Logo
DeutschClear Cookie - decide language by browser settings
Schütt, Thomas (2001): Halogen-, Azid- und Koordinationsverbindungen des Arsens und Antimons. Dissertation, LMU München: Faculty of Chemistry and Pharmacy
[img]
Preview
PDF
Schuett_Thomas.pdf

5Mb

Abstract

Ziel dieser Arbeit war es, Arsen- bzw. Antimonverbindungen zu synthetisieren und zu charakterisieren, die Chemiker aufgrund allgemeiner Erfahrungen als instabil bzw. explosiv bezeichnen würden. Dabei wurden vier verschiedene Schwerpunkte gesetzt. (a) binäre Arsenazide und Antimonazide (b) gemischte Halogen/Azid-Verbindungen von Arsen und Antimon (c) Lewis-Säure-Base-Addukte von As(N3)5 und Sb(N3)5 (d) Lewis-Säure-Base-Addukte von AsCl5 und SbCl5 (a) binäre Arsenazide und Antimonazide Die binären Arsenazid- und Antimonazid-Verbindungen M(N3)3, M(N3)4 + , M(N3)4 – , M(N3)5 und M(N3)6 – (M = As, Sb) wurden durch Reaktion der entsprechenden Chlorid-Verbindungen mit TMS-N3 oder aktiviertem NaN3 synthetisiert. Die Verbindungen wurden als reine Substanzen bzw. als Salze isoliert. Die Isolation der reinen Pentaazide gelang aufgrund der extremen Explosivität nicht. Die Strukturen und Normalschwingungen aller binären Verbindungen wurden auf B3LYP-Niveau berechnet. Die kationischen Spezies zeigen S4-Symmetrie, die monomeren M(N3)4 – -Anionen und die neutralen M(N3)5-Spezies Cs-Symmetrie, die dimeren [M(N3)4 – ]2-Anionen S2-Symmetrie und die M(N3)6 – -Anionen S6-Symmetrie. Abbildung 46 zeigt die berechneten Strukturen und die explosiven Eigenschaften der Verbindungen. Die berechneten durchschnittlichen M-N-Bindungslängen steigen in der Reihenfolge M(N3)4 + < M(N3)5 < M(N3)3 < M(N3)4 – < M(N3)6 – . Die N-N-Bindungslängen innerhalb der Azidgruppen zeigen eine ähnliche Tendenz. Die kationischen Verbindungen zeigen die längsten N -N - und die kürzesten N -N -Bindungslängen (Konnektivität: M–N –N –N ) gefolgt von den Neutral-verbindungen und den anionischen Spezies. Dementsprechend ist die Bindungsordnung zwischen dem N und N -Stickstoffatom (vgl. Lewisformel III, Schema 1) für die kationischen Azidverbidungen am höchsten und für die anionischen am geringsten. Diese Tendenzen stimmen gut mit den experimentell bestimmten und berechneten Schwingungsdaten für die Azidgruppen überein.Die ionischen Verbindungen werden durch voluminöse Gegenionen im Kristall stabilisiert. Die relativen kurzen N -N -Bindungslängen erklären dennoch die gesteigerte Explosivität der kationischen Verbindungen gegenüber den anionischen Spezies. Eine Eliminierung von N2 ist aufgrund dieser kurzen N -N -Bindungslängen erleichtert. Die neutralen Triazide sind außerordentlich explosiv und die Pentaazide zersetzen sich aufgrund des extrem hohen Stickstoffgehalts spontan. Es gelang erstmals eine Arsenazidverbindung durch Röntgenstrukturanalyse zu charakterisieren. Die Struktur des As(N3)6 – -Anions wurde als desses PPh4 + - und Py-H + -Salz geklärt. Das Arsenatom ist von sechs Stickstoffatomen oktaedrisch umgeben. Das Anion zeigt im Kristall zentrosymmetrische S2-Symmetrie. Die experimentell bestimmten Struktur-parameter stimmen mit den auf B3LYP-Niveau berechneten gut überein. Abbildung 47 zeigt die Molekülstruktur des As(N3)– -Anions. Die 14 N-NMR-Spektren aller Verbindungen zeigen drei Resonanzen für die nichtäquivalenten Stickstoffatome der kovalent gebundenen Azide. In den 75 As- bzw. 121 Sb-NMR-Spektren konnten nur im Falle der Hexaazidoanionen Resonanzen aufgelöst werden, da diese Kerne nur in hochsymmetrischer Umgebung aufgrund ihres hohen Quadrupolmoments detektiert werden können. (b) gemischte