(4)	0.7875(3)	1.1481(3)	0.0334(6)
N4	0.9718(5)	0.7338(5)	1.2454(4)	0.061(1)
N5	0.5377(4)	0.6755(3)	0.9443(3)	0.0318(6)
N6	0.4189(5)	0.6844(3)	1.0080(4)	0.0384(7)
N7	0.2987(6)	0.6770(5)	1.0647(5)	0.0695(12)
C1	0.6963(4)	0.8232(4)	0.6377(4)	0.0340(7)
C2	0.7068(5)	0.7422(5)	0.4925(4)	0.0460(9)
C3	0.7488(5)	0.5768(5)	0.4547(4)	0.0440(9)
C4	0.7814(5)	0.4983(4)	0.5617(4)	0.0386(8)
C5	0.7721(5)	0.5873(4)	0.7063(4)	0.0361(8)

6.5.2 Atomkoordinaten und Auslenkungsparameter $[Å^2]$ von AsCl(N₂)₂ · Pyridin

6.5.3 Atomkoordinaten und Auslenkungsparameter $[\text{\AA}^2]$ von

SbCl₂(N₃) · 2 Pyridin

Atom	X	У	Z	U _{eq}
Sb	0.21878(3)	0.02424(1)	0.13729(1)	0.0290(1)
Cl1	0.2462(1)	0.12268(6)	0.20528(3)	0.0415(1)
Cl2	0.4341(1)	0.13800(6)	0.09119(3)	0.0476(2)
N1	-0.0320(3)	0.1117(2)	0.12222(8)	0.0341(5)
N2	-0.0063(3)	0.1984(2)	0.11581(8)	0.0332(5)
N3	0.0057(5)	0.2806(2)	0.1095(1)	0.0542(8)
N4	0.0850(4)	-0.0573(2)	0.07197(8)	0.0324(5)
N5	-0.0533(3)	-0.0641(2)	0.17107(7)	0.0302(5)
C1	-0.2130(5)	-0.0247(2)	0.1916(1)	0.0388(7)
C2	-0.3559(5)	-0.0803(2)	0.2125(1)	0.0413(7)
C3	-0.3362(5)	-0.1805(2)	0.2127(1)	0.0441(8)
C4	-0.1714(5)	-0.2217(2)	0.1919(1)	0.0450(8)
C5	-0.0327(4)	-0.1619(2)	0.1717(1)	0.0363(7)
C6	0.2178(5)	-0.0781(2)	0.0406(1)	0.0406(7)
C7	0.1627(5)	-0.1240(2)	0.0025(1)	0.0443(8)
C8	-0.0375(5)	-0.1504(2)	-0.0031(1)	0.0448(8)
С9	-0.1753(5)	-0.1301(2)	0.0294(1)	0.0438(8)
C10	-0.1095(4)	-0.0827(2)	0.0660(1)	0.0380(7)

6.6 Einkristall-Röntgenstrukturanalysen von SbCl₅ · NCCl und SbCl₅ · NCCN · SbCl₅

6.6.1 Angaben zu den Einkristall-Röntgenstrukturanalysen von SbCl₅ · NCCl und SbCl₅ · NCCN · SbCl₅

Formeleinheit	CCl ₆ NSb	$C_2Cl_{10}N_2Sb_2$
Relative Molmasse [g mol ⁻¹]	360.47	650.04
Farbe	farblose Nadeln	farblose Nadeln
Kristallsystem	orthorhombisch	monoklin
Raumgruppe	Pnma	<i>P</i> 2 ₁ / <i>c</i>
<i>a</i> [Å]	12.723(1)	10.8440(8)
<i>b</i> [Å]	9.473(1)	6.0812(5)
<i>c</i> [Å]	7.8097(8)	12.3062(9)
α [°]	90.0	90.0
β [°]	90.0	92.255(2)
γ [°]	90.0	90.0
<i>V</i> [Å ³]	941.3(2)	810.1(1)
Z	4	2
<i>T</i> [K]	183(2)	193(2)
Kristallabmessungen [mm]	0.10 x 0.10 x 0.05	0.20 x 0.05 x 0.05
$D_c [\mathrm{g}\mathrm{cm}^{-3}]$	2.544	2.622
<i>F</i> (000)	664	664
Diffraktometer	Siemens SMART-Flächendetektor	Siemens SMART-Flächendetektor
Röntgenstrahlung	Mo-K α , $\lambda = 0.71073$ Å	Mo-K α , $\lambda = 0.71073$ Å
Meßbereich <i>θ</i> [°]	3.06 bis 22.97	1.88 bis 29.37
Indexgrenzen	$-13 \le h \le 13$	$-11 \le h \le 13$
	$-10 \le k \le 10$	$-7 \le k \le 7$
	$-7 \le 1 \le 8$	$-15 \le 1 \le 16$
μ [mm ⁻¹]	4.555	4.953
Absorptionskorrektur	SADABS	SADABS
gemessen Reflexe	3783	4533
unabhängige Reflexe	$687 (R_{int.} = 0.0297)$	1450 ($R_{int.} = 0.0278$)
Reflexzahl	653 $[F > 4\sigma(F)]$	$1306 [F > 4\sigma(F)]$
T _{min} , T _{max}	0.3337, 0.5714	0.416406, 0.694599
Restelektonendichte [e Å ⁻³]	-0.793, 0.523	-1.992, 1.106
Zahl der freien Parameter	49	73
GOOF	1.124	1.090
R [$F > 4\sigma(F)$] bzw.	R1 = 0.0242, wR1 = 0.0587	R1 = 0.0369, wR1 = 0.0941
R [$F > 2\sigma(F)$] R (alle Daten)	R2 = 0.0254, wR2 = 0.0595	R2 = 0.0421, wR2 = 0.0975
Strukturlösung	direkte Methoden	direkte Methoden
Strukturverfeinerung	C, Cl, N, Sb anisotrop	C, Cl, N, Sb anisotrop
CCDC-Nr.	149 754	149 755

182

Atom	x	y	Z	U _{eq}
Sb1	0.41627(3)	0.2500	0.78752(5)	0.0243(1)
C1	0.5572(5)	0.2500	1.1604(9)	0.028(1)
Cl1	0.3295(1)	0.2500	0.5260(2)	0.0493(5)
Cl2	0.53738(8)	0.0766(1)	0.7115(1)	0.0352(3)
Cl3	0.31173(8)	0.0769(1)	0.9154(2)	0.0382(3)
Cl4	0.31173(8)	0.0769(1)	0.9154(2)	0.0382(3)
Cl5	0.53738(8)	0.0766(1)	0.7115(1)	0.0352(3)
Cl6	0.6311(1)	0.2500	1.3249(2)	0.0419(4)
N1	0.5052(4)	0.2500	1.0419(7)	0.034(1)

6.6.2 Atomkoordinaten und Auslenkungsparameter [Å²] von SbCl₅ · NCCl

6.6.3 Atomkoordinaten und Auslenkungsparameter [Å²] von SbCl₅ · NCCN · SbCl₅

Atom	X	У	Z	U _{eq}
Sb	0.73139(3)	0.01998(5)	0.63438(3)	0.0205(1)
С	0.9613(6)	0.4179(9)	0.5183(4)	0.024(1)
Cl1	0.5885(2)	-0.1982(2)	0.7107(1)	0.0364(4)
Cl2	0.7536(2)	-0.1682(2)	0.4716(1)	0.0315(4)
Cl3	0.9105(2)	-0.1562(2)	0.7008(1)	0.0342(4)
Cl4	0.7591(2)	0.2733(2)	0.7738(1)	0.0354(4)
Cl5	0.6026(2)	0.2662(2)	0.5425(1)	0.0320(4)
Ν	0.8982(5)	0.2826(8)	0.5487(4)	0.029(1)

6.7 Einkristall-Röntgenstrukturanalyse von [NMe₄]₂[As₄O₂Cl₁₀] · 2CH₃CN

Formeleinheit	$C_{12}H_{30}As_4Cl_{10}N_4O_2$
Relative Molmasse [g mol ⁻¹]	916.56
Farbe	farblose Prismen
Kristallsystem	orthorhombisch
Raumgruppe	Fmmm
<i>a</i> [Å]	11.4144(8)
<i>b</i> [Å]	14.732(1)
<i>c</i> [Å]	19.803(2)
α [°]	90.0
β [°]	90.0
γ[°]	90.0
<i>V</i> [Å ³]	3329.9(5)
Z	4
<i>T</i> [K]	200(2)
Kristallabmessungen [mm]	0.20 x 0.30 x 0.35
$D_c [\mathrm{g}\mathrm{cm}^{-3}]$	1.828
<i>F</i> (000)	1792
Diffraktometer	Stoe IPDS-Flächendetektor
Röntgenstrahlung	Mo-K α , $\lambda = 0.71073$ Å
Meßbereich $heta$ [°]	2.06 bis 25.85
Indexgrenzen	$-13 \le h \le 13$
	$-17 \le k \le 18$
	$-24 \le 1 \le 24$
μ [mm ⁻¹]	4.800
Absorptionskorrektur	numerisch
Gemessen Reflexe	5870
Unabhängige Reflexe	903 ($R_{int.} = 0.0384$)
Reflexzahl	$802 [F > 4\sigma(F)]$
T _{min} , T _{max}	0.3287, 0.4676
Restelektonendichte [e $Å^{-3}$]	-0.696, 0.986
Zahl der freien Parameter	59
GOOF	1.081
R [$F > 4\sigma(F)$] bzw.	R1 = 0.0294, wR1 = 0.0844
R [$F > 2\sigma(F)$] R (alle Daten)	R2 = 0.0331, wR2 = 0.0860
Strukturlösung	direkte Methoden
Strukturverfeinerung	As, C, Cl, N, O anisotrop
	H isotrop mit F ²
CCDC-Nr.	155 602

6.7.1 Angaben zu der Einkristall-Röntgenstrukturanalyse von [NMe₄]₂[As₄O₂Cl₁₀] · 2CH₃CN

Atom	X	У	Z	U _{eq}
As	0.5000	0.10547(3)	0.09639(2)	0.0299(2)
Cl _{bridg.}	0.6608(2)	0.0000	0.0000	0.0461(4)
Cl _{term.}	0.64309(9)	0.16119(7)	0.15990(5)	0.0551(3)
0	0.5000	0.0000	0.1385(2)	0.038(1)
C01	0.943(1)	0.1989(8)	0.0000	0.050(3)
C02	0.850(1)	0.2261(7)	0.0000	0.044(2)
N01	0.7500	0.2500	0.0000	0.091(3)
N1	0.5000	0.5000	0.1497(3)	0.043(1)
C11	0.5000	0.396(1)	0.170(1)	0.064(5)
C21	0.598(0)	0.5000	0.0965(9)	0.091(8)
C31	0.5000	0.5000	0.082(0)	0.06(2)
C41	0.602(0)	0.530(0)	0.200(0)	0.08(1)
C61	0.459(0)	0.568(0)	0.196(2)	0.07(1)
C71	0.621(1)	0.533(0)	0.160(0)	0.08(0)