Halogen/Azid-Verbindungen von Arsen und Antimon Gemischte Halogen- bzw. Halogen/Azid-Verbindungen von Arsen und Antimon in der Oxidationsstufe (III) konnten bisher nicht isoliert werden, da diese Verbindungen leicht in die jeweiligen Trihalogenide bzw. Pseudohalogenide dismutieren. Deratige Dismutierungen wurden in dieser Arbeit bei Reaktionen von MX3 (M =As, Sb; X = F, Br, I) mit azidübertragenden Reagentien beobachtet. Gemischte Halogen/Azid-Verbindungen von Arsen und Antimon konnten nur im Falle des Chlorids eindeutig isoliert werden. Die Dismutierungsneigung ist aufgrund der chemischen Ähnlichkeit von Chlorid und Azid am geringsten. SbCl(N3)2 wurde durch Reaktion von SbCl3 und zwei Äquivalenten NaN3 synthetisiert. SbCl2N3 konnte nur in Gegenwart von Pyridin als Lewis-Base kristallisiert werden, wobei das Lewis-Säure-Base-Addukt SbCl2N3 · 2 Pyridin entstand. Eine gemischte Chlorid/Azid-Verbindung von Arsen konnte ebenfalls in Gegenwart von Pyridin als Lewis-Base isoliert werden. Es wurde die Verbindung AsCl(N3)2 · 2 Pyridin durch Röntgenstrukturanalyse eindeutig charakterisiert. Abbildung 48 zeigt die Molekülstruktur von SbCl(N3)2. Die Molekülstrukturen der beiden anderen gemischten Chlorid/Azid-Verbindung von Arsen und Antimon sind in Kap. 3.2.4 abgebildet. Die Zentralatome sind in Übereinstimmung mit dem VSEPR-Konzept in SbCl(N3)2 Ψ -tetraedrisch, in AsCl(N3)2 · Pyridin Ψ -trigonal-bipyramidal, und in SbCl2N3 · 2 Pyridin Ψ -toktaedrisch umgeben. Die Schwingungsspektren von AsCl(N3)2 · Pyridin und SbCl2N3 · 2 Pyridin zeigen Banden bei 216 cm –1 und 139 cm –1 (As) und 166 cm –1 und 109 cm –1 (Sb). Diese Banden werden den Streck- bzw. Deformationsschwingung der M-NPy-Bindungen (M = As, Sb) zugeordnet. Die 14 N-NMR-Spektren von AsCl(N3)2 · Pyridin und SbCl2N3 · 2 Pyridin zeigen zusätzlich zu den Resonanzen die den Azid-Stickstoffatomen zugeordnet werden, breite Resonanzen bei einer chemischen Verschiebung von δ = –164 ppm (As) und –157 ppm (Sb). Diese Resonanzen werden den Stickstoffatomen der Pyridinmoleküle zugeordnet. Sie sind im Vergleich zu freiem Pyridin deutlich verschoben (–63 ppm). Es folgt, dass die Addukte ebenso in Lösung stabil sind. Auf der Grundlage der experimentell bestimmten Atomkoordinaten von AsCl(N3)2 · Pyridin und SbCl2N3 · 2 Pyridin wurden NBO-Analysen (B3LYP) berechnet, um einen Einblick in die Bindungssituation solcher schwach gebundenen Lewis-Säure-Base-Addukte zu erhalten. In AsCl(N3)2 · Pyridin werden 0.20 Elektronen vom Pyridin auf AsCl(N3)2 übertragen und in SbCl2N3 · 2 Pyridin 0.27 Elektronen von den beiden Pyridinmolekülen auf SbCl2N3. Die Wechselwirkung pro Molekül Pyridin ist damit im Vergleich zu AsCl(N3)2 · Pyridin schwächer. Dieses Ergebnis spiegelt sich in den experimentell bestimmten M-NPy-Bindungslängen wieder. (c) Lewis-Säure-Base-Addukte von As(N3)5 und Sb(N3)5 Die Isolation der binären Spezies As(N3)5 und Sb(N3)5 gelang aufgrund der spontanen Explosionen nicht. Daher wurden die Verbindungen in situ durch Reaktion von AsF5 bzw. SbF5 mit TMS-N3 dargestellt und mit Lewis-Basen stabilisiert. Die Verbindungen As(N3)5 · LB bzw. Sb(N3)5 · LB (LB = Pyridin, Chinolin, NH3, N2H4 und NH2CN) wurden auf diese Weise synthetisiert. Die Verbindungen sind bei Raumtemperatur stabil, explodieren jedoch heftig bei Reibung oder höheren Temperaturen. Die Strukturen und Normalschwingungen wurden auf B3LYP-Niveau berechnet. Die Zentralatome sind jeweils okatedrisch von sechs Stickstoffatomen umgeben. Fünf stammen dabei von Azidliganden und eines von der jeweiligen Lewis-Base. In Abbildung 49 ist die Struktur von As(N3)5 · N2H4 abgebildet. Die berechneten Strukturen der anderen Addukte sind in Kap. 3.3.5 zu finden. Die Schwingungsspektren zeigen alle Schwingungen die auf kovalent gebundene Azide schließen lassen. Zusätzlich sind im Bereich von 111 cm –1 bis 430 cm –1 Banden ersichtlich, die den Streck- bzw. Deformationsschwingungen der M-NLB-Bindungen zugeordnet werden. Die 14 N-NMR-Spektren von As(N3)5 · LB bzw. Sb(N3)5 · LB (LB = Pyridin, Chinolin, NH3, N2H4 und NH2CN) zeigen zusätzlich zu den Resonanzen die den Azid-Stickstoffatomen zugeordnet werden, Signale, die den Stickstoffatomen der jeweiligen Lewis-Basen zugeordnet werden. Diese Resonanzen sind im Vergleich zu den Resonanzen der freien N-Basen deutlich verschoben. Es folgt, dass die Addukte ebenso in Lösung stabil sind. Aufgrund der 14 N-NMR-Spektren von As(N3)5 · NCNH2 bzw. Sb(N3)5 · NCNH2 kann gefolgert werden, dass die Cyanamid-Verbindungen über die Cyanid-Einheiten an die Zentralatome koordinieren. Die 75 As- bzw. 121 Sb-NMR-Spektren belegen eine oktaedrische Koordination an den Zentral-atomen. Es konnten für alle Addukte Resonanzen in den Spektren detektiert werden. Die Bindungsdissoziationsenthalpien für die Dissoziation der Addukte gemäß Gleichung 25 wurden quantenmechanisch berechnet. M(N3)5 · LB → M(N3)5 + LB (25) (M = As,Sb; LB = Pyridin, NH3, N2H4 und NH2CN) Die Bindungsdissoziationsenthalpie ist ein Maß für die As- bzw. Sb-NLB-Bindungsstärke dieser Addukte. Die Stabilität der Addukte steigt in der Reihenfolge NH2CN < Pyridin < NH3 < N2H4 und As(N3)5 < Sb(N3)5. Die Bindungsdissoziationsenthalpien stimmen qualitativ gut mit den berechneten As- bzw. Sb-NLB-Bindungslängen überein. Die schwächsten Cyanamid-Addukte zeigen die längsten As- bzw. Sb-NLB-Bindungslängen, die stärksten Hydrazin-Addukte zeigen die kürzesten. (d) Lewis-Säure-Base-Addukte von AsCl5 und SbCl5 AsCl5 ist aufgrund der d-Blockkontraktion und der damit verbundenen geringer Abschirmung der hohen Kernladung sehr instabil. Addukte von AsCl5 wurden ebenso wenige beschrieben. SbCl5 hingegen ist stabil. In dieser Arbeit wurde das Koordinationsverhalten schwacher Lewis-Basen gegenüber MCl5 (M = As, Sb) sowohl experimentell als auch theoretisch untersucht. Die Verbindungen MCl5 · LB (M = As, Sb; LB = ClCN, BrCN, ICN, 1 /2(CN)2, NH2CN und Pyridin) wurden auf B3LYP-Niveau berechnet, die Verbindungen SbCl5 · LB (LB = ClCN, BrCN, ICN, 1 /2(CN)2, NH2CN und Pyridin) und AsCl5 · NCI konnten synthetisiert werden. Strukturen, die ein lokales Minimum (NIMAG = 0) aufweisen, wurden für alle Addukte berechnet. Die Übereinstimmung der berechneten Strukturparameter für SbCl5 · NCCl und SbCl5 · NCCN · SbCl5 mit den durch Röntgenstrukturanalyse bestimmten Bindungs-längen und -winkel ist außerordentlich gut. Abbildung 50 zeigt die Molekülstruktur des 2:1 Addukts SbCl5 · NCCN · SbCl5. Die Strukturen zeigen eine sechsfache Koordination mit nahezu idealer oktaedrischer Umgebung an den Zentralatomen. Sie sind umgeben von fünf Chloratomen und jeweils einem Stickstoffatom der entsprechenden Lewis-Basen. Die Ramanspektren zeigen bei ca. 200 cm –1 Banden für die ν SbN-Streckschwingungen und von 83 cm –1 bis 134 cm –1 Banden für die δ SbN-Deformationsschwingungen. Die ν CN-Streckschwingungen der Addukte ergeben Banden zwischen 2187 cm –1 und 2352 cm –1 und sind damit um 18 - 76 cm –1 zu höheren Wellenzahlen im Vergleich zu den freien Cyaniden verschoben. Die 14 N-NMR-Spektren zeigen deutlich verschobene Resonanzen der Stickstoffatome im Vergleich zu den freien Lewis-Basen. Auf der Grundlage der experimentell bestimmten Atomkoordinaten von SbCl5 · NCCl und SbCl5 · NCCN · SbCl5 wurden NBO-Analysen (B3LYP) berechnet, um einen Einblick in die Bindungssituation dieser schwach gebundenen Lewis-Säure-Base-Addukte zu erhalten. Die Wechselwirkung der Lewis-Base Dicyan mit SbCl5 ist geringer als die Wechselwirkung von ClCN mit SbCl5. Basierend auf quantenmechanischen Rechnungen (B3LYP) wurde die Bindungs-dissoziationsenthalpien, die der thermodynamische Stabilität der Addukte entspricht, aller Addukte bestimmt. Die Stabilität steigt in der Reihenfolge (CN)2 < ClCN < BrCN < ICN < NH2CN < Pyridin und AsCl5 < SbCl5. Ferner wurden in dieser Arbeit die Molekülstrukturen der Verbindungen [NEt4][SbCl6], [PPh4][SbCl4] · CHCl3 (Kap. 3.1.7), [NH4][SbCl6] (Kap. 3.6.3) und[NMe4]2[As4O2Cl10] (Kap. 3.5.3) durch Röntgenstrukturanalyse gelöst. Das As4O2Cl10 2– -Anion weist eine ungewöhnliche Struktur auf. Das Anion besitzt im Kristall D2h-Symmetrie, in denen vier Arsenatome und zwei Sauerstoffatome coplanar angeornet sind. Jedes Arsenatom weist eine lokale Ψ -oktaedrische Geometrie auf, in denen es von vier Chloratomen in nicht-äquivalenten äquatorialen Positionen (zwei verbrückende- und zwei terminalen Chloratome) und einem stereochemischen aktivem Elektronenpaar in trans Position zu dem axial verbrückendem Sauerstoffatom umgeben ist. Die Bindungssituation dieses Anions wurde durch NBO-Analyse geklärt. Die verbrückenden Chloratome übertragen jeweils eine Ladung von 0.374 Elektronen auf eine Cl2As-O-AsCl2-Einheit. Dabei sind hauptsächlich Wechselwirkungen der s-LP´s der verbrückenden Chloratome mit den antibindenden σ∗-Orbitalen der As-Clterm.-Bindungen erkennbar. Diese Wechselwirkungen spiegeln sich in den relativ langen As-Clterm.-Bindungen (2.219(1) Å) wieder. Ein weiters Ziel dieser Arbeit war die Synthese und strukturelle Charakterisierung von Azid-Komplexen der Metalle Palladium und Platin. Die Palladiumazid-Komplexe L2Pd(N3)2 (L = 2-Chloropyridin, 3-Chloropyridin, Chinolin) wurden erstmalig synthetisiert und eindeutig mittels IR-, Raman- und 14 N-NMR-Spektroskopie charakterisiert. Die Ergebnisse dieser spektroskopischen Untersuchungen deuten auf trans-stehende Azidliganden. Diese Ergebnisse konnten teilweise durch Röntgenstrukturanalyse bestätigt werden. Ferner wurden die von Beck et al. synthetisierten Palladiumazid-Komplexe L2Pd(N3)2 (L = PPh3, AsPh3) strukturell charaktersisiert. Ähnlich wie in L2Pd(N3)2 (L = 2-Chloropyridin, 3-Chloropyridin, Chinolin) sind die Azidgruppen trans zueinander angeordnet. Die Struktur von Pd(PPh3)2(N3)2 ist hier als Beispiel angegeben (Abbildung 51). In dem gemischt valenten Chlorid/Azid-Komplex [AsPh4]2[Pd2(N3)4Cl2] liegen die Pd(N3)2Cl – -Anionen als azidverbrückte Dimere vor, die einen planaren Pd2N2-Ring ausbilden. Desweiteren wurden in vorliegender Arbeit die binären Palladiumazid- und Platinazid- Anionen Pd(N3)4 2– , Pt(N3)4 2– und Pt(N3)6 2– strukturell charakterisiert. Auftretende Probleme bezüglich N-N-Abständen innerhalb der Azid-Einheiten konnten durch quantenmechanische Rechnungen auf HF- und B3LYP-Niveau gelöst werden. Die Tetraazid-Anionen weisen im Kristall beinahe ideale C4h-Symmetrie, und das Hexaazid-Anion annähernd ideale S6- Symmetrie auf. Für die Tetraazid-Anionen resultiert dadurch eine molekulare Struktur, die dem eines "Windrades" sehr ähnlich ist (vgl. Kap. 3.7.7). Zusammenfassend sind die in der vorliegenden Arbeit dargestellten Verbindungen und ihre Charakterisierung in Tabelle 45 aufgeführt. Sofern die Verbindungen bereits publiziert wurden sind die Originalarbeiten als Literaturstelle angegeben.