6.7.2 Atomkoordinaten und Auslenkungsparameter [Å²] von [NMe₄]₂[As₄O₂Cl₁₀] · 2CH₃CN

6.8 Einkristall-Röntgenstrukturanalyse von [NH₄][SbCl₆]

6.8.1 Angaben zu der Einkristall-Röntgenstrukturanalyse von [NH₄][SbCl₆]

Formeleinheit	H ₄ Cl ₆ NSb
Relative Molmasse [g mol ⁻¹]	352.52
Farbe	farblose Prismen
Kristallsystem	monoklin
Raumgruppe	C_2/c
<i>a</i> [Å]	11.972(4)
<i>b</i> [Å]	6.259(1)
<i>c</i> [Å]	11.999(4)
α [°]	90.0
β [°]	101.56(4)
γ [°]	90.0
<i>V</i> [Å ³]	880.9(5)
Z	4
<i>T</i> [K]	200(3)
Kristallabmessungen [mm]	0.25 x 0.10 x 0.05
$D_c [\mathrm{g}\mathrm{cm}^{-3}]$	2.658(2)
<i>F</i> (000)	656
Diffraktometer	Stoe IPDS-Flächendetektor
Röntgenstrahlung	Mo-K α , $\lambda = 0.71073$ Å
Meßbereich <i>θ</i> [°]	3.69 bis 25.78
Indexgrenzen	$-7 \le h \le 14$
	$-7 \le k \le 7$
	$-13 \le 1 \le 4$
μ [mm ⁻¹]	4.863
Absorptionskorrektur	numerisch
Gemessen Reflexe	863
Unabhängige Reflexe	$519 (R_{int.} = 0.0266)$
Reflexzahl	425 $[F > 4\sigma(F)]$
T _{min} , T _{max}	0.8432, 0.9045
Restelektonendichte [e Å ⁻³]	-0.382, 0.310
Zahl der freien Parameter	49
GOOF	0.943
R [$F > 4\sigma(F)$] bzw.	R1 = 0.0205, wR1 = 0.0386
R [$F > 2\sigma(F)$] R (alle Daten)	R2 = 0.0275, wR2 = 0.0396
Strukturlösung	direkte Methoden
Strukturverfeinerung	Cl, N, Sb anisotrop
	H isotrop mit F ²

Atom	X	у	Z	U _{eq}
Sb	0.7500	0.2500	0.5000	0.0099(1)
Cl1	0.6494(1)	0.5583(1)	0.5357(1)	0.0194(3)
Cl2	0.9211(1)	0.3895(1)	0.6093(1)	0.0197(3)
Cl3	0.7105(1)	0.0862(1)	0.6653(1)	0.0192(3)
Ν	0.5000	0.3981(9)	0.7500	0.029(2)
H1	0.559(3)	0.317(3)	0.78(1)	0.15(5)
H2	0.52(1)	0.480(3)	0.695(5)	0.20(7)

6.8.2 Atomkoordinaten und Auslenkungsparameter [Å²] von [NH₄][SbCl₆]

6.9 Einkristall-Röntgenstrukturanalysen von Pd(PPh₃)₂(N₃)₂ und Pd(AsPh₃)₂(N₃)₂

6.9.1 Angaben zu den Einkristall-Röntgenstrukturanalysen von Pd(PPh₃)₂(N₃)₂ und Pd(AsPh₃)₂(N₃)₂

Formeleinheit	$C_{26}H_{20}N_6P_2Pd$	C26H20A82N6Pd
Relative Molmasse [g mol ⁻¹]	715.00	802.93
Farbe	orange Platten	orange Prismen
Kristallsystem	triklin	triklin
Raumgruppe	PĪ	$P\overline{1}$
a [Å]	9.282(2)	9.363(1)
u [X] b [Å]	9.883(7)	10.019(2)
c [Å]	10.236(5)	10.050(2)
α [°]	111.66(4)	112.39(2)
B [°]	92.19(3)	93.41(2)
γ[°]	105.55(3)	108.71(2)
V [Å ³]	830.8(7)	807.7(2)
Z	1	1
<i>T</i> [K]	293(2)	200(3)
Kristallabmessungen [mm]	0.33 x 0.25 x 0.20	0.16 x 0.14 x 0.11
$D_c [{ m g}{ m cm}^{-3}]$	1.429	1.6508(4)
<i>F</i> (000)	364	400
Diffraktometer	Siemens P4	Stoe IPDS-Flächendetektor
Röntgenstrahlung	Mo-K α , $\lambda = 0.71073$ Å	Mo-K α , $\lambda = 0.71073$ Å
Meβbereich θ [°]	2.17 bis 25.00	2.24 bis 25.96
Indexgrenzen	$0 \le h \le 10$	$-11 \le h \le 11$
	$-10 \le k \le 10$	$-11 \le k \le 12$
	$-12 \le l \le 12$	$-12 \le l \le 12$
μ [mm ⁻¹]	0.690	2.643
Absorptionskorrektur	PSI-scan	numerisch
gemessen Reflexe	3033	5699
unabhängige Reflexe	2839 ($R_{int.} = 0.0214$)	2945 (R _{int.} = 0.0249)
Reflexzahl	$2607 [F > 4\sigma(F)]$	2227 [F > $4\sigma(F)$]
T _{min} , T _{max}	0.913, 1.000	0.6913, 0.7906
Restelektonendichte [e Å ⁻³]	-1.281, 0.388	-0.491, 0.296
Zahl der freien Parameter	205	265
GOOF	1.055	0.875
R [$F > 4\sigma(F)$] bzw.	R1 = 0.0354, wR1 = 0.0895	R1 = 0.0202, wR1 = 0.0419
R [$F > 2\sigma(F)$] R (alle Daten)	R2 = 0.0412, wR2 = 0.0965	R2 = 0.0334, wR2 = 0.0438
Strukturlösung	heavy-atom-method	direkte Methoden
Strukturverfeinerung	C, N, P, Pd anisotrop	As, C, N, Pd anisotrop
	H isotrop mit F ²	H isotrop mit F ²
CCDC-Nr.	158 551	158 552

Atom	v	V	7	U
	A	y 0.7000	L 0.5000	0.0201(1)
Pd	0.5000	0.5000	0.5000	0.0391(1)
P1	0.4810(1)	0.2829(1)	0.29411(9)	0.0362(2)
N1	0.3878(4)	0.3736(4)	0.6021(4)	0.0521(8)
N2	0.2547(4)	0.3448(4)	0.6012(4)	0.0554(8)
N3	0.1268(5)	0.3099(6)	0.6055(5)	0.084(1)
C1	0.3654(4)	0.2683(4)	0.1389(4)	0.0433(8)
C2	0.3710(5)	0.3956(6)	0.1155(6)	0.068(1)
C3	0.2880(6)	0.3839(8)	-0.0060(7)	0.090(2)
C4	0.1986(6)	0.2475(8)	-0.0997(6)	0.084(2)
C5	0.1896(6)	0.1183(7)	-0.0775(5)	0.082(2)
C6	0.2729(6)	0.1276(5)	0.0401(4)	0.065(1)
C7	0.6692(4)	0.2919(4)	0.2465(4)	0.0402(8)
C8	0.7855(5)	0.3222(5)	0.3513(4)	0.060(1)
С9	0.9308(5)	0.3322(6)	0.3211(6)	0.075(1)
C10	0.9622(5)	0.3179(7)	0.1878(6)	0.079(2)
C11	0.8486(5)	0.2880(6)	0.0834(5)	0.067(1)
C12	0.7015(4)	0.2749(4)	0.1114(4)	0.0474(9)
C13	0.4070(4)	0.0992(4)	0.3053(4)	0.0454(8)
C14	0.2600(5)	0.0588(5)	0.3342(5)	0.064(1)
C15	0.2033(8)	-0.0816(7)	0.3466(5)	0.094(2)
C16	0.291(1)	-0.1775(6)	0.3285(6)	0.105(3)
C17	0.4339(9)	-0.1355(6)	0.3003(6)	0.095(2)
C18	0.4940(6)	0.0016(5)	0.2881(5)	0.065(1)

6.9.2 Atomkoordinaten und Auslenkungsparameter [Å²] von Pd(PPh₃)₂(N₃)₂

Atom	X	v	Z	U _{eq}
Pd	0.5000	0 5000	0 5000	0.0177(1)
As1	0.48439(3)	0.27220(3)	0.28709(3)	0.0176(1)
NJ	0.3851(3)	0.3748(3)	0.6047(3)	0.0258(5)
N1 N2	0.3651(3)	0.3771(3)	0.5817(3)	0.0258(5)
NZ	0.2400(3)	0.32/1(3)	0.3817(3)	0.0287(8)
N3	0.1152(3)	0.2/46(4)	0.5646(4)	0.0529(8)
C1	0.3494(3)	0.2360(3)	0.1128(3)	0.0199(5)
C2	0.3641(3)	0.3612(4)	0.0776(3)	0.0269(6)
C3	0.2720(3)	0.3360(4)	-0.0488(4)	0.0335(7)
C4	0.1644(3)	0.1911(4)	-0.1375(3)	0.0337(7)
C5	0.1479(3)	0.0680(4)	-0.1013(3)	0.0328(7)
C6	0.2411(3)	0.0906(3)	0.0243(3)	0.0257(6)
C7	0.6837(3)	0.3020(3)	0.2336(3)	0.0188(5)
C8	0.8076(3)	0.3331(3)	0.3385(3)	0.0264(6)
С9	0.9529(3)	0.3606(4)	0.3070(3)	0.0339(7)
C10	0.9751(3)	0.3595(4)	0.1726(4)	0.0336(7)
C11	0.8529(3)	0.3290(4)	0.0684(3)	0.0321(7)
C12	0.7058(3)	0.2990(3)	0.0979(3)	0.0237(6)
C13	0.4222(3)	0.0738(3)	0.2981(3)	0.0185(5)
C14	0.2822(3)	0.0175(3)	0.3360(3)	0.0252(6)
C15	0.2403(3)	-0.1205(4)	0.3507(3)	0.0325(7)
C16	0.3379(3)	-0.2011(3)	0.3305(3)	0.0307(7)
C17	0.4763(3)	-0.1468(3)	0.2927(3)	0.0292(6)
C18	0.5187(3)	-0.0093(3)	0.2769(3)	0.0231(6)

6.9.3 Atomkoordinaten und Auslenkungsparameter [Å²] von Pd(AsPh₃)₂(N₃)₂

6.10 Einkristall-Röntgenstrukturanalysen von Pd(C₉H₇N)₂(N₃)₂ und Pd(2-Clpy)₂(N₃)₂

6.10.1 Angaben zu den Einkristall-Röntgenstrukturanalysen von Pd(C₉H₇N)₂(N₃)₂ und Pd(2-Clpy)₂(N₃)₂

Formeleinheit	$C_{18}H_{14}N_8Pd$	$C_{10}H_8Cl_2N_8Pd$
Relative Molmasse [g mol ⁻¹]	448.77	417.55
Farbe	gelbes Parallelepipel	braune Platten
Kristallsystem	monoklin	monoklin
Raumgruppe	$P2_{1}/n$	$P2_1/c$
<i>a</i> [Å]	8.728(3)	6.417(1)
<i>b</i> [Å]	12.032(3)	13.398(2)
<i>c</i> [Å]	8.796(2)	8.332(1)
α [°]	90.0	90.0
β [°]	103.01(2)	90.83(2)
γ [°]	90.0	90.0
V [Å ³]	900.0(4)	716.2(2)
Z	2	2
<i>T</i> [K]	293(2)	200(2)
Kristallabmessungen [mm]	0.13 x 0.33 x 0.37	0.40 x 0.10 x 0.05
$D_c [{ m g}{ m cm}^{-3}]$	1.656	1.936
<i>F</i> (000)	448	408
Diffraktometer	Nonius CAD4	Stoe IPDS-Flächendetektor
Röntgenstrahlung	Mo-K α , $\lambda = 0.71073 \text{ Å}$	Mo-K α , $\lambda = 0.71073$ Å
Meßbereich <i>θ</i> [°]	2.92 bis 23.97	2.88 bis 25.70
Indexgrenzen	$0 \le h \le 9$	$-7 \le h \le 7$
	$0 \le k \le 13$	$-16 \le k \le 16$
	$-10 \le l \le 9$	$-10 \le 1 \le 10$
μ [mm ⁻¹]	1.052	1.673
Absorptionskorrektur	keine	numerisch
gemessen Reflexe	1496	3974
unabhängige Reflexe	1399 ($R_{int.} = 0.0524$)	$1296 (R_{int.} = 0.0629)$
Reflexzahl	1038 [F > $4\sigma(F)$]	973 [F > $4\sigma(F)$]
T _{min} , T _{max}	0.9009, 1.0000	0.8047, 0.9237
Restelektonendichte [e Å ⁻³]	-0.266, 1.409	-0.564, 1.167
Zahl der freien Parameter	124	113
GOOF	1.127	0.925
R [$F > 4\sigma(F)$] bzw.	R1 = 0.0382, wR1 = 0.0560	R1 = 0.0335, wR1 = 0.0718
R [$F > 2\sigma(F)$] R (alle Daten)	R2 = 0.0864, wR2 = 0.0944	R2 = 0.0499, wR2 = 0.0753
Strukturlösung	direkte Methoden	direkte Methoden
Strukturverfeinerung	C, N, Pd anisotrop	C, Cl, N, Pd anisotrop
	H isotrop mit F ²	H isotrop mit F ²
CCDC-Nr.	137 957	158 553

Atom	X	У	Z	U _{eq}
Pd	0.5000	0.5000	0.5000	0.0396(2)
N1	0.4642(5)	0.5617(5)	0.7050(5)	0.062(1)
N2	0.5689(6)	0.5661(4)	0.8156(6)	0.055(1)
N3	0.6665(7)	0.5731(6)	0.9278(6)	0.087(2)
N4	0.2648(5)	0.5149(3)	0.4120(4)	0.041(1)
C1	0.2047(6)	0.6151(5)	0.3718(6)	0.051(1)
C2	0.0487(7)	0.6325(6)	0.2965(7)	0.059(2)
C3	-0.0489(7)	0.5437(6)	0.2640(7)	0.060(2)
C4	0.0072(6)	0.4361(6)	0.3099(6)	0.049(1)
C5	-0.0865(7)	0.3394(6)	0.2847(7)	0.062(2)
C6	-0.0271(8)	0.2393(6)	0.3304(7)	0.069(2)
C7	0.1297(7)	0.2284(5)	0.4049(7)	0.060(2)
C8	0.2282(6)	0.3176(5)	0.4316(6)	0.047(1)
С9	0.1675(6)	0.4242(5)	0.3839(5)	0.042(1)

6.10.2 Atomkoordinaten und Auslenkungsparameter [Å²] von Pd(C₉H₇N)₂(N₃)₂

6.10.3 Atomkoordinaten und Auslenkungsparameter [Å²] von Pd(2-Clpy)₂(N₃)₂

Atom	X	У	Z	U _{eq}
Pd	0.0000	0.0000	0.5000	0.0286(1)
N1	-0.1849(6)	0.1056(3)	0.3970(5)	0.044(1)
N2	-0.3082(6)	0.1495(3)	0.4767(5)	0.041(1)
N3	-0.4291(7)	0.1957(3)	0.5458(6)	0.054(1)
N11	-0.0149(5)	0.0656(2)	0.7181(4)	0.0297(8)
Cl	-0.3703(2)	-0.02466(9)	0.7532(2)	0.0477(3)
C21	-0.1725(6)	0.0536(3)	0.8182(5)	0.033(1)
C31	-0.1819(8)	0.0974(3)	0.9663(6)	0.039(1)
C41	-0.0201(9)	0.1577(3)	1.0127(7)	0.044(1)
C51	0.1441(8)	0.1715(3)	0.9131(6)	0.042(1)
C61	0.1447(7)	0.1252(3)	0.7670(6)	0.037(1)

6.11 Einkristall-Röntgenstrukturanalysen von [AsPh₄]₂[Pd₂(N₃)₄Cl₂] und [PNP]₂[Pd(N₃)₄]

6.11.1 Angaben zu den Einkristall-Röntgenstrukturanalysen von [AsPh₄]₂[Pd₂(N₃)₄Cl₂] und [PNP]₂[Pd(N₃)₄]

Formeleinheit	$C_{48}H_{40}As_2Cl_2N_{12}Pd_2$	$C_{72}H_{60}N_{14}P_4Pd$
Relative Molmasse [g mol ⁻¹]	1218.50	1351.62
Farbe	orange-braune Platten	rote Platten
Kristallsystem	monoklin	orthorhombisch
Raumgruppe	<i>P</i> 2 ₁ / <i>c</i>	Pbca
<i>a</i> [Å]	13.9662(3)	20.045(1)
<i>b</i> [Å]	11.1945(3)	19.741(1)
<i>c</i> [Å]	17.1456(4)	16.0790(9)
α [°]	90.00	90.00
β [°]	113.118(2)	90.00
γ [°]	90.00	90.00
<i>V</i> [Å ³]	2456.4(1)	6362.6(6)
Z	2	4
<i>T</i> [K]	200(2)	200(2)
Kristallabmessungen [mm]	0.10 x 0.07 x 0.03	0.15 x 0.22 x 0.03
$D_c [{ m g \ cm^{-3}}]$	1.64146(7)	1.411
<i>F</i> (000)	1208	2784
Diffraktometer	Nonius Kappa-CCD	Stoe IPDS-Flächendetektor
Röntgenstrahlung	Mo-K α , $\lambda = 0.71073$ Å	Mo-K α , $\lambda = 0.71073$ Å
Meβbereich θ [°]	2.23 bis 27.44	1.92 bis 24.08
Indexgrenzen	$-18 \le h \le 17$	$-22 \le h \le 22$
	$-14 \le k \le 14$	$-22 \le k \le 22$
	$-22 \le l \le 22$	$-18 \le l \le 18$
μ [mm ⁻¹]	2.217	0.449
Absorptionskorrektur	numerisch	numerisch
gemessen Reflexe	31470	35423
unabhängige Reflexe	5622 ($R_{int.} = 0.0707$)	$5029 (R_{int.} = 0.1074)$
Reflexzahl	$3886 [F > 4\sigma(F)]$	2725 $[F > 4\sigma(F)]$
T _{min} , T _{max}	0.8022, 0.9393	0.8986, 0.9883
Restelektonendichte [e Å ⁻³]	-1.400, 0.789	-0.844, 0.509
Zahl der freien Parameter	319	412
GOOF	1.130	0.809
R [$F > 4\sigma(F)$] bzw.	R1 = 0.0451, wR1 = 0.1226	R1 = 0.0444, wR1 = 0.0891
R [$F > 2\sigma(F)$] R (alle Daten)	R2 = 0.0868, wR2 = 0.1569	R2 = 0.0934, wR2 = 0.0999
Strukturlösung	direkte Methoden	direkte Methoden
Strukturverfeinerung	As, C, Cl, N, Pd anisotrop	C, N, P, Pd anisotrop
	H isotrop mit F ²	H isotrop mit F ²
CCDC-Nr.	158 554	158 555

Atom	x	2] V	7	T1
	A 0.12141(2)	y 0.00514(4)	L 0.02712(2)	0 0407(1)
ra Cl	0.12141(3)	0.1250(2)	0.02713(3)	0.0497(1)
	0.2409(1)	-0.1230(2)	0.0125(1)	0.0652(4)
NI N2	0.2274(4)	0.1378(3)	0.0890(4)	0.036(1)
N2	0.3030(6)	0.1216(5)	0.1180(4)	0.064(2)
N3	0.3993(5)	0.1117(6)	0.1589(5)	0.088(2)
N4	0.0020(5)	0.1050(6)	0.0335(5)	0.090(2)
N5	0.0043(4)	0.2036(6)	0.0581(4)	0.066(1)
N6	0.0072(6)	0.2965(6)	0.0847(6)	1.13(3)
As	0.24717(4)	0.08001(4)	0.39968(3)	0.0343(1)
C1	0.2939(4)	-0.0571(4)	0.3581(3)	0.037(1)
C2	0.2843(4)	-0.0591(5)	0.2743(3)	0.047(1)
C3	0.3278(5)	-0.1520(6)	0.2467(4)	0.056(2)
C4	0.3824(4)	-0.2397(5)	0.3030(4)	0.056(1)
C5	0.3921(5)	-0.2376(5)	0.3846(4)	0.053(1)
C6	0.3468(4)	-0.1460(4)	0.4138(3)	0.045(1)
C7	0.1044(4)	0.1153(5)	0.3349(3)	0.046(1)
C8A	0.0582(5)	0.2063(6)	0.3688(4)	0.051(2)
С9А	-0.0440(6)	0.2373(6)	0.3229(5)	0.059(2)
C10A	-0.1005(6)	0.1808(9)	0.2470(5)	0.064(2)
C11A	-0.0552(8)	0.095(1)	0.2169(5)	0.069(3)
C12A	0.0482(6)	0.0634(9)	0.2623(5)	0.060(2)
C8B	0.042(0)	0.001(0)	0.290(0)	0.06(1)
C9B	-0.069(0)	0.016(1)	0.237(0)	0.08(1)
C10B	-0.102(1)	0.110(0)	0.212(0)	0.06(1)
C11B	-0.051(1)	0.197(1)	0.228(0)	0.10(2)
C12B	0.069(0)	0.199(0)	0.283(0)	0.08(1)
C13	0.3341(4)	0.2102(4)	0.3972(3)	0.038(1)
C14	0.4200(5)	0.1902(5)	0.3756(3)	0.054(1)
C15	0.4833(5)	0.2843(6)	0.3769(4)	0.064(2)
C16	0.4643(6)	0.3972(6)	0.3991(4)	0.062(2)
C17	0.3794(6)	0.4172(5)	0.4202(4)	0.061(2)
C18	0.3142(5)	0.3242(5)	0.4198(3)	0.050(1)
C19	0.2639(4)	0.0526(4)	0.5134(3)	0.040(1)
C20	0.1824(6)	0.0063(6)	0.5294(4)	0.070(2)
C21	0.1951(7)	-0.0130(8)	0.6134(4)	0.085(2)
C22	0.2840(7)	0.0148(6)	0.6777(4)	0.072(2)
C23	0.3662(6)	0.0621(6)	0.6625(4)	0.068(2)
C24	0.3549(5)	0.0813(6)	0.5804(3)	0.057(2)

6.11.2 Atomkoordinaten und Auslenkungsparameter $[\text{\AA}^2]$ von

 $[AsPh_4]_2[Pd_2(N_3)_4Cl_2]$

Atom	X	У	Z	U _{eq}
Pd	1.0000	0.5000	0.5000	0.0497(1)
N1	0.9166(3)	0.5528(3)	0.5193(3)	0.077(2)
N2	0.8787(2)	0.5721(2)	0.4644(3)	0.056(1)
N3	0.8422(2)	0.5910(2)	0.4153(3)	0.061(1)
N4	0.9572(3)	0.4581(4)	0.4007(3)	0.100(2)
N5	0.9766(2)	0.4100(3)	0.3692(3)	0.064(1)
N6	0.9915(4)	0.3665(4)	0.3318(5)	0.148(3)
Ν	0.8451(2)	0.1844(2)	0.5123(2)	0.0311(8)
P1	0.89814(5)	0.12614(5)	0.50558(7)	0.0247(2)
P2	0.82799(5)	0.25066(6)	0.56307(6)	0.0257(2)
C11	0.8908(2)	0.0898(2)	0.4036(2)	0.0229(9)
C12	0.8299(2)	0.0907(2)	0.3632(2)	0.031(1)
C13	0.8236(2)	0.0599(2)	0.2851(3)	0.039(1)
C14	0.8776(3)	0.0287(2)	0.2491(3)	0.041(1)
C15	0.9379(3)	0.0267(2)	0.2893(3)	0.044(1)
C16	0.9451(2)	0.0576(2)	0.3667(3)	0.035(1)
C21	0.8850(2)	0.0584(2)	0.5784(2)	0.027(1)
C22	0.8884(2)	0.0724(2)	0.6642(3)	0.041(1)
C23	0.8770(2)	0.0213(2)	0.7213(3)	0.043(1)
C24	0.8631(2)	-0.0431(2)	0.6955(3)	0.038(1)
C25	0.8603(2)	-0.0577(2)	0.6117(3)	0.042(1)
C26	0.8712(2)	-0.0068(2)	0.5533(2)	0.035(1)
C31	0.9820(2)	0.1554(2)	0.5195(2)	0.027(1)
C32	1.0005(2)	0.2150(2)	0.4791(2)	0.042(1)
C33	1.0638(2)	0.2414(3)	0.4893(3)	0.058(1)
C34	1.1092(3)	0.2075(4)	0.5389(4)	0.063(2)
C35	1.0921(3)	0.1490(3)	0.5783(3)	0.056(2)
C36	1.0284(2)	0.1227(3)	0.5694(3)	0.043(1)
C41	0.7571(2)	0.2348(2)	0.6292(2)	0.029(1)
C42	0.7176(2)	0.1786(2)	0.6147(3)	0.037(1)
C43	0.6604(2)	0.1677(3)	0.6615(3)	0.045(1)
C44	0.6430(3)	0.2137(3)	0.7220(3)	0.050(1)
C45	0.6820(3)	0.2682(3)	0.7385(3)	0.048(1)
C46	0.7393(2)	0.2802(2)	0.6923(3)	0.041(1)
C51	0.8053(2)	0.3160(2)	0.4914(2)	0.0268(9)
C52	0.7939(2)	0.3818(2)	0.5188(3)	0.038(1)
C53	0.7765(2)	0.4322(2)	0.4629(3)	0.044(1)
C54	0.7692(2)	0.4163(3)	0.3799(3)	0.043(1)
C55	0.7801(2)	0.3520(3)	0.3522(3)	0.042(1)
C56	0.7984(2)	0.3013(2)	0.4069(2)	0.034(1)
C61	0.8934(2)	0.2844(2)	0.6264(2)	0.029(1)
C62	0.9054(2)	0.2564(2)	0.7052(3)	0.043(1)
C63	0.9604(3)	0.2778(3)	0.7503(3)	0.058(2)
C64	1.0025(3)	0.3260(3)	0.7196(4)	0.059(2)
C65	0.9902(3)	0.3540(3)	0.6434(3)	0.057(2)
C66	0.9367(2)	0.3336(2)	0.5968(3)	0.042(1)

6.11.3 Atomkoordinaten und Auslenkungsparameter [Å²] von [PNP]₂[Pd(N₃)₄]

6.12 Einkristall-Röntgenstrukturanalysen von [AsPh₄]₂[Pt(N₃)₄] · 2H₂O und [AsPh₄]₂[Pt(N₃)₆]

6.12.1 Angaben zu den Einkristall-Röntgenstrukturanalysen von [AsPh₄]₂[Pt(N₃)₄] · 2H₂O und [AsPh₄]₂[Pt(N₃)₆]

Formeleinheit	$C_{48}H_{44}As_2N_{12}O_2Pt$	$C_{48}H_{44}As_2N_{18}Pt$
Relative Molmasse [g mol ⁻¹]	1165.62	1213.91
Farbe	orange-braune Prismen	braune Nadeln
Kristallsystem	monoklin	triklin
Raumgruppe	$P2_{1}/n$	$P\overline{1}$
<i>a</i> [Å]	11.1981(8)	10.2961(2)
<i>b</i> [Å]	16.181(1)	10.5176(2)
<i>c</i> [Å]	13.357(1)	12.5363(2)
α [°]	90.00	88.035(1)
β [°]	95.043(9)	73.702(1)
γ [°]	90.00	67.9989(7)
<i>V</i> [Å ³]	2410.8(3)	1204.28(4)
Z	2	1
<i>T</i> [K]	200(3)	293(2)
Kristallabmessungen [mm]	0.24 x 0.19 x 0.10	0.21 x 0.06 x 0.05
$D_c [\mathrm{g}\mathrm{cm}^{-3}]$	1.6061(2)	1.674
<i>F</i> (000)	1152	598
Diffraktometer	Stoe IPDS-Flächendetektor	Nonius Kappa-CCD
Röntgenstrahlung	Mo-K α , $\lambda = 0.71073$ Å	Mo-K α , $\lambda = 0.71073$ Å
Meßbereich <i>θ</i> [°]	1.98 bis 23.97	2.38 bis 27.52
Indexgrenzen	$-12 \leq h \leq 12$	$-13 \le h \le 13$
	$-18 \le k \le 18$	$-13 \le k \le 13$
	$-15 \le 1 \le 15$	$-16 \le l \le 16$
μ [mm ⁻¹]	4.324	4.332
Absorptionskorrektur	numerisch	numerisch
gemessen Reflexe	13798	30425
unabhängige Reflexe	$3576 (R_{int.} = 0.0391)$	5529 ($R_{int.} = 0.0897$)
Reflexzahl	2458 [F > 4σ(F)]	4251 [F > 4σ(F)]
T _{min} , T _{max}	0.6336, 0.7183	0.3916, 0.8480
Restelektonendichte [e Å ⁻³]	-0.575, 1.170	-2.233, 0.894
Zahl der freien Parameter	306	313
GOOF	0.941	1.127
R [$F > 4\sigma(F)$] bzw.	R1 = 0.0409, wR1 = 0.1101	R1 = 0.0390, wR1 = 0.0841
R [$F > 2\sigma(F)$] R (alle Daten)	R2 = 0.0607, wR2 = 0.1164	R2 = 0.0662, wR2 = 0.1114
Strukturlösung	direkte Methoden	direkte Methoden
Strukturverfeinerung	As, C, Cl, N, O, Pt anisotrop	As, C, Cl, N, Pt anisotrop
	H isotrop mit F ²	H isotrop mit F ²
CCDC-Nr.	158 556	158 557

Atom	x	v	Z	Uea
Pt	0.5000	0.5000	-0.5000	0.0735(2)
N1	0.3425(8)	0.5630(6)	-0.5081(6)	0.100(2)
N2	0.3237(8)	0.6204(6)	-0.5636(6)	0.094(2)
N3	0.2981(9)	0.6765(6)	-0.6125(6)	0.108(3)
N4	0.439(1)	0.4172(8)	-0.4123(9)	0.149(4)
N5	0.352(1)	0.3935(5)	-0.4202(7)	0.099(3)
N6	0.259(1)	0.3669(7)	-0.417(1)	0.212(8)
As	0.23903(7)	0.41083(4)	-0.573.6(5)	0.0531(2)
C11	0.3840(7)	0.3532(4)	-0.0739(6)	0.062(2)
C21	0.4429(8)	0.3630(5)	-0.1579(6)	0.078(2)
C31	0.5483(9)	0.3166(7)	-0.1659(8)	0.095(3)
C41	0.5887(9)	0.2644(6)	-0.091(1)	0.103(3)
C51	0.5293(9)	0.2545(7)	-0.0066(9)	0.107(3)
C61	0.4262(9)	0.2974(6)	-0.0004(8)	0.095(3)
C12	0.1050(6)	0.3497(4)	-0.1141(5)	0.050(2)
C22	0.1026(7)	0.2655(4)	-0.1063(6)	0.072(2)
C32	0.0031(8)	0.2217(5)	-0.1462(6)	0.076(2)
C42	-0.0908(7)	0.2622(5)	-0.1948(5)	0.068(2)
C52	-0.0895(8)	0.3454(5)	-0.2013(7)	0.090(3)
C62	0.0080(8)	0.3905(5)	-0.01613(7)	0.080(2)
C13	0.2314(7)	0.4235(4)	0.0845(5)	0.054(2)
C23	0.1361(7)	0.3947(4)	0.1300(5)	0.058(2)
C33	0.1374(8)	0.4046(5)	0.2328(6)	0.074(2)
C43	0.231(1)	0.4404(5)	0.2869(6)	0.078(3)
C53	0.325(1)	0.4682(5)	0.2417(6)	0.079(2)
C63	0.3276(8)	0.4602(5)	0.1395(6)	0.073(2)
C14	0.2322(7)	0.5188(4)	-0.1184(6)	0.063(2)
C24	0.2093(8)	0.5859(4)	-0.0626(6)	0.068(2)
C34	0.1989(9)	0.6627(5)	-0.1068(7)	0.088(3)
C44	0.211(1)	0.6708(6)	-0.2062(9)	0.109(3)
C54	0.228(1)	0.6028(6)	-0.2638(8)	0.113(4)
C64	0.241(1)	0.5250(6)	-0.2210(7)	0.096(3)
O91	0.014(1)	0.5601(8)	-0.6064(9)	0.044(3)
O92	0.047(0)	0.555(2)	-0.554(0)	0.07(1)
O93	-0.021(0)	0.472(0)	-0.517(3)	0.09(1)
O94	0.002(0)	0.476(0)	-0.420(0)	0.04(2)

6.12.2 Atomkoordinaten und Auslenkungsparameter $[\text{\AA}^2]$ von $[AsPh_4]_2[Pt(N_3)_4]\cdot 2H_2O$

		J			
Atom	X	у	Z	U _{eq}	
Pt1	0.0000	0.0000	1.0000	0.0325(1)	
N11	0.0564(5)	0.0546(5)	0.8389(4)	0.040(1)	
N21	-0.0358(6)	0.0871(5)	0.7902(4)	0.044(1)	
N31	-0.1141(7)	0.1175(8)	0.7357(5)	0.077(2)	
N12	0.2180(5)	-0.1093(5)	0.9846(4)	0.043(1)	
N22	0.2904(6)	-0.1850(6)	0.9069(5)	0.046(1)	
N32	0.3725(7)	-0.2656(8)	0.8334(6)	0.090(2)	
N13	0.0197(5)	0.1781(4)	1.0611(4)	0.034(1)	
N23	0.1042(7)	0.1580(5)	1.0961(5)	0.053(1)	
N33	0.1964(9)	0.1504(8)	1.1416(7)	0.090(2)	
As1	0.18901(5)	0.38987(5)	0.68169(4)	0.0292(1)	
C11	-0.0110(6)	0.4532(5)	0.7695(4)	0.031(1)	
C21	-0.1161(6)	0.5437(6)	0.7253(5)	0.043(1)	
C31	-0.2602(7)	0.5886(6)	0.7846(5)	0.046(1)	
C41	-0.3009(7)	0.5432(6)	0.8885(5)	0.045(1)	
C51	-0.1964(7)	0.4547(6)	0.9324(5)	0.051(2)	
C61	-0.0502(7)	0.4081(6)	0.8738(4)	0.043(1)	
C12	0.3192(6)	0.3059(5)	0.7680(4)	0.032(1)	
C22	0.3207(6)	0.1821(5)	0.8121(4)	0.036(1)	
C32	0.4200(7)	0.1157(6)	0.8701(5)	0.042(1)	
C42	0.5188(6)	0.1688(6)	0.8828(4)	0.043(1)	
C52	0.5163(6)	0.2924(6)	0.8394(5)	0.044(1)	
C62	0.4171(6)	0.3609(6)	0.7814(4)	0.037(1)	
C13	0.2260(6)	0.2585(5)	0.5643(4)	0.032(1)	
C23	0.1136(7)	0.2331(5)	0.5418(4)	0.038(1)	
C33	0.1444(8)	0.1471(6)	0.4502(5)	0.047(2)	
C43	0.2838(8)	0.0869(6)	0.3810(5)	0.048(2)	
C53	0.3972(8)	0.1103(6)	0.4036(5)	0.054(2)	
C63	0.3681(7)	0.1965(6)	0.4959(5)	0.045(1)	
C14	0.2213(6)	0.5441(5)	0.6140(4)	0.033(1)	
C24	0.2614(7)	0.5466(7)	0.4986(5)	0.047(1)	
C34	0.2759(8)	0.6629(8)	0.4500(6)	0.065(2)	

0.7749(8)

0.7724(7)

0.6581(6)

C44

C54 C64 0.2546(8)

0.2163(8)

0.1962(7)

0.5177(8)

0.6303(8)

0.6812(5)

0.070(2)

0.064(2)

0.046(1)

6.12.3 Atomkoordinaten und Auslenkungsparameter [Å²] von [AsPh₄]₂[Pt(N₃)₆]

7 Literatur

- (a) T. Grewer, *Thermal Hazards of Chemical Reactions, Industrial Saftey Series 4,* Elsevier, Amsterdam, 1994.
 (b) *Bretherick's Handbook of Reactive Chemical Hazards.* 5th ed.; Butterworth-Heinemann, 1995.
- ² (a) I. C. Tornieporth-Oetting, T. M. Klapötke, *Angew. Chem.* 1995, *107*, 509; *Angew. Chem., Int. Ed.* 1995, *34*, 511.
 (b) T. M. Klapötke, *Chem. Ber.* 1997, *130*, 443.
- ³ H. H. Michels, J. A. Montgomery, K. O. Christe, D. A. Dixon, *J. Phys. Chem.* **1995**, *99*, 187.
- ⁴ T. M. Klapötke, A. Schulz, *Main Group Metal Chem.* **1997**, *20*, 2985.
- ⁵ (a) K. O. Christe, W. W. Wilson, J. A. Sheehy, J. A. Boatz, *Angew. Chem.* 1999, *111*, 2112; *Angew. Chem., Int. Ed.* 1999, *38*, 2004.
 (b) T. M. Klapötke, *Angew. Chem.* 1999, *111*, 2694; *Angew. Chem., Int. Ed.* 1999, *38*, 2536.
- ⁶ W. Buder, A. Schmidt, Z. Anorg. Allg. Chem. **1975**, 415, 263.
- ⁷ (a) A. Schmidt, *Chem. Ber.* 1970, *103*, 3923.
 (b) W. Buder, A. Schmidt, *Chem. Ber.* 1973, *106*, 3812.
- ⁸ (a) H. W. Roesky, *Angew. Chem., Int. Ed.* **1967**, *6*, 637.
 (b) P. Voglnandt, A. Schmidt, *Z. Anorg. Allg. Chem.* **1976**, *425*, 189.
- ⁹ D. M. Revitt, D. B. Sowerby, J. Chem. Soc. Dalton Trans. 1972, 7, 847.
- W. Beck, W. Becker, K. F. Chew, W. Derbyshire, N. Logan, D. M. Revitt,
 D. B. Sowerby, J. Chem. Soc. Dalton Trans. 1972, 7, 245.

- ¹¹ H. G. Ang, W. L. Kwik, Y. W. Lee, S. Liedle, H. Oberhammer, *J. Mol. Struct.* **1992**, *268*, 389.
- ¹² H. G. Ang, W. L. Kwik, Y. W. Lee, H. Oberhammer, *Inorg. Chem.* **1994**, *33*, 4425.
- ¹³ T. M. Klapötke, P. Geißler, J. Chem. Soc. Dalton Trans. **1995**, 3365.
- ¹⁴ P. Geißler, T. M. Klapötke, H. J. Kroth, *Spectrochim. Acta* **1995**, *51A*, 1075.
- (a) U. Müller, K. Dehnicke, Z. Anorg. Allg. Chem. 1967, 350, 113.
 (b) A. Schmidt, Chem. Ber. 1971, 104, 31.
- ¹⁶ U. Müller, Z. Anorg. Allg. Chem. **1972**, 388, 207.
- ¹⁷ D. F. Moser, I. Schranz, M. C. Gerrety, L. Stahl, R. J. Staples, *J. Chem. Soc. Dalton Trans.* **1999**, 751.
- ¹⁸ G. Ferguson, F. C. March, D. R. Ridley, *Acta Cryst.* **1975**, *B31*, 1260.
- ¹⁹ J. Müller, U. Müller, A. Loss, J. Lorberth, H. Donath, W. Massa, Z. Naturforsch. **1985**, 40b, 1320.
- ²⁰ G. Ferguson, D. R. Ridley, *Acta Cryst.* **1973**, *B29*, 2221.
- ²¹ T. M. Klapötke, A. Schulz, J. McNamara, *J. Chem. Soc. Dalton Trans.* **1996**, 2985.
- ²² T. M. Klapötke, H. Nöth, T. Schütt, M. Suter, *Inorg. Chem. eingereicht.*
- ²³ T. M. Klapötke, H. Nöth, T. Schütt, M. Warchhold, *Angew. Chem.* 2000, *112*, 2197;
 Angew. Chem. Int. Ed. Engl. 2000, *39*, 2108.
- ²⁴ M. Witanowski, M. J. Am. Chem. Soc. **1968**, 90, 5683.

- ²⁵ T. M. Klapötke, H. Nöth, T. Schütt, M. Warchold, Z. Anorg. Allg. Chem. 2001, 627, 81.
- ²⁶ J. Nelles, *Ber. Deutsch. Chem. Ges.* **1932**, *65*, 1345.
- ²⁷ Covalent Inorganic Non-Metal Azides, I. C. Tornieporth-Oetting, T. M. Klapötke, in: Combustion Efficiency and Air Quality, I. Hargittai, T. Vidoczy (Herausg.), Plenum Press, New York, **1995**, S. 51.
- ²⁸ P. Buzek, P. v. Rague Schleyer, I. C. Tornieporth-Oetting, T. M. Klapötke, J. Fluorine Chem. 1993, 65, 127.
- ²⁹ (a) G. Baliman, P. S. Pregosin, J. Mag. Res. 1977, 26, 283.
 (b) C. Brevard, P. Granger, Handbook of High Resolution Multinuclear NMR, J. Wiley, New York, Chichester, 1981, S. 136-137.
 (c) H. P. A. Mercier, J. C. P. Sanders, G. J. Schrobilgen, J. Am. Chem. Soc. 1994, 116, 2921.
 (d) M. F. A. Dove, J. C. P. Sanders, E. L. Jones, M. J. Parkin, J. Chem. Soc. Chem. Commun. 1984, 1578.
- ³⁰ M. Gerken, P. Kolb, A. Wegner, H. P. A. Mercier, H. Borrmann, D. A. Dixon,
 G. J. Schrobilgen, *Inorg. Chem.* 2000, *39*, 2813.
- ³¹ (a) J. Bacon, P. A. W. Dean, R. J. Gillespie, *Can. J. Chem.* **1969**, *47*, 1655.
 (b) N. LeBlond, D. A. Dixon, G. J. Schrobilgen, *Inorg. Chem.* **2000**, *39*, 2473.
- ³² (a) B. Neumüller, F. Schmock, S. Schlecht, K. Dehnicke, *Z. Anorg. Allg. Chem.* **2000**, *626*, 1792.
 (b) W. Beck, H. Nöth, *Chem. Ber.* **1984**, *117*, 419.
- ³³ J. Mason, *Multinuclear NMR*, Plenum Press, New York and London, **1987**.

- ³⁴ (a) K. Seppelt, *Angew. Chem.* 1976, 88, 410.
 (b) K. Seppelt, *Z. Anorg. Allg. Chem.* 1977, 434, 5.
- ³⁵ T. M. Klapötke, T. Schütt, J. Fluorine Chem. im Druck.
- ³⁶ W. Beck, T. M. Klapötke, J. Knizek, H. Nöth, T. Schütt, *Eur. J. Inorg. Chem.* 1999, 523.
- ³⁷ M-.J. Crawford, T. M. Klapötke, *Internet J. Vib. Spec.*(www.ijvs.com) 1999/2000, 3(6), 3.
- ³⁸ (a) R. D. Harcourt, *J. Mol. Struct.* **1993**, *300*, 245.
 (b) R. D. Harcourt, J. F. Sillitoe, *Aust. J. Chem*, **1974**, *27*, 691.
- ³⁹ (a) R. D. Harcourt, *Eur. J. Inorg. Chem.* 2000, 1901.
 (b) T. M. Klapötke, A. Schulz, R. D. Harcourt, *Quantum Chemical Methods in Main-Group Chemistry*, J. Wiley, New York, 1998.
- ⁴⁰ (a) W. Kutzelnigg, *Angew. Chem., Int. Ed.* **1984**, *23*, 272.
 (b) R. J. Gillespie, E. A. Robinson, *Angew. Chem.* **1996**, *108*, 539.
- ⁴¹ (a) W. S. Sheldrick, H.-J. Häusler, J. Kaub, *Z. Naturforsch.* 1988, 43b, 789.
 (b) A. T. Mohammed, U. Müller, *Acta Cryst.* 1985, *C41*, 329.
 (c) W. Czado, S. Rabe, U. Müller, W. *Z. Naturforsch.* 1998, 54b, 288.
- ⁴² X. Zhang, K. Seppelt, Z. Anorg. Allg. Chem. **1997**, 623, 491.
- ⁴³ (a) R. J. Gillespie, *Molecular Geometry*, Van Nostrand Reinhold, London, 1972.
 (b) R. J. Gillespie, I. Hargittai, *The VSEPR Model of Molecular Geometry*, Prentice-Hall, New-Jersey, 1991.
 (c) R. J. Gillespie, *Chem. Soc. Rev.* 1991, 21, 59.

44	A. C. Filippou, P. Portius, D. U. Neumann, KD. Wehrstedt, Angew. Chem. 2000, 112, 4524; Angew. Chem., Int. Ed. 2000, 39, 4333.
45	D. Fenske, HD. Dörner, K. Dehnicke, Z. Naturforsch. 1983, 38b, 1301.
46	K. Polborn, E. Leidl, W. Beck, Z. Naturforsch. 1988, 43b, 1206.
47	 W. Beck, W. P. Fehlhammer, K. Feldl, T. M. Klapötke, G. Kramer, P. Mayer, H. Piotrowski, P. Pöllmann, W. Ponikwar, T. Schütt, E. Schuirer, M. Vogt, Z. Anorg. Allg. Chem. im Druck.
48	R. Decrassain, R. Jakubas, G. Bator, J. Zaleski, J. Lefebvre, J. Kusz, J. Phys. Chem. Solids 1998, 59, 1487.
49	U. Ensinger, W. Schwarz, A. Schmidt, Z. Naturforsch. 1982, 37b, 1584.
50	N. N. Greenwood, A. Earnshaw, Chemie der Elemente, VCH-Verlag Weinheim, 1988.
51	 (a) W. Schwarz, HJ. Guder, Z. Naturforsch. 1978, 33b, 485. (b) H. Henke, E. Buschmann, H. Bärnighausen, Acta Cryst. 1973, B29, 2622.
52	R. Minkwitz, J. Nowicki, Z. Anorg. Allg. Chem. 1991, 596, 93.
53	R. Minkwitz, H. Prenzel, Z. Anorg. Allg. Chem. 1986, 534, 150.
54	R. Minkwitz, F. Claus, M. Glaser, Z. Anorg. Allg. Chem. 1983, 506, 178.
55	F. Claus, R. Minkwitz, Z. Anorg. Allg. Chem. 1983, 501, 19.
56	R. Minkwitz, H. Prenzel, A. Schardey, H. Oberhammer, Inorg. Chem. 1987, 26, 2730.
57	A. Müller, E. Niecke, B. Krebs, O. Glemser, Z. Naturforsch. 1968, 23b, 588.

- ⁵⁸ A. Müller, B. Krebs, *J. Mol. Structure* **1968**, *2*, 149.
- ⁵⁹ H. Preiss, E. Alsdorf, A. Lehmann, *Carbon*, **1987**, *25*, 727.
- ⁶⁰ K. B. Dillon, A. W. G. Platt, T. C. Waddington, *Inorg. Nucl. Chem. Letters*, **1978**, *14*, 511.
- ⁶¹ E. L. Lines, L. F. Centofanti, *Inorg. Chem.* **1972**, *11*, 2269.
- ⁶² S. R. O'Neill, J. M. Shreeve, *Inorg. Chem.* **1972**, *11*, 1630.
- ⁶³ K. B. Dillon, A. W. G. Platt, T. C. Waddington, J. Chem. Soc. Dalton Trans. 1980, 1036.
- ⁶⁴ T. M. Klapötke, H. Nöth, T. Schütt, M. Suter, *unveröffentlichte Ergebnisse*.
- ⁶⁵ G. A. Webb, *Annual Reports on NMR Spectroscopy Vol. 18*, **1986**, Academic Press Inc. London.
- ⁶⁶ K. Nakamoto, *Infrared and Raman Spectra of Inorganic and Coordination Compounds*, J. Wiley, New York, **1986**.
- ⁶⁷ M. Atam, U. Müller, J. Organomet. Chem. **1974**, 71, 435.
- ⁶⁸ M. Webster, S. Keats, J. Chem. Soc. **1971**, A, 837.
- ⁶⁹ P. W. Allen, L. E. Sutton, *Acta Crystallogr.* **1950**, *3*, 46.
- ⁷⁰ R. Jürgens, J. Almöf, *Chem. Phys. Letters* **1991**, *276*, 263.
- ⁷¹ R. Ahlrichs, M. R. Bär, M. Häser, E. Sattler, *Chem. Phys. Letters* **1991**, *184*, 353.
- ⁷² R. Hulme, J. C. Scruton, *J. Chem. Soc.* **1968**, *A*, 2448.
- ⁷³ C. Aubauer, *Dissertation*, LMU-München, **2001**.
| 74 | M. Broschag, T. M. Klapötke, Polyhedron, 1992, 11, 443. |
|----|--|
| 75 | I. C. Tornieporth-Oetting, T. M. Klapötke, Chem. Ber. 1992, 125, 407. |
| 76 | I. C. Tornieporth-Oetting, T. M. Klapötke, T. S. Cameron, J. Valkonen, P. Rademacher, K. Kowski, <i>J. Chem. Soc. Dalton Trans.</i> 1992 , 537. |
| 77 | I. C. Tornieporth-Oetting, T. M. Klapötke, U. Behrens, P. S. White, J. Chem. Soc. Dalton Trans. 1992, 2055. |
| 78 | B. Hoge, J. A. Boatz, J. Hegge, K. O. Christe, Inorg. Chem. 1999, 38, 3143. |
| 79 | I. Lindqvist, G. Olofsson, Acta Chem. Scand. 1959, 13, 1753. |
| 80 | E. Allenstein, A. Schmidt, Chem. Ber. 1964, 97, 1286. |
| 81 | K. Kawai, I. Kanesaka, Spectrochim. Acta, 1969, 25A, 263. |
| 82 | M. Burgard, J. MacCordick, Inorg. Nucl. Chem. Letters, 1970, 6, 599. |
| 83 | T. M. Klapötke, H. Nöth, T. Schütt, M. Suter, M. Warchold, Z. Anorg. Allg. Chem. im Druck. |
| 84 | T. M. Klapötke, I. C. Tornieporth-Oetting, <i>Nichtmetallchemie</i> , Verlag Chemie, Weinheim, 1994 . |
| 85 | T. M. Klapötke, A. Schulz, R. D. Harcourt, <i>Quantum Chemical Methods in Main-Group Chemistry</i> , J. Wiley, New York, 1998 , S. 89. |
| 86 | H. Davy, Philos. Trans. Roy. Soc. 1809, 88, 39. |
| 87 | H. Rose, Poggendorfs Ann. 1825, 3, 441. |

- ⁸⁸ E. Riedel, *Anorganische Chemie*, 3. Aufl., Walter de Gruyter Verlag, Berlin, **1994**, 168.
- ⁸⁹ H. Rose, *Poggendorfs Ann.* **1841**, *52*, *57*.
- ⁹⁰ J. Bebendorf, U. Müller, Z. Naturforsch. **1990**, 45b, 927.
- ⁹¹ V. Gutmann, *Monatsh. Chem.* **1951**, *82*, 473.
- ⁹² C. D. Schmulbach, *Inorg. Chem.* **1965**, *4*, 1232.
- ⁹³ I. R. Beattie, T. Gibson, K. Livingston, V. Fawcett, G. A. Ozin, *J. Chem. Soc.* 1967, *A*, 712.
- ⁹⁴ R. J. P. Williams, J. Chem. Soc. **1955**, 137.
- ⁹⁵ C. K. Jorgensen, *Acta. Chem. Scand.* **1957**, *11*, 166.
- ⁹⁶ W. O Freitag, E. R. Nixon, J. Chem. Phys. **1956**, 24, 109.
- ⁹⁷ J. K. Wilmshurst, J. Mol. Spectrosc. **1960**, *5*, 343.
- ⁹⁸ S. Parsons, persönliche Mitteilung.
- ⁹⁹ R. Duthaler, J. D. Roberts, J. Am. Chem. Soc. **1978**, 100, 4969.
- ¹⁰⁰ H. Binas, Z. Anorg. Allg. Chem. **1967**, 352, 271.
- ¹⁰¹ A. E. Reed, L. A. Curtiss, F. Weinhold, *Chem. Rev.* **1988**, *88*, 899.
- ¹⁰² A. E. Reed, R. B. Weinstock, F. Weinhold, J. Chem. Phys. **1985**, 83, 735.
- ¹⁰³ W. Czado, U. Müller, Z. Anorg. Allg. Chem. **1998**, 624, 103.

- ¹⁰⁴ J. Kaub, W. S. Sheldrick, Z. Naturforsch. **1984**, 39 b, 1252.
- ¹⁰⁵ G. R. Willey, L. T. Daly, P. R. Meeham, M. G. B. Drew, *J. Chem. Soc., Dalton Trans.* **1996**, 4045.
- ¹⁰⁶ G. R. Willey, A. Asab, M. T. Lakin, N. W. Alcock, J. Chem. Soc., Dalton Trans.
 1993, 365.
- ¹⁰⁷ M. R. Churchill, A. G. Landers, A. L. Rheingold, *Inorg. Chem.* **1981**, *20*, 849.
- ¹⁰⁸ M. Hall, D. W. Sowerby, J. Chem. Soc., Chem. Comm. **1979**, 1134.
- ¹⁰⁹ M. Hall, M. Nunn, M. J. Begley, D. W. Sowerby, *J. Chem. Soc., Dalton Trans.* 1986, 1239.
- ¹¹⁰ M. J. Begley, M. Hall, M. Nunn, D. W. Sowerby, *J. Chem. Soc., Dalton Trans.* **1986**, 1735.
- ¹¹¹ A. L. Rheingold, A. G. Landers, P. Dahlstrom, J. Zubieta, J. Chem. Soc., Chem. Comm. 1979, 143.
- ¹¹² F. D. Rogers, M. L. Jeze, Acta Crystallogr. **1994**, C 50, 1527.
- ¹¹³ T. M. Klapötke, T. Schütt, Z. Naturforsch. 2001, 56b, 301.
- ¹¹⁴ M. Webster, S. Keats, J. Chem. Soc. A, **1971**, 863.
- ¹¹⁵ S. Haupt, K. Seppelt, Z. Anorg. Allg. Chem. **2000**, 626, 1778.
- ¹¹⁶ T. M. Klapötke, *Main Group Metal Chemistry*. **1997**, *20(2)*, 81.
- ¹¹⁷ J.-M. Le Carpentier, R. Weiss, *Acta Cryst.* **1972**, *B28*, 1421.
- ¹¹⁸ R. Gruner, *Zulassungsarbeit*, Universität Karlsruhe, **1973**.

- ¹¹⁹ J. Neubüser, H. Wondratschek, *Krist. Tech.* 1996, *1*, 529.
- ¹²⁰ T. M. Klapötke, P. Mayer, C. M. Rienäcker, T. Schütt, Acta Cryst. eingereicht.
- ¹²¹ H. Henke, *Acta Cryst.* **1980**, *B36*, 2001.
- ¹²² J. M. Adams, R. W. H. Small, *Acta Cryst.* **1973**, *B29*, 2317.
- ¹²³ R. Minkwitz, S. Schneider, *Angew. Chem.* **1999**, *111*, 229.
- ¹²⁴ T. Schütt, *Diplomarbeit*, **1998**, LMU-München.
- F. Basolo, R. G. Pearson, *Mechanism of Inorganic Reactions* 1967, 2nd ed.
 J. Wiley, New York.
- ¹²⁶ P. H. Kreutzer, K. T. Schorpp, W. Beck, Z. Naturforsch. **1975**, 30b, 544.
- ¹²⁷ P. Haake, R. M. Pfeiffer, J. Chem. Soc. Chem. Commun. **1969**, 1330.
- ¹²⁸ P. Haake, R. M. Pfeiffer, J. Am. Chem. Soc. **1970**, *92*, 4996.
- ¹²⁹ P. Haake, R. M. Pfeiffer, J. Am. Chem. Soc. **1970**, *92*, 5243.
- ¹³⁰ D. G. Cooper, J. Powell, J. Am. Chem. Soc. **1973**, 95, 1102.
- ¹³¹ D. G. Cooper, J. Powell, *Can. J. Chem.* **1973**, *51*, 1634.
- ¹³² R. Romeo, P. Uguagliati, U. Belluco, J. Molec. Catal. **1975**/**76**, 1, 325.
- ¹³³ D. A. Redfield, L. W. Cary, J. H. Nelson, *Inorg. Chem.* **1975**, *14*, 50.
- ¹³⁴ J. J. MacDougall, J. H. Nelson, *Inorg. Nucl. Letters* **1979**, *15*, 315.

- ¹³⁵ W. Beck, W. P. Fehlhammer, P. Pöllmann, E. Schuierer, K. Feldl; *Chem. Ber.* 1967, *100*, 2335; für homoleptische Azid-Komplexe: H. H. Schmidke, D. Garhoff, *J. Am. Chem. Soc.* 1967, *89*, 1317.
- ¹³⁶ C. J. Oetker, W. Beck, *Spectrochim. Acta* **1973**, *29A*, 1975.
- ¹³⁷ B. Bendiksen, W. C. Riley, M. W. Babich, J. H. Nelson, R. A. Jacobson, *Inorg. Chim. Acta* 1982, 57, 29.
- ¹³⁸ T.M. Klapötke, K. Polborn, T. Schütt, Z. Anorg. Allg. Chem. **2000**, 626, 1444.
- (a) W. Beck, J. Organomet. Chem. 1990, 383, 143
 (b) J. Strähle, Comments Inorg. Chem. 1985, 4, 295.
- ¹⁴⁰ S. S. Massoud, F. A. Mautner, M. Aby-Youssef, N. M. Shuaib, *Polyhedron*, **1999**, *18*, 2287.
- ¹⁴¹ M. A. S. Goher, F. A. Mautner, *Polyhedron*, **1999**, *18*, 2339.
- ¹⁴² M. A. S. Goher, F. A. Mautner, *Polyhedron*, **1999**, *18*, 1805.
- ¹⁴³ M. A. S. Goher, A. Escuer, M. Aby-Youssef, F. A. Mautner, *Polyhedron*, **1998**, *17*, 4265.
- ¹⁴⁴ A. Escuer, R. Vicente, M. S. El Fallah, M. A. S. Goher, F. A. Mautner, *Inorg. Chem.* **1998**, *37*, 4466.
- ¹⁴⁵ M. Herberhold, A. Dietel, W. Milius, Z. Anorg. Allg. Chem. **1999**, 625, 1885.
- (a) J. Ribas, A. Escuer, M. Monfort, R. Vicente, R. Cortes, L. Lezama, T. Rojo, *Coord. Chem. Rev.* 1999, 193-195, 1027.
 (b) M. Monfort, I. Resino, J. Ribas, H. Stoeckli-Evans, *Angew. Chem.* 2000, 112, 197.
 (c) M. A. S. Goher, J. Cano, Y. Journaux, M. Aby-Youssef, F. A. Mautner, A. Escuer, R. Vicente, *Chem. Eur. J.* 2000, *6*, 778.

(d) F. A. Mautner, S. Hanna, R. Cortes, L. Lezama, M. G. Barandika, T. Rojo, *Inorg. Chem.* 1999, *38*, 4647.
(e) M. A. S. Goher, M. Aby-Youssef, F. A. Mautner, R. Vicente, A. Escuer, *Eur. J. Inorg. Chem.* 2000, 1819.

- ¹⁴⁷ M. Laubeneder, H. Werner, *Chem. Eur. J.* **1999**, *5*, 2937.
- ¹⁴⁸ W. P. Fehlhammer, L. F. Dahl, J. Am. Chem. Soc. **1972**, *94*, 3377.
- (a) S. Schröder, W. Preetz, Z. Anorg. Allg. Chem. 2000, 626, 1757.
 (b) S. Schröder, W. Preetz, Z. Anorg. Allg. Chem. 2000, 626, 1915.
- ¹⁵⁰ W. Beck, W. P. Fehlhammer, P. Pöllmann, R. S. Tobias, *Inorg. Chim. Acta* **1968**, *2*, 467.
- ¹⁵¹ W. Beck, W. P. Fehlhammer, P. Pöllmann, *Chem. Ber.* **1969**, *102*, 3903.
- ¹⁵² D. Herbison-Evans, R. E. Richards, *Mol. Phys.* **1964**, *7*, 515.
- ¹⁵³ J. Strähle, Z. Anorg. Allg. Chem. **1974**, 405, 139.
- ¹⁵⁴ W. Fraenk, T. M. Klapötke, B. Krumm, P. Mayer, J. Chem. Soc. Chem. Commun.2000, 667.
- ¹⁵⁵ T. M. Klapötke, A. Schulz, R. D. Harcourt, *Quantum Chemical Methods in Main-Group Chemistry*, Wiley, **1998**, Kapitel 12.2, S. 170.
- (a) W. Beck, H. Nöth, *Chem. Ber.* 1984, *117*, 419.
 (b) W. Beck, T. M. Klapötke, P. Klüfers, G. Kramer, C. M. Rienäcker, *im Druck*.
- ¹⁵⁷ W. Rigby, P. M. Bailey, J. A. McCleverty, P. M. Mailtlis, *J. Chem. Soc. Dalton Trans.* **1979**, 371.
- ¹⁵⁸ W. Hiller, K. Hösler, K. Dehnicke, Z. Anorg. Allg. Chem. **1989**, 553, 7.

- ¹⁵⁹ S. Schlecht, N. Faza, W. Massa, S. Dapprich, G. Frenking, K. Dehnicke, Z. Anorg.
 Allg. Chem. 1998, 624, 1011.
- ¹⁶⁰ Gaussian 98, Revision A.3,

M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb,
J. R. Cheeseman, V. G. Zakrzewski, J. A. Jr. Montgomery, R. E. Stratmann,
J. C. Burant, S. Dapprich, J. M. Millam, A. D. Daniels, K. N. Kudin, M. C. Strain,
O. Farkas, J. Tomasi, V. Barone, M. Cossi, R. Cammi, B. Mennucci, C. Pomelli,
C. Adamo, S. Clifford, J. Ochterski, G. A. Petersson, P. Y. Ayala, Q. Cui,
K. Morokuma, D. K. Malick, A. D. Rabuck, K. Raghavachari, J. B. Foresman,
J. Cioslowski, J. V. Ortiz, B. B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I.
Komaromi, R. Gomperts, R. L. Martin, D. J. Fox, T. Keith, M. A. Al-Laham, C. Y.
Peng, A. Nanayakkara, C. Gonzalez, M. Challacombe, P. M. W. Gill, B. Johnson, W.
Chen, M. W. Wong, J. L. Andres, C. Gonzalez, M. Head-Gordon, E. S. Replogle, J. A.
Pople, Gaussian, Inc., Pittsburgh PA, 1998

- (a) C. C. J. Roothan, *Rev. Mod. Phys.* 1951, *23*, 69.
 (b) J. A. Pople, R. K. Nesbet, *J. Chem. Phys.* 1954, *22*, 571.
 (c) R. McWeeny, G. Dierksen, *J. Chem. Phys.* 1968, *49*, 4852.
- (a) C. W. Bauschlicher, H. Partridge, *Chem. Phys. Lett.* 1994, 231, 277.
 (b) A. D. Becke, *J. Chem. Phys.* 1993, 98, 5648.
 (c) A. D. Becke, *Phys. Rev. A*, 1988, 38 3098.
 (d) C. Lee, W. Yang, R. G. Parr, *Phys. Rev. B*, 1988, 37 785.
 (e) S. H. Vosko, L. Wilk, M. Nusair, *Can. J. Phys.* 1980, 58, 1200.
 (f) B. Miehlich, A. Savin, H. Stoll, H. Preuss, *Chem. Phys. Lett.* 1989, 157, 200.
- (a) A. Bergner, M. Dolg, W. Kuechle, H. Preuss, *Mol. Phys.* 1993, *80*, 1431.
 (b) P. Schwerdtfeger, M. Dolg, W. H. E. Schwarz, G. A. Bowmaker, P. D. W. Boyd, *J. Chem. Phys.* 1989, *91*, 1762.
- ¹⁶⁴ M. Kaupp, R. v. R. Schleyer, H. Stoll, H. Preuss, J. Am. Chem. Soc. 1991, 113, 1602.

- ¹⁶⁵ D. Andrae, U. Haeussermann, M. Dolg, H. Stoll, H. Preuss, *Theor. Chim. Acta* **1990**, 77, 123.
- ¹⁶⁶ G. Frenking, S. Fau, C. M. Marchand, H. Grützenmacher, *J. Am. Chem. Soc.* 1997, *119*, 6648.
- ¹⁶⁷ G. Brauer, *Handbuch der Präparativen und Anorganischen Chemie*, 1978,
 F. Enke, Stuttgart.
- ¹⁶⁸ W. Fraenk, T. Habereder, A. Hammerl, T. M. Klapötke, B. Krumm, P. Mayer,
 H. Nöth, M. Warchhold, *Inorg. Chem.* 2001, *40*, 1334.
- ¹⁶⁹ V. Gutmann, Z. Anorg. Allg. Chem. **1951**, 266, 331.
- ¹⁷⁰ K. O. Christe, W. W. Wilson, R. Bau, S. W. Bunte, *J. Am. Chem. Soc.* **1992**, *114*, 3411.
- ¹⁷¹ J. G. Ballard, T. Birchall, *Can. J. Chem.* **1978**, *56*, 2947.
- ¹⁷² K. Schwetlick, H. G. O. Becker, G. Domschke, F. Fanghänel, M. Fischer, G. Gewald,
 R. Mayer, D. Pavel, H. Schmidt, *Organikum*, 18. ber. Aufl., Deutscher Verlag der Wissenschaften, Berlin, 1993.
- ¹⁷³ Siemens Area Detector Absorption Correction Program, Siemens Analytical Instrument Division, Madison, WI, **1996**.
- ¹⁷⁴ G. Cascarano, A. Altomare, C. Giacovazzo, A. Guagliardi, A. G. G. Moliterni,
 D. Siliqi, M. C: Burla, G. Polidori, M. Camalli, *Acta Crystallogr.* 1996, *A52*, C-79.
- ¹⁷⁵ G. M. Sheldrick, SHELXS97, Programm zur Lösung von Kristallstrukturen, Universität Göttingen, **1997**.
- ¹⁷⁶ G. M. Sheldrick, SHELXL97, Programm zur Verfeinerung von Kristallstrukturen, Universität Göttingen, **1997**.

CURRICULUM VITAE

Persönliche Daten

Name:	Thomas Schütt					
Geburtsdatum:	31. März 1971 in Wasserburg am Inn					
Familienstand:	ledig					
Staatsangehörigkeit:	deutsch					
Schulausbildung						
09/1977 - 08/1981	Grundschule Wasserburg am Inn					
09/1981 - 07/1991	Luitpold-Gymnasium Wasserburg am Inn					
07/1991	allgemeine Hochschulreife					
Bundeswehr						
10/1001 00/1000						
10/1991 – 09/1992	Bundeswehrkrankenhaus Munchen					
Hochschulausbildung						
10/1992 - 05/1996	Grundstudium Chemie (Diplom), Ludwig-Maximilians-					
	Universität München					
09.05.1996	Diplom-Vorprüfung					
05/1996 - 09/1998	Hauptstudium Chemie (Diplom), Ludwig-Maximilians-					
	Universität München					
19.02.1998	Diplom-Hauptprüfung					
04/1996 - 09/1998	Diplomarbeit unter Anleitung von Prof. Dr. T. M. Klapötke über					
	Synthese und Charakterisierung neuer Azidverbindungen der					
	Metalle Beryllium und Palladium					
30.09.1998	Studienabschluß: Diplom-Chemiker (Univ.)					
11/1998 - 06/2001	Dissertation unter Anleitung von Prof. Dr. T. M. Klapötke über					
	Halogen, Azid- und Koordinationsverbindungen des Arsens und					
	Antimons					

Berufstätigkeit

03/1998 - 09/1998	studentische Hilfskraft am Institut für Anorganische Chemie der						
	Ludwig-Maximilians-Universität München						
11/1998 —	wissenschaftlicher	Mitarbeiter	am	Department	Chemie	der	
	Ludwig-Maximilian	ns-Universitä	t Mü	nchen			

Mitgliedschaften

Gesellschaft Deutscher Chemiker (1998)

Publikationsliste

- [1] Characterization of Palladium(II)azide. Characterization and Crystal Structure of Bis(pyridine)bis(azido)palladium and Palladium(tetraammin)tetraazidopalladat(II)
 W. Beck, T. M. Klapötke, J. Knizek, H. Nöth, T. Schütt, Eur. J. Inorg. Chem. 1999, 523.
- [2] Synthesis and Spectroscopic Characterization of Beryllium azide and two Derivatives
 T. M. Klapötke, T. Schütt, Main Group Metal Chem. 1999, 22/6, 357.
- [3] Synthesis and Characterization of Bis(azido)bis(2-chloropyridine)palladium(II), Bis(azido)bis(3-chloropyridine)palladium(II) and Bis(azido)bis(quinoline)palladium (II), and the Crystal Structure of Bis(azido)bis(quinoline)palladium(II) T. M. Klapötke, K. Polborn, T. Schütt, Z. Anorg. Allg. Chem. 2000, 626, 1444.
- [4] Tetraphenylphosphonium Hexaazidoarsenate(V) Containing the First Structurally Characterized Binary As^V Azide Species: [As(N₃)₆]⁻
 T. M. Klapötke, H. Nöth, T. Schütt, M. Warchhold, Angew. Chem. 2000, 112, 2197; Angew. Chem. Int. Ed. Engl. 2000, 39, 2108.
- [5] Synthesis, Characterization, Crystal Structure and hybrid DFT Computation of Antimony(III) Chloride Diazide, SbCl(N₃)₂
 T. M. Klapötke, H. Nöth, T. Schütt, M. Warchold, Z. Anorg. Allg. Chem. 2001, 627, 81.
- [6] Synthesis, Characterization, Crystal Structure and hybrid DFT Computation of the Chlorooxoarsenate(III), [NMe₄]₂[As₄O₂Cl₁₀] · 2CH₃CN
 T. M. Klapötke, T. Schütt, Z. Naturforsch. 2001, 56b, 301.

- [7] Synthesis and Characterization of the Lewis Acid-Base Complexes SbCl₅ ·LB (LB = ICN, BrCN, ClCN, ¹/₂(CN)₂, NH₂CN, pyridine) - a Combined Theoretical and Experimental Investigation. The Crystal Structures of SbCl₅·NCCl and SbCl₅·NCCN ·SbCl₅ T. M. Klapötke, H. Nöth, T. Schütt, M. Suter, M. Warchold, Z. Anorg. Allg. Chem. im Druck.
- [8] The conversion of AsF₅ and SbF₅ into novel arsenic- and antimony(V) pseudohalogen species: Preparation, characterization and hybrid DFT computation of Lewis base stabilized M(N₃)₅ species (M=As, Sb)
 T. M. Klapötke, T. Schütt, J. Fluorine Chem. im Druck.
- [9] Crystal Structures of (PPh₃)₂Pd(N₃)₂, (AsPh₃)₂Pd(N₃)₂, (2-chloropyridine)₂Pd(N₃)₂, [(AsPh₄)₂][Pd₂(N₃)₄Cl₂], [(PNP)₂][Pd(N₃)₄], [(AsPh₄)₂][Pt(N₃)₄] · 2H₂O and [(AsPh₄)₂][Pt(N₃)₆]
 W. Beck, W. P. Fehlhammer, K. Feldl, T. M. Klapötke, G. Kramer, P. Mayer,
 H. Piotrowski, P. Pöllmann, W. Ponikwar, T. Schütt, E. Schuirer, M. Vogt,
 Z. Anorg. Allg. Chem. im Druck.
- [10] Anhydrous Ammonium Hexachloroantimonate(V) NH₄⁺SbCl₆⁻
 T. M. Klapötke, P. Mayer, C. M. Rienäcker, T. Schütt, Acta Crystallogr. eingereicht.
- [11] Experimental and Theoretical Characterization of Cationic, Neutral and Anionic binary Arsenic- and Antimony Azide Species
 K. Karaghiosoff, T. M. Klapötke, H. Nöth, T. Schütt, M. Suter, Inorg. Chem. eingereicht.
- [12] Synthesis, Characterization and Crystal Structures of the Lewis Acid-Base Complexes AsCl(N₃)₂ ·pyridine and SbCl₂(N₃) ·2 pyridine
 T. M. Klapötke, H. Nöth, T. Schütt, M. Suter, in Vorbereitung